

2021 PERIODIC REVIEW REPORT

FORMER XEROX BUILDING 801 HENRIETTA, NEW YORK

by Haley & Aldrich of New York Rochester, New York

for Xerox Corporation Webster, New York

File No. 134972-004 February 2022

HALEY & ALDRICH OF NEW YORK 200 Town Centre Drive Suite 2 Rochester, NY 14623 585.359.9000

14 February 2022 File No. 134972-004

Xerox Corporation 800 Phillips Road, 0207-01Z Webster, New York 14580

Attention: Ms. Julia Ispentchian

Subject: 2021 Periodic Review Report

Former Xerox Building 801 Facility

Henrietta, New York Site No: 828069

Dear Ms. Ispentchian:

Haley & Aldrich of New York is pleased to provide Xerox Corporation with this annual Periodic Review Report (PRR) for the Former Xerox Building 801 Facility located at 1350 Jefferson Road in Henrietta, New York. This report summarizes activities performed and presents data collected during the period 1 January through 31 December 2021 and is intended to satisfy the PRR reporting requirements described in the NYSDEC-approved Revised Site Management Plan dated 30 July 2015.

This report is being submitted to the New York State Department of Environmental Conservation (NYSDEC) in electronic (Adobe Acrobat) format conforming to the electronic document submission requirements of the NYSDEC. An additional copy of Appendix A (Annual Institutional and Engineering Controls Certification Form) is also being submitted in hard copy format to the NYSDEC as requested.

Please do not hesitate to contact us should you have any questions regarding this report.

Sincerely yours,

HALEY & ALDRICH OF NEW YORK

Jonathan M. Sanger

Environmental Scientist

Janice D. Szucs, P.E.

Senior Project Manager

Denis M. Conley

Technical Expert

c: L3Harris Technologies; Attn: Jason Scott

 $\label{thm:combanacing} $$ \hallow \$

Haley & Aldrich of New York 200 Town Centre Drive Suite 2 Rochester, NY 14623 585.359.9000

SIGNATURE PAGE FOR

REPORT ON 2021 PERIODIC REVIEW REPORT FORMER XEROX BUILDING 801 HENRIETTA, NEW YORK

PREPARED FOR
XEROX CORPORATION
WEBSTER, NEW YORK

PREPARED BY:

Jonathan Sanger

Environmental Specialist Haley & Aldrich of New York

REVIEWED AND APPROVED BY:

Jan/ce Szucs

Senior Project Manager Haley & Aldrich of New York

Denis Conley Technical Expert

Haley & Aldrich of New York

Executive Summary

Haley & Aldrich of New York (Haley & Aldrich) has prepared this Periodic Review Report (PRR) for the 2021 reporting year for the Former Xerox Building 801 Facility located at 1350 Jefferson Road, Henrietta, New York (Site). This report presents updates to current Site conditions, confirms that previously investigated and remediated Site risks are effectively managed, and summarizes activities performed and data collected during the period 1 January through 31 December 2021. This report is intended to satisfy the requirements described in the NYSDEC-approved Revised Site Management Plan (SMP) dated 30 July 2015.

During the 2021 reporting period, the engineering controls/institutional controls (EC/ICs) onsite were in place and functioned effectively. The PRR Annual Institutional and Engineering Controls Certification Form is included in Appendix A. Please note that the form was edited (as required within form instructions) to state the correct PRR period (1 January to 31 December 2021) and correct site acreage (85.98 acres).

Based on the results of the most recent groundwater sampling event, impacted groundwater remains within the footprint of the defined Soil and Groundwater Management Area (SGMA). The groundwater analytical results indicate that the reductive dechlorination process is reducing residual contaminant levels and assisting with maintaining overall plume stability. Overall, the data collected during the most recent monitoring event is consistent with the past monitoring events conducted since active remediation was completed at the Site. In general, the source area well data showed an overall decrease in the concentrations of the Site compounds of concern, a stable condition, or a condition of decreasing parent compound and increasing daughter compound concentrations, which is expected under a biologically-mediated degradation process.

During the reporting period, there were no recorded shutdowns of the sub-slab depressurization (SSD) system with one exception. In March 2021, suction pit fan F-7 was observed to be failing and was subsequently replaced. In addition, in November three vacuum monitoring points were replaced because they were inaccessible as a result of renovations by L3Harris (no system shutdown occurred with this monitoring point replacement activity). The SSD system continues to operate effectively within the design zone of influence to mitigate the potential for impacted soil vapor intrusion to indoor air within the building.

A visual inspection of the SGMA by Haley & Aldrich and correspondence with the property owner L3Harris Technologies (formerly known as Harris Corporation and herein referred to as L3Harris) indicated that the protective cover and fencing remain in place and is effective in limiting exposure to the residual contamination within the SGMA. Under the property transfer agreement, current property owner L3Harris is responsible for notifying NYSDEC of any planned excavations within the SGMA and reporting any ground intrusive activities within the SGMA to Xerox, so that these activities can be included in PRR summary reports. Based on input received from L3Harris, there were no ground intrusive activities completed within the SGMA in 2021.

There were also no ground intrusive activities conducted outside of the SGMA in 2021.

Table of Contents

			Page
		Summary	iii
List	of Tab	oles	V
List	of Figu	ures	v
1.	Bac	kground	1
2.	Site	Activities	2
3.	Gro	undwater and Surface Water Monitoring	3
	3.1	SOURCE AREA WELLS – HRC-S INJECTION AREA	3
	3.2	DOWNGRADIENT WELLS	4
	3.3	SURFACE WATER	4
4.	Sub	-Slab Depressurization System	5
	4.1	SYSTEM OPERATION & MAINTENANCE SUMMARY	5
	4.2	SUB-SLAB VACUUM MONITORING	5
5.	SGN	AA Activities and Site Improvements	6
6.	Rec	ommendations and Future Activities	7

Tables

Figures

Appendix A – Annual Engineering and Institutional Controls Certification Form

Appendix B – Laboratory Analytical Data Report

Appendix C – Time vs. Concentration Graphs

Appendix D – Groundwater Elevation Trend Graphs

List of Tables

Table No.	Title
1	Total VOCs in Groundwater Since 2010
II	Site Water Level Data
III	Groundwater and Surface Water Monitoring Analytical Summary
IV	SSD System Floor Point Vacuum Readings
V	SSD Fan Vacuum Readings

List of Figures

Figure No.	Title
1	Project Locus
2	Site Plan
3	Sub-Slab Depressurization System Plan – As Built
4	Upper Aquifer Groundwater Contours 2021

1. Background

Haley & Aldrich of New York (Haley & Aldrich) has prepared this 2021 Periodic Review Report (PRR) for the Former Xerox Building 801 Facility located at 1350 Jefferson Road, Henrietta, New York, NYSDEC Site No. 828069 (see Figure 1). This report presents the current Site conditions, confirms that previously investigated and remediated Site risks are effectively managed, and summarizes activities performed and data collected during the reporting period from 1 January through 31 December 2021. This report is intended to satisfy the requirements described in the NYSDEC-approved Revised Site Management Plan (SMP) dated 30 July 2015.

Xerox implemented several remedial actions at this Site from the early 1990s through 2006, when active remediation was deemed complete by the NYSDEC. An overall summary of the remedial actions and site management activities performed at the Site and timeframes is as follows:

- 1. Groundwater pumping and treatment to manage plume migration (1990 to 1994). Stormwater drainage redirection around the source area (1995).
- 2. 2-PHASE Extraction to reduce soil and groundwater contaminant concentrations (1994 to 2001).
- 3. HRC-S (biological amendment) pilot test and larger-scale final corrective action injection to further reduce soil and groundwater residual impacts (2003 to 2006).
- 4. Installation and testing of a sub-slab depressurization (SSD) system (2006 to 2007).
- 5. Expansion of the SSD system following the sale and transfer of the property to Harris Corporation (now known as L3Harris Technologies and herein referred to as L3Harris) on 15 March 2010. Renovations were substantially completed in September 2011. L3Harris currently occupies the building and property, and the expanded SSD system continues to operate.

Corrective Actions for the Site were completed in August 2006 with the implementation of the final large-scale biological amendment addition to stimulate natural degradation processes. No further active remediation has been conducted, nor is contemplated based on the current site conditions.

Site activities are currently managed in accordance with the NYSDEC approved Site Management Plan (SMP) for management of residual contamination and includes:

- 1. Institutional and Engineering Controls,
- 2. monitoring,
- 3. operation and maintenance, and
- 4. periodic reporting.

SMP activities include annual groundwater monitoring; operation, maintenance, and monitoring of the sub-slab depressurization (SSD) system; management of soil cover and adherence to management protocols for the Soil and Groundwater Management Area (SGMA) of the Site; and annual certification that prescribed Site engineering and institutional controls (EC/ICs) remain in place.

2. Site Activities

The following activities were implemented during the reporting period as stipulated by the SMP:

- An annual groundwater monitoring event was performed by ALS Environmental of Rochester, New York on 31 August 2021.
- Vacuum testing was conducted on 28 September 2021 and 10 December 2021 by Haley &
 Aldrich to evaluate the SSD system performance. Note that three SSDS monitoring points were
 replaced just prior to the 10 December event due to damage from an L3Harris building interior
 renovation.

During the 2021 reporting period, the engineering and institutional controls onsite were in place and functioned effectively. There were no ground-intrusive activities that took place within the SGMA during the reporting period.

The Institutional and Engineering Controls Certification Form documenting that site management requirements are being met is included as Appendix A of this report and is also being submitted in hard copy format to NYSDEC. Please note that the form was edited (as required within form instructions) to state the correct PRR period (1 January to 31 December 2021) and site acreage (85.98 acres).

3. Groundwater and Surface Water Monitoring

On 31 August 2021, groundwater samples were collected from twelve (12) onsite wells and three (3) surface water locations, as required by the SMP (Figure 2). The monitoring well samples were collected using passive diffusion bags (PDBs), as approved by NYSDEC in 2017. Sampling and laboratory analyses were conducted by ALS Environmental of Rochester, New York. Laboratory analytical results are summarized in Tables I and III, and in the sections below. Table III provides historical data from 2006 to present to show trends since the completion of the final larger-scale HRC-S injection in 2006 and as confirmation that analytical results reflect a stable plume condition. Data collected prior to 2006 can be found in previously submitted semi-annual reports prepared for the Site. The laboratory data report is included in Appendix B. Graphical depictions of data trends are included as Appendix C.

Static groundwater levels were collected from the twelve (12) onsite wells on 31 August 2021. The elevation data is summarized in Table II and historical elevation data is presented in Appendix D for seasonal trends over time. Groundwater contours based on the elevation data are presented on Figure 4. Based on the 2021 groundwater elevation data, groundwater flows generally to the north-northeast, which is consistent with past monitoring results. The groundwater exhibited an overall increase in elevation in 2021 compared to the elevations found in 2020 but remain within the range of historical elevations observed in site wells.

3.1 SOURCE AREA WELLS – HRC-S INJECTION AREA

Five wells VE-6, VE-10, VE-12, VE-15, and RW-4 are located within the final larger-scale HRC-S Injection Area, and herein referred to as the residual source area. Refer to Figure 2 for the location of the wells. The analytical data is summarized in Tables I and III. Refer to the figures in Appendix C for a graphical depiction of the data trends with time.

Volatile organic compound (VOC) groundwater concentrations within the residual source area are consistent with historical data and indicate that the enhanced reductive dechlorination process stimulated by the injection of the HRC-S remains active and continuing in the residual source area. The results for wells, VE-10, VE-12 and VE-15 continue to show strong evidence of reductive dechlorination with overall decreasing concentrations of cis-1,2-dichloroethene (cis-1,2-DCE) and 1,1-dichloroethane (1,1-DCA) and corresponding higher concentrations of daughter products, vinyl chloride and chloroethane. Total concentrations of VOCs increased in wells VE-6 and VE-10 in 2021 while total concentrations of VOCs in VE-12 and VE-15 exhibited similar concentrations in 2021 compared to 2020. Total VOC concentrations at VE-6 increased in 2021 (23,210 ug/L) compared to results in 2020 (14,240 ug/L) but were lower than total VOC concentrations detected in samples collected at this well location before 2016. Total VOC concentrations at VE-10 exhibited an increase in 2021 (22,800 ug/L) compared to 2020 (5,010 ug/L) but were still lower than historic concentrations prior to 2016. Detections of daughter products, chloroethane and vinyl chloride were consistent with previous sampling events confirming that active reductive dechlorination of the parent compounds tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1-TCA) is occurring in this area of the Site.

Parent compounds, PCE, TCE, and 1,1,1-TCA, were not detected in any of the residual source area wells during the 2021 sampling event, with the exception of a low concentration of TCE at RW-4 (8.3 ug/L), which continued to exhibit a decreasing trend. Concentrations of parent compounds detected remain well below levels observed before active remediation was completed at the Site.

In general, the residual source area groundwater quality data showed either a significant overall decrease in total VOC concentrations, a stable condition, or a condition of decreasing parent compound and increasing daughter compound concentrations, which is expected under a biologically-mediated degradation process. The groundwater analytical results also indicate that the reductive dechlorination process is progressing to completion, gradually reducing residual contaminant concentrations, and assisting with maintaining overall groundwater plume stability.

3.2 DOWNGRADIENT WELLS

The downgradient well locations, MW-2, MW-10, MW-13S, MW-16, MW-18S, and MW-19 are located outside and primarily downgradient of the HRC-S injection area. Refer to Figure 2 for the location of these wells. The analytical results for the 2021 groundwater monitoring event are summarized in Tables I and III, and historical concentration trends are depicted in Appendix C.

Parent VOC concentrations (PCE, TCE, and 1,1,1-TCA) were generally consistent with the previous sampling event and historical trends. Concentrations for total VOCs detected in the 2021 sampling event were generally lower or consistent with historical fluctuation observed in previous sampling events dating back to 2006 when active remediation was completed at the Site.

Results for the groundwater samples collected at wells MW-13S located within the downgradient limits of the SGMA and at wells MW-16 and MW-18S, located just outside the downgradient limits of the SGMA, indicate that the impacted groundwater plume remains within the SGMA and is stable and/or decreasing in this area of the Site.

3.3 SURFACE WATER

VOCs were not detected in the surface water samples collected from the three surface water locations, SW-29, SW-34 and SW-35, which is consistent with historical trends. Refer to Figure 2 for surface water sample locations. Analytical results are summarized in Table III.

4. Sub-Slab Depressurization System

4.1 SYSTEM OPERATION & MAINTENANCE SUMMARY

The SSD system continues to operate at the Site. During the 2021 reporting period, there were no noted shutdowns of the system with one exception. F-7 was reported to be malfunctioning and was subsequently replaced by L3Harris on 16 March 2021. Sub-slab vacuum readings observed during the reporting period were consistent with historical levels. Three sub-slab vacuum monitoring points were replaced due to renovations in the facility completed by L3Harris.

4.2 SUB-SLAB VACUUM MONITORING

On 28 September 2021, sub-slab vacuum readings were collected from vacuum monitoring floor points using a calibrated handheld manometer, with the exception of T-11, T-17 and T-18. These locations were inaccessible due to renovations that took place in the facility during the reporting period. On 10 December 2021, the three locations were replaced with new monitoring points located in the vicinity of the original positions. A rotary hammer drill was used to drill below the slab and a permanent subslab vapor pin® with a cover was installed. See Figure 3 for the locations of the new monitoring points. Vacuum measurements from the floor monitoring points were greater than the SSD system design criteria of 0.002 inches of water column (in. WC) (see Table IV). These vacuum monitoring results indicate that the SSD system is operating effectively within the zone of influence.

In addition to vacuum monitoring at the floor points, vacuum readings were recorded at the permanently installed gauges at the suction points for each SSD system fan. Vacuum readings from the suction points indicated that the seven SSD system fans in operation during the monitoring event are providing sub-slab depressurization within the area where the SSD system is installed. Suction point vacuum readings are provided in Table V.

5. SGMA Activities and Site Improvements

A visual inspection of the SGMA was performed by Haley & Aldrich on 28 September and 10 December 2021 and confirmed that the protective cover and fencing remain in place and are effective in limiting exposure to residual Site contamination within the SGMA. There were no ground intrusive activities that took place within or outside of the SGMA during the reporting period.

There are currently no site improvement activities planned for 2022 at the Site.

6. Recommendations and Future Activities

Xerox will continue the following activities as stipulated in the SMP:

- Groundwater elevation monitoring and sampling for analysis of VOCs;
- Monitoring of the SSDS; and,
- Preparation and submittal of annual PRR.

TABLES

TABLE I TOTAL VOCS IN GROUNDWATER SINCE 2010

FORMER XEROX BUILDING 801 HENRIETTA, NEW YORK

WELL ID	Jun-10/Jul-10	Oct-11	Aug-12	Sep-13	Jul-14	Aug-15	Aug-16	3/29/2017 Resampling	Sep-17	Aug-18	Aug-19	Sep-20	Aug-21
RW-4	1,230	10,631	940	666	1,823	747	227	NS	76	75	59	51	42
MW-2	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND
MW-10	1,002	2,668	2,885	869	1,686	1,100	1,012	910	1,047	1,259	1,111	1,208	963
MW-13S	75.7	63.4	71	74	68.4	76.8	5.4	NS	6.6	20.0	ND	5.9	5.3
MW-16	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND
MW-18S	ND	ND	ND	ND	ND	ND	ND	NS	ND	16	ND	ND	ND
MW-19	1,410	518	1,371	997	303	606	7,953	973	393	1,269	728	761	880
MW-24S	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND
VE-6	80,970	46,000	39,300	44,400	49,500	25,900	16,530	NS	20,360	17,120	5,970	14,240	23,210
VE-10	43,800	62,000	76,600	62,900	44,100	44,600	88,000	NS	1,394	2,438	4,363	5,010	22,800
VE-12	97,000	173,800	101,700	69,400	97,800	68,400	40,900	NS	2,208	17,110	18,450	14,380	14,600
VE-15	43,800	8,207	1,592	1,248	4,909	830	530	NS	575	349	551	537	372

Page 1 of 1

TABLE II SITE WATER LEVEL DATA FORMER XEROX BUILDING 801 HENRIETTA, NEW YORK

Well ID	Defense a Flourtier	Depth to	Water
well ID	Reference Elevation	September 2020	August 2021
RW-4	498.84	5.06	2.97
MW-2	498.49	5.55	3.08
MW-10	498.45	5.40	2.53
MW-13S	498.35	5.41	3.59
MW-16	498.83	5.83	4.62
MW-18S	498.81	6.06	3.93
MW-19	498.53	5.56	3.57
MW-24S	503.44	7.36	3.90
VE-6	498.93	10.42	2.82
VE-10	500.04	7.26	3.58
VE-12	501.09	7.37	3.93
VE-15	499.73	5.12	3.53

Notes:

- 1. Elevations measured in feet above mean sea level.
- 2. Depth to water measured from the top of the well riser.
- 3. Water levels measured by ALS.

FORMER XEROX BUILDING 801

HENRIETTA, NEW YORK

Sample ID									VE	-12								
Analyte or Method	12/12/2006	6/14/2007	12/18/2007	6/12/2008	12/18/2008	6/22/2009	7/1/2010	10/11/2011	8/23/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	9/27/2017	8/28/2018	8/26/2019	09/28/2020	8/31/2021
Analyte of Method	12/12/2000	0/14/2007	12/18/2007	0/12/2008	12/10/2000	0/22/2009	7/1/2010	10/11/2011	8/23/2012	3/3/2013	7/30/2014	8/20/2013	6/31/2010	3/2//2017	6/26/2016	8/20/2019	03/28/2020	0/31/2021
VOCs 8260B (ug/L)																		
Acetone	ND (4000)	ND (4000)	ND (4000)	ND (8000)	ND (8000)	ND (4000)	ND (10000)	ND (10000)	ND (2500)	ND (2500) J	ND (2500)	ND (2500)	ND (2000)	ND (100)	ND (1000)	ND (500)	ND (500)	ND (500)
Benzene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
Bromodichloromethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
Bromoform	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
Bromomethane (Methyl Bromide)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
2-Butanone (Methyl Ethyl Ketone)	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	110	ND (500)	930	570	590
Carbon Disulfide	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	ND (100)	ND (1000)	ND (500)	ND (500)	ND (500)
Carbon Tetrachloride	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
Chlorobenzene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND(50)	ND (500)	ND (250)	ND (250)	ND (250)
Chloroethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	1,400	2,700	4,800	9,200	1,400	6,400	7,800	8,600	6600
Chloroform (Trichloromethane)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
Chloromethane (Methyl Chloride)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
Dibromochloromethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
1,1-Dichloroethane	14,000	9,600	11,000	7,200	18,000	8,800	11,000	12,000	17,000	16,000	16,000	15,000	4,900	330	960	1,700	850	1000
1,2-Dichloroethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
1,1-Dichloroethene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	1,700	ND (2500)	ND (2500)	ND (1300)	ND (1300)	1,400	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
cis-1,2-Dichloroethene	4,100	23,000	19,000	40,000	57,000	73,000 D	48,000	100,000	44,000	27,000	45,000	14,000	5,800	ND(50)	ND (500)	1,100	500	1100
trans-1,2-Dichloroethene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
1,2-Dichloropropane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
Cis-1,3-Dichloropropene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
trans-1,3-Dichloropropene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
Ethylbenzene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
2-Hexanone	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	ND (100)	ND (500)	ND (250)	ND (250)	ND (250)
Methylene Chloride	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	88	ND (500)	ND (250)	ND (250)	ND (250)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (4000)	ND (2000)	ND (5000)	ND (5000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2,000)	ND (100)	ND (1000)	ND (500)	ND (500)	ND (500)
Styrene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300) J	ND (1300) J	ND (1300) J	ND (1300)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
1,1,2,2-Tetrachloroethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
Tetrachloroethene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
Toluene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	650	680	660	410
1,1,1-Trichloroethane	ND (1000)	4,600	1,800	7,200	3,300	11,000	4,000	8,800	2,700	ND (1300)	4,700	1,600	ND (1,000)	ND (50)	ND (500)	440	ND (250)	ND (250)
1,1,2-Trichloroethane	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
Trichloroethene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
Vinyl Chloride	30,000	37,000	44,000 D	31000	42000	33,000	34,000	53,000	38,000	25,000	28,000	33,000	21,000	280	9,100	5,800	3,200	4900
o-Xylene	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)
m,p-Xylenes	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (2000)	ND (1000)	ND (2500)	ND (2500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1,000)	ND (50)	ND (500)	ND (250)	ND (250)	ND (250)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

- R: Rejected J: Estimated
- J-: Estimated and biased low
- 1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.
- 2. Some dates are not shown because samples were not collected during that sampling period.
- 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

GROUNDWATER & SURFACE WATER MONITORING ANALYTICAL SUMMARY

FORMER XEROX BUILDING 801

HENRIETTA, NEW YORK

Sample ID												VE-10											
Analyte or Method	11/23/2003	11/24/2003 DUPLICATE	12/2/2004	3/29/2005	6/23/2006	12/12/2006	6/13/2007	12/18/2007	6/12/2008	12/17/2008	6/22/2009	7/1/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	9/27/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021
VOCs 8260B (ug/L)																							
Acetone	ND (1000)	ND (2000)	ND (1000)	ND (1000)	ND (5000)	ND (5000)	ND (8000)	ND (5000)	ND (4000)	ND (1000)	ND (4000)	ND (5000)	ND (5000)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (5,000)	ND (50)	ND (50)	ND (50)	ND (200)	ND (1,000)
Benzene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
Bromodichloromethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
Bromoform	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
Bromomethane (Methyl Bromide)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
2-Butanone (Methyl Ethyl Ketone)	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (5,000)	ND (50)	ND (50)	ND (50)	ND (200)	ND (1,000)
Carbon Disulfide	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (5,000)	ND (50)	ND (50)	ND (50)	ND (200)	ND (1,000)
Carbon Tetrachloride	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
Chlorobenzene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
Chloroethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	1,300	2,100	1,800	2,000	2,600	2,900	2,100	4,500	5,000	670	1,500	1900 J-	1,100	1,100
Chloroform (Trichloromethane)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
Chloromethane (Methyl Chloride)	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
Dibromochloromethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
1,1-Dichloroethane	1,200	1,200	1,100	1,300	1,600	1,600	2,600	2,700	3,000	850	1,300	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	64	120	260 J-	180	1,000
1,2-Dichloroethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (1,000)
1,1-Dichloroethene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (1,000)
cis-1,2-Dichloroethene	17,000 E	17,000 D	17,000 D	18,000 D	42,000	40,000	79,000	17,000	18,000	4,500	36,000	14,000	23,000	48,000	28,000	22,000	6,100	50,000	ND (25)	79	72 J-	130	1,700
trans-1,2-Dichloroethene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	40	73	76 J-	76 J-	ND (500)
1,2-Dichloropropane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
Cis-1,3-Dichloropropene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
trans-1,3-Dichloropropene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
Ethylbenzene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
2-Hexanone	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (5,000)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
Methylene Chloride	450	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	33	56	55 J-	55 J-	ND (500)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (500)	ND (1000)	ND (500)	ND (500)	ND (2500)	ND (2500)	ND (4000)	ND (2500)	ND (2000)	ND (500)	ND (2000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (5,000)	ND (50)	ND (50)	ND (50)	ND (200)	ND (1,000)
Styrene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300) J	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
1,1,2,2-Tetrachloroethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
Tetrachloroethene	1,100	1,000	820	1,000	2,800	1,700	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
Toluene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
1,1,1-Trichloroethane	2,000	2,000	1,600	2,000	4,000	3,200	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
1,1,2-Trichloroethane	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
Trichloroethene	1,400	1,300	1,200	ND (250)	4,000	1,800	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
Vinyl Chloride	ND (250)	ND (500)	ND (250)	1,900	ND (1250)	ND (1250)	ND (2000)	24,000	33,000	41,000 D	51,000 D	28,000	37,000	26,000	32,000	20,000	34,000	33,000	620	610	2000 J-	3,600	19,000
o-Xylene	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)
m,p-Xylenes	ND (250)	ND (500)	ND (250)	ND (250)	ND (1250)	ND (1250)	ND (2000)	ND (1300)	ND (1000)	ND (250)	ND (1000)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (2,500)	ND (25)	ND (25)	ND (25)	ND (100)	ND (500)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

- R: Rejected J: Estimated
- J-: Estimated and biased low
- 1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.
- 2. Some dates are not shown because samples were not collected during that sampling period.
- 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

