www.haleyaldrich.com

2018 PERIODIC REVIEW REPORT

FORMER XEROX BUILDING 801 HENRIETTA, NEW YORK

by Haley & Aldrich of New York Rochester, New York

for Xerox Corporation Webster, New York

File No. 129158-007 February 2019

Haley & Aldrich of New York 200 Town Centre Drive Suite 2 Rochester, NY 14623 585.359.9000

8 February 2019 File No. 129158- 007

Xerox Corporation 800 Phillips Road Bldg. 205-99F Webster, New York 14580

Attention: Mr. Eliott Duffney

Subject: 2018 Periodic Review Report Former Xerox Building 801 Facility Henrietta, New York Site No: 828069

Dear Mr. Duffney:

Haley & Aldrich of New York is pleased to provide Xerox Corporation with this annual Periodic Review Report (PRR) for the Former Xerox Building 801 Facility in Henrietta, New York. This report summarizes activities performed and presents data collected during the period 1 January 2018 through 31 December 2018 and is intended to satisfy the PRR requirements and annual reporting requirements described in the NYSDEC-approved 30 July 2015 Revised Site Management Plan.

This report is being submitted to the New York State Department of Environmental Conservation (NYSDEC) in electronic (Adobe Acrobat) format conforming to the electronic document submission requirements of the NYSDEC. An additional copy of Appendix A (Annual Institutional and Engineering Controls Certification Form) is also being submitted in hard copy format to the NYSDEC as requested.

Please do not hesitate to contact us should you have any questions regarding this report.

Sincerely yours, HALEY & ALDRICH OF NEW YORK

Jonathan M. Sanger Environmental Specialist

Vincent B. Dick Principal

enucic

Janice D. Szucs, P.E. Project Manager | Senior Technical Specialist

c: Harris Corporation; Attn: Jason Scott

\\haleyaldrich.com\share\roc_common\Xerox\Henrietta B801\Reporting - PRR\2018 Report 9\2019-0208-HANY-2018_Xerox_Annual_Report_F.docx

Executive Summary

Haley & Aldrich of New York (Haley & Aldrich) has prepared this annual Periodic Review Report (PRR) for the 2018 reporting year for the Former Xerox Building 801 Facility located at 1350 Jefferson Rd, Henrietta, NY (Site). This report presents updates to current Site conditions, confirms that previously investigated and remediated Site risks are effectively managed, and summarizes activities performed and data collected during the period 1 January 2018 through 31 December 2018. This report is intended to satisfy the requirements described in the NYSDEC-approved 30 July 2015 Revised Site Management Plan (SMP).

During the 2018 reporting period, the engineering controls/institutional controls (EC/ICs) onsite were in place and functioned effectively. The PRR Annual Institutional and Engineering Controls Certification Form is included in Appendix A. Please note that the form was edited (as required within form instructions) to state the correct PRR period (1 January to 31 December 2018) and site acreage (85.98 acres, not 2.000).

Based on the results of the most recent groundwater sampling event, the plume remains confined within the footprint of the defined Soil and Groundwater Management Area (SGMA). The groundwater analytical results indicate that the reductive dechlorination process is progressing naturally to completion, gradually reducing residual contaminant levels and assisting with maintaining overall plume stability as intended. Overall, the data collected during the most recent monitoring event is consistent with the past monitoring events completed since the time that active remediation was deemed complete by the NYSDEC. In general, the source area well data showed an overall decrease in concentrations of chlorinated compounds of concern, a static condition, or a condition of decreasing parent compound and increasing daughter compound concentrations, which is expected under a biologically-driven degradation scenario.

During the reporting period, there were no recorded shutdowns of the sub-slab depressurization (SSD) system. The SSD system continues to operate effectively within the design zone of influence and is mitigating the potential for vapor impacts to indoor air within the Former Xerox Building 801, as intended.

A visual inspection of the SGMA by Haley & Aldrich has confirmed that protective cover and fencing to limit Site access remain in place and have not been disturbed. Under the sale agreement, property owner Harris Corporation (Harris) is responsible for notifying NYSDEC of any planned excavations within the SGMA and reporting SGMA activities to Xerox, which, if conducted, will be included in future PRR summary reports. Based on input received from Harris Corporation, there were no ground intrusive activities that took place within the SGMA in 2018.

Harris conducted various ground intrusive site improvement projects during 2018 that occurred outside of the SGMA. These projects included improvements to drainage features and installation of a concrete pad. The NYSDEC was notified of these activities prior to commencement and concurred with performance of the activities.

Exe List List	i iii iii		
1.	Bac	kground	1
2.	Site	Activities	2
3.	Gro	undwater and Surface Water Monitoring	3
	3.1 3.2 3.3	SOURCE AREA WELLS – HRC-S INJECTION AREA DOWNGRADIENT WELLS SURFACE WATER	3 4 4
4.	Sub	-Slab Depressurization System	5
	4.1 4.2	SYSTEM OPERATION & MAINTENANCE SUMMARY SUB-SLAB VACUUM MONITORING	5 5
5.	SGN	/IA Activities and Site Improvements	6
6.	Rec	ommendations and Future Activities	7

Figures

Appendix A – Annual Engineering and Institutional Controls Certification Form

- Appendix B Laboratory Analytical Data Report
- **Appendix C** Time vs. Concentration Graphs

Appendix D – Correspondence of Site Improvements

Page

ii

List of Tables

Table No.	Title
I	Total VOCs in Groundwater Since 2008
II	Site Water Level Data
ш	Groundwater & Surface Water Monitoring Analytical Summary
IV	SSD System Floor Point Vacuum Readings
v	SSD Fan Vacuum Readings

List of Figures

Figure No.	Title
1	Project Locus
2	Site Plan
3	Sub-Slab Depressurization System Plan – As Built
4	Upper Aquifer Groundwater Contours 2018

1. Background

Haley & Aldrich of New York (Haley & Aldrich) has prepared this annual Periodic Review Report (PRR) for the 2018 reporting year for the Former Xerox Building 801 Facility located at 1350 Jefferson Rd, Henrietta, NY Site No. 828069 (see Figure 1). This report presents updates to current Site conditions, confirms that previously investigated and remediated Site risks are effectively managed, and summarizes activities performed and data collected during the period 1 January 2018 through 31 December 2018. This report is intended to satisfy the requirements described in the NYSDEC-approved Revised Site Management Plan (SMP) dated 30 July 2015.

Xerox implemented several remedial actions at this Site from the early 1990s through 2006, when active remediation was deemed complete by the NYSDEC. An overall summary of the Remedial Actions and site management activities performed at the Site and timeframes is as follows:

- 1. Groundwater pump and treat to manage plume migration (1990 to 1994).
- 2. Stormwater redirection around the source area (1995).
- 3. 2-PHASE Extraction to reduce soil and groundwater residual concentrations (1994 to 2001).
- 4. HRC-S (biological amendment) pilot test and larger-scale final corrective action injection to further reduce soil and groundwater residuals (2003 to 2006).
- 5. Installation and testing of a sub-slab depressurization (SSD) system (2006 to 2007).
- 6. Sale of the property to Harris Corporation (Harris) on 15 March 2010. Xerox vacated the building in September 2010 and Harris started renovations to the building. As part of the renovations, modifications and expansion to the existing SSD system were performed. Renovations were substantially completed in September 2011. Harris currently occupies the building and property; operation of the expanded SSD system continues.

Corrective Actions for the Site were completed in August 2006 with the implementation of the final large-scale biological amendment addition to stimulate natural degradation processes over the long term. No further active remediation has been conducted, nor is contemplated based on the current site conditions. Site activities are now governed by a SMP for long-term management of residual contamination, as required by the NYSDEC and which includes: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance, and (4) periodic reporting. SMP activities include annual groundwater monitoring; operation, maintenance, and monitoring of a sub-slab depressurization (SSD) system; management of soil cover and adherence to management protocols for the Soil and Groundwater Management Area (SGMA) of the Site; and annual certification that prescribed Site engineering and institutional controls (EC/ICs) are still in place.

2. Site Activities

The following activities were implemented during the reporting period as stipulated by the SMP:

- An annual groundwater monitoring event was performed by ALS Environmental of Rochester, New York on 28 August 2018.
- Vacuum testing was conducted on 10 October 2018 and on 19 November 2018 by Haley & Aldrich to evaluate the sub-slab depressurization (SSD) system performance.

During the 2018 reporting period, the engineering and institutional controls onsite were in place and functioned effectively. There were no ground-intrusive activities that took place within the SGMA during the reporting period. The Institutional and Engineering Controls Certification Form documenting that site management requirements are being met is included as Appendix A of this report and is also being submitted in hard copy format to NYSDEC. Please note that the form incorrectly stated that the PRR period ran from 15 January 2018 to 15 January 2019 and incorrectly stated that site acreage is 2.000 acres. These were corrected in the form to the actual PRR period of 1 January to 31 December 2018 and actual acreage of 85.98 on the form, per PRR form instructions.

3. Groundwater and Surface Water Monitoring

On 28 August 2018, groundwater samples were collected from twelve (12) onsite wells and two of the three (3) surface water locations (one location was dry at the time sampling was performed), as required by the SMP (Figure 2). The well samples were collected using passive diffusion bags (PDBs), as approved by NYSDEC in 2017. Sampling and laboratory analyses were conducted by ALS Environmental of Rochester, New York. Laboratory analytical results are summarized in Tables I and III, and in the sections below. Table III provides historical data from 2006 to present to show trends since the completion of the final larger-scale HRC-S injection in 2006 and as confirmation that analytical results reflect a stable plume condition. Data prior to 2006 can be found in previous semi-annual reports prepared for the Site. The laboratory data report is included in Appendix B. A graphical depiction of the data is included as Appendix C.

Static groundwater levels were collected from the twelve (12) onsite wells on 28 August 2018. The data is summarized in Table II. Groundwater contours based on the data are included on Figure 4. Groundwater elevations, flow direction and gradients remain consistent with past monitoring events. Based on the 2018 groundwater elevation data, groundwater flows to the north-northeast, which is consistent with past monitoring results.

3.1 SOURCE AREA WELLS – HRC-S INJECTION AREA

Five wells VE-6, VE-10, VE-12, VE-15, and RW-4 are located within the final larger-scale HRC-S Injection Area, and herein referred to as the residual source area. Refer to Figure 2 for the location of those wells. The analytical data is summarized in Tables I and III. Refer to the figures in Appendix C for a graphical depiction of the data trends with time.

Volatile organic compound (VOC) data from the residual source area is consistent with historical data and indicate that the enhanced reductive dechlorination process stimulated by the injection of the HRC-S is active and continuing in the remediation area. VE-10, VE-12 and VE-15 in particular continue to show strong evidence of the reductive dechlorination pathway with overall decreasing levels of cis-1,2-dichloroethene (cis-1,2-DCE) and 1,1-dichloroethane (1,1-DCA) and corresponding increasing or higher levels of daughter products vinyl chloride and chloroethane as expected due to the reductive dechlorination process. The concentrations at VE-12, which had decreased two to three orders of magnitude in 2017 over historic values (2008 to 2011 timeframe – see concentration trend plot for VE-12 in Appendix C), returned to a higher concentration in 2018 compared to 2017, but still lower than any prior sampling data. The change between 2017 and 2018 appears to have been largely due to an increase in concentrations of vinyl chloride (9,100 ug/L) and chloroethane (6,400 ug/L) which are expected daughter products from the parent contaminant compounds given the active reductive dechlorination process at the Site.

Parent compounds tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1-TCA) were not detected in any of the source area wells during the 2018 sampling event, with the exception of low concentrations of TCE in RW-4 (13 ug/L) and 1,1,1-TCA in VE-6 (620 ug/L), which has been on a decreasing trend. Concentrations of parent compounds detected remain well below levels observed before remediation was conducted at the site. In general, the source area well data showed a significant overall decrease in chlorinated compound concentrations of concern, a static condition, or a condition of decreasing parent compound and increasing daughter compound concentrations, which is

expected under the degradation scenario. The groundwater analytical results indicate that the reductive dechlorination process is progressing naturally to completion, gradually reducing residual contaminant levels and assisting with maintaining overall plume stability as intended.

3.2 DOWNGRADIENT WELLS

The downgradient well locations are MW-2, MW-10, MW-13S, MW-16, MW-18S, and MW-19. They are primarily located outside and downgradient of the HRC-S injection area. Refer to Figure 2 for the location of these wells. The analytical data is summarized in Tables I and III, and concentration trends are depicted in Appendix C.

Parent VOC concentrations (PCE, TCE, and 1,1,1-TCA) were generally consistent with the previous sampling event and historical trends. Concentrations for total VOCs detected were generally lower or consistent with historical fluctuation in the 2018 sampling event compared to previous sampling events dating back to 2006 when remediation was deemed complete at the Site. Refer to the figure in Appendix C for a graphical depiction of the total VOC data trends with time.

Results at wells MW-13S, MW-16 and MW-18 located near the downgradient edge of the SGMA indicate that the plume remains within the SGMA (see Table I and Appendix C). Total VOC concentrations at MW-13S (6.6 ug/L total VOCs in 2018) remain at a consistent low level. VOC concentrations at well MW-16, located just outside the downgradient edge of the SGMA, remain non-detect. MW-18, also located just outside the downgradient edge of the SGMA, had a low-level detection of acetone (16 ug/L) in 2018. Acetone is not a contaminant of concern at the Site and is often used in laboratory processes, which is the likely source of the detection.

3.3 SURFACE WATER

Samples were collected from two of the three surface water locations, SW-34 and SW-35. SW-29, which historically has non-detectable VOC concentrations, was dry during the sampling event and therefore was not sampled. VOCs were not detected in SW-34 but were detected in SW-35 at low concentrations (19 ug/L cis-1,2-DCE and 7 ug/L 1,1-DCE), which is consistent with historical trends. Refer to Figure 2 for locations of surface water samples. Analytical results are summarized in Table III.

4. Sub-Slab Depressurization System

4.1 SYSTEM OPERATION & MAINTENANCE SUMMARY

The sub-slab depressurization system continues to operate at the Site. During the 2018 reporting period there were no noted shutdowns of the system and observed sub-slab vacuum readings were consistent with historical levels.

4.2 SUB-SLAB VACUUM MONITORING

Sub-slab vacuum readings were collected from vacuum monitoring floor points using a calibrated handheld manometer on 10 October 2018 and 19 November 2018. Overall, monitoring results show that the system is working effectively within the zone of influence.

Vacuum measurements collected on 10 October 2018 from the vacuum monitoring points met the design criteria of 0.002 inches of water column, except for T-18 (see Table IV). T-18 typically exhibits lower levels of vacuum, 0.002 to 0.005 inches of water column (in. w.c.) and was measured at 0 in. w.c. during the October event. A subsequent system inspection was performed on 19 November 2018 to determine the reason for the low vacuum reading at T-18 and verify the measurements. During the follow-up event, repairs were made to improve the surface seal at T-18, and vacuum was measured at 0.003 in. w.c. Nearby floor points were also measured and resulted in vacuum levels consistent with normal operating values.

In addition to vacuum monitoring at floor points, readings from suction points were collected using permanently-installed gauges. Readings from the suction points indicated that the seven SSD system fans in operation during the monitoring event are providing adequate coverage of the area where SSD system is applied. Suction point vacuum readings are included in Table V.

5. SGMA Activities and Site Improvements

A visual inspection by Haley & Aldrich of the SGMA was performed on 10 October 2018 and confirmed that protective cover and fencing to limit access remain in place and have not been disturbed. During 2018, there were no ground intrusive activities that took place within the SGMA.

During the 2018 reporting period, Harris conducted various ground intrusive site improvement projects outside of the SGMA. The NYSDEC was notified of these activities prior to commencement. Correspondence of these activities can be found in Appendix D.

- July 2018 Harris conducted improvements to increase drainage at the front entrance located south of the building, and improved drainage through streams on the western and southern edges of the property by removing cattails and brush from the area.
- October 2018 Harris completed a shallow excavation and installed a small concrete pad in the northern section of the building adjacent to the western edge of the SGMA.

6. Recommendations and Future Activities

Xerox will continue the following activities as stipulated in the SMP:

- Groundwater well monitoring and sampling;
- Monitoring of the SSDS; and
- Preparation and submittal of annual PRRs.

TABLES

TABLE I TOTAL VOCS IN GROUNDWATER SINCE 2008 FORMER XEROX BUILDING 801 HENRIETTA, NEW YORK

WELL ID	Jun-08	Dec-08	Jun-09	Jun-10/Jul-10	Oct-11	Aug-12	Sep-13	Jul-14	Aug-15	Aug-16	3/29/2017 Resampling	Sep-17	Aug-18
RW-4	26,520	4,540	1,340	1,230	10,631	940	666	1,823	747	227	NS	76	75
MW-2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND
MW-10	2,524	2,470	1,417	1,002	2,668	2,885	869	1,686	1,100	1,012	910	1,047	1,259
MW-13S	98.2	73.6	95.0	75.7	63.4	71	74	68.4	76.8	5.4	NS	6.6	20.0
MW-16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND
MW-18S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	16
MW-19	761	107.9	725	1,410	518	1,371	997	303	606	7,953	973	393	1,269
MW-24S	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND
VE-6	18,830	9,770	25,380	80,970	46,000	39,300	44,400	49,500	25,900	16,530	NS	20,360	17,120
VE-10	24,000	47,650	90,400	43,800	62,000	76,600	62,900	44,100	44,600	88,000	NS	1,394	2,438
VE-12	85,400	120,300	127,500	97,000	173,800	101,700	69,400	97,800	68,400	40,900	NS	2,208	17,110
VE-15	36,800	30,250	26,100	43,800	8,207	1,592	1,248	4,909	830	530	NS	575	349

Notes:

All concentrations are in ug/L.
Concentrations are rounded to the whole number.
"ND" Indicates not detected above laboratory detection limit.
"NS" indicates not sampled

Wall ID	Poforonoo Elovation	Depth to Water						
Weil ID	Reference Elevation	September 2017	August 2018					
RW-4	498.84	4.39	4.36					
MW-2	498.49	4.63	4.41					
MW-10	498.45	4.52	4.45					
MW-13S	498.35	5.70	6.33					
MW-16	498.83	7.00	10.04					
MW-18S	498.81	5.94	6.32					
MW-19	498.53	5.42	6.91					
MW-24S	503.44	4.66	4.73					
VE-6	498.93	4.41	4.75					
VE-10	500.04	4.70	4.44					
VE-12	501.09	4.77	4.68					
VE-15	499.73	4.94	4.88					

Notes:

1. Elevations measured in feet above mean sea level.

2. Depth to water measured from the top of the well riser.

3. Water levels measured by ALS.

February 2019

Sample ID								VE-12							
Analyte or Method	12/12/06	06/14/07	12/18/07	06/12/08	12/18/08	06/22/09	07/01/10	10/11/11	08/23/12	09/05/13	07/30/14	08/26/15	08/31/16	09/27/17	08/28/18
VOCs 8260B (ug/L)															
Acetone	ND (4000)	ND (4000)	ND (4000)	ND (8000)	ND (8000)	ND (4000)	ND (10000)	ND (10000)	ND (2500)	ND (2500) J	ND (2500)	ND (2500)	ND (2000)	ND (100)	ND (1000)
Benzene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
Bromodichloromethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
Bromoform	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
Bromomethane (Methyl Bromide)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
2-Butanone (Methyl Ethyl Ketone)	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	110	ND (500)
Carbon Disulfide	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	ND (100)	ND (1000)
Carbon Tetrachloride	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
Chlorobenzene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND(50)	ND (500)
Chloroethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	1,400	2,700	4,800	9,200	1,400	6,400
Chloroform (Trichloromethane)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
Chloromethane (Methyl Chloride)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
Dibromochloromethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
1,1-Dichloroethane	14,000	9,600	11,000	7,200	18,000	8,800	11,000	12,000	17,000	16,000	16,000	15,000	4,900	330	960
1,2-Dichloroethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
1,1-Dichloroethene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	1,700	ND (2500)	ND (2500)	ND (1300)	ND (1300)	1,400	ND (1300)	ND (1,000)	ND (50)	ND (500)
cis-1,2-Dichloroethene	4,100	23,000	19,000	40,000	57,000	73,000 D	48,000	100,000	44,000	27,000	45,000	14,000	5,800	ND(50)	ND (500)
trans-1,2-Dichloroethene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
1,2-Dichloropropane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
Cis-1,3-Dichloropropene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
trans-1,3-Dichloropropene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
Ethylbenzene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
2-Hexanone	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	ND (100)	ND (500)
Methylene Chloride	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	88	ND (500)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	ND (100)	ND (1000)
Styrene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300) J	ND (1300) J	ND (1300) J	ND (1300)	ND (50)	ND (500)
1,1,2,2-Tetrachloroethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
Tetrachloroethene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
Toluene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	650
1,1,1-Trichloroethane	ND (1000)	4,600	1,800	7,200	3,300	11,000	4,000	8,800	2,700	ND (1300)	4,700	1,600	ND (1,000)	ND (50)	ND (500)
1,1,2-Trichloroethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
Trichloroethene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
Vinyl Chloride	30,000	37,000	44,000 D	31000	42000	33,000	34,000	53,000	38,000	25,000	28,000	33,000	21,000	280	9,100
o-Xylene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)
m,p-Xylenes	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected

J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not

collected during that sampling period.

3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Sample ID)									VE	-10									
Analyte or Method	11/23/03	11/24/2003 DUPLICATE	12/02/04	03/29/05	06/23/06	12/12/06	06/13/07	12/18/07	06/12/08	12/17/08	06/22/09	07/01/10	10/11/11	08/22/12	09/05/13	07/30/14	08/26/15	08/31/16	09/27/17	08/28/18
VOCs 8260B (ug/L)																				
Acetone	ND (1000)	ND (2000)	ND (1000)	ND (1000)	ND (5000)	ND (5000)	ND (8000)	ND (5000)	ND (4000)	ND (1000)	ND (4000)	ND (5000)	ND (5000)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (5,000)	ND (50)	ND (50)
Benzene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
Bromodichloromethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
Bromoform	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
Bromomethane (Methyl Bromide)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
2-Butanone (Methyl Ethyl Ketone)	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (5,000)	ND (50)	ND (50)
Carbon Disulfide	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (5,000)	ND (50)	ND (50)
Carbon Tetrachloride	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
Chlorobenzene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
Chloroethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	1,300	2,100	1,800	2,000	2,600	2,900	2,100	4,500	5,000	670	1,500
Chloroform (Trichloromethane)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
Chloromethane (Methyl Chloride)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
Dibromochloromethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
1,1-Dichloroethane	1,200	1,200	1,100	1,300	1,600	1,600	2,600	2,700	3,000	850	1,300	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	64	120
1,2-Dichloroethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
1,1-Dichloroethene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
cis-1,2-Dichloroethene	17,000 E	17,000 D	17,000 D	18,000 D	42,000	40,000	79,000	17,000	18,000	4,500	36,000	14,000	23,000	48,000	28,000	22,000	6,100	50,000	ND (25)	79
trans-1,2-Dichloroethene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	40	73
1,2-Dichloropropane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
Cis-1,3-Dichloropropene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
trans-1,3-Dichloropropene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
Ethylbenzene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
2-Hexanone	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (5,000)	ND (25)	ND (25)
Methylene Chloride	450	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	33	56
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (5,000)	ND (50)	ND (50)
Styrene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300) J	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
1,1,2,2-Tetrachloroethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
Tetrachloroethene	1,100	1,000	820	1,000	2,800	1,700	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
Toluene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
1,1,1-Trichloroethane	2,000	2,000	1,600	2,000	4,000	3,200	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
1,1,2-Trichloroethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
Trichloroethene	1,400	1,300	1,200	ND (250)	4,000	1,800	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
Vinyl Chloride	ND (250)	ND (500)	ND (250)	1,900	ND (1250)	ND (1250)	ND (2000)	24,000	33,000	41,000 D	51,000 D	28,000	37,000	26,000	32,000	20,000	34,000	33,000	620	610
o-Xylene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)
m,p-Xylenes	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected

J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not

collected during that sampling period.

3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Sample ID								,	VE-6							
Analyte or Method	06/23/06	12/13/06	06/13/07	12/19/07	06/11/08	12/18/08	06/23/09	06/28/10	10/12/11	08/23/12	09/05/13	07/30/14	08/26/15	08/30/16	09/26/17	08/28/17
VOCs 8260B (ug/L)																
Acetone	ND (4000)	ND (2000)	ND (2000)	ND (400)	ND (400)	ND (1000)	ND (2000)	ND (2000)	ND (5000)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (1,000)	ND (1,000)	ND (1,000)
Benzene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
Bromodichloromethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
Bromoform	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
Bromomethane (Methyl Bromide)	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
2-Butanone (Methyl Ethyl Ketone)	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (1,000)	ND (1,000)	ND (1,000)
Carbon Disulfide	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (1,000)	ND (1,000)	ND (1,000)
Carbon Tetrachloride	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
Chlorobenzene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
Chloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	110	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
Chloroform (Trichloromethane)	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
Chloromethane (Methyl Chloride)	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
Dibromochloromethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
1,1-Dichloroethane	1,100	900	1,800	120	1,800	300	980	2,400	1,700	1,900	2,100	2,200	1,200	720	980	680
1,2-Dichloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
1,1-Dichloroethene	ND (1000)	530	820	ND (100)	ND (100)	ND (250)	ND (500)	600	1,300	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	510	520
cis-1,2-Dichloroethene	22,000	18,000	32,000 D	2,700	8000 D	8,500	18,000	66,000 D	40,000 D	34,000	36,000	39,000	20,000	14,000	14,000	13,000
trans-1,2-Dichloroethene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	570	1,300	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
1,2-Dichloropropane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
Cis-1,3-Dichloropropene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
trans-1,3-Dichloropropene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
Ethylbenzene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
2-Hexanone	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (1,000)	ND (1,000)	ND (1,000)
Methylene Chloride	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (1,000)	ND (1,000)	ND (1,000)
Styrene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300) J	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
1,1,2,2-Tetrachloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
Tetrachloroethene	11,000	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
Toluene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
1,1,1-Trichloroethane	10,000	4,000	6,000	340	920	970	1,700	4,700	2,400	3,400	3,100	5,500	1,600	710	970	620
1,1,2-Trichloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
Trichloroethene	6,800	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
Vinyl Chloride	ND (1000)	ND (500)	1,400	140	8000 D	ND (250)	4,700	6,700	1,900	ND (1300)	3,200	2,800	3,100	1,100	3,900	2,300
o-Xylene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)
m,p-Xylenes	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected

J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not

collected during that sampling period.

