

SITE MANAGEMENT

2018 ANNUAL REPORT

WORK ASSIGNMENT D007622-08.1

STUART OLVER HOLTZ SITE HENRIETTA (T)

SITE NO. 828079 MONROE (C), NY

Prepared for:
NEW YORK STATE
DEPARTMENT OF ENVIRONMENTAL CONSERVATION
625 Broadway, Albany, New York

Basil Seggos, Commissioner

DIVISION OF ENVIRONMENTAL REMEDIATION

URS Corporation 257 West Genesee Street, Suite 400 Buffalo, New York 14202

OCTOBER 2018

STUART OLVER HOLTZ SITE 2018 ANNUAL REPORT SITE MANAGEMENT

SITE # 828079 TOWN OF HENRIETTA, MONROE COUNTY, NEW YORK

PREPARED FOR:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DEPARTMENT OF ENVIRONMENTAL REMEDIATION WORK ASSIGNMENT D007622-08.1

PREPARED BY:

URS CORPORATION
257 WEST GENESEE STREET
BUFFALO, NEW YORK 14202

OCTOBER 2018

TABLE OF CONTENTS

			Page No.
1.0	INTR	RODUCTION	1-1
	1.1	General	1_1
	1.2	Project Background.	
2.0	SITE	DESCRIPTION	2-1
3.0	MON	VITORING ACTIVITIES	3-1
	3.1	Groundwater Monitoring	3-1
	3.2	Groundwater Sampling	3-1
		3.2.1 Groundwater Results	
4.0	SITE	MAINTENANCE	4-1
	4.1	Monitoring Well Inspections	4-1
	4.2	Site Inspection	4-1
	4.3	Maintenance Performed	4-1
		4.3.1 Monitoring Well Maintenance	4-1
		4.3.2 Routine Maintenance	4-2
		4.3.3 Intermittent Maintenance	4-2
5.0 INST		NTIFICATION, AND ASSESSMENT OF ENGINEERING ADDITIONAL CONTROLS	
11 (1)	5.1	Engineering Control Systems	
	5.2	Institutional Controls	
6.0	SUM	MARY AND RECOMMENDATIONS	6-1
	6.1	Groundwater Hydraulic Monitoring	6-1
	6.2	Groundwater Quality Monitoring	
	6.3	Monitoring Well Maintenance	
	6.4	Site Maintenance	
7.0	REFE	FRENCES	7-1

TABLES

Table 1	Groundwater Elevation Measurements
Table 2	Summary of Detected Compounds in May 2018 Groundwater Samples
Table 3	Summary of Detected Emerging Contaminants in Groundwater Samples
Table 4	Statistical Summary of Compounds Detected in Groundwater Samples
Table 5	Historical Results of Compounds Detected in Groundwater Samples
	FIGURES
Figure 1	Site Location
Figure 2	Site Plan
Figure 3	Monitoring Wells
Figure 4	Overburden Groundwater Contour Map – May 2, 2018
Figure 5	Groundwater VOC Analytical Results - May 2, 2018
Figure 5	Groundwater PFAS & 1,4-Dioxane Analytical Results – May 2, 2018
	APPENDICES
Appendix A	Field Notes
Appendix B	Data Usability Summary Report
Appendix C	Well Inspection Forms
Appendix D	Site Inspection Form

1.0 INTRODUCTION

1.1 General

This Site Management Annual Report for the calendar year 2018 has been prepared under New York State Department of Environmental Conservation (NYSDEC) Work Assignment No. D007622-08.1 for the Stuart Olver Holtz Site (Site). The purpose of this report is to provide a record of the post-remediation monitoring and maintenance activities at the Site. The May 2018 sampling event is the first post-remediation monitoring event since remedial activities were completed in 2016. This report is the first report as called for by Section 7.1 of the Site Management Plan (SMP) (URS, 2018).

1.2 Project Background

The Site is listed on the NYSDEC's registry of inactive hazardous waste sites as Site #828079. A Remedial Investigation (RI) was completed in September 1996; the Feasibility Study (FS) was completed in October 1996; and a Record of Decision (ROD) was issued on March 31, 1997. In October 2005, the NYSDEC issued an Explanation of Significant Differences (ESD), modifying the ROD. A Supplemental Investigation Summary Report was issued in April 2009; a Focused FS was issued in January 2014, and remedial actions were undertaken in two phases at the Site during the period of April 2011 through October 2016. Additional background information for the Site and a summary of the completed remedial actions are provided in Section 2.0.

2.0 SITE DESCRIPTION

The Site is located at 39 Commerce Drive in the Town of Henrietta, Monroe County, New York (Figure 1). The Site is comprised of two parcels, identified as section, block, lot numbers 161.15-1-4 and 161.15-1-5 on the Monroe County Tax Map. The Site is an approximately 3.8-acre area and is bounded by Commerce Drive to the north, various commercial properties on West Henrietta Road to the east, Ruby Gordon Furniture Store to the south, and Pullman Manufacturing to the west (Figure 2). The east branch of Red Creek, which flows north at its nearest point to the Site, is approximately 700 feet to the east.

A single story 64,000 square-foot building was previously located on the eastern portion of the Site. The building was demolished in December 2005, but the concrete slab was left in place. The remaining portions of the Site consist of parking areas/driveways, grass-covered areas and weeds/scrub/brush-covered areas. A vegetated drainage swale is located just beyond the west property boundary. Trees along the south property boundary were planted in October 2016 as part of Site remediation.

An RI/FS was completed at the Site in the September/October 1996. Chlorinated solvents were identified as contaminants of concern (COCs) in groundwater. The ROD, signed in March 1997, specified that a shallow groundwater collection trench was to be constructed. Collected groundwater would pass through a passive groundwater treatment system and then be discharged to a publicly operated treatment works. The ROD also called for the excavation and off-site disposal of remaining contaminated soil and capping of the area. Periodic sampling of the bedrock groundwater was also required.

The remedial design (RD) began in November of 1999. A pilot test conducted in 2000 evaluated in-situ chemical oxidation (ISCO). The pilot test was determined to be successful, and, based on the results from the pilot study, the ROD was modified in October 2005 by the ESD to include ISCO and bioremediation instead of the pump and treat technology that was included in the 1997 ROD. In order to safely address the source area underneath the building, it was necessary to demolish the structure. Demolition of the building was completed in December 2005.

A supplemental investigation, completed in April 2009, further delineated the source of soil impacts and the groundwater plume. The remedial design included the remedial components presented in the modified ROD. ISCO was started in the summer of 2011. A total of three rounds of injections were completed by November 2011. Groundwater results obtained after each injection indicated that the concentration of chlorinated solvents had decreased. NYSDEC decided to inject molasses to address residual chlorinated solvent contamination. The results of the groundwater samples obtained after the first injection of molasses showed that the contamination concentration has declined significantly at most locations.

A Focused FS was completed in January 2014 to address residual impacts. Based on the findings of the Focused FS, NYSDEC decided to implement an alternative that included additional injections using direct-push techniques to address the remaining contamination. The additional injections were completed in May 2014 and the results from the subsequent groundwater sampling indicated that the concentrations of COCs had decreased except for three locations. Additional sampling was conducted to assess future action. In a February 10, 2014 memo to evaluate the asphalt drainage swale component of the remedy, phytoremediation was selected to address residual groundwater impacts between the Site and the Ruby Gordon Furniture Store. Thirty trees were planted along the south property boundary in October 2016.

In April 2018, an SMP was prepared that outlines annual Site inspection and groundwater monitoring requirements (URS, 2018). The activities discussed below are the procedures and resulting data from the 2018 annual Site inspection and groundwater monitoring event.

3.0 MONITORING ACTIVITIES

Monitoring activities performed on May 2, 2018 consisted of the collection of groundwater samples from 21 on-site and four off-site overburden monitoring wells (Figure 3).

3.1 Groundwater Monitoring

Groundwater level measurements, recorded prior to sampling, are provided in Table 1. A potentiometric surface map based on the water level measurements from the overburden wells, using a 2.0-foot contour interval, is provided in Figure 4. Flow is generally from the east to the west, with flow components to the south, west, north, and northwest.

3.2 Groundwater Sampling

The monitoring wells were sampled using HydraSleeveTM or SuperSleeveTM procedures detailed in Field Sampling Plan located in Appendix I of the SMP. Since the sampling method does not require purging until stabilization, water quality parameters (i.e., pH, temperature, specific conductivity, dissolved oxygen, turbidity, and oxygen reduction potential) were not collected. A copy of the sampling field notes is provided in Appendix A.

The groundwater samples were delivered by URS under chain-of custody to the NYSDEC call-out laboratory, TestAmerica Laboratories, Inc. (TestAmerica), located in Amherst, New York. The groundwater samples were analyzed for target compound list volatile organic compounds (VOCs) by United States Environmental Protection Agency (USEPA) Method 8260C.

Groundwater samples from upgradient (URS-08 and URS-09); source area (URS-02, URS-03, URS-15, SW-32, and SW-33); and downgradient (URS-04, URS-05, and URS-13) monitoring wells were also analyzed for emerging contaminants as follows:

- Per- and polyfluoroalkyl substances (PFASs) by USEPA Method 537, modified; and
- 1,4-dioxane by Method 8260C selected ion monitoring.

Samples for 1,4-dioxane and PFAS were shipped by TestAmerica Amherst to the TestAmerica Edison, New Jersey and West Sacramento, California facilities, respectively. Each

TestAmerica facility is New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) accredited for the analytical parameters performed.

A sample could not be collected from URS-04 due to an obstruction just below the top of water. Due to the limited volume collected using the SuperSleeveTM, PFAS was the only parameter submitted for analysis from URS-09.

NYSDEC Analytical Services Protocol Category B data deliverables provided by the laboratory were validated by URS in accordance with the requirements outlined in *Guidance for Data Deliverables and the Development of Data Usability Summary Reports (DUSR), Appendix 2B, DER-10/Technical Guidance for Site Investigation and Remediation* (NYSDEC, 2010). Data summary tables and Form Is are provided in the DUSR prepared by URS and include the reporting limit for each non-detected compound. A copy of the DUSR is provided in Appendix B. An electronic data deliverable was submitted to the NYSDEC in the NYSDEC's EQuIS format.