GROUNDWATER & SURFACE WATER MONITORING ANALYTICAL SUMMARY

FORMER XEROX BUILDING 801 HENRIETTA, NEW YORK

Sample I	D									VE-6									
Analysis or Mashad	6/23/2006	12/13/2006	6/13/2007	12/10/2007	6/11/2008	12/18/2008	6/23/2009	6/29/2010	10/12/2011	8/23/2012	0/5/2012	7/20/2014	8/26/2015	8/30/2016	9/26/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021
Analyte or Method	6/23/2006	12/13/2006	6/13/2007	12/19/2007	0/11/2008	12/18/2008	6/23/2009	6/28/2010	10/12/2011	8/23/2012	9/5/2013	7/30/2014	8/20/2015	8/30/2016	9/20/2017	8/28/2018	8/20/2019	9/28/2020	8/31/2021
VOCs 8260B (ug/L)	+																		
Acetone	ND (4000)	ND (2000)	ND (2000)	ND (400)	ND (400)	ND (1000)	ND (2000)	ND (2000)	ND (5000)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (1,000)	ND (1,000)	ND (1,000)	ND (250)	ND (1,000)	ND (1,000)
Benzene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
Bromodichloromethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
Bromoform	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
Bromomethane (Methyl Bromide)	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
2-Butanone (Methyl Ethyl Ketone)	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (1,000)	ND (1,000)	ND (1,000)	ND (250)	ND (1,000)	ND (1,000)
Carbon Disulfide	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (1,000)	ND (1,000)	ND (1,000)	ND (250)	ND (1,000)	ND (1,000)
Carbon Tetrachloride	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
Chlorobenzene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
Chloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	110	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	190 J-	ND (500)	ND (500)
Chloroform (Trichloromethane)	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
Chloromethane (Methyl Chloride)	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
Dibromochloromethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
1,1-Dichloroethane	1,100	900	1,800	120	1,800	300	980	2,400	1,700	1,900	2,100	2,200	1,200	720	980	680	300 J-	540	810
1,2-Dichloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
1,1-Dichloroethene	ND (1000)	530	820	ND (100)	ND (100)	ND (250)	ND (500)	600	1,300	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	510	520	130 J-	ND (500)	630
cis-1,2-Dichloroethene	22,000	18,000	32,000 D	2,700	8000 D	8,500	18,000	66,000 D	40,000 D	34,000	36,000	39,000	20,000	14,000	14,000	13,000	3900 J-	11,000	19,000
trans-1,2-Dichloroethene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	570	1,300	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
1,2-Dichloropropane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
Cis-1,3-Dichloropropene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
trans-1,3-Dichloropropene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
Ethylbenzene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
2-Hexanone	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500) J	ND (2500)	ND (2000)	ND (1,000)	ND (1,000)	ND (1,000)	ND (250)	ND (1,000)	ND (1,000)
Methylene Chloride	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (2000)	ND (1000)	ND (1000)	ND (200)	ND (200)	ND (500)	ND (1000)	ND (1000)	ND (2500)	ND (2500)	ND (2500)	ND (2500)	ND (2000)	ND (1,000)	ND (1,000)	ND (1,000)	ND (250)	ND (1,000)	ND (1,000)
Styrene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300) J	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
1,1,2,2-Tetrachloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
Tetrachloroethene	11,000	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
Toluene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
1,1,1-Trichloroethane	10,000	4,000	6,000	340	920	970	1,700	4,700	2,400	3,400	3,100	5,500	1,600	710	970	620	150 J-	ND (500)	810
1,1,2-Trichloroethane	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
Trichloroethene	6,800	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
Vinyl Chloride	ND (1000)	ND (500)	1,400	140	8000 D	ND (250)	4,700	6,700	1,900	ND (1300)	3,200	2,800	3,100	1,100	3,900	2,300	1300 J-	2,700	3,400
o-Xylene	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)
m,p-Xylenes	ND (1000)	ND (500)	ND (500)	ND (100)	ND (100)	ND (250)	ND (500)	ND (500)	ND (1300)	ND (1300)	ND (1300)	ND (1300)	ND (1000)	ND (500)	ND (500)	ND (500)	ND (130)	ND (500)	ND (500)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

- R: Rejected J: Estimated
- J-: Estimated and biased low
- 1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.
- 2. Some dates are not shown because samples were not collected during that sampling period.
- 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Samp	ole ID									VE-15									
Analyte or Method	6/23/2006	12/13/2006	6/13/2007	12/19/2007	6/11/2008	12/18/2008	6/23/2009	7/1/2010	10/11/2011	8/23/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	9/26/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021
VOCs 8260B (ug/L)																			
Acetone	ND (5000)	ND (2000)	ND (2000)	ND (2000)	ND (4000)	ND (1000)	ND (1000)	250	160	140	94 J	110	87	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
Benzene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
Bromodichloromethane	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
Bromoform	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
Bromomethane (Methyl Bromide)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
2-Butanone (Methyl Ethyl Ketone)	ND (2500)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	650	ND (500)	430	300	210	140	130	82	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)
Carbon Disulfide	ND (2500)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (500)	ND (500)	ND (50)	ND (50)	ND (100)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)				
Carbon Tetrachloride	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
Chlorobenzene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
Chloroethane	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	880	2,200	1,100	940	1,400	610	530	540	250	360 J-	370	280
Chloroform (Trichloromethane)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
Chloromethane (Methyl Chloride)	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
Dibromochloromethane	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
1,1-Dichloroethane	2,600	940	3,100	2,300	2,400	1,900	2,000	400	650	83	41	720	51	ND (25)	25	99	170 J-	150	92
1,2-Dichloroethane	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
1,1-Dichloroethene	ND (1250)	ND (500)	500	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
cis-1,2-Dichloroethene	38,000	12,000	43,000 D	3,400 D	29,000	19,000 D	9,100	130	1,600	ND (50)	ND (25)	1,200	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)
trans-1,2-Dichloroethene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	160	540	59	33	250	ND (25)	ND (25)	ND (25)	ND (13)	21 J-	17	ND (13)
1,2-Dichloropropane	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
Cis-1,3-Dichloropropene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
trans-1,3-Dichloropropene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
Ethylbenzene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
2-Hexanone	ND (2500)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (500)	ND (500)	150	50	ND (100)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)				
Methylene Chloride	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	46	140	ND (50)	-	99	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (2500)	ND (1000)	ND (1000)	ND (1000)	ND (2000)	ND (500)	ND (500)	ND (50)	ND (50)	ND (100)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)				
Styrene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25) J	ND (25) J	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)
1,1,2,2-Tetrachloroethane	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
Tetrachloroethene	4,100	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
Toluene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
1,1,1-Trichloroethane	7.500	880	600	ND (500)	ND (1000)	ND (250)	ND (250)	38	67	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
1,1,2-Trichloroethane	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
Trichloroethene	5,400	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
Vinyl Chloride	ND (1250)	620	2,900	3,100	5,400	8,700	15,000 D	340	2,500	ND (50)	ND (25)	1,000	ND (25)	ND (25)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)
o-Xylene	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				
m,p-Xylenes	ND (1250)	ND (500)	ND (500)	ND (500)	ND (1000)	ND (250)	ND (250)	ND (25)	ND (25)	ND (50)	ND (25)	ND (13)	ND (13)	ND (13)	ND (13)				

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

- R: Rejected J: Estimated
- J-: Estimated and biased low
- 1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.
- 2. Some dates are not shown because samples were not collected during that sampling period.
- 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Page 4 of 15

HENRIETTA, NEW YORK

Sample	ID									RW-4									
Analyte or Method	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/28/2010	10/11/2011	8/23/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	9/26/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021
VOCs 8260B (ug/L)																			
Acetone	ND (5000)	ND (2000)	NA	ND (500)	ND (2000)	ND (500)	ND (1000)	ND (100)	ND (100)	ND (50)	ND (50) J	ND (50)	ND (50)	ND (10)					
Benzene	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
Bromodichloromethane	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
Bromoform	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
Bromomethane (Methyl Bromide)	ND (1300)	ND (500)	ND (250)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
2-Butanone (Methyl Ethyl Ketone)	ND (2500)	ND (1000)	NA	ND (250)	ND (1000)	ND (250)	ND (500)	55	100	ND (50)	ND (50) J	ND (50)	ND (50)	11	ND (10)				
Carbon Disulfide	ND (2500)	ND (1000)	NA	ND (250)	ND (1000)	ND (250)	ND (500)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (10)					
Carbon Tetrachloride	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
Chlorobenzene	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
Chloroethane	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	36	760	40	43	85	37	7	ND (5)				
Chloroform (Trichloromethane)	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
Chloromethane (Methyl Chloride)	ND (1300)	ND (500)	ND (250)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
Dibromochloromethane	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
1,1-Dichloroethane	7,800	1,300	560	1,500	1,500	620	390	150	390	150	75	160	100	64	27	19	16 J-	19	16
1,2-Dichloroethane	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
1,1-Dichloroethene	3,100	ND (500)	52	330	ND (500)	ND (130)	ND (250)	ND (25)	ND (30)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
cis-1,2-Dichloroethene	41,000 D	14,000	3,500	24,000 D	20,000 D	3,200	690	910	5,000	620	470	1,300	500	92	ND (5)	15	14 J-	16	10
trans-1,2-Dichloroethene	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (170)	ND (25)	ND (25)	ND (25)	ND (25)	5	ND (5)				
1,2-Dichloropropane	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
Cis-1,3-Dichloropropene	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
trans-1,3-Dichloropropene	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
Ethylbenzene	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
2-Hexanone	ND (2500)	ND (1000)	NA	ND (250)	ND (1000)	ND (250)	ND (500)	ND (50)	ND (50)	ND (50)	ND (50) J	ND (50)	ND (50)	12	ND (10)				
Methylene Chloride	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (31)	ND (25)	ND (25)	ND (25)	ND (25)	7	12	13	13	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (2500)	ND (1000)	NA	ND (250)	ND (1000)	ND (250)	ND (500)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	ND (10)					
Styrene	ND (1300)	ND (500)	NA	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25) J	ND (25)	ND (25)	ND (5)					
1,1,2,2-Tetrachloroethane	ND (1300)	ND (500)	ND (500)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
Tetrachloroethene	1,500	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
Toluene	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
1,1,1-Trichloroethane	14,000	660	100	1,400	720	ND (130)	ND (250)	29	220	ND (25)	ND (25)	40	ND (25)	ND (5)					
1,1,2-Trichloroethane	ND (1300)	ND (500)	ND (100)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
Trichloroethene	5,800	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	8	16	13	7.9 J-	7	8.3
Vinyl Chloride	3,500	1,800	570	1,900	4,300 D	720	260	50	4,200	130	78	210	110	21	21	15	9.3 J-	9	8.1
o-Xylene	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					
m,p-Xylenes	ND (1300)	ND (500)	ND (50)	ND (130)	ND (500)	ND (130)	ND (250)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	ND (5)					

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

- R: Rejected J: Estimated
- J-: Estimated and biased low
- 1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.
- 2. Some dates are not shown because samples were not collected during that sampling period.
- 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Page 6 of 15

FORMER XEROX BUILDING 801

HENRIETTA, NEW YORK

Sample II	ol									MW-2									
Analysis or Mashad	6/16/2006	11 /20 /2006	6/12/2007	12/20/2007	6/11/2008	12/17/2009	6/24/2000	6/28/2010	10/11/2011	8/22/2012	0/5/2012	7/20/2014	8/26/2015	8/21/2016	0/27/2017	9/29/2019	8/26/2010	0/20/2020	8/31/2021
Analyte or Method	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/28/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/20/2015	8/31/2016	9/27/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021
VOCs 8260B (ug/L)																			
Acetone	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5.0)	ND (5.0)	ND (5)					
1,1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5.0)	ND (5.0)	ND (5)					
1,1,2,2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Toluene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,1-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vinyl Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

- R: Rejected J: Estimated
- J-: Estimated and biased low
- 1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.
- 2. Some dates are not shown because samples were not collected during that sampling period.
- 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

GROUNDWATER & SURFACE WATER MONITORING ANALYTICAL SUMMARY

FORMER XEROX BUILDING 801 HENRIETTA, NEW YORK

Sample ID	,										MW-10										
Analyte or Method	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/22/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/26/2015 DUPLICATE	8/31/2016	3/29/2017 RESAMPLE	9/26/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021
VOCs 8260B (ug/L)																					
Acetone	ND (100)	ND (200)	ND (100)	ND (100)	ND (200)	ND (200)	ND (40)	ND (50)	ND (200)	ND (100)	ND (50) J	ND (50)	ND (50)	ND (50)	ND (50)	NA	ND (50)				
Benzene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
Bromodichloromethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
Bromoform	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
Bromomethane (Methyl Bromide)	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
2-Butanone (Methyl Ethyl Ketone)	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	NA	ND (50)				
Carbon Disulfide	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	NA	ND (50)				
Carbon Tetrachloride	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
Chlorobenzene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
Chloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
Chloroform (Trichloromethane)	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
Chloromethane (Methyl Chloride)	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
Dibromochloromethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
1,1-Dichloroethane	97	120	73	160	180	190	100	86	200	240	88	170	110	110	99	99	110	130	120 J-	130	110
1,2-Dichloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
1,1-Dichloroethene	ND (25)	ND (50)	ND (25)	28	ND (50)	ND (50)	16	17	50	ND (50)	ND (25)	28	ND (25)	ND (25)	ND (25)	NA	ND (25)				
cis-1,2-Dichloroethene	1,000 D	1,300	660	1,300 D	1,900	1,800	1,100 D	700 D	1,900 D	2,000	610	1,100	750	780	720	640	720	790	690 J-	740	560
trans-1,2-Dichloroethene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	15	50	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
1,2-Dichloropropane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
Cis-1,3-Dichloropropene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
trans-1,3-Dichloropropene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
Ethylbenzene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
2-Hexanone	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	NA	ND (50)				
Methylene Chloride	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (50)	ND (100)	ND (50)	ND (50)	ND (100)	ND (100)	ND (20)	ND (25)	ND (100)	ND (100)	ND (50)	ND (50)	ND (50)	ND (50)	ND (50)	NA	ND (50)				
Styrene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25) J	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
1,1,2,2-Tetrachloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
Tetrachloroethene	52	53	26	31	ND (100)	ND (50)	14	ND (13)	ND (54)	65	ND (25)	41	ND (25)	ND (25)	ND (25)	NA	ND (25)				
Toluene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
1,1,1-Trichloroethane	ND (25)	62	33	67	76	88	40	27	84	110	27	70	32	34	26	28	28	38	39 J-	37	29
1,1,2-Trichloroethane	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
Trichloroethene	93	97	58	82	98	92	47	47	120	130	53	97	68	69	68	67	29	91	72 J-	81	74
Vinyl Chloride	160	160	74	180	270	300	100	110	310	340	91	180	140	150	99	76	160	210	190 J-	220	190
o-Xylene	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				
m,p-Xylenes	ND (25)	ND (50)	ND (25)	ND (25)	ND (50)	ND (50)	ND (10)	ND (13)	ND (50)	ND (50)	ND (25)	ND (25)	ND (25)	ND (25)	ND (25)	NA	ND (25)				

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

- R: Rejected J: Estimated
- J-: Estimated and biased low
- 1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.
- 2. Some dates are not shown because samples were not collected during that sampling period.
- 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

FORMER XEROX BUILDING 801

HENRIETTA, NEW YORK

VGC \$2506 (lg/L) VGC \$2	Sample ID)										MW-13S										
Rectance No 10 20 No 120 No	Analyte or Method	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/22/2010	10/11/2011	8/22/2012	9/5/2013	7/29/2014	8/26/2015	8/31/2016	9/26/2017	8/28/2018	8/26/2019	9/28/2020		8/31/2021	8/31/2021 DUPLICATE
Enemen ND S N	VOCs 8260B (ug/L)																					-
Formodichloromethane ND (5) ND (5	Acetone	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10) J	ND (10)	ND (10)	ND (15)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Formorform ND (5) N	Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-butanone (Methyl Ethyl Ketone)	Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Carbon Disulfide	` ' '	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Carbon Tetrachloride (ND (S) ND (S) N	2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloroethane	Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Chloroethane	Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane) ND (5)	Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride) ND (5) ND (5	Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane ND (5) ND (5	Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloroethane	Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethene	1,1-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene 97 56 34 34 26 18 21 11 9.4 13 16 14 22 5 7 7 5 ND (5) 6.4 5.9 5.3 5.2 trans-1,2-Dichloroethene ND (5) ND	1,2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,2-Dichloroethene	1,1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane ND (5)	cis-1,2-Dichloroethene	97	56	34	34	26	18	21	11	9.4	13	16	14	22	5	7	5	ND (5)	6.4	5.9	5.3	5.2
Cis-1,3-Dichloropropene ND (5)	trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene ND (5) ND	Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
	trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexangre ND (10) ND	Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride ND (5) ND (Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
	4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)		ND (10)		ND (10)		ND (10)		ND (10)		ND (10)		ND (10)		ND (10)
Styrene ND (5) N	Styrene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND (5.0) J	ND (5)	ND (5)	ND (5)	ND (5)				
1,1,2,2-Tetrachloroethane ND (5) ND (1,1,2,2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
	Tetrachloroethene	56	42													ND (5)		ND (5)				ND (5)
	Toluene	ND (5)	ND (5)		ND (5)		ND (5)	ND (5)	ND (5)	ND (5)		ND (5)		ND (5)		٠,		٠,		` '		ND (5)
		34	` ,	٠,	` '	` '	` '	9		5		7		7		ND (5)		. ,		, ,		ND (5)
		_						ND (5)		ND (5)		ND (5)		ND (5)		` '		٠,		` '		ND (5)
	, ,	ν-,	` '	. ,	` '	` '	. ,	٠,	` '	. ,		٠,	` '	٠,		٠,		٠,	. ,	` '	. ,	ND (5)
		ND (5)			ND (5)	ND (5)										٠,		. ,				ND (5)
	i i		٠,,									٠,				٠,		. ,		. ,		ND (5)
	,	\- /	` '	٠,	` '	` '		` '		. ,		` '		. ,		٠,		ζ- /	. ,	` '		ND (5)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

- R: Rejected J: Estimated
- J-: Estimated and biased low
- 1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.
- 2. Some dates are not shown because samples were not collected during that sampling period.
- 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

GROUNDWATER & SURFACE WATER MONITORING ANALYTICAL SUMMARY

FORMER XEROX BUILDING 801 HENRIETTA, NEW YORK

Sample ID MW-16 8/31/2016 Analyte or Method 6/16/2006 11/29/2006 6/13/2007 12/20/2007 6/11/2008 12/17/2008 6/24/2009 7/1/2010 10/11/2011 8/22/2012 9/5/2013 7/30/2014 8/26/2015 8/31/2016 9/26/2017 8/28/2018 8/26/2019 9/28/2020 8/31/2021 DUPLICATE VOCs 8260B (ug/L) ND (20) ND (20) ND (20) ND (20) ND (10) ND (10) ND (10) Acetone ND (20) ND (20) ND (20) ND (20) ND (20) ND (10) ND (10) J ND (10) ND (10) ND (10) ND (10) ND (10) ND (10) ND (5) Benzene ND (5) Bromodichloromethane ND (5) Bromoform ND (5) Bromomethane (Methyl Bromide) ND (5) 2-Butanone (Methyl Ethyl Ketone) ND (10) Carbon Disulfide ND (10) Carbon Tetrachloride ND (5) Chlorobenzene ND (5) Chloroethane ND (5) Chloroform (Trichloromethane) ND (5) Chloromethane (Methyl Chloride) ND (5) Dibromochloromethane ND (5) 1,1-Dichloroethane ND (5) J ND (5) 1.2-Dichloroethane ND (5) 1.1-Dichloroethene ND (5) cis-1,2-Dichloroethene ND (5) trans-1.2-Dichloroethene ND (5) 1,2-Dichloropropane ND (5) Cis-1,3-Dichloropropene ND (5) trans-1.3-Dichloropropene ND (5) Ethylbenzene ND (5) -Hexanone ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) Methylene Chloride ND (5) 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (10) ND (5) J ND (5) J ND (5) ,1,2,2-Tetrachloroethane ND (5) Tetrachloroethene ND (5) Toluene 1,1,1-Trichloroethane ND (5) 1.1.2-Trichloroethane ND (5) Trichloroethene ND (5) Vinyl Chloride ND (5) o-Xvlene ND (5) m,p-Xylenes ND (5) ND (5)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

- R: Rejected
- J: Estimated
- J-: Estimated and biased low
- 1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.
- 2. Some dates are not shown because samples were not collected during that sampling period.
- 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Page 9 of 15

FORMER XEROX BUILDING 801

HENRIETTA, NEW YORK

Sample ID									MW	/-18S								•
Analyte or Method	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/22/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	9/26/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021
VOCs 8260B (ug/L)																		
Acetone	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10)	ND (10)	ND (10)	16	ND (5)	ND (5)	ND (5)
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)						
1,2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1.2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5) J	ND (5)						
1,1,2,2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Toluene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,1-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vinyl Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
ini,p Ayiciica	(כ) שאו	(כ) שאו	ND (3)	ND (3)	(כ) שמו	ND (3)	(ט) שאו	ND (3)	IND (J)	(כ) שמו	(כ) שמו	ND (3)	(כ) שמו	ND (3)	ND (3)	(כ) שאו	(כ) שמו	(כ) שמו

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

- R: Rejected J: Estimated
- J-: Estimated and biased low
- 1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.
- 2. Some dates are not shown because samples were not collected during that sampling period.
- 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

FORMER XEROX BUILDING 801

HENRIETTA, NEW YORK

Sample II	٥									MW	/-19									
Analyte or Method	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/22/2010	10/12/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	3/29/2017 RESAMPLE	9/26/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021
VOCs 8260B (ug/L)																				
Acetone	ND (100)	ND (200)	ND (200)	ND (20)	ND (40)	ND (20)	ND (20)	ND (40)	ND (40)	ND (20)	ND (50) J	ND (50)	ND (10)	ND (25)	NA	ND (20)	ND (50)	ND (50)	ND (50)	ND (50)
Benzene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
Bromodichloromethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
Bromoform	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
Bromomethane (Methyl Bromide)	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
2-Butanone (Methyl Ethyl Ketone)	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50) J	ND (50)	ND (10)	ND (25)	NA	ND (20)	ND (50)	ND (50)	ND (50)	ND (50)
Carbon Disulfide	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50)	ND (50)	ND (10)	ND (25)	NA	ND (20)	ND (50)	ND (50)	ND (50)	ND (50)
Carbon Tetrachloride	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
Chlorobenzene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
Chloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
Chloroform (Trichloromethane)	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
Chloromethane (Methyl Chloride)	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
Dibromochloromethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
1,1-Dichloroethane	210	240	280	14	92	9.5	63	150	43	150	120	38	73	320	88	42	100	65	65	85
1,2-Dichloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
1,1-Dichloroethene	80	100	95	5.6	26	ND (5)	22	69	17	63	41	10	14	120	27	11	40	21	20	ND (25)
cis-1,2-Dichloroethene	1,000 D	1,400	1,600	36	240	24	330 D	910 D	260 D	580	620	170	340	3,700	550	220	590	370	410	580
trans-1,2-Dichloroethene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	18	10	ND (10)	ND (25)	ND (25)	12	63	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
1,2-Dichloropropane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
Cis-1,3-Dichloropropene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
trans-1,3-Dichloropropene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
Ethylbenzene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
2-Hexanone	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50) J	ND (50)	ND (10)	ND (25)	NA	ND (20)	ND (50)	ND (50)	ND (50)	ND (50)
Methylene Chloride	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (50)	ND (100)	ND (100)	ND (10)	ND (20)	ND (10)	ND (10)	ND (20)	ND (20)	ND (20)	ND (50)	ND (50)	ND (10)	ND (25)	NA	ND (25)				
Styrene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25) J	ND (25) J	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
1,1,2,2-Tetrachloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
Tetrachloroethene	38	ND (50)	ND (50)	15	22	7.4	16	ND (10)	ND (10)	13	ND (25)	ND (25)	ND (5.0)	120	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
Toluene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
1,1,1-Trichloroethane	120	140	140	22	71	13	54	100	38	87	67	24	36	340	26	11	49	22	19	45
1,1,2-Trichloroethane	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
Trichloroethene	330	340	100	90	310	54	240 D	140	160	420	110	52	99	3,100	250	94	450	220	220	170
Vinyl Chloride	ND (25)	ND (50)	66	ND (5)	ND (10)	ND (5)	ND (5)	23	ND (10)	58	39	9	32	190	32	15	40	30	27	ND (25)
o-Xylene	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)
m,p-Xylenes	ND (25)	ND (50)	ND (50)	ND (5)	ND (10)	ND (5)	ND (5)	ND (10)	ND (10)	ND (10)	ND (25)	ND (25)	ND (5.0)	ND (13)	NA	ND (10)	ND (25)	ND (25)	ND (25)	ND (25)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

- R: Rejected J: Estimated
- J-: Estimated and biased low
- 1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.
- 2. Some dates are not shown because samples were not collected during that sampling period.
- 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Sample ID										MW-24S									
August and August and	6/16/2006	11/20/2006	6/12/2007	12/20/2007	6/11/2000	12/17/2000	6/24/2000	6/20/2010	10/11/2011	0/22/2012	0/5/2012	7/20/2014	0/26/2015	0/24/2016	0/27/2017	0/20/2010	0/26/2010	0/20/2020	8/31/2021
Analyte or Method	6/16/2006	11/29/2006	6/13/2007	12/20/2007	6/11/2008	12/17/2008	6/24/2009	6/28/2010	10/11/2011	8/22/2012	9/5/2013	7/30/2014	8/26/2015	8/31/2016	9/27/2017	8/28/2018	8/26/2019	9/28/2020	8/31/2021
VOCs 8260B (ug/L)																			
Acetone	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10)						
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)						
1,1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5) J	ND (5)						
1,1,2,2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Toluene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,1-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vinyl Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

- R: Rejected J: Estimated
- J-: Estimated and biased low
- 1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.
- 2. Some dates are not shown because samples were not collected during that sampling period.
- 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

TABLE III GROUNDWATER & SURFACE WATER MONITORING ANALYTICAL SUMMARY

Complet	D.			CVA	/ 20			
Sample I	ט			SW	/-29			
Analyte or Method	11/29/2006	12/20/2007	6/24/2009	6/23/2010	10/11/2011	8/22/2012	7/29/2014	8/31/2021
VOCs 8260B (ug/L)								
Acetone	ND (20)	ND (50)	ND (40)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10)
Benzene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (25)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (10)	ND (25)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J
trans-1,2-Dichloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (10)	ND (25)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (25)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2,2-Tetrachloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Toluene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,1-Trichloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,2-Trichloroethane	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vinyl Chloride	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J
o-Xylene	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes	ND (5)	ND (13)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

- R: Rejected J: Estimated
- J-: Estimated and biased low
- 1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.
- 2. Some dates are not shown because samples were not collected during that sampling period.
- 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Page 13 of 15

Sample ID SW-34 Analyte or Method 6/16/2006 11/29/2006 6/13/2007 12/20/2007 6/12/2008 12/18/2008 6/24/2009 6/23/2010 10/11/2011 8/23/2012 9/5/2013 7/29/2014 8/26/2015 8/31/2016 9/26/2017 8/28/2018 9/28/2020 8/31/2021 VOCs 8260B (ug/L) ND (20) ND (10) Acetone ND (20) ND (20) ND (10) ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) ND (5) Benzene ND (5) Bromodichloromethane ND (5) Bromoform ND (5) Bromomethane (Methyl Bromide) ND (5) 2-Butanone (Methyl Ethyl Ketone) ND (10) Carbon Disulfide ND (10) Carbon Tetrachloride ND (5) Chlorobenzene ND (5) Chloroethane ND (5) Chloroform (Trichloromethane) ND (5) Chloromethane (Methyl Chloride) ND (5) Dibromochloromethane ND (5) 1,1-Dichloroethane ND (5) 1.2-Dichloroethane ND (5) 1.1-Dichloroethene ND (5) cis-1,2-Dichloroethene ND (5) trans-1.2-Dichloroethene ND (5) 1,2-Dichloropropane ND (5) Cis-1,3-Dichloropropene ND (5) trans-1.3-Dichloropropene ND (5) Ethylbenzene ND (5) 2-Hexanone ND (10) ND (5) ND (5) ND (5) ND (5) ND (5) Methylene Chloride ND (5) 4-Methyl-2-Pentanone (Methyl Isobutyl Ketone) ND (10) ND (5) J ND (5) ,1,2,2-Tetrachloroethane ND (5) Tetrachloroethene ND (5) Toluene 1,1,1-Trichloroethane ND (5) 1.1.2-Trichloroethane ND (5) Trichloroethene ND (5) Vinyl Chloride ND (5) o-Xylene ND (5) m,p-Xylenes ND (5) ND (5)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

- R: Rejected
- J: Estimated
- J-: Estimated and biased low
- 1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.
- 2. Some dates are not shown because samples were not collected during that sampling period.
- Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

FORMER XEROX BUILDING 801

HENRIETTA, NEW YORK

Sample ID										SW	'-35									
Analyte or Method	6/16/2006	11/29/2006	12/20/2007	6/12/2008	12/18/2008	6/24/2009	6/23/2010	10/11/2011	8/23/2012	9/5/2013	7/29/2014	8/26/2015	8/31/2016	9/26/2017	8/28/2018	8/28/2018 DUPLICATE	8/26/2019	8/26/2019 DUPLICATE	9/28/2020	8/31/2021
VOCs 8260B (ug/L)																				
Acetone	ND (20)	ND (20)	ND (20)	ND (20)	ND (20)	ND (40)	ND (20)	ND (20)	ND (10)	ND (10)	ND (10) J	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)				
Benzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromodichloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromoform	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Bromomethane (Methyl Bromide)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Butanone (Methyl Ethyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Disulfide	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Carbon Tetrachloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chlorobenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloroform (Trichloromethane)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Chloromethane (Methyl Chloride)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Dibromochloromethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1-Dichloroethane	ND (5)	6.3	8.6	ND (5)	15	19	ND (5)	16	ND (5)	ND (5)	14	6	ND (5)	ND (5)	6	6	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)				
1,1-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cis-1,2-Dichloroethene	20	15	86	ND (5)	140	110	ND (5)	73	11	ND (5)	76	20	ND (5)	7	19	19	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,2-Dichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,2-Dichloropropane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Cis-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
trans-1,3-Dichloropropene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Ethylbenzene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
2-Hexanone	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Methylene Chloride	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
4-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (20)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
Styrene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5) J	ND (5) J	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)				
1,1,2,2-Tetrachloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Tetrachloroethene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Toluene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
1,1,1-Trichloroethane	ND (5)	ND (5)	10	ND (5)	21	21	ND (5)	8.8	ND (5)	ND (5)	12	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)				
1,1,2-Trichloroethane	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Trichloroethene	ND (5)	ND (5)	ND (5)	ND (5)	5.1	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
Vinyl Chloride	ND (5)	12	15	ND (5)	27	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
o-Xylene	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
m,p-Xylenes	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)

Notes & Abbreviations:

NA: Not Applicable/Not Sampled

ND: Not Detected

D: Diluted (Stopped flagging diluted results starting in 2012.)