3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

\\haleyaldrich.com\share\roc_common\Xerox\Henrietta B801\Reporting - PRR\2018 Report 9\Tables-Draft\Individual Files\Table III_Annual Monitoring Summary_2018_v2.xlsx

Page 3 of 14

Sample ID								V	E-15							
Analyte or Method	06/23/06	12/13/06	06/13/07	12/19/07	06/11/08	12/18/08	06/23/09	07/01/10	10/11/11	08/23/12	09/05/13	07/30/14	08/26/15	08/31/16	09/26/17	08/28/18
VOCs 8260B (ug/L)																
Acetone	ND (5000)	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (1000)	ND (1000)	250	160	140	94 J	110	87	ND (50)	ND (50)	ND (25)
Benzene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
Bromodichloromethane	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
Bromoform	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
Bromomethane (Methyl Bromide)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
2-Butanone (Methyl Ethyl Ketone)	ND (2500)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	650	ND (500)	430	300	210	140	130	82	ND (50)	ND (50)	ND (25)
Carbon Disulfide	ND (2500)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (500)	ND (500)	ND (50)	ND (50)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (25)
Carbon Tetrachloride	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
Chlorobenzene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
Chloroethane	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	880	2,200	1,100	940	1,400	610	530	540	250
Chloroform (Trichloromethane)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
Chloromethane (Methyl Chloride)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
Dibromochloromethane	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
1,1-Dichloroethane	2,600	940	3,100	2,300	2,400	1,900	2,000	400	650	83	41	720	51	ND (25)	25	99
1,2-Dichloroethane	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
1,1-Dichloroethene	ND (1250)	ND (500)	500	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
cis-1,2-Dichloroethene	38,000	12,000	43,000 D	3,400 D	29,000	19,000 D	9,100	130	1,600	ND (50)	ND (25)	1,200	ND (25)	ND (25)	ND (25)	ND (13)
trans-1,2-Dichloroethene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	160	540	59	33	250	ND (25)	ND (25)	ND (25)	ND (13)
1,2-Dichloropropane	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
Cis-1,3-Dichloropropene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
trans-1,3-Dichloropropene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
Ethylbenzene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
2-Hexanone	ND (2500)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (500)	ND (500)	150	50	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (25)
Methylene Chloride	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	46	140	ND (50)	-	99	ND (25)	ND (25)	ND (25)	ND (13)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (2500)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (500)	ND (500)	ND (50)	ND (50)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (25)
Styrene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25) J	ND (25) J	ND (25)	ND (25)	ND (25)	ND (13)
1,1,2,2-Tetrachloroethane	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
Tetrachloroethene	4,100	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
Toluene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
1,1,1-Trichloroethane	7,500	880	600	ND (500)	ND (1000)	ND (250)	ND (250)	38	67	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
1,1,2-Trichloroethane	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
Trichloroethene	5,400	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
Vinyl Chloride	ND (1250)	620	2,900	3,100	5,400	8,700	15,000 D	340	2,500	ND (50)	ND (25)	1,000	ND (25)	ND (25)	ND (25)	ND (13)
o-Xylene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)
m,p-Xylenes	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (13)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected

J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not

collected during that sampling period.

3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Sample ID)							RW	-4							
Analyte or Method	06/16/06	11/29/06	06/13/07	12/20/07	06/11/08	12/17/08	06/24/09	06/28/10	10/11/11	08/23/12	09/05/13	07/30/14	08/26/15	08/31/16	09/26/17	08/28/18
VOCs 8260B (ug/L)																
Acetone	ND (5000)	ND (2000)	NA	ND (500)	ND (2000)	ND (500)	ND (1000)	ND (100)	ND (100)	ND (50)	ND (50) J	ND (50)	ND (50)	ND (10)	ND (10)	ND (10)
Benzene	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
Bromoform	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (1300)	ND (500)	ND (250)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (2500)	ND (1000)	NA	ND (250)	ND (1000)	ND (250)	ND (500)	55	100	ND (50)	ND (50) J	ND (50)	ND (50)	11	ND (10)	ND (10)
Carbon Disulfide	ND (2500)	ND (1000)	NA	ND (250)	ND (1000)	ND (250)	ND (500)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	36	760	40	43	85	37	7	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (1300)	ND (500)	ND (250)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	7,800	1,300	560	1,500	1,500	620	390	150	390	150	75	160	100	64	27	19
1,2-Dichloroethane	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethene	3,100	ND (500)	52	330	ND (500)	ND (130)	ND (250)	ND (25)	ND (30)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene	41,000 D	14,000	3,500	24,000 D	20,000 D	3,200	690	910	5,000	620	470	1,300	500	92	ND (5)	15
trans-1,2-Dichloroethene	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (170)	ND (25)	ND (25)	ND (25)	ND (25)	5	ND (5)	ND (5)
1,2-Dichloropropane	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (2500)	ND (1000)	NA	ND (250)	ND (1000)	ND (250)	ND (500)	ND (50)	ND (50)	ND (50)	ND (50) J	ND (50)	ND (50)	12	ND (10)	ND (10)
Methylene Chloride	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (31)	ND (25)	ND (25)	ND (25)	ND (25)	7	12	13.0
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (2500)	ND (1000)	NA	ND (250)	ND (1000)	ND (250)	ND (500)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (10)	ND (10)	ND (10)
Styrene	ND (1300)	ND (500)	NA	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25) J	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
1,1,2,2-Tetrachloroethane	ND (1300)	ND (500)	ND (500)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	1,500	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
Toluene	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
1,1,1-Trichloroethane	14,000	660	100	1,400	720	ND (130)	ND (250)	29	220	ND (25)	ND (25)	40	ND (25)	ND (5)	ND (5)	ND (5)
1,1,2-Trichloroethane	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
Trichloroethene	5,800	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	8	16	13
Vinyl Chloride	3,500	1,800	570	1,900	4,300 D	720	260	50	4,200	130	78	210	110	21	21	15
o-Xylene	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)
m,p-Xylenes	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)	ND (5)	ND (5)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected

J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not

collected during that sampling period.

3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

February	2019
----------	------

Sample ID								MW-	-2							
Analyte or Method	06/16/06	11/29/06	06/13/07	12/20/07	06/11/08	12/17/08	06/24/09	06/28/10	10/11/11	08/22/12	09/05/13	07/30/14	08/26/15	08/31/16	09/27/17	08/28/18
VOCs 8260B (ug/L)																
Acetone	ND (20)	ND (10)														
Benzene	ND (5)															
Bromodichloromethane	ND (5)															
Bromoform	ND (5)															
Bromomethane (Methyl Bromide)	ND (5)															
2-Butanone (Methyl Ethyl Ketone)	ND (10)															
Carbon Disulfide	ND (10)															
Carbon Tetrachloride	ND (5)															
Chlorobenzene	ND (5)															
Chloroethane	ND (5)															
Chloroform (Trichloromethane)	ND (5)															
Chloromethane (Methyl Chloride)	ND (5)															
Dibromochloromethane	ND (5)															
1,1-Dichloroethane	ND (5)															
1,2-Dichloroethane	ND (5)	ND (5.0)	ND (5.0)	ND (5)	ND (5)	ND (5)										
1,1-Dichloroethene	ND (5)															
cis-1,2-Dichloroethene	ND (5)															
trans-1,2-Dichloroethene	ND (5)															
1,2-Dichloropropane	ND (5)															
Cis-1,3-Dichloropropene	ND (5)															
trans-1,3-Dichloropropene	ND (5)															
Ethylbenzene	ND (5)															
2-Hexanone	ND (10)															
Methylene Chloride	ND (5)															
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)															
Styrene	ND (5)	ND (5) J	ND (5.0)	ND (5.0)	ND (5)	ND (5)	ND (5)									
1,1,2,2-Tetrachloroethane	ND (5)															
Tetrachloroethene	ND (5)															
Toluene	ND (5)															
1,1,1-Trichloroethane	ND (5)															
1,1,2-Trichloroethane	ND (5)															
Trichloroethene	ND (5)															
Vinyl Chloride	ND (5)															
o-Xylene	ND (5)															
m,p-Xylenes	ND (5)															

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected

J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not

collected during that sampling period.

3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Sample ID										MW-10								
Analyte or Method	06/16/06	11/29/06	06/13/07	12/20/07	06/11/08	12/17/08	06/24/09	06/22/10	10/11/11	08/22/12	09/05/13	07/30/14	08/26/15	8/26/2015 DUPLICATE	08/31/16	Resample 3/29/2017	9/26/2017	8/28/2018
VOCs 8260B (ug/L)																		
Acetone	ND (100)	ND (200)	ND (100)	ND (100)	ND (200)	ND (200)	ND (40)	ND (50)	ND (200)	ND (100)	ND (50) J	ND (50)	ND (50)	ND (50)	ND (50)	NA	ND (50)	ND (50)
Benzene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
Bromodichloromethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
Bromoform	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
Bromomethane (Methyl Bromide)	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
2-Butanone (Methyl Ethyl Ketone)	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	NA	ND (50)	ND (50)
Carbon Disulfide	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	NA	ND (50)	ND (50)
Carbon Tetrachloride	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
Chlorobenzene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
Chloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
Chloroform (Trichloromethane)	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
Chloromethane (Methyl Chloride)	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
Dibromochloromethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
1,1-Dichloroethane	97	120	73	160	180	190	100	86	200	240	88	170	110	110	99	99	110	130
1,2-Dichloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
1,1-Dichloroethene	ND (25)	ND (50)	ND (25)	28	ND (50)	ND (50)	16	17	50	ND (50)	ND (25)	28	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
cis-1,2-Dichloroethene	1,000 D	1,300	660	1,300 D	1,900	1,800	1,100 D	700 D	1,900 D	2,000	610	1,100	750	780	720	640	720	790
trans-1,2-Dichloroethene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	15	50	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
1,2-Dichloropropane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
Cis-1,3-Dichloropropene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
trans-1,3-Dichloropropene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
Ethylbenzene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
2-Hexanone	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	NA	ND (50)	ND (50)
Methylene Chloride	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	NA	ND (50)	ND (50)
Styrene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25) J	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
1,1,2,2-Tetrachloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
Tetrachloroethene	52	53	26	31	ND (100)	ND (50)	14	ND (13)	ND (54)	65	ND (25)	41	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
Toluene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
1,1,1-Trichloroethane	ND (25)	62	33	67	76	88	40	27	84	110	27	70	32	34	26	28	28	38
1,1,2-Trichloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
Trichloroethene	93	97	58	82	98	92	47	47	120	130	53	97	68	69	68	67	29	91
Vinyl Chloride	160	160	74	180	270	300	100	110	310	340	91	180	140	150	99	76	160	210
o-Xylene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)
m,p-Xylenes	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)	ND (25)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected

J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not

collected during that sampling period.

3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Sample ID								MW-1	3S							
Analyte or Method	06/16/06	11/29/06	06/13/07	12/20/07	06/11/08	12/17/08	06/24/09	06/22/10	10/11/11	08/22/12	09/05/13	07/29/14	08/26/15	08/31/16	09/26/17	08/28/18
VOCs 8260B (ug/L)																
Acetone	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10) J	ND (10)	ND (10)	13								
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)											
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)											
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
1,1-Dichloroethane	ND (5)	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)										
1,2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
1,1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
cis-1,2-Dichloroethene	97	56	34	34	26	18	21	11	9.4	13	16	14	22	5	7	5.0
trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)											
Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)											
Styrene	ND (5)	ND (5) J	ND (5)	ND (5.0) J	ND (5)	ND (5)	ND (5)									
1,1,2,2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Tetrachloroethene	56	42	23	26	23	18	29	28	23	20	20	20	17	ND (5)	ND (5)	ND (5)
Toluene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
1,1,1-Trichloroethane	34	19	10	10	9.2	6.6	9	6.7	5	7.4	7	6	7	ND (5)	ND (5)	ND (5)
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Trichloroethene	94	66	42	47	40	31	36	30	31	31	31	28	31	ND (5)	ND (5)	ND (5)
Vinyl Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
m,p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected

J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not

collected during that sampling period.

3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Sample ID									MW-16								
Analyte or Method	06/16/06	11/29/06	06/13/07	12/20/07	06/11/08	12/17/08	06/24/09	07/01/10	10/11/11	08/22/12	09/05/13	07/30/14	08/26/15	08/31/16	8/31/2016 DUPLICAT E	09/26/17	08/28/18
VOCs 8260B (ug/L)																	
Acetone	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)								
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)											
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)											
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
1,1-Dichloroethane	ND (5)	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
1,2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
1,1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
cis-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)											
Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)											
Styrene	ND (5)	ND (5) J	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)									
1,1,2,2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Tetrachloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Toluene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
1,1,1-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Trichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Vinyl Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
m,p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected

J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not

collected during that sampling period.

3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Sample ID								MW-18S							
Analyte or Method	11/29/06	06/13/07	12/20/07	06/11/08	12/17/08	06/24/09	06/22/10	10/11/11	08/22/12	09/05/13	07/30/14	08/26/15	08/31/16	09/26/17	08/28/18
VOCs 8260B (ug/L)															
Acetone	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10)	ND (10)	ND (10)	16							
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)										
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)										
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
1,1-Dichloroethane	ND (5)	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)									
1,2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
1,1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
cis-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)										
Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)										
Styrene	ND (5)	ND (5) J	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)								
1,1,2,2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
Tetrachloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
Toluene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
1,1,1-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
Trichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
Vinyl Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										
m,p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)										

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected

J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not

collected during that sampling period.

3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Sample ID									MW-19				
Analyte or Method	06/16/06	11/29/06	06/13/07	12/20/07	06/11/08	12/17/08	06/24/09	06/22/10	10/12/11	08/22/12	09/05/13	07/30/14	08/26/15
VOCs 8260B (ug/L)													
Acetone	ND (100)	ND (200)	ND (200)	ND (20)	ND (40)	ND (20)	ND (20)	ND (40)	ND (40)	ND (20)	ND (50) J	ND (50)	ND (10)
Benzene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
Bromodichloromethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
Bromoform	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
Bromomethane (Methyl Bromide)	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
2-Butanone (Methyl Ethyl Ketone)	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50) J	ND (50)	ND (10)
Carbon Disulfide	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50)	ND (50)	ND (10)
Carbon Tetrachloride	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
Chlorobenzene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
Chloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
Chloroform (Trichloromethane)	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
Chloromethane (Methyl Chloride)	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
Dibromochloromethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
1,1-Dichloroethane	210	240	280	14	92	9.5	63	150	43	150	120	38	73
1,2-Dichloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
1,1-Dichloroethene	80	100	95	5.6	26	ND (5)	22	69	17	63	41	10	14
cis-1,2-Dichloroethene	1,000 D	1,400	1,600	36	240	24	330 D	910 D	260 D	580	620	170	340
trans-1,2-Dichloroethene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	18	10	ND (10)	ND (25)	ND (25)	12
1,2-Dichloropropane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
Cis-1,3-Dichloropropene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
trans-1,3-Dichloropropene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
Ethylbenzene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
2-Hexanone	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50) J	ND (50)	ND (10)
Methylene Chloride	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50)	ND (50)	ND (10)
Styrene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25) J	ND (25) J	ND (5.0)
1,1,2,2-Tetrachloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
Tetrachloroethene	38	ND (50)	ND (50)	15	22	7.4	16	ND (10)	ND (10)	13	ND (25)	ND (25)	ND (5.0)
Toluene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
1,1,1-Trichloroethane	120	140	140	22	71	13	54	100	38	87	67	24	36
1,1,2-Trichloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
Trichloroethene	330	340	100	90	310	54	240 D	140	160	420	110	52	99
Vinyl Chloride	ND (25)	ND (50)	66	ND (5)	ND (10)	ND (5)	ND (5)	23	ND (10)	58	39	9	32
o-Xylene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)
m,p-Xylenes	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected

J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not

collected during that sampling period.

3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

\\haleyaldrich.com\share\roc_common\Xerox\Henrietta B801\Reporting - PRR\2018 Report 9\Tables-Draft\Individual Files\Table III_Annual Monitoring Summary_2018_v2.xlsx

07/30/14	08/26/15	08/31/16	Resample 3/29/2017	9/26/2017	8/28/2018
ND (50)	ND (10)	ND (25)	NA	ND (20)	ND (50)
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
ND (50)	ND (10)	ND (25)	NA	ND (20)	ND (50)
ND (50)	ND (10)	ND (25)	NA	ND (20)	ND (50)
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
38	73	320	88	42	100
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
10	14	120	27	11	40
170	340	3,700	550	220	590
ND (25)	12	63	NA	ND (10)	ND (25)
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
ND (50)	ND (10)	ND (25)	NA	ND (20)	ND (50)
ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)
ND (50)	ND (10)	ND (25)	NA	ND (25)	ND (25)

NA

NA

NA

NA

26

NA

250

32

NA

NA

ND (13)

ND (13)

120

ND (13)

340

ND (13)

3,100

190

ND (13)

ND (13)

ND (10) ND (25)

ND (10) ND (25)

ND (25)

ND (25)

ND (25)

49

ND (25)

450

40

ND (25)

ND (10)

ND (10)

ND (10)

11

ND (10)

94

15

ND (10)

Sample ID)							MW-2	4S							
Analyte or Method	06/16/06	11/29/06	06/13/07	12/20/07	06/11/08	12/17/08	06/24/09	06/28/10	10/11/11	08/22/12	09/05/13	07/30/14	08/26/15	08/31/16	09/27/17	08/28/18
VOCs 8260B (ug/L)																
Acetone	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10)	ND (10)	ND (10)	ND (10)								
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)											
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)											
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
1,1-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
1,2-Dichloroethane	ND (5)	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)										
1,1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
cis-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)											
Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)											
Styrene	ND (5)	ND (5) J	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)									
1,1,2,2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Tetrachloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Toluene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
1,1,1-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Trichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
Vinyl Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											
m,p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)											

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not

collected during that sampling period.

3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Page 12 d	of 14
-----------	-------

Sar	nple ID			SW-29											SW-34							
Analyte or Method	11/29/06	12/20/07	06/24/09	06/23/10	10/11/11	08/22/12	07/29/14	11/29/06	06/13/07	12/20/07	06/12/08	12/18/08	06/24/09	06/23/10	10/11/11	08/23/12	09/05/13	07/29/14	08/26/15	08/31/16	09/26/17	08/28/18
VOCs 8260B (ug/L)																						
Acetone	ND (20)	ND (50)	ND (40)	ND (20)	ND (20)	ND (10)	ND (10)	ND (20)	ND (10)													
Benzene	ND (5)	ND (13)	ND (10)	ND (5)																		
Bromodichloromethane	ND (5)	ND (13)	ND (10)	ND (5)																		
Bromoform	ND (5)	ND (13)	ND (10)	ND (5)																		
Bromomethane (Methyl Bromide)	ND (5)	ND (13)	ND (10)	ND (5)																		
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (25)	ND (20)	ND (10)																		
Carbon Disulfide	ND (10)	ND (25)	ND (20)	ND (10)																		
Carbon Tetrachloride	ND (5)	ND (13)	ND (10)	ND (5)																		
Chlorobenzene	ND (5)	ND (13)	ND (10)	ND (5)																		
Chloroethane	ND (5)	ND (13)	ND (10)	ND (5)																		
Chloroform (Trichloromethane)	ND (5)	ND (13)	ND (10)	ND (5)																		
Chloromethane (Methyl Chloride)	ND (5)	ND (13)	ND (10)	ND (5)																		
Dibromochloromethane	ND (5)	ND (13)	ND (10)	ND (5)																		
1,1-Dichloroethane	ND (5)	ND (13)	ND (10)	ND (5)																		
1,2-Dichloroethane	ND (5)	ND (13)	ND (10)	ND (5)																		
1,1-Dichloroethene	ND (5)	ND (13)	ND (10)	ND (5)																		
cis-1,2-Dichloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)														
trans-1,2-Dichloroethene	ND (5)	ND (13)	ND (10)	ND (5)																		
1,2-Dichloropropane	ND (5)	ND (13)	ND (10)	ND (5)																		
Cis-1,3-Dichloropropene	ND (5)	ND (13)	ND (10)	ND (5)																		
trans-1,3-Dichloropropene	ND (5)	ND (13)	ND (10)	ND (5)																		
Ethylbenzene	ND (5)	ND (13)	ND (10)	ND (5)																		
2-Hexanone	ND (10)	ND (25)	ND (20)	ND (10)																		
Methylene Chloride	ND (5)	ND (13)	ND (10)	ND (5)																		
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (25)	ND (20)	ND (10)																		
Styrene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5) J	ND (5)																
1,1,2,2-Tetrachloroethane	ND (5)	ND (13)	ND (10)	ND (5)																		
Tetrachloroethene	ND (5)	ND (13)	ND (10)	ND (5)																		
Toluene	ND (5)	ND (13)	ND (10)	ND (5)																		
1,1,1-Trichloroethane	ND (5)	ND (13)	ND (10)	ND (5)																		
1,1,2-Trichloroethane	ND (5)	ND (13)	ND (10)	ND (5)																		
Trichloroethene	ND (5)	ND (13)	ND (10)	ND (5)																		
Vinyl Chloride	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)														
o-Xylene	ND (5)	ND (13)	ND (10)	ND (5)																		
m,p-Xylenes	ND (5)	ND (13)	ND (10)	ND (5)																		

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected

J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not

collected during that sampling period.

3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Sample ID								SW-3	5							
Analyte or Method	06/16/06	11/29/06	12/20/07	06/12/08	12/18/08	06/24/09	06/23/10	10/11/11	08/23/12	09/05/13	07/29/14	08/26/15	08/31/16	09/26/17	08/28/18	8/28/2018 Duplicate
VOCs 8260B (ug/L)																
Acetone	ND (20)	ND (40)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10)								
Benzene	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
Bromodichloromethane	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
Bromoform	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
Bromomethane (Methyl Bromide)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)								
Carbon Disulfide	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)								
Carbon Tetrachloride	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
Chlorobenzene	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
Chloroethane	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
Chloroform (Trichloromethane)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
Chloromethane (Methyl Chloride)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
Dibromochloromethane	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
1,1-Dichloroethane	ND (5)	6.3	8.6	ND (5)	15	19	ND (5)	16	ND (5)	ND (5)	14	6	ND (5)	ND (5)	6	6
1,2-Dichloroethane	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)								
1,1-Dichloroethene	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
cis-1,2-Dichloroethene	20	15	86	ND (5)	140	110	ND (5)	73	11	ND (5)	76	20	ND (5)	7	19	19.0
trans-1,2-Dichloroethene	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
1,2-Dichloropropane	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
Cis-1,3-Dichloropropene	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
trans-1,3-Dichloropropene	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
Ethylbenzene	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
2-Hexanone	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)								
Methylene Chloride	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)								
Styrene	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5) J	ND (5)								
1,1,2,2-Tetrachloroethane	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
Tetrachloroethene	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
Toluene	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
1,1,1-Trichloroethane	ND (5)	ND (5)	10	ND (5)	21	21	ND (5)	8.8	ND (5)	ND (5)	12	ND (5)				
1,1,2-Trichloroethane	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
Trichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	5.1	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)				
Vinyl Chloride	ND (5)	12	15	ND (5)	27	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)				
o-Xylene	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								
m,p-Xylenes	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)								

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

R: Rejected J: Estimated

1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.

2. Some dates are not shown because samples were not

collected during that sampling period.

3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Page	14	of	14
гауе	14	UI	14

TABLE IV SSD SYSTEM FLOOR POINT VACUUM READINGS FORMER XEROX B801 FACILITY HENRIETTA, NEW YORK

	5/22/2009	5/20/2010	9/19/2011	9/26/2012	9/27/2013	10/21/2014	9/3/2015	9/8/2016	9/27/2017	10/10/2018	11/19/2018
	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum
Location ID	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement	Measurement
	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)	(in. w.c.)
T-1	0.052	0.054	0.048	0.030	0.021	0.022	0.330	0.029	0.050	0.053	
T-3	0.863	0.787	0.741	0.663	0.223	0.215	0.247	0.241	0.304	0.3	
T-4	0.047	0.048	0.056	0.063	0.031	0.029	0.043	0.04	0.045	0.045	
T-7	0.116	0.115	Inaccessible	0.109	0.066	0.055	0.064	0.06	0.057	0.061	
T-11	0.011	0.026	0.089	0.082	0.046	0.008	0.014	0.014	0.016	0.028	
T-14	0.013	0.012	0.016	0.016	0.016	0.016	0.014	0.014	0.015	0.014	0.022
T-17	0.005	0.003	0.009	0.016	0.009	0.011	0.010	0.008	0.008	0.010	0.010
T-18	0.003	0.002	0.002	0.002	0.003	0.003	0.003	0.004	0.005	0.000	0.003
T-20	0.001	0.002	0.006	0.004	0.004	0.004	0.004	0.005	0.004	0.003	0.005
T-21	0.001	0.004	0.003	0.002	0.002	0.001	0.002	0.003	0.003	0.003	
T-22	0.004	0.002	0.094	0.166	0.123	0.081	0.008	0.099	0.136	0.153	
T-25	0.002	0.000	0.015	0.026	0.031	0.026	0.036	0.029	0.051	0.07	
T-26	0.003	0.001	0.009	0.012	0.010	0.007	0.006	0.006	0.018	0.023	
T-28	0.005	0.001	0.002	0.019	0.010	0.004	0.005	0.003	0.010	0.013	
T-29			0.010	0.009	0.010	0.009	0.010	0.004	0.006	0.009	
T-30			0.010	0.014	0.017	0.01	0.019	0.036	0.033	0.036	
T-31			0.008	0.011	0.009	0.007	0.009	0.014	0.015	0.012	
T-32			0.059	0.086	0.077	0.054	0.07	0.074	0.081	0.083	
T-33			0.026	0.058	0.013	0.007	0.012	0.005	0.029	0.039	
T-34			0.017	0.014	0.007	0.009	0.008	0.008	0.013	0.016	

Notes:

1. NR = Not able to get a reading

2. Values in bold represent readings below the 0.002 inches of water column design criteria.

3. T-2, T-8, T-9, T-10, T-12, T-13, T-15, T-16, T-19, T-23, T-24, and T-27 were decommissioned in 2014 and 2015.

TABLE V SSD SYSTEM FAN VACUUM READINGS FORMER XEROX B801 FACILITY

HENRIETTA, NEW YORK

		09/27/13	10/21/14	09/03/15	09/08/16	09/27/17	10/10/18	11/19/18
		Vacuum						
Suction Point	Fan	Measurement						
Location ID	System	(in. w.c.)						
S-1		29.0	23.0	24.0	24.0	25.0	24.0	
S-2	F-1	22.0	23.0	23.0	24.0	25.0	24.0	
S-3		22.0	22.0	23.0	23.0	25.0	24.0	
S-4	E-2	40.0	40.0	40.0	40.0	40.0	40.0	
S-5	1-2	38.0	37.0	37.0	36.0	36.0	36.0	
S-6	F-3	1.5	>2.0	>2.0	>2.0	>2.0	>2.0	>2.0
S-7		0.77	0.86	0.96	0.72	1.00	1.00	0.95
S-8		1.0	0.65	0.75	0.75	2.00	2.00	1.60
S-9		0.698	0.60	0.66	0.60	0.54	0.64	
S-10	Γ-4	0.218	0.75	0.80	0.75	0.65	0.80	
S-11	E F	0.70	0.16	0.15	0.18	0.18	0.19	
S-12	1-5	0.25	0.25	0.25	0.25	0.25	0.25	
S-13	Fe	10.0	10.0	10.0	9.0	10.0	11.0	
S-14	F-0	10.0	9.0	9.5	9.0	10.0	10.0	
S-15		10.5	10.0	9.0	10.0	10.0	12.0	
S-16	F-7	10.0	9.0	9.0	10.0	10.0	10.5	
S-17		9.5	8.0	8.5	9.0	10.0	10.0	

FIGURES

LEGEND

NOTES

1. THE LIMITS OF THE SGMA ARE CONTINGENT ON NO LONG TERM GROUNDWATER EXTRACTION FOR ANY PURPOSE OUTSIDE OF THE SGMA. SEE THE SITE MANAGEMENT PLAN REVISED 16 JUNE 2010 FOR DETAILS.