3.2.1 Groundwater Results

A summary of the detected VOCs in the May 2018 groundwater samples are provided in Table 2 and the emerging contaminant results are provided in Table 3. The data in Table 2 are compared to Class GA groundwater standards and guidance values as presented in the *Technical and Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations* (NYSDEC 1998; revised April 2000 and June 2004). The data in Table 3 are compared to USEPA Advisory Limits (USEPA, 2016). Results exceeding TOGS 1.1.1 Class GA groundwater standards or guidance values and EPA Advisory Limits are indicated with a circle. The locations of detected compounds that have exceeded their respective criteria are shown on Figure 5. A statistical summary of detected compounds in groundwater is provided in Table 4.

The analytical results for the May 2018 monitoring event are summarized as follows:

• The following compounds exceeded TOGS 1.1.1 Class GA groundwater standards at one or more location: 1,1,1-trichloroethane (1,1,1-TCA); 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113); 1,1-dichloroethane (1,1-DCA); 1,1-dichloroethene (1,1-DCE); 1,2-dichloroethane (1,2-DCA); cis-1,2-dichloroethene (cis-1,2-DCE); trans-

- 1,2-dichloroethene (trans-1,2-DCE); chloroethane (CA); tetrachloroethene (PCE); trichloroethene (TCE); and vinyl chloride (VC). Per the ROD, all the compounds listed above, except CFC-113 and chloroethane, are considered COCs in groundwater.
- One or more of the above-listed chlorinated VOCs exceeded criteria at the following monitoring well and piezometer locations: B-4/PZ-01; MW-05; OW-03S; OW-04S; OW-05S; OW-06S; OW-07S; SW-32; SW-33; SW-37; URS-01; URS-03; URS-11; URS-15; and URS-16.
- 1,1,1-TCA, PCE, and TCE are considered primary or parent products and the remaining compounds, except CFC-113, are considered degradation or daughter products.
- The highest concentration of 1,1,1-TCA was detected in SW-32 (630,000 μg/L); the highest concentration of PCE was detected in URS-16 (2,600 μg/L), and the highest concentration of TCE was detected in URS-01 (780 μg/L).
- Degradation products of 1,1,1-TCA, PCE, and TCE were detected at concentrations higher than the parent compound concentrations at several locations (OW-03S, OW-06S, OW-07S, SW-33, SW-37, URS-01, URS-11, URS-15 and URS-16).
- The Focused FS defined significant groundwater contamination as generally two or more contaminants with concentrations exceeding 1,000 μg/L. In May 2018, locations with two or more contaminants having concentrations greater than 1,000 μg/L were OW-07S, SW-32, SW-33, SW-37, URS-01, URS-11, URS-15 and URS-16. COCs with concentrations greater than 1,000 μg/L include 1,1,1-TCA, 1,1-DCA, cis-1,2-DCE, chloroethane, PCE, and vinyl chloride.
- In the FS, the remedial treatment zone was defined as all areas with total VOC concentrations above $50,000 \mu g/L$ (see Figure 3). In May 2018, total VOCs exceeded $50,000 \mu g/L$ only at location SW-32 (720,000 $\mu g/L$).
- Compared to historical results, concentrations of COCs decreased at most locations, as shown in Table 5. Locations OW-04S, OW-06S, SW-33, URS-01, URS-03, URS-11, and URS-15 exhibited increased concentrations of degradation products compared to the previous sampling at those locations. 1,1,1-TCA and/or TCE

concentrations increased an order of magnitude or more at locations OW-04S, URS-01, and URS-03.

• 1,4-Dioxane was detected in six of the eight locations sampled for this compound (SW-32, SW-33, URS-02, URS-03, URS-13 and URS-15). Concentrations ranged from 2.2 μg/L (URS-13) to 8,000 μg/L (SW-32). The two locations with highest concentrations, SW-32 and SW-33, are within the treatment zone. The next highest concentration was detected in downgradient well URS-02 (1,800 μg/L). Detected concentrations in the remaining three wells were below 90 μg/L.

1,4-Dioxane was used as a stabilizer for 1,1,1-TCA (USEPA, 2017). 1,1,1-TCA is a COC at this Site.

• PFASs were detected in every location sampled for this parameter group. Perfluorooctanesulfonic acid (PFOS) was detected above the USEPA Advisory Limit (USEPA, 2016) of 70 nanograms per liter (ng/L) only in URS-09 (187 ng/L). Perfluorooctanonic acid (PFOA) was detected above the USEPA Advisory Limit of 70 ng/L only in URS-13 (112 ng/L). Total PFOA and PFOS in samples SW-33, URS-03, URS-08, URS-09, URS-13 and URS-15 exceeded the USEPA Advisory Limit of 70 ng/L with concentrations ranging from 72.6 (URS-03) to 192 ng/L ((URS-09). The highest individual and total PFOA and PFOS concentrations were detected in upgradient/sidegradient well URS-09 and upgradient well URS-13.

Historical operations at the Site include metals plating. A major fire at the facility occurred in December 1974 (GZA, 1996). Metals plating facilities and firefighting foams commonly used PFAS-containing formulations (ITRC, 2017).

4.0 SITE MAINTENANCE

4.1 Monitoring Well Inspections

URS performed a well inspection during the May 2018 monitoring event. Most of the wells appeared to be in good condition, with exception of the following:

- The curb box for URS-04 was damaged and needs to be replaced. During sampling, it was also noted that there is an obstruction in the well just below the water table.
- OW-07S has no outer casing, exposing the 4-inch diameter PVC riser and J-Plug.
 This well needs an outer casing installed.
- B1/PZ-03, OW-07S, OW-04S, URS-05, URS-06 and URS-13 need to be re-labeled.
- The locking cap/cover to URS-09 is detached from the outer well casing. A new exterior wells casing with locking cam needs to be installed.
- The cover to URS-06 is secured with bolts requiring an Allen wrench. These bolts should be replaced with standard stainless steel 9/16" bolts.

The monitoring well inspection forms are provided in Appendix C.

4.2 Site Inspection

URS performed a Site inspection during the May 2018 Site visit. The inspection included an examination of the following items: evidence of site-wide disturbance, evidence of surface soil disturbance, evidence of excavation, evidence of building construction, and evidence of change in Site use. There was no evidence of site-wide disturbance, surface soil disturbance, excavation, building construction, or change in Site use. All items associated with the inspection were found to be in good order. A copy of the completed Site inspection form is provided in Appendix D.

4.3 Maintenance Performed

4.3.1 Monitoring Well Maintenance

No monitoring well maintenance was performed during the May 2018 Site visit.

4.3.2 Routine Maintenance

No routine maintenance was performed at the time this report was prepared.

4.3.3 Intermittent Maintenance

No intermittent maintenance was performed during the May 2018 Site visit.

5.0 IDENTIFICATION, AND ASSESSMENT OF ENGINEERING AND INSTITUTIONAL CONTROLS

5.1 Engineering Control Systems

Site remediation included planting 15 poplar and 15 willow trees near the southern border of the Site as a phytoremediation approach to address drainage in this area and to reduce migration of groundwater contamination to the adjacent Ruby Gordon property. The trees were inspected in May 2018 in accordance with the Monitoring and Sampling Plan. The trees appeared to be healthy at the time of the inspection.

5.2 Institutional Controls

A series of ICs is required by the ROD to: implement, maintain and monitor Engineering Controls; prevent future exposure to remaining contamination; and, limit the use and development of the Site to commercial or industrial uses only. Adherence to these ICs is required by the Environmental Easement and implemented under the SMP. ICs may not be discontinued without an amendment to, or extinguishment of, the Environmental Easement. The ICs are implemented to the extent of the Site boundary, which is shown on Figure 2. The site-specific ICs are:

- The property may be used for commercial or industrial use.
- All ECs must be operated and maintained as specified in the SMP.
- All ECs must be inspected at a frequency and in a manner defined in the SMP.
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Monroe Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the NYSDEC.
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP.
- Data and information pertinent to Site management must be reported at the frequency and in a manner as defined in the SMP.

- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP.
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP.
- Access to the Site must be provided to agents, employees or other representatives of
 the State of New York with reasonable prior notice to the property owner to assure
 compliance with the restrictions identified by the Environmental Easement.
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC (Site) boundary shown in Figure 2, and any potential impacts that are identified must be monitored or mitigated.
- Periodic monitoring of the indoor air and sumps at the Ruby Gordon building to confirm that the sump covers are in place.

6.0 SUMMARY AND RECOMMENDATIONS

6.1 Groundwater Hydraulic Monitoring

The May 2018 monitoring shows that groundwater flow is from the east with some flow components to the south, west, north, and northwest.