- R: Rejected J: Estimated
- J-: Estimated and biased low
- 1. For the December 2008 sampling event, mineral spirits were inadvertently sampled in VE-6 rather than RW-1.
- 2. Some dates are not shown because samples were not collected during that sampling period.
- 3. Sample results from June 2006 through the most recent event are shown. Refer to previously prepared semi-annual reports for older historical data.

Page 15 of 15

SSD SYSTEM FLOOR POINT VACUUM READINGS

FORMER XEROX B801 FACILITY HENRIETTA, NEW YORK

	9/26/2012	9/27/2013	10/21/2014	9/3/2015	9/8/2016	9/27/2017	10/10/2018	11/19/2018	9/27/2019	10/19/20 - 11/2/20	9/28/2021 - 12/10/2021
	Vacuum	Vacuum									
Location ID	Measurement	Measurement									
	(in. w.c.)	(in. w.c.)									
T-1	0.03	0.021	0.022	0.330	0.029	0.050	0.053		0.052	0.044	0.083
T-3	0.663	0.223	0.215	0.247	0.241	0.304	0.3		0.256	0.196	0.306
T-4	0.063	0.031	0.029	0.043	0.04	0.045	0.045		0.051	0.045	0.06
T-7	0.109	0.066	0.055	0.064	0.06	0.057	0.061		0.064	0.041	0.074
T-11	0.082	0.046	0.008	0.014	0.014	0.016	0.028		0.05	0.018	0.354
T-14	0.016	0.016	0.016	0.014	0.014	0.015	0.014	0.022	0.02	0.021	0.018
T-17	0.016	0.009	0.011	0.01	0.008	0.008	0.010	0.010	0.007	0.007	0.008
T-18	0.002	0.003	0.003	0.003	0.004	0.005	0	0.003	0.003	0.005	0.002
T-20	0.004	0.004	0.004	0.004	0.005	0.004	0.003	0.005	0.004	0.004	0.004
T-21	0.002	0.002	0.001	0.002	0.003	0.003	0.003		0.006	0.006	0.003
T-22	0.166	0.123	0.081	0.008	0.099	0.136	0.153		0.04	0.068	0.083
T-25	0.026	0.031	0.026	0.036	0.029	0.051	0.07		0.037	0.031	0.052
T-26	0.012	0.01	0.007	0.006	0.006	0.018	0.023		0.010	0.010	0.025
T-28	0.019	0.01	0.004	0.005	0.003	0.010	0.013		0.007	0.004	0.005
T-29	0.009	0.01	0.009	0.010	0.004	0.006	0.009		0.005	0.009	0.009
T-30	0.014	0.017	0.01	0.019	0.036	0.033	0.036		0.025	0.036	0.032
T-31	0.011	0.009	0.007	0.009	0.014	0.015	0.012		0.005	0.008	0.009
T-32	0.086	0.077	0.054	0.07	0.074	0.081	0.083		0.04	0.042	0.05
T-33	0.058	0.013	0.007	0.012	0.005	0.029	0.039		0.016	0.028	0.055
T-34	0.014	0.007	0.009	0.008	0.008	0.013	0.016		0.013	0.003	0.004

Notes:

- 1. NR = Not able to get a reading
- 2. Values in bold represent readings below the 0.002 inches of water column design criteria
- 3. T-2, T-8, T-9, T-10, T-12, T-13, T-15, T-16, T-19, T-23, T-24, and T-27 were decommissioned in 2014 and 2015
- 4. T-11, T-17 and T-18 were covered up or filled in by Harris. The points were installed at replacement locations nearby to the original locations.

TABLE V
SSD SYSTEM FAN VACUUM READINGS
Page 1 of 1

FORMER XEROX B801 FACILITY HENRIETTA, NEW YORK

		9/8/2016	9/27/2017	10/10/2018	11/19/2018	9/27/2019	10/19/2020	9/28/2021
		Vacuum						
Suction Point	Fan	Measurement						
Location ID	System	(in. w.c.)						
S-1		24.0	25.0	24.0		25.0	25.0	25.0
S-2	F-1	24.0	25.0	24.0		25.0	25.0	24.0
S-3		23.0	25.0	24.0		24.0	24.0	24.0
S-4	F-2	40.0	40.0	40.0		40.0	40.0	40.0
S-5	Γ-Ζ	36.0	36.0	36.0		36.0	38.0	36.0
S-6		>2.0	>2.0	>2.0	>2.0	1.1	1.1	1.3
S-7	F-3	0.72	1.00	1.00	0.95	0.24	1.84	2.00
S-8		0.75	2.00	2.00	1.60	1.99	1.80	2.00
S-9	F-4	0.60	0.54	0.64		0.84	0.91	0.90
S-10	Γ-4	0.75	0.65	0.80		1.00	1.00	1.00
S-11	F-5	0.18	0.18	0.19		0.20	0.20	0.20
S-12	1-5	0.25	0.25	0.25		0.25	0.25	0.25
S-13	F-6	9.0	10.0	11.0		9.0	9.0	10.0
S-14	Γ-υ	9.0	10.0	10.0	_	8.0	8.0	10.0
S-15		10.0	10.0	12.0		10.0	11.0	12.0
S-16	F-7	10.0	10.0	10.5		9.0	11.0	11.0
S-17		9.0	10.0	10.0		8.5	10.0	10.0

FIGURES

APPENDIX A Annual Engineering and Institutional Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

			Site Details		Box 1
Site	e No.	828069			
Site	e Name Xe	erox - Henrietta Facility			
City Cou	y/Town: He unty:Monro		Zip Code: 14623		
Rer	oortina Peri	od: January 15, 2021 to	January 15. 2022		
- 1	3	•	to December 31, 20	021	
			•		YES NO
1.	Is the infor	mation above correct?			
		ude handwritten above or	on a separate sheet.	Site acreage and PR been corrected above	
2.		or all of the site property mendment during this Re		merged, or undergone a	
3.		been any change of use CRR 375-1.11(d))?	at the site during this R	eporting Period	
4.		federal, state, and/or loca e property during this Re		, discharge) been issued	
				cumentation or evidence th this certification form.	
5.	Is the site	currently undergoing dev	elopment?		
					Box 2 YES NO
6.		ent site use consistent wi al and Industrial	th the use(s) listed belo	ow?	
7.	Are all ICs	in place and functioning	as designed?	Y	
	IFT			NO, sign and date below a M. Otherwise continue.	and
A C	orrective N	leasures Work Plan mus	t be submitted along w	vith this form to address th	nese issues.
 Sigi	nature of Ov	vner, Remedial Party or D	esignated Representativ	e Date	

SITE NO. 828069 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

162-08.1-2 Harris Corporation

Ground Water Use Restriction

Xerox - Remedial Party

Landuse Restriction

Monitoring Plan

Site Management Plan

Continued groundwater monitoring;

Establishment of a soil and groundwater management area;

A deed restriction which restricts site use;

Compliance with the site management plan dated 6/16/10 and revised on 7/30/15 which addresses continued management of residual contamination in the soil and groundwater management area, to address continued O&M of all engineering controls, and provide for periodic certification.

162.07-1-3 Harris Corporation

Ground Water Use Restriction

Xerox - Remedial Party

Landuse Restriction

Monitoring Plan

Site Management Plan

Continued groundwater monitoring;

Continued operation and monitoring of the sub-slab depressurization system;

Establishment of a soil and groundwater management area;

A deed restriction which restricts site use;

Compliance with the site management plan dated 6/16/10 and revised on 7/30/15 which addresses continued management of residual contamination in the soil and groundwater management area, to address continued O&M of all engineering controls, and provide for periodic certification.

162.08-1-1 Harris Corporation

Ground Water Use Restriction

Xerox - Remedial Party

Landuse Restriction

Monitoring Plan

Site Management Plan

Continued groundwater monitoring;

Establishment of a soil and groundwater management area;

A deed restriction which restricts site use;

Compliance with the site management plan dated 6/16/10 and revised on 7/30/15 which addresses continued management of residual contamination in the soil and groundwater management area, to address continued O&M of all engineering controls, and provide for periodic certification.

162.08-1-30 Harris Corporation

Ground Water Use Restriction

Xerox - Remedial Party

Landuse Restriction

Monitoring Plan

Site Management Plan

Continued groundwater monitoring;

Continued operation and monitoring of the sub-slab depressurization system;

A deed restriction which restricts site use;

Compliance with the site management plan dated 6/16/10 and revised on 7/30/15 which addresses

continued management of residual contamination in the soil and groundwater management area, to address continued O&M of all engineering controls, and provide for periodic certification.

162.08-1-31 Harris Corporation

Xerox - Remedial Party

Landuse Restriction Ground Water Use Restriction Monitoring Plan Site Management Plan

Continued groundwater monitoring;

A deed restriction which restricts site use;

Compliance with the site management plan dated 6/16/10 and revised on 7/30/15 which addresses continued management of residual contamination in the soil and groundwater management area, to address continued O&M of all engineering controls, and provide for periodic certification.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

162.07-1-3

Vapor Mitigation

162.08-1-30

Vapor Mitigation

_			_
_	^	~	-
_			-

Periodic Review Report (PRR) Certification Statements

 I certify by checking ' 	"YES"	pelow	tnat:
---	-------	-------	-------

- a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
- b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

- 2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
 - (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

There is no financial assurance for this site.

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this f	orm to address these issues.
Signature of Owner, Remedial Party or Designated Representative	Date

IC CERTIFICATIONS SITE NO. 828069

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Marcus Lathrop	800 Phillips Road, Webster NY, 14580 at .
print name	print business address
am certifying as Manager; Assessme	nt & Environmental Operations (Owner or Remedial Party)
for the Site named in the Site Details Se	ection of this form.
Signature of Owner, Remedial Party, or Rendering Certification	Designated Representative Date

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

l Janice Szucs	at	Haley & Aldrich of New York, 200 Town Centre Dr, Ste 2, Rochester, NY 14623
print name	-	print business address
am certifying as a Professional Enginee	r fo	r the Remedial Party

2/11/22

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

Stamp (Required for PE)

(Owner or Remedial Party)

Date

APPENDIX B
Laboratory Analytical Data Report

Service Request No:R2108875

Julia Ispentchain Xerox Corporation USA 800 Phillips Road Bldg #0207-01Z Webster, NY 14580

Laboratory Results for: Bldg 801 Area Wells

Dear Julia,

Enclosed are the results of the sample(s) submitted to our laboratory August 31, 2021 For your reference, these analyses have been assigned our service request number **R2108875**.

All testing was performed according to our laboratory's quality assurance program and met the requirements of the TNI standards except as noted in the case narrative report. Any testing not included in the lab's accreditation is identified on a Non-Certified Analytes report. All results are intended to be considered in their entirety. ALS Environmental is not responsible for use of less than the complete report. Results apply only to the individual samples submitted to the lab for analysis, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s), and represented by Laboratory Control Sample control limits. Any events, such as QC failures or Holding Time exceedances, which may add to the uncertainty are explained in the report narrative or are flagged with qualifiers. The flags are explained in the Report Qualifiers and Definitions page of this report.

Please contact me if you have any questions. My extension is 7475. You may also contact me via email at Meghan.Pedro@alsglobal.com.

Respectfully submitted,

Mughour tedro

ALS Group USA, Corp. dba ALS Environmental

Meghan Pedro Project Manager

CC: Janice Szucs

Narrative Documents

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Client:Xerox Corporation USAService Request: R2108875Project:Bldg 801 Area WellsDate Received: 08/31/2021

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Seventeen water samples were received for analysis at ALS Environmental on 08/31/2021. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

Volatiles by GC/MS:

Method 8260C, 09/08/2021: The upper control criterion was exceeded for one or more analytes in the Laboratory Control Sample (LCS). There were no detections of the analyte(s) above the MRL in the associated field samples. The error associated with elevated recovery equates to a high bias. The sample data is not significantly affected. No further corrective action was appropriate.

	Michael Pedro			
Approved by	S	Date	09/13/2021	

SAMPLE DETECTION SUMMARY

Analyte	CLIENT ID: VE-6 Lab ID: R2108875-001												
1,1-Dichloroethene	Analyte	Results	Flag	MDL	MRL	Units	Method						
cis-1,2-Dichloroethene 19000 500 ug/L 8260C 1,1,1-Trichloroethane 810 500 ug/L 8260C Vinyl Chloride 3400 500 ug/L 8260C Lab ID: R210875-002 Analyte Results Flag MDL MRL Units Method Chloroethane 2400 D 500 ug/L 8260C 1,1-Dichloroethane 1000 D 500 ug/L 8260C Vinyl Chloride 19000 D 500 ug/L 8260C Vinyl Chloride 8esults Flag MDL MRL Units Method 2-Butanone (MEK) 590 250 ug/L 8260C 1,1-Dichloroethane 1100 250 u	1,1-Dichloroethane	810			500	ug/L	8260C						
1,1,1-Trichloroethane	1,1-Dichloroethene	630			500	ug/L	8260C						
Vinyl Chloride 3400 Lab ID: R2108875-002 Results Flag MDL MRL Units Method MRL M	cis-1,2-Dichloroethene	19000			500	ug/L	8260C						
California Cal	1,1,1-Trichloroethane	810			500	ug/L	8260C						
Results	Vinyl Chloride	3400			500	ug/L	8260C						
Chloroethane	CLIENT ID: VE-10		Lab	ID: R2108	875-002								
1,1-Dichloroethane 1000 D 500 ug/L 8260C cis-1,2-Dichloroethene 1700 D 500 ug/L 8260C Vinyl Chloride 19000 D 500 ug/L 8260C ELIENT ID: VE-12 Lab ID: R2108875-003 Analyte Results Flag MDL MRL Units Method C-Butanone (MEK) 590 500 ug/L 8260C 250 ug/L 8260C Chloroethane 6600 250 ug/L 8260C 660C 250 ug/L 8260C Cis-1,2-Dichloroethane 1100 250 ug/L 8260C 250 ug/L 8260C Cis-1,2-Dichloroethane 410 250 ug/L 8260C 250 ug/L 8260C Cis-1,1-Dichloroethane 280 13 ug/L 8260C 250 ug/L 8260C Cis-1,1-Dichloroethane 280 13 ug/L 8260C 250	Analyte	Results	Flag	MDL	MRL	Units	Method						
1700 D 500 ug/L 8260C	Chloroethane	2400	D		500	ug/L	8260C						
Vinyl Chloride	1,1-Dichloroethane	1000	D		500	ug/L	8260C						
California Cal	cis-1,2-Dichloroethene	1700	D		500	ug/L	8260C						
Results Flag MDL MRL Units Method	Vinyl Chloride	19000	D		500	ug/L	8260C						
Second Net	CLIENT ID: VE-12		Lab ID: R2108875-003										
Chloroethane 6600 250 ug/L 8260C 1,1-Dichloroethane 1000 250 ug/L 8260C cis-1,2-Dichloroethene 1100 250 ug/L 8260C Toluene 410 250 ug/L 8260C Vinyl Chloride 4900 250 ug/L 8260C Lab ID: R2108875-004 Analyte Results Flag MDL MRL Units Method Chloroethane 280 13 ug/L 8260C CLIENT ID: RW-4 Lab ID: R2108875-005 Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 16 5.0 ug/L 8260C Trichloroethene 8.3 5.0 ug/L 8260C Vinyl Chloride 8.1 5.0 ug/L 8260C CLIENT ID: MW-10 Lab ID: R2108875-007 Analyte Results Flag MDL MRL U	Analyte	Results	Flag	MDL	MRL	Units	Method						
1,1-Dichloroethane 1000 250 ug/L 8260C cis-1,2-Dichloroethene 1100 250 ug/L 8260C Toluene 410 250 ug/L 8260C Vinyl Chloride 4900 250 ug/L 8260C CEIENT ID: VE-15 Lab ID: R2108875-004 Analyte Results Flag MDL MRL Units Method Chloroethane 280 13 ug/L 8260C 1,1-Dichloroethane 92 13 ug/L 8260C CEIENT ID: RW-4 Lab ID: R2108875-005 Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 16 5.0 ug/L 8260C cis-1,2-Dichloroethene 8.3 5.0 ug/L 8260C Vinyl Chloride 8.1 5.0 ug/L 8260C CIEINT ID: MW-10 Lab ID: R2108875-007 Analyte Results Flag MDL MRL Units Method 1,1-Dic	2-Butanone (MEK)	590			500	ug/L	8260C						
cis-1,2-Dichloroethene 1100 250 ug/L 8260C Toluene 410 250 ug/L 8260C Vinyl Chloride 4900 250 ug/L 8260C ELIBITID: VE-15 Lab ID: R2108875-004 Analyte Results Flag MDL MRL Units Method CLIENT ID: RW-4 Lab ID: R2108875-005 Ug/L 8260C Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 16 5.0 ug/L 8260C cis-1,2-Dichloroethene 10 5.0 ug/L 8260C Trichloroethene 8.3 5.0 ug/L 8260C Vinyl Chloride 8.1 5.0 ug/L 8260C ELIENT ID: MW-10 Elient ID: R2108875-007 Elient ID: R2108875-007 Results Flag MDL MRL Units Method 1,1-Dichloroethane 110 25 ug/L 8260C cis-1,2-Dichloroethane	Chloroethane	6600			250	ug/L	8260C						
Toluene	1,1-Dichloroethane	1000			250	ug/L	8260C						
Vinyl Chloride 4900 250 ug/L 8260C ELIENT ID: VE-15 Lab ID: R2108875-004 Analyte Results Flag MDL MRL Units Method Chloroethane 280 13 ug/L 8260C 1,1-Dichloroethane 92 13 ug/L 8260C ELIENT ID: RW-4 Lab ID: R2108875-005 Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 16 5.0 ug/L 8260C cis-1,2-Dichloroethene 10 5.0 ug/L 8260C Trichloroethene 8.3 5.0 ug/L 8260C Vinyl Chloride 8.1 5.0 ug/L 8260C ELIENT ID: MW-10 Lab ID: R2108875-007 Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 110 25 ug/L 8260C cis-1,2-Dichloroethane 560 </td <td>cis-1,2-Dichloroethene</td> <td>1100</td> <td></td> <td></td> <td>250</td> <td>ug/L</td> <td>8260C</td>	cis-1,2-Dichloroethene	1100			250	ug/L	8260C						
California Cal	Toluene	410			250	ug/L	8260C						
Analyte Results Flag MDL MRL Units Method Chloroethane 280 13 ug/L 8260C 1,1-Dichloroethane 92 13 ug/L 8260C CLIENT ID: RW-4 Lab ID: R2108875-005 Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 16 5.0 ug/L 8260C cis-1,2-Dichloroethene 10 5.0 ug/L 8260C Trichloroethene 8.3 5.0 ug/L 8260C Vinyl Chloride 8.1 5.0 ug/L 8260C CLIENT ID: MW-10 Lab ID: R2108875-007 Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 110 25 ug/L 8260C cis-1,2-Dichloroethene 560 25 ug/L 8260C 1,1,1-Trichloroethene 29 25 ug/L 8260C	Vinyl Chloride	4900			250	ug/L	8260C						
Chloroethane 280	CLIENT ID: VE-15		Lab ID: R2108875-004										
1,1-Dichloroethane 92 13 ug/L 8260C ELIENT ID: RW-4 Lab ID: R2108875-005 Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 16 5.0 ug/L 8260C cis-1,2-Dichloroethene 10 5.0 ug/L 8260C Trichloroethene 8.3 5.0 ug/L 8260C Vinyl Chloride 8.1 5.0 ug/L 8260C ELIENT ID: MW-10 Lab ID: R2108875-007 Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 110 25 ug/L 8260C cis-1,2-Dichloroethene 560 25 ug/L 8260C 1,1,1-Trichloroethane 29 25 ug/L 8260C Trichloroethene 74 25 ug/L 8260C	Analyte	Results	Flag	MDL	MRL	Units	Method						
Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 16 5.0 ug/L 8260C cis-1,2-Dichloroethene 10 5.0 ug/L 8260C Trichloroethene 8.3 5.0 ug/L 8260C Vinyl Chloride 8.1 5.0 ug/L 8260C CLIENT ID: MW-10 Lab ID: R2108875-007 Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 110 25 ug/L 8260C cis-1,2-Dichloroethene 560 25 ug/L 8260C 1,1,1-Trichloroethane 29 25 ug/L 8260C Trichloroethene 74 25 ug/L 8260C	Chloroethane	280			13	ug/L	8260C						
Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 16 5.0 ug/L 8260C cis-1,2-Dichloroethene 10 5.0 ug/L 8260C Trichloroethene 8.3 5.0 ug/L 8260C Vinyl Chloride 8.1 5.0 ug/L 8260C ELIENT ID: MW-10 Lab ID: R2108875-007 Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 110 25 ug/L 8260C cis-1,2-Dichloroethene 560 25 ug/L 8260C 1,1,1-Trichloroethane 29 25 ug/L 8260C Trichloroethene 74 25 ug/L 8260C	1,1-Dichloroethane	92			13	ug/L	8260C						
1,1-Dichloroethane 16 5.0 ug/L 8260C cis-1,2-Dichloroethene 10 5.0 ug/L 8260C Trichloroethene 8.3 5.0 ug/L 8260C Vinyl Chloride 8.1 5.0 ug/L 8260C CELIENT ID: MW-10 Lab ID: R2108875-007 Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 110 25 ug/L 8260C cis-1,2-Dichloroethene 560 25 ug/L 8260C 1,1,1-Trichloroethane 29 25 ug/L 8260C Trichloroethene 74 25 ug/L 8260C	CLIENT ID: RW-4		Lab ID: R2108875-005										
cis-1,2-Dichloroethene 10 5.0 ug/L 8260C Trichloroethene 8.3 5.0 ug/L 8260C Vinyl Chloride 8.1 5.0 ug/L 8260C ELIENT ID: MW-10 Lab ID: R2108875-007 Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 110 25 ug/L 8260C cis-1,2-Dichloroethene 560 25 ug/L 8260C 1,1,1-Trichloroethane 29 25 ug/L 8260C Trichloroethene 74 25 ug/L 8260C	Analyte	Results	Flag	MDL	MRL	Units	Method						
Trichloroethene 8.3 5.0 ug/L 8260C Vinyl Chloride 8.1 5.0 ug/L 8260C CLIENT ID: MW-10 Lab ID: R2108875-007 Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 110 25 ug/L 8260C cis-1,2-Dichloroethene 560 25 ug/L 8260C 1,1,1-Trichloroethane 29 25 ug/L 8260C Trichloroethene 74 25 ug/L 8260C	1,1-Dichloroethane	16			5.0	ug/L	8260C						
Vinyl Chloride 8.1 5.0 ug/L 8260C LIENT ID: MW-10 Lab ID: R2108875-007 Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 110 25 ug/L 8260C cis-1,2-Dichloroethene 560 25 ug/L 8260C 1,1,1-Trichloroethane 29 25 ug/L 8260C Trichloroethene 74 25 ug/L 8260C	cis-1,2-Dichloroethene	10			5.0	ug/L	8260C						
CLIENT ID: MW-10 Lab ID: R2108875-007 Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 110 25 ug/L 8260C cis-1,2-Dichloroethene 560 25 ug/L 8260C 1,1,1-Trichloroethane 29 25 ug/L 8260C Trichloroethene 74 25 ug/L 8260C	Trichloroethene	8.3			5.0	ug/L	8260C						
Analyte Results Flag MDL MRL Units Method 1,1-Dichloroethane 110 25 ug/L 8260C cis-1,2-Dichloroethene 560 25 ug/L 8260C 1,1,1-Trichloroethane 29 25 ug/L 8260C Trichloroethene 74 25 ug/L 8260C	Vinyl Chloride	8.1			5.0	ug/L	8260C						
1,1-Dichloroethane 110 25 ug/L 8260C cis-1,2-Dichloroethene 560 25 ug/L 8260C 1,1,1-Trichloroethane 29 25 ug/L 8260C Trichloroethene 74 25 ug/L 8260C	CLIENT ID: MW-10		Lab	ID: R2108	875-007								
cis-1,2-Dichloroethene 560 25 ug/L 8260C 1,1,1-Trichloroethane 29 25 ug/L 8260C Trichloroethene 74 25 ug/L 8260C	Analyte	Results	Flag	MDL	MRL	Units	Method						
1,1,1-Trichloroethane 29 25 ug/L 8260C Trichloroethene 74 25 ug/L 8260C	1,1-Dichloroethane				25	ug/L	8260C						
Trichloroethene 74 25 ug/L 8260C	cis-1,2-Dichloroethene	560			25	ug/L	8260C						
· · · · · · · · · · · · · · · · · · ·	1,1,1-Trichloroethane	29			25	ug/L	8260C						
Vinyl Chloride 190 25 ug/L 8260C	Trichloroethene	74			25	ug/L	8260C						
	Vinyl Chloride	190			25	ug/L	8260C						

SAMPLE DETECTION SUMMARY

CLIENT ID: MW-13S		Lab	D: R2108	875-008		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1,2-Dichloroethene	5.3			5.0	ug/L	8260C
CLIENT ID: MW-19		Lab	ID: R2108	875-011		
Analyte	Results	Flag	MDL	MRL	Units	Method
1,1-Dichloroethane	85	D		25	ug/L	8260C
cis-1,2-Dichloroethene	580	D		25	ug/L	8260C
1,1,1-Trichloroethane	45	D		25	ug/L	8260C
Trichloroethene	170	D		25	ug/L	8260C
CLIENT ID: MW-13S Dup		Lab	ID: R2108	875-016		
Analyte	Results	Flag	MDL	MRL	Units	Method
cis-1.2-Dichloroethene	5.2			5.0	ua/L	8260C

Sample Receipt Information

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com Client: Xerox Corporation USA

Project: Bldg 801 Area Wells

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
R2108875-001	VE-6	8/31/2021	1250
R2108875-002	VE-10	8/31/2021	1340
R2108875-003	VE-12	8/31/2021	1355
R2108875-004	VE-15	8/31/2021	1305
R2108875-005	RW-4	8/31/2021	1325
R2108875-006	MW-2	8/31/2021	1415
R2108875-007	MW-10	8/31/2021	1235
R2108875-008	MW-13S	8/31/2021	0955
R2108875-009	MW-16	8/31/2021	1035
R2108875-010	MW-18S	8/31/2021	1215
R2108875-011	MW-19	8/31/2021	1020
R2108875-012	MW-24S	8/31/2021	1450
R2108875-013	SW-29	8/31/2021	1105
R2108875-014	SW-34	8/31/2021	1120
R2108875-015	SW-35	8/31/2021	1430
R2108875-016	MW-13S Dup	8/31/2021	0955
R2108875-018	Trip Blank	8/31/2021	0955