2. BASE MAP DATA FILE PREPARED BY BERGMANN ASSOCIATES, ROCHESTER, NEW YORK UNDER DIRECT CONTRACT WITH XEROX CORPORATION.

3. STREAM LOCATIONS ARE APPROXIMATE.

400 200 SCALE IN FEET

XEROX CORPORATION FORMER BUILDING 801 FACILITY HENRIETTA, NEW YORK

SITE PLAN

JANUARY 2019

FIGURE 2

	SSDS PIPING SYSTEM (XEROX)				
	SSDS PIPING SYSTEM (HARRIS)				
♦ T-2	VACUUM TEST LOCATION (XEROX)				
◆ T-29	VACUUM TEST LOCATION (HARRIS)				
	SUCTION LOCATION (XEROX)				
<u>S-10</u>	SUCTION LOCATION (HARRIS)				
$\mathbf{A} \mathbf{A}$	DECOMMISSIONED LOCATIONS				

APPENDIX A

Annual Engineering and Institutional Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site No. 828069	Box 1	
Site Name Xerox - Henrietta Facility		
Site Address: 1350 Jefferson Road Zip Code: 14623 City/Town: Henrietta County: Monroe Site Acreage: 2:000 85.98		
Reporting Period: January 15, 2018 to January 15, 2019		
January 1, 2018 to December 31, 2018		
	YES	NO
1. Is the information above correct?		
If NO, include handwritten above or on a separate sheet. Site acreage and PRR per corrected above.	iod has I	been
2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		\checkmark
 Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 		\checkmark
4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		\checkmark
If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5. Is the site currently undergoing development?		\checkmark
	Box 2	
	YES	NO
Is the current site use consistent with the use(s) listed below? Commercial and Industrial		
7. Are all ICs/ECs in place and functioning as designed?		
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	ind	
A Corrective Measures Work Plan must be submitted along with this form to address the	nese iss	ues.
Signature of Owner, Remedial Party or Designated Representative Date		

SITE NO. 828069		Box 3
Description of Inst	titutional Controls	
Parcel	Owner Harris Corporation	Institutional Control
102-00.1-2	Remedial Party - Xerox Corporation	Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan
Continued groundwater r	nonitoring;	one management han
Establishment of a soil a	nd groundwater management area;	
A deed restriction which	restricts site use;	
Compliance with the site continued management of continued O&M of all eng 162.07-1-3	management plan dated 6/16/10 and revised on of residual contamination in the soil and groundwa jineering controls, and provide for periodic certific Harris Corporation	7/30/15 which addresses ater management area, to address ation. Ground Water Use Restriction
	Remedial Party - Xerox Corporation	Landuse Restriction Monitoring Plan Site Management Plan
Continued groundwater r	nonitoring;	
Continued operation and	I monitoring of the sub-slab depressurization syst	em;
Establishment of a soil a	nd groundwater management area;	
A deed restriction which	restricts site use;	
Compliance with the site continued management of continued O&M of all eng	management plan dated 6/16/10 and revised on of residual contamination in the soil and groundwa gineering controls, and provide for periodic certific Harris Corporation	7/30/15 which addresses ater management area, to address ation.
	Remedial Party - Xerox Corporation	Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan
Continued groundwater r	nonitoring;	
Establishment of a soil a	nd groundwater management area;	
A deed restriction which	restricts site use;	
Compliance with the site continued management of continued O&M of all eng 162.08-1-30	management plan dated 6/16/10 and revised on of residual contamination in the soil and groundwa pineering controls, and provide for periodic certific Harris Corporation	7/30/15 which addresses ater management area, to address ation.
	Remedial Party - Xerox Corporation	Ground Water Use Restriction Landuse Restriction Monitoring Plan Site Management Plan
Continued groundwater r	nonitoring;	
Continued operation and	I monitoring of the sub-slab depressurization syst	em;
A deed restriction which	restricts site use:	

Compliance with the site management plan dated 6/16/10 and revised on 7/30/15 which addresses

continued management of residual co continued O&M of all engineering cor	ontamination in the soil and ground htrols, and provide for periodic cert	dwater management area, to address iffication.
162.08-1-31 Harris	Corporation	
Remedia	Il Party - Xerox Corporation	Landuse Restriction Ground Water Use Restriction Monitoring Plan Site Management Plan
Continued groundwater monitoring;		
A deed restriction which restricts site	e use;	
Compliance with the site manageme continued management of residual co continued O&M of all engineering cor	nt plan dated 6/16/10 and revised ontamination in the soil and ground ntrols, and provide for periodic cert	on 7/30/15 which addresses dwater management area, to address iffication.
		Box 4
Description of Engineering Co	ontrols	
Parcel	Engineering Control	
162.07-1-3		
	Vapor Mitigation	
162.08-1-30	Vapor Mitigation	

	Box 5
	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certificatio are in accordance with the requirements of the site remedial program, and generally accepted and program provides and the information procented is accurate and compate
	engineering practices, and the information presented is accurate and compete. YES NO
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutiona or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	There is no financial assurance requirement for this site. YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Demodial Darty or Designated Depresentative
	Signature of Owner, Remedial Party or Designated Representative Date Date

IC CERTIFICATIONS SITE NO. 828069 Box 6 SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. at Xerox Cup 800 Phillips R1-0209-012 Wobster, NY. 14580 Eliott J print name am certifying as (Owner or Remedial Party) for the Site named in the Site Details Section of this form. 0 Signature of Owner, Repledia/Party, or Designated Representative **Rendering Certification**

IC/EC CERTIFICATIONS	
	Box 7
Professional Engineer Signature	
certify that all information in Boxes 4 and 5 are true. I understand that a false statement i punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.	made herein is
Janice Szucs Haley & Aldrich of New York 200 Town Centre Dr, Ste 2, Rochester, NY	14623
print name print business address	
am certifying as a Professional Engineer for the <u>Remedial Party</u>	-
(Owner or Remedial Part	y)
Signature of Professional Engineer, for the Appresent content of Remedial Party, Rendering Certification	19

APPENDIX B

Laboratory Analytical Data Report

Service Request No:R1808244

Mr. Eliott Duffney Xerox Corporation USA 800 Phillips Road Bldg #205-99F Webster, NY 14580

Laboratory Results for: Bldg 801 Annual Wells 2018

Dear Mr.Duffney,

Enclosed are the results of the sample(s) submitted to our laboratory August 29, 2018 For your reference, these analyses have been assigned our service request number **R1808244**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and ALS Environmental is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Please contact me if you have any questions. My extension is 7472. You may also contact me via email at Janice.Jaeger@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Jama Aktor

Janice Jaeger Project Manager

CC: Janice Szucs

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 2 of 85

Client:Xerox Corporation USAProject:Bldg 801 Annual Wells 2018Sample Matrix:Water

Service Request: R1808244 Date Received: 08/29/2018

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples designated for Tier II data deliverables, including results of QC samples analyzed from this delivery group. Analytical procedures performed by the lab are validated in accordance with NELAC standards. Any parameters that are not included in the lab's NELAC accreditation are identified on a "Non-Certified Analytes" report in the Miscellaneous Forms Section of this report. Individual analytical results requiring further explanation are flagged with qualifiers and/or discussed below. The flags are explained in the Report Qualifiers and Definitions page in the Miscellaneous Forms section of this report.

Sample Receipt:

Nineteen water samples were received for analysis at ALS Environmental on 08/29/2018. Any discrepancies noted upon initial sample inspection are noted on the cooler receipt and preservation form included in this data package. The samples were received in good condition and consistent with the accompanying chain of custody form. Samples are refrigerated at 6°C upon receipt at the lab except for aqueous samples designated for metals analyses, which are stored at room temperature. Sampling was performed by ALS personnel in accordance with ALS Field Sampling SOPs or by client specifications.

Volatiles by GC/MS:

Method 8260C, 09/01/2018: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not affected. The data quality was not significantly affected and no further corrective action was taken. Method 8260C, 09/04/2018: The lower control limit was exceeded for one or more analytes in the Continuing Calibration Verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not verification (CCV). Since there were no detections of the analyte(s) in the associated field samples, the quantitation is not

affected. The data quality was not significantly affected and no further corrective action was taken.

Jamankto

Approved by

09/11/2018

Date

SAMPLE DETECTION SUMMARY

CLIENT ID: VE-6 Analyte	Lab ID: R1808244-001					
	Results	Flag	MDL	MRL	Units	Method
1,1-Dichloroethane	680		20	500	ug/L	8260C
1,1-Dichloroethene	520		28	500	ug/L	8260C
cis-1,2-Dichloroethene	13000		26	500	ug/L	8260C
1,1,1-Trichloroethane	620		25	500	ug/L	8260C
Vinyl Chloride	2300		22	500	ug/L	8260C

CLIENT ID: VE-10	Lab ID: R1808244-002					
Analyte	Results	Flag	MDL	MRL	Units	Method
Chloroethane	1500	D	4.6	100	ug/L	8260C
1,1-Dichloroethane	120		1.0	25	ug/L	8260C
cis-1,2-Dichloroethene	79		1.3	25	ug/L	8260C
trans-1,2-Dichloroethene	73		1.3	25	ug/L	8260C
Methylene Chloride	56		2.4	25	ug/L	8260C
Vinyl Chloride	610		1.1	25	ug/L	8260C

CLIENT ID: VE-12	Lab ID: R1808244-003					
Analyte	Results	Flag	MDL	MRL	Units	Method
Chloroethane	6400		23	500	ug/L	8260C
1,1-Dichloroethane	960		20	500	ug/L	8260C
Toluene	650		20	500	ug/L	8260C
Vinyl Chloride	9100		22	500	ug/L	8260C

CLIENT ID: VE-15	Lab ID: R1808244-004						
Analyte	Results	Flag	MDL	MRL	Units	Method	
Chloroethane	250		0.58	13	ug/L	8260C	
1,1-Dichloroethane	99		0.50	13	ug/L	8260C	

CLIENT ID: RW-4	Lab ID: R1808244-005					
Analyte	Results	Flag	MDL	MRL	Units	Method
1,1-Dichloroethane	19		0.20	5.0	ug/L	8260C
cis-1,2-Dichloroethene	15		0.26	5.0	ug/L	8260C
Methylene Chloride	13		0.47	5.0	ug/L	8260C
Trichloroethene	13		0.20	5.0	ug/L	8260C
Vinyl Chloride	15		0.22	5.0	ug/L	8260C

CLIENT ID: MW-10 Analyte	Lab ID: R1808244-007					
	Results	Flag	MDL	MRL	Units	Method
1,1-Dichloroethane	130		1.0	25	ug/L	8260C
cis-1,2-Dichloroethene	790		1.3	25	ug/L	8260C
1,1,1-Trichloroethane	38		1.3	25	ug/L	8260C
Trichloroethene	91		1.0	25	ug/L	8260C
Vinyl Chloride	210		1.1	25	ug/L	8260C

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-13S	Lab ID: R1808244-008					
Analyte	Results	Flag	MDL	MRL	Units	Method
Acetone	15		2.1	10	ug/L	8260C
cis-1,2-Dichloroethene	5.0		0.26	5.0	ug/L	8260C
CLIENT ID: MW-18S		Lab	ID: R1808	3244-010		
Analyte	Results	Flag	MDL	MRL	Units	Method
Acetone	16		2.1	10	ug/L	8260C
CLIENT ID: MW-19		Lab	ID: R1808	3244-011		
Analyte	Results	Flag	MDL	MRL	Units	Method
1,1-Dichloroethane	100	D	1.0	25	ug/L	8260C
1,1-Dichloroethene	40	D	1.4	25	ug/L	8260C
cis-1,2-Dichloroethene	590	D	1.3	25	ug/L	8260C
1,1,1-Trichloroethane	49	D	1.3	25	ug/L	8260C
Trichloroethene	450	D	1.0	25	ug/L	8260C
Vinyl Chloride	40	D	1.1	25	ug/L	8260C
CLIENT ID: SW-35		Lab	ID: R1808	3244-015		
Analyte	Results	Flag	MDL	MRL	Units	Method
1,1-Dichloroethane	5.5		0.20	5.0	ug/L	8260C
cis-1,2-Dichloroethene	19		0.26	5.0	ug/L	8260C
CLIENT ID: SW-35 DUP		Lab	ID: R1808	3244-016		
Analyte	Results	Flag	MDL	MRL	Units	Method
1,1-Dichloroethane	5.5		0.20	5.0	ug/L	8260C
cis-1,2-Dichloroethene	19		0.26	5.0	ug/L	8260C

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 6 of 85

SAMPLE CROSS-REFERENCE

<u>SAMPLE #</u>	CLIENT SAMPLE ID	DATE	TIME
R1808244-001	VE-6	8/28/2018	1115
R1808244-002	VE-10	8/28/2018	1210
R1808244-003	VE-12	8/28/2018	1225
R1808244-004	VE-15	8/28/2018	1135
R1808244-005	RW-4	8/28/2018	1150
R1808244-006	MW-2	8/28/2018	1025
R1808244-007	MW-10	8/28/2018	1055
R1808244-008	MW-13S	8/28/2018	1240
R1808244-009	MW-16	8/28/2018	1345
R1808244-010	MW-18S	8/28/2018	1300
R1808244-011	MW-19	8/28/2018	1325
R1808244-012	MW-24S	8/28/2018	1005
R1808244-013	SW-29	8/28/2018	
R1808244-014	SW-34	8/28/2018	1415
R1808244-015	SW-35	8/28/2018	1040
R1808244-016	SW-35 DUP	8/28/2018	1040
R1808244-017	Blank	8/28/2018	
R1808244-018	Trip Blank	8/28/2018	0700
R1808244-019	Trip Blank	8/28/2018	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 53054

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE _____OF ____

BOI WATLS	Project Numi	ber						A	NALYS	IS RE	QUEST	red (I	nclude	Meth	od Nu	mber	and C	ontain	er Pre	servati	ve)	
Project Manager	Report CC				PRES	SERVA	TIVE															
	······				ITAINERS		/		7	7	7				7	7	\square			7	/	Preservative Key 0. NONE 1. HCL 2. HNO3 3. H2SO4
Phone #	Email				BER OF CON	, or	54.000 Swig	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SUCE BURN	/ ?8/	88	S. Dice bar	Some Solution	//	/	//	/ /	/	/ /	/ /	,	4, NaOH 5, Zn. Acetate 6. MeOH 7. NaHSO4 8. Other
Sampler Signature	- Semptris P		An		NUN	5	<u>}</u>				REAL CALL	E HEIN			/				\square	/ AI	R .TERNA	EMARKS/ TE DESCRIPTION
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMPL DATE	.ING TIME																			
MW-245	-012	<u>9/29/18</u>	1005	ω		X													Ĺ			
MW-2	-0010-		1025			1																
SW - 3S	-615,-0	6	1040				•													\underline{D}	\mathcal{O}	>
Nue-10	-007		1055				•														-	
VE-6	-001		1115																			
VE-IS	-004		<u>1135 </u>																			
Rw-4	-605		1150						•													
VE-10	-662		1210																			
1)E - 12	-603	·	1225						ţ													_
M10-135	-008		1240			Τ																
MW-185	-010	1	1300	1																		
SPECIAL INSTRUCTIONS/COMMENTS Metals	<u> </u>	<u> </u>		<u></u>	**	_	ти		OUND H (SURC	REQU	IREME S APPLY	NTS)		REPC _ I. Resu	IRT RE	QUIRI	EMEN1	S		INV	DICE IN	IFORMATION
								1 day 4 day	/2 /5	day day	3 day			11. Resi (LCS, 1	ilts + Q()UP, MS	C Summ VMSD a	aries s require	đ)	PO			
								Stan	dard (10	business	day a N o S	Surcharge	*	_ III, Res	ults + O	C and C	alibratio	n	BILL	10:		
							REQU	UESTEC	O REPO	RT DAT	E	.'		_ IV. Data	n Validat	iion Rep	ort with	Raw Da	ta			
STATE WHERE SAMPLES WERE COLL	LECTED						1						1	Edat	• •	_Yes		No				
RELINQUISHED BY	RECEIVED	BY	REL	JNQUISHED	BY				RECE	VED BY	(R	ELINQU	JISHEC	BY				RECE	VED BY
Signature A A A	konsture //	-f	Skonature				Signatu	UT0					R	180	82	44		4	5			
Printed Name Box (111)	Thited pressine	P	Printed Name				Printed	Name					Xero: Bidg	Corpo 601 Ani	ration (wal We	USA Hin Di na ini				ا د د		
Fim ALS, FI	AL A		Firm				Fim	<u> </u>			<u> </u>											
Date/Time 8/22/18 D	ato/prof19/11	0900 .	Date/Time				Date/T	kne				<u> </u>	Date/1	ime			-— -	<u> </u>	Date	/lime		

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 53055 1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE ______OF _____

Protog Name	Project	Number							A	NALYS	SIS RE	QUES'	ted (includ	e Meth	od Nu	mber	and C	ontal	ner Pre	servat	ive)	· · · · · · · · · · ·	
Project Manager	Report	œ				PRE	SERVA	TIVE]								ĺ			Ι				
Company/Address XC=NOX Phone # Sampler/Signat/A	Email Sape	er's Printon	Name	Mn		NUMBER OF CONTAINERS	Construction	60,00 00 00 60,00 00 0 00,00 000	CC 00000000000000000000000000000000000	PESITION OF	Part of the second seco	METALS, FOR	METALS, COMPANY	The comments of the second		/							Preservative K 0. NONE 1. HCL 2. HNO ₃ 3. H ₂ SO ₄ 4. NaOH 5. Zn. Acetate 6. MeOH 7. NaHSO ₄ 8. Other REMARKS/ ATE DESCRIPTIC	ву э
CLIENT SAMPLE ID	FOR OFFICE USI ONLY LAB ID		SAM	PLING TIME	MATRIX																			
Me -19	-61)	8	SELP	1285	ω		X													1			· · · -	
10-10	-009		1	1345			11																	
5W-34	-014			1415	4		J.																	
500-29			<u>_h</u> _				-														フ	2	/	
Tyb:	-618	<u> 8 </u>	<u>שו רב</u>	0700	$+\omega$	ļ	X												<u> </u>	ļ				
			,	ļ	 	 	ļ												[<u> </u>				
		_				<u> </u>	<u> </u>																	
		_				┨														-				
		_			<u> </u>	<u> </u>	<u> </u>																	
	r	_		· · · · ·			<u> </u>												 					
SPECIAL INSTRUCTIONS/COMMENTS Metals		I	<u> </u>		1	.I	<u>I</u>	тu	JRNAR RUSI		REQU	IREME S APPLY	INTS 1		REP I. Rest	DRT RI	EQUIR	EMENT	I TS		INV	OICE	NFORMATION	
									1 day	r?	day	3 day	,		_II. Res	ults + Q	C Summ	uaries	~1	PO	1			
									4 day Starv	/5 dard (10	i day business	days-No :	Surcharg	ei	_ III, Re:	suits + C	C and C	Calibratio	xo,	BILL	. TO:			
								REQ	UESTE	O REPO		re			Summ	aries	tion De-	مادار وروار	Dm. 0-					
_																BOILEV A	uun nep	ANT WILL	naw U2					
														-	Eda		Vee		No					
STATE WHERE SAMPLES WERE COL	LECTED	IVED BY		RE RE		BY				RECE	VED BY			+	EGa				NO		· · –	BEC		
	/		4		0.120.0.120	0.						•			•		0101.20							-
Signature	signature	11	ť	Signature				Signat	ure					Signa	ture				1	5	١			
Printee Name & M.A. P	rinted trame	TL	-	Printed Name				Printed	i Name					R	1 8 0	JOZ pretion	44 USA		•		ē	1		
Firm AZSI F	im A.17	<u>, e /~~</u>	-	Firm				Firm						Bidg	801 An	nusi W 	otto 				11 '			
Deto/Time B/J-9/18 0	Date/Time /2 9 /	ro	90e	Date/Time				Date/T	Ime)) (() (() 	"			

