

engineering and constructing a better tomorrow

May 23, 2016

Division of Environmental Remediation Remedial Bureau E, 12th Floor New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233-7016

Attention: Charles Gregory, Project Manager

Subject:March 2016 Soil Vapor Intrusion Monitoring Report80 Rockwood Place and 989 Blossom Road, Rochester, New YorkScobell Chemical - NYSDOT Site - 828076MACTEC Engineering and Consulting, P.C. Project No. 3617147328

Dear Mr. Gregory:

MACTEC Engineering and Consulting, P.C., (MACTEC), under contract to the New York State Department of Environmental Conservation (NYSDEC) (Work Assignment No. D007619-32) is pleased to present this letter report documenting the March 2016 soil vapor intrusion (SVI) sampling and Sub-Slab Depressurization System (SSDS) evaluation activities and findings at 80 Rockwood Place and 989 Blossom Road in Rochester, New York. Work was completed as part of investigations associated with the Scobell Chemical-New York State Department of Transportation (NYSDOT) site (Site), NYSDEC site #828076, located in close proximity to these two properties in the town of Brighton (see Figures 1 and 2).

BACKGROUND

The Scobell Chemical-NYSDOT site, located at 1 Rockwood Place, in the Town of Brighton, Monroe County, New York, is the location of a former chemical repackaging company that operated at this location from the 1920s until 1986. The Site buildings and contaminated soil were removed from the Site in 1988 during a NYSDOT highway reconstruction project. Investigations conducted to date have identified volatile organic compounds (VOCs) in soil, bedrock and groundwater below and surrounding the Site, primarily the chlorinated solvent trichloroethene (TCE).

TCE and its daughter products can partition from soil and groundwater to soil vapor and then migrate through the soil column. Soil vapor can be drawn into buildings through openings and cracks in foundations and floor slabs.

Eighty Rockwood Place is located adjacent to the Scobell Chemical-NYSDOT Site and consists of multiple commercial and retail rental units. Results for sub-slab soil vapor and indoor air samples collected from the property in 2012, and 2015 indicate the potential for soil vapor intrusion; therefore, to mitigate the exposure pathway, SSDSs were installed at the eastern portion of the main building (Structure 1) and the northern section of the building, which was the former boiler house (Structure 4).

Nine hundred eighty nine Blossom Road is a nursing facility located north of the Scobell Chemical-NYSDOT Site and within the groundwater plume footprint associated with Site. Soil vapor samples collected in the vicinity of this property in 2015 indicated the potential for soil vapor intrusion.

OBJECTIVES

The March 2016 SVI monitoring was conducted to evaluate the SSDS effectiveness at 80 Rockwood Place and assess the potential for SVI at the western half of 80 Rockwood Place and 989 Blossom Road, including:

- performance monitoring of the SSDS installed in 2012 in the eastern portion of 80 Rockwood Place (Structure 1);
- SVI sampling at the western portion of 80 Rockwood Place (Structure 1);
- performance monitoring of the SSDS upgrades conducted in 2015 at the northern section of 80 Rockwood Place (Structure 4); and
- SVI sampling at 989 Blossom Road (Structure 5).

MARCH 2016 SSDS EVALUATION & SOIL VAPOR INTRUSION MONITORING

SSDS performance monitoring consisted of an assessment generally following the suggested operation and maintenance procedures in Section 5 of the Mitigation Tech Construction Completion Report (Mitigation Tech, 2012). The assessment focused on qualitatively evaluating the primary system components of the SSDS.

The SVI sampling was accomplished per the New York State Department of Health (NYSDOH) "Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (NYSDOH, 2006 and 2007) and per the Site Field Activities Plan (MACTEC, 2015). Air samples were collected in 1.4L SUMMA®-type canisters.

Samples were analyzed by Centek Laboratories of Syracuse, NY for analyses of VOCs via United States Environmental Protection Agency Method TO-15 with a detection limit of 1 microgram per cubic meter ($\mu g/m^3$) for most compounds and a detection limit of 0.25 $\mu g/m^3$ for TCE, vinyl chloride, and carbon tetrachloride in the indoor/ambient air samples.

The March 2016 sampling locations are shown on Figure 2 and on a hand sketch provided in Attachment 1. Structure IDs for the locations sampled, along with the physical addresses and sample IDs are presented in Table 1. Validated laboratory sample results are presented in Table 2.

This report includes the following attachments:

Attachment 1: Indoor Air Questionnaires, SSDS Inspection Forms, Building Inventories and photographic logs for the SVI samplingAttachment 2: Laboratory Analytical Result Forms

Attachment 3: Data Usability Summary Report

<u>SSDS Performance Monitoring and SVI Monitoring at 80 Rockwood Place - Main Building-</u> <u>Structure 1.</u>

SSDS Performance Monitoring. An SSDS was installed in the eastern portion of the main building at 80 Rockwood Place (Structure 1) in 2012. The system consists of six suction points connected with three-inch polyvinyl chloride (PVC) suction pipes to a single Radonaway GP-501 fan. This system was found to be operating, with no new floor cracks observed, the pipe seals

appeared intact, and the riser piping was observed to be in good condition. Although the exhaust fan was not evaluated due to its location on the roof, the manometer reading on the suction point was comparable to the installation specifications, indicating the system was drawing the designed vacuum. As part of the performance monitoring, an indoor air sample was collected over an eighthour period from the area influenced by the SSDS (Location ID: Main Building - Doggy Day Care). The results from this indoor air sample were non-detect for TCE.

SVI Sampling. Samples were collected from five of the six other occupied ground floor rental units and from the basement to further evaluate for the potential presence of TCE across the building footprint (a hand sketch of the sample locations is included in Attachment 1). Due to the high photoionization detector readings previously detected in the unit occupied by a printing shop, and the desire of the property owner not to sample in that area, a sample was not collected in this rental unit. In addition, due to the desire of the property owner to not disturb the recently polyurethaned concrete floors, only one location in the center of the building was available for collection of a sub-slab sample.

Sub-slab vapor, indoor air, and ambient air samples were collected over an 8-hour period. As shown on Table 2, TCE was detected in the sub-slab vapor sample (Main Building – Center – SS) at a concentration of 350 μ g/m³. TCE was detected in the indoor air sample (Main Building-Center) collected in the vicinity of the sub-slab sample at a concentration of 0.48 μ g/m³. With the exception of the sample collected from the Tryon Bike shop (120 μ g/m³) and the basement (28 μ g/m³), the indoor air results for TCE from the other four rental units did not exceed the indoor air guidance value of 2 μ g/m³ (NYSDOH, 2015). Numerous chemicals for conducting bicycle maintenance were visually observed at the Tryon Bike Shop; however, none were noted to contain TCE. Due to the inability to collect sub-slab samples in the vicinity of Tyron Bike shop, and the inability to inspect the product inventory of the adjacent printing shop, the source of TCE in the indoor air samples is unknown.

SSDS Performance Monitoring at 80 Rockwood Place - More Fire Glass Studio - Structure 4.

An SSDS was installed in the More Fire Glass Studio located on the northern portion of 80 Rockwood Place (Structure 4) in 2012 (Mitigation Tech, 2012) and upgraded in 2015 (Mitigation Tech, 2015). Structure 4 is the former boiler house for the main building and consists of a one

story slab on grade building. The system consists of four suction points connected with three-inch PVC pipe to an OBAR 76-UD fan, and one suction point connected with a four-inch PVC pipe to a RadonAway RP265 fan. This system was found to be operating, with no new floor cracks observed, the pipe seals appeared intact, and the riser piping was observed to be in good condition. Although the two exhaust fans were not evaluated due to their location on the roof, the manometer readings on the suction points were comparable to the installation specifications.

As part of the performance monitoring, two indoor air samples were collected over an eight-hour period from areas previously sampled: 1) the gallery/office area, and 2) from the main room in the vicinity of the glass oven. The results for these indoor air samples (14 μ g/m³ in the office/gallery and 8.5 μ g/m³ in the oven area) were higher than the results collected post SSDS upgrade in September 2015 (2.6 μ g/m³ in the office/gallery and 2.5 μ g/m³ in the oven area) and above the guidance values for TCE of 2 μ g/m³.

SVI Monitoring at 989 Blossom Road - Structure 5.

TCE was detected in groundwater and exterior soil vapor samples in the vicinity of Blossom Road during a recent sampling event (December 2015); therefore, an evaluation for SVI at 989 Blossom Road was conducted.

Nine hundred eighty nine Blossom Road, also referred to as Brighton Manor, is an eighty bed nursing and rehabilitation facility offering 24 hour care. The building foundation consists of a concrete slab on grade. SVI sampling at Structure 5 consisted of collecting two sub-slab soil vapor samples (plus duplicate), two first floor air samples, and one outdoor ambient air samples over a 24-hour period.

As shown in Table 2, TCE was detected in the sub-slab vapor sample at a concentrations ranging from 140 μ g/m³ to 150 μ g/m³. TCE was not detected in the indoor air or outdoor ambient air samples suggesting potential for SVI pathway is not complete at this location.

SVIE Letter Report —Scobell Chemical NYSDOT — Site No. 8828076 MACTEC Engineering and Consulting, P.C. Project No. 3617147328

If you have questions, please feel free to contact us at 207-775-5401.

Sincerely,

MACTEC Engineering and Consulting, P.C.

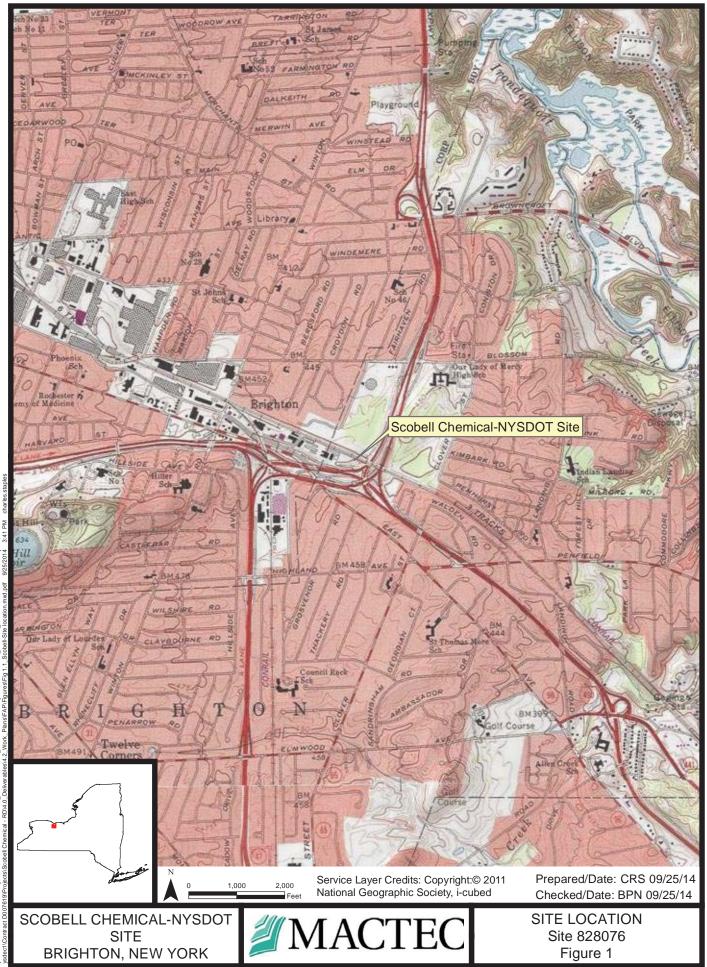
Charles Staples

Technical Lead

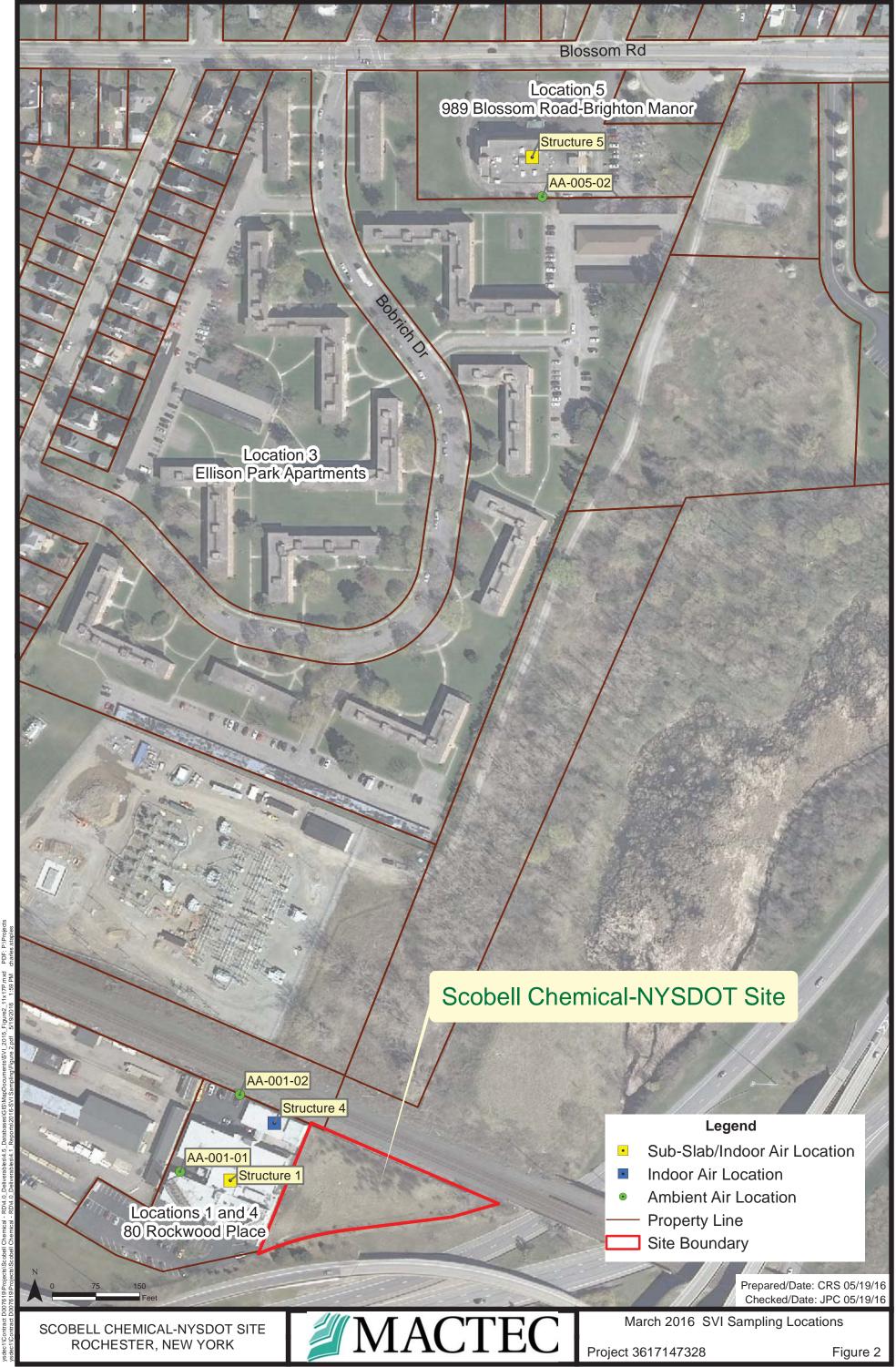
Jups

Jayme Connolly Project Manager

Enclosures (3)


Attachment 1: Indoor Air Questionnaires and Building Inventories, SSDS Inspection Forms, and Photographs

Attachment 2: Laboratory Analytical Result Forms


Attachment 3: Data Usability Summary Report

REFERENCES

- MACTEC Engineering and Consulting, P.C. (MACTEC), 2015. SVI Field Activities Plan Scobell Chemical – NYSDOT Site No 828076 Prepared for the New York State Department of Environmental Conservation, Albany, New York. October 2015.
- Mitigation Tech, 2015. Construction Completion Report- 80 Rockwood Place, Rochester 14610 (former Scobell Chemical), More Fire and Glass, Modification to sub-slab depressurization system. Letter dated October 31, 2015.
- Mitigation Tech, 2012. Construction Completion Report- 80 Rockwood Place, Rochester 14610 (former Scobell Chemical), Construction of sub-slab depressurization system. October 28, 2012.
- New York State Department of Health (NYSDOH), 2015. Trichloroethene (TCE) in Indoor and Outdoor Air; August 2015 Fact Sheet; Bureau of Toxic Substance Assessment. August 2015.
- NYSDOH, 2006 and 2007. Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006, as amended June 25, 2007.

Document P. Projects select Contract D007619Projects(Scobel Chemical - RD4.0_Deliverables(4.5_Databases)GSWapDocumentsSite_Location_8.6x11P.mxd PDF: P:/Projects select(Contract D007619Projects(Scobel Chemical - RD4.0_Deliverables(4.2_Work Plans/RAP/Enures)Fort1.1_Scobel-Site (contract) 2075/2014_3.4

Structure ID	Street Address	Location	Sample ID	Rationale
Structure 1	80 Rockwood Place	Main Building-Basement	828076-IA-001-BASEMENT	SVI Evaluation-basement
		Main Building-BCC	828076-IA-001-BCC	SVI Evaluation-1st floor
		Main Building-Boxman	828076-IA-001-BOXMAN	SVI Evaluation-1st floor
		Main Building-Center-SS	828076-SS-001-01	SVI Evaluation-sub-slab
		Main Building-Center	828076-IA-001-CENTRAL	SVI Evaluation-1st floor
		Main Building-Dog Day Care	828076-IA-001-DOGGY DA CARE	SSDS Evaluation
		Main Building-NSC	828076-IA-001-NSC	SVI Evaluation-1st floor
			828076-IA-001-NSCD (duplicate)	SVI Evaluation-1st floor
		Main Building-Tryon	828076-IA-001-TRYON	SVI Evaluation-1st floor
		Outside-Ambient	828076-AA-001-01	SVI Evaluation-ambient
		Outside-Ambient	828076-AA-001-02	SVI Evaluation-ambient
Structure 4	80 Rockwood Place	Glass Studio-Gallery	828076-IA-004-GALLERY/OFFICE	SSDS Evaluation
		Glass Studio-Oven Area	828076-IA-004-GLASS OVER AREA	SSDS Evaluation
Structure 5	989 Blossom Road	SS-005-01	828076-SS-005-01	SVI Evaluation-sub-slab
			828076-SS-005-01D (duplicate)	SVI Evaluation-sub-slab
		IA-005-01	828076-IA-005-01	SVI Evaluation-1st floor
		SS-005-02	828076-SS-005-02	SVI Evaluation-sub-slab
		IA-005-02	828076-IA-005-02	SVI Evaluation-1st floor
		Outside-Ambient	828076-AA-005-02	SVI Evaluation-ambient
		AA-005	828076-AA-005-02	SVI Evaluation-ambient

Table 1: March 2016 Soil Vapor Monitoring Sampling Locations

Notes:

SVI = soil vapor intrusion

SSDS = sub-slab depressurization system

				Table 2: SVI VOC Res	suits		
Address		80 Rock	80 Rockwood - Glas	s Studio (Location 4)			
Location	Main Building-Center-SS	Main Building-Basement	Main Building-BCC	Main Building-Boxman	Main Building-Center	Glass Studio-Gallery	Glass Studio-Oven Area
Sample Date	3/28/2016	3/29/2016	3/29/2016	3/28/2016	3/28/2016	3/29/2016	3/29/2016
		828076-IA-001-				828076-IA-004-	828076-IA-004-GLASS OVER
Sample ID	828076-SS-001-01	BASEMENT	828076-IA-001-BCC	828076-IA-001-BOXMAN	828076-IA-001-CENTRAL	GALLERY/OFFICE	AREA
Qc Code	FS	FS	FS	FS	FS	FS	FS
Parameter	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	11 J	0.71 J	0.82 U	0.82 U	0.82 U	0.82 U	0.82 <u>U</u>
1,1,2-Trichloro-1,2,2-Trifluoroethane	0.77 J	0.84 J	0.92 J	0.92 J	0.92 J	0.92 J	0.92 J
1,1-Dichloroethane	0.45 J	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U
1,2,4-Trimethylbenzene	1.2 J	50	0.88	1.4 J	0.69 J	30	13 J
1,3,5-Trimethylbenzene	1 J	15	0.74 U	0.74 UJ	0.74 U	9.3	6.2
1,4-Dioxane	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ
2-Butanone	3.2	4.8	2.7	2.2	1.8	2.7	2.7
2-Propanol	3.7	55	21	15	26	44	480
4-Ethyltoluene	0.74 UJ	16	0.74 U	0.49 J	0.74 U	11	8.7
4-Methyl-2-pentanone	1.2 UJ	1.2 UJ	1.2 UJ	0.66 J	0.45 J	0.9 J	0.66 J
Acetone	58	71	28	21	29	81	32
Benzene	2.1 J	0.96	0.8	0.77	0.51	0.83	0.83
Carbon disulfide	9.3	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U
Carbon tetrachloride	1.4 J	0.75	0.88	0.82	0.82	0.88	0.75
Chloroform	1.8	0.54 J	1.4	0.73 U	0.73 U	0.78	0.54 J
Chloromethane	0.31 U	0.31 U	1.8	2.3	1.6	0.31 U	1.9
Cis-1,2-Dichloroethene	1.7	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U	0.59 U
Cyclohexane	3.5 J	0.52 U	0.52 U	0.52 U	0.52 U	1.5	0.52 U
Dichlorodifluoromethane	3.1	3.8	4	4.1	4	4	3.8
Ethyl acetate	1	0.97	0.9 U	0.9 U	0.9 U	0.72 J	0.9 U
Ethylbenzene	0.43 J	0.65 U	0.78	0.65 UJ	0.65 U	0.65 U	0.65
Heptane	2.4 J	5.5	0.61 U	1.6	0.61 U	3.6	3.5
Hexane	2.4	0.53 U	1.1	1.1	0.53 U	1.2	0.99
Methylene chloride	2.3	2.5	2.8	5.3	3.4	2.5	2.8
Tetrachloroethene	77	3.9	1 U	1 UJ	1 U	1.4	0.88 J
Tetrahydrofuran	0.44 U	1.9	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
Toluene	5.3 J	21	2.8	2.2 J	1.3	12	8.3 J
Trichloroethene	350	28	0.21 U	0.59	0.48	14	8.5
Trichlorofluoromethane	2	2.1	2.2	2.2	2.8	2.5	2.2

0.87

2.9

Table 2: SVI VOC Results

<u>Notes</u>

Xylene, o

Xylenes (m&p)

Samples analyzed for Volatile Organic Compounds (VOCs) by Method TO15 in micrograms per cubic meter (µg/m3). Only detected compounds shown (detections in bold) Qualifier U = not detected J = estimated value QC Code - FS=Field Sample,

0.82 J

2 J

4.4

3.1

FD=Field Duplicate

1.6

1.8

0.52 J

2.4 J

0.65 U

0.96 J

2.7

2.1

Table 2: SVI VOC Results

Address	5		80 Rockwood - Main H	Building (Location 1)		
Location	Main Building-Dog Day Care	Main Building-NSC	Main Building-NSC	Main Building-Tryon	Outside-Ambient	Outside-Ambient
Sample Date		3/28/2016	3/28/2016	3/28/2016	3/28/2016	3/29/2016
	828076-IA-001-DOGGY DA					
Sample ID		828076-IA-001-NSC	828076-IA-001-NSCD	828076-IA-001-TRYON	828076-AA-001-01	828076-AA-001-02
Qc Code		FS	FD	FS	FS	FS
Parameter	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	0.82 U	0.82 U	0.82 U	2.9	0.82 <u>U</u>	0.82 <u>U</u>
1,1,2-Trichloro-1,2,2-Trifluoroethane	1 J	0.84 J	0.84 J	0.92 J	0.92 J	0.92 J
1,1-Dichloroethane	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U
1,2,4-Trimethylbenzene	0.69 J	1	1.1 J	760	0.74 <u>U</u>	0.84
1,3,5-Trimethylbenzene	0.74 U	0.74 U	0.74 UJ	230	0.74 U	0.74 U
1,4-Dioxane	1.1 UJ	1.1 UJ	2.8 J	1.1 UJ	1.1 UJ	1.1 UJ
2-Butanone	4.8	2.6	1.9	3.6	0.8 J	0.68 J
2-Propanol	91	20	31	150	2.4	2.1
4-Ethyltoluene	0.74 <u>U</u>	0.74 <u>U</u>	0.74 UJ	240	0.74 <u>U</u>	0.74 <u>U</u>
4-Methyl-2-pentanone	0.45 J	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ	1.2 UJ
Acetone	38	23	29	340	18	16
Benzene	0.51	0.64	0.57	0.48 U	0.42 J	0.54
Carbon disulfide	0.47 U	0.47 U	0.47 U	0.53	0.47 U	0.47 U
Carbon tetrachloride	0.82	0.88	0.82	0.94	0.88	0.82
Chloroform	0.68 J	0.73 U	0.73 U	0.63 J	0.73 U	0.73 U
Chloromethane	1.7	2.4	2	1.7	2.1	1.7
Cis-1,2-Dichloroethene	0.59 U	0.59 U	0.59 U	0.4 J	0.59 U	0.59 U
Cyclohexane	0.52 U	0.52 U	0.52 U	4.8	0.52 U	0.52 U
Dichlorodifluoromethane	3.9	4	3.6	3.7	4	4.1
Ethyl acetate	0.9 U	0.9 U	0.9 U	3.7	0.9 <u>U</u>	0.9 U
Ethylbenzene	0.65 U	0.56 J	0.52 J	0.65 U	0.65 <u>U</u>	0.65 <u>U</u>
Heptane	0.61 U	2.2 J	0.61 UJ	14	0.61 U	0.61 U
Hexane	0.53 U	0.53 U	0.53 U	0.53 U	0.53 U	0.53 U
Methylene chloride	2	2	2.1	3.3	1.7	1.9
Tetrachloroethene	1 U	1 U	1 UJ	8.6	1 U	1 U
Tetrahydrofuran	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
Toluene	2.1	3.7	3.2 J	150	0.72	0.6
Trichloroethene	0.21 U	0.81	1.1	120	0.21 U	0.21 U
Trichlorofluoromethane	2.2	2.2	2	2.2	2.2	2.2
Xylene, o	0.65 U	0.61 J	0.56 J	35 J	0.65 U	0.65 U
Xylenes (m&p)	0.48 J	2.2	1.8 J	10	1.3 U	0.56 J

<u>Notes</u>

Samples analyzed for Volatile Organic Compounds (VOCs) by Method TO15 in micrograms per cubic meter (μ g/m3). Only detected compounds shown (detections in bold) Qualifier U = not detected J = estimated value QC Code - FS=Field Sample,

FD=Field Duplicate

Table 2: SVI VOC Results

Address			989 Blossom R	oad (Location 5)		
Location	SS-005-01	SS-005-01	IA-005-01	SS-005-02	IA-005-02	Outside-Ambient
Sample Date	3/28/2016	3/28/2016	3/28/2016	3/28/2016	3/28/2016	3/28/2016
Sample ID	828076-SS-005-01	828076-SS-005-01D	828076-IA-005-01	828076-SS-005-02	828076-IA-005-02	828076-AA-005-02
Qc Code	FS	FD	FS	FS	FS	FS
Parameter	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	0.82 UJ	0.82 UJ	0.82 U	0.82 UJ	0.82 U	0.82 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	1.5	1.4	1.1 J	0.77 J	1.1 J	1 J
1,1-Dichloroethane	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U	0.61 U
1,2,4-Trimethylbenzene	93	100	0.79	23	0.74 U	0.74 <u>U</u>
1,3,5-Trimethylbenzene	53	56	0.74 U	10	0.74 U	0.74 U
1,4-Dioxane	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ	1.1 UJ
2-Butanone	0.88 UJ	180 J	4.7	11	1.1	0.94
2-Propanol	50 J	0.37 UJ	48	0.37 U	5	2.4
4-Ethyltoluene	15	14	0.74 <u>U</u>	3.1 J	0.74 <u>U</u>	0.74 <u>U</u>
4-Methyl-2-pentanone	39 J	39 J	1.2 UJ	1.8 J	1.2 UJ	1.2 UJ
Acetone	410	480	23	80	16	17
Benzene	100	110	1.4	8.6	0.73	0.54
Carbon disulfide	56	59	1	8.4	0.47 U	0.37 J
Carbon tetrachloride	0.94 UJ	0.94 UJ	0.94	0.94 <u>UJ</u>	0.94	1
Chloroform	0.73 U	0.73 U	7.2	1.5	0.68 J	0.73 U
Chloromethane	0.31 U	0.31 U	2	0.31 <u>U</u>	1.8	1.8
Cis-1,2-Dichloroethene	0.59 U	0.59 U	0.59 U	0.63	0.59 U	0.59 U
Cyclohexane	230	340	0.52 U	23	0.52 U	0.52 U
Dichlorodifluoromethane	0.74 UJ	3.2 J	5.1	13	4	4
Ethyl acetate	2.1 J	0.9 UJ	0.58 J	1.5	0.9 U	0.9 U
Ethylbenzene	37	38	0.65 U	3.6 J	0.65 U	0.65 U
Heptane	340	360	0.61 U	28	0.61 U	0.61 U
Hexane	200	230	0.53 U	18	0.63	0.53 U
Methylene chloride	2.6	2.5	2.8	2.1	3	6.4
Tetrachloroethene	76	85	3.4	30	1 U	1 U
Tetrahydrofuran	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
Toluene	240	270	1.1	18	0.57	0.6
Trichloroethene	150	150	0.21 U	140	0.21 U	0.21 U
Trichlorofluoromethane	1.7	1.5	2.5	1.6	2.4	2.3
Xylene, o	77 J	78 J	0.65 U	8.5 J	0.65 U	0.65 U
Xylenes (m&p)	250	290	0.87 J	28	0.48 J	0.74 J

<u>Notes</u>

Samples analyzed for Volatile Organic Compounds (VOCs) by Method TO15 in micrograms per cubic meter (μg/m3). Only detected compounds shown (detections in bold) Qualifier U = not detected J = estimated value QC Code - FS=Field Sample,

FD=Field Duplicate

ATTACHMENT 1

INDOOR AIR QUESTIONNAIRES AND BUILDING INVENTORIES, SSDS INSPECTION FORMS, AND PHOTOGRAPHS

Periodic Operations Visit Form

Γ

S	ystem ID: 828076-B001		Date o	of Visit:	Mar 28, 2016
0	wner Name: Margaret Eidman		Date Install	ed: 07/	/19/2012
S	ystem Address: <u>80 Rockwood Place</u>	- Structure 1	Telephone:		
Ci	ty: Rochester	Zip:14610			
Pe	erformed By: <u>Nate Vogan / John Lut</u>	ttinger			
С	ompany: Amec Foster Wheeler E&I	- MACTEC	Site Name:	Scobell	Chemical-NYSDOT Site
	Fan Operation Confirmation				
		Fan #1	Fan #	2	Fan #3
	Fan Model No(s).	Radonaway GP-501			
EXTERIOR	Is Fan Operating (arrival)?	• Yes 🔿 No	⊖ Yes	🔿 No	🔿 Yes 🔿 No
ER	Confirmation Method	Other			
EXT	Is Fan Operating (departure)?	• Yes 🔿 No	O Yes	🔿 No	🔿 Yes 🔿 No
	Requested to inspect interior sys	tem components? ()	Yes 🔿 No		
	If yes, when and by whom?	Nate Voga	า	Date:	
	Structural Review			Notes	
	Change in building footprint since	e last inspection?	Yes 💿 No	1	
	Basement occupied (>4 hrs per o		Yes No		
	Heating/ventilation system modif		Yes No		
	Crawlspace inspected?	0	Yes No		
SR	Large cracks in floor or near sum	nps?	Yes No 		
ERIOR	Wall penetrations or cracks noted		Yes No 		
NTE	Piping, Slab & Wall				

Maintenance completed (check all that apply):	Replace fan	Seal pipe	Electrical	Other	
Describe repairs made and any proposed action	is requiring a sub	sequent visit (if necessary):		

• Yes

○ Yes

● Yes 🔿 No

⊖ No

• No

⊖ No

Are system suction points sealed?

Is piping system in need of repair?

Are system labels accurate and applied correctly? • • Yes

Are manometer levels equal?

Miscellaneous

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Site Name: Scobell Chemical		Site Code:8	328076	Operable Unit:
Building Code:	_ Building Name	: Structure	1	
Address: 80 Rockwood Place			Apt/Suite	e No:
City: Rochester	State: NY	Zip:14610	County:	Monroe
Contact Information				
Preparer's Name: Nathan Vogan			Phone No	o: 518-372-0905
Preparer's Affiliation: Amec Foster Wheeler E&I	- MACTEC		Company	Code:
Purpose of Investigation: End of Heating Seaso	n March 2016	5	Date of Ir	nspection: 3/28-3/29/16
Contact Name: Margaret Eidman			_ Affiliatic	on: OWNER
Phone No: (585) 281–4720 Alt. Phone	No:		_ Email:	meidman@rochester.rr 🛨
Number of Occupants (total): Number of	f Children:			
Occupant Interviewed?	🗵 Owner Occ	upied?		X Owner Interviewed?
Owner Name (if different):			Owner Ph	ione:
Owner Mailing Address:				
Building Details				
Bldg Type (Res/Com/Ind/Mixed): COMMERCIAL/MIX	KED		Bldg Size	e (S/M/L): MEDIUM
If Commercial or Industrial Facility, Select Operations: MULTI-USE BUILDING		If Residential Sele	ect Structu	ire Type:
Number of Floors: 2 Approx. Year Construction	on:	🖂 Buildin	ig Insulate	d? Attached Garage?
Describe Overall Building 'Tightness' and Airflows(e.g., res	ults of smoke te	sts):		
27.42				
N/A Foundation Description				
Foundation Type: BASEMENT-PARTIAL		Foundation Deptl	h (bgs):	8 Unit: FEET
Foundation Floor Material: POURED CONCRETE		Foundation Floor		
Foundation Wall Material: LAID-UP STONE		Foundation Wall		Unit: INCHES
Image: Subscription Image: Subscr	sump			
·	utilities,	pipe race		
	DAMP		s/Drains?	Water In Sump?: YES
Describe Foundation Condition (cracks, seepage, etc.) :	some cracks	5		
Radon Mitigation System Installed?	VOC Mitigat	tion System Instal	led?	X Mitigation System On?
Heating/Cooling/Ventilation Systems				
Heating System:	leat Fuel Type:	GAS		X Central A/C Present?
Vented Appliances				
Water Heater Fuel Type: NONE	C	Clothes Dryer Fuel	Туре:	NO CLOTHES DRYER
Water Htr Vent Location: NONE	C	Oryer Vent Locatio	n:	NONE

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

		PI	RODUCT INV	ENTORY			
Building Nam	e: Structure 1		Bldg C	Code:	Date:	Mar 28, 2	2016
Bldg Address:	80 Rockwood Place				Apt/Suite I	No:	
Bldg City/Stat	e/Zip:Rochester NY, 14	1610					
Make and Mo	del of PID: ppb RAE			Date of Ca	alibration:	Mar 28,	2016
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingredie	nts	PID Reading	COC Y/N?
	See pictures						

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)**

** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete?

Were there any elevated PID readings taken on site? No

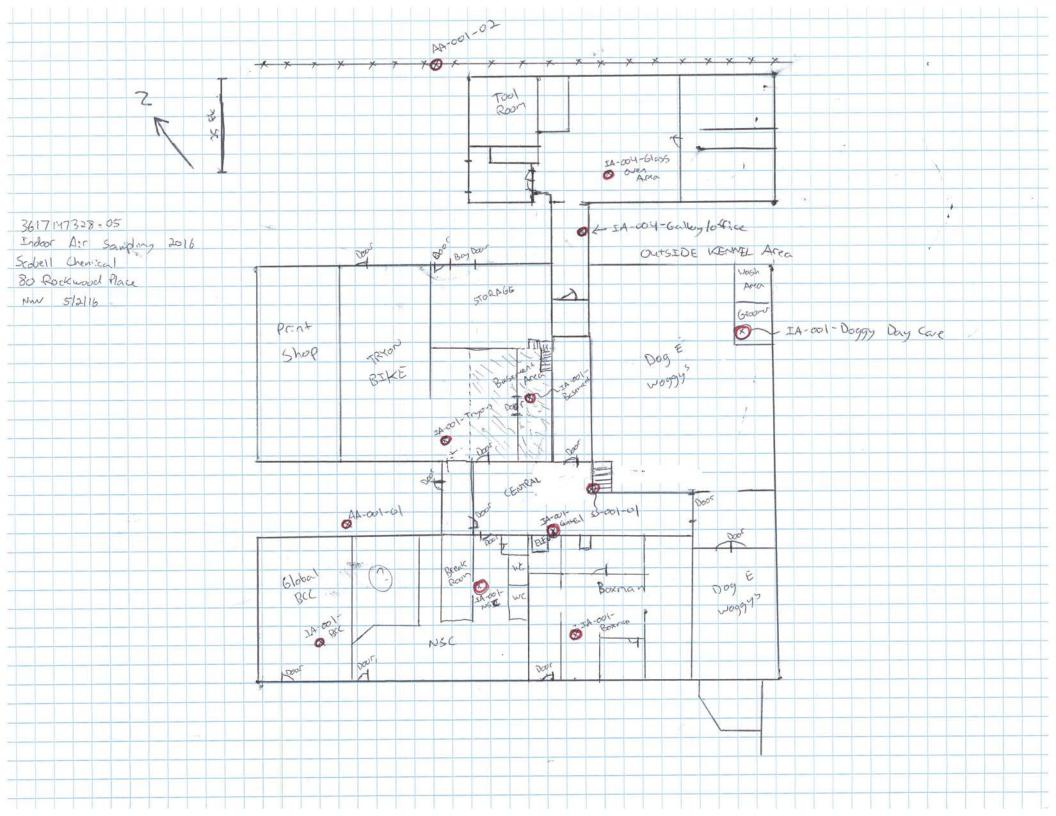
Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

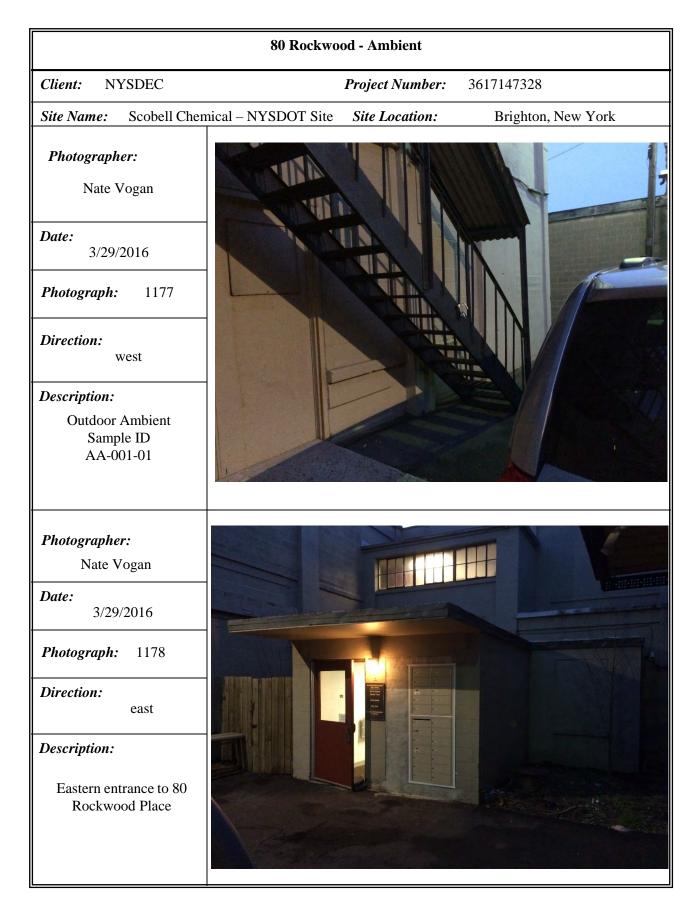
Site Name: Scobell Chemical	Site Code: 828076 Operable Unit:
Building Code: Building Name:	Structure 1
Address: 80 Rockwood Place	Apt/Suite No:
City: Rochester State: NY	Zip: 14610 County: Monroe
Factors Affecting Indoor Air Quailty	
Frequency Basement/Lowest Level is Occupied?: ALMOST NEVER	Floor Material: CEMENT
☐ Inhabited?	room Exhaust Fan? 📃 Kitchen Exhaust Fan?
Alternate Heat Source:	Is there smoking in the building?
X X Air Fresheners? Description/Location of Air Freshener: T	main office locations, bathroom
$\overline{\times}$ Cleaning Products Used Recently?: Description of Cleaning Products:	general cleaning supplies
X Cosmetic Products Used Recently?: Description of Cosmetic Products:	general makeup
New Carpet or Furniture? Location of New Carpet/Furniture:	
Recent Dry Cleaning? Location of Recently Dry Cleaned Fabrics:	
Recent Painting/Staining? Location of New Painting:	
Solvent or Chemical Odors? Describe Odors (if any):	
Do Any Occupants Use Solvents At Work? If So, List Solvents Used:	
Recent Pesticide/Rodenticide? Description of Last Use:	
Describe Any Household Activities (chemical use,/storage, unvented applian	ces, hobbies, etc.) That May Affect Indoor Air Quality:
Any Prior Testing For Radon? If So, When?:	
X Any Prior Testing For VOCs? If So, When?: 2012, 2013, 201	5
Sampling Conditions	
Weather Conditions: SUNNY Out	door Temperature: 34–42 °F
Current Building Use: MULTI-USE BUILDING Bard	ometric Pressure: 30.12 in(hg)
Product Inventory Complete? Yes 🔀 Building Questionnaire C	Completed?

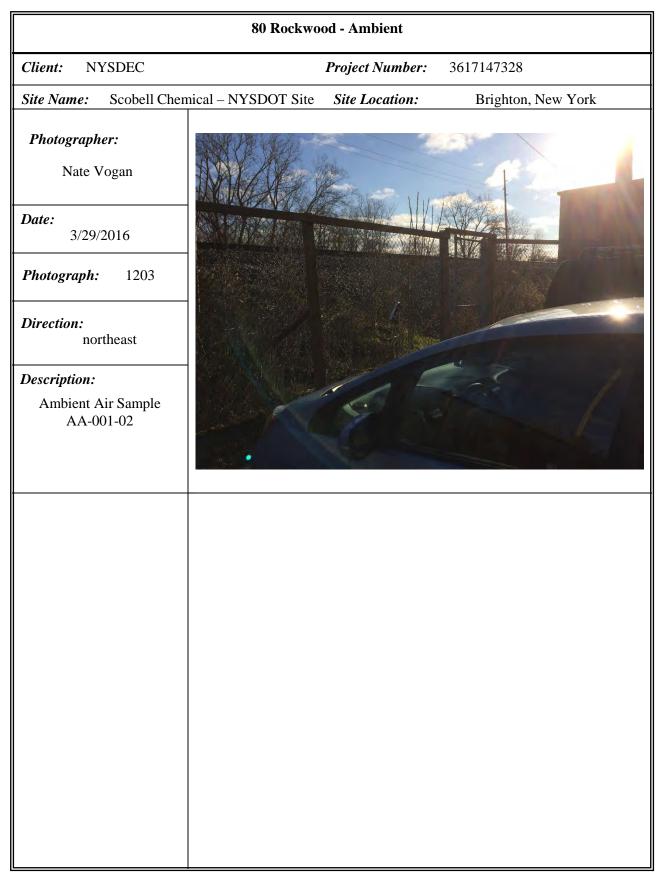
	INDOOR	AIR SAM	IPLING RECOI	RD	the second second	
PROJECT NAME: Scobe	ll Chemical March 2016	SVI	LOCATION ID:	Structu	we 1 DATE: 31	28/16
PROJECT NO./TASK NO.:	361714732		CLIENT:			
PROJECT LOCATION:	Rochester, New York		SAMPLER NAM	E: Nate Vo	ogan / John Luttinger	
WEATHER CONDITIONS (t: 40°; 73% RH;	29.91", NW	SAMPLER SIGN	ATURE:	m	
WEATHER CONDITIONS					The DATE: 4	129/16
1.5 C			Record Information			
SUB-SLAB SOIL VAPOR SAMPLE	BASEMENT IND SAMPLI		FIRST FLOO SAMPL	1	AMBIENT AIR S	SAMPLĖ
Flow Regulator Number:	Flow Regulator Number:	276	Flow Regulator Number:	1	Flow Regulator Number:	/
Flow Rate (mL/min):	Flow Rate (mL/min):	8hr	Flow Rate (mL/min):	/	Flow Rate (mL/min);	/
Canister Serial Number:	Canister Serial Number:	569	Canister Serial Number:		Canister Serial Number:	
Start Date/Time	Start Date/Time 3/28/16	22:09	Start Date/Time	-	Start Date/Time	
Start Pressure ("Hg:	Start Pressure ("Hg):	30	Start Pressure ("Hg):		Start Pressure ("Hg):	
Stop Date/Time	Stop Date/Time 3 29		Stop Date/Time		Stop Date/Time	
Stop Pressure ("Hg):	Stop Pressure ("Hg);	5	Stop Pressure ("Hg):		Stop Pressure ("Hg):	
Sample ID:	Sample ID: 828076-I	A-Doggy Care	Sample ID:		Sample ID: 828076 - 4	4-001-01
1			g Information:		Usee accentral un	vt"
Finished Basement, Crawi Space, Unfinished Basement	Story/Level:	1	Story/Level:	1	Direction from Building	1
Floor Slab Thickness:	Room:	Wash post	Room:	/	Distance from Building:	
Potential Vapor Entry Points:	Potential Vapor Entry Points:	HVAC	Potential Vapor Entry Points:	X	Distance from Roadway:	/
Floor Surface:	Floor Surface:	Carpetor	Floor Surface:		Ground Surface:	
Noticable Odor:	Noticable Odor:	No	Noticable Odor:		Noticable Odor:	
PID Reading (ppb):	PID Reading (ppb):	113	PID Reading (pob):		PID Reading (ppb):	
Intake Depth Height:	Intake Height:	3.5	Intake Height:	1	Intake Height above Ground Surface:	
Helium Test Conducted? Breakthrough %:	Indoor Air Temp	650	Indoor Air Temp		Invike tubing?	
Comments/Location Sketch:	80 Rockwood	- Dogin	Day Core Re	tal spa	u	
ы	80 Rockwood WCI on 5505yste	. Mat	ther mark f	nom initi	in linitallation,	
S11 Congress Street, Portla		NY			FIG IR SAMPLING I RANCE PROJE	

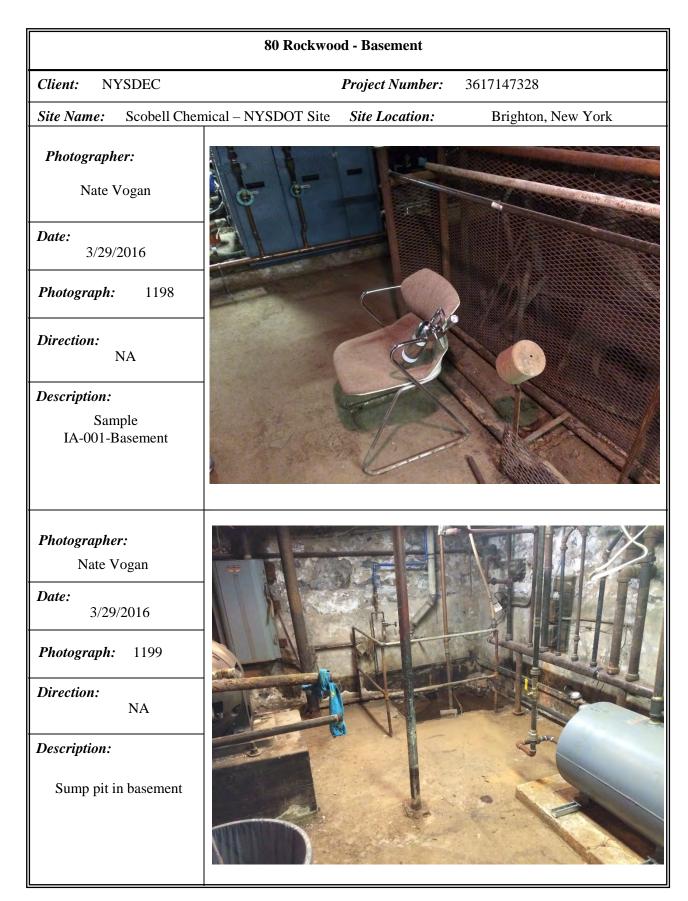
	INDOOR	and the same of the same	MPLING RECO			
PROJECT NAME: Sc	obell Chemical March 2016	SVI	LOCATION ID:	Structure	e 1 DATE: 31	28/16
PROJECT NO./TASK NO.:	36171473	28	CLIENT:	NYSDEC		
PROJECT LOCATION:	Rochester, New York		SAMPLER NAM	E: Nate Vo	ogan / John Luttinger	100
WEATHER CONDITIONS			SAMPLER SIGN			_
WEATHER CONDITIONS					DATE:/	29/16
			Record Information			
SUB-SLAB SOIL VAPO	DR BASEMENT INI	OOR AIR	FIRST FLOO	RAIR/	AMBIENT AIR	TAMPLE
SAMPLE	SAMPL	E	SAMPL	E	AWBIENT AIR 3	SAWPLE
Flow Regulator Number:	Flow Regulator Number:	1172	Flow Regulator Number:	/	Flow Regulator Number:	/
Flow Rate (mL/min):	Flow Rate (mL/min):	30	Flow Rate (mL/min):		Flow Rate (mL/min);	
Canister Serial Number:	Canister Serial Number:	274	Canister Serial Number:		Canister Serial Number:	
Start Date/Time	Start Date/Time 3/28/	16	Start Date/Time		Start Date/Time	
Start Pressure ("Hg.	Start Pressure ("Hg):	30	Start Pressure ("Hg):		Start Pressure ("Hg):	
Stop Date/Time	Stop Date/Time 3/29/16		Stop Date/Time	C 1	Stop Date/Time	_
Stop Pressure ("Hg):	Stop Pressure ("Hg):	7	Stop Pressure ("Hg):		Stop Pressure ("Hg):	
Sample Ip:	Sample ID: 828076	IA-001- Tryon	Sample ID:	·	Sample ID: 328076	- 44-001.
	Ot		ng Information:		Gree "central	unit"
rinished Basement, Crawi Space, Unfinished Basement	/ Story/Level:	1	Story/Level:	1	Direction from Building	1
Floor Slab Thickness:	Room:	store	Room:		Distance from Building:	/
Potential Vapor Entry Points:	Potential Vapor Entry Points:	HUAC	Potential Vapor Entry Points:	V	Distance from Roadway:	/
Floor Surface:	Floor Surface:	Concrete	Floor Surface:		Ground Surface:	
Noticable Odor:	Noticable Odor:	Rubber tires	Noticable Odor:		Noticable Odor:	
PID Reading (ppb):	PID Reading (ppb):	3146	PID Reading (ppb);		PID Reading (ppb):	
Intake Depth/Height:	Intake Height:	3.5	Intake Height:		Intake Height above Ground Surface:	
Helium Vest Conducted? Breakthrough %:	Indoor Air Temp	68°F	Indoor Air Temp		Intake tubing?	
Comments/Location Sketc	BO Rockwood			DOOR A	FIG IR SAMPLING	