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

060522

Protect Name Rolls		ANALYSIS REQUESTED (Include Method Number and Container Preservative)																						
Project Manager ISPentchic	Report O	C			PRE	SERVA	TIVE																	
Company/Address XLFOX					CONTAINERS		$\overline{}$	$\overline{}$	7	7	$\overline{}$		$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	-/		. /		0. NOI	L	ey
800 Phillips Rd, Webster NY												/ j) [] [] \$						/.		/	2. HN6 3. H ₂ S 4. NaC	3O4	•
Phone # Email							2 3/s	\$ 3/2 & \$ 2/2 & \$ 2/2 &	8/8	/ e • /	"		TO STATE OF THE ST	' /	/	/ /	' /	′ /	/ /	/ /	,	6. Met 7. Nat	OH 4SO₄	,
585-422-3077	Sampler	s Printed Name			NUMBER	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8/8	6/8 2/8	8/8 5/53	8	8/5	8 3				/.						8. Oth		_
Sagniter's Signature	- <i>"Ö</i> ü	inton Ko	1 beck		Z	\&\ 3	(\&\	1/88	1 Fin 8	\\ <u>\</u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				\coprod						REMARK ATE DES		N
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMP DATE	LING TIME	MATRIX																				
MW- 135	-008	8/31/2021	0955	W	3	X														-	Du	20	ر ا <u>کا</u> _	
MW-135 DUP	~016)	0955	W	3	X															Duf	•		
MW-19	-611		1020	W	3	X							<u> </u>							<u> </u>				
mw-16	Pao-		1035	W	3	X_							<u> </u>	<u> </u>						-				
SW - 29	-013		1105	W	3	X				<u> </u>				<u> </u>						-		-		
SW - 34	-014		1120	$ \omega $	3	X				<u> </u>		' .		<u>.</u>					<u> </u>					
mw-185	-010		1215	W	<u> 13</u>	X					<u> </u>							<u></u>	<u> </u>			_		
MW-10	-003		1235	W	3	X		ļ									<u> </u>		<u> </u>					
VE-6	-601		1250	$\frac{\omega}{\omega}$	3	X		<u> </u>										ļ				_		
VE-15	-004		1305	W	13_	X		<u> </u>						<u> </u>					<u> </u>	_		_		
RW-4	-005	W	1325	W	3	X	<u> </u>	ł	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u></u>				
SPECIAL INSTRUCTIONS/COMMENTS							T	URNAR	OUND	REQU	IREME	NTS	Ì	REP	ORT R	EQUIR	EMEN.	rs	1	IN	VOICE (NFORM	ATION	
Metals						RUSH (SURCHARGES APPLY) I. Results Only																		
							l	1 da	v2	2 day	3 da)	,	1_	_		XC Summ			PO	,				
		•						4 da	y	5 day			i	(LCS.	DUP, M	S/MSD a	is require	ed)	Bit	L TO:				
								Stan	dard (10	business	daya-No	Surcher	(III), Results + OC and Calibration Summaries											
							REQ	WESTE	D REPO	ORT DA	TE					stion Rep	ما الديد احمد	Daw D						
													1	14. U2	O VEIAU	ation rep	OK WAII	THUS D						
See OAPP		.	-				-						4	- د م		Man		Ma	┢					
STATE WHERE SAMPLES WERE COL	LECTED RECEN	TD DV		LINQUISHED	. nv		↓		DECE	IVED B						Yes		.140	+		BEC	EIVED BY	<u>, </u>	
RELINQUISHED BY	, REGEN	/CD 61		EINGOISHED					NEOL	1450 0	•				16.61110	701011L	001					LIVE S 5		
Signature Signature Signature							Signat	ture					Signa	eture			•		Sig	nature				
Printed Name Printed Name Printed Name Printed Name							Printe	d Name					Print	ed Name	1		404	00			5		1,	
	Firm As (ifores	Firm				Firm						Firm	_	_	R2	•	man u	()		J			
Date/Time 8/31/7@21 1540	Date/Time 8/31/2021 1540 Date/Time 1540 Date/Time								Date/Time Date/Time							N								
Distribution: White - Lab Copy; Yellow - Return	to Originator		-		Pac	e 8 c	f 90								_							1881 	doup	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

060523

1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 | +1 585 288 5380 +1 585 288 8475 (fax) PAGE 2 OF 2

Project Name 801 Area wells	ANALYSIS REQUESTED (Include Method Number and Container Preservative)																						
Project Manager Ispent chi	i				PRES	SERVA	TIVE																
Company/Address					NUMBER OF CONTAINERS													/	' /		/ 0	reservativ NONE HCL	e Key
800 Philips Rd, Webster NY							/ /	/				/ ,									/ 3	HNO3 H2SO4 NaOH	
	·							. /	8/	./		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TO STATE OF THE PARTY OF THE PA	/ /	/ /	/ /	/ /	/ /	/ /	/ /	6	. Zn. Ace . MeOH . NaHSO	
Phone 9 585-422-3077 Sample's Signature Sample's Printed Name							20 80 80 80 80 80 80 80 80 80 80 80 80 80	} 		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		8 8									8	Other_	
Sancoler's Signature	- Sample	Printed Name	pibeck		ž	\8 .4	\&\\	ဇ် နို	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\£, \$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>	_	_	_	_	_	_	<u>/ ^</u>		MARKS/ E DESCRIF	MOIT
CLIENT SAMPLE ID	FOR OFFICE USE ONLY LAB ID	SAMP DATE	LING TIME	MATRIX																			
VE-10	-009	8/31/2021	1340	W	3	X												<u> </u>		_			
VE- 12	-003	2	1355	W	3	X		_				ļ						<u> </u>	<u> </u>				
MW-2	-006		1415	$\mid \omega \mid$	3	X		_									<u> </u>		<u> </u>			_	
SW-35	-015		<u> 1430</u>	<u>u</u>	3	X		_						<u> </u>					ļ				
MW-249	<u>-019</u>		<u> 1450</u>	<u>u</u>	3	X												<u> </u>	<u> </u>	_=			
Trip Blank	-018	A	0955	W	3	X					ļ	<u> </u>						<u> </u>	1				
								_				<u> </u>		ļ		<u> </u>	<u> </u>	_	ļ	ļ			
				ļ	ļ			_			 			<u> </u>	ļ			-	 				
							\vdash	_			 		 	<u> </u>			┡	_	ļ	 			
							\vdash	-				-	 	<u> </u>		_	 		-	-			
				1			igspace				<u></u>	<u> </u>	Ļ	<u> </u>	l				1	J			
SPECIAL INSTRUCTIONS/COMMENTS Metals						TURNAROUND REQUIREMENTS REPORT REQUIREMENTS						INV	OICE IN	FORMATI	ON								
						1 day2 day3 day1II. Results + QC Summaries(LCS, DUP, MS/MSD as required)						РО	PO #										
									/5 dard (10		days-No	Surcher	pe)							LTO:	•		
							REQUI	ESTEC) REPO	RT DA	TE			Sumr	naries								
													-	IV. Da	ta Valide	ition Res	oort with	Raw D	ata 📙				
See OAPP						<u>.</u>	 —		_				\dashv	E .4.	sta	Vas		_No					
STATE WHERE SAMPLES WERE COL		in By	00	LINQUISHED	BY		├		BECE	IVED B	Y		+	Eda		Yes		_140	+		RECFI	/ED BY	
RELINQUISHED BY	RECEIVE	/	ļ HE	LINGUIGHEL	, O 1				AEUE		•		-	,	166114	, 161					0_1	,	
Signature Signature							Signatur	ro					Sign	ature					Sign	nature			
Printed Name Country Loibeat	Printed Name Printed Name Printed Name Printed Name Printed Name							Name					Print	ed Name	3		D2	10	08875 5				
Firm ALS Firm							Firm						Firm			R2108875 5 Xerox Corporation USA Bidg 801 Area Wells Bidg 801 Area Wells Bidg 801 Area Wells						۱	
Date/Time 8/3//2021 1540	Date/Time /31/21	15%	Date/Time				Date/Tin	ne					Date	√Time									l
Distribution: White - Lab Copy; Yellow - Return t	Do	Page 0 of 00							Date/Time Bidg 801									лир					

Distribution: White - Lab Copy; Yellow - Return to Originator

Page 9 of 90

Cooler Receipt and Preservation Ch

R2108875 5
Xerox Corporation USA
Bidg 801 Area Wells

roject/Clie	nt ,	•			Folder N	umber				abibi (b ibi)	 	.)	
cooler receive	0/2	21	 by: <u>/</u>	1	_ 	URIER:	ALS	UPS	FEDEX	· VEL	OCITY CLI	ENT	
		outside of cooler			Y (S) 58	a Perch	lorate :	sample	have req	uired he	adspace?	Y N	I (PA)
2 Custody	papers proper	ty completed (in	k, signe		5 N 51	b Did V	OA via	ls, Alk,	or Sulfide	have si	g* bubbles?	Y) NA
3 Did all bo	ettles arrive in	good condition (unbrok	en)?	N 6	When	did the	bottle	s originate	€?	ALS/ROG	CLIE	NT
4 Circle: Y	Vet Ice Dry	Ice Gel packs	prese	nt?	Y 7	Soil V	OA rec	eived a	s: Bu	ik E	ncore 503	Set (1	VA.
. Temperatur	e Readings	Date: 8/31/5		Time:	1550	ID:	IR#7	(R#1)		From:	Temp Blank	Sam	ple Bottle
Observed Te		4.5		3,3									
Within 0-6°C		TY) N			N Y		<u>Y</u>	N		N	Y N	Y	
If <0°C, wen	e samples froz	en? Y N		Y	N Y	N	<u>Y</u>	N	<u>Y</u>	N _	Y N	<u> Y</u>	N
· <u> </u>	held in storag	un Samples:	R-co	<u> </u>	ling Approva	on //3//		at drop	-off Cl	ient noti	fied by:	-	
		orage location:		b		on	at		within 4	8 hours	of sampling?	Y	N
12. V	Vere 5035 vial	ontainers used for s acceptable (no cassettes / Tubes Reagent	extra la	bels, n	ot leaking)?		ters Pro	essuriza	YES YES ad To ple ID	NO NO edlar® B Vol.	Sags Inflated Lot Add	(N/A) ed	Final
	paper		Yes	No		: <u>-</u>	<u> </u>	Adju	sted	Added	l		pН
≥12		NaOH	_				├						
3		HNO ₃	1				 			 		-	
<u> </u>		H ₂ SO ₄ NaHSO ₄	 			~	 -	 					
5-9	· · · · · · · -	For 608pest	<u> </u>		No=Notify f	or 3day	+						
Residual Chlorine		For CN, Phenol, 625, 608pest, 522			If +, contact Na ₂ S ₂ O ₃ (62: CN), ascorbi	PM to add 5, 608,					-	<u> </u>	
(-)		Na ₂ S ₂ O ₃	+				1	1 .					
L		ZnAcetate	 -	-			T	**VC	As and 166	4 Not to b	e tested before	nalysis.	
		HCl	**	**					wise, all bo recked (not		samples with chemical	euncar bu	COCT VALUES
	numbers: A	ies/ Other Comm	nents:									<u> </u>	·
			÷										

F	PROD	BULK
F	ITR	FLDT
[5	UB	HGFB
7	172.)	LL3541

Labels secondary reviewed by:_	1/2
PC Secondary Review:	·

*significant air bubbles: VOA > 5-6 mm : WC > 1 in. diameter

PROJECT Xerox	801 Are	a wells		AB ID	
SAMPLE POINT ID M	/- 13 s	Dup			
PURGE INFORMATION					
Well Depth (ft.)		Purge Date		Purge Method	
SWL (ft.)		Start Time		Stop Time	
Standing Water (ft.)		Volume Purged	d gal	# casings	
Well Constant (gal/ft.)		Observations _			
Well Volume (gal.)					
SAMPLING INFORMATION		·			
Sample MethodPD	B	·			
Date 8/31/2021	Time 00	155 sw	3.59		
Recharge Time	Recharge F	Rate			
Appearance					
Weather Conditions P	artly cloud	!Y 75° 48	hr. Most/	y sun	y 80°
Sampling Technician (Print)_	Quinton Kolbe	CCK/1/5 s	ignature		
Meter	Parameter	Unit	Replicate 1	Replicate 2	
Myron 6p	рН	unit			
Myron 6p	Conductivity	punhos/cm			1
Myron 6p	Temperature	Degrees Celsius			1
					- 1
Calibration Date/Time	JJ	<i>.</i>			
OBSERVATIONS					
	*				

PROJECT_	Xcox	2 80(A	ica well	15	LAB ID	
SAMPLE P	OINT ID	MW-19	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
	FORMATION					
Well Depth	ı (ft.)		Purge Date		Purge Method	
SWL (ft.) _			Start Time		Stop Time	
Standing W	Vater (ft.)		Volume Purgeo	l gal.	# casings	
Well Const	ant (gal/ft.)		Observations _			
Well Volur	me (gal.)					-
SAMPLING	INFORMATION		/			·
Sample Me	ethod PD	1B	<u> </u>			
	3/3/12021	-	020 swi	3.57		
	īme		Rate			
Appearanc	e	<u> </u>	lear			
	e			hr. Phosti	Y Sungy	80°
Weather (Conditions	artly (10	udy 75° 48		Y Sungy	80°
Weather (Conditions	Partly (16 Quanton Roll	udy 75° 48 beck/NS si	gnature		80°
Weather (ConditionsF echnician (Print)_ Meter	Ountan Woll Parameter	udy 75° 48 beck/NS Si		Y Sungy Replicate 2	806
Weather (Conditions	Parameter pH C16	udy 75° 48 beck/NS si Unit unit	gnature		80°
Weather (Conditions	Parameter pH Conductivity	udy 75° 48 beck/NS Si Unit unit unhos/an	gnature		80°
Weather (Conditions	Parameter pH C16	udy 75° 48 beck/NS si Unit unit	gnature		806
Weather (Conditions	Parameter pH Conductivity	udy 75° 48 beck/NS Si Unit unit unhos/an	gnature		80°
Weather C	Conditions	Parameter pH Conductivity	udy 75° 48 beck/NS Si Unit unit unhos/an	gnature		80°
Weather C	Meter Myron 6p Myron 6p Myron 6p Myron 6p	Parameter pH Conductivity	udy 75° 48 beck/NS Si Unit unit unhos/an	gnature		806
Weather C	Meter Myron 6p Myron 6p Myron 6p Myron 6p	Parameter pH Conductivity	udy 75° 48 beck/NS Si Unit unit unhos/an	gnature		80°
Weather C	Meter Myron 6p Myron 6p Myron 6p Myron 6p	Parameter pH Conductivity	udy 75° 48 beck/NS Si Unit unit unhos/an	gnature		806
Weather C	Meter Myron 6p Myron 6p Myron 6p Myron 6p	Parameter pH Conductivity	udy 75° 48 beck/NS Si Unit unit unhos/an	gnature		80°

	•					
AMPLE	POINT ID	Mw-16				
'URGE I	INFORMATION	\			1	•
Vell De _l	pth (ft.)		Purge Date		Purge Method	
WL (ft.))		Start Time		Stop Time	4
tanding	g Water (ft.)		Volume Rurge	d gal	# casings	
Vell Cor	nstant (gal/ft.)	/	Observations _			
Vell Vo	lume (gal.)					
AMPLI	NG INFORMATION		·			
ample (Method P) B	·			
	8/31/202	Time 10)3 5 sw	4.62		
				<u> </u>		
echarge	e Time	Recharge F	Rate			
			Rate			
рреага	nce	Cle	2ac	hr Most	V Sunav	80°
ppeara Veathe	nce	Cle	2ac udy 80° 48			80°
ppeara Veathe	nce	Cle nostly clos Quntan K	udy 80° 48 Olleck/NS S	ignature 🥝	-62	80°
ppeara Veathe	nce	Cleanistry Class Quintan K Parameter	udy 80° 48 O(beck/NS S			80°
ppeara Veathe	nce	Cle nostly clos Quntan K	udy 80° 48 Olleck/NS S	ignature 🥝	-62	80°

PROJECT	Хеюх	801 A	rea wel	IS	LAB ID	
SAMPLE	POINT ID			a to the desired state of the later of the l		
PURGE IN	FORMATION					•
Well Dept	th (ft.)		Purge Date		Purge Method	·
SWL (ft.)			Start Time		Stop Time	
Standing '	Water (ft.)		Yolume Purge	d gal	# casings	
Well Cons	stant (gal/ft.)		X			
Well Volu	ıme (gal.)					
SAMPLIN	G INFORMATION					
Sample M	ethod	95				
	3/3//2021		105 sw	<u> </u>		
	Time		Rate	***************************************	•	
	ce		a Tint			
	Conditions			hr. MOSHY	Cloudy	80°
	Technician (Print)		•		_/	2
	Meter	Parameter	Unit	Replicate 1	Replicate 2	
	Myron 6p	рH	unit	7.61	7.61	_
	Myron 6p	Conductivity	μmhos/cm	565	565	
	Myron 6p	Temperature	Degrees Celsius	20.5	20.5	
	Q	21 2021	6920	7.00/4.00/	10.00	
Calibratio	n Date/Time <u>8</u>	131/2021	6930	1473 Set		
OBSERVA	TIONS			1413 SET	1913	·
	•					
	·				-	
,						
						· · · · · · · · · · · · · · · · · · ·

	T X C r C	<u> </u>	Area we	9115	LAB ID	
SAMPL	E POINT ID S W	1-34	•			
PURGE	INFORMATION			·		
Well De	pth (ft.)		Purge Date		Purge Method	<u></u>
SWL (ft.)		Start Time	·	Stop Time	
Standin	g Water (ft.)		Volume Purgeo	gal	# casings	
Well Co	nstant (gal/ft.)		Observations			
	olume (gal.)					
	NG INFORMATION					
Sample	Method	cab		\		
	8/31/202		/20 SWI	-	_	
			_	<u> </u>	-	
Recharg	e Time		Rate			
Appeara	ance	To	m Tiht			
11/ -1			_			
weathe	er Conditions	rostiv Si	100Y 80° 48	hr. Most	y Cloudy	80°
					y Cloudy	80°
	g Technician (Print) (Quinten M	dbeck/15s	ignature	2 2	80°
	g Technician (Print) (Parameter	Unit Unit	gnature Replicate 1	Replicate 2	80°
	g Technician (Print) (Parameter pH	Unit unit	Replicate 1	2 2	80°
	g Technician (Print) (Meter Myron 6p Myron 6p	Parameter pH	Unit Unit	gnature Replicate 1	Replicate 2	80°
	g Technician (Print) (Meter Myron 6p	Parameter pH	Unit unit	Replicate 1	Replicate 2 8 · Z 4	80°
Samplin	Meter Myron 6p Myron 6p Myron 6p Myron 6p	Parameter pH Conductivity Temperature	Unit unit µmhos/cm Degrees Celsius	Replicate 1 8.25 1511	Replicate 2 8 · ZY 15-10	80°
Samplin	g Technician (Print) (Meter Myron 6p Myron 6p	Parameter pH Conductivity Temperature	Unit unit µmhos/cm Degrees Celsius	Replicate 1 8.25 1511	Replicate 2 8 · ZY 15-10	80°
Samplin Calibrat	Meter Myron 6p Myron 6p Myron 6p Myron 6p	Parameter pH Conductivity Temperature	Unit unit µmhos/cm Degrees Celsius	Replicate 1 8.25 1511	Replicate 2 8 · ZY 15-10	80°
Samplin Calibrat	Meter Myron 6p Myron 6p Myron 6p Myron 6p	Parameter pH Conductivity Temperature	Unit unit µmhos/cm Degrees Celsius	Replicate 1 8.25 1511	Replicate 2 8 · ZY 15-10	80°
Samplin Calibrat	Meter Myron 6p Myron 6p Myron 6p Myron 6p	Parameter pH Conductivity Temperature	Unit unit µmhos/cm Degrees Celsius	Replicate 1 8.25 1511	Replicate 2 8 · ZY 15-10	80°
Samplin Calibrat	Meter Myron 6p Myron 6p Myron 6p Myron 6p	Parameter pH Conductivity Temperature	Unit unit µmhos/cm Degrees Celsius	Replicate 1 8.25 1511	Replicate 2 8 · ZY 15-10	80°

PROJEC	т <u> Хеп</u>	0X 801	Area W	ells	LAB ID	
	POINT ID		·			
PURGE	INFORMATION	\		·		
Nell De	pth (ft.)		Purge Date		Purge Method	
SWL (ft.))		Start Time)	Stop Time	
	g Water (ft.)				# casings	
	nstant (gal/ft.)		Observations			
	lume (gal.)					
	NG INFORMATION					
ample (MethodP	DB				
			1215 SWI	3.93		
	e Time		Rate	<u></u>	•	
	nce					
				M=0(1	y Cloudy	80°
			•			
amplin	g Technician (Print)_	Oxumten Voll	becul18 si	gnature <u></u>		
	Me ter	Parameter	Unit	Replicate 1	Replicate 2	
	Myron 6p	pH	unit			
	Myron 6p	Conductivity	μmbos/cm			
	Myron 6p	Temperature	Degrees Celsius			
,						•
Calibrati	ion Date/Time					
	,					
OBSERV	'ATIONS					
			· · · · · · · · · · · · · · · · · · ·			
				.		

80°
Z
80°

PROJECT	Xerox	801 A	rea we	ns .	LAB ID	
SAMPLE POINT	r 10 \		· · · · · · · · · · · · · · · · · · ·			
PURGE INFORM	MATION					•
Well Depth (ft.))		Purge Date		Purge Method	<u>-</u>
SWL (ft.)			Start Time _		Stop Time	
Standing Water	(ft.)		Volume Purge	ed gal	# casings	
Well Constant (gal/ft.)	····	Observations			
Well Volume (g	gal.)					
SAMPLING INFO	ORMATION					
Sample Method	109	3				
Date 8/3	1/2021	Time12	250 SW	/L 2.82		
Recharge Time		Recharge Ra	ate			
Appearance _			Teur	<u></u>		
Weather Cond	itions Pa	Ally Cloud	ly 80° 48	3 hr. Most 1	y Cloudy	80'
	nician (Print) 🕬	-	•		~ ()	1-
	Meter	Parameter	Unit	Replicate 1	Replicate 2	
N	Tyron 6p	рН	unit		<u> </u>	_
N	lyron 6p	Conductivity	μmhos/cm			
N	1yron 6p	Temperature	Degrees Celsius			-
<u> </u>		<u>_</u>				
Calibration Date	e/Time/_					
OBSERVATION						

Sampling procedures were performed in accordance with all applicable protocols.

PROJECT	Xen	0X 801	Area we	IIS	LAB ID	
SAMPLE PO	INT ID	VE-15	,			
PURGE INFO	RMATION					
Well Depth (ft.)		Purge Date		Purge Method	·
SWL (ft.)			Start Time		Stop Time	
Standing Wa	ter (ft.)		Volume Purge	gal	# casings	
Nell Constar	nt (gal/ft.)		Observations			
Well Volume	e (gal.)					
SAMPLING II	NFORMATION					
Sample Meth	nod PI	DB				
Date 8 /	3//2021	Time	305 swi	3.53		
Recharge Tin	ne		Rate		·	
	•			hr Mast	IY Cloudy	800
Sampling Tec	chnician (Print)	Dunden Kol	Lay /NE S	ignatura C		
						7
	Meter	Parameter	Unit	Replicate 1	Replicate 2	_
<u> </u>	Myron 6p	ph	unit			-
1	Myron 6p	Conductivity	<u> </u>			
<u> </u>						٦
	Myron 6p	Temperature	Degrees Celsius			_
Calibration O		Temperature	Degrees Celsius			_
Calibration D		Temperature	Degrees Celsius			_
Calibration D	late/Time	Temperature	Degrees Celsius			
	late/Time	Temperature	Degrees Celsius			
	late/Time	Temperature	Degrees Celsius			

LKO1#C	r X 600	X 801 A	freq wel	ıs	LAB ID	
SAMPLE	POINT ID	RW-4	· · · · · · · · · · · · · · · · · · ·			
PURGE I	NFORMATION	,				
Well Dep	oth (ft.)		Purge Date	,	Purge Method	-
SWL (ft.)			Start Time		Stop Time	
Standing	Water (ft.)		Volume Furged	gal.	# casings	
Well Con	stant (gal/ft.)					
Well Vol	ume (gal.)					
SAMPLIN	IG INFORMATION					•
Sample N	Method	OB	·			
Date	8/31/2021	Time	325 SWI	2.97	_	
	_	Recharge (
	nce		lear			
	-		oudy 60° 48	_{hr.} Mos	try Cloudy	800
Weather	Conditions	Mostly Cla			try Cloudy	80°
Weather	r Conditions ; Technician (Print)	Mostly Cla Duntan Kolba	ck/NS si	gnature 🦪		80°
Weather	r Conditions Technician (Print) Meter	Mostly Clo Dunta Kolbe	Unit Si			80°
Weather	r Conditions ; Technician (Print) Meter Myron 6p	Mostly Cla Dunta Kolba Parameter pH	Unit unit	gnature 🦪		80°
Weather	r Conditions ; Technician (Print) Meter Myron 6p Myron 6p	Mos+(Y C)	Unit unit umhos/cm	gnature 🦪		80°
Weather	r Conditions ; Technician (Print) Meter Myron 6p	Mostly Cla Dunta Kolba Parameter pH	Unit unit	gnature 🦪		80°
Weather	r Conditions ; Technician (Print) Meter Myron 6p Myron 6p	Mos+(Y C)	Unit unit umhos/cm	gnature 🦪		80°
Weather Sampling	r Conditions ; Technician (Print) Meter Myron 6p Myron 6p	Mos+(Y C)	Unit unit umhos/cm	gnature 🦪		80°
Weather Sampling	Meter Myron 6p Myron 6p Myron 6p Myron 6p	Mos+(Y C)	Unit unit umhos/cm	gnature 🦪		80°
Weather Sampling	Meter Myron 6p Myron 6p Myron 6p Myron 6p	Mos+(Y C)	Unit unit umhos/cm	gnature 🦪		80°
Weather Sampling	Meter Myron 6p Myron 6p Myron 6p Myron 6p	Mos+(Y C)	Unit unit umhos/cm	gnature 🦪		€0°
Weather Sampling	Meter Myron 6p Myron 6p Myron 6p Myron 6p	Mos+(Y C)	Unit unit umhos/cm	gnature 🦪		80°

PROJECT	Ner	0% 801	Aren u	leils	LAB ID	
SAMPLE	POINT ID	VE-10				
PURGE IN	IFORMATION				·	
Well Dep	th (ft.)		Purge Date		Purge Method	
		\			Stop Time	
Standing '	Water (ft.)				# casings	
Well Cons	stant (gal/ft.)		\ /			
Well Volu	ıme (gal.)	/				
	G INFORMATION					
Sample M	lethod	PDB				
			340 swl	3.58		
	Time	_	Rate			
		necharge	<u></u>			
	·				V : C / N 1V	en°
			481 481			
Sampling	Technician (Print)_	Chinten 1601	becK/NS Si	gnature	<u> </u>	
	Meter	Parameter	Unit	Replicate 1	Replicate 2	
	Мугоп бр	/pH	unit			
	Мугоп бр	Conductivity	μmhos/cm			
	Myron 6p	Temperature	Degrees Celsius			
						J
Calibratio	n Date/Time	/ /				
,		<u> </u>				
OBSERVA	TIONS					
			\ ,	-		

	Xero	γ {	501	Area	Wells	LAB ID	
SAMPLE POI	NT ID	/E-12	-				
PURGE INFO	RMATION						
Well Depth (ft.)		_	Purge Date		Purge Method_	
5WL (ft.)			_ \	Start Time		Stop Time	return to the second se
Standing Wa	ter (ft.)			Volume Pur	ged gal.	# casings	
Nell Constar	it (gal/ft.)			observation	S		· · · · · · · · · · · · · · · · · · ·
Well Volume	e (gal.)		_/		\ .	······································	
SAMPLING IN	NFORMATION						
Sample Meth	nodP;	DB_	<u> </u>	<u>.</u>			
Date 8/	31/2021	Tim	e	355 s	WL 3.93		
Recharge Tim	ne	Rec	harge Ra	ite			
Appearance				ear			
Weather Coi	nditions	Pertly	Llou	dy 80°	48 hr Mos	tly Cloud	y 80°
		•			Signature	•	•
	Meter	Paramet	er	Unit	Replicate 1	Replicate 2	
	Myron 6p	рH		unit			
 	Myron 6p	Conducti	vity	μm/los/cm			
		 	ure			1	

