Report. hw828072.1996-12-01. RP Phase 2 RI Report

Radian Engineering Inc.

DRAFT

Draft Phase II Remedial Investigation Report for Erdle Perforating Company Site No. 828072

Prepared For:

Erdle Perforating Company Town of Gates, New York

Prepared By:

Radian Engineering 155 Corporate Woods Suite 100 Rochester, New York 14623

December 1996

TABLE OF CONTENTS

-

		1	<u>age</u>
	EXECUTIVE	E SUMMARY	ES-1
1.0	INTRODUCT	ΓΙΟΝ	. 1
2.0	METHODOL	OGY	3
3.0	QUALITY A	SSURANCE/QUALITY CONTROL PROCEDURES	4
4.0	SUMMARY	OF RESULTS	5
	 4.2 Analyt 4.3 Compa 4.3.1 4.3.2 4.4 Fish a 4.4.1 	ed Geologic/Hydrogeological Information	6 8 8 9 9 9 10
5.0	CONCLUSIC	DNS	. 11
6.0	RESPONSES	TO COMMENTS ON PHASE I REPORT	. 13
	REFERENCE	ΞS	. 15
APPE APPE APPE	NDIX A: NDIX B: NDIX C: NDIX D: NDIX E:	Comments and Responses to Draft Phase I Report Phase II QA/QC Summary and Data Usability Report Boring Logs Phase II Groundwater Sampling Field Data Sheets Hydraulic Conductivity Results	

i

- 1 Definition of Laboratory Flags
- 2 Definition of Validation Flags
- 3 Detected VOCs in Groundwater Samples
- 4 Detected Metals/Inorganics in Surface Water/Sediment Samples
- 5 Summary of Phase II Detections Above NYSSCGs, by Compound
- 6 Summary of Phase II Detections Above NYSSCGs, by Media
- 7 Evaluation of Potential Pathways
- 8 Evaluation of Detected Concentrations vs. Surface Water/Sediment Criteria
- 9 Revised Air Results Summary (Formerly Table 4-10 of Phase I RI Report)

LIST OF FIGURES

ii

- 1 Phase II Monitoring Well and Sample Locations
- 2 Cross Section Locations
- 3 Phase II North/South Cross Section
- 4 Phase II East/West Cross Section
- 5 Overburden Groundwater Elevation
- 6 Shallow Bedrock Groundwater Elevation
- 7 Overburden Groundwater VOC Results
- 8 Bedrock Groundwater VOC Results

EXECUTIVE SUMMARY

This document reports the results of Phase II of a Remedial Investigation/Feasibility Study (RI/FS) required by the New York State Department of Environmental Conservation (NYSDEC) at the Erdle Perforating Company, Site No. 828072, in the Town of Gates, New York, and integrates these results with the findings of Phase I of the RI. Erdle is conducting this RI/FS in cooperation with the NYSDEC and the New York State Department of Health (NYSDOH). The program to be completed is part of an Administrative Consent Order (#B8-0185-87-05) between Erdle and NYSDEC.

Several environmental studies have been conducted at the site since the discovery of VOCs in the subsurface at the former location of storage tanks for waste solvent and waste oil. Field work for Phase I of this RI was conducted during December 1994, per an approved Work Plan (Radian Corporation, October, 1993). The Phase II field work was conducted from July 22 to August 6, 1996; the results of that investigation are presented in this document, along with an overall assessment of the findings of Phase I and Phase II.

The Phase II investigation has defined the VOC plume and generally confirmed the findings of the Phase I investigation. Notable findings are as follows:

- VOC concentrations at MW-1, located adjacent to the solvent tank (i.e., source area concentrations), have decreased since the time of the Phase I investigation;
- No quantified VOCs were detected in deeper bedrock at the source area (i.e., well MW-1DD); however, trace levels of o-xylene (0.29 μ g/L) were reported;

• A TCE concentration of 550,000 μ g/L was detected in overburden groundwater at MW-3, a location south of the source area and downgradient; this is the highest concentration of TCE detected to date;

- TCE was detected in shallow bedrock groundwater at a concentration of 1,400 μ g/L at MW-6D, located to the south (downgradient) of the source area near the property line; and
- Metals concentrations in the second sediment sample collected at the "old" outfall location (SD-2) were lower than the Phase I concentrations. Also, additional research was performed, and revised criteria developed for cadmium, copper, lead, and zinc. Cadmium, copper, lead, and zinc were below criteria. The "old" and "new" outfalls have been inactive for over 4 years and are not considered sources, based on site data.

These findings are not thought to have any significant bearing on the planned Interim Remedial Measure at the site. The proposed IRM using the 2-PHASE Extraction process, is designed to remove soil and groundwater contamination from the overburden materials at the former source area. Overburden soil and groundwater concentrations will be decreased. It is anticipated that bedrock groundwater concentrations will attenuate when the IRM decreases VOC concentrations in the overburden of the source area. Also, risk-based cleanup objectives are being developed to determine when the IRM has addressed the site.

1.0 INTRODUCTION

This document reports the results for Phase II of a Remedial Investigation/ Feasibility Study (RI/FS) required by the New York State Department of Environmental Conservation (NYSDEC) at the Erdle Perforating Company (Erdle), in the Town of Gates, New York. Erdle is conducting this RI/FS in cooperation with the NYSDEC and the New York State Department of Health (NYSDOH). The program to be completed is part of an Administrative Consent Order (#B8-0185-87-05) between Erdle and NYSDEC.

Field work for Phase I of the RI was conducted during December 1994, per an approved Work Plan (Radian Corporation, October, 1993), and included installation of five new monitoring wells, and sampling and analysis of groundwater, surface and subsurface soil, surface water, sediment, and air. Literature research was conducted in the areas of site and vicinity geology and hydrogeology, land use, and history. In addition, an ecological assessment was performed to identify and preliminarily evaluate the site's effects on ecological resources at the site. The results of the Phase I of the RI were reported in a Draft Remedial Investigation Report (Radian Engineering Inc, June 1995). The Draft report is hereby incorporated into this report by reference.

Based on the Phase I results, and on NYSDEC comments and responses (presented in Appendix A), the Phase II portion of the RI was designed to address issues remaining at the site and provide information for the Feasibility Study (FS). The Draft Phase I Report concluded that, to complete the RI/FS, additional information was needed on the extent of the target compounds in groundwater, both laterally and vertically. The Phase I Report also recommended that this information be obtained by sampling at the following locations:

• Downgradient, in the light woods and marsh south of MW-3, to provide information on the lateral extent of contamination in the overburden and shallow bedrock;

- In the shallow bedrock at the MW-2 location, to provide information on migration vertically and laterally (to the east); and
- In the deep bedrock at the source area, to define the vertical extent of contamination.

An additional round of sampling was also recommended, to provide data on seasonal fluctuation and possible migration of detected compounds. The Phase I data indicated that the contaminants of concern are limited to the VOCs; therefore, the additional monitoring was to focus on these constituents.

The Phase II portion of the RI, designed to address the above-listed issues, was described in the December 1995 document entitled, "Draft Phase II Remedial Investigation Work Plan for Erdle Perforating Company, Site No. 828072 (Work Plan)." This Work Plan was approved by the NYSDEC on January 31, 1996.

The Phase II field work was conducted from July 22 to August 6, 1996; the results of that investigation are presented in this document, along with an overall assessment of the findings of Phase I and Phase II.

METHODOLOGY

As discussed in the Work Plan, the Phase II investigation included the following elements:

- Monitoring Well Installation: Four new monitoring wells were installed at the following locations: MW-1DD; MW-2D; MW-6; and MW-6D. Installation included subsurface geologic sampling, hydraulic conductivity testing of the unweathered glacial till at MW-1DD, and well development.
- Groundwater Sampling: Sampling of all newly installed and existing monitoring wells during the second quarter of 1996. Analysis of groundwater samples was performed per EPA Method SW8010/8020 (halogenated and aromatic volatiles) by Recra Environmental of Amherst, New York.
- Sediment Sampling and Analysis: A sediment sample from the "old" cooling water outfall (SD-2A) was collected and analyzed for NYSCLP metals.
- Completion of the Fish and Wildlife Impact Analysis: The Fish and Wildlife Impact Analysis was completed through Step 2B, Criteria-Specific Analysis, for 1,2-dichloroethene, cadmium, copper, lead, and zinc.

A Phase II sample location map is presented in Figure 1. With the one exception (noted below) all work was conducted per the procedures described in the Work Plan. Although the Work Plan called for a rising head hydraulic conductivity test on the unweathered till, a falling head conductivity test was performed instead, because the borehole did not yield groundwater. Steps 6 and 7 on Page 6 of the Phase II Work Plan were replaced by the following: 1) Fill the casing instantaneously with potable water; and 2) Record the drop in head vs. time for a minimum period of 4 hours.

3

2.0

3.0

QUALITY ASSURANCE/QUALITY CONTROL PROCEDURES

As described in the Work Plan, both field and laboratory quality control measures were undertaken to ensure the validity of project data. Field quality control (QC) measures included sample collection by standard methods described in the QAPP, and the collection of field duplicates to measure sample-to-sample variability. The QC samples collected included a field duplicate, a rinsate blank for metals, and trip blanks for volatiles. Additional quality control samples were analyzed, including method blanks, matrix spike blanks, and laboratory control samples.

Results for all analyses were subjected to data validation based on the requirements found in EPA Region II Data Validation SOP, 1/92, revision 8 (for organics); and EPA Region II Evaluation of Metals SOW 3/90 (for organics). The results of these validations are presented in the "Phase II QA/QC Summary and Data Usability Report," Radian Corporation, draft of November 1996, presented as Appendix B. Also included in Appendix B are individual validation packets for each Sample Delivery Group (SDG), containing a narrative detailing any problems identified in the SDG. The validation and laboratory flags associated with the data are defined in Tables 1 and 2.

Overall QC associated with the program indicated that measurement data were acceptable and defensible. The data indicate that the QC mechanisms were effective in ensuring measurement data reliability within the expected limits of sampling and analytical error. Certain concerns identified during the QA/QC review should be noted prior to final interpretation of the analytical results. These are detailed in the Appendix B text, and were related to the halogenated volatile organic results, the aromatic volatile organic results for groundwater samples, and the metals results for a sediment sample.

4.0 SUMMARY OF RESULTS

During the Phase II portion of the RI, groundwater samples were collected and analyzed for halogenated volatile organic compounds, and a sediment sample was collected and analyzed for metals, from the locations shown in Figure 1. In addition, the Fish and Wildlife Impact Analysis was completed through Step 2B for 1,2-dichloroethene, cadmium, copper, lead, and zinc. The results of these activities are detailed below.

4.1 <u>Revised Geologic/Hydrogeologic Information</u>

Phase I geologic findings (presented in detail in Section 4.1 of the Draft Phase I report) were confirmed by the Phase II data. Site soils consist of approximately 4-5 feet of glacial stratified drift, underlain by a layer of weathered glacial till (which ranges from approximately 2 feet thick at MW-1 to approximately 6 feet thick at MW-3). Beneath this is a layer of unweathered glacial till, which extends to bedrock. Boring logs for the Phase II wells are presented in Appendix C.

The weathered and unweathered glacial tills are laterally consistent across the entire area investigated. Geologic cross sections, revised to include Phase II findings, are provided in Figure 2 (orientation of the cross-sections), Figure 3 (revised North-South Cross Section, including new monitoring wells MW-1DD/6/6D), and Figure 4 (revised East-West Cross Section, including new monitoring wells MW-1DD/2D). Bedrock was encountered approximately 14 feet below grade, and consisted of carbonate rocks of the Lockport Dolomite.

Revised overburden and bedrock groundwater contour maps, presented in Figures 5 and 6, are consistent with the groundwater data from the Phase I investigation. Water level data were collected during sampling and are presented on Phase II Groundwater Sampling Field Data Sheets, presented in Appendix D. Groundwater flow in the overburden

zone is to the south/southwest and discharges to the ditch along the west property line. Groundwater flow in the shallow bedrock zone in August 1996 was to the south, which is consistent with the December 1994 Phase I data. Groundwater flow patterns do not appear to vary seasonally.

Hydraulic conductivity results (combined from Phase I and Phase II) are presented in Appendix E. The overburden materials, being made up of fine textured sediments, are substantially lower in hydraulic conductivity than the bedrock. Average hydraulic conductivity for the overburden was $3.4X10^{-5}$ cm/sec, ranging from $4.1X10^{-7}$ to $1.4X10^{-4}$ cm/sec. Bedrock hydraulic conductivity averaged $1.7X10^{-1}$ cm/sec and ranges from $7.5X10^{-4}$ to $3.9X10^{-1}$ cm/sec. Overburden wells typically go dry and recover slowly during development and sampling. Bedrock wells, on the other hand, can be pumped at a rate of 20 gallons per minute with approximately 1 foot of drawdown. The only hydraulic conductivity data obtained during Phase II concerned the hydraulic conductivity in the unweathered till (measured in well MW-1DD); this value was found to be $6.2x10^{-6}$ cm/sec; substantiating the Phase I conclusion that the unweathered till is a confining layer that inhibits the vertical migration of VOCs.

4.2 <u>Analytical Results</u>

Table 3 shows the VOC analytical groundwater results for both Phase I and Phase II of the RI. Figures 7 and 8 show the overburden and bedrock groundwater VOC results, respectively. Table 4 shows the metals results in surface water/sediment samples for both Phase I and Phase II of the RI. The only "new" data in this table are the Phase II results from sediment sample SD-2A, collected at the old outfall location.

Table 5 shows a revised summary of detections above the New York State Standards Criteria and Guidelines (NYSSCGs) by compound. Table 6 shows a revised summary of detections above NYSSCGs by media.

During Phase II, the VOCs detected above the NYSSCGs in groundwater were confined to 1,2-DCE (in MW-1, adjacent to the solvent tank); TCE (in MW-1, MW-1D, MW-2, MW-2D, MW-3, MW-3D, MW-4D, MW-5D, and MW-6D); and vinyl chloride (MW-1, MW-2, MW-4, MW-6). Only TCE was detected in samples from the shallow bedrock wells. Furthermore, tetracholorethene, toluene, and methylene chloride, each of which was detected during Phase I above NYSSCGs at least one location each, were not detected in groundwater above NYSSCGs during Phase II. No quantified VOCs were detected in the sample from the deep bedrock well (MW-1DD); however, trace levels of o-xylene (0.26 μ g/L) were detected. This result was flagged in data validation as estimated and potentially biased high.

For the metals in sediment, additional research was performed to develop revised criteria for cadmium, copper, lead, and zinc. These metals had been detected in sediment at concentrations above NYSSCGs in the Phase I sediment sample SD-2. The revised criteria were developed with reference to guidance provided in the NYSDEC "Technical Guidance for Screening Contaminated Soils" and procedures published by the U.S. Environmental Protection Agency (1980, 1984, 1985, and 1989) and NYS Part 700-705 regulations. The following procedure was used to estimate the revised sediment criteria:

- A review of current published Ambient Water Quality Criteria for species, e.g., minnows and trout, which might inhabit local surface waters was performed.
- Sediment concentrations in equilibrium with the Ambient Water Quality Criteria were computed by use of U.S. EPA published partition coefficients (Kds) for each metal. These modeled sediment concentrations which are in equilibrium with the Water Quality Criteria would, therefore, be protective of sensitive species inhabiting the potentially impacted surface waters.

Table 4 contains the revised criteria developed during Phase II.

A second sediment sample (SD-2A) was collected from the same location as SD-2 during the Phase II investigation to confirm the Phase I results. This sample generally had lower concentrations of metals, and no constituents exceeded criteria.

4.3 <u>Comparison with Phase I Data</u>

4.3.1 Groundwater

During Phase I, 1,2-DCE was detected at concentrations above NYSSCGs in MW-1 at concentrations of 150,000 μ g/L (in sample GW-1) and at 170,000 μ g/L in the duplicate sample at this location. This compound was also detected at a concentration of 1,300 μ g/L in MW-1D (sample GW-7). By contrast, during the Phase II sampling, 1,2-DCE was only detected above the NYSSCG at MW-1 (sample 2-GW-7) and this at a concentration (72 μ g/L) considerably below the Phase I concentrations cited above.

During Phase I, TCE was present above its NYSSCG in every groundwater sample but one (sample GW-10, taken at MW-4, the southwest downgradient location). This compound was also detected in groundwater above the NYSSCG at several locations during Phase II (MW-1, MW-1D, MW-2, MW-2D, MW-3, MW-3D, MW-4D, MW-5D, and MW-6D). The detection at MW-3 was the highest seen during either Phase I or Phase II, at 550,000 μ g/L. MW-3 is located downgradient and to the south of the source area. TCE was again not present above the NYSSCG at the southwest downgradient location (neither the overburden or bedrock wells). During Phase II, TCE was detected in groundwater at a concentration of 1,400 μ g/L in sample 2-GW-6D, taken at monitoring well MW-6D, located near the downgradient property line to the south. This was the only VOC detected above NYSSCG at this monitoring well location.

During Phase I, vinyl chloride was present in groundwater above its NYSSCG in MW-1, MW-2, and MW-4. During Phase II, this compound was present in groundwater

above its NYSSCG in MW-1 MW-2, MW-4, and in MW-6 (downgradient sample to the south). As with 1,2-DCE, at the MW-1 location, the concentration of this compound was considerably lower during Phase II (2,200 μ g/L during Phase II at MW-1, as opposed to 13,000 μ g/L at this location during Phase I).

Because the Phase II groundwater samples were collected during the summer as opposed to the winter, the sampling program allowed the determination of seasonal fluctuations. The results do not suggest seasonal fluctuations in groundwater concentrations occur at the site.

4.3.2 Sediment Sample

During Phase I, the sediment sample at the old outfall (sample SD-2) had concentrations of the following metals above their respective NYSSCGs: cadmium (1.6 mg/kg), copper (104 mg/kg), lead (71.1 mg/kg), and zinc (410 mg/kg). During Phase II, revised criteria were derived for these constituents. Also, an additional sediment sample was taken at the old outfall (sample SD-2A). None of the Phase II metals concentrations were above criteria. Generally, the Phase II metals concentrations at this sample location were lower than the concentrations detected during Phase I.

4.4 Fish and Wildlife Impact Analysis

Table 7 is a revised evaluation of potential exposure pathways. The sediment pathway is now considered "complete," due to the presence of benthic organisms, as requested by NYSDEC comment on the Phase I RI report.

Per NYSDEC comments on the Draft Phase I Report, Radian has completed the Fish and Wildlife Impact Analysis through Step 2B for 1,2-DCE, cadmium, copper, lead, and zinc in sediment. This required developing sediment criteria for these compounds, and

evaluating Phase I and Phase II data against the developed criteria. The results of this analysis are shown in Table 8.

4.4.1 1,2-DCE

Based on literature research, a chronic toxicity value for 1,2-dichloroethene of 3,900 μ g/L was developed. This toxicity is based on information published by the U.S. Department of Health (1994).

4.4.2 Metals

<u>Cadmium</u>: In no case was cadmium detected in any sediment sample above the developed criteria.

Copper: Copper was detected in sample SD-2 at 104 mg/kg, above the minimum range at the developed criteria (65 mg/kg). The Phase II result from this location (i.e., sample SD-2A, 33.4 mg/kg) was below the developed criteria.

Lead: One sample (SD-2) had a concentration of lead about the criteria; this sample, taken during Phase I at the old outfall, had a lead concentration of 71.1 mg/kg. The lead concentration in SD-2A, taken from the same location, during Phase II, had a lead concentration of 42.9 mg/kg, a value which was below the developed sediment criteria of 61 mg/kg.

Zinc: In no case was zinc detected in the sediment samples above the developed criteria.

5.0 CONCLUSIONS

The results of the Phase II RI are consistent with the findings of the Phase I RI. Notable findings of the Phase II investigation center around the extent of VOCs in overburden and bedrock groundwater, and are as follows:

- No quantified VOCs were detected in groundwater samples from the deep bedrock monitoring well (MW-1DD); however, trace levels of o-xylene $(0.29 \ \mu g/L)$ were reported. This well was installed at the source area in the next deeper bedrock groundwater zone. These data indicate the vertical extent of contamination in groundwater is restricted to the shallow bedrock groundwater zone.
- VOC concentrations in the overburden groundwater range up to several orders of magnitude greater than the shallow bedrock groundwater.
- VOC concentrations in the overburden groundwater at the former source (i.e., MW-1), have decreased since the Phase I investigation.
- VOC concentrations ranging up to 550,000 μ g/L were detected in overburden groundwater at MW-3, a location approximately 100 feet south of the source area.
- The VOC plume has been defined for both the overburden and shallow bedrock groundwater. The majority of VOCs in groundwater occurs in the area between wells MW-2/2D and MW-4/4D. The southern extent of the overburden VOC plume exists between MW-6 and MW-3, as only trace levels of VOCs were detected in MW-6. A detection of TCE at a concentration of 1,400 in MW-6D indicates that the shallow bedrock groundwater plume extends south (downgradient) to dear the Erdle property line.
 - Sediment sample SD-2A from the "old" outfall (collected from the same location as Phase I sample SD-2) generally had lower concentrations of metals, and no constituents exceeded criteria. The "old" and "new" outfalls have been inactive for over 4 years and are not considered contaminant sources, based on site data.

These findings are not thought to have any significant bearing on the planned Interim Remedial Measure at the site. The proposed IRM using the 2-PHASE Extraction process is designed to remove soil and groundwater contamination from the overburden at the source area. Overburden soil and groundwater concentrations will be decreased. It is anticipated that VOC concentrations in bedrock will attenuate when the IRM decreases VOC concentrations in the overburden. Also, risk-based cleanup objectives are being developed to determine when the IRM has addressed the site.

6.0 RESPONSES TO COMMENTS ON PHASE I REPORT

In a letter dated November 14, 1995, the NYSDEC provided additional comments on the Phase I RI report and requested that the comments be addressed in the Phase II RI report. The following presents responses to the comments. The comments are summarized in italics (complete comments are presented in Appendix A) and responses are provided below the comment.

1. Radian should abandon the term "nutrient metals" in future reports. All evidence of site contamination, including contamination involving naturally abundant metals such as manganese and aluminum, must be fully explored in the Phase II RI.

A supplemental sediment sample from the "old" outfall location was collected during the Phase II RI to recheck the results of the Phase I RI. In addition, revised guidance levels for cadmium, copper, lead, and zinc were developed using EPA and NYSDEC published methods. Metals concentrations in the Phase II sample were generally lower than the Phase I sample (see Table 4) and no metals exceeded the developed guidance levels. Radian also agrees to abandon the term "nutrient metals" in future reports.

2. The consultant's indentification of aluminum as a "nutrient metal" is incorrect.

NYSDEC's comment that aluminum is not an essential ion in human nutrition is noted and the term "nutrient metal" will not be used to describe this metal. Aluminum is a naturally abundant metal in clayey soils and sediments (such as the sediment at the Erdle site), however, and is not considered a reliable indicator of environmental contamination for this site.

3. The low recoveries for silver and aluminum suggest that the laboratory analytical results for silver and aluminum in groundwater may have been biased low. The accurate detemination of aluminum concentrations in environmental media is of particular importance at the Erdle property since...aluminum is one of the metals handled at the Erdle facility.

NYSDEC's comment is noted. While reviewing the Phase I analytical data to address this comment, it was noted that the groundwater aluminum concentration was 110,000 μ g/L in Phase I sample GW-3 at the background location for the site. This data was erroneously not transcribed to Table 4-6 of the Phase I RI report. The background aluminum concentration in groundwater is higher than the aluminum concentration in groundwater in Phase I sample GW-1 at the former contaminant source (2,650 μ g/L).

4. Radian should take steps to ensure that laboratory analytical results from the next round of groundwater sampling are more useful.

Comment noted.

9.

5. The results of the air analyses, while usable, may be biased low, and therefore should be qualified as "J," estimated data.

Comment noted. A revised Phase I air results table has been provided as Table

REFERENCES

- U.S. Department of Health and Human Services. <u>Toxicological Profile for 1,2-Dichloroethene</u>. Agency for Toxic Substances and Disease Registry. August, 1994.
- U.S. Environmental Protection Agency. <u>Chemical, Physical, and Biological Properties for</u> <u>Compounds Present at Hazardous Waste Sites.</u> Clement Associates, Inc. September, 1995.
- U.S. Environmental Protection Agency. <u>Ambient Water Criteria for Copper.</u> Office of Water. 1984. (Used to derive sediment criteria).
- U.S. Environmental Protection Agency. <u>Ambient Water Criteria for Zinc.</u> Office of Water. 1980. (Used to derive sediment criteria).
- New York State Water Quality Regulations, Title 6. Chapter X. Parts 700 to 705 (Used to convert water quality values to sediment criteria).
- U.S. Environmental Protection Agency. <u>Determining Soil Response Action Levels Based on</u> <u>Potential Contaminant Migration to Groundwater: A Compendium of Examples.</u> October, 1989.

Tables

~

Table 1

Definition of Laboratory Flags

 U Indicates compound was analyzed for but not detected. J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero. C This flag applies to pesticide results where the identification has been confirmed by GC/MS. B This flag is used when the analyte is found in the associated blank as well as in the sample. E This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analyte. D This flag identifies all compounds identified in an analysis at a secondary dilution factor. G The TCLP Matrix Spike recovery was greater than the upper limit of the analytical method. L This flag is used when the analyte is found in the associated TCLP extraction as well as in the samples. N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. P This flag is used for a pesticide/Aroclor target analyte when there is greater than 25% 	
 J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero. C This flag applies to pesticide results where the identification has been confirmed by GC/MS. B This flag is used when the analyte is found in the associated blank as well as in the sample. E This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analyte. D This flag identifies all compounds identified in an analysis at a secondary dilution factor. G The TCLP Matrix Spike recovery was greater than the upper limit of the analytical method. L The TCLP Matrix Spike recovery was lower than the lower limit of the analytical method. T This flag is used when the analyte is found in the associated TCLP extraction as well as in the samples. N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. 	cted.
 data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero. C This flag applies to pesticide results where the identification has been confirmed by GC/MS. B This flag is used when the analyte is found in the associated blank as well as in the sample. E This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analyte. D This flag identifies all compounds identified in an analysis at a secondary dilution factor. G The TCLP Matrix Spike recovery was greater than the upper limit of the analytical method. L The TCLP Matrix Spike recovery was lower than the lower limit of the analytical method. T This flag is used when the analyte is found in the associated TCLP extraction as well as in the samples. N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. 	
 less than the sample quantitation limit but greater than zero. C This flag applies to pesticide results where the identification has been confirmed by GC/MS. B This flag is used when the analyte is found in the associated blank as well as in the sample. E This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analyte. D This flag identifies all compounds identified in an analysis at a secondary dilution factor. G The TCLP Matrix Spike recovery was greater than the upper limit of the analytical method. L The TCLP Matrix Spike recovery was lower than the lower limit of the analytical method. T This flag is used when the analyte is found in the associated TCLP extraction as well as in the samples. N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. 	nse is assumed, or when the mass spectral
 C This flag applies to pesticide results where the identification has been confirmed by GC/MS. B This flag is used when the analyte is found in the associated blank as well as in the sample. E This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analyte. D This flag identifies all compounds identified in an analysis at a secondary dilution factor. G The TCLP Matrix Spike recovery was greater than the upper limit of the analytical method. L The TCLP Matrix Spike recovery was lower than the lower limit of the analytical method. T This flag is used when the analyte is found in the associated TCLP extraction as well as in the samples. N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. 	
 B This flag is used when the analyte is found in the associated blank as well as in the sample. E This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analyte. D This flag identifies all compounds identified in an analysis at a secondary dilution factor. G The TCLP Matrix Spike recovery was greater than the upper limit of the analytical method. L The TCLP Matrix Spike recovery was lower than the lower limit of the analytical method. T This flag is used when the analyte is found in the associated TCLP extraction as well as in the samples. N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. 	
 E This flag identifies compounds whose concentrations exceed the calibration range of the GC/MS instrument for that specific analyte. D This flag identifies all compounds identified in an analysis at a secondary dilution factor. G The TCLP Matrix Spike recovery was greater than the upper limit of the analytical method. L The TCLP Matrix Spike recovery was lower than the lower limit of the analytical method. T This flag is used when the analyte is found in the associated TCLP extraction as well as in the samples. N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. 	
 instrument for that specific analyte. D This flag identifies all compounds identified in an analysis at a secondary dilution factor. G The TCLP Matrix Spike recovery was greater than the upper limit of the analytical method. L The TCLP Matrix Spike recovery was lower than the lower limit of the analytical method. T This flag is used when the analyte is found in the associated TCLP extraction as well as in the samples. N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. 	- 1
 D This flag identifies all compounds identified in an analysis at a secondary dilution factor. G The TCLP Matrix Spike recovery was greater than the upper limit of the analytical method. L The TCLP Matrix Spike recovery was lower than the lower limit of the analytical method. T This flag is used when the analyte is found in the associated TCLP extraction as well as in the samples. N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. 	is exceed the calibration range of the GC/MS
 G The TCLP Matrix Spike recovery was greater than the upper limit of the analytical method. L The TCLP Matrix Spike recovery was lower than the lower limit of the analytical method. T This flag is used when the analyte is found in the associated TCLP extraction as well as in the samples. N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. 	nalusia et a secondarry dilution factor
 L The TCLP Matrix Spike recovery was lower than the lower limit of the analytical method. T This flag is used when the analyte is found in the associated TCLP extraction as well as in the samples. N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. 	• • •
 T This flag is used when the analyte is found in the associated TCLP extraction as well as in the samples. N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. 	
 samples. N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. 	
N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results.	sociated TCEAT extraction as well as in the
all TIC results.	his flag is only used for tentatively identified
	mass spectral library search. It is applied to
P This flag is used for a nesticide/Araclar target analyte when there is greater than 25%	
difference for detected concentrations between the two GC columns. The lower of the two	14
values is reported on the Form I and flagged with a "P."	
A This flag indicates that a TIC is a suspected aldol-condensation product.	condensation product.
USEPA-Defined Inorganic Data Qualifiers:	
B Indicates a value greater than or equal to the instrument detection limit, but less than the	ument detection limit, but less than the
contract required detection limit.	
U Indicates element was analyzed for but not detected. Report with the detection limit value	d. Report with the detection limit value
(e.g., 100).	
E Indicates a value estimated or not reported due to the presence of interference.	-
S Indicates value determined by Method of Standard Addition.	
 Indicates spike sample recovery is not within control limits. Indicates duplicate analysis is not within control limits. 	1
indicates dupicate analysis is not writin control mints.	
	H
 M Indicates duplicate injection results exceeded control limits. W Post-digestion spike for Furnace AA analysis is out of control limits (85-115%), while sample 	11
absorbance is less than 50% of spike absorbance.	or court of minus (03-115 /0), while sample

Table 2

Definition of Validation Flags

USEPA	A-Defined Organic Data Qualifiers
J	Estimated value
L	Biased low
н	Biased high
U	Not detected at associated level; uncertain
N	Tentatively identified
UJ	Quantitation limit may be inaccurate
В	Not detected substantially above level in blank
R	Unusable value
USEPA	A-Defined Inorganic Data Qualifiers
U	Not detected at associated level
1	Estimated value
R	Unusable value
IJ	Element ND, and quantitation limit uncertain
	· · · · · · · · · · · · · · · · · · ·

Table 3

Erdle Perforating Company, Remedial Investigation Detected Volatile Organic Compounds in Groundwater Samples

Sample	Sample Location	Parameter	Result (µg/L)	Laboratory Flags	Validation Flags	Guidance Exceeded?	Guidance Value ^a (µg/L)
		PHASE I RES	SULTS				
GW-1	Groundwater sample, MW-1,	1,2-Dichloroethene (Total)	150000		J	X ^b	5
	overburden adjacent to solvent tank	Trichloroethene	6400	BJ	J	X	5
	·	Vinyl chloride	13000		J	x	2
GW-2	Groundwater sample, field duplicate of	1,2-Dichloroethene (Total)	170000			x	5
	GW-1	Toluene	10000	BJ	U	X	5
		Trichloroethene	8800	BJ		X	5
		Vinyl chloride	15000			x	2
GW-3	Groundwater sample, MW-5 overburden: background (north)	Methylene chloride	0.32	1	· U		
GW-4	Groundwater sample, MW-4D shallow	1,1,1-Trichloroethane	3.3		J		5
	bedrock: downgradient (southwest)	1,1-Dichloroethane	0.52		11		5
		Methylene chloride	0.31	J	U		
		Trichloroethene	13		J	X	5
GW-5	Groundwater sample, MW-3D shallow bedrock: downgradient (south)	Trichloroethene	380		J	X	5
GW-6	Groundwater sample, MW-5D shallow	1,1,1-Trichloroethane	2	1			5
	bedrock: background (north)	Chlorobenzene	10	BJ	U	X	5
		Toluene	10	BJ	U	x	5
		Trichloroethene	10	BJ	U	X	5

Sample	Sample Location	Parameter	Result	Laboratory	Validation	Guidance	Guidance Value ^a
GW-7	Groundwater sample, MW-1D shallow	1,2-Dichloroethene (Total)	<u>(μg/L)</u> 1300	Flags	Flags	Exceeded? X	(بلg/L) 5
	bedrock: adjacent to solvent tank	Tetrachloroethene	41	J		x	5
		Toluene	20	BJ		x	5
		Trichloroethene	6000	В		X	5
GW-8	Groundwater sample, MW-2	Trichloroethene	1600		J	x	5
	overburden: downgradient (southeast)	Vinyl chloride	88		J	X	2
GW-9	Groundwater sample, MW-3	Methylene chloride	4280	J	J	x	5
	overburden: downgradient (south)	Trichloroethene	350000		J	X	5
GW-10	Groundwater sample, MW-4	Bromodichloromethane	0.31		J		
	overburden: downgradient (southwest)	Chloroform	3.6		J	·	
		Methylene chloride	0.24	J	U		
		Trichloroethene	1.4		J		
		Vinyl chloride	37		J	X	2
		PHASE II RES	ULTS			<u></u>	
2-GW-7	Groundwater sample (duplicate), MW-1,	1,2-Dichloroethene (Total)	72		J	X	5
(dup of 2- GW-1)	overburden adjacent to solvent tank, Phase II	Trichloroethene	420		J	х	5
		Vinyl chloride	2200		J	X	2
2-GW-1D	Groundwater sample, MW-1D, shallow bedrock adjacent to solvent tank, Phase II	Trichloroethene	9900	D	1	Х	5
2-GW- 1DD	Groundwater sample, MW-1DD, deep bedrock adjacent to solvent tank, Phase II	O-Xylene	0.26	-	JH.		5

Sample	Sample Location	Parameter	Result (µg/L)	Laboratory Flags	Validation Flags	Guidance Exceeded?	Guidance Value ^a (µg/L)
2-GW-2	Groundwater sample, MW-2,	Trichloroethene	1000		J	x	5
	overburden downgradient (southeast), Phase II	Vinyl Chloride	98		J	x	2
2-GW-2D	Groundwater sample, MW-2D, shallow	1,1-Dichloroethane	2.4		1		5
	bedrock downgradient (southeast), Phase II	1,2-Dichloroethene (Total)	1.0		J		5
		1,1,1-Trichloroethane	3.9		1		. 5
		Trichloroethene	13		J	x	5
2-GW-3	Groundwater sample, MW-3, overburden downgradient (south), Phase II	Trichloroethene	550000	D	J	х	5
2-GW-3D	Groundwater sample, MW-3D, shallow bedrock downgradient (south), Phase II	Trichloroethene	850	D	J	x	5
2-GW-4	Groundwater sample, MW-4, overburden downgradient (southwest),	1,2-Dichloroethene (Total)	2.6		J		5
	Phase II	Trichloroethene	2.3	:	1		5
		Vinyl Chloride	18		J	x	2
2-GW-4D	Groundwater sample, MW-4D, shallow bedrock downgradient (southwest),	1,1-Dichloroethane	0.64		1	x	5
	Phase II	1,1,1-Trichloroethane	2.5		1	х	5
		Trichloroethene	29		J	x	5
2-GW-5	Groundwater sample, MW-5, overburden background well north of site, Phase II	1,1-Dichloroethane	1.7		J	х	5
2-GW-5D	Groundwater sample, MW-5D, shallow	1,1-Dichloroethane	0. 43		1	x	5
	bedrock background well north of site, Phase II	1,1,1-Trichloroethane	0.91		J		5
		Trichloroethene	0.44		J	x	5

Sample	Sample Location	Parameter	Result (µg/L)	Laboratory Flags	Validation Flags	Guidance Exceeded?	Guidance Value [®] (µg/L)
2-GW-6	Groundwater sample MW-6, overburden downgradient (south), Phase II	Vinyl chloride	2.2		J	x	2
2-GW-6D	Groundwater sample MW-6D, shallow bedrock downgradient (property line to south), Phase II	Trichloroethene	1400	D	J	x	5

^aNYSDEC TOGS 1.1.1, "Ambient Water Quality Standards and Guidance Values." Revised October 1993. ^b"X" and bold type indicate guidance exceeded.

Table 4

Erdle Perforating Company, Remedial Investigation Detected Metals/Inorganics in Surface Water/Sediment Samples

Sample	Sample Location	Parameter	Result ^a	Laboratory Flags	Validation Flags	Guidance Exceeded?	Guidance Valueb
		PHASE I RES	SULTS	-			
SW-2	Surface water, old outfall	Aluminum - Total	7300				
		Arsenic - Total	3.7	В	J		
		Barium - Total	142	В			
		Calcium - Total	193000	*			
		Copper - Total	21	В			
		Iron - Total	12900			x	300
	· · · ·	Lead - Total	22.6	*			
		Magnesium - Total	35600			x	35,000
		Manganese - Total	1360	N*	J	x	300
		Nickel - Total	28	В			
		Potassium - Total	5820				· ·
		Sodium - Total	29100			· · ·	
		Vanadium - Total	13	В	J		
		Zinc - Total	355	N	J	х	300

Sample	Sample Location	Parameter	Result ^a	Laboratory Flags	Validation Flags	Guídance Exceeded?	Guidance Valueb
SD-1	Sediment sample, marsh	Aluminum - Total	6270		J		
		Barium - Total	59.6	В	1		
		Calcium - Total	6220	*	J		
		Chromium - Total	9.3		J		
		Copper - Total	14.9	В	J		
		Iron - Total	10700		1		
		Lead - Total	40.6	*	1		61
		Magnesium - Total	1980	В	J		
		Manganese - Total	96.8	N*	J		
		Potassium - Total	665	В	1		
		Thallium - Total	3.7	В	J		
		Vanadium - Total	11.2	В	J		
		Zinc - Total	198	N	J		700

Ò,

Sample	Sample Location	Parameter	Result ^a	Laboratory Flags	Validation Flags	Guidance Exceeded?	Guidance Valueb
SD-2	Sediment sample, old outfall	Aluminum - Total	5120				
		Arsenic - Total	2.9	В	J		
		Barium - Total	44.8	В			
		Cadmium - Total	1.6	*	J		31
		Calcium - Total	11900	*			
		Chromium - Total	35.1				
		Cobalt - Total	3.2	в			
		Copper - Total	104			Maybe	65-155
		Iron - Total	8100				
		Lead - Total	71.1	+		x	61
		Magnesium - Total	5350				
		Manganese - Total	89.3	N*	J		
		Nickel - Total	15.9				
		Potassium - Total	432	В			
		Selenium - Total	1.2	BN	J		
		Thallium - Total	3.4		J		
		Vanadium - Total	10.4	В	J		
		Zinc - Total	410	N	J		700
		PHASE II RE	SULTS				
ŞD-2A	Sediment sample, old outfall,	Aluminum	6550		JH		
	Phase II	Antimony	1.4	υ			2
		Arsenic	2.3	В			6

٥

Sample	Sample Location	Parameter	Result ^a	Laboratory Flags	Validation Flags	Guidance Exceeded?	Guidance Valueb
SD-2A	Sediment sample, old outfall,	Barium	39.3	В			
	Phase II, con't	Beryllium	0.28	В			
		Cadmium	0.05	υ			0.6
		Calcium	20200				
		Chromium	18.3				26
		Cobalt	3.7	В			
		Copper	33.4		1		65-155
		Iron	10200				2.0%
		Lead	42.9				61
		Magnesium	9150				
		Manganese	117				460
		Mercury	0.11	U			0.15
		Nickel	12.6				16
		Potassium	583	В			
		Selenium	0.99	U			
		Silver	0.49	U			1
		Sodium	378	.B			
		Thallium	1.3	U .			
	·	Vanadium	14.7				

:

Sample	Sample Location	Parameter	Result ^a	Laboratory Flags	Validation Flags	Guidance Exceeded?	Guidance Valueb
SD-2A	Sediment sample, old outfall,	Zinc	364				700
	Phase II, con't	Cyanide	ND				
		Total Hardness/Total Organics Detecti	ons (Analyzed for Ph	ase I Only)			
SW-2	Surface water, old outfall	Total Hardness	595 mg/L				None
SD-1	Sediment sample, marsh	Leachable Total Organic Carbon	62,600 mg/L				None
SD-2	Sediment sample, old outfall	Leachable Total Organic Carbon	16,900 mg/L				None
SD-3	Sediment sample, background	Leachable Total Organic Carbon	8810 mg/L				None

*Results are in units of $\mu g/L$ (surface water samples) or mg/kg (sediment samples). *Surface Water: NYSDEC TOGS 1.1.1, "Ambient Water Quality Standards and Guidance Values." Revised October 1993.

Sediments: NYSDEC, Division of Fish and Wildlife, Division of Marine Resources: Technical Guidance for Screening Contaminated Sediments, July 1994.

Table 5

Summary of Phase II Detections Above NYSSCGs, by Compound

Compound	Media In Which Detected Above NYSSCG			
	Volatile Organic Compounds			
1,2-DCE (total)	Groundwater			
ТСЕ	Groundwater			
Vinyl chloride	Groundwater			
	Semivolatile Organic Compounds			
	(SVOCs not analyzed for during Phase II)			
	Metals			
None	Sediment			

NOTE: During Phase II, only the following samples were collected/analyzed: groundwater for halogenated VOCs, and sediment for metals.

ø

.

Table 6

Summary of Phase II Detections Above NYSSCGs, by Media

	Contaminants Present Above NYSSCG				
Media	Volatile Organics	Semivolatile Organics	Metals		
Soil	No soil samples collected.	No soil samples collected.	No soil samples collected.		
Groundwater	1,2-Dichloroethene Trichloroethene Vinyl chloride	No SVOC analysis conducted on groundwater samples.	No metals analysis conducted on groundwater samples.		
Surface Water	No surface water samples collected.	No surface water samples collected.	No surface water samples collected.		
Sediment	Sediment samples not analyzed for VOCs.	Sediment samples not analyzed for SVOCs.	None		

NOTE: During Phase II, only the following samples were collected/analyzed: groundwater for halogenated VOCs, and sediment for metals.

.

Table 7

Evaluation of Potential Pathways

Potentially Exposed Media	Contaminants Detected?	Potential Route of Exposure	Potential Receptors	Pathway Complete?
Surface Soil	Yes	Dermal absorption, incidental ingestion	Wildlife	Yes
Subsurface Soil	Yes	None	None	No
Surface Water	Yes	Dermal absorption, ingestion	Wildlife, fish, downstream	Yes
Sediment	Yes	Dermal absorption, incidental ingestion	Fish, aquatic plants, benthic organisms	Yes
Groundwater	Yes	None	None	No
Air	Unknown	Inhalation	Wildlife	Unknown

.

Table	8	

DRAFT

Evaluation of Detected Concentrations Vs. Surface Water/Sediment Criteria

Analyte/Media	Criteria	Exceedances		
1,2-DCE/Water	3,900 μg/L	None		
Cadmium/Sediment	31	None		
Copper/Sediment	65 - 155 mg/kg (trout)	SD-2 (104 mg/kg)		
Lead/Sediment	61 mg/kg	SD-2 (71.1 mg/kg)		
Zinc/Sediment	700 mg/kg (trout)	None		

and the second second

DRAFT

Table 9

Revised Air Results Summary (Formerly Table 4-10 of Phase I RI Report)

	Laboratory Results (ng)		Ca (ug/m ³) ^a		Cp (ug/m ³) ^b				
	Al-A	A1-B	A1-CS-A	A1-CS-B	Total A1	Total A1-CS	Total A1	Total A1-CS	NYS ACG (ug/m ³) ^c
Chloroethane	3 J	0 J	01	0 J	1.41E-11	0	4.14E-04	0	63000
Methylene chloride	550 J	0 J	12000 J	6300 J	2.58E-09	8.45E-08	5.16E-05	2.49E+00	27
Acetone	97 J	0 J	510 J	0 J	4.55E-10	2.36E-09	9.09E-06	6.93E-02	14000
Carbon disulfide	20 J	0 J	3 J	15 J	9.37E-11	8.31E-11	1.87E-06	2.45E-03	7.0
1,2-Dichloroethene	18 J	0 J	16 J	0 1	8.44E-11	7.39E-11	1.69E-06	2.17E-03	360
Chloroform	8 J	0 J	8 J	8 J	3.75E-11	7.39E-11	7.50E-07	2.17E-03	23
1,2-Dichloroethane	0 J	0 J	2 J	01	0	9.24E-12	0	2.72E-04	3.9E-02
2-Butanone	0 J	0 J	110 J	0 J	0	8E-10	0	1.49E-02	300
1,1,1-Trichloroethane	7 J	0 J	8 J	7 J	3.28E-11	6.93E-11	6.56E-07	2.04E-03	1000
Vinyl acetate	0 J	3 J	0 J	0 1	1.41E-11	0	2.81E-07	0	NA
Trichloroethene	16 J	0 J	14 J	0 J	7.50E-11	6.46E-11	1.50E-06	1.90E-03	4.5E-01
Chlorobenzene	22 J	0 J	0 J	0 J	1.03E-10	0	2.06E-06	0	20.0
Xylenes	25 J	0 J	31 J	0 J	1.17E-10	1.43E-10	2.34E-06	4.21E-03	300

^a Ca = Concentration directly over waste site.

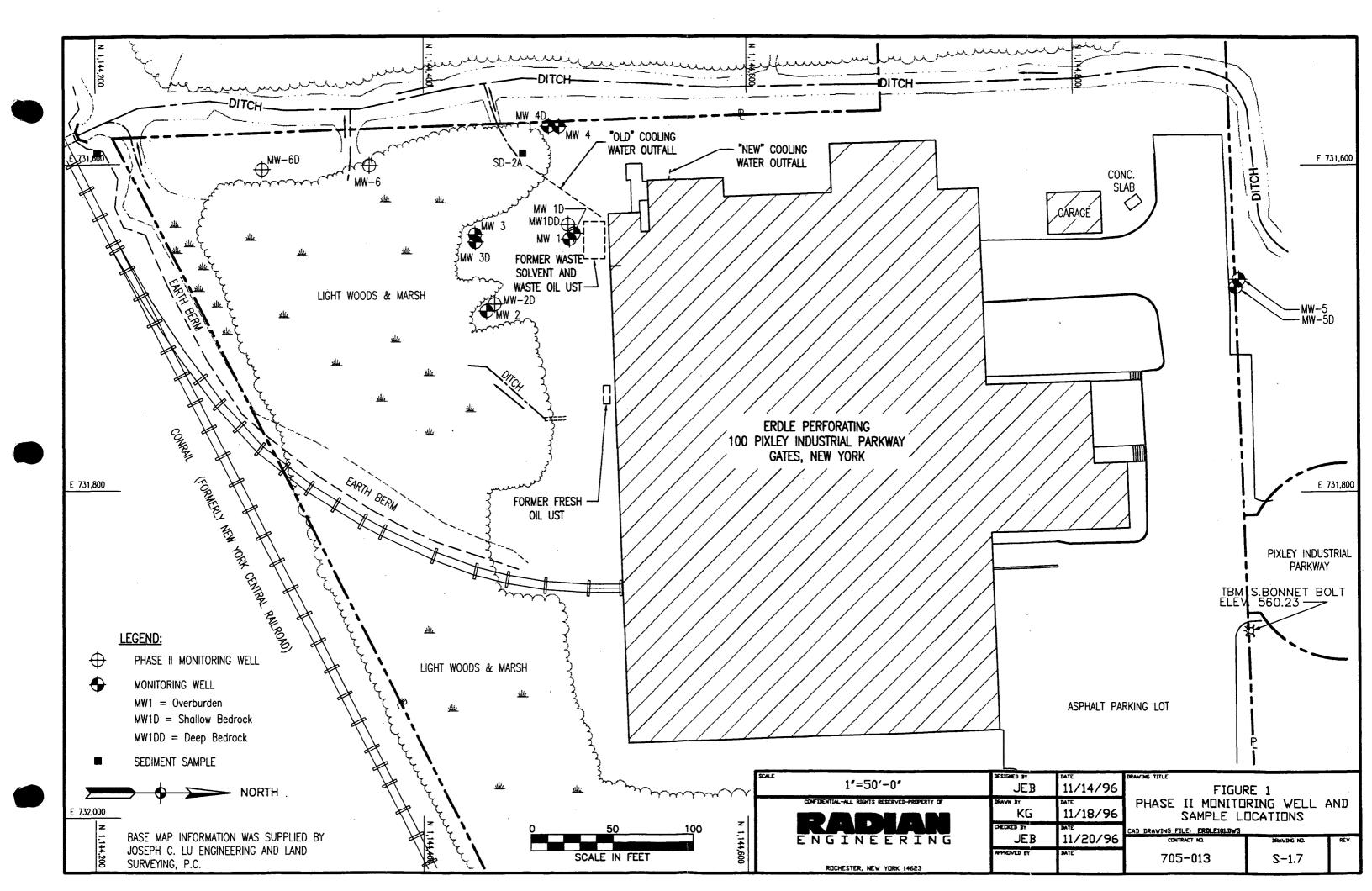
^b Cp = Maximum potential annual concentration.

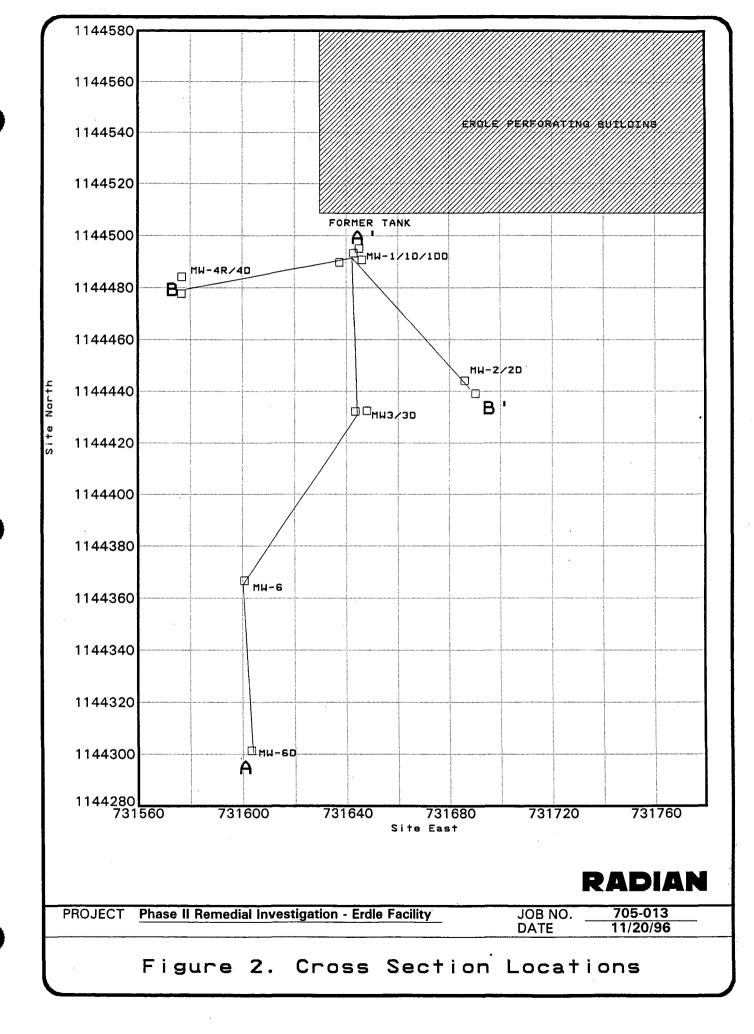
^c From: New York State Department of Environmental Conservation, Bureau of Toxic Air Sampling, Division of Air Resources, "Air Pathway Analysis Requirements in the Remedial Investigation," April 2, 1991.

.