6.2 Groundwater Quality Monitoring

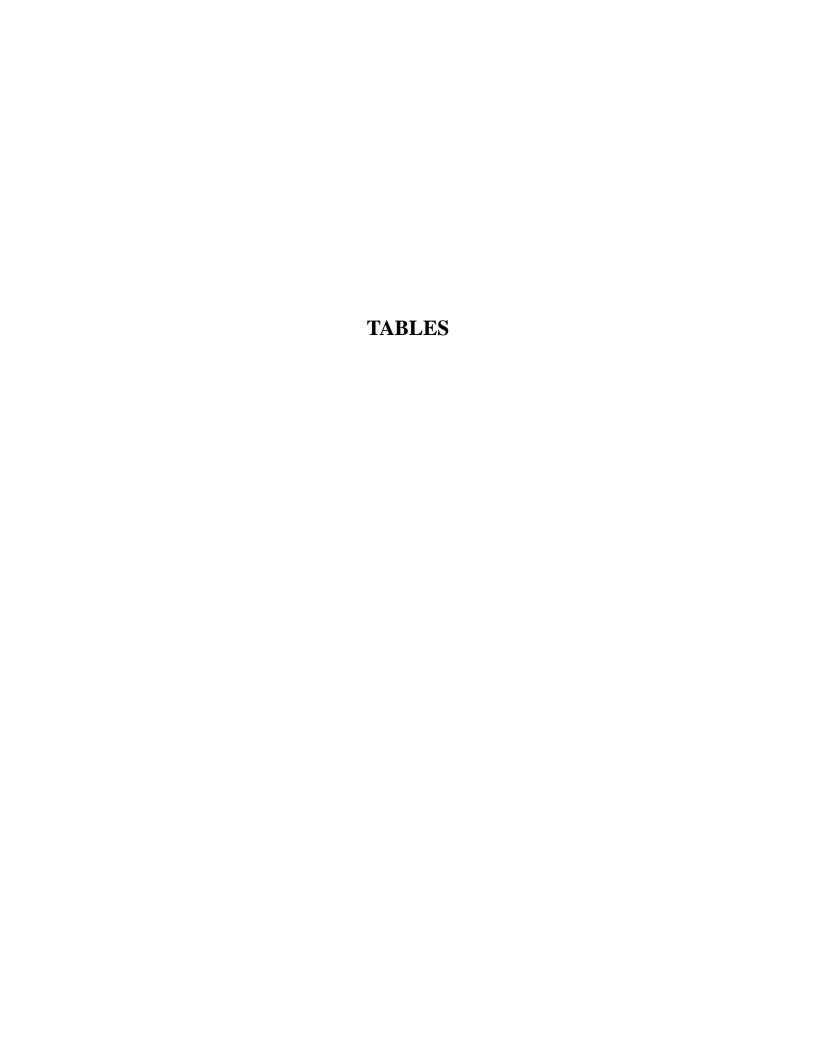
Three monitoring wells have concentrations of COCs that exceed 1,000 μg/L - 1,1,1-TCA at SW-32 and SW-37, and PCE at URS-16. The remaining COCs with concentrations greater than 1,000 μg/L (i.e., 1,1-DCE, cis-1,2-DCE, CA, and VC) are PCE, TCE, or 1,1,1-TCA degradation products. The May 2018 data show that COC concentrations, in general, are decreasing compared to historical data. Several locations exhibited increased concentrations of COCs, but most of those increases were degradation products, which would be expected as a result of natural attenuation. Insufficient post-remediation data is available from locations OW-04S, URS-01, and URS-03, where 1,1,1-TCA and/or TCE showed increased concentrations, to determine if those increases are a trend or the result of seasonal variation.

For the emerging contaminants, concentrations of PFASs detected were above their criteria in six of the nine samples. The concentrations of 1,4-dioxane in samples from SW-32, SW-33 and URS-02 were notable, in the low parts per million range. The presence of 1,4-dioxane is possibly associated with solvents used at the Site. Continued monitoring for these analytes is recommended in future monitoring events.

6.3 Monitoring Well Maintenance

The following monitoring well maintenance activities are recommended:

- replace the curb box for URS-04;
- remove the obstruction in URS-04;
- install an outer casing with locking cap for OW-07S;
- install a new outer casing with locking cap for URS-09;
- replace bolts to the cover of URS-06 with standard stainless steel 9/16" bolts; and


• re-label B1/PZ-03, OW-07S, OW-04S, URS-05, URS-06 and URS-13.

6.4 Site Maintenance

No needed maintenance items were noted during the May 2018 Site inspection.

7.0 REFERENCES

- GZA GeoEnvironmental of New York (GZA). 1996a. Remedial Investigation Report, Stuart Olver Holtz Site, Henrietta, New York. NYSDEC Site No. 8-28-079. September
- GZA. 1996b. Feasibility Study Report, Stuart Olver Holtz Site, Henrietta, New York. NYSDEC Site No. 8-28-079. October
- Interstate Technology Regulatory Council (ITRC). 2017. History and Use of Per- and Polyfluoroalkyl Substances (PFAS). November 13.
- New York State Department of Environmental Conservation (NYSDEC). 1997. Record of Decision, Stuart Olver Holtz Company Site, Monroe County, New York, Site Number 8-28-079. March.
- NYSDEC. 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Technical and Operational Guidance Series (TOGS 1.1.1). Albany: Division of Water. June.
- NYSDEC. 2000. April 2000 Addendum to June 1998 Division of Water Technical and Operational Guidance Series (TOGS) No. 1.1.1. Albany: Division of Water. April.
- NYSDEC. 2004. June 2004 Addendum to June 1998 Division of Water Technical and Operational Guidance Series (TOGS) No. 1.1.1. Albany: Division of Water. June.
- NYSDEC. 2005. Explanation of Significate Differences, Stuart Olver Holtz, Town of Henrietta, Monroe County Site Registry No. 8-28-079. October.
- NYSDEC. 2010. NYSDEC Division of Environmental Remediation DER-10 Technical Guidance for Site Investigation and Remediation, Appendix 2B Guidance for Data Deliverables and Development of Data Usability Summary Reports (DUSR). May.
- United States Environmental Protection Agency (USEPA), 2016. Federal Register / Vol. 81, No. 101. May.
- USEPA. 2017. Technical Fact Sheet 1,4-Dioxane. EPA 505-F-17-011. November.
- URS Corporation New York (URS). 2009. Supplemental Investigation Summary Report, Stuart Olver Holtz Site, Site No. 8-28-079, Henrietta (T), Monroe (C) NY. April.
- URS. 2014a. Focused Feasibility Study Report, Stuart Olver Holtz Site, Site No. 828079, Final. January.
- URS 2014b. Stuart Olver Holtz Site (#8-28-079) Asphalt Drainage Swale Evaluation. February 10
- URS. 2018. Stuart Olver Holtz Site Management Plan. June.

TABLE 1 GROUNDWATER ELEVATION MEASUREMENTS STUART OLVER HOLTZ SITE

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
B1/PZ-03	1123913.793	751258.2088			527.97							
PZ							5/2/2018 0850	8.32	519.65	0.00		
B4/PZ-01	1123613.144	751118.1692			530.75							
PZ							5/2/2018 1100	7.87	522.88	0.00		
MW-05	1123798.575	751154.1309	527.4		530.31							
MNW							5/2/2018 1120	6.73	523.58	0.00		
OW-03S	1123872.990	751118.5955	523.3		527.25							
MNW							5/2/2018 1132	5.31	521.94	0.00		
OW-04S	1123652.253	751055.8861	530.0		531.81							
MNW							5/2/2018 1110	7.94	523.87	0.00		
OW-05S	1123966.227	751364.401	526.9		528.79							
MNW							5/2/2018 0845	8.32	520.47	0.00		
OW-06S	1123597.261	751240.4279	529.0		531.00							
MNW							5/2/2018 1050	5.47	525.53	0.00		
OW-07S	1123711.506	751320.401	528.1		527.51							
MNW							5/2/2018 0935	3.27	524.24	0.00		
SW-32	1123716.389	751357.815	528.11	530.98	530.49							
MNW							5/2/2018 0940	3.84	526.65	0.00		
SW-33	1123721.278	751384.386	531.33	534.14	533.62							
MNW							5/2/2018 0944	6.75	526.87	0.00		
SW-37	1123694.431	751402.008	531.33	534.28	533.77							
MNW							5/2/2018 0950	5.98	527.79	0.00		
URS-01	1123711.506	751214.7767	527.47	530.12	529.93							
MNW							5/2/2018 1056	4.69	525.24	0.00		
URS-02	1123739.943	751129.4642	528.0	530.71	530.48							
MNW							5/2/2018 1115	5.95	524.53	0.00		

NM - No Measurement

Type:

MNW PZ Monitoring Well Piezometer

TABLE 1 GROUNDWATER ELEVATION MEASUREMENTS STUART OLVER HOLTZ SITE

Location ID / Type	Northing	Easting	Ground Elevation (ft)	Casing Elevation (ft)	Meas.point (Riser)Elev.(ft)	Geol. Zone	Date / Time	Depth to Water (ft)	Water Elev. (ft)	Product Thick. (ft)	Corrected Water Elev. (ft)	Remark
URS-03	1123859.110	751308.214	527.78	530.12	530.20							
MNW							5/2/2018 0815	5.95	524.25	0.00		
URS-04	1124029.735	751302.797	526.50	526.50	526.21							
MNW							5/2/2018 0930	8.26	517.95	0.00		
URS-05	1123859.110	750869.464	524.63	524.63	524.26							
MNW							5/2/2018 1155	3.62	520.64	0.00		
URS-06	1123696.610	750977.7976	525.4	525.40	525.09							
MNW							5/2/2018 1300	0.50	524.59	0.00		
URS-08	1123779.214	751531.6517	531.53	534.10	533.99							
MNW							5/2/2018 1015	4.35	529.64	0.00		
URS-09	1123888.902	751565.505	531.80	534.38	534.11							
MNW							5/2/2018 1017	5.39	528.72	0.00		
URS-11	1123676.297	751377.276	531.90	534.68	534.51							
MNW							5/2/2018 0952	6.90	527.61	0.00		
URS-12	1123708.797	751430.089	531.92	534.61	534.50							
MNW							5/2/2018 0954	5.93	528.57	0.00		
URS-13	1123516.506	751022.4851	525.5	525.49	525.18							
MNW							5/2/2018 1315	2.42	522.76	0.00		
URS-14	1123879.422	751226.964	526.82	529.66	529.74							
MNW							5/2/2018 0830	6.22	523.52	0.00		
URS-15	1123616.881	751385.891	527.95	530.96	530.37							
MNW							5/2/2018 1046	3.05	527.32	0.00		
URS-16	1123815.882	751104.895	528.66	531.78	531.25							
MNW							5/2/2018 1130	7.98	523.27	0.00		

NM - No Measurement

MNW Monitoring Well
PZ Piezometer

Location ID			B1/PZ-03	B4/PZ-01	MW-05	OW-03S	OW-04S
Sample ID			B1/PZ-3	B4/PZ-01	MW-05	OW-3S	OW-04S
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (-		-	-	-	-	-
Date Sampled	l		05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units	Criteria*					
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5		27	22		930
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5					
1,1,2-Trichloroethane	UG/L	1		0.24 J			
1,1-Dichloroethane	UG/L	5		15	74	350	910
1,1-Dichloroethene	UG/L	5		5.8	8.5 J	41	240
1,2-Dichloroethane	UG/L	0.6		0.22 J			
1,2-Dichloroethene (cis)	UG/L	5		2.7	210	360	130
1,2-Dichloroethene (trans)	UG/L	5					
Chloroethane	UG/L	5		0.66 J			
Chloromethane	UG/L	5					
Methyl tert-butyl ether	UG/L	10			3.5 J		
Tetrachloroethene	UG/L	5			640	5.9 J	
Trichloroethene	UG/L	5		2.4	200	140	25
Vinyl chloride	UG/L	2					
Total Volatile Organic Compounds	UG/L	-	ND	54.02	1,158	896.9	2,235

Flags assigned during chemistry validation are shown. Concentration Exceeds Criteria

- - No Standard or guidance value.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, Revised April 2000, Class GA.

