

13 British American Boulevard Latham, NY 12110-1405 518.783.1996 Fax 518.783.8397

PRE-DESIGN INVESTIGATION SUMMARY FOCUSED FEASIBILITY STUDY Stuart-Olver-Holtz Henrietta, New York

Shaw Project 839447 (formerly 784222)

November 27, 2002

Prepared for:

Mr. Gary E. Kline, P.E.
Bureau of Western Remedial Action
Division of Environmental Remediation

New York State Department of Environmental Conservation
625 Broadway
Albany, New York 12233

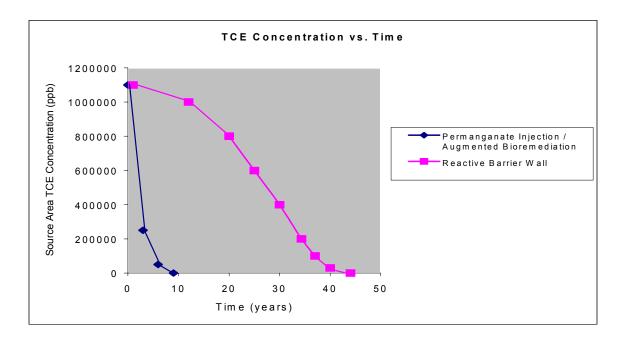
Prepared By:

Shaw Environmental, Inc., (Shaw)

(formerly IT Corporation)
13 British American Boulevard
Latham, New York 12110

Written/Submitted By:	Reviewed/Approved By:	
Kurt M. Bedore, P.E.	Susan D. McCormick, P.E.	
Project Engineer	Senior Project Manager	

Executive Summary


In 1996, GZA GeoEnvironmental issued the *Feasibility Study Report, Stuart-Olver-Holtz Site* for the New York State Department of Environmental Conservation. The purpose of the feasibility study was to identify and evaluate technologies to remediate areas of contamination at the Stuart-Olver-Holtz site identified in the Remedial Investigation Report. Based on the recommendations in the feasibility study, a Record of Decision was issued by the New York State Department of Environmental Conservation in March 1997. The selected remedy was Site Wide Alternative 5. Site Wide Alternative 5 consists of excavation or isolation of contaminated surface soils, a short-term source area extraction system, a downgradient contaminated overburden groundwater collection trench system, and passive pretreatment of contaminated groundwater by a zero valence iron wall with eventual discharge to the local publicly owned treatment works.

In September 1999, IT Corporation submitted the *Remedial Design Work Plan* for Stuart-Olver-Holtz, based on the 1997 Record of Decision. This work plan recommended further investigation to better define the source area and to determine if any unknown sources existed. In conjunction with the *Pre-Design Investigation Sampling and Analysis Work Plan* (February 2000), IT Corporation submitted an *Addendum to the Remedial Design Work Plan* (March 2000) for a field pilot test of permanganate injection (Perm-Ox). Perm-Ox is an *in situ* chemical oxidation technology that is used to destroy chlorinated ethenes in groundwater. The purpose of the pilot test was to determine if permanganate injection would be a more viable and cost effective remedial alternative for the overburden groundwater than the current alternative in the Record of Decision.

The pilot test was performed in June and July 2000. The pilot test concluded that permanganate injection is a feasible remedy for chlorinated ethenes in the overburden groundwater. When permanganate injection is combined with an augmented *in situ* bioremediation system, it provides a feasible and cost-effective remedial alternative for all chlorinated volatile organic compounds in the overburden groundwater. The permanganate injection destroys the chlorinated ethenes, while the bioremediation system destroys the chlorinated ethanes.

In addition to conducting the permanganate injection pilot test, IT Corporation reevaluated the overburden groundwater alternative presented in the Record of Decision based on the data collected during the pre-design investigation study.

Although both remedial systems listed above would reduce volatile organic compound contamination in the overburden, a significant difference in implementation time and cost between the two alternatives exists. The estimated time required to implement the passive groundwater treatment alternative (#1) is over 40 years while the estimated time required to implement the permanganate injection/augmented bioremediation system alternative (#2) is 9 years. The reactive barrier wall system does not directly address the source area but relies on transport of volatile organic compounds from the source area to the reactive wall. The change in source area volatile organic compound concentrations over time would be characteristic of a natural degradation process. In contrast, the permanganate injection/augmented bioremediation system actively addresses volatile organic compounds in the source area and within the contaminant plume. Volatile organic compound concentrations in the source area would rapidly decline as the active treatment was implemented. The reactive barrier wall system requires significantly more time to implement than the permanganate injection/augmented bioremediation system because of the rate limiting transport of volatile organic compounds to the reactive barrier. The difference in time required to implement these two alternatives can be demonstrated graphically as follows:

This report contains an analysis of the estimated cost to implement the proposed overburden groundwater actions. The estimated cost to implement the bedrock groundwater action, surface soil action, and the Stuart-Olver-Holtz sump contents removal is based upon the estimated costs presented in the 1996 feasibility study. The costs presented in the 1996 feasibility study were adjusted to 2001 dollars using Engineering New Record's 1996 Annual and May 2001

Construction Cost Index. The total net present worth of the selected alternative (#2) using a permanganate injection/augmented bioremediation system to address the overburden groundwater is \$4,090,430. In contrast, the total net present worth of a site-wide alternative (#1) using a reactive barrier wall to address the overburden groundwater is \$7,130,476.

TABLE OF CONTENTS:

1.0	INTRODUCTION	1
1.1	Purpose of Investigation	1
1.2	SITE DESCRIPTION AND HISTORY	2
1.3	REMEDIAL HISTORY	4
2.0	POST RI/FS FIELD INVESTIGATION ACTIVITIES	7
2.1	Introduction	7
2.2	SOIL BORING AND MONITORING WELL INSTALLATION	9
2	2.2.1 OW-7 Source Area Borings	10
2	2.2.2 Alignment Borings	11
2	2.2.3 Sodium Permanganate Injection Pilot Test Well Installation	11
	2.2.4 Temporary Monitoring Well Installation	
2.3	SURFACE SOIL SAMPLING	12
2.4	SUMP/CATCH BASIN SEDIMENT SAMPLING	13
2.5	GROUNDWATER SAMPLING	13
2.6	TOPOGRAPHIC AND LOCATION SURVEY	14
2.7	PERMANGANATE FIELD PILOT TEST	14
	2.7.1 Baseline Groundwater Sampling	
2	2.7.2 Permanganate Injection	15
2	2.7.3 Post Injection Field Monitoring and Groundwater Sampling	15
2.8	LINE TRACER TESTS AND BUILDING SURVEY	16
2.9	SUB-SLAB INVESTIGATION (SOIL GAS SURVEY)	16
2.10	0 QUALITY CONTROL	17
2	2.10.1 Sampling and Analysis Plan	17
2	2.10.2 Data Usability Summary Report	17
2	2.10.3 QA/QC Samples and Results	18
2	2.10.4 Database Management	18
3.0	RESULTS OF PRE-DESIGN INVESTIGATION SAMPLING PROGRAM	19
3.1	INTRODUCTION TO ANALYTICAL RESULTS	19
3.2	GEOLOGICAL EVALUATION	19
3.3	SUBSURFACE SOIL SAMPLES ANALYTICAL RESULTS	19
3	3.3.1 VOCs Results in Subsurface Soil Samples	20
3	3.3.2 SVOCs and PCBs in Subsurface Soil Samples	21
3	3.3.3 TOC Results	21
3.4	SURFACE SOIL SAMPLING ANALYTICAL RESULTS	21
3	3.4.1 SVOC Analytical Results in Surface Soil Samples	21
3	8.4.2 Metal Analytical Results in Surface Soil Samples	22

3.	.5 SUMP/CATCH BASIN SEDIMENT SAMPLING RESULTS	22
	3.5.1 VOC Analytical Results in Sump/Catch Basin Sediment Samples	23
3.	.6 HYDROGEOLOGICAL EVALUATION	23
3.	.7 GROUNDWATER SAMPLING RESULTS	24
	3.7.1 Overburden Groundwater	24
	3.7.1.1 VOC Results in Overburden Groundwater	25
	3.7.1.2 Metal and Cyanide Analytical Results in Overburden Groundwater	26
	3.7.1.3 Wet Chemistry and Miscellaneous Results in Overburden Groundwater	26
	3.7.2 Bedrock Groundwater Results	26
	3.7.2.1 VOCs Results in Bedrock Groundwater	27
	3.7.2.2 Metal Results in Bedrock Groundwater	27
	3.7.2.3 Wet Chemical Results in Bedrock Groundwater	27
	.8 DRAIN-LINE TRACER AND BUILDING SURVEY	
3.	.9 SUB-SLAB INVESTIGATION – SOIL GAS SURVEY	
	3.9.1 Sub-Slab Investigation Results	29
4.0	PERMANGANATE INJECTION PILOT TEST	31
4.	.1 BASELINE GROUNDWATER SAMPLING	31
4.	.2 SODIUM PERMANGANATE INJECTION	32
4.	.3 Post-Injection Field and Groundwater Monitoring	33
	4.3.1 Injection Wells (IW-1, IPZ-2 and IPZ-3):	33
	4.3.2 Proximate Wells (IPZ-1 and OW-7):	34
	4.3.3 Temporary Wells (TW-1, TW-2, TW-3, and TW-4)	35
4.	.4 ESTIMATION OF RADIUS OF INFLUENCE	36
	.5 ESTIMATION OF VOLATILE ORGANIC COMPOUND REMOVAL	
4.	.6 PERMANGANATE INJECTION VIABILITY	37
5.0	FOCUSED FEASIBILITY STUDY	39
5.	.1 SUMMARY OF 1996 FS AND RECORD OF DECISION	39
	5.1.1 FS Remedial Action Objectives (RAOs)	39
	5.1.2 Site Wide Remedial Alternatives	40
5.	.2 Re-Evaluation of Overburden Groundwater Actions	43
	5.2.1 Shallow Groundwater Collection Trenches/Extraction Wells and Passive Treatme	∍nt
	Prior to POTW Discharge	44
	5.2.2 Development of New Site Wide Alternative	45
	5.2.2.1 Permanganate Injection	
	5.2.2.2 Augmented Bioremediation	
	5.2.2.3 Ruby Gordon Interim Remedial Measures	51
	5.2.2.4 Remediation Phase Monitoring	
	5.2.2.5 Summary of Permanganate Injection/Augmented Bioremediation System	
5	.3 COMPARATIVE ANALYSIS OF OVERBURDEN GROUNDWATER REMEDIAL ALTERNATIVES	53

	5.3.1	Overall Protection of Human Health and the Environment	53
	5.3.2	Compliance with SCGs, and ARARs	54
	5.3.3	Short-term Effectiveness	54
	5.3.4	Long-term Effectiveness	56
	5.3.5	Reduction in Mobility, Toxicity, and Volume	56
		Implementability	
	5.3.7	Cost	57
	5.3.8	Summary	58
	0).//		
6.0	OV	ERVIEW OF SELECTED ALTERNATIVE	59
7.0	RF	FERENCES	61
7.0			٠.
TAB	LES:		
.,			
2-1		il Borings and Monitoring Wells Installation/Sampling Rationale	
2-2		mmary of Subsurface Soil Sample Analysis	
2-3		mmary of Surface Soil and Sediment Sample Analysis	
2-4 3-1A		mmary of Groundwater Sample Analysis	
3-1A 3-1B		tected Compounds (VOCs, TOC) in Subsurface Soil Samples tected Compounds (PCBs, SVOCs) in Subsurface Soil Samples	
3-16		lation Between TCE Concentration and PID Readings	
3-3		tected Compounds (SVOCs, Metals) in Surface Soil Samples	
3-4		tected Compounds (VOCs) in Sump / Catch Basin Sediment Samples	
3-5		oundwater Elevation Measurements (December 13, 2000)	
3-6A		tected Compounds (VOCs, Metals) in Overburden Groundwater Samples	
3-6B		tected Compounds (Wet Chem and other) in Overburden Groundwater Samples	
3-7A		tected Compounds (VOCs, Metals) in Bedrock Groundwater Samples	
3-7B	De	tected Compounds (Wet Chem and other) in Bedrock Groundwater Samples	
3-8A	De	tected Compounds (VOCs, Metals) in Water Sample Collected in Vault	
3-8B		tected Compounds (SVOCs, pH) in Water Sample Collected in Vault	
3-9	_	allow Subsurface Soil Data	
4-1		oundwater Field Parameter Monitoring Before and During Sodium Permanganate	
		ot Test	
4-2	Gro	oundwater Field Parameter Monitoring After Sodium Permanganate	

Permanganate Injection Baseline and Post-Injection Results

Pilot Test

4-3

Proposed Injection Well Locations

Historical Soil Vapor Data

FIGURES:

1-1	Site Location Map
1-2	Site Map
2-1	Subsurface and Surface Soil/Sediment Sampling Location Map
2-2	Groundwater Sampling Location Map
3-1	Select SVOCs and Metal Concentrations in Surface Soil
3-1A	TCE, TCA Concentrations in Subsurface Soil and New Monitoring Wells
3-2	Groundwater Elevation (over burden wells) Contour Map (12-13-00)
3-3	Bedrock Groundwater Elevation Contour Map (12-13-00)
3-4A	Select VOC Concentrations in Overburden Groundwater (December 2000)
3-4B	Select VOC Concentrations in Overburden Groundwater (Source Area)
3-5A	TCE Isocontour in Overburden Groundwater
3-5B	TCE Isocontour in Overburden Groundwater (Source Area)
3-6	Select VOCs Concentration in Bedrock Groundwater
1-1	Estimated Extent of Source Area

APPENDICES:

5-1

5-2

Appendix A	Cost Estimates
Appendix B	Borehole Logs
Appendix C	Larsen Engineering's Report
Appendix D	Laboratory Analytical Data
Appendix E	DUSR Report
Appendix F	Historical Analytical Data (tabulated)
Appendix G	Remedial Action Objectives for Chemicals of Potential Concern (1996 FI/FS)
Appendix H	Sub-Slab Investigation Report (Soil Gas Survey) (August 2002)
Appendix I	Order of Magnitude Cost Estimates and Comparison Letter dated May 7, 2002

LIST OF ACRONYMS:

ASP Analytical Services Protocol AST Aboveground Storage Tank

bg Below Ground
cm/day Centimeters per Day
COCs Constituents of Concern
COD Chemical Oxygen Demand
COPC Chemicals of Potential Concern

1,1-DCE1,1-Dichloroethene1,2-DCETotal 1,2-DichloroetheneDOCDissolved Organic CarbonDUSRData Usability Summary ReportEPAEnvironmental Protection Agency

ID Inner Diameter

IDW Investigation Derived Waste

IP Interface Probe

IRM Interim Remedial Measure

IT Corporation IT Corporation, Inc. μg/L Micrograms per Liter

μg/m³ Micrograms per Cubic Meter

m/s Meters per Second

m²/s Square Meters per Second MCL Maximum Contaminant Level

MDL Method Detection Limit mg/kg Milligrams per Kilogram mg/L Milligrams per Liter MIBK Methyl Isobutyl Ketone

MSL Mean Sea Level

MS/MSD Matrix Spike/Matrix Spike Duplicate
NAVD North American Vertical Datum

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

OD Outside Diameter

ORP Oxidation Reduction Potential
PAH Polynuclear Aromatic Hydrocarbon

PCB Polychlorinated Biphenyl

PCE Tetrachloroethene, Perchloroethene

PGC Portable Gas Chromatograph
PID Photoionization Detector

POTW Publicly Owned Treatment Works

PQL Practical Quantitation Limit
PRG Preliminary Remediation Goals
PRP Potentially Responsible Party
QA/QC Quality Assurance/Quality Control

RA Risk Assessment

RCRA Resource Conservation and Recovery Act

RI Remedial Investigation

RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision

ROI Radius of Influence

SAP Sampling and Analysis Plan SDG Sample Delivery Group

SCG Standard Criteria and Guidance

SJB SJB Services Inc SOH Stuart-Olver-Holtz

SOP Standard Operating Procedure SVOC Semivolatile Organic Compound

SWA-5 Site Wide Alternative 5

TAGM Technical and Administrative Guidance Memorandum

TAL Target Analyte List TCE Trichloroethene

TCL Target Compound List

TCLP Toxicity Characteristic Leachate Procedure

TOC Total Organic Compounds

TOGS Technical and Operational Guidance Series

1,1,1-TCA 1,1,1-Trichloroethane

USCS Unified Soil Classification System

USDOT United States Department of Transportation

VOCs Volatile Organic Compounds

1.0 INTRODUCTION

In March 1997, the New York State Department of Environmental Conservation (NYSDEC) issued a Record of Decision (ROD) for the Stuart-Olver-Holtz (SOH) site (NYSDEC Site # 8-28-079). The selected remedy was Site Wide Alternative Number 5 (SWA-5) from the SOH Feasibility Study (FS) Report (Feasibility Study Report, Stuart Olver-Holtz Site, Henrietta, NY, October 1996). SWA- 5 consists of a short-term source area extraction system, a downgradient contaminated overburden groundwater collection trench system, and passive pretreatment of contaminated groundwater by zero valence iron with eventual discharge to the local Publicly Owned Treatment Works (POTW). In addition, SWA-5 also includes the isolation and/or excavation and off-site disposal of contaminated surface soils, the construction of minor drainage improvements, and restoration of the excavated areas. Bedrock groundwater contamination will be addressed by institutional controls.

During preparation of the *Remedial Design Work Plan* for SOH (September 1999), it was determined that additional site characterization was needed to design the prescribed remedial alternatives in the ROD, and that a more viable and cost-effective remedial alternative for the chlorinated ethenes in the overburden groundwater might exist. In February 2000, IT Corporation submitted a *Pre-Design Investigation Sampling and Analysis Plan* to further delineate the source area and determine if additional source areas exist. In March 2000, IT Corporation submitted an *Addendum to the Remedial Design Work Plan* to include a field pilot test of *in situ* permanganate oxidation. In June 2002, Shaw performed a soil gas survey under the confines of the SOH building to further delineate potential source areas.

1.1 Purpose of Investigation

The purpose of the pre-design investigation was to explore the viability of an alternative remedial action for destroying chlorinated ethene contamination present in the overburden groundwater, to further delineate the known sources of volatile organic compound (VOC) contamination, and to investigate other potential VOC sources.

Analytical results from soil borings installed during previous investigations suggested that several additional soil borings were necessary to further define existing source areas and locate other potential source areas. In May and June 2000 additional soil borings were installed on-

site, and in February 2001 a drain line tracer test (smoke test and video survey) was conducted. These tasks were directed at delineating the known source area and identifying additional sources. In December 2000 groundwater samples were collected and analyzed from 27 on-site monitoring wells to assess current site-wide groundwater quality. Prior to December 2000, the most recent site-wide data was collected in 1996 as part of the Remedial Investigation (RI) fieldwork. In addition to the soil borings and groundwater monitoring program, surface soil samples were collected from the on-site drainage ditch.

Analytical results from the year 2000-2001 investigations listed above indicated the potential for additional source areas under the confines of the existing SOH building. In June 2002, a soil gas survey was conducted by Shaw to further identify additional source areas under the confines of the SOH building.

Based on data presented in the 1996 RI/FS, it was determined that *in situ* chemical oxidation may be a viable and cost-effective alternative for remediation of the chlorinated ethenes at the SOH site. In March 2000 IT Corporation submitted *an Addendum to the Remedial Design Work Plan* for the field pilot testing of permanganate injection (Perm-Ox). Perm-Ox uses permanganate to chemically oxidize and destroy chlorinated ethenes in the groundwater. At the time the FS was prepared in 1996, *in-situ* chemical oxidation was an innovative technology and not widely used. Since then, *in-situ* chemical oxidation has been proven as an effective remedial alternative for VOC contamination at numerous hazardous waste sites. The results of the pilot test and an evaluation against the SWA-5 groundwater remedial action are presented herein. If *in-situ* chemical oxidation is shown to be a viable remediation tool, a significant cost savings for the NYSDEC is expected.

1.2 Site Description and History

The SOH site is located at 39 Commerce Drive, in the Town of Henrietta, Monroe County, New York (**Figure 1-1**, Site Location Map). The site is identified as Town tax map number 161.15-5 and occupies approximately 3.8 acres in a mixed commercial-industrial area. A manufacturing building occupies the eastern half of the site. The remaining area consists of a paved parking lot, driveways and grass covered areas. Immediately to the west of the site is a swale that receives drainage from the SOH site (**Figure 1-2**, Site Map).

The site is bounded on the east by several small businesses, on the west by Pullman Manufacturing, on the south by Ruby Gordon, Inc., and on the north side by Commerce Drive

and several commercial properties. The site is located within the Red Creek drainage basin. Red Creek is located about a half mile north and west of the site and flows into the Erie Canal about 2 miles north of the site. The westernmost portion of the site is located within the 100-year floodplain of Red Creek.

Operational/Disposal History

The SOH site was developed from farmland in 1962 as Electro Chemical Products, Inc., which evolved into Stuart-Olver-Holtz, Inc. SOH operated a specialty finishing business that included painting, conversion coating and metal plating of parts on a contractual basis. In 1974, a fire occurred at the site that destroyed a portion of the facility and resulted in the uncontrolled release of plating and coating solutions into the environment. In 1980, SOH applied for (but did not obtain) a permit to operate a solvent recovery unit at the facility and began accumulating drums of waste solvents for processing. The NYSDEC issued an enforcement order requiring SOH to remove the waste solvent drums, some of which had been observed to be leaking. In August 1983, SOH removed approximately 200 drums from the site, but more than 100 drums remained. The accumulation of drums had been a recurring problem at this facility. Efforts by the NYSDEC to have SOH complete an environmental cleanup of the site were not successful. The site was subsequently listed as a Class 2 inactive hazardous waste disposal site.

In 1986, SOH filed for Chapter 11 bankruptcy. Chapter 11 proceedings allowed for the transfer of the SOH manufacturing facility to Metalade, Inc. and resulted in an approved plan for business reorganization. Metalade established SOH Acquiring, Inc. to hold the title to the facility. Metalade then leased the facility back from this holding company. Environmental assessments of the site made in conjunction with this property transfer confirmed the presence of soil and groundwater contamination at the site. Metalade conducted manufacturing operations similar to those performed by SOH. A separate parcel of the property is still owned by the original principals of SOH, SOH, however, was dissolved as a corporation.

Adjoining the property to the south is Ruby Gordon, Inc., a retail furniture and warehousing enterprise. Ruby Gordon applied for a NYSDEC permit to discharge groundwater collected from their basement sumps to a nearby surface drainage ditch. Due to the proximity to the SOH site and the presence of VOCs in the drainage ditch, Ruby Gordon was directed by the NYSDEC to analyze its sump water for the presence of VOCs. VOCs were detected in the sump discharge. VOC groundwater contamination at Ruby Gordon was determined to be caused by contamination migrating from the SOH property. Ruby Gordon continues to discharge groundwater pumped from their basement sumps to the local POTW. Prior to discharging, the water is treated to comply with discharge limitations set by the POTW.

1.3 Remedial History

During April 1985 and March 1986 the NYSDEC conducted inspections of the SOH facility. Several chemical containers and drums in the southwestern portion of the site were unprotected outside the SOH building during those inspections. Container and drum contents were reported as 1,1,1-trichloroethane, etching waste, methylene chloride, waste thinner, nickel stripping solution, plating waste paint and other solvents. The inspections also revealed the presence of three large dumpsters containing electroplating sludge outside the SOH building.

In 1987, a site assessment was conducted by SOH. Based on the results of this investigation and the prior inspections, the following conclusions were reached:

- Groundwater flow in the overburden aguifer is generally toward the west/northwest.
- VOCs were discovered in soil samples collected from the southwestern portion of the site, particularly in the vicinity of the drum storage area.
- VOCs were detected in groundwater at the southwestern portion of the site.
- VOCs were detected in the two existing on-site production wells.

In April 1991, Ruby Gordon Inc. conducted hydrogeologic investigations of the Ruby Gordon property to determine whether SOH was the source of contaminants detected in their basement sumps. This study concluded that contaminants found in water from the three basement sumps were attributable to contaminated groundwater migrating from the SOH site.

Summary of Remedial Investigation/Feasibility Study and Subsequent Work Plans

The NYSDEC has completed an RI/FS at the site. A final RI report, entitled *Remedial Investigation Report, Stuart-Olver-Holtz Site, Henrietta, New York* (September 1996) was prepared describing the field activities and findings of the RI. The purpose of the RI was to define the nature and extent of contamination resulting from activities at the site.

The RI was conducted in two phases. Field work for the first phase was conducted between October 1994 and December 1994. Field work for a supplemental phase was conducted between June 1995 and October 1995. The RI included the following activities:

- Geophysical survey
- Soil vapor survey
- Air sampling during intrusive activities

- Test pit excavations
 - Installation and sampling of soil borings and monitoring wells
 - SOH building bedrock production well assessment and sampling
 - Drainage swale, surface water and sediment sampling
 - Surface soil sampling
 - Catch basin/sump sampling
 - Private well survey

The RI identified a probable source area where levels of contamination in overburden groundwater were much greater than the NYSDEC's standard criteria and guidance (SCG) for groundwater. The most significant concentrations of the contaminants of concern occurred in the vicinity of the Metalade loading docks at monitoring well OW-7S. Elevated concentrations of similar contaminants were also detected in the vicinity of OW-6S, where drums were historically staged. Shallow groundwater may also have migrated to this area from the OW-7S source area due to a hydraulic gradient reversal induced by the basement sumps at the Ruby Gordon facility. Contaminant levels in the northwest overburden groundwater plume near the SOH property were also elevated, with well OW-3S containing VOC levels well above groundwater SCGs.

There were isolated areas where the surface soil contaminant concentrations exceeded NYSDEC soil SCGs, presumably due to chemical spills that occurred over the years of operation. Groundwater collected from the shallow bedrock beneath the site also showed some contamination at levels of concern.

Based on the results of the RI, a comparison of the concentration of on-site contaminants to NYSDEC SCGs, and an evaluation of potential human and environmental exposure routes, areas were identified that warranted remediation by the NYSDEC. A feasibility study report titled *Feasibility Study Report, Stuart-Olver-Holtz Site, Henrietta, New York* (October 1996), was prepared to evaluate remedial options for site cleanup. The FS screened multiple technologies to remediate the site. Based on this screening, five site wide remedial alternatives were developed and evaluated. Based on this evaluation, SWA-5 was recommended as the preferred alternative for remediation of the site. SWA-5 includes the following components:

Overburden Groundwater Actions

- Install a shallow groundwater collection trench system along the north and west property boundaries to collect and contain contaminated groundwater.
- Install and operate a passive groundwater pretreatment system. The system consists of subsurface vaults containing zero valence iron filings for destruction of chlorinated VOCs. Pretreated groundwater would discharge by gravity to the sanitary sewer for final treatment at the local POTW.
- Install and operate groundwater extraction wells for removal of contaminants from the source area near OW-7S.
- Install and operate a shallow groundwater collection trench adjacent to the Ruby Gordon basement to intercept contaminated groundwater.
- Conduct periodic, long-term overburden groundwater monitoring.
- Construct drainage improvements between Ruby Gordon and the SOH site to minimize groundwater recharge to the Ruby Gordon basement.
- Recommend deed restrictions on future use(s) of the site.

• Bedrock Groundwater Actions

 Implement institutional controls to reduce the potential for exposure to contaminated bedrock groundwater. This would include: disconnecting the SOH interior bedrock wells, conducting bedrock groundwater monitoring, and recommending deed restrictions of future use(s) of groundwater.

Surface Soil Action:

- Excavate the on-site and off-site surface soils that are above SCGs and haul off-site for disposal. Regrade and restore the excavated areas. Isolation of on-site contaminated surface soils could be done in-lieu of excavation.

SOH Sump Contents:

- Remove and provide off-site disposal for accumulated sediments from onsite sumps, catch basins, and related piping.
- Evaluate, upgrade or decommission drainage lines or connections.

In March 1997 NYSDEC issued a Record of Decision for the SOH site (NYSDEC Site # 8-28-079) selecting SWA-5 as the remedial action for SOH.

In September 1999, IT Corporation submitted the *Remedial Design Work Plan* for SOH, based the 1997 ROD. This work plan recommended further investigations to better define the source area and determine if any unknown sources existed.

In February 2000, IT Corporation submitted a *Pre-Design Investigation Sampling and Analysis Work Plan* to further delineate the source area and investigate the potential for other source areas. In conjunction with the work plan, an *Addendum to the Remedial Design Work Plan*, was submitted in March 2000 for a field pilot test of permanganate injection (Perm-Ox), an *in situ*

chemical oxidation technology that could be used to destroy chlorinated ethenes in the groundwater. The *Pre-Design Investigation Sampling and Analysis Work Plan* and *Remedial Design Addendum* were approved by the State for implementation. Field work began in May 2000.

2.0 POST RI/FS FIELD INVESTIGATION ACTIVITIES

2.1 Introduction

The SOH pre-design investigation was conducted to further characterize the nature and extent of contamination in groundwater, subsurface soil and surface soil, and to identify additional areas that contribute to groundwater contamination or pose an unacceptable risk to human health and the environment. In addition, an *in situ* chemical oxidation field pilot test was conducted with permanganate. The field investigation was conducted from May 2000 through February 2001. **Table 2-1** presents the rational for selecting each sampling point. A summary of sampling and analyses activities is presented below:

Table 2-2: These sampling activities were conducted in May and June 2000.

- Collection and analysis of 70 subsurface soil samples for one or more of the following:
 - Target compound list (TCL) VOCs
 - TCL semivolatile organics
 - TCL pesticides and polychlorinated biphenyls (PCBs)
 - Target analyte list (TAL) metals and cyanide

Table 2-3: These sampling activities were conducted in November 2000 and February 2001.

- Collection and analysis of 15 sediment/surface soil samples in November 2000 for:
 - TCL semivolatile organics (SVOCs)
 - TAL metals and cyanide

 Collection and analysis of 3 sediment samples collected from pits and manhole inside and around the facility for TCL VOCs. Table 2-3 presents a summary of the analysis performed. These sampling activities were conducted in February 2001.

Table 2-4: These sampling activities were conducted in December 2000.

- Collection and analysis of groundwater samples collected from 27 monitoring wells for one or more of the following:
 - TCL VOCs
 - TAL metals and cyanide
 - Inorganic anions
 - Specific conductivity
 - Total Organic Carbon (TOC)
 - Dissolved Organic Carbon (DOC)
 - Alkalinity

Table 2-4: These sampling activities were conducted in July, September and October 2000.

- Collection and analysis of groundwater samples in up to 10 injection and observation wells for one or more of the following:
 - TCL VOCs
 - Chemical Oxygen Demand (COD)
 - Iron and Manganese
 - Chlorides

Appendix H presents the Sub-Slab Investigation (Soil Gas Survey) with results summarized in Tables 1 and 2. These sampling activities were conducted on June 17-18, 2002.

- Collection and analysis of soil gas samples in 50% of the 28 geoprobe locations containing the highest PID readings for VOCs against EPA Method TO-14.
- Collection and analysis of soil samples in 25% of the 28 geoprobe locations containing the highest PID readings against EPA method 8260.

The methodology used to complete each of the above-referenced activities is described in detail in the following sections. This chapter has been organized to discuss the methodologies and rationale for each of the following major components of the SOH Pre-Design Investigation:

- Soil Borings and Monitoring Well Installation
 - OW-7 Source Area Borings
 - Alignment Borings
 - Perm-Ox Well Installation
 - Temporary Monitoring Well Installation
- Surface Soil/Sediment Sampling
- Groundwater Sampling
- Topographic and Location Survey
- Sodium Permanganate Pilot Test
- Sub-Slab Investigation (Soil Gas Survey)
- Line Tracer Tests and Building Survey
- SAP,QAAP and Data Base Management

The field activities were performed in accordance with the following approved work plans:

- Remedial Design Work Plan, Stuart-Olver-Holtz, September 1999 (Design Work Plan).
- Pre-Design Investigation Sampling and Analysis Plan, Stuart-Olver-Holtz, February 2000 (Sampling and Analysis Plan (SAP)).
- Remedial Design Work Plan Addendum Perm-Ox Pilot Test, March 2000 (Design Work Plan Addendum).
- Geoprobe Investigation Work Plan Letter, Stuart-Olver-Holtz, Henrietta, New York, June 13, 2002 (Sub-Slab Investigation Soil Gas Survey Work Plan).

2.2 Soil Boring and Monitoring Well Installation

During the implementation of the field activities, a total of 32 borings were installed inside and outside the Metalade Facility and in the alignment of the collection trench proposed in SWA-5. A total of 11 soil borings were converted into wells, the remaining 21 soil borings were abandoned by pressure grouting from the bottom to the boring surface.

All soil borings were installed using 4 ¼" inside diameter (ID), 8-inch outside diameter (OD) hollow stem augers. During the installation of the test borings, soil samples were collected continuously using a 2-inch diameter by 24-inch long split-barrel soil sampler (split-spoon). A

150-pound hammer free falling over 30-inches was typically used to drive the split spoon sampler. The borings were completed to bedrock until auger refusal.

Drill cuttings, which were assumed to be non-hazardous, were drummed and transported to an on-site staging area for future disposal at a NYSDEC approved disposal facility.

Field sampling equipment and drilling equipment was decontaminated between each sampling point according to the protocols outlined in the SAP.

2.2.1 OW-7 Source Area Borings

The OW-7S source area investigation was conducted to locate the source of VOC contamination previously identified during the 1996 RI/FS. A total of 20 soil borings were installed in the area of OW-7S during the period of May 1 through June 19, 2000 by SJB Services Inc. (SJB) under the supervision of IT Corporation. A total of 15 borings (SB-1 through SB-12, and SB-15) were installed outside the facility around OW-7S following a pre-determined grid pattern. Five soil borings (SB16 through SB-20) were installed inside the Metalade facility. These borings are referred to as "outside" and "inside" borings, respectively. Proposed soil borings SB-13 and SB-14 could not be installed due to access restrictions. Soil boring locations are shown in **Figure 2-1**.

Soil borings were completed to refusal, which occurred between 29 feet and 44 feet below grade. Samples were collected continuously during boring installation using a standard 2-inch split-spoon driven with a 150-pound hammer. Due to poor recovery, a 300-pound hammer was occasionally used (SB1, SB6X and SB15). The content of each split-spoon was broken into four 6-inch segments depending on the percentage of soil recovered. The segments were labeled from the top of the spoon to bottom: "A", "B", "C" and "D", respectively. The geology of each sample was described according to Unified Soil Classification System (USCS) and organic vapors were measured (headspace readings) using a photoionization detector (PID). If only 50-percent soil was recovered, the sample was split into 2 sections, "A" and "B". Any split spoon with less than 25-percent soil recovery was monitored for organic vapors and discarded.

All soils were described on a borehole log with respect to their geologic properties and USCS classifications. Blow Counts, PID readings, and other field information were also recorded on these logs which are presented in **Appendix B**.

The soil samples containing the highest VOC readings were sent to Mitkem Corporation, Warwick, Rhode Island (Mitkem) for laboratory analysis. The samples were analyzed for TCL

Volatiles according to ASP Method 95-1 and Total Organic Carbon (TOC) according to EPA method 9060. **Table 2-2** summarizes the samples collected and the analysis performed.

The sample containers were preserved in accordance with the SAP and packed on ice in an insulated cooler. Quality control samples were collected at a frequency of one per 20 samples collected and included matrix spike/matrix spike duplicates (MS/MSDs) and field duplicates.

2.2.2 Alignment Borings

A total of 4 borings were installed in the proposed groundwater collection trench described in SWA-5 to further define the subsurface conditions for the completion of the design of the containment wall/collection trench. The borings (B1/PZ-3, B2, B3/PZ-2 and B4/PZ-1) are referred to as "alignment borings" and were installed between May 25 and 30, 2000 by SJB under the supervision of IT Corporation (**Figure 2-1**). The soil borings were installed to refusal and sampled continuously following the protocol outlined in **Section 2.2.1**; soil samples were screened with a PID for VOC readings but were not submitted for chemical analysis. The borehole logs are presented in **Appendix B**.

Three soil borings were converted to piezometers (B4/PZ-1, B3/PZ-2 and B1/PZ-3) to determine the variation of hydraulic head in the area. The piezometers were installed using two-inch diameter PVC with 0.020-inch slotted well screen and PVC casing. Construction details are presented in the borehole logs in **Appendix B**.

2.2.3 Sodium Permanganate Injection Pilot Test Well Installation

As part of the permanganate injection field pilot test, a total of 4 injection wells were installed in the source area near OW-7S (**Section 2.5**). The injection wells (IPZ-1 through IPZ-3, and IW-1) were installed between June 26 and 29, 2000 by SJB under the supervision of IT Corporation (**Figure 2-2**). The injection wells were all installed so that the screen interval was located between 14 to 24 feet below ground surface. The injection wells were constructed with 2-inch diameter Schedule 80 PVC, 0.020-inch slotted screen according to the work plan specification. Installation details are presented on the Borehole Logs in **Appendix B**.

Boring IW-1 was sampled according to the protocols described in **Section 2.1.1**. No soil samples were collected during the installation of IPZ-1 through IPZ-3. After installation, all injection wells were developed by pumping a minimum of 10 well volumes, or pumping for a period of 1 hour, whichever occurred first, using a submersible well pump. The purge water was disposed in vegetated areas on site.

2.2.4 Temporary Monitoring Well Installation

As part of the permanganate injection field pilot test, a total of 4 post-injection monitoring wells (TW-1 through TW-4) were installed in the source area near OW-7S to monitor the progress of the permanganate injection (**Figure 2-2**). The wells were installed on September 18 and 19, 2000 by SJB under the supervision of IT Corporation.

No soil samples were collected during the post-injection monitoring well installations. The monitoring wells were constructed with 2-inch diameter PVC, 0.020 slotted well screen with the screen interval located between 14 to 24 feet below ground surface. Construction details are included on the Borehole Logs in **Appendix B**.

Because the wells were installed several weeks after the injection of permanganate, a neutralizing solution consisting of equal parts of 3-percent hydrogen peroxide, white vinegar and water was prepared for decontamination purposes. All field equipment was decontaminated between well installation using the neutralizing solution as necessary when evidence of sodium permanganate (purple color) was observed.

On September 19, 2000, all four wells were developed by pumping a minimum of 10 well volumes, or for a period of 1 hour, using a submersible well pump. Water that presented evidence of sodium permanganate (purple tint) was collected and returned to the well when necessary; all other purge water not containing sodium permanganate was disposed of in vegetated areas on site.

2.3 Surface Soil Sampling

A total of 15 surface soil samples (DD-1 through DD-15) were collected on November 30, 2000 at a depth of 0 to 6 inches below grade (**Figure 2-1**). The surface soil investigation was completed in the adjacent offsite drainage swale to further define the limits of surface soils above NYSDEC SCGs. The samples were collected in 5 transects crossing the swale with 3 samples per transect. Sediment was sampled according to the SAP and analyzed for TCL semi-volatile organics TAL metals and cyanide. Surface soil samples were collected according to the protocol outlined in the SAP. Quality control samples included field blanks (rinsate samples), MS/MSD, and a field duplicate. Surface soil sample collection logs are provided in **Appendix B**.

2.4 Sump/Catch Basin Sediment Sampling

On February 15, 2001, IT Corporation collected a total of 3 sediment samples at the site. These samples were collected from the bottom of a sump/separator located near the loading dock (Sewer sample-01), an inside sump located in the south west area of the facility (Sewer sample-02), and from a sanitary sewer discharge manhole located in the north eastern part of the facility between the building and Commerce Drive (Sewer sample-04). The samples were sent to Mitkem for TCL Volatiles analysis according to ASP Method 95-1. Sampling locations are presented in **Figure 2-1** as samples "01", "02" and "04".

2.5 Groundwater Sampling

Groundwater samples were collected from 27 monitoring wells, injection wells and piezometers, (**Table 2-4**) between December 13 and 20, 2000 (**Figure 2-2**). The groundwater investigation was completed to determine the present groundwater quality. Groundwater was sampled according to the SAP and analyzed for TCL volatile organics, TAL metals, TOC, dissolved organic carbon, bromide, fluoride, specific conductance, chloride, sulfate, alkalinity, nitrate, nitrite, phosphates, total dissolved solids and pH.

Before sampling, standing well volumes were calculated as described in the SOH SAP. The wells were purged using a twelve-volt direct current submersible pump or a 120-volt alternating current 2-inch diameter Grundfos Redi-Flo2 submersible pump. Specific conductance, pH, turbidity, dissolved oxygen, oxidation-reduction potential and temperature were measured at the start of purging operations and after each purged well volume. Stabilization of these parameters within +/- 10 percent from successive purge volumes indicated when groundwater within the well was at equilibrium with the aquifer. Groundwater samples were collected immediately following purging using a disposable polyethylene bailer. The sampling equipment was decontaminated between each monitoring well following the protocol described in the SAP.

During the groundwater sampling event, purge water was discharged to the ground surface except for the Perm-OX injection wells. The purge water from these wells was containerized in a 16-gallon container and neutralized with a solution of equal parts vinegar, hydrogen peroxide and water prior to discharge to the ground surface.

The sample containers were preserved in accordance with the SAP and packed on ice in an insulated cooler. A trip blank (analyzed for VOCs only) accompanied each cooler that contained aqueous samples for VOC analyses. Quality control samples were collected at a frequency of 1 per 20 samples collected and MS/MSDs and field duplicates.

2.6 Topographic and Location Survey

A site survey to determine the elevation and coordinates of field sampling points, sumps and catch basins was completed between April and December 2000 by a licensed New York Land Surveyor. The locations and inverts of accessible sewer lines and basins, the location of utilities on-site and in the right-of-ways were also determined. New York State Plane Coordinate System (NAD 83-96 format) and North American Vertical Datum (NAVD 1988) were used as horizontal and vertical datum, respectively.

The site survey and site drawings, obtained from the current owner of the site, were used to develop a site basemap. Mapping was completed in AutoCAD format.

2.7 Permanganate Field Pilot Test

In July 2000, IT Corporation conducted a Perm-Ox field pilot test, an *in situ* chemical oxidation remedial technology. The pilot test was used to determine the suitability of *in situ* chemical oxidation of ethene VOCs by the addition of a permanganate solution. The objectives of the pilot test were:

- Determine the degree and rate of reaction of injected permanganate with the VOC ethenes present in the groundwater.
- Determine the radius of influence and migration rate of permanganate in the overburden groundwater.
- Assess the effectiveness of permanganate as a full scale remediation alternative.

To achieve the pilot test objectives 4 injection wells and 4 post-injection monitoring wells were installed in the loading dock area of the Metalade facility. The loading dock area near OW-7R and OW-7S was previously identified in the 1996 RI/FS as the source area of groundwater contamination. The installation of the pilot test wells is discussed in **Sections 2.2.3 and 2.2.4**.

Permanganate may be delivered to the subsurface as either a potassium (KMnO₄) or sodium (NaMnO₄) salt. For the purposes of this pilot test, sodium permanganate was used.

2.7.1 Baseline Groundwater Sampling

On July 17, 2000, baseline groundwater samples were collected from injection wells IW-1, IPZ-1, IPZ-2 and IPZ-3; and monitoring wells OW-7R and OW-7S, to establish pre-injection conditions. The groundwater samples were analyzed on-site for pH, dissolved oxygen, specific conductivity, and oxidation reduction potential. Off-site analysis of the samples included VOC analysis (EPA 8260), chemical oxygen demand (COD) (SM 5220C), total iron (SM 6010), manganese (SM 6010), and chloride (SM 4500).

2.7.2 Permanganate Injection

During the week of July 17, 2000, 720 gallons of 40% sodium permanganate solution was injected at the loading dock source area through wells IW-1, IPZ-2, and IPZ-3. Because of tight geological conditions in the loading dock area, gravity injection was unsuccessful. However, under a minimum pressure injection system (3 to 5 pounds per square inch (psi)), permanganate was successfully delivered to the subsurface at a rate of 0.5 gallons per minute. Because of the high density of utility conduits in the injection area, some short-circuiting of the permanganate was observed. This was overcome by using multi-well injection, instead of one well for the total mass.

During the injection of permanganate, daily measurements of several field parameters were monitored. Daily measurements of temperature, pH, oxygen reduction potential, and conductivity were recorded at 5 wells (IPZ-1, IPZ-2, IPZ-3, OW-7S, and OW-7R).

2.7.3 Post Injection Field Monitoring and Groundwater Sampling

To determine the efficiency and radius of influence of the permanganate injection system, field measurements of color, pH, and oxygen reduction potential were collected periodically for several weeks. In addition to these measurements additional groundwater sampling and analysis was conducted. The first round of post-injection groundwater samples were collected on September 11 and 22, 2000 (approximately 8 weeks post injection), from IPZ-2, TW-1, TW-2, TW-3, TW-4, OW-7S and OW-7R. Samples were analyzed for VOCs by EPA Method 8260, COD, iron, manganese, and chloride. The second round of post-injection groundwater samples were collected approximately 12 weeks post injection on October 20, 2000. Collected groundwater samples were analyzed for VOCs, COD, iron, manganese, and chloride.

2.8 Line Tracer Tests and Building Survey

On January 30 and February 15, 2001, a Smoke Test Investigation was conducted at the facility by Larsen Engineers. The investigation had the following objectives:

- Confirm interior and exterior pathways of abandoned, uncapped, combined or crossconnected storm and sanitary sewer lines identified at the SOH site
- Link interior sewer pathways with confirmed public sanitary and storm sewer lines located adjacent to the SOH facility
- Identify any potential migration pathways

The smoke test investigation work scope consisted of constructing a description of the facility condition with floor trench and vaults identified, a smoke injection survey, and recording a video of underground lines when possible. Details on the methodology used during the smoke test investigation can be found in the *Stuart Olver-Holtz, Inc Drain System Investigation / Field Report and Preliminary Findings* included in **Appendix C.**

2.9 Sub-Slab Investigation (Soil Gas Survey)

On June 17 and 18, 2002, a geoprobe investigation was conducted beneath the SOH building slab. The purpose was to identify any potential additional source areas located under the SOH building. A total of 28 borings were advanced within the building. As per the Work Plan letter dated June 13, 2002. The drilling was performed by Aquifer Drilling and Testing, Inc., under the supervision of Shaw personnel.

Fifty (50) percent of the soil gas samples containing the highest PID readings were submitted for lab analysis for VOCs according to EPA TO-14. Similarly, twenty-five (25) percent of the soil samples containing the highest PID readings were submitted for lab analysis according to EPA Method 8260. A Full Category B Analytical Service Protocol Report was subsequently provided by Mitkem Corporation and is included in the Investigation Report Appendix. See **Appendix H** for the entire investigation report.

All excess soil and associated sampling waste were contained in a 55 gallon drum which was properly labeled and staged at the site. Subsequent disposal was performed in late September 2002. Field sampling equipment was properly decontaminated between samplings according to

protocols outlined in the Work Plan letter dated June 13, 2002. See **Appendix H** for the entire Sub-Slab Investigation Report dated August 16, 2002, as prepared by Shaw.

2.10 Quality Control

2.10.1 Sampling and Analysis Plan

A SAP and Quality Assurance/Quality Control (QA/QC) Plan were prepared detailing the scope and investigative methods to be employed in completing the field investigation. The SAP and QA/QC Plan were prepared as a single, stand-alone document titled *Pre-Design Investigation Sampling and Analysis Plan* (April 2000). The SAP was submitted for approval to the NYSDEC project manager prior to the commencement of fieldwork.

The SAP included descriptions of the numbers and types of environmental samples to be collected from each of the study areas. The SAP also included sampling depths, sampling methodology, sample container requirements and holding times, sample packaging and shipping instructions, sample documentation, and operating procedures for field sampling and decontamination.

The QA/QC Plan, which was included as **Section 3** of the SAP, included a description and rationale for the collection of field blanks, trip blanks, blind duplicate samples, and MS/MSD samples. The QA/QC plan also included instructions for the calibration of field instruments.

2.10.2 Data Usability Summary Report

Third party validation was performed by EcoChem Inc. of Seattle, Washington. The adherence of laboratory analytical performance to the methods used was evaluated during the data validation process. The NYSDEC Guidance for the Development of Data Usability Summary Reports (NYSDEC 1997), Region II Standard Operating Procedure HW-6, Rev#11 (USEPA 6-96), and Region II Standard Operating Procedure HW-2, Rev.#11 (USEPA 1-92) were used as guidelines for data qualifications.

The data validation consisted of a systematic review of the analytical results, associated quality control methods and results, and all of the supporting data. A Data Usability Summary Report (DUSR) was prepared for each sample delivery group (SDG) containing surface and subsurface soil samples and the July and December 2000 water samples results.

During the validation process environmental samples analysis data were evaluated for precision, accuracy, and representativeness by reviewing the quality control sample results and instrument calibrations. The validation procedure concluded that a number of the sample analysis results, in each laboratory analytical report, include a 'qualifier', or 'flag', corresponding with the analytical result. The qualifiers used and their definition are included in **Appendix E** with the DUSR reports.

2.10.3 QA/QC Samples and Results

QA/QC measures were taken to ensure sample integrity and to maintain confidence in the resultant data. QA/QC samples were collected in accordance with the approved Work Plan. The results of the QA/QC samples were reviewed during the data usability review and reported in the DUSRs.

2.10.4 Database Management

The data was reported with validator qualifiers only. An electronic copy of the validated data was entered into an Access Database. The database was then used to generate result tables and provide data for the concentration contour maps. Because of elevated concentrations of certain compounds, detection limits were often higher than the contract requirements. As a guideline when modeling data, 50-percent of the detection limit was typically used. It is important to note that modeling results calculated with 50-percent of detection values are considered conservative and might indicate false contamination in some areas.

3.0 RESULTS OF PRE-DESIGN INVESTIGATION SAMPLING PROGRAM

3.1 Introduction to Analytical Results

This section presents a discussion of all sampling data collected at the Site between May 1, 2000 and June 18, 2002. Analytical data from previous investigations is presented in **Appendix F**.

Soil sampling results are compared to the NYSDEC Recommended Soil Cleanup Objectives presented in Technical and Administrative Guidance Memorandum 4046 (TAGM 4046 Objectives). Groundwater Analytical results are compared to NYSDEC Division of Water Technical and Operational Guidance Series 1.1.1 Ambient Water Quality Standards and Guidance Values (TOGS 1.1.1 Standards).

3.2 Geological Evaluation

The available geological information was reviewed to identify coarser and/or more permeable layers within the till units that could have contributed to the distribution of contaminants across the site. Such units are often referred to as "sand stratum" in the 1996 RI/FS boring logs and were identified in several boreholes installed in 2000 (SB-2, SB-3, SB-4, SB-5, SBX-6, SB-8, SB-11, SB-16 and SB-18). These layers of sand and gravel were observed at various depths, often between 7 to 12 feet and 16 to 22 feet below grade, but were not identified with consistency across the site. These stringers are likely playing a role in the distribution of contaminants across the site.

3.3 Subsurface Soil Samples Analytical Results

Seventy (70) subsurface soil samples were collected from SB-1 through SB-12, and SB-15 through SB-20 and analyzed for one of the following: VOCs, TOC, SVOCs and PCBs. The samples were collected to further delineate and characterize the source area by the Metalade loading dock identified in 1996. This information was also used for the design of the Perm-Ox field pilot test.

3.3.1 VOCs Results in Subsurface Soil Samples

Based on the soil and groundwater data collected in 1996, the RI report concluded that the area adjacent to the well cluster OW-7 (the Metalade loading dock) was a source area for groundwater contamination. The analytes detected at the highest concentrations in this area were trichloroethene (TCE) at 1,500 µg/kg in OW-7S (28-30 feet) and 1,1,1-trichloroethane (1,1,1-TCA) at 210 µg/kg in OW-7S (8-10 feet). However, sufficient data was not collected in 1996 to fully characterize and delineate the source area for completion of the remedial design. To complete the characterization and delineation, a total of 70 subsurface soil samples were collected from 24 soil borings (**Figure 2-1**). VOCs were detected in 61 of the 63 subsurface soil samples analyzed for VOCs. Thirty five samples reported concentrations of a least 1 VOC analyte above TAGM 4046 Objectives. The analytes detected above TAGM 4046 Objectives include 1,1,1-TCA, TCE, 1,1-dichloroethane (1,1-DCA), 1,2 dichloroethene (total) (1,2-DCE (total)), acetone, methylene chloride, tetrachloroethene (PCE), and xylene.

VOCs were detected above the NYSDEC TAGM 4046 at various depths and concentrations in the soil borings located outside and inside the facility. Most of the samples analyzed reported elevated VOC concentrations at approximately 16 to 24 feet, 30 feet, and 38 to 40 feet below ground surface. TCE was the most prevalent VOC found in the soil samples, with detected concentrations ranging from 1 µg/kg to 110,000 µg/kg. The highest concentration was detected at SB-3 (16-18) C. Analytical results also reported elevated VOC concentrations in soil borings located inside the facility. Elevated concentrations of 1,1,1-TCA were detected in SB-18 (18-20) A and SB-18 (22-24) A at 20,000 µg/kg and 1,100,000 µg/kg, respectively. Elevated concentrations of acetone and PCE were detected in SB-20 (16-18) A (2,100 and 73,000 µg/kg, respectively). These concentrations are at least an order magnitude greater than the VOC concentrations detected in the soil samples collected during the 1996 RI. Based on the spatial distribution of the contaminants and concentrations found, the data seems to indicate the presence of a secondary source area within the building close to soil boring SB-20. Table 3-1A presents the analytical results for detected VOCs in subsurface soil samples and complete results are presented in Appendix D. Table 3-9 and Figure 3-1A presents the analytical results for detected VOCs in the shallow subsurface soil samples. Further, based on the June 2002 Sub-Slab Investigation, it appears that a secondary source area is located between SB-16 and SB-19 (see Section 3.9 and Appendix H for further information).

Upon review of the data, a direct correlation has been established between TCE concentrations in subsurface soil sample samples and the PID readings collected in the field (**Table 3-2**). Using the least squares method, the following correlation was established:

Y = 2.60X $R^2 = 0.82$

Where Y = TCE Concentration (μg/kg)
X = PID Reading
R² = Correlation Coefficient

3.3.2 SVOCs and PCBs in Subsurface Soil Samples

Metals and PCBs were not detected in SB-1 Cuttings, the only soil sample analyzed for these parameters. Sample SB-1 Cuttings was collected as a grab sample from the cuttings of SB-1 when evidence of product was observed on the soil during drilling activities. SB-1 Cuttings were analyzed for VOCs, SVOCs and pesticide/PCBs. These results are in concurrence with SVOC and PCB data presented in the 1996 RI. Detected metal and PCB analytes are presented in **Table 3-1B** and the complete results are presented in **Appendix D**.

3.3.3 TOC Results

To provide data for the design of the proposed permanganate injection remedial system, 7 of the 70 subsurface soil samples collected were analyzed for TOC. The detected results ranged between 0.5 percent (SB-1(16-18)D) and 30.9 percent (SB-6(10-12)A). The average TOC value is 0.9 percent (the TOC result of 30.9 percent from SB-6 (10-12) A was not used for the calculation of the average TOC value).

3.4 Surface Soil Sampling Analytical Results

A total of 15 surface soil samples were collected from DD-1 through DD-15 and analyzed for SVOCs and Metals, which were identified as chemicals of concern in the 1996 RI/FS. Surface soil sampling was performed to further define the extent of surface soil impacts in the adjacent off site right-of-way drainage swale.

3.4.1 SVOC Analytical Results in Surface Soil Samples

SVOCs were detected in all 15 surface soil samples collected. Surface soil sampling locations and results are presented on **Figure 3-1.** Fourteen (14) surface soil samples report SVOC concentrations above the TAGM 4046 Objectives. The analytes detected above TAGM 4046 Objectives include acenapthene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, chrysene, dibenzo(a,h)anthracene, fluoranthene,

fluorene, indeno(1,2,3-cd)pyrene, naphtalene, phenanthrene, phenol, and pyrene. **Table 3-3** presents SVOC results for detected compounds; complete analytical results are presented in **Appendix D**.

The most prevalent SVOC detected above the TAGM 4046 Objectives is benzo(a)pyrene, which was detected at concentrations ranging from 84 μ g/kg to 110,000 μ g/kg. Benzo(a)anthracene, benzo(b)fluoranthene and chrysene were also detected above the TAGM 4046 Objectives in DD-4, DD-8 and DD-12. In samples DD-9 and DD-13 almost all detected SVOCs were found at an elevated concentration.

The 1996 FS identified total PAHs as the chemical of concern for SVOCs in the surface soil. The current data concurs with this conclusion, as total PAH concentrations for most of the surface samples averaged 1,000 μ g/kg with the exception of DD-4, DD-8 and DD-12 which report total PAH concentrations above 10,000 μ g/kg. Total PAH concentrations in DD-9 and DD-13 exceed 500,000 μ g/kg. Total PAH results for surface soil samples are presented in **Figure 3-1**.

3.4.2 Metal Analytical Results in Surface Soil Samples

Metal analytes were detected in all 15 surface soil samples collected. Twelve (12) soil samples reported metal concentrations above the TAGM 4046 Objectives. The analytes detected above TAGM 4046 Objectives include cadmium, calcium, magnesium, and zinc for most of the samples. Mercury was detected above TAGM 4046 Objectives in DD-11 and DD-13. Chromium, lead, manganese were also detected above Objectives in DD-13.

The 1996 FS identified arsenic, cobalt, and lead as chemical of concerns for metals in surface soil. The data from the current investigation reported 3 of these metals were detected in all soil samples at concentrations below TAGM 4046 Objectives with the exception of lead in DD-13. Results for metal analytes are presented in **Figure 3-1** (for arsenic, cobalt and lead only).

3.5 Sump/Catch Basin Sediment Sampling Results

To further characterize sediments in the manholes, catch basins, and sumps located inside and outside the facility, 3 sediment samples were analyzed for VOCs.

3.5.1 VOC Analytical Results in Sump/Catch Basin Sediment Samples

VOC analytes were detected at concentrations above the TAGM 4046 Objectives in all 3 sediment samples collected. The sediment sampling locations are presented in **Figure 2-1** and the analytical results are presented in **Table 3-4**. The analytes detected above TAGM 4046 Objectives include 1,1,1-TCA, 1,1-DCA, 2-butanone, acetone, PCE, vinyl chloride and xylene (total).

Sample 01, was collected in a separator catch basin/manhole that is the discharge point for several facility drainpipes. The manhole is approximately 4 feet in diameter and an estimated 10 feet of sediment is present at the bottom of the manhole. 1,1,1- TCA, 1,1-DCA, 2-butanone, acetone, PCE, vinyl chloride, and xylene were all detected above TAGM 4046 in Sample 01.

Sample 02 was collected in a sump, located in the southwestern part of the facility where floor drains appear to be discharging. The depth of the sump is not known. 1,1,1- TCA and 1,1-DCA were the only VOCs detected, however, they were both detected above TAGM 4046 Objectives.

Sample 04 was collected in a manhole connected to the city sanitary sewer. Three VOCs (1,1,1-TCA, 1,1-DCA and 2-butanone) were detected above TAGM 4046 Objectives.

3.6 Hydrogeological Evaluation

Subsurface water level measurements were recorded on December 13, 2000. **Table 3-5** presents the depth to water measured, ground elevation, water table elevation and PID readings collected during gauging activities. As reported in the 1996 RI, groundwater is present in the overburden soil deposit and in the bedrock formation and will be referenced as 'overburden groundwater' and 'bedrock groundwater' for this report.

Depth-to-water levels collected from the shallow wells (typically screened above 25 feet below ground surface) are presented on **Figure 3-2**. The general overburden groundwater flow direction across the Site is to the north-northwest. The overburden groundwater elevation in the area of OW-7S (source area) is approximately 523 feet (5 feet below ground surface). Across the Site, the average overburden groundwater elevation is 522.26 feet (8 feet below ground surface). The general top of bedrock groundwater elevation is 518 feet (10 feet below ground surface). The gradient across the site generally varies between 0.013 feet/feet (calculated with OW-LS (MW-2) and B3/PZ-2) and 0.033 feet/feet (calculated with OW-LS (MW-2) and MW-5S).

November 27, 2002

A localized southwesterly groundwater flow direction can be observed in the southwestern part of the SOH property. The change in groundwater direction in that area of the site is induced by three sump pumps located in the basement of the Ruby Gordon Property near the northwest corner. According to the 1996 RI, the pumps start when groundwater elevation reaches 521.00 feet.

The depth-to-water levels collected from the deep wells (typically screened below 30 feet below ground surface) are presented in **Figure 3-3**. The general top of bedrock groundwater flow direction is also to the north-northwest and the gradient across the site is approximately 0.002 feet/feet (between OW-2R and OW-3R).

3.7 Groundwater Sampling Results

To characterize the current groundwater conditions at the site, a total of 27 groundwater samples were collected between December 14 and 19, 2000. Twenty-two (22) samples were collected from the overburden groundwater and 5 samples were collected from the bedrock groundwater. The groundwater samples were analyzed for TCL volatile organics, TAL metals, TOC, dissolved organic carbon, bromide, fluoride, specific conductance, chloride, sulfate, alkalinity, nitrate, nitrite, phosphates, total dissolved solids and pH.

Groundwater samples were also collected from selected wells in July, September, and October 2000 during the implementation of a permanganate pilot test. Groundwater samples collected in July were used as a baseline to establish the efficiency of the pilot test, the September and October events were used to monitor the pilot test progress. The results of the groundwater samples collected for the pilot test will be discussed in **Section 4.0.** This data is included in the data summary tables.

This section of the report will discuss the analytical results of the samples collected between December 14 and 19, 2000. The results will be presented first for overburden groundwater, then for the bedrock groundwater.

3.7.1 Overburden Groundwater

A total of 22 groundwater samples were collected and analyzed for TCL volatile organics, TAL metals, TOC, dissolved organic carbon, bromide, fluoride, specific conductance, chloride, sulfate, alkalinity, nitrate, nitrite, phosphates, total dissolved solids and pH.

3.7.1.1 VOC Results in Overburden Groundwater

VOCs were detected in 21 of the 22 groundwater samples collected in December 2000. Twenty-one (21) groundwater samples reported at least one VOC result above the TOGS standards. The majority of the samples reported the following analytes above TOGS standards: 1,1,1-TCA; 1,1-DCA; 1,1-dichloroethene (1,1-DCE); 1,2 DCE (total); cis-1,2 DCE, methylene chloride; PCE; TCE; and vinyl chloride. 1,1,2-TCA, 2- butanone, acetone, benzene, chlorochloromethane, carbon tetrachloride, chloroform, chloroethane and toluene were also found in PZ-2 and TW-2. The monitoring well locations are presented in **Figure 3-4A**. The results of detected VOCs in overburden groundwater samples are presented in **Table 3-6A**. Complete analytical results are included in **Appendix D**.

The most prevalent VOCs detected above TOGS Standards were 1,1,1-TCA; 1,1-DCA; 1,1-DCE; cis-1,2 DCE; 1,2-DCE (total); methylene chloride; and TCE. These compounds were detected in most of the groundwater samples collected. Analytical results from groundwater samples collected from IPZ-2 and TW-2 indicated the presence of several other VOCs at elevated concentrations. IPZ-1 and TW-1 reported the highest TCE concentrations during the December sampling program at $600,000 \mu g/L$ and $640,000 \mu g/L$, respectively.

The highest TCE concentrations in overburden groundwater was detected in IPZ-2 (1,200,000 µg/L) during the July 2000 sampling event, before the beginning of the permanganate pilot test. The 1996 RI had identified the area of OW-7S as the source area for the site. The 2000 investigation seems to indicate that the potential source of chemical is located closer to IPZ-2 than to OW-7S. Further discussions about the TCE source can be found in **Section 4**.

The 1996 FS identified 1,1,1-TCA; 1,1-DCA; 1,1-DCE; 1,2-DCA; 1,2-DCE (total); methylene chloride; TCE; PCE; and vinyl chloride as chemicals of concern for VOCs in overburden groundwater. The current investigation concurs with this conclusion; however, concentrations found during the current investigation are approximately an order-of-magnitude higher than those reported in the 1996 RI. The analytical results for these VOCs are presented in **Figures 3-4A** and **3-4B** (source area).

Figure 3-5 presents current TCE concentration across the Site. The concentration contour lines were generated using Surfer, version 7.0 (Golden Software), using the Krigging model. However, because of the large amount of data with elevated detection limits, 50 percent of the detection limit was used for results flagged with a "U". Therefore, the contour generated must be considered conservative. As shown, TCE concentrations are the highest in the source area near OW-7S, diminishing in an almost radial pattern as distance increases from the source area, presenting single digit concentration at the periphery of the site. A plume of elevated TCE concentration is also observed in the southwestern part of the site, following the groundwater

isocontour map presented in **Figure 3-2**. The general trends of these isoconcentration maps concur with the 1996 RI.

3.7.1.2 Metal and Cyanide Analytical Results in Overburden Groundwater

Metal analytes were detected in all of the 22 groundwater samples collected. All groundwater samples reported concentrations above TOGS 1.1.1 standards for at least one metal analyte. The metal analytes detected above TOGS 1.1.1 standards include antimony, chromium, iron, lead, magnesium, manganese, mercury, selenium and sodium. Iron, lead and magnesium were detected above TOGS 1.1.1 standards in almost all groundwater samples with the exception of OW-7S (iron only). Other analytes detected above TOGS 1.1.1 standards include antimony (OW-5S, OW-8S and PZ-2), mercury and selenium (IPZ-2 and IPZ-3) and nickel (TW-2). The results of detected metal in overburden groundwater samples are presented in **Table 3-6A**.

The elevated concentrations of sodium and manganese in the source area might be related to the sodium permanganate used in the pilot test. However, the background concentration of iron, magnesium, manganese and sodium across the site appears to be naturally elevated.

The 1996 FS identified aluminum, cobalt, lead, manganese, nickel and vanadium as chemicals of concern for metals in overburden groundwater. The current investigation did not report aluminum, cobalt and vanadium above TOGS 1.1.1 standards in any groundwater samples. Lead was detected above standards in IPZ-2 and OW-1 and nickel in TW-2. Manganese was detected at concentrations above TOGS 1.1.1 standards in IPZ-1, IPZ-2, IPZ-3, IW-1, OW-5S, OW-6S, PZ-1, PZ-3, TW-1, TW-2, TW-3, OW-1S and OW-2S which seems to indicate a sitewide distribution.

3.7.1.3 Wet Chemistry and Miscellaneous Results in Overburden Groundwater

The analytical results reported in this section include specific conductance, fluoride, DOC, TOC, chloride, nitrate/nitrite, total phosphate, sulfates, alkalinity, total dissolved solids, pH, COD and bromide.

An analytical summary of detected compounds is presented in **Table 3-6B** and complete results are included in **Appendix D**.

3.7.2 Bedrock Groundwater Results

Groundwater samples were analyzed for TCL volatile organics, TAL metals, total organic carbon, dissolved organic carbon, bromide, fluoride, specific conductance, chloride, sulfate, alkalinity, nitrate, nitrite, phosphates, total dissolved solids and pH.

3.7.2.1 VOCs Results in Bedrock Groundwater

VOCs were detected in 3 of the 5 groundwater samples collected in December 2000. Only OW-7R reported VOC concentrations above TOGS 1.1.1 standards. The analytes detected above TOGS 1.1.1 standards include 1,1,1-TCA; 1,1-DCA; 1,1-DCE; cis-1,2-DCE; 1,2-DCE (total); methylene chloride; TCE, and vinyl chloride. The results of detected VOCs in bedrock groundwater samples are presented in **Table 3-7A**.

The 1996 FS identified 1,1,1-TCA; 1,1-DCA; 1,1-DCE; 1,2-DCA; 1,2-DCE (total); methylene chloride; TCE; PCE, and vinyl chloride as chemicals of concern for VOC in bedrock groundwater. Results from the current investigation are within the same order of magnitude. The analytical results for these VOCs are presented in **Figure 3-6**.

3.7.2.2 Metal Results in Bedrock Groundwater

Metals analytes were detected in all 5 bedrock groundwater samples collected and all groundwater samples reported concentrations above TOGS 1.1.1 standards for at least one metal analyte. The analytes detected above TOGS 1.1.1 standards include iron in all samples; magnesium in OW-3R and OW-4R; manganese in OW-2R, OW-3R and OW-4R; and sodium in OW-4R. The results of detected metals in bedrock groundwater samples are presented in **Table 3-7A**.

As for the bedrock groundwater results, the concentrations of iron, manganese and sodium, appear to be naturally elevated across the site.

The 1996 FS identified aluminum, cobalt, lead, manganese, nickel and vanadium as chemicals of concern for metals in bedrock groundwater. None of these analytes were detected above TOGS 1.1.1 standards in the current investigation, with the exception of manganese (as discussed above).

3.7.2.3 Wet Chemical Results in Bedrock Groundwater

The analytical results presented in this section include specific conductance, fluoride, DOC, TOC, chloride, nitrate/nitrite, total phosphate, sulfates, alkalinity, total dissolved solids, pH, COD, and bromide.

An analytical summary of detected compounds is presented in **Table 3-7B** and complete results are included in **Appendix D**.

3.8 Drain-Line Tracer and Building Survey

A smoke test investigation was conducted at the site on January 30 and February 15, 2001. During the investigation, smoke was injected at 6 different locations and underground lines were video recorded to assess pipe conditions. Larsen Engineering's report detailing methodology and conclusions is included in **Appendix C**.

Two (2) below grade vaults were identified during the underground line survey. The 2 vaults are located in the northeastern portion of the facility, which according to the as-built sewer plan, are within the Plating Room and the Buffing Room areas. The vault in the plating room was approximately 6 feet by 8 feet in length and was covered by rotting plywood, which prevented safe assessment of the depth of the vault. The vault in the Plating Room appeared to be laden with an unknown liquid and no samples could be collected, because of safety concerns. The vault identified in the Buffing room is accessed via a manhole and is approximately 8 feet wide by 16 feet in length and 6 feet in depth. At the time of the investigation, the vault was filled with an orangish-brown liquid that was sampled at the time of the survey (Buffing Vault). The sample was sent to Mitkem and analyzed for VOCs, metals and pH. The analytical results are presented in **Tables 3-8A** and **3-8B** and report elevated concentrations of VOCs (1,1-DCE; 1,1,1-TCA; and toluene) and metals (antimony, cadmium, copper, iron, lead, nickel, selenium, sodium, thallium and zinc) which were all detected above TOGS 1.1.1 Standards.

A separator/sump of approximately 4 feet diameter was identified in the shipping/receiving room near the loading docks. Water and sediment was observed to a depth of 10 feet below grade. A total of 4 pipes were observed to drain in the direction of the separator which drains into a public sanitary sewer. Approximately 10 to 12 feet of sediment had accumulated in the separator/sump and the type of bottom (concrete or soil) of the separator could not be determined. Analytical results of the sediment collected in this separator (Sample-01) indicated elevated levels of VOCs, suggesting that the separator may have been used as a dry well and may have been a point of discharge for TCE in the overburden.

Several drain pipes and sewer lines were identified during the survey and their location on the as-built plan was confirmed. The lines connected to 2 of the 6 injection points were video recorded. The inspected pipes were generally described as severely corroded with potential of minor cracking. No evidence of severe pipe failure was noted for any of the lines that were video recorded. Video record of the other four injection points could not be performed due to plugging of the pipes or due to the presence of excessive water in the lines.

Many of the sanitary/storm sewer lines within the SOH facility were unable to be directly linked to a dedicated public sanitary or storm sewer. Therefore, no conclusive evidence was found as

to whether these sewer lines exist within the building structure and are choked with sediments or whether these sewer lines have been cut from their identified manhole drainage connection. However, the smoke test confirmed that several sanitary sewer lines drain into a separator/sump structure located in the shipping and receiving area of the facility. The separator/sump structure empties into a dedicated (public) sanitary sewer line via an 8-inch pipe which was video recorded and described as severely corroded with minor cracking.

The complete Larsen Engineering report, which includes a map of underground drain and floor trenches found at the facility is included in **Appendix C**.

3.9 Sub-Slab Investigation - Soil Gas Survey

Based on the 1996 RI and recent pre-design investigations performed in the years 2000-2001, evidence of a secondary source under the SOH building slab created the need for additional investigation at that area of the site.

To characterize the soil conditions under the SOH building slab, a total of 28 soil borings were performed in a grid pattern within the building footprint on June 17 and June 18, 2002.

Fifty (50) percent of the soil gas samples containing the highest PID readings were submitted for lab analysis for VOCs. Similarly, twenty-five (25) percent of the soil samples containing the highest PID readings were submitted for lab analysis for VOCs. A summary of the drilling and sampling program as well as a detailed summary of the findings are contained in the full report as attached in **Appendix H.**

A brief summary of the report findings follows.

3.9.1 Sub-Slab Investigation Results

A total of thirteen (13) soil gas samples were selected for laboratory analysis based on field PID readings. Based on the laboratory analysis, total VOC concentrations ranged from 24.2 to 2,143.4 (mg/m³) with the highest total VOC concentrations found in borings GP-1, GP-2 and GP-2Q.

A total of seven (7) soil samples were selected for laboratory analysis based on field headspace PID readings. Concentrations of 1,1-dichloroethene, 1,1,1-trichloroethane, and trichloroethene were detected at concentrations exceeding the respective recommended soil cleanup objectives

listed in Technical Administrative Guidance Memorandum Section 4046 (TAGM 4046) in the soil samples submitted from borings GP-24, GP-26 and GP-28.

The Sub-Slab Investigation Report concludes that the highest soil gas and soil VOC concentrations were detected in the samples proximate to the existing pit and sump/separator located near the inside southwestern corners of the SOH building.

These findings support the findings of the subsurface soil investigation sampling program which was performed for the 1996 RI as described in **Section 3.3.1** of this Report. See **Figure 4** of the Sub-Slab Investigation Report found in **Appendix H** for total VOC concentrations within the SOH building footprint and **Figure 4-1** for the estimated extent of the VOC source area.

4.0 PERMANGANATE INJECTION PILOT TEST

4.1 Baseline Groundwater Sampling

Prior to the injection of permanganate, six groundwater samples were collected from injection well IW-1, IPZ-1, IPZ-3, OW-7R and OW-7S to establish pre-injection site conditions. The results from these samples are the baseline for comparison of post-injection samples to determine the viability and efficiency of the permanganate injection system.

TCE was the dominant VOC constituent detected in IW-1, IPZ-1, IPZ-2, and OW-7S with concentrations ranging from 68,000 ug/L in OW-7S to 1,200,000 ug/L in IPZ-2. Although TCE was also detected in IPZ-3 and OW-7R, it was not the predominant VOC. 1,2-DCE and methylene chloride were also detected in the groundwater samples at lower concentrations. In addition to chlorinated ethenes, chlorinated ethanes were also detected in OW-7R and IPZ-3 with 1,1,1-TCA concentrations ranging from 1,200 ug/L and 100,000 ug/L, respectively, and 1,1-DCA concentrations ranging from 2,900 ug/L to 110,000 ug/L, respectively.

The high TCE concentration measured in IPZ-2 (1,200,000 ug/L) suggests a possible TCE source area in close proximity to this well, potentially beneath the adjacent facility (**Figure 4-1**). This concentration is approximately 10-times the soil TCE concentrations detected in soil boring SB-3 located proximate to this area.

Well IPZ-3 contained primarily 1,1-DCA (110,000 ug/L) and 1,1,1-TCA (100,000 ug/L). Because these compounds are not degradation products of TCE, this area more likely represents contamination due to a separate source or migrations of a separate source material from a different area of the site. The results of the Sub-Slab Investigation performed in June 2002 support that this separate source is likely the existing pit located near the southwest building corner.

The analytical results from the well couple (OW-7S and OW-7R) reported moderate concentrations of TCE and DCE, which implies a downgradient proximity to a TCE source area with corresponding ongoing naturally occurring bioremediation.

Baseline oxidation reduction potential (ORP) measurements (**Table 4-1**), ranging from –236 to – 46 millivolts (mv), indicates the presence of natural reducing conditions throughout the pilot test area. Lower ORP values correlate with a reducing (anaerobic) environment. Typically, these

areas are characterized by high concentrations of VOC constituents and limited aerobic microbial activity (**Table 4-1**).

Naturally occurring soluble metals concentrations were variable across the pilot test area. Only iron and manganese were monitored during the pilot study and ranged in concentrations from 20 to 187 mg/L for iron and <1 to 7.5 mg/L for manganese. The background COD values were also variable, ranging from 0.35 to 2.9 mg/L. Chloride concentrations observed prior to the NaMnO₄ injection varied only slightly, from 0.3 to 0.9 mg/L.

4.2 Sodium Permanganate Injection

During the week of July 17, 2000, 720 gallons of 40 percent sodium permanganate solution was injected at the loading dock source area through wells IW-1, IPZ-2, and IPZ-3. Because of tight geological conditions in the loading dock area, gravity injection was unsuccessful. However, under a minimum pressure injection system (3 to 5 pounds per square inch (psi)), permanganate was successfully delivered to the subsurface at a rate of 0.5 gallons per minute. Because of the high density of utility conduits in the injection area, some short-circuiting of the permanganate was observed. This was overcome, by using multi-well injection, instead of one well for the total mass.

The VOC data obtained during the baseline sampling indicated VOC contamination approximately 6 times greater than originally anticipated. The amount of permanganate applied during the pilot study (approximately 3,300 pounds) was therefore insufficient to meet the full contaminant demand for the actual VOC mass encountered at the site. The oxidant demand for the actual contaminant levels would be more than 20,000 pounds of NaMnO₄, Therefore, the NaMnO₄ mass loading during the pilot study was approximately 15 percent of the mass required for full treatment based on the baseline TCE monitoring. Because the loading rate is greater than the amount of NaMnO₄ injected, 100 percent removal was not expected. Concentrations however, even with this partial application, were measurably decreased within the vicinity of the injection wells.

Although TCE is the most prevalent VOC in the source area, the suite of contaminants measured within the area varied in components and concentrations. Permanganate does not typically oxidize the more recalcitrant organics (such as the chlorinated ethanes) or methylene chloride to a large degree. While some co-oxidation may occur, more typically, concentrations of these not readily oxidizable compounds remain unchanged or increase (by desorption from soil). Therefore, it is not unexpected that chlorinated ethane concentrations within the source area would remain unchanged during the pilot test.

4.3 Post-Injection Field and Groundwater Monitoring

To determine the efficiency and radius of influence of the permanganate injection system, field measurements of color, pH, and oxygen reduction potential were collected periodically for several weeks (**Table 4-2**). These measurements were then complemented with additional groundwater sampling and analysis. The first round of post-injection groundwater samples was collected on September 11 and 22, (approximately 8-weeks post-injection) from IPZ-2, TW-1, TW-2, TW-3, TW-4, OW-7S and OW-7R. Samples were analyzed for VOCs, COD, iron, manganese, and chloride. The second round of post-injection groundwater samples were collected approximately 12 weeks post injection on October 20, 2000. Collected groundwater samples were analyzed for VOCs, COD, iron, manganese, and chloride.

4.3.1 Injection Wells (IW-1, IPZ-2 and IPZ-3):

During the September post-injection sampling, all 3 injection wells exhibited the characteristic purple color (un-reacted permanganate) and increased groundwater ORP (> 600 mv) levels associated with ongoing *in situ* treatment. The increase in ORP values indicates the switch from a reducing environment to a highly oxidizing one. Generally, ORP levels in excess of 500 mV correspond to the presence of excess oxidizer, which can be visually detected by the purple color.

In all 3 of the injection wells, permanganate was still visibly detected in January 2001 with elevated ORP values measured through December 2000. These parameters indicate that significant available and un-reacted permanganate mass persisted in the injection wells at least through January 2001. Therefore, it is likely that these wells continued to act as a source of permanganate by mass diffusion into the formation.

TCE concentrations in both IW-1 and IPZ-2 were reduced by approximately 100 percent during the pilot study. These decreased concentrations were maintained even 3 months after the initial oxidant injection indicating the continued presence of un-reacted permanganate. At this time, it is impossible to determine if rebound or recontamination of these wells would occur since significant permanganate mass remained in these wells at the time of the last sampling event. Other contaminants that were present even in the presence of the oxidizer included methylene chloride and 1,2-DCE. Between 25 to 90 percent reduction of these contaminants was achieved in these wells during the field study period (**Table 4-3**).

TCE and 1,2-DCE concentrations in IPZ-3 were reduced by at least 46 percent and 32 percent, respectively. However, the methylene chloride and 1,1,1-TCA concentrations appeared to increase during the pilot study. In general, corresponding concentrations of the less oxidizable

compounds, 1,1-DCA and 1,1,1-TCA in the injection wells increased somewhat versus the concentrations detected prior to oxidant injection. These changes are consistent with observations at other pilot test sites where concentrations of these compounds are only slightly impacted or appear to increase. An increase in concentrations may occur as permanganate destroys some of the soils adsorptive capacity, releasing previously sorbed contaminants into the groundwater. Also, as oxidation of the ethenes, which were initially one or more orders of magnitude greater in concentration than the ethanes occurs, the laboratory results begin to quantify concentrations of less prevalent compounds previously masked by the higher detection limits resulting from large ethene concentrations.

Iron concentrations generally decreased, indicating a conversion (oxidation) to insoluble (ferrous) iron in these wells. This decrease was anticipated under the predicted oxidizing conditions. The corresponding manganese concentrations increased in these wells. This was also expected as the excess permanganate contained elemental manganese as detected by this analysis.

COD and chloride concentrations could not be effectively measured in these wells because the presence of color adversely impacts colorimetric techniques.

4.3.2 Proximate Wells (IPZ-1 and OW-7):

Well IPZ-1, located equidistant from the injection area (IW-1) and the catch basin, does not appear to have been impacted by the permanganate additions. While IPZ-1 is only 14 feet from IW-1 and about 20 feet from the center of the injection area, no permanganate was visually detected in this well, nor was the groundwater ORP measured at this well significantly altered by the injection of permanganate at the site.

ORP values measured in IPZ-1 following the permanganate injection increased slightly. However, the ORP measurements never attained values that indicate the presence of permanganate, though it is possible that the continued increase in ORP indicates that permanganate is migrating into the region surrounding IPZ-1. Because the total liquid volume added to IW-1 was 1,500 gallons, which is insufficient to displace sufficient groundwater to cause a significant impact, this increase in ORP value is more likely resultant from natural fluctuations and limited groundwater movement.

The groundwater contaminant concentrations measured in well IPZ-1 increased from the baseline sampling values. This well does not appear to have been within the permanganate treatment zone, as evidenced by VOC concentrations and ORP measurements during the pilot study. While concentrations of some compounds decreased slightly (1,2-DCE, 1,1-DCA, and 1,1,1-TCA), permanganate is not known to effectively treat aliphatic compounds and the

reduction in 1,1-DCA and 1,1,1-TCA concentrations is likely not due to oxidation. The TCE and methylene chloride concentrations in this well increased over the time period during which groundwater sampling was conducted. The increase in concentrations of these constituents and decrease in 1,2-DCE, 1,1-DCA, and 1,1,1-TCA concentrations may indicate that desorption of contaminants due to oxidation of TOC increased groundwater contaminant concentrations in the vicinity of IPZ-1.

Treatment of TCE and 1,2-DCE appears to have occurred in well OW-7S (located 43 feet southwest and co-gradient of the injection zone) during the pilot study. However, no direct permanganate impact was observed at this well via either visual detection of permanganate or elevated groundwater ORP values. Also, the decrease in concentrations in both the overburden and bedrock intervals is generally greater than 30 percent, which is more than would normally be attributed to natural fluctuations in groundwater concentrations or laboratory methodology inconsistencies. Therefore, the decrease in contaminant mass in this well is likely a result of lower concentrations upgradient passing through this well and a slight preferential component of groundwater flow toward the southwest resulting from the apparent groundwater depression caused by the basement sumps in the Ruby Gordon facility. Further, it is likely that groundwater of lower contaminant concentrations migrated into the region surrounding the OW-7 couplet as part of this preferential flow pattern in this portion of the site.

Both of these wells show that the natural hydraulic gradient towards the northwest may not be substantial enough to overcome the hydraulic reversal caused by the Ruby Gordon sump pumps. The hydraulics of the Ruby Gordon sump pumps will have to be considered in the final permanganate injection scheme design.

4.3.3 Temporary Wells (TW-1, TW-2, TW-3, and TW-4)

Well TW-1 (located 8 feet northwest of IW-1) indicated slightly elevated ORP values after the permanganate injection. However, these ORP values are well below the average ORP threshold values where significant permanganate concentrations are observed. Elevated ORP values may act as a precursor or an indicator of permanganate presence and begin to increase prior to actual permanganate appearance. Based on the lack of visually observed permanganate, it is estimated that significant permanganate mass did not reach TW-1.

Contaminant concentrations in TW-1 did show a decrease in TCE, methylene chloride, and 1,1-DCA. Contaminant concentrations, as summarized in **Table 4-3**, show a successive decline in both the September and October sampling events. Given the natural groundwater direction is in the northwest direction, it is more likely that treated water moved along a preferential path from the injection zone into the vicinity of TW-1, than actual contaminant oxidation occurred in the well.

Measurement of TW-2 (located 12 feet southwest of injection well IPZ-3) indicated a strong ORP increase and visual detection of low levels of permanganate in the well in September 2000, clearly indicating that this location was within the treatment zone. However, the contaminant concentrations measured in this well increased from the September to October sampling events (see **Table 4-3**). It is possible that more highly contaminated water from an upgradient source zone as identified in the June 2002 Sub-Slab Investigation (**Appendix H**) may have migrated into the vicinity of TW-2 as permanganate concentrations declined. Also, if permanganate/TOC kinetics are more rapid than the permanganate /contaminant kinetics, it is possible that permanganate mass delivered to the area was sufficient only to effectively oxidize TOC in the region, reducing the adsorptive capabilities of the soil and increasing contaminant groundwater concentrations in the vicinity of TW-2.

Based on ORP values measured in TW-3 and TW-4, these wells were not impacted by the injection of permanganate at the site. These wells were located approximately 24 and 32 feet from IPZ-3, respectively. There was no evidence of permanganate presence in wells TW-3 and TW-4 and no contaminant treatment appears to have occurred in the vicinity of these wells. In fact, concentrations of virtually all contaminants detected in both wells appear to have increased during the pilot study (see **Table 4-3**). It is possible that groundwater from a second contaminant source zone (likely located within the facility) is migrating into the region surrounding these wells as further supported by the Sub-Slab Investigation.

4.4 Estimation of Radius of Influence

Based on the previous discussion and field observations during the injection phase, it is estimated that a maximum radius of influence (ROI) of 10 feet (color) to 20 feet (ORP) was achieved at this site. The site conditions, predominantly the compact till, limits the ROI for subsurface oxidant delivery. It is possible that alternative oxidant delivery techniques (increased pressure in shorter screened intervals, formational fracture emplacement, slow percolation through shallow trench/leaching field or use of multiple points of addition) or alteration of the injection parameters (pulsed additions, post addition water flush or air sparge) will alleviate the physical difficulties inherent in this formation.

4.5 Estimation of Volatile Organic Compound Removal

As discussed previously, contaminant reduction was extensive in the vicinity of IW-1 and IPZ-2, where TCE concentrations were decreased by two to three orders of magnitude. Based upon the analytical results alone, the observed contaminant concentration reduction may not be attributed to oxidation alone. For illustration, if all the concentration reductions were due to oxidation, the injection wells had an effective radius of influence of 10 feet with an estimated porosity of 0.30, treatment near IPZ-2, where TCE was reduced from 1,200,000 µg/L to 1,200 µg/L, may have resulted in the removal of about 70 pounds of TCE. The introduction of permanganate at IPZ-2 may have also resulted in the destruction of 35 pounds of methylene chloride. Although initial concentrations measured in IW-1 were lower than IPZ-2, significant mass destruction occurred at this well, also. The treatment at IW-1 may have resulted in the destruction of an additional 27 pounds TCE and 9 pounds methylene chloride. These calculations imply total mass removals of approximately 140 pounds of contaminant mass and the continued presence of un-reacted permanganate.

4.6 Permanganate Injection Viability

Field data from the pilot test has shown that permanganate is an effective oxidant for chlorinated ethenes and methylene chloride. Decreases of 99% TCE and >80% Methylene Chloride were observed in and proximate to the permanganate addition wells. Based upon the performance, permanganate injection (Perm-Ox) has been shown to be viable and effective.

The site conditions, notably the relatively tight formation, inhibit the development of large radii of influence. ROI of 10 feet (color) to 20 feet (ORP) were observed in the field pilot area, however the area is also a function of the site conditions and existing/historical utilities. Future applications should be conducted in multiple addition points with a close well spacing (25' on center) under relatively low injection pressures or infiltration galleries/leaching fields. Any further injections must also remain sensitive to short circuiting and preferential flow pathways during addition. The injection flow rate was not observed to change over time in the injection wells. This would indicate that formational plugging / clogging was not observed to a large extent.

Colorimetric measurements of un-reacted permanganate have been used as a tracer of permanganate travel. In general, significant VOC decreases were observed and sustained in the wells containing permanganate. Wells downgradient of the injection area showed more variable results – VOC concentrations decreased in some wells (OW-7) and increased in others

(IPZ-2). This diversity of impact shows that permanganate is an effective oxidizer, but highlights that the source and target areas must be known and adequately dosed for proper treatment. The concentrations present, particularly at IPZ-2, imply there may be additional, potentially upgradient source areas. The results of the Sub-Slab Investigation support this statement.

No major impacts to metals, chloride and COD were noted outside the pilot area, indicating impacts were confined to the pilot area. Thus, oxidant impacts are confined to the treatment area.

The groundwater contour map also shows that the off-site sump (in the Ruby Gordon's Furniture building) appears to exhibit some hydraulic impact to the extent of onsite contamination. Any future remedial scenarios must also remain cognizant of this potential impact and the potential for off-site migration caused by the existing sump pumps.

5.0 FOCUSED FEASIBILITY STUDY

In 1996, GZA GeoEnvironmental issued the *Feasibility Study Report, Stuart-Olver-Holtz Site* for the NYSDEC. The purpose of the FS was to identify and evaluate technologies to remediate areas of contamination at the SOH site identified in the Remedial Investigation Report. Based on the recommendations in the FS, a Record of Decision was issued by the NYSDEC in March 1997. The selected remedy was Site Wide Alternative 5 (SWA-5). SWA-5 consists of excavation or isolation of contaminated surface soils, a short-term source area extraction system, a downgradient contaminated overburden groundwater collection trench system, and passive pretreatment of contaminated groundwater by a zero valence iron wall with eventual discharge to the local POTW.

In September 1999, IT Corporation submitted the *Remedial Design Work Plan* for SOH, based on the 1997 ROD. This work plan recommended further investigation to better define the source area and to determine if any unknown sources existed. In conjunction with the *Pre-Design Investigation Sampling and Analysis Work Plan* (February 2000), IT Corporation submitted an *Addendum to the Remedial Design Work Plan* (March 2000) for a field pilot test of permanganate injection (Perm-Ox). Perm-Ox is an *in situ* chemical oxidation technology that is used to destroy chlorinated ethenes in groundwater. The purpose of the pilot test was to determine if permanganate injection would be a more viable and cost effective remedial alternative for the overburden groundwater than the current alternative in the ROD.

5.1 Summary of 1996 FS and Record of Decision

5.1.1 FS Remedial Action Objectives (RAOs)

As part of the FS process, overall remedial action objectives (RAOs) for the chemicals of potential concern (**Appendix G**) were established to meet the SCGs and be protective of human health and the environment. The objectives set forth in the FS and recorded in the Record of Decision are:

- Eliminate to the extent practicable the potential for direct human or animal contact with site contaminants.
- Reduce, control, or eliminate to the extent practicable the contamination present within the soils and water on site.
- Reduce, control, or eliminate to the extent practicable any further migration of contaminated groundwater from the site, including migration into the Ruby Gordon basement sumps.

 Provide, to the extent practicable, for attainment of groundwater SCGs in the area affected by the site.

5.1.2 Site Wide Remedial Alternatives

The FS evaluated 5 site wide alternatives that would be protective of human health and the environment, including a "No Further Action" alternative. The 5 site wide alternatives were:

- SWA-1 No Action
- SWA-2 Deep Perimeter Collection Trench/Soil and Sediment Off-site Disposal
- SWA-3 Perimeter Extraction Wells/Off-site Soil and Sediment Disposal
- SWA-4 Perimeter Extraction Wells/Off-site Soil and Sediment Disposal
- SWA-5 Vertical Barrier Wall and Shallow Collection Trench with Zero Valence Iron Pretreatment/Off-Site Soil and Sediment Disposal

The FS evaluated all the site wide alternatives based on the 7 CERCLA screening criteria:

- 1. Overall Protection of Human Health and Environment
- 2. Compliance with SCGs, Applicable or Relevant and Appropriate Requirements (ARARs), and Other Regulations
- 3. Short Term Effectiveness
- 4. Long Term Effectiveness
- 5. Reduction in Mobility, Toxicity, and Volume
- Implementability
- 7. Cost

The analysis of the alternatives was two tiered. The first tier was comprised of these threshold factors:

- 1. Overall protection of human health and the environment, and
- 2. compliance with SCGs, ARARs, and other regulations.

Any selected remedy must result in overall protection of human health and the environment. Similarly, the SCGs, ARARs, and other regulations must be complied with unless there is an overriding reason why compliance is not possible.

The second tier was comprised of the remaining five criteria. The relative merits and problems associated with meeting these factors must be balanced in arriving at a remedy. The issues associated with each of these seven criteria are briefly described below.

Overall Protection of Human Health and Environment

This criterion addresses the overall protection of human health and the environment by eliminating, reducing or controlling site risks posed through the exposure pathways. This includes direct contact risks and potential risks to ecosystems.

Compliance with SCGs, ARARs, and Other Regulations

This criterion evaluates how each alternative complied with SCGs, ARARs and other regulations. The three regulatory categories of ARARs that were considered are chemical-specific, location-specific, and action-specific.

Short-Term Effectiveness

The effectiveness of an alternative in protecting human health and the environment during construction and implementation was assessed under short-term effectiveness. This criterion encompassed concerns about short-term impacts, as well as the length of time required to implement the alternative. Factors such as cross media impacts, the need to transport contaminated material through populated areas, current site operations, and the potential disruption of neighborhoods and ecosystems were evaluated.

This criterion assumes a site-specific health and safety plan would be prepared, which would include the potential impacts of a particular remediation activity and contain measures to address the concerns.

Long-Term Effectiveness

The evaluation of an alternative under this criterion addressed the results of the remedial action in terms of residual risk and residual mass of contaminants of potential concern (COPCs) remaining in a particular media after the completion of the alternative.

Reduction in Mobility, Toxicity, and Volume

This criterion involved the following factors:

- Degree of expected reduction of contamination, in terms of concentration and mass
- The mass of contamination or the volume of impacted media that will be destroyed or contained.

This criterion also addressed changes in risks due to changes in mobility, toxicity, and volume.

Implementability

This criterion involved an evaluation of the alternative with respect to performance, reliability, and implementability. Performance and reliability focused on the ability of the alternative to meet specific goals or clean-up levels. The implementability of an alternative addresses construction and operation in regards to the site-specific conditions. Implementability also addresses the difficulties or impediments of implementing a particular treatment option at the site. It also focused on the time and effort required obtaining appropriate approvals, and addressing other administrative issues.

Cost

Capital and operation and maintenance costs were evaluated for each alternative under each scenario. These costs include design and construction costs, remedial action operating costs, other capital and short-term costs, costs associated with maintenance, and costs of performance evaluations, including monitoring. All costs were also calculated on a present worth basis.

Based on the detailed analysis using the CERCLA criteria described above, SWA–5 was recommended as the site wide alternative. SWA–5 includes the following components:

Overburden Groundwater Actions

- Install a shallow groundwater collection trench system along the north and west property boundaries to collect and contain contaminated groundwater.
- Install and operate a passive groundwater pretreatment system. The system consists of subsurface vaults containing zero valence iron filings for destruction of chlorinated VOCs. Pretreated groundwater would discharge by gravity to the sanitary sewer for final treatment at the local POTW.
- Install and operate groundwater extraction wells for removal of contaminants from the source area near OW-7S.
- Install and operate a shallow groundwater collection trench adjacent to the Ruby Gordon basement to intercept contaminated groundwater.
- Conduct periodic, long-term overburden groundwater monitoring.
- Construct drainage improvements between Ruby Gordon and the SOH site to minimize groundwater recharge to the Ruby Gordon basement.
- Recommend deed restrictions on future use(s) of the site.

Bedrock Groundwater Actions

• Implement institutional controls to reduce the potential for exposure to contaminated bedrock groundwater. This would include: disconnecting the SOH interior bedrock

wells, conducting bedrock groundwater monitoring, and recommending deed restrictions of future use(s) of groundwater.

Surface Soil Action:

 Excavate the on-site and off-site surface soils that are above SCGs and transport offsite for disposal. Regrade and restore the excavated areas. Isolation of on-site contaminated surface soils could be done in-lieu of excavation.

SOH Sump Contents:

- Clean and dispose accumulated sediments from site sumps, catch basins, and related piping at one off-site facility.
- Evaluate, upgrade or decommission drainage lines or connections.

The ROD was issued for this remedy.

5.2 Re-Evaluation of Overburden Groundwater Actions

During the preparation of the remedial design workplan, it was determined that additional site characterization of the source area located near the Metalade loading dock was needed. It was also determined that the reactive barrier wall and shallow collection trench may not be the most viable and cost effective remedy for remedial treatment of the chlorinated VOCs in overburden groundwater at the SOH site. In March 2000, IT Corporation proposed a pilot test for an *in situ* chemical oxidation system using Perm-OX. The pilot test was performed in June and July 2000. The pilot test concluded that permanganate injection is a feasible remedy for chlorinated ethenes in the overburden groundwater. When permanganate injection is combined with an augmented *in situ* bioremediation system, it provides a feasible and cost-effective remedial alternative for all chlorinated VOCs in the overburden groundwater. The permanganate injection destroys the chlorinated ethenes, while the bioremediation system destroys the chlorinated ethanes. The following sections provide a re-evaluation and comparative analysis of the SWA-5 overburden groundwater remedy with the permanganate injection/bioremediation system.

5.2.1 Shallow Groundwater Collection Trenches/Extraction Wells and Passive Treatment Prior to POTW Discharge

The system of shallow groundwater collection trenches and extraction wells with passive groundwater pretreatment prior to discharge to the local POTW included in the ROD remedy was reevaluated based upon new data obtained during the pre-design investigation. The remedy presented in the ROD was evaluated based upon treating shallow groundwater containing TCE up to 140,000 μ g/L, 1,1,1-TCA up to 24,000 μ g/L, 1,1-DCA up to 10,000 μ g/L, and vinyl chloride up to 11,000 μ g/L. The passive groundwater pretreatment system would consist of vaults filled with zero valence iron. The zero valence iron would reduce the ethenes, and to a lesser degree the ethanes. Primary treatment of the ethanes would be accomplished at the local POTW. The data collected as part of the pre-design investigation shows TCE up to 1,200,000 μ g/L, 1,1,1-TCA up to 290,000 μ g/L, 1,1-DCA up to 120,000 μ g/L, vinyl chloride up to 380 μ g/L, and methylene chloride up to 680,000 μ g/L. Methylene chloride was not detected in overburden groundwater above the SCGs during the 1996 FS. Because of the significantly higher VOC concentrations detected in the overburden groundwater during the pre-design investigation, the containment and pretreatment system was reevaluated.

The concept of passive groundwater treatment using zero valence iron involves the construction of a permeable wall containing iron filings across the path of a contaminant plume. An alternative method of construction incorporates either a funnel and gate arrangement or collection trenches and vaults (or sumps) filled with iron. The contaminant plume is either funneled toward the gate filled with iron or actively pumped from the collection trench/sump system. Under reducing conditions, zero valence iron degrades dissolved organic compounds to non-toxic products such as ethene, ethane, and chloride. The process is abiotic reductive dehalogenation, with the iron serving to lower the solution redox potential and as the electron donor in the reaction. The process is capable of degrading TCE, cis 1,2-DCE, 1,1,1-TCA, 1,1-DCA, and vinyl chloride; however, the process has no effect on methylene chloride.

IT Corporation contacted Environmental Technologies Inc. (ETI) regarding the application of a passive treatment system using zero valence iron at the Site. ETI has been granted exclusive rights for commercialization of this technology by the patent holder, the University of Waterloo. ETI also provided consultation to GZA GeoEnvironmental during their preparation of the 1996 FS regarding the use of zero valence iron for passive groundwater treatment. Based upon ETI's review of the new site data, they would not recommend the use of vaults or sumps for passive groundwater treatment. Because of residence time limitations associated with a trench and vault system and due to the higher concentrations of VOCs in the overburden groundwater, ETI recommends using a continuous permeable wall approximately 500 feet long by 20 feet deep containing zero valence iron granules. ETI estimated that a residence time of about 3 days would be required to reduce the VOC levels present in the shallow groundwater to less that 2.2

mg/L total VOCs. Based on an estimated groundwater flow velocity of 1.1 feet/day, a reactive barrier wall approximately 3.3 feet thick would provide the required residence time.

ETI recognizes the systems limitation with respect to methylene chloride treatment and recommends combining the reactive barrier wall with other *in situ* treatment technologies; however, these other treatment technologies are not identified in this report. Another limitation of the reactive barrier wall system is that it does not directly address the source area at the Site. This limitation directly impacts the estimated time of implementation of this technology. Essentially, the rate limiting process would be the transport of VOCs from the source area to the permeable wall.

Prior to final design of a reactive barrier wall system, ETI recommends performing a laboratory column test using groundwater obtained from the site to predict system performance and to obtain final design parameters. Also during final design, a treatment technology for methylene chloride would have to be identified and evaluated.

The estimated minimum time of implementation of this alternative is 40 years. The estimated present worth cost is \$4,439,914. A detailed breakdown of this estimate is included in **Appendix A**.

5.2.2 Development of New Site Wide Alternative

In March 2000, IT Corporation proposed an *in-situ* chemical oxidation system using Perm-Ox as a potential alternative remedy for the chlorinated ethenes at the Site. A pilot test was performed in June and July 2000 that proved this technology to be a viable remedy for the chlorinated ethenes in the overburden groundwater. When the permanganate injection system is combined with an augmented *in-situ* bioremediation system, the combination provides a viable and cost-effective alternative for chlorinated VOCs (both ethenes and ethanes) in the overburden groundwater. The permanganate injection system destroys the chlorinated ethenes, while the bioremediation system destroys the chlorinated ethanes.

5.2.2.1 Permanganate Injection

Permanganate injection uses the permanganate ion to oxidize organic contaminants in the subsurface to non-toxic compounds. Permanganate, delivered either as potassium (KMnO₄) or sodium (NaMnO₄) salts, is a common oxidant widely used in the water treatment industry to remove and precipitate dissolved metals and in the sewage treatment industry to treat hydrogen sulfide odors. Permanganate ions will react with and oxidize a wide range of common organic compounds, relatively quickly and completely. In particular, permanganate ions react rapidly

with the non-conjugated (i.e., nonaromatic) double bonds in chlorinated ethenes such as TCE, PCE, DCE isomers, and vinyl chloride.

Research at the University of Waterloo has demonstrated that injection of permanganate solutions into soils contaminated with chlorinated ethenes results in substantial *in situ* destruction of the VOCs. IT Corporation has completed numerous successful field trials of permanganate with the percent reduction of chlorinated ethenes ranging from greater than 60-percent to greater than 99 percent under both pilot and full scale addition scenarios.

Permanganate oxidizes the chlorinated ethenes to CO₂ and chloride ions. The balanced chemical equation for potassium permanganate (KMnO₄) oxidation of TCE (for example) is:

TCE:
$$2KMnO_4 + C_2HCl_3 ---> 2CO_2 + 2MnO_2 + 2K^+ + 3Cl^- + H^+$$

Sodium permanganate (NaMnO₄) may also be used and has the advantage of being available as a 40 percent liquid solution. NaMnO₄ oxidation of TCE follows the same reaction pathways as KMnO₄, except that the reaction forms Na⁺ ions rather than the K⁺ ions:

A disadvantage of using sodium permanganate is its higher cost.

The effectiveness of *in situ* oxidation treatment depends on the following three factors:

- The kinetics of the reaction between the permanganate and the contaminant compounds.
- The contact between the oxidant and the contaminants.
- Competitive reactions of permanganate with other reduced/oxidizable species.

If the contaminant being targeted for *in situ* chemical oxidation is reactive (i.e., chlorinated ethenes), and sufficient oxidant has been added to overcome the demand from other reduced species, the limiting factor of successful *in situ* oxidation is the transport of the oxidant to the areas where contaminants are present, not the reaction between the permanganate and the contaminants. The oxidation of contaminants by permanganate is an essentially instantaneous reaction. If the permanganate contacts the contaminant, it will react. Significant oxidation can be observed in as little as a few hours after addition. By contrast, travel times for the permanganate to migrate away from the injecting point may be on the order of a day to weeks, depending on the rate of groundwater flow.

The primary limitation to permanganate treatment is the ability to apply the permanganate *in situ* and to maintain efficient contact between the permanganate and the contaminants. Low permeability soils and highly heterogeneous soils may present a challenge to applying permanganate at a target location.

Based on the field data gathered during the pilot test, permanganate injection has been shown to be a viable and effective technology for the treatment of chlorinated ethenes (see **Table 4-3**). After finalizing the delineation of the source area, permanganate solution would be mixed onsite and injected in shallow injection wells, screened 14 to 24 feet below ground surface, to treat the overburden groundwater and saturated zone. Twenty-five (25) shallow wells would be installed along the western, northern, and portions of the southern property boundaries approximately 50 feet inside the property boundary. These boundary wells will be installed on 25-foot centers. This distance will allow all permanganate to react with contaminants prior to leaving the confines of the property. An additional 34 wells would be installed within the plume mass to destroy the migrating plume. To treat the source area, there are two options:

 A total of twenty-one (21) wells would be installed within the delineated source area(s) at depths determined during the final design/installation (10 outside the building and 11 under the building slab);

or

2. An infiltration gallery would be installed within the delineated source area.

It is anticipated that only one injection of permanganate will be necessary. The time of implementation is estimated to be one-year, due to limited injecting rates and radius of influence anticipated. **Figure 5-1** shows the location of the proposed injection wells which has been revised based on the results of the June 2002 Sub-Slab Investigation.

5.2.2.2 Augmented Bioremediation

Although the permanganate injection system described above will not provide destruction of the more recalcitrant compounds that are present in the source area, most notably 1,1,1-TCA and 1,1-DCA, it will reduce the total chlorinated concentrations to a concentration amenable to biodegradation. Therefore, anaerobic biodegradation of the chlorinated ethanes and any residual chlorinated ethenes can be induced and accelerated through the addition of a carbon amendment.

The addition of a carbon amendment such as molasses, sodium lactate or glucose into an aquifer supplies a readily biodegradable source of carbon that can induce anaerobic conditions by depleting the oxygen, and thus enhancing and supporting the anaerobic biodegradation of chlorinated ethanes and ethenes. The proposed permanganate injection will reduce the

available carbon sources and produce aerobic oxidizing conditions within the aquifer. The addition of molasses or some other carbon amendment will revert the aquifer to anaerobic conditions and serve to enhance natural attenuation of the residual VOCs. The following subsections discuss reductive dechlorination and the application of an augmented bioremediation technology.

Reductive Dechlorination

The primary mechanism for mass reduction of chlorinated ethenes and ethanes during natural attenuation is anaerobic biodegradation by a process called reductive dechlorination. During reductive dechlorination, chlorine atoms are sequentially removed and replaced by hydrogen atoms. This process results in the formation of a series of lesser-chlorinated daughter products with the release of inorganic chloride. For example, PCE is dechlorinated to sequentially form TCE, cis-1,2-dichloroethene with some trans-1,2-DCE, vinyl chloride, chloroethane, ethene and ethane. The primary biological daughter product of 1,1,1- TCA is 1,1-DCA, which is further reductively dechlorinated to chloroethane and then ethane. A few of the intermediate products of reductive dechlorination, including vinyl chloride and chloroethane, can be further degraded either anaerobically or aerobically. Chloroethane also abiotically degrades to ethanol. The ultimate end products are carbon dioxide, methane, water and inorganic chloride.

In the process of reductive dechlorination, the chlorinated compounds serve as electron acceptors, similar to the role oxygen plays in aerobic degradation. Since the majority of chlorinated compounds cannot be used as sole sources of carbon, other sources of carbon must be present in the subsurface to serve as carbon sources and electron donors to support reductive dechlorination. Such sources of carbon can be either naturally occurring (e.g. humic matter), or other organic contaminants or amendments (e.g. sugars, alcohols, ketones, butane or petroleum products). Another important environmental factor controlling the occurrence of reductive dechlorination is the presence of other chemicals that can be used as electron acceptors under anaerobic conditions (e.g. nitrate, sulfate, iron and manganese). High concentrations of these other electron acceptors are considered detrimental since high concentrations can inhibit reductive dechlorination due to competition.

Carbon Source

Prior to the design of a full scale augmented bioremediation system, a bio-optimization study will be performed to confirm the best carbon source for augmentation at the SOH site. For the purpose of this discussion and for development of cost estimates, molasses was chosen as the carbon source.

Molasses is a by-product of the sucrose production process. Molasses is a dark viscous liquid with a composition that varies depending on the source and grade. Molasses contains about 20

percent water and 30 to 60 percent sucrose, with the remaining percentage made up of other sugars, carbohydrates, and minerals.

A number of different organic compounds or mixtures have been tested as carbon sources to stimulate anaerobic reductive dechlorination. Other sources include organic acids such as benzoic acid, lactic acid, acetic acid, sugars (glucose, corn syrup, molasses), and oils (e.g. soybean oil) for *in situ* applications. Manure and other agricultural by-products have historically been used for above ground applications. All of these compounds or sources are readily biodegradable under aerobic and anaerobic conditions, available at low cost, and are easily obtained. Anaerobic biodegradation of these carbon sources yields hydrogen, which is the electron donor in the dechlorination reaction.

The use of molasses as the carbon source has the following advantages:

- The complex sugar mixture degrades to a mixture of organic acids and other organics that can be utilized by the naturally occurring microorganisms as the conditions shift from aerobic to anaerobic a condition created by the permanganate treatment
- Unlike lactic acid or other simple compounds, molasses also provides nitrogen and phosphorous, major nutrients required for biological degradation. These nutrients are only present in trace amounts at some monitoring well locations. Molasses also contains trace amounts of other microbial nutrients such as iron, calcium, and B vitamins
- Molasses contains sulfur, which has been reported to further enhance anaerobic processes. Sulfur also enhances the removal of metals (e.g., hexavalent chromium) from groundwater.

Previous Applications of Molasses Addition Technology

Molasses addition has been successfully employed at a number of sites impacted with chlorinated solvents and metals:

- Avco Lycoming Superfund site in Williamsport, Pennsylvania molasses addition resulted in a 90 percent reduction in TCE concentrations, along with the concentrations of TCE, DCE and hexavalent chromium achieving cleanup goals at a number of monitoring wells within 18 months;
- Abandoned metal plating site in Emeryville California within 18 months of initiating molasses addition, TCE concentrations were reduced from about 10,000 micrograms per liter (µg/L) to less than 20 µg/L and hexavalent chromium concentrations have been reduced by approximately 99 percent;
- Four demonstration projects at Department of Defense (DoD) facilities Hanscom Air Force Base in Bedford, MA; Badger Army Ammunition Plant in Baraboo, Wisconsin; Treasure Island Naval Station in San Francisco, CA; and Vandenberg Air Force Base in Lompoc, CA; and,

 Joliet Army Ammunition Plant in Joliet, Illinois - successful treatment of explosives wastes in an aboveground slurry reaction.

Applicability of Molasses Addition Technology

While chemical oxidation may provide further oxidation of residual ethenes in select locations, these locations are anticipated to contain predominantly chlorinated ethanes (e.g., 1,1,1-TCA and 1,1-DCA), which will be unaffected by further permanganate treatment. A review of available technologies has indicated that enhanced bioremediation by anaerobic reductive dechlorination is the best available option for treating 1,1-DCA. Data from the site indicates that natural attenuation through reductive dechlorination has been occurring at the site as evidenced by the presence of daughter products. Molasses addition will consume any residual permanganate within the application area (if present), generate anaerobic conditions conducive to the use of 1,1-DCA and other VOCs as electron acceptors, and provide suitable electron donors and carbon sources to support reductive dechlorination.

Implementation of the Molasses Addition

Based on a review of the RI data and pre-design investigation data, several areas of the site will benefit from molasses addition. The proposed treatment schematic focuses on the source area located near the former Metalade loading dock and under the building slab near the sump and pit. Eight wells, used during the permanganate injection will be used for the injection of molasses, with an additional 5 to 10 wells within the plume, if necessary, to treat hot spots of chlorinated ethanes. Annual injections of molasses are anticipated to last for 8-years. To monitor the degradation and assess future molasses additions, semi-annual monitoring will be conducted.

Prior to the design of a full scale augmented bioremediation system, it is recommended that a bio-optimization study be performed to confirm that molasses is the best carbon source for augmentation.

Stoichiometric Requirement

To drive anaerobic reductive dechlorination, sufficient molasses must be added to deplete permanganate and oxygen and provide at least a 25- to 100-fold excess of carbon from molasses over carbon from VOCs.

The stoichiometric requirement for biological depletion of oxygen using a sucrose, glucose, and fructose as the sugar source is determined according to the following reactions:

Sucrose: $C_{12}H_{22}O_{11} + 12 O_2 \rightarrow 12 CO_2 + 11 H_2O$

[342.30]: [12*32] = 0.89 lbs sucrose per lb O₂

Glucose: $C_6H_{12}O_6 + 6 O_2 -> 6 CO_2 + 6 H_2O$

[180.16]: [6*32] = 0.94 lbs glucose per lb O₂

Fructose: $C_6H_{12}O_6 + 6 O_2 -> 6 CO_2 + 6 H_2O$

[180.16]: [6*32] = 0.94 lbs fructose per lb O₂

Water saturated with oxygen contains approximately 8 mg/L of oxygen; therefore, the addition of approximately 8 mg/L of molasses will be required in order to obtain a weight ratio of approximately one-to-one.

The highest total VOC concentration among the wells selected for molasses addition is 110 mg/L. Therefore, an estimated 2,750 mg/L to 11,000 mg/L total sugar concentration (a 25- to 100- fold over the total VOC concentration) will be required to support reductive dechlorination of the dissolved mass. Subsequent additions will be required to treat the adsorbed mass. Therefore, the demand for sugar based on oxygen and permanganate will be small compared to the demand needed to support anaerobic reductive dechlorination. It is estimated that approximately 100 lbs of molasses will be required once per well to achieve a concentration of 500 to 1,000 mg/L at each injection point.

5.2.2.3 Ruby Gordon Interim Remedial Measures

Several passive remedial measures were analyzed by the IT Corporation to address the migration of onsite VOC's toward the basement sumps of the adjacent Ruby Gordon Furniture building. Subsequently, a letter dated May 7, 2002, was prepared for NYSDEC by IT summarizing and comparing four (4) Remedial Alternatives and their associated costs (**Appendix I**).

This letter also includes the analytical laboratory testing results of sampling from the Ruby Gordon sumps for the period of January 10, 2000 to September 26, 2000.

In summary, this letter identifies Alternative 3 (Bioaugmentation Wall) as the most cost effective IRM. This alternative can also be readily incorporated into the final overall Remedial design for this site. Refer to **Appendix I** for further details.

5.2.2.4 Remediation Phase Monitoring

During the implementation of the permanganate injection and the bioremediation augmentation remedy, a groundwater monitoring program will be implemented. The objectives of the monitoring program are:

- 1. To establish a baseline for groundwater quality prior to the commencement of the remediation activities.
- 2. To monitor the groundwater quality inside and outside the permanganate injection area to establish remediation progress.
- To monitor groundwater quality off-site.

To achieve these goals, a total of seven monitoring wells will be installed across the site. Two monitoring wells will be installed at the property line (MW-12 and MW-13), three monitoring wells will be installed at random within the injection area outside the building (MW-14 through MW-16) and two monitoring wells will be installed inside the building (MW-17 and MW-18). The proposed monitoring well locations are presented in **Figure 5-1**.

To evaluate the dispersion of permanganate throughout the groundwater table, a baseline monitoring/sampling event will be performed prior to the permanganate injection. Groundwater samples will be collected from the existing wells MW-2, MW-5, OW-3S, OW-4S and OW-5S, OW-6S, OW-9S, OW-10S and OW-11S and the proposed wells MW-12 and MW-18 (**Figure 5-1**) for COD, VOC, iron and manganese analysis and the measurement of the following parameters: water level, ORP, pH, conductivity and colorimetry. During the permanganate injection phase the water levels, ORP, pH, conductivity and colorimetry parameters will be monitored on a daily basis in the wells onsite. Following the completion of the injection activities, the wells will be monitored quarterly for water levels, ORP, pH, conductivity and colorimetry and sampled bi-annually for COD, VOC, iron and manganese laboratory analysis.

The frequency of these monitoring events may be adjusted, if needed, during the implementation of the remedy based on the evaluation of the groundwater quality data.

5.2.2.5 Summary of Permanganate Injection/Augmented Bioremediation System

The proposed permanganate injection/augmented bioremediation system for the overburden groundwater is composed of the following elements.

• Permanganate injection for the destruction of chlorinated ethenes. Injection wells would be installed at the perimeter of the site on the northern, western and portions of the southwestern property boundaries, at the source area, and within the plume.

- Augmented bioremediation with a reductive agent such as molasses or sodium lactate
 for the destruction of chlorinated ethanes. Permanganate injection wells at the source
 area, and within the plume would be used for the reductive agent injection.
- A line of closely spaced injection wells would be installed onsite along the southern property line and upgradient of the Ruby Gordon sumps. The injection wells would receive potassium permanganate as well as a carbon amendment to provide a subsurface reductive zone. The close spacing of these wells including their ROI's would essentially act as an interceptor and provide passive treatment for VOC's migrating offsite toward Ruby Gordon.

The estimated time of implementation of this alternative is 9 years with a present worth cost of \$2,182,587.

5.3 Comparative Analysis of Overburden Groundwater Remedial Alternatives

This section compares the relative performance of each of the remedial alternatives for the overburden groundwater using the specific evaluation criteria presented in **Section 5.1**. Comparisons are presented in a qualitative manner in order to identify substantive differences between the alternatives. As with the detailed evaluation performed in the 1996 FS, the following criteria were used for the comparative analysis:

- 1. Overall Protection of Human Health and the Environment
- 2. Compliance with SCGs, ARARs, and Other Regulations
- 3. Short-term Effectiveness
- 4. Long-term Effectiveness
- 5. Reduction in Mobility, Toxicity, and Volume
- 6. Implementability
- 7. Cost

5.3.1 Overall Protection of Human Health and the Environment

The comparative evaluation of overall protection of human health and the environment evaluates attainment of PRGs, as well as the analysis of other criteria evaluated for each alternative (specifically, short- and long-term effectiveness). The evaluation of this criteria focuses on such factors as the manner in which the remedial alternatives achieve protection over time, the degree to which site risks would be reduced, and the manner in which each source of COPCs would be eliminated, reduced, or controlled.

The permanganate injection/augmented bioremediation alternative will be protective of human health and the environment by destroying chlorinated VOCs and preventing further plume

migration. This alternative will reduce the concentrations of chlorinated VOCs in the overburden groundwater to below cleanup levels and therefore meets the RAOs.

Passive groundwater treatment with zero valence iron will effectively treat VOCs with the exception of methylene chloride. Assuming that a supplemental technology for treating methylene chloride is identified during the final design, this alternative will be protective of human health and the environment. However, since the passive groundwater treatment system will not specifically address the source area, the time required to implement this alternative would be greater than 40 years.

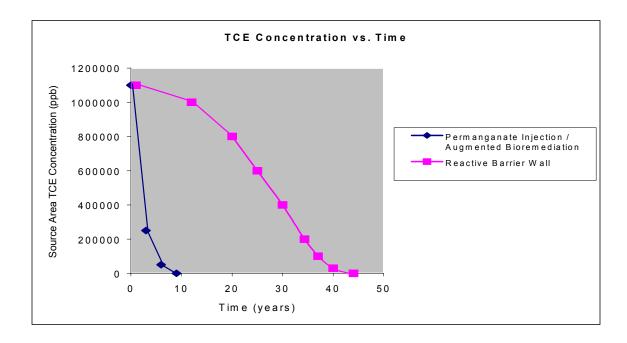
5.3.2 Compliance with SCGs, and ARARs

The comparative evaluation of the compliance of each Alternative focuses on the following criteria:

- Published NYSDEC Standards, Criteria, and Guidance (SCGs)
- Other federal applicable relevant and appropriate requirements (ARARs)

Implementation of the passive groundwater treatment with zero valence iron will achieve chemical-specific ARARs on-site; however, a supplemental technology for treating methylene chloride must be identified during the final design and the time required to achieve this objective is estimated at over 40 years.

Implementation of the permanganate injection/augmented bioremediation alternative will achieve chemical-specific ARARs on-site in approximately nine years. This includes the completion of the design and implementation of the full-scale permanganate injection, the reductive agent injection, and post-injection monitoring. This alternative will provide for significant reductions of contaminants in the overburden groundwater and reduce further migration of the contaminated groundwater. Therefore, the goal of the removal action, to minimize exposure and contaminant migration, and restoration of the aquifer, will be met sooner by this alternative.


5.3.3 Short-term Effectiveness

The short-term effectiveness comparison includes the evaluation of the relative potential for impacts to the nearby communities, site worker exposures, environmental impacts, and the time frame for implementation of the alternatives.

The potential short-term risks associated with the passive groundwater treatment with zero valence iron and the permanganate injection/augmented bioremediation are minimal and are

easily managed. The potential short-term risks to construction workers and the community, associated with both of these alternatives, might exist during activities involving the installation of monitoring wells, collection of groundwater data, and mixing and injection of permanganate and molasses or some other carbon-based reducing agent. During the system installation, exposure to contaminated media will be minimized through the use of personal protective equipment such as gloves and protective clothing. Applicable protective gear and a spill response plan will also be used during the handling, mixing, and injection of the permanganate solution. Similar protocols will be implemented for all associated groundwater gauging and sampling activities. Additionally, short-term effects during the installation of these alternatives can be minimized by implementing an effective site-specific health and safety program, and institutional controls.

The estimated time required to implement the passive groundwater treatment alternative is over 40 years while the estimated time required to implement the permanganate injection/augmented bioremediation system is 9 years. The reactive barrier wall system does not directly address the source area but relies on transport of VOCs from the source area to the reactive wall. The change in source area VOC concentrations over time would be characteristic of a natural degradation process. In contrast, the permanganate injection/augmented bioremediation system actively addresses VOCs in the source area and within the contaminant plume. VOC concentrations in the source area would rapidly decline as the active treatment was implemented. The reactive barrier wall system requires significantly more time to implement than the permanganate injection/augmented bioremediation system because of the rate limiting transport of VOCs to the reactive barrier. The difference in time required to implement these two alternatives can be demonstrated graphically as follows:

5.3.4 Long-term Effectiveness

The comparative evaluation of long-term effectiveness focuses on the reduction of residual risk and adequacy and reliability of controls provided by each alternative.

Passive groundwater treatment with zero valence iron will provide an effective long-term remedy for chlorinated VOCs present in the overburden groundwater; however, a supplemental technology for reduction of methylene chloride must be identified during the final design and implemented in conjunction with the passive groundwater treatment system. Assuming that an effective means of treating methylene chloride is identified, this alternative will permanently destroy VOCs in the overburden groundwater by abiotic reductive dehalogenation.

Permanganate injection/augmented bioremediation will provide an effective long-term remedy for chlorinated VOCs present in the overburden groundwater. This alternative will permanently destroy the chlorinated VOCs in the overburden groundwater by oxidation and reductive dechlorination, thereby, reducing the chlorinated VOC mass in the overburden groundwater and preventing off-site migration.

5.3.5 Reduction in Mobility, Toxicity, and Volume

The comparative evaluation of the reduction of mobility, toxicity, and volume focuses on the ability of the alternative employed to address the impacted material on-site, the mass of material destroyed or treated, the irreversibility of the process employed, and the nature of the impacted materials after implementation of the alternative.

November 27, 2002

The passive groundwater treatment with zero valence iron will reduce the overall volume of toxic contaminants present in the overburden groundwater, provide a permanent remedy for reduction of contaminant toxicity, mobility, and volume through treatment, and meet the USEPA statutory preference for treatment as a principle element. Successful treatment is dependent upon identifying an effective supplemental technology for methylene chloride treatment.

The permanganate injection/augmented bioremediation alternative will reduce the overall volume of toxic contaminants present in the overburden groundwater, provide a permanent remedy for reduction of contaminant toxicity, mobility, and volume through treatment, and meet the USEPA statutory preference for treatment as a principal element. Successful treatment will be dependent on the determination of groundwater transport and mass balance for full treatment to concentrations meeting cleanup objectives. Groundwater impacted with VOCs not reached by permanganate or a reductive agent will be naturally attenuated.

5.3.6 Implementability

The comparative evaluation of implementability focuses on the feasibility of construction and operation of each alternative, the administrative feasibility, the availability of required disposal facilities, technical and service personnel, and contractors.

Construction of a passive groundwater treatment system with zero valence iron is readily implementable at the Site, although some difficulties associated with construction of the permeable barrier wall in and around areas containing underground utilities may need to be addressed during the engineering design and construction phases.

Permanganate and molasses/sodium lactate are food grade chemicals ideal for the application to groundwater for the treatment of a variety of VOCs, specifically chlorinated ethenes and ethanes. Permanganate and molasses/sodium lactate have been used at sites throughout the country, in a variety of geologic settings for the treatment of the compounds found at the SOH site. Injection of permanganate and molasses/sodium lactate is accomplished through monitoring wells constructed in an identical manner to existing monitoring wells or through infiltration galleries. The presence of the buildings onsite present the only restrictions to access for any drilling necessary to facilitate the successful implementation of a permanganate injection/augmented bioremediation system.

5.3.7 Cost

The estimated present worth cost of the passive groundwater treatment system with zero valence iron is \$4,439,914. The estimated present worth cost of the permanganate injection/augmented bioremediation treatment is \$2,182,587. The comparative evaluation of the cost of remediation is based on the net present worth of each alternative. The total capital,

annual O&M, periodic, and present worth costs for these alternatives are presented in **Appendix A**.

5.3.8 Summary

Each overburden groundwater remedial alternative was qualitatively evaluated by each of the criteria described above. Based upon the comparative analysis of the passive groundwater treatment system and the permanganate injection/augmented bioremediation system, permanganate injection/augmented bioremediation was selected as the preferred remedy for overburden groundwater. This determination was made based upon the following factors:

- Permanganate injection/augmented bioremediation specifically addresses the source area as well as the overburden groundwater plume. By treating the source area, the time to completion of this alternative is significantly reduced compared to the passive groundwater treatment system. The passive groundwater treatment system does not specifically address the source area; therefore, the time to completion will be dependent upon transport of the VOCs to the permeable reactive barrier wall.
- The passive groundwater treatment with zero valence iron will effectively treat the chlorinated VOCs present in the overburden groundwater with the exception of methylene chloride. Methylene chloride was not identified as a COPC during the 1996; however, it was detected at concentrations as high as 680,000 µg/L during the predesign investigation. An effective supplemental technology for treating methylene chloride will need to be identified during the final design for this remedy.
- The estimated cost of the permanganate injection/augmented bioremediation is lower than the estimated cost of the passive groundwater treatment system. The cost savings is due to lower initial capital costs and annual operations and maintenance costs projected over the shorter timeframe required to implement the respective alternatives.

6.0 OVERVIEW OF SELECTED ALTERNATIVE

Based upon the results of this *Focused Feasibility Study* for the Stuart-Olver-Holtz Site and the criteria described in **Section 5** for evaluation of alternatives, Shaw recommends implementing the permanganate injection/augmented bioremediation system as the overburden groundwater action component of the selected site wide remedy. The other components of the site wide remedy presented in the ROD would be retained as part of this new site wide remedy. The components of the new remedy are summarized below.

Overburden Groundwater Actions:

- Implement a permanganate injection system to destroy chlorinated ethenes. Injection wells installed at the perimeter of the site on the northern, western and southwestern property boundaries, at the source area, and within the plume would be utilized to inject permanganate solutions into the overburden groundwater.
- Implement an augmented bioremediation system utilizing molasses or some other reductive agent as a carbon source to destroy chlorinated ethanes. This augmented remediation system would be implemented upon completion of the permanganate injection. The system would utilize former permanganate injection wells at the source area and within the plume for molasses/reductive agent injection.
- Install and operate as an IRM a line of closely spaced injection wells onsite along the southern property line and upgradient of the Ruby Gordon sumps. The injection wells would utilize reducing agents and/or carbon amendments to intercept and treat VOC's that migrate offsite toward the Ruby Gordon sumps. This IRM would be consistent with and could be easily assimilated into the final remedial measure for the overall site.
- Conduct periodic, long-term overburden groundwater monitoring.
- Construct drainage improvements between Ruby Gordon and the SOH site to minimize groundwater recharge to the Ruby Gordon basement.
- Recommend deed restrictions on future use(s) of the site.

Bedrock Groundwater Action:

 Implement institutional controls to reduce the potential for exposure to contaminated bedrock groundwater. This would include: disconnecting the SOH interior bedrock wells, conducting bedrock groundwater monitoring, and implementing deed restrictions of future use(s) of groundwater.

Surface Soil Action:

 Excavate the on-site and off-site surface soils that are above SCGs and transport offsite for disposal. Regrade and restore the excavated areas. Isolation of on-site contaminated surface soils could be done in-lieu of excavation.

SOH Sump Contents:

- Clean and dispose off-site accumulated sediments from site sumps, catch basins, and related piping.
- Evaluate, upgrade or decommission drainage lines or connections.

This report contains an analysis of the estimated cost to implement the proposed overburden groundwater actions. The estimated cost to implement the bedrock groundwater action, surface soil action, and the SOH sump contents removal is based upon the estimated costs presented in the 1996 FS. The costs presented in the 1996 FS were adjusted to 2001 dollars using Engineering New Record's 1996 Annual and May 2001 Construction Cost Index. The total net present worth of the selected alternative using a permanganate injection / augmented bioremediation system to address the overburden groundwater is \$4,090,430. In contrast, the total net present worth of a site wide alternative using a reactive barrier wall to address the overburden groundwater is \$7,130,476. A detailed breakdown of this estimate is provided in **Appendix A**.

7.0 REFERENCES

- EPA, Management of Remediation Waste Under RCRA (EPA530-F-98-026), October 1998.
- EPA, *SW-846 Test Methods* (EPA530-SW-91-093L), 3rd edition, (On-line version at http://www.epa.gov/epaoswer/hazwaste/test/main.htm), December, 1996.
- GZA GeoEnvironmental of New York, *Remedial Investigation Report Stuart-Olver-Holtz Henrietta*, *New York*, September 1996.
- GZA GeoEnvironmental of New York, *Feasibility Study Report Stuart-Olver-Holtz Henrietta, New York*, October 1996.
- IT Engineering of New York P.C., Remedial Design Work Plan Stuart-Olver-Holtz Henrietta, New York, September 1999.
- IT Engineering of New York P.C., *Pre-Design Investigation Sampling and Analysis Plan Stuart-Olver-Holtz Henrietta, New York*, February 2000.
- IT Engineering of New York P.C., Remedial Design Work Plan Addendum Perm-Ox Pilot Test Stuart-Olver-Holtz Henrietta, New York, February 2000.
- NYSDEC, Record of Decision Stuart-Olver-Holtz, March 1997
- NYSDEC, 6 NYCRR Part 371.3 "Characteristics of Hazardous Waste", printed January 14, 1995.
- NYSDEC, Division of Hazardous Waste Remediation, Division Technical and Administrative Guidance Memorandum. *Selection of Remedial Actions at Inactive Hazardous Waste Sites*, HWR-90-4030, May 1990.
- NYSDEC, Division of Hazardous Waste Remediation, Division Technical and Administrative Guidance Memorandum. *Determination of Soil Cleanup Objectives and Cleanup Levels*, HWR-92-4046, January 1994.

- New York State Department of Environmental Conservation (NYSDEC), 1998. Division of Water Technical and Operation Guidance Series (1.1.1) (TOGS). Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998
- NYSDEC, 1989. TAGM Guidelines for Remedial Investigations/Feasibility Studies HWR-89-4025, March 1989
- NYSDEC, 1989 Division Technical and Administrative Guidance Memorandum 4031, Fugitive Dust Suppression and Particulate Monitoring Program and Inactive Hazardous Waste Sites, October 27, 1989
- NYSDEC, 1990. Division Technical and Administrative Guidance Memorandums 4030. Selection of Remedial Actions at Inactive Hazardous Waste Sites. May 15, 1990.
- NYSDEC, 1992. Inactive Waste Disposal Site Remedial Program. 6 NYCRR part 375. 1992
- USEPA, 2000a. EPA Region III Risk-Based Concentration (RBC) Table. Updated 4/13/2000.
- U.S. EPA, Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA, EPA 540/G-89/004, October 1988.
- USEPA, 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA, October 1988
- USEPA, 1993. Remedial Technologies Screening Matrix and Reference Guide, July 1993
- USEPA, 1994b. Revised Interim Fill Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. OSWER Directive 9355.4-12, July 14
- Shaw Environmental & Infrastructure, Inc., *Geoprobe Investigation* Work Plan Letter, *Stuart-Olver-Holtz, Henrietta, New York, June 13, 2002.*

Table 2-1
Soil Borings and Monitoring Wells Installation/Sampling Rationale
NYSDEC - SOH, Henrietta, NY

	-	<u> </u>		
		Installation /		
		Sampling	Sample	
Sampling Location	Туре	Date	Matrix	Rationale
SB-1 through SB-12	Soil Boring	5/01/00 to	Soil	Delineate the source area around OW-7S/7R (outside). Borings
and SB-15		6/29/00	(Analytical)	were placed according to a grid pattern.
SB-16 through SB-20	Soil Boring	5/01/00 to	Soil	Delineate the source area around OW-7S/7R (inside). Borings
		6/29/00	(Analytical)	were placed according to a grid pattern.
B-1/PZ-3, B2, B3/PZ-2,	Soi l Boring and	5/25/00 to	Soil	Further characterize the subsurface in the proposed alignment of the
B4/PZ-1	Piezometer	5/30/00		Groundwater collection trench. Borings were placed in the
				proposed collection trench location.
		12/18/00	Water	 Site-wide groundwater quality ^{(1).}
IW-1, IPZ-2 and IPZ-3	Injection/Observation	6/26/00 to	Soil	Installed to serve as injection points for the Sodium Permanganate
	Wells	6/29/00	(Analytical)	Pilot Test.
		7/17/00	Water	Baseline sampling prior to pilot test.
		10/20/00	Water	Monitoring water quality after the sodium permanganate pilot test.
		12/18/00	Water	Site-wide groundwater quality (1).
IPZ-1	Observation Well	6/26/00 to	Soil	Installed to serve as monitoring point (with OW-7S and OW-7R)
		6/29/00		during the Sodium Permanganate Pilot Test.
		7/17/00	Water	Baseline sampling prior to pilot test.
		9/11/00	Water	Monitoring water quality after the sodium permanganate pilot test.
		10/20/00	Water	Monitoring water quality after the sodium permanganate pilot test.
		12/18/00	Water	Site-wide groundwater quality (1).

Table 2-1
Soil Borings and Monitoring Wells Installation/Sampling Rationale
NYSDEC - SOH, Henrietta, NY

TW-1 through TW-4	Monitoring Wells	9/18/00 9/19/00		Installed for monitoring the results of the Sodium Permanganate Pilot test several weeks after the injection. Collection of water samples.
		9/22/00	Water	Monitoring water quality after the sodium permanganate pilot test.
	ļ	10/20/00	Water	Monitoring water quality after the sodium permanganate pilot test.
		12/18/00	Water	Site-wide groundwater quality (1).
DD-1 through DD-15	Surface Samples	2/18/00	Soil	Further delineate the extent of surface soil impacts above NYSDEC SCGs. Collection of surface soil samples.
Sewer Sample 01 through Sewer Sample 04	Sewer / Pit Samples	2/15/01	Soil	Characterize the soil impact if any and establish removal action if necessary.
GP-1 through GP-28	Soil Boring With Geoprobes	6/17/02 6/18/02	Soil	Characterize the source area under the SOH building slab.

Note: Wells OW-7S and OW-7R sampled 7/17/00, 9/11/00, 10/20/00 and 12/18/00.

⁽¹⁾See table 4 for complete list of wells sampled during site wide groundwater sampling event.