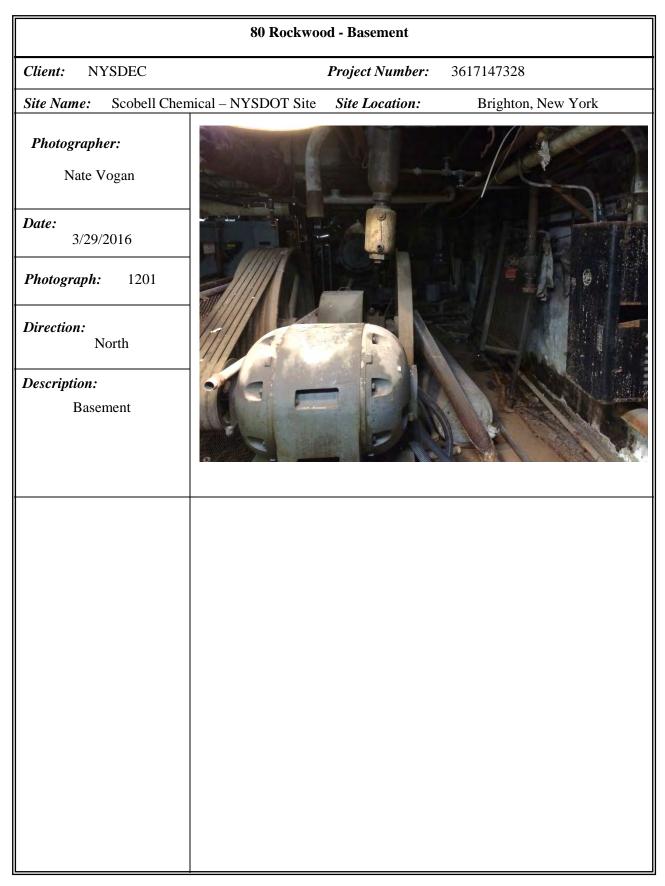
Chemical March 2016 361714732 Rochester, New York		LOCATION ID:	Structure	DATE: 3/	22/11
361714732					
Rochester, New York		CLIENT:		100 C	
	ſ	SAMPLER NAM	E: Nate Vo	ogan / John Luttinger	
+ 40°, 73% cu	29.91" NU	SAMPLER SIGN	ATURE:	M	
				DATE: 4	129/16
	1.1.1.1.1.1.1.1.1.1	A STATE OF A DATA STATE OF A DATA	1.1		
BASEMENT IND SAMPL	OOR AIR E	FIRST FLOO SAMPL		AMBIENT AIR	SAMPLE
Flow Regulator Number:	406	Flow Regulator Number:		Flow Regulator Number:	1
Flow Rate (mL/min):	8hr	Flow Rate (mL/min):	/	Flow Rate (mL/min):	/
	187	Canister Serial Number:	/	Canister Serial Number:	
Start Date/Time 3 28/1	6 23	Start Date/Time		Start Date/Time	
Start Pressure ("Hg):	28	Start Pressure ("Hg)		Start Pressure ("Hg);	
Stop Date/Time 3/2	a /16 25	Stop Date/Time		Stop Date/Time	
Stop Pressure ("Hg):	1	Stop Pressure ("Hg);		Stop Pressure ("Hg):	
Sample ID: 828076-1A	Bornan	Sample ID:		Sample ID: 828076	- 44 -001-0
Oth	Constant of Street	ng Information:			
Story/Level:	1	Story/Level:	1	Direction from Building	9
Room:	Main Store	Room:		Distance from Building:	/
Potential Vapor Entry Points:		Potential Vapor Entry Points:	\vee	Distance from Roadway:	
Floor Surface:	Carpet over concrete	Floor Surface:		Ground Surface:	V
Noticable Odor:	No	Noticable Odor:		Noticable Odor:	
PID Reading (ppb):	209	PID Reading (ppb):		PID Reading (ppb):	
Intake Height:	31	Intake Height:	-	Intake Height above Ground Surface:	
Indoor Air Temp	68°F	Indoor Air Temp		Intake tubing?	
	oud- Ba			FIG	URE 4.1
	SUMMA BASEMENT IND SAMPL) Flow Regulator Number: Flow Rate (mL/min): Canister Serial Number: Canister Serial Number: Canister Serial Number: Start Date/Time 3/28// 2/2/ Start Pressure ("Hg): Stop Date/Time 3/22/ Stop Date/Time 3/22/ Stop Date/Time 3/22/ Stop Date/Time 3/22/ Stop Date/Time 3/22/ Stop Pressure ("Hg): Stop Pressure ("Hg	SUMMA Canister I BASEMENT INDOR AIR SAMPLE Flow Regulator Number: 40% Flow Rate (mL/min): 8h/ Canister Serial Number: 189 Start Date/Time 2/28/16 22:23 Start Pressure ("Hg): 28 Stop Date/Time 3/29/16 6:25 Stop Pressure ("Hg): 1 Sample ID: 838076-3A-001- Boxman Other Samplin Story/Level: 1 Room: No.14 Story/Level: 1 Room: Sobre Potential Vapor Entry Points: Carpet Floor Surface: Carpet Noticable Odor: No PID Reading (ppb): 209 Intake Height: 31 Indoor Air Temp 68° F BO Rock wood - Bo	SUMMA Canister Record Information BASEMENT INDOOR AIR SIRST FLOO SAMPLE FIRST FLOO SAMPLE FIRST FLOO SAMPLE FIOW Regulator Number: Flow Regulator Number: UCA Flow Regulator Number: Flow Rate (mL/min): 8 L/ Flow Rate (mL/min): Canister Serial Number: 189 Canister Serial Number: Start Date/Time 2 / 2 / 1/6 Start Date/Time Start Date/Time 3 / 2 / 2 / 1/6 Start Date/Time Stop Date/Time 3 / 2 / 2 / 1/6 Stop Date/Time Stop Pressure ("Hg): 1 Stop Pressure ("Hg): Stop Pressure ("Hg): 1 Stop Pressure ("Hg): Sample ID: 3 / 2 / 4 / 1/6 Stop Pressure ("Hg): Story/Level: 1 Story/Level: Room: Mox(u) Story/Level: Room: Mox(u) Store Potential Vapor Entry Potential Vapor Entry Points: Floor Surface: 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	SUMMA Canister Record Information BASEMENT INDOOR AIR SAMPLE FIRST FLOOR AIR SAMPLE Flow Regulator Number: UCC Flow Regulator Number: // Flow Rate (mL/min): 8 L/ Flow Rate (mL/min): // Canister Serial Number: 189 Canister Serial Number: // Start Date/Time 2/2/2/3 Start Date/Time // Start Date/Time 3/29/16 Storp Date/Time // Storp Date/Time 3/29/16 Storp Date/Time // Storp Date/Time 3/29/16 Storp Date/Time // Storp Pressure ("Hg): 1 Storp Pressure ("Hg): // Storp Pressure ("Hg): 1 Storp Pressure ("Hg): // Story/Level: 1 Story/Level: // Notice 1 Story/Level: // Room: Story Potential Vapor Entry Points: Potential Vapor Entry Points: Floor Surface: Ca-re-te Floor Surface: // Noticable Odor: Ne Noticable Odor: // PID Reading (ppb): 2/09 <t< td=""><td>SUMMA Canister Record Information BASEMENT INDOOR AIR SAMPLE FIRST FLOOR AIR SAMPLE AMBIENT AIR SAMPLE Flow Regulator Number: 400 Flow Regulator Number: Flow Regulator Number: Flow Rate (mL/min): 81. Flow Rate (mL/min): Flow Rate (mL/min): Canister Serial Number: 184 Flow Rate (mL/min): Canister Serial Number: Start Date/Time 2128/16 Start Date/Time Start Date/Time Start Pressure ("Hg): 2.27.2.3 Start Date/Time Start Date/Time Start Pressure ("Hg): 2.27.2.3 Start Date/Time Start Pressure ("Hg): Stop Date/Time 3/2.29 Kit Date/Time Start Pressure ("Hg): Stop Date/Time 3/2.29 Kit Pressure ("Hg): Stop Pressure ("Hg): Stop Pressure ("Hg): 1 Stop Pressure ("Hg): Stop Pressure ("Hg): Stop Viewel: 1 Stop/Level: Direction from Building: Room: Noticeable Odor: Noticeable Odor: Distance from Building: Potential Vapor Entry Potential Vapor Entry Potential Vapor Entry Potential Vapor Entry Points: 2.09 PID Reading (ppb):</td></t<>	SUMMA Canister Record Information BASEMENT INDOOR AIR SAMPLE FIRST FLOOR AIR SAMPLE AMBIENT AIR SAMPLE Flow Regulator Number: 400 Flow Regulator Number: Flow Regulator Number: Flow Rate (mL/min): 81. Flow Rate (mL/min): Flow Rate (mL/min): Canister Serial Number: 184 Flow Rate (mL/min): Canister Serial Number: Start Date/Time 2128/16 Start Date/Time Start Date/Time Start Pressure ("Hg): 2.27.2.3 Start Date/Time Start Date/Time Start Pressure ("Hg): 2.27.2.3 Start Date/Time Start Pressure ("Hg): Stop Date/Time 3/2.29 Kit Date/Time Start Pressure ("Hg): Stop Date/Time 3/2.29 Kit Pressure ("Hg): Stop Pressure ("Hg): Stop Pressure ("Hg): 1 Stop Pressure ("Hg): Stop Pressure ("Hg): Stop Viewel: 1 Stop/Level: Direction from Building: Room: Noticeable Odor: Noticeable Odor: Distance from Building: Potential Vapor Entry Potential Vapor Entry Potential Vapor Entry Potential Vapor Entry Points: 2.09 PID Reading (ppb):

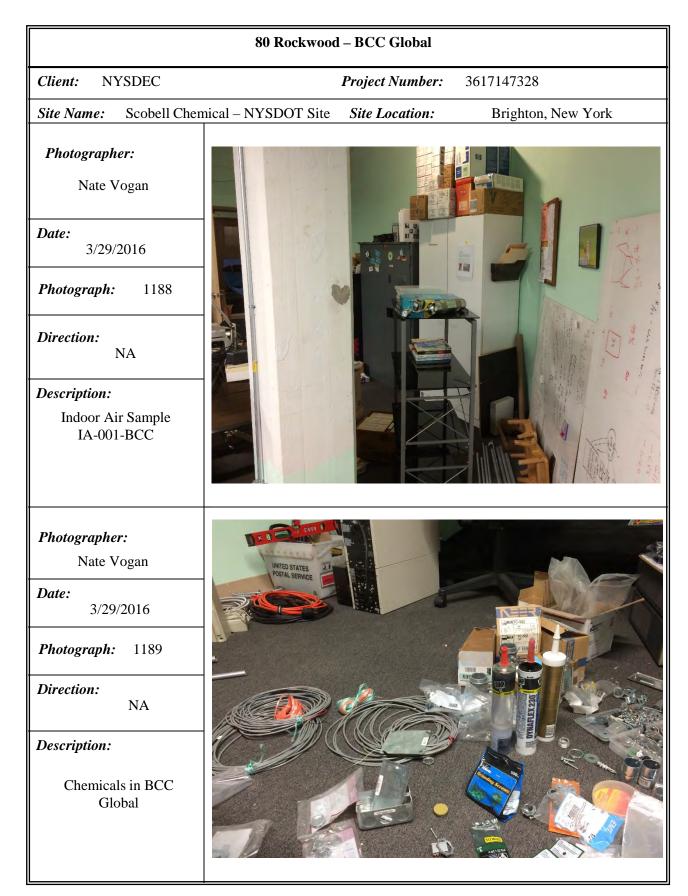

Canister Serial Number: Sh Sh Canister Serial Number: IO1 Canister Serial Number: 357 Canister Serial Number: Start Date/Time Start Date/Time Start Date/Time 3[28]16 Start Date/Time 3[28]16 Start Date/Time Start Date/Time Start Date/Time 3[28]16 Start Date/Time Start Date/Time Start Pressure ("Hg): Start Pressure ("Hg): QS Start Pressure ("Hg): 30 Start Pressure ("Hg): Stop Date/Time Stop Date/Time Stop Date/Time Stop Pressure ("Hg): QS Stop Pressure ("Hg): Stop Pressure ("Hg): Stop Pressure ("Hg): II Stop Pressure ("Hg):
PROJECT LOCATION: Rochester, New York SAMPLER NAME: Nate Vogan / John Luttinger WEATHER CONDITIONS (AAH): $\underline{\Psi}^{o_1}$, $\underline{\Im}^{o_2}$, $\underline{\Im}^{o_1}$, $\underline{\Im}^{o_1}$, $\underline{\Im}^{o_2}$, $\underline{\Im}^{o$
WEATHER CONDITIONS (APA): '40°, 73% AU 24,11°, AV SAMPLER SIGNATURE: WEATHER CONDITIONS (APA): '41°, 31% AU, 20,17°, AV CHECKED BY: C, Stepler DATE: 4/2 //// SUMMA Canister Record Information SUMMA Canister Record Information SUB-SLAB SOIL VAPOR BASENTENT INDOOR AIR SAMPLE - DupC AMBIENT AIR SAMPL Tow Regulator Number: II67 Flow Regulator Number: IS6 Flow Rate (mL/min): Start Date/Time Start D
WEATHER CONDITIONS (A): (1,316, 24, 20-37', N) CHECKED BY: (5,5400) DATE: (1/2)/// SUMMA Canister Record Information Summa Canister Serviten TinDOOR AIR SAMPLE AMBIENT AIR SAMPL John Regulator Number: ISE Flow Regulator Number: ISE Flow Regulator Number: ISE Flow Regulator Number: How Rate (mL/min): Flow Regulator Number: ISE Flow Regulator Sumple D: Start Date/Time
SUMMA Canister Record Information SUB-SLAB SOIL VAPOR SAMPLE BASE/MENT INDOOR AIR SAMPLE FIRST-FLOOR AIR SAMPLE - Dup-C AMBIENT AIR SAMPL Som Regulator Number: Flow Regulator Number: II6.7 Flow Regulator Number: IS6 Flow Regulator Number: AMBIENT AIR SAMPL Flow Rate (mL/min): Flow Regulator Number: IS6 Stor Flow Regulator Number: IS6 Stor Flow Regulator Nu
SUMMA Canister Record Information SUB-SLAB SOIL VAPOR SAMPLE BASE/MENT INDOOR AIR SAMPLE FIRST-FLOOR AIR SAMPLE - Dup-C AMBIENT AIR SAMPL Som Regulator Number: Flow Regulator Number: II6.7 Flow Regulator Number: IS6 Flow Regulator Number: AMBIENT AIR SAMPL Flow Rate (mL/min): Flow Regulator Number: IS6 Stor Flow Regulator Number: IS6 Stor Flow Regulator Nu
SAMPLE SAMPLE SAMPLE SAMPLE AMBLE/INFARMS AMPLE low Regulator Number: Flow Regulator Number: II67 Flow Regulator Number: IS6 Start Date/Time Start Date/Time Start Date/Time Start Date/Time Start Date/Time Storp Persure ("Hg): Stop Pate/Time Stop Pate
Image: Construct Series (mL/min): Image
Canister Serial Number: Shr Shr Canister Serial Number: IO1 Canister Serial Number: 357 Canister Serial Number: Start Date/Time Start Date/Time Start Date/Time Start Date/Time 3[28]16 Start Date/Time 3[28]16 Start Date/Time Start Date/Time Start Date/Time 3[28]16 Start Date/Time 3[28]16 Start Pressure ("Hg): Start Pressure ("Hg): QS Start Pressure ("Hg): 30 Start Pressure ("Hg): Stop Date/Time Stop Date/Time $\begin{bmatrix} 2,30 \\ 5:30 $
Start Date/TimeStart Date/Time $3 2 6$ $2 2 6$ $2 2 6$ $2 2 6$ $2 2 6$ Start Date/TimeStart Date/Time $3 2 6$ $2 2 6$ Start Pressure ("Hg):Start Date/Time $3 2 6$ $2 2 6$ Stop Date/TimeStart Pressure ("Hg):Start Pressure ("Hg):Stop Date/TimeStop Date/Time $2 2 6$ $6 :30$ Stop Date/Time $3 2 6$ $6 :30$ Stop Pate/TimeStop Date/TimeStop Date/Time $3 2 6$ $6 :30$ Stop Pressure ("Hg):Stop Pate/TimeStop Pressure ("Hg):Stop Pressure ("Hg): 2 $5 2 0 7-IA-coll-$ $N \leq 0$ Stop Pressure ("Hg):Stop Pressure ("Hg):Sample ID:Sample ID: $8 2 0 7-IA-coll-$ $N \leq 0$ Sample ID: $8 2 0 7-IA-coll-$ $N \leq 0$ Sample ID: $8 2 0 7-IA-coll-$ $N \leq 0$ THISHED BASEMENT, CTAWI Space, Unfinished
Start Pressure ("Hg): Start Pressure ("Hg): 28 Start Pressure ("Hg): 30 Start Pressure ("Hg): Stop Date/Time Stop Date/Time ³ 29 16 6:30 Stop Pressure ("Hg): It Stop Pressure ("Hg): Stop Pressure ("Hg): 2 Stop Pressure ("Hg): It Stop Pressure ("Hg): Sample ID: Stop Pressure ("Hg): 2 Stop Pressure ("Hg): It Stop Pressure ("Hg): Sample ID: Sample ID: $838076 - 74 - 001 - 105 < 0$ Sample ID: $838076 - 4A - 001 - 105 < 0$ Sample ID: Sample ID: $838076 - 74 - 001 - 105 < 0$ Sample ID: $838076 - 4A - 001 - 105 < 0$ Story/Level: I Story/Level: It Story/Level: It Story/Level: It Tutsned Basement Story/Level: I Story/Level: It Direction from Building Stop Constab Thickness: Room: Hall Room: Hall Distance from Building: Potential Vapor Entry Potential Vapor Entry Potential Vapor Entry HuAc Distance from Roadway: Points:
Stop Date/Time Stop Pressure ("Hg): Stop Pressure ("Hg): Z Stop Pressure ("Hg): II Stop Pressure ("Hg): Stop Pressure ("Hg): Stop Pressure ("Hg): II Stop Pressure ("Hg): Sample ID: S
Stop Pressure ("Hg): Stop Pressure ("Hg): Z Stop Pressure ("Hg): II Stop Pressure ("Hg): Sample ID: <
Sample ID: Sample ID: 838076 - 7A - 001 - NSC Sample ID: 838076 - AA - 001 - NSC Sampl
NSC NSC Other Sampling Information: Sce "central unit" Gir recard Story/Level: I Story/Level: I Direction from Building Basement Basement Direction from Building Floor Slab Thickness: Room: Hall Distance from Building: Potential Vapor Entry Potential Vapor Entry Hotel Hotel Points: Potential Vapor Entry Hotel Distance from Roadway:
Air reserve Story/Level: I Story/Level: I Direction from Building Space, Unfinished Story/Level: I Direction from Building Basement Floor Slab Thickness: Room: Heall Room: Hall Distance from Building: Potential Vapor Entry Potential Vapor Entry Potential Vapor Entry Potential Vapor Entry House from Roadway:
Story/Level: Story/Level: Direction from Building Story/Level: I Story/Level: Direction from Building Story/Level: I Story/Level: I Floor Slab Thickness: Room: Hall Room: Hall Potential Vapor Entry Potential Vapor Entry Potential Vapor Entry If where Points: Potential Vapor Entry Potential Vapor Entry Hall
Potential Vapor Entry Points: Points: Points: Points: Points: Points: Points: Points: Points: Points: Points: Points: Points: Potential Vapor Entry Points: Points: Potential Vapor Entry Points: Points: Potential Vapor Entry Points: Potential Vapor Entry Points: Points: Potential Vapor Entry Points: Points: Potential Vapor Entry Points: Points: Points: Potential Vapor Entry Points: Points: Points: Points: Potential Vapor Entry Points: Points: Potential Vapor Entry Points: Points: Potential Vapor Entry Points: Potential Vapor Entry Points: Points: Potential Vapor Entry Points: Potential Vapor Entry Points: Points: Potential Vapor Entry Points: Potential Vapor Entry Potential Vapor Entry Points: Potential Vapor Entry Potential Vapor Entry Points: Potential Vapor Entry Potential Vapor Entry
Points: Points: Points: Distance non Roadway.
Floor Surface: Floor Surface: Floor Surface: Ground Surface: Ground Surface:
Noticable Odor: No Noticable Odor: No Noticable Odor: No Noticable Odor:
PID Reading (ppb): 166 PID Reading (ppb): 166 PID Reading (ppb):
intake Depth/Height: 2 Intake Height: 2 Intake Height: 2 Ground/Surface:
Helium Vest Conducted? Breaktwrough %: Indoor Air Temp 70°F Indoor Air Temp 70°F Inteke tubing?

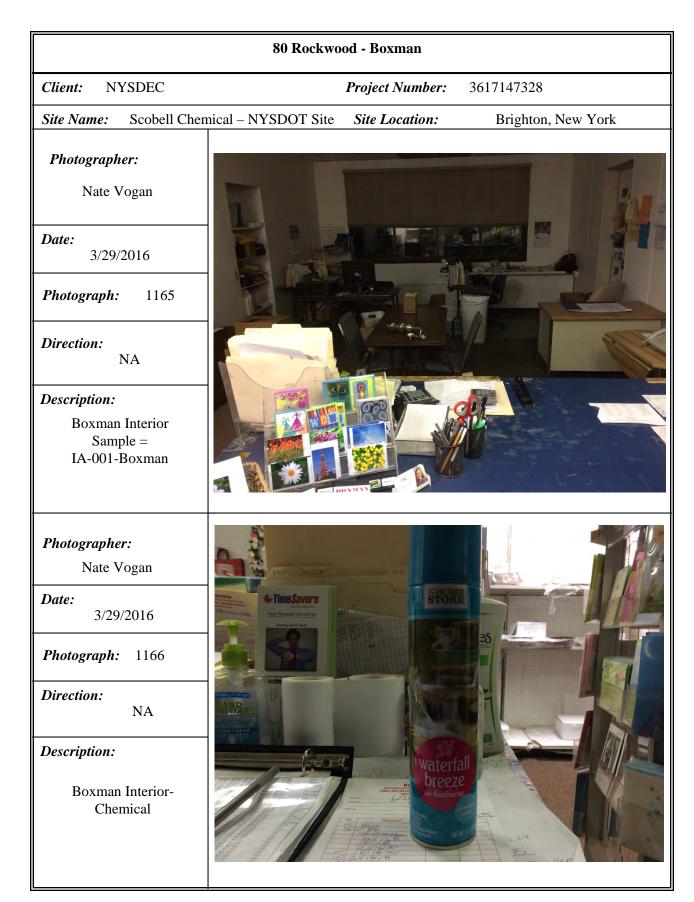

		INDOOR	AIR SAM	1PLING RECOI		Place - Central	Unit
PROJECT NAME:	Scobell	Chemical March 2016	SVI	LOCATION ID:	Structure	DATE: 3/	8116
PROJECT NO./TAS	K NO.:	361714732	28		NYSDEC		
PROJECT LOCATIO	DN:	Rochester, New York		SAMPLER NAM	E: Nate Vo	gan / John Luttinger	
WEATHER CONDI	TIONS (AM)	40°; 73% CH	, 29.91"; N	SAMPLER SIGN	ATURE:	m	
WEATHER CONDI	TIONS (PM)	Tue Marn 36°,	62% Ho	Mil CHECKED BY:	C.Stop	Ler DATE: 4	129/16
	Pressue 2	the SUMMA	A Canister I	Record Information			
SUB-SLAB SOIL SAMPLI	VAPOR	BASENTENT IND SAMPLI	OOR AIR		R AIR	AMBIENT AIR	SAMPLE
Flow Regulator Number: + 1	294	Flow Regulator Number:	450	Flow Regulator Number:		Flow Regulator Number:	278
Flow Rate (mL/min):	8hr	Flow Rate (mL/min):	8hr	Flow Rate (mL/min):		Flow Rate (mL/min):	Shr
Canister Serial Number:	368	Canister Serial Number:	556	Canister Serial Number:	/	Canister Serial Number:	237
Start Date/Time 3/28/16 221:50		Start Date/Time 3 28 115 23:05		Start Date/Time		Start Date/Time 23:00	
Start Pressure ("Hg):	30	Start Pressure ("Hg):	30	Start Pressure ("Hg):		Start Pressure ("Hg):	30
Stop Date/Time 6 29/1	5	Stop Date/Time 6(29)	16 6:31	Stop Date/Time		Stop Date/Time 3/21	6
Stop Pressure ("Hg):	2.5	Stop Pressure ("Hg):	12	Stop Pressure ("Hg:		Stop Pressure ("Hg):	1-
Sample ID: 8)8676-	35-001-01	Sample ID: 828076-	IA-	Sample ID:		Sample ID:	- AA -001 21
			States and	ig Information:			
rinished Basement, Crawi Space, Unfinished Basement	storage	Story/Level:	t	Story/Level;	1	Direction from Building	West
Floor Slab Thickness:	6"	Room:	storage	Room:	/	Distance from Building:	10
Potential Vapor Entry Points:	pipe race + elevetor	Potential Vapor Entry Points:	pipe sace televator	Potential Vapor Entry Points:		Distance from Roadway:	100
Floor Surface:	Concrete	Floor Surface:	Concrete	Floor Surface:		Ground Surface:	Asphalt
Noticable Odor:	No	Noticable Odor:	No	Noticable Odor		Noticable Odor:	No
PID Reading (ppb):	439	PID Reading (ppb):	318	PID Reading (ppb);		PID Reading (ppb):	120
Intake Depth/Height:	8"	Intake Height:	4 ¹	Intake Height:		Intake Height above Ground Surface:	4'
Helium Test Conducted? Breakthrough %:	16,5% 815 pp	Indoor Air Temp	65°F	Indoor Air Temp		Intake tubing?	No
Comments/Location SS AA IA IA		Point under Point in Alli on south wat TEC		-0.006	WCI		URE 4. RECOR

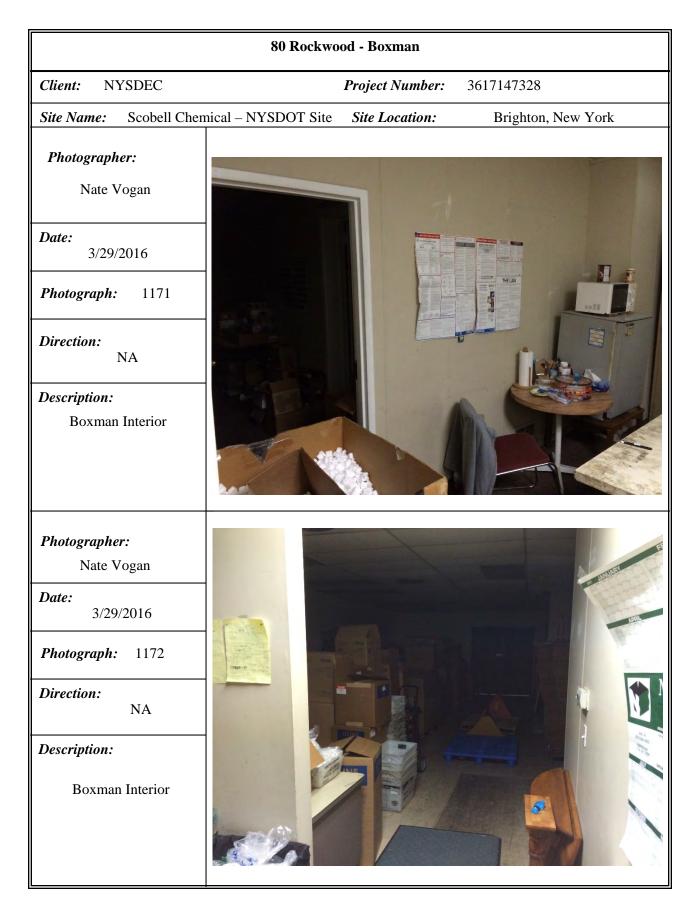

			90	Rocker	ood - Bareman	t	
	INDOOR	AIR SAN	APLING RECO	RD			
PROJECT NAME: Sco	obell Chemical March 2016	SVI	LOCATION ID:	Structo	Ve 1 DATE: 3	29/16	
PROJECT NO./TASK NO.:	36171473	28	CLIENT:	NYSDEC			
PROJECT LOCATION: Rochester, New York		SAMPLER NAME: Nate Vogan / John Luttinger					
WEATHER CONDITIONS (AM): 34°, 63% AH,	30.12", WA	SAMPLER SIGN	ATURE:	nne		
WEATHER CONDITIONS (PM): 42°, 23% RH,	32.25", WA	CHECKED BY:	C. Steples	DATE:	29/16	
	SUMM	A Canister	Record Information	61			
SUB-SLAB SOIL VAPO SAMPLE		BASEMENT INDOOR AIR SAMPLE		FIRST FLOOR AIR SAMPLE		AMBIENT AIR SAMPLE	
Flow Regulator Number:	Flow Regulator Number:	117	Flow Regulator Number:		Flow Regulator Number:	177	
Flow Rate (mL/min):	Flow Rate (mL/min):	8h	Flow Rate (mL/min):		Flow Rate (mL/min):	8hr	
Canister Serial Number:	Canister Serial Number:	170	Canister Scrial Number	1	Canister Serial Number:	1191	
Start Date/Time	Start Date/Time 3(29)	16	Start Date/Time		Start Date/Time 3 29	16	
Start Pressure "Hg):	Start Pressure ("Hg):	304	Start Pressure ("Hg):		Start Pressure ("Hg):	30	
Stop Date Time	Stop Date/Time 3/201	16	Stop Date/Time		Stop Date/Time 3/29	116	
Stop Pressure ("Hg):	Stop Pressure ("Hg):	6	Stop Pressure ("Hg):		Stop Pressure ("Hg):	9.5	
Sample ID:	Sample ID: 828076-	IA-001 ment	Sample ID:	. 1	Sample ID: 828076 -	- AA-001 -02	
		10. State 10. St	ng Information:				
Finished Basement, Crawf Space, Unfinished Basement	/ Story/Level:	Basent	Story/Level:	1	Direction from Building	west	
Floor Slab Thickness:	Room:	Boler	Room:		Distance from Building:	20'	
Potential Vapor Entry Points:	Potential Vapor Entry Points:	Sump	Potential Vapor Entry Points:	/	Distance from Roadway:	120'	
Floor Surface:	Floor Surface:	Concrete	Floor Surface:		Ground Surface:	Asphilt	
Noticable Odor:	Noticable Odor:	No	Noticable Odor:		Noticable Odor:	No	
PID Reading (ppb):	PID Reading (ppb):	460	PID Reading (ppb):		PID Reading (ppb):	17	
Intake Depth/Height:	Intake Height:	2.5	Intake Height:		Intake Height above Ground Surface:	4'	
Helum Test Conducted? Breakthrough %:	Indoor Air Temp	90°F	Indoor Air Temp		Intake tubing?	No	
Comments/Location Sketc	h: Cart הקלפר	~ 15	North of ner	w boiler			
JI Congress Street, Por		N			FIG IR SAMPLING I RANCE PROJEC		

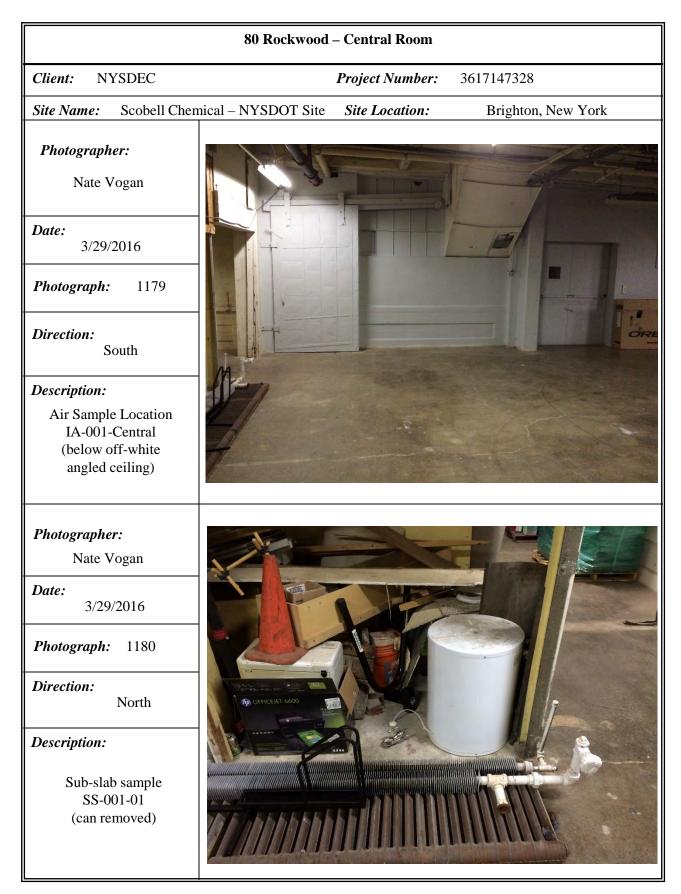

٩.

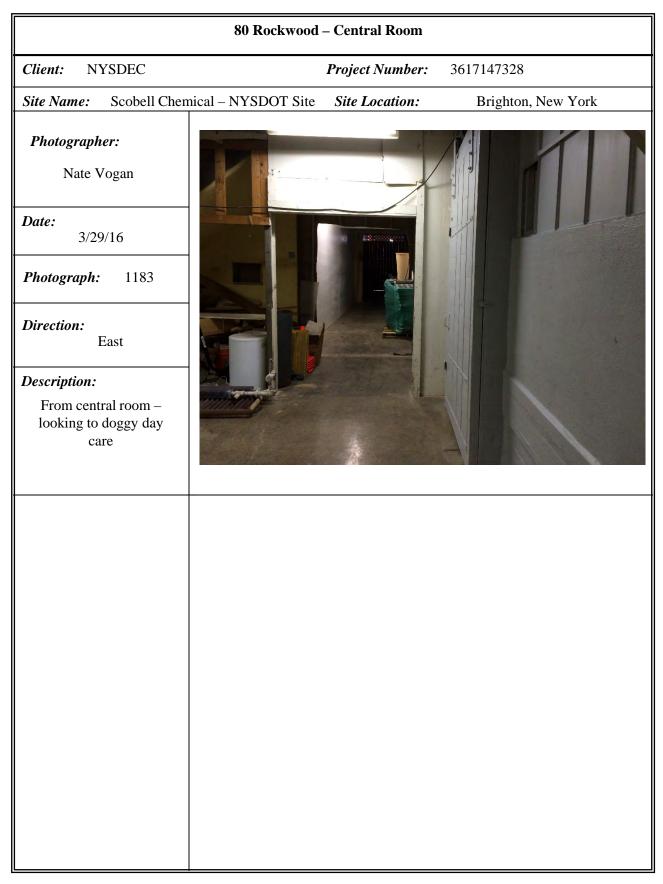

	INDOOR	AIR SAN	APLING RECO	RD			
PROJECT NAME: Scobe	Il Chemical March 2016	SVI	LOCATION ID:	Structu	ACI DATE: 31-	29/16	
PROJECT NO./TASK NO.:	36171473		CLIENT:				
PROJECT LOCATION:	Rochester, New York	LI	SAMPLER NAM	E: Nate Vo	gan / John Luttinger		
WEATHER CONDITIONS	Th: 34°, 63% ch.	30-12",1	SAMPLER SIGN	ATURE:	ma		
WEATHER CONDITIONS (PR	T: 42°, 13% ch,	30-25"	SAMPLER SIGN	C. Styples	DATE: 4	129/16	
			Record Information				
SUB-SLAB SOIL VAPOR	BASEMENT INI	OOR AIR	FIRST FLOO	RAIR	AMBIENT AIR	CAMPI F	
SAMPLE /	SAMPL	E /	SAMPL	Е	AMBIENTAIK	SAMITLE	
Flow Regulator Number:	Flow Regulator Number:		Flow Regulator Number:	398	Flow Regulator Number:	1	
Flow Rate (mL/min):	Flow Rate (mL/min):	/	Flow Rate (mL/min):	8hr	Flow Rate (mL/min):	/	
Canister Serial Number:	Canister Serial Number:		Canister Serial Number:	202	Canister Serial Number		
Start Date/Time	Start Date/Time	Start Date/Time		Start Date/Time 3 29 16 8:05		Start Date/Time	
Start Pressure ("Hg):	Start Pressure ("Hg):		Start Pressure ("Hg):	30+	Start Pressure ("Hg):		
Stop Date/Time	Stop Date/Time		Stop Date/Time 3 22	16	Stop Date/Time		
Stop Pressure ("Hg):	Stop Pressure ("Hg):		Stop Pressure ("Hg):	7	Stop Pressure ("Hg):		
mple ID: Sample ID:		Sample ID: 828076-IA-001 -BCC		Sample ID: 828076 - AA - 00			
	Ot	her Sampli	ng Information:	2	+ sice "Boument Air Record		
Finished Basement, Crawi Space, Unfinished	Story/Level:		- Story/Level:		Direction from Building		
Floor Slab Thickness:	Room:		Room:	Maw Work room	Distance from Building:		
Potential Vapor Entry Points:	Potential Vapor Entry Points:	X	Potential Vapor Entry Points:	HAAC	Distance from Roadway:		
Floor Surface:	Floor Surface:		Floor Surface:	Corpet concrete	Ground Surface:		
Noticable Odor:	Noticable Odor		Noticable Odor:	No	Noticable Odor:		
PID Reading (pp)):	PID Reading (ppb):		PID Reading (ppb):	66	PID Reading (ppb):		
Intake Depth-Height:	Intake Height:		Intake Height:	4'	Intake Height above Ground Surface:		
Helium Test Conducted? Breakthrough %:	Indoor Air Temp		Indoor Air Temp	68°F	Intake tubing?		
Comments/Location Sketch:		d - Bi Gla			FIC	QURE 4.	