Location ID			OW-05S		OW-06S		OW-06S		OW-07S		OW-07S	
Sample ID			OW-5S		FD2-050218		OW-6S		FD1-050218		OW-7S	
Matrix			Groundwater	r	Groundwater		Groundwater	G	roundwater	(Groundwa	ter
Depth Interval (-		-		-		-		-	
Date Sampled			05/02/18		05/02/18		05/02/18		- 05/02/18 Field Duplicate (1-1)		05/02/18	
Parameter	Units	Criteria*			Field Duplicate (1-1))		Fiel	d Duplicate (1-1)			
Volatile Organic Compounds												
1,1,1-Trichloroethane	UG/L	5	0.89 J									
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	1.5									
1,1,2-Trichloroethane	UG/L	1										
1,1-Dichloroethane	UG/L	5	14	\bigcirc	26	\mathcal{I}	28	\times	1,400	\times	1,300	\supset
1,1-Dichloroethene	UG/L	5	4.8									
1,2-Dichloroethane	UG/L	0.6										
1,2-Dichloroethene (cis)	UG/L	5	11	\supset	520		550	X	10,000	X	10,000	\supset
1,2-Dichloroethene (trans)	UG/L	5					9.4 J					
Chloroethane	UG/L	5										
Chloromethane	UG/L	5										
Methyl tert-butyl ether	UG/L	10										
Tetrachloroethene	UG/L	5			21		20					
Trichloroethene	UG/L	5	33	\supset	20		19		230 J	\times	210	\supset
Vinyl chloride	UG/L	2			17		19		1,900	$X \subset$	1,800	\supset
Total Volatile Organic Compounds	UG/L	-	65.19		604		645.4		13,530		13,310	

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- - No Standard or guidance value.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, Revised April 2000, Class GA.

Location ID			SW-32	SW-33	SW-37	URS-01	URS-02
Sample ID			SW-32	SW-33	SW-37	URS-01	URS-02
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled			05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units	Criteria*					
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5	630,000		1,200	420	
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5				82	
1,1,2-Trichloroethane	UG/L	1					
1,1-Dichloroethane	UG/L	5	90,000	20,000 J	7,700	2,700 D	4.6
1,1-Dichloroethene	UG/L	5				160	
1,2-Dichloroethane	UG/L	0.6				5.7 J	
1,2-Dichloroethene (cis)	UG/L	5			6,200	3,700 D	
1,2-Dichloroethene (trans)	UG/L	5					
Chloroethane	UG/L	5		16,000 J		160	2.6 J
Chloromethane	UG/L	5					
Methyl tert-butyl ether	UG/L	10					7.4
Tetrachloroethene	UG/L	5					
Trichloroethene	UG/L	5				780	
Vinyl chloride	UG/L	2			2,700	1,500	
Total Volatile Organic Compounds	UG/L	1	720,000	36,000	17,800	9,507.7	14.6

Flags assigned during chemistry validation are shown. Concentration Exceeds Criteria

- - No Standard or guidance value.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, Revised April 2000, Class GA.

Location ID			URS-03	URS-05	URS-06	URS-08	URS-11	
Sample ID			URS-03	URS-05	URS-06	URS-08	URS-11	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (ft)		-	-	-	-	-	
Date Sampled	i		05/02/18	05/02/18	05/02/18	05/02/18	05/02/18	
Parameter	Units	Criteria*						
Volatile Organic Compounds								
1,1,1-Trichloroethane	UG/L	5	640			0.96 J		
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	140					
1,1,2-Trichloroethane	UG/L	1						
1,1-Dichloroethane	UG/L	5	210			1.0	6,100	
1,1-Dichloroethene	UG/L	5	16					
1,2-Dichloroethane	UG/L	0.6						
1,2-Dichloroethene (cis)	UG/L	5	$\begin{array}{c} 35 \\ \end{array}$					
1,2-Dichloroethene (trans)	UG/L	5						
Chloroethane	UG/L	5					22,000	
Chloromethane	UG/L	5					400 J	
Methyl tert-butyl ether	UG/L	10						
Tetrachloroethene	UG/L	5	5.1 J					
Trichloroethene	UG/L	5	37					
Vinyl chloride	UG/L	2	14					
Total Volatile Organic Compounds	UG/L	-	1,097.1	ND	ND	1.96	28,500	

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- - No Standard or guidance value.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, Revised April 2000, Class GA.

Location ID			URS-12	URS-13	URS-14	URS-15	URS-16
Sample ID			URS-12	URS-13	URS-14	URS-15	URS-16
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (•		-	-	-	-	-
Date Sampled	<u> </u>		05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units	Criteria*					
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5					
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5					
1,1,2-Trichloroethane	UG/L	1					
1,1-Dichloroethane	UG/L	5				640	260
1,1-Dichloroethene	UG/L	5				31	
1,2-Dichloroethane	UG/L	0.6					
1,2-Dichloroethene (cis)	UG/L	5				2,300 D	1,800
1,2-Dichloroethene (trans)	UG/L	5				120	
Chloroethane	UG/L	5				120	
Chloromethane	UG/L	5					
Methyl tert-butyl ether	UG/L	10		0.37 J			
Tetrachloroethene	UG/L	5					2,600
Trichloroethene	UG/L	5				13 J	630
Vinyl chloride	UG/L	2				2,000 D	95
Total Volatile Organic Compounds	UG/L	-	ND	0.37	ND	5,224	5,385

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

- - No Standard or guidance value.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, Revised April 2000, Class GA.

TABLE 3 SUMMARY OF DETECTED EMERGING CONTAMINANTS IN GROUNDWATER SAMPLES STUART OLVER HOLTZ SITE

Location ID			SW-32	SW-33	URS-02	URS-03	URS-05
Sample ID			SW-32	SW-33	URS-02	URS-03	URS-05
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled			05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units	Criteria*					
Volatile Organic Compounds							
1,4-Dioxane	UG/L	-	8,000	3,400 J	1,800	62	
Per- and Polyfluoroalkyl Substances							
Perfluorobutanesulfonic acid (PFBS)	NG/L	-	8.49 NJ		2.29	0.96 J	1.36 J
Perfluorobutanoic acid (PFBA)	NG/L	-	98.5	64.8	14.6	8.85	63.7
Perfluorodecanoic acid (PFDA)	NG/L	-	2.26	1.21 J		3.39	
Perfluorododecanoic acid (PFDoA)	NG/L	-				1.65 J	
Perfluoro-1-heptanesulfonate (PFHPS)	NG/L	-	0.77 J	0.81 J		0.64 J	
Perfluoroheptanoic acid (PFHpA)	NG/L	-	12.0	18.7	2.50	4.88	1.65 J
Perfluorohexanesulfonic acid (PFHxS)	NG/L	-	3.56	4.95		2.43	
Perfluorohexanoic acid (PFHxA)	NG/L	-	37.7	73.8	6.97	9.45	2.52
Perfluorononanoic acid (PFNA)	NG/L	-	1.73 J	2.80	0.44 J	2.19 J	0.63 J
Perfluorooctane sulfonamide (FOSA)	NG/L	-				0.43 J	
Perfluorooctanesulfonic acid (PFOS)	NG/L	70	36.0	58.8	7.49	56.7	12.6
Perfluorooctanoic acid (PFOA)	NG/L	70	31.7	58.5	4.80	15.9	2.19
Perfluoropentanoic acid (PFPA)	NG/L	-	37.1	60.0	8.95	9.21	2.24
Perfluorotetradecanoic acid (PFTeA)	NG/L	-					
Perfluoroundecanoic acid (PFUnA)	NG/L	-					
Total PFOA and PFOS	NG/L	70	67.7	117.3	12.29	72.6	14.79

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

^{*}Criteria- USEPA Drinking Water Health Advisory (USEPA, May 2016)

TABLE 3 SUMMARY OF DETECTED EMERGING CONTAMINANTS IN GROUNDWATER SAMPLES STUART OLVER HOLTZ SITE

Location ID			URS-08	URS-09	URS-13	URS-15
Sample ID			URS-08	URS-09	URS-13	URS-15
Matrix			Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-
Date Sampled			05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units	Criteria*				
Volatile Organic Compounds						
1,4-Dioxane	UG/L	-		NA	2.2	89
Per- and Polyfluoroalkyl Substances						
Perfluorobutanesulfonic acid (PFBS)	NG/L	-	1.20 J	1.37 J	4.71	
Perfluorobutanoic acid (PFBA)	NG/L	-	18.9	7.75	64.6	34.2
Perfluorodecanoic acid (PFDA)	NG/L	-	5.64	1.44 J	11.4	0.70 J
Perfluorododecanoic acid (PFDoA)	NG/L	-			1.22 J	
Perfluoro-1-heptanesulfonate (PFHPS)	NG/L	-	1.0 J	1.13 J	2.02	0.95 J
Perfluoroheptanoic acid (PFHpA)	NG/L	-	11.5	2.30	71.0	18.5
Perfluorohexanesulfonic acid (PFHxS)	NG/L	-	2.79	3.01	9.27	4.58
Perfluorohexanoic acid (PFHxA)	NG/L	-	25.6	4.84	119	55.3
Perfluorononanoic acid (PFNA)	NG/L	-	2.93	0.83 J	36.4	2.07
Perfluorooctane sulfonamide (FOSA)	NG/L	-				
Perfluorooctanesulfonic acid (PFOS)	NG/L	70	65.6	187	51.4	46.0
Perfluorooctanoic acid (PFOA)	NG/L	70	25.9	5.12	112	33.8
Perfluoropentanoic acid (PFPA)	NG/L	-	25.6	2.08 J	133	49.0
Perfluorotetradecanoic acid (PFTeA)	NG/L	-				0.62 J
Perfluoroundecanoic acid (PFUnA)	NG/L	=			1.58 J	
Total PFOA and PFOS	NG/L	70	91.5	192.12	163.4	79.8