PROJEC	T <u>Xen</u>	0X 801	Area W	ells	LAB ID	
	POINT ID					
PURGE I	INFORMATION					
Well De	pth (ft.)		Purge Date		Purge Method	·
SWL (ft.))		Start Time	<u></u>	Stop Time	
Standing	g Water (ft.)		Volume Rurge	d gal	# casings	
Well Cor	nstant (gal/ft.)		Observations_			
Well Vo	lume (gal.)					
SAMPLI	NG INFORMATION					·
Sample N	Method P	DB			•	
		Time		3.08		
	e Time		Rate			
	nce	· ·	lear			
	•			hr. Mos	fly Cloudy	/ 80°
		Quentan Ko	•			
]						
	Meter	Parameter	Unit	Replicate 1	Replicate 2	
	Myron 6p Myron 6p	pH Conductivity	unit			
-	Myron 6p		μmhos/cm	/		
Į	ινιγιστι σρ	Temperature	Degrees Celsius			
Calibrati	on Date/Time	1 1				
Callulati	on Date/Title	J/.				
OBSERV	ATIONS			_		
						· · · · · · · · · · · · · · · · · · ·
						·

AMPLE POI	NTID	SW- 35				
URGE INFO		00	*······		-	
					~	
ven nehm (ft.)	····	Purge Date		Purge Method	· · · · · · · · · · · · · · · · · · ·
WL (ft.)		·	Start Time		Stop Time	
tanding Wa	ter (ft.)		Volume Purgee	gal	# casings	
Vell Constar	nt (gal/ft.)		Observations			
Neil Volume	e (gal.)		/			
AMPLING II	NFORMATION		,			*
ample Meth	nod <u>G</u>	ah	,			
	31 /2021	-	1430 swi			
	<u> </u>					
	ne	 -		·		
echarge Tin	ne	Recharge	Rate			
echarge Tin ppearance	ne	Recharge Ten	Rate			
echarge Tin opearance Veather Co	ne	Recharge Tan Mostly Sun	Tint 1 y 800 48	hr. Most!		800
echarge Tin ppearance Veather Co	ne	Recharge Tan Mostly Sun	Rate	hr. Most!		80°
echarge Tin ppearance Veather Co	ne	Recharge Tan Mostly Sun	Tint 1 y 800 48	hr. Most!		800
echarge Tin ppearance Veather Co	nditions chnician (Print)	Recharge Tan Mostly Sun Quator Koll	Rate Tint ny 80° 48 beck/NS Si	hr. Mostl gnature Replicate 1	Replicate 2	800
echarge Tin ppearance Veather Co	nditions chnician (Print)	Recharge Tan Mostly Sun Quhton Koll Parameter	Rate Tint 1 y 800 48 beck/NS Si Unit unit	hr. Mostly gnature Replicate 1	Replicate 2	800
echarge Tin ppearance Veather Co	nditions chnician (Print) (Meter Myron 6p	Recharge Tan Mostly Sun Quhton Koll Parameter pH	Rate Tint 1 y 800 48 beck/NS Si Unit unit	hr. Mostly gnature C Replicate 1 8,64 432	Replicate 2 8,65 432	800
echarge Tin ppearance Weather Co	nditions chnician (Print) Meter Myron 6p Myron 6p	Recharge Ten Mostly Sun Quhton Koll Parameter pH Conductivity	Rate	hr. Mostly gnature Replicate 1	Replicate 2	800
echarge Tin	nditions chnician (Print) Meter Myron 6p Myron 6p Myron 6p	Recharge Ten Mostly Sun Qunton Koll Parameter pH Conductivity Temperature	Rate	hr. Mostly gnature C Replicate 1 8,64 432	Replicate 2 8,65 432	80°
echarge Timppearance Veather Colampling Tec	nditions chnician (Print) Meter Myron 6p Myron 6p Myron 6p	Recharge Ten Mostly Sun Quhton Koll Parameter pH Conductivity	Rate	hr. Mostly gnature C Replicate 1 8,64 432	Replicate 2 8,65 432	800
echarge Tim ppearance Veather Col ampling Tec	nditions chnician (Print) Meter Myron 6p Myron 6p Myron 6p	Recharge Ten Mostly Sun Qunton Koll Parameter pH Conductivity Temperature	Rate	hr. Mostly gnature C Replicate 1 8,64 432	Replicate 2 8,65 432	800
echarge Timppearance Veather Colampling Tec	nditions chnician (Print) Meter Myron 6p Myron 6p Myron 6p	Recharge Ten Mostly Sun Qunton Koll Parameter pH Conductivity Temperature	Rate	hr. Mostly gnature C Replicate 1 8,64 432	Replicate 2 8,65 432	800

URGE INFO	PRMATION	1W- 24s	*			
Vell Depth (
WL (ft.)	· '#- \					
WL (ft.)	; ··/		Purge Date		Purge Method	
					Stop Time	
tanding Wa					# casings	
Vell Constar	nt (gal/ft.)		Observations			
Nell Volume	e (gal.)					
AMPLING II	NFORMATION		į.			
ample Meth	hod P	DB				
ppearance			ler -			
Veather Col	nditions	nostly Si	uany 800 48	hr. Mos-	HY Cloudy	80°
Veather Col	nditions	nostly Si	uany 800 48	hr. Mos-		80°
Veather Co	nditions	Mostly Su Quintan Kolbe	uany 80° 48	hr. Mos- ignature	HY Cloudy	80°
Weather Co ampling Tec	nditions/ chnician (Print) Meter	NOSTIY Su Quintan Ko(6	uany 80° 48 cuc/NS S	hr. Mos- ignature	HY Cloudy	80°

Miscellaneous Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

REPORT QUALIFIERS AND DEFINITIONS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the õNotesö column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an õimmediateö hold time criteria.
- # Spike was diluted out.

- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (×100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ)

 The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹

Connecticut ID # PH0556	Maine ID #NY0032	Pennsylvania ID# 68-786
Delaware Approved	New Hampshire ID # 2941	Rhode Island ID # 158
DoD ELAP #65817	New York ID # 10145	Virginia #460167
Florida ID # E87674	North Carolina #676	

¹ Analyses were performed according to our laboratory

NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the case narrative. Since not all analyte/method/matrix combinations are offered for state/NELAC accreditation, this report may contain results which are not accredited. For a specific list of accredited analytes, contact the laboratory or go to https://www.alsglobal.com/locations/americas/north-america/usa/new-york/rochester-environmental

ALS Laboratory Group

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a

substance allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but

greater than or equal to the MDL.

Analyst Summary report

Client: Xerox Corporation USA

Project: Bldg 801 Area Wells/

Service Request: R2108875

Sample Name: VE-6

Lab Code: R2108875-001

Sample Matrix: Water

Date Collected: 08/31/21 **Date Received:** 08/31/21

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: VE-10

Lab Code:

R2108875-002

Sample Matrix: Water

Date Collected: 08/31/21 **Date Received:** 08/31/21

2400210001000 00,01,21

Analysis Method

8260C

Extracted/Digested By

Analyzed By

FNAEGLER

Sample Name: VE-10

Lab Code:

R2108875-002.R01

Sample Matrix: Water

Date Collected: 08/31/21

Date Received: 08/31/21

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: VE-12

Lab Code:

R2108875-003

Sample Matrix:

Water

Date Collected: 08/31/21

Date Received: 08/31/21

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: VE-15

Lab Code:

R2108875-004

Sample Matrix: Water

Date Collected: 08/31/21 **Date Received:** 08/31/21

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Printed 9/13/2021 3:13:47 PM

Superset Reference:21-0000602870 rev 00

Analyst Summary report

Client: Xerox Corporation USA

Project: Bldg 801 Area Wells/

Service Request: R2108875

Date Collected: 08/31/21

Date Received: 08/31/21

Sample Name: RW-4

Lab Code: R2108875-005

Sample Matrix: Water

Analysis Method

8260C

Extracted/Digested By Analyzed By

KRUEST

Sample Name: MW-2

Lab Code: R2108875-006

Water

Date Collected: 08/31/21

Date Received: 08/31/21

Analysis Method

Sample Matrix:

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name: MW-10

Lab Code:

R2108875-007

Water

Sample Matrix:

Date Collected: 08/31/21

Date Received: 08/31/21

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name:

ah Cada

MW-13S

Lab Code:

R2108875-008

Sample Matrix:

Water

Date Collected: 08/31/21

Date Received: 08/31/21

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Sample Name:

Sample Matrix:

MW-16

Lab Code:

R2108875-009

Water

Date Collected: 08/31/21 **Date Received:** 08/31/21

Analysis Method

8260C

Extracted/Digested By

Analyzed By

KRUEST

Printed 9/13/2021 3:13:47 PM

Superset Reference:21-0000602870 rev 00

Analyst Summary report

Client: Xerox Corporation USA

Project: Bldg 801 Area Wells/ Service Request: R2108875

Sample Name: MW-18S

Lab Code: R2108875-010

Sample Matrix: Water **Date Collected:** 08/31/21 **Date Received:** 08/31/21

Analysis Method

8260C

Extracted/Digested By

Analyzed By FNAEGLER

Sample Name: MW-19 **Date Collected:** 08/31/21

Lab Code: R2108875-011

Sample Matrix: Water **Date Received:** 08/31/21

Analysis Method

8260C

Extracted/Digested By

Analyzed By

FNAEGLER

Sample Name: MW-19

Lab Code:

R2108875-011.R01

Sample Matrix: Water **Date Collected:** 08/31/21

Date Received: 08/31/21

Analysis Method

8260C

Extracted/Digested By

Analyzed By

FNAEGLER

Sample Name: MW-24S

Lab Code:

R2108875-012

Sample Matrix:

Water

Date Collected: 08/31/21

Date Received: 08/31/21

Analysis Method

8260C

Extracted/Digested By

Analyzed By FNAEGLER

Sample Name: SW-29

Lab Code:

R2108875-013

Water Sample Matrix:

Date Collected: 08/31/21 **Date Received:** 08/31/21

Analysis Method

8260C

Extracted/Digested By

Analyzed By

FNAEGLER

Printed 9/13/2021 3:13:48 PM

Superset Reference:21-0000602870 rev 00

Analyst Summary report

Client: Xerox Corporation USA

Project: Bldg 801 Area Wells/

Sample Name: SW-34

Lab Code: R2108875-014

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: SW-35 Date Collected: 08/31/21

Lab Code: R2108875-015 **Date Received:** 08/31/21

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: MW-13S Dup Date Collected: 08/31/21

Lab Code: R2108875-016 Date Received: 08/31/21 Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Sample Name: Trip Blank Date Collected: 08/31/21

Lab Code: R2108875-018 Date Received: 08/31/21

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

8260C FNAEGLER

Service Request: R2108875

Date Collected: 08/31/21

Date Received: 08/31/21

INORGANIC PREPARATION METHODS

The preparation methods associated with this report are found in these tables unless discussed in the case narrative.

Water/Liquid Matrix

Analytical Method	Preparation Method
200.7	200.2
200.8	200.2
6010C	3005A/3010A
6020A	ILM05.3
9034 Sulfide Acid Soluble	9030B
SM 4500-CN-E Residual Cyanide	SM 4500-CN-G
SM 4500-CN-E WAD Cyanide	SM 4500-CN-I

Solid/Soil/Non-Aqueous Matrix

Analytical Method	Preparation
	Method
6010C	3050B
6020A	3050B
6010C TCLP (1311)	3005A/3010A
extract	
6010 SPLP (1312) extract	3005A/3010A
7199	3060A
300.0 Anions/ 350.1/	DI extraction
353.2/ SM 2320B/ SM	
5210B/ 9056A Anions	
For analytical methods not listed,	
method is the same as the analytic	cal method
1 1616161106	

Sample Results

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Analytical Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Collected:08/31/21 12:50

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 VE-6
 Units: ug/L

 Lab Code:
 R2108875-001
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	1000 U	1000	100	09/07/21 20:32	
Benzene	500 U	500	100	09/07/21 20:32	
Bromodichloromethane	500 U	500	100	09/07/21 20:32	
Bromoform	500 U	500	100	09/07/21 20:32	
Bromomethane	500 U	500	100	09/07/21 20:32	
2-Butanone (MEK)	1000 U	1000	100	09/07/21 20:32	
Carbon Disulfide	1000 U	1000	100	09/07/21 20:32	
Carbon Tetrachloride	500 U	500	100	09/07/21 20:32	
Chlorobenzene	500 U	500	100	09/07/21 20:32	
Chloroethane	500 U	500	100	09/07/21 20:32	
Chloroform	500 U	500	100	09/07/21 20:32	
Chloromethane	500 U	500	100	09/07/21 20:32	
Dibromochloromethane	500 U	500	100	09/07/21 20:32	
1,1-Dichloroethane	810	500	100	09/07/21 20:32	
1,2-Dichloroethane	500 U	500	100	09/07/21 20:32	
1,1-Dichloroethene	630	500	100	09/07/21 20:32	
cis-1,2-Dichloroethene	19000	500	100	09/07/21 20:32	
trans-1,2-Dichloroethene	500 U	500	100	09/07/21 20:32	
1,2-Dichloropropane	500 U	500	100	09/07/21 20:32	
cis-1,3-Dichloropropene	500 U	500	100	09/07/21 20:32	
trans-1,3-Dichloropropene	500 U	500	100	09/07/21 20:32	
Ethylbenzene	500 U	500	100	09/07/21 20:32	
2-Hexanone	1000 U	1000	100	09/07/21 20:32	
Methylene Chloride	500 U	500	100	09/07/21 20:32	
4-Methyl-2-pentanone (MIBK)	1000 U	1000	100	09/07/21 20:32	
Styrene	500 U	500	100	09/07/21 20:32	
1,1,2,2-Tetrachloroethane	500 U	500	100	09/07/21 20:32	
Tetrachloroethene	500 U	500	100	09/07/21 20:32	
Toluene	500 U	500	100	09/07/21 20:32	
1,1,1-Trichloroethane	810	500	100	09/07/21 20:32	
1,1,2-Trichloroethane	500 U	500	100	09/07/21 20:32	
Trichloroethene	500 U	500	100	09/07/21 20:32	
Vinyl Chloride	3400	500	100	09/07/21 20:32	
o-Xylene	500 U	500	100	09/07/21 20:32	
m,p-Xylenes	500 U	500	100	09/07/21 20:32	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 12:50

Sample Matrix: Water Date Received: 08/31/21 15:40

Sample Name: VE-6 Units: ug/L

Lab Code: R2108875-001 **Basis:** NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	98	85 - 122	09/07/21 20:32	
Toluene-d8	101	87 - 121	09/07/21 20:32	
Dibromofluoromethane	99	80 - 116	09/07/21 20:32	

Analytical Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Collected:08/31/21 13:40

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 VE-10
 Units: ug/L

 Lab Code:
 R2108875-002
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	1000 U	1000	100	09/08/21 22:17	
Benzene	500 U	500	100	09/08/21 22:17	
Bromodichloromethane	500 U	500	100	09/08/21 22:17	
Bromoform	500 U	500	100	09/08/21 22:17	
Bromomethane	500 U	500	100	09/08/21 22:17	
2-Butanone (MEK)	1000 U	1000	100	09/08/21 22:17	
Carbon Disulfide	1000 U	1000	100	09/08/21 22:17	
Carbon Tetrachloride	500 U	500	100	09/08/21 22:17	
Chlorobenzene	500 U	500	100	09/08/21 22:17	
Chloroethane	2400 D	500	100	09/08/21 22:17	
Chloroform	500 U	500	100	09/08/21 22:17	
Chloromethane	500 U	500	100	09/08/21 22:17	
Dibromochloromethane	500 U	500	100	09/08/21 22:17	
1,1-Dichloroethane	1000 D	500	100	09/08/21 22:17	
1,2-Dichloroethane	500 U	500	100	09/08/21 22:17	
1,1-Dichloroethene	500 U	500	100	09/08/21 22:17	
cis-1,2-Dichloroethene	1700 D	500	100	09/08/21 22:17	
trans-1,2-Dichloroethene	500 U	500	100	09/08/21 22:17	
1,2-Dichloropropane	500 U	500	100	09/08/21 22:17	
cis-1,3-Dichloropropene	500 U	500	100	09/08/21 22:17	
trans-1,3-Dichloropropene	500 U	500	100	09/08/21 22:17	
Ethylbenzene	500 U	500	100	09/08/21 22:17	
2-Hexanone	1000 U	1000	100	09/08/21 22:17	
Methylene Chloride	500 U	500	100	09/08/21 22:17	
4-Methyl-2-pentanone (MIBK)	1000 U	1000	100	09/08/21 22:17	
Styrene	500 U	500	100	09/08/21 22:17	
1,1,2,2-Tetrachloroethane	500 U	500	100	09/08/21 22:17	
Tetrachloroethene	500 U	500	100	09/08/21 22:17	
Toluene	500 U	500	100	09/08/21 22:17	
1,1,1-Trichloroethane	500 U	500	100	09/08/21 22:17	
1,1,2-Trichloroethane	500 U	500	100	09/08/21 22:17	
Trichloroethene	500 U	500	100	09/08/21 22:17	
Vinyl Chloride	19000 D	500	100	09/08/21 22:17	
o-Xylene	500 U	500	100	09/08/21 22:17	
m,p-Xylenes	500 U	500	100	09/08/21 22:17	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 13:40

Sample Matrix: Water Date Received: 08/31/21 15:40

Sample Name: VE-10 Units: ug/L

Lab Code: R2108875-002 **Basis:** NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	09/08/21 22:17	
Toluene-d8	102	87 - 121	09/08/21 22:17	
Dibromofluoromethane	103	80 - 116	09/08/21 22:17	

Analytical Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Collected:08/31/21 13:55

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 VE-12
 Units: ug/L

 Lab Code:
 R2108875-003
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	500 U	500	50	09/07/21 20:10	
Benzene	250 U	250	50	09/07/21 20:10	
Bromodichloromethane	250 U	250	50	09/07/21 20:10	
Bromoform	250 U	250	50	09/07/21 20:10	
Bromomethane	250 U	250	50	09/07/21 20:10	
2-Butanone (MEK)	590	500	50	09/07/21 20:10	
Carbon Disulfide	500 U	500	50	09/07/21 20:10	
Carbon Tetrachloride	250 U	250	50	09/07/21 20:10	
Chlorobenzene	250 U	250	50	09/07/21 20:10	
Chloroethane	6600	250	50	09/07/21 20:10	
Chloroform	250 U	250	50	09/07/21 20:10	
Chloromethane	250 U	250	50	09/07/21 20:10	
Dibromochloromethane	250 U	250	50	09/07/21 20:10	
1,1-Dichloroethane	1000	250	50	09/07/21 20:10	
1,2-Dichloroethane	250 U	250	50	09/07/21 20:10	
1,1-Dichloroethene	250 U	250	50	09/07/21 20:10	
cis-1,2-Dichloroethene	1100	250	50	09/07/21 20:10	
trans-1,2-Dichloroethene	250 U	250	50	09/07/21 20:10	
1,2-Dichloropropane	250 U	250	50	09/07/21 20:10	
cis-1,3-Dichloropropene	250 U	250	50	09/07/21 20:10	
trans-1,3-Dichloropropene	250 U	250	50	09/07/21 20:10	
Ethylbenzene	250 U	250	50	09/07/21 20:10	
2-Hexanone	500 U	500	50	09/07/21 20:10	
Methylene Chloride	250 U	250	50	09/07/21 20:10	
4-Methyl-2-pentanone (MIBK)	500 U	500	50	09/07/21 20:10	
Styrene	250 U	250	50	09/07/21 20:10	
1,1,2,2-Tetrachloroethane	250 U	250	50	09/07/21 20:10	
Tetrachloroethene	250 U	250	50	09/07/21 20:10	
Toluene	410	250	50	09/07/21 20:10	
1,1,1-Trichloroethane	250 U	250	50	09/07/21 20:10	
1,1,2-Trichloroethane	250 U	250	50	09/07/21 20:10	
Trichloroethene	250 U	250	50	09/07/21 20:10	
Vinyl Chloride	4900	250	50	09/07/21 20:10	
o-Xylene	250 U	250	50	09/07/21 20:10	
m,p-Xylenes	250 U	250	50	09/07/21 20:10	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 13:55

Sample Matrix: Water Date Received: 08/31/21 15:40

Sample Name: VE-12 Units: ug/L

Lab Code: R2108875-003 **Basis:** NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	09/07/21 20:10	
Toluene-d8	94	87 - 121	09/07/21 20:10	
Dibromofluoromethane	92	80 - 116	09/07/21 20:10	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875 **Date Collected:** 08/31/21 13:05 **Project:** Bldg 801 Area Wells

Sample Matrix: Water **Date Received:** 08/31/21 15:40

Sample Name: VE-15 Units: ug/L Lab Code: R2108875-004

Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	25 U	25	2.5	09/07/21 19:05	
Benzene	13 U	13	2.5	09/07/21 19:05	
Bromodichloromethane	13 U	13	2.5	09/07/21 19:05	
Bromoform	13 U	13	2.5	09/07/21 19:05	
Bromomethane	13 U	13	2.5	09/07/21 19:05	
2-Butanone (MEK)	25 U	25	2.5	09/07/21 19:05	
Carbon Disulfide	25 U	25	2.5	09/07/21 19:05	
Carbon Tetrachloride	13 U	13	2.5	09/07/21 19:05	
Chlorobenzene	13 U	13	2.5	09/07/21 19:05	
Chloroethane	280	13	2.5	09/07/21 19:05	
Chloroform	13 U	13	2.5	09/07/21 19:05	
Chloromethane	13 U	13	2.5	09/07/21 19:05	
Dibromochloromethane	13 U	13	2.5	09/07/21 19:05	
1,1-Dichloroethane	92	13	2.5	09/07/21 19:05	
1,2-Dichloroethane	13 U	13	2.5	09/07/21 19:05	
1,1-Dichloroethene	13 U	13	2.5	09/07/21 19:05	
cis-1,2-Dichloroethene	13 U	13	2.5	09/07/21 19:05	
trans-1,2-Dichloroethene	13 U	13	2.5	09/07/21 19:05	
1,2-Dichloropropane	13 U	13	2.5	09/07/21 19:05	
cis-1,3-Dichloropropene	13 U	13	2.5	09/07/21 19:05	
trans-1,3-Dichloropropene	13 U	13	2.5	09/07/21 19:05	
Ethylbenzene	13 U	13	2.5	09/07/21 19:05	
2-Hexanone	25 U	25	2.5	09/07/21 19:05	
Methylene Chloride	13 U	13	2.5	09/07/21 19:05	
4-Methyl-2-pentanone (MIBK)	25 U	25	2.5	09/07/21 19:05	
Styrene	13 U	13	2.5	09/07/21 19:05	
1,1,2,2-Tetrachloroethane	13 U	13	2.5	09/07/21 19:05	
Tetrachloroethene	13 U	13	2.5	09/07/21 19:05	
Toluene	13 U	13	2.5	09/07/21 19:05	
1,1,1-Trichloroethane	13 U	13	2.5	09/07/21 19:05	
1,1,2-Trichloroethane	13 U	13	2.5	09/07/21 19:05	
Trichloroethene	13 U	13	2.5	09/07/21 19:05	
Vinyl Chloride	13 U	13	2.5	09/07/21 19:05	
o-Xylene	13 U	13	2.5	09/07/21 19:05	
m,p-Xylenes	13 U	13	2.5	09/07/21 19:05	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 13:05

Sample Matrix: Water Date Received: 08/31/21 15:40

Sample Name: VE-15 Units: ug/L

Lab Code: R2108875-004 **Basis:** NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	95	85 - 122	09/07/21 19:05	
Toluene-d8	99	87 - 121	09/07/21 19:05	
Dibromofluoromethane	99	80 - 116	09/07/21 19:05	

Analytical Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Collected:08/31/21 13:25

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 RW-4
 Units: ug/L

 Lab Code:
 R2108875-005
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/21 17:37	
Benzene	5.0 U	5.0	1	09/07/21 17:37	
Bromodichloromethane	5.0 U	5.0	1	09/07/21 17:37	
Bromoform	5.0 U	5.0	1	09/07/21 17:37	
Bromomethane	5.0 U	5.0	1	09/07/21 17:37	
2-Butanone (MEK)	10 U	10	1	09/07/21 17:37	
Carbon Disulfide	10 U	10	1	09/07/21 17:37	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/21 17:37	
Chlorobenzene	5.0 U	5.0	1	09/07/21 17:37	
Chloroethane	5.0 U	5.0	1	09/07/21 17:37	
Chloroform	5.0 U	5.0	1	09/07/21 17:37	
Chloromethane	5.0 U	5.0	1	09/07/21 17:37	
Dibromochloromethane	5.0 U	5.0	1	09/07/21 17:37	
1,1-Dichloroethane	16	5.0	1	09/07/21 17:37	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/21 17:37	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/21 17:37	
cis-1,2-Dichloroethene	10	5.0	1	09/07/21 17:37	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/21 17:37	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/21 17:37	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/21 17:37	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/21 17:37	
Ethylbenzene	5.0 U	5.0	1	09/07/21 17:37	
2-Hexanone	10 U	10	1	09/07/21 17:37	
Methylene Chloride	5.0 U	5.0	1	09/07/21 17:37	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/21 17:37	
Styrene	5.0 U	5.0	1	09/07/21 17:37	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/21 17:37	
Tetrachloroethene	5.0 U	5.0	1	09/07/21 17:37	
Toluene	5.0 U	5.0	1	09/07/21 17:37	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/21 17:37	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/21 17:37	
Trichloroethene	8.3	5.0	1	09/07/21 17:37	
Vinyl Chloride	8.1	5.0	1	09/07/21 17:37	
o-Xylene	5.0 U	5.0	1	09/07/21 17:37	
m,p-Xylenes	5.0 U	5.0	1	09/07/21 17:37	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 13:25

Sample Matrix: Water Date Received: 08/31/21 15:40

Sample Name: RW-4 Units: ug/L

Lab Code: R2108875-005 **Basis:** NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	97	85 - 122	09/07/21 17:37	
Toluene-d8	100	87 - 121	09/07/21 17:37	
Dibromofluoromethane	100	80 - 116	09/07/21 17:37	

Analytical Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Collected:08/31/21 14:15

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 MW-2
 Units: ug/L

 Lab Code:
 R2108875-006
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/21 17:59	
Benzene	5.0 U	5.0	1	09/07/21 17:59	
Bromodichloromethane	5.0 U	5.0	1	09/07/21 17:59	
Bromoform	5.0 U	5.0	1	09/07/21 17:59	
Bromomethane	5.0 U	5.0	1	09/07/21 17:59	
2-Butanone (MEK)	10 U	10	1	09/07/21 17:59	
Carbon Disulfide	10 U	10	1	09/07/21 17:59	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/21 17:59	
Chlorobenzene	5.0 U	5.0	1	09/07/21 17:59	
Chloroethane	5.0 U	5.0	1	09/07/21 17:59	
Chloroform	5.0 U	5.0	1	09/07/21 17:59	
Chloromethane	5.0 U	5.0	1	09/07/21 17:59	
Dibromochloromethane	5.0 U	5.0	1	09/07/21 17:59	
1,1-Dichloroethane	5.0 U	5.0	1	09/07/21 17:59	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/21 17:59	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/21 17:59	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/07/21 17:59	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/21 17:59	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/21 17:59	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/21 17:59	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/21 17:59	
Ethylbenzene	5.0 U	5.0	1	09/07/21 17:59	
2-Hexanone	10 U	10	1	09/07/21 17:59	
Methylene Chloride	5.0 U	5.0	1	09/07/21 17:59	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/21 17:59	
Styrene	5.0 U	5.0	1	09/07/21 17:59	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/21 17:59	
Tetrachloroethene	5.0 U	5.0	1	09/07/21 17:59	
Toluene	5.0 U	5.0	1	09/07/21 17:59	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/21 17:59	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/21 17:59	
Trichloroethene	5.0 U	5.0	1	09/07/21 17:59	
Vinyl Chloride	5.0 U	5.0	1	09/07/21 17:59	
o-Xylene	5.0 U	5.0	1	09/07/21 17:59	
m,p-Xylenes	5.0 U	5.0	1	09/07/21 17:59	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 14:15