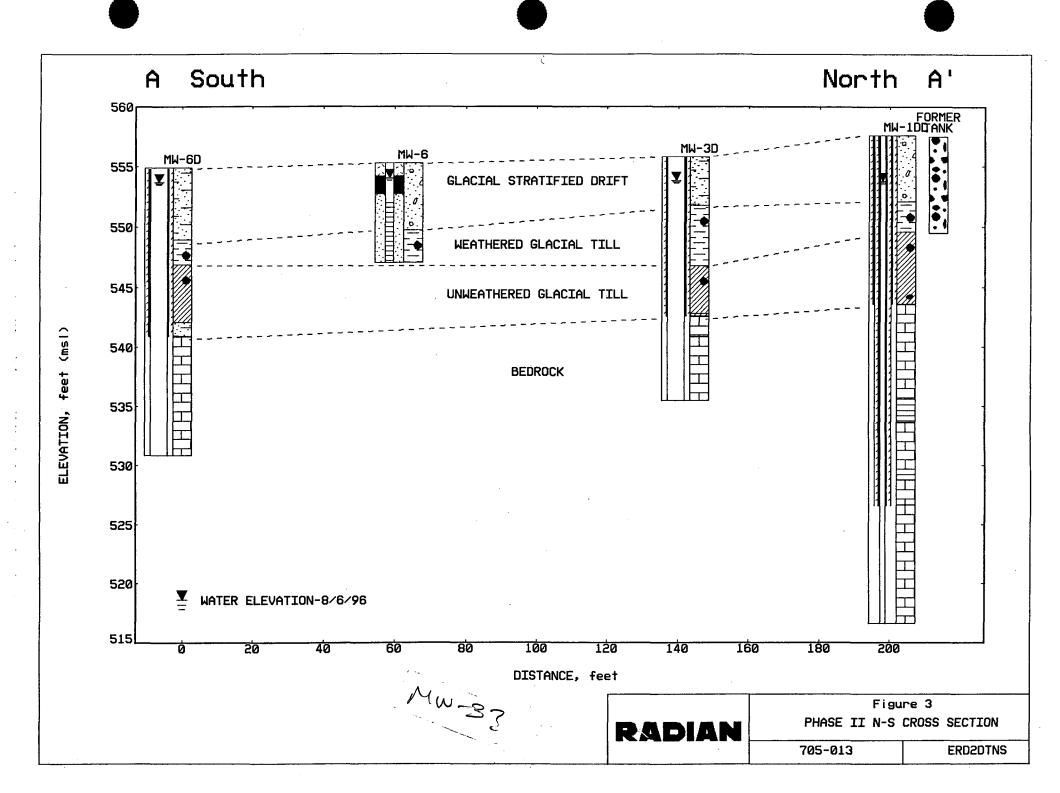
. .

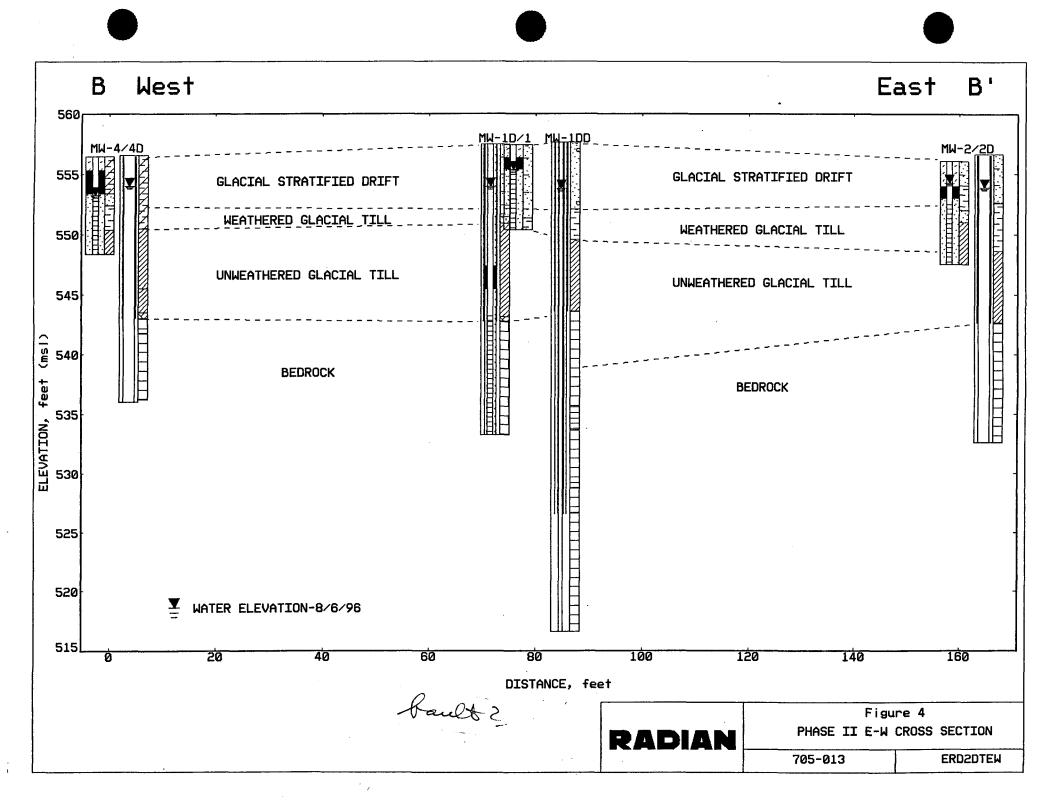
.

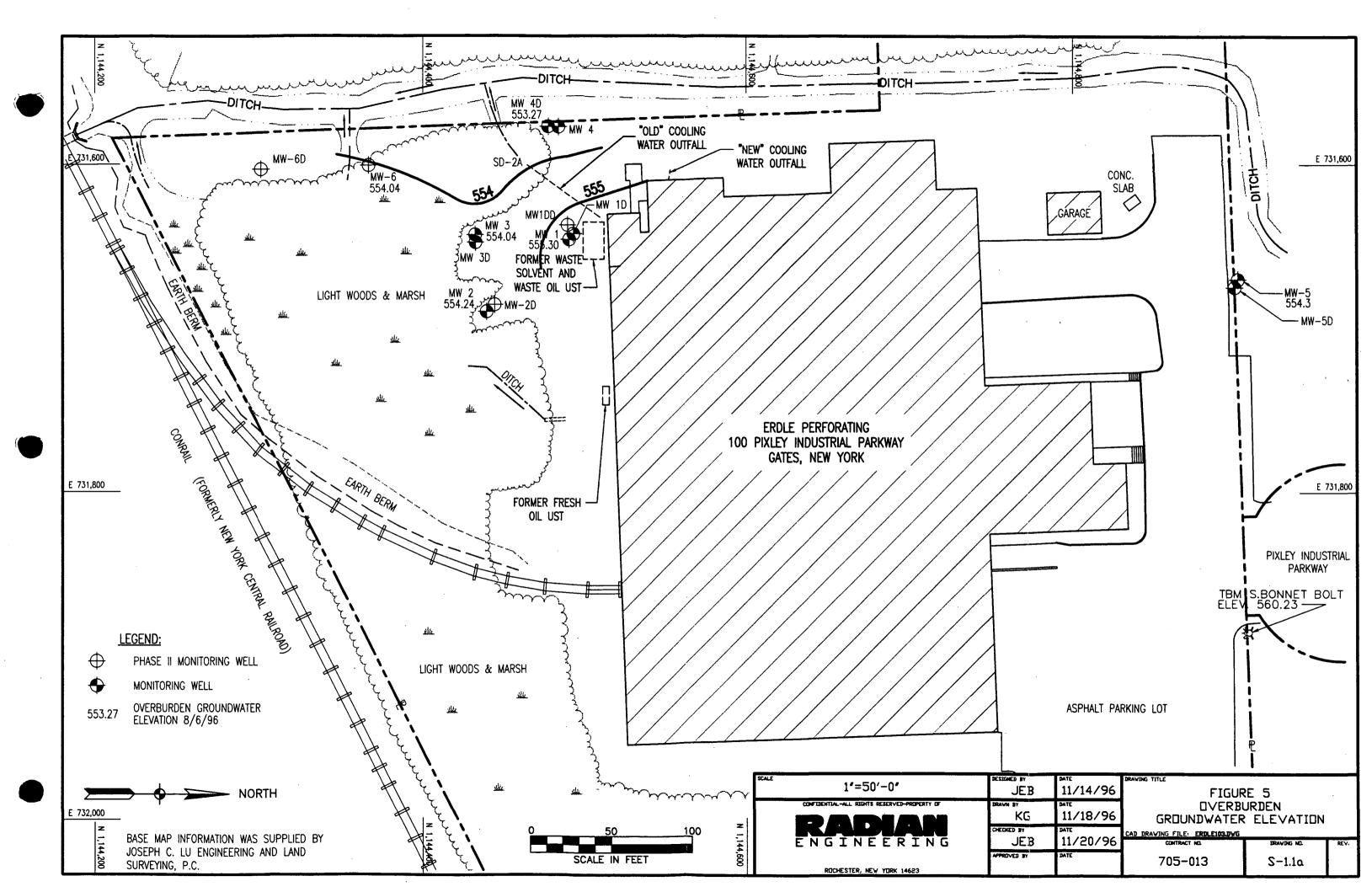

.

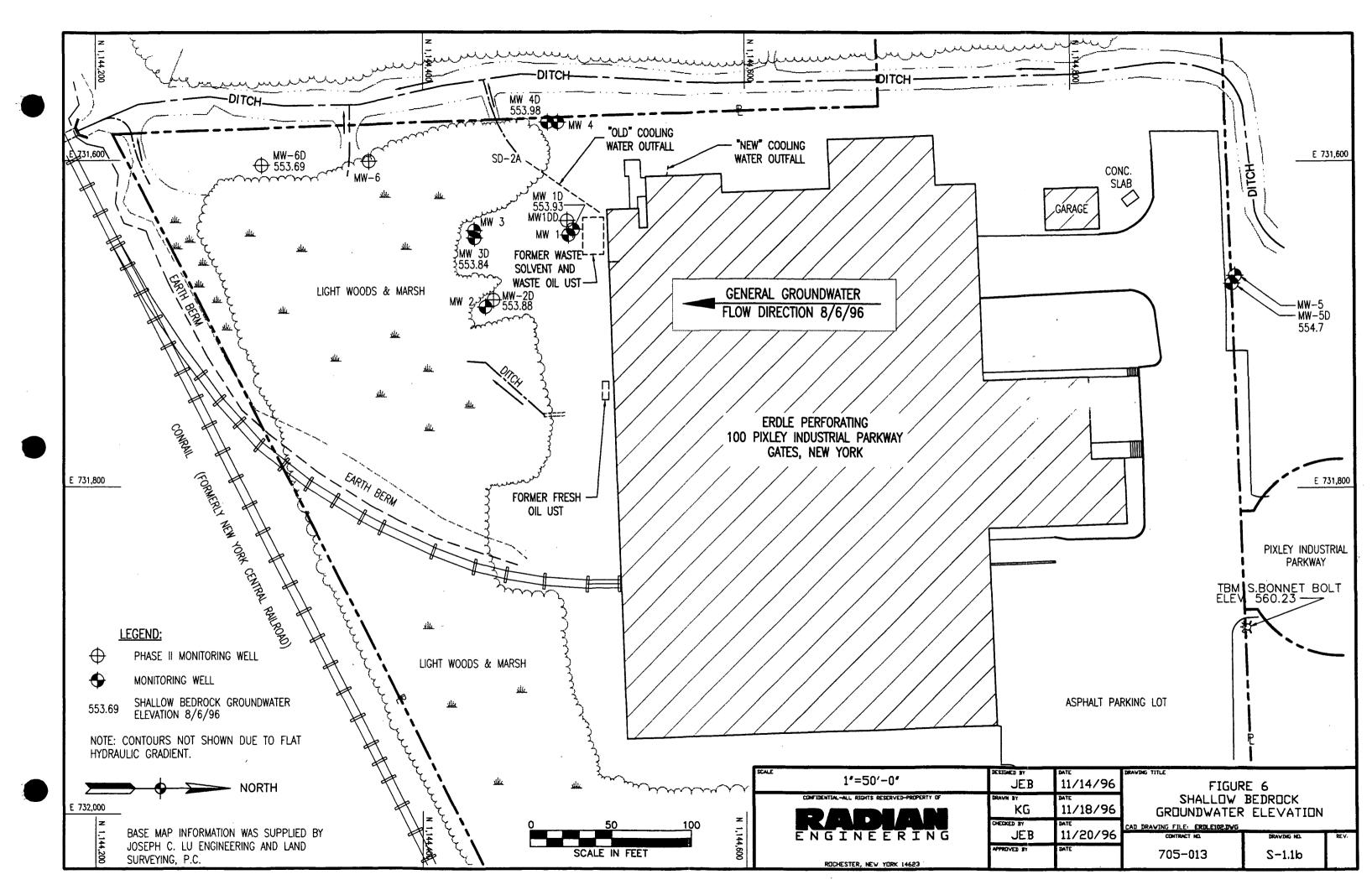

¥ .

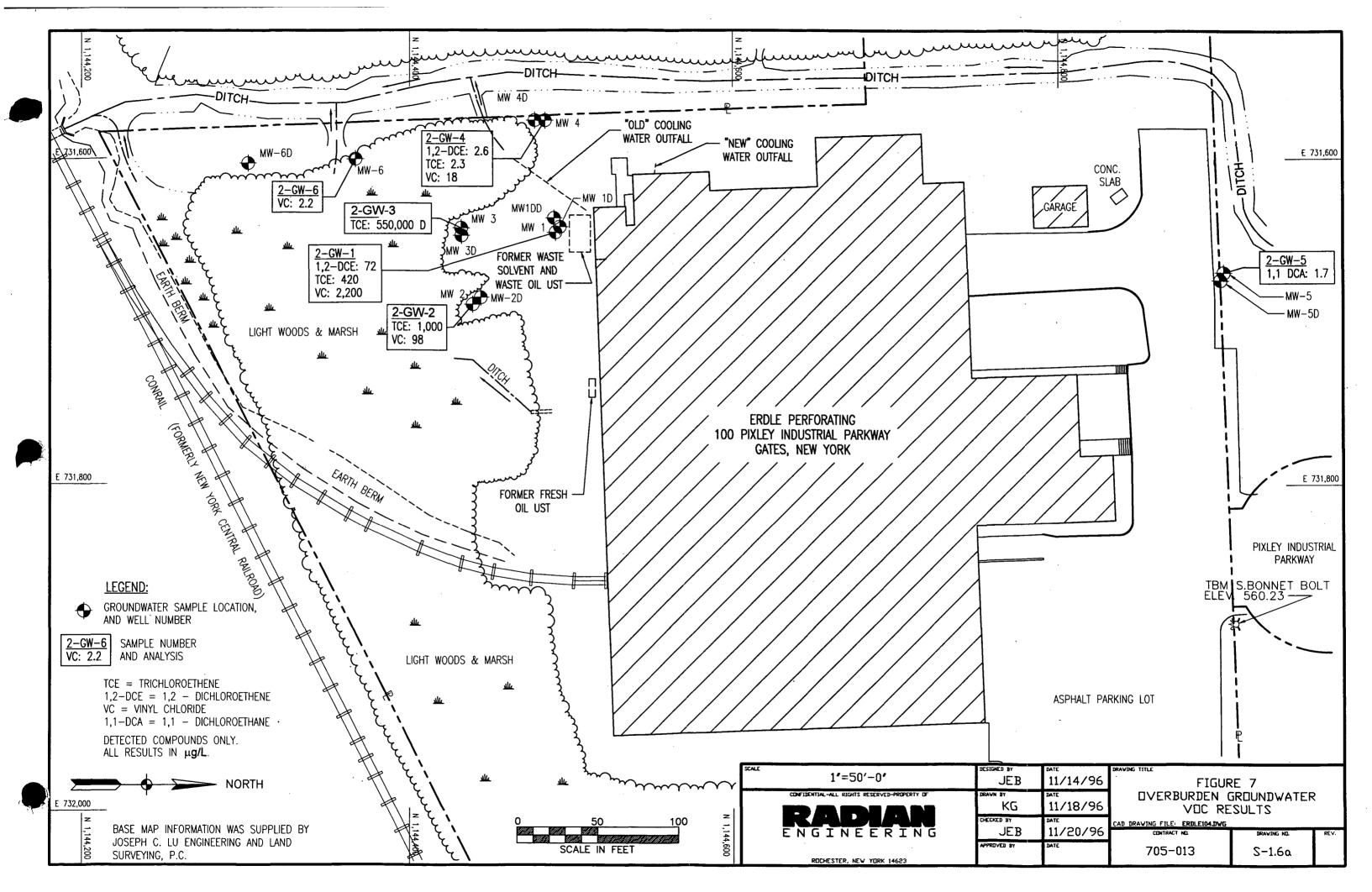
. .

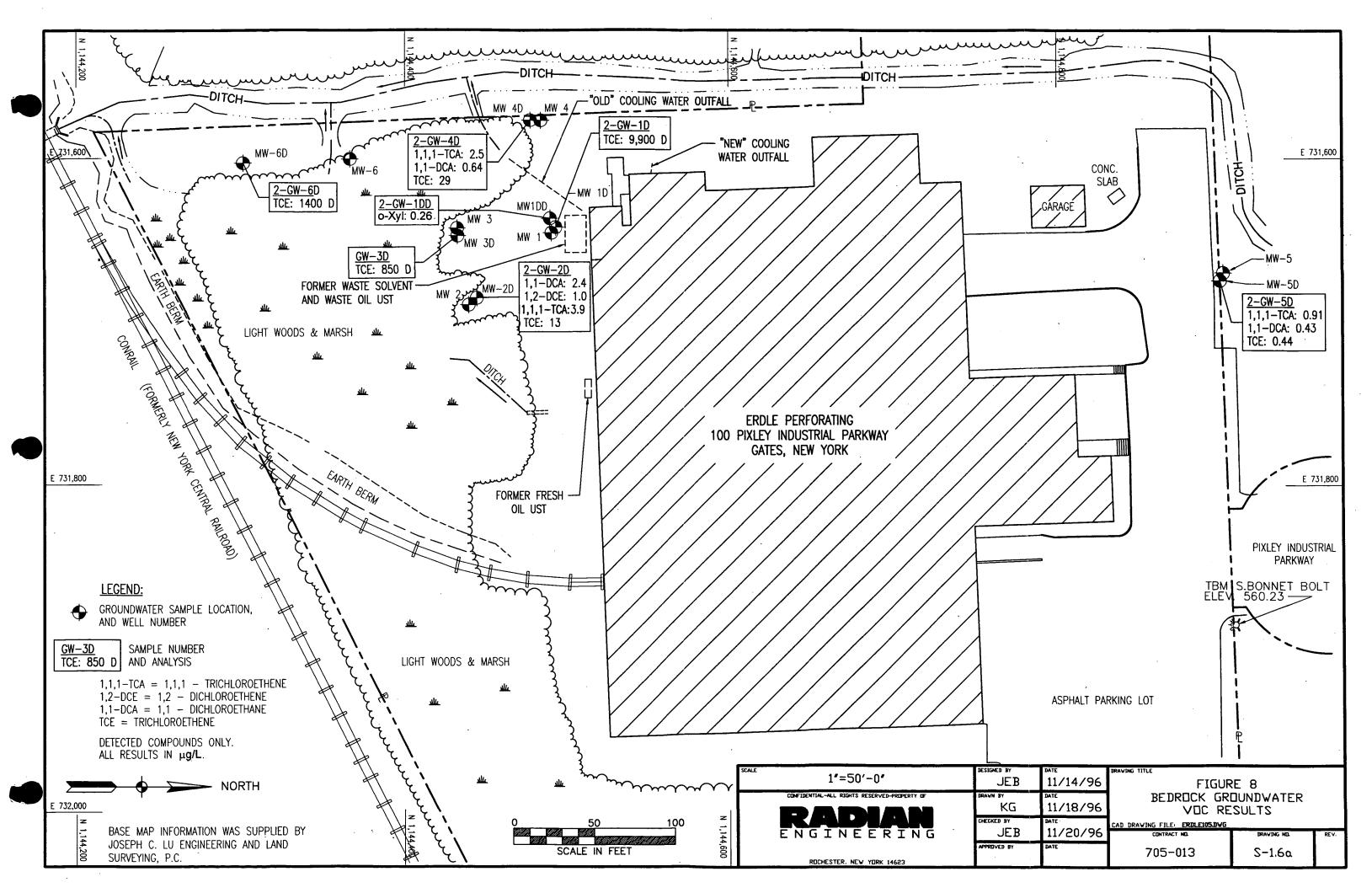

.


.






والمراجع والمراجع



 $^{\prime}$

New York State Department of Environmental Conservation

Region 8 Office - Division of Hazardous Waste Remediation 6274 East Avon - Lima Road Avon, NY 14414 Telephone: (716) 226-2466

Michael D. Zagata Commissioner

Renée Forgensi Davison Regional Director

November 14, 1995

Michael E. Rick Vice President Engineering Erdle Perforating Company 100 Pixley Industrial Parkway P.O. Box 1568 Rochester, NY 14603

> Re: Erdle Perforating Co. #828072 Gates(T), Monroe(C)

Dear Mr. Rick:

I have received additional comments regarding the 9/29/95 letter from J. Baxter of Radian Engineering to D. Pratt. That letter responds to our 8/7/95 comment letter regarding the Draft Phase I Remedial Investigation Report. The additional comments are attached and should be addressed in the Phase II Remedial Investigation Report.

If you have any questions, please do not hesitate to contact me.

Sincerely,

DUCRE

David G. Pratt Environmental Engineer I

attachment

cc w/att:

M.J. Peachey - DHWR, NYSDEC, Region 8 Wayne Mizerak - BWRA, NYSDEC, Albany Glen Bailey - DEE, NYSDEC, Buffalo Rich Koeppicus - DFW, NYSDEC, Albany Donna J. Kinney - QA/QC, DHWR, NYSDEC, Albany Richard Elliott - MCHD Steve Shost - NYSDOH, Albany JEB Baxter - Radian

Erdle Perforating, Inc. Addtional Comments - November 14, 1995

- The distinction between nutrient and non-nutrient metals is not useful within the context of a Phase I RI because the establishment of a nutritional requirement for a substance does not preclude that substance displaying a toxic potential. Manganese, one of the analytes considered a "nutrient metal" by Radian, illustrates this point. On the one hand, manganese is a cofactor for a number of enzymatic reactions and an essential metal ion in human nutrition. On the other hand, exposure to elevated concentrations of manganese may lead to central nervous system disorders. Radian should abandon the term "nutrient metals" in future reports. All evidence of site contamination, including contamination involving naturally abundant metals such as manganese and aluminum, must be fully explored in the Phase II RI.
- 2. The consultant's identification of aluminum as a "nutrient metal" is incorrect. Aluminum is not one of the essential metal ions in human nutrition. Even if aluminum were essential, the occurrence of elevated concentrations in site media might still be of concern, for the reasons noted above.
- In discussing elevated levels of silver observed in site groundwater, Radian states that the excessive spike sample recovery observed for this analyte indicated that laboratory analytical results for the metals may be biased high. This statement appears to be incorrect. Materials provided in the Phase I RI Sample Data Summary package indicate that a low (43%) spike sample recovery was obtained for silver. The same can be said for aluminum (71%). The low recoveries for silver and aluminum suggest that the laboratory analytical results for those analytes in groundwater may have been biased low. The accurate determination of aluminum concentrations in environmental media is of particular importance at the Erdle property since, as stated by Radian on page 4-50 of the RI, aluminum is one of the metals handled at the Erdle facility.
- The Data Summary package indicates that matrix spike sample recoveries for several metals in groundwater were outside of the acceptable range. Groundwater samples are generally amenable to inorganic analysis and should not pose a problem with regard to ion recovery. Radian should take steps to ensure that laboratory analytical results from the next round are more useful.
- 5. With regard to comment 16, Section 9.3.6 of Method TO-1 states that "Cartridges should be used within 2 weeks after preparation and analyzed within two weeks after sampling." Also, a 14-day hold time was agreed to in the work plan. The results from these air analyses, while usable, may be biased low, and therefore should be qualified as "J", estimated data.

New York State Department of Environmental Conservation

Region 8 Office - Division of Hazardous Waste Remediation 6274 East Avon - Lima Road Avon, NY 14414 Telephone: (716) 226-2466

October 17, 1995

Michael E. Rick Vice President Engineering Erdle Perforating Company 100 Pixley Industrial Parkway P.O. Box 1568 Rochester, NY 14603

Michael D. Zagata Commissioner

Renée Forgensi Davison Regional Director

Re: Erdie Perforating Co. #828072

Gates(T), Monroe(C)

Dear Mr. Rick:

I have received the 9/29/95 letter from J. Baxter of Radian Engineering to D. Pratt. That letter responds to our 8/7/95 comment letter regarding the Draft Phase I Remedial Investigation Report. I stated in the 8/7/95 letter that, in the interest of moving this project ahead as quickly as possible, a revised Phase I Remedial Investigation Report is not required and that our comments may be addressed in the form of a letter addendum to the Draft Report. This is being permitted since additional investigations are planned, and a full Remedial Investigation Report will follow that. The Final Phase I Remedial Investigation Report will 'therefore be comprised of the following:

- The Draft Phase I Remedial Investigation Report (dated June 1995);

- The 9/29/95 letter from J. Baxter of Radian Engineering to D. Pratt; and

- This letter.

The 9/29/95 letter states that a conceptual approach to the Phase II work is being developed and that you expect to meet with us to discuss it. Please contact me within the next two weeks to set up a meeting. If you have any questions, please do not hesitate to contact me.

Sincerely,

DJGPJ

David G. Pratt Environmental Engineer I

cc - w/copy of 9/29/95 letter from J. Baxter to D. Pratt:

M.J. Peachey - DHWR, NYSDEC, Region 8 Wayne Mizerak - BWRA, NYSDEC, Albany Glen Bailey - DEE, NYSDEC, Buffalo Rich Koeppicus - DFW, NYSDEC, Albany Donna J. Kinney - QA/QC, DHWR, NYSDEC, Albany Richard Elliott - MCHD Steve Shost - NYSDOH, Albany JEB Baxter - Radian Radian Engineering Inc.

155 Corporate Woods Suite 100 Rochester, NY 14623 (716)292-1870 FAX# (716)292-1878

September 29, 1995

Mr. David G. Pratt Environmental Engineer 1 New York State Department of Environmental Conservation Region 8 Office, Division of Hazardous Waste Remediation 6274 East Avon-Lima Road Avon, NY 14414

Subject: Response to Comments on Phase I Remedial Investigation Report Erdle Perforating Company, Site #828072 Town of Gates, Monroe County

Dear Mr. Pratt,

This letter addresses the Department's comments on the above-referenced document, as presented in your letter of August 7, 1995. These comments are restated in italics and responses are provided below.

1. Pages ES-2, 4-24, 4-30, 4-50. There are numerous statements excluding certain metals from serious consideration based on the fact that they are considered "nutrient metals." Please elaborate on these statements (since the development of the applicable standards and guidances already took this into account).

For the purposes of the Phase I report, the term "nutrient metals" was used to describe metals which either naturally occur in abundance in geologic media or are strongly linked to physical, chemical, or biological processes in soil and groundwater. These metals are aluminum, calcium, iron, magnesium, manganese, and potassium. Often the spatial variability of soil concentrations is high due to their intimate relationship to natural processes, which complicates comparison of single-sample concentrations to applicable standards and guidelines. In the case of groundwater, their abundance in bedrock minerals can account for naturally occurring concentrations which sometimes exceed listed regulatory criteria. The following paragraphs provide specific elaboration on the interpretation of the Phase I concentrations, for each media, vis-à-vis New York State (NYS) standards and guidelines.

Soils For many of the soil metals parameters, NYS guidance lists "site background" as the guidance value. During the Phase I data assessment, background values were applied from the same depth interval as the sample being evaluated. In certain cases, there was as much variability in concentrations for the nutrient metals from adjacent depths within the background boring as there was from background to non-background locations. This is indicative of the spatial variability that exists due to the nutrient metals' involvement in soil processes. Mr. David G. Pratt September 29, 1995 Page 2

For example, the background values for calcium ranged from 10,100 mg/kg in the 0 to 1 ft depth interval to 53,000 mg/kg in the 5-7 ft depth interval. Had sample concentrations been compared to the highest concentration from the background boring, many of the identified exceedances for the nutrient metals would have dropped out.

Groundwater Groundwater exceedances consisted of metals which are clearly related to the geology of the site and existed in both upgradient and downgradient samples (in fact, often the highest concentrations were found at the background location). For example, it is well documented that iron and manganese concentrations in many areas of Western New York exceed relevant guidance values. Magnesium and sodium, also detected above the guidance value in all groundwater samples, are major groundwater ions.

<u>Sediment</u> In no case did a "nutrient" metal concentration exceed the corresponding sediment guidance.

<u>Surface Water</u> In one surface water sample (SW-2), iron and manganese were detected at levels well above their respective guidance values. Magnesium was detected at 35,600 mg/kg, compared with a guidance value of 35,000 mg/kg. Per the Phase I Work Plan, the background surface water sample was not analyzed for metals.

2. What is the source of the water flow sampled from the "old outfall?" Is this currently groundwater discharging to the surface or surface water from the swampy area flowing towards the drainage ditch? The surface water sample taken there shows contamination (1700 ppb of 1,2-dichloroethene). What is considered the source of contamination?

The source of water sampled in the "old outfall" is thought to be shallow overburden groundwater discharging to the surface. There is a buried pipe, capped at both ends, extending from the southwest corner of the building to the head of the outfall ditch; this pipe and associated backfill acts as a groundwater discharge point during high water table conditions (when the overburden groundwater elevation exceeds the outfall elevation). During dry conditions when the water table drops below the outfall elevation, the ditch is dry.

3. There are numerous statements throughout the document indicating that bedrock is confined and artesian; however, the bedrock water quality has been significantly impacted with volatile organic contamination. While there seems to be adequate data available to suspect artesian flow at all times, there does not seem to be adequate data to conclude that the unweathered till layer is indeed acting as a confining layer. There is no aquifer testing data for this zone, since none of the wells were placed directly in it. Please clarify this conclusion.

Mr. David G. Pratt September 29, 1995 Page 3

Evidence of confined bedrock groundwater conditions exists in the potentiometric surface relationship between the wells screened in the shallow overburden and the wells screened in the upper bedrock, and in the relationship between the bedrock potentiometric surface and the upper bedrock contact. The bedrock potentiometric surface elevation is higher than the upper contact of the bedrock, hence, it meets the definition of an artesian aquifer. Also, the bedrock potentiometric surface has been observed on several occasions to be higher than the overburden water table. It is likely that either of the overburden units (i.e., the unweathered or the weathered till) is capable of acting as a confining layer. The average overburden hydraulic conductivity of the overburden is 4 orders of magnitude lower than the average bedrock hydraulic conductivity.

4. The original source, the tank, may have extended directly through the till to the bedrock. The contamination could have then made its way directly into the bedrock aquifer, even if artesian, via DNAPL. Also, the unweathered till zone may have significant concentrations of NAPL within it, continuously releasing contamination to the overburden and, if it does not act as a single aquatard, to the bedrock water below. Additional data regarding the groundwater quality and permeability of the unweathered till layer may be required to adequately design a remedy such as the Xerox Two-Phase Extraction method referred to. Please include in the work plan any additional investigations which may be required to provide this information.

Radian acknowledges the possibility exists that VOC could have migrated into the bedrock aquifer, even if artesian, via DNAPL. However, onsite evidence, including the 100-fold decrease in groundwater VOC concentrations from overburden to bedrock, argues against this scenario. The more likely situation is that the bulk of the VOCs are tied up in the overburden and are releasing some contamination to the upper bedrock groundwater flow zone. The Xerox 2-PHASETM Extraction process is particularly suited to removing VOCs from impermeable overburden materials.

Based on Radian's extensive long-term, full-scale and pilot-scale experience with the 2-PHASE Extraction process, the permeability of the unweathered till layer is not anticipated to be a critical or limiting design parameter. Up to 95% VOC reductions have been accomplished using 2-PHASE Extraction at other sites with similar overburden materials, ranging in permeability from the 10⁻⁷ to 10⁻⁵ cm/sec orders of magnitude. Permeability data from the unweathered till can be obtained during the Phase II investigation; however, this information is expected to be of minimal value to the 2-PHASE IRM design.

Radian Engineering Inc.

Mr. David G. Pratt September 29, 1995 Page 4

5. Page 2-3, Table 2-1. The Habitat-Based Assessment has been replaced by the Fish and Wildlife Impact Analysis.

Comment acknowledged. This is a typographical error.

6. Page 2-12. Did the town's cleaning of the drainage ditch in the Fall of 1994 disturb the areas where sediment samples were retrieved? How often has the Town cleaned the ditch?

The town's cleaning of the ditch disturbed the area where the upstream (background) sample was collected; however, the sediment sample consisted of sediment which had accumulated since the cleaning. The area of downstream sample and the sample from the "old cooling water" outfall did not appear to have been disturbed by the ditch cleaning.

According to Mr. Michael Rick of Erdle Perforating, the ditch is cleaned out by the Town on an as-needed basis, typically every two years or so. The last cleaning was conducted from August 9-11, 1994 or approximately five months prior to sampling.

Page 4-62, First Paragraph. The Town's cleanout of the ditch is most likely responsible for the lack of aquatic vegetation in the ditch.

Agreed. The comment in the Phase I report is merely an observation.

7. Page 4-11, Table 4-1. There were detections of chlorinated hydrocarbons in the "upgradient, background" subsurface soil sample. There does not appear to be a mechanism for contamination to travel to this area from the tank area. This implies there may be another source of VOC contamination in the area. Has the Erdle facility been on public sewer since construction or have there ever been septic systems present? If there have been septic systems, where are they located?

The Erdle facility has been on public sewer for sanitary waste disposal since its construction. No septic systems are known to have existed on the Erdle parcel. The Erdle plant is situated in an industrial park and is located downstream and downgradient of manufacturing and vehicle-repair facilities. It is also noted that the speciation of the trace VOCs detected at the background location do not match the contamination in the tank area.

Fish and Wildlife Impact Analysis

8. Section 4.4.5 and Table 4-15 should be revised to include sediments as a completed pathway. The current analysis omits consideration of benthic organisms living in sediments. Such organisms are in constant contact with contaminated sediments.

Mr. David G. Pratt September 29, 1995 Page 5

Agreed. Benthic organisms will be included in the Phase II Fish and Wildlife Impact

9. Table 4-15 should be revised to include cadmium, copper, lead, and zinc as constituents of concern in sediment. These were found above sediment criteria in the drainage from the "old" cooling water outfall.

Given the inherent variability of metals concentrations in sediment, it is recommended that an additional sediment sample be collected from this location to confirm these metals' presence at concentrations above sediment criteria. It is recommended that inclusion of these metals as constituents of concern in sediment will be deferred until additional results are obtained.

10. A literature search should be done to find information on the toxicity of 1,2dichloroethene to aquatic organisms. If no information is available, a surface water criterion for protection of aquatic life should be derived according to 6 NYCRR Part 702.

⁶ This literature search will be included in the Phase II Fish and Wildlife Impact Analysis.

11. Given the complete pathways, the analysis should be continued through the Fish and Wildlife Impact Analysis, Step 2B, Criteria-Specific Analysis. This should be done for 1,2dichloroethene, cadmium, copper, lead, and zinc.

Agreed.

QA/QC Review

12. Table 4-3, Detected Metals/Inorganics in Soil Samples, Pages 4-18 to 4-23:

- a. For sample S-1, the result for cadmium should be qualified "J", estimated data, since the recovery for the CRDL standard was above acceptable limits.
- b. For sample S-1, the recovery for zinc should be qualified "J", estimated data, since the recovery in the matrix spike was above acceptable limits.
- c. For sample SF-2, the result for selenium should be qualified "J", estimated data, since the recovery in the matrix spike was below acceptable limits.

Radian Engineering Inc.

Mr. David G. Pratt September 29, 1995 Page 6

Agreed. These omissions from Table 4-3 were typographical/editorial errors.

13. Table 4-4. Detected Volatile Organic Compounds in Groundwater Samples, Pages 4-26 to 4-27: The methylene chloride results for samples GW-3, GW-4, GW-9, and GW-10 should be qualified as "J", estimated data, since the holding time was exceeded.

Agreed. The methylene chloride results associated with the above-listed samples will "be "J"-flagged.

For sample GW-2, the result for tricholoroethylene should be revised to read "10000 U" because of method blank contamination.

Agreed.

14. Table 4-7, Detected Volatile Organic Compounds in Surface Water/Sediments, Page 4-37: For sample SD-4, the result for 1,2-dichloroethene (total) should be revised to read "21 UJ" because of contamination in the trip blank and because the % moisture exceeded 50%.

Agreed.

15. Section 4.2.3.3, Metals/Inorganics, Page 4-41: There is nothing in the data or data validation report to support the conclusion that the detection of cadmium is attributable to analytical "noise."

The use of the phrase "analytical noise" was intended to convey that an estimated cadmium concentration of 1.6 mg/kg is not markedly greater than the TAGM value of 0.6 mg/kg, especially when the various variability factors are taken into account.

16. Table 4-10, Air Results Summary, Page 4-46. All of the laboratory results for air sampling should be qualified as "J", since the samples were analyzed 19 days from VTSR (verified time of sample receipt).

There is no specified hold time for Method TO-1. During the development of the project QAPjP, the analytical laboratory erroneously submitted the standard 14-day hold time for volatiles, and this number was put into the QAPjP. This hold time is not appropriate for Tenax. Radian therefore disagrees with this comment.

We hope these responses to the letter of August 7, 1995, meet the expectations of the Department. A conceptual approach to the Phase II work is currently being developed, and we expect to meet with the Department in the near future to discuss Phase II investigation

Radian Engineering Inc.

Mr. David G. Pratt September 29, 1995 Page 7

scoping. At that time we will present a conceptual outline of the Phase II Investigation Work Plan and sampling approach. We appreciate your thorough review of the Phase I Remedial Investigation Report and look forward to working with you on the remainder of the program.

Sincerely,

12 51

James E. Baxter, P.G. Senior Scientist

c: Michael Rick, Erdle Perforating Company

New York State Department of Environmental Conservation

Region 8 Office - Division of Hazardous Waste Remediation 6274 East Avon - Lima Road Avon, NY 14414 Telephone: (716) 226-2466

Michael D. Zagata Commissioner

Renée Forgensi Davison Regional Director

August 7, 1995

Michael E. Rick Vice President Engineering Erdle Perforating Company 100 Pixley Industrial Parkway P.O. Box 1568 Rochester, NY 14603

> Re: Erdle Perforating Co. #828072 Gates(T), Monroe(C) -Phase I Remedial Investigation Report

Dear Mr. Rick:

The New York State Department of Environmental Conservation and the New York State Department of Health have reviewed the June 1995 Draft Phase I Remedial Investigation Report for the Erdle Perforating Company. Our comments regarding this report are as follows:

1. Pages ES-2, 4-24, 4-30, 4-50 - There are numerous statements excluding certain metals from serious consideration based on the fact they are considered "nutrient metals." Please elaborate on these statements (since the development of the applicable standards and guidances already took this into account.)

2. What is the source of the water flow sampled from the "old outfall?" Is this currently groundwater discharging to the surface or surface water from the swampy area flowing towards the drainage ditch? The surface water sample taken there shows contamination (1700 ppb 1,2 dichloroethene). What is considered the source of this contamination?

3. There are numerous statements throughout the document indicating that the bedrock is confined and artesian, however, the bedrock water quality has been significantly impacted with volatile organic contamination. While there seems to be adequate data available to suspect artesian flow at times, there does not seem to be adequate data to conclude that the un-weathered till layer is indeed acting as a confining layer. There is no aquifer testing data for this zone since none of the wells were placed directly in it. Please clarify this conclusion.

4. The original source, the tank, may have extended directly through the till to the bedrock. The contamination could have then made its way directly into the bedrock aquifer, even if artesian, via DNAPL. Also, the un-weathered till zone may have significant concentrations of NAPL within it, continuously releasing contamination to the overburden and, if it does not act as a significant aquatard, to the bedrock water below. Additional data regarding the groundwater quality and permeability of the un-weathered till layer may be required to adequately design a remedy such as the Xerox Two Phase Extraction method referred to. Please include in the work plan any additional investigations which may be required to provide this information.

sample SD-4, the result for 1,2 - dichloroethene(total) should be revised to read "21 UJ", because of contamination in the trip blank and because the % moisture exceeded 50%.

15. Section 4.2.3.3, Metals/Inorganics, Page 4-41: There is nothing in the data or data validation report to support the conclusion that the detection of cadmium is attributable to analytical "noise."

16. Table 4-10, Air Results Summery, Page 4-46: All of the laboratory results for air sampling should be qualified as "J", estimated data, since the samples were analyzed 19 days from VTSR (verified time of sample receipt).

In the interest of moving this project ahead as quickly as possible, as well as easing the financial burden on Erdle Perforating Company, a full, revised Phase I Remedial Investigation Report is not required. Since additional investigations are to be performed, and a full Remedial Investigation Report will follow that, these comments may be addressed in the form of a letter. The letter must adequately address all comments provided. Concurrently, a work plan for the additional investigations may be submitted for our review and approval.

If you have any questions, please do not hesitate to contact me.

Sincerely,

Dicla

David G. Pratt Environmental Engineer I

c:

M.J. Peachey - DHWR, NYSDEC, Region 8 Wayne Mizerak - BWRA, NYSDEC, Albany Glen Bailey - DEE, NYSDEC, Buffalo Rich Koeppicus - DFW, NYSDEC, Albany Donna J. Kinney - QA/QC, DHWR, NYSDEC, Albany Richard Elliott - MCHD Steve Shost - NYSDOH, Albany JEB Baxter - Radian

.

.

.

· .

EXECUTIVE SUMMARY

Radian International LLC (Radian) has been contracted by Erdle Perforating Company to conduct a Phase II Remedial Investigation as part of a Remedial Investigation/Feasibility Study (RI/FS) for Erdle Perforating Company, Town of Gates, New York. This Phase II RI focuses on sediment sampling, monitoring well installation and sampling, and completion of the Fish and Wildlife Impact Analysis. This Quality Assurance/Quality Control (QA/QC) Summary provides information regarding the data useability of the sediment sampling and monitoring well sampling.

Quality Control Review

A review of the quality control (QC) data for the analytical measurements was performed to determine the usability and defensibility of the chemical measurement data. The review focused on field and laboratory blanks, matrix spikes, surrogate recoveries, and laboratory control samples. Overall, QC associated with this program indicates that measurement data are acceptable and defensible according to the requirements established by EPA Region II guidance. The data indicate that the QC mechanisms were effective in ensuring measurement data reliability within the expected limits of sampling and analytical error.

There were concerns identified during the quality assurance/quality control (QA/QC) review that should be noted prior to final interpretation of the analytical results. These concerns were related to the halogenated volatile organic results, aromatic volatile organic results, and the metals inorganic results.

A halogenated volatile organic concern related to the initial calibration verifications of the instruments. The percent relative standard deviations (%RSD) for all of the SW8010 compounds (except chloroform and bromochloromethane) were very high. EPA criteria require that %RSD from the initial calibration must be less than or equal to 30.0% for all compounds. All

of the halogenated volatile compounds except two exceeded 30.0%. However, these high %RSD values were less than 90%, which falls within acceptable criteria for data usability and, therefore, do not need to be rejected. These data indicate a bias in the analytical systems and potential improper calibration techniques; therefore the data are considered estimated.

Another concern with the SW8010 samples is the missed holding times for most of the samples. Nine of the samples missed holding times by one day, and three of the samples missed holding times by two days. These missed holding times may potentially bias the volatile results low. All of the halogenated volatile compounds for these field samples are considered estimated and potentially biased low.

A concern with the surrogate bromochloromethane (BCM) exceeding the calibration curve in the ending continuing calibration verification (CCV) was noted. Method SW8010 recommends that three surrogate halocarbons are spiked into each sample, standard, and reagent water blank to monitor the performance of the analytical system and the effectiveness of the methodology regarding sample matrix. Since BCM was the only surrogate spiked into the sample, and this surrogate exceeded the calibration curve in the ending CCV, the data is considered estimated and is potentially biased high.

The main concern noted for the aromatic volatile organic samples is the missed holding times. Eight of the samples missed holding times by one day, and two of the samples missed holding times by two days. These missed holding times may potentially bias these aromatic volatile results low. All of the aromatic volatile compounds for these samples are considered estimated and potentially biased low.

Another concern noted in the SW8020 samples involves the surrogate a,a,atrifluorotoluene (TFT). The %RSD for TFT was 57% which is above the criteria limit of 30.0%. This high % RSD indicates a possible improper initial calibration for TFT and therefore, the data associated with this initial calibration is considered estimated. Additionally, the surrogate

recovery for TFT was above the quality control (QC) limits of 66%-137% in two of the samples; therefore, all positive results in these two samples are considered estimated and potentially biased high.

A concern with the CLP-ICP metals data was noted for the analyte aluminum. The percent recovery for aluminum was below the lower QC limit in the solid laboratory control sample (LCS). A second solid LCS was analyzed but was not spiked with aluminum, therefore, the only recovery value for aluminum in a solid sample is 54.6%. Aluminum is considered to be estimated and potentially biased low in the sediment sample.

Any discrepancies and associated flags for these methods are listed in the report. It should be noted that for those samples where both a low bias and a high bias exist due to separate analytical discrepancies, the data are flagged as estimated with a (J) flag since it is difficult to determine which bias has altered the results to a greater degree.

1.0 INTRODUCTION

Phase II of a Remedial Investigation/Feasibility Study (RI/FS) was undertaken at the Erdle Perforating site, Rochester, New York, in August, 1996. Selected groundwater samples were analyzed for halogenated volatiles by SW8010 and aromatic volatiles by SW8020. These samples were analyzed according to the methods found in SW-846, <u>Physical Methods for the</u> <u>Analysis of Solids and Wastes</u>, 3rd. ed. In addition to the groundwater samples, one sediment sample was analyzed for total metals by Inductively Coupled Plasma (ICP) according to Contract Laboratory Program protocols (CLP).

Quality control procedures and activities implemented during this program provided the basis for estimating data precision and accuracy. This section presents a summary of analytical results for quality control (QC) samples, estimates of measurement precision and accuracy on the basis of analysis of QC samples, and potential limitations in the data.

Overall, the quality assurance/quality control (QA/QC) data associated with the Erdle Perforating project indicate that measurement data are acceptable and usable. The QA/QC data indicate that the QC mechanisms were effective in ensuring measurement data reliability within the expected limits of sampling and analytical error according to the criteria established by EPA Region II guidelines for data acceptance.

QC data provide information for identifying and defining qualitative limitations associated with measurement data. The following key types of QC procedures provide the primary basis for quantitatively evaluating data quality:

- Holding time requirements;
- Laboratory and field blank samples:
- Matrix and surrogate spiked samples; and
- Laboratory control samples.

The QC samples that were collected for this project include a field duplicate for volatile organics, a rinsate blank for metals, and trip blanks for volatiles. Additional quality control samples were analyzed including method blanks, matrix spike blanks, surrogates, and laboratory control samples.

Recra Environmental, Inc., of Amherst, New York, performed the analyses of groundwater and sediment samples. Results for all analyses were subjected to data validation based on the requirements found in EPA Region II Data Validation SOP, 1/92, revision 8, for organics; and EPA Region II Evaluation of Metals SOW 3/90 for inorganics. Individual validation packets for each Sample Delivery Group (SDG) are found in Appendix A of this document.

Each validation packet contains a narrative detailing problems found in the SDG. Also included is a table listing validation flags required and the data validation checklist. Flags have been applied to the results listed on Form I in the Recra laboratory reports. This document summarizes the major issues found in the data validation process.

2.0 DATA VALIDATION

Two SDGs were analyzed and reported by Recra. The groundwater results for organics were reported in SDG 2-GW-1 and the sediment results for inorganics were reported in SDG 2-RB-1.

The laboratory's QC limits, such as spike recovery limits, surrogate recovery limits, and RPD limits, were sometimes different from those in the QAPP. In most cases, both sets of limits were satisfied, and the data were found to be acceptable. Any deviations from QC limits are specified in this report.

Analytical results were flagged according to the guidelines found in the EPA Region II validation SOP and SOW, when specified quality control results fell outside prescribed limits. Results flagged (J) are to be regarded as estimated values due to problems with the associated QC data or hold time exceedences. In instances where appropriate, bias is indicated with the estimation flag (J) by also adding an (L) flag to indicate that the data is biased low and an (H) flag to indicate that the data is biased high. In those instances where data would be biased low for one particular analytical discrepancy and also biased high for a separate analytical discrepancy, the flag does not reflect any bias at all since it is difficult to determine which discrepancy affected the data more. These data are simply flagged as estimated with a (J). At times, detection limits are flagged as estimated (UJ). Serious deviation from the prescribed QC specifications require rejection of associated data and should be flagged with an (R). No data were rejected in Phase II.

2.1 Halogenated Volatile Organics - SW8010

Calibration--A halogenated volatile organic concern related to the initial calibration verifications of the instruments. The percent relative standard deviations (%RSD) for all of the SW8010 compounds (except chloroform and bromochloromethane) were very high. The %RSD range for these compounds was 62.0% to 88.7%. Due to the evidence of the non-linearity of the calibration curve, the high point on the curve was eliminated and the %RSDs for all compounds recalculated. The range was still high at 33.9% to 79.6%. These high %RSD values were less than 90%, which fall within acceptable criteria for data usability and, therefore, do not need to be rejected. These data indicate a bias in the analytical systems and potential improper calibration techniques; therefore, the data is considered estimated and all SW8010 compounds except chloroform and bromochloromethane are flagged (J).

An additional concern regarding calibration was noted with the surrogate bromochloromethane (BCM). The wrong surrogate mix was used in the ending continuing calibration standard on August 16, 1996. The surrogate BCM exceeded the calibration curve in

the ending CCV. Method SW8010 recommends that three surrogate halocarbons are spiked into each sample, standard, and reagent water blank to monitor the performance of the analytical system and the effectiveness of the methodology regarding sample matrix. Since BCM was the only surrogate spiked into the samples and this surrogate exceeded the calibration curve in the ending CCV, the data are considered estimated and potentially biased high. All associated compounds would be flagged (JH) except in those instances where the holding time was exceeded. The low bias from the potential degradation of the volatiles in the exceeded holding time samples may have altered the high bias from the BCM CCV exceedence. Therefore, these samples have been flagged as estimated with a (J).

Holding Time--There were several instances of missed holding times with the SW8010 samples. The holding time requirement for groundwater samples for the Erdle project is seven days. The following samples missed holding time by one day:

2-GW-1D 2-GW-1DD 2-GW-2D 2-GW-3-DL 2-GW-3D 2-GW-4D 2-GW-5D 2-GW-6D 2-TB-1

The following samples required dilutions and were analyzed one day later than the original analyses. These samples missed holding time by two days:

2-GW-1D-DL 2-GW-3D-DL 2-GW-6D-DL

It is possible that the halogenated volatile results are potentially biased low due to the expired holding time for the above referenced samples. However, due to the short time that

these samples exceeded the holding time before analyses, these data are acceptable and need not be rejected. All affected samples are flagged as estimated (J) according to EPA guidelines and each sample is flagged (L) to indicate the data is potentially biased low. In samples where a high bias exists for additional analytical discrepancies simultaneously with the low bias from the exceeded holding time, a (J) flag is applied since it is difficult to determine which bias (low or high) has affected the samples to a greater degree.

The preservation requirement of 4° C for the SW8010 samples was met in all cases.

Method Blank Results--Method blanks were analyzed with each analytical batch to assess potential background contamination in the laboratory. Both of the method blanks that apply to SDG 2-GW-1 reported the presence of one common laboratory contaminant (methylene chloride). Methylene chloride was reported in both of these method blanks at a low concentration $(0.25 \ \mu g/L)$ near the sample-specific detection limit. However, the concentration reported for this analyte was within acceptance criteria specified in the EPA Region II Guidelines and required no corrective action by the laboratory. It should be noted that samples analyzed on August 15, 1996, were diluted due to the high concentrations of compounds of interest. These diluted samples exhibited levels of methylene chloride that were higher than the original analyses. This effects samples 2-GW-1D DL and 2-GW-3D DL. Overall, the results of these analyses indicate that no significant contaminant contribution from handling, preparation, or analyses occurred in the laboratory.

Trip Blank Results--One trip blank was collected and analyzed for each sampling day. The trip blanks accompanied the samples shipped to the laboratory so that the samples could be monitored for potential contamination during sampling, storage, or transport of the samples.

There were two trip blanks analyzed for SW8010. Both trip blanks had methylene -

chloride reported at concentrations similar to the levels reported in the method blanks. One trip blank (2-TB-1) reported methylene chloride at a concentration of 0.94 μ g/L and the other trip blank (2-TB-2) reported methylene chloride at a concentration of 1.5 μ g/L. Overall, the methylene chloride results may be attributed to laboratory contamination and do not indicate significant contamination of samples from sampling, storage, or transport of the field samples.