*Criteria- USEPA Drinking Water Health Advisory (USEPA, May 2016)

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

TABLE 4 STATISTICAL SUMMARY OF COMPOUNDS DETECTED IN GROUNDWATER SAMPLES STUART OLVER HOLTZ SITE

Parameter	Units	Criteria*	No. of	No. of	Rang	e of Detecti	ons	No.	Location of
	00	01110110	Samples	Detections	Min	Max	Avg	Exceed	Max Value
Volatile Organic Compounds									
1,1,1-Trichloroethane	UG/L	5	25	9	0.890	6.30E+05	7.04E+04	7	SW-32
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	25	3	1.50	140.0	74.50	2	URS-03
1,1,2-Trichloroethane	UG/L	1	25	1	0.240	0.240	0.240	0	B4/PZ-01
1,1-Dichloroethane	UG/L	5	25	19	1.00	9.00E+04	6,933	17	SW-32
1,1-Dichloroethene	UG/L	5	25	8	4.80	240.0	63.39	7	OW-04S
1,2-Dichloroethane	UG/L	0.6	25	2	0.220	5.70	2.96	1	URS-01
1,2-Dichloroethene (cis)	UG/L	5	25	14	2.70	10,000	2,558	13	OW-07S
1,2-Dichloroethene (trans)	UG/L	5	25	2	9.40	120.0	64.70	2	URS-15
Chloroethane	UG/L	5	25	6	0.660	2.20E+04	6,381	4	URS-11
Chloromethane	UG/L	5	25	1	400.0	400.0	400.0	1	URS-11
Methyl tert-butyl ether	UG/L	10	25	3	0.370	7.40	3.76	0	URS-02
Tetrachloroethene	UG/L	5	25	6	5.10	2,600	548.7	6	URS-16
Trichloroethene	UG/L	5	25	13	2.40	780.0	180.0	12	URS-01
Vinyl chloride	UG/L	2	25	9	14.00	2,700	1,116	9	SW-37

*Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, Revised April 2000, Class GA.

Concentration Exceeds Criteria

TABLE 4 STATISTICAL SUMMARY OF COMPOUNDS DETECTED IN GROUNDWATER SAMPLES STUART OLVER HOLTZ SITE

Parameter	Units	Criteria*	No. of	No. of	Rang	e of Detecti	No.	Location of		
r dramotor	• · · · · ·	Ornoria	Samples	Detections	Min	Max	Avg	Exceed	Max Value	
Volatile Organic Compounds										
1,4-Dioxane	UG/L	-	8	6	2.20	8,000	2,226	0	SW-32	
Per- and Polyfluoroalkyl Substances										
Perfluorobutanesulfonic acid (PFBS)	NG/L	-	9	7	0.960	8.49	2.91	0	SW-32	
Perfluorobutanoic acid (PFBA)	NG/L	-	9	9	7.75	98.50	41.77	0	SW-32	
Perfluorodecanoic acid (PFDA)	NG/L	-	9	7	0.700	11.40	3.72	0	URS-13	
Perfluorododecanoic acid (PFDoA)	NG/L	-	9	2	1.22	1.65	1.44	0	URS-03	
Perfluoro-1-heptanesulfonate (PFHPS)	NG/L	-	9	7	0.640	2.02	1.05	0	URS-13	
Perfluoroheptanoic acid (PFHpA)	NG/L	-	9	9	1.65	71.00	15.89	0	URS-13	
Perfluorohexanesulfonic acid (PFHxS)	NG/L	-	9	7	2.43	9.27	4.37	0	URS-13	
Perfluorohexanoic acid (PFHxA)	NG/L	-	9	9	2.52	119.0	37.24	0	URS-13	
Perfluorononanoic acid (PFNA)	NG/L	-	9	9	0.440	36.40	5.56	0	URS-13	
Perfluorooctane sulfonamide (FOSA)	NG/L	-	9	1	0.430	0.430	0.430	0	URS-03	
Perfluorooctanesulfonic acid (PFOS)	NG/L	70	9	9	7.49	187.0	57.95	1	URS-09	
Perfluorooctanoic acid (PFOA)	NG/L	70	9	9	2.19	112.0	32.21	1	URS-13	
Perfluoropentanoic acid (PFPA)	NG/L	-	9	9	2.08	133.0	36.35	0	URS-13	
Perfluorotetradecanoic acid (PFTeA)	NG/L	-	9	1	0.620	0.620	0.620	0	URS-15	
Perfluoroundecanoic acid (PFUnA)	NG/L	-	9	1	1.58	1.58	1.58	0	URS-13	
Total PFOA and PFOS	NG/L	70	9	9	12.30	192.0	90.08	6	URS-09	

^{*}Criteria- USEPA Drinking Water Health Advisory (USEPA, May 2016)

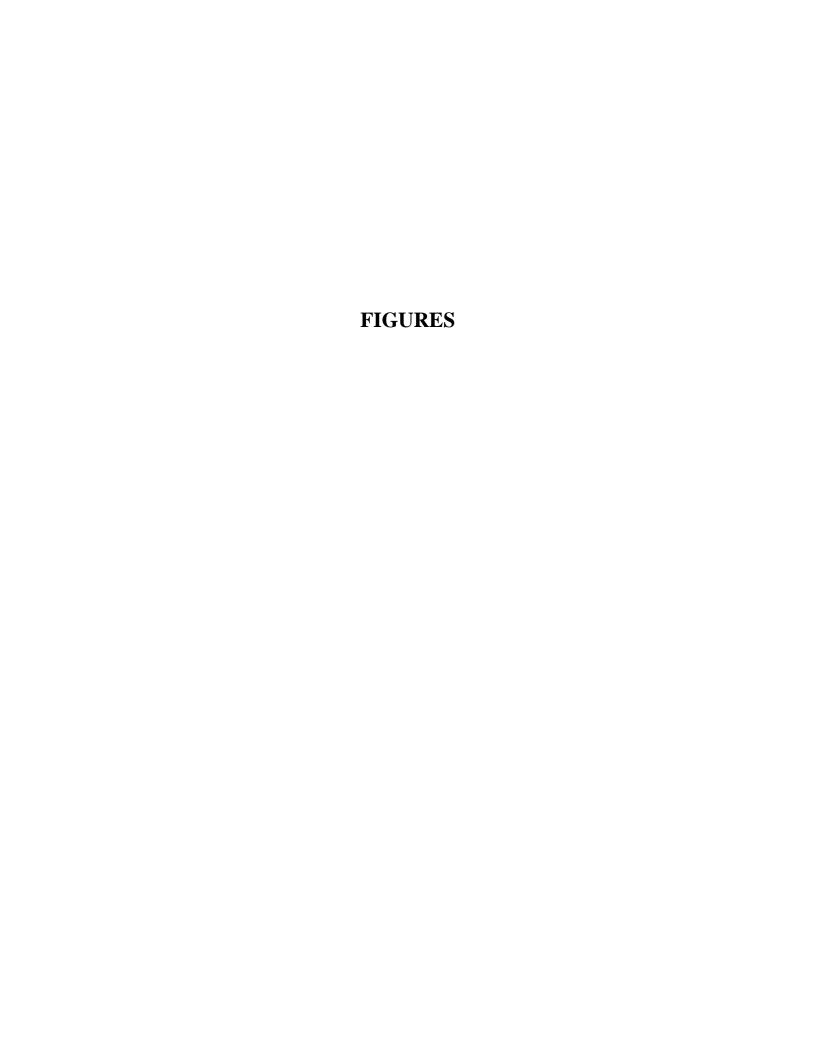
Concentration Exceeds Criteria

TABLE 5 HISTORICAL RESULTS OF COMPOUNDS DETECTED IN GROUNDWATER SAMPLES STUART OLVER HOLTZ SITE

Location ID		1/PZ-03	4/P2	Z-01	MW-05	OW-	-03S	OW-	-04S	OW	-05S	ow	-06S	OW-	07S
Date Sampled		05/02/18	04/30/13	05/02/18	05/02/18	04/29/13	05/02/18	01/20/14	05/02/18	04/29/13	05/02/18	01/20/14	05/02/18	02/27/15	05/02/18
Parameter	Units														
Volatile Organic Compounds (VOCs)															
1,1,1-Trichloroethane	UG/L		380	27	22			140	930	25	0.89	25		70,000	
1,1,2-Trichloro-1,2,2- trifluoroethane	UG/L									19	1.5				
1,1,2-Trichloroethane	UG/L		2.1	0.24											
1,1-Dichloroethane	UG/L		170	15	74	690	350	190	910	96	14	89	28	7,000	1,400
1,1-Dichloroethene	UG/L		81	5.8	8.5	100	41	61	240	39	4.8			8,900	
1,2-Dichloroethane	UG/L		2.2	0.22				0.50							
1,2-Dichloroethene (cis)	UG/L		32	2.7	210	980	360	23	130	91	11	180	550	35,000	10,000
1,2-Dichloroethene (trans)	UG/L		3.7									18	9.4		
Acetone	UG/L											37			
Carbon disulfide	UG/L														
Chloroethane	UG/L		40	0.66								22			
Chloroform	UG/L														
Chloromethane	UG/L														
Isopropylbenzene (Cumene)	UG/L		1.0												
Methyl ethyl ketone (2-Butanone)	UG/L											70			
Methyl tert-butyl ether	UG/L				3.5										
Methylene chloride	UG/L		2.0					7.6		4.5		20		1,200	
Tetrachloroethene	UG/L		1.8		640	220	5.9					39	21		
Toluene	UG/L														
Trichloroethene	UG/L		19	2.4	200	450	140	7.5	25	230	33	27	20	4,800	230
Vinyl chloride	UG/L		6.5			49						770	19	5,900	1,900
Total VOCs	UG/L	ND	741	54	1,158	2,489	897	430	2,235	505	65	1,297	647	132,800	13,530

< or ND = Not detected. Results in bold and italics are higher than previous result.