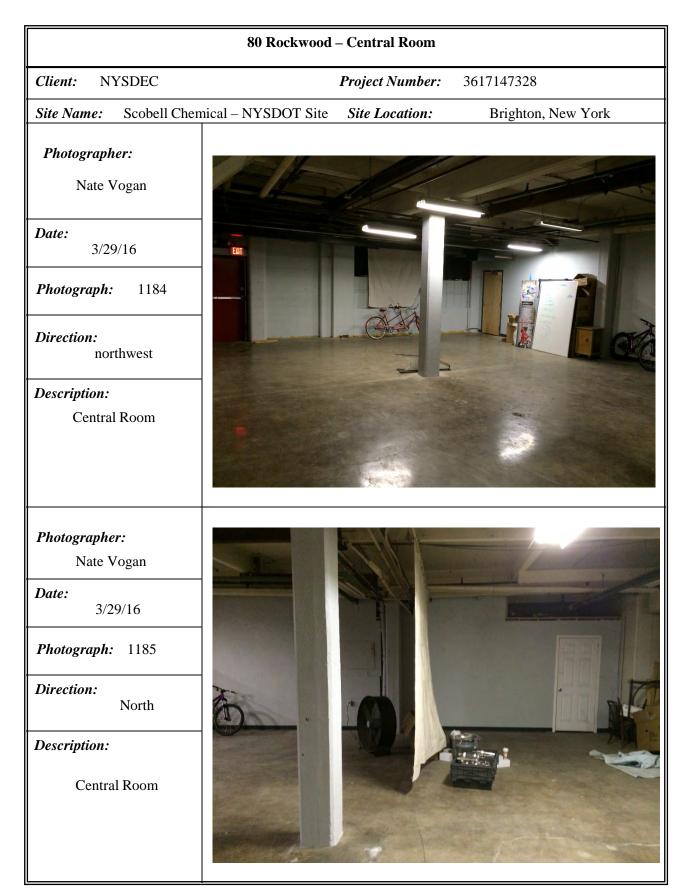


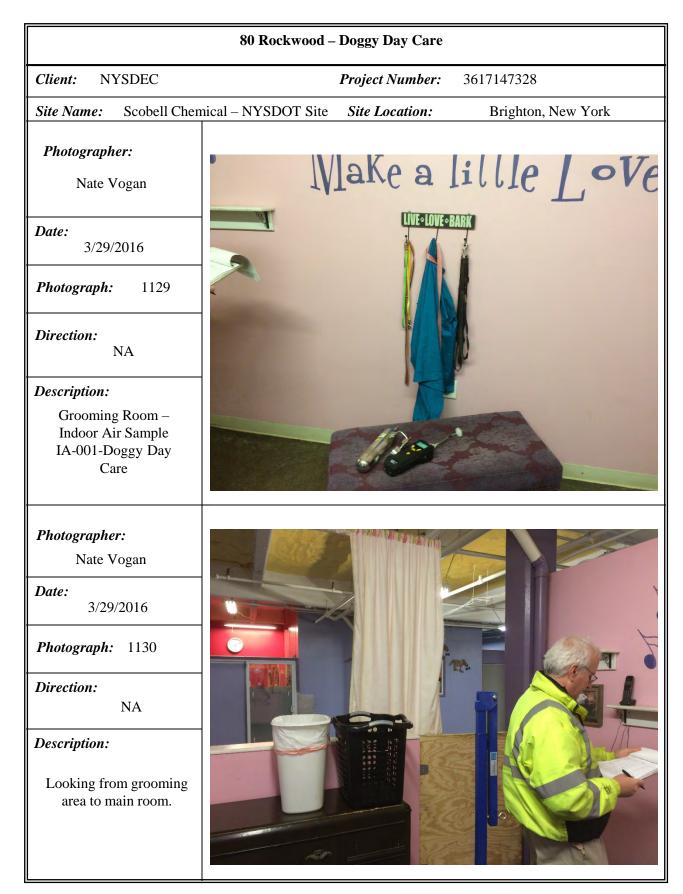


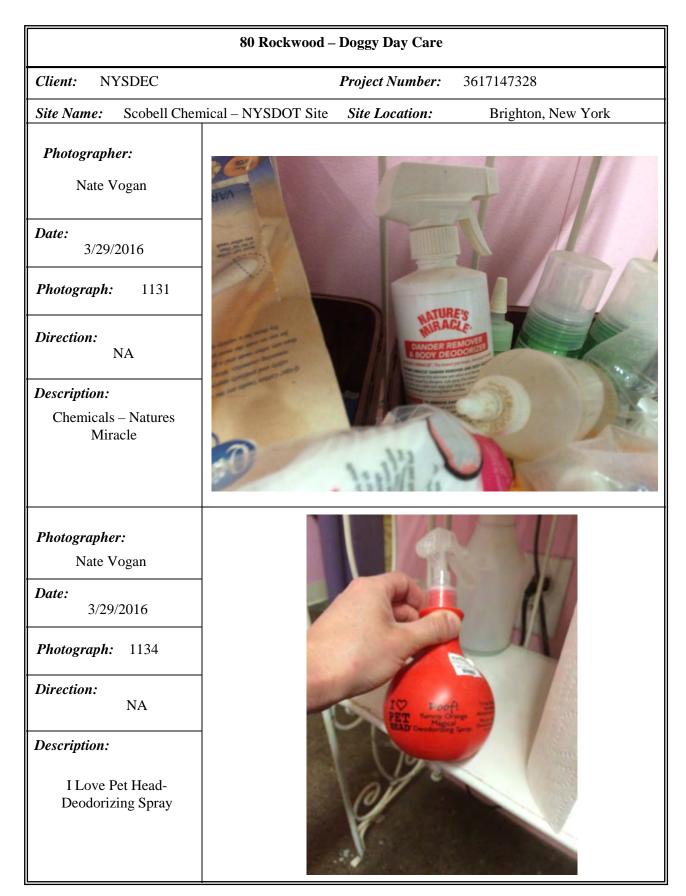


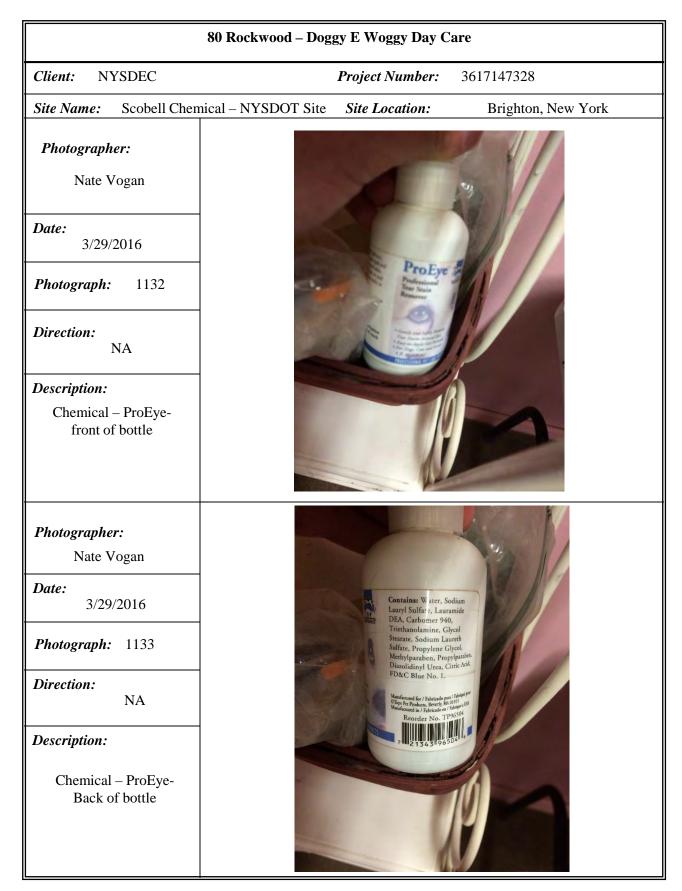


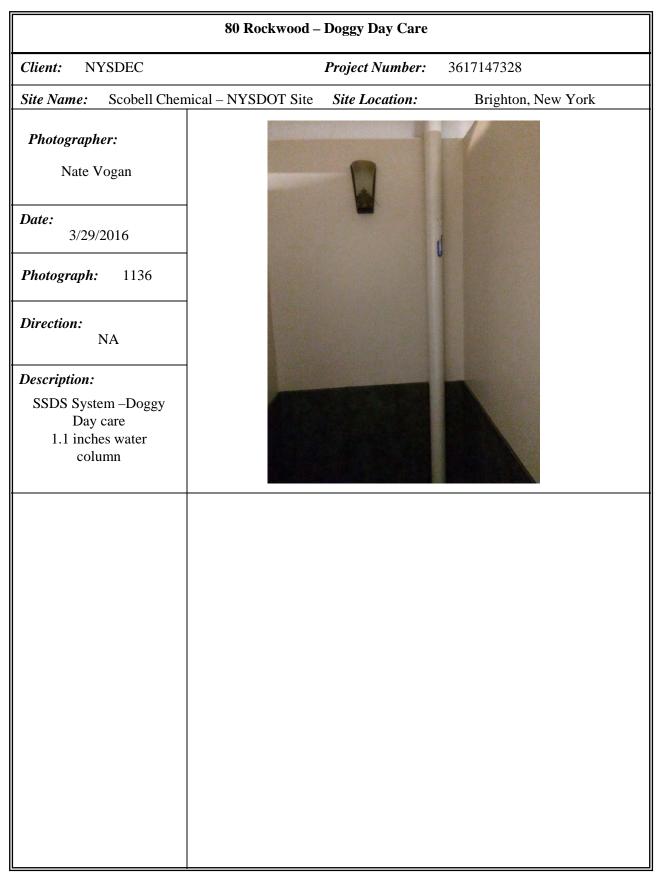


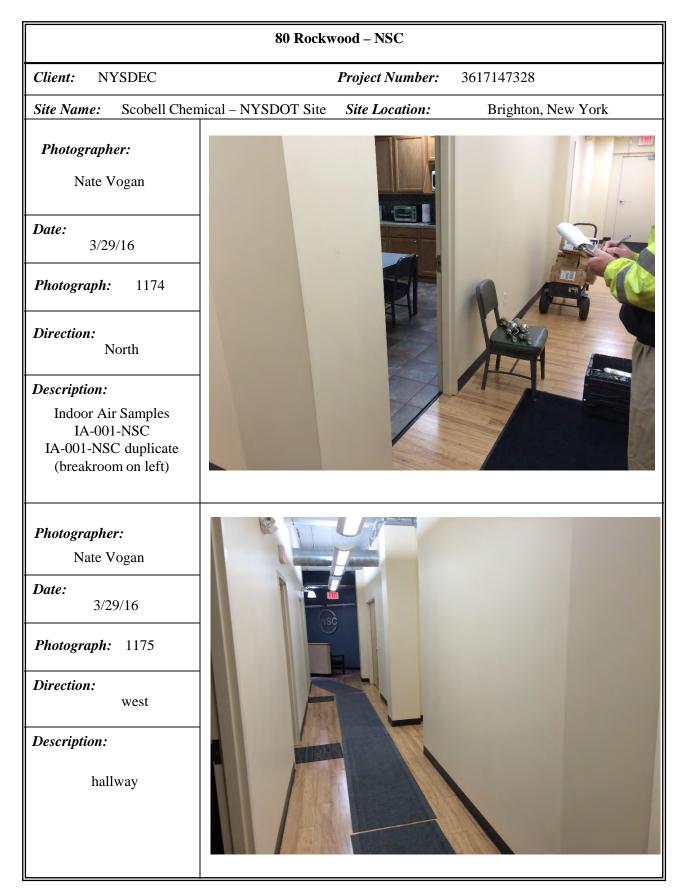


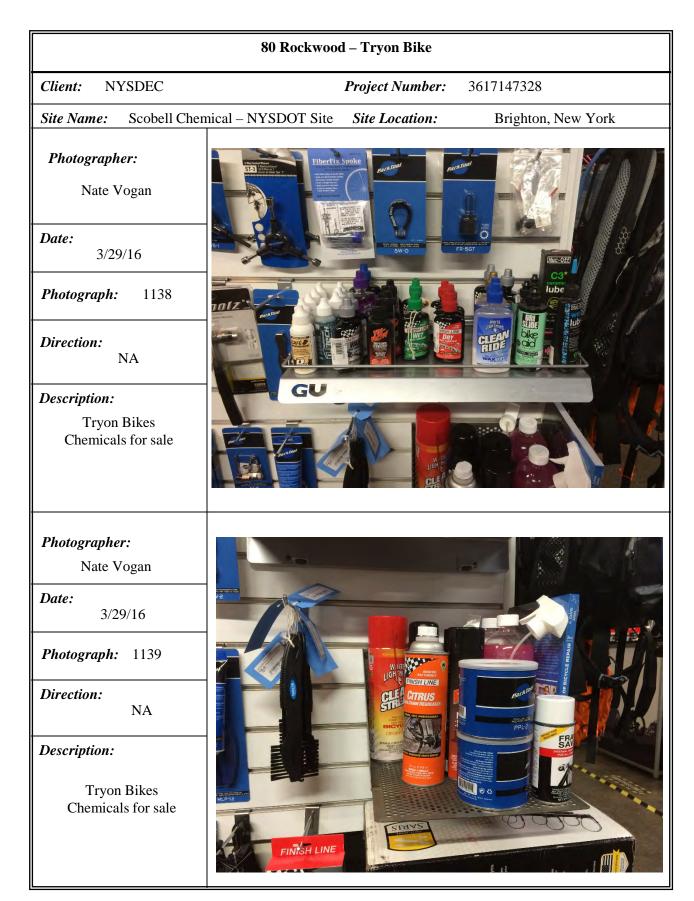


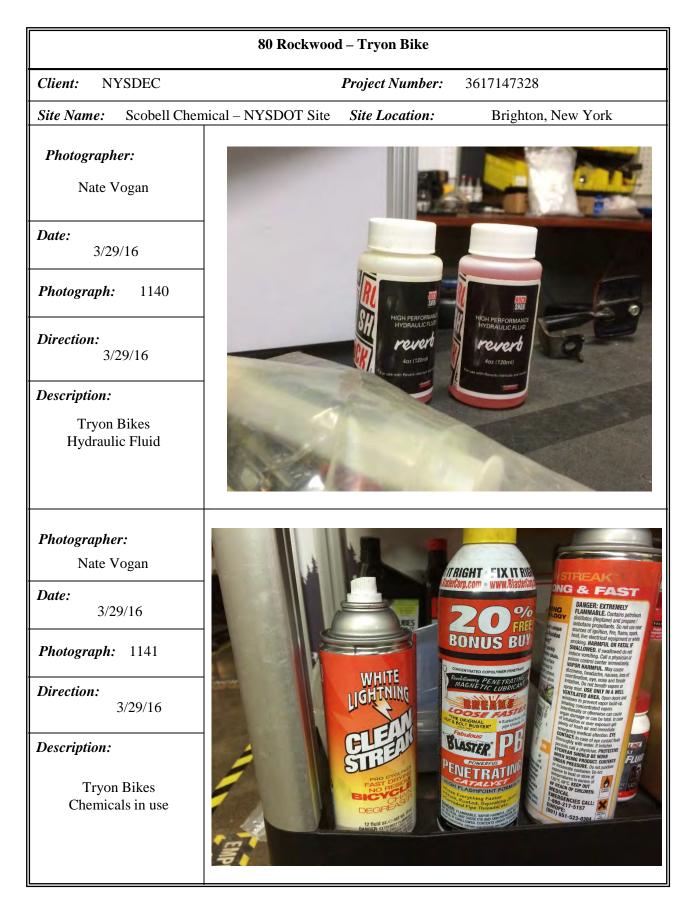


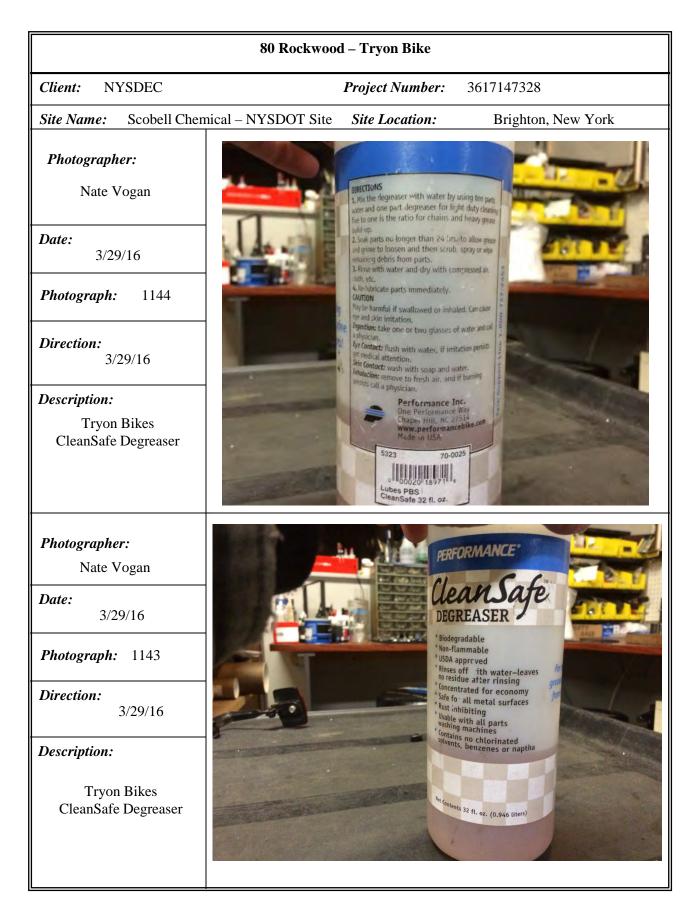


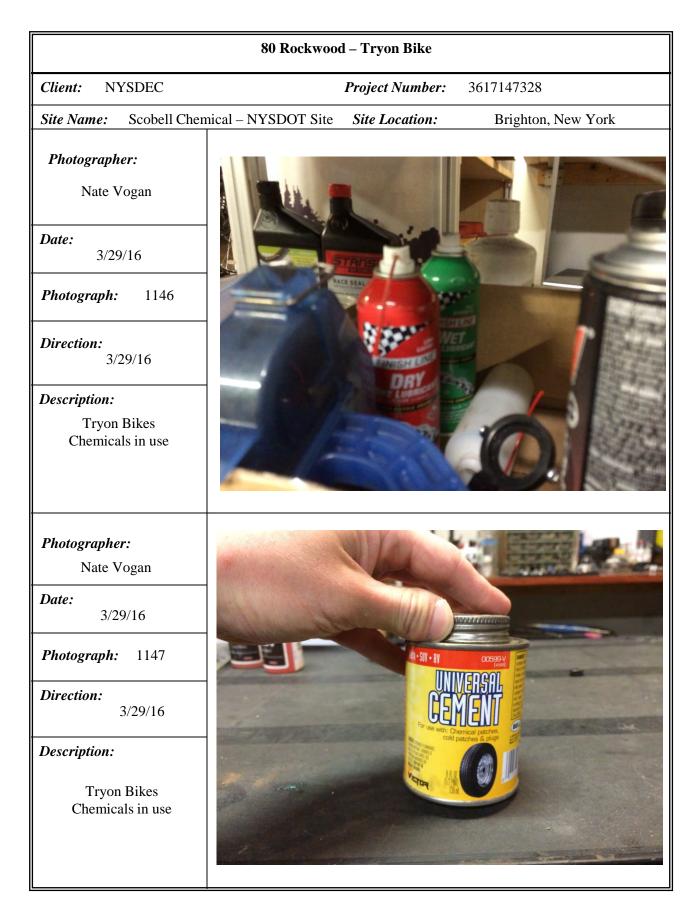


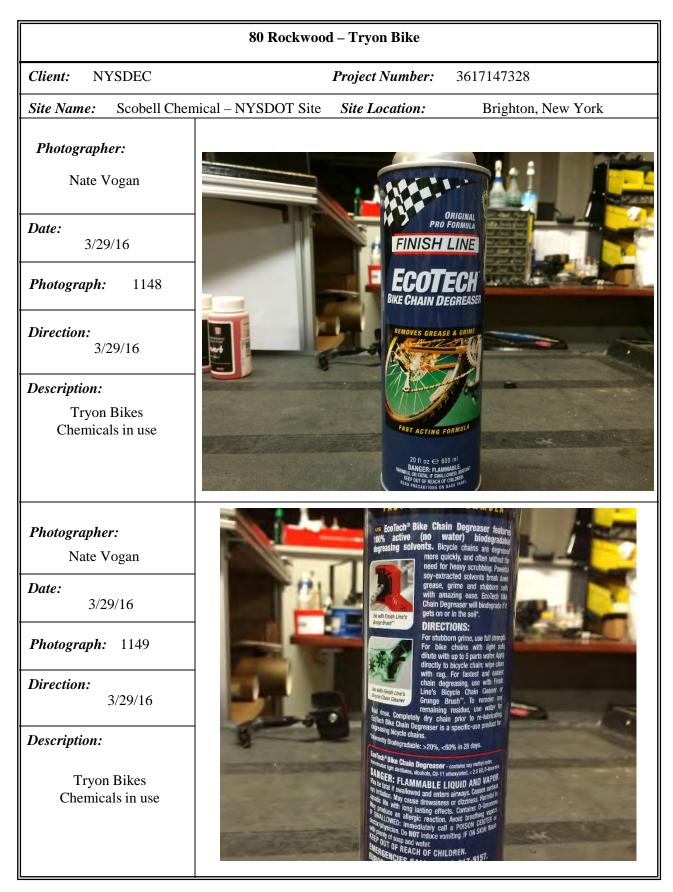


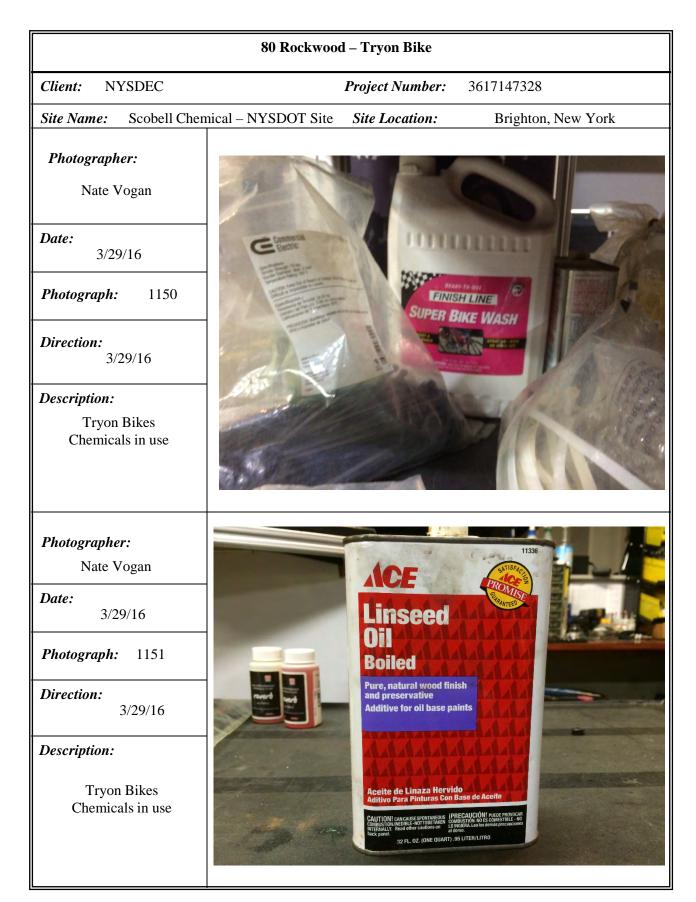


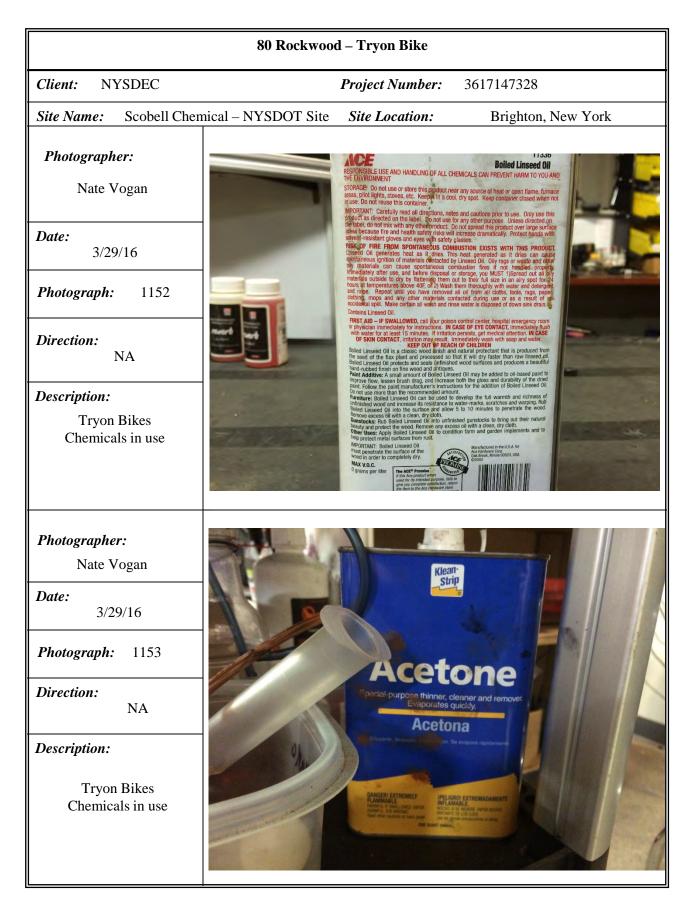


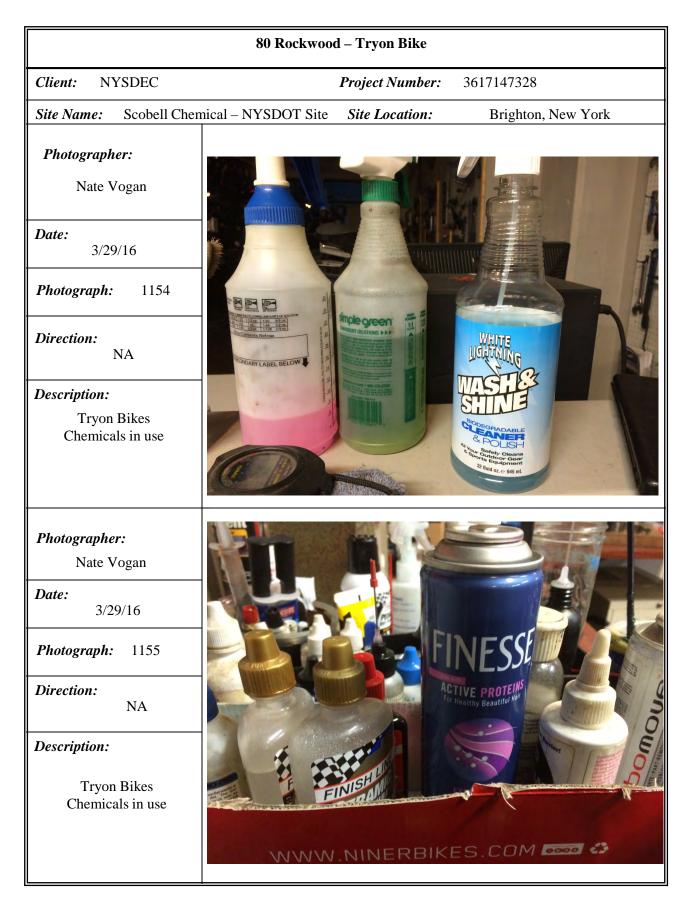


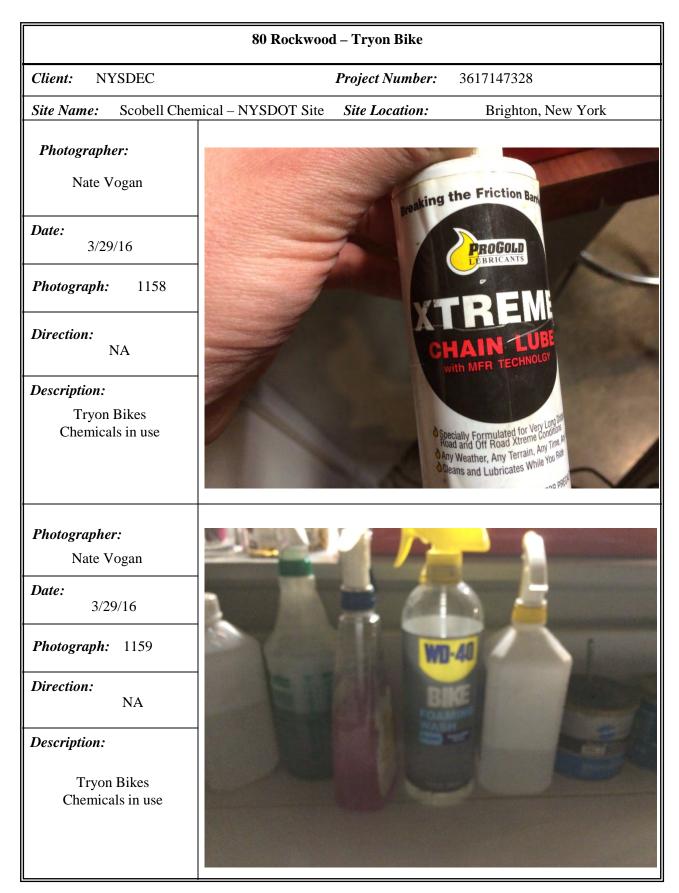


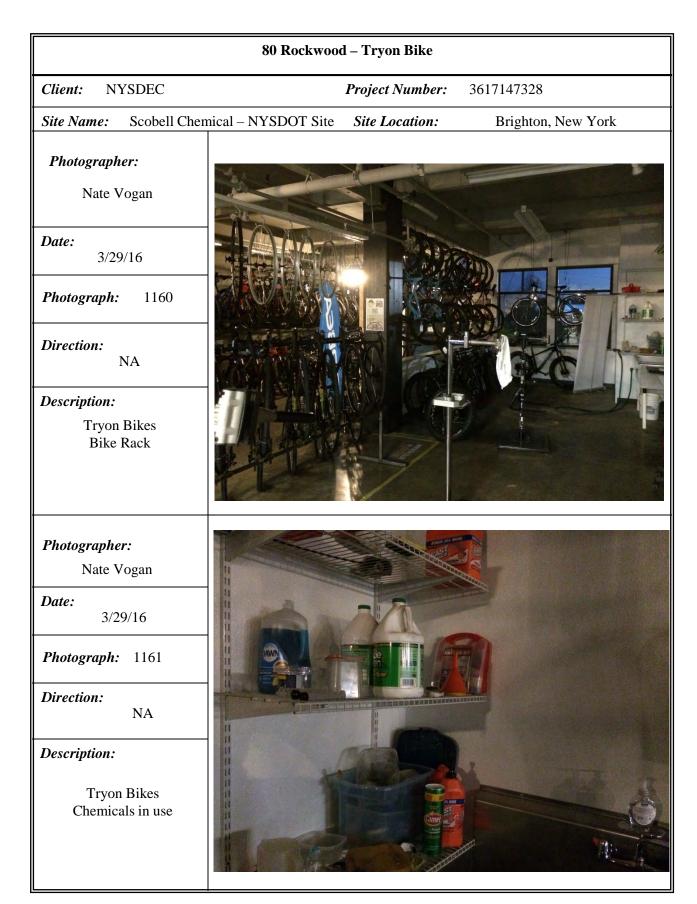


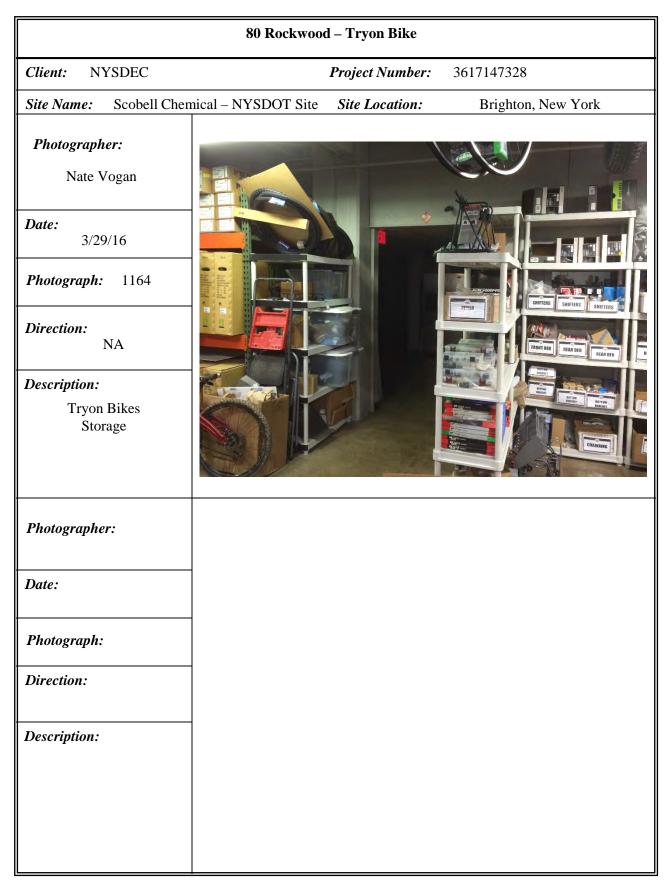





	80 Rockwoo	d – Tryon Bike	
<i>Client:</i> NYSDEC		Project Number:	3617147328
Site Name: Scobell Cher	nical – NYSDOT Site	Site Location:	Brighton, New York
Photographer:			
Date:	-		
Photograph:			
Direction:			
Description:			
<i>Photographer:</i> Nate Vogan		Icelone	
<i>Date:</i> 3/29/16		TO	
Photograph: 1145	145 DISC BRAKE FLUID DDT. NO. 4 minuti wit boing port. 24 OLI Investori		3310
<i>Direction:</i> 3/29/16	The contract of the contract o		
Description:	SS NO. SPECIFICULY CLUMPTON V-B-680 SPECIFICULY CLUMPTON NOT TAKE INTERNATION (CLUMPTON) NOT TAKE INTERNATION (CLUMPTON)		
Tryon Bikes Chemicals in use	Consideration of the second se		







Periodic Operations Visit Form

Γ

Sy	ystem ID: 828076			Date	e of Visit	::	Mar 28, 2016
0	wner Name: <u>Margaret Eidman</u>		Dat	e Inst	alled:	07/1	19/12,Modified 10/15
S	vstem Address: <u>80 Rockwood Place</u>	e - Structure 4	Tele	phon	9:		
Ci	ty: Rochester	Zip:14610					
Pe	erformed By: <u>Nate Vogan / John Lu</u>	ittinger			82807		
С	ompany: Amec Foster Wheeler E&I	- MACTEC	_ Site	Nam	e: Sco	bell (Chemical-NYSDOT Site
	Fan Operation Confirmation						
		Fan #1		Fan	#2		Fan #3
	Fan Model No(s).	OBAR - 76UD	Rad	onawa	ay - RP2	65	
OR	Is Fan Operating (arrival)?	● Yes ○ No	۲	Yes	O No		🔿 Yes 🔿 No
EXTERIOR	Confirmation Method		Other				
EXT	Is Fan Operating (departure)?	• Yes 🔿 No	۲	● Yes ○ No			🔿 Yes 🔿 No
	Requested to inspect interior sys	stem components?	Yes	O N	0		
	If yes, when and by whom?	Nate Vog	an		D	ate:_	Mar 28, 2016
	Structural Review				No	tes	
	Change in building footprint sinc	e last inspection? (Yes	lacksquare	No		
	Basement occupied (>4 hrs per	day)?	Yes	lacksquare	No		
	Heating/ventilation system mod	ifications? () Yes	lacksquare	No		
	Crawlspace inspected?	() Yes	lacksquare	No		
ЛR	Large cracks in floor or near sun	nps? () Yes	lacksquare	No		
ERI(Wall penetrations or cracks note	ed? () Yes	$ \mathbf{O} $	No		
INTERIO	Piping, Slab & Wall						
-	Are system suction points sealed	d? (• Yes	\circ	No		
	Is piping system in need of repa	ir? () Yes	\bigcirc	No		

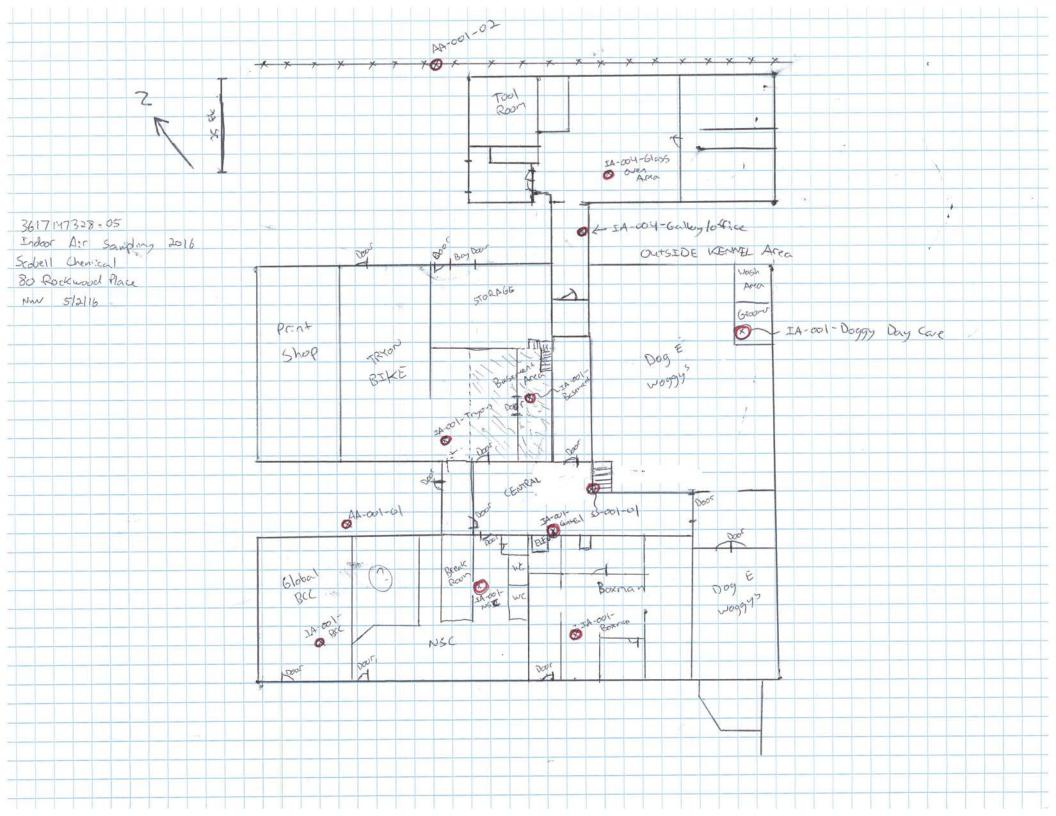
Miscellaneous

Are manometer levels equal?

Are system labels accurate and applied correctly?

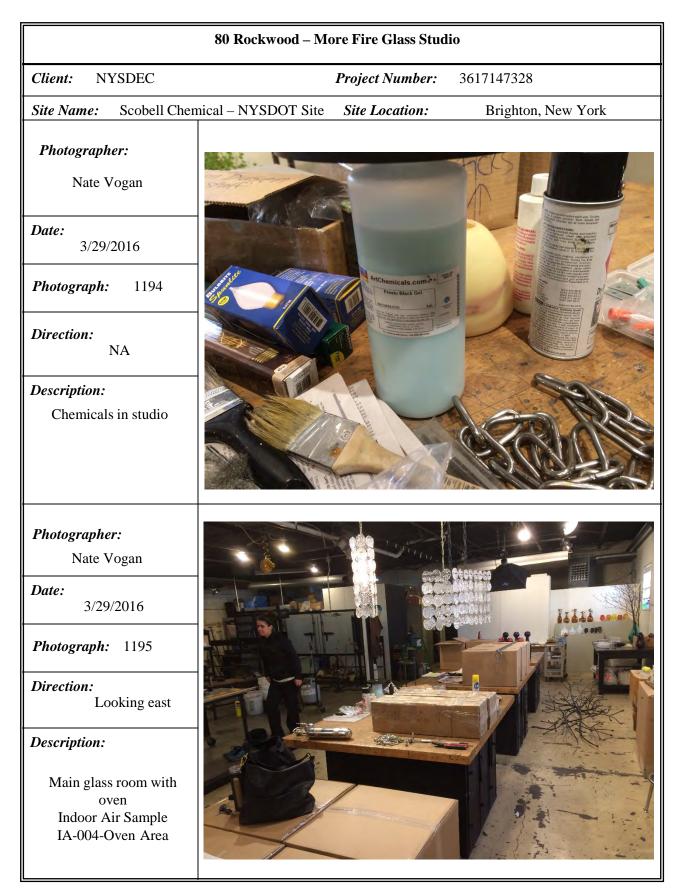
🔿 No

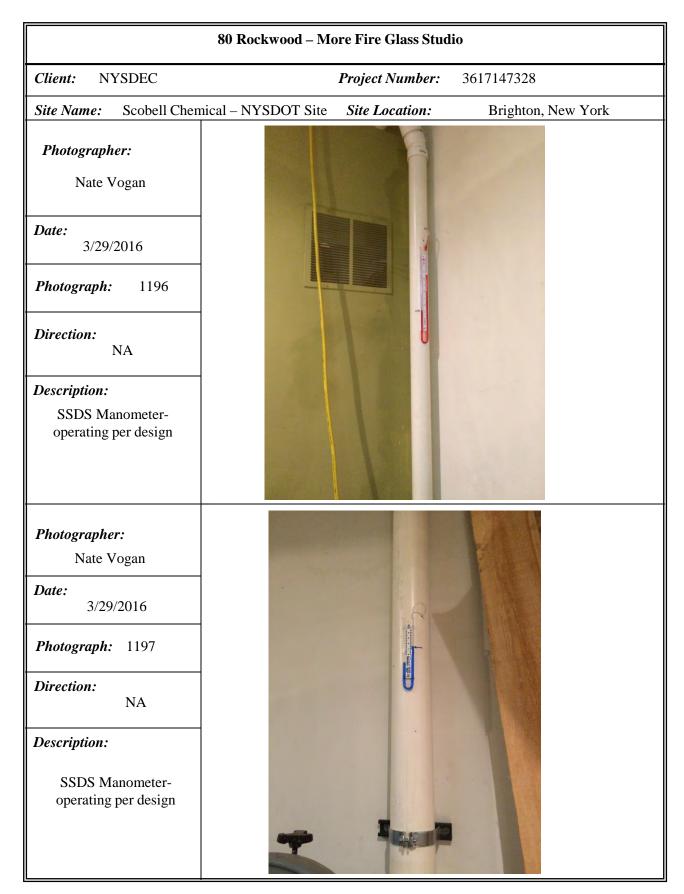
⊖ No


• Yes

• Yes

Describe repairs made and any proposed actions requiring a subsequent visit (if necessary):


58 E/	INDOOR	AIR SAM	APLING RECO	RD		
PROJECT NAME: Sc	obell Chemical March 2016	SVI	LOCATION ID:	String	twe YDATE: 3/2	9/16
PROJECT NO./TASK NO.:			CLIENT:	1.4		
PROJECT LOCATION:	Rochester, New York		SAMPLER NAM	E: Nate Vo	gan / John Luttinger	
WEATHER CONDITIONS	(AM): 34°, 63% 1	h, 30.12", w	SAMPLER SIGN	ATURE:	M	
WEATHER CONDITIONS	(PM): 41°, 23 % Pat,	30-25', w	CHECKED BY:	C. Style,	- DATE: 41	29/16
			Record Information			
SUB-SLAB SOIL VAPO	R BASEMENT IND	OOR AIR	FIRST FLOO	RAIR	AMBIENT AIR S	AMPLE
SAMPLE /	SAMPL	E	SAMPL		AMDILITIAN	
Flow Regulator Number:	Flow Regulator Number:	446	Flow Regulator Number:	1161	Flow Regulator Number:	1
Flow Rate (mL/min):	Flow Rate (mL/min):	8 hr	Flow Rate (mL/min):	Shr	Flow Rate (mL/min):	/
Canister Serial Number:	Canister Serial Number:	000	Canister Serial Number:	133	Canister Serial Number:	
Start Date/Time	Start Date/Time 3/24	116	Start Date/Time 3 29	16	Start Date/Time	
Start Pressure ("Hg):	Start Pressure ("Hg):	30+	Start Pressure ("Hg):	30+	Start Pressure ("Hg):	1
Stop Date/Time	Stop Date/Time 3 29	116	Stop Date/Time 3/29	116	Stop Date/Time	-
Stop Pressure ("Hg):	Stop Pressure ("Hg):	5	Stop Pressure ("Hg):	8.5	Stop Pressure ("Hg):	
Sample ID:		- 1A-004	Sample ID: Glass du		Sample ID: 828076-	AA-001-
			ng Information:	(See Structure 1 " Air Record	Bivernat
Finished Basement, Crawi Space, Unfinished Basement	Story/Level:	15+	Story/Level:	1 54	Direction from Building	1
Floor Slab Thickness:	Room:	Hallwy	Room:	oven	Distance from Building:	/
Potential Vapor Entry Points:	Potential Vapor Entry Points:	utility Penet.	Potential Vapor Entry Points:	Utility Penet.	Distance from Roadway:	/
Floor Surface:	Floor Surface:	concrete	Floor Surface:	Carriet	Ground Surface:	
Noticable Odor:	Noticable Odor:	No	Noticable Odor:	No	Noticable Odor:	
PID Reading (ppb):	PID Reading (ppb):	170	PID Reading (ppb):	170	PID Reading (ppb):	
Intake Depth/Height:	Intake Height:	4'	Intake Height:	3'	Intake Height above Ground Surface:	· · · ·
Helium Test Conducted? Breakthrough %:	Indoor Air Temp	680	Indoor Air Temp	680	Intake tubing?	
Comments/Location Sketc	h: 80 Rockwood	1 Mar	For Glass S	tula -	Struber # 4	
	00 MULTWOOD	-101			and the first of the f	
				-		
MANAA	TTEC				FIG	URE 4.1
IVIAC	CTEC		IN	DOOR A	IR SAMPLING	
511 Congress Street, Po		AT	YSDEC QUALL	TY ACCTT	DINGE BROTE	OT DT I


C:\Users\nathan.vogan\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\6MLFHUAQ\Figure 4 19 Indoor Air Sampling form.xls

80 Rockwood – More Fire Glass Studio								
Client: NYSDEC		Project Number:	3617147328					
Site Name: Scobell Chen	nical – NYSDOT Site	Site Location:	Brighton, New York					
<i>Photographer:</i> Nate Vogan								
Date: 3/29/2016								
<i>Photograph:</i> 1192	HAS Promit							
Direction: Southwest	STE N							
<i>Description:</i> In main room of glass studio (near ovens)								
<i>Photographer:</i> Nate Vogan								
Date: 3/29/2016								
Photograph: 1193		CFC FREE						
<i>Direction:</i> NA		dgf	MACH R BR					
Description:	2 D	Caraphite Film Lubrat	SOLUTION AND A STATE					
Chemicals in studio								

Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

Site Name: Scobell Chemical		Site Code:	828076	Operable Unit:
Building Code:	_ Building Name	Brighton	Manor - S	tructure 5
Address: 989 Blossom Rd			Apt/Suite N	0:
City: Rochester	State: NY	Zip:14610	County: 1	Monroe
Contact Information				
Preparer's Name: Nathan Vogan			_ Phone No:_	518-372-0905
Preparer's Affiliation: Amec Foster Wheeler E&I	- MACTEC		_ Company Co	de:
Purpose of Investigation: End of Heating Season	n March 2010	б	_ Date of Insp	ection: <u>Mar 29, 2016</u>
Contact Name: Christina Oropeza			Affiliation:	MANAGER
Phone No: (585) 482–3000 Alt. Phone I	No:		Email:	
Number of Occupants (total): Number of	Children:		_	
Ccupant Interviewed?	Owner Occ	upied?		Owner Interviewed?
Owner Name (if different):			Owner Phon	e:
Owner Mailing Address:				
Building Details				
Bldg Type (Res/Com/Ind/Mixed): COMMERCIAL/MIX	ED		Bldg Size (S	/M/L): LARGE
If Commercial or Industrial Facility, Select Operations:		If Residential Se	lect Structure	Туре:
Number of Floors: <u>3</u> Approx. Year Constructio		🔄 🖂 Buildi	ng Insulated?	Attached Garage?
Describe Overall Building 'Tightness' and Airflows(e.g., res	ults of smoke te	sts):		
N/A				
Foundation Description				
Foundation Type: NO BASEMENT/SLAB		Foundation Dept	th (bgs):	0 Unit: FEET
Foundation Floor Material: POURED CONCRETE		Foundation Floo	r Thickness:	6
Foundation Wall Material: CONCRETE BLOCK		Foundation Wall	Thickness:	Unit: INCHES
Floor penetrations? Describe Floor Penetrations:	utilities,	floor drain	S	
Wall penetrations? Describe Wall Penetrations:				
Basement is: Basement is:		Sump	os/Drains? W	/ater In Sump?:
Describe Foundation Condition (cracks, seepage, etc.) :				
Radon Mitigation System Installed?	VOC Mitigat	tion System Insta	lled?	Mitigation System On?
Heating/Cooling/Ventilation Systems				
Heating System:	eat Fuel Type:	GAS		X Central A/C Present?
Vented Appliances				
Water Heater Fuel Type: NONE		Clothes Dryer Fue	l Type:	
Water Htr Vent Location: NONE	[Oryer Vent Locati	on:	

Structure Sampling Questionnaire and Building Inventory

New York State Department of Environmental Conservation

PRODUCT INVENTORY

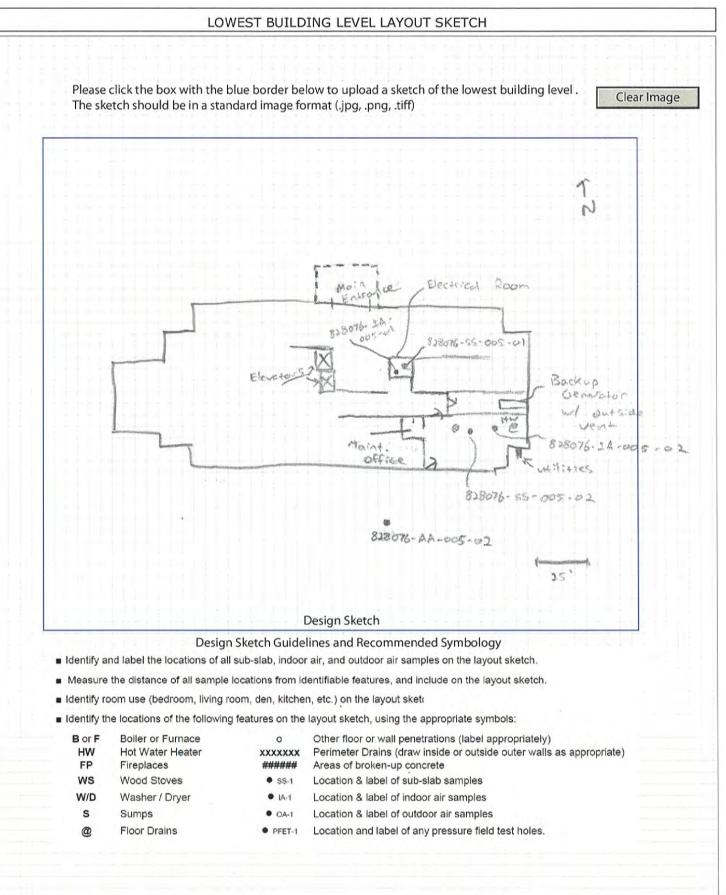
Building Nam	e: Brighton Manor - St	ructur	e 5 Bldg C	lode:	Date:	
Bldg Address	989 Blossom Rd				_ Apt/Suite No:	
Bldg City/Stat	e/Zip: Rochester NY, 14	1610				
Make and Mo	del of PID:			Date of C	Calibration:	
Location	Product Name/Description	Size (oz)	Condition *	Chemical Ingredi	ents PID Reading	COC Y/N?
	See pictures					
						1

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Product Inventory Complete?

Were there any elevated PID readings taken on site? No

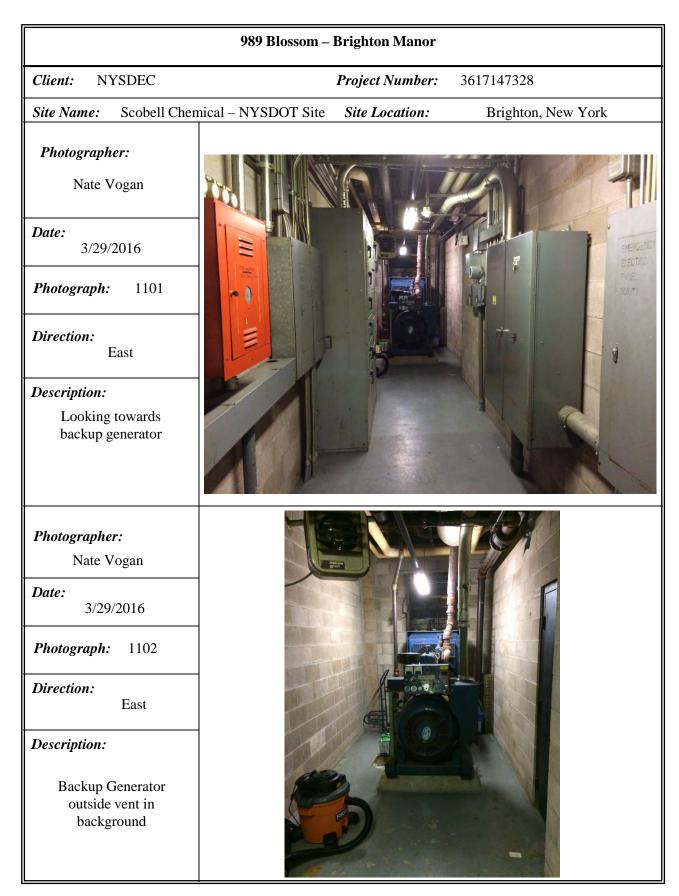


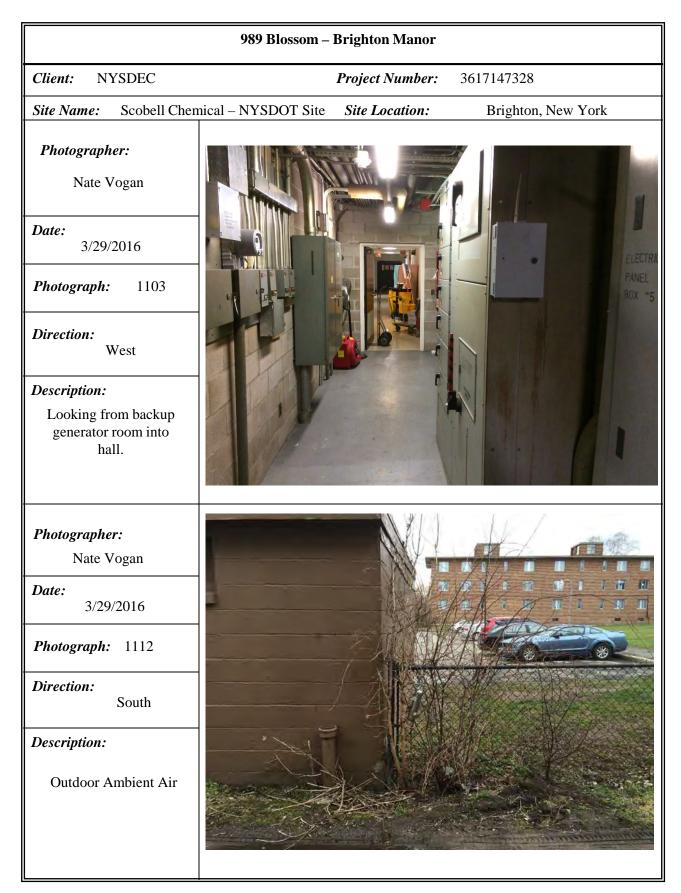
Structure Sampling Questionnaire and Building Inventory New York State Department of Environmental Conservation

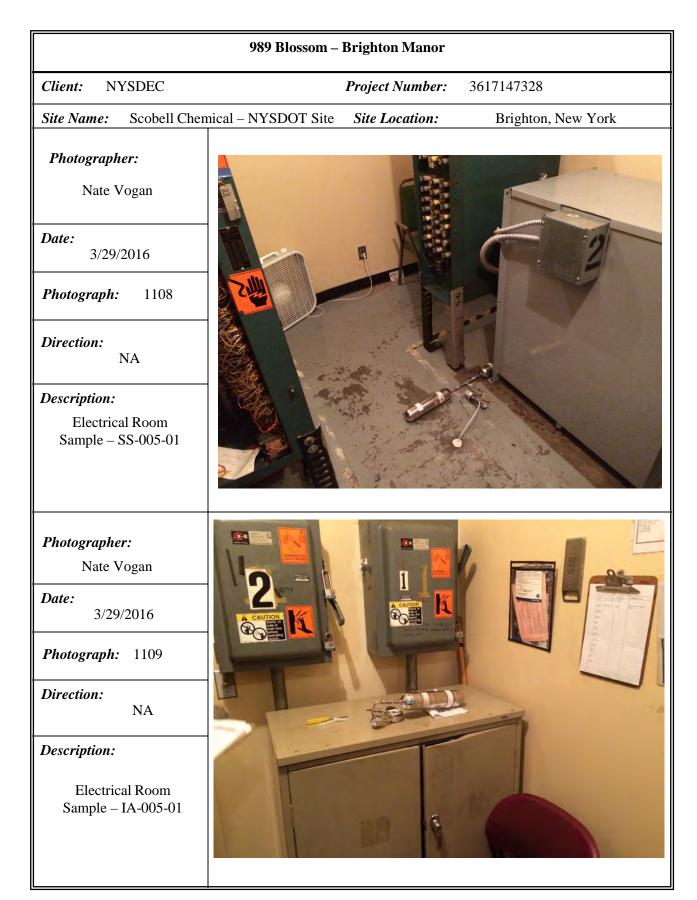
Site Name: Scobell Chemical Site Code: 828076 Operable Unit:
Building Code: Building Name:Brighton Manor - Structure 5
Address: 989 Blossom Rd Apt/Suite No:
City: Rochester State: NY Zip: 14610 County: Monroe
Factors Affecting Indoor Air Quailty
Frequency Basement/Lowest Level is Occupied?: FULL TIME Floor Material: TILE
☐ Inhabited?
Alternate Heat Source: Is there smoking in the building?
X Air Fresheners? Description/Location of Air Freshener:
Image: Cleaning Products Used Recently?: Description of Cleaning Products: general
Cosmetic Products Used Recently?: Description of Cosmetic Products: general
New Carpet or Furniture? Location of New Carpet/Furniture:
Recent Dry Cleaning? Location of Recently Dry Cleaned Fabrics:
Recent Painting/Staining? Location of New Painting:
Solvent or Chemical Odors? Describe Odors (if any):
Do Any Occupants Use Solvents At Work? If So, List Solvents Used:
🔀 Recent Pesticide/Rodenticide? Description of Last Use: rodent and bug, 1 week prior
Describe Any Household Activities (chemical use,/storage, unvented appliances, hobbies, etc.) That May Affect Indoor Air Quality:
Any Prior Testing For Radon? If So, When?:
Any Prior Testing For VOCs? If So, When?:
Sampling Conditions
Weather Conditions: MOSTLY CLOUDY Outdoor Temperature: 40 °F
Current Building Use: OTHER Barometric Pressure: 30.23 in(hg)
Product Inventory Complete? Yes 🛛 🖾 Building Questionnaire Completed?