Sample Matrix: Water Date Received: 08/31/21 15:40

Sample Name: MW-2 Units: ug/L

Lab Code: R2108875-006 **Basis:** NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	09/07/21 17:59	
Toluene-d8	95	87 - 121	09/07/21 17:59	
Dibromofluoromethane	95	80 - 116	09/07/21 17:59	

Analytical Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Collected:08/31/21 12:35

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 MW-10
 Units: ug/L

 Lab Code:
 R2108875-007
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	50 U	50	5	09/07/21 19:26	
Benzene	25 U	25	5	09/07/21 19:26	
Bromodichloromethane	25 U	25	5	09/07/21 19:26	
Bromoform	25 U	25	5	09/07/21 19:26	
Bromomethane	25 U	25	5	09/07/21 19:26	
2-Butanone (MEK)	50 U	50	5	09/07/21 19:26	
Carbon Disulfide	50 U	50	5	09/07/21 19:26	
Carbon Tetrachloride	25 U	25	5	09/07/21 19:26	
Chlorobenzene	25 U	25	5	09/07/21 19:26	
Chloroethane	25 U	25	5	09/07/21 19:26	
Chloroform	25 U	25	5	09/07/21 19:26	
Chloromethane	25 U	25	5	09/07/21 19:26	
Dibromochloromethane	25 U	25	5	09/07/21 19:26	
1,1-Dichloroethane	110	25	5	09/07/21 19:26	
1,2-Dichloroethane	25 U	25	5	09/07/21 19:26	
1,1-Dichloroethene	25 U	25	5	09/07/21 19:26	
cis-1,2-Dichloroethene	560	25	5	09/07/21 19:26	
trans-1,2-Dichloroethene	25 U	25	5	09/07/21 19:26	
1,2-Dichloropropane	25 U	25	5	09/07/21 19:26	
cis-1,3-Dichloropropene	25 U	25	5	09/07/21 19:26	
trans-1,3-Dichloropropene	25 U	25	5	09/07/21 19:26	
Ethylbenzene	25 U	25	5	09/07/21 19:26	
2-Hexanone	50 U	50	5	09/07/21 19:26	
Methylene Chloride	25 U	25	5	09/07/21 19:26	
4-Methyl-2-pentanone (MIBK)	50 U	50	5	09/07/21 19:26	
Styrene	25 U	25	5	09/07/21 19:26	
1,1,2,2-Tetrachloroethane	25 U	25	5	09/07/21 19:26	
Tetrachloroethene	25 U	25	5	09/07/21 19:26	
Toluene	25 U	25	5	09/07/21 19:26	
1,1,1-Trichloroethane	29	25	5	09/07/21 19:26	
1,1,2-Trichloroethane	25 U	25	5	09/07/21 19:26	
Trichloroethene	74	25	5	09/07/21 19:26	
Vinyl Chloride	190	25	5	09/07/21 19:26	
o-Xylene	25 U	25	5	09/07/21 19:26	
m,p-Xylenes	25 U	25	5	09/07/21 19:26	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 12:35

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 MW-10
 Units: ug/L

 Lab Code:
 R2108875-007
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	09/07/21 19:26	
Toluene-d8	97	87 - 121	09/07/21 19:26	
Dibromofluoromethane	97	80 - 116	09/07/21 19:26	

Analytical Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Collected:08/31/21 09:55

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 MW-13S
 Units: ug/L

 Lab Code:
 R2108875-008
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/21 18:21	
Benzene	5.0 U	5.0	1	09/07/21 18:21	
Bromodichloromethane	5.0 U	5.0	1	09/07/21 18:21	
Bromoform	5.0 U	5.0	1	09/07/21 18:21	
Bromomethane	5.0 U	5.0	1	09/07/21 18:21	
2-Butanone (MEK)	10 U	10	1	09/07/21 18:21	
Carbon Disulfide	10 U	10	1	09/07/21 18:21	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/21 18:21	
Chlorobenzene	5.0 U	5.0	1	09/07/21 18:21	
Chloroethane	5.0 U	5.0	1	09/07/21 18:21	
Chloroform	5.0 U	5.0	1	09/07/21 18:21	
Chloromethane	5.0 U	5.0	1	09/07/21 18:21	
Dibromochloromethane	5.0 U	5.0	1	09/07/21 18:21	
1,1-Dichloroethane	5.0 U	5.0	1	09/07/21 18:21	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/21 18:21	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/21 18:21	
cis-1,2-Dichloroethene	5.3	5.0	1	09/07/21 18:21	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/21 18:21	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/21 18:21	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/21 18:21	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/21 18:21	
Ethylbenzene	5.0 U	5.0	1	09/07/21 18:21	
2-Hexanone	10 U	10	1	09/07/21 18:21	
Methylene Chloride	5.0 U	5.0	1	09/07/21 18:21	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/21 18:21	
Styrene	5.0 U	5.0	1	09/07/21 18:21	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/21 18:21	
Tetrachloroethene	5.0 U	5.0	1	09/07/21 18:21	
Toluene	5.0 U	5.0	1	09/07/21 18:21	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/21 18:21	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/21 18:21	
Trichloroethene	5.0 U	5.0	1	09/07/21 18:21	
Vinyl Chloride	5.0 U	5.0	1	09/07/21 18:21	
o-Xylene	5.0 U	5.0	1	09/07/21 18:21	
m,p-Xylenes	5.0 U	5.0	11	09/07/21 18:21	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 09:55

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 MW-13S
 Units: ug/L

 Lab Code:
 R2108875-008
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	96	85 - 122	09/07/21 18:21	
Toluene-d8	99	87 - 121	09/07/21 18:21	
Dibromofluoromethane	99	80 - 116	09/07/21 18:21	

Analytical Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Collected:08/31/21 10:35

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 MW-16
 Units: ug/L

 Lab Code:
 R2108875-009
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/21 18:43	
Benzene	5.0 U	5.0	1	09/07/21 18:43	
Bromodichloromethane	5.0 U	5.0	1	09/07/21 18:43	
Bromoform	5.0 U	5.0	1	09/07/21 18:43	
Bromomethane	5.0 U	5.0	1	09/07/21 18:43	
2-Butanone (MEK)	10 U	10	1	09/07/21 18:43	
Carbon Disulfide	10 U	10	1	09/07/21 18:43	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/21 18:43	
Chlorobenzene	5.0 U	5.0	1	09/07/21 18:43	
Chloroethane	5.0 U	5.0	1	09/07/21 18:43	
Chloroform	5.0 U	5.0	1	09/07/21 18:43	
Chloromethane	5.0 U	5.0	1	09/07/21 18:43	
Dibromochloromethane	5.0 U	5.0	1	09/07/21 18:43	
1,1-Dichloroethane	5.0 U	5.0	1	09/07/21 18:43	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/21 18:43	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/21 18:43	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/07/21 18:43	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/21 18:43	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/21 18:43	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/21 18:43	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/21 18:43	
Ethylbenzene	5.0 U	5.0	1	09/07/21 18:43	
2-Hexanone	10 U	10	1	09/07/21 18:43	
Methylene Chloride	5.0 U	5.0	1	09/07/21 18:43	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/21 18:43	
Styrene	5.0 U	5.0	1	09/07/21 18:43	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/21 18:43	
Tetrachloroethene	5.0 U	5.0	1	09/07/21 18:43	
Toluene	5.0 U	5.0	1	09/07/21 18:43	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/21 18:43	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/21 18:43	
Trichloroethene	5.0 U	5.0	1	09/07/21 18:43	
Vinyl Chloride	5.0 U	5.0	1	09/07/21 18:43	
o-Xylene	5.0 U	5.0	1	09/07/21 18:43	
m,p-Xylenes	5.0 U	5.0	1	09/07/21 18:43	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 10:35

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 MW-16
 Units: ug/L

 Lab Code:
 R2108875-009
 Basis: NA

Volatile Organic Compounds by GC/MS

Analysis Method: 8260C **Prep Method:** EPA 5030C

Surrogate Name % Rec Q **Control Limits Date Analyzed** 09/07/21 18:43 100 85 - 122 4-Bromofluorobenzene 103 87 - 121 09/07/21 18:43 Toluene-d8 80 - 116 09/07/21 18:43 102 Dibromofluoromethane

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875 **Date Collected:** 08/31/21 12:15 **Project:** Bldg 801 Area Wells **Sample Matrix:** Water

Date Received: 08/31/21 15:40

Sample Name: MW-18S Units: ug/L Lab Code: R2108875-010 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/08/21 19:44	
Benzene	5.0 U	5.0	1	09/08/21 19:44	
Bromodichloromethane	5.0 U	5.0	1	09/08/21 19:44	
Bromoform	5.0 U	5.0	1	09/08/21 19:44	
Bromomethane	5.0 U	5.0	1	09/08/21 19:44	
2-Butanone (MEK)	10 U	10	1	09/08/21 19:44	
Carbon Disulfide	10 U	10	1	09/08/21 19:44	
Carbon Tetrachloride	5.0 U	5.0	1	09/08/21 19:44	
Chlorobenzene	5.0 U	5.0	1	09/08/21 19:44	
Chloroethane	5.0 U	5.0	1	09/08/21 19:44	
Chloroform	5.0 U	5.0	1	09/08/21 19:44	
Chloromethane	5.0 U	5.0	1	09/08/21 19:44	
Dibromochloromethane	5.0 U	5.0	1	09/08/21 19:44	
1,1-Dichloroethane	5.0 U	5.0	1	09/08/21 19:44	
1,2-Dichloroethane	5.0 U	5.0	1	09/08/21 19:44	
1,1-Dichloroethene	5.0 U	5.0	1	09/08/21 19:44	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/08/21 19:44	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/08/21 19:44	
1,2-Dichloropropane	5.0 U	5.0	1	09/08/21 19:44	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 19:44	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 19:44	
Ethylbenzene	5.0 U	5.0	1	09/08/21 19:44	
2-Hexanone	10 U	10	1	09/08/21 19:44	
Methylene Chloride	5.0 U	5.0	1	09/08/21 19:44	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/08/21 19:44	
Styrene	5.0 U	5.0	1	09/08/21 19:44	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/08/21 19:44	
Tetrachloroethene	5.0 U	5.0	1	09/08/21 19:44	
Toluene	5.0 U	5.0	1	09/08/21 19:44	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/08/21 19:44	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/08/21 19:44	
Trichloroethene	5.0 U	5.0	1	09/08/21 19:44	
Vinyl Chloride	5.0 U	5.0	1	09/08/21 19:44	
o-Xylene	5.0 U	5.0	1	09/08/21 19:44	
m,p-Xylenes	5.0 U	5.0	1	09/08/21 19:44	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 12:15

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 MW-18S
 Units: ug/L

 Lab Code:
 R2108875-010
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	09/08/21 19:44	
Toluene-d8	102	87 - 121	09/08/21 19:44	
Dibromofluoromethane	101	80 - 116	09/08/21 19:44	

Analytical Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Collected:08/31/21 10:20

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 MW-19
 Units: ug/L

 Lab Code:
 R2108875-011
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	50 U	50	5	09/09/21 13:10	
Benzene	25 U	25	5	09/09/21 13:10	
Bromodichloromethane	25 U	25	5	09/09/21 13:10	
Bromoform	25 U	25	5	09/09/21 13:10	
Bromomethane	25 U	25	5	09/09/21 13:10	
2-Butanone (MEK)	50 U	50	5	09/09/21 13:10	
Carbon Disulfide	50 U	50	5	09/09/21 13:10	
Carbon Tetrachloride	25 U	25	5	09/09/21 13:10	
Chlorobenzene	25 U	25	5	09/09/21 13:10	
Chloroethane	25 U	25	5	09/09/21 13:10	
Chloroform	25 U	25	5	09/09/21 13:10	
Chloromethane	25 U	25	5	09/09/21 13:10	
Dibromochloromethane	25 U	25	5	09/09/21 13:10	
1,1-Dichloroethane	85 D	25	5	09/09/21 13:10	
1,2-Dichloroethane	25 U	25	5	09/09/21 13:10	
1,1-Dichloroethene	25 U	25	5	09/09/21 13:10	
cis-1,2-Dichloroethene	580 D	25	5	09/09/21 13:10	
trans-1,2-Dichloroethene	25 U	25	5	09/09/21 13:10	
1,2-Dichloropropane	25 U	25	5	09/09/21 13:10	
cis-1,3-Dichloropropene	25 U	25	5	09/09/21 13:10	
trans-1,3-Dichloropropene	25 U	25	5	09/09/21 13:10	
Ethylbenzene	25 U	25	5	09/09/21 13:10	
2-Hexanone	50 U	50	5	09/09/21 13:10	
Methylene Chloride	25 U	25	5	09/09/21 13:10	
4-Methyl-2-pentanone (MIBK)	50 U	50	5	09/09/21 13:10	
Styrene	25 U	25	5	09/09/21 13:10	
1,1,2,2-Tetrachloroethane	25 U	25	5	09/09/21 13:10	
Tetrachloroethene	25 U	25	5	09/09/21 13:10	
Toluene	25 U	25	5	09/09/21 13:10	
1,1,1-Trichloroethane	45 D	25	5	09/09/21 13:10	
1,1,2-Trichloroethane	25 U	25	5	09/09/21 13:10	
Trichloroethene	170 D	25	5	09/09/21 13:10	
Vinyl Chloride	25 U	25	5	09/09/21 13:10	
o-Xylene	25 U	25	5	09/09/21 13:10	
m,p-Xylenes	25 U	25	5	09/09/21 13:10	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 10:20

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 MW-19
 Units: ug/L

 Lab Code:
 R2108875-011
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	94	85 - 122	09/09/21 13:10	
Toluene-d8	100	87 - 121	09/09/21 13:10	
Dibromofluoromethane	99	80 - 116	09/09/21 13:10	

Analytical Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Collected:08/31/21 14:50

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 MW-24S
 Units: ug/L

 Lab Code:
 R2108875-012
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/08/21 20:28	
Benzene	5.0 U	5.0	1	09/08/21 20:28	
Bromodichloromethane	5.0 U	5.0	1	09/08/21 20:28	
Bromoform	5.0 U	5.0	1	09/08/21 20:28	
Bromomethane	5.0 U	5.0	1	09/08/21 20:28	
2-Butanone (MEK)	10 U	10	1	09/08/21 20:28	
Carbon Disulfide	10 U	10	1	09/08/21 20:28	
Carbon Tetrachloride	5.0 U	5.0	1	09/08/21 20:28	
Chlorobenzene	5.0 U	5.0	1	09/08/21 20:28	
Chloroethane	5.0 U	5.0	1	09/08/21 20:28	
Chloroform	5.0 U	5.0	1	09/08/21 20:28	
Chloromethane	5.0 U	5.0	1	09/08/21 20:28	
Dibromochloromethane	5.0 U	5.0	1	09/08/21 20:28	
1,1-Dichloroethane	5.0 U	5.0	1	09/08/21 20:28	
1,2-Dichloroethane	5.0 U	5.0	1	09/08/21 20:28	
1,1-Dichloroethene	5.0 U	5.0	1	09/08/21 20:28	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/08/21 20:28	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/08/21 20:28	
1,2-Dichloropropane	5.0 U	5.0	1	09/08/21 20:28	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 20:28	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 20:28	
Ethylbenzene	5.0 U	5.0	1	09/08/21 20:28	
2-Hexanone	10 U	10	1	09/08/21 20:28	
Methylene Chloride	5.0 U	5.0	1	09/08/21 20:28	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/08/21 20:28	
Styrene	5.0 U	5.0	1	09/08/21 20:28	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/08/21 20:28	
Tetrachloroethene	5.0 U	5.0	1	09/08/21 20:28	
Toluene	5.0 U	5.0	1	09/08/21 20:28	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/08/21 20:28	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/08/21 20:28	
Trichloroethene	5.0 U	5.0	1	09/08/21 20:28	
Vinyl Chloride	5.0 U	5.0	1	09/08/21 20:28	
o-Xylene	5.0 U	5.0	1	09/08/21 20:28	
m,p-Xylenes	5.0 U	5.0	11	09/08/21 20:28	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 14:50

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 MW-24S
 Units: ug/L

 Lab Code:
 R2108875-012
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	92	85 - 122	09/08/21 20:28	
Toluene-d8	99	87 - 121	09/08/21 20:28	
Dibromofluoromethane	99	80 - 116	09/08/21 20:28	

Analytical Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Collected:08/31/21 11:05

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 SW-29
 Units: ug/L

 Lab Code:
 R2108875-013
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/08/21 20:50	
Benzene	5.0 U	5.0	1	09/08/21 20:50	
Bromodichloromethane	5.0 U	5.0	1	09/08/21 20:50	
Bromoform	5.0 U	5.0	1	09/08/21 20:50	
Bromomethane	5.0 U	5.0	1	09/08/21 20:50	
2-Butanone (MEK)	10 U	10	1	09/08/21 20:50	
Carbon Disulfide	10 U	10	1	09/08/21 20:50	
Carbon Tetrachloride	5.0 U	5.0	1	09/08/21 20:50	
Chlorobenzene	5.0 U	5.0	1	09/08/21 20:50	
Chloroethane	5.0 U	5.0	1	09/08/21 20:50	
Chloroform	5.0 U	5.0	1	09/08/21 20:50	
Chloromethane	5.0 U	5.0	1	09/08/21 20:50	
Dibromochloromethane	5.0 U	5.0	1	09/08/21 20:50	
1,1-Dichloroethane	5.0 U	5.0	1	09/08/21 20:50	
1,2-Dichloroethane	5.0 U	5.0	1	09/08/21 20:50	
1,1-Dichloroethene	5.0 U	5.0	1	09/08/21 20:50	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/08/21 20:50	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/08/21 20:50	
1,2-Dichloropropane	5.0 U	5.0	1	09/08/21 20:50	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 20:50	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 20:50	
Ethylbenzene	5.0 U	5.0	1	09/08/21 20:50	
2-Hexanone	10 U	10	1	09/08/21 20:50	
Methylene Chloride	5.0 U	5.0	1	09/08/21 20:50	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/08/21 20:50	
Styrene	5.0 U	5.0	1	09/08/21 20:50	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/08/21 20:50	
Tetrachloroethene	5.0 U	5.0	1	09/08/21 20:50	
Toluene	5.0 U	5.0	1	09/08/21 20:50	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/08/21 20:50	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/08/21 20:50	
Trichloroethene	5.0 U	5.0	1	09/08/21 20:50	
Vinyl Chloride	5.0 U	5.0	1	09/08/21 20:50	
o-Xylene	5.0 U	5.0	1	09/08/21 20:50	
m,p-Xylenes	5.0 U	5.0	1	09/08/21 20:50	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 11:05

Sample Matrix: Water Date Received: 08/31/21 15:40

Sample Name: SW-29 Units: ug/L

Lab Code: R2108875-013 **Basis:** NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	91	85 - 122	09/08/21 20:50	
Toluene-d8	101	87 - 121	09/08/21 20:50	
Dibromofluoromethane	100	80 - 116	09/08/21 20:50	

Analytical Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Collected:08/31/21 11:20

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 SW-34
 Units: ug/L

 Lab Code:
 R2108875-014
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/08/21 21:11	
Benzene	5.0 U	5.0	1	09/08/21 21:11	
Bromodichloromethane	5.0 U	5.0	1	09/08/21 21:11	
Bromoform	5.0 U	5.0	1	09/08/21 21:11	
Bromomethane	5.0 U	5.0	1	09/08/21 21:11	
2-Butanone (MEK)	10 U	10	1	09/08/21 21:11	
Carbon Disulfide	10 U	10	1	09/08/21 21:11	
Carbon Tetrachloride	5.0 U	5.0	1	09/08/21 21:11	
Chlorobenzene	5.0 U	5.0	1	09/08/21 21:11	
Chloroethane	5.0 U	5.0	1	09/08/21 21:11	
Chloroform	5.0 U	5.0	1	09/08/21 21:11	
Chloromethane	5.0 U	5.0	1	09/08/21 21:11	
Dibromochloromethane	5.0 U	5.0	1	09/08/21 21:11	
1,1-Dichloroethane	5.0 U	5.0	1	09/08/21 21:11	
1,2-Dichloroethane	5.0 U	5.0	1	09/08/21 21:11	
1,1-Dichloroethene	5.0 U	5.0	1	09/08/21 21:11	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/08/21 21:11	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/08/21 21:11	
1,2-Dichloropropane	5.0 U	5.0	1	09/08/21 21:11	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 21:11	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 21:11	
Ethylbenzene	5.0 U	5.0	1	09/08/21 21:11	
2-Hexanone	10 U	10	1	09/08/21 21:11	
Methylene Chloride	5.0 U	5.0	1	09/08/21 21:11	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/08/21 21:11	
Styrene	5.0 U	5.0	1	09/08/21 21:11	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/08/21 21:11	
Tetrachloroethene	5.0 U	5.0	1	09/08/21 21:11	
Toluene	5.0 U	5.0	1	09/08/21 21:11	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/08/21 21:11	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/08/21 21:11	
Trichloroethene	5.0 U	5.0	1	09/08/21 21:11	
Vinyl Chloride	5.0 U	5.0	1	09/08/21 21:11	
o-Xylene	5.0 U	5.0	1	09/08/21 21:11	
m,p-Xylenes	5.0 U	5.0	1	09/08/21 21:11	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 11:20

Sample Matrix: Water Date Received: 08/31/21 15:40

Sample Name: SW-34 Units: ug/L

Lab Code: R2108875-014 **Basis:** NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	09/08/21 21:11	
Toluene-d8	99	87 - 121	09/08/21 21:11	
Dibromofluoromethane	98	80 - 116	09/08/21 21:11	

Analytical Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Collected:08/31/21 14:30

Sample Matrix: Water

Date Received: 08/31/21 15:40

 Sample Name:
 SW-35
 Units: ug/L

 Lab Code:
 R2108875-015
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/08/21 21:33	
Benzene	5.0 U	5.0	1	09/08/21 21:33	
Bromodichloromethane	5.0 U	5.0	1	09/08/21 21:33	
Bromoform	5.0 U	5.0	1	09/08/21 21:33	
Bromomethane	5.0 U	5.0	1	09/08/21 21:33	
2-Butanone (MEK)	10 U	10	1	09/08/21 21:33	
Carbon Disulfide	10 U	10	1	09/08/21 21:33	
Carbon Tetrachloride	5.0 U	5.0	1	09/08/21 21:33	
Chlorobenzene	5.0 U	5.0	1	09/08/21 21:33	
Chloroethane	5.0 U	5.0	1	09/08/21 21:33	
Chloroform	5.0 U	5.0	1	09/08/21 21:33	
Chloromethane	5.0 U	5.0	1	09/08/21 21:33	
Dibromochloromethane	5.0 U	5.0	1	09/08/21 21:33	
1,1-Dichloroethane	5.0 U	5.0	1	09/08/21 21:33	
1,2-Dichloroethane	5.0 U	5.0	1	09/08/21 21:33	
1,1-Dichloroethene	5.0 U	5.0	1	09/08/21 21:33	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/08/21 21:33	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/08/21 21:33	
1,2-Dichloropropane	5.0 U	5.0	1	09/08/21 21:33	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 21:33	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 21:33	
Ethylbenzene	5.0 U	5.0	1	09/08/21 21:33	
2-Hexanone	10 U	10	1	09/08/21 21:33	
Methylene Chloride	5.0 U	5.0	1	09/08/21 21:33	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/08/21 21:33	
Styrene	5.0 U	5.0	1	09/08/21 21:33	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/08/21 21:33	
Tetrachloroethene	5.0 U	5.0	1	09/08/21 21:33	
Toluene	5.0 U	5.0	1	09/08/21 21:33	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/08/21 21:33	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/08/21 21:33	
Trichloroethene	5.0 U	5.0	1	09/08/21 21:33	
Vinyl Chloride	5.0 U	5.0	1	09/08/21 21:33	
o-Xylene	5.0 U	5.0	1	09/08/21 21:33	
m,p-Xylenes	5.0 U	5.0	11	09/08/21 21:33	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 14:30

Sample Matrix: Water Date Received: 08/31/21 15:40

Sample Name: SW-35 Units: ug/L

Lab Code: R2108875-015 **Basis:** NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	09/08/21 21:33	
Toluene-d8	102	87 - 121	09/08/21 21:33	
Dibromofluoromethane	100	80 - 116	09/08/21 21:33	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 09:55

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 MW-13S Dup
 Units: ug/L

 Lab Code:
 R2108875-016
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/08/21 21:55	
Benzene	5.0 U	5.0	1	09/08/21 21:55	
Bromodichloromethane	5.0 U	5.0	1	09/08/21 21:55	
Bromoform	5.0 U	5.0	1	09/08/21 21:55	
Bromomethane	5.0 U	5.0	1	09/08/21 21:55	
2-Butanone (MEK)	10 U	10	1	09/08/21 21:55	
Carbon Disulfide	10 U	10	1	09/08/21 21:55	
Carbon Tetrachloride	5.0 U	5.0	1	09/08/21 21:55	
Chlorobenzene	5.0 U	5.0	1	09/08/21 21:55	
Chloroethane	5.0 U	5.0	1	09/08/21 21:55	
Chloroform	5.0 U	5.0	1	09/08/21 21:55	
Chloromethane	5.0 U	5.0	1	09/08/21 21:55	
Dibromochloromethane	5.0 U	5.0	1	09/08/21 21:55	
1,1-Dichloroethane	5.0 U	5.0	1	09/08/21 21:55	
1,2-Dichloroethane	5.0 U	5.0	1	09/08/21 21:55	
1,1-Dichloroethene	5.0 U	5.0	1	09/08/21 21:55	
cis-1,2-Dichloroethene	5.2	5.0	1	09/08/21 21:55	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/08/21 21:55	
1,2-Dichloropropane	5.0 U	5.0	1	09/08/21 21:55	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 21:55	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 21:55	
Ethylbenzene	5.0 U	5.0	1	09/08/21 21:55	
2-Hexanone	10 U	10	1	09/08/21 21:55	
Methylene Chloride	5.0 U	5.0	1	09/08/21 21:55	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/08/21 21:55	
Styrene	5.0 U	5.0	1	09/08/21 21:55	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/08/21 21:55	
Tetrachloroethene	5.0 U	5.0	1	09/08/21 21:55	
Toluene	5.0 U	5.0	1	09/08/21 21:55	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/08/21 21:55	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/08/21 21:55	
Trichloroethene	5.0 U	5.0	1	09/08/21 21:55	
Vinyl Chloride	5.0 U	5.0	1	09/08/21 21:55	
o-Xylene	5.0 U	5.0	1	09/08/21 21:55	
m,p-Xylenes	5.0 U	5.0	1	09/08/21 21:55	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 09:55

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 MW-13S Dup
 Units: ug/L

 Lab Code:
 R2108875-016
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	86	85 - 122	09/08/21 21:55	
Toluene-d8	99	87 - 121	09/08/21 21:55	
Dibromofluoromethane	97	80 - 116	09/08/21 21:55	

Analytical Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Collected:08/31/21 09:55