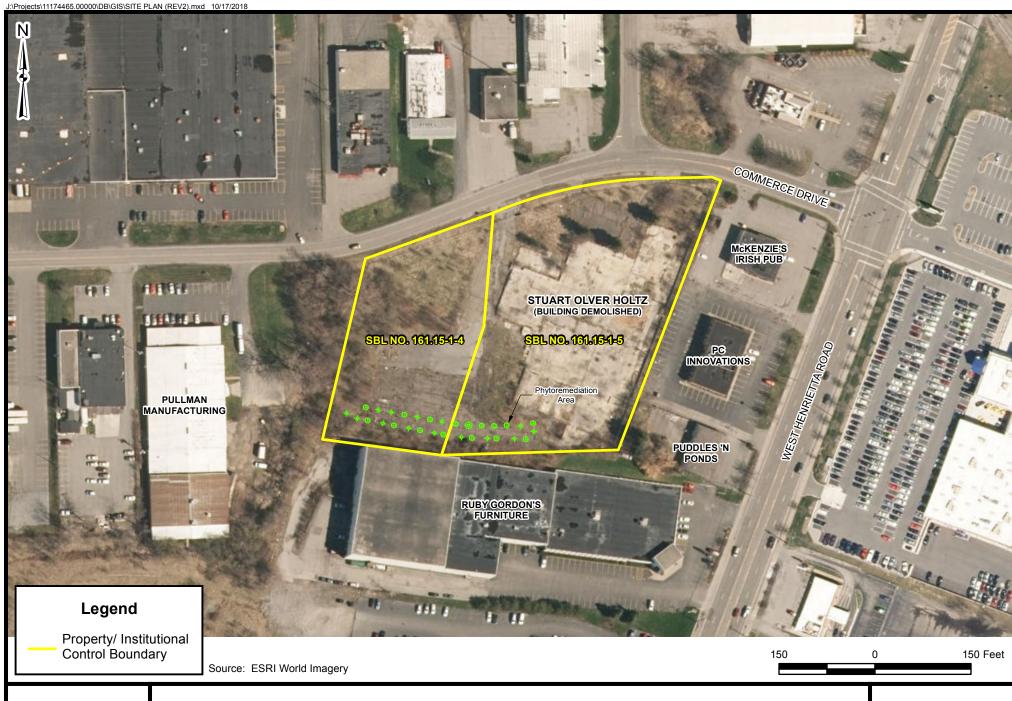
TABLE 5 HISTORICAL RESULTS OF COMPOUNDS DETECTED IN GROUNDWATER SAMPLES STUART OLVER HOLTZ SITE


Location ID		SW	-32	SW-3	33	SW-37 URS-01 URS-02 URS-03		S-03	URS-05	URS-06	URS-08				
Date Sampled		02/27/15	05/02/18	02/27/15	05/02/18	02/27/15	05/02/18	04/29/13	05/02/18	05/02/18	04/29/13	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units														
Volatile Organic Compounds (VOCs)															
1,1,1-Trichloroethane	UG/L	1,100,000	630,000	970,000		8,500	1,200	< 16	420		39	640			0.96
1,1,2-Trichloro-1,2,2- trifluoroethane	UG/L			2,400				< 4.2	82		120	140			
1,1,2-Trichloroethane	UG/L														
1,1-Dichloroethane	UG/L	100,000	90,000	21,000	20,000	18,000	7,700	910	2,700	4.6	88	210			1.0
1,1-Dichloroethene	UG/L	80,000		68,000		1,100		< 20	160		< 2.9	16			
1,2-Dichloroethane	UG/L			100				<4.2	5.7						
1,2-Dichloroethene (cis)	UG/L			5,800		52,000	6,200	29	3,700		10	35			
1,2-Dichloroethene (trans)	UG/L					940									
Acetone	UG/L										78				
Carbon disulfide	UG/L														
Chloroethane	UG/L			1,500	16,000			1,200	160	2.6	130				
Chloroform	UG/L			77											
Chloromethane	UG/L														
Isopropylbenzene (Cumene)	UG/L														
Methyl ethyl ketone (2-Butanone)	UG/L			940				310			2,600				
Methyl tert-butyl ether	UG/L									7.4					
Methylene chloride	UG/L	130,000		5,600				17			11				
Tetrachloroethene	UG/L			310							< 3.6	5.1			
Toluene	UG/L			740											
Trichloroethene	UG/L			780		3,800		14	780		14	37			
Vinyl chloride	UG/L			7,600		1,900	2,700	24	1,500		< 9	14			
Total VOCs	UG/L	1,410,000	720,000	1,084,847	36,000	86,240	17,800	2,504	9,508	15	3,090	1,097	ND	ND	2.0

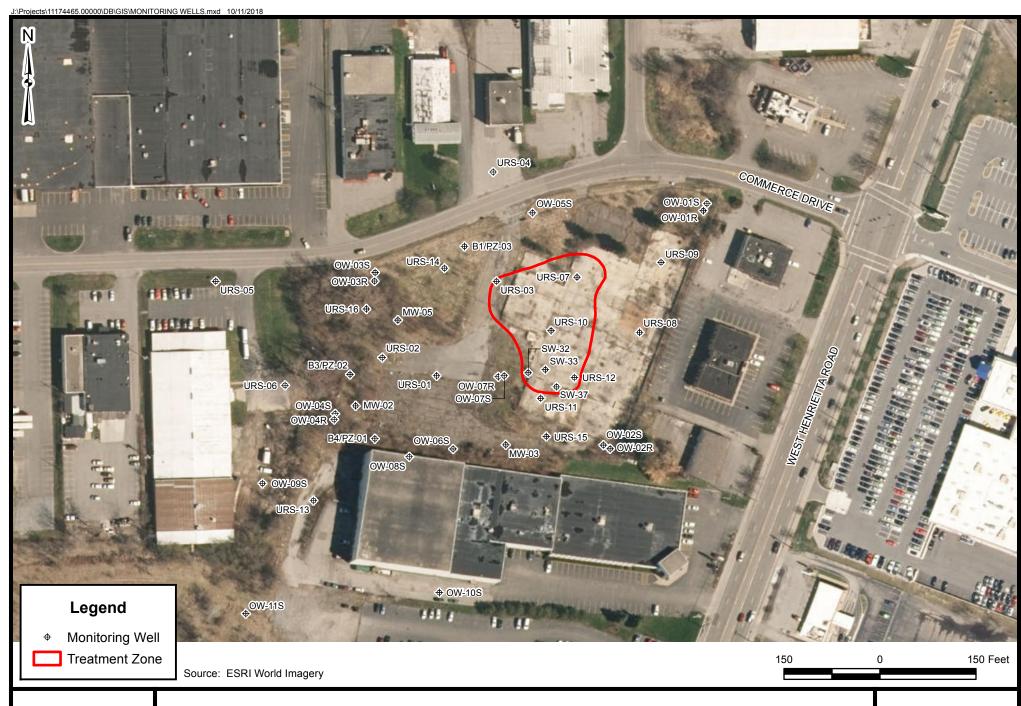

< or ND = Not detected. Results in bold and italics are higher than previous result.

TABLE 5 HISTORICAL RESULTS OF COMPOUNDS DETECTED IN GROUNDWATER SAMPLES STUART OLVER HOLTZ SITE

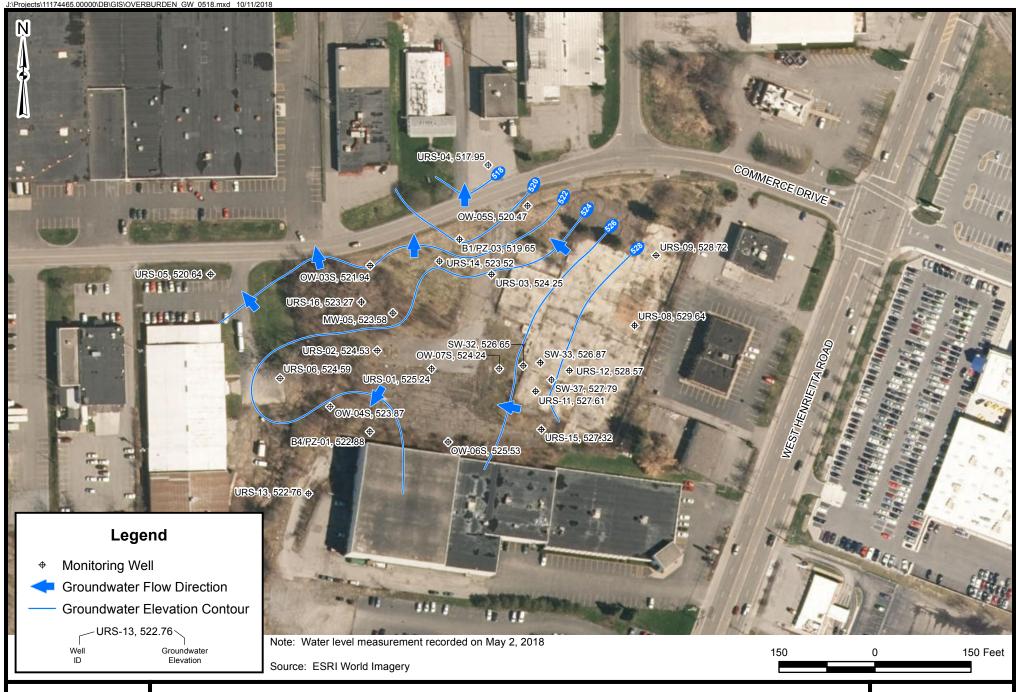
Location ID		URS	S-11	URS	S-12	URS-13	URS-14	UR	S-15	URS-16	
Date Sampled		02/27/15	05/02/18	01/20/14	05/02/18	05/02/18	05/02/18	01/20/14	05/02/18	01/20/14	05/02/18
Parameter	Units										
Volatile Organic Compounds (VOCs)											
1,1,1-Trichloroethane	UG/L	29,000						78			
1,1,2-Trichloro-1,2,2- trifluoroethane	UG/L							22			
1,1,2-Trichloroethane	UG/L										
1,1-Dichloroethane	UG/L	20,000	6,100	16				1,700	640	130	260
1,1-Dichloroethene	UG/L	3,200						13	31	27	
1,2-Dichloroethane	UG/L										
1,2-Dichloroethene (cis)	UG/L	4,100		25				330	2,300	2,100	1,800
1,2-Dichloroethene (trans)	UG/L			61				86	120		
Acetone	UG/L			730				64			
Carbon disulfide	UG/L			15							
Chloroethane	UG/L	1,400	22,000					150	120		
Chloroform	UG/L										
Chloromethane	UG/L	< 350	400								
Isopropylbenzene (Cumene)	UG/L										
Methyl ethyl ketone (2-Butanone)	UG/L	7,200		2,900				240			
Methyl tert-butyl ether	UG/L					0.37				13	
Methylene chloride	UG/L	6,800		25				46		38	
Tetrachloroethene	UG/L									6,600	2,600
Toluene	UG/L										
Trichloroethene	UG/L	960		11				< 9.2	13	1,400	630
Vinyl chloride	UG/L			22				820	2,000	270	95
Total VOCs	UG/L	72,660	28,500	3,805	ND	0.37	ND	3,549	5,224	10,578	5,385