Equipment Blank Results-Equipment blanks were not collected for halogenated volatile organics as specified in the Draft Phase II Remedial Investigation Work Plan for the Erdle Perforating Company, December 28, 1995.

Surrogate Recoveries--One surrogate standard, Bromochloromethane (BCM), was added to every sample analyzed for halogenated volatiles. The surrogate was added to provide an estimate of analytical measurement accuracy. All of the surrogate recoveries for the field samples were within laboratory control limits (70-127%) for BCM. The surrogate recoveries indicate that the analytical systems were in control at the time of analysis.

Matrix Spike Results—A matrix spike for SW8010 was not analyzed to assess matrix effects on analyte recovery. There was no field sample labeled for matrix spike/matrix spike duplicate (MS/MSD) analyses, and there was no additional volume sent to the laboratory for the MS/MSD. Therefore, matrix effects on analyte recoveries and method precision can not be assessed.

Laboratory Control Sample Results--A laboratory control sample (LCS) was analyzed in the same analytical batch as the field samples. This sample was processed through the same sample handling procedures as those for the field samples. The results of the LCS analysis estimate method accuracy in a clean matrix. All of the target analytes were recovered within the laboratory control limits for the LCS. A review of these data indicates acceptable method accuracy. An LCS duplicate sample was not performed for halogenated volatile organics. The LCS duplicate analysis estimates method precision in a clean matrix and indicates if potential bias

has occurred due to improper calibration of the analytical systems. Since the LCS duplicate was not analyzed, method precision and any potential bias of the SW8010 analytical systems can not be assessed.

Field Duplicate Analysis—One field sample was collected in duplicate and submitted to the laboratory for analysis. Trichloroethene was the only analyte detected in both the parent sample (2-GW-1) and the field duplicate sample (2-GW-7). The concentrations of trichloroethene detected in each of these samples were high and initial dilutions were required. The normal sample was diluted 500 times and the field duplicate sample was diluted 200 times. The variance in the dilutions could potentially affect the results. The relative percent difference (RPD) for the field duplicate pair was 67.5%, which is elevated. This elevated RPD may indicate the possibility of poor sampling technique or poor analytical precision. However, the high concentrations of trichloroethene in these samples potentially caused matrix effects and the differences in the dilutions may have affected the results.

2.2 Aromatic Volatile Organics - SW8020

Calibration--The benzene, toluene, ethylbenzene, and xylene (BTEX) compounds were left out of the middle CCV standard A6C0002008 on the August 14, 1996, calibration. The remaining CCVs were prepared correctly and these compounds were present and within criteria. These compounds were not detected in any of the field samples.

Holding Time—There were several instances of missed holding times with the SW8020 samples. The holding time requirement for groundwater samples for the Erdle project is seven days. The following samples missed the holding time by one day:

2-GW-1D 2-GW-1DD 2-GW-2D 2-GW-3D

2-GW-4D
2-GW-5D
2-GW-6D
2-TB-1

The following samples required dilutions and were analyzed one day later than the original analyses. These samples missed the holding time by two days:

2-GW-1D-DL 2-GW-3D-DL

It is possible that results are potentially biased low due to the exceeded holding time for the above referenced samples. However, due to the short time that these samples exceeded the holding times before analyses, these data are acceptable and need not be rejected. All affected samples are flagged as estimated (J) according to EPA guidelines and each sample is flagged (L) to indicate that the data is potentially biased low.

The preservation requirement of 4° C for the SW8020 samples was met in all cases. For this project acid preservation of these samples was not required.

Method Blank Results--One method blank was analyzed with the SW8020 analytical batch to assess potential background contamination in the laboratory. This method blank did not have any aromatic volatile compounds reported at or below the stated detection limits. These data indicate that no contribution of contaminants from handling, preparation, or analyses occurred in the laboratory.

Trip Blank Results--One trip blank was collected and analyzed for each sampling day. The trip blanks accompanied the samples shipped to the laboratory so that the samples could be monitored for potential contamination during sampling, storage, or transport of the samples.

There were two trip blanks (2-TB-1 and 2-TB-2) analyzed for SW8020. The trip

blanks did not have any aromatic volatile compounds reported at or below the stated detection limits. These data indicate that no contamination of samples from sampling, storage, or transport of field samples occurred.

Equipment Blank Results--Equipment blanks were not collected for aromatic volatile organics as specified in the Draft Phase II Remedial Investigation Work Plan for the Erdle Perforating Company, December 28, 1995.

Surrogate Recoveries—One surrogate standard, a,a,a-Trifluorotoluene (TFT), was added to every sample analyzed for aromatic volatiles. The surrogate was added to provide an estimate of analytical measurement accuracy. The surrogate recoveries were within the laboratory control limits (66-131%) except for the following exceptions. Both sample 2-GW-1D and 2-GW-3D reported TFT above the control limit at 188% and 160%, respectively. It is important to note that samples 2-GW-1D and 2-GW-3D were diluted due to the presence of high concentrations of trichloroethene. These dilutions may have elevated the surrogate recoveries. These samples were reanalyzed at higher dilutions and exhibited compliant surrogate recoveries. Overall, the surrogate recoveries indicate that the analytical systems were in control at the time of analysis.

Matrix Spike Results--A matrix spike was not analyzed to assess matrix effects on analyte recovery. There was no field sample labeled for matrix spike/matrix spike duplicate (MS/MSD) analyses, and there was no additional volume sent to the laboratory for the MS/MSD. Therefore, matrix effects on analyte recoveries and method precision can not be assessed.

Laboratory Control Sample Results-A laboratory control sample (LCS) was analyzed in the same analytical batch as the field samples. This sample was processed through the same sample handling procedures as those for the field samples. The results of the LCS analysis estimate method accuracy in a clean matrix. All of the target analytes were recovered within the laboratory control limits for the LCS. A review of these data indicates acceptable method

QC-12

accuracy. An LCS duplicate sample was not performed for aromatic volatile organics. The LCS duplicate analysis estimates method precision in a clean matrix and indicates if potential bias has occurred due to improper calibration of the analytical systems. Since the LCS duplicate was not analyzed, method precision and any potential bias of the SW8020 analytical systems cannot be assessed.

Field Duplicate Analysis--One field sample was collected in duplicate and submitted to the laboratory for analysis. The field sample pair (2-GW-1 and 2-GW-7) did not have any target aromatic volatile compounds detected. Consequently, sampling and analytical precision cannot be estimated from these data.

2.3 <u>Total Metals - ICP-CLP</u>

One sediment sample was collected and analyzed for aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc by Inductively Coupled Plasma according to Contract Laboratory Program (ICP-CLP) protocols.

Holding Time--All sample preparation and analyses were performed within the EPA and project QAPP-specified maximum holding time requirements of 180 days. The sediment sample, SD-2A met the 4 °C preservation requirement and the associated equipment blank, 2-RB-1, met the pH < 2 with Nitric Acid (HNO₃), 4 °C preservation requirements.

Method Blank Results--Two Method blanks were analyzed with the ICP-CLP analytical batch to assess potential background contamination in the laboratory. The method blanks reported had low-levels of target analytes detected above the stated detection limits. The measurement values were within acceptance criteria specified in the EPA Region II Guidelines and required no corrective action by the laboratory. These data indicate that no significant contribution of contaminants from handling, preparation, or analyses occurred in the laboratory.

QC-13

Equipment Blank Results—One equipment blank was collected and analyzed for the target ICP-CLP analytes as specified in the Draft Phase II Remedial Investigation Work Plan for the Erdle Perforating Company, December 28, 1995. Equipment blank 2-RB-1 reported target analytes similar to the method blank analytical measurement results. Consequently, these analyses indicate that the cleaning process in the field was adequate and did not artificially introduce contaminants to the field samples.

Matrix Spike Results--A matrix spike was performed on the equipment blank sample 2-RB-1. The spike results in this sample were acceptable and the percent recoveries for all analytes were within QAPP control limits. These results indicate good analytical accuracy. An MSD was not performed on sample 2-RB-1; consequently, analytical precision for this sample cannot be assessed. A matrix spike was not analyzed to assess matrix effects on analyte recovery in soil. Field sample 2-SD-2 was not labeled for matrix spike/matrix spike duplicate (MS/MSD) analysis. Therefore, matrix effects in soil on analyte recoveries and method precision can not be assessed.

Laboratory Control Sample Results--A laboratory control sample and a duplicate (LCS/LCSD) were analyzed in the same analytical batch as the field samples. These samples were processed through the same sample handling procedures as those for the field samples. The results of the LCS/LCSD analyses estimate method accuracy and precision in a clean matrix. All of the target analytes were recovered within the laboratory control limits for the aqueous LCS and LCSD samples with the following exceptions. The recovery of barium (72%), chromium (72.5%) and vanadium (73.3%) fell outside of QC limits (80%-125%) in the aqueous LCS. The recovery of these compounds was acceptable in the LCSD. The recovery of zinc (154.0%) fell outside of the QC limits in the soil LCS (80%-125%). All spike recoveries were acceptable in the soil LCSD. All of the RPDs for the LCS and LCSD samples were within the laboratory control limits. In addition to these LCS/LCSD pairs, the laboratory analyzed a separate LCS for aqueous and solid samples. These additional LCS's were analyzed with a slightly different mixture of inorganic analytes. These LCS inorganic mixtures were stock

preparations from a manufacturer. All of the target analytes were recovered within the manufacturer's established control limits except for aluminum which was recovered below the lower QC limit in the solid LCS. An LCSD was not analyzed with these additional LCS samples. The other solid LCS that was analyzed was not spiked with aluminum; therefore, the only recovery value for aluminum in a solid sample is 54.6%. The aluminum result in sample SD-2A is considered estimated and potentially biased low and is flagged (JL). Overall, a review of these data indicates both acceptable method accuracy and no significant bias because of improper calibration of the analytical systems.

Field Duplicate Analysis-Sediment sample SD-2A was not collected in duplicate. Consequently, sampling and analytical precision cannot be estimated from these data.

Data Validation Narrative Erdle Perforating Project

Method: Halogenated Volatile Organics by SW8010

SDG Number: 2-GW-1

Holding Times: There were several instances of missed holding times for SW8010 samples. Sample holding time for groundwater is seven days. Nine samples missed holding times by one day. Three samples were diluted and reanalyzed. These samples missed holding time by two days. Samples are flagged as estimated (J) and potentially biased low (L).

Samples Selected for Full Validation: 2-GW-1; 2-GW-7 (duplicate of 2-GW-1); 2-GW-4; 2-GW-4D

Flagging requirements are listed in the table below. Other discrepancies are noted as follows:

• No calculation sheets were included in the data package. Quantitation of results were confirmed for 10% of the samples. No problems with quantitation of compounds were found.

• Percent Relative Standard Deviation (%RSD) was only reported for two compounds - chloroform and bromochloromethane. Calculations of %RSD for the remaining twenty three halogenated volatile organic compounds indicates a problem with the initial calibrations for all of these compounds. The criteria requires that %RSD must be less than or equal to 30.0% for all volatile compounds. All compounds in this data set were above 30% with a range of 33.9% to 88.7%. These compounds are flagged (J) to indicate that these data are estimated.

• The wrong surrogate mix was used in the ending continuing calibration standard on August 16, 1996. The surrogate bromochloromethane (BCM) exceeded the calibration curve in the ending continuing calibration verification (CCV). No other surrogates were used. Flag any hits as estimated (J) and potentially biased high (H).

- A matrix spike and matrix spike duplicate pair were not analyzed to assess matrix effects on analyte recovery.
- A laboratory control sample duplicate was not analyzed to assess method precision.

• The compounds trans-1,2-dichloroethene and chloroform were outside the retention time window in the CCV standard A6C0001973 on August 14, 1996. Affected samples were elevated for the shift and a second confirmation performed for all results.

• The compound bromoform was below QC limits in the ending CCV standard on August 16, 1996. Bromoform was not detected in any samples.

The flagging notes in the table below have been applied to the data contained in the Sample Data Summary Package. In cases where one result has been selected over another, the de-selected values have been crossed out in red, per EPA Region II guidance.

		Flagging Requirem	ients
Basis for Qualification	Compound	Sample ID	Action
Missed holding times by 1 day	all	2-GW-1D 2-GW-1DD 2-GW-2D 2-GW-3-DL 2-GW-3D 2-GW-4D 2-GW-5D 2-GW-6D 2-TB-1	Flag: JL Technical holding time criteria as stated in 40 CFR Part 136 is 7 days for SW8010. Flag all samples as estimated and potentially biased low.
Missed holding times by 2 days	all	2-GW-1D-DL 2-GW-3D-DL 2-GW-6D-DL	Flag: JL (See action above)
Percent Relative Standard Deviation (%RSD) > 30%	all detected compounds except: chloroform and bromochloromethane.	All samples	Flag: J If %RSD > 30% < 90%, qualify positive results a estimated.
Surrogate	all detected	All samples	Flag: JH

All positive results are qualified as estimated and

potentially biased high.

CCV

bromochloromethane

exceeded ending

compounds

ERDLE PERFORATING PROJECT: Hold Times - Volatiles

Sample Field ID	Sample Lab ID	Matrix	Analyte Method	Collection Date	Analysis Date	Hold Time (days)	Hold Time Met? (Y,N)	Sample Properly Preserved? (Y,N)
2-GW-1	A6374501	Water	8010	8/7/96	8/14/96	7	Y	Y
2-GW-10	A6374511	Water	8010	\$16/96	8/14/96	8	N	Y
2-GW-10-DL	A63745110L	Water	8010	8/6/94	8/15/96	9	/V	Y
2-GW-IDD	A 6374512	Water	8010	x/10/96	8/14/96	8	N	Y
2-GW-2	A6374502	Water	8010	8/7/96	8/14/910		Y	Y
2- GW-2D	A6374513	Water	8010	8/4/96	8/14/96			Ý
2-611-3	A10374503	Water	8010	8/7/96	8/14/96		Y	Y
2- GW-3-DL	A6374503DL	Water	8010	8/7/96	8/15/96	8	11	Y
2-6-W-3D	A6374514	Water	8010	8/10/96	8/14/96	8		Y
2-6W-3002	Ale374514 DL	Water	8010	8/6/76	8/15/96	9	N	<u> </u>
2-Ghl-4	A10374504	Water	8010	8/7/96	8/14/96	7	Y	Y
2- GW- 4D	A6374515	Water	8010	8/6/96	8/14/96	8	\sim	Y

Hold times for soil and water samples:

Erdle - 7 days

•If hold time exceeds criteria, qualify results > IDL as estimated and biasd low (JL) and sample quantitation limits as (UJ). If HT > 14 days, NDs may be unusable, (R); use professional judgement. If HT > 28 days, all NDs are (R).

Preservation :

Erdle - 4 °C

ERDLE PERFORATING PROJECT: Hold Times - Volatiles

Sample Field ID	Sample Lab ID	Matrix	Analyte Method	Collection Date	Analysis Date	Hold Time (days)	Hold Time Met? (Y,N)	Sample Properly Preserved? (Y,N)
2-6W-5	A10374505	Water	8010	8/7/96	8/14/96	7	Y	Ý
2- GW-50	A6374516	Water	8010	8/6/96	8/14/94	8		Y
2-641-6	A63745010	Klater	8010	8/7/96	8/14/96	7	Y	Y
2-6W-60	A6374517	Water	8010	8/6/96	8/14/96	8	/V	. <u>Y</u>
2-G1/-600L	A6374517DL	Water	_ 8010	8/6/96	\$15/96	9	<u>/\</u>	Ŷ
2-611-7	A6374507	Mater	8010	8/7/96	8/14/96	7	Y	Y
2- TB-2	A6374508	Inlater	8010	8/7/94	8/14/96	7	Y_	Y
2-TB-1	AL0374518	Water	8010	8/6/96	8/14/94	8	+N X	Y
						· ·		
								· · · · · · · · · · · · · · · · · · ·
· · · ·								
					•			

Hold times for soil and water samples:

t

Erdle - 7 days

•If hold time exceeds criteria, qualify results > IDL as estimated and biasd low (JL) and sample quantitation limits as (UJ). If HT > 14 days, NDs may be unusable, (R); use professional judgement. If HT > 28 days, all NDs are (R).

Preservation :

Erdle - 4 °C

		Yes	No	N/A	Samples Affected/Comments
1.0	Calibration				
1.1	Was the instrument calibrated initially before blanks and samples were analyzed?	\checkmark			ICB Form 6h (8/6/96)
1.2	Were at least five initial standard concentrations run, including a standard near, but above, the method detection limit?	~	1		Concentrations of standards: 5,20,40,40,80,900 (ug/L) (i.stds)
1.3	Did the remaining calibration standard concentrations correspond to the expected range of the concentrations found in Phase I Normal samples? If not, did they define the working range of the GC?				
1.4	Were all initial calibration (RRF) values ≥ 0.05 ? • If (RRF) < 0.05, qualify positive results as biased low (L) and ND as unusable (R) for the affected compound.			~	No RRF Values given.
1.5	 Did all initial % RSD values meet those listed in Table 2? • If % RSD > 30%, qualify positive results as estimated (J) for the affected compound; qualify NDs using professional judgment. • If % RSD > 90%, flag all NDs (R). (Allowance is made for any two volatile compounds; for these, % RSD must be ≤ 40% with minimum RRFs ≥ 0.010 for the initial calibration to be acceptable.) • Analytes "U" flagged due to blank contamination are still considered hits when flagging fro calibration problems. 				All 9° RSO > 307° except chloroform and bromochloromethane. chloroform 9° RSD = 7.2.9° bromochloromethane 9° RSD = 5.4.7° Range for 9° RSD for all other compounds => 33.9 -> 188.77° => Flag these "J" No RRF values given. Recra hab closs not
1.6	Were all continuing calibration RRF values ≥ Table 2 values? (Check 10%, for one curve per pkg.) • If RRF < 0.05, qualify positive results as estimated, biased low (JL) and NDs as unusable (R) for the affected compound.				use internal standards for SW8010.
-			-		$RRF = \frac{A_{x}}{A_{IS}} \times \frac{C_{IS}}{C_{x}} where A = EICP$ $C = [analyte]$ $IS = Internal$ $Standard$ $X = analyte of$
rdle.80 age 1	IO CKL				X = analiste of

		Yes	No	N/A	Samples Affected/Comments					
1.7	 Did all continuing calibration % Differences meet the values listed in Table 2? If not, qualify positive results as estimated (J) for the affected compound; qualify NDs using professional judgement. If % RSD > 90%, flag all NDs (R). 	-			9° (D cannot be calculated. No I.S. method of calibration used in this data set.					
1.8	Does recalculation of the (RRF) and RRF for one or more TCL compounds verify the reported value? • If RRFs were incorrectly generated from misidentified peaks, the laboratory should recalculate the RRFs and associated sample results. (See Functional Guidelines)				not calculated = not enough information in data set.					
1.9	Does recalculation of the initial calibration % RSD for one or more TCL compounds verify the reported value?	L			chloroform: 9° RSO = 6.99° Reported 7.27° Calculated promochloroform: 1° RSP = 5.49° Reported &	Calculated				
1.10	Does recalculation of the % Difference (% D) between RRF and RRF verify the reported value?				See 1.7 above 5.3 (ok	5.4				
General Comments Schloroform and bromochloromethane are the only compounds with 7° RSD reported in the data set. The other compounded did not have 9° RSD reported. Calculations of these compounds indicated the data is estimated since 7° RSD > 30 7° 5 90 7° in these cases. Flag "J".										
2.0	Blanks				0					
2.1	 Were results presented using Form I for all method blanks and matrix spike blanks? Was the Method Blank summary Form IV provided? If blank data is not available, qualify all positive data (R) Field and trip blank data may be substituted using professional judgement. 									
2.2	Has a method blank been reported for each matrix and each GC System?									

		Yes	No	N/A	Samples Affected/Comments
2.3	 Do the method blanks contain ≤ 10x CRQL for methylene chloride? Qualify results < CRQL and <10x the blank concentrations for methylene chloride by elevating the limit of detection. (Report CRQL and flag U). Qualify results > CRQL and < 10x the blank concentration as (U). Compare equivalent data (see Functional Guidelines). Qualify results attributable to carry-over as unreliable (R). 	V			Samples Affected/Comments $M_{L}Cl_{2}$ in all blanks but < 10 x CRal $M_{B}lk A L B B U B Y Y O I = 0.25 Mg/L (ok)$ $M_{B}lk A U 3 7 4520 = 0.25 Mg/L (ok)$ $M_{A}tu_{X} Spike B l k = 4.6 Mg/L (ok)$ (A U B O U S 4402)
2.4	 Do the method blanks contain ≤ 5x CRQL for other volatile target compounds? Qualify results < CRQL and < 5x the blank concentrations for other volatile target compounds by elevating the limit of detection. (Report CRQL and flag U). Qualify results > CRQL and < 5x the blank concentration as (U). Compare equivalent data (see Functional Guidelines). Qualify results attributable to carry-over as unreliable (R). 				No volatile target compoundo found in blks. ». Only MeChe » lab contamination ». see 2.3 above
2.5	Were field blanks collected for the sample set according to the Phase II Remedial Investigation Work Plan?			5	Field Blanks not required according to Phase II Work Plan.
2.6	Do field blanks contain compounds above the levels specified for method blanks?			7	- no field blanks
2.7	Did a trip blank accompany each cooler containing VOA samples?**	>			
2.8	Was an equipment blank (rinsate) collected collected according to the Phase II Remedial Investigation Work Plan?			1	Equipment Blanks not reguired for SVI8010 samples. See Phase # Wark Plan.
General	Comments				
	· · · ·				
3.0	Surrogates				

		Yes	No	N/A			Samples Affecte	d/Comments	
3.1	Was Form II included in the analytical report? Are all samples and surrogate recoveries listed on the form? (Check for transcription and calculation errors).								
3.2	Were surrogates added to all standards, samples, and blanks?				H. The	Ending	continuing surrogated	cal std (8/14/96) mix was used.	Se General
3.3	Are surrogate recoveries for samples within the limits in table 6 of D-II, Section IV? Are outliers marked with an asterisk? • If surrogate is low or high, or 2 to 3 surrogates are mixed low to high, qualify results > IDL as estimated (J) and quantitation limits as estimated (UJ). • If 1 surrogate < 10% R, qualify results > IDL as estimated, and biased low (JL) and quantitation limits as unreliable (R). • If 2 to 3 surrogates are all low, qualify results > IDL as biased low (L) and quantitation limits as biased low (UL). • If 2 to 3 surrogates are all high, qualify results > IDL as estimated, and biased high (JH); do not qualify NDs. •Ensure the samples were reanalyzed. For soils: the methanol extract is reanalyzed before the sample is reextracted. If the reanalysis is acceptable, only the reanalyzed data need be submitted. If it is not, data from both anallyses are submitted. • If dilution prevents surrogate detection, state in the narrative that method accuracy cannot be verified.								
3.4	Are surrogate recoveries for blanks within these same limits? • If not, the blanks and all associated samples must be reanalyzed.	~				- <u></u>	· · ·		

			T			สิโ
		Yes	No	<u>N/A</u>		,
Genera	1 comments The surrogate Bromoch	lose	o met	thank	exceeded the cal curve. Data	
Con	idered to be estimated	(J)	Ker	y th	is compound and passibly brased	
hig	h (H). Flag any hits (J	<u>H).</u>	<u> </u>		0	_
4.0	Matrix Spike/Matrix Spike Duplicate		<u></u>			
4.1	Was Form III included in the analytical report? Check for transcription and calculation errors.				Matrix Spike Blank info> Lab callo this an LCS. ms/msD not analyzed for sW8010. Field erw did not Clabel Sample as	
4.2	Was an MS/MSD analyzed at the prescribed frequency? (Paragraph 10.10, D-II, Section IV)?				ms/msD not analyzed tos sW8010. Hild erw did not Clabel Sample as	tin/ TINSD
4.3	Do the % Recoveries (%R) fall within the limits listed in Table 7?				No ms/msD analyzed	No extra Volume available
4.4	Do the RPD values fall within the limits listed in the SOW?				No RAD -> not rateulable.	uvaita5lį
4.5	Does recalculation of the % R and RPD values verify the reported values? (Recalculate 1 per pkg, for 10% of the target volatiles.)			2	Mo 7° R - NO RPD	
	• Use results in conjuction with other QC criteria and qualify data according to professional judgment, if needed.				Cannot, assess matrix effects on analyte recorreries in field sample	
General	Comments				· · · · · · · · · · · · · · · · · · ·	
5.0	Field Duplicates					
5.1	Were field duplicates analyzed with the sample set, according to the Phase II Remedial Investigation Work Plan?	· ·			Field dup = 2-GW-7. (Dup & MW-1=) ID = 2-GW-1.	

1					
Norn	ral = 2-GW1 Dup = $2-GW-7$	Yes	No	N/A	Samples Affected/Comments
Genera	al Comments RPD = Trichlaroethere		. 04 -	-2.1/	x100 = 67.5 => (high)
Both	samples diluted to suc)ugh	1.5 and	-7 20	Samples Affected/Comments x100 = 67.5 = (high) Dugh respectively due to Trichloroether
6.0	Internal Standards Performance				
6.1	Was Form VIII included in the analytical report?		~	1	Recra does not perform I.S. method a calibration for SW8010 - Not read
6.2	Was an internal standard added to all standards, samples and blanks?		~		Recra does not perform I.S. method of calibration for SW8010 = Not regul by Method. O Recra used lineas regression on calibrations.
6.3	Was the internal standard concentration 50 μ g/L for each compound?		;	i	See 6.1
6.4	Are sample IS retention times within 30 sec of the continuing cal std IS retention time? (Check one per pkg.) • If sample IS retention times are not within 30 sec, determine if false positives or negatives exist. Large shifts may require total or partial data rejection.				Ser 6.1
6.5	Are sample IS areas within a factor of 2 of the continuing cal std IS area? • If sample IS areas are outside this range, qualify results for compounds using those IS as estimated (J) for that sample fraction; qualify NDs as estimated (UJ). If a severe loss of sensitivity is seen, qualify NDs as unusable (R).				See le.1
Genera	1 Comments				
7.0	Target Compound Verification				
7.1	Were Form I, chromatograms, and data printouts provided for each sample?	-			·

		Yes	No	N/A	Samples Affected/Comments
7.2	Are sample RRTs within 0.06 units of the standard RRT? Check 10% of target volatiles of the samples selected for full validation.				
7.3	Are standard chroms similar to sample chroms?	-	ſ		
7.4	 Are sample chroms free of carry-over effects, esp. if low concentration samples are preceded by high-concentration samples? If incorrect compound identifications were made, flag all affected data as not detected (U) or unusable (R). If raw data suggests presence of a target compound, but the chromatogram contains inadequacies, report the compound as not confirmed and therefore not detected (U). If a compound with acceptable matching characteristics is not reported, add it to the sample data summary. If > CRQL, the lab should examine and re-submit the result. 				Samples 2-GW-1, 2-GW-1D, 2-GW-1D- all exhibit I concent. Samples following => 2-GW-1-DD, 2-GW-2D nc carryever effects.
7.5	Are the standard chromatographic ions present > 10% also seen in the sample chromatograms? Do sample and standard relative intensities agree within 20% • The lab must provide the three best chrom matches for non-TCL analytes.	J.			
General	Comments				
8.0	Compound Quantitation, Dilution and Reported Detection	on Lim	its		
8.1	Did dilutions keep the largest analyte peak response for a target compound in the upper half of the initial calibration range?	V			
8.2	Verify that data was submitted for no more than two analyses (ie. the original and one dilution, or the more concentrated dilution and one further dilution).	~	Z	DE	Data reported for original and one delution.

		Yes	No	N/A	Samples Affected/Comments
8.3	Verify that MS/MSD analyses were not diluted for the purpose of bringing either spiked or non-spiked analytes within calibration range. • If a MS/MSD sample contains high indigenous levels of spiking analytes, the concentration and recovery should be calculated from the undiluted analysis; the problem should be noted with the SDG narrative.				Matrix spike blank used as LCS. No Ms/msD analyzed - Field crew olid not designate ms/msD sample and did nat send extra valume.
8.4	Verify the the m/p-xylene and the o-xylene peaks were quantitated, and if necessary diluted separately. • Areas of both peaks and the single isomer RRF should be used to quantitate results.				SW 8020 cnly => downot apply to SW 8010 0
8.5	Were the sample RRFs calculated based on the correct internal standard for that compound?				no I.S. method of culibration used. Not required by method SW8010.
8.6	Does recalculation of the compound quantitations verify the reported results? (Recalculate 10% of the samples, for 10% of the target volatiles.) • If errors > 10% are found, they should be identified and corrected on the sample data summary, and noted in the narrative, and support documentation. • If an ion used for quantitation is saturated, qualify result as biased low (L). • If an ion used for quantitation is not saturated but exceeds the highest standard, qualify results as estimated (J).				Not required by Omethod SW8010. (See Attached Recalculation) (Sheet.
8.7	Are the reported sample results, and quant reports free of transcription errors from the quant sheets, chromatograms, and sample prep logs?				
8.8	Have the CRQLs been adjusted for sample dilution, splits, clean-up activities and dry weight factors?				

			N 1.0			 C			
		Yes	No	N/A		Sa	nples Affected	/Comments	
General	Comments								
9.0	Tentatively Identified Compounds (TICs)								
9.1	Were up to 10 TICs reported for each sample and			. ~	TIC	's not	- perfor	rmed by	GC.
	blank which have area/height greater than 10% of the						,		
	size of the nearest internal standard? • If the library search identified a target compound not reported in								
	the data summary, have the lab recalculate the target compound result; determine whether the false negative is an isolated	[[
	occurrence.	┟╌╌┟							
9.2	Are any TCLs erroneously listed as TICs?			~	No	TIC's	tar Sk	18010 =>	66.
9.3	Are TICs present in sample absent in the blanks?					TIC	for s	<u>√8010 ⇒</u> Sk/8010⇒	6-0
	(Check TICs for the samples selected for validation.) • If TICs present in a sample are present within 5x the				710	// .			
í i	concentration of a blank qualify the TIC (R) and draw a line								
	through the data.If common lab contaminants are present > 10x levels in the								
Į.	blanks, qualify results (R). • If a TIC tentative identification is unacceptable, the								
	identification should be changed to "unknown". TICs not sufficiently above blank levels should not be reported.								
	All similar isomers should be reported as a total.								
General	Comments								
10.0	System Performance						<u></u>		
10.1	Were abrupt, discrete shifts in the chromatograms found?				Chro	mo (ok,		

		Yes	No	N/A	Samples Affected/Comments
10.2	Were shifts in absolute internal standard retention times found?			Ĺ	No I.S. method of calibrated
10.3	Was an excessive baseline rise of elevated temperature noted?		~		
10.4	Were extraneous peaks noted for calibration standards?			ſ	
General	Comments				
	· ·				
11.0	Sample Integrity				
11.1	Did the laboratory narratives state problems with sample receipt or conditions that would affect quality? • If the VOA vials analyzed contained air bubbles, flag all positive results (J) and all NDs (R). • If sample temperature was not 2-4°C upon receipt, flag positive results (J) and NDs (UJ).		1		Sample Integrity good.
General	Comments				
8			ć		
	·				

i

1

Erdle Perforating Project

Recalculation Sheet Volatiles SIA/ 8010

Initial Calibration % Relative Standard Deviation (% RSD) ICAL 8/4/96 Instrument HP 5890-3 R $\% RSD = \frac{\sigma}{r} \times 100$ Trichlorgethere $\begin{array}{c} \hline [stols] \\ \hline 5 \\ 20 \\ 7.23 \\$ where σ = std dev. of 5 RF and + = mean of 5 RFs 1° RSD = (2.379) ×100 - 77.170 high: flag "J=estimated Cannot Calculate 1º D % Difference (% D) Reira hab dues not use internal standards for SU18010. Lab did not report an RRF. $\% D = \frac{\overline{RRFI} - RRF_{\epsilon}}{RRF_{\cdot}} \times 100$ where \overline{RRFI} = average RRFand RRF = RRF continuin Where : RRF: = "i" Relative Response Facta $RRF = \frac{A_{x}}{A_{I.S.}} \times \frac{C_{I.S.}}{C_{x}}$ A= FICP RRF = E RRF. i.i. C = [analyti] Concentration of analyte & I.s. I.S. = Internal Std. X = analyte g'interest.

GCMS.CAL page 1

Matrix Spike/Matrix Spike Duplicates (MS/MSD) % Recovery Not Calculated. Richa lab did not analyze Mis/MISD => Field Crew did not label field sample as Mis/MISD. $%R = \frac{spiked \ sample \ result \ - \ sample \ result}{spike \ added} x \ 100$ Not Calculated. MSD Relative Percent Difference (RPD) 4. No MISD analyzed. Can not calentate RPD. $D = \frac{X_1 - X_2}{(\frac{X_1 + X_2}{2})} \times 1$

Sample Quantitation of the target volatile characteristic ion(EICP) (ng int std of the EICP for the specific int std) (cal std RRF) (mL (Area of the target volatile (EICP) (ng int std. added) (Area of the EICP for the specific int std) (cal std RRF) (g sample) (Area of the target volatile EICP) (ng int std. added) (1000) (DF) (total mL methanol ex of the EICP for the specific int std) (cal std RRF) (µL methanol extract added to reagent purge water) (g soil extr Recra did not use internal stob. "hinear regression from cal curve.) Calculation uses mean response. (RF) Trichloroethere = Dilution = 500 Conc. area RF = 35, 32235,480 5 36.150 20 36,500 40 34 330 60 183633.20 35,322. = (5.19 mg/L 4) 36,375 80 33, 100 100

GCMS.CAL page 3

000069

· · · · · ·

RADIAN CORPORATION ERDLE SITE METHOD 8010 - HALOGENATED VOLATILE ORGANICS ANALYSIS DATA SHEET

Client No.

•••

.

		2-GW-1
Lab Name: <u>Recra LabNet</u>	Contract:	
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SI	OG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample II	D: <u>A6374501</u>
Sample wt/vol: <u>5.00</u> (g/mL)	ML Lab File ID:	<u>3B02291.TX0</u>
Level: (low/med) Low	Date Samp/Red	cv: <u>08/07/96</u> <u>08/07/9</u>
% Moisture: not dec	Date Analyzed	1: <u>08/14/96</u>
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u>	(mm) Dilution Fac	tor: <u>500.00</u>
Soil Extract Volume:(uL)	Soil Aliquot	Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION (ug/L or ug/K	

75-27-4Bromodichloromethane	100	U J
75-25-2Bromoform	500	ט
74-83-9Bromomethane	500	U
56-23-5Carbon Tetrachloride	100	ַ ד ו
108-90-7Chlorobenzene	200	U
5-00-3Chloroethane	500	U
1110-75-82-Chloroethylvinyl ether	500	υΨ
67-66-3Chloroform	100	U
74-87-3Chloromethane	400	UJ
124-48-1Dibromochloromethane	100	U 1
95-50-11,2-Dichlorobenzene		U
541-73-11,3-Dichlorobenzene	200	ש
106-46-71,4-Dichlorobenzene		U
75-34-31,1-Dichloroethane	_ 100	U
107-06-21,2-Dichloroethane	100	ע
75-35-41,1-Dichloroethene	100	ע (
156-60-5trans-1,2-Dichloroethene	100	ע
78-87-51,2-Dichloropropane	100	UU
10061-01-5cis-1,3-Dichloropropene		ט ט
10061-02-6trans-1,3-Dichloropropene	100	U U
75-09-2Methylene chloride	1500	В
79-34-51,1,2,2-Tetrachloroethane	100	ŪŪ
127-18-4Tetrachloroethene	100	U
71-55-61,1,1-Trichloroethane	- 100	U
79-00-51,1,2-Trichloroethane	100	U U
79-01-6Trichloroethene	520	
75-69-4Trichlorofluoromethane	- 500	Π
75-01-4Vinyl chloride	2600	
	<u> </u>	`

000074

U

U

U

U

Ε

U

U

40

40

40

40

8400

200

200

		C	lient No.
		GW-1D	
Lab Name: <u>Recra LabNet</u> Contract:	: L		
Lab Code: <u>RECNY</u> Case No.: SAS No	D.: SDG	No.:	_
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374511</u>	
Sample wt/vol:5.00 (g/mL) ML	Lab File ID:	<u>3B02283.</u>	TXO
Level: (low/med) Low	Date Samp/Recv:	08/07/96	<u>08/07/9</u> (
% Moisture: not dec	Date Analyzed:	08/14/96	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor	: <u>200.00</u>	
Soil Extract Volume:(uL)	Soil Aliquot Vo	lume:	(uL)
	CONCENTRATION UNI	TS:	
CAS NO. COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>	Q
75-27-4Bromodichloromethane		40	υJ
75-25-2Bromoform		200	U
74-83-9Bromomethane	x	200	U
56-23-5Carbon Tetrachloride		40	U U
108-90-7Chlorobenzene		80	U
5-00-3Chloroethane 110-75-82-Chloroethylvinyl ether		200	U U
67-66-3Chloroform	·	200 40	U
67-66-3Chloroform 74-87-3Chloromethane		160	U
124 49 1 Dibromodbloromothano		40.	U
124-48-1Dibromochloromethane 95-50-11,2-Dichlorobenzene		80	U
		80	U
106-46-71, 4-Dichlorobenzene 75-34-31, 1-Dichloroethane		80	Ŭ
75-34-31,1-Dichloroethane		40	Ū
107-06-21,2-Dichloroethane		40	Ŭ
75-35-41,1-Dichloroethene		40	Ŭ
156-60-5trans-1,2-Dichloroethene		40	Ū
78-87-51,2-Dichloropropane		40	Ū
10061-01-5cis-1,3-Dichloropropene		40	Ū
10061-02-6trans-1,3-Dichloropropene		40	U
75-09-2Methylene chloride		170	B

79-34-5-----1,1,2,2-Tetrachloroethane

127-18-4----Tetrachloroethene

79-01-6----Trichloroethene

75-01-4----Vinyl chloride

71-55-6-----1,1,1-Trichloroethane

79-00-5-----1,1,2-Trichloroethane

75-69-4----Trichlorofluoromethane_

ί,

COOUT Client No.

			2-GW	-1D DL	
Lab Name: <u>Recra LabNet</u>	Contract: _	L			
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SI	OG No	.:	
Matrix: (soil/water) <u>WATER</u>		Lab Sample II):	<u>A6374511D</u>	Ŀ
Sample wt/vol:5.00 (g/mL)	ML	Lab File ID:		<u>3B02296.T</u>	<u>xo</u>
Level: (low/med) Low		Date Samp/Rec	cv:	<u>08/07/96</u>	08/07/9
% Moisture: not dec		Date Analyzed	1:	<u>08/15/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> ((mm)	Dilution Fact	cor:	500.00	
Soil Extract Volume:(uL)		Soil Aliquot	Volu	ıme:	(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

	CAS NO.	COMPOUND	(ug/L or ug/Kg	J) <u>UG/L</u>	Q
	75-27-4	-Bromodichloromethane		100	υJ
	75-25-2	-Bromoform		500	υ, ·
		-Bromomethane		500	U
	56-23-5	-Carbon Tetrachloride		100	U
	108-90-7	-Chlorobenzene		200	U
	75-00-3	-Chloroethane		500	U
~	110-75-8	-2-Chloroethylvinyl ether		500	U
	67-66-3	-Chloroform		100	U
•		-Chloromethane		400	U
	124-48-1	-Dibromochloromethane		100	ប
	95-50-1	-1,2-Dichlorobenzene	-	200	U
	541-73-1	-1,3-Dichlorobenzene		200	U
	106-46-7	-1,4-Dichlorobenzene		200	U
	75-34-3	-1,1-Dichloroethane		100	U
	107-06-2	-1,2-Dichloroethane		100	U
	75-35-4	-1,1-Dichloroethene		100	U
		-trans-1,2-Dichloroethene		100	U
	78-87-5	1,2-Dichloropropane		100	U
	10061-01-5	-cis-1,3-Dichloropropene		100	U
	10061-02-6	trans-1,3-Dichloropropene		100	U
	75-09-2	Methylene chloride		4000	BD
	79-34-5	1,1,2,2-Tetrachloroethane		100	U
	127-18-4	Tetrachloroethene		100	ט
	71-55-6	1,1,1-Trichloroethane		100	U
	79-00-5	1,1,2-Trichloroethane		100	U
		Trichloroethene	· · ·	9900	D
		Trichlorofluoromethane		500	U
	75-01-4	Vinyl chloride		500	υν
	1	· · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	1 '

000082

Client No.

	2-GW-1D	D
Lab Name: <u>Recra LabNet</u> Contract	::	· · · · · · · · · · · · · · · · · · ·
Lab Code: <u>RECNY</u> Case No.: SAS N	No.: SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: A63	74512
Sample wt/vol:5.00 (g/mL) ML	Lab File ID: <u>3BC</u>	2276.TX0
Level: (low/med) Low	Date Samp/Recv: <u>08/</u>	07/96 08/07/9
% Moisture: not dec.	Date Analyzed: <u>08/</u>	14/96
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:(uL)	Soil Aliquot Volume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>U(</u>	<u>5/LQ</u>

	-4Bromodichloromethane	0.20	UJ
	-2Bromoform	1.0	U
	-9Bromomethane	1.0	U
56-23	-5Carbon Tetrachloride	0.20	U
	0-7Chlorobenzene	0.40	U
75-00	-3Chloroethane	1.0	U
110-7	5-82-Chloroethylvinyl ether	1.0	U
67-66	-3Chloroform	0.20	U
174-87	-3Chloromethane	1.0	U
124-4	8-1Dibromochloromethane	0.20	U
95-50	-11,2-Dichlorobenzene	0.40	U
541-7	3-11,3-Dichlorobenzene	0.40	U
106-4	6-71,4-Dichlorobenzene	0.40	U
75-34	-31,1-Dichloroethane	0.20	U
107-0	6-21,2-Dichloroethane	0.20	U
75-35	-41,1-Dichloroethene	0.20	U
156-6	0-5trans-1,2-Dichloroethene	0.20	U
78-87	-51,2-Dichloropropane	0.20	U
10061	-01-5cis-1,3-Dichloropropene	0.20	U
10061	-02-6trans-1,3-Dichloropropene	0.20	U
75-09	-2Methylene chloride	0.20	U
79-34	-51,1,2,2-Tetrachloroethane	0.20	UU
127-1	.8-4Tetrachloroethene	0.20	U
71-55	-61,1,1-Trichloroethane	0.20	Ū
79-00	-51,1,2-Trichloroethane	0.20	U
79-01	-6Trichloroethene	0.20	U
	-4Trichlorofluoromethane	1.0	U
75-01	-4Vinyl chloride	1.0	lu √
L			

.

.

Ţ.

• • •

C00087

~2

.

	Client No.
	2-GW-2
Lab Name: <u>Recra LabNet</u> Contract:	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u> Lab Sample	ID: <u>A6374502</u>
Sample wt/vol: <u>5.00</u> (g/mL) <u>ML</u> Lab File II): <u>3B02292.TX0</u>
Level: (low/med) Low Date Samp/R	Recv: 08/07/96 08/07/9
% Moisture: not dec Date Analyz	zed: <u>08/14/96</u>
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dilution Fa	actor: <u>50.00</u>
Soil Extract Volume:(uL) Soil Alique	ot Volume:(uL)
CONCENTRATION CAS NO. COMPOUND (ug/L or ug/	NUNITS: /Kg) <u>UG/L</u> Q
75-27-4Bromodichloromethane	10 UJ
75-25-2Bromoform 74-83-9Bromomethane 56-23-5Carbon Tetrachloride 08-90-7Chlorobenzene 5-00-3Chloroethylvinyl ether 110-75-82-Chloroethylvinyl ether 67-66-3Chloromethane 124-48-1Dibromochloromethane 95-50-11, 2-Dichlorobenzene 541-73-11, 3-Dichlorobenzene 106-46-71, 4-Dichlorobenzene 107-06-21, 2-Dichlorobenzene 154-31, 1-Dichloroethane 107-06-21, 2-Dichlorobenzene 156-60-5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
75-01-4Vinyl chloride	98

C00092

4.0

4.0

• • • •

บ บ บ

•

		Clie	nt No.
	2-0	W-2D	
Lab Name: <u>Recra LabNet</u> Contract:		<u></u>	ليستعده
Lab Code: <u>RECNY</u> Case No.: SAS No.	: SDG N	lo.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374513</u>	
Sample wt/vol: <u>5.00</u> (g/mL) ML	Lab File ID:	<u>3B02282.TX0</u>	<u> </u>
Level: (low/med) Low	Date Samp/Recv:	<u>08/07/96</u> 08	<u>/07/96</u>
<pre>% Moisture: not dec</pre>	Date Analyzed:	08/14/96	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor:	4.00	
Soil Extract Volume:(uL)	Soil Aliquot Vol	ume:	(uL)
	CONCENTRATION UNI (ug/L or ug/Kg)		Q
56-23-5Carbon Tetrachloride 08-90-7Chlorobenzene 5-00-3Chloroethane 110-75-82-Chloroethylvinyl ether 67-66-3Chloroform 74-87-3Chloromethane		0.80 4.0 4.0 0.80 1.6 4.0 4.0 0.80 3.2 0.80 1.6 1.6 1.6 1.6 1.6 2.4 0.80 0.80 1.0 0.80 0.80 0.80 0.80 0.80	$ \overline{)} $

-

.

75-69-4----Trichlorofluoromethane

75-01-4----Vinyl chloride

.

C00097

Client No.

	2 - GI	W-3	
Lab Name: <u>Recra LabNet</u> Contract: _	L		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	: SDG N	o.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374503</u>	-
Sample wt/vol:5.00 (g/mL) ML	Lab File ID:	<u>3B02293.T</u>	<u>KO</u>
Level: (low/med) Low	Date Samp/Recv:	<u>08/07/96</u>	<u>08/07/96</u>
<pre>% Moisture: not dec</pre>	Date Analyzed:	08/14/96	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor:	25000.00	
Soil Extract Volume:(uL)	Soil Aliquot Vol	ume:	(uL)
	ONCENTRATION UNIT	'S:	
CAS NO. COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-27-4Bromodichloromethane		5000 25000 5000 25000 25000 25000 25000 20000 5000 10000 10000 10000 500	

.

-

... . . .

.

COO102 Client No.

20000

20000

20000

20000

550000

100000

100000

U

U

U

U

D

U

U

			ient No.
		GW-3 DL	
Lab Name: <u>Recra LabNet</u> Contract:			<u></u> J
Lab Code: <u>RECNY</u> Case No.: SAS No.	: SDG	No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374503D</u>	L
Sample wt/vol:0.50 (g/mL) ML	Lab File ID:	<u>3B02303.T</u>	<u>xo</u>
Level: (low/med) Low	Date Samp/Recv:	08/07/96	<u>08/07/9</u> €
% Moisture: not dec	Date Analyzed:	<u>08/15/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor	: 10000.00	
Soil Extract Volume:(uL)	Soil Aliquot Vo	olume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UN: (ug/L or ug/Kg)		Q
75-27-4Bromodichloromethane		20000 100000 20000 40000 100000 20000 20000 40000 40000 40000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000	שמתמתמתמתמתמתמת שמתמתמתמתמתמת

÷

79-34-5----1,1,2,2-Tetrachloroethane_

127-18-4----Tetrachloroethene

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride

71-55-6-----1,1,1-Trichloroethane

79-00-5-----1,1,2-Trichloroethane

75-69-4-----Trichlorofluoromethane

Client No

000107

			2-GW-3D
Lab Name: <u>Recra LabNet</u>	Contract: _		······································
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	: SI	OG No.:
Matrix: (soil/water) <u>WATER</u>		Lab Sample II): <u>A6374514</u>
Sample wt/vol: <u>5.00</u> (g/mL)	ML	Lab File ID:	<u>3B02281.TX0</u>
Level: (low/med) <u>Low</u>		Date Samp/Rec	:v: <u>08/07/96</u> <u>08/07/9</u>
% Moisture: not dec		Date Analyzed	1: <u>08/14/96</u>
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u>	(mm)	Dilution Fact	cor: <u>25.00</u>
Soil Extract Volume:(uL)		Soil Aliquot	Volume:(uL)
CAS NO. COMPOUND	•	ONCENTRATION ((ug/L or ug/Kg	JNITS: J) <u>UG/L</u> Q

_	•		
	75-27-4Bromodichloromethane	5.0	UJ
	75-25-2Bromoform	25	U,
	74-83-9Bromomethane	25	U
	56-23-5Carbon Tetrachloride	5.0	U
:	108-90-7Chlorobenzene	10	U
	75-00-3Chloroethane	25	U
	110-75-82-Chloroethylvinyl ether	25	U
- 10	67-66-3Chloroform	5.0	U
- I ·	74-87-3Chloromethane	20	U
	124-48-1Dibromochloromethane	5.0	U
	95-50-11,2-Dichlorobenzene	10	U
	541-73-11,3-Dichlorobenzene	10	U
	106-46-71,4-Dichlorobenzene	- 10	U
	75-34-31,1-Dichloroethane	5.0	U
	107-06-21,2-Dichloroethane	5.0	U
	75-35-41,1-Dichloroethene	5.0	U
ł	156-60-5trans-1,2-Dichloroethene	- 5.0	U
	78-87-51,2-Dichloropropane	5.0	U
	10061-01-5cis-1,3-Dichloropropene	5.0	U
	10061-02-6trans-1,3-Dichloropropene	5.0	Ū
	75-09-2Methylene chloride	25	В
	79-34-51,1,2,2-Tetrachloroethane	- 5.0	Ū
	127-18-4Tetrachloroethene	- 5.0	Ū
	71-55-61,1,1-Trichloroethane	- 5.0	Ū
	79-00-51,1,2-Trichloroethane	- 5.0	U
1	79-01-6Trichloroethene	930	E
	75-69-4Trichlorofluoromethane	- 25	UT I
	75-01-4Vinyl chloride	- 25	U V

-

- -

• • •

.

-

C00110

Client No.

	.		2-GW-3D DL
Lab Name: <u>Recra LabNet</u>	Contract: _		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SI	G No.:
Matrix: (soil/water) <u>WATER</u>		Lab Sample II): <u>A6374514DL</u>
Sample wt/vol:5.00 (g/mL)	ML	Lab File ID:	<u>3B02297.TX0</u>
Level: (low/med) Low		Date Samp/Rec	cv: <u>08/07/96</u> <u>08/07/9</u>
% Moisture: not dec		Date Analyzed	l: <u>08/15/96</u>
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> ((mm)	Dilution Fact	cor: <u>50.00</u>
Soil Extract Volume:(uL)		Soil Aliquot	Volume:(uL)
	~		DITOO

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

0

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
	Bromodichloromethane		10	UT
	Bromoform		50	ע ק
	Bromomethane		50	υ
	Carbon Tetrachloride	· · · · · · · · · · · · · · · · · · ·	10	U
08-90-7	Chlorobenzene		20	U
	Chloroethane	· · ·	50	U
110-75-8	2-Chloroethylvinyl ether		50	U
67-66-3	Chloroform		10	U
74-87-3	Chloromethane		40	U
124-48-1	Dibromochloromethane		10	U
95-50-1	1,2-Dichlorobenzene		20	U
541-73-1	1,3-Dichlorobenzene		20	U
106-46-7	1,4-Dichlorobenzene		20	U
75-34-3	1,1-Dichloroethane		10	ប
107-06-2	1,2-Dichloroethane		10	U
75-35-4	1,1-Dichloroethene		10	U
156-60-5	trans-1,2-Dichloroethene		10	U
78-87-5	1,2-Dichloropropane	<u>.</u>	10	U
10061-01-5-	cis-1,3-Dichloropropene		10	U
10061-02-6-	trans-1,3-Dichloropropene		10	U
75-09-2	Methylene chloride		450	BD
79-34-5	1,1,2,2-Tetrachloroethane_		· 10	U
127-18-4	Tetrachloroethene		10	U
71-55-6	1,1,1-Trichloroethane		10	U
	1,1,2-Trichloroethane		10	U
79-01-6	Trichloroethene		850	D
75-69-4	Trichlorofluoromethane		50	U
75-01-4	Vinyl chloride		50	U V

C00115

18

			Cli	lent No.
		2-GW	N-4	
Lab Name: <u>Recra LabNet</u>	Contract:			J
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG NC	».:	
Matrix: (soil/water) <u>WATER</u>	Lab Sampl	e ID:	<u>A6374504</u>	-
Sample wt/vol:5.00 (g/mL)	ML Lab File	ID:	<u>3B02274.TX</u>	٥٥
Level: (low/med) Low	Date Samp	/Recv:	<u>08/07/96</u> (<u>)8/07/96</u>
<pre>% Moisture: not dec</pre>	Date Anal	yzed:	08/14/96	·
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u>	(mm) Dilution	Factor:	5.00	
Soil Extract Volume:(uL)	Soil Alio	uot Volu	ume:	(uL)
CAS NO. COMPOUND	CONCENTRATI (ug/L or u			Q
75-27-4Bromodichloromethan 75-25-2Bromoform 74-83-9Bromomethane 56-23-5Carbon Tetrachlorid 08-90-7Chlorobenzene 5-00-3Chloroethane 110-75-82-Chloroethylvinyl 67-66-3Chloromethane 124-48-1Chloromethane 124-48-1Dibromochloromethane 124-48-1Dibromochlorobenzene 541-73-11, 2-Dichlorobenzene 106-46-71, 4-Dichlorobenzene 107-06-21, 2-Dichlorobenzene 107-06-21, 2-Dichlorobenzene 107-06-21, 2-Dichlorobenzene 106-46-71, 1-Dichlorobenzene 107-06-21, 2-Dichloropethane 107-06-21, 2-Dichloropethane 107-06-21, 1-Dichloropethane 107-06-21, 2-Dichloropethane 106-60-5	ether		$ \begin{array}{c} 1.0\\ 5.0\\ 5.0\\ 1.0\\ 2.0\\ 5.0\\ 1.0\\ 4.0\\ 1.0\\ 2.0\\ 2.0\\ 2.0\\ 2.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1$	

75-01-4-----Vinyl chloride_____

Grent No.