Sample Matrix: Water

Date Received: 08/31/21 15:40

 Sample Name:
 Trip Blank
 Units: ug/L

 Lab Code:
 R2108875-018
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/08/21 19:22	
Benzene	5.0 U	5.0	1	09/08/21 19:22	
Bromodichloromethane	5.0 U	5.0	1	09/08/21 19:22	
Bromoform	5.0 U	5.0	1	09/08/21 19:22	
Bromomethane	5.0 U	5.0	1	09/08/21 19:22	
2-Butanone (MEK)	10 U	10	1	09/08/21 19:22	
Carbon Disulfide	10 U	10	1	09/08/21 19:22	
Carbon Tetrachloride	5.0 U	5.0	1	09/08/21 19:22	
Chlorobenzene	5.0 U	5.0	1	09/08/21 19:22	
Chloroethane	5.0 U	5.0	1	09/08/21 19:22	
Chloroform	5.0 U	5.0	1	09/08/21 19:22	
Chloromethane	5.0 U	5.0	1	09/08/21 19:22	
Dibromochloromethane	5.0 U	5.0	1	09/08/21 19:22	
1,1-Dichloroethane	5.0 U	5.0	1	09/08/21 19:22	
1,2-Dichloroethane	5.0 U	5.0	1	09/08/21 19:22	
1,1-Dichloroethene	5.0 U	5.0	1	09/08/21 19:22	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/08/21 19:22	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/08/21 19:22	
1,2-Dichloropropane	5.0 U	5.0	1	09/08/21 19:22	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 19:22	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 19:22	
Ethylbenzene	5.0 U	5.0	1	09/08/21 19:22	
2-Hexanone	10 U	10	1	09/08/21 19:22	
Methylene Chloride	5.0 U	5.0	1	09/08/21 19:22	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/08/21 19:22	
Styrene	5.0 U	5.0	1	09/08/21 19:22	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/08/21 19:22	
Tetrachloroethene	5.0 U	5.0	1	09/08/21 19:22	
Toluene	5.0 U	5.0	1	09/08/21 19:22	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/08/21 19:22	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/08/21 19:22	
Trichloroethene	5.0 U	5.0	1	09/08/21 19:22	
Vinyl Chloride	5.0 U	5.0	1	09/08/21 19:22	
o-Xylene	5.0 U	5.0	1	09/08/21 19:22	
m,p-Xylenes	5.0 U	5.0	1	09/08/21 19:22	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: 08/31/21 09:55

Sample Matrix: Water Date Received: 08/31/21 15:40

 Sample Name:
 Trip Blank
 Units: ug/L

 Lab Code:
 R2108875-018
 Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	90	85 - 122	09/08/21 19:22	
Toluene-d8	102	87 - 121	09/08/21 19:22	
Dibromofluoromethane	98	80 - 116	09/08/21 19:22	

QC Summary Forms

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

Volatile Organic Compounds by GC/MS

ALS Environmental—Rochester Laboratory 1565 Jefferson Road, Building 300, Suite 360, Rochester, NY 14623 Phone (585) 288-5380 Fax (585) 288-8475 www.alsglobal.com

QA/QC Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells

Sample Matrix: Water

SURROGATE RECOVERY SUMMARYVolatile Organic Compounds by GC/MS

Analysis Method: 8260C

Extraction Method: EPA 5030C

		4-Bromofluorobenzene	Toluene-d8	Dibromofluoromethane
Sample Name	Lab Code	85-122	87-121	80-116
VE-6	R2108875-001	98	101	99
VE-10	R2108875-002	93	102	103
VE-12	R2108875-003	90	94	92
VE-15	R2108875-004	95	99	99
RW-4	R2108875-005	97	100	100
MW-2	R2108875-006	92	95	95
MW-10	R2108875-007	91	97	97
MW-13S	R2108875-008	96	99	99
MW-16	R2108875-009	100	103	102
MW-18S	R2108875-010	92	102	101
MW-19	R2108875-011	94	100	99
MW-24S	R2108875-012	92	99	99
SW-29	R2108875-013	91	101	100
SW-34	R2108875-014	90	99	98
SW-35	R2108875-015	90	102	100
MW-13S Dup	R2108875-016	86	99	97
Trip Blank	R2108875-018	90	102	98
Method Blank	RQ2110992-04	93	97	96
Method Blank	RQ2111080-04	87	96	98
Method Blank	RQ2111152-04	93	98	97
Lab Control Sample	RQ2110992-03	98	104	103
Lab Control Sample	RQ2111080-03	95	101	104
Lab Control Sample	RQ2111152-03	96	99	98
VE-6 MS	RQ2110992-05	100	103	100
VE-6 DMS	RQ2110992-06	97	98	99
VE-10 MS	RQ2111080-05	100	103	103
VE-10 DMS	RQ2111080-06	102	101	103
MW-19 MS	RQ2111152-05	99	100	100
MW-19 DMS	RQ2111152-06	100	102	102

QA/QC Report

Client: Xerox Corporation USA

Project: Bldg 801 Area Wells

Sample Matrix: Water

Service Request: R2108875 **Date Collected:** 08/31/21

Date Received: 08/31/21 **Date Analyzed:** 09/7/21

Date Extracted: NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name: VE-6

6

Units: ug/L Basis: NA

Lab Code: R2108875-001 **Analysis Method:** 8260C

Prep Method: EPA 5030C

Matrix SpikeDuplicate Matrix SpikeRQ2110992-05RQ2110992-06

	KQ2110772-03				RQ2110772-00					
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Acetone	1000 U	5130	5000	103	5180	5000	104	35-183	<1	30
Benzene	500 U	4980	5000	100	4930	5000	99	76-129	1	30
Bromodichloromethane	500 U	4770	5000	95	4740	5000	95	78-133	<1	30
Bromoform	500 U	4820	5000	96	4960	5000	99	58-133	3	30
Bromomethane	500 U	3350	5000	67	2990	5000	60	10-184	11	30
2-Butanone (MEK)	1000 U	4720	5000	94	4890	5000	98	61-137	4	30
Carbon Disulfide	1000 U	6260	5000	125	6430	5000	129	59-140	3	30
Carbon Tetrachloride	500 U	4840	5000	97	4880	5000	98	65-135	<1	30
Chlorobenzene	500 U	4920	5000	98	4690	5000	94	76-125	5	30
Chloroethane	500 U	6060	5000	121	5840	5000	117	48-146	4	30
Chloroform	500 U	5180	5000	104	5110	5000	102	75-130	1	30
Chloromethane	500 U	6370	5000	127	6370	5000	127	55-160	<1	30
Dibromochloromethane	500 U	4890	5000	98	4790	5000	96	72-128	2	30
1,1-Dichloroethane	810	6290	5000	109	5860	5000	101	74-132	7	30
1,2-Dichloroethane	500 U	4790	5000	96	4720	5000	94	68-130	1	30
1,1-Dichloroethene	630	5800	5000	103	5780	5000	103	71-118	<1	30
cis-1,2-Dichloroethene	19000	24300 E	5000	102	22700 E	5000	69 *	77-127	7	30
trans-1,2-Dichloroethene	500 U	5390	5000	108	5090	5000	102	73-118	6	30
1,2-Dichloropropane	500 U	4950	5000	99	4910	5000	98	79-124	<1	30
cis-1,3-Dichloropropene	500 U	5240	5000	105	5240	5000	105	52-134	<1	30
trans-1,3-Dichloropropene	500 U	5250	5000	105	5080	5000	102	71-133	3	30
Ethylbenzene	500 U	4950	5000	99	4890	5000	98	72-134	1	30
2-Hexanone	1000 U	4730	5000	95	4790	5000	96	56-132	1	30
Methylene Chloride	500 U	5010	5000	100	4690	5000	94	73-122	7	30
4-Methyl-2-pentanone (MIBK)	1000 U	4840	5000	97	5080	5000	102	60-141	5	30
Styrene	500 U	5020	5000	100	4790	5000	96	74-136	5	30
1,1,2,2-Tetrachloroethane	500 U	5220	5000	104	5110	5000	102	72-122	2	30
Tetrachloroethene	500 U	4810	5000	96	4490	5000	90	72-125	7	30
Toluene	500 U	5160	5000	103	5050	5000	101	79-119	2	30
1,1,1-Trichloroethane	810	6290	5000	109	5980	5000	103	74-127	5	30
1,1,2-Trichloroethane	500 U	4810	5000	96	4790	5000	96	82-121	<1	30
Trichloroethene	500 U	4730	5000	95	4690	5000	94	74-122	<1	30
Vinyl Chloride	3400	9300	5000	117	8790	5000	107	74-159	6	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: Xerox Corporation USA **Project:**

Bldg 801 Area Wells

Water

Service Request:

R2108875

Date Collected:

08/31/21

Date Received:

08/31/21 09/7/21

Date Analyzed: **Date Extracted:**

NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name:

Sample Matrix:

VE-6

Units:

ug/L

Lab Code:

R2108875-001

Basis:

NA

Analysis Method:

8260C

Prep Method:

EPA 5030C

Matrix Spike RQ2110992-05 **Duplicate Matrix Spike**

RQ2110992-06

	Sample	·	Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
o-Xylene	500 U	5080	5000	102	4790	5000	96	79-123	6	30
m,p-Xylenes	500 U	10100	10000	101	9830	10000	98	80-126	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: Xerox Corporation USA

Project: Bldg 801 Area Wells

Sample Matrix: Water

Service Request: R2108875

Date Collected: 08/31/21

Date Received: 08/31/21 **Date Analyzed:** 09/8/21

Date Extracted: NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name: VE-10

D2100075 002

Units: ug/L Basis: NA

Lab Code: R2108875-002

Analysis Method: 8260C **Prep Method:** EPA 5030C

Matrix SpikeDuplicate Matrix SpikeRQ2111080-05RQ2111080-06

		ΝŲ	2111000-03	RQ2111000-00						
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Acetone	1000 U	4400	5000	88	4480	5000	90	35-183	2	30
Benzene	500 U	5010	5000	100	4740	5000	95	76-129	6	30
Bromodichloromethane	500 U	4960	5000	99	4830	5000	97	78-133	3	30
Bromoform	500 U	4720	5000	94	4670	5000	93	58-133	1	30
Bromomethane	500 U	3180	5000	64	3080	5000	62	10-184	3	30
2-Butanone (MEK)	1000 U	4530	5000	91	4570	5000	91	61-137	<1	30
Carbon Disulfide	1000 U	5910	5000	118	5780	5000	116	59-140	2	30
Carbon Tetrachloride	500 U	4700	5000	94	4660	5000	93	65-135	<1	30
Chlorobenzene	500 U	4790	5000	96	4700	5000	94	76-125	2	30
Chloroethane	2400 D	7490	5000	102	7180	5000	96	48-146	4	30
Chloroform	500 U	4750	5000	95	4650	5000	93	75-130	2	30
Chloromethane	500 U	5330	5000	107	5380	5000	108	55-160	<1	30
Dibromochloromethane	500 U	4670	5000	93	4820	5000	96	72-128	3	30
1,1-Dichloroethane	1000 D	5940	5000	98	5840	5000	96	74-132	2	30
1,2-Dichloroethane	500 U	4570	5000	91	4430	5000	89	68-130	3	30
1,1-Dichloroethene	500 U	4820	5000	96	4720	5000	94	71-118	2	30
cis-1,2-Dichloroethene	1700 D	6440	5000	95	6290	5000	92	77-127	2	30
trans-1,2-Dichloroethene	500 U	4930	5000	99	4960	5000	99	73-118	<1	30
1,2-Dichloropropane	500 U	4590	5000	92	4440	5000	89	79-124	3	30
cis-1,3-Dichloropropene	500 U	4700	5000	94	4440	5000	89	52-134	6	30
trans-1,3-Dichloropropene	500 U	4800	5000	96	4750	5000	95	71-133	1	30
Ethylbenzene	500 U	4910	5000	98	4900	5000	98	72-134	<1	30
2-Hexanone	1000 U	4640	5000	93	4830	5000	97	56-132	4	30
Methylene Chloride	500 U	4510	5000	90	4520	5000	90	73-122	<1	30
4-Methyl-2-pentanone (MIBK)	1000 U	4790	5000	96	4790	5000	96	60-141	<1	30
Styrene	500 U	4960	5000	99	4810	5000	96	74-136	3	30
1,1,2,2-Tetrachloroethane	500 U	4500	5000	90	4820	5000	96	72-122	7	30
Tetrachloroethene	500 U	5050	5000	101	4910	5000	98	72-125	3	30
Toluene	500 U	5070	5000	101	4920	5000	98	79-119	3	30
1,1,1-Trichloroethane	500 U	5090	5000	102	4960	5000	99	74-127	3	30
1,1,2-Trichloroethane	500 U	4740	5000	95	4630	5000	93	82-121	2	30
Trichloroethene	500 U	5050	5000	101	4790	5000	96	74-122	5	30
Vinyl Chloride	19000 D	22500 E	5000	70 *	21800 E	5000	56 *	74-159	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: Xerox Corporation USA **Project:**

Bldg 801 Area Wells

Water

Service Request: Date Collected:

R2108875

Date Received:

08/31/21 08/31/21

Date Analyzed:

09/8/21

NA

Date Extracted:

Duplicate Matrix Spike Summary

Sample Name:

VE-10

Volatile Organic Compounds by GC/MS

Units: Basis: ug/L NA

Lab Code:

Analysis Method:

Prep Method:

Sample Matrix:

R2108875-002

8260C

EPA 5030C

Matrix Spike RQ2111080-05 **Duplicate Matrix Spike**

RQ2111080-06

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
o-Xylene	500 U	5030	5000	101	5070	5000	101	79-123	<1	30
m,p-Xylenes	500 U	10500	10000	105	10500	10000	105	80-126	<1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: Xerox Corporation USA

Project: Bldg 801 Area Wells

Sample Matrix: Water

Service Request: R2108875

Date Collected: 08/31/21

Date Received: 08/31/21 **Date Analyzed:** 09/9/21 **Date Extracted:** NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

 Sample Name:
 MW-19

 Lab Code:
 R2108875-011

Units: ug/L Basis: NA

Analysis Method: 8260C **Prep Method:** EPA 5030C

Matrix Spike RO2111152-05 **Duplicate Matrix Spike**

RO2111152-06

		κÇ	<u>/</u> 2111132-03]	KQ2111132-	.00			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Acetone	50 U	210	250	84	222	250	89	35-183	6	30
Benzene	25 U	240	250	96	266	250	107	76-129	10	30
Bromodichloromethane	25 U	243	250	97	270	250	108	78-133	10	30
Bromoform	25 U	215	250	86	241	250	96	58-133	11	30
Bromomethane	25 U	188	250	75	198	250	79	10-184	5	30
2-Butanone (MEK)	50 U	233	250	93	249	250	99	61-137	6	30
Carbon Disulfide	50 U	270	250	108	302	250	121	59-140	11	30
Carbon Tetrachloride	25 U	257	250	103	285	250	114	65-135	10	30
Chlorobenzene	25 U	233	250	93	257	250	103	76-125	10	30
Chloroethane	25 U	284	250	114	304	250	122	48-146	7	30
Chloroform	25 U	230	250	92	253	250	101	75-130	9	30
Chloromethane	25 U	288	250	115	318	250	127	55-160	10	30
Dibromochloromethane	25 U	236	250	94	264	250	105	72-128	11	30
1,1-Dichloroethane	85 D	352	250	107	385	250	120	74-132	9	30
1,2-Dichloroethane	25 U	246	250	98	268	250	107	68-130	9	30
1,1-Dichloroethene	25 U	266	250	107	287	250	115	71-118	7	30
cis-1,2-Dichloroethene	580 D	842	250	106	880	250	122	77-127	5	30
trans-1,2-Dichloroethene	25 U	258	250	103	286	250	114	73-118	10	30
1,2-Dichloropropane	25 U	250	250	100	274	250	110	79-124	9	30
cis-1,3-Dichloropropene	25 U	249	250	100	277	250	111	52-134	11	30
trans-1,3-Dichloropropene	25 U	249	250	100	278	250	111	71-133	11	30
Ethylbenzene	25 U	248	250	99	273	250	109	72-134	10	30
2-Hexanone	50 U	231	250	92	247	250	99	56-132	7	30
Methylene Chloride	25 U	230	250	92	253	250	101	73-122	9	30
4-Methyl-2-pentanone (MIBK)	50 U	240	250	96	257	250	103	60-141	7	30
Styrene	25 U	243	250	97	267	250	107	74-136	9	30
1,1,2,2-Tetrachloroethane	25 U	252	250	101	273	250	109	72-122	8	30
Tetrachloroethene	25 U	238	250	95	261	250	104	72-125	9	30
Toluene	25 U	246	250	99	268	250	107	79-119	9	30
1,1,1-Trichloroethane	45 D	320	250	110	351	250	122	74-127	9	30
1,1,2-Trichloroethane	25 U	235	250	94	259	250	104	82-121	10	30
Trichloroethene	170 D	385	250	88	415	250	100	74-122	8	30
Vinyl Chloride	25 U	294	250	118	330	250	132	74-159	11	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

QA/QC Report

Client: Xerox Corporation USA **Project:**

Water

Bldg 801 Area Wells

Service Request: Date Collected:

R2108875

Date Received:

08/31/21 08/31/21

Date Analyzed:

09/9/21

Date Extracted:

NA

Duplicate Matrix Spike Summary Volatile Organic Compounds by GC/MS

Sample Name:

Sample Matrix:

MW-19

Units:

ug/L

Lab Code:

R2108875-011

Basis:

NA

Analysis Method: Prep Method:

8260C

EPA 5030C

Matrix Spike

Duplicate Matrix Spike

Samp		Spike
	RQ2111152-05	RQ2111152-06

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
o-Xylene	25 U	244	250	97	268	250	107	79-123	9	30
m,p-Xylenes	25 U	490	500	98	542	500	108	80-126	10	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ2110992-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/07/21 12:32	
Benzene	5.0 U	5.0	1	09/07/21 12:32	
Bromodichloromethane	5.0 U	5.0	1	09/07/21 12:32	
Bromoform	5.0 U	5.0	1	09/07/21 12:32	
Bromomethane	5.0 U	5.0	1	09/07/21 12:32	
2-Butanone (MEK)	10 U	10	1	09/07/21 12:32	
Carbon Disulfide	10 U	10	1	09/07/21 12:32	
Carbon Tetrachloride	5.0 U	5.0	1	09/07/21 12:32	
Chlorobenzene	5.0 U	5.0	1	09/07/21 12:32	
Chloroethane	5.0 U	5.0	1	09/07/21 12:32	
Chloroform	5.0 U	5.0	1	09/07/21 12:32	
Chloromethane	5.0 U	5.0	1	09/07/21 12:32	
Dibromochloromethane	5.0 U	5.0	1	09/07/21 12:32	
1,1-Dichloroethane	5.0 U	5.0	1	09/07/21 12:32	
1,2-Dichloroethane	5.0 U	5.0	1	09/07/21 12:32	
1,1-Dichloroethene	5.0 U	5.0	1	09/07/21 12:32	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/07/21 12:32	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/07/21 12:32	
1,2-Dichloropropane	5.0 U	5.0	1	09/07/21 12:32	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/07/21 12:32	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/07/21 12:32	
Ethylbenzene	5.0 U	5.0	1	09/07/21 12:32	
2-Hexanone	10 U	10	1	09/07/21 12:32	
Methylene Chloride	5.0 U	5.0	1	09/07/21 12:32	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/07/21 12:32	
Styrene	5.0 U	5.0	1	09/07/21 12:32	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/07/21 12:32	
Tetrachloroethene	5.0 U	5.0	1	09/07/21 12:32	
Toluene	5.0 U	5.0	1	09/07/21 12:32	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/07/21 12:32	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/07/21 12:32	
Trichloroethene	5.0 U	5.0	1	09/07/21 12:32	
Vinyl Chloride	5.0 U	5.0	1	09/07/21 12:32	
o-Xylene	5.0 U	5.0	1	09/07/21 12:32	
m,p-Xylenes	5.0 U	5.0	1	09/07/21 12:32	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ2110992-04Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	09/07/21 12:32	
Toluene-d8	97	87 - 121	09/07/21 12:32	
Dibromofluoromethane	96	80 - 116	09/07/21 12:32	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: NA

Sample Matrix: Water Date Received: NA

 Sample Name:
 Method Blank
 Units: ug/L

 Lab Code:
 RQ2111080-04
 Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/08/21 14:51	
Benzene	5.0 U	5.0	1	09/08/21 14:51	
Bromodichloromethane	5.0 U	5.0	1	09/08/21 14:51	
Bromoform	5.0 U	5.0	1	09/08/21 14:51	
Bromomethane	5.0 U	5.0	1	09/08/21 14:51	
2-Butanone (MEK)	10 U	10	1	09/08/21 14:51	
Carbon Disulfide	10 U	10	1	09/08/21 14:51	
Carbon Tetrachloride	5.0 U	5.0	1	09/08/21 14:51	
Chlorobenzene	5.0 U	5.0	1	09/08/21 14:51	
Chloroethane	5.0 U	5.0	1	09/08/21 14:51	
Chloroform	5.0 U	5.0	1	09/08/21 14:51	
Chloromethane	5.0 U	5.0	1	09/08/21 14:51	
Dibromochloromethane	5.0 U	5.0	1	09/08/21 14:51	
1,1-Dichloroethane	5.0 U	5.0	1	09/08/21 14:51	
1,2-Dichloroethane	5.0 U	5.0	1	09/08/21 14:51	
1,1-Dichloroethene	5.0 U	5.0	1	09/08/21 14:51	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/08/21 14:51	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/08/21 14:51	
1,2-Dichloropropane	5.0 U	5.0	1	09/08/21 14:51	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 14:51	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/08/21 14:51	
Ethylbenzene	5.0 U	5.0	1	09/08/21 14:51	
2-Hexanone	10 U	10	1	09/08/21 14:51	
Methylene Chloride	5.0 U	5.0	1	09/08/21 14:51	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/08/21 14:51	
Styrene	5.0 U	5.0	1	09/08/21 14:51	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/08/21 14:51	
Tetrachloroethene	5.0 U	5.0	1	09/08/21 14:51	
Toluene	5.0 U	5.0	1	09/08/21 14:51	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/08/21 14:51	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/08/21 14:51	
Trichloroethene	5.0 U	5.0	1	09/08/21 14:51	
Vinyl Chloride	5.0 U	5.0	1	09/08/21 14:51	
o-Xylene	5.0 U	5.0	1	09/08/21 14:51	
m,p-Xylenes	5.0 U	5.0	1	09/08/21 14:51	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ2111080-04Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	87	85 - 122	09/08/21 14:51	
Toluene-d8	96	87 - 121	09/08/21 14:51	
Dibromofluoromethane	98	80 - 116	09/08/21 14:51	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ2111152-04Basis: NA

Volatile Organic Compounds by GC/MS

Analyte Name	Result	MRL	Dil.	Date Analyzed	Q
Acetone	10 U	10	1	09/09/21 11:55	
Benzene	5.0 U	5.0	1	09/09/21 11:55	
Bromodichloromethane	5.0 U	5.0	1	09/09/21 11:55	
Bromoform	5.0 U	5.0	1	09/09/21 11:55	
Bromomethane	5.0 U	5.0	1	09/09/21 11:55	
2-Butanone (MEK)	10 U	10	1	09/09/21 11:55	
Carbon Disulfide	10 U	10	1	09/09/21 11:55	
Carbon Tetrachloride	5.0 U	5.0	1	09/09/21 11:55	
Chlorobenzene	5.0 U	5.0	1	09/09/21 11:55	
Chloroethane	5.0 U	5.0	1	09/09/21 11:55	
Chloroform	5.0 U	5.0	1	09/09/21 11:55	
Chloromethane	5.0 U	5.0	1	09/09/21 11:55	
Dibromochloromethane	5.0 U	5.0	1	09/09/21 11:55	
1,1-Dichloroethane	5.0 U	5.0	1	09/09/21 11:55	
1,2-Dichloroethane	5.0 U	5.0	1	09/09/21 11:55	
1,1-Dichloroethene	5.0 U	5.0	1	09/09/21 11:55	
cis-1,2-Dichloroethene	5.0 U	5.0	1	09/09/21 11:55	
trans-1,2-Dichloroethene	5.0 U	5.0	1	09/09/21 11:55	
1,2-Dichloropropane	5.0 U	5.0	1	09/09/21 11:55	
cis-1,3-Dichloropropene	5.0 U	5.0	1	09/09/21 11:55	
trans-1,3-Dichloropropene	5.0 U	5.0	1	09/09/21 11:55	
Ethylbenzene	5.0 U	5.0	1	09/09/21 11:55	
2-Hexanone	10 U	10	1	09/09/21 11:55	
Methylene Chloride	5.0 U	5.0	1	09/09/21 11:55	
4-Methyl-2-pentanone (MIBK)	10 U	10	1	09/09/21 11:55	
Styrene	5.0 U	5.0	1	09/09/21 11:55	
1,1,2,2-Tetrachloroethane	5.0 U	5.0	1	09/09/21 11:55	
Tetrachloroethene	5.0 U	5.0	1	09/09/21 11:55	
Toluene	5.0 U	5.0	1	09/09/21 11:55	
1,1,1-Trichloroethane	5.0 U	5.0	1	09/09/21 11:55	
1,1,2-Trichloroethane	5.0 U	5.0	1	09/09/21 11:55	
Trichloroethene	5.0 U	5.0	1	09/09/21 11:55	
Vinyl Chloride	5.0 U	5.0	1	09/09/21 11:55	
o-Xylene	5.0 U	5.0	1	09/09/21 11:55	
m,p-Xylenes	5.0 U	5.0	11	09/09/21 11:55	

Analytical Report

Client: Xerox Corporation USA Service Request: R2108875

Project: Bldg 801 Area Wells Date Collected: NA

Sample Matrix: Water Date Received: NA

Sample Name:Method BlankUnits: ug/LLab Code:RQ2111152-04Basis: NA

Volatile Organic Compounds by GC/MS

Surrogate Name	% Rec	Control Limits	Date Analyzed	Q
4-Bromofluorobenzene	93	85 - 122	09/09/21 11:55	
Toluene-d8	98	87 - 121	09/09/21 11:55	
Dibromofluoromethane	97	80 - 116	09/09/21 11:55	

QA/QC Report

Client: Xerox Corporation USA **Project:** Bldg 801 Area Wells

Sample Matrix: Water Service Request: R2108875 **Date Analyzed:** 09/07/21

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ2110992-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Acetone	8260C	18.8	20.0	94	40-161
Benzene	8260C	18.6	20.0	93	79-119
Bromodichloromethane	8260C	18.7	20.0	94	81-123
Bromoform	8260C	19.6	20.0	98	65-146
Bromomethane	8260C	20.3	20.0	101	42-166
2-Butanone (MEK)	8260C	20.0	20.0	100	61-137
Carbon Disulfide	8260C	24.6	20.0	123	66-128
Carbon Tetrachloride	8260C	17.1	20.0	85	70-127
Chlorobenzene	8260C	18.1	20.0	90	80-121
Chloroethane	8260C	21.1	20.0	105	62-131
Chloroform	8260C	19.0	20.0	95	79-120
Chloromethane	8260C	24.5	20.0	123	65-135
Dibromochloromethane	8260C	19.5	20.0	97	72-128
1,1-Dichloroethane	8260C	20.0	20.0	100	80-124
1,2-Dichloroethane	8260C	19.0	20.0	95	71-127
1,1-Dichloroethene	8260C	18.0	20.0	90	71-118
cis-1,2-Dichloroethene	8260C	18.5	20.0	92	80-121
trans-1,2-Dichloroethene	8260C	18.5	20.0	93	73-118
1,2-Dichloropropane	8260C	19.3	20.0	96	80-119
cis-1,3-Dichloropropene	8260C	20.0	20.0	100	77-122
trans-1,3-Dichloropropene	8260C	20.1	20.0	100	71-133
Ethylbenzene	8260C	17.9	20.0	89	76-120
2-Hexanone	8260C	20.7	20.0	103	63-124
Methylene Chloride	8260C	19.0	20.0	95	73-122
4-Methyl-2-pentanone (MIBK)	8260C	20.5	20.0	102	66-124
Styrene	8260C	18.0	20.0	90	80-124
1,1,2,2-Tetrachloroethane	8260C	20.1	20.0	101	78-126
Tetrachloroethene	8260C	17.3	20.0	86	72-125
Toluene	8260C	18.9	20.0	94	79-119
1,1,1-Trichloroethane	8260C	19.2	20.0	96	75-125
1,1,2-Trichloroethane	8260C	18.9	20.0	95	82-121
Trichloroethene	8260C	17.7	20.0	88	74-122
Vinyl Chloride	8260C	20.4	20.0	102	74-159
Printed 9/13/2021 3:13:54 PM			Supers	et Reference:21-000	00602870 rev 00