Table 2-2 Summary of Subsurface Soil Sample Analysis NYSDEC SOH, Henrietta, NY

<u>.</u>			Method	ID	
Sample ID	Sampling Date	PCB, Pesticide (8081)	VOC (8260)	SVOC (8270)	TOC (EPA 415.1)
SB-1 4-6A	5/18/00		Х	<u> </u>	†
SB-1 6-8C	5/18/00		X		
SB-1 8-10A	5/18/00				X
SB-1 10-12B	5/18/00		Χ		
SB-1 10-12C	5/18/00	hdi-d	Χ	***************************************	
SB-1 12-14A	5/18/00	1-744 PHILIPPINI HILLION HILLI	Х		
SB-1 16-18D	5/18/00	***************************************			X
SB-1 CUTTINGS	5/18/00	Χ	X	X	
SB-2 18-20D	5/19/00		X		
SB-2 20-22B	5/19/00	M-1		***************************************	
SB-2 20-22C	5/19/00		X X	······	
SB-2 40-42A	5/19/00	IHIHIII III III III III III III III III	X		711 TIBE (MANAGEMENT)
SB-3 16-18C	5/22/00		X		
SB-3 28-30A	5/22/00		X		
SB-3 30-32A	5/22/00	***************************************	X		
SB-4 4-6B	5/11/00				Х
SB-4 14-16B	5/11/00		X		
SB-4 16-18A	5/11/00	habellandalan	X		
SB-4 16-18B	5/11/00	**************************************	X X		
SB-4 26-28A	5/11/00	MI		***************************************	X
SB-5 10-12A	5/12/00				X
SB-5 22-24B	5/12/00	· · · · · · · · · · · · · · · · · · ·	X		
SB-5 24-26A	5/12/00	***************************************	X		
SB-5 30-32A	5/12/00	· · · · · · · · · · · · · · · · · · ·	X	 	
SB-6 10-12A	5/15/00		:-:-		Х
SB-6 10-12C	5/15/00	httanhamaharrasi	Χ	*·· ········	
SB-6 20-22A	5/15/00		X X	*·····································	
SB-6 30-32A	5/15/00	1.11.11.11.11.11.11.11.11.11.11.11.11.1		·····	X
SB-6 34-36A	5/15/00		X	····	
SB-6 4-6C	5/15/00		X		
SBX-6 4-6A	5/17/00		X		<u> </u>
SBX-6 4-6B	5/17/00		X	· · · · · · · · · · · · · · · · · · ·	
SBX-6 6-8B	5/17/00	HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	Χ		
SBX-6 40-42C	5/17/00	·	X	***************************************	· ·
SB7 16-18 D	5/9/00		X		
SB7 18-20 A	5/9/00		X		
SB7 34-36 A	5/9/00		X		
SB-8 26-28 B	5/8/00		X		<u> </u>
SB-8 26-28 C	5/8/00		X		77777777777
SB-8 26-28 D	5/8/00		Χ		
SB-9 18-20 A	5/5/00		Х		
SB-9 20-22 A	5/5/00		X		
SB-9 34-36 A	5/5/00		X		
SB-10A 30-32	5/3/00		X		
SB-10A 32-34 B	5/3/00		Χ		

Table 2-2
Summary of Subsurface Soil Sample Analysis
NYSDEC SOH, Henrietta, NY

			Method	ID	
Sample ID	Sampling Date	PCB, Pesticide (8081)	VOC (8260)	SVOC (8270)	TOC (EPA 415.1)
SB-16 26-28A	6/9/00		X		†
SB-16 36-38A	6/9/00		X		
SB-16 44-46A	6/9/00		X		
SB-17 10-12B	6/12/00		X		 -
SB-17 24-26B	6/13/00		X	F111H19HH4-444-4	
SB-17 28-30A	6/13/00		X	····	
SB-18 12-14B	6/15/00		X		
SB-18 18-20A	6/16/00		X	·····	
SB-18 22-24A	6/16/00		X		<u></u>
SB-19 4-6A	6/14/00		X	<u></u>	
SB-19 24-26A	6/14/00	**************************************	X		
SB-19 26-28A	6/14/00		X		
SB-20 4-6A	6/19/00	-	X		
SB-20 16-18A	6/20/00		X	·	<u> </u>
SB-20 20-22B	6/20/00		x		

Note: Each 2 feet sample was separated in 6 inch increments from the top of the sample to the bottom

[&]quot;A", "B", "C" and "D" in a sample SB-X 4-6A would correspond to 4-4.5', 4.5'-5',5' - 5.5' and 5.5' - 6', respectively

Table 2-3 Summary of Surface Soil and Sediment Sample Analysis NYSDEC SOH, Henrietta, NY

			Analytical	Methodology	
Sample ID	Sampling Date	TAL Metals (6010)	SVOC (8270)	Cyanide (SW 9010)	VOC (8260)
urface Soil San	nple	-			
DD-1	11/30/00	······································			
DD-2	11/30/00	X	 	·	
DD-3	11/30/00		 	$\frac{1}{x}$	
DD-4	11/30/00	X		1 -	·····
DD-5	11/30/00	X	1 2	 	***************************************
DD-6	11/30/00	X	Ť X	T X	***************************************
DD-7	11/30/00	X	1 ×	l x	
DD-8	11/30/00	X	1 	i x	
DD-9	11/30/00	X	†	X	
DD-10	11/30/00	X	1 X	l x	
DD-11	11/30/00	X	X	X	hi kahaaaani (
DD-12	11/30/00	X	X	X	
DD-13	11/30/00	X	X	i x	
DD-14	11/30/00	X	T X	T X	***
DD-15	11/30/00	X	† X	X	***************************************
	ssin Sediment Sam	ple			
01	2/15/01				X
02	2/15/01				X
04	2/15/01		<u></u>		X

Table 2-4 Summary of Groundwater Sample Analysis NYSDEC - SOH, Henrietta, NY

							•	Anal	ytical Method						
Sample ID	Sample Date	TCL Metals (6010)	VOCs (8260)	Spec. Conductance (EPA 120.1)	Fluoride (EPA 340.1)	Nitrate/ Nitrite (EPA 353.2)	⁽¹⁾ DOC / TOC (EPA 415.1)	Alkalinity (SM 2320)	Total Dissolved Solid (TDS) (SM 2540-C)	Chloride (SM 4500-Cl)	Phosphate (Total) (SM 4500-P)	Sulfate (SM 4500-SO)	COD ⁽²⁾ (SM 5220-C)	Bromide (SM 4500-BR)	Cyanide (SW 9010
IPZ-1	07/17/2000	X	Х							Х			Х		
IPZ-1	09/11/2000	×	X					H		X			X	1	
IPZ-1	10/20/2000	X	X			<u> </u>	[X			X		
IPZ-1	12/14/2000	×	X	X	X	X	X	X	X	X	X	X		×	X
IPZ-2 IPZ-2	07/17/2000	X	X							X			. X		
IPZ-2	10/20/2000	X	X						<u> </u>	x			X	I	
IPZ-2	12/14/2000	×	X	X	Х.	. X	X	X	X	X	X	X		X	X
IPZ-3	07/17/2000	X	X							X			Х		
IPZ-3	10/20/2000	X	X							. X			X	T	(
IPZ-3	12/14/2000	x	X	X	X	X	X	X	X	X	X	X		X	X
IW-1	07/17/2000	X	X							X			Х	<u> </u>	
IW-1	10/20/2000	X	X			T				X	.,		X	1	
IW-1	12/14/2000	X	X	X	X	X	X	X	X X	X	X	X		X	Х
MW-2	12/18/2000	Х	Х	Х	X	X .	X	X	Х	Х	X	Х		Х	Х
MW-3	12/18/2000	X	X	X	<u>x</u>	X	X	X	X	X	X	X		X	X
MW-5	12/18/2000	X	X	X	X	X	X	X	X	X	X	x		X	X
OW-1R	12/19/2000	X	X	. X .	Х	ж х	X	X	. х	X	Х	X		Х	X
OW-1S	12/19/2000	Х	Х	X	Х	X	X	Х	Х	X	X	X		Х	Х
OW-2R	12/19/2000	X	X	X	X	X	X	X	X	Х	X	Х		X	Х
OW-25	12/19/2000	Х	X	Х	X	X	X	Х	Х	Х	X	Х		Х	Х
OW-3R	12/19/2000	X	Х	X 1	, X	х	X.	Х	X	Х	X	Х		X	Х
OW-35	12/19/2000	Х	Х	X	Х	X	X	Х	X	. X	. X	Х		X	Х
OW-4R	12/19/2000	Х	Х	X	X	x	Х.	X	X	X	X	X		X	X
OW-4S	12/19/2000	Х	Х	X	Х	Х	X	X	X	Х	Х	Х		Х	Х
OW-58	12/19/2000	Х	X	X	Х	Х	X	Х	X	X	Х	Х		X	Х
OW-6S	12/18/2000	Х	X	Х	Х	X	Χ.	Х	X	Х	X	X		X	X
OW-78	07/17/2000	X	X							Х			Х		
OW-7R	09/11/2000	X	X		and the state of t					Х		***************************************	X	1	ſ, <u></u>
OW-7R	10/20/2000	X	X				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(houtelelelulalalalalalalal		X			X	1	ſ
OW-7R	12/18/2000	х	Х	X	X	×	X	X	х —	Х	X	X		X	Х

(1): DOC · Dissolved Organic Compound / TOC · Total Organic Compound (2) · COD · Chemical Oxygen Demand

Table 2-4 Summary of Groundwater Sample Analysis NYSDEC - SOH, Henrietta, NY

								Anal	ytical Method						
Sample ID	Sample Date	TCL Metals (6010)	VOCs (8260)	Spec. Conductance (EPA 120.1)	Fluoride (EPA 340.1)	Nitrate/ Nitrite (EPA 353.2)	⁽¹⁾ DOC / TOC (EPA 415.1)	Alkalinity (SM 2320)	Total Dissolved Solid (TDS) (SM 2540-C)	Chloride (SM 4500-Cl)	Phosphate (Total) (SM 4500-P)	Sulfate (SM 4500-SO)	COD ⁽²⁾ (SM 5220-C)	Bromide (SM 4500-BR)	Cyanide (SW 9010)
OW-7S	07/17/2000	Х	Х					,		Х			Х		
OW-7S	09/11/2000	X	X							X		1	X		
OW-7S	10/20/2000	X	X		[I				X		1	X		1
OW-7S	12/18/2000	X	XX	X	X	X	X	Х	X	X	X	X		X	X
OW-85	12/19/2000	. X	Х	Х	X	Х	X	Χ	X	X .	X	, X .		Х	X
P2-1	12/15/2000	X	Х	Х .	X	X	X	X	Х	X	Х	X		Х	X
PZ-2	12/15/2000	Х	X	X	Х	X	X	Х	Х	X	X	Х		Х	X
PZ-3	12/15/2000	X	Х	Х	Х	Х	X	Х	X	X	Х	Х		X	X
TW-1 TW-1 TW-1	09/22/2000	X .	X						<u></u>	X			<u> </u>	l	<u> </u>
TW-1	10/20/2000	Χ	X			l				<u> </u>			<u> </u>		·
TW-1	12/14/2000	X	Х	Х	X	X	×	X	X	X	X	X		X	X
TW-2	09/22/2000	X	X							<u> </u>			X		i
TW-2 TW-2	10/20/2000	X	X			ļ				X	<u> </u>		X		<u> </u>
TW-2	12/14/2000	X	Х	X	Х	Х	X	X	X	X	X	X		Χ	X
TW-3	09/22/2000	X	X			<u> </u>	<u> </u>	tollale Baltal - Barthale Helle He		XX			<u> </u>		l
TW-3	10/20/2000	X	X				<u> </u>			X			X		
TW-3	12/14/2000	X	X	X	X	X	X	X	Х	X	X	х		X	<u> </u>
TW-4	09/22/2000	X	X				<u> </u>		ļ	X		<u> </u>	X	<u> </u>	
TW-4	10/20/2000	X	X	<u> </u>		 				X			X	<u> </u>	
TW-4	12/14/2000	X	X	X	X	X	X{	X	Х	IX	X	X		X	X

(1): DOC - Dissolved Organic Compound / TOC - Total Organic Compound (2) - COD - Chemical Oxygen Demand

Table 3-1A **Detected Compounds (VOCs, TOC) in Subsurface Soil Samples** NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	SB-1 4-6A	SB-1 6-8C	SB1 8-10A	SB-1 10-12B	SB-1 10-12C	SB-1 12-14A
Lab ID	Objective	70751004	70751006		70751010	70751011	70751012
	(TAGM 4046) ¹	05/17/2000	05/18/2000	5/18/00	05/18/2000	05/18/2000	05/18/2000
Analyte							
TOC (%)			•••	0.7		***	
Volatiles (ug/kg)			,				·
1,1,1.Trichloroethane	800			•••	310 J	320 JD	23 J
1,1,2-Trichloroethane	na						
1,1-Dichloroethane	200			•••	92 J	130 J	3 J
1,1-Dichloroethene	400				33 J	75 J	
1,2-Dichloroethane	100						
1,2-Dichloroethene (Total)	300 (Trans)				38 J	95 J	3 J
2-Butanone	300			***	25 J	41 J	
4-Methyl-2-Pentanone	1,000					5 J	
Acetone	200			•••			
Carbon Disulfide	2,700			***			
Chloroform	300			***			
Ethylbenzene	5,500			***		1 J	
Methylene Chloride	100						1
Tetrachloroethene	1,400		1 J		41 J	30 J	5 J
Toluene	1,500					2 J	-101001011011011011011011011011011011011
Trichloroethene	700	12 J	26 J		320 J	420 JD	58 J
Xyleпе (Total)	1,200				3 J	6 J	

Notes: --- :Not Analyzed

na: not applicable

J: Estimated Value

DNR: Do not report

R: Rejected Data

D: Result fron Dilution

Table 3-1A

Detected Compounds (VOCs, TOC) in Subsurface Soil Samples
NYSDEC-SOH, Henrietta, NY

Sample ID Lab ID	NYSDEC Objective	SB-1 16-18D	SB-1 CUTTINGS 70751009	SB-2 18-20D 70751013	SB-2 20-22B 70751014	SB-2 20-22C 70751015	SB-2 40-42A 70751016
Lab ID	(TAGM 4046) ¹	0E /18 /2000					
	(TAGW 4046)	05/18/2000	05/18/2000	05/19/2000	05/19/2000	05/19/2000	05/19/2000
Analyte							
TOC (%)		0.5		•••	•••	***	
Volatiles (ug/kg)							
1,1,1.Trichloroethane	800		14 J	30 J		2 J	2 J
1,1,2-Trichloroethane	na					6 J	6 J
1,1-Dichloroethane	200		130 J	26 J		16 J	15 J
1,1.Dichloroethene	400		15 J	11 J			
1,2-Dichloroethane	100					***************************************	
1,2-Dichloroethene (Total)	300 (Trans)	•••	40 J	95 J		79 J	75 J
2-Butanone	300	***		25 J		37 J	4 1 J
4-Methyl-2-Pentanone	1,000					18 J	22 J
Acetone	200	•••		140 J	320 J	350 J	410 J
Carbon Disulfide	2,700						5 J
Chloroform	300	***					
Ethylbenzene	5,500	***					
Methylene Chloride	100	***				36 J	
Tetrachloroethene	1,400	***	40 J	2 J		5 J	5 J
Toluene	1,500	***		2 J		6 J	7 J
Trichloroethene	700	•••	400 J	4,200 JD	220 J	4,400 JD	3,300 JD
Xylene (Total)	1,200	•••				2 J	4 J

Notes: ---: Not Analyzed na: not applicable J: Estimated Value DNR: Do not report R: Rejected Data

D: Result fron Dilution

Empty Cell: Below Detection Limit

Table 3-1A Detected Compounds (VOCs, TOC) in Subsurface Soil Samples NYSDEC-SOH, Henrietta, NY

Sample ID Lab ID	NYSDEC Objective	SB-3 16-18C 70768001	SB-3 28-30A 70768002	SB-3 30-32A 70768003	SB-4 4-6B	SB-4 14-16B 70713004	SB-4 16-18A 70713005
Lab ID	(TAGM 4046) ¹	05/22/2000	05/22/2000	05/22/2000	05/11/2000	05/11/2000	05/11/2000
Analyte	(IXGIII 10 10)	03/12/1000	00/ 22/ 2000	037 227 2000	00/11/1000	00/12/2000	307 217 2000
TOC (%)		***	•••	•		***	
Volatiles (ug/kg)							
1,1,1.Trichloroethane	800			<u> </u>			
1,1,2.Trichloroethane	na						4 J
1,1-Dichloroethane	200				•••	7 J	11 J
1,1-Dichloroethene	400				•-•		
1,2-Dichloroethane	100						
1,2-Dichloroethene (Total)	300 (Trans)	1,500 J		13 J		4 J	10 J
2-Butanone	300					100 J	72 J
4-Methyl-2-Pentanone	1,000					23 J	
Acetone	200	2,400 J		28 UJ		230 J	210 J
Carbon Disulfide	2,700						
Chloroform	300		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***	441.4	
Ethylbenzene	5,500			1 J			
Methylene Chloride	100			17 J		62 J	270 J
Tetrachloroethene	1,400	2,000 J	***************************************	62 J			
Toluene	1,500			2 J			
Trichloroethene	700	110,000 J	9,400 J	1,200 JD		96 J	150 J
Xylene (Total)	1,200			9 J			

Empty Cell: Below Detection Limit

1) NYSDEC Div of Hazardous Waste Technical an Administrative Guidance Memorandum (TAGM 4046); Recommended Soil Cleanup Objectives used for this table. Soil Cleanup Objectives and Cleanup Levels

Table 3-1A

Detected Compounds (VOCs, TOC) in Subsurface Soil Samples
NYSDEC-SOH, Henrietta, NY

Sample ID Lab ID	NYSDEC Objective	SB-4 16-18B 70713006	SB-4 26-28A 70713001	SB-5 10-12A	SB-5 22-24B 70713009	SB-5 22-24B 70713009RE	SB-5 24-26A 70713008
Lab 15	(TAGM 4046) ¹	05/11/2000	05/11/2000	05/12/2000	05/12/2000	05/12/2000	05/12/2000
Analyte							
TOC (%)							
Volatiles (ug/kg)							
1,1,1 Trichloroethane	800						
1,1,2.Trichloroethane	па					.,,,,,,,,,	
1,1-Dichloroethane	200			***		***************************************	
1,1.Dichloroethene	400					***************************************	-,
1,2-Dichloroethane	100		***		.,,,,		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1,2-Dichloroethene (Total)	300 (Trans)		***		***************************************		.,,.,,.,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2-Butanone	300		• • •				
4-Methyl-2-Pentanone	1,000		***		DNR	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Acetone	200	110 UJ	***		470	DNR	720 J
Carbon Disulfide	2,700		***		.,		
Chloroform	300		***	***			
Ethylbenzene	5,500				, , , , , , , , , , , , , , , , , , ,		
Methylene Chloride	100				DNR	 	
Tetrachloroethene	1,400		***		DNR	9 J	18 J
Toluene	1,500		***		,	4 J	
Trichloroethene	700	1,300 J	***		DNR	330 J	1,300 J
Xylene (Total)	1,200		•••	•••	DNR		

Empty Cell: Below Detection Limit

Table 3-1A

Detected Compounds (VOCs, TOC) in Subsurface Soil Samples

NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	SB-5 30-32A 70733001	SB-6 4-6C 70733007	SB-6 10-12A 70733002	SB-6 10-12C 70733009	SB-6 20-22A 70733008	SB-6 30-32A 70733003
Lab ID	Objective (TAGM 4046) ¹	05/15/2000	05/15/2000	05/15/2000	05/15/2000	05/15/2000	05/15/2000
	(TAGIN 4040)	03/13/2000	03/13/2000	03/13/2000	05/ 15/ 2000	00, 10, 100	
Analyte							
TOC (%)			•	30.9		•••	1.7
Volatiles (ug/kg)							
1,1,1-Trichloroethane	800	37 J	20		310 JD	210 D	***
1,1,2-Trichloroethane	na						
1,1-Dichloroethane	200	8 J		•••	15	240 D	
1,1-Dichloroethene	400			# = =		,,,,,,	
1,2.Dichloroethane	100			*	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	
1,2-Dichloroethene (Total)	300 (Trans)	24 J	4411+11+11+11+11+11+11+11+11+11+11+11+11		11		***
2-Butanone	300		***************************************				***************************************
4-Methyl-2-Pentanone	1,000		***************************************			,,,.,,	***
Acetone	200	***************************************					***
Carbon Disulfide	2,700						
Chloroform	300	41912			***************************************	1991991911911999999999	****
Ethylbenzene	5,500		2			101101001001001011011011011011011011011	••••
Methylene Chloride	100		.1419411419419419419419419474974914		,,,,,	140	
Tetrachloroethene	1,400		34		8	4	
Toluene	1,500	2 J	<		6	6	
Trichloroethene	700	1,700 D	***************************************	***	15	16	
Xylene (Total)	1,200		18	•••			•••

Empty Cell: Below Detection Limit

Table 3-1A **Detected Compounds (VOCs, TOC) in Subsurface Soil Samples** NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	SB-6 34-36A 70733005	SBX-6 4-6A 70733010	SBX-6 4-6B 70751001	SBX-6 6-8B 70751002	SBX-6 40-42C 70751003	SB7 (16-18) D 70688009
Lab ID	Objective						
	(TAGM 4046) ¹	05/16/2000	05/17/2000	05/17/2000	05/17/2000	05/17/2000	05/09/2000
Analyte							
TOC (%)							
Volatiles (ug/kg)							
1,1,1-Trichloroethane	800	29 J	8,900	73 J	350 JD		
1,1,2-Trichloroethane	na						
1,1-Dichloroethane	200	40			37 J		73 J
1,1.Dichloroethene	400				34 J		10 J
1,2-Dichloroethane	100						
1,2-Dichloroethene (Total)	300 (⊤rans)						33 J
2-Butanone	300						
4-Methyl-2-Pentanone	1,000					***************************************	
Acetone	200			53 UJ	16 UJ	 	
Carbon Disulfide	2,700		***************************************	• • • • • • • • • • • • • • • • • • • •			***************************************
Chloroform	300	***************************************	44.4	•			
Ethylbenzene	5,500		700	110 J	24 J		
Methylene Chloride	100				30 UJ		
Tetrachloroethene	1,400	2	12,000	5,000 JD	470 JD		
Toluene	1,500	1			2 J	***************************************	
Trichloroethene	700	3			4 J	350 J	1,100 J
Xylene (Total)	1,200		4,600	880 J	170 J		

Table 3-1A
Detected Compounds (VOCs, TOC) in Subsurface Soil Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	SB7 (18-20) A	SB7 (34-36) A	SB-8 (26-28) B	SB-8 (26-28) C	SB-8 (26-28) D	SB-9 (18-20) A
Lab ID	Objective	70688008	70688010	70688004	70688005	70688006	70688001
	(TAGM 4046) ¹	05/09/2000	05/09/2000	05/08/2000	05/08/2000	05/08/2000	05/05/2000
Analyte							
TOC (%)							
Volatiles (ug/kg)				-			
1,1,1-Trichloroethane	800	7 J					
1,1,2-Trichloroethane	na						
1,1.Dichloroethane	200	300 J		44 J	44 J	51 J	21 J
1,1-Dichloroethene	400	10 J		2 J			
1,2-Dichloroethane	100				44144144144144144144144144144144144		
1,2-Dichloroethene (Total)	300 (Trans)	63 J		22 J	24 J	33 J	
2-Butanone	300				17 J		
4-Methyl-2-Pentanone	1,000			3 J	6 J	4 J	
Acetone	200		14 UJ				
Carbon Disulfide	2,700						<u> </u>
Chloroform	300					<u></u>	
Ethylbenzene	5,500				1 J		
Methylene Chloride	100	78 UJ		250 J	370 J	1,500 JD	
Tetrachloroethene	1,400			8 J	15 J	6 J	
Toluene	1,500						2 J
Trichloroethene	700	1,000 J	6 J	8,500 JD	5,600 JD	7,600 JD	12 J
Xylene (Total)	1,200			2 J	5 J	2 J	2 J

Empty Cell: Below Detection Limit

Table 3-1A

Detected Compounds (VOCs, TOC) in Subsurface Soil Samples
NYSDEC-SOH, Henrietta, NY

Sample ID Lab ID	NYSDEC Objective	SB-9 (20-22) A 70688002	SB-9 (34-36) A 70688003	SB-10A (30-32) 70674004	SB-10A(32-34)B 70674005	SB-10A(32-34)C 70674006	SB-11(38-40)C 70674007
Lab ID	(TAGM 4046) ¹	05/05/2000	05/05/2000	05/03/2000	05/03/2000	05/03/2000	05/02/2000
	(1AGM 4040)	05/05/2000	03/03/2000	03/03/2000	03/03/2000	0370372000	03/02/2000
Analyte							
TOC (%)							•••
Volatiles (ug/kg)							
1,1,1-Trichloroethane	800					***************************************	
1,1,2-Trichloroethane	na						
1,1-Dichloroethane	200	66 J	7 J	18 J	94 J		2 J
1,1-Dichloroethene	400						
1,2-Dichloroethane	100			••11•11••11•11•11•11•11•11•11•11•11•11•			
1,2-Dichloroethene (Total)	300 (Trans)		***************************************	7 J	37 J		2 J
2-Butanone	300						7 J
4-Methyl-2-Pentanone	1,000	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.4.1441441441441144114411441144444	,,,,	******************************	***************************************	10110114
Acetone	200	*,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		9 J	************************************	***************************************	31 J
Carbon Disulfide	2,700	***************************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************	
Chloroform	300	**!**!*********************************	***************************************	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		***************************************
Ethylbenzene	5,500 100	***************************************					***************************************
Methylene Chloride		***************************************			.,,.		4 J
Tetrachloroethene	1,400	-11415715475415415415715475-15-14-14-14-14	5 J		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	26 J
Toluene	1,500	1 J	2 J			***************************************	4 J
Trichloroethene	700	99 J	30 J	280 J	1,100 J	390 J	2,200 JD
Xylene (Total)	1,200						1 J

Empty Cell: Below Detection Limit

Table 3-1A
Detected Compounds (VOCs, TOC) in Subsurface Soil Samples
NYSDEC-SOH, Henrietta, NY

Sample ID Lab ID	NYSDEC Objective	SB-11 (38-40)D 70674008	SB-11 (40-42)D 70674009	SB-12 (24-26)C 70674001	SB-12 (26-28)B 70674002	SB-12 (26-28)D 70674003	SB-15 18-20B 70768004
Lab ID	(TAGM 4046) ¹	05/02/2000	05/02/2000	05/04/2000	05/04/2000	05/04/2000	05/23/2000
Analyte							
TOC (%)						••-	
Volatiles (ug/kg)							
1,1,1-Trichloroethane	800			240 J	230 J	10 J	11-1
1,1,2-Trichloroethane	na					***************************************	***************************************
1,1-Dichloroethane	200	6 J	58 J	590 J	1,200 J	85 J	***************************************
1,1-Dichloroethene	400			14 J		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************
1,2-Dichloroethane	100						
1,2.Dichloroethene (Total)	300 (Trans)	4 J	250 J	14 J	14 J		430 J
2-Butanone	300		8 J		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11 J	
4-Methyl-2-Pentanone	1,000		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	,		
Acetone	200	30 J	43 J	29 J	56 J	22 J	900 J
Carbon Disulfide	2,700		2 J	***************************************	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************
Chloroform	300		,				
Ethylbenzene	5,500			 		1.01/41/41/410104/4104/04/04/04/04/04/04/04/04/04/	#1415114114114141141141141141141141141141
Methylene Chloride	100	38 J	370 J	97 J	280 J	38 J	
Tetrachloroethene	1,400	4 J	1 J			1 J	
Toluene	1,500	4 J	3 J	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,,,-,,,,,,,-,
Trichloroethene	700	3,300 JD	1,700 JD	87 J	110 J		7,400 J
Xylene (Total)	1,200						

Empty Cell: Below Detection Limit

Table 3-1A
Detected Compounds (VOCs, TOC) in Subsurface Soil Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	SB-15 18-20C	SB-15 20-22A	SB-16 26-28A	SB-16 36-38A	SB-16 44-46A	SB-17 10-12B
Lab ID	Objective	70768005	70768006	70866003	70866004	70866005	70905004
	(TAGM 4046) ¹	05/23/2000	05/23/2000	06/09/2000	06/09/2000	06/09/2000	06/12/2000
Analyte			-				
TOC (%)		•••	•••	•••	•••		
Volatiles (ug/kg)							
1,1,1.Trichloroethane	800			***************************************		6 J	
1,1,2.Trichloroethane	na						
1,1-Dichloroethane	200	7				***************************************	45 J
1,1-Dichloroethene	400						2 J
1,2-Dichloroethane	100						
1,2-Dichloroethene (Total)	300 (Trans)	49	11				29 J
2-Butanone	300						
4-Methyl-2-Pentanone	1,000			***************************************			
Acetone	200	580 JD	520 JD	***************************************	 		***************************************
Carbon Disulfide	2,700			•••••			***************************************
Chloroform	300		***************************************	,,,,,,,	,,	***************************************	***************************************
Ethylbenzene	5,500	1	1				
Methylene Chloride	100	82	10				
Tetrachloroethene	1,400	16	15	••••••••••••			
Toluene	1,500	3	3				
Trichloroethene	700	1,100 JD	1,600 JD				5 J
Xylene (Total)	1,200	7	6				

Empty Cell: Below Detection Limit

Table 3-1A
Detected Compounds (VOCs, TOC) in Subsurface Soil Samples
NYSDEC-SOH, Henrietta, NY

Sample ID Lab ID	NYSDEC Objective	SB-17 24-26B 70905003	SB-17 28-30A 70905002	SB-18 12-14B 70924001	SB-18 18-20A 70924002	SB-18 22-24A 70924003	SB-20 4-6A 70941001
	(TAGM 4046) ¹	06/13/2000	06/13/2000	06/15/2000	06/16/2000	06/16/2000	06/19/2000
Analyte							
TOC (%)		•					
Volatiles (ug/kg)						4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
1,1,1.Trichloroethane	800	*******************************		220	20,000 D	1,100,000	1
1,1,2-Trichloroethane	na	***************************************		 	91		********************************
1,1-Dichloroethane	200	5	5	14	220	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*************************************
1,1-Dichloroethene	400				16	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*************************************
1,2.Dichloroethane	100					[01502][07701011111111111111111111111111111111	
1,2-Dichloroethene (Total)	300 (Trans)	22	14	370 D	210	*******************************	
2-Butanone	300	12			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	
4-Methyl-2-Pentanone	1,000					4114147147147147147474	
Acetone	200	60	39	20	74		
Carbon Disulfide	2,700					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Chloroform	300				***************************************		
Ethylbenzene	5,500				140		***************************************
Methylene Chloride	100						
Tetrachloroethene	1,400			2	2,200 Đ	22,000	
Toluene	1,500				160		
Trichioroethene	700	44	17	32	180		67
Xylene (Total)	1,200		,		880		

Empty Cell: Below Detection Limit

Table 3-1A

Detected Compounds (VOCs, TOC) in Subsurface Soil Samples

NYSDEC-SOH, Henrietta, NY

Sample ID Lab ID	NYSDEC Objective	SB-19 24-26A 70905007	SB-19 26-28A 70905006	SB-19 4-6A 70905005	SB-20 16-18A 70941002	SB-20 20-22B 70941003
Lab ib	(TAGM 4046) ¹	06/14/2000	06/14/2000	06/14/2000	06/20/2000	06/20/2000
Analyte						
TOC (%)						
Volatiles (ug/kg)						
1,1,1.Trichloroethane	800	410 D	91	20		
1,1,2.Trichloroethane	па			***************************************		
1,1-Dichloroethane	200	84	91	3	1,11041011011011011011011011011011011	
1,1-Dichloroethene	400			1	411011011011011011011011011011011011	
1,2-Dichloroethane	100		3		411411419414414414141414141414141414141	4.041041041411410410110110114114107*****
1,2-Dichloroethene (Total)	300 (Trans)	1	*****************************		***************************************	
2-Butanone	300		13		11041011011041011011041011011011010	
4-Methyl-2-Pentanone	1,000		***************************************			
Acetone	200	64	58		2,100	
Carbon Disulfide	2,700		3			411010010710110110
Chloroform	300		-10-11-11-11-11-11-11-11-11-11-11-11-11-	.,,		
Ethylbenzene	5,500	************************************				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Methylene Chloride	100				***************************************	«:«:«».»
Tetrachloroethene	1,400					
Toluene	1,500	3	1	***************************************	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Trichloroethene	700	2	2	1	73,000	1,200
Xylene (Total)	1,200		<u> </u>			<u> </u>

Notes: ··· :Not Analyzed na: not applicable
J: Estimated Value
DNR: Do not report
R: Rejected Data

D: Result fron Dilution

Empty Cell: Below Detection Limit

Table 3-1B
Detected Compounds (PCBs, SVOCs) in Subsurface Soli Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	SB-1 CUTTINGS
Lab ID	Ob]sctive	70751009
Sample Date	(TAGM 4046) ¹	05/18/2000
Analyte		
Pesticides/PCBs (mg/kg)		
4,4-DDD	2.9	
4,4.DDE	2.1	[
4,4-DDT	2.1	[
Aldrin	0.041	
alpha-BHC	0.11	
alpha-Chlordane	na	
Aroclor-1016	па	
Aroclor-1221	па	
Arocior-1232	па	
Aroclor-1242	na	
Aroclor-1248	na	
Aroclor-1254	na	
Aroclor-1260	na	
PCBs (total)	10	
beta-BHC	0.2	
delta-BHC	0.3	
Dieldrin	0.044	
Endosulfan I	0.9	
Endosulfan II	0.9	
Endosulfan sulfate	1	
Endrin	0.1	
Endrin aldehyde	na	
Endrin ketone	na	
gamma-BHC (Lindane)	0.06	
gamma-Chlordane	0.54	
Heptachlor	0.1	
Heptachlor epoxide	0.02	
Methoxychlor	na	
Toxaphene	na	

Empty cell: Below Detection Limit

na: not applicable

NYSDEC Div. Of Haz Waste Technical and Administrative Guidance Memorandum (TAGM 4046);
 Soil Cleanup Objectives and Cleanup Levels Recommended Soil Cleanup Objectives used for this table.

Table 3-1B
Detected Compounds (PCBs, SVOCs) in Subsurface Soil Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	SB-1 CUTTINGS
Lab ID	Objective	70751009
Sample Date	(TAGM 4046) ¹	05/18/2000
Semivolatiles (ug/kg)		
1,2,4-Trichlorobenzene	3,400	
1,2-Dichlorobenzene	7,900	
1,3.Dichlorobenzene	16,000	
1,4-Dichlorobenzene	85,000	·*·
2,2.oxybis(1-Chloropropane)	na (
2,4,5-Trichlorophenol	100	····
2,4,6-Trichlorophenol	400	
2,4-Dichlorophenol	na	
2,4-Dimethyphenol	na	***************************************
2,4-Dinitrophenol	200 or md	
2,4-Dinitrotoluene	na	
2,6-Dinitrotoluene	100	
2-Chloronaphthalene	na	
2-Chlorophenol	800	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2-Methylnaphthalene	36,400	P-17741114447744417714477744477744441444444
2-Methylphenol	100or md	····
2-Nitroaniline	430 or md	
2-Nitrophenol	330 or md	
3,3-Dichlorobenzidine		
3.Nitroaniline	na 500 or md	
4,6.Dinitro-2.methylphenol		
	na	
4-Bromophenyl-phenylether	na na	
4-Chloro-3-methylphenol 4-Chloroaniline	240 or md	
	220 or md	
4-Chlorophenyl-phenylether	na na	
4-Methylphenol	900	
4-Nitroaniline	na na	
4-Nitrophenol	100 or md	
Acenaphthene	50,000	·····
Acenaphthylene	41,000	
Anthracene	50,000	
Benzo(a)anthracene	224 or md	
Benzo(a)pyrene	61 or md	
Benzo(b)fluoranthene	1,100	
Benzo(g,h,i)perylene	50,000	
Benzo(k)fluoranthene	1,100	
bis(2-Chloroethoxy)methane	na	
bis(-2-Chloroethyl)Ether	na	······································
bis(2-Ethylhexyl)phthalate	50,000	······································
Butylbenzylphthalate	50,000	
Carbazole	na l	
Chrysene	400	······
Dibenzo(a,h)anthracene	14 or md	
Dibenzofuran	6,200	
Diethylphthalate	7,100	
Dimethylphthalate	2,000	
Di-n-butylphthalate	8,100	
Di-n-octylphthalate	50,000	
Fluoranthene	50,000	

Table 3-2
Relation Between TCE Concentration and PID Readings
NYSDEC-SOH, Henrietta, NY

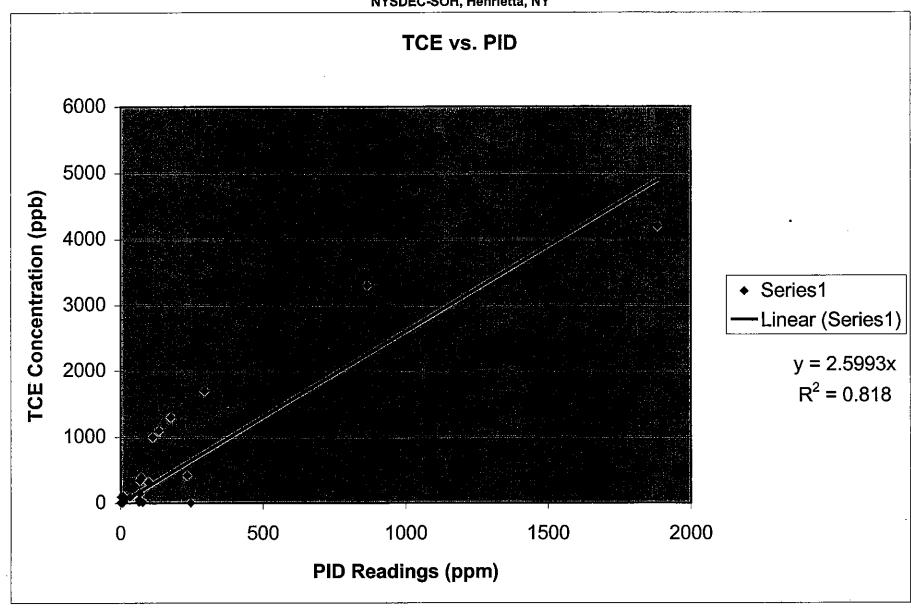


Table 3-3
Detected Compounds (SVOCs, Metals) in Surface Soil Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC Objective	DD-1	DD-2	DD-3	DD-4
Lab ID	(TAGM 4046) ¹	71970001	71970002	71970003	71970004
Sample Date	,	11/30/2000	11/30/2000	11/30/2000	11/30/2000
Analyte					
Metals (mg/Kg)					
Aluminum	SB (33,000)	5,660	3,070	8,980	7,310
Antimony	SB (n/a)	0.74 J			0.68 J
Arsenic	7.5 or SB(3-12)	4.2	3.2	3.7	10.5 J
Barium	300 or SB (15-600)	37.3	15.7	66.1	143
Beryllium	0.16 or SB (0·1.75)			0.098	0.34
Cadmium	1 or SB (0.1-1)	0.76	0.41	0.87	2.1
Calcium	SB (130-35,000)	2,330 J	668	8040 J	22,500 J
Chromium	10 or SB (1.5·40)	9.7 J	4.2 J	12.9 J	11.6 J
Cobalt	30 or SB (2.5-60)	3.8	2.6	4.9	6.8
Copper	25 or SB (1·50)	9.9	4.1	10.9	16.9
Iron	2,000 or SB (2,000-550,000)	12,100	6,370	15,000	26,900 J
Lead	SB (200-500)	13.4 J	7.2 J	11.7 J	40.1 J
Magnesium	SB (100-5,000)	2,090	840	4,930	8,190
Manganese	SB (50-5,000)	289 J	171 J	247 J	1,680 J
Mercury	0.1				0.081
Nickel	13 or SB (0.5-25)	8	3.9	13.1 J	10.1 J
Potassium	SB (8,500-43,000)	377	222	872	522
Selenium	2 or SB(0.1-3.9)	· · · · · · · · · · · · · · · · · · ·	·····	·····	
Silver	na	1	0.66	1.3	2.9
Sodium	SB (na)	321	197	267	485
Thallium	SB (na)	-1			
Vanadium	150 or SB(1·300)	13.9	7.1	17.1	27
Zinc	20 or SB (9-50)	117 J	30.9 J	49.9 J	106 J
Cyanide	SB (na)	0.2	***************************************	0.15	
Semivolatiles (ug/kg)				-	
2,4-Dimethylphenol	25400				
2-Methylnaphthalene	36400		······································		····
2-Methylphenol	100or md 900	/t			
4-Methylphenol					1.60
Acenaphthene	50000 41000	ļ		-	160 400
Acenaphthylene Anthracene	50000				1,000
Anthracene Benzo(a)anthracene	224 or md	190		97	5,400 J
	224 or ma 61 or md	300 J		110 J	4,000 J
Benzo(a)pyrene Benzo(b)fluoranthene	1100	590 J	67 J	200 J	5,800 J
Benzo(g,h,i)perylene	50000	230 J			3,700 J
Benzo(k)fluoranthene	1100	160 J		66 J	2,000 J
bis(2-Ethylhexyl)phthalate	50000	160 J	88 J	110 J	180 J
Butylbenzylphthalate	50000	100 1	00 J	1101	86 J
Carbazole			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		430
Chrysene	400	310		130	4,700 J
Dibenzo(a,h)anthracene	14 or md	310		130	790 J
Dibenzoturan	6200				190

Table 3-3
Detected Compounds (SVOCs, Metals) in Surface Soil Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC Objective	DD-5	DD-6	DD-7	DD-8
Lab ID	(TAGM 4046) ¹	71970005	71970006	71970007	71970008
Sample Date		11/30/2000	11/30/2000	11/30/2000	11/30/2000
Analyte			<u>-</u> .		
Metals (ma/Ka)			<u>.</u>		
Aluminum	SB (33,000)	6,580	11,400	5,650	10,900
Antimony	SB (n/a)			0.7 J	
Arsenic	7.5 or SB(3-12)	1.5	3.2	3.8	2.8
Barium	300 or SB (15-600)	46.9	101	42.9	63
Beryllium	0.16 or SB (0-1.75)		0.25	***************************************	
Cadmium	1 or SB (0.1-1)	0.74	1.2	0.75	1.1
Calcium	SB (130·35,000)	45,100 J	49,600 J	75,500 J	28,500 J
Chromium	10 or SB (1.5-40)	10.3 J	16.3 J	6.8 J	17 J
Cobalt	30 or SB (2.5-60)	5.1	8.3	4.2	7.4
Copper	25 or SB (1·50)	12.2	18.5	16	19 J
liron	2,000 or SB (2,000-550,000)	12,400	19,900	11,100	18,300
Lead	SB (200-500)	9 J	11.6 J	12.7 J	16 J
Magnesium	SB (100-5,000)	15,500	16,500	34,900	11,100
Manganese	SB (50-5,000)	427	427	603	272
Mercury	0.1				
Nickel	13 or \$B (0.5-25)	11.6 J	21 J	11.4 J	18.2 J
Potassium	SB (8,500-43,000)	1,250	2,260	764	1,740
Selenium	2 or \$B(0.1-3.9)	±, 2 50	2,200		
Silver	na 2 01 3D(0.1*3.9)	1.1	2.1	1.5	1.6
Sodium	SB (na)	817	502	539	891
Thallium	SB (na)				2.5 J
Vanadium	150 or SB(1-300)	15	22.2	12.1	22.2
Zinc	20 or SB (9-50)	41.7 J	62.3 J	57.1 J	84.6 J
Cyanide	SB (na)	T1./ J	0.19		0.39
Semivolatiles (ug/kg)	 				
2,4-Dimethylphenol					
2-Methylnaphthalene	36400				350
2-Methylphenol	100or md				
4-Methylphenol	900				
Acenaphthene	50000				1,500
Acenaphthylene	41000				
Anthracene	50000				2,000
Benzo(a)anthracene	224 or md	99 J	130	100	5,200
Benzo(a)pyrene	61 or md	130 J	180 J	130 J	4,100
Benzo(b)fluoranthene	1100	290 J	300 J	220 J	5,300
Benzo(g,h,i)perylene	50000	96 J	120 J	76 J	2,400
Benzo(k)fluoranthene	1100	69 J	92 J	70 J	2,200 J
bis(2-Ethylhexyl)phthalate	50000	130 J	130 J	92 J	
Butylbenzylphthalate	50000	·			
Carbazole	na				1200
Chrysene	400	160 J	200	140	4,700
Dibenzo(a,h)anthracene	14 or md	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			790
Dibenzofuran	6200				530

Table 3-3
Detected Compounds (SVOCs, Metals) in Surface Soil Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC Objective	DD-9	DD-10	DD-11	DD-12
Lab ID	(TAGM 4046) ¹	71970009	71970010	71970011	71970012
Sample Date	(174111 4040)	11/30/2000	11/30/2000	11/30/2000	11/30/2000
Analyte	-				
AA-1-1- (((C-)		ļ			
Metals (mg/Kg)	CD (22 000)	5.600	4 100	0.000 1	C 400
Aluminum	SB (33,000)	5,620	4,190	9,860 J	6,400
Antimony	SB (n/a)		2.7	1.6 J	
Arsenic Barium	7.5 or SB(3-12) 300 or SB (15-600)	5.4 43	48.4	4.6 J	3.6 48.6
		43	40.4	67.6 J	40.0
Beryllium	0.16 or SB (0-1.75) 1 or SB (0.1-1)	0.70	0.66	# 1	
Cadmium Calcium	SB (130-35,000)	0.79 20,400 J	0.66 61.400 J	4 J 17,700 J	0.82 26,700 J
Chromium	10 or SB (1.5-40)	9.6 J	5.3 J	35.8 J	9,4 J
Cobalt		3.4			9.4 J 4.7
	30 or SB (2.5-60) 25 or SB (1-50)	13.8 J	3.1 14.5 J	5.6 J 108 J	16.7 J
Copper Iron	2,000 or SB (2,000-550,000)	9.920	9,980	16,500 J	13,000
Lead	SB (200-500)	22.8 J	6.5 J	322 J	16.1 J
Magnesium	SB (100-5,000)	9.580	11,400	10.900 J	8,300
Manganese	SB (50-5,000)	278	560	10,900 J 145 J	303
Mercury	0.1	270		0.55 J	303
Nickel	13 or SB (0.5-25)	9.3 J	8.4 J	25 J	11.3 J
Potassium	SB (8,500-43,000)	917	581	1,300 J	983
Selenium	2 or SB(0.1-3.9)		301		
Silver	na	0.92	1.3	2.8 J	1.2
Sodium	SB (na)	361	444	5,020 J	701
Thallium	SB (na)			2.6 J	
Vanadium	150 or SB(1-300)	15	8.7	31.6 J	15.2
Zinc	20 or SB (9·50)	59.1 J	65.1 J	1,370 J	114 J
Cyanide	SB (na)			5.3 J	0.14
Semivolatiles (ug/kg)					
2,4-Dimethylphenol	}	300			
2-Methylnaphthalene	36400	14,000 D		100 J	
2-Methylphenol	100or md	140	**************************************	4 1 1 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	M H444 H44444
4-Methylphenol	900	520			
Acenaphthene	50000	53,000 D		120 J	76
Acenaphthylene	41000	260 J			
Anthracene	50000	76,000 D			190
Benzo(a)anthracene	224 or md	150,000 JD	110	180 J	1,200
Benzo(a)pyrene	61 or md	110,000 JD	120 J	180 J	990
Benzo(b)fluoranthene	1100	150,000 JD	190 J	320 J	1,700
Benzo(g,h,i)perylene	50000	61,000 JD		180 J	1,100
Benzo(k)fluoranthene	1100	62,000 JD	74 J	120 J	590 J
bis(2-Ethylhexyl)phthalate	50000	330 J	120 J	170 J	150
Butylbenzylphthalate	50000		····		
Carbazole	na	44000			180
Chrysene	400	140,000 JD	130	240 J	1,200
Dibenzo(a,h)anthracene	14 or md	20,000 JD			200
Dibenzofuran	6200	20,000 D			

Table 3-3
Detected Compounds (SVOCs, Metals) in Surface Soil Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC Objective	DD-13	DD-14	DD-15	
Lab ID	(TAGM 4046) ¹	71970013	71970014	71970015	
Sample Date	(1112 1515)	11/30/2000	11/30/2000	11/30/2000	
Analyte					
<u>Metals (mg/Kg)</u>	05 (22 000)	11 500 1	7.470	0.000	
Aluminum	SB (33,000)	11,500 J	7,470	8,200	
Antimony	SB (n/a)	3.7 J			
Arsenic	7.5 or SB(3-12)		5	4.5	
Barium	300 or SB (15-600)	108 J	39.8	59.1	
Beryllium	0.16 or SB (0-1.75)	<u></u>		0.066	
Cadmium	1 or SB (0.1·1)	7.5 J	0.91	1	
Calcium	SB (130-35,000)	11,900 J	11,700 J	34,900 J	
Chromium	10 or SB (1.5-40)	46.6 J	9.8 J	12.7 J	
Cobalt	30 or SB (2.5-60)	4.8 J	4.4	6.6	
Copper	25 or SB (1-50)	178 J	12.7 J	16.8 J	
iron	2,000 or SB (2,000-550,000)	19,700 J	13,400	16,400	
Lead	SB (200·500)	629 J	13.1 J	13.7 J	
Magnesium	SB (100-5,000)	5,580 J	4,670	11,800	
Manganese	SB (50-5,000)	171 J	304	416	
Mercury	0.1	0.38 J			
Nickel	13 or SB (0.5-25)	25 J	11 J	17.2 J	
Potassium	SB (8,500.43,000)	2,050 J	1,050	1,470	
Selenium	2 or SB(0.1-3.9)				
Silver	na	2.8 J	1.2	1.6	
Sodium	SB (na)	4,810 J	208	416	
Thallium	SB (na)				
Vanadium	150 or SB(1-300)	37.6 J	15.4	18	
Zinc	20 or SB (9-50)	2,150 J	51.9 J	55.3 J	
Cyanide	SB (na)	0.7 J		0.14	
Semivolatiles (ug/kg)		 			
2,4-Dimethylphenol		1			
2-Methylnaphthalene	36400		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
2-Methylphenol	100or md	······			
4-Methylphenol	900			.,,,,,	
	50000				
Acenaphthene	41000				
Acenaphthylene	50000	4,400 JD			
Anthracene		37.000 JD	110	72	
Benzo(a)anthracene	224 or md	48,000 JD 48,000 JD	110 120		
Benzo(a)pyrene	61 or md			84	
Benzo(b)fluoranthene	1100	77,000 JD	240	160	
Benzo(g,h,i)perylene	50000	53,000 JD	89	97	
Benzo(k)fluoranthene	1100	28,000 JD	56 J	64 J	
bis(2-Ethylhexyl)phthalate	50000	6,500 JD	70	75	
Butylbenzylphthalate	50000 -				
Carbazole	na	5,400 JD			
Chrysene	400	52,000 JD	150	120	
Dibenzo(a,h)anthracene	14 or md	8,000 JD			
Dibenzofuran	6200			<u> </u>	

Table 3-4
Detected Compounds (VOCs) in Sump/Catch Basin Sediment Samples
NYSDEC - SOH, Henrietta, NY

Sample ID Lab ID Sample Date	NYSDEC Objective (TAGM 4046) ¹	01 80332001 02/15/2001	02 80332002 02/15/2001	03 80332003 02/15/2001
Volatiles (ug/kg) 1,1,1-Trichloroethane	800	31,000	6,700,000	20,000
1,1-Dichloroethane	200	6,500	160,000	41,000
2-Butanone	300			890
Acetone	200	3,500		
Bromomethane	, na			330
Chloromethane	na	2,300		700
Tetrachloroethene	1400	3,800		
Vinyl Chloride	200	710		
Xylene (Total)	1200	1,600		

Notes: --- :Not Analyzed

J: Estimated Value

DNR: Do not report R: Rejected Data D: Result fron Dilution

Empty Cell: Result below detection limit

Table 3-5
Groundwater Elevation Measurements
(December 13, 2000)
NYSDEC - SOH, Henrietta, NY

Well	PVC	Depth to Water	Water	Well Depth	Headspace ⁽²⁾
ID	Elevation	/F4\	Elevation	/F4\	Reading
	(Feet)	(Feet)	(Feet)	(Feet)	(ppm)
IPZ-1	527.86	4.9	522.96	23.2	3056
IPZ-2	528.38	5.1	523.28	na	4.6
IPZ-3	527.87	4.85	523.02	na	4.6
TW-1	527.74	4.7	523.04	24.25	>9999
TW-2	527.55	4.6	522.95	24.15	7.6
TW-3	527.66	4.55	523.11	24.5	199
TW-4	527.58	4.45	523.13	20.55	68
IW-1	528.23	5.35	522.88	na	12
OW-1S	530.86	6.95	523.91	25.7	0
OW-1R	531.22	12.7	518.52	42.3	0
OW-2S	533.58	7.25	526.33	22.75	0
OW-2R	533.9	15.5	518.4	45.35	0
OW-3S	527.25	9.05	518.2	24.8	29.6
OW-3R	527.1	9.6	517.5	45.8	0
OW-4S	531.81	9.25	522.56	26.8	0.1
OW-4R	531.26	12.9	518.36	50.8	0
OW-5R	Well not gau	ged			
OW-5S	528.79	12.3	516.49	23.75	0
OW-6S	531	8.1	522.9	15.75	60.3
OW-6R	Well not gau	ged			
OW-7S	527.51	4.9	522.61	28.3	1539
OW-7R	527.9	9.5	518.4	45.95	7580
OW-8S	528.02	7.05	520.97	34	2.4
OW-LS	533.12	5.6	527.52	11.4	na
PZ-1	530.75	9.5	521.25	23	29.7
PZ-2	532.74	11.05	521.69	30.2	0
PZ-3	527.97	10	517.97	22.2	2.7
OW-9S	524.95	. 1.7	523.25	24.25	na
OW-11S	531.31	6.55	524.76	14.15	0
OW-10S	531.73	7.75	523.98	16.3	0

Table 3-6A

Detected Compounds (VOCs, Metals) in Overburden Groundwater Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	IPZ-1	IP2-1	IPZ-1	IPZ-1	IPZ-2
Lab ID	Standards ¹	71101004	71459002	71707001	72073007	71101002
Sample Date	(ug/L)	07/17/2000	09/11/2000	10/20/2000	12/14/2000	07/17/2000
						
Metals (ug/L)						
Aluminum	na				25.3 J	••-
Antimony	3	•				**-
Arsenic	25					
Barium	1,000			*-*	137	
Beryllium	3(guid)		***	***		
Cadmium	5				0.6	
Calcium	па		4		183000	***
Chromium	50		***	•••		
Cobalt	na	***			3.9	
Copper	200		***	***	2.3	***
Iron	300	88400 J	6340	5570	4050	187000 J
Lead	25	***	***	***		***
Magnesium	35,000 (guid)				109000	
Manganese	300	2880 J	137	106	1680 J	7530 J
Mercury	0.7		44-			
Nickel	100				48.9	
Potassium	na	***	.,,,,		6430	
Selenium	10					
Silver	50			*	0.5	
Sodium	20,000				92800 J	
Thallium	0.5(guid)	·				
Vanadium	na		4 4 4			
Zinc	2,000(guid)				R	
Cyanide	200		·			
Volatiles (ug/L)						
1,1,1-Trichloroethane	5	11000	ì	9100	5900	İ
1,1,2-Trichloroethane	1		***************************************			
1,1-Dichloroethane	5	35000	13000	34000	14000	
1,1-Dichloroethene	. 5				41 555655111111114 5614 56117 56117 1111111	
1,2-Dichloroethane	0.6		***************************************			
1,2-Dichloroethene (Total)	5		***		13000	***
2-Butanone	50					
2-Chlorotoluene	5		4		***	
2-Hexanone	50				······	
4-Chlorotoluene	5	1				
4-Methyl-2-Pentanone	na	1				
Acetone	50 (guid)	1	12000	8600	······································	
Benzene	ĭ	1	·			
Bromobenzene	5				***	
Bromochloromethane	5					
Bromoform	50	· · · · · · · · · · · · · · · · · · ·			l'	
Bromomethane	5			······································		·····
Carbon Disulfide	60 (guid)					
Carbon Tetrachloride	5		<u> </u>		[
Chlorobenzene	5	1	t		<u> </u>	
Chloroethane	5					

Table 3-6A
Detected Compounds (VOCs, Metals) in Overburden Groundwater Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	IPZ-2	IPZ-2	IPZ-3	IPZ-3	IPZ-3
Lab ID	Standards ¹	71707010	72073005	71101003	71707008	72073008
Sample Date	(ug/L)	10/20/2000	12/14/2000	07/17/2000	10/20/2000	12/14/2000
				1		
Metals (ua/L)						i
Aluminum	na		581 J	4	***	672 J
Antimony	3 25				***	
Arsenic		<u></u>				
Barium	1,000	***	6.9			
Beryllium	3(guid)					
Cadmium	5		0.34			,
Calcium	na		215000			17400
Chromium	50		345		*-*	1010
Cobalt	na	•••	21.8			23.9
Copper	200				***	
Iron	300	247	72.3	41900 J	177	100
Lead	25	**-	48.8	***	• • •	73.4
Magnesium	35,000 (guid)	***	123000			35300
Manganese	300	497000	730000 J	1210 J	399000	664000 J
Mercury	0.7		1.1			6.4
Nickel	100		16.4			7
Potassium	na	***	54900	***		77700
Selenium	10	***************************************	306		***	499
Silver	50					
Sodium	20,000	***	1310000 J			3170000 J
Thallium	0.5(guid)		1310000 3			31/00003
Vanadium	na 0.5(guiu)	······································	***************************************			
Zinc				*	***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	2,000(guid) 200		R_			
Cyanide						
Volatiles (ug/L)		1				
1,1,1-Trichloroethane	5	100000	120000	100000	280000	290000
1,1,2-Trichloroethane	1	1				
1,1.Dichloroethane	1 5 5	19000	12000	110000	46000	40000
1,1.Dichloroethene	5		1100		9500	3500
1,2-Dichloroethane	0.6					,
1,2-Dichloroethene (Total)	5	•••				
2-Butanone	50					-, -, -, -, -, -, -, -, -, -, -, -, -, -
2-Chlorotoluene	5				H-1111711111111111111111111111111111111	***
2-Hexanone	50					
4-Chlorotoluene	5		***		~,	
4-Methyl-2-Pentanone	na					·
Acetone	50 (guid)	I	ļ			
Benzene	1 1					
Bromobenzene	5					
Bromochloromethane	5		·			
Bromoform	50					
Bromomethane	5		<u></u>			·
Carbon Disulfide	60 (guid)					
Carbon Tetrachloride	5		ļ			
Chlorobenzene	5					
	5	······			············	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Chloroethane						

Table 3-6A

Detected Compounds (VOCs, Metals) in Overburden Groundwater Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	IW-1	IW-1 IW-1		MW-2	MW-3
Lab ID	Standards ¹	1	71707009			
d=== -=		71101001		72073006	72109001	72109006
Sample Date	(ug/L)	07/17/2000	10/20/2000	12/14/2000	12/18/2000	12/18/2000
Metals (ug/L)						
Aluminum	22			3040 J	Ь Б	R
Antimony	na 3			3040 J	R 3	
Arsenic	25					
	1,000		****	1.3	89	105
Barium	1,000		 	1.3		105
Beryllium	3(g <u>u</u> id)				0.47	0.18
Cadmium	5			107000		119000
Calcium	na	*		107000	122000	119000
Chromium	50			1450		
Cobalt	na na			32.5	0.43	1.6
Copper	200				1.9	2.9
Iron	300	20100 J	65.5	463	2000	1390
Lead	25			307		
Magnesium	35,000 (guid)			73100	68700	64200
Manganese	300	704 J	319000	4090000 J	71.4 J	210 J
Mercury	0.7	*	*	3.2		-4-444 (1
Nickel	100				2.3	24.2
Potassium	па	***		54200	7690	4370
Selenium	10	***	***************************************	1950		
Silver	50				2,9 J	2.1
Sodium	20,000			3080000 J	48600	97100
Thallium	0.5(guid)					
Vanadium	na	•••	•••			
Zinc	2,000(guid)	•••	•••	R		
Cyanide	200		***************************************	3.9		*****
		1.			<u> </u>	
Volatiles (ug/L)	i	H				
1,1,1-Trichloroethane	5	***************************************	82000	100000	450	22
1,1,2-Trichloroethane	1				.,	··
1,1-Dichloroethane	1 5 5		18000	15000	2300	160
1,1-Dichloroethene			2600		100	41
1,2 Dichloroethane	0.6					
1,2-Dichloroethene (Total)	5				150	43
2-Butanone	50					
2-Chlorotoluene	5		***************************************		**************************************	
2-Hexanone	50					
4-Chlorotoluene	5					
4-Methyl-2-Pentanone	па					
Acetone	50 (guid)		3700			
Benzene	1			<u></u>		
Bromobenzene	5					•••
Bromochloromethane	5			***		**-
Bromoform	50					
Bromomethane	5	1				
Carbon Disulfide	60 (guid)		·····	 	(
Carbon Tetrachloride	5	**************************************	***************************************		[
Chlorobenzene	5		-4; +444-;4 144 4 14-4	· , h- g		***************************************
Chloroethane	5					
Chloroform	·	1				

Table 3-6A

Detected Compounds (VOCs, Metals) in Overburden Groundwater Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	MW-5	OW-1\$	OW-2S	OW-3S	OW-4S
Lab ID	Standards ¹	72109002	72131004	72109015	72109009	72109012
Sample Date	(ug/L)	12/18/2000	12/19/2000	12/19/2000	12/19/2000	12/19/2000
Metals (ug/L)						
Aluminum	l na	R				R
Antimony	3			3.4 J]
Arsenic	na 3 25		-11 - 11			
Barium	1,000	179	88.8	66.1	23.7	54.4
Beryllium	3/auid)	0.2	,	0.21		0.25
Cadmium	3(guid) 5	0.4	0.89	0.57	0.53	1.2
Calcium	na	110000	123000	71500	41700	60900
Chromium	50	110000	123000			00300
Cobalt	na	1.6	0.9 J	0.49	0.5	0.99
Copper	200	1	6.6			
Iron	300	1060	12100	10700	10700	22000
Lead	25	1.6	12100	10/00,	10/00	2.6
Magnesium	35,000 (guid)	34700	36100	76300	65400	54900
Manganese	300 (8010)	931 J	70.8	96.6 J	114 J	155 J
Mercury	0.7			30.03	<u></u>	100.5
Nickel	100	6.2	7.6	Ω /	19.3	9.4
Potassium	na	1560	2970	9.4 4760	2580	3150
Selenium	10	1500	2970	4700	2500	3130
Silver	50	2.5 J	3.8	3.3	2.6	4
Sodium	20,000	36300	127000	204000	54100	53500
Thallium	0.5(guid)	36300	12/000	204000	34100	33300
Vanadium		2.5	0.59			1.4
Zinc	na 2,000(guid)	3.5	13.1	3.3	5.3	4.6
Cyanide	2,000(80/0)		8.6		J.J	
<u></u>		1	6.0		, 	
Volatiles (ug/L)						200
1,1,1-Trichloroethane	5		22			200
1,1,2-Trichloroethane		} -				
1,1-Dichloroethane	5			60	25	810
1,1-Dichloroethene	5	ļ				76
1,2-Dichloroethane	0.6	 		11		
1,2-Dichloroethene (Total)	5 50	ļ		<u></u>	2500	
2-Butanone		 	·····			
2-Chlorotoluene	5 50		***			
2-Hexanone 4-Chlorotoluene		 				
	5					
4-Methyl-2-Pentanone Acetone	na 50 (mid)					
	50 (guid)					
Benzene	1	 				
Bromobenzene	5 5		***	***		
Bromochloromethane	50 50		***	***		
Bromoform						
Bromomethane	5				, ,	ļ
Carbon Disulfide	60 (guid)					
Carbon Tetrachloride	<u> </u>					
Chlorobenzene	5				ļ,,	
Chloroethane	5 7			·····		

Table 3-6A
Detected Compounds (VOCs, Metals) in Overburden Groundwater Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	OW-5S	OW-6S	OW-7S	OW-7S	OW-7S
Lab ID	Standards ¹	72109008	72131001	71101006	71459003	71707003
Sample Date	(ug/L)	12/19/2000	12/18/2000	07/17/2000	09/11/2000	10/20/2000
		Į.				
Metals (ug/L)						
Aluminum	<u>na</u>	R	158			
Antimony	3	3.3			***	
Arsenic	25				*-*	***
Barium	1,000	231 J	166	****		*
Beryllium	3(guid)	0.23	**************************************		***	
Cadmium	5	2.5	3.5	***		
Calcium	na	79800	169000		***	
Chromium	50	14	13.6			•••
Cobalt	na	3.3	17.2 J	•••		***
Copper	200	10.8	9.6		•••	
Iron	300	47500	42300	70800 J	1070	8140
Lead	25	21.3	11.1 J	**-	***	
Magnesium	35,000 (guid)	49800	59500			
Manganese	300	495 J	475	1380 J	50.6	194
Mercury	0.7	- M - H H H H H H H H H H H H H H H H H			***	
Nickel	100	59	141			
Potassium	na	6860	2270			
Selenium	10					
Silver	50	7.9	8.1	·		
Sodium	20,000	51700	37700	••••		***
Thallium	0.5(guid)			·····		
Vanadium	na	5.8	2.6	****		
Zinc	2,000(guid)	25.2	18.1			
Cyanide	200		5.7			
<u>Oyumac</u>		·	J./		····	
Volaliles (ug/L)	-	 				
1,1,1-Trichloroethane	5	4	11000 J			
1,1,2-Trichloroethane			11000 J	پست اپست است. است. است. است. است. است. است. اس	···	
1,1-Dichloroethane	<u>1</u> 5	FC	CCO 1	-1		
1,1-Dichloroethene		56	660 J			450
PROPERTY HER HELDER STEEL STEE	5	12	690 J	·····	/h	***************************************
1,2-Dichloroethane	0.6			F171 H771PH F8748 H18844 H484 H18444	·	
1,2-Dichloroethene (Total)	5	24			***	
2-Butanone	50	···=··,,	······································		····	··
2-Chlorotoluene	5				H 7	····
2-Hexanone	50	ļ				
4-Chlorotoluene	5				***************************************	
4-Methyl-2-Pentanone	<u>na</u>					
Acetone	50 (guid)		·			
Benzene	1		- LLJ L			
Bromobenzene	5					
Bromochloromethane	5		***			
Bromoform	50					
Bromomethane	5					
Carbon Disulfide	60 (guid)					
Carbon Tetrachloride	5					
Chlorobenzene	5	T-77-71-71-11-11-11-11-11-11-11-11-11-11-		***********	1d Indultin	
Chloroethane	5				**************************************	-44 4-4644 6
Chloroform	7	1				

Table 3-6A
Detected Compounds (VOCs, Metals) in Overburden Groundwater Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	OW-7S	OW-85	PZ-1	PZ-2	PZ-3
Lab ID	Standards ¹	72109007	72109017	72073009	72073010	72073014
Sample Date	(ug/L)	12/18/2000	12/19/2000	12/15/2000	12/15/2000	12/15/2000
Metals (ug/L)		1 _				
Aluminum	na	R		2450 J	107 J	1490 J
Antimony	3		3.2 J		3.3 J	H M MIN
Arsenic	25		***************************************		8.9	
Barium	1,000	34.3	50.3	237 J	527 J	155
Beryllium	3(guid)			0.28 1.2		
Cadmium	5	2.1	0.41		0.82	0.51
Calcium	na	17100	86100	389000	135000	189000
Chromium	50	1.4			/ 	19.3
Cobalt	na	0.99	2.3	18	2.1	9.7
Copper	200	2.3		19	2.8	16.1
Iron	300	11600	6850	6270	9170	3220
Lead	25	1.5		7.6		1.9
Magnesium	35,000 (guid)	6770	82000	140000	127000	85000
Manganese	300	207 J	62.6 J	3260 J	254 J	407 J
Mercury	0.7	1				
Nickel	100	6.8	26.2	15.6	7.2	18.9
Potassium	na	2240	2950	3200	9510	6440
Selenium	10					
Silver	50	2.9	1.6	2.5	1.4	
Sodium	20,000	9120	50600	24500 J	33200 J	93300 J
Thallium	0.5(guid)				414-44144411	11/641
Vanadium	na	2.1		3.5		2.7
Zinc	2,000(guid)	9.3	(,=1,=1	R	R	R
Cyanide	200			·	4.7	5.6
Volatiles (ug/L)	·					
1,1,1-Trichloroethane	5			60000	330 D	360
1,1,2-Trichloroethane	1					
1,1-Dichloroethane	5	1	5000		8200 D	310
1,1-Dichloroethene	5		130	5200	730 D	99
1,2-Dichloroethane	0.6				39	
1,2-Dichloroethene (Total)	5	610	120	1900		120
2-Butanone	50		,		160	
2-Chlorotoluene	5		***************************************			
2-Hexanone	50				14,-2	
4-Chlorotoluene	5		*			**-
4-Methyl-2-Pentanone	na				110 JD	
Acetone	50 (guid)			1	140 J	
Benzene	1				13	
Bromobenzene	5				*-*	***
Bromochloromethane	5	•••	***	***		
Bromoform	50	#				
Bromomethane	5	1			······································	
Carbon Disulfide	60 (guid)	1			2	
Carbon Tetrachloride	5	†····				
Chlorobenzene	5	1			-,,,,	,,
Chloroethane	5	#			1900 D	
Chloroform	7					

Table 3-6A

Detected Compounds (VOCs, Metals) in Overburden Groundwater Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	TW-1	TW-1	TW-1	TW-2	TW-2
Lab ID	Standards ¹	71539001	71707002	72073001	71539002	71707005
Sample Date	(ug/L)	09/22/2000	10/20/2000	12/14/2000	09/22/2000	10/20/2000
A						•
<u>Metals (ug/L)</u>		1	İ	07.0.1	,	
Aluminum	<u>na</u>			27.9 J		
Antimony	3 25		***	,		······
Arsenic	25		***			
Barium	1,000		***	65		
Beryllium	3(guid)				,	
Cadmium	5	***		0.3		
Calcium	<u>na</u>		***	168000		***
Chromium	50	***				
Cobalt	na		***	1.2	***	
Copper	200			2.5		***
Iron	300	525	561	362	***	
Lead	25		***			
Magnesium	35,000 (guid)			96500		
Manganese	300	4870	2050	848 J	2660	5140
Mercury	0.7			,,		
Nickel	100			14.9		
Potassium	<u>na</u>			5320		
Selenium	10				***	
Silver	50	***		0.9		
Sodium	20,000			41700 J	***	*
Thallium	0.5(guid)		***			
Vanadium	na	•			·	
Zinc	2,000(guid)		<u> </u>	Ŕ	***	
Cyanide	200	ļ			***	
Volatiles (vg/l)						
1,1,1-Trichloroethane	5				68000D	160000
1,1,2-Trichloroethane	1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		49	
1,1-Dichloroethane	5	8100	6000		77000D	100000
1,1-Dichloroethene	5 5				65	6500
1,2-Dichloroethane	0.6				170	
1,2-Dichloroethene (Total)	5 50			9300		
2-Butanone						
2-Chlorotoluene	5		<u> </u>		3	
2-Hexanone	50				17	
4-Chlorotoluene	5	j			2	
4-Methyl-2-Pentanone	na				180	
Acetone	50 (guid)	23000			4300D	
Benzene	1				5	
Bromobenzene	5				3	
Bromochloromethane	5				9	
Bromoform	50]		T	2	
Bromomethane	5	6100	T			
Carbon Disulfide	60 (guid)				3	
Carbon Tetrachloride	5					
Chlorobenzene	5		·		1	
Chloroethane	5			,	16	
Chloroform	7	1	·		11	***************************************

Table 3-6A

Detected Compounds (VOCs, Metals) in Overburden Groundwater Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	TW-2	TW-3	TW-3	TW-3	TW-4
Lab ID	Standards ¹	72073002	71539003	71707006	72073004	71539004
Sample Date	(ug/L)	12/14/2000	09/22/2000	10/20/2000	12/14/2000	09/22/2000
44-1-1-642			•			
Metals (ug/L)		FF 0.				
Aluminum	<u>na</u>	55.2 J		((u)-1 0,100		***************************************
Antimony	3		***	***	3.5 J	
Arsenic	25		 15151			***
Barium	1,000	333 J	***	***	646 J	
Beryllium	3(guid)					
Cadmium	5	0.27	***		0.5	
Calcium	<u>na</u>	209000			217000	
Chromium	50	5	***	***		
Cobalt	na	6.6	***************************************		1.4	
Copper	200	13.3		*	2	
Iron	300	741 J	1380	4500	5620	4540
Lead	25					
Magnesium	35,000 (guid)	128000			141000	
Manganese	300	6680 J	381	382	145 J	277
Mercury	0.7		***	***		
Nickel	100	108			90.1	
Potassium	па	8600			9160	
Selenium	10		•••	***		•••
Silver	50	1.4			1.1	***
Sodium	20,000	387000 J			76900 J	
Thallium	0.5(guid)		*-*	•••		•
Vanadium	na		•••	4 * 4		
Zinc	2,000(guid)	R			R	
Cyanide	200				,	
Volatiles (vg/L)			· · · - · ·	·· · -		
1,1,1-Trichloroethane	5	160000 D	86000	120000	160000 D	26000
1.1.2-Trichloroethane	1	110			·,,,,	
1,1-Dichloroethane	5 5	61000 D	99000	120000	92000 D	56000
1,1-Dichloroethene	5	3000 D	1800	5600	4200 J	1000
1.2.Dichloroethane	0.6					
1,2-Dichloroethene (Total)		3500 D	***	****	6500 J	
2-Butanone	5 50	420 J	***************************************			
2-Chlorotoluene	5		***************************************			
2-Hexanone	50					
4-Chlorotoluene	5	***				
4-Methyl-2-Pentanone	na	340 J	A. TALLIS I LINE			
Acetone	50 (guid)	1000 J	1600			
Benzene	1	6				
Bromobenzene	5					
Bromochloromethane	5		·····			
Bromoform	50					
Bromomethane					··-···-·	······
Carbon Disulfide	60 (guid)	16				
Carbon Tetrachloride	5	5100 J				***************************************
Chlorobenzene	5	 				
OTHER ODER IZELIE			·	-,,		[
Chloroethane	5	54		ſ		

Table 3-6A

Detected Compounds (VOCs, Metals) in Overburden Groundwater Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	TW-4	TW-4
Lab ID	Standards ¹	71707007	72073012
Sample Date	(ug/L)	10/20/2000	12/14/2000
Metals (ug/L)			•
Aluminum	na		114 J
Antimony	3	***	
Arsenic	25		41 1.11.11 77111777117717171717171717
Barium	1,000		501 J
Beryllium	3(guid)		
Cadmium	5		0.51
Calcium	na		164000
Chromium	50		10-1000
Cobalt	na		1.4
	200		3.1
Copper Iron	300	5660	2140
Lead	25		Z140
			117000
Magnesium	35,000 (guid)	F02	117000 124 J
Manganese	300	583	124 J
Mercury	0.7		
Nickel	100	_	55
Potassium	na		8790
Selenium	10		
Silver	50		0.42
Sodium	20,000		40700 J
Thallium	0.5(guid)		······································
Vanadium	na na		
Zinc	2,000(guid)	***	R
Cyanide	200		
Volatiles (ug/L)			
1,1,1.Trichloroethane	5	30000	60000
1,1,2-Trichloroethane	5 1		
1,1.Dichloroethane	5	56000	74000
1,1-Dichloroethene	5	1500	1900
1,2-Dichloroethane	0.6		
1,2-Dichloroethene (Total)	5	***	2700
2-Butanone	50		
2-Chlorotoluene	5	1	
2-Hexanone	50		
4-Chlorotoluene	5	1	
4-Methyl-2-Pentanone	na	1	
Acetone	50 (guid)		
Benzene	1	***************************************	
Bromobenzene	5	' \	
Bromochloromethane	5		
Bromoform	50	1	
Bromomethane		 	
Carbon Disulfide	60 (guid)	1	
Carbon Tetrachloride	5	·	······
Chlorobenzene	5		
Chloroethane		· ····	
Chloroform	5 7	·	

Tables 3-6A and 3-7A Detected compound in Groundwater Samples Samples NYSDEC - SOH, Henrietta, NY

Table Notes:

¹New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance series 1.1.1 Ambient Water Quality Standards and Guidance Values.

na: Not applicable (indicates that a class GA groundwater quality standards is not published for the respective compound)

(guid) - Indicates a standard was not listed, therefore the Guidance value was used.

---: Not analyzed.

Empty cell indicates that the analyte was not detected above the method detection limit.

Unless otherwise specified by the validation, if a sample was analyzed once with acceptable results, the results from the first analysis was reported.

J-Estimated Value.

D- Result from a secondary dilution.

DNR - Do not report, duplicate result exist due to dilution or re-analysis, this result should not be reported.

U - Not detected above the reported sample quantitation limit.

R - Rejected data.

Sample ID	NYSDEC	IPZ-1	IP2-1	IPZ-1	IPZ-2	IPZ-2	IPZ-2
Lab ID	Standards ¹	71101004	71459002	72073007	71101002	71707010	72073005
Sample Date	(ug/L)	07/17/2000	09/11/2000	12/14/2000	07/17/2000	10/20/2000	12/14/2000
Wet Chemistry (ug/L)							
and Misc (various)							
***************************************			************	.,.,,		***************************************	
Specific Conductance (uMHOS)	na	***	***	2,430	***	***	8,680
Fluoride	1,500	•••	*				49.8
DOC	na	•••	•••	230			200
TOC	250,000	•-•		210	•••	•••	150
Chloride	10,000 (sum)	700	700	510	350		
Nitrate/Nitrite	na					•••	
Phosphate-total	250,000		•••			•••	
Sulfates	na	***		120			
Alkalinity (mgCa)	na	***		450			
Total Dissolved Solids	na			1,400			5,400
рН	na	**-	4-4	6.9 J		***	6.8 J
Chemical Oxygen Demand	2,000	300	240		2,900		
Bromide						•••	

1) New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series 1.1.1 Ambient Water Quality Standards and Guidance Values

···: not analyzed

J: Estimated Value

DNR: Do not report

R: Rejected Data

D: Result fron Dilution

Sample ID	NYSDEC	IPZ-3	!PZ-3	IPZ-3	IPZ-1	IW-1	IW-1	IW-1
Lab ID	Standards ¹	71101003	71707008	72073008	71707001	71101001	71707009	72073006
Sample Date	(ug/L)	07/17/2000	10/20/2000	12/14/2000	10/20/2000	07/17/2000	10/20/2000	12/14/2000
Wet Chemistry (ug/L)								
and Misc (various)								
) = 00 ; 00 E 00 E 00 E 00 E 00 E 00 E 00	15.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			10.000
Specific Conductance (uMHOS)	na		***	15,900	***	***	na	19,600
Fluoride	1,500	***				***	na	38.7
DOC	na		•••	460	•••	•••	na	340
TOC	250,000	***		350			na	340
Chloride	10,000 (sum)	900			780	300		
Nitrate/Nitrite	na	•••	***		•••			
Phosphate-total	250,000	•••			***	•••		
Sulfates	па	•••	**-		•••		***	
Alkalinity (mgCa)	na				***			
Total Dissolved Solids	na			9,900				18,000
Н	na		***	7.7 J	***	•••	•••	6.9 J
Chemical Oxygen Demand	2,000	440		4.4	240	350		
Bromide		***	***		- 0 -			

1) New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series 1.1.1 Ambient Water Quality Standards and Guidance Values

- ·--: not analyzed
- J: Estimated Value

DNR: Do not report

R: Rejected Data

D: Result fron Dilution

Sample ID	NYSDEC	MW-2	MW-3	MW-5	OW-1S	OW-2S	OW-3S	OW-4S
Lab ID	Standards ¹	72109001	72109006	72109002	72131004	72109015	72109009	72109012
Sample Date	(ug/L)	12/18/2000	12/18/2000	12/18/2000	12/19/2000	12/19/2000	12/19/2000	12/19/2000
Wet Chemistry (ug/L)								
and Misc (various)								ļ
	***************************************	***************************************				ананыныны дериникт		
Specific Conductance (uMHOS)	l na	1,290	1,500	835	1,840	1,930	915	1,060
Fluoride	1,500		0.10	0.08 J	0.11	0.10	0.16	0.07
DOC	na	17	21	21	17	18	14	21
TOC	250,000	15	17	21	20	11	10	5
Chloride	10,000 (sum)	210	250		200	350		210
Nitrate/Nitrite	na		0.09		5.8			
Phosphate-total	250,000	0.70	1.0	0.67	0.57 J			
Sulfates	na	140	150	26	<i>7</i> 5	150	`	120
Alkalinity (mgCa)	na	290	330	330	470	380	330	140
Total Dissolved Solids	na	710	820	470	900	910	460	520
рН	na	7.3 J	7.3 J	7.0 J	7.2 J	7.4 J	7.7 J	7.8 J
Chemical Oxygen Demand	2,000			***	***	***		
Bromide			2.01					

¹⁾ New York State Department of Environmental Conservation Division of Water Technical and Operational Guldance Series 1.1.1 Ambient Water Quality Standards and Guidance Values

·--: not analyzed

J: Estimated Value

DNR: Do not report

R: Rejected Data

D: Result fron Dilution

Table 3-6B
Detected Compounds (Wet Chem. and Other) in
Overburden Groundwater Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	OW-5S	OW-6S	OW-7S	OW-7S	OW-7S	OW-7S	OW-8S
Lab ID	Standards ¹	72109008	72131001	71101006	71459003	71707003	72109007	72109017
Sample Date	(ug/L)	12/19/2000	12/18/2000	07/17/2000	09/11/2000	10/20/2000	12/18/2000	12/19/2000
Wet Chemistry (ug/L)	!					:		
and Misc (various)	!							
Specific Conductance (uMHOS)	na	793	1,300	•••			169	1,310
Fluoride	1,500	0.29					0.09	0.33
DOC	na	10	24			•••		52
TOC	250,000	6	26	***	***		6	11
Chloride	10,000 (sum)		95	150	43	50		110
Nitrate/Nitrite	na				•••	•••		
Phosphate-total	250,000		0.80 J	***	***	•••	0.16	
Sulfates	na	72	140	***			11	130
Alkalinity (mgCa)	na	250	460	***	•••	•••	64	290
Total Dissolved Solids	na	410	800 J	**-	***	***	93	670
pH	na	7.9 J	6.8 J	***	***		8.7 J	7.7 J
Chemical Oxygen Demand	2,000		***	130	31	42		**-
Bromide				***	***	•••		

¹⁾ New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series 1.1.1 Ambient Water Quality Standards and Guidance Values

···: not analyzed

J: Estimated Value

DNR: Do not report R: Rejected Data

D: Result fron Dilution

Sample ID	NYSDEC	PZ-1	PZ-2	PZ-3	TW-1	TW-1	TW-1
Lab ID	Standards ¹	72073009	72073010	72073014	71539001	71707002	72073001
Sample Date	(ug/L)	12/15/2000	12/15/2000	12/15/2000	09/22/2000	10/20/2000	12/14/2000
Wet Chemistry (ug/L)		•					
and Misc (various)							
Specific Conductance (uMHOS)	na	1,760	1,690	1,550	***	***************************************	
Fluoride	1,500	0.16	0.24	0.18	***	***	
DOC	na	87	99	35	•••	***	220
TOC	250,000	94	85	36	*	***	190
Chloride	10,000 (sum)	180	280	140	560	570	490
Nitrate/Nitrite	na			0.61	•••	***	
Phosphate-total	250,000				***	***	
Sulfates	na	110		130		***	120
Alkalinity (mgCa)	na	720	660	570		***	430
Total Dissolved Solids	na	1,000	1,100	930	***	***	1,200
рН	na	6.9	6.8	7.1	***	***	6.9 J
Chemical Oxygen Demand	2,000				210	200	
Bromide						•••	

¹⁾ New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series 1.1.1 Ambient Water Quality Standards and Guidance Values

···: not analyzed

J: Estimated Value

DNR: Do not report

R: Rejected Data

D: Result fron Dilution

Sample ID	NYSDEC	TW-2	TW-2	TW-2	TW-3	TW-3	TW-3
Lab ID	Standards ¹	71539002	71707005	72073002	71539003	71707006	72073004
Sample Date	(ug/L)	09/22/2000	10/20/2000	12/14/2000	09/22/2000	10/20/2000	12/14/2000
Wet Chemistry (ug/L)							
and Misc (various)							
		• • • • • • • • • • • • • • • • • • • •	, , , , , , , , , , , , , , , , , , ,			~~~	
Specific Conductance (uMHOS)	na l			3,790			2,840
Fluoride	1,500				•••	•••	
DOC	па	•••	•••	180			140
TOC	250,000			140			140
Chloride	10,000 (sum)	900	900	790	700	840	650
Nitrate/Nitrite	na	***					
Phosphate-total	250,000				***************************************		11*4***********************************
Sulfates	па	***		320	***	***	110
Alkalinity (mgCa)	na i			700			590
Total Dissolved Solids	na			560		***	1,600
рН	па		***	6.8 J		***	6.9 J
Chemical Oxygen Demand	2,000	230	300		200	230	***
Bromide			***		***		***************************************

¹⁾ New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series 1.1.1 Ambient Water Quality Standards and Guidance Values

···: not analyzed

J: Estimated Value

DNR: Do not report

R: Rejected Data

D: Result fron Dilution

Sample ID	NYSDEC	TW-4	TW-4	TW-4
Lab ID	Standards ¹	71539004	71707007	72073012
Sample Date	(ug/L)	09/22/2000	10/20/2000	12/14/2000
Wet Chemistry (ug/L)				
and Misc (various)				
Specific Conductance (uMHOS)	па	•••	*-*	2,240
Fluoride	1,500	•••		
DOC	na	•••	•••	79
TOC	250,000			73
DOC TOC Chloride	10,000 (sum)	350	510	580
Nitrate/Nitrite	l na l			
Phosphate-total	250,000			
Suitates	na	•••	***	21
Alkalinity (mgCa)	na		***	470
Total Dissolved Solids	na na			1,300
рН	na		***	7.2 J
Chemical Oxygen Demand	2,000	84	72	
Bromide		***		***************************************

New York State Department of Environmental Conservation Division of Water Technical and Operational Guidance Series 1.1.1 Amblent Water Quality Standards and Guidance Values

···: not analyzed

J: Estimated Value

DNR: Do not report

R: Rejected Data

D; Result fron Dilution

Table 3-7A

Detected Compounds (VOCs, Metals) in Bedrock Groundwater Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	OW-1R	OW-2R	OW-3R	OW-4R	OW-7R
Lab ID	Standards	72131003	72109014	72109010	72109013	71101005
Sample Date	(ug/L)	12/19/2000	12/19/2000	12/19/2000	12/19/2000	07/17/2000
Metals (ug/L)						
Aluminum	<u> </u>	14.4		R 3		***
Antimony	3 25		3.6 J	3	3 J	•
Arsenic	25			ļ		
Barium	1,000	26.8	11.3	6.9	10.7	
Beryllium	3(guid)					
Cadmium	5	1.4	0.8	2.6	1.3	
Calcium	па	25000	33000	411000	182000	······································
Chromium	50	1		<u> </u>		
Cobalt	na	0.84 J	0.57	0.83	0.89	
Copper	200	1.4	11.9	5.6	9.8	
lron	300	19600	16000	52800	25100	1340 J
Lead	25	1.4 J	2.6	2.5	1.3	***
Magnesium	35,000 (guid)	24800	29800	35200	50500	•••
Manganese	300	278	327 J	2530 J	707 J	20.2 J
Mercury	0.7				(1711111111111111111111111111111111111	
Nickel	100	10.1	5.2	7.8	8.5	•••
Potassium	na	3150	3920	9840	9240	**************************************
Selenium	10					
Silver	50	3.3	2.9	13.2	6.4	
Sodium	20,000	18300	13500	15600	26300	
Thallium	0.5(guid)	12322				
Vanadium	na	0.67	0.8	2.9	1.4	
Zinc	2,000(guid)	5.7	4.5	10.3	5	
Cyanide	200	······		10.5	<u>-</u>	
Cyaniue	200					
Volatiles (ug/L)					-	
1,1,1.Trichloroethane	5				144 PM 144 PM PP M PM 1200	
1,1,2-Trichloroethane	1 5					
1,1-Dichloroethane	5					2900
1,1-Dichloroethene	5	L		<u> </u>		
1,2-Dichloroethane	0.6					
1,2-Dichloroethene (Total)	5		6			
2-Butanone	50			<u> </u>		
2-Chiorotoluene	5					
2-Hexanone	50	· · · · · · · · · · · · · · · · · · ·]		
4-Chlorotoluene	5					
4-Methyl-2-Pentanone	na	I	(<u> </u>		
Acetone	50 (guid)			†		
Benzene	1			†		
Bromobenzene	<u>-</u> <u>-</u>					
Bromochloromethane	5	 			***	
Bromoform	50	·		†		
Bromomethane	5					
Carbon Disulfide	60 (guid)	·		 		
Carbon Tetrachloride	5 (guid)	- (pr. , e/-				
Carbon Tetrachioride Chlorobenzene			ымыншимынынынын			
Chloropenzene Chloroethane	<u>5</u> 5			ļ		

ì

Table 3-7A

Detected Compounds (VOCs, Metals) in Bedrock Groundwater Samples
NYSDEC-SOH, Henrietta, NY

Sample ID Lab ID	NYSDEC Standards	OW-7R 71459004	OW-7R 71459004RE	OW-7R 71707004	OW-7R 72131002
Sample Date	(ug/L)	09/11/2000	09/11/2000	10/20/2000	12/18/2000
Metals (va/L)					
Aluminum	na		***		54.1
Antimony	3				
Arsenic	25		***		
Barium	1,000	***************************************			8.2
Beryllium	3(guid)				
Cadmium	5				0.71
Calcium	na	***			45700
Chromium	50				1.8
Cobalt	na na			A = -	0.49 J
Copper	200				4.5
Iron	300	4710	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7360	3790
Lead	25	4/10	·····	· [1.3 J
			*		1.27
Magnesium	35,000 (guid)	_	• • • • · · · · · · · · · · · · · · · ·	290	804 55.6 J
Manganese	300 0.7	66.6			25.6 7
Mercury			·		ļ
Nickel	100				4.4
Potassium	<u>na</u>		***		9760 J
Selenium	10				
Silver	50		***	***	1.8
Sodium	20,000	***	•••		14300
Thallium	0.5(guid)		***	***	
Vanadium	na	***	***	***	
Zinc	2,000(guid)				5.8
Cyanide	200		**************************************		2.1
Volatiles (ug/L)					
1,1,1-Trichloroethane	5	590	320	200	18 J
1,1,2-Trichloroethane	1				
1,1-Dichloroethane	5	3800	2600	2000	200 J
1,1-Dichloroethene	5	290	130	110	
1,2-Dichloroethane	0.6				
1,2-Dichloroethene (Total)	5 50				610 J
2-Butanone		<u>. </u>			
2-Chlorotoluene	5				
2-Hexanone	50		·····		
4-Chlorotoluene	5				
4-Methyl-2-Pentanone	na		,	ļ	
Acetone	50 (guid)				
Benzene	1				
Bromobenzene	5				
Bromochloromethane	5				
Bromoform	50				<u> </u>
Bromomethane	5				
Carbon Disulfide	60 (guid)				
Carbon Tetrachloride					
Chlorobenzene	5 5				l
Chloroethane	5				

Table 3-7B

Detected Compounds (Wet Chem. and Other)
in Bedrock Groundwater Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	OW-1R	OW-2R	OW-3R	OW-4R	OW-7R
Lab ID	Standards ¹	72131003	72109014	72109010	72109013	71101005
Sample Date	(ug/L)	12/19/2000	12/19/2000	12/19/2000	12/19/2000	07/17/2000
Wet Chemistry (ug/L)						
and Misc (various)						
						·· - ··
Specific Conductance (uMHOS)	na	572	605	1,920	1,210	
Fluoride	1,500		0.14	_	0.46	
DOC	na		5			
TOC	na	6				•••
Chloride	250,000	46	150			140
Nitrate/Nitrite	10,000 (sum)					
Phosphate-total	na	0.22 J				•••
Sulfates	250,000	100	28	1,400	830	***
Alkalinity (mgCa)	na	85	29			
Total Dissolved Solids	na	290	250	1,800	960	•••
pH	па	9.8 J	8.0 Ĵ	5.9 J	6.8 J	
Chemical Oxygen Demand	na	na		•		86
Bromide	2,000					•••

1) New York State Department of Environmental Conservation and Operational Guldance Series 1.1.1 Ambient Water Quality

Division of Water Technical Standards and Guidance Values

···: not analyzed

J: Estimated Value
DNR: Do not report
R: Rejected Data
D: Result fron Dilution

Table 3-7B

Detected Compounds (Wet Chem. and Other)
in Bedrock Groundwater Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	OW-7R	OW-7R	OW-7R	OW-7R
Lab ID	Standards ¹	71459004	71459004RE	71707004	72131002
Sample Date	(ug/L)	09/11/2000	09/11/2000	10/20/2000	12/18/2000
Wet Chemistry (ug/L)					
and Misc (various)	ļ				
Specific Conductance (uMHOS)	na		•••		572
Fluoride	1,500	•••	•••		
DOC	na				
TOC	na		•••	•••	
Chloride	250,000	120	•••	110	15
Nitrate/Nitrite	10,000 (sum)	•••	•••		0.34
Phosphate-total	na			•••	0.12 J
Sulfates	250,000	•••			53
Alkalinity (mgCa)	na	•		•••	72
Total Dissolved Solids	na		•••		210 J
pH	na	•••		•••	11.2 J
Chemical Oxygen Demand	na	33		38	
Bromide	2,000				

¹⁾ New York State Department of Environmental Conservation and Operational Guidance Series 1.1.1 Ambient Water Quality

Division of Water Technical Standards and Guidance Values

···: not analyzed

J: Estimated Value

DNR: Do not report R: Rejected Data

N: Nojected Bata D: Docult from Dilutio

D: Result fron Dilution

Table 3-8A

Detected Compounds (VOCs, Metals) in Water Sample Collected in Vault
NYSDEC-SOH, Henrietta, NY

Sample ID	NYSDEC	Vault
Lab ID	Standards ¹	8033001
Sample Date	(ug/L)	2/15/01
Metals (vg/L)	1 1	1
Aluminum	na	267
Antimony	3	132
Arsenic	25	8.7
Barium	1,000	406
Beryllium	3(guid)	
Cadmium	5	31.7
Calcium	na	90,600
Chromium	50	188
Cobalt	na	115
Copper	200	434
Iron	300	2,130
Lead	25	51
Magnesium	35,000 (guid)	20,600
Manganese	300	198
Mercury	0.7	
Nickel	100	224,000
Potassium	па	145,000
Selenium	10	86.8
Silver	50	4
Sodium .	20,000	2,520,000
Thallium	0.5(guid)	
Vanadium	na	23.4
Zinc	2,000(guid)	4,670
Cyanide	200	75.5
Volatiles (ug/L)		
1,1,1-Trichloroethane	5	9,400
1,1,2-Trichloroethane	1	
1,1-Dichloroethane	5	92
1,1-Dichloroethene	5	1,800
1,2.Dichloroethane	0.6	160
1,2·Dichloroethene (Total)	5	
2-Butanone	50	
2-Chlorotoluene	5	
2-Hexanone	50	
4-Chlorotoluene	5	
4-Methyl-2-Pentanone	na	
Acetone	50 (guid)	
Benzene	1	
Bromobenzene	5	
Bromochloromethane	5	
DIGITIOCINOIOTICCHIAIC	50	
Bromoform		4
Bromoform Bromomethane	5	1
Bromoform Bromomethane Carbon Disulfide	5 60 (guid)	
Bromoform Bromomethane	1	
Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride Chlorobenzene	1	
Bromoform Bromomethane Carbon Disulfide Carbon Tetrachloride	60 (guid) 5	

ï

Table 3-8B
Detected Compounds (SVOCs) in Water Sample Collected in Vault
NYSDEC-SOH, Henrietta, NY

Sample ID Lab ID Sample Date	NYSDEC Standards ¹ (ug/L)	Vault 8033001 2/15/01
Semivolatiles (ug/L)		
bis(2-Ethylhexyl)phthalate		7
Butylbenzylphthalate	50	1
Di-n-octylphthalate		10
Isophorone	50	1
Phenol	1	9

Note: Results not validated

Empty Cell: Result Below Detection Limit

¹New York State Department of Environmental Conservation Division of Water Technical

and Operational Guidance Series 1.1.1 Ambient Water Quality Standards and

Guidance Values used for this table

Table 3-9
Shallow Subsurface Soil Data
NYSDEC-SOH, Henrietta, NY

Sample ID	Units	Depth (ft)	PID (ppm)	TCE (ppm)	TCA (ppm)	
SB-1 (4'-6') A		5	10.6	12 J	ND	
SB-1 (6'-8') C		7	11.9	26 J	ND	
SB-1 (8'-10') A		9	39.7	39.7 NA		
SB-4 (4'-6') B		5	0	NA	NA	
SB-6 (4'-6') C		5	68.1	ND	20	
SB-6 (4'-6') A		5	734	ND	8900	
SBX-6 (6'-8') B		7	247	4 J	350 JD	
SB-19 (4'-6') A		5	25.7	25.7		
SB-20 (4'-6') A		5	2000	67	1	

^{*}See Figure 3-1A for boring locations.

Date of Sampling: May 2000

J = Estimated Value

NA = Not Applicable

ND = Nondetectable, below detection limit.

JD - Estimated Value, result from dilution.

Table 4-1
Groundwater Field Parameter Monitoring Before and
During Sodium Permanganate Pilot Test
NYSDEC - SOH, Henrietta, NY

	Temperature	Dissolved	Conductivity	ORP	рН	Headspace
	remperature	Oxygen	Conductivity	ORP	Pri	neauspace
	(degree C)	(mg/L)	(mS/cm)	(mV)		(ppm)
Pre-NaMnO4 Injection	(degree o)	(1118), =)	(mo/om/	(1117)	<u> </u>	(5511)
r re-ivaminos injection	•					
July 17, 2000						
IPZ-1	15.5	2.9	3.1	-230	6.9	>2000
IPZ-2	16.5	3.1	2	-86	7.3	>2000
IPZ-3	15	2.3	3.7	-173	6.9	982
IW-1	15.6	4	2.1	-46	7.2	>2000
OW-7S	16.9	5.4	1	-136	8.8	42.6
OW-7R	13.9	2.1	1.6	-139	7.5	9.2
During NaMnO4 Injection						
July 18, 2000, 0910am						
IPZ-1	NM	1.5	3	-234	6.7	l nm
IPZ-2	NM	3.8	1.7	-177	7	NM
IPZ-3	NM	4.2	3.8	-119	6.5	NM
OW-7S	13.7	1.4	0.9	-230	8.2	NM
OW-7R	13.9	1.5	1.5	-259	8	NM
July 19, 2000, 0830am						
IPZ-1	15.1	1.8	2.59	-289	6.3	NM
IPZ-3	16.4	4.3	3.78	-77	6.5	NM
OW-7S	13.7	1.5	0.96	-272	8.3	NM
OW-7R	14.9	1.6	1.57	-310	8	NM
July 19, 2000, 1400pm						
IPZ-1	15.3	3.8	2.57	-231	7.3	NM
IPZ-3	17.4	4.5	3.96	-46	6.7	NM
OW-7S	13.6	1.6	0.95	-232	8.3	NM

Table 4.2
Groundwater Observations After Sodium Permanganate Pilot Test
Stuart-Olver-Holtz Pre-Design Investigation
Henrietta, New York

	Temperature	Turbidity	Dissolved	Conductivity	ORP	рH	Comment
			Oxygen			[
	(degrees C)	(NTU)	(mg/L)	(mS/cm)	(mV)		<u> </u>
July 22, 2000							
IPZ-1	15.32	NM	4.9	2.65	-68	6.8	
OW-7S	14.13	NM	1.9	0.883	-258	8.2	
OW-7R	14.94	NM	1.6	1.48	-325	9.4	
August 8, 2000							
IPZ-1	14.9	NM	4.7	3.81	-161	6.56	
OW-7S	13.5	NM	6.5	0.293	-13	8.19	
OW-7R	13.6	NM	5.2	1.46	-221	9.6	
August 11, 2000							
IPZ-1	14.9	999	4.7	3.81	-161	6.56	
OW-7S	13.5	999	6.5	0.293	-13	8.19	
OW-7R	13.6	17.4	5.2	1.46	-221	9.6	
August 18, 2000							
IPZ-1	15.1	999	4.4	3.71	-200	6.6	
OW-7S	13.7	-10	4.7	0.27	-275	8.45	
OW-7R	13.4	13.9	3.3	2.19	-201	11.43	
August 28, 2000							
IPZ-1	17.2	3.8	0.63	3.69	-69	6.56	
OW-7S	15.1	17.9	0.18	0.277	-111	8.93	
OW-7R	14.3	23	0.5	1.7	-197	11.03	
September 1, 2000							
IPZ-1	17.1	26.7	0.57	3.58	-110	6.65	
OW-7S	16.3	20.1	0.36	0.219	-201	8.97	
OW-7R	14.2	32.1	0.37	1.52	-293	10.86	
September 8, 2000		·					
IPZ-1	17.2	999	0.18	3.6	-77	6.45	, , , , , , , , , , , , , , , , , , , ,
OW-7S	16.8	0.4	0.26	0.369	-129	8.42	
OW-7R	14.3	-1	0	1.49	-330	10.06	
OW-7R September 15, 2000	14.3	-1	0	1.49	-330	10.06	

Table 4.2
Groundwater Observations After Sodium Permanganate Pilot Test
Stuart-Olver-Holtz Pre-Design Investigation
Henrietta, New York

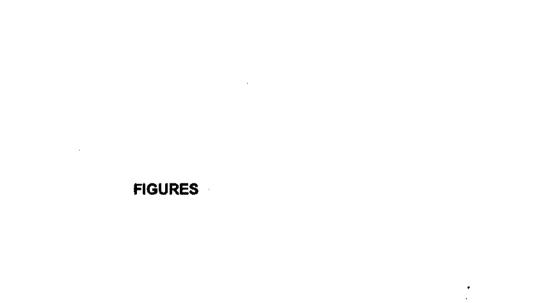
	Temperature	Turbidity	Dissolved	Conductivity	ORP	pН	Comment
!	 		Oxygen			ļ	
	(degrees C)	(NTU)	(mg/L)	(mS/cm)	(mV)	Ì	
September 22, 2000							
				[]	
IPZ-1	16.4	87.2	0.77	3.51	-105	6.72	
OW-7S	13.6	116	0.58	0.526	-273	8.48	
OW-7R	13.3	-10	0.48	1.65	-462	9.7	
TW-1	17.6	2.59	1.25	2.92	135	6.76	
TW-2*	17.2	38.7	1.58	9	576	6.99	*Light Purple
TW-3	17.6	33.9	2.33	3.29	-103	6.81	
TW-4	15.4	999	5.88	1.73	-100	7.46	
September 28, 2000							
IPZ-1	15.8	21.9	0.98	3.65	-86	6.73	
OW-78	15.8	35.2	1.46	0.347	-129	8.16	
OW-7R	13.2	3.4	0.74	1.68	-247	8.18	
TW-1	17	91.4	0.92	2.83	80	6.76	
TW-2*	-		-	-	-	-	Inaccessible
TW-3	15.8	11.3	4.78	2.42	-102	6.97	
TW-4	15.6	741	0.93	1.8	-173	7.37	
October 6, 2000							
IPZ-1	16.3	53.6	1.24	3.44	-68	6.8	
OW-7S	14.1	71.4	1.55	0.503	-86	8.18	
OW-7R	13.9	7.4	0.15	1.7	-245	8.22	
TW-1	17	19.8	1.78	2.84	7	6.64	
TW-2*	-	-	-	-	-	-	Inaccessible
TW-3	15.3	2.9	1.54	3.49	-83	6.9	
TW-4	15	17.8	1.27	1.86	-143	7.22	
October 13, 2000							
IPZ-1	16.9	37.3	1.01	3.49	-98	6.67	
OW-7S	16.4	20.3	0.92	0.302	-138	8.77	
OW-7R	16.2	55.5	0.83	1.63	-273	7.61	
TW-1	17.7	97.8	0.9	2.84	136	6.43	
TW-2*	17.3	171	0.8	4.03	243	6.73	
TW-3	17.1	28.3	0.72	3.34	-143	6.71	
TW-4	16.9	79.1	0.98	1.79	-264	7.22	

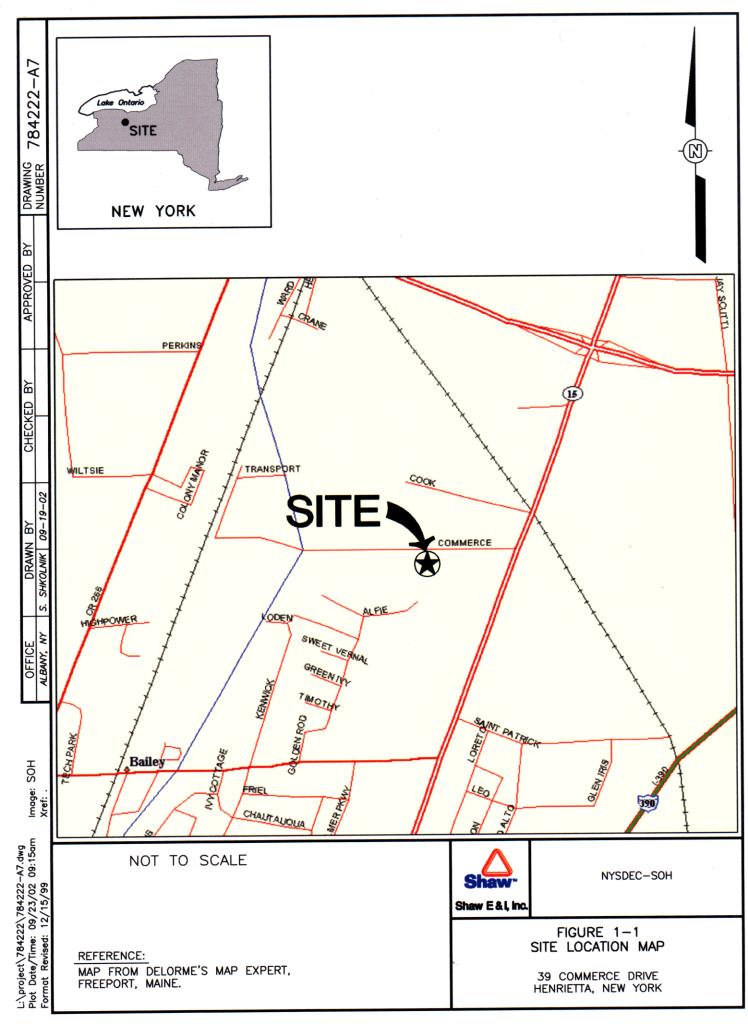
Table 4.2
Groundwater Observations After Sodium Permanganate Pilot Test
Stuart-Olver-Holtz Pre-Design Investigation
Henrletta, New York

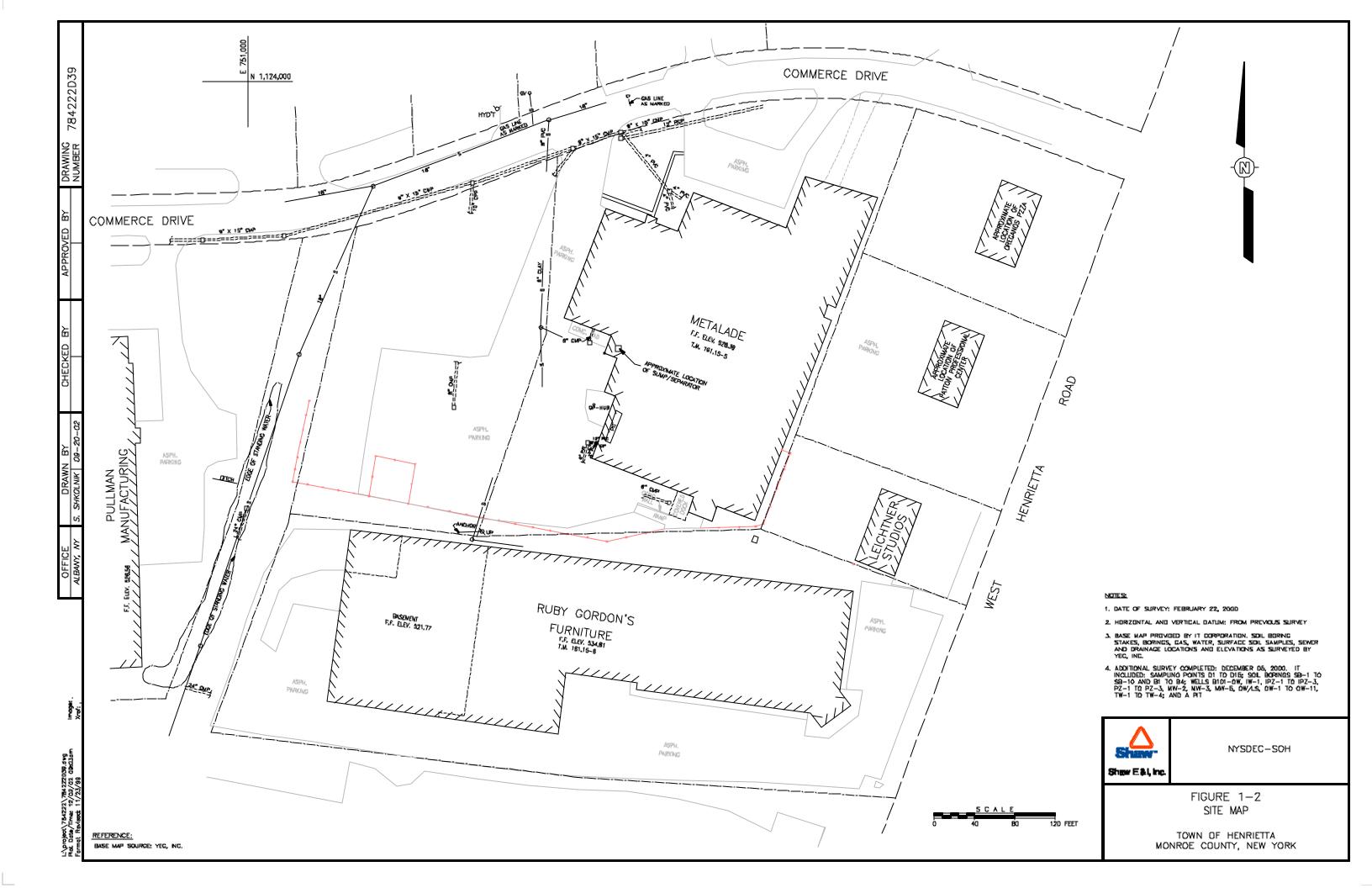
	Temperature	Turbidity	Dissolved	Conductivity	ORP	рН	Comment
	·	_	Oxygen				
	(degrees C)	(NTU)	(mg/L)	(mS/cm)	(mV)		
October 20, 2000							1
IPZ-1	16	22.1	0.38	3.68	-92	6.76	
IPZ-2	na	63.3	4.53	7.07	655	6.75	
IPZ-3	17.8	497	6.95	18.9	618	7.53	
OW-78	17.6	9.3	11.37	0.524	-45	8.06	***************************************
OW-7R	14.3	12.5	7.33	1.72	-104	7.18	
IW-1	กล	64.5	7.35	23.3	686	6.66	***************************************
TW-1	17.3	20	0.63	2.93	-35	6.64	
TW-2*	17.4	56.8	3.57	4.34	122	6.6	
TW-3	17.1	243	7.01	3.28	-73	6.88	
TW-4	17.1	140	5.14	1.97	-22	7.15	
November 14, 2000							
IPZ-1	15.7	114	1.03	3.57	-110	6.79	
IPZ-2	-	_	-	-	-	-	Dark purple
IPZ-3	-	-	-	-	-	-	Dark purple
OW-7S	15	271	4.9	0.244	-110	7.77	
OW-7R	14.9	55	4.1	1.47	-72	8.81	
IW-1	-	-	-	-	-	-	
TW-1	16.2	235	1.29	2.65	-44	6.8	Dark purple
TW-2*	15.6	227	1.18	4.13	132	6.78	
TW-3	15.6	56.2	1.18	3.2	-141	6.83	
TW-4	14.8	291	5.28	1.88	-121	7.44	
November 29, 2000			<u> </u>				
IPZ-1	14.7	154	1.55	3.37	-70	6.83	
IPZ-2	-	-	-	-	-	-	Dark Purple
IPZ-3	-	_	-	-	-	-	Dark Purple
OW-7S	13.3	52.7	2.96	3.81	-106	8.15	
OW-7R	13.1	66.8	0.64	1.44	-356	8.86	
IW-1	-	-	-	-	-	-	Dark Purple
TW-1	15.5	92.1	1.31	2.52	-18	6.74	
TW-2	14.9	363	1.09	4.86	147	6.78	
TW-3	14.3	38.4	1.01	3.2	-116	6.81	
TW-4	13.9	58.8	3.06	2.07	-114	7.37	

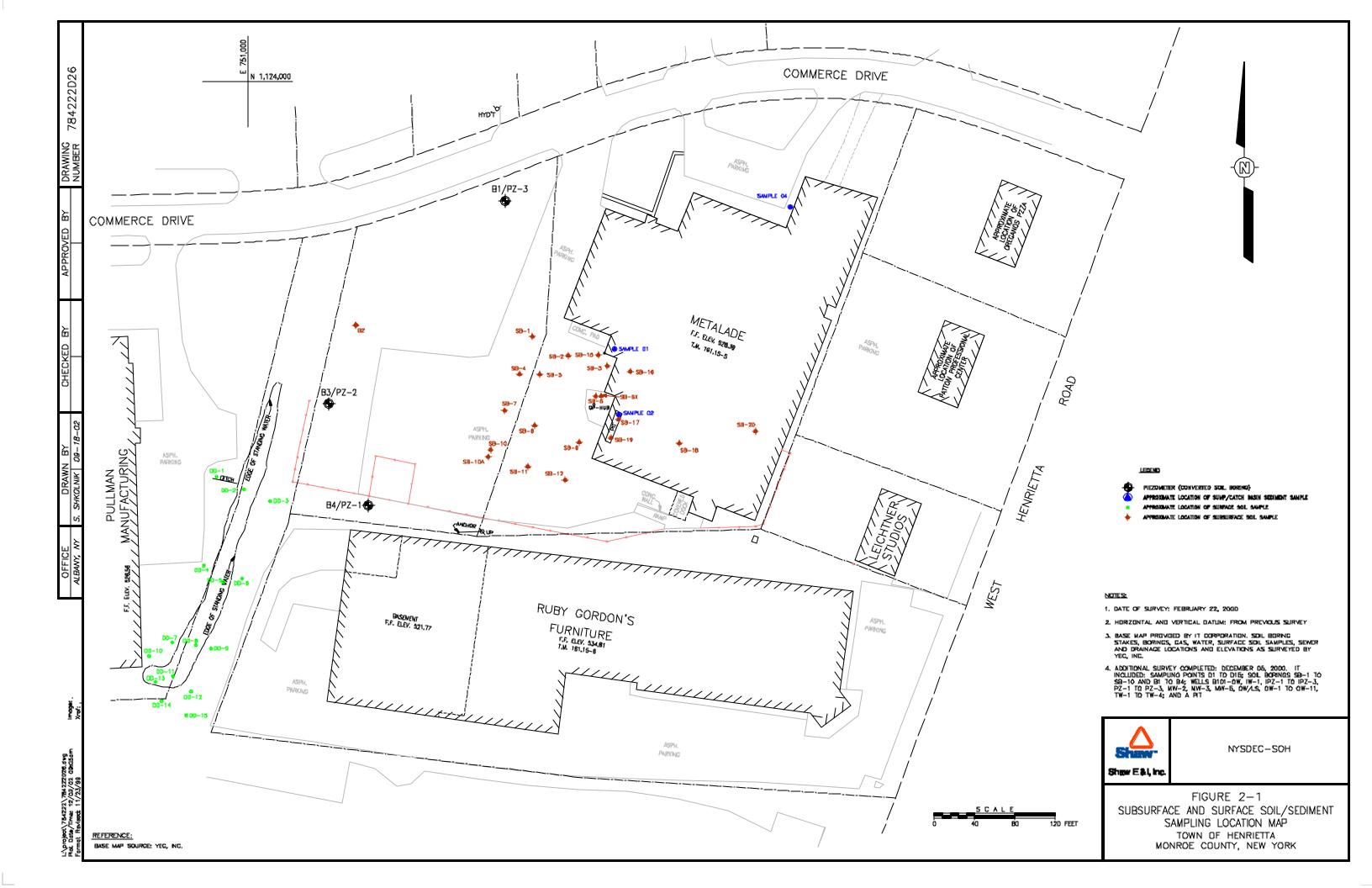
See notes on last page

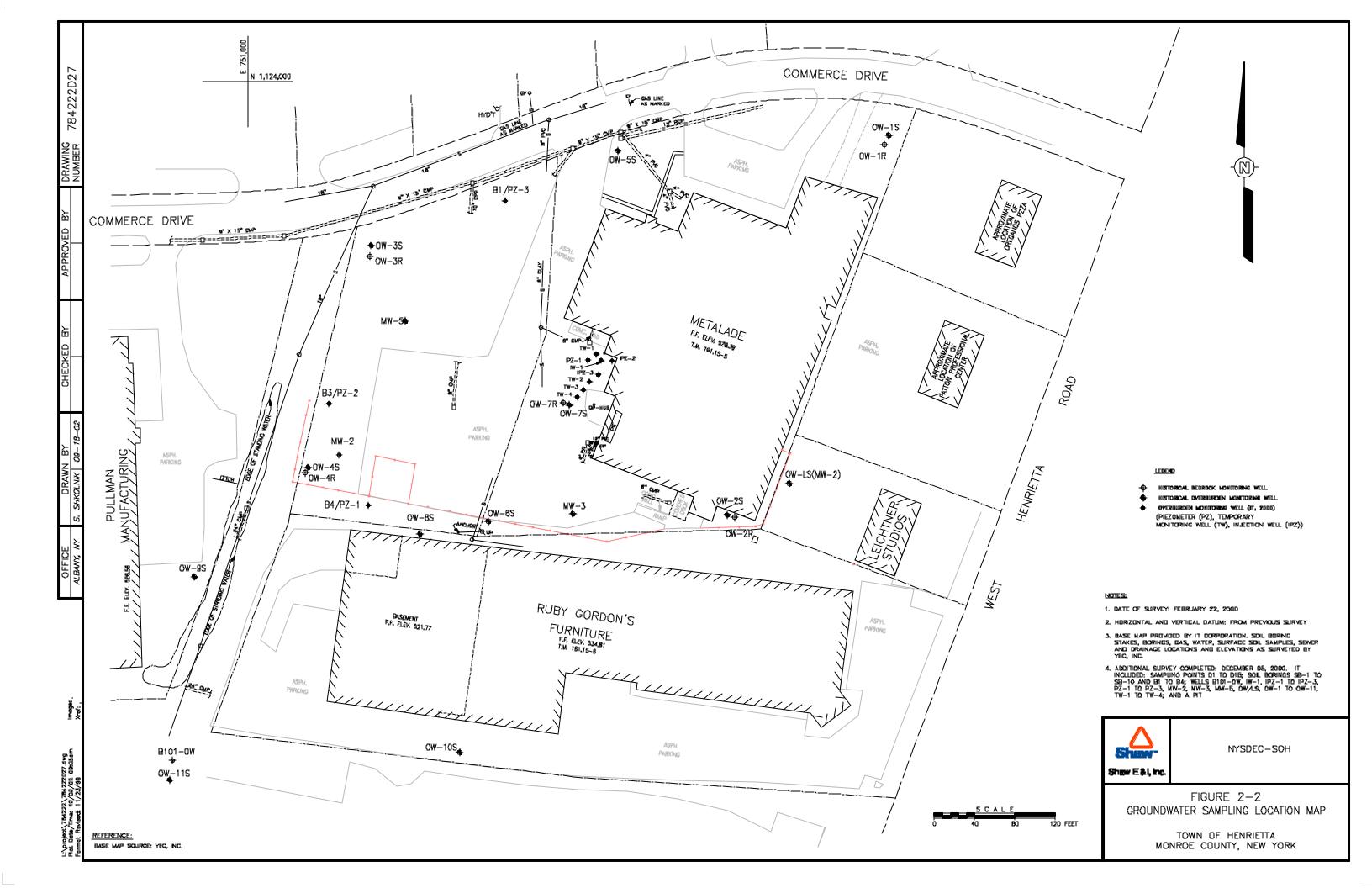
Table 4.2
Groundwater Observations After Sodium Permanganate Pilot Test
Stuart-Olver-Holtz Pre-Design Investigation
Henrietta, New York

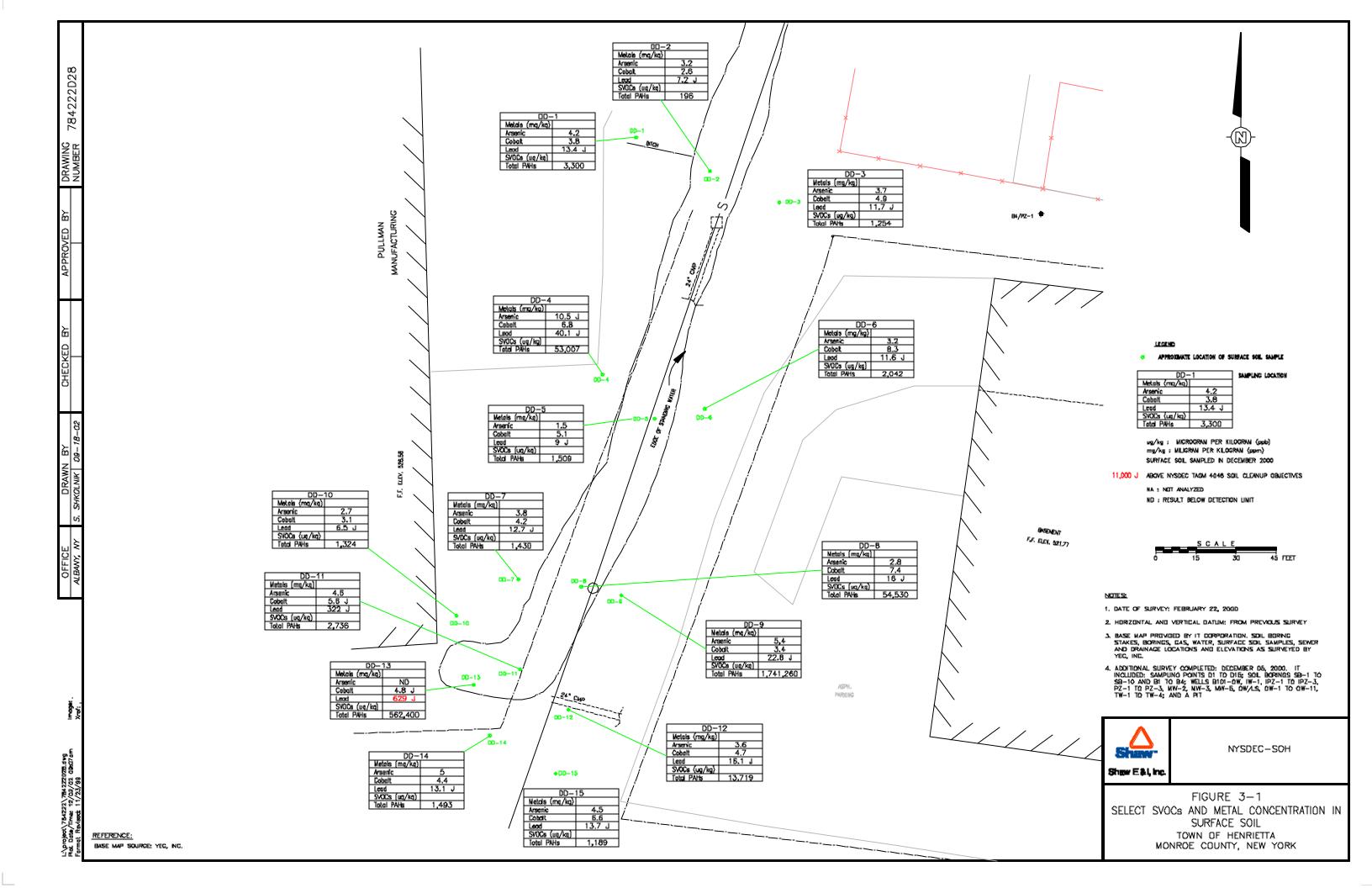

	Temperature	Turbidity	Dissolved	Conductivity	ORP	рΗ	Comment
	-	Ĭ	Oxygen	- 1		-	
	(degrees C)	(NTU)	(mg/L)	(mS/cm)	(mV)		
December 14, 2000				-			
ŕ							
IPZ-1	12.6	4.8	0.06	2.73	- 57	6.44	
IPZ-2	6.9	606	5.55	10.1	664	6.19	
IPZ-3	7.7	657	6.08	15.8	627	7.2	***************************
OW-7S	10.5	21.4	6.22	0.213	96	7.57	• • • • • • • • • • • • • • • • • • • •
OW-7R	10.6	-10	0.94	1.58	-72	7.44	
IW-1	7.6	748	5.48	19.3	686	6.51	
TW-1	11.5	7.4	0.22	2.24	-19	6.95	***************************************
TW-2*	7.3	76.3	0.3	4.52	177	6.8	
TW-3	10.4	0.6	2.79	3.11	-82	5.93	
TW-4	9.4	9.3	3.21	2.75	-57	6.72	***************************************
December 15, 2000							
							i
PZ-1	9.4	>999	0.03	1.86	9	4.89	
PZ-2	8.9	3.8	0	1.81	-112	4.98	
PZ-3	9.9	58.3	9.76	1.7	220	5.99	
December 18, 2000							
MW-2	8.3	-6.3	6.98	0.62	-55	7.18	1
MW-3	3.6	6.7	6.06	1.71	-6	7.25	
MW-5	7.9	-2.6	5.88	0.99	68	7.03	
OW-1R	9.8	4.1	6.56	1.23	-48	7.54	
OW-1S	9.8	0.9	0	1.7	157	7.17	
OW-2S	9.7	0.7	0.33	2.36	-108	7.25	
OW-2R	11.3	5.4	6.26	2.3	-100	7.43	
OW-3R	10.7	5.3	5.13	2.75	-69	7.08	
OW-3S	10.6	3.6	0	1.4	-88	6.97	
OW-4R	9.2	2.3	6.73	2.66	-82	7.29	
OW-4S	8.7	2.3	0	1.37	-111	7.42	,
OW-58	7.9	55	5.84	0.93	204	7.8	
OW-6S	8.5	-0.2	5.74	1.45	85	7.09	
OW-8S	9.1	43.9	8.64	1.57	-37	7.63	
January 5, 2001							
IPZ-1	13.6	18.3	3.86	2.91	-56	6.85	

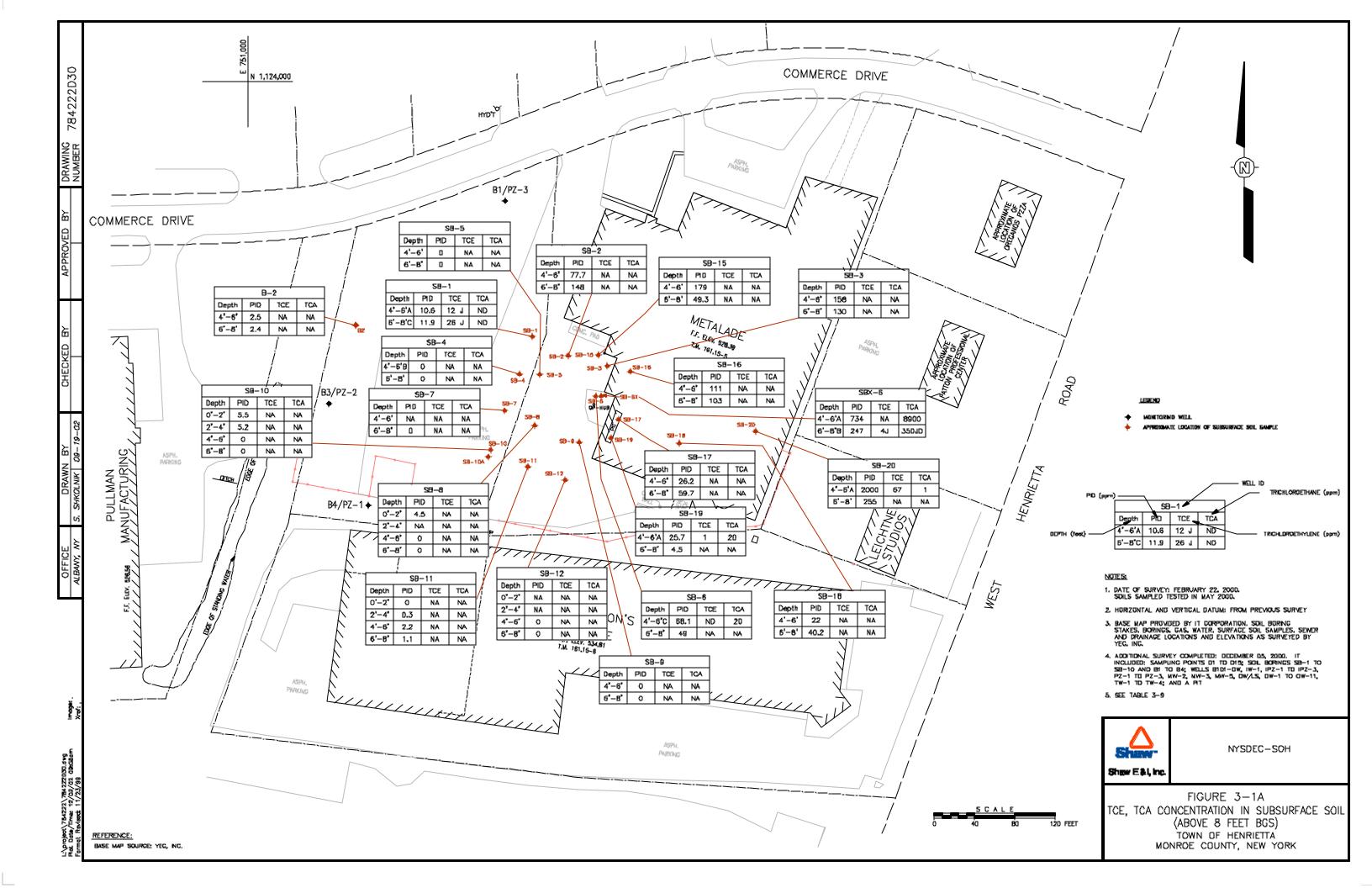

Table 4-3
Permanganate Injection Baseline and Post-Injection Results

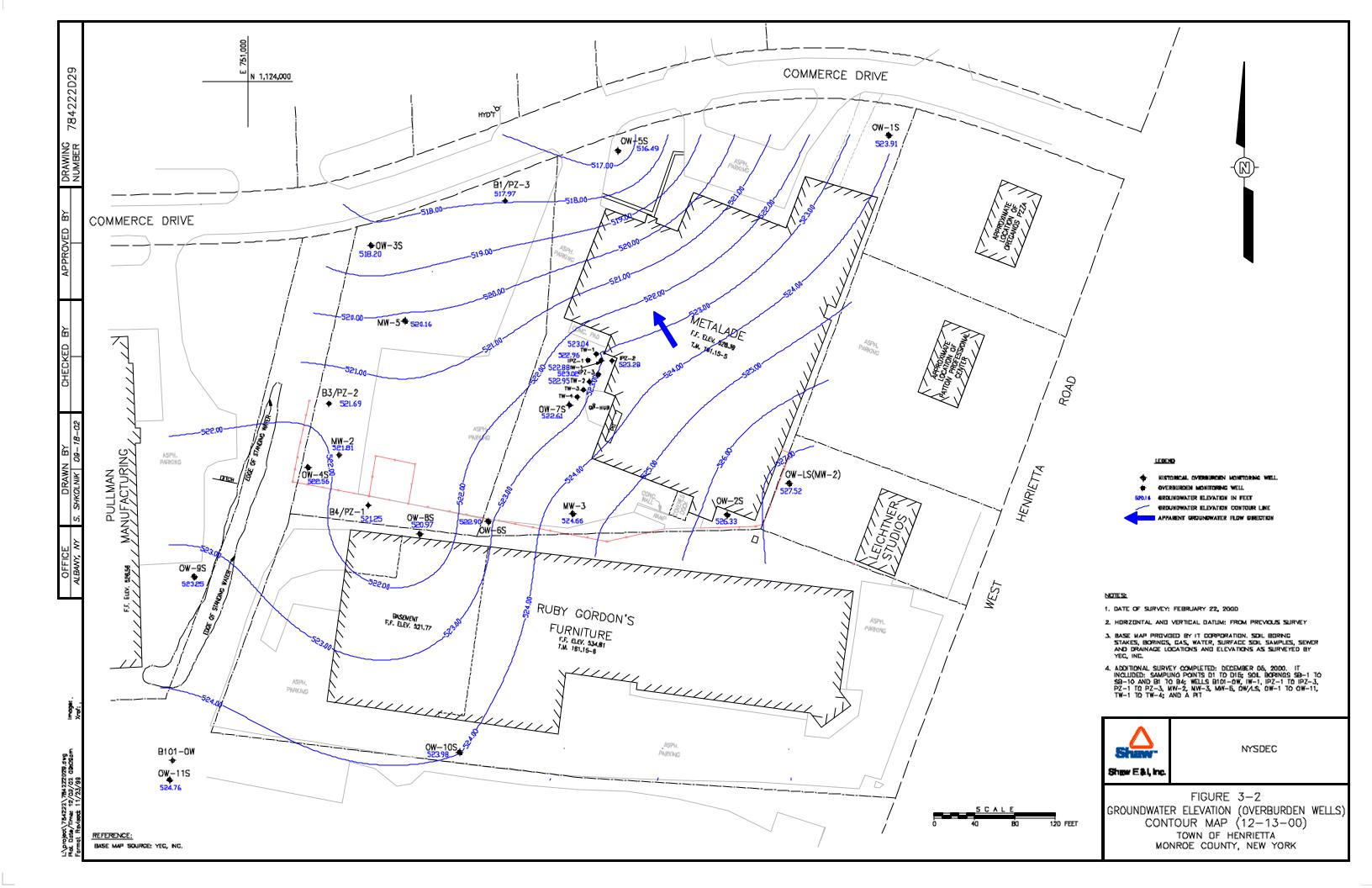

All results in ug/L unless otherwise noted

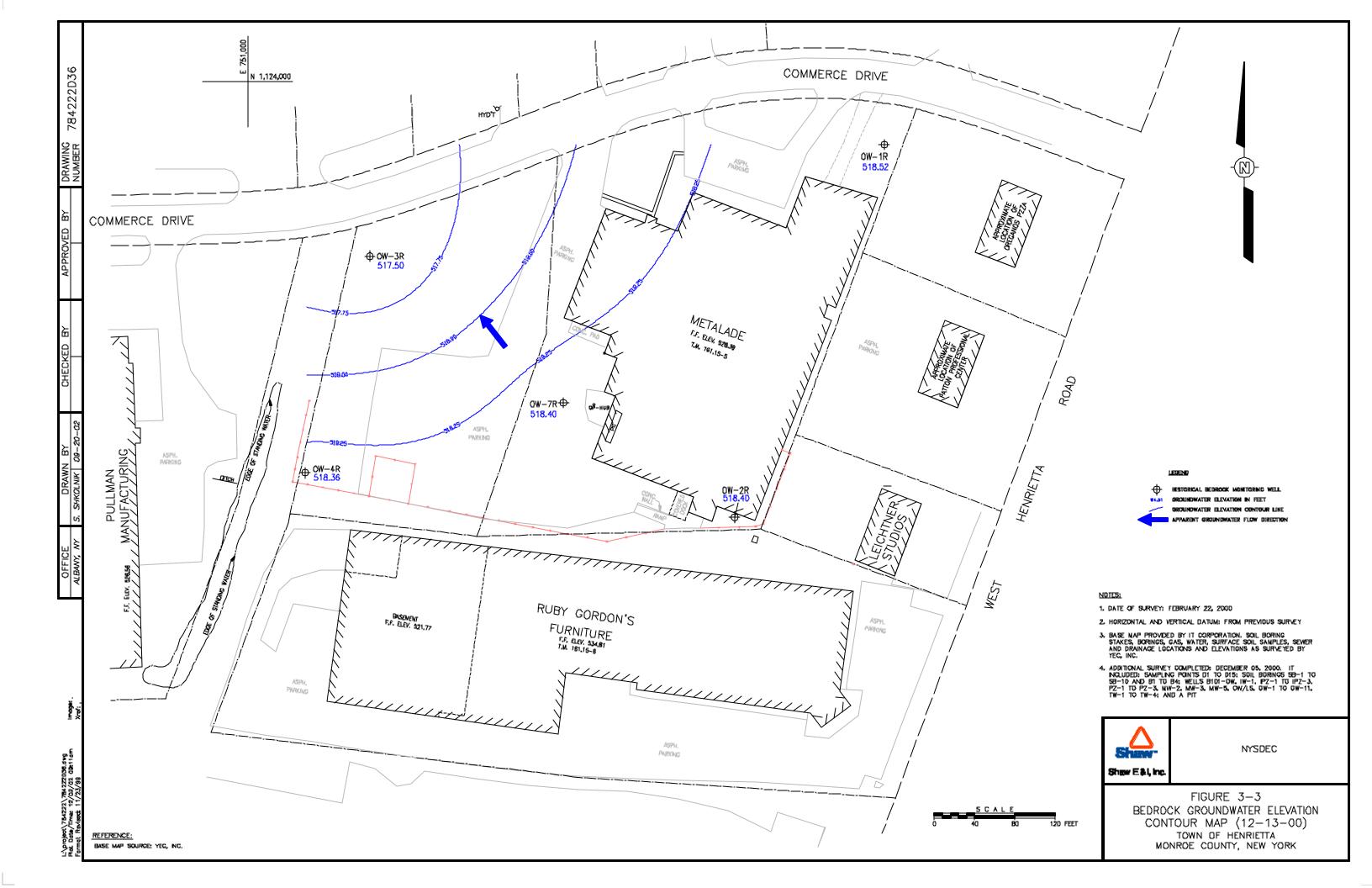

	NYSDEC							Location an	d Date (Inle	ction Well (IW-1), injec	tion Diazometer	
Compound	Groundwater						IPŽ-	-2	- Date (mgc	IPZ-3		
	Standards	07/17/2000	09/11/2000	10/20/2000	% Removal	07/17/2000	09/11/2000	10/20/2000	% Removal	07/17/2000 09/11/20		
Double College										0171772000 03711720	00 10/20/2000	
TCE	5	460,000		e de are. Vigini, accidente, de seguiti.	99.7%	1,200,000	valorestons victorial (<u>Pol</u> s	220 (7 10 10 10 10 10 10 10 10 10 10 10 10 10	4000	90.000		
Methylene Chloride	5	220,000			74%	680,000			100%			
Ck-1,2-DCE		6,500			> 23%	< 50,000			91%	45,000		
1,1-DCA	5	< 20,000			20,79	< 50,000				22,000		
1,1,1-TCA	5	< 20,000				< 50,000				110,000		
PCE	5	< 20,000				< 50,000			<u> </u>	100,000		
1,1-DCE	5	< 20,000				< 50,000				< 4.000		
VC	2	< 20,000			 	< 50,000				< 4,000		
Acetone	2	< 20,000				< 50,000				< 4,000		
Bromomethane		< 20,000			├── ╢	< 50,000				< 4,000		
Naphthalene		7,500			> 33%	< 50,000				< 4,000		
	公司 医骨髓管			55-11-00-00-12-50	- 0076		รัฐว. ≒ากกรรมก็อกรอบกระเก	restant to the second of	-	900		
ermanganate Applied	A CONTRACTOR CONTRACTOR	aspenenta, oen	74			新聞養養物養						
		72 100 P.VII.				designation of the second	1,60	U			952	
Iron (Fe)		20,100	Fills Altigram			407.000	allier of a like 5					
Manganese (Mn)	∥ [704			┝┈╌┈╢	187,000			-	41,900		
COD (mg/L)	 	350			 	7,530				1,210		
Chloride (mg/L)	∦ ∥	300				2,900				440		
Color	╟ ╼╼╶ ┋╼╍╼┤╟	clear			 	350				900		
ORP (mV)		-46				clear			-	clear		
pH (SIU)	 	7.20			┝╼╌╌╼┩	-86				-173		
	<u> </u>	7.20			<u> </u>	7.30		4.10		6.90		

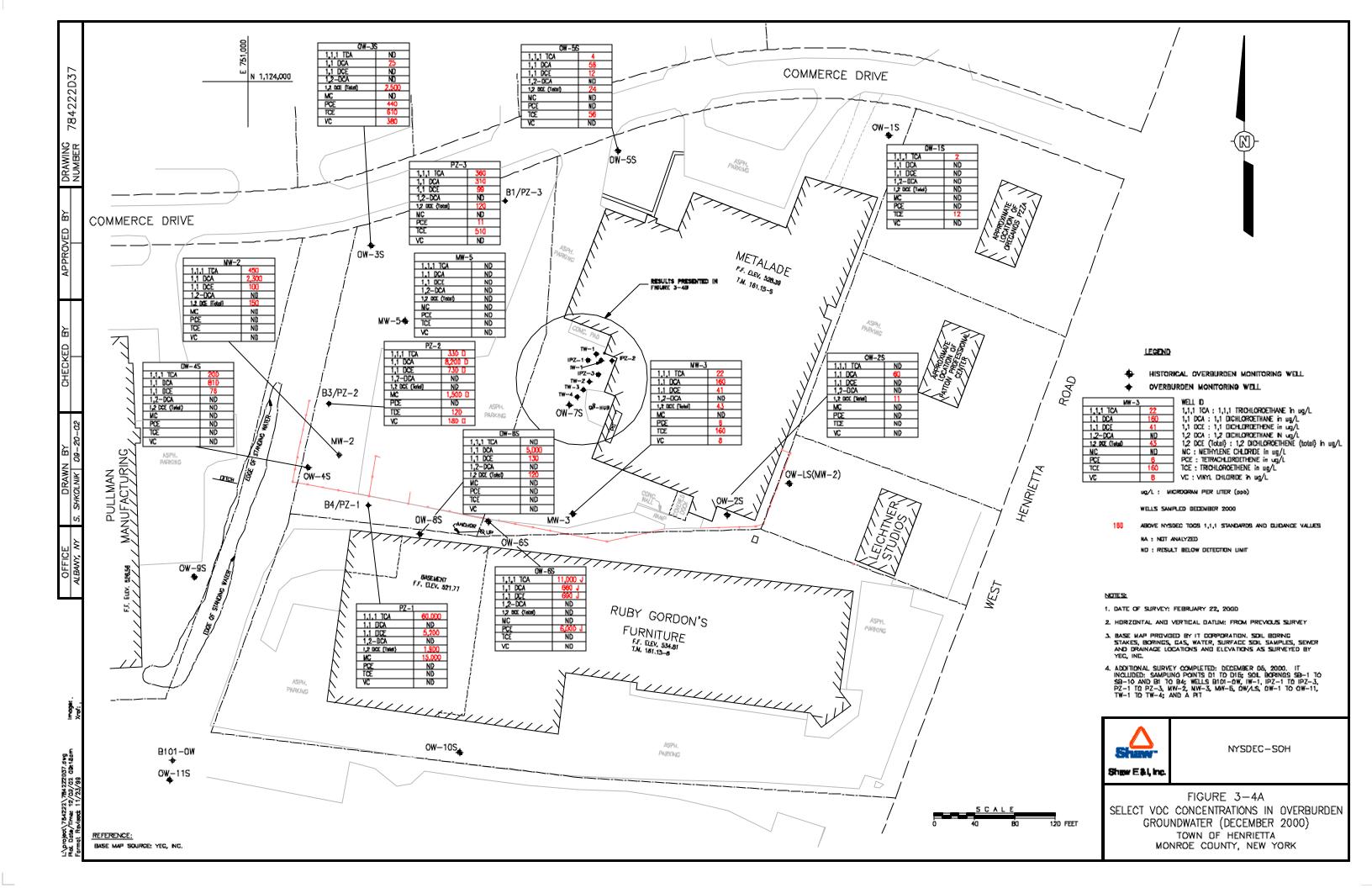

Compound	NYSDEC	1										
	Groundwater	1	IPZ			l	TW-1		 	TW-2		
	Standards	07/17/2000	09/11/2000	10/20/2000	% Removal	09/22/2000	10/20/2000	% Removal	09/22/2000		% Removal	09/22/2000
											A Kollidval	USIZE ENGINE
TCE	5	290,000		370,000	-28%	540,000	380,000	30%		97.000	Presentation (Alle	
Methylene Chloride	5	95,000		110,000		100,000		4%		27,000		11,000
Cls-1,2-DCE	<u>-</u>	34,000	0.000	28,000		11,000	12,000	-9%		45,000	-41%	24,000
1,1-DCA	5	35,000		34,000	3%	8,100	6,000	26%		9,100		3,900
1,1,1-TCA	5	11,000		9,100	17%	< 25,000		26%		100,000	-30%	99,000
PCE	5	< 10,000		< 10,000		< 25,000			·	160,000	-135%	86,000
1,1-DCE	5	< 10,000		< 10,000		< 25,000				< 7,500		< 2,500
· VC	2	< 10,000		< 10,000		< 25,000	< 20,000			6,500		1,800
Acetone	2	< 10,000		8,600		23,000				< 7,500		< 2,500
Bromomethane	-	< 10,000		< 10,000		6,100	< 20,000	> 13%		< 7,500		1,600
Naphthalene	-	< 10.000		< 10,000		12,000	< 20,000			< 7,500		< 2,500
	र्भ कर का जा है जिस्स					12,000	< 20,000		Augusta de la carreca de	< 7,500		< 2,500
Permanganate Applied				企 类是 医抗结肠								
edillen sombine		4.5000000000000000000000000000000000000		Calculate in the Arms (in addition to the first			<u> </u>			0		
Iron (Fe)												
Manganese (Mn)	├	88,400		5,570		525	561	-		340	-	1,380
	 	2,880		106		4,870	2,050	-		5,140	·-·-	381
COD (mg/L)	 	300		240		210	200	-		300		200
Chioride (mg/L)	-	700		780		560	570	- "-	14.4	900		700
Color		clear	clear	clear		clear	clear	 i		clear	 	clear
ORP (mV)		-230	-115	-92		135	-35			122		-103
pH (SIU)	11 - F	6 901	6 711	ומל מ		2 40						-103