в

U

U

U

U

υ 🗸

1.5

0.40

0.40

0.40

2.5

2.0

2.0

29

		ent No.
2-0	W-4D	
L	·	l
: SDG N	lo.:	
Lab Sample ID:	<u>A6374515</u>	
Lab File ID:	<u>3B02286.TX</u>	0
Date Samp/Recv:	<u>08/07/96</u> 0	<u>8/07/9</u> (
Date Analyzed:	<u>08/14/96</u>	
Dilution Factor:	2.00	
Soil Aliquot Vo	Lume:	(uL)
		Q
	0.40 2.0 2.0 0.40 0.80 2.0 2.0 0.40 1.6 0.40 0.80 0.80 0.80 0.80 0.64 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.40	
	SDG N Lab Sample ID: Lab File ID: Date Samp/Recv: Date Analyzed: Dilution Factor: Soil Aliquot Vo: ONCENTRATION UNIT (ug/L or ug/Kg)	SDG No.:

75-09-2-----Methylene chloride_

71-55-6-----1,1,1-Trichloroethane

79-00-5-----1,1,2-Trichloroethane

75-69-4----Trichlorofluoromethane

127-18-4----Tetrachloroethene

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride

79-34-5-----1,1,2,2-Tetrachloroethane

Client No.

-

		2-G	V-5
Lab Name: <u>Recra LabNet</u>	Contract: _		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No	D.:
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	<u>A6374505</u>
Sample wt/vol: <u>5.00</u> (g/mL)	ML	Lab File ID:	<u>3B02275.TX0</u>
Level: (low/med) Low		Date Samp/Recv:	08/07/96 08/07/9
% Moisture: not dec.		Date Analyzed:	08/14/96
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:(uL)		Soil Aliquot Vol	ume:(uL)
	C	ONCENTRATION UNIT	S:

(ug/L or ug/Kg) <u>UG/L</u>

.

. .

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-27-4	Bromodichloromethane		0.20	UJ
75-25-2	Bromoform		1.0	U
74-83-9	Bromomethane		1.0	ע
56-23-5	Carbon Tetrachloride		0.20	ש
08-90-7	Chlorobenzene		0.40	U
75-00-3	Chloroethane		1.0	ען
110-75-8	2-Chloroethylvinyl ether		1.0	υ¥
67-66-3	Chloroform		0.20	U
74-87-3	Chloromethane		1.0	υJ
124-48-1	Dibromochloromethane	· ·	0.20	U
95-50-1	1,2-Dichlòrobenzene		0.40	ט /
541-73-1	1,3-Dichlorobenzene		0.40	U
106-46-7	1,4-Dichlorobenzene		0.40	U
75-34-3	1,1-Dichloroethane		1.7	
107-06-2	1,2-Dichloroethane		0.20	U
75-35-4	1,1-Dichloroethene		0.20	ט
156-60-5	trans-1,2-Dichloroethene		0.20	U
78-87-5	1,2-Dichloropropane		0.20	ע
10061-01-5-	cis-1,3-Dichloropropene		0.20	ש
10061-02-6-	trans-1,3-Dichloropropene_		0.20	U
75-09-2	Methylene chloride		0.20	U
79-34-5	1,1,2,2-Tetrachloroethane_		0.20	ប
127-18-4	Tetrachloroethene		0.20	ប
71-55-6	1,1,1.Trichloroethane		0.20	U
79-00-5	1,1,2-Trichloroethane		0.20	U
79-01-6	Trichloroethene-		0.20	U
75-69-4	Trichlorofluoromethane		1.0	U
75-01-4	Vinyl chloride		1.0	ע ע

4 . 4

00013

Client No.

	-	2-GW-5D
Lab Name: <u>Recra LabNet</u>	Contract:	
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SI	DG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample I	D: <u>A6374516</u>
Sample wt/vol: <u>5.00</u> (g/mL)	ML Lab File ID:	<u>3B02287.TX0</u>
Level: (low/med) <u>Low</u>	Date Samp/Re	cv: <u>08/07/96</u> <u>08/07/9€</u>
% Moisture: not dec	Date Analyze	d: <u>08/14/96</u>
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u>	(mm) Dilution Fac	tor: <u>1.00</u>
Soil Extract Volume:(uL)	Soil Aliquot	Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION (ug/L or ug/K	
75-27-4Bromodichloromethane 75-25-2Bromoform 74-83-9Bromomethane 56-23-5Carbon Tetrachloride 08-90-7Chlorobenzene 5-00-3Chloroethane 110-75-82-Chloroethylvinyl		$\begin{array}{cccccccc} 0.20 & U & J \\ 1.0 & U \\ 1.0 & U \\ 0.20 & U \\ 0.40 & U \\ 1.0 & U \\ 1.0 & U \\ \end{array}$

5-00-3Chloroethane	1.0	ט ן
110-75-82-Chloroethylvinyl ether	1.0	U
67-66-3Chloroform	0.20	U
74-87-3Chloromethane	1.0	U
124-48-1Dibromochloromethane	0.20	U
95-50-11,2-Dichlorobenzene	0.40	U
541-73-11,3-Dichlorobenzene	0.40	U
106-46-71,4-Dichlorobenzene	0.40	U
75-34-31,1-Dichloroethane	0.43	
107-06-21,2-Dichloroethane	0.20	U
75-35-41,1-Dichloroethene	0.20	U
156-60-5trans-1,2-Dichloroethene	0.20	U
78-87-51,2-Dichloropropane	0.20	U
10061-01-5cis-1,3-Dichloropropene	0.20	ប
10061-02-6trans-1,3-Dichloropropene	0.20	U
75-09-2Methylene chloride	0.20	U
79-34-51,1,2,2-Tetrachloroethane	0.20	U
127-18-4Tetrachloroethene	0.20	U
71-55-61,1,1-Trichloroethane	0.91	
79-00-51,1,2-Trichloroethane	0.20	U
79-01-6Trichloroethene	0.44	
75-69-4Trichlorofluoromethane	1.0	U
75-01-4Vinyl chloride	1.0	υV

000135

2.2

- · ·

 \checkmark

-

		Client No
	2-0	GW-6
Lab Name: <u>Recra LabNet</u> Contract:		· · · · · · · · · · · · · · · · ·
Lab Code: <u>RECNY</u> Case No.: SAS No	.: SDG N	10.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374506</u>
Sample wt/vol:5.00 (g/mL) ML	Lab File ID:	<u>3B02277.TX0</u>
Level: (low/med) Low	Date Samp/Recv:	<u>08/07/96</u> 08/07/9
<pre>% Moisture: not dec</pre>	Date Analyzed:	08/14/96
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor	:1.00
Soil Extract Volume:(uL)	Soil Aliquot Vo	lume:(uL
	CONCENTRATION UNI	TS:
CAS NO. COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u> Q
56-23-5Carbon Tetrachloride 108-90-7Chlorobenzene 5-00-3Chloroethane 110-75-82-Chloroethylvinyl ether 67-66-3Chloroform 74-87-3		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

-

75-01-4-----Vinyl chloride_

000140

Client No

-

		[2-GW-6D	
Lab Name: <u>Recra LabNet</u>	Contract: _	I	<u> </u>	
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SI	OG No.:	
Matrix: (soil/water) <u>WATER</u>		Lab Sample II	D: <u>A637451</u>	7
Sample wt/vol: <u>5.00</u> (g/mL)	ML	Lab File ID:	<u>3B02288</u>	<u>. TX0</u>
Level: (low/med) <u>Low</u>		Date Samp/Red	ev: <u>08/07/9</u>	<u>6 08/07/9</u>
% Moisture: not dec		Date Analyzed	d: <u>08/14/9</u>	<u>6</u>
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u>	(mm)	Dilution Fact	tor: <u>50.0</u>	<u>0</u>
Soil Extract Volume:(uL)		Soil Aliquot	Volume:	(uL)
CAS NO. COMPOUND		ONCENTRATION ((ug/L or ug/Kg		Q
75-27-4Bromodichloromethan 75-25-2Bromoform 74-83-9Bromomethane	e		10 50 50	UJUJ

	75-25-2Bromoform	50	U
	74-83-9Bromomethane	50	U
	56-23-5Carbon Tetrachloride	10	U
_	108-90-7Chlorobenzene	20	U
	75-00-3Chloroethane	50	U
-	110-75-82-Chloroethylvinyl ether	50	U
	67-66-3Chloroform	10	U
	74-87-3Chloromethane	· 40	U
	124-48-1Dibromochloromethane	10	U
	95-50-11,2-Dichlorobenzene	20	U
	541-73-11,3-Dichlorobenzene	20	U
	106-46-71,4-Dichlorobenzene	20	U
	75-34-31,1-Dichloroethane	10	U
	107-06-21,2-Dichloroethane	10	U
	75-35-41,1-Dichloroethene	10	U
	156-60-5trans-1,2-Dichloroethene	10	U
	78-87-51,2-Dichloropropane	10	U
	10061-01-5cis-1,3-Dichloropropene	10	U
	10061-02-6trans-1,3-Dichloropropene	10	U
	75-09-2Methylene chloride	91	в
	79-34-51,1,2,2-Tetrachloroethane	10	U
	127-18-4Tetrachloroethene	10	U
	71-55-61,1,1-Trichloroethane	10	U
	79-00-51,1,2-Trichloroethane	10	U
	79-01-6Trichloroethene	1100	E
	75-69-4Trichlorofluoromethane	50	UU
	75-01-4Vinyl chloride	50	υ 🗸
		<u> </u>	

.

-

· · · · · ·

000143

Client No.

Lab Name: <u>Recra LabNet</u> Contract:		-GW-6D DL	
Lab Code: <u>RECNY</u> Case No.: SAS No.	: SDG	; No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	A6374517D	<u>L</u>
Sample wt/vol:5.00 (g/mL) ML	Lab File ID:	<u>3B02304.T</u>	<u>xo</u>
Level: (low/med) Low	Date Samp/Recv	r: <u>08/07/96</u>	08/07/9
<pre>% Moisture: not dec</pre>	Date Analyzed:	<u>08/15/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Facto	or: <u>100.00</u>	
Soil Extract Volume:(uL)	Soil Aliquot V	Volume:	(uL)
	CONCENTRATION UN (ug/L or ug/Kg)		Q
56-23-5Carbon Tetrachloride 108-90-7Chlorobenzene 15-00-3Chloroethane 110-75-82-Chloroethylvinyl ether 67-66-3Chloroform		20 100 100 20 40 100 20 80 20 40 40 40 40 40 20 20 20 20 20 20 20 20 20 2	

.

,

.

000148

U

U

U

U

40

40 40

420

200

2200

			CI	ient Nc
		2-G	W-7	
Lab Name: <u>Recra LabNet</u>	Contract:			
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG N	ío.:	-
Matrix: (soil/water) <u>WATER</u>	Lab Sample	ID:	<u>A6374507</u>	
Sample wt/vol:5.00 (g/mL)	ML Lab File 1	ID:	<u>3802278.1</u>	<u></u>
Level: (low/med) Low	Date Samp	Recv:	<u>08/07/96</u>	<u>08/07/5</u>
<pre>% Moisture: not dec</pre>	Date Analy	zed:	<u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u>	(mm) Dilution	actor:	200.00	
Soil Extract Volume:(uL)	Soil Aliqu	iot Vol	.ume:	(uL)
CAS NO. COMPOUND	CONCENTRATIO (ug/L or ug			Q
74-83-9Bromomethane 56-23-5Carbon Tetrachlorid 108-90-7Chlorobenzene 75-00-3Chloroethane 110-75-82-Chloroethylvinyl 67-66-3Chloromethane 124-48-1Chloromethane 124-48-1Dibromochloromethane 95-50-11,2-Dichlorobenzene 541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene 107-06-21,2-Dichloroethane 107-06-21,2-Dichloroethane 107-06-21,2-Dichloroethane 106-46-71,3-Dichloroethane 107-06-21,2-Dichloroethane 107-06-21,2-Dichloroethane 107-06-2	ether		$\begin{array}{c} 40\\ 200\\ 200\\ 200\\ 40\\ 80\\ 200\\ 200\\ 40\\ 160\\ 40\\ 80\\ 80\\ 80\\ 80\\ 40\\ 40\\ 40\\ 40\\ 40\\ 40\\ 40\\ 40\\ 40\\ 4$	
75-09-2Methylene chloride]	130 40	B
1/9-34-51.1.2.2-Terrachiord	pernane	1	4()	

127-18-4----Tetrachloroethene_

79-01-6----Trichloroethene

71-55-6-----1,1,1-Trichloroethane_ 79-00-5-----1,1,2-Trichloroethane_

75-69-4-----Trichlorofluoromethane

000150

		Cl	ient No.
		2-TB-2	
Lab Name: <u>Recra LabNet</u>	Contract:		
Lab Code: <u>RECNY</u> Case No.:	SAS No.: S	DG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample I	D: <u>A6374508</u>	_
Sample wt/vol:5.00 (g/mL)	ML Lab File ID:	<u>3B02289.T</u>	<u>xo</u>
Level: (low/med) Low	Date Samp/Re	cv: <u>08/07/96</u>	<u>08/07/9</u> €
<pre>% Moisture: not dec</pre>	Date Analyze	d: <u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> ((mm) Dilution Fac	tor: <u>1.00</u>	
Soil Extract Volume:(uL)	Soil Aliquot	Volume:	(uL)
CAS NO. COMPOUND	CONCENTRATION (ug/L or ug/I		Q
75-27-4Bromodichloromethane 75-25-2Bromoform 74-83-9Bromomethane 56-23-5Carbon Tetrachloride 108-90-7Chlorobenzene 5-00-3Chloroethane 110-75-82-Chloroethylvinyl 67-66-3Chloromethane 124-48-1Chloromethane 124-48-1I, 2-Dichlorobenzene 541-73-1I, 3-Dichlorobenzene 106-46-7I, 4-Dichlorobenzene 107-06-2I, 2-Dichloroethane 107-06-2I, 2-Dichloroethane 107-06-2I, 2-Dichloroethane 107-06-2I, 2-Dichloroethane 107-06-2	e	$\begin{array}{c} 0.20\\ 1.0\\ 1.0\\ 0.20\\ 0.40\\ 1.0\\ 1.0\\ 0.20\\ 1.0\\ 0.20\\ 0.40\\ 0.40\\ 0.40\\ 0.40\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0.0\\ 0.0\\ 0.$	

C0015(

Client No.

1.0

0.20

0.40

0.40

0.40

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.94

0.20

0.20

0.20

0.20

0.20

1.0

1.0

U

U

U

U

U

Ū

U

U

U

U

U

U

В

U

U

U

U

U

U

υV

	2-TB1-1
Lab Name: <u>Recra LabNet</u> Co	ontract:
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A6374518</u>
Sample wt/vol:5.00 (g/mL) M	Lab File ID: <u>3B02290.TX0</u>
Level: (low/med) Low	Date Samp/Recv: <u>08/07/96</u> <u>08/07/9€</u>
% Moisture: not dec.	Date Analyzed: 08/14/96
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mr	n) Dilution Factor: <u>1.00</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L Q</u>
75-27-4Bromodichloromethane_ 75-25-2Bromoform_ 74-83-9Bromomethane_ 56-23-5Carbon Tetrachloride_ 108-90-7Chlorobenzene_ 5-00-3Chloroethane_ 110-75-82-Chloroethylvinyl et 67-66-3Chloroform	1.0 U 1.0 U 0.20 U 0.40 U 1.0 U

74-87-3----Chloromethane

124-48-1----Dibromochloromethane

95-50-1----1,2-Dichlorobenzene

541-73-1----1,3-Dichlorobenzene

106-46-7----1,4-Dichlorobenzene_

75-34-3----1,1-Dichloroethane

107-06-2----1,2-Dichloroethane

75-35-4----1,1-Dichloroethene

78-87-5----1,2-Dichloropropane

75-09-2-----Methylene chloride

127-18-4----Tetrachloroethene

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride

156-60-5----trans-1,2-Dichloroethene

10061-01-5----cis-1,3-Dichloropropene

71-55-6----1,1,1.1-Trichloroethane

79-00-5-----1,1,2-Trichloroethane

75-69-4----Trichlorofluoromethane

10061-02-6----trans-1, 3-Dichloropropene_

79-34-5-----1,1,2,2-Tetrachloroethane

Client No.

Q

.

· • •

000069

			-GW-1
Lab Name: <u>Recra LabNet</u>	Contract: _		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG	No.:
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	<u>A6374501</u>
Sample wt/vol:5.00 (g/mL)	ML	Lab File ID:	<u>3B02291.TX0</u>
Level: (low/med) Low		Date Samp/Recv	: <u>08/07/96</u> <u>08/07/9</u> 6
<pre>% Moisture: not dec</pre>		Date Analyzed:	08/14/96
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u>	(mm)	Dilution Factor	r: <u>500.00</u>
Soil Extract Volume:(uL)		Soil Aliquot V	olume:(uL)

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

		5, 5,		
	75-27-4Bromodichloromethane		100	U
	75-25-2Bromoform		500	U
	74-83-9Bromomethane		500	U
	56-23-5Carbon Tetrachloride		100	U
_	108-90-7Chlorobenzene		200	U
	5-00-3Chloroethane		500	ש
1	110-75-82-Chloroethylvinyl ether		500	U
	67-66-3Chloroform		100	U
	74-87-3Chloromethane		400	U
	124-48-1Dibromochloromethane		100	. U
	95-50-11,2-Dichlorobenzene		200	U
	541-73-11,3-Dichlorobenzene		200	U
	106-46-71,4-Dichlorobenzene	· · · ·	200	U
	75-34-31,1-Dichloroethane		100	U
	107-06-21,2-Dichloroethane		100	U
	75-35-41,1-Dichloroethene		100	U
	156-60-5trans-1,2-Dichloroethene		100	U
	78-87-51,2-Dichloropropane		100	U
	10061-01-5cis-1,3-Dichloropropene		100	U
	10061-02-6trans-1,3-Dichloropropene	·····	100	U
	75-09-2Methylene chloride		1500	в
	79-34-51,1,2,2-Tetrachloroethane		100	U
	127-18-4Tetrachloroethene		100	U
	71-55-61,1,1-Trichloroethane		100	U
	79-00-51,1,2-Trichloroethane	······	100	U
	79-01-6Trichloroethene		520	
	75-69-4Trichlorofluoromethane		500	lυ
	75-01-4Vinyl chloride		2600	

المحاصفين الرحمينية الرابية فتعاريهم التنافيني فراجي المناسب والروا

. .

C00074

Client No

U

В

U

U

U

U

Ε

U

U

40

40

40

40

40

8400

200

200

170

		Ŭ-	
		W-1D	·
Lab Name: <u>Recra LabNet</u> Contract:		<u> </u>	
Lab Code: <u>RECNY</u> Case No.: SAS No	.: SDG N	o.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374511</u>	<u> </u>
Sample wt/vol:5.00 (g/mL) ML	Lab File ID:	<u>3B02283.T</u>	<u>xo</u>
Level: (low/med) <u>Low</u>	Date Samp/Recv:	<u>08/07/96</u>	08/07/9
<pre>% Moisture: not dec</pre>	Date Analyzed:	<u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor:	_200.00	
Soil Extract Volume:(uL)	Soil Aliquot Vol	.ume:	(uL)
	CONCENTRATION UNIT (ug/L or ug/Kg)		Q
124-48-1Dibromochloromethane 95-50-11,2-Dichlorobenzene 541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene 75-34-31,1-Dichloroethane 107-06-21,2-Dichloroethane 75-35-4		40 200 200 40 80 200 200 40 160 40 80 80 80 80 40 40 40 40	ממממממממממ
10061-01-5cis-1,3-Dichloropropene		40	υ

10061-02-6----trans-1,3-Dichloropropene

79-34-5----1,1,2,2-Tetrachloroethane

75-09-2-----Methylene chloride_

127-18-4----Tetrachloroethene

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride

71-55-6----1,1,1-Trichloroethane

79-00-5-----1,1,2-Trichloroethane

75-69-4----Trichlorofluorométhane

ΪL.

CClient No

			2-GW	-1D DL	
Lab Name: <u>Recra LabNet</u>	Contract: _				
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SI	G No	.:	
Matrix: (soil/water) <u>WATER</u>		Lab Sample II):	<u>A6374511DI</u>	4
Sample wt/vol:5.00 (g/mL)	ML	Lab File ID:		<u>3B02296.T2</u>	<u> </u>
Level: (low/med) Low		Date Samp/Rec	cv:	<u>08/07/96</u> (<u>)8/07/9</u>
<pre>% Moisture: not dec</pre>		Date Analyzed	1:	<u>08/15/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> ((mm)	Dilution Fact	cor:	500.00	
Soil Extract Volume:(uL)		Soil Aliquot	Volu	me:	(uL)

CONCENTRATION UNITS:

	CAS NO.	COMPOUND	(ug/L or ug/K	g) <u>UG/L</u>	Q
		-Bromodichloromethane		100	<u>บ</u>
	75-25-2			500	U
		-Bromomethane		500	U
•		-Carbon Tetrachloride		100	U .
;,,,,,		-Chlorobenzene		200	U
		-Chloroethane		500	U
		-2-Chloroethylvinyl ether		500	U
	67-66-3			100	U
		-Chloromethane		400	U
		-Dibromochloromethane		100	U
	95-50-1	-1,2-Dichlorobenzene		200	U
	541-73-1	-1,3-Dichlorobenzene		200	U
		-1,4-Dichlorobenzene		200	U
		-1,1-Dichloroethane		100	U .
	107-06-2	-1,2-Dichloroethane		100	U
	75-35-4	-1,1-Dichloroethene		100	U
	156-60-5	-trans-1,2-Dichloroethene		100	U
	78-87-5	-1,2-Dichloropropane		100	U
	10061-01-5	-cis-1,3-Dichloropropene		100	U
	10061-02-6	-trans-1,3-Dichloropropene		100	U
		-Methylene chloride		4000	BD
	79-34-5	-1,1,2,2-Tetrachloroethane		100	ប
		-Tetrachloroethene		100	U
		-1,1,1-Trichloroethane		100	U
		-1,1,2-Trichloroethane		100	U
	79-01-6	-Trichloroethene		9900	D
	75-69-4	-Trichlorofluoromethane		500	υ
	75-01-4	-Vinyl chloride		500	U
	L				

000082

Client No

U

U

U

U

0.20

0.20

1.0

1.0

	CT161	
	2-GW-1DD	
Lab Name: <u>Recra LabNet</u> Co	ontract:	
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A6374512</u>	
Sample wt/vol:5.00 (g/mL) MI	Lab File ID: <u>3B02276.TX0</u>	
Level: (low/med) Low	Date Samp/Recv: <u>08/07/96</u> 08/	<u>/07/9</u> ,
% Moisture: not dec.	Date Analyzed: 08/14/96	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm	m) Dilution Factor: <u>1.00</u>	
Soil Extract Volume:(uL)	Soil Aliquot Volume:	_(uL)
	CONCENTRATION UNITS:	
CAS NO. COMPOUND	(ug/L or ug/Kg) <u>UG/L</u>	Q
75-27-4Bromodichloromethane	0.20 t	J
75-25-2Bromoform	1.0	U
74-83-9Bromomethane	1.0 [t	U
56-23-5Carbon Tetrachloride		U
	0.40	U
5-00-3Chloroethane		U
110-75-82-Chloroethylvinyl eth	her1.0 [t	U
167-66-3Chloroform		U
1/4-8/-3***-Chioromernane		U ·
124-48-1Dibromochioromethane		U
195-50-11,2-Dichlorobenzene		U
541-73-11,3-Dichlorobenzene	0.40	U
106-46-71,4-Dichlorobenzene	0.40	U
75-34-31,1-Dichloroethane	0.20	U
107-06-21,2-Dichloroethane	0.20	U
75-35-41,1-Dichloroethene		ប
156-60-5trans-1,2-Dichloroethe 78-87-51,2-Dichloropropane		บ บ
10061-01-5cis-1,3-Dichloroproper		U U
10061-02-6trans-1,3-Dichloroproper		U U
75-09-2Methylene chloride		U (
79-34-51,1,2,2-Tetrachloroet		U
127-18-4Tetrachloroethene		บ
71-55-61.1.1-Trichloroethane		11

79-00-5-----1,1,2-Trichloroethane

75-69-4----Trichlorofluoromethane

÷

79-01-6----Trichloroethene

75-01-4----Vinyl chloride_

C00087

Client No

U

U

U

U

в

U

U

U

U

U

10

10

10

10

10

10

10

10

50

98

1000

160

				CITEIIC NO
			2-GW-2	
Lab Name: <u>Recra LabNet</u>	Contract:			. <u></u>
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SI	G No.:	
Matrix: (soil/water) <u>WATER</u>	:	Lab Sample II	D: <u>A637450</u>	2
Sample wt/vol: <u>5.00</u> (g/mL)	ML	Lab File ID:	<u>3B02292</u>	<u>. TX0</u>
Level: (low/med) Low	:	Date Samp/Red	ev: <u>08/07/9</u>	<u>6 08/07/9</u>
<pre>% Moisture: not dec</pre>	:	Date Analyzed	1: <u>08/14/9</u>	<u>6</u>
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u>	(mm)	Dilution Fact	cor: <u>50.0</u>	<u>o</u>
Soil Extract Volume:(uL)		Soil Aliquot	Volume:	(uL)
CAS NO. COMPOUND		NCENTRATION U ug/L or ug/Kg		Q
75-27-4Bromodichloromethan 75-25-2Bromoform 74-83-9Bromomethane 56-23-5Carbon Tetrachlorid 08-90-7Chlorobenzene 75-00-3Chloroethane 110-75-82-Chloroethylvinyl 67-66-3Chloromethane 124-48-1Chloromethane 124-48-1Dibromochloromethan 95-50-11, 2-Dichlorobenzene 106-46-71, 4-Dichlorobenzene 107-06-21, 2-Dichloroethane 107-06-21, 2-Dichloroethane 107-06-21, 2-Dichloroethane	e e		10 50 50 10 20 50 50 10 40 10 20 20 20 20 10 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

156-60-5----trans-1,2-Dichloroethene

10061-02-6----trans-1,3-Dichloropropene

79-34-5----1,1,2,2-Tetrachloroethane

10061-01-5---cis-1,3-Dichloropropene

78-87-5----1,2-Dichloropropane

75-09-2----Methylene chloride

127-18-4----Tetrachloroethene

79-01-6----Trichloroethene

75-01-4----Vinyl chloride

71-55-6-----1,1,1-Trichloroethane

79-00-5-----1,1,2-Trichloroethane_

75-69-4----Trichlorofluoromethane

C00092

. 🟉

Client No.

	2-GW-2D
Lab Name: <u>Recra_LabNet</u> Contract	
Lab Code: <u>RECNY</u> Case No.: SAS N	0.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A6374513</u>
Sample wt/vol:5.00 (g/mL) ML	Lab File ID: <u>3B02282.TX0</u>
Level: (low/med) Low	Date Samp/Recv: 08/07/96 08/07/96
<pre>% Moisture: not dec</pre>	Date Analyzed: <u>08/14/96</u>
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor: <u>4.00</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
75-27-4Bromodichloromethane 75-25-2Bromoform	0.80 U 4.0 U

75-25-2Bromoform	4.0	U
74-83-9Bromomethane	4.0	U
56-23-5Carbon Tetrachloride	0.80	U
08-90-7Chlorobenzene	1.6	U
5-00-3Chloroethane	4.0	U
110-75-82-Chloroethylvinyl ether	4.0	U
67-66-3Chloroform	0.80	ប
74-87-3Chloromethane	3.2	U
124-48-1Dibromochloromethane	0.80	U
95-50-11,2-Dichlorobenzene	1.6	U
541-73-11,3-Dichlorobenzene	1.6	U
106-46-71,4-Dichlorobenzene	1.6	U
75-34-31,1-Dichloroethane	2.4	
107-06-21,2-Dichloroethane	0.80	U
75-35-41,1-Dichloroethene	0.80	U
156-60-5trans-1,2-Dichloroethene	1.0	· .
78-87-51,2-Dichloropropane	0.80	U
10061-01-5cis-1,3-Dichloropropene	0.80	U
10061-02-6trans-1,3-Dichloropropene	0.80	U
75-09-2Methylene chloride	4.1	В
79-34-51,1,2,2-Tetrachloroethane	0.80	U
127-18-4Tetrachloroethene	0.80	U
71-55-61,1,1-Trichloroethane	3.9	
79-00-51,1,2-Trichloroethane	0.80	U
79-01-6Trichloroethene	13	
75-69-4Trichlorofluoromethane	4.0	U
75-01-4Vinyl chloride	4.0	U
	·····	<u> </u>

C00097

Client No.

-

			
		W-3	
Lab Name: <u>Recra LabNet</u> Contract:			
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG N	0.:	
Matrix: (soil/water) <u>WATER</u> Lab	Sample ID:	<u>A6374503</u>	-
Sample wt/vol:5.00 (g/mL) ML Lab	o File ID:	<u>3B02293.T</u>	<u>xo</u>
Level: (low/med) Low Dat	ce Samp/Recv:	<u>08/07/96</u>	08/07/9
<pre>% Moisture: not dec Dat</pre>	e Analyzed:	08/14/96	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dil	lution Factor:	25000.00	
Soil Extract Volume:(uL) Soi	il Aliquot Vol	ume:	(uL)
CONCE	ENTRATION UNIT	S:	
	/L or ug/Kg)		Q
75-27-4Bromodichloromethane 75-25-2Bromoform 74-83-9Bromomethane 56-23-5Carbon Tetrachloride 108-90-7Chlorobenzene 75-00-3Chloroethane 110-75-82-Chloroethylvinyl ether 67-66-3Chloroethylvinyl ether 74-87-3Chloroethylvinyl ether 74-87-3Chloroethylvinyl ether 75-06-3Chloroethylvinyl ether 74-87-3Chloroethylvinyl ether 75-66-3		5000 25000 5000 25000 25000 25000 20000 5000 10000 10000 10000 5000 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
79-34-51,1,2,2-Tetrachloroethane127-18-4Tetrachloroethene71-55-61,1,1-Trichloroethane79-00-51,1,2-Trichloroethane79-01-6Trichloroethene75-69-4Trichlorofluoromethane75-01-4Vinyl chloride	e	5000 5000 5000 5000 560000 25000 25000	U U U E U U U

COOLOZ Client No.

	2-GW-3 DL
Lab Name: <u>Recra LabNet</u> Contra	act:
Lab Code: <u>RECNY</u> Case No.: SAS	S No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A6374503DL</u>
Sample wt/vol: 0.50 (g/mL) ML	Lab File ID: <u>3B02303.TX0</u>
Level: (low/med) Low	Date Samp/Recv: 08/07/96 08/07/9
% Moisture: not dec	Date Analyzed: 08/15/96
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor: <u>10000.00</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L Q</u>
75-27-4Bromodichloromethane 75-25-2Bromoform 74-83-9Bromomethane	100000 U 100000 U

		0
74-83-9Bromomethane	100000	U
56-23-5Carbon Tetrachloride	20000	U
108-90-7Chlorobenzene	40000	U
5-00-3Chloroethane	100000	[Ū
110-75-82-Chloroethylvinyl ether	100000	U
67-66-3Chloroform	20000	U
74-87-3Chloromethane	80000	U
124-48-1Dibromochloromethane	20000	U
95-50-11,2-Dichlorobenzene	40000	U
541-73-11,3-Dichlorobenzene	40000	U
106-46-71,4-Dichlorobenzene	40000	U
75-34-31,1-Dichloroethane	20000	U
107-06-21,2-Dichloroethane	20000	U.
75-35-41,1-Dichloroethene	20000	U
156-60-5trans-1,2-Dichloroethene	20000	U
78-87-51,2-Dichloropropane	20000	U
10061-01-5cis-1,3-Dichloropropene	20000	U
10061-02-6trans-1,3-Dichloropropene	20000	U
75-09-2Methylene chloride	77000	BD
79-34-51,1,2,2-Tetrachloroethane	20000	U
127-18-4Tetrachloroethene	20000	U
71-55-61,1,1-Trichloroethane	20000	U
79-00-51,1,2-Trichloroethane	20000	U
79-01-6Trichloroethene	550000	D
75-69-4Trichlorofluoromethane	100000	U
75-01-4Vinyl chloride	100000	U

FORM I - GC VOA

Client No

000107

			2-G		
Lab Name: <u>Recra LabNet</u>	Contract:				
Lab Code: <u>RECNY</u> Case No.:	SAS NO	.:	SDG No	o.:	_
Matrix: (soil/water) <u>WATER</u>		Lab Sample	ID:	<u>A6374514</u>	
Sample wt/vol:5.00 (g/mL)	ML	Lab File ID	•	<u>3B02281.7</u>	<u></u>
Level: (low/med) Low		Date Samp/R	ecv:	<u>08/07/96</u>	<u>08/07/9</u>
<pre>% Moisture: not dec</pre>		Date Analyz	ed:	08/14/96	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u>	(mm)	Dilution Fa	ctor:	25.00	
Soil Extract Volume:(uL)		Soil Aliquo	t Vol	ume:	(uL)
CAS NO. COMPOUND		CONCENTRATION (ug/L or ug/			Q
75-27-4Bromodichloromethan 75-25-2Bromoform 74-83-9Bromomethane 56-23-5Carbon Tetrachlorid 108-90-7Chlorobenzene 75-00-3Chloroethylvinyl 67-66-3Chloroethylvinyl 67-66-3Chloroethylvinyl 67-66-3Chloroethylvinyl 67-66-3Chloroethylvinyl 67-66-3Chloroethylvinyl 67-66-3Chloroethylvinyl 67-66-3	ether			5.0 25 5.0 10 25 25 5.0 20 5.0 10 10 10 5.0 5	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

•

.

1

• •

C00**110**

Client No

		2-GW-3D DL
Lab Name: <u>Recra LabNet</u>	Contract:	<u></u>
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SI	OG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample II	D: <u>A6374514DL</u>
Sample wt/vol:5.00 (g/mL)	ML Lab File ID:	3B02297.TX0
Level: (low/med) Low	Date Samp/Red	cv: <u>08/07/96</u> <u>08/07/9</u>
% Moisture: not dec.	Date Analyzed	1: <u>08/15/96</u>
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dilution Fact	cor: <u>50.00</u>
Soil Extract Volume:(uL)	Soil Aliquot	Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION ((ug/L or ug/K	JNITS: g) <u>UG/L</u> Q

	CAD NO.				×
		Bromodichloromethane		10	υ
	75-25-2			50	U
	74-83-9	Bromomethane		50	U
-		Carbon Tetrachloride		10	U
		Chlorobenzene		20	U
	75-00-3	Chloroethane		50	U
	110-75-8	2-Chloroethylvinyl ether		50	U
	67-66-3	-Chloroform	4	10	U
	74-87-3	-Chloromethane	· · · ·	40	U
	124-48-1	-Dibromochloromethane		10	U
	95-50-1	-1,2-Dichlorobenzene		20	U
	541-73-1	-1,3-Dichlorobenzene		20	U
•	106-46-7	-1,4-Dichlorobenzene		20	U
	75-34-3	-1,1-Dichloroethane		10	U
	107-06-2	-1,2-Dichloroethane		10	U
	75-35-4	-1,1-Dichloroethene	· ·	10	U
	156-60-5	-trans-1,2-Dichloroethene		10	U
	78-87-5	-1,2-Dichloropropane		10	U
	10061-01-5	-cis-1,3-Dichloropropene	· · · · · · · · · · · · · · · · · · ·	10	U
	10061-02-6	-trans-1,3-Dichloropropene		10	U
	75-09-2	-Methylene chloride		450	BD
		-1,1,2,2-Tetrachloroethane		10	U
	127-18-4	-Tetrachloroethene		10	U
	71-55-6	-1,1,1-Trichloroethane		10	U
	79-00-5	-1,1,2-Trichloroethane		10	U
	79-01-6	-Trichloroethene		850	D
	75-69-4	-Trichlorofluoromethane		50	U
		-Vinyl chloride	·····	50	U

C00115

-

Client No.

Lab Name: <u>Recra LabNet</u> Contract:	2-GW-4
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u> Lab	Sample ID: <u>A6374504</u>
Sample wt/vol: <u>5.00</u> (g/mL) ML Lab	File ID: <u>3B02274.TX0</u>
Level: (low/med) Low Date	e Samp/Recv: <u>08/07/96</u> <u>08/07/9</u>
<pre>% Moisture: not dec Date</pre>	Analyzed: <u>08/14/96</u>
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dilu	tion Factor: <u>5.00</u>
Soil Extract Volume:(uL) Soil	Aliquot Volume:(uL)
	TRATION UNITS: Lorug/Kg) <u>UG/L</u> Q
75-27-4Bromodichloromethane 75-25-2Bromomethane 74-83-9Bromomethane 56-23-5Carbon Tetrachloride 108-90-7Chlorobenzene 5-00-3Chloroethylvinyl ether 110-75-82-Chloroethylvinyl ether 67-66-3Chloromethane 124-48-1Dibromochloromethane 95-50-11,2-Dichlorobenzene 541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene 75-34-31,1-Dichloroethane 107-06-21,2-Dichloroethane 107-06-21,2-Dichloroethane 106-60-5	5.0 U 5.0 U 1.0 U 2.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 1.0 U 1.0 U 1.0 U 2.0 U 2.0 U 2.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U

.

المراجع المراجع والمراجع المراجع المراجع والمراجع و

Gfent No

-

2-6	
SDG N	0.:
Lab Sample ID:	<u>A6374515</u>
Lab File ID:	<u>3B02286.TX0</u>
Date Samp/Recv:	<u>08/07/96</u>
Date Analyzed:	08/14/96
Dilution Factor:	2.00
Soil Aliquot Vol	ume:(uL)
NCENTRATION UNIT	
	$\begin{array}{ccccccc} 0.40 & U \\ 2.0 & U \\ 2.0 & U \\ 0.40 & U \\ 0.80 & U \\ 2.0 & U \\ 2.0 & U \\ 2.0 & U \\ 1.6 & U \\ 0.40 & U \\ 1.6 & U \\ 0.40 & U \end{array}$
	SDG N Lab Sample ID: Lab File ID: Date Samp/Recv: Date Analyzed: Dilution Factor: Soil Aliquot Vol NCENTRATION UNIT ug/L or ug/Kg)

		10
67-66-3Chloroform	0.40	U
74-87-3Chloromethane	1.6	U
124-48-1Dibromochloromethane	0.40	U
95-50-11,2-Dichlorobenzene	0.80	U
541-73-11, 3-Dichlorobenzene	0.80	U
106-46-71, 4-Dichlorobenzene	0.80	U
75-34-31,1-Dichloroethane	0.64	
107-06-21,2-Dichloroethane	0.40	U
75-35-41,1-Dichloroethene	0.40	Ū
156-60-5trans-1,2-Dichloroethene	0.40	Ū
78-87-51,2-Dichloropropane	0.40	Ū
10061-01-5cis-1,3-Dichloropropene	0.40	Ū
10061-02-6trans-1,3-Dichloropropene	0.40	Ū
75-09-2Methylene chloride	1.5	В
79-34-51,1,2,2-Tetrachloroethane	0.40	Ū
127-18-4Tetrachloroethene	0.40	Ū
71-55-61,1,1,1-Trichloroethane	2.5	
79-00-51,1,2-Trichloroethane	0.40	U
79-01-6Trichloroethene	29	ľ
75-69-4Trichlorofluoromethane	2.0	U
75-01-4Vinyl chloride	2.0	U

.

.

--

.

- ,

Client No

c⁰⁰¹²⁵

.

	2-GW-5	
Lab Name: <u>Recra_LabNet</u> Co	ontract:	
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A6374505</u>	
Sample wt/vol:5.00 (g/mL) ML	Lab File ID: <u>3B02275.TX0</u>	•
Level: (low/med) Low	Date Samp/Recv: 08/07/96 08/07	<u>/9</u>
% Moisture: not dec	Date Analyzed: 08/14/96	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm	Dilution Factor: <u>1.00</u>	•
Soil Extract Volume:(uL)	Soil Aliquot Volume:(u	L)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q	!
75-27-4Bromodichloromethane 75-25-2Bromoform	0.20 U 1.0 U	

	0.2		0
75-25-2Bromoform	1.0) (U
74-83-9Bromomethane	1.0	0	U
 56-23-5Carbon Tetrachloride	0.2	20	U
108-90-7Chlorobenzene	0.4	40	U
75-00-3Chloroethane	1.	0	U
110-75-82-Chloroethylvinyl ether	1.	0	U
67-66-3Chloroform	0.3	20	U
74-87-3Chloromethane	1.	0	U
124-48-1Dibromochloromethane	0.3	20	U
95-50-11,2-Dichlorobenzene	0.4	40	U
541-73-11,3-Dichlorobenzene	0.	40	U
106-46-71,4-Dichlorobenzene	0.	40	U
75-34-31,1-Dichloroethane	1.	7	
107-06-21,2-Dichloroethane	0.3	20	U
75-35-41,1-Dichloroethene	0.1	20	U
156-60-5trans-1,2-Dichloroethene	0.	20	U
78-87-51,2-Dichloropropane	0.	20	U
10061-01-5cis-1,3-Dichloropropene	0.	20	U
10061-02-6trans-1,3-Dichloropropene	0.	20	U
75-09-2Methylene chloride	0.	20	U
79-34-51,1,2,2-Tetrachloroethane	0.	20	U
127-18-4Tetrachloroethene	0.	20	U
71-55-61,1,1-Trichloroethane	0.	20	U
79-00-51,1,2-Trichloroethane	0.	20	U
79-01-6Trichloroethene	0.	20	U
75-69-4Trichlorofluoromethane	1.	0	U
75-01-4Vinyl chloride	1.	0	υ
	·····		

• •

1 4

÷ .

- -

÷

00013

		C1	ient No.
	2 - G	W-5D	
Lab Name: <u>Recra LabNet</u> Contract:			لـــــــــــــــــــــــــــــــــــــ
Lab Code: <u>RECNY</u> Case No.: SAS No.	: SDG N	0.: 🔔	-
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374516</u>	
Sample wt/vol:5.00 (g/mL) ML	Lab File ID:	<u>3B02287.7</u>	<u> </u>
Level: (low/med) Low	Date Samp/Recv:	<u>08/07/96</u>	08/07/9
% Moisture: not dec	Date Analyzed:	<u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume:(uL)	Soil Aliquot Vol	ume:	(uL)
	CONCENTRATION UNIT (ug/L or ug/Kg)		Q
75-27-4Bromodichloromethane 75-25-2Bromoform 74-83-9Bromomethane 56-23-5Carbon Tetrachloride 108-90-7Chlorobenzene 5-00-3Chloroethane 110-75-82-Chloroethylvinyl ether 67-66-3Chloroethylvinyl ether 74-87-3Chloroethylvinyl ether 74-87-3Chloroethylvinyl ether 74-87-3Chloroethane 124-48-1Dibromochloromethane 95-50-11, 2-Dichlorobenzene 541-73-11, 3-Dichlorobenzene 106-46-71, 4-Dichlorobenzene 106-46-71, 1-Dichloroethane 107-06-21, 2-Dichloroethane 107-06-21, 2-Dichloroethane 1061-01-5		0.20 1.0 1.0 0.20 0.40 1.0 0.20 0.20 0.40 0.40 0.40 0.40 0.40 0.40 0.20 0.44 1.0	U U U U U U U U U U U U U U U U U U U

- . . . - . .

. .

-

000135

		Client No.
		W-6
Lab Name: <u>Recra LabNet</u> Contrac	t: L	
Lab Code: <u>RECNY</u> Case No.: SAS	No.: SDG N	lo.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374506</u>
Sample wt/vol:5.00 (g/mL) ML	Lab File ID:	<u>3B02277.TX0</u>
Level: (low/med) Low	Date Samp/Recv:	<u>08/07/96</u> 08/07/94
<pre>% Moisture: not dec</pre>	Date Analyzed:	08/14/96
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor:	1.00
Soil Extract Volume:(uL)	Soil Aliquot Vol	.ume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)	
75-27-4Bromodichloromethane 75-25-2Bromoform 74-83-9Bromomethane 56-23-5Carbon Tetrachloride 108-90-7Chlorobenzene 5-00-3Chloroethane 110-75-82-Chloroethylvinyl ether 67-66-3Chloroform 74-87-3Chloroethylvinyl ether 67-66-3Chloroethylvinyl ether 67-66-3Chloroethylvinyl ether 67-66-3		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

75-69-4-----Trichlorofluoromethane_____ 75-01-4-----Vinyl chloride______

.

1.0 2.2

U

000140

Client Nc

-

		2-G1	₩-6D	
Lab Name: <u>Recra LabNet</u> Cor	itract:			
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG NO	o.:	-
Matrix: (soil/water) <u>WATER</u>	Lab Sa	ample ID:	<u>A6374517</u>	
Sample wt/vol:5.00 (g/mL) ML	Lab Fi	lle ID:	<u>3802288.1</u>	<u></u>
Level: (low/med) Low	Date S	Samp/Recv:	<u>08/07/96</u>	<u>08/07/</u>
<pre>% Moisture: not dec</pre>	Date A	Analyzed:	<u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)) Diluti	ion Factor:	50.00	
Soil Extract Volume:(uL)	Soil Z	Aliquot Vol	ume:	(uL)
CAS NO. COMPOUND		RATION UNIT		Q
75-27-4Bromodichloromethane 75-25-2Bromoform 74-83-9Bromomethane			10 50 50	U U U

74-83-9Bromomethane	50	U
56-23-5Carbon Tetrachloride	10	U
108-90-7Chlorobenzene	20	U
75-00-3Chloroethane	50	U
110-75-82-Chloroethylvinyl ether	50	U
67-66-3Chloroform	10	U
74-87-3Chloromethane	40	U
124-48-1Dibromochloromethane	10	U
95-50-11,2-Dichlorobenzene	20	U
541-73-11, 3-Dichlorobenzene	20	U
106-46-71,4-Dichlorobenzene	20	U
75-34-31,1-Dichloroethane	10	U
107-06-21,2-Dichloroethane	10	U
75-35-41,1-Dichloroethene	10	U
156-60-5trans-1,2-Dichloroethene	10	U
78-87-51,2-Dichloropropane	10	U
10061-01-5cis-1,3-Dichloropropene	10	U
10061-02-6trans-1,3-Dichloropropene	10	U
75-09-2Methylene chloride	91	в
79-34-51,1,2,2-Tetrachloroethane	10	U
127-18-4Tetrachloroethene	10	U
71-55-61,1,1-Trichloroethane	10	U
79-00-51,1,2-Trichloroethane	10	Ū
79-01-6Trichloroethene	1100	E
75-69-4Trichlorofluoromethane	50	Ū
75-01-4Vinyl chloride	50	U

. .

•

.

Client No

000143

			Tent NO
		2-GW-6D DL	
Lab Name: <u>Recra LabNet</u> Contract:		· · · · · · · · · · · · · · · · · · ·	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SI	OG No.:	
Matrix: (soil/water) <u>WATER</u> La	b Sample II	D: <u>A6374517D</u>	L
Sample wt/vol: <u>5.00</u> (g/mL) ML La	b File ID:	<u>3B02304.T</u>	<u>xo</u>
Level: (low/med) Low Da	te Samp/Red	ev: <u>08/07/96</u>	08/07/9
<pre>% Moisture: not dec Da</pre>	te Analyzeo.	1: <u>08/15/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Di	lution Fact	tor: <u>100.00</u>	
Soil Extract Volume:(uL) So	il Aliquot	Volume:	(uL)
	CENTRATION	UNITS: g) <u>UG/L</u>	Q
CAS NO. COMPOUND (Ug		y) <u>00711</u>	
56-23-5Carbon Tetrachloride		20 100 20 40 100 20 20 20 40 40 40 40 40 20 20 20 20 20 20 20 20 20 20 20 20 20	n na na na na na na na n D n
71-55-61,1,1-Trichloroethane 79-00-51,1,2-Trichloroethane 79-01-6Trichloroethene		20 20	บ บ
75-69-4Trichlorofluoromethane		1400 100	D טי
75-01-4Vinyl chloride		100	Ū

000148 Client Nc

-

			2-GW	- 7	
Lab Name: <u>Recra LabNet</u>	Contract:	· · · · · · · · · · · · · · · · · · ·			
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	S	DG No	.:	-
Matrix: (soil/water) <u>WATER</u>	Lal	b Sample I	D: /	A6374507	
Sample wt/vol: <u>5.00</u> (g/mL)	ML La	b File ID:	4	3B02278.1	<u></u>
Level: (low/med) Low	Da	te Samp/Re	cv:	08/07/96	<u>08/07/5</u>
<pre>% Moisture: not dec</pre>	Da	te Analyze	d: .	08/14/96	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u>	(mm) Di	lution Fac	tor:	200.00	
Soil Extract Volume:(uL)	So	il Aliquot	Volu	me:	(uL)
CAS NO. COMPOUND		ENTRATION /L or ug/K			Q
75-27-4Bromodichloromethane 75-25-2Bromoform 74-83-9Bromomethane 56-23-5Carbon Tetrachloride 108-90-7Chlorobenzene 75-00-3Chloroethane	9			40 200 200 40 80 200	บ บ บ บ บ บ

108-90-7Chlorobenzene	80	U
75-00-3Chloroethane	200	U
110-75-82-Chloroethylvinyl ether	200	U
67-66-3Chloroform	40	U
74-87-3Chloromethane	160	U
124-48-1Dibromochloromethane	40	U
95-50-11,2-Dichlorobenzene	80	U
541-73-11,3-Dichlorobenzene	80	U
106-46-71,4-Dichlorobenzene	80	ប
75-34-31,1-Dichloroethane	40	U
107-06-21,2-Dichloroethane	40	U
75-35-41,1-Dichloroethene	40	U
156-60-5trans-1,2-Dichloroethene	72	
78-87-51,2-Dichloropropane	40	U
10061-01-5cis-1,3-Dichloropropene	40	ע
10061-02-6trans-1,3-Dichloropropene	40	U
75-09-2Methylene chloride	130	в
79-34-51,1,2,2-Tetrachloroethane	40	U
127-18-4Tetrachloroethene	40	U
71-55-61,1,1-Trichloroethane	40	ប
79-00-51,1,2-Trichloroethane	40	υ
79-01-6Trichloroethene	420	
75-69-4Trichlorofluoromethane	200	U
75-01-4Vinyl chloride	2200	

4:

00015

0.20

0.20

0.20

1.0

1.0

U

U

U

U

U

			C	Client No.
		,	2-TB-2	
Lab Name: <u>Recra LabNet</u>	Contract: _	<u> </u>		
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	s Si	DG No.:	_
Matrix: (soil/water) <u>WATER</u>		Lab Sample I	D: <u>A6374508</u>	3
Sample wt/vol:5.00 (g/mL)	ML	Lab File ID:	<u>3B02289</u>	.TX0
Level: (low/med) Low		Date Samp/Re	cv: <u>08/07/9</u> 6	<u>6 08/07/9</u>
<pre>% Moisture: not dec</pre>		Date Analyze	d: <u>08/14/9</u>	5
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u>	(mm)	Dilution Fac	tor: <u>1.00</u>	<u>0</u>
Soil Extract Volume:(uL)		Soil Aliquot	Volume:	(uL)
CAS NO. COMPOUND		ONCENTRATION (ug/L or ug/K		Q
75-27-4Bromodichloromethan 75-25-2Bromoform 74-83-9Bromomethane 56-23-5Carbon Tetrachlorid 108-90-7Chlorobenzene 5-00-3Chloroethane 110-75-8Chloroethylvinyl 67-66-3Chloromethane 124-48-1Chloromethane 124-48-1Chloromethane 124-48-1Dibromochloromethan 95-50-11,2-Dichlorobenzen 541-73-11,3-Dichlorobenzen 106-46-71,4-Dichlorobenzen 107-06-21,2-Dichloroethane 107-06-21,2-Dichloroethane 107-06-21,2-Dichloroethane 106-60-5	de		0.20 1.0 1.0 0.20 0.40 1.0 0.20 0.20 0.40 0.40 0.40 0.20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

71-55-6-----1,1,1-Trichloroethane

79-00-5-----1,1,2-Trichloroethane

75-69-4-----Trichlorofluoromethane

79-01-6----Trichloroethene

75-01-4-----Vinyl chloride

.