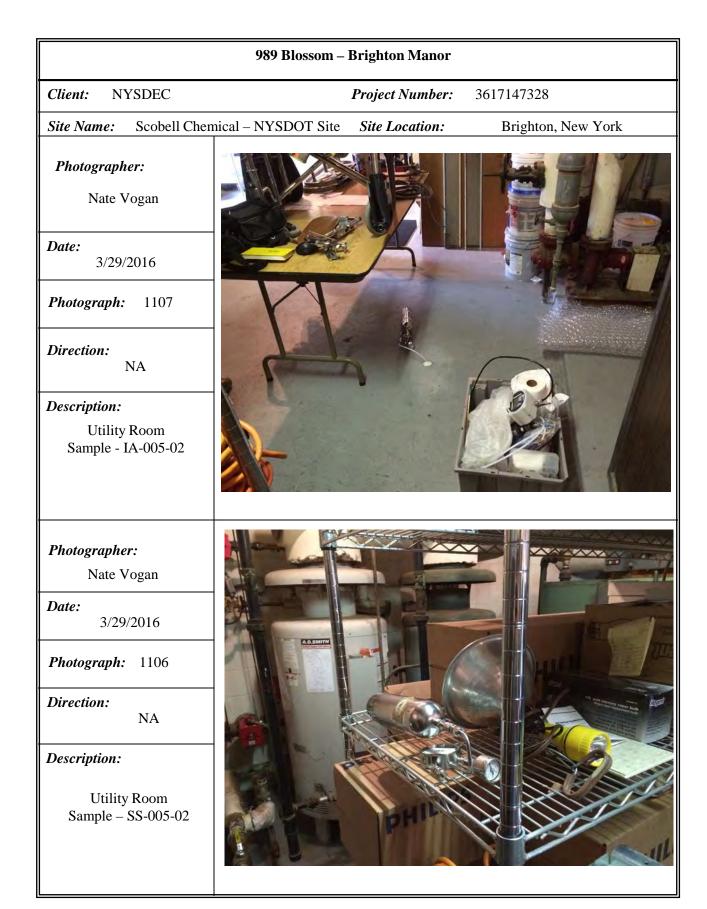
New York State Department of Environmental Conservation

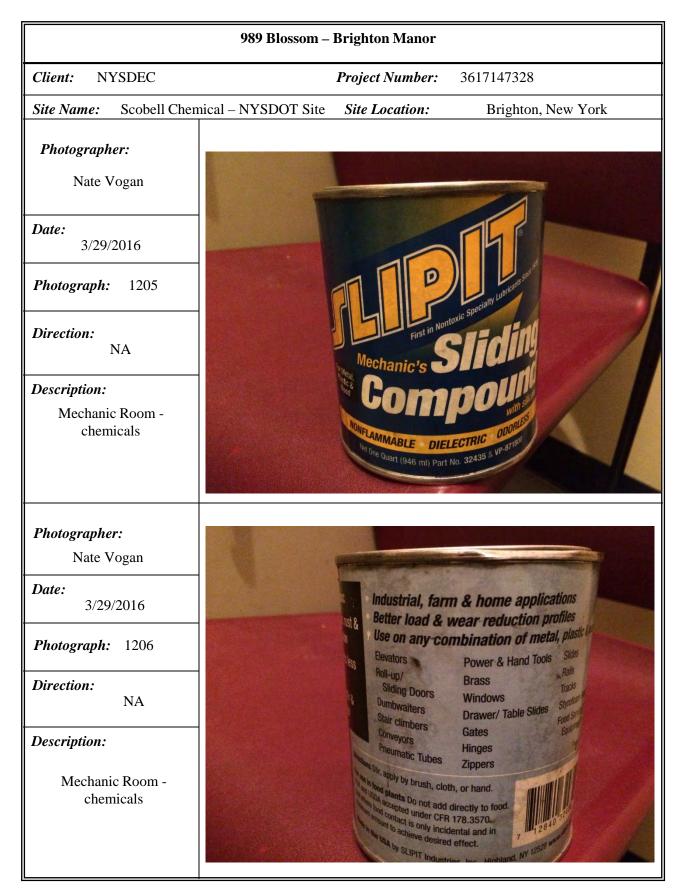
PROJECT NAME:	Scobell C	hemical March 2016	SVI	LOCATION ID:	Brighter M	DATE: 3/	28/16
PROJECT NO./TAS	361714732	CLIENT:	NYSDEC				
PROJECT LOCATIO	N:	Rochester, New York		SAMPLER NAM	IE: Nate Vo	ogan / John Luttinger	
WEATHER CONDI		Windy, She	wers 40	F SAMPLER SIGN	ATURE:	Mr	
WEATHER CONDI		400 - 415 04,	30.23", 1	CHECKED BY:	C.Style	DATE: 4/2	19/16
		- SUMMA		Record Information			
SUB-SLAB SOIL	VAPOR	BASEMENT IND	OOR AIR	FIRST FLOO	R AIR	AMBIENT AIR S	SAMPLE
SAMPLE	2	SAMPLI	E	SAMPL	E /	AMBIENT ARC	SAMILE
Flow Regulator Number:	382	Flow Regulator Number: +2	437	Flow Regulator Number:		Flow Regulator Number: 43.5	340
Flow Rate (mL/min):	246r	Flow Rate (mL/min):	241r	Flow Rate (mL/min):	V	Flow Rate (mL/min):	2440
Canister Serial Number:	550	Canister Serial Number:	243	Canister Serial Number		Canister Serial Number:	1185
Start Date/Time 3/28	16	Start Date/Time 3/28)	16 3:24	Start Date/Time		Start Date/Time 3/28/	
Start Pressure ("Hg):	30	Start Pressure ("Hg):	30	Start Pressure ("Hg):		Start Pressure ("Hg):	29
Stop Date/Time 3/29/1	62:42	Stop Date/Time 329	16	Stop Date/Time		Stop Date/Time 3/29/16	
Stop Pressure ("Hg):	1	Stop Pressure ("Hg):	8	Stop Pressure ("Hg):		Stop Pressure ("Hg):	9
Sample ID: 828076	-55-005-01	Sample ID: 928076-2	-01	Sample ID;		Sample ID: 8280.76	- AA - co
1.		Oth	ner Samplin	ng Information:			
rinished Basement, Crawi Space, Unfinished Basement	Machine	Story/Level:	1	Story/Level:	1	Direction from Building	South
Floor Slab Thickness:	6"	Room:	Machine	Room:		Distance from Building:	30'
Potential Vapor Entry Points:	HUAC	Potential Vapor Entry Points:	NVAC	Potential Vapor Entry Points:	\vee	Distance from Roadway:	100'
Floor Surface:	Concret	Floor Surface:	Generale	Floor Surface:		Ground Surface:	Det
Noticable Odor:	No	Noticable Odor:	No	Noticable Odor:		Noticable Odor;	No
PID Reading (ppb):	12.4 ppm	PID Reading (ppb):	375	PID Reading (ppb);		PID Reading (ppb):	2710
Intake Depth/Height:	12"	Intake Height:	3.5'	Intake Height:		Intake Height above Ground Surface:	4'
Helium Test Conducted? Breakthrough %:	22.5% 0%	Indoor Air Temp	~ 850 F	Indoor Air Temp		Intake tubing?	No
Breakthrough %: Comments/Location Ocplicate of	0% a Sketch: SJ- SI-		the second se	-010 Can 5 - Rg 3		fi ~ rejulator; some	pressure SURE 4.1

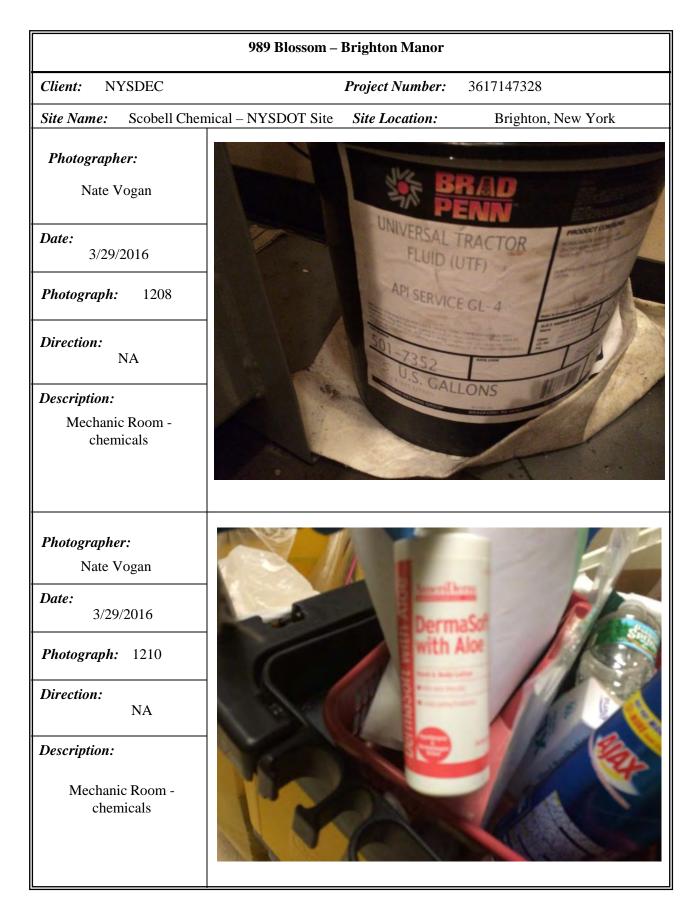

C:\Users\nathan.vogan\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\6MLFHUAQ\Figure 4 19 Indoor Air Sampling form.xls

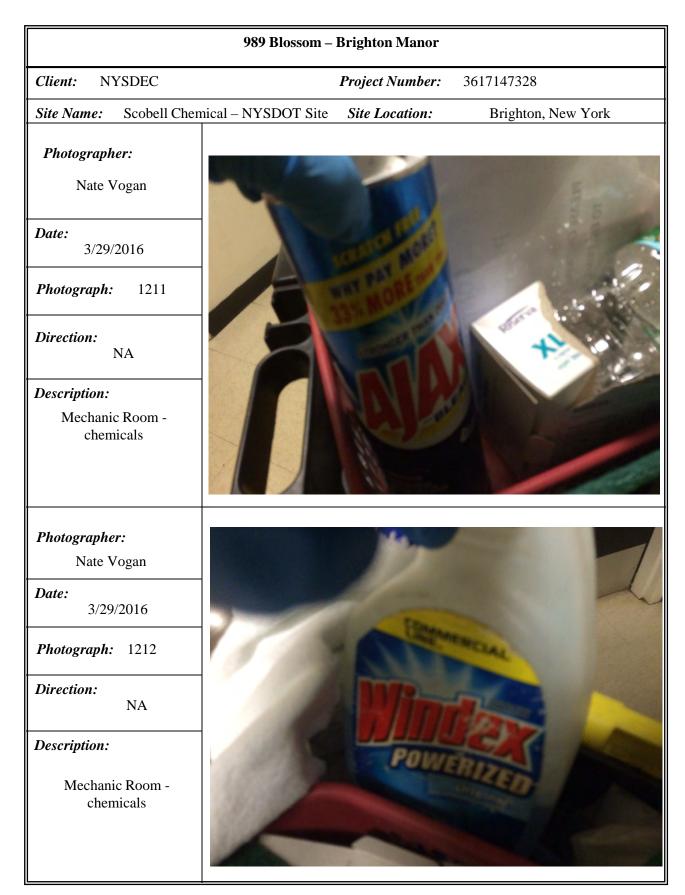

PROJECT NAME:	Scoball (Chemical March 2016	SVI	LOCATION ID	Brickley	Maron DATE: 3/2	116
				CLIENT:		2 6014 013	1.0
			SAMPLER NAM		agan / John Luttinger	,	
PROJECT LOCATIO		Kochester, New Tork	1/0	F SAMPLER SIGN	ATTIDE.		
WEATHER CONDI		Windy Shoe	3 40	CUECKED BY:	ATORE,	DATE	
WEATHER CONDI	TIONS (PM):					DATE:	
		SUMMA	A Canister 1	Record Information			
SUB-SLAB SOIL SAMPLI	All Contractions and the	BASEMENT IND SAMPLI		FIRST FLOO SAMPL		AMBIENT AIR S	SAMPLE
Flow Regulator Number:	346	Flow Regulator Number: + 2	434	Flow Regulator Number:	/	Flow Regulator Number:	1
Flow Rate (mL/min):	24 hr	Flow Rate (mL/min):	24 hr	Flow Rate (mL/min):	/	Flow Rate (mL/min):	/
Canister Serial Number:	1174	Canister Serial Number:	562	Canister Serial Number		Canister Serial Number:	
Start Date/Time 3/23/!		Start Date/Time 3 28	16 3:20	Start Date/Time		Start Date/Time	
Start Pressure ("Hg):	30+	Start Pressure ("Hg):	30	Start Pressure ("Hg):		Start Pressure ("Hg):	
Stop Date/Time 3 29	12:46	Stop Date/Time 3 29	145	Stop Date/Time		Stop Date/Time	
Stop Pressure ("Hg);	6	Stop Pressure ("Hg):	7	Stop Pressure ("Hg):		Stop Pressure ("Hg):	
Sample ID: \$28076	-55-005-	Sample ID: 828071-	1A-005 -02	Sample ID:	-	Sample ID: 318076-	A.A.005-1
		Otl	her Samplin	ng Information:		Sample ID: 328076- Cree of the "Bright Anr Reco	hon Monor'
Finished Basement, Crawi Space, Unfinished Basement	Berler Rovin	Story/Level:	1	Story/Level:	1	Direction from Building	
Floor Slab Thickness:	6"	Room:	Boiler room	Room:		Distance from Building:	
Potential Vapor Entry Points:	exteris	Potential Vapor Entry Points:	exterior doot	Potential Vapor Entry Points:		Distance from Roadway:	
Floor Surface:	Concelle	Floor Surface:	Concele	Floor Surface:	1	Ground Surface:	1
Noticable Odor:	No	Noticable Odor:	No	Noticable Odor:		Noticable Odor:	
PID Reading (ppb):	1975ppb	PID Reading (ppb):	Tppb	PID Reading (ppt):		PID Reading (ppb):	1
Intake Depth/Height:	8''	Intake Height:	4'	Intake Height		Intake Height above Ground Surface:	
Helium Test Conducted? Breakthrough %:	20,2%	Indoor Air Temp	70° F	Indoor Ajr Temp		Intake tubing?	
Comments/Locatio	n Sketch:	Brijklan Marco	r - 98°	BLavon R	4 - 5,	hudure 5	
		ГЕС				FIC	GURE 4


511 Congress Street, Portland, ME 04101

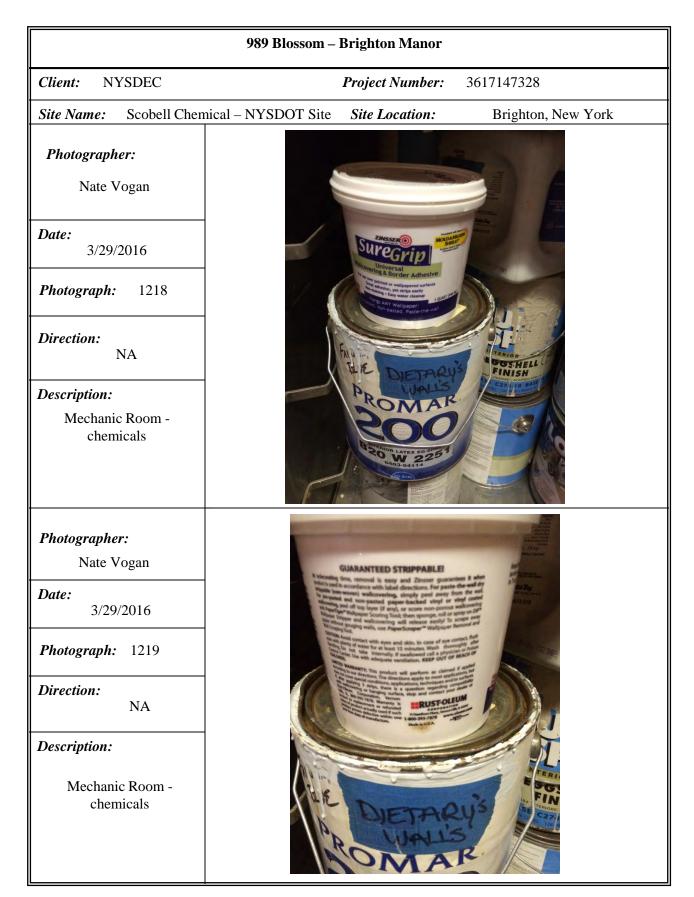

NYSDEC QUALITY ASSURANCE PROJECT PLAN

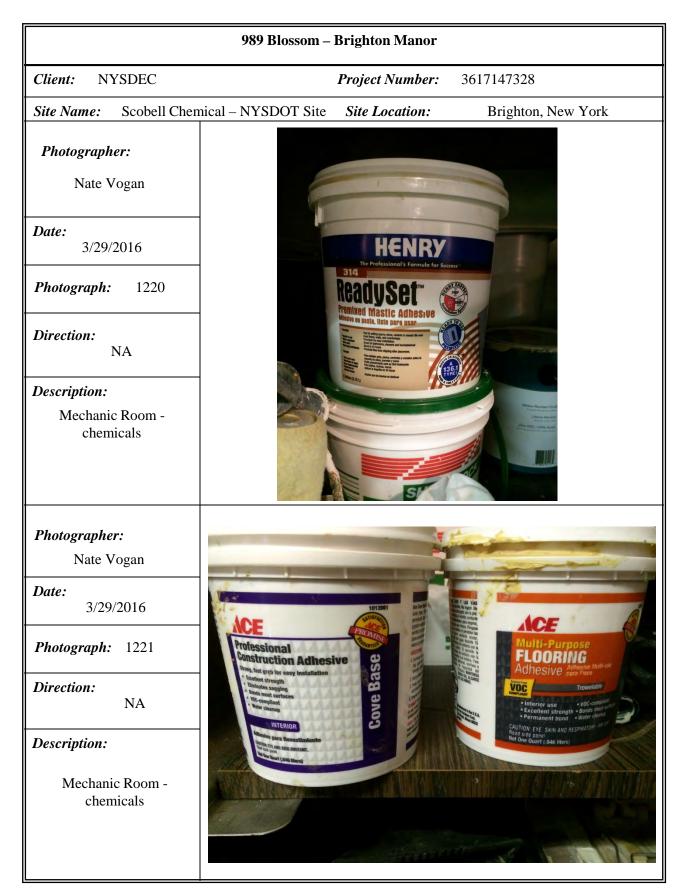

C:\Users\nathan.vogan\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\6MLFHUAQ\Figure 4 19 Indoor Air Sampling form.xls

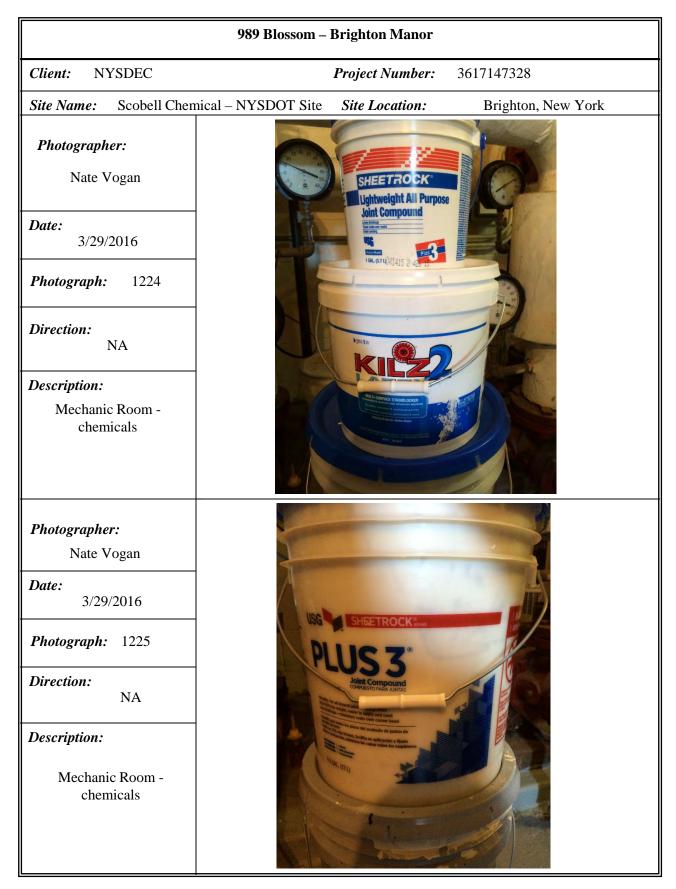


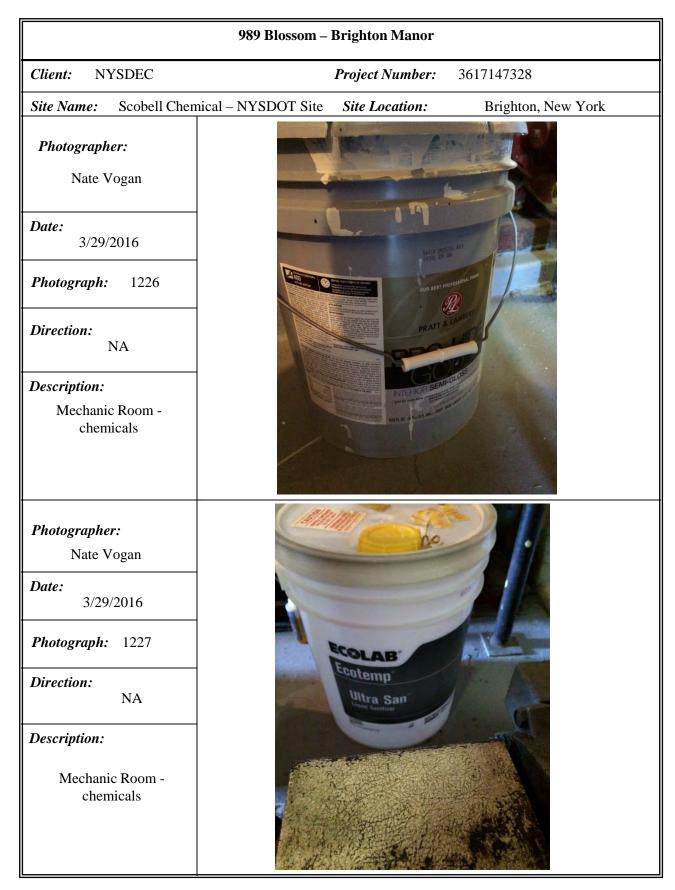


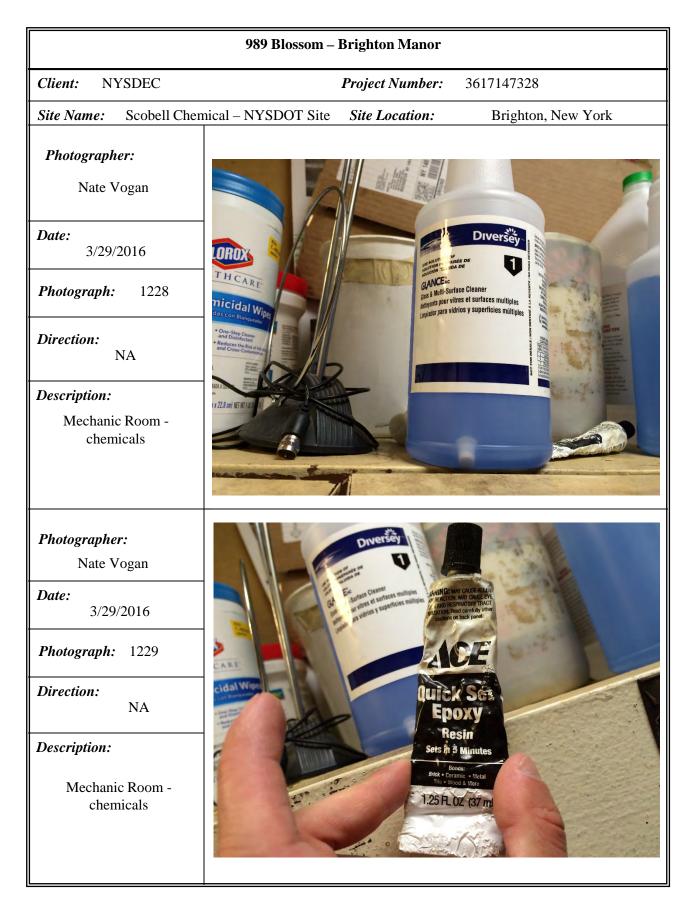


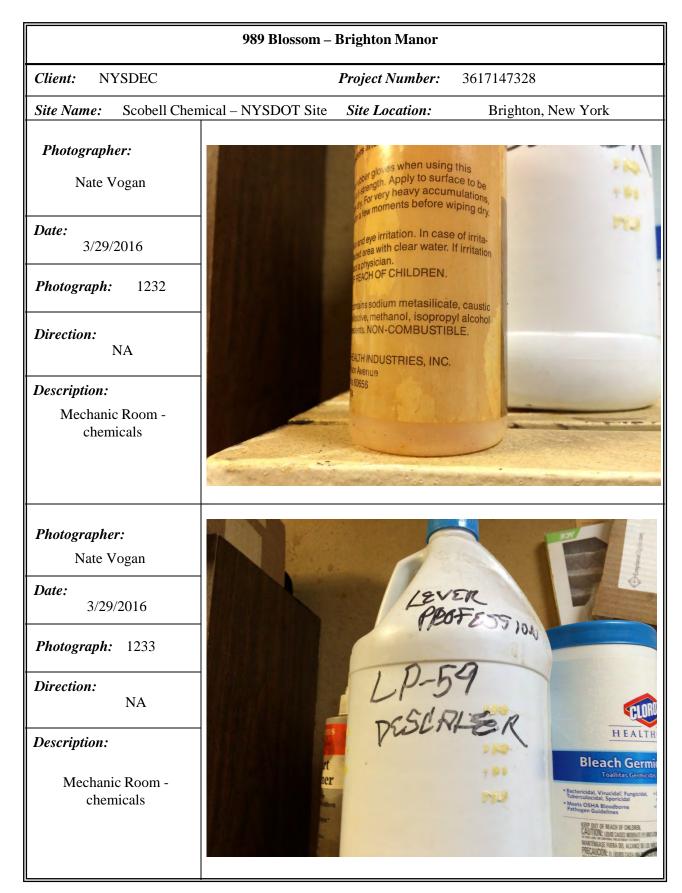












ATTACHMENT 2

LABORATORY ANALYTICAL RESULT FORMS

Date: 07-Apr-16

CLIENT: AMEC Environment & Infrastructure, Inc. Client Sample ID: 828076-SS-005-01 Lab Order: C1603083 **Tag Number: 550,382** Scobell Collection Date: 3/28/2016 **Project:** C1603083-001A Matrix: AIR Lab ID:

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		тс	0-15			Analyst: RJF
1,1,1-Trichloroethane	< 0.82 J	0.82		ug/m3	1	4/6/2016 4:55:00 AM
1,1,2,2-Tetrachloroethane	< 1.0 🕤	1.0		ug/m3	1	4/6/2016 4:55:00 AM
1,1,2-Trichloroethane	< 0.82 J	0.82		ug/m3	1	4/6/2016 4:55:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/6/2016 4:55:00 AM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	4/6/2016 4:55:00 AM
1,2,4-Trichlorobenzene	< 1.15	1.1		ug/m3	1	4/6/2016 4:55:00 AM
1,2,4-Trimethylbenzene	93	69		ug/m3	90	4/7/2016 1:01:00 AM
1,2-Dibromoethane	< 1.2 5	1.2		ug/m3	1	4/6/2016 4:55:00 AM
1,2-Dichlorobenzene	< 0.90 5	0.90		ug/m3	1	4/6/2016 4:55:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/6/2016 4:55:00 AM
1,2-Dichloropropane	< 0.69 5	0.69		ug/m3	1	4/6/2016 4:55:00 AM
1,3,5-Trimethylbenzene	53	6.9		ug/m3	9	4/7/2016 12:24:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/6/2016 4:55:00 AM
1,3-Dichlorobenzene	< 0.903	0.90		ug/m3	1	4/6/2016 4:55:00 AM
1,4-Dichlorobenzene	< 0.90J	0.90		ug/m3	1	4/6/2016 4:55:00 AM
1,4-Dioxane	< 1.15	1.1		ug/m3	1	4/6/2016 4:55:00 AM
2,2,4-trimethylpentane	< 0.70 5	0.70		ug/m3	1	4/6/2016 4:55:00 AM
4-ethyltoluene	15	6.9		ug/m3	9	4/7/2016 12:24:00 AM
Acetone	410	64		ug/m3	90	4/7/2016 1:01:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/6/2016 4:55:00 AM
Benzene	100	45		ug/m3	90	4/7/2016 1:01:00 AM
Benzyl chloride	< 0.86 5	0.86		ug/m3	1	4/6/2016 4:55:00 AM
Bromodichloromethane	< 1.0 J	1.0		ug/m3	1	4/6/2016 4:55:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	4/6/2016 4:55:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/6/2016 4:55:00 AM
Carbon disulfide	56	4.4		ug/m3	9	4/7/2016 12:24:00 AM
Carbon tetrachloride	< 0.94 J	0.94		ug/m3	1	4/6/2016 4:55:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/6/2016 4:55:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/6/2016 4:55:00 AM
Chloroform	< 0.73	0.73		ug/m3	1	4/6/2016 4:55:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	4/6/2016 4:55:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/6/2016 4:55:00 AM
cis-1,3-Dichloropropene	< 0.68 J	0.68		ug/m3	1	4/6/2016 4:55:00 AM
Cyclohexane	230	48		ug/m3	90	4/7/2016 1:01:00 AM
Dibromochloromethane	< 1.3 J	1.3		ug/m3	1	4/6/2016 4:55:00 AM
Ethyl acetate	2.15	0.90		ug/m3	1	4/6/2016 4:55:00 AM
Ethylbenzene	37	6.1		ug/m3	9	4/7/2016 12:24:00 AN
Freon 11	1.7	0.84		ug/m3	1	4/6/2016 4:55:00 AM
Freon 113	1.5	1.1		ug/m3	1	4/6/2016 4:55:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	4/6/2016 4:55:00 AM

Qualifiers: ** Reporting Limit

В

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Non-routine analyte. Quantitation estimated.

Results reported are not blank corrected .

E Value above quantitation range

Analyte detected at or below quantitation limits J ND Not Detected at the Reporting Limit

JN S Spike Recovery outside accepted recovery limits

Page 1 of 38

Date: 07-Apr-16

CLIENT:AMEC Environment & Infrastructure, Inc.Client Sample ID:828076-SS-005-01Lab Order:C1603083Tag Number:550,382Project:ScobellCollection Date:3/28/2016Lab ID:C1603083-001AMatrix:AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		тс	-15			Analyst: RJF
Freon 12	< 0.74	0.74		ug/m3	1	4/6/2016 4:55:00 AM
Heptane	340	57		ug/m3	90	4/7/2016 1:01:00 AM
Hexachloro-1,3-butadiene	< 1.6 J	1.6		ug/m3	1	4/6/2016 4:55:00 AM
Hexane	200	49		ug/m3	90	4/7/2016 1:01:00 AM
Isopropyl alcohol	505	3.4		ug/m3	9	4/7/2016 12:24:00 AM
m&p-Xylene	250	120		ug/m3	90	4/7/2016 1:01:00 AM
Methyl Butyl Ketone	< 1.25	1.2		ug/m3	1	4/6/2016 4:55:00 AM
Methyl Ethyl Ketone	< 0.88 J	0.88		ug/m3	1	4/6/2016 4:55:00 AM
Methyl Isobutyl Ketone	395	11		ug/m3	9	4/7/2016 12:24:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/6/2016 4:55:00 AM
Methylene chloride	2.6	0.52		ug/m3	1	4/6/2016 4:55:00 AM
o-Xylene	77 5	6.1		ug/m3	9	4/7/2016 12:24:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/6/2016 4:55:00 AM
Styrene	< 0.64 J	0.64		ug/m3	1	4/6/2016 4:55:00 AM
Tetrachloroethylene	76	9.5		ug/m3	9	4/7/2016 12:24:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/6/2016 4:55:00 AM
Toluene	240	53		ug/m3	90	4/7/2016 1:01:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/6/2016 4:55:00 AM
trans-1,3-Dichloropropene	< 0.68 ブ	0.68		ug/m3	1	4/6/2016 4:55:00 AM
Trichloroethene	150	75		ug/m3	90	4/7/2016 1:01:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/6/2016 4:55:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/6/2016 4:55:00 AM
Vinyl chloride	< 0.38	0.38		ug/m3	1	4/6/2016 4:55:00 AM

Qualifiers:

**

Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit Page 2 of 38

Date: 07-Apr-16

CLIENT: AMEC Environment & Infrastructure, Inc. Lab Order: C1603083 **Project:** Scobell Lab ID: C1603083-002A

Client Sample ID: 828076-SS-005-01D **Tag Number: 553,382** Collection Date: 3/28/2016 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
UG/M3 BY METHOD TO15		то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.825	0.82		ug/m3	1	4/6/2016 5:34:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	1	ug/m3	1	4/6/2016 5:34:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	1	ug/m3	1	4/6/2016 5:34:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/6/2016 5:34:00 AM
1,1-Dichloroethene	< 0.59	0.59	1	ug/m3	1	4/6/2016 5:34:00 AM
1,2,4-Trichlorobenzene	< 1.15	1.1	1	ug/m3	1	4/6/2016 5:34:00 AM
1,2,4-Trimethylbenzene	100	6.9	9	ug/m3	9	4/7/2016 1:39:00 AM
1,2-Dibromoethane	< 1.2	1.2	1	ug/m3	1	4/6/2016 5:34:00 AM
1,2-Dichlorobenzene	< 0.905	0.90	1	ug/m3	1	4/6/2016 5:34:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/6/2016 5:34:00 AM
1,2-Dichloropropane	< 0.695	0.69	3	ug/m3	1	4/6/2016 5:34:00 AM
1,3,5-Trimethylbenzene	56	6.9		ug/m3	9	4/7/2016 1:39:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/6/2016 5:34:00 AM
1,3-Dichlorobenzene	< 0.90 5	0.90	, i i i i i i i i i i i i i i i i i i i	ug/m3	1	4/6/2016 5:34:00 AM
1,4-Dichlorobenzene	< 0.90J	0.90	,	ug/m3	1	4/6/2016 5:34:00 AM
1,4-Dioxane	< 1.15	1.1		ug/m3	1	4/6/2016 5:34:00 AM
2,2,4-trimethylpentane	< 0.70	0.70	1	ug/m3	1	4/6/2016 5:34:00 AM
4-ethyltoluene	14	6.9		ug/m3	9	4/7/2016 1:39:00 AM
Acetone	480	64		ug/m3	90	4/7/2016 2:16:00 AM
Allyl chloride	< 0.47	0.47	,	ug/m3	1	4/6/2016 5:34:00 AM
Benzene	110	45	1	ug/m3	90	4/7/2016 2:16:00 AM
Benzyl chloride	< 0.86 J	0.86	, i	ug/m3	1	4/6/2016 5:34:00 AM
Bromodichloromethane	< 1.05	1.0		ug/m3	1	4/6/2016 5:34:00 AM
Bromoform	< 1.65	1.6	1	ug/m3	1	4/6/2016 5:34:00 AM
Bromomethane	< 0.58	0.58	3	ug/m3	1	4/6/2016 5:34:00 AM
Carbon disulfide	59	4.4		ug/m3	9	4/7/2016 1:39:00 AM
Carbon tetrachloride	< 0.94 J	0.94		ug/m3	1	4/6/2016 5:34:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/6/2016 5:34:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/6/2016 5:34:00 AM
Chloroform	< 0.73	0.73		ug/m3	1	4/6/2016 5:34:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	4/6/2016 5:34:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/6/2016 5:34:00 AM
cis-1,3-Dichloropropene	< 0.685	0.68		ug/m3	1	4/6/2016 5:34:00 AM
Cyclohexane	340	48		ug/m3	90	4/7/2016 2:16:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/6/2016 5:34:00 AM
Ethyl acetate	< 0.90	0.90		ug/m3	1	4/6/2016 5:34:00 AM
Ethylbenzene	38	6.1		ug/m3	9	4/7/2016 1:39:00 AM
Freon 11	1.5	0.84		ug/m3	1	4/6/2016 5:34:00 AM
Freon 113	1.4	1.1		ug/m3	1	4/6/2016 5:34:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	4/6/2016 5:34:00 AM

Qualifiers: ** В

Н

Results reported are not blank corrected •

E Value above quantitation range

J Analyte detected at or below quantitation limits ND Not Detected at the Reporting Limit

Non-routine analyte. Quantitation estimated. JN

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Page 3 of 38

4-21-16

Reporting Limit

Date: 07-Apr-16

CLIENT:AMEC Environment & Infrastructure, Inc.Lab Order:C1603083Project:ScobellLab ID:C1603083-002A

Client Sample ID: 828076-SS-005-01D Tag Number: 553,382 Collection Date: 3/28/2016 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJP
Freon 12	3.2 5	0.74		ug/m3	1	4/6/2016 5:34:00 AM
Heptane	360	57		ug/m3	90	4/7/2016 2:16:00 AM
Hexachloro-1,3-butadiene	< 1.6 J	1.6		ug/m3	1	4/6/2016 5:34:00 AM
Hexane	230	49		ug/m3	90	4/7/2016 2:16:00 AM
Isopropyl alcohol	< 0.37 J	0.37		ug/m3	1	4/6/2016 5:34:00 AM
m&p-Xylene	290	120		ug/m3	90	4/7/2016 2:16:00 AM
Methyl Butyl Ketone	< 1.2 J	1.2		ug/m3	1	4/6/2016 5:34:00 AM
Methyl Ethyl Ketone	180 5	80		ug/m3	90	4/7/2016 2:16:00 AM
Methyl Isobutyl Ketone	395	11		ug/m3	9	4/7/2016 1:39:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/6/2016 5:34:00 AM
Methylene chloride	2.5	0.52		ug/m3	1	4/6/2016 5:34:00 AM
o-Xylene	78 5	6.1		ug/m3	9	4/7/2016 1:39:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/6/2016 5:34:00 AM
Styrene	< 0.64	0.64		ug/m3	`1	4/6/2016 5:34:00 AM
Tetrachloroethylene	85	9.5		ug/m3	9	4/7/2016 1:39:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/6/2016 5:34:00 AM
Toluene	270	53		ug/m3	90	4/7/2016 2:16:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/6/2016 5:34:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/6/2016 5:34:00 AM
Trichloroethene	150	75		ug/m3	90	4/7/2016 2:16:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/6/2016 5:34:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/6/2016 5:34:00 AM
Vinyl chloride	< 0.38	0.38		ug/m3	1	4/6/2016 5:34:00 AM

Qualifiers:

**

Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit Page 4 of 38

42446

Date: 07-Apr-16

CLIENT: AMEC Environment & Infrastructure, Inc. C1603083 Lab Order: **Project:** Scobell Lab ID: C1603083-003A

Client Sample ID: 828076-IA-005-01 **Tag Number: 243,437** Collection Date: 3/28/2016 Matrix: AIR

Analyses	Result	**Limit	Qual Unit	s DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-	·15		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	3 1	4/5/2016 1:57:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	3 1	4/5/2016 1:57:00 PM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	3 1	4/5/2016 1:57:00 PM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	3 1	4/5/2016 1:57:00 PM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	3 1	4/5/2016 1:57:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	3 1	4/5/2016 1:57:00 PM
1,2,4-Trimethylbenzene	0.79	0.74	ug/m3	3 1	4/5/2016 1:57:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	3 1	4/5/2016 1:57:00 PM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	3 1	4/5/2016 1:57:00 PM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	3 1	4/5/2016 1:57:00 PM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	3 1	4/5/2016 1:57:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	3 1	4/5/2016 1:57:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	3 1	4/5/2016 1:57:00 PM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	3 1	4/5/2016 1:57:00 PM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	3 1	4/5/2016 1:57:00 PM
1,4-Dioxane	< 1.1 J	1.1	ug/m3	3 1	4/5/2016 1:57:00 PM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	3 1	4/5/2016 1:57:00 PM
4-ethyltoluene	< 0.74	0.74	ug/m3	3 1	4/5/2016 1:57:00 PM
Acetone	23	7.1	ug/m3	3 10	4/6/2016 12:04:00 PM
Allyl chloride	< 0.47	0.47	ug/m	3 . 1	4/5/2016 1:57:00 PM
Benzene	1.4	0.48	ug/m3	3 1	4/5/2016 1:57:00 PM
Benzyl chloride	< 0.86	0.86	ug/m3	3 1	4/5/2016 1:57:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	3 1	4/5/2016 1:57:00 PM
Bromoform	< 1.6	1.6	ug/m	3 1	4/5/2016 1:57:00 PM
Bromomethane	< 0.58	0.58	ug/m3	3 1	4/5/2016 1:57:00 PM
Carbon disulfide	. 1.0	0.47	ug/m:	3 1	4/5/2016 1:57:00 PM
Carbon tetrachloride	0.94	0.25	ug/m3	3 1	4/5/2016 1:57:00 PM
Chlorobenzene	< 0.69	0.69	ug/m3	3 1	4/5/2016 1:57:00 PM
Chloroethane	< 0.40	0.40	ug/m	3 1	4/5/2016 1:57:00 PM
Chloroform	7.2	0.73	ug/m	3 1	4/5/2016 1:57:00 PM
Chloromethane	2.0	0.31	ug/m3	3 1	4/5/2016 1:57:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m	3 1	4/5/2016 1:57:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68	.ug/m	3 1	4/5/2016 1:57:00 PM
Cyclohexane	< 0.52	0.52	ug/m	3 1	4/5/2016 1:57:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m		4/5/2016 1:57:00 PM
Ethyl acetate	0.58	. 0.90	J ug/m	3 1	4/5/2016 1:57:00 PM
Ethylbenzene	< 0.65	0.65	ug/m		4/5/2016 1:57:00 PM
Freon 11	2.5	0.84	ug/m	3 1	4/5/2016 1:57:00 PM
Freon 113	1.1 -	1.1	J ug/m		4/5/2016 1:57:00 PM
Freon 114	< 1.0	1.0	ug/m	3 1	4/5/2016 1:57:00 PM

Qualifiers: **

Н

Reporting Limit В Analyte detected in the associated Method Blank

Results reported are not blank corrected .

Е Value above quantitation range

ND

Analyte detected at or below quantitation limits J Not Detected at the Reporting Limit

JN Non-routine analyte. Quantitation estimated.

 \mathbf{S} Spike Recovery outside accepted recovery limits

Holding times for preparation or analysis exceeded

Page 5 of 38

1-204

Date: 07-Apr-16

CLIENT:AMEC Environment & Infrastructure, Inc.Lab Order:C1603083Project:ScobellLab ID:C1603083-003A

Client Sample ID: 828076-IA-005-01 Tag Number: 243,437 Collection Date: 3/28/2016 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJF
Freon 12	5.1	0.74		ug/m3	1	4/5/2016 1:57:00 PM
Heptane	< 0.61	0.61		ug/m3	1	4/5/2016 1:57:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/5/2016 1:57:00 PM
Hexane	< 0.53	0.53		ug/m3	1	4/5/2016 1:57:00 PM
Isopropyl alcohol	48	3.7		ug/m3	10	4/6/2016 12:04:00 PM
m&p-Xylene	0.87	1.3	J	ug/m3	1	4/5/2016 1:57:00 PM
Methyl Butyl Ketone	< 1.2 .1	1.2		ug/m3	1	4/5/2016 1:57:00 PM
Methyl Ethyl Ketone	4.7	0.88		ug/m3	1	4/5/2016 1:57:00 PM
Methyl Isobutyl Ketone	< 1.2 5	1.2		ug/m3	1	4/5/2016 1:57:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/5/2016 1:57:00 PM
Methylene chloride	2.8	0.52		ug/m3	1	4/5/2016 1:57:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/5/2016 1:57:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/5/2016 1:57:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/5/2016 1:57:00 PM
Tetrachloroethylene	3.4	1.0		ug/m3	1	4/5/2016 1:57:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/5/2016 1:57:00 PM
Toluene	1.1	0.57		ug/m3	1	4/5/2016 1:57:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/5/2016 1:57:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/5/2016 1:57:00 PM
Trichloroethene	< 0.21	0.21		ug/m3	1	4/5/2016 1:57:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/5/2016 1:57:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/5/2016 1:57:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/5/2016 1:57:00 PM

Qualifiers:

**

Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 6 of 38

W09 4-21-16

1-12-1-12-12-12

Date: 07-Apr-16

DE

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-SS-005-02	
Lab Order:	C1603083	Tag Number:	1174,346	
Project:	Scobell	Collection Date:	3/28/2016	
Lab ID:	C1603083-004A	Matrix:	AIR	

**T COLL TI C

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82 🗲	0.82		ug/m3	1	4/6/2016 6:13:00 AM
1,1,2,2-Tetrachloroethane	< 1.0J	1.0		ug/m3	1	4/6/2016 6:13:00 AM
1,1,2-Trichloroethane	< 0.825	0.82		ug/m3	1	4/6/2016 6:13:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/6/2016 6:13:00 AM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	4/6/2016 6:13:00 AM
1,2,4-Trichlorobenzene	< 1.15	1.1		ug/m3	1	4/6/2016 6:13:00 AM
1,2,4-Trimethylbenzene	23	7.4		ug/m3	10	4/7/2016 2:53:00 AM
1,2-Dibromoethane	< 1.23	1.2		ug/m3	1	4/6/2016 6:13:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/6/2016 6:13:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/6/2016 6:13:00 AM
1,2-Dichloropropane	< 0.695	0.69		ug/m3	1	4/6/2016 6:13:00 AM
1,3,5-Trimethylbenzene	10	7.4		ug/m3	10	4/7/2016 2:53:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/6/2016 6:13:00 AM
1,3-Dichlorobenzene	< 0.905	0.90		ug/m3	1	4/6/2016 6:13:00 AM
1,4-Dichlorobenzene	< 0.905	0.90		ug/m3	1	4/6/2016 6:13:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/6/2016 6:13:00 AM
2,2,4-trimethylpentane	< 0.70 5	0.70		ug/m3	1	4/6/2016 6:13:00 AM
4-ethyltoluene	3.15	0.74		ug/m3	1	4/6/2016 6:13:00 AM
Acetone	80	28		ug/m3	40	4/7/2016 3:29:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/6/2016 6:13:00 AM
Benzene	8.6	4.8		ug/m3	10	4/7/2016 2:53:00 AM
Benzyl chloride	< 0.86 Ĵ	0.86		ug/m3	1	4/6/2016 6:13:00 AM
Bromodichloromethane	< 1.0 5	1.0		ug/m3	1	4/6/2016 6:13:00 AM
Bromoform	< 1.6J	1.6		ug/m3	1	4/6/2016 6:13:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/6/2016 6:13:00 AM
Carbon disulfide	8.4	4.7		ug/m3	10	4/7/2016 2:53:00 AM
Carbon tetrachloride	< 0.94 J	0.94		ug/m3	1	4/6/2016 6:13:00 AM
Chlorobenzene	< 0.695	0.69		ug/m3	1	4/6/2016 6:13:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/6/2016 6:13:00 AM
Chloroform	1.5	0.73		ug/m3	1	4/6/2016 6:13:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	4/6/2016 6:13:00 AM
cis-1,2-Dichloroethene	0.63	0.59		ug/m3	1	4/6/2016 6:13:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/6/2016 6:13:00 AM
Cyclohexane	23	5.2		ug/m3	10	4/7/2016 2:53:00 AM
Dibromochloromethane	< 1.3 J	1.3		ug/m3	1	4/6/2016 6:13:00 AM
Ethyl acetate	1.5	0.90		ug/m3	1	4/6/2016 6:13:00 AM
Ethylbenzene	3.61	0.65		ug/m3	1	4/6/2016 6:13:00 AM
Freon 11	1.6	0.84		ug/m3	1	4/6/2016 6:13:00 AM
Freon 113	0.77	1.1	J	ug/m3	1	4/6/2016 6:13:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	4/6/2016 6:13:00 AM

** Qualifiers:

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected .

Е Value above quantitation range

ND

Analyte detected at or below quantitation limits J

Not Detected at the Reporting Limit

Page 7 of 38

Reporting Limit

⁴⁻²¹⁻¹⁶

4.000.000.000

Date: 07-Apr-16

DE

.

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-SS-005-02
Lab Order:	C1603083	Tag Number:	1174,346
Project:	Scobell	Collection Date:	3/28/2016
Lab ID:	C1603083-004A	Matrix:	AIR

++T tott Oral Hatte

Derrile

Analyses	Result	**Limit	Qual Ur	nits	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJF
Freon 12	13	7.4	ug	/m3	10	4/7/2016 2:53:00 AM
Heptane	28	6.1	ug	/m3	10	4/7/2016 2:53:00 AM
Hexachloro-1,3-butadiene	< 1.6 J	1.6	ug	/m3	1	4/6/2016 6:13:00 AM
Hexane	18	5.3	ug	/m3	10	4/7/2016 2:53:00 AM
Isopropyl alcohol	< 0.37	0.37	ug	/m3	1	4/6/2016 6:13:00 AM
m&p-Xylene	28	13	ug	/m3	10	4/7/2016 2:53:00 AM
Methyl Butyl Ketone	< 1.2 J	1.2	ug	/m3	1	4/6/2016 6:13:00 AM
Methyl Ethyl Ketone	11	8.8	ug	/m3	10	4/7/2016 2:53:00 AM
Methyl Isobutyl Ketone	1.85	1.2	ug	/m3	1	4/6/2016 6:13:00 AM
Methyl tert-butyl ether	< 0.54	0.54	ug	/m3	1	4/6/2016 6:13:00 AM
Methylene chloride	2.1	0.52	ug	/m3	1	4/6/2016 6:13:00 AM
o-Xylene	8.5J	0.65	ug	/m3	1	4/6/2016 6:13:00 AM
Propylene	< 0.26	0.26	ug	/m3	1	4/6/2016 6:13:00 AM
Styrene	< 0.64 J	0.64	ug	/m3	1	4/6/2016 6:13:00 AM
Tetrachloroethylene	30	10	ug	/m3	10	4/7/2016 2:53:00 AM
Tetrahydrofuran	< 0.44	0.44	ug	/m3	1	4/6/2016 6:13:00 AM
Toluene	18	5.7	ug	/m3	10	4/7/2016 2:53:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug	/m3	1	4/6/2016 6:13:00 AM
trans-1,3-Dichloropropene	< 0.68 J	0.68	ug	/m3	1	4/6/2016 6:13:00 AM
Trichloroethene	140	32	ug	/m3	40	4/7/2016 3:29:00 AM
Vinyl acetate	< 0.53	0.53	ug	/m3	1	4/6/2016 6:13:00 AM
Vinyl Bromide	< 0.66	0.66	ug	/m3	1	4/6/2016 6:13:00 AM
Vinyl chloride	< 0.38	0.38	ug	/m3	1	4/6/2016 6:13:00 AM

Qualifiers:

**

Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 8 of 38

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-IA-005-02
Lab Order:	C1603083	Tag Number:	562,434
Project:	Scobell	Collection Date:	3/28/2016
Lab ID:	C1603083-005A	Matrix:	AIR
Analyses	Result **Lin	nit Qual Units	DF Date Analyzed

1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/5/2016 2:36:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/5/2016 2:36:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/5/2016 2:36:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/5/2016 2:36:00 PM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	4/5/2016 2:36:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/5/2016 2:36:00 PM
1,2,4-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/5/2016 2:36:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/5/2016 2:36:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/5/2016 2:36:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/5/2016 2:36:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1 ·	4/5/2016 2:36:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/5/2016 2:36:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/5/2016 2:36:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/5/2016 2:36:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/5/2016 2:36:00 PM
1,4-Dioxane	< 1.1 5	1.1		ug/m3	1	4/5/2016 2:36:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/5/2016 2:36:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	[.] 1	4/5/2016 2:36:00 PM
Acetone	16	3.6		ug/m3	5	4/6/2016 12:41:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/5/2016 2:36:00 PM
Benzene	0.73	0.48		ug/m3	1	4/5/2016 2:36:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/5/2016 2:36:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/5/2016 2:36:00 PM
Bromoform	< 1.6	1.6		ug/m3	. 1	4/5/2016 2:36:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/5/2016 2:36:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/5/2016 2:36:00 PM
Carbon tetrachloride	0.94	0.25		ug/m3	1	4/5/2016 2:36:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/5/2016 2:36:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/5/2016 2:36:00 PM
Chloroform	0.68	0.73	J	ug/m3	1	4/5/2016 2:36:00 PM
Chloromethane	1.8	0.31		ug/m3	1	4/5/2016 2:36:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/5/2016 2:36:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/5/2016 2:36:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/5/2016 2:36:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/5/2016 2:36:00 PM
Ethyl acetate	< 0.90	0.90		ug/m3	1	4/5/2016 2:36:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/5/2016 2:36:00 PM
Freon 11	2.4	0.84		ug/m3	1	4/5/2016 2:36:00 PM
Freon 113	1.1	1.1	J	ug/m3	1	4/5/2016 2:36:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	4/5/2016 2:36:00 PM

Qualifiers: **

Reporting Limit

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ЛN

Results reported are not blank corrected .