ALS	5	Cooler l	Recei	ipt a	ind Pr	eserv	vation	Che	ck Fo	orm	R1 Xerox C Bidg 60	808 Corporati	244	 . . 0 0 111	5 	
roject/Clie	nt	404			Folde	er Nun	nber									11 1
ooler receive	ed on <u> </u>	<u>39/11</u>	by: 	Ø	_	COU	RIER: (AIS	UPS	FEDE	X VE	LOCI	ΓY CI	LIENT		
Were Cu	stody seals on	outside of coole	r?		Y	5a	Perchl	orate s	amples l	have re	quired h	eadspa	ace?	Y	N 🕅	
2 Custody	papers proper	ly completed (in	k, signe	ed)? (Ŷ N	5b	Did V	DA vial	s, Alk,o	r Sulfie	de have s	sig* bi	ubbles		N NA	1
3 Did all bo	ottles arrive in	good condition (unbrok	(en)?	Y N	6	Where	did the	bottles	origina	ite?	AL	S/ROO	2 C	LIENT	
4 Circle:	Wet Ice) Dry	Ice Gel packs	pres	sent?	N	7	Soil V	OA rece	eived as:	E	Bulk 1	Encore	50	135set		
. Temperatur	e Readings	Date: 8/29	lir -	Time:	0904	Ł	ID:	(R#7)	1R#9		From	: Ten	np Blan	ık Sa	imple Bo	
Observed Te	mp (°C)	4.9								-						
Correction F	actor (°C)	+0.3														
Corrected Te	emp (°C)	5.2									•					
Temp from:	Type of bottle	Into this b	1		_								-		·	
Within 0-6°(<u>;</u>	(Y)N		Y	N	Y	N	Y	N	Ŷ	N	· Y	N		Y N	
If<0°C wer	e complet froz								NI	v	NI	V	N		VN	_
If out of T &Client A	Temperature, Approval to R	note packing/ic un Samples:	e cond R. 20	Y lition: Stan t	N ading App	Y proval or	N Ice melto Client	Y ed Po aware a	oorly Pa at drop-o	icked(off (IN describe Client no	d belo	 w) by:	Sarr	I IN	 "Ie
If out of T &Client A All samples 5035 sample	Femperature, Approval to R held in storages placed in sto	note packing/ic un Samples: e location: orage location:	e cond <u><i>R.</i> 00</u>	Y lition: Stan	N ading App by by	Y proval or or	N Ice melto Client	Y ed Po aware a at	IN oorly Pa at drop-o	ıcked (off (IN describe Client no	d belo	 w) by:	Sarr	I IN	ıle
If out of T &Client A All samples 5035 sample	Femperature, Approval to R held in storages placed in storages	note packing/ic un Samples: e location: orage location:	e cond <i>R. 50</i>	Y ittion: Stan	N ading App by <u>e</u> by	Y proval or or	N Ice melto Client n <i>Yzij</i> n	Y ed Po aware a at _ at _ i444	IN oorly Pa at drop-o	i cked (off (IN describe Client no	d belo	w) by:	Sarr	I IN le Day Rt	 ile
If out of T &Client A All samples 5035 sample Cooler Bro 9.	Femperature, Approval to R held in storages placed in sto eakdown/Prese Were all bottle	note packing/ic un Samples: e location: orage location: arvation Check** labels complete	e cond <i>R. co</i> <i>C</i> Date <i>i. Date</i>	Y Stan k k e:k alysis.	N ading App by 279/19 preservat	Y proval or or or	N Ice melto Client n ///// n _	Y ed Po aware a at ग्र्य्यप्	IN oorly Pa at drop-o	icked (off (icked)	IN describe Client no .: Hik NO	d belo tified	w) by:	Sam	ie Day Ru	 ile
If out of T &Client A All samples 5035 sample Cooler Bro 9. V 10. I	Femperature, Approval to R held in storag es placed in storag eakdown/Prese Were all bottle Did all bottle la	note packing/ic un Samples: e location: orage location: arvation Check** labels complete (bels and tags agr	e cond <u><i>R</i>.co</u> : Date (<i>i.e.</i> and ee with	Y ition: Stan 2 2 t 2 t e: δ alysis, n custo	N ding App by <u>e</u> /724/19 preservat	Y proval or or or tion, etc s?	N lice melte Client n 229 n 	Y ed Pr aware a at 1444	in joorly Pa at drop-o	icked (off ()	IN describe Client no /: <u>Zik</u> NO NO	d belo tified	• IN w) by:	Sam	i in Day Ru	 ule
If out of T &Client A All samples 5035 sample Cooler Bro 9. V 10. I 11. V	Femperature, Approval to R held in storag es placed in storag eakdown/Prese Were all bottle Did all bottle la Were correct co	note packing/ic un Samples: e location: orage location: arvation Check** labels complete (bels and tags agr ontainers used for	e cond <i>R</i> co <i>i</i> Date <i>i</i> Date <i>i</i> e with r the ter	$\frac{Y}{2}$	N ding App by <u>Q</u> by preservat dy paper: licated?	Y proval or tion, etc s?	N Ice melto Client n //2// n Time: c.)?	Y ed Po aware a at _ at _ 1444	IN oorly Pa at drop-o	icked (off (IN describe Client no r: talk NO NO	d belo tified	• INw) by:	Sam	I IN ne Day Ri	le
If out of T &Client A All samples 5035 sample Cooler Bro 9. V 10. I 11. V 12. V	Femperature, Approval to R held in storages placed in storages placed in storage eakdown/Prese Were all bottle Did all bottle la Were correct co Were 5035 vial	note packing/ic un Samples: e location: orage location: arvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no	e cond <u><i>R</i></u> eo : Date (<i>i.e.</i> and ee with the tese extra la	$\frac{Y}{z}$	N ding App by <u>Q</u> by /74/19 preservat bdy paper: licated? not leakin	Y proval or or or or or or or or or or or or or	N lice melto Client n //29/ n 	Y ed Po aware a at 1444	n poorly Pa at drop-o	I ucked (off (by ES ES ES	IN describe Client no r: talk NO NO NO	d belo tified l	w) by:	Sarr	ie Day Ri	le
If out of T &Client A All samples 5035 sample Cooler Bro 9. V 10. I 11. V 12. V 13. A	Femperature, Approval to R held in storages placed in storages placed in storages placed in storage eakdown/Prese Were all bottle correct co Were 5035 vial	note packing/ic un Samples: ge location: orage location: any any any any any any any any any any	e cond <u><i>R</i></u> 60 : Date (<i>i.e.</i> and ee with the test extra la Intact	Y 2 2 2 2 2 2 3 3 4 3 3 4 4 4 4 4 4 4 4	N ding App by 22 1/2 1/2 1/2 1/2 1/2 1/2 1/2	Y proval or tion, etc s? anisters	N lice melte Client n //// 	Y ed Po aware a at 1444 ized	IN poorly Pa at drop-o	I icked (off (b) ES ES Cedlar(a 1)	IN describe Client no :: Alk NO NO NO NO NO NO	nflated	IN w) by:		I IN ne Day Ru	
If out of T &Client A All samples 5035 sample Cooler Bre 9. V 10. I 11. V 12. V 13. A pH	Femperature, Approval to R held in storage es placed in storage eakdown/Prese Were all bottle Did all bottle la Were correct cc Were 5035 vial Air Samples: C Lot of test paper	note packing/ic un Samples: e location: orage location: arvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent	e cond <i>R. 60</i> : Date <i>i.e.</i> and ee with the tes extra la Intact Preser Yes	Y iition: Stan 2 t t t t t t t t t t t t t	N ading App by 229/19 preservat ody paper: licated? not leakin MS? Ci Lot Red	Y proval or or tion, etc s? ng)? canisters ceived	N Ice melto Client n Time: c.)?	Y ed Po aware a at 1444 ized Exp	IN corly Pa at drop-o <i>90C</i> .	I icked (off (b) ES ES ES Cedlar(e ID ed	IN describe Client no Client no NO NO NO NO NO NO NO NO NO NO NO NO NO	nflated	w) by:		I IN the Day Ru	 1]e 11
If out of T & Client A All samples 5035 sample Cooler Bro 0. 11. V 12. Y 13. PH ≥12	Femperature, Approval to R held in storages placed in storages placed in storages placed in storage and the storage of the sto	note packing/ic un Samples: ge location: orage location: arvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent NaOH	e cond <u><i>R. go</i></u> : Date <i>i.e.</i> and ee with the tes extra la Intact <u>Preser</u> <u>Yes</u>	Y ittion: Stan 2 t 2 t t c stan t t t t t t t t t t t t t	N ding App by 2 1/24/19 preservat ody paper: licated? not leakin MS? Ci Lot Rec	Y proval or tion, etc s? ng)? aanisters ceived	N lice melte Client n ///////////////////////////////////	Y ed Po aware a at ized Exp	IN poorly Pa at drop-o 900. 900. 10 10 11 11 Sampl Adjust	I icked (off (b) ES ES ES Cedlar(e ID ced	IN describe Client no V: Alu NO NO NO NO S Bags II Adde	nflated	IN w) by: Lot Ac		I IN ne Day Ru	
If out of T & Client A All samples 5035 sample Cooler Breg 9. 10. 11. V 12. Y 13. PH ≥12 ≤2	Femperature, Approval to R held in storag es placed in storag eakdown/Prese Were all bottle Did all bottle la Were correct cc Were 5035 vial Air Samples: C Lot of test paper	note packing/ic un Samples: e location: orage location: arvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃	e cond <i>R. 60</i> : Date <i>i.e.</i> and ee with the tes extra la Intact Yes	Y ittion: Stan 2 t c stan t t c stan t t t t t t t t t t t t t	N ading App by Proceeding App by proceeding App by preservat preservat ody paper: licated? not leakin MS? Ci Lot Real	Y proval or tion, etc s? anisters ceived	N Ice melto Client n Time: c.)?	Y ed Po aware a at 1444 ized Exp	IN corly Pa at drop-(090(. 090(. 010 010 010 010 010 010 010 01	I incked (off (off (by ES ES ES ES ES ES ES ES ES ES ES ES ES	IN describe Client no Client no NO NO NO NO NO Bags II Vol. Adde	nflated	IN w) by: Lot Ac		I IN the Day Ru	 lie li
If out of T &Client A All samples 5035 samples 5035 sample Cooler Bro 9. V 10. I 11. V 12. V 13. A pH ≥ 12 ≤ 2	Femperature, Approval to R held in storages placed in storages placed in storages eakdown/Prese Were all bottle la Were correct cc Were 5035 vial Air Samples: C Lot of test paper	note packing/ic un Samples: e location: orage location: arvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄	e cond <i>R</i> co : Date (<i>i.e.</i> and ee with the tes extra la Intact Preser Yes	Y Stan 2 t c c c c c c c c c c c c c c c c c c	N ading App by <u>Q</u> by <u>I</u> preservat bdy papers licated? not leakin AS? Ca Lot Red	Y proval or or tion, etc s? anisters ceived	N lice melte Client n 229/ n Time: c.)?	Y ed Po aware a at ized Exp	IN poorly Pa at drop-o 900 900 11 11 Sampl Adjust	I incked (off () incked () off () ES ES ES ES ES ES Fedlar(e ID eed	IN describe Client no NO NO NO Bags II Vol. Adde	nflated	IN (W)		I IN ne Day Ru	
If out of T &Client A All samples 5035 sample Cooler Brog 9. 10. 11. V 12. ≤12 ≤2 <4	Femperature, Approval to R held in storages placed in storages placed in storage eakdown/Prese Were all bottle la Were correct cc Were 5035 vial Air Samples: C Lot of test paper	note packing/ic un Samples: e location: orage location: arvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄	e cond <i>R</i> co <i>C</i> <i>C</i> <i>C</i> <i>C</i> <i>C</i> <i>C</i> <i>C</i> <i>C</i>	Y Stan 2 b c c c c c c c c c c c c c c c c c c	N ading App by e by Preservat bdy paper: licated? not leakin MS? Ci Lot Rea	Y proval or or or or or or or or or or or or or	N lice melto Client n ///////////////////////////////////	Y ed Po aware a at ized Exp	IN corly Pa at drop-o	I incked (off () incked () off () by ES ES ES ES ES ES Cedlar(e ID eed	IN describe Client no NO NO NO Bags In Vol. Adde	nflated	IN (W)		Fina pH	
If out of T & Client A All samples 5035 sample Cooler Breg 9. 10. 11. V 13. PH ≥12 ≤2 <2	Femperature, Approval to R held in storage es placed in storage eakdown/Prese Were all bottle la Were correct cc Were 5035 vial Air Samples: C Lot of test paper	note packing/ic un Samples: e location: orage location: arvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ For 608pest	e cond <i>R</i> co : Date (<i>i.e.</i> and ee with r the tes extra la Intact Preser Yes	Y ittion: Stan 2 t t c stan t t t t t v t t t t t t t t t t t t t	N ading App by 224/19 preservat ody paper: licated? not leakin MS? Ci Lot Red No=Not	Y proval or or tion, etc s? ng)? canisters ceived	N lice melto Client n //25// n Time: c.)?	Y ed Po aware a at 1444 ized Exp	IN poorly Pa at drop-of O 900 Control (1) Control (1	I incked (off () ES ES ES ES ES ES ES ES ES ES ES ES ES	IN describe Client no Client no NO NO NO Bags II Vol. Adde	nflated	IN (W)		Fina pH	le
If out of T & Client A All samples 5035 sample Cooler Breg 9. 10. 11. V 13. pH ≥12 ≤2 <4	Femperature, Approval to R held in storage es placed in storage eakdown/Prese Were all bottle la Were correct cc Were 5035 vial Air Samples: C Lot of test paper	note packing/ic un Samples: e location: orage location: arvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no assettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN,	e cond <u><i>R. go</i></u> : Date <i>i.e.</i> and ee with the tes extra la Intact <u>Preser</u> Yes	Y Stan Z t t t t t t t t t t t t t	N ding App by 22 by 22 22 22 22 22 22 22 22 22 2	Y proval or or tion, etc s? anisters ceived tify for 1 mact PM 2625 6	N lice melto Client n ///////////////////////////////////	Y ed Po aware a at ized Exp	IN poorly Pa at drop-of <i>900.</i> <i>900.</i> <i>900.</i> <i>900.</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i> <i>1</i>	I incked (off (b) ES ES ES ES ES ES ES ES ES ES ES ES ES	IN describe Client no NO NO NO Bags II Vol. Adde	nflated	IN (W) (by:)	Sarr	I IN ne Day Ru	
If out of T & Client A All samples 5035 sample Cooler Breg 0. 11. V 12. V 13. PH ≥12 ≤2 <4	Femperature, Approval to R held in storages placed in storages placed in storages addown/Prese Were all bottle bottle Did all bottle la Were correct cc Were 5035 vial Air Samples: C Lot of test paper	note packing/ic note packing/ic un Samples: e location: orage location: arvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, CO2	e cond <u><i>R. 60</i></u> : Date <i>i.e.</i> and ee with the tes extra la Intact <u>Preser</u> Yes	Y Stan Z t t t t t t t t t t t t t t t t t t	N ding App by 2 /724/19 preservat ody paper: licated? not leakin MS? Ci Lot Red No=Not lif+, con Na2S2O3 CN), asc	Y proval or tion, etc s? anisters ceived tify for : tact PM 3 (625, 6 corbic (p	N lice melte Client n ///////////////////////////////////	Y ed Po aware a at ized Exp	IN poorly Pa at drop-o 900. 900. 10 10 10 10 10 10 10 10 10 10	I incked (off (b) ES ES ES ES ES rediar(e ID ed	IN describe Client no NO NO NO NO Bags II Vol. Adde	nflated	IN (W) (by:)	Sarr	Fina pH	
If out of T &Client A All samples 5035 sample Cooler Bro 9. V 10. L 11. V 12. V 13. A pH ≥ 12 ≤ 2 ≤ 2 ≤ 4 5-9 Residual Chlorine (-)	Femperature, Approval to R held in storag es placed in storages placed in storage were all bottle la Were correct cc Were 5035 vial Air Samples: C Lot of test paper	note packing/ic un Samples: e location: orage location: arvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522	e cond <u><i>R</i></u> so : Date (<i>i.e.</i> and ee with the tes extra la Intact <u>Yes</u>	Y Stan 2 t t vvvvv e : 6 alysis, n custo sts ind abels, 1 with N vved? No	N ding App by 2 y z z z z z z z z z z z z z	Y proval or tion, etc s? anisters ceived tify for 1 stact PM s (625, 6 corbic (p	N lice melte Client n ///////////////////////////////////	Y ed Po aware a at ized Exp	IN poorly Pa at drop-o 900 900 900 900 900 900 900 90	I incked (off (off (by ES ES ES ES ES ES ES ES ES ES ES ES	IN describe Client no NO NO NO Bags II Vol. Adde	nflated	IN (W) (by:)	Sarr	I IN ne Day Ru	
If out of T &Client A All samples 5035 sample Cooler Brog 9. 10. 11. V 12. ≤2 <4	Femperature, Approval to R held in storages placed in storages placed in storages eakdown/Prese Were all bottle la Were correct co Were 5035 vial Air Samples: C Lot of test paper	note packing/ic un Samples: e location: orage location: arvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃	e cond <u>R</u> co : Date (<i>i.e.</i> and ee with the tes extra la Intact Preser Yes	Y ittion: Stan 2 t 2 t t c t c t t t t t t t t t t t t t	N ading App by Preservat ading App by Preservat ading App Preservat ading App Preservat No=Not If +, con Na2S2O3 CN), asc	Y proval or tion, etc s? anisters ceived tify for 1 ntact PM 3 (625, 6 corbic (p	N lice melte Client n ///////////////////////////////////	Y ed Po aware a at ized Exp	IN poorly Pa at drop-of O 90C In Sampl Adjust **VOA	I incked (off () ES ES ES Fedlar(e ID red	IN describe Client no NO NO NO Bags II Vol. Adde	nflated	IN W) by: Lot Ac	Sarr Sarr	Fina pH	
If out of T & Client A All samples 5035 sample Cooler Brog 9. 10. 11. V10. 11. V12. V13. PH ≥12 ≤2 <4	Femperature, Approval to R held in storages placed in storages placed in storages eakdown/Prese Were all bottle la Were correct cc Were 5035 vial Air Samples: C Lot of test paper	note packing/ic un Samples: e location: orage location: arvation Check** labels complete (bels and tags agr ontainers used for s acceptable (no cassettes / Tubes Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For 608pest For CN, Phenol, 625, 608pest, 522 Na ₂ S ₂ O ₃ ZnAcetate	e cond <i>R</i> co : Date (<i>i.e.</i> and ee with the tes extra la Intact Preser Yes	Y Stan 2 t 2 t 2 t 2 t 2 t 5 t 1 t 5 t 1 t 1 t 1 t 5 t 1 t 1 t 1	N ading App by Preservat by preservat dy papers licated? not leakin MS? Ci Lot Red No=Not If +, con Na2S2O3 CN), asc	Y proval or or tion, etc s? anisters ceived tify for : ntact PM 3 (625, 6 corbic (p	N Ice melte Client n Time:	Y ed Po aware a at 1444 ized Exp	IN poorly Pa at drop-of <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OPOC</i> <i>OP</i>	I incked (off () ES ES ES ES Fedlar(e ID ted ted ted ted s and 16 ise, all b	IN describe Client no NO NO NO Bags II Vol. Adde	nflated beteste	IN W) by: Lot Ac d before es with c	Sarr Sarr Sarr Sarr Sarr Sarr Sarr Sarr	Fina pH	ll ves

Bottle lot numbers: 8-039-004 Explain all Discrepancies/ Other Comments:

theodepart: I visit TB 3 visit : B-25A I viait B-18

Labels secondary reviewed by:_____ PC Secondary Review: ______ S JM

DO FLDT[•] HPROD HGFB LL3541 HTR SUB PH MARRS SO3 REV ALS

BULK

CLRES

P:\INTRANET\QAQC\Forms_Controlled\Cooler Receipt r16.doc

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

3/12/18

.

.

ARADAE POINT IN	11.0	71		LAB ID	
	MW	-245			·
JRGE IN FURMATION			• •		
'ell.Depth(ft.)		Purge Date _		Purge Mathod	
VL (ft.)		Start Time			<u>;</u>
anding Water(ft.)		Volume Para	Oct col	<u>Stup ume</u>	
ell Constant (gal/ft.)		Obsonutions		# casings	
/ell Volume(gal.)		Observations	·		· ·
MPLING INFORMATI	DN			~	
mõle Method	DR .	• •		·	·
	. Ime			· · ·	
charge Time	Rechar	ge Rate	VL <u>4, 1</u>	2	
charge Time pearance eather Conditions npling Technician (Prir	Pi Croe	ge Rate Ceesan DY 85 48 UBAN	NL <u>41</u> B'hr. <u>PcC</u> Signature <u>B</u>	poersy 7° shller	2
charge Time pearance eather Conditions npling Technician (Prir 	Rechar PiCice ot Bass (Parameter	ge Rate CLEAN DY 85 48 Unit	Bhr. <u>P.C</u> Signature <u>B</u> Replicate 1	2 2000134 7° 2hller Replicate 2	2
charge Time pearance eather Conditions npling Technician (Prir 	Rechar PiCroe ot Bass (Parameter pH	ge Rate Ceesan 	NL <u><u><u><u></u></u> Bhr. <u><u><u></u><u><u></u><u><u></u><u></u><u><u></u><u><u></u></u> Signature <u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u></u></u></u></u>	Replicate 2	
charge Time pearance eather Conditions npling Technician (Prir Meter	Rechar PiCice ot Bass (Parameter pH Conductivity	ge Rate Ceen DY 85 48 WBAN S Unit Unit unit unit unit	VL <u>4</u> 1 Bihr, <u>P</u> c C Signature <u>B</u> Replicate 1	Replicate 2	
charge Time pearance eather Conditions mpling Technician (Prir 	Rechar P. Croe pt. Croe	ge Rate CLEAN 	VL <u><u><u><u></u></u><u><u><u></u><u><u></u><u><u></u><u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u><u></u><u></u></u></u></u></u></u></u></u></u></u>	Replicate 2	
charge Time pearance eather Conditions mpHing Technician (Prir Meter bration Date/Time	Rechar PiCroe pt Croe pt Bass (Parameter pH Conductivity Temperature	ge Rate	VL <u>4</u> , <u>7</u> B'hr, <u>P</u> , <u>C</u> Signature <u>B</u> Replicate 1	Replicate 2	
charge Time pearance eather Conditions mpling Technician (Prir Meter bration Date/Time SERVATIONS	Rechar	ge Rate Cuesting 48 WBUM 5 Unit Unit Unit Unit Unit Degrees Celsius	VL <u>4</u> , <u>7</u> Bihr, <u>P.C</u> Signature <u>B</u> Replicate 1	Replicate 2	
charge Time pearance eather Conditions mpling Technician (Prir Meter bration Date/Time ERVATIONS	Rechar	ge Rate Ceen DY 85 48 Whit Unit Unit Unit Unit Degrees Celsius	VL <u>4</u> , <u>7</u> Bihr, <u>P</u> Coloratore Replicate 1	Replicate 2	

inline procedures were performed in accordance with all annuantie in the

AMPLE POINTID	C AAL		<u>د</u>	LAB ID	
	190		<u>. . </u>		
URGEINFURMATION			• • •		
/ell_Depth(ft.)		Purge Date	•		
WL (ft.)		Start Time	~ <u>+</u>	_ Purge Wethod _	
anding Water (ft.)				_ Stop Time	
/eli Constant (gal/fr)		Volume Purg	ed gal	# casings	
	······································	Observations			
ven Voluine (gal.)	\sim			•	· · ·
MPLING INFORMATIO	N'				······································
mple.Method	YDB		·		
ite . 8/28/18		1025	. ANI		
charge Time		SV	VL <u>7.41</u>	· ·	
	Rechar	ge Rate			
pearance	<u> </u>	JAN_	·		
eather Conditions	P.A	6	0 0		
· · · · · · · · · · · · · · · · · · ·	1 Clou	24 85 4	Bhr. V. C	100,12.78	· .
mpling Technician (Print	Bos	(NRA)	Bihr. <u>P. C</u>	LOUISY 75	
npling Technician (Print	Bos	(NBAN) 5 48	Bihr. <u>P. C</u> Signature <u>B</u>	Louisy 75 Uhllen	
npling Technician (Print Meter	Parameter	<u>Unit</u> <u>Unit</u>	Bihr. <u>P. C</u> Signature <u>B</u> Replicate 1	Locusy 75 Lllen Replicate 2]
npling Technician (Print Meter	Parameter pH	Unit Unit Unit	Bhr. <u>P. C</u> Signature <u>B</u> Replicate 1	LOUISY 75 Uller Replicate 2	
mpling Technician (Print Meter	Parameter pH Conductivity	Unit Unit Unit unit µmhos/cm	Bhr. <u>P. C</u> Signature <u>B</u> Replicate 1	Replicate 2	
mpling Technician (Print	Parameter pH Conductivity Temperature	Unit Unit Unit Unit Unit Unit Unit Unit	Bhr. <u>P. C</u> Signature <u>B</u> Replicate 1	LOUISY 75 ULLO Replicate 2	
npling Technician (Print	Parameter pH Conductivity Temperature	Unit Unit Unit Unit Unit Unit Unit Unit	Bihr. <u>P. C.</u> Signature <u>B</u> Replicate 1	LOUISY 75 Uller Replicate 2	
hpling Technician (Print	Parameter pH Conductivity Temperature	Unit Unit Unit Unit Unit Unit Unit Unit	Bhr. <u>F. C</u> Signature <u>B</u> Replicate 1	LOUISY 75 ULLO Replicate 2	
mpling Technician (Print Meter bration Date/Time	Parameter pH Conductivity Temperature	Unit Unit Unit Unit Unit Unit Unit Unit	Bhr. <u>F. C</u> Signature <u>B</u> Replicate 1	LOUISY 75 ULLO Replicate 2	
mpling Technician (Print	Parameter pH Conductivity Temperature	Unit Unit Unit Unit Unit Unit Unit Unit	Bhr. <u>F. C.</u> Signature <u>B</u> Replicate 1	Locisy 75 Hillen Replicate 2	
mpling Technician (Print Meter bration Date/Time	Parameter pH Conductivity Temperature	Unit Unit Unit Unit Unit Unit Unit Unit	Bhr. <u>F. C</u> Signature <u>B</u> Replicate 1	LOUISY 75 MULE Replicate 2	

inline procedures were performed in accordance with all applicable and a

		80			OP
MPLE POINT ID	Su)-35			
IRGE IN FORMATION			• •		i
ell.Depth(t.)		Purge Date		Dunne Mill I	
VL (ft.)					
anding Water (ft.)		Volume Puro	in the second se	Stop Time	
ell Constant (gal/ft.)		Observation	<u>eu sa</u> l	# casings	
(ell Volume (gal.)			·		
MPLING INFORMATIO	N	· <u>····································</u>			
nple.Method 6	246				
Blablip	Time	1040			
Barge Time		<u></u>	NL	·	
	Recharg	se Rate			•
sarance		CEAP		•	
eather Conditions	Pi Ciao	<u>V 85</u> 4	8 hr. <u>l.C</u>	LOUDY 75	
npling Technician (Print)	bos (MEAN	Signature	shlen	
Meter	Parameter	Unit	Replicate 1	Replicate 2	
				inchineare 2	
MYRON	pH	unit	7,710	5.76	•
Mydon	pH Conductivity	unit µmhos/cm	7,76	7,76	
Mydon	pH Conductivity Temperature	unit µmhos/cm Degrees Celsius	7,76 .6807 23,1	7,76 6800 23,1	•
Auton	pH Conductivity Temperature	unit µmhos/cm Degrees Celsius	7,76 6807 23,1	7,76 6800 23,1	•
bration Date/Time	pH Conductivity Temperature	unit µmhos/cm Degrees Celsius 09.30 PH	7,76 6807 23,1 17,00 Con	7,76 6800 23.1 p=1413	•
bration Date/Time	pH Conductivity Temperature	unit µmhos/cm Degrees Celsius 09'30 PH	7,76 6807 23,1 17,00 Con 4,00 00	7,76 6800 23,1 p=1413	•
bration Date/Time 8	pH Conductivity Temperature	unit µmhos/cm Degrees Celsius 09'30 PH	7,76 6807 23,1 17,00 Con 4,00 Con 000	7,76 6800 23.1 p=1413	
bration Date/Time &	pH Conductivity Temperature	unit µmhos/cm Degrees Celsius 09'30 PH	7,76 6807 23,1 17,00 Con 4,00 Con 4,00	7,76 6800 23,1 p=1413	

ning procedures were performed in activity we

PROJECT	XGNOX	901		•		
SAMPLE POINTID	M	W - ID		LAB ID		
PURGEINFORMATION	3					
Well, Depth (ft.)		Purce Dett	, .	· · ·		
SWL (ft.)		Start Time		_ Purge Method _		
Standing Water (ft.)		Volume		Stop_Time		.`
Well Constant (gal/ft.)		Volume Pur	ged gal.	# casings		-
Well Volume (gal.)		Observațion				
AMPLING INFORMATI	ON	· · · · · · · · · · · · · · · · · · ·				
iample Method	PDB					
Date 8/28/18		1055		~		
echarge Time		ge Rate			. •	
ppearance	C.	6-AR-			-	
Weather Conditions	Picia	NY BC		· · · · ·		~-
ampling Technician (Prir	t) Bos (MBAn)	where \underline{PCc}	our 75		
Mator			Signature	chelle		
	Parameter	Unit	Replicate 1	. Replicate 2	7	
	Conductivity	unit		1	-	•
	Temporehum	µmhos/cm				
	iemperature	Degrees Celsius	l			
libration Date/Time			-			•
SERVATIONS		Pro	·		•	
1						

			of 95			

·		001		LAB ID	
AMPLE POINT ID	VE	-6	· · ·		· · ·
URGE INFORMATION			· · ·		
'ell_Depth(ft.)		Purge Doto			
VL (ft.)				Purge Method	
anding Water (ft.)		start lime		Stop Time	
eli Constant (gal/a)		Volume Purg	ed gal	# casings	
		Observations	5		······································
ell Volume (gal.)					
	DN -	· ·		•	
mple.Method	DB		-		
te 8/20/18		1115	4.75		
change Time		JV	Vi. <u>UP</u>	·	
urarge i lille	. Rechard	YO Down		,	
	Recharg	ge Rate			
pearance	Recharg	se Rate		•	
pearance	Pr Croud	St 85 4	8 hr. P.C	LOUDY 79	
pearance eather Conditions npling Technician (Prin	Pr Crock the Bog L	Se Rate CLEAN SY 85 44 MBAN	8 hr. <u>PiC</u> Signature <i>Re</i>	Lousy 75 hlle	
pearance eather Conditions npling Technician (Prin Meter	Parameter	Se Rate <u>LeAn</u> <u>NBAN</u>	8 hr. <u>PiC</u> Signature <u>Ba</u>	Lousy 75 hllen	
pearance eather Conditions npling Technician (Prin 	t) Bob Crow Parameter PH	VBAN Unit Unit	8 hr. <u>P.C</u> Signature <u>Bae</u> Replicate 1	LOUDY 75 heller Replicate 2	
pearance eather Conditions npling Technician (Prin 	Parameter PH Conductivity	Be Rate CLEAN SY 85 44 Unit Unit Unit unit µmhos/cm	8 hr. <u>P.C</u> Signature <u>Bue</u> Replicate 1	LOUDY 75 heller Replicate 2	
pearance eather Conditions npling Technician (Prin 	Parameter pH Conductivity Temperature	Se Rate CLEAN SY SS 4 Unit Unit Unit Unit Unit Unit Degrees Celsius	8 hr. <u>PiC</u> Signature <u>Ba</u> Replicate 1	Loury 75 hellen Replicate 2	
pearance eather Conditions npling Technician (Prin 	Parameter pH Conductivity Temperature	Se Rate CLEAN SY 85 44 Whit Unit Unit Unit Unit Degrees Celsius	8 hr. <u>PiC</u> Signature <u>Ba</u> Replicate 1	Loury 75 heller Replicate 2	
pearance eather Conditions npling Technician (Prin 	Parameter pH Conductivity Temperature	Be Rate	8 hr. <u>PiC</u> Signature <u>Bu</u> Replicate 1	Lousy 75 heller Replicate 2	
pearance eather Conditions npling Technician (Prin Meter bration Date/Time	Parameter pH Conductivity Temperature	Unit Unit Unit Unit Unit Unit Unit Degrees Celsius	8 hr. <u>P.C</u> Signature <u>Ba</u> Replicate 1	Loury 79 heller Replicate 2	
pearance eather Conditions npling Technician (Prin Meter 	Parameter pH Conductivity Temperature	Unit Unit Unit Unit Unit Unit Degrees Celsius	8 hr. <u>PiC</u> Signature <u>Ba</u> Replicate 1	Lowy 79 heller Replicate 2	
pearance eather Conditions npling Technician (Prin Meter bration Date/Time	Parameter PH Conductivity Temperature	Unit Unit Unit Unit Unit Unit Degrees Celsius	8 hr. P.C. Signature Bal Replicate 1	Lowy 75 heller Replicate 2	

niino nnoredilles were nerformed in actant

	Enox 1	301			
	VE	-15		LAB ID	
IRGEINFORMATION		<u> </u>	<u></u>		
ell_Depth (ft.)		Durren	• • •		
/L (ft.)		Purge Date _		Purge Method	
nding Water (ft.)		Start Time		Stop Time	
I Constant (gal/ft.)		Volume Purg	ed gal.	# casings	
ell Volume (gal.)		Observațion.	5		
APLING INFORMATION				······································	
pöle Method P	DB .			•	
e 8/20/18	Time	//35 si	NL 4,88		
harge Time	Recharg	ge Rate			· ·
earance	<u> </u>	M		,	
ather Conditions	· Cwer	Y BS A	sibr Pa	10001178	
pling Technician (Print)	Bos	Lusa	Signature B	cello.	
Meter	Parameter	1865			
	pH	unit	Keplicate 1	Replicate 2	
	Conductivity	umhos/cm			
	Temperature	Degrees Celsius			
		1			
ration Date/Time	/		•	• • •	
ERVATIONS	с. с			· . ·	•
1		*****			
			······································		
		16 0	of 85		

nine notradifies mere notfatte du

.