00015

Client No.

		01	Tent NO.
	1	2-TB1-1	
Lab Name: <u>Recra LabNet</u> Contract: _		L	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	: SI	OG No.:	-
Matrix: (soil/water) <u>WATER</u>	Lab Sample II	D: <u>A6374518</u>	
Sample wt/vol:5.00 (g/mL) ML	Lab File ID:	<u>3B02290.1</u>	<u></u>
Level: (low/med) <u>Low</u>	Date Samp/Red	ev: <u>08/07/96</u>	08/07/9
<pre>% Moisture: not dec</pre>	Date Analyzed	1: <u>08/14/96</u>	
GC Column: <u>RTX502.2</u>	Dilution Fact	tor: <u>1.00</u>	
Soil Extract Volume:(uL)	Soil Aliquot	Volume:	(uL)
CC	ONCENTRATION	UNITS:	
CAS NO. COMPOUND	(ug/L or ug/K	g) <u>UG/L</u>	Q
56-23-5Carbon Tetrachloride		0.20 1.0 1.0 0.20 0.40 1.0 1.0 0.20 0.40 0.40 0.40 0.40 0.20	ប ប ប ប ប ប ប ប ប ប ប ប ប ប ប ប ប ប ប

- .

Data Validation Narrative Erdle Perforating Project

Method: Aromatic Volatile Organics by SW8020

SDG Number: 2-GW-1

Holding Times: There were several instances of missed holding times for SW8020 samples. Sample holding time for groundwater is seven days. Eight samples missed holding times by one day. Two samples were diluted and reanalyzed. These samples missed holding time by two days. Samples are flagged as estimated (J) and potentially biased low (L).

Samples Selected for Full Validation: 2-GW-1; 2-GW-7 (duplicate of 2-GW-1); 2-GW-4; 2-GW-4D

Flagging requirements are listed in the table below. Other discrepancies are noted as follows:

• No calculation sheets were included in the data package. Quantitation of results were confirmed for 10% of the samples. No problems with quantitation of compounds was found.

• Percent Relative Standard Deviation (%RSD) was greater than 30% for a,a,a-Trifluorotoluene (TFT). The TFT %RSD was not reported in the data set. Calculation of the TFT %RSD at 57% indicates that the calibration for this compound is estimated. This compound is a surrogate used as a system monitoring compound. Calculations of %RSD for the remaining aromatic volatile organic compounds indicates acceptable calibrations since the %RSD for all compounds were < 30.0%.

• The recovery for surrogate TFT was above QC limits in samples 2-GW-1D and 2-GW-3D. The laboratory reports high surrogate recoveries due to matrix effects from excessive amounts of trichloroethylene. Trichloroethylene was reported in these same groundwater samples in the SW8010 analyses. Flag results as estimated (J) and biased high (H).

• A matrix spike and matrix spike duplicate pair were not analyzed to assess matrix effects on analyte recovery.

- A laboratory control sample duplicate was not analyzed to assess method precision.
- The BTEX compounds were left out of the middle CCV standard A6C0002008 on August 14, 1996. The remaining

CCVs were prepared correctly and these compounds were present and within criteria. These compounds were not detected in any of the field samples.

The flagging notes in the table below have been applied to the data contained in the Sample Data Summary Package. In cases where one result has been selected over another, the de-selected values have been crossed out in red, per EPA Region II guidance.

	Flagging Requirements for SW8020										
Basis for Qualification	Compound	Sample ID	Action								
Missed holding times by 1 day	all	2-GW-1D 2-GW-1DD 2-GW-2D 2-GW-3D 2-GW-4D 2-GW-5D 2-GW-6D 2-TB-1	Flag: JL Technical holding time criteria as stated in 40 CFR Part 136 is 7 days for SW8020. Flag all samples as estimated and potentially biased low.								
Missed holding times by 2 days	all	2-GW-1D-DL 2-GW-3D-DL	Flag: JL (See action above)								
Percent Relative Standard Deviation (%RSD) > 30%	TFT	All samples	Flag: J If %RSD > 30% < 90%, qualify positive results as estimated.								
Surrogate recoveries for TFT above QC limits of 66%-137%	all detected compounds	2-GW-1D 2-GW-3D	Flag: JH All positive results are qualified as estimated and potentially biased high.								

ERDLE PERFORATING PROJECT: Hold Times - Volatiles

Sample Field ID	Sample Lab ID	Matrix	Analyte Method	Collection Date	Analysis Date	Hold Time (days)	Hold Time Met? (Y,N)	Sample Properly Preserved? (Y,N)
2-611-1	A6374501	Water	8020	8/7/94	8/14/96	7	Y	Y
2-6W-1D	A6374511	Water	8020	8/11/96	8/14/96	8	N	Y
2-GW-10 DL	A10374511 DL	Mater	8020	8/10/96	8/15/96	9	_/V	Y
2-GW-IDD	A6374512	Water	8020	8/10/96	8/14/96	8	N	Y
2-6-11-2	A6374502	hlater	8020	8/7/96	8/14/91.	7	У	Y
2-GW-2D	A6374513	Water	8020	8/10/96	8/14/96	8	/\	Y
2-6-11-3	A6374503	hlater	8020	8/7/96	8/14/96	7	Y	Y
2-GW-3D	A6374514	Water	8020	8/4/96	. 8/14/96	8	/V	Y
2-GW-3D DL	A6374514 D	Water	8020	8/10/910	8/15/96	9	N	Ý
2-Gh1-4 ,	A6374504	hlater	8020	8/7/96	8/14/96	2	<u> </u>	Y Y
2-GW-40	A6374515	Water	8020	8/6/96	8/14/96	8	<i>/</i> \	Y Y
2-G1/-5	A6374505	Klater	8020	8/7/96	8/14/96	7	Y	Y

Hold times for soil and water samples:

Erdle - 7 days

•If hold time exceeds criteria, qualify results > IDL as estimated and biasd low (JL) and sample quantitation limits as (UJ). If HT > 14 days, NDs may be unusable, (R); use professional judgement. If HT > 28 days, all NDs are (R).

Preservation :

Erdle - 4 °C

ERDLE PERFORATING PROJECT: Hold Times - Volatiles

Sample Field ID	Sample Lab ID	Matrix	Analyte Method	Collection Date	Analysis Date	Hold Time (days)	Hold Time Met? (Y,N)	Sample Properly Preserved? (Y,N)
2-GW-5D	A6374516	Water	8020	8/4/94	8/14/96	8	_/V	Y
2-6-4-6	A6374506	Water	802.0	8/7/96	8/14/94	7.	Y	Y
2-GW-60	A6374517	Water	8020	8/10/910	8/14/96	8	N	Ý ·
	41.374507	Valater	8020	8/7/96	8/14/96	4	Y	Ý
<u>2-TB-2</u>	A6374508	Water	8020	8/7/96	8/14/96	7	Y	Y
2 - TB-1	A1.3745-18	Water	8020	8/4/96	\$14/96	8	//	Ŷ
					/			
· · · · ·								
			•					
					· · · · · · · · · · · · · · · · · · ·			

Hold times for soil-and water samples:

Erdle - 7 days

•If hold time exceeds criteria, qualify results > IDL as estimated and biasd low (JL) and sample quantitation limits as (UJ). If HT > 14 days, NDs may be unusable, (R); use professional judgement. If HT > 28 days, all NDs are (R).

Preservation :

Erdle - 4 °C

alibrated initially before blanks lyzed? ial standard concentrations run, hear, but above, the method ibration standard concentrations ected range of the concentrations nal samples? If not, did they				ICAL Form le K 8/2/96 Concentrations of standards: 5,20,40,60,80(100 (ug/L) => Raw Data Farm shows 5 stab:
ial standard concentrations run, iear, but above, the method ibration standard concentrations ected range of the concentrations nal samples? If not, did they				Concentrations of standards.
ibration standard concentrations ected range of the concentrations nal samples? If not, did they				Concentrations of standards: 5,20,40,60,80(100 (ug/L) => Raw Data Farm shows 5 stable
ected range of the concentrations nal samples? If not, did they				
nge of the GC?				
ation (RRF) values ≥ 0.05 ? Ify positive results as biased low (L) and e affected compound.				RRF values not calculable => no Internal Stels Used
ify positive results as estimated (J) for talify NDs using professional judgment. all NDs (R). (Allowance is made for is; for these, $\%$ RSD must be $\le 40\%$ 010 for the initial calibration to be to blank contamination are still				9° RSD < 307° for all compound except a, a, a, -Tripluorotoluene → 9° RSD = 579° → glag "J" → estimated
for one curve per pkg.) positive results as estimated, biased low			\checkmark	RRF values not catentable => no Internal stab used.
	values meet those listed in Table ify positive results as estimated (J) for halify NDs using professional judgment. all NDs (R). (Allowance is made for ds; for these, % RSD must be $\leq 40\%$ D10 for the initial calibration to be e to blank contamination are still ging fro calibration problems. alibration RRF values \geq Table 2 for one curve per pkg.) positive results as estimated, biased low (R) for the affected compound.	e affected compound. values meet those listed in Table ify positive results as estimated (J) for halify NDs using professional judgment. all NDs (R). (Allowance is made for ds; for these, % RSD must be ≤ 40% 010 for the initial calibration to be to blank contamination are still ging fro calibration problems. alibration RRF values ≥ Table 2 for one curve per pkg.) positive results as estimated, biased low (R) for the affected compound.	e affected compound. values meet those listed in Table ify positive results as estimated (J) for halify NDs using professional judgment. all NDs (R). (Allowance is made for ds; for these, % RSD must be ≤ 40% 010 for the initial calibration to be to blank contamination are still ging fro calibration problems. alibration RRF values ≥ Table 2 for one curve per pkg.) positive results as estimated, biased low (R) for the affected compound.	e affected compound. values meet those listed in Table ify positive results as estimated (J) for nalify NDs using professional judgment. all NDs (R). (Allowance is made for ds; for these, % RSD must be ≤ 40% 010 for the initial calibration to be e to blank contamination are still ging fro calibration problems. alibration RRF values ≥ Table 2 for one curve per pkg.) positive results as estimated, biased low

		Yes	No	N/A	Samples Affected/Comments
1.7	Did all continuing calibration % Differences meet the values listed in Table 2? • If not, qualify positive results as estimated (J) for the affected compound; qualify NDs using professional judgement. • If % RSD > 90%, flag all NDs (R).				7° (2 not calculable ⇒ No I. Stels used > no <u>RRF</u> values.
1.8	Does recalculation of the (RRF) and RRF for one or more TCL compounds verify the reported value? • If RRFs were incorrectly generated from misidentified peaks, the laboratory should recalculate the RRFs and associated sample results. (See Functional Guidelines)				(See 18 abone) (1.7 WK
1.9	Does recalculation of the initial calibration % RSD for one or more TCL compounds verify the reported value?	~			Except a, a, a, - Triflucrotalaene ? RSD = 57? Flag "J" (See 1.7 above) No I.S> No RRF
1.10	Does recalculation of the % Difference (% D) between - RRF and RRF verify the reported value?			Y	(See 1.7 above) No I.S> no RRF
General	General Comments 9,9,9 - Triflucro tolvene		<u>ds</u>	0.91 5.91 1.10 2.28 2.80 3.55	$\begin{array}{c} 4 \\ 7^{\circ}RSD = \left(\begin{array}{c} 1.79 \\ 3.14 \end{array}\right) \times 100 = (579^{\circ}) \\ \hline \\ 7 \\ 5 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$
2.0	Blanks				
2.1	 Were results presented using Form I for all method blanks and matrix spike blanks? Was the Method Blank summary Form IV provided? If blank data is not available, qualify all positive data (R) Field and trip blank data may be substituted using professional judgement. 	2			
2.2	Has a method blank been reported for each matrix and each GC System?	c			1 per batch

		Yes	No	N/A	Samples Affected/Comments
2.3	Do the method blanks contain $\leq 5x$ CRQL for volatile target compounds? • Qualify results \leq CRQL and $\leq 5x$ the blank concentrations for volatile target compounds by elevating the limit of detection. (Report CRQL and flag U). Qualify results $>$ CRQL and $\leq 5x$ the blank concentration as (U). Compare equivalent data (see Functional Guidelines). • Qualify results attributable to carry-over as unreliable (R).				
2.4	Were field blanks collected for the sample set according to the Phase II Remedial Investigation Work Plan?			-	- Not regueriel for Phase II.
2.5	Do field blanks contain compounds above the levels specified for method blanks?				
2.6	Did a trip blank accompany each cooler containing VOA samples?"	~			
2.7	Was an equipment, blank (rinsate) collected collected according to the Phase II Remedial Investigation Work Plan?			- -	- Mot required for volatiles by SV18020 for Phase II > See Work Plan.
General	Comments				
3.0	Surrogates				
3.1	Was Form II included in the analytical report? Are all samples and surrogate recoveries listed on the form? (Check for transcription and calculation errors).	\ \ \			
3.2	Were surrogates added to all standards, samples, and blanks?	/			

t

N/A Yes No Samples Affected/Comments 2-GW-1D => TFT outside upper TFT-18870 &C himit(66-1317°) 3.3 Are surrogate recoveries for samples within the limits in table 6 of D-II, Section IV? Are outliers marked with an asterisk? • If surrogate is low or high, or 2 to 3 surrogates are mixed low to high, qualify results > IDL as estimated (J) and quantitation limits as estimated (UJ). 2-GW-3D ⇒ TFT entride upper Limit. (66-13170) • If 1 surrogate < 10% R, qualify results > IDL as estimated, and biased low (JL) and quantitation limits as unreliable (R). • If 2 to 3 surrogates are all low, qualify results > IDL as biased low (L) and quantitation limits as biased low (UL). • If 2 to 3 surrogates are all high, qualify results > IDL as estimated, and biased high (JH); do not qualify NDs. •Ensure the samples were reanalyzed. For soils: the methanol extract is reanalyzed before the sample is reextracted. If the Flag estimated J & potentially beasion High "H". reanalysis is acceptable, only the reanalyzed data need be submitted. If it is not, data from both anallyses are submitted. • If dilution prevents surrogate detection, state in the narrative that method accuracy cannot be verified. 3.4 Are surrogate recoveries for blanks within these same limits? • If not, the blanks and all associated samples must be reanalyzed. TFT = a, a, a - Trifluorotoluene General Comments 4.0 Matrix Spike/Matrix Spike Duplicate 4.1 Was Form III included in the analytical report? Check for transcription and calculation errors. No MSD => MS vun an blank => Field Crew did not submit extra irduene. 4.2 Was an MS/MSD analyzed at the prescribed frequency? (Paragraph 10.10, D-II, Section IV)? 4.3 Do the % Recoveries (%R) fall within the limits listed in Table 7?

Yes N/A No Samples Affected/Comments not calculate (an RPD ->> 4.4 Do the RPD values fall within the limits listed in the Νδ MSIMSD Analyzec SOW? 4.5 Does recalculation of the % R and RPD values verify MS/MSD the reported values? (Recalculate 1 per pkg, for 10% of the target volatiles.) ammen • Use results in conjuction with other OC criteria and qualify data according to professional judgment, if needed. General Comments Matrix Spike Blank analyzed > replaces haboratory (antral Sample > Checks instrument performance => all 7° Recorderies good. 5.0 **Field Duplicates** Field Dupbrate = 2-6W-7 5.1 Were field duplicates analyzed with the sample set, Monmal = 2-GW-1 according to the Phase II Remedial Investigation Work Plan? be calculated => both samples nondetect. General Comments RPD can not and precision and analytical precision with this pair Tield sampling 6.0 Internal Standards Performance I.S. method ralib. not performed. 6.1 Was Form VIII included in the analytical report? method SW8020 Sei 6.2 Was an internal standard added to all standards, I.S. Cal. does not rigune samples and blanks? SW 8010 does not 6.1 3 Sel 6.3 Was the internal standard concentration 50 μ g/L for each compound?

		Yes	No	N/A	Samples Affected/Comments
6.4	 Are sample IS retention times within 30 sec of the continuing cal std IS retention time? (Check one per pkg.) If sample IS retention times are not within 30 sec, determine if false positives or negatives exist. Large shifts may require total or partial data rejection. 			U	(See 4.1)
6.5	 Are sample IS areas within a factor of 2 of the continuing cal std IS area? If sample IS areas are outside this range, qualify results for compounds using those IS as estimated (J) for that sample fraction; qualify NDs as estimated (UJ). If a severe loss of sensitivity is seen, qualify NDs as unusable (R). 	;		L	(See 6.1)
General	comments Richa dans not p use lenear reg.	rest	Am (an	I	is method of ralibiation ->
7.0	Target Compound Verification				
7.1	Were Form I, chromatograms, and data printouts provided for each sample?	y.			
7.2	Are sample RRTs within 0.06 units of the standard RRT? Check 10% of target volatiles of the samples selected for full validation	7			
7.3	Are standard chroms similar to sample chroms?	ŕ			

		Yes	No	N/A	Samples Affected/Comments
7.4	Are sample chroms free of carry-over effects, esp. if low concentration samples are preceded by high- concentration samples? • If incorrect compound identifications were made, flag all affected data as not detected (U) or unusable (R). • If raw data suggests presence of a target compound, but the chromatogram contains inadequacies, report the compound as not confirmed and therefore not detected (U). • If a compound with acceptable matching characteristics is not reported, add it to the sample data summary. If > CRQL, the lab should examine and re-submit the result.	£			
7.5	Are the standard chromatographic ions present > 10% also seen in the sample chromatograms? Do sample and standard relative intensities agree within 20% • The lab must provide the three best chrom matches for non- TCL analytes.	L			
General	Comments				
8.0	Compound Quantitation, Dilution and Reported Detection	on Lim	its		
8.1	Did dilutions keep the largest analyte peak response for a target compound in the upper half of the initial calibration range?	/			
8.2	Verify that data was submitted for no more than two analyses (ie. the original and one dilution, or the more concentrated dilution and one further dilution).				

		Yes	No	N/A			Samples Affected/C	omments
8.3	Verify that MS/MSD analyses were not diluted for the purpose of bringing either spiked or non-spiked analytes within calibration range. • If a MS/MSD sample contains high indigenous levels of spiking analytes, the concentration and recovery should be calculated from the undiluted analysis; the problem should be noted with the SDG narrative.					10	ms/msD	available.
8.4	Verify that the m/p-xylene and the o-xylene peaks were quantitated, and if necessary diluted separately. • Areas of both peaks and the single isomer RRF should be used to quantitate results.	V						
8.5	Were the sample RRFs calculated based on the correct internal standard for that compound?			r	/	Πο	I.S. method	g calib.
8.6	 Does recalculation of the compound quantitations verify the reported results? (Recalculate 10% of the samples, for 10% of the target volatiles.) If errors > 10% are found, they should be identified and corrected on the sample data summary, and noted in the narrative, and support documentation. If an ion used for quantitation is saturated, qualify result as biased low (L). If an ion used for quantitation is not saturated but exceeds the highest standard, qualify results as estimated (J). 	7						
8.7	Are the reported sample results, and quant reports free of transcription errors from the quant sheets, chromatograms, and sample prep logs?	J						
8.8	Have the CRQLs been adjusted for sample dilution, splits, clean-up activities and dry weight factors?	L	/					

		Yes	No	N/A		Samples	Affected/C	omments	
General	Comments								
			·						
9.0	Tentatively Identified Compounds (TICs)								
9.1	Were up to 10 TICs reported for each sample and blank which have area/height greater than 10% of the size of the nearest internal standard? • If the library search identified a target compound not reported in the data summary, have the lab recalculate the target compound result; determine whether the false negative is an isolated occurrence.			· .	- 710	71¢'s	for	512 802	0 = GC method
9.2	Are any TCLs erroneously listed as TICs?			L					
9.3	 Are TICs present in sample absent in the blanks? (Check TICs for the samples selected for validation.) If TICs present in a sample are present within 5x the concentration of a blank qualify the TIC (R) and draw a line through the data. If common lab contaminants are present > 10x levels in the blanks, qualify results (R). If a TIC tentative identification is unacceptable, the identification should be changed to "unknown". TICs not sufficiently above blank levels should not be reported. All similar isomers should be reported as a total. 			L		V			
General	Comments					-1		रन्दा संख्या दिवेला	
10.0	System Performance								
10.1	Were abrupt, discrete shifts in the chromatograms found?		5			_			

		Yes	No	N/A		Samples Affect	ed/Comments	
10.2	Were shifts in absolute internal standard retention times found?			Ľ	Nu	I.S. C.	alib.	
10.3 *	Was an excessive baseline rise of elevated temperature noted?		L	/				
10.4	Were extraneous peaks noted for calibration standards?		L					
General	Comments							
11.0	Sample Integrity							
11.1	Did the laboratory narratives state problems with sample receipt or conditions that would affect quality? • If the VOA vials analyzed contained air bubbles, flag all positive results (J) and all NDs (R). • If sample temperature was not 2-4°C upon receipt, flag positive results (J) and NDs (UJ).				no intigr	problems ity.	with	sample
General	Comments							
						······		

Erdle Perforating Project

Recalculation Sheet Volatiles Styl 802 O

┞	. Initial Calibration 9					· ·
	$\% RSD = \frac{\sigma}{+} \times 100$	ICAL	•	Instrument	HP5890-3	4
	where σ = std dev. of 5 RF	. Bénzena	•			•
	and + = mean of 5 RFs	(sts)	aria			
		5	2.66	$\overline{X} = 2.402$ $\overline{N} = 0.096$		_
		20 40	2.44 2.68	X = 6.402		D
		60 80	2.63 2.60) n-1 = 0.096		a cciptable
	9° RSD = (0.1	096) ×100	5.60 = 3.67 =	3.77° Reported	m Farm 6K	= (4.2. 40)
2			1 .	Culate 9º 6	J	
	$\% D = \frac{\overline{RRFI} - RRF_e}{RRF_i} \times 10$	o Recha	Jab do	us nat use	intunal 5	tandasch
		/)	W 8020.			
	where RRF1 = average RR and RRF_c = RRF continuit	Lab	did no	t report au	RRF	
	$RRF = A_{x}$	C 1.5.	white :	$RRF_{i} = i$	Relative K	Paperne Fict
	A _{I.s} ×	Cx.	A= EICI			apende act
	5			certration		
1	$RRF = \underbrace{\underset{i=1}{\overset{5}{\underset{i=1}{\underset{i=1}{\overset{5}{\underset{i=1}{\overset{5}{\underset{i=1}{\underset{i=1}{\overset{5}{\underset{i=1}{\underset{i=1}{\overset{5}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi}{\atopi=1}{\underset{i=1}{\underset{i=1}{\atopi}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi}{\underset{i=1}{\atopi=1}{\atopi}{\atopi=1}{\underset{i=1}{\atopi}{\atopi}{i=1}{\atopi}{\underset{i=1}{\atopi}{\atopi}{i=1}{\atopi}{\atopi}{i}{\atopi}{i}{i}{i}{i}{i}{i}{i}{i}{i}{i}{i}{i}{i$?F.	I.S. = Ju	ternal Std.		
	5		X = and	alyte of inti	rist.	

GCMS.CAL page 1

Matrix Spike/Matrix Spike Duplicates (MS/MSD) % Recovery Not Calculated 3 Recra lab did not analysi an MIS/MISD pair. Field crew $%R = \frac{spiked \ sample \ result - sample \ result}{spike \ added} \times 100$ did not designate ms/msD on field sample => no extra volume. Not Calculated. MSD Relative Percent Difference (RPD) 4. No MSD analyzed. Can not calculate RPD. $D = \frac{X_1 - X_2}{(\frac{X_1 + X_2}{(\frac{X_1 - X_$

Sample Ouantitation of the target volatile characteristic ion(EICP) (ng int std of the EICP for the specific int std) (cal std RRF) (mL (Area of the target volatile (EICP) (ng int std. added) (Area of the EICP for the specific int std) (cal std RRF) (g sample) (Area of the target volatile EICP) (ng int std. added) (1000) (DF) (total mL methanol ex of the EICP for the specific int std) (cal std RRF) (µL methanol extract added to reagent purge water) (g soil extr Recha did not use internal stab. (herriar segression from cal. cusure.) Calculation uses mean risponse -> RF. 0-Xyline = (Dilution = 1.0) (mc. RF = 19880 aria 20800 5 18800 20 $\frac{26510.40}{19880} = (1.33)$ oc 20000 40 19700 60 20100 80 quant Report statis (1.32

000241 Client No.

	2-GW-1	
Lab Name: <u>Recra LabNet</u> Contract:		
Lab Code: <u>RECNY</u> Case No.: SAS No.: S	5DG No.:	
Matrix: (soil/water) <u>WATER</u> Lab Sample I	ID: <u>A6374501</u>	<u></u>
Sample wt/vol:5.00 (g/mL) ML Lab File ID:	<u> 3A02279.T</u>	<u>xo</u>
Level: (low/med) Low Date Samp/Re	ecv: <u>08/07/96</u>	08/07/96
<pre>% Moisture: not dec Date Analyze</pre>	ed: <u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dilution Fac	ctor: <u>100.00</u>	
Soil Extract Volume:(uL) Soil Aliquot	t Volume:	(uL)
CONCENTRATION	UNTTS:	
CAS NO. COMPOUND (ug/L or ug/H		Q
71-43-2Benzene	20	U
108-90-7Chlorobenzene	20	Ū
95-50-11,2-Dichlorobenzene	40	U
541-73-11,3-Dichlorobenzene	40	υ
6 -46-71,4-Dichlorobenzene	40	U
0-41-4Ethylbenzene	20	U
108-88-3Toluene	20	U
108-38-3m-Xylene	20	U
95-47-6o-Xylene 106-42-3p-Xylene	20 20	U U
100-45-2b-vAteue	20	

602244

U

U

U

U

U

U

80

40

40

40

40

40

			2-GW-	10	
Lab Name: <u>Recra LabNet</u>	Contract:		2-Gw-	-10	
Lab Code: <u>RECNY</u> Case No.:	SAS No.: _	S	DG No.	••	-
Matrix: (soil/water) <u>WATER</u>	La	b Sample I	D: 1	A6374511	
Sample wt/vol: <u>5.00</u> (g/mL)	ML La	b File ID:	- -	3A02283.1	<u></u>
Level: (low/med) <u>Low</u>	Da	te Samp/Re	cv: (08/07/96	<u>08/07/96</u>
<pre>% Moisture: not dec</pre>	Da	te Analyze	d: (08/14/96	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> ((mm) Di	lution Fac	tor:	200.00	
Soil Extract Volume:(uL)	Sc	oil Aliquot	Volu	me:	(uL)
CAS NO. COMPOUND		CENTRATION			Q
71-43-2Benzene 108-90-7Chlorobenzene 95-50-11,2-Dichlorobenzene				40 40 80	ប ប ប
541-73-11, 3-Dichlorobenzene				80	U U

106-46-7----1,4-Dichlorobenzene

0-41-4----Ethylbenzene__

08-88-3----Toluene

108-38-3----m-Xylene

95-47-6----o-Xylene

CC2247

U

U

U

100

100

100

2-GW-1D DL Lab Name: <u>Recra LabNet</u> Contract: Case No.: _____ SAS No.: _____ SDG No.: ____ Lab Code: RECNY Matrix: (soil/water) WATER Lab Sample ID: <u>A6374511DL</u> Sample wt/vol: <u>____5.00</u> (g/mL) <u>ML</u> Lab File ID: 3A02296.TX0 (low/med) Low Date Samp/Recv: 08/07/96 08/07/96 Level: % Moisture: not dec. _____ Date Analyzed: 08/15/96 GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dilution Factor: 500.00 Soil Extract Volume: ____(uL) Soil Aliquot Volume: _____(uL) CONCENTRATION UNITS: CAS NO. UG/L Q COMPOUND (ug/L or ug/Kg) 71-43-2----Benzene 100 Π 108-90-7----Chlorobenzene 100 U 200 95-50-1-----1, 2-Dichlorobenzene U 541-73-1----1, 3-Dichlorobenzene 200 U U 106-46-7----1,4-Dichlorobenzene 200 U 00-41-4----Ethylbenzene 100 08-88-3----Toluene 100 U

108-38-3----m-Xylene

95-47-6----o-Xylene_

000250

Client No.

	Lab Name: <u>Recra LabNet</u>	Contract:	2-GW-1DD	
	Lab Code: <u>RECNY</u> Case No.:		DG No.:	-
1	Matrix: (soil/water) <u>WATER</u>	Lab Sample I	D: <u>A6374512</u>	_
1	Sample wt/vol: <u>5.00</u> (g/mL)	ML Lab File ID:	<u>3A02276.1</u>	<u>0X1</u>
	Level: (low/med) <u>Low</u>	Date Samp/Re	cv: <u>08/07/96</u>	08/07/96
:	<pre>% Moisture: not dec</pre>	Date Analyze	d: <u>08/14/96</u>	
(GC Column: <u>RTX502.2</u> Dia: <u>0.53</u>	(mm) Dilution Fac	tor: <u>1.00</u>	
ł	Soil Extract Volume:(uL)	Soil Aliquot	Volume:	(uL)
	CAS NO. COMPOUND	CONCENTRATION (ug/L or ug/K		Q
	95-50-11,2-Dichlorobenzene 541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene 100-41-4Ethylbenzene 08-88-3Toluene 108-38-3m-Xylene		0.20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	95-47-6o-Xylene 106-42-3p-Xylene		0.26 0.20	υ ^{JH}

7

000255

Client No.	•	
------------	---	--

Lab Name: <u>Recra LabNet</u> Co	ntract:	
Lab Code: <u>RECNY</u> Case No.:		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A6374502</u>	
Sample wt/vol:5.00 (g/mL) ML	Lab File ID: <u>3A02292.TX</u>	0
Level: (low/med) Low	Date Samp/Recv: <u>08/07/96</u> <u>0</u>	<u>8/07/96</u>
<pre>% Moisture: not dec</pre>	Date Analyzed: <u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dilution Factor: <u>50.00</u>	
Soil Extract Volume:(uL)	Soil Aliquot Volume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>	Q
71-43-2Benzene	10	U
71-43-2Benzene 108-90-7Chlorobenzene	10	U
95-50-11,2-Dichlorobenzene	20	U
541-73-11,3-Dichlorobenzene	20	U
106-46-71,4-Dichlorobenzene	20	U
00-41-4Ethylbenzene	10	U
08-88-3Toluene	10	U
108-38-3m-Xylene	10 10	U U
95-47-6o-Xylene 106-42-3p-Xylene		Ū
LOO TE S PAJIENE		1 1

000260 Client No.

	2-GW-2D	
Lab Name: <u>Recra LabNet</u> Con	ntract:	
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A63745</u>	13
Sample wt/vol: <u>5.00</u> (g/mL) <u>ML</u>	Lab File ID: <u>3A0228</u>	2.TX0
Level: (low/med) <u>Low</u>	Date Samp/Recv: <u>08/07/</u>	<u>96 08/07/96</u>
<pre>% Moisture: not dec</pre>	Date Analyzed: <u>08/14/</u>	96
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)) Dilution Factor: <u>4.</u>	<u>00</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:	(uL)
	CONCENTRATION UNITS:	
CAS NO. COMPOUND	(ug/L or ug/Kg) <u>UG/L</u>	Q
71-43-2Benzene	0.8	0 0
108-90-7Chlorobenzene	0.8	
95-50-11,2-Dichlorobenzene	1.6	
541-73-11,3-Dichlorobenzene	1.6	1 1
6-46-71,4-Dichlorobenzene	1.6	U
0-41-4Ethylbenzene	0.8	0 U
108-88-3Toluene	0.8	0 U
1108-38-3 m -Xvlene	U.8	0 U
95-47-6o-Xylene	0.8	
106-42-3p-Xylene	0.8	0 U

Client No.

Bab Name: <u>Recra LabNet</u> Contract:	2-GW-3	
		·
Lab Code: <u>RECNY</u> Case No.: SAS No.: S	DG No.:	
Matrix: (soil/water) <u>WATER</u> Lab Sample I	D: <u>A6374503</u>	
Sample wt/vol:5.00 (g/mL) ML Lab File ID:	3A02293.	<u>TX0</u>
Level: (low/med) Low Date Samp/Re	cv: <u>08/07/96</u>	<u>08/07/96</u>
<pre>% Moisture: not dec Date Analyze</pre>	d: <u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dilution Fac	tor: <u>25000.00</u>	
Soil Extract Volume:(uL) Soil Aliquot	Volume:	(uL)
CONCENTRATION	UNITS:	
CAS NO. COMPOUND (ug/L or ug/K		Q
71-43-2Benzene	5000	U
108-90-7Chlorobenzene	5000	U
95-50-11, 2-DIChlorobenzene	10000	U
541-73-11,3-Dichlorobenzene	10000	U
106-46-71,4-Dichlorobenzene	10000	U
100-41-4Ethylbenzene	5000	U
08-88-3Toluene	5000	U
108-38-3m-Xylene	5000	U
95-47-6o-Xylene	5000	Ŭ
106-42-3p-Xylene	5000	U

.

.

• , • • • •

CO268 Client No.

U

5.0

	2-0	W-3D	
Lab Name: <u>Recra LabNet</u> Contract:			
Lab Code: <u>RECNY</u> Case No.: SAS No.	.: SDG N	io.:	-
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374514</u>	
Sample wt/vol: <u>5.00</u> (g/mL) <u>ML</u>	Lab File ID:	3A02281.3	<u></u>
Level: (low/med) <u>Low</u>	Date Samp/Recv:	<u>08/07/96</u>	08/07/96
<pre>% Moisture: not dec</pre>	Date Analyzed:	<u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor:	25.00	
Soil Extract Volume:(uL)	Soil Aliquot Vol	ume:	(uL)
	CONCENTRATION UNIT (ug/L or ug/Kg)		Q
71-43-2Benzene 108-90-7Chlorobenzene 95-50-11, 2-Dichlorobenzene 541-73-11, 3-Dichlorobenzene 06-46-71, 4-Dichlorobenzene 00-41-4Ethylbenzene 108-88-3Toluene 108-38-3m-Xylene		5.0 5.0 10 10 10 5.0 5.0 5.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
95-47-6o-Xylene		5.0	U

Client No.

000271

Lab Name: <u>Recra_LabNet</u> Contract		W-3D DL]
Lab Code: <u>RECNY</u> Case No.: SAS N	o.: SDG N	io.:	_
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374514</u>	DL
Sample wt/vol:5.00 (g/mL) ML	Lab File ID:	<u>3A02297.'</u>	rxo
Level: (low/med) <u>Low</u>	Date Samp/Recv:	08/07/96	08/07/96
<pre>% Moisture: not dec</pre>	Date Analyzed:	<u>08/15/96</u>	
GC Column: <u>RTX502.2</u>	Dilution Factor:	50.00	
Soil Extract Volume:(uL)	Soil Aliquot Vol	ume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)		Q
71-43-2Benzene 108-90-7Chlorobenzene 95-50-11,2-Dichlorobenzene 541-73-11,3-Dichlorobenzene		10 10 20 20	U U U U
06-46-71,4-Dichlorobenzene 0-41-4Ethylbenzene 108-88-3Toluene		20 10 10	U U U
108-38-3m-Xylene 95-47-6o-Xylene 106-42-3p-Xylene	· · · · · · · · · · · · · · · · · · ·	10 10 10	บ บ บ

106-42-3----p-Xylene

.

.

Client No.

000274

Lab Name: <u>Recra_LabNet</u> Co	ontract:
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A6374504</u>
Sample wt/vol:5,00 (g/mL) M	L Lab File ID: <u>3A02274.TX0</u>
Level: (low/med) <u>Low</u>	Date Samp/Recv: <u>08/07/96</u> 08/07/9
<pre>% Moisture: not dec</pre>	Date Analyzed: 08/14/96
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (m	m) Dilution Factor: <u>5.00</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
71-43-2Benzene 108-90-7Chlorobenzene 95-50-11,2-Dichlorobenzene 541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene 00-41-4Ethylbenzene 8-88-3Toluene 108-38-3Toluene 108-38-3m-Xylene 95-47-6o-Xylene 106-42-3p-Xylene	1.0 0 2.0 0 2.0 0 2.0 0 1.0 0 1.0 0 1.0 0 1.0 0

· · · ·

000279

Client No.

Lab Name: <u>Recra LabNet</u> Contrac		W-4D	
Lab Code: <u>RECNY</u> Case No.: SAS	No.: SDG N	io.:	-
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374515</u>	
Sample wt/vol: <u>5.00</u> (g/mL) <u>ML</u>	Lab File ID:	3A02286.7	<u></u>
Level: (low/med) <u>Low</u>	Date Samp/Recv:	08/07/96	08/07/96
ቆ Moisture: not dec	Date Analyzed:	<u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor:	2.00	
Soil Extract Volume:(uL)	Soil Aliquot Vol	ume:	(uL)
CAS NO. COMPOUND	CONCENTRATION UNIT (ug/L or ug/Kg)		Q
71-43-2Benzene 108-90-7Chlorobenzene 95-50-11,2-Dichlorobenzene 541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene 106-46-71,4-Dichlorobenzene 8-88-3Ethylbenzene 8-88-3Toluene 108-38-3m-Xylene 95-47-6o-Xylene 106-42-3p-Xylene		$\begin{array}{c} 0.40 \\ 0.40 \\ 0.80 \\ 0.80 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \\ 0.40 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

and the second of the second second

Client No.

(00282

Lab Name: <u>Recra LabNet</u> C	ontract:	2-GW-5
Lab Code: <u>RECNY</u> Case No.:		DG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample II	D: <u>A6374505</u>
Sample wt/vol:5.00 (g/mL) M	Lab File ID:	3A02275.TX0
Level: (low/med) Low	Date Samp/Rec	cv: <u>08/07/96</u> <u>08/07/96</u>
<pre>% Moisture: not dec</pre>	Date Analyzed	1: <u>08/14/96</u>
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (m	m) Dilution Fact	tor: <u>1.00</u>
Soil Extract Volume:(uL)	Soil Aliquot	Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION U (ug/L or ug/Ko	UNITS: g) <u>UG/L</u> Q
71-43-2Benzene 108-90-7Chlorobenzene 95-50-11,2-Dichlorobenzene 541-73-11,3-Dichlorobenzene 100-41-4Ethylbenzene 108-88-3Toluene 108-88-3Toluene 95-47-6o-Xylene 106-42-3p-Xylene		0.20 U 0.20 U 0.40 U 0.40 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U 0.20 U

a second and a second second

.

Client No.

0.20

0.20

U

U

000287

Lab Name: <u>Recra LabNet</u> Contract:		N-5D	
Lab Code: <u>RECNY</u> Case No.: SAS No.	: SDG NG	o.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374516</u>	
Sample wt/vol: <u>5.00</u> (g/mL) <u>ML</u>	Lab File ID:	3A02287.1	<u>X0</u>
Level: (low/med) Low	Date Samp/Recv:	<u>08/07/96</u>	<u>08/07/96</u>
<pre>% Moisture: not dec</pre>	Date Analyzed:	<u>08/14/96</u>	
GC Column: <u>RTX502.2</u>	Dilution Factor:	1.00	
Soil Extract Volume:(uL)	Soil Aliquot Vol	ume:	(uL)
-	ONCENTRATION UNIT (ug/L or ug/Kg)		Q
71-43-2Benzene 103-90-7Chlorobenzene 95-50-11, 2-Dichlorobenzene 541-73-11, 3-Dichlorobenzene 106-46-71, 4-Dichlorobenzene 0-41-4Ethylbenzene		0.20 0.20 0.40 0.40 0.40 0.20	U U U U U U U
108-88-3Toluene 108-38-3m-Xylene		0.20 0.20	U U

95-47-6----o-Xylene

106-42-3----p-Xylene_

.

. . .

.

· · ·

Client No.

U

U

0.20

0.20

	· [2-GW-6
Lab Name: <u>Recra LabNet</u> Co		
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SD	G No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID	A6374506
Sample wt/vol:5.00 (g/mL) \underline{MI}	Lab File ID:	3A02277.TX0
Level: (low/med) Low	Date Samp/Rec	v: <u>08/07/96</u> <u>08/07/96</u>
<pre>% Moisture: not dec</pre>	Date Analyzed	l: <u>08/14/96</u>
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dilution Fact	or: <u>1.00</u>
Soil Extract Volume:(uL)	Soil Aliquot	Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION U (ug/L or ug/Kg	
71-43-2Benzene 108-90-7Chlorobenzene 95-50-11,2-Dichlorobenzene 541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·	0.20 U 0.20 U 0.40 U 0.40 U 0.40 U
00-41-4Ethylbenzene		0.20 U
08-88-3Toluene 108-38-3m-Xylene		0.20 U 0.20 U

95-47-6----o-Xylene 106-42-3----p-Xylene

000295

Client No.

Lab Name: <u>Recra LabNet</u>	Contract		2-GW-6D	
Dab Name: <u>Recta Dabhet</u>				
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SI	G No.:	_
Matrix: (soil/water) <u>WATER</u>	· 1	Lab Sample II	D: <u>A6374517</u>	
Sample wt/vol: <u>5.00</u> (g/mL)	<u>ML</u> 1	Lab File ID:	<u>3A02288.</u>	TXO
Level: (low/med) Low	I	Date Samp/Red	ev: <u>08/07/96</u>	08/07/96
<pre>% Moisture: not dec</pre>	I	Date Analyzed	1: <u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u>	(mm) I	Dilution Fact	or: <u>50.00</u>	
Soil Extract Volume:(uL)	5	Soil Aliquot	Volume:	(uL)
	COL	NCENTRATION U	JNITS:	
CAS NO. COMPOUND	(1	ug/L or ug/Ko	g) <u>UG/L</u>	Q.
71-43-2Benzene			10	U
			10	U
95-50-11,2-Dichlorobenzene			20	U
541-73-11,3-Dichlorobenzene			20	U
106-46-71,4-Dichlorobenzene	•		20	υ
00-41-4Ethylbenzene			10	U U
08-88-3Toluene			10	U
108-28-2			10	U
95-47-6o-Xylene			10	U
106-42-3p-Xylene	· _ ·		10	. U

066229810.

	Lab Name: <u>Recra LabNet</u>	Contract:		2-GW-7	
]	Lab Code: <u>RECNY</u> Case No.:	SAS No.	: SI	DG No.:	 .
1	Matrix: (soil/water) <u>WATER</u>		Lab Sample II	D: <u>A6374507</u>	
:	Sample wt/vol:5,00 (g/mL)	ML	Lab File ID:	<u>3A02278.</u>	TXO
]	Level: (low/med) <u>Low</u>		Date Samp/Re	cv: <u>08/07/96</u>	08/07/96
	Moisture: not dec.		Date Analyze	d: <u>08/14/96</u>	
(GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> ((mm)	Dilution Fac	tor: <u>200.00</u>	<u>!</u>
	Soil Extract Volume:(uL)		Soil Aliquot	Volume:	(uL)
		C	ONCENTRATION		
	CAS NO. COMPOUND		(ug/L or ug/K		Q
	71-43-2Benzene			40	UU
	1108-90-7Cbloroban7ana			40	Ū
	95-50-11,2-Dichlorobenzene			80	U
	541-73-11,3-Dichlorobenzene	,		80	U
	106-46-71,4-Dichlorobenzene			80	U
	100-41-4Ethylbenzene	·		40	U
ţ.	8-88-3Toluene			40	U
	108-38-3m-Xylene			40	U
				40	U
	106-42-3p-Xylene		-	40	U U

Client No.

U

U

U

U

U U

0.40

0.20

0.20

0.20

0.20

0.20

000301

σ.

		2-TB-2	
Lab Name: <u>Recra LabNet</u>	Contract:	L	
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample	e ID: <u>A6374</u>	508
Sample wt/vol: <u>5.00</u> (g/mL)	ML Lab File	ID: <u>3A022</u>	89.TX0
Level: (low/med) Low	Date Samp	/Recv: <u>08/07</u>	<u>/96 08/07/9</u> €
<pre>% Moisture: not dec</pre>	Date Anal	yzed: <u>08/14</u>	<u>/96</u>
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u>	(mm) Dilution	Factor: <u>1</u>	.00
Soil Extract Volume:(uL)	Soil Aliq	uot Volume: _	(uL)
CAS NO. COMPOUND	CONCENTRATI (ug/L or u	ON UNITS: g/Kg) <u>UG/L</u>	<u> </u>
71-43-2Benzene		0.	20 U
108-90-7Chlorobenzene			20 U
95-50-11,2-Dichlorobenzene	· · · · · · · · · · · · · · · · · · ·		40 U
541-73-11,3-Dichlorobenzene	·	0.	40 U

106-46-7----1, 4-Dichlorobenzene

00-41-4----Ethylbenzene

08-88-3----Toluene

108-38-3----m-Xylene_

95-47-6----o-Xylene

COO304 Client No.

U

U

U

U

U

0.20

0.20

0.20

0.20

	2-TB1-1	
Lab Name: <u>Recra LabNet</u> Co	Contract:	<u> </u>
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SDG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>A6374518</u>	
Sample wt/vol: <u>5.00</u> (g/mL) M	Lab File ID: <u>3A02290.TX0</u>	-
Level: (low/med) Low	Date Samp/Recv: <u>08/07/96</u> 08/07	/96
<pre>% Moisture: not dec</pre>	Date Analyzed: <u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (m	nm) Dilution Factor: <u>1.00</u>	
Soil Extract Volume:(uL)	Soil Aliquot Volume:(u	ıL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q	2 ~
71-43-2Benzene	0.20 U	
108-90-7Chlorobenzene	0.20 U	
95-50-11, 2-Dichlorobenzene	0.40 U	
541-73-11, 3-Dichlorobenzene		
106-46-71,4-Dichlorobenzene	0.40 U	1

0-41-4----Ethylbenzene_____

208-88-3----Toluene___ 108-38-3----m-Xylene_

95-47-6----o-Xylene

106-42-3----p-Xylene

· · - .

000241 Client No.

20

U

	1	2-GW-1
Lab Name: <u>Recra LabNet</u> Co	ontract: l	
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SD	G No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample II	A6374501
Sample wt/vol:5.00 (g/mL) M	L Lab File ID:	3A02279.TX0
Level: (low/med) Low	Date Samp/Rec	v: <u>08/07/96</u> <u>08/07/96</u>
<pre>% Moisture: not dec</pre>	Date Analyzed	l: <u>08/14/96</u>
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (m	m) Dilution Fact	cor: <u>100.00</u>
Soil Extract Volume:(uL)	Soil Aliquot	Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION U (ug/L or ug/Kg	INITS: () <u>UG/L</u> Q
71-43-2Benzene 108-90-7Chlorobenzene		20 U 20 U
95-50-11,2-Dichlorobenzene541-73-11,3-Dichlorobenzene		40 U 40 U
06-46-71,4-Dichlorobenzene 00-41-4Ethylbenzene		40 U 20 U
[108-88-3Toluene		20 U
108-38-3m-Xylene	· · · · · · · · · · · · · · · · · · ·	20 U 20 U

.

692244

U

U

40

40

		W-1D	
Lab Name: <u>Recra LabNet</u> Contract:	······		·····
Lab Code: <u>RECNY</u> Case No.: SAS No.	.: SDG N	o.:	-
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374511</u>	<u></u>
Sample wt/vol:5.00 (g/mL) <u>ML</u>	Lab File ID:	3A02283.7	<u>rxo</u>
Level: (low/med) <u>Low</u>	Date Samp/Recv:	<u>08/07/96</u>	<u>08/07/96</u>
<pre>% Moisture: not dec</pre>	Date Analyzed:	<u>08/14/96</u>	,
GC Column: <u>RTX502,2</u>	Dilution Factor:		
Soil Extract Volume:(uL)	Soil Aliquot Vol	ume:	(uL)
	CONCENTRATION UNIT	'S:	
	(ug/L or ug/Kg)		Q
71-43-2Benzene		40	U
108-90-7Chlorobenzene		40	U
95-50-11,2-Dichlorobenzene		80	U U
541-73-11,3-Dichlorobenzene		80	U U
106-46-71,4-Dichlorobenzene		80	U
00-41-4Ethylbenzene		40	U
08-88-3Toluene		40	U
108-38-3m-Xylene		40	U

108-38-3----m-Xylene

95-47-6----o-Xylene

602247

U

U

100

100

		2-G1	W-1D DL	
Lab Name: <u>Recra LabNet</u>	Contract:			
Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SDG N	o.:	_
Matrix: (soil/water) <u>WATER</u>	Lab Sample	ID:	<u>A63745111</u>	DL
Sample wt/vol:5.00 (g/mL)	ML Lab File I	D:	3A02296.7	rxo
Level: (low/med) Low	Date Samp/	Recv:	<u>08/07/96</u>	<u>08/07/96</u>
<pre>% Moisture: not dec</pre>	Date Analy	zed:	<u>08/15/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dilution F	actor:		
Soil Extract Volume:(uL)	Soil Aliqu	ot Vol	ume:	(uL)
CAS NO. COMPOUND	CONCENTRATIO (ug/L or ug			Q
71-43-2Benzene		_	100	U
108-90-7Chlorobenzene 95-50-11,2-Dichlorobenzene_			100 200	ប ប
541-73-11, 3-Dichlorobenzene_		-	200	υ
106-46-71,4-Dichlorobenzene		-1	200	Ū
0-41-4Ethylbenzene			100	υ
08-88-3Toluene	· · · · · · · · · · · · · · · · · · ·	_	100	υ
108-38-3m-Yvlene			100	111

95-47-6----o-Xylene

000250

Client No.

U

0.20

÷

-	
	2-GW-1DD
Lab Name: <u>Recra LabNet</u> Contract:	
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u> Lab	Sample ID: <u>A6374512</u>
Sample wt/vol: <u>5.00</u> (g/mL) <u>ML</u> Lab	File ID: <u>3A02276.TX0</u>
Level: (low/med) Low Dat	e Samp/Recv: <u>08/07/96</u> <u>08/07/9</u>
<pre>% Moisture: not dec Dat</pre>	e Analyzed: <u>08/14/96</u>
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dil	ution Factor: <u>1.00</u>
Soil Extract Volume:(uL) Soi	l Aliquot Volume:(uL)
CONCE	NTRATION UNITS:
	Lorug/Kg) <u>UG/L</u> Q
71-43-2Benzene	0.20 U
95-50-11,2-Dichlorobenzene	0.40 U
541-73-11,3-Dichlorobenzene	0.40 U
106-46-71,4-Dichlorobenzene	0.40 U
200-41-4Ethylbenzene	0.20 U
	0.200
108-38-3m-Xylene	0.20 0
95-47-6o-Xylene	0.26

000255

Client No.

U

U

U

10

10

10

Lab Name: <u>Recra LabNet</u>	Contract.	2-GW-2	
Dab Name: <u>Recta Dabace</u>	concrace		
Lab Code: <u>RECNY</u> Case No.:	SAS No.: S	DG No.:	
Matrix: (soil/water) <u>WATER</u>	Lab Sample I	D: <u>A6374502</u>	
Sample wt/vol: <u>5.00</u> (g/mL)	ML Lab File ID:	3A02292.TX0	
Level: (low/med) <u>Low</u>	Date Samp/Re	cv: <u>08/07/96</u> 08	<u>/07/96</u>
<pre>% Moisture: not dec</pre>	Date Analyze	d: <u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u>	(mm) Dilution Fac	tor: <u>50.00</u>	
Soil Extract Volume:(uL)	Soil Aliquot	Volume:	_(uL)
CAS NO. COMPOUND	CONCENTRATION (ug/L or ug/K		Q
71-43-2Benzene 108-90-7Chlorobenzene 95-50-11, 2-Dichlorobenzene 541-73-11, 3-Dichlorobenzene 106-46-71, 4-Dichlorobenzene		10 20 20 20	0 0 0 0 0 0 0
00-41-4Ethylbenzene 08-88-3Toluene			ប ប

.