Е Value above quantitation range

J Analyte detected at or below quantitation limits ND Not Detected at the Reporting Limit

Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits Page 9 of 38

way your

Date: 07-Apr-16

CLIENT:AMEC Environment & Infrastructure, Inc.Lab Order:C1603083Project:ScobellLab ID:C1603083-005A

Client Sample ID: 828076-IA-005-02 Tag Number: 562,434 Collection Date: 3/28/2016 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15		-	Analyst: RJF
Freon 12	4.0	0.74		ug/m3	1	4/5/2016 2:36:00 PM
Heptane	< 0.61	0.61		ug/m3	1	4/5/2016 2:36:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/5/2016 2:36:00 PM
Hexane	0.63	0.53		ug/m3	1	4/5/2016 2:36:00 PM
Isopropyl alcohol	5.0	0.37		ug/m3	1	4/5/2016 2:36:00 PM
m&p-Xylene	0.48	1.3	J	ug/m3	1	4/5/2016 2:36:00 PM
Methyl Butyl Ketone	< 1.2 J	1.2		ug/m3	1	4/5/2016 2:36:00 PM
Methyl Ethyl Ketone	1.1	0.88		ug/m3	1	4/5/2016 2:36:00 PM
Methyl Isobutyl Ketone	< 1.25	1.2		ug/m3	1	4/5/2016 2:36:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/5/2016 2:36:00 PM
Methylene chloride	3.0	0.52		ug/m3	1	4/5/2016 2:36:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/5/2016 2:36:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/5/2016 2:36:00 PM
Styrene	< 0.64	0.64		ug/m3	[.] 1	4/5/2016 2:36:00 PM
Tetrachloroethylene	< 1.0	1,0		ug/m3	1	4/5/2016 2:36:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/5/2016 2:36:00 PM
Toluene	0.57	0.57		ug/m3	1	4/5/2016 2:36:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/5/2016 2:36:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/5/2016 2:36:00 PM
Trichloroethene	< 0.21	0.21		ug/m3	1	4/5/2016 2:36:00 PM
Vinyl acetate	< 0.53	0.53		· ug/m3	1	4/5/2016 2:36:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/5/2016 2:36:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/5/2016 2:36:00 PM

Qualifiers:

**

Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

ND

J Analyte detected at or below quantitation limits

Not Detected at the Reporting Limit Page 10

Page 10 of 38

Was 4-21-16

Date: 07-Apr-16

CLIENT:	AMEC Environment	& Infrastructu	re, Inc.	C	lient Sample II	D: 82807	6-AA-005-02
Lab Order:	C1603083				Tag Numbe	r: 1185,	340
Project:	Scobell				Collection Dat	•	
Lab ID:	C1603083-006A					K: AIR	
Analyses		Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		тс	9-15			Analyst: RJP
1,1,1-Trichloroe	ethane	< 0.82	0.82		ug/m3	1	4/5/2016 8:27:00 PM
1,1,2,2-Tetrach	loroethane	< 1.0	1.0		ug/m3	1	4/5/2016 8:27:00 PM
1,1,2-Trichloroe	ethane	< 0.82	0.82		ug/m3	1	4/5/2016 8:27:00 PM
1,1-Dichloroeth	ane	< 0.61	0.61		ug/m3	1	4/5/2016 8:27:00 PM
1,1-Dichloroeth	ene	< 0.59	0.59		ug/m3	1	4/5/2016 8:27:00 PM
1,2,4-Trichlorob	penzene	< 1.1	1.1		ug/m3	1	4/5/2016 8:27:00 PM
1,2,4-Trimethyil	benzene	< 0.74	0.74		ug/m3	1	4/5/2016 8:27:00 PM
1,2-Dibromoeth	ane	< 1.2	1.2		ug/m3	1	4/5/2016 8:27:00 PM
1,2-Dichlorober	nzene	< 0.90	0.90		ug/m3	1	4/5/2016 8:27:00 PM
1,2-Dichloroeth	ane	< 0.61	0.61		ug/m3	1	4/5/2016 8:27:00 PM
1,2-Dichloropro		< 0.69	0.69		ug/m3	1	4/5/2016 8:27:00 PM
1,3,5-Trimethyll		< 0.74	0.74		ug/m3	1	4/5/2016 8:27:00 PM
1,3-butadiene		< 0.33	0.33		ug/m3	1	4/5/2016 8:27:00 PM
, 1,3-Dichlorober	nzene	< 0.90	0.90		ug/m3	1	4/5/2016 8:27:00 PM
1,4-Dichlorober		< 0.90	0.90		ug/m3	1	4/5/2016 8:27:00 PM
1,4-Dioxane		< 1.10			ug/m3	1	4/5/2016 8:27:00 PM
2,2,4-trimethylp	entane	< 0.70	0.70		ug/m3	1	4/5/2016 8:27:00 PM
4-ethyltoluene		< 0.74	0.74		ug/m3	1	4/5/2016 8:27:00 PM
Acetone		17	3.6		ug/m3	5	4/6/2016 1:18:00 PM
Allyl chloride		< 0.47	0.47		ug/m3	1	4/5/2016 8:27:00 PM
Benzene		0.54	0.48		ug/m3	1	4/5/2016 8:27:00 PM
Benzyl chloride		< 0.86	0.86		ug/m3	1	4/5/2016 8:27:00 PM
Bromodichloror		< 1.0	1.0		ug/m3	1	4/5/2016 8:27:00 PM
Bromoform	notiono	< 1.6	1.6		ug/m3	1	4/5/2016 8:27:00 PM
Bromomethane	•	< 0.58	0.58		ug/m3	1	4/5/2016 8:27:00 PM
Carbon disulfid		0.37	0.00	J	ug/m3	1	4/5/2016 8:27:00 PM
Carbon tetrach		1.0	0.25	5	ug/m3	1	4/5/2016 8:27:00 PM
Chlorobenzene		< 0.69	0.69		ug/m3	1	
Chloroethane		< 0.09 < 0.40	0.69				4/5/2016 8:27:00 PM
Chloroform		< 0.40 < 0.73	0.40		ug/m3 ug/m3	1 1	4/5/2016 8:27:00 PM 4/5/2016 8:27:00 PM
Chloromethane		< 0.73 1.8	0.73		-		
cis-1,2-Dichloro		< 0.59	0.51		ug/m3 ug/m3	1.	4/5/2016 8:27:00 PM
cis-1,2-Dichlord		< 0.59 < 0.68	0.59		•	1	4/5/2016 8:27:00 PM
Cyclohexane	highene	< 0.68	0.68		ug/m3	1	4/5/2016 8:27:00 PM
Dibromochloror	nethana	< 0.52 < 1.3	1.3		ug/m3	1	4/5/2016 8:27:00 PM
	neulane				ug/m3	1	4/5/2016 8:27:00 PM
Ethyl acetate		< 0.90	0.90		ug/m3	1	4/5/2016 8:27:00 PM
Ethylbenzene		< 0.65	0.65		ug/m3	1	4/5/2016 8:27:00 PM
Freon 11		2.3	0.84		ug/m3	1	4/5/2016 8:27:00 PM
Freon 113		1.0	1.1	J	ug/m3	1	4/5/2016 8:27:00 PM
Freon 114		< 1.0	1.0		ug/m3	1	4/5/2016 8:27:00 PM

Qualifiers: **

В

Η

Results reported are not blank corrected

E Value above quantitation range

.

J Analyte detected at or below quantitation limits ND Not Detected at the Reporting Limit

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Page 11 of 38

W03 4-21-16

^{**} Reporting Limit

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-AA-005-02
Lab Order:	C1603083	Tag Number:	1185,340
Project:	Scobell	Collection Date:	3/28/2016
Lab ID:	C1603083-006A	Matrix:	AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
Freon 12	4.0	0.74		ug/m3	1	4/5/2016 8:27:00 PM
Heptane	< 0.61	0.61		ug/m3	1	4/5/2016 8:27:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/5/2016 8:27:00 PM
Hexane	< 0.53	0.53		ug/m3	1	4/5/2016 8:27:00 PM
Isopropyl alcohol	2.4	0.37		ug/m3	1	4/5/2016 8:27:00 PM
m&p-Xylene	0.74	1.3	J	ug/m3	1	4/5/2016 8:27:00 PM
Methyl Butyl Ketone	< 1.2 5	1.2		ug/m3	1	4/5/2016 8:27:00 PM
Methyl Ethyl Ketone	0.94	0.88		ug/m3	1	4/5/2016 8:27:00 PM
Methyl Isobutyl Ketone	< 1.2 5	1.2		ug/m3	1	4/5/2016 8:27:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/5/2016 8:27:00 PM
Methylene chloride	6.4	0.52		ug/m3	1	4/5/2016 8:27:00 PM
o-Xylene	< 0.65	0.65		ug/m3	· 1	4/5/2016 8:27:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/5/2016 8:27:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/5/2016 8:27:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/5/2016 8:27:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/5/2016 8:27:00 PM
Toluene	0.60	0.57		ug/m3	1	4/5/2016 8:27:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	. 1	4/5/2016 8:27:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/5/2016 8:27:00 PM
Trichloroethene	< 0.21	0.21		ug/m3	1	4/5/2016 8:27:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/5/2016 8:27:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/5/2016 8:27:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/5/2016 8:27:00 PM

Qualifiers:

**

Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit Page 12 of 38

W05 4-21-16

[.] Results reported are not blank corrected

Date: 07-Apr-16

CLIENT: AMEC Environment & Infrastructure, Inc. Client Sample ID: 828076-IA-001-DOGGY DA C Lab Order: C1603083 **Tag Number: 569,276 Project:** Scobell Collection Date: 3/28/2016 Matrix: AIR Lab ID: C1603083-007A Analyses Result **Limit Qual Units DF **Date Analyzed**

	Kesun		Quar	Units	Dr	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15	-		Analyst: RJF
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/5/2016 9:06:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/5/2016 9:06:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/5/2016 9:06:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/5/2016 9:06:00 PM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	4/5/2016 9:06:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/5/2016 9:06:00 PM
1,2,4-Trimethylbenzene	0.69	0.74	J	ug/m3	1	4/5/2016 9:06:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/5/2016 9:06:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/5/2016 9:06:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/5/2016 9:06:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	· 1	4/5/2016 9:06:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/5/2016 9:06:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1.	4/5/2016 9:06:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/5/2016 9:06:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/5/2016 9:06:00 PM
1,4-Dioxane	< 1.15	1.1		ug/m3	· 1	4/5/2016 9:06:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/5/2016 9:06:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/5/2016 9:06:00 PM
Acetone	38	7.1		ug/m3	10	4/6/2016 1:55:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/5/2016 9:06:00 PM
Benzene	0.51	0.48		ug/m3	1.	4/5/2016 9:06:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/5/2016 9:06:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/5/2016 9:06:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	4/5/2016 9:06:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/5/2016 9:06:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/5/2016 9:06:00 PM
Carbon tetrachloride	0.82	0.25		ug/m3	1	4/5/2016 9:06:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/5/2016 9:06:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/5/2016 9:06:00 PM
Chloroform	0.68	0.73	J	ug/m3	1	4/5/2016 9:06:00 PM
Chloromethane	1.7	0.31		ug/m3	1	4/5/2016 9:06:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/5/2016 9:06:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/5/2016 9:06:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/5/2016 9:06:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1 .	4/5/2016 9:06:00 PM
Ethyl acetate	< 0.90	0.90		ug/m3	1	4/5/2016 9:06:00 PM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/5/2016 9:06:00 PM
Freon 11	2.2	0.84		ug/m3	1	4/5/2016 9:06:00 PM
Freon 113	1.0	1.1	J	ug/m3	1	4/5/2016 9:06:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	4/5/2016 9:06:00 PM

Qualifiers: ** Rep

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

Not Detected at the Reporting Limit

E Value above quantitation range

NĎ

J Analyte detected at or below quantitation limits

Page 13 of 38

^{**} Reporting Limit

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-IA-001-DOGGY DA C
Lab Order:	C1603083	Tag Number:	569,276
Project:	Scobell	Collection Date:	3/28/2016
Lab ID:	C1603083-007A	Matrix:	AIR
Analyses	Result **Lim	it Oual Units	DF Date Analyzed

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJF
Freon 12	3.9	0.74		ug/m3	1	4/5/2016 9:06:00 PM
Heptane	< 0.61	0.61		ug/m3	1	4/5/2016 9:06:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/5/2016 9:06:00 PM
Hexane	< 0.53	0.53		ug/m3	1	4/5/2016 9:06:00 PM
lsopropyl alcohol	91	15		ug/m3	40	4/6/2016 2:31:00 PM
m&p-Xylene	0.48	1.3	J	ug/m3	1	4/5/2016 9:06:00 PM
Methyl Butyl Ketone	< 1.2 J	1.2		ug/m3	1	4/5/2016 9:06:00 PM
Methyl Ethyl Ketone	4.8	0.88		ug/m3	1	4/5/2016 9:06:00 PM
Methyl Isobutyl Ketone	0.455	1.2	J	ug/m3	1	4/5/2016 9:06:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/5/2016 9:06:00 PM
Methylene chloride	2.0	0.52		ug/m3	1	4/5/2016 9:06:00 PM
o-Xylene	< 0.65	0.65		ug/m3	1	4/5/2016 9:06:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/5/2016 9:06:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/5/2016 9:06:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/5/2016 9:06:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/5/2016 9:06:00 PM
Toluene	2.1	0.57		ug/m3	1	4/5/2016 9:06:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/5/2016 9:06:00 PM
trans-1,3-Dichloropropene	< 0.68 [°]	0.68		ug/m3	1	4/5/2016 9:06:00 PM
Trichloroethene	< 0.21	0.21		ug/m3	1	4/5/2016 9:06:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/5/2016 9:06:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/5/2016 9:06:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/5/2016 9:06:00 PM

Qualifiers:

**

Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit Page 14 of 38

W03 4-21-16

Date: 07-Apr-16

CLIENT:	AMEC Environment	& Infrastructu:	re, Inc.	(Client Sample ID	82807	828076-IA-001-TRYON		
Lab Order: C1603083					Tag Number				
Project:	Scobell		,		Collection Date	3/28/2	016		
Lab ID:	C1603083-008A	• •			Matrix	AIR			
Analyses	· · · ·	Result	**Limit	Qual	Units	DF	Date Analyzed		
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		то	-15			Analyst: RJF		
1,1,1-Trichloroe	thane	2.9	0.82		ug/m3	1	4/5/2016 9:45:00 PM		
1,1,2,2-Tetrachl		< 1.0	1.0		ug/m3	1	4/5/2016 9:45:00 PM		
1,1,2-Trichloroe	thane	< 0.82	0.82		ug/m3	1	4/5/2016 9:45:00 PM		
1,1-Dichloroetha	ane	< 0.61	0.61		ug/m3	1	4/5/2016 9:45:00 PM		
1,1-Dichloroethe	ene	< 0.59	0.59		ug/m3	1	4/5/2016 9:45:00 PM		
1,2,4-Trichlorob	enzene	< 1.1	1.1		ug/m3	1	4/5/2016 9:45:00 PM		
1,2,4-Trimethylk	benzene	760	69		ug/m3	90	4/6/2016 3:47:00 PM		
1,2-Dibromoetha	ane	< 1.2	1.2		ug/m3	1	4/5/2016 9:45:00 PM		
1,2-Dichloroben	zene	< 0.90	0.90		ug/m3	1	4/5/2016 9:45:00 PM		
1,2-Dichloroetha	ane	< 0.61	0.61		ug/m3	1	4/5/2016 9:45:00 PM		
1,2-Dichloropro	pane	< 0.69	0.69		ug/m3	1	4/5/2016 9:45:00 PM		
1,3,5-Trimethylk	benzene	230	69		ug/m3	90	4/6/2016 3:47:00 PM		
1,3-butadiene		< 0.33	0.33		ug/m3	1	4/5/2016 9:45:00 PM		
1,3-Dichloroben	izene	< 0.90	0.90		ug/m3	1	4/5/2016 9:45:00 PM		
1,4-Dichloroben	zene	< 0.90	0.90		ug/m3	1	4/5/2016 9:45:00 PM		
1,4-Dioxane		< 1.15	1.1		ug/m3	1	4/5/2016 9:45:00 PM		
2,2,4-trimethylp	entane	< 0.70	0.70		ug/m3	1	4/5/2016 9:45:00 PM		
4-ethyltoluene		240	69		ug/m3	90	4/6/2016 3:47:00 PM		
Acetone		340	64		ug/m3	90	4/6/2016 3:47:00 PM		
Allyl chloride		< 0.47	0.47		ug/m3	1	4/5/2016 9:45:00 PM		
Benzene		< 0.48	0.48		ug/m3	1	4/5/2016 9:45:00 PM		
Benzyl chloride		< 0.86	0.86		ug/m3	1	4/5/2016 9:45:00 PM		
Bromodichlorom	nethane	< 1.0	1.0		ug/m3	1	4/5/2016 9:45:00 PM		
Bromoform		< 1.6	1.6		ug/m3	1	4/5/2016 9:45:00 PM		
Bromomethane		< 0.58	0.58		ug/m3	1	4/5/2016 9:45:00 PM		
Carbon disulfide	Э	0.53	0.47		ug/m3	1	4/5/2016 9:45:00 PM		
Carbon tetrachle	oride	0.94	0.25		ug/m3	1	4/5/2016 9:45:00 PM		
Chlorobenzene		< 0.69	0.69		ug/m3	1	4/5/2016 9:45:00 PM		
Chloroethane		< 0.40	0.40		ug/m3	1	4/5/2016 9:45:00 PM		
Chloroform		0.63	0.73	J	ug/m3	1	4/5/2016 9:45:00 PM		
Chloromethane		1.7	0.31		ug/m3	1	4/5/2016 9:45:00 PM		
cis-1,2-Dichloro	ethene	0.40	0.59	J	ug/m3	1	4/5/2016 9:45:00 PM		
cis-1,3-Dichloro		< 0.68	0.68		ug/m3	1	4/5/2016 9:45:00 PM		
Cyclohexane		4.8	0.52		ug/m3	1	4/5/2016 9:45:00 PM		
Dibromochloron	nethane	< 1.3	1.3		ug/m3	1	4/5/2016 9:45:00 PM		
Ethyl acetate		3.7	0.90		ug/m3	1	4/5/2016 9:45:00 PM		
Ethylbenzene		< 0.65	0.65		ug/m3	1	4/5/2016 9:45:00 PM		
Freon 11		2.2	0.84		ug/m3	1	4/5/2016 9:45:00 PM		
Freon 113		0.92	1.1	J	ug/m3	1	4/5/2016 9:45:00 PM		
Freon 114		< 1.0	1.0	v	ug/m3	1	4/5/2016 9:45:00 PM		

Qualifiers: ** Reporting Limit

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Η

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits S

Results reported are not blank corrected

Not Detected at the Reporting Limit

Е Value above quantitation range

ND

J Analyte detected at or below quantitation limits

Page 15 of 38

W 04 4-21-16

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID: 828076-IA-001-TRYON	YON
Lab Order:	C1603083	Tag Number: 274,1172	
Project:	Scobell	Collection Date: 3/28/2016	
Lab ID:	C1603083-008A	Matrix: AIR	

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-	15		Analyst: RJP
Freon 12	3.7	0.74	ug/m3	1	4/5/2016 9:45:00 PM
Heptane	14	5.7	ug/m3	9	4/6/2016 3:10:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	4/5/2016 9:45:00 PM
Hexane	< 0.53	0.53	ug/m3	1	4/5/2016 9:45:00 PM
Isopropyl alcohol	150	34	ug/m3	90	4/6/2016 3:47:00 PM
m&p-Xylene	10	1.3	ug/m3	1	4/5/2016 9:45:00 PM
Methyl Butyl Ketone	< 1.2 T	1.2	ug/m3	. 1	4/5/2016 9:45:00 PM
Methyl Ethyl Ketone	3.6	0.88	ug/m3	1	4/5/2016 9:45:00 PM
Methyl Isobutyl Ketone	< 1.2 5	1.2	ug/m3	1	4/5/2016 9:45:00 PM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	4/5/2016 9:45:00 PM
Methylene chloride	3.3	0.52	ug/m3	1	4/5/2016 9:45:00 PM
o-Xylene	35 J	6 .1	. ug/m3	9	4/6/2016 3:10:00 PM
Propylene	< 0.26	0.26	ug/m3	1	4/5/2016 9:45:00 PM
Styrene	< 0.64	0.64	ug/m3	1	4/5/2016 9:45:00 PM
Tetrachloroethylene	8.6	1.0	ug/m3	1	4/5/2016 9:45:00 PM
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	4/5/2016 9:45:00 PM
Toluene	150	53	ug/m3	90	4/6/2016 3:47:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/5/2016 9:45:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/5/2016 9:45:00 PM
Trichloroethene	120	19	ug/m3	90	4/6/2016 3:47:00 PM
Vinyl acetate	< 0.53	0.53	ug/m3	1	4/5/2016 9:45:00 PM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	4/5/2016 9:45:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/5/2016 9:45:00 PM

Qualifiers:

**

Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 16 of 38

W "5 4-21-16

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-IA-001-BOXMAN
Lab Order:	C1603083	Tag Number:	189,406
Project:	Scobell	Collection Date:	3/28/2016
Lab ID:	C1603083-009A	Matrix:	AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		тс	0-15	10 0000		Analyst: RJI
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/5/2016 10:24:00 PM
1,1,2,2-Tetrachloroethane	< 1.0 J	1.0		ug/m3	1	4/5/2016 10:24:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/5/2016 10:24:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/5/2016 10:24:00 PM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	4/5/2016 10:24:00 PM
1,2,4-Trichlorobenzene	< 1.1 J	1.1		ug/m3	1	4/5/2016 10:24:00 PM
1,2,4-Trimethylbenzene	1.4 🍠	0.74		ug/m3	1	4/5/2016 10:24:00 PM
1,2-Dibromoethane	< 1.2 5	1.2		ug/m3	1	4/5/2016 10:24:00 PM
1,2-Dichlorobenzene	< 0.90 J	0.90		ug/m3	1	4/5/2016 10:24:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/5/2016 10:24:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/5/2016 10:24:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/5/2016 10:24:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/5/2016 10:24:00 PM
1,3-Dichlorobenzene	< 0.903	0.90		ug/m3	1	4/5/2016 10:24:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/5/2016 10:24:00 PM
1,4-Dioxane	< 1.15	1.1		ug/m3	1	4/5/2016 10:24:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/5/2016 10:24:00 PM
4-ethyltoluene	0.495	0.74	J	ug/m3	1	4/5/2016 10:24:00 PM
Acetone	21	7.1		ug/m3	10	4/6/2016 4:23:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/5/2016 10:24:00 PM
Benzene	0.77	0.48		ug/m3	1	4/5/2016 10:24:00 PM
Benzyl chloride	< 0.86 J	0.86		ug/m3	1	4/5/2016 10:24:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/5/2016 10:24:00 PN
Bromoform	< 1.65	1.6		ug/m3	1	4/5/2016 10:24:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/5/2016 10:24:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/5/2016 10:24:00 PM
Carbon tetrachloride	0.82	0.25		ug/m3	1	4/5/2016 10:24:00 PM
Chlorobenzene	< 0.69,5	0.69	1	ug/m3	1	4/5/2016 10:24:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/5/2016 10:24:00 PM
Chloroform	< 0.73	0.73		ug/m3	1	4/5/2016 10:24:00 PM
Chloromethane	2.3	0.31		ug/m3	1	4/5/2016 10:24:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	. 1	4/5/2016 10:24:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/5/2016 10:24:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/5/2016 10:24:00 PM
Dibromochloromethane	< 1.3 J	1.3		ug/m3	1	4/5/2016 10:24:00 PM
Ethyl acetate	< 0.90	0.90		ug/m3	1	4/5/2016 10:24:00 PM
Ethylbenzene	< 0.65J	0.65		ug/m3	1	4/5/2016 10:24:00 PM
Freon 11	2.2	0.84		ug/m3	1	4/5/2016 10:24:00 PM
Freon 113	0.92	1.1	J	ug/m3	1	4/5/2016 10:24:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	4/5/2016 10:24:00 PM

** Qualifiers:

Reporting Limit

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

Non-routine analyte. Quantitation estimated. JN

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected 2

E Value above quantitation range

Analyte detected at or below quantitation limits J

ND Not Detected at the Reporting Limit

Page 17 of 38

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-IA-001-BOXMAN
Lab Order:	C1603083	Tag Number:	189,406
Project:	Scobell	Collection Date:	3/28/2016
Lab ID:	C1603083-009A	Matrix:	AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	TO-15					Analyst: RJF
Freon 12	4.1	0.74		ug/m3	1	4/5/2016 10:24:00 PM
Heptane	1.6	0.61		ug/m3	1	4/5/2016 10:24:00 PM
Hexachloro-1,3-butadiene	< 1.6 🖵	1.6		ug/m3	1	4/5/2016 10:24:00 PM
Hexane	1.1	0.53		ug/m3	1	4/5/2016 10:24:00 PM
Isopropyl alcohol	15	3.7		ug/m3	10	4/6/2016 4:23:00 PM
m&p-Xylene	2.45	1.3		ug/m3	1	4/5/2016 10:24:00 PM
Methyl Butyl Ketone	< 1.25	1.2		ug/m3	1	4/5/2016 10:24:00 PM
Methyl Ethyl Ketone	2.2	0.88		ug/m3	1	4/5/2016 10:24:00 PM
Methyl Isobutyl Ketone	0.66	1.2	J	ug/m3	1	4/5/2016 10:24:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/5/2016 10:24:00 PM
Methylene chloride	5.3	0.52		ug/m3	1	4/5/2016 10:24:00 PM
o-Xylene	0.525	0.65	J	ug/m3	1	4/5/2016 10:24:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/5/2016 10:24:00 PM
Styrene	< 0.64 3	0.64		ug/m3	1	4/5/2016 10:24:00 PM
Tetrachloroethylene	< 1.0 5	1.0		ug/m3	1	4/5/2016 10:24:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/5/2016 10:24:00 PM
Toluene	2.2J	0.57		ug/m3	1	4/5/2016 10:24:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/5/2016 10:24:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/5/2016 10:24:00 PM
Trichloroethene	0.59	0.21		ug/m3	1	4/5/2016 10:24:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/5/2016 10:24:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/5/2016 10:24:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/5/2016 10:24:00 PM

Qualifiers:

** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 18 of 38

W=5 4-25-16

Date: 07-Apr-16

CLIENT: AMEC Environment & Infrastructure, Inc. Cli				Client Sample ID:		828076-IA-001-NSC		
Lab Order:	C1603083				Tag Number:		101,1167 ·	
Project:	Scobell				Collection Da	te: 3	8/28/2	
Lab ID:	C1603083-010A				Matrix:	tix: A	AIR	
Analyses		Result	**Limit	Qual	Units	I	D F	Date Analyzed
1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		TC)-15				Analyst: RJI
1,1,1-Trichloroe	thane	< 0.82	0.82		ug/m3	1		4/5/2016 11:03:00 PM
1,1,2,2-Tetrachl	oroethane	< 1.0	1.0		ug/m3	1		4/5/2016 11:03:00 PM
1,1,2-Trichloroe	thane	< 0.82	0.82		ug/m3	1		4/5/2016 11:03:00 PM
1,1-Dichloroetha	ane	< 0.61	0.61		ug/m3	1		4/5/2016 11:03:00 PM
1,1-Dichloroethe	ene	< 0.59	0.59		ug/m3	1		4/5/2016 11:03:00 PM
1,2,4-Trichlorob	enzene	< 1.1	1.1		ug/m3	1		4/5/2016 11:03:00 PM
1,2,4-Trimethylb	benzene	1.0	0.74		ug/m3	1		4/5/2016 11:03:00 PM
1,2-Dibromoetha	ane	< 1.2	1.2		ug/m3	1		4/5/2016 11:03:00 PM
1,2-Dichlorobenzene		< 0.90	0.90		ug/m3	1		4/5/2016 11:03:00 PM
1,2-Dichloroethane		< 0.61	0.61		ug/m3	1	I	4/5/2016 11:03:00 PM
1,2-Dichloropropane		< 0.69	0.69		ug/m3	1	l.	4/5/2016 11:03:00 PM
1,3,5-Trimethylbenzene		< 0.74	0.74		ug/m3	1	i i	4/5/2016 11:03:00 PM
1,3-butadiene		< 0.33	0.33		ug/m3	1		4/5/2016 11:03:00 PN
1,3-Dichlorobenzene		< 0.90	0.90		ug/m3	1	I	4/5/2016 11:03:00 PM
1,4-Dichlorobenzene		< 0.90	0.90		ug/m3	· 1	· ۱	4/5/2016 11:03:00 PM
1,4-Dioxane		< 1.1 5	1.1		ug/m3	1	1	4/5/2016 11:03:00 PN
2,2,4-trimethylp	entane	< 0.70	0.70		ug/m3	1	Ι.	4/5/2016 11:03:00 PN
4-ethyltoluene		< 0.74	0.74		ug/m3	1	l	4/5/2016 11:03:00 PM
Acetone		23	7.1		ug/m3	1	10	4/6/2016 5:00:00 PM
Allyl chloride		< 0.47	0.47		ug/m3	1	1	4/5/2016 11:03:00 PN
Benzene		0.64	0.48		ug/m3	1	1	4/5/2016 11:03:00 PM
Benzyl chloride		< 0.86	0.86		ug/m3	1	I	4/5/2016 11:03:00 PN
Bromodichlorom	nethane	< 1.0	1.0		ug/m3	. 1	1	4/5/2016 11:03:00 PM
Bromoform		< 1.6	1.6		ug/m3	1	[4/5/2016 11:03:00 PM
Bromomethane		< 0.58	0.58		ug/m3	1	1	4/5/2016 11:03:00 PM
Carbon disulfide	9	< 0.47	0.47		ug/m3	1	1	4/5/2016 11:03:00 PM
Carbon tetrachle	oride	0.88	0.25		ug/m3	1	i	4/5/2016 11:03:00 PM
Chlorobenzene		< 0.69	0.69		ug/m3	1	1	4/5/2016 11:03:00 PM
Chloroethane		< 0.40	0.40		ug/m3	1	1	4/5/2016 11:03:00 PM
Chloroform		< 0.73	0.73		ug/m3	1	1	4/5/2016 11:03:00 PM
Chloromethane		2.4	0.31		ug/m3	1		4/5/2016 11:03:00 PM
cis-1,2-Dichloro	ethene	< 0.59	0.59		ug/m3	1		4/5/2016 11:03:00 PM
cis-1,3-Dichloro	propene	< 0.68	0.68		ug/m3	1		4/5/2016 11:03:00 PM
Cyclohexane		< 0.52	0.52		ug/m3	1		4/5/2016 11:03:00 PM
Dibromochloron	nethane	< 1.3	1.3		ug/m3	1		4/5/2016 11:03:00 PM
Ethyl acetate		< 0.90	0.90		ug/m3	1		4/5/2016 11:03:00 PM
Ethylbenzene		0.56	0.65	J	ug/m3	1		4/5/2016 11:03:00 PM
Freon 11		2.2	0.84	v	ug/m3	1		4/5/2016 11:03:00 PM
Freon 113		0.84	1.1	J	ug/m3	1		4/5/2016 11:03:00 PM
Freon 114		< 1.0	1.0	U	ug/m3	1		4/5/2016 11:03:00 PM

Qualifiers: **

Reporting Limit

В

Analyte detected in the associated Method Blank Н

Holding times for preparation or analysis exceeded

Non-routine analyte. Quantitation estimated. JN

Results reported are not blank corrected . Е Value above quantitation range

J

Analyte detected at or below quantitation limits ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits Page 19 of 38

1.2.16

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID: 828076-IA-001-NSC
Lab Order:	C1603083	Tag Number: 101,1167
Project:	Scobell	Collection Date: 3/28/2016
Lab ID:	C1603083-010A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJF
Freon 12	4.0	0.74		ug/m3	1	4/5/2016 11:03:00 PM
Heptane	2.2 丁	0.61		ug/m3	1	4/5/2016 11:03:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/5/2016 11:03:00 PM
Hexane	< 0.53	0.53		ug/m3	1	4/5/2016 11:03:00 PM
lsopropyl alcohol	20	3.7		ug/m3	10	4/6/2016 5:00:00 PM
m&p-Xylene	2.2	1.3		ug/m3	1	4/5/2016 11:03:00 PM
Methyl Butyl Ketone	< 1.2 J	1.2		ug/m3	1	4/5/2016 11:03:00 PM
Methyl Ethyl Ketone	2.6	0.88		ug/m3	1	4/5/2016 11:03:00 PM
Methyl Isobutyl Ketone	< 1.2 5	1.2		ug/m3	1	4/5/2016 11:03:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/5/2016 11:03:00 PM
Methylene chloride	2.0	0.52		ug/m3	1	4/5/2016 11:03:00 PM
o-Xylene	0.61	0.65	J	ug/m3	1	4/5/2016 11:03:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/5/2016 11:03:00 PM
Styrene	< 0.64	0.64		ug/m3	· 1	4/5/2016 11:03:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/5/2016 11:03:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/5/2016 11:03:00 PM
Toluene	3.7	0.57		ug/m3	1	4/5/2016 11:03:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/5/2016 11:03:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/5/2016 11:03:00 PM
Trichloroethene	0.81	0.21		ug/m3	1	4/5/2016 11:03:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/5/2016 11:03:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/5/2016 11:03:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/5/2016 11:03:00 PM

Qualifiers:	**	Reporting Limit	•	Resu
	в	Analyte detected in the associated Method Blank	Е	Valu

Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 20 of 38

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-IA-001-NSCD
Lab Order:	C1603083	Tag Number:	357,156
Project:	Scobell	Collection Date:	3/28/2016
Lab ID:	C1603083-011A	Matrix:	AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		тс)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/5/2016 11:43:00 PM
1,1,2,2-Tetrachloroethane	< 1.0 J	1.0		ug/m3	1	4/5/2016 11:43:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/5/2016 11:43:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/5/2016 11:43:00 PM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	4/5/2016 11:43:00 PM
1,2,4-Trichlorobenzene	< 1.1 3	1.1		ug/m3	1	4/5/2016 11:43:00 PM
1,2,4-Trimethylbenzene	1.15	0.74		ug/m3	1	4/5/2016 11:43:00 PM
1,2-Dibromoethane	< 1.2 5	1.2		ug/m3	1	4/5/2016 11:43:00 PM
1,2-Dichlorobenzene	< 0.905	0.90		ug/m3	1	4/5/2016 11:43:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/5/2016 11:43:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/5/2016 11:43:00 PM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/5/2016 11:43:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/5/2016 11:43:00 PM
1,3-Dichlorobenzene	< 0.90 🔭	0.90		ug/m3	1	4/5/2016 11:43:00 PM
1,4-Dichlorobenzene	< 0.90 5	0.90		ug/m3	1	4/5/2016 11:43:00 PM
1,4-Dioxane	2.8	1.1		ug/m3	1	4/5/2016 11:43:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/5/2016 11:43:00 PM
4-ethyltoluene	< 0.745	0.74		ug/m3	1	4/5/2016 11:43:00 PM
Acetone	29	7.1		ug/m3	10	4/6/2016 5:37:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/5/2016 11:43:00 PM
Benzene	0.57	0.48		ug/m3	1	4/5/2016 11:43:00 PM
Benzyl chloride	< 0.86 J	0.86		ug/m3	1	4/5/2016 11:43:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/5/2016 11:43:00 PM
Bromoform	< 1.6 J	1.6		ug/m3	1	4/5/2016 11:43:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/5/2016 11:43:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/5/2016 11:43:00 PM
Carbon tetrachloride	0.82	0.25		ug/m3	1	4/5/2016 11:43:00 PM
Chlorobenzene	< 0.695	0.69		ug/m3	1	4/5/2016 11:43:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/5/2016 11:43:00 PM
Chloroform	< 0.73	0.73		ug/m3	1	4/5/2016 11:43:00 PM
Chloromethane	2.0	0.31		ug/m3	1	4/5/2016 11:43:00 PM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/5/2016 11:43:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/5/2016 11:43:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/5/2016 11:43:00 PM
Dibromochloromethane	< 1.3 5	1.3		ug/m3	1	4/5/2016 11:43:00 PM
Ethyl acetate	< 0.90	0.90		ug/m3	1	4/5/2016 11:43:00 PM
Ethylbenzene	0.525	0.65	J	ug/m3	1	4/5/2016 11:43:00 PM
Freon 11	2.0	0.84	0	ug/m3	1	4/5/2016 11:43:00 PM
Freon 113	0.84	1.1	J	ug/m3	1	4/5/2016 11:43:00 PM
Freon 114	< 1.0	1.0	5	ug/m3	1	4/5/2016 11:43:00 PM

Qualifiers: **

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Non-routine analyte. Quantitation estimated. JN

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected ×.

Е Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 21 of 38

Reporting Limit

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-IA-001-NSCD
Lab Order:	C1603083	Tag Number:	357,156
Project:	Scobell	Collection Date:	3/28/2016
Lab ID:	C1603083-011A	Matrix:	AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		тс	-15			Analyst: RJP
Freon 12	3.6	0.74		ug/m3	1	4/5/2016 11:43:00 PM
Heptane	< 0.61	0.61		ug/m3	1	4/5/2016 11:43:00 PM
Hexachloro-1,3-butadiene	< 1.6J	1.6		ug/m3	1	4/5/2016 11:43:00 PM
Hexane	< 0.53	0.53		ug/m3	1	4/5/2016 11:43:00 PM
Isopropyl alcohol	31	3.7		ug/m3	10	4/6/2016 5:37:00 PM
m&p-Xylene	1.8 🦵	1.3		ug/m3	1	4/5/2016 11:43:00 PM
Methyl Butyl Ketone	< 1.2J	1.2		ug/m3	1	4/5/2016 11:43:00 PM
Methyl Ethyl Ketone	1.9	0.88		ug/m3	1	4/5/2016 11:43:00 PM
Methyl Isobutyl Ketone	< 1.25	1.2		ug/m3	1	4/5/2016 11:43:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/5/2016 11:43:00 PM
Methylene chloride	2.1	0.52		ug/m3	1	4/5/2016 11:43:00 PM
o-Xylene	0.56 5	0.65	J	ug/m3	1	4/5/2016 11:43:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/5/2016 11:43:00 PM
Styrene	< 0.64	0.64		ug/m3	1	4/5/2016 11:43:00 PM
Tetrachloroethylene	< 1.0 J	1.0		ug/m3	1	4/5/2016 11:43:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/5/2016 11:43:00 PM
Toluene	3.2 J	0.57		ug/m3	1	4/5/2016 11:43:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/5/2016 11:43:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/5/2016 11:43:00 PM
Trichloroethene	1.1	0.21		ug/m3	1	4/5/2016 11:43:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/5/2016 11:43:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/5/2016 11:43:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/5/2016 11:43:00 PM

Qualifiers:

Reporting Limit

**

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 22 of 38

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID: 828076-IA-001-NSCD
Lab Order:	C1603083	Tag Number: 357,156
Project:	Scobell	Collection Date: 3/28/2016
Lab ID:	C1603083-011A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		тс	-15			Analyst: RJF
Freon 12	3.6	0.74		ug/m3	1	4/5/2016 11:43:00 PM
Heptane	< 0.61 J	0.61		ug/m3	1	4/5/2016 11:43:00 PM
Hexachloro-1,3-butadiene	< 1.6 5	1.6		ug/m3	1	4/5/2016 11:43:00 PM
Hexane	< 0.53	0.53		ug/m3	1	4/5/2016 11:43:00 PM
Isopropyl alcohol	31	3.7		ug/m3	10	4/6/2016 5:37:00 PM
m&p-Xylene	1.8 5	1.3		ug/m3	1	4/5/2016 11:43:00 PM
Methyl Butyl Ketone	< 1.2 J	1.2		ug/m3	1	4/5/2016 11:43:00 PM
Methyl Ethyl Ketone	1.9	0.88		ug/m3	1	4/5/2016 11:43:00 PM
Methyl Isobutyl Ketone	< 1.25	1.2		ug/m3	1	4/5/2016 11:43:00 PM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/5/2016 11:43:00 PM
Methylene chloride	2.1	0.52		ug/m3	1	4/5/2016 11:43:00 PM
o-Xylene	0.56 J	0.65	J	ug/m3	1	4/5/2016 11:43:00 PM
Propylene	< 0.26	0.26		ug/m3	1	4/5/2016 11:43:00 PM
Styrene	< 0.64 J	0.64		ug/m3	1	4/5/2016 11:43:00 PM
Tetrachloroethylene	< 1.0 🗂	1.0		ug/m3	· 1	4/5/2016 11:43:00 PM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/5/2016 11:43:00 PM
Toluene	3.25	0.57		ug/m3	1	4/5/2016 11:43:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/5/2016 11:43:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/5/2016 11:43:00 PM
Trichloroethene	Wes 1.15	0.21		ug/m3	1	4/5/2016 11:43:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/5/2016 11:43:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/5/2016 11:43:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/5/2016 11:43:00 PM

Qualifiers:

**

Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

ND Not Detected at the Reporting Limit

J Analyte detected at or below quantitation limits

Page 22 of 38

W05 4-21-16

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-SS-001-01
Lab Order:	C1603083	Tag Number:	368,294
Project:	Scobell	Collection Date:	3/28/2016
Lab ID:	C1603083-012A	Matrix:	AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
IUG/M3 BY METHOD TO15		тс	-15			Analyst: RJF
1,1,1-Trichloroethane	11 J	0.82		ug/m3	1	4/6/2016 6:52:00 AM
1,1,2,2-Tetrachloroethane	< 1.0 5	1.0		ug/m3	1	4/6/2016 6:52:00 AM
1,1,2-Trichloroethane	< 0.82 🎵	0.82		ug/m3	1	4/6/2016 6:52:00 AM
1,1-Dichloroethane	0.45	0.61	J	ug/m3	1	4/6/2016 6:52:00 AM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	4/6/2016 6:52:00 AM
1,2,4-Trichlorobenzene	< 1.1 🍞	1.1		ug/m3	1	4/6/2016 6:52:00 AM
1,2,4-Trimethylbenzene	1.2 🕤	0.74		ug/m3	1	4/6/2016 6:52:00 AM
1,2-Dibromoethane	< 1.2 5	1.2		ug/m3	1	4/6/2016 6:52:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/6/2016 6:52:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/6/2016 6:52:00 AM
1,2-Dichloropropane	< 0.69 J	0.69		ug/m3	1	4/6/2016 6:52:00 AM
1,3,5-Trimethylbenzene	1.0 5	0.74		ug/m3	1	4/6/2016 6:52:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/6/2016 6:52:00 AM
1,3-Dichlorobenzene	< 0.90 J	0.90		ug/m3	1	4/6/2016 6:52:00 AM
1,4-Dichlorobenzene	< 0.90 J	0.90		ug/m3	1	4/6/2016 6:52:00 AM
1,4-Dioxane	< 1.1 5	1.1		ug/m3	1	4/6/2016 6:52:00 AM
2,2,4-trimethylpentane	< 0.70 5	0.70		ug/m3	1	4/6/2016 6:52:00 AM
4-ethyltoluene	< 0.74 J	0.74		ug/m3	1	4/6/2016 6:52:00 AM
Acetone	58	7.1		ug/m3	10	4/7/2016 4:06:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/6/2016 6:52:00 AM
Benzene	2.1J	0.48		ug/m3	1	4/6/2016 6:52:00 AM
Benzyl chloride	< 0.86 J	0.86		ug/m3	1	4/6/2016 6:52:00 AM
Bromodichloromethane	< 1.0 J	1.0		ug/m3	1	4/6/2016 6:52:00 AM
Bromoform	< 1.6 J	1.6		ug/m3	1	4/6/2016 6:52:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/6/2016 6:52:00 AM
Carbon disulfide	9.3	4.7		ug/m3	10	4/7/2016 4:06:00 AM
Carbon tetrachloride	1.4 5	0.94		ug/m3	1	4/6/2016 6:52:00 AM
Chlorobenzene	< 0.69 丁	0.69		ug/m3	1	4/6/2016 6:52:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/6/2016 6:52:00 AM
Chloroform	1.8	0.73		ug/m3	1	4/6/2016 6:52:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	4/6/2016 6:52:00 AM
cis-1,2-Dichloroethene	1.7	0.59		ug/m3	1	4/6/2016 6:52:00 AM
cis-1,3-Dichloropropene	< 0.68 ゴ	0.68		ug/m3	1	4/6/2016 6:52:00 AM
Cyclohexane	3.5 5	0.52		ug/m3	1	4/6/2016 6:52:00 AM
Dibromochloromethane.	< 1.3	1.3		ug/m3	1	4/6/2016 6:52:00 AM
Ethyl acetate	1.0	0.90		ug/m3	1	4/6/2016 6:52:00 AM
Ethylbenzene	0.43 5	0.65	J	ug/m3	1	4/6/2016 6:52:00 AM
Freon 11	2.0	0.84		ug/m3	1	4/6/2016 6:52:00 AM
Freon 113	0.77	1.1	J	ug/m3	1	4/6/2016 6:52:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	4/6/2016 6:52:00 AM

** Qualifiers:

B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded H

JN Non-routine analyte. Quantitation estimated.