ASAMS COONTIN				LAB ID	
	<u>```</u>	$12\omega - 4$	·		
URGE INFORMATION					
/ell.Depth(ft.)		Purgo Davis		•	
NL (ft.)	•	- i dige Date _		Purge Method	
anding Water (ft)		- Start Time		Stop Time	
		~ Volume Pure	ged gal	# casings	
ell Conscant (gal/ft.)		Observation	s	· · · · · · · · · · · · · · · · · · ·	
Vell Volume (gal.)			· · ·		
MPLING INFORMATIO	N			······································	. ·
mple.Method	DB				
ite 8 29/18	Time	1150	1 21		
		SI SI	$ML = \frac{1}{1}$	<i>.</i> .	
charge Time					
charge Time	Rechar	rge Rate			
pearance	Rechar	rge Rate			
charge Time pearance eather Conditions	Rechan	rge Rate	8 hr P.C.	R 01/ 75	
charge Time pearance eather Conditions mpling Technician (Print)	Rechan	rge Rate CLEAN4 BS4	8 hr. <u>P.C.</u>	roy 75	
charge Time pearance eather Conditions npling Technician (Print)	Rechar P. CLORY BOB (rge Rate CLEAN O.S 4 NBAN	8 hr. <u>P.C.c</u> Signature <u>K</u>	roy D ahlea	
charge Time pearance eather Conditions npling Technician (Print) Meter	Rechan Rechan Recov Bos (Parameter	rge Rate <u>CLEAN</u> <u>B-S</u> 4 <u>NBAN</u> Unit	8 hr. <u>P.C.c</u> Signature <u>K</u> Replicate 1	Replicate 2	
charge Time pearance eather Conditions npling Technician (Print) Meter	Rechar Rechar Recover Bors (Parameter PH	B-S 4 B-S 4 DBAN Unit Unit Unit	8 hr. <u>P.C.c</u> Signature <u>K</u> Replicate 1	Replicate 2	
charge Time pearance eather Conditions mpling Technician (Print) Meter	Rechan Rechan Rechan Parameter PH Conductivity	rge Rate CLEAN 8-5 4 NBAN Unit Unit unit µmhos/cm	8 hr. <u>P.C.c</u> Signature <u>Replicate 1</u>	Replicate 2	
charge Time pearance eather Conditions npling Technician (Print)	Rechar Rechar Rechar Parameter PH Conductivity Temperature	rge Rate CLEAN 8-5 4 NBAN Unit Unit Unit unit pumhos/cm Degrees Celsius	8 hr. <u>P.C.c</u> Signature <u>K</u> Replicate 1	Replicate 2	
charge Time pearance eather Conditions _/ mpling Technician (Print)	Rechar Rechar Rechar Parameter pH Conductivity Temperature	rge Rate CLEAN OS 4 NBAN Unit Unit unit µmhos/cm Degrees Celsius	8 hr. <u>P.C.c</u> Signature <u>K</u> Replicate 1	Replicate 2	
charge Time pearance eather Conditions _/ npling Technician (Print) Meter bration Date/Time	Rechar Rechar Rechar Rechar BOB Parameter pH Conductivity Temperature	Provide Rate	8 hr. <u>P.C.c</u> Signature <u>K</u> Replicate 1	Replicate 2	
charge Time pearance eather Conditions mpling Technician (Print) Meter bration Date/Time SERVATIONS	Rechar Rechar Rechar Parameter PH Conductivity Temperature	Provide Rate	8 hr. <u>P.C.c</u> Signature <u>K</u> Replicate 1	Replicate 2	
charge Time pearance eather Conditions npling Technician (Print) Meter bration Date/Time SERVATIONS	Rechar	Provide Rate	8 hr. <u>P.C.c</u> Signature Replicate 1	Replicate 2	
charge Time pearance eather Conditions npling Technician (Print) Meter bration Date/Time SERVATIONS	Rechar Rechar Rechar Parameter pH Conductivity Temperature	rge Rate CLEAN 8-5 4 NBAN Unit Unit Unit Unit Unit Degrees Celsius	8 hr. <u>P.C.c</u> Signature Replicate 1	Replicate 2	

nline procedures were performed in accordance with all applicable in the

PROJE	cr	LENOX	801		· ·	
SAMPI	 Le pointid		=10	-	LAB ID	
PURGE	EINFORMATION					······································
Well, Ď	epth (ft.)			· .		
SWL (f	t.)		Purge Date _		Purge Method	
itancii	ng Water (ft.)		Start Time		Stop Time	
Nell Ce	onstant (gal/ft.)		Volume Purg	ed gal.	# casings	·
Well ∨	'olume (gal.)		Observations			
AMPL	ING INFORMATIO	N				
ampie	Method	PAR				
ate	8/28/18	Time_	1210 sv	VL <u>4.44</u>		
ean	ance	Rechar	ge Rate		· ·	
Veath	er Conditions	P. CLOUD	<u>v 85</u> 4	shr. P.C.	25 YW	
mplin	g Technician (Print	Boxl	NBAN	Signature Ro	110	·····
Γ	Meter	Parameter	20.0 P3	ignature vw	nell	
		pH		Replicate 1	Replicate 2	
		Conductivity	μmhos/cm			-
	. (Temperature	Degrees Celsius		·	-
libratic	on Date/Time					
SERVA	TIONS	· · · · · ·			•	
	[****				
			······································		- 	
		*****		f 85		
nlingar	ventures were performe	d in accordance with a	Il muniter 17			

ROJĘ	ст	XGNOX.	801	·		
AMPI	- LE POINT ID	VE	E-12		_LAB ID	
WRGE	EINFORMATION			<u> </u>		·
Vell., D	epth(ft.)		Durge Data	· .		
wl (fi	t.)		Fulge Date		Purge Method _	
andir	ng Water (ft.)		Value -		Stop Time	
/ell Cc	onstant (gal/ft.)		Volume Purg	ed gal.	# casings	
Vell ∨	olume (gal.)		Observațions			
WPL	ING INFORMATIO			·····		
mole	Method 7	D R		•	·	·
	ahali	10	10.7 0	1		
		D Time	Idas sv	VI. 4.68	<u>}</u>	
cnarg	ge Time	Recharg	ge Rate			
peara	ince	<u> </u>	EAR		•	
/eathe	er Conditions	Pelcon	24 87 4	the P.C	GOR DU T	
mplin	g Technician (Print	Bar (MBA	Sterioture K	Poll pa	
- -	Meter	Reason and I			ander	
		rarameter	Unit	Replicate 1	Replicate 2]
	•	Conductivity	unit			
· -		Tomportu	µmhos/cm		r	-
L		i remperature	Degrees Celsius			-
ihratia	n Doto /Tim		· , .	•		
ເວເຊຍບ						
SERVA	TIONS					
<u> </u>					•	
	ſ				· · · · · · · · · · · · · · · · · · ·	

nline procedules were performed in accordance were - "

	THOX Z	$\mathcal{O}[$	·····	LAB ID	
MPLE POINT ID	Mu	9 - 13s			
IRGEINFORMATION			······································		,
ell_Depth (ft.)		Purge Doto			
vl (ft.)	<u></u>	Chart The		Purge Method	
anding Water (ft.)		Statt time	······································	Stop Time	
ell Constant (gal/ft.)		Volume Purg	ed gal.	# casings	
		Observațions			
			····	•	· · · · · · · · · · · · · · · · · · ·
nole Method	PDB				
e 8/28/18	Time	1240	1.22	ζ	
harge Time	Rechar	ge Rate	VI	· · · · · · · · · · · · · · · · · · ·	
earance	Ci	etter.			
ather Conditions	Pr Cior	DY B7 AS	abr Q 1		
pling Technician (Prin	t Bos L	NBAN	Signature M	hearby 5	
Meter	Parameter	8 1 /2 1 /2			
		. Quint	Keplicate 1	Bonlineto D	
	рН	unit	······································	nepileate 2	-
	pH Conductivity	unit umhos/cm			-
	pH Conductivity Temperature	unit µmhos/cm Degrees Celsius			•
	pH Conductivity Temperature	unit µmhos/cm Degrees Celsius			- -
pration Date/Time	pH Conductivity Temperature	unit µmhos/cm Degrees Celsius			•
Pration Date/Time	pH Conductivity Temperature	unit µmhos/cm Degrees Celsius			
Pration Date/Time	pH Conductivity Temperature	unit µmhos/cm Degrees Celsius			
Pration Date/Time	pH Conductivity Temperature	unit µmhos/cm Degrees Celsius			

nling procedures were performed in accordance with all and the

PROJECT XC	MOX E	301 We	zes	1 6 m -	
SAMPLE POINTID	Mu	U-185	·	_ LAB (D	
PURGEINFORMATION					
Well_Depth(ft.)		Purge Date	· · ·	· · · · ·	
SWL (ft.)		Stort The		Purge Method	
itan din g Water (ft.)		Volume _		Stop Time	·
Nell Constant (gal/ft.)	·····	volume Purg	yed gal.	# casings	
Well Volume (gal.)		Unservațions			·
AMPLING INFORMATIO	N				
mple Method P	DB			·	
e 8/28/18	3 Time	1200	6.35) .	
rge Time	Rechan	ge Rate			, ,
Jearance		KEAR			·
Veather Conditions	P. CLOUDY	87	D P A		
impling Technician (Print)	Bas	(MBA)	Signature	BULDO.	
Meter	Parameter			N-Men	
	pH		Replicate 1	Replicate 2	•
	Conductivity	unit			
	Temperature	Degrees Celsius		· · · · · · · · · · · · · · · · · · ·	
	• .				
libration Date/Time	J/			• .	
SERVATIONS		****		· · ·	,
				· ·	
/		· · · · · · · · · · · · · · · · · · ·		·	
		Therein the s			

in Il no provedures were performed in accordance with all applicable in a secondance with a secondance

	(کی

	ctX(MOX B	01		5 6 F2 100	
4MPI	LE POINT ID	MW	1 - 19	······	_LAB (D	
JRGE	E INFORMATION				,	
ell. Di	epth (ft.)		Durge Duni	· .		
NL (ft	t.)		ruige Date _		Purge Method	<u>.</u>
andir	ng Water (ft.)		Start Time		Stop Time	
	onstant (gol/&)		Volume Purg	ed gal.	# casings	
			Observațions			
/ell ∨∙	olume (gal.)				•	
MPL	ING INFORMATIC)N				
mple.	Method <u>+</u>	DB				
te	8/28/18		1325 SV	VI (0-91		
charg	ge Time	Rechar	ve Roto			. •
peara	ance					·
	nin Convoltat	0	- CEM		•	
cacije	er Conditions	Fictor	<u>py 87</u> 4	$Bhr, \underline{P, C}$	LOUDY 7	5
npling	g Technician (Prin	1 Babl	nom:	Signature	sell Pa	
Γ	Meter	Parameter	linit	Doullands 4		
		рН	unit	nepiicate 1	Replicate 2	•
L.		Conductivity	µmhos/cm			
	·	•				
	· · · · · · · · · · · · · · · · · · ·	Temperature	Degrees Celsius	·	*	•
		Temperature	Degrees Celsius			-
bratio	on Date/Time	Temperature	Degrees Celsius			-
bratio	on Date/Time	Temperature	Degrees Celsius			
bratio	on Date/Time	Temperature	Degrees Celsius			- -
bratio	on Date/Time	Temperature	Degrees Celsius			
bratio	on Date/Time	Temperature	Degrees Celsius			

mline noncontines when note the state

			5	LABID	
AMPLE POINT ID	-Mu	2-16			• .
URGEINFORMATION			· · ·		<u></u>
/ell_Depth (ft.)	·	Purge Doto			
NL (ft.)		'Churt m		Purge Method _	
anding Water (ft.)		Start lime		Stop Time	<u></u>
all Constant lead (a)		Volume Purg	ed gal.	# casings	
en Constant (gal/ft.) _		Observațions	· · · · · · · · · · · · · · · · · · ·		
ell Volume (gal.)					-
MPLING INFORMATIO	DN			· ·	
mple.Method(PDB				
te <u>8/28//</u>	BTime	1345 sv	VI. 10.0.	4	
harge Time	Rechar	e Rate		≁.	
pearance		107AL		•	•
eather Conditions	P. Ceoro	<u>y 87</u> 4	sihr. P. C		1 <i>C</i>
npling Technician (Prin	t <u>Bos</u>	Chesan :	Signature Ba	ella	
Meter	Parameter	Unit	Replicate 1	Doulinata O	
Meter	Parameter pH	Unit	Replicate 1	Replicate 2	
Meter	Parameter pH Conductivity	Unit unit µmhos/cm	Replicate 1	Replicate 2	-
Meter	Parameter pH Conductivity Temperature	Unit unit µmhos/cm Degrees Celsius	Replicate 1	Replicate 2	
Meter	Parameter pH Conductivity Temperature	Unit unit µmhos/cm Degrees Celsius	Replicate 1	Replicate 2	
Meter	Parameter pH Conductivity Temperature	Unit unit µmhos/cm Degrees Celsius	Replicate 1	Replicate 2	
Meter	Parameter pH Conductivity Temperature	Unit unit µmhos/cm Degrees Celsius	Replicate 1	Replicate 2	
Meter Dration Date/Time	Parameter pH Conductivity Temperature	Unit unit µmhos/cm Degrees Celsius	Replicate 1	Replicate 2	
Meter bration Date/Time ERVATIONS	Parameter pH Conductivity Temperature	Unit unit µmhos/cm Degrees Celsius	Replicate 1	Replicate 2	

infind proceeduras were anite of the

DIECT XO	10x 80)		1 AD ID	
VIPLE POINT ID	<u> </u>	0-34	· · · · · · · · · · · · · · · · · · ·	LAD IV	
RGEINFORMATION			— <u></u>		······································
11. Dépth (ft.)		Purge Date			
L (ft.)		Start Time		Purge Method	<u>•</u> •
nding Water (ft.)		Volume Bu	trand	Stop Time	
I Constant (gal/ft.)		Observatio	IBELL Bal.	# casings	
Il Volume (gal.)		- asservațio			••••
IPLING INFORMATION		· · · · · · · · · · · · · · · · · · ·		·····	
ple Method	SNABS		•		
8/28/18	3 Time	1415	SI A /I		
arge Time	- Rechard	o Posta	SVVL		. •
earance	Nothalg		A		• .
ather Conditions	En Dr	- / HN	The	·	
	le ru	Locs-190	48 hr	earsy .	75
pling Technician (Print)	DOBLI	BA	Signature 📿	hlan	
Meter	Parameter	Unit	Replicate 1	Poplicato 2	
Myron	рН	unit	0.04		
	Conductivity	· umhos/cm	0.04	8.03	-
	Temperature	Degrees Coldina	1860	1860	·
· · ·	l		125,7	25.8	
ration Date/Time	129112		•	•	
	<u>u</u> , 10.	······································			
ERVATIONS		• •		•	•
· · · · · · · · · · · · · · · · · · ·				,	
· · · · · · · · · · · · · · · · · · ·			*******		
* .	·				

24 of 85

.

mino providinar serve and and

PROJĘC	т_Хс	MOX 8	801		·	
SAMPL	E POINT ID	SU	J'-29		LAB ID	
PURGE	IN FORMATION		<u></u>	· · · · · · · · · · · · · · · · · · ·		۰. ۲
Well Dé	pth(ft.)		Purgo Dati	• •		
SWL (ft.)		Start Time		Purge Method	
Standin	g Water (ft.)	· · · · · · · · · · · · · · · · · · ·	Volume Dum		– Stop Time	
Well Co	n <i>s</i> tant (gal/ft.)_		Observation	ged gal,	# casings	
Well Vo	lume (gal.)	· · ·	Observațion	s		·
SAMPLI	VG INFORMATIO	N			······································	
Sam ple l	Viethod					
Date <u> </u>						
Recharge	- Time	Rechare	ie Rate	VV L.	· · ·	
Appearar	nce					·
Weather	Conditions			20.1.	· · · · · · · · · · · · · · · · · · ·	
ampling	Technician (Print)		et nin	·	
[Rfoton.			Signature		
		Parameter	Unit	Replicate 1	Replicate 2	
		Conductivity /	unit umbos/om			
·		Temperature	Degrees Celsius			-
	. ,					
alibration	n Date/Time				•	
BSERVAT	riońs					•
		V				
	<i> </i>	I	DRY		· · · · · · · · · · · · · · · · · · ·	
i			25 0	F 85		
nniine nroe	יישי שער אימיני אימיני		*****			· · · · · · · · · · · · · · · · · · ·

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 26 of 85

S Environmental

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications1ut ID # PH0556Maine ID #NY0032New Hamps

Connecticut ID # PH0556	Maine ID #NY0032	New Hampshire ID #
Delaware Approved	New Jersey ID # NY004	294100 A/B
DoD ELAP #65817	New York ID # 10145	Pennsylvania ID# 68-786
Florida ID # E87674	North Carolina #676	Rhode Island ID # 158
		Virginia #460167

¹ Analyses were performed according to our laboratorys NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alselobal.com/locations/america/usa/new-york/rochester-environmental

ALS Laboratory Group

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but
	greater than or equal to the MDL.
Analyst Summary report

Client:	Xerox Corporation USA
Project:	Bldg 801 Annual Wells 2018

VE-6

Water

R1808244-001

Sample Name: Lab Code:

Sample Matrix:

Service Request: R1808244

Date Collected: 08/28/18 **Date Received:** 08/29/18

Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	VE-10 R1808244-002 Water	J	Date Collected: 08/28/18 Date Received: 08/29/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	VE-12 R1808244-003 Water	J	Date Collected: 08/28/18 Date Received: 08/29/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	VE-15 R1808244-004 Water	J	Date Collected: 08/28/18 Date Received: 08/29/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	RW-4 R1808244-005 Water	1	Date Collected: 08/28/18 Date Received: 08/29/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER

Analyst Summary report

Client:	Xerox Corporation USA		
Project:	Bldg 801 Annual Wells 2018		

MW-2

Water

R1808244-006

Sample Name:

Sample Matrix:

Lab Code:

Service Request: R1808244

Date Collected: 08/28/18 **Date Received:** 08/29/18

Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-10 R1808244-007 Water		Date Collected: 08/28/18 Date Received: 08/29/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-13S R1808244-008 Water		Date Collected: 08/28/18 Date Received: 08/29/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-16 R1808244-009 Water		Date Collected: 08/28/18 Date Received: 08/29/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-18S R1808244-010 Water		Date Collected: 08/28/18 Date Received: 08/29/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER

Analyst Summary report

Client:	Xerox Corporation USA
Project:	Bldg 801 Annual Wells 2018

MW-19

Water

R1808244-011

Sample Name:

Sample Matrix:

Lab Code:

Service Request: R1808244

Date Collected: 08/28/18 **Date Received:** 08/29/18

Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	MW-24S R1808244-012 Water		Date Collected: 08/28/18 Date Received: 08/29/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	SW-34 R1808244-014 Water		Date Collected: 08/28/18 Date Received: 08/29/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	SW-35 R1808244-015 Water		Date Collected: 08/28/18 Date Received: 08/29/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER
Sample Name: Lab Code: Sample Matrix:	SW-35 DUP R1808244-016 Water		Date Collected: 08/28/18 Date Received: 08/29/18
Analysis Method 8260C		Extracted/Digested By	Analyzed By FNAEGLER

Analyst Summary report

Client:Xerox Corporation USAProject:Bldg 801 Annual Wells 2018

.

Printed 9/11/2018 11:00:24 AM

Date Collected: 08/28/18

Date Received: 08/29/18

Sample Name:	Trip Blank
Lab Code:	R1808244-018
Sample Matrix:	Water

Analysis Method

8260C

Extracted/Digested By

Analyzed By FNAEGLER

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9014 Cyanide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Reactivity	SW846 Ch7, 7.3.4.2
9034 Sulfide Acid	9030B
Soluble	
9056A Bomb (Halogens)	5050A
9066 Manual Distillation	9065
SM 4500-CN-E Residual	SM 4500-CN-G
Cyanide	
SM 4500-CN-E WAD	SM 4500-CN-I
Cyanide	

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation	
	Method	
6010C	3050B	
6020A	3050B	
6010C TCLP (1311)	3005A/3010A	
extract		
6010 SPLP (1312) extract	3005A/3010A	
7196A	3060A	
7199	3060A	
9056A Halogens/Halides	5050	
-		
300.0 Anions/ 350.1/	DI extraction	
353.2/ SM 2320B/ SM		
5210B/ 9056A Anions		

For analytical methods not listed, the preparation method is the same as the analytical method reference.