108-38-3----m-Xylene

95-47-6----o-Xylene

CO260

U

U

U

U

U

U

1.6

0.80

0.80

0.80

0.80

0.80

Client No. 2-GW-2D Lab Name: <u>Recra LabNet</u> Contract: ____ Case No.: _____ SAS No.: _____ SDG No.: _ Lab Code: RECNY Lab Sample ID: Matrix: (soil/water) WATER A6374513 Sample wt/vol: Lab File ID: 3A02282.TX0 Level: (low/med) Low Date Samp/Recv: 08/07/96 08/07/96 % Moisture: not dec. Date Analyzed: 08/14/96 Dilution Factor: ____4.00 GC Column: RTX502.2 Dia: 0.53 (mm) Soil Extract Volume: ____(uL) Soil Aliquot Volume: _____(uL) CONCENTRATION UNITS: CAS NO. COMPOUND UG/L___ Q (ug/L or ug/Kg) 71-43-2----Benzene 0.80 U 108-90-7----Chlorobenzene 0.80 U 95-50-1----1, 2-Dichlorobenzene 1.6 U U 541-73-1----1,3-Dichlorobenzene 1.6

106-46-7----1,4-Dichlorobenzene

0-41-4----Ethylbenzene

108-88-3----Toluene

108-38-3----m-Xylene

95-47-6----o-Xylene_

Client No.

	Sab Name: <u>Recra LabNet</u>	Contract:		2-GW-3	
	Lab Code: <u>RECNY</u> Case No.:			G No.:	_
1	Matrix: (soil/water) <u>WATER</u>	La	ab Sample II	A6374503	
2	Sample wt/vol:5.00 (g/mL) M	1L La	ab File ID:	<u>3A02293.</u>	<u>TX0</u>
	Level: (low/med) <u>Low</u>	Da	ate Samp/Red	v: <u>08/07/96</u>	08/07/96
:	<pre>% Moisture: not dec</pre>	Da	ate Analyzed	1: <u>08/14/96</u>	
(GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (1	nm) Di	ilution Fact	cor: <u>25000.00</u>	1
1	Soil Extract Volume:(uL)	Sc	oil Aliquot	Volume:	(uL)
	CAS NO. COMPOUND		CENTRATION G J/L or ug/K	JNITS: J) <u>UG/L</u>	Q
	71-43-2Benzene	· · · · · · · · · · · · · · · · · · ·		5000	U
	108-90-7Chlorobenzene			5000	U
	108-90-7Chlorobenzene 95-50-11,2-Dichlorobenzene			10000	U
	541-73-11,3-Dichlorobenzene			10000	U
	106-46-71,4-Dichlorobenzene			10000	U
	100-41-4Ethylbenzene			5000	U
	18-88-3IOTuene			5000	U
	208-38-3m-Xylene			5000 5000	U U
	95-47-6o-Xylene			5000	UUU
	106-42-3p-Xylene			5000	

. . .

000268 Client No.

.

Sample ID: <u>A6374514</u>	
	
File ID: <u>3A02281.</u>	<u> </u>
Samp/Recv: <u>08/07/96</u>	08/07/96
Analyzed: <u>08/14/96</u>	
tion Factor: <u>25.00</u>	
Aliquot Volume:	(uL)
TRATION UNITS: or ug/Kg) <u>UG/L</u>	Q
5.0 5.0 10 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	U U U U U U U U U U U U U U U U
	Samp/Recv: 08/07/96 Analyzed: 08/14/96 tion Factor: 25.00 Aliquot Volume:

,

. .

Client No.

U

U

U

U

U

10

10

10

10

10

71

C002

		2-GW-3D DL	
Lab Name: <u>Recra LabNet</u>	Contract:		
Lab Code: <u>RECNY</u> Case No.:	SAS No.: S	DG No.:	_ ·
Matrix: (soil/water) <u>WATER</u>	Lab Sample I	D: <u>A63745141</u>	DL
Sample wt/vol: <u>5.00</u> (g/mL)	ML Lab File ID:	<u>3A02297.1</u>	<u>[X0</u>
Level: (low/med) Low	Date Samp/Re	cv: <u>08/07/96</u>	08/07/96
<pre>% Moisture: not dec</pre>	Date Analyze	ed: <u>08/15/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dilution Fac	tor: <u>50.00</u>	
Soil Extract Volume:(uL)	Soil Aliquot	Volume:	(uL)
CAS NO. COMPOUND	CONCENTRATION (ug/L or ug/F		Q
71-43-2Benzene		10	U
108-90-7Chlorobenzene		10	บ บ
95-50-11,2-Dichlorobenzene_ 541-73-11,3-Dichlorobenzene_		20 20	UUU
106-46-71, 4-Dichlorobenzene		20	UU
			e – 1

0-41-4----Ethylbenzene

108-88-3----Toluene_

108-38-3----m-Xylene_

95-47-6----o-Xylene

106-42-3----p-Xylene

.

Client No.

000274

	2	-GW-4	
Lab Name: <u>Recra LabNet</u> Contract:	l		J
Lab Code: <u>RECNY</u> Case No.: SAS No.: _	SDG	No.:	-
Matrix: (soil/water) <u>WATER</u> La	ab Sample ID:	<u>A6374504</u>	
Sample wt/vol: <u>5.00</u> (g/mL) <u>ML</u> L	ab File ID:	<u>3A02274.</u>]	<u>[X0</u>
Level: (low/med) Low D	ate Samp/Recv	: <u>08/07/96</u>	<u>08/07/96</u>
<pre>% Moisture: not dec</pre>	ate Analyzed:	<u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) D	ilution Facto	r: <u>5.00</u>	
Soil Extract Volume:(uL) S	oil Aliquot V	olume:	(uL)
	CENTRATION UN g/L or ug/Kg)		Q
	<u></u>		
71-43-2Benzene		1.0	U
1108-90-/Cutorobenzene		1.0	U
95-50-11,2-Dichlorobenzene		2.0	U
541-73-11,3-Dichlorobenzene		2.0	U
106-46-71,4-Dichlorobenzene		2.0	U
0-41-4Ethylbenzene		1.0	U
08-88-3Toluene		1.0	บ บ
108-38-3m-Xylene		1.0 1.0	U
95-47-6o-Xylene 106-42-3p-Xylene		1.0	UUUUU
106-42-3p-Xylene		1.0	

000279

Client No	>.
-----------	----

0.40

0.40

0.40

U

ប ប

		2-GW-4D
Lab Name: <u>Recra LabNet</u> C	ontract:	
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SD	G No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID	A6374515
Sample wt/vol:5.00 (g/mL) M	Lab File ID:	3A02286.TX0
Level: (low/med) Low	Date Samp/Rec	w: <u>08/07/96</u> <u>08/07/96</u>
<pre>% Moisture: not dec</pre>	Date Analyzed	: 08/14/96
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (m	m) Dilution Fact	or: <u>2.00</u>
Soil Extract Volume:(uL)	Soil Aliquot	Volume:(uL)
	CONCENTRATION U	
CAS NO. COMPOUND	(ug/L or ug/Kg	1) <u>UG/L</u> Q
71-43-2Benzene		0.40 U
108-90-7CIIIOLODEIIZEIIE		0.40 U
95-50-11,2-Dichlorobenzene		0.80 U
541-73-11,3-Dichlorobenzene	·	0.80 U
106-46-71,4-Dichlorobenzene		0.80 U
00-41-4Ethylbenzene		0.40 U
08-88-3Toluene		0.40 U

108-38-3----m-Xylene

95-47-6----o-Xylene_ 106-42-3----p-Xylene_

· · · · · · · · · · · · ·

Client No.

(00282

Lab Name: <u>Recra LabNet</u> Contract:		W-5	
Lab Code: <u>RECNY</u> Case No.: SAS No.	.: SDG N	o.:	-
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374505</u>	
Sample wt/vol:5.00 (g/mL) ML	Lab File ID:	3A02275.7	<u></u>
Level: (low/med) Low	Date Samp/Recv:	<u>08/07/96</u>	<u>08/07/96</u>
<pre>% Moisture: not dec</pre>	Date Analyzed:	<u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume:(uL)	Soil Aliquot Vol	ume:	(uL)
	CONCENTRATION UNIT (ug/L or ug/Kg)		Q
71-43-2Benzene 108-90-7Chlorobenzene 95-50-11,2-Dichlorobenzene 541-73-11,3-Dichlorobenzene		0.20 0.20 0.40 0.40	U U U U U
100-41-4Ethylbenzene 108-88-3Toluene 08-38-3m-Xylene		0.20 0.20 0.20	บ บ บ
95-47-6o-Xylene 106-42-3p-Xylene		0.20 0.20	U U

FORM I - GC VOA

. . .

...

Client No.

000287

	2-G	₩-5D	
Lab Name: <u>Recra LabNet</u> Contract:			
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No	o.:	-
Matrix: (soil/water) <u>WATER</u> Lab Sample	ID:	<u>A6374516</u>	
Sample wt/vol:5.00 (g/mL) ML Lab File I	D:	3A02287.1	<u>0X1</u>
Level: (low/med) Low Date Samp/	Recv:	<u>08/07/96</u>	08/07/96
<pre>% Moisture: not dec Date Analy</pre>	zed:	<u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dilution F	actor:	1.00	
Soil Extract Volume:(uL) Soil Aliqu	ot Vol	ume:	(uL)
CONCENTRATIO	א נואדיי	s:	
CAS NO. COMPOUND (ug/L or ug			Q
71-43-2Benzene		0.20	UU
103-90-7Chlorobenzene	-	0.20	UU
95-50-11,2-Dichlorobenzene	-	0.40	U]
541-73-11,3-Dichlorobenzene	_	0.40	U
106-46-71,4-Dichlorobenzene		0.40	U
0-41-4Ethylbenzene		0.20	U
108-88-3Toluene	_!	0.20	U
108-38-3m-Xylene		0.20	U
95-47-6o-Xylene	_	0.20	U
106-42-3p-Xylene	-1	0.20	U

.

Client No.

U

0.20

	2-6	W-6	
Lab Name: <u>Recra LabNet</u> Contract:			
Lab Code: <u>RECNY</u> Case No.: SAS No	.: SDG N	o.:	_
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374506</u>	
Sample wt/vol:5.00 (g/mL) ML	Lab File ID:	3A02277.1	<u> </u>
Level: (low/med) Low	Date Samp/Recv:	<u>08/07/96</u>	<u>08/07/96</u>
<pre>% Moisture: not dec</pre>	Date Analyzed:	<u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume:(uL)	Soil Aliquot Vol	ume:	(uL)
	CONCENTRATION UNIT (ug/L or ug/Kg)		Q
71-42-2		0.20	U
71-43-2Benzene 108-90-7Chlorobenzene		0.20	U
95-50-11,2-Dichlorobenzene		0.40	U
541-73-11,3-Dichlorobenzene		0.40	υ
106-46-71,4-Dichlorobenzene		0.40	υ
00-41-4Ethylbenzene		0.20	U
8-88-3Toluene		0.20	U
108-38-3m-Xylene		0.20	U
95-47-6o-Xylene		0.20	U

106-42-3----p-Xylene_

.

٦

000295.

Client No.

	2-GW-6D	
Lab Name: <u>Recra LabNet</u> Contract:		
Lab Code: <u>RECNY</u> Case No.: SAS No.:	SDG No.:	-
Matrix: (soil/water) <u>WATER</u> Lab Sa	ample ID: <u>A6374517</u>	
Sample wt/vol:5.00 (g/mL) ML Lab F:	ile ID: <u>3A02288.1</u>	<u>'X0</u>
Level: (low/med) Low Date S	Samp/Recv: <u>08/07/96</u>	08/07/96
<pre>% Moisture: not dec Date i</pre>	Analyzed: <u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dilut:	ion Factor: <u>50.00</u>	
Soil Extract Volume:(uL) Soil 2	Aliquot Volume:	(uL)
	RATION UNITS: or ug/Kg) <u>UG/L</u>	Q
71-43-2Benzene	10	U
	1 10	U U
95-50-11,2-Dichlorobenzene 541-73-11,3-Dichlorobenzene	20	U
106-46-71,4-Dichlorobenzene	20	U
100-41-4Ethylbenzene	10	Ū
D8-88-3Toluene	10	U
108-38-3m-Xylene	10	U
95-47-6o-Xylene	10	U
106-42-3p-Xylene	10	U

060228.

	h Names Degre Tablict	Contract		2-GW-7		
•	rab Name: <u>Recra LabNet</u>	contract:				
	Lab Code: <u>RECNY</u> Case No.:	SAS No.:	SI	G No.:		
1	Matrix: (soil/water) <u>WATER</u>	Lab	Sample II): <u>A63</u>	374507	-
1	Sample wt/vol: <u>5.00</u> (g/mL)	ML Lab	File ID:	<u>3A(</u>	02278.T	<u>xo</u>
	Level: (low/med) <u>Low</u>	Date	Samp/Rec	ev: <u>08</u> /	/07/96	08/07/96
2	Moisture: not dec	Date	Analyzed	1: <u>08</u> /	/14/96	
(GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dilu	tion Fact	or:	200.00	
:	Soil Extract Volume:(uL)	Soil	Aliquot	Volume	·	(uL)
	CAS NO. COMPOUND		TRATION (or ug/Kg		G/L	Q
	71-43-2Benzene				40	U
					40	Ū
	95-50-11,2-Dichlorobenzene	. <u> </u>			BO	U
	541-73-11,3-Dichlorobenzene				80	U
	106-46-71,4-Dichlorobenzene			8	B 0	U
	100-41-4Ethylbenzene			4	40	U
	08-88-3Toluene				40	U
	T108-38-3m-Xylene				40	U
95-47-6o-Xylene]		40	U
	106-42-3p-Xylene			4	40	U

Client No.

000301

are.

Lab Name: <u>Recra LabNet</u> Contrac		'B-2	
Dab Name. <u>Recta Dabhet</u> Conciac			
Lab Code: <u>RECNY</u> Case No.: SAS	No.: SDG N	io.:	-
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>A6374508</u>	_
Sample wt/vol: <u>5.00</u> (g/mL) <u>ML</u>	Lab File ID:	3A02289.3	<u></u>
Level: (low/med) Low	Date Samp/Recv:	<u>08/07/96</u>	<u>08/07/96</u>
<pre>% Moisture: not dec</pre>	Date Analyzed:	<u>08/14/96</u>	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm)	Dilution Factor:	1.00	
Soil Extract Volume:(uL)	Soil Aliquot Vol	ume:	(uL)
	CONCENTRATION UNIT	10.	
CAS NO. COMPOUND	(ug/L or ug/Kg)		Q
71-43-2Benzene		0.20	U
108-90-7Chlorobenzene	· · · · · · · · · · · · · · · · · · ·	0.20	U I
95-50-11,2-Dichlorobenzene		0.40	Ū
541-73-11,3-Dichlorobenzene		0.40	U
106-46-71,4-Dichlorobenzene		0.40	U U
100-41-4Ethvlbenzene		0.20	U
)8-88-3Toluene		0.20	U
108-38-3m-xylene		0.20	U
95-4/-6O-Xylene		0.20	U
106-42-3p-Xylene		0.20	U -

106-42-3----p-Xylene

····

000304

U

U

0.20

0.20

,		2-TB1-1	
Lab Name: <u>Recra LabNet</u>	Contract:		,
Lab Code: <u>RECNY</u> Case No.:	SAS No.: SD	G No.:	-
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID	A6374518	_
Sample wt/vol: <u>5.00</u> (g/mL)	ML Lab File ID:	3A02290.1	<u></u>
Level: (low/med) Low	Date Samp/Rec	w: <u>08/07/96</u>	08/07/96
<pre>% Moisture: not dec</pre>	Date Analyzed	: 08/14/96	
GC Column: <u>RTX502.2</u> Dia: <u>0.53</u> (mm) Dilution Fact	or: <u>1.00</u>	
Soil Extract Volume:(uL)	Soil Aliquot	Volume:	(uL)
•	CONCENTRATION U	NITS:	
CAS NO. COMPOUND	(ug/L or ug/Kg		Q
71-43-2Benzene		0.20	U
108-90-7Chlorobenzene		0.20	U
95-50-11,2-Dichlorobenzene		0.40	U
541-73-11,3-Dichlorobenzene		0.40	U
106-46-71,4-Dichlorobenzene		0.40	U
00-41-4Ethylbenzene		0.20	U
08-88-3Toluene		0.20	U
108-38-3m-Xylene		0.20	U

95-47-6----o-Xylene_

106-42-3----p-Xylene

Data Validation Narrative Erdle Perforating Project

Method: ICP-CLP Total Metals

SDG Number: 2-RB-1

Holding Times: All sample preparation and analyses were performed within specified maximum holding time requirements.

Samples Selected for Full Validation: 2-SD-2A and 2-RB-1

Flagging requirements are listed in the table below. Other discrepancies are noted as follows:

• The digestion logs do not list pH values for 2-RB-1. Sample 2-RB-1 was preserved in the field with HNO₃ to pH < 2 according to EPA and QAPP specifications for metals. The digestion logs do not indicate that pH was checked prior to preparation and analysis.

• The recovery of barium, chromium and vanadium were below the quality control (QC) limits (80%-120%) in the aqueous matrix spike blank (MSB). The MSB is Recra's Laboratory Control Sample (LCS). The recovery of all spiking compounds were acceptable in the matrix spike blank duplicate (LCSD equivalent) and the pre-digestion spike of sample 2-RB-1.

• The recovery of zinc was above the upper QC limit in the soil matrix spike blank (LCS equivalent). All spike recoveries were acceptable in the soil matrix spike blank duplicate (LCSD equivalent).

• The recovery of aluminum was below the lower QC limit in the solid LCS. A second solid LCS was not spiked with aluminum, therefore, the only recovery value for aluminum in solid is 54.6%. The aluminum result in sample SD-2A is flagged JL since this low percent recovery indicates that the aluminum results are estimated (J) and potentially biased low (L).

The flagging notes in the table below have been applied to the data contained in the Sample Data Summary Package. In cases where one result has been selected over another, the de-selected values have been crossed out in red, per EPA Region II guidance.

Flagging Requirements				
Basis for Qualification	Compound	Sample ID	Action	
Low solid LCS % recovery for aluminum (54.6%)	Al	SD-2A	Flag: JL If LCS %R falls below EPA QC limits of 80%- 120%, qualify results > IDL as estimated and potentially biased low.	
ICP Serial Dilution for copper does not agree within 10% for high-level sample. Cu = 12.3%	Си	SD-2A	Flag: J If ICP Serial Dilution does not agree within 10% for high-level samples (50 X IDL), qualify results as estimated.	

.

•

NYSDEC SAMPLE NO.

1 INORGANIC ANALYSES DATA SHEET

LOD Nome PECEN ENVI	RONMENTAL INC. Cor	stract · NY95-008	SD-2A
Lab Name: RECRA_ENVI			I I
Lab Code: RECNY_	Case No.: 5205_	SAS No.:	SDG No.: 3745
Matrix (soil/water):	SOIL_	Lab Sample	e ID: AD621319
Level (low/med):	LOW	Date Rece	ived: 08/07/96
% Solids: .	_70.1		

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Concentration | C Μ CAS No. Analyte Q P JL 7429-90-5 Aluminum 6550. 1.4_ P⁻ ប៊ Antimony 7440-36-0 P_ 2.3 Arsenic 7440-38-2 В P 39.3 В 7440-39-3 Barium Ε P 7440-41-7 Beryllium 0.28 В 7440-43-9 Cadmium 0.05 U ₽ Calcium 20200 \mathbf{P}^{-} 7440-70-2 Р_ 7440-47-3 Chromium 18.3 3.7 B P Cobalt 7440-48-4 33.4 P T E 7440-50-8 Copper 10200_ P 7439-89-6 Iron P 7439-92-1 Lead 42.9 P 9150 7439-95-4 Magnesium P 7439-96-5 Manganese 117_ Ū CV 7439-97-6 Mercury 0:11 Ρ 7440-02-0 Nickel 12.6 Potassium 583 Β P 7440-09-7 Ρ_ Selenium 0.99 7782-49-2 U P 7440-22-4 Silver 0.49 U P____ 7440-23-5 Sodium 378 В 7440-28-0 Thallium U P 1.3 7440-62-2 Vanadium 14.7 P \mathbf{P}^{-} 7440-66-6 Zinc N 364 Cyanide NR Color Before: BROWN Clarity Before: _____ COARSE Texture: Clarity After: CLEAR Artifacts: Color After: YELLOW Comments: LAB SAMPLE ID: A6374510-SG000010 CLIENT SAMPLE ID: 2-SD-2A

FORM I - IN

. .

NYSDEC SAMPLE NO.

1 INORGANIC ANALYSES DATA SHEET

 Lab Name: RECRA_ENVIRONMENTAL_INC._ Contract: NY95-008_
 2-RB-1

 Lab Code: RECNY_
 Case No.: 5205_ SAS No.: _____ SDG No.: 3745__

 Matrix (soil/water): WATER
 Lab Sample ID: AD620981

 Level (low/med):
 LOW_____

 % Solids:
 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L_

CAS No. Analyte Concentration C Μ 0 69.7 B P 7429-90-5 Aluminum U Ρ 7440-36-0 Antimony 5.1 2.8 U P 7440-38-2 Arsenic 7440-39-3 Barium 3.4 B Ν P Ρ_ Beryllium 0.10 U 7440-41-7 Ρ 0.20 U 7440-43-9 Cadmium p_ 7440-70-2 Calcium 394 B Ε P 7440-47-3 Chromium 2.0 U N U P 7440-48-4 Cobalt 1.0 1.3 P 7440-50-8 Ū Copper P⁻ Iron 21.3 U 7439-89-6 P Lead 7439-92-1 0.90 U P 7439-95-4 Magnesium 37.3 В P 0.88 B 7439-96-5 Manganese CV Mercury 0.20 U 7439-97-6 Nickel____ Potassium Ρ 7440-02-0 _1.8 U 116 В Ρ 7440-09-7 Ρ_ 7782-49-2 Selenium 3.6 U 7440-22-4 Silver 1.8 U P_ P⁻ 1220 В 7440-23-5 Sodium P Thallium U 7440-28-0 4.9 \mathbf{P}^{-} Ũ 7440-62-2 Vanadium 0.90 Ν 7440-66-6 Zinc 5.2 В \mathbf{P}^{-} Cyanide NR Color Before: COLORLESS Clarity Before: CLEAR Texture: Clarity After: CLEAR Color After: COLORLESS Artifacts: Comments: LAB SAMPLE ID: A6374509-SG000008

FORM I - IN

12/91

NYSDEC SAMPLE NO.

|

1 INORGANIC ANALYSES DATA SHEET

Lab Name: RECRA_ENVI	RONMENTAL_INC Contract: NY	SD-2A
Lab Code: RECNY_	Case No.: 5205_ SAS No.:	SDG No.: 3745
Matrix (soil/water):	SOIL_	Lab Sample ID: AD621319
Level (low/med):	LOW	Date Received: 08/07/96
% Solids: .	_70.1	

Concentration Units (ug/L or mg/kg dry weight): MG/KG

						1 1		
	7429-90-5	Aluminum	6550	-		- <u>-</u>		
	7440-36-0	Antimony	1.4	ច		\mathbf{P}		•
	7440-38-2	Arsenic	2.3	B		P		
	7440-39-3	Barium	39.3	в	E	P		
	7440-41-7	Beryllium		в		- _P		
	7440-43-9	Cadmium	0.05	U		- _P		
	7440-70-2	Calcium	20200			P		
	7440-47-3	Chromium	18.3	-		- P_		
	7440-48-4	Cobalt	3.7	B	<u> </u>	- P_		
	7440-50-8	Copper	33.4		E	P	,	
	7439-89-6	Iron	10200	-		P		
	7439-92-1	Lead	42.9	-		- P_		
	7439-95-4	Magnesium		-	· · · · · · · · · · · · · · · · · · ·	P	,	•
	7439-96-5	Manganese				- P_		
	7439-97-6	Mercury	0.11	ប				
	7440-02-0	Nickel	12.6			- P		
	7440-09-7	Potassium	583	B		- P_		
	7782-49-2	Selenium	0.99	ט		- P_		
	7440-22-4	Silver -	0.49	ט		P		
	7440-23-5	Sodium	378	B		_ P_		
	7440-28-0	Thallium	1.3	U		_ P_		
	7440-62-2	Vanadium	14.7			P		
	7440-66-6	Zinc –	364	-	N	P		
		Cyanide		-		NR		
olor Before:	BROWN	Clari	ty Before:		-	Tex	ture:	COARS
olor After:	YELLOW	Clari	ty After: CLE	AR_	_	Art	ifacts:	
	ID:_A637451 LE ID: 2-SD							

FORM I - IN

and the second second

12/91

1

000029 NYSDEC SAMPLE NO.

e. V

	INORGANIC ANALYS	ES DATA SHEET	
Lab Name: RECRA_ENVIE	CONMENTAL_INC Con	ltract: NY95-008	2-RB-1
Lab Code: RECNY_	Case No.: 5205_	SAS No.:	SDG No.: 3745
Matrix (soil/water):	WATER	Lab Sample	e ID: AD620981
Level (low/med):	LOW	Date Rece	ived: 08/07/96
% Solids:	0.0		
·			

.

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	I	T		1		T
	CAS No;	Analyte	Concentration	С	Q	М
	7429-90-5	Aluminum	69.7	B		P
	7440-36-0	Antimony	5.1	U		P ⁻
	7440-38-2	Arsenic	2.8	U		P
	7440-39-3	Barium	3.4	в	N	P
	7440-41-7	Beryllium	0.10	ប		P
	7440-43-9	Cadmium	0.20	U		P
	7440-70-2	Calcium	394	в	E	P ⁻
	7440-47-3	Chromium	2.0	U	N	P_
	7440-48-4	Cobalt -	1.0	U		P_
	7440-50-8	Copper	1.3	ប		P
	7439-89-6	Iron	21.3	U		[P_]
	7439-92-1	Lead	0.90	U		P
	7439-95-4	Magnesium	37.3	В		P
	7439-96-5	Manganese		В		P
	7439-97-6	Mercury	0.20	U		
	7440-02-0	Nickel	1.8	U		P
	7440-09-7	Potassium	116	В		P
1	7782-49-2	Selenium	3.6	U		P
	7440-22-4	Silver -	1.8	U		P
	7440-23-5	Sodium	1220	B		P
	7440-28-0	Thallium	4.9	U		_ P_
	7440-62-2	Vanadium	0.90	U	N	P_
	7440-66-6	Zinc -	5.2	B		- P_
		Cyanide				NR
	I	.				
Color Before:	COLORLESS	Clari	ty Before: CLE	AR		Texture:
Color After:	COLORLESS	Clari	ty After: CLE	AR	_	Artifacts:
Comments:						
	ID: A637450	9-SG000008				
						······

FORM I - IN

. . .