Results reported are not blank corrected 2

E Value above quantitation range

Analyte detected at or below quantitation limits J ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Page 23 of 38

Reporting Limit

Was 4-21-16

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-SS-001-01
Lab Order:	C1603083	Tag Number:	368,294
Project:	Scobell	Collection Date:	3/28/2016
Lab ID:	C1603083-012A	Matrix:	AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15			Analyst: RJF
Freon 12	3.1	0.74)	ug/m3	1	4/6/2016 6:52:00 AM
Heptane	2.4 3	0.61)	ug/m3	1	4/6/2016 6:52:00 AM
Hexachloro-1,3-butadiene	< 1.6 5	1.6	3	ug/m3	1	4/6/2016 6:52:00 AM
Hexane	2.4	0.53)	ug/m3	1	4/6/2016 6:52:00 AM
Isopropyl alcohol	3.7	0.37	× 3	ug/m3	1	4/6/2016 6:52:00 AM
m&p-Xylene	2.05	1.3)	ug/m3	1	4/6/2016 6:52:00 AM
Methyl Butyl Ketone	< 1.2 J	1.2)	ug/m3	1	4/6/2016 6:52:00 AM
Methyl Ethyl Ketone	3.2	0.88)	ug/m3	1	4/6/2016 6:52:00 AM
Methyl Isobutyl Ketone	< 1.2 J	1.2)	ug/m3	1	4/6/2016 6:52:00 AM
Methyl tert-butyl ether	< 0.54	0.54)	ug/m3	1	4/6/2016 6:52:00 AM
Methylene chloride	2.3	0.52		ug/m3	1	4/6/2016 6:52:00 AM
o-Xylene	0.82 5	0.65		ug/m3	1	4/6/2016 6:52:00 AM
Propylene	< 0.26	0.26	1	ug/m3	1	4/6/2016 6:52:00 AM
Styrene	< 0.64 🎵	0.64	1	ug/m3	1	4/6/2016 6:52:00 AM
Tetrachloroethylene	77	10)	ug/m3	10	4/7/2016 4:06:00 AM
Tetrahydrofuran	< 0.44	0.44)	ug/m3	1	4/6/2016 6:52:00 AM
Toluene	5.3 5	0.57)	ug/m3	1	4/6/2016 6:52:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	1	ug/m3	1	4/6/2016 6:52:00 AM
trans-1,3-Dichloropropene	< 0.68 J	0.68	i i	ug/m3	1	4/6/2016 6:52:00 AM
Trichloroethene	350	32	ì	ug/m3	40	4/7/2016 4:42:00 AM
Vinyl acetate	< 0.53	0.53	ì	ug/m3	1	4/6/2016 6:52:00 AM
Vinyl Bromide	< 0.66	0.66)	ug/m3	1	4/6/2016 6:52:00 AM
Vinyl chloride	< 0.38	0.38	1	ug/m3	1	4/6/2016 6:52:00 AM

Qualifiers:

**

Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 24 of 38

W05 4-21-16

Date: 07-Apr-16

CLIENT:	AMEC Environment	& Infrastructu	ire, Inc. (lient Sample l	D: 82807	6-IA-001-CENTRAL
Lab Order:	C1603083			Tag Numb	er: 556,4	50
Project:	Scobell			Collection Da	te: 3/28/2	2016
Lab ID:	C1603083-013A			Matr	ix: AIR	
Analyses		Result	**Limit Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2	25UG/M3 CT-TCE-VC	•	TO-15			Analyst: RJP
1,1,1-Trichloroe	ethane	< 0.82	0.82	ug/m3	1	4/6/2016 12:22:00 AM

		10-1	5		Analyst. Nor
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/6/2016 12:22:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/6/2016 12:22:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/6/2016 12:22:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/6/2016 12:22:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	. 1	4/6/2016 12:22:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/6/2016 12:22:00 AM
1,2,4-Trimethylbenzene	0.69	0.74	J ug/m3	1	4/6/2016 12:22:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/6/2016 12:22:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/6/2016 12:22:00 AM
1,2-Dichloroethane	< 0.61	0.61	uġ/m3	1	4/6/2016 12:22:00 AM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/6/2016 12:22:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/6/2016 12:22:00 AM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/6/2016 12:22:00 AM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/6/2016 12:22:00 AM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/6/2016 12:22:00 AM
1,4-Dioxane	< 1.15	. 1.1	ug/m3	1	4/6/2016 12:22:00 AM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/6/2016 12:22:00 AM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/6/2016 12:22:00 AM
Acetone	29	7.1	ug/m3	10	4/6/2016 6:13:00 PM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/6/2016 12:22:00 AM
Benzene	0.51	0.48	ug/m3	1	4/6/2016 12:22:00 AM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/6/2016 12:22:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/6/2016 12:22:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	4/6/2016 12:22:00 AM
Bromomethane	< 0.58	0.58	ug/m3	1	4/6/2016 12:22:00 AM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/6/2016 12:22:00 AM
Carbon tetrachloride	0.82	0.25	ug/m3	1	4/6/2016 12:22:00 AM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/6/2016 12:22:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/6/2016 12:22:00 AM
Chloroform	< 0.73	0.73	ug/m3	1	4/6/2016 12:22:00 AM
Chloromethane	1.6	0.31	ug/m3	1	4/6/2016 12:22:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	[.] 1	4/6/2016 12:22:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/6/2016 12:22:00 AM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/6/2016 12:22:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/6/2016 12:22:00 AM
Ethyl acetate	< 0.90	0.90	ug/m3	1	4/6/2016 12:22:00 AM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/6/2016 12:22:00 AM
Freon 11	2.8	0.84	ug/m3	1	4/6/2016 12:22:00 AM
Freon 113	0.92	1.1	J ug/m3	1	4/6/2016 12:22:00 AM
Freon 114	< 1.0	1.0	ug/m3	1	4/6/2016 12:22:00 AM

Qualifiers: ** В

Н

Results reported are not blank corrected

Not Detected at the Reporting Limit

Е Value above quantitation range

J Analyte detected at or below quantitation limits

•

ND

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Page 25 of 38

Was 4-21-16

Reporting Limit

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-IA-001-CENTRAL
Lab Order:	C1603083	Tag Number:	556,450
Project:	Scobell	Collection Date:	3/28/2016
Lab ID:	C1603083-013A	Matrix:	AIR

Analyses	Result	Limit	Zum	Onts	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
Freon 12	4.0	0.74		ug/m3	1	4/6/2016 12:22:00 AM
Heptane	< 0.61	0.61		ug/m3	1	4/6/2016 12:22:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/6/2016 12:22:00 AM
Hexane	< 0.53	0.53		ug/m3	1	4/6/2016 12:22:00 AM
Ísopropyl alcohol	26	3.7		ug/m3	10	4/6/2016 6:13:00 PM
m&p-Xylene	0.96	1.3	J	ug/m3	1	4/6/2016 12:22:00 AM
Methyl Butyl Ketone	< 1.2 J	1.2		ug/m3	1	4/6/2016 12:22:00 AM
Methyl Ethyl Ketone	1.8	0.88		ug/m3	- 1	4/6/2016 12:22:00 AM
Methyl Isobutyl Ketone	0.45 5	1.2	J	ug/m3	1	4/6/2016 12:22:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/6/2016 12:22:00 AM
Methylene chloride	3.4	0.52		ug/m3	1	4/6/2016 12:22:00 AM
o-Xylene	< 0.65	0.65		ug/m3	1	4/6/2016 12:22:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/6/2016 12:22:00 AM
Styrene	< 0.64	0.64		ug/m3	1	4/6/2016 12:22:00 AM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/6/2016 12:22:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/6/2016 12:22:00 AM
Toluene	1.3	0.57		ug/m3	1	4/6/2016 12:22:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/6/2016 12:22:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/6/2016 12:22:00 AM
Trichloroethene	0.48	0.21		ug/m3	1	4/6/2016 12:22:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/6/2016 12:22:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/6/2016 12:22:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/6/2016 12:22:00 AM

 Qualifiers:
 **
 Reporting Limit

 B
 Analyte detected in the associated Method Blank
 E

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits
- Results reported are not blank corrected
- E Value above quantitation range

ND

J Analyte detected at or below quantitation limits

Not Detected at the Reporting Limit Page 26 of 38

W05 4-21-16

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-AA-001-01
Lab Order:	C1603083	Tag Number:	237,278
Project:	Scobell	Collection Date:	3/28/2016
Lab ID:	C1603083-014A	Matrix:	AIR

Analyses	Result	**Limit	Qual U	J nits	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	· · · · · · · · · · · · · · · · · · ·	TO	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	u	ıg/m3	1	4/6/2016 1:01:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	u	ıg/m3	1	4/6/2016 1:01:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	u	ıg/m3	· 1	4/6/2016 1:01:00 AM
1,1-Dichloroethane	< 0.61	0.61	u	ıg/m3	1	4/6/2016 1:01:00 AM
1,1-Dichloroethene	< 0.59	0.59	u	ıg/m3	1	4/6/2016 1:01:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	u	ıg/m3	. 1	4/6/2016 1:01:00 AM
1,2,4-Trimethylbenzene	< 0.74	0.74	u	ıg/m3	1	4/6/2016 1:01:00 AM
1,2-Dibromoethane	< 1.2	1.2	u	ıg/m3	1	4/6/2016 1:01:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	u	ıg/m3	1	4/6/2016 1:01:00 AM
1,2-Dichloroethane	< 0.61	0.61	u	ıg/m3	1	4/6/2016 1:01:00 AM
1,2-Dichloropropane	< 0.69	0.69	u	ıg/m3	1	4/6/2016 1:01:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74	U	ıg/m3	- 1	4/6/2016 1:01:00 AM
1,3-butadiene	< 0.33	0.33	U	ıg/m3	1	4/6/2016 1:01:00 AM
1,3-Dichlorobenzene	< 0.90	0.90	U	ıg/m3	1	4/6/2016 1:01:00 AM
1,4-Dichlorobenzene	< 0.90	0.90	U	ıg/m3	1	4/6/2016 1:01:00 AM
1,4-Dioxane	< 1.15	1.1	U	ıg/m3	1	4/6/2016 1:01:00 AM
2,2,4-trimethylpentane	< 0.70	0.70	U	ıg/m3	1	4/6/2016 1:01:00 AM
4-ethyltoluene	< 0.74	0.74	U	ig/m3	1	4/6/2016 1:01:00 AM
Acetone	18	3.6		ig/m3	5	4/6/2016 6:50:00 PM
Allyi chloride	< 0.47	0.47	ι	ıg/m3	1	4/6/2016 1:01:00 AM
Benzene	0.42	0.48	Jι	ıg/m3	. 1	4/6/2016 1:01:00 AM
Benzyl chloride	< 0.86	0.86	ι	ıg/m3	1	4/6/2016 1:01:00 AM
Bromodichloromethane	< 1.0	1.0	ι	ıg/m3	1	4/6/2016 1:01:00 AM
Bromoform	< 1.6	1.6	ι	ıg/m3	1	4/6/2016 1:01:00 AM
Bromomethane	< 0.58	0.58	ι	ıg/m3	1	4/6/2016 1:01:00 AM
Carbon disulfide	< 0.47	0.47	ι	ıg/m3	1	4/6/2016 1:01:00 AM
Carbon tetrachloride	0.88	0.25	ι	ıg/m3	1	4/6/2016 1:01:00 AM
Chlorobenzene	< 0.69	0.69	ι	ıg/m3	1	4/6/2016 1:01:00 AM
Chloroethane	< 0.40	0.40	ι	ıg/m3	1	4/6/2016 1:01:00 AM
Chloroform	< 0.73	0.73	ι	ıg/m3	1	4/6/2016 1:01:00 AM
Chloromethane	2.1	0.31	ι	ıg/m3	1	4/6/2016 1:01:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ι	ıg/m3	1	4/6/2016 1:01:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68	ι	ıg/m3	1	4/6/2016 1:01:00 AM
Cyclohexane	< 0.52	0.52	ι	ıg/m3	1	4/6/2016 1:01:00 AM
Dibromochloromethane	< 1.3	1.3		ig/m3	1	4/6/2016 1:01:00 AM
Ethyl acetate	< 0.90	0.90		ig/m3	1	4/6/2016 1:01:00 AM
Ethylbenzene	< 0.65	0.65	ι	ig/m3	1	4/6/2016 1:01:00 AM
Freon 11	2,2	0.84		ıg/m3	1	4/6/2016 1:01:00 AM
Freon 113	0.92	1.1		ug/m3	1	4/6/2016 1:01:00 AM
Freon 114	< 1.0	1.0	ι	ug/m3	1.	4/6/2016 1:01:00 AM

Qualifiers: ** В

Н

Results reported are not blank corrected

Е Value above quantitation range

.

J Analyte detected at or below quantitation limits ND Not Detected at the Reporting Limit

Non-routine analyte. Quantitation estimated. JN

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Page 27 of 38

Reporting Limit

Date: 07-Apr-16

CLIENT:AMEC Environment & Infrastructure, Inc.Lab Order:C1603083.Project:ScobellLab ID:C1603083-014A

Client Sample ID: 828076-AA-001-01 Tag Number: 237,278 Collection Date: 3/28/2016 Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
Freon 12	4.0	0.74		ug/m3	1	4/6/2016 1:01:00 AM
Heptane	< 0.61	0.61		ug/m3	1	4/6/2016 1:01:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/6/2016 1:01:00 AM
Hexane	< 0.53	0.53		ug/m3	1	4/6/2016 1:01:00 AM
Isopropyl alcohol	2.4	0.37		ug/m3	1	4/6/2016 1:01:00 AM
m&p-Xylene	< 1.3	1.3		ug/m3	1	4/6/2016 1:01:00 AM
Methyl Butyl Ketone	< 1.2 J	1.2		ug/m3	1	4/6/2016 1:01:00 AM
Methyl Ethyl Ketone	0.80	0.88	J	ug/m3	1	4/6/2016 1:01:00 AM
Methyl Isobutyl Ketone	< 1.2 5	1.2		ug/m3	1	4/6/2016 1:01:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/6/2016 1:01:00 AM
Methylene chloride	1.7	0.52		ug/m3	• 1	4/6/2016 1:01:00 AM
o-Xylene	< 0.65	0.65		ug/m3	1	4/6/2016 1:01:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/6/2016 1:01:00 AM
Styrene	< 0.64	0.64		ug/m3	1	4/6/2016 1:01:00 AM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/6/2016 1:01:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/6/2016 1:01:00 AM
Toluene	0.72	0.57		ug/m3	1	4/6/2016 1:01:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/6/2016 1:01:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/6/2016 1:01:00 AM
Trichloroethene	< 0.21	0.21		ug/m3	1	4/6/2016 1:01:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/6/2016 1:01:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/6/2016 1:01:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/6/2016 1:01:00 AM

Qualifiers:

Reporting Limit

**

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

.

ND

J Analyte detected at or below quantitation limits

Not Detected at the Reporting Limit

Page 28 of 38

Was 4-21-16

Date: 07-Apr-16

1UG/M3 W/ 0.2	5UG/M3 CT-TCE-VC		то	-15		Analyst: RJI
Analyses		Result	**Limit	Qual Units	DF	Date Analyzed
Lab ID:	C1603083-015A			Ma	trix: AIR	
Project:	Scobell			Collection E	Date: 3/29	/2016
Lab Order:	C1603083			Tag Num	ber: 202,	,398
CLIENT:	AMEC Environment	& Infrastructu	are, Inc.	Client Sample	e ID: 8280	076-IA-001-BCC

10G/M3 W/ 0.250G/M3 CT-TCE		10-1	5	+	Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/6/2016 1:40:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/6/2016 1:40:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/6/2016 1:40:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/6/2016 1:40:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/6/2016 1:40:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/6/2016 1:40:00 AM
1,2,4-Trimethylbenzene	0.88	0.74	ug/m3	1	4/6/2016 1:40:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/6/2016 1:40:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	. 1	4/6/2016 1:40:00 AM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/6/2016 1:40:00 AM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/6/2016 1:40:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/6/2016 1:40:00 AM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/6/2016 1:40:00 AM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/6/2016 1:40:00 AM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/6/2016 1:40:00 AM
1,4-Dioxane	< 1.1 5	1.1	ug/m3	1	4/6/2016 1:40:00 AM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/6/2016 1:40:00 AM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/6/2016 1:40:00 AM
Acetone	28	7.1	ug/m3	10	4/6/2016 7:27:00 PM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/6/2016 1:40:00 AM
Benzene	0.80	0.48	ug/m3	1	4/6/2016 1:40:00 AM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/6/2016 1:40:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/6/2016 1:40:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	4/6/2016 1:40:00 AM
Bromomethane	< 0.58	0.58	ug/m3	1	4/6/2016 1:40:00 AM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/6/2016 1:40:00 AM
Carbon tetrachloride	0.88	0.25	ug/m3	1	4/6/2016 1:40:00 AM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/6/2016 1:40:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/6/2016 1:40:00 AM
Chloroform	1.4	0.73	ug/m3	1	4/6/2016 1:40:00 AM
Chloromethane	1.8	0.31	ug/m3 *	1	4/6/2016 1:40:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/6/2016 1:40:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/6/2016 1:40:00 AM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/6/2016 1:40:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/6/2016 1:40:00 AM
Ethyl acetate	< 0.90	0.90	ug/m3	1	4/6/2016 1:40:00 AM
Ethylbenzene	0.78	0.65	ug/m3	1	4/6/2016 1:40:00 AM
, Freon 11	2.2	0.84	ug/m3	1	4/6/2016 1:40:00 AM
Freon 113	0.92		J ug/m3	. 1	4/6/2016 1:40:00 AM
Freon 114	< 1.0	1.0	ug/m3	1	4/6/2016 1:40:00 AM

** Qualifiers:

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits Results reported are not blank corrected

Not Detected at the Reporting Limit

Е Value above quantitation range

.

ND

Analyte detected at or below quantitation limits J

Page 29 of 38

Was 4-21-16

Reporting Limit

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-IA-001-BCC
Lab Order:	C1603083	Tag Number:	202,398
Project:	Scobell	Collection Date:	3/29/2016
Lab ID:	C1603083-015A	Matrix:	AIR
		· · · · · · · · · · · · · · · · · · ·	

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		ТО	-15		Analyst: RJP
Freon 12	4.0	0.74	ug/m3	1	4/6/2016 1:40:00 AM
Heptane	< 0.61	0.61	ug/m3	1.	4/6/2016 1:40:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	4/6/2016 1:40:00 AM
Hexane	1.1	0.53	ug/m3	1	4/6/2016 1:40:00 AM
Isopropyl alcohol	21	3.7	ug/m3	10	4/6/2016 7:27:00 PM
m&p-Xylene	2.9	1.3	ug/m3	1	4/6/2016 1:40:00 AM
Methyl Butyl Ketone	< 1.2 🎝	1.2	ug/m3	1	4/6/2016 1:40:00 AM
Methyl Ethyl Ketone	2.7	0.88	ug/m3	1	4/6/2016 1:40:00 AM
Methyl Isobutyl Ketone	< 1.2 5	1.2	ug/m3	1	4/6/2016 1:40:00 AM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	4/6/2016 1:40:00 AM
Methylene chloride	2.8	0.52	ug/m3	1	4/6/2016 1:40:00 AM
o-Xylene	0.87	0.65	ug/m3	1	4/6/2016 1:40:00 AM
Propylene	< 0.26	0.26	ug/m3	1	4/6/2016 1:40:00 AM
Styrene	< 0.64	0.64	ug/m3	1	4/6/2016 1:40:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/6/2016 1:40:00 AM
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	4/6/2016 1:40:00 AM
Toluene	2.8	0.57	ug/m3	1	4/6/2016 1:40:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/6/2016 1:40:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/6/2016 1:40:00 AM
Trichloroethene	< 0.21	0.21	. ug/m3	1	4/6/2016 1:40:00 AM
Vinyl acetate	< 0.53	0.53	ug/m3	1	4/6/2016 1:40:00 AM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	4/6/2016 1:40:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/6/2016 1:40:00 AM

Qualifiers:

**

Reporting Limit

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits.
- Results reported are not blank corrected .

Е Value above quantitation range

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

Page 30 of 38

W05 4-21-16

Date: 07-Apr-16

CLIENT: AMEC Environment & Infrastructure, Inc. Client Sample ID: 828076-IA-004-GALLERY/OFF Lab Order: C1603083 **Tag Number: 285,446** Collection Date: 3/29/2016 **Project:** Scobell Lab ID: C1603083-016A Matrix: AIR Result **Limit Qual Units Analyses DF **Date Analyzed**

¹ Kildly 505	Ixebuit	Linit Qui	Omes	Dr	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/6/2016 2:19:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/6/2016 2:19:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/6/2016 2:19:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/6/2016 2:19:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/6/2016 2:19:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/6/2016 2:19:00 AM
1,2,4-Trimethylbenzene	30	7.4	ug/m3	10	4/6/2016 8:03:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/6/2016 2:19:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/6/2016 2:19:00 AM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/6/2016 2:19:00 AM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/6/2016 2:19:00 AM
1,3,5-Trimethylbenzene	9.3	7.4	ug/m3	10	4/6/2016 8:03:00 PM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/6/2016 2:19:00 AM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/6/2016 2:19:00 AM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/6/2016 2:19:00 AM
1,4-Dioxane	< 1.1 🖌	1.1	ug/m3	1	4/6/2016 2:19:00 AM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/6/2016 2:19:00 AM
4-ethyltoluene	- 11	7.4	ug/m3	10	4/6/2016 8:03:00 PM
Acetone	81	28	ug/m3	40	4/6/2016 8:40:00 PM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/6/2016 2:19:00 AM
Benzene	0.83	0.48	ug/m3	1	4/6/2016 2:19:00 AM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/6/2016 2:19:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/6/2016 2:19:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	4/6/2016 2:19:00 AM
Bromomethane	< 0.58	0.58	ug/m3	1	4/6/2016 2:19:00 AM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/6/2016 2:19:00 AM
Carbon tetrachloride	0.88	0.25	ug/m3	1	4/6/2016 2:19:00 AM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/6/2016 2:19:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/6/2016 2:19:00 AM
Chloroform	0.78	0.73	ug/m3	1	4/6/2016 2:19:00 AM
Chloromethane	[′] < 0.31	0.31	ug/m3	1	4/6/2016 2:19:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/6/2016 2:19:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/6/2016 2:19:00 AM
Cyclohexane	1.5	0.52	ug/m3	[°] 1	4/6/2016 2:19:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/6/2016 2:19:00 AM
Ethyl acetate	0.72	0.90 J	ug/m3	1	4/6/2016 2:19:00 AM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/6/2016 2:19:00 AM
Freon 11	2.5	0.84	ug/m3	1	4/6/2016 2:19:00 AM
Freon 113	0.92	1.1 J	ug/m3	1	4/6/2016 2:19:00 AM
Freon 114	< 1.0	1.0	ug/m3	· 1	4/6/2016 2:19:00 AM

Qualifiers: ** В

Н

Results reported are not blank corrected

Not Detected at the Reporting Limit

Е Value above quantitation range

Analyte detected at or below quantitation limits J

ND

Non-routine analyte. Quantitation estimated. JN

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Page 31 of 38

Reporting Limit

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-IA-004-GALLERY/OFF
Lab Order:	C1603083	Tag Number:	285,446
Project:	Scobell	Collection Date:	3/29/2016
Lab ID:	C1603083-016A	Matrix:	AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJF
Freon 12	4.0	0.74		ug/m3	1	4/6/2016 2:19:00 AM
Heptane	3.6	0.61		ug/m3	1	4/6/2016 2:19:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/6/2016 2:19:00 AM
Hexane	1.2	0.53		ug/m3	1	4/6/2016 2:19:00 AM
Isopropyl alcohol	44	3.7		ug/m3	10	4/6/2016 8:03:00 PM
m&p-Xylene	2.1	1.3		ug/m3	1	4/6/2016 2:19:00 AM
Methyl Butyl Ketone	< 1.2 5	1.2		ug/m3	1	4/6/2016 2:19:00 AM
Methyl Ethyl Ketone	2.7	0.88		ug/m3	1	4/6/2016 2:19:00 AM
Methyl Isobutyl Ketone	0.90 T	1.2	J	ug/m3	. 1	4/6/2016 2:19:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/6/2016 2:19:00 AM
Methylene chloride	2.5	0.52		ug/m3	1	4/6/2016 2:19:00 AM
o-Xylene	2.7	0.65		ug/m3	1	4/6/2016 2:19:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/6/2016 2:19:00 AM
Styrene	< 0.64	0.64		ug/m3	1	4/6/2016 2:19:00 AM
Tetrachloroethylene	1.4	1.0		ug/m3	1	4/6/2016 2:19:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	· 1	4/6/2016 2:19:00 AM
Toluene	12	5.7		ug/m3	10	4/6/2016 8:03:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/6/2016 2:19:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/6/2016 2:19:00 AM
Trichloroethene	14	2.1		ug/m3	10	4/6/2016 8:03:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/6/2016 2:19:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/6/2016 2:19:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/6/2016 2:19:00 AM

Qualifiers:

**

Reporting Limit

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected .

Е Value above quantitation range

ND

J Analyte detected at or below quantitation limits

Not Detected at the Reporting Limit

Page 32 of 38

Was 4-21-16

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID:	828076-IA-004-GLASS OVER
Lab Order:	C1603083	Tag Number:	133,1161
Project:	Scobell	Collection Date:	3/29/2016
Lab ID:	C1603083-017A	Matrix:	AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	· · · · · · · · · · · · · · · · · · ·	то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/6/2016 2:58:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/6/2016 2:58:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/6/2016 2:58:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/6/2016 2:58:00 AM
1,1-Dichloroethene	< 0.59	0.59		ug/m3	1	4/6/2016 2:58:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/6/2016 2:58:00 AM
1,2,4-Trimethylbenzene	13 🖸	7.4		ug/m3	10	4/6/2016 7:29:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/6/2016 2:58:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/6/2016 2:58:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/6/2016 2:58:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/6/2016 2:58:00 AM
1,3,5-Trimethylbenzene	6.2	0,74		ug/m3	1	4/6/2016 2:58:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/6/2016 2:58:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/6/2016 2:58:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/6/2016 2:58:00 AM
1,4-Dioxane	< 1.15	1.1		ug/m3	1	4/6/2016 2:58:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/6/2016 2:58:00 AM
4-ethyltoluene	8.7	0.74		ug/m3	1	4/6/2016 2:58:00 AM
Acetone	32	7.1		ug/m3	10	4/6/2016 7:29:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/6/2016 2:58:00 AM
Benzene	0.83	0.48		ug/m3	1	4/6/2016 2:58:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/6/2016 2:58:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/6/2016 2:58:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	4/6/2016 2:58:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/6/2016 2:58:00 AM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/6/2016 2:58:00 AM
Carbon tetrachloride	0.75	0.25		ug/m3	1	4/6/2016 2:58:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/6/2016 2:58:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/6/2016 2:58:00 AM
Chloroform	0.54	0,73		ug/m3	· 1	4/6/2016 2:58:00 AM
Chloromethane	1.9	0.31		ug/m3	1	4/6/2016 2:58:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/6/2016 2:58:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/6/2016 2:58:00 AM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/6/2016 2:58:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/6/2016 2:58:00 AM
Ethyl acetate	< 0.90	0.90		ug/m3	1	4/6/2016 2:58:00 AM
Ethylbenzene	0.65	0.65		ug/m3	1	4/6/2016 2:58:00 AM
Freon 11	2.2	0.84		ug/m3	1	4/6/2016 2:58:00 AM
Freon 113	0.92	1.1		ug/m3	1	4/6/2016 2:58:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	4/6/2016 2:58:00 AM

Qualifiers: **

В

Η

Results reported are not blank corrected

Έ Value above quantitation range

.

J Analyte detected at or below quantitation limits

ND Not Detected at the Reporting Limit

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Was 4-21-16

Reporting Limit

Page 33 of 38

Date: 07-Apr-16

CLIENT:	AMEC Environment & Infrastructure, Inc.	Client Sample ID: 828076-IA-004-GLASS OV	'ER
Lab Order:	C1603083	Tag Number: 133,1161	
Project:	Scobell	Collection Date: 3/29/2016	
Lab ID:	C1603083-017A	Matrix: AIR	

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		тс	-15			Analyst: RJF
Freon 12	3.8	0.74		ug/m3	1	4/6/2016 2:58:00 AM
Heptane	3.5	0.61		ug/m3	1	4/6/2016 2:58:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/6/2016 2:58:00 AM
Hexane	0.99	0.53		ug/m3	1.	4/6/2016 2:58:00 AM
Isopropyl alcohol	480	98		ug/m3	270	4/6/2016 9:16:00 PM
m&p-Xylene	1.8	1.3		ug/m3	1	4/6/2016 2:58:00 AM
Methyl Butyl Ketone	< 1.2 J	1.2		ug/m3	1	4/6/2016 2:58:00 AM
Methyl Ethyl Ketone	2.7	0.88		ug/m3	1	4/6/2016 2:58:00 AM
Methyl Isobutyl Ketone	0.66 T	1.2	J	ug/m3	1	4/6/2016 2:58:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/6/2016 2:58:00 AM
Methylene chloride	2.8	0.52		ug/m3	1	4/6/2016 2:58:00 AM
o-Xylene	1.6	0.65		ug/m3	1	4/6/2016 2:58:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/6/2016 2:58:00 AM
Styrene	< 0.64	0.64		ug/m3	1	4/6/2016 2:58:00 AM
Tetrachloroethylene	0.88	1.0	J	ug/m3	1	4/6/2016 2:58:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/6/2016 2:58:00 AM
Toluene	8.3 🖌	5.7		ug/m3	10	4/6/2016 7:29:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/6/2016 2:58:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/6/2016 2:58:00 AM
Trichloroethene	8.5	0.21		ug/m3	1	4/6/2016 2:58:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/6/2016 2:58:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/6/2016 2:58:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/6/2016 2:58:00 AM

Qualifiers:

**

Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

.

ND

J Analyte detected at or below quantitation limits

Not Detected at the Reporting Limit

Page 34 of 38

was 4-21-16

Date: 07-Apr-16

CLIENT: AMEC Environment & Infrastructure, Inc. Client Sample ID: 828076-IA-001-BASEMENT C1603083 Lab Order: **Tag Number: 170,117** Collection Date: 3/29/2016 **Project:** Scobel1 Matrix: AIR Lab ID: C1603083-018A Result **Limit Qual Units Analyses DF **Date Analyzed** 1UG/M3 W/ 0.25UG/M3 CT-TCE-VC TO-15 Analyst: RJP 1,1,1-Trichloroethane 0.71 4/6/2016 3:37:00 AM 0.82 J ug/m3 1 1,1,2,2-Tetrachloroethane < 1.0 1.0 ug/m3 1 4/6/2016 3:37:00 AM 1.1.2-Trichloroethane < 0.82 0.82 ug/m3 1 4/6/2016 3:37:00 AM 1,1-Dichloroethane < 0.61 0.61 ug/m3 1 4/6/2016 3:37:00 AM 1,1-Dichloroethene < 0.59 0.59 ug/m3 1 4/6/2016 3:37:00 AM 1,2,4-Trichlorobenzene < 1.1 1.1 ug/m3 1 4/6/2016 3:37:00 AM 1,2,4-Trimethylbenzene 50 7.4 ug/m3 10 4/6/2016 9:53:00 PM 1.2-Dibromoethane < 1.2 1.2 ug/m3 1 4/6/2016 3:37:00 AM < 0.90 0.90 1,2-Dichlorobenzene 1 ug/m3 4/6/2016 3:37:00 AM 1,2-Dichloroethane < 0.61 0.61 ug/m3 1 4/6/2016 3:37:00 AM < 0.69 0.69 4/6/2016 3:37:00 AM 1,2-Dichloropropane ug/m3 1 1,3,5-Trimethylbenzene 15 7.4 ug/m3 10 4/6/2016 9:53:00 PM 1.3-butadiene < 0.33 0.33 ug/m3 1 4/6/2016 3:37:00 AM < 0.90 0.90 1 1,3-Dichlorobenzene ug/m3 4/6/2016 3:37:00 AM 1,4-Dichlorobenzene < 0.90 0.90 ug/m3 1 4/6/2016 3:37:00 AM 1,4-Dioxane < 1.1 5 1.1 ug/m3 1 4/6/2016 3:37:00 AM < 0.70 0.70 2,2,4-trimethylpentane ug/m3 1 4/6/2016 3:37:00 AM 10 4-ethvltoluene 16 7.4 ug/m3 4/6/2016 9:53:00 PM 71 Acetone 28 ug/m3 40 4/6/2016 10:29:00 PM Allyl chloride < 0.47 0.47 ug/m3 1 4/6/2016 3:37:00 AM Benzene 0.96 0.48 ug/m3 1 4/6/2016 3:37:00 AM Benzyl chloride < 0.86 0.86 1 ug/m3 4/6/2016 3:37:00 AM Bromodichloromethane < 1.0 1.0 ug/m3 1 4/6/2016 3:37:00 AM Bromoform < 1.6 1.6 ug/m3 1 4/6/2016 3:37:00 AM Bromomethane < 0.58 0.58 ug/m3 1 4/6/2016 3:37:00 AM 4/6/2016 3:37:00 AM Carbon disulfide < 0.47 0.47 ug/m3 1 Carbon tetrachloride 0.75 0.25 ug/m3 1 4/6/2016 3:37:00 AM Chlorobenzene < 0.69 0.69 ug/m3 1 4/6/2016 3:37:00 AM Chloroethane < 0.40 0.40 ug/m3 1 4/6/2016 3:37:00 AM Chloroform 0.54 0.73 J ug/m3 1 4/6/2016 3:37:00 AM Chloromethane < 0.31 0.31 ug/m3 1 4/6/2016 3:37:00 AM cis-1,2-Dichloroethene < 0.59 0.59 ug/m3 1 4/6/2016 3:37:00 AM cis-1,3-Dichloropropene < 0.68 0.68 ug/m3 1 4/6/2016 3:37:00 AM 4/6/2016 3:37:00 AM Cvclohexane < 0.52 0.52 ug/m3 1 Dibromochloromethane < 1.3 ug/m3 1 1.3 4/6/2016 3:37:00 AM Ethyl acetate 0.97 0.90 ug/m3 1 4/6/2016 3:37:00 AM < 0.65 0.65 Ethylbenzene ug/m3 1 4/6/2016 3:37:00 AM Freon 11 2.1 0.84 ug/m3 1 4/6/2016 3:37:00 AM

Qualifiers: *

В

Η

Freon 113

Freon 114

Results reported are not blank corrected

Analyte detected at or below quantitation limits

1

1

E Value above quantitation range

Holding times for preparation or analysis exceeded J

0.84

< 1.0

1.1

1.0

J

ug/m3

ug/m3

ND

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Not Detected at the Reporting Limit Page 35 of 38

4/6/2016 3:37:00 AM

4/6/2016 3:37:00 AM

50 00 00 00

was y-UN6

^{**} Reporting Limit

Date: 07-Apr-16

CLIENT:AMEC Environment & Infrastructure, Inc.Client Sample ID:828076-IA-001-BASEMENTLab Order:C1603083Tag Number:170,117Project:ScobellCollection Date:3/29/2016Lab ID:C1603083-018AMatrix:AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
Freon 12	3.8	0.74		ug/m3	1	4/6/2016 3:37:00 AM
Heptane	5.5	0.61		ug/m3	1	4/6/2016 3:37:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/6/2016 3:37:00 AM
Hexane	< 0.53	0.53		ug/m3	1	4/6/2016 3:37:00 AM
Isopropyl alcohol	55	15		ug/m3	40	4/6/2016 10:29:00 PM
m&p-Xylene	3.1	1.3		ug/m3	1	4/6/2016 3:37:00 AM
Methyl Butyl Ketone	< 1.2 J	1.2		ug/m3	1	4/6/2016 3:37:00 AM
Methyl Ethyl Ketone	4.8	0.88		ug/m3	1	4/6/2016 3:37:00 AM
Methyl Isobutyl Ketone	< 1.2 5	1.2		ug/m3	. 1	4/6/2016 3:37:00 AM
Methyl tert-butyl ether	< 0.54	0.54		∙ug/m3	1	4/6/2016 3:37:00 AM
Methylene chloride	2.5	0.52		ug/m3	1	4/6/2016 3:37:00 AM
o-Xylene	4.4	0.65		ug/m3	1	4/6/2016 3:37:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/6/2016 3:37:00 AM
Styrene	< 0.64	0.64		ug/m3	1	4/6/2016 3:37:00 AM
Tetrachloroethylene	3.9	1.0		ug/m3	1	4/6/2016 3:37:00 AM
Tetrahydrofuran	1.9	0.44		ug/m3	1	4/6/2016 3:37:00 AM
Toluene	21	5.7		ug/m3	10	4/6/2016 9:53:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/6/2016 3:37:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/6/2016 3:37:00 AM
Trichloroethene	28	2.1		ug/m3	10	4/6/2016 9:53:00 PM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/6/2016 3:37:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/6/2016 3:37:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/6/2016 3:37:00 AM

Qualifiers:

**

В

Reporting Limit

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Value above quantitation range

.

ND

J Analyte detected at or below quantitation limits

Not Detected at the Reporting Limit Page 36 of 38

NN

Date: 07-Apr-16

CLIENT: AMEC Environment & Infrastructure, Inc. Client Sample ID: 828076-AA-001-02 Lab Order: C1603083 **Tag Number:** 1191,177 Collection Date: 3/29/2016 **Project:** Scobell Lab ID: C1603083-019A Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-	15		Analyst: RJI
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/6/2016 4:16:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/6/2016 4:16:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/6/2016 4:16:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/6/2016 4:16:00 AM
1,1-Dichloroethene	< 0.59	0.59	ug/m3	1	4/6/2016 4:16:00 AM
1,2,4-Trichlorobenzene	< 1.1	ຸ 1.1	ug/m3	1	4/6/2016 4:16:00 AM
1,2,4-Trimethylbenzene	0.84	0.74	ug/m3	1	4/6/2016 4:16:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/6/2016 4:16:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/6/2016 4:16:00 AM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/6/2016 4:16:00 AM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/6/2016 4:16:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74	ug/m3	1	4/6/2016 4:16:00 AM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/6/2016 4:16:00 AM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/6/2016 4:16:00 AM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/6/2016 4:16:00 AM
1,4-Dioxane	< 1.1 J	1.1	ug/m3	1	4/6/2016 4:16:00 AM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/6/2016 4:16:00 AM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/6/2016 4:16:00 AM
Acetone	16	3.6	ug/m3	5	4/6/2016 11:06:00 PM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/6/2016 4:16:00 AM
Benzene	0.54	0.48	ug/m3	1	4/6/2016 4:16:00 AM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/6/2016 4:16:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	4/6/2016 4:16:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	4/6/2016 4:16:00 AM
Bromomethane	< 0.58	0.58	ug/m3	1	4/6/2016 4:16:00 AM
Carbon disulfide	< 0.47	0.47	ug/m3	1	4/6/2016 4:16:00 AM
Carbon tetrachloride	0.82	0.25	ug/m3	1	4/6/2016 4:16:00 AM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/6/2016 4:16:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/6/2016 4:16:00 AM
Chloroform	< 0.73	0.73	ug/m3	1	4/6/2016 4:16:00 AM
Chloromethane	1.7	0.31	ug/m3	1	4/6/2016 4:16:00 AM
cis-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/6/2016 4:16:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/6/2016 4:16:00 AM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/6/2016 4:16:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/6/2016 4:16:00 AM
Ethyl acetate	< 0.90	0.90	ug/m3	1	4/6/2016 4:16:00 AM
Ethylbenzene	< 0.65	0.65	ug/m3	1	4/6/2016 4:16:00 AM
Freon 11	2.2	0.84	ug/m3	1	4/6/2016 4:16:00 AM
Freon 113	0.92	1.1	J ug/m3	1	4/6/2016 4:16:00 AM
Freon 114	< 1.0	1.0	ug/m3	1	4/6/2016 4:16:00 AM

Qualifiers: **

В Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits Results reported are not blank corrected

Е *Value above quantitation range

ND

Analyte detected at or below quantitation limits J

Not Detected at the Reporting Limit

Page 37 of 38

Reporting Limit

Date: 07-Apr-16

	& Infrastructu	ire, Inc.	-		
Scobell			U		
C1603083-019A			М	atrix: AIR	
· · · · · · · · · · · · · · · · · · ·	Result	**Limit	Qual Units	DF	Date Analyzed
5UG/M3 CT-TCE-VC		то	-15		Analyst: RJF
	C1603083 Scobell C1603083-019A	C1603083 Scobell C1603083-019A Result	Scobell C1603083-019A Result **Limit	C1603083 Tag Nu. Scobell Collection C1603083-019A M Result **Limit Qual Units	C1603083 Tag Number: 1191, Scobell Collection Date: 3/29/2 C1603083-019A Matrix: AIR Result **Limit Qual Units DF

Freon 12	4.1	0.74		ug/m3	1	4/6/2016 4:16:00 AM
Heptane	< 0.61	0.61		ug/m3	1	4/6/2016 4:16:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/6/2016 4:16:00 AM
Hexane	< 0.53	0.53		ug/m3	1	4/6/2016 4:16:00 AM
Isopropyl alcohol	2.1	0.37		ug/m3	1	4/6/2016 4:16:00 AM
m&p-Xylene	0.56	1.3	J	ug/m3	1	4/6/2016 4:16:00 AM
Methyl Butyl Ketone	< 1.2 J	1.2		ug/m3	1	4/6/2016 4:16:00 AM
Methyl Ethyl Ketone	0.68	0.88	J	ug/m3	1	4/6/2016 4:16:00 AM
Methyl Isobutyl Ketone	< 1.2 J	1.2		ug/m3	1	4/6/2016 4:16:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/6/2016 4:16:00 AM
Methylene chloride	1.9	0.52		ug/m3	1	4/6/2016 4:16:00 AM
o-Xylene	< 0.65	0.65		ug/m3	1	4/6/2016 4:16:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/6/2016 4:16:00 AM
Styrene	< 0.64	0.64		ug/m3	1	4/6/2016 4:16:00 AM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/6/2016 4:16:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/6/2016 4:16:00 AM
Toluene	0.60	0.57		ug/m3	1	4/6/2016 4:16:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/6/2016 4:16:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/6/2016 4:16:00 AM
Trichloroethene	< 0.21	0.21		ug/m3	1 ·	4/6/2016 4:16:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/6/2016 4:16:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/6/2016 4:16:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/6/2016 4:16:00 AM

Qualifiers:

**

Reporting Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Value above quantitation range

ND Not Detected at the Reporting Limit

J Analyte detected at or below quantitation limits

.

Page 38 of 38

W-49 4-21-16

ATTACHMENT 3

DATA USABILITY SUMMARY REPORT

DATA USABILITY SUMMARY REPORT MARCH 2016 AIR SAMPLING EVENT SCOBELL CHEMICAL SITE BRIGHTON, NEW YORK

1.0 INTRODUCTION

Air samples were collected at the Scobell Chemical site in March 2016 and submitted to Centek Laboratories located in Syracuse, New York, for analysis. Samples were analyzed by the following method:

• Volatile organic compounds (VOCs) by USEPA Method TO-15

Results were reported in the following sample delivery group (SDG):

• C1603083

A Data Usability Summary Report (DUSR) review was completed based on the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation guidance (NYSDEC, 2010). Sample event information included in this DUSR is presented in the following tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions

Laboratory deliverables included:

• Category B deliverable as defined in the NYSDEC Analytical Services Protocols (NYSDEC, 2005).

The DUSR review included the following evaluations. A table of project control limits is presented in Attachment A. DUSR review checklists and applicable laboratory QC summary forms are included in Attachment B to document DUSR checks and QC outliers associated with qualification actions.

- Lab Report Narrative Review
- Data Package Completeness and COC records (Table 1 verification)
- Sample Preservation and Holding Times
- Instrument Calibration (report narrative/lab-qualifier evaluation)
- QC Blanks
- Laboratory Control Samples (LCS)
- Surrogate Spikes (if applicable)
- Field Duplicates
- Target Analyte Identification and Quantitation
- Raw Data (chromatograms), Calculation Checks and Transcription Verifications
- Reporting Limits
- Electronic Data Qualification and Verification

Data qualification actions are applied when necessary based on general procedures in USEPA validation guidelines (USEPA, 2006) and the judgment of the project chemist. The following laboratory or data review qualifiers are used in the final data presentation:

\\PLD2-FS1\Projects\rojects\nysdec1\Contract D007619\Projects\Scobell Chemical -RD\3.0_Site_Data\3.4_Test_Results\Chem Review and DUSR\DUSR\2016\Scobell-DUSR_Air_Mar_2016.doc J = concentration is estimated

U = target analyte is not detected above the reported detection limit

UJ = the target compound was not detected and the reporting limit is considered to be estimated

Results are interpreted to be usable as reported by the laboratory or as qualified in the following sections.

2.0 POTENTIAL DATA LIMITATIONS

Based on the DUSR review the majority of data meet the data quality objectives; however, the following potential limitations were identified:

- Results for 1,4-dioxane, 2-hexanone, and 4-methyl-2-pentanone in all samples are qualified estimated (J/UJ) based on low LCS recoveries. Qualified results are summarized on Table 3.
- Results for o-xylene in a subset of samples were qualified estimated (J) based on a high LCS recovery. Qualified results are summarized on Table 3.
- One or more internal standard responses were greater than the control limits for a subset of samples. The laboratory narrative noted potential chromatographic interference from high concentrations of possible fuel-related compounds. Results for associated target analytes in affected samples were qualified estimated (J/UJ). Qualified results are summarized on Table 3.
- Reported results for samples 828076-SS-005-01 and 828076-IA-001-NSC and associated field duplicates were inconsistent for a subset of analytes. Positive and non-detected results for affected analytes were qualified estimated (J/UJ). Qualified results are summarized on Table 3.

3.0 ADDITIONAL QC EXCEEDANCES AND OBSERVATIONS

Additional observations and quality control exceedances not specifically addressed above (Section 2.0) or included in Table 3 are summarized below. Unless presented in Table 3, sample results are interpreted to be usable as reported by the laboratory.

Instrument Continuing Calibration

The laboratory narrative noted the continuing calibration percent differences (%Ds) for bromoform and hexachlorobutadiene were outside control limit of 30 and indicated a potential high bias. No laboratory qualifiers associated with calibration were reported with sample data and sample results were reported unqualified. Bromoform and hexachlorobutadiene are not primary site contaminants and the calibration outliers are not interpreted to be a significant data limitation.

Project No. 3617147328.05

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA Region 2, 2006. "Validating Volatile Organic Analysis of Ambient Air in Canister by Method TO-15"; SOP # HW-31, Revision 4, Hazardous Waste Support Branch; October 2006.

Data Validator: Willie Stone

April 28, 2016

Kuth Sto

Reviewed by: Julie Ricardi

Julie Nicares

May 2, 2016

TABLE 1

SUMMARY OF SAMPLES AND ANALYTICAL METHODS DATA USABILITY SUMMARY REPORT MARCH 2016 AIR SAMPLING EVENT SCOBELL CHEMICAL SITE BRIGHTON, NEW YORK

		Met	hod Class	VOCs		
				Analysi	s Method	Method TO-15
					Fraction	Total
SDG	Location	Sample ID	Sample Date	Media	Qc Code	Param_Count
C1603083	AA-005	828076-AA-005-02	3/28/2016	AIR	FS	63
C1603083	Glass Studio-Gallery	828076-IA-004-GALLERY/OFFICE	3/29/2016	AIR	FS	63
C1603083	Glass Studio-Oven Area	828076-IA-004-GLASS OVER AREA	3/29/2016	AIR	FS	63
C1603083	Main Building-Basement	828076-IA-001-BASEMENT	3/29/2016	AIR	FS	63
C1603083	Main Building-BCC	828076-IA-001-BCC	3/29/2016	AIR	FS	63
C1603083	Main Building-Boxman	828076-IA-001-BOXMAN	3/28/2016	AIR	FS	63
C1603083	Main Building-Center	828076-IA-001-CENTRAL	3/28/2016	AIR	FS	63
C1603083	Main Building-Center	828076-SS-001-01	3/28/2016	AIR	FS	63
C1603083	Main Building-Dog Day Care	828076-IA-001-DOGGY DA CARE	3/28/2016	AIR	FS	63
C1603083	Main Building-NSC	828076-IA-001-NSC	3/28/2016	AIR	FS	63
C1603083	Main Building-NSC	828076-IA-001-NSCD	3/28/2016	AIR	FD	63
C1603083	Main Building-Tryon	828076-IA-001-TRYON	3/28/2016	AIR	FS	63
C1603083	Outside	828076-AA-001-01	3/28/2016	AIR	FS	63
C1603083	Outside	828076-AA-001-02	3/29/2016	AIR	FS	63
C1603083	P-005-01	828076-IA-005-01	3/28/2016	AIR	FS	63
C1603083	P-005-01	828076-SS-005-01	3/28/2016	AIR	FS	63
C1603083	P-005-01	828076-SS-005-01D	3/28/2016	AIR	FD	63
C1603083	P-005-02	828076-IA-005-02	3/28/2016	AIR	FS	63
C1603083	P-005-02	828076-SS-005-02	3/28/2016	AIR	FS	63

Notes:

FS = Field Sample

FD = Field Duplcate

Param_Count = number of target analytes reported

Lab Sample Delive	ry Group	C1603083	3	C16	603083	C16030	33
	Location	AA-005		Glass St	udìo-Gallery	Glass Studio-O	ven Area
Field Sam	ple Date	3/28/2016 00	:00	3/29/2	016 00:00	3/29/2016 (00:00
Field S	ample ID	828076-AA-00	5-02	828076-IA-004-	GALLERY/OFFICE	828076-IA-004-GLAS	S OVER AREA
	Qc Code	FS			FS	FS	
Analysis	s Method	TO-15		Т	O-15	TO-15	
Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier
1,1,1-Trichloroethane	ug/m3	0.82 U		0.82	U	0.82 U	
1,1,2,2-Tetrachloroethane	ug/m3	1 U			U	1 U	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	1 J		0.92	J	0.92 J	
1,1,2-Trichloroethane	ug/m3	0.82 U		0.82	U	0.82 U	
1,1-Dichloroethane	ug/m3	0.61 U		0.61	U	0.61 U	
1,1-Dichloroethene	ug/m3	0.59 U		0.59		0.59 U	
1,2,4-Trichlorobenzene	ug/m3	1.1 U		1.1		1.1 U	
1,2,4-Trimethylbenzene	ug/m3	0.74 U		30		13 J	
1,2-Dibromoethane	ug/m3	1.2 U		1.2	U	1.2 U	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ug/m3	1 U		1	U	1 U	
1,2-Dichlorobenzene	ug/m3	0.9 U		0.9	U	0.9 U	
1.2-Dichloroethane	ug/m3	0.61 U		0.61	U	0.61 U	
1,2-Dichloropropane	ug/m3	0.69 U		0.69	U	0.69 U	
1,3,5-Trimethylbenzene	ug/m3	0.74 U	· · · · ·	9.3		6.2	
1,3-Butadiene	ug/m3	0.33 U		0.33	U	0.33 U	
1,3-Dichlorobenzene	ug/m3	0.9 U		0.9	U	0.9 U	
1,4-Dichlorobenzene	ug/m3	0.9 U		0.9		0.9 U	
1,4-Dioxane	ug/m3	1.1 UJ		1.1	-UJ	1.1 UJ	
2-Butanone	ug/m3	0.94		2.7		2.7	
2-Hexanone	ug/m3	1.2 UJ		1.2	UJ	1.2 UJ	
2-Propanol	ug/m3	2.4		44		480	
4-Ethyltoluene	ug/m3	0.74 U		11		8.7	
4-Methyl-2-pentanone	ug/m3	1.2 UJ		0.9	J	0.66 J	
Acetone	ug/m3	17		81		32	
Allyl chloride	ug/m3	0.47 U		0.47	<u>υ</u>	0.47 U	
Benzene	ug/m3	0.54		0.83		0.83	······································
Benzyl chloride	ug/m3	0.86 U		0.86		0.86 U	
Bromodichloromethane	ug/m3	1 U			U	<u>1 U</u>	
Bromoform	ug/m3	1.6 U		1.6		1.6 U	
Bromomethane	ug/m3	0.58 U		0.58		0.58 U	
Carbon disulfide	ug/m3	0.37 J		0.47	U	0.47 U	
Carbon tetrachloride	ug/m3	1		0.88		0.75	
Chlorobenzene	ug/m3	0.69 U		0.69		0.69 U	
Chloroethane	ug/m3	0.4 U		0.4	U	0.4 U	
Chloroform	ug/m3	0.73 U		0.78		0.54 J	

Created by: KMS April 28, 2016 Reviewed by: WAS April 28, 2016

1 of 14

P:Projects\nysdec1\Contract D007619\Projects\Scobell Chemical - RD\3.0_Site_Data\3.4_Test_Results\Chem Review and DUSR\DUSR\2016\March_Air_Table_2_3.xlsx

Lab San	nple Delivery Group	C1603083	C1603083	C1603083
	Location	AA-005	Glass Studio-Gallery	Glass Studio-Oven Area
	Field Sample Date	3/28/2016 00:00	3/29/2016 00:00	3/29/2016 00:00
	Field Sample ID	828076-AA-005-02	828076-IA-004-GALLERY/OFFICE	828076-IA-004-GLASS OVER AREA
	Qc Code	FS	FS	FS .
	Analysis Method	TO-15	TO-15	TO-15
Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier
Chloromethane	ug/m3	1.8	0.31 U	1.9
Cis-1,2-Dichloroethene	ug/m3	0.59 U	0.59 U	0.59 U
Cis-1,3-Dichloropropene	ug/m3	0.68 U	0.68 U	0.68 U
Cyclohexane	ug/m3	0.52 U	1.5	0.52 U
Dibromochloromethane	ug/m3	1.3 U	1.3 U	1.3 U
Dichlorodifluoromethane	ug/m3	4	4	3.8
Ethyl acetate	ug/m3	0.9 U	0.72 J	0.9 U
Ethylbenzene	ug/m3	0.65 U	0.65 U	0.65
Heptane	ug/m3	0.61 U	3.6	3.5
Hexachlorobutadiene	ug/m3	1.6 U	1.6 U	1.6 U
Hexane	ug/m3	0.53 U	1.2	0.99
Isooctane	ug/m3	0.7 U	0.7 U	0.7 U
Methyl Tertbutyl Ether	ug/m3	0.54 U	0.54 U	0.54 U
Methylene chloride	ug/m3	6.4	2.5	2.8
Propyiene	ug/m3	0.26 U	0.26 U	0.26 U
Styrene	ug/m3	0.64 U	0.64 U	0.64 U
Tetrachloroethene	ug/m3	1 U	1.4	0.88 J
Tetrahydrofuran	ug/m3	0.44 U	0.44 U	0.44 U
Toluene	ug/m3	0.6	12	8.3 J
trans-1,2-Dichloroethene	ug/m3	0.59 U	0.59 U	0.59 U
trans-1,3-Dichloropropene	ug/m3	0.68 U	0.68 U	0.68 U
Trichloroethene	ug/m3	0.21 U	14	8.5
Trichlorofluoromethane	ug/m3	2.3	2.5	2.2
Vinyl acetate	ug/m3	0.53 U	0.53 U	0.53 U
Vinyl bromide	ug/m3	0.66 U	0.66 U	0.66 U
Vinyl chloride	ug/m3	0.1 U	0.1 U	0.1 U
Xylene, o	ug/m3	0.65 U	2.7	1.6
Xylenes (m&p)	ug/m3	0.74 J	2.1	1.8

Notes:

J = The reported concentration is considered an estimated value

UJ = The target compound was not detected and the reporting limit is considered to be estimated

U = The target compound was not detected above the reporting limit

ug/m3 = microgram per cubic meter

FS = Field Sample

FD = Field Duplicate

.