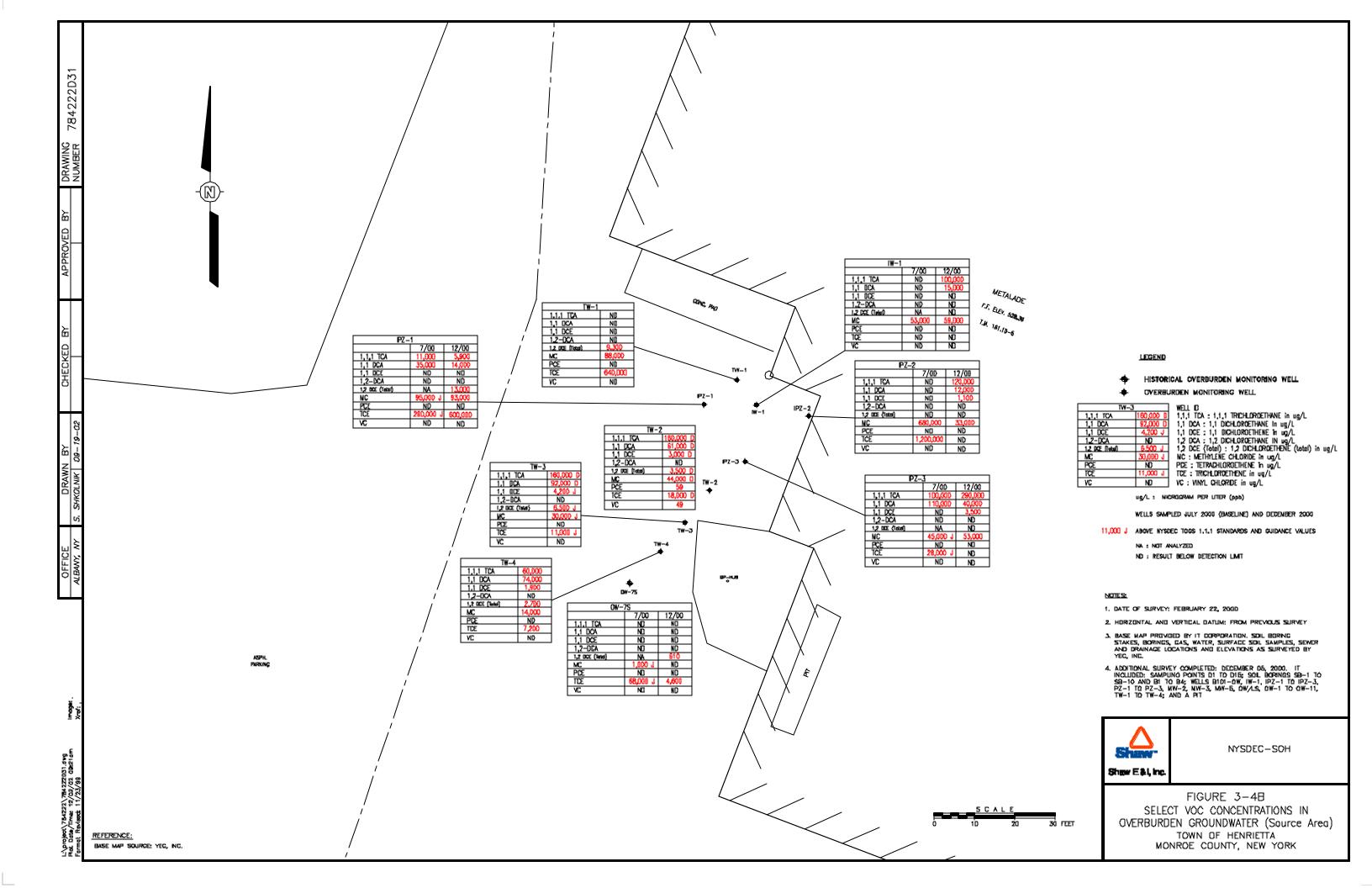


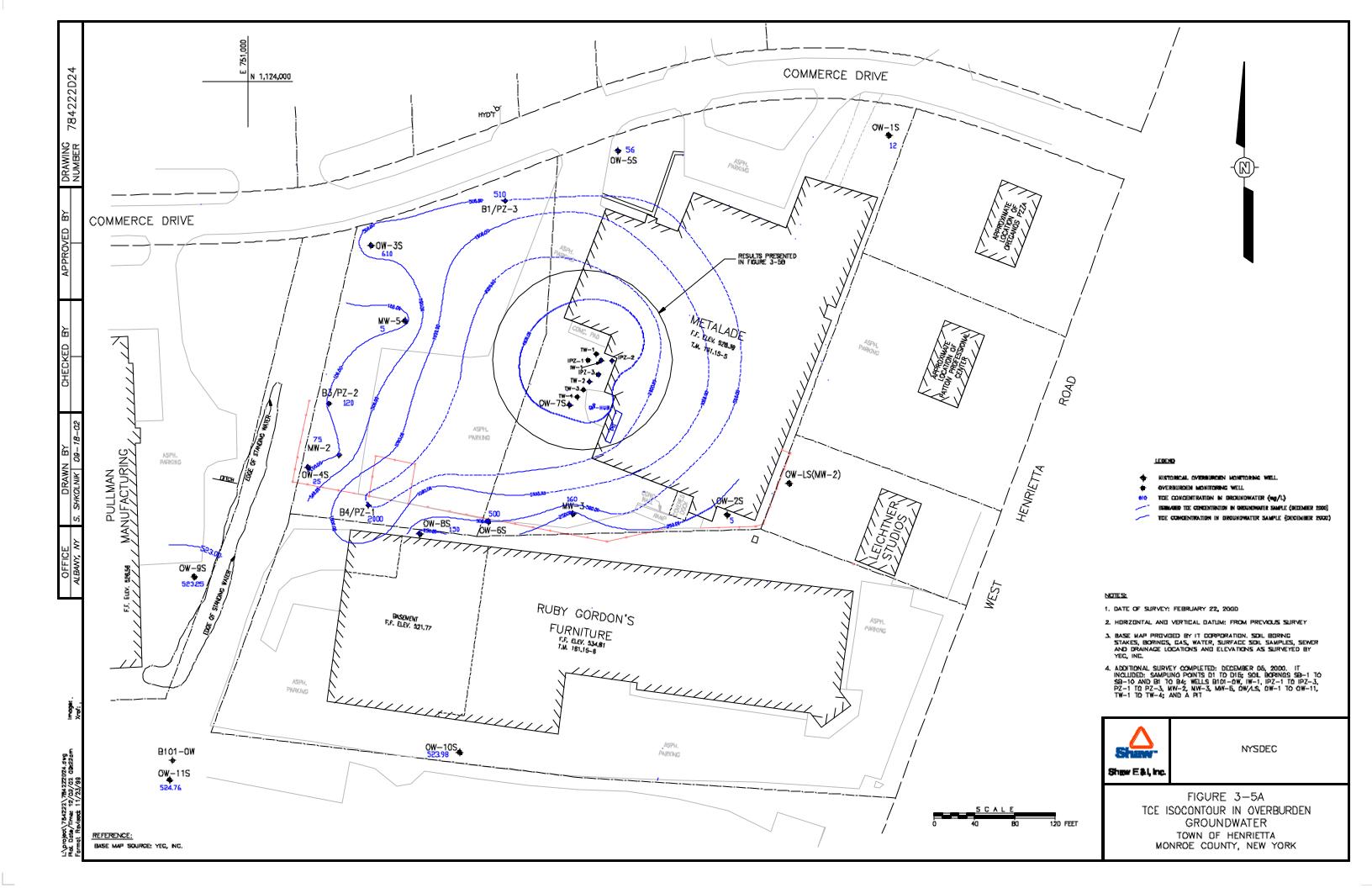


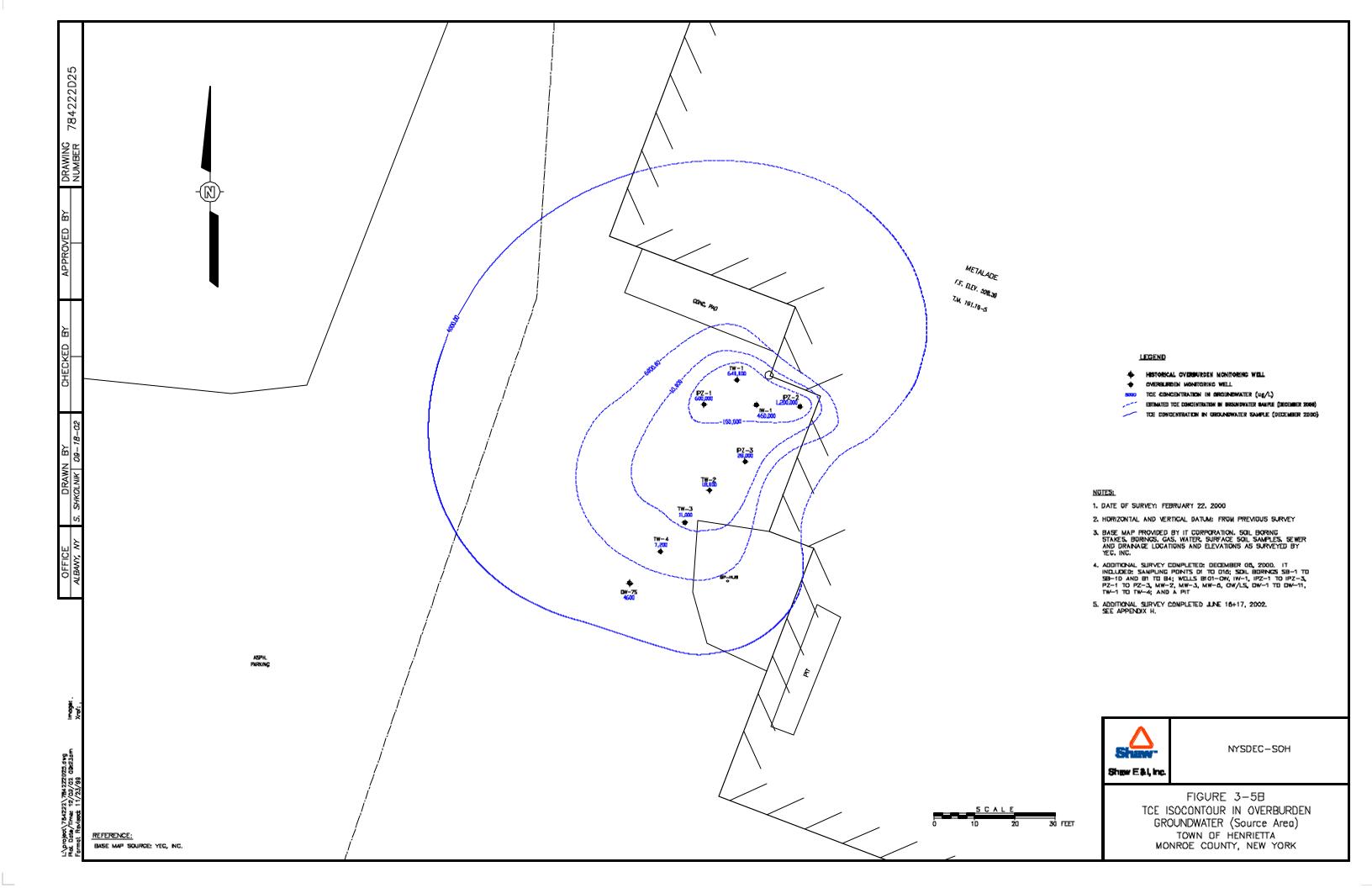


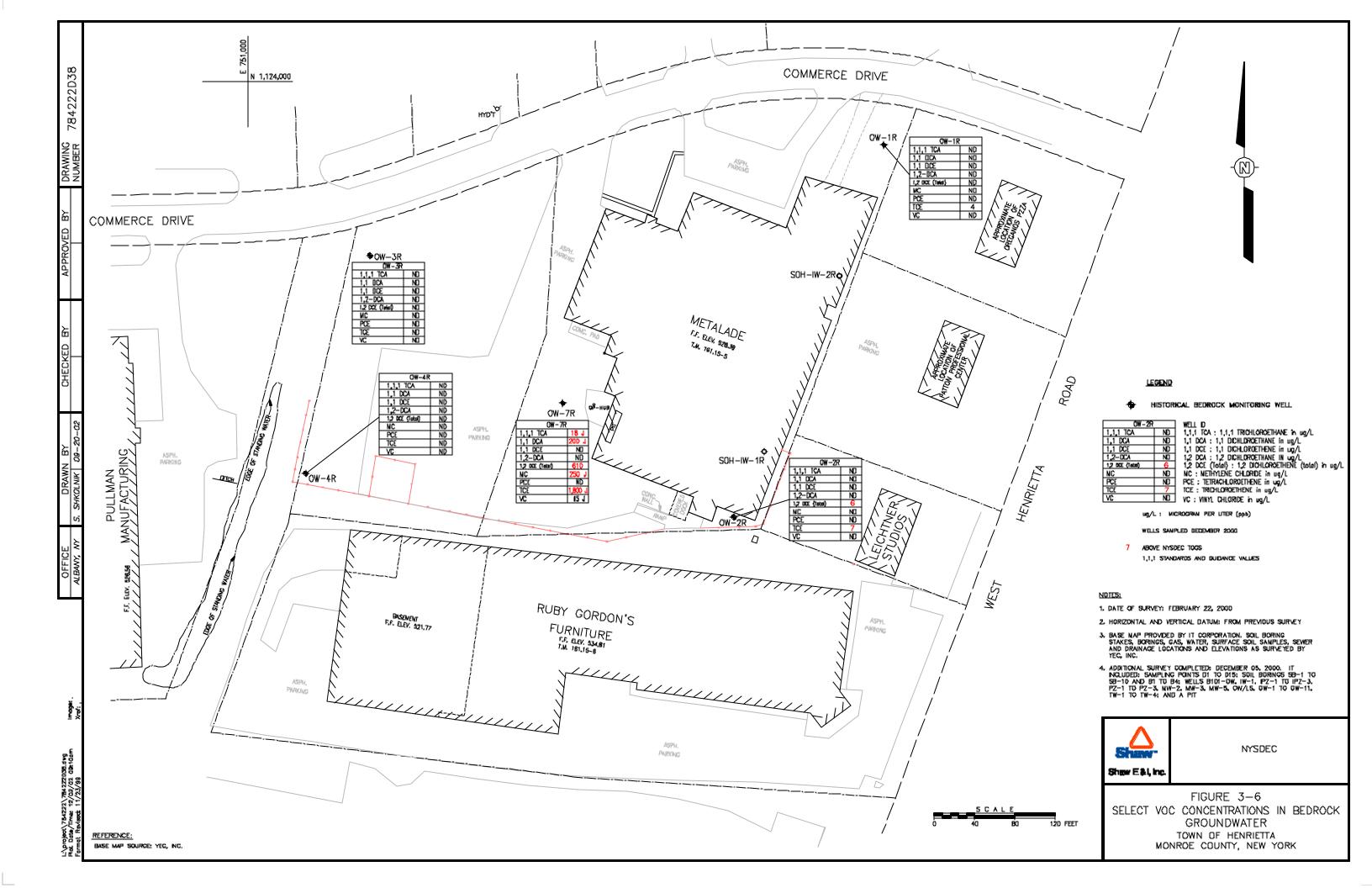


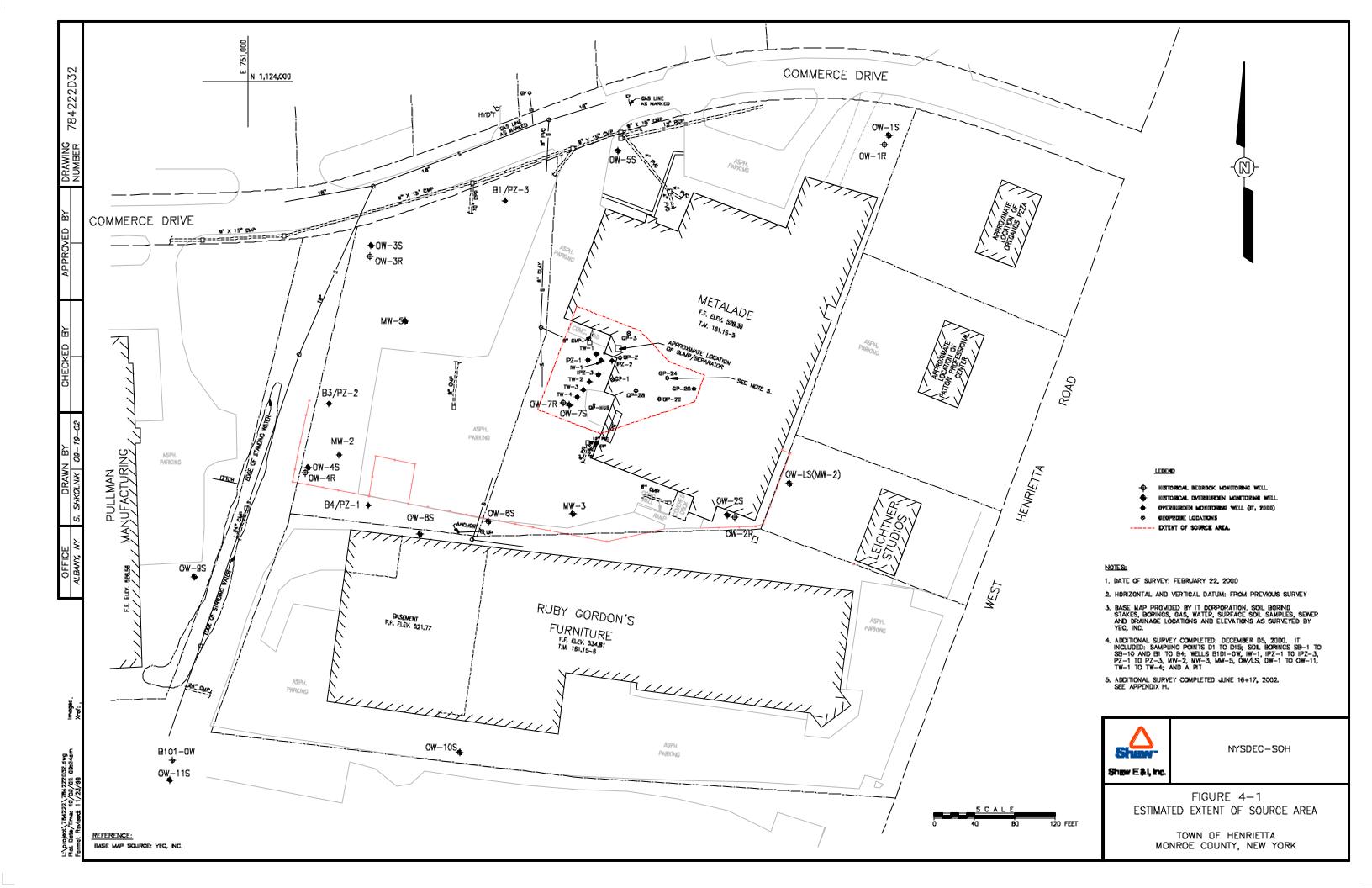


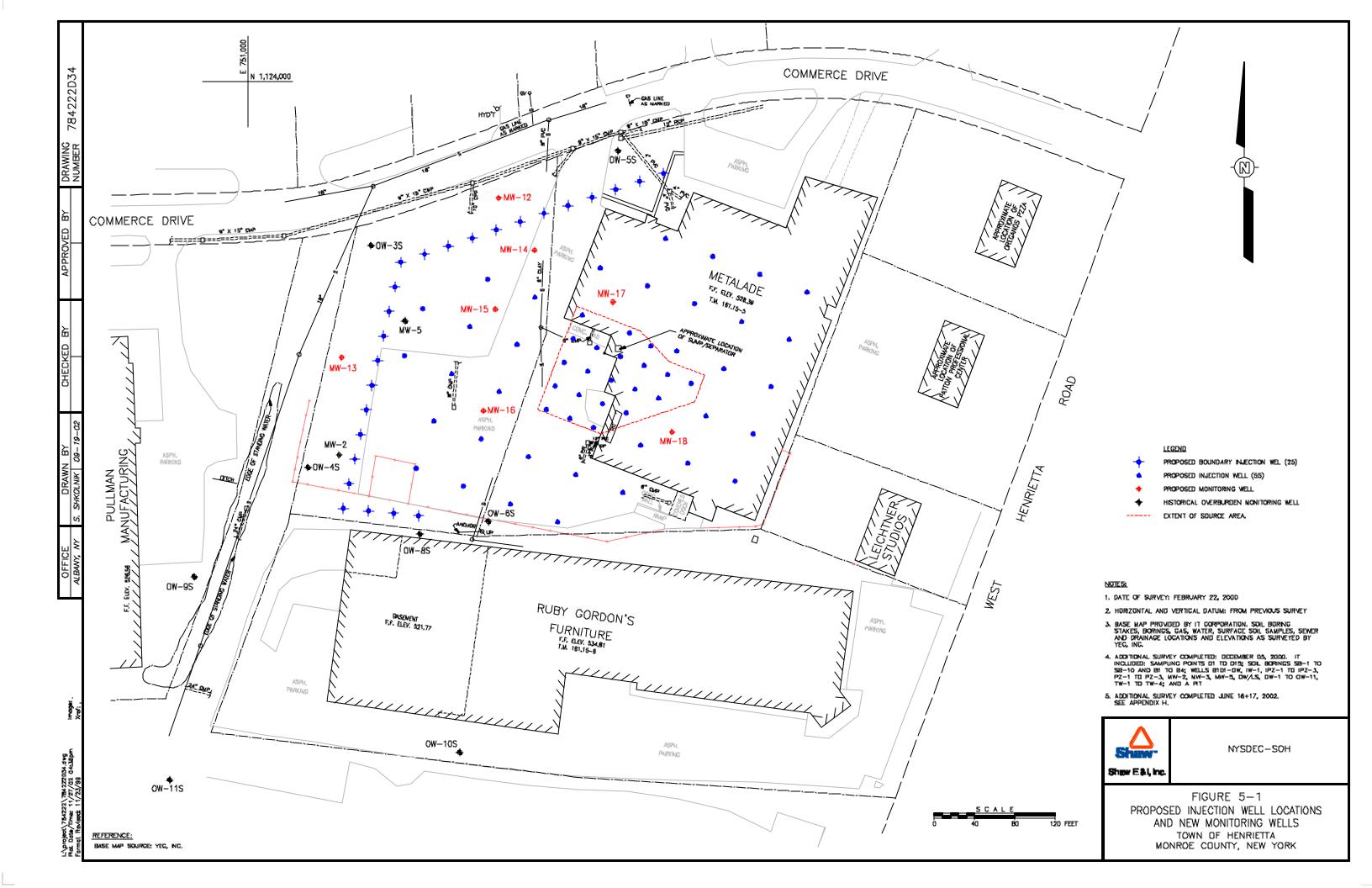














APPENDIX A

COST ESTIMATES

Groundwater Alternative 1

Reactive Barrier

COST ESTIMATE SUMMARY

SOH Henrietta Site;

Location: Henreitta, New York

Description:

Phase: Feasibility Study (-30% to + 50%)

Base Year: 2001

Date:

Groundwater Alternative 1 consists of a reactive iron filing barrier wall along the western and northern property boundaries. An ancillary pump and treat system will be installed on the south-western comer of the property at 3 gpm. Capital costs occur in Year 0. Annual O&M costs occur in Years 1-40.

PRESENT VALUE ANALYSIS

		TOTAL	TOTAL COST	DISCOUNT	PRESENT	
COST TYPE	YEAR	COST	PER YEAR	FACTOR (7%)	VALUE	NOTES
Capital Cost	0	\$3,185,368	\$3,185,368	1	\$3,185,368.06	
Annual O&M Co:	1-35	\$2,236,480	See Table	See Table	\$995,909	See PVA Calculations
						Table for details
Periodic Cost	5	\$15,000	\$15,000	0.713	\$10,695	5-yr review, update i.c. plan
Periodic Cost	7	\$100,000	\$100,000	0.623	\$62,275	rejuvinate wall
Periodic Cost	10	\$15,000	\$15,000	0,508	\$7,625	5-yr review, update i.c. plan
Periodic Cost	14	\$100,000	\$100,000	0.388	\$38,782	rejuvinate wali
Periodic Cost	15	\$15,000	\$15,000	0.362	\$5,437	5-yr review, update i.c. plan
Periodic Cost	20	\$15,000	\$15,000	0.258	\$3,876	5-yr review, update i.c. plan
Periodic Cost	21	\$100,000	\$100,000	0.242	\$24,151	rejuvinate wall
Periodic Cost	25	\$15,000	\$15,000	0.184	\$2,764	5-yr review, update i.c. plan
Periodic Cost	28	\$100,000	\$100,000	0.150	\$15,040	rejuvinate wall
Periodic Cost	30	\$590,000	\$590,000	0.131	\$77,507	replace 50% of wall
Periodic Cost	35	\$15,000	\$15,000	0.094	\$1,405	5-yr review, update i.c. plan
Periodic Cost	37	\$100,000	\$100,000	0.082	\$8,181	rejuvinate wall
Periodic Cost	40	\$13,465	\$13,465	0.067	\$899	Demobilization and closure
		\$6,615,313	_		\$4,439,914	

TOTAL PRESENT VALUE OF ALTERNATIVE

\$4,439,914

Groundwater Alternative 1

Reactive Barrier

SOH Henrietta

Location: Henreitta, New York

Phase:

Feasibility Study (-30% to + 50%)

Base Year: 2001

Date:

Site:

COST ESTIMATE SUMMARY

Groundwater Alternative 1 consists of a reactive iron filing barrier wall along the western and northern property boundaries. An ancillary pump and treat system will be installed on the south-western corner of the property at 3 gpm. Capital costs occur in Year 0. Annual O&M

costs occur in Years 1-40.

CAPITAL COST	5:
--------------	----

CAPITAL COSTS:					
			UNIT		
DESCRIPTION	QTY	UNIT	COST	TOTAL	NOTES
Mobilization/Demobilization					
Permitting	1	LS	\$25,000	\$25,000	Environmental permits
Licencing Fee To ETI	1	LS	\$186,000	\$186,000	15% of Reactive Barrier Construction per ETI
Submittals/Implementation Plans	1	LS	\$50,000	\$50,000	QAPP, SSHP, etc.
Temporary Facilities & Utilities	1	LS	\$10,000	\$10,000	Fence, roads, signs, trailers, etc.
Post-Construction Submittals	1	LS	\$25,000_	\$25,000	Post-constr. reports
SUBTOTAL				\$296,000	
Monitoring, Sampling , Testing, and Analysis					
Monitoring Wells	10	EA	\$900	\$9,000	Pre-Design Sampling and Analysis
Geotechnical Testing	1	LS	\$5,000	\$5,000	
Testing	1	LS	\$25,000	\$25,000	From ETI
SUBTOTAL			_	\$30,000	
Site Work					
Surveying	1	LS	\$1,500	\$1,500	well and wall layout
Site Preparation	1	LS	\$10,000	\$10,000	
SUBTOTAL			_	\$11,500	
Reactive Wall Construction					
Mobilization/Demobilization	1	LS	\$50,000	\$50,000	From ETI
Construction of Wall	500	ft	\$400	\$200,000	From ETI
Iron filings	1	LS	\$990,000	\$990,000	From ETI
SUBTOTAL			_	\$1,240,000	
74.74. 24					
Off-Site Disposal	1000.55	40	A	0400.070	
Soil Cuttings Disposal SUBTOTAL	1629.63	ft3	\$80_	\$130,370 \$130,370	est as non haz to Class 2 Landfill

Description:

undwater Alternative 1 ctive Barrier					COST ESTIMATE SUMMA
Ruby-Gordon Intercepor Well and Treatment Sys	tem				
Extraction Well Installation	1	LS	\$7,500	\$7,500	
Carbon and Pump and Treat System	1	LS	\$10,000	\$10,000	includes pump and system
SUBTOTAL			_	\$17,500	
SUBTOTAL				\$1,725,370	
Contingency	25	%		\$431,343	
SUBTOTAL				\$2,156,713	
Procurement	2	%		\$43,134	
Project Management	10	%		\$215,671	
Remedial Design	20	%		\$431,343	
Construction Management	15	%		\$323,507	
Institutional Controls					
Institutional Controls Plan	1	LS		\$5,000	
Groundwater Use Restriction	1	LS		\$5,000	
Site Information Database	1	LS		\$5,000	•
SUBTOTAL				\$15,000	
TOTAL CAPITAL COST				3,185,368	
O&M COSTS (Year 1-40)					-
DESCRIPTION	QTY	UNIT	UNIT	TOTAL	NOTES
Annual Performance Costs					Notes
Influent and Wall Sampling & Analysis	40	ea	\$900	\$36,000	20 wells analyzed semi-annually
SUBTOTAL	70	Ca	фэоо_	\$36,000	20 Wells allaly zed seminatifically
33513175				\$30,000	
JBTOTAL				\$36,000	
Contingency	8	%		\$2,880	
JBTOTAL				\$38,880	
Project Management	5	%		\$1,944	
Technical Support	10	%		\$3,888	
Quarterly Reports	4	ea	\$1,000	\$4,000	Interim reports
TOTAL ANNUAL O&M COST			_	\$48,712	

eactive Barrier					COST	ESTIMATE SUMM
ANNUALO&M COSTS (YEARS 1-10)	YEAR	QTY	UNIT	UNIT COST	TOTAL	
Groundwater sampling	4.0	040		tono.	\$01C 00D	Constitution and accordants
	1-8	240 240	samples	\$900	\$216,000	6 wells tested quarterly
Treatment system sampling	1-8		samples	\$400	\$96,000	Influent and effluent sampling Monti Carbon replaced every 100 days
Liquid Phase Carbon Replacement	1-8	37	each	\$836	\$30,932	Carbon replaced every 100 days
SUBTOTAL					\$342,932	
ANNUALO&M COSTS (YEARS 11-41)						
Groundwater sampling SUBTOTAL	11-39	240	samples	\$900	\$216,000 \$216,000	4 wells tested semi-annually
ERIODIC COSTS						
ERIODIC COSTS YEAR 5 Five-year Review Report SUBTOTAL	5	1	ea	\$15,000	\$15,000 \$15,000	One report
YEAR 5 Five-year Review Report	5	1	ea	\$15,000		_ One report
YEAR 5 Five-year Review Report SUBTOTAL	5	1	ea sf	\$15,000 . \$10 <u>.</u>		One report One report
YEAR 5 Five-year Review Report SUBTOTAL YEAR 7 Barrier Wall Rejuvenation				· •	\$15,000 \$100,000	
YEAR 5 Five-year Review Report SUBTOTAL YEAR 7 Barrier Wall Rejuvenation SUBTOTAL				· •	\$15,000 \$100,000	_
YEAR 5 Five-year Review Report SUBTOTAL YEAR 7 Barrier Wall Rejuvenation SUBTOTAL YEAR 10 Five-year Review Report	7	10000	sf	\$10 _	\$15,000 \$100,000 \$100,000 \$15,000	One report
YEAR 5 Five-year Review Report SUBTOTAL YEAR 7 Barrier Wall Rejuvenation SUBTOTAL YEAR 10 Five-year Review Report SUBTOTAL	7	10000	sf	\$10 _	\$15,000 \$100,000 \$100,000 \$15,000	One report
YEAR 5 Five-year Review Report SUBTOTAL YEAR 7 Barrier Wall Rejuvenation SUBTOTAL YEAR 10 Five-year Review Report SUBTOTAL YEAR 14 Barrier Wall Rejuvenation	7	10000	sf ea	\$10 - \$15,000	\$15,000 \$100,000 \$100,000 \$15,000 \$15,000	One report One report

.

MEDIAL ALTERNATIVE COST SUMMAI undwater Alternative 1	11					
undwater Απετλατίνε 1 ctive Barrier					COST	ESTIMATE SUMMAR
YEAR 20						
Five-year Review Report SUBTOTAL	20	1	ea	\$15,000	\$15,000 \$15,000	One report
YEAR 21						
Barrier Wall Rejuvenation SUBTOTAL	21	10000	sf	\$10	\$100,000 \$100,000	One report
YEAR 25						
Five-year Review Report SUBTOTAL	25	1	ea	\$15,000	\$15,000 \$15,000	One report
YEAR 28						
Barrier Wall Rejuvenation SUBTOTAL	28	10000	sf	\$10	\$100,000 \$100,0 00	One report
YEAR 30						
Mob/Demob Replacement Construction of Iron Filing Wall	30	1	LS	\$25,000	\$25,000	From ETI
(50%)of Wall	30	1	LS	\$100,000	\$100,000	From ETI
Replacement of 50% of Iron Filings		1	LS	\$450,000	\$450,000	From ETI
Five-year Review Report SUBTOTAL	30	1	ea	\$15,000	\$15,000 \$590,000	_ One report
YEAR 35						
Five-year Review Report SUBTOTAL	35	1	ea	\$15,000	\$15,000 \$15,000	One report
YEAR 37						
Barrier Wall Rejuvenation SUBTOTAL	37	10000	sf	\$10	\$100,000 \$100,000	One report
YEAR 40						
Well Abandonment	6	6	EA	\$500	\$3,000	
Contingency (% of Sum)		10	%		\$300	% of construction activities
Project Mgt. (% Sum + Contingency)		5	%		\$165	% of constr. +contingency
Remedial Action Report SUBTOTAL	3 5	1	ea	\$10,000	\$10,000 \$13,465	-

Groundwater Alternative 1

Reactive Barrier

Site: SOH Henrietta

PVA CALCULATIONS

YEAR	O&M	Discount Factor		CUMMULATIVE DISCOUNTED	CUMMULATIVE UNDISCOUNTED
1	91,579	0.934579439	85,587	85,587	91,579
2	91,579		79,988	165,576	183,157
3	91,579	0.816297877	74,755	240,331	274,736
4	91,579	0.762895212	69,865	310,196	366,314
5	91,579	0.712986179	65,294	375,490	457,893
6	91,579	0.666342224	61,023	436,513	549,471
7	91,579	0.622749742	57,030	493,543	641,050
8	91,579	0.582009105	53,300	546,843	732,628
9	91,579	0.543933743	49,813	596,655	824,207
10	91,579	0.508349292	46,554	643,209	915,785
11	55,912	0.475092796	26,563	669,772	615,032
12	55,912	0.444011959	24.826	694,598	670,944
13	55,912	0.414964448	23,201	717,800	726,856
14	55.912	0.387817241	21 684	739,483	. 782,768
15	55,912	0.36244602	20,265	759,748	838,680
16	55,912	0.338734598	18,939	778,688	894,592
17	55,912	0.31657439	17.700	796,388	950,504
18	55,912	0.295863916	16,542	812,930	1,006,416
19	55,912	0.276508333	15,460	828,390	1,062,328
20	55,912	0.258419003	14,449	842,839	1,118,240
21	55,912	0.241513087	13,503	856,343	1,174,152
22	55,912	0.225713165	12,620	868,963	1,230,064
23	55,912	0.210946883	11,794	880,757	1,285,976
24	55,912	0.19714662	11,023	891,780	1,341,888
25	55,912	0.184249178	10,302	902,082	1,397,800
26	55,912	0.172195493	9,628	911,710	1,453,712
27	55,912	0.160930367	8,998	920,707	1,509,624
28	55,912	0.150402212	8,409	929,117	1,565,536
29	55,912	0.140562815	7,859	936,976	1,621,448
30	55,912	0.131367117	7,345	944,321	1,677,360
31	55,912	0.122773007	6,864	951,185	1,733,272
32	55,912	0.114741128	6,415	957,601	1,789,184
33	55,912	0.107234699	5,996	963,596	1,845,096
34	55,912	0.100219345	5,603	969,200	1,901,008
35	55,912	0.093662939	5,237	974,437	1,956,920
36	55,912	0.087535457	4,894	979,331	2,012,832
37	55,912	0.081808838	4,574	983,905	2,068,744
38	55,912	0.076456858	4,275	988,180	2,124,656
39	55,912	0.071455008	3,995	992,175	2,180,568
40	55,912	0.066780381	3.734	995,909	2,236,480

Cost Estimates

Focused Feasibility Study Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

Reevaluated Site Wide Alternative with Reactive Barrier:

Passive trench with zero valence iron.

Bedrock institutional controls.

Off-site disposal of hazardous surface soils and sediments.

Off-site treatment and disposal of hazardous site sump contents.

Item No.	Description	Capital Cost	O&M Present Worth
1	Passive trench with zero valence iron.	\$3,185,368	\$1,254,546
2	Bedrock institutional controls.	\$47,000	\$393,630
3	Off-site disposal of hazardous surface soils and sediments.	\$373,715	\$59,750
4	Off-site treatment and disposal of hazardous site sump contents.	\$8,950	\$0
Subtotal Engineering	(25%)	\$3,615,033 \$903,758	\$1,707,926
Contingency	y (15%)	\$542,255	
Administrati TOTAL	on (10%)	\$361,503 \$5,422,550	\$1,707,926

Net Present Worth

Capital Cost

\$5,422,550

Present worth of annual O&M cost

\$1,707,926

TOTAL NET PRESENT WORTH =

\$7,130,476

Groundwater Alternative 2

Permanganate Injection/Augmented Bioremediation

COST ESTIMATE SUMMARY

Site:

SOH Henrietta

Location: Henreitta, New York

Phase: Feasibility Study (-30% to + 50%)

Base Year: 2001

Date:

Description:

Groundwater Atternative 2 consists of a permanganate injection and augmented bioremediation system over a 300 ft x 300 ft area. An ancillary pump and treat system will be installed on the south-western corner of the property at 3 gpm. Capital costs occur in Year 0. Annual O&M costs occur in Years 1-30, Due to diminishing carbon usage and groundwater monitoring requirements, additional O&M costs associated with those factors are calculated over 5-year periods.

			UNIT		
DESCRIPTION	QTY	UNIT	COST	TOTAL	NOTES
Mobilization/Demobilization					
Permitting	1	LS	\$10,000	\$10,000	Environmental permits
Submittals/Implementation Plans	1	ĻS	\$30,000	\$30,000	QAPP, SSHP, etc.
Temporary Facilities & Utilities	1	LS	\$10,000	\$10,000	Fence, roads, signs, trailers, etc.
Post-Construction Submittals	1	LS	\$25,000	\$25,000	Post-constr. reports
SUBTOTAL				\$75,000	
Monitoring, Sampling , Testing, and Analysis					Des triantina consultar and Arab
Pre-permanganate injection	30 .	EA	\$900	\$27,000	Pre-injection sampling and Analy
r re-permanganate injection	30	L/A	4300	\$27,000	Pre-injection sampling and Analy
Pre-carbon source injection	15	EA	\$900	\$13,500	Fre-injection sampling and Analy
Bio-optimization Pilot test	1	LS	\$25,000	\$25,000	Bioremediation Bench-scale
SUBTOTAL	'	LO	\$25,000	\$65,500	Diorentediadon Denon-scale
SUBTOTAL				\$65,500	
Site Work	_				
Surveying	1	LS	\$1,500	\$1,500	Well layout
SUBTOTAL				\$1,500	
Well Construction					
Injection Wells	69	each	\$2,500	\$172,500	Additonal 69 injection wells
SUBTOTAL			_	\$172,500	
Pre-Fab Treatment Bidg and Installation	1	LS	\$55,000	\$55,000	40' x 80' Building
SUBTOTAL			_	\$55,000	
Permanganate System Capital Costs					
Permanganate Injection Equipment	1	LS	\$17,500	\$17,500	
Permanganate	235,725	lbs	\$1.28	\$301,964	
Permanganate Shipping	8	trucks	\$1,550	\$12,398	
Drum Disposal	565	drum	\$40	\$22,600	
Container Mixing and Storage Rental	4	month	\$18,000	\$72,000	
Return Container	4	trucks	\$700	\$2,600	
SUBTOTAL				\$429,262	
Augmented Bioremediation System Capital Costs					
Carbon Source Injection Equipment	1	LS	\$6,500	\$6,500	
Molasses	32	drums	\$68.00	\$2,176	
Molasses Shipping	32	drum	\$35	\$1,120	
Drum Disposal	32	drum	\$40	\$1,720	
Storage Shed	1	ls	\$30,000	\$30,000	
Crorage Circu	1	13	ゆつひいひひ	•	
SUBTOTAL				\$41,07 6	

roundwater Alternative 2 ermanganate injection/Augmented Bioremed	COST ESTIMATE SUMMARY					
O&M COSTS (Year 1-30)						
·			UNIT			
DESCRIPTION	QTY	UNIT	COST	TOTAL		NOTES
Groundwater Monitoring						
Monitoring well sampling and analysis	24	ea	\$900	\$21,600		6 wells analyzed quarterly
SUBTOTAL			_	\$21,600		. , .
JBTOTAL				\$21,600		
Contingency	15	%		\$3,240		
JBTOTAL				\$24,840		
Project Management	5	%		\$1,242		
Technical Support	10	%		\$2,484		
Institutional Controls - Site Info Database	1	LS	\$10,000	\$10,000		Update and maintain database
Quarterly Reports	4	ea	\$1,000	\$4,000		Interim reports
TOTAL ANNUAL 0&M COST				\$42,566		
	YEAR	QTY	UNIT	UNIT COST	TOTAL	NOTES
YEAR 5						
	YEAR 5	QTY 1	UNIT ea	\$15,000 _	\$15,000 \$15,000	NOTES One report
YEAR 5 Five-year Review Report SUBTOTAL YEAR 10	5	1		\$15,000 <u> </u>	\$15,000 \$15,000	
YEAR 5 Five-year Review Report SUBTOTAL					\$15,000	
YEAR 5 Five-year Review Report SUBTOTAL YEAR 10 Five-year Review Report SUBTOTAL YEAR 15	5	1	ea ea	\$15,000 _ \$15,000 _	\$15,000 \$45,000 \$15,000 \$15,000	One report One report
YEAR 5 Five-year Review Report SUBTOTAL YEAR 10 Five-year Review Report SUBTOTAL	5	1	еа	\$15,000 <u> </u>	\$15,000 \$45,000 \$15,000	One report
YEAR 5 Five-year Review Report SUBTOTAL YEAR 10 Five-year Review Report SUBTOTAL YEAR 15 Five-year Review Report	5	1	ea ea	\$15,000 _ \$15,000 _	\$15,000 \$15,000 \$15,000 \$15,000	One report One report
YEAR 5 Five-year Review Report SUBTOTAL YEAR 10 Five-year Review Report SUBTOTAL YEAR 15 Five-year Review Report SUBTOTAL	5	1	ea ea	\$15,000 _ \$15,000 _	\$15,000 \$15,000 \$15,000 \$15,000	One report One report
YEAR 5 Five-year Review Report SUBTOTAL YEAR 10 Five-year Review Report SUBTOTAL YEAR 15 Five-year Review Report SUBTOTAL YEAR 20 Five-year Review Report	5 15 15	1 1	ea ea ea	\$15,000 _ \$15,000 _ \$15,000 _	\$15,000 \$45,000 \$15,000 \$15,000 \$15,000 \$15,000	One report One report One report
YEAR 5 Five-year Review Report SUBTOTAL YEAR 10 Five-year Review Report SUBTOTAL YEAR 15 Five-year Review Report SUBTOTAL YEAR 20 Five-year Review Report SUBTOTAL	5 15 15	1 1	ea ea ea	\$15,000 _ \$15,000 _ \$15,000 _	\$15,000 \$45,000 \$15,000 \$15,000 \$15,000 \$15,000	One report One report One report
YEAR 5 Five-year Review Report SUBTOTAL YEAR 10 Five-year Review Report SUBTOTAL YEAR 15 Five-year Review Report SUBTOTAL YEAR 20 Five-year Review Report SUBTOTAL YEAR 25 Five-year Review Report	5 15 15	1 1 1	ea ea ea	\$15,000 _ \$15,000 _ \$15,000 _	\$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000	One report One report One report One report
YEAR 5 Five-year Review Report SUBTOTAL YEAR 10 Five-year Review Report SUBTOTAL YEAR 15 Five-year Review Report SUBTOTAL YEAR 20 Five-year Review Report SUBTOTAL YEAR 25 Five-year Review Report SUBTOTAL	5 15 15 20	1 1 1	ea ea ea	\$15,000 _ \$15,000 _ \$15,000 _	\$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000	One report One report One report One report
YEAR 5 Five-year Review Report SUBTOTAL YEAR 10 Five-year Review Report SUBTOTAL YEAR 15 Five-year Review Report SUBTOTAL YEAR 20 Five-year Review Report SUBTOTAL YEAR 25 Five-year Review Report SUBTOTAL YEAR 25 Five-year Review Report SUBTOTAL	5 15 15 20 25	1 1 1	ea ea ea	\$15,000 _ \$15,000 _ \$15,000 _ \$15,000 _	\$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000	One report One report One report One report
YEAR 5 Five-year Review Report SUBTOTAL YEAR 10 Five-year Review Report SUBTOTAL YEAR 15 Five-year Review Report SUBTOTAL YEAR 20 Five-year Review Report SUBTOTAL YEAR 25 Five-year Review Report SUBTOTAL YEAR 25 Well Abandonment	5 15 15 20 25	1 1 1 1 32	ea ea ea	\$15,000 _ \$15,000 _ \$15,000 _ \$15,000 _	\$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000	One report One report One report One report One report
Five-year Review Report SUBTOTAL YEAR 10 Five-year Review Report SUBTOTAL YEAR 15 Five-year Review Report SUBTOTAL YEAR 20 Five-year Review Report SUBTOTAL YEAR 25 Five-year Review Report SUBTOTAL YEAR 35 Well Abandonment Contingency (% of Sum)	5 15 15 20 25	1 1 1 1 1 32 25	ea ea ea EA %	\$15,000 _ \$15,000 _ \$15,000 _ \$15,000 _	\$15,000 \$45,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$15,000 \$16,000 \$4,000	One report One report One report One report One report One report

Groundwater Alternative 2

Permanganate Injection/Augmented Bioremediation

PVA CALCULATIONS

YEAR	O&M	Discount Factor		CUMMULATIVE DISCOUNTED	CUMMULATIVE UNDISCOUNTED
1	42,566	0.9350	39,799	20.700	40.500
2	42,566	0.9350	39,799	39,799	42,566
3	42,566	0.8160		76,959	85,132
4	42,566	0.7629	34,734	111,693	127,698
5	42,566	0.7629	32,474	144,167	170,264
6			30,350	174,516	212,830
7	42,566	0.6664	28,366	202,882	255,396
8	42,566	0.6228	26,510	229,392	297,962
	42,566	0.5820	24,773	254,166	340,528
9	42,566	0.5439	23,152	277,317	383,094
10	42,566	0.5084	21,641	298,958	425,660
11	42,566	0.4751	20,223	319,181	468,226
12	42,566	0.4440	18,899	338,080	510,792
13	42,566	0.415	17,665	355,745	553,358
14	42,566	0.3878	16,507	372,252	595,924
15	42,566	0.3625	15,430	387,683	638,490
16	42,566	0.3387	14,417	402,100	681,056
17	42,566	0.3166	13,476	415,576	723,622
18	42,566	0.2959	12,595	428,171	766,188
19	42,566	0.2765	11,769	439,941	808,754
20	42,566	0.2584	10,999	450,940	851,320
21	42,566	0.2415	10,280	461,220	893,886
22	42,566	0.2257	9,607	470,827	936,452
23	42,566	0.2110	8,981	479,808	979,018
24	42,566	0.1972	8,394	488,202	1,021,584
25	42,566	0.1843	7,845	496,047	1,064,150
26	42,566	0.1722	7,330	503,377	1,106,716
27	42,566	0.1609	6,849	510,226	1,149,282
28	42,566	0.1504	6,402	516,628	1,191,848
29	42,566	0.1406	5,985	522,613	1,234,414
30	42,566	0.1314	5,593	528,206	1,276,980

Groundwater Alternative 2

Permanganate Injection/Augmented Bioremediation

COST ESTIMATE SUMMARY

Site: SOH Henrietta

Location: Henrietta, New York

TOTAL PRESENT VALUE OF ALTERNATIVE

Description:

Phase:

Feasibility Study (-30% to + 50%)

Base Year: 2001

Date:

Groundwater Alternative 2 consists of a permanganate injection and augmented bloremediation system over a 300 ft area. An ancillary pump and treat system will be installed on the south-western comer of the property at 3 gpm. Capital costs occur in Year 0. Annual O&M costs occur in Years 1-30. Due to diminishing carbon usage and groundwater monitoring requirements, additional O&M costs associated with those factors are calculated over 5-year

periods.

\$2,182,587

PRESENT VALUE ANALYSIS

COST TYPE	YEAR	TOTAL COST	TOTAL COST PER YEAR	DISCOUNT FACTOR (7%)	PRESENT VALUE	NOTES
Capital Cost	0	\$1,619,931	\$1,619,931	1	\$1,619,931	
Annual O&M Cost	1-35	\$1,276,980	See Table	See Table	\$528,206	See PVA Calculations
						Table for details
Periodic Cost	5	\$15,000	\$15,000	0.713	\$10,695	5-yr review, update i.c. plan
Periodic Cost	10	\$15,000	\$15,000	0.508	\$ 7,620	5-yr review, update i.c. plan
Periodic Cost	15	\$15,000	\$15,000	0.363	\$5,44 5	5-yr review, update l.c. plan
Periodic Cost	20	\$15,000	\$15,000	0.258	\$3,870	5-yr review, update i.c. plan
Periodic Cost	25	\$15,000	\$15,000	0.184	\$2,760	5-yr review, update i.c. plan
Periodic Cost	30	\$31,000	\$31,000	0.131	\$4,061	
		\$3,002,911	_		\$2,182,587	

Cost Estimates

Focused Feasibility Study Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

Reevaluated Site Wide Alternative with Permanganate/Augmented Bioremediation:

Permanganate injection/augmented bioremediation.

Bedrock institutional controls.

Off-site disposal of hazardous surface soils and sediments.

Off-site treatment and disposal of hazardous site sump contents.

Item No.	Description	Capital Cost	O&M Present Worth
1	Permanganate injection/augmented bioremediation.	\$1,619,931	\$562,657
2	Bedrock institutional controls.	\$47,000	\$393,630
3	Off-site disposal of hazardous surface soils and sediments.	\$373,715	\$59,750
4	Off-site treatment and disposal of hazardous site sump contents.	\$0	
Subtotal Engineering Contingenc Administrati	y (15%)	\$2,049,596 \$512,399 \$307,439 \$204,960	\$1,016,037
TOTAL		\$3,074,393	\$1,016,037

Net Present Worth

Capital Cost

\$3,074,393

Present worth of annual O&M cost

\$1,016,037

TOTAL NET PRESENT WORTH =

\$4,090,430

APPENDIX B

BOREHOLE LOGS

Project _		etta, NY			Owner <u>Metalade</u> Proj. No. <u>784222</u>	See Site Map For Boring Location
Surface	Clay	T.	+ 01 H 016		oth <u>40 ft.</u> Diameter	
Top of C	CIEV	I G	tar Lau	: Dep	Oth 40 / L. Diameter	COMMENTS:
Soroon:	osing. Dia	wa	iter Lev	el II	itial Static	
Screen: I	∪ia	Le	ngtn		Type/Size	
Casing: L)ia	Le	ngth		Type	
Fill Mater	1al				Rig/Core	
					HSA OF 10 100	
					<u>/nard</u> Date <u>05/18/00</u> Permit #	
Checked	Ву				License No.	
Depth (ft.)	PIO (ppm)	Sample ID Blow Count/ % Recovery	Graphic Log	ISCS Class.	Descripti (Color, Texture, S Trace < 10%, Little 10% to 20%, Some	Structure)
		a, m %		_∩.		
 - -2 -		•	i i			
1 4						
F 0 -		-			0. 41: 41: 21: 41	
]		└ 0-4': Augered to 4'.	
L 2 -						
$\Gamma ' \neg$	[
F -			i i]
L 4 -					4 Ole Tan along along those are as a	
$\Gamma $ $^{+}$ \neg	1		1 1 1		4-6': Tan, dry, clay, trace coarse sand, gre	y mottled color.
1 -	10.6	8-8-7-9		OL		i
L 6 –	[,	98%			6-8": Tan/red, moist clay/sand (medium grai	inad agarna grained) trace
					gravel.	ried-coarse grained), trace
F 7	11.9	4-13-13-7		CL	9,2,3,	
F 8 -I		98%		Ш	8–10': Tan/brown silty sand (equal parts), tr	race fine group! to9-0!
1					grades into medium-coarse grained sand, tra	ace the graver to ~5-9
l i	39.7	3-8-13-18		8-MB	wet.	soc oldy, inthe sint, trace graves,
I - 10 -		90%			10—12": Brown, wet, medium—coarse sand, little	silt trace gravel
'					io ie i brown, wer, mediani eedrae adiid, ittit	ont, trace graver.
† †	234	8-9-10-14		SP		ł
I - 12 -		85%		Щ	12-14': Brown medium-coarse sand, trace silt	gravel cobble to ~13.5 last
					5", brown silty sand, trace gravel, very dens	e.
	64.7	8-14-19 - 21 80%		SM		
L 14 🗐		1 00%			4.4.40% Description market office cannot be a second of	a bala a la

Sample ID Sample ID 80.4 0.7 0.5 10% 80.4 0.7 0.5 80.4 0.7 0.5 80.5 80.4 0.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5	A CONTRACTOR OF SPINIC STANDS	⊋ USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50 24-26': Brown, maist, silty sand, trace gravel, cobble, very dense. 26-28': Na recovery.
50/.4 0%	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GM	
	न । जावज		26–28": No recovery.
50/.3 10%			28-30': Brown, dry, silty sand, trace gravel, cobble, very dense.
1	0000	GM	30-32": Same as above.
80/.4 15%	0 0 0 0 0 0		32–34': Brown, wet, silty sand (equal parts), trace cobble last 6" brown, wet, medium—coarse sand, trace fine gravel.
24-2I-28- 19/98%			34-36': Brown, wet, silty sand, trace fine gravel, clay.
		SM	36-38': Brown, wet, silty sand (equal parts), wet.
25% 28-31 - 50-			38-40': Brown, moist, silty sand, dense, trace gravel, refusal on shale.
307.4 10%	1.1 1:1		
	19/98% 50/.3 15% 35-50/.4 25%	19/98% 50/.3 15% 35–50/.4 25%	19/98% 50/.3 15% 35-50/.4 25%

Project .	Henri	etta NY	Owner <u>Metalade</u> ta, NY Proj. No. <u>784222</u>		roi No. 784222	See Site Map For Boring Location
Surface	Elev.	To	otal Hole 🛭	pth <u>42 ft.</u> Diameter	10]. No. 104222	GOLUCITO .
Top of 0	Casing	Wa	ater Level	nitial Static		COMMENTS:
Screen:	Dia _	Le				
Casing: (Dia	Le	ngth	Type		
Fill Mate	rial			Rig/Core		
Drill Co	<u>SJB</u>	· · · · · ·	Metho	<u>HSA</u>		
Driller <u>A</u>	. Morris	Lo	g By <u>T. M</u>	ynard Date <u>05/19/00</u>	. Permit #	
Checked	Ву			License No	_	
Depth (ft.)	OId (mdd)	Sample ID Blow Count/ % Recovery	Graphic Log USCS Class	Trace < 10%, Little	Descripti (Color, Texture, S 2 10% to 20%, Some	
2-						
- 0 -	1		 	0.45.4		
} -				└ 0-4': Augered to 4'.		
- 2 -						
- 4 -				A Ob Tarandar at a music		
_	ŀ			4-6: I an, dry, clay, litt	le gravel, trace cobb	le, medium grained sand.
- 6 -	77.7	9-8-10-12 98%		6 0't Comp on the co		
[OL OL	6-8': Same as above.		
[8]	148	12-25-31-8 98%		D. 404 No. voo.		
] .			8–10': No recovery.		
[,,]	NA	0%				İ
- 10 -	i			10-12': Brown/tan, wet, s	silty sand (equal part	ts), trace fine gravel.
₁	214	4-5-9 - 7 90%				ĺ
- 12 - -				12-14': Same as above, s	vet.	
- 14 -	224	10-11-9-14 85%		14-16': Brown moist silts	cond little ground to	road achble-

Location Henrietta, NY Proj. No.	. <u>784222</u>
Depth (ft.) PID M Count/ W Count/ Recovery Caphic Lag S Class.	Description or, Texture, Structure) to 20%, Some 20% to 35%, And 35% to 50%
24 - 49-50/.4 60% 24-26': Brown, silty sand, tra 26 - 8.9 29-50/.4 30% 26-28': Brown, moist, silty sand 28 - 1.2 50/.4 20% 26-26': Brown, moist, silty sand 28-30': Brown, moist, silty sand 30-32': Brown, moist, silty sand 30-32': Brown, moist, silty sand 30-32': Brown, moist, silty sand 32-34': Brown, moist, silty sand 34-36': Same as above, TILL. 361 8-15-15-15 70% 26-26 36 36-38': Same as above. 38-40': Brown, wet, silty sand of weathered shale, soupy. 38-40': Brown, wet, silty sand of weathered shale, soupy. 40-42': Brown, wet, silty sand	to 20%, Some 20% to 35%, And 35% to 50% oce medium sand, gravel. Indilitie gravel, trace cobble, dense. Indilitie grained sand, gravel, clay. Indilitie gravel, cobbles, TILL. Indilitie gravel, trace cobbles, TILL.

Project _	<u>Henri</u>	etta, NY			Owner <u>Metalade</u> Proj. No. <u>784222</u>	See Site Map For Boring Location
Surface	Flev.	T^	tal Holi	е Пе	oth 42 ft. Diameter	
Top of C	asina	Wa	iter Lev	c uc /el Tr	nitial Static	COMMENTS:
Screen: I	 Dia :		nath		Type/Size	
Casing: F	ia		nath	-	Type	
Fill Mater	ial				Rig/Core	
Drill Co.	SJB		Me	thod	HSA	
					vnard Date <u>05/22/00</u> Permit #	
					License No.	
			H -	s,		
. €∵	_E	er fer	퉏_	က္	Descripti	on
Depth (ft.)	PID (mdd)		raphir	ū		
"	- <u>J</u>	Sample ID Blow Count/ % Recovery	0.0	nscs	(Color, Texture, S Trace < 10%, Little 10% to 20%, Some	otructure)
	·	0, W %	<u> </u>	š	1700 1700, Erete 100 to 200, 30 life	20% to 35%, And 35% to 50%
- 2-						
		ŀ				
						i
F 0 -	İ				O A's Augorod to A'	
}					└- 0-4': Augered to 4'.	
L 2 -						
-						
f 1						
F 4 -			111111		4-6': Tan/brown, moist, silty sand, trace fine	gravel, cobble (coarse sand
L J	150				top 6").	g. 1 . c., 4 e b b i b (4 e d i b c e d i i i i
`	158	9-7-10-12 98%				1
F 6 -					6-8': Brown, wet medium sand top 1" grades	to brown, wet, silty sand, trace
-	130	12-20-22-		SM	fine gravel, sand, cobble, increasing density.	ł
L 8 -		16 75%			0_10 ¹ Proup and aller and (parel =)	
~ 7					8–10': Brown; wet, silty sand (equal parts), to silty sand (more silt than sand), trace fine	race fine gravei, cobble grades
}	77.6	12-27-37-			to only sond (more sut than sond), trace that	= graver.
L 10 -		24 40%	ШЩ		10-12': No recovery.	
					10 12 1110 1000 y Cl y,	Ĭ
[NA	50/.3				
 − 12 					12-14': No recovery (refusal on boulder).	
⊦	NA	50/.3				i
L 14	INA	307.3			44 401 5	
r 14 →1	II.	·		——!	1/1-18" Realin majet ciltu conditrodo fino are	nual asimble .

Project ±	SOH Henrid	etta NV		_	Owner <u>Metalade</u>
Location	<u> </u>	11 11 11 11		11 - 2 2	Proj. No. <u>784222</u>
Depth (ft.)	PID (mqq)	Sample ID Blow Count/ % Recovery	Graphic Log	S Class.	Description (Color, Texture, Structure)
		San Blow R Re	<u></u>	nscs	Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 - 	2000	10-29-35- 50 55%			24–26': Brown, wet medium grained sand, little silt, little coarse sand top 6".
– 26 –	2000	50 55% 3-15-22-21		SM	26–28': Brown, wet silty sand (equal parts), trace gravel, medium sand.
- 28 -	2000	50%			28–30': Brown, wet medium sand little silt, top 8", grades to silty sand, trace fine gravel.
- 30 -) 0 0 X		30—32': Brown, moist, silty sand, little gravel, trace cobbles, dense.
- 32 -	2000	50/.3 13%			32-34': Same as above.
- 34 -	1435	50/.2 2%		GM	34-36': Same as above.
36 –	418	50/.4 8%			36-38": Same as above.
- 38 -	168	50/.4 12%			38-40': No recovery.
- 40 -	NA	50/.3	7,147		40-42': Brown, wet, silty sand, little gravel, trace cobbles, dense shale
- 42 –	163	50-50/.3 25%		GM	Dottom 1".
44					
- 46 –					

Surface Elev Top of Casing . Screen: Dia Casing: Dia Fill Material Drill Co. <u>SJB</u>	etta, NY Total Ho Water Le Length _ Length _	ole Dep	Owner <u>Metalade</u> Proj. No. <u>784222</u> Oth <u>42 ft.</u> Diameter Itial Static Type/Size Type Rig/Core HSA Vnard Date <u>05/11/00</u> Permit #	- - -
Checked By			icense No	
Depth (ft.)	Sample ID Blow Count/ % Recovery Graphic	6,	Descript (Color, Texture, S Trace < 10%, Little 10% to 20%, Some	Structure)
2 - - 0 - - 2 - - 2 -			0-4': Augered to 4'.	
- 4 - 0.0	8-9-12-14 70%	sc	4—6': Brown, dry, clayey sand, little fine sub	, ,
- 6 - 0.0	11-11-17 G ak 40%) G 0	1 × × × × × × × × × × × × × × × × × × ×	6-8': Brown, wet w/depth, silty sand, trace above, trace coarse gravel.	
0.0	12-14-24- C : a 25 70%) Q 0	GM GM	8—10': Same as above, coarsening w/depth, coarse sand, little fine—coarse gravel, wet. 10—12': Brown, wet, silty fine sand, some med	
1	4-18-25-28 G 6 50% J G 6	<u> </u>	gravel, becoming tight w/depth. 12-14': Brown, wet, silty sand, trace fine-gra	
0.0	25-27-36- G A 36 45%) Q 0		little coarse gravel throughout.	

Project 3	50H				Owner <u>Metalade</u>
Location	Henrie	etta, NY		,	Proj. No. <i>784222</i>
Depth (ft.)	PID (mqq)	Sample ID Blow Count/ % Recovery	Graphic Log	uscs Class.	Description (Calor, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%;
- 24 -		ω <u>m</u> %		ñ	
	NA NA	50/.4 0%			24—26': No recavery.
- 26 -	114	307.4 0%			26—28'. Brown—grey, moist, fine silty sand, little medium sand & fine— coarse
 	0.0	48-50/.3		SM	gravel, tight.
<u>- 28 -</u>					28-30': No recovery.
- 30 -	NA	50/.4 0%	পারপ		30—32': Brown—grey, wet, fine silty sand, little medium—coarse sand, some
-	0.0	50/.4 10%			coarse gravel, very dense.
- 32 -					32—34': Same as above.
34 -	0.0	45-50/.2 10%			34-36': Brown-grey, wet, fine silty sand, trace fine gravel, very dense.
.5	1.0	18-50/.5 25%		GM	
⁷ - 36 -					36=38': Same as above.
- 38 -	0.0	20-50-50- 36			38—40': Brown, wet, fine silty sand, trace clay, less dense, some very
} -	0.0	8-!!-!8-22 70%			coarse gravel, some fine gravel.
-40-			dig		40-42': Brown, wet, coarse-medium sand, trace cobble, coarse gravel.
42	0.0	21-20-20- 20 10%		S₩	
} -					
- 44-					
46-					

Project <u>SOH</u> Location <u>Henrietta, NY</u>	· · · · · -	Owner <u>Metalade</u> Proj. No. <u>784222</u>	See Site Map — For Boring Location
Surface Elev Top of Casing W Screen: Dia L Casing: Dia L Fill Material Drill Co SJB Driller A. Morris L	otal Hole De ater Level Ir ength ength Method og By <i>T. Ma</i>	42 ft. Diameter sitial Static Type/Size Type Type Type Rig/Core Type	
Depth (11.) PID (ppm) Sample ID Blow Count/	Graphic Lag USCS Class.	Descrip (Color, Texture Trace < 10%, Little 10% to 20%, Soi	, Structure)
2- 0- 2- 2- 2- 2- 2- 2- 3-	OL SP	4-6': Tan, dry, clay. 6-8': Tan, dry, clay, little sand. 8-10': Clay, dry, little medium sand, grades some gravel. 10-12': Brown, dry silty sand, trace coarse 12-14': Same as above.	

Soil Boring SB-5

Project SOH Owner Metalade Location Henrietta, NY Proj. No. 784222 Class. Blow Count/ Recovery Sample ID Graphic Log Depth (ft.) Description PIO (ppm) SCS (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% 24 -24-26': Brown, silty sand, some gravel last 6", dense. 1078 28-50-50/ .3 50% - 26 26-28': Brown, wet, silty sand, some gravel (medium-fine), trace cobble. dense. 50-50/.4 20% 338 - 28 -28-30': Brown, wet, silty sand, trace gravel, dense. 40-50/.3 10% 195 - 30 30-32': Same as above. GM 50-50/.2 10% 295 32 -32-34': Brown, moist, silty sand, trace fine gravel, dense. 50-50/.2 30% 255 34 -34-36': No recovery. 25-30-10-15 0% NA 36 36=38': No recovery. NA 2-2-2-2 0% 38 38-40': Brown, wet, silty sand, some clay, trace gravel. 10-15-10-20 5% 0.0 -40-40-42': Same as above, shale bottom 4". 1-1-1-50/ .3 10% 13.7 42-44-

Project <u>SOH</u> Location <u>Hen</u> r	 ietta. NY			Owner <i>Metalade</i> Proj. No. <i>784222</i>	See Site Map For Boring Location
Surface Flev	T.	tal Hole	ner	oth <u>44 ft.</u> Diameter	
				itial Static	COMMENTS:
				Type/Size	
Casing: Dia	Le Le	nath		Type	
				Rig/Core	
Drill Co. SJB		Me	thod	HSA]
				vnard Date <u>05/15/00</u> Permit #	:
				License No.	
			ŝ		<u> </u>
€- _6	Sample ID Blow Count/ % Recovery	운	las	Descripti	on
Depth (ft.)		Graphic Log	C	(Calar, Texture, S	
	Town 1981	<u>0</u> _	SOSI	Trace < 10%, Little 10% to 20%, Some	
 	1 C) II 34		3	<u> </u>	
2 -					
L 4		1 1			
				0-4': Augered to 4'.	
├ -∦]		The state of the s	
L 2 -		1			
-] .			
T 1					
⊢ 4 ⊣		11,111,111,1		4-6": Tan, dry clay, trace medium sand, 5-6	' brown silty sand, trace fine
l - es.i	27 20 20		OL	gravel.	
I I	27-20-30- 15 80%		0.		
F 6 -		11111		6-8': Tan-brown, wet silty sand, 3" fill?, trac coarse sand at 7.5'.	ce fine-medium gravel, 2" lens
- de de de de de de de de de de de de de	20-21-23-			Coalse saild at 7.5.	
L 8 -	25 98%			8–10': Brown, silty sand (equal parts), wet, t	race gravel
				o to the owing states (equal parts), well, t	race graver.
25.8			SM		
⊢ 10 ⊣	22 80%	1.11.1.		10-12': Same as above.	
L J		$\ $			
77.7	NA 80%	$\ $		_	
- 12 -	}			12-14": No recovery (sluff from above).	
h NA	21-23-35- 46 0%			44 401 11	

?' Project _ Location	SOH Henrie	etta, NY			Owner <u>Metalade</u> Proj. No. <u>784222</u>
Depth (ft.)	GIA (mdd)	그 것 건	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 - 26 -	0.0	50/.3 5%	1000 000 000 000		24-26': Brown, moist, slity sand, trace fine gravel, cobble, very dense. 26-28': Same as above.
- 28 -	1.7	50/.3 5%		GM	28-30': Spoon refusal on a boulder.
- 30 -	NA 0.0	50/0 0% 50/.3 0%	9 a4 9 a4 9 a4	GM	30—32": Brown, moist, silty sand, trace fine gravel, very dense.
- 32 - - 34 -	NA	50/.3 0%	4 184		32-34': No recovery. 34-36': Brown, moist, silty sand, fine gravel, very dense.
7 - 36 -	5.9	18-50-50/ 0 10%		GM	36-38": Brown, moist, silty sand, trace fine gravel, very dense.
- 38 - 	8.4 NA	30-50/.3 35% 20-50/.4 2%	dok		38-40': Na recovery.
- 40 - - 42 -	NA .	21-30-50/ .3 2%	প াৱপ		40-42': No recovery. 42-44': Brown, moist, silty sand, trace fine gravel, some feldspar
44-	17.5	50/.2 2%	0 0 K	GM	(crushed).

Project 3		etta, NY			Owner <u>Metalade</u> Proj. No. <u>784222</u>	See Site Map For Boring Location			
TARAFO	elev	I (otal Hole	ue,	oth <u>42 ft.</u> Diameter	COMMENTS:			
Top of Casing Water Level Initial Static Screen: Dia Length Type/Size Sampled w/3" spoo									
Costan D) a	Le	ngth			Sampled w/3" spoon, 300lb hammer.			
Casing: D	ııa	Le	ngth		Type				
Fill Mater	ial				Rig/Core				
					HSA				
					<u>vnard</u> Date <u>05/17/00</u> Permit #				
Checked	Ву				License No	·			
Depth (ft.)	(wdd) OId	Sample ID Blow Count/ % Recovery	Graphic Log	USCS Class.	Descripti (Color, Texture, S Trace < 10%, Little 10% to 20%, Some	Structure)			
2-									
- 0 -					0-4': Augered to 4'.				
- 2 -									
 4			7/7		4-6": Brown, moist, silty sand, trace clay top	6", trace fine gravel.			
- 6 -	734	11-12-4-8 98%		sc	6-8': Brown/tan, wet, silty sand, trace fine o	gravel, clay.			
- 8 -	247	18-25-35- 20 80%			8—10': No recovery (sluff from above).				
- - 10 -	NA	48-37-50/ .3 0%			10–12': Brown, wet, silty sand (equal parts), t	race gravel (medium- fine).			
 - 12	173 70.8	18-13-25- 27 98% 42-50/.4		SM	12–14': Top 6" brown, wet, silty sand (equal parts)	parts), trace gravel, soubv.			
L 14 🗐	10.5	70%			14-16': No roceyory				

Project <u>SOH</u> Location <u>Henrietta, NY</u>		Owner <u>Metalade</u> Proj. No. <u>784222</u>
Depth (11.) PID (ppm) Sample ID Blow Count/	Graphic Log USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 - 3.8	7	24-26': Brown, dry, silty sand, trace fine gravel, cobbles, dense. 26-28': Same as above. 28-30': Brown, dry silty sand, little cobbles, dense. 30-32': Same as above. 32-34': Same as above. 34-36': Brown, moist, silty sand, not very dense, trace fine gravel. 36=38': Brown, moist, silty sand, little coarse gravel, trace fine gravel. 38-40': Brown, wet, silty sand, little gravel, some cobbles, very dense. 40-42': Brown, wet, silty sand, some gravel, trace cobbles, trace clay last 4", VERY DENSE, shale in tip.

Project <u>SOH</u> Location <u>Hem</u>	rietta NY		Owner <u>Metalade</u>	See Site Map For Boring Location
Curfood Floor	<i>10118, 141</i>		Proj. No. <u>784222</u>	
Surface Elev.		otal Hole De	pth <u>42 ft.</u> Diameter	COMMENTS:
Top of Lasing	Wa	ater Level 1r	nitial Static	<u> </u>
Screen: Dia _	Le	ength	Type/Size	Sampled using 3" spoon.
Casing: Dia	Le	ength	Type	
Fill Material			Rig/Core	-
			HSA	
			Date <u>05/09/00</u> Permit #	
Checked By _			License No	_
Depth (ft.)	Sample ID Blow Count/	Graphic Log USCS Class.	□escrip (Calor, Texture Trace < 10%, Little 10% to 20%, Soi	. Structure)
- 0 - - 2 -			0-4': Augered to 4'.	
- 4 - NA	9-10-11-9		4–6': No recovery.	
- 6 - 0.0	0% 21-21-18-	OL.	6–8': 6" reddish brown clay, last 6" silty f sand.	ine sand, trace brown medium
- 8 -	23 50%		8-10': Wet, silty fine sand, some fine grave	el, trace coarse.
- 10 -	20-22-10- 24 75%		10-12': Same as above, some coarse grave	el, little coarse sand.
0.0	15-18-21- 22 75%	SM	12-14": Same as above, becoming more gre saturated, becoming drier.	ey and tighter, very wet to
14 -	21-34-50/ .3 75%		14-16'- No receivery	

Project <u>SOH</u> Location <u>Henrietta, NY</u>					Owner <u>Metalade</u> Proj. No. <u>784222</u>
Depth (11.)	PIO (mdd)	ㅁ 글 건	Graphic Log	USCS Class.	Description (Calar, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 -	,			-	24-26': Same as above.
- 26 -	NA	50/.4 0%			26—28': Same as above.
- 28 -	NA	50/.3 0%	0 0 0 0 0 0		28-30": Same as above.
- 30 -	NA	50/.2 0%	0000		30-32': Same as above.
32 –	NA	50/.3 0%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		32-34': Same as above.
- - 34 -	NA .	50/0 0%		GM	·
, - 36 –	1.7	37-50/.3			34-36': Grey, wet, fine silty sand and fine-coarse gravel.
	0.0	15-39-36- 22 50%	300K		36—38': Same as above, drier bottom 6" is coarse gravel and fine silty sand.
- 38 -	0.0	15-25-50/ .3 50%			38-40': Water in spoon, fine silty sand, some fine-coarse gravel, tight.
- 40 -	NA				40-42": Rack fragments-bedrock.
- 42 -	.,,	38-50/ <i>2</i> 25%	1998		
- 44-					
- 46 -				:	

	Owner <u>Metalade</u>	See Site Map For Boring Location
Location Henrietta, NY	Hole Depth <u>40 ft.</u> Diameter Proj. No. <u>784222</u>	?
Top of Casing Water	Level Initial Static	COMMENTS:
Screen: Dia Leng	h Type/Size	
Casing: Dia Leng	h Type	
Fill Material	Rig/Core	
Drill Co. <i>SJB</i>		
	y <u>M. <i>Puglisi</i></u> Date <u>05/08/00</u> Permit #	
	License No	
Depth (ft.) PID (ppm) Sample ID Blow Count/ % Recovery	Color, Text)	ription ure, Structure) Some 20% to 35%, And 35% to 50%
2 - - 0 -	Blacktop	
4.5 25-18-10- 20 50%	0-2': Brown, fine-medium sand and fin saturated. 2-4': No recovery.	e-coarse gravel, bottom 3" is
NA 22-13-6-8 0%	4-6': Reddish brown, wet, trace mediu	m sand, silty clay.
0.0 10-12-8-9 11 - 6 - 50%	6-8': Wet, same as above.	
- 8 - 0.4 18-18-10-7	8-10': Brown, fine silty sand, trace me saturated, 9.5-10' is becoming drier.	dium coarse sand, 8.5-9.5' is
- 10 - 75%	10-12': 11-11.5' same as above, some fin sand, wet.	e-coarse gravel, 11.5-12' fine silty
- 12 - 23 50%	12-14': Same as 11-11.5', bottom 6" fine	-medium sand, brown-grey.
- 14 - ^{18 50x} [·	14-16". Very light brown-grow fine silt	V cand trans madium and accres

Project 3	SOH	2442 MV			Owner Metalade
Location	nenne		П		Proj. No. <u>784222</u>
Depth (ft.)	PID (mdd)	Sample ID Blow Count/ % Recovery	Graphic Log	ISCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
_	-	N B %		Š	10 00 00 00 00 00 00 00 00 00 00 00 00 0
- 24 -	1956	19-26-16- 14 50%) 0 k 0 k 0 k 0 k		24-26': Same as above, not as tight, some medium sand, wet.
- 26 -	>2000	17-26-27- 44 75%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	;	26-28': First 6" is fine-medium sand, saturated, the bottom foot is fine silty sand, trace medium sand, grey, wet.
- 28 - -	1948	20-22-30-		•	28–30': Grey, wet, fine silty sand.
- 30 -	1588	20 50% 20-20-50/	000	j	30—32'; Same as above.
- 32 - -	1497	.4 50% 10-22-20-	3000 3000 3000	GM	32-34': Same as above, some fine gravel, more tight.
- 34 -	NA :	10-22-20- 30 50%			34-36": Sluff, a few pieces of coarse gravel, not enough soil to sample
⁾ – 36 –		20-19-40- 56 25%			36—38': Grey, fine silty sand and fine—coarse gravel, tight.
- 38 -	77.3	12-20-32- 48 50%			38-40': Sluff and rock fragments, possibly weathered bedrock.
40-	NA	58-50/.I 5%	9 29 29 0 K		40—42': Na recovery.
- 42 -	NA	50-28-18- 18 0%	7,147		42-44': Spoon had refusal at 42.7' BG, rock fragments-grey green shale.
- 44	NA	42-50/.2 5%		GM	
_ 48_					

Project Location	Henr	ietta, NY			Owner <u>Metalade</u> Proj. No. <u>784222</u>	See Site Map For Boring Location
Screen: Casing: I Fill Mate Drill Co. Driller A	Casing Dia Dia erial SJB I. Morris	Wa	ength _ ength _ ength _ Magagar	ethoc	pth <u>40 ft.</u> Diameter	- - - -
Depth (ft.)	PID (mdd)	그 수 건	Graphic Log	, si		Structure)
2 - - 0 - - 2 -					0-4': Auguered through.	
- 4 - 6 -	0.0	31-29 - 26- 33 50%			4-6': Brown, fine silty sand, little fine grave	el
- 8 - - 8 - - 10 -	0.0	18-18-27- 33 50% 35-25-30- 32 50%		SM	8-10': Same as above, trace of gravel in las 10-12': Same as above.	st 6".
- 12 -	0.0	15-11-23- 33 50% 54-50/.2		פונ	12-14': Same as above, becoming tight.	
- 14 -) 	25%			14-16" Sama as above gravitill find silty sa	and little fine group

Project Location	SOH Henri	etta. NY			Owner <u>Metalade</u> Proj. No. <u>784222</u>
Depth (1t.)	OI'd (mdd)	요 글 글	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 - 26 -	NA	50/.4 0%	10000000000000000000000000000000000000		24-26': No recovery. 26-28': Water in spoon, no recovery.
- 28 -	NA NA	50/.2 0% 50/.4	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		28—30': Not enough to sample, fine silty sand and fine gravel, very tight.
- 30 - - 32 -	NA :	50/.4 2% 50/.3 2%		GM	30-32': Same as above.
- 34 -		83-100-100 50%	00000 20000 200000		32—34": Fine silty sand, some fine to coarse gravel, tight. 34—36": Same as above, sample is very warm due to lack of water in hole.
) – 36 –	1.9 NA	50/.3 10% 63-100/.2	Jog k		36-38': Small amount of rock fragments.
- 38 - 40 -	0.1	12-10-28- 50/.2 50%		GM	38—40': Fine silty sand and gravel, last 2" is small rock fragments.
- 42 -					·
- 44 - 46 -					

Soil Boring SB-10/10A

Project <u>SOI</u> Location <u>H</u>	H enrie	tta, NY			Owner <u>Metalade</u> Proj. No. <u>784222</u>	See Site Map For Boring Location	
Surface Ele Top of Casi	ev ing _	To	ter Lev	el In	oth <u>42 ft.</u> Diameter COMMENTS:		
Casing: Dia		Ler	ngth <u> </u>		Type/Size		
Drill Co. SJE	3		Me ⁻	thod	Rig/Core		
Driller A. Mc Checked By					Date <u>05/01/00</u> Permit #		
Depth (ft.)	PID (ppm)	Sample ID Blow Count/ % Recovery	Graphic Log	s Class.	□escript (Color, Texture, S		
		S B %	Ó	nsc	Trace < 10%, Little 10% to 20%, Some	20% to 35%, And 35% to 50%	
2 - - 0 -							
	5.5	4-6-12 50%			0-2': Dark brown, fine silty sand and gravel, (Fill). 2-3': Same as above.	, tight, moist, no odor or staining	
- 4 - ·	5.2	10-9-0-8 75%	919194	_	3-3.5': Brown, grey, moist, fine sand. 3.5-4': Reddish-silty clay, dense, no stains	or odar in spaan.	
1	0.0	4-4-5-7 25%		OL	4-6': Reddish-silty clay. 6-8': Same as above, bottom 2" has trace t	, in the second	
}	0.0	14-15-19- 20 75%				-	
1	0.0	8121318 75%			8-10': 3" of fine sand and gravel and reddis wet, fine sand w/some fine rounded gravel.	sh clay, rest of spoon is brown,	
- 10 -	0.2	12-14-20-			10-12': Moist-wet, fine sand and gravel, no o	odor or staining.	
- 12 -		20 50%			12—14': Moist—wet, Fine sand and gravel, littl	e medium sand.	
[, ,] ;	2.8	55-45-53- 54 50%		SM			

Soil Boring SB-10/10A

roject <u>i</u> Location	SOH	off o NV		_	Owner Metalade
Location	<u>ITCIRIO</u>	110, 141			Proj. No. <u>784222</u>
Depth (ft.)	(mqq)	Sample ID Blow Count/	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 - -	3.6	34-42-05-			24—26': Brown, moist to wet, fine sand & gravel, some medium sand, trace coarse gravel.
- 26 -		42 50%		1	26-28': Wet, fine sand, little medium sand, trace fine gravel, loose.
- 28 -	32.3	8-10-19-17 75%			28—30': Wet, fine silty sand, trace fine gravel.
- 30 -		9-18-20-18 50%		SM	30-32': Brown-grey, saturated, fine sand, little silt.
- 32 -	334	50%			32–33': Fine silty sand.
- 34 -	732	12-13-14-15 75%		-	33-34': Silt, little fine sand, wet-saturated. 34-36': Same as above, saturated, fine silty sand some fine gravel, tight,
- 36 -	130	6-9-18-25 50%		GM	till like. 36-38': Same as above.
- - 38 –	14.9	76-100/.4 25%			38-40': No recovery, stone in foot of spoon.
- - 40 –		4-0-9-11	क्राज्ञक		40—42': Weathered shale, rock fragments, no sample.
 - 42 -		6-6-9-36 25%		GM	42—44': Rock fragments, no sample.
- - 44 -		1.\00/.1 %0 %0			
10					

					Owner <u>Metalade</u>	See Site Map For Boring Location
Location	<u>Henrie</u>	<u>etta, NY</u>			Proj. No. <u>784222</u>	_
Surface	Elev	То	tal Hole	: Dep	oth <u>46 ft.</u> Diameter	COMMENTS:
Top of C	asing _	Wa	ter Lev	el In	itial Static	
Screen: [)ia	Le	ngth <u> </u>		Type/Size	
Casing: D	lia	Le	ngth		Type	
Fill Mater	ial				Rig/Core	
Drill Co. 3	SJB		Me [.]	thod	HSA	
Driller A.	Morris	Lo	g By <u>M</u>	. Pug	disi Date <u>05/01/00</u> Permit #	
Checked	Ву			l	icense No	
<u> </u>			1	ı,		<u> </u>
جے	_	Sample ID Blow Count/ % Recovery	₽	as	Descript	ion
Depth (ft.)	PIO (ppm)		선명	០	•	
▎దా	E.G		Graphic Log	SCS	(Color, Texture, S	
		w <u>a</u> %		Sn	Trace < 10%, Little 10% to 20%, Some	20% to 35%, And 35% to 50%
-2-						
			1			
ŀ -						
L_0						
	-					
ŀ ┤	0.0	14-28-30			0-2": Fine to medium gravel-fill for parking l	lot.
L 2 -	1	25%			2-4': 6" of fine-medium sand, reddish clay.	
-]		
ΙT	0.3	13-14-15-15	,			
L 4 -		75%			4-6': Reddish clay.	
					,	
	2.2	1-10-28-23 50%				
 6		50%		OL	6-8": Same as above.	
]				
	1.1	21-23-24- 32 50%	Hilli			
F 8 -		32 30%		H	8-10': 2" of reddish clay, rest of spoon is w	
	!		[[.]:[.]:[.		medium sand, possible from rain overnight, n	o odor or staining.
	0.5	37-48-35- 39 50%	1.11.1.			
├ 10 ⊣		33 33		SM		sand last 6", fine silty sand
L _	امما	95 - 54-37-			becoming fine sand and gravel.	
1 40	0.0	50 50%	$\ \cdot\ \cdot\ \cdot\ $			
- 12 -			191	╟┈┤	12—14': Fine silty sand, some fine gravel, tra	ce coarse gravel, very tight.
├ -	0.0	19-39-49-	May Ja			
$L_{1/} \rfloor$		38 50%			14 161 Camp on above	

) Project <u>s</u> Location	SOH Henrie	etta. NY			Owner <u>Metalade</u> Proj. No. <u>784222</u>
Depth (ft.)	(mad)	Sample ID Blow Count/ % Recovery	Graphic Log	USCS Class.	Description (Calar, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 - 26 -	NA	50-100/.2 0%			24-26': No recovery.
- 28 -					
- 30 - - 32 -	NA	100/0 0%			30-32": No recovery. 32-34": No recovery.
34 –	NA NA	100/.2 0% 100/.2			34—36': Na recovery.
- 36 - 	NA	100/.3 0%			36-38': No recovery.
- 38 - - 40 -	349	25-58-49- 37 50%	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		38-40": Brown, moist, fine slity sand, some medium sand, little fine-coarse gravel, very tight. 40-42": Same as above, wet, last 2" of spoon was broken rock fragment,
42-		55-33-42- 38 50%		GM	possibly weathered bedrock (shale). 42-44': No recovery, spoon had refusal at 42.2', will try w/augers.
44-	NA NA	100/.2 0% 100/.2 100%			44-46': Only recovery is small rock fragments, shale, no soil, wet.

Project <u>SOH</u> Location <u>Her</u>	rietta, NY		Owner <u>Metalade</u> Proj. No. <u>784222</u>	See Site Map For Boring Location
Surface Elev	To	otal Hole De	pth <u>42 ft.</u> Diameter	
Top of Casing	g Wa	ater Level I	nitial Static	COMMENTS:
Screen: Dia _	Le	ength	Type/Size	•
Casing: Dia _	Le	ength	Type	`
Fill Material _			Rig/Core	
Drill Co. <u>Sub</u>		Method	<u> HSA</u>	
Driller <u>A. Mor</u>	<i>ris</i> Lo	og By <u>M. <i>Pu</i></u>	glisi Date <u>05/04/00</u> Permit #	
Checked By .			License No	
Depth (ft.)	Sample ID Blow Count/ % Recovery	Graphic Log USCS Class.	□escript (Color, Texture, 9 Trace < 10%, Little 10% to 20%, Some	Structure)
2- - 0 -				
- NA	33-8-8 20%		0-2': Gravel fill, no sample, all rock.	
F 2			2-4': Same as above.	
- 4 - NA	20 0%		4–6': Moist, light brown, fine silty sand and t	iine gravel, no staining or odor.
6 - 0.0	4-10-13-21 75%		6-7": Same as above to 6.5", saturated fine	to medium sand.
F + 0.0	28-33-32-		7-8': Wet.	i
8 -	29 100%		8—10': Brown—grey fine silty sand, little coar	se-fine gravel.
0.2	37-28-33- 32 50%		10-12': Same as above, moist, trace coarse o	gravel.
- 12 -	28-34-42- 53 75%		12-14': Na recovery.	
NA → NA	50/.3 0%	<u>4 724 - </u>	14-16" Grev fine silty sand same coarse sar	and and time arranged traces

1.

Project . Location	SOH Henri	etta, NY	·	<u> </u>	Owner <u>Metalade</u> Proj. No. <u>784222</u>
Depth (ft.)	PIO (mgq)	그 글 스	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 -			Mask		24–26': Fine silty sand, saturated.
- 26 -	15.7	9-18-21-35 50%	0 0 0 0 0 0 0 0 0	GM	26-28': Same as above.
- - 28 -	16.6	28-53-50/ .3 75%	99		28-30': No recovery.
- 30 –	NA	50/.3 0%	পাৰ		30-32': No recovery.
- - 32 –	NA	50/.2 0%	0000		32—34': Brown, fine silty sand, some fine gravel, till.
- - 34 –	0.0	50-36-22- 20 50%	0 0 0 0 0 0 0 0 0		34-36': Same as above, little coarse gravel.
36 –	0.0	10-14-15-11 50%		GM	36-38': Same as above.
- 38 –	0.0	13-18-10-10 25%	0000 0000 0000		38-40': Same as above.
-40-	0.0	8-10-10-8 25%) 0 0 0 0 0 0 0 0 0		
-	NA	5-12-50/ <i>2</i> 0%	7		40-42': No recovery.
- 42 - - - 44 -		50/.l 0%			42-44': No recovery, some rock fragments in foot.
44-	:				

Project <u>SOH</u> Location <u>Hen</u>	rietta, NY		Owner <u>Metalade</u> Proj. No. <u>784222</u>	See Site Map For Boring Location
Screen: Dia Casing: Dia Fill Material Drill Co. <u>SJB</u>	ke	ength ength ength Methoog By <u>T. M</u>	epth <u>42 ft.</u> Diameter Initial Static Type/Size Type Big/Core	
Depth (11.)	Sample ID Blow Count/ % Recovery	Graphic Log USCS Class.	Descripti	Structure)
- 8 -	NA 80% 17-17-17-17 90% 12-25-18-10 95%	S	8—10': Brown, wet, silty sand (equal parts), 3 gravel at 8.5', trace fine gravel, cobble.	ace cobbles, Till. I lens of coarse sand and
- 10 - - 12 - - 39.7	15-35-48- 45 98% 44-50/.4 10%	SM COC GGGG	10—12': Brown, wet, silty sand (equal parts), t 12—14': Brown, moist—wet silty sand, little grav	

Project . Location	SOH Henri	etta, NY			Owner <u>Metalade</u> Proj. No. <u>784222</u>
Depth (ft.)	OId (mdd)	Sample ID Blow Count/ % Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 -			Jd3k		24-26': Brown, moist, silty sand, little gravel, trace cobble, very dense, Till.
- 26 -	257	50-50/.3 25%	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		26-28': Same as above.
- 28 -	13.2	50/.3 10%			28—30': Same as above, little medium grained sand, Till.
30-	1.7	50/.3 10%			30-32': Same as above.
- 32 -	87.4	50/.3 10%			
<u> </u>	83.2	50/.3 10%		GM	32-34': Same as above.
- 34 -	27.5	50/.4 10%			34-36': Same as above.
36 –	1.1				36=38: Same as above.
- 38 -		50/.3 7%			38-40": Same as above.
40	13.3	50/.4 10%			40-42": Same as above, weathered shale in tip of spoon.
- 42 -	1.6	50/.5 15%			
44-					
- 46 -					

Project <u>SOH</u> Location <u>Herriette, NY</u>	Owner <u>Metalade</u> Proj. No. <u>784222</u>	See Site Map For Boring Location
Surface Elev. Total Hole Top of Casing Water Lev Screen: Dia Length Casing: Dia Length Fill Material Drill Co. Driller A. Morris Log By T. Checked By Log By T.	Depth 46 ft. Diameter el Initial Static Type/Size Type Rig/Core hod HSA Date Permit # License No	COMMENTS:
Depth (14.) PID (PPD) Sample ID Blow Count/ % Recovery Graphic Log	Os Trace < 10%, Little 10% to 20%, Some 2	tructure)
2 - - 0 - - 2 - - 2 -	0-4': Augered to 4'.	
- 4 - III	4-6': Brown, dry, medium grained sand, some cobble. 6-8': Brown, dry, sandy silt, little fine gravel, grey. 8-10': Brown, moist, silty sand, trace fine graymoist, silty sand, dense, trace clay, till.	trace clay, top 6" mottled
75.8 5-12-18-14 50% 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10-12': Brown, moist, silty sand, trace gravel, 12-14': Brown, moist-wet silty sand, trace gra	

Location	<u>Henri</u>	etta, NY			Proj. No. <u>784222</u>
Depth (ft.)	PIO (mqq)	Sample ID Blow Count/ % Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50
- 24 -	2000	19-50/.3		SM	24-26': Brown, moist, silty sand, trace medium sand, gravel, not as dense.
- 26 -		19-50/.3 20%	000		26—28": Brown, moist, silty sand, little gravel, trace cobble, very dense, Til
- 28 -	2000	10-50/.4 15%	3 60 0 0 0 0 K		28-30': Brown, moist, silty sand, little gravel, trace cobble, dense, Till.
30 –	820	35-50/.I 20%			30-32': Same as above.
- 32 –	1495	NA 50%	0 0 0 2 0 0 3 0 0	GM	32-34': Same as above.
- 34 –	2000	25-50/ <i>2</i> 10%	0 0 0		34-36': Same as above.
 - 36 -	836	45-50/.3 20%	0 0 0 0 0 0		36-38': Same as above top 6", moist—wet w/depth brown, wet, silty sand
- 38 -	2000	18-40-22- 50/.3 90%		SM	(more silt than sand). 38-40': Brown, wet, silty sand, little gravel, trace cobble, dense, Till.
- 40 <i>-</i>	825	30-50/.4 15%	0 0 0 K		40-42': Same as above.
- 42 -	151	14-35-42- 42 50%			
	68.8	10-50/.4 35%		GM	42-44". Same as above.
- 44- - -	201	12-14-13-18 40%	0 0 0	į	44-46': Same as above, shale in tip.

Project <u>50</u>	H_				Owner <u>Metalade</u>	See Site Map		
		etta, NY			Proj. No. <u>784222</u>	For Boring Location		
Surface Ele	v	Т	otal Hole	e De	pth 30 ft. Diameter	COMMENTS:		
Top of Cas	ng _	W	ater Levi	el Ir	nitial Static	SOMMENTS.		
Screen: Dia	_	Li	ength <u> </u>		Type/Size			
					Type			
Fill Material	_				Rig/Core			
Drill Co. SJE	<u> </u>		Met	thod	HSA			
Chacked D		L(<u>ynard</u> Date <u>05/12/00</u> Permit #			
Checked By	_				License No			
Depth (ft.)		Sample ID Blow Count/ % Recovery	Graphic Log	S Class.	Descripti (Color Texture S			
		S B S S S S S S S S S S S S S S S S S S	Ö	SOSI	(Calar, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%			
2 -			1	_				
├ ┤			1 1					
- 0 -								
ļ .					└ 0-4': Augered to 4'.			
- 2 -								
				Ì				
r ∦								
- 4 -			1. 1.1.1		4-6': Brown, silty sand, trace fine gravel to	3" dry		
				ĺ	graver to	5 , di y.		
I II	5. 2	80%						
- 6 -]		6-8': Brown moist-wet w/depth, silty sand, s	some medium sand last 2", grey		
l	9.7	2-17-24-28			mottling at \sim 7-8'.			
- 8 -		98%		SM	8-10" Brown wat silty sand little madium			
	ı			ויונג	8–10": Brown, wet, silty sand, little medium sa	nd, trace fine gravel, cobble.		
	5.5	0-12-28-15 55%						
- 10 -	7.3	NA 80%			10-12': Brown, moist, silty sand, trace medium increases w/depth.	sand, fine gravel, density		
- 12 -				_	12—14": Brown, moist, silty sand, little clay thr gravel.	oughout, dense, little (+) some		
- 14 - 10	0.5	38-30-35- 34 85%		sc	14-16": Brown moist silty sand little gravel t	race echhic denne Till		

Soil Boring SB-17

Project SOH Owner Metalade Location Henrietta, NY Proj. No. <u>784222</u> Blow Count/ % Recovery ISCS Class. Sample ID Graphic Log Depth (ft.) Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% - 24 -24-26': Brown, wet silty sand, grades to brown wet medium grained sand, trace gravel then grades to brown, wet silty sand, little gravel, trace 27-50/.3 85% 400 cobble, dense. GM 26 -26-28': No recovery. NA 28 28-30': Brown, moist, silty sand, little gravel, trace cobble, very dense, Till. 7.8 30-50/.i 15% 30 Auger refusal at 29'. 32 34 36 38 40 42 -44-

Project			See Site Map For Boring Location			
Location	<u>Henri</u>	ettə, NY			pth <u>42 ft.</u> Diameter	-
Surface	Elev	T	COMMENTS			
TOP OF	uasing -					
Screen:	Dia	Le	ength <u> </u>		Type/Size	
Casing: I	Dia	Le	ength _		Type	
Fili Mate	rial				Rig/Core	
Drill Co	<u>SJB</u>		Me	thod	<u>H</u> SA	1
Driller <u>A</u>	. Morris	Lo	og By \mathcal{I}	. ма	vnard Date <u>06/15/00</u> Permit #	
Checked	1 By				License No.	
	T	0 > >	1	တိ		
50	_ =	Sample ID Blow Count/ % Recovery	Graphic Log	BS:	Dagariati	
Depth (ft.)	PID (ppm)		설명	ਹ	Descripti	1
٦	L.G	E & B	E-1	SS	(Calor, Texture, S	Structure)
	<u> </u>	ω ⊞ ¾		asn	Trace < 10%, Little 10% to 20%, Some	20% to 35%, And 35% to 50%
2 -						
[- ² -	1					
	i]				
- 0 -]]	ļ				i
]	 		1	0-4': Augered to 4'.	
<u> </u>	1				V 4. Auguled to 4.	}
- 2 -	1	ļ	1 1			İ
]		1			
_	1					1
- 4 -	 			<u> </u>	4-6": Brown, dry, silty sand, some gravel, litt	la madium appropriate trans
					cobble clay, 2" lens of black, dry, medium-co	narse soil little gravel trace
[]	22.0	2-10-14-15 80%	$\ \cdot \ \cdot \ \cdot \ $		silt.	sales son, inthe gravel, trace
├ 6 ⊣		80%			6-8': Brown, moist-wet w/depth, silty sand,	trace fine gravel
<u> </u>					, seed to the party barrage	il doc file gravel.
l . I	40.2	1-20-20-21 65%				
├ 8 ⊣		55%		SM	8-10': Brown, wet, silty sand, trace fine grav	el.
┡	07.7	- 10 II 14	$\ $	ľ	, , , , , , , , , , , , , , , , , , ,	
ا ما	67.7	5-10-11-14 80%	$\ $			
├ 10 →		30.2	1.1111		10–12': Brown, wet, silt.	
¦ ⊣	2004)-19-20-24		l l		
40	244	100%				
├ 12 ┤			 	 	12-14': Brown, wet silty sand top 8", brown, w	et-moist silty sand, trace fine
} -	179	25-30 -3 0-			gravel, clay.	
L 14 -	''~	45 100%	15 p p 1		44.44	
_ I4 _	1 1		II GI LIJOLII.	GMI	14-16" Brown majet eilty sand trans find ar	aval a shible alari

Project <u>SOH</u> Location <u>Henrietta, NY</u> Owner <u>Metalade</u> Proj. No. <u>784222</u>											
	Depth (ft.)	PIO (maa)	0 2 2	Graphic	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%					
	- 24 - 26 -	83.2	40-50/.2 25%	100000 00000	GM	24–26': Brown, moist, silty sand, little gravel, trace cobble, dense, Till. 26–28': Same as above.					
	- 28 -	78.1	50-50/.3 20%	9 39		28—30': Na recavery.					
	- 30 -	NA 6.4	50/.4 0%		GM	30—32": Brown, moist, silty sand, little gravel, trace cobble, crumbly.					
	- 32 - 	NA	45-50/.4 10% 45-50/.4	jdå k	GH	32-34': No recovery.					
	- 34 -	NA	0% 9-18-12-17			34-36': No recovery.					
ì	- 36 - - - 38 -	16.6	14-9-8-8 30%			36=38': Brown, wet, silty sand, little fine gravel, trace cobble.					
	- 30 - 40 -	35.2	8-8-22-11 50%			38-40': Same as above. 40-42': Same as above.					
	42 -	25.1	6-7-7-7 20%								
	- 44-										
İ	- 46 -	:									

•	ct <i>SOH</i> tion <i>Henri</i>	ietta, NY			Owner <u>Metalade</u>	See Site Map For Boring Location
Surfa Top o Scree Casin Fill Ma	of Casing en: Dia g: Dia aterial o. <i>SJB</i>	1	Total Hole Water Lev Length Length	e De	Proj. No. <u>784222</u> oth <u>42 ft.</u> Diameter litial Static Type/Size Type Rig/Core HSA	COMMENTS:
Oriller Check	A. Morris			. <i>Ма</i> ; —	icense No	
Depth (1t.) PID (ppm) Sample ID			Graphic	S.	Descript (Color, Texture, S Trace < 10%, Little 10% to 20%, Some	Structure)
2 - 0 - 2	2 -				0-4': Augered to 4'.	
) - 6	ı,	4-12-18-23 40%			4-6': Brown, moist, silty sand, trace medium 6-8': Brown, wet, silty sand, trace medium sa	
- 8 - 10	8.07	-14-43-34 100% 5-18-44-21 50%		SM	8-10': Brown, wet, silty sand, trace medium s	
- 12	0.9	3-17-20-23 80%			10-12': Brown, wet, silty sand, trace fine grav	
- 14	0.2	53-50/.4 30%		sc	14-18' Brown moist silty sand little fine are	wal troop ashble dance Till

Project is Location	SOH Henrie	etta. NY			Owner <u>Metalade</u> Proj. No. <u>784222</u>
Depth (ft.)	PIO (mdd)	Sample ID Blow Count/ Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 - - 26 - - 28 - - 30 -	- 24 - 23.8 0-14-50/.3 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			24-26': Brown, wet, silty sand, little gravel, trace cobble, dense, Till. 26-28': Same as above. 28-30': Same as above. 30-32': No recovery.	
- 32 - - 34 - - 36 -	NA NA 19.7	50/.4 5% 50/.4 5% 48-50/.3 20%		GM.	32-34': No recovery. 34-36': Brown, moist, silty sand, little gravel, trace cobble, very dense, Till. 36=38': No recovery.
- 38 - - 40 - - 42 - 	4.7	48-50/.3 40% 48-50/.1 15%	10000000000000000000000000000000000000	GM	38–40': Brown, moist, silty sand, little gravel, trace cobble, very dense. 40–42': Same as above, feldspar in tip, Till.
- 44 - - 46 -					

Project St		etta, NY	_		Owner <u>Metalade</u>	See Site Map For Boring Location
Location 1	<u> </u>	- <u>- III a, IN 7</u>		_	Proj. No. <u>784222</u>	<u> </u>
Surface El	iev		otal Hole	De	pth 40 ft. Diameter	COMMENTS:
TOP OF CO.	วแเก็ -	WG	ater reve	;i Tu	nitial Static	
Screen: Ul	a	L6	ength		Type/Size	
Casing: Dia	3 <u> </u>	L6	ength		Type	
Delica S.	dl ./₽				Rig/Core	
Drillor A A	dorris	· · · · · · · · · · · · · · · · · · ·	Metr	100	HSA	
Checked B	10///3_	L0	og By 7-1	ma	vnard Date <u>06/19/00</u> Permit #	
	,		7	_	LIGERISE NO.	<u> </u>
Depth (ft.) PID (ppm) Sample ID Blow Count/ % Recovery Graphic Log USCS Class.					Descripti (Color, Texture, S	Structure)
 		ν <u>α</u> %	∦ -	<u> </u>	Trace < 10%, Little 10% to 20%, Some	20% to 35%, And 35% to 50%
2-						
	6		1 1			i
├ ○ ┤			╫	_	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
ŀ⊸	İ				└- 0-4': Augered to 4'.	
L 2 -						
- -				ŀ		
F 1	j j					
- 4 - √			- -		4-6' Tan dry silty sand trace gravel same	a alam madium a la 11.
	- 1			- 1	4-6": Tan, dry, silty sand, trace gravel, some	e clay, medium plastic.
↑ 12	2000	25-4-8-10		CL		
- 6 -		75%		4	6-8': Tan/brown, moist-wet w/depth, silty sa	and trace gravel cabble little
				DL	clay, medium plastic.	and, trace graver, copple, little
3 "	255	8-12 - 8-8 60%				
- 8 -					8-10': Tan, brown, wet, silty sand, trace cobt	ole, clay (equal parts).
	1.7	3-8-13-18			·	
- 10 -	"'	85%		MÉ		·
	170 32	:-45-50/.4			10-12': Brown, silty sand, trace medium sand, cobble, wet.	last 4" mottled, grey, trace
- 12 -		65%	- <u> -</u> -	-	12-14': No recovery.	1
├	NA	50/.3 5%			·	i
L 14 - I	··^	007.0 DA			44 101 5	
- 14 - ∥	11		 	—(1	14-16' Brown wet silty send trace aroual	

Project _ Location	SOH Henri	ettə, NY		_	Owner <u>Metalade</u> Proj. No. <u>784222</u>
Depth (ft.)	OI <i>d</i> (mdd)	<u> </u>	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
- 24 -	954	15 50/0			24-26': Brown, silty sand, wet, trace gravel.
- 26 -		0-15-50/ <i>2</i> 50%			26-28': Same as above.
- 28 -	57.9	8-42-37- 50/.4 80%		SM	28-30': Same as above.
- 30 -	324	32-45-50/ .4 70%			30-32': No recovery.
- - 32 -	NA	-	7147		32—34': Brown, moist, silty sand, little gravel, trace cobble, dense, Till.
- 34 <i>-</i>	178	30-50/.3 20%			34-36': Same as above.
- 36 -	85.0	14-23-50- 50/.4 50%		GM	36-38": Top 6" brown, wet, gravely silty sand, brown, wet-moist, silty sand,
- - 38 -	88.68	23-30-22- 50/.4 80%			little gravel, trace cobble, dense. 38-40': Shale at 38.6'.
- - 40 -	NA 3	0-50/.3 0%			
- - 42 -					
44-					
- 46					

Project <u>SOH</u>	vietta, NY		Owner <u>Metalade</u> Proj. No. <u>784222</u>	See Site Map For Boring Location	
Surface Elev. Top of Casing Screen: Dia _ Casing: Dia _ Fill Material _ Drill Co. <u>SJB</u> Driller <u>A. Mor</u>	To	otal Hole Depoter Level Irength ngth Method g By <i>T. Ma</i>	pth <u>42 ft.</u> Diameter Nitial Static Type/Size Type Rig/Core		
Depth (ft.) PIO	Sample ID Blow Count/ % Recovery	Graphic Log USCS Class.	Descript (Calar, Texture, Trace < 10%, Little 10% to 20%, Some	Structure)	
2- - 0 - - 2 - - 4 -			0–4': Augered to 4'. 4–6': Brown, dry, medium sand, trace grave	l grappio matoriale cilt	
2.5 - 6 -	95%	SW	6-8': Brown, dry, silty sand, trace gravel, r		
- 8 - - 10 -	30%	0L	8-10": Tan/brown, dry, clay. 10-12": Same as above.		
- 12 - 1.e	40%		12-14': Shelby tube, ~3/4 full.		

Project <u>SOH</u> Location <u>Henrietta, NY</u>					Owner <u>Metalade</u>
Location	Henrie	rtta, NY	11		Proj. No. <u>784222</u>
Depth (ft.)	(wdd)	Sample ID Blow Count/ % Recovery	Graphic Log	uscs Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
24 –					24—26": Shelby tube attempt/crushed, no recover.
- 26 -	NA				26-28'; Same as above.
- 28 <i>-</i>	NA		7,147		28—30': Brown, moist, silty sand, little gravel, trace cobble, very dense, Till.
- - 30 -	i.0	50/.2 6%	0.00		30—32': Same as above.
- - 32 -	4.3	50/.4 10%	000		32—34': Same as above.
- 34 <i>-</i>	2.4	50/.4 5%		GM	34-36': Same as above.
- 36 -	1.2	50/.2 5%			36-38': Same as above.
- - 38 -	1.4	50/.2 5%			38-40': Shelby tube collected.
- - 40-	NA		4124		40—42': Brown, wet, medium grained sand, trace cobble, gravel, little silt
- 42	1.7	50/.2 5%		GM	last 3", weathered shale.
- 44 <i>-</i>					

Project S	он			Owner <u>Metalade</u>	See Site Map — For Boring Location
		tta, NY		Proj. No. <u>784222</u>	Corning Edebich
Surface E	lev	To	tal Hole De	epth <u>42 ft.</u> Diameter	- COMMENTS:
				Initial Static	
				Type/Size	
				Type	
				Rig/Core	_ [
				d <u>HSA</u>	– i
Driller <u>A. J</u>	Morris			<u>aynard</u> Date <u>05/30/00</u> Permit #	-
Checked I	Ву			License No.	-
Depth (ft.)	OId (mdd)	Sample ID Blow Count/ % Recovery	Graphic Log uscs Class.	Descrip	, Structure)
2- 0 - - 2 -				0-4': Augered to 4'.	
- 4 -	2.5	7-7-8-10	S	4-6': Brown, dry, medium sand, trace grav	el, organic materials, silt.
L 6 🗐		95%		6-8': Brown, dry, silty sand, trace gravel,	medium sand.
r	2.4	7-11-12-13 30%		M	
⊢ 8 ⊣		30/4	╟╏┆╽╎┆ ┋╟╌╾	8-10': Tan/brown, dry, clay.	
- 10 -	0.7	7-5-11-8 10%	11 1 1 OI	L 10-12': Same as above.	
- 12 -	1.6	8-11-12-15 40%			
┟ . ╣	NA				

Project 3	Henrie	tta, NY			Owner <u>Metalade</u> Proj. No. <u>784222</u>	
Depth (ft.)	PID (ppm) Sample ID Blow Count/ % Recovery Graphic Log			uscs Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50	
24 –					24—26': Shelby tube attempt/crushed, no recover.	
26 –	NA				26-28': Same as above.	
- 28 -	NA		7.17		28—30': Brown, moist, silty sand, little gravel, trace cobble, very dense, Ti	
- - 30 -	1.6	50/.2 6%	000		30-32': Same as above.	
- - 32 -	4.3	50/.4 10%	0000		32-34': Same as above.	
- 34 -	2.4	50/.4 5%	20 20 4 20 20 4	GM	34-36': Same as above.	
- - 36 -	1.2	50/.2 5%	0000			36-38': Same as above.
- 38 –	1.4	50/.2 5%			38-40': Shelby tube collected.	
- 40 <i>-</i>	N A		u 130		40-42': Brown, wet, medium grained sand, trace cobble, gravel, little silt	
- 42 -	1.7	50/.2 5%	0 0 0 X	GM	last 3", weathered shale.	
- 44						
100						

Monitoring Well B-4/PZ-1

Project SOH	See Site Map For Boring Location				
Location <i>Henrietta, NY</i>			Proj. No. <u>784222</u>	L	
Surface Elev T	COMMENTS:				
Top of Casing W	30,11,2,11,3,				
-		Type/Size			
			Type	i i	
			g/Core		
Drill Co. SJB	Method HSA	4			
Driller A. Morris	on By T. Maynard	1	Date <u>05/25/00</u> Permit #		
Checked By					
		l ကို∦		<u> </u>	
Depth (11.) Well Campletian (piD (ppm))	Sample ID Blow Count/ % Recovery Graphic Log	las	Description	on	
Depth (11.)		Ö	(Calar, Texture, Structure)		
	E 3 B C	20% to 35%, And 35% to 50%			
O O	Ω	nscs			
2 -					
┃ ̄╢┌ ── ╗║ ║					
					
- 2 -]]			
		1	4 Oh Tan dru alay dan-a		
<u> </u>			4–6': Tan, dry clay, dense.		
F . . 4.9	4-5-2-7	ŀ			
L 6 - 1 1 1 1 1	4-5-2-7 70%	OL	6-8': Same as above.		
		"			
2.2	I-15-17-10				
L 8 - :	70%	Ш	8-10": Shelby tube crushed, no recov	verv.	
			•,		
- 10 - · <u> </u>	и. п. п.	dash	10–12': Tan, clay, dry, dense, last 3"	brown, silty sand (equal	
 			parts), wet.		
1 1 1 1 1 1 1	7-7-9-14	OL			
├ 12 -			12-14': Brown/tan, clay to ~12.8', gra	ides to brown, silty sand (equal	
			parts), wet.		
	7-7-10-7	SM	44 405 05 35 115 2		

Monitoring Well B-4/PZ-1

Project SOH Owner Metalade
Location Herrietta, NY Proj. No. 784222

Į	Location	Henriette	3, IV 7				Proj. No. <u>784222</u>	
	Depth (ft.)	Well Completion	DIO (mdd)	Sample ID Blow Count/ % Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%	
	- 24 - 26 - - 28 -		NA 0.8	50/0 0% 50/.4	<u> </u>		24-26': Spoon refusal on rock. 26-28': Brown, moist, silty sand, little gravel, trace cobble, very dense, Till. 28-30': Same as above.	
	- 30 - - 32 -		1.1	50/.4 21-47-41- 48	G	GM	30-32': Same as above. 30-32': Same as above. 32-34': No recovery (sluff).	
· '	- 34 - - 34 -		NA NA	50/.4 0% 48-45-49- 49 0%			34-36': Same as above.	
' I	- 36 - - 38 -		NA NA	25-17-7-12 20% 50/.4 15%	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	C GM	36-38': Brown, moist, silty sand, little gravel, trace cobble, very dense, Till. 38-40': Same as above.	
 - -	- 40 - 42 -		NA	50/.3 10%			40-42': Same as above, weathered shale at 40.8'.	
	- 44-							

Monitoring Well **B-3/PZ-2**

Project <u>SOH</u> Location <u>Henrietta, NY</u>			wner <u>Metalade</u>	See Site Map For Boring Location		
C (5						
				COMMENTS:		
			Static			
Screen: Dia 2 in.	. Length <u>15 ft.</u>		Type/Size			
			Type			
Fill Material		R	ig/Core			
Drill Co. SJB	Method	<u>HSA</u>				
Driller A. Morris	. Log By <i>T. Ma</i>)	ynard	Date <u>05/25/00</u> Permit #	ļ		
Checked By						
Depth (11.) Well Completion PID (PD)		aphic -ag : Class.	Description (Calor, Texture, S Trace < 10%, Little 10% to 20%, Some	tructure)		
2-						
┠ ╣╵ ┌┈ ╵╟						
		-	0-4': Augered to 4'.			
		i	- 0-4. Augered to 4.			
- 2 -						
l 333 33 5						
- 4 -		ŀ	4-6": Attempted shelby tube, crushe	d		
			4-0. Attempted shelby tube, crushe	u.		
h de Na						
- 6 -			6-8': Shelby tube #3, ~3/4 full.			
]		O D. Diciby tube ind, O/ - Tuli.			
h de Na	l il					
L 8 - 8			8–10': Tan-brown, dry clay, dense.			
			2 io i ian branni ary olay, actiaci			
11.1	8-7-11-14	[d][d]				
- 10 -	98%		10-12': Tan-brown, dry clay, dense b	ottom 3" little medium sand		
		6999 I		orrem o pricio modium odiras		
1 1 1 1 1	5-14-20-19 95%					
- 12 -		iliiii or	12–14': Tan/brown, dry, clay, dense.			
15.2	12-11-11-10					
	80%		1/1 10th Tan/braum maint alau danna	block discolaration is a		

Monitoring Well B-3/PZ-2

Project SOH Owner Metalade Proj. No. <u>784222</u> Location Henrietta, NY Well Completion Class. Blow Count/ Sample ID Recovery Graphic Log Description Depth (ft.) (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50% 24 24-26': Brown, moist silty sand, little gravel, trace cobble, dense, Till. 50/.4 15% 4.5 26 26-28': Same as above, very dense. 50/.4 10% 5.2 28 28-30': Same as above. 7.1 50/.3 15% 30 30-32': Same as above. 50/.3 10% 2.8 - 32 -32-34': Same as above. 5.2 50/.4 20% 34 34-36': No recovery (sluff only). NA 50/.2 5% 36 36-38': Brown, moist, silty sand, little gravel, trace cobble, very dense, Till. 50/.4 10% 0.3 - 38 -38-40': No recovery (rock in spoon). NA 50/0 0% - 40 40-42': Brown, silty sand, little gravel, trace cobble, feldspar in basket. 5.4 50/.4 20% 42 -44

Monitoring Well B-1/PZ-3

Project <u>SOH</u> Owner <u>Metalade</u>							See Site Map		
Location					wner <u>Metalabee</u> Proj. No. <u>784222</u>	For Boring Location			
Location	<u>Tierriette</u> Elov	J, 1¥1	Tat	al Hala	Donth	377	ft. Diameter		
Top of C	cicy		นาวะ เมาะ	ar Leve	Debili 3	<u> </u>	Static	COMMENTS:	
							Type/Size	Shelby to be collected. 0-30" from	
							Type/3/2e		
							ig/Core		
Drill Co. S	101 S <i>JB</i>			Meth	od HS	— ⊓ 4	ig/ GOI E		
Driller A.	Morris		1.00	By T.	Mavnard	 1		` 	
Checked	Rv		LOB	عند وال	Licer	Se N	40	` 	
Onconco		<u> </u>				s.			
F	Well Sampletlan	ے ا	유	Blow Count/ % Recovery	잍	as	Descript	ion	
Oepth (ft.)	불분	PID (ppm)	[음	ပို့	F 60.	Ci			
			ample	<u>5</u> 20 €	Graphic Log	nscs	(Color, Texture, : Trace < 10%, Little 10% to 20%, Some		
ļ	Ü		Ø	<u> </u>		ä	77 doc 1 low, Erede 10% to 20%, dome	- 20% to 50%, And 50% to 80%	
L-2-									
!			•						
1	'								
 - 0 -			l			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
ļ. <u>-</u>	羅羅						└ 0-4': Augered to 4'.		
_ 2 _									
			ŀ						
-									
L 4 -							4-6': Brown/tan, dry, clay, medium	dense.	
						٠.	, ,,		
1 7		0.0	7–12	-14-18 100%		οL			
 -6-	≡ - '		•	100%	النتنتنا	<u> </u>		: Brown, dry-moist w/depth, medium grained sand, some silt,	
1 4		0.3		99%		SP	little coarse sand, fine gravel, trac	e clay.	
۱ ,	[:]≣[:]	0.5		00%		<u> </u>	2 40's Chalber tube arrished as rea		
- 8 -	≣ ∶						8-10': Shelby tube crushed, no rec	overy.	
-	: ≣ ::	NA							
L 10 -	∥∷l≡l∶				ļ		10-12': Same as above.		
``	∥ ∷ ≣ ∷				H		.5 12 1 2 am 3 45 45 45 4		
t -	∦: ≣ :	NA							
<u> </u>	∥∷l≣l∶				न विन	-	12-14': Brown, wet, silty sand, some	gravel, little medium—coarse	
	⊪: <u>≣</u> :	ا ہے ا	٠,٠	01.07		1	grained sand, trace cobble.		
1	∦: ≡ :	6.3	∪−15	-21-27	II da k	1			

Monitoring Well B-1/PZ-3

Project SOH Owner Metalade

Project No. 784222

Location <u>Henrietta, NY</u>						Proj. No. <u>784222</u>	
	Depth (ft.)	Well Campletian	(wdd) OId	Sample ID Blow Count/ % Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Trace < 10%, Little 10% to 20%, Some 20% to 35%, And 35% to 50%
.)	- 24 - - 26 - - 28 - - 30 - - 32 - - 34 - - 36 -		2.0 NA 5.5 NA NA	50-50/ .3 35% 50/0 0% 25-50/.2 50/.1 0%	1	GM	24-26': Brown, wet, silty sand, little gravel, trace cobble, very dense. 26-28': No recovery. 28-30': Brown, moist, silty sand, little gravel, trace cobble, very dense, trace medium sand. 30-32': Auger refusal at ~30', refusal on rock. 32-34': No recovery. 34-37.7': No recovery.
	- 38 - - 40 - - 42 - - 44 - 						Auger refusal at 37.7'.

Monitoring Well IW-1

		· · · · · · · · · · · · · · · · · · ·
Project SOH	Owner <u>Metalade</u>	See Site Map
Location <u>Henrietta, NY</u>	Proj. No. <u>784222</u>	For Boring Location
Screen: Dia 2 in. Casing: Dia 2 in. Fill Material Drill Co. SJB		
	License No.	
Depth (11.) Well Completion PID (ppm)	□ ≥ ≥	e Structure)
- 0 - 	0-4': Augered to 4'.	ce medium sand, gravel, cobble, dry,
- 6 - V V V 98.2	5-8-7-12 GM trace clay. 75% Co.V 6-8': Brown, moist—wet w/depth	
-	clay to 6", trace fine gravel. 80% 8-10': Brown, wet, silty sand, litt	e gravel.
– 10 – (9-12-18-23 50% 10-12': Brown, top 6" wet, moist throughout, dense w/depth, bot	w/depth, silty sand, little gravel tom foot, till.
- 12 - :	42 75% 130 k d 2G GM 12-14': Brown, wet, silty sand (e brown, wet, silty sand, more den throughout.	qual parts), bottom 1', top 6" is se, little gravel, trace cobble

Monitoring Well IPZ-1

Location Henrietta, NY Surface Elev. Top of Casing Screen: Dia 2 in. Casing: Dia 2 in. Fill Material Drill Co. SJB Driller	Total Hole Depth <u>24 ft.</u> Diameter <u>4 1/4 in.</u> Water Level Initial Static Length <u>10 ft.</u> Type/Size <u>0.02 in.</u> Length <u>14 ft.</u> Type <u>PVC</u> Big/Core	- -
Depth (†t.) Well Completion (ppm)	Color, Texture, Trace < 10%, Little 10% to 20%, Som	Structure)
2 -		

Monitoring Well IPZ-2

Project <u>SOH</u>		Owner Metalade	See Site Map For Boring Location	
Location <u>Henrietta, N)</u>		Proj. No. <u>784222</u>	For Boring Location	
Surface Elev	_ Total Hole Depth <u>24</u>	ft. Diameter 4 1/4 in.	COMMENTS:	
		Static	50/4/42/475.	
Screen: Dia <u>2 in.</u>	_ Length <u>10 ft.</u>	Type/Size <u>0.02 in.</u>	Well not sampled for soll.	
Casing: Dia <u>2 in.</u>	_ Length <u>14 ft.</u>	Type <i>PVC</i>	·	
Fill Material		Rig/Core _		
Drill Co. SJB	Method <u><i>HSA</i></u>			
Driller	Log By <u>T. Maynard</u>	Date <u>06/27/00</u> Permit #		
Checked By	License	No	·	
Depth (14.) Well Campletlan (100m)	Sample ID Blow Count/ % Recovery Graphlc Log USCS Class.	Description	on l	
Vepth (ft.)	등 8 명 등 등 등 등 등 등 등	·		
	Samp Blow I Gra Gra Lc	(Color, Texture, S Trace < 10%, Little 10% to 20%, Some :	tructure)	
<u> </u>	<u>ω π % Ξ</u>	Trace \ tox, Little tox to 20%, Some .	20% to 35%, And 35% to 50%	
- -2 -				
		1		
L				
├ 2 - : :				
├		l,		
			1	
			i	
┠ ∦ः॑ऻः॑ऻ				
L 6 🗐 🔡		İ		
L 8 -∥∴ ∷				
		į į		
├ 10 - 				
			ł	
- 12 -				
			i	

Monitoring Well IPZ-3

Location Henrietta, NY Surface Elev. Top of Casing Screen: Dia 2 in. Casing: Dia 2 in. Fill Material Drill Co. SJB Driller	Total Hole Depth <u>24</u> Water Level Initial Length <u>10 ft.</u> Length <u>14 ft.</u> Method <u>HSA</u> Log By <u>T. Maynard</u>	Owner <u>Metalade</u> Proj. No. <u>784222</u> ft Diameter <u>4 1/4 in.</u> Static Type/Size <u>0.02 in.</u> Type <u>PVC</u> Rig/Core Date <u>06/28/00</u> Permit # No	See Site Map For Boring Location COMMENTS: Well not sampled for soll.
Depth (ft.) Well Completion PID (ppm)	ال کے کے ال		tructure)
2 -			

Monitoring Well TW-1

Surface Elev. Top of Casing Screen: Dia 2 in. Casing: Dia 2 in. Fill Material Drill Co. SJB Driller K. Fuller	Owner Metalade Proj. No. 784222 Total Hole Depth 24 ft. Diameter 4 1/4 in. Water Level Initial Static Length 10 ft. Type/Size PVC slot 0.010 in. Length 14 ft. Type PVC Rig/Core Method HSA Log By MEF Date 9/18/00 Permit #	Obervation Monitoring well construction log. Well not sampled for soil.
Depth (ft.) Well Completion PID (ppm)	다 보 호	, Structure)
2		

Monitoring Well TW-2

Surface Elev Top of Casing Screen: Dia 2 in. Casing: Dia 2 in. Fill Material Drill Co. SJB	Owner <u>Metalade</u> Proj. No. <u>784222</u> Total Hole Depth <u>24 ft.</u> Diameter <u>4 1/4 in.</u> Water Level Initial Static Length <u>10 ft.</u> Type/Size <u>PVC slot 0.010 in.</u> Length <u>14 ft.</u> Type <u>PVC</u> Rig/Core Method <u>HSA</u> Log By <u>MEF</u> Date <u>9/18/00</u> Permit #	See Site Map For Boring Location COMMENTS: Obervation Monitoring well construction log. Well not sampled for soil.
Checked By	<u> </u>	
Depth (ft.) Well Completion PID (ppm)	S S S S S S S S S S S S S S S S S S S	itructure)
- 2		

Drilling Log

Monitoring Well TW-3

Surface Elev. Top of Casing Screen: Dia 2 in. Casing: Dia 2 in.	Owner Metalade Proj. No. 784222 Total Hole Depth 24 ft. Diameter 4 1/4 in. Water Level Initial Static Length 10 ft. Type/Size PVC slot 0.010 in. Length 14 ft. Type PVC Rig/Core Rig/Core					
Drill Co. SJB	Method HSA Date 9/19/00 Permit #					
Depth (ft.) Well Completion (PID (PID)	O B S Cripti Coontribution Color, Texture, S Cook to 20%, Some	tructure)				
- 2						

Drilling Log

Monitoring Well **TW-4**

Project <u>SOH</u> Location <u>Henrietta, NY</u>	Owner <u>Metalade</u> Proj. No. <u>784222</u>	See Site Map For Boring Location
Surface Elev Top of Casing Screen: Dia 2 in. Casing: Dia 2 in. Fill Material Drill Co. SJB Driller K. Fuller	Total Hole Depth <u>24 ft.</u> Diameter <u>4 1/4 in.</u> Water Level Initial Static Length <u>10 ft.</u> Type/Size <u>PVC slot 0.010 in.</u> Length <u>14 ft.</u> Type <u>PVC</u> Rig/Core Method <u>HSA</u> Log By <u>MEF</u> Date <u>9/19/00</u> Permit #	Obervation Monitoring well construction log. Well not sampled for soil.
Depth (11.) Well Completion PID (PD)	Color, Texture, Trace < 10%, Little 10% to 20%, Some	Structure)
2		

DESCRIPTION OF SURFACE SOIL SAMPLES NYSDEC-SOH, Henrietta, NY

SAMPLE ID	SAMPLE DESCRIPTION
DD-1	Tan, sandy silt, some cohesion, organic, wet
DD-2	Tan sand, organic, wet
DD-3	Brown silty clay, good cohesion, organic (roots), damp
DD-4	Brown clay, some silt, trace gravel, trace organic, damp
DD-5	Brown silt, some clay, organic, wet
DD-6	Brown silt, some clay, good cohesion, organic
DD-7	Brown silt, some sand, little clay, some gravel, trace cobble
DD-8	Brown silt, some clay, good cohesion, organic
DD-9	Brown clay with silt, trace gravel, organic
DD-10	Brown silt & Gravel, little sand
DD-11	Black silt and organic
DD-12	Black sandy silt to red clay
DD-13	Black silt and organic
DD-14	Brown sandy silt, trace organic, dry
DD-15	Brown silt , little clay, little organics

Note: Samples collected November 30, 2000

APPENDIX C

LARSEN ENGINEERING'S REPORT

LETTER OF TRANSMITTAL

700 West Metro Park Rochester, New York 14623

(716) 272-7310 Fax (716)272-0159 E-Mail Address: info@larsen-engineers.com WEB Page: LARSEN-ENGINEERS.COM

The IT Corporation TO

WE ARE SENDING YOU

COPDES

Shop Drawings

Copy of letter

DATE

NO.

Attn: Paul Angelillo 2200 Cottontail Lane

Somerset, New Jersey 08873

Prints

4623									
-0159 engineers.com EERS.COM				DATE:	Marc	h 15, 2001		JOB NO.	25-4-5361
				ATTENTI	ION:	<u></u> :		<u> </u>	
tion				RE:					
elillo									
Lane									
ersey 0887	3			<u> </u>					
								•	
					·				
	_								
Attached	Ш	Under separa	te cover vi	A	U.S. P	ostal Service (Regular	Mail)	the following items
Prints		Plans		Samples	:	Specifications			
Change order									
					DESCRIP:	TION		 	····
A draft copy	v of th	e SOH Dra	in Syste	*****		<u>, , , , </u>			
,, u,an 00p,	, ,,		2,200	**** *** * ***		report			
		<u> </u>							
									
-									
	-								
•					•				
ed below:									
		Approved as	submitted			Resubmit		copies f	or approval

			
THESE ARE TRANSMITTED as checked below:			
For approval	Approved as submitted	Resubmit	copies for approval
For your use	Reviewed as noted	Submit	copies for distribution

STUART OLVER HOLTZ, INC. (SOH) DRAIN SYSTEM INVESTIGATION / FIELD REPORT

and

PRELIMINARY FINDINGS

Prepared for:

IT Corporation 2200 Cottontail Lane Somerset, New Jersey

TABLE OF CONTENTS

<u>SECTION</u>	<u>TITLE</u> PA	<u>AGE</u>
1.0	<u>INTRODUCTION</u>	1
2.0	PURPOSE	1
3.0	SITE HISTORY 3.1 Operational History 3.2 Remedial History	1
4.0	EXISTING SITE CONDITION 4.1 Exterior Conditions 4.2 Interior Conditions	2
5.0	METHODOLOGY USED DURING SMOKE TEST INVESTIGATION	<u>)N</u> 3
6.0	FINDINGS 6.1 Injection Point SSMH No. 1 6.2 Injection Point SSMH No. 2 6.3 Injection Point SSMH No. 3 6.4 Injection Point STS No. 1 6.5 Injection Point STS No. 2 6.6 Injection Point STS No. 3	4 5 5
7.0	LIMITING CONDITIONS	6
8.0	CONCLUSIONS	6

APPENDICES

1.0 INTRODUCTION

Larsen Engineers was contracted by International Technologies Corporation (IT Corp) to conduct a Smoke Test Investigation per standard protocol for SSES investigation of the former Stuart Olver Holtz, Inc. (SOH) facility located at 39 Commerce Drive in the Town of Henrietta, County of Monroe, State of New York (Appendix A). A summary of all significant findings identified as per the results of this investigation is included in this preliminary field report.

2.0 PURPOSE

The purpose of this investigation was to confirm interior and exterior pathways of abandoned, uncapped, combined, or cross-connected storm and sanitary sewer lines identified at the SOH site. This investigation will link interior sewer pathways with confirmed public sanitary and storm sewer lines located adjacent to the SOH facility. Furthermore, this investigation will aid in identifying potential migration pathways of metal washing solvents; buffing, plating, or coating materials; and paints previously used in the operation of this metal finishing facility to the surrounding environment.

3.0 SITE HISTORY

3.1 Operational History

The project area was first developed in 1962 as Electro Chemical Products, Inc.; however, was soon evolved into the Stuart Olver Holtz, Inc. as the business and is associated property was passed on to successors. The SOH facility operated as a specialty metal finishing business, which painted, buffed and plated metal components/parts.

The SOH facility accumulated a significant number of waste solvent drums as part of its manufacturing operation. As such, SOH applied for a permit to operate a waste solvent recovery unit in 1980; however, due to changes in New York State regulation, the permit application was denied. Accordingly, the New York State Department of Environmental Conservation (NYSDEC) issued an enforcement order against SOH requiring the removal of all waste solvent containers known to be on-site (Note: a portion of these drums were observed leaking liquid materials into the surrounding environment). Subsequently, the SOH properly removed 200 waste solvent contained drums; however, only partially complied with the enforcement action as more than 100 drums remained on-site. After efforts to have the SOH facility instate a clean-up initiative were not successful, the site was listed as an inactive hazardous waste site.

In 1986 the SOH facility filed for Chapter 11 Bankruptcy and the property, which included the manufacturing facility, was transferred to Metalade. Inc., which owns, maintains and operates a

In 1987, a sub-surface site investigation revealed elevated readings of Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs) and Heavy Metal contamination within the property boundary of the SOH facility. Specifically, soil and groundwater samples were collected throughout the site, particularly in the vicinity of the drum storage area and analyzed to identify areas of the SOH site, which exhibited significant levels of contamination. In response to this discovery, the NYS DEC initiated and completed a Remedial Investigation (RI) to determine the nature and extent of any contamination present on the SOH site, which may have been released during past operational activities.

In general, the RI has confirmed that the SOH site contains VOC, SVOC, and Heavy Metal contamination at levels significantly above those of concern and could represent a potential public health risk. As such, soil and groundwater sample results indicated elevated readings of contamination above the NYSDEC Ambient Water Quality Standards or Guidance Values; and the NYSDEC Technical Assistance Guidance Memorandum (TAGM) 4046 for soil standards.

4.0 EXISTING SITE CONDITION

4.1 Exterior Conditions

The site occupies approximately 3.8 acres of mixed commercial-industrial land in the Town of Henrietta and includes a manufacturing building that occupies approximately 1.8 acres along the eastern portion of the site. The remaining portions of the facility constitute parking areas, an asphalt driveway and grass covered / landscaped areas.

The site is relatively flat and drains to the northwest; however, all impervious areas are drained via storm sewers and associated catch basins. Furthermore, a woody shrub and grass-covered swale, located along the western property boundary aids in draining the west portion of the site.

The site is bound on the east by several small businesses; on the west by Pullman Manufacturing; on the south by Ruby Gordon; and on the north by Commerce Drive and several other commercial properties.

The Town of Henrietta was contacted to review as-built sewer plans within the general vicinity of the project area. As such, these plans indicate two (2) sanitary sewer laterals, both extending in a north/south direction; however, one (1) is located beneath the SOH driveway / parking area, while the other is located along the western property boundary of the site. Each of the identified sanitary laterals ultimately connects to the sanitary sewer main along Commerce Drive. Note: the location of any public or private storm sewers and associated catch basins were field

The open trench system was presumably used not only as a drainage catch basin for liquids used in different operational stages of metal finishing, but also as one (1) method for routing interior sanitary/storm sewer piping throughout the facility. Generally, a open-grate trench typically identified within the SOH facility were approximately 2 feet wide by 2.5 feet deep and traversed throughout the operational portions of the building. At the time of the site investigation, various trench systems throughout the facility were missing open steel grate covers and were partial filled with saturated sediments.

The two (2) below grade vault areas are located in the northeastern portion of the facility, which according to the as-built sewer plan, are within the Plating room and Buffing room areas. The Plating room vault is approximately 6 feet wide by 8 feet in length and is presently covered with rotting plywood. At the time of the site investigation, the depth of this vault was undeterminable as there was no safe method of measurement and visual inspection was limited (poor lighting). It appears that this vault is laden with an unknown liquid material (Note: no liquid samples were taken from this area for laboratory identification/analysis). The Buffing room vault is currently accessed via a manhole located in the central portion of the room. The vault is approximately 8 feet wide by 16 feet in length and filled with a orangish-brown liquid substance. The depth of this vault was measured to be approximately 6 feet. (Note: two (2) liquid samples were collected from this vault area.)

An oil/water separator or sump structure, located in the shipping and receiving portion of the facility was also observed during the site investigation. The separator/sump structure is approximately 4 feet in diameter and contains varying amounts of water and sediment at a depth of 10 feet below the existing floor grade (Note: the separator/sump structure is covered by a manhole). A total of four (4) pipes, varying in size from 4 inch to 8 inch, drain to this detention area, and one (1) 8-inch pipe appears to exit the separator/sump structure and extend towards a public sanitary sewer. Note: The bottom depth of the separator/sump structure was undetermined; however, there is approximately 10 to 12 feet of sediment and water within this detention area.

5.0 METHODOLOGY USED DURING SMOKE TEST INVESTIGATION

A smoke test investigation will utilize liquid-smoke technologies to safely identify sanitary versus storm sewer connections and/or sewer cross-connections particularly associated with the interior plumbing layout of the SOH facility. All public sanitary and storm sewer lines have been identified and appropriately marked. Specifically, any identified public sanitary sewer has been identified as "PSS-##", where as all public storm sewers have been identified as "PST-##". Similarly, each identified sanitary sewer man-hole has been designated as SSMH-01 through SSMH-03, where as each public storm sewer man-hole has been designated STSMH-01 through STSMH-03 (Appendix B)

interior catch basins, interior manholes, and/or restroom locations. Photographic and video-graphic documentation of areas identified as "smoking" has been included as part of this preliminary report.

Note: The smoke test investigation was initiated on January 30, 2001; however, due to heavy rains and the seasons first significant snow melt, certain investigative measures could not be completed as planned. Therefore, a second field investigation was conducted on February 15, 2001 to complete all three (3) sanitary sewer manholes and three (3) storm sewer manholes. Furthermore, a roof drain observation was not conducted as part of this investigation.

6.0 FINDINGS

*Note: A interior floor plan sketch of the SOH facility, provided in Appendix B illustrate all injection point manholes, as well as designated sanitary or storm sewers.

6.1 Injection Point SSMH No. 1

The first "smoke" injection point was initiated at sanitary manhole SSMH-01, located in the driveway area of the SOH site, approximately 45 feet from the corner of the assembly portion of the building structure. As liquid smoke was injected into sanitary manhole SSMH-01, the field crew observed, "smoke" in the separator/sump detention area (SSMH-2). The separator/sump structure manhole was opened and "smoke" was observed emitting from an 8-inch pipe within the detention structure (Appendix C: PL-01). It appears that this pipe exits the separator/sump structure and according to the as-built sewer plans created for the SOH facility, drains into public sanitary sewer line PSS-1.

This 8-inch pipe, now identified as SS-A, can be designated as a sanitary line that connects the separator/sump structure in the shipping and receiving area to the public sanitary line (PSS-1) in the driveway area. Furthermore, the separator/sump structure contains four (4) additional pipes, varying in size from 4-inch to 8-inch in diameter, which appear to drain the southern portion of the facility (inspection, stripping, scuff, storage, treatment and washer areas); however, no other "smoke" was identified within the building structure.

Additionally, sanitary line SS-A was video recorded for purposes of determining the internal condition of the sewer line. Based on the result of the analysis, the line appears to be severely corroded and may potentially contain minor cracking. There was no evidence of serve pipe failure.

6.2 Injection Point SSMH No. 2

rooms in the southeast portion of the facility as well as traverse through the inspection area. These identified lines follow the existing open-grate trench system and ultimately drain into the separator/sump detention area in the shipping and receiving room.

As liquid smoke was injected into sanitary manhole SSMH-02, the field crew observed, "smoke" in the northwest corner of the stripping room (Appendix C: PL-03). No other "smoke" was observed through the building structure as the result of initiating the smoke test at injection point SSMH-02.

Of the four (4) lines identified in the separator/sump structure, two (2) lines (SS-A and SS-B), which are not shown on the as-built drawings, are directed from the separator/sump structure to the northwest corner of the stripping room and where the lines that produced "smoke." The remaining lines, SS-D and SS-E appear to traverse the remaining southern portion the building; however, no other "smoke" was emitted. Note: many the floor drains and internal catch basins identified in the southern portion of the facility were choked with sediment and other foreign materials; therefore, the observable locations of "smoke" were limited.

Furthermore, sanitary lines SS-B, SS-C, SS-D, and portions of SS-E were video recorded for purposes of determining the internal condition of the sewer line. Based on the result of the analysis, these lines appear to be severely corroded and may potentially contain minor cracking; however, there was no evidence of serve pipe failure.

6.3 Injection point SSMH No. 3

The third smoke injection point was initiated at sanitary sewer manhole SSMH-03, located in the northeast corner of the site, directly adjacent to the building structure. According to the as-built sewer plans, this storm sewer line serves the north-central portion of the building, including the men's room, the screen print room, and the machine and spinning rooms. The purpose of this injection point was to better identify the purpose, origin, and condition of all the sanitary lines identified, via the as-built drawings.

As liquid smoke was injected into sanitary manhole SSMH-03, the field crew observed no "smoke" in any of the floor drains, vents, or restroom facilities located in the north-central portion of the building structure. Note: video recording these lines was not accomplished as partial capped lines prevent camera entry.

6.4 Injection Point STS No. 1

The fourth smoke injection point was initiated at storm sewer manhole STS-03, located along the

Furthermore, this storm line was video recorded for purposes of determining the internal condition of the pipe. Based on the result of the analysis, the line appears contains large amounts of sediment/rock. There was no evidence of serve pipe failure.

6.5 Injection Point STS No. 2

The fifth smoke injection point was initiated at storm sewer manhole STS-02, located in the driveway area, directly adjacent to Commerce Drive. This sewer line is shown on the as-built drawings as a storm sewer line-serving floor drains in the assembly room, the paint shop, and in the men's room, as well as various roof drains. Note: a roof drain observation was not conducted as part of this investigation.

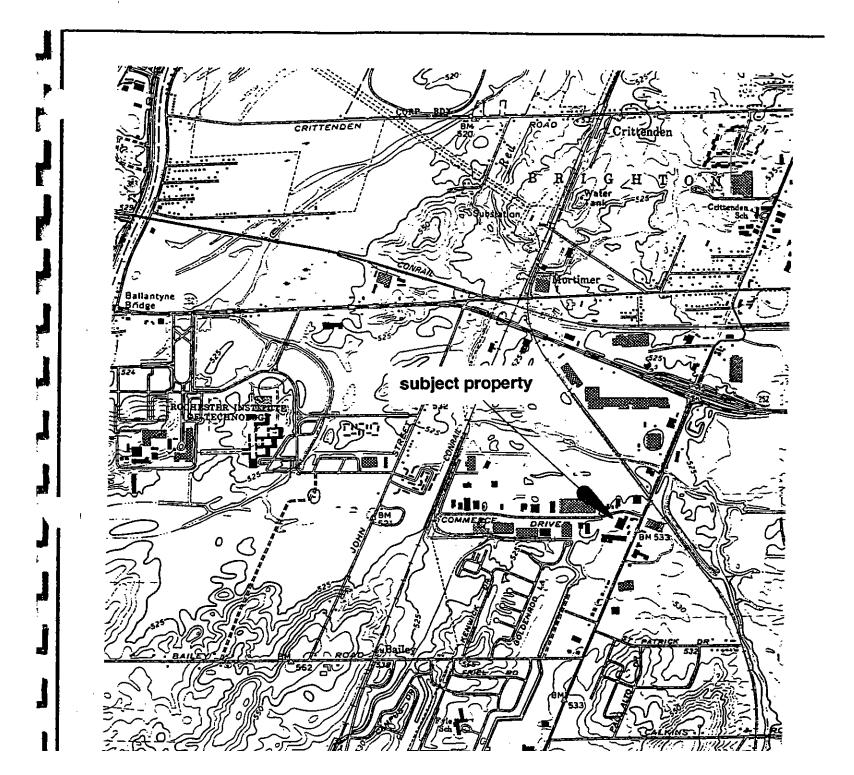
As liquid smoke was not injected into storm sewer manhole STSH-02, as the sewer pipe was completely inundated with storm water.

Furthermore, this storm line was not video recorded as the storm sewer pipe was completely inundated with storm water.

6.6 Injection Point STS No. 3

The sixth smoke injection point was initiated at storm sewer manhole STS-01, which is located in the northeastern portion of the site (in the lawn area). This manhole line is not shown on the asbuilt drawings; however, two (2) storm water lines appear to extend into the building structure.