RIGHT SOLUTIONS | RIGHT PARTNER

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 34 of 85

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 35 of 85

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 11:15
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	VE-6	Units: ug/L
Lab Code:	R1808244-001	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	1000 U	1000	100	09/01/18 02:46	
Benzene	500 U	500	100	09/01/18 02:46	
Bromodichloromethane	500 U	500	100	09/01/18 02:46	
Bromoform	500 U	500	100	09/01/18 02:46	
Bromomethane	500 U	500	100	09/01/18 02:46	
2-Butanone (MEK)	1000 U	1000	100	09/01/18 02:46	
Carbon Disulfide	1000 U	1000	100	09/01/18 02:46	
Carbon Tetrachloride	500 U	500	100	09/01/18 02:46	
Chlorobenzene	500 U	500	100	09/01/18 02:46	
Chloroethane	500 U	500	100	09/01/18 02:46	
Chloroform	500 U	500	100	09/01/18 02:46	
Chloromethane	500 U	500	100	09/01/18 02:46	
Dibromochloromethane	500 U	500	100	09/01/18 02:46	
1,1-Dichloroethane	680	500	100	09/01/18 02:46	
1,2-Dichloroethane	500 U	500	100	09/01/18 02:46	
1,1-Dichloroethene	520	500	100	09/01/18 02:46	
cis-1,2-Dichloroethene	13000	500	100	09/01/18 02:46	
trans-1,2-Dichloroethene	500 U	500	100	09/01/18 02:46	
1,2-Dichloropropane	500 U	500	100	09/01/18 02:46	
cis-1,3-Dichloropropene	500 U	500	100	09/01/18 02:46	
trans-1,3-Dichloropropene	500 U	500	100	09/01/18 02:46	
Ethylbenzene	500 U	500	100	09/01/18 02:46	
2-Hexanone	1000 U	1000	100	09/01/18 02:46	
Methylene Chloride	500 U	500	100	09/01/18 02:46	
4-Methyl-2-pentanone (MIBK)	1000 U	1000	100	09/01/18 02:46	
Styrene	500 U	500	100	09/01/18 02:46	
1,1,2,2-Tetrachloroethane	500 U	500	100	09/01/18 02:46	
Tetrachloroethene	500 U	500	100	09/01/18 02:46	
Toluene	500 U	500	100	09/01/18 02:46	
1,1,1-Trichloroethane	620	500	100	09/01/18 02:46	
1,1,2-Trichloroethane	500 U	500	100	09/01/18 02:46	
Trichloroethene	500 U	500	100	09/01/18 02:46	
Vinyl Chloride	2300	500	100	09/01/18 02:46	
o-Xylene	500 U	500	100	09/01/18 02:46	
m,p-Xylenes	500 U	500	100	09/01/18 02:46	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 11:15
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	VE-6	Units: ug/L
Lab Code:	R1808244-001	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	09/01/18 02:46	
Toluene-d8	99	87 - 121	09/01/18 02:46	
Dibromofluoromethane	98	89 - 119	09/01/18 02:46	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 12:10
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	VE-10	Units: ug/L
Lab Code:	R1808244-002	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	50 U	50	5	09/01/18 03:08	
Benzene	25 U	25	5	09/01/18 03:08	
Bromodichloromethane	25 U	25	5	09/01/18 03:08	
Bromoform	25 U	25	5	09/01/18 03:08	
Bromomethane	25 U	25	5	09/01/18 03:08	
2-Butanone (MEK)	50 U	50	5	09/01/18 03:08	
Carbon Disulfide	50 U	50	5	09/01/18 03:08	
Carbon Tetrachloride	25 U	25	5	09/01/18 03:08	
Chlorobenzene	25 U	25	5	09/01/18 03:08	
Chloroethane	1500 D	100	20	09/04/18 17:29	
Chloroform	25 U	25	5	09/01/18 03:08	
Chloromethane	25 U	25	5	09/01/18 03:08	
Dibromochloromethane	25 U	25	5	09/01/18 03:08	
1,1-Dichloroethane	120	25	5	09/01/18 03:08	
1,2-Dichloroethane	25 U	25	5	09/01/18 03:08	
1,1-Dichloroethene	25 U	25	5	09/01/18 03:08	
cis-1,2-Dichloroethene	79	25	5	09/01/18 03:08	
trans-1,2-Dichloroethene	73	25	5	09/01/18 03:08	
1,2-Dichloropropane	25 U	25	5	09/01/18 03:08	
cis-1,3-Dichloropropene	25 U	25	5	09/01/18 03:08	
trans-1,3-Dichloropropene	25 U	25	5	09/01/18 03:08	
Ethylbenzene	25 U	25	5	09/01/18 03:08	
2-Hexanone	50 U	50	5	09/01/18 03:08	
Methylene Chloride	56	25	5	09/01/18 03:08	
4-Methyl-2-pentanone (MIBK)	50 U	50	5	09/01/18 03:08	
Styrene	25 U	25	5	09/01/18 03:08	
1,1,2,2-Tetrachloroethane	25 U	25	5	09/01/18 03:08	
Tetrachloroethene	25 U	25	5	09/01/18 03:08	
Toluene	25 U	25	5	09/01/18 03:08	
1,1,1-Trichloroethane	25 U	25	5	09/01/18 03:08	
1,1,2-Trichloroethane	25 U	25	5	09/01/18 03:08	
Trichloroethene	25 U	25	5	09/01/18 03:08	
Vinyl Chloride	610	25	5	09/01/18 03:08	
o-Xylene	25 U	25	5	09/01/18 03:08	
m,p-Xylenes	25 U	25	5	09/01/18 03:08	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 12:10
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	VE-10	Units: ug/L
Lab Code:	R1808244-002	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	09/01/18 03:08	
Toluene-d8	99	87 - 121	09/01/18 03:08	
Dibromofluoromethane	99	89 - 119	09/01/18 03:08	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 12:25
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	VE-12	Units: ug/L
Lab Code:	R1808244-003	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	1000 U	1000	100	09/04/18 17:51	
Benzene	500 U	500	100	09/04/18 17:51	
Bromodichloromethane	500 U	500	100	09/04/18 17:51	
Bromoform	500 U	500	100	09/04/18 17:51	
Bromomethane	500 U	500	100	09/04/18 17:51	
2-Butanone (MEK)	1000 U	1000	100	09/04/18 17:51	
Carbon Disulfide	1000 U	1000	100	09/04/18 17:51	
Carbon Tetrachloride	500 U	500	100	09/04/18 17:51	
Chlorobenzene	500 U	500	100	09/04/18 17:51	
Chloroethane	6400	500	100	09/04/18 17:51	
Chloroform	500 U	500	100	09/04/18 17:51	
Chloromethane	500 U	500	100	09/04/18 17:51	
Dibromochloromethane	500 U	500	100	09/04/18 17:51	
1,1-Dichloroethane	960	500	100	09/04/18 17:51	
1,2-Dichloroethane	500 U	500	100	09/04/18 17:51	
1,1-Dichloroethene	500 U	500	100	09/04/18 17:51	
cis-1,2-Dichloroethene	500 U	500	100	09/04/18 17:51	
trans-1,2-Dichloroethene	500 U	500	100	09/04/18 17:51	
1,2-Dichloropropane	500 U	500	100	09/04/18 17:51	
cis-1,3-Dichloropropene	500 U	500	100	09/04/18 17:51	
trans-1,3-Dichloropropene	500 U	500	100	09/04/18 17:51	
Ethylbenzene	500 U	500	100	09/04/18 17:51	
2-Hexanone	1000 U	1000	100	09/04/18 17:51	
Methylene Chloride	500 U	500	100	09/04/18 17:51	
4-Methyl-2-pentanone (MIBK)	1000 U	1000	100	09/04/18 17:51	
Styrene	500 U	500	100	09/04/18 17:51	
1,1,2,2-Tetrachloroethane	500 U	500	100	09/04/18 17:51	
Tetrachloroethene	500 U	500	100	09/04/18 17:51	
Toluene	650	500	100	09/04/18 17:51	
1,1,1-Trichloroethane	500 U	500	100	09/04/18 17:51	
1,1,2-Trichloroethane	500 U	500	100	09/04/18 17:51	
Trichloroethene	500 U	500	100	09/04/18 17:51	
Vinyl Chloride	9100	500	100	09/04/18 17:51	
o-Xylene	500 U	500	100	09/04/18 17:51	
m,p-Xylenes	500 U	500	100	09/04/18 17:51	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 12:25
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	VE-12	Units: ug/L
Lab Code:	R1808244-003	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	87	85 - 122	09/04/18 17:51	
Toluene-d8	95	87 - 121	09/04/18 17:51	
Dibromofluoromethane	92	89 - 119	09/04/18 17:51	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 11:35
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	VE-15	Units: ug/L
Lab Code:	R1808244-004	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	25 U	25	2.5	09/04/18 18:14	
Benzene	13 U	13	2.5	09/04/18 18:14	
Bromodichloromethane	13 U	13	2.5	09/04/18 18:14	
Bromoform	13 U	13	2.5	09/04/18 18:14	
Bromomethane	13 U	13	2.5	09/04/18 18:14	
2-Butanone (MEK)	25 U	25	2.5	09/04/18 18:14	
Carbon Disulfide	25 U	25	2.5	09/04/18 18:14	
Carbon Tetrachloride	13 U	13	2.5	09/04/18 18:14	
Chlorobenzene	13 U	13	2.5	09/04/18 18:14	
Chloroethane	250	13	2.5	09/04/18 18:14	
Chloroform	13 U	13	2.5	09/04/18 18:14	
Chloromethane	13 U	13	2.5	09/04/18 18:14	
Dibromochloromethane	13 U	13	2.5	09/04/18 18:14	
1,1-Dichloroethane	99	13	2.5	09/04/18 18:14	
1,2-Dichloroethane	13 U	13	2.5	09/04/18 18:14	
1,1-Dichloroethene	13 U	13	2.5	09/04/18 18:14	
cis-1,2-Dichloroethene	13 U	13	2.5	09/04/18 18:14	
trans-1,2-Dichloroethene	13 U	13	2.5	09/04/18 18:14	
1,2-Dichloropropane	13 U	13	2.5	09/04/18 18:14	
cis-1,3-Dichloropropene	13 U	13	2.5	09/04/18 18:14	
trans-1,3-Dichloropropene	13 U	13	2.5	09/04/18 18:14	
Ethylbenzene	13 U	13	2.5	09/04/18 18:14	
2-Hexanone	25 U	25	2.5	09/04/18 18:14	
Methylene Chloride	13 U	13	2.5	09/04/18 18:14	
4-Methyl-2-pentanone (MIBK)	25 U	25	2.5	09/04/18 18:14	
Styrene	13 U	13	2.5	09/04/18 18:14	
1,1,2,2-Tetrachloroethane	13 U	13	2.5	09/04/18 18:14	
Tetrachloroethene	13 U	13	2.5	09/04/18 18:14	
Toluene	13 U	13	2.5	09/04/18 18:14	
1,1,1-Trichloroethane	13 U	13	2.5	09/04/18 18:14	
1,1,2-Trichloroethane	13 U	13	2.5	09/04/18 18:14	
Trichloroethene	13 U	13	2.5	09/04/18 18:14	
Vinyl Chloride	13 U	13	2.5	09/04/18 18:14	
o-Xylene	13 U	13	2.5	09/04/18 18:14	
m,p-Xylenes	13 U	13	2.5	09/04/18 18:14	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 11:35
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	VE-15	Units: ug/L
Lab Code:	R1808244-004	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	09/04/18 18:14	
Toluene-d8	97	87 - 121	09/04/18 18:14	
Dibromofluoromethane	94	89 - 119	09/04/18 18:14	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 11:50
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	RW-4	Units: ug/L
Lab Code:	R1808244-005	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/01/18 04:15	
Benzene	5.0 U	5.0	1	09/01/18 04:15	
Bromodichloromethane	5.0 U	5.0	1	09/01/18 04:15	
Bromoform	5.0 U	5.0	1	09/01/18 04:15	
Bromomethane	5.0 U	5.0	1	09/01/18 04:15	
2-Butanone (MEK)	10 U	10	1	09/01/18 04:15	
Carbon Disulfide	10 U	10	1	09/01/18 04:15	
Carbon Tetrachloride	5.0 U	5.0	1	09/01/18 04:15	
Chlorobenzene	5.0 U	5.0	1	09/01/18 04:15	
Chloroethane	5.0 U	5.0	1	09/01/18 04:15	
Chloroform	5.0 U	5.0	1	09/01/18 04:15	
Chloromethane	5.0 U	5.0	1	09/01/18 04:15	
Dibromochloromethane	5.0 U	5.0	1	09/01/18 04:15	
1,1-Dichloroethane	19	5.0	1	09/01/18 04:15	
1,2-Dichloroethane	5.0 U	5.0	1	09/01/18 04:15	
1,1-Dichloroethene	5.0 U	5.0	1	09/01/18 04:15	
cis-1,2-Dichloroethene	15	5.0	1	09/01/18 04:15	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/01/18 04:15	
1,2-Dichloropropane	5.0 U	5.0	1	09/01/18 04:15	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 04:15	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 04:15	
Ethylbenzene	5.0 U	5.0	1	09/01/18 04:15	
2-Hexanone	10 U	10	1	09/01/18 04:15	
Methylene Chloride	13	5.0	1	09/01/18 04:15	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/01/18 04:15	
Styrene	5.0 U	5.0	1	09/01/18 04:15	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/01/18 04:15	
Tetrachloroethene	5.0 U	5.0	1	09/01/18 04:15	
Toluene	5.0 U	5.0	1	09/01/18 04:15	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/01/18 04:15	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/01/18 04:15	
Trichloroethene	13	5.0	1	09/01/18 04:15	
Vinyl Chloride	15	5.0	1	09/01/18 04:15	
o-Xylene	5.0 U	5.0	1	09/01/18 04:15	
m,p-Xylenes	5.0 U	5.0	1	09/01/18 04:15	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 11:50
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	RW-4	Units: ug/L
Lab Code:	R1808244-005	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	09/01/18 04:15	
Toluene-d8	98	87 - 121	09/01/18 04:15	
Dibromofluoromethane	97	89 - 119	09/01/18 04:15	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 10:25
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	MW-2	Units: ug/L
Lab Code:	R1808244-006	Basis: NA
	Volatile Organic Compound	ls by GC/MS

Analysis Method:8260CPrep Method:EPA 5030CAnalyte NameResuAcatoma1

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/01/18 04:38	
Benzene	5.0 U	5.0	1	09/01/18 04:38	
Bromodichloromethane	5.0 U	5.0	1	09/01/18 04:38	
Bromoform	5.0 U	5.0	1	09/01/18 04:38	
Bromomethane	5.0 U	5.0	1	09/01/18 04:38	
2-Butanone (MEK)	10 U	10	1	09/01/18 04:38	
Carbon Disulfide	10 U	10	1	09/01/18 04:38	
Carbon Tetrachloride	5.0 U	5.0	1	09/01/18 04:38	
Chlorobenzene	5.0 U	5.0	1	09/01/18 04:38	
Chloroethane	5.0 U	5.0	1	09/01/18 04:38	
Chloroform	5.0 U	5.0	1	09/01/18 04:38	
Chloromethane	5.0 U	5.0	1	09/01/18 04:38	
Dibromochloromethane	5.0 U	5.0	1	09/01/18 04:38	
1,1-Dichloroethane	5.0 U	5.0	1	09/01/18 04:38	
1,2-Dichloroethane	5.0 U	5.0	1	09/01/18 04:38	
1,1-Dichloroethene	5.0 U	5.0	1	09/01/18 04:38	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/01/18 04:38	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/01/18 04:38	
1,2-Dichloropropane	5.0 U	5.0	1	09/01/18 04:38	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 04:38	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 04:38	
Ethylbenzene	5.0 U	5.0	1	09/01/18 04:38	
2-Hexanone	10 U	10	1	09/01/18 04:38	
Methylene Chloride	5.0 U	5.0	1	09/01/18 04:38	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/01/18 04:38	
Styrene	5.0 U	5.0	1	09/01/18 04:38	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/01/18 04:38	
Tetrachloroethene	5.0 U	5.0	1	09/01/18 04:38	
Toluene	5.0 U	5.0	1	09/01/18 04:38	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/01/18 04:38	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/01/18 04:38	
Trichloroethene	5.0 U	5.0	1	09/01/18 04:38	
Vinyl Chloride	5.0 U	5.0	1	09/01/18 04:38	
o-Xylene	5.0 U	5.0	1	09/01/18 04:38	
m,p-Xylenes	5.0 U	5.0	1	09/01/18 04:38	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 10:25
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	MW-2	Units: ug/L
Lab Code:	R1808244-006	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	89	85 - 122	09/01/18 04:38	
Toluene-d8	98	87 - 121	09/01/18 04:38	
Dibromofluoromethane	97	89 - 119	09/01/18 04:38	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 10:55
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	MW-10	Units: ug/L
Lab Code:	R1808244-007	Basis: NA

Analysis Method:	8260C	
Prep Method:	EPA 5030C	

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	50 U	50	5	09/01/18 05:00	
Benzene	25 U	25	5	09/01/18 05:00	
Bromodichloromethane	25 U	25	5	09/01/18 05:00	
Bromoform	25 U	25	5	09/01/18 05:00	
Bromomethane	25 U	25	5	09/01/18 05:00	
2-Butanone (MEK)	50 U	50	5	09/01/18 05:00	
Carbon Disulfide	50 U	50	5	09/01/18 05:00	
Carbon Tetrachloride	25 U	25	5	09/01/18 05:00	
Chlorobenzene	25 U	25	5	09/01/18 05:00	
Chloroethane	25 U	25	5	09/01/18 05:00	
Chloroform	25 U	25	5	09/01/18 05:00	
Chloromethane	25 U	25	5	09/01/18 05:00	
Dibromochloromethane	25 U	25	5	09/01/18 05:00	
1,1-Dichloroethane	130	25	5	09/01/18 05:00	
1,2-Dichloroethane	25 U	25	5	09/01/18 05:00	
1,1-Dichloroethene	25 U	25	5	09/01/18 05:00	
cis-1,2-Dichloroethene	790	25	5	09/01/18 05:00	
trans-1,2-Dichloroethene	25 U	25	5	09/01/18 05:00	
1,2-Dichloropropane	25 U	25	5	09/01/18 05:00	
cis-1,3-Dichloropropene	25 U	25	5	09/01/18 05:00	
trans-1,3-Dichloropropene	25 U	25	5	09/01/18 05:00	
Ethylbenzene	25 U	25	5	09/01/18 05:00	
2-Hexanone	50 U	50	5	09/01/18 05:00	
Methylene Chloride	25 U	25	5	09/01/18 05:00	
4-Methyl-2-pentanone (MIBK)	50 U	50	5	09/01/18 05:00	
Styrene	25 U	25	5	09/01/18 05:00	
1,1,2,2-Tetrachloroethane	25 U	25	5	09/01/18 05:00	
Tetrachloroethene	25 U	25	5	09/01/18 05:00	
Toluene	25 U	25	5	09/01/18 05:00	
1,1,1-Trichloroethane	38	25	5	09/01/18 05:00	
1,1,2-Trichloroethane	25 U	25	5	09/01/18 05:00	
Trichloroethene	91	25	5	09/01/18 05:00	
Vinyl Chloride	210	25	5	09/01/18 05:00	
o-Xylene	25 U	25	5	09/01/18 05:00	
m,p-Xylenes	25 U	25	5	09/01/18 05:00	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 10:55
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	MW-10	Units: ug/L
Lab Code:	R1808244-007	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	89	85 - 122	09/01/18 05:00	
Toluene-d8	97	87 - 121	09/01/18 05:00	
Dibromofluoromethane	97	89 - 119	09/01/18 05:00	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 12:40
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	MW-13S	Units: ug/L
Lab Code:	R1808244-008	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	15	10	1	09/04/18 18:36	
Benzene	5.0 U	5.0	1	09/04/18 18:36	
Bromodichloromethane	5.0 U	5.0	1	09/04/18 18:36	
Bromoform	5.0 U	5.0	1	09/04/18 18:36	
Bromomethane	5.0 U	5.0	1	09/04/18 18:36	
2-Butanone (MEK)	10 U	10	1	09/04/18 18:36	
Carbon Disulfide	10 U	10	1	09/04/18 18:36	
Carbon Tetrachloride	5.0 U	5.0	1	09/04/18 18:36	
Chlorobenzene	5.0 U	5.0	1	09/04/18 18:36	
Chloroethane	5.0 U	5.0	1	09/04/18 18:36	
Chloroform	5.0 U	5.0	1	09/04/18 18:36	
Chloromethane	5.0 U	5.0	1	09/04/18 18:36	
Dibromochloromethane	5.0 U	5.0	1	09/04/18 18:36	
1,1-Dichloroethane	5.0 U	5.0	1	09/04/18 18:36	
1,2-Dichloroethane	5.0 U	5.0	1	09/04/18 18:36	
1,1-Dichloroethene	5.0 U	5.0	1	09/04/18 18:36	
cis-1,2-Dichloroethene	5.0	5.0	1	09/04/18 18:36	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/04/18 18:36	
1,2-Dichloropropane	5.0 U	5.0	1	09/04/18 18:36	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/04/18 18:36	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/04/18 18:36	
Ethylbenzene	5.0 U	5.0	1	09/04/18 18:36	
2-Hexanone	10 U	10	1	09/04/18 18:36	
Methylene Chloride	5.0 U	5.0	1	09/04/18 18:36	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/04/18 18:36	
Styrene	5.0 U	5.0	1	09/04/18 18:36	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/04/18 18:36	
Tetrachloroethene	5.0 U	5.0	1	09/04/18 18:36	
Toluene	5.0 U	5.0	1	09/04/18 18:36	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/04/18 18:36	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/04/18 18:36	
Trichloroethene	5.0 U	5.0	1	09/04/18 18:36	
Vinyl Chloride	5.0 U	5.0	1	09/04/18 18:36	
o-Xylene	5.0 U	5.0	1	09/04/18 18:36	
m,p-Xylenes	5.0 U	5.0	1	09/04/18 18:36	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 12:40
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	MW-13S	Units: ug/L
Lab Code:	R1808244-008	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	89	85 - 122	09/04/18 18:36	
Toluene-d8	96	87 - 121	09/04/18 18:36	
Dibromofluoromethane	92	89 - 119	09/04/18 18:36	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 13:45
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	MW-16	Units: ug/L
Lab Code:	R1808244-009	Basis: NA
	Volatile Organic Compound	ls by GC/MS

Analyte Name Result MRL Dil. **Date Analyzed** 10 U 10 1 09/01/18 05:45 Acetone 5.0 U 5.0 1 09/01/18 05:45 Benzene 5.0 U 5.0 1 09/01/18 05:45 Bromodichloromethane 5.0 U 5.0 1 09/01/18 05:45 Bromoform

Bromomethane	5.0 U	5.0	1	09/01/18 05:45	
2-Butanone (MEK)	10 U	10	1	09/01/18 05:45	
Carbon Disulfide	10 U	10	1	09/01/18 05:45	
Carbon Tetrachloride	5.0 U	5.0	1	09/01/18 05:45	
Chlorobenzene	5.0 U	5.0	1	09/01/18 05:45	
Chloroethane	5.0 U	5.0	1	09/01/18 05:45	
Chloroform	5.0 U	5.0	1	09/01/18 05:45	
Chloromethane	5.0 U	5.0	1	09/01/18 05:45	
Dibromochloromethane	5.0 U	5.0	1	09/01/18 05:45	
1,1-Dichloroethane	5.0 U	5.0	1	09/01/18 05:45	
1,2-Dichloroethane	5.0 U	5.0	1	09/01/18 05:45	
1,1-Dichloroethene	5.0 U	5.0	1	09/01/18 05:45	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/01/18 05:45	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/01/18 05:45	
1,2-Dichloropropane	5.0 U	5.0	1	09/01/18 05:45	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 05:45	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 05:45	
Ethylbenzene	5.0 U	5.0	1	09/01/18 05:45	
2-Hexanone	10 U	10	1	09/01/18 05:45	
Methylene Chloride	5.0 U	5.0	1	09/01/18 05:45	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/01/18 05:45	
Styrene	5.0 U	5.0	1	09/01/18 05:45	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/01/18 05:45	
Tetrachloroethene	5.0 U	5.0	1	09/01/18 05:45	
Toluene	5.0 U	5.0	1	09/01/18 05:45	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/01/18 05:45	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/01/18 05:45	
Trichloroethene	5.0 U	5.0	1	09/01/18 05:45	
Vinyl Chloride	5.0 U	5.0	1	09/01/18 05:45	
o-Xylene	5.0 U	5.0	1	09/01/18 05:45	
m,p-Xylenes	5.0 U	5.0	1	09/01/18 05:45	

Analysis Method:

Prep Method:

8260C

EPA 5030C

Q

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 13:45
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	MW-16	Units: ug/L
Lab Code:	R1808244-009	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	09/01/18 05:45	
Toluene-d8	99	87 - 121	09/01/18 05:45	
Dibromofluoromethane	97	89 - 119	09/01/18 05:45	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 13:00
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	MW-18S	Units: ug/L
Lab Code:	R1808244-010	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	16	10	1	09/04/18 18:59	
Benzene	5.0 U	5.0	1	09/04/18 18:59	
Bromodichloromethane	5.0 U	5.0	1	09/04/18 18:59	
Bromoform	5.0 U	5.0	1	09/04/18 18:59	
Bromomethane	5.0 U	5.0	1	09/04/18 18:59	
2-Butanone (MEK)	10 U	10	1	09/04/18 18:59	
Carbon Disulfide	10 U	10	1	09/04/18 18:59	
Carbon Tetrachloride	5.0 U	5.0	1	09/04/18 18:59	
Chlorobenzene	5.0 U	5.0	1	09/04/18 18:59	
Chloroethane	5.0 U	5.0	1	09/04/18 18:59	
Chloroform	5.0 U	5.0	1	09/04/18 18:59	
Chloromethane	5.0 U	5.0	1	09/04/18 18:59	
Dibromochloromethane	5.0 U	5.0	1	09/04/18 18:59	
1,1-Dichloroethane	5.0 U	5.0	1	09/04/18 18:59	
1,2-Dichloroethane	5.0 U	5.0	1	09/04/18 18:59	
1,1-Dichloroethene	5.0 U	5.0	1	09/04/18 18:59	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/04/18 18:59	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/04/18 18:59	
1,2-Dichloropropane	5.0 U	5.0	1	09/04/18 18:59	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/04/18 18:59	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/04/18 18:59	
Ethylbenzene	5.0 U	5.0	1	09/04/18 18:59	
2-Hexanone	10 U	10	1	09/04/18 18:59	
Methylene Chloride	5.0 U	5.0	1	09/04/18 18:59	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/04/18 18:59	
Styrene	5.0 U	5.0	1	09/04/18 18:59	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/04/18 18:59	
Tetrachloroethene	5.0 U	5.0	1	09/04/18 18:59	
Toluene	5.0 U	5.0	1	09/04/18 18:59	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/04/18 18:59	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/04/18 18:59	
Trichloroethene	5.0 U	5.0	1	09/04/18 18:59	
Vinyl Chloride	5.0 U	5.0	1	09/04/18 18:59	
o-Xylene	5.0 U	5.0	1	09/04/18 18:59	
m,p-Xylenes	5.0 U	5.0	1	09/04/18 18:59	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 13:00
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	MW-18S	Units: ug/L
Lab Code:	R1808244-010	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	09/04/18 18:59	
Toluene-d8	96	87 - 121	09/04/18 18:59	
Dibromofluoromethane	92	89 - 119	09/04/18 18:59	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 13:25
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	MW-19	Units: ug/L
Lab Code:	R1808244-011	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	50 U	50	5	09/04/18 19:21	
Benzene	25 U	25	5	09/04/18 19:21	
Bromodichloromethane	25 U	25	5	09/04/18 19:21	
Bromoform	25 U	25	5	09/04/18 19:21	
Bromomethane	25 U	25	5	09/04/18 19:21	
2-Butanone (MEK)	50 U	50	5	09/04/18 19:21	
Carbon Disulfide	50 U	50	5	09/04/18 19:21	
Carbon Tetrachloride	25 U	25	5	09/04/18 19:21	
Chlorobenzene	25 U	25	5	09/04/18 19:21	
Chloroethane	25 U	25	5	09/04/18 19:21	
Chloroform	25 U	25	5	09/04/18 19:21	
Chloromethane	25 U	25	5	09/04/18 19:21	
Dibromochloromethane	25 U	25	5	09/04/18 19:21	
1,1-Dichloroethane	100 D	25	5	09/04/18 19:21	
1,2-Dichloroethane	25 U	25	5	09/04/18 19:21	
1,1-Dichloroethene	40 D	25	5	09/04/18 19:21	
cis-1,2-Dichloroethene	590 D	25	5	09/04/18 19:21	
trans-1,2-Dichloroethene	25 U	25	5	09/04/18 19:21	
1,2-Dichloropropane	25 U	25	5	09/04/18 19:21	
cis-1,3-Dichloropropene	25 U	25	5	09/04/18 19:21	
trans-1,3-Dichloropropene	25 U	25	5	09/04/18 19:21	
Ethylbenzene	25 U	25	5	09/04/18 19:21	
2-Hexanone	50 U	50	5	09/04/18 19:21	
Methylene Chloride	25 U	25	5	09/04/18 19:21	
4-Methyl-2-pentanone (MIBK)	50 U	50	5	09/04/18 19:21	
Styrene	25 U	25	5	09/04/18 19:21	
1,1,2,2-Tetrachloroethane	25 U	25	5	09/04/18 19:21	
Tetrachloroethene	25 U	25	5	09/04/18 19:21	
Toluene	25 U	25	5	09/04/18 19:21	
1,1,1-Trichloroethane	49 D	25	5	09/04/18 19:21	
1,1,2-Trichloroethane	25 U	25	5	09/04/18 19:21	
Trichloroethene	450 D	25	5	09/04/18 19:21	
Vinyl Chloride	40 D	25	5	09/04/18 19:21	
o-Xylene	25 U	25	5	09/04/18 19:21	
m,p-Xylenes	25 U	25	5	09/04/18 19:21	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 13:25
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	MW-19	Units: ug/L
Lab Code:	R1808244-011	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	88	85 - 122	09/04/18 19:21	
Toluene-d8	95	87 - 121	09/04/18 19:21	
Dibromofluoromethane	95	89 - 119	09/04/18 19:21	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 10:05
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	MW-24S	Units: ug/L
Lab Code:	R1808244-012	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/01/18 06:52	
Benzene	5.0 U	5.0	1	09/01/18 06:52	
Bromodichloromethane	5.0 U	5.0	1	09/01/18 06:52	
Bromoform	5.0 U	5.0	1	09/01/18 06:52	
Bromomethane	5.0 U	5.0	1	09/01/18 06:52	
2-Butanone (MEK)	10 U	10	1	09/01/18 06:52	
Carbon Disulfide	10 U	10	1	09/01/18 06:52	
Carbon Tetrachloride	5.0 U	5.0	1	09/01/18 06:52	
Chlorobenzene	5.0 U	5.0	1	09/01/18 06:52	
Chloroethane	5.0 U	5.0	1	09/01/18 06:52	
Chloroform	5.0 U	5.0	1	09/01/18 06:52	
Chloromethane	5.0 U	5.0	1	09/01/18 06:52	
Dibromochloromethane	5.0 U	5.0	1	09/01/18 06:52	
1,1-Dichloroethane	5.0 U	5.0	1	09/01/18 06:52	
1,2-Dichloroethane	5.0 U	5.0	1	09/01/18 06:52	
1,1-Dichloroethene	5.0 U	5.0	1	09/01/18 06:52	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/01/18 06:52	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/01/18 06:52	
1,2-Dichloropropane	5.0 U	5.0	1	09/01/18 06:52	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 06:52	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 06:52	
Ethylbenzene	5.0 U	5.0	1	09/01/18 06:52	
2-Hexanone	10 U	10	1	09/01/18 06:52	
Methylene Chloride	5.0 U	5.0	1	09/01/18 06:52	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/01/18 06:52	
Styrene	5.0 U	5.0	1	09/01/18 06:52	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/01/18 06:52	
Tetrachloroethene	5.0 U	5.0	1	09/01/18 06:52	
Toluene	5.0 U	5.0	1	09/01/18 06:52	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/01/18 06:52	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/01/18 06:52	
Trichloroethene	5.0 U	5.0	1	09/01/18 06:52	
Vinyl Chloride	5.0 U	5.0	1	09/01/18 06:52	
o-Xylene	5.0 U	5.0	1	09/01/18 06:52	
m,p-Xylenes	5.0 U	5.0	1	09/01/18 06:52	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 10:05
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	MW-24S	Units: ug/L
Lab Code:	R1808244-012	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	09/01/18 06:52	
Toluene-d8	98	87 - 121	09/01/18 06:52	
Dibromofluoromethane	96	89 - 119	09/01/18 06:52	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 14:15
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	SW-34	Units: ug/L
Lab Code:	R1808244-014	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/01/18 07:14	
Benzene	5.0 U	5.0	1	09/01/18 07:14	
Bromodichloromethane	5.0 U	5.0	1	09/01/18 07:14	
Bromoform	5.0 U	5.0	1	09/01/18 07:14	
Bromomethane	5.0 U	5.0	1	09/01/18 07:14	
2-Butanone (MEK)	10 U	10	1	09/01/18 07:14	
Carbon Disulfide	10 U	10	1	09/01/18 07:14	
Carbon Tetrachloride	5.0 U	5.0	1	09/01/18 07:14	
Chlorobenzene	5.0 U	5.0	1	09/01/18 07:14	
Chloroethane	5.0 U	5.0	1	09/01/18 07:14	
Chloroform	5.0 U	5.0	1	09/01/18 07:14	
Chloromethane	5.0 U	5.0	1	09/01/18 07:14	
Dibromochloromethane	5.0 U	5.0	1	09/01/18 07:14	
1,1-Dichloroethane	5.0 U	5.0	1	09/01/18 07:14	
1,2-Dichloroethane	5.0 U	5.0	1	09/01/18 07:14	
1,1-Dichloroethene	5.0 U	5.0	1	09/01/18 07:14	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/01/18 07:14	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/01/18 07:14	
1,2-Dichloropropane	5.0 U	5.0	1	09/01/18 07:14	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 07:14	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 07:14	
Ethylbenzene	5.0 U	5.0	1	09/01/18 07:14	
2-Hexanone	10 U	10	1	09/01/18 07:14	
Methylene Chloride	5.0 U	5.0	1	09/01/18 07:14	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/01/18 07:14	
Styrene	5.0 U	5.0	1	09/01/18 07:14	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/01/18 07:14	
Tetrachloroethene	5.0 U	5.0	1	09/01/18 07:14	
Toluene	5.0 U	5.0	1	09/01/18 07:14	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/01/18 07:14	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/01/18 07:14	
Trichloroethene	5.0 U	5.0	1	09/01/18 07:14	
Vinyl Chloride	5.0 U	5.0	1	09/01/18 07:14	
o-Xylene	5.0 U	5.0	1	09/01/18 07:14	
m,p-Xylenes	5.0 U	5.0	1	09/01/18 07:14	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 14:15
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	SW-34	Units: ug/L
Lab Code:	R1808244-014	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	89	85 - 122	09/01/18 07:14	
Toluene-d8	95	87 - 121	09/01/18 07:14	
Dibromofluoromethane	94	89 - 119	09/01/18 07:14	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 10:40
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	SW-35	Units: ug/L
Lab Code:	R1808244-015	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/01/18 07:37	
Benzene	5.0 U	5.0	1	09/01/18 07:37	
Bromodichloromethane	5.0 U	5.0	1	09/01/18 07:37	
Bromoform	5.0 U	5.0	1	09/01/18 07:37	
Bromomethane	5.0 U	5.0	1	09/01/18 07:37	
2-Butanone (MEK)	10 U	10	1	09/01/18 07:37	
Carbon Disulfide	10 U	10	1	09/01/18 07:37	
Carbon Tetrachloride	5.0 U	5.0	1	09/01/18 07:37	
Chlorobenzene	5.0 U	5.0	1	09/01/18 07:37	
Chloroethane	5.0 U	5.0	1	09/01/18 07:37	
Chloroform	5.0 U	5.0	1	09/01/18 07:37	
Chloromethane	5.0 U	5.0	1	09/01/18 07:37	
Dibromochloromethane	5.0 U	5.0	1	09/01/18 07:37	
1,1-Dichloroethane	5.5	5.0	1	09/01/18 07:37	
1,2-Dichloroethane	5.0 U	5.0	1	09/01/18 07:37	
1,1-Dichloroethene	5.0 U	5.0	1	09/01/18 07:37	
cis-1,2-Dichloroethene	19	5.0	1	09/01/18 07:37	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/01/18 07:37	
1,2-Dichloropropane	5.0 U	5.0	1	09/01/18 07:37	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 07:37	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 07:37	
Ethylbenzene	5.0 U	5.0	1	09/01/18 07:37	
2-Hexanone	10 U	10	1	09/01/18 07:37	
Methylene Chloride	5.0 U	5.0	1	09/01/18 07:37	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/01/18 07:37	
Styrene	5.0 U	5.0	1	09/01/18 07:37	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/01/18 07:37	
Tetrachloroethene	5.0 U	5.0	1	09/01/18 07:37	
Toluene	5.0 U	5.0	1	09/01/18 07:37	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/01/18 07:37	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/01/18 07:37	
Trichloroethene	5.0 U	5.0	1	09/01/18 07:37	
Vinyl Chloride	5.0 U	5.0	1	09/01/18 07:37	
o-Xylene	5.0 U	5.0	1	09/01/18 07:37	
m,p-Xylenes	5.0 U	5.0	1	09/01/18 07:37	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 10:40
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	SW-35	Units: ug/L
Lab Code:	R1808244-015	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	89	85 - 122	09/01/18 07:37	
Toluene-d8	96	87 - 121	09/01/18 07:37	
Dibromofluoromethane	96	89 - 119	09/01/18 07:37	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 10:40
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	SW-35 DUP	Units: ug/L
Lab Code:	R1808244-016	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/01/18 07:59	
Benzene	5.0 U	5.0	1	09/01/18 07:59	
Bromodichloromethane	5.0 U	5.0	1	09/01/18 07:59	
Bromoform	5.0 U	5.0	1	09/01/18 07:59	
Bromomethane	5.0 U	5.0	1	09/01/18 07:59	
2-Butanone (MEK)	10 U	10	1	09/01/18 07:59	
Carbon Disulfide	10 U	10	1	09/01/18 07:59	
Carbon Tetrachloride	5.0 U	5.0	1	09/01/18 07:59	
Chlorobenzene	5.0 U	5.0	1	09/01/18 07:59	
Chloroethane	5.0 U	5.0	1	09/01/18 07:59	
Chloroform	5.0 U	5.0	1	09/01/18 07:59	
Chloromethane	5.0 U	5.0	1	09/01/18 07:59	
Dibromochloromethane	5.0 U	5.0	1	09/01/18 07:59	
1,1-Dichloroethane	5.5	5.0	1	09/01/18 07:59	
1,2-Dichloroethane	5.0 U	5.0	1	09/01/18 07:59	
1,1-Dichloroethene	5.0 U	5.0	1	09/01/18 07:59	
cis-1,2-Dichloroethene	19	5.0	1	09/01/18 07:59	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/01/18 07:59	
1,2-Dichloropropane	5.0 U	5.0	1	09/01/18 07:59	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 07:59	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 07:59	
Ethylbenzene	5.0 U	5.0	1	09/01/18 07:59	
2-Hexanone	10 U	10	1	09/01/18 07:59	
Methylene Chloride	5.0 U	5.0	1	09/01/18 07:59	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/01/18 07:59	
Styrene	5.0 U	5.0	1	09/01/18 07:59	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/01/18 07:59	
Tetrachloroethene	5.0 U	5.0	1	09/01/18 07:59	
Toluene	5.0 U	5.0	1	09/01/18 07:59	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/01/18 07:59	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/01/18 07:59	
Trichloroethene	5.0 U	5.0	1	09/01/18 07:59	
Vinyl Chloride	5.0 U	5.0	1	09/01/18 07:59	
o-Xylene	5.0 U	5.0	1	09/01/18 07:59	
m,p-Xylenes	5.0 U	5.0	1	09/01/18 07:59	
Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 10:40
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	SW-35 DUP	Units: ug/L
Lab Code:	R1808244-016	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	89	85 - 122	09/01/18 07:59	
Toluene-d8	97	87 - 121	09/01/18 07:59	
Dibromofluoromethane	95	89 - 119	09/01/18 07:59	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 07:00
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	Trip Blank	Units: ug/L
Lab Code:	R1808244-018	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/01/18 02:23	
Benzene	5.0 U	5.0	1	09/01/18 02:23	
Bromodichloromethane	5.0 U	5.0	1	09/01/18 02:23	
Bromoform	5.0 U	5.0	1	09/01/18 02:23	
Bromomethane	5.0 U	5.0	1	09/01/18 02:23	
2-Butanone (MEK)	10 U	10	1	09/01/18 02:23	
Carbon Disulfide	10 U	10	1	09/01/18 02:23	
Carbon Tetrachloride	5.0 U	5.0	1	09/01/18 02:23	
Chlorobenzene	5.0 U	5.0	1	09/01/18 02:23	
Chloroethane	5.0 U	5.0	1	09/01/18 02:23	
Chloroform	5.0 U	5.0	1	09/01/18 02:23	
Chloromethane	5.0 U	5.0	1	09/01/18 02:23	
Dibromochloromethane	5.0 U	5.0	1	09/01/18 02:23	
1,1-Dichloroethane	5.0 U	5.0	1	09/01/18 02:23	
1,2-Dichloroethane	5.0 U	5.0	1	09/01/18 02:23	
1,1-Dichloroethene	5.0 U	5.0	1	09/01/18 02:23	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/01/18 02:23	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/01/18 02:23	
1,2-Dichloropropane	5.0 U	5.0	1	09/01/18 02:23	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 02:23	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 02:23	
Ethylbenzene	5.0 U	5.0	1	09/01/18 02:23	
2-Hexanone	10 U	10	1	09/01/18 02:23	
Methylene Chloride	5.0 U	5.0	1	09/01/18 02:23	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/01/18 02:23	
Styrene	5.0 U	5.0	1	09/01/18 02:23	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/01/18 02:23	
Tetrachloroethene	5.0 U	5.0	1	09/01/18 02:23	
Toluene	5.0 U	5.0	1	09/01/18 02:23	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/01/18 02:23	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/01/18 02:23	
Trichloroethene	5.0 U	5.0	1	09/01/18 02:23	
Vinyl Chloride	5.0 U	5.0	1	09/01/18 02:23	
o-Xylene	5.0 U	5.0	1	09/01/18 02:23	
m,p-Xylenes	5.0 U	5.0	1	09/01/18 02:23	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: 08/28/18 07:00
Sample Matrix:	Water	Date Received: 08/29/18 09:00
Sample Name:	Trip Blank	Units: ug/L
Lab Code:	R1808244-018	Basis: NA

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	09/01/18 02:23	
Toluene-d8	97	87 - 121	09/01/18 02:23	
Dibromofluoromethane	96	89 - 119	09/01/18 02:23	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

> RIGHT SOLUTIONS | RIGHT PARTNER 68 of 85

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client:	Xerox Corporation USA
Project:	Bldg 801 Annual Wells 2018
Sample Matrix:	Water

SURROGATE RECOVERY SUMMARY

Service Request: R1808244

Analysis Method:	8260C
Extraction Method:	EPA 5030C

		4-Bromofluorobenzene	Toluene-d8	Dibromofluoromethane
Sample Name	Lab Code	85-122	87-121	89-119
VE-6	R1808244-001	91	99	98
VE-10	R1808244-002	92	99	99
VE-12	R1808244-003	87	95	92
VE-15	R1808244-004	91	97	94
RW-4	R1808244-005	93	98	97
MW-2	R1808244-006	89	98	97
MW-10	R1808244-007	89	97	97
MW-13S	R1808244-008	89	96	92
MW-16	R1808244-009	91	99	97
MW-18S	R1808244-010	90	96	92
MW-19	R1808244-011	88	95	95
MW-24S	R1808244-012	92	98	96
SW-34	R1808244-014	89	95	94
SW-35	R1808244-015	89	96	96
SW-35 DUP	R1808244-016	89	97	95
Trip Blank	R1808244-018	90	97	96
Method Blank	RQ1809256-04	91	98	96
Method Blank	RQ1809279-04	89	96	95
Lab Control Sample	RQ1809256-03	96	99	101
Lab Control Sample	RQ1809279-03	95	98	100
MW-19 MS	RQ1809279-05	95	98	99
MW-19 DMS	RQ1809279-06	97	99	101

QA/QC Report

Client:	Xerox Co	rporation USA	A				Service	Request:	R180	8244	
Project:	Bldg 801	Annual Wells	2018				Date Co	llected:	08/28	/18	
Samule Matrix: Water							Date Re	ceived	08/29	/18	
Sample Matrix. Water							Date Ac	- Landa da	00/4/19		
							Date An	alyzed:	09/4/1	18	
							Date Ex	tracted:	NA		
			Dup	licate Matri	x Spike S	ummarv					
			Volatile	Organic Co	mpounds	s by GC/M	IS				
C I N	NOV 10			organic of		, ., .		T T •4	/T		
Sample Name:	MW-19							Units:	ug/L		
Lab Code:	R1808244	I-011						Basis:	NA		
Analysis Method:	8260C										
Prep Method:	EPA 5030)C									
-								a "			
			M	atrix Spike		Dup	licate Matrix	x Spike			
			RÇ	01809279-05		-	RQ1809279-	06			
		Sample		Spike			Spike		% Rec		RPD
Analyte Name		Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Acetone		50 U	246	250	98	260	250	104	35-183	6	30
Benzene		25 U	259	250	104	273	250	109	76-129	5	30
Bromodichlorometha	ine	25 U	247	250	99	273	250	109	78-133	10	30
Bromotorm		25 U	264	250	106	293	250	117	58-133	10	30
Bromometnane		25 U	250	250	42	265	250	48	10-184	13	30
2-Butanone (MEK)		50 U	250	250	100	265	250	106	61-13/ 50 140	0	30
Carbon Disullide		50 U 25 U	204	250	82 106	244	250	98 114	59-140 65 125	18	30 20
Caldon Tetrachionue	5	25 U 25 U	204	250	001	260	250	105	76 125	0 7	30
Chloroothana		25 U 25 U	199	250	90 75	205	250	70	70-125 48 146	5	30
Chloroform		25 U	242	250	97	260	250	104	75 130	7	30
Chloromethane		25 U	272	250	92	200	250	96	55-160	5	30
Dibromochlorometh	ne	25 U	251	250	100	277	250	111	72-128	10	30
1 1-Dichloroethane		100 D	340	250	96	365	250	106	74-132	7	30
1.2-Dichloroethane		25 U	257	250	103	275	250	110	68-130	, 7	30
1.1-Dichloroethene		40 D	293	250	101	308	250	107	71-118	5	30
cis-1.2-Dichloroether	ne	590 D	787	250	80	832	250	98	77-127	6	30
trans-1,2-Dichloroeth	nene	25 U	241	250	96	257	250	103	73-118	7	30
1,2-Dichloropropane		25 U	260	250	104	277	250	111	79-124	6	30
cis-1,3-Dichloroprop	ene	25 U	236	250	94	262	250	105	52-134	10	30
trans-1,3-Dichloropro	opene	25 U	228	250	91	251	250	100	71-133	10	30
Ethylbenzene		25 U	259	250	104	273	250	109	72-134	5	30
2-Hexanone		50 U	281	250	112	304	250	122	56-132	8	30
Methylene Chloride		25 U	224	250	89	239	250	96	73-122	7	30
4-Methyl-2-pentanor	e (MIBK)	50 U	283	250	113	311	250	125	60-141	9	30
Styrene		25 U	256	250	103	275	250	110	74-136	7	30
1,1,2,2-Tetrachloroet	hane	25 U	295	250	118	320	250	128 *	72-122	8	30
Tetrachloroethene		25 U	281	250	112	299	250	119	72-125	6	30
Toluene		25 U	255	250	102	271	250	108	79-119	6	30
1,1,1-Trichloroethan	e	49 D	276	250	91	302	250	101	74-127	9	30
1,1,2-Trichloroethan	e	25 U	259	250	103	275	250	110	82-121	6	30
Irichloroethene		450 D	684	250	94	728	250	111	/4-122	6	30
vinyl Chloride		40 D	275	250	94 102	296	250	103	74-159 70-122	7	30
0-Aylene		25 U	237 500	250	103	2/6	250	110	79-125 80-126	/	30 20
in,p-Ayienes		25 U	500	500	100	544	500	109	80-126	ð	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ1809256-04	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/01/18 00:32	
Benzene	5.0 U	5.0	1	09/01/18 00:32	
Bromodichloromethane	5.0 U	5.0	1	09/01/18 00:32	
Bromoform	5.0 U	5.0	1	09/01/18 00:32	
Bromomethane	5.0 U	5.0	1	09/01/18 00:32	
2-Butanone (MEK)	10 U	10	1	09/01/18 00:32	
Carbon Disulfide	10 U	10	1	09/01/18 00:32	
Carbon Tetrachloride	5.0 U	5.0	1	09/01/18 00:32	
Chlorobenzene	5.0 U	5.0	1	09/01/18 00:32	
Chloroethane	5.0 U	5.0	1	09/01/18 00:32	
Chloroform	5.0 U	5.0	1	09/01/18 00:32	
Chloromethane	5.0 U	5.0	1	09/01/18 00:32	
Dibromochloromethane	5.0 U	5.0	1	09/01/18 00:32	
1,1-Dichloroethane	5.0 U	5.0	1	09/01/18 00:32	
1,2-Dichloroethane	5.0 U	5.0	1	09/01/18 00:32	
1,1-Dichloroethene	5.0 U	5.0	1	09/01/18 00:32	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/01/18 00:32	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/01/18 00:32	
1,2-Dichloropropane	5.0 U	5.0	1	09/01/18 00:32	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 00:32	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/01/18 00:32	
Ethylbenzene	5.0 U	5.0	1	09/01/18 00:32	
2-Hexanone	10 U	10	1	09/01/18 00:32	
Methylene Chloride	5.0 U	5.0	1	09/01/18 00:32	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/01/18 00:32	
Styrene	5.0 U	5.0	1	09/01/18 00:32	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/01/18 00:32	
Tetrachloroethene	5.0 U	5.0	1	09/01/18 00:32	
Toluene	5.0 U	5.0	1	09/01/18 00:32	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/01/18 00:32	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/01/18 00:32	
Trichloroethene	5.0 U	5.0	1	09/01/18 00:32	
Vinyl Chloride	5.0 U	5.0	1	09/01/18 00:32	
o-Xylene	5.0 U	5.0	1	09/01/18 00:32	
m,p-Xylenes	5.0 U	5.0	1	09/01/18 00:32	

Analytical Report **Client:** Xerox Corporation USA Service Request: R1808244 **Project:** Bldg 801 Annual Wells 2018 Date Collected: NA Sample Matrix: Water Date Received: NA Method Blank Units: ug/L Sample Name: Basis: NA Lab Code: RQ1809256-04

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	09/01/18 00:32	
Toluene-d8	98	87 - 121	09/01/18 00:32	
Dibromofluoromethane	96	89 - 119	09/01/18 00:32	

Analytical Report

Client:	Xerox Corporation USA	Service Request: R1808244
Project:	Bldg 801 Annual Wells 2018	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: ug/L
Lab Code:	RQ1809279-04	Basis: NA

Analysis Method:	8260C		
Prep Method:	EPA 5030C		

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/04/18 12:27	
Benzene	5.0 U	5.0	1	09/04/18 12:27	
Bromodichloromethane	5.0 U	5.0	1	09/04/18 12:27	
Bromoform	5.0 U	5.0	1	09/04/18 12:27	
Bromomethane	5.0 U	5.0	1	09/04/18 12:27	
2-Butanone (MEK)	10 U	10	1	09/04/18 12:27	
Carbon Disulfide	10 U	10	1	09/04/18 12:27	
Carbon Tetrachloride	5.0 U	5.0	1	09/04/18 12:27	
Chlorobenzene	5.0 U	5.0	1	09/04/18 12:27	
Chloroethane	5.0 U	5.0	1	09/04/18 12:27	
Chloroform	5.0 U	5.0	1	09/04/18 12:27	
Chloromethane	5.0 U	5.0	1	09/04/18 12:27	
Dibromochloromethane	5.0 U	5.0	1	09/04/18 12:27	
1,1-Dichloroethane	5.0 U	5.0	1	09/04/18 12:27	
1,2-Dichloroethane	5.0 U	5.0	1	09/04/18 12:27	
1,1-Dichloroethene	5.0 U	5.0	1	09/04/18 12:27	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/04/18 12:27	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/04/18 12:27	
1,2-Dichloropropane	5.0 U	5.0	1	09/04/18 12:27	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/04/18 12:27	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/04/18 12:27	
Ethylbenzene	5.0 U	5.0	1	09/04/18 12:27	
2-Hexanone	10 U	10	1	09/04/18 12:27	
Methylene Chloride	5.0 U	5.0	1	09/04/18 12:27	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/04/18 12:27	
Styrene	5.0 U	5.0	1	09/04/18 12:27	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/04/18 12:27	
Tetrachloroethene	5.0 U	5.0	1	09/04/18 12:27	
Toluene	5.0 U	5.0	1	09/04/18 12:27	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/04/18 12:27	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/04/18 12:27	
Trichloroethene	5.0 U	5.0	1	09/04/18 12:27	
Vinyl Chloride	5.0 U	5.0	1	09/04/18 12:27	
o-Xylene	5.0 U	5.0	1	09/04/18 12:27	
m,p-Xylenes	5.0 U	5.0	1	09/04/18 12:27	

Analytical Report **Client:** Xerox Corporation USA Service Request: R1808244 **Project:** Bldg 801 Annual Wells 2018 Date Collected: NA Sample Matrix: Water Date Received: NA Units: ug/L Sample Name: Method Blank RQ1809279-04 Basis: NA Lab Code:

Analysis Method:	8260C
Prep Method:	EPA 5030C

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	89	85 - 122	09/04/18 12:27	
Toluene-d8	96	87 - 121	09/04/18 12:27	
Dibromofluoromethane	95	89 - 119	09/04/18 12:27	

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 Annual Wells 2018Sample Matrix:Water

Service Request: R1808244 Date Analyzed: 08/31/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1809256-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Acetone	8260C	15.7	20.0	78	40-161
Benzene	8260C	21.4	20.0	107	79-119
Bromodichloromethane	8260C	20.1	20.0	101	81-123
Bromoform	8260C	20.5	20.0	103	65-146
Bromomethane	8260C	12.0	20.0	60	42-166
2-Butanone (MEK)	8260C	16.0	20.0	80	61-137
Carbon Disulfide	8260C	17.8	20.0	89	66-128
Carbon Tetrachloride	8260C	22.5	20.0	112	70-127
Chlorobenzene	8260C	19.9	20.0	100	80-121
Chloroethane	8260C	15.8	20.0	79	62-131
Chloroform	8260C	20.2	20.0	101	79-120
Chloromethane	8260C	20.0	20.0	100	65-135
Dibromochloromethane	8260C	20.4	20.0	102	72-128
1,1-Dichloroethane	8260C	20.2	20.0	101	80-124
1,2-Dichloroethane	8260C	21.2	20.0	106	71-127
1,1-Dichloroethene	8260C	20.4	20.0	102	71-118
cis-1,2-Dichloroethene	8260C	19.3	20.0	97	80-121
trans-1,2-Dichloroethene	8260C	19.4	20.0	97	73-118
1,2-Dichloropropane	8260C	21.6	20.0	108	80-119
cis-1,3-Dichloropropene	8260C	19.0	20.0	95	77-122
trans-1,3-Dichloropropene	8260C	18.2	20.0	91	71-133
Ethylbenzene	8260C	20.3	20.0	102	76-120
2-Hexanone	8260C	17.8	20.0	89	63-124
Methylene Chloride	8260C	18.8	20.0	94	73-122
4-Methyl-2-pentanone (MIBK)	8260C	18.6	20.0	93	66-124
Styrene	8260C	20.3	20.0	102	80-124
1,1,2,2-Tetrachloroethane	8260C	21.8	20.0	109	78-126
Tetrachloroethene	8260C	21.2	20.0	106	72-125
Toluene	8260C	21.0	20.0	105	79-119
1,1,1-Trichloroethane	8260C	18.2	20.0	91	75-125
1,1,2-Trichloroethane	8260C	20.7	20.0	104	82-121
Trichloroethene	8260C	20.0	20.0	100	74-122
Vinyl Chloride	8260C	19.8	20.0	99	74-159
Printed 9/11/2018 11:00:28 AM			Supers	et Reference:18-000	00479048 rev 00

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 Annual Wells 2018Sample Matrix:Water

Service Request: R1808244 Date Analyzed: 08/31/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1809256-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
o-Xylene	8260C	20.8	20.0	104	79-123
m,p-Xylenes	8260C	40.5	40.0	101	80-126

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 Annual Wells 2018Sample Matrix:Water

Service Request: R1808244 **Date Analyzed:** 09/04/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1809279-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits		
Acetone	8260C	18.7	20.0	94	40-161		
Benzene	8260C	21.2	20.0	106	79-119		
Bromodichloromethane	8260C	20.6	20.0	103	81-123		
Bromoform	8260C	23.3	20.0	116	65-146		
Bromomethane	8260C	13.1	20.0	66	42-166		
2-Butanone (MEK)	8260C	18.8	20.0	94	61-137		
Carbon Disulfide	8260C	20.1	20.0	100	66-128		
Carbon Tetrachloride	8260C	23.2	20.0	116	70-127		
Chlorobenzene	8260C	20.3	20.0	101	80-121		
Chloroethane	8260C	15.2	20.0	76	62-131		
Chloroform	8260C	19.8	20.0	99	79-120		
Chloromethane	8260C	19.6	20.0	98	65-135		
Dibromochloromethane	8260C	21.9	20.0	109	72-128		
1,1-Dichloroethane	8260C	20.1	20.0	100	80-124		
1,2-Dichloroethane	8260C	21.4	20.0	107	71-127		
1,1-Dichloroethene	8260C	20.7	20.0	103	71-118		
cis-1,2-Dichloroethene	8260C	19.4	20.0	97	80-121		
trans-1,2-Dichloroethene	8260C	20.0	20.0	100	73-118		
1,2-Dichloropropane	8260C	20.6	20.0	103	80-119		
cis-1,3-Dichloropropene	8260C	20.0	20.0	100	77-122		
trans-1,3-Dichloropropene	8260C	19.6	20.0	98	71-133		
Ethylbenzene	8260C	20.3	20.0	101	76-120		
2-Hexanone	8260C	20.5	20.0	103	63-124		
Methylene Chloride	8260C	19.0	20.0	95	73-122		
4-Methyl-2-pentanone (MIBK)	8260C	21.6	20.0	108	66-124		
Styrene	8260C	20.1	20.0	100	80-124		
1,1,2,2-Tetrachloroethane	8260C	23.0	20.0	115	78-126		
Tetrachloroethene	8260C	21.3	20.0	107	72-125		
Toluene	8260C	20.9	20.0	104	79-119		
1,1,1-Trichloroethane	8260C	18.8	20.0	94	75-125		
1,1,2-Trichloroethane	8260C	20.4	20.0	102	82-121		
Trichloroethene	8260C	20.2	20.0	101	74-122		
Vinyl Chloride	8260C	19.6	20.0	98	74-159		
Printed 9/11/2018 11:00:28 AM			Superset Reference: 18-0000479048 rev 00				