Lab Sample Delive	ry Group	C1603083		C160	3083	C16030	183
	Location	Main Building-Base	ement	Main Buik		Main Building	
Field San		3/29/2016 00:0		3/29/201		3/28/2016	00.00
	ample ID	828076-IA-001-BASI		828076-IA		828076-IA-001	
•	Qc Code	FS		F		FS	Dorum
	s Method	го ТО-15		ТО		TO-15	
Parameter	Units)ualifier	Result	Qualifier	Result	Qualifier
1,1,1-Trichloroethane	ug/m3	0.71 J	counter	0.82 U		0.82 U	Quanto
1,1,2,2-Tetrachloroethane	ug/m3	1 U		1 U		1 UJ	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	0.84 J		0.92 J		0.92 J	
1,1,2-Trichloroethane	ug/m3	0.82 U		0.82 U		0.82 U	
1,1-Dichloroethane	ug/m3	0.61 U		0.61 U		0.61 U	· · · _ · _ · _ · _ · _ · _ · _ · _
1,1-Dichloroethene	ug/m3	0.59 U		0.59 U		0.59 U	
1,2,4-Trichlorobenzene	ug/m3	1.1 U		1.1 U		1.1 UJ	
1,2,4-Trimethylbenzene	ug/m3	50		0.88		1.4 J	
1,2-Dibromoethane	ug/m3	1.2 U		1.2 U		1.2 UJ	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ug/m3	1 U		1 U		10	
1.2-Dichlorobenzene	ug/m3	0.9 U		0.9 U		0.9 UJ	•
1,2-Dichloroethane	ug/m3	0.61 U		0.61 U		0.61 U	
1,2-Dichloropropane	ug/m3	0.69 U		0.69 U		0.69 U	
1,3,5-Trimethylbenzene	ug/m3	15		0.74 U		0.74 UJ	
1.3-Butadiene	ug/m3	0.33 U		0.33 U		0.33 U	
1,3-Dichlorobenzene	ug/m3	0.9 U		0.9 U		0.9 UJ	
1,4-Dichlorobenzene	ug/m3	0.9 U		0.9 U		0.9 UJ	
1,4-Dioxane	ug/m3	1.1 UJ		1.1 U	J	1.1 UJ	
2-Butanone	ug/m3	4.8		2.7		2.2	
2-Hexanone	ug/m3	1.2 UJ		1.2 U	IJ	1.2 UJ	
2-Propanol	ug/m3	55		21		15	
4-Ethyltoluene	ug/m3	16		0.74 U		0.49 J	
4-Methyl-2-pentanone	ug/m3	1.2 UJ		1.2 U	J	0.66 J	
Acetone	ug/m3	71		28		21	
Allyl chloride	ug/m3	0.47 U		0.47 U		0.47 U	· · · · · · · · · · · · · · · · · · ·
Benzene	ug/m3	0.96		0.8		0.77	
Benzyl chloride	ug/m3	0.86 U		0.86 U		0.86 UJ	
Bromodichloromethane	ug/m3	10		1 U		<u>1U</u>	, ·-
Bromoform	ug/m3	1.6 U		1.6 U		1.6 UJ	
Bromomethane	ug/m3	0.58 U		0.58 U		0.58 U	
Carbon disulfide	ug/m3	0.47 U		0.47 U		0.47 U	
Carbon tetrachloride	ug/m3	0.75		0.88		0.82	
Chlorobenzene	ug/m3	0.69 U		0.69 U		0.69 UJ	· · · · · · · · · · · · · · · · · · ·
Chloroethane	ug/m3	0.4 U		0.4 U		0.4 U	
Chloroform	ug/m3	0.54 J		1.4		0.73 U	

Lab Sar	nple Delivery Group	C1603083	C1603083	C1603083
· · · · · ·	Location	Main Building-Basement	Main Building-BCC	Main Building-Boxman
	Field Sample Date	3/29/2016 00:00	3/29/2016 00:00	3/28/2016 00:00
	Field Sample ID	828076-IA-001-BASEMENT	828076-IA-001-BCC	828076-IA-001-BOXMAN
	Qc Code	FS	FS	FS
	Analysis Method	TO-15	TO-15	TO-15
Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier
Chloromethane	ug/m3	0.31 U	1.8	2.3
Cis-1,2-Dichloroethene	ug/m3	0.59 U	0.59 U	0.59 U
Cis-1,3-Dichloropropene	ug/m3	0.68 U	0.68 U	0.68 U
Cyclohexane	ug/m3	0.52 U	0.52 U	0.52 U
Dibromochloromethane	ug/m3	1.3 Ü	1.3 U	1.3 UJ
Dichlorodifluoromethane	ug/m3	3.8	4	4.1
Ethyl acetate	ug/m3	0.97	0.9 U	0.9 U
Ethylbenzene	ug/m3	0.65 U	0.78	0.65 UJ
Heptane	ug/m3	5.5	0.61 U	1.6
Hexachlorobutadiene	ug/m3	1.6 U	1.6 U	1.6 UJ
Hexane	ug/m3	0.53 U	1.1	1.1
Isooctane	ug/m3	0.7 U	0.7 U	0.7 U
Methyl Tertbuty! Ether	ug/m3	0.54 U	0.54 U	0.54 U
Methylene chloride	ug/m3	2.5	2.8	5.3
Propylene	ug/m3	0.26 U	0.26 U	0.26 U
Styrene	ug/m3	0.64 U	0.64 U	0.64 UJ
Tetrachloroethene	ug/m3	3.9	1 U	1 UJ
Tetrahydrofuran	ug/m3	1.9	0.44 U	0.44 U
Toluene	ug/m3	21	2.8	2.2 J
trans-1,2-Dichloroethene	ug/m3	0.59 U	0.59 U	0.59 U
trans-1,3-Dichloropropene	ug/m3	0.68 U	0.68 U	0.68 U
Trichloroethene	ug/m3	28	0.21 U	0.59
Trichlorofluoromethane	ug/m3	2.1	2.2	2.2
Vinyl acetate	ug/m3	0.53 U	0.53 U	0.53 U
Vinyl bromide	ug/m3	0.66 U	0.66 U	0.66 U
Vinyl chloride	ug/m3	0.1 U	0.1 U	0.1 U
Xylene, o	ug/m3	4.4	0.87	0.52 J
Xylenes (m&p)	ug/m3	3.1	2.9	2.4 J

Notes:

J = The reported concentration is considered an e

UJ = The target compound was not detected and

U = The target compound was not detected above

ug/m3 = microgram per cubic meter

FS = Field Sample

FD = Field Duplicate

Lab Sample Delive	ery Group	C1603083	C1603083	C1603083
	Location	Main Building-Center	Main Building-Center	Main Building-Dog Day Care
Field Sar	nple Date	3/28/2016 00:00	3/28/2016 00:00	3/28/2016 00:00
Field S	Sample ID	828076-IA-001-CENTRAL	828076-SS-001-01	828076-IA-001-DOGGY DA CARE
	Qc Code	FS	FS	FS
Analysi	s Method	TO-15	TO-15	TO-15
Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	ug/m3	0.82 U) 11 J	0.82 U
1,1,2,2-Tetrachloroethane	ug/m3	1 U	. 1 UJ	1 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	0.92 J	0.77 J	1 J
1,1,2-Trichloroethane	ug/m3	0.82 U	0.82 UJ	0.82 U
1,1-Dichloroethane	ug/m3	0.61 U	0.45 J	0.61 U
1,1-Dichloroethene	ug/m3	0.59 U	0.59 U	0.59 U
1,2,4-Trichlorobenzene	ug/m3	1.1 U	1.1 UJ	1.1 Ü
1,2,4-Trimethylbenzene	ug/m3	0.69 J	1.2 J	0.69 J
1,2-Dibromoethane	ug/m3	1.2 U	1.2 UJ	1.2 U
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ug/m3	1 U	10 .	1 U
1,2-Dichlorobenzene	ug/m3	0.9 U	0.9 UJ	0.9 U
1,2-Dichloroethane	ug/m3	0.61 U	0.61 U	0.61 U
1,2-Dichloropropane	ug/m3	0.69 U	0.69 UJ	0.69 U
1,3,5-Trimethylbenzene	ug/m3	0.74 U	1 J	0.74 U
1,3-Butadiene	ug/m3	0.33 U	0.33 U	0.33 U
1,3-Dichlorobenzene	ug/m3	0.9 U	0.9 UJ	0.9 U
1,4-Dichiorobenzene	ug/m3	0.9 U	0.9 UJ	0.9 U
1,4-Dioxane	ug/m3	1.1 UJ	1.1 UJ	1.1 UJ
2-Butanone	ug/m3	1.8	3.2	4.8
2-Hexanone	ug/m3	1.2 UJ	1.2 UJ	1.2 UJ
2-Propanol	ug/m3	26	3.7	91
4-Ethyltoluene	ug/m3	0.74 U	0.74 UJ	0.74 U
4-Methyl-2-pentanone	ug/m3	0.45 J	1.2 UJ	0.45 J
Acetone	ug/m3	29	58	38
Allyl chloride	ug/m3	0.47 U	0.47 U	0.47 U
Benzene	ug/m3	0.51	2.1 J	0.51
Benzyl chloride	ug/m3	0.86 U	0.86 UJ	0.86 U
Bromodichloromethane	ug/m3	1 U	1 UJ	<u> </u>
Bromoform	ug/m3	1.6 U	1.6 UJ	1.6 U
Bromomethane	ug/m3	0.58 U	0.58 U	0.58 U
Carbon disulfide	ug/m3	0.47 U	9.3	0.47 U
Carbon tetrachloride	ug/m3	0.82	1.4 J	0.82
Chlorobenzene	ug/m3	0.69 U	0.69 UJ	0.69 U
Chloroethane	ug/m3	0.4 U	0.4 U	0.4 U
Chloroform	ug/m3	0.73 U	1.8	0.68 J

Created by: KMS April 28, 2016 Reviewed by: WAS April 28, 2016

P:ProjectsInyscient/Contract D007619/ProjectsIScobell Chemical - RDI3.0_Site_DataI3.4_Test_Results/Chem Review and DUSR/DUSR/2016Matroin_Air_Table_2_3.xisx

Lab San	nple Delivery Group	C1603083	C1603083	C1603083
	Location	Main Building-Center	Main Building-Center	Main Building-Dog Day Care
- -	Field Sample Date	3/28/2016 00:00	3/28/2016 00:00	3/28/2016 00:00
	Field Sample ID	828076-IA-001-CENTRAL	828076-SS-001-01	828076-IA-001-DOGGY DA CARE
	Qc Code	FS	FS	FS
	Analysis Method	TO-15	TO-15	TO-15
Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier
Chloromethane	ug/m3	1.6	0.31 U	1.7
Cis-1,2-Dichloroethene	ug/m3	0.59 U	1.7	0.59 U
Cis-1,3-Dichloropropene	ug/m3	0.68 U	0.68 UJ	0.68 U
Cyclohexane	ug/m3	0.52 U	3.5 J	0.52 U
Dibromochloromethane	ug/m3	1.3 U	1.3 UJ	1.3 U
Dichlorodifluoromethane	ug/m3	4	3.1	3.9
Ethyl acetate	ug/m3	0.9 U	1	0.9 U
Ethylbenzene	ug/m3	0.65 U	0.43 J	0.65 U
Heptane	ug/m3	0.61 U	2.4 J	0.61 U
Hexachlorobutadiene	ug/m3	1.6 U	1.6 UJ	1.6 U
Hexane	ug/m3	0.53 U	2.4	0.53 U
Isooctane	ug/m3	0.7 U	0.7 UJ	0.7 U
Methyl Tertbutyl Ether	ug/m3	0.54 U	0.54 U	0.54 U
Methylene chloride	ug/m3	3.4	2.3	2
Propylene	ug/m3	0.26 U	0.26 U	0.26 U
Styrene	ug/m3	0.64 U	0.64 UJ	0.64 U
Tetrachloroethene	ug/m3	1 U	77	10
Tetrahydrofuran	ug/m3	0.44 U	0.44 U	0.44 U
Toluene	ug/m3	1.3	5.3 J	2.1
trans-1,2-Dichloroethene	ug/m3	0.59 U	0.59 U	0.59 U
trans-1,3-Dichloropropene	ug/m3	0.68 U	0.68 UJ	0.68 U
Trichloroethene	ug/m3	0.48	350	0.21 U
Trichlorofluoromethane	ug/m3	2.8	2	2.2
Vinyl acetate	ug/m3	0.53 U	0.53 U	0.53 U
Vinyl bromide	ug/m3	0.66 U	0.66 U	0.66 U
Vinyl chloride	ug/m3	0.1 U	0.38 U	0.1 U
Xylene, o	ug/m3	0.65 U	0.82 J	0.65 U
Xylenes (m&p)	ug/m3	0.96 J	2 J	0.48 J

Notes:

J = The reported concentration is considered an e

UJ = The target compound was not detected and

U = The target compound was not detected above

ug/m3 = microgram per cubic meter

FS = Field Sample

FD = Field Duplicate

Lab Sample Delive	ry Group	C1603083	C1603083	C1603083
	Location	Main Building-NSC	Main Building-NSC	Main Building-Tryon
Field San	nple Date	3/28/2016 00:00	3/28/2016 00:00	3/28/2016 00:00
Field S	ample ID	. 828076-IA-001-NSC	828076-IA-001-NSCD	828076-IA-001-TRYON
	Qc Code	FS	FD	FS
Analysi	s Method	TO-15	TO-15	TO-15
Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	ug/m3 i	0.82 U	. 0.82 U	2.9
1,1,2,2-Tetrachloroethane	ug/m3	1 U	1 UJ	10
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	0.84 J	0.84 J	0.92 J
1,1,2-Trichloroethane	ug/m3	0.82 U	0.82 U	0.82 U
1,1-Dichloroethane	ug/m3	0.61 U	0.61 U	0.61 U
1,1-Dichloroethene	ug/m3	0.59 U	0.59 U	0.59 U
1,2,4-Trichlorobenzene	ug/m3	1.1 U	1.1 UJ	1.1 U
1,2,4-Trimethylbenzene	ug/m3	1	1.1 J	760
1,2-Dibromoethane	ug/m3	1.2 U	1.2 UJ	1.2 U
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ug/m3	1 U	1 U	1 U
1,2-Dichlorobenzene	ug/m3	0.9 U	0.9 UJ	0.9 U
1,2-Dichloroethane	ug/m3	0.61 U	0.61 U	0.61 U
1,2-Dichloropropane	ug/m3	0.69 U	0.69 U	0.69 U
1,3,5-Trimethylbenzene	ug/m3	0.74 U	0.74 UJ	230
1,3-Butadiene	ug/m3	0.33 U	0.33 U	0.33 U
1,3-Dichlorobenzene	ug/m3	0.9 U	0.9 UJ	0.9 U
1,4-Dichlorobenzene	ug/m3	0.9 U	0.9 UJ	0.9 U
1,4-Dioxane	ug/m3	1.1 UJ	2.8 J	1.1 UJ
2-Butanone	ug/m3	2.6	1.9	3.6
2-Hexanone	ug/m3	1.2 UJ	1.2 UJ	1.2 UJ
2-Propanol	ug/m3	20	31	150
4-Ethyltoluene	ug/m3	0.74 U	0.74 UJ	240
4-Methyl-2-pentanone	ug/m3	1.2 UJ	1.2 UJ	1.2 UJ
Acetone	ug/m3	23	29	340
Allyl chloride	ug/m3	0.47 U	0.47 U	0.47 U
Benzene	ug/m3	0.64	0.57	0.48 U
Benzyl chloride	ug/m3	0.86 U	0.86 UJ	0.86 U
Bromodichloromethane	ug/m3	1 U	1 U	1 U
Bromoform	ug/m3	1.6 U	1.6 UJ	1.6 U
Bromomethane	ug/m3	0.58 U	0.58 U	0.58 U
Carbon disulfide	ug/m3	0.47 U	0.47 U	0.53
Carbon tetrachloride	ug/m3	0.88	0.82	0.94
Chlorobenzene	ug/m3	0.69 U	0.69 UJ	0.69 U
Chioroethane	ug/m3	0.4 U	0.4 U	0.4 U
Chloroform	ug/m3	0.73 U	0.73 U	0.63 J

Created by: KMS April 28, 2016 Reviewed by: WAS April 28, 2016

7 of 14

.

Lab Sar	nple Delivery Group	C1603083	C1603083	C1603083
	Location	Main Building-NSC	Main Building-NSC	Main Building-Tryon
	Field Sample Date	3/28/2016 00:00	3/28/2016 00:00	3/28/2016 00:00
	Field Sample ID	828076-IA-001-NSC	828076-IA-001-NSCD	828076-IA-001-TRYON
	Qc Code	FS	FD	FS
1	Analysis Method	TO-15	TO-15	TO-15
Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier
Chloromethane	ug/m3	2.4	2	1.7
Cis-1,2-Dichloroethene	ug/m3	0.59 U	0.59 U	0.4 J
Cis-1,3-Dichloropropene	ug/m3	0.68 U	0.68 U	0.68 U
Cyclohexane	ug/m3	0.52 U	0.52 U	4.8
Dibromochloromethane	ug/m3	1.3 U	1.3 UJ	1.3 U
Dichlorodifluoromethane	ug/m3	4	3.6	3.7
Ethyl acetate	ug/m3	0.9 U	0.9 U	3.7
Ethylbenzene	ug/m3	0.56 J	0.52 J	0.65 U
Heptane	ug/m3	2.2 J	0.61 UJ	14 .
Hexachlorobutadiene	ug/m3	1.6 U	1.6 UJ	1.6 U
Hexane	ug/m3	0.53 U	0.53 U	0.53 U
Isooctane	ug/m3	0.7 U	0.7 U	0.7 U
Methyl Tertbutyl Ether	ug/m3	0.54 U	0.54 U	0.54 U
Methylene chloride	ug/m3	2	2.1	3.3
Propylene	ug/m3	0.26 U	0.26 U	0.26 U
Styrene	ug/m3	0.64 U	0.64 UJ	0.64 U
Tetrachloroethene	ug/m3	10	1 UJ	8.6
Tetrahydrofuran	ug/m3	0.44 U	0.44 U	0.44 U
Toluene	ug/m3	3.7	3.2 J	150
trans-1,2-Dichloroethene	ug/m3	0.59 U	0.59 U	0.59 U
trans-1,3-Dichloropropene	ug/m3	0.68 U	0.68 U	0.68 U
Trichloroethene	ug/m3	0.81	1.1	120
Trichlorofluoromethane	ug/m3	2.2	2	2.2
Vinyl acetate	ug/m3	0.53 U	0.53 U	0.53 U
Vinyl bromide	ug/m3	0.66 U	0.66 U	0.66 U
Vinyl chloride	ug/m3	0.1 U	0.1 U	0.1 U
Xylene, o	ug/m3	0.61 J	0.56 J	35 J
Xylenes (m&p)	ug/m3	2.2	1.8 J	10

Notes:

J = The reported concentration is considered an e

UJ = The target compound was not detected and

U = The target compound was not detected above

ug/m3 = microgram per cubic meter

FS = Field Sample

FD = Field Duplicate

8 of 14

P:Projects/inysdec1/Contract D007619/Projects/Scobeil Chemical - RD/3.0_Site_Data/3.4_Test_Results/Chem Review and DUSR/DUSR/2016Warch_Air_Table_2_3.xisx

Lab Sample De	livery Group	C1603083	C1603083	C1603083
	Location	Outside	Outside	P-005-01
Field	Sample Date	3/28/2016 00:00	3/29/2016 00:00	3/28/2016 00:00
	Id Sample ID	828076-AA-001-01	828076-AA-001-02	828076-IA-005-01
	Qc Code	FS	FS	FS
Anai	lysis Method	TO-15	TO-15	TO-15
Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	ug/m3	0.82 U	0.82 U	0.82 U
1,1,2,2-Tetrachloroethane	ug/m3	1 U	1 U	1 U
1,1,2-Trichloro-1,2,2-Trifluoroethane	e ug/m3	0.92 J	0.92 J	1.1 J
1,1,2-Trichloroethane	ug/m3	0.82 U	0.82 U	0.82 U
1,1-Dichloroethane	ug/m3	0.61 U	0.61_U	0.61 U
1,1-Dichloroethene	ug/m3	0.59 U	0.59 U	0.59 U
1,2,4-Trichlorobenzene	ug/m3	1.1 U	1.1 U	1.1 U
1,2,4-Trimethylbenzene	ug/m3	0.74 U	0.84	0.79
1,2-Dibromoethane	ug/m3	1.2 U	1.2 U	1.2 U
1,2-Dichloro-1,1,2,2-tetrafluoroethar		1 U	10	1U
1,2-Dichlorobenzene	ug/m3	0.9 U	0.9 U	0.9 U
1,2-Dichloroethane	ug/m3	0.61 U	0.61 U	0.61 U
1,2-Dichloropropane	ug/m3	0.69 U	0.69 U	0.69 U
1,3,5-Trimethylbenzene	ug/m3	0.74 U	0.74 U	0.74 U
1,3-Butadiene	ug/m3	0.33 U	0.33 U	0.33 U
1,3-Dichlorobenzene	ug/m3	0.9 U	0.9 U	0.9 U
1,4-Dichlorobenzene	ug/m3	0.9 U	0.9 U	0.9 U
1,4-Dioxane	ug/m3	1.1 UJ	1.1 UJ	1.1 UJ
2-Butanone	ug/m3	0.8 J	0.68 J	4.7
2-Hexanone	ug/m3	1.2 UJ	1.2 UJ	1.2 UJ
2-Propanol	ug/m3	2.4	2.1	48
4-Ethyltoluene	ug/m3	0.74 U	0.74 U	0.74 U
4-Methyl-2-pentanone	ug/m3	1.2 UJ	1.2 UJ	1.2 UJ
Acetone	ug/m3	18	16	23
Allyl chloride	ug/m3	0.47 U	0.47 U	0.47 U
Benzene	ug/m3	0.42 J	0.54	1.4
Benzyl chloride	ug/m3	0.86 U	0.86 U	0.86 U
Bromodichloromethane	ug/m3	10	1 U	1 U
Bromoform	ug/m3	1.6 U	1.6 U	1.6 U
Bromomethane	ug/m3	0.58 U	0.58 U	0.58 U
Carbon disulfide	ug/m3	0.47 U	0.47 U	1
Carbon tetrachloride	ug/m3	0.88	0.82	0.94
Chlorobenzene	ug/m3	0.69 U	0.69 U	0.69 U
Chloroethane	ug/m3	0.4 U	0.4 U	0.4 U
Chloroform	ug/m3	0.73 U	0.73 U	7.2

Created by: KMS April 28, 2018 Reviewed by: WAS April 28, 2016

9 of 14

P:/Projects/nysdec1/Contract D007619/Projects/Scobell Chemical - RD\3.0_Site_Data\3.4_Test_Results/Chem Review and DUSR\DUSR\2016\March_Air_Table_2_3.xlsx

.

Lab San	nple Delivery Group	C1603083	C1603083	C1603083
	Location	Outside	Outside	P-005-01
	Field Sample Date	3/28/2016 00:00	3/29/2016 00:00	3/28/2016 00:00
	Field Sample ID	828076-AA-001-01	828076-AA-001-02	828076-IA-005-01
	Qc Code	FS	FS	FS
	Analysis Method	TO-15	TO-15	TO-15
Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier
Chloromethane	ug/m3	2.1	1.7	2
Cis-1,2-Dichloroethene	ug/m3	0.59 U	0.59 U	0.59 U
Cis-1,3-Dichloropropene	ug/m3	0.68 U	0.68 U	0.68 U
Cyclohexane	ug/m3	0.52 U	0.52 U	0.52 U
Dibromochloromethane	ug/m3	1.3 U	1.3 U	1.3 U
Dichlorodifluoromethane	ug/m3	4	4.1	5.1
Ethyl acetate	ug/m3	0.9 U	0.9 U	0.58 J
Ethylbenzene	ug/m3	0.65 U	0.65 U	0.65 U
Heptane	ug/m3	0.61 U	0.61 U	0.61 U
Hexachlorobutadiene	ug/m3	1.6 U	1.6 U	1.6 U
Hexane	ug/m3	0.53 U	0.53 U	0.53 U
Isooctane	ug/m3	0.7 U	0.7 U	0.7 U
Methyl Tertbutyl Ether	ug/m3	0.54 U	0.54 U	0.54 U
Methylene chloride	ug/m3	1.7	1.9	2.8
Propylene	ug/m3	0.26 U	0.26 U	0.26 U
Styrene	ug/m3	0.64 U	0.64 U	0.64 U
Tetrachloroethene	ug/m3	1 U	1 U	3.4
Tetrahydrofuran	ug/m3	0.44 U	0.44 U	0.44 U
Toluene	ug/m3	0.72	0.6	1.1
trans-1,2-Dichloroethene	ug/m3	0.59 U	0.59 U	0.59 U
trans-1,3-Dichloropropene	ug/m3	0.68 U	0.68 U	0.68 U
Trichloroethene	ug/m3	0.21 U	0.21 U	0.21 U
Trichlorofluoromethane	ug/m3	2.2	2.2	2.5
Vinyl acetate	ug/m3	0.53 U	0.53 Ü	0.53 U
Vinyl bromide	ug/m3	0.66 U	0.66 U	0.66 U
Vinyl chloride	ug/m3	0.1 U	0.1 U	0.1 U
Xylene, o	ug/m3	0.65 U	0.65 U	0.65 U
Xylenes (m&p)	ug/m3	1.3 Ų	0.56 J	0.87 J

Notes:

J = The reported concentration is considered an e

UJ = The target compound was not detected and

U = The target compound was not detected above

ug/m3 = microgram per cubic meter

FS = Field Sample

FD = Field Duplicate

Created by: KMS April 28, 2016 Reviewed by: WAS April 28, 2016

Lab Sample	Delivery Group	C1603083	C1603083	C1603083
	Location	P-005-01	P-005-01	P-005-02
Fie	Id Sample Date	3/28/2016 00:00	3/28/2016 00:00	3/28/2016 00:00
	Field Sample ID	828076-SS-005-01	828076-SS-005-01D	828076-IA-005-02
	Qc Code	FS	FD ·	FS
<u>م</u>	nalysis Method	TO-15	- TO-15	TO-15
Parameter	Units	Result Qua	alifier Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	ug/m3	0.82 UJ	0.82 UJ	0.82 U
1,1,2,2-Tetrachloroethane	ug/m3	1 UJ	1 UJ	1 U
1,1,2-Trichloro-1,2,2-Trifluoroeth		1.5	1.4	1.1 J
1,1,2-Trichloroethane	ug/m3	0.82 UJ	0.82 UJ	0.82 U
1,1-Dichloroethane	ug/m3	0.61 U	0.61 U	0.61 U
1,1-Dichloroethene	ug/m3	0.59 U	0.59 U	0.59 U
1,2,4-Trichlorobenzene	ug/m3	1.1 UJ	1.1 UJ	1.1 U
1,2,4-Trimethylbenzene	ug/m3	93	100	0.74 U
1,2-Dibromoethane	ug/m3	1.2 UJ	1.2 UJ	1.2 U
1,2-Dichloro-1,1,2,2-tetrafluoroet		1 U	1 U	1 U
1,2-Dichlorobenzene	ug/m3	0.9 UJ	0.9 UJ	0.9 U
1,2-Dichloroethane	ug/m3	0.61 U	0.61 U	0.61 U
1,2-Dichloropropane	ug/m3	0.69 UJ	0.69 UJ	0.69 U
1,3,5-Trimethylbenzene	ug/m3	53	56	0.74 U
1,3-Butadiene	ug/m3	0.33 U	0.33 U	0.33 U
1,3-Dichlorobenzene	ug/m3	LU 6.0	0.9 UJ	0.9 U
1,4-Dichlorobenzene	ug/m3	0.9 UJ	0.9 UJ	0.9 U
1,4-Dioxane	ug/m3	1.1 UJ	1.1 UJ	1.1 UJ
2-Butanone	ug/m3	0.88 UJ	180 J	1.1
2-Hexanone	ug/m3	1.2 UJ	1.2 UJ	1.2 UJ
2-Propanoi	ug/m3	50 J	0.37 UJ	5
4-Ethyltoluene	ug/m3	15	14	0.74 U
4-Methyl-2-pentanone	ug/m3	39 J	39 J	1.2 UJ
Acetone	ug/m3	410	480	16
Allyl chloride	ug/m3	0.47 U	0.47 U	0.47 U
Benzene	ug/m3	100	110	0.73
Benzyl chloride	ug/m3	0.86 UJ	0.86 UJ	0.86 U
Bromodichloromethane	ug/m3	1 UJ	1 UJ	1 U
Bromoform	ug/m3	1.6 UJ	1.6 UJ	1.6 U
Bromomethane	ug/m3	0.58 U	0.58 U	0.58 U
Carbon disulfide	ug/m3	56	59	0.47 U
Carbon tetrachloride	ug/m3	0.94 UJ	0.94 UJ	0.94
Chlorobenzene	ug/m3	0.69 UJ	0.69 UJ	0.69 U
Chloroethane	ug/m3	0.4 U	<u>0.4 U</u>	0.4 U
Chloroform	ug/m3	0.73 U	0.73 U	0.68 J

Created by: KMS April 28, 2016 Reviewed by: WAS April 28, 2016

11 of 14

P:Projects/nysdec1\Contract D007619\Projects\Scobell Chemical - RDI3.0_Site_Data\3.4_Test_Results\Chem Review and DUSR\DUSR\2016\March_Air_Table_2_3.xlsx

Lab Sar	nple Delivery Group	C1603083	C1603083	C1603083
	Location	P-005-01	P-005-01	P-005-02
	Field Sample Date	3/28/2016 00:00	3/28/2016 00:00	3/28/2016 00:00
	Field Sample ID	828076-SS-005-01	828076-SS-005-01D	828076-IA-005-02
	Qc Code	FS	FD	FS
	Analysis Method	TO-15	TO-15	TO-15
Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier
Chloromethane	ug/m3	0.31 U	0.31 U	1.8
Cis-1,2-Dichloroethene	ug/m3	0.59 U	0.59 U	0.59 U
Cis-1,3-Dichloropropene	ug/m3	0.68 UJ	0.68 UJ	0.68 U
Cyclohexane	ug/m3	230	340	0.52 U
Dibromochloromethane	ug/m3	1.3 UJ	1.3 UJ	1.3 U
Dichlorodifluoromethane	ug/m3	0.74 UJ	3.2 J	4
Ethyl acetate	ug/m3	· 2.1 J	0.9 UJ	0.9 U
Ethylbenzene	ug/m3	37	38	0.65 U
Heptane	ug/m3	340	360	0.61 U
Hexachlorobutadiene	ug/m3	1.6 UJ	1.6 UJ	<u>1.6 Ü</u>
Hexane	ug/m3	200	230	0.63
Isooctane	ug/m3	0.7 UJ	0.7 UJ	0.7 U
Methyl Tertbutyl Ether	ug/m3	0.54 U	0.54 U	0.54 U
Methylene chloride	ug/m3	2.6	2.5	3
Propylene	ug/m3	0.26 U	0.26 U	0.26 U
Styrene	ug/m3	0.64 UJ	0.64 UJ	0.64 U
Tetrachloroethene	ug/m3	76	85	10
Tetrahydrofuran	ug/m3	0.44 U	0.44 U	0.44 U
Toluene	ug/m3	240	270	0.57
trans-1,2-Dichloroethene	ug/m3	0.59 U	0.59 U	0.59 U
trans-1,3-Dichloropropene	ug/m3	0.68 UJ	0.68 UJ	0.68 U
Trichloroethene	ug/m3	150	150	0.21 U
Trichlorofluoromethane	ug/m3	1.7	1.5	2.4
Vinyl acetate	ug/m3	0.53 U	0.53 U	0.53 U
Vinyl bromide	ug/m3	0.66 U	0.66 U	0.66 U
Vinyl chloride	ug/m3	0.38 U	0.38 U	0.1 U
Xylene, o	ug/m3	77 J	· 78 J	0.65 U
Xylenes (m&p)	ug/m3	250	290	0.48 J

Notes:

J = The reported concentration is considered an e

UJ = The target compound was not detected and

U = The target compound was not detected above

ug/m3 = microgram per cubic meter

FS = Field Sample

FD = Field Duplicate

12 of 14

Created by: KMS April 28, 2016 Reviewed by: WAS April 28, 2016

· · · · · · · · · · · · · · · · · · ·		0100000
Lab Sample Delive	-	
	Location	P-005-02
	nple Date	3/28/2016 00:00
Field S	Sample ID	828076-SS-005-02
	Qc Code	FS
-	is Method	TO-15
Parameter	Units	Result Qualifier
1,1,1-Trichloroethane	ug/m3	0.82 UJ
1,1,2,2-Tetrachloroethane	ug/m3	1 UJ
1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	0.77 J
1,1,2-Trichloroethane	ug/m3	0.82 UJ
1,1-Dichloroethane	ug/m3	0.61 U
1,1-Dichloroethene	ug/m3	0.59 U
1,2,4-Trichlorobenzene	ug/m3	1.1 UJ
1,2,4-Trimethylbenzene	ug/m3	23
1,2-Dibromoethane	ug/m3	1.2 UJ
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ug/m3	1 U
1,2-Dichlorobenzene	ug/m3	0.9 UJ
1,2-Dichloroethane	ug/m3	0.61 U
1,2-Dichloropropane	ug/m3	0.69 UJ
1,3,5-Trimethylbenzene	ug/m3	10
1,3-Butadiene	ug/m3	0.33 U
1,3-Dichlorobenzene	ug/m3	0.9 UJ
1,4-Dichlorobenzene	ug/m3	0.9 UJ
1,4-Dioxane	ug/m3	1.1_UJ
2-Butanone	ug/m3	11
2-Hexanone	ug/m3	1.2 UJ
2-Propanol	ug/m3	0.37 U
4-Ethyltoluene	ug/m3	3.1 J
4-Methyl-2-pentanone	ug/m3	1.8 J
Acetone	ug/m3	- 80
Allyl chloride	ug/m3	0.47 U
Benzene	ug/m3	8.6
Benzyl chloride	ug/m3	0.86 UJ
Bromodichloromethane	ug/m3	1 UJ
Bromoform	ug/m3	1.6 UJ
Bromomethane	ug/m3	0.58 U
Carbon disulfide	ug/m3	8.4
Carbon tetrachloride	ug/m3	0.94 UJ
Chlorobenzene	ug/m3	0.69 UJ
Chloroethane	ug/m3	0.4 U
Chloroform	ug/m3	1.5

Created by: KMS April 28, 2016 Reviewed by: WAS April 28, 2016

13 of 14 P:\Projects\nysdec1\Contract D007619\Projects\Scobell Chemical - RD\3.0_Site_Data\3.4_Test_Results\Chem Review and DUSR\DUSR\2016\March_Air_Table_2_3.xiex

14 of 14

Lab Sam	ple Delivery Group	C1603083
	Location	, P-005-02
	Field Sample Date	3/28/2016 00:00
	Field Sample ID	828076-SS-005-02
	Qc Code	FS
	Analysis Method	TO-15
Parameter	Units	Result Qualifier
Chloromethane	ug/m3	0.31 U
Cis-1,2-Dichloroethene	ug/m3	0.63
Cis-1,3-Dichloropropene	ug/m3	0.68 UJ
Cyclohexane	ug/m3	23
Dibromochloromethane	ug/m3	1.3 UJ
Dichlorodifluoromethane	ug/m3	13
Ethyl acetate	ug/m3	1.5
Ethylbenzene	ug/m3	3.6 J
Heptane	ug/m3	28
Hexachlorobutadiene	ug/m3	1.6 UJ
Hexane	ug/m3	18
Isooctane	ug/m3	0.7 UJ
Methyl Tertbutyl Ether	ug/m3	0.54 U
Methylene chloride	ug/m3	2.1
Propylene	ug/m3	0.26 U
Styrene	ug/m3	0.64 UJ
Tetrachloroethene	ug/m3	30
Tetrahydrofuran	ug/m3	0.44 U
Toluene	ug/m3	18
trans-1,2-Dichloroethene	ug/m3	0.59 U
trans-1,3-Dichloropropene	ug/m3	0.68 UJ
Trichloroethene	ug/m3	140
Trichlorofluoromethane	ug/m3	1.6
Vinyl acetate	ug/m3	0.53 U
Vinyl bromide	ug/m3	0.66 U
Vinyl chloride	ug/m3	0.38 U
Xylene, o	ug/m3	8.5 J
Xylenes (m&p)	ug/m3	28

Notes:

J = The reported concentration is considered an e

UJ = The target compound was not detected and

U = The target compound was not detected above

ug/m3 = microgram per cubic meter

FS = Field Sample

FD = Field Duplicate

	- 11 - 111		BRIGHTON, N		Lab Lab	Final Final	Val Reason	
Lab SDG	Analysis Method	Lab Sample ID	Field Sample ID	Parameter	Result Qualifier	Result Qualifier	Code	Units
	Method TO-15		828076-SS-005-01	1,1,1-Trichloroethane	0.82 U	0.82 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	1,1,2,2-Tetrachloroethane	1 U	1 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	1,1,2-Trichloroethane	0.82 U	0.82 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	1,2,4-Trichlorobenzene	1.1 U	1.1 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	1,2-Dibromoethane	1.2 U	1.2 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	1,2-Dichlorobenzene	0.9 U	0.9 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	1,2-Dichloropropane	0.69 U	0.69 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	1,3-Dichlorobenzene	0.9 U	0.9 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	1,4-Dichlorobenzene	0.9 U	0.9 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	1,4-Dioxane	1.1 U	1.1 UJ	LCS-L,IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	2-Butanone	0.88 U	0.88 UJ	FD	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	2-Hexanone	1.2 U	1.2 UJ	LCS-L,IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	2-Propanol	50	50 J	FD	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	4-Methyl-2-pentanone	39	39 J	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	Benzyl chloride	0.86 U	0.86 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	Bromodichloromethane	1 U	1 UJ .	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	Bromoform	1.6 U	1.6 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	Carbon tetrachloride	0.94 U	0.94 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	Chlorobenzene	0.69 U	0.69 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	Cis-1,3-Dichloropropene	0.68 U	0.68 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	Dibromochloromethane	1.3 U	1.3 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	Dichlorodifluoromethane	0.74 U	0.74 UJ	FD	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	Ethyl acetate	2.1	2.1 J	FD	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	Hexachlorobutadiene	1.6 U	1.6 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	Isooctane	0.7 U	0.7 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	Styrene	0.64 U	0.64 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	trans-1,3-Dichloropropene	0.68 U	0.68 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-001A	828076-SS-005-01	Xylene, o	77	77 J	LCS-H	ug/m3
C1603083	Method TO-15	C1603083-002A	828076-SS-005-01D	1,1,1-Trichloroethane	0.82 U	0.82 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-002A	828076-SS-005-01D	1,1,2,2-Tetrachloroethane	<u> </u>	1 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-002A	828076-SS-005-01D	1,1,2-Trichloroethane	0.82 U	0.82 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-002A	828076-SS-005-01D	1,2,4-Trichlorobenzene	1.1 U	1.1 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-002A	828076-SS-005-01D	1,2-Dibromoethane	1.2_U	1.2 UJ	IS-H	ug/m3
	Method TO-15	C1603083-002A	828076-SS-005-01D	1,2-Dichlorobenzene	0.9 U	0.9 UJ	IS-H	ug/m3
	Method TO-15		828076-SS-005-01D	1,2-Dichloropropane	0.69 U	0.69 UJ	IS-H	ug/m3
	Method TO-15		828076-SS-005-01D	1,3-Dichlorobenzene	0.9 U	0.9 UJ	IS-H	ug/m3
	Method TO-15		828076-SS-005-01D	1,4-Dichlorobenzene	0.9 U	0.9 UJ	IS-H	ug/m3
	Method TO-15		828076-SS-005-01D	1,4-Dioxane	1.1 U	1.1 UJ	LCS-L,IS-H	ug/m3
	Method TO-15	C1603083-002A	828076-SS-005-01D	2-Butanone	180	180 J	FD	ug/m3

.

		T	BRIGHTON, N		Lab Lab	Final Final	Val Reason	
Lab SDG	Analysis Method	Lab Sample ID	Field Sample ID	Parameter		Result Qualifier	Code	Units
	Method TO-15	C1603083-002A	828076-SS-005-01D	2-Hexanone	1.2 U	1.2 UJ	LCS-L,IS-H	ug/m3
	Method TO-15	C1603083-002A	828076-SS-005-01D	2-Propanol	0.37 U	0.37 UJ	FD	ug/m3
	Method TO-15	C1603083-002A	828076-SS-005-01D	4-Methyl-2-pentanone	39	39 J	LCS-L	ug/m3
	Method TO-15	C1603083-002A	828076-SS-005-01D	Benzyl chloride	0.86 U	0.86 UJ	IS-H	ug/m3
	Method TO-15	C1603083-002A	828076-SS-005-01D	Bromodichloromethane	1 U	1 UJ	IS-H	ug/m3
	Method TO-15	C1603083-002A	828076-SS-005-01D	Bromoform	1.6 U	1.6 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-002A	828076-SS-005-01D	Carbon tetrachloride	0.94 U	0.94 UJ	IS-H	ug/m3
	Method TO-15		828076-SS-005-01D	Chlorobenzene	0.69 U	0.69 UJ	IS-H	ug/m3
	Method TO-15	C1603083-002A	828076-SS-005-01D	Cis-1,3-Dichloropropene	0.68 U	0.68 UJ	IS-H	ug/m3
	Method TO-15	C1603083-002A	828076-SS-005-01D	Dibromochloromethane	1.3 U	1.3 UJ	IS-H	ug/m3
		C1603083-002A	828076-SS-005-01D	Dichlorodifluoromethane	3.2	3.2 J	FD	ug/m3
C1603083	Method TO-15	C1603083-002A	828076-SS-005-01D	Ethyl acetate	0.9 U	0.9 UJ	FD	ug/m3
C1603083	Method TO-15	C1603083-002A	828076-SS-005-01D	Hexachlorobutadiene	1.6 U	1.6 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-002A	828076-SS-005-01D	Isooctane	0.7 U	0.7 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-002A	828076-SS-005-01D	Styrene	0.64 U	0.64 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-002A	828076-SS-005-01D	trans-1,3-Dichloropropene	0.68 U	0.68 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-002A	828076-SS-005-01D	Xylene, o	78	78 J	LCS-H	ug/m3
C1603083	Method TO-15	C1603083-003A	828076-IA-005-01	1,4-Dioxane	1.1 U	1.1 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-003A	828076-IA-005-01	2-Hexanone	1.2 U	1.2 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-003A	828076-IA-005-01	4-Methyl-2-pentanone	1.2 U	1.2 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	1,1,1-Trichloroethane	0.82 U	0.82 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	1,1,2,2-Tetrachloroethane	<u>1 U</u>	1 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	1,1,2-Trichloroethane	0.82 U	0.82 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	1,2,4-Trichlorobenzene	1.1 U	1.1 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	1,2-Dibromoethane	1.2 U	1.2 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	1,2-Dichlorobenzene	0.9 U	0.9 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	1,2-Dichloropropane	0.69 U	0.69 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	1,3-Dichlorobenzene	0.9 U	0.9 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	1,4-Dichlorobenzene	0.9 U	0.9 ÚJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	1,4-Dioxane	1.1 U	1.1 UJ	LCS-L,IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	2-Hexanone	1.2 U	1.2 UJ	LCS-L,IS-H	ug/m3
C1603083	Method TO-15		828076-SS-005-02	4-Ethyltoluene	3.1	3.1 J	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	4-Methyl-2-pentanone	1.8	1.8 J	LCS-L,IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	Benzyl chloride	0.86 U	0.86 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	Bromodichloromethane	10	1 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	Bromoform	1.6 U	1.6 UJ	IS-H	ug/m3
C1603083	Method TO-15		828076-SS-005-02	Carbon tetrachloride	0.94 U	0.94 UJ	IS-H	ug/m3
C1603083	Method TO-15		828076-SS-005-02	Chlorobenzene	0.69 U	0.69 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	Cis-1,3-Dichloropropene	0.68 U	0.68 UJ	IS-H	ug/m3

.

			BROTTON, I		Lab Lab	Final Final	Val Reason	
Lab SDG	Analysis Method	Lab Sample ID	Field Sample ID	Parameter	Result Qualifier	Result Qualifier	Code	Units
	Method TO-15		828076-SS-005-02	Dibromochloromethane	1.3 U	1.3 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	Ethylbenzene	3.6	3.6 J	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	Hexachlorobutadiene	1.6 U	1.6 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	Isooctane	0.7 U	0.7 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	Styrene	0.64 U	0.64 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	trans-1,3-Dichloropropene	0.68 U	0.68 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-004A	828076-SS-005-02	Xylene, o	8.5	8.5 J	IS-H	ug/m3
C1603083	Method TO-15	C1603083-005A	828076-IA-005-02	1,4-Dioxane	1.1 U	1.1 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-005A	828076-IA-005-02	2-Hexanone	1.2 U	1.2 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-005A	828076-IA-005-02	4-Methyl-2-pentanone	1.2 U	1.2 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-006A	828076-AA-005-02	1,4-Dioxane	1.1 U	1.1 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-006A	828076-AA-005-02	2-Hexanone	1.2 U	1.2 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-006A	828076-AA-005-02	4-Methyl-2-pentanone	1.2 U	1.2 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-007A	828076-IA-001-DOGGY DA CARE	1,4-Dioxane	1.1 U	1.1 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-007A	828076-IA-001-DOGGY DA CARE	2-Hexanone	1.2 U	1.2 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-007A	828076-IA-001-DOGGY DA CARE	4-Methyl-2-pentanone	0.45 J	0.45 J	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-008A	828076-IA-001-TRYON	1,4-Dioxane		1.1 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-008A	828076-IA-001-TRYON	2-Hexanone	1.2 U	1.2 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-008A	828076-IA-001-TRYON	4-Methyl-2-pentanone	1.2 U	1.2 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-008A	828076-IA-001-TRYON	Xylene, o	35	35 J	LCS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	1,1,2,2-Tetrachloroethane	1 U	1 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	1,2,4-Trichlorobenzene	1.1 U	1.1 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	1,2,4-Trimethylbenzene	1.4	1.4 J	IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	1,2-Dibromoethane	1.2 U	1.2 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	1,2-Dichlorobenzene	0.9 U	0.9 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	1,3,5-Trimethylbenzene	0.74 U	0.74 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	1,3-Dichlorobenzene	0.9 U	0.9 UJ	IS-H	ug/m3
C1603083	Method TO-15		828076-IA-001-BOXMAN	1,4-Dichlorobenzene	0.9 U	0.9 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	1,4-Dioxane	1.1 U	<u>1.1 UJ</u>	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	2-Hexanone	1.2 U	1.2 UJ	LCS-L,IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	4-Ethyltoluene	0.49 J	0.49 J	IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	4-Methyl-2-pentanone	0.66 J	0.66 J	LCS-L,IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	Benzyl chloride	0.86 U	0.86 UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	Bromoform	1.6 U		IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	Chlorobenzene	0.69 U		IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	Dibromochloromethane	1.3 U		IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	Ethylbenzene	0.65 U		IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	Hexachloróbutadiene	1.6 U		IS-H	ug/m3
C1603083	Method TO-15	C1603083-009A	828076-IA-001-BOXMAN	Styrene	0.64 U	0.64 UJ	IS-H	ug/m3

.