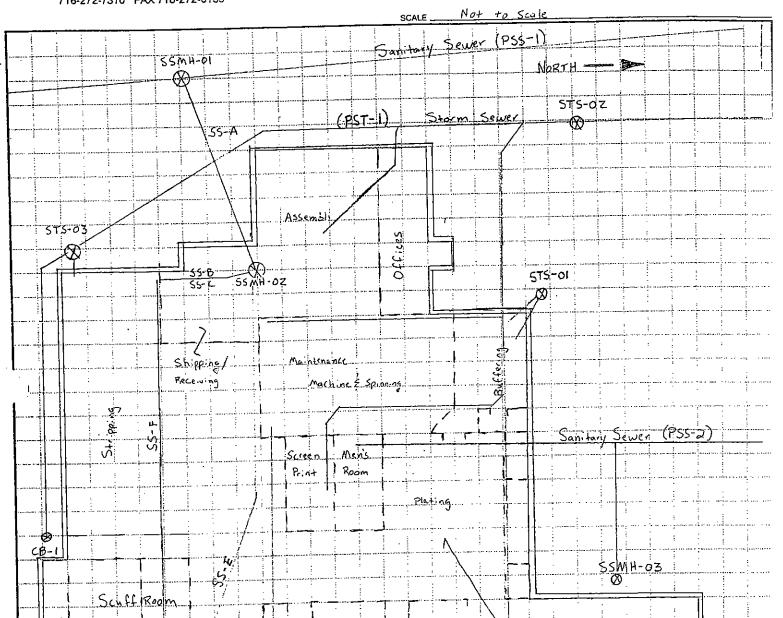
As liquid smoke was injected into storm sewer manhole STSH-01, the field crew observed no "smoke" in any of the floor drains, or restroom facilities located within the building structure.

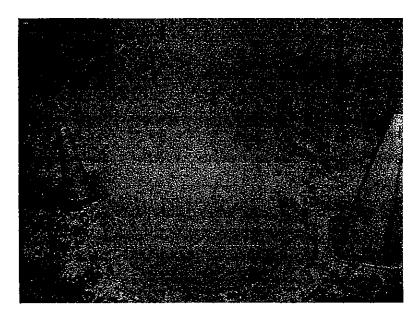

Furthermore, this storm line was video recorded for purposes of determining the internal condition of the pipe. Based on the result of the analysis, the line appears to be blocked with varying amounts of sediment. There was no evidence of serve pipe failure.

7.0 LIMITING CONDITIONS

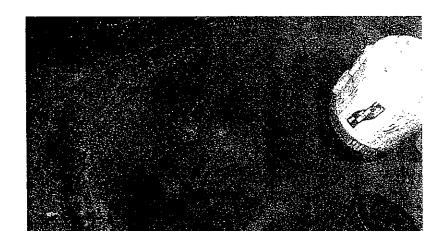
It is important to comment that the smoke test investigation was limited, in-terms of the number of "smoke" emitting structures within the SOH facility, as many floor drains, vents, and internal catch basins were choked with sediment; therefore, not allowing "smoke" to emit from these locations (Appendix C: Pl-07 and PL-08). Furthermore, restroom facilities (toilets, sinks, showers, and wash stations) were unable to emit the indicator "smoke" as their traps are currently functioning.

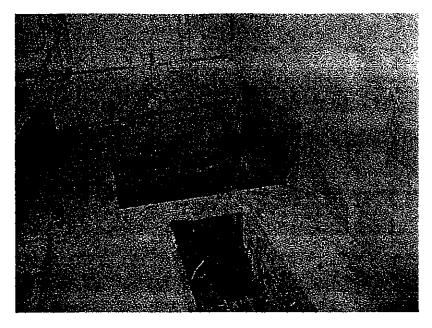
Although a portion of this investigation was inconclusive, a significant conclusion can be formed regarding the southern portions of the SOH facility. The smoke test investigation confirmed that sanitary sewers lines, SS-B, SS-C, SS-D, SS-E and SS-F drain the southern portion of the SOH facility and empty into the separator/sump structure located in the shipping and receiving area of the facility. Furthermore, an 8-inch pipe (SS-A) located in the separator/sump structure extends from the SOH facility and empties into a dedicated (public) sanitary sewer line (PSS-1), located in the driveway area of the SOH site.


As stated previously, the serve corrosion and minor cracking observed within this pipe provide evidence to support the conclusion that the potential migration of contaminates used in operational methods of the SOH facility were released into the surrounding environment via this 8-inch sanitary lateral.

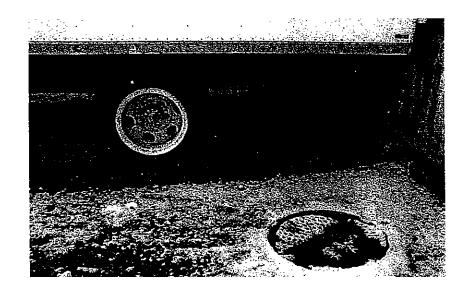


700 WEST METRO PARK, ROCHESTER, NY 14623-2673 716-272-7310 FAX 716-272-0159

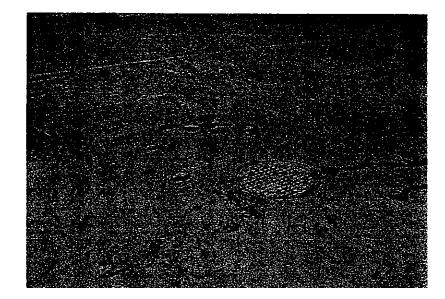

JOB SOH Floor Plan	layout
SHEET NO	OF
CALCULATED BY	DATE
CHECKED BY	DATE

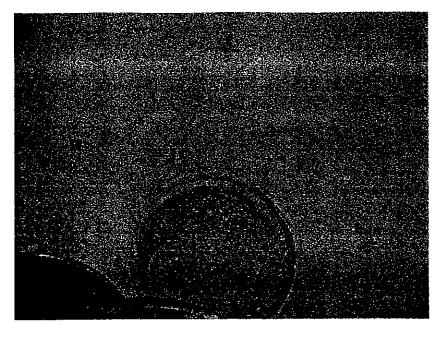


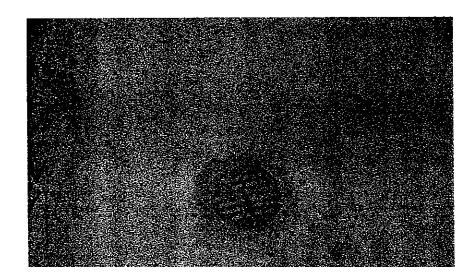
PHOTGRAPHIC DOCUMENTATION 39 COMMERCE DRIVE Stuart Olver Holtz, Inc.



PL-01: "Smoke" emitting from SSMH-02




PL-03: Collection basin in the northwest corner of Stripping area emitting "smoke."



PL-05: Vault area in plating area. Notice: rotten plywood cover.

PL:07: Plugged floor drain in plating area.

PL:9: Typical floor trench system observed throughout the facility.

APPENDIX D

LABORATORY ANALYTICAL DATA

Appendix D List of Tables

Appendix D-2 Analytical Results (Pesticides/PCBs) in Subsurface Soil Samples Appendix D-3 Analytical Results (SVOCs) in Subsurface Soil Samples Appendix D-4 Analytical Results (Metal) in Surface Soil Samples
Appendix D-4 Analytical Results (Metal) in Surface Soil Samples
Appendix D-5 Analytical Results (SVOCs) in Surface Soil Samples
Appendix D-6 Analytical Results (VOCs) in Sump/Catch Basin Sediment Samples
Appendix D-7 Analytical Results (VOCs) in Overburden Groundwater Samples
Appendix D-8 Analytical Results (Metals) in Overburden Groundwater Samples
Appendix D-9 Analytical Results (Wet Chem and Misc.) in Overburden Groundwater Samples
Appendix D-10 Analytical Results (VOCs) in Bedrock Groundwater Samples
Appendix D-11 Analytical Results (Metals) in Bedrock Groundwater Samples
Appendix D-12 Analytical Results (Wet Chem and Misc.) in Overburden Groundwater Samples
Appendix D-13 Analytical Results (VOCs) in Water Sample Collected from Vault
Appendix D-14 Analytical Results (Metals) in Water Samples Collected from Vault
Appendix D-15 Analytical Results (SVOCs) in Water Samples Collected from Vault

Appendix D NYSDEC – SOH, Henrietta, NY

Table Notes (General): ---: indicates not analyzed Unless otherwise specified by the validation, if a sample was analyzed once with acceptable results, the results from the first analysis were reported J – estimated Value D – Result from a secondary dilution DNR – Do not report, duplicate result exist due to dilution or re-analysis, this result should not be reported U – Not detected above the reported sample quantitation limit R – Rejected data

Sample ID	SB-1 4-6A	SB-1 6-8C	SB-1 8-10B	SB-1 10-12B
Laboratory ID	70751004	70751006	70751007	70751010
Sample Date	05/17/2000	05/18/2000	05/18/2000	05/18/2000
тос			0.7	
Volatiles (ug/kg)				
1,1,1-Trichloroethane	13 UJ	10 UJ		310 J
1,1,2,2-Tetrachloroethane	13 UJ	10 UJ	***	27 UJ
1,1,2-Trichloroethane	13 UJ	10 UJ		27 UJ 92 J
1,1-Dichloroethane	13 UJ	10 UJ		92 J
1,1-Dichloroethene	13 UJ	10 UJ	***	33 J
1,2,4-Trichlorobenzene			444	
1,2-Dichlorobenzene				***
1,2-Dichloroethane	13 UJ	10 UJ		27 UJ
1,2-Dichloroethene (Total)	13 UJ	10 UJ		38 J
1,2-Dichloropropane	13 UJ	10 UJ	•••	27 UJ
1,3-Dichlorobenzene				
1,4-Dichlorobenzene			•••	
2-Butanone	13 UJ	10 UJ		25 J
2-Hexanone	13 UJ	10 UJ		27 UJ
4-Methyl-2-Pentanone	[13 UJ	10 UJ		27 UJ
Acetone	l 13 UJ	10 UJ		43 UJ
Benzene	13 UJ	10 UJ		27 UJ
Bromodichloromethane	13 UJ	10 UJ		27 UJ
Bromoform	13 UJ	10 UJ		27 UJ
Bromomethane	13111	10 UJ		27 UJ
Carbon Disulfide	13 UJ 13 UJ	10 UJ		27 UJ
Carbon Tetrachloride	13 UJ	10 UJ		27 UJ
Chlorobenzene	13 UJ	10 UJ		27 UJ
Chloroethane	13 UJ	10 UJ		27 UJ
Chloroform	13 UJ	10 UJ	***	27 UJ
Chloromethane	13 UJ	10 UJ	•	27 UJ
cis-1,3-Dichloropropene	13 UJ	10 UJ	***.	27 UJ
Dibromochloromethane	13 UJ	10 UJ		27 UJ
Ethylbenzene	13 UJ	10 UJ	4 = =	27 UJ
Hexachlorobutadiene		•		
Methylene Chloride	13 UJ	10 UJ		54 UJ
In the terms of th	1	T	1	1

Sample ID	SB-1 10-12C	SB-1 12-14A	SB-1 16-18D	SB-1 CUTTINGS
Laboratory ID	70751011	70751012	70751008	70751009
Sample Date	05/18/2000	05/18/2000	05/18/2000	05/18/2000
тос	•••		0.5	
			0.0	
Volatiles (ug/kg)				
1,1,1-Trichloroethane	320 JD	23 J		14 J
1,1,2,2-Tetrachloroethane	11 UJ	11 UJ		45 UJ
1,1,2·Trichloroethane	11 UJ	l 11 UJ		45 UJ
1,1-Dichloroethane	130 J	3 J		130 J
1,1.Dichloroethene	75 J	11 UJ		15 J
1,2,4-Trichlorobenzene	***			380 UJ
1,2-Dichlorobenzene			***	380 UJ
1,2-Dichloroethane	11 UJ	11 UJ	***	45 UJ
1,2-Dichloroethene (Total)	95 J	11 UJ 3 J 11 UJ	**-	40 J
1,2-Dichloropropane	11 UJ	11 UJ	• • -	45 UJ
1,3-Dichlorobenzene			***	380 UJ
1,4-Dichlorobenzene			***	380 UJ
2-Butanone	41 J 11 UJ 5 J	11 UJ		45 UJ 45 UJ
2-Hexanone	11 UJ	11 ÜÜ		45 UJ
4-Methyl-2-Pentanone	5 J	11 UJ	***	45 UJ
Acetone	57 UJ	19 UJ	***	45 UJ
Benzene	11 UJ	11 UJ	***	45 UJ
Bromodichloromethane	11 UJ	l 11 UJ !	•••	45 UJ
Bromoform	11 UJ	11 UJ		45 UJ
Bromomethane	11 UJ 11 UJ	11 UJ	***	45 UJ
Carbon Disulfide	11 UJ	11 UJ	***	45 UJ
Carbon Tetrachloride	II UJ (11 UJ		45 UJ
Chlorobenzene	11 UJ	11 UJ	***	45 UJ
Chloroethane	11 UJ	11 UJ		45 UJ
Chloroform>	11 UJ	11 UJ		45 UJ 45 UJ
Chloromethane	11 UJ 11 UJ 11 UJ 11 UJ	11 UJ		45 UJ
cis-1,3-Dichloropropene	11 UJ 11 UJ	11 UJ		45 UJ
Dibromochloromethane	11 UJ	11 UJ		45 UJ
Ethylbenzene	1 J	11 UJ	***	45 UJ
Hexachlorobutadiene			***	380 UJ
Methylene Chloride	130 J	11 UJ		73 UJ
Nanhthalene				380111

Sample ID	SB-2 18-20D	SB-2 20-22B	SB-2 20-22C	SB-2 40-42A
Laboratory ID	70751013	70751014	70751015	70751016
Sample Date	05/19/2000	05/19/2000	05/19/2000	05/19/2000
тос	•••		•	•••
W-1-411 ((1				
Volatiles (ug/kg)	20.1	46.111	0.1	0.1
1,1,1-Trichloroethane	30 J	46 UJ	2 J 11 UJ	2 J
1,1,2,2-Tetrachloroethane	9 UJ	46 UJ		12 UJ
1,1,2-Trichloroethane	9 UJ	46 UJ	6 J	6 J
1,1-Dichloroethane	26 J	46 UJ	16 J	15 J
1,1-Dichloroethene	11 J	46 UJ	11 UJ	12 UJ
1,2,4-Trichlorobenzene		***	****	***
1,2-Dichlorobenzene				
1,2-Dichloroethane	9 UJ	46 UJ	11 UJ	12 UJ
1,2-Dichloroethene (Total)	95 J 9 UJ	46 UJ	79 J 11 UJ	75 J 12 UJ
1,2-Dichloropropane	9 UJ	46 UJ	11 UJ	12 UJ
1,3-Dichlorobenzene				
1,4-Dichlorobenzene				
2-Butanone	25 J	46 UJ	37 J 11 UJ	41 J 12 UJ
2-Hexanone	9 UJ	46 UJ	11 UJ	12 UJ
4-Methyl-2-Pentanone	25 J 9 UJ 9 UJ	46 UJ	18 J	22 J
Acetone	140 J	320 J	350 J	410 J
Benzene	9 UJ	46 UJ	11 UJ	12 UJ
Bromodichloromethane	9 UJ	46 UJ	11 UJ	12 UJ
Bromoform	9 UJ	46 UJ	11 UJ	12 UJ
Bromomethane	9 UJ	46 UJ	11 UJ	12 UJ
Carbon Disulfide	9 UJ	46 UJ	11 UJ	5 J
Carbon Tetrachloride	l 9 UJ	46 UJ	11 UJ	5 J 12 UJ
Chlorobenzene	9 UJ	46 UJ	11 ÜJ	12 UJ
Chloroethane	9 UJ	46 UJ	11 UJ	12 111
Chloroform	9 UJ	46 UJ	11 UJ	12 []
Chloromethane	9 UJ	46 UJ	11 UJ	12 UJ
cis-1,3-Dichloropropene	9 UJ	46 UJ	11 UJ	12 UJ
Dibromochloromethane	9 UJ	46 UJ	11 UJ	12 UJ
Ethylbenzene	9 UJ	46 UJ	11 UJ	12 UJ
Hexachlorobutadiene	***			
Methylene Chloride	18 UJ	46 UJ	36 J	32 UJ
Nanhthalene	4.4	***	* - *	

Sample ID	SB-3 16-18C	SB-3 28-30A	SB-3 30-32A	SB-4 4-6B
Laboratory ID	70768001	70768002	70768003	70713001
Sample Date	05/22/2000	05/22/2000	05/22/2000	05/11/2000
TOC	1			0.56 U
100		***		0.56 0
Volatiles (ug/kg)				
1.1.1.Trichloroethane	7200 UJ	1400 UJ	11 UJ	
1,1,2,2-Tetrachloroethane	7200 UJ	1400 UJ	11 UJ	
1,1,2-Trichloroethane	7200 UJ	1400 UJ	11 UJ	
1,1-Dichloroethane	7200 UJ	1400 UJ	11 UJ	* - *
1,1-Dichloroethene	7200 UJ	1400 UJ	11 UJ	***
1,2,4-Trichlorobenzene			***	****
1,2-Dichlorobenzene			***	* - *
1,2-Dichloroethane	7200 UJ	1400 UJ	11 UJ	·····
1,2-Dichloroethene (Total)	1500 J	1400 UJ	13 J	***
1,2-Dichloropropane	7200 UJ	1400 UJ	11 UJ	* * *
1,3-Dichlorobenzene			····	***
1,4-Dichlorobenzene			* = *	* * -
2-Butanone	7200 UJ	1400 UJ	11 UJ	***
2-Hexanone	7200 UJ	1400 UJ	11 ÜJ	***
4-Methyl-2-Pentanone	7200 UJ	1400 UJ	11 UJ	
Acetone	2400 J	1400 UJ	28 UJ	
Benzene	7200 UJ	1400 UJ	11 UJ	
Bromodichloromethane	7200 UJ	1400 UJ	11 UJ	*-+
Bromoform	7200 UJ	1400 UJ	11 UJ	
Bromomethane	7200 UJ	1400 UJ	11 UJ	
Carbon Disulfide	7200 UJ	1400 UJ	11 UJ	•••
Carbon Tetrachloride	7200 UJ	1400 UJ	11 UJ	
Chlorobenzene	7200 UJ	1400 UJ	11 UJ	
Chloroethane	7200 UJ	1400 UJ	11 UJ	
Chloroform	7200 UJ	1400 UJ	11 UJ	4
Chloromethane	7200 UJ	1400 UJ	11 UJ	***
cis-1,3-Dichloropropene	7200 UJ	1400 UJ	11 UJ	***
Dibromochloromethane	7200 UJ	1400 UJ	11 UJ	***
Ethylbenzene	7200 UJ	1400 UJ	1 J	***
Hexachlorobutadiene			***	•
Methylene Chloride	7200 UJ	1400 UJ	17 J	
Nanhthalene				

Sample ID	SB-4 14-16B	SB-4 16-18A	SB-4 16-18B	SB-4 26-28A
Laboratory ID	70713004	70713005	70713006	70713002
Sample Date	05/11/2000	05/11/2000	05/11/2000	05/11/2000
тос		•		2.34 U
<u>Volatiles (ug/kg)</u>				
1,1,1-Trichloroethane	19 UJ	27 UJ	100 UJ	•••
1,1,2,2-Tetrachloroethane	19 UJ	27 UJ	100 UJ	
1,1,2-Trichloroethane	19 UJ	4 J	100 UJ	
1,1-Dichloroethane	7 J	11 J	100 UJ	
1,1-Dichloroethene	19 UJ	27 UJ	100 UJ	
1,2,4-Trichlorobenzene	+			
1,2-Dichlorobenzene	**-	***		
1,2-Dichloroethane	19 UJ	27 UJ	100 UJ	
1,2-Dichloroethene (Total)	4.1	10 J	100 UJ 100 UJ	
1,2-Dichloropropane	19 UJ	10 J 27 UJ	100 UJ	
1,3-Dichlorobenzene				
1,4-Dichlorobenzene		4 - 4	• • •	
2-Butanone	100 J	72 J	100 UJ	
2-Hexanone	19 UJ	27 UJ	100 UJ	
4-Methyl-2-Pentanone	23 J	27 UJ	100 UJ	
Acetone	230 J	210 J	110 UJ	
Benzene	19 UJ	27 UJ	100 UJ	
Bromodichloromethane	19 UJ	27 UJ	100 UJ	
Bromoform	19 UJ	27 UJ	100 UJ	
Bromomethane	19 UJ	27 UJ	100 UJ	
Carbon Disulfide	19 UJ	27 UJ	100 UJ	
Carbon Tetrachloride	19 UJ	27 UJ	100 UJ	
Chlorobenzene	19 UJ	27 UJ	100 UJ	*
Chloroethane	19 UJ	27 UJ	100 UJ	***
Chloroform	19 UJ	27 UJ	100 UJ	
Chloromethane	19 UJ	27 UJ	100 UJ	
cis-1,3-Dichloropropene	19 UJ	27 UJ	100 UJ	
Dibromochloromethane	1911	27 UJ 27 UJ	100 UJ	
Ethylbenzene	19 UJ	27 UJ	100 UJ	
Hexachlorobutadiene		1		
Methylene Chloride	62 J	270 J	100 UJ	
Naphthalene	***	***	***	

Sample ID	SB-5 10-12A	SB-5 22-24B	SB-5 22-24B	SB-5 24-26A
Laboratory ID	'70713007	70713009	70713009RE	70713008
Sample Date	05/12/2000	05/12/2000	05/12/2000	05/12/2000
	1.60.11			
тос	1.69 U	***	•••	
Volatiles (ug/kg)		DND	42.111	100.111
1,1,1.Trichloroethane	•••	DNR	41 UJ	100 UJ
1,1,2,2-Tetrachloroethane		DNR	41 UJ	100 UJ
1,1,2-Trichloroethane		DNR	41 UJ	100 UJ
1,1-Dichloroethane		DNR	41 UJ	100 UJ
1,1-Dichloroethene		DNR	41 UJ	100 UJ
1,2,4-Trichlorobenzene		***	***	
1,2.Dichlorobenzene				
1,2-Dichloroethane		DNR	41 UJ	100 UJ
1,2-Dichloroethene (Total)		DNR	41 UJ	100 ÚJ
1,2-Dichloropropane		DNR	41 UJ	100 UJ
1,3-Dichlorobenzene	•••			
1,4-Dichlorobenzene				•
2-Butanone		DNR	41 UJ	100 UJ
2-Hexanone		DNR	41 UJ	100 UJ
4-Methyl-2-Pentanone	***	DNR	41 UJ	100 UJ
Acetone	***	470	DNR	720 J
Benzene		DNR	41 UJ	100 ปป
Bromodichloromethane		DNR	41 UJ	100 UJ
Bromoform		DNR	41 UJ	100 UJ
Bromomethane	-	DNR	41 UJ	100 UJ
Carbon Disulfide		DNR	41 UJ	100 UJ
Carbon Tetrachloride		DNR	41 UJ	100 UJ
Chlorobenzene		DNR	41 UJ	100 UJ
Chloroethane	***	DNR	41 UJ	100 UJ
Chloroform		DNR	41 UJ	100 UJ
Chloromethane	***	DNR	41 UJ	100 UJ
cis-1,3-Dichloropropene		DNR	41 UJ	100 UJ
Dibromochloromethane	*	DNR	41 UJ	100 UJ
Ethylbenzene	***	DNR	41 UJ	100 UJ
Hexachlorobutadiene	***************************************			
Methylene Chloride		DNR	41 UJ	100 UJ
Nanhthalene				• • •

Sample ID	SB-5 30-32A	SB-6 4-6C	SB-6 10-12A	SB-6 10-12C
Laboratory ID	70733001	70733007	70733002	70733009
Sample Date	05/15/2000	05/15/2000	5/15/00	05/15/2000
тос	•••	•••	30.9	
Volatiles (ug/kg)				
1,1,1.Trichloroethane	37 J	20		310 JD
1,1,2,2-Tetrachloroethane	11 U	11 U		10 U
1,1,2-Trichloroethane		11 U		10 U
1,1-Dichloroethane	11 U 8 J	11 11		15
1,1-Dichloroethene	11 U	11 U 11 U		10 U
1,2,4-Trichlorobenzene	11.0			10.0
1,2-Dichlorobenzene		•		
1,2-Dichloroethane	11 U	11 11		10 11
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		11 U	***************************************	10 U 11
1,2-Dichloroethene (Total)	24 J 11 U	11 U 11 U	***	10 U
1,2-Dichloropropane	11.0	110		100
1,3-Dichlorobenzene	****	***	***	
1,4-Dichlorobenzene	11 UJ	*** **********************************	***************************************	10.111
2-Butanone	11 UJ 11 U	11 U 11 U	•••	10 UJ 10 U
2-Hexanone	11 U	11 U		10.0
4-Methyl-2-Pentanone				10 U
Acetone	52 UJ	16 U		11 UJ
Benzene	11 U	11 U		10 U
Bromodichloromethane	11 U	11 U	* * *	10 U
Bromoform	11 U	11 U		10 U
Bromomethane	11 U	11 U	***	10 U
Carbon Disulfide	11 U	11 U	* - *	10 U
Carbon Tetrachloride	11 UJ	l 11 U		l 10 UJ l
Chlorobenzene	11 U	11 U		10 U
Chloroethane	11 UJ	11 U		10 UJ
Chloroform	11 U	11 U		10 U
Chloromethane	11 U 11 UJ 11 U 11 U	11 U		10 U
cis-1,3-Dichloropropene	11 U	11 U		10 U
Dibromochloromethane	11 U	11 U		10 U
Ethylbenzene	11 U	2	•••	10 U
Hexachlorobutadiene				
Methylene Chloride	13 U	11 U		10 U
Nanhthalono			· · · · · · · · · · · · · · · · · · ·	

Sample ID Laboratory ID	SB-6 20-22A 70733008	SB-6 30-32A 70733003	SB-6 34-36A 70733005	SBX-6 4-6A 70733010
Sample Date	05/15/2000	5/15/00	05/16/2000	05/17/2000
тос		1.7		•
Volatiles (ug/kg)				
1,1,1.Trichloroethane	210D	*	29 J	8900
1,1,2,2-Tetrachloroethane	10 U		10 U	1200 ป
1,1,2-Trichloroethane	10 U		10 U	1200 U
1,1-Dichloroethane	240D		40	1200 U
1,1-Dichloroethene	10 U		10 U	1200 U
1,2,4-Trichlorobenzene		•••	•••	***
1,2-Dichlorobenzene	***		•••	
1,2-Dichloroethane	10 U		10 U	1200 U
1,2-Dichloroethene (Total)	10 U	•••	10 U	1200 U
1,2-Dichloropropane	10 U 10 U	**-	10 U	1200 U
1,3-Dichlorobenzene	* - *	*	***************************************	
1,4-Dichlorobenzene	***			
2-Butanone	10 UJ		10 UJ	1200 UJ
2-Hexanone	10 U		10 U	1200 U
4-Methyl-2-Pentanone	10 U		10 U	1200 U
Acetone	26 UJ		10 U	1200 U
Benzene	10 U		10 ∪	1200 U
Bromodichloromethane	10 U		10 U	1200 U
Bromoform	10 U	•••	10 U	1200 U
Bromomethane	10 U		10 U	1200 U
Carbon Disulfide	10 U 10 U 10 UJ	• • •	10 U	1200 U
Carbon Tetrachloride	10 UJ		10 11	1200 U
Chlorobenzene	10 U		10 U	1200 U
Chloroethane	10 UJ	***	10 U	1200 U
Chloroform	10 U	••••	10 U	1200 U
Chloromethane	10 U	***	10 U	1200 U
cis-1,3-Dichloropropene	10 U		10 U	1200 U
Dibromochloromethane	10 U		10 U	1200 U
Ethylbenzene	10 U		10 U	700
Hexachlorobutadiene				
Methylene Chloride	140		12 U	1200 U
Nanhthalene	··· ··································	†		·····

Sample ID	SBX-6 4-6B	SBX-6 40-42C	SBX-6 6-8B	SB7 (16-18) D
Laboratory ID	70751001	70751003	70751002	70688009
Sample Date	05/17/2000	05/17/2000	05/17/2000	05/09/2000
тос	!		u	
100				
Volatiles (ug/kg)				
1,1,1.Trichloroethane	73 J	51 UJ	350 JD	57 UJ
1,1,2,2-Tetrachloroethane	47 UJ	51 UJ	11 UJ	57 UJ
1.1.2-Trichloroethane	47 UJ	51 UJ	11 UJ	57 UJ
1,1.Dichloroethane	47 UJ	51 UJ	37 J	73 J
1,1-Dichloroethene	47 UJ	51 UJ	34 J	10 J
1.2.4-Trichlorobenzene				† <u>-</u>
1,2-Dichlorobenzene	*			
1,2-Dichloroethane	47 UJ	51 UJ	11 UJ	57 111
1,2-Dichloroethene (Total)	47 []]	51 UJ	11 UJ	57 UJ 33 J
1,2-Dichloropropane	47 UJ 47 UJ	51 UJ	11 UJ	57 UJ
1,3-Dichlorobenzene				<u>-</u>
1,4-Dichlorobenzene	•••		***	
2-Butanone	47 UJ	51 UJ	11 UJ	57 UJ
2-Hexanone	47 UJ	51 UJ	11 UJ	57 UJ
4-Methyl-2-Pentanone	47 UJ	51 UJ	11 UJ	57 UJ
Acetone	53 UJ	51 UJ	16 UJ	57 UJ
Benzene	47 UJ	51 UJ	11 UJ	57 UJ
Bromodichloromethane	47 UJ	51 UJ	11 UJ	57 UJ
Bromoform	47 U.J	51 UJ	11 UJ 11 UJ	57 UJ
Bromomethane	47 UJ	51 UJ	11 UJ	l 57 UJ
Carbon Disulfide	47 UJ	51 UJ	11 UJ	57 UJ
Carbon Tetrachloride	47 UJ	51 UJ	11 UJ	57 UJ
Chlorobenzene	47 UJ	51 UJ	11 UJ	57 UJ
Chloroethane	47 UJ	51 UJ	11 UJ	57 UJ
Chloroform	47 UJ	51 UJ	11 UJ	57 UJ
Chloromethane	47 UJ	51 UJ	11 UJ	57 UJ
cis-1,3-Dichloropropene	47 UJ	51 UJ	11 UJ	57 UJ
Dibromochloromethane	47 UJ	51	11 UJ	57 UJ
Ethylbenzene	110 J	51 UJ	24 J	57 UJ
Hexachlorobutadiene			•••	
Methylene Chloride	47 UJ	51 UJ	30 UJ	57 UJ
Naphthalene	***		* * *	

Sample ID	SB7 (18-20) A	SB7 (34-36) A	SB-8 (26-28) B	SB-8 (26-28) C
Laboratory ID Sample Date	70688008 05/09/2000	70688010 05/09/2000	70688004 05/08/2000	70688005 05/08/2000
	03/03/2000	03/03/2000	0370872000	03/08/2000
тос				
Volatiles (ug/kg)				
1,1,1-Trichloroethane	7 J	11 UJ	11 UJ	12 UJ
1,1,2,2-Tetrachloroethane	53 UJ	11 UJ	11 UJ	12 UJ
1,1,2-Trichloroethane	53 UJ	11 UJ	11 UJ	12 UJ
1,1-Dichloroethane	300 J	11 UJ	44 J	44 J
1,1-Dichloroethene	10 J	11 UJ	2 J	12 UJ
1,2,4-Trichlorobenzene			* * -	
1,2-Dichlorobenzene			***	
1,2-Dichloroethane	53 UJ	11 UJ	11 UJ	12 UJ
1,2-Dichloroethene (Total)	63 J	11 UJ	22 J	24 J
1,2.Dichloropropane	53 UJ	11 UJ	11 UJ	12 UJ
1,3-Dichlorobenzene			* * *	
1,4-Dichlorobenzene			4 4 4	
2-Butanone	53 UJ	l 11 U.I	l 11	17 J 12 UJ
2·Hexanone	53 UJ	11 UJ	11 UJ	12 UJ
4-Methyl-2-Pentanone	53 UJ	11 UJ	3 J	6 J
Acetone	53 UJ	14 UJ	67 UJ	150 UJ
Benzene	53 UJ	11 UJ	11 UJ	12 UJ
Bromodichloromethane	53 UJ	11 UJ	11 UJ	12 UJ
Bromoform	53 UJ	11 UJ	11 UJ	12 UJ
Bromomethane	53 UJ	11 UJ	11 UJ	12 UJ
Carbon Disulfide	53 UJ	11 UJ	11 UJ	12 UJ
Carbon Tetrachloride	53 UJ	11 UJ	11 UJ	12 UJ
Chlorobenzene	53 UJ 53 UJ	11 UJ	11 UJ	12 UJ
Chloroethane	. 53 UJ	11 UJ	11 UJ	12 UJ
Chloroform	53 UJ	11 UJ	11 UJ	12 UJ
Chloromethane	53 UJ	11 UJ	11 UJ	12 UJ
cis-1,3-Dichloropropene	53 UJ	11 UJ	11 UJ	12 UJ
Dibromochloromethane	53 UJ	11 UJ	11 UJ	12 UJ
Ethylbenzene	53 UJ	11 UJ	11 UJ	1 J
Hexachlorobutadiene	***			
Methylene Chloride	78 UJ	11 UJ	250 J	370 J
Nanhthalana		†		İ'''''

Sample ID	SB-8 (26-28) D	SB-9 (18-20) A	SB-9 (20-22) A	SB-9 (34-36) A
Laboratory ID	70688006	70688001	70688002	70688003
Sample Date	05/08/2000	05/05/2000	05/05/2000	05/05/2000
тос				
Volatiles (ug/kg)	11 UJ	12 UJ	11 UJ	12 UJ
1,1,1-Trichloroethane		12 UJ	11 UJ	12 UJ
1,1,2,2-Tetrachloroethane	11 UJ			
1,1,2-Trichloroethane	11 UJ	12 UJ	11 UJ	12 UJ
1,1.Dichloroethane	51 J	21 J	66 J	7 J
1,1-Dichloroethene	11 UJ	12 UJ	11 UJ	12 UJ
1,2,4-Trichlorobenzene		* * *	.,,,,,,,	***
1,2-Dichlorobenzene				
1,2-Dichloroethane	11 UJ	12 UJ	11 UJ	12 UJ
1,2-Dichloroethene (Total)	(33 J	12 UJ	11 UJ	12111
1,2-Dichloropropane	11 UJ	12 UJ	11 UJ	12 UJ
1,3-Dichlorobenzene				•••
1,4-Dichlorobenzene				•••
2-Butanone	11 UJ	12 UJ	11 UJ	12 UJ
2·Hexanone	11 UJ	12 UJ	11 UJ	12 UJ
4-Methyl-2-Pentanone	4 J	12 UJ	11 UJ	12 UJ
Acetone	110 UJ	12 UJ	11 UJ	28 UJ
Benzene	11 UJ	12 UJ	11 UJ	12 UJ
Bromodichloromethane	11 UJ	12 UJ	11 UJ	12 UJ
Bromoform	11 UJ	12 UJ	11 UJ	12 UJ
Bromomethane	11 UJ	12 UJ	11 UJ	12 UJ
Carbon Disulfide	11 UJ	12 UJ	11 UJ	12 UJ
Carbon Tetrachloride	11 UJ	12 UJ 12 UJ	11 UJ	12 UJ
Chlorobenzene	11 UJ	12 UJ	11 UJ	12 UJ
Chloroethane	11 UJ	12 UJ	11 UJ	12 UJ
Chloroform	11 UJ	12 UJ	11 UJ	12 UJ
Chloromethane	11 UJ	12 UJ	11 UJ	12 UJ
cis-1,3-Dichloropropene	11 UJ	12 UJ	11 UJ	12 UJ
Dibromochloromethane	11 ÜJ	12	11 UJ	12 UJ
Ethylbenzene	11 UJ 11 UJ	12 UJ	11 UJ	12 UJ 12 UJ
Hexachlorobutadiene				
Methylene Chloride	1500 JD	15 UJ	21 UJ	12 UJ
Nanhthalene			***	

Sample ID	SB-9 (34-36) A 70688003RE	SB-10A (30-32) 70674004	SB-10A (32-34) 70674005	SB-10A (32-34) 70674006
Laboratory ID Sample Date	05/05/2000	05/03/2000	05/03/2000	05/03/2000
тос				
Volatiles (ug/kg)				
1,1,1-Trichloroethane	DNR	19 UJ	89 UJ	42 UJ
1,1,2,2-Tetrachloroethane	DNR	19 UJ	89 UJ	42 UJ
1,1,2-Trichloroethane	DNR	19 UJ	89 UJ	42 UJ
1,1-Dichloroethane	DNR	18 J	94 J	42 UJ
1,1-Dichloroethene	DNR	19 UJ	89 UJ	42 UJ
1,2,4-Trichlorobenzene		*-+		
1,2-Dichlorobenzene		***		***
1,2-Dichloroethane	DNR	19 UJ 7 J	89 UJ	42 UJ
1,2-Dichloroethene (Total)	DNR	7 J	37 J	42 UJ
1,2-Dichloropropane	DNR	19 ÜJ	89 UJ	42 UJ
1,3-Dichlorobenzene			4 * *	
1,4-Dichlorobenzene			***	
2-Butanone	DNR	19 UJ	89 UJ	42 UJ
2-Hexanone	DNR	19 UJ	89 UJ	42 UJ
4-Methyl-2-Pentanone	DNR	19 UJ	89 UJ	42 UJ
Acetone	DNR	9 J	89 UJ	42 UJ
Benzene	DNR	19 UJ	89 UJ	42 UJ
Bromodichloromethane	DNR	19 UJ	89 UJ	42 UJ
Bromoform	DNR	19 UJ	89 UJ	42 UJ
Bromomethane	DNR	19 UJ	89 UJ	42 UJ
Carbon Disulfide	DNR	19 UJ	89 UJ	42 UJ
Carbon Tetrachloride	DNR	19 UJ	89 UJ	42 UJ
Chlorobenzene	DNR	19 UJ	89 UJ	42 UJ
Chloroethane	DNR	19 UJ	89 UJ	42 UJ
Chloroform	DNR	19 UJ	89 UJ	42 UJ
Chloromethane	DNR	19 UJ	89 UJ	42 UJ
cis-1,3-Dichloropropene	DNR	19 UJ	89 UJ	42 UJ
Dibromochloromethane	DNR	19 UJ	89 UJ	42 UJ
Ethylbenzene	DNR	19 UJ	89 UJ	42 UJ
Hexachlorobutadiene	1			*-*
Methylene Chloride	DNR	19 UJ	89 UJ	42 UJ
Naphthalene	***			T

Sample ID Laboratory ID	SB-11 (38-40) C 70674007	SB-11 (38-40) D 70674008	SB-11 (40-42) D 70674009	SB-12 (24-26) C 70674001
Sample Date	05/02/2000	05/02/2000	05/02/2000	05/04/2000
тос				
Volatiles (ug/kg)				
1,1,1-Trichloroethane	10 UJ	8 UJ	10 UJ	240 J
1,1,2,2-Tetrachloroethane	10 UJ	8 UJ	10 UJ	60 UJ
1,1,2-Trichloroethane	10 UJ	8 UJ	10 UJ	60 UJ
1,1.Dichloroethane	2 J	6 J	58 J	590 J
1,1-Dichloroethene	10 UJ	8 UJ	10 UJ	14 J
1,2,4-Trichlorobenzene				
1,2-Dichlorobenzene			4 - 4	***
1,2-Dichloroethane	10 UJ	8 UJ	10 UJ	60 UJ
1,2-Dichloroethene (Total)	2 J	4 J	250 J	14 J
1,2-Dichloropropane	10 UJ	8 UJ	10 UJ	60 UJ
1,3-Dichlorobenzene				
1,4-Dichlorobenzene			4	
2-Butanone	7 J	8 UJ	8 J	60 UJ
2-Hexanone	10 UJ	8 UJ	10 UJ	60 UJ
4-Methyl-2-Pentanone	10 UJ	8 UJ	10 UJ	60 UJ
Acetone	31 J	30 J	43 J	29 J
Benzene	10 UJ	8 U.J	10 UJ	60 UJ
Bromodichloromethane	10 UJ	LU 8 LL	10 UJ	60 UJ
Bromoform	10 UJ	8 UJ	10 UJ	60 UJ
Bromomethane	10 UJ	8 UJ	10 UJ	60 UJ
Carbon Disulfide	10 UJ	8 UJ	l 2 J	60 UJ
Carbon Tetrachloride	10 UJ	8 UJ	10 UJ	60 UJ
Chlorobenzene	10 UJ	8 UJ	10 UJ	60 UJ
Chloroethane	10 UJ	8 UJ	10 UJ	60 UJ
Chloroform	10 UJ	8 UJ	10 UJ	60 UJ
Chloromethane	10 UJ	8 UJ	10 UJ	60 UJ
cis-1,3-Dichloropropene	10 UJ	8 UJ	10 UJ	60 UJ
Dibromochloromethane	10 UJ	8 UJ	10 UJ	60 UJ
Ethylbenzene	10 UJ	8 UJ	10 UJ	60 UJ
Hexachlorobutadiene	•			
Methylene Chloride	4 J	38 J	370 J	97 J
Nanhthalene	•••	T		T

Sample ID Laboratory ID	SB-12 (26-28) B 70674002	SB-12 (26-28) D 70674003	SB-15 18-20B 70768004	SB-15 18-20C 70768005
Sample Date	05/04/2000	05/04/2000	05/23/2000	05/23/2000
тос				
<u>Volatiles (ug/kg)</u>	}			i
1,1,1-Trichloroethane	230 J	10 J	1400 UJ	11 U
1,1,2,2 Tetrachloroethane	120 UJ	12 UJ	1400 UJ	11 U
1,1,2-Trichloroethane	120 UJ	12 UJ	1400 UJ	11 U
1,1-Dichloroethane	1200 J	85 J	1400 UJ	7
1,1-Dichloroethene	120 UJ	12 UJ	1400 UJ	11 UJ
1,2,4-Trichlorobenzene			***	
1,2-Dichlorobenzene			•••	***
1,2-Dichloroethane	120 UJ	12 UJ	1400 UJ	11 U
1,2-Dichloroethene (Total)	14 J	12 UJ	430 J	10
1,2-Dichloropropane	120 UJ	12 UJ	1400 UJ	11 U
1,3-Dichlorobenzene				***
1,4-Dichlorobenzene				
2-Butanone	120 UJ	11 J	1400 UJ	11 U
2-Hexanone	120 UJ	12 UJ	1400 UJ	11 U
4-Methyl-2-Pentanone	120 UJ	12 UJ	1400 UJ	11 U
Acetone	56 J	22 J	900 J	580 JD
Benzene	120 UJ	12 UJ	1400 UJ	11 U
Bromodichloromethane	120 UJ	12 UJ	1400 UJ	11 U
Bromoform	120 UJ	12 UJ	1400 UJ	11 U
Bromomethane	120 UJ	12 UJ	1400 UJ	11 U
Carbon Disulfide	120 UJ	12 UJ	1400 UJ	11 U
Carbon Tetrachloride	120 UJ	12 UJ	1400 UJ	11 U 11 U 11 U
Chlorobenzene	120 UJ	12 UJ	1400 UJ	11 U
Chloroethane	120 UJ	12 UJ	1400 UJ	11 U
Chloroform	120 UJ	12 UJ	1400 UJ	11 U
Chloromethane	120 UJ	12 UJ	1400 UJ	11 U
cis-1,3-Dichloropropene	120 UJ	12 UJ	1400 UJ	11 U
Dibromochloromethane	120 UJ	12 UJ	1400 UJ	11 U
Ethylbenzene	120 UJ	12 UJ	1400 UJ	1
Hexachlorobutadiene		***	===	***
Methylene Chloride	280 J	38 J	1400 UJ	82
Naphthalene		***		242

Sample ID Laboratory ID	SB-15 20-22A 70768006	SB-16 26-28A 70866003	SB-16 36-38A 70866004	SB-16 44-46A 70866005
Sample Date	05/23/2000	06/09/2000	06/09/2000	06/09/2000
TOC				
Volatiles (ug/kg)				
1,1,1-Trichloroethane	10 U	540000 U	1200 U	6 J
1,1,2,2.Tetrachloroethane	10 U	540000 U	1200 U	29 UJ
1,1,2.Trichloroethane	10 U	540000 U	1200 U	29 UJ
1,1-Dichloroethane	10 U	540000 U	1200 U	29 UJ
1,1-Dichloroethene	10 UJ	540000 U	1200 U	29 UJ
1,2,4-Trichlorobenzene				
1,2-Dichlorobenzene				
1,2-Dichloroethane	10 U	540000 U	1200 U	29 UJ
1,2-Dichloroethene (Total)	11 10 U	540000 U	1200 U	29 UJ
1,2-Dichloropropane	10 U	540000 U	1200 U	29 UJ
1,3-Dichlorobenzene				
1,4-Dichlorobenzene				
2-Butanone	10 U	540000 U	1200 U	29 UJ
2-Hexanone	10 U	540000 UJ	1200 UJ	29 UJ
4-Methyl-2-Pentanone	10 U	540000 U	1200 U	29 UJ
Acetone	520 JD	540000 UJ	1200 UJ	29 UJ
Benzene	10 U	540000 U	1200 U	29 UJ
Bromodichloromethane	10 U	540000 U	1200 U	29 UJ
Bromoform	10 U	540000 U	1200 U	29 UJ
Bromomethane	10 U	540000 U	1200 U	29 UJ
Carbon Disulfide	10 U	540000 U	1200 U	29 UJ
Carbon Tetrachloride	10 U	540000 U	1200 U	29 UJ
Chlorobenzene	10 U	540000 U	1200 U	29 UJ
Chloroethane	10 U	540000 U	1200 U	29 UJ
Chloroform	10 U	540000 U	1200 U	29 UJ
Chloromethane	10 U	540000 U	1200 U	29 UJ
cis-1,3-Dichloropropene	10 U	540000 U	1200 U	29 UJ
Dibromochloromethane	10 U	540000 U	1200 U	29 UJ
Ethylbenzene	1	540000 U	1200 U	29 UJ
Hexachlorobutadiene			***	
Methylene Chloride	10	540000 U	1200 U	29 UJ
Nanhthalana		T		T

Sample ID	SB-17 10-12B	SB-17 24-26B	SB-17 28-30A	SB-18 12-14B	
Laboratory ID	70905004	70905003	70905002	70924001	
Sample Date	06/12/2000	06/13/2000	06/13/2000	06/15/2000	
тос		•	•••		
 Volatiles (ug/kg)					
1,1,1.Trichloroethane	11 UJ	12 U	11 U	220	
1,1,2,2.Tetrachloroethane	11 UJ	12 U	11 U	21 U	
1,1,2.Trichloroethane	11 UJ	12 U		21 U	
1,1-Dichloroethane		12 0	11 U	1/	
	45 J	5 12 U	5 11 U	14 21 U	
1,1-Dichloroethene	2 J	12 U	110	Z1.U	
1,2,4-Trichlorobenzene	•••		***		
1,2-Dichlorobenzene					
1,2-Dichloroethane	11 UJ	12 U	11 U	21 U	
1,2-Dichloroethene (Total)	29 J	22 12 U	14	370 D 21 U	
1,2-Dichloropropane	11 UJ	12 U	11 U	21 U	
1,3-Dichlorobenzene	* * *		***		
1,4-Dichlorobenzene					
2-Butanone	11 UJ	12	11 U	21 U	
2-Hexanone	11 UJ	12 U	11 U	21 U	
4-Methyl-2-Pentanone	11 UJ	12 U	11 U	21 U	
Acetone	24 J	60	39	20	
Benzene	11 UJ	12 U	11 U	21 U	
Bromodichloromethane	11 UJ	12 U	11 U	21 U 21 U	
Bromoform	11 UJ	12 U	11 U	21 U	
Bromomethane	11 UJ	12 U	11 U	21 U	
Carbon Disulfide	1 1 1 1	12 U	11 U	l 2111 (
Carbon Tetrachloride	11 UJ	12 U 12 U	11 U	21 U	
Chlorobenzene	11 UJ	12 ()	11 U 11 U	21 U	
Chloroethane	11 UJ 11 UJ 11 UJ	12 U	11 U	21 U	
Chloroform	11 UJ	12 U	11 U	21 U	
Chloromethane	11 UJ	12 U	11 U	21 U	
cis-1,3-Dichloropropene	11 UJ	12 U	11 U	21 Ü	
Dibromochloromethane	11 UJ	12 U	11 U	21 U	
Ethylbenzene	11 UJ	12 U	11 U	21 U	
Hexachlorobutadiene					
Methylene Chloride	11 UJ	1211	11 U	21 U	
Nanhthalene	11 03	12 U			

Sample ID Laboratory ID	SB-18 18-20A 70924002	SB-18 22-24A 70924003	SB-19 24-26A 70905007	SB-19 26-28A 70905006
Sample Date	06/16/2000	06/16/2000	06/14/2000	06/14/2000
TOC				•••
Volatiles (ug/kg)				
1,1,1-Trichloroethane	20000 D	1100000	410 D	91
1,1,2,2-Tetrachloroethane	110 U	110000 U	11 U	11 U
1,1,2-Trichloroethane	91	110000 U	11 U	11 U
1,1-Dichloroethane	220	110000 U	84	91
1,1-Dichloroethene	16	110000 U	11 U	11 U
1,2,4-Trichlorobenzene				
1,2-Dichlorobenzene				
1,2-Dichloroethane	110 U	110000 U	11 U	3 11 U
1,2-Dichloroethene (Total)	210	110000 U	1	11 Ü
1,2-Dichloropropane	110 U	110000 U	1 11 U	11 U
1,3-Dichlorobenzene			•••	
1,4-Dichlorobenzene	***	***		***
2-Butanone	110 U	110000 U	11 U	l 13 l
2-Hexanone	110 U	110000 U	11 U	11 U
4-Methyl-2-Pentanone	110 U	110000 U	11 U	11 U
Acetone	74	110000 U	64	58
Benzene	110 U	110000 U	11 U	11 U 11 U
Bromodichloromethane	110 U	110000 U	11 U	11 U
Bromoform	1 110 U	110000 U	11 U	11 U
Bromomethane	110 U	110000 UJ	11 U	11 U
Carbon Disulfide	110 U	110000 U	11 U	3
Carbon Tetrachloride	110 U	110000 U	11 U	11 U 11 U 3 11 U
Chlorobenzene	110 U	110000 U	11 U 11 U	11 U 11 U
Chloroethane	110 U	110000 U	11 U	11 U
Chloroform	110 U	110000 U	11 U	11 U
Chloromethane	110 U	110000 U	11 U	11 U
cis-1,3-Dichloropropene	110 U	110000 U	11 U	11 U
Dibromochloromethane	110 U	110000 U	11 U	11 U
Ethylbenzene	140	110000 U	11 U	11 U
Hexachlorobutadiene				4
Methylene Chloride	120 U	110000 U	14 U	12 U
Nanhthalene			* * *	***

Sample ID	SB-19 4-6A	SB-20 16-18A	SB-20 20-22B	SB-20 4-6A
Laboratory ID	70905005	70941002	70941003	70941001
Sample Date	06/14/2000	06/20/2000	06/20/2000	06/19/2000
тос				
Volatiles (ug/kg)				
1,1,1-Trichloroethane	20	5700 U	110 U	1
1,1,2,2-Tetrachloroethane	11 U	5700 U	110 U	10 U
1,1,2-Trichloroethane	11 U	5700 U	110 U	10 U
1,1-Dichloroethane	3	5700 ป	110 U	10 U
1,1-Dichloroethene	1	5700 U	110 U	10 U
1,2,4-Trichlorobenzene				•
1,2-Dichlorobenzene				
1,2-Dichloroethane	11 U	5700 U	110 U	10 U
1,2-Dichloroethene (Total)	11 LJ	5700 U	110 U	10 U
1,2-Dichloropropane	11 U	5700 U	110 U	10 U 10 U
1,3-Dichlorobenzene				
1,4-Dichlorobenzene		***	*	* * *
2-Butanone	11 U	5700 U	110 U	10 U
2·Hexanone	11 U	5700 U	110 U	10 U
4-Methyl-2-Pentanone	11 U	5700 U	110 U	10 U
Acetone	15 U	2100	110 U	10 U
Benzene	11 U	5700 U	110 U	10 U
Bromodichloromethane	11 U	5700 U	110 U	10 U
Bromoform	l 11 U	5700 U	110 U	10 U
Bromomethane	11 U	5700 U	110 Ü	10 U
Carbon Disulfide	11 U	5700 U	110 U	10 U
Carbon Tetrachloride	11 U	5700 U	110 U	10 U
Chlorobenzene	11 U	5700 U	110 U	10 U
Chloroethane	11 U	5700 U	110 U	10 U
Chloroform	11 U	5700 U	110 U	10 U
Chloromethane	11 U	5700 U	110 U	10 U
cis-1,3-Dichloropropene	11 U	5700 U	110 U	10 ∪
Dibromochloromethane	11 U 11 U	5700 U	110 U	10 U 10 U
Ethylbenzene	11 U	5700 U	110 U	10 U
Hexachlorobutadiene	l	• • •		l
Methylene Chloride	11 U	5700 U	110 U	10 U
Naphthalene				

Sample ID	SB-1 CUTTINGS
Laboratory ID	70751009
Sample Date	05/18/2000
Pesticides/PCBs (ug/Kg)	
1	.
4,4-DDD	3.8 UJ
4,4-DDE	3.8 UJ
4,4-DDT	3.8 UJ
Aldrin	2,0 UJ
alpha-BHC	2.0 UJ
alpha-Chlordane	2.0 UJ
Aroclor-1016	38 UJ
Aroclor-1221	78 UJ
Aroclor-1232	38 UJ
Aroclor-1242	38 UJ
Aroclor-1248	38 UJ
Aroclor-1254	38 UJ
Aroclor-1260	38 UJ
beta-BHC	2.0 UJ
delta-BHC	2.0 UJ
Dieldrin	3.8 UJ
Endosulfan I	2.0 UJ
Endosulfan II	3.8 UJ
Endosulfan sulfate	3.8 UJ
Endrin	3.8 UJ
Endrin aldehyde	3.8 UJ
Endrin ketone	3.8 ÚJ
gamma-BHC (Lindane)	2.0 UJ
gamma-Chlordane	2.0 UJ
Heptachlor	2.0 UJ
Heptachlor epoxide	2.0 UJ
Methoxychlor	20 UJ

Appendix D-3 Analytical Results (SVOCs) in Subsurface Soil Samples NYSDEC-Rochester, Henrietta, NY

Sample ID	SB-1 CUTTINGS
Laboratory ID	70751009
Sample Date	05/18/2000
Burnipre Bute	03/10/2000
Semivolatiles (ug/kg)	1
1,2,4-Trichlorobenzene	380 UJ
1,2-Dichlorobenzene	380 UJ
1,3-Dichlorobenzene	380 UJ
1 4-Dichlorobenzene	380 UJ
1,4-Dichlorobenzene 2,2-oxybis(1-Chloropropane)	380 UJ
2,4,5-Trichlorophenol	960 UJ
2,4,6-Trichlorophenol	380 UJ
2,4-Dichlorophenol 2,4-Dimethyphenol	380 UJ
2,4-Dinitrophenol	960 UJ
2,4-Dinitrotoluene	380 UJ
2 6-Dinitrotoluene	380 UJ
2,6-Dinitrotoluene 2-Chloronaphthalene	380 UJ
2-Chlorophenol	380 UJ
2-Methylnaphthalene	380 UJ
2-Methylphenol	380 UJ
2-Nitroaniline	960 UJ
O N// I I	200 111
3,3-Dichlorobenzidine	380 UJ
3-Nitroaniline	960 UJ
4,6-Dinitro-2-methylphenol	960 UJ
4-Bromophenyl-phenylether	380 UJ
4-Chloro-3-methylphenol	380 UJ
4-Chloroaniline	380 UJ
4-Chlorophenyl-phenylether	380 UJ
4-Methylphenol	380 UJ
4-Nitroaniline	······································
4-Nitrophenol	000111
Acenaphthene	380 UJ
Acenaphthylene	380 UJ
Anthracene	380 UJ
Benzo(a)anthracene	380 UJ
Benzo(a)pyrene	380 UJ
Benzo(b)fluoranthene	380 UJ
Benzo(g,h,i)perylene	380 UJ
Benzo(k)fluoranthene	380 UJ
bis(2-Chloroethoxy)methane	380 UJ
bis(-2-Chloroethyl)Ether	380 UJ
bis(2-Ethylhexyl)phthalate	380 UJ
Butylbenzylphthalate	380 UJ
Carbazole	380 UJ
Chrysene	380 UJ
Dibenzo(a,h)anthracene	380 UJ
Dibenzofuran	380 UJ
Diethylphthalate	380 UJ
Dimethylphthalate	380 UJ
Di-n-butylphthalate Di-n-octylphthalate	380 UJ 380 UJ
Fluoranthene	380 UJ
Fluorene	380 UJ
Hexachlorobenzene	380 UJ
I IOVACIIIOI ODGIITCIIO	700 A1

Appendix D-4
Analytical Results (Metal) in Surface Soil Samples
NYSDEC - SOH, Henrietta, NY

Sample ID	DD-1	DD-2	DD-3	DD-4	DD-5	DD-6	DD-7	DD-8
Lab ID	71970001	71970002	71970003	71970004	71970005	71970006	71970007	71970008
Sample Date	11/30/2000	11/30/2000	11/30/2000	11/30/2000	11/30/2000	11/30/2000	11/30/2000	11/30/2000
Metals (mg/kg)								
Aluminum	5660	3070	8980	7310	6580	11400	5650	10900
Antimony	0.74 J	0.52 UJ	0.53 UJ	0.68 J	0.62 UJ	0.53 UJ	0.7 J	0.87 UJ
Arsenic	4.2	3.2	3.7	10.5 J	1.5	3.2	3.8	2.8
Barium	37.3	15.7	66.1	143	46.9	101	42.9	63
Beryllium	0.049 U	0.034 U	0.098	0.34	0.041 U	0.25	0.046 U	0.058 U
Cadmium	0.76	0.41	0.87	2.1	0.74	1.2	0.75	1.1
Calcium	2330 J	668	8040 J	22500 J	45100 J	49600 J	75500 J	28500 J
Chromium	9.7 J	4.2 J	12.9 J	11.6 J	10.3 J	16.3 J	6.8 J	17 J
Cobalt	3.8	2.6	4.9	6.8	5.1	8.3	4.2	7.4
Copper	9.9	4.1	10.9	16.9	12.2	18.5	16	19 J
Iron	12100	6370	15000	26900 J	12400	19900	11100	18300
Lead	13.4 J	7.2 J	11.7 J	40.1 J	9 J	11.6 J	12.7 J	16 J
Magnesium	2090	840	4930	8190	15500	16500	34900	11100
Manganese	289 J	171 J	247 J	1680 J	427	427	603	272
Mercury	0.053 U	0.051 U	0.049 U	0.081	0.074 U	0.059 U	0.057 U	0.081 U
Nickel	8	3.9	13.1 J	10.1 J	11.6 J	21 J	11.4 J	18.2 J
Potassium	377	222	872	522	1250	2260	764	1740
Selenium	0.98 U	0.69 U	0.71 U	0.85 U	0.82 U	0.71 U	0.91 U	1.2 U
Silver	1	0.66	1.3	2.9	1.1	2.1	1.5	1.6
Sodium	321	197	267	485	817	502	539	891
Thallium	0.98 U	0.69 U	0.71 U	0.85 U	0.82 U	0.71 U	0.91 U	2.5 J
Vanadium	13.9	7.1	17.1	27	15	22.2	12.1	22.2
Zinc	117 J	30.9 J	49.9 J	106 J	41.7 J	62.3 J	57.1 J	84.6 J
Cyanide	0.2	0.12 U	0.15	0.11 U	0.14 U	0.19	0.11 U	0.39

Qualifier definition and notes are attached

···: not analyzed

Appendix D-4 Analytical Results (Metal) in Surface Soil Samples NYSDEC - SOH, Henrietta, NY

Sample ID	DD-9	DD-10	DD-11	DD-12	DD-13	DD-14	DD-15
Lab ID	71970009	71970010	71970011	71970012	71970013	71970014	71970015
Sample Date	11/30/2000	11/30/2000	11/30/2000	11/30/2000	11/30/2000	11/30/2000	11/30/2000
<u>Metals (ma/ka)</u>							
Aluminum	5620	4190	9860 J	6400	11500 J	7470	8200
Antimony	0.65 UJ	0.57 UJ	1.6 J	0.52 UJ	3.7 J	0.60 ปป	0.58 UJ
Arsenic	5.4	2.7	4.6 J	3.6	6.50 UJ	5	4.5
Barium	43	48.4	67.6 J	48.6	108 J	39.8	59.1
Beryllium	0.043 U	0.038 U	0.092 UJ	0.034 U	0.22 UJ	0.040 U	0.066
Cadmium	0.79	0.66	4 J	0.82	7.5 J	0.91	1
Calcium	20400 J	61400 J	17700 J	26700 J	11900 J	11700 J	34900 J
Chromium	9.6 J	5.3 J	35.8 J	9.4 J	46.6 J	9.8 J	12.7 J
Cobalt	3.4	3.1	5.6 J	4.7	4.8 J	4.4	6.6
Copper	13.8 J	14.5 J	108 J	16.7 J	178 J	12.7 J	16.8 J
Iron	9920	9980	16500 J	13000	19700 J	13400	16400
Lead	22.8 J	6.5 J	322 J	16.1 J	629 J	13.1 J	13.7 J
Magnesium	9580	11400	10900 J	8300	5580 J	4670	11800
Manganese	278	560	145 J	303	171 J	304	416
Mercury	0.053 U	0.045 U	0.55 J	0.054 U	0.38 J	0.056 U	0.053 U
Nickel	9.3 J	8.4 J	25 J	11.3 J	25 J	11 J	17.2 J
Potassium	917	581	1300 J	983	2050 J	1050	1470
Selenium	0.86 U	0.76 U	1.8 UJ	0.69 U	4.3 UJ	0.80 U	0.77 U
Silver	0.92	1.3	2.8 J	1.2	2.8 J	1.2	1.6
Sodium	361	444	5020 J	701	4810 J	208	416
Thallium	0.86 U	0.76 U	2.6 J	0.69 U	4.3 UJ	0.80 U	0.77 U
Vanadium	15	8.7	31.6 J	15.2	37.6 J	15.4	18
Zinc	59.1 J	65.1 J	1370 J	114 J	2150 J	51.9 J	55.3 J
Cyanide	0.12 U	0.10 U	5.3 J	0.14	0.7 J	0.11 U	0.14

Qualifier definition and notes are

attached

···: not analyzed

Sample ID	DD-1	DD-2	DD-3	DD-4	DD-5	DD-6	DD-7
Lab ID	71970001	71970002	71970003	71970004	71970005	71970006	71970007
Sample Date	11/30/2000	11/30/2000	11/30/2000	11/30/2000	11/30/2000	11/30/2000	11/30/2000
			11/ 00/ 1000	22, 50, 2050	22,00,2000	12/00/2000	22/ 50/ 2000
Semivolatiles_ug/kg	1						
1,2,4-Trichlorobenzene	420 U	420 U	390 U	820 U	470 U	400 U	370 U
1,2-Dichlorobenzene	420 U	420 U	390 U	820 U	470 U	400 U	370 U
1,3-Dichlorobenzene	420 U	420 U	390 U	820 U	470 U	400 U	370 U
1,4-Dichlorobenzene	420 U	420 U	390 U	820 U	470 U	400 U	370 U
Hexachlorobutadiene	420 Ú	420 U	390 U	820 U	470 U	400 U	370 U
Naphthalene	420 U	420 U	390 U	87	470 U	400 U	370 U
1,2,4 Trichlorobenzene	420 U	420 U	390 U	820 U	470 U	400 U	370 U
1,2-Dichlorobenzene	420 U	420 U	390 U	820 U	470 U	400 U	370 U
1,3-Dichlorobenzene	420 U	420 U	390 U	820 U	470 U	400 U	370 U
1,4-Dichlorobenzene	420 U	420 U	390 U	820 U	470 U	400 U	370 U
2,2-oxybis(1-Chloropropane)	420 U	420 U	390 U	820 U	470 U	400 U	370 U
2,4,5 Trichlorophenol	1100 U	1000 U	990 U	2100 U	1200 U	1000 U	940 U
2,4,6-Trichlorophenol	420 U	420 U	390 U	820 U	470 U	400 U	370 U
2,4-Dichlorophenol	420 U	420 U	390 U	820 U	470 U	400 U	370 U
2,4-Dimethylphenol 2,4-Dinitrophenol	420 U 1100 UJ	420 U 1000 UJ	390 U	820 U	470 U	400 U	370 U
2,4-Dinitrophenol	420 U	420 U	390 U	2100 U 820 U	1200 UJ 470 U	1000 ÜJ 400 U	940 UJ 370 Ü
2,6-Dinitrotoluene	420 U	420 U	390 U	820 U	470 U	400 U	370 U
2-Chloronaphthalene	420 U	420 U	390 U	820 U	470 U	400 U	370 U
2-Chlorophenol	420 U	420 U	390 U	820 U	470 U	400 U	370 U
2-Methylnaphthalene	420 U	420 U	390 U	820 U	470 U	400 U	370 U
2-Methylphenol	420 U	420 U	390 U	820 U	470 U	400 U	370 U
2-Nitroaniline	1100 U	1000 U	990 U	2100 U	1200 U	1000 U	940 U
2-Nitrophenol	420 U	420 U	390 U	820 U	470 U	400 U	370 U
3,3-Dichlorobenzidine	420 U	420 U	390 U	820 UJ	470 UJ	400 U	370 U
3-Nitroaniline	1100 U	1000 U	990 U	2100 U	1200 U	1000 U	940 U
4,6-Dinitro-2-methylphenol	1100 UJ	1000 UJ	1U 066	2100 U	1200 UJ	1000 UJ	940 UJ
4-Bromophenyl-phenylether	420 U	420 U	390 U	820 U	470 U	400 Ú	370 U
4-Chloro-3-methylphenol	420 U	420 U	390 U	820 U	470 U	400 U	370 U
4-Chloroaniline	420 U	420 U	390 ป	820 U	470 U	400 U	370 U
4-Chlorophenyl-phenylether	420 U	420 U	390 U	820 U	470 U	400 U	370 U
4-Methylphenol	420 U	420 U	390 U	820 U	470 U	400 U	370 U
4-Nitroaniline	1100 U	1000 U	990 U	2100 U	1200 U	1000 U	940 U
4-Nitrophenol	1100 U	1000 U	990 U	2100 U	1200 U	1000 U	940 Ü
Acenaphthene	420 U	420 U	390 U	160	470 U	400 U	370 U
Acenaphthylene Anthracene	420 U 420 U	420 U 420 U	390 U	1000	470 U	400 U	370 U
Benzo(a)anthracene	190	420 U	390 U 97	5400 J	470 U 99 J	400 U 130	370 U 100
Benzo(a)pyrene	300 1	420 UJ	110 J	4000 J	130 J	180 J	130 J
Benzo(b)fluoranthene	590 J	67 J	200 J	5800 J	290 J	300 J	220 J
Benzo(g,h,i)perylene	230 J	420 UJ	390 UJ	3700 J	96 J	120 J	76 J
Benzo(k)fluoranthene	160 J	420 UJ	66 J	2000 J	69 J	92 J	70 J
bis(2-Chloroethoxy)methane	420 U	420 U	390 U	820 U	470 U	400 U	370 U
bis(-2-Chloroethyl)Ether	420 U	420 U	390 U	820 U	470 U	400 U	370 Ü
bis(2-Ethylhexyl)phthalate	160 J	88 J	110 J	180 J	130 J	130 J	92 J
Butylbenzylphthalate	420 UJ	420 UJ	390 UJ	8 6 J	470 UJ	400 UJ	370 UJ
Carbazole	420 U	420 U	390 U	430	470 U	400 U	370 U
Chrysene	310	420 U	130	4700 J	160 J	200	140
Dibenzo(a,h)anthracene	420 UJ	420 UJ	390 UJ	790 J	470 UJ	400 UJ	370 UJ
Dibenzofuran	420 U	420 U	390 U	190	470 U	400 U	370 U
Diethylphthalate	420 U	420 U	390 U	820 U	470 U	400 U	370 U
Dimethylphthalate	420 U	420 U	390 U	820 U	470 U	400 U	370 U
Di-n-butylphthalate	420 U	420 U	390 U	820 U	470 U	400 U	370 U
Di-n-octylphthalate	420 UJ	420 UJ	390 N1	820 UJ	470 UJ	400 UJ	370 UJ
Fluoranthene Fluorene	510	63	240	5600	220	350	250

Sample ID	DD-8	DD-9	DD-10	DD-11	DD-12	DD-13	DD-14	DD-15
Lab ID	71970008	71970009	71970010	71970011	71970012	71970013	71970014	71970015
Sample Date	11/30/2000	11/30/2000	11/30/2000	11/30/2000	11/30/2000	11/30/2000	11/30/2000	11/30/2000
Semivolatiles ua/ka	1							
1,2,4-Trichlorobenzene	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
1,2-Dichlorobenzene	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
1,3-Dichlorobenzene	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
1,4-Dichlorobenzene	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
Hexachlorobutadiene	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
Naphthalene	310	13000 D	360 U	96 J	410 U	22000 UJD	380 U	380 U
1,2,4-Trichlorobenzene	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
1,2-Dichlorobenzene	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
1,3 Dichlorobenzene	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
1,4-Dichlorobenzene	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
2,2-oxybis(1-Chloropropane)	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
2,4,5-Trichlorophenol	5600 U	1900 U	910 0	2300 UJ	1000 U	54000 UJD	960 U	960 UJ
2,4,6-Trichlorophenol	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
2,4-Dichlorophenol	2200 U	770 U 300	360 U	920 UJ	410 U	22000 UJD 22000 UJD	380 U	380 U
2,4-Dimethylphenol 2,4-Dinitrophenol	2200 U 5600 U	1900 U	360 U 910 UJ	920 UJ 2300 UJ	410 U 1000 U	54000 UJD	380 U 960 U	380 UJ 960 UJ
2,4-Dinitrophenol	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
2,6-Dinitrotoluene	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
2-Chloronaphthalene	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
2-Chlorophenol	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
2-Methylnaphthalene	350	14000 D	360 U	100 J	410 U	22000 UJD	380 U	380 U
2-Methylphenol	2200 U	140	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
2-Nitroaniline	5600 U	1900 U	910 U	2300 UJ	1000 U	54000 UJD	960 U	960 U
2-Nitrophenol	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
3,3-Dichlorobenzidine	2200 U	770 UJ	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
3-Nitroaniline	5600 U	1900 U	910 U	2300 UJ	1000 U	54000 UJD	960 U	960 U
4,6-Dinitro-2-methylphenol	5600 U	1900 UJ	910 UJ	2300 UJ	1000 U	54000 UJD	960 U	960 U
4-Bromophenyl-phenylether	2200 U	770 UJ	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
4-Chloro-3-methylphenol	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
4-Chloroaniline	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
4-Chlorophenyl-phenylether	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
4-Methylphenol	2200 U	520	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
4-Nitroaniline	5600 U	1900 U	910 U 910 U	2300 UJ 2300 UJ	1000 U	54000 UJD 54000 UJD	960 U 960 U	960 U 960 U
4-Nitrophenol Acenaphthene	5600 U 1500	53000 D	360 U	120 J	76	22000 UJD	380 U	380 U
Acenaphthylene	2200 U	260 J	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
Anthracene	2000	76000 D	360 U	920 03	190	4400 JD	380 U	380 U
Benzo(a)anthracene	5200	150000 JD	110	180 J	1200	37000 JD	110	72
Benzo(a)pyrene	4100	110000 JD	120 J	180 J	990	48000 JD	120	84
Benzo(b)fluoranthene	5300	150000 JD	190 J	320 J	1700	77000 JD	240	160
Benzo(g,h,i)perylene	2400	61000 JD	360 UJ	180 J	1100	53000 JD	89	97
Benzo(k)fluoranthene	2200 J	62000 JD	74 J	120 J	590 J	28000 JD	56 J	64 J
bis(2-Chloroethoxy)methane	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
bis(-2-Chloroethyl)Ether	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
bis(2-Ethylhexyl)phthalate	2200 U	330 J	120 J	170 J	150	6500 JD	70	75
Butylbenzylphthalate	2200 UJ	770 UJ	360 UJ	920 UJ	410 UJ	22000 UJD	380 UJ	380 U
Carbazole	1200	44000 D	360 U	920 UJ	180	5400 JD	380 U	380 U
Chrysene	4700	140000 JD	130	240 J	1200	52000 JD	150	120
Dibenzo(a,h)anthracene	790	20000 JD	360 UJ	920 UJ	200	8000 JD	380 U	380 U
Dibenzofuran	530	20000 D	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
Diethylphthalate	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U	380 U
Dimethylphthalate	2200 U	770 U	360 U	920 UJ	410 U	22000 UJD	380 U 380 U	380 U 380 U
Di-n-butylphthalate	2200 U 2200 UJ	770 UJ 770 UJ	360 U 360 UJ	920 UJ 920 UJ	410 U 410 UJ	22000 UJD 22000 UJD	380 UJ	380 UJ
Di-n-octylphthalate Fluoranthene	7100	220000 D	230	350 J	2000	69000 JD	240	210
Fluorene	980	35000 D	360 U	920 UJ	73	22000 UJD	380 U	380 U

Appendix D-6 Analytical Results (VOCs) in Sump/Catch Basin Sediment Samples NYSDEC-SOH, Henrietta, NY

Sample Id	01	02	04
Lab Id	80332001	80332002	80332003
Sample Date	02/15/2001	02/15/2001	02/15/2001
			-
Volatiles (ug/kg)			
1,1,1-Trichloroethane	31000	6700000	20000
1,1,2,2-Tetrachloroethane	6900 U	540000 U	2900 U
1,1,2-Trichloroethane	6900 U	540000 U	2900 U
1,1-Dichloroethane	6500	160000	41000
1,1-Dichloroethene	6900 U	540000 U	2900 U
1,2-Dichloroethane	6900 U	540000 U	2900 U
1,2-Dichloroethene (Total)	6900 U	540000 U	2900 U
1,2-Dichloropropane	6900 U	540000 U	2900 U
2-Butanone	6900 U	540000 U	890
2-Hexanone	6900 U	540000 U	2900 U
4-Methyl-2-Pentanone	6900 U	540000 U	2900 U
Acetone	3500	540000 U	2900 U
Benzene	6900 U	540000 U	2900 U
Bromodichloromethane	6900 ป	540000 U	2900 U
Bromoform	6900 U	540000 U	2900 U
Bromomethane	6900 U	540000 U	330
Carbon Disulfide	6900 U	540000 U	2900 U
Carbon Tetrachloride	6900 U	540000 U	2900 U
Chlorobenzene	6900 U	540000 U	2900 U
Chloroethane	6900 U	540000 U	2900 U
Chloroform	6900 U	540000 U	2900 U
Chloromethane	2300	540000 U	700
cis-1,3-Dichloropropene	6900 U	540000 U	2900 U
Dibromochloromethane	6900 Ü	540000 U	2900 U
Ethylbenzene	6900 U	540000 U	2900 U
Methylene Chloride	6900 U	540000 U	2900 U
Styrene	6900 U	540000 U	2900 U
Tetrachloroethene	3800	540000 U	2900 U
Toluene	6900 U	540000 U	2900 U

Appendix D-7 Analytical Results (VOCs) in Overburden Groundwater NYSDEC-SOH, Henrietta, NY

Sample ID	IP2-1	IPZ-1	iPZ-1	IPZ-1	IPZ-2	1PZ-2	IPZ-2
Laboratory ID	71459002	71101004	71707001	72073007	71101002	71707010	72073005
Sample Date	09/11/2000	07/17/2000	10/20/2000	12/14/2000	07/17/2000	10/20/2000	12/14/2000
Dample Date	05/12/2000	(),, _,,,					
Volafiles (va/L)	İ	1					
1,1,1,2-Tetrachloroethane	10000 U	10000 U	10000 U		50000 U	5000 บ	
1,1,1-Trichloroethane	10000 U	11000	9100	5900	50000 U	100000	120000
1,1,2,2-Tetrachloroethane	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
1.1.2-Trichloroethane	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
1.1 Dichloroethane	13000	35000	34000	14000	50000 U	19000	12000
1.1 Dichloroethene	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	1100
1,1-Dichloropropene	10000 U	10000 U	10000 U		50000 U	5000 U	,
1,2,3-Trichlorobenzene	10000 U	10000 U	10000 U	4	50000 U	5000 U	
1,2,3-Trichloropropane	10000 U	10000 U	10000 U		50000 U	5000 U	
1,2,4-Trichlorobenzene	10000 U	10000 U	10000 U		50000 U	5000 U	
1,2,4-Trimethylbenzene	10000 U	10000 U	10000 U		50000 U	5000 U	
1,2-Dibromo-3-chloropropane	10000 U	10000 U	10000 U		50000 U	5000 U	
1,2-Dibromoethane	10000 U	10000 U	10000 U		50000 U	5000 U	
1.2-Dichlorobenzene	10000 U	10000 U	10000 U		50000 U	5000 U	
1.2-Dichloroethane	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
1,2-Dichloroethene (Total)				13000			10000 U
1,2-Dichloropropane	10000 ป	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
1,3,5-Trimethylbenzene	10000 U	10000 U	10000 U		50000 U	5000 U	
1,3-Dichlorobenzene	10000 U	10000 U	10000 U		50000 U	5000 U	
1,3-Dichloropropane	10000 U	10000 U	10000 U		50000 U	5000 U	
1.4-Dichlorobenzene	10000 U	10000 U	10000 U		50000 U	5000 U	
2,2-Dichloropropane	10000 U	10000 U	10000 U		50000 U	5000 U	
2-Butanone	10000 U	10000 U	10000 U	50000 UJ	50000 U	5000 U	10000 UJ
2-Chloroethyl vinyl ether	10000	10000 U			50000 U		
2-Chlorotoluene	10000 U	10000 U	10000 U		50000 U	5000 U	
2-Hexanone	10000 U	10000 U	10000 U	50000 UJ	50000 U	5000 U	10000 UJ
4-Chlorotoluene	10000 U	10000 U	10000 U		50000 U	5000 U	
4-Isopropyltoluene	10000 U	10000 U	10000 U		50000 U	5000 U	
4-Methyl-2-Pentanone	10000 U	10000 U	10000 U	50000 UJ	50000 U	5000 U	10000 UJ
Acetone	12000	10000 UJ	8600	50000 U	50000 UJ	5000 U	10000 UJ
Benzene	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
Bromobenzene	10000 U	10000 U	10000 U		50000 U	5000 U	
Bromochloromethane	10000 U	10000 U	10000 U		50000 U	5000 U	
Bromodichloromethane	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
Bromoform	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
Bromomethane	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
Carbon Disulfide	10000 U	10000 U	10000 ປ	50000 U	50000 U	5000 U	10000 U
Carbon Tetrachloride	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
Chlorobenzene	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
Chloroethane	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
Chloroform	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
Chloromethane	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
cis-1,2-Dichloroethene	19000	34000	28000		50000 U	5000 U	
cis-1,3-Dichloropropene	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
Dibromochloromethane	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
Dibromomethane	10000 U	10000 U	10000 U		50000 U	5000 U	•••
Dichlorodifluoromethane	10000 U	10000 U	10000 U		50000 U	5000 U	
Ethylbenzene	10000 U	10000 U	10000 U	50000 U	50000 U	5000 U	10000 U
Hexachlorobutadiene	10000 U	10000 U	10000 U	···	50000 U	5000 U	
lodomethane	10000 U	10000 ป	10000 U		50000 U	5000 U	
Isopropyibenzene	10000 U	10000 U	10000 U		50000 U	5000 U	
Methyl tert-butyl ether	10000 U	10000 U	10000 ປ		50000 U	5000 U	
Methylene Chloride	81000	95000 J	110000	93000	680000 J	60000	33000
Naphthalene	10000 U	10000 U	10000 U		50000 U	5000 U	

Appendix D-7 Analytical Results (VOCs) in Overburden Groundwater NYSDEC-SOH, Henrietta, NY

Sample ID	IPZ-3	IPZ-3	IPZ-3	(W-1	IW-1	iW-1	MW-2	MW-3
Laboratory ID	71101003	71707008	72073008	71101001	71707009	72073006	72109001	72109006
Sample Date	07/17/2000	10/20/2000	12/14/2000	07/17/2000	10/20/2000	12/14/2000	12/18/2000	12/18/2000
-								
Volafiles (ug/L)								
1,1,1,2-Tetrachloroethane	4000 U	15000 U	•••	20000 U	5000 U			
1,1,1-Trichloroethane	100000	280000	290000	20000 U	82000	100000	450	22
1,1,2,2-Tetrachloroethane	4000 U	15000 U	20000 U	20000 ป	5000 U	10000 U	150 U	10 U
1,1,2-Trichloroethane	4000 U	15000 U	20000 U	20000 U	5000 U	10000 U	150 U	100
1,1-Dichloroethane	110000	46000	40000	20000 U	18000	15000	2300	160
1,1-Dichloroethene	4000 U	9500	3500	20000 U	2600	10000 U	100	<u>41</u>
1,1-Dichloropropene	4000 U	15000 U		20000 U 20000 U	5000 U 5000 U			
1,2,3-Trichlorobenzene	4000 U	15000 U		20000 U	5000 U			***
1,2,3-Trichloropropane	4000 U 4000 U	15000 U 15000 U		20000 U	5000 U			
1,2,4-Trichlorobenzene	4000 U	15000 U		20000 U	5000 U			
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	4000 U	15000 U		20000 U	5000 U			
1,2-Dibromoelhane	4000 U	15000 U		20000 U	5000 U			
1,2-Dichlorobenzene	4000 U	15000 U		20000 U	5000 U	***	·	
1,2-Dichloroethane	4000 U	15000 U	20000 U	20000 U	5000 U	10000 U	150 U	10 U
1,2-Dichloroethene (Total)	4000 5		20000 U			10000 U	150	43
1,2-Dichloropropane	4000 U	15000 U	20000 U	20000 U	5000 U	10000 U	150 U	10 U
1,3,5-Trimethylbenzene	4000 U	15000 U		20000 U	5000 U			
1.3-Dichlorobenzene	4000 U	15000 U		20000 U	5000 U			
1,3-Dichloropropane	4000 U	15000 U		20000 U	5000 U			
1,4-Dichlorobenzene	4000 U	15000 U		20000 U	5000 U			
2,2-Dichloropropane	4000 U	15000 U		20000 U	5000 U	•••		
2 Butanone	4000 U	15000 U	20000 UJ	20000 U	5000 U	10000 UJ	150 UJ	10 U
2-Chloroethýl vinyl ether	4000 U							
2-Chlorotoluene	4000 U	15000 U		20000 U	5000 U			
2-Hexanone	4000 U	15000 U	20000 UJ	20000 U	5000 U	10000 UJ	150 U	10 U
4-Chiorotoluene	4000 U	15000 U	***	20000 U	5000 U	•••		
4-Isopropyltoluene	4000 U	15000 U		20000 U	5000 U		•••	
4 Methyl 2 Pentanone	4000 U	15000 U	20000 UJ	20000 U	5000 U	10000 UJ	150 U	10 U
Acetone	4000 UJ	15000 U	20000 UJ	20000 UJ	3700	10000 UJ	150 UJ	10 U
Benzene	4000 U	15000 U	20000 U	20000 U	5000 U	10000 U	150 U	10 U
Bromobenzene	4000 U	15000 U		20000 U	5000 U			
Bromochloromethane	4000 U	15000 U		20000 U	5000 ป			····
Bromodichloromethane	4000 U	15000 U	20000 U	20000 U	5000 U	10000 U	150 U	10 U
Bromoform	4000 U	15000 U	20000 U	20000 U	5000 U	10000 U	150 U	10 U
Bromomethane	4000 U	15000 U	20000 U	20000 U	5000 U	10000 U	150 U 150 U	10 U
Carbon Disulfide	4000 U	15000 U	20000 U	20000 U 20000 U	5000 U 5000 U	10000 U 10000 U	150 U	10 U
Carbon Tetrachloride	4000 U	15000 U 15000 U	20000 U 20000 U	20000 U	5000 U	10000 U	150 U	100
Chlorobenzene Chloroethane	4000 U 4000 U	15000 U	20000 U	20000 U	5000 U	10000 U	150 U	10 U
Chioroetnane	4000 U	15000 U	20000 U	20000 U	5000 U	10000 U	150 U	10 U
Chloromethane	4000 U	15000 U	20000 U	20000 U	5000 U	10000 U	150 U	10 U
cis-1,2-Dichloroethene	22000	15000 U	200000	6500	5000 U	10000		1
cis-1,3-Dichloropropene	4000 U	15000 U	20000 U	20000 U	5000 U	10000 U	150 U	10 U
Dibromochloromethane	4000 U	15000 U	20000 U	20000 U	5000 U	10000 U	150 U	10 0
Dibromomethane	4000 U	15000 U		20000 U	5000 U			
Dichlorodifluoromethane	4000 U	15000 U		20000 U	5000 U	•		
Ethylbenzene	4000 U	15000 U	20000 U	20000 U	5000 U	10000 U	150 U	10 U
Hexachlorobutadiene	4000 U	15000 U		20000 U	5000 U			
lodomethane	4000 U	15000 U		20000 U	5000 U			
Isopropylbenzene	4000 U	15000 U	· · · · · ·	20000 U	5000 U			
Methyl tert-butyl ether	4000 U	15000 U		20000 U	5000 U			
Methylene Chloride	45000 J	59000	53000	220000 J	57000	59000	150 U	10 U
Naphthalene	900 U	15000 U		7500 U	5000 U			***

Appendix D-7 Analytical Results (VOCs) in Overburden Groundwater NYSDEC-SOH, Henrietta, NY

Sample ID	MW-5	OW-1S	OW-2S	OW-3S	OW-4S	OW-58	OW-6S	OW-7S
Laboratory ID	72109002	72131004	72109015	72109009	72109012	72109008	72131001	71101006
Sample Date	12/18/2000	12/19/2000	12/19/2000	12/19/2000	12/19/2000	12/19/2000	12/18/2000	07/17/2000
Volailles (ug/L)								
1,1,1,2.Tetrachloroethane						•		2500 U
1,1,1-Trichloroethane	10 U	2	10 U	150 U	200	4	11000 J	2500 U
1,1,2,2-Tetrachloroethane	10 U	10 U	10 U	150 U	50 U	10 U	1000 UJ	2500 U
1,1,2-Trichloroethane	10 U	10 U	10 U	150 U	50 U	10 U	1000 UJ	2500 U
1,1-Dichloroethane	10 U	10 U	60	25	810	56	660 J	2500 U
1,1-Dichloroethene	10 U	10 U	10 U	150 U	76	12	690 J	2500 U
1,1-Dichloropropene			·	·			<u> </u>	2500 U
1,2,3-Trichlorobenzene								2500 U
1,2,3-Trichloropropane		•••					.**	2500 U
1,2,4-Trichlorobenzene								2500 U
1,2,4-Trimethylbenzene								2500 U
1,2-Dibromo-3-chloropropane							<u></u>	2500 U
1,2-Dibromoethane								2500 U
1,2-Dichlorobenzene			***					2500 U
1,2-Dichloroethane	10 U	10 U	10 U	150 U	50 U	10 U	1000 UJ	2500 U
1,2-Dichloroethene (Total)	10 U	10 U	11	2500	50 U	24	1000 UJ	
1,2-Dichloropropane	10 U	10 U	10 U	150 ป	50 บ	10 U	1000 UJ	2500 U
1,3,5.Trimethylbenzene	•••	•••		•••				2500 U
1,3-Dichlorobenzene								2500 U
1,3-Dichloropropane							•••	2500 U
1,4-Dichlorobenzene					•:•		l	2500 U
2,2-Dichloropropane								2500 U
2-Butanone	10 U	10 U	10 UJ	150 UJ	50 UJ	10 UJ	1000 UJ	2500 U
2-Chloroethyl vinyl ether								2500 U
2-Chlorotoluene								2500 U
2-Hexanone	10 U	10 U	10 U	150 U	50 U	10 U	1000 UJ	2500 U
4-Chlorotoluene		·	<u></u> .					2500 U
4-isopropylloluene							ļ	2500 U
4-Methyl-2-Pentanone	10 U	10 U	10 U	150 U	50 U	10 U	1000 01	2500 U
Acetone	10 U	10 U	10 UJ	150 UJ	50 UJ	10 UJ	1000 UJ	2500 UJ
Benzene	10 U	10 U	10 ∪	150 U	50 U	10 U	1000 UJ	2500 U
Bromobenzene	•••		•••	•••				2500 U
Bromochloromethane								2500 U
Bromodichloromethane	10 U	10 U	10 U	150 U	50 U	10 U	1000 UJ	2500 U
Bromoform	10 U	10 U	10 U	150 U	50 U	10 U	1000 UJ	2500 U
Bromomethane	10 U	10 ป	10 U	150 U	50 U	10 U	1000 UJ	2500 U
Carbon Disulfide	10 U	10 U	10 U	150 U	50 U	10 U	1000 UJ	2500 U
Carbon Tetrachloride	10 U	10 U	10 U	150 ∪	50 U	10 U	1000 UJ	2500 U
Chlorobenzene	10 U	10 U	10 U	150 U	50 U	10 U	1000 UJ	2500 U
Chloroethane	10 U	10 U	10 U	150 U	50 U	10 U	1000 UJ	2500 U
Chloraform	1 0 U	10 U	10 U	150 U	50 U	10 U	1000 UJ	2500 U
Chloromethane	10 U	10 U	10 U	150 U	50 U	10 U	1000 UJ	2500 U
cis-1,2-Dichloroethene								11000
cis-1,3-Dichloropropene	10 U	10 U	10 U	150 U	50 U	10 U	1000 UJ	2500 U
Dibromochloromethane	10 U	10 U	10 U	150 U	50 U	10 U	1000 UJ	2500 U
Dibromomethane				4-4		***		2500 U
Dichlorodifluoromethane	i				• • • • • • • • • • • • • • • • • • • •	•••		2500 U
Ethylbenzene	10 U	10 U	10 U	150 U	50 U	10 U	1000 UJ	2500 U
Hexachlorobutadiene					•			2500 U
lodomethane								2500 U
Isopropylbenzene						•		2500 U
Methyl tert-butyl ether								2500 U
Methylene Chloride	10 U	10 U	10 U	150 U	50 U	10 U	1000 UJ	1000 J
Naphthalene								2500 U

Appendix D-7 Analytical Results (VOCs) In Overburden Groundwater NYSDEC-SOH, Henrietta, NY

Sample ID Laboratory ID	OW-7S 71459003	OW-7S 71707003	OW-75 72109007	OW-85 72109017	PZ-1 72073009	PZ-2 72073010	PZ-2 72073010DL	PZ-3 72073014
Sample Date	09/11/2000	10/20/2000	12/18/2000	12/19/2000	12/15/2000	12/15/2000	12/15/2000	12/15/2000
Volatiles (ug/L)								
1.1.1.2.Tetrachloroethane	2500 บ	1200 U						
1,1.1-Trichloroethane	2500 U	1200 U	400 U	300 U	60000	DNR	330	360
1.1.2.2-Tetrachloroethane	2500 U	1200 U	400 U	300 U	4000 U	10 U	DNR	50 U
1,1,2-Trichloroethane	2500 U	1200 U	400 U	300 U	4000 U	10 U	DNR	50 U
1,1-Dichloroethane	2500 U	450	400 U	5000	7000 U	DNR	8200	310
1,1-Dichloroethene	2500 U	1200 U	400 U	130	5200	DNR	730	99
1,1-Dichloropropene	2500 U	1200 U						
1,2,3-Trichlorobenzene	2500 U	1200 U				•••		
1,2,3 Trichloropropane	2500 U	1200 U					•	
1,2,4-Trichlorobenzene	2500 U	1200 U						
1,2,4-Trimethylbenzene	2500 U	1200 U						
1,2-Dibromo-3-chloropropane	2500 U	1200 U				•••		· · · · · · · · · · · · · · · · · · ·
1,2-Dibromoelhane	2500 U	1200 U						
1.2-Dichlorobenzene	2500 U	1200 U						
1.2-Dichloroethane	2500 U	1200 U	400 U	300 U	4000 U	39	DNR	50 U
1,2-Dichloroethene (Total)			610	120	1900	10 U	DNR	120
1,2-Dichloropropane	2500 U	1200 U	400 U	300 U	4000 U	10 U	DNR	50 U
1,3,5 Trimethylbenzene	2500 U	1200 U						
1,3-Dichlorobenzene	2500 U	1200 U			***			•••
1,3-Dichloropropane	2500 U	1200 U				•••	•	
1,4-Dichlorobenzene	2500 U	1200 U						
2,2-Dichloropropane	2500 U	1200 U						
2-Butanone	2500 U	1200 U	400 UJ	300 UJ	4000 UJ	160	DNR	50 UJ
2-Chloroethyl vinyl ether								
2.Chlorololuene	2500 U	1200 U	4					•••
2-Hexanone	2500 U	1200 U	400 U	300 U	4000 UJ	10 U	DNR	50 UJ
4-Chlorotoluene	2500 U	1200 U					***	
4-Isopropyltoluene	2500 U	1200 U					· · · · · · · · · · · · · · · · · · ·	
4 Methyl-2 Pentanone	2500 U	1200 U	400 U	300 U	4000 UJ	DNR	110 J	50 UJ
Acetone	2500 U	1200 U	400 UJ	300 UJ	4000 UJ	140 J	DNR	50 U
Benzene	2500 U	1200 U	400 U	300 U	4000 U	13	DNR	50 U
Bromobenzene	2500 U	1200 U						
Bromochloromethane	2500 U	1200 U	***	•••	•••	•••		•••
Bromodichloromethane	2500 U	1200 U	400 U	300 U	4000 U	10 U	DNR	50 U
Bremoform	2500 U	1200 U	400 U	300 U	4000 U	10 U	DNR	50 U
Bromomethane	2500 U	1200 U	400 U	300 U	4000 U	10 UJ	DNR	50 U
Carbon Disulfide	2500 U	1200 U	400 U	300 U	4000 U	2	DNR	50 U
Carbon Tetrachloride	2500 U	1200 U	400 U	300 U	4000 U	10 U	DNR	50 U
Chlorobenzene	2500 U	1200 U	400 U	300 U	4000 U	10 U	DNR	50 U
Chloroethane	2500 U	1200 U	400 U	300 U	4000 U	DNR	1900	50 U
Chloroform_	2500 บ	1200 U	400 U	300 U	4000 U	10 Ú	DNR	50 U
Chloromethane	2500 U	1200 U	400 U	300 U	4000 U	3	DNR	50 U
cis-1,2-Dichloroethene	4100	7100						
cis-1,3-Dichloropropene	2500 U	1200 U	400 U	300 U	4000 U	10 U	DNR	50 U
Dibromochloromethane	2500 U	1200 U	400 U	300 U	4000 U	10 U	DNR	50 U
Dibromomethane	2500 U	1200 U	····	<u> </u>				
Dichlorodifluoromethane	2500 U	1200 U						
Ethylbenzene	2500 U	1200 U	400 U	300 U	4000 U	44	DNR	50 U
Hexachlorobutadiene	2500 U	1200 U			**-	····		
lodomethane	2500 U	1200 U	***					
Isopropylbenzene	2500 U	1200 U		<u> </u>				
Methyl tert butyl ether	2500 U	1200 U						
Methylene Chloride	3100	1500	400 U	300 U	15000	DNR	1500	50 U
Naphthalene	2500 U	1200 U					*	

Appendix D-7 Analytical Results (VOCs) in Overburden Groundwater NYSDEC-SOH, Henrletta, NY

Sample ID	TW-1	TW-1	TW-1	TW-2	TW-2	TW-2	TW-2	TW-3
Laboratory ID	71539001	71707002	72073001	71539002	71539002DL	71707005	72073002	71539003
Sample Date	09/22/2000	10/20/2000	12/14/2000	09/22/2000	09/22/2000	10/20/2000	12/14/2000	09/22/2000
								
Volafijes (ug/L)								
1,1,1,2-Tetrachloroethane	25000 U	20000 U		5 U	5000 U	7500 U	- :	2500 บ
1,1,1-Trichloroethane	25000 U	20000 U	50000 U	7000	68000	160000	160000 D	86000
1,1,2,2 Tetrachloroethane	25000 U	20000 U	50000 U	5 U	5000 U	7500 U	10 U	2500 U
1,1,2-Trichloroethane	25000 U	20000 U	50000 U	49	5000 U	7500 U	110	2500 U
1,1-Dichloroethane	8100	6000	50000 บ	6500	77000	100000	61000 D	99000
1,1-Dichloroethene	25000 U	20000 U	50000 U	65	5000 U	6500	3000 D	1800
1,1-Dichloropropene	25000 U	20000 U		5 U	5000 U	7500 U		2500 U
1,2,3-Trichlorobenzene	25000 U	20000 U		5 U	5000 U	7500 U		2500 U
1,2,3-Trichloropropane	25000 U	20000 U		5 U	5000 U	7500 U		2500 U
1,2,4 Trichlorobenzene	25000 U	20000 U		5 U	5000 U	7500 U		2500 U
1,2,4-Trimethylbenzene	25000 U	20000 U	•••	5 U	5000 U	7500 U		2500 U
1,2-Dibromo-3-chloropropane	25000 U	20000 U		5 U	5000 U	7500 U		2500 U
1,2-Dibromoethane	25000 U	20000 U		5 U	5000 U	7500 U		2500 U
1,2-Dichlorobenzene	25000 U	20000 U		5 Ü	5000 U	7500 U		2500 U
1,2-Dichtoroethane	25000 U	20000 U	50000 U	170	5000 U	7500 U	10 U	2500 U
1,2-Dichloroethene (Total)			9300				3500 D	050011
1,2-Dichloropropaле	25000 U	20000 U	50000 Ü	5 U	5000 U	7500 U	10 U	2500 U
1,3,5-Trimethylbenzene	25000 U	20000 U		5 U	5000 U	7500 U		2500 U
1,3 Dichlorobenzene	25000 U	20000 U	*	5 U	5000 U	7500 U		2500 U
1,3-Dichloropropane	25000 U	20000 U		5 U	5000 U	7500 U	···	2500 U
1,4 Dichlorobenzene	25000 U	20000 U		5 U	5000 U	7500 U	<u> </u>	2500 U
2,2-Dichloropropane	25000 U	20000 U		5 U	5000 U	7500 U		2500 U
2-Butanone	25000 U	20000 U	50000 บ	320	5000 U	7500 U	420 J	2500 U
2-Chloroethyl vinyl ether	· · · · · · · · · · · · · · · · · · ·		:			750011		
2-Chlorotoluene	25000 U	20000 U		3	5000 U	7500 U		2500 U
2-Hexanone	25000 U	20000 U	50000 U	17	5000 U	7500 U	10 U	2500 U
4-Chlorotoluene	25000 U	20000 U		2	5000 U	7500 U		2500 U
4-Isopropylloluene	25000 U	20000 U		5 U	5000 U	7500 U		2500 U
4-Methyl-2-Pentanone	25000 U	20000 U	50000 U	180	5000 U	7500 U	340 J	2500 U
Acetone	23000	20000 U	50000 U	1100	4300	7500 U	1000 1	1600
Benzene	25000 U	20000 U	50000 U	5	5000 U	7500 U	6	2500 U
Bromobenzene	25000 U	20000 U		3	5000 U	7500 U		2500 U 2500 U
Bromochloromethane	25000 U	20000 U 20000 U	50000 U	5 U	5000 U	7500 U 7500 U	10 U	2500 U
Bromodichloromethane	25000 U	20000 U	50000 U	2	5000 U 5000 U	7500 U	10 U	2500 U
Bromoform	25000 U 6100	20000 U	50000 U	5 U	5000 U	7500 U	10 0	2500 U
Bromomethane	25000 U	20000 U	50000 U	3	5000 U	7500 U	6	2500 U
Carbon Disulfide Carbon Tetrachloride	25000 U	20000 U	50000 U	5 U	5000 U	7500 U	5100 J	2500 U
	25000 U	20000 U	50000 U	1	5000 U	7500 U	10 U	2500 U
Chlorobenzene	25000 U	20000 U	50000 U	16	5000 U	7500 U	54	2500 U
Chloroethane	25000 U	20000 U	50000 U	11	5000 U	7500 U	30	2500 U
Chloroform Chloromethane	25000 U	20000 U	50000 UJ	5	5000 U	7500 U	10 U	2500 U
cis-1,2-Dichloroethene	11000	12000	30000 03	5 U	5000 U	9100		3900
cis-1,3 Dichloropropene	25000 U	20000 U	50000 U	5 U	5000 U	7500 U	10 U	2500 U
Dibromochloromethane	25000 U	20000 U	50000 U	5 U	5000 U	7500 U	10 U	2500 U
Dibromocniorometriane	25000 U	20000 U	30000 0	5 U	5000 U	7500 U	- 100	2500 U
Dichlorodifluoromethane	25000 U	20000 U		5 U	5000 U	7500 U		2500 U
Ethylbenzene	25000 U	20000 U	50000 U	1	5000 U	7500 U	2	2500 U
Hexachlorobutadiene	25000 U	20000 U	30000 0	5 U	5000 U	7500 U		2500 U
lodomethane	25000 U	20000 U		5 U	5000 U	7500 U		2500 U
Isopropylbenzene	25000 U	20000 U		5 U	5000 U	7500 U		2500 U
Methyl tert-bulyl ether	25000 U	20000 U	***	5 U	5000 U	7500 U		2500 U
Methylene Chloride	100000	96000	88000	8200	32000	45000	44000 D	24000
Naphthalene	12000	20000 U		5 U	5000 U	7500 U	44000 D	2500 U
ivabituaiene	12000	200000	<u> </u>	1	30000	1 / 200 0	<u> </u>	23000

Appendix D-7 Analytical Results (VOCs) In Overburden Groundwater NYSDEC-SOH, Henrletta, NY

Sample ID	TW-3	TW-3	TW-4	TW-4	TW-4
Laboratory ID	71707006	72073004	71539004	71707007	72073012
Sample Date	10/20/2000	12/14/2000	09/22/2000	10/20/2000	12/14/2000
Volafiles (vg/L)					
1,1,1,2-Tetrachloroethane	5000 U		2500 U	2500 U	
1,1,1-Trichloroethane	120000	160000 D	26000	30000	60000
1,1,2,2-Tetrachloroethane	5000 U	5000 U	2500 U	2500 U	5000 U
1,1,2-Trichloroethane	5000 U	5000 U	2500 U	2500 U	5000 U
1,1 Dichtoroethane	120000	92000 D	56000	56000	74000
1,1-Dichloraethene	5600	4200 J	1000	1500	1900
1,1 Dichloropropene	5000 U		2500 U	2500 U	
1,2,3-Trichlorobenzene	5000 U		2500 U	2500 U	. :
1,2,3-Trichloropropane	5000 U		2500 U	2500 U	
1,2,4-Trichlorobenzene	5000 U		2500 U	2500 U 2500 U	
1,2,4-Trimethylbenzene	5000 U		2500 U		
1,2-Dibromo-3-chloropropane	5000 U 5000 U		2500 U	2500 U 2500 U	
1,2-Dibromoethane 1,2-Dichlorobenzene	5000 U		2500 U 2500 U	2500 U	
1,2-Dichlorobenzene 1,2-Dichloroethane	5000 U	5000 U	2500 U	2500 U	5000 U
1,2-Dichloroethane (Total)	3000 0	6500 J	2300 0	2300 0	2700
1,2-Dichloropropane	5000 U	5000 U	2500 U	2500 U	5000 U
1,3,5-Trimethylbenzene	5000 U	3000 0	2500 U	2500 U	
1,3.Dichlorobenzene	5000 U		2500 U	2500 U	
1,3-Dichloropropane	5000 U		2500 U	2500 U	
1,4-Dichlorobenzene	5000 U		2500 U	2500 U	
2,2-Dichloropropane	5000 U		2500 U	2500 U	
2-Butanone	5000 U	5000 U	2500 U	2500 U	5000 UJ
2-Chloroethyl vinyl ether	30000		2000 0		
2-Chlorotoluene	5000 U		2500 U	2500 U	
2-Hexanone	5000 U	5000 U	2500 U	2500 U	5000 UJ
4-Chlorotoluene	5000 U		2500 U	2500 U	
4-Isopropyltoluene	5000 U		2500 U	2500 U	
4-Methyl-2-Pentanone	5000 U	5000 U	2500 U	2500 U	5000 UJ
Acetone	5000 U	5000 U	2500 U	2500 U	5000 U
Benzene	5000 U	5000 U	2500 U	2500 U	5000 U
Bromobenzene	5000 U	•••	2500 ป	2500 U	
Bromochloromethane	5000 U		2500 U	2500 U	
Bromodichloromethane	5000 U	5000 U	2500 U	2500 U	5000 U
Bromoform	5000 U	5000 U	2500 U	2500 U	5000 U
Bromomethane	5000 U	5000 U	2500 U	2500 U	5000 U
Carbon Disulfide	5000 U	5000 U	2500 U	2500 U	5000 U
Carbon Tetrachloride	5000 U	5000 U	2500 U	2500 U	5000 U
Chlorobenzene	5000 U	5000 บ	2500 U	2500 U	5000 U
Chloroethane	5000 U	5000 ป	2500 U	2500 U	5000 U
Chloroform	5000 U	5000 ป	2500 U	2500 U	5000 U
Chloromethane	5000 U	5000 UJ	2500 U	2500 U	5000 U
ais-1,2-Dichloroethene	5300		920	1300	
cis-1,3-Dichloropropene	5000 U	5000 U	2500 U	2500 U	5000 U
Dibromochloromethane	5000 U	5000 U	2500 U	2500 U	5000 U
Dibromomethane	5000 U		2500 U	2500 U	
Dichlorodiffuoromethane	5000 U		2500 U	2500 U	5000 !!
Ethylbenzene	5000 U	5000 U	2500 U	2500 U	5000 U
Hexachlorobutadiene	5000 U		2500 U	2500 U	
lodomethane	5000 U	***	2500 U	2500 U	
Isopropylbenzene	5000 U		2500 U	2500 U	
Methyl tert-butyl ether	5000 U		2500 U	2500 U	14000
Methylene Chloride	31000	30000 J	2100	4400	14000
Naphthalene	5000 U		2500 U	2500 U	•••

Sample ID	IP2-1	IPZ-1	IPZ1	IPZ-1	IPZ-2	IPZ-2	IPZ-2
Laboratory ID	71459002	71101004	71707001	72073007	71101002	71707010	72073005
Sample Date	09/11/2000	07/17/2000	10/20/2000	12/14/2000	07/17/2000	10/20/2000	12/14/2000
Metals (ug/L)							
Aluminum		•••		25.3 J	•••	***	581 J
Antimony			111	3 U			3 U
Arsenic				6 ∪			6 U
Barium				137			6.9
Beryllium		•••		0.2 U			0.2 U
Cadmium			***	0.6			0.34
Calcium		•••		183000		•••	215000
Chromium				0.5 U			345
Cobalt				3.9	4.5-		21.8
Copper				2.3	•••		1 U
Iron	6340	88400 J	5570	4050	187000 J	247	72.3
Lead				1 U	•••	***	48.8
Magnesium				109000			123000
Manganese	137	2880 J	106	1680 J	7530 J	497000	730000 J
Mercury				0.13 U	•••		1.1
Nickel				48.9	•••	***	16.4
Potassium		•••		6430			54900
Selenium				4 U		•••	306
Silver				0.5			0.4 U
Sodium	•••		***	92800 J	•••		1310000 J
Thallium	•••		•••	4 U	***		4 U
Vanadium				0.4 U	***		0.4 U
Zinc	•			R			Ŕ
Cyanide	•••		••-	2 U	•••		2 U

Notes and Qualifier definition are attached ---: not analyzed

M-//187rane/SOH/Annn_8 Page 1 of 7

Sample ID	IPZ-3	IPZ-3	IPZ-3	IW-1	iW-1	IW-1	MW-2
Laboratory ID	71101003	71707008	72073008	71101001	71707009	72073006	72109001
Sample Date	07/17/2000	10/20/2000	12/14/2000	07/17/2000	10/20/2000	12/14/2000	12/18/2000
Sample Bate	0772772000						
Metals (ug/L)							
Aluminum			672 J			3040 J	R
Antimony			3 Ü	***		3 U	3
Arsenic			6 U			6 U	6 U
Barium			0.3 U			1.3	89
Beryllium			0.2 U		***	0.2 U	0.2 U
Cadmium			0.1 U	•••		0.1 U	0.47
Calcium			17400			107000	122000
Chromium			1010		•••	1450	0.5 U
Cobalt			23.9		11-	32.5	0.43
			1 U			1 U	1.9
Copper Iron	41900 J	177	100	20100 J	65.5	463	2000
Lead	415003		73.4			307	1 U
Magnesium			35300			73100	68700
Manganese	1210 J	399000	664000 J	704 J	319000	4090000 J	71.4 J
Mercury			6.4			3.2	0.13 U
Nickel			7			1 U	2.3
Potassium			77700			54200	7690
Selenium			499			1950	4 U
Silver			0.4 U			0.4 U	2.9 J
Sodium			3170000 J			3080000 J	48600
Thallium			4 U			4 U	4 U
Vanadium			0.4 U			0.4 U	0.4 U
			3 U			R R	3 U
Zinc			2 U			3.9	2 U
Cyanide				<u></u>		3.5	

Notes and Qualifier definition are attached ---: not analyzed

Appendix D-8
Analytical Results (Metals) in Overburden Groundwater
NYSDEC-SOH, Henrietta, NY

Sample ID	MW-3	MW-5	OW-1S	OW-1S	OW-2S	OW-3S	OW-4S
Laboratory ID	72109006	72109002	72131004	72131004L	72109015	72109009	72109012
Sample Date	12/18/2000	12/18/2000	12/19/2000	12/19/2000	12/19/2000	12/19/2000	12/19/2000
Metals (ug/L)							
Aluminum	R	R	8 U	40	8 UJ	8 UJ	Ŗ
Antimony	3 U	3 U	⁽ 3 U	15	3.4 J	3 U	3 U
Arsenic	6 U	6 U	6 U	30.00	6 U	6 U	6 U
Barium	105	179	88.8	94.85	66.1	23.7	54.4
Beryllium	0.2 U	0.2	0.2 U	1 U	0.21	0.2 U	0.25
Cadmium	0.18	0.4	0.89	0.5	0.57	0.53	1.2
Calcium	119000	110000	123000	125965.13	71500	41700	60900
Chromium	0.5 U	0.5 U	0.5 U	2.5	0.5 U	0.5 U	0.5 U
Cobalt	1.6	1.6	0.9 J	2	0.49	0.5	0.99
Copper	2.9	5	6.6	7.57	1 U	1 U	1 U
Iron	1390	1060	12100	12789.14	10700	10700	22000
Lead	1 U	1.6	1 U	5 U	1 U	1 U	2.6
Magnesium	64200	34700	36100	38677.64	76300	65400	54900
Manganese	210 J	931 J	70.8	75.1	96.6 J	114 J	155 J
Mercury	0.14 U	0.14 U	0.1 U		0.14 U	0.14 U	0.14 U
Nickel	24.2	6.2	7.6	7.66	9.4	19.3	9.4
Potassium	4370	1560	2970	3300.32	4760	2580	3150
Selenium	4 U	4 U	4 U	20 U	4 U	4 U	4 U
Silver	2.1	2.5 J	3.8	3.03	3.3	2.6	4
Sodium	97100	36300	127000	114939.79	204000	54100	53500
Thallium	4 U	4 U	4 U	20	4 U	4 U	4 U
Vanadium	0.4 U	2.5	0.59	2	0.4 U	0.4 U	1.4
Zinc	3 U	3.5	13.1	15	3.3	5.3	4.6
Cyanide	2 U	2 U	8.6	2 U	2 U	2 U	2 U

Notes and Qualifier definition are attached --- : not analyzed

Appendix D-8
Analytical Results (Metals) in Overburden Groundwater
NYSDEC-SOH, Henrietta, NY

Sample ID	OW-5S	OW-6S	OW-7S	OW-7S	OW-7S	OW-7S	OW-8S
Laboratory ID	72109008	72131001	71101006	71459003	71707003	72109007	72109017
Sample Date	12/19/2000	12/18/2000	07/17/2000	09/11/2000	10/20/2000	12/18/2000	12/19/2000
			··· ···				
Metals (ug/L)		,					
Aluminum	R	158				R	8 UJ
Antimony	3.3	3 Ü				3 U	3.2 J
Arsenic	6 U	6 U			***	6 U	6 U
Barium	231 J	166		•••		34.3	50.3
Beryllium	0.23	0.2 U		***		0.2 U	0.2 ป
Cadmium	2.5	3.5				2.1	0.41
Calcium	79800	169000	•••			17100	86100
Chromium	14	13.6				1.4	0.5 U
Cobalt	3.3	17.2 J		•••	•••	0.99	2.3
Copper	10.8	9.6	•••		***	2.3	1 U
Iron	47500	42300	70800 J	1070	8140	11600	6850
Lead	21.3	11.1 J			•••	1.5	1 U
Magnesium	49800	59500				6770	82000
Manganese	495 J	475	1380 J	50.6	194	207 J	62.6 J
Mercury	0.13 U	0.1 U				0.14 U	0.13 U
Nickel	59	141				6.8	26.2
Potassium	6860	2270				2240	2950
Selenium	4 U	4 U			•••	4 U	4 U
Silver	7.9	8.1		***	•••	2.9	1.6
Sodium	51700	37700	***	•••		9120	50600
Thallium	4 U	4 U	•••			4 U	4 U
Vanadium	5.8	2.6			•••	2.1	0.4 U
Zinc	25.2	18.1				9.3	3 U
Cyanide	5.7				2 U	2 U	2 U

Notes and Qualifier definition are attached ---: not analyzed

Appendix D-8

Analytical Results (Metals) in Overburden Groundwater
NYSDEC-SOH, Henrietta, NY

Sample ID	PZ-1	PZ-2	PZ-2	PZ-3	TW-1	TW-1	TW-1
Laboratory ID	72073009	72073010	72073010DL	72073014	71539001	71707002	72073001
Sample Date	12/15/2000	12/15/2000	12/15/2000	12/15/2000	09/22/2000	10/20/2000	12/14/2000
Metals (ug/L)							
Aluminum	2450 J	107 J		1490 J			27.9 J
Antimony	3 U	3.3 J	***	3 U		***	3 U
Arsenic	6 U	8.9		6 U	•	•••	6 U
Barium	237 J	527 J		155		••-	65
Beryllium	0.28	0.2 U		0.2 U	***		0.2 U
Cadmium	1.2	0.82	•••	0.51		•••	0.3
Calcium	389000	135000		189000		•••	168000
Chromium	0.5 U	0.5 U		19.3		•••	0.5 U
Cobalt	18	2.1	•••	9.7			1.2
Copper	19	2.8		16.1			2.5
Iron	6270	9170		3220	525	561	362
Lead	7.6	1 U	•••	1.9			1 U
Magnesium	140000	127000	***	85000			96500
Manganese	3260 J	254 J		407 J	4870	2050	848 J
Mercury	0.14 U	0.14 U		0.14 U	***		0.13 U
Nickel	15.6	7.2	•••	18.9			14.9
Potassium	3200	9510		6440	•••	•••	5320
Selenium	4 U	4 U		4 U	•••		4 U
Silver	2.5	1.4		0.4 U	***		0.9
Sodium	24500 J	33200 J		93300 J	***		41700 J
Thallium	4 U	4 U	•••	4 U	•••		4 U
Vanadium	3.5	0.4 U	•••	2.7	***		0.4 U
Zinc	R	R		R	•••		R
Cyanide	4.7	5.6	•••		2 U	•••	

Notes and Qualifier definition are attached ... : not analyzed

M:/187reps/SOH/AppD-8 Page 5 of 7

Sample ID	TW-2	TW-2	TW-2	TW-3	TW3	TW-3	TW-4
Laboratory ID	71539002	71707005	72073002	71539003	71707006	72073004	71539004
Sample Date	09/22/2000	10/20/2000	12/14/2000	09/22/2000	10/20/2000	12/14/2000	09/22/2000
Metals (ug/L)							
Aluminum			55.2 J			8 U	
Antimony			3 U		•••	3.5 J	
Arsenic		•••	6 U			6 U	
Barium			333 J			646 J	
Beryllium			0.2 U	•••	•••	0.2 U	
Cadmium			0.27			0.5	
Calcium		•••	209000			217000	•••
Chromium			5			0.5 U	•••
Cobalt			6.6	•	***	1.4	
Copper			13.3	•••	•••	2	
Iron	29.3	340	741 J	1380	4500	5620	4540
Lead		•••	1 U			1 U	
Magnesium		•••	128000	•		141000	***
Manganese	2660	5140	6680 J	381	382	145 J	277
Mercury			0.14 U		•••	0.14 U	
Nickel			108	•	-44	90.1	
Potassium			8600		•••	9160	
Selenium	•••		4 U	***		4 U	
Silver	•••		1.4		•••	1.1	
Sodium			387000 J		***	76900 J	***
Thallium			4 U		***	4 U	•••
Vanadium			0.4 U			0.4 U	***
Zinc			, R		***	R	
Cyanide	2 U	2U	2UD				

Notes and Qualifier definition are attached ---: not analyzed

Appendix D-8

Analytical Results (Metals) in Overburden Groundwater
NYSDEC-SOH, Henrietta, NY

Sample ID	TW-4	TW-4
Laboratory ID	71707007	72073012
Sample Date	10/20/2000	12/14/2000
Metals (ug/L)		
Aluminum		114 J
Antimony	•••	3 U
Arsenic		6 υ
Barium		501 J
Beryllium		0.2 U
Cadmium	•••	0.51
Calcium	•••	164000
Chromium		0.5 U
Cobalt		1.4
Copper		3.1
Iron	5660	2140
Lead		1 U
Magnesium	•	117000
Manganese	583	124 J
Mercury		0.14 U
Nickel	•	55
Potassium	•	8790
Selenium	•••	4 U
Silver		0.42
Sodium		40700 J
Thallium		4 U
Vanadium		0.4 U
Zinc		R
Cyanide		•••

Notes and Qualifier definition are attached ...: not analyzed

Sample ID	IPZ-1	IP2-1	IPZ-1	IPZ-1	IPZ-2	IPZ-2	IPZ-2
Laboratory ID	71101004	71459002	71707001	72073007	71101002	71707010	72073005
Sample Date	07/17/2000	09/11/2000	10/20/2000	12/14/2000	07/17/2000	10/20/2000	12/14/2000
Wet Chemistry							
Specific Conductance (uMHOS)				2,430			8,680
Fluoride			•••	0.20 U	•••		49.8
Nitrate/Nitrite				4 U	•••		800 U
DOC				230		•••	200
TOC		•••	•••	210			150
Specific Conductance		•••		2,430			8,680
Alkalinity (mgCA)				450			20,000 U
Total Dissolved Solids				1,400			5,400
Chloride	700	700	780	510	350	5 U	10,000 U
рН				6.9 J			6.8 J
Phosphate-total				0.40 U			0.08 U
Sulfates			•••	120	•••		35,000 U
Chemical Oxygen Demand	300	240	240		2900	10 U	
Bromide		•		2.0 U			800 U
Fluoride				0.20 U			49.8

Notes: --: Not Analyzed
U: Not Detected
J: estimated

Sample ID Laboratory ID Sample Date	IPZ-3 71101003 07/17/2000	IPZ-3 71707008 10/20/2000	IPZ-3 72073008 12/14/2000	IW-1 71101001 07/17/2000	IW-1 71707009 10/20/2000	IW-1 72073006 12/14/2000	MW-2 72109001 12/18/2000
Wet Chemistry							
Specific Conductance (uMHOS)			15,900	***		19,600	1,290
Fluoride			18.0 U	•••		38.7	0.06 U
Nitrate/Nitrite	•••	•	800 U		***	4,000 U	0.08 U
DOC			460			340	17
TOC			350			340	15
Specific Conductance			15,900			19,600	1,290
Alkalinity (mgCA)	•••	•••	20,000 U			20,000 U	290
Total Dissolved Solids			9,900			18,000	710
Chloride	900	25000 U	5,000 U	300	25000 U	20,000 U	210
pH	***	•••	7.7 J		•••	6.9 J	7.3 J
Phosphate-total	•••	•••	0.05 U			0.05 U	0.70
Sulfates			350,000 U		•••	350,000 U	140
Chemical Oxygen Demand	440	10000 U	•••	350	10000 U		•••
Bromide			200 U	•••		2,000 U	0.4 U
Fluoride			18.0 U		•••	38.7	0.06 U

Notes: ---: Not Analyzed
U: Not Detected
J: estimated

Appendix D-9

Analytical Results (Wet Chem. and Misc.) in Overburden Groundwater

NYSDEC-SOH, Henrietta, NY

Sample ID	MW-3	MW-5	OW-1S	OW-2S	OW-3S	OW-4S	OW-5S
Laboratory ID	72109006	72109002	72131004	72109015	72109009	72109012	72109008
Sample Date	12/18/2000	12/18/2000	12/19/2000	12/19/2000	12/19/2000	12/19/2000	12/19/2000
Wet Chemistry			-	-			
Specific Conductance (uMHOS)	1,500	835	1,840	1,930	915	1,060	793
Fluoride	0.10	0.08 J	0.11	0.10	0.16	0.07	0.29
Nitrate/Nitrite	0.09	4.0 U	5.8	4.0 U	4.0 U	4.0 U	0.08 U
DOC	21	21	17	18	14	21	10
TOC	17	21	20	11	10	5	6
Specific Conductance	1,500	835	1,840	1,930	915	1,060	793
Alkalinity (mgCA)	330	330	470	380	330	140	250
Total Dissolved Solids	820	470	900	910	460	520	410
Chloride	250	34 U	200	350	77 U	210	58 U
Hq	7.3 J	7.0 J	7.2 J	7.4 J	7.7 J	7.8 J	7.9 J
Phosphate-total	1.0	0.67	0.57 J	0.33 U	0.29 U	0.23 U	0.38 U
Sulfates	150	26	75	150	7 U	120	72
Chemical Oxygen Demand	•••		•••		•••		
Bromide	2.01	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	10.0 U
Fluoride	0.10	0.08 J	0.11	0.10	0.16	0.07	0.29

Notes: ---: Not Analyzed
U: Not Detected
J: estimated

Sample ID	OW-6S	OW-7S	OW-7S	OW-7S	OW-7S	OW-8S	PZ-1
Laboratory ID	72131001	71101006	71459003	71707003	72109007	72109017	72073009
Sample Date	12/18/2000	07/17/2000	09/11/2000	10/20/2000	12/18/2000	12/19/2000	12/15/2000
Wet Chemistry							
Specific Conductance (uMHOS)	1,300		•••		169	1,310	1,760
Fluoride	0.06 U			•	0.09	0.33	0.16
Nitrate/Nitrite	4 U		•••		0.08 Ü	0.08 U	4 U
DOC	24			•••	5 U	52	87
TOC	26	•••			6	11	94
Specific Conductance	1,300		•••		169	1,310	1,760
Alkalinity (mgCA)	460				64	290	720
Total Dissolved Solids	800 J				93	670	1,000
Chloride	95	150	43	50	15 U	110	180
рН	6.8 J				8.7 J	7.7 J	6.9
Phosphate-total	0.80 J			•••	0.16	0.26 U	0.73 U
Sulfates	140		•••	•••	11	130	110
Chemical Oxygen Demand		130	31	42		•••	•••
Bromide	2.0 U				10.0 U	2.0 U	20 U
Fluoride	0.06 U		•••		0.09	0.33	0.16

Notes: ...: Not Analyzed
U: Not Detected
J: estimated

٢

Sample ID	PZ-2	PZ-3	TW-1	TW-1	TW-1	TW-2	TW-2
Laboratory ID	72073010	72073014	71539001	71707002	72073001	71539002	71707005
Sample Date	12/15/2000	12/15/2000	09/22/2000	10/20/2000	12/14/2000	09/22/2000	10/20/2000
Wet Chemistry							
Specific Conductance (uMHOS)	1,690	1,550			2.0 U	**-	
Fluoride	0.24	0.18			0.06 U		
Nitrate/Nitrite	4 Ü	0.61			4 U		
DOC	99	35	•••	•••	220		
TOC	85	36			190		
Specific Conductance	1,690	1,550		•	2.0 U		
Alkalinity (mgCA)	660	570			430		
Total Dissolved Solids	1,100	930			1,200	,	•••
Chloride	280	140	560	570	490	900	900
pH	6.8	7.1			6.9 J	•••	
Phosphate-total	0.30 U	0.47 U			0.05 U	•••	•••
Sulfates	7 U	130			120	•••	•••
Chemical Oxygen Demand			210	200		230	300
Bromide	4.0 U	4.0 U			0.4 U	•••	•••
Fluoride	0.24	0.18	•••		0.06 U		

Notes: ···: Not Analyzed
U: Not Detected
J: estimated

Sample ID	TW-2	TW-3	TW-3	TW-3	TW-4	TW-4	TW-4
Laboratory ID	72073002	71539003	71707006	72073004	71539004	71707007	72073012
Sample Date	12/14/2000	09/22/2000	10/20/2000	12/14/2000	09/22/2000	10/20/2000	12/14/2000
Wet Chemistry							
Specific Conductance (uMHOS)	3,790			2,840	•••		2,240
Fluoride	0.25 U	•••		0.24 U		•••	0.06 U
Nitrate/Nitrite	4 U			4 U			4 U
DOC	180			140		•••	79
TOC	140			140			73
Specific Conductance	3,790			2,840	•••		2,240
Alkalinity (mgCA)	700			590			470
Total Dissolved Solids	560		•••	1,600	•••	•••	1,300
Chloride	790	700	840	650	350	510	580
Hq	6.8 J			6.9 J			7.2 J
Phosphate-total	0.62 U	•		0.30 U			0.05 U
Sulfates	320	•••	•••	110			21
Chemical Oxygen Demand	•••	200	230		84	72	•••
Bromide	10.0 U		•••	2.0 U			2.0 U
Fluoride	0.25 U		•••	0.24 U			0.06 U

Notes: ---: Not Analyzed
U: Not Detected
J: estimated

DNR: Do not Report
D: Result from Dilution

M:/187rens/SOH/AppD-9 Page 6 of 6

Appendix D-10 Analytical Results (VOCs) in Bedrock Groundwater Samples NYSDEC-SOH, Henrietta, NY

Sample ID	OW-1R	OW-2R	OW-3R	OW-4R	OW-7R	OW-7R	OW-7R
Laboratory ID	72131003	72109014	72109010	72109013	71101005	71459004	71459004RE
Sample Date	12/19/2000	12/19/2000	12/19/2000	12/19/2000	07/17/2000	09/11/2000	09/11/2000
	i						
Volatiles (ug/L)							
1.1.1.2-Tetrachloroethane	l				500 U	500 U	500 U
1,1,1-Trichloroethane	10 U	10 U	10 U	10 U	1200	590	320
1,1,2,2-Tetrachloroethane	10 U	10 U	10 U	10 U	500 U	500 U	500 U
1,1,2-Trichloroethane	10 U	100	10 U	10 U	500 U	500 U	500 U
1,1-Dichloroethane	10 U	10 U	10 U	10 U	2900	3800	2600
1,1.Dichloroethene	10 U	10 U	10 U	10 U	500 U	290	130
1,1-Dichloropropene	·				500 U	500 U	500 U
1,2,3-Trichlorobenzene	 				500 U	500 U	500 U
1,2,3-Trichloropropane	<u> </u>				500 U	500 U	500 U
1,2,4-Trichlorobenzene		***		***	500 U	500 U	500 U
1,2,4-Trimethylbenzene	 				500 U	500 U	500 U
1,2-Dibromo-3-chloropropane					500 U	500 U	500 U
1,2-Dibromoethane					500 U	500 U	500 U
1.2-Dichlorobenzene	ł				500 U	500 U	500 U
1,2-Dichloroethane	10 U	10 U	10 U	10 U	500 U	500 U	500 U
1.2-Dichloroethene (Total)	10 U	6	100	10 0			
1,2-Dichloropropane	10 0	100	10 U	10 U	500 U	500 U	500 U
1,3,5-Trimethylbenzene	1				500 U	500 U	500 U
1,3-Dichlorobenzene					500 U	500 U	500 U
1,3-Dichloropropane	 				500 U	500 U	500 U
1,4-Dichlorobenzene	 				500 U	500 U	500 U
2,2-Dichloropropane					500 U	500 U	500 U
2-Butanone	10 U	10 UJ	10 UJ	10 UJ	500 U	500 U	500 U
2-Chloroethyl vinyl ether	100				500 U		300 0
2-Chlorotoluene	l	ļ 		<u></u>	500 U	500 U	500 U
2-Hexanone	10 U	10 U	10 U	10 U	500 U	500 U	500 U
4-Chlorotoluene	100			100	500 U	500 U	500 U
4-Isopropyltoluene	· · · · · · · · · · · · · · · · · · ·				500 U	500 U	500 U
4-Methyl-2-Pentanone	10 U	10 U	10 U	10 U	500 U	500 U	500 U
Acetone	100	10 0	10 UJ	10 UJ	500 UJ	500 U	500 U
Benzene	100	100	100	10 U	500 U	500 U	500 U
Bromobenzene					500 U	500 U	500 U
Bromochloromethane					500 U	500 U	500 U
Bromodichloromethane	10 U	10 U	10 U	10 U	500 U	500 U	500 U
Bromoform	10 U	100	10 U	10 U	500 U	500 U	500 U
Bromomethane	10 U	10 U	10 0	10 U	500 U	500 U	500 U
Carbon Disulfide	10 U	10 U	10 U	10 U	500 U	500 U	500 U
Carbon Disumde Carbon Tetrachloride	100	100	10 U	10 U	500 U	500 U	500 U
Chlorobenzene	100	10 U	10 U	10 U	500 U	500 U	500 U
Chloroethane	10 U	100	10 U	10 U	500 U	500 U	500 U
Chloroform	100	100	100	10 U	500 U	500 U	500 U
Chlorotorm Chloromethane	10 U	10 U	10 U	10 U	500 U	500 U	500 U
cis-1,2-Dichloroethene		100		100	13000	16000	10000
cis-1,2-Dichloroethene	10 U	100	10 U	10 U	500 U	500 U	500 U
Dibromochloromethane	100	100	100	10 U	500 U	500 U	500 U
Dibromocnioromethane					500 U	500 U	500 U
	ļ						
Dichlorodifluoromethane	10.11	1011	3011	10.11	500 U	500 U	500 U
Ethylbenzene	100	10 U	10 U	10 U	500 U	500 U	500 U
Hexachlorobutadiene					500 U	500 U	500 U
lodomethane Isopropylhenzene	 				500 U	500 U	500 U 500 U

Appendix D-10 Analytical Results (VOCs) in Bedrock Groundwater Samples NYSDEC-SOH, Henrietta, NY

Sample ID Laboratory ID	OW-7R 71707004	OW-7R 72131002
Sample Date	10/20/2000	12/18/2000
Volatiles (ug/L)		
1.1.1.2.Tetrachloroethane	500 U	
1,1,1.Trichloroethane	200	18 J
1,1,2,2-Tetrachioroethane	500 U	100 UJ
1,1,2-Trichloroethane	500 U	100 UJ
1,1.Dichloroethane	2000	200 J
1,1-Dichloroethene	110	100 UJ
1,1.Dichloropropene	500 U	
1,2,3-Trichlorobenzene	500 U	
1,2,3-Trichloropropane	500 U	
1,2,4-Trichlorobenzene	500 U	
1,2,4-Trimethylbenzene	500 U	
1,2-Dibromo-3-chloropropane	500 U	
1,2-Dibromoethane	500 U	<u></u>
1,2-Dichlorobenzene	500 U	
1,2-Dichloroethane	500 U	100 UJ
1,2-Dichloroethene (Total)		610 J
1,2-Dichloropropane	500 U	100 UJ
1,3,5-Trimethylbenzene	500 U	
1,3-Dichlorobenzene	500 U	****
1,3-Dichloropropane	500 U	
1,4-Dichlorobenzene	500 U	
2,2-Dichloropropane	500 U	
2-Butanone	500 U	100 UJ
2-Chloroethyl vinyl ether	500 U	<u></u>
2-Chlorotoluene 2-Hexanone	500 U	100 UJ
4-Chlorotoluene	500 U	100.03
4-Isopropyltoluene	500 U	
4-Nethyl-2-Pentanone	500 U	100 UJ
Acetone	500 U	100 UJ
Benzene	500 U	100 UJ
Bromobenzene	500 U	- 100 03
Bromochloromethane	500 U	
Bromodichloromethane	500 U	100 UJ
Bromoform	500 U	100 UJ
Bromomethane	500 U	100 UJ
Carbon Disulfide	500 U	100 UJ
Carbon Tetrachloride	500 U	100 UJ
Chlorobenzene	500 U	100 UJ
Chloroethane	500 U	100 UJ
Chloroform	500 U	100 UJ
Chloromethane	500 U	100 UJ
cis-1,2-Dichloroethene	8200	
cis-1,3-Dichloropropene	500 U	100 UJ
Dibromochloromethane	500 U	100 UJ
Dibromomethane	500 U	
Dichlorodifluoromethane	500 U	
Ethylbenzene	500 U	100 UJ
Hexachlorobutadiene	500 U	
lodomethane	500 U	
Isopropylbenzene	500 U	

Appendix D-11
Analytical Results (Metals) in Bedrock Groundwater Samples
NYSDEC-SOH, Henrietta, NY

Sample ID	OW-1R 72131003	OW-2R 72109014	OW-3R 72109010	OW-4R 72109013	OW-7R 71101005	OW-7R 71459004	OW-7R 71459004RE	OW-7R 71707004	OW-7R 72131002
Laboratory ID Sample Date	12/19/2000	12/19/2000	12/19/2000	12/19/2000	07/17/2000	09/11/2000	09/11/2000	10/20/2000	12/18/2000
		<u>v</u> -							
Metals (ug/L)									
Aluminum	14.4	8 UJ	26.8 R	8 NJ			•••	••-	54.1
Antimony	3 U	3.6 J	3	3 J		•••		•••	3 U
Arsenic	6 U	6 U	6 U	6 U			•••	***	6 U
Barium	26.8	11.3	6.9	10.7		•••		***	8.2
Beryllium	0.2 U	0.2 U	0.2 U	0.2 U	***				0.2 U
Cadmium	1.4	0.8	2.6	1.3			•••	•••	0.71
Calcium	25000	33000	411000	182000				***	45700
Chromium	0.5 U	0.5 U	0.5 U	0.5 U				•••	1.8
Cobalt	0.84 J	0.57	0.83	0.89			•		0.49 J
Copper	1.4	11.9	5.6	9.8		•••			4.5
Iron	19600	16000	52800	25100	1340 J	4710		7360	3790
Lead	1.4 J	2.6	2.5	1.3				***	1.3 J
Magnesium	24800	29800	35200	-50500					804
Manganese	278	327 J	2530 J	707 J	20.2 J	66.6		290	55.6 J
Mercury	0.1 U	0.14 U	0.13 U	0.13 U		•••			0.1 U
Nickel	10.1	5.2	7.8	8.5	•		•••	•••	4.4
Potassium	3150	3920	9840	9240		•		•••	9760 J
Selenium	4 U .	4 U	4 U	4 U		***			4 U
Silver	3.3	2.9	13.2	6.4					1.8
Sodium	18300	13500	15600	26300					14300
Thallium	4 U	4 U	4 U	4 U				•••	4 U
Vanadium	0.67	0.8	2.9	1.4					0.4 U
Zinc	5.7	4.5	10.3	5			••-		5.8

^{···;} Not Analyzed

U: Not Detected

J: Estimated Value

DNR: Do not Report

D: Result from Dilution

Sample ID	OW-1R	OW-2R	OW-3R	OW-4R	OW-7R	OW-7R	OW-7R	OW-7R
Laboratory ID	72131003	72109014	72109010	72109013	71101005	71459004	71707004	72131002
Sample Date	12/19/2000	12/19/2000	12/19/2000	12/19/2000	07/17/2000	09/11/2000	10/20/2000	12/18/2000
Analyte								
Wet Chemistry					4-34-54-54-54-54-54-54-54-54-54-54-54-54-54		4.61.5146646646646464646	***************************************
Specific Conductance (uMHOS)	572	605	1,920	1,210	***		*-*	572
Fluoride	0.06 U	0.14	0.06 U	0.46				0.06 U
Nitrate/Nitrite	4 U	4.0 U	4.0 U	4.0 U		***		0.34
DOC	5 U	5	5 U	5 U	•-•	***		5 U
TOC	6	5 U	5 U	5 บ		•••		5 U
Specific Conductance	572	605	1,920	1,210				572
Alkalinity (mgCA)	85	29	20 U	20 U				72
Total Dissolved Solids	290	250	1,800	960				210 J
Chloride	46	150	28 U	12 U	140	120	110	15
рH	9.8 J	8.0 J	5.9 J	6.8 J	•••	•••		11.2 J
Phosphate-total	0.22 J	0.05 U	0. 0 7 U	0.05 U				0.12 J
Sulfates	100	28	1,400	830				53
Chemical Oxygen Demand			•••		86	33	38	
Bromide	2.0 U	2.0 U	10.0 U	2.0 ∪		***	•••	2.0 ∪
Fluoride	0.06 U	0.14	0.06 U	0.46	•••		***	0.06 ป
Cyanide	2 U	2 U	2 ∪	2 U	•••			2.1

Notes: --: Not Analyzed
U: Not Detected
J: estimated
DNR: Do not Report
D: Result from Dilution

Appendix D-13
Analytical Result (VOCs) from Water Sample Collected from Vault

Sample ID	Vault
Laboratory ID	80333001
Sample Date	2/15/01
Volatiles (ug/L)	
1,1,1,2.Tetrachloroethane	250 U
1,1,1-Trichloroethane	9,400
1,1,2,2-Tetrachloroethane	250 U
1,1,2-Trichloroethane	250 U
1,1-Dichloroethane	92
1,1-Dichloroethene	1,800
1,1-Dichloropropene	250 U
1,2,3-Trichlorobenzene	250 U
1,2,3-Trichloropropane	250 U
1,2,4-Trichlorobenzene	250 U
1,2,4-Trimethylbenzene	250 U
1,2-Dibromo-3-chloropropa	250 U
1,2-Dibromoethane	250 U
1,2-Dichlorobenzene	250 U
1,2-Dichloroethane	160
1,2-Dichloroethene (Total)	250 U
1,2-Dichloropropane	250 U
1,3,5 Trimethylbenzene	250 U
1,3-Dichlorobenzene	250 U
1,3-Dichloropropane	250 U
1,4-Dichlorobenzene	250 U
2,2-Dichloropropane	250 U
2-Butanone	250 U
2-Chloroethyl vinyl ether	250 U
2-Chlorotoluene	250 U
2-Hexanone	250 U
4-Chlorotoluene	250 U
4-Isopropyltoluene	250 U
4-Methyl-2-Pentanone	250 U
Acetone	250 U
Benzene	250 U
Bromobenzene	250 U
Bromochloromethane	250 U
Bromodichloromethane	250 U

Appendix D-13
Analytical Result (VOCs) from Water Sample Collected from Vault

Sample ID	Vault
Laboratory ID	80333001
Sample Date	2/15/01
	·
Volatiles (ug/L)	
Dibromomethane	250 U
Dichlorodifluoromethane	250 U
Ethylbenzene	250 U
Hexachlorobutadiene	250 U
lodomethane	250 U
Isopropylbenzene	250 U
Methyl tert-butyl ether	250 U
Methylene Chloride	250 U
Naphthalene	250 U
n-Butylbenzene	250 U
Nitrate	250 U
n-Propylbenzene	250 U
sec-Butylbenzene	250 U
Styrene	250 U
tert-Butylbenzene	250 U
Tetrachloroethene	250 U
Toluene	66
trans-1,2-Dichloroethene	250 U
trans-1,3-Dichloropropene	250 U
Trichloroethene	250 U
Trichlorofluoromethane	250 U
Vinyl acetate	250 U
Vinyl Chloride	250 U
Xylene (Total)	250 U

Note: Result not validated

Appendix D-14 Analytical Result (Metals) in Water Sample Collected from Vault NYSDEC-SOH, Henrietta, NY

Sample ID	Vault
Laboratory ID	803333001
Sample Date	12/15/01
-	
Metals (ug/L)	
Aluminum	267
Antimony	132
Arsenic	8.7
Barium	406
Beryllium	2.0 U
Cadmium	31.7
Calcium	90,600
Chromium	188
Cobalt	115
Copper	434
iron	2,130
Lead	51
Magnesium	20,600
Manganese	198
Mercury	0.14 U
Nickel	224,000
Potassium	145,000
Selenium	86.8
Silver	4
Sodium	2,520,000
Thallium	3.0 U
Vanadium	23.4
Zinc	4,670
Cyanide	75.5

Note: Result not validated

Appendix D-15
Analytical Result (SVOCs) in Water Sample Collected from Vault

Sample ID Lab ID Sample Date	Vault 80333001 2/15/01
•	
<u>Semivolatiles ug/ka</u>	
1,2,4-Trichlorobenzene	10 U
1,2-Dichlorobenzene	10 U
1,3-Dichlorobenzene	10 U
1,4-Dichlorobenzene	10 U
Hexachlorobutadiene	10 U
Naphthalene	10 U
1,2,4-Trichlorobenzene	10 U
1,2-Dichlorobenzene	10 U
1,3-Dichlorobenzene	10 U
1,4-Dichlorobenzene	10 U
2,2-oxybis(1-Chloropropane)	10 U
2,4,5-Trichlorophenol	20 U
2,4,6-Trichlorophenol	10 U
2,4-Dichlorophenol	10 U
2,4-Dimethylphenol	10 U
2,4-Dinitrophenol	20 U
2,4-Dinitrotoluene	10 U
2,6-Dinitrotoluene	10 U
2-Chloronaphthalene	10 U
2-Chlorophenol	10 U
2-Methylnaphthalene	10 U
2-Methylphenol	10 U
2-Nitroaniline	20 U
2-Nitrophenol	10 U
3,3-Dichlorobenzidine	10 U
3-Nitroaniline	20 U
4,6-Dinitro-2-methylphenol	20 U
4-Bromophenyl-phenylether	10 U
4-Chloro-3-methylphenol	10 U
4-Chloroaniline	10 U
4-Chlorophenyl-phenylether	10 U
4-Methylphenol	10 U

Appendix D-15
Analytical Result (SVOCs) in Water Sample Collected from Vault

Sample ID	Vault
Lab iD	80333001
Sample Date	2/15/01
<u>Semivolatiles ug/kg</u>	
bis(2-Chloroethoxy)methane	10 U
bis(-2-Chloroethyl)Ether	10 U
bis(2-Ethylhexyl)phthalate	7
Butylbenzylphthalate	1
Carbazole	10 U
Chrysene	10 U
Dibenzo(a,h)anthracene	10 U
Dibenzofuran	10 U
Diethylphthalate	10 U
Dimethylphthalate	10 U
Di-n-butylphthalate	10 U
Di-n-octylphthalate	10
Fluoranthene	10 U
Fluorene	10 U
Hexachlorobenzene	10 U
Hexachlorobutadiene	10 U
Hexachlorocyclopentadiene	10 U
Hexachloroethane	10 U
Indeno(1,2,3-cd)pyrene	10 U
Isophorone	1
Naphthalene	10 U
Nitrobenzene	10 U
N-Nitroso-di-n-propylamine	10 U
N-Nitrosodiphenylamine (1)	10 U
Pentachlorophenol	20 U
Phenanthrene	10 U
Phenol	9
Pyrene	10 U

Note: Result not validated

APPENDIX E

DUSR REPORT

DATA VALIDATION QUALIFIER CODES

National Functional Guidelines

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
N	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and

This analytical data package was prepared for IT Corporation in support of the Stewart Oliver Holtz site. It consists of nine soil samples and one field blank. Sample identifications are listed in the table below. The samples were analyzed for Target Compound List (TCL) Purgeable Organic Compounds. A matrix spike and matrix spike duplicate analysis was not performed for each parameter.