ERDLE PERFORATING PROJECT: Hold Times - Metals CLP

Sample Field ID	Sample Lab ID	Matrix	Analyte Method	Collection Date	Digestion Date	Analysis Date	Hold Time (days)	Hold Time Met? (Y,N)	Sample Properly Preserved? (Y,N)
2RB-1	A10374509	Water	CLP-ICP Total Metals	8/7/96	8/12/96 8/14/96	8/15/96	8 10	Y	Y
		Soil	CLP - LCP Total Metals CLP - LCP Total Metals	8/7/96	8/19/96	8/20 → 8/23, 8/29/96	13 7 16 22	Y	Y
	, 				. ,	· ·			
·									
]
	``````````````````````````````````````			· 					
			· · · · · · · · · · · · · · · · · · ·						
				· · ·					

Hold times for soil and water samples:

CLP Metals - 6 months (180 days)

Preservation :

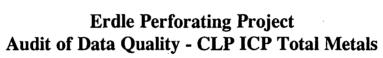
Water - pH<2 HNO3, 4° C Soil - 4° C •If hold time exceeds criteria, qualify results > IDL as biased Low (L) and results < IDL as biased low (UL).



Sam	plus 2-SD-2A & 2-RB-1	Yes	No	N/A	Sample Affected/Comments
1.0	Calibration				
1.1	Was Form IIA included in analytical report?	/			ICY & CCV
1.2	Were a blank and $\geq 1$ standards used for calibration? • If the number of standards is less than < specified, qualify as unusable (R).	~			Stols: Sb, As, Be, Cd, Cr, Co, Cu, Pb, Mm, (Hg by AA); Ni, Ag, Ti, Vn, Zn.
1.3	Was the instrument calibrated daily? • If instrument was not calibrated daily, qualify data as unusable.	~	ł 		
1.4	Is the correlation coefficient (r) ≥0.995? • If r < 0.995, qualify as unusable (R).	~	<u> </u>		
1.5	<ul> <li>Was a CRDL standard run after the ICV/ICB at 2 x CRDL, or at 2 x IDL, whichever is greater? (Form IIB)</li> <li>Not required by EPA Region II for Al, Ba, Ca, Fe, Mg, Mn, Na, or K</li> <li>If not, flag all data between the CRDL standard value ± 2 CRDL as estimated.</li> </ul>				
1.6	Are the initial calibration verification (ICV) and continuing calibration verification (CCV) results within 90-110% recovery (%R) of the true value? • If ICV or CCV % R falls outside the acceptance windows but within the ranges of 75-89%, qualify results > IDL as estimated and biased low ,(JL), results < IDL as estimated (UJ). • If ICV or CCV %R falls within the range of 111-125%, qualify results > IDL as estimated and biased high (JH); results < IDL are acceptable. • If ICV or CCV % R < 75%, qualify all positive results as unusable (R). • If ICV or CCV %R > 125%, qualify results > IDL as unusable (R).				

 $\varphi$ 

		Yes	No	N/A	Sample Affected/Comments
1.7	Were CCV standards run at a frequency of 10%, or every 2 hours?	/			
1.8	Did recalculations of the ICV and CCV %R verify the reported results? (Recalculate one ICV and One CCV per package).	/	•		See: #1 ICV/CCV 7° Recovery, Erdle Recalculation Sheet Metals (attached).
General	Comments				
	· · ·				
				_	
2.0	Blanks				
2.1	Was Form III included in the analytical reports?	/			ICB, CCB, Prup Blk.
2.1	Were blank results accurately reported from the raw data? (Check blanks associated with the field samples being validated; check 10% of the target metals.)	~			
2.2	Was a calibration blank run after each ICV and CCV?				
2.3	Was the calibration blank run after the last analytical sample?				
2.4	Was a (method) reagent blank run with the sample batch? (1 per digestion batch $\leq$ 20 samples).				




		Yes	No	N/A	Sample Affected/Comments
2.5	<ul> <li>Was the concentration in the calibration and reagent blanks ≤ CRDL if CRDL &gt; IDL? If CRDL &lt; IDL, are the calibration blanks &lt; 2 x IDL?</li> <li>If analytes are detected in a blank, qualify sample results &gt; IDL and &lt; 5x the blank concentration as (B). When more than one blank is run, use the highest concentration for assessments. (It may be necessary to compare the raw data from both blank and sample.)</li> <li>If blanks &lt;0, and the absolute value of the blank &gt; CRDL, qualify results &lt; 5x CRDL as biased low (L) and results &lt; IDL as biased low (UL).</li> <li>Do not qualify field blanks based on the results of other field blanks.</li> </ul>				low levels & target analytes slightly above on below stated detection Admits? Values reported are within QAPP criteria. CRDL > IDL for all analytes. Data is acceptable.
2.6	Was an equipment blank (rinsate) collected per equipment type (for non-dedicated equipment) as per Table 4 of the Phase II Work Plan?				Samp ID = 2-RB-1
General	Comments Interference Check Sample (ICS)				
3.1	Was Form IV included with analytical report?	$\checkmark$			
3.2	Was an ICS run before and after each sample run (or at least twice per 8 hour working shift)? • If not, flag sample results where Al, Ca, Fe or Mg are higher than in the ICS as estimated.	· v			



		Yes	No	N/A	Sample Affected/Comments
3.3	<ul> <li>Do ICS results fall within 20% of the true value for solution AB (contains interferents &amp; analytes)?</li> <li>(Check one per pkg. Not required by EPA Region II for Ca, Mg, K, Na).</li> <li>If sample concentrations of AI, Ca, Fe, and Mg are ≤ the ICS concentrations for these metals, sample data is generally acceptable. If other elements are present &gt; 10 mg/L consult Table 2, SOW for interference effects. If an interference produces an estimated analyte concentration &gt;2x CRDL and &gt;10% of the reported concentration in a sample, qualify the affected result as biased high (JH).</li> <li>For samples with AI, Ca, Fe, or Mg results ≥ ICS levels for these metals:</li> <li>If ICS recovery &gt; 120% and sample results &gt; IDL, qualify as biased high (JH).</li> <li>If ICS recovery is between 120-150% and sample results &gt; IDL, qualify as estimated and biased high (JH).</li> <li>If ICS recovery &gt; 150%, reject positive results as unusable (R).</li> <li>If ICS recovery is between 50-79% and sample results are ND, qualify as estimated and biased low (JL).</li> <li>If ICS recovery is between 50-79% and sample results are ND, qualify as estimated and biased low (JL).</li> <li>If ICS recovery is between 50-79% and sample results are ND, qualify as estimated and biased low (JL).</li> <li>If ICS recovery is between 50-79% and sample results are ND, qualify as estimated and biased low (JL).</li> <li>If ICS recovery &lt; 50%, reject results &gt; IDL and &lt; IDL as unusable (R).</li> <li>Indicate the bias for estimated results in the written review.</li> <li>Circle values &gt; 20%</li> </ul>				
3.4	Was the ICS run after the ICV standard?				
	Were analytes not contained in the ICS AB solution detected > IDL? • If elements not present in the ICS are detected > IDL, qualify sample results > IDL, which approximate levels in the ICS, as estimated and biased high (JH). • If elements not present in the ICS are detected < negative IDL, and the absolute value of the negative results is > IDL, qualify results for samples with comparable or higher levels of interferents as estimated and biased low (JL), if affected analytes are reported as < IDL.				Data acceptable all analytes in ICS AB I

A Carlos Carlos Yes No N/A Sample Affected/Comments  $\frac{7^{\circ}R}{500000} = \frac{502289.9}{500000} \times 100 = 100.46$ TCS 3.6 Did recalculation of the ICS recoveries verify the reported recoveries? (Check one per pkg.) Recalculation General Comments 4.0 Laboratory Control Sample (LCS) 4.1 Was Form VII included in the analytical report? 4.2 Was one LCS analyzed per 20 samples for the sample delivery group (or digestate batch)? • If not, flag associated samples as estimated, If LCS applies to more than 20 samples, the first 20 samples do not require a flag. Barium 72.17° Chromium 72.57° belan land Vanadium 73.37° Canthal lumit. Flag aqueous sample for these analytes as estimated = "J" 4.3 Were all aqueous LCS results within 80-120% R (except for Sb and Ag, which have no control limits)? (Check one per pkg.) • If LCS %R falls between 50-79%, qualify results > IDL as estimated and biased low (JL); sample results < IDL as unusable (R). • If LCS %R falls between 121-150%, qualify results > IDL as estimated and biased high (JH), sample results < IDL are acceptable. potentially. beased • If LCS %R are < 50%, reject all results as unusable (R). • If LCS %R are > 150%, reject results > IDL as unusable (R). no plags & Matrix Spike Blank LCSD & Dup. is O.K. ? R all within limits The plags. Erdle.Metals CKL



		Yes	No	N/A	Sample Affected/Comments	
4.4	<ul> <li>Were all solid LCS results within the form VII control limits? (Check one per pkg.)</li> <li>If the LCS is rejectable due to duplicate injections or analytical spike recoveries, flag associated data as estimated, (J), regardless of LCS recoveries.</li> <li>If the LCS true value &lt; IDL, data is acceptable.</li> <li>If LCS %R falls below or above EPA control limits, qualify results &gt; IDL as estimated (J).</li> <li>If LCS %R &gt; control limits, sample results &lt; IDL are acceptable.</li> <li>If LCS %R &lt; control limits, qualify sample results &lt; IDL as estimated (UJ).</li> </ul>		V		Sample Affected/Comments 7° Ric Al = 54.69° => JL = (See 7° Ric Zn = 154.9° => JH -> LC. (alk are Salid LCS Results not established in OHPP. Laboratory limits = (80-125),	Comm D
4.5	Do LCS % recoveries listed in reports match the raw data? (Check 10% of the target metals).					
4.6	Does recalculation of the LCS recoveries verify the					
4.0	reported recoveries? (Recalculate one per pkg.)	ĻĽ			See Attached Kecalculation Sheet	
Genera The	reported recoveries? (Recalculate one per pkg.) I Comments Al was not spiked in referre, the only recovery i	to raln	The e	lak far	(See Attached Recalculation Shert) cratery prepared solld LCS/LCSD. Al in solid is 54.67°= JL	
Genera The 5.0	reported recoveries? (Recalculate one per pkg.) Il Comments Al was not spiked in refere, the only recovery i Duplicate Analysis	to ral n	The e	lak for	See Attached Kecalculation Shert) cratery prepared solld LCS/LCSD. Al in solid is 54.67°⇒JL	
Genera The	reported recoveries? (Recalculate one per pkg.) I Comments Al was not spiked in refere, the only recovery i	to valu	The e			
Genera The 5.0	reported recoveries? (Recalculate one per pkg.) I Comments Al was not spiked in refere, the only recovery b Duplicate Analysis	to ral n	the v		Duplicate on 2-RB-1D => aqueons Duplicate = 2-RB-1D => aqueons (Duplicate performed on equipinint (Duplicate performed on equipinint blank) No plage => data penults 2	



		Yes	Np	N/A	Sample Affected/Comments
5.4	Did the % solids differ by $< 1\%$ ? • If difference $> 1\%$ , a separate Form VI is required for each sample. Report the concentration in $\mu g/L$ on wet weight basis and calculate RPD or %D for each analyte.				7° Solids o.k.
5.4	<ul> <li>Were the RPD values for results &gt; 5x CRDL ± 20% (±35% for soil)?</li> <li>If RPD values fall outside the above control limits, qualify results for samples of the same matrix as estimated (J).</li> </ul>				Diplirate = Aguians 2-RB-10 RPD's good.
5.5	When one or both results is $\leq 5x$ CRDL, were the RPD values within $\pm$ CRDL ( $\pm 2$ CRDL for soil)? • If RPD values fall outside the above control limits, qualify results for samples of the same matrix as estimated (J).	~			
5.6	<ul> <li>When one or both results is ≤ 5x CRDL, was the RPD value within ± CRDL?</li> <li>If RPD &gt; ± 20% (aqueous) or ±35% ( soil), qualify results for samples of the same matrix as estimated, (J).</li> <li>If both results are &lt; IDL, no RPD is calculated.</li> <li>Exceedances should be marked on Forms I and VI.</li> </ul>				
5.7	Does recalculation of the RPD values verify the reported values? (Recalculate one per pkg.)				1293.82 ×100:54.27 + 541.36 (See Attached Recalculation Sheet).
General	Comments				Sheit).
6.0	Matrix Spike (MS) Sample				
6.1	Was Form V included in analytical report?				





		Yes	No	N/A	Sample Affected/Comments	
6.2	<ul> <li>Was a matrix spike sample performed per 20 samples on each group of samples of similar matrix and concentration (or for each Sample Delivery Group)?</li> <li>If not, flag results &lt; 4x the SWO specified spike levels as extimated, (J). Of one MS/MSD applies to more than 20 samples, the first 20 need not be flagged.</li> <li>Not required for Ca, Mg, K, Na, Al (soil) or Fe (soil)</li> </ul>	MIS			2-RB-15 => No MSD performed >2-SD-2 => Solid sample has No MS/MSD => Field Crew did not send extra volume b sample as MS/MSD on label.	desegint.
6.3	Was the sample selected for spiking analysis a sample other than a field blank? • If a field blank was spiked, flag associated results < 4x spike levels as estimated, (J).	· · ·			did not send extra volume & sample as Ms/MSD on label. Matrix Spike performed on equipment blk. 2-RB-15 = All spike routs good. Data acceptable => no flags 9°R=good	
6.4	Were the spike amounts equal to the concentrations listed in Table 3, Exhibit E, of the ASP?	/				
6.5	If the spiked sample was the same as that used for duplicate sample analysis, were spike calculations based on the "original" unspiked sample results?		-		,	
6.6	Are the recovery results within 75 - 125%? (unless the sample concentration exceeds spike concentration by a factor of 4) Water: • If a spike recovery is 125-150%, qualify results > IDL as estimated, biased high (JH); results < IDL are acceptable. • If a spike recovery is > 150%, qualify results > IDL as unusable, (R). • If a spike recovery falls between 30-74%, qualify results <idl (j,="" as="" biased="" low="" sestimated,="" ul).<br="">• If a spike recovery falls between 30-74%, qualify results <idl (j,="" as="" biased="" estimated,="" low="" ul).<br="">• If a spike recovery is &lt; 30%, qualify results as unusable, (R). Soil • If a recovery is between 126-200%, qualify results &gt; IDL as estimated, biased high, (JH); results &lt; IDL are acceptable. • if a recovery is 10-74%, qualify all results as estimated, biased low, (JL). • If a recovery is &lt; 10%, qualify results as unusable, (R). • If a recovery is &gt; 200%, qualify results &gt; IDL as unusable, (R). • If a recovery is &gt; 200%, qualify results &gt; IDL as unusable, (R).</idl></idl>				2-RB-15 ⇒ 9° Rec all within 75-1257°	





Sample Affected/Comments Yes No N/A VICONAVIAS acciptable. 6.7 If the recovery failed and the result is flagged "N", was a post-digestion spike performed for the failed analytes (excluding Ag)? (Form V-2) 1673.83 ×100= 83.694 6.8 Does recalculation of the %R results verify the See: (Attached Recalcula frin Sheet) 2000 reported recoveries? (Recalculate one per pkg) **General Comments** 7.0 **ICP** Serial Dilution 7.1 Was Form IX included in the analytical report? 7.2 Were serial dilutions (five-fold dilutions) run per 20 samples on a sample for each group of samples of similar matrix and concentration (or each Sample Delivery Group)? (Required only if initial concentration > 10x IDL). • If not, flag associated results > 10x IDL (or > CRDL if CRDL > 10x IDL) as estimated. Samp ID = SD-2AL 4 (Note = Serial Dilution also performed on 2-RB-1L = Equipment Blank). 7.3 Was the sample selected for serial dilution a sample other than a field blank? • If not, flag associated results > 10x IDL (or > CRDL if CRDL > 10x IDL) as estimated. Capped => 12.37° => > SC XIDL Flog J 7.4 Did results agree within 10% for high-level samples (50 x > IDL)? (Check one per pkg.) • If criteria are not met, qualify data as estimated (J). Not all agril. As = 67.97° Pata Form= 1007° 7.5 Does recalculation of serial dilution % Difference See Recalculation Sheet). Na=55.17 Data For Be= OK ) As & Na were not 100% (%D) verify the reported %D? (Recalculate one per DIK pkg) 7 SUXIDL = no May Erdle.Metals CKL page 9



General	comments Calcium interference	[ <u>Yes</u> ? ⇒ 	No	ECP terle	Sample Affected/Comments serial dilution inducates rence - "(a) Initial & Serial The.
	is 10.37° > data		acc	ipto	The.
8.0	Sample Result Verification				
8.1	Was Form I included in the analytical report for each sample?				
8.2	Were soil results corrected for % solids?				
8.3	Were results < IDLs coded "U?"	V			(See General Comments)
8.4	Is raw data provided, and is it legible? • If not, lab must resubmit data.				
8.5	Are sample results from raw data within the ICP linear range (Form XII)?				
8.6	Are sample results >5 x ICP IDL, if ICP results are used for As, Tl, Se or Pb?		~		Sample results > IOL & CRDL NYSPEC duins acceptable if 2 CRDL
8.7	Does the raw data contain base line shifts, negative absorbances, omissions, or other anomalies?			1	
8.8	Were the CRQLs listed in Exhibit C met?	. /			
8.9	Are transcription or reduction errors present?		ر		
General	Comments Results > IDL < CA	roh	6	lag	B according to NYSDEC ASP.
9.0	General Reporting				





		Yes	No	N/A	Sample Affected/Comments
9.1	Were Forms I-IX present, and properly labelled with lab name, case number, client sample ID, SDG number, contract number and correct units?				
9.2	Was the digestion log (Form XIII) present? (Did form list pH values, % solids, and preparation dates)?	form V XIII			> pH not listed on Form XIII or on Metals Digistra Log in raw data.
9.3	<ul> <li>Was Form X present for quarterly IDLs? Confirm that the CRDL &gt; IDL for each analyte.</li> <li>If not, flag results &lt; 5x IDL as estimated for analytes where CRDL &lt; IDL.</li> </ul>	Form	~~		<ul> <li>&gt; pH not listed on Form XIII or on Metals Digister Log in rawdata.</li> <li>&gt; IDL's <u>semiannual</u> for Record All CRDL'S &gt; IDL's for analytes.</li> </ul>
9.4	Was Form XI present for ICP Interelement Correction Factors?				
9.5	Was Form XII present for quarterly IDL linear ranges? Confirm that sample results are lower than the highest calibration standard. • If not, flag results as estimated.	Forme			> Form XII states <u>Semiannin</u> Lunian vanges. Sample Results <1 Cal. Stals.
10.0	Field Duplicates				
10.1	Were field duplicates collected with the field sample set, according to the Phase II Remedial Investigation Work Plan?				No field duplicate collected => This complies with Phase I Remedial Investigation work Plan.
General	Comments				0

### **Erdle Perforating Project**

### Recalculation Sheet Metals

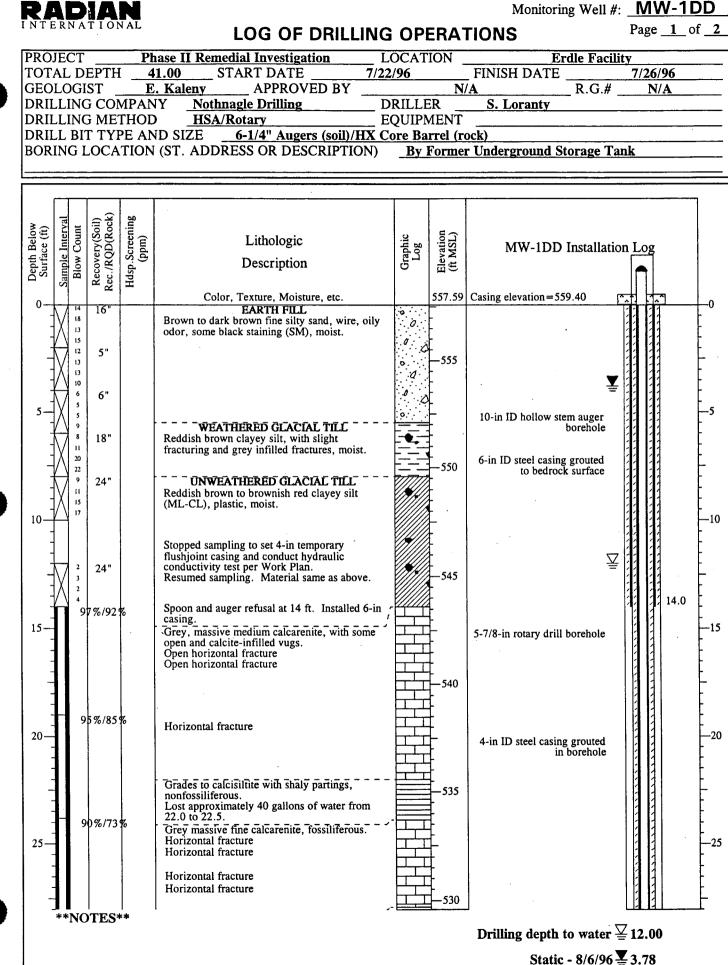
ICV/CCV % Recovery  $\% R = \frac{Found}{True} x \ 100$  $ICV'_{s} = \frac{49744.04}{50000.0} \times 100 = 99.5 \times ; Pb = \frac{500.70}{500.0} \times 100 = 100.1 + As = \frac{508.24}{500.0} \times 100 = 101.6 + ; Ha = \frac{5.40}{5.0} \times 100 = 105 + C$ CCV's  $C_{1} = \frac{505.39}{500} \times 100 = 101.1 + ; M_{2} = \frac{51844.95}{50500.0} \times 100 = 103 + ; M_{2} = \frac{51844.95}{50500.0} \times 100 = 103 + ; Se = \frac{523.161}{500.0} \times 100 = 104.6 + ;$ 2 **ICPES ICS % Recovery**  $\% R = \frac{Found \ sol'n \ A}{True \ sol'n \ A}$  $ICS | AB | \frac{9^{\circ}R}{(7h_{g})} = \frac{528640.6}{500000} \times 100 = 105.73 + \frac{105.73}{105.7}$ ICS AB 9°R - 188985.5 ×100 - 94.49 4 GHK+90172.0 ×100 - 94.49 4 GHK+90172.0 (94.5) 200000.C

INOR.CAL page 1

### Inorganics

### (Continued)

LCS % Recovery 3  $\% R = \frac{LCS Found}{LCS True} x 100(\mu g/L aqueous results, mg/kg solid results)$ Pb = 44.3 mg/kg 52. 4 mg/kg Soliol As = 1013.9 mg/L x100 = 101.39 + = 101.44 1000.0 mg/L Aquens **Duplicate Sample Analysis** 4 X1 = Conginal Sample ; X2 = Duplicate Sample.  $RPD = \frac{|X_1 - X_2|}{(\frac{X_1 + X_2}{2})} \times 100 \qquad \frac{|394.45 - 688.27|}{394.45 - 688.27} \times 100 = 54.27 = 54.34$ 


INOR.CAL page 2

### Inorganics

### (Continued)

5 Matrix Spike (MS) Sample  $% R = \frac{Spiked Sample Result - Original Sample Result}{100}$ Spike Added Al 1/2= 1743.52 - 69.69 ×100= 83.69 = (83.7) 4 Pb9°R= 448.62 - . 9000 x100= 89.54 = 89.57° 500.0 Farm SA Pb = 89.77° o.k. 6 **ICP** Serial Dilution %  $D = \left| \frac{\text{Initial Sample Result} - \text{Serial Dilution Result}}{\text{Initial Sample Result}} \right| x 100$ As 9° D = 18.34 - 14.00 / x100 - 67.866 = 67.97° 8.34 Data Form 9 = 100 % not match Zn 7°D = 1 1326.92 - 1419.20/ x100 = 6.95 7° datajour = 9.0 4 1326.92 k. Ata 7° D = 1 1.02 - 2.05 / 100 = 100.97° = 1019° J 90 Na = <u>1379.60 - 2140.00</u> x100= 55.19°; Form 9 = 100.7° 1379.60 x100= 55.19°; Form 9 = 100.7° INOR.CAL page 3

.



Statt - 0/0/



### LOG OF DRILLING OPERATIONS

Page <u>2</u> of <u>2</u>

LOCATION **Phase II Remedial Investigation** PROJECT **Erdle Facility** Recovery(Soil) Rec./RQD(Rock) Hdsp.Screening (ppm) Sample Interval Depth Below Surface (ft) Blow Count Elevation (ft MSL) Graphic Log Lithologic MW-1DD Installation Log Description Color, Texture, Moisture, etc. Subvertical fracture 83%/64% Becomes softer and brittle. Broken return from 28.1 to 28.3. Grey fine calcarenite with shaly partings, oily sheen noted on some of the partings. 30 -30 31.0 Grey coarse calcarenite with fewer shaly 90%/63% partings. Horizontal fractures and partings from 29.8 to 30.3 ft. 525 Terminated coring and reamed corehole with 5-7/8-in rotary bit. Installed 4-in steel casing. Continued coring after grout on casing set up. Grey thinly bedded coarse calcarenite with horizontal shaly partings. Occasional mineralized vug. Thin horizontal fractures spaced at 6 inches to 1 foot. Lost approximately 45 gallons of water while 35 -35 Open HQ corehole 100%/95% coring. 520 40 40 41.0 Bottom of borehole at 41.0 feet.



LOG OF DRILLING OPERATIONS

Page <u>1</u> of <u>1</u>

:

•	GEO	AL LC	, D) )GI	EPTH ST	I <u>2</u>	4.00     START DATE     7/2       . Kaleny     APPROVED BY	LOCAT 2/96 DRILLE	N	Erdle Facilit FINISH DATE /AR.G.# S. Loranty	7/25/96	
	DRII DRII		INC BI	G ME F TY	THOE PE AN		EQUIPN	<b>MENT</b>	lient - Southeast	······································	_
											_
									· · · · · · · · · · · · · · · · · · ·		
	Depth Below Surface (ft)	Sample Interval	Blow Count	Recovery(Soil) Rec./RQD(Rock)	Hdsp.Screening (ppm)	Lithologic Description	Graphic Log	Elevation (ft MSL)	MW-2D Installation		
	0—		5	. 6"		Color, Texture, Moisture, etc. STRATIFIED GLACIAL DRIFT		556.62	Casing elevation=558.42		)
		X	4 6 5 5 7 7	10"		Reddish brown clayey silt, moist. Brown fine sand with some silt(SM), dark gray staining, wet to saturated.					
	5—	X	5 9 16 13 18 26	14" 15"		<b>WEATHERED GLACIAL TILL</b> Reddish brown clayey silt (ML) with trace stones, vertical fractures infilled with grey clayey silt to silty clay, moist.			10-in ID hollow stem auger borehole 6-in ID steel casing grouted		5
•			24 8 11 12 12 5 7	16" 24"		Reddish brown clayey silt (ML-CL), occasionally laminated, plastic, moist to wet.			to bedrock surface		10
			8 9 2 3 4 4 10	24" 0%/92	%	Grey sandy silt. Spoon and auger refusal at 14 ft. Installed 6-in casing. Grey, massive calcarenite, porous with open	,	545			15
				.00/10	0	and mineralized vugs and fractures. Lost approximately 20 gallons over core run. Lost approximately 50 gallons of water over			Open HQ corehole		
	20—					core run. Becomes massive with fewer vugs and dissolution features. Shaly partings.		535			20
						Bottom of borehole at 24.0 feet.				24.0	
)		 **	I NC	 )TES [:]	 	1	L	1		L	
			-						Drilling depth to water	<b>2.50</b>	
	Static - 8/6/96 💆 2.74										



## LOG OF DRILLING OPERATIONS

Monitoring Well #: MW-6

Page <u>1</u> of <u>1</u>

	PROJECTPhase II Remedial InvestigationLOCATIONErdle FacilityTOTAL DEPTH8.20START DATE7/23/96FINISH DATE7/23/96									
	GEOLOGIST <u>E. Kaleny</u> APPROVED BY <u>N/A</u> R.G.# <u>N/A</u>									
DRILL					EQUIPN		S. Loranty			
DRILL	Βľ	Γ ΤΥΙ	PE AN	ID SIZE 6-1/4" Augers						
BORIN	BORING LOCATION (ST. ADDRESS OR DESCRIPTION) <u>Downgradient - South-southwest</u>									
Depth Below Surface (ft) Sample Interval	Blow Count	Recovery(Soil) Rec./RQD(Rock)	Hdsp.Screening (ppm)	Lithologic	Graphic Log	Elevation (ft MSL)	MW-6 Installatior	ı Log		
Depth Surfa Sample	Blow	Recovi Rec./R(	Hdsp.S.	Description						
0		5"		Color, Texture, Moisture, etc. STRATIFIED GLACIAL DRIFT		555.25	Casing elevation=557.48 Concrete		0	
1 1X	1 1	5		Dark brown to brown fine sand with silt and trace clay (SM), wet.	0.	Ļ	2" ID Sch.40 PVC Riser 🕎		-	
	1 6	14"		Laver of black stained sand and silty clay with		1	Hydrated bentonite	2.5	-	
XE	8 10 11			swampy odor, saturated.	0.0	  -  -	#00 Morie silica sand	3.2	-	
5_	6 7 9	14"			0	- 	2" ID Sch.40 PVC Screen, 0.010" slot		- —5	
	16 10	24"		Red clayey silt, massive, with fractures and					-	
XEI	16 23 28			grey silt-filled fractures, moist to wet.					-	
	28			Bottom of borehole at 8.0 feet.		1		8.2	-	
				· · · · · · · · · · · · · · · · · · ·						
1										
	1									
									]	
**	NC	TES*	¢ *				Drilling depth to water			
							Static - 8/6/96			
	<u> </u>			· · · · · · · · · · · · · · · · · · ·			Static - 8/6/96	<u> </u>		

. .

					I AL.				Monitoring Well #:		
	1 1 1 1	LOG OF DRILLING OPERATIONS							Page <u>1</u>	of <u>1</u>	
	PROJ						OCAT	ION _	Erdle Facilit		
	TOT A					4.00 START DATE 7/23 . Kaleny APPROVED BY	/96	N	FINISH DATE A R.G.#	7/25/96 N/A	
L				_	<u>IPAN</u>		RILLE		S. Loranty		
•					THOD		QUIPN	MENT			
						ID SIZE <u>6-1/4" Augers/HQ Core</u> (ST. ADDRESS OR DESCRIPTION)	Dor	marad	ient - South		
										<u></u>	
	Depth Below Surface (ft)	Sample Interval	Blow Count	Recovery(Soil) Rec./RQD(Rock)	Hdsp.Screening (ppm)	Lithologic Description	Graphic Log	Elevation (ft MSL)	MW-6D Installation	Log	
	0-		<u> </u>			Color, Texture, Moisture, etc.		554.87	Casing elevation=556.77		0
		X	2 3 3	10"		STRATIFIED GLACIAL DRIFT Brown fine sand and dark brown clayey silt, moist.		- -	1 V		
		X	5 8 11 11	8"		Brown fine sand with some silt(SM), wet to saturated.			_		
	5	X	8 10 12	3"		·		550	10-in ID hollow stem auger borehole		5 5
		X	12 8 25 28	14"		Red clayey silt (ML), massive, with trace fine gravel, vertical fractures infilled with grey clayey silt to silty clay, moist.			6-in ID steel casing grouted to bedrock surface		• • •
•	10	X	6 8 12 12	14"		<b>UNWEATHERED GLACIAL TILL</b> Reddish brown clayey silt (ML-CL), occasionally laminated, plastic, moist to wet.					- 
r		X	2 4 7 8	24"							-
		X	3 2 4 5	15"		Grey silty sand (SM) with clay and stones.				14.0	-
	15		9	5%/95	8	Spoon and auger refusal at 14 ft. Installed 6-in casing. Grey, massive calcarenite, fossiliferous, porous with open and mineralized (calcite) vugs and fractures. 1/2-in horizontal fracture at 16.0		- 			-15
	1 - 1 - 1					Lost approximately 75 gallons of water from 16.5 to 19.0. Horizontal fracture		+ + + + +			
	20-			.00/100		Horizontal fracture Horizontal fracture Horizontal fracture Becomes massive with fewer vugs and		- 	Open HQ corehole		20
						dissolution features, no fractures. Lost approximately 50 gallons of water over core run.		╈╍┿┙╋			- - 
						Bottom of borehole at 24.0 feet.				24.0	
						· .					
		**]	NO	TES*	 :*		L	1			
r									Drilling depth to water		
									Static - 8/6/96 🛓	- 1.18	

and the second secon

•

.

.

, .

Well Number MW	HNu Reading <i>WIA</i>
Date 8/6/96	Free Product Yes/No
	Apparent Thickness
Water-Level Measurement a) Depth To Water From TOC <u>4.00 ff</u> b) Total Well Depth from TOC <u>8.96 ff</u> c) Water Column Height <u>4.96 ff</u> d) Casing Diameter <u>2"</u> e) 1 Well Volume <u>0.8 gal</u> 3 Well Volumes <u>2.4</u> 5 Well Volumes <u>4.0</u> Well Purging	Factor for Determining Well Volumes Casing Diameter Gal/Linear ft. 1.75 0.1249 2 0.1632 4 0.66 6 1.47
Purge Start Date 816196 Purge	Start Time14:20
Purge Stop Date 86196 Purge	Stop Time 14:25
Purge Method:Dedicated Teflon Bailer Centrifugal Pump Tubing Type (if any):Dedicated Teflo	Dedicated Polyethylene Bailer Submersible Pump nDedicated Polyethylene
Volume pH Specific To	emp. Dissolved Turbidity
Purged Conductance	Oxygen
INITIAL 6.54 1.20 uslan 2	4.0° - 31 NTU
	.5 182
	0.4 307'
@TIME of SAMPUNE 6.60 0.93 22	<u>.8</u> – <u>28</u>
Sampling Date of Collection817196 Sampling Method:Dedicated Teflon	Time of Collection $O_1^2 : 20$ Bailer $\checkmark$ Dedicated Polyethylene bailer
Types of Analyses	SW8270 (semi-volatiles)
	Sheen to purge water. Well to recover overnight prior

	er <u>M</u> W	<u> 10</u>	HNu R	leading	t
Date <u>8</u> /	6196	<u> </u>	Free P	roduct Yes/No	
			Appare	ent Thickness_51	ght sheen
Water-Leve a) Depth To V b) Total Well c) Water Colu d) Casing Dian e) 1 Well Volu 3 Well Volu 5 Well Volu	Vater From Depth from mn Height meter ume umes	TOC 6.08		Factor for Deter Casing Diameter 1.75 2 4	mining Well Volumes r Gal/Linear ft. 0.1249 0.1632 0.66
				6	1.47
Well Purgin Purge Start Da Purge Stop Da Purge Method	ate <u>81</u> ate <u>8</u>	6/96 6/96 Dedicated Teflon I		Dedicated Polyethy	lene Bailer
		Centrifugal Pump		Submersible Pump	
Tubing Type (	(if any):	Dedicated	1 Teflon	Dedicate	d Polyethylene
Volume	рН	Specific	Temp.	Dissolved	Turbidity
Purged		Conductance	17 -700	Oxygen	
initial F2 A	6.99	3.35 m 5/an.	16.7°C_		71000
5.3 gal	6.98	3.01	15.6		<u></u>
10.6	6.92	3.08	15.3		>1000
15.9	6.91	3.10	15.1		318
21.1	6.92	3.12	15.1		107
Date of Collec		Dedicated	Teflon Bailer	Dedicated	Polyethylene
Date of Collect Sampling Met	thod:	Dedicated	Teflon Bailer	Dedicated	
Sampling Date of Collect Sampling Met Types of A	thod: nalyses	Dedicated	Teflon Bailer	Dedicated	Polyethylene > POLYETHYLENE TUBL
Date of Collect Sampling Met Types of A	thod: <b>nalyses</b> 0/8021 (VC	Dedicated Submers	Teflon Bailer	Dedicated דו הא הצטוכא דב ב SW8270 (semi-vol	Polyethylene > POLYETHYLENE TUBL
Date of Collect Sampling Met Types of A	thod: <b>nalyses</b> 0/8021 (VC	Dedicated Submers	Teflon Bailer	Dedicated דו הא הצטוכא דב ב SW8270 (semi-vol	Polyethylene > PolyETHYLENE TUBLA atiles)

Free Product Yes/No Apparent Thickness Factor for Determining Well Volumes Casing Diameter Gal/Linear ft. 1.75 0.1249 2 0.1632 4 0.66 6 1.47 Start Time Stop Time  Dedicated Polyethylene Bailer Submersible Pump
Apparent Thickness Factor for Determining Well Volumes Casing Diameter Gal/Linear ft. 1.75 0.1249 2 0.1632 4 0.66 6 1.47 Start Time <u>08:30</u> Stop Time <u>~15:00</u> Dedicated Polyethylene Bailer
Factor for Determining Well Volumes Casing Diameter Gal/Linear ft. 1.75 0.1249 2 0.1632 4 0.66 6 1.47 Start Time <u>08:30</u> Stop Time <u>~15:00</u> Dedicated Polyethylene Bailer
Casing Diameter Gal/Linear ft.         1.75       0.1249         2       0.1632         4       0.66         6       1.47         Start Time       08:30         Stop Time       ~ 15:00          Dedicated Polyethylene Bailer
Casing Diameter Gal/Linear ft.         1.75       0.1249         2       0.1632         4       0.66         6       1.47         Start Time       08:30         Stop Time       ~ 15:00          Dedicated Polyethylene Bailer
Casing Diameter Gal/Linear ft.         1.75       0.1249         2       0.1632         4       0.66         6       1.47         Start Time       08:30         Stop Time       ~ 15:00          Dedicated Polyethylene Bailer
1.75 0.1249 2 0.1632 4 0.66 6 1.47 Start Time <u>08:30</u> Stop Time <u><b>15</b>:00</u> Dedicated Polyethylene Bailer
2 0.1632 4 0.66 6 1.47 Start Time <u>08:30</u> Stop Time <u>15:00</u> Dedicated Polyethylene Bailer
4         0.66           6         1.47           Start Time         08:30           Stop Time         ~ 15:00          Dedicated Polyethylene Bailer
6 1.47 Start Time <u>08:30</u> Stop Time <u>15:00</u> Dedicated Polyethylene Bailer
Start Time <u>08:30</u> Stop Time <u>~ <b>15</b>:00</u> Dedicated Polyethylene Bailer
Stop Time 15:00 Dedicated Polyethylene Bailer
Stop Time 15:00 Dedicated Polyethylene Bailer
Stop Time 15:00 Dedicated Polyethylene Bailer
Dedicated Polyethylene Bailer
·
·
n Dedicated Polyethylene
emp. Dissolved Turbidity
Oxygen
0°C - 168 NTU
9 66
6 - 190
10 - 160
Time of Collection 15:00
Bailer Dedicated Polyethylene
PUMP WITH DEDICATED POLYETH YLENE TUBIU
SW8270 (semi-volatiles)
oder, no shoen to suge water.
eloped and sampled on the same

a second a s

Well Number <u>Mw-2</u>	HNu Reading/	1A
Date 8/6/96	Free Product Yes/No	
	Apparent Thickness	
Water-Level Measurement	• • · · · · · · · · · · · · · · · · · ·	
a) Depth To Water From TOC 4,28 14	-	
b) Total Well Depth from TOC 10.55	_	
c) Water Column Height 6.27 /	Factor for De	termining Well Volumes
d) Casing Diameter 2"	•	ter Gal/Linear ft.
e) 1 Well Volume 1.0 gal	1.75	0.1249
3 Well Volumes 3.1	2	0.1632
5 Well Volumes 5.1	4	0.66
	6	1.47
Well Purging		
	e Start Time 13;15	
	e Stop Time 13: 25	
Purge Method: Dedicated Teflon Bailer	· Dedicated Polyet	hylene Bailer
Centrifugal Pump	Submersible Pun	•
		-
Tubing Type (if any):Dedicated Tef	lon Dedica	ted Polyethylene
· · · ·		
Volume pH Specific	Temp. Dissolved	Turbidity
Purged Conductance	Oxygen	
	19.30 -	24 nTU
and the second	8.0	137
	7.9	157
	7,0	7999
@ TINE of Situping 6.87 0.92 1	8.8	32
		·····
Sampling		
Date of Collection 8/7/96	Time of Collection	08:45
Sampling Method:Dedicated Teflo	n Bailer <u>V</u> Dedicat	ed Polyethylene beider
Types of Analyses		
5/ SW8010/8021 (VOCs)	SW8270 (semi-v	olatiles)
	·	
Notes: NO Sheen slight so	livent odor to	purgo water. Wol
Surged due good left to	All anen Mon	all price to
Samo ling		
	• <u> </u>	······································
<u>an an an ann an an an an an an an an an </u>	••••	

المالي اليوراد الحارين والجادية مرادعه معاديا الممتعلم مستمس مستمس مستم

#### Groundwater Sampling Field Data Sheet DEVELOPMENT DATA

Apparent ThicknessWater-Level Measurementa) Depth To Water From TOC $4.538$ b) Total Well Depth from TOC $2.5.540$ c) Water Column Height $21.002$ c) Water Column Height $21.002$ d) Casing Diameter $6''70/6' theoremath{ theor$	Well Number $MW-2D$	HNu Readin	g/	<u>( H</u>
Water-Level Measurementa) Depth To Water From TOC $4.538$ b) Total Well Depth from TOC $2.5.540$ c) Water Column Height $21.002$ c) Water Column Height $21.002$ b) Total Well Volume $23.1 gcd$ c) Well Volume $23.1 gcd$ 1 Well Volume $23.1 gcd$ 1 Well Volumes $67.3$ 2 0.16322 0.16325 Well Volumes $115.5$ 4 0.666 1.47Well PurgengPurge Start Date $8/5/96$ Purge Start TimePurge Stop Date $8/5/96$ Purge Stop Date $8/5/96$ Purge Method:Dedicated Teflon Bailer $Volume$ Dedicated Teflon Bailer $Volume$ Dedicated TeflonSubmersible PumpTubing Type (if any):Dedicated TeflonVolumePHSpecificTemp.Conductance $0xygen$ $63.44$ $7.04$ $3.37 + 82.2$ $-16$ 111 $6.98$ $3.37 + 82.2$ $-16$ 111 $6.98$ $3.32 + 19.0$ $-30$ $222 - 7.02$ $3.35 + 19.0$ $23.14 + 18.3 + 22.5$ Sweat of Collection $M/A^2$ SamplingDate of Collection $M/A^2$ Sweat O (semi-volatiles)	Date8/5/96	Free Product	t Yes/No	
a) Depth To Water From TOC $4.538$ b) Total Well Depth from TOC $2.5.540$ c) Water Column Height $2.1.002$ Factor for Determining Well Volume d) Casing Diameter $6''.70/b$ $4h.e.o$ $4''$ Casing Diameter Gal/Linear ft. e) 1 Well Volumes $69.3$ 2 0.1632 5 Well Volumes $115.5$ 4 0.66 6 1.47 Well Purging Purge Start Date $8/5/96$ Purge Start Time $\sim 16:30$ Purge Start Date $8/5/96$ Purge Start Time $\sim 16:30$ Purge Start Date $8/5/96$ Purge Start Time $\sim 18:00$ Purge Stop Date $8/5/96$ Purge Stop Time $\sim 18:00$ Purge Method: Dedicated Teflon Bailer $18:00$ Purge Method: Dedicated Teflon Bailer $2500$ Submersible Pump Submersible Pump Tubing Type (if any): Dedicated Teflon $\sqrt{25}$ Dedicated Polyethylene Bailer 8/3.97 + 6.99 $3.37 + 8.2 - 16111 - 6.98$ $3.37 + 8.2 - 16111 - 6.98$ $3.37 + 18.5 - 1151 - 7.06 - 3.32 - 18.8 - 2417.90 - 302.22 - 7.02 - 3.35 - 19.0 - 302.22 - 7.02 - 3.35 - 19.0 - 302.22 - 7.02 - 3.35 - 19.0 - 302.22 - 7.02 - 3.35 - 19.0 - 302.22 - 7.02 - 3.35 - 19.0 - 302.25 - 332 - 19.2 - 32SamplingDate of Collection N/R Time of Collection N/RSampling Method: Dedicated Teflon Bailer Dedicated Polyethylene$		Apparent Th	ickness	
b) Total Well Depth from TOC $2.5.540$ c) Water Column Heigh $21.002$ b) Total Well Depth from TOC $2.5.540$ c) Water Column Heigh $21.002$ b) Total Well Volume $2.3.1$ g $4$ c) 1 Well Volume $2.3.1$ g $4$ casing Diameter Gal/Linear ft. e) 1 Well Volume $2.3.1$ g $4$ casing Diameter Gal/Linear ft. e) 1 Well Volume $2.3.1$ g $4$ casing Diameter Gal/Linear ft. e) 1 Well Volume $2.3.1$ g $4$ casing Diameter Gal/Linear ft. e) 1 Well Volume $2.3.1$ g $4$ casing Diameter Gal/Linear ft. e) 1 Well Volume $2.3.1$ g $4$ casing Diameter Gal/Linear ft. e) 1 Well Volume $2.3.1$ g $4$ Purge Start Date $3/5/9.6$ Purge Start Time $\sim 16:30$ Purge Start Date $3/5/9.6$ Purge Start Time $\sim 16:30$ Purge Stop Date $3/5/9.6$ Purge Start Time $\sim 18:00$ Purge Method: Dedicated Teflon Bailer Dedicated Polyethylene Bailer $\sim$ Centrifugal Pump Submersible Pump Tubing Type (if any): Dedicated Teflon $\sqrt{1000}$ Dedicated Polyethylene Volume pH Specific Temp. Dissolved Turbidity Purged Conductance $0xygen$ $63.4 - 7.04 - 3.37 - 17.8^{\circ}C$ $- 25$ 84.5 - 6.97 - 3.37 - 18.2 - 16 111 - 6.918 - 3.32 - 18.8 - 24 17.4 - 7.13 - 3.30 - 19.0 - 30 2.22 - 7.02 - 3.35 - 19.0 - 30 2.24 - 7.02 - 3.35 - 19.0 - 30 2.25 - 32 - 16 Sampling Date of Collection $N/A$ Time of Collection $N/A$ Sampling Method: Dedicated Teflon Bailer Dedicated Polyethylene				
c) Water Column Height $21.002$ b) Casing Diameter $6^{t'} 70/6$ then $4^{t'}$ c) 1 Well Volume $2.3.1$ g.d 1.75 0.1249 3 Well Volumes $67.3$ 5 Well Volumes $67.3$ 2 0.1632 5 Well Volumes $115.5$ 4 0.66 6 1.47 Well Purging Purge Start Date $3/5/96$ Purge Start Time $\sim 16.30$ Purge Stop Date $3/5/96$ Purge Start Time $\sim 16.30$ Purge Method: Dedicated Teflon Bailer Dedicated Polyethylene Bailer t' Centrifugal Pump Submersible Pump Tubing Type (if any): Dedicated Teflon $t'$ Dedicated Polyethylene 63.4 $7.04$ $3.37$ $1.8°c$ $ 16111$ $6.98$ $3.37$ $1.8°c$ $ 16111$ $6.98$ $3.37$ $1.8°$ $ 16111$ $6.98$ $3.37$ $1.8°$ $ 16111$ $6.98$ $3.37$ $1.8°$ $ 16111$ $6.98$ $3.37$ $1.8°$ $ 16111$ $6.98$ $3.37$ $1.8°$ $ 16122$ $7.02$ $3.35$ $19.0$ $ 302.2$ $7.02$ $3.35$ $19.0$ $ 302.51$ $7.102$ $3.52$ $19.2$ $ 18.8$ $ 2.6SamplingDate of Collection N/R Time of Collection N/RSampling Method: Dedicated Teflon Bailer Dedicated Polyethylene$				
d) Casing Diameter $\frac{6''}{10/6} \frac{1}{16n} \frac{1}{4}$ Casing Diameter Gal/Linear ft. e) 1 Well Volume 2.3. i g.d 1.75 0.1249 3 Well Volume 69.3 2 0.1632 5 Well Volumes 115.5 4 0.66 6 1.47 Well Purging Purge Start Date $\frac{3/5/9.6}{8}$ Purge Start Time $\frac{16:30}{6}$ Purge Stop Date $\frac{3/5/9.6}{8}$ Purge Start Time $\frac{16:30}{6}$ Purge Stop Date $\frac{3/5/9.6}{8}$ Purge Start Time $\frac{16:30}{6}$ Purge Method: Dedicated Teflon Bailer Dedicated Polyethylene Bailer $\frac{1}{2}$ Centrifugal Pump Submersible Pump Tubing Type (if any): Dedicated Teflon $\frac{1}{2}$ Dedicated Polyethylene $\frac{63.4}{7.04}$ $\frac{7.04}{3.37}$ $\frac{3.37}{85/6}$ $\frac{17.8^{\circ}C}{1.25}$ $\frac{25}{84.5}$ $\frac{17.9}{6.97}$ $\frac{3.37}{3.30}$ $\frac{19.0}{19.0}$ $\frac{30}{2.22}$ $\frac{7.02}{7.02}$ $\frac{3.35}{3.32}$ $\frac{19.0}{19.2}$ $\frac{19.2}{2.5}$ $\frac{18.8}{311}$ $\frac{2.26}{6.99}$ $\frac{19.2}{3.32}$ $\frac{19.2}{19.2}$ $\frac{18}{2.5}$ $\frac{19.2}{2.5}$ $\frac{19.2}{3.32}$ $\frac{19.2}{19.2}$ $\frac{18}{2.5}$ $\frac{19.2}{2.5}$ $\frac{19.2}{3.32}$ $\frac{19.2}{19.2}$ $\frac{18}{2.5}$ $\frac{19.2}{2.5}$ $\frac{19.2}{3.32}$ $\frac{19.2}{19.2}$ $\frac{18}{2.5}$ $\frac{19.2}{2.5}$ $\frac{19.2}{3.54}$ $\frac{19.2}{18.8}$ $\frac{19.2}{2.5}$ $1$		<u>2</u>	•	
e) 1 Well Volume $23.i q_{cd}$ 1.75 0.1249 3 Well Volumes $69.3$ 2 0.1632 5 Well Volumes $115.5$ 4 0.66 6 1.47 Well Purging Purge Start Date $8/5/9.6$ Purge Start Time $\sim 16:30$ Purge Stop Date $8/5/9.6$ Purge Stop Time $\sim 18:00$ Purge Stop Date $8/5/9.6$ Purge Stop Time $\sim 18:00$ Purge Method:Dedicated Teflon BailerDedicated Polyethylene Bailer Submersible Pump Tubing Type (if any):Dedicated Teflon $\swarrow$ Dedicated Polyethylene $63.4 \qquad 7.04 \qquad 3.37 \qquad 8.2 \qquad - \qquad 16 \qquad 100 $		_ Fac	tor for Determ	ining Well Volumes
3 Well Volumes $69.3$ 2 0.1632 5 Well Volumes $115.5$ 4 0.66 6 1.47 Well Purging Purge Start Date $8/5/9.6$ Purge Start Time $\sim 16:30$ Purge Stop Date $8/5/9.6$ Purge Start Time $\sim 18:00$ Purge Stop Date $8/5/9.6$ Purge Start Time $\sim 18:00$ Purge Method:Dedicated Teflon BailerDedicated Polyethylene Bailer Tubing Type (if any):Dedicated Teflon $\swarrow$ Dedicated Polyethylene Volume pH Specific Temp. Dissolved Turbidity Purged Conductance $0xygen$ $63.4 - 7.04 - 3.37 + 5/ch + 17.8^{\circ}c 16$ 111 - 6.98 - 3.37 - 18.2 16 111 - 6.98 - 3.37 - 18.2 16 111 - 6.98 - 3.37 - 18.2 16 111 - 6.98 - 3.32 - 18.8 26 174 - 7.13 - 3.20 - 19.0 30 2.22 - 7.02 - 3.35 - 19.0 30 2.22 - 7.02 - 3.35 - 19.0 30 2.51 - 7.10 - 3.32 - 19.2 18 Sampling Date of Collection $N/R$ Time of Collection $N/R$ Sampling Method:Dedicated Teflon BailerDedicated Polyethylene		_ Cas	ing Diameter (	Gal/Linear ft.
5 Well Volumes       115.5       4       0.66         6       1.47         Well Purge Start Date $\frac{8}{5}/9.6$ Purge Start Time $\sim 16:30$ Purge Stop Date $\frac{8}{5}/9.6$ Purge Stop Time $\sim 18:00$ Purge Stop Date $\frac{8}{5}/9.6$ Purge Stop Time $\sim 18:00$ Purge Method:       Dedicated Teflon Bailer       Dedicated Polyethylene Bailer         Submersible Pump       Submersible Pump         Tubing Type (if any):       Dedicated Teflon $\checkmark$ Dedicated Polyethylene         Volume       pH       Specific       Temp.       Dissolved       Turbidity         Purged       Conductance       Oxygen $25$ $\frac{84.5}{6.979}$ $3.37$ $\sqrt{8.2}$ $-16$ 111 $6.918$ $3.37$ $\sqrt{8.2}$ $-16$ $111$ $6.918$ $3.32$ $19.0$ $-30$ $2.22$ $7.02$ $3.35$ $19.0$ $-30$ $2.5$ $332$ $19.2$ $-16$ $3911$ $6.919$ $3.54$ $18.3$ $-2.5$ $32$ $332$ $19.2$ $-2.6$ $12.5$ $32.5$ $32.5$ $32.5$ <		_	1.75	
61.47Well PurgingPurge Start Date $\frac{9/5/9.6}{8.57.9.6}$ Purge Start Time $\sim 16.30$ Purge Stop Date $\frac{8}{57.9.6}$ Purge Stop Time $\sim 18.00$ Purge Method:Dedicated Teflon BailerDedicated Polyethylene BailerSubmersible PumpSubmersible PumpTubing Type (if any):Dedicated Teflon $\checkmark$ Dedicated PolyethyleneVolumepHSpecificTemp.DissolvedTurbidityConductanceOxygen $63.4$ $7.04$ $3.37 \pm 5/0.6$ $17.8^{\circ}C$ $43.4$ $7.04$ $3.37 \pm 5/0.6$ $17.8^{\circ}C$ $44.5$ $6.99$ $3.37$ $18.2$ $111$ $6.98$ $3.37$ $18.2$ $122$ $7.02$ $3.32$ $19.0$ $251$ $7.06$ $3.32$ $19.0$ $251$ $7.00$ $3.32$ $19.2$ $251$ $7.00$ $3.32$ $19.2$ $251$ $7.00$ $3.32$ $19.2$ $251$ $7.00$ $3.32$ $19.2$ $251$ $7.00$ $3.32$ $19.2$ $251$ $7.00$ $3.32$ $19.2$ $251$ $7.00$ $3.32$ $19.2$ $251$ $7.00$ $3.32$ $19.2$ $251$ $7.00$ $3.32$ $19.2$ $251$ $7.00$ $3.32$ $19.2$ $251$ $7.00$ $3.54$ $18.8$ $251$ $7.00$ $3.52$ $301$ $6.99$ $3.54$ $3.54$ $18.8$ <td< td=""><td></td><td></td><td>2</td><td></td></td<>			2	
Well Purging       Purge Start Date $3/5/96$ Purge Start Time $\sim 16:30$ Purge Stop Date $3/5/96$ Purge Stop Time $\sim 18:00$ Purge Stop Date $3/5/96$ Purge Stop Time $\sim 18:00$ Purge Method:       Dedicated Teflon Bailer       Dedicated Polyethylene Bailer         Submersible Pump       Submersible Pump         Tubing Type (if any):       Dedicated Teflon $\checkmark$ Dedicated Polyethylene         Volume       pH       Specific       Temp.       Dissolved       Turbidity         Purged       Conductance       Oxygen $25$ $44.5$ $6.99$ $3.37$ $18.2$ $-16$ 111 $6.98$ $3.37$ $18.8$ $-24$ $17.4^{\circ}$ $30$ $2.22$ $7.04$ $3.32$ $18.8$ $-24$ $17.4^{\circ}$ $30$ $2.51$ $7.06$ $3.32$ $19.0$ $-30$ $30$ $25$ $2.51$ $7.00$ $3.32$ $19.2$ $-32$ $25$ $30$ $2.51$ $7.00$ $3.32$ $19.2$ $-32$ $25$ $30$ $2.51$ $7.00$	5 Well Volumes 115.5		4	0.66
Purge Start Date $\frac{8}{5}/\frac{9}{6}$ Purge Start Time $\sim 16:30$ Purge Stop Date $\frac{8}{5}/\frac{9}{6}$ Purge Stop Time $\sim 18:00$ Purge Method:       Dedicated Teflon Bailer       Dedicated Polyethylene Bailer         Submersible Pump       Submersible Pump         Tubing Type (if any):       Dedicated Teflon $\checkmark$ $\checkmark$ Volume       pH       Specific       Temp.       Dissolved       Turbidity         Purged       Conductance       Oxygen $\frac{25}{6.99}$ $\frac{3.37}{8.2}$ $\frac{18.8}{2.9}$ $ \frac{16}{111}$ 151 $7.04$ $3.37_{1.5}/c_{1.6}$ $17.8^{\circ}C$ $ 16$ 111 $6.98$ $3.37$ $18.2$ $ 16$ 111 $6.98$ $3.37$ $18.2$ $ 16$ $174$ $7.13$ $3.30$ $19.0$ $ 30$ $251$ $7.02$ $3.32$ $19.0$ $ 30$ $251$ $7.02$ $3.32$ $19.0$ $ 30$ $251$ $7.02$ $3.32$ $19.0$ $ 2.5$ $33$			6	1.47
Purge Stop Date $8/5/94$ Purge Stop Time $\sim 18:cv$ Purge Method:       Dedicated Teflon Bailer       Dedicated Polyethylene Bailer         Submersible Pump       Submersible Pump         Tubing Type (if any):       Dedicated Teflon $\checkmark$ Dedicated Polyethylene         Volume       pH       Specific       Temp.       Dissolved       Turbidity         Purged       Conductance       Oxygen $25$ $46$ $11$ $6.99$ $3.37$ $18.2$ $-1$ $151$ $7.04$ $3.37$ $18.2$ $-1$ $16$ $111$ $6.98$ $3.37$ $18.2$ $-1$ $151$ $17.4^{-7.13}$ $3.30$ $19.0$ $-30$ $24$ $251$ $7.02$ $3.35$ $19.0$ $-30$ $24$ $251$ $7.02$ $3.32$ $19.0$ $-30$ $25$ $332$ $19.2$ $-24$ $30$ $251$ $7.02$ $3.32$ $19.2$ $-25$ $30$ $25$ $332$ $332$ $19.2$ $-32$ $332$ $332$ $332$ $332$ $332$				
Purge Method:Dedicated Teflon BailerDedicated Polyethylene Bailer $Volume$ pHSpecificTemp.Dedicated PolyethyleneTubing Type (if any):Dedicated Teflon $\checkmark$ Dedicated PolyethyleneVolumepHSpecificTemp.DissolvedTurbidityPurgedConductanceOxygen $3.37 \pm S/cm$ $17.8^{\circ}C$ $\sim$ $7.5$ $84.5$ $6.99$ $3.37$ $18.2$ $\sim$ $16$ $111$ $6.98$ $3.37$ $18.2$ $\sim$ $16$ $151$ $7.06$ $3.32$ $18.8$ $\sim$ $24$ $174$ $7.13$ $3.30$ $19.0$ $\sim$ $30$ $2.22$ $7.02$ $3.35$ $19.0$ $\sim$ $32$ $301$ $2.51$ $7.10$ $3.32$ $19.2$ $\sim$ $18$ SamplingDate of Collection $N/A$ Time of Collection $N/A$ Sampling Method:Dedicated Teflon BailerDedicated PolyethyleneTypes of Analyses $SW8010/8021$ (VOCs) $SW8270$ (semi-volatiles)	~~ <u>~~~~</u>	·		-
$\checkmark$ Centrifugal PumpSubmersible PumpTubing Type (if any):Dedicated Teflon $\checkmark$ Dedicated PolyethyleneVolumepHSpecificTemp.DissolvedTurbidityPurgedConductanceOxygen $3.37 \pm 5/cm$ $17.8^{\circ}C$ $-2.5$ $84.5$ $6.99$ $3.37 \pm 5/cm$ $17.8^{\circ}C$ $-2.5$ $84.5$ $6.99$ $3.37 \pm 5/cm$ $17.8^{\circ}C$ $-2.5$ $111$ $6.98$ $3.37 \pm 8.8$ $-2.6$ $151$ $7.06$ $3.32$ $18.8$ $-2.6$ $174$ $7.13$ $3.30$ $19.0$ $-30$ $2.2$ $7.02$ $3.35$ $19.0$ $-30$ $2.51$ $7.10$ $3.32$ $19.2$ $-18.8$ $2.51$ $6.19$ $3.54$ $18.8$ $-2.5$ SamplingDate of Collection $N/A$ Sampling Method:Dedicated Teflon BailerDedicated PolyethyleneTypes of Analyses	rurge Stop Date <u>8/5/96</u> Pu	rge Stop Time_~	18:00	_