P:Projects/nysdec1\Contract D007619\Projects\Scobell Chemical - RD\3.0_Site_Data\3.4_Test_Results\Chem Review and DUSR\DUSR\2016\March_Air_Table_2_3.xlsx

			BRIGHTON, R		Lab	Lab	Final	Final	Val Reason	
Lab SDG	Analysis Method	Lab Sample ID	Field Sample ID	Parameter				Qualifier		Units
	Method TO-15		828076-IA-001-BOXMAN	Tetrachloroethene	1			UJ	ÎS-H	ug/m3
	Method TO-15		828076-IA-001-BOXMAN	Toluene	2.2		2.2	J	IS-H	ug/m3
	Method TO-15		828076-IA-001-BOXMAN	Xylene, o	0.52	J	0.52	J	IS-H	ug/m3
	Method TO-15		828076-IA-001-BOXMAN	Xylenes (m&p)	2.4		2.4	J	IS-H	ug/m3
	Method TO-15		828076-IA-001-NSC	1,4-Dioxane	1.1	U	1.1	UJ	LCS-L,FD	ug/m3
	Method TO-15		828076-IA-001-NSC	2-Hexanone	1.2	 U	1.2	UJ	LCS-L	ug/m3
	Method TO-15		828076-IA-001-NSC	4-Methyl-2-pentanone	1.2	U	1.2	UJ	LCS-L	ug/m3
	Method TO-15	C1603083-010A	828076-IA-001-NSC	Heptane	2.2		2.2	J	FD	ug/m3
C1603083	Method TO-15		828076-IA-001-NSCD	1,1,2,2-Tetrachloroethane	1	U	1	UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	1,2,4-Trichlorobenzene	1.1	U	1.1		IS-H	ug/m3
C1603083	Method TO-15		828076-IA-001-NSCD	1,2,4-Trimethylbenzene	1.1		1.1	J	IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	1,2-Dibromoethane	1.2		1.2		IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	1,2-Dichlorobenzene	0.9	U	0.9	ŬĴ	IS-H	ug/m3
	Method TO-15	C1603083-011A	828076-IA-001-NSCD	1,3,5-Trimethylbenzene	0.74	U	0.74	UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	1,3-Dichlorobenzene	0.9	U	0.9	UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	1,4-Dichlorobenzene	0.9	U	0.9	UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	1,4-Dioxane	2.8		2.8		LCS-L,FD	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	2-Hexanone	1.2	U	1.2	UJ	LCS-L,IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	4-Ethyltoluene	0.74		0.74		IS-H	ug/m3
	Method TO-15	C1603083-011A	828076-IA-001-NSCD	4-Methyl-2-pentanone	1.2	U	1.2		LCS-L,IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	Benzyl chloride	0.86	U	0.86		IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	Bromoform	1.6		1.6		IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	Chlorobenzene	0.69		0.69		IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	Dibromochloromethane	1.3		1.3		IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	Ethylbenzene	0.52		0.52		IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	Heptane	0.61		0.61		FD	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	Hexachlorobutadiene	1.6		1.6		IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	Styrene	0.64		0.64		IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	Tetrachloroethene	1	U		UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	Toluene	3.2		3.2		IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	Xylene, o	0.56	J	0.56		IS-H	ug/m3
C1603083	Method TO-15	C1603083-011A	828076-IA-001-NSCD	Xylenes (m&p)	1.8	<u> </u>	1.8		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	1,1,1-Trichloroethane	11		11		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	1,1,2,2-Tetrachloroethane	1			UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	1,1,2-Trichloroethane	0.82		0.82		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	1,2,4-Trichlorobenzene	1.1	U	1.1		IS-H	ug/m3
	Method TO-15	C1603083-012A	828076-SS-001-01	1,2,4-Trimethylbenzene	1.2		1.2		IS-H	ug/m3
C1603083	Method TO-15		828076-SS-001-01	1,2-Dibromoethane	1.2		1.2		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	1,2-Dichlorobenzene	0.9	U	0.9	UJ	IS-H	ug/m3

		1	BRIGHTON, I		Lab Lab	Final	Final	Val Reason	
Lab SDG	Analysis Method	Lab Sample ID	Field Sample ID	Parameter	Result Qualifier			Code	Units
	Method TO-15		828076-SS-001-01	1,2-Dichloropropane	0.69 U	0.69		IS-H	ug/m3
	Method TO-15		828076-SS-001-01	1,3,5-Trimethylbenzene	1	1.	J	IS-H	ug/m3
	Method TO-15	C1603083-012A	828076-SS-001-01	1,3-Dichlorobenzene	0.9 U	0.9	UJ	IS-H	ug/m3
	Method TO-15		828076-SS-001-01	1,4-Dichlorobenzene	0.9 U	0.9	UJ	IS-H	ug/m3
	Method TO-15		828076-SS-001-01	1,4-Dioxane	1.1 U	1.1	UJ	LCS-L,IS-H	ug/m3
	Method TO-15	C1603083-012A	828076-SS-001-01	2-Hexanone	1.2 U	1.2	UJ	LCS-L,IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	4-Ethyltoluene	0.74 U	0.74	UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	4-Methyl-2-pentanone	1.2 U	1.2		LCS-L,IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Benzene	2.1	2.1		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Benzyl chloride	0.86 U	0.86		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Bromodichloromethane	1 U	1		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Bromoform	1.6 U	1.6		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Carbon tetrachloride	1.4	1.4		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Chlorobenzene	0.69 U	0.69		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Cis-1,3-Dichloropropene	0.68 U	0.68	UJ	IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Cyclohexane	3.5	3.5		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Dibromochloromethane	1.3 U	1.3		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Ethylbenzene	0.43 J	0.43 .		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Heptane	2.4	2.4 .		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Hexachlorobutadiene	1.6 U	1.6		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Isooctane	0.7 U	0.7		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Styrene	0.64 U	0.64		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Toluene	5.3	5.3		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	trans-1,3-Dichloropropene	0.68 U	0.68		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Xylene, o	0.82	0.82 、		IS-H	ug/m3
C1603083	Method TO-15	C1603083-012A	828076-SS-001-01	Xylenes (m&p)	2	2 .		IS-H	ug/m3
C1603083	Method TO-15	C1603083-013A	828076-IA-001-CENTRAL	1,4-Dioxane	1.1 U	1.1		LCS-L	ug/m3
C1603083	Method TO-15	C1603083-013A	828076-IA-001-CENTRAL	2-Hexanone	1.2 U	1.2		LCS-L	ug/m3
C1603083	Method TO-15	C1603083-013A	828076-IA-001-CENTRAL	4-Methyl-2-pentanone	0.45 J	0.45		LCS-L	ug/m3
C1603083	Method TO-15	C1603083-014A	828076-AA-001-01	1,4-Dioxane	1.1 U	1.1		LCS-L	ug/m3
C1603083	Method TO-15	C1603083-014A	828076-AA-001-01	2-Hexanone	1.2 U	1.2		LCS-L	ug/m3
C1603083	Method TO-15	C1603083-014A	828076-AA-001-01	4-Methyl-2-pentanone	1.2 U	1.2		LCS-L	ug/m3
C1603083	Method TO-15	C1603083-015A	828076-IA-001-BCC	1,4-Dioxane	1.1 U	1.1 (LCS-L	ug/m3
C1603083	Method TO-15	C1603083-015A	828076-IA-001-BCC	2-Hexanone	1.2 U	1.2		LCS-L	ug/m3
C1603083	Method TO-15	C1603083-015A	828076-IA-001-BCC	4-Methyl-2-pentanone	1.2 U	1.2		LCS-L	ug/m3
C1603083	Method TO-15	C1603083-016A	828076-IA-004-GALLERY/OFFICE	1,4-Dioxane	1.1 U	1.1 \		LCS-L	ug/m3
C1603083	Method TO-15		828076-IA-004-GALLERY/OFFICE	2-Hexanone	1.2 U	1.2		LCS-L	ug/m3
	Method TO-15		828076-IA-004-GALLERY/OFFICE	4-Methyl-2-pentanone	0.9 J	0.9		LCS-L	ug/m3
C1603083	Method TO-15	C1603083-017A	828076-IA-004-GLASS OVER AREA	1,2,4-Trimethylbenzene	13	13 .	J	IS-H	ug/m3

.

P:\Projects\nysdec1\Contract D007619\Projects\Scobell Chemical - RD\3.0_Sita_Data\3.4_Test_Resuits\Chem Review and DUSR\DUSR\2016\March_Air_Table_2_3.xisx

		· · ·			Lab Lab	Final Final	Val Reason	
Lab SDG	Analysis Method	Lab Sample ID	Field Sample ID	Parameter	Result Qualifier	Result Qualifier		Units
C1603083	Method TO-15	C1603083-017A	828076-IA-004-GLASS OVER AREA	1,4-Dioxane	1.1 U	1.1 UJ		ug/m3
C1603083	Method TO-15	C1603083-017A	828076-IA-004-GLASS OVER AREA	2-Hexanone	1.2 U	1.2 UJ		ug/m3
C1603083	Method TO-15	C1603083-017A	828076-IA-004-GLASS OVER AREA	4-Methyl-2-pentanone	0.66 J	0.66 J	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-017A	828076-IA-004-GLASS OVER AREA	Toluene	8.3 -	8.3 J		ug/m3
C1603083	Method TO-15	C1603083-018A	828076-IA-001-BASEMENT	1,4-Dioxane	1.1 U	1.1 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-018A	828076-IA-001-BASEMENT	2-Hexanone	1.2 U	1.2 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-018A	828076-IA-001-BASEMENT	4-Methyl-2-pentanone	1.2 U	1.2 UJ		ug/m3
C1603083	Method TO-15	C1603083-019A	828076-AA-001-02	1,4-Dioxane	1.1 U	1.1 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-019A	828076-AA-001-02	2-Hexanone	1.2 U	1.2 UJ	LCS-L	ug/m3
C1603083	Method TO-15	C1603083-019A	828076-AA-001-02	4-Methyl-2-pentanone	1.2 U	1.2 UJ	LCS-L	ug/m3

6 of 6

Notes:

FD = Field duplicate limit exceeded

IS-H = Internal standard response above limit

LCS-H = LCS recovery high

LCS-L = LCS recovery low

ATTACHMENT A SUMMARY OF QC LIMITS

PARAMETER	QC TEST	ANALYTE	Air
FARAIVIETER	QUIESI	ANALITE	(%R)
Malatilaa	Surrogate	All Surrogate Compounds	Lab Limits
Volatiles	LCS	All Target Compounds	70 - 130

Notes:

LCS - Laboratory Control Sample

%R = percent recovery

QC Limits are based on USEPA Region II Data Validation Guidelines and Project QA/QC Objective

Project No. 3617147328.05

ATTACHMENT B

\\PLD2-FS1\Project\Projects\nysdec1\Contract D007619\Projects\Scobell Chemical -RD\3.0_Site_Data\3.4_Test_Results\Chem Review and DUSR\DUSR\2016\Scobell-DUSR_Air_Mar_2016.doc

VOCs in Air

NYSDEC DUSR PROJECT CHEMIST REVIEW RECORD

Project: Scobell Method: TO-15 SDG# 61603083 Laboratory and SDG(s): Conten Date: 4-10-16 Reviewer: Wille Store Review Level X NYSDEC DUSR **USEPA** Region II Guideline Control limits are from EPA Region 2 - SOP# HW-31, October 2006. 1. $\mathbf{\Lambda}$ **Case Narrative Review and Data Package Completeness** COMMENTS Were problems noted? γ_{cS} Are Field Sample IDs and Locations assigned correctly? YES'NO (circle one) ∇ 2. Holding time and Sample Collection All samples were analyzed within the 30 day holding time. YES NO (circle one) **OC Blanks** (use 5x rule for calculating action levels) 3. Are method blanks free of contamination? (YES) NO (circle one) Are Trip blanks free of contamination? (YES)NO (circle one) 4. Instrument Tuning Were all results were within method criteria. YES NO (circle one) Instrument Calibration - Data Package Narrative review. 5. Did the laboratory narrative identify compounds that were outside of method criteria in the initial calibration and/or continuing calibration standards?(YES iNΟ the high Did the laboratory qualify results based on initial or continuing calibration exceedances? YE\$ NO \square Internal Standards (Area Limits = +40% to -40%, RT's within 20 seconds of mid point cal Std) 6. Were all results within criteria? YES (NO) (circle one) See a thach a 7. Surrogate Recovery Were all results were within laboratory limits? (YES NO (circle one) M **Field Duplicates/replicates** 8. Were Field Duplicates submitted/analyzed YES Were all results were within criteria (Field Dup RPD goal = 50). YES (NO) NA (circle one) $\int c_{res} dt$ Laboratory Control Sample Results (limits 70-130%) 9. Were all results were within limits? NÔ (circle one) See a fulland YES Trailing Losp as induced a (Lug, ran □ Raw Data Review and Calculation Checks 10. All ou - see a Huchur When after Les 11. **Electronic Data Review and Edits** Does the EDD match the Form I's? (YES) NO (circle one) TIC Review and DUSR Table 1 (sample Listing), Table 2 (results summary), 12. Table 3 (Reason Codes), Table 4 (TIC's). Did lab report TICs? YES NO circle one)

\\PLD2-FS1\Projects\Projects\nysdec1\Contract D007619\Projects\Scobell Chemical -RD\3.0_Site_Data\3.4_Test_Results\Chem Review and DUSR\DUSR\2016\Template DUSR Checklist VOC TO-15.doc

Centek Laboratories, LLC

GC/MS QA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\AN040503.D Tune Time : 5 Apr 2016 8:27 am

Daily Calibration File : C:\HPCHEM\1\DATA\AN040503.D

(BFB)	(19 1)	(182)	(153).
	20057	42537	25975

File Sample DL Surrogate Recovery &		Standard Re	
AN040504.D ALCSIUG-040516 113	20720	47509	29998
AN040505.D AMBLUG-040516 89	21071	45199	35406
AN040511.D C1603083-003A 97	15346	37271	32291
AN040512.D C1603083-005A 89	16115	37764	35656
AN040519.D ALCSIUGD-040517 118	21949	48349	35268
AN040520.D C1603083-006A 93	17523	42225	34900
AND40521.D C1603083-007A 115	18176	44419	36144
AN040522.D C1603003-008A 107	19490	49512	35844
AN040523.D C1603083-009A 117	20710	52448	38936* JS-*
AN040524.D C1603083-010A 108	18550	45236	35372
AN040525.D C1603083-011A 109	19546	49383	37347* IS H
AN040526.D C1603083-013A 109	18110	44434	35428
AN040527.D C1503083-014A 100	18331	42523	33125
AN040528.D C1603083-015A 112	17373	43277	33307
AN040529.D C1603083-016A 124	18968	44583	35433
AN040530.D C1603083-017A 128	19811	49321	35361
AN040531.D C1603083-018A 147*	20202	52074	34746
AN040532.D C1603083-019A 116	19013	46340	35791
AN040533.D C1603083-001A 120	22334	-67500*	43670*
AN040534.D C1603083-002A 116	27592	86694*	43670* 48428* 75-K
AN040535.D C1603083-004A 127	28062	82104*	53516*
AN040536.D C1603083-012A 127	27994	77952*	57785*
A2040537.D C1603083-017A 10x 92	26778	64526*	61247*
t - fails 24hr time check * - fails critoria	na est un un per an an es pe to po	10110 N C 10 0 - C	gassociated
Created: Mon Apr 18 17:35:30 2016 MSD #1/	•	Qu	gassociated and results STUS
			JUJ

Page 102 of 681

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

TestCode: 0.25CT-TCE-VC

C	LIENT:	AMEC Environment & Infrastructure, Inc.
Ŵ.	ack Orders	C1603083

Project: Scobeli

Page 109 of 681

Sample ID ALCS1UGD-040517	SampType: LC5D	TestCo	do: 0,25CT-TC	E- Units: ppbV		Prep Dei	ie:		RunNo: 10	845	
Cilent ID: ZZZZZ	Batch ID: R19845	Test	lo: 10-15			Analysis Dal	le: 4/\$ / 201	16	SegNo: 12	7381	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPO	RPULimit	Qual
1,1,1-Trichloroethane	1.250	0.15	1	Ď	125	70	130	1.22	· 2.43	30	
1,1,2,2-Tetrachiomethane	1.290	0,15	1	D	129	7 0	130	1.26	2.35	30	
1,1,2-Tochlocoethane	1.230	0.15	1	0	121	70	130	3_1	9.62	30	
1,1-Dichloroethane	0.9800	0.15	1	¢	98 0	70	130	1.02	4.00	30	
I, 1-Dichlorcethene	1,060	0.15	1	0	106	70	130	1.14	7.27	30	
1,2,4-Trichlorobenzene	0.9800	0.15	1	Ď	98.C	70	130	1.26	25.0	30	
1,2,4-Trámethy/benzene	1.130	0.15	1	0	113	70	130	1	12.2	30	
,2-Dibromeethase	1.260	0.15	1	Ģ	126	70	130	1.16	8.26	30	
,2-Dichlorobenzene	1,200	0.15	1	0	120	70	130	1.23	2.47	30	
2-Dichloroethane	0.9300	0.15	1	0	93.0	70	130	0.94	1.07	30	
2-Dichloropropane	1,180	0.15	1	Q	116	70	130	1.12	3.51	30	
3,5-Trimethylbenzene	1.270	0.15	1	٥.	127	70	130	1,16	9.05	30	
3-butadiene	1.150	ũ.15	1	D	115	70	130	1.15	0	30	
,3-Dichlerobenzeae	1,200	0.15	1	0	120	70	130	1.28	4.68	30	
,4-Dichlorobenzene	1.060	0.15	۲	C	106	70	130	1.21	13.2	30	1
,4-Dioxane	0.5800	8.3D	1	0	58,0	70	130	1.05	58.5	30	SR LCS
2,2,4-himethylpantane	1.309	9.15	Ŧ	0	130	70	130	1.26	3.12	30	SR LCS-
- ethyltoluene	1.000	0.15	Ť	۵	100	70	130	1.05	4.98	36	
leione	1.093	0.30	1	٥	109	70	130	1.18	7.93	30	
Viyi chioride	0.9408	0.15	ì	¢	94.0	70	130	0.92	2,15	30	
Senzene	1,140	0.15	1	0	114	70	130	1.13	0.881	30	
ienzyl chłotida	0.9800	0,15	1	0	98.0	76	130	1.18	18.5	30	
ionocichioromethane	1.280	0.15	. 4	0	128	70	130	1.26	1.67	30	
Snandom	2.390	0.15	†	đ	239	70	\$30	2.38	0.419	30	s UCS-H M
Bromomethane	1.270	0,15	1	0	127	70	130	1.09	15.3	30	<i></i>

Results reported are not blank corrected

J

E Value above quantitation range

ND Not Detected at the Reporting Liquit

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

Analyte detected at or heavy quantitation limits 8 Spike Recovery outside accepted recovery limits

Page 1 of 5

CLIENT: AMEC Environment & Infrastructure, Inc.

Work Order: C1603083

Project:

.....

Scobell

TestCode: 0.25CT-TCE-VC

Sample ID ALCS1UGD-040517	SampType: LCSD	TesiCo	da: 0.25CT-TC	E- Units: ppbV		Prep Da	ite;		RenNo: 18	845	
Client ID: ZZZZZ	3atch ID: 810845	Test	Vo: TO-15			Analysis Da	ite: 4/5/201	16	SeqNo: 12	7381	
Anatyle	Result	PQL	SPK value	SPX Ref Val	%REC	LowLimit	HighLimit	RPD Ref Va!	%RPD	RPDLimit	Quai
Carbon disulfide	1.010	0.15	1	0	101	70	130	1.04	2.93	30	
Carbon tetrachloride	i.280	0.040	1	0	128	70	130	1.28	0	30	
Chiorobenzene	t.170	0.15	1	0-	117	70	130	1.15	1.72	30	
Chloroeihane	1.250	0.15	1	Ο.	125	70	130	1.15	8.33	30	
Chloraform	0.9300	0.15	1	Ũ	93.0	70	130	0.99	6.25	30	
Chloromethane	1.250	0.15	1	۵	125	70	130	1.25	Q	30	
cis-1,2-Dichloroethene	0,9400	0.15	1	0	94.0	70	130	0,95	1.06	30	
cis-1.3-Dichloropropene	1.290	0.15	1	¢.	129	70	130	1.15	11.5	30	
Cyclohexane	1.210	0.15	1	0	121	70	130	1.23	1.64	30	
Dibromochloromethane	1,180	0.15	- 1	٥	118	70	130	1.23	4,15	30	
Elhyi acetste	1.000	0.25	1	0	100	7Q	130	0.94	6.19	30	
Ethylbenzene	1.110	0.15	· 1	σ	111	70	130	0.96	14.5	30	
Freen 11	1.170	0.15	1	0	117	70	130	1.24	5.81	30	
Freon 113	1.190	0.15	1	D	119	70	130	1.23	3.31	30	
Freon 114	1,230	0.15	1	٥	123	70	130	1.27	3.20	30	
Freon 12	1.180	0.15	1	0	118	70	130	1.2	1.68	30	
Heptane	1.030	0.15	1	Ó	103	70	130	0.97	6,00	30	
Hexachioro-1,3-outadiene	1.360	0.15	1	۵	135	70	130	Z. 16	45.2	30	SR LCS-
Hexane	6.8400	0.15	1	0	84.0	70	130	D.86	2,35	30	~~ T
isoprepy: alcohol	6.8500	0.15	1	Ď	85.0	70	130	1.01	17.2	30	
m&p-Xylene	2.130	0.30		0	10 0	70	130	1.88	12.5	30	
Methyl Butyl Ketone	0.4400	0.30	1	Ú	44 O	70	130	0.71	47.0	30	SR LLS
Methyl Ethyl Kelone	0.8800	6.30	1	0	88.0	70	130	0.98	10,8	30	
Methyl Isobutyl Ketone	8.4500	0.30	1	0	45.0	70	130	0.94	70.5	30	SR LUS
Methyl tert-bulyt ether	0.9706	6.15	1	Q	97.0	70	130	0.96	1.04	30	Q.1~
Melhylene chloride	1.160	0,15	1	G	116	70	130	1.17	Ð.858	30	(1)
o-Xylene	1.210	0.15	+	Q.	121	70	130	1 19	1.67	30	
Propylene	i.200	Ø.15	1	0	120	70:	130	1.05	13.3	30	
Styrene	1,190	0.15	1	Ō	119	70	130	1.09	8.77	30	
Tetrachioroethylene	0.8900	0.15	1	0	89.0	70	130	0.91	2.22	30	
Tetrahydrofuran	0,9900	Q,15	T	٥	99.0	70	130	0.9	9.52	30	

Qualitiers:

J

Results reported are not blank corrected

E Value above quantitation range

ND Not Detected at the Reporting Limit

Analyte detected at or below quantitation limits S Spike Recovery outside accepted recovery timuts Holding times for preparation or analysis exceeded

RPD outside accepted recovery kimits

[]

R

Page 2 of 5

Centek Laboratories, LLC

-- --- ---

.....

CLIENT: AMEC Environment & Infrastructore, Inc.

Work Order: C1603083

Project: Scobell TestCode: 0.25CT-TCE-VC

Sample ID ALCS1UGD-040517	SerupType: LCSD	TestCo	de: 9.25CT-TC1	E- Units: ppbV		Prep Date	≑;		RunNot 10	845	
Client ID: ZZZZZ	Batch ID: R10345	Testi	No: TO-15			Analysis Dat	e: 4/5/201	16	SeqNo: 12	7381	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Lowi, init	HighLimit	RPD Ref Val	%RPD	RPDLbnit	Qual
Toluene	0.8400	Ü. 15	1	Q	84.0	70	130	D.82	2.41	30	
rans-1,2-Dichlorocinens	1.000	0.15	1	0.	100	70	130	1.01	0.995	30	
rans-1,3-Dichloropropene	1.210	0.1 5	1	0	121	70	130	1.16	4.22	30	
Tichloroethene	1.180	0.040	1	o	115	70	130	1.11	4.41	30	
Anyl acelate	0.8590	0.15	1	0	85.0	70	130	0,65	0	30	
Anyl Sromide	1,100	0.15	1	0	110	70	130	1_17	6.17	30	
Vinyi chloride	1,130	0,040	1	0	113	70	130	1.09	3.60	30	
San: Bromofluorobenzene	1.180	Ð	1	9	118	70	130	· O	0	30	·
Sample ID ALCS1UGD-040618	SampType: LCSD	TestCo	d⊵: 0.25CT-TC:	E- Units: ppbV		Preo Date	5.	<u> </u>	RunNo: 10	846	
Client ID: ZZZZZ	Batch (D: R10846	Test	No: TO-15			Anatysis Daw	er 4/6/201	15	SeqNo: 12	7407	
inalyte	Result	POL	SPK value	SPK Ref Val	%REC	Law[.imit	Highl.imil	RPD Ref Val	%RPD	RPDLimit	Quel
1,1,1-Trichlersethane	1,410	0.15	1	0	141	70	130	1.27	10.4	30	5 LC
1,1,2,2-Tetrachioroelhane	1.190	0.18	1	0	119	70	130	1.32	10.4	30	
1,1,2-Trichlorouthane	1,450	0.15	1	0	145	70	130	1.76	14.0	30	いしい
1,1-Dichloroethane	0.9900	0,15	1	0	99.0	70	130	0.99	Ð	30	
1,1-Dichlorcelherie	0.9700	0.15	1	0	97.0	70	139	0.99	2.04	30	
1,2,4-Trichlorobenzens	0.7100	0.15	1	0	71,0	70	130	0.66	19.1	30	
1,2,4-Trimelinylbenzene	1,610	D 15	1	0	HD I	70	130	1.13	11.2	30	
1,2-Dibromoe(hane	1,170	0.15	1	0	117	70	130	1.19	1.69	30	
1,2-Dichlorobenzene	1,080	015	1	0	108	70	130	1.25	1 4.6	30	
1,2-Dichlorcelinare	0.9500	0.15	1	Ð	96,0	70	130	0.92	4.26	30	
1,2-Dichloropropane	1.290	0.15	1	0	129	70	130	1.2	7.23	30	
1,3,5-Trimethylbenzene	1.200	0.15	1	ΰ	120	70	190	1,27	5. 6 7	30	
,3-butadiene	1.070	0.15	1	0	107	70	130	1.1	2.76	30	
1,3-Dichlorobenzene	1.080	0.15	1	D	108	70	130	1.19	9.69	30	ć
1,4-Dichlorobenzene	0.9200	0.15	1	D	92.0	70	130	1.02	10.3	30	1
1,4-Dioxane	0.5200	0,30	1	٥	52.0	70	- 13 0	1,1	71.8	30	SRV
2,2,4-trimethylpentane	1,410	0.15	1	ņ	141	70	130	1,28	9,67	30	SR LC SR LC

Qualifiers:

ł

S

Results reported are not black corrected

Analyte detected at or below quantitation limits

Spike Recovery outside accepted recovery limits

£ Value above quantilation range

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded R

RPD outside accepted recovery limits

Centek Laboratories, LLC

.....

Vas

Page 3 of 5

4-20-66

Page 111 of 681

CLIENT: AMEC Environment & Infrastructure, Inc.

Work Order: C1603083

Project: Scobell

TesiCode: 0.25CT-TCE-VC

Centek Laboratories, LLC

١D

Sample D ALCS1UGD-040615	SampType: LCSD	TasiCo	de: 0.25CT-TC	E- Units: pobV		Prep Da	te:		RunMo: 101	846		
Client (D; ZZZZZ	Batch ID: R10846	Testi	No: TO-15			Analysis Da	ie: 4/6/20:	18	SeqNo: 12	7407		
Analyte	Result	PQL	SPK value	SPK Rof Val	%rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai	
4-ethyltoluene	1.060	0.15	1	Ð	106	70	130	1,14	7.27	30		
Acetone	1.270	0.30	1	G	127	70	130	1.17	8.20	30		
Allyl chforide	0.9300	0.15	1	0	93.0	70	130	0.93	0	30		
Benzene	1.220	Ú.15	1	0	122	70	. 130	1.14	6.78	30		
Benzyl chloride	0.6300	0.15	1	0	83.0	70	130	1.06	24.3	30		
Bromodichiloromethane	1.240	Ð.15	Ť	0	124	70	130	1,25	0.803	30	,	
Bromoform	2.340	0 15	1	0	234	70	130	2.23	4.81	30	s LCS.	-15-~
Bromomelfiane	1.136	0.15	ĩ	0	113	70	130	1.1	2.69	30)
Certon disultoe	1.010	0.15	1	. 0	101	. 70	130	0.99	2.00	30		[
Carbon tetrachioride	1.390	0.040	4	0	139	70	130	1.27	9.62	30	SLLS	-17
Chlorobenzane	1,050	0.15	-1	Ð	105	70	139	1.09	3,74	30		
Chloroethane	1.240	0.15	1	0	124	70	13G	1.18	4.96	30		
Chloroform	0.9960	0.15	4	0	99.0	76	130	0,94	5.18	30		
Chloromethane	1.240	0.15	ᅾ	0	124	70	130	1.17	5.81	30		
cis-1,2-Dichlorosthene	0.9300	0.15	1	Ū	93.0	70	130	0.94	1.07	30		
cis-1,3-Dichloropropene	1,220	0.15	1	0	122	70	130	1.25	2.43	30		
Cyclohexane	1.230	0,15	1	0	123	70	130	1.21	1.64	30		
Dibromochloromethane	1,140	0.15	t	0	114	79	130	1.16	1.74	30		
Ethyl acetate	0.9600	0.25	1	0	98.0	70	130	1.03	7.04	30		
Ehythenzene	1.000	0.15	1	ū	100	70	130	0.98	2.02	. 30		
Frean 11	1,260	0.15	1	ũ	126	70	130	1.16	8.26	30		
Freen 113	1.220	0.15	1	ũ	122	70	130	1,15	5.91	30		
Freen 114	1,260	0.15	1	O	126	70	130	1.58	6.55	30		
Freen 12	1,190	0.15	1	û	119	70	130	1.1	7.86	30		
iepiane	1.090	0.15	. 2	Û	109	70	130	1.02	6.64	30		
riexacîı10≈o−1,3-butadiese	1.260	0.15	1	đ	120	70	130	1.66	32.2	30	· R	
lexano	0.7960	0.15	1	0	79.0	70	130	0.63	4,94	30		
sopropyl alcohol	0.8360	0.15	-F	Q	83.0	70	130	1.02	20.5	30		
m&p-Xytene	2,020	0.30	2	0	101	79	130	1.95	3.53	30		(-1-
Weihyt Buryf Kelone	0.2000	0.36	4	0	20.0	70	130	0.76	0	30	Qu	,- <i>L</i>
Methyl Ethyl Kelone	0.8200	0.30	. ż	0	82.0	70	130	D.91	10.4	30	ົ	171

Results reported are not blank corrected

E Value above quantitation range.

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

J Analyte detected at or below quantitation limits

Holding times for preparation or analysis exceeded
 R PD outside accepted renovery limits

Page 4 of 5

CLIENT: AMEC Environment & lafrastructure, Inc.

Work Order: C1603083

roject: Scobell							3	festCode: 0	L25CT-TC	E-VC	
Sample ID ALCS1UGB-840616	SampType: LCSD	TestCo	øe: 0.25CT-TC	E- Units: ppbV		Prep Da	łe:		RunNo: 10	346	
Cliant ID: ZZZZZ	Batch ID: R10846	Testl	¥o: T O-15			Apatysis Da	le: 4/6/20)ŧ	SeqNo: 12	7407	
Analyle	Result	PQL	SPK value	SPK Ref Val	%reg	LowLimit	RighLimit	RPD Ref Val	%RPD	RPOLimi t	Quai
Methyl Isobulyl Kalona	0.2600	0.30	1	Q	26.0	70	130	0.82	0	30	JS LU
Methyl tert-butyl ether	0.9203	0.15	1	0	92,0	70	130	0.96	4.26	30	Q
Methylene chloride	T. 14Q	0.15	1	0	114	70	130	1.12	1.77	30	
o-Xylene	1.440	0.15	1	Ċ	144	70	130	1 25	14.1	30	s Lu
Propylene	1.060	0.15	1	ŭ	106	70	130	1.05	0.948	30	
ityrene	1.110	0.15	1	ū	111	70	130	3 08	2.74	. 30	4.~
Fetrachloroeihylene	0.7800	Q.15	1	Q	78.0	70-	130	0.78	Ū	30	•
i elrahydrofuran	0.8900	0.15	1	0.	89.0	70	130	0.96	7.57	30	,
foluene	0.7000	0.15	1	Û	76.0	70	130	0.72	2.82	30	
rans-1,2-Dichloroethene	6.9900	Ũ.15	1	C	99.0	70	130	0.99	Ð	30	
rans-1,3-Dichloropropene	1.190	0 .15	. 1	¢	119	70	130	1.31	9.60	30	
Trichloroethene	1.240	0.040	1	۵	124	70	130	1.12	10.2	30	
Vinyl acetate	0,8500	0.15	1	Q	85.0	70	130	Q.9	5.71	- 30	
Vinyl Bromide	1.240	0.15	1	C	124	70	130	1.11	11.1	30	
Vinyl chlorida	1.110	D.040	1	Q	111	70	130	t. 05	5.56	30	
Sua: ฮิสอสอดใบoroberizene	1.050	0	1	Ð	106	70	130	۵	0	30	

.....

......

Qualifiers:

Results reported are not blank converted .

J Analyte detected at or below quantitation limits

8 Spike Recovery outside accepted recovery limits

- E Value shove quantitation range
- ND Not Descared at the Reporting Limit

- II Holding times for preparation or analysis exceeded
- R RPD outside accepted recovery limits

.

Page 5 of 5

Wis

4-22-16

PCE			
Standard Concs	IS Response	Respone	RF
0.04	61413	2411	0.98147
0.1	65714	4679	0.712025
0.15	62434	5857	0.625407
0.3	63070	11766	0.621849
0.5	67747	19835	0.585561
0.75	64493	28969	0.598907
1	61333	37193	0.606411
1.25	66689	47939	0.575075
1.5	71425	62278	0.58129
) 2	65204	77730	0.596052
	Standard Concs 0.04 0.1 0.15 0.3 0.5 0.75 0.75 1.25 0.15	Standard Concs IS Response 0.04 61413 0.1 65714 0.15 62434 0.3 63070 0.5 67747 0.75 64493 1 61333 1.25 66689 1.5 71425	Standard ConcsIS ResponseRespone0.046141324110.16571446790.156243458570.363070117660.567747198350.756449328969161333371931.2566689479391.57142562278

IS Conc =

1

Ave RF =	0.648404779
stan dev =	0.12337793
RSD =	19.02791809

Sample ID	IS Response	Response	On-column
CCV	25975	16806	0.99784387
C163083-1	43670	357310	12.6187336
-3	32291	10395	0.49647432
-4	53516	170415	4.91109083
-8	35844	29514	1.26988793
LCS 4/5 909	29998	17733	0.91168268
LCS 4/6 1043	36898	18617	0.77814524

a.

CENTEK LABORATORIES, LLC

.....

RPDLimit

Qual

ANALYTICAL OC SUMMARY REPORT

TestCode: 0.25CT-TCE-VC

%RPD

.....

130

130

130

130

130

130

130

\$30

130

130

130

130

130

130

130

70

70

79

70

70

79

70

70

70

AMEC Environment & Infrastructure. Inc. CLIENT: Work Order: C1603083

Scobell

Project:

1,2-Dichloropropane

1.3-Dichlorobenzepa

1.4-Dichlerobenzene

2.2.4-trimethyloentane

Bromedichioromethane

.

1.3-buladiene

1.4-Dioxano

4-ethylioluene

Allyi chloride

Senzyl chloride

Bromomethane

Accione

Benzene

Brannoform

Ouslifiers:

1,3,5-Trimethylbenzene

......

Analyte

Sample ID ALCS1UG-040516 SamoType: LCS TestCode: 0.25GT-TCE-Units: notV Prep Dete: RunNo: 10845 Client ID: ZZZZZ Batch ID: R16845 TestNo: TO-15 Analysis Date: 4/5/2016 SecNo: 127380 Result POL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val 1.1.1-Trichlorselinane 1.220 0.15 1 01 70 130172 1,1,2,2-Tetrachloroethane 1.260 0,15 1 ũ 126 70 130 1.1.2-TriciBoroethane 1.100 D.15 4 Ð 110 70 130 1 1-Oktioroelhane 1*6*20 D 15. 3 n 102 70 139 1.140 1.1-Dichlocosthene ū. 15 Ť, Ð 114 70 130 1.260 1.2.4-Trichlorobenzena 0.15 1 Ô 125 701301 70 1,2,4-Trimethylbenzene 1.000 **0.15** Θ 100 130 1.2-Dibromoethane 1,160 70 130 0.15 1 ٥ 116 1.2-Dichlorobenzene 1,238 0.15 1 ø 123 70 130 1.2-Dichloroethane 130

0.9408 0.15 1 Ð 94.0 701,120 0.15 ź Ð 112 70 0.15 ø 116 70 1.160 Ť 1,150 0.15 ٤ 0 70 115 1 260 0.15 1 0 126 70 76 1,219 0.15 1 C 121 70 1.060 0.30 ŧ 0 198

τ

1

1

1

1

1

1

1

1

Results reported are not blank corrected J Analyte detected at or below quantitation limits Е Value above quantitation range

ND Not Detected at the Reporting Limit

Ð,

Ċ

0

0

В

Ð.

0

6

Q.

126

105

118

92.0

113

118

125

238

109

. . .

s Spike Recovery entside accepted recovery limits

1.263

1.050

1.185

0.9200

1.130

1.189

1.260

2.380

1.090

0.15

0.15

0.30

0.15

0.15

9.15

0.15

6.15

ũ.15

F1 Molding times for preparation or analysis exceeded

RPD outside accepted recovery limits R

Page 1 of S

s LCS-it Nozur

Page 105 of 681

CLIENT: AMEC Environment & Infrastructure, Inc.

Work Order: C1603083

Project: Scobel] TestCode: 0.25CT-TCE-VC

.

Sample ID ALCS1UG-040516	C\$1UG-040516 SempType: LCS TestCode: 0.25CT-TCE- Units: ppbV					Prep Da	te:		RunNo: 10846			
Client ID: 22222	Batch ID: R10845	Test	40: TO-15			Analysis Da	te: 4/5/20	16	SeqNo: 12	7380		
Analyte	Result	PQL	SPK vatuo	SPK Ref Val	%REG	LowLimit	Hightimit	RPD Ref Val	%RPD	RPDLimit	Quai	
Carbon disulfide	1.040	0.15	1	0	104	70	130					
Carbon totrachieride	1.280	0.040	1	a	128	70	130		-			
Chlorobenzene	1.150	0.15	1	٥	115	70	130					
Chloroethane	1.150	0.15	1	0	115	70	130					
Chlorolorm	0.9900	0.15	1	ð	99.0	70	130					
Chloromethane	1.250	0.15	1	0	125	70	130					
cis-1,2-Dictrioroeinene	0,9500	0.15	1	0	95.0	70	130					
cis-1.3-Dichloropropene	1.150	0.15	1	Q	115	70	130					
Cyclottexane	1.230	0.15	1	σ	123	70	130					
Gibromochloromethane	1,230	0.15	1	Û	123	70	130					
Ethyl acetate	0.9400	0.25	- 1	0	94.Ũ	70	130			-		
thylbenzene	0.9600	0.15	1	IJ	96.0	70	130					
Freen 11	1.240	0.15	1	۵	124	70	130					
Freon 113	1.230	0.15	1	D	123	70	130					
Freori 114	1.270	Q.15	1	Û	127	70	130					
Treon 12	1.200	0.15	1	Q	120	. 70	130					
Heptane	0.9700	0.15	1	D	97.O	70	130					
Hexachloro-1,3-butadiene	2.160	0.15	· 1	0	216	70	130				s LC	
Hexane	0.8500	0.15	· 1	Û	85.0	70	130				s LC A	
sopropył alcohoł	1,010	0.15	1	D	101	70	130					
n&p-Xylene	1,880	0.30	2	Ũ	94.0	70	130					
Methyl Butyl Kelone	0. 7100	0.30	1	. û	71.0	70	130					
Methyl Ethyl Ketone	0.9800	0.30	1	Ð	98.0	70	130					
velhyl Isobutyl Ketone	0.9400	0.30	1	Û	94.0	70	130					
Vielbyl ten-butyl ether	0,\$500	0.15	1	Ũ	96.0	70	130					
vlethylene chloride	1.170	0.15	1	۵	117	70	130					
3-Xybene	1.190	0.15	1	¢	119	70	130					
Propylene	1.050	0,75	1	0	105	70	130					
Styrene	1.090	0.15	1	Ŭ	109	70	130					
fetrachiorcethylene	0,9100	0.15	1	Ð	91.0	70	130					
Tetrshydroturaa	0.9600	0,15	1	٥	90.0	70	130					

Qualifiers:

Į.

Results reputied are not blank corrected

F. Value above quantitation range

ND Not Delecter at the Reporting Lupit

Analyte detected at or below quantitation limits Spike Recovery outside accepted recovery limits S

i folding finess for preparation or analysis exceeded 81

RPD outside accepted recovery limits R

Centek Laboratories, LLC

....

CLIENT: AMEC Environment & Infrastructure, Inc.

Work Order: C1603083

Project: Scobell

:: :....

Page 106 of 681

TestCode: 0.25CT-TCE-VC

Sample ID ALCS1UG-040516	SampType: LCS	TestCode. 8.2SCT-TCE, Units: ppbV				Prep Da	ite:	RunNo: 19845			
Client ID: ZZZZZ	Batch ID: R10845	Test	No: 70-15			Analysis Da	ate: 415/20	15	SegNo: 12	7380	
Analyte	Result	PQL	SPK value	SPK Ref Vel	%rec	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLinit	Quai
Toiuene	0.8200	0,15	1	Q	82.0	70	130				
trans-1,2-Dichlorcethene	1.010	0.15	1	0	101	70	130				
trans-1,3-Dichloropropena	1.160	0.15	1	0	116	70	130				
Trichloroethene	1.110	0,Q4D	1	Û	211	70	130				
Vinyl acetate	0.8500	0.15	1	0	<u>85</u> .0	70	130				
Vinyl Bromide	1.170	0.15	1	0	117	70	130				
Vinyl chloride	1.090	0.040	1	0	109	70	139				
Sur: Bramofivorobenzene	`	0	1	Ð	113	70	130				
Sample ID ALCS1UG-840618	SampType: LCS	¥estCa	do: 0.25CT-T(CE- Units: ppbV	•	Prep Da	đę:		RunNo: 10	946	
Client ID: 22222	Batch ID: R10846	Test	Na: TO-1 5			Analysis Da	de: 4/6/201	16	SeqNo: 12.	7406	
Anaiyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimli	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichlomethane	1.270	0 15	1	0	127	70	130				
1.1,2,2-Tetrachiorcelbane	1.320	0.15	- - 1	G	132	70	130				5 L い ル
1.1,2-Trickloroeihane	1.260	D. 15	1	0	126	70	130				Л
1.1-Dichloroethane	0,9930	0.15	1	0	99.0	70	130				-
t, 1-Bichloroethene	0.9900	0.15	1	0	99.0	70	130				
1,2,4-Tricklorobenzene	0.8600	0.15	1	¢	86.0	70	130				
1,2,4-Trimethylbenzøne	1 130	9. (S	1	0	113	70)	130				
1,2-Obtomoethane	1.490	0.15	1	¢	119	70	130				
1,2-Dichlorobenzene	1.250	0.15	1	С ^с	125	76	130				
1,2-Dichloroethane	0.9200	0.15	1	0-	92.0	70	130				
1,2-Dichioropropare	1.200	0.15	1	٥	120	70	130				
1,3,5-Trimethylbenzene	1,270	0.15	1	<u></u> 0	127	70	130				
1.3-buladiene	1,100	0.15	1	¢	110	70	130				
				0	119	70	130				
	1,190	0.15	1	U	114						
1,3-Dichlorabenzene 1,4-Dichlorabenzene	1.190 1.020	0.15 0.15	1	0	102	70	130				
t,3-Dichlorabenzene			1 1 1	-		-					

Qualifiers:

3

.

Results reposted are not blank corrected

S Spike Recovery maside accepted tecovery limits

Analyte detected at or below quantitation fimits

......

E Value above quantitation range

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

CLIENT:

Page 107 of 681

Work Orders

- - ----

AMEC Environment & infrastructure, Inc.

TestCode: 0.25CT-TCE-VC

C1603083 Project: Scobel]

Sample ID ALCS1UG-040616	SampType: LCS	TestCo	de: 0.25CT-TI	CE- Units: ppbV		Prep Da	ie:		RunNo: 10	46	
Client ID: ZZZZZ	Batch ID: R10846	Test	Vo: TO-15			Analysis Da	ite: 4/6/20 1	15	SegNo: 12	406	
Analyta	Result	ÉQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4-athylioluane	1,140	0.15	1		114	70	130				i
Acetone	1.170	0.30	1	Ć	117	70	130				
Allyi chloride	0.9300	ŭ.15	1	C	93.0	70	130				
ienzene	1.140	0.15	1	Q	. 114	70	130				
enzyl chłoride	1.060	Ŭ.15	-1	Ð	106	70	130				
romodichloromethane	1.250	0.15	1	0	125	· 70	130				
romolorm	2,230	0.15	5	0	223	70	130				S VS
romomeihane	1.100	Q.15	1	0	110	70	130				s لد: بر
≿arbon disul¥de	0.9900	0.15	1	Ð	99.0	70	130				
arbon letrachioride	1.270	0.046	1	0	127	70	130				
hlorobenzene	1.090	0.15	1	Ð	109	70	133				
hioroethane	1.180	Ū.15	1	D	158	70	130				
hioroform	0.9400	0.15	1	0	94.0	70	130				
hicromeinane	1.170	Ū 15	1	0	117	70	139				
s-1,2-Dichloroethene	0.9400	0.15	1	6	\$4.D	70	130				
is-1,3-Dichloropropene	1.250	0_15	1	· 0	125	70	130				
yclohexane	1.210	0 15	4	0	121	70	130				
ibromochloromethane	1.160	0.15	1	0	116	70	130				
thyš acetate	1.930	0.25	1	ο.	103	7D	130				
thysbenzene	0.9800	Ū 15	1	0	98.0	70	130				
reon 11	1,160	0.15	1	0	118	70	130				
reon 113	1,150	0.15	1	e	115	70	130				
reon 114	1.180	0.15	1	o	118	70	130				
reen 12	1.100	D.15	1	¢	110	70	130		-		
leptane	1.020	ū. 15	1	0	102	70	130				
lexachloro-1,3-butadiene	1,660	ŭ.15	. 1	0	166	70	130				s LO
exane	0,8300	0.15	1	0	83.0	70	130				
opropyl alochol	1.020	D.15	1	0	102	70	130				
ι&ρ-Xylene	1,950	030	2	0	97.5	70	130				
Aelfiyi Bulyi Kelone	0.7500	0.30	1	0	7 6.0	70	130				
Vethyi Ethyi Kelone	0. 9100	0.30	1	0	91.0	70	130	· .	-		

Qualifiers:

-

Results reported are not blank corrected

H Value above quantitating range

ND Not Detected at the Reporting Limit

 Analyte detected at or below quantitation hants S Spike Recovery outside accepted recovery limits H Itolding times for preparation or analysis exceeded R RPD outside accepted recovery limits

• . •

Page 4 of 5

..... CLIENT: AMEC Environment & Infrastructure, Inc.

Work Order: C1603083

Project:

Page 108 of 681

Scobelt

TestCode: 0.25CT-TCE-VC

Sample [O_ALCS1UG-840618	SampType: LCS		¢e, 0.25CT-T(CE- Units: ppbV	· • • •	Prep Da			RunNo: 10	9.4£	
Client ID: ZZZZZ	Betch iD: 810845		Vo: TO-15	- une pper		Analysis Da		15	SeqNo: 12		
Apalyte	Result	POL	SPK value	SPK Ref Vaj	%REC	LowLimit	HighLimit	RPD Ref Val	%ጽዖD	RPDLimit	Quel
Methyl Isobutyl Ketone	0.8200	0.30	1	Q ·	82.0	7ው	130				
Melbyl ten-butyl athar	0.960G	6.15	1	۵	96.0	79	130				
Meinviene chloride	1.120	0.15	1	0	112	70	130				
a-Xylene	1.260	0.15	1	0	125	70	130				
Propylene	1.050	0,15	1	a	105	70	130				
Styrene	1.080	0.15	1	0	108	70	130				
Fairachlorosthylene	0.7800	0.15	1	Q	78.0	70	130				
Telrahydrofuran	0.9600	0.15	1	٥	96.0	70	130				
Tolvene	0,7200	0.15	1	a	72.0	70	130				
lrans-1,2-Dichlorcethene	0.9900	0.15	1	O	99 O	70	130				
Irans-1,3-Dichloropropene	1,310	9.15	1	0	131	70	130				تنا s بر
Trichloroethene	1.120	0.040	1	٥	112	70	130				
Vinyl acetate	0.9000	0.15	1	٥	90.0	70	130				٦
Vinyl-Bromide	1.110	0.15	1	Q	111	70	13D				
Vinyi chloride	1.050	0.040	1	0	105	70	130				
Sun: Bromofluorobenzene	1.130	0	1	¢	113	70	130				

.....

Qualifiers:

- Results reported are not blank corrected .
- J Assalyte detected at or below quantitation limits
- 5 Spike Recovery outside accepted recovery limits
- H Value showe quantitation range
- ND Not Detected at the Reporting Limit

- Holding times for preparation or analysis exceeded UI.
- RPD outside accepted recovery limits R

.

Page 5 of 5

Analyte		PCE			
Level		Standard Concs	IS Response	Respone	RF
	1	0.04	61413	2411	0.98147
	2	0.1	65714	4679	0.712025
	3	0.15	62434	5857	0.625407
	4	0.3	63070	11766	0.621849
	5	0.5	67747	19835	0.585561
	6	0.75	64493	28969	0.598907
	7	1	61333	37193	0.606411
	8	1.25	66689	47939	0.575075
	9	1.5	71425	62278	0.58129
	10	2	65204	77730	0.596052

IS Conc =

.

1

Ave RF =	0.648404779
stan dev =	0.12337793
RSD =	19.02791809
Molecular Weight	165.83

.

Sample ID	IS Response	Response	On-column (ppbv)	ug/m3
CCV	25975	16806	0.99784387	
C1603083-1	43670	357310	12.6187336	85.76084
-	3 32291	10395	0.49647432	3.374194
-,	4 53516	170415	4.91109083	33.3773
-1	8 35844	29514	1.26988793	8.630554
LCS 4/5 909	29998	17733	0.91168268	
LCS 4/6 1043	36898	18617	0.77814524	

.

Sample ID	828076-SS-0	005-01 (C160	3083-1/2) Qual	Sample ID	8280
Compund	Result D	up RP	D	Compund	Result
1,2,4-tmb	19	21	-10.00	1,2,4-tmb	0.21
1,3,5-tmb	11	11	0.00	actone	9.5
4-ethyltoluene	3.2	2.9	9.84	benzene	0.2
acetone	170	200	-16.22	carbon tetrachloride	0.14
benzene	32	36	-11.76	chloromethane	1.2
carbon disulfide	18	19	-5.41	ethylbenzene	0.13
cyclohexane	- 66	98	-39.02	freon 11	0.39
ethyl acetate	0.59	0	200.00 J/UJ	freon 113	0.11
ethylbenzene	8.5	8.6	-1.17	freon 12	0.81
freon 11	0.31	0.27	13.79	heptane	0.54
freon 113	0.19	0.18	5.41	ipa	8
heptane	84	87	-3.51	m+p	0.5
hexane	57	67	-16.13	methyl ethyl ketone	0.87
isopropyl alc	. 20	0	200.00 J/UJ	mecl2	0.58
m+p	58	68	-15.87	o-sylene	0.14
methyl isobutyl ketone	9.4	9.4	0.00	toluene	0.97
mecl2	0.76	0.71	6.80	tce	0.15
o-xylene	16	18	-11.76	1,4-dioxane	0
tetrachloroethylene	11	13	-16.67		
toluene	65	73	-11.59		
tce	27	29	-7.14		
freon 12	0	0.65	-200.00 J/UJ		
methyl ethyl ketone	0	59	-200.00 J/UJ		

	828	076-IA-001-	NSC	Qual
	Result	Dup	RPD	
	0.21	0.22	-4.6	5
	9.5	12	-23.2	6
	0.2	0.18	10.5	3
le	0.14	0.13	7.4	1
	1.2	0.99	19.1	.8
	0.13	0.12	8.0	0
	0.39	0.36	8.0	0
	0.11	0.11	0.0	0
	0.81	0.73		
	0.54	0	200.0	i0 1/U1
	8			2
	0.5		-	9
e	0.87	0.63	32.0	00
	0.58	0.6	-3,3	9
	0.14	0.13	7.4	1
	0.97	0.85	13.1	.9
	0.15	0.2		
	C	0.77	-200.0)0 J/UJ

,

ふ