SB-12 24-26C	SB-10A 32-34 C
SB-12 26-28B	SB-11 38-40C
SB-12 26-28D	SB-11 38-40D
SB-10A 30-32D	SB-11 40-42 D
SB-10A 32-34B	Field Blank (SB-10A)

The following two sets of data presented by Mitkem Corporation, 175 Metro Center Boulevard, Warwick, Rhode Island, 02886-1755, were reviewed and were the basis for this Data Usability Summary Report.

- ◆ Sample Data Summary Package, May 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.
- ◆ Volatile Organics, May 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.

The data package was evaluated for its usability as defined by the Guidance for the Development of Data Usability Summary Reports (NYSDEC, 9/97) and Region II Standard Operating Procedure HW-6, Rev. #11 (USEPA 6/96).

1.0 Completeness and Holding Times

According to the NYSDEC Guidance for the Development of Data Usability Summary Reports, the following QC data were evaluated: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data. All QC data were within quality control limits, except the following issues:

Volatiles: Matrix spike/matrix spike duplicate (MS/MSD) analyses were not performed. No action was taken since the percent recovery (%R) values for the laboratory control sample were acceptable, and the MS/MSD %R and relative percent difference (RPD) values for samples from the same site but reported in other SDGs were acceptable.

Acetone and tetrachloroethene were present in one method blank associated with the medium level soils. These analytes were not reported from the medium level analyses; therefore, no qualifiers were required.

The field blank (Field Blank (SB-10A)) contained chloroform and tetrachloroethene. There were no positive results for these analytes in the associated samples (the samples collected on the same day as the field blank). No qualifiers were required.

For one initial calibration, the percent relative standard deviation (%RSD) value for acetone (51.9%) was greater than the QC limit. No action was required because acetone was not reported from the associated analyses.

For one continuing calibration standard, the percent difference (%D) values for acetone (35.7%), chloromethane (25.5%), and 2-butanone (38.0%) were outside the QC limit. Results for these analytes in the field blank were qualified as estimated (UJ).

Three samples (SB-11 38-40C, SB-11 38-40D and SB-11 40-42D) had analytes that exceeded the calibration range. The samples were extracted as a medium level and reanalyzed. Results of the re-analysis were acceptable. Results for these samples were reported as a combination of the diluted and original samples. Results that were not used were qualified as do-not-report (DNR). For Sample SB-11 40-42D, the methylene chloride result that exceeded the calibration range from the original analysis was reported and qualified as estimated (D because methylene chloride would have been suclified as

4.0 Raw Data Evaluation

Volatiles: For VOA analysis Relative Retention Times (RRT) for target analytes were within the allowed 0.06 RRT units of the Standard RRT. Quantitation reports were provided for all identified target compounds. Mass spectra of identified target compounds and mass spectra of the associated calibration standard matched according to EPA CLP data validation criteria. There were no false negatives identified.

The correct internal standards, quantitation ion and Relative Response Factor (RRF) were used to quantitate target compounds.

All TICs were correctly identified and qualified by the laboratory. No transcription errors were observed from raw data to summary forms and data analysis sheets (FORM 1s).

Evaluation of raw data confirmed results presented by the laboratory on the data summary sheets and quality control forms.

5.0 Data Qualifiers

The data qualifiers as presented by the laboratory are correct based on the laboratory definitions. However, some qualifiers will change based on data qualifiers established by the USEPA for CLP data validation, as discussed earlier.

Specifically, all volatiles results were qualified as estimated due to holding time outliers.

Chloromethane, acetone, and 2-butanone results were qualified as estimated (UJ) in the field blank due to calibration outliers.

Two sets of volatiles results were reported for Samples SB-11 38-40C, SB-11 38-40D and SB-11 40-42D; an original and medium level analysis. One result for each analyte was qualified as do-not-report (DNR).

Therefore, upon data validation of this package, several laboratory data qualifiers were changed. Referring to the Qualified Data Summary Table (QDST) in **Appendix C**, the qualifier in the **DV Qualifier** column supersedes the qualifier in the **Lab Flag** column

7.0 Recommendation

These data are acceptable for use in support of the risk assessment, nature and extent evaluations and feasibility study. Even though minor QA/QC problems were encountered with the volatiles analyses, most of the data were within acceptable QA/QC limits.

This analytical data package was prepared for IT Corporation in support of the Stewart Oliver Holtz site. It consists of nine soil samples and two field blanks. Sample identifications are listed in the table below. The samples were analyzed for Target Compound List (TCL) Purgeable Organic Compounds. A matrix spike and matrix spike duplicate analysis was not performed for each parameter.

SB-9 18-20A	Field Blank (SB-8)
SB-9 20-22A	SB-7 18-20A
SB-9 34-36A	SB-7 16-18D
SB-8 26-28B	SB-7 34-36A
SB-8 26-28C	SB-7 Field Blank
SB-8 26-28D	

The following two sets of data presented by Mitkem Corporation, 175 Metro Center Boulevard, Warwick, Rhode Island, 02886-1755, were reviewed and were the basis for this Data Usability Summary Report.

- ◆ Sample Data Summary Package, May 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.
- ♦ Volatile Organics, May 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.

The data package was evaluated for its usability as defined by the Guidance for the Development of Data Usability Summary Reports (NYSDEC, 9/97) and Region II Standard Operating Procedure HW-6, Rev. #11 (USEPA 6/96).

1.0 Completeness and Holding Times

2.0 Quality Control Data

The QC data are critical to any data package, and are used to determine whether results presented by the laboratory are accepted or rejected. The data package as presented encountered some problems with QC data, and a full validation was performed.

According to the NYSDEC Guidance for the Development of Data Usability Summary Reports, the following QC data were evaluated: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data. All QC data were within quality control limits, except the following issues:

Volatiles: Matrix spike/matrix spike duplicate (MS/MSD) analyses were not performed. No action was taken since the percent recovery (%R) values for the laboratory control sample were acceptable, and the MS/MSD %R and relative percent difference (RPD) values for samples from the same site but reported in other SDGs were acceptable.

Methylene chloride, acetone, and/or tetrachlorethene were present in three method blanks at a concentration less than the Contract Required Control Limit (CRQL). All positive results less than the action level of ten times (methylene chloride and acetone) or five times (tetrachloroethane) the concentration found in the blank were qualified as not detected (U) at the reported concentration if the concentration was greater than the CRQL or at the CRQL if the concentration was less than the CRQL.

The field blanks, Field Blank (SB-8) and SB-7 Field Blank, contained acetone, chloroform, and toluene. All positive results less than the action level of ten times (acetone) and five times (chloroform and toluene) the concentration found in the blanks were qualified as not detected (U) at the reported concentration in the associated samples (samples collected on the same day as the field blank). If the concentration in the sample was greater than the CRQL, the result was qualified as not-detected at the reported concentration. If the concentration was less than the CRQL, the reporting limit was raised to the CRQL.

For one initial calibration, the percent relative standard deviation (%RSD) value for acetone (51.9%) was greater than the QC limit. Positive results for acetone were

For one continuing calibration standard, the %D value for chloroethane (27.5%) was outside the QC limit. The results for this analyte in Samples SB-9 18-20A, SB-9 20-22A, SB-7 18-20A, and SB-7 16-18D were qualified as estimated (J/UJ).

For one continuing calibration standard, the %D values for acetone (28.3%) and 2-hexanone (32.5%) were outside the QC limit. Only QC samples were associated with this standard; therefore, no qualifiers were required.

Three samples (SB-8 26-28B, SB-8 26-28C, and SB-8 26-28D) had analytes that exceeded the calibration range. These samples were extracted as a medium level and reanalyzed. Results of the re-analyses were acceptable. Results for these samples were reported as a combination of the diluted and original samples. Results that were not used were qualified as do-not-report (DNR). For Samples SB-8 26-28B and SB-8 26-28C, the methylene chloride results that exceeded the calibration range from the original analyses were reported and qualified as estimated (J) because methylene chloride would have been qualified as not detected in the re-analyses due to blank contamination.

Sample SB-9 34-36A was re-analyzed to insure that the results were not due to carry-over from another sample. The re-analysis results (SB-9 34-36ARE) confirmed that there was no carry-over. Therefore, the original results should be reported. The re-analysis results were qualified as do-not-report (DNR).

3.0 Analytical Protocol

Based on the information presented in the data package, it was established that the data were generated using the CLP protocols: NYSDEC ASP (10/95) for organics.

4.0 Raw Data Evaluation

Volatiles: For VOA analysis Relative Retention Times (RRT) for target analytes were within the allowed 0.06 RRT units of the Standard RRT. Quantitation reports were provided for all identified target compounds. Mass spectra of identified target compounds and mass spectra of the associated calibration standard matched according to EPA CLP data validation criteria. There were no false negatives identified.

5.0 Data Qualifiers

The data qualifiers as presented by the laboratory are correct based on the laboratory definitions. However, some qualifiers will change based on data qualifiers established by the USEPA for CLP data validation, as discussed earlier.

Specifically, all volatiles results except for SB-7 Field Blank were qualified as estimated due to holding time outliers.

Six methylene chloride results, nine acetone results, and three tetrachloroethene results were qualified as not detected (U) due to method blank contamination. The reporting limit was raised to the CRQL when the concentration was less than the CRQL.

Six acetone results and three toluene results were qualified as not detected (U) due to field blank contamination. The reporting limit was raised to the CRQL when the concentration was less than the CRQL.

The results for chloroethane, acetone, 2-butanone, 1,1,1-trichloroethane, and carbon tetrachloride were qualified as estimated (J/UJ) in Samples SB-8 26-28C, SB-9 34-36A, SB-8 26-28B, SB-8 26-28D, and SB-7 34-36A due to calibration outliers.

The results for chloroethane were qualified as estimated (J/UJ) in Samples SB-9 18-20A, SB-9 20-22A, SB-7 18-20A, and SB-7 16-18D due to calibration outliers.

Two sets of volatiles results were reported for Samples SB-8 26-28B, SB-8 26-28C, and SB-8 26-28D; an original and medium level analysis. One result for each analyte was qualified as do-not-report (DNR).

Therefore, upon data validation of this package, several laboratory data qualifiers were changed. Referring to the Qualified Data Summary Table (QDST) in **Appendix C**, the qualifier in the **DV Qualifier** column supersedes the qualifier in the **Lab Flag** column.

6.0 Summary

As a smalle of the auctivation of this data madroon it is determined that tradition data that

This analytical data package was prepared for IT Corporation in support of the Stewart Oliver Holtz site. It consists of eight soil samples and one field blank. Sample identifications are listed in the table below. The samples were analyzed for Target Compound List (TCL) Purgeable Organic Compounds and TOC. A matrix spike and matrix spike duplicate analysis was not performed for each parameter.

SB-4 4-6B	SB-4 16-18B
SB-4 26-28A	SB-5 10-12A
SB-4 14-16B	SB-5 24-26A
SB-4 16-18A	SB-5 22-24B
SB-4 Field Blank	

The following three sets of data presented by Mitkem Corporation, 175 Metro Center Boulevard, Warwick, Rhode Island, 02886-1755, were reviewed and were the basis for this Data Usability Summary Report.

- ♦ Sample Data Summary Package, June 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received August 16, 2000.
- ♦ Volatile Organics, June 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received August 21, 2000.
- ◆ Total Organic Compounds, June 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received August 24, 2000.

The data package was evaluated for its usability as defined by the Guidance for the Development of Data Usability Summary Reports (NYSDEC, 9/97) and Region II Standard Operating Procedure HW-6, Rev. #11 (USEPA 6/96).

2.0 Quality Control Data

The QC data are critical to any data package, and are used to determine whether results presented by the laboratory are accepted or rejected. The data package as presented encountered some problems with QC data, and a full validation was performed.

According to the NYSDEC Guidance for the Development of Data Usability Summary Reports, the following QC data were evaluated: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data. All QC data were within quality control limits, except the following issues:

Volatiles: Matrix spike/matrix spike duplicate (MS/MSD) analyses were not performed. No action was taken since the percent recovery (%R) values for the laboratory control sample were acceptable, and the MS/MSD %R and relative percent difference (RPD) values for samples from the same site but reported in other SDGs were acceptable.

Methylene chloride and acetone were present in two method blanks at concentrations less than the Contract Required Control Limit (CRQL). All positive results less than the action level of ten times the concentration found in the method blank were qualified as not detected (U) at the reported concentration if the concentration was greater than the CRQL or at the CRQL if the concentration was less than the CRQL.

Acetone, chloroform, and tetrachloroethene were present in the field blank, SB-4 Field Blank. All positive results less than the action level of ten times (acetone) and five times (chloroform and tetrachloroethene) the concentration found in the field blank were qualified as not detected (U) at the reported concentration if the concentration was greater than the CRQL or at the CRQL if the concentration was less than the CRQL

For the initial calibration associated with the field blank, the percent relative standard deviation (%RSD) value for acetone (51.9%) was greater than the QC limit. The positive result for acetone in the field blank was qualified as estimated (J).

For one continuing calibration standard, the percent difference (%D) values for 1,1,1-trichloroethane (26%) and carbon tetrachloride (26.1%) were outside the OC limit.

reported with one exception. The acetone result in the re-analysis was two times higher than the concentration in the original analysis. Therefor, the acetone result from the original analysis should be used. Results that were not used were qualified as do-not-report (DNR).

TOC: All data were within QC limits.

3.0 Analytical Protocol

Based on the information presented in the data package, it was established that the data were generated using the CLP protocols: NYSDEC ASP (10/95) for organics and EPA 415.1 for TOC.

4.0 Raw Data Evaluation

Volatiles: For VOA analysis Relative Retention Times (RRTs) for target analytes were within the allowed 0.06 RRT units of the Standard RRT. Quantitation reports were provided for all identified target compounds. Mass spectra of identified target compounds and mass spectra of the associated calibration standard matched according to EPA CLP data validation criteria. There were no false negatives identified.

The correct internal standards, quantitation ion and Relative Response Factor (RRF) were used to quantitate target compounds.

All TICs were correctly identified and qualified by the laboratory. No transcription errors were observed from raw data to summary forms and data analysis sheets (FORM 1s).

TOC: Raw data were present for TOC analyses to determine that the results presented by the laboratory were accurate and met method criteria.

Evaluation of raw data confirmed results presented by the laboratory on the data summary sheets and quality control forms.

5.0 Data Qualifiers

The acetone result for Sample SB-4 16-18B was qualified as not detected (U) at the reported concentration due to field blank contamination.

Acetone was qualified as estimated (J) in the field blank due to a calibration outlier.

Carbon tetrachloride and 1,1,1-trichloroethane results were qualified as estimated (UJ) in Samples SB-4 16-18A and SB-4 16-18B due to calibration outliers.

Two sets of volatiles results were reported for Sample SB-5 22-24B; an original and a reanalysis. One result for each analyte was qualified as do-not-report (DNR).

Therefore, upon data validation of this package, several laboratory data qualifiers were changed. Referring to the Qualified Data Summary Table (QDST) in Appendix C, the qualifier in the *DV Qualifier* column supersedes the qualifier in the *Lab Flag* column.

6.0 Summary

As a result of the evaluation of this data package, it is determined that results for TOC are acceptable as the laboratory reported. Results for volatiles that were qualified do-not-report (DNR) should not be used. All other volatiles data, as qualified, are acceptable.

7.0 Recommendation

These data are acceptable for use in support of the risk assessment, nature, and extent evaluations and feasibility study. Even though minor QA/QC problems were encountered with the volatiles analyses, most of the data were within acceptable QA/QC limits.

This analytical data package was prepared for IT Corporation in support of the Stewart Oliver Holtz site. It consists of eight soil samples, one field duplicate, and one field blank. Sample identifications are listed in the table below. The samples were analyzed for Target Compound List (TCL) Purgeable Organic Compounds and TOC. A matrix spike and matrix spike duplicate analysis was performed for volatiles.

SB-5 30-32A	SB-6 4-6C
SB-6 10-12A	SB-6 20-22A
SB-6 30-32A	SB-6 10-12C
SB-6 34-36A	SBX-6 4-6A
Field Dupe #1	Field Blank

The following three sets of data presented by Mitkem Corporation, 175 Metro Center Boulevard, Warwick, Rhode Island, 02886-1755, were reviewed and were the basis for this Data Usability Summary Report.

- ♦ Sample Data Summary Package, June 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.
- ◆ Volatile Organics, June 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.
- Total Organic Compounds, June 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.

The data package was evaluated for its usability as defined by the Guidance for the Development of Data Usability Summary Reports (NYSDEC, 9/97) and Region II Standard Operating Procedure HW-6, Rev. #11 (USEPA 6/96).

2.0 Quality Control Data

The QC data are critical to any data package, and are used to determine whether results presented by the laboratory are accepted or rejected. The data package as presented encountered some problems with QC data, and a full validation was performed.

According to the NYSDEC Guidance for the Development of Data Usability Summary Reports, the following QC data were evaluated: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data. All QC data were within quality control limits, except the following issues:

Volatiles: Methylene chloride and acetone were present in two method blanks at concentrations less than the Contract Required Control Limit (CRQL). All positive results less than the action level of ten times the concentration found in the blank were qualified as not detected (U) at the reported concentration if the concentration was greater than the CRQL or at the CRQL if the concentration was less than the CRQL.

The field blank contained chloroform. This analyte was not present in the associated samples; therefore, no qualifiers were required.

For one continuing calibration standard, the percent difference (%D) value for 2-butanone (30.4%) was outside the QC limit. The results for this analyte in Sample SBX-6 4-6A and the field blank were qualified as estimated (UJ).

For one continuing calibration standard, the %D value for chloroethane (25.5%), acetone (37.3%), 2-butanone (35.5%), 1,1,1-trichloroethane (27.9%), and carbon tetrachloride (28.6%) were outside the QC limit. The results for these analytes in Samples SB-5 30-32A, Field Dupe #1, SB-6 20-22A, and SB-6 10-12C were qualified as estimated (J/UJ).

The percent recovery (%R) values for 1,2-dichloroethane-d4 were greater than the upper control limit for Samples SB-5 30-32A, Field Dupe #1, and SB-6 10-12CDL. Positive results in these samples were qualified as estimated (J).

2-butanone were qualified as estimated (J/UJ) in the field duplicate samples because of the gross difference in results (greater than 100%).

TOC: All data were within QC limits.

3.0 Analytical Protocol

Based on the information presented in the data package, it was established that the data were generated using the CLP protocols: NYSDEC ASP (10/95) for organics and EPA 415.1 for TOC.

4.0 Raw Data Evaluation

Volatiles: For VOA analysis Relative Retention Times (RRTs) for target analytes were within the allowed 0.06 RRT units of the Standard RRT. Quantitation reports were provided for all identified target compounds. Mass spectra of identified target compounds and mass spectra of the associated calibration standard matched according to EPA CLP data validation criteria. There were no false negatives identified.

The correct internal standards, quantitation ion and Relative Response Factor (RRF) were used to quantitate target compounds.

All TICs were correctly identified and qualified by the laboratory. No transcription errors were observed from raw data to summary forms and data analysis sheets (FORM 1s).

TOC: Raw data were present for TOC analyses to determine that the results presented by the laboratory were accurate and met method criteria.

Evaluation of raw data confirmed results presented by the laboratory on the data summary sheets and quality control forms.

5.0 Data Qualifiers

The data qualifiers as presented by the laboratory are correct based on the laboratory definitions. However, some qualifiers will change based on data qualifiers established by

Results for 2-butanone and 1,1,1-trichloroethane were qualified as estimated (J/UJ) in Samples SB-6 34-36A and Field Dupe #1 due to precision outliers for the field duplicate samples.

The result for 2-butanone in Sample SBX-6 4-6A was qualified as estimated (UJ) due to a calibration outlier.

The results for chloroethane, acetone, 2-butanone, 1,1,1-trichloroethane, and carbon tetrachloride in Samples SB-5 30-32A, Field Dupe #1, SB-6 20-22A, and SB-6 10-12C were qualified as estimated (J/UJ) due to calibration outliers.

Positive results in Samples SB-5 30-32A, Field Dupe #1, and SB-6 10-12CDL were qualified as estimated (J) because of surrogate outliers.

Two sets of volatiles results were reported for Samples SB-5 30-32A, SB-6 10-12C, and SB-6 20-22A; an original and a diluted analysis. One result for each analyte was qualified as do-not-report (DNR).

Therefore, upon data validation of this package, several laboratory data qualifiers were changed. Referring to the Qualified Data Summary Table (QDST) in **Appendix C**, the qualifier in the **DV Qualifier** column supersedes the qualifier in the **Lab Flag** column.

6.0 Summary

As a result of the evaluation of this data package, it is determined that results for TOC are acceptable as the laboratory reported. Results for volatiles that were qualified do-not-report (DNR) should not be used. All other volatiles data, as qualified, are acceptable.

7.0 Recommendation

These data are acceptable for use in support of the risk assessment, nature, and extent evaluations and feasibility study. Even though minor QA/QC problems were encountered with the volatiles analyses, most of the data were within acceptable QA/QC limits.

This analytical data package was prepared for IT Corporation in support of the Stewart Oliver Holtz site. It consists of 15 soil samples and one field duplicate sample. Sample identifications are listed in the table below. The samples were analyzed for Target Compound List (TCL) Purgeable Organic Compounds, Semivolatile Organic Compounds, Pesticide/PCB Compounds and TOC. A matrix spike and matrix spike duplicate analysis was performed for Purgeable Organic Compounds.

SBX-6 4-6B	Field Dupe #2
SBX-6 6-8B	SB-1 10-12B
SBX-6 40-42C	SB-1 10-12C
SB-1 4-6A	SB-1 12-14A
SB-1 6-8C	SB-2 18-20D
SB-1 8-10A	SB-2 20-22B
SB-1 16-18D	SB-2 20-22C
SB-1 CUTTINGS	SB-2 40-42A

The following five sets of data presented by Mitkem Corporation, 175 Metro Center Boulevard, Warwick, Rhode Island, 02886-1755, were reviewed and were the basis for this Data Usability Summary Report.

- ◆ Sample Data Summary Package, June 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.
- ♦ Volatile Organics, June 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.
- Semivolatile Organics, June 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.

1.0 Completeness and Holding Times

The data package as presented is complete according to CLP requirements. The holding time for TOC was met.

The volatiles analyses of all samples were performed one to three days past the required 10 day holding time. All results for the volatiles samples were qualified as estimated (J/UJ).

The semivolatiles and pesticide/PCBs extractions of Sample SB-1 CUTTINGS were performed one day past the required seven day holding time. All semivolatile and Pesticide/PCB results for this sample were qualified as estimated (UJ).

2.0 Quality Control Data

The QC data are critical to any data package, and are used to determine whether results presented by the laboratory are accepted or rejected. The data package as presented encountered some problems with QC data, and a full validation was performed.

According to the NYSDEC Guidance for the Development of Data Usability Summary Reports, the following QC data were evaluated: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data. All QC data were within quality control limits, except the following issues:

Volatiles: Methylene chloride, acetone, and 2-hexanone were present in two method blanks at concentrations less than the Contract Required Control Limit (CRQL). All positive results less than the action level of ten times (acetone and methylene chloride) and five times (2-hexanone) the concentration found in the blanks were qualified as not detected (U) at the reported concentration if the concentration was greater than the CRQL or at the CRQL if the concentration was less than the CRQL.

The percent recovery (%R) values for bromofluorobenzene and 1,2-dichloroethane-d4 in Sample SRY 6.4.6R and bromofluorobenzene in Sample SRY 6.6.8R were greater than

the diluted and original samples. Results that were not used were qualified as do-not-report (DNR). For Samples SB-2 20-22C and SB-2 40-42A, the acetone results that exceeded the calibration range from the original analyses were reported and qualified as estimated (J) because acetone would have been qualified as not detected in the reanalyses due to blank contamination.

Semivolatiles: Several tentatively identified compounds (TIC) were reported in the method blank. Results for these TICs in Sample SB-1 CUTTINGS that were less than five times the concentration in the method blank were rejected (R).

The percent relative standard deviation (%RSD) value for 4-chlorophenylphenylether (31.1%) was greater than the QC limit for the initial calibration. Since this compound was not detected in the associated sample, no qualifiers were assigned.

For one continuing calibration standard, the percent difference (%D) values for 4-chlorophenylphenylether (27.1%) and di-n-octylphthalate (25.4%) were outside the QC limit. Reporting limits for these compounds were qualified as estimated (UJ) in Sample SB-1 CUTTINGS.

The identifications of five semivolatile TICs were changed to the generic identification of "alkane". These TICs were not listed in the laboratory narrative as required by the Region II guidelines. No action was taken.

Matrix spike/matrix spike duplicate (MS/MSD) analyses were not performed. No action was taken since the laboratory control sample percent recovery (%R) values were acceptable and there were no positive results in the sample.

Pesticide/PCBs: Endrin breakdown and total breakdown for one performance evaluation mixture were greater than the QC limit. No action was taken since there were no positive results in the associated sample.

Matrix spike/matrix spike duplicate (MS/MSD) analyses were not performed. No action was taken since the laboratory control sample percent recovery (%R) values were acceptable and there were no positive results in the sample.

4.0 Raw Data Evaluation

Volatiles: For VOA analysis, Relative Retention Times (RRTs) for target analytes were within the allowed 0.06 RRT units of the Standard RRT. Quantitation reports were provided for all identified target compounds. Mass spectra of identified target compounds and mass spectra of the associated calibration standard matched according to EPA CLP data validation criteria. There were no false negatives identified.

The correct internal standards, quantitation ion and Relative Response Factor (RRFs) were used to quantitate target compounds.

All TICs were correctly identified and qualified by the laboratory. No transcription errors were observed from raw data to summary forms and data analysis sheets (FORM 1s).

Semivolatiles: For SVOA analysis, Relative Retention Times (RRTs) for target analytes were within the allowed 0.06 RRT units of the Standard RRT. Quantitation reports were provided for all identified target compounds. Mass spectra of identified target compounds and mass spectra of the associated calibration standard matched according to EPA CLP data validation criteria. There were no false negatives identified.

The correct internal standards, quantitation ion and Relative Response Factor (RRFs) were used to quantitate target compounds.

The identifications of five TICs were changed to the generic identification of "alkane". These TICs were not listed in the laboratory narrative as required by the Region II guidelines. No action was taken. All remaining TICs were correctly identified and qualified by the laboratory. No transcription errors were observed from raw data to summary forms and data analysis sheets (FORM 1s).

Pesticides/PCBs: For Pesticides/PCBs analysis, Retention Times (RT) for target analytes were within the retention time windows established by the initial calibration. Quantitation reports were provided for all identified target compounds. Resolution between analyte peaks was acceptable. There were no false negatives identified.

5.0 Data Qualifiers

The data qualifiers as presented by the laboratory are correct based on the laboratory definitions. However, some qualifiers will change based on data qualifiers established by the USEPA for CLP data validation, as discussed earlier.

Specifically, all volatiles, semivolatiles and pesticide/PCB results were qualified as estimated due to holding time outliers.

Nine methylene chloride results and ten acetone results were qualified as not detected (U) due to blank contamination. The reporting limit was raised to the CRQL when the concentration of methylene chloride was less than the CRQL.

Ten semivolatile TICs were rejected because of method blank contamination. Other TIC identifications were changed to the more generic identification of "alkane".

Di-n-octylphthalate and 4-chlorophenylphenylether reporting limits were qualified as estimated (UJ) in Sample SB-1 CUTTINGS because of a calibration outlier.

Two sets of volatiles results were reported for Samples SB-1 10-12C, SB-2 18-20D, SB-2 20-22C, SB-2 40-42A, SBX-6 4-6B, and SBX-6 6-8B; an original and a diluted or medium level analysis. One result for each analyte was qualified as do-not-report (DNR).

Therefore, upon data validation of this package, several laboratory data qualifiers were changed. Referring to the Qualified Data Summary Table (QDST) in Appendix C, the qualifier in the *DV Qualifier* column supersedes the qualifier in the *Lab Flag* column.

6.0 Summary

As a result of the evaluation of this data package, it is determined that results for TOC are acceptable as the laboratory reported. Results for volatiles and semivolatiles data that were qualified do-not-report (DNR) or rejected (R) should not be used. All other volatiles and semivolatiles data, as qualified, are acceptable. All pesticide/PCB data, as qualified, are acceptable.

This analytical data package was prepared for IT Corporation in support of the Stewart Oliver Holtz site. It consists of six soil samples. Sample identifications are listed in the table below. The samples were analyzed for Target Compound List (TCL) Purgeable Organic Compounds. A matrix spike and matrix spike duplicate analysis was not performed for each parameter.

SB-3 16-18C	SB-15 18-20B
SB-3 28-30A	SB-15 18-20C
SB-3 30-32A	SB-15 20-22A

The following two sets of data presented by Mitkem Corporation, 175 Metro Center Boulevard, Warwick, Rhode Island, 02886-1755, were reviewed and were the basis for this Data Usability Summary Report.

- ◆ Sample Data Summary Package, June 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.
- ♦ Volatile Organics, June 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.

The data package was evaluated for its usability as defined by the Guidance for the Development of Data Usability Summary Reports (NYSDEC, 9/97) and Region II Standard Operating Procedure HW-6, Rev. #11 (USEPA 6/96).

1.0 Completeness and Holding Times

The data package as presented is complete according to CLP requirements. Holding times for the undiluted analyses of Samples SB-15 18-20C and SB-15 20-22A were met. All

According to the NYSDEC Guidance for the Development of Data Usability Summary Reports, the following QC data were evaluated: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data. All QC data were within quality control limits, except the following issues:

Volatiles: Matrix spike/matrix spike duplicate (MS/MSD) analyses were not performed. No action was taken since the percent recovery (%R) values for the laboratory control sample were acceptable, and the MS/MSD %R and relative percent difference (RPD) values for samples from the same site but reported in other SDGs were acceptable.

Methylene chloride was present in one method blank and acetone was present in another method blank at a concentration less than the Contract Required Control Limit (CRQL). All positive results less than the action level of ten times the concentration found in the blank were qualified as not detected (U) at the reported concentration if the concentration was greater than the CRQL or at the CRQL if the concentration was less than the CRQL.

For one continuing calibration standard, the percent difference (%D) value for 1,1-dichloroethene (37.7%) was outside the QC limit. Results for this analyte in Samples SB-3 30-32A, SB-15 18-20C, and SB-15 20-22A were qualified as estimated (UJ).

Three samples (SB-15 18-20C, SB-15 20-22A, and SB-33 30-32A) had analytes that exceeded the calibration range. The samples were extracted as a medium level and reanalyzed. Results of the re-analyses were acceptable. Results for these samples were reported as a combination of the medium level and original samples. Results that were not used were qualified as do-not-report (DNR).

3.0 Analytical Protocol

Based on the information presented in the data package, it was established that the data were generated using the CLP protocols: NYSDEC ASP (10/95) for organics.

4.0 Raw Data Evaluation

Evaluation of raw data confirmed results presented by the laboratory on the data summary sheets and quality control forms.

5.0 Data Qualifiers

The data qualifiers as presented by the laboratory are correct based on the laboratory definitions. However, some qualifiers will change based on data qualifiers established by the USEPA for CLP data validation, as discussed earlier.

Specifically, all volatiles results for Samples SB-3 16-18C, SB-3 28-30A, SB-3 30-32A, SB-15 18-20B, SB-15 18-20CDL, and SB-15 20-22ADL were qualified as estimated due to holding time outliers.

One methylene chloride result and one acetone result were qualified as not detected (U) due to blank contamination. The reporting limit was raised to the CRQL when the concentration was less than the CRQL.

Results for 1,1-dichloroethene were qualified as estimated (UJ) in Samples SB-3 30-32A, SB-15 18-20C, and SB-15 20-22A due to calibration outliers.

Two sets of volatiles results were reported for Samples SB-15 18-20C, SB-15 20-22A, and SB-33 30-32A; an original and medium level or diluted analysis. One result for each analyte was qualified as do-not-report (DNR).

Therefore, upon data validation of this package, several laboratory data qualifiers were changed. Referring to the Qualified Data Summary Table (QDST) in **Appendix C**, the qualifier in the **DV Qualifier** column supersedes the qualifier in the **Lab Flag** column.

6.0 Summary

As a result of the evaluation of this data package, it is determined that volatiles data that are qualified as do-not-report (DNR) should not be used. All other data, as qualified, are acceptable.

This analytical data package was prepared for IT Corporation in support of the Stewart Oliver Holtz site. It consists of four soil samples and one field blank. Sample identifications are listed in the table below. The samples were analyzed for Target Compound List (TCL) Purgeable Organic Compounds and TOC. A matrix spike and matrix spike duplicate analysis was not performed for each parameter.

SB-16 18-20A	SB-16 44-46A
SB-16 26-28A	SB-16 Field Blank
SB-16 36-38A	

The following three sets of data presented by Mitkem Corporation, 175 Metro Center Boulevard, Warwick, Rhode Island, 02886-1755, were reviewed and were the basis for this Data Usability Summary Report.

- ◆ Sample Data Summary Package, June 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.
- ♦ Volatile Organics, June 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.
- ◆ Total Organic Compounds, June 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.

The data package was evaluated for its usability as defined by the Guidance for the Development of Data Usability Summary Reports (NYSDEC, 9/97) and Region II Standard Operating Procedure HW-6, Rev. #11 (USEPA 6/96).

1.0 Completeness and Holding Times

2.0 Quality Control Data

The QC data are critical to any data package, and are used to determine whether results presented by the laboratory are accepted or rejected. The data package as presented encountered some problems with QC data, and a full validation was performed.

According to the NYSDEC Guidance for the Development of Data Usability Summary Reports, the following QC data were evaluated: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data. All QC data were within quality control limits, except the following issues:

Volatiles: Matrix spike/matrix spike duplicate (MS/MSD) analyses were not performed. No action was taken since the percent recovery (%R) values for the laboratory control sample were acceptable, and the MS/MSD %R and relative percent difference (RPD) values for samples from the same site but reported in other SDGs were acceptable.

Methylene chloride was present in one method blank at a concentration less than the Contract Required Control Limit (CRQL). All positive results less than the action level of ten times the concentration found in the blank were qualified as not detected (U) at the reported concentration if the concentration was greater than the CRQL or at the CRQL if the concentration was less than the CRQL.

The field blank (SB-16 Field Blank) contained methylene chloride, acetone, chloroform, and trichloroethene. All positive results less than the action level of ten times (methylene chloride and acetone) and five times (chloroform and trichloroethene) the concentration found in the blank were qualified as not detected (U) at the reported concentration if the concentration was greater than the CRQL or at the CRQL if the concentration was less than the CRQL.

For one continuing calibration standard, the percent difference (%D) values for acetone (33.2%) and 2-hexanone (29.2%) were outside the QC limit. Results for these analytes in the associated samples were qualified as estimated (J/UJ).

4.0 Raw Data Evaluation

Volatiles: For VOA analysis Relative Retention Times (RRT) for target analytes were within the allowed 0.06 RRT units of the Standard RRT. Quantitation reports were provided for all identified target compounds. Mass spectra of identified target compounds and mass spectra of the associated calibration standard matched according to EPA CLP data validation criteria. There were no false negatives identified.

The correct internal standards, quantitation ion and Relative Response Factor (RRF) were used to quantitate target compounds.

All TICs were correctly identified and qualified by the laboratory. No transcription errors were observed from raw data to summary forms and data analysis sheets (FORM 1s).

TOC: Raw data were present for TOC analyses to determine that the results presented by the laboratory were accurate and met method criteria.

Evaluation of raw data confirmed results presented by the laboratory on the data summary sheets and quality control forms.

5.0 Data Qualifiers

The data qualifiers as presented by the laboratory are correct based on the laboratory definitions. However, some qualifiers will change based on data qualifiers established by the USEPA for CLP data validation, as discussed earlier.

Specifically, all volatiles results for Sample SB-16 44-46A were qualified as estimated due to a holding time outlier.

One methylene chloride result was qualified as not detected (U) due to method blank contamination. The reporting limit was raised to the CRQL.

Three trichloroethene results and one acetone result were qualified as not detected (U) due to field blank contamination. The reporting limit was raised to the CRQL when the

6.0 Summary

As a result of the evaluation of this data package, it is determined that results for TOC, as qualified, are acceptable. All volatiles data, as qualified, are acceptable.

7.0 Recommendation

These data are acceptable for use in support of the risk assessment, nature, and extent evaluations and feasibility study. Even though minor QA/QC problems were encountered with the volatiles analyses, most of the data were within acceptable QA/QC limits.

This analytical data package was prepared for IT Corporation in support of the Stewart Oliver Holtz site. It consists of seven soil samples. Sample identifications are listed in the table below. The samples were analyzed for Target Compound List (TCL) Purgeable Organic Compounds and TOC. A matrix spike and matrix spike duplicate analysis was not performed for each parameter.

SB-17 16-18A	SB-19 4-6A
SB-17 28-30A	SB-19 26-28A
SB-17 24-26B	SB-19 24-26A
SB-17 10-12B	

The following three sets of data presented by Mitkem Corporation, 175 Metro Center Boulevard, Warwick, Rhode Island, 02886-1755, were reviewed and were the basis for this Data Usability Summary Report.

- ◆ Sample Data Summary Package, July 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.
- ◆ Volatile Organics, July 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.
- ◆ Total Organic Compounds, July 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.

The data package was evaluated for its usability as defined by the Guidance for the Development of Data Usability Summary Reports (NYSDEC, 9/97) and Region II Standard Operating Procedure HW-6, Rev. #11 (USEPA 6/96).

2.0 Quality Control Data

The QC data are critical to any data package, and are used to determine whether results presented by the laboratory are accepted or rejected. The data package as presented encountered some problems with QC data, and a full validation was performed.

According to the NYSDEC Guidance for the Development of Data Usability Summary Reports, the following QC data were evaluated: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data. All QC data were within quality control limits, except the following issues:

Volatiles: Matrix spike/matrix spike duplicate (MS/MSD) analyses were not performed. No action was taken since the percent recovery (%R) values for the laboratory control sample were acceptable, and the MS/MSD %R and relative percent difference (RPD) values for samples from the same site but reported in other SDGs were acceptable.

Methylene chloride and acetone were present in two method blanks at concentrations less than the Contract Required Control Limit (CRQL). All positive results less than the action level of ten times the concentration found in the blank were qualified as not detected (U). The reporting limit was raised to the CRQL if the concentration in the sample was less than the CRQL. If, however, the concentration was greater than the CRQL, the reporting limit was raised to match the concentration.

For one continuing calibration standard, the percent difference (%D) value for bromomethane (36.8%) was outside the QC limit. Since this standard was associated with only QC samples, no qualifiers were required.

One sample (SB-19 24-26A) had an analyte that exceeded the calibration range. The sample was diluted and re-analyzed. Results of the re-analysis were acceptable. Results for these samples were reported as a combination of the diluted and original samples. Results that were not used were qualified as do-not-report (DNR).

TOC: All data were within QC limits.

provided for all identified target compounds. Mass spectra of identified target compounds and mass spectra of the associated calibration standard matched according to EPA CLP data validation criteria. There were no false negatives identified.

The correct internal standards, quantitation ion and Relative Response Factor (RRF) were used to quantitate target compounds.

All TICs were correctly identified and qualified by the laboratory. No transcription errors were observed from raw data to summary forms and data analysis sheets (FORM.1s).

TOC: Raw data were present for TOC analyses to determine that the results presented by the laboratory were accurate and met method criteria.

Evaluation of raw data confirmed results presented by the laboratory on the data summary sheets and quality control forms.

5.0 Data Qualifiers

The data qualifiers as presented by the laboratory are correct based on the laboratory definitions. However, some qualifiers will change based on data qualifiers established by the USEPA for CLP data validation, as discussed earlier.

Specifically, all volatiles results for Sample SB-17 10-12B were qualified as estimated due to a holding time outlier.

All methylene chloride results and two acetone results were qualified as not detected (U) due to blank contamination. The reporting limit was raised to the CRQL when the concentration of methylene chloride was less than the CRQL.

Two sets of volatiles results were reported for Sample SB-19 24-26A; an original and a diluted analysis. One result for each analyte was qualified as do-not-report (DNR).

Therefore, upon data validation of this package, several laboratory data qualifiers were changed. Referring to the Qualified Data Summary Table (QDST) in **Appendix C**, the qualifier in the **DV Qualifier** column supersedes the qualifier in the **Lab Flag** column.

7.0 Recommendation

These data are acceptable for use in support of the risk assessment, nature and extent evaluations and feasibility study. Even though minor QA/QC problems were encountered with the volatiles analyses, most of the data were within acceptable QA/QC limits.

DATA USABILITY SUMMARY REPORT For Stewart Oliver Holtz Site SDG No. 70924

This analytical data package was prepared for IT Corporation in support of the Stewart Oliver Holtz site. It consists of three soil samples. Sample identifications are listed in the table below. The samples were analyzed for Target Compound List (TCL) Purgeable Organic Compounds. A matrix spike and matrix spike duplicate analysis was not performed for each parameter.

SB-18 12-14B	SB-18 22-24A
SB-18 18-20A	

The following two sets of data presented by Mitkem Corporation, 175 Metro Center Boulevard, Warwick, Rhode Island, 02886-1755, were reviewed and were the basis for this Data Usability Summary Report.

- ◆ Sample Data Summary Package, July 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.
- ♦ Volatile Organics, July 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 18, 2000.

The data package was evaluated for its usability as defined by the Guidance for the Development of Data Usability Summary Reports (NYSDEC, 9/97) and Region II Standard Operating Procedure HW-6, Rev. #11 (USEPA 6/96).

1.0 Completeness and Holding Times

The data package as presented is complete according to CLP requirements. All holding times were met.

analyses, laboratory controls and sample data. All QC data were within quality control limits, except the following issues:

Volatiles: Matrix spike/matrix spike duplicate (MS/MSD) analyses were not performed. No action was taken since the percent recovery (%R) value for the laboratory control sample was acceptable, and the MS/MSD %R and relative percent difference (RPD) values for samples from the same site but reported in other SDGs were acceptable.

Methylene chloride was present in two method blanks and acetone was present in one method blank at a concentration less than the Contract Required Control Limit (CRQL). All positive results less than the action level of ten times the concentration found in the blank were qualified as not detected (U) at the reported concentration if the concentration was greater than the CRQL or at the CRQL if the concentration was less than the CRQL.

One tentatively identified compound (TIC) was reported in the method blank associated with Samples SB-18 18-20ADL and SB-18 22-24A. Results for this TIC in the samples were less than five times the concentration in the method blank and were rejected (R).

For one continuing calibration standard, the percent difference (%D) value for bromomethane (29.6%) was outside the QC limit. The result for this analyte in Sample SB-18 22-24A was qualified as estimated (UJ).

For one continuing calibration standard, the %D values for acetone (44.8%), 2-butanone (51.5%), 4-methyl-2-pentanone (28.7%), and 2-hexanone (45.5%) were outside the QC limit. Results for these compounds in the associated samples were reported from other analyses; therefore, no qualifiers were required.

Two samples (SB-18 12-14B and SB-18 18-20A) had analytes that exceeded the calibration range. The samples were diluted or extracted as a medium level and reanalyzed. Results of the re-analyses were acceptable. Results for these samples were reported as a combination of the diluted and original samples. Results that were not used were qualified as do-not-report (DNR).

3.0 Analytical Protocol

The correct internal standards, quantitation ion and Relative Response Factor (RRF) were used to quantitate target compounds.

All TICs were correctly identified and qualified by the laboratory. No transcription errors were observed from raw data to summary forms and data analysis sheets (FORM 1s).

Evaluation of raw data confirmed results presented by the laboratory on the data summary sheets and quality control forms.

5.0 Data Qualifiers

The data qualifiers as presented by the laboratory are correct based on the laboratory definitions. However, some qualifiers will change based on data qualifiers established by the USEPA for CLP data validation, as discussed earlier.

Specifically, the bromomethane result was qualified as estimated (UJ) in Sample SB-18 22-24A due to calibration outliers.

Two sets of volatiles results were reported for Samples SB-18 12-14B and SB-18 18-20A; an original and medium level or diluted analysis. One result for each analyte was qualified as do-not-report (DNR).

One TIC was rejected (R) in Samples SB-18 18-20ADL and SB-18 22-24A due to method blank contamination.

Two methylene chloride results were qualified as not detected (U) due to blank contamination. The reporting limit was raised to the CRQL when the concentration of methylene chloride was less than the CRQL.

Therefore, upon data validation of this package, several laboratory data qualifiers were changed. Referring to the Qualified Data Summary Table (QDST) in Appendix C, the qualifier in the *DV Qualifier* column supersedes the qualifier in the *Lab Flag* column.

_ ^ ~

encountered with the volatiles analyses, most of the data were within acceptable QA/QC limits.

DATA USABILITY SUMMARY REPORT For Stewart Oliver Holtz Site SDG No. 70941

This analytical data package was prepared for IT Corporation in support of the Stewart Oliver Holtz site. It consists of three soil samples. Sample identifications are listed in the table below. The samples were analyzed for Target Compound List (TCL) Purgeable Organic Compounds. A matrix spike and matrix spike duplicate analysis was not performed for each parameter.

SB-20 4-6A	SB-20 20-22B
SB-20 16-18A	

The following two sets of data presented by Mitkem Corporation, 175 Metro Center Boulevard, Warwick, Rhode Island, 02886-1755, were reviewed and were the basis for this Data Usability Summary Report.

- ♦ Sample Data Summary Package, July 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 20, 2000.
- ♦ Volatile Organics, July 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received July 20, 2000.

The data package was evaluated for its usability as defined by the Guidance for the Development of Data Usability Summary Reports (NYSDEC, 9/97) and Region II Standard Operating Procedure HW-6, Rev. #11 (USEPA 6/96).

1.0 Completeness and Holding Times

The data package as presented is complete according to CLP requirements. All holding times were met.

analyses, laboratory controls and sample data. All QC data were within quality control limits, except the following issues:

Volatiles: Matrix spike/matrix spike duplicate (MS/MSD) analyses were not performed. No action was taken since the percent recovery (%R) values for the laboratory control sample were acceptable, and the MS/MSD %R and relative percent difference (RPD) values for samples from the same site but reported in other SDGs were acceptable.

Methylene chloride was present in two method blanks and acetone was present in one method blank at concentrations less than the Contract Required Control Limit (CRQL). All positive results less than the action level of ten times the concentration found in the blank were qualified as not detected (U) at the reported concentration if the concentration was greater than the CRQL or at the CRQL if the concentration was less than the CRQL.

One tentatively identified compound (TIC) was reported in the method blank associated with Sample SB-20 16-18A. Results for this TIC in the sample was less than five times the concentration in the method blank and was rejected (R).

For one continuing calibration standard, the percent difference (%D) value for vinyl chloride (26.1%) was outside the QC limit. The results for this analyte in Samples SB-20 4-6A and SB-20 20-22B were qualified as estimated (UJ).

3.0 Analytical Protocol

Based on the information presented in the data package, it was established that the data were generated using the CLP protocols: NYSDEC ASP (10/95) for organics.

4.0 Raw Data Evaluation

Volatiles: For VOA analysis Relative Retention Times (RRT) for target analytes were within the allowed 0.06 RRT units of the Standard RRT. Quantitation reports were provided for all identified target compounds. Mass spectra of identified target compounds and mass spectra of the associated calibration standard matched according to EPA CLP data validation criteria. There were no false negatives identified.

5.0 Data Qualifiers

The data qualifiers as presented by the laboratory are correct based on the laboratory definitions. However, some qualifiers will change based on data qualifiers established by the USEPA for CLP data validation, as discussed earlier.

Specifically, the vinyl chloride results were qualified as estimated (UJ) in Samples SB-20 4-6A and SB-20 20-22B due to calibration outliers.

One TIC was rejected (R) in Sample SB-20 16-18A due to method blank contamination.

Three methylene chloride results and two acetone results were qualified as not detected (U) due to blank contamination. The reporting limit was raised to the CRQL when the concentration of methylene chloride was less than the CRQL.

Therefore, upon data validation of this package, several laboratory data qualifiers were changed. Referring to the Qualified Data Summary Table (QDST) in **Appendix C**, the qualifier in the **DV Qualifier** column supersedes the qualifier in the **Lab Flag** column.

6.0 Summary

As a result of the evaluation of this data package, it is determined that volatiles data that are rejected should not be used. All other data, as qualified, are acceptable.

7.0 Recommendation

These data are acceptable for use in support of the risk assessment, nature, and extent evaluations and feasibility study. Even though minor QA/QC problems were encountered with the volatiles analyses, most of the data were within acceptable QA/QC limits.

DATA USABILITY SUMMARY REPORT For Stewart Oliver Holtz Site SDG No. 71101

This analytical data package was prepared for IT Corporation in support of the Stewart Oliver Holtz site. It consists of six water samples. Sample identifications are listed in the table below. The samples were analyzed for Target Compound List (TCL) Purgeable Organic Compounds, metals and wet chemistry. A matrix spike and matrix spike duplicate analysis was not performed for each parameter.

IW-1	IPZ-1
IPZ-2	OW-7R
IPZ-3	OW-7S

The following four sets of data presented by Mitkem Corporation, 175 Metro Center Boulevard, Warwick, Rhode Island, 02886-1755, were reviewed and were the basis for this Data Usability Summary Report.

- ♦ Sample Data Summary Package, August 2000, Analytical Data Package for Stewart Oliver Holtz, Water samples, Received September 11, 2000.
- ♦ Volatile Organics, August 2000, Analytical Data Package for Stewart Oliver Holtz, Water samples, Received September 11, 2000.
- ♦ Metals, August 2000, Analytical Data Package for Stewart Oliver Holtz, Water samples, Received September 11, 2000.
- ♦ Wet Chemistry, August 2000, Analytical Data Package for Stewart Oliver Holtz, Water samples, Received September 11, 2000.

The data package was evaluated for its usability as defined by the Guidance for the Development of Data Usability Summary Reports (NYSDEC, 9/97), Region II Standard Operating Procedure HW-6, Rev. #11 (USEPA 6/96), and Region II Standard Operating

2.0 Quality Control Data

The QC data are critical to any data package, and are used to determine whether results presented by the laboratory are accepted or rejected. The data package as presented encountered some problems with QC data, and a full validation was performed.

According to the NYSDEC Guidance for the Development of Data Usability Summary Reports, the following QC data were evaluated: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data. All QC data were within quality control limits, except the following issues:

Volatiles: Matrix spike/matrix spike duplicate (MS/MSD) analyses were not performed. No action was taken since the percent recovery (%R) values for the laboratory control sample were acceptable, and the MS/MSD %R and relative percent difference (RPD) values for samples from the same site but reported in other SDGs were acceptable.

Trichloroethene and naphthalene were present in the method blank. All positive results less than the action level of five times the concentration found in the method blank were qualified as not detected (U) at the CRQL.

For the continuing calibration standard, the percent difference (%D) values for acetone (43.3%), methylene chloride (38.5%), and trichloroethene (37.9%) were outside the QC limit. Results for these analytes in all samples were qualified as estimated (J/UJ).

Metals: Summary forms for the batch matrix spike and laboratory duplicate analyses were submitted. Manganese was not reported. All manganese results were qualified as estimated (J).

A CRDL standard was not analyzed. Results less than 2X the CRDL were qualified as estimated (manganese in Sample OW-7R).

Iron and manganese were present in the method blank. All positive results for these analytes were greater than the action level. No action was required.

(10/95) and the wet chemistry data were generated using Standard Methods for the Evaluation of Water and Wastewater.

4.0 Raw Data Evaluation

Volatiles: For VOA analysis Relative Retention Times (RRT) for target analytes were within the allowed 0.06 RRT units of the Standard RRT. Quantitation reports were provided for all identified target compounds. Mass spectra of identified target compounds and mass spectra of the associated calibration standard matched according to EPA CLP data validation criteria. There were no false negatives identified.

The correct internal standards, quantitation ion and Relative Response Factor (RRF) were used to quantitate target compounds.

All TICs were correctly identified and qualified by the laboratory. No transcription errors were observed from raw data to summary forms and data analysis sheets (FORM 1s).

Evaluation of raw data confirmed results presented by the laboratory on the data summary sheets and quality control forms.

Metals: All metals raw data were presented by the laboratory for ICP analysis except for the raw data for the batch matrix spike and duplicate. All instrument data print out and run logs were evaluated and found to be compliant with CLP method criteria. All raw data were accurately transcribed to summary forms.

Wet Chemistry: Raw data were present for chloride and COD analyses to determine that the results presented by the laboratory were accurate and met method criteria.

Evaluation of raw data confirmed results presented by the laboratory on the data summary sheets and quality control forms.

- A - B - A - PA

All manganese results were qualified as estimated (J) because no matrix spike or duplicate was analyzed.

The manganese result in Sample OW-7R was qualified as estimated because a CRDL standard was not analyzed and the result was less than 2X the CRDL.

Results for iron were qualified as estimated (J) in all samples because of a serial dilution outlier.

Therefore, upon data validation of this package, several laboratory data qualifiers were changed. Referring to the Qualified Data Summary Table (QDST) in **Appendix C**, the qualifier in the **DV Qualifier** column supersedes the qualifier in the **Lab Flag** column.

6.0 Summary

As a result of the evaluation of this data package, it is determined that all volatiles and metals data, as qualified, are acceptable. All chloride and COD data, as reported are acceptable.

7.0 Recommendation

These data are acceptable for use in support of the risk assessment, nature and extent evaluations and feasibility study. Even though minor QA/QC problems were encountered with the volatiles and metals analyses, most of the data were within acceptable QA/QC limits.

DATA USABILITY SUMMARY REPORT For Stewart Oliver Holtz Site SDG No. 71970

This analytical data package was prepared for IT Corporation in support of the Stewart Oliver Holtz site. The package consists of 16 soil samples and one field blank. Sample identifications are listed in the table below. The samples were analyzed for Target Compound List (TCL) Semivolatile Organic Compounds and Metals. A matrix spike and matrix spike duplicate analysis was performed for each parameter.

DD-1	DD-9
DD-2	DD-10
DD-3	DD-11
DD-4	DD-12
DD-5	DD-13
DD-6	DD-14
DD-7	DD-15
DD-8	DD-FD
Field Blank	

The following two sets of data presented by Mitkem Corporation, 175 Metro Center Boulevard, Warwick, Rhode Island, 02886-1755, were reviewed and were the basis for this Data Usability Summary Report.

- ◆ Semivolatile Organics, December 29, 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received December 2, 2000.
- ♦ Metals, December 29, 2000, Analytical Data Package for Stewart Oliver Holtz, Soil samples, Received December 2, 2000.

The data package was evaluated for its usability as defined by the Guidance for the Development of Data Usability Summary Reports (NYSDEC, 9/97), Region II Standard Operating Procedure HW-6 Rev. #11 (USEPA 6/96), and Region II Standard Operating

The laboratory incorrectly identified two samples in the Metals data package as listed on the chain of custody:

- Sample DD-FD (Laboratory ID: 71970016) was incorrectly labeled as DD-16 on all
 summary forms and raw data. The Sample ID was corrected by the reviewer.
- Sample Field Blank (Laboratory ID: 71910017) was incorrectly labeled as DD-17 on some raw data. The Sample ID was corrected by the reviewer.

All holding times were met.

2.0 Quality Control Data

The QC data are critical to any data package, and are used to determine whether results presented by the laboratory are accepted or rejected. The data package as presented encountered some problems with QC data, and a full validation was performed.

According to the NYSDEC Guidance for the Development of Data Usability Summary Reports, the following QC data were evaluated: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data. All QC data were within quality control limits, except the following issues:

Semivolatiles: The percent moisture (%M) values for Samples DD-11 (65%) and DD-13 (85%) were greater than 50%. All results in these samples were estimated (J/UJ).

For the continuing calibration standard analyzed 12/17/00, the percent difference (%D) values for hexachlorocyclopentadiene (-56.8%), 2,4-dinitrophenol (-78.5%), 4,6-dinitro-2-methylphenol (-63.6%), pentachlorophenol (-26.4%), butylbenzylphthalate (29.1%), bis(2-ethylhexyl)phthalate (31.4%), di-n-octylphthalate (73.7%), and benzo(k) fluoranthene (29.0%) were outside the QC limit. Results for these analytes in the associated samples were estimated (J/UJ).

For the continuing calibration standard analyzed 12/22/00, the %D values for hexachlorocyclopentadiene (-38.8%), di-n-octylphthalate (74.2%), benzo(k)fluoranthene

The surrogate percent recovery (%R) values for 2-fluorobiphenyl and terphenyl were greater than the upper control limits for Sample DD-9. Positive results for base neutral compounds were qualified as estimated (J).

The %R value for 4-nitrophenol was greater than the upper control limit in the water laboratory control sample. This compound was not present in the associated sample (the field blank). Reporting limits were judged as not significantly affected; no action was taken.

The internal standard areas were less than the control limit of 50% of the associated continuing calibration standard areas for the samples listed below. The samples were reanalyzed (or diluted and re-analyzed) and confirmed matrix interference.

- Results from the original analyses of Samples DD-1, DD-2, DD-3, DD-5, DD-6, DD-7, and DD-10 that were quantitated using the internal standards with outliers were qualified as estimated (J/UJ). The results for the re-analyses of these samples were qualified as do-not-report (DNR).
- Results from the re-analysis of Sample DD-13 (DD-13DL at a five-fold dilution) that were quantitated using the internal standards with outliers were qualified as estimated (J/UJ). The results for the initial analysis of this sample were qualified as do-not-report (DNR).
- For Samples DD-4 and DD-9, a combination of the initial analysis and diluted analysis results were reported as some compound concentrations exceeded the calibration range of the instrument in the initial analysis. The reported results that were quantitated using the internal standards with outliers were qualified as estimated (J/UJ). The results that should not be used were qualified as do-not-report (DNR).

Sample	Perylene-d12	Chrysene-d12	Phenanthrene-d10
DD-1	X		
DD-2	Х		
DD-3	Х		
DD-6	X		
DD-7	X		
DD 40		T "	

Sample DD-13 was initially analyzed at an 8X dilution. It was re-analyzed at a 5X dilution (DD-13DL). All concentrations were within the instrument calibration range, and reporting limits were lower than in the 8X dilution analysis. Therefore, the results from DD-13DL should be used. All results for DD-13 (8X) were qualified as do-not-report (DNR).

Data for one field duplicate set (DD-4 & DD-FD) were submitted for review. The relative percent difference (RPD) values for phenanthrene, benzo(b)fluoranthene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(a)pyrene, indeno(123-cd)pyrene, and benzo(ghi)perylene were greater than 30%. No qualifiers were assigned as all RPD values were less than 100%.

Metals: The percent moisture (%M) values for Samples DD-11 (65%) and DD-13 (85%) were greater than 50%. All results in these samples were estimated (J/UJ).

The percent recovery (%R) values for lead, zinc, copper, manganese, selenium, and thallium were greater than the upper control limit of 120% for one or more of the ICP CRDL standards. Positive results for these analytes in associated samples that were less than four times the CRDL were qualified as estimated (J). Some zinc results were rejected (R), as the %R value was greater than 150%.

One calibration blank associated with these samples contained zinc at a negative concentration, less than the negative CRDL. As all positive results for zinc were greater than the CRDL in the associated samples, no action was required.

For the matrix spike (DD-15), the %R values for antimony (35.2%) and manganese (33.4%) were less than the lower control limit of 75%. The concentration of manganese in the parent sample was greater than four times the spike concentration; no action was taken. All results for antimony were qualified as estimated (J/UJ).

The percent difference (%D) values for arsenic, beryllium, calcium, chromium, cobalt, lead, nickel, and zinc were greater than the control limit of 10% for the ICP serial dilution. The arsenic and beryllium concentrations in the diluted sample were less than

3.0 Analytical Protocol

Based on the information presented in the data package, it was established that the data were generated using the following protocols: NYSDEC ASP (10/95) for organics and inorganics.

4.0 Raw Data Evaluation

Semivolatiles: For SVOA analysis Relative Retention Times (RRT) for target analytes were within the allowed 0.06 RRT units of the Standard RRT. Quantitation reports were provided for all identified target compounds. Mass spectra of identified target compounds and mass spectra of the associated calibration standard matched according to EPA CLP data validation criteria. There were no false negatives identified.

The correct internal standards, quantitation ion and Relative Response Factor (RRF) were used to quantitate target compounds.

All TICs were correctly identified and qualified by the laboratory. No transcription errors were observed from raw data to summary forms and data analysis sheets (FORM 1s).

Evaluation of raw data confirmed results presented by the laboratory on the data summary sheets and quality control forms.

Metals: All metals raw data were presented by the laboratory for atomic absorption cold vapor and ICP analysis. Cyanide raw data were presented for spectrophotometric analysis. All instrument data print out and run logs were evaluated and found to be compliant with CLP method criteria. All raw data were accurately transcribed to summary forms.

Evaluation of raw data confirmed results presented by the laboratory on the data summary sheets and quality control verification forms.

All metals results for Samples DD-11 and DD-13 were estimated (J/UJ) because the percent moisture content was greater than 50%.

Results for the following compounds were qualified as estimated (J/UJ) because of continuing calibration outliers:

- Results for hexachlorocyclopentadiene, 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, pentachlorophenol, butylbenzylphthalate, bis(2-ethylhexyl)phthalate, di-n-octylphthalate, and benzo(k) fluoranthene in Samples DD-1, DD-2, DD-3, DD-5, DD-6, DD-7, and DD-10.
- Results for hexachlorocyclopentadiene, di-n-octylphthalate, benzo(k)fluoranthene, and butylbenzylphthalate in Samples DD-4, DD-8, DD-9, DD-11, DD-12, DD-14, and DD-FD.
- Results for 2,4-dimethylphenol, hexachlorocyclopentadiene, 2,4,5-trichlorophenol, 2,4-dinitrophenol, di-n-octylphthalate, and benzo(k)fluoranthene in Samples DD-4DL, DD-9DL, DD-13DL, and DD-15.

Results for acenaphthylene and bis(2-ethylhexyl)phthalate in Sample DD-9 were estimated (J) because of surrogate outliers.

Results for the following compounds were estimated (J/UJ) (unless qualified DNR) because of internal standard outliers:

- Di-n-octylphthalate, benzo(b) fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(123-cd)pyrene, dibenzo(ah)anthracene, and benzo(ghi)perylene in Samples DD-1, DD-2, DD-3, DD-4, DD-4DL, DD-5, DD-6, DD-7, DD-9, DD-9DL, DD-10, and DD-13DL.
- Pyrene, butylbenzylphthalate, 3,3-dichlorobenzidine, benzo(a)anthracene, bis(2-ethylhexyl)phthalate, and chrysene in Samples DD-4, DD-5, DD-4DL, DD-9DL, and DD-13DL.

because of CRDL standard outliers (no action was taken for results greater than the affected range):

- Lead in Samples DD-1 through DD-12
- Copper in Samples DD-8 through DD-16
- Manganese in all samples
- Thallium in Samples DD-8 through DD-16

The zinc result was rejected (R) in Sample Field Blank because of a CRDL standard outlier.

All soil results for antimony were estimated (J/UJ) because of a matrix spike outlier.

Results for calcium, chromium, lead, nickel, and zinc that were greater than the CRDL were qualified as estimated (J) in all soil samples.

Results for arsenic, manganese, and zinc were qualified as estimated (J) in the field duplicate samples (DD-4 & DD-FD) because of poor precision.

Therefore, upon data validation of this package, several laboratory data qualifiers were changed. Referring to the Qualified Data Summary Table (QDST) in Appendix C, the qualifier in the *DV Qualifier* column supersedes the qualifier in the *Lab Flag* column (the *Lab Flag* column is a combination of the *DL_Flag and CR_Q* in the EDD).

6.0 Summary

As a result of the evaluation of this data package, it is determined that semivolatiles data that were qualified as no-not-report (DNR) and metals data that were rejected (R) should not be used. All other data, as qualified, are acceptable.

7.0 Recommendation

These data are acceptable for use in support of the risk assessment, nature and extent

DATA USABILITY SUMMARY REPORT For Stewart Oliver Holtz Site SDG No. 72073

This analytical data package was prepared for IT Corporation in support of the Stewart Oliver Holtz site. The package consists of 12 water samples and two field blanks. Sample identifications are listed in the TABLE A below. The samples were analyzed for Target Compound List (TCL) Volatile Organic Compounds, Metals and Conventionals (see TABLE B below). A matrix spike and matrix spike duplicate analysis was performed for each parameter.

	TABLE A	
TW-1	IPZ-2	IW-1
TW-2	IPZ-3	MW-FD02
TW-3	PZ-1	FB-01
TW-4	PZ-2	FB-02
IPZ-1	PZ-3	

TABLE B		
Bromide	SM 4500-BR B	
Specific Conductance	EPA 120.1	
Fluoride	EPA 340.1	
Alkalinity	SM 2320	
Chloride	SM 4500-CI B	
Nitrate/Nitrite	EPA 353.2	
рН	SM 4500-H+	
Phosphate – total	SM 4500-P B3&E	
Sulfate	SM 4500 SO4 E	
TOC/DOC	EPA 415.1	
TDS	SM 2540-C	

The following three sets of data presented by Mitkem Corporation, 175 Metro Center Boulevard, Warwick, Rhode Island, 02886-1755, were reviewed and were the basis for this Data Usability Summary Report.

Note: Bromide, specific conductance and fluoride were subcontracted to R.I Analytical

The data package was evaluated for its usability as defined by the Guidance for the Development of Data Usability Summary Reports (NYSDEC, 9/97), Region II Standard Operating Procedure HW-6, Rev. #11 (USEPA 6/96), Region II Standard Operating Procedure HW-2, Rev. #11 (USEPA 1/92), and the associated conventionals methods (listed in Table B above).

1.0 Completeness and Holding Times

The data package as presented is complete according to NYSDEC requirements with the following exceptions. The initial calibration raw data were not provided for fluoride, phosphate, sulfate, and one of the two bromide runs. No action was taken.

All holding times were met with the following exceptions:

• The pH analyses for all samples collected on 12/14/00 were performed one day past the required 24-hour holding time. The laboratory received the samples after the holding time had expired. All results for pH were qualified as estimated (J).

2.0 Quality Control Data

The QC data are critical to any data package, and are used to determine whether results presented by the laboratory are accepted or rejected. The data package as presented encountered some problems with QC data, and a full validation was performed.

According to the NYSDEC Guidance for the Development of Data Usability Summary Reports, the following QC data were evaluated: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data. All QC data were within quality control limits, except the following issues:

Volatiles: Positive results for volatiles compounds were present in one method blank and both field blanks. Action levels of five times the concentration in the blanks (ten times for common laboratory contaminants) were established to evaluate the associated samples. Positive results less than the action levels were qualified as not detected (U).

• Method Blank VBLK5P: 2-butanone (3 μσ/L) and trichloroethene (3 μσ/L). The

For all continuing calibration standards, the percent difference (%D) values for one or more compounds were outside the QC limit. Positive results and reporting limits were qualified as estimated (J/UJ).

- CCAL (12/22/00 @ 0928): acetone (69.5%), 2-butanone (69.4%), 4-methyl-2-hexanone (42.4%), 2-hexanone (74.7%).
- CCAL (12/26/00 @ 1041): 2-butanone (36.0%), 4-methyl-2-pentanone (42.4%), 2-hexanone (30.9%).
- CCAL (12/21/00 @ 0934): bromomethane (28.8%), acetone (39.4%).
- CCAL (12/22/00 @ 0932): chloromethane (28.3%).

All surrogate percent recovery (%R) values for Samples MW-FD02 and TW-03 were greater than the upper control limit. Both samples were reanalyzed at dilutions. Surrogate %R values for the diluted analyses were acceptable. Positive results reported from the initial analyses were qualified as estimated (J).

The following samples were analyzed at dilutions because of the high concentration of target compounds: IPZ-1 (5000X), IPZ-2 (1000X), IPZ-3 (2000X), IW-1 (1000X), MW-FD02 (500X and 2000X), PZ-1 (400X), PZ-3 (5X), TW-1 (5000X), TW-3 (500X and 2000X), and TW-4 (500X). Reporting limits for compounds that were not detected are elevated.

Two analyses were reported for Samples TW-2, TW-3, PZ-2, and MW-FD02. Results that exceeded the calibration range in the lower diluted analyses were correctly E-flagged by the laboratory. These results were qualified as do-not-report (DNR) and should be reported from the higher diluted analyses. Results for all remaining compounds should be reported from the lower diluted analyses and were qualified as DNR in the higher diluted analyses with the following exception. For Sample TW-2, low level positive results for acetone, 2-butanone, carbon tetrachloride, and 4-methyl-2-pentanone were diluted out of the higher dilution. They should be reported from the initial analysis and qualified as estimated (J) because the concentrations exceed the linear range of the instrument.

Lead (3.6 μ g/L) and manganese (25.3 μ g/L) were present in field blank FB-01 (12/14). Manganese (21.1 μ g/L) was detected in field blank FB-02 (12/15). Both manganese results were rejected because of CRDL standard outliers; therefore, no action was taken for manganese results. An action level of five times the lead concentration in FB-01 was established to evaluate the associated samples. All positive results in the associated samples were greater than the action level; no action was required.

The %R value for aluminum (125.8%) was greater than the upper control limit of 125% in the matrix spike. The positive results for aluminum in the associated samples were qualified as estimated (J).

The RPD values for manganese (30.0%) and sodium (23.3%) were greater than the control limit of 20%. All positive results for these analytes were qualified as estimated (J) unless previously rejected because of CRDL standard outliers.

The %D values for barium, cobalt, and zinc were greater than the control limit of 10% for the ICP serial dilution. Results for barium in the associated samples that were greater than the CRDL were estimated (J). No cobalt results were greater than the CRDL. All zinc results were already rejected because of CRDL standard outliers.

For the field duplicate pair (TW-2 & MW-FD02), the difference value for iron was greater than the CRDL. Results for iron in these two samples were qualified as estimated (J).

Conventionals: There were two transcription errors on the summary forms for alkalinity results. For laboratory duplicate PZ-1Dup, the laboratory reported a result of 7100 mg CaCO3/L. The correct result is 710 mg CaCO3/L. For field duplicate sample MW-FD02, the laboratory reported a result of 410 mg CaCO3/L. The correct result is 710 mg CaCO3/L. The summary forms were corrected by the reviewer

Data for two field blanks, FB01 (12/14) and FB02 (12/15) were submitted for review. Positive results for chloride, total phosphate, specific conductance, and fluoride were reported in FB01 (12/14). Positive results for total phosphate and specific conductance were reported in FB02 (12/15). Action levels of five times the field blank concentrations were established to evaluate the associated samples. Positive results in the associated

3.0 Analytical Protocol

Based on the information presented in the data package, it was established that the data were generated using the following protocols: NYSDEC ASP (10/95) for organics and inorganics, and the methods listed in TABLE B above.

4.0 Raw Data Evaluation

Volatiles: For VOA analysis Relative Retention Times (RRT) for target analytes were within the allowed 0.06 RRT units of the Standard RRT. Quantitation reports were provided for all identified target compounds. Mass spectra of identified target compounds and mass spectra of the associated calibration standard matched according to NYSDEC data validation criteria. There were no false negatives identified.

The correct internal standards, quantitation ion and Relative Response Factor (RRF) were used to quantitate target compounds.

All TICs were correctly identified and qualified by the laboratory. No transcription errors were observed from raw data to summary forms and data analysis sheets (FORM 1s).

Metals: All metals raw data were presented by the laboratory for atomic absorption cold vapor and ICP analysis. Cyanide raw data were presented for spectrophotometric analysis. All instrument data print out and run logs were evaluated and found to be compliant with method criteria. All raw data were accurately transcribed to summary forms.

Conventionals: The initial calibration raw data were not provided for fluoride, phosphate, sulfate, and one of two bromide runs. All other raw data for conventionals analyses were presented. All raw data were accurately transcribed to summary forms.

Evaluation of raw data confirmed results presented by the laboratory on the data summary sheets and quality control verification forms with two exceptions. As noted above, two alkalinity results were transcribed incorrectly on the summary forms. These results were corrected by the reviewer.

5 A Data Qualifiers

Results for the following compounds were qualified as estimated (J/UJ) unless already qualified DNR because of continuing calibration outliers:

- Results for acetone, 2-butanone, 4-methyl-2-hexanone, and 2-hexanone in Samples IPZ-2, IPZ-3, IW-1, and PZ-1,.
- Results for 2-butanone, 4-methyl-2-pentanone, and 2-hexanone in Samples FB-01, FB-02, IPZ-1, PZ-2DL, PZ-3, and TW-4.
- Results for bromomethane and acetone in Samples PZ-2 and TW-2.
- Results for chloromethane in Samples MW-FD02, TW-1, and TW-3.

Results for methylene chloride, 1,1-dichloroethene, 1,2-dichloroethene (total), and trichloroethene in Samples MW-FD02 and TW-3 were estimated (J) because of surrogate outliers indicating a potential high bias.

Two sets of volatiles results were reported for TW-2, TW-3, PZ-2, and MW-FD02; an original and a diluted analysis. One result for each analyte was qualified as do-not-report (DNR).

For Sample TW-2, results for acetone, 2-butanone, carbon tetrachloride, and 4-methyl-2-pentanone were qualified as estimated (J) because the concentrations exceeded the calibration range of the instrument.

Positive results that were within the affected range [which is the CRDL Standard true value plus two times the CRDL (True + 2*CRDL)] were estimated (J) or rejected (R) for the following because of CRDL standard outliers (no action was taken for results greater than the affected range):

- Antimony (J) in Samples TW-3, PZ-2
- Manganese (R) in Samples FB-01, FB-02
- Zinc (R) in Samples TW-1, TW-2, TW-3, TW-4, MW-FD02, IPZ-1, IPZ-2, IW-1,
 PZ-1, PZ-2, PZ-3, FR-01, FR-02

1

• Sodium: TW-1, TW-2, TW-3, TW-4, MW-FD02, IPZ-1, IPZ-2, IPZ-3, IW-1, PZ-1, PZ-2, PZ-3, FB-01, and FB-02

The results for barium in Samples TW-2, TW-3, TW-4, MW-FD02, PZ-1, and PZ-2 were estimated (J) because of a serial dilution outlier.

Results for iron in Samples TW-2 & MW-FD02 were qualified as estimated (J) because of a field duplicate outlier.

Results for pH were estimated (J) in Samples TW-1, TW-2, TW-3, TW-4, MW-FD02, IPZ-1, IPZ-2, IPZ-3, IW-1, and FB-01 because of holding time outliers.

The following results were qualified as not detected at the reported concentrations because of field blank contamination:

- Total Phosphate in Samples TW-2, MW-FD02, TW-3, IPZ-1, IPZ-2, PZ-1, PZ-2, and PZ-3.
- Specific Conductance in Sample TW-1.
- Fluoride in Samples TW-2, MW-FD02, TW-3, and IPZ-1.

The laboratory correctly analyzed for nitrate/nitrite as required by the chain of custody. However, the Forms I listed only nitrate. The forms were corrected.

The alkalinity result for Sample MW-FD02 was incorrect on the summary form. The result was corrected by the reviewer. The correct result is 710 mg CaCO3/L.

Therefore, upon data validation of this package, several laboratory data qualifiers were changed. Referring to the Qualified Data Summary Table (QDST) in **Appendix C**, the qualifier in the **DV Qualifier** column supersedes the qualifier in the **Lab Flag** column (the **Lab Flag** column is a combination of the **DL_Flag** and **CR_Q** in the EDD).

6.0 Summary

As a result of the evaluation of this data package, it is determined that some zinc and

DATA USABILITY SUMMARY REPORT For Stewart Oliver Holtz Site SDG No. 72109

This analytical data package was prepared for IT Corporation in support of the Stewart Oliver Holtz site. The package consists of 13 water samples, two field blanks, and two trip blanks. Sample identifications are listed in the **TABLE A** below. The samples were analyzed for Target Compound List (TCL) Volatile Organic Compounds, Metals and Conventionals (see **TABLE B** below). A matrix spike and matrix spike duplicate analysis was performed for each parameter.

	TABLE A	
MW-2	OW-3S	OW-8S
MW-5	OW-3R	FB 03 (12/18)
MW-FD01	OW-4S	FB 03 (12/19)
MW-3	OW-4R	SOH-TB01
OW-7S	OW-2R	SOH-TB02
OW-5S	OW-2S	

TABLE B		
Bromide	SM 4500-BR B	
Specific Conductance	EPA 120.1	
Fluoride	EPA 340.1	
Alkalinity	SM 2320	
Chloride	SM 4500-CI B	
Nitrate/Nitrite	EPA 353.2	
pН	SM 4500-H+	
Phosphate - total	SM 4500-P B3&E	
Sulfate	SM 4500 SO4 E	
TOC/DOC	EPA 415.1	
TDS	SM 2540-C	

The following three sets of data presented by Mitkem Corporation, 175 Metro Center Boulevard, Warwick, Rhode Island, 02886-1755, were reviewed and were the basis for this Data Usability Summary Report.

♦ Conventionals, January 22, 2001, Analytical Data Package for Stewart Oliver Holtz, Water Samples, Received December 22, 2000 (Received at subcontracted laboratory on December 27, 2000).

The data package was evaluated for its usability as defined by the Guidance for the Development of Data Usability Summary Reports (NYSDEC, 9/97), Region II Standard Operating Procedure HW-6, Rev. #11 (USEPA 6/96), Region II Standard Operating Procedure HW-2, Rev. #11 (USEPA 1/92), and the associated conventionals methods (listed in Table B above).

1.0 Completeness and Holding Times

The data package as presented is complete according to NYSDEC requirements with the following exceptions. The initial calibration raw data were not provided for bromide, fluoride, phosphate, and sulfate. No action was taken.

All holding times were met with the following exceptions:

• The pH analyses for all samples were performed three to four days past the required 24-hour holding time. The laboratory received the samples after the holding time had expired. All results for pH were qualified as estimated (J).

2.0 Quality Control Data

The QC data are critical to any data package, and are used to determine whether results presented by the laboratory are accepted or rejected. The data package as presented encountered some problems with QC data, and a full validation was performed.

According to the NYSDEC Guidance for the Development of Data Usability Summary Reports, the following QC data were evaluated: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data. All QC data were within quality control limits, except the following issues:

Volatiles: Methylene chloride was present in FB 03 (12/18) (@ 14 μg/L), FB 03 (12/19) (@ 14 μg/L). SOH-TB01 (@ 2 μg/L) and SOH-TB02 (@ 2 μg/L). Methylene chloride

The following samples were analyzed at dilutions because of the high concentration of target compounds: MW-2 (15X), OW-7S (40X), OW-3S (15X), OW-4S (5X), and OW-8S (30X). Reporting limits for compounds that were not detected are elevated.

Metals: The percent recovery (%R) values for manganese, antimony, and silver were greater than the upper control limit of 120% for one or more of the ICP CRDL standards. Positive results for these analytes in associated samples that were less than four times the CRDL were qualified as estimated (J).

The %R values for aluminum (154.7%), iron (1018.3%), and manganese (129.2%) were greater than the upper control limit of 125% in the matrix spike. No action was taken for iron since the parent sample concentration was greater than four times the spike concentration. The positive results for aluminum in the associated samples were rejected (R) because the %R value was greater than 150%. The positive results for manganese were qualified as estimated (J).

The difference value for aluminum (concentrations were less than five times the CRDL) was greater than the control limit (CRDL). Positive results were already rejected because of spike outliers. The reporting limits were qualified as estimated (UJ).

The %D values for barium and cadmium were greater than the control limit of 10% for the ICP serial dilution. Results for barium in the associated samples that were greater than the CRDL were estimated (J). No cadmium results were greater than the CRDL.

Conventionals: The difference value for fluoride in the field duplicate samples (MW-5 & MW-FD01) was greater than the CRDL. The positive results for fluoride in these two samples were qualified as estimated (J).

Data for two field blanks, FB03 (12/18) and FB03 (12/19) were submitted for review. Positive results for specific conductance and chloride were reported in FB03 (12/18). Positive results for specific conductance, chloride, total phosphate, and TDS were reported in FB03 (12/19). Action levels of five times the field blank concentrations were established to evaluate the associated samples. Positive results in the associated samples that were less than the action levels were qualified as not detected (U) at the reported concentrations.

4.0 Raw Data Evaluation

Volatiles: For VOA analysis Relative Retention Times (RRT) for target analytes were within the allowed 0.06 RRT units of the Standard RRT. Quantitation reports were provided for all identified target compounds. Mass spectra of identified target compounds and mass spectra of the associated calibration standard matched according to NYSDEC data validation criteria. There were no false negatives identified.

The correct internal standards, quantitation ion and Relative Response Factor (RRF) were used to quantitate target compounds.

All TICs were correctly identified and qualified by the laboratory. No transcription errors were observed from raw data to summary forms and data analysis sheets (FORM 1s).

Metals: All metals raw data were presented by the laboratory for atomic absorption cold vapor and ICP analysis. Cyanide raw data were presented for spectrophotometric analysis. All instrument data print out and run logs were evaluated and found to be compliant with method criteria. All raw data were accurately transcribed to summary forms.

Conventionals: The initial calibration raw data were not provided for bromide, fluoride, phosphate, and sulfate. All other raw data for conventionals analyses were presented. All raw data were accurately transcribed to summary forms.

Evaluation of raw data confirmed results presented by the laboratory on the data summary sheets and quality control verification forms.

5.0 Data Qualifiers

The data qualifiers as presented by the laboratory are correct based on the laboratory definitions. However, some qualifiers will change based on data qualifiers established by the USEPA for NYSDEC data validation, as discussed earlier.

Specifically, acetone and 2-butanone reporting limits were estimated (UJ) in the following samples because of calibration outliers: FB 03 (12/19), MW-2, OW-2R, OW-2S, OW-2S, OW-2S, OW-2S, and SOH-TR01

Results for aluminum were rejected (R) in the following samples because of a matrix spike outlier: MW-2, MW-5, MW-FD01, MW-3, OW-7S, OW-5S, OW-3R, FB03 (12/19), and OW-4S.

Results for manganese were estimated (J) in all samples except the field blanks because of a matrix spike outlier.

Reporting limits for aluminum were estimated (UJ) in the following samples because of a laboratory duplicate outlier: FB03 (12/18), OW-3S, OW-4R, OW-2R, OW-2S, and OW-8S.

The results for barium in Samples MW-FD01 and OW-5S were estimated (J) because of a serial dilution outlier.

All results for pH were estimated (J) because of holding time outliers.

Fluoride results in Samples MW-5 and MW-FD01 were qualified as estimated (J) because of a field duplicate outlier.

The following results were qualified as not detected at the reported concentrations because of field blank contamination:

- Chloride in Samples MW-5, MW-FD01, OW-7S, OW-5S, OW-3S, OW-3R, and OW-4R.
- Total Phosphate in Samples OW-5S, OW-3S, OW-3R, OW-4S, OW-2S, and OW-8S.

The laboratory correctly analyzed for nitrate/nitrite as required by the chain of custody. However, the Forms I listed only nitrate. The forms were corrected.

Therefore, upon data validation of this package, several laboratory data qualifiers were changed. Referring to the Qualified Data Summary Table (QDST) in **Appendix C**, the qualifier in the **DV Qualifier** column supersedes the qualifier in the **Lab Flag** column (the **Lab Flag** column is a combination of the **DL_Flag** and **CR_Q** in the EDD).

6.0 Summary

DATA USABILITY SUMMARY REPORT For Stewart Oliver Holtz Site SDG No. 72131

This analytical data package was prepared for IT Corporation in support of the Stewart Oliver Holtz site. The package consists of four water samples. Sample identifications are listed in the **Table A** below. The samples were analyzed for Target Compound List (TCL) Volatile Organic Compounds, Metals and Conventionals (see **Table B** below). A matrix spike and matrix spike duplicate analysis was not performed for volatiles or metals.

TABLE A	
OW-6S	OW-1R
OW-7R	OW-1S

TABLE B		
Bromide	SM 4500-BR B	
Specific Conductance	EPA 120.1	
Fluoride	EPA 340.1	
Alkalinity	SM 2320	
Chloride	SM 4500-CI B	
Nitrate/Nitrite	EPA 353.2	
pН	SM 4500-H+	
Phosphate – total	SM 4500-P B3&E	
Sulfate	SM 4500 SO4 E	
TOC/DOC	EPA 415.1	
TDS	SM 2540-C	

The following three sets of data presented by Mitkem Corporation, 175 Metro Center Boulevard, Warwick, Rhode Island, 02886-1755, were reviewed and were the basis for this Data Usability Summary Report.

Note: Bromide, specific conductance, and fluoride were subcontracted to R.I Analytical Laboratories, Inc., 41 Illinois Avenue, Warwick, Rhode Island, 02888.

▲ Volatile Organics Ianuary 22, 2001, Analytical Data Package for Stewart Oliver

The data package was evaluated for its usability as defined by the Guidance for the Development of Data Usability Summary Reports (NYSDEC, 9/97), Region II Standard Operating Procedure HW-6, Rev. #11 (USEPA 6/96), Region II Standard Operating Procedure HW-2, Rev. #11 (USEPA 1/92), and the associated conventionals methods (listed in TABLE B above).

1.0 Completeness and Holding Times

The data package as presented is complete according to NYSDEC requirements with the following exceptions. The initial calibration raw data were not provided for bromide, fluoride, phosphate, and sulfate. No action was taken.

All holding times were met with the following exceptions:

- The pH analyses for all samples were performed three to four days past the required 24-hour holding time. The laboratory received the samples after the holding time had expired. All results for pH were qualified as estimated (J).
- The TDS analyses for Samples OW-6S and OW-7R were performed one day past the required seven day holding time. The TDS results for these two samples were qualified as estimated (J).
- The volatiles analyses for Samples OW-6S and OW-7R were performed one day past the required 14 day holding time. The volatiles results for these two samples were qualified as estimated (J/UJ).

2.0 Quality Control Data

The QC data are critical to any data package, and are used to determine whether results presented by the laboratory are accepted or rejected. The data package as presented encountered some problems with QC data, and a full validation was performed.

According to the NYSDEC Guidance for the Development of Data Usability Summary Reports, the following QC data were evaluated: blanks, instrument tunings, calibration standards, calibration verifications, surrogate recoveries, spike recoveries, replicate analyses, laboratory controls and sample data. All QC data were within quality control

Samples OW-6S and OW-7R were analyzed at dilutions (100X and 10X, respectively) because of the high concentration of target compounds. Reporting limits for compounds that were not detected are elevated.

Metals: Matrix spike/matrix spike duplicate (MS/MSD) analyses were not performed. No action was taken since the percent recovery (%R) values for the laboratory control sample were acceptable, and the MS/MSD %R and relative percent difference (RPD) values for samples from the same site but reported in another SDG were acceptable.

The percent recovery (%R) values for cobalt, lead, manganese, selenium, and thallium were greater than the upper control limit of 120% for one or more of the ICP CRDL standards. Positive results for these analytes in associated samples that were less than four times the CRDL were qualified as estimated (J).

The %D values for several analytes were greater than the control limit of 10% for the ICP serial dilution. All concentrations in the diluted sample except for potassium were less than ten times the IDL; no action was required. Results for potassium in the associated samples that were greater than the CRDL were qualified as estimated (J).

Conventionals: The %R value for total phosphate (61%) was less than the 80% lower control limit in the matrix spike. Results for total phosphate in all samples were qualified as estimated (J/UJ).

The laboratory correctly analyzed for nitrate/nitrite as required by the chain of custody. However, the Forms I listed only nitrate. The forms were corrected.

3.0 Analytical Protocol

Based on the information presented in the data package, it was established that the data were generated using the following protocols: NYSDEC ASP (10/95) for organics and inorganics, and the methods listed in **TABLE B** above.

4.0 Raw Data Evaluation

DUSR SDG No. 72131

All TIC were correctly identified and qualified by the laboratory. No transcription errors were observed from raw data to summary forms and data analysis sheets (FORM 1s).

Metals: All metals raw data were presented by the laboratory for atomic absorption cold vapor and ICP analysis. Cyanide raw data were presented for spectrophotometric analysis. All instrument data print out and run logs were evaluated and found to be compliant with CLP method criteria. All raw data were accurately transcribed to summary forms.

Conventionals: The initial calibration raw data were not provided for bromide, fluoride, phosphate, and sulfate. All other raw data for conventionals analyses were presented. All raw data were accurately transcribed to summary forms.

Evaluation of raw data confirmed results presented by the laboratory on the data summary sheets and quality control verification forms.

5.0 Data Qualifiers

The data qualifiers as presented by the laboratory are correct based on the laboratory definitions. However, some qualifiers will change based on data qualifiers established by the USEPA for NYSDEC data validation, as discussed earlier.

Specifically, all volatiles results for Samples OW-6S and OW-7R were qualified as estimated (J/UJ) because of holding time outliers.

For metals, positive results that were within the affected range [which is the CRDL Standard true value plus two times the CRDL (True + 2*CRDL)] were estimated (J) for the following because of CRDL standard outliers (no action was taken for results greater than the affected range):

- Cobalt in all samples
- Lead in Samples OW-6S, OW-7R, and OW-1R
- Manganese in Sample OW-7R

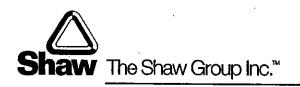
DUSR SDG No. 72131

The laboratory correctly analyzed for nitrate/nitrite as required by the chain of custody. However, the Forms I listed only nitrate. The forms were corrected.

Therefore, upon data validation of this package, several laboratory data qualifiers were changed. Referring to the Qualified Data Summary Table (QDST) in **Appendix C**, the qualifier in the **DV Qualifier** column supersedes the qualifier in the **Lab Flag** column (the **Lab Flag** column is a combination of the **DL_Flag** and **CR_Q** in the EDD).

6.0 Summary

As a result of the evaluation of this data package, it is determined that volatiles, metals, and conventionals data, as qualified, are acceptable.


7.0 Recommendation

These data are acceptable for use in support of the risk assessment, nature and extent evaluations and feasibility study. Even though minor QA/QC problems were encountered with the semivolatiles and metals analyses, most of the data were within acceptable QA/QC limits.

APPENDIX H

SUB-SLAB INVESTIGATION REPORT (SOIL GAS SURVEY)

Shaw Environmental & Infrastructure, Inc.

13 British American Boulevard Latham, NY 12110-1405 518.783.1996 Fax 518.783.8397

August 16, 2002

Mr. Gary Kline, P.E.
New York State Department of Environmental Conservation
Bureau of Western Remedial Action
Division of Environmental Remediation
625 Broadway
Albany, New York 12233-7017

Subject:

Sub-Slab Investigation Report

Stuart-Olver-Holtz Henrietta, New York

Dear Mr. Kline:

This Sub-Slab Investigation Report is being submitted to you for the geoprobe investigation conducted beneath the slab of the building located at the above-referenced Site. The purpose of the investigation was to identify any potential additional source areas located beneath the Site building. The field portion of the investigation was completed on June 17 and June 18, 2002. The following sections describe the methods utilized to achieve this goal.

Drilling Program

A limited access geoprobe rig was used to advance the borings within the Site building. A total of 28 borings were advanced within the building. Boring locations are illustrated on **Figure 1**. Initially, 21 borings were advanced on a grid pattern as detailed in the Work Plan dated June 13, 2002. Seven additional borings were added based upon field observations in order to further define potential source areas.

adapter and the line purged using the vacuum system provided by the drilling contractor (Aquifer Drilling and Testing, Inc.). Purging continued until readings obtained from a properly calibrated photoionization detector (PID) stabilized or for 15 minutes, whichever occurred first. Following purging the line, the poly-tubing was then attached to a Tedlar Sampling Bag and a sample was collected. Soil gas samples were retained for potential laboratory submittal.

Following the collection of the soil gas samples, soil samples were collected to a depth of eight feet bgs using four foot disposable acetate sleeves. Each soil sample was logged by the onsite geologist for observations including, but not limited to, lithology and evidence of chemical impacts. Drilling logs are included as **Appendix A**. A portion of each soil sample was split for field screening using a properly calibrated PID. The interval exhibiting the highest PID reading was retained in a laboratory supplied glass sample jar for potential laboratory submittal. The borings were then abandoned using bentonite chips. All boring locations were re-surfaced using concrete.

All excess soil and associated sampling waste was contained in a 55-gallon drum which was properly labeled and staged at the Site. All down hole equipment was properly decontaminated using an alconox solution and a potable water rinse between borings.

Analytical Program

The soil gas samples (50%) containing the highest PID readings were submitted for laboratory analysis for volatile organic compounds (VOCs) according to EPA Method TO-14. The soil samples (25%) containing the highest PID readings were also submitted for laboratory analysis according to EPA Method 8260. Spent samples were contained within the 55-gallon drum at the Site for subsequent disposal. The samples were shipped via overnight courier to Mitkem Corporation of Warwick, Rhode Island. Samples were submitted for analysis for VOCs according to EPA Method 8260. A full Category B Analytical Services Protocol laboratory report was provided by Mitkem. The summary package portion of the report is included in **Appendix B**. The full report with all associated backup documentation will be retained on file at

the completion of the investigation. Engineering controls including portable lighting and ventilation fans were utilized for the duration of the investigation.

Summary of Findings

Prior to the collection of soil gas samples for potential laboratory submittal, each sampling location was screened with a PID. VOC concentrations, as measured by the PID, ranged from 4.2 parts per million (ppm) to 620 ppm. A total of 13 soil gas samples (approximately 50 percent of the sampling locations) were selected for laboratory submittal. Total VOC concentrations ranged from 24.2 to 2,143.4 milligrams per cubic meter (mg/m³). The PID readings for soil gas obtained at each sampling location are summarized in the drilling logs included in **Appendix A** and on **Figure 2**. Analytical laboratory reports are included in **Appendix B**. The laboratory data is summarized in **Table 1** and on **Figure 2** and estimated contaminant level contours are summarized on **Figure 4**.

Headspace PID readings were collected from each of the soil sample, intervals at each boring location. Headspace PID readings ranged from below the instruments detection limit to 241 ppm. Seven soil samples were submitted for laboratory analysis for VOCs according to EPA Method 8260. Concentrations of 1,1-dichloroethene, 1,1,1-trichloroethane, and trichloroethene were detected at concentrations exceeding the respective recommended soil cleanup objectives listed in the Technical and Administrative Guidance Memorandum section 4046 (TAGM 4046) in the soil samples submitted from borings GP-24, GP-26, and GP-28. Other VOCs were either detected at concentrations less than those listed in TAGM 4046 or were not detected at or above the method detection limit. Total VOC concentrations ranged from 54 to 47,430 micrograms per kilogram (µg/kg) in the soil samples submitted from borings GP-20 and GP-28, respectively. The PID readings for soil sample intervals obtained at each sampling location are summarized in the drilling logs included in Appendix A. The highest headspace PID reading obtained from each boring is summarized on Figure 3. Analytical laboratory reports are included in Appendix B. The laboratory data is summarized in Table 2 and on Figure 3.

Should you have any questions pertaining to this report or to the Site in general, please contact Kurt Bedore at (518) 783-1996. Shaw Environmental and Infrastructure appreciates the continued opportunity to provide the NYSDEC with quality environmental services.

Sincerely:

Shaw E&I, Inc.

Andrew Graham Hydrogeologist Shaw E&I, Inc.

Kurt Bedore, P.E. Senior Engineer

Project Manager

Cc:

P. Farrington, Shaw E&I, Hopkington, Ma

Attachments: Tables

Figures

Appendix A - Drilling Logs

Appendix B - Analytical Laboratory Report

APPENDIX G

REMEDIAL ACTION OBJECTIVES FOR CHEMICALS OF POTENTIAL CONCERN (1996 RI/FS)

Table G-1 Chemical Specific Standards Criteria and Guidelines (SCGs) Feasibility Study Stuart-Olver-Holtz Henrietta, New York

			(Overburden G	Proundwater			
				SCG's		· ·		Selected SCG Goal
Parameter	NYSDEC Class GA	USEPA MCL's	USEPA MCLG's	USEP Child One Day	A Health Adv Child Long Term	isories Adult Lifetime	SCG Goal	Basis of Selected SCG Goal
Volatile Organies (t.e//)		19. Tangan - H arasa					in physical	
Vinyl Chloride	2	2	0	3000	10		2	Class GA
Methylene Chloride	5						5	Class GA
1,1-Dichloroethene	5	7	7	2000	1000	7	5	Class GA
1,1-Dichloroethane	5						5	Class GA
1,2-Dichloroethene (total)	5	70	70	20000	2000	100	5	Class GA
1,1,1-Trichloroethane	5	200	200	100000	40000	200	5	Class GA
Trichloroethene(TCE)	35	5	3	600	400	3	35	Class GA
Tetrachloroethene	5	5	0	2000	1000		5	Class GA
Semi-Volatie Ovelales (40)	())							
Phenol	1			6000	6000	4000	·	Class GA
Metels (ue/I)								
Aluminum	100						100	Class GA
Cobalt	5						5	Class GA
Lead	25		0				25	Class GA
Manganese	500		200				500	Class GA
Nickel		100	100	1000	500	100	100	MCS's/MCLG's/USEPA Lifetime
Vanadium				80	30	20	20	USEPA Lifetime

- 1. TAGM 4046 Technical and Adminstrative Guidance Memorandum Determination of Soll Cleanup Objectives, NYSDEC 1994
- 2. HEAST USEPA Health Effects Summary Table
- 3. USEPA PRGs Region 9 Preliminary Remediation Goals, April 1993
- 4. This Table is derived from GZA FS, 1996

Table G-2 Chemical Specific Standards Criteria and Guidelines (SCGs) Feasibility Study Stuart-Olver-Holtz Henrietta, New York

			Bedrock	Groundwate	er	··		
			S	CG's	·	<u></u>	Selecte	ed SCG Goal
	NYODEO	LIOEDA			A Health Advi	isories		Basis of
Parameter	NYSDEC	USEPA	USEPA	Child One	Child Long	Adult	SCG Goal	Selected SCG
	Class GA	MCL's	MCLG's	Day	Term	Lifetime		Goal
Volatile Cropinics (Cert)	variation and the		100 (100 (100 (100 (100 (100 (100 (100					
Chloromethane	5	**************************************		9000	1000	3	5	Class GA
Vinyl Chloride	2	2	0	3000	10		2	Class GA
Chloroethane	5			 -			5	Class GA
Methylene Chloride	5	5	0	10000			5	Class GA
Acetone	50						50	Class GA
1,1-Dichloroethene	5	7	7	2000	1000	7	5	Class GA
1,1-Dichloroethane	5		•				5	Class GA
1,2-Dichloroethene (total)	5	70	70	20000	2000	100	5	Class GA
1,2-Dichloroethane	5	5	0	700	700		5	Class GA
1,1,1-Trichloroethane	5	200	200	100000	40000	200	5	Class GA
Trichloroethene (TCE)	5	5	0				5	Class GA
Tetrachioroethene	5	5	0	2000	1000		5	Class GA
Toluene	5						5	Class GA
Xylenes (total)	5	10000	10000	40000	40000	10000	5	Class GA
Same Volatila Organica (ive	(Q)				hairan na sa sa sa sa sa sa sa sa sa sa sa sa sa			
Phenol	1			6000	6000	4000	1	Class GA
(Velate (Velat)								
Aluminum	100						100	Class GA
Antimony	3	6	6	15	15	3	3	Class GA
Cadmium	10	5	5	40	5	5	10	Class GA
Chromium	50	100	100	1000	200	100	50	Class GA
Cobalt	5		i				5	Class GA
Copper	200		1300				200	Class GA
Lead	25		0				25	Class GA
Manganese	500		200				500	Class GA
Nickel		100	100	1000	500	100	100	MCL's
Vanadium				. 80	30	20	20	Adult Lifetime
Zinc	300			6000	3000	2000	300	Class GA

- 1. This table lists those analytical parameters that were detected at a concentration exceeding chemical specific SCGs
- 2. This table lists selected SCG goals that were derived by comparing chemical specific SCGs
- 3. USEPA MCLs and MCLGs apply to public water supplies
- 4. USEPA Health Advisories developed to be protective of adverse non-carcinogenic health effects associated with exposure of child for one day and longer term (approximately 7 years or 10% of lifetime exposure for adults.
- 5. The Table is derived from GZA FS 1996

Table G-3 Chemical Specific Standards Criteria and Guidelines (SCGs) Feasibility Study Stuart-Olver-Holtz Henrietta, New York

		Sump S	ediments			
		SC	G's	,	Selecte	ed SCG Goal
Parameter Parameter	NYSDEC	USEPA	USEPA	NYS Agencies	SCG Goal	Basis of
	TAGM 4046	HEAST	PRGs	Total PAH	SCG Goal	Selected SCG
Voletile Greenies (Gerke)						
1,1-Dichloroethane	200	8000000	400000		200	TAGM 4046
1,2-Dichloroethene (total)	300	800000	1400		300	TAGM 4046
1,1,1-Trichloroethane	800	7000000	49000		800	TAGM 4046
Trichloroethene	700	64000	34000		700	TAGM 4046
Toluene	1500	20000000	280000		1500	TAGM 4046
Chlorobenzene	1700	2000000	300000		1700	TAGM 4046
Ethylbenzene	5500	8000000	68000		5500	TAGM 4046
Xylenes (total)	1200	200000000	99000		1200	TAGM 4046
Sant-Voletile Oregins (Le	(AKO)					
Total PAH				100000	100000	NYS Agencies
Vidus (inclis)						
Cadmium	1	80	1000		1	TAGM 4046
Chromium	10	80000	100000		10	TAGM 4046
Copper	25		76000		25	TAGM 4046
Nickel	13	2000	41000		13	TAGM 4046
Selenium	2		10000		2	TAGM 4046
Zinc	20	20000	100000		20	TAGM 4046

- 1. TAGM 4046 Technical and Adminstrative Guidance Memorandum Determination of Soil Cleanup Objectives, NYSDEC 1994
- 2. HEAST USEPA Health Effects Summary Table
- 3. USEPA PRGs Region 9 Preliminary Remediation Goals, April 1993
- 4. This Table is derived from GZA FS, 1996

Table G-4 Chemical Specific Standards Criteria and Guidelines (SCGs) Feasibility Study Stuart-Olver-Holtz Henrietta, New York

		Subsurf	ace Soils		
			SCGs		
Parameter	NYSDEC	USEPA		SCC Cool	Basis of Selected SCG
	TAGM 4046	HEAST	USEPA PRGs	SCG Goal	Goal
Matele (intelke)					
Arsenic	7.5	80	3.3	7.5	TAGM 4046

- 1. TAGM 4046 Technical and Adminstrative Guidance Memorandum Determination of Soil Cleanup Objectives, NYSDEC 1994
- 2. HEAST USEPA Health Effects Summary Table
- 3. USEPA PRGs Region 9 Preliminary Remediation Goals, April 1993
- 4. This Table is derived from GZA FS, 1996

Table G-5 Chemical Specific Standards Criteria and Guidelines (SCGs) Feasibility Study Stuart-Olver-Holtz Henrietta, New York

,				Surfa	ace Water S	Sediments			
				SCG's	3				Selected SCG Goal
Parameter	NYSDEC	USEPA	LISEDA	NYS Agencies	NY	SDEC Sedin	nent Criteria] `	Selected SCG Gual
	TAGM 4046		PRGs	Total PAH	Aquatio	Toxicity	Wildlife	SCG	Basis of Selected SCG
	17GW 4040	TILAOT	11/08	Total PAIT	Acute	Chronic	Bioaccumulation	Goal	Goal
Semil Volatile	Organies (Vi	//kgj)	er werte de graffen fan de General De General De General	en en en en en en en en en en en en en e					
Total PAH				100000				100000	NYS Guidance
Melejs (mg/	(i)		A Section Control Control						
Zinc	20	20000	100000		20	120	270	270	NYSDEC Sediment

- 1. This table lists those analytical parameters that were detected at a concentration exceeding chemical specific SCGs
- 2. This table lists selected SCG goals that were derived by comparing chemical specific SCGs
- 3. TAGM 4046 = "Technical and Administrative Guidance Memorandum Determination of Soil Cleanup Objectives Levels", prepared by NYSDEC, January 24, 1994
- 4. HEAST Values derived from USEPA Health Effects Summary Table
- 5. NYSDEC Sediment Criteria = "Technical Guidance for screening of Contaminated Sediments", NYSDEC, July 1994
- 6. USEPA PRGs Region IX Preliminary Remediation Goals, April 1993
- 7. Total PAH (polynuclear aromatic hydrocarbons) SCG based on potential exposure scenarios provided by New York State Agencies
- 8. This Table is derived from GZA FS 1996

Table G-6 **Contaminants of Concern and SCG Goals Feasibility Study** Stuart-Olver-Holtz Henrietta, New York

	- · · · · · · · · · · · · · · · · · · ·				Sur	np Water	 					
						·····	SCGs					
				USEPA	Health A	dvisories	NYSDEC	USEPA	AWQC	AWQC	Selec	cted SCG Goals
Parameter	NYSDEC Class GA	USEPA MCLs	USEPA MCLGs	Child One Day	Child Long Term	Adult Lifetime	Class C Water	AWQC Health	Aquatic Acute	Aquatic Chronic	SCG Goal	Basis of Selected SCG Goal
Volatile Oregales (e.e./.)	ō))											
1,1-Dichloroethane	5				•						5	Class GA
1,1,1-Trichloroethane	5	200	200	100000	40000	200	- I	1.03			5	Class GA
Toluene	5	1000	1000	20000	2000	1000		14300	17500		5	Class GA
Ethylbenzene	5	700	700	30000	1000	700		3000	32000		5	Class GA
Xylene (total)	5	10000	10000	40000	40000	10000					5	Class GA
Seminoleile Organice	(LOUSO)				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
Phenol	1			6000	6000	4000		20900	10200	2560	1	Class GA
Veels (ne/co)						and the same and the same and the same						
Aluminum	100						100		750	87	100	Class GA
Cadmium	10	5	5	40	5	5	3.03	10	130	503	10	Class GA
Chromium	50	100	100	1000	200	100	824	170000	1700	210	50	Class GA
Cobalt	5						5				5	Class GA
Copper	200		1300				_ 50	1000	18	12	1300	Class GA
Lead	25						27	50	8.2	3.2	25	Class GA
Manganese	500		200					50			500	Class GA
Mercury	2							0.144	2.4	0.012	2	Class GA
Nickel		100	100	1000	500	100	345	13.4	1400	100	100	USEPA MCL
Silver	50			200	200	100	0.1	50	0.92	0.12	50	Class GA
Thallium		2	0.5	7	7	0.4	8	13	1400	40	13	USEPA AWQC
Vanadium				80	30	20	14				14	Class C
Zinc	300			6000	3000	2000	346	5000	96	86	300	Class GA

- Class C Surface Water Standards as promulgated in 6 NYCRR 703
 AWQC Amblent Water Quality Criteria for Human Health, water and fish ingestion
- 3. Chromium is assumed to be trivalent chromium
- 4. USEPA Health Advisories developed to be protective of adverse non-carcinogenic health effects associated with exposure of child for one day and longer term (approx. 7 yrs or 10% of lifetime) and lifetime exposure of adults
- 5. This Table is derived from GZA FS, 1996

Table G-7 Chemical Specific Standards Criteria and Guidelines (SCGs) Feasibility Study Stuart-Olver-Holtz Henrietta, New York

		5	Subsurface So	oils		
	-			SCGs		
Parameter	NYSDEC	USEPA	USEPA	NYS Agencies	SCG Goal	Basis of Selected SCG Goal
	TAGM 4046	HEAST	PRGs	Total PAH		
Samiyokille Olopinies (uglike)				in a second and the second		19
Total PAH				100000	100000	NYS Agencies Total PAH
Melele (melle)			The state of the s			
Arsenic	7.5	80	3.3		7.5	TAGM 4046
Cobalt	30				30	TAGM 4046
Lead	500	250			500	TAGM 4046

- 1. TAGM 4046 Technical and Adminstrative Guidance Memorandum Determination of Soll Cleanup Objectives, NYSDEC 1994
- 2. HEAST USEPA Health Effects Summary Table
- 3. USEPA PRGs Region 9 Preliminary Remediation Goals, April 1993
- 4. This Table is derived from GZA FS, 1996

APPENDIX F

HISTORICAL ANALYTICAL DATA (TABULATED)

Table No. 1 Summary of Soil Vapor Results

Remedial Investigation Stuart - Olver - Holtz Site No. 8-28-079 Henrietta, New York

							Tentative	Tarred Commond Ide	rdiff a sila	n and Exlimated Conc							
Station Location	Peak Organic	1.1 Dichloroe	thene	1,1-Dichloro	ethane	2-Butano		1,3-Dichlorgel									
	Meler Reading (ppm)	(1,1 DCE)	10	(1,1 DCA)	ď I,	(MEK)	Ĭ di.	(1,2 DCA)	d I.	1,1.1-Trichlorae		Trichloroeth	***	Tetra chioro eti	Jeune .	Total Xyle	000
G4+65	10	0.1		N	25	N		ND ND		(1,1,1 TCA) NO	41.	(TCE)	dl.	(PCE)	41.		10
H1+50	ND	NO		N	1	NC NC		Did.		NO		9.2		10			5.0
H2+00	NO	סא	0 0 1	N		NE	4	ND		J		NO		NO	0.05	NC.	02
H2 • 50	1	ND	0 01	Ne .	d ï	NO	-1	מא		NO		ND		ND	0.05	NO	02
H3+00	ND	NO	0 01	NI	;	NO.	·•			<u>N0</u>		NO	0.01	NO		NC	0.2
H3+50	t	ND.	0 01	NI NI		NC		ND		NO		0.03		NO.	0.05	NC	0 2
H4+00	1	NO.	001	N			1 1111	MD	<u>'</u> -	NO NO	!_	0.05		NO	0.05	NO	0.2
H4+50			-: =		1	NO.		ND		ND.	1_1	0.05		NO	0.05	NO	02
H4+85	5		-	NO		ND		ND	7.5	71				70			1
11+50	NO			, NO	1	NO	1 05	ND	75	40	1	2		20		NO	1 44.
12:00	NO	NO	0 0 1	, NO		NO.	0.2	ND	1	NO	1	ND	001	NO	0 05	NO	
12+50	4	()		NO		NO.	02	NO.	, i	ND		0,05		NO	0.05		
			. 0 01	NO	1	NO.	0.2	ND	• •	NO	· ;	0,01			0.03	NO	
12+50 (DUP)		HO	l "	l,.	l	NO.	0 34			0.05		ND	0.19	<u>-</u> -		NO	02
13+00	Water encour	dered (no vapor sar	mpia cola	iclef)		[,						0.3			
13+50	Water encour	fered (no vapor sar	mple colle	ecled)		· · · · · · · · · · · · · · · · · · ·	1	************		·	·· ·	—————		۱		-	
14+00	No vepo	r draw (no sample c	cole cled))											[
14+50	ND NO	ND	0 01	NC		ND	0.7	MD									
14+65	NO	ND	0 01	NE	1	ND		NO				ND	0.01	NO	0.05	NO	0.2
J2+00	ND	ND	0 01	NO	";	; <u></u>				!	!.		0.01	NO	0.05	ND	0.2
J2+50	ND	ND	0 01	NO		NO.		ND	. 1	NO.	1		0.01	NO	0.05	но	0.2
J3 • 00	Water enc	ountered (no sample	colecia		·		.0.2	<u>K</u> D	1	NO	1	ND	0.01	NO	0.05	NO	0.2
J3+50 .	1	ND	001	ND			- ::					l					
14+00)	NO	25	• • • •		NO	0.3	NO		NO	1	0.01		NO	0.05	NO	0.3
J4+50	Ю			ND		ND.	. 50	ND.	250	ND	250	73		>500	•		500
K2+00	NO	NO	0.01	NO		NO	0.2	NO	1	NO	1	0.2		NO	0 03		
K2+50		ND	0.01	ND		ND	02	ND	1	NO	1	NO!	001	NO	005		0.2
K3+00	NO.	ND	0.01	NO		ND	0.2	ND	1	OM.	1		0.01	9.1		NO	-02
		Authored (no sample		d) 						· ·-··- · · - · - · · · · · · · ·				·	j	0.2	
K3+50	- , ND	ND	0 01	NO	. 1	NO	02	ND	1			ND	001				
K4+00	MD	ND	0,01	ND	1	ND	0.2	ND		DIA.	1			ND .	0.05	NO.	0.2
K4+50	ND	МО	0 01	סא	i l	DI	0.2	NO	ï		1	0.01	1 :::	NO.	0 05	NO	0.2
17:50	MD	ND	0.01	. ND	- 1	NO				ND		MD	0.01	NO.	0.05	NO	02
13:00	ND	10		NO	-i,	ND	02	ND			!	0.01		NO	0.05	0.3	
L3+50	1			ND	7	NO				" "		0.02		NO	0 05	HO	0.3
L4+00	•		• • •		75	ND		NO	1	ND	1	0,05	. ,[ND	0.05	NO	0.2
L4+00 (DUP)		12.6						НО	25	270		11]	NO	12	NO.	50
L4+50	но	······································				ND	<u>1.1</u>		.	150	[0.2		NO	0.49		·
DTES:	- NU	NO	0.01	ND	_!_	ND	0.2	ОМ	1	ND	1	0.08			0 05		

- 1) NO * Compound not detected above fisted detection limit.
- 2) Soil gas eamples collected at approximately 4 (set below the ground surface.
- 3) d 1 * Compound detection limit
- 4) (DUP) = Ouplicate soil vapor analysis done by H2M Laboratories Inc. for selected parameters.
- 5) Shaded areas indicate concentrations above asted detection limit

Table No. 1 Summary of Soil Vapor Results

Remedial Investigation Sluart - Olver - Holtz Site No. 8-28-079 Henriella, New York

	,						Terdalive	Target Compound (de	ntificati	on and Estimated Cor	V enira#o	n (idd or come)		<u>_</u>			
Station Location	Pesk Organic	1,1 Dichloroe	thene	1,1-Dichloroe	lhane	2-Bulano	n.	1,2-Dichloroel		1,1,1-Trichlore		Trichlorgett	1000	Tetrachioroeli		T '=	
	Meter Reading (ppm)	(1,1 DCE)	dl	(1,1 DCA)	đL	(MEK)	di	(1,2 DCA)	d i.	(1,1,1 TCA)	di.	(TCE)	d I.	(PCE)		Total Xyl	
80:00	NO	NO.	0.01	NO	11	NC	02	ND	1	N		NO	+		4.1.	 	4.1.
80+50	ND	NO	0.01	NO	1	NE	0.2	NO	·	N				MD MD		·	0.2
61:00	₩Ď	ND	0.01	ИО	1	NO	0.2	ND		N	-	NO			· ~		0.7
81-50	Νb	ND	0 01	ND		NO	02	NO		N				ND.	0.05	N	
82+00	ND	סא	0 01	ND	1	NO	02	ND:		:	· · · · · ·	ND		.	0.05	-	0.2
82-50	NO	NO	0.01	NO	1	NO		ND		·)·		ND		ND:	0.05		0.2
82+50 (DUP)	ND	ND	0 25			NO				N1		MO	·	NO.	0.05		0.2
B3+00	NO	NO	0.01	CM			01			- D,0	· ·	NO	0.19	ND	0.15]	
63-50	NO	ND	001				-	ND		M	- 	ND.	0.01	NO	0.05		0.3
C0+00	ND	ND.	0.01	. ND		ND	1 ::	NO.	. !	. N	1	ND	0.01	NO:	0.05	No.	0 02
CO-50	NO NO		0.01			NO	· ·			N	1	NO	0.01	NO	0.05	M	
C4100	ND	ND.		NO	1	MD	0.2	ND	. 1	N(1	ND	0 01	ND	0.05	NT	
C4+50	ND		0 01	мо	. !	, ND	02	NO		NO) '' '	NO	0.01	HD	0.05	NI	:
DO+50		NO	0 01	DM	_ ! .	ND	0.2	ND.	. 1	M	1	NO.	0,01		0.05		
	ND	0,03		МД	- !	ND	0.2	NO	1	HC	1	0.01		HD	0.05		-
D1+00	ND	NO	0 01	NO NO	. !	NO.	0.2	ND	1	NO	1	NO NO	0.01		0.05		-1
D4+00	<u>ND</u>	ND	0.01		. !.	ND	0 2	ND	1	NC		OM	0.01	NO NO	0.03	K	
D4+50	MD.	ND	0.01	ND	1	NO	02	NO	1	NC	d';	NO	001			K	-
E0+50	ND	ND	0.01	ND	1	ND	02	ND	1	NO	ł ·	ND		MD NO	0.05		
EO SO (DUP)	ND	, ND	0 25			NO.	0 34	· • · · · · ·		0.07	'		0 01		0.05	N	02
E1+00	1	ND	001	NO	٠, إ	NO	0.5	ND ND	i	*** ***		ND	0,10		0.15		
£4+00	2	ИО	9 01	UM	· ;	NO	0 2	, , ND		NO		NO	0.01		0.05	NC	0.2
E4+00 (DUP)	1	, ND	0 25	1	f	NO.	0 34	. ~			1.	0.02		0.08		NO	
E++50	ND	סא	001	МО	- , 1	ND	0.2		-	0.51		0.03		9,04			
F1+00	1	Ю	0.01	ND	;			ND.		ND	1	014	0.01	ND	0 05	NO	02
F4+00	D	ND	0 01			ND	02	ND.		NO	1	NO	0.01	NO	0 05	NO	
74-50	ND	** *** *** ***		ND		ND	. 02	ND	†	140	1	0.2				0,2	
E4+05		ND	0.01	ND ND	1	ND		ND	1	ND	1		0.01	6.3			·
G1+00		ND	0 01	ND		ND	0.2	ND	1	ND	1	0,04		0.0			(
•		ND ND	0 01	ND		NO	0.7	610	3	МО	1	NO	001			ND	·
G1+50	ND	ND	0 01	, NO	1	ND	0.2	ND	1	ND	1	ON			0.03	ND	
02-00	ND	_ '	0 01	OM	1	ND	0.2	110	1	ND		*** * * * * * * * * * * * * * * * * * *	0.01	HD	0 05	NO	0.2
G3+00	Water encounte	ried (no vapor same	ple colect	■d)			Í	ļ		,	·	ND	0.01	NO	0.05		0.2
93:50	45	0.7	ĺ	ND	~;;;	ND	0.2	NO	ī		[[*****************	
G3+50 (DUP)	05	0.20	- '			ND ND	1.7		∤	7.4	[0.03	l	1.7	}	7.3	
G4+00	1		0.01		· ·	ND	0.2	···	· . · J	0.0	}	NO.	0 93	0,0	- 1	***************************************	
04+50	16	1.1	···· ·	NO	25	MD	3		<u></u> [ND ND	'	0.02	. <u>. </u> [ND	0 05)ID	02
Q4+50 (DUP)	. 10			····				ND	25	ND	25	0.5		87	-	NO	50
OTES:	<u>-</u>		<u> </u>			ND.	2.0	<u></u>		2.0	l l	ND	0.4	21			

- 1) ND = Compound not detected above listed detection limit.
- 2) Soil gas samples collected at approximately 4 feet below the ground surface
- 3) d1 = Compound detection limit
- 4) (DUP) = Duplicate cell vapor analysis done by H2M Leboratories Inc. for selected parameters.

ded areas indicate concentrations above Ested detection Brid.

Table No. 2 Summary of Soil Boring Installations

Remedial Investigation Report Stuart - Olver - Holtz Site No. 8-28-079 Henrietta, New York

Test Boring	Date Completed	Ground Surface Elevation (ft)		kness of Dep		T	Top of Upper Till	Top of Lower Till	Top of Weathered	Depth of
Dornig	Completed	Lievation (it)	FIII	Lacustrine	Upper Till	Lower Till	Elev. (ft)	Elev. (ft)	Bedrock (ft)	Boring (ft)
SB-1	10/18/94	533.7	1.7	2.9	17.4	11.0+	529.1	511.7	_	30.0
\$B-2	10/17/94	533.4	6.8	_	15.6	2.8+	526.6	511.0	-	25.2
SB-3	10/5/94	528.5	7.0	7.0	10.0	19.0	514.5	504.5	485.5	50.4
SB-4	10/19/94	531.4	5.7	_	16.1	8.2+	525.7	509.6	_	30.0
SB-5	10/13/94	529.5	4.0		14.0	12.0+	525.5	511.5		30.0
SB-6	10/11/94	527.9	2.0	4.0	28.0	8.0	521.9	493.9	485.9	42.3
SB-7	10/5/94	527.8	1.5	1.5	22.0	16.0	524.8	502.8	486.8	46.0
\$B-8	10/12/94	528.2	5.0	2.0	25.0	9.0	521.2	496.2	487.2	42.8
SB-9	10/7/94	526.0	4.0	5.0	6.0	13.3+	517.0	511.0	_	. 28.3
SB-10	10/10/94	527.3	6.0	7.7	7.8	8.2+	513.6	505.8	-	29.7
SB-11	10/10/94	527,8	4.0	8.5	19.5	4.0+	515.3	495.8	-	36.0
SB-12	10/4/94	528,7	4.0	9.0	25.0	4.0	515.7	490.7	486.7	45.3
SB-13	10/3/94	529.4	6.0	11.5	4.5	13.7+	511.9	507.4	-	35.7
SB-14	10/11/94	530.4	6.0	2.5	14.0	5.9+	521.9	507.9		28.4
SB-15	10/13/94	528.2	12.0	_	16.0	12.5	516.2	500.2	407 7	41.0

Table No. 3
Summary of Overburden Monitoring Well Installation Details

Remedial Investigation Report Stuart - Olver - Holtz Site No. 8-28-079 Honrietta, New York

Well	Data at	Ground]	l				Top of	Tap of	Top of Weathered		Diameter	Length	W	eli intake Oe	pth/Elevation		Marie II
Name	Date of	Surface Elevation (ft)	Ref Elev. (R)	Fill	ckness of Dep		<u> </u>	Upper fill	Lower Till	Bedrock	Depth of	Of Well	of Well		andpack	Bottom of		Hydraulic Conductivity (cm/sec
	1:13131131011	Ciesaron (it)	EINY, (II)	FII	Lacustrine	Upper Till	Lower Till	Elev. (it)	Elev (h)	Elev. (fl.)	Boring (fi)	Casing (in)	Screen (ft)	Depth (ft)	Elev. (ft)	Depth (ft)		Rhing Head
OW-15	11/1/94	529.0	530.8	28	3.2	16.8	11.9	523.0	506.2	494,3	35,0	4.0	9.5	12.0	517.0	24.5	504.5	9.2E-04
OW-25	11/2/94	531,8	533.6	10.0		100		521.8			21.5	4.0	5.0	14.0	517.8	21.5	510.3	6.1E-04
OW-35	11/4/94	523,3	527.2	4.7	17.4	1.6+	**	501.2			23.8	4.0	45	16.0	507.3	24.0	499.3	3.5E-03
OW-45	11/21/94	530 0	5318	60	8.8	7.8	2.9+	515.2	507.4	**	25 5	4.0	10 0	14.0	516,0	25.5	504.5	9.5E-04
OW-5S	11/2/94	526.0	528.7	10	95	41	15.4+	515.5	511.4		30 0	4.0	9 5	10.0	516.0	23,0	503.0	2.3E-04
OW-68	11/3/94	529 0	531.0	26 	5.8	141	10 9+	520 6	506 5		33.4	40	5.0	7.0	522.0	15.0	514,0	8.8E-05
OW-78	11/28/94	528 1	527.5	24	40	24 6		521.7	497.1		31.0	4.0	5.0	23,5	504.6	31.0	497.1	2.6E-04
OW-8S	6/27/95	525 6 	528 0	60		26 0	1 5+	519 6	496 0		33.5	4.0	50	25,0	500.6	32.5	493.1	1.5E-04
OW-95	6/21/95	525 4	5249	20	98	129	4 2+	513 6	500 7		28 9	20	50	18 0	507.4	25.5	499 9	3.6E-03
OW-105	6/22/95	531 6	531 0	76		94	75+	5240	5146		245	20	50	10 0	521 6	17.5	514.1	1 0E 03
OW-11S	6/23/95	528.7	530 B	56	2 4	40	18.0	520 0	516 7	498 7	32 2	2.0	50	5.5	523.2	13.0	515,7	3.8E-03
B-101-OW	12/31/91	528,4	527.9	40	89	2 1+		515,5			15 0	2.0	10.0	3.0	525.4	15.0	513.4	,
ow.Ls	11/10/92	533.4	533.1	03		11 7+				**	12.0	2.0	10.0	1.0	532.4	12.0	521.4	4.5E-03
MW-2	1/15/87	529,4	532 3	2.0	14.0	90+		515.4		 		2.0						8.4E-03
c-ww	1/15/87	529 1	529 0	20	6 5	5 9	15.6+	520.6			30 0	2.0	10.0			40.5		4.9E-03
MW-5	1/19/87	527.4	530.3	40	12 7	2 3+	·	514,7			19.0			6,5	522 6	18,5	510 6	8 5E-04
	 										19.0	2.0		••				3 2E-04

NOTES.

¹⁾ The symbol "+" following a number indicates the thickness encountered, and not the overall thickness of the deposit, since the boring did not penetrate the bottom of the deposit

²⁾ The monitoring well label CW-LS was originally identified as "MW-2" in a Phase II Environmental Assessment Report completed by Erdman, Anthony and Associates dated December 1997 for the property located at 3711 West Henrietta Road, Rochester, NY.

³⁾ The dashed symbol "-" indicates that the unit was not encountered.

⁴⁾ Hydraulic conductivity data calculated by H. Bouwer 1989 method. See Appendix F for additional data.

Table No. 4 Summary of Top of Bodrock Monitoring Well Installation Details

Remedial Investigation Report Stuart - Olver - Holtz Site No. 8-28-079 Honrietta, New York

Well	Date of	Ground Surface	Ref	Thic	kness of Dep	osks Encoun	lered (ft)	Top of Upper Till	Top of Lower Tirl	Top of Severely Wealhared Bedrock	Depth of	Diameter Of Well	Length of Well			ptivElevati		Hydraulic
Name	Installation	Elevation (ft)	Efev. (f1)	Fill	Lacustrine	Upper Till	Lower Till	Elev. (ft)	Elev. (ft)	Elev. (ft)			1	Top of S		Bottom of	Sendpack	Conductivity (cm/sec)
0111.40			_	_						2.07, (11)	Dorate (11)	Casing (in)	Scieen (n)	Depin (fi)	Elev. (ft)	Oapth (II)	Elev. (N)	Rising Head
OW-1R	11/8/94	529.2	531.15	23	3.7	17.7	13 2	523,2	505.5	492,3	42.0	4.0	5.5	33.5	495.7	42.0	487.2	2.8E-04
OW-2R	11/10/94	532.0	533.89	10,0		10 0	14,7	522.0	512,0	497.3	47.5	4.0	5.0	36,5	495.5	44.5	487.5	4.2E-03
OW-JR	11/14/94	525.5	527.04	4.7	126	47	17.7	508.2	503.5	485.8	48.2	4.0	5.0	37.0	488.5	45.0	480,5	1.2E-03
OW-4R	11/21/94	529 6	531 22	60	90	8.5	21.2	514.6	506.1	484 9	50.3	4.0	5.0	42.0	487.6	50.3	479.3	1,3E-03
OW-7R	11/23/94	528 2	527 85	24	40	243	11.2	5218	497.5	486 3	47.0	4.0	5.0	39 0	489.2	47.0	481,2	1.1E-02
IW-1R	UNKNOWN		528 39								57,3	8.0			••			NO TEST
IW-2R	UNKNOWN		528 39								41.8	6.0						NO TEST

NOTES

- 1) Ground Surface Elevations for M-1R and M-2R are established as the finished floor elevation of the Metafade building
- 2) Subsurface boring logs were not available for review for IW-1R and IW-2R
- 3) Hydraulic Conductivity tests were not completed for IW-1R and IW-2R due to down-hole pump equipment obstruction
- 4) The location and the length of the well intake for IW-1R and IW-2R is unknown
- 5) Hydraulic conductivity data calculated by H. Bouwer, 1989 method. See Appendix F for additional data

Table No. 5 Summary of Groundwater Elevations for Monitoring Wells

Remedial Investigation Report Stuart - Olver - Holtz Site No. 8-28-079 Hanrietta, New York

Well	Reference	November	, 18 1994	January	19,1995	Fabruary	24, 1995	A	24 1005		
Name	Elev. (ft.)	Depth(ft.)	Elev (ft.)	Depth(ft.)	Elev ((t.)	Depth(ft.)	Elev ((1.)		24, 1995		23, 1995
0W-1S	530.78	9.81	520.95	9.18	521.58	8.88	521.88	Depth(ft.)	Elev (It.)	Depth(it.)	Elov (ft.)
OW-1R	531,15	12.78	518,37	12.08	519.07	11.70		10.78	520.00	8.52	522,2
OW-25	533.57	9.58	523.99	0.80	520.77	•	519,45	13.83	517,32	13.54	517.6
OW-2R	533.89	18,62	517.27	14.83	519.06	6.26	527.31	7.98	525.59	5.78	527.7
ow-ss	527,19	12.76	514,43	11.26	515.93	14,40 10.81	519.49	16.60	517.29	18.25	517.8
OW-3R	527.04	9,40	517.58	8.88	Announce of the second	8.50	516.58	13.04	514.15	11.91	515.2
OW-4S	531.79			9.18	518.16 522.61	9.14	518.54	10.48	518.58	10,42	510.6
OW-4R	531.22			12.23	518.99	11.82	522,65	12.20	519.59	9.84	521.9
OW-5S	528.72	15.27	613,45	15.04	513.68	14,89	519,40	14.00	517.22	13.66	517,6
OW-8S	530.97	······································		7.00	523.97	7.90	513.83	15,75	512.97	14.43	514.2
OW-75	527.48			5.84	521.84	-1	523.07	10,31	520.66	7.44	523,5
OW-7R	527.85			8.82	519.03	6.22	521,28	7.88	519.60	6.03	521.4
OW-8S	527,97				319,03	0.42	519,43	10.59	517.26	10.25	517.6
OW-9S	524,88				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			9.37	518.60	7.34	520.6
OW-10S	530.99							4.44	520,44	2.51	522.3
0W-11S	530.76							9.02	521.97	9.03	521.96
OW-8101	527.93							9.10	521.66	6.62	524.14
OW-LS	533,07		······································					6.38	521.55	3.92	524.01
MW-2	532.30							7.41	525.88	5,21	527.8£
MW-3	528.97							13.58	518.72	11.89	520.61
MW-5	530.29							5.58	523.39	2.45	526.52
W-1R	528.39	***************************************						14.85	515.44	12.39	517.90
W-2R	528.39		······································					14.35	514.04	14.23	514.16
SUMP 1	521.77	-1-4						14.15	514.24	13,98	514.43
SUMP 2	521.77							***************************************	> 521.07	1.22	620.55
SUMP 3	521,77			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					> 520	1.00	520.77
CREEK	524.85								520.87	1.73	520.04
		<u> </u>								1.20	523.85

- 1) Creek elevation is measured from the top of the catchbasin.
- 2) See Figure No. 3 for Well Locations.
- 3) Survey information provided by OM P. Popli, P.E., L.S., P.C. Consulting Engineers & Surveyors.
- 4) Elevations based on the 1929 adjustment of the National Geodetic Vertical Datum.

Table No. 6 Summary of Hydraulic Conductivity Results

Remedial Investigation Report Stuart - Olver - Holtz Site No. 8-28-079 Henrietta, New York

Ma=14-11 244 11		Risir	ng Head
Monitoring Well	Screened Zone	Test	Results
		(ft/min)	(cm/sec)
OW-1S	Upper/Lower Till Interface	1.8E-03	9.2E-04
OW-2S	Upper Till	1.2E-03	6.1E-04
OW-3S	Upper Till	6.9E-03	3.5E-03
OW-48	Upper/Lower Till Interface	1.9E-03	9.5E-04
OW-5S	Upper/Lower Till Interface	4.5E-04	2.3E-04
OW-6S	Upper Till	1.7E-04	8.8E-05
OW-7S	Upper Till	5.1E-04	2.6E-04
OW-8S	Upper Till	2.9E-04	1.5E-04
OW-9S	Upper/Lower Till Interface	7.1E-03	3.6E-03
OW-10S	Upper Till	2.0E-03	1.0E-03
OW-11S	Lacustrine/Upper/Lower Till Interfaces	7.6E-03	3.8E-03
OW-LS	Upper Till	1.7E-02	8.4E-03
B-101-OW	Upper Till	8.8E-03	4.5E-03
MW-2	Upper Till	4.5E-03	4.9E-03
MW-3	Upper Till	1.7E-03	8.5E-04
MW-5	Upper Till	6.3E-04	
OW-1R	Lower Till/Top of Weathered Rock Interface	5.5E-04	3.2E-04 2.8E-04

Table No. 7 Target Compound List for ASP93

Remedial Investigation Stuart - Olver - Holtz San No. 8-28-079 Henrietta, New York

	Parameter Volable Organic Compounds	Water	Low Soil/Sediment
	Volable Organic Compounds	(ug/l)	(ug/kg)
74-83-9 75-01-4	Trouble Citating Continuous	 	
75-01-4	Chloromethane	10	10
	Bromomethane	10	10
75-00-3	Vinyl chloride	10	10
	Chloroethane	10	10
75-09-2	Methylene chlonde	10	10
67-64-1	Acetone	10	10
75-15-0	Carbon Disulfide	10	10
75-35-4	1,1-Dichloroethene	10	10
75-34-3	1,1-Dichtoroethane	10	10
540-59-0	1.2-Dichloroetnene(Total)	10	10
67-66-3	Chloroform	10	10
107-06-2	1,2-Dichloroethane	10	10
78-93-3	2-Butanone	10	10
71-55-6	1,1,1-Trichloroethane	10	10
56-23-5	Carbon Tetrachloride	10	10
75-27-4	Bromodichloromethane	10	10
78-87-5	1.2-Dichloropropane	10	10
10061-01-5	crs-1,3-Dichloropropene	10	
79-01-6	Trichloroethene	10	10
124-48-1	Dibromochloromethane	10	10
79-00-5	1,1,2-Trichloroethane	10	10 -
11-43-2	Benzene	10	10
10061-02-6	trans-1,3-Dichloropropene	10	10
5-25-2	Bromoform	10	10
08-10-1	4-Methyl-2-Pentanone		10
91-78-6	2-Heranone	10	10
27-18-4	Tetrachloroethene	10	10
9-34-5	1,1,2,2-Tetrachloroethane	10	10
08-88-3	Toluene	10	10
08-90-7	Chlorobenzene	10	10
00-41-4	Ethylbenzene	10	10
00-42-5	Styrene	10	10
330-20-7	Xylene (total)	10	10
	Semi-Volatile Organic Compounds	10	10
08-95-2	Phenol	 	
11-44-4	bis(2-Chloroethyl) Ether	10	330
5-57-8	2-Chlorophenol	10	330
41-73-1	1,3-Dichlorobenzene	10	330
06-46-7	1.4-Dichlorobenzene	10	330
5-50-1	1.2-Dichlorobenzene	10	330
5-48-1	2-Methylphenol	10	330
08-60-1	2.2'-oxybis (1-Chloropropane)	10	330
06-44-5	4-Methylphenol	10	330
21-64-7		10	330
7-72-1	N-Nitroso-Di-n-Propytamine Hexachloroethane	10	330
	Nitrobenzene	10	330
8-95-3		1 10	330

Table No. 7 Target Compound List for ASP93

Remedial Investigation Stuart - Otver - Holtz See No. 8-28-079 Hennetta, New York

		Contract Require	d Quantitation Limits
CAS			Low
Number	Parameter	Water	Soil/Sediment
	Semi-Volable Organic Compounds	(ug/l)	(ug/kg)
59-50-7	4-Chloro-3-Methylphenol	 -	
91-57-6	2-Methylnaphthalene	10	330
77-47-4	Hexachlorocyclopentadiene	10	330
88-06-2	2.4.6-Trichlorophenol	10	330
95-95-4	2.4,5-Trichlerophenol	10	330
91-58-1	2-Chloronaphthalene	25	800
88-74-4	2-Nitroaniline	10	330
131-11-3	Dimethyl Phthalate	25	800
208-66-8	Acenaphthylene	10	330
506-20-2	2.6-Dinitrotaluene	10	330
9-09-2	3-Nitroanilene	10	330
13-32-9	Acenaphthene	25	800
1-28-5	2.4-Dintrophenol	10	330
00-02-07	4-Nitrophenol	25	800
32-64-9	Dibenzofuran	25	800
21-14-2	2,4-Dinitratoluene	10	330
4-66-2	Diethylphthalate	10	330
005-72-3	4-Chlorophenyl-pnenyl etner	10	330
6-73-7	Fluorene	10	330
00-01-6	4-Nitroaniline	10	330
34-62-1	4.6-Dimitro-2-Methyphenol	25	800
6-30-6	N-Nitrosodiphenylamine	25	800
01-55-3	4-Bromophenyl-phenylether	10	330
18-74-1	Hexachloroberizene	10	330
7-86-5	Pentachlorophenol	10	330
×-01-8	Phenanthrene	25	800
0-12-7	Anthracene	10	330
	Carbazole	10	330
-74-2	Dr-n-Butyiphtnatate	10	330
6-44-0	Fluorantiene	10	330
9-00-0	Pyrene	10	330
-68-7	Butylbenzylphthalate	10	330
-94-1	3,3 -Dichlorobenzidine	10	330
-55-3	Benzo (a) Anthracens	10	330
8-01-9	Chrysene	10	330
7-81-7	Bis (2-Ethylhexyl) Phthalate	10	330
7-84-0	Dr-n-Octyl Phthalate	10	330
5-99-2	Benzo (b) Fluoranthene	10	330
7-08-9	Benzo (k) Fluoranmene	10	330
32-8	Berizo (a) Pyrene	10	330
39-5	Indeno (1.2,3-cd) Pyrene	10	330
70-3	Dibenzo (a,h) Anthracene	10	330
-24-2	Benzo(g.h.i) Perylene	10	330
	Pesticides	10	330
-84-6	alpha-BHC		

£.

Table No. 7 Target Compound List for ASP93

Remedial Investigation Stuart - Olver - Holtz Sde No. 8-28-079 Hennetta, New York

		Contract Require	d Quantitation Limits
CAS Number		Water	Low Soil/Sedimen
140111041	Parameter Pesticides	(ug/l)	(ug/kg)
1031-07-8	Endosulfan Suttate		
50-29-3	4.4'-DOT	0.10	3.3
72-43-5		0.10	3,3
53594-70-5	Methoxychlor Endrin Ketone	0.5	17.0
7421-36-3		0.10	3.3
5103-71-9	Endrin Aldehyde	0.10	3.3
5103-74-2	alpha-Chlordane	0.5	1,7
3001-35-2	gamma-Chlordane	0.5	1.7
	Toxaphene	5.0	170.0
12674-11-2	PCB's		
1104-28-2	Aroclor-1016	1.0	33.0
1141-16-5	Aroclor-1221	2.0	67.0
	Aroclor-1232	1.0	33.0
3469-21-9	Arocior-1242	1.0	33.0
2672-29-6	Arocior-1248	1.0	33.0
1097-69-1	Arodor-1254	1.0	33.0
1096-82-5	Arocior-1260	1.0	33.0
	Metals		- 30.0 -
	Aluminum	200	
	Antimony	60	1
	Arsenic	10	1 .
	Barium	200	}
	Berylium	5	-
	Cadmium	5	ł
	Calcium	5000	}
	Chromium	10	
	Cobatt	50	
	Copper	25	
	Iron		
	Lead	100	
	Magnesium	5000	
	Manganese	15	
	Mercury	0.2	
	Nickel	- 0.2	
	Potassium		
	Selenium	5000	
	Silver	5	
	Sodium	10	
	Thallorn	5000	
	Vanadium	10	
	Zinc	50	
	Cyanide	20	
	[Oyamide	10	

- 1) Contract Required Quantitation Limits (CRQL) obtained from NYSDEC ASP dated 9/93.
- 2) The values in this table are quantitation limits, not absolute detection limits. The quantitation limits in this table are set at the concentrations in the sample equivalent to the concentrations.