QA/QC Report

Client: Xerox Corporation USA

Project: Bldg 801 Area Wells

Sample Matrix: Water

Service Request: R2108875 Date Analyzed: 09/07/21

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ2110992-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
o-Xylene	8260C	18.1	20.0	91	79-123
m,p-Xylenes	8260C	36.4	40.0	91	80-126

QA/QC Report

Client: Xerox Corporation USA **Project:** Bldg 801 Area Wells

Sample Matrix: Water Service Request: R2108875 **Date Analyzed:** 09/08/21

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ2111080-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Acetone	8260C	18.7	20.0	94	40-161
Benzene	8260C	20.6	20.0	103	79-119
Bromodichloromethane	8260C	21.7	20.0	108	81-123
Bromoform	8260C	20.0	20.0	100	65-146
Bromomethane	8260C	15.6	20.0	78	42-166
2-Butanone (MEK)	8260C	20.2	20.0	101	61-137
Carbon Disulfide	8260C	27.2	20.0	136 *	66-128
Carbon Tetrachloride	8260C	19.5	20.0	97	70-127
Chlorobenzene	8260C	20.4	20.0	102	80-121
Chloroethane	8260C	23.3	20.0	117	62-131
Chloroform	8260C	21.1	20.0	105	79-120
Chloromethane	8260C	26.5	20.0	132	65-135
Dibromochloromethane	8260C	19.7	20.0	99	72-128
1,1-Dichloroethane	8260C	21.3	20.0	107	80-124
1,2-Dichloroethane	8260C	19.3	20.0	97	71-127
1,1-Dichloroethene	8260C	20.8	20.0	104	71-118
cis-1,2-Dichloroethene	8260C	21.1	20.0	106	80-121
trans-1,2-Dichloroethene	8260C	21.2	20.0	106	73-118
1,2-Dichloropropane	8260C	19.1	20.0	95	80-119
cis-1,3-Dichloropropene	8260C	20.5	20.0	103	77-122
trans-1,3-Dichloropropene	8260C	20.1	20.0	100	71-133
Ethylbenzene	8260C	20.0	20.0	100	76-120
2-Hexanone	8260C	18.7	20.0	94	63-124
Methylene Chloride	8260C	19.9	20.0	99	73-122
4-Methyl-2-pentanone (MIBK)	8260C	19.6	20.0	98	66-124
Styrene	8260C	20.5	20.0	102	80-124
1,1,2,2-Tetrachloroethane	8260C	19.5	20.0	97	78-126
Tetrachloroethene	8260C	21.1	20.0	105	72-125
Toluene	8260C	20.5	20.0	102	79-119
1,1,1-Trichloroethane	8260C	20.7	20.0	103	75-125
1,1,2-Trichloroethane	8260C	19.4	20.0	97	82-121
Trichloroethene	8260C	21.2	20.0	106	74-122
Vinyl Chloride	8260C	25.2	20.0	126	74-159
Printed 9/13/2021 3:13:55 PM			Supers	et Reference:21-000	00602870 rev 00

QA/QC Report

Client: Xerox Corporation USA

Project: Bldg 801 Area Wells

Sample Matrix: Water

Service Request: R2108875 Date Analyzed: 09/08/21

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ2111080-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
o-Xylene	8260C	21.2	20.0	106	79-123
m,p-Xylenes	8260C	42.9	40.0	107	80-126

QA/QC Report

Client: Xerox Corporation USA **Project:** Bldg 801 Area Wells

Sample Matrix: Water Service Request: R2108875 **Date Analyzed:** 09/09/21

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ2111152-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
Acetone	8260C	17.5	20.0	87	40-161
Benzene	8260C	20.5	20.0	103	79-119
Bromodichloromethane	8260C	22.2	20.0	111	81-123
Bromoform	8260C	18.3	20.0	91	65-146
Bromomethane	8260C	20.0	20.0	100	42-166
2-Butanone (MEK)	8260C	20.0	20.0	100	61-137
Carbon Disulfide	8260C	26.1	20.0	130 *	66-128
Carbon Tetrachloride	8260C	22.6	20.0	113	70-127
Chlorobenzene	8260C	20.1	20.0	101	80-121
Chloroethane	8260C	23.4	20.0	117	62-131
Chloroform	8260C	20.2	20.0	101	79-120
Chloromethane	8260C	26.2	20.0	131	65-135
Dibromochloromethane	8260C	21.2	20.0	106	72-128
1,1-Dichloroethane	8260C	23.0	20.0	115	80-124
1,2-Dichloroethane	8260C	21.6	20.0	108	71-127
1,1-Dichloroethene	8260C	21.1	20.0	106	71-118
cis-1,2-Dichloroethene	8260C	21.1	20.0	106	80-121
trans-1,2-Dichloroethene	8260C	22.2	20.0	111	73-118
1,2-Dichloropropane	8260C	21.6	20.0	108	80-119
cis-1,3-Dichloropropene	8260C	23.4	20.0	117	77-122
trans-1,3-Dichloropropene	8260C	23.2	20.0	116	71-133
Ethylbenzene	8260C	20.6	20.0	103	76-120
2-Hexanone	8260C	19.0	20.0	95	63-124
Methylene Chloride	8260C	20.5	20.0	103	73-122
4-Methyl-2-pentanone (MIBK)	8260C	20.2	20.0	101	66-124
Styrene	8260C	20.1	20.0	100	80-124
1,1,2,2-Tetrachloroethane	8260C	20.1	20.0	101	78-126
Tetrachloroethene	8260C	20.0	20.0	100	72-125
Toluene	8260C	20.9	20.0	104	79-119
1,1,1-Trichloroethane	8260C	23.1	20.0	116	75-125
1,1,2-Trichloroethane	8260C	20.5	20.0	103	82-121
Trichloroethene	8260C	19.6	20.0	98	74-122
Vinyl Chloride	8260C	24.2	20.0	121	74-159
Printed 9/13/2021 3:13:57 PM			Superso	et Reference:21-000	00602870 rev 00

QA/QC Report

Client: Xerox Corporation USA

Project: Bldg 801 Area Wells

Sample Matrix: Water

Service Request: R2108875 Date Analyzed: 09/09/21

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Units:ug/L Basis:NA

Lab Control Sample

RQ2111152-03

Analyte Name	Analytical Method	Result	Spike Amount	% Rec	% Rec Limits
o-Xylene	8260C	20.3	20.0	102	79-123
m,p-Xylenes	8260C	41.6	40.0	104	80-126

QA/QC Report

 Client:
 Xerox Corporation USA
 Service Request:
 R2108875

 Project:
 Bldg 801 Area Wells
 Date Analyzed:
 9/ 7/21

Continuing Calibration Verification Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

File ID:

d. 0200C

Calibration Date: 9/2/21 Calibration ID: RC2100117

> Analysis Lot: 737713 Units: ppb

Analyte Name	Expected	Result	Average RF	CCV RF	%D	%Drift	Criteria	Curve Fit
Acetone	50.0	49.2	NA	NA	NA	-1.7	± 20 %	Quadratic
Benzene	50.0	48.8	1.418	1.384	-2.4	NA	± 20 %	Average RF
Bromodichloromethane	50.0	48.7	0.4450	0.4336	-2.6	NA	± 20 %	Average RF
Bromoform	50.0	51.7	0.3884	0.4015	3.4	NA	± 20 %	Average RF
Bromomethane	50.0	51.2	0.4413	0.4519	2.4	NA	± 20 %	Average RF
2-Butanone (MEK)	50.0	48.0	0.4319	0.4145	-4.0	NA	± 20 %	Average RF
Carbon Disulfide	50.0	54.1	1.177	1.272	8.1	NA	± 20 %	Average RF
Carbon Tetrachloride	50.0	48.4	0.3851	0.3727	-3.2	NA	± 20 %	Average RF
Chlorobenzene	50.0	47.0	1.064	1.000	-6.0	NA	± 20 %	Average RF
Chloroethane	50.0	49.6	0.4440	0.4407	-0.7	NA	± 20 %	Average RF
Chloroform	50.0	49.7	NA	NA	NA	-0.7	± 20 %	Linear
Chloromethane	50.0	50.7	0.5808	0.5884	1.3	NA	± 20 %	Average RF
Dibromochloromethane	50.0	50.4	0.3031	0.3055	0.8	NA	± 20 %	Average RF
1,1-Dichloroethane	50.0	52.1	1.001	1.043	4.2	NA	± 20 %	Average RF
1,2-Dichloroethane	50.0	47.0	0.5325	0.5009	-5.9	NA	± 20 %	Average RF
1,1-Dichloroethene	50.0	50.8	0.4863	0.4943	1.6	NA	± 20 %	Average RF
cis-1,2-Dichloroethene	50.0	49.9	0.6128	0.6111	-0.3	NA	± 20 %	Average RF
trans-1,2-Dichloroethene	50.0	49.8	0.5320	0.5298	-0.4	NA	± 20 %	Average RF
1,2-Dichloropropane	50.0	47.7	0.3677	0.3507	-4.6	NA	± 20 %	Average RF
cis-1,3-Dichloropropene	50.0	52.1	0.5372	0.5602	4.3	NA	± 20 %	Average RF
trans-1,3-Dichloropropene	50.0	52.8	0.4981	0.5263	5.7	NA	± 20 %	Average RF
Ethylbenzene	50.0	48.0	0.5863	0.5627	-4.0	NA	± 20 %	Average RF
2-Hexanone	50.0	50.1	0.3937	0.3945	0.2	NA	± 20 %	Average RF
Methylene Chloride	50.0	47.6	0.5800	0.5524	-4.8	NA	± 20 %	Average RF
4-Methyl-2-pentanone (MIBK)	50.0	47.9	0.4900	0.4696	-4.2	NA	± 20 %	Average RF
Styrene	50.0	49.7	1.171	1.164	-0.6	NA	± 20 %	Average RF
1,1,2,2-Tetrachloroethane	50.0	49.0	1.052	1.031	-2.0	NA	± 20 %	Average RF
Tetrachloroethene	50.0	44.7	0.2882	0.2577	-10.6	NA	± 20 %	Average RF
Toluene	50.0	50.3	1.518	1.528	0.6	NA	± 20 %	Average RF
1,1,1-Trichloroethane	50.0	51.0	0.8006	0.8169	2.0	NA	± 20 %	Average RF
1,1,2-Trichloroethane	50.0	44.7	0.3391	0.3031	-10.6	NA	± 20 %	Average RF
Trichloroethene	50.0	45.1	0.3519	0.3177	-9.7	NA	± 20 %	Average RF
Vinyl Chloride	50.0	50.4	0.6763	0.6822	0.9	NA	± 20 %	Average RF
o-Xylene	50.0	48.0	0.6999	0.6721	-4.0	NA	± 20 %	Average RF
m,p-Xylenes	100	97.9	0.7087	0.6939	-2.1	NA	± 20 %	Average RF
4-Bromofluorobenzene	50.0	48.7	0.5079	0.4949	-2.6	NA	$\pm~20~\%$	Average RF
Toluene-d8	50.0	50.3	1.279	1.287	0.6	NA	$\pm~20~\%$	Average RF
Dibromofluoromethane	50.0	51.1	0.2722	0.2782	2.2	NA	$\pm~20~\%$	Average RF

QA/QC Report

Client: Xerox Corporation USA

Project: Bldg 801 Area Wells

Service Request: R2108875 **Date Analyzed:** 9/ 8/21

Continuing Calibration Verification Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

File ID:

I:\ACQUDATA\msvoa10\data\090821\T8739.D\

Calibration Date: 9/2/21 Calibration ID: RC2100120 Analysis Lot: 737912

Units: $\mu g/L$

Analyte Name	Expected	Result	Average RF	CCV RF	%D	%Drift	Criteria	Curve Fit
Acetone	50.0	42.4	0.2315	0.1963	-15.2	NA	± 20 %	Average RF
Benzene	50.0	47.9	1.174	1.125	-4.2	NA	± 20 %	Average RF
Bromodichloromethane	50.0	52.0	0.3804	0.3955	4.0	NA	± 20 %	Average RF
Bromoform	50.0	51.4	NA	NA	NA	2.7	± 20 %	Quadratic
Bromomethane	50.0	41.5	0.7856	0.6527	-16.9	NA	± 20 %	Average RF
2-Butanone (MEK)	50.0	46.5	0.3369	0.3136	-6.9	NA	± 20 %	Average RF
Carbon Disulfide	50.0	51.7	0.9450	0.9767	3.4	NA	± 20 %	Average RF
Carbon Tetrachloride	50.0	44.9	0.3504	0.3149	-10.1	NA	± 20 %	Average RF
Chlorobenzene	50.0	46.5	0.8571	0.7971	-7.0	NA	± 20 %	Average RF
Chloroethane	50.0	43.9	0.4254	0.3732	-12.3	NA	± 20 %	Average RF
Chloroform	50.0	50.2	NA	NA	NA	0.5	± 20 %	Quadratic
Chloromethane	50.0	46.1	0.5939	0.5474	-7.8	NA	± 20 %	Average RF
Dibromochloromethane	50.0	52.4	0.2965	0.3106	4.8	NA	± 20 %	Average RF
1,1-Dichloroethane	50.0	50.0	0.8270	0.8271	0.0	NA	± 20 %	Average RF
1,2-Dichloroethane	50.0	48.3	0.4560	0.4406	-3.4	NA	± 20 %	Average RF
1,1-Dichloroethene	50.0	45.5	0.4091	0.3720	- 9.1	NA	± 20 %	Average RF
cis-1,2-Dichloroethene	50.0	48.9	0.5152	0.5038	-2.2	NA	± 20 %	Average RF
trans-1,2-Dichloroethene	50.0	46.8	0.4512	0.4227	-6.3	NA	± 20 %	Average RF
1,2-Dichloropropane	50.0	46.2	0.3241	0.2992	-7.7	NA	± 20 %	Average RF
cis-1,3-Dichloropropene	50.0	50.8	0.4701	0.4779	1.7	NA	± 20 %	Average RF
trans-1,3-Dichloropropene	50.0	53.6	0.4236	0.4538	7.1	NA	± 20 %	Average RF
Ethylbenzene	50.0	44.8	0.4532	0.4065	-10.3	NA	± 20 %	Average RF
2-Hexanone	50.0	47.4	0.3108	0.2945	-5.2	NA	$\pm~20~\%$	Average RF
Methylene Chloride	50.0	47.2	0.5060	0.4774	-5.6	NA	$\pm~20~\%$	Average RF
4-Methyl-2-pentanone (MIBK)	50.0	45.2	0.4025	0.3637	-9.6	NA	$\pm~20~\%$	Average RF
Styrene	50.0	49.6	NA	NA	NA	-0.8	$\pm~20~\%$	Quadratic
1,1,2,2-Tetrachloroethane	50.0	48.2	0.8731	0.8408	-3.7	NA	$\pm~20~\%$	Average RF
Tetrachloroethene	50.0	44.6	0.2272	0.2026	-10.8	NA	$\pm~20~\%$	Average RF
Toluene	50.0	48.1	1.264	1.216	-3.8	NA	$\pm~20~\%$	Average RF
1,1,1-Trichloroethane	50.0	47.6	0.6591	0.6270	-4.9	NA	$\pm~20~\%$	Average RF
1,1,2-Trichloroethane	50.0	47.1	0.2899	0.2734	-5.7	NA	$\pm~20~\%$	Average RF
Trichloroethene	50.0	46.7	0.2907	0.2714	-6.6	NA	$\pm~20~\%$	Average RF
Vinyl Chloride	50.0	47.2	0.6359	0.5997	-5.7	NA	\pm 20 %	Average RF
o-Xylene	50.0	49.2	0.5481	0.5391	-1.6	NA	\pm 20 %	Average RF
m,p-Xylenes	100	98.5	0.5392	0.5314	-1.5	NA	\pm 20 %	Average RF
4-Bromofluorobenzene	50.0	48.7	0.4186	0.4079	-2.6	NA	$\pm~20~\%$	Average RF
Toluene-d8	50.0	49.1	1.128	1.108	-1.8	NA	$\pm~20~\%$	Average RF
Dibromofluoromethane	50.0	51.1	0.2792	0.2854	2.2	NA	$\pm~20~\%$	Average RF

QA/QC Report

Client: Xerox Corporation USA

Project: Bldg 801 Area Wells

Service Request: R2108875 **Date Analyzed:** 9/9/21

Continuing Calibration Verification Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260C

File ID: I:\ACQUDATA\MSVOA14\Data\090921\F8876.D\

Calibration Date: 8/11/21 Calibration ID: RC2100107

> Analysis Lot: 738076 Units: μg/L

Analyte Name	Expected	Result	Average RF	CCV RF	%D	%Drift	Criteria	Curve Fit
Acetone	50.0	42.1	0.3774	0.3175	-15.9	NA	± 20 %	Average RF
Benzene	50.0	46.6	1.276	1.189	-6.8	NA	± 20 %	Average RF
Bromodichloromethane	50.0	50.2	NA	NA	NA	0.3	± 20 %	Quadratic
Bromoform	50.0	44.7	NA	NA	NA	-10.6	± 20 %	Quadratic
Bromomethane	50.0	46.9	0.5101	0.4780	-6.3	NA	± 20 %	Average RF
2-Butanone (MEK)	50.0	45.2	0.5163	0.4664	-9.7	NA	± 20 %	Average RF
Carbon Disulfide	50.0	50.0	NA	NA	NA	0.0	± 20 %	Quadratic
Carbon Tetrachloride	50.0	49.0	NA	NA	NA	-2.0	± 20 %	Quadratic
Chlorobenzene	50.0	44.6	0.9493	0.8463	-10.8	NA	± 20 %	Average RF
Chloroethane	50.0	46.0	0.4365	0.4019	-7.9	NA	± 20 %	Average RF
Chloroform	50.0	46.1	1.029	0.9490	-7.8	NA	± 20 %	Average RF
Chloromethane	50.0	46.7	0.6286	0.5872	-6.6	NA	± 20 %	Average RF
Dibromochloromethane	50.0	48.0	NA	NA	NA	-4.0	± 20 %	Quadratic
1,1-Dichloroethane	50.0	50.7	0.9452	0.9578	1.3	NA	± 20 %	Average RF
1,2-Dichloroethane	50.0	49.6	0.5477	0.5437	-0.7	NA	± 20 %	Average RF
1,1-Dichloroethene	50.0	46.4	0.4509	0.4187	-7.1	NA	± 20 %	Average RF
cis-1,2-Dichloroethene	50.0	47.5	0.5670	0.5391	-4.9	NA	± 20 %	Average RF
trans-1,2-Dichloroethene	50.0	48.7	0.4788	0.4660	-2.7	NA	± 20 %	Average RF
1,2-Dichloropropane	50.0	48.8	0.3586	0.3498	-2.5	NA	± 20 %	Average RF
cis-1,3-Dichloropropene	50.0	51.9	NA	NA	NA	3.9	± 20 %	Quadratic
trans-1,3-Dichloropropene	50.0	52.7	NA	NA	NA	5.5	± 20 %	Quadratic
Ethylbenzene	50.0	45.9	0.4886	0.4486	-8.2	NA	± 20 %	Average RF
2-Hexanone	50.0	43.3	0.4589	0.3973	-13.4	NA	± 20 %	Average RF
Methylene Chloride	50.0	45.2	0.5545	0.5007	-9.7	NA	± 20 %	Average RF
4-Methyl-2-pentanone (MIBK)	50.0	45.7	0.5550	0.5073	-8.6	NA	\pm 20 %	Average RF
Styrene	50.0	47.3	1.021	0.9652	-5.5	NA	$\pm~20~\%$	Average RF
1,1,2,2-Tetrachloroethane	50.0	46.4	NA	NA	NA	-7.2	$\pm~20~\%$	Quadratic
Tetrachloroethene	50.0	43.8	0.2611	0.2285	-12.5	NA	$\pm~20~\%$	Average RF
Toluene	50.0	47.2	1.362	1.286	-5.6	NA	$\pm~20~\%$	Average RF
1,1,1-Trichloroethane	50.0	50.2	0.7309	0.7336	0.4	NA	$\pm~20~\%$	Average RF
1,1,2-Trichloroethane	50.0	46.8	0.3238	0.3032	-6.4	NA	$\pm~20~\%$	Average RF
Trichloroethene	50.0	42.8	0.3528	0.3023	-14.3	NA	$\pm~20~\%$	Average RF
Vinyl Chloride	50.0	47.5	0.6425	0.6108	-4.9	NA	$\pm~20~\%$	Average RF
o-Xylene	50.0	46.0	0.6052	0.5567	-8.0	NA	$\pm~20~\%$	Average RF
m,p-Xylenes	100	93.8	0.6140	0.5758	-6.2	NA	$\pm~20~\%$	Average RF
4-Bromofluorobenzene	50.0	50.1	0.5030	0.5036	0.1	NA	$\pm~20~\%$	Average RF
Toluene-d8	50.0	49.6	1.290	1.281	-0.7	NA	$\pm~20~\%$	Average RF
Dibromofluoromethane	50.0	49.5	0.3229	0.3194	-1.1	NA	$\pm~20~\%$	Average RF

QA/QC Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Analyzed:9/7/21 10:12

Tune Summary Volatile Organic Compounds by GC/MS

 File ID:
 I:\ACQUDATA\msvoa12\Data\090721\K6436.D\
 Analytical Method:
 8260C

 Instrument ID:
 R-MS-12
 Analysis Lot:
 737713

Target Mass	Relative to Mass	Lower Limit%	Upper Limit%	Relative Abundance %	Raw Abundance	Result Pass/Fail
50	95	15	40	18.58	33544	Pass
75	95	30	60	49.57	89485	Pass
95	95	100	100	100.00	180531	Pass
96	95	5	9	6.67	12041	Pass
173	174	0	2	1.21	1604	Pass
174	95	50	120	73.59	132861	Pass
175	174	5	9	7.01	9320	Pass
176	174	95	101	95.24	126533	Pass
177	176	5	9	6.69	8465	Pass

Lab Code	File ID	Date Analyzed Q
RQ2110992-02	I:\ACQUDATA\msvoa12\Data\090721\K6437.D\	9/7/21 10:46
RQ2110992-03	$I: ACQUDATA \\ msvoa12 \\ Data \\ 090721 \\ K6438.D \\ \\$	9/7/21 11:14
RQ2110992-04	$I: ACQUDATA \ msvoa12 \ Data \ 090721 \ K6441.D \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	9/7/21 12:32
R2108875-005	$I: ACQUDATA \\ msvoa12 \\ Data \\ 090721 \\ K6455.D \\ Data \\$	9/7/21 17:37
R2108875-006	$I: ACQUDATA \ msvoa12 \ Data \ 090721 \ K6456.D \ \ \\$	9/7/21 17:59
R2108875-008	$I: ACQUDATA \\ msvoa12 \\ Data \\ 090721 \\ K6457.D \\ Data \\$	9/7/21 18:21
R2108875-009	$I: ACQUDATA \\ msvoa12 \\ Data \\ 090721 \\ K6458.D \\ Data \\$	9/7/21 18:43
R2108875-004	$I: ACQUDATA \\ msvoa12 \\ Data \\ 090721 \\ K6459.D \\ D$	9/7/21 19:05
R2108875-007	$I: ACQUDATA \\ msvoa12 \\ Data \\ 090721 \\ K6460.D \\ Data \\$	9/7/21 19:26
R2108875-003	$I: ACQUDATA \ msvoa12 \ Data \ 090721 \ K6462.D \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	9/7/21 20:10
R2108875-001	$I: ACQUDATA \\ msvoa12 \\ Data \\ 090721 \\ K6463.D \\ Data \\$	9/7/21 20:32
RQ2110992-05	$I: ACQUDATA \ msvoa12 \ Data \ 090721 \ K6464.D \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	9/7/21 20:54
RQ2110992-06	$I: ACQUDATA \\ msvoa12 \\ Data \\ 090721 \\ K6465.D \\ D$	9/7/21 21:16
	RQ2110992-02 RQ2110992-03 RQ2110992-04 R2108875-005 R2108875-006 R2108875-008 R2108875-009 R2108875-004 R2108875-007 R2108875-001 R2108875-001 RQ2110992-05	RQ2110992-02 I:\ACQUDATA\msvoa12\Data\090721\K6437.D\ RQ2110992-03 I:\ACQUDATA\msvoa12\Data\090721\K6438.D\ RQ2110992-04 I:\ACQUDATA\msvoa12\Data\090721\K6441.D\ R2108875-005 I:\ACQUDATA\msvoa12\Data\090721\K6455.D\ R2108875-006 I:\ACQUDATA\msvoa12\Data\090721\K6456.D\ R2108875-008 I:\ACQUDATA\msvoa12\Data\090721\K6457.D\ R2108875-009 I:\ACQUDATA\msvoa12\Data\090721\K6458.D\ R2108875-004 I:\ACQUDATA\msvoa12\Data\090721\K6459.D\ R2108875-007 I:\ACQUDATA\msvoa12\Data\090721\K6460.D\ R2108875-001 I:\ACQUDATA\msvoa12\Data\090721\K6463.D\ RQ2110992-05 I:\ACQUDATA\msvoa12\Data\090721\K6464.D\

QA/QC Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Analyzed:9/8/21 12:22

Tune Summary Volatile Organic Compounds by GC/MS

 File ID:
 I:\ACQUDATA\msvoa10\data\090821\T8738.D\
 Analytical Method:
 8260C

 Instrument ID:
 R-MS-10
 Analysis Lot:
 737912

Target Mass	Relative to Mass	Lower Limit%	Upper Limit%	Relative Abundance %	Raw Abundance	Result Pass/Fail
50	95	15	40	23.75	5842	Pass
75	95	30	60	60.00	14760	Pass
95	95	100	100	100.00	24600	Pass
96	95	5	9	7.57	1861	Pass
173	174	0	2	1.14	244	Pass
174	95	50	120	86.63	21311	Pass
175	174	5	9	8.33	1775	Pass
176	174	95	101	100.04	21319	Pass
177	176	5	9	6.10	1301	Pass

lyzed Q
2:59
3:35
I:51
0:22
9:44
):28
):50
:11
:33
:55
2:17
2:39
3:00
2349901112

QA/QC Report

Client:Xerox Corporation USAService Request:R2108875Project:Bldg 801 Area WellsDate Analyzed:9/9/21 09:29

Tune Summary Volatile Organic Compounds by GC/MS

 File ID:
 I:\ACQUDATA\MSVOA14\Data\090921\F8875.D\
 Analytical Method:
 8260C

 Instrument ID:
 R-MS-14
 Analysis Lot:
 738076

Target Mass	Relative to Mass	Lower Limit%	Upper Limit%	Relative Abundance %	Raw Abundance	Result Pass/Fail
50	95	15	40	25.15	53192	Pass
75	95	30	60	57.60	121821	Pass
95	95	100	100	100.00	211477	Pass
96	95	5	9	6.62	13997	Pass
173	174	0	2	0.00	0	Pass
174	95	50	120	70.69	149483	Pass
175	174	5	9	7.99	11946	Pass
176	174	95	101	97.08	145117	Pass
177	176	5	9	6.52	9455	Pass

Sample Name	Lab Code	File ID	Date Analyzed	Q
Continuing Calibration Verification	RQ2111152-02	I:\ACQUDATA\MSVOA14\Data\090921\F8876.D\	9/9/21 10:08	
Lab Control Sample	RQ2111152-03	I:\ACQUDATA\MSVOA14\Data\090921\F8877.D\	9/9/21 10:40	
Method Blank	RQ2111152-04	I:\ACQUDATA\MSVOA14\Data\090921\F8880.D\	9/9/21 11:55	
MW-19	R2108875-011	I:\ACQUDATA\MSVOA14\Data\090921\F8883.D\	9/9/21 13:10	
MW-19MS	RQ2111152-05	I:\ACQUDATA\MSVOA14\Data\090921\F8902.D\	9/9/21 20:13	
MW-19DMS	RQ2111152-06	$I: \label{local_acqubata} I: local_acqubataac$	9/9/21 20:35	

APPENDIX C
Time vs. Concentration Graphs

APPENDIX D Groundwater Elevation Trend Graphs

GW Elevation- Source Wells

GW Elevation- Downgradient Wells