< or ND = Not detected. Results in bold and italics are higher than previous result.

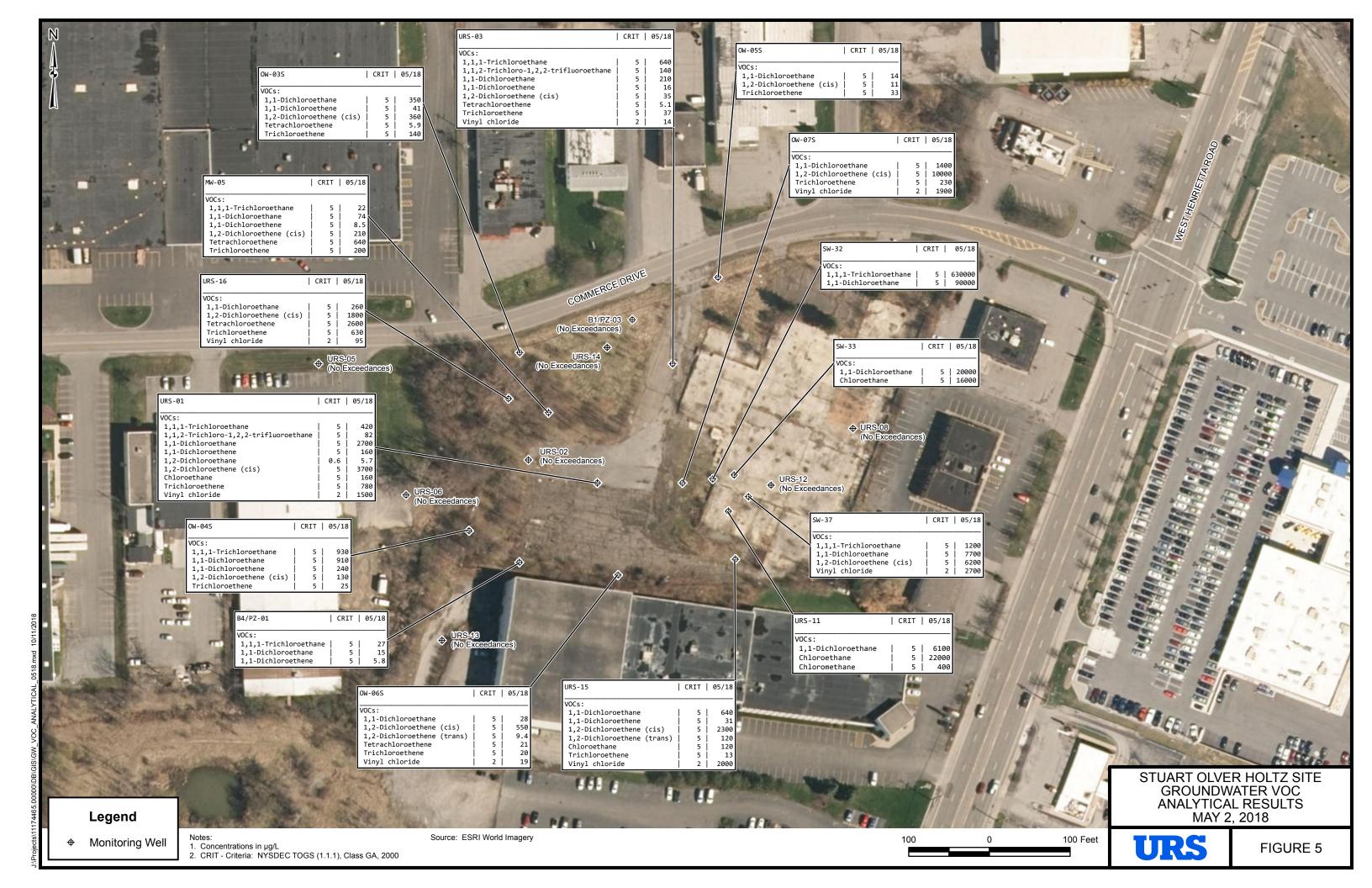
URS

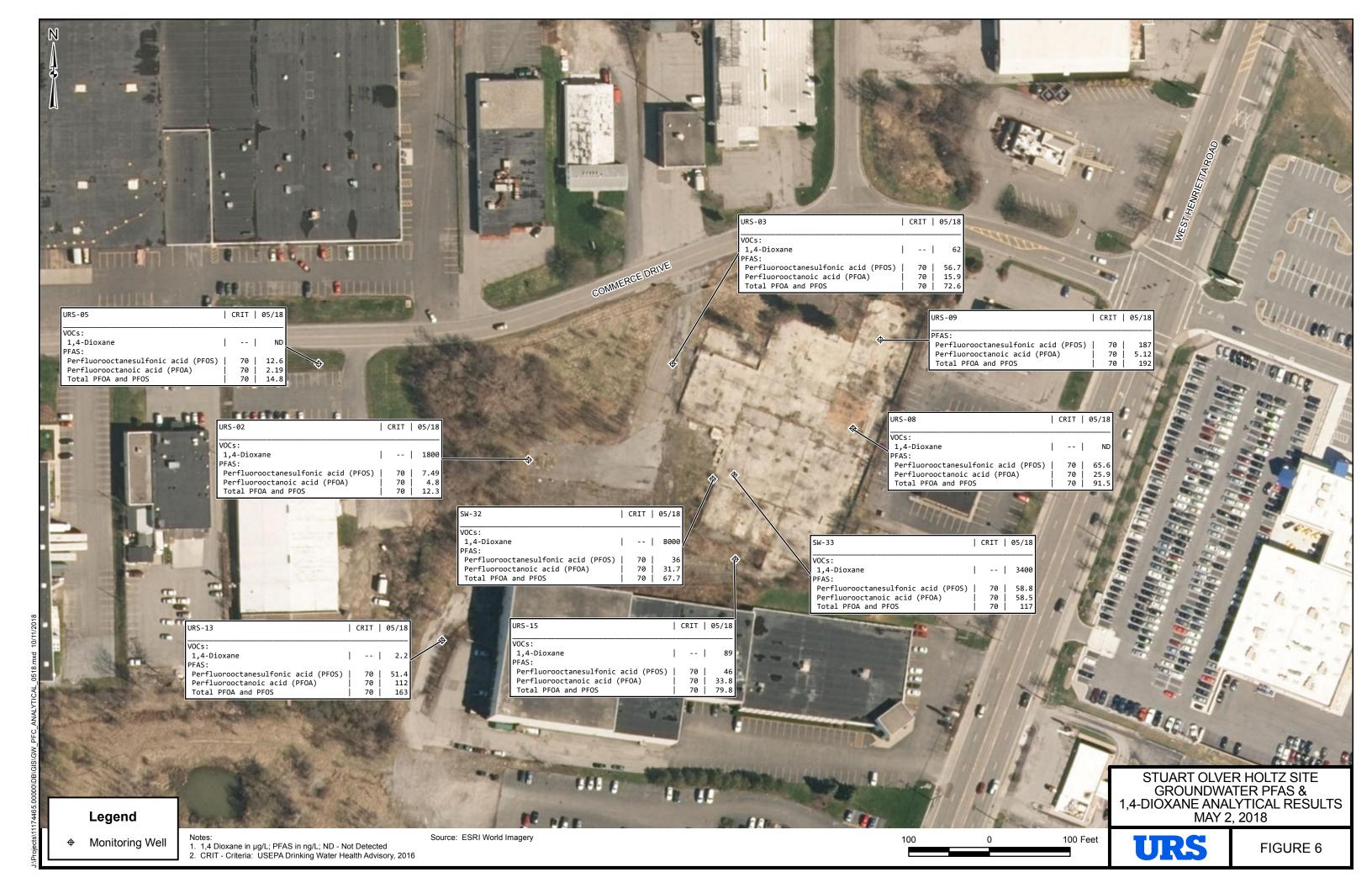

STUART OLVER HOLTZ SITE LOCATION

STUART OLVER HOLTZ SITE SITE PLAN


FIGURE 2

STUART OLVER HOLTZ SITE MONITORING WELLS


FIGURE 3



STUART OLVER HOLTZ SITE OVERBURDEN GROUNDWATER CONTOUR MAP MAY 2, 2018

FIGURE 4

APPENDIX A FIELD NOTES

	C	0	M
1 3			7 V II

AECOM		Page of
Job MYSOLC SOH	Project No.	Sheet of
Description	Computed by	Date <u>\$/2/18</u>
	Checked by	Date