Table No. 8 Summary of Environmental Samples

Remedial Investigation Stuart - Olver - Holtz Site No. 8-28-079 Henrietta, New York

Sample Location	Date	Media									Γ	
Identification	Sampled	Sampled	Volatiles	Semi-Volatiles	PCB/PEST	Metals	Cyanida	roc	Hardness	Alkalinity	MS/MSD	DUPLICATE
SOH-OW4R-42/44	11/18/94	SOIL	X	X	X	X	XX	X				[
SOH-OW7R-34/36	11/17/94	SOIL	X	X	X	Х	X					
SOH-OW7R-40/42	11/22/94	SOIL	X	X	х	X	X	X		Dulle))ieimande		
SOH-TP-1	11/3/94	SOIL										
SOH-TP-2	11/3/94		X	X	XX	X	X				X	· · · · · · · · · · · · · · · · · · ·
		SOIL	X	X	XX	X	X			I		
SOH-TP-3	11/3/94	SOIL	X	X	Х	X	X	······································		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
SOH-TP-4	11/3/94	SOIL	x	X	Х	X	X		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
SOH-TP-5	11/3/94	SOIL	X	X	Х	X	X	-1011111111111111111111111111111111				
SOH-TP-6	11/3/94	SOIL	X	X	X	X	x					
SOII-NSM-1	10/27/94	WATER	× ×	X	x	X	<u>x</u>			6-17-41-11	l-erierramannyas,,-,,	// landsdoonsests @paidsdodied;-
SOH-NSM-2	10/27/94	SOIL	x	X	x	x	\ \ \ \ \ \ \		Х	X		· ************************************
SOH-NSM-3	10/27/94	SOIL	×	X	x	x	<u>x</u>					
SOH-NSM-4	10/25/94	WATER	X	X	x	x				···!!!		- levet - speak le lved bryyy-1111
							x	***************************************	X	X		
SOH-SS1-0	10/25/94	SOIL	×	X	x	×						
SOH-SS2-0	10/26/94	SOIL	x	X	X	Χ	x					***************************************
SOH-SS3-0	10/26/94	SOIL	X	X	Х	х	x		/ hadd neet parts			
SOH-SS4-0	10/26/94	SOIL	X	X	X	X	x					
SOH-SS5-0	10/26/94	SOIL	×	X	X	×	x					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SOH-SS6-0	10/26/94	SOIL	x	X	X	×	x					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,									······································	-4.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
SOH-SW-1	10/26/94	WATER	×	x	X	х	X					······································
SOH-SW-2	10/25/94	WATER	x	х	Х	X	Х	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	x	······································		,
SOH-SW-3	10/26/94	WATER	×	X	X	x	x				··· ·	
DIOV CORDON CINO 1	10/27/04											,,
RUBY GORDON-SUMP-1	10/27/94	WATER	X	<u> </u>	X	X	x		×	X		/
NUBY GORDON-SUMP-2	10/27/94	WATER	X	Х	Х	X	х		x	×		,
RUBY GORDON-SUMP-3	10/27/94	WATER	X	х :	×	X	х	1	X	x		

Table No. B Summary of Environmental Samples

Remedial Investigation Stuart - Olver - Holtz Site No. 8-28-079 Henrietta, Naw York

Sample Location Identification	Date	Media								,		
SOH-SB1-2/4	Sampled 10/18/94	Sampled	Volatiles	Semi-Volatiles	PCB/PEST	Metals	Cyenide	TOC	Hardness	Alkalinity	MS/MSD	
SOH-SB1-22/24	10/18/94	SOIL	Х	X	Х	X	Х	X		Significa	MS/MSU	DUPLICAT
SOH-SB1-24/28 •	10/18/94	SOIL	X					······································	·			
SOH-SB4-0/2		SOIL		X	X	X	X	X				
SOH-SB4-18/20	10/19/94	SOIL	X	X	X	X	×	×				
SOB-SB4-24/26	10/19/94	SOIL	X	X	Х	X	Х	X				
SOH-SB7A-0.5/2	10/24/94	SOIL	x	X	Х	X	X	X	4	(11111),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)	
SOH-SB8A-8/10	10/24/94	SOIL			Х	(,] <u>.</u>
SOH-SB8A-10/12	,,	SOIL	хх			***************************************		***************************************			····!imikreiiikriiiii	
SOH-SB18-12/14	10/24/94	SOIL		X	X	X	X	***************************************		//////////////////////////////////////	/1-111)	
SOH-SB16-26/28	6/20/95	SOIL	Х	X	X	Х	Х	···	,,,,,,		»»	
SOH-SB17-16/16	8/20/95	SOIL	X	X	Х	Х	X				···	
3011.3017.10/16	6/19/95	SOIL	Х	X	X	X	Χ		1-1111-1-1111	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		····
CON OWING SAME							***************************************					
SOH-OW2S-32/34	11/9/94	SOIL		X	X	X	X				-11	1-arts agg 1-decept
SOH-OW2S-34/36	11/9/94	SOIL	×	111.							·	
SOH-OW45-8/10	11/22/94	SOIL	х	×	X	x	x	x				
SOH OW55-14/16	11/2/94	SOIL	x	X	χ	X	X					17141)m1-1-1-1-1
SOII-0W6S-0/2	11/28/94	SOIL		x	X	x	x					
SOH-OW6S-7/4	11/3/94	SOIL		×						-7-11		
SOH-OW6S-10/12	11/3/94	SOIL	X	×	×	x		······				
SOII-0W6S-20/22	11/4/94	SOIL	X	X	x		<u>X</u>					
SOH-OW7S-8/10	11/28/94	SOIL	X	X	x		X					
50H-0W7S-28/30	11/28/94	SOIL	×	x	× 1	<u> </u>	X	х				
SOH-OW8S-8/12	6/28/95	SOIL	X	x		X	x	Х			1	
SOH-OW8S-32/34	6/28/95	SOIL	x	x	<u> </u>	X	Х				······································	
SOH-OW9S-8/10	6/20/95	SOIL	×	x	<u>X</u>	Х	Х	1-1				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SOH-OW10S-18/21	6/21/95	SOIL	×	-	<u>X</u>	<u>x</u>	X					
SOH-OW11S-26/32	6/22/95	SOIL	<u>x</u>		<u>X</u>	X	X			***************************************		-1-11-11111-19111-))17111-,,
					X	X	Х		-11		H)=(((=	78-111618411711111 ,
SOH-OW1R-6/8	10/20/94	SOIL	×									,,
SOH-OW1R-20/22	10/20/94	SOIL		X	X	X	х (
SOH-OW1R-22/23	10/20/94		×							***************************************		
OH-OW4R-32/34	···	SOIL		X	X	X	x	X				
OH-OW4R-34/36	11/15/94	SOIL	X		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
001-01740-0100	11/15/94	SOIL		X	x	X	х					

Table No. 8 Summary of Environmental Samples

Remedial Investigation Stuart - Olver - Holtz Site No. 8-28-079 Henrietta, New York

Sample Location Identification	Date Sampled	Media Sempled	Volatiles	2	Ţ		T	,				
SOH-SED1-0/6	10/25/94	SOIL	X	Semi-Volatiles	PCB/PEST	Motals	Cyanida	TOC	Herdness	A0		
SOH-SED2-0/8	10/25/94	SOIL	*********************	X	X	×	×	×	1101011033	Alkelinity	MS/MSD	DUPLICATI
SOH-SED3-0/6-MS(D)	10/25/94	SOIL	X	X	X	х	X	χ	 			
SOH-SED4-0/6	10/25/94	SOIL	Х	X	X	X	X	,,,,			 	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		301	Х	X	X	X	X			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	X	
0W-15	7/8/95			***************************************		T		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
OW-28	7/6/95	WATER	X	X	X	X	X	1-1				
0W-3S	7/7/95	WATER	X	X	X	X	X		XX	X		
OW-4S	*****	WATER	Х	X	X	×	X		XX	X		
OW-5S	7/7/95	WATER	X	x	X	X	×		Х	Х		
OW-6S	7/6/95	WATER	X	x	X	X	x		Х	х	Х	
OW-75	7/7/95	WATER	X	x	X	X	·		X	X		SOH-1-DUP1
	7/10/95	WATER	x	x	X	X	<u> </u>		Х	X		
OW-BS	7/7/95	WATER	X	X	X	X	X		х	×		
OW-9S	7/5/95	WATER	х	X	x		X		Х	х		
OW-10S	7/5/95	WATER	x	X		X	X		×	X	.,	
OW-115	7/5/95	WATER	×	×	X	X	х		X	X		
MW-2	7/10/95	WATER	x	x	Х	X	X		Х	x		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
MW-3	7/10/95	WATER	- x		X	Х	x		X	х		
MW-5	7/10/95	WATER		X	X	Х.	х		х	×		
8101-OW	7/5/95	WATER		x	Х	х	x	"""""	×	×		
OW-LS [MW-2]	7/13/95	WATER	,,.,.,.,,,,,,,,,,,,,,,,,,,,,,,	×	хх	х ,	x		×	<u>^</u> -		
·	-	WATER	×	x	х	×	X		- X			4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
OW-1R	7/11/95				,							M);;dle;=111==1;17==;171;
OW-2R		WATER	X	X	X	Х	×		x			
OW-3R	7/11/95	WATER	X	x	X	X	x			. X		
OW-48	7/11/95	WATER	Х	X	Х	χ	x		<u>X</u>	X	X	
DW-78	7/13/95	WATER	X	×	Х	χ	X		X	X		
W-18	7/13/95	WATER	X	x	Х	×	x		×	X		
	7/12/95	WATER	X	x	X	X	·/		X	x		SOH-1-DUP2
W-2R	7/12/95	WATER	x	X	X	X	X		X	X		
)W-15	10/3/95	WATER	Х				X		X	X		***************************************
W-2S	10/4/95	WATER	×			<u> </u>					***************************************	
W-35	10/4/95	WATER	×			X	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				······	
W-4S	10/4/95	WATER	x			X					·-···	
W-5s		WATER				X					·····	***************************************

ł

Table No. 8 Summary of Environmental Samples

Remedial Investigation Stuart - Olver - Holtz Site No. 8-28-079 Henriette, New York

Sample Location	Date	Media				·	1				·	
Identification	Sampled	Sampled	Volatiles	Semi-Volatiles	PCB/PEST	Metals	Cyanida	тос	Herdness	Alkalinity		
OW-6S	10/3/95	WATER	Х			х	1	 -:==	110:011033	Aikalinity	MS/MSD	DUPLICATI
OW-7\$	10/4/95	WATER	Х	X		x		·				
OW-8S	10/3/95	WATER	X			×	·	·/·······				H4-4
OW-9S	10/2/95	WATER	X		***************************************	X				······	.,	SOH-2-DUP
201-WO	10/2/95	WATER	X			x			·			
OW-118	10/2/95	WATER	X			X		ļ			·	
MW-2	10/3/95	WATER	×		*******************************	×			***************************************		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	· · · · · · · · · · · · · · · · · · ·
MW-3	10/3/95	WATER	X			×						,
MW-5	10/3/95	WATER	× /			x		[,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
B101-0W	10/2/95	WATER	X			x	,					
OW-LS [MW-2]	10/2/95	WATER	X			x						· · · · · · · · · · · · · · · · · · ·
**************************************	***************************************										/-PHI	
OW-1R	10/4/95	WATER	x			v	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				**************************	- 141-1 p(1) 111 m -1 1/41 111 111
OW-2R	10/4/95	WATER	×			x						
OW-3R	10/5/95	WATER	·····×									(
OW-48	10/5/95	WATER	× ×			^x	***************************************	***************************************				
OW-7R	10/5/95	WATER	х	×	***************************************	x						I-1-c
IW-17	10/6/95	WATER	×					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SOH-2-DUP2
IW-2R	10/8/95	WATER	× ×				***************************************					
······································				***************************************		X			<u>.</u>			
RUBY GORDON SUMP-1	10/5/95	WATER	x									
RUBY GORDON-SUMP-2	10/5/95	WATER	× /	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
RUBY GORDON-SUMP-3	10/5/95	WATER	<u></u>				····					

Table No. 9 Summery of Surface Soil Sample Analytical Test Results

Remedal Investigation Saust-Over-Hotz Site No. 8-28-079 Hernetta, New York

								т тем.	. New York											
	\$ED-1 0-6 10/25/9		SED-1 F 0-6* 10/25/9		SED-		SED-4 RE		5.S-1 0"		SS-T RE		SS-1 D	ι –	\$5-2 fr		\$S-7	-	SS-3 RE	E
Parameter		` [6			10/25	" [6	10/25/94	٦	10/25/94		10/25/94		10/25/9		10/26/9	4	10264	94	10/26/94	
Volatile Organics	(ug/kg)	1	(ug/mg)	_	(ug/kg		(ug/kg)	╁╙	(ug/sg)	Г	+	P	_			[0			10203	Ì
Methylene chloride		7,	 	91,	1-1-1-1	71	(Garger)	_			(ug/cg)	╄	(ug#g)	-	(ug/lag)	Ш.	(ug/kg	1	(uptg)	٦
Toluene		 	†	+	 	╫-	NT NT	+-		אנ	├ —	├	М	+			\perp	30		7
Chlorobenzene		 	†	+-	+-	- -	MT.		 	+	├ ─	 	N	-1 -				T	 	7
Semi Volutire Organics	(ug/kg)	+	(ug/kg)	┪─	(Ug/kg	┷-		-	25	'	 	 	K	-				1	1	1
Naphrelene		┿~		┰	1323	+-	(ug/kg)	┷	(ug/kg)	۰	(ug/kg)	 	(ug/cg)	1_	(ug/kg)		(ug/kg)	(ug4g)	Ť
2-Methylnephthelene		+-	_	+	 	┼	 	 —	370	1	 	ļ	-	\perp			25	1 00	NT	†
Acemphitrytene		╅		+	 	rs J —	 	 -			!			ᆫ				_	NT.	_
Aceneptithene		┼-		+-	 	2,	51	-	2500	-	1500		360	םנו ס	ax	1	210	0 ;	NT.	+
Othenzofunen		 		1 -			69	-	1700	<u>'</u>	1100	1	280	סנוס	53	1	34	01	NT.	+
torene		┼─		 	 	1-	53	-	1000	,	640	,	1800	מנ	29	1		1-	NTI	+
herentrene	 	,,]. 	_	01	100	,	2800		2000	1	5100	JD_	84	1	- 67	0,	NT	÷
Vithracene	 	7		Ψ	56	+ +	920		44000	E	27000		690X	D	1500	1 -	1100	+	זא	╁
arbazole	+	├			13	T - 1	230	1	8500		5200		12000	1D	270	,	310	_	- NT	╀
i-n-Butyphthabite	76	 , 		[7 1	120	,	6800		4200		10000	JD.	190	,	2200	-	NT	╁
uoranthene	120	-	75	-	110	1 +	320	,	990	,]	530		1500	1D	190	,	400	-	NT.	۲
yrene	150	-1	TEO		1100		1500		12000	Ε 🗍	47000	E	130000	ь	2900	-	26000	 	NT NT	┝
ulybenzyphthalate	130	<u>'</u>	200	<u>'</u>	1300	 	1200		73000	EJ T	44000	Ε	120000	D _	2700	_	24000	+		L
enzo (a) Anenracene	 	-			113	4	64	<u>, </u>	2700	,	620	, _	3900	פנ	140	,	5500	}	NT	_
Trysene	49		70		490		560		43000	E	26000	\neg	54000	Δ.	1100	-	13000	-	TA	_
s (2-Etnythexyl) Promelete	86		100	<u>'</u>	840		740		56000 (E	31000	_	79000	_	1600		21000		TN	_
-n-Octyl Premisie	85	<u>'</u>		<u>'</u>	940	$\sqcup \bot$	2 3 60 J		7300		2300 J	\neg	11000	_	590		27000	-	TM	_
onzo (b) Fluoranthene	+						310					_		_					NT	_
sozo (k) Fluoranthene	100	<u>'</u>			630		640	_T	\$5000 E		34000 E	: 1	92000		1200	-1	31000	 	NT	_
Pizo (a) Pyrene	58	_	- 92		700		420	\neg	15000	7	14000	+	25000		1700	-+	10000		TA	
	64	-	110	<u>' </u>	750		500.	\neg	50000 E		24000	+	58000		1200	-			TM	
teno (1.2.3-cd) Pyrene	96		n_		920	_ Ţ	400		48000 E		20000	\dashv	50000		1200		15000		TA	_
benz (s.h) Antiracene	 				330	1	180 J	7	17000	1	7800	+	18000		390		25000		NT	
nzo(g.h.i) Perylene	32	<u>' </u>	150]	310	,	150 1		21000	+	6600	-	23000		1000		10000	-4	TM	_
Metals	(mg/kg)		(mg/kg)	\perp	(mg/kg)		(mg/kg)	-17	(mg/kg)		(mg/kg)	-+	(mg/kg)	-+		┥.	3500	<u>, </u>	NT	_
	9710	_	NT		7400		ПT	_	¥750	<u> </u>	NT	+	וער ערייו אדו	-+	(mg/kg)		(mg/kg)		(mg/kg)	
lmony			NT				NT				NT	+	NT NT		5960		6960		NT.	_
enic Turn	3 :	_	TM		4	LN.	TA	_	5.8 N.	, +	NT	+	NT NT	+	24.8	. 	23.1		ИТ	
	39.2		NT	\Box	46.1	\neg	NT	\dashv	136	+-	NT.	+	TN		5.1 N	' -	8.1	נאפ	NI	
ylum	0.29 8		NT		0.33		NT	7	0,42 B	-	NT	+	NT	\dashv	164		161		NT	
dmeurn		\Box	NΤ		0.85	-	NT NT	-	6.8	+	NT TN	+		-+	0.22 B	-	0.27	-		
ourn	3570		NT	7	33200	_	ТИ	+	30200		NT.	+	דא		5.9		7.6	4	דא	
omun	20.8	\perp	NT	\neg	14	$\neg \vdash$	NT	+	107		וא	┰	TN		54600		71200	_	NT	_
nat.	3.9 8		NT		5.2			\dashv	7.3 B	-		-	NT	-+	1570		1560		TM	_
per .	14.2	Т	NT	\neg	16.8	$\neg \vdash$	NT NT	+	7.3 B		NT	+	ТИ	- -	6.4 B	[_	5.7	1	NT	
	11100	\neg	ТИ	\top	12100	+	- KT	+	19900	+	NT	+-	ТМ	, _	62.7	\perp	66.2	\Box	TA	_
đ	19,3 J	\neg	NT	_	15.8 5	-	- 17	+		+-	NT	4	174	_ -	21300		19500	\Box	NT	
hesium	2660	_	NT	+	10300	\dashv	NT NT	+-	171	+	NT -	-	דא		48.5		36.8	\Box	NT	_
ganese	113	_	NT				41	ı	13900	1	NT		NT	- 1	23500	1 -	32900	$\overline{}$	NT	

Table No. 9 Summary of Surface Sol Semple Analysical Test Results

Remedial Investigation Start-Oner-Hotz Site No. 8-28-079 Hannelta, New York

Parameter Voielle Organica Metrylene charide Tokame	16259.		DUP-1 RE		ь	ь	_	ğ t	3	_	3	SS-6 RE	ľ	20933
8 8			1025/01			-		ь ;	ь —	_	ь	ь —	_	٤
3 8	- -	0		101		0	0	0	1626.94	o	102694 []	1026.94	7	102694
Metrykane charide Tokene	(ròyrà)		(faydn)	-	184 65	(59Kg)		(myka)	╀	╁) 	0	
Tollene	_	Ř					1		(face)		6	(rokg)		(fayen)
				\perp	\dagger	+	+	+	\prod		1	_	-	Ę
Chorobergene				\dagger	\dagger	+	1	+						Ž
Sami Volente Organica	100		(Landbar)	+			1	1			7			Ž
Nachthalene		Ţ.	!	+	ĝ	ĝ. Aĝ		(mykd)	(mb/ch)	=	(6x/dn)	(60/03)	L	1
2-Methylachthalana	1	1	Ž	+	1	Σ			Ž		-	2		
Accounted		1	Ę		+	ጀ	_	L.	Ę	-	8		+	1
V.	8		Ę	\dashv		Σ	-	, 85 L	٤	\vdash	9		+	1
Quality design	×	7	ΝŢ		1015	2	-	210,	,	+		\[\]	+	7
Coorcollin			Ę	-	និ	Ξ	+	-	1	+		\[\frac{1}{2}\]	1	GI 0007
Plorene	410	-	Ę	┝	3	5	H		1	+	B	٤		1700/1
Tenandrene	8	L	Ę	\vdash	Ę	 -	+		ž	+	8	M	_	4000 JD
Viginicene	2600	<u> </u>	5	+		ē !	+	8	٤	-	31000 E	Z	L	32000
Carbezole	1	1.	1	+		\$	-	3	Ā		5700	Į	F	£
Din-Bunchtmate		1	2	+	ig P	E		600	Ę	ļ	2100	Ę	+	45
Percentage				+	+	Ę		210 3	Ē	-	-	ļ	+	
		1	Ę	4	13000	Z	_	000	ţ	Ť	2 0000	!	+	1
	S S		ž		1000	5	-	0050	ţ	+		٤	+	8
Of them to trial to more from	꽃	_	ž		_	Ę	H	5	ļ	+		Z	+	8
enzo (a) Antimogna	10000		Ę	L	00. C.	Ż	$\frac{1}{1}$	2	: !	+	3	٤	+	7
Inysene	17000	<u> </u>	Ę	\vdash	2035	ţ	+	1 2	<u> </u>	+	B	토	-	31000
ks (2-Efryfriexyl) Proteine	27000	-	Z	L	200	5	+	1	ž į	+	8	Ī	-	39000
An-Octyl Prehalene			Z	-	-	1	+	3	Ξ.	+	Ē,	토	-	_
Serzo (b) Fluorandiene	24000	-	7	H	6	1	1	1	Z	+	+	ż	+	_
onto (k) Florinthere	0085	-	ž	╀	80	12	-	3	2	7	<u></u>	Σ	-	45000 D
ento (a) Pyrene	00091	\vdash	ž	┞	650	1	1	 		+	8	Ę		16000 JD
dero (1,2,3-cd) Pyrene	22000	-	Ż	+	8		 	3 3	\$	-	8	Ę	\dashv	30000
John (a.h.) Arthracene	0069	\vdash	Ę	\vdash	<u>8</u>	1	1	3 3	Ž	-	80	¥	-	25000 D
Benza(g.h.i.) Perylane	0096	-	5		90		1	3 !	ξ.	+	8	ż	\dashv	5900 ID
· Metaks	(mg/kg)	-	(mg/kg)	E	(moke)	(abyan)	3	1	2	1	8	Ę	\dashv	00 10 10 10
J. Waran	3260	-	٤	╀	18) : 	 	(å	E P	ē	(mg/kg)	Ē	(morkg)
Метопу	9.2	-	Ę		-	1	<u>-</u>	3	Ę		Ş.	Ę		Ę
, parc	72.957	7	12	+	<u> </u>	2 !	1	7	Σ	4		ጀ		Ę
Marien	82	-	5	1		z	+	200	Ē	_	3.5 5%	Ę		토
Beryfium		+	5	+		٤	_	8	ź		36.5 8	Ż	_	Ē
Cadmum	3	+	: 5	\downarrow	, .	Ż	-	0.468	ጀ		_	Ē	-	Ę
Calcium	W.	+	2 5	╀	7.7	Ę	+	-	Ϋ́		2.	Ę	-	Ę
2 Tomican	Ē	+	<u> </u>	7	00 21	Ę	47	47700	Ž	25	28100	垣		Ę
Cobest	3	+	į !	-	7	Ę	^	7.0	Ę	_	100	Ę		Ę
*	1	+	<u> </u>	\downarrow	-	Ę	-	B.	۶		3.28	Ī	-	Ę
	2 2	+	ž	1	110	5	4	63.7	ţ	-	7.7	Į	-	<u> </u>
\$ 2	3 8	+	Ż.	4	8	Ę	120	g	Ę	=	8	ĽΣ	+	ţ
Magnetium	N.	+	5	_	3	۶		=	Ę	<u> </u>	ē	Ę	+	: 5
Anceste	REAL	+	٤	4	2	Þ	16,100	8	Ę	1	13.00	\$	_	. !
200	5	-	Ę	_	ž	Į		Ę	Ę	'	F	ţ	1	ž!
	3	+	Ę		0.2	Σ		F	ţ			z !	+	ž
	3	-	Ē	 	12.9	ጀ	-	12.0	ţ	=	+	ž!	+	Ę
	ŝ	+	톳		330	ž	1	Ę.	Ę	2	9	ž	1	<u> </u>
	2	<u> </u>	토	4		Z	L	Ļ	Į	<u> </u>		ž !	-	
	3	\dashv	Ę		0.66 8-	ž	5	912	5	\\ \frac{1}{2}		<u> </u>	-	Į
	<u> </u>	-	Ę		S77.8	Þ	9	8//L6	1		 	<u> </u>	-	
Zec	2		ţ		18.5	¥		29	Ę	<u> </u>		ž 5	1	E 5
OTHERS		-	Ę	_	8	Ę) ». 	3	Ę		ē	Į	-	<u> </u>
1	į	٤	Š	(moyed)	ĝ	(mykn)	(mg/kg)		(mg/kg)	(mg/kg)	T	(Boke)	(Lighter)	
	3	-	ξ	_[_	٢		12	Ę		1			!

Notes:

1) Bank indicates parameter not detected at the respective detection knit
2) Nr. Not feests
2) Nr. Not feest at the cashing as R (unsabled because) or U (not detected) for semi-volable parameter 2.4 Destrophenol
4) See Figure No. 3 for sample bosators.
5) O = Data Qualitar - See Appendix G for qualifier definitions.

Table No. 10 Summary of Subsurface Sof Sample Analytical Test Results

Remedial Investigation Stusif-Over-Hotz Site No. 8-28-079 Henrietz, New York

	58-1													
Ī	2-4		S8-1 22-24		S8-1 24-26		58-		S8-4		S8-4		SB-7	
i	10/16/5	н	10/18/94	ı	10/18/9		10/19/		18-20	_	24-26		0.5-2	
Parameter		0	٦	T-0	1	` [, רב	10/19/9		10/24/94	
Volatile Organics	(Ug/kg)] _	(ug/kg)	T	(09/10)		(ug/ki		(Ug/kg)					0
Chloroethane		4 JB		 		<u>π</u>	+ 37-1	~	(09-19)		(ug/tg)		(vg/kg)	
Methylene chlonde				1	1	<u>π</u>	+	\dashv		+		6 J	NT.	
Acetone						-	+	+	 -	+		+	NT NT	
1,1-Dichloroethene 1,1-Dichloroethane		\perp		1.	•	m		+		┿		 -	NT	
	4				- 1	П	1			 	 -	+	NT NT	
1,2-Dichloroethene(Total) Chloroform						m	$\overline{}$	_					NT	
1,2-Dichloroethane		_				m				-1-	+	+-	NT	
1,1,1-Trichloroethane		┵—			, N	7	1	_			+	- -	NT	<u> </u>
cs-1,3-Dichloropropene					N	7	7	\neg		_		+-	NT	<u> </u>
Trichloroethene			<u> </u>		N	Ť				\neg			NT	-
1,1,2-Trichlomethane		↓	15		N			\neg				+ -	NT NT	
Benzene					N	Ť		$\neg \neg$		\dashv	 	+-	MT NT	<u> </u>
Tetrachioroetnene		┼		<u> </u>	N			\neg		 	 	+	TM	
foluene		1			N	T		_		+	+	+	NT NT	
Chlorobenzane		<u> </u>			N	T	T			 	 		NT	
thylbenzene		 			N	r	 	\top				 	NT	
(yiene (total)		↓			N	7		\top	 	 	 	+-	NT NT	
	┷—				N		T	 -		+		 	NT	
Semi-volatile Organics	(ug/kg)		(ug/kg)		(ug/(g)		(ug/kg)	1-	(ug/kg)	+-	(117010)	- -	NT	
	- 	$oxed{\Box}$	NT				1.2.2.	+	(09.49)	-∤	(ug/kg)	+	(ug/kg)	
,4 Dichlombenzene hethylphthalate			IМ	\neg			 	+		+	 	╅╌╼┥	M	
	 		NI					+-	 	+	┪╸╶		NT.	
nenanthrene		$oldsymbol{L}$	NT			1	9	5 1	 	 	-	+	NT	
nthracene	<u> </u>		NΤ			 		5 J	 -	╁━	 	╌╌	TN.	
arbazole		\Box	×Τ			 		' -	 	+-		┩┈┩	NT	
i-n-Butylphthalate		L. I	NT					+-	 	+	 	╀╾┼	NT	
vorantiene	56		NΤ			_	26	. [+	+	 	+	NT	
ytene	40	7	NT				28		 	+		-	NT	
utylbenzylphthalate			ИT			-	280		 -	+		╁┷╅	NT	
enzo (a) Ambracene			NT				111			-	 		NT	
hrysene	28	J .	TM	1		-	160		 	├		┾┷	TN	
s (2-Etnylhexyl) Phthalate			NT					 -	 	}		⊢ ∔	NT	
n-Octyl Phthalate	290	J T	NT		180	; 	270	 	60	 -		 	NT	
rizo (b) Fluoranthene			NT				180			 - -	240	J	NT	
mzo (k) Fluoranthene			ТN				79			 	ļ	1	TM	
nzo (a) Pyrene	 _ 		NT	\neg			360		 			1	NT	
deno (1,2,3-cd) Pyrene	L		TM				200		 	l i		├ ─┼	NT	_
nzo(g.h.i) Perylene			NT				42					\vdash	NT	
PC8/Pesticide	<u> </u>		אד			$\neg \uparrow$	1400	4.	 	-			NT	
xior - 1254	(Ug/kg)		(ug/kg)		(ug/kg)		(ug/kg)	 	(ug/kg)	 	(ug/kg)	-+	NT	∤
Metab	 		NΤ					_	(-9-3)	 	(ugrag)		(ug/kg)	
Minum	(mg/kg)		(mg/kg)		(mg/kg)		(mg/kg)	_	(mg/kg)	┝╌╼┥	(mg/kg)			
tenony	20400		NT		3500		5640	T -	2350	 	2940	\vdash	(mg/kg)	—
enc			NT			$\neg +$				├ - 	2540		NT NT	\dashv
tum.	8.8		TM		1.2	;	67	<u> </u>	1.4	┢╌┤			NT	
yllium	153		ТИТ		25.5	= -	111		17.5		1.5 39.6		NT	
y-inum y-inum	1 1		TN			$\neg \uparrow$	0 25	В	 ''	-		-	TM	-4
crum crum	0.8		NT	_ _		1	0.8	В	 				NT .	
	4930		МŤ	$\neg \vdash$	51200	$\neg +$	64 100	-	52300	$- \downarrow$			NT	
Omium Dan	26.8	T	NT	\dashv	6		16.5		3.9		53300	<u> </u>	NT	_
pper -	13.9	\Box	NT		3.3(6	, 		6	2.5	ᡖ┈┤	4.7		NT	_
per	22.1		TM		8.9	- +	30,8	-	6.7	<u>- </u>	2.7	6	דא	- 1

Table No. 10 Summary of Subsurface Sou Sample Analytical Test Results Remedial Investigation Shuin-Over-Hotz See No. 8-28-079 Hennetta, New York

.. :

10012 102494 10	SP-17 16-16 16-19-95	OM-25 34-36	OW-25
Cugrey C	0 (my/m)		7.0
Miles	(nayeu)	L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NT NT NT NT NT NT NT NT		(neyea)	
MT	- - - -	-	(Sway)
NT NT NT NT NT NT NT NT		r 10.22	1
NT NT S J		 - 	ķ
MT			Ž
MT		-	5
NT NT NT NT NT NT NT NT		-	5
MT MT 3 1 1 1 1 1 1 1 1 1		_	5
NT NT NT NT NT NT NT NT			
NT NT NT NT NT NT NT NT		-	
MI	-	-	
Cugricolores Cugr	-	1	
NT NT NT NT NT NT NT NT		+	٤
(100/10) (100/10)	+	+	¥
MT			5
NT			2
(10g/kg)		г 009	5
(10976) (109		_	Ę
(14974)			Ę
NT		7090	Ş
NT S40 J NT S40 J NT S40 J NT S40 J NT S40 J NT S40 J NT S40 J NT S40 J NT NT NT NT NT NT NT		(63/50	(00/60)
NT S40 NT NT NT NT NT NT NT N	230 7	Ę	
NT S40 NT S40 NT NT NT NT NT NT NT N		5	
NT S40 NT NT NT NT NT NT NT N	L 539	5	+
NT S40 NT NT NT NT NT NT NT N	ĺ	5	
Principle		1	2
NT NT NT NT NT NT NT NT			
NT NT NT NT NT NT NT NT		ž	_
NT NT NT NT NT NT NT NT		Ę	-
NT NT NT NT NT NT NT NT		Ę	
NT NT NT NT NT NT NT NT		Ę	-
NT NT NT NT NT NT NT NT		ž	+
The control of the		5	+
28 J NT NT NT NT NT NT NT NT		1	
(1974) MT MT MT MT MT MT MT MT MT MT MT MT MT	1-1-1	- E !	28
NT NT NT NT NT NT NT NT	,	Ż	85
MT MT MT MT MT MT MT MT		Ę	↑ 6 9
NT NT NT NT NT NT NT NT		Ę	-
MT		Ę	1
(190/kg)		Ę	
(1974) (1		5	
(mg/kg) (ug/kg		+	
(mg/kg) (mg/kg		-	-
(mg/kg)	(magain)	1	-
Comparison Com	1	(ng/kg)	(ng/kg)
2.3 J	1		_
23 J NT 11 BJ 11 B	gm) (mg/gm)	-	(mg/kg)
27.8 B NT 31.3 B			76.01
27.8 B NT 31.3 B NT 31.3 B NT 31.3 B NT 31.3 B NT 31.3 B NT 31.3 B NT 31.3 B NT 31.3 B NT 31.3 B NT 31.3 C			3
47900 NT 67800 4 4.2 NT 67800 4 4.2 NT 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.	 - -	-	
47900 NT 67900 4 4.2 NT 6.6 B NT 34 B 11.7 NT 6.2 J 6	1	ē	- SE
A	Z0.6 B	Þ	55.5
4.2 NT 6.2500 4.6500 4.2 NT 6.5 7.5 2.6 B NT 6.2 J B 7.7 3.9 NT 8.450 7.5 2.1500 NT 2.8200 7.8500 2.64 NT 3.16 B 7.9 6.1 3.1 B NT 7.2 B 7.9 6.1 3.1 C S.2500 7.8500 3.2 B NT 7.8500 7.8500 3.3 NT 7.82 B 7.9 6.1 3.4 B 7.9 6.1 3.5 C S.2500 7.8500 3.6 NT 7.8500 7.8500 3.6 NT 7.8500 7.8500 3.7 NT 7.8500 7.8500 3.8 NT 7.85000 7.8500 3.8 NT 7.85000 7.8500 3.8 NT 7.85000 7.85000 3.8 NT 7.85000 7.85000 3.8 NT 7.85		5	
2.6 B NT 67200 46500 2.6 B NT 7 6.6 B 7.9 1.1.7 NT 8.2 J 6 B 7.9 2.1500 NT 28200 19500 2.5 B NT 7 782 B 7.9 2.5 B NT 7 782 B 7.9 2.6 B NT 7 782 B 7.9 2.7 B NT 7 782 B 7.9 2.7 B NT 7 782 B 7.9 2.7 B NT 7 782 B 7.9 2.7 B NT 7 782 B 7.9 2.7 B NT 7 782 B 7.9 2.7 B NT 7 782 B 7.9 2.7 B NT 7 782 B 7.9 2.7 B NT 7 782 B 7.9 2.7 B NT 7 782 B 7.9 2.7 B NT 7 782 B 7.9 2.7 B NT 7 782 B 7.1 2.7 B NT 7 782 B 7.1 2.8 B 7.9 2.9 B 7.	_	Ę	D D
11.7 16.6 7.9 7.9 1.0 1.	39400	: !	
117 148 17 148 17 17 18 17 17 18 17 18 17 18 18	1	Ē	57400
11.7 NT 8.2 J 6 J 6 J 6 J 6 J 6 J 6 J 6 J 6 J 6 J		5	8.6
21500 NT 6400 1500 1500 1500 1500 1500 1500 1500 1	8	Ę	1.4.1
21300 NT 313 C 41 21300 NT 28200 19500 284 NT 318 266 853 B NT 782 B 719 155 B NT 782 B 1120 155 B NT 782 B 1120		Ę	,
21500 NT 28200 19500 19500 2564 NT 318 28200 195	5070		2
254 NT 318 266 857 B NT 528 T 1950 853 B NT 722 B 172 B 172 B 172 B 172 B 172 B 172 B 172 B 172 B 172 B 172 B 172 B 172 B 172 B 172 B 173 B 15			815
264 NT 318 266 5.7 B NT 58 B 7.9 693 B NT 782 B 1120 15.5 B NT 782 B 1120	7	Ę	21.5
5.7 B NT 58 7.9 693 G NT 782 G 1120 165 B NT 782 G 1120 165 B NT 785 G 155		 -	27 100
65.7 B NT 742 B 7.5 693 G NT 742 B 1.720 NT 155 B NT 157 B 1.57	196	Z	325
153 B NT 782 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 1120 B 157 B 1		1	3
1120 NT 782 B 1120 NT 150 B 1120 NT 150 NT 1	1	2	_
NT NT 1528 157	n		æ
165 B NT 150 B 157	419 B	Ę	3000
155 B NT 155 B 157		Ę	
NT 152 B 157			
NT		2	
		<u> </u>	159 8
Ale 6			0.38 B
NT 6.56	_	5	12
α		5	7,
(mg/kg) (mg/kg) (mg/kg)	<u> </u>		40.7 EJ
A LUX	(mg/kg) (mg/kg)	t	1000
LIN I	1	1	(B)V(B)

Notes:

1) Blank indicates parameter not detected at the respective detection limit
2) MT - Not Tested
3) See Egitre No. 3 for sample locations.

4) Q = Data Qualifier - see Appendix G for qualifier definitions

Table No. 10 Summary of Subsurface Soil Sample Analytical Test Results

Remedial investigation Stuart-Ower-Horiz Site No. 8-28-079 Hennetta, New York

	OW-4S RE OW-3S COVES																
1					T OW-5	s		OW-6									
1	8-10		8-10		14-16			0-Z			0 0/-6	3	000			OW	
Parameter Parameter	11/22/94		11/22/94		11/2/9	н		11/28/					10-			20-2	
Votatse Organics		0				ſ	-	1	_ L	0	11/3/9	٠ ٦٦	11/3	94		11/4/9	¥ _
Chloroethane	(ug/kg)	ا	(ug/kg)		(Ug/kg	o) 1		(ug/kg	πİ		(09/10				0		
Methylene chloride	 -			\mathbb{L}^{-}					NT	_		///-	(ug/	K9)	┽	(ug/kg	"
Acetone		7 J		5 1		7	,		NT	_	_	- [_	+	┵	
1,1-Dichloroethene		- 	<u> </u>			\neg			ᆏ		_	~ -	 -		5 J		
1,1-Dichlomethane	 -	4_		L		\neg			MT					_	↓		
1,2-Dichloroethene(Total)	 '					1			NT					_	╁—-	 	
Chloroform	- - 1	4							NT	-					╀—		
1,2-Dichloroethane		- -				7			NT				- -		 	 :	10 1
1,1,1-Trichloroethane	- 	 _				\neg			NT				⊣ -		┼		
cs-1,3-Dichloropropene	- 13	٩	24	<u>, </u>		\neg			NT				- -	_	+-	+	\perp
Inchloroethene		-				\neg			NT.	+	<u></u>		┥	67	 		
1,1,2-Trichlometriane	200	기	36	[- -		\neg			NT.	-+	— <u>"</u>		┥—		<u> </u>		$\perp \Gamma$
Benzene						1			<u>41</u>	-+	<u>_</u>		-			<u> </u>	60 J
Tetrachloroethene		11				\top			vi	-+					L		T
Toluene						-+-			π	-+	N		 -			1	Т
						+	-		,,	\dashv	N		+	37		2	50 J
Chlorobenzene							-+		π	-+-	N		 				T
Ethylbenzene				+		+	- -		<u></u>	-	N						1
Xylene (total)		1		-+		+	- -	N		-+-	N1			\Box			1
Semi-volatile Organics	(ug/kg)		(ug/kg)		(ug/kg)	+			''- -	┵.	N	Ϊ	\perp	\Box			\top
Phenoi			NT		(-9-19)	┰		(ug/kg)	+-	- ⊢	(naysa)	 	(ug/kg	<u>. </u>		(ug/kg)	┰
.4 Dichlorobenzene		 	NT	-+		+	-+		+-	-		<u> </u>		\Box			+-
Dethylphthalate			NT	\rightarrow		┿			4	-		<u> </u>		T			1-
henanthrene			NT	-+		-1-	-+-							╗			┰
unthracene		-	NT	- +		-∤		10	0 1		160		1	30	,		+-
arbazole			NT						╙		36			21	,		+-
i-n-Butylphtnaiste			NT	- +		. 			↓_		25			_		9	51,
Inotationette		-	NT			5 J	—├-	200			160	J	2.	40]	,		 -
утепе			NT				-	260			570		2	ı O	, – †		╅╌-
utylbenzylphtnalate		-+	NT			4 JB	\rightarrow	200			450		17	70 1			† -
enzo (a) Anthracene	 		NT.			┼-	↓-	140	1-		71	<u> </u>	4	11/			
hrysene	 		NT	-		-	Щ.	100		_[_	280	J		راد	_		┼
is (2-Ethylhexyl) Phthalate	 		NT	 -		↓_		190		⅃. ̄	440		13	ᄓ			╁
i-n-Octyl Photalate	 		NT		580	ш.		120	J	丁一	1900		220	_	 }	260	
enzo (b) Fluoranthene	 				350	<u> </u>			<u> </u>		$\neg \neg$			+			 -
enzo (k) Fluoranthene	 		NT TN			ــــ		160	lı_	\perp	550	$\neg \neg$	15	داه	-+		
enzo (a) Pyrene	1		- NT	-		<u> </u>	<u>ــــــــــــــــــــــــــــــــــــ</u>				150	,		2 1	-+		┼
deno (1,2,3-cd) Pyrene	 	-+	NT NT			ــــــــــــــــــــــــــــــــــــــ	$ ar{}$	110		T	310	,		2 1	-+		╆-
benz (a,h) Anthracene	┪ ╸╸		- NT	-		ـــ		120	J		340			1	-+		
nzo(g.h.i) Perylene	 					<u> </u>	_ _	38	J		72	,		Ţ	 -		-
PC8/Pesticide	(ug/kg)	$-\vdash$	NT (up/r=)			L.		29	1	1	140			ゼ	-+-		-
ocior - 1254	1 (52.43)		(U9/kg)		(ug/kg)	_	(ug/kg}		(u	g/kg)		(ug/kg)	╁-	-+	(ug/kg)	_
Metals	(mg/kg)		NT	-4-			i			T	NT	_		╁~	 -	<u> </u>	-
ininum.	22800		(mg/kg)	-44	(mg/kg)	_	(1	mg/kg)		(m	ig/kg)		(mg/kg)	†-	-+	(mg/kg)	—-
broony	1	-+	NT		6520	<u> </u>		10300		1	NT		4100	,	+	4430	
lenic	7.2 5		NT	\dashv		_		3.2		T -	NT			†	\dashv		
num	150	743	NT			WBJ	4_	5.3	s	Γ	TN	 -	5.4	SN	 -		SNJ
ryllum	1,1	-+	NT		49.9		_[_	64	ΕJ	\top	NT		32.5		- +	55.5	⊅ ^U
dwww.	 		NT		0.28	8	\Box	0 41	B	1	NT			۲	\dashv	55.5	—
kcium	1300	_	NT				Ţ		_	\vdash	- 177	—+	1.1	-			
romium	43000		ит		53700		7	24800		1-	NT -	—— <u> </u> -	107000	۴			
balt.	30.3	$-\!$	TM		8.9	•	i	17 3		1	- 		5.5	 —	-	63400	
pper	11.5	Щ_	ИТ		4.3	8	7-	7.4.1	 B	t-	- NT	—- <u> </u> -	4.3	-		6.2	
1	22.2	_ _	TN	_ [9.7		+-	17.6	_	\vdash	NT			₽.		5.4	В
<u></u>	32400	1	NT		11200					1	17 1 1		11.1	ı	- 1	16.4	

Table No. 10 Summary of Subsurface Sol Sample Analytical Test Results

Remedial investigation Stuart-Oher-Hottz See No. 8-28-079 Hennetta, New York

1	OW	·7S	OW	.70					_										
	28					W-8S	- 1	004-8		Į OV	-95		W-1	0.5	I C	V-11S			
i	11/2		11/2			2-34		6-12		8-	10"	- 1	16-2				'	OW-1	R
Parameter		~~ г	급 ''"	7 74		26/95		6/26/9	5	6/21	V95		5/21/5			-32		6-8	
Volatile Organics	(119/1				0		0	_	۲	0	1		WZ 1/3		ᡒᡰᢟ	22/95		10/20/	*
Chloroethane	(00)	10)	(Ug/	kg)	(1	ava)		(ug/kg		(ug	2001				_		0		_ [
Methylene chloride	- -									- ` '	-	-+	ug/k	<u>" </u>	(6	ykg)	لـــــــــــــــــــــــــــــــــــــ	(vg/t	ŋΤ
Acetone									+-		-			_					\neg
1, 1-Dichiorostnene			_ { ```			16									_L		דרו		_
		1		2.	1				-1-		-+								-+
1,1-Dchlomethane				22					. 					_1_					-+
1,2-Dichloroethene(Total)				55					2 J					Π-	\neg				+
Chloroform									+					7-		$\neg \dashv$			-
1.2-Dichloroethane		_			, - -				┵.		[$\neg -$	-+	 -}		-
1,1,1-Trichloroethane				210	 -						\neg	\neg					 +		4.
cts-1,3-Dichloropropene		-		2101					7 J	_ '	\neg	$\neg \vdash$							ᆚ
Trichloroethene	 -	500									_			+-					
1,1,2-Trichloroethane	- 	₩-		21			_ [3		_	_				-			
Benzene	- 			4					1	_	-			+		_ ↓			
Tetrachioroethene						\Box			\top		-+	-+-			_		Г		\top
Toluene				_4 .		\neg		43	1	+-	-+	 - -			4_				+
Chlorobenzene				4 3	, —	\neg	_		1		-+					\Box			+-
				\neg					1—		-			\perp		T			+-
Ethylbenzene			T	_		- +	 -		 							\neg			+
Xylene (total)			_			-	-+ -		⊢-							-+			╁
Semi-volable Organics	(ug/kg	, -	(ug/kg	+		 			L_	ᆚ	$-\Gamma$	\top			1	-			╂
Phenol	1	- -	1-9-9	'	(Ug		(ug/kg)	ᆫ	(ug/kg	, —	(4	/kg)	 -	(ug/l	+			╇
1,4 Dichloropenzene		+-	- 	4	_	390	L_	340	7		7			┿-	1000	***		(ug/kg)	1_
Diethylphthalate	 			<u>. .</u>					Γ^{-}					+ -	+				L
henanthrene		╼┼		- -		L				 	-			 		-			IΠ
Vithracene		+					7-		_	╅			46	18					T
arbazole		<u> </u>								+	┪-	-		Ļ.,					1-
>-n-Butylphthalate				Т			_			+	-			<u> </u>		_ [
				<u>د اه</u>		_				 				L		7	$\neg \vdash$		
luoranthene		Τ		_		\rightarrow				┿——			300	JB					_
yrene	:	J6 J		7-		-				 	┸			_	ļ.——	_			-
lutyibenzyiphthatate		7	 	+								.							-
enzo (a) Anthracene	T	7-	 	┰				[.								+	\rightarrow		
hrysene	1		+	+-							\Box		\neg	_	 	+	- }		
s (2-Ethylhexyl) Phthalate	 	+	+	. 		Щ.	Ы						\neg		 	+	- -		
i-n-Octyl Pronalate	 	+	 °	<u>ار ا</u>		4_		T		T					 	+	 		
enzo (b) Fluoranthene	 	┼								 	\top					+-	_		
enzo (k) Fluoranthene	 	+	 	<u> </u>						 	+				<u> </u>	4-		380	J
enzo (a) Pyrene	 	+	+	1_				- 			+	+-	}		L	4_		T	
deno (1,2,3-cd) Pyrene	 	╀	1	\perp		\top	\neg	 -		 	+-						_L_		
benz (a,h) Anthracene	 _	4_		ĺ			\top	- 		 	╂━-		\dashv			\perp	[_		
nzo(g.h.l) Perylene				1	7	+-	+-			 	 -	 							
	L			\vdash		+-	+	 -		 	┷	┵—	[]		T^{T}	7		_
PCB/Pesticide	(ug/kg)		(ug/kg)	1	(ug/kg	,+	1			 	┸-					T-			
octor - 1254			1 ·	 	1,000,00	' 	+ 100	Λkg)		(ug/kg)		(ug/l	9)		(ug/kg)	_	7.	g/kg)	
Metals	(mg/kg)	$\overline{}$	(mg/kg)	 	1000	.—	┥						7	\neg		+		3-VA1	
minum	2000	 	3070	-	(mg/kg			/kg)		(mg/kg)		(mg/l	g)	o	(mg/kg)		 /-	+	_
bmony		 			460	아.		3060		3430	1		60	-+	5540		- (10)	g/kg)	
enic	0.48	<u> </u>	3.5			4					$\overline{}$	1 -				' 	+	2790	
N/m	18.5	<u></u>	2.4			4 BJ		18.	7	1.7	BJ	 	1.7 8	-		1			
yllium	18.5	#E	36.5	BE		2 B	7	25.1 B		40.2				2		BU		1.1	
Jmum -		<u> </u>	L			5 B	$\overline{}$	— <u>-</u>	\dashv		۳-	+	58		60.8			19.6 B	
CIŲM			Ĺ		7	T^{-}	 - -		 -}		├ ─	——			0.28	В	T		
omum	41700		59300		5910	, - 		3100	$- \rightarrow$		<u> </u>	Ь	\bot				7 -		_
	3.8	J	5 2	<u></u>	8	_	+	<u>Щ</u>	 ∤	50100	<u> </u>	625	00	\Box	80100	1	1	46600	
nec	2.1				, 0								5.2			_	_ 1		

Table No. 10 Summary of Subsurface Soil Sample Analytical Test Results

Remedial Investigation Stuart-Ower-Holtz Site No. 8-28-079 Hennetta, New York

r 						Н	ennetta.	New Y	/ork						
	OW-1R	\Box	OW-1R		OW-4R		Tow	H4R		V-4R		<u>4-76</u>		7 6	
	20-22	- 1	22-23		32-34		34			-44"		~/⊦ -36		40-4	
Parameter	10/20/94		10/20/94		11/15/94		11/1	5/94	, -	18/94		19.9		11/22	
Votates Organics	1000	- ا		0		a		[0	Г	•		<u>`</u>	- ' <i>'''22</i>	~ ⁴~
Chloroethane	(ug/tg)		(ug/kg)	╀—	(ug/kg)		(ug/	rkg)	(Ug	/kg)		/ 101		(ug/x	
Methylene chloride			NT				\top	NT					+	1000	"
Acetone			NT		<u> </u>	1	7	NT		6 1			+-	┼	
1,1-Dichloroethene			NT	<u>'L</u>		T-	\top	NT	\neg		 -		┤—-	 -	5 J
1,1-Dichlorosthane			TM	1. —				NT					+-	┿	-4-
	_	L	NT			\top	1	NT		-			. .	⊢ —-	_4_
1,2-Dichloroethene(Total)	_		NT	1		 	+	NT				3	3 3		
Chloroform			TM	1		╅┈┈	+-	NT		 -	-+-		┥——		
1,2-Dichiomethane			NT	1		+	 -	אד					ــــ		
1,1,1-Trictiloroethane			NT			+	┼	NT							\neg
cas-1,3-Dichloropropene			NT	_		┼		NT				6	J		
Trichloroethene	65		NT			┼—			 -						\neg
1, 1,2-Trichloroethane			NT			┼		דא			L_	32		1	10
Benzene			NT	└		 -	_	NT		L					_
etrachiorosthene	 							NT		110					┽-
oluene			NT.			_		NT	1	\neg		\neg			-+
hiorobenzene	┪╾╼╌╼┼	- 	NT					NT		21		\neg			
Tryibenzene			TN					MT							+-
(ylene (total)	+		NT					NT T	_	7/1		┪			
			NΤ				-	NT -		111	-	-+			┵
Semi-volatile Organics	(ug/log)	(ro/kg)		(ug/kg)	$\neg \neg$	(ug/kg	, -	(ug/k	_		. +			4_
	NT	. [NT	\neg	1=5	" †		"/- -	(ug/s	97		(ug/kg)	Ц_
.4 Dichlorobenzene	NT			1	NT			→-	 -			-4			
ethylphoralate	NT			$\neg +$	NT							_			
henanthrene	NT	<u> </u>		-+	NT	-+		┵							\top
hthracene	NT		-+	- -				-		Д_		[-T		_
arbazole	NT	_				∔						Т			1-
-n-Butylphthalate	NT		-+	\dashv	NT							7			+-
luoranthene	NT NT				NT	$\overline{}$	6	7 J	11	10 7		79 J			+-
yrene	NT		26 J		NT			.				-F	$\neg \neg$		+-
utylbenzylphthalate	- "				NT							25 J			+
enzo (a) Antiracene	- NT				NT	T		7				+	-+		+
hrysene	- NT				NT			T^{-}	T	+		╅			+-
s (2-Ethylhexyl) Prithalate	+			$-\bot$	NT.			_	 	+		┿	-+		┼
-n-Octyl Probabate	INT				NT	\neg	5:	2 J	 	5 J	+	L 8:			
nzo (b) Fluoranthene	NT		63 J		NT			+	 		 	9 3		40	٦ (
	IN	!	. T		NT			┪—	+	┽—		4.			!
nzo (k) Fluoranthene	NT	_		\neg	NT	 ~	-	+	+	+					<u> </u>
nzo (a) Pyrene	NT				NT	- ⊦		+	 	┽—		4-	_		
ieno (1,2.3-cd) Pyrene	IN				NT			╃	┿	↓		4	L		
benz (a,h) Anthracene	NT			\rightarrow	- NT			ֈ	↓	╀		┸	1.		
nzo(g.h,i) Perylene	TN		-					↓	↓	┸—					
PCB/Pesticide	(ug/kg)	fun	/kg)					 	⊥	\bot		[-	_ T		
xlor - 1254	NT	1-9	9/		(ug/kg)		(ug/kg)	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	(ug/kg)	\perp	(ug/kg)	1	7	ug/kg)	_
Metals	(mg/kg)	\rightarrow $-$		-+-	NT			1	1	T	T	7			_
mmum	NT			— <u>—</u> —'	(mg/kg)	0	mg/kg)		(mg/kg)		(mg/kg	1	- 10	ng/kg)	_
briony	NT		1820		NT	_	5050		11100	, 	484		- `	4180	
enic					NT					_	 	+-			
rium	ТМ		اد 1.3	I_	NT	\neg	2.4	SNJ	0.95	WBN.	 	l w	 -		
yllium	NT		16.6 B	_	NT	7	39.5		122		33.3		~ ├		SBNJ
Jinum Jinum	TN			\neg	TN		0,24		0.5	_		_		41.1	
	МТ			\neg	NT	$\neg +$		- -	 0.5	[0.24	18		0.21	8
CUM	NT	1 3	8800		NT		58800	⊢		⊢–	 	\perp		1,1	
mum	NT	1	2.8	-+-					83100	<u> </u>	54200	_		59900	
aft	NT	+	1.5 B	+	NT NT		8.2		13.6		7.7	╚		6.9	
oper	NT	+-	4.3 B	 -	- NT			8	3.6		3.9	В	\neg	4.2	В
							8.6		3,3						

Table No. 10 Summary of Subsurface Solf Sample Analytical Test Results

Remedial Investigation Stuart-Olver-Hoftz Site No. 8-28-079 Hennetta, New York

						•	ocu (Mett)	I, New Yo	The C				
	compo	32e	Comp	oske	comp	OS CE		TP	•	TF	-5		·-6
Parameter	_ '''	ī	0 110		11/2	/94		11/3/	4	11/3			XX5152 1/94
Volatile Organies	(00/0	01	(40/	- 			0		<u></u> _Г			rad ''"	1594
Chloroethane		-	(30)	'97	(ug/	(Q)	Щ_	(09/1)	(ug/	kg)	(09/	
Methylene chloride		19		-+									407
Acetone		- '}	-+-	-+	 -						20	 	
1,1-Dichloroethene		-+										 	- 6
1,1-Dichloroethane													+
1,2-Dichloroethene(Total)				-									
Chloroform		51		-+									
1,2-Dichloroethane		- " -				-6	<u> </u>					 -	
1,1,1-Trichloroethane			 				$ \Box$					 -	
cs-1,3-Dichloropropene				<u> </u>			-T		_		200		
Trichlometheric				-			$_{-}$		_			╾╾┼	
1,1,2-Trichloroethane						-I			_	- 	+		
Benzene						T	$\neg \tau$			- 	26	, -	_4_
Tetrachloroethene						ĽΤ			_	- 		'	
Toluene		- -		_					_		-+	- -	
Chloroperizene		4/		- - -						-+	-+		6 J
Ethylbenzene	- -	-1'- -		3 7							-+	 -	
Xylene (total)		+-	 -				_7				-+		
Semi-votable Organics	(ug/kg)	┿-		2 7							 -		
henol	(00/10)		(ug/kg)		(Ug/kg)			(ug/kg)	+-		. -		
.4 Dichlorobenzene	- 						一十	1-2-6/	┪	(ug/kg	' -	(ug/kg	
Diethylphthalate	 	(7 J		\perp		57 J			+-	 -			$\bot \bot $
henanthrene	┥—	+-		\Box		_	-		+-	- -	_		
omracene		1 00		59 J	1	30 J			<u> </u>				
aroazole	- 2	11				23 .	+		7 J				41 J
-n-Butyiphthalate		ᆚ_			T	+			-		_		
luoranthene		4_				27/	\dashv		4 1				1
y/ene		0 1	14	O J		917	-	18			42 J		24 J
utylbenzylphthalate	30	01	13	۲ ٥		-10			917				12 J
rnzo (a) Anthracene		\perp				- [<u> </u>				56 J
Trysene	<u> </u>	_			 	- -							
(2-Ethylnexyl) Phthatate	120		5	7 J	7	7/.			٠,٠				
n-Octyl Phthalate	210		7	4 J	12	<u> </u>	+-		7/1	 	4_		3 1
nzo (b) Fluoranthene	360		5	3 1	13		-		-:				3/1
nzo (k) Fluoranmene	190		70	1	9					2	5 1		4 7
nzo (a) Pyrene	130			17	70		\dashv	8; 64		 		5	1/2
eno (1,2,3-cd) Pyrene	120		50	٠	7		+-			 	1_	3	6 J
enz (a,h) Anthracene	110	1	39	- [1 3	+-		1	 	1	2	- L
nzo(g.h.i) Perylene	 					+-			۲-	 	4_	34	0 1
PCB/Pesticide	53	J		Τ	28	1	+-		 -	├ ──	╄		T^{-}
Clor - 1254	(US/(G)		(ug/kg)	1 -	(Ug/kg)	+	+ ,		ا	 	1_		1
Metals	<u> </u>				 	1 –	+ -	ug/kg)		(ug/kg)	1_	(ug/kg)	T -
Tinum	(mg/kg)		(mg/kg)		(mg/kg)	╆	- - ,		 -	ļ	<u>L.</u>	41	T
mony	7070		8020		8390	 	+ "	mg/kg} 8560		(mg/kg)	1	(mg/kg)	Τ-
trice -	LT	$_{-}$				├-	+	6360	 _	7430	1	8320	
Um .	2.8		34	SNJ	70	SNJ	┼						\vdash
dirum	44.9		93.7		73.6	247			510.1		SNJ	3.4	SNJ
mum	0.3	₽ 7	0.35	8	0 43	<u> </u>	+	144	اا	47 1		46.7	
			0.77		1.7	_	╃—-	0 45		0.33	В	0.35	В
niu.	2820		26700	-	1./ 6740		┼—–	0.85	В			0,7	
mum	7.3	$\neg +$	10				∔—	12100	7	23300		12900	<u> </u>
it .	3.9	\rightarrow	- 54		12.7		1	11.3		11.8	-	13 4	

Table No. 11 Summary of Surface Water Sediment Sample Analytical Test Results

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

1	SED.	_	SED-2 F	E	SED	-3	SED-3 E	<u> </u>	I SED 3 D	_
	0-5		0-6		0-6	-	0-6	, L	SED-3 R	Ę.
Í	10/25/	94	10/25/9	4	10/25/		10/25/9	a	10/25/94	
<u>Parameter</u>			2]			٦		ੌ <u>ਕਿ</u>	1 10/25/94	_
Volatile Organics	(ug/kg	2)	(ug/kg)		(ug/kg	_	(ug/kg)		(+
Methylene chloride		7 J		T	7	3 1	I (dg/kg)	- 	(ug/kg)	_
1.1-Dichloroethane			N	Т	_	6 J	N N		N.	
1,1,1-Trichloroethane Tetrachloroethene	l		N	T		7 J	- N		N.	
			N	T		3 J	N N		N.	
Semi-Volatile Organics	(ug/kg	Π	(ug/kg)		(ug/kg		(ug/kg)	'├ ─	N N	4_
Naphthalene				_		201			(ug/kg)	4
2-Methylnaphthalene		T^{-}	T	_		30 J		OLIC OLIC		1
Acenaphthylene		5 J	3	6 J	-+ <i></i>	1017		010	250	_
Acenaphthene				ナー	-+— 	<u> </u>	2700		230	
Dibenzofuran				 		<u> </u>			1400	<u> </u>
Fluorene				_		<u> </u>	1100 2400		600	⊥ =
Phenanthrene	55	ol ı	340		1900		21000		1200	
Anthracene	7	2 J		2 1 -	300		3400		11000	
Carbazole	_]			<u> </u>	220	<u> </u>			2400	
Di-n-Butylphthalate	8	5 J	180			어=	2900	Ind I	1600	J
Fluoranthene	120		810	<u></u>	3000	ᆏᆖ	 	 .		<u> </u>
Pyrene	810	ol J	820	4	2900		34000		17000	
Benzo (a) Anthracene	330	JJ.	260		1100		31000		15000	
Chrysene	690	5	450	.L=	18000		15000		7100	
Bis (2-Ethylhexyl) Phthalate	280	تار	210		3800		18000		8600	
Di-n-Octyl Phthalate		 -	350		3000	યુ——	4700	ND	2400	J_
Benzo (b) Fluoranthene		R	530		27000	.				
Benzo (k) Fluoranthene		R	390		11000		27000		9300	
Benzo (a) Pyrene		R	750		2100		11000		3300	
ndeno (1,2,3-cd) Pyrene		R	91	 	20000		17000		6800	
ibenz (a,h) Anthracene		R	140	·1	6900		22000		5800	
enzo(g,h,i) Perylene		R	1200		7500		6700		2600	
Metals	(mg/kg)		(mg/kg)		(mg/kg)	┼─┤	7900		1800 .	<u> </u>
luminum	10600		NT		4540	├ ┤	(mg/kg)		(mg/kg)	
ntimony	5.1	B	NT	··	+540	\vdash	NT NT		NT	
rsenic		LNS	NT		<u>-</u>	NO	NT NT		NT	
arium	63.2		NT			ИВЈ	NT		NT	
eryllium	0.59		NT.		<u> </u>	В	NT		NT	
admium		 		∤.			NT		NT	
alcium	7020		NT	·	1.6	 .	NT		NT	
hromium	35.5		- NT		7590	.	NT		NT	
obalt	10.1	B	NT	··	14.1		<u>NT</u>		NT	
opper	17.1	· +	NT		3.7	<u> </u>	NT		NT	
on	51000	·	<u>'\</u>		68.9		NT.		NT	
ead	41.2		NT		8970		NT[NT	
agnesium	4000				61.5		NT		ITN	

Table No. 12 Summary of Surface Water Sample Analytical Test Results

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

Parameter	SW-1 10/26/94	·	SW-2 10/25/94	, 	SW-3 10/26/94	
Volatile Organics	(ug/l)	+	(ug/l)	- ~	(ug/l)	Q
Acetone		7-	1 -3.7	+-	(49/1)	
Semi Volatile Organics	(ug/l)		(ug/l)	 -		 -
Pentachiorophenol	 	- 		4 J	(ug/l)	
Fluoranthene		1 J		' "-		-
Pyrene		1 J		┪	-	
Metals	(ug/l)	+-	(ug/l)	+-	(ug/l)	┼
Aluminum		7 JE		/EJ		BEJ
Barium	80.8	3 B	183		48.8	
Calcium	101000)	70400		63900	
Chromium			1	 	<u>-</u>	
Cobalt	- <u>-</u>	 -	· 	 	2.2	
Copper	 -	 -	2.8	<u> </u>	2.4	┪━━━
Iron	744	FJ	4850		4.1	ļ <u>. </u>
Lead	7.4		7.8		2200	
Magnesium	38500	┤ ──	22800		8.2	
Manganese	185	 	909		17400	<u> </u>
Potassium	10400		12400		444	<u> </u>
Silver			12400		12800	
Sodium	96900		69600		2.4	B.
/anadium		- 	3.7		38700	
Zinc	30.6	-	3.7 80.1			
OTHERS	(mg/l)			En	63.1	EJ
Alkalinity	NT NT		(mg/l) 360		(mg/l)	
Hardness	NT	· -	5300	 -	NT NT	[

Notes:

Table No. 13a Summary of On-Site Sump and Catch Basin Water Sample Analytical Test Results

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

1	NSM-	1		NSM-1 F	E		NSM	4		NSM-4 DI	
	10/27/	94	_	10/27/9			10/25/	-		10/25/94	_
Parameter			Q	<u> </u>	\Box	Q	1		0	1	٢
Volatile Organics	(ug/ī)	Ц		(ug/l)	1		(ug/l	,		(Vg/l)	Ť
1.1-Dichloroethane	-			N	T		720	00	E	61000	t
1,1,1-Trichloroethane	-↓			N	ΤŢ		79	00		6500	t
Toluene		_		N	玒					5800	ħ
Ethylbenzene	↓	_		N	<u> </u>					2700	•-
Xylene (total)	∔	_		N	<u> I</u>		L			15000	ħ
Semi-Volatile Organics	(ug/l)	4		(ug/l)			(ug/l)			(ug/l)	t
Phenol	 	1					36	ю		NT	t
4-Methylphenol					Ī		7	4	J	NT	r
Phenanthrene		2 .	J		2 J	,		╗		NT	۲
Anthracene		1	1		ijJ	J		7		NT	<u></u>
Fluoranthene	<u> </u>	5].	<i>J</i>		ijJ			7		NT	_
Рутеле	1	5].			ijij			7		NT	-
Butylbenzylphthalate	14	4		13	3			7		NT	_
Benzo (a) Anthracene	2	2 J			J			7		NT	_
Chrysene		3] J		3	J			†		NT.	_
Bis (2-Ethylhexyl) Phthalate	10	7		10	1-	7		†		NT	_
Benzo (b) Fluoranthene	5	7			J	<u> </u>		┪-		NT	_
Benzo (k) Fluoranthene	2	IJ		3	J	- †	·	1	 -	NT	
Benzo (a) Pyrene	3	ij	-	3	J	_		†-	-	NT	-
ndeno (1,2,3-cd) Pyrene	3	J			Ĵ			†-	 -	NT.	-
Berizo(g,h,i) Perylene	3	ij		3	Ĵ			╁╴	 	NT	_
Metals	(ug/l)	1		(ug/l)	H	7	(ug/l)	╁	-+	(ug/l)	_
Uuminum	2940	1		INI		-+	15700	F	_	NT	_
Intimony	13.2	В		NT		-	111	٠		NT	_
vsenic	4.1	В	 	NT		- †-		ا ــــ	SN	- NT	-
Sarium	198	В		NT	-		918	4		NT	_
admium	34.7	t –		NT			4430	ا _ـــ	 -	NT NT	_
alcium	36800	i –	-	NT		-†-	191000	ا ــــــــــــــــــــــــــــــــــــ			_
hromium	454			TN		-†-	4940	 -	 -	NT	
obalt	11.6	В		NT			266	-		NT	_
оррег	261		7-	NT			3580			NT	-
on	5630			TN		- 1	700000	F		<u>N1</u>	4
ead	457	_		TN			696	-		<u>N</u> 1	-
lagnesium	4870	B		NT	-	-†- -	17300	R		NT	\dashv
апдапеѕе	288			NT NT			7980	Ξ-		NT	-
lercury	2.4			NT		·· 		-		NT	-1
ickel	840			NT		+	56700	F		NI	-{
otassium	2140	R	— <u>†</u>	NT NT			68800			TN	-1

Table No. 13b Summary of On-Site Sump and Catch Basin Soil Analytical Test Results

Remedial Investigation Stuart-Olver-Hotz Site No. 8-28-079 Hennetta, New York

Parameter	NSM-2 10/27/94	_ [_ 9	NSM-2 Dt 10/27/94		NSM-3 10/27/94	
Volable Organics	(ug/lg)		(ug/kg)		(ug/kg)	
1,1-Dichloroethane	3200	νĮ	250	OU JD	1-3-37	+
1.2-Dichlomethene(Total)	1700	N J				
1,1,1-Trichioroethane	100000	OE	200000	χOΙO	83	20
Trichloroethene	890	01				-
Tetrachloroethene	8800	0 1	9100	α JO	3.	. os
Toluene	11000	017	11000	QL 00	54	<u> </u>
Chlorobenzene	860	0 1		1		+-
Ethylbenzene	920	0 J		1-		+
Xylene (total)	4400	υJ	4600	O JD	40	N J
Semi-Volatile Organics	(ug/kg)		(ug/kg)	+-	(ug/kg)	- 1
4-Dichlorobenzene	1000	1	 	1	(-9-9)	+
,2 Dichlorobenzene	3900	7	550	مداه		+
Vaphthalene	1400)JJ	180	OL O	110	
-Methylnaphthalene	420)]	1	1-5-		013
imethyl Phthalate	440	J	 	┪──		012
cenaphthylene	600	1	 	+		" -
cenaphthene	490	1,	 	┼-		┾
benzofuran	440	J	 	 	 	┼—
luorene	770	_		QL (c		┼
henanthrene	12000		16000		 	
nthracene	1200		1500		3400	-
arbazole	1800	<u> </u>	2500	_	590	+
i-n-Butylphthalate	2500	.,		_	680	
uoranthene	14000	-	3200		8000	-
yrene	13000		19000		7200	
rtylbenzylphinalate	65000		18000		7200	<u> </u>
enzo (a) Anthracene	4400		110000	<u> </u>	28000	
hrysene	17000		5100		3100	<u> </u>
s (2-Ethylnexyl) Phthalate	44000		21000	_	5200	J
-n-Octyl Phthalate	1300		67000		8200	٦,
enzo (b) Fluoranthene	14000	-	1700			_
nzo (k) Fluoranthene	4400		17000		5400	J
nzo (a) Pyrene	2800		9000		2000	J
ieno (1,2,3-cd) Pyrene	7400		4200		3200	J
benz (a,h) Anthracene			9600		3100	J
nzo(g,h,i) Perylene		J	2800		750	J
Metals	3500	J	5700	JD_	1200	J
/minum	(mg/kg)		(mg/kg)		(mg/kg)	
bmony	4460		NT.		3250	
senic	13.6		NT		5.3	В
num	46.2	5]	6.6	
dmium	384		NT		148	
icium	63.3		NT		4.2	
			TN	7	162000	
romium balt	714 °		NT		165	

Table 14a Summary of Round 1 Overburden Groundwater Sample Analytical Test Results

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrielta, New York

Marie Committee	(vq/)	<u>a</u>	(ug/) 6200 D 9.2 J 60	(ugil)	7.4 .J	(Vg/I				7/7/95		7/10/95		SOH-OW-85
Viny chloride Chlorosthane Acelone 1,1-Dichlorosthane 1,1-Dichlorosthane 1,1-Dichlorosthane 1,1-Dichlorosthane 1,1-Trichlorosthane Irichlorosthane		6200 D			(VO/I	- Se	A 100000000000 420 - may 100 to				-		7/7/95	
Chloroethane Acelone 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Irichloroethane 1,1-Irichloroethane 1,1-Irichloroethane 1,1-Irichloroethane 1,1-Irichloroethane 1,1-Irichloroethane 1,1-Irichloroethane 1,1-Irichloroethane 1,2-Irichloroethane 1,2-Irichloroethane 1,2-Irichloroethane 1,2-Irichloroethane 1,1-Irichloroethane 1,1-Iric			9.2 J 60		?.4 .J		-		See de		a		Q	
Acelone J. Dichloroethene J. Dichloroethene (total) J. Dichloroethene (total) All J. J. Trichloroethene (total) All J. J. Trichloroethene Semi-Yoldikie Organics Henol Methylphenol ophorone J. J. Welthylphthalate J. J. Welthylphthalate J. J. Welthylphthalate J. J. J. Trichloroethene Semi-Yoldikie Organics Methylphenol ophorone J. J. J. J. J. J. J. J. J. J. J. J. J. J			60				- 1	(49/1)	2000	(h04)	200	(VO/)	8000	(vo/I)
, 1-Dichloroethene , 1-Dichloroethene , 2-Dichloroethene (total) - Chloroform , 1, 1-Trichloroethane - Frichloroethene			60			1						I I		5
,1-Dichloroethane ,2-Dichloroethane ,2-Dichloroethane ,2-Dichloroethane ,2-Dichloroethane hloroform ,1,1-Trichloroethane richloroethane richloroethane etrachloroethane seric			60		ľ		·· ····			21				
2-Dichloroethene (total) hloroform 1,1-Tirchloroethane richloroethene (TCE) 34 1,2-Trichloroethane eliachloroethene Semi-Volatile Organics henol Methylphenol ophorone 1-1-bufy phthalate 15(2-ethythenyl)phthalate 114 B admium 114 B admium 115 BE senic admium 150 BE senic 173000 150 BB 180 Senic 180 BB 180 Senic 180 BB 180 Senic 180 BB 180 Senic 180 BB 1		· -			17 J		··	··		<u>-</u>		I		9.8
Chloroform			4000]	100 D		<u></u>	-{·-··	_ _	900			— ·	4,7
			4800 D		14	·-		-	_66	3700	0	1500	ᇑ	180
				*						lI			<u> </u>	2.9
1,2-Trichloroethane elizachloroethane Semi-Yolalile Organics herool Methylphenol ophorone				***************************************	70	[·	•			J	i		: <u>-</u>	
etrachloroethene Semi-Yotalile Organics (yof) herool Methylphenol ophorone			800 D		i 1 1	-				24000	<u></u>		-	·-·
Semi-Yolalile Organics (yg/l)	11				^ 'I '		-			88		140000	ō-l ∙	
heno	AL CONTRACTOR DESCRIPTION OF THE PERSON NAMED IN COLUMN 1	i	1500 Ö		77			·	_ [[12	1		<u>-</u> - -	—
Methylphenol ophorone Image: serie ophorone	(vg/l)	200	(vg/l)	(uo/i)		2 0100000000000000000000000000000000000				2400			-	
ophorone - n-buyly phihalate - sci?- ethythenyl) phihalate - welats - welat	1			**************************************	~~ ××	(VO/I)	300	(vo/)	96 200	(voh)	2000	(007)	SO 20	3.3
In-butyt phihalate	1 * - 1		· ·· · · · · · · · · · · · · · · · · ·								****		× 1	(00/)
]	~-		—ŀ		ᆁ	
	1 · · ·				-1								<u>. L</u>	I
Metals (ug/l)	1 : : :	-71							··-	·—	.	23	!_	T
Iuminum 152 BE	(balls s				1 3		2 J	·	-기그		<u>-</u> -∤.			
114 B arriver			(ug/l)	(ug/l)	2.5	(00/1)	20% gener	(Ua/1)	रही संदर्भ		<u>.,</u>			
admium alcium 173000 hromium 15 bball 45 B pipper 55,9 n 96700 ad 2,5 B grignesium 52100 hriganese 450 ckel 41,6 lassium 2900 B dium 124000 hadium 124000		5 7	200 E.1	10	.i B 30 E.1	6	60 E.1		30 E.1			(UO/)		(U(I/I)
admium 173000 historium 173000 historium 173000 historium 15 historium 17 historium	76.6	ы		6			5.4 BJ			728	드기.	321	1-	28.9 BE
15 15 15 15 15 15 15 15	, , ,	٠,	71.5 B	98	8 B		78 B		50 B	86.6	<u>-</u> . .	4.6 Bt		
htromium 15 ball 4 5 B ppper 55.9 m 96700 J ad 2.5 B ggnesium 52100 mganese 450 ckel 41.6 tassium 2900 B see dium 124000 madum	102000	· 1				1			ا ۾ اپي	86.6	8	81.8 8	9. [31.5
oball 4 5 B opper 55.9 m on 96700 J ad 2.5 B sgnesium 52100 m singanese 450 m ckel 41.6 m tassium 2900 B ever dium dium 124000 m	102000	- 1	126000	10700		126	00	1030	ا - ام].	5.5] `	
Depper	1	[34 B	,3		3	9 1	2		140000	- I	61000		86100
96700 J ad 2.5 B 1981000 52100 1993000 450 141.6 1assium 2900 8 4000 1993000 199300 199300 199300 19	النة ا	٠, ١	5 B	. 3	8 B		4 B		- 1 1		8	. 82 E	3 "	
ad 2.5 B Ignesium 52100 Inganese 450 Ikel 41.6 Iassium 2900 B ver dium 124000		В	_ 79 B	12		l	38		: I . T I		₽. .		1.	
S2100 S2100 S2100 S2100 S2100 S2100 S2100		<u>:i </u>	65800	3450	رت افد	20		3		6.9	밀	38.6		
Inganese 450		₿J	·····	2	ol ë l		20	106		8560	ין כי	40300	-1	320
kel 41.6 assium 2900 8 greer 124000 aadum	63800	-	62300	5440		682				9.4	_i-	2.7 BN	动一	
tassium 2900 8 ver dium 124000	218		707	37			53	595		56400	_ -	43400	:=	59700
ver 124000		B	43,5	11			9	3		350	-1-	684	-J:-	85.4
dium 124000	8680	[]	2860 B	347		169		1		55.3	- -	32.6 B		
nadium 124000	[1			7 5 1	169	~ .	157) jox	4250	6 -	9880	-	48.6
	153000	- 1	32300	2710	::	•	اات		-1-11		⁻	1.4 B		4 <u>0</u> 30 B
اغن ا		1		47 10	게 1	495	C	4810		34700	~}~	21200	'- -·	
45) J		Ĵ	30.7	25.	اناة		8 8	7	5 B		··· ·			42100
Others	24 3	33 33		ZD.:	1000	66		62	5 j	21.2	7·1-	<u></u> 26.B	-	
nide (vg/l) 11.5 NJ	24 3	41	**************************************	*******************	 3334		4 288		9 388 2		80 30	38.2	٠,	15 3 8
alinity, as CaCO3 (mg/l) 380	100000000000000000000000000000000000000		380		: [-				7-1-	- <u> </u>	<u>~ ×∞</u>		188	
dness, as CaCO3 (mg/l) 560	24 3 11.3 N 340 580		520	180 500	<u> </u>	2	일[<u> </u>	410	╌∮╾	200	۔۔ا۔	260

- 1) Blank indicated parameter not detected at the respective detection limit

- 1) Other molecular parameter not detected at the respective detected.
 2) NT Not Tested.
 3) See Figure No. 3 for sample locations.
 4) Q = Data Qualifier See Appendix G for qualifier definitions.

Table 14a Summary of Round 1 Overburden Groundwater Sample Analytical Test Results

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

Parameter	SOH-OW-9S 7/5/95	6	SOH-0W-10S 7/5/95	٦	SOH-0W-11: 7/5/95		SOH-B-101-0W 7/5/95	,	SOH-MW-2 7/10/95		SOH-MW-3 7/10/95	SOH-MW-5	SOH-OW-LS
Volable Organics	(VQ/I)	_	(Ug/i)	-	200	Q				۲a	¬	7/10/95	7/13/95
Vinyi chloride		 	100011-00		(up/)		(VQ(I)	1.00	(Vo/I)	100			<u> </u>
Chloroethane		1 **				? J.		Τ.	202.10411.000		(VQ/I)		(VQ/I)
Acelone		• •				.1		``	- ··	-	27 D	11000 D	
1,1-Dichloroethene					~	1"		-	· ·—	·			- .
1,1-Dichloroethene				٠	19	j	9	el - 76	:	·I		`	╾ ╎╾ ╌╾╌┈╷╎╌
1,2-Dichloroethene (total)					8 (j		èl TC			42 D 250 D 49 D	- - 	~ ,.
Chloroform					**********	-			10000	D	250 D	·} 	
1,1,1-Trichloroethane		- 1	7 2	j		1		1 3	590	JO	49 D	7200 D	- .
Trichloroethene (TCE)		l l		٠ ا	520	0		-[] -	1	. 7200 D	·
1.1.2.Table (TCE)			1		520	ן א	1400	O. K	2600	ΪŌ	JÖ	·- · ·	
1,1,2-Trichloroethane		- 1		- [1 1		1	1800		·····		
Tetrachloroethene		- 1	•	- 1		1 1				J		2600 D	43
Semi-Voletile Organics	(VOV)		or (va/l)	3.2				1 '	" " '	J		1	1
Phenol				*****	{vq/)		(vg/l)	35.0	(von)	8.38	Harrison and the second	8800 O	
2-Methylphenol		-1		· [11					(VOVI)	(U-A)	(907)
sophorone	* *** * * * * * * * * * * * * * * * * *			- 1		1 1		l ·			·-·		
Di n-butyl phihalate		. [[!!		l · ·			<u>-</u>		-
Bis(2-ethylhexyl)phthalate	* * * * * * *	4 -]		1 "						 	·[•—]
Metals		٠,	2	J.		1 1							∤···
Numinum	(nO4)		: (vg/l)				(va/l)		·			·	<u> 1 </u>
Arsenic	1110	L J	14900 i	:•J[`	6170	Fil			[00/1]	. (6.1	100 (ug/) 1000 1000	(ug/)	
Barium		[Βυ [3 1	В		F.1	994		1230	3150	360 (UO)
Cadmium	124	B	305	¨	200	۳,	***********	ا ــِ ا	4.5	BNJ	4 6 8 0 1		2250
Calcium		. 1	1	`			157	B	78.5	8 (122 B	3.3 BNJ	<u></u> -
hromium	91700	_	301000	1	237000	~ -			2.4	ВI	3.9 B	191 B	106 B
Coball	3.6	В	316	· 1	257000	[199000		136000		144000	2.8 0	·
	38	8		ã		- 41-			23	Βĺ	21	162000	219000
Opper	29	в	56 9	١,	128	В	2 8	В		·	* *************************************	64 B	4 8
On .	5670	ان	31600	:	36.9	- 1-	26	в	3.8	0	145 8	3 8 B	10.1 B
ead		έl		al-	14200	岁.	1810	ij	3960	.×.∤		24.5 B	9.3 a
agnesium	50000	۲.	132000	٠ [.	146	,s	19	- 1		ÜNE	3860	5770	6080
anganese	105	: [-		: I -	97200	l ₋	68600		82500	44,374	<u></u> 10 Ni	7.6 NJ	20 1 NJ
ickel		<u> </u>	1420		930	[120		154	-	825000	66800	75800 N
olassium	6680	۱.۳	89.1		83.4			****	· ·· · <u>125</u> [/.	276	695	808
Ver	6000	-1	27500	- 1	6200		3240	ë l	·····	J.	32 8		
odium	1 12223	1		1		··· [밀	4030	В	5330	2760 B	
anadium	, 103000		168000		35900	· [- 1	1.5	8	1.5 B	4!20	2940 B
ne l	3 6	3	28.2 8	i I		ő i	50600	- 1	42800	` T	63000		1.9 B
	31 .	1	169 J	.] .	114	٠].		. [٠.		40300	73900
				8 33	119	_اد	33.5	7	23.6	J	34 B	8 8	82 8
anide (l/Q/l)		T	<u></u>	<u> </u>		80 B		ा		(S)	A CONTRACTOR NAME OF THE OWNER.	46.2	79.7
ralinity, as CaCO3 (mg/l)	240	-	200	·-				7		<u> </u>		**************************************	000000000000000000000000000000000000000
rdness, as CaCO3 (mg/l)	420	-	850		970		460		310		230		
												400	

- 1) Blank indicated parameter not detected at the respective detection limit
 2) NT Not Tested
 3) See Figure No. 3 for sample locations.
 4) Q = Data Qualifier See Appendix G for qualifier definitions.

Table 14b Summary of Round 1 Top of Bedrock Groundwater Sample Analytical Test Results

Remedial Investigation Stuart - Olver - Holtz Site No. 8-28-079 Henrietta, New York

Dan		DW-1R 1/95		-OW-2R 11/95	SOH-C			OW-4R 3/95		OW-7F 3/95		W-1R		
Parameter		<u>_</u>	7	Q	7	0	┧ '''	م ر	⊣ ‴	ه آ		2/95		2/95
Volable Organics	ં (પવ ્રા)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	(ug/l)	6 -38 238	(ugft)	81 200 1 10	- (frag)		(ug/ī)			0	. 1	
Chloromethane	\perp			1	8.1		(00///	*******	· i · · inda(i)	<u> </u>	(ug/I)	sala sala sa	· (lug/l)	(i) A(j)
Vinyl chloride		1	1	1	 	+-	┼──	┽—–	┥──	+-				
Methylene chloride	1	\top		 	┪──	┼─-	 	+	J		11	이 이		
Acetone		au	6.5	, 	12	+	 	↓	550	O BC				
1.1-Dichloroethene	T	 	 	 -	 	 -	 -	∔—						
1,1-Dichloroethane		 	+	┼─-	╃──	├ —	 	-	25			\top		7-
1,2-Dichloroethene (total)	 	╅──-	3.8	 	┼	-	1	-	590	O C	2	1 JD		+
1.1.1-Trichloroethane	 	-	 	'}' -	 -	 -	14	4	900	<u> </u>	58	d o	670	, 10
Trichloroethene (TCE)	 	┿	┪━-	——		 _		+-	170	Or (c		 -	+	-
2-Hexanone	 	┼	┪───	 	 -	 _	15	5	10000) 0	64	D	┪	+
Tetrachloroethene	╅──	+	 -		5.4	J		<u> </u>		7	1	 	+	╅—
em-Volatile Organics	a color Zenia proces	00.00000	0 000 m		<u> </u>				66	JD	 	+	╅──	╅—
Phenol	{nbu}	100000000000000000000000000000000000000	(ngn)	****	(ug/l)	OFFICE OF	∴(ug/l)⊗	2000000	(trg/f)	1.4888	(Ug/I)	00000000	്(ലൂന്)	0.0000
4-Methylphenol	├──	₩—	<u> </u>		ļ				10	-	7		**********	S 1999
Isophorone	├	├	├ —		<u> </u>				2	J	┪───	┼──-	 -	┿—
Di-n-butyl phthalate	 	┾	ļ						3		+	 	\	┥—
Metals	500 2 minutes	ļ	1	J	1	J			1		 	 -	 -	╀-
Aluminum	(ug/l)	- See	(ug/I)		ં (ug/t)⊗	:365 or 1	(ug/l)	28.43333			(ug/I)	Sala acces	1	
Antimony	559		290		248		1400		247	1.00,0000	753		(ug/1)	
Arsenic		ļ							 -	 		<u> </u>	522	<u> </u>
	8.3	Вил			4.8	Вил		 	3	BNJ	47.8	В	 _	↓
Barium	61	В	35.4	В	10.4	В	23.5	В	41.4	BNJ	18.6		11	SN
Cadmium	2.7	ΒJ	3.3	BJ			3	BJ	41.4		62.8	В	44.5	L
Calcium	83900	L	73000		388000	-+	458000	- 35	208000		190		51.4	<u></u>
Chromium	13.3		8	В	7.8	в	4.8	В			224000		202000	
Cobalt	4.1	В	4.6	В	3.5	B	2.1	- <u>B</u>	4	_ <u>B</u> _	3700		110	
Copper	52.8		45		65.9		29.6		2.4	B	19.4	B	18.8	В
Iron	89800		64800		60200	- -	39300		36.1		678		280	
Lead	3.5	צ	2.2	ВИЈ				BSNJ	42300		265000		49800	
Magnesium	51700		33600		44000	+	59700	BSNJ	2.4	BNJ	78.1	NJ	35.4	SN.
Manganese	874		836		1670	-+			23400		28400		55100	
Mercury	0.39			-	1070		606		518		559		428	
Nicke!	54.3		39.3	B +	38.3	_	0.24				0.2	В		
Potassium	8420	-	9970	 -	13300	_B_	25.5	В	66.3		1270		7770	
Silver	3	B	1.4	В			19100		75600		6570		10200	
Sodium	18100	-	18100	╼┽	2.1	В	2.2	В	2.2	В	15.8		2.6	В
Vanadium	5.2	B	3.8	- - -	16200	_ _+	22200		81600		18700		87600	
Zinc	45.5	 +	36.4	 -+	3	В	3.5	В	3.4	В	22.7	В	3.9	В
Others	13.3	3,20 (1)			34.6		25.4	I	34	$\neg \neg$	2790		961	
Alkalinity, as CaCO3	230	- 4							1860 (1966) (F	1.09	2000 August 1	3838335	200 Silversion :	363666
Cyanide (ug/f)	- 430	 -+	61		34		150		57		120	-	280	
Hardness, as CaCO3	460				1	ſ					16.6			

Table No. 14c Summary of Round 2 Overburden Groundwater Sample Analytical Test Results

Remedial Investigation Stuart - Olver - Holtz Site No. 8-28-079 Henrietta, New York

Parameter	SOH-OV 10/3/5		10/4/1	95	SOH-OW 10/4/9	5	SOH-OW 10/4/9	5	SOH-OW- 10/3/95		SOH-OW-		SOH-OW 10/4/9		SOH-OW 10/3/9		SOH-OV	
Volatile Organics (ug/l)	(ug/l)	+	(ug/l)	- 9		10		10		Q		Q		वि		ក	10/2/9	У 5 Г
Vinyl chloride	- -	+-	(0911)	+	(ug/l)	. —	(ug/l)	4	(ug/l)	<u> </u>	(ug/l)		(ug/l)		(ug/l)	+-	(lugu)	╅
Chloroethane		·	***		140					ļ. <u>.</u> _				\top		╁	_\ <u>_</u>	+
Melhylene chloride					· [• [ļ				ļ	_ [] —	-		j		-1
1.1-Dichloroethens	h	· ·-			ļ	، [.	4	J	30	O J		1	5,6	J	 	-1
1,1-Dichloroethane		1		-		. I ;		1	9.4	J	45	0 J		1-	3.6	1.		
1,2-Dichloroethene (total)		٠, ا		1 -	64		170)	97		150	0	1000	15	130	4		[
1,2 Dichloroethane	1	"			2900	?]			39			"	9300		3.3	1 —		٠ŀ
1.1.1-Trichlorgethane	l	1				.]]		1.1		"		1		·		1		٠
Trichloroethene (TCE)		.					50	١	3.2	J	14000	DJ		[:				·
1,1,2-Trichloroethana	26	1			350			l. I	28		62	į ,	140000	-		 -	*****	
Telrachioroethene		ļ		1		1 .		'`								┝		4
Xylenes (Iolal)	8.9	1		١.	640	l I					1600	i	·			-		. -
	- <u>-</u>	 _												┨╼╌┨		-		J.
Semi-Volatile Organics	(ng/t)	lacksquare	(vg/l)		(uni)	LT	(nbu)		(ug/l)	\dashv	(vg/l)	╁╌	(ug/l)	╀╼┨		\vdash		1
2-Methylphenol	NT		NT		NT	П	NT		NT	7	NT.	-			(ug/l)	Щ	(ug/l)	1
4-Methylphenol	וא.	ŀ	, NT] [NT		NT		NT IN	•	NT		7.9	ا.ت. ا	NT	,	NT	١.
leopherone	. NT		NT		NT		NT		NT		'\\	-	1.4	JN	NT	_	NT	Г
Dimethyl phthalate	ΝĪ		NT	1 1	NT		NT	1	NT	.		-	19		NT		NT	l
Diethyl phrhalate	NT		NT		NT		NT	- 1	NT NT	.	NT.	1	0.74	ا يا	NT		NT	
Bist2-ethylhexyllphthalate	NT		NT	1 1	NT		NT		NT .	ĺ	NT		1.6		NT		NT	1
Metals	(ug/l)		(ug/l)		(ug/l)		(vg/l)	-+	(vg/l)	-+	NT	\sqcup	2.4	1	NT		NT	1
Areanic						$\neg \uparrow$	10.8	, 	(09/1)	-+	(vg/1)	\sqcup	(ug/I)		(ug/l)	П	(Ug/1)	Γ
arlum	69.7	BE	78,8	В.	38.7	В	79.6	٠ <u>-</u> إ-،		[-		 .	4.8	밆		\neg	3.7	١,
admium	2	8					2.4	<u>-B</u> -	130	BE	78.2	Bξ	78.0	8	35.0	BE	88.8	Ē
hromium	10.3			· ·	· · · · · · · · · · · · · · · · · · ·	-		. B			···•	_]		 -		- -		ŀ
opper	39.7	- 1	·· ··· - - ·] .					<i></i> [. 1	2	В		-	···• · · · · · · · · · · · ·	١.
ned .	1.8	в	2.7	8		_ [.	[3	8			3.7	8		1	******	
lercury	'."			- "	1.2	₽.	· · · · · ·	.	2.4	e _	4	- [1		·	· · · ·	
ickal	12.1	В				- J.,						- 1						ı
ilver			·		<i></i>].		86.6	1.	43.8		32.7	8		-	91.7	- ∤-		
ne		<u>.</u> J.		. <u>-</u> J	··· ··· · · · · · · · · · · · · · · ·			_] , _		J.		1	1.6	8	- ·		···- · · · · · · · · · · · · · · · · ·	
···-	18.6	В	13,5	8 [10.5	в	10.3	8	15.4 E	; I	9.6	/ 8	48,3	<u>- -</u>		!_	[

- Blank Indicated parameter not detected at the respective detection limit
 NT Not Tested

- 3) See Figure No. 3 for sample locations.
 4) Q = Data Qualifier See Appendix G for qualifier definitions.

Table 14c Summary of Round 2 Overburden Groundwater Sample Analytical Test Results

Remedial Investigation Stuart - Olver - Holtz Site No. 8-28-079 Henrialia, New York

Parameter	SOH-01 10/2	/95_	05 SOH.O1 0 10/2	195_	s	SOH-B-101-6 10/2/95		SOH-MM 10/3/95	: _	10/3/9	V-3 5	SOH-M 10/3/	W-5	SOH-OW	/·LS
Volatile Organics	(00/1)	Т	(Ngu)	7	₹	(vg/l)	a		I		[0	1	ੌਰਿ	10/2	/95 [C
Vinyl chloride]	T			ᅱ	(00/1)	4_	(ug/l)	L	(ug/l)	Г	(ug/1)		(Ug/1)	十
Chloroethane	1	[-		- -			۱	·	<u> </u>	3.	1	90	100	1000	+
Methylene chloride	··	-	-· <u>-</u> .]		1	 -	-	 	-
1,1-Dichloroethene		-	-	. -			.	350	J	3.6	汀	10	0 1	 	-}-
1.1-Dichloroethane		·- ·		-	۱.	380	'n	260	Ĵ	10	il '-	- -			-J-
1.2-Dichloroethene (total)		-	'	<u>.</u>	1			7800	·-·	110	† ···		-∤		- -
1.2-Dichloroethane	-	·-		. .	1		L	620	Ĵ	43	••••	470			- -
1,1,1-Trichloroethane	" "	- -			1.		١.,				i .		9 9		.
Trichloroethene (TCE)			87	!]_	. .	2800		3200		34	1 1		[.
1.1.2-Trichloroethane		- -	·	. .						2.4	ا تـــا ا ز				_
Tetrachioroethene	·	-			.	10.0.000					•	1200	1-1	- -	- -
Xylenes (Iolai)	·-·	·/-	 	.	4.	·· •				15		5	↓ L		- _
Semi-Volatile Organics	(1100)	╀	-├	┺	L							4300	 -		1
2-Methylphenol	(ug/i)	╂	(NgN)	↓_	1	(ug/l)		(ug/l)	_	(ug/l)			╀		┸
4-Methylphenol		-	<u>NT</u>		L	NT	\neg	TN	-	NT	}	(ug/l)	\perp	(up/l)	丄
Isophorone	NT	-	NT.	ļ	L	NT		NT		NT		NT	∤ ₋	NT	_[_
Dimethyl phthalate	NT 	1	NT	1		NT	- 1	NT .	" - 1	NT		NT.	.	NT	.]
Diethyl phthalate	NT	١.	NT	ļ.		NT	- 1	NT	•	·	- 1	NT	1.1	NT	1
Bis(2-ethylhexyllphthafate	NT	1	NT	١.,	l.	NT	- 1	NT .	٠.	, "- TN	ı	NT		NT	l'''
Metals	NT	<u> </u>	NT			NT	- 1	NT	-	- 1	-	NT		NT	Ι.
Argenic	(ug/I)	L	(vg/l)			(ug/l)	7	(ug/l)	+	NT (ver)	-	NT		NT	
Berlum			4,6	βJ			十	- '	+	(ug/i)		(vgv1)		(vg/l)	
Cadmium	146	BE	147	BE		184	-: · 3ε	69 B	-1.		B. _		_L		П
Chromium						2.1	.		- -	104	!E _	166	BE	168	BE
Соррег	10		6.4	в	•						-				
.ood	6.3	8	10.2	B	-	3 6			l		• _		1	9.5	В
			3.2	"	1	18.9	-			3.7	3	8.6	в 📗 "	60.8	
Mercury			0.23	-			-		1.	<u></u> .	١.,			61.6	s
fickal	144		48.8	7			1		J.,	,			-" '-		1
ilvar		-1		· · [·					1.	18.8		17	8	17.4	В
line	26.8	1	38,2	٠-					1		1-	~			-

- 1) Blank Indicated parameter not detected at the respective detection limit
 2) NT Not Tested
 3) See Figure No. 3 for sample locations.
 4) Q = Data Qualifier See Appendix G for qualifier definitions.

4

Table 14d Summary of Round 2 Top of Bedrock Groundwater Sample Analytical Test Results

Remedial Investigation Stuart - Olver - Holtz Site No. 8-28-079 Hennetta, New York

	1.22													
	SOH-C)W-1	R SOH-C	DW-2R	SOH-C	DW-31	R SOH-	DW-46	SOH-C)W-7F	R SOH-I	W/ 4D	T	
Parameter	10/4	¥9 <u>5</u>	10/4	4/9 <u>5</u>	10/	5/95		5/95		5/95	10/6			
	-			Q	3	a	7	Ō	† `````	<u> </u>		, <u>o</u>	10/6	3/35
Volatile Organics	(ug/l)	**	(ug/l)		(ນ໘/1)		(ug/l)	.1 84.33	i i i i i i i i i i i i i i i i i i i	_	⊚(ug/I)		 	4
Vinyl chloride Chloroethane	+	_					 \ 		2	4	6			
	- -					$\neg \neg$		+-	2		+	9 1	8.	뙨
Methylene chloride						7 J		 	3400		 -	┥—	 	4
Acetone	 				T		 	+	100		┦──	┦——	 	┵
Carbon disulfide	1					8 J	 	┪—	+	' 		+		\perp
1,1-Dichloroethene						+-	 	+	120	. -	 	↓		\prod
1,1-Dichloroethane			1.5	5 J		+-	 	 -	130		 	┴	5	5[-
1,2-Dichloroethene (total)		7-	5.	5 .			 	 	3100		96		28	ī
1,2-Dichloroethane				1		+-	┼──-	┥	6900		670	<u> </u>	280	ī
1,1,1-Trichloroethane		1-	 	 		+-	┼──-	 -	12		<u> </u>	$oxed{\mathbb{L}}$		Т
Trichloroethene (TCE)	1.8	3 J	1.5			+-	 -	↓	110				110	1
Benzene	 	1-	+	' " 		+-	 	 .	7100	D	150		19	1
Tetrachloroethene		 	 -	╁─┤		┼—	ļ	ļ.,	3	J				T
Toluene		+-	 -	╁╸┪		┼-			4	J				t
Ethylbenzene		╅┷╌	 -	╂╼╾╁		┼	<u> </u>	 _ 	8	J			1.5	H
Xylenes (total)		+-	┿	┼┼		 		1_1	2	J				H
Semi-Volatile Organics	(Vg/)	1000000	300 fee and 3	} 	1 4	ļ			9	_				-
2-Methylphenol	NT		(ug/l)		(lugvI)	1	(ug/l)	<u>ক্রিপুটার</u>	(l/g/l)	Mary 18 de	(ug/I)	1523936	(ug/l)	(S)
4-Methylphenol	NT	_	+		NT		TM		1.4	J	NT		NT	
Isophorone	NT	_	NT		NT		NT		0.83	J	TN	-	TN	_
Di-n-butyl phthalate	NT	_	NT	\vdash	NT	ļļ	NT	\Box \exists	2.7	J	NT	$\neg \neg$	NT	
Bis(2-ethylhexyl)phthalate	NT		NT NT	┡	NT		NT		0.96	J	NT	-+	NT	_
Metals			NT	├	NT		NT		2.7	J	NT.	-+	TN	
Arsenic	(ug/l) 11.6		(ug/l)	X4.113;	(սգմ)		(ug/l)	14.2%	(ug/I)	893.c	(ug/l)	20000000 0	(49/1)	0000
Barium	72.4	_								BWJ	23.3	S	8.2	8
Cadmium	/2.4		47.8		4.8	В	11.1	В	33.4	В	109	В	60.9	E
Chromium			3.2	В						- 	797	- +	288	
Copper	8.3		44.7		3.5	В	2.5	В			4380	 -	207	
Lead		В	10.3	В	8.7	В	4.5	В	10.3	В	708	 -	378	
Mercury	9.3		3.6							- +	72.7		75.8	
Nickel					0.41	\neg			0.22		- 12.1			
Silver	19.5	_B_	23.7	B					40.1		2410		0.34	
Zinc					1.3	В							4660	
ZINC	29.5	T	38.8		22.2		20.7		46.3		18.3 4280		955	В

Notes:

¹⁾ Blank indicates that the parameter was not detected at the respective detection limit

Table No. 14e Summary of October 1994 Ruby Gordon Sump Sample Analytical Test Results

Remedial Investigation Stuart - Olver - Holtz Site No. 8-28-079 Hennetta, New York

Parameter	RG-SI 10/2	7/94	1	RG-St 10/2			RG-SI 10/2		
Volatile Organics	(ug/l)	7	_	(ug/l)	-	<u> </u>	(11-7)	4	
Vinyl chloride			-+		17	_	(ug/l)	+	
Methylene chloride			─†.		34	В	 -	76	Ë
1,1-Dichloroethene	7	6	<u>, ,</u> †.		-	Ť	 	4	
1,1-Dichloroethane		39	<u></u> †−†-	63	20	D	1-46	ō	_
1,2-Dichloroethene (total)		9	,⊤†-	59		<u>5</u>	54	_	_5
1,2-Dichloroethane		1				J	 	3	_P
1,1,1-Trichloroethane		6	— <u>†</u> -	200		5 –	160	<u> </u>	7
Trichloroethene (TCE)		5 J	r-t-	55		<u>D</u>	53		므
1,1,2-Trichloroethane					<u> </u>	1		<u>-</u> ,	<u>.</u>
Bromoform		╁			" -	-		8 1	J
4-Methyl 2-Pentanone		╅┈	-1-] -	J.
Tetrachloroethene		<u> </u>		15	ᆔ-		9		J
1,1,2,2-Tetrachloroethane		╅	-1-		Ϋ—			읶-	
Semi-Volatile Organics	(ug/l)		+-	(ug/l)	┰	┥	(11.0)	4	J.
Phenanthrene	 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	╅	+	(09/1)	-	1	(ug/l)	4	_
Anthracene	- 	┪—	 ∤					╀	
Carbazole	-j	+	-		_			4	
luoranthene			· 	<u>-</u>		-+		 	
yrene				<u>'</u> '				┦	
Benzo (a) anthracene	· <u> </u>	┪—-	┪					-	
hrysene				4				<u> </u>	
Bis(2-ethylhexyl)phthalate	2	<u>, </u>			.1	+		ļ	
enzo (b) fluoranthene	-	1	∳		-	-	2	ļ:	J
Benzo (k) fluoranthene		 		3	<u></u>	+		 —	
enzo (a) pyrene	 	 -	╌┋	4	4 	+		ļ	
ndeno (1,2,3-cd) pyrene		+	┪	4	- -	+		! —	
libenz (a,h) anthracene	T	 -	- 	-	۲-				—l
enzo (g.h.i) perylene	1	 	-		-	+		⊢-	
Metals	(ug/l)	 	╅~~	(ug/l)			(i.e. (i)	<u> </u>	4
luminum	106	В	-	951		+-	(ug/l)	<u> </u>	⊣
ntimony	12.1		┧~~~	321		+-	36.5	<u>B</u>	_
arium	94.7	В	 	270		+-		<u></u>	_[
alcium	118000	- <u>-</u> -		18000		- -	163 157000	B	_
hromium	1		† - 5	4.4	В	+-			_
obalt	1		 -	3.8	<u></u> .		2.6	_B	
opper	5.1	В.	·	53.8		+-	2.1	_8	
on	63.0	B		3650		╁╾	59.4		{
ead	1.5	BN		19.6	CAI	+-	181		-,
agnesium	52800			94100	214	+-	74000	81	4.[

Table 14f
Summary of October 1995 Ruby Gordon Sump Sample Analytical Test Results

Remedial Investigation Stuart - Olver - Holtz Site No. 8-28-079 Henrietta, New York

Parameter	RG-SUN 10/5/9	95	RG-SUM 10/5/9	95	RG-SUN 10/5/9	_
Volatile Organics		Q		Q] ,	Q
Vinyl chloride	(ug/l)		(ug/l)		(ug/l)	
Chloroethane			30		15	
Methylene chloride		·	8.8	J		
1,1-Dichloroethene	4	J	120	J	59	J
1,1-Dichloroethane	3.6	<u> </u>	120		60	<u></u> J
1,2-Dichloroethene (total)	26		750	D	310	******
1,2-Dichloroethane	5.2	<u> </u>	760	D	290	••••••••
1,1,1-Trichloroethane		PROMA	4.1	J		
Trichloroethene (TCE)	15		3200	D	1200	
Tetrachloroethene	4.4	J	460	D	210	******
Xylenes (total)	4.6	J	180		78	J
Semi-Volatile Organics	1.6	_J_				
2-Methylphenol	(ug/l)		(ug/l)		(ug/l)	
4-Methylphenol	NT		ITN		NT	
sophorone	NT NT		NT		NT	*********
Dimethyl phthalate	NT NT		NT		NT	
Diethyl phthalate	NT NT		NT		NT	
Bis(2-ethylhexyl)phthalate	NT		NT		NT	
Metals	NT		NT		NT	
Arsenic	(ug/l) NT	 -∤	(ug/l)		(ug/l)	
Barium			NT		NT	
admium	NT		NT		NT	
hromium	NT NT		<u>TM</u>		NT	
opper	NT		NT NT		NT	
ead	NT NT		NT		NT	
1ercury	NT NT		NT		NT	
lickel	***************************************		NT		NT	
ilver	NT		NT		NT	1

Table No. 15 Average Temperature and Precipitation

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

		Temperature (°F)	Precipit	ation (in)
Month	Average Daily Minimum	Average Daily Maximum	Average	Average	Average Snowfall
January	17.6	31.5	24.6	2.4	23.0
February	17.1	32.0	24.6	2.4	22.6
March	25.2	40.6	32.9	2.6	14,3
April	36.2	54.2	45.2	2.6	3.7
May	46.8	66.8	56.8	2.9	0.3
June	56.2	76.6	66.4	3.0	0.0
July	61.3	81.3	71.3	3.1	0.0
August	59.7	78.9	69.3	2.9	0.0
September	52.9	72.1	62.5	2.8	0.0
October	42.4	60.1	51.3	2.7	0.2
Vovember	33.0	46.6	39.8	2.7	
December	22.7	35.3	29.0	2.6	6.6
Yearly Average	39.3	56.3	47.8	32.7	19.4 90.1

Notes:

- 1) Data obtained from the Northeast Regional Climate Center (NRCC) at Comell University.
- 2) Recording period is from 1965 through 1995 in Rochester, New York.

Table No. 16 Summary of Exposure Pallways Considered

Remedal Investigation Stuart - Olver - Holz Site No. 8-28-079 Hendelle, New York

Media	Exposure	Likethood of Exposure	Date Set	Stendards
Surface Soils	ingestion, inhalation and Dermal Cortact by local residents and migration to surface water through eroston	Moderata	AJ Surface Solf Test Results and Samples SED-1 and SED-4	TAGM 4046 Soll Cleanup Objectives Health Effects Summary Table Derived Value
Subsurface Solls	Ingestion, inhalation and Dermal Contact by maintenance workers or local residents.	low	Al Subsurface Soil Test Results excluding samples from OW-11S and OW-95 which are wedlio extablish background.	USEPA Draft Generic Residential Screening Level TAGM 4046 Soil Cleanup Objectives Health Effects Summery Table Derived Values
	Leaching to groundwater.	Moderate	Al Subsurface Soil Test Results ercluding samples from OW-115 and OW-95 which are used to establish background.	USEPA Oreft Generic Residential Screening Lever TAGM 4048 Soft Cleanup Objectives Heath Effects Summery Table Derived Values
Surface Water	Ingestion, inhatation and Dermat Confact by local residents	Moderate	SW-1, SW-2 and SW-3	USEPA Draft Generic Residential Screening Level NYSDEC Class C Weter Standards USEPA Ambient Weter Quality Criteria
Surface Water Sediments	Ingestion, Inhabilion and Dermal Confact by local residents	Moderate	SED-2 and SED-3	USEPA Sedment Quality Critical TAOM 4048 Soil Chanup Objectives Heath Effects Summary Table Derived Values USEPA Oraft Generic Residential Screening Levels NYSDEC Sedment Critical - Human Heath Bloccumulation
Overburden Groundwaler	ingestion, inhabilion and Dermal Contact from use as a drinking water source	tow	All Overbuiden Groundwater Test Results (Round 1 and 2 combined).	NYSDEC Class GA Groundwater Quality Criteria USEPA MCL's and MCLG's
	Ingestion, inhalation and Dermal Contact at points of groundwater discharge	Moderate	All Overburden Groundwister Tesl Results (Round 1 and 2 combined).	USEPA Health Advisories NYSDEC Class C Water Standards USEPA Ambient Water Quality Criteria
Bedrock Groundwater	Ingestion, inhalation and Dermal Contact from use as a drinking water source	low	Al Bedrock Groundwater Test Results (Round 1 and 2 combined)	NYSDEC Class GA Groundwater Quality Criteria USEPA MCL's and MCLG's
On-site Sump Sediment	Ingestion, inhalation and Dermal Confact by maintenance workers or local residents and leaching to groundwater,	low	NSM-2 and NSM-3	USEPA Heath Advisories TAGM 4045 Soll Cleanup Objectives Heath Effects Surrynery Table Derived Values
On-site Sump Waler	Ingestion, inhalation and Dermal Contact by maintenance workers or local residents	Moderale	NSM-1 and NSM-4	USEPA Draft Generic Residential Screening Levels NYSDEC Class C Water Standards USEPA Ambient Water Oustry Criteria NYSDEC Class GA Groundwater Quality Criteria USEPA MCL's and MCLG's
Soli Vapor	Inhalation within the basement of Ruby Gordon Building	Low to Moderala	SUMP-1, SUMP-2 and SUMP-3 results (Round 1 and 2 combined) used to calculate maximum possible vapor concentrations by applying Henry's Law	USEPA Health Advisories NYSDEC Air Guide (
	inhalation within an excavation or basement downgrad ent of the site.	Moderale	All Overburden Groundweier Test Results (Round 1 and 2 combined) uned to calculate maidmum possible vapor concentrations by applying Henry's Law	NYSDEC Air Guide I

¹⁾ See lest section 5.0 for further discussion of Likeshood of Exposure.

Table No. 17 Overview of Properties of Chemicals Detected at Stuart-Olver-Holtz

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

								DIA TYPE				
							TOTAL SAMPLE	LOCATIONS	PER MEDIA	N)		
CHEMICAL	EXAMPLES	COMMON USE/	BEHAVIORAL CHARACTERISTICS	GR	OUNDWATER]				ON-SITE	
CLASS	•	ORIGIN	IN THE ENVIRONMENT		Severely					SURFACE	SUMP AND	RUBY-
			!	Overburden	Weathered	Interior	SUBSURFACE	SURFACE	SURFACE	WATER	CATCH	GORDON
	1				Bedrock	Wells	SOILS	SOILS	WATER	SEDIMENTS	BASINS	SUMPS
			<u> </u>	(18)	(5)	(2)	(24)	(8)	(3)	(2)	(4)	(3)
											<u> </u>	
Volatile Organic Com	-	•	,				Number of san	iple location	detected			
	Trichloroethene		Some of these compounds are more dense than									Γ
	1,1,1-Trichloroethane		water, such pure products would sink in the	1								
	1,2-Dichloroethane		environment (DNAPL). Due to a relatively									ł
	Tetrachloroethene		high Henry's Law constant, volatilization									
Halogenated Alsphatic	1.1.Dichloroelhane	Industrial Solvents	may play a significant role in transport of this	13	5	2	14	4	0	2	3	3
Hydrocarbons	Methylene Chloride		chemical class. Water solubility and partitioning] .					
	1,2-Dichloroethane		coefficients indicate most compounds in this				!					
1	Vinyl Chloride		class have the potential to leach from soils and	1	•							
	1,1-Dichloroelhene		to migrate in surface and ground waters									
			Less dense than water, these compounds,									
			in pure form, tend to float (LNAPL) Due to									
	Benzene		a high Henry's Law constant, volatilization	l i							}	l
Aromatic Hydrocarbons	Ethylbenzene	Petraleum Products	may play a significant role in transport of this		1	1	1 4 1		0	0	3	١.
	Toluena	Solvents	chemical class. Water solubility and partitioning	·					•		J	1
	Xylenes		coefficients indicate most compounds in this	1								1
			class have the potential to leach from soils and	l i								i
			migrate in surface and ground waters,									ŀ
		<u></u>	High vapor pressures Indicate volatility of this									
	Acetone	Industrial Solvents	chemical class, Water solubility and partition									
Kelones	2-Hexanone	Laboratory Solvent	coefficients Indicate a high potential for leaching	1	3	0		.	1	0	_	}
			from soils and to migrate in surface and ground					"	'	U	0	0
			waters.		i							ļ
			While these compounds have low vapor pressures									
			volatilization of this chemical class may be		1			ļ				!
Halogenaled Aromatic	Chlorobenzene	Chemical Intermediate	rapid. Low water solubility and the high partition	0	0		2	3	0	o		} _
Hydrocarbons			coefficient suggests a tendency of these			-	-	, l	ď	υ	1	0
]		compounds to sorb onto solids. The densitles		İ		J	ļ				
			are generally greater than that of water.				Ĭ	ļ				

Table No. 17 Overview of Properties of Chemicals Detected at Stuart-Olver-Holtz

Remediał Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

CHEMICAL		COMMON USE/						EDIA TYPE				
CLASS	EXAMPLES	ORIGIN	BEHAVIORAL CHARACTERISTICS	GR	OUNDWATER		(TOTAL SAMPLE	LOCATIONS	PER MEDIA	<u>) </u>	CATCH	
		CAIDIA	IN THE ENVIRONMENT	Overburden	Severety Weathered Bedrock	interior Wells	SUBSURFACE					RUBY
	· 		<u> </u>	(16)	(5)	(2)	(24)	SOILS (8)		SEDIMENTS	BASINS	SUMP
Semi-Volatile Organ	ic Compounds					<u> </u>	12.7	(0)	(3)	(2)	(4)	(3)
	Benzo (a) Anthracene						Number of sam	vola toast				
	Benzo (a) Pyrene	Coal Burning By-product	Low water solubilities and high partition coefficient				1	ipie locationi	delected			
Polynuclear Aromatic Hydrocarbons	Chrysene Dibenz (a,h) Anthracene Fluoranthene Pyrene	By-product of Internal Combustion Processes	indicate a relatively low potential for teaching and mlgration. PAHs typically display low volatilization rates. Absorption is likely high	0	o	O	12	6	1	2	3	1
Phthelates	Bis(2-ethyhexyt) phthalate Bulyibonzyl phthalate Di-n-octyl phthalate Di-n-butyl phthalate	Plastic Manufacturing Plasticizers	Vapor pressures of this chemical class are relatively low, indicating volatilization is not a significant transport mechanism. Water solubility ranges from low to moderate; partition coefficients are high. This suggests significant leaching to and transport by surface and ground waters to be minimal.	10	3	0	20	8	0	2	3	3
Phenois	Phenot 2-Melhylphenol 4-Melhylphenol	Chemical Intermediates	A moderately low vapor pressure and high water solubility suggests little volatilization. A low partition coefficient suggests minimal sorption onto solids. This class of compounds can readily leach from soils and migrate in surface and ground waters.	2	f	0	3	0	1	0	1	0
liscellaneous SVOCs	Carbazole Dibenzoluran Isophorone	Chemical Intermediates	These miscellaneous compounds are considered SVOCs, and thus are typically characterized by a low water solubility, low vapor pressures and high partition coefficients. Additional details are presented in Appendix G.				/ailes by specific o	compound of	Interest			

Table No. 17 Overview of Properties of Chemicals Detected at Stuart-Olver-Holtz

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Hendelta, New York

		1					M	EDIA TYPE				
			1	_			(TOTAL SAMPLE	LOCATIONS	PER MEDIA	Ni .		
CHEMICAL		COMMON USE/	BEHAVIORAL CHARACTERISTICS	GF	OUNDWATER				Γ	'	ON-SITE	
CLASS	EXAMPLES	ORIGIN	IN THE ENVIRONMENT	_	Severely		1			SURFACE	SUMP AND	RUB
			!	Overburden	Weathered	Interior	SUBSURFACE	SURFACE	SURFACE	WATER	CATCH	GORD
					Bedrock	Wells	SOILS	SOILS	WATER	SEDIMENTS	BASINS	SUMF
	<u> </u>	<u> </u>	<u> </u>	(18)	(5)	(2)	(24)	(8)	(2)	(2)	(4)	(3)
									<u> </u>	. , ,-,		(3)
CBs and Pesticide	<u>5</u>		· · · · · · · · · · · · · · · · · · ·				Number of san	nple location	s detected			
			Although vapor pressures of PCBs are low,									
			almospheric transport may occur as an aerosol.									
Polychiorinated	Aroclot 1254	Heat resistance additives	PC8s have low water solubilities and high	0	0	0	1 1	0	0	0	o	١,
Biphenyl's		lio oil	partition coefficients, thus do not lend to migrate		1 1		1		_	Ĭ	· •	ľ
	1		in groundwater. Migration may result from their]		ĺ					
			tendency to bioaccumulate.									
	BHCs		Pesticides typically have low vapor pressures.									
Pesticides	4,4'-DDT	Agricultural Pest Control	low water solubility and high partition coefficients	О	0	0	,	0	0	0	' .	_
	Endosulfan		Thus, significant migration of pesticides within	1				v	١		0	0
	Isophrone	<u></u>	groundwater is not anticipated									
letals										- <u>-</u>		
etars		,					Number of sam	ple locations	delected		ı	
	Zinc		Physical and chemical properties affecting the					<u></u> -				
	Lead		transport of metals vary with the metal and the	ł								
	Nickel -		environmental conditions (pH, Eh, alkalinity, etc.)		' l	ĺ						
Metals	Сорраг	Paints and Pigments	as well as the presence of other compounds such	16	5	2	24	8	3	2		
	Chromium	Naturally Occurring	as sulfate, chlorides, etc. Depending on these	[_	•	'	3
	Cadmium		conditions, metals vary from highly immobile to								l	
		<u> </u>	very soluble.	<u></u>			ì	ļ			ĺ	
yanide							 -L					
yaniide		 		· · · · · · · · · · · · · · · · · · ·			Number of sam	ple locations	detected			
Cyanida	Hydrogen Cyanide			2		,						

¹⁾ See Appendix G for properties of specific chemicals within topological profiles.
2) See Tables 9 - 15b for analytical test data.

Table No. 18 Summary of Health Based Surface Soil ARARs/SCGs

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

	Number of	Number of		Site Occusten	ĬĨ - 7	 _	NYSDEC	l logo	SCG's				Backgr	ound.	_
Parameter Volatile Organics (ug/kg)	Samples Detected	Samples Tested	Maximum	Location of Maximum	Minimum	Location of Minimum	TAGM 4046	Inhalation	DRAFT Residence Soil Screening	ential Generic Levels Protection of GW	USEPA	OW-11S 26-32		OW-95	
Methylene chloride	 						1			Fibiection of GAA	HEAST	0/22/95	<u> </u>	6/20/95	<u>;</u>
Toluene		8	30	\$5.3	7	SED 144	100	85000	7000				\sqcup		
Chlorobenzene	!		4	SS-1	4	SS-1	1500	16000000	520000	10	93000		<u> _ .</u>		
	. 3	8	25	SS-1	1	SED-4	1700	·	· 	5000	20000000		lL		_
Semi-Volatile Organics (ug/kg)							·	1000000	94000	600	2000000				•-
Naphihalene	2	θ	370	SS-1	280	SS-3	10000				·				_
2-Mothylnaphthalene	1	8	220	SS-6	220	* 178-61-61	13000	3100000		30000	300000		\dashv		٦
Acenaphthylene	6	. В	3600	SS-1		SS-6	36400							• ,	
Acenaphthene			4000		49	SED-4	41000				300000	··- ·		·· .	-
Dibanzoluran				SS-6	22	SED-4	50000	4700000		200000	5000000			·—·	-
Fluorene	<u> </u>	· ·:	1800	SS-1	29	SS-2	6200		·]-				_		
Phenanihrene			5100	SS-1	30	SED-4	50000	3100000					_		Ţ
		8	69000	SS-1	60	SED-1	50000		- .	160000	3000000				7
Anthracene	7].	. 8	12000	SS-1	130	SED-4	50000	23000000	·	 .	I		_ -		1
Carbazole	7	8	10000	SS-1	67	SED-4			·· .	4300000	20000000				1
Di-n-Butylphthalate	6	8	4000	SS-3	75	SED-1	50000	32000		200	8300				1
luoranthene	. 8	8	130000	SS-1	120		8100	7800000	100000	120000					ŀ
Pyrene	8	a.	120000	SS-1	• • 1	SED-1	50000	3100000		980000	3000000		- 1		ı
Butylbenzylphthalate	اء	٠ ١	[150	SED-1	50000	2300000		1400000	2000000		ŀ		ĺ
Benzo (a) Anthracene		2	5500	SS-3	64	SED-4	50000	16000000	530000			[!	I
Chrysene	8	8	54000	SS-1	49	SED-1	224 or MDL	900	. 550000	68000	20000000				ı
	8	8	79000	SS-1	86	SED-1	400	1 1	- ·· _	700	220	1			ı
ils (2-Ethylhexyl) Phthalale	8	8	27000	SS-3	80	SED-1		86000		1000			- -		ľ
il-n-Octyl Phthalate	1	8	310	SED-4	310	SED-4	50000	46000	210000	11000	50000			[1
enzo (b) Fluoranthene	8	в	92000	SS-1			50000				2000000		∤	 /	ŀ
enzo (k) Fluoranihene	7	أو	25000	SS-1	84	SED-1	1100	900		4000	220	· - · · · · .			Į.
enzo (a) Pyrene	أو	اۋ	58000		58	SED-1	1100	9000						,	l
deno (1,2,3-cd) Pyrene		-	-	SS-1	64	SED-1	61 or MDL	90		4000 4000	220		. .	. 1	١.
ibenz (a h) Anthracene	3	3	50000	SS-1	81	SED-1	3200	900		35000	60]]	ľ
enzo(g,h,i) Perylene	···		18000	SS-1	180	SED-4	14 or MDL	90					[ı
enzo(g.n.i) Peryiene	8	8	23000	SS-1	32	SED-1	50000	· -··	· · ·	11000	14	-1	1		1.

Table No. 18 Summary of Health Based Surface Soll ARARs/SCGs

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

	Number of	Number of		Site Occurren	i 		<u></u>		SCG					
Parameter	Samples	Samples	Maximum	Location of	Minimum .	Location of	NYSDEC	USEPA	DRAFT Resid	ential Generic		OW-11S	ackground	
Metals (mg/kg)	Detected	Tasted		Maximum	L	Minimum	TAGM 4046		Soil Screening	Levels	USEPA	20-32	0W-	
Aluminum •							1040	Inhalation	Ingestion	Protection of GW	HEAST	0/22/95	9 6/20/	
		8	10700	SS-5	4990	SS-6							9 0.20	-
Antimony	2	8	24.8	SS-2	9.2	SS-3						5540	· 1 3	130
Arsenic	8	8	72.9	55-3	·· ··	***************************************					30			30
Barium	8	8	3350	SS-3	10.5	SS-4 ASED-1	7.5	0.4	380	15	80	0.86	;; ; -	
Beryllium	7	a	0.46	SS-5	36.5	\$S-6	_300	5500	350000	32	4000			1.2
Cadmium	6	۱ . ۱	• • • •		0.22	SS-2	0.16	0.1	690	180		60.8		0.2
Calcium	· .		84.9	SS-3	0.85	SED-4	i	39	920		0.16	0.28	В	
Chromlum	ا ا		71200	SS-3	3570	SED-1	- 1							
Cobalt		u u	1570	SS-2	13.8	SS-6	10					80100	501	ᅇ
Copper		8	366	SS-3	3.2	SS 6	30				00008	9.5		14
ron	8	8	4710	SS-3	14.2	SED 1	25					3.6	В	3.7
e lede see a least transport	8	8	54100	SS-3	11100	SED 1	2000					3.6		3.3
Lead	8	8	529	SS-3	15.8	SED-4			———I			12400	90	-1.
Magnesium	8		32900	SS-3	2660		200-500	400			250		¬·	
Manganese	8	8	531	SS-2	113	SED 1						42300	-	1.
Mercury	3 (8	0.33	\$\$.3	1	SED-1			[20000		188	[.
lickel .	A	· a	5850		0.17	SS-2	0.1	23	7	4		299	20	ا0،
olassium	8			SS-3	11.4	. SS-6	13	1600	6900		20	· · · ·		
ielenium	ျိ	ا ۵	2150	SS-3	1040	SS-6		' '		اله ۱۰۰۰	2000	8.5	B 9	.2
ilver		B	185	SS-3	0.33	SED-1	2	390	•			2560	103	100
odium		8	16.3	SS-3	0.6	SS-6	1	390	· · [.	3	<u></u>] .		Ή
anadium		8	677	SS-5	107	SS-1	* *** - * -				200	0.45	0.4 - اتر	4 1
	. 8		26	SS-5	12.9	\$S-6	150	······································		l_		201 1	3	نا ا
Inc	8	8	2280	SS-3	45.6	SED-1		550	··- <u>-</u> _		600	9.7		-
Others (mg/kg)	_ T						20	23000		42000	20000			
yanido	3	8	40.5	SS-3	1.3	\$S-5						<u></u>	`	
otes 1) Site occurrance includes maximum a 2) TAGM 4046 a "Tachnical and Admini						33.3		1600	1		2000			_

2) TAGM 4046 = "Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives Levels", prepared by NYSDEC, January 24, 1894. For organic compounds, a TOC of 1 percent was selected based on information obtained from TAGM 4046.

3) HEAST - Values derived from USEPA Health Effects Summary Table

4) HEAST value for chromium assumes trivalent chromlum.

5) USEPA Draft Soil Screening Guidance = Soil Screening Guidance, USEPA, EPA/540/R-94/101, December, 1994. It should be noted this document is in review draft form

Table No. 19 Summary of Health Based Subsurface Soll ARARs/SCGs

Remedial Investigation Stuart-Olver-Holtz Sile No. 8-28-079 Henrietta, New York

1	56.000	Camele -	1	1 .												
	Samples Detected	Samples Tested	Meximum	4444104	of Maximum	Minimum	Loca	ton of Minimum	NYSDEC		SCG'	1		T -	4h = 4 = 1	_
Parameter	1 20000160	lested	i	Well	Depth		Well	Depth	TAGM	USEPA	DRAFT Rasic	ental Generic	Τ	OW-115	OW.	
Volatile Organics (ug/kg)	 -	 		 	 	 		<u> </u>	4046	Inhalation	Soil Screening Ingestion	Protection of GW	USEPA	26-32	8.1	œ
Chloroethane	7	34	6	00.4			 					Protection of GW	HEAST	6/22/95	<u>0</u> 8∕20∕	95
Melhylene chloride	1 30	34			24-26		4 SB-1	2-4	190	<u> </u>	 	 				
Acelone	[- ···'š] 35	270		34-36		5 OW-65 & 7F	10-12 840-42	100	- L	7000		540000	li		_
1.1-Dichloroethene	1	34	18		32-34	1	8 OW-85	32-34	200		7000 6.2E+07		J	<u> </u>	-1,	
1.1-Dichloroethane		34	. 2		8-10	1	2 OW-75	8-10	400			8000	6000000	J J		••
1,2-Dichloroethene(Total)	Į	34	22		8-10	1	2 OW-85	6-12	200		40	30	12000		-	
Chloroform	4	34	910	OW-65	20-22		SB-8	8-10	300		300	10	8000000		-1	_
1,2-Dichloroethane	2	34	6	TP-3	composite		5 TP-1	composite			1500000	200	800000		-	
	1	34	8	OW-78	8-10		OW-7S	8-10	300		110000	300	110000	-	··	-
1,1,1-Trichloroethane	θ	34	210	OW-78	8-10	*******	SB-8	8-10	100		300	10	7700		-	-
Trichloroethene	11	34	1500	OW-7S	28-30		SB-8		. 800		980000	900	7000000		-{	∤
1,1,2 Trichloroethane	[2	34	26	TP-5	composite	······	OW 75	8.10	700	58000	3000	20	64000		·	
Benzene -	1	34	110	OW-4R	42-44	110		8-10		11000	800	10	120000	.		
Telrachloroelhene	6	34	280	OW-6S	20-22	!"		42-44	60	22000	500	20	24000			
Toluene	3	34	600	OW-25	34-36		OW-78	8-10	1400	12000	11000	40		·· • ·- • • · · · · · · · · ·		
Chlorobenzene	2	34	4	TP 1	- 1 hr		OW-7S	8-10	1500	16000000	520000	5000	14000		l	
Ethylbenzene		34		OW-4R	composite		TP-2	composite	1700	1600000	94000		20000000	_	J	/
Kylene (total)	3	34	360	OW-28	42.44	7	OW-4R	42-44	5300	7800000	260000	600	2000000		<u> </u>	
Seml-volatile Organics (ug/kg)	 		700	OW-25	34-36	2	TP-2	composite	1200	160000000	320000	5000	8000000			Ì
Phenol		35							1	70000000	320000	74000	200000000			7
1,4 Dichlorabenzene		35	410	SB-16	12-14	230	SB-17	16-18	30 or MDL							7
Diethylphthatate			57	TP 3	composite	47	TP-1	composite	8,500	27000			50000000			1
Phenanthrene	10	35	90	SB 16	12-14	, 46	OW-10S	18-21	7100	** · · · · · · · · · · · · · · · · · ·	7700000	1000	29000			1
Inthracene	101	35	160	OW 6S	2-4	23	OW-2S	34-36	50000	63000000	520000	110000	60000000			1
arbazole	6	35	36	OW 6S	2.4	21	OW-65 & TP-1	10-12 & composite	1	12211 -	. 1			- }		1
i-n-Bulylphthalate	.2[35	. 95	OW 65	20-22	25	OW-65	2-4		23000000		4300000	20000000	·	· -	1
luoranthene	. 17	35	540	SB-16	12-14	22	TP-3	composite	50000	32000		200	8300			-{
		35	570	OW-6S	2.4	26 24	OW-18	***	8100	7800000	100000	120000				4
yrene	13	35 35	480	OW-6S	2-4	24	OW-5S	22.23	50000	3100000		980000	3000000	···		٠١.
ulylbenzylphihalate	5	35	280	SB-4	0-2	33	TP-3	14-16	50000	2300000		1400000	2000000	· -		.Į.
enzo (a) Anthracene	4			OW 65	2.4		The state of the state of the same	composite	50000	16000000	530000	68000		l;		. .
hrysene	11	35 35		OW 6S	2.4	85 20	OW-6S	10-12	224 or MOL	900	.===== .	700	20000000			I.
is (2-Ethylhexyl) Phthalate	17	35		OW-65	10-12		OW-2S	34-36	400	88000	· · - · ·		220			L
n-Octyl Phthalale	16	35	, ,	OW-IR	- H 1.	28	OW-7R	34-36	50000		310000	1000		[]		1
enzo (b) Fluoranthene	9		- 1 -		6-8	25	TP-5	composite	50000		210000	11000	50000]]	•-	ı
enzo (k) Fluoranthene	Ä	· · · · · · · · · · · · · · · · · ·		OW-6S	2.4	51	TP-6	composite	1100	900			2000000		• •••	1
enzo (a) Pyrene	. I	35 35 35 35		OW-65	2.4	36	TP-6	composite	1100		·	4000	220		•	1
deno (1,2,3-cd) Pyrene		33	360	SB-4	0-2	29	TP-6	composite	61 or MDL	9000	··	4000	220		•	ŀ
benz (a,h) Anthracene	اد		1 -	OW-6S	2.4	30	TP 6	composite	3200	90		4000	60			ĺ
enzo(g,h,i) Perylene		35		OW-6S	2-4	23	OW-6S	10-12	14 or MDL	900		35000			·	1
(8)-10) E crylette	6	35	1400	SB-4	0-2	28	TP-3,4	composite	50000	90	1	11000	14		• - ·	1

Table No. 19 Summary of Health Based Subsurface Soil ARARs/SCGs

Remedial Investigation Sluart-Olver-Hollz Site No. 8-28-079 Henrietta, New York

	Samples Detected	Samples	Maximum		of Maximum	Minimum	1	on of Minimum			SCG				
Portameter PCB/Postloides (Delected	Tested		Wel	Depth		Wel	Depth Depth	NYSDEC TAGM	USEPA	DRAFT Resid	ental Generic	<u> </u>	OW-115	OW-95
PCB/Pesticides (mg/kg) Aroclor - 1254	 	L					 		4046	Inhalation	Ingestion	Projection of GW	USEPA	26-37	J. 10
	<u> </u>	34	41	TP-6	composite	4	 	<u> </u>				T TOTAL CHANGE		6/22/95	0 6/20/95
Metals (mg/kg)				- 	composite	4	TP-6	composite				 	 	<u> </u>	
Aluminum	34	34	22800	OW-4S			 					 	 	L J	_
Antimony	2	34	3 5		8-10	1610	SB-17	16-18			 	 			
Arsenic	1	**********		OW-7S	8-10	3.2	OW-6S	0.2					l	5540	3430
Barlum	ا: ۲۰۰۰ ۲۰۱۵ از ۲۰۰۰	34	8 8	SB-1	2.4	0.48	OW-7S	28-30	· ·	31			30		
Beryllium	39	34	158	OW-10S	18-21	16.6	OW-1R	20.22	7.5	0.4	380	15	80	0.86	-d·
Cadmium	18	34	1 1	OW-45	8-10	0.21	OW-7R		300	5500	350000	32	4000		
	8	34	1.7	TP-3	composite	0.7		40-42	0.16	0.1	690	180		60.8	40.2
Calcium	34	34	107000	OW-6S	10-12		TP-6	composite	1	39	920		0.16	0.28	3
Chromium	34	34	30 3	OW-45	8-10	2820	<u>TP-1</u>	composite		·			80	.—— l.	_ii
Coball	34	34	143	OW-28		2.8	OW-1R	22-23	10		·			80100	50100
opper	1 34	34	30 8	SB-4	34-36	1 5	OW-1R	22-23	30				80000	9.5	7.4
ron	34	34			0.2	3.3	OW-4R	42-44	25	• • • • •				3.6	3.7
.ead	34].	32400	OW-4S	8-10	4310	OW-1R	22-23	2000					3.6	10.3
lagnesium	34	34	57 6	SB-4	0-2	2	SB 17	16-18	200.500	···				12400	9020
langanese	34	34	42300	OW-115	26.32	3270	TP-3	composite	200.500	400			250	1.6	
Mercury	34	34	1670	TP-4	composite	195	OW-1R	22-23				·		42300	18800
— · · · · · · · · · · · · · · ·	5	34	_ 1.1	OW-6S	0-2	0,12	TP-5			l			20000	299	 1-
lickel	33	34	106	SB-4	0-2	3.1	SB 17	composite	0.1	23	7		20000		260
otassium	32	34	6250	OW-4R	42.44	419		16-16	13	1600	6900				-ll-
elenium	2	34	11 2	SB-4	0.2		SB-17	16-18				——————————————————————————————————————	2000	8.5 E	·
odium	34	34	354	SB-1		1.4	OW 6S	0.2	2	390			····	2560	1030
hallium	10	34	0.81	** 1 m	2.4	69.9	TP-4	composite	7	390		······································		,	1 1
anadium	34	. 34		SB 1	2.4	0.21	OW-6S	10-12	- 1	330			, ,	201 B	154 E
nc	26		46	OW-4S	8-10	4.2	OW-1R	22-23	150	· · · · · · · · · · · · · · · · · · ·		0.4	6		
Others (mg/kg)	- 40	34	143	OW-65	10-12	16.9	OW-1R	22-23	20	23000	· /		600	9.7 B	
ranide		24	 							23000		42000	20000	R	F
les:		34		OW-6S	0-2	1,6	OW-65	0.2	 -						
1) Site occurrence includes maximum 2) TAGM 4046 = "Technical and Admi For organic compounds, a TOC of	and minimum d	latertad vet can								1600	1		2000		┟╼╼╌╂╌

For organic compounds, a TOC of 1 percent was assumed. For metals, soil test results for samples from OW-11S and OW-9S are used as background as shown above.

3) HEAST - Values derived from USEPA Health Effects Summary Table.

4) HEAST value for chromium assumes trivalent chromium

4) MEAST VALUE for CIFECREUM ASSENTED EVENERS LIE MINISTER.

5) USEPA Draft Soil Screening Guidance * Soil Screening Guidance, USEPA, EPA/540/R-94/101, December, 1994. It should be noted this document is in review draft form.

Table No. 20 Summary of Health Based Surface Water ARARs/SCGs

Remedial Investigation Stuart-Olver-Hollz Site No. 8-28-079 Henrietta, New York

			Summary of S	ne Occurrence					G's	
Parameter	Number of Samples Detected	Number of Samples Tested	Maximum	Location of Maximum	Minimum	Location of	NYSDEC Class C	AWQC Aquatic	AWQC Aquatic	USEPA
Volatile Organics (ug/l)						MINIMUM	Water	Acute	Chronic	Health
Acelone	1	3	25	SW-3	25	SW-3				
Semi Volatile Organics (ug/l)	1				- -	511-3				<u> </u>
Penlachlorophenol	1	3	4	SW-2		SW-2	·			 _
Fluoranthene	1	3	1	SW-1		SW-1	0.4			·
Pyrana	1	3	1	SW-1		SW-1		3980		3
Metals (ug/i)						244-1				
Aluminum	3	3	997	SW-2	158	SW-3				<u> </u>
Barium	i i i i i i	ä	183	SW-2	48.8	SW-3	100			
Calcium	3	3	101000	SW-1	63900	SW-3	··			10
Chromlum	· · · · · · i)	" · ' · ' · ' · ' · 3	2.2	SW-3	2,2	SW-3			<u></u>	l
Cobalt	1	3	2.4	SW-3	2.4	SW-3	5594	1700	210	1700
Copper	2	3	4.1	SW-3	2.8	SW-2				l
ron	3	3	4850	SW-2	<u>2.6</u>	SW-1	368	18	12	100
Lead	3	3	8.2	SW-3	7.4		300		1000	l <u></u> 3
Magnesium	3	3	38500	SW-1	17400	SW-1	526	8.2	3.2	
Manganese	3	. 3	909	SW-2		SW-3				
Polassium	3	3	12800	SW-3	185	SW-1				5
Silvor	· 1	3	2.4	SW-3	10400	SW-1				
Sadium	le	3	96900	SW-1	2.4	SW-3	0.1	0.92	0.12	5
/anadium	1	3	3.7	SW-2	38700	SW-3		·		
inc	·	3	80.1	SW-2	3.7	SW-2	14		. ' '	
Others (mg/l)		3		344-2	30,6	SW-1	2530	96	86	500
lkalinity		 -	360	SW-2						
fardness	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	5300		360	SW-2				
		'L_	5300	SW-2	5300	SW-2			· · · · = · · · · · -	

Notes:

- 1) Site Occurrence includes maximum and minimum detected values of the respective test parameters
- 2) Class C standards as promulgated in 6 NYCRR 703.
- 3) Class C standards for selected metals is based on the hardness of the water.

For the purposes of making these calculations, a hardness of 250 ppm was selected based on the calculations nature of the streambed.

Chromlum = exp (0.819 |in (ppm hardness)] + 1,561)

Copper = exp (0.8545 [In (ppm hardness)] - 1.465)

Lead = exp (1,266 | in (ppm hardness)] - 4,661)

Nickel = exp (0.76 | in (ppm hardness)] + 1.06)

Zinc = exp (0.85 [in (ppm hardness)] + 0.50)

- * Hardness estimated at 250 ppm due to calceriferous nature of stream bed.
- 4) AWQC = USEPA Ambient Water Quality Criteria for Human Health; water and fish Ingestion.
- 5) Chromium is assumed to be trivalent chromium.
- 6) Silver Class C standard is for lonic silver.