QA/QC Report

Client:Xerox Corporation USAProject:Bldg 801 Annual Wells 2018Sample Matrix:Water

Service Request: R1808244 Date Analyzed: 09/04/18

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample RQ1809279-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
o-Xylene	8260C	20.3	20.0	101	79-123
m,p-Xylenes	8260C	40.2	40.0	101	80-126

QA/QC Report

Client: Project: Xerox Corporation USA Bldg 801 Annual Wells 2018
 Service Request:
 R1808244

 Date Analyzed:
 8/31/18

Continuing Calibration Verification Summary Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
File ID:	I:\ACQUDATA\MSVOA14\Data\083118\F0156.D\

Calibration Date:	6/8/18
Calibration ID:	RC1800065
Analysis Lot:	605034
Units:	μg/L

Analyte Name	Expected	Result	Average RF	CCV RF	%D	%Drift	Criteria	Curve Fit
Acetone	50.0	38.3	0.2856	0.2187	-23.4 *	NA	$\pm 20 \%$	Average RF
Benzene	50.0	48.8	1.274	1.243	-2.4	NA	$\pm 20 \%$	Average RF
Bromodichloromethane	50.0	48.8	0.4204	0.4101	-2.5	NA	$\pm 20 \%$	Average RF
Bromoform	50.0	49.0	NA	NA	NA	-2.1	$\pm 20 \%$	Quadratic
Bromomethane	50.0	30.2	NA	NA	NA	-39.5 *	$\pm 20 \%$	Quadratic
2-Butanone (MEK)	50.0	40.0	0.3940	0.3153	-20.0	NA	$\pm~20~\%$	Average RF
Carbon Disulfide	50.0	41.1	1.246	1.023	-17.9	NA	$\pm 20 \%$	Average RF
Carbon Tetrachloride	50.0	49.8	NA	NA	NA	-0.4	$\pm 20 \%$	Quadratic
Chlorobenzene	50.0	47.5	1.063	1.009	-5.1	NA	$\pm 20 \%$	Average RF
Chloroethane	50.0	41.3	0.4407	0.3637	-17.5	NA	$\pm 20 \%$	Average RF
Chloroform	50.0	46.0	0.9163	0.8438	-7.9	NA	$\pm 20 \%$	Average RF
Chloromethane	50.0	47.1	0.6609	0.6228	-5.8	NA	$\pm 20 \%$	Average RF
Dibromochloromethane	50.0	49.7	NA	NA	NA	-0.6	$\pm 20 \%$	Quadratic
1,1-Dichloroethane	50.0	45.7	0.9060	0.8276	-8.7	NA	$\pm 20 \%$	Average RF
1,2-Dichloroethane	50.0	49.6	0.5161	0.5119	-0.8	NA	$\pm 20 \%$	Average RF
1,1-Dichloroethene	50.0	46.4	0.4356	0.4038	-7.3	NA	$\pm 20 \%$	Average RF
cis-1,2-Dichloroethene	50.0	44.5	0.5851	0.5211	-10.9	NA	$\pm 20 \%$	Average RF
trans-1,2-Dichloroethene	50.0	44.9	0.4975	0.4469	-10.2	NA	$\pm 20 \%$	Average RF
1,2-Dichloropropane	50.0	50.4	0.3433	0.3461	0.8	NA	$\pm 20 \%$	Average RF
cis-1,3-Dichloropropene	50.0	46.9	0.5186	0.4859	-6.3	NA	$\pm 20 \%$	Average RF
trans-1,3-Dichloropropene	50.0	44.9	NA	NA	NA	-10.3	$\pm 20 \%$	Quadratic
Ethylbenzene	50.0	47.0	0.5491	0.5158	-6.1	NA	$\pm 20 \%$	Average RF
2-Hexanone	50.0	45.5	0.3544	0.3226	-9.0	NA	$\pm 20 \%$	Average RF
Methylene Chloride	50.0	44.1	0.5542	0.4889	-11.8	NA	$\pm 20 \%$	Average RF
4-Methyl-2-pentanone (MIBK)	50.0	47.3	0.4193	0.3966	-5.4	NA	$\pm 20 \%$	Average RF
Styrene	50.0	48.3	1.129	1.090	-3.4	NA	$\pm~20~\%$	Average RF
1,1,2,2-Tetrachloroethane	50.0	50.5	0.8906	0.8989	0.9	NA	$\pm 20 \%$	Average RF
Tetrachloroethene	50.0	48.4	0.3017	0.2917	-3.3	NA	$\pm 20 \%$	Average RF
Toluene	50.0	48.1	1.411	1.356	-3.9	NA	$\pm 20 \%$	Average RF
1,1,1-Trichloroethane	50.0	42.0	0.7773	0.6522	-16.1	NA	$\pm 20 \%$	Average RF
1,1,2-Trichloroethane	50.0	47.7	0.3338	0.3187	-4.5	NA	$\pm 20 \%$	Average RF
Trichloroethene	50.0	45.8	0.3707	0.3396	-8.4	NA	$\pm 20 \%$	Average RF
Vinyl Chloride	50.0	45.5	0.6360	0.5790	-9.0	NA	$\pm 20 \%$	Average RF
o-Xylene	50.0	48.3	0.6667	0.6445	-3.3	NA	$\pm 20 \%$	Average RF
m,p-Xylenes	100	93.9	0.6866	0.6450	-6.1	NA	$\pm 20 \%$	Average RF
4-Bromofluorobenzene	50.0	48.5	0.4954	0.4806	-3.0	NA	$\pm~20~\%$	Average RF
Toluene-d8	50.0	50.5	1.284	1.297	1.1	NA	$\pm~20~\%$	Average RF
Dibromofluoromethane	50.0	50.1	0.3342	0.3348	0.2	NA	$\pm~20~\%$	Average RF

QA/QC Report

Client: Project: Xerox Corporation USA Bldg 801 Annual Wells 2018
 Service Request:
 R1808244

 Date Analyzed:
 9/ 4/18

Continuing Calibration Verification Summary Volatile Organic Compounds by GC/MS

Analytical Method:	8260C
File ID:	I:\ACQUDATA\MSVOA14\Data\090418\F0202.D\

Calibration Date:	6/8/18
Calibration ID:	RC1800065
Analysis Lot:	605173
Units:	μg/L

Analyte Name	Expected	Result	Average RF	CCV RF	%D	%Drift	Criteria	Curve Fit
Acetone	50.0	42.7	0.2856	0.2438	-14.6	NA	± 20 %	Average RF
Benzene	50.0	50.6	1.274	1.289	1.2	NA	$\pm 20 \%$	Average RF
Bromodichloromethane	50.0	52.6	0.4204	0.4423	5.2	NA	$\pm 20 \%$	Average RF
Bromoform	50.0	56.3	NA	NA	NA	12.5	$\pm 20 \%$	Quadratic
Bromomethane	50.0	31.7	NA	NA	NA	-36.6 *	$\pm 20 \%$	Quadratic
2-Butanone (MEK)	50.0	45.5	0.3940	0.3582	-9.1	NA	$\pm 20 \%$	Average RF
Carbon Disulfide	50.0	42.3	1.246	1.055	-15.3	NA	$\pm~20~\%$	Average RF
Carbon Tetrachloride	50.0	55.7	NA	NA	NA	11.5	$\pm 20 \%$	Quadratic
Chlorobenzene	50.0	49.8	1.063	1.058	-0.4	NA	$\pm~20~\%$	Average RF
Chloroethane	50.0	43.4	0.4407	0.3822	-13.3	NA	$\pm 20 \%$	Average RF
Chloroform	50.0	47.3	0.9163	0.8664	-5.5	NA	$\pm 20 \%$	Average RF
Chloromethane	50.0	48.5	0.6609	0.6411	-3.0	NA	$\pm 20 \%$	Average RF
Dibromochloromethane	50.0	54.1	NA	NA	NA	8.2	$\pm 20 \%$	Quadratic
1,1-Dichloroethane	50.0	47.4	0.9060	0.8593	-5.1	NA	$\pm 20 \%$	Average RF
1,2-Dichloroethane	50.0	50.9	0.5161	0.5254	1.8	NA	$\pm 20 \%$	Average RF
1,1-Dichloroethene	50.0	49.7	0.4356	0.4330	-0.6	NA	$\pm~20~\%$	Average RF
cis-1,2-Dichloroethene	50.0	45.4	0.5851	0.5316	-9.1	NA	$\pm 20 \%$	Average RF
trans-1,2-Dichloroethene	50.0	47.1	0.4975	0.4686	-5.8	NA	$\pm 20 \%$	Average RF
1,2-Dichloropropane	50.0	51.4	0.3433	0.3527	2.7	NA	$\pm 20 \%$	Average RF
cis-1,3-Dichloropropene	50.0	50.7	0.5186	0.5262	1.5	NA	$\pm 20 \%$	Average RF
trans-1,3-Dichloropropene	50.0	49.3	NA	NA	NA	-1.5	$\pm~20~\%$	Quadratic
Ethylbenzene	50.0	51.4	0.5491	0.5643	2.8	NA	$\pm 20 \%$	Average RF
2-Hexanone	50.0	52.6	0.3544	0.3730	5.2	NA	$\pm 20 \%$	Average RF
Methylene Chloride	50.0	44.5	0.5542	0.4931	-11.0	NA	$\pm 20 \%$	Average RF
4-Methyl-2-pentanone (MIBK)	50.0	52.5	0.4193	0.4405	5.1	NA	$\pm 20 \%$	Average RF
Styrene	50.0	51.7	1.129	1.168	3.5	NA	$\pm~20~\%$	Average RF
1,1,2,2-Tetrachloroethane	50.0	55.6	0.8906	0.9906	11.2	NA	$\pm 20 \%$	Average RF
Tetrachloroethene	50.0	54.5	0.3017	0.3288	9.0	NA	$\pm 20 \%$	Average RF
Toluene	50.0	50.7	1.411	1.430	1.4	NA	$\pm 20 \%$	Average RF
1,1,1-Trichloroethane	50.0	45.7	0.7773	0.7108	-8.6	NA	$\pm 20 \%$	Average RF
1,1,2-Trichloroethane	50.0	50.1	0.3338	0.3347	0.3	NA	$\pm 20 \%$	Average RF
Trichloroethene	50.0	46.8	0.3707	0.3467	-6.5	NA	$\pm 20 \%$	Average RF
Vinyl Chloride	50.0	49.0	0.6360	0.6233	-2.0	NA	$\pm 20 \%$	Average RF
o-Xylene	50.0	51.3	0.6667	0.6842	2.6	NA	$\pm 20 \%$	Average RF
m,p-Xylenes	100	101	0.6866	0.6940	1.1	NA	$\pm 20 \%$	Average RF
4-Bromofluorobenzene	50.0	48.1	0.4954	0.4767	-3.8	NA	$\pm~20~\%$	Average RF
Toluene-d8	50.0	49.0	1.284	1.258	-2.0	NA	$\pm~20~\%$	Average RF
Dibromofluoromethane	50.0	50.7	0.3342	0.3389	1.4	NA	$\pm~20~\%$	Average RF

QA/QC Report

Client: Project: Xerox Corporation USA Bldg 801 Annual Wells 2018

Service Request: R1808244 Date Analyzed: 8/31/18 23:25

Internal Standard Area and RT Summary Volatile Organic Compounds by GC/MS

File ID:	I:\ACQUDATA\MSVOA14\Data\083118\F0156.D\	Lab Code:	RQ1809256-02
Instrument ID:	R-MS-14	Analysis Lot:	605034
Analytical Method:	8260C	Signal ID:	1

	_	1,4-Dichlorobenzene-d4		1,4-Difluoroben	zene	Chlorobenzene-d5	
			RT	Area	<u>RT</u>	Area	<u>RT</u>
	Results ==>	256,199	11.73	513,369	5.94	459,689	9.58
	Upper Limit ==>	512,398	12.23	1,026,738	6.44	919,378	10.08
	Lower Limit ==>	128,100	11.23	256,685	5.44	229,845	9.08
	ICAL Result ==>	251,437	11.74	495,087	5.94	441,299	9.58
Associated Analyses							
Lab Control Sample	RQ1809256-03	251,760	11.73	515,998	5.94	461,260	9.58
Method Blank	RQ1809256-04	236,735	11.73	508,656	5.94	441,172	9.58
Trip Blank	R1808244-018	224,727	11.73	494,866	5.94	428,176	9.58
VE-6	R1808244-001	231,839	11.73	498,476	5.94	434,797	9.58
VE-10	R1808244-002	230,991	11.73	496,843	5.94	435,105	9.58
RW-4	R1808244-005	239,211	11.73	494,250	5.94	438,286	9.58
MW-2	R1808244-006	233,286	11.73	503,839	5.94	441,913	9.58
MW-10	R1808244-007	237,392	11.73	504,255	5.94	442,047	9.58
MW-16	R1808244-009	229,523	11.73	495,012	5.94	433,155	9.58
MW-24S	R1808244-012	233,262	11.73	497,390	5.94	439,036	9.58
SW-34	R1808244-014	234,111	11.73	499,362	5.94	438,769	9.58
SW-35	R1808244-015	235,524	11.73	493,655	5.94	428,915	9.58
SW-35 DUP	R1808244-016	229,330	11.73	493,361	5.94	427,172	9.58

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client: Project: Xerox Corporation USA Bldg 801 Annual Wells 2018

Internal Standard Area and RT Summary Volatile Organic Compounds by GC/MS

File ID:	I:\ACQUDATA\MSVOA14\Data\083118\F0156.D\
Instrument ID:	R-MS-14
Analytical Method:	8260C

	Pentafluorobenzene		zene
		Area	<u>RT</u>
	Results ==>	349,327	4.69
	Upper Limit ==>	698,654	5.19
	Lower Limit ==>	174,664	4.19
	ICAL Result ==>	313,028	4.69
Associated Analyses			
Lab Control Sample	RQ1809256-03	357,208	4.69
Method Blank	RQ1809256-04	340,814	4.69
Trip Blank	R1808244-018	332,700	4.69
VE-6	R1808244-001	336,364	4.69
VE-10	R1808244-002	339,333	4.69
RW-4	R1808244-005	339,659	4.69
MW-2	R1808244-006	343,331	4.69
MW-10	R1808244-007	344,232	4.69
MW-16	R1808244-009	338,260	4.69
MW-24S	R1808244-012	338,169	4.69
SW-34	R1808244-014	338,288	4.69
SW-35	R1808244-015	330,304	4.69
SW-35 DUP	R1808244-016	337,515	4.69

Service Request: R1808244 Date Analyzed: 8/31/18 23:25

 Lab Code:
 RQ1809256-02

 Analysis Lot:
 605034

 Signal ID:
 1

Results flagged with an asterisk (*) indicate values outside control criteria.

 $\overset{Form\,2B}{\textbf{83 of 85}}$

QA/QC Report

Client: Project: Xerox Corporation USA Bldg 801 Annual Wells 2018
 Service Request:
 R1808244

 Date Analyzed:
 9/4/18 10:42

Internal Standard Area and RT Summary Volatile Organic Compounds by GC/MS

File ID:	I:\ACQUDATA\MSVOA14\Data\090418\F0202.D\	Lab Code:	RQ1809279-02
Instrument ID:	R-MS-14	Analysis Lot:	605173
Analytical Method:	8260C	Signal ID:	1

		1,4-Dichlorobenzene-d4		1,4-Difluorobenzene		Chlorobenzene-d5	
		<u>Area</u>	<u>RT</u>	Area	<u>RT</u>	Area	<u>RT</u>
	Results ==>	265,630	11.73	526,488	5.94	464,803	9.58
	Upper Limit ==>	531,260	12.23	1,052,976	6.44	929,606	10.08
	Lower Limit ==>	132,815	11.23	263,244	5.44	232,402	9.08
	ICAL Result ==>	251,437	11.74	495,087	5.94	441,299	9.58
Associated Analyses							
Lab Control Sample	RQ1809279-03	257,219	11.74	529,049	5.94	469,858	9.58
Method Blank	RQ1809279-04	249,156	11.73	531,112	5.94	458,371	9.58
VE-10	R1808244-002	261,726	11.74	552,341	5.94	481,528	9.58
VE-12	R1808244-003	258,803	11.74	556,703	5.94	483,163	9.58
VE-15	R1808244-004	249,936	11.73	534,378	5.94	461,287	9.58
MW-13S	R1808244-008	253,669	11.74	537,598	5.94	464,178	9.58
MW-18S	R1808244-010	249,394	11.73	537,479	5.94	462,945	9.58
MW-19	R1808244-011	247,578	11.73	536,190	5.94	458,463	9.58
MW-19MS	RQ1809279-05	278,459	11.73	549,700	5.94	486,899	9.58
MW-19DMS	RQ1809279-06	274,038	11.73	540,332	5.94	480,254	9.58

Results flagged with an asterisk (*) indicate values outside control criteria.

QA/QC Report

Client: Project: Xerox Corporation USA Bldg 801 Annual Wells 2018

Internal Standard Area and RT Summary Volatile Organic Compounds by GC/MS

File ID:	I:\ACQUDATA\MSVOA14\Data\090418\F0202.D\
Instrument ID:	R-MS-14
Analytical Method:	8260C

		Pentafluorobenzene	
		Area	<u>RT</u>
	Results ==>	361,344	4.69
	Upper Limit ==>	722,688	5.19
	Lower Limit ==>	180,672	4.19
	ICAL Result ==>	313,028	4.69
Associated Analyses			
Lab Control Sample	RQ1809279-03	364,029	4.69
Method Blank	RQ1809279-04	358,521	4.69
VE-10	R1808244-002	375,122	4.69
VE-12	R1808244-003	377,116	4.69
VE-15	R1808244-004	364,919	4.69
MW-13S	R1808244-008	364,569	4.69
MW-18S	R1808244-010	359,856	4.69
MW-19	R1808244-011	360,577	4.69
MW-19MS	RQ1809279-05	376,045	4.69
MW-19DMS	RQ1809279-06	370,199	4.69

 Service Request:
 R1808244

 Date Analyzed:
 9/4/18 10:42

 Lab Code:
 RQ1809279-02

 Analysis Lot:
 605173

 Signal ID:
 1

Results flagged with an asterisk (*) indicate values outside control criteria.

 $\overset{Form\,2B}{\textbf{85 of 85}}$

APPENDIX C

Time vs. Concentration Graphs

Total VOCs - Downgradient Wells

Total VOCs - Source Area Wells

APPENDIX D

Correspondence of Site Improvements

Donnan, Craig
Caffoe, Todd (DEC)
Duffney, Eliott N; Ramsdell, Mark; Szucs, Janice
RE: Harris 1350 Jefferson Road minor soil removal projects
Wednesday, June 20, 2018 12:14:25 PM
image001.png image004.png

Hello Todd,

Thank you.

For the concrete pad there will be digging just enough to place a 6" crushed stone base.

Craig

From: Caffoe, Todd (DEC) [mailto:todd.caffoe@dec.ny.gov]
Sent: Wednesday, June 20, 2018 12:10 PM
To: Donnan, Craig (US Person) <cdonnan@harris.com>
Cc: Duffney, Eliott N <Eliott.Duffney@xerox.com>; Ramsdell, Mark <MRamsdell@haleyaldrich.com>;
Szucs, Janice <JSzucs@haleyaldrich.com>
Subject: [SUSPICIOUS] RE: Harris 1350 Jefferson Road minor soil removal projects

Hi Craig,

I appreciate the heads up on this. The drainage work near the roadside sign should be no problem. As far as the concrete pad construction goes, will there be significant excavations below the current asphalt base. If not, I don't really see this as a significant issue either.

-Todd

Todd M. Caffoe, P.E. Division of Environmental Remediation

New York State Department of Environmental Conservation 6274 East Avon-Lima Road, Avon, NY 14414 P: (585) 226-5350 <u>Todd.Caffoe@dec.ny.gov</u>

www.dec.ny.gov | f | E

From: Donnan, Craig [mailto:cdonnan@harris.com]
Sent: Tuesday, June 19, 2018 10:08 AM
To: Caffoe, Todd (DEC) <<u>todd.caffoe@dec.ny.gov</u>>
Cc: Duffney, Eliott N <<u>Eliott.Duffney@xerox.com</u>>; Ramsdell, Mark <<u>MRamsdell@haleyaldrich.com</u>>;
Szucs, Janice <<u>JSzucs@haleyaldrich.com</u>>
Subject: Harris 1350 Jefferson Road minor soil removal projects

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Hello,

We have two small projects that will require some soil removal.

One is near the front (south) Harris road sign and entrance. Area floods when it rains heavy. Dropping a small 2' x 2' catch basin in to collect water. This is outside any regulated area but figured I should report.

Second project is to saw cut and dig out asphalt by north smoking area to pour a 6' x 14' x 4" thick concrete pad. It will also involve laying 6" of crushed stone. See below. Top of the drawing is north. This I would assume would be considered adjacent to the SGMA.

If you have any questions or need further information please let me know.

Hope all is well.

Craig D. Donnan

Senior Manager, Environmental, Health and Safety COMMUNICATION SYSTEMS / HARRIS CORPORATION Office: +1-585-720-8725 / Mobile: +1-585-202-3821 harris.com / CDonnan@harris.com 1350 Jefferson Road / Rochester, New York 14623 / USA

Sanger, Jonathan

From: Sent: To: Subject: Duffney, Eliott N <Eliott.Duffney@xerox.com> Tuesday, July 31, 2018 2:57 PM Szucs, Janice Henrietta drainage swale cleaning

Janice,

This is an FYI. I spoke with Craig Donnan of Harris Corporation today and he stated that Harris is planning to dredge/remove the cattails from the drainages streams along the western and southwestern edges of the former Xerox-Henrietta property. This activity is similar to a similar prior stream cleaning activity they performed at the site a few years ago. Craig said that he has talked to Todd Caffoe of NYSDEC and got his blessing to do this work. All areas of the streams to be impacted by this proposed work were identified to Todd as being outside of the designated soil and groundwater management area (SGMA).

I thanked Craig for the call and asked that after the project was completed that he provide me a simple e-mail outlining what was done so that it could be included in the 2018 annual PRR report, if necessary.

Eliott N. Duffney Program Manager Xerox Corporation Environmental Remediation Operations (585) 422-5825

Sanger, Jonathan

From:	Scott, Jason <jscott25@harris.com></jscott25@harris.com>
Sent:	Monday, January 07, 2019 1:17 PM
То:	Sanger, Jonathan
Cc:	Szucs, Janice; 'Eliott.Duffney@xerox.com'; Scott, Jason; McLymond, Andy
Subject:	RE: 2018 Annual PRR Jefferson Road

Hi Jon,

See answers below in red. And no activities occurred in 2018 that warranted any of the below notifications.

Thanks,

Jason

Jason Scott, MS Manager, EHS COMMUNICATIONS SYSTEMS / HARRIS CORPORATION Office: +1-585-242-4612 / Mobile: +1-585-451-6734 harris.com / JSCOTT25@harris.com 1350 Jefferson Road / MC: JMED / Rochester, NY 14623 / USA

This message, including attachments, may contain confidential information, which is intended only for the person(s) named above. Any distribution, copying or disclosure is strictly prohibited. If you are not the intended recipient, please notify me immediately and permanently delete the original transmission, including any attachments. Thank you.

From: Sanger, Jonathan <JSanger@haleyaldrich.com>
Sent: Thursday, January 03, 2019 9:18 AM
To: Scott, Jason (jscott25) (US Person) <JSCOTT25@harris.com>; McLymond, Andy (US Person) <amclymon@harris.com>
Cc: Szucs, Janice <JSzucs@haleyaldrich.com>; 'Eliott.Duffney@xerox.com' <Eliott.Duffney@xerox.com>
Subject: 2018 Annual PRR Jefferson Road

Hi Jason,

I hope the New Year is going well for you so far.

We are in the process of preparing the annual report for the site. Below are the notifications that are required to be submitted by Harris to the NYSDEC. Can you please let us know of any activities that occurred during 2018 that warranted any of these notifications? Below is an excerpt from the SMP, and some additional questions. Please answer the questions as you are able to year-to-date.

- 60-day advance notice of any proposed changes in site use that are required by the Deed Restrictions. No
- 10-day advance notice of any proposed ground-intrusive activities within the SGMA. No
- Are there any planned changes in site use or ground-intrusive activities for the remainder of the year? No

- Notice within 48-hours of any damage or defect to the foundations structures that reduces or has the potential to reduce the effectiveness of other Engineering Controls, and likewise any action to be taken to mitigate the damage or defect. No
- Notice within 48-hours of any emergency, such as a fire, flood, or earthquake that reduces or has the potential to reduce the effectiveness of Engineering Controls in place at the site, including a summary of actions taken, or to be taken, and the potential impact to the environment and the public. No
- Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action shall be submitted to the NYSDEC within 45 days and shall describe and document actions taken to restore the effectiveness of the ECs. No

We also need answers to the following questions for the 2018 calendar year:

General

- Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment? No
- Has there been any change of use at the site? No
- Have any federal, state, and/or local permits (e.g. building, discharge) been issued for the property? If so, please provide a list. Nothing new or different that previously provided.
- Is the site currently undergoing development? No
- Is site use consistent with Commercial and/or Industrial Use? Yes

The following activities were planned for site improvement outside of the SGMA during 2018. Can you confirm that these took place and provide a brief description and the dates in which they occurred?

- Improvements to increase drainage in front entrance of site (South of the building) Drain was snaked mid-July
- Installation of small concrete pad in Northern section of the Building Poured in mid-October
- Removal of brush from the drainage streams on the western and southern edges of the property Occurred in July

SSDS

• Our notes indicate there were no system shutdowns in 2018. Can you confirm this? Yes, no shutdowns in 2018

Let us know if you have any questions.

Thanks,

Jon Sanger Environmental Specialist

Haley & Aldrich 200 Town Centre Drive | Suite 2 Rochester, NY 14623-4264

T: (585) 321.4230 C: (585) 645.9628

www.haleyaldrich.com