Reference

07:55- ICSM+ OM ON SITE, WENT THOSE THA
08:15 - BELOW OTW CONGRED + SAMPLENT, OFFARS BELOW

	Concerco	1 time	I NOTES	b DEW	DEW
PRAS	uns-03	13,36	POUT TURING IN WER	5.95	08:15
	uns-14	13:43	11	6.22	08.30
	aw-55	13:55	1 1	8.32	08:45
	B1/82-3	14000	1	5.96	08:10
PRAS	unsog	-	CUM BX BASICIA, COMON'T	826	09.30
F01-050218 -	DW-75	14:10	Pour Tursier, in wer	3.27	09.35
PEAS	Sw-32	14:20	16	3.84	09:40
MS/MSD PRAS -	Sur-33	14:30	FOR ME/MOST NO PERS &	6.75	09:44
	5W-37	15:00	b	5.98	09.50
	cias-11	15:05	b	6.90	09.52
	Uns-12	15:10	b	5.93	09:54
PFAS -	URS-08	1515	V	4.35	10:15
	URS-09	15120	Confeed Cons	5.39	10:17
	uns-15	15:40	V	3.05	10:46
P02-050218		15:50	U	3.47	10:50
	uns.01	15:57	\ \ \ \ \	4.69	10:56
	84/12-1	16:05	l	7.87	11:D
	ow-45	16:10	V	7.94	11:10
PEAS	-URS-UZ	16:45	1 6	5.95	lils
	mw-5	16:20	V	, 6 73	71:20
	Uns-16	16 25	1	7.98	11:30
	du-35	16:30	6	5.31	11:32
PRAS.	uns-05	16:50	No Tunine	3.62	wiss
*	Uns-06	17:10	Tusine in wen	10,50	B 13100
PEAS	- UNS-13	17:20	No surve	2.42	13.4

EB-050218 & 16.46 FB-050218 & 16.50

17:25- Francis Cure, Sampure, Boson Cigarup, Couran's Sundy Due to Inguise 14.
17:45- Kim + Dun mor Sile

MIN

APPENDIX B DATA USABILITY SUMMARY REPORT

DATA USABILITY SUMMARY REPORT

STUART-OLIVER-HOLTZ CONSTRUCTION OVERSIGHT WORK ASSIGNMENT NO. D007622-08.1 SITE ID# 828079 HENRIETTA, NEW YORK

Analyses Performed by:

TESTAMERICA LABORATORIES, INC. AMHERST, NEW YORK, EDISON, NEW JERSEY, AND SACRAMENTO, CALIFORNIA

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION REMEDIAL BUREAU B

Prepared by:

URS CORPORATION
257 WEST GENESEE STREET, SUITE 400
BUFFALO, NY 14202-2657

JULY 2018

TABLE OF CONTENTS

	Page No.
I.	INTRODUCTION1
II.	ANALYTICAL METHODOLOGIES and DATA VALIDATION PROCEDURES1
III.	DATA DELIVERABLE COMPLETENESS2
IV.	SAMPLE RECEIPT/ PRESERVATION/HOLDING TIMES2
V.	NON-CONFORMANCES
VI.	SAMPLE RESULTS AND REPORTING
VII.	SUMMARY3
	TABLES
	(Following Text)

Table 1	Summary of Data Qualifications
Table 2	Validated Groundwater Sample Analytical Results
Table 3	Validated Field QC Sample Analytical Results

ATTACHMENTS

Attachment A - Validated Form 1s

Attachment B – Support Documentation

I. INTRODUCTION

This Data Usability Summary Report (DUSR) has been prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation DER-10 Technical Guidance for Site Investigation and Remediation, Appendix 2B - Guidance for Data Deliverables and the Development of Data Usability Summary Reports, May 2010.

II. ANALYTICAL METHODOLOGIES AND DATA VALIDATION PROCEDURES

The data being evaluated are from the May 2, 2018 collection of 24 groundwater samples, 2 field duplicates, 1 equipment blank, 1 field blank, and 1 trip blank. The analytical laboratory that performed the analyses is TestAmerica Laboratories, Inc. located in Amherst, NY, Edison, NJ, and Sacramento, CA. The samples were analyzed for the following parameters (not all samples were analyzed for all parameters).

Matrix	Parameter	Method
Groundwater	Target Compound List (TCL) Volatile Organic Compounds (VOCs)	SW8260C
	1,4-Dioxane	SW8260C SIM
	Per- and polyfluoroalkyl substances (PFASs)	Method 537-Modified

A limited data validation was performed following the guidelines in the following USEPA Region II document:

Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry,
 SW-846 Method 8260B & 8260C, SOP HW-24, Rev. 4, October 2014.

Qualifications applied to the data during the limited data validation include 'J' (estimated concentration), 'NJ' (tentatively identified, estimated concentration), 'U' (non-detect), and 'UJ' (estimated quantitation limit). Definitions of USEPA data qualifiers are presented at the end of this text. A summary of data qualifications is presented on Table 1. The validated analytical results are presented on Table 2 (groundwater) and Table 3 (field QC). Validated Form Is are presented in Attachment A.

Documentation supporting the qualification of data is presented in Attachment B. Only analytical deviations affecting data usability are discussed in this report.

III. DATA DELIVERABLE COMPLETENESS

The laboratory deliverable data packages were equivalent to NYSDEC Analytical Services Protocol (ASP) Category B requirements.

IV. SAMPLE RECEIPT/ PRESERVATION/HOLDING TIMES

All samples were received by the laboratory intact, properly preserved and under proper chain-ofcustody, except for the following instance.

• The VOC aliquot for sample SW-33 was received slightly under preserved (i.e., sample pH was 3, method requires pH <2). The sample was not analyzed within the 7 day holding time for unpreserved samples. Although historical data does exist for this sampling point, remedial injections have been done in the past which caused the compounds detected and concentrations to fluctuate. Using professional judgement the results have been qualified 'J'/'UJ' rather than 'J'/'R' since the pH variation is so slight.

All other samples were analyzed within the required holding times.

V. NON-CONFORMANCES

• Instrument Calibration

The percent difference (%D) between the initial calibration standards (ICAL) average relative response factor (RRF) and the RRF in one or more of the continuing calibration (CCAL) standards associated with the samples exceeded the QC limit of 20% for one or more of the following VOCs: 2-hexanone, bromoform, and/or dichlorodifluoromethane. The results for these compounds in the associated samples listed on Table 1 were qualified 'UJ'.

Method/Preparation Blanks

Perfluorohexanesulfonic acid (PFHxS) and/or 6:2 fluorotelomer sulfonate (6:2 FTS) were detected in the PFAS method blanks/field blanks associated with the samples listed on Table 1. Associated sample results less than the quantitation limit (QL) were qualified 'U' at the QL.

Chromatography

The matrix of sample SW-32 interfered with the identification and quantitation of PFAS

perfluorobutanesulfonic acid (PFBS). The laboratory indicated in the case narrative that this

interference could cause a false positive result. Based on the validators review of the

chromatogram and the laboratory's narrative the result for PFBS in this sample has been

qualified 'NJ'.

Field Duplicates

Field duplicates were collected at locations OW-6S and OW-7S. The field duplicate analyses

exhibited good field and analytical precision.

VI. SAMPLE RESULTS AND REPORTING

All quantitation/detection limits were reported in accordance with method requirements and were

adjusted for sample volume and dilution factors. Results below the OL were qualified 'J' by the

laboratory.

Several samples were diluted for VOCs/VOCs (SIM) due to the color of the samples and foaming

issues. In most cases target compounds were detected in the dilutions. However some samples (for

example URS-06 and URS-13) were non-detect for all compounds and therefore had elevated reporting

limits due to the dilutions utilized.

VII. SUMMARY

All sample analyses were found to be compliant with the method and validation criteria, except

where previously noted. Those results qualified 'J', 'NJ', 'U', and 'UJ' are considered conditionally

usable. All other sample results are usable as reported. URS does not recommend the recollection of any

samples at this time.

Prepared By: Ann Marie Kropovitch, Chemist

Reviewed By: George E. Kisluk, Senior Chemist

DEFINITIONS OF USEPA DATA QUALIFIERS

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- (J+) The result is an estimated quantity. The associated numerical value is biased high.
- (J-) The result is an estimated quantity. The associated numerical value is biased low.
- UJ The analyte was analyzed for, but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting quality control criteria. The analyte may or may not be present in the sample.
- D The sample result was reported from a secondary dilution analysis.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified' and the associated numerical value represents its approximate concentration.

TABLE 1 STUART-OLIVER-HOLTZ CONSTRUCTION OVERSIGHT SUMMARY OF DATA QUALIFICATIONS								
SAMPLE ID	FRACTION	ANALYTICAL DEVIATION	QUALIFICATION					
SW-33	VOCs	pH slightly >2, sample analyzed >7 days for unpreserved samples.	Qualify detected results 'J' and non-detects 'UJ'.					
OW-6S, SW-32, SW-33, SW-37, URS-01, URS-02, URS-11, URS-12, URS-15, URS-16, and Trip Blank	VOCs	CCAL %D > 20% for bromoform.	Qualify non-detect results 'UJ'.					
OW-04S and FD2 (OW-6S)	VOCs	CCAL %D > 20% for 2-hexanone and dichlorodifluoromethane.	Qualify non-detect results 'UJ'.					
SW-32, SW-33, URS-02, URS-03, URS-05, URS-08, URS-09, URS-13, and URS-15	PFAS	Method blank/field blank contamination for PFHxS and/or 6:2 FTS.	Qualify results 'U' at the QL.					
SW-32	PFAS	Matrix interfering with identification/quantitation of PFBS.	Qualify detected result 'NJ'.					

Location ID		B1/PZ-03	B4/PZ-