Table No. 21
Summary of Health Based Surface Water Sediment ARARs/SCGs

Remedial investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

	I 		Summary of	Site Occurren	ce					SCG's		 	
	Samples	Number of Samples	Maximum	Location of	Minimum	Location of	NYSDEC TAGM	NYSOEC Sediment Criteria Human Health			dential Generic	USEPA	USEPA
Parameter Volatile Organics (ug/kg)	Detected	Testad		Maximum		Minimum	4048	Bioaccumulation	Inhalation	Ingestion	Protection of GW	HEAST	Sedimer Criteria
							<u> </u>		1	,			
Methylene chloride	2	2	. 7	SED-2	3	SED-3	100		85000	7000	10	93000	· · · · · ·
1,1-Dichloroethane	1 1	2	6	SED-3	6	SED-3	200		7800000	980000	11000	8000000	
1,1,1-Trichloroethane	1	2	7	SED-3	7	SED-3	800			980000	900	7000000	
Tetrachloroothene	1	2	3	SED-3	3	SED-3	1400	8	12000		40	14000	-
Semi-Volatile Organics (ug/kg)												14000	· · · · · · · · · · · · · · · · · · ·
Naphthalene	1	2	610	SED-3	420	SED-3	13000		3100000	_'	20000		
2-Methylnaphthalene	1	2	490	SED-3	250	SED-3	36400	Transmission of Assessment - Mathematica angle of			30000	300000	
Acenaphthylene	2	2	630	SED-3	36	SED 2	41000						
Acenaphthene	1	2	2700	SED-3	1400	SED-3	50000	Television to the same of the same	4700000		200000	300000	
Dibenzofuran	1	2	1100	SED-3	600	SED-3	6200	reserve to the second ways	4100000		200000	5000000	14
Fluorene	1	2	2400	SED-3	1200	SED-3	50000		3100000	·	450000		
Phenanthrene	2	2	21000	SED-3	340	SED-2	50000		3100000	 i	160000	3000000	
Anthracene	2	2	3400	SED-3	62	SED-2	50000		23000000				12
Carbazole	2	. 2	2900	SED-3	65	SED-2	50000		32000		4300000	2000000	
Di-n-Butylphthalate	1	2	180	SED-2	85	SED-2	8100		7800000		200	8300	
Fluoranthene	2	2	34000	SED-3	810	SED-2	50000		3100000	100000	120000		,
Pyrene	2	2	31000	SED-3	810	SED-2	50000				980000	3000000	102
Benzo (a) Anthracene	2	2	15000	SED-3	260	SED-2	224 or MDL	12	2300000		1400000	2000000	
Chrysene	2	2	18000	SED-3	450	SED-2	400	13	900	[700	220	
Bis (2-Ethylhoxyl) Phthalate	2	2	4700	SED-3	210	SED-2	50000		88000		1000	·	
Di-n-Octyl Phthalate	1	2	350	SED-2	350	SED-2	50000		46000	210000	11000	50000	
Benzo (b) Fluoranthene	2	2	27000	SED-3	530	SED-2	1100			-		2000000	
Benzo (k) Fluoranthene	2	2	11000	SED-3	390	SED-2	1100	13	900		4000	220	
Benzo (a) Pyrene	2	2	17000	SED-3	750	SED-2	61 or MDL	13	9000		4000	220	
ndeno (1,2,3-cd) Pyrene	2	2	22000	SED-3	91	SED-2	3200	13	90		4000	60	
Dibenz (a.h) Anthracene	2	2	6900	SED-3	140	SED-2	14 or MDL	13	900		35000	[- " 1
Benzo(g,h,i) Perylene	2	2	7900	SED-3	1200	SED-2	50000		90	·	11000	14	

Table No. 21 Summary of Health Based Surface Water Sediment ARARs/SCGs

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

	Number of	Number of	Summary of	Site Occurren	CO		T						
Parameter	Samples Delected	Number of Samples Tested	Maximum	Location of Maximum	MinImum	Location of	NYSDEC TAGM	NYSDEC Sediment Criteria Human Health		SCG's A DRAFT Resi	dential Generic		USEP
Melals (mg/kg)	1 7			XIII III III		Minlmum	4048	Bloaccumulation	Inhalation	Soll Screenin		USEPA	Sedime
Aluminum 1	2						L			iligestion	Protection of GW	HEAST	Criteria
Antimony			10600	SED-2	4540	SED-3				 	3.		
/, Arsenic	-	2	5.1	SED-2	5.1	SED-2	1						
Barlum	2	2	6.2	SED-2	1.4	SED-3	7.5	* * / * - * * * * * * * * * * * * * * *	31			30	
Beryllium		2	63,2	SED-2	22.1	SED-3	300		0.4	380	15	80	
Cadmium	1 1	2	0.59	SED-2	0.59	SED-2	0.16		5500	350000	32	4000	
	1	2	1,6	SED-3	1.6	SED-3			0.1	690	180	0.16	
Calcium	2	2	7590	SED-3	7020	SED-2			39	920	6	80	 -
hromlum	. 2	2	35.5	SED-2	14.1	SED-3	امنا						
oball	2	2	10.1	SED-2	3.7	SED-3	10					80000	
opper	2	2	68.9	SED-3	17.1	SED-2	30						
on	2	2	51000	SED-2	8970	SED-3	25						
ead	2	2 -	61.5	SED-3	41.2		2000				 -		<u>-</u> -
agnesium	2	2	4140	SED-3	4090	SED-2	200-500		400				
anganese	2	2	725	SED-2	I	SED-2					- 	250	
lcket	2	2	26.2	SED 2	119	SED-3			· ·	·			
olassium	2	2	1850		11,2	SED-3	13		1600	6900		20000	·— <i></i>
lver	2	2		SED-2	1210	SED-3	. 1					2000	
odium	·	- 2	1.1	SED-2	0.69	SED-3			390				
nadlum .	5	-	529	SED 3	2.54	SED-2	"	* **** * ***	330	-	· - · · · ·	200	
-2	<u>.</u>	. 2	23.8	SED 2	13.9	SED-3	150		550				
les:		2		SED-3	442	SED-2	20	* - **** * * * * * * * * *	· · ·	·		600	••
Site occurrence includes maximum : TAGM 4046 = Technical and Admin		_							23000	1	42000	20000	

- 1) Site occurrence includes maximum and minimum detected values of the respective loss parameters.

 2) TAGM 4048 = "Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives Levels", prepared by NYSDEC, January 24, 1994. For organic compounds a TOC value of 1 percent was 3) HEAST - Values derived from USEPA Health Effects Summary Table
- 4) HEAST value for chromium assumes trivalent chromium.
- A) 11EAST VALUE for Chromoun assumes inveicing circumbin.

 5) NYSDEC Sediment Criteria = "Technical Guidance for Screening of Contaminated Sediments", NYSDEC, July 1994. A TOC value of 1 percent was assumed in deriving criteria.
- 6) USEPA Drah Soil Screening Guidance = Soil Screening Guidance, USEPA, EPA/540/R-94/101, December, 1994. It should be noted this document is in review draft form

Table No. 22 Summary of Health Based Overburden Groundwater ARARs/SCGs

Remedial Investigation Stuart-Oiver-Holtz Site No. 8-28-079 Henrietta, New York

	— —		Summa	ry of Site Occu	rrence					··		6001		 -		_
Parameter	Samples Detected	Samples Tested	Maximum	Location of Maximum	Minimum	Location of Minimum	NYSDEC Class GA	USEPA MCL's	USEPA MCLG's	Child/	PA Health Advi Child/	Adull	NYSDEC Class C	USEPA AWQC	USEPA AWQC	US
Volatile Organics (ug/l)	 						ļ			One Day	Long Term	Lifetime	Waler	Human Heaith	Aquatic Acute	Aqu
Vinyl chloride	9	32	11000	MW-5	2.7	7 0111110	ļ <u> </u>			[1,00.0	
Chloroethane	• 1	32	21	OW-6S			2	2	0	3000	10			2		┪━┈
Methylene chloride	6	32	350	MW-2	21		5		····	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			***************************************			··
Acetone	1	32	9.8	OW-8S	3.9		5									
1,1-Dichloroethene	16	32	900	OW-65	9.8		50						Jenesen 1111, 1111			·
1,1-Dichloroelhane	18	32	10000		3.6		5	7	7	2000	1000	7		0.033	11600	·}
1,2-Dichloroethene (total)	16	t to colors	* ***********	MW-2	8.6		5	.,,,,,,							11000	
Chloroform		32	10000	MW-2	2.9			70	70	20000	2000	100				
1.1.1-Trichloroethane	14	32	7.2	OW-10S	7.2			100			***************************************	,,.		5.7	28900	ļ
Trichloroethene (TCE)	16	32	24000	OW-6S	3.1	OW-85	5	200	200	100000	40000	200		1.03	20900	ļ
1,1,2-Trichforoethane		32	140000	OW-7S	1.4		5	5	Ö	1-44				2.7	45000	
Tetrachloroethene	10	32	53	MW-5	12		35	5	3	600	400	3		0.6		21
Semi-Volatile Organics (ug/l)	10	32	8800	MW-5	3.3	OW-8S	5	5	Ö	2000	1000			0.17	18000	9
Phenol												·		0.17		<u> </u>
4-Methyl Phenol		17	9	OW-7S	8	. MW-5	1			6000	6000	4000		20000		
2-Methylphenol		17	1.4	OW-7S	1.4	OW-7S	50							20900	10200	
sophorone		17	9	OW-7S	7.9	OW-7S	50		·							
I methyl Phthalate	2	17	23	OW-7S	19	OW-7S	50			15000	15000	100				***************************************
**************************************	1	17	0,74	OW-7S	0.74	OW-7S	50				-			5200	11700	
Di-n-butyl phthalate	2	17	2	OW-9S	1	OW-LS	50							,		
Dethyl Phthalate	1	17	1.5	OW-7S	1,5	OW-78	50						*********************			
is(2-ethylhexyl)phthalate	9	17	3	OW-9S	1]	OW15,25 &45	50		4-1				0.6			******************************

Table No. 22 Summary of Health Based Overburden Groundwater ARARs/SCGs

Remedial Investigation Sluart-Olver-Holtz Sile No. 8-28-079 Henrietta, new York

	 	T	Summa	ary of Sile Occi	illeuce		 -									
	Samples	Samples	Maximum				NYSDEC	USEPA	ÜSEPA	liec.	DA I I - 191 A -	SCG's				
Parameter Metals (ug/l)	Detected	Tesled	maxiii(0/)	Location of Maximum	Minimum	Location of Minimum	Class GA	MCL's	MCLG's	Child/ One Day	PA Health Adv Child/ Long Term	isories Adult Lifetime	NYSDEC Class C Water	USEPA AWQC Human	USEPA AWQC Aquatic	USEPA
	 						 	 -	 	ļ. —				Health	Aquatic	Aquatic Chronk
Aluminum	16	16	14900	OW-10S	28.9	OW-BS	100						l. —			OHIOH
Arsenic	13	32	10.8	OW-4S	3,1	OW-118			-1-1				100		750	
Barlum	32	32	305	OW-10S	31.5	OW-85	25	5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				190	0.0022		
Cadmium	7	32	5,5	OW-75	2	OW-1S	1000	2000	2000			2000):::::::::::::::::::::::::::::::::::::	1000		
Calcium	16	16	301000	OW-10S	61000	OW-75	10	5	5	40	5	5	3.03	10	130	
Chromium	19	32	39.1	OW-58	31000		. 10					***************************************				5
obalt	12	16	19.1	OW-10S	2.8	OW-78	50	100	100	1000	200	100	577.5	170000	1700	
Copper	24	32	56.9	OW-105		101-OW						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5		1700	2
on	16	16	96700	OW-103	2.6	101-OW	200		1300				34.5	1000		
ead	21	32	61.8		320	OW-85	300			J-1			300		18	
Magnesium	16	16		OW-LS	1.2	OW-3S	25	i	0				15.7	30		10
langanese	16		825000	MW-3	43400	OW-7S	35000		***************************************		****** **** ***			50	8.2	3
lercury	[0]	16	1420	OW-10S	85.4	OW-8S	500		200					·		
lickel		32	0.23	OW-118	0.23	OW-11S		2	2		*** **** **** ***			50		******
olassium	23	32	169	OW-5S	15,6	MW-5		100	100	1000		2		0.144	2.4	0.0
ilver	16	16	27500	OW-10S	2760	MW-5	}				500	100	248	13.4	1400	10
odium	5	32	1.9	OW-LS	1.4	OW-78	50		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	200						
anadium	16	16	168000	OW-10S	21200	OW-7S	20000	*****************		200	200	100	0.1		0.92	0
	8	16	28.2	OW-10S	2.6	OW-7S			······································	80						
nc	32	32	169	OW-10S	9.6	OW-6S	300				30	20	14	-1		
Others										6000	3000	2000	240		96	8
/anide (ug/l)	2	16	11.5	OW-2S	11.3	OW-1S	100	200		— <u></u> - -						
kallnity, as CaCO3 (mg/l)	16	16	490	OW-LS	180	OW-48		200	200	200	200	200	5.2	200	22	5
rdness, as CaCO3 (mg/l)	16	16	970	OW-11S	350	OW-78	,,,, <u></u> ,,					-	***************************************		·····	

^{?)} The total number of samples tested includes two rounds of sampling the same welfs for VOCs and selected metals. One semi-VOC sample was also collected during the second

i) NYSDEC Class GA effluent standard are developed for water discharged to a Class GA groundwater.

I) USEPA MCLs and MCLGs apply to public water supplies.

i) USEPA Health Advisories developed to be protective of adverse non-carcinogenic health effects associated with exposure of child for one day and longer term (approximately 7 years or 10 % of lifetime) and lifetime exposure for adults

Table No. 23
Summary of Health Based Top of Bedrock Groundwater ARARs/SCGs

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

			Symma	ry of Site Occurrence			I			600:-		
	Number of	Number of			T		NYSDEC	USEPA	USEPA	SCG's	PA Health Adviso	
Parameter	Samples Detected	Samples Tested	Maximum	Location of Maximum	Minimum	Location of	Class GA	MCL's	MCLG's	Child/	Child/	Adul
Volatile Organics (ug/i)				Maximon		Minimum	 -	 	ļ <u> </u>	One Day	Long Term	Lifetin
Chloromethane	1	14	8.	1 OW-3R	8.1	OW-3R	5		 -			L
Vinyl chloride	. 4	14	110		8.8					9000	1000	
Chloroethane	1 1	14	2	·	21	OW-7R	2	2	0	3000	10	} .
Methylene chloride	3	14	5500		7		,5	l . <u>.</u>	i .			١.,
Acctone	3	14	100	1 5 5 5 5	6.5		5	, -	0	10000		
Carbon disulfide	1	14			8	OW-2R	50	1				
1,1-Dichloroethene	3	14	250		5	IW-2R	50	_				
1,1-Dichloroethane	7	14	5900	1	15	OW-2R	5	7	7	2000	1000	
1.2-Dichloroethene (lotal)	9	14	9000		38	OW-2R	5	_				
1,2 Dichloroethane	1	14	12	1	12	OW-7R	5	70	70	20000	2000	
1.1.1-Trichloroethane	3	14	170	1	110	OW-7R OW-7R, IW-2R	5	5	0	700	700	
Trichloroethene (TCE)	8	14	10000	,	1 5	OW-710,100-210	5	200	200	100000	40000	
Benzene	1	14	3	1	3	OW-7R	5	5	0	j		
2-Hexanona	1	14	5.4	OW-3R	5.4	7.7	5	5	이	200		
Tetrachloroethene	2	14	66		3.1	OW-3R OW-7R	50	l	1	1		
Toluene	2	14	80		1.5		5	5	0	2000	1000	
Ethyl benzene	1	14	2	1] }	IW-2R	5	ľ	1			
(ylenes (total)	1	14	9	OW-7R	2	OW-7R	5	700	700	30000		:
Semi-Volatile Organics (ug/l)				011-111	3	OW-7R	5	10000	10000	40000	40000	100
Methyl Phenol	1	8	1,4	OW-7R	1.4							
Phenol	1	8	10	OW-7R	10	OW-7R	50					
-Methylphenol	2	. la	2	OW-7R			1	[. [6000	6000	40
sophorone	2	8	3	OW-7R	0.83 2.7	OW-7R	50	. [- 1			
Ol-n-butyl phthalate	4	8	1	OW-2R,-3R,-7R	0.96	OW-7R OW-7R	50			15000	15000	t
lls (2-ehtylhexyl) Phthalate	1	8	2.7	OW-7R	2,7	OW-7R	50 50					

Table No. 23 Summary of Health Based Top of Bedrock Groundwater ARARs/SCGs

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrielta, New York

	Number of	Number of		of Site Occurrence								
Parameter	Samples Delected	Samples	Maximum	Location of	Minlmum	Location of	NYSDEC	USEPA	USEPA	SCG's	7411	
Metals (ug/l)	Delection	Tested		Maximum		Minimum	Class GA	MCL's	MCLG's	Cumor.	PA Health Adviso	Adult
Aluminum	·					i ————	 	 -	 	One Day	Long Term	Lifelim
Antimony	1 1		1400	OW-4R	247	OW-7R	100	 	<u> </u>			
Arsenic		7	47.8	IW-1R	47.8	IW-1R] , ₌			
Barlum	9	14	23.3	IW-1R	3	OW-7R	25	6	6	15	15	
Cadmium	14	14	109	IW-1R	4.8	OW-3R	1000		12	****		
Calcium	8	14	797	IW-1R	2.7	OW 1R	-		2000			20
Chromium		7	458000	OW-4R	73000	OW-2R	10	5	5	40	5	
Cobalt	13	14	4380	JW-IR	2.5	OW-4R	ĺ		- 1			
Copper	7	7	19.4	IW-1R	2.1	OW-4R	50	100	100	1000	200	10
lion	14	14	708	IW-1R	4.5	OW-4R	[]	' i	j		1	
Lead	7	7	265000	OW-1R	39300		200		1300		ĺ	
1	10	14	78.1	IW-1R	2.2	OW-7R	300		1	- 1	1	
Magnesium	7	7	59700	OW-4R	23400	OW-2R	25		0			
Manganese	7	7	1670	OW-3R		OW-7R	35000		1]	
Mercury	6]	14	0.41	OW-3R	428	IW-2R	500		200		}	
Vick a l	12	14	7770	IW-2R	0.2	IW-1R	2		ľ	i		
olassium	7	7	75600	OW-7R	19.5	OW-1R		100	100	1000	500	
Silver	10	14	18.3	IW-1R	6570	IW-1R]			1000	500	10
odium	7	7	87600		1.3	OW-3R	50	•		200	200	_
anadium	7	7		IW-2R	16200	OW-3R	20000		1	200	200	100
<u>inc</u>	14	14	22.7	IW-1R	3	OW-3R	· · · · · · · · · · · · · · · · · · ·		- 1			
Others			4280	IW-1R	20.7	OW-4R	300	1	٠	80	30	20
yanide (ug/i)	 -	 -								6000	3000	2000
kalinity, as CaCO3 (mg/l)	<u>'</u>	()	16.6	IW-1R	16.6	IW-1R	100	200	200			
ardness, as CaCO3 (mg/l)	<u>'</u>		280	IW-2R	34	OW-3R	···	200	200	200	200	200
ites: 1) Site occurrence includes maximum 2) The total number of samples teste.		7	1500	OW-4R	330	OW-2R					ŀ	

4) USEPA MCLs and MCLGs developed for public water supplies.

²⁾ The total number of samples tested includes two rounds of sampling the same wells for VOCs and selected metals. One semi-VOC sample was also collected NYSOEC Class GA criteria developed for waters with a best usage as potable water supply.

⁵⁾ USEPA Health Advisories developed to be protective of adverse non-carcinogenic health effects associated with exposure of child for one day and longer term (approximately 7 years or 10 % of lifetime) and lifetime exposure for adults

⁶⁾ This table includes observation wells installed during the course of this Remedial investigation, as well as the two existing supply wells

Tablo No. 24a Summary of Health Based On-Site Sump and Catch Basin Soll ARARs/SCGs

Romedial Investigation Sluart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

	No.	1	Summary of	Site Occurrenc					0001		
	Number of	Number of	!				NYSDEC	USEGLO	SCG's		
Parameter	Samples	Samples	Maximum	Location of	Minimum	Localion of	TAGM	USEPA DI	RAFT Resident	ial Generic	
Volatile Organics (ug/kg)	Delected	Tested		Məximum	<u> </u>	Minimum	4048	Inhalation	i Screening Le		USEPA
Volatile Organics (ug/kg)]					——————————————————————————————————————	- IIII alalioli	Ingestion	Protection of GW	HEAST
1,1-Dichloroethane	1	[2	32000	NSM-2	25000	NSM-2	200				
1,2-Dichloroethene(Total)	1 1	2	17000	NSM-2	17000	NSM-2		7000	300	10	80000
1.1.1-Trichloroethane	2	2	2000000	NSM-2	8300	NSM-3	300	780000	1500000	200	8000
Trichloroethene	1 i ₁	2	8900	NSM-2	8900	NSM-2	800		980000	900	70000
Tetrachloroethene	2	اةِ ا	91000	NSM-2			700	58000	3000	20	640
Tolueno	2	1 51	110000		350	NSM-3	1400	12000	11000	40	140
Chlorobenzone	1	1 1		NSM-2	580	NSM-3	1500	16000000	520000	5000	
Ethyl benzene	· '.	4	8600	NSM-2	8600	NSM-2	1700	1600000	94000		200000
		{ ? [9200	NSM-2	9200	NSM-2	5500	7800000		600	20000
Xylene (total)	2	2	46000	NSM-2	490	NSM-3	1200	160000000	260000	5000	80000
Semi-Volatile Organics (ug/kg)							7200	100000000	320000	74000	2000000
1,4-Dichlorobenzene	1	2	1000	NSM-2	1000	NSM-2				T	
1,2 Dichlorobenzene	1	· · j	5500	NSM-2	3900		8500	27000	7700000	1000	290
Naphthalene		اة قا	1800	NSM-2		NSM-2	7900	7000000	300000	6000	7000
2-Methylnaphthalene	3				1100	NSM-3	13000	3100000		30000	
Dimethyl Phthalate			420	NSM-2	240	NSM-3	36400				3000
Acenaphthylona		- 41	440	NSM-2	220	NSM-3	-	780000000	1600000	·· ———————————————————————————————————	 _
Acenaphthene		?]	600	NSM-2	600	NSM-2	41000			1200000	
	. 1	2]	490	NSM-2	490	NSM-2	50000				3000
Dibenzofuran	. 1	2	440	NSM-2	440	NSM-2	6200	4700000		200000	50000
- iriotava	1]	2	990	NSM-2	770	NSM-2					
Phenanthrene	2	2	16000	NSM-2	3400	NSM-3	50000	3100000		160000	30000
hihracone	. 2	2	1500	NSM-2	590	NSM-3	50000			• • • • • • • • • • • • • • • • • • • •	
Carbazole	2	2	2500	NSM-2			50000	23000000		4300000	200000
Di-n-Butylphthalate					680	NSM-3	50000	32000		200	
luoranthene	<u> </u>		8000	NSM-3	2500	NSM-2	8100	7800000	100000		83
Pyrana		<u></u>	19000	NSM-2	7200	NSM-3	50000	3100000		120000	
	2	2	18000	NSM-2	7200	NSM 3	50000	2300000		980000	30000
lulyibenzylohthalate	2	2	110000	NSM-2	28000	NSM-3	50000			1400000	20000
lenzo (a) Anthracene	2	2	5100	NSM-2	3100	NSM-3		16000000	530000	68000	200000
Chrysone	2	2	21000	NSM-2	5200	NSM-3	224 or MDL	900	· 1	700	2
is (2-Ethylhexyl) Phthalate	2	2	67000	NSM-2	8200		400	88000	' '	1000	
Pi-n-Octyl Phthalate	· il	3	1700	NSM-2		NSM-3	50000	46000	210000	11000	5000
enzo (b) Fluoranthene	<u>.</u>	<u> </u>			1300	NSM-2	50000				
enzo (k) Fluoranihone	51	. 3	17000	NSM-2	5400	NSM-3	1100	900			200000
enzo (a) Pyrene	· []			NSM-2	2000	NSM-3	1100	9000	· · -	4000	22
dono (1 2 2 od) D	<u>- {</u>] -		4200	NSM-2	2800	NSM-2	61 or MDL	90	· - ·	4000	22
ideno (1,2,3-cd) Pyrene	2[.		9600	NSM-2	3100	NSM-3	3200		J.	4000	6
Ibenz (a,h) Anthracene	2	2	3100	NSM-2	750	NSM-3	14 or MDL	900		35000	
enzo(g,h,l) Perylene	2	2	5700	NSM-2	1200	NSM-3	50000	90	1	11000	

Table No. 24a Summary of Health Based On-Site Sump and Catch Basin Soli ARARs/SCGs

Remedial Investigation Stuert-Olver-Holtz Site No. 8-28-079 Henrietta, New York

		Number of	Number of	~~····································	Site Occurrence							
Parameter		Samples Delected	Samples Tested	Maximum	Location of	Minlmum	Location of	NYSDEC TAGM	USEPA D	SCG's RAFT Resident	al Generic	
Meta	is (mg/kg)	1	1		Maximum		Minlmum	4048	30	il Screening Le	rela	lione.
Vinniunu		2			l				Inhalation	Ingestion	Protection of GW	USEPA HEAST
Antimony		-		4460	NSM-2	3250	NSM-3		·			HEASI
Arsenic][[13.6	NSM-2	5.3	NSM-3	···	 -			
Barlum			···	46.2	NSM-2	6.6	NSM-3		31			
Cadmium		1 ई	· · · · · · · · · · · · · · · · · · ·	384	NSM-2	148	NSM-3	7.5	0.4	380	15	
Calcium		1 4	?	63.3	NSM-2	42	NSM-3	300	5500	350000		
Chromium	• •] 3	2	162000	NSM-3	60900	NSM-2	<u></u> 1	39	920		40
Cobalt	• • • •	2	2	714	NSM-2	165	NSM-3					
Copper		2	2	6.1	NSM-2	3.8		10				
lron	***	2	2	355	NSM-2	90,8	NSM-3	30				800
Load		2	2	34500	NSM-2	19700	NSM-3	25				
Magnesium			2	381	NSM 3		NSM-3	2000			<u></u>	·
		2	2	32500	NSM-3	253	NSM-2	200-500	400			/
Manganese		2	2	310	NSM-2	20000	NSM-2			—	·—	2:
Mercury Nickel		lil	2	0.8	NSM-2	259	NSM-3				·	
*** = * = ***		2	2	983	NSM-2	0.8	NSM-2	0.1	·····- 	-··		2000
olassium		2	ż	1100	NSM 3	233	NSM-3	13	1600		3]_	
Selenium		2	2	89.8	NSM-2	1090	NSM-2			6900	21	200
llver		2	2	16.9		4.4	NSM-3	2	390	· · · · ·		
odium		2	2		NSM-2	2.9	NSM-3	• • • • • • • • • • • • • • • • • • • •	390 . 390	-		
anadium		2	او	364	NSM-3	343	NSM-2		390			20
inc	-	2	اؤ	13.7	NSM-2	11.5	NSM-3	150				
<u></u>		—— <u> </u> `L	- 	2210	NSM-2	256	NSM-3	20 -	550 23000			60

- Site occurrence includes maximum and minimum detected values of the respective test parameters.
- 2) TAGM 4048 = "Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives Levels", prepared by NYSDEC, January 24, 1994. 3) HEAST - Values derived from USEPA Health Effects Summary Table.
- 4) HEAST value for chromlum assumes trivalent chromium
- 3) USEPA Draft Soil Screening Guidance = Soil Screening Guidance, USEPA, EPA/540/R-94/101, December, 1994. It should be noted this document is in review

Table No 24b Summary of Health Based On-Site Sump and Catch Basin Water ARARs/SCGs

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

		l———		Summary of	Sile Occurrenc	•											
Parameter		Samples Detected	Samples Tested	Maximum	Location of	Minimum	Localion of	NYSDEC Class GA	USEPA MCL's	USEPA MCLG's	USEP,	A Health Advis		NYSDEC	USEPA	AWQC	
M	etals (ug/I)		resteu	 	Maximum		Minimum	1	1			Child/	Adult	Class C	AWOC	Aquatic	1
Aluminum						L			 -		One Day	Long Term	Lifetime	Water	Health		Aqu
Antimony	ter er er en e en 🗨	···	?	15700	NSM-4	2940	NSM-1	100							7.02(())	Acute	Chro
Arsenic			?	[111]	NSM-4	13,2	NSM 1							100			ļ <u>.</u>
Barium				4.1	NSM-1	4.1	NSM 1				1.5	15	3			750	
admium		2	2	918	NSM 4	198	NSM 1	25	50				I—+—	190	146	88	-
Calcium		기	2	4430	NSM-4	34.7	NSM-1	1000	2000	2000			2000		0.0022		
				191000	NSM-4	36800	NSM 1	10	5,	5	40				1000		
htomium	[2	4940	NSM-4	454							٠ ١	3.03	10	130	
opalt		. 2	2	266	NSM-4	11,6	NSM-1	50	100	100	1000	200		· ———.			
opper		2	2	3580	NSM-4		NSM 1						100	824	170000	1700	
on		2	`` ' 2	1700000	NSM 4	261	NSM-1		. "	1300		*****		5			
ead.	[ż	698	NSM 4	5630	NSM-1	300	· 1			*** ** · · · ·		50	1000	18	
lagnesium			2	17300		457	NSM I	25						300	30		1
Jandaueze		2	,	7980	NSM-4	4870	NSM-1	35000			[.			27	50	8.2	
lercury				* " • • •	NSM-4	288	NSM-1	500		200							
ickel		او	- 1	2.4	NSM-1	2.4	NSM-1	2							50		
Olassium	•		(56700	NSM-4	840	NSM-1		100	100	· · · ·				0.144	-···	=
elenium		1	· :[08800	NSM-4	2140	NSM-1]		···· !~~	1000	500	100	345	13 (1400	<u>.</u>
lver	,			3 6	NSM-1	3 6	NSM-1	10	. <u>.</u>	<u>-</u>							
dium		. 4	2	99 9	NSM-4	6.3	NSM-1	50		50				·		· ····	
altium			2	193000	NSM-4	7770	NSM-1	20000			200	200	100	0.1	10	20	
nadium		1	2	20	NSM-4	20	NSM-4	2000			.]	· ' '	`		50	0.92	
ic		_ 2	2	102	NSM-4	3.7	NSM-1		. 2	0.5	7	7	0,4				
		2	2	63500	NSM-4	7610	NSM-1	4 11.	. [80	30	0.9 20		13	1400	
	Olhers						Nam-1	300			6000	3000	2000			1	
anide ug/l		1	. 2	30	NSM-1	30	NEN A							348	5000	98	
alinity mg/l		2	2	250	NSM-4		NSM-1	100	200	200	200	200	200				
rdness mg/l		2	2	1100		*****	NSM-1							5.2	200	22	
les:	nce includes maximum ar					540	NSM-1				························				1		

2) NYSDEC Class GA effuent standard are developed for water discharged to a Class GA groundwater.

3) Class C Surface Water Standards as promulgated in 6 NYCRR 703.

4) Class C Surface Water Standards for selected metals is based on the hardness of the water.

For the purposes of making these calculations, a herchess of 540 ppm was assumed

Chromium = exp (0.619 | in (ppm hardness)] + 1.561)

Copper = exp (0.8545 | In (ppm hardness)] - 1 465)

Lead = exp (1,266 | in (ppm herdness)] - 4,661)

Mickel = exp (0.76 | in (ppm hardness)] + 1.06)

Zinc = exp (0.85 | in (ppm hardness)) + 0.50)

5) AWOC = USEPA Ambient Water Quality Criteria for Human Health, water and fish ingestion

6) Civonium is assumed to be atvalent civonium.

7) Silver Class C Surface Water Standard is for loric silver.

8) USEPA MCLs and MCLGs apply to public water supplies

9) USEPA Health Advisories developed to be professive of edverse non-carcinogenic health effects associated with exposure of child for one day and longer term (approximately 7 years or 10 % of lifetime) and lifetime exposure for adults,

Table No. 24b Summary of Health Based On-Site Sump and Calch Basin Water ARARs/SCGs

Remedial Investigation Stuart-Olver-Hoftz Site No. 8-28-079 Henrietta, New York

	l		Summary of	Site Occurrenc	<u>e </u>						SC	G's				
	Samples	Samples	Maximum	Location of	Minimum	Location of	NYSDEC Class GA	USEPA MCU's	USEPA MCLG's	USEP Child/	A Health Advis	sories	NYSDEC	USEPA	AWQC	AWQ
Parameter	Detected	Tesled	<u> </u>	Maximum		Minimum			""	One Day	Child/	Adult	Class C	AWQC	Aquatic	Aquati
Volatile Organics (ug/l)									 	One Day	Long Term	Lifetime	Water	Health	Acule	Chron
1,1-Dichloroethane	1,	2	72000	NSM-4	61000	NSM-4		-	 -		ļ		<u> </u>			
1.1.1-Trichloroethane	'- ;	2	7900	NSM-4	6500	NSM 4						 <u>-</u>		l —		1
Toluene	i	2	5800	NSM 4	5800	NSM-4		200	200	100000	40000	200		1.03	-:	
Ethyl benzene	"	· " 2l	2700	NSM 4	2700	NSM-4		1000		20000	2000	1000		14300	17500	
Xylene (total)	1 1	2	15000	NSM 4	15000	NSM-4	5	700	700	30000	1000	700		3000	32000	
Semi-Volatile Organics (ug/l)					- 13000	143/41-4		10000	10000	40000	40000	10000		1		
Phenol			360	NSM-4	360	NSM-4						L				
4-Melhylphenot	· · i		24	NSM-4	24	· · · - · · 1	- 1			6000	6000	4000		20900	10200	
Phenanihiese	' ;		2	NSM-1	1	NSM-1	50	٠								•
Anthracene				NSM-1	1		50					ı i				
Fluoranihene		[و	,	NSM 1	- :1	NSM 1	. 50					· ·]				
Pyrene	ا،		-	NSM-1	3	NSM 1	. 50							310	3980	
Bulyibenzyiphihalale	- 1	2		NSM 1		NSM-1	50					· 1	• • •			ĺ
Benzo (a) Anthracene	1		- ' '	NSM-1		NSM-1	50	100	0				•			
Chrysene		5	4	NSM-1		NSM-1	50								· - • • · · · ·	
Bis (2-Ethylhexyl) Phthalale	· · · · · · · · il		10	NSM-1	10	NSM-1	50	0.2	0							
Benzo (b) Fluoranthene				NSM I		NSM-1	50						0.6			
Benzo (k) Fluoranihena	· · · ;]					NSM-1	50	0.2	0	- 4					.,.	
	·· ·· · []	:	3	NSM-1		NSM-1	50	0.2	0	i	. [. 1			·	
ideno (1,2,3-cd) Pyrene		- 1	3	NSM-1	3	NSM-1	50	0 2	0			-]	2800		
lenzo(g,h,i) Perylena	:		3	NSM-1	2	NSM-1	50	0.4	0							
Curota'u'il Leillicus			3	NSM-1	3	NSM-1	50						· ··· • · · · ·	,		

Table 25 Summary of Health Based Ruby Gordon Basement Equilibrium Vapor Concentration ARARS/SCGs

Renedial Investigation Stuart-Olver-Holtz 8-28-079 Henrietta, New York

					Summa	ry of Occurrence						
Parameter	Number of Samples Detected	Number of Samples Tested	Maximum (ug/l)	Localion of Maximum	Dilution Based Vapor Concentration (1/2 Vol. per hour) (mg/m²)	Ditulion Based Vapor Concentration (1 Vol per day)	Minimum	Location of Minimum	Dilution Based Vapor Concentration (1/2 Vol. per hour)	Dilution Based Vapor Concentration (1 Vol per day)	Air Oulde - 1 SGC	Air Guide - AGC
Volatile Organics				2 Garage 129 Talls	190 7900 Barry 1 18 Aug. 1	(mg/m³)	(ug/l)	100	(mg/m¹)	(mg/m³)	(mg/m¹)	(mg/m³)
Vinyl chlorida	3	6	130	SUMP-2	0 0208	0 247	15	SUMP-3		Alexander (Spiriter)	Algebrasian and a	now ye recoverage r
Chloroelhane	1	6	88	SUMP-2	0.001408	0 01672	8.8	SUMP-2	0.0024	0.0285	1.3	0.00002
Methylene chloride	5	6	120	SUMP-2	0 0192	0 228	4	SUMP-1	0 001408 0 00064	0 01672	63	13
.1 Dichloroethene	4	6	120	SUMP-2	0.0192	0 228	36	SUMP-1	0 000576	0 0076		
1,1-Dichloroelhane	6	6	750	SUMP-2	0 12	1.425	26	SUMP-1	0.00376	0 00684	2	0 00002
2-Dichloroethene(Total)	6	6	760	SUMP-2	0.1216	1 444	52	SUMP-1	0 000832	0.0494	96	0.5
.7-Dichloraethane] 3	6]	41	SUMP-2	0 000656	0 00779	3	SUMP-2.3	0.00048	0.00988	190	1.9
1.1 Trichloroethane	6	6	3200	SUMP-2	0 512	6 OB	15	SUMP-1	0.00048	0 0057	0.95	0 000039
uchloroethene	1 6 1	6	560	SUMP-2	0 0896	1 064	44	SUMP-1	0 000704	0.0285	450	1
,1,2 Trichloroethane	1 2	6	19	SUMP-2	0 00304	0 0361	8	SUMP-2.3	0 00128	0 00836	33	0 00045
ramaform] 7 [6	15	SUMP-2	0 0024	0.0285	il	SUMP-3		0 0152	13	0 00006
-Methyl-2-Pentanone] 2 [6	21	SUMP-2	0 00336	0 0 3 9 9	ا و	SUMP-3	0 00016 0 00032	0 0019	12	0.0009
elrachloroelhene	6	6	180	SUMP-2	0 0288	0 342	46	SUMP.1	0 00032	0 0038	48	0 48
,1,2,7-Telrachlorgethane	2	6	23	SUMP-2	0 00368	0 0437	2	SUMP-3	0 00032	0 00874	40	0 0012
ylenes (total) lotes		6	16	SUMP-1	0 000256	0 00304	16	SUMP-1	0 000256	0 0038	1 6 100	0 00002 0 3

- 1) Sile occurrence includes maximum and minimum detected values of the respective test parameters
- 2) PEL = Permissible Exposure Level REL = Recommended Exposure Limits IDLH =Immediately Dangerous to Life or Health
- 3) TWA = Time Weighted Average Exposure Limit for a max 10 hour day (NIOSH) and max 8 hr day (OSHA) of a 40 hour work week
- 4) Ca = NIOSH identified occupational carcinogen
- 5) SGC Short Term Guidance Criteria 6) AGC - Annual Guidance Criteria

Table No. 26 Qualitative Assessment of Ecological Risks in Surface Water

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

	1	1	Summary of	Site Occurren	ce		SCG's			
	Number of Samples Detected	Number of Samples Tested	Maximum	Location of Maximum	Minimum	Location of Minimum	NYSDEC Class C Water	AWQC Aquatic Acute	AWQC	
Volatile Organics (ug/l)	<u> </u>						· · · · ·	Acute	Chroni	
Acetone	1	3	25	SW-3	25	SW-3	├──┤	· 		
Semi Volatile Organics (ug/l)				 			 			
Pentachlorophenol	1	3	4	SW-2	4	SW-2				
Fluoranthene	1	3	1	SW-1		SW-1	0.4			
Pyrene	1	3	1	SW-1		SW-1	- -	3980		
Metals (ug/l)					 -	244-1				
Aluminum	3	3	997	SW-2	158	SW-3	100			
Barium	3	3	183	SW-2	48.8	SW-3	- 100			
Calcium	3	3	101000	SW-1	63900	SW-3	·	 -		
Chromium	1	3	2.2	SW-3	2.2	SW-3				
Cobatt	1	3	2.4	SW-3	2.4	SW-3	5594	1700	210	
Copper	2	3	4.1	SW-3	2.8	SW-2	5			
ron	3	3	4850	SW-2	744	SW-1	368	18	12	
Lead	3	3	8.2	SW-3	7.4		300		100	
Magnesium	3	3	38500	SW-1	17400	SW-1	526	8.2	3.2	
Manganese	3	3	909	SW-2	185	SW-3			<u></u>	
Potassium	3	3	12800	SW-3	10400	SW-1				
Silver		. 3	2.4	SW-3	2.4	SW-1				
Sodium	3	3	96900	SW-1	38700	SW-3	0.1	0.92	0.12	
/anadium	1		3.7	SW-2	3.7	SW-3				
Zinc	3	3	80.1	SW-2	30.6	SW-2	14			
OTHERS (mg/l)		3	- 55.11	344-2	30.6	SW-1	2530	96	86	
Alkalinity	 	1	360	SW-2	360					
lardness	<u> </u>		5300	SW-2	5300	SW-2			_ 	

2) Class C standards as promuloated in 6 NYCRR 703

¹⁾ Site Occurrence includes maximum and minimum detected values of the respective test parameters.

Table No. 27 Qualitative Assessment of Ecological Risks in Surface Water Sediments

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

	Number of		ummary or :	Sile Occurren	ce				SCG's			
	Samples	Samples	Maximum	Location of	1	l	NY	SDEC Sediment	Criteria	NO	AA	USEPA
Parameter	Detected	Tested	Maximum	Maximum	Minimum	Location of		Toxicity	Wildlife	Memo S		Sedimen
Volatile Organics (ug/kg)		140,44		HIGAIIIGH		Minimum	Acule	Chronic	Bloaccumulation	ER-L	ER-M	Criteria
Methylene chloride	2	2	7	SED-2	3	SED-3		·	:		·	
1,1-Dichloroethane	1	2	6	SED-3		SED-3						
1,1,1-Trichloroethane	1	2:	7	SED-3	7	SED-3						
Tetrachloroethene	1	2	3	SED-3	3	SED-3					et = 11111111111111111111111111111111111	
Semi-Volatile Organics (ug/kg)			<u> </u>	020-0		350.3						
Naphihalene	1	2	610	SED-3	420	SED-3	 }					
2-Methylnaphthalene	1	2	490	SED-3	250	SED-3				140	2100	
Acenaphthylene	21	2	630	SED-3	36	SED-2				65	670	
Acenaphthene	1	2	2700	SED-3	1400	SED-2			-411,1111111111111111111111111111111111			
Dibenzoluran	1	2	1100	SED-3	600	SED-3		1400		150	650	144
Fluorene	1	2	2400	SED-3	1200	SED-3						
Phenanihrene	2	2	21000	SED-3	340					35	640	
Anthracene	2	2	3400	SED-3	62	SED-2		1200		225	1380	120
Carbazole	2	2	2900	SED-3		SED-2				85	960	·····
Di-n-Bulylphthalate	} <u>.</u>	2	180	SED-2	65	SED-2				······		
Fluoranthene	2		34000	SED-2	85	SED-2				······································		
Pyrene		2	31000		810	SED-2		10200		600	3600	1020
Benzo (a) Anthracene	2	2	15000	SED-3	810	SED-2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(,,a,-),,,,,,,,		350	2200	
Chrysene	<u>-</u> -		18000	SED-3 SED-3	260	SED-2				230	1600	
Bis (2-Ethylhexyl) Phthalate	} <u>-</u>		4700	SED-3	450	SED-2				400	2800	*************************
DI-n-Octyl Phthalale	<u>-</u>		350	SED-3	210	SED-2		1995				
Benzo (b) Fluoranthene			27000	SED-2	350	SED-2		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Benzo (k) Fluoranthene	<u>.</u> ا		11000		530	SED-2	**************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,	*********************	······································	
Benzo (a) Pyrene	i		17000	SED-3	390	SED-2						
ndeno (1,2,3-cd) Pyrene	······		22000	SED-3	750	SED-2				400	2500	
Dibenz (a,h) Anthracene	·····		6900		91	SED-2						
Benzo(g,h,i) Perylene	<u>-</u>	<u></u>	7900	SED-3	140	SED-2				60	260	
lotes	- 	<u></u>	1900	SED-3	1200	SED-2						•

- 1) Site occurrence includes maximum and minimum detected values of the respective test parameters.
- 2) NOAA Memo SOMA 52 = "The Potential for Biological Effects of Sediment Sorbed Contaminants Tested in National Status and Trends Program", NOAA, 1990. ER.L = Effects
- 3) NYSDEC Sediment Criteria = "Technical Guldance for Screening of Contaminated Sediments", NYSDEC, July 1994. A TOC value of 1 percent was assumed in deriving criteria.

Table No. 27 Qualitative Assessment of Ecological Risks in Surface Water Sediments

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

	Number of	Number of		Sile Occurren	<u> </u>				SCG's			
Parameter	Samples Delected	Samples Tested	Maximum	Location of Maximum	Minlmum		Background	SDEC Sediment	Criteria Severe Effect)AA	USEPA
Metals (mg/kg)				MOXIMUM		Minimum	(1)	Level	Level	ER-L	OMA52	Sedime
Aluminum	2	2	10600	SED-2	477.47					ERIL	ER-M	Criteria
Antimony	1	2	5.1	SED-2	4540	SED-3	***************************************					
Arsenic	2	21	6.2		5.1	SED-2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	25			
Barium	2			SED-2	1.4	SED-3	7.5	6		2	25	
Beryllium			63.2	SED-2	22.1	SED-3	300	······································	33	33	85	·
Cadmium			0.59	SED-2	0.59	SED-2	0.16					
Calclum	·····		1.6	SED-3	1.6	SED-3	1]	0.6		41)4	9	
Chromlum			7590	SED-3	7020	SED-2			9	5		
Coball		2	35.5	SED-2	14.1	SED-3	10	26			145	
Copper		2	10.1	SED-2	3.7	SED-3	301	20	110	80		
ron	2	2	68.9	SED-3	17.1	SED-2	25				390	
ead	2	2	51000	SED-2	8970	SED-3	2000	16	110	70		
contituent and a contituent of the contract of	2	2	61,5	SED-3	41.2	SED-2	200-500	20000	40000		110	
Magnesium	2	2	4140	SED-3	4090	SED-2	200-5001	31	110	35		***************
/langanese lickel	2	2	725	SED-2	119	SED-3				····	***************************************	
	2	2	26.2	SED-2	11.2	SED-3		460	1100	"""""""""""""""""""""""""""""""""""""""	50	
olassium	2	2	1850	SED-2	1210		13	16	50	30		
ilver	2	2	******************	SED-2	0.69	SED-3				······································	2.2	
odium	2	2		SED-3	.,,	SED-3		1	2.2			·
'anadium	2	2		SED-2	2.54	SED-2					·····	
Inc	2	2			13.9	SED-3	150	Part National Parts		120		····
oles: 1) Site occurrence includes max 2) NOAA Memo SOMA 52 = "Th				SED-3	442	SED-2	20	120	270	120	270	***************************************

- 2) NOAA Memo SOMA 52 = "The Potential for Biological Effects of Sedlment Sorbed Contaminants Tested in National Status and Trends Program", NOAA, 1990. ER:L = Effects
- Range Low, ER-M Effects Range Median

 3) NYSDEC Sediment Criteria = "Technical Guidance for Screening of Contaminated Sediments", NYSDEC, July 1994 A TOC value of 1 percent was assumed in deriving criteria.

Table No. 28 Qualitative Risk Assessment of Ecological Risks in Overburden Groundwater

Remedial investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

			Sumn	nary of Site Occur	Ieuce		SCG's			
Parameter	Samples Detected	Samples Tested	Maximum	Location of Maximum	Minimum	Location of Minimum	NYSDEC Class C Water	USEPA AWQC Aqualic Acute	USEPA AWQC Aquatic Chronic	
 Volatile Organics (ug/l) 					·					
Vinyl chloride	9	32	11000	MW-5	2.7	OW-11S		l	— · i —	
Chloroelhane	1	32	21	OW-65	21	OW-6S				
Methylene chloride	6	32	350	MW-2	3.9	MW-3		- -		
Acelone	1	32	9.8	OW-8S	9,8	OW-8S				
1,1-Dichloroethene	16	32	900	OW-6S	3.6	OW-8S		11600		
1,1-Dichloroethane	18	32	10000	MW-2	8.6	OW-11S				
1,2-Dichloroethene (lotal)	16	32	10000	MW-2	2.9	OW-8S				
Chloroform	1	32	7.2	OW-10S	7.2	OW-10S	— 	28900	124	
1,1,1-Trichioroethane	14	32	24000	OW-6S	3.1	OW-85			12.	
Trichioroelhene (TCE)	16	32	140000	OW-7S	1.4	OW-8S		45000	21900	
1,1,2-Trichloroethane	2	32	53	MW-5	12	OW-65		18000	9400	
Tetrachloroethene	10	32	8800	MW-5	3.3	OW-85		10000	5400	
Semi-Volatile Organics (ug/l)										
Phenol	2	17	9	OW-7S	8	MW-5		10200	256	
4-Methyl Phenol	1	17	1.4	OW-7S	1,4	OW-7\$		10200	230	
2-Melhylphenol	2	17		OW-7S	7.9	OW-75				
sophorone	2	17	23	OW-7S	19	OW-7S		11700	· •	
Dimethyl Phthalato	1	17	0.74	OW-7S	0.74	OW-7S				
Di-n-butyl phthalate	2	17	2	OW-9S	1	OW-LS		·		
Diethyl Phthalate	1	17	1.5	OW-78	1.5	OW-78				
Bis(2-ethylhexyl)phthalate	9	17	3	OW-9S	1	OW15,25 &45	0.6			

Table No. 28 Qualitative Risk Assessment of Ecological Risks in Overburden Groundwater

Remedial Investigation Stuart-Olver-Holtz Site No. 8-28-079 Henrietta, New York

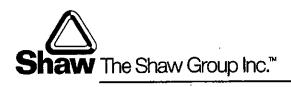
			30(1)	nary of Site Occur	ance		T	000	
Parameter	Samples Detected	Samples Tested	Maximum .	Location of Maximum	Minimum	Location of Minimum	NYSDEC Class C Water	SCG's USEPA AWQC Aquatic	USEPA AWOC Aquatic
Metals (ug/l)					╀╾	 -	<u> </u>	Acute	Chronic
Aluminum	16	16	14900	OW-10S	 -		ļ <u> </u>		
Arsenic	13	32	10.8	OW-45	28.9	OW-8S	100	750	
Barlum	32	32	305	OW-10S	3.1	OW-118	190		
Cadmium	1 " " - 7	32	5.5	OW-78	31.5	OW-8S	11-		
Calcium	16	16	301000	**	2	OW-1S	3.03	130	50
Chromium	19	32		OW-10S	61000	OW-7S		·	
Cobalt	12	16	39.1	OW-58	2	OW-7S	577.5	1700	21
Copper	24		19,1	OW-10S	2.8	101-OW	5		
Iron	16		56.9	OW-108	2.6	101-OW	34.5	18	 1
Lead	21	16	96700	OW-1S	320	OW-85	300		
Magnesium		32	61.8	OW-LS	1.2	OW-35	15.7	8.2	100
Manganese	16	16	825000	MW-3	43400	OW-7S			<u>3</u> .
Mercury	16	16	1420	OW-10S	85.4	OW-85	 -	<u>-</u> -	
Nickel		32	0.23	OW-118	0.23	OW-115	{ <i>-</i> -		
Polassium	23	32	169	OW-5S	15.6	MW-5	248	2.4	0.01
Silver	16	16	27500	OW-10S	2760	MW-5		1400	10
Sodium		32	1.9	OW-LS	1.4	OW-78			
/anadium	16	16	168000	OW-10S	21200	OW-78	0.1	0.92	0.2
		16	28.2	OW-108	2.6	OW-78		·	
Zinc	32	32	169	OW-10S	9.6	OW-6S	14		
Others						044-02	240	96	86
yanide (ug/l)	2	16	11,5	OW-2S	11,3	OW-1S			
(kalinity, as CaCO3 (mg/l)	16	16	490	OW-LS	180		5.2	22	52
lardness, as CaCO3 (mg/l)	16	16	970	OW-115	350	OW-4S OW-7S			

- Site occurrence includes maximum and minimum detected values of the respective test parameters.
- 2) The total number of samples tested includes two rounds of sampling the same wells for VOCs and selected metals. One semi-VOC sample was
- 3) AWQC = USEPA Ambient Quality Criteria for Human Health; water and fish Ingestion.
- 4) Class C Surface Water Standards as promulgated in 6 NYCRR 703.
- 5) Class C Surface Water Standards for selected metals are based on the hardness of the water.

For the purposes of making these calculations, a hardness of 350 ppm was assumed

Chromlum = exp (0.819 [in (ppm hardness)] + 1.581)

Copper = exp (0.8545 (in (ppm hardness)) - 1.485)


Lead = exp (1.266 [in (ppm hardness)] - 4.681)

Nickel = exp (0.76 [In (ppm hardness)] + 1.08)

- Zinc = exp (0.85 [in (ppm hardness)] + 0.50)
- Chromium is assumed to be trivalent chromium. 7) Silver Class C Surface Water Standard is for lonic silver.

APPENDIX I ORDER OF MAGNITUDE COST ESTIMATE AND COMPARISON LETTER DATED MAY 7, 2002

Shaw Environmental & Infrastructure, Inc.

13 British American Boulevard Latham, NY 12110-1405 518.783.1996 Fax 518.783.8397

May 7, 2002

Project #: 784222 - 03070000

Mr. Gary Kline, P.E.
New York State Department of Environmental Conservation
Bureau of Western Remedial Action
Division of Environmental Remediation
625 Broadway
Albany, NY 12233-7017

Re: Order of Magnitude Cost Estimate and Comparison

Groundwater Cutoff System

Stuart-Olver-Holtz Site, Henrietta, NY

Dear Mr. Kline:

This letter documents Shaw Environmental and Infrastructure, Inc.'s (Shaw E & I) research in response to our teleconference with you on April 25, 2002. Specifically, this correspondence describes and estimates the costs associated with several schemes to intercept and passively treat dissolved Volatile Organic Compounds (VOCs) migrating from the referenced site toward the basement sumps at the adjacent Ruby Gordon's Furniture building. Shaw E&I understands that preference was to be given to:

- Passive means of interception (in lieu of any pumping or active schemes); and
- Systems that are do not require site upkeep or operation and maintenance expenditures (including treatment of pumped effluent).

In consultation with NYSDEC, Shaw E&I understands that:

indicates 19,000 gallons were discharged in calendar year 2000 (average flow rate of 0.04 gpm of 52 gallons per day).

Because the analytical results from Sump #3 are post air striping, it is unknown what the concentrations entering this sump are. To better understand the approximate water quality in the sumps, IT reviewed the available file documentation on the sump (attached). Based upon this tabulation, the sump groundwater is estimate to contain an average of approximately 317 ug/L of total VOCs.

With these preferences and site conditions in mind, Shaw E&I considered four alternatives, briefly described below:

- 1. Engineering Barrier Steel sheet pile wall installation of steel interlocked sheet pile barrier;
- 2. Engineering Barrier Grout Wall surficial cut and installation of bentonite impermeable wall;
- Bioaugmentation Wall Sodium Lactate Wall emplacement of carbon amendments
 using injection wells to provide a subsurface reductive zone. Periodically, these addition
 points will have to be re-dosed with additional amendment fluids; and
- 4. Granular Activated Carbon (GAC) Slurry Injection Wall emplacement (via pressure addition or large diameter offset augered borings filled with) carbon.

A matrix of relative advantages and disadvantages and approximate costs for each follows for your use and consideration. Shaw E&I must note that the costs provided represent approximate costs only and do not provide construction estimates or bid quantities.

If you have any questions or comments, please do not hesitate to contact Rick Lewis at 508-435-9561 or myself at 518-783-6088 ext. 215.

Stuart-Olver-Holtz Site, Henrietta NY GROUNDWATER BARRIER INSTALLATION NET PRESENT WORTH COMPARISON OF ALTERNATIVES

Alternative	Description	Estimated Initial (Capilal) Cost	Estimated Annual Operating Cost	Years of Operation	Present Worth Factor	Present Worth of Annual Costs	Total Present Worth
	Engineering Barrier - Steel Sheet Piling	\$282,895	\$ -	10	9.973	\$0	\$282,895
	Engineering Barrier - Slurry Wall	\$451,708	\$ -	10	9.973	\$0	\$451,708
3	Sodium Lactate Injection	\$87,655	\$15,752	10	9.973	\$157,088	\$244,743
4	Granular Activated Carbon (GAC) Slurry Injection	\$349,879	\$ -	10	9.973	\$0	\$349,879

ASSUMPTIONS:

Calculations based on Interest rate:

5.00%

The interest rate is a net rate accounting for inflation costs

Barriers are 250 ft long across the area of influence of sump pumps in adjacent property

NOTES:

- Initial costs have been estimated and are presented on the attached cost estimate forms.
 These costs are for comparison purposes, actual installation costs may vary and will depend on final design details.
- Operating costs have been estimated and are presented on the attached cost estimate forms.
 Annual operating costs for alternatives include operation and maintenance, but exclude sampling.
- 3) Years of Operation is estimated
- 4) No contingencies are included in the estimates.
- 5) Treatment barriers Lactate Injection and GAC may be reduced to 200 ft or less in final design reducing total costs of those alternatives

Stuart-Oiver-Holtz Site, Henrietta NY GROUNDWATER BARRIER INSTALLATION NET PRESENT WORTH COMPARISON OF ALTERNATIVES

Alternative	Description	PROs	CONs
1.	Engineering Barrier - Steel Sheet Piling	1. Low Cost 2. No annual costs 3. Short installation period 4. Will provide protection during future oxidation or blological treatments to source area 5. Barrier effect is immediate	1. Potential vibration damage to adjacent structures 2. Noise during installation 3. Material handling in the area may be difficult 4. Contamination that is already past the barrie location will persist for several years before treatment of sump waters can be discontinued.
2	Engineering Barrier - Slurry Wall	No annual costs Will provide protection during future oxidation or biological treatments to source area Barrier effect is immediate	Soil disposal may cost more than anticipated Contamination that is already past the barrie location will persist for several years before treatment of sump waters can be discontinued. Material handling in the area may be difficult
3	Sodium Lactate Injection	1. Low initial cost 2. Annual replenishment maybe reduced from estimated amount as plume treatment progresses 3. Barrier technology matches what is proposed for site plume treatment 4. Barrier installation will likely treat contamination between barrier and sumps as lactate is pulled toward the sumps 5. Barrier length and cost may be reduced in final design	Annual replenishment of lactate required Treatment chemicals may be pumped into adjacent sumps
4	Granular Activated Carbon (GAC) Slurry Injection	1. Single installation	High contaminant concentration in a soil laye may cause breakthrough at that layer

Contaminant Concentrations - Offsite Sumps Stuart - Oiver - Holtz Henrietta, New York All Results in ug/L Unless Otherwise Noted

Sump #1									
Untreated	01/10/2000	02/02/2000	03/28/2000	04/25/2000	05/19/2000	06/16/2000	07/25/2000	08/09/2000	09/26/2000
Him render (2005)							AA SKIN ESS		
1,1,1-TCA (Y636)	135	22	1,723	35	34	163	18	7	21
1,1-DCA (Y625)	11		170	6	24	17	3		4
1,1-DCE (Y627)	1								
Cls-1,2-DCE (Y628)	Í								
PCE (Y635)	9	3	45	3	`3	11	2	3	. 3
TCE (Y638)	4	2	- 168	4	. 3	. 5	2		3
Sublotal VOCs	159	28	2,106	47	63	196	25	9	31
STEEN SEE BUT WAS IN						N-4-5-			
រត្តសម្រាប់ខ្មែរ មេចប្រើប្រើប្រជាជា			\$ 5.5				327		
Benzen e	0	0	0	0	0	0	0	0	0
Chloroform	0	0	0	0 .	. 0	0	0	. 0	0
Methylene Chloride	0	0	0	0	0	0	0	0	0
Fotal VOCs	159	28	2,106	47	63	196	25	9	31

Sump #3	1						·		
Treated	01/10/2000	02/02/2000	03/28/2000	04/25/2000	05/19/2000	06/16/2000	07/25/2000	08/09/2000	09/26/2000
hidinal (Colesson and Colesson and Colesson and Colesson and Colesson and Colesson and Colesson and Colesson a			5		alaa a Cari				
1,1,1-TCA	3,261	56	374	292	287	396	9	16	12
1,1-DCA	325		17	17	20	22		3	
1,1-DCE									
Cis-1,2-DCE									
PCE	206	5	34	15	13	37	5	2	5
TCE	40		5	2	8				3
Subtotal VOCs	3,832	61	4	326	328	455	14	21	20
			S				43.0		
odinansk Sambahmus. Benzene	T 0	0.000	<u> </u>	<u> </u>	Δ	<u></u>	MILENIA PROPERTY AND		<u> </u>
Chloroform	ŏ	ū	Õ	ó	û	0	0	0	0
Methylene Chloride	0	ō	0	o	Ō	o	0	ŏ	ŏ
	3.832		 	490		488			
otal VOCs		10	4	326	328	455	14	21	20

Contaminant Concentrations - Offsite Sumps Stuart - Oiver - Hoitz Henrietta, New York All Results in ug/L Unless Otherwise Noted

Sump #1								Statistics	,	
Untreated	10/16/2000	11/15/2000	12/15/2000	01/09/2001	02/16/2001	02/15/2001	03/13/2001	Maximum	Average	Minimum
and in this receive a little								200 A 100 A		3.1.3
1,1,1-TCA (Y636)	24	10	33	20	244	296	41	7	150	1,723
1,1-DCA (Y625)	5	2	10		32	0	0	0	11	170
1,1-DCE (Y627)				4	36	22	3	3	16	36
Cls-1,2-DCE (Y628)				4	7	5	0	0	4 ·	7
PCE (Y635)	2		2	2	14	10	0	. 0	6	45
TCE (Y638)	3		2		5	. 2	. 0	0	2	168
Subtotal VOCs	33	, 12	48	29	338	335	44	-	190	-
Englisher of Schoolshills		Televa Andrewski († 1865) Memikanski Maseria († 1865)			anga kalabatan salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah salah					
Benzene	0	0	0	0	0	0	0	0	0	
Chloroform	0	0	0	0	0	0	0	0	0	0
Methylene Chloride	0	0	. 0	0	0	0	0	0	0	0
Total VOCs	33	12	48	29	338	335	44		190	

Sump #3								Statistics		
Treated	10/16/2000	11/15/2000	12/15/2000	01/09/2001	02/16/2001	02/15/2001	03/13/2001	Maximum	Average	Minimum
elilenietige/ys/255245										
1,1,1-TCA	15	2	348	142	766	75	594	2	394	3,261
1,1-DCA			13	0	27	0	0	0	7	325
1,1-DCE				7	62	2	24	2	24	62
Cls-1,2-DCE				0	0	a	0	0	0	0
PCE	3		8	5	32	3	21	2	16	206
TCE	3			0	4	0	4	0	2	40
Subtotal VOCs	21	2	368	155	891	81	643 .	•	443	-
eranlikar (pemperaka)										
Benzene	0	0	0	0	4	0	0	0	1	4
Chloroform	0	0	0	0	0	0	0	0	0	0
Methylene Chloride	0	0	0	0 .	0	0	0	0	0	0
_ '.		······································						<u> </u>		
Total VOCs	21	2	368	155	896	81	643		444	-

Alternative 1 - Cost Estimate - Engineering Barrier - Sheet Piling

Stuart-Olver-Holtz Site Henrietta, New York 784222 03070000

Dated: April 29, 2002 Prepared by: Jennifer Wills

ika sa kacamatan kacamatan kacamatan kacamatan kacamatan kacamatan kacamatan kacamatan kacamatan kacamatan kac	Quantity	Units	Unit Cost	Total Cos
		·		
.0 REMEDIAL SYSTEM INSTALLATION - ESTIM	ATED INITI	AL COSTS		
Sheet Piling and Monitoring Well Installation				
Remove Asphalt Covering	500	Cy	\$5.00	\$2,500
Sheet Piling	7500	sf	\$30.00	\$225,000
Contingency for Water Tight Gaskets	1	LS	\$22,500.00	\$22,500
Monitoring Well Install, screened 10 - 20' HSA)	2	each	\$1,000.00	\$2,000
Monitoring Well Install, screened 25' - 35' HSA)	2	each	\$1,200.00	\$2,400
Road Boxes & Assoc. Install	4	each	\$200,00	\$800
Utilities (5% of sheet piling and monitoring well install costs)	1	LS	\$12,760.00	\$12,760
SUBTOTAL			\$12,100.00	\$267,980
				4201,000
Labor				
Technician (assume one technician for 10 days plus 5 hrs prep)-	105	hours	\$47.00	\$4,935
Project Director	4	Hours	\$140,00	\$560
Project Manager /LSP	16	Hours	\$120.00	\$1,920
Senior Project Engineer/Geologist -	20	Hours	\$95.00	\$1,900
Staff Project Engineer/Geologist -	50	Hours	\$74.00	\$3,700
PMA/Secretary	10	Hours	\$52.00	\$520
SUBTOTAL.				\$13,53
Equipment/Truck Rental				
PID/FID	10	each	\$80.00	\$800
Truck	10	days	\$60.00	\$600
SUBTOTAL				\$1,40
TOTAL CONSTRUCTION COST				\$282,895
2.0 YEARLY OPERATION and MAINTENANCE				
ltem :	Quantity	Unite	Unit Cost	Total Cos
TOTAL O&M COST				\$.

Alternative 2 - Cost Estimate - Engineering Barrier - Slurry Wall

Stuart-Olver-Holtz Site Henrietta, New York 784222 03070000

Dated: April 29, 2002
Prepared by: Jennifer Wills

l(ém:	Quantity	Units	Unit Cost	Total Cost
1.0 REMEDIAL SYSTEM INSTALLATION - ESTIMATI	ED INITIAL	COSTS		
IN REMEDIAL SISTEM INSTALLATION - ESTIMATI	ED HALLDA	L 00313		
Slurry Trench and Monitoring Well Installation	-			
Remove Asphalt Covering	500	CY	\$6.00	\$2.50
Slurry Trench	7500	SF	\$44.60	\$333,76
Monitoring Well Install, screened 10 - 20' HSA)	2	each	\$1,000.00	\$2,00
Monitoring Well Install, screened 25' - 35' HSA)	2	each	\$1,000.00	\$2,00
Road Boxes & Assoc, Install	4	each	\$200.00	\$80
Utilities (5% of Slumy and Monitoring Well Install Costs)	1	LS	\$17,052,50	\$17,05
SUBTOTAL			7	\$358,10
				_
Waste Disposal				
Solls (non-hazardous)	1350	tons	\$45,00	\$60,76
Soils Analytical	1	LS	\$1,000.00	\$1,00
SUBTOTAL			-	\$61,75
IT Labor				
Technician (assume one technician for 34 days, 5hrs. pr	345	hours	\$47.00	\$16,21
Prolect Director	5	Hours	\$140.00	\$70
Project Manager / LSP	24	Hours	\$120.00	\$2.88
Senior Project Engineer/Geologist -	30	Hours	\$120.00	\$3.60
Staff Project Engineer/Geologist -	60	Hours	\$74.00	\$4.44
PMA/Secretary	15	Hours	\$52.00	\$78
SUBTOTAL				\$28,61
Equipment/Truck Rental				
PID/FID	2	each	\$600.00	\$1,20
Truck	34	days	\$60.00	\$2,04
SUBTOTAL				\$3,24
TOTAL CONSTRUCTION COST				\$451,70
TOTAL CONSTRUCTION COST				4401,70
2.0 YEARLY OPERATION and MAINTENANCE				
ltem	Quantity	Units	Unif Rate	Total Cost
TOTAL O&M COST		 	 -	s -

CONSTRUCTION ASSUMPTIONS

1. 8	ioi	ls e	XC21	rate	d wi	11	æ	trans	poi	ted	and	١d	lsp	osec	l of	î as	non-	hazard	lous.
------	-----	------	------	-------------	------	----	---	-------	-----	-----	-----	----	-----	------	------	------	------	--------	-------

2. Slurry Trench Rate 120

3. Length of Time for Slurry Trench for one crew 63 days

4. Accume two armse will replace clures well feetalleties with one technique arealding

SF/day

Alternative 3 - Cost Estimate - Sodium Lactate Injection

Stuart-Oiver-Holtz Site Henrietta, New York 784222 03070000

Dated: April 29, 2002 Prepared by: Jennifer Wills

	Quantity	Unite	Unit Coat	Total Cost
1.0 REMEDIAL SYSTEM INSTALLATION -				
ESTIMATED INITIAL COSTS (Includes Initial	1			
injection of sodium lactate)				
Weil Installation				
njection Wells, Screened 0 -10 ft, Geoprobe	14	each	\$700.00	\$9,800
injection Wells, Screened 10 -20 ft, HSA	14	each	\$1,000.00	\$14,000
Injection Wells, Screened 20 -30 ft, HSA	14	each	\$1,000.00	\$14,000
Monitoring Well Install, screened 10 - 20 HSA)	2	each	\$1,000.00	\$2,000
Monitoring Well Install, screened 25' - 35' HSA)	2	each	\$1,000.00	\$2,000
Road Boxes & Assoc, Install	48	each	\$200,00	\$9,200
Utilities (6% of well installation and material cost	1	LS	\$2,672.00	\$2,672
SUBTOTAL	<u> </u>			\$63,672
Materiale for Sodium Lactate Injection		4	450.00	****
Pump PVC piping and valving	42	days each	\$50.00 \$20.00	\$400 \$840
Sodium Lactate	1500	pounds	\$0.80	\$1,200
SUBTOTAL	1000	poulus	\$0.00	\$1,200
SUDIVIAL				74,770
Waste Disposal	 	-		
Solis (non-hazardous)	4.1	tons	\$45,00	\$183
Solls Analytical	1	LS .	\$1,000.00	\$1,000
BUBTOTAL				\$1,183
Labor/Admin				
Technician	320	Hours	\$47.00	\$15,040
Project Director		Hours	\$140,00	\$560
Project Manager / LSP	24	Hours	\$120.00	\$2,880
Senior Project Engineer/Geologist -	30	Hours	\$120.00	\$3,600
Staff Project Engineer/Geologist -	60	Hours	\$74.00	\$4,440
PMA/Secretary	.15	Hours	\$52.00	\$780
SUBTOTAL				\$27,300
Equipment/Truck Rental				
PIO/FID	2	each	\$800.00	\$1,200
Truck	31	daya	\$80,00	\$1,880
SUBTOTAL			4	\$3,060
TOTAL CONSTRUCTION COST				\$87,655
	1			
2.0 YEARLY SODIUM LACTATE INJECTION	(years 2 - 10)			· · ·

lánn eine eine eine eine eine eine eine e	Country:	Unite	Unit Cost	Total Cost
Materials	 		 	
Pump		days	\$50.00	\$400
PVC piping and valving	42	each	\$20.00	\$840
Sodium Lactate	1500	pounds	- \$0.80	\$1,200
	1	LS	\$122.00	\$122
				\$2,562
Utilities (5% of material costs) SUBTOTAL		1	1	
Utilities (5% of material costs)				42,002
Utilities (5% of material costs)				42,002
Utilities (5% of material costs) SUBTOTAL		hours	\$47.00	\$7,990
Unaties (5% of material costs) SUBTOTAL Labor		hours Hours	\$47.00 \$140.00	
Utilities (5% of material costs) 8UBTOTAL Labor Technician (assumes two Lechnicians for eight o	170			\$7,990
Utilities (5% of material costs) 8UBTOTAL Labor Technician (assumes two Lechnicians for eight o	170	Hours	\$140.00	\$7,990 \$140
Unificial (5% of material costs) 8UBTOTAL Labor Technician (assumes two lechnicians for eight of Project Director Project Manager / LSP	170 1	Hours Hours	\$140.00 \$120.00	\$7,990 \$140 \$960
Unificies (5% of material costs) 8UBTOTAL Labor Technician (assumes two Lechnicians for eight of Project Director Project Manager / LSP Senior Project Engineer/Geologist -	170 1 8	Hours Hours Hours	\$140.00 \$120.00 \$120.00	\$7,990 \$140 \$960 \$1,200

Alternative 4 - Cost Estimate - Granular Activated Carbon Slurry Injection

Stuart-Oiver-Holtz Site Henrietta, New York 784222 03070000

Dated: April 29, 2002 Prepared by: Jennifer Wills

	-	•		
#tem	Quantity	Units	Unit Cost	Total Cost
1.0 REMEDIAL SYSTEM INSTALLATION - ESTIMATED INITIAL COSTS				
Well Installation and GAC Injection		- -	~ ~ ~ ~ ~ ~	
Injection Wells, 30-Inch HSA	25	each	\$6,000.00	\$160,000
Monitoring Well Install, screened 10 - 20' HSA)	2	each	\$1,000.00	\$2,000
Monitoring Well Install, screened 25' - 35' HSA)	_2	each	\$1,000.00	\$2,000
Road Boxes & Assoc. Install for 30-Inch well	25	each	\$750.00	\$18,750
Road Boxes & Assoc. Install for 2-Inch well	4	each	\$200.00	\$800
Vactor Truck Rental	13	days	\$1,500.00	\$19,500
Frac Tank, 6 Frac Tanks	104	days	\$30.00	\$3,120
Materials for GAC addition	25	each	\$200.00	\$5,000
Purchase of GAC	72000	pounds	\$1.25	\$90,000
Utilities (5% of well installation and GAC injection costs)	1 1	LS	\$14,658.50	\$14,659
SUBTOTAL				\$305,729
Waste Disposal				
Soils (non-hazardous)	300	tons	\$45.00	\$13,500
Soils Analytical	1	LS	\$1,000.00	\$1,000
SUBTOTAL			,	\$14,500
Labor/Admin :				
Technician (15 Days for well installation and 13 for GAC ad-	290	Hours	\$47.00	\$13,630
Project Director	_ 5	Hours	\$140.00	\$700
Project Manager / LSP	24	Hours	\$120,00	\$2,880
Senior Project Engineer/Geologist -	30	Hours	\$120.00	\$3,600
Staff Project Engineer/Geologist -	70	Hours	\$74.00	\$5,180
PMA/Secretary	15	Hours	\$52.00	\$780
SUBTOTAL	<u>'</u>			\$26,770
			·	
Equipment/Truck Rental				
PID/FID	2	each	\$600,00	\$1,200
Truck	28	days	\$60,00	\$1,680
SUBTOTAL				\$2,880
	<u> </u>	·		
TOTAL CONSTRUCTION COST				
TOTAL CONSTRUCTION COST				\$349,879
2.0 YEARLY OPERATION and MAINTENANCE	istababababasananahanana		-1,000,000,000,000	sasasasas (SAS) (SAS) (SAS) (SAS) (SAS) (SAS)
fém	Quantity	Units	Goff Cost	Tofal Cost
TOTAL O&M				<u>s</u> -
				L <u>T. </u>

CONSTRUCTION ASSUMPTIONS

1. Drill cuttings will be transported and disposed off as non-hazardous.

2. Well installation Rate

Wells/Day

3. Well GAC Addition Rate

Wells/Day

TABLES

Table 1
Soil Gas Survey Analytical Results

NYSDEC - SOH Henrietta, New York

		Soil Gas Survey Results (mg/cu.m.)												
Analyte	GP-1	GP-2	GP-3	GP-4	GP-6	GP-10	GP-12	GP-19	GP-20					
PID Reading	180	213	158	88.4	33	51.7	48	28.7	620					
Vinyl Chloride	4	7	24	1	0.8 J		2	0.7 J	0.8 J					
Chloroethane	3	1	28	1 '	2			0.5 J	1					
1,1-Dichloroethene	890 E	310 E	130 E	5	25	150 E	2	20	640 E					
Acetone	41 E	6	3	1	3		7							
Methylene Chloride	62 E	4	1	1	0.5 J	0.4 J	,	0.5 J	14					
trans-1,2-Dichloroethene		1 1	1 ,				'	0.8 J						
Methyl tert-butyl ether	—	1	0.8 J	0.7 J	0.4 J	0.2 J	0.2 J	1	0.4 J					
1,1-Dichloroethane	180 E	49 E	83 E	0.9 J	2	6	0.3 J	6	62 E					
cis-1,2-Dichloroethene	2	130 E	130 E	2	14	0.5J	1 1	20	11					
1,1,1-Trichloroethane	910 E	640 E	400 E	39	100 E	120 E	22	190 E	710 E					
Benzene	0.2 J	0.2	0.3 J	0.3 J				0.2 J						
Trichloroethene	25 B	98 EB	86 EB	5 B	8 B	3 B	2 B	27	20					
Toluene	3	2	2	2	1	1	0.9	0.8	2					
Tetrachloroethene	22	19	7	2	10	4	3	2	6					
Ethylbenzene	0.3 J	0.2 J	0.3 J	0.3 J	0.3 J	0.3 J	<u> </u>	0.2 J	0.3 J					
Xylene (total)	0.9 J	0.9 J	1	11	0.8 J	1	0.8 J	1	1					
1,2,4-Trimethylbenzene	<u> </u>	· · · · · · · · · · · · · · · · · · ·	0.2 J	0.3 J		ſ <u></u> ′	<u> </u>	1						
Total BTEX	4.4	3.3	1.8	3.6	2.1	2.3	1.7	2.2	3.3					
Total Ethenes	943	564	378	14	57.8	157.5	10	72.5	677.8					
Total Ethanes	1093	689	511	39.9	104	128	22.3	196.5	772					
Total VOCs	2143.4	1567	895.8	58.5	167.8	288.4	24.2	271.7	1453.1					
Method Detection Limit	1 1	, 1 '	1	1	1	1 1	1	1	<u> 1</u>					

Notes:

- 1) Soil gas samples analyzed by Mitkem Corporation.
- 2) PID Photoionization Detector.
- 3) J Refers to an estimated value, concentration less than calibration curve.
- 4) B Compound detected in method blank.
- 5) E Refers to an estimated value, concentration in excess of calibration curve.
- 6) No value refers to a concentration below the detection limit.
- 7) All other VOCs below detection limits.

Table 1 Soil Gas Survey Analytical Results

NYSDEC - 100 Oser Avenue Hauppauge, New York

	So	il Gas Survey I	Results (ug/cu	ı.m.)
Analyte	GP-21	GP-22	GP-24	GP-28
PID Reading	24.8	64.7	140.6	NA
Vinyl Chloride		2	12	1
Chloroethane		80 E	4	0.8 J
1,1-Dichloroethene	64 E	160 E	150 E	43 E
Acetone				
Methylene Chloride	0.6 J	4	5	7
trans-1,2-Dichloroethene				
Methyl tert-butyl ether				0.2 J
1,1-Dichloroethane	120 E	130 E	34	30
cis-1,2-Dichloroethene	0.8 J	2	120 E	11
1,1,1-Trichloroethane	320 E	470 E	350 E	200 E
Benzene				
Trichloroethene	3	2	44 E	5
Toluene	0.7 J	0.7 J	0.9 J	0.9 J
Tetrachloroethene	4	2	2	2
Ethylbenzene				-
Xylene (total)	0.8 J	0.7 J	0.8 J	0.8 J
1,2,4-Trimethylbenzene				
Total BTEX	1.5	1.4	1.7	1.7
Total Ethenes	71.8	168	328	62
Total Ethanes	440	680	388	230.8
Total VOCs	513.3	853.4	722.7	301.7
Method Detection Limit	1	1	1	1

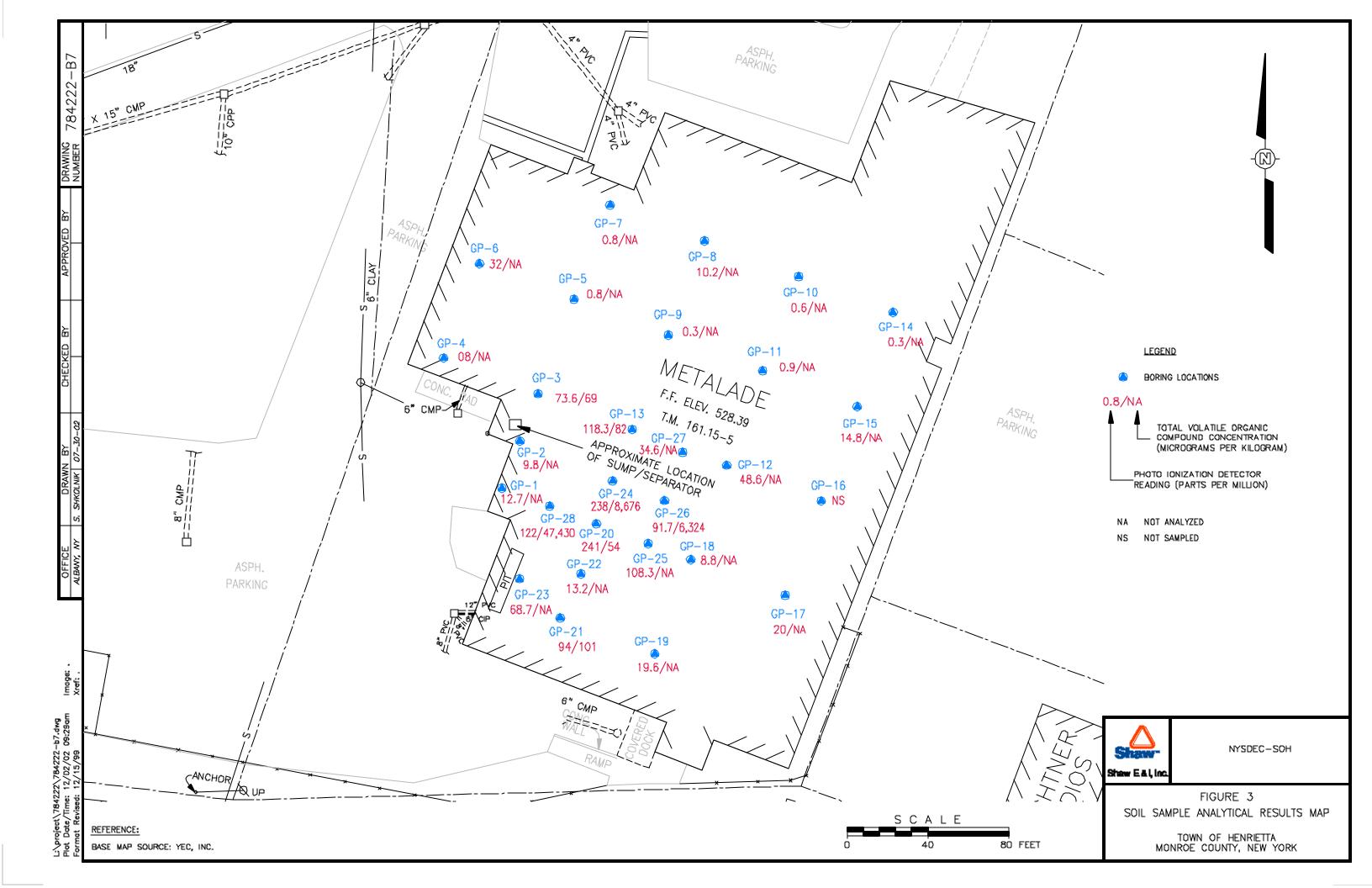
Notes:

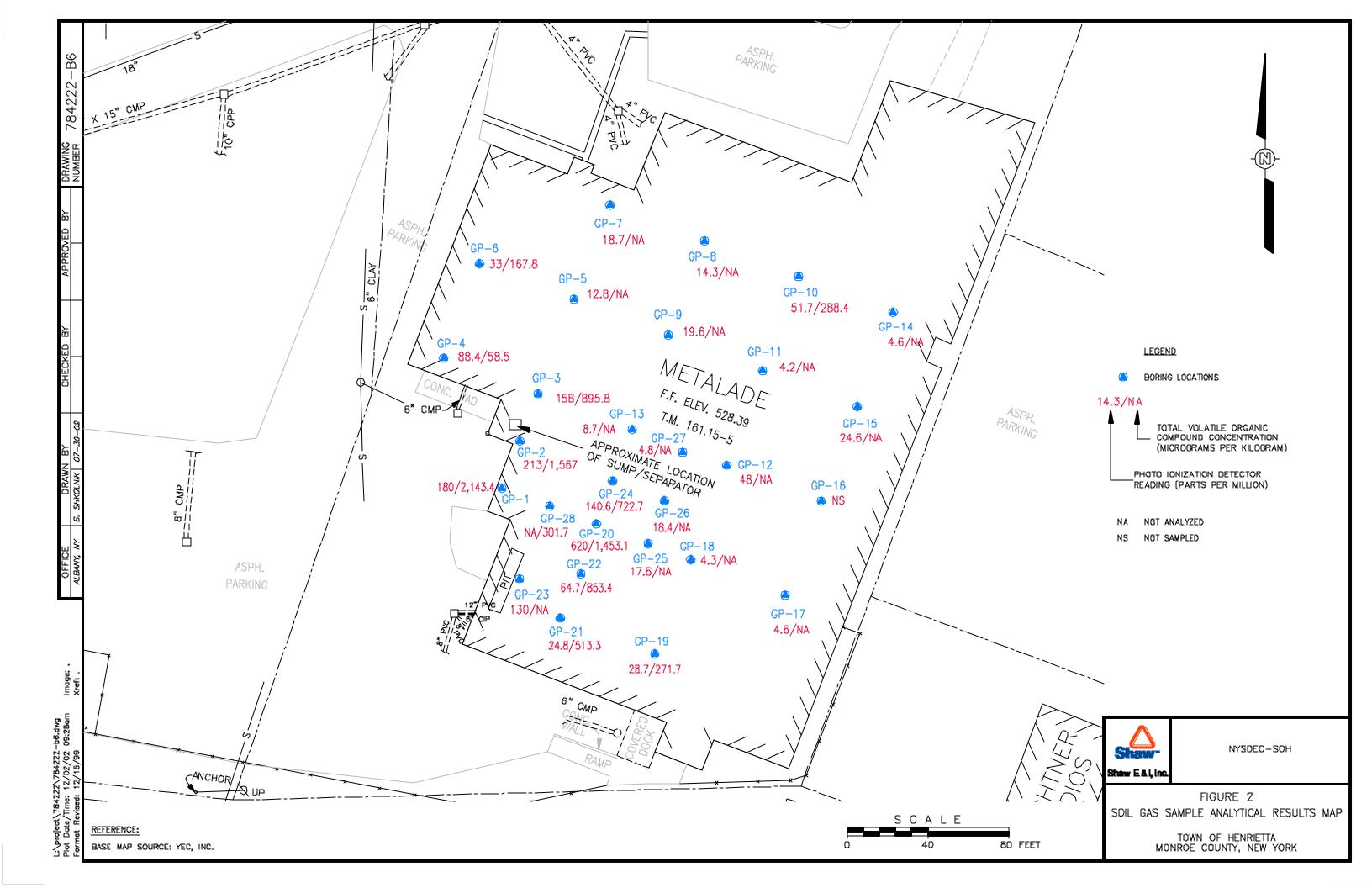
- 1) Soil gas samples analyzed by Mitkem Corporation.
- 2) PID Photoionization Detector.
- 3) J Refers to an estimated value, concentration less than calibration curve.
- 4) B Compound detected in method blank.
- 5) E Refers to an estimated value, concentration in excess of calibration curve.
- 6) No value refers to a concentration below the detection limit.
- 7) All other VOCs below detection limits.

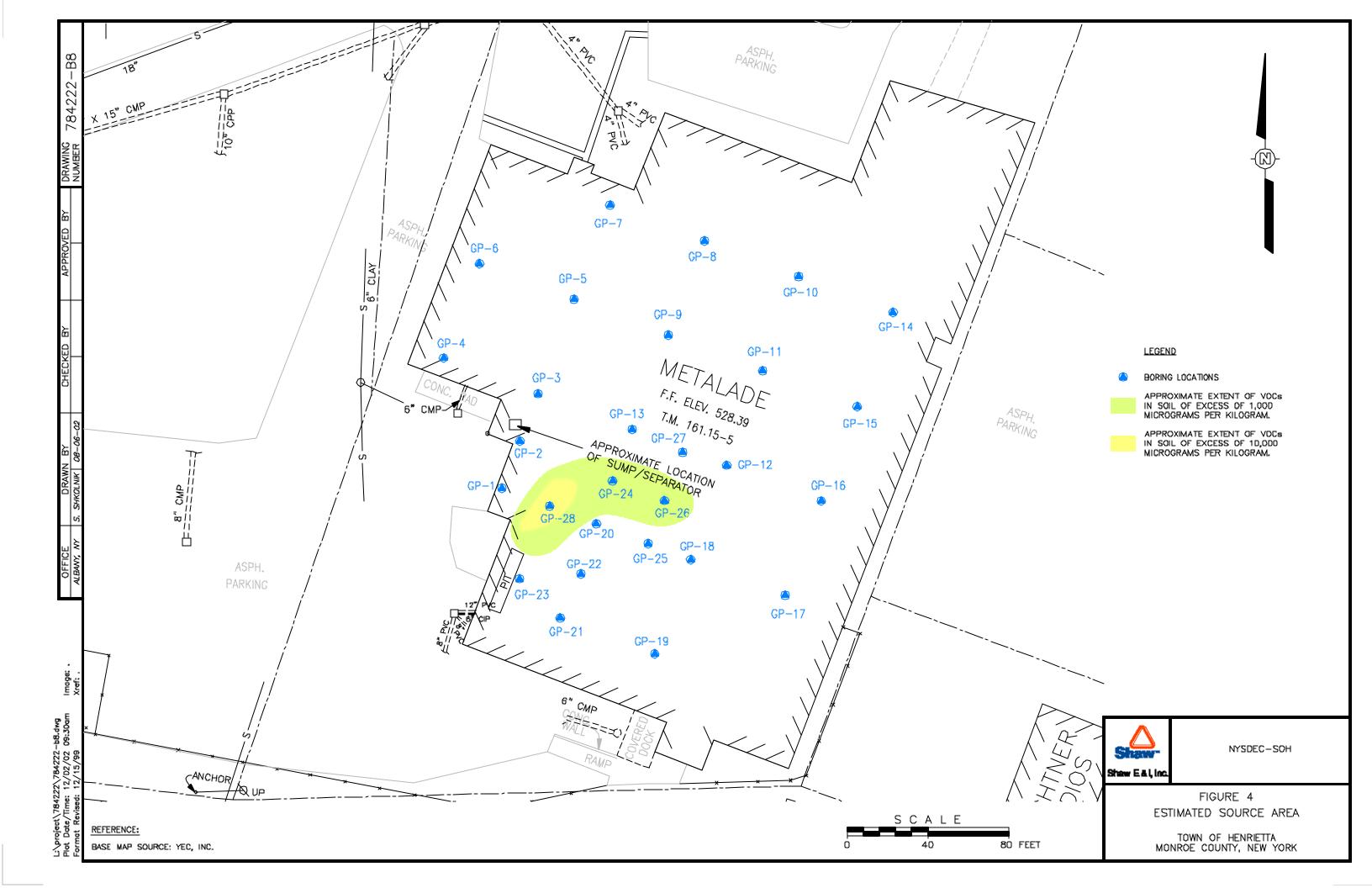
Table 2 Soil Sample Analytical Results

NYSDEC - SOH Henrietta, New York

		Soil Sample Survey Results (ug/kg)											
Boring ID	TAGM 4046	GP-3	GP-13	GP-20	GP-21	GP-24	GP-26	GP-28					
Depth	Allowable	6.5	6	7.5	3	6.5	6.5	6.5					
PID Reading	Limits	73.6	118.3	241	94	238	91.7	122					
1,1-Dichloroethene	400					460	450	4600					
Acetone	200	6		5 J	26		· · ·						
Methylene Chloride	100	4 JB	6 B		7 B								
Methyl tert-butyl ether		12	2 J	2 J	1 J								
2-Butanone	300		i	4 J	3 J		· · · · · · · · · · · · · · · · · · ·						
1,1-Dichloroethane	200	2 J	i		8		1	1					
cis-1,2-Dichloroethene		13	13		2 J	160 J	510						
1,1,1-Trichloroethane	800	5 J	21	33	3 J	4100	4200	42000					
Trichloroethene	700	19	26	1 J	1	3800	590	830 J					
Toluene	1500	3 J	3 J	1 J	4 J	62 J							
1,1,2-Trichloroethane			2 J	1 J									
Tetrachloroethene	1400		6	1 J	3 J	94 J	130 J						
Ethylbenzene					4 J			i					
Xylene (total)	1200	5 J	3 J	1 J	12	-	180 J						
Isopropylbenzene					2 J								
1,2,4-Trimethylbenzene		2 J		3 J	6		84 J						
sec-Butylbenzene					20								
Naphthalene				ر 2			180 J						
Totel BTEX		8	6	2	9	62	180						
Total Ethenes		32	45	2	5	4514	1680	5430					
Total Ethanes		7	23	33	11	4100	4200	42000					
Total VOCs		69 .	82	54	101	8676	6324	47430					
Method Detection Limit		6	5	6	6	270	270	1,700					


Notes:


- 1) Soli gas samples analyzed by Mitkem Corporation.
- 2) PID Photolonization Detector.


HUMBOR -- - PROLITE HAN 4 O. AU-00

- 3) J Refers to an estimated value, concentration less than calibration curve.
- 4) B Compound detected in method blank.
- 5) E Refers to an estimated value, concentration in excess of calibration curve.
- 6) No value refers to a concentration below the detection limit.
- 7) All other VOCs below detection limits.

APPENDIX A

DRILLING LOGS

Soil Boring

GP-1 Page: 1 of 1

Project _S	Stuart-Olv	rer-Holtz				Owner NYSDEC	COMMENTS
Location _	Henriette	a, New Yo				Proj. No. <u>784222</u>	.]
Surface Ele	ev. <u>NA</u>	,	Tota	al Hole D	epth	8.0 ft. North East	
Top of Cas	sing <u>NA</u>		Wat	er Level	Initia	NA Static NA Diameter	
Screen: Di	a <u>NA</u> _		Leng	gth <u>NA</u>	<u> </u>	Type/Size NA	
						Type _ <i>NA</i>	
						Rig/Core Geoprobe	.
Drill Co	ADT			Ме	ethod	Direct Push	.
Driller Ar	ty Hurst		Log	By Jet	f Lan	ock Date 6/17/02 Permit # NA	.
Checked B						icense No.	
Depth (ft.)	Old (mdd)	Semple ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2	197 00 224 #2 11000
						Geologic descriptions are based on AS1M Standard D 24	487-93 and the USCS.
- 0 - 	0.5	30%			SM	SAND, fine grained, some silt, trace gravel, brown	to tan, dry.
4 -		30%			SM	SAND, fine grained, trace silt, reddish brown, dry.	

Soil Boring GP-2
Page: 1 of 1

Project Stuart-Olver-Holtz		Owner NYSDEC	COMMENTS					
Location Henrietta, New York		Proj. No						
Surface Elev. NA	_ Total Hole Depth	8.0 ft. North East						
Top of Casing NA	_ Water Level Initia	Water Level Initial NA Static NA Diameter						
Screen: Dia NA	Length NA							
Casing: Dia NA								
Fill Material <u>Bentonite</u>		Rig/Core Geoprobe						
	Method							
Driller Arty Hurst	Log By <i>Jeff Lar</i>	ock Date 6/17/02 Permit # NA						
Checked By Drew Graham	·	icense No						
Depth (ft.) (PID (ppm) Sample ID % Recovery	Blow Count Recovery Graphic Log USCS Class.	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 24	187-93 and the USCS.					
- 0 - 0.5 20% - 2 - 0.5 20% - 4 -	SM	SAND, fine grained, some gravel and silt, brown, d	ry.					

Soil Boring

GP-3Page: 1 of 1

Project _	Stuart-O	ver-Holtz				Owner NYSDEC	COMMENTS
Location	Henriet	a, New \	ork_			Proj. No784222	
Surface E	iev. <u>N</u> A		_ Tot	al Hole C)epth	8.0 ft. North East	
						NA Static NA Diameter	}
						Type/Size NA	-
				ngth <u>N</u> /	1		
Fill Materi						Rig/Core Geoprobe	
Drill Co.						Direct Push	
Driller _A Checked						ock Date <u>6/17/02</u> Permit # <u>NA</u> icense No	
Depth (ft.)	PID (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure)	
		ଔଝ	ă"		🖺	Geologic descriptions are based on ASTM Standard D 248	7-93 and the USCS.
- 0 -						SAND, fine grained, trace silt, clay, and gravel, brow	m/reddish brown.
- 2 - 	0.8	75%			SM		
- 4 -					SM	SAND, poorly sorted, trace of silt and gravel, sub-ar brown.	gular clasts, tan/light

Soil Boring GP-4

CORPORATION Page: 1 of 1 Project Stuart-Olver-Holtz _____Owner _NYSDEC COMMENTS Location Henrietta, New York Proj. No. _784222 Surface Elev. NA _____ Total Hole Depth <u>8.0 ft.</u> North __ East ___ Top of Casing NA ____ Water Level Initial NA _____ Static NA Diameter _____ Screen: Dia NA Length NA ____ Type/Size NA Casing: Dia NA _ Length _NA _ Type _NA ___ Rig/Core <u>Geoprobe</u> Fill Material Bentonite Drill Co. ADT Method Direct Push Driller Arty Hurst Log By Jeff Larock Date 6/17/02 Permit # NA Checked By Drew Graham ____ License No. ___ USCS Class. Description Graphic Log OF (mdd) Depth (ft.) (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS. 0 CLAY, trace gravel, brown/reddish brown, mottled. 8,0 CLAY, tight, cohesive, dry, reddish brown.

Drilling Log

GP-5Page: 1 of 1 Soil Boring

Project <u>Stuart-Olver-Holtz</u>	(Owner NYSDEC		COMMENTS
Location Henrietta, New York			Proj. No. <u>784222</u>	
Surface Elev. NA Tota	if Hole Depth 8.0 ft.	North		
Top of Casing <u>NA</u> Wate	er Level Initial <u>NA</u>	Static NA	Diameter	
Screen: Dla <u>NA</u> Leng	gth <u>NA</u>	Type/Size NA		
Casing: Dia <u>NA</u> Leng	gth <u>NA</u>	Type _ <i>NA</i>	· · · · · · · · · · · · · · · · · · ·	
Fill Material Bentonite		Rig/Core Geoprobe		
	Method Direct	Push	<u> </u>	
Driller Arty Hurst Log	By Jeff Larock	Date _6/17/02	Permit # _ <i>NA</i>	
Checked By Drew Graham	License No	0		
Depth (ft.) PID (ppm) Sample ID % Recovery Recovery	Graphic Log USCS Class.		Description Color, Texture, Structure) be based on ASTM Standard D 248	7-93 and the USCS.
- 0 - 1 75%	CLA OL SM SAN CLA	ID, fine grained, tan. Y, dark brown.	coarse sand, dark brown. dry and dense, dark brow	vn.

Drilling Log

Soil Boring GP-6

		ooi ii jo		OII			raye. 1 01 1
Project _S						Owner NYSDEC	COMMENTS
Location _	Henriett	a, New Y	ork			Proj. No. <u>784222</u>	. •
Surface El	ev. <u>NA</u>		_ Tot	al Hole D	epth	8.0 ft. North East	
Fop of Cas	sing N	1	_ Wa	ter Level	Initia	I NA Static NA Diameter	
Screen: Di	a NA		Len	igth <u>NA</u>	l .	Type/Size NA	
				-		Type _ <i>NA</i>	
-				_		Rig/Core Geoprobe	
						Direct Push	
						ock Date 6/17/02 Permit # NA	
			-	-		icense No.	
I	·			 1	· . (1
ایا		Sample ID % Recovery	Blow Count Recovery	ဋ	88 88	Description	
(F)	0F (gr 0 m(gr)	ege ege	ပ္မွဴ နွို	Graphic Log.	USCS Class	(Color, Texture, Structure)	
<u> </u>		SS.	음본	ا ا	၂ၓ္ဘ	Geologic descriptions are based on ASTM Standard D 2	487-93 and the USCS.
					\vdash		
					,		
- 0 -					Ш		
Ĭ	.		11	$\times\!\!\!\times\!\!\!\times$		FILL, concrete.	
			- 47	‱			
ا			- W	⋘			
	<u> </u>		- III	‱			
j]		- 1A1	<u> </u>	├─┤	CLAY, some gravel, light brown.	
			- III			CLAT, Some graver, light brown.	
- 2 -	1	65%	I		OL		
			- []		"		'
			П	F1			
						SAND, fine grained, some silt and clay, dark browr	1.
			1		SM		
- 4 -			Н			CLAY, tight and cohesive, reddish brown to dark b	rown.
		1	<u> </u>				
			11				•
			N i				
			W				
		<u> </u>	₩				
]	1	- 11	$\parallel \rceil$		a a	

GP-7 Soil Boring

Page: 1 of 1 Owner NYSDEC Project Stuart-Olver-Holtz COMMENTS Location Henrietta, New York Proj. No. 784222 Surface Elev. NA __ Total Hole Depth <u>5.5 ft.</u> ___ North ___ East ____ Top of Casing NA ____ Static NA Water Level Initial NA Diameter ___ Screen: Dia NA Length NA __ Type/Size _*NA* _____ Length NA Casing: Dia NA _ Type _*NA* Rig/Core Geoprobe Fill Material Bentonite _ Method _Direct Push Drill Co. ADT _ Log By __Jeff Larock Driller Arty Hurst _____ Date 6/17/02 Permit # NA Checked By Drew Graham License No. USCS Class. Description Graphic Log **₽** OPO (mdd) (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS. 0 FILL, concrete. CLAY, some gravel and sand, dark to reddish brown. Refusal at 5.5 feet. 2 -8.0 75% .

Drilling Log

Soil Boring GP-8

g **GP-8** Page: 1 of 1

Project 🚨						Owner <u>NYSDEC</u> Proj. No. <u>784222</u>	COMMENTS
Location .							
Surface El					•		
Top of Cas						·	
Screen: Dia NA							
Casing: Di				-			
Fili Materia						Rig/Core Geoprobe	
Drill Co. ADT							
Driller <u>A</u>			_				
Checked E	By <u>Drev</u>	v Graham			_ [Icense No.	
Depth (ft.)	(wdd) Old	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 24	87-93 and the USCS.
- 0 - - 2 - - 4 -	10.2	75%			OL	FILL, concrete. CLAY, dense, dark brown. SAND, fine to medium grained, tan to yellowish bro CLAY, trace of gravel, dark brown.	wn.

Drilling Log

Soil Boring GP-9
Page: 1 of 1

Top of Cas Screen: Dia	Henriettev. NA Ing N NA NA	ta, New Y	<i>ork</i> Tota Wat Len	af Hole I ter Level gth <u>N/</u>	Depth I Initia	Owner NYSDEC Proj. No. 784222 8.0 ft. North East NA Static NA Dlameter Type/Size NA Type NA Rig/Core Geoprobe	COMMENTS
Drill Co4		м	ethod				
			_	-		ock Date 6/17/02 Permit # NA	
Depth (ft.)	PID (mpd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 24	87-93 and the USCS.
- 0 -	0.3	60%			OL	FILL, concrete. CLAY, dens, dry, trace gravel, dark brown.	
- 4 -						CLAY, trace of snad and gravel, dark brown.	

Drilling Log

Soil Boring GP-10
Page: 1 of 1

Project Stuart-Oh			Owner NYSDEC	COMMENTS					
Location <i>Henriett</i>			Proj. No. <u>784222</u>						
			8.0 ft. North East						
			al <u>NA</u> Static <u>NA</u> Diameter						
Screen: Dia <u>NA</u>	Le	ngth <u>NA</u>							
Casing: Dia <u>NA</u>	Le	ngth <u>NA</u>							
			Rig/Core Geoprobe						
			Direct Push						
Driller Arty Hurst	Lo	g By <u>Jeff La</u>							
Checked By License No									
Depth (ft.) PID (spm)	Sample ID % Recovery Blow Count	Graphic Log USCS Class.	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 24	87-93 and the USCS.					
- 0 - - 2 - 0.6 - 4 -	50%	0.	FILL, concrete. CLAY, sandy near top, fining downward. CLAY, trace sand and gravel, light brown. CLAY, increasing sand content, trace gravel, wet.						

Drilling Log

Soil Boring GP-11

Page: 1 of 1 Project Stuart-Olver-Holtz _____Owner _NYSDEC COMMENTS Location Henrietta, New York ___ Proj. No. _784222 ____ Total Hole Depth 8.0 ft. Surface Elev. NA _____ North ______ East _____ Top of Casing NA Water Level Initial NA Static NA ___ Diameter ____ Length NA Screen: Dia _NA _____ Type/Size NA Casing: Dia _NA ____ Length _NA ____ Type <u>NA</u> Rig/Core Geoprobe Fill Material Bentonite Drill Co. ADT ___ Method __Direct Push Driller Arty Hurst Log By Jeff Larock Date 6/17/02 Permit # NA Checked By Drew Graham License No. ___ USCS Class. Description Graphic Log Dept. (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS. 0 FILL, concrete, sand, and gravel. 0.9 CLAY, dense, light brown. SAND, some silt, clay, and gravel.

Soil Boring **GP-12**

Page: 1 of

			Fago. 1 VI I
Project <u>Stuart-Olver-Hol</u>		Owner NYSDEC	COMMENTS
Location Henrietta, New	York	Proj. No784222	.
Surface Elev. <u>NA</u>	Total Hole Dept	n <u>8.0 ft</u> North East	.
Top of Casing <u>NA</u>	Water Level Init	ial <u>NA</u> Static <u>NA</u> Diameter	
Screen: Dia NA	Length <u>NA</u>	Type/Size NA	.
Casing: Dia <u>NA</u>			
Fill Material Bentonite		Rig/Core Geoprobe	
Drill Co. ADT	Meth		.
Driller Arty Hurst			. ,
Checked By Drew Graha	am .	License No.	
Depth (ft.) (ft.) PID (ppm) Sample ID % Recovery	Blow Count Recovery Graphic Log	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 24	487-93 and the USCS.
- 0 - 3.2 65%	01	CLAY, some fine sand, light gray.	

Soil Boring GP-13
Page: 1 of 1

Top of Casing NA Screen: Dia NA Casing: Dia NA Fill Material Bentonite	ork Total Hole Depth Water Level Initia Length <u>NA</u> Length <u>NA</u>	Rig/Core Geoprobe	COMMENTS
	Method	ock Date 6/17/02 Permit # NA	
Checked By Drew Graham		icense No.	
Depth (ft.) (ft.) PID (ppm) Sample ID % Recovery	Blow Count Recovery Graphic Log USCS Class.	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 24	87-93 and the USCS.
- 0 2 - 46.2 50%	OL	FILL, concrete. CLAY, trace sand and gravel. CLAY, trace of gravel and cobbles.	

Drilling Log

Soil Boring GP-14

Page: 1 of 1 Project Stuart-Oiver-Holtz Owner NYSDEC COMMENTS Location Henrietta, New York ___ Proj. No. <u>784222</u> Surface Elev. NA ____ Total Hole Depth <u>8.0 ft.</u> ___ North ____ ____ East ___ Top of Casing NA ____ Water Level Initial NA Static NA Diameter _____ ____ Length NA Screen: Dia NA _____ Type/Size NA Casing: Dia NA _____ Length NA _ Type <u>NA</u> ____ Rig/Core Geoprobe Fill Material Bentonite Drill Co. ADT ___ Method __Direct Push Log By Jeff Larock Driller _Arty Hurst Permit # NA ____ Date _6/18/02 Checked By Drew Graham License No. __ USCS Class. Description Graphic Log Old (mdd) Pepth (f.) (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS. 0 FILL CLAY, brown, organic (rootlets). 2 0.0 90% CLAY, trace sand and gravel, brown/gray, wet.

Drilling Log

Soil Boring GP-15
Page: 1 of 1

Project _	Stuart-Olv	er-Holtz				Owner NYSDEC COMMENTS
Location	Henriette	a, New Yo	rk			Proj. No. <u>784222</u>
Surface E	lev. <u>NA</u>		Tota	al Hole D	epth	8.0 ft. North East
						NA Static NA Diameter
Screen: D				_		Type/Size NA
Casing: D			Len	gth <u>NA</u>	<u> </u>	
Fill Materi		nite				Rig/Core Geoprobe
Drill Co		-				Direct Push Date 6/18/02 Permit # NA
Driller			Log	BA _00/		cense No
Depth (ft.)	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure)
		<u>w</u> _	# F		ns(Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS.
- 0 -		0%				
- 4 -			X			SAND, coarse gained, trace gravel and silt, gray, wet.

Drilling Log

Soil Boring GP-16

GP-16Page: 1 of 1

Project _S	tuart-Oi	ver-Holtz				Owner NYSDEC COMMENTS
Location _						Proj. No. 784222 Concrete slab was extrementy thick at this boring location.
					epth	0.0 ft. North East Drilling tool broke while attempting to advance boring.
Top of Cas	ing N	<u> </u>	Wa	ter Level	Initia	NA Static NA Diameter Boring abandoned.
-	-					Type/Size NA
				-		Type NA
				_		Rig/Core Geoprobe
						Direct Push
						ock Date 6/18/02 Permit # NA
Checked E						icense No.
	, <u> </u>			T		
€	Ω Ê	Sample ID % Recovery	Blow Count Recovery) 일 일	USCS Class.	Description
Depth (ft.)	Old (bpm)	Rec	Sw C	Graphic Log	ဗ္ဗ	(Color, Texture, Structure)
		w/%	84		S	Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS.
			- 1			
	ŀ		- 1	ļ	1 !	
L 0 -			1			
	ļ				1	
1						
					1	
1						
1						
L 2 -						
-						·
			ļ			
			1			
		·				·
4						
1 1						
├ ┤						
			1			
		·				

Soil Boring GP-17

Page: 1 of

Top of Cas	Henriett lev. NA sing NA ia NA a NA Bente ADT rty Hurst	a, New Yo	Tota War Len Len	al Hole D ter Level agth <u>NA</u> agth <u>NA</u>	epth Initia	Owner NYSDEC Proj. No. 784222 8.0 ft. North East I NA Static NA Diameter Type/Size NA Type NA Type Geoprobe Direct Push Ock Date 6/18/02 Permit # NA icense No. Permit # NA	COMMENTS
Depth (ft.)	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 24	87-93 and the USCS.
- 0 -						FILL.	
- 2 -	20	35%			SM	SAND, fine grained. CLAY, trace gravel, brown, mottled, organic (rootlet	s).
- 4 -					OL		

Soil Boring **GP-18**Page: 1 of 1

Project Stuart-Olver-Holtz	Owner NYSDEC	COMMENTS
Location Henrietta, New York	Proj. No784222	
Surface Elev. NA Total Hole Depth 8	0 ft. North East	
Top of Casing NA Water Level Initial A	4 Static NA Diameter	
	Type/Size	
Casing: Dia NA Length NA	Туре <i>_NA</i>	
Fill Material Bentonite	Rig/Core Geoprobe	
Drill Co. ADT Method	rect Push	
Driller Arty Hurst Log By Jeff Larock	Date <u>6/18/02</u> Permit # <u>NA</u>	·
Checked By <u>Drew Graham</u> Licen	se No	
Depth (ft.) (ft.) (ppm) Sample ID % Recovery Blow Count Recovery Graphic Log USCS Class.	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 24	87-93 and the USCS.
- 0 - X X X X X X X X X X	CLAY, trace sand and silt, gray to light brown.	

Drilling Log

GP-19Page: 1 of 1 Soil Boring

Top of Cas Screen: Di Casing: Di Fill Materia	Henriett lev. NA sing NA ia NA la NA al Bent ADT rty Hurst	a, New Yo	rk Tota Wat Len Len	al Hole Dier Level gth NA	epth Initia	Owner NYSDEC Proj. No. 784222 8.0 ft. North East NA Static NA Diameter Type/Size NA Type NA Rig/Core Geoprobe Direct Push Date 6/18/02 Permit # NA Icense No.	COMMENTS
Depth (ft.)	Old (mdd)		Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 24	87-93 and the USCS.
- 0 - 							
- 2 - 		0%		,			
- 4 -					SM	SAND, fine grained, trace cobbles. SAND, coarse grained, some gravel. SAND, fine grained, grace gravel and cobbles.	

Drilling Log

Soil Boring GP-20
Page: 1 of 1

		OOI II Q	/I W XI I	VII			rage. I of I
Project _	Stuart-O	ver-Holtz				Owner NYSDEC	COMMENTS
Location						Proj. No. <u>784222</u>	<u> </u>
				al Hole D	enth	8.0 ft. North East	
						NA Static NA Diameter	
Screen: D	_					Type/Size _NA	·
						Type NA	'
Fili Materi			_ LOI	igui	•	Rig/Core Geoprobe	•
riii Materi Drill Co.					_44 4	Direct Push	•
							•
			-	-		ock Date <u>6/18/02</u> Permit # <u>NA</u>	•
Checked	Ву <u>- Dre</u>	w Granan			L	icense No.	,
		미호	Ę,		83	Description	
Depth (ft.)	Old (ppm)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class	·	
ă°	" <u> </u>	Seg 9	<u>%</u> 8	👸	ပ္တြ	(Color, Texture, Structure)	
	<u> </u> !]	Geologic descriptions are based on ASTM Standard D 2	487-93 and the USCS.
				}			
- 0 -	!		႕	হয়-হাজ		SAND, fine grained, trace of silt and clay.	
]		N A			SAND, line grained, trace of silt and day.	;
	1		- IVI				
]		- IAI				.
			W				
	1		H				
			- 11				. <u>.</u>
- 2 -	18.3	35%	- 11				
			- 11		SM		
					341		
-	4		l i i				·
	}	i			,	•	·
			11				
_ 4 -]		L				
7			- 11				
		ļ				·	ļ
			1				
Ι.	1					CLAY, tight, brown.	
				F		- '	
l	li	ll .	191		li I	1	

Drilling Log

GP-21Page: 1 of 1 Soil Boring

Project Stuart-Olver-Holtz	Owner NYSDEC	COMMENTS
Location Henrietta, New York	Proj. No. <u>784222</u>	
Surface Elev. NA Total Hole Dept	th 8.0 ft. North East	
	tlal NA Static NA Diameter	
Screen: Dia NA Length NA		
	Type NA	
	Rig/Core Geoprobe	
Drill Co. ADT Metho		
	arock Date 6/18/02 Permit # NA	
	License No.	.]
Depth (ft.) PID (ppm) Samble ID % Recovery Recovery Graphic Log		487-93 and the USCS.
- 0 - 94 50% - SN	SAND, trace silt and clay, some gravet and cobbles chemical odor noted. SAND, fine grained, trace cobbles.	s, dark staining and

Drilling Log

Soil Boring GP-22
Page: 1 of 1

	Owner NYSDEC	COMMENTS								
ork		784222								
Total Hole Depth 8.01										
		<u> </u>								
·	Rig/Core Geoprobe									
Fill Material Bentonite Rig/Core Geoprobe Drill Co. ADT Method Direct Push										
Log ByJeff Larock	Date _6/18/02 Perr	nit# <u>NA</u>								
License	No									
Graphic Log		scription xture, Structure)								
# J S J	Geologic descriptions are based on	ASTM Standard D 2487-93 and the USCS.								
S/	AND, some cobbles, gray, slight of AND, fine to medium grained, tra	chemical odor. ce gravel and cobbles, reddish brown,								
	Total Hole Depth 8.0 is Water Level Initial MA Length NA Length NA Length NA Length NA Length NA Length NA NA Length NA NA NA Length NA NA NA NA NA NA NA NA NA NA NA NA NA	Total Hole Depth								

Soil Boring **GP-23**

Page: 1 of 1 Project Stuart-Olver-Holtz _ Owner _NYSDEC COMMENTS Location _Henrietta, New York _ Proj. No. <u>784222</u> Surface Elev. NA Total Hole Depth 8.0 ft. North ______ . East _____ Top of Casing NA ___ Water Level Initial <u>NA</u> __ Static NA Diameter ____ Screen: Dia NA __ Length <u>NA</u> ____ Type/Size NA Casing: Dia NA Length NA __ Туре <u>NA</u> Fill Material Bentonite ___ Rig/Core Geoprobe __ Method __Direct Push Drill Co. ADT Driller Arty Hurst Log By Jeff Lerock Date 6/18/02 Permit # _NA Checked By Drew Graham License No. USCS Class. Description Graphic Log PID (mdd) Depth (f.) (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS. 0 SAND, large rock fragments in shoe. 2 -8.1 15% CLAY, trace fine sand and gravel. SAND, coarse grained, some gravel, strong chemical odor.

Soil Boring **GP-24**

		OOI II C		Ų(1			Page: 1 of 1
-		iver-Holtz				Owner NYSDEC	COMMENTS
Location	Henriet	ta, New Y	ork			Proj. No. <u>784222</u>	
Surface l	Elev. <u>//</u> /	١	_ Tot	al Hole C	Depth	8.0 ft. North East	.
Top of C	asing N	A	Wa	ter Level	l Initia	I NA Static NA Diameter	
						Type/Size NA	
						Type <i>NA</i>	
						Rig/Core Geoprobe	
						Direct Push	
						ock Date 6/18/02 Permit # NA	
						icense No.	}
	-,					North Control of the	
	l	의호	풀と	6	388	Description	
Depth (ft.)	PID (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	·	
_	-5	SS %		<u>6</u>	SC	(Color, Texture, Structure)	
					-	Geologic descriptions are based on ASTM Standard D 24	87-93 and the USCS.
			İ		1		
					lli		
			ŀ				
– o -	1 :		d	*****		FILL, concrete.	
			1/	‱	ł	1 122, 00.101010.	
		ļ	M	*****	:		
	-			⋘₩			
			- IAI	⋘⋘			
	<u> </u>		W	⋘⋘			1
- 2 -	42.7		Ц	*****			
_	"	50%	- 11		OL	CLAY, silty.	
	.	}			\dashv	SAND, fine grained, trace gravel, slight chemical or	dor.
	j l	1				OAND, mie gramed, dabe graver, siight Grenndar of	101.
	1	1	- 11		SM		
	1	i			SM I		
	1 1						
– 4 –	∥		H			SAND, fine grained, trace clay and gravel.	
				433		grantou, waso only with glaton	
			11		SM		
	-						,
						SAND, fine to medium grained, trace gravel.	
	1 1	[, granioul acco gravos	
_			111	444	SM		1

Soil Boring **GP-25**

		CURP		UN			Page: 1 of 1
Project 3	Stuart-O	ver-Holt	<u>z</u>			Owner NYSDEC	COMMENTS
Location _	<u>Henriet</u>	ta, New				Proj. No. <u>784222</u>	_
Surface El	ev. <u>N/</u>	<u> </u>	_ Tota	al Hole E	Depth	6.0 ft. North East	_
Top of Cas	sing <u>N</u>	4	Wat	ter Level	l Initia	I <u>NA</u> Static <u>NA</u> Diameter	_
Screen: Di	a NA		_ Len	gth <u>N</u>	4	Type/Size NA	_
Casing: Di	a <u>NA</u>		_ Len	gth <u>N</u>	4	Type _ <i>NA</i>	_
Fill Materia	Beni	tonite				Rig/Core Geoprobe	_
Drill Co	<u>ADT</u>			м	ethod	Direct Push	_ .
Driller A	ty Hurs	<u> </u>	_ Log	Ву <u>Је</u>	ff Lan	ock Date <u>6/18/02</u> Permit # <u>NA</u>	_
Checked E	By <u>Dre</u>	w Graha	m		L	icense No	_
Depth (ft.)	(mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class.	Description (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D	2487-93 and the USCS.
	i					·	
F 0 -			႕				
[]							
] [
<u> </u> 2 -		0%	1				
1 1		"					
1 1							
1	:		- 11			· ·	
]]							
						•	
- 4 -	}						
			넴				
						·	
 						·	
<u>ب</u> ل ۾ _ا	100 0		-				

Soil Boring GP-26

CORPORATION Page: 1 of 1 Project Stuart-Olver-Holtz __ Owner _NYSDEC COMMENTS Location _Henrietta, New York ____ Proj. No. <u>784222</u> Surface Elev. NA _____ Total Hole Depth <u>8.0 ft.</u> ____ North ___ Top of Casing NA ____ Water Level Initial NA _____ Static NA Diameter ____ Screen: Dia NA ____ Length NA _____ Type/Size NA Casing: Dia NA __ Length _*NA*_ __ Type _NA ___ Rig/Core <u>Geoprobe</u> Fill Material Bentonite Drill Co. ADT Method Direct Push Driller Arty Hurst _____ Date _6/18/02 Permit # _NA Checked By Drew Graham License No. _ Blow Count Recovery USCS Class. Description Graphic Log Depth (ft.) Old (mdd) (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS. 0 FILL, concrete. SAND, poorlty sorted, tan. 2 41.5 SAND, fine grained, trace cobbles. SM SAND, fine grained, trace silt and cobbles, brown and gray.

Soil Boring GP-27

CORPORATION Page: 1 of 1 Project Stuart-Olver-Holtz _____ Owner NYSDEC COMMENTS Location Henrietta, New York Proj. No. <u>784222</u> Surface Elev. NA _____ Total Hole Depth <u>8.0 ft.</u> _____ North East ____ Top of Casing NA ____ Water Level Initial NA ____ Static NA Dlameter ____ Screen: Dia NA Length NA __ Type/Size _*NA*__ Casing: Dia NA _ Length NA _ Type <u>. *NA* .</u> Fill Material Bentonite ___ Rig/Core Geoprobe Drill Co. ADT __ Method __Direct Push Driller Arty Hurst Log By Jeff Larock _____ Date _6/18/02 Permit # _NA Checked By Drew Graham _ License No. _ Class. Description Graphic Log Pept (#) Old (mdg) (Color, Texture, Structure) Geologic descriptions are based on ASTM Standard D 2487-93 and the USCS. 0 FILL, concrete. SAND, coarse grained, wet, tan. SAND, fine grained, trace silt. 75% CLAY, silty, gray. SAND, fine grained, silty, trace cobbles, fining with depth, gray/brown.

Drilling Log

Soil Boring **GP-28**

			WIII	UIT			Page: 1 of 1
Project 🗵						Owner NYSDEC	COMMENTS
		a, New Yo	nk			Proj. No. <u>784222</u>	
						8.0 ft. North East	
						NA Static NA Diameter	
						Type/Size NA	
				-			
		onite	_			Rlg/Core Geoprobe	
Drill Co	ADT			M		Direct Push	
		<u> </u>	Log			ock Date <u>6/18/02</u> Permit # <u>NA</u>	
Checked I	By <u>Drev</u>	v Graham		•	_ 4	cense No.	
		ol ≥	# .		øj		<u> </u>
€ ∴	Old (mdd)	Sample ID % Recovery	Blow Count Recovery	Graphic Log	USCS Class	Description	
Depth (ft.)	교육	Regi	\$ 60 8 60	Gal Cal	3	(Color, Texture, Structure)	
:		W%	<u> </u>		ร	Geologic descriptions are based on ASTM Standard D 24	187-93 and the USCS.
- 0 - - 2 -	8.1	60%			SM	SAND, fine grained, trace clay and cobbles. SAND, fine grained, trace silt and cobbles.	
- 6	122				SM		

APPENDIX B ANALYTICAL LABORATORY REPORT

"Environmental Testing For The New Millennium"

July 17, 2002

Shaw Environmental & Infrastructure, Inc. 13 British American Boulevard Latham, NY 12110 Attn: Mr. Drew Graham

RE: Client Project: SOH, 784222 Mitkem Lab Project # A0951

Dear Mr. O'Neill:

Enclosed please find the data report of the required analyses for the samples associated with the above referenced project.

If you have any questions regarding this report, please call me.

We appreciate your business

Sincerely,

Agnes R. Ng

MITKEM CORPORATION

* Data Summary Package *

EPA SAMPLE NO.

GP-10AIR

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-07A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0956

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MG/M3

CAB NO.	COMPOUND (UG	J/L Or ug	/kg) MG/M3	Q
75-71-8	Dichlorodifluorometh	nane	1	U
74-87-3	Chloromethane			Ŭ
75-01-4	Vinyl Chloride			Ŭ
74-83-9	Bromomethane		1 7	ΙŬ
75-00-3	Chloroethane		1 1	บั
	Trichlorofluorometha	ne	1 7	บั
75-35-4	1,1-Dichloroethene_		150	
67-64-1	Acetone			บี
	Iodomethane			Ü
75-15-0	Carbon Disulfide			ΰ
75-09-2	Methylene Chloride	· · · · · · · · · · · · · · · · · · ·	$0.\overset{1}{4}$	
156-60-5	trans-1,2-Dichloroet	hene		บี
1634-04-4	Methyl tert-butyl et	here	0.2	
75-34-3	1,1-Dichloroethane	er	6	
108-05-4	Vinyl acetate	 	1	Ū
78-93-3	2-Butanone		1	Ü
156_50_2	cis-1,2-Dichloroethe		_	-
E00 20 7	2,2-Dichloropropane	iie	0.5	
74 07 5	Bromochloromethane			U
74-97-5	Bromochioromethane_ Chloroform		<u> </u>	U
0/-00-3	Chioroform			ט
/1-55-6	1,1,1-Trichloroethar	1e	120	
563-58-6	1,1-Dichloropropene			ប
56-23-5	Carbon Tetrachloride	<u> </u>		ប
107-06-2	1,2-Dichloroethane			υ
71-43-2	Benzene		1	<u>ת</u>
	· · · · · · · · · · · · · · · · · ·			-

EPA SAMPLE NO.

GP-10AIR

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: A0951

Matrix: (soil/water) AIR Lab Sample ID: A0951-07A

Sample wt/vol: 25___ (g/mL) ML Lab File ID: V6C0956

Level: (low/med) LOW Date Received: 06/20/02

% Moisture: not dec. ____ Date Analyzed: 07/01/02

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) MG/M3	Q

(-0, - 0		*
142-28-91,3-Dichloropropane	1	U
127-18-4Tetrachloroethene	- ~1	•
591-78-62-Hexanone		Ū
124-48-1Dibromochloromethane	- 7	ij
106-93-41,2-Dibromoethane	-] -]	Ĭĭ
108-90-7Chlorobenzene	-1 1	IJ
630-20-61,1,1,2-Tetrachloroethane	_, _,	U
100-41-4Ethylbenzene	 1	_
1330-20-7Xylene (Total)	_ 0.3	J
100 42 E Character (10tal)	ᆈ	
100-42-5Styrene		U
75-25-2Bromoform	!;	U
98-82-8Isopropylbenzene	<u></u> 1	U
79-34-51,1,2,2-Tetrachloroethane	_ 1;	U
108-86-1Bromobenzene	_ 1!	U
96-18-41,2,3-Trichloropropane	_ 1;	U
103-65-1n-Propylbenzene	_ 1	U
95-49-82-Chlorotoluene	_ 1	U
108-67-81,3,5-Trimethylbenzene	11	U
106-43-44-Chlorotoluene	- ₁	Ū
98-06-6tert-Butylbenzene	-; <u> </u>	Ŭ
95-63-61,2,4-Trimethylbenzene	- -	Ŭ
135-98-8sec-Butylbenzene	~(Ū
99-87-64-Isopropyltoluene	r === 1	IJ
541-73-11,3-Dichlorobenzene	_! -!	Ŭ
106-46-71,4-Dichlorobenzene	- -	_
TOO TO VERSION TO TO TO TO TO TO TO TO TO TO TO TO TO	!!	U

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

GP-	10A)	ſR
-----	------	----

Lab	Name:	MITKEM	CORPORATION

Contract:

Case No.:

SAS No.: SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-07A

Sample wt/vol:

Lab Code: MITKEM

25 (g/mL) ML

Lab File ID: V6C0956

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: 1

(ug/L or ug/Kg) mg/m3

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	14.57	2	J
3				
5				
7 8				
9. 10. 11.				
12				
14				
16. 17.				
18. 19.				
20.				
22.				

EPA SAMPLE NO.

GP-12AIR

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-02A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0954

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO

COMPOUND

(ug/L or ug/Kg) MG/M3

Q

	,, 3,,	~
75-71-8Dichlorodifluoromethane	1	IJ
74-87-3Chloromethane	- -	ไซ้
75-01-4Vinyl Chloride	~ 2	
74-83-9Bromomethane	- 1 1	177
75-00-3Chloroethane	- 7	โบ้
75-69-4Trichlorofluoromethane	- -	lŭ
75-35-41,1-Dichloroethene	- 2	1 -
67-64-1Acetone	- 4	
74-88-4Iodomethane	-1 -	U U
75-15-0Carbon Disulfide	-] -	li i
75-09-2Methylene Chloride	- -	1 -
156-60-5trans-1,2-Dichloroethene	-	<u>U</u>
1634 04 4 Method took between	-	<u>ע</u>
1634-04-4Methyl tert-butyl ether	0.2	
75-34-31,1-Dichloroethane	0.3	
108-05-4Vinyl acetate	_ 1	U
78-93-32-Butanone	_[1	ប
156-59-2cis-1,2-Dichloroethene	_ 1	l
590-20-72,2-Dichloropropane	[] 1	Ŭ.
74-97-5Bromochloromethane	1	[ប
67-66-3Chloroform	1	[ប
71-55-61,1,1-Trichloroethane	22	
563-58-61,1-Dichloropropene	1	Ū
56-23-5Carbon Tetrachloride	i i	Ū
107-06-21,2-Dichloroethane	i i	lπ
71-43-2Benzene	1 1	ľΰ
70_01_6 This day and though	·I 🗧	1=

EPA SAMPLE NO.

GP-12AIR

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-02A

Sample wt/vol:

25 (q/mL) ML

Lab File ID: V6C0954

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MG/M3

Q

	(49/110	2 ag/1g/ 1/a/15
142-28-9	1,3-Dichloropropane	1 U
127-18-4	Tetrachloroethene	3
591-78-6	2-Hexanone	—— ĭ
124-48-1	Dibromochloromethane	—— i ŭ
106-93-4	1,2-Dibromoethane	i ŭ
108-90-7	Chlorobenzene	1 ŭ
	1,1,1,2-Tetrachloroethan	
100-41-4	Ethylbenzene	~ i ŭ
1330-20-7	Xylene (Total)	0.8 J
100-42-5	Styrene	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
75-25-2	Bromoform	i ŭ
98-82-8	Isopropylbenzene	—— 1 ŭ
79-34-5	1,1,2,2-Tetrachloroethan	
108-86-1	Bromobenzene	~ i u
96-18-4	1,2,3-Trichloropropane	i ŭ
103-65-1	n-Propylbenzene	—— ilŭ
95-49-8	2-Chlorotoluene	i ŏ
	1,3,5-Trimethylbenzene	i u
106-43-4	4-Chlorotoluene	1 0
98-06-6	tert-Butylbenzene	1 U
0E-63-6	1,2,4-Trimethylbenzene	——
125-00-0	sec-Butylbenzene	
133-30-0	4-Isopropyltoluene	1 U
5/1 70 1	4-IBODIODATEOIG	1 0
30C 4C 3	1,3-Dichlorobenzene	<u>1 U</u>
100-46-7	1,4-Dichlorobenzene	1 U

Lab Name: MITKEM CORPORATION

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO
TILL		INC

	GP-12AI
Contract:	1

Lab Code: MITKEM Case No.: SAS No.: SDG No.: A0951

Matrix: (soil/water) AIR Lab Sample ID: A0951-02A

Sample wt/vol: 25 (g/mL) ML Lab File ID: V6C0954

Level: (low/med) LOW Date Received: 06/20/02

% Moisture: not dec. Date Analyzed: 07/01/02

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

Number TICs found: 0 (ug/L or ug/Kg) mg/m3

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	*	=======	=========	
2.				
4.	·			
5				
7.		<u> </u>		
8				
10.				
12.	· · · · · · · · · · · · · · · · · · ·	 -		
13.				
15.				
16.				
18.				
20.				<u>·</u>
21				
23			·	

EPA SAMPLE NO.

GP-19AIR
GP-19AIR

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-04A

Sample wt/vol:

25 (q/mL) ML

Lab File ID: V6C0976

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MG/M3

· · · · · · · · · · · · · · · · · · ·		
75-71-8Dichlorodifluoromethane	1	Մ
74-87-3Chloromethane	1	Ū
75-01-4Vinyl Chloride	0.7	
74-83-9Bromomethane	1:	Ιŭ
75-00-3Chloroethane	0.5	, –
75-69-4Trichlorofluoromethane	1	ŭ
75-35-41,1-Dichloroethene	20	
67-64-1Acetone	1	U
74-88-4Iodomethane	ī	ប៊
75-15-0Carbon Disulfide	1	ប
75-09-2Methylene Chloride	0.5	
156-60-5trans-1,2-Dichloroethene	0.8	_
1634-04-4Methyl tert-butyl ether	1	ប
75-34-31,1-Dichloroethane	6	ا
108-05-4Vinyl acetate	1	U
78-93-32-Butanone	1	ŭ l
156-59-2cis-1,2-Dichloroethene	20	.0
590-20-72,2-Dichloropropane	. 4	U
74-97-5Bromochloromethane	1 ±	បី
67-66-3Chloroform		_
	100	ប្រ
71-55-61,1,1-Trichloroethane	190	
563-58-61,1-Dichloropropene	1	ជ្ជ
56-23-5Carbon Tetrachloride	1	ប
107-06-21,2-Dichloroethane	1	ן <u>ע</u>
71-43-2Benzene	0.2	J

EPA SAMPLE NO.

GP-19AIR

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

LOW

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-04A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0976

Level: (low/med)

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MG/M3

0

	33.232	(49/11 01 49/14	<i>y, 140,110</i> Q
142-28-9	1,3-Dichloropro	nane	1 0
127-18-4	Tetrachloroethe	pane	710
591-78-6	·2-Hexanone		<u> </u>
124-48-1	Dibromochlorome	thoma	1 0
106-03-4	1,2-Dibromoetha	cnane	1 0
100-33-4	Chlorobenzene	ne	1 [U
T00-30~1	Cilloropenzene_		1 U
100 41 4	1,1,1,2-Tetrach	Loroethane	1 U
100-41-4	Ethylbenzene		0.2∤Ј
1330-20-7	Xylene (Total)		1
100-42-5	Styrene		1 ប៊
75-25-2	Bromoform		1 U
98-82-8	Isopropylbenzen	e	1 l U
79-34-5	1,1,2,2-Tetrach	loroethane	1 l Ū
108-86-1	Bromobenzene		
96-18-4	1,2,3-Trichloro	propane	īlū
103-65 - 1	n-Propylbenzene		īlŭ
95-49-8	2-Chlorotoluene		าไบ้
108-67-8	1,3,5-Trimethyl	henzene	าไบ
1.06-43-4	4-Chlorotoluene		រំប្រ
98-06-6	tert-Butylbenze	ne	1 0
95-63-6	1,2,4-Trimethyl	henzene	1 0
135-98-8	sec-Butylbenzen	perreire	-1-
133-30-0 99-87-6	4-Isopropyltolu	<u> </u>	1 U
22-01-0 E11 92 1	4-IRODIODAICOIM	ene	1 U
341-13-1	1,3-Dichloroben	zene	1 U
TU0-46-7	1,4-Dichloroben	zene	1 ט

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO
-----	--------	----

Lab	Name:	MITKEM	CORPORATION
حيب	Name.	MITTLE	CORPORATION

Contract:

GP-19AIR

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-04A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0976

Level:

(low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) mg/m3

Number TICs found: 9

		<u> </u>		
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 79-38-9	ETHENE, CHLOROTRIFLUORO-	1.99		NJ
2.	UNKNOWN	3.03	1	J
3.	UNKNOWN	3.31	1	J
4. 354-23-4	ETHANE, 1,2-DICHLORO-1,1,2-T	3.60	1	ŇJ
5.	UNKNOWN	4.37	$\tilde{2}$	J
6.	STRAIGHT-CHAINED ALKANE	4.95	$\overline{1}$	Ĵ
7. 589-34-4	HEXANE, 3-METHYL-	6.52	1:	NJ
8 108-87-2	CYCLOHEXANE, METHYL-	7.70	3	ŊJ
9.	UNKNOWN	14.58	1	J
10	-			
11.	-		· ·	
13.			·	
14.				
15.	*			
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				

EPA SAMPLE NO.

GP-1AIR

Lab Name: MITKEM CORPORATION

Lab Code: MITKEM Case No.: SAS

SAS No.:

Contract:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-11A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0959

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MG/M3

Q

75-71-8Dichlorodifluoromethane	7	บ
74-87-3Chloromethane	· ~i	Ŭ
75-01-4Vinyl Chloride	4	Ŭ
74-83-9Bromomethane	- -	TT
75-00-3Chloroethane	3	U
75-69-4Trichlorofluoromethane	.	U
75-35-41,1-Dichloroethene	890	_
67-64-1Acetone	41	E
74-88-4Iodomethane	- '#-	ប៊
75-15-0Carbon Disulfide	.] -	_
	1	ជ
75-09-2Methylene Chloride	62	E
156-60-5trans-1,2-Dichloroethene	. 1	U
1634-04-4Methyl tert-butyl ether	1	U
75-34-31,1-Dichloroethane	180	
108-05-4Vinyl acetate	. 1	ប
78-93-32-Butanone	. 1	ប
156-59-2cis-1,2-Dichloroethene	2	
590-20-72,2-Dichloropropane	1	Ū
74-97-5Bromochloromethane	1	U
67-66-3Chloroform	1	U
71-55-61,1,1-Trichloroethane	910	E
563-58-61,1-Dichloropropene	1	Ū
56-23-5Carbon Tetrachloride	il î	Ū
107-06-21,2-Dichloroethane	'l	Ū
71-43-2	0.2	Ĵ
70 01 6 m-d -l-1	·I ~:=1	I <u> </u>

EPA SAMPLE NO.

GP-1AIR

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-11A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0959

Level: (low/med) LOW Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MG/M3

Q

142-28-9	1,3-Dichloropropane	1 U
	Tetrachloroethene	22
	2-Hexanone	
	Dibromochloromethane	์ โบ้
	1,2-Dibromoethane	1 1 0
	Chlorobenzene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1,1,1,2-Tetrachloroethane	า โบ้
	Ethylbenzene	0.3JJ
	Xylene (Total)	0.9 J
100-42-5	Styrene	ไ
75-25-2		าไ เป็บ
	Isopropylbenzene	ไ เป็น
79-34-5	1,1,2,2-Tetrachloroethane	าไ เป็บ
	Bromobenzene	ป วีไบ็
	1,2,3-Trichloropropane	1 10
103-65-1	n-Propylbenzene	ำ โช
95-49-8	2-Chlorotoluene	่ ไม้
	1,3,5-Trimethylbenzene	าไบ้
	4-Chlorotoluene	า
	tert-Butylbenzene	่ ไป้
	1,2,4-Trimethylbenzene	่ ไบ้
	sec-Butylbenzene	·l 116
99-87-6	4-Isopropyltoluene	าไบ้
	1,3-Dichlorobenzene	์ มีใช้
	1,4-Dichlorobenzene	า่ เมื่
T00-40-7		- 출[유

TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKE	M CORPORATION
-----------------	---------------

Contract:

GP-1AIR

EPA SAMPLE NO.

Lab Code: MITKEM

Case No.:

LOW

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-11A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0959

Level: (low/med)

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: Number TICs found: 10 (ug/L or ug/Kg) mg/m3

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 590-21-6 3. 4. 5. 6. 7. 8. 9.	UNKNOWN 1-PROPENE, 1-CHLORO- UNKNOWN BRANCHED ALKANE CYCLIC ALKANE UNKNOWN CYCLIC ALKANE UNKNOWN UNKNOWN UNKNOWN UNKNOWN	2.63 3.30 8.19 8.43 8.89 9.14 9.34 11.91 12.43 14.58	3 3 4 2 2 1 1 1 1	リ 対 リ リ リ リ リ リ リ リ リ リ リ リ リ
12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.				

EPA SAMPLE NO.

GP-20AIR

Lab Name: MITKEM CORPORATION

FION

Contract:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-20A

Sample wt/vol:

Lab Code: MITKEM

25 (g/mL) ML

Case No.:

Lab File ID: V6C0980

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MG/M3

Q

75-71-8Dichlorodifluoromethane	1	IJ
74-87-3Chloromethane	·l	Ιŭ
75-01-4Vinyl Chloride	0.8	
74-83-9Bromomethane		lŭ
75-00-3Chloroethane	·]	lτī
75-69-4Trichlorofluoromethane	1 7	Ιŭ
75-35-41,1-Dichloroethene	640	~
67-64-1Acetone	1	ប៊
74-88-4Iodomethane	·	ii
75-15-0Carbon Disulfide	1	Ü
75-09-2Methylene Chloride	14	١٠
156-60-5trans-1,2-Dichloroethene	· ***	υ
1634-04-4Methyl tert-butyl ether	0.4	_
75-34-31,1-Dichloroethane	62	
108-05-4Vinyl acetate	.]	ប៊
78-93-32-Butanone		បើ
156-59-2cis-1,2-Dichloroethene	11	١٠
590-20-72,2-Dichloropropane	++	
74-97-5Bromochloromethane	· ‡	បី
67-66-3Chloroform	·i ‡	υ
71-55-61,1,1-Trichloroethane	. -, 1	1 ~
F63 F0 6 1 1 Dight engage	710	1
563-58-61,1-Dichloropropene	.	ប្
56-23-5Carbon Tetrachloride	.]	ប
107-06-21,2-Dichloroethane	. 1	ប្
71-43-2Benzene	. _1	U

EPA SAMPLE NO.

GP-20AIR

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR Lab Sample ID: A0951-20A

Sample wt/vol: 25___ (g/mL) ML Lab File ID: V6C0980

Level: (low/med) LOW Date Received: 06/20/02

% Moisture: not dec. ____ Date Analyzed: 07/02/02

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) MG/M3 Q

	•
142-28-91,3-Dichloropropane	1 0
127-18-4Tetrachloroethene	خ ا
591-78-62-Hexanone	1 1
124-48-1Dibromochloromethane	1 0
106-93-41,2-Dibromoethane	-1-
108-90-7Chlorobenzene	1 U
620 20 C 1 1 1 0 Metarallian	1 U
630-20-61,1,1,2-Tetrachloroethane	1 0
100-41-4Ethylbenzene	0.3 J
1330-20-7Xylene (Total)	1
100-42-5Styrene	1 U
75-25-2Bromoform	1 U
98-82-8Isopropylbenzene	1 U
79-34-51,1,2,2-Tetrachloroethane	1 U
108-86-1Bromobenzene	1 U
96-18-41,2,3-Trichloropropane	1 U
103-65-1n-Propylbenzene	1 0
95-49-82-Chlorotoluene	īlŪ
108-67-81,3,5-Trimethylbenzene	1 10
106-43-44-Chlorotoluene	ī lū ·
98-06-6tert-Butylbenzene	īlŭ
95-63-61,2,4-Trimethylbenzene	1 10
135-98-8sec-Butylbenzene	iU
99-87-64-Isopropyltoluene	1 0
541-73-11,3-Dichlorobenzene	1 0
106-46-71,4-Dichlorobenzene	- -
	1 U

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab	Name:	MITKEM	CORPORATION
-----	-------	--------	-------------

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-20A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0980

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

Number TICs found: 4

CONCENTRATION UNITS: (ug/L or ug/Kg) mg/m3

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3. 4. 5	BRANCHED ALKANE UNKNOWN CYCLIC ALKANE UNKNOWN	6.52 6.78 7.71 14.58	5 4 4 2	ਹ ਹ ਹ ਹ ਹ
6. 7. 8. 9.				
11. 2. 3. 4.				
16 17 18 19				
21. 22. 23.				

EPA SAMPLE NO.