$\checkmark$ Centrifugal PumpSubmersible PumpTubing Type (if any):Dedicated Teflon $\checkmark$ Dedicated PolyethyleneVolumepHSpecificTemp.DissolvedTurbidityPurgedConductanceOxygen $3.37 \pm 5/cm$ $17.8^{\circ}C$ $-2.5$ $84.5$ $6.99$ $3.37 \pm 5/cm$ $17.8^{\circ}C$ $-2.5$ $84.5$ $6.99$ $3.37 \pm 5/cm$ $17.8^{\circ}C$ $-2.5$ $111$ $6.98$ $3.37 \pm 8.8$ $-2.6$ $151$ $7.06$ $3.32$ $18.8$ $-2.6$ $174$ $7.13$ $3.30$ $19.0$ $-30$ $2.2$ $7.02$ $3.35$ $19.0$ $-30$ $2.51$ $7.10$ $3.32$ $19.2$ $-18.8$ $2.51$ $6.19$ $3.54$ $18.8$ $-2.5$ SamplingDate of Collection $N/A$ Sampling Method:Dedicated Teflon BailerDedicated PolyethyleneTypes of Analyses				
Tubing Type (if any):Dedicated TeflonDedicated PolyethyleneVolumepHSpecificTemp.DissolvedTurbidityPurgedConductanceOxygen $63.4$ $7.04$ $3.37 \times 5/cm$ $17.8^{\circ}C$ $ 84.5$ $6.99$ $3.37$ $18.2$ $ 16$ $111$ $6.98$ $3.37$ $18.2$ $ 16$ $151$ $7.06$ $3.32$ $18.8$ $ 24$ $174$ $7.13$ $3.30$ $19.0$ $ 30$ $2.22$ $7.02$ $3.32$ $19.2$ $ 30$ $2.51$ $7t.10$ $3.32$ $19.2$ $ 30$ $251$ $6.99$ $3.34$ $18.8$ $ 2.5$ SamplingDate of Collection $N/A$ Sampling Method:Dedicated Teflon BailerDedicated PolyethyleneTypes of Analyses	rurge Method:Dedicated Teflon Baile	erDedica	ated Polyethyle	ne Bailer
Volume       pH       Specific       Temp.       Dissolved       Turbidity         Purged       Conductance       Oxygen $3.37 + 51cm$ $17.8^{\circ}C$ $ 25$ $84.5$ $6.99$ $3.37$ $18.2$ $ 16$ 111 $6.98$ $3.37$ $18.2$ $ 16$ 111 $6.98$ $3.37$ $18.2$ $ 16$ 111 $6.98$ $3.37$ $18.5$ $ 1$ 151 $7.06$ $3.32$ $18.8$ $ 24$ $174$ $7.13$ $3.30$ $19.0$ $ 30$ $2.22$ $7.02$ $3.35$ $19.0$ $ 30$ $2.51$ $7.10$ $3.32$ $19.2$ $ 18$ $371$ $6.99$ $3.34$ $18.8$ $ 25$ Sampling       Date of Collection $N/A$ M/A         Sampling Method:       Dedicated Teflon Bailer       Dedicated Polyethylene         Types of Analyses       SW8010/8021 (VOCs)       SW8270 (semi-volatiles)	Centrifugal Pump	Subme	rsible Pump	
Purged       Conductance       Oxygen $63.4$ $7.04$ $3.37$ $5/6$ $ 25$ $84.5$ $6.99$ $3.37$ $18.2$ $ 16$ $111$ $6.98$ $3.37$ $18.2$ $ 16$ $111$ $6.98$ $3.37$ $18.5$ $ 1$ $151$ $7.06$ $3.32$ $18.8$ $ 26$ $174$ $7.13$ $3.30$ $19.0$ $ 30$ $2.2$ $7.02$ $3.35$ $19.0$ $ 30$ $2.2$ $7.02$ $3.35$ $19.0$ $ 30$ $2.51$ $7.10$ $3.32$ $19.2$ $ 18$ $391$ $6.99$ $3.34$ $18.8$ $ 2.5$ Sampling       Date of Collection $N/A$ Main       Sumpling       Dedicated Teflon Bailer       Dedicated Polyethylene         Types of Analyses	Tubing Type (if any):        Dedicated Te	eflon	Dedicated	Polyethylene
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	volume pH Specific	Temp. D	issolved	Turbidity
$\frac{84.5}{111}$ $6.99$ $3.37$ $18.2$ - $16$ $111$ $6.98$ $3.37$ $18.5$ - $1$ $151$ $7.06$ $3.32$ $18.8$ - $26$ $174$ $7.13$ $3.30$ $19.0$ - $30$ $222$ $7.02$ $3.35$ $19.0$ - $30$ $222$ $7.02$ $3.35$ $19.0$ - $30$ $251$ $7r10$ $3.32$ $19.2$ - $i8$ $391$ $6.99$ $3.34$ $18.8$ - $25$ Sampling       Date of Collection $N/A$ Time of Collection $N/A$ Sampling Method:	5		xygen	0-
111 $6.98$ $3.37$ $18.5$ $ 1$ $151$ $7.06$ $3.32$ $18.8$ $ 2.6$ $174$ $7.13$ $3.30$ $19.0$ $ 30$ $2.22$ $7.02$ $3.35$ $19.0$ $ 30$ $2.51$ $7.10$ $3.32$ $19.2$ $ 18$ $391$ $6.919$ $3.32$ $19.2$ $ 18$ $391$ $6.919$ $3.34$ $18.8$ $ 2.5$ Sampling       Date of Collection $N/A$ Time of Collection $N/A$ Sampling         Date of Collection $N/A$ Dedicated Teflon Bailer       Dedicated Polyethylene         Types of Analyses			<u> </u>	
151 $7.06$ $3.32$ $18.8$ - $26$ $174$ $7.13$ $3.30$ $19.0$ - $30$ $222$ $7.02$ $3.35$ $19.0$ - $30$ $251$ $7.10$ $3.32$ $19.2$ - $i8$ $391$ $6.99$ $3.32$ $19.2$ - $i8$ $391$ $6.99$ $3.34$ $18.8$ - $2.5$ Sampling       Date of Collection $N/A$ Time of Collection $N/A$ Sampling Method:       Dedicated Teflon Bailer       Dedicated Polyethylene         Types of Analyses			<u> </u>	
$\frac{174}{2.22} = \frac{7.13}{7.02} = \frac{3.30}{3.35} = \frac{19.0}{19.0} = \frac{30}{3.32}$ $\frac{251}{2.51} = \frac{7.10}{7.10} = \frac{3.32}{3.32} = \frac{19.2}{19.2} = \frac{18}{18.8}$ $\frac{391}{6.99} = \frac{6.99}{3.54} = \frac{18.8}{18.8} = \frac{2.5}{2.5}$ Sampling Date of Collection $\frac{N/A}{}$ Time of Collection $\frac{N/A}{}$ Sampling Method:Dedicated Teflon BailerDedicated Polyethylene $Types of Analyses$ $=SW8010/8021 (VOCs) = SW8270 (semi-volatiles)$				
$\frac{2.22}{2.5 i} = \frac{7.02}{7.00} = \frac{3.35}{3.32} = \frac{19.0}{19.2} = \frac{3}{18}$ $\frac{391}{391} = \frac{6.99}{3.34} = \frac{3.34}{18.8} = \frac{19.2}{2.5}$ Sampling Date of Collection $N/A$ Time of Collection $N/A$ Sampling Method:Dedicated Teflon BailerDedicated Polyethylene Types of AnalysesSW8010/8021 (VOCs)SW8270 (semi-volatiles)				
251 $710$ $3.32$ $19.2$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $12.5$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$ $18.8$				
391       6.99       3.34       18.8       23         Sampling       Date of Collection		$\frac{19.0}{10.3}$		<u></u>
Date of Collection N/A       Time of Collection N/A         Sampling Method:      Dedicated Teflon Bailer      Dedicated Polyethylene         Types of Analyses      SW8010/8021 (VOCs)      SW8270 (semi-volatiles)	391 6.99 3.34	18.8		23
Sampling Method:      Dedicated Teflon Bailer      Dedicated Polyethylene         Types of Analyses      SW8010/8021 (VOCs)      SW8270 (semi-volatiles)				
Types of Analyses SW8010/8021 (VOCs)SW8270 (semi-volatiles)	Date of Collection <u>N/A</u>	Time of Col	lection $\mathcal{N}$	<u>IA</u>
SW8010/8021 (VOCs)SW8270 (semi-volatiles)	Sampling Method:Dedicated Tef	lon Bailer	Dedicated P	olyethylene
SW8010/8021 (VOCs)SW8270 (semi-volatiles)				
	<b>Fypes of Analyses</b>			
Notes: No odor, no sheen to punge water. Gov verovery.	SW8010/8021 (VOCs)	SW82	70 (semi-volati	iles)
Notes: No odor, no sheen to punge water. Gov recovery.				
recovery.	Notes: No odor no sheer	n to an	vae w	ater. Goa
	receven.	Y		
	0			
	······································	<u> </u>		

د و الدولة الديني و <del>متعبية م</del>ير مستقامية منه

Well Number	1-20	HNu I	Reading NIK	F	
Date 8/6/96		Free P	roduct Yes/		
			ent Thickness		
Water-Level Measur	ement	- PPai			
) Depth To Water From	ارس ا	17			
) Total Well Depth from		$\frac{\gamma_1}{1+\gamma_2}$			
) Water Column Height	21.00	10 A	Factor for Deter	mining Well Volu	imes
) Casing Diameter $\int_{2}^{11} \tau$		4 "	Casing Diamete	•	
	Dolgal	······	1.75	0.1249	
·	0.4	····	2	0.1632	
	0.7		4	0.66	
			6	1.47	
Vell Purging					
Purge Start Date 8/6/	96	Purge Start Tin	ne 17:45		
· · · · · · · · · · · · · · · · · · ·	161	Purge Stop Tin	1		
		8F			*
Purge Method:	Dedicated Teflon E	Bailer	Dedicated Polyethy	lene Bailer	
·	entrifugal Pump		Submersible Pump		
			•		
Tubing Type (if any):	Dedicated	t Teflon		d Polyethylene	
			<u></u> _		
/olume pH	Specific	Temp.	Dissolved	Turbidity	
urged	Conductance	-	Oxygen	•	
<b>—</b> ,	250 21			~ ~~~	
nitial 6-88	3.52 aus an.	15.2		2T7	
	3.50	<u>    15 .L                               </u>		217	
26.4gal 6.85					
26.4gal 6.85	3. <b>5</b> 0	14.6			
26.4gal 6.85	3.50 3.50	14.6		21 7	
26.4gal 6.85	3.50 3.50	14.6		21 7	
26.4gal 6.85	3.50 3.50	14.6		21 7	
26.49-l 6.85 52.89-l 6.83 79.39-l 6.83	3.50 3.50	14.6		21 7	
$\frac{26.49-1}{52.89-1}  \underbrace{6.85}_{6.83} \\ \overline{79.39-1}  \underbrace{6.83}_{6.83} \\ \overline{79.39-1}  \underbrace{79.39-1}_{6.83} \\ \overline{79.39-1}  \underbrace{79.39-1}_{6.8$	3. <b>5</b> 0 3.50 3.50	<u>    14.6</u> <u>    14.5</u> <u>    14.6</u> 	of Collection	2_/ 7 //	
$\frac{26.49-1}{52.89-1} + \frac{6.85}{6.83} + \frac{6.83}{6.83} + 6.83$	3.50 3.50 3.50	<u>14.6</u> <u>14.5</u> <u>14.6</u> Time		21 7 11 '8:02	
$\frac{26.49-1}{52.89-1} + \frac{6.85}{6.83} + \frac{6.83}{6.83} + 6.83$	3.50 3.50 3.50	<u>14.6</u> <u>14.5</u> <u>14.6</u> <u>-</u> Time of Teflon Bailer	Dedicated	2_/ 7 // //	T∪BIA
$\frac{26.49}{52.89} = \frac{6.85}{6.83}$ $\frac{52.89}{79.39} = \frac{6.83}{6.83}$ Sampling Date of Collection 8/t Sampling Method:	3.50 3.50 3.50	<u>14.6</u> <u>14.5</u> <u>14.6</u> <u>-</u> Time of Teflon Bailer		2_/ 7 // //	т∪віл
$\frac{26.49}{52.89} = \frac{6.85}{6.83}$ $\frac{52.89}{6.83} = \frac{6.83}{6.83}$ $\frac{79.39}{6.83} = \frac{6.83}{6.83}$ Sampling Method: Sampling Method: $\frac{8}{1}$	3.50 3.50 3.50 <u>6/96</u> <u>Dedicated</u> Submersit	<u>14.6</u> <u>14.5</u> <u>14.6</u> <u>14.6</u> Time Teflon Bailer	Dedicated	2-1 7 11 11 11 12 19 19 19 19 19 19 19 19 19 19 19 19 19	T∪BIX
$\frac{26.49}{52.89} = \frac{6.85}{6.83}$ $\frac{52.89}{79.39} = \frac{6.83}{6.83}$ Sampling Date of Collection 8/t Sampling Method:	3.50 3.50 3.50 <u>6/96</u> <u>Dedicated</u> Submersit	<u>14.6</u> <u>14.5</u> <u>14.6</u> <u>14.6</u> Time Teflon Bailer	Dedicated	2.1 7 11 11 11 12 19 19 19 19 19 19 19 19 19 19 19 19 19	T∪BIX
$\frac{26.49}{52.89} = \frac{6.85}{6.83}$ $\frac{52.89}{6.83} = \frac{6.83}{6.83}$ $\frac{79.39}{6.83} = \frac{6.83}{6.83}$ Sampling Method: $\frac{8/t}{5}$ Sampling Method: $\frac{500}{500} = \frac{6.83}{500}$ $\frac{500}{500} = \frac{6.83}{6.83}$	3.50 3.50 3.50 <u>(196</u> <u>Dedicated</u> Submersit	<u>14.6</u> <u>14.5</u> <u>14.6</u> <u>14.6</u> Time of Teflon Bailer de ромр югт	Dedicated TH DEDICATED F SW8270 (semi-vol	2_1 7 11 11 11 12 12 12 12 12 12 12	
$\frac{26.49}{52.89} = \frac{6.85}{6.83}$ $\frac{52.89}{6.83} = \frac{6.83}{6.83}$ $\frac{79.39}{6.83} = \frac{6.83}{6.83}$ Sampling Method: $\frac{8/t}{5}$ Sampling Method: $\frac{500}{500} = \frac{6.83}{500}$ $\frac{500}{500} = \frac{6.83}{6.83}$	3.50 3.50 3.50 <u>(196</u> <u>Dedicated</u> Submersit	<u>14.6</u> <u>14.5</u> <u>14.6</u> <u>14.6</u> Time of Teflon Bailer de ромр югт	Dedicated	2_1 7 11 11 11 12 12 12 12 12 12 12	
$\frac{26.49}{52.89} = \frac{6.85}{6.83}$ $\frac{52.89}{6.83} = \frac{6.83}{6.83}$ $\frac{79.39}{6.83} = \frac{6.83}{6.83}$ Sampling Method: Sampling Method: $\frac{8}{1}$	3.50 3.50 3.50 <u>(196</u> <u>Dedicated</u> Submersit	<u>14.6</u> <u>14.5</u> <u>14.6</u> <u>14.6</u> Time of Teflon Bailer de ромр югт	Dedicated TH DEDICATED F SW8270 (semi-vol	2_1 7 11 11 11 12 12 12 12 12 12 12	
$\frac{26.49}{52.89} = \frac{6.85}{6.83}$ $\frac{52.89}{6.83} = \frac{6.83}{6.83}$ $\frac{79.39}{6.83} = \frac{6.83}{6.83}$ Sampling Method: $\frac{8/t}{5}$ Sampling Method: $\frac{500}{500} = \frac{6.83}{500}$ $\frac{500}{500} = \frac{6.83}{6.83}$	3.50 3.50 3.50 <u>(196</u> <u>Dedicated</u> Submersit	<u>14.6</u> <u>14.5</u> <u>14.6</u> <u>14.6</u> Time of Teflon Bailer de ромр югт	Dedicated TH DEDICATED F SW8270 (semi-vol	2_1 7 11 11 11 12 12 12 12 12 12 12	
$\frac{26.49}{52.89} = \frac{6.85}{6.83}$ $\frac{52.89}{6.83} = \frac{6.83}{6.83}$ $\frac{79.39}{6.83} = \frac{6.83}{6.83}$ Sampling Method: $\frac{8/t}{5}$ Sampling Method: $\frac{500}{500} = \frac{6.83}{500}$ $\frac{500}{500} = \frac{6.83}{6.83}$	3.50 3.50 3.50 <u>(196</u> <u>Dedicated</u> Submersit	<u>14.6</u> <u>14.5</u> <u>14.6</u> <u>14.6</u> Time of Teflon Bailer de ромр югт	Dedicated TH DEDICATED F SW8270 (semi-vol	2_1 7 11 11 11 12 12 12 12 12 12 12	
$\frac{26.49}{52.89} = \frac{6.85}{6.83}$ $\frac{52.89}{6.83} = \frac{6.83}{6.83}$ $\frac{79.39}{6.83} = \frac{6.83}{6.83}$ Sampling Method: $\frac{8/t}{5}$ Sampling Method: $\frac{500}{500} = \frac{6.83}{500}$ $\frac{500}{500} = \frac{6.83}{6.83}$	3.50 3.50 3.50 <u>(196</u> <u>Dedicated</u> Submersit	<u>14.6</u> <u>14.5</u> <u>14.6</u> <u>14.6</u> Time of Teflon Bailer de ромр югт	Dedicated TH DEDICATED F SW8270 (semi-vol	2_1 7 11 11 11 12 12 12 12 12 12 12	

Well Number <u>MW-3</u>	HNu Reading <i>VIA</i>
Date8/6/96	Free Product (Yes/No
	Apparent Thickness Slight Sleen
Water-Level Measurement	
a) Depth To Water From TOC 4.28 /	
b) Total Well Depth from TOC 10.28 14	
c) Water Column Height 6.00 1	Factor for Determining Well Volumes
d) Casing Diameter 24	Casing Diameter Gal/Linear ft.
e) 1 Well Volume 1.0 god	1.75 0.1249
3 Well Volumes 3.0	2 0.1632
5 Well Volumes 5.0	4 0.66
	6 1.47
Well Purging	
Purge Start Date 8/6/96 Purge	Start Time (3:28
Purge Stop Date 816196 Purge	Stop Time 13:35
Purge Method:Dedicated Teflon Bailer	Dedicated Polyethylene Bailer
Centrifugal Pump	Submersible Pump
Tubing Type (if any):Dedicated Tefle	Dedicated Polyethylene
	emp. Dissolved Turbidity
Purged Conductance	Oxygen
PurgedConductance $1n_1+(a)$ $6.14$ $3.03$ mS/cm. $18$	Oxygen 0.2°C64
Purged         Conductance $\frac{1n+1}{1.1 \text{ gcl}}$ $6-14$ $3.03 \text{ mS/cm.}$ $18$ $1.1 \text{ gcl}$ $6.42$ $3.98$ $16$	Oxygen 0.2°C - 64 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.
Purged         Conductance $\frac{1n+1}{1.1 \text{ gcl}}$ $6-14$ $3.03 \text{ mS/cm.}$ $18$ $1.1 \text{ gcl}$ $6.42$ $3.98$ $16$	Oxygen 0.2°C64
Purged         Conductance $\frac{1n+1}{1.1 \text{ gcl}}$ $6-14$ $3.03 \text{ mS/cm.}$ $18$ $1.1 \text{ gcl}$ $6.42$ $3.98$ $16$	Oxygen 0.2°C - 64 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.
Purged         Conductance $\frac{1n+1}{1.1 \text{ gcl}}$ $6-14$ $3.03 \text{ mS/cm.}$ $18$ $1.1 \text{ gcl}$ $6.42$ $3.98$ $16$	Oxygen 0.2°C - 64 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.
Purged         Conductance $\frac{10.41al}{1.1gcd}$ $6.14$ $3.03.05/cm.$ $18$ $1.1gcd$ $6.42$ $3.98$ $16$	Oxygen 0.2°C - 64 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.
Purged     Conductance       initial     6.14     3.03 mS/cm.     18       1.1 gad     6.42     3.98     16       2: TIME OF SAMPLING     6.16     2.80     18	Oxygen 0.2°C - 64 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.
PurgedConductance $1n+1al$ $6-14$ $3.03 \text{ mS/cm}$ $18$ $1.1 \text{ gcl}$ $6.42$ $3.98$ $16$ $2^{1} \text{ TIME OF SAMPLING 6.16}$ $2.80$ $18$ Sampling	Oxygen $\frac{0.2 \circ C}{16} - \frac{64}{N/A}$ $\frac{16}{12} - \frac{69}{69}$
PurgedConductance $1n + 1al$ $6 - 14$ $3 \cdot 0.3 + 5/cm$ $18$ $1 \cdot 1 \cdot g_{c} \cdot l$ $6 \cdot 42$ $3 \cdot 98$ $16$ $2 \cdot 1 \cdot 1 \cdot c \cdot c + sampling$ $18$ $18$ SamplingDate of Collection 817196	$\begin{array}{c} \text{Oxygen} \\ 1.2 \ ^{\circ}C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
PurgedConductance $1n+1al$ $6-14$ $3.03 \text{ mS/cm}$ $18$ $1.1 \text{ gcl}$ $6.42$ $3.98$ $16$ $2^{1} \text{ TIME OF SAMPLING 6.16}$ $2.80$ $18$ Sampling	$\begin{array}{c} \text{Oxygen} \\ \frac{2 \circ \mathcal{C}}{2} & - & 64 \\ \frac{16}{2} & - & \sqrt{14} \\ \frac{16}{2} & - & 69 \\ \hline \end{array}$ Time of Collection <u>09:00</u>
Purged       Conductance $1n + 1al$ $6.14$ $3.03 \text{ mS/cm}$ $18$ $1.1 \text{ gcd}$ $6.42$ $3.98$ $16$ $2 \text{ TIME OF SAMPLING 6.16}$ $2.80$ $18$ Sampling       Date of Collection $8 7 96$ Sampling Method:       Dedicated Teflor	$\begin{array}{c} \text{Oxygen} \\ 1.2 \ ^{\circ}C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Purged       Conductance $1 \cdot 1 \cdot$	Oxygen $\frac{0.2 \circ C}{4} = \frac{64}{MA}$ $\frac{16}{12} = \frac{01}{69}$ Time of Collection <u>09:00</u> Bailer <u>Dedicated Polyethylene bailer</u>
Purged       Conductance $1n + 1al$ $6.14$ $3.03 \text{ mS/cm}$ $18$ $1.1 \text{ gcd}$ $6.42$ $3.98$ $16$ $2 \text{ TIME OF SAMPLING 6.16}$ $2.80$ $18$ Sampling       Date of Collection $8 7 96$ Sampling Method:       Dedicated Teflor	$\begin{array}{c} \text{Oxygen} \\ 1.2 \ ^{\circ}C \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Purged       Conductance $1n+1al$ $6-14$ $3.03 \text{ mS/cm}$ $18$ $11 \text{ gcd}$ $6.42$ $3.98$ $16$ $2 \text{ Time of sampling}$ $16$ $2.80$ $18$ Sampling       Date of Collection 817196       Sampling Method:       Dedicated Teflor         Types of Analyses $3.7166$ $3.63 \text{ ms/cm}$ $18$	Oxygen $\frac{0.2 \circ C}{4} = \frac{64}{MA}$ $\frac{16}{12} = \frac{01}{69}$ Time of Collection <u>09:00</u> Bailer <u>Dedicated Polyethylene bailer</u>
Purged       Conductance $1 \cdot 1 \cdot$	Oxygen $\frac{0.2 \circ C}{4} = \frac{64}{MA}$ $\frac{16}{12} = \frac{01}{69}$ Time of Collection <u>09:00</u> Bailer <u>Dedicated Polyethylene bailer</u>
Purged       Conductance $1 \cdot 1 \cdot g \cdot d$ $6 \cdot 14$ $3 \cdot 03 \cdot s \cdot (cm)$ $18$ $1 \cdot 1 \cdot g \cdot d$ $6 \cdot 42$ $3 \cdot 08$ $16$ $2 \cdot time or sampling$ $16$ $2 \cdot 80$ $18$ Sampling $12 \cdot 80$ $18$ Date of Collection $817196$ Sampling Method:       Dedicated Teflor         Types of Analyses $1588010/8021$ (VOCs)         Notes: $54rong \cdot 5dwent \cdot odor \cdot cm$	Oxygen $\frac{0.2 \circ C}{4} = \frac{64}{MA}$ $\frac{16}{12} = \frac{01}{69}$ Time of Collection <u>09:00</u> Bailer <u>Dedicated Polyethylene bailer</u>
Purged       Conductance $1 \cdot 1 \cdot g \cdot d$ $6 \cdot 14$ $3 \cdot 03 \cdot s \cdot (cm)$ $18$ $1 \cdot 1 \cdot g \cdot d$ $6 \cdot 42$ $3 \cdot 08$ $16$ $2 \cdot time or sampling$ $16$ $2 \cdot 80$ $18$ Sampling $12 \cdot 80$ $18$ Date of Collection $817196$ Sampling Method:       Dedicated Teflor         Types of Analyses $1588010/8021$ (VOCs)         Notes: $54rong \cdot 5dwent \cdot odor \cdot cm$	Oxygen <u>12°C64</u> <u>16</u> 69 <u>16</u> 69 <u>169</u> Time of Collection <u>09:00</u> Bailer <u>Dedicated Polyethylene bailer</u> <u>SW8270 (semi-volatiles)</u> <u>4 slight Sheen to purgo wateo.</u> <u>to recover overnight prior to</u>
Purged Conductance <u>initial</u> 6.14 3.03 mS/cm. 18 <u>1.1 ged</u> 6.42 3.98 16 <u>2.80 18</u> <u>5.1 met of sampling</u> Date of Collection <u>817196</u> Sampling Method: <u>Dedicated Teflor</u> <b>Types of Analyses</b> <u>V</u> SW8010/8021 (VOCs) Notes: <u>54rong schuent order an</u> <u>Well punged dry and left</u>	Oxygen <u>12°C64</u> <u>16</u> 69 <u>16</u> 69 <u>169</u> Time of Collection <u>09:00</u> Bailer <u>Dedicated Polyethylene bailer</u> <u>SW8270 (semi-volatiles)</u> <u>4 slight Sheen to purgo wateo.</u> <u>to recover overnight prior to</u>

Date $g/b/d_b$ Free Product Yes/So Apparent ThicknessWater-Level Measurementa) Depth To Water From TOC $4.12.44$ b) Total Well Depth from TOC $21.784$ c)c) Water Column Height $17.66.44$ Factor for Determining Well Volumesd) Casing Diameter $6'$ To $16'$ then $4''$ Casing Diameter Gal/Linear ft.e) 1 Well Volume $21.49$ $21.49$ $3$ Well Volumes $04.22$ $2$ 3 Well Volumes $107.5$ $0.1249$ $2$ 3 Well Volumes $107.5$ $0.1632$ $4$ 6 $1.47$ Well Purging Purge Start Date $8/6/76$ $8/6/76$ Purge Start Time $8/6/76$ $2.55$ Purge Method:Dedicated Teflon Bailer Centrifugal PumpDedicated Polyethylene Bailer Submersible PumpTubing Type (if any):Dedicated TeflonDissolved $0xygen$ Turbidity $0xygen$ Volume $10.44$ $6.81$ $3.16 m 5/6m.$ $15.47C$ $-7$ $41.6$ $6.75$ $3.120$ $14.5$ $-44$ $-11.3$ $-74$ $3.19$ $14.5$ $-44$ $-44$
Water-Level Measurementa) Depth To Water From TOC $4 \cdot 12 \cdot 14$ b) Total Well Depth from TOC $21 \cdot 78 \cdot 14$ c) Water Column Height $17 \cdot 66 \cdot 14$ c) Water Column Height $17 \cdot 66 \cdot 14$ c) Casing Diameter $6'' \cdot 70 \cdot 16' \cdot 4n en \cdot 4''$ Casing Diameter Gal/Linear ft.e) 1 Well Volume $21 \cdot 4 \cdot 92 \cdot 14$ Casing Diameter Gal/Linear ft.e) 1 Well Volume $21 \cdot 4 \cdot 92 \cdot 14$ Casing Diameter Gal/Linear ft.f) Well Volumes $64 \cdot 2 \cdot 12$ 23 Well Volumes $107 \cdot 14 \cdot 92 \cdot 122 \cdot 12$
Water-Level Measurementa) Depth To Water From TOC $4.12-44$ b) Total Well Depth from TOC $21.784$ c) Water Column Height $17.6644$ c) Water Column Height $17.6644$ c) Casing Diameter $6'' 70/6' + hein 4''$ Casing Diameter Gal/Linear ft.e) 1 Well Volume $21.4-gcd$ $1.75$ o) Casing Diameter $6'' 70/6' + hein 4''$ Casing Diameter Gal/Linear ft.e) 1 Well Volume $21.4-gcd$ $1.75$ o) Casing Diameter $6'' 70/6' + hein 4''$ Casing Diameter Gal/Linear ft.e) 1 Well Volumes $64.2^{-1}$ $2$ 3 Well Volumes $107$ $4$ 0.666 $6$ $1.47$ Well PurgingPurge Start Date $3/6/96$ Purge Start Date $3/6/96$ Purge Stop TimePurge Stop Date $3/6/96$ Purge Stop Time $2:25$ Purge Method:Dedicated Teflon BailerCentrifugal PumpSubmersible PumpTubing Type (if any):Dedicated Teflon $2:3.8 gcd$ $6.81$ $2:3.8 gcd$ $6.78$ $3.18$ $14.9$ $4'7.6$ $6.75$ $3.20$ $14.5$ $-4'4$
b) Total Well Depth from TOC $21.78$ H c) Water Column Height $17.664$ Factor for Determining Well Volumes d) Casing Diameter $6^{17} 7_0 f_0^{17} + h e_1 4^{17}$ Casing Diameter Gal/Linear ft. e) 1 Well Volume $21.4$ $g_{cc}$ 1.75 0.1249 3 Well Volumes $64.2$ 2 0.1632 5 Well Volumes $107$ 4 0.66 6 1.47 Well Purging Purge Start Date $3/6/76$ Purge Start Time $18:25$ Purge Stop Date $3/6/76$ Purge Stop Time $18:25$ Purge Method: Dedicated Teflon Bailer Dedicated Polyethylene Bailer Centrifugal Pump Submersible Pump Tubing Type (if any): Dedicated Teflon $15.47$ $7675 a_{TU}$ $2.3.8 g_{cd}$ $(c.78)$ $3.18$ $14.9$ $4.5$ $-7$ $4$
c) Water Column Height $17.6644$ Gasing Diameter $6'' 70/6' + h en 4''$ c) 1 Well Volume $21.4 + gcl$ 1.75 0.1249 3 Well Volumes $64.2$ 5 Well Volumes $107$ 4 0.66 6 1.47 Well Purging Purge Start Date $3/6/96$ Purge Start Date $3/6/96$ Purge Stop Date $3/6/96$ Purge Stop Date $3/6/96$ Purge Stop Time $18:25$ Purge Method: Dedicated Teflon Bailer Dedicated Polyethylene Bailer Centrifugal Pump Submersible Pump Tubing Type (if any): Dedicated Teflon $15.4\%$ Volume pH Specific Temp. Dissolved Turbidity Purged $3.16 + 6.6/cm$ $15.4\%$ $7 - 675 + 070$ 2.3.8 - 3.18 - 14.9 4.06
d) Casing Diameter $\frac{6''}{70.16'} \frac{1}{16} 1$
e) 1 Well Volume $21.4 \text{ gcl}$ 3 Well Volumes $64.2$ 5 Well Volumes $107$ 4 0.66 6 1.47 Well Purging Purge Start Date $3/6/96$ Purge Start Time $18:70$ Purge Stop Date $3/6/96$ Purge Stop Date $3/6/96$ Purge Stop Time $18:25$ Purge Method:Dedicated Teflon BailerDedicated Polyethylene Bailer Centrifugal Pump $\checkmark$ Submersible Pump Tubing Type (if any):Dedicated Teflon $\checkmark$ Dedicated Polyethylene Volume pH Specific Temp. Dissolved Turbidity Purged $\frac{6.81}{6.75} \frac{3.18}{3.20} \frac{19.42}{14.5} \frac{19.42}{} \frac{416}{41.6}$
3 Well Volumes $64.2.7$ 5 Well Volumes $107$ 4 0.66 6 1.47 Well Purging Purge Start Date $3/6/96$ Purge Start Time $81/0$ Purge Stop Date $3/6/96$ Purge Stop Time $18125$ Purge Method:Dedicated Teflon BailerDedicated Polyethylene Bailer Centrifugal Pump $5$ Submersible Pump Tubing Type (if any):Dedicated Teflon $15.4\%$ Purged $6.81$ $3.16$ m5/cm. $15.4\%$ 73.8 $3.18$ $14.74.014.74.05.4%14.74.014.5$ $ 4.64.75$ $3.20$ $14.5$ $ 4.6$
5 Well Volumes $107$ 4 0.66 6 1.47 Well Purging Purge Start Date $3/6/96$ Purge Start Time $18:10$ Purge Stop Date $3/6/96$ Purge Stop Time $18:25$ Purge Method:Dedicated Teflon BailerDedicated Polyethylene Bailer Submersible Pump Tubing Type (if any):Dedicated TeflonDedicated Polyethylene Volume pH Specific Temp. Dissolved Turbidity Purged Conductance $15.4\%$ Oxygen $675\omega_{TU}$ $\frac{73.8_{9c}}{6.75}$ $\frac{6.81}{3.20}$ $\frac{3.18}{14.5}$ $\frac{14.9}{-14.5}$ $\frac{16}{41}$
61.47Well Purging Purge Start Date $& 3/6/96$ Purge Start Time $& [8:76]$ Purge Start Date $& 8/6/96$ Purge Start Time $& [8:25]$ Purge Stop Date $& 8/6/96$ Dedicated Teflon Bailer $& 18:25$ Purge Method: $& Centrifugal Pump$ Dedicated Polyethylene Bailer Submersible PumpTubing Type (if any):Dedicated Teflon $& Submersible Pump$ Volume Purged $& Conductance$ Dedicated Teflon $& Oxygen$ Volume $& PH$ Specific $& Conductance$ Volume $& 13.8 gcd$ HSpecific $& 3.18$ $& 19.42$ Dissolved $& Turbidity$ Oxygen $& 19.42$ $& 19.42$ HOxygen $& 19.42$ HSpecific $& 19.42$ Temp.Dissolved $& Turbidity$ Oxygen $& 19.42$ HSpecific $& 19.42$ Temp.Dissolved $& 75 wruDissolved& 19.42Turbidity& 0xygenOxygen& 19.42HSpecific& 19.42Dissolved& 19.42Dissolved& 19.42Dissolved& 19.42Dissolved& 19.42$
Well Purging Purge Start Date Purge Stop Date $3/6/96$ $8/696$ Purge Start Time Purge Stop Time $18:25$ Purge Stop Date Purge Method: Centrifugal PumpDedicated Teflon Bailer Submersible PumpDedicated Polyethylene Bailer Submersible PumpTubing Type (if any): Purged Initial $47.6$ Dedicated Teflon $6:75$ Temp. $3:20$ Dissolved $14:5$ Volume Purged $14:5$ pH $6:75$ Specific $3:20$ Temp. $14:5$ Dissolved $14:5$ Turbidity $$
Purge Start Date $3/6/96$ Purge Start Time $8!69$ Purge Stop Date $8/696$ Purge Stop Time $18:25$ Purge Method:Dedicated Teflon BailerDedicated Polyethylene BailerCentrifugal PumpSubmersible PumpTubing Type (if any):Dedicated TeflonVolumepHSpecificPurgedConductance $10:41al$ $6:81$ $23:8gcd$ $6:78$ $3:16$ $15:42$ $47:6$ $6:75$ $3:20$ $14:5$
Purge Stop Date $\underline{8}/6/96$ Purge Stop Time $\underline{18:25}$ Purge Method:Dedicated Teflon BailerDedicated Polyethylene BailerCentrifugal PumpSubmersible PumpTubing Type (if any):Dedicated Teflon $\checkmark$ Dedicated PolyethyleneVolumepHSpecificTemp.DissolvedTurbidityPurgedConductance0xygen675 $\omega_{TU}$ $10.41a/$ $6.81$ $3.16$ $mS/cm$ $15.4\%$ $416$ $47.6$ $6.75$ $3.20$ $14.5$ $416$
Purge Method:Dedicated Teflon Bailer Centrifugal PumpDedicated Polyethylene Bailer Submersible PumpTubing Type (if any):Dedicated Teflon $\checkmark$ Dedicated PolyethyleneVolumepHSpecificTemp.DissolvedTurbidityPurgedConductanceOxygen $675 \omega_{70}$ $675 \omega_{70}$ $13.18 \omega_{14.9}$ $14.9$ $$ $46$
Centrifugal PumpSubmersible PumpTubing Type (if any):Dedicated TeflonDedicated PolyethyleneVolumepHSpecificTemp.DissolvedTurbidityPurgedConductanceOxygen $0xygen$ $675 \omega_{70}$ Initial $6.81$ $3.16 m 5/cm$ $15.4\%$ $$ $476$ $23.8 gcd$ $6.75$ $3.18$ $14.9$ $$ $46$
Tubing Type (if any):Dedicated TeflonDedicated PolyethyleneVolumepHSpecificTemp.DissolvedTurbidityPurgedConductanceOxygen0xygenInitial $6.81$ $3.16$ ms/cm. $15.4\%$ $ 675 \omega_{70}$ $23.8$ gcd $6.75$ $3.18$ $14.9$ $ 416$ $47.6$ $6.75$ $3.20$ $14.5$ $ 4$
VolumepHSpecificTemp.DissolvedTurbidityPurgedConductanceOxygen $1nitial$ $6.81$ $3.16 m 5/cm$ $15.4\%$ $ 675 a_{70}$ $23.8 gcd$ $6.78$ $3.18$ $14.9$ $ 46$ $47.6$ $6.75$ $3.20$ $14.5$ $ 4$
VolumepHSpecificTemp.DissolvedTurbidityPurgedConductanceOxygen $1nitial$ $6.81$ $3.16 m 5/cm$ $15.4\%$ $ 675 a_{70}$ $23.8 gcd$ $6.78$ $3.18$ $14.9$ $ 46$ $47.6$ $6.75$ $3.20$ $14.5$ $ 4$
Purged       Conductance       Oxygen         Initial $6.81$ $3.16 \text{ ms}/\text{cm.}$ $15.4\%$ $ 675 \text{ wrv}$ $23.8 \text{ gcl}$ $6.75$ $3.18$ $14.9$ $ 46$ $47.6$ $6.75$ $3.20$ $14.5$ $ 4$
Purged       Conductance       Oxygen         Initial $6.81$ $3.16 \text{ ms/cm.}$ $15.4\%$ $ 675 \omega_{70}$ $23.8 \text{ gcl}$ $6.75$ $3.18$ $14.9$ $ 46$ $47.6$ $6.75$ $3.20$ $14.5$ $ 4$
Purged       Conductance       Oxygen         Initial $6.81$ $3.16 \text{ ms}/\text{cm}$ $15.4\%$ $ 675 \text{ wrv}$ $23.8 \text{ gcl}$ $6.75$ $3.18$ $14.9$ $ 46$ $47.6$ $6.75$ $3.20$ $14.5$ $ 4$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
47.6 6.75 3.20 14.5 - 4
Sampling
Date of Collection 8/6/96 Time of Collection 18:27
Sampling Method:Dedicated Teflon BailerDedicated Polyethylene
Sumpring Method Dedicated Tenon Date: Dedicated Toyounytene Submersible PUMP WITH DEDICATED POLYETHYLENE TUBIN
Types of Analyses
SW8010/8021 (VOCs) SW8270 (semi-volatiles)
Notar Slight Sulcur (45) odar og skap to aver utle
Notes: Slight Sulfur (H25) oder, no sheen to purge unde Good recovery.
boar rearry

Well Number <u>MW-4R</u>	HNu Reading	NIA
Date816196	Free Product Yes	-
	Apparent Thickne	CSS
Water-Level Measurement a) Depth To Water From TOC 4.80 / b) Total Well Depth from TOC 9.48 / c) Water Column Height 4.68 /	Factor fo	or Determining Well Volumes
d) Casing Diameter 2'	Casing I	Diameter Gal/Linear ft.
e) 1 Well Volume 0.8 gcl	1.75	0.1249
3 Well Volumes 2.4	2	0.1632
5 Well Volumes <u>4.0</u>	- 4	0.66
	6	1.47
Well Purging	.0.	· · · · · · · · · · · · · · · · · · ·
		<u>50</u>
Purge Stop Date <u>8/6/76</u> Pur	ge Stop Time <u>14</u> ;	<u>CD</u>
Purge Method:Dedicated Teflon Baile Centrifugal Pump	Submersible	-
Tubing Type (if any):Dedicated Te	flonD	edicated Polyethylene
	Temp.Dissol $0xyge$ $20.2$ % $8.4$ $7.9$ $17.9$ $18.2$	•
	Time of Collection Define Time Define The De	n 08130 Edicated Polyethylene baller
Types of Analyses	<b>671/0070</b> /·	
SW8010/8021 (VOCs)	SW8270 (s	emi-volatiles)
Notes: No color, no sheen and allowed to recover	te punge up overnight	ter Well sugar de prices to Sampling
Notes: No ador, no sheen and allowed to recover	to punge up overnight	ter Well surged de prices to Sarpling

Well Number MW-HD	HNu R	Reading <u>1</u>	1/A
Date 8/6/96	Free P	roduct Yes/No	
		ent Thickness	
Water-Level Measurement			
a) Depth To Water From TOC 4.63	34		
b) Total Well Depth from TOC 22.2	74		
c) Water Column Height 17,64	H	Factor for Deter	mining Well Volumes
d) Casing Diameter 6" 70 16' TITEN	<u> </u>	Casing Diameter	r Gal/Linear ft.
e) 1 Well Volume 21.1 cjan	<u> </u>	1.75	0.1249
3 Well Volumes 63.4	÷	2	0.1632
5 Well Volumes 106		4	0.66
		6	1.47
Well Purging			
Purge Start Date 816196	Purge Start Tin	ne 17:15	
Purge Stop Date 816196	Purge Stop Tim	ne 17:26	
Purge Method:Dedicated Teflon E	Bailer]	Dedicated Polyethy	lene Bailer
Centrifugal Pump		Submersible Pump	
Tubing Type (if any):Dedicated	i Teflon	Dedicate	d Polyethylene
			·
Volume pH Specific	Temp.	Dissolved	Turbidity
Purged Conductance	14.40	Oxygen	4 ~ 1
initial 7.30 2.77 ms/em			<u>151 NTU</u>
<u>22.5gcl</u> <u>6.88</u> <u>3.07</u>	12.8	······································	<u> </u>
<u>H5 gcl 6.83 3.11</u> 68.7 vl 6.85 3.11			· · · · ·
68.7 gel 6.85 3.11	12.2		5
		<u> </u>	· · · · · · · · · · · · · · · · · · ·
Concerning a			
Sampling Date of Collection 8/6/96			7:27
		Dedicated	• •
	e pump witt	t pedicated 1	DOLYETHYLENE TUBIN
Types of Analyses			
SW8010/8021 (VOCs)		SW8270 (semi-vol	atiles)
Notes: Slight Sulfur (H2S. Good recovery.	odor , 1	io sheen t	o punge wal
<u>Good recovery</u>			
	······	1	

Date $8/6/76$ Free Product Yes/80         Apparent Thickness       Apparent Thickness         a) Depth To Water From TOC $2.38$ H         b) Total Well Depth from TOC $2.52$ H         c) Water Columa Height $6.14$ H         c) Casing Diameter $2^{-7}$ c) Water Columa Height $6.14$ H         c) Casing Diameter $2^{-7}$ c) Well Volumes $5^{-7}$ f) Well Volumes $5^{-7}$ f) Well Volumes $5^{-7}$ f) Well Septific       Purge Start Time         f) Werge (if any):       Dedicated Teflon Bailer         Conductance $0xygen$ initial $6.52$ $0.55$ $3.04$ $2.0.4^{-7}$ $188^{-7}$ $2.1 g.d$ $6.52$ $3.02 \dots 6/cr.       22.6^{-7} 1.1 g.d $	Well Number <u>MW-5</u>	HNu Reading MA
Water-Level Measurement         a) Depth To Water From TOC       2.38 /f         b) Total Well Depth from TOC       8.52 /f         c) Water Column Height       6.14 /f         Gasing Diameter       2 /f         c) Water Column Height       6.14 /f         Gasing Diameter       1.75         c) Well Volumes       2         of Casing Diameter       1.75         of Casing Diameter       1.47         Well Purging       Purge Start Time         Purge Start Date       8/6/96         Purge Start Date       8/6/96         Purge Start Date       8/6/166         Purge Start Date       9/6/166         Purge Start Date       9/6/166         Conductance       0.00/1000         I aget	Date 8/6/96	Free Product Yes/No
a) Depth To Water From TOC $2.38$ $1/1$ b) Total Well Depth from TOC $8.52$ $1/1$ c) Water Column Height $6.14$ $1/1$ c) Twell Volume $2^{''}$ Casing Diameter Gal/Linear ft. c) 1 Well Volume $1.9a^{\circ}$ 1.75 0.1249 3 Well Volumes $5$ 2 0.1632 5 Well Volumes $5$ 4 0.66 6 1.47 Well Purging Purge Start Date $8/6/96$ Purge Start Time $14/1.00$ Purge Stop Date $8/6/96$ Purge Start Time $14/1.15$ Purge Method:Dedicated Teflon BailerDedicated Polyethylene Bailer Submersible Pump Tubing Type (if any):Dedicated TeflonDedicated Polyethylene $1.19a^{\circ}$ $6.52$ $3.02 - 9/6a^{\circ}$ $22.6^{\circ}$ $19 - 472$ $188$ $7.19a^{\circ}$ $6.55$ $3.02 + 20.4$ $ 188$ $7.19a^{\circ}$ $6.55$ $3.02 + 20.4$ $ 188$ $7.19a^{\circ}$ $6.52$ $3.02 - 19.4$ $ 2222$ 9 That escandards (6.52) = 1.92 Time of Collection $08.50SamplingDate of Collection 8/7/96 Time of Collection 08.50Sampling Method:Dedicated Teflon BailerDedicated Polyethylene be.botTypes of Analyses$ SW8010/8021 (VOCs)SW8270 (semi-volatiles)		Apparent Thickness
e) 1 Well Volume $1 - 9e^{1}$ 1.75 0.1249 3 Well Volumes $2$ 2 0.1632 5 Well Volumes $5$ 4 0.66 6 1.47 Well Purging Purge Start Date $3 6 96$ Purge Start Time $14:00$ Purge Stop Date $3 6 96$ Purge Start Time $14:15$ Purge Method:Dedicated Teflon BailerDedicated Polyethylene Bailer Centrifugal PumpSubmersible Pump Tubing Type (if any):Dedicated TeflonDedicated Polyethylene Volume pH Specific Temp. Dissolved Turbidity Purged Conductance Oxygen $14:16$ 1.15 $2.222$ $19:4$ $ 19  ATV1.19e^{1} 6.55 3.04 20.4  1887.19e^{1} 6.55 3.02 19:4  22223.02 19:4$ $ 22223.02 19:4$ $ 22223.02 19:4$ $ 22223.02 19:4$ $ 22223.02 19:4$ $ 22223.02 19:4$ $ 22223.02 19:4$ $ 22223.02 19:4$ $ 22223.02 19:4$ $ 22223.02 19:4$ $ 22223.02 19:4$ $ 22223.02 19:4$ $  1887.19e^{1} 6.55   75         -$	a) Depth To Water From TOC 2.38 // b) Total Well Depth from TOC 8.52 // c) Water Column Height 6.14 //	-
3 Well Volumes $2$ $0.1632$ 5 Well Volumes $5$ $4$ $0.66$ 6 $1.47$ Well Purging Purge Start Date $3 6 96$ Purge Start Time $14:00$ Purge Stop Date $3 6 96$ Purge Start Time $14:00$ Purge Stop Date $3 6 96$ Purge Start Time $14:15$ Purge Method:Dedicated Teflon BailerDedicated Polyethylene Bailer Centrifugal PumpSubmersible Pump Tubing Type (if any):Dedicated TeflonDedicated Polyethylene Volume pH Specific Temp. Dissolved Turbidity Purged Conductance Oxygen $1.1 g_{cd}$ $6.55$ $3.04$ $20.4$ $ 19 arv$ $1.1 g_{cd}$ $6.55$ $3.02 arg/gen$ $27.6^{\circ}C$ $ 19 arv$ 7.1 g.d $6.52$ $3.02 arg/gen$ $ 1887.1 g.d$ $6.52$ $3.02 arg/gen$ $ 1887.1 g.d$ $6.55$ $3.02 arg/gen$ $  1887.1 g.d$ $6.55$ $3.02 arg/gen$ $         -$		-
5 Well Volumes       5       4       0.66         6       1.47         Well Purging       Purge Start Date $8/6/9/6$ Purge Start Time $14:00$ Purge Stop Date $8/6/9/6$ Purge Stop Time $14:15$ Purge Method:      Dedicated Teflon Bailer $\checkmark$ Dedicated Polyethylene Bailer         Centrifugal Pump      Submersible Pump         Tubing Type (if any):      Dedicated Teflon      Dedicated Polyethylene         Volume       pH       Specific       Temp.       Dissolved       Turbidity         Purged $6.53$ $3.02$ $12.6^{\circ}$ $14.88$ $1.188$ $7.1$ grid $6.52$ $3.02$ $19.4^{\circ}$ $2.22$ $18.8^{\circ}$ $7.1$ grid $6.52$ $3.02$ $19.4^{\circ}$ $2.22$ $75^{\circ}$ $9^{\circ}$ Invo driftering $3.32$ $19.5$ $75^{\circ}$ $75^{\circ}$ $9^{\circ}$ Invo driftering $8/7/94^{\circ}$ Time of Collection $08:50^{\circ}$ Sampling       Date of Collection $8/7/94^{\circ}$ Time of Collection $08:50^{\circ}$ Sampling Method:		
6   1.47 Well Purging Purge Start Date <u>8 6 96</u> Purge Start Time <u>14:00</u> Purge Stop Date <u>8 6 96</u> Purge Stop Time <u>14:15</u> Purge Stop Date <u>8 6 96</u> Purge Stop Time <u>14:15</u> Purge Method:Dedicated Teflon Bailer <u>//</u> Dedicated Polyethylene Bailer Centrifugal PumpSubmersible Pump Tubing Type (if any):Dedicated TeflonDedicated Polyethylene Volume pH Specific Temp. Dissolved Turbidity Purged <u>6.53</u> <u>3.00 - 5/cav</u> <u>27.6 °C - 19 ATV</u> <u>1.1 g.cd</u> <u>6.55</u> <u>3.04</u> <u>2.0.4</u> <u>- 188</u> <u>7.1 g.cd</u> <u>6.55</u> <u>3.02 19:44</u> <u>- 2.222</u> @		
Well Purging       Purge Start Date $8/6/96$ Purge Start Time $14:00$ Purge Stop Date $8/6/96$ Purge Stop Time $14:15$ Purge Stop Date       Dedicated Teflon Bailer $\Box$ Dedicated Polyethylene Bailer         Centrifugal Pump       Submersible Pump         Tubing Type (if any):       Dedicated Teflon       Dedicated Polyethylene         Volume       pH       Specific       Temp.       Dissolved       Turbidity         Purged       Conductance       Oxygen $14:16$ $470'$ Indicated 6:52 $3.02$ $19:4$ $2.024'$ $18.8$ $2.1 \text{ g.el}$ $6:52$ $3.02$ $19:4$ $2.222'$ Intel or Stampting $3.32$ $19:5$ $75$ $75$ Sampling       Date of Collection $8/7/196'$ Time of Collection $08:50'$ Sampling Method:       Dedicated Teflon Bailer       Dedicated Polyethylene back         Y SW8010/8021 (VOCs)       SW8270 (semi-volatiles) $14''''''''''''''''''''''''''''''''''''$		
Purge Start Date $\frac{8}{8}/\frac{6}{9}/\frac{6}{6}$ Purge Start Time $\frac{14:00}{14:15}$ Purge Stop Date $\frac{8}{8}/\frac{6}{9}/\frac{6}{6}$ Purge Stop Time $\frac{14:15}{15}$ Purge Method:       Dedicated Teflon Bailer $\checkmark$ Dedicated Polyethylene Bailer         Centrifugal Pump       Submersible Pump         Tubing Type (if any):       Dedicated Teflon       Dedicated Polyethylene         Volume       pH       Specific       Temp.       Dissolved       Turbidity         Purged       Conductance       Oxygen       188       7.1 g.d.       6.55       3.04       2.0.4       188         2.1 g.d.       6.52       3.02       19.44       222       75         @ IntelerStempting       Sampling       Time of Collection       08:50       50         Sampling       Date of Collection $81/7/96$ Time of Collection       08:50       50         Sampling Method:       Dedicated Teflon Bailer       Dedicated Polyethylene be.br         Y SW8010/8021 (VOCs)       SW8270 (semi-volatiles)	Well Purging	
Purge Stop Date $\overline{8/6/6}$ Purge Stop Time $14:15$ Purge Method:      Dedicated Teflon Bailer $\checkmark$ Dedicated Polyethylene Bailer         Tubing Type (if any):      Dedicated Teflon      Dedicated Polyethylene         Tubing Type (if any):      Dedicated Teflon      Dedicated Polyethylene         Volume       pH       Specific       Temp.       Dissolved       Turbidity         Purged $6.53$ $3.00 \text{ m/s}/cm$ $27.6^{\circ}C$		Start Time $14:00$
Purge Method:      Dedicated Teflon Bailer      Dedicated Polyethylene Bailer         Tubing Type (if any):      Dedicated Teflon      Dedicated Polyethylene         Volume       pH       Specific       Temp.       Dissolved       Turbidity         Purged       Conductance       Oxygen		
Purged initialConductance $3.00 \text{ m/s}/cm}$ Oxygen $27.6^{\circ}C$ Image: Conductance $-$ Oxygen $19.70^{\circ}$ 1.1 gcd $6.53$ $3.00 \text{ m/s}/cm$ $27.6^{\circ}C$ $ 19.70^{\circ}$ 2.1 gcd $6.55$ $3.04$ $20.4$ $ 188$ 2.1 gcd $6.52$ $3.02$ $19.4$ $ 222$ $@$ Time of Collection $6.45$ $3.32$ $19.5$ $ 75$ $@$ Time of Collection $8/7/96$ Time of Collection $08:50$ SamplingDate of Collection $8/7/96$ Time of Collection $08:50$ Sampling Method:Dedicated Teflon Bailer $\checkmark$ Dedicated Polyethylene $be.br$ Types of Analyses $V_SW8010/8021$ (VOCs)SW8270 (semi-volatiles)	Centrifugal Pump	Submersible Pump
Date of Collection 8/7/96       Time of Collection 08:50         Sampling Method:      Dedicated Teflon Bailer      Dedicated Polyethylene         Types of Analyses      SW8010/8021 (VOCs)      SW8270 (semi-volatiles)	Purged         Conductance $in.itial$ $6.53$ $3.00 \text{ m.5}/cm$ $27$ $1.1 \text{ gal}$ $6.55$ $3.04$ $2c$ $7.1 \text{ gal}$ $6.52$ $3.02$ $19$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
<u>V</u> _SW8010/8021 (VOCs)SW8270 (semi-volatiles)	Date of Collection 817196	
Notes: NO odar, no Sheen to purge water. Well purged dray and allowed to recover overnight price to sampling:		SW8270 (semi-volatiles)
· · · · · · · · · · · · · · · · · · ·	Notes: No odar, no Sheen a drey and allowed to rec sampling;	to purge water. Well purged over overnight price to
	· · · · · · · · · · · · · · · · · · ·	

.

Well Number <u>MW-5D</u>	HNu Reading	A
Date8/6/96	Free Product Yes	
	Apparent Thickness	
Water-Level Measurement		
a) Depth To Water From TOC 1.82.14		
b) Total Well Depth from TOC18.3514		
c) Water Column Height 16.53 14	Factor for Deter	rmining Well Volumes
d) Casing Diameter <u>6''</u>	Casing Diamete	r Gal/Linear ft.
e) 1 Well Volume 24.3 gal	1.75	0.1249
3 Well Volumes 72.9	2	0.1632
5 Well Volumes 121.5	4	0.66
	6	1.47
Well Purging		
	Start Time 15: 45	
Purge Stop Date 816196 Purge	Stop Time_16100	
Purge Method:Dedicated Teflon Bailer	Dedicated Polyethy	ylene Bailer
Centrifugal Pump	<u> </u>	•
Tubing Type (if any):Dedicated Teflo	n <u> </u>	d Polyethylene
Volume pH Specific T	emp. Dissolved	Turbidity
Purged Conductance	Oxygen	·
initial 6.75 3.67 m5/cm. 14	- 28.	GI8 NTU
26.4 6.75 3.69 14	.9	98
52.8 6.74 3.68 14	.7	<u> </u>
79.2 6.74 3.69 14	1.7	32
	·	
		<u> </u>
Sampling Date of Collection 8/6/96	Time of Collection	6:00
Sampling Method: Dedicated Teflon	BailerDedicated	
V Submersible r	ump with electicited	Polyethylene Tubing
Types of Analyses		·
✓ SW8010/8021 (VOCs)	SW8270 (semi-vol	atiles)
	- <u></u> ``	-
	O DUVIO Noter.	Very word
Notes: ND odor no sheep +		
Notes: No odor, no sheen -	<u>e porge noeden</u>	0 0
Notes: No cdor, no sheen t	<u> </u>	<b>U V</b>
Notes: No odor, no sheen - vecovery.		
Notes: <u>No cdor, no sheen z</u> <u>vecovery</u> .		

Well Number MW-6	HNu Reading	NA		
Date 816196	Free Product Y	Free Product Yes/No		
	Apparent Thick	ness		
Water-Level Measurementa) Depth To Water From TOC $3.44$ b) Total Well Depth from TOC $10.18$ c) Water Column Height $6.74$ d) Casing Diameter $2''$ e) 1 Well Volume $1.19.4$ 3 Well Volumes $3.3$ 5 Well Volumes $5.5$	Factor	for Determining Well Volumes Diameter Gal/Linear ft. 5 0.1249 0.1632 0.66		
	6	1.47		
		30		
Purge Method:Dedicated Teflon B Centrifugal Pump	ailer <u>/</u> Dedicated Submersi	l Polyethylene Bailer ble Pump		
Tubing Type (if any):Dedicated	Teflon	Dedicated Polyethylene		
Volume         pH         Specific           Purged         Conductance $1.1$ ticil $6.66$ $2.36 \times 5/cm$ $1.2$ gcl $6.69$ $1.42$ $2.9$ $6.74$ $1.49$ $3.7$ $6.70$ $2.09$ $c$ TIAL OFSEMPLING $6.83$ $1.68$	Temp.       Diss $0xy_1$ $0xy_1$ $18.1^{\circ}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Sampling Date of Collection <u>817196</u> Sampling Method:Dedicated T	Time of Collect eflon Bailer	tion 08:05 Dedicated Polyethylene bailer		
Types of Analyses _ 🗸 SW8010/8021 (VOCs)	SW8270	(semi-volatiles)		
Notes: Well surged dry Well sampled on fall No odor, no sheen	· Left overn oneing doug. to pinge hout	ight to recover.		
······		<u></u>		

الا الا الا الا الا الا الا المعاد المعاد الا الا المعموساتية المستقد

# Groundwater Sampling Field Data Sheet DEVELOPMENT DATA

Well Number <u>MW-6D</u> Date <u>8/5/96</u>	HNu Reading Free Product (	
Water-Level Measurement a) Depth To Water From TOC 3.082 b) Total Well Depth from TOC 24.925	Apparent Thickn	ess <u>light Sheen</u>
c) Water Column Height 21.843	Factor f	or Determining Well Volumes
d) Casing Diameter 6" To 16' Then 4'	<u> </u>	Diameter Gal/Linear ft.
e) 1 Well Volume 24.9 gal	1.75	
3 Well Volumes 74.7	2	0.1632
5 Well Volumes   24.5		0.66
	6	1.47
Well Purging	Ŷ	****
	urge Start Time ~13	: 00
Purge Stop Date 8/596 F	urge Stop Time_~16	; 00
Purge Method: Dedicated Teflon Ba		Polyethylene Bailer
Centrifugal Pump	Submersib	le Pump
Tubing Type (if any):Dedicated	TeflonI	Dedicated Polyethylene
Volume pH Specific	Temp. Disso	,
Purged Conductance	Oxyg	
124 gal 7.08 2.94 ms/an.	19.5°C -	262 NTU
165 7.09 3.01	17.6 -	
200 7.08 3.08	17.0 -	
216 7.07 3.06	17.2 _	2
279 7,04 3.07	16.7 -	4
320 7.05 3.09	16.9 -	
380 gal 7,08 3,06	16.8 -	ib
Sampling		
Date of Collection N/A	Time of Collecti	on_NIA
Sampling Method: Dedicated T	flon BailerD	edicated Polyethylene
Types of Analyses		
SW8010/8021 (VOCs)	SW8270 (	emi-volatiles)
	0110270 (1	
	ight "bily"	odor to purge wate
Notes: Light Sheen, 5	J	· •
Good vetovery	<u> </u>	· · · ·
Notes: Light Sheen, 5 Good ve covery	J	
Notes: Light Sheen, 5 Good ve tovery		

Well Number <u>MW-6D</u>	HNu Reading , UIA		
Date816196	Free Product Ces/No		
	Apparent Thickness Slight Sheen		
Water-Level Measurement			
a) Depth To Water From TOC 3.082 14			
b) Total Well Depth from TOC 24,925 1			
c) Water Column Height $21.85 \text{ J}_{\text{H}}$	Factor for Determining Well Volumes		
d) Casing Diameter 6" to 16' THEN 4"	Casing Diameter Gal/Linear ft.		
e) 1 Well Volume 23 gal	1.75 0.1249		
3 Well Volumes 6 ^c	2 0.1632		
5 Well Volumes 115	4 0.66		
	6 1.47		
Well Purging			
Purge Start Date 8/6/96 Purge	Start Time 16:30		
	Stop Time $16:48$		
Purge Method: Dedicated Teflon Bailer	Dedicated Polyethylene Bailer		
Centrifugal Pump	Submersible Pump		
· · · ·			
Tubing Type (if any):Dedicated Teflo	on Dedicated Polyethylene		
	emp. Dissolved Turbidity		
Purged Conductance	Oxygen		
	5.2°C144NTU		
	1.4 56		
	3.96		
79.3 6.88 3.07 1	3.74		
Sampling	1/cr.		
Date of Collection816196	Time of Collection 16:50		
Sampling Method:Dedicated Teflon	BailerDedicated Polyethylene		
Submersible	PUMP WITH DEDICATED POLYETHYLENE TUBING		
Types of Analyses			
SW8010/8021 (VOCs)	SW8270 (semi-volatiles)		
Notes: Slight sheen, no ado	r to purge water - initially.		
After purging approxima	bely 50 gallous a heaven she		
and an "sile" oder i	vas natical the sence		
weter.			

#### Appendix E

.

.

•

.

.

#### Summary of Hydraulic Conductivity Testing Results

Well	Screen Zone	Hydraulic Conductivity (ft/min)	Transmissivity (ft2/min)	Saturated Thickness (ft)	Hydraulic Conductivity (cm/sec)
MW-1	Overburden	9.62E-05	#N/A	5.2	4.89E-05
MW-1D	Bedrock	#N/A	1.40E-02	9.5	7.49E-04
MW-1DD	Unweathered Till	6.21E-06	#N/A	8.8	3.15E-06
MW-2	Overburden	2.79E-04	#N/A	5.4	1.42E-04
MW-3	Overburden	1.48E-05	#N/A	4.4	7.50E-06
MW-3D	Bedrock	#N/A	5.51E+00	7.1	3.94E-01
MW-4	Overburden	4.19E-07	#N/A	4.9	2.13E-07
MW-4D	Bedrock	#N/A	1.63E+00	7	1.18E-01
MW-5	Overburden	8.06E-07	#N/A	7.6	4.09E-07
MW-5D	Bedrock	#N/A	2.16E+00	7	1.57E-01
Overburder	n Average		•		3.37E-0
Bedrock Av	verage				1.68E-0

NOTE: Phase 2 Data indicated in bold text.

#### K_TEST.XLS

#### A Program for

AOTESOLV

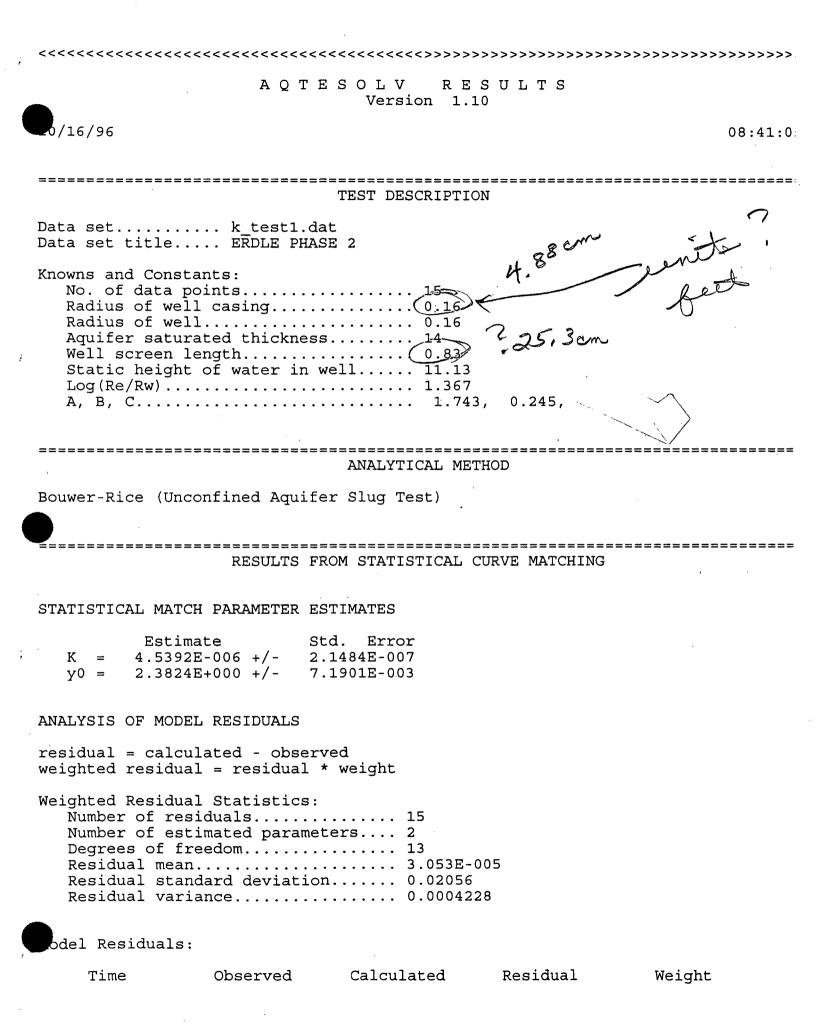
#### Automatic Estimation of Aquifer Coefficients

From Aquifer Test Data

By:

Glenn M. Duffield and James O. Rumbaugh, III

Geraghty & Miller Modeling Group 1895 Preston White Drive, Suite 301 Reston, VA 22091


#### (703) 476 - 0335

A Q T E S O L V is a user-friendly program designed to analyze data from aquifer tests automatically. Aquifer coefficients for a variety of aquifer test conditions can be estimated by A Q T E S O L V, including the following:

- confined aquifers, unconfined aquifers, and leaky aquifers
- o pumping tests, injection tests, recovery tests, and slug tests

#### Features:

- o Interactive, menu-driven program design
- o Nonlinear least-squares estimation of aquifer coefficients
- o Statistical analysis of results
- o Complete graphical display of results



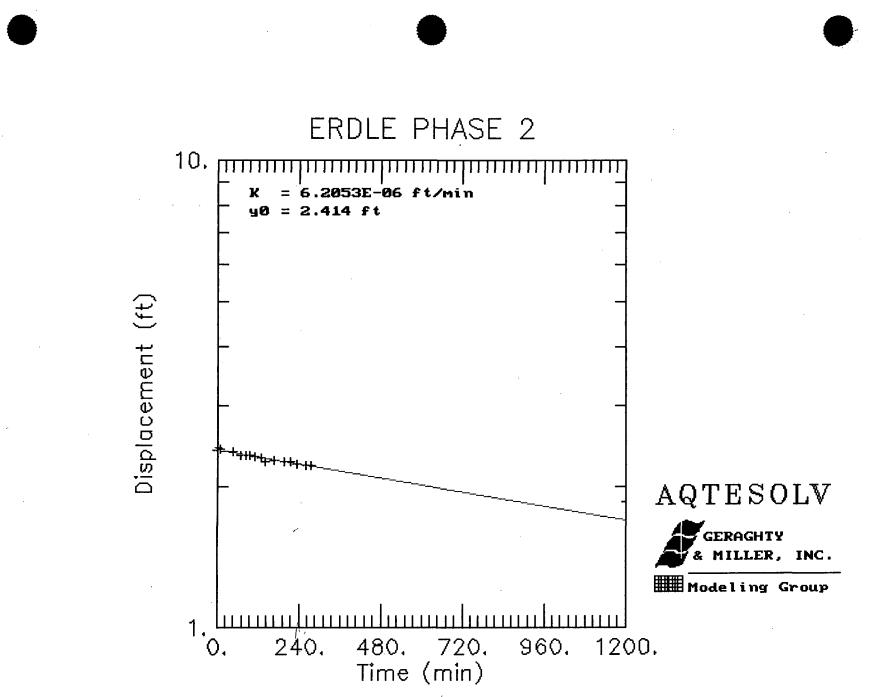
	78	2.42	2.3783	0.04171	1
	48	2.39	2.3579	0.032103	1
	70	2.35	2.3468	0.0032439	1
	H80 85	2.34	2.3392	0.00080995	1
	и ⁰ 95	2.34	2.3342	0.0058404	1
$\mathbf{\bullet}$	112	2.33	2.3256	0.0043674	1
	131	2.32	2.3161	0.0038607	1
	142	2.28	2.3107	-0.030661	1
	165	2.29	2.2992	-0.0092478	1
	197	2.27	2.2835	-0.013463	1
	217	2.27	2.2737	-0.0036519	1
	233	2.25	2.2658	-0.015834	1
	259	2.23	2.2532	-0.023186	1
	> 275	2.23	2.2454	-0.015439	1
	1200	1.86	1.84	0.020004	1

12000

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

267 see


8

Estimate K = 6.2053E-006 y0 = 2.4144E+000

5. 3×10-4 cm/sec. 3.8×10-4 "

2,4,40-4

E= 96. cm