GP-21AIR

Lab Name: MITKEM CORPORATION C

Contract:

Lab Code: MITKEM Case No.: SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-05A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0977

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MG/M3

Q

······································		· · · · · · · · · · · · · · · · · · ·	
75-71-8	Dichlorodifluoromethane	1	ប
74-87-3	Chloromethane	1	Ŭ
75-01-4	Vinyl Chloride	i	υ
74-83-9	Bromomethane	1	บั
	Chloroethane	1	Ιŭ
75-69-4	Trichlorofluoromethane		Ιΰ
75-35-4	1,1-Dichloroethene	64	-
67-64-1	Acetone	ĺ	
	Iodomethane	l "וֹ	lŭ
	Carbon Disulfide	l <u>'</u> ī	ľŭ
	Methylene Chloride	0.6	, -
156-60-5	trans-1,2-Dichloroethene		
1634-04-4	Methyl tert-butyl ether	1	Įΰ
75-34-3	1,1-Dichloroethane	120	_
108-05-4	Vinyl acetate	ĺ	โซิ
	2-Butanone	ן ד	Ιŭ
	cis-1,2-Dichloroethene	0.8	
590-20-7	2,2-Dichloropropane	1	١ŭ
74-97-5	Bromochloromethane	1	ប័
67-66-3	Chloroform	1	Ιŭ
71-55-6	1,1,1-Trichloroethane	320	, -
563-58-6	1,1-Dichloropropene	1	ប៊
56-23-5	Carbon Tetrachloride	1 7	lΰ
107-06-2	1,2-Dichloroethane	l	ប៊
71-43-2	Benzene	1 7	lΰ
70 01 6		1 🕇	ľ

EPA SAMPLE NO.

GP-21AIR Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: A0951

Matrix: (soil/water) AIR Lab Sample ID: A0951-05A

Sample wt/vol: 25 (g/mL) ML Lab File ID: V6C0977

Level: (low/med) LOW Date Received: 06/20/02

% Moisture: not dec. Date Analyzed: 07/02/02

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) MG/M3

	(49)	n or ug/ng/ m	3/165 Q
142-28-9	1,3-Dichloropropane		7 77
127-18-4	Tetrachloroethene	·	1 U
591-78-6	2-Hexanone		4
194-40 1	Dibromochloromethane		1 U
10C 03 4	protollocitroroulecuane		1 U
100-93-4	1,2-Dibromoethane		1 U
108-90-7	Chlorobenzene		1 U
630-20-6	1,1,1,2-Tetrachloroet	hane	1 U
100-41-4	Ethylbenzene_		1 U
1330-20-7	Xylene (Total)		0.8 J
100-42-5	Styrene		1 U
75-25-2	Bromoform		īlū
98 - 82-8	Isopropylbenzene		īlū
79-34-5	1.1.2.2-Tetrachlomet	hane	īlŭ
1 08-86-1	Bromobenzene		īlŭ
96-18-4	1,2,3-Trichloropropar	ne —	า บั
103-65-1	n-Propylbenzene	·	1 0
95-49-8	2-Chlorotoluene		וֹן ט
108-67-8	1,3,5-Trimethylbenzer		
106-43-4 -	4-Chlorotoluene	<u> </u>	1 U 1 U
98-06-6	tert-Butylbenzene		-1-
05-63-6	1,2,4-Trimethylbenzer		1 <u>U</u>
//-03-0 12E-00-0		le	1 U
133-30-0	sec-Butylbenzene		1 U
77-0/-0 541 57 1	4-Isopropyltoluene		1 U
541-/3-1	1,3-Dichlorobenzene_		1 U
106-46-7	1,4-Dichlorobenzene		1 U
1 N/1 - 57 - Q	n Distral hondone	-	

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

		DENTITE THE COMPONIES	
Lab Name:	MITKEM CORPORATION	Contract:	GP-21AIR

Lab Code: MITKEM Case No.: SAS No.: SDG No.: A0951

Matrix: (soil/water) AIR Lab Sample ID: A0951-05A

Sample wt/vol: 25 (g/mL) ML Lab File ID: V6C0977

Level: (low/med)LOW Date Received: 06/20/02

% Moisture: not dec. Date Analyzed: 07/02/02

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume:____(uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

EPA SAMPLE NO.

Number TICs found: 7 (ug/L or ug/Kg) mg/m3

1				
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 354-23-4 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	UNKNOWN ETHANE, 1,2-DICHLORO-1,1,2-T UNKNOWN UNKNOWN UNKNOWN CYCLIC ALKANE UNKNOWN	3.31	1 2 4 1 1 2 2 2 2	J J J J J J J
13. 14. 15. 16.				
18. 19. 20. 21.				
23				

EPA SAMPLE NO.

Lab	Name:	MITKEM CORPORATION	Contract:	GP-22AIR
				· · · · · · · · · · · · · · · · · · ·

Lab Code: MITKEM Case No.: SAS No.: SDG No.: A0951

Matrix: (soil/water) AIR Lab Sample ID: A0951-06A

Sample wt/vol: 25__ (g/mL) ML Lab File ID: V6C0978

Level: (low/med) LOW Date Received: 06/20/02

% Moisture: not dec. Date Analyzed: 07/02/02

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

CAS NO.

Soil Extract Volume: ____(uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) MG/M3

CAS NO.	COMPOUND	(ug/L or ug/Kg	MG/M3	Q
75-71-8	Dichlorodifluoro	methane	.1	II
·74-87-3	Chloromethane		ī	ן ט
75-01-4	Vinyl Chloride		2	ľ
74-83-9	Bromomethane		1	U
75-00-3	Chloroethane		80	_
75-69-4	Trichlorofluorom	ethane	1	
75-35-4	1,1-Dichloroethe	ne	160	
67-64-1	Acetone		1	$\bar{\mathbf{v}}$
74-88-4	Iodomethane		ī	ΰ
75-1 5-0	Carbon Disulfide		1	บั
75-09-2	Methylene Chlori	de	4	
156-60-5	trans-1,2-Dichlo	roethene	1	<u></u>
1634-04-4	Methyl tert-buty	l ether	. 1	ט
75-34-3	1.1-Dichloroetha	ne	130	E
108-05-4	Vinyl acetate		1	ប៊
78-93-3	2-Butanone		1	ט
156-59-2	cis-1,2-Dichloro	ethene	2	
590-20-7	2,2-Dichloroprop	ane	1	u
74-97-5	Bromochloromethan	ne	1	ט
67-66-3	Chloroform		1	ט
71-55-6	1,1,1-Trichloroe	thane	470	E
563 <i>-</i> 58-6	1,1-Dichloroprop	ene	1	ប៊
56-23-5	Carbon Tetrachlo	ride	ī	ប៊
107-06-2	1,2-Dichloroetha	ne		Ŭ
71-43-2	Benzene		ī	ָ ט
70 01 6		 -	_	l

ÉPA SAMPLE NO.

GP-22AIR

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-06A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0978

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume:____(uL)

Soil Aliquot Volume: (uL)

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) MG/M3

142-28-91,3-Dichloropropane	1	U
127-18-4Tetrachloroethene	2	
591-78-62-Hexanone	1	U
124-48-1Dibromochloromethane	1	บั
106-93-41,2-Dibromoethane	1	บ
108-90-7Chlorobenzene	1	Ü
630-20-61,1,1,2-Tetrachloroethane	÷ (Ü
100-41-4Ethylbenzene	<u></u>	บ
1330-20-7Xylene (Total)	0.7	
100-42-5Styrene		
75-25-2Bromoform	1	U U
	<u>+</u> j	_
98-82-8Isopropylbenzene	<u></u>	Ŭ
79-34-51,1,2,2-Tetrachloroethane	1.	U
108-86-1Bromobenzene	1	U
96-18-41,2,3-Trichloropropane	1	U
103-65-1n-Propylbenzene	1	ប
95-49-82-Chlorotoluene	1	U
108-67-81,3,5-Trimethylbenzene	1	ប
106-43-44-Chlorotoluene	1	Ū
98-06-6tert-Butylbenzene	1	ប
95-63-61,2,4-Trimethylbenzene	1	U
135-98-8sec-Butylbenzene	1	U
99-87-64-Isopropyltoluene	1	Ū
541-73-11,3-Dichlorobenzene	1	Ū
106-46-71,4-Dichlorobenzene	ī	Ŭ
104-51-8n-Butvlbenzene		TT .

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

GP-22AIR

Lab Name: N	IIIKEM CO	RPORATION
Total Months: 1	TIVE CO	KLOKHTION

Contract:

Lab Code: MITKEM

Case No.: SAS No.:

LOW

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-06A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0978

Level: (low/med)

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) mg/m3

Number TICs found: 4

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
2. UN 3. CY 4. UN 5.	IKNOWN IKNOWN ICLIC ALKANE IKNOWN	3.60 6.52 7.71 14.58	1 2 2 2	J J J
6. 7. 8. 9.				
1				
6. 7. 8. 9.				
0				

EPA SAMPLE NO.

GP-24AIR

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-09A

Sample wt/vol:

25 _ (g/mL) ML

Lab File ID: V6C0979

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MG/M3

	•		
75-71-8Dichlorodifluoromethane		1	U
74-87-3Chloromethane	'——	1	Ü
75-01-4Vinyl Chloride		12	ال
74-83-9Bromomethane	·		U
75-00-3Chloroethane	 [1	ĮU .
75-69-4Trichlorofluoromethane	 -	4	11
75-35-41,1-Dichloroethene	<u>i</u>	1.0	1 ~
67-64-1Acetone		150	1
74-88-4Iodomethane		1	Ū
75-15-0Carbon Disulfide	<u></u> }	1	U
75-15-0Carbon Distille		1	U
75-09-2Methylene Chloride		5	
156-60-5trans-1,2-Dichloroether	ne	1	Ü
1634-04-4Methyl tert-butyl ether	<u></u>	1	U
75-34-31,1-Dichloroethane		34	
108-05-4Vinyl acetate		1	Ū
78-93-32-Butanone		1	U
156-59-2cis-1,2-Dichloroethene		120	E
590-20-72,2-Dichloropropane		1	ប
74-97-5Bromochloromethane		ī	Ū
67-66-3Chloroform		1	Ū
71-55-61,1,1-Trichloroethane		350	_
563-58-61.1-Dichloropropene —		1	ប៊
56-23-5Carbon Tetrachloride		7	ij
107-06-21,2-Dichloroethane	 [7	ប៊
71-43-2Benzene		1	Ŭ
70 01 C		. 1	12

EPA SAMPLE NO.

GP-24AIR

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-09A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0979

Level: (low/med)

IOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume:____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MG/M3

0

		,5,,	×
	142-28-91,3-Dichloropropane	1	_U
	127-18-4Tetrachloroethene	2	י
	591-78-62-Hexanone	. – .	ਜ਼_
	124-48-1Dibromochloromethane	1 -1	_
į	106-93-41,2-Dibromoethane	, — <u> </u>	ប
	108-90-7Chlorobenzene		<u>U</u>
	630-20-61,1,1,2-Tetrachloroethane	1	U
	100-43 4 Februik and a second control of the		ט
	100-41-4Ethylbenzene		บ
ĺ	1330-20-7Xylene (Total)	0.8	J
	100-42-5Styrene	1	U
	75-25-2Bromoform_	1 [U
	98-82-8Isopropylbenzene	1.	υl
	79-34-51,1,2,2-Tetrachloroethane	1 1	บ
	108-86-1Bromobenzene		ΰl
1	96-18-41,2,3-Trichloropropane		ŭΙ
1	103-65-1n-Propylbenzene		Ŭ
1	95-49-82-Chlorotoluene		ប <mark>័</mark>
1	108-67-81,3,5-Trimethylbenzene		ŭ
	106-43-44-Chlorotoluene		ט ו
	98-06-6tert-Butylbenzene		-
	95-63-61,2,4-Trimethylbenzene	- 1	ŭ
	135-98-8sec-Butylbenzene		U
Ì	20-27-6 A Tanamanal tales		Ų
Į	99-87-64-Isopropyltoluene		ט
1	541-73-11,3-Dichlorobenzene		U
1	106-46-71,4-Dichlorobenzene	1 1	U i

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

ÉPA SAMPLE NO.

GP-24AIR

Lab N	ame:	MITKEM	CORPORATION
-------	------	--------	-------------

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-09A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0979

Level:

(low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

Number TICs found: 3

(ug/L or ug/Kg) mg/m3

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q.
1. 2. 3.	BRANCHED ALKANE CYCLIC ALKANE UNKNOWN	6.51 7.70 14.58	2 3 2	J J J
4. 5. 6.				
7. 8. 9.				
10. 11. 12.				
14				
16. 17. 18. 19.				
21.				
23				

EPA SAMPLE NO.

GP-28AIR

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-01A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0975

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MG/M3

. Q

			
75-71-8	Dichlorodifluoromethane	1	l _{tT}
	Chloromethane	·l	lΰ
	Vinyl Chloride	-l	1
	Bromomethane	- -	t u
	Chloroethane	- 0. 8	1 -
	Trichlorofluoromethane	-	Ü
75-35-4	1,1-Dichloroethene	43	
67-64-1	Acetone	1	
	Iodomethane	-]	Ιŭ
	Carbon Disulfide	-] . 🕇	U
	Methylene Chloride	- -	10
156_60_5	trans-1,2-Dichloroethene	-	Ū
1634-04-4	Methyl tert-butyl ether	-1 , 5	_
	1,1-Dichloroethane	0.2	
		30	
108-02-4	Vinyl acetate	. -	Ü
	2-Butanone	-	U
156-59-2	cis-1,2-Dichloroethene	11	
590-20-7	2,2-Dichloropropane	.] 1	ប
	Bromochloromethane	_[1	ប
	Chloroform	_ 1	U
	1,1,1-Trichloroethane	200	E
563 - 58-6	1,1-Dichloropropene	1	U
56-23-5	Carbon Tetrachloride	[1	U
107-06-2	1,2-Dichloroethane	1	U
71-43-2	Benzene	· 1	U
	:	-,	

EPA SAMPLE NO.

GP-28AIR

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-01A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0975

Level: (low/med)

LOW

Date Received: 06/20/02

% Moisture: not dec. _____

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MG/M3

0

142-28-91,3-Dichloropropane	1	IJ
127-18-4Tetrachloroethene	7	ľ
591-78-62-Hexanone	าไ ที่ไ	17
124-48-1Dibromochloromethane	·l 🕺	ប៊ែ
106-93-41,2-Dibromoethane	-	ប៊
108-90-7Chlorobenzene	· †	117
630-20-61,1,1,2-Tetrachloroethane	-}	ıπ
100-41-4Ethylbenzene	-1	lΰ
1330-20-7Xylene (Total)	-	_
100_42 E	0.8	
100-42-5Styrene	.] `	Ŭ
75-25-2Bromoform	.]	U
98-82-8Isopropylbenzene	. 1	U
79-34-51,1,2,2-Tetrachloroethane	. 1	ប
108-86-1Bromobenzene	_{	Ū
96-18-41,2,3-Trichloropropane] 1	U
103-65-1n-Propylbenzene	1	ប
95-49-82-Chlorotoluene	i j. 1 i	ប
108-67-81,3,5-Trimethylbenzene	1	บ
106-43-44-Chlorotoluene	·	lŭ
98-06-6tert-Butylbenzene	·	l ũ
95-63-61,2,4-Trimethylbenzene	1 1	Ι υ
135-98-8sec-Butylbenzene	'	ϋ
99-87-64-Isopropyltoluene	1 1	Ιŭ
541-73-11,3-Dichlorobenzene	- - - - -	lΰ
106-46-71,4-Dichlorobenzene	-1 -1	

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

GP-28AIR

SDG No.: A0951

Lai	b	Name:	MITKEM	CORPORATION
-----	---	-------	--------	-------------

Contract:

SAS No.:

Lab Code: MITKEM

Case No.:

Matrix: (soil/water) AIR

Lab Sample ID: A0951-01A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0975

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

Number TICs found: 2

CONCENTRATION UNITS: (ug/L or ug/Kg) mg/m3

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3.	BRANCHED ALKANE UNKNOWN	 6.52 14.58	2	J J
4. 5. 6.				
7		 		
10. 11. 12.	<u></u>			
13. 14. 15.				
16. 17. 18.				
19. 20. 21.		 		
22. 23.				

EPA SAMPLE NO.

GP-2AIR

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: A0951

Matrix: (soil/water) AIR Lab Sample ID: A0951-08A

Sample wt/vol: 25___ (g/mL) ML Lab File ID: V6C0957

Level: (low/med) LOW Date Received: 06/20/02

% Moisture: not dec. _____ Date Analyzed: 07/01/02

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) MG/M3 Q

75-71-8Dichlorodifluoromethane	7	U
74-87-3Chloromethane	-	lΰ
75-01-4Vinyl Chloride	-[-	10
74-83-9Bromomethane	-	ਹ
75-00-3Chloroethane	-1 🗼 🕆	โซ้
75-69-4Trichlorofluoromethane	- ‡	lπ
75-35-41,1-Dichloroethene	- 310	. ~
67-64-1Acetone	310	<u>-</u>
74-88-4Iodomethane	- ^	u
75-15-0Carbon Disulfide	- 축	มี ไม่
75-09-2Methylene Chloride	-1	ľ
156-60-5trans-1,2-Dichloroethene	- 4	<u></u>
1634-04-4Methyl tert-butyl ether	- -	l
75-34-31,1-Dichloroethane	- 45	
108-05-4Vinyl acetate	_ 49	
70 03 3	-1 -1	U
78-93-32-Butanone	-1 }	Ŭ
156-59-2cis-1,2-Dichloroethene	130	
590-20-72,2-Dichloropropane	_[1	U
74-97-5Bromochloromethane	_ 1	U
67-66-3Chloroform	_ 1	U
71-55-61,1,1-Trichloroethane	640	\mathbf{E}
563-58-61,1-Dichloropropene	1	U
56-23-5Carbon Tetrachloride	1	U
107-06-21,2-Dichloroethane]	ប
71-43-2Benzene	0.2	J
- · · · · · · · · · · · · · · · · · · ·	 ,	•

EPA SAMPLE NO.

GP-2AIR

Lab Name: MITKEM CORPORATION

Contract:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-08A

Sample wt/vol:

Lab Code: MITKEM

25 (g/mL) ML

Case No.:

Lab File ID: V6C0957

Level:

(low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume:

(uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MG/M3

		
142-28-91,3-Dichloropropane	1	U
127-18-4Tetrachloroethene	19	10
591-78-62-Hexanone	1 1	u -
124-48-1Dibromochloromethane	1 7	ប្រ
106-93-41,2-Dibromoethane	1	ប័
108-90-7Chlorobenzene	1 7	បី
630-20-61,1,1,2-Tetrachloroethane		ប័
100-41-4Ethylbenzene	0.2	
1330-20-7Xylene (Total)		_
100-42-5Styrene	0.9	
75-25-2Bromoform	1 +	U U
98-82-8Isopropylbenzene	1 +	, –
79-34-51,1,2,2-Tetrachloroethane	1	U
108-86-1Bromobenzene	ļ <u>+</u> 1	Ū
96 10 4 1 2 2 The chiles	1	U
96-18-41,2,3-Trichloropropane	j <u>+</u>	Ŭ
103-65-1n-Propylbenzene	1	Ū
95-49-82-Chlorotoluene	1	U
108-67-81,3,5-Trimethylbenzene	1	Ū
106-43-44-Chlorotoluene	1	Ū
98-06-6tert-Butylbenzene	1	Ŭ
95-63-61,2,4-Trimethylbenzene	1	U
135-98-8sec-Butylbenzene] 1	U
99-87-64-Isopropyltoluene	1	U
541-73-11,3-Dichlorobenzene	1	U.
106-46-71,4-Dichlorobenzene	1	U
104 F1 0 5 1 11	1	l

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE I	NO	•
--------------	----	---

Lab	Name:	MITKEM	CORPORATION

Contract:

GP-2AIR

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

(low/med)

Lab Sample ID: A0951-08A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0957

Level:

LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) mg/m3

Number TICs found: 4

·				
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 354-23-4 3. 4. 5.	UNKNOWN ETHANE, 1,2-DICHLORO-1,1,2-T UNKNOWN UNKNOWN	3.31 3.60 6.62 14.58	2 2 2 1	J J J J
6. 7. 8. 9.				
11. 12. 13. 14.				
16. 17. 18. 19.				
20. 21. 22. 23.				

EPA SAMPLE NO.

GP-3AIR

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-12A

Sample wt/vol:

25___ (g/mL) ML

Lab File ID: V6C0960

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) MG/M3

			
75-71-8	Dichlorodifluoromethane	1	U
74-87-3	Chloromethane		ŭ
75-01-4	Vinyl Chloride	24	
74-83-9	Bromomethane		U
75-00-3	Chloroethane	1	١٥
75-69-4	Trichlorofluoromethane	28	
75-35-4	1,1-Dichloroethene	120	ប
67-64-1	-1,1-DICITOTOGCHENE	130	E
74-88-4	Iodomethane	3	
75-15-0	Carbon Disulfide	ļ <u>1</u> 1	Ū
75-10-0-0-	Motherland Colonial	1	U
156 60 E	Methylene Chloride	1	
100-00-0	trans-1,2-Dichloroethene	1	
1034-04-4	Methyl tert-butyl ether	0.8	
100 00 4	1,1-Dichloroethane	83	E
108-05-4	Vinyl acetate	1	ប
78-93-3	2-Butanone	1	U
156-59-2	cis-1,2-Dichloroethene	130	E
590-20-7	2,2-Dichloropropane	1	Ū
74-97-5	Bromochloromethane	1	ប
67-66-3	Chloroform	1!	Ū
71-55-6	1,1,1-Trichloroethane	400	
563-58-6 -	1.1-Dichloropropene		Ū
56-23-5	Carbon Tetrachloride	1.	Ŭ
107-06-2	1,2-Dichloroethane	1 1	Ū
71-43-2	Benzene		J
79-01-6	Trichloroethene	V.51	מים

EPA SAMPLE NO.

GP-3AIR

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-12A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0960

Level:

(low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MG/M3

142-28-91,3-Dichloropropane	1	ប
127-18-4Tetrachloroethene		U
591-78-62-Hexanone	1 4	II
124-48-1Dibromochloromethane	1 - 1	ប
	1 -	_
106-93-41,2-Dibromoethane	1 ታነ	U
108-90-7Chlorobenzene	1	U
630-20-61,1,1,2-Tetrachloroethane	1	Ū
100-41-4Ethylbenzene	0.3	J
1330-20-7Xylene (Total)	i 1	
100-42-5Styrene	1	U
75-25-2Bromoform	1	U
98-82-8Isopropylbenzene	1	U
79-34-51,1,2,2-Tetrachloroethane	1	U
108-86-1Bromobenzene	1	U
96-18-41,2,3-Trichloropropane	1	Ū
103-65-1n-Propylbenzene	1	Ū
95-49-82-Chlorotoluene	1 7	Ū
108-67-81,3,5-Trimethylbenzene	1 7	Ŭ
106-43-44-Chlorotoluene	l = = :	ប័
98-06-6tert-Butylbenzene	1 7	บั
95-63-61,2,4-Trimethylbenzene	0.2	_
135-98-8sec-Butylbenzene	0.2	ប
		_
99-87-64-Isopropyltoluene		ប
541-73-11,3-Dichlorobenzene	1	U
106-46-71,4-Dichlorobenzene	1	U

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab	Name:	MITKEM	CORPORATION	
	MICHIE	1.17.11(11.1	COLCEOIGNITION	

Contract:

GP-3AIR

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-12A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0960

Level: (low/med)

LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: 6

6 (ug/L or ug/Kg) mg/m3

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=========	COLL COLL TELL			
1. 79-38-9	ETHENE, CHLOROTRIFLUORO-	1.99		NTT
2.	UNKNOWN		5 .2	NJ J
3. 354-23-4		3.56	· ·	_
3. 354-23-4	ETHANE, 1,2-DICHLORO-1,1,2-T			ŊJ
4.	UNKNOWN	4.37	3	<u>J</u>
5.	UNKNOWN	6.86	2	J
6.	CYCLIC ALKANE	7.70	2	J
7				
8				
9.				
10				
11				
12				·
13				
14.				
15.				
16.			· · · · · · · · · · · · · · · · · · ·	
17.				
18.			 	
19.				
20.				
21.		<u></u>		
22.				
23.				

Lab Name: MITKEM CORPORATION

EPA SAMPLE NO.

GP-4AIR Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: A0951

Matrix: (soil/water) AIR Lab Sample ID: A0951-10A

Sample wt/vol: 25___ (g/mL) ML Lab File ID: V6C0958

Level: (low/med) LOW Date Received: 06/20/02

% Moisture: not dec. _____ Date Analyzed: 07/01/02

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) MG/M3 Q

		
75-71-8Dichlorodifluoromethane	1	ប
74-87-3Chloromethane]	Ŭ
75-01-4Vinyl Chloride	1 7	ŭ
74-83-9Bromomethane	1 7	ប័
75-00-3Chloroethane	. 👬	ប័
75-69-4Trichlorofluoromethane	1 - 1	บ
75-35-41,1-Dichloroethene	<u> </u>	U
67-64-1Acetone	3	TT
74-88-4Iodomethane	1	ļ
	 	ប
75-15-0Carbon Disulfide	1 1	ប
75-09-2Methylene Chloride	1 1	U
156-60-5trans-1,2-Dichloroethene	<u> </u>	U
1634-04-4Methyl tert-butyl ether	0.7	
75-34-31,1-Dichloroethane	0.9	
108-05-4Vinyl acetate	1	U
78-93-32-Butanone	1	Ü
156-59-2cis-1,2-Dichloroethene	2	
590-20-72,2-Dichloropropane	1	Ū
74-97-5Bromochloromethane	1	U
67-66-3Chloroform	1	ប
71-55-61,1,1-Trichloroethane	39	}
563-58-61,1-Dichloropropene	1	Ū
56-23-5Carbon Tetrachloride	Ī	บ
107-06-21,2-Dichloroethane	1	IJ
71-43-2Benzene	0.3	~
	1	1 -

EPA SAMPLE NO.

GP-4AIR

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-10A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0958

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume:

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) MG/M3

142-28-9	1,3-Dichloropropane	1	ττ
1127_10_1	Tetrachloroethene		١٠
E01 70 6	2-Hexanone	2	TT
	Dibromochloromethane	1	ı ~
		1	ប្
100-93-4	1,2-Dibromoethane	<u> </u>	<u> </u>
	Chlorobenzene	1	Ŭ
	1,1,1,2-Tetrachloroethane	·*· 1	ប
100-41-4	Ethylbenzene	0.3	J
1330-20-7	Xylene (Total)	1	l
100-42-5	Styrene	1	ับ
	Bromoform	1	ប
98-82-8	Isopropylbenzene	1	U
7 9-34-5	1,1,2,2-Tetrachloroethane	1	U
	Bromobenzene	1	υ
96-18-4	1,2,3-Trichloropropane	1	ប
103-65-1	n-Propylbenzene	1	lυ
95-49-8	2-Chlorotoluene	1	ไซ
108-67-8	1,3,5-Trimethylbenzene	1	lυ
106-43-4	4-Chlorotoluene	$\bar{1}$	ΙŪ
	tert-Butylbenzene	4	lπ
	1,2,4-Trimethylbenzene	0.3	lσ
135-98-8	sec-Butylbenzene	1	lŭ
99-87-6	4-Isopropyltoluene		ϋ
	1,3-Dichlorobenzene		ប័
	1,4-Dichlorobenzene		lΰ
	n-Butul bengeno	 	

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab N	Tame:	MITKEM	CORPORATION
-------	-------	--------	-------------

Contract:

Lab Code: MITKEM Case No.:

LOW

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-10A

Sample wt/vol: 25 (g/mL) ML

Lab File ID: V6C0958

Level: (low/med)

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: 6

(ug/L or ug/Kg) mg/m3

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3. 4. 5.	UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN	2.42 3.03 3.33 3.52 4.38 6.84	2 2 1 1 2 1	J J J J J
7. 8. 9. 10. 11.				
13. 14. 15. 16.				
18. 19. 20. 21. 22. 23.				

EPA SAMPLE NO.

•	GP-6AIR
act:	1

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: A0951

Matrix: (soil/water) AIR Lab Sample ID: A0951-03A

Sample wt/vol: 25 (g/mL) ML Lab File ID: V6C0955

Level: (low/med) LOW Date Received: 06/20/02

% Moisture: not dec. _____ Date Analyzed: 07/01/02

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg) MG/M3	Q

			. ~
75-71-8	Dichlorodifluoromethane	1	U
	Chloromethane	-1	Ι υ
	Vinyl Chloride	- 0. <u>8</u>	
74-83-9	Bromomethane	-l	ប៊
	Chloroethane	- 5	١
75-69-4	Trichlorofluoromethane	-!	TT
75-35-4	1,1-Dichloroethene	25	١
67-64-1		-	1
	Iodomethane	-1 ' -1	Ū
	Carbon Disulfide	- -	บั
	Methylene Chloride	0.5	
	trans-1,2-Dichloroethene	•]	ប៊
	Methyl tert-butyl ether	0.4	
	1,1-Dichloroethane		ال
100-06-4	Vinyl acetate	. 4	U
7002.2	2-Butanone	-1 ‡	ប្រ
	cis-1,2-Dichloroethene	- -	١٧
100-03-2	2,2-Dichloropropane	_ 14	\ \ \ \\ \\
74 07 E	Bromochloromethane	-	-
74-31-3	Chloroform	-1 ;	U
		- 100	ប្
/1-55-6	1,1,1-Trichloroethane	100	
203-20-6	1,1-Dichloropropene	<u>.</u> j	U
	Carbon Tetrachloride	. 1	U
	1,2-Dichloroethane	_[U
71-43-2	Benzene	. 1	U

EPA SAMPLE NO.

GP-6AIR

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-03A

Sample wt/vol:

25 (g/mL) ML

Lab File ID: V6C0955

Level: (low/med)

LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) MG/M3

		_	
-	142 20 0 1 2 Dicklesses	_	
ł	142-28-91,3-Dichloropropane	1.	U
1	127-18-4Tetrachloroethene	10	
•	591-78-62-Hexanone	1	Ū
	124-48-1Dibromochloromethane	1	U
	106-93-41,2-Dibromoethane	1	U
	108-90-7Chlorobenzene	1	บ .
1	630-20-61,1,1,2-Tetrachloroethane	$ar{f 1}$	Ū
- 1	100-41-4Ethylbenzene	0.3	-
- 1	1330-20-7Xylene (Total)	0.8	-
ı	100-42-5Styrene	1	Ŭ
- 1	75-25-2Bromoform	1	ប៊
-	98-82-8Isopropylbenzene	1	Ü
- 1	79-34-51,1,2,2-Tetrachloroethane	1	បី
1	108-86-1Bromobenzene	± 1	ប
į	96-18-41,2,3-Trichloropropane	1	ប
	103-65-1n-Propylbenzene	1. 7	ប
	95-49-82-Chlorotoluene	± 1	ប
	108-67-81,3,5-Trimethylbenzene	1	_
	106-67-61,3,5-1r1@cnytbenzene	41	Ŭ
	106-43-44-Chlorotoluene	1	ប
	98-06-6tert-Butylbenzene	1	ប
	95-63-61,2,4-Trimethylbenzene	1;	U
	135-98-8sec-Butylbenzene	1	Ū
	99-87-64-Isopropyltoluene	1	U
ļ	541-73-11,3-Dichlorobenzene	1	U
-	106-46-71,4-Dichlorobenzene	1	Ù
1	10/ [1 0]	

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

	GP-6AIR
aat.	

Lab Name: MITKEM CORPORATION

Case No.:

Contract:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) AIR

Lab Sample ID: A0951-03A

Sample wt/vol:

Lab Code: MITKEM

25 (g/mL) ML

Lab File ID: V6C0955

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) mg/m3

Number TICs found: 7

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 79-38-9	ETHENE, CHLOROTRIFLUORO-	1.99	3	NJ
2.	UNKNOWN	2.14		J
3.	UNKNOWN	2.48	2 2 2	Ĵ
4.	UNKNOWN	2.89	2	J
5. 354-23-4	ETHANE, 1,2-DICHLORO-1,1,2-T	3.60	$\bar{ extbf{1}}$	ŊJ
6.	CYCLIC ALKANE	7.70	1	J
7.	UNKNOWN	14.58	$\bar{2}$	Ĵ
8.				
9.				
.0.				.——
.1.				
.2.		 		
.3.				
.4.				
.5.				-
.6.				-
.7.		 		
.8.				
9.				
0.				
1.	-\ ;			
2.	···			
3.		<u>-</u>		

EPA SAMPLE NO.

GP-136

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-13A

Sample wt/vol:

5.0 (q/mL) G

Lab File ID: V5D8774

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec. 6

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ___ (mL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: CAS NO. (ug/L or ug/Kg) UG/KG COMPOUND

0

75-71-8	Dichlorodifluoromethane	5	υ	
74-87-3	Chloromethane		lu l	
75-01-4	Vinvl Chloride		υ	
74-83-9	Bromomethane	5		
75-00-3	Chloroethane		Ŭ	
75-69-4	Trichlorofluoromethane	5		
75-35-4	1,1-Dichloroethene	. 5	lυ	
67-64-1	Acetone	5	l š	
74-88-4	Iodomethane	5	lΰ	
75-15-0	Carbon Disulfide	5	Ŭ	
75-09-2	Methylene Chloride	ě	B	
156-60-5	trans-1.2-Dichloroethene	Š	โซ๊ ไ	
1634-04-4	Methyl tert-butyl ether		Ĵ	
75-34-3	1.1-Dichloroethane	2	υ	
108-05-4	Vinvl acetate	5·	Ŭ	
78-93-3	2-Butanone	5:	l 1	···
156-59-2	cis-1,2-Dichloroethene	13	ľ	
590-20-7- - -	2,2-Dichloropropane	5	<u>u</u>	
74-97-5	Bromochloromethane	5	lŭ l	
67-66-3	Chloroform	5	υ	
71-55-6	1,1,1-Trichloroethane	21		
563-58-6	1.1-Dichloropropene	5	ਹਾਂ ਂ	
56-23-5	Carbon Tetrachloride	5	ប់	
107-06-2	1,2-Dichloroethane	5	ן ט	
71-43-2	Benzene	š	ŭ	
79-01-6	Trichloroethene	26	_	

EPA SAMPLE NO.

GP-136

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-13A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V5D8774

Level: (low/med)

LOW

Date Received: 06/20/02

% Moisture: not dec. 6

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (mL)

Soil Aliquot Volume: ____

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

	CAS NO.	COMPOUND	(ug/L Or	ug/kg)	0G/KG	Q
	142-28-9	1,3-Dichloroprop	ane		5	U
	127-18-4	Tetrachloroethen	e		<u>.</u> 6	;
		2-Hexanone		t	5	
	124-48-1	Dibromochloromet	hane		5	U -
	106-93-4	1,2-Dibromoethan	e		5	ៅប
	108-90-7	Chlorobenzene			5	២
	630-20-6	1,1,1,2-TetrachI	oroethane		5	ប្រ
1	100-41-4	Ethylbenzene	_		5	ו ט
	1330-20-7	Xylene (Total)		—- <u> </u>	3	J
1	100-42-5	Styrene			5	២
	75-25-2	Bromoform			5	U
	98-82-8	Isopropylbenzene		· ·	5	ប
	7 9-34 - 5	1,1,2,2-Tetrachl	oroethane		5	ן טן
	108-86-1	Bromobenzene	-		. 5	ן ט
	96-18-4	1,2,3-Trichlorop	ropane	— _i	5	ប
1	103-65-1	n-Propylbenzene		— <u> </u>	5	ប
1	95-49-8	2-Chlorotoluene			5	U
	108-67 - 8	1,3,5-Trimethylb	enzene	<u> </u>	5	ן טן
	106-43-4	4-Chlorotoluene			5	ן טן
	98-06-6	tert-Butylbenzen	e		5	lu l
ł	95-63-6	1,2,4-Trimethylb	enzene		5	ו עו
	135-98-8	sec-Butvlbenzene			5	ן טן
	99-87-6	4-Isopropyltolue	ne-		5	U
1	541- 7 3-1	1,3 <i>-</i> Dichlorobenz	ene		5	ן ט
	106-46-7	1,4-Dichlorobenz	ene		5	ן טן
1	104-51-8	n-Butylbenzene_			5	U
				 -		

Case No.:

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

		GP-136
itract:		

Lab Name: MITKEM CORPORATION

Con

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-13A

Sample wt/vol:

Lab Code: MITKEM

5.0 (g/mL) G

Lab File ID: V5D8774

Level: (low/med) LOW Date Received: 06/20/02

% Moisture: not dec. 6

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (mL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

Number TICs found: 6

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	12.66	70	ј==== Ј
2. 3.	UNKNOWN	14.45	6	J
3.	BRANCHED ALKANE	15.19	10	J
4. 5.	UNKNOWN	16.23	6	J
5.	UNKNOWN	16.40	. 6	J
6. 475-03-6	NAPHTHALENE, 1,2,3,4-TETRAHY	16.79	10	NJ
7				
8				
9				
0				
1				
2				
.3.	<u> </u>			
4				
6				
7 8.	_	<u></u> }		
9.	-			
<u> </u>		·		
0				
2.	_		 .	
3.				
4.				
<u></u>				

EPA SAMPLE NO.

GP-207.5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-14A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V5D8775

Level: (low/med) LOW Date Received: 06/20/02

% Moisture: not dec. 10

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (mL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

	(49, 2 01 4	9/19/00/10	×
75-71-8	Dichlorodifluoromethane	6	U
74-87-3	Chloromethane	-i 6	Ū
	Vinyl Chloride	-l 6	lπ
74-83-9	Bromomethane	- š	ΙŬ
	Chloroethane	-l š	Ιŭ
	Trichlorofluoromethane	- 6	līī
75-35-4	1,1-Dichloroethene	- š	lπ
67-64-1	Acetone	- 5	lŤ
	Iodomethane	- 6	បែ
	Carbon Disulfide	-\	1 -
	Methylene Chloride	- š	1
	trans-1,2-Dichloroethene	-l š	lŭ
	Methyl tert-butyl ether	- ž	lσ
75-34-3	1,1-Dichloroethane	- -6	ប្រ
108-05-4	Vinyl acetate	-l š	Ιŭ
78-93-3	2-Butanone	-}	lπ
156-59-2	cis-1,2-Dichloroethene	- - 6	បែ
590-20-7	2,2-Dichloropropane	- 6	Ū
74-97-5	Bromochloromethane	~ · 6	Ū
67-66-3	Chloroform	- 6	lū
	1,1,1-Trichloroethane	33	
563-58-6	1,1-Dichloropropene	- 6	l u
56-23-5	Carbon Tetrachloride	- š	Ιŭ
107-06-2	1,2-Dichloroethane	- š	lŭ
71-43-2	Benzene	- š	lΰ
TO 01 6	m · 1 1	–I [∑]	1 🗠

EPA SAMPLE NO.

GP-207.5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-14A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V5D8775

Level: (low/med) TOM Date Received: 06/20/02

% Moisture: not dec. 10

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(mL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

142-28-91,3-Dichloropropane	6	บ
127-18-4Tetrachloroethene	-} <u> </u>	J.
591-78-62-Hexanone	-	lυ
124-48-1Dibromochloromethane	- 6	lΰ
106-93-41,2-Dibromoethane	- 6	l ŭ
108-90-7Chlorobenzene	- 6	Ιΰ
630-20-61,1,1,2-Tetrachloroethane	-l 6	Ιΰ
100-41-4Ethylbenzene	- 6	lυ
1330-20-7Xylene (Total)	-l ' ī	Ť
100-42-5Styrene	-	Ŭ
75-25-2Bromoform	- š	Ιŭ
98-82-8Isopropylbenzene	-1 6	Ιŭ
79-34-51,1,2,2-Tetrachloroethane	-l š	ΰ
108-86-1Bromobenzene	- ĕ	۱ ٽ
96-18-41,2,3-Trichloropropane	- 6	Ιŭ
103-65-1n-Propylbenzene	- š	I
95-49-82-Chlorotoluene	-l š	Ιΰ
108-67-81,3,5-Trimethylbenzene	- -č	lŭ
106-43-44-Chlorotoluene	- 6	~
98-06-6tert-Butylbenzene	-	ΰ
95-63-61,2,4-Trimethylbenzene	- ~~~	J
135-98-8sec-Butylbenzene	- 3	បី
99-87-64-Isopropyltoluene	-	ដ
541-73-11,3-Dichlorobenzene	- 6	lü
106-46-71,4-Dichlorobenzene	-	1 -
104-F1-9	-1 2	U

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

GP-207.5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-14A

Sample wt/vol: 5.0 (g/mL) G

Lab File ID: V5D8775

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec. 10

Date Analyzed: 06/27/02

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (mL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: Number TICs found: 8 (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
CAS NUMBER 1. 123-91-1 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	COMPOUND NAME 1,4-DIOXANE STRAIGHT-CHAINED ALKANE UNKNOWN BRANCHED ALKANE STRAIGHT-CHAINED ALKANE BRANCHED ALKANE UNKNOWN UNKNOWN	RT 7.09 11.46 12.66 12.76 12.91 13.13 13.39 14.30	EST. CONC. 7 7 18 9 7 6 8	NJ J
19. 20. 21. 22. 23.	· · · · · · · · · · · · · · · · · · ·	•		

EPA SAMPLE NO.

GP-213

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

EM Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-15A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V5D8776

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec. 10

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: ____(mL)

Soil Aliquot Volume:

(uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

(-5,		~
75-71-8Dichlorodifluoromethane	6	U
74-87-3Chloromethane	6	Ū
75-01-4Vinyl Chloride	6	Ū
74-83-9Bromomethane	6	Ū
75-00-3Chloroethane	6	ប
75-69-4Trichlorofluoromethane	6	Ū
75-35-41,1-Dichloroethene	. 6	Ū
67-64-1Acetone	26	_
74-88-4Iodomethane	6	Ū
75-15-0Carbon Disulfide	6	U
75-09-2Methylene Chloride	7	В
156-60-5trans-1,2-Dichloroethene	.6	U
1634-04-4Methyl tert-butyl ether	1	J
75-34-31,1-Dichloroethane	8	
108-05-4Vinyl acetate	6	Ū
78-93-32-Butanone	3	J
156-59-2cis-1,2-Dichloroethene	2	J
590-20-72,2-Dichloropropane	6	U
74-97-5Bromochloromethane	. 6	U
67-66-3Chloroform	6	U
71-55-61,1,1-Trichloroethane	3	J
563-58-61,1-Dichloropropene	6	U
56-23-5Carbon Tetrachloride	6	U
107-06-21,2-Dichloroethane	6	U
71-43-2Benzene	6	ប
79-01-6Trichlomethene	6	11

EPA SAMPLE NO.

GP-213

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-15A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V5D8776

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec. 10

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (mL)

Soil Aliquot Volume: _____

_____(uL)

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

	. <u> </u>	~
142-28-91,3-Dichloropropane	6	TT
127-18-4Tetrachloroethene	3	17
591-78-62-Hexanone	1 2	ដ្រ
124-48-1Dibromochloromethane	6	11
106-93-41,2-Dibromoethane	٥	1~
108-90-7Chlorobenzene	J. 6	Ŭ
630-20-61,1,1,2-Tetrachloroethane	6	ַ <u></u>
100-41-4Ethylbenzene	[6	ַ
1330 30 7 TECNYIDENZENE	4	J
1330-20-7Xylene (Total)	12	
100-42-5Styrene	6	Ū
75-25-2Bromoform	6	U
98-82-8Isopropylbenzene	2	J
79-34-51,1,2,2-Tetrachloroethane	6	U
108-86-1Bromobenzene	1 6	U
96-18-41,2,3-Trichloropropane	1 6	U
103-65-1n-Propylbenzene	6	Ü
95-49-82-Chlorotoluene	6	ττ
108-67-81,3,5-Trimethylbenzene	6	ij
106-43-44-Chlorotoluene	ĺ	Ŭ
98-06-6tert-Butylbenzene	اً. ق	IJ
95-63-61,2,4-Trimethylbenzene	6	٦
135-98-8sec-Butylbenzene	20	·
99-87-64-Isopropyltoluene	J	Ü
541-73-11,3-Dichlorobenzene	6	
106-46-71,4-Dichlorobenzene	6	ប
104-51-8n-Rutvlhenzene	6	U
COTTO LENGTE ELECTRICION LINGUIGADA		1 1

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

GP-213 ·

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-15A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V5D8776

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec. 10

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (mL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

Number TICs found: 24

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	10.62	450	J
2.	BRANCHED ALKANE.	11.82	69	J
3.	CYCLIC ALKANE	12.20	50	J
4.	BRANCHED ALKANE	12.41	39	J .
5. ·	BRANCHED ALKANE	12.53	58	J
6. 141-9 3-5	BENZENE, 1,3-DIETHYL-	12.66	29	NJ .
7.	UNKNOWN	12.92	84	
8.	UNKNOWN	13.00	80	IJ
9.	UNKNOWN	13.17	140	J
10. 934-80-5	BENZENE, 4-ETHYL-1,2-DIMETHY	13.22	76	NJ
11.	UNKNOWN	13.33	60	J
12. 25550-13-	BENZENE, DIETHYLMETHYL-	13.51	43	NJ
13. 2958-76-1		13.57		NJ
14.	UNKNOWN	13.67	140	
15. 2958-76-1	NAPHTHALENE, DECAHYDRO-2-MET			ŊJ
16.	UNKNOWN	13.90	71	
17.	UNKNOWN	14.07	37	
18.	UNKNOWN	14.18	49	
19.	UNKNOWN	14.27	81	
20.	UNKNOWN	14.31	100	
21.	UNKNOWN	14.39	29	
22.	UNKNOWN	14.52	170	
23.	UNKNOWN	15.03	84	
24	TIMIPATORIAT	15 00	. 100	

EPA SAMPLE NO.

GP-246.5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-16A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V6C0882

Level: (low/med) MED

Date Received: 06/20/02

% Moisture: not dec. 9

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume:

5 (mL)

Soil Aliquot Volume:

100.0(uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

Q.

	COM COMP (US/1)	or ug/ng/	00/100	×
75-71-8	Dichlorodifluoromethan	e	270	IJ
74-87-3	Chloromethane		270	
75-01-4	Vinyl Chloride		270	-
74-83-9	Bromomethane	 [270	
75-00-3	Chloroethane		270	
	Trichlorofluoromethane		270	
75-35-4	1,1-Dichloroethene	·	460	
67-64-1	Acetone		270	
74-88-4	Iodomethane		270	
	Carbon Disulfide		270	
	Methylene Chloride		270	
156-60-5	trans-1,2-Dichloroethe	ne	270	
	Methyl tert-butyl ethe		270	
75-34-3	1,1-Dichloroethane	"	270	
108-05-4	Vinyl acetate	 ·	270	
78-93-3	2-Butanone		270	
156-59-2	cis-1,2-Dichloroethene		160	
590-20-7	2,2-Dichloropropane	·	270	
74-97-5	Bromochloromethane		270	
67-66-3	Chloroform	 1	270 270	
71-55-6	1,1,1-Trichloroethane	i	4100	
£63~E0~6~~~	1,1-Dichloropropene		270	
56-23-6-0-6-	Carbon Tetrachloride	 [
107_06_9	1,2-Dichloroethane	 -	270	_
TU/-UO-Z	T'7-DICHTOLOGCHQUE		270	
71-43-2	Benzene	 .	270	

EPA SAMPLE NO.

GP-246.5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-16A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V6C0882

Level: (low/med) MED

Date Received: 06/20/02

% Moisture: not dec. 9

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume:

5 (元)

Soil Aliquot Volume:

100.0 (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

O .

1	
142-28-91,3-Dichloropropane	270 U
127-18-4Tetrachloroethene	94 J
591-78-62-Hexanone	270 0
124-48-1Dibromochloromethane	270 U
106-93-41,2-Dibromoethane	270 U
108-90-7Chlorobenzene	270 11
630-20-61,1,1,2-Tetrachloroethane	270 U
100-41-4Ethylbenzene	270 U
1330-20-7Xylene (Total)	270 U
100-42-5Styrene	270 U
75-25-2Bromoform	270 U
98-82-8Isopropylbenzene	270 U
79-34-51,1,2,2-Tetrachloroethane	270 U
108-86-1Bromobenzene	270 U
96-18-41,2,3-Trichloropropane	270 U
103-65-1n-Propylbenzene	270 U
95-49-82-Chlorotoluene	270 U
108-67-81,3,5-Trimethylbenzene	270 U
106-43-44-Chlorotoluene	270 U
98-06-6tert-Butylbenzene	270 U
95-63-61,2,4-Trimethylbenzene	270 U
135-98-8sec-Butylbenzene	
20-27-6	270 Ŭ
99-87-64-Isopropyltoluene 541-73-11,3-Dichlorobenzene	270 U
106 46 7 1 4 Dight and and and and and and and and and and	270 U
106-46-71,4-Dichlorobenzene	270 U

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

GP-246.5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-16A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID:

V6C0882

Level: (low/med)

de Med

Date Received: 06/20/02

% Moisture: not dec. 9

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume:

5 (吨上)

Soil Aliquot Volume:

100 (uL)

Number TICs found: 9

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3. 4. 5. 6. 475-03-6 7. 8. 9. 10. 11. 12. 13.	UNKNOWN STRAIGHT-CHAINED ALKANE UNKNOWN UNKNOWN BRANCHED ALKANE NAPHTHALENE, 1,2,3,4-TETRAHY UNKNOWN UNKNOWN UNKNOWN	2.68 12.74 13.91 16.13 17.20	990 320 1300 440 1800 1800 1300	J J J J J J J J J J
15. 16. 17. 18. 19. 20. 21. 22. 23. 24.				

EPA SAMPLE NO.

GP-266.5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

MED

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-17A

Sample wt/vol:

5.0 (q/mL) G

Lab File ID: V6C0883

Level: (low/med)

Date Received: 06/20/02

% Moisture: not dec. 7

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume:

5 (mL)

Soil Aliquot Volume:

100.0 (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

	· · · · · · · · · · · · · · · · · · ·	,	
7 5-71-8	Dichlorodifluoromethane	270	של
	Chloromethane	270	
	Vinyl Chloride	270	-
	Bromomethane	270	
	Chloroethane	270	_
	Trichlorofluoromethane	270	_
	1,1-Dichloroethene	450	
	Acetone	270	
	Iodomethane	270	
	Carbon Disulfide	270	lυ
	Methylene Chloride	270	
	trans-1,2-Dichloroethene	270	
	Methyl tert-butyl ether	270	
	1,1-Dichloroethane	270	
	Vinyl acetate	270	
	2-Butanone	270	
	cis-1,2-Dichloroethene	510	
	2,2-Dichloropropane	270	
	Bromochloromethane	270	
	Chloroform	270	
	1,1,1-Trichloroethane	4200	
	1,1-Dichloropropene	270	
	Carbon Tetrachloride	270	
	1,2-Dichloroethane	270	
	Benzene	270	
70 01 6		E00	

EPA SAMPLE NO.

GP-266.5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

MED

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-17A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V6C0883

Level: (low/med) Date Received: 06/20/02

% Moisture: not dec. 7

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume:

5 (mL)

Soil Aliquot Volume:

100.0 (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

		~
142-28-91,3-Dichloropropane	270	Ū
127-18-4Tetrachloroethene	130	
591-78-62-Hexanone	270	
124-48-1Dibromochloromethane	270	
106-93-41,2-Dibromoethane	270	
108-90-7Chlorobenzene	270	
630-20-61,1,1,2-Tetrachloroethane	270	
100-41-4Ethylbenzene	270	
1330-20-7Xylene (Total)	180	
100-42-5Styrene	270	_
75-25-2Bromoform	270	
98-82-8Isopropylbenzene	270	
79-34-51,1,2,2-Tetrachloroethane	270	-
108-86-1Bromobenzene	270	-
96-18-41,2,3-Trichloropropane	270	
103-65-1n-Propylbenzene	270	
95-49-82-Chlorotoluene		
	270	
108-67-81,3,5-Trimethylbenzene	270	_
106-43-44-Chlorotoluene	270	1
98-06-6tert-Butylbenzene	270	4
95-63-61,2,4-Trimethylbenzene	84	
135-98-8sec-Butylbenzene	270	
99-87-64-Isopropyltoluene	270	_
541-73-11,3-Dichlorobenzene	270	U
106-46-71,4-Dichlorobenzene	270	ı ~
10/1_21_0nDistrellhongono	רבים ל־	I T T

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

GP-266.5

Lab Name: MITKEM CORPORATION.

Contract:

Lab Code: MITKEM

M Case No.:

MED

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-17A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V6C0883

Level: (low/med)

Date Received: 06/20/02

% Moisture: not dec. 7

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume:

5 (mL)

Soil Aliquot Volume:

100 (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

Number TICs found: 6

-				
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	2.73	1200	
2.	UNKNOWN	13.90	3400	
3.	UNKNOWN	16.13	520	
4.	UNKNOWN	16.55	2400	
5.	UNKNOWN	17.99	8200	
6.	UNKNOWN	18.31	1600	
7 .	Chitaconti		. 2000	
8.	-			-
9.	· · · · · · · · · · · · · · · · · · ·			
LO.	·			
1				
Ĺ2	·\	— ———— <u>:</u>		<u> </u>
13	-	_ 		
14.	· · · · · · · · · · · · · · · · · · ·			
15.	-			l
L6	-			
	1			
18.	-			
19.	-			
20.			 	
21.	· · · · · · · · · · · · · · · · · · ·	- 1	 	ļ
22.	-			<u> </u>
22.				

EPA SAMPLE NO.

GP-286.5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-19A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V6C0884

Level: (low/med) MED

Date Received: 06/20/02

% Moisture: not dec. 11

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 6.0

Soil Extract Volume:

5 (mL)

Soil Aliquot Volume:

100.0 (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

75-71-8Dichlorodifluoromethane	1700	U
		_
		_
	ll .	4
67-64-1Acet one		
		_
1634-04-4Methyl tert-hityl ether		
75-34-31 1-Dichlomethane		
108-05-4Vinvl acetate		_
590-20-7		
74-97-5Bromochloromethane		-
		_
	75-71-8	74-87-3

EPA SAMPLE NO.

GP-286.5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-19A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V6C0884

(low/med) Level: MED Date Received: 06/20/02

% Moisture: not dec. 11

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm) Dilution Factor: 6.0

Soil Extract Volume:

5 (吨上)

Soil Aliquot Volume:

100.0 (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

	(49/1 01	.g/ 1.g/ 00/ 1.0	×
142-28-9	1,3-Dichloropropane	1700	 U
127-18-4	Tetrachloroethene	_	
591-78-6	2-Hexanone	_ 1700	-
124-48-1	Dibromochloromethane	_ 1700	
106-93-4	1,2-Dibromoethane	— 1700 :	
108-90-7	Chlorobenzene	1700	
	1,1,1,2-Tetrachloroethane	_ 1700	
100-41-4	Ethylbenzene	_ 1700 :	
1330-20-7	Xylene (Total)	1700	
100-42-5	Styrene	1700	_
75-25-2	Bromoform	1700	
98-82-8	Isopropylbenzene	1700	
79-34-5	1,1,2,2-Tetrachloroethane	— 1700 :	
108-86-1	Bromobenzene	_ 1700	
96-18-4	1,2,3-Trichloropropane	T 1700 1	
103-65-1	n-Propylbenzene	1700	
95-49-8	2-Chlorotoluene	1700	
	1,3,5-Trimethylbenzene	1700	
106-43-4	4-Chlorotoluene	_ 1700	_
	tert-Butylbenzene	1700	
95-63-6	1,2,4-Trimethylbenzene	1700	
135-98-8	sec-Butylbenzene	1700	
99-87-6	4-Isopropyltoluene	_	
541-73-1	1,3-Dichlorobenzene	_	
106-46-7	1,4-Dichlorobenzene	1700	
104-51-8	n-Butvlbenzene	_ ₁₇₀₀	-

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

GP-286.5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-19A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V6C0884

Level: (low/med) MED

Date Received: 06/20/02

% Moisture: not dec. 11

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 6.0

Soil Extract Volume:

5 (mL)

Soil Aliquot Volume:

100 (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

Number TICs found: 0

CAS NUMBER	COMPOUND NAME	· RT	EST. CONC.	Q
_		= =======		====
2				
3.				
4.	·			-
5				
6				
7		_		
8		_		
0				
		-		
2:	· · · · · · · · · · · · · · · · · · ·	_		
3.				
4.		_		
.5		<u>-</u>		
.6	4.			
7				
.8				
.9				
21	<u> </u>			
22.				
3.				

EPA SAMPLE NO.

GP-36.5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-18A

Sample wt/vol:

5.2 (g/mL) G

Lab File ID: V5D8773

Level:

(low/med) LOW

Date Received: 06/20/02

% Moisture: not dec. 13

Date Analyzed: 06/27/02

GC Column: DB-624

CAS NO.

ID: 0.25 (mm)

COMPOUND

Dilution Factor: 1.0

Soil Extract Volume: (mL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

			Q
75-71-8	Dichlorodifluoromethane	6	ប
74-87-3	Chloromethane	- 1	Ŭ
75-01-4	Vinyl Chloride	- 1	Ŭ
74-83-9	Bromomethane	~ 1	IJ
75-00-3	Chloroethane	- 1	IJ
75-69-4	Trichlorofluoromethane	- I	נו
75-35-4	1,1-Dichloroethene	~ 1	U
67-64-1	Acetone	- (U
74-88-4	Iodomethane	6	U
	Carbon Disulfide	- 1	_
	Methylene Chloride	- 1	ប
			JB
	trans-1,2-Dichloroethene	- 1	U
1634-04-4	Methyl tert-butyl ether	12	- <u></u> -
	1,1-Dichloroethane		J
108-05-4	Vinyl acetate	- 1	U
78-93-3	2-Butanone	- 1	U
156-59-2	cis-1,2-Dichloroethene	13	
590-20-7	2,2-Dichloropropane	6	U
74-97-5	Bromochloromethane	6	U
	Chloroform	6	U
71-55-6	1,1,1-Trichloroethane	51	J
563-58-6	1,1-Dichloropropene	61	Ū
56-23-5	Carbon Tetrachloride	ěl.	Ū
107-06-2	1,2-Dichloroethane	ěl.	Ü
71-43-2	Benzene	~	U
70 01 6	mui ahl amathani	اید	•

EPA SAMPLE NO.

GP-36.5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-18A

Sample wt/vol:

5.2 (g/mL) G

Lab File ID: V5D8773

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec. 13

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (mL)

Soil Aliquot Volume:

(uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

142-28-91,3-Dichloropropane	6 U
127-18-4Tetrachloroethene	6 U
591-78-62-Hexanone	မေါ်ပို ၂
124-48-1Dibromochloromethane	
106-93-41,2-Dibromoethane	6 U
108-90-7	6 0
630-20-61,1,1,2-Tetrachloroethane	6 0
100-41-4Ethylbenzene	7.1
1330-20-7Xylene (Total)	6 U 5 J
100-42-5Styrene	6 U
75-25-2Bromoform	6 11
98-82-8Isopropylbenzene	~1~
79-34-51,1,2,2-Tetrachloroethane	6 U
108-86-1Bromobenzene	6 U
96-18-41,2,3-Trichloropropane	6 U
103-65-1n-Propylbenzene	6 U
95-49-82-Chlorotoluene	6 U
100 67 0 1 2 5 main 12 1	6 U
108-67-81,3,5-Trimethylbenzene	6 U
106-43-44-Chlorotoluene	6 U
98-06-6tert-Butylbenzene	6 U
95-63-61,2,4-Trimethylbenzene	2 J
135-98-8sec-Butylbenzene	6 U
99-87-64-Isopropyltoluene	6 U
541-73-11,3-Dichlorobenzene	6 U
106-46-71,4-Dichlorobenzene	6 U
104-51-8n-Butylbenzene	e i i i

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CD	-36	_
UE	~30	

Lab	Name:	MITKEM	CORPORATION
Lab	Name:	MITKEM	CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: A0951-18A

Sample wt/vol: 5.2 (g/mL) G

Lab File ID: V5D8773

Level: (low/med) LOW

Date Received: 06/20/02

% Moisture: not dec. 13

Date Analyzed: 06/27/02

GC Column: DB-624 ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (mL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

Number TICs found: 0

(ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1:	· · · · · · · · · · · · · · · · · · ·			<u> </u>
3				
5				
7				
9. 10.				
12.				
14				
16				
18.				
20				
22				
24.				

EPA SAMPLE NO.

Lab Name: MITKEM COR	RPORATION	Contract:	V5ZLCS
Lab Code: MITKEM	Case No.:	SAS No.: SDG	No.: A0951
Matrix: (soil/water)	SOIL	Lab Sample ID	: V5L0627A
Sample wt/vol:	5.0 (g/mL) G	Lab File ID:	V5D8764
Level: (low/med)	TOM	Date Received	·
% Moisture: not dec.	· <u> </u>	Date Analyzed	06/27/02
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume:	(mL)	Soil Aliquot V	Volume:(ul
CAS NO.	COMPOUND	CONCENTRATION UNITS:	
E .			

75-71-8Dichlorodifluoromethane	46
74-87-3Chloromethane	47
75-01-4Vinyl Chloride	47
74-83-9Bromomethane	52
75-00-3Chloroethane	- 48
75-69-4Trichlorofluoromethane	- 49
75-35-41,1-Dichloroethene	- 44
67-64-1Acetone	41
74-88-4Iodomethane	- -
75-15-0Carbon Disulfide	45
75-09-2Methylene Chloride	43 B
156-60-5trans-1,2-Dichloroethene	45
1634-04-4Methyl tert-butyl ether	40 -
75-34-31,1-Dichloroethane	- · · · · · · · · · · · · · · · · · · ·
108-05-4Vinyl acetate	45
78-93-32-Butanone	24
	35
156-59-2cis-1,2-Dichloroethene	45
590-20-72,2-Dichloropropane	38
74-97-5Bromochloromethane	44
67-66-3Chloroform	46
71-55-61,1,1-Trichloroethane	47
563-58-61,1-Dichloropropene	48
56-23-5Carbon Tetrachloride	49
107-06-21,2-Dichloroethane	42
71-43-2Benzene	46
79-01-6Trichloroethene	48
78-87-5	-

EPA SAMPLE NO.

Lab Name: MITKEM C	ORPORATION	Contract:	V5ZLCS
Lab Code: MITKEM	Case No.:	SAS No.:	SDG No.: A0951

Matrix: (soil/water) SOIL Lab Sample ID: V5L0627A

Sample wt/vol: 5.0 **(**g/m**L**) G Lab File ID: V5D8764

Level: (low/med) LOW Date Received:

% Moisture: not dec. Date Analyzed: 06/27/02

GC Column: DB-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (mL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

142-28-91,3-Dichloropropane	43
127-18-4Tetrachloroethene	46
591-78-62-Hexanone	- 35
124-48-1Dibromochloromethane	-
106-93-41,2-Dibromoethane	45
108-90-7Chlorobenzene	44
630 20 C 1 1 1 2 Mature Tiles	46
630-20-61,1,1,2-Tetrachloroethane	47
100-41-4Ethylbenzene	47
1330-20-7Xylene (Total)	140
100-42-5Styrene	46
75-25-2Bromoform	44
98-82-8Isopropylbenzene	47
79-34-51,1,2,2-Tetrachloroethane	43
108-86-1Bromobenzene	47
96-18-41,2,3-Trichloropropane	42
103-65-1n-Propylbenzene	47
95-49-82-Chlorotoluene	48
108-67-81,3,5-Trimethylbenzene	46
106-43-44-Chlorotoluene	46
98-06-6tert-Butylbenzene	47
95-63-61,2,4-Trimethylbenzene	
135-98-8sec-Butylbenzene	46
20_07.6	48
99-87-64-Isopropyltoluene-	46
541-73-11,3-Dichlorobenzene	46
106-46-71,4-Dichlorobenzene	45
104-51-8n-Butylbenzene	43

EPA SAMPLE NO.

V5ZLCSD	
---------	--

Lab Name: MITKEM CORPORATI

Contract:

Lab Code: MITKEM

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: V5L0627B

Sample wt/vol:

5.0 (g/mL) G

Case No.:

Lab File ID: V5D8765

Level:

(low/med) LOW Date Received:

% Moisture: not dec.

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (mL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

75-71-8Dichlorodifluoromethane	49
74-87-3Chloromethane	48
75-01-4Vinyl Chloride	49
74-83-9Bromomethane	54
75-00-3Chloroethane	48
75-69-4Trichlorofluoromethane	49
75-35-41,1-Dichloroethene	48
67-64-1Acetone	42
74-88-4Iodomethane	46
75-15-0Carbon Disulfide	46
75-09-2Methylene Chloride	45 B
156-60-5trans-1,2-Dichloroethene	49 49
1634-04-4Methyl tert-butyl ether	43
75 24 2 1 1 Dieblesset	
75-34-31,1-Dichloroethane	49
108-05-4Vinyl acetate	23
78-93-32-Butanone	38
156-59-2cis-1,2-Dichloroethene	48
590-20-72,2-Dichloropropane	39
74-97-5Bromochloromethane	47
67-66-3Chloroform	48
71-55-61,1,1-Trichloroethane	49
563-58-61,1-Dichloropropene	50
56-23-5Carbon Tetrachloride	52
107-06-21,2-Dichloroethane	44
71-43-2Benzene	49
79-01-6Trichloroethene	50

EPA SAMPLE NO.

Lab Name: MITKEM COR	RPORATION	Contract:	V5ZLCSD
Lab Code: MITKEM	Case No.:	SAS No.: SDG	No.: A0951
Matrix: (soil/water)	SOIL	Lab Sample ID:	V5L0627B
Sample wt/vol:	5.0 (g/mL) G	Lab File ID:	V5D8765
Level: (low/med)	LOW	Date Received:	
% Moisture: not dec.		Date Analyzed:	06/27/02
GC Column: DB-624	ID: 0.25 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume:	(mL)	Soil Aliquot V	Volume:(uI
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/K	

<u> </u>	· · · · · · · · · · · · · · · · · · ·
142-28-91,3-Dichloropropane	46
127-18-4Tetrachloroethene	50
591-78-62-Hexanone	40
124-48-1Dibromochloromethane	50
106-93-41,2-Dibromoethane	47
108-90-7Chlorobenzene	_ · II
	49
630-20-61,1,1,2-Tetrachloroethane	51
100-41-4Ethylbenzene	50
1330-20-7Xylene (Total)	150
100-42-5Styrene	49
75-25-2Bromoform	49
98-82-8Isopropylbenzene	50
79-34-51,1,2,2-Tetrachloroethane	47
108-86-1Bromobenzene	52
96-18-41,2,3-Trichloropropane	46
103-65-1n-Propylbenzene	51
95-49-82-Chlorotoluene	52
108-67-81,3,5-Trimethylbenzene	50
106-43-44-Chlorotoluene	51
98-06-6tert-Butylbenzene	51
95-63-61,2,4-Trimethylbenzene	50
135-98-8sec-Butylbenzene	52
99-87-64-Isopropyltoluene	l ————————————————————————————————————
541-73-11,3-Dichlorobenzene	50
106 46 7 1 4 Dightenbergere	50
106-46-71,4-Dichlorobenzene	50
104-51-8n-Butv1benzene	1 461 1

EPA SAMPLE NO.

V60LCS

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: V6L0627B

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V6C0875

Level:

(low/med) MED

Date Received:

% Moisture: not dec.

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume:

5 (mL)

Soil Aliquot Volume:

100.0 (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

75-71-8Dichlorodifluoromethane	2400
74-87-3Chloromethane	2900
75-01-4Vinyl Chloride	2700
74-83-9Bromomethane	2700
75-00-3Chloroethane	2500
75-69-4Trichlorofluoromethane	I
75-35-41,1-Dichloroethene	2700
75-35-41, 1-DICHLOTOECHENE	2800
67-64-1Acetone	2500
74-88-4Iodomethane	2300
75-15-0Carbon Disulfide	2800
75-09-2Methylene Chloride	2500
156-60-5trans-1,2-Dichloroethene	2300
1634-04-4Methyl tert-butyl ether	2500
75-34-31,1-Dichloroethane	2400
108-05-4Vinyl acetate	2500
78-93-32-Butanone	2400
156-59-2cis-1,2-Dichloroethene	2400
590-20-72,2-Dichloropropane	2400
74-97-5Bromochloromethane	2400
67-66-3Chloroform	2400
71-55-61,1,1-Trichloroethane	2300
563-58-61,1-Dichloropropene	2400
56-23-5Carbon Tetrachloride	I
107-06-21,2-Dichloroethane	2300
71 42 2 Parana	2500
71-43-2Benzene	2400
79-01-6Trichlomethene	24001

EPA SAMPLE NO.

V60LCS

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: V6L0627B

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V6C0875

Level:

(low/med) MED Date Received:

% Moisture: not dec.

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm) · Dilution Factor: 1.0

Soil Extract Volume:

5 (吡上)

Soil Aliquot Volume:

100.0(uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

1 	
142-28-91,3-Dichloropropane	2400
127-18-4Tetrachloroethene	2400
591-78-62-Hexanone	11
124-48-1Dibromochloromethane	2600
	2300
106-93-41,2-Dibromoethane	2300
108-90-7Chlorobenzene	2400
630-20-61,1,1,2-Tetrachloroethane	2400
100-41-4Ethylbenzene	2400
1330-20-7Xylene (Total)	7400
100-42-5Styrene	2500
75-25-2Bromoform .	2200
98-82-8Isopropylbenzene	2600
79-34-51,1,2,2-Tetrachloroethane	2400
108-86-1Bromobenzene	2400
96-18-41,2,3-Trichloropropane	2500
103-65-1n-Propylbenzene	2400
95-49-82-Chlorotoluene	2400
108-67-81,3,5-Trimethylbenzene	2400
106-43-44-Chlorotoluene	2300
98-06-6tert-Butylbenzene	2500
95-63-61,2,4-Trimethylbenzene	2400
135-98-8sec-Butylbenzene	2500
99-87-64-Isopropyltoluene	1
541-73-11,3-Dichlorobenzene	2500
106 46 7 1 4 Dight and and and	2400
106-46-71,4-Dichlorobenzene	2400
104-51-8n-Butv1henzene	26001 1

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No .:

SAS No.:

SDG No.: A0951

	EPA	SMC1	SMC2	SMC3	OTHER	TOT
	SAMPLE NO.	#	(DCE)#	(TOL)#	(BFB)#	OUT
	 ============	=====	======	======		===
01	VBLK6S	90	94	100	95	0
02	V6SLCS	92	93	100	96	
03	VBLK6U	94				Ŏ
04	V6ULCS		97	100	94	0
		92	95	100	101	0
05	Veulcsd	88	91	93	93	0
06						
07					·	
98						
09						
10						
11						
12						
13					·	1
14						1
1.5			-			
16			` ,			<u></u>
17		 -				
18						
19						
20		[
21						I
22						
22						
23 24 25						
24		l				
25			1			1
26	-					
27						
28						
29						
30						—I
,				1		1

SMC1 = Dibromofluoromethane (78-117) SMC2 (DCE) = 1,2-Dichloroethane-d4 (62-124) SMC3 (TOL) = Toluene-d8 (81-116)

2B SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Level: (low/med) LOW

	[
	EPA	SMC1	SMC2	SMC3	OTHER	TOT
	SAMPLE NO.] #	(DCE)#	(TOL)#	(BFB)#	OUT
	========	=====	=====	=====	****	===
01	VBLK5Z	88	84	90	87	lol
02	V5ZLCS	90	88	93	88	ol
03	V5ZLCSD	95	92	97	93	lol
04	GP-36.5	89	87	92	94	o
05	GP-136	89	86	92	93	Ō
06	GP-207.5	89	83	94	94	Ŏ
07	GP-213	87	83	96	146	o l
80						
09		li				
10						
11			·			
12		[
13	· - · · · · · · · · · · · · · · · · · ·					
14						
15		-				
16						
17	***					
18						
19						
20						
21				· .		
22						
23						— _i
24						—i
25						
26						
27	·					
28						
29						
∙30						

SMC1 = Dibromofluoromethane (52-130) SMC2 (DCE) = 1,2-Dichloroethane-d4 (50-126) SMC3 (TOL) = Toluene-d8 (25-156) OTHER (BFB) = Bromofluorobenzene (49-146)

2B SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

CEM Case No.:

SAS No.:

SDG No.: A0951

Level: (low/med) MED

					-	
	EPA	SMC1	SMC2	SMC3	OTHER T	TOT
	SAMPLE NO.	#.	(DCE)#	(TOL)#	(BFB)#	OUT
	==========	======	=====	======	=====	===]
01	VBLK60	97	97	102	- 93	0
02		92	95	96	103	Ö
03	GP-246.5	94	97	100	94	ŏ
04	GP-266.5	90	94	99	95	ŏ
05	GP-286.5	92	97		96	ő
06	GP-200.5	92	9/	100	96	ויי
07	· ·					
08						!
09						
10				:		I
11						
12						
13						
14						
15	·					
16			·			
17			·			
18	-					1
19						
20						
21						
22						
23						
24						
25						
26	<u></u>					
27						[
28						
29						
30						

SMC1 = Dibromofluoromethane (52-130) SMC2 (DCE) = 1,2-Dichloroethane-d4 (50-126) SMC3 (TOL) = Toluene-d8 (25-156) OTHER (BFB) = Bromofluorobenzene (49-146)

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

	SPIKE	SAMPLE	LCS	LCS	QC.
1	ADDED	AMOUNT	AMOUNT	* *	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC #	
	(49/11/	(49/11/	(49/15/	1000 m	======
Dichlorodifluoromethane	50		40	80	48-135
Chloromethane	50		$\frac{1}{47}$	94	60-118
Vinyl Chloride	50		47	94	65-113
Bromomethane	50		28		73-122
Chloroethane	50		50	100	72-118
Trichlorofluoromethane	50		46	92	68-129
1,1-Dichloroethene	50		50	100	67-121
Acetone	50		26	52	38-161
Iodomethane	50		50	100	72-130
Carbon Disulfide	. 50		52	104	53-137
Methylene Chloride	50		47	94	59-132
trans-1,2-Dichloroethen	50		49	98	71-124
Methyl tert-butyl ether	50		50	100	75-123
1,1-Dichloroethane	50		44	8 8	83-116
Vinyl acetate	50		44	88	44-160
2-Butanone	50		36	7 2	64-139
cis-1,2-Dichloroethene	50		51	102	83-120
2,2-Dichloropropane	50		· 48	96	70-129
Bromochloromethane	50		50	100	85-124
Chloroform	50		4 6	92	89-118
1,1,1-Trichloroethane	50		46	92	81-122
1,1-Dichloropropene	50		52	104	76-122
Carbon Tetrachloride	50		44	88	79-125
1,2-Dichloroethane	50		44	88	83-123
Benzene	50		46	92	81-120
Trichloroethene	50		55	110	77-121
1,2-Dichloropropane	50		44	88	81-116
Dibromomethane	50		46	. 92	86-124
# Californ to be send to file		DDD seels	a with an agt.	l	I

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

M Case No.:

SAS No.:

SDG No.: A0951

<u> </u>	CINTIAT	011/07/1			
	SPIKE	SAMPLE	LCS	LCS	QC.
COMPOUND	ADDED	AMOUNT	AMOUNT	- 8	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
	=======================================	==========	=======================================	=====	======
Bromodichloromethane	50	•	46	92	90-114
cis-1,3-Dichloropropene			48	96	78-119
4-Methyl-2-pentanone	50		4 5	90	57-138
Toluene	50		50	100	81-121
trans-1,3-Dichloroprope	50		49	98	85-118
1,1,2-Trichloroethane	50		47	94	44-159
1,3-Dichloropropane	50		47	94	79-125
Tetrachloroethene	50		53	106	73-121
2-Hexanone	50		41	82	53-145
Dibromochloromethane	50		45	90	80-124
1,2-Dibromoethane	50		48	96	80-124
Chlorobenzene	50		48	96	82-118
1,1,1,2-Tetrachloroetha	50		48	96	84-121
Ethylbenzene	50		51	102	80-122
Xylene (Total)	150		150	100	81-121
Styrene	50		51	102	77-128
Bromoform	50		. 42	84	77-130
Isopropylbenzene	50		53	106	58-148
1,1,2,2-Tetrachloroetha	50		45	90	76-125
Bromobenzene	50]	52	104	76-124
1,2,3-Trichloropropane	50		42	84	57-140
n-Propylbenzene	50		52	104	72-119
2-Chlorotoluene	50		50	100	75-120
1,3,5-Trimethylbenzene	50		50	100	76-116
4-Chlorotoluene	50		48	96	78-116
tert-Butylbenzene	50		51	102	71-115
1,2,4-Trimethylbenzene	50		49	98	77-117
sec-Butylbenzene	50		51	102	67-117
-					
Column to be used to fla			· ·		

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

FORM 3
WATER VOLATILE LAB CONTROL SAMPLE

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix Spike - Sample No.: V6SLCS

COMPOUND	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	AMOUNT	AMOUNT	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
4-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropro 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene	50 50 50 50 50 50 50 50 50		51 48 48 50 48 49 53 45 56 51	102 96 96 100 96 98 106 90 112 102	68-118 80-116 80-114 58-121 81-116 71-126 67-114 50-111 58-133 64-118

RPD: 0 out of 0 outside limits

Spike Recovery: 1.out of 66 outside limits

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	TRUOMA	'T'AUOMA	용	LIMITS
COMPOUND	()	(ug/L)	()	REC #	REC.
=======================================	=======	=======================================	=======================================	======	=====
Dichlorodifluoromethane	50		41	82	48-135
Chloromethane	50		38	76	60-118
Vinyl Chloride	50		41	82	65~113
Bromomethane	50		38	76	73-122
Chloroethane	50		34		72-118
Trichlorofluoromethane	50		50	100	68-129
1,1-Dichloroethene	50		49	98	67-121
Acetone	50		34	68	38-161
Iodomethane	50		46	92	72-130
Carbon Disulfide	50		51	102	53-137
Methylene Chloride	50		45	90	59-132
trans-1,2-Dichloroethen	50		47	94	71-124
Methyl tert-butyl ether	50		49	98	75-123
1,1-Dichloroethane	50	'	46	92	83-116
Vinyl acetate	50	•	45	90	44-160
2-Butanone	50		44	88	64-139
cis-1,2-Dichloroethene	50		50 ·	100	83-120
2,2-Dichloropropane	50		50	100	70-129
Bromochloromethane	50		48	96	85-124
Chloroform	50		46	92	89-118
1,1,1-Trichloroethane	50		45	90	81-122
1,1-Dichloropropene	50		51	102	76-122
Carbon Tetrachloride	50	,	45	90	79-125
1,2-Dichloroethane	50		44	88	83-123
Benzene	50		47	94	81-120
Trichloroethene	50		52	104	77-121
1,2-Dichloropropane	50		46	92	81-116
Dibromomethane	50		46	92	86-124
4 (10)		l <u></u>	·	li	l

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

1	SPIKE	SAMPLE	LCS	T 66	
	ADDED	AMOUNT	AMOUNT	LCS %	QC. LIMITS
COMPOUND	רויפתונא		AMOON1	_	
COMPOUND	()	(ug/L)	U	REC #	REC.
Bromodichloromethane	50	_=========	47 _.	94	90-114
cis-1,3-Dichloropropene	50 50		50 50	100	78-119
4-Methyl-2-pentanone	50 50				
Toluene	50 50		47	94	57-138
•			50 50	100	81-121
trans-1,3-Dichloroprope	50		50	100	85-118
1,1,2-Trichloroethane	50		47	94	44-159
1,3-Dichloropropane	50		49	98	79-125
Tetrachloroethene	50		50	100	73-121
2-Hexanone	50	,	50	100	53-145
Dibromochloromethane	50		46	- 92	80-124
1,2-Dibromoethane	50		50	100	80-124
Chlorobenzene	50		48	96	82-118
1,1,1,2-Tetrachloroetha	50		48	96	84-121
Ethylbenzene	50		50	100	80-122
Xylene (Total)	150		160	107	81-121
Styrene	50		52	104	77-128
Bromoform	50	•	42	84	77-130
Isopropylbenzene	50		54	108	58-148
1,1,2,2-Tetrachloroetha	50		47	94	76-125
Bromobenzene	50		50	100	76-124
1,2,3-Trichloropropane	50		42	84	57-140
n-Propylbenzene	50		52	104	72-119
2-Chlorotoluene	50		50	100	75-120
1,3,5-Trimethylbenzene	50	;	51	102	76-116
4-Chlorotoluene	50		49	98	78-116
tert-Butylbenzene	50		52	104	71-115
1,2,4-Trimethylbenzene	50		50	100	77-117
sec-Butylbenzene	50		52	104	67-117
Column to be read to file	·		·	I — , — , — ,	·——

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

FORM 3
WATER VOLATILE LAB CONTROL SAMPLE

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

COMPOUND	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	AMOUNT	AMOUNT	%	LIMITS
	()	(ug/L)	()	REC #	REC.
4-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropro 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene	50 50 50 50 50 50 50 50	·	52 49 48 51 49 49 52 47 55	104 98 96 102 98 98 104 94 110	68-118 80-116 80-114 58-121 81-116 71-126 67-114 50-111 58-133 64-118

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

	· ··				.	
	SPIKE	LCSD	LCSD			
COMPOUND	ADDED	AMOUNT	8	ક		IMITS
COMPOUND	()	()	REC #	RPD#	RPD	REC.
Dichlorodifluoromethane	50	41	======	======	======	======
Chloromethane		41	82	0	• 40	48-135
Vinyl Chloride	50	40	80	5	40	60-118
Bromomethane	50	42	84	2	40	65-113
Chloroethane	50	43	86	12	40	73-122
Trichlorofluoromethane	50	36	72	6	40	72-118
1,1-Dichloroethene	50	48	96	4	40	68-129
Acetone	50	49	98	0	40	67-121
Iodomethane	50	39	7 8	14	40	38-161
Carbon Disulfide	50	47	94	2	40	72-130
	50	51	102	0	4 0	53-137
Methylene Chloride	50	44	88	2	40	59-132
trans-1,2-Dichloroethen	50	47	94	0	. 40	71-124
Methyl tert-butyl ether	50	. 50	100	2	40	75-123
1,1-Dichloroethane	50	45	90	2 .	40	83-116
Vinyl acetate	50	41	82	9	40	44-160
2-Butanone	50	46	92	4	4 0	64-139
cis-1,2-Dichloroethene	50	49	98	2	40	83-120
2,2-Dichloropropane	50	48	96	4	40	70-129
Bromochloromethane	50	48	96	0	40	85-124
Chloroform	50	46	92	0	40	89-118
1,1,1-Trichloroethane	50	44	88	2	40	81-122
1,1-Dichloropropene	50	49	98	4	40	76-122
Carbon Tetrachloride	50	44	88	2	40	79-125
1,2-Dichloroethane	50	44	88	0	40	83-123
Benzene	50	46	92	2 2	40	81-120
Trichloroethene	50	51	102	2	40	77-121
1,2-Dichloropropane	50	45	90	2	40	81-116
Dibromomethane	50	46	92	0	40	86-124

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

	SPIKE	LCSD	LCSD			
	ADDED	AMOUNT	*	ક		IMITS
COMPOUND	()	()	REC #	RPD#	RPD	REC.
	=========		======	=====	=====	=====
Bromodichloromethane	50	46	92	2	40	90-114
cis-1,3-Dichloropropene	50	49	98	2 2	40	78-119
4-Methyl-2-pentanone	50	48	96	2	40	57-138
Toluene	50	49	98	2	40	81-121
trans-1,3-Dichloroprope	50	. 50	100	0	40	85-118
1,1,2-Trichloroethane	50	47	94	0	40	44-159
1,3-Dichloropropane	50	48	96	2	40	79-125
Tetrachloroethene	50	51	102	2	40	73-121
2-Hexanone	50	51	102	2	40	53-145
Dibromochloromethane	50	4 5	90	2	40	80-124
1,2-Dibromoethane	50	48	96	4	40	80-124
Chlorobenzene	50	47	94	2	40	82~118
1,1,1,2-Tetrachloroetha	50	48	96	Ö	40	84-121
Ethylbenzene	50	50	100	0	40	80-122
Xylene (Total)	150	150	100	7	40	81-121
Styrene	50	50	100	4	40	77-128
Bromoform	50	40	80	5	40	77-130
Isopropylbenzene	50	52	104	4	40	58-148
1,1,2,2-Tetrachloroetha	50	46	92	2	40	76-125
Bromobenzene	50	51	102	2	40	76-124
1,2,3-Trichloropropane	50	43	86	2	40	57-140
n-Propylbenzene	50	52	104	Ô	40	72-119
2-Chlorotoluene	50	49	98	2	40	75-120
1,3,5-Trimethylbenzene	50	50	100	2	40	76-116
4-Chlorotoluene	50	48	96	2	40	78-116
tert-Butylbenzene	50	51	102	2	40.	71-115
1,2,4-Trimethylbenzene	50	49	98	2	40	77-117
sec-Butylbenzene	50	51	102	2	40	67-117
<u> </u>						
	-		· ———		.——	· — —

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

KEM Case No.:

SAS No.:

SDG No.: A0951

Matrix Spike - Sample No.: V6ULCS

COMPOUND	SPIKE ADDED ()	LCSD AMOUNT ()	LCSD % REC #	% RPD #	QC L:	IMITS REC.
	=======================================	=======================================	======	======	=====	=====
4-Isopropyltoluene	50	51	102	2	40	68-118
1,3-Dichlorobenzene	50	48	96	2	40	80-116
1,4-Dichlorobenzene	50	48	96	0	40	80-114
n-Butylbenzene	50	51	102	0	40	58-121
1,2-Dichlorobenzene	50	4 8	96	2	40	81-116
1,2-Dibromo-3-chloropro	50	50	100	2	40	71-126
1,2,4-Trichlorobenzene	50	53	106	2	40	67-114
Hexachlorobutadiene	50	48	96	2	40	50-111
Naphthalene	50	57	114	4	40	58-133
1,2,3-Trichlorobenzene	50	51	102	2	40	64-118

RPD: 0 out of 66 outside limits

Spike Recovery: 1 out of 132 outside limits

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix Spike - Sample No.: V5ZLCS

	SPIKE ADDED	SAMPLE CONCENTRATION	LCS CONCENTRATION	LCS %	QC. LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	
Dichlorodifluoromethane	50		46	92	58-131
Chloromethane	50		47	94	63-120
Vinyl Chloride	50		47	94	61-134
Bromomethane	50		52	104	10-215
Chloroethane	50		48	96	55-146
Trichlorofluoromethane	50		49	98	63-126
1,1-Dichloroethene	50		44	88	67-127
Acetone	50		41	82	0-154
Iodomethane	50		44	88	20-163
Carbon Disulfide	50		45	90	63-126
Methylene Chloride	50		43	86	62-128
trans-1,2-Dichloroethen	50	•	45	90	76-120
Methyl tert-butyl ether	50		40	80	52-130
1,1-Dichloroethane	50		4 5	90	74-118
Vinyl acetate	50		24	48	31-137
2-Butanone	50		35	70	14-154
cis-1,2-Dichloroethene	50		4 5	90	83~115
2,2-Dichloropropane	50		38	76	64-125
Bromochloromethane	50		44	88	70-119
Chloroform	50		46	92	77-120
1,1,1-Trichloroethane	50		47	94	72-126
1,1-Dichloropropene	50		48	96	71-132
Carbon Tetrachloride	50		49	98	69-135
1,2-Dichloroethane	50		42	84	65-126
Benzene	50		46	. 92	78-121
Trichloroethene	50		· 4 8	96	75-125
1,2-Dichloropropane	50		4 5·	90	78-117
Dibromomethane	50		42	84	65-125
# Column to be used to fla	g recovery	and RPD value	es with an aste	risk	<u> </u>

^{*} Values outside of QC limits

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix Spike - Sample No.: V5ZLCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION		용	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
	=======	_========	=======================================	=====	=====
Bromodichloromethane	50		45	90	75-118
cis-1,3-Dichloropropene	50	1	42	84	78-120
4-Methyl-2-pentanone	50		35	70	45-141
Toluene	50		4 6	92	80-126
trans-1,3-Dichloroprope	50		41	82	73-123
1,1,2-Trichloroethane	50	•	42	84	66-125
1,3-Dichloropropane	50		43	86	76-119
Tetrachloroethene	50		46	92	65-134
2-Hexanone	50		35	70	37-136
Dibromochloromethane	50		· 45	90	76-115
1,2-Dibromoethane	50		44	88	72-117
Chlorobenzene	50		4 6	92	78-117
1,1,1,2-Tetrachloroetha	50		47	94	80-115
Ethylbenzene	50		47	94	79-129
Xylene (Total)	150		140	93	83-125
Styrene	50		46	92	83-122
Bromoform	50	·	44	- 88	67-126
Isopropylbenzene	50		47	94	80-135
1,1,2,2-Tetrachloroetha	50		43	86	70-117
Bromobenzene	50		47	94	79-119
1,2,3-Trichloropropane	50		42	84	0-154
n-Propylbenzene	50		47	94	64-141
2-Chlorotoluene	50		48	96	70-132
1,3,5-Trimethylbenzene	50		46	92	72-133
4-Chlorotoluene	50	[.	46	92	77-122
tert-Butylbenzene	50		. 47	94	31-159
1,2,4-Trimethylbenzene	50	1	46	92	73-126
sec-Butylbenzene	50		48	96	68-137
	}				
# Column to be used to fla	g recover	y and RPD value	es with an aste	erisk	· ————

^{*} Values outside of QC limits

FORM 3 SOIL VOLATILE LAB CONTROL SAMPLE

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix Spike - Sample No.: V5ZLCS

COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	LCS CONCENTRATION (ug/Kg)	LCS % REC #	QC. LIMITS REC.
4-Isopropyltoluene	50		46	92	66-131
1,3-Dichlorobenzene	50 50		46	92	75-115
1,4-Dichlorobenzene	50		45	90	72-110
n-Butylbenzene	50	,	43	86	66-130
1,2-Dichlorobenzene	50		45	90	78-113
1,2-Dibromo-3-chloropro	50		39	78	52-128
1,2,4-Trichlorobenzene	50		41	82	49-126
Hexachlorobutadiene	50		42	84	58-115
Naphthalene	50		32	64	45-130
1,2,3-Trichlorobenzene	50		. 39	78	44-131
<u></u>		·			li

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix Spike - Sample No.: V5ZLCS

	SPIKE	LCSD	LCSD			,-
	ADDED	CONCENTRATION	8 1C3D	8	OC T	IMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC #		RPD	REC.
=======================================		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	======	======	REERE	100.
Dichlorodifluoromethane	50	49	98	6	40	58-131
Chloromethane	50	48	96	2	40	63-120
Vinyl Chloride	50	49	98	4	40	61-134
Bromomethane	50	54	108	4	40	10-215
Chloroethane	50	48	96	ō	40	55-146
Trichlorofluoromethane	50	49	98	ŏ	40	63-126
1,1-Dichloroethene	-50	48	96	9	40	67-127
Acetone	50	42	84 .	2	40	0-154
Iodomethane	50	46	92	4	100	20-163
Carbon Disulfide	50	46	92	2	40	63-126
Methylene Chloride	50	45	90	4	40	62-128
trans-1,2-Dichloroethen	50	49	98	8	40	76-120
Methyl tert-butyl ether	50	43	86	7	40	52-130
1,1-Dichloroethane	50	49	98	8	40	74-118
Vinyl acetate	50	23	46	4	40	31-137
2-Butanone	50	38	76	8	40	14-154
cis-1,2-Dichloroethene	50	4 8	96	6	40	83-115
2,2-Dichloropropane	50	39	7 8	2	40	64-125
Bromochloromethane	50	. 47	94	6	40	70-119
Chloroform	50	4 8	96	4	40	77-120
1,1,1-Trichloroethane	50	49	98	4	40	72-126
1,1-Dichloropropene	50	50	100	4	40	71-132
Carbon Tetrachloride	50	52	104	6	40	69-135
1,2-Dichloroethane	50	44	88	5	40	65-126
Benzene	50	49	. 98	6	40	78-121
Trichloroethene	50	50	100	4	40	75-125
1,2-Dichloropropane	50	48	96	6	40	78-117
Dibromomethane	50	46	92	9	40	65-125
		l				l

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

KEM Case No.:

SAS No.:

SDG No.: A0951

Matrix Spike - Sample No.: V5ZLCS

· · · · · · · · · · · · · · · · · · ·						
	SPIKE	LCSD	LCSD			
	ADDED	CONCENTRATION	8	%	QC L	
COMPOUND	(ug/Kg)	(ug/Kg)	REC #	RPD #	RPD	REC.
#===========	=======	=========	=====	=====	=====	=====
Bromodichloromethane	50	48	96	6	40	75-118
cis-1,3-Dichloropropene	50	4 6	92	9	40	78-120
4-Methyl-2-pentanone	50	40	80	13	40	45-141
Toluene	50	48	96	4	40	80-126
trans-1,3-Dichloroprope	50	44	88	7	40	73-123
1,1,2-Trichloroethane	50	46	92	9	40	66-125
1,3-Dichloropropane	50	46	92	• 7	40	76-119
Tetrachloroethene	50	50	100	8	40	65-134
2-Hexanone	50	40	80	13	40	37-136
Dibromochloromethane	50	50	100	10	40	76-115
1,2-Dibromoethane	50	47	94	6	40	72-117
Chlorobenzene	50	49	98	6	40	78-117
1,1,1,2-Tetrachloroetha	50	51	102	8	40	80-115
Ethylbenzene	50	50	100	6	40	79-129
Xylene (Total)	150	150	100	7	40	83-125
Styrene	50	49	98	6	40	83-122
Bromoform	50	. 49	9 8	11	40	67-126
Isopropylbenzene	50	50	100	6	40	80-135
1,1,2,2-Tetrachloroetha	50	47	94	9	40	70-117
Bromobenzene ·	50	52	104	10	40	79-119
1,2,3-Trichloropropane	50	46	92	9	40	0-154
n-Propylbenzene	50	51	102	8	40	64-141
2-Chlorotoluene	50	52	104	. 8	40	70-132
1,3,5-Trimethylbenzene	50	50	100	8	40	72-133
4-Chlorotoluene	50	51	102	10	40	77-122
tert-Butylbenzene	50	51	102	8	40	31-159
1,2,4-Trimethylbenzene	50	50	100	8	40	73-126
sec-Butylbenzene	-50	52	104	8	40	68-137

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix Spike - Sample No.: V5ZLCS

Level: (low/med) LOW

	SPIKE ADDED	LCSD CONCENTRATION	LCSD %	8	QC L	IMITS
COMPOUND	(ug/Kg)	(ug/Kg)	REC #	RPD #	RPD	REC.
2522==================================	=======		=====	=====	=====	=====
4-Isopropyltoluene	50	50	100	8	40	66-131
1,3-Dichlorobenzene	50	50	100	8	40	75-115
1,4-Dichlorobenzene	50	50	100	10	40	72-110
n-Butylbenzene	50	4 6 .	92	7	40	66-130
1,2-Dichlorobenzene	50	49	98	8	40	78-113
1,2-Dibromo-3-chloropro	50	45	90	14	40	52-128
1,2,4-Trichlorobenzene	50	44	88	7	40	49-126
Hexachlorobutadiene	50	46	92	9	40	58-115
Naphthalene	50	43	86	29	40	45-130
1,2,3-Trichlorobenzene	50	45	90	14	40	44-131

RPD: 0 out of 66 outside limits

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix Spike - Sample No.: V6OLCS

Level: (low/med) MED

1	abree:	Calmaria	1		
1	SPIKE	SAMPLE	LCS	LCS	QC.
CONTROL	ADDED		CONCENTRATION	-% "	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
Dichlorodifluoromethane	2500			=====	======
	2500	·	2400	96	58-131
Chloromethane	2500		2900	116	63-120
Vinyl Chloride	2500		2700	108	61-134
Bromomethane	2500		2700	108	10-215
Chloroethane	2500		2500	100	55-146
Trichlorofluoromethane	2500		2700	108	63-126
1.1-Dichloroethene	250 0		2800	112	67-127
Acetone	2500		2500	100	0-154
Iodomethane	2500		2300	92	20-163
Carbon Disulfide	2500		2800	112	63-126
Methylene Chloride	2500		2500	100	62-128
trans-1,2-Dichloroethen	2500		2300	92	76-120
Methyl tert-butyl ether	250 0		2500	100	52-130
1,1-Dichloroethane	2500	,	2400	96	74-118
Vinyl acetate	2500		2500	100	31-137
2-Butanone	2500		2400	96	14-154
cis-1,2-Dichloroethene	2500		2400	96	83-115
2,2-Dichloropropane	2500		2400	96	64-125
Bromochloromethane	2500		2400	96	70-119
Chloroform	2500		2400	96	77-120
1,1,1-Trichloroethane	2500		2300	92	72-126
1,1-Dichloropropene	2500		2400	96	71-132
Carbon Tetrachloride	2500		2300	92	69-135
1,2-Dichloroethane	2500		2500	100	65-126
Benzene	2500		2400	96	78-121
Trichloroethene	2500		2400	96	75-125
1,2-Dichloropropane	2500	į	2400	96	78-117
Dibromomethane	2500		2400	96	65-125
		·			
1 0-1		1			

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix Spike - Sample No.: V6OLCS

Level:(low/med) MED

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	ક	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
	========	=======================================	=======================================	=====	======
Bromodichloromethane	2500	•	2400	96	75-118
cis-1,3-Dichloropropene	2500		2500	100	78-120
4-Methyl-2-pentanone	2500		2700	108	45-141
Toluene	2500		2500	100	80-126
trans-1,3-Dichloroprope	2500		2500	100	73-123
1,1,2-Trichloroethane	2500		2300	92	66-125
1,3-Dichloropropane	2500		2400	96	76-119
Tetrachloroethene	2500		2400	96	65-134
2-Hexanone	250 0		2600	104	37-136
Dibromochloromethane	2500		2300	92	76-115
1,2-Dibromoethane	2500		2300	92	72-117
Chlorobenzene	2500		2400	96	78-117
1,1,1,2-Tetrachloroetha	2500		2400	96	80-115
Ethylbenzene	2500		2400	96	79-129
Xylene (Total)	7500		7400	99	83-125
Styrene	2500		2500	100	83-122
Bromoform	2500		2200	88	67-126
Isopropylbenzene	2500	·	2600	104	80-135
1,1,2,2-Tetrachloroetha	2500		2400	96	70~117
Bromobenzene	2500		2400	96	79-119
1,2,3-Trichloropropane	250 0	•	2500	100	0-154
n-Propylbenzene	2500		2400	96	64-141
2-Chlorotoluene	2500		2400	96	70-132
1,3,5-Trimethylbenzene	2500		2400	96	72-133
4-Chlorotoluene	2500		2300	92	77-122
tert-Butylbenzene	2500		2500	100	31-159
1,2,4-Trimethylbenzene	2500		2400	96	73-126
sec-Butylbenzene	2500		2500	100	68-137
t Column to be used to fla	·	DDD			l

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix Spike - Sample No.: V6OLCS

Level: (low/med) MED

COMPOUND	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
4-Isopropyltoluene 1,3-Dichlorobenzene 1,4-Dichlorobenzene n-Butylbenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropro 1,2,4-Trichlorobenzene Hexachlorobutadiene Naphthalene 1,2,3-Trichlorobenzene	2500 2500 2500 2500 2500 2500 2500 2500		2500 2400 2400 2600 2400 2800 2600 2300 2800 2500	100 96 96 104 96 112 104 92 112 100	66-131 75-115 72-110 66-130 78-113 52-128 49-126 58-115 45-130 44-131

RPD: 0 out of 0 outside limits

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLK6S

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: A0951

Lab File ID: V6C0952

Lab Sample ID: V6B0701A

Date Analyzed: 07/01/02

Time Analyzed: 1157

GC Column: DB-624

ID: 0.25 (mm)

Heated Purge: (Y/N) N

Instrument ID: V6

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
		==========	========	
01	V6SLCS	V6L0701A	V6C0953	1226
02	GP-12AIR	A0951-02A	V6C0954	1300
03	GP-6AIR	A0951-03A	V6C0955	1330
04	GP-10AIR	A0951-07A	V6C0956	1359
05	GP-2AIR	A0951-08A	V6C0957	1430
06		A0951-10A	V6C0958	1509
07	GP-1AIR	A0951-11A	V6C0959	1541
80	GP-3AIR	A0951-12A	V6C0960	1612
09			*****	
10				
11		·		
12	<u> </u>			
13			,	
14 15				
16				· ·
17	· · · · · · · · · · · · · · · · · · ·			
18		 '		
19		<u> </u>		
20				
21				
22		<u> </u>		
23				
24	<u> </u>			
25				
- 26	<u> </u>	<u> </u>]————	
27	·			

EPA SAMPLE NO.

VBLK6S

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) WATER

Lab Sample ID: V6B0701A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V6C0952

Level:

(low/med) LOW Date Received:

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/L

75-71-8Dichlorodifluoromethane	5	U
74-87-3Chloromethane	-	Ū
75-01-4Vinyl Chloride	5	Ū
74-83-9Bromomethane	5	Ŭ
75-00-3Chloroethane	5	Ū
75-69-4Trichlorofluoromethane	5	Ū
75-35-41,1-Dichloroethene	5	ττ
67-64-1Acetone	5	ĬΪ
74-88-4Iodomethane	5	บั
75-15-0Carbon Disulfide	5	Ŭ
75-09-2Methylene Chloride	- j	ĬΪ
156-60-5trans-1,2-Dichloroethene	5	Ü
1634-04-4Methyl tert-butyl ether	5	Ŭ
75-34-31,1-Dichloroethane	5	ŭ
108-05-4Vinyl acetate	- 5	Ŭ
78-93-32-Butanone	5	ប៊
156-59-2cis-1,2-Dichloroethene	5	ij
590-20-72,2-Dichloropropane	5	ប័
74-97-5Bromochloromethane	1 5	บั
67-66-3Chloroform	5	τυ
71-55-61,1,1-Trichloroethane	-	τī
563-58-61,1-Dichloropropene	5	ប៉
56-23-5Carbon Tetrachloride	5	ប
107-06-21,2-Dichloroethane	- 5	tī
71-43-2Benzene	5	TT
79-01-6Trichloroethene	. 5	ļ Ļ
73-UI-0IMICHIOTOEDHE	- I	

EPA SAMPLE NO.

VBLK6S

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) WATER

Lab Sample ID: V6B0701A

Sample wt/vol:

5.000 (q/mL) ML

Lab File ID: V6C0952

Level: (low/med)

LOW

Date Received:

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/L

		
142-28-91,3-Dichloropropane	5	บ
127-18-4Tetrachloroethene	5	
591-78-62-Hexanone	5	
124-48-1Dibromochloromethane	5	บั
106-93-41,2-Dibromoethane	5	Ŭ
108-90-7Chlorobenzene	5	Ŭ
630-20-61,1,1,2-Tetrachloroethane	5	บั
100-41-4Ethylbenzene	5	ប៊
1330-20-7Xylene (Total)	5	บั
100-42-5Styrene	5	ប៊
75-25-2Bromoform	5	บี.
98-82-8Isopropylbenzene	3	ប៊
79-34-51,1,2,2-Tetrachloroethane	5	ប័
108-86-1Bromobenzene		-
96-18-41,2,3-Trichloropropane	5 5	ชื่
103 CF 1		ซื
103-65-1n-Propylbenzene	5	
95-49-82-Chlorotoluene	5	ū
108-67-81,3,5-Trimethylbenzene	5	ប្រ
106-43-44-Chlorotoluene	5	Ū
98-06-6tert-Butylbenzene	5	U
95-63-61,2,4-Trimethylbenzene	5	ប
135-98-8sec-Butylbenzene	5	U
99-87-64-Isopropyltoluene	5	U
541-73-11,3-Dichlorobenzene	5	
106-46-71,4-Dichlorobenzene	5	υ
104-51-8n-Butvlhenzene	!	lττ

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

VBLK6S

Lab Name: MITK	M CORPORATION
----------------	---------------

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) WATER

Lab Sample ID: V6B0701A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID:

V6C0952

Level: (low/med)

LOW

Date Received:

% Moisture: not dec.

Date Analyzed: 07/01/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1				
4.				
5. 6.				
7 8				
10				
12. 13.				
14				
16. 17. 18.				
19.				
21.				
23				

4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLK6U

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Lab File ID: V6C0972

Lab Sample ID: V6B0702A

Date Analyzed: 07/02/02

Time Analyzed: 0945

GC Column: DB-624

ID: 0.25 (mm)

Heated Purge: (Y/N) N

Instrument ID: V6

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
		=========	=========	========
01	VOULCS	V6L0702A	V6C0973	1014
02	V6ULCSD	V6L0702B	V6C0974	1043
03	GP-28AIR	A0951-01A	V6C0975	1113
04	GP-19AIR	A0951-04A	V6C0976	1144
05		A0951-05A	V6C0977	1214
06	GP-22AIR	A0951-06A	V6C0978	1245
07	GP-24AIR	A0951-09A	V6C0979	1321
80	GP-20AIR	A0951-20A	V6C0980	1352
09				
10				
11				
12			·	
13				
14			· · · · · · · · · · · · · · · · · · ·	
15				
16		l	 	.
17				
18		<u> </u>		
19	<u>.</u>			
20				
21	<u> </u>			
22		l		
23			\ <u></u>	
24				
25		<u> </u>	<u> </u>	
26 27	ļ]	<u> </u>	
2.7	ı	t .	ı	I I

EPA SAMPLE NO.

VBLK6U	
•	
•	

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) WATER

Lab Sample ID: V6B0702A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V6C0972

Level:

(low/med)

LOW

Date Received:

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume:

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/L

	· · · · · · · · · · · · · · · · · · ·	
75-71-8Dichlorodifluoromethane	5	U
74-87-3Chloromethane	5	
75-01-4Vinyl Chloride	5	
74-83-9Bromomethane	5	_
75-00-3Chloroethane	5	บ
75-69-4Trichlorofluoromethane	5	Ū
75-35-41,1-Dichloroethene	5	Ιττ
67-64-1Acetone	5	Ŭ
74-88-4Iodomethane	5	Ŭ
75-15-0Carbon Disulfide	5	ıπ ·
75-09-2Methylene Chloride	5	ŭ
156-60-5trans-1,2-Dichloroethene	5	υ
1634-04-4Methyl tert-butyl ether	5	ιΰ
75-34-31,1-Dichloroethane	5	īī
108-05-4Vinyl acetate	5	ប៊
78-93-32-Butanone	5	โซ้
156-59-2cis-1,2-Dichloroethene	5	บั
590-20-72,2-Dichloropropane	5	lΰ
74-97-5Bromochloromethane	5	Ü
67-66-3Chloroform		ប
	5	TT
71-55-61,1,1-Trichloroethane	5	, ~
563-58-61,1-Dichloropropene	5	ប
56-23-5Carbon Tetrachloride	5	ប
107-06-21,2-Dichloroethane	5	U
71-43-2Benzene] 5	Ų
79-01-6Trichloroethene	I	1 T T

EPA SAMPLE NO.

VBLK6U

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) WATER

Lab Sample ID: V6B0702A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V6C0972

Level: (low/med)

LOW

Date Received:

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/L

	· · · · · · · · · · · · · · · · · · ·	
142-28-91,3-Dichloropropane	5	ប
127-18-4Tetrachloroethene	5	lΰ
591-78-62-Hexanone	5	Ιΰ
124-48-1Dibromochloromethane	5	lΰ
106-93-41,2-Dibromoethane	5	l ŭ
108-90-7Chlorobenzene	5	١ŭ
630-20-61,1,1,2-Tetrachloroethane	5	Ιΰ
100-41-4Ethylbenzene	5	Ιŭ
1330-20-7Xylene (Total)	5	Ιŭ
100-42-5Styrene	5	ŭ
75-25-2Bromoform	5	Ιŭ
98-82-8Isopropylbenzene	Š	Ŭ
79-34-51,1,2,2-Tetrachloroethane	' š	ប៊
108-86-1Bromobenzene		lΰ
96-18-41,2,3-Trichloropropane	. 5 5	١ŭ
103-65-1n-Propylbenzene	· 5	Ιΰ
95-49-82-Chlorotoluene	. 5	lΰ
108-67-81,3,5-Trimethylbenzene	. 5	บั
106-43-44-Chlorotoluene	· 5	lü
98-06-6tert-Butylbenzene	. 5	lΰ
	5	บ็
95-63-61,2,4-Trimethylbenzene		เกี
135-98-8sec-Butylbenzene	5 5	lΩ
99-87-64-Isopropyltoluene	5	١~
541-73-11,3-Dichlorobenzene	5	<u>u</u>
106-46-71,4-Dichlorobenzene	. 5	U
104-51-8n-Rutylbenzene	i 5	l TT

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

 VBLK6U

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) WATER

Lab Sample ID: V6B0702A

Sample wt/vol:

5.000 (g/mL) ML

Lab File ID: V6C0972

Level: (low/med) LOW

Date Received:

% Moisture: not dec.

Date Analyzed: 07/02/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Number TICs found: 0

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		======	=========	====
1		·	·	
2		· 		
- •	•	·		
T. 1		· [
5	· · · ·	·		
7.		·I		
7		·		. .
8		-1		
		-		
0	·	·		
1.		·		<u> </u>
12		• 		ļ
13		-		l
5	· · · · · · · · · · · · · · · · · · ·	-		
[e'	· · · · · · · · · · · · · · · · · · ·	-		
16		·		
		-		l
18	· · · · · · · · · · · · · · · · · · ·			 -
19.		-		l
20		-		
21		-]
22	 -	-	[

4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLK5Z

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Lab File ID: V5D8763

Lab Sample ID: V5B0627A

Date Analyzed: 06/27/02

Time Analyzed: 0652

GC Column: DB-624

ID: 0.25 (mm)

Heated Purge: (Y/N) Y

Instrument ID: V5

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
!	===========	==========	========	=========
01	V5ZLCS	V5L0627A	V5D8764	0720
02	V5ZLCSD	V5L0627B	V5D8765	0748
03	GP-36.5	A0951-18A	V5D8773	1253
04	GP-136	A0951-13A	V5D8774	1324
05	GP-207.5	A0951-14A	V5D8775	1355
06	GP-213	A0951-15A	V5D8776	1427
07	01 113		1320	
08		[
09				
10				
11				
12				<u> </u>
13			· · · · · · · · · · · · · · · · · · ·	
14				
15				i
16				
17				
	`		_ -	
18			 -	
19				
20				
21	· · · · · · · · · · · · · · · · · · ·	l <u></u>		
22		<u></u>		i
23				
24				
25				
26	l		1	
27		l 		

EPA SAMPLE NO.

VBLK5Z

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: V5B0627A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V5D8763

Level: (low/med) LOW

Date Received:

Date Analyzed: 06/27/02

% Moisture: not dec.

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (mL)

Soil Aliquot Volume:

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

· · · · · · · · · · · · · · · · · · ·	,	
75-71-8Dichlorodifluoromethane	5	ប
74-87-3Chloromethane	. 6	ប
75-01-4Vinyl Chloride	5	_
74-83-9Bromomethane	5	
75-00-3Chloroethane	i š	_
75-69-4Trichlorofluoromethane	5	Ŭ
75-35-41,1-Dichloroethene	i š	Ιΰ
67-64-1Acetone	i š	Ιŭ
74-88-4Iodomethane	1 5	١ ڽ
75-15-0Carbon Disulfide	5	ប៊
75-09-2Methylene Chloride	6	ľ
156-60-5trans-1,2-Dichloroethene	5	ប
1634-04-4Methyl tert-butyl ether	5	۱ ۵
75-34-31,1-Dichloroethane	5	
108-05-4Vinyl acetate	5	
78-93-32-Butanone	5	
156-59-2cis-1,2-Dichloroethene		U
150-59-2CIS-1,2-DICHLOIOECHENE	5	U
590-20-72,2-Dichloropropane	5	1
74-97-5Bromochloromethane	5	
67-66-3Chloroform		U
71-55-61,1,1-Trichloroethane		U
563-58-61,1-Dichloropropene	5	
56-23-5Carbon Tetrachloride	5	U
107-06-21,2-Dichloroethane	5	Ŭ
71-43-2Benzene	5	ប
79-01-6Trichlomethere	1 -	TT

EPA SAMPLE NO.

VBLK5Z	
--------	--

Lab	Name:	MITKEM	CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: V5B0627A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V5D8763

Level: (low/med) LOW Date Received:

% Moisture: not dec.

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (mL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

		
142-28-91,3-Dichloropropane	5	17 -
127-18-4Tetrachloroethene	5	1 -
591-78-62-Hexanone	5	ľŭ
124-48-1Dibromochloromethane	5	Ι ΰ
106-93-41,2-Dibromoethane	5	ι ŭ
108-90-7Chlorobenzene	5	lΰ
630-20-61,1,1,2-Tetrachloroethane	5	ϋ
100-41-4Ethylbenzene	5	Ü
1330-20-7Xylene (Total)	5	บ
100-42-5Styrene	5	បី
75-25-2Bromoform	5	ប៊
98-82-8Isopropylbenzene	5	ប៉
79-34-51,1,2,2-Tetrachloroethane	5	ប័
108-86-1Bromobenzene	5	ט ט
96-18-41,2,3-Trichloropropane	5	TT
103-65-1n-Propylbenzene	5	ช
95-49-82-Chlorotoluene		_
	5 5	U Ü
108-67-81,3,5-Trimethylbenzene 106-43-44-Chlorotoluene	5	
	5	U
98-06-6tert-Butylbenzene	5	U
95-63-61,2,4-Trimethylbenzene		ŭ
135-98-8sec-Butylbenzene	5	ប
99-87-64-Isopropyltoluene	5	U
541-73-11,3-Dichlorobenzene	5	U
106-46-71,4-Dichlorobenzene	5	ប
104-51-8n-Rutvlhenzene	l 5	I T T

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab	Name:	MITKEM	CORPORATION
-----	-------	--------	-------------

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: V5B0627A

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V5D8763

Level: (low/med) LOW Date Received:

% Moisture: not dec.

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume: (mL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

Number TICs found: 0

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.				
<i>1</i> .			 	
3	,	— 		
5.				
O: 1	:			
/ ·		_		
8. 9.	· · · · · · · · · · · · · · · · · · ·	—		<u> </u>
11.				
12. 13.	· · · · · · · · · · · · · · · · · · ·	—\ <u></u> -		
44.				
4J.				
	 			
17. 18.				 -
1. J				
20.			·	
41.	·····			 -
22.				

VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLK60

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

KEM Case No.:

SAS No.:

SDG No.: A0951

Lab File ID: V6C0873

Lab Sample ID: V6B0627B

Date Analyzed: 06/27/02

Time Analyzed: 1010

GC Column: DB-624

ID: 0.25 (mm)

Heated Purge: (Y/N) N

Instrument ID: V6

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
		=======================================	**********	
01	V6OLCS	V6L0627B	V6C0875	1110
02	GP-246.5	A0951-16A	V6C0882	1444
03	GP-266.5	A0951-17A	V6C0883	1515
04	GP-286.5	A0951-19A	V6C0884	1546
05	GE -200.5	AUJUI-IJA	40C0804	1340
06				
07	, 	 		
80				
09				
10			·	
11				
12				-
13				
14				
15			·	
16		·		
17				
18				
19				
20		 :		
21				
22				
23				
24				
25				
26				
27				

EPA SAMPLE NO.

VBLK60

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

ŚAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: V6B0627B

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: V6C0873

Level:

(low/med) MED

Date Received:

% Moisture: not dec.

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume:

5 (mL)

Soil Aliquot Volume:

100.0 (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

Q

75-71-8	-Dichlorodifluoromethane	250	11
74-87-3	-Chloromethane	250	
	-Vinyl Chloride	250	
74-83-9	-Bromomethane	250	
75-00-3	-Chloroethane	250	
75-69-4	-Trichlorofluoromethane	250	
75-35-4	-1,1-Dichloroethene	250	-
67-64-1	-Acetone	250	1
74-88-4	-Todomethane	250 250	
	-Carbon Disulfide		-
	-Methylene Chloride	250	
156.60 E	trang 1 2 Dight and there	250	_
1634 04 4	-trans-1,2-Dichloroethene	250	_
1034-04-4	-Methyl tert-butyl ether	250	
100 05 4	-1,1-Dichloroethane	250	
108-05-4	-Vinyl acetate	250	_
78-93-3		250	-
156-59-2	-cis-1,2-Dichloroethene	250	U
590-20-7	-2,2-Dichloropropane	250	Ū
74-97-5	-Bromochloromethane	250	ប
67-66-3	-Chloroform	250	υ
71-55-6	-1,1,1-Trichloroethane	250	ี บ
563-58-6	-1,1-Dichloropropene	250	บ
56-23-5	-Carbon Tetrachloride	250	
107-06-2	-1,2-Dichloroethane	250	
71-43-2	-Benzene	250	_
	-Trichloroethene	250	_

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION

Contract:

VBLK60

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: V6B0627B

Sample wt/vol:

5.0 (g/mL) G

Lab File ID:

V6C0873

Level: (low/med) MED

Date Received:

% Moisture: not dec. __

Date Analyzed: 06/27/02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume:

5 (mL)

Soil Aliquot Volume:

100.0 (uL)

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

142-28-91,3-Dichloropropane	250	77
127-18-4Tetrachloroethene	_ 250	
591-78-62-Hexanone	250	-
124-48-1Dibromochloromethane	_ 250	, ~
106-93-41,2-Dibromoethane	_ 250	_
100 00 7 Calanabarana	250	_
108-90-7Chlorobenzene	250	
630-20-61,1,1,2-Tetrachloroethane	250	U
100-41-4Ethylbenzene	_ 250	Ū
1330-20-7Xylene (Total)	250	U
100-42-5Styrene_	250	U
75-25-2Bromoform	250	U
98-82-8Isopropylbenzene	[^] 250	ប
79-34-51,1,2,2-Tetrachloroethane	250	Ū
108-86-1Bromobenzene	250	Ū
96-18-41,2,3-Trichloropropane	250	
103-65-1n-Propylbenzene	250	-
95-49-82-Chlorotoluene	250	
108-67-81,3,5-Trimethylbenzene	250	_
106-43-44-Chlorotoluene	250	
98-06-6tert-Butylbenzene	250	-
95-63-61,2,4-Trimethylbenzene	$\begin{bmatrix} 250 \\ 250 \end{bmatrix}$	_
135-98-8sec-Butylbenzene	250	
99-87-64-Isopropyltoluene	- I	_
541-73-11,3-Dichlorobenzene	250	
106-46-71,4-Dichlorobenzene	250	_
104-51-9	250	U

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO
-----	--------	----

TOT	VC.	_
ABT	K6	u

Lab	Name:	MITKEM	CORPORATION
-----	-------	--------	-------------

Contract:

Lab Code: MITKEM Case No.: SA

SAS No.:

SDG No.: A0951

Matrix: (soil/water) SOIL

Lab Sample ID: V6B0627B

Sample wt/vol:

5.0 (g/mL) G

Lab File ID:

V6C0873

Level:

(low/med) MED

Date Received:

Date Analyzed: 06/27/02

% Moisture: not dec.

Date Maryzed:

u: 06/2//02

GC Column: DB-624

ID: 0.25 (mm)

Dilution Factor: 1.0

Soil Extract Volume:

5 (mL)

Soil Aliquot Volume:

100 (uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
2		_		
4				
5. 6. 7.				
9:				
11.				
12. 13. 14.	.5			
15. 16.				
17.				
19. 20. 21.				
21. 22. 23.				
24.		— -	·	 -

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951

Lab File ID (Standard): V6C0951

Date Analyzed: 07/01/02

Instrument ID: V6

Time Analyzed: 1021

GC Column: DB-624

ID: 0.25 (mm)

Heated Purge: (Y/N) N

		· · · · · · · · · · · · · · · · · · ·				
Į l	IS1		IS2 (CBZ)		IS3 (DCB)	•
	AREA #	RT #	AREA #	RT #	AREA #	RT #
=======================================	=========	======	========	======	=======	======
12 HOUR STD	1979824	7.03	1481675	10.77	737176	13.58
UPPER LIMIT	3959648	7.53	2963350	11.27	1474352	14.08
LOWER LIMIT	494956	6.53	370419	10.27	184294	13.08
==========	=========	======	========	======	=======	======
EPA SAMPLE				1		
NO.						
==========	========	======	========	======	=======	======
01 VBLK6S	1.980927	7.03	1428294	10.77	697851	13.59
02 V6SLCS	2027813	7.03	1493047	10.77	756781	13.59
03 GP-12AIR	2164671	7.03	1559982	10.77	764581	13.59
04 GP-6AIR	2120473	7.03	1558227	10.76	772860	13.59
05 GP-10AIR	1990097	7.03	1474488	10.77	738107	13.59
06 GP-2AIR	1632010	7.03	1210485	10.76	614614	13.59
07 GP-4AIR	1852,058	7.03	1318021	10.77	646261	13.59
08 GP-1AIR	1562864	7.03	1251686	10.77	634188	13.59
09 GP-3AIR	1589412	7.03	1184964	10.76	579232	13.59
10						
11						
12	······					
13						
14						
15						
16						
17	<u> </u>					
18						
19						
20	!					
21						
22		l <u></u> -				

IS1

= Fluorobenzene

IS2 (CRZ

= Chlorobenzene-d5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

MITKEM Case No.:

SAS No.:

SDG No.: A0951

Lab File ID (Standard): V6C0971

Date Analyzed: 07/02/02

Instrument ID: V6

Time Analyzed: 0912

GC Column: DB-624

ID: 0.25 (mm)

Heated Purge: (Y/N) N

							
- 1		IS1		IS2 (CBZ)		IS3 (DCB)	1
		AREA #	RT #	AREA #	RT #	AREA #	RT #
:	========	========	=======	======================================	======		======
	12 HOUR STD	1751087	7.03	1269726	10.77	660496	13.59
	UPPER LIMIT	3502174	7.53	2539452	11.27	1320992	
	LOWER LIMIT	437772	6.53	317432			14.09
1.	TONER DIGIT	43///2	6.53	31/432	10.27	165124	13.09
1.			· =====	========	======	========	======
.]	EPA SAMPLE						
- 1	NO.						
- 1:	===========	=========	======	========	======	=========	======
	VBLK6U	1862871	7.02	1335329	10.76	650171	13.59
02:17	V6ULCS	1632236	7.02	1192952	10.77	617479	13.59
03	V6ULCSD	1646590	7.02	1220049	10.76	619169	13.59
04 0	GP-28AIR	1664014	7.03	1204342	10.77	585797	13.59
	GP-19AIR	1533726	7.03	1078454	10.76	519227	13.59
	GP-21AIR	1603357	7.03	1122720	10.77	541571	13.59
	GP-22AIR	1532543	7.03	1084524			
	GP-24AIR				10.77	527126	13.59
		1361333	7.03	943843	10.77	460337	13.59
10	GP-20AIR	1415771	7.03	999963	10.77	476458	13.59
11							
12					i		
13							
14							
15					ļ — — ,		
16							I
17 l							l [
18]
19		· · · · · · · · · · · · · · · · · · ·	·				
20						 _	[
21	 .	· · · · · · · · · · · · · · · · · · ·					l
	 -	·					[l
22				<u> </u>	li		I

IS1

= Fluorobenzene

IS2 (

(CBZ) = Chlorobenzene-d5

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: A0951 /

Lab File ID (Standard): V5D8761

Date Analyzed: 06/27/02

Instrument ID: V5

Time Analyzed: 0528

GC Column: DB-624

ID: 0.25 (mm)

Heated Purge: (Y/N) Y

1		TC1				TOO (ODE)	1		T00 /D00			
		IS1 AREA	#	$_{ m RT}$	#	IS2 (CBZ) AREA #	RT	#	IS3 (DCB AREA	#	RT	#
	=======		π ==	=====		======================================		#	AREA	#	KI	#
12	HOUR STD	192787	1	6.3	4	1398634	9.	 57	64945	6	12.3	32
	PER LIMIT	385574		6.8		2797268	10.		129891	-	12.8	
LO	WER LIMIT	96393	6	5.8	4	699317	-9.		32472		11.8	
===:	======	=======	==	=====	:==	========	====		======	==	====:	===
EP	A SAMPLE											
	NO.											
01 VBL	========= 2C7	210072	==		==	**************************************		=== 	=======	==	=====	===
02 V5Z		219973 185502		6.3 6.3		1568936 1355508	9.		68363 63665		12.3	
1	LCSD	187462	_	6.3		1352278	9.		63105		12.3 12.3	
	36.5	149562		6.3		1047707	9.		50300		12.3	
05 GP-		145400		6.3		1018856	9.		48401		12.3	
	207.5	148246	_	6.3		1035928	9.	57	52036		12.3	
07 GP-	213	147501	5	6.3	5	1093611	9.	58	84980	0	12.3	33
08							l <u></u> -					
09 10												
11							- , -			—		
12				-			l 					
13		-										
14												
15												
16	· · · · · · · · · · · · · · · · · · ·					<u> </u>						
17				ļ			 					
19		·					<u> </u>					
20										—		
21 -							 				-	
22				-		·				—		

IS1

= Fluorobenzene

(ኅロワ)

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

TEM Case No.:

SAS No.:

SDG No.: A0951

Lab File ID (Standard): V6C0871

Date Analyzed: 06/27/02

Instrument ID: V6

Time Analyzed: 0907

GC Column: DB-624

ID: 0.25 (mm)

Heated Purge: (Y/N) N

	l —	701				TOO /COOK			TG2 (DG2)		
		IS1				IS2 (CBZ)			IS3 (DCB)		
	}	AREA	#	RT	#	AREA #	RT	#	AREA #	RT	#
	=========	=======	:=]	=====	==		=====	==	=======	=====	-==}
	12 HOUR STD	1432645		7.0	3	1088024	10.7	7	592618	13.5	59 l
	UPPER LIMIT	2865290		7.5	3	2176048	11.2	7	1185236	14.0	
	LOWER LIMIT	716323	. [6.5		544012	10.2		296309	13.0	
	~=========	=======	<u></u>	=====				<u>.</u>		====	
	EPA SAMPLE										
	NO.		1								
					1		1				
01	VBLK60	1300162	-		<u>-</u> =		=====	==	404005	= = = = = = = = = = = = = = = = = = =	
02	V60LCS			7.0		896219	10.7		424237	13.5	
		1379084		7.0		1046514	10.7		556573	13.5	
03	GP-246.5	1876130		7.0		1347889	10.7		689713	13.5	
04	GP-266.5	2010633		7.0		1436204	10.7		727322	13.5	
05	GP-286.5	2060159	1	7.0	3	1467485	10.7	7	748447	13.5	59
06											1
07			_	_							_
- 08			[— I						I
09			ᄀ								1
10			기					-			—i
11			-1								—
12		-	ᄀ					-		•	 ¦
13			-	-	—I						—j
14	 :		-		1						
15			-								
16			-1						, ,	<u> </u>	—1
17			-1					!			<u>—</u> 1
			_		1						—I
18			_								
19			_			,					
20	·····	<u>.</u>	_							-	
21											
22											

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name: SOH

SDG: A0951

		<u> </u>	Aı	nalytical Requi	rements	
Customer <u>Sample ID</u>			SVOA GC/MS Method#	Pest/PCB Method#	Metals	Other
GP-28AIR	A0951-01	TO-14				·
GP-12AIR	A0951-02	TO-14				
GP-6AIR	A0951-03	TO-14				٠,
GP-19AIR	A0951-04	TO-14				
GP-21AIR	A0951-05	TO-14				
GP-22AIR	A0951-06	TO-14		,		
GP-10AIR	A0951- 0 7	TO-14				
GP2AIR	A0951-08	TO-14			1	
GP-24AIR	A0951-09	TO-14				
GP-4AIR	A0951-10	TO-14		-		
GP-1AIR	A0951-11	TO-14				
GP-3AIR	A0951-12	T0-14				
GP-136	A0951-13	.8260				
GP-207.5	A0951-14	8260				
GP-213	A0951-15	8260				
GP-246.5	A0951-16	8260				

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Volatile (VOA) Analyses

Project Name:

SOH

SDG: A0951

Laboratory <u>Sample ID</u>	Matrix	Date <u>Collected</u>	Date Received by Lab	Date Extracted	Date Analyzed
A0951-01A	AIR	6/18/02	6/20/02	<u> </u>	7/2/02
A0951-02A	AIR	6/17/02	6/20/02		7/1/02
A0951-03A	AIR	6/17/02	6/20/02		7/1/02
A0951-04A	AIR	6/18/02	6/20/02		1/2/02
A0951-05A	AIR	6/18/02	6/20/02		7/2/02
A0951-06A	AIR	6/18/02	6/20/02		7/2/02
A0951-07A	AIR	6/17/02	6/20/02		7/1/02
A0951-08A	AIR	6/17/02	6/20/02		7/1/02
A0951-09A	AIR	6/18/02	6/20/02		7/2/02
A0951-10A	AIR	6/17/02	6/20/02		7/1/02
A0951-11A	AIR	6/17/02	6/20/02		7/1/02
A0951-12A	AIR	6/17/02	6/20/02		7/1/02
A0951-13A	SL	6/17/02	6/20/02		4/27/02
A0951-14A	SL	6/18/02	6/20/02		1
A0951-15A	SL	6/18/02	6/20/02	NA	
A0951-16A	SL	6/18/02	6/20/02		

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Volatile (VOA) Analyses

Project Name:

SOH

SDG: A0951

Laboratory Sample ID	<u>Matrix</u>	Analytical <u>Protocol</u>	Extraction <u>Method</u>	Low/Medium Level	Dil/Conc Factor		
A0951-01A	AIR	TO-14	NA	Low			
A0951-02A	51-02A AIR TO-14				. \		
A0951-03A	AIR	TO-14					
A0951-04A	AIR	TO-14					
A0951-05A	AIR	TO-14					
A0951-06A	AIR	TO-14					
A0951-07A	AIR	TO-14					
A0951-08A	. AIR	TO-14					
A0951-09A	AIR	TO-14					
A0951-10A	AIR	TO-14					
A0951-11A	AIR	TO-14	V				
A0951-12A	AIR	T0-14	NA				
A0951-13A	SL	8260					
A0951-14A	SL	8260		1	V		
A0951-15A	SL	8260	NA	Low	1		
A0951-16A	SL	8260	Methanol	Medium	50		

Analytical Data Package for Dvirka & Bartilucci

Client Project: SOH, 784222

SDG# A0951

Mitkem Project ID: A0951

July 17, 2002

SDG Narrative

Mitkem Corporation submits the enclosed data package in response to Shaw Environmental & Infrastructure's SOH project. Under this deliverable, analysis results are presented for thirteen air and seven soil samples that were received on June 20, 2002. Analyses were performed per specifications in the project's contract and the chain of custody forms. Following the SDG narrative is a copy of the Mitkem workorder for cross-referencing client sample ID with laboratory sample ID.

The analyses were performed according to NYSDEC ASP and USEPA protocols (October 1995 update) and reported per NYSDEC ASP requirement for Category B deliverable.

The following observation and/or deviations are observed for the following analyses:

1. Overall Observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting.
- M2 peak co-elution.
- M3 rising or falling baseline.
- M4 retention time shift.
- M5 miscellaneous under this category, the justification is explained.

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are

Sample analysis: some compounds were detected above the instrument calibration range and "E" flagged on Form Is. Normally, these samples would be analyzed at dilution. In this case, the samples were not re-analyzed at dilution, as it is not possible to do so. No other unusual observation was made for the analyses.

3. Volatile Analysis (Soils):

Surrogate recovery: recoveries were within QC limits.

Lab control sample: spike recoveries were within the QC limits.

Sample analysis: samples GP-246.5, GP-266.5 and GP-286.5 were analyzed at mediume level. In addition to the medium level analysis, sample GP-286.5 was analyzed at 6x dilution. No other unusual observation was made for the analysis.

The pages in this report have been numbered consecutively, starting from this narrative and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Agnes Ng CLP Project Manager

21/Jun/02 16:08

WorkOrder: A0951

Client ID: SHAW_LATHAM

Project: SOH

Location: 784222

Comments: N/A

Case:

SDG:

PO: 784222

Report Level: ASP-B

EDD: XL

HC Due: 07/11/02

Fax Due:

Sample ID	Client Sample ID	Collection Date Date Received Matrix	Test Code	Test Code Comments	Hold MS SEL Storage
A0951-01A	GP-28AIR	. 06/18/02 19:20 06/20/02 Air	TO-14	8260	□ □ □ VOA
A0951-02A	GP-12AIR	06/17/02 17:45 06/20/02 Air	TO-14	8260	□ □ □ voa
A0951-03A	GP-6AIR	06/17/02 14:25 06/20/02 Air	TO-14	8260	□ □ □ VOA
A0951-04A	GP-19AIR	06/18/02 13:20 06/20/02 Air	TO-14	8260	□ □ □ VOA
A0951-05A	GP-21AIR	06/18/02 14:30 06/20/02 Air	TO-14	8260	□ □ □ vo a
A0951-06A	GP-22AIR	06/18/02 15:22 06/20/02 Air	TO-14	8260	O O O VOA
A0951-07A	GP-10AIR	06/17/02 16:35 06/20/02 Air	TO-14	8 26 0	O O VOA
A0951-08A	GP-2AIR	06/17/02 11:52 06/20/02 Air	TO-14	8260	□ □ □ voa
A0951-09A	GP-24AIR	06/18/02 16:55 06/20/02 Air	TO-14.	8260	□ □ □ VOA
₩951-10A	GP-4AIR	06/17/02 12:58 06/20/02 Air	TO-14	8260	□ □ □ VOA

Chent Rep: Benjamin F Dodge

21/Jun/02 16:08

WorkOrder: A0951

Client ID: SHAW_LATHAM

Project: SOH

Location: 784222

Comments: N/A

Case: SDG:

PO: 784222

Report Level: ASP-B

EDD: XL

HC Due: 07/11/02

Fax Due:

Sample ID	Client Sample ID	Collection Date	Date Receive	d Matrix	Test Code	Test Code Comments	Hold MS SEL Storag
A0951-11A	GP-1AIR	06/17/02 11:22	06/20/02	Air	TO-14	8260	□ □ □ VOA
A0951-12A	GP-3AIR	06/17/02 12:30	06/20/02	Air	TO-14	8260	□ □ □ voa
A0951-13A	GP-136	06/17/02 18:40	06/20/02	Soil	PMoist		□ □ □ voa
			<u> </u>		SW8260B_LOW_S		□ □ □ VOA
A0951-14A	GP-207.5	06/18/02 14:15	06/20/02	Soil	PMoist		□ □ □ voa
					SW8260B_LOW_S		□ □ □ vo a
A0951-15A	GP-213	06/18/02 14:35	06/20/02	Soil	PMoist		□ □ □ voa
					SW8260B_LOW_S		□ □ □ voa
A0951-16A	GP-246.5	06/18/02 17:06	06/20/02	Soil	PMoist		□ □ □ voa
					SW8260B_LOW_S		□ □ □ VOA
A0951-17A	GP-266.5	06/18/02 18:22	06/20/02	Soil	PMoist		□ □ □ voa
000					SW8260B_LOW_S		□ □ □ VOA

21/Jun/02 16:08

WorkOrder: A0951

Client ID: SHAW_LATHAM

Project: SOH

Location: 784222

Comments: N/A

Case:

SDG:

PO: 784222

Report Level: ASP-B

EDD: XL

HC Due: 07/11/02

Fax Due:

Sample ID	Client Sample ID	Collection Date Date Rece	lved Matrix	Test Code	Test Code Comments	Hold MS	SEL Storage
A0951-18A	GP-36.5	06/18/02 12:43 06/20/02	Soil	PMoist			□ voa
				SW8260B_LOW_S			□ VOA
A0951-19A	GP-286.5	06/18/02 19:35 06/20/02	Soil	PMoist			□ voa
				SW8260B_LOW_S			□ VOA
A0951-20A	GP-20AIR	06/18/02 13:55 06/20/02	Air	TO-14	8260		□ VOA

Sample Transmittal Documentation

175 Metro Center Boulevard Warwick, Rhode Island 02886-1755 (401) 732-3400 • Fax (401) 732-3499 email: mitkem@mitkem.com

CHAIN-OF-CUSTODY RECORD

Page of 2

And the second of the property of the second	REPO	RT TO	:1	1 1 1 1 1 1	×7'	or America		7.4		१५, हरू स		T.	,		, C (F	编制		ATT OF THE		o eg⊢	15:	15
COMPANY SHA	SEET				РНО	NE J	8-783-19 9	COL	APANY	,		SA	ME					РНО	NE			LAB PROJECT
NAME Drew C							83-8397	NAI					•					FAX				10951
ADDRESS 13 Br	itish Ameri	نحمہ	<u> </u>	Blo				ADI	RESS													TURNAROUND
								CITY/ST/ZIP No.								Norm						
	(10.) / 0.1	CLIEN	VT PR	OJEC	Γ#:	,	CLIENT P.O.#:	1	Ţ							DEOL	ESTE	D ANG	LI VCT			
SOH		784	(2a	a								/	, /	/ /	, /	/ /	, ESTE	/	/ /		///	/ /
SAMPLE IDENTIFICATION	DATE/TIME SAMPLED	COMPOSITE	GRAB	WATER	SOIL	OTHER	LAB ID	# OF CONTAINERS		0 V*/	89°	\ /	//		/ /	//	//	//				COMMENTS
GP-28 Air	6/14/02/19:20		X			X	10951-01	1	×													
BP-12 A:C	6/17/62/17:45		X			×	A095102	I	X													
68-6 Ar	6/17/62 / 14:25		X			X	40951-03	1	X													 -
GP- 19 Air	6/18/02/13:20		X			X	A0951-04	l	X								_					···
18-21 Air	6/19/02/14:30		X		-	\ <u>\</u>	A0951-05	1	X													
158-22 Air	6/18/02/15:22		X			ֹχ	40951-06	1	X													
	617/62 16:35		X			χ.	4095107	1	λ			-										<u></u>
68-2.A.r	6/17/02/11:52		X			ς ,	APPS1-08	1	X													-
,	6/18/02 / 16:55		X			K	40951-09	1	$\overline{\xi}$													
	6/13/02/12:58		$\mathbf{\hat{x}}$			×	A0951-010	1	X													
68-1 AT	6/17/02/11:22		X			X	A0951-011	1	X													
68-3 ATC	6117/2/12:30		X			X	A0951-012	1	X													
TSF# RELINQU	ISHED BY			TIME //		Ĵa	ACCEI UN MALI			1		620	DATE/			ADDI	TIONA	L RE	MARK	. S :		2 COOLER Ambia
2 3				,									/									

175 Metro Center Boulevard Warwick, Rhode Island 02886-1755 (401) 732-3400 • Fax (401) 732-3499 email: mitkem@mitkem.com

CHAIN-OF-CUSTODY RECORD

Page 2 of 2

A STATE OF THE PROPERTY OF THE	REPO	RT TO	1 1 1 1	e Television		A SECTION AND AND AND AND AND AND AND AND AND AN			r r			(1) (1) (1) (1) (1) (1) (1) (1)				Tab	40 401.72 17 10 11 11 11 11 11 11 11 11 11 11 11 11		10 mg - 20 ° 1		14.0	
COMPANY SHAL	SEET			PHO	NE S	18-783-1916	CO	APAN	Y	4	ገ ጋልፈ	ne					PHO	ONE			I	LAB PROJECT #:
NAME Drew	Graham					7\$3-8397											FAX	(A0951
ADDRESS 13 6	oritish Ame		B			•		DRESS											•		7	TURNAROUND T
OF THE PARTY OF TH	nam. NY						СІТ	Y/ST/Z	IР							•						Normal
CLIENT PROJECT NAME		CLIENT	PROJE	CT #:		CLIENT P.O.#:		T							DEC.	· · · · · · · · · · · · · · · · · · ·						
SOH		784	a2 2								/	//	//	//	KEQ!	/ /	ED AN	ALYS.	es /	1./	/	/
SAMPLE IDENTIFICATION	DATE/TIME SAMPLED	COMPOSITE	WATER	NOS .	OTHER	LAB ID	# OF CONTAINERS		eg/P/	3/3	//			/ /	//	//						COMMENTS
GP-13 6'	6/17/02/ 18:40		<u> </u>	X		10951-013	1	X						<u>_</u>								_
	6/18/02/ 14:15	X		X		40951-014		×	<u> </u>													
68-21 3'	6/18/02/14:35	د		×		M951-015	1	<u>×</u>		<u> </u>	<u> </u>		<u> </u>									
68-24 6.51	6/15/02/17:06		1	<u>x</u>		4093-016	1	X				<u> </u>										
68.26 6.5'	6/18/62/18:22	د	_ـــا>	X		100st017	1	X	<u> </u>			<u> </u>									•	
18.3 6.5	6/17/67/12:43	ح	2	<u>火</u>		A0951018	1	X			<u> </u>	ļ										
GP-28 6.5'	6/18/02/19:35	×	<u>' </u>	M		A0951-019	1	X		<u> </u>	<u> </u>					<u> </u>	<u> </u>					
6P-20 AT	6118/02/13:55	×		X		120251-020	t	x									<u>'</u>					-
	. /	_						<u> </u>														· _ ·
· .	/			ļ				<u> </u>			<u> </u>											
	/											L										
	/			<u> </u>					<u> </u>													
TSF# RELINOU	ISHED BY	DA 19/62	////	-	Sa	ACCEI MA MODUL							/ /OC	·	ADD:	TION.	AL RĒ	MARI	<u>(S</u> :			COOLER TE Ambiant
3		<u></u>	<u>'</u> /			_			·			·····	<u>, </u>						•	-		

MITKEM CORPORATION

Sample Condition Form

Page _of _

Received By: 5% Reviewed B	ly:	Date: (o-a	0702	MI	ГКЕМ	Project:	10951				
Client Project: SOH Client: SMW											
			(pH)	VOA							
Condition:		Lab Sample	e ID			ICI NaO	Matrix				
1)Custody Seal(s) Present /	Absent	A0951	-01		$\neg \top$		A				
Coolers /	Bottles	A0951	-02				$\frac{1}{\Delta}$				
Intact /	Broken	10951	-03			_ _	1 7				
Custody Seal Numbers		A0951	-04				7				
		4095	705				A				
		A0951	-06		$\neg +$		<i>A</i>				
		A0951	707				/ A				
·		20951	-08				4				
	_	A6951	-09				A				
		1695	-010			\neg	A				
3)Chain of Custody Bus and		AOSI	7011				A				
3)Chain -of- Custody (Present)/	Absent	40051	7012				A				
		40751	_013				US				
$\widehat{}$		12051	-04				US.				
4)Airbill(s) Present Absent		105	-015				115				
Tresent Absent	1	400	06				υS				
Airbill Number(s) 27647275	71	4001	-017				US				
27(4727)	<u>) / </u> /1=/-	10401	-OK				<i>U</i> 5				
Q 70-110 1-	n	4001	-019		_		U\$				
5)Cooler Temperature Ambion 5	<u></u>	AUGI	-010)			_[Ą				
Shirthen 2	<u> </u>				===						
Coolant Condition						-					
	_						/				
6)Sample Bottles (Intact/Broken/Le	akino		 -			- $+$ A	<u> </u>				
				 -		-					
7)Date Received 60000						4-					
1,000					\nearrow		,				
8)Time Received 1000	_				2						
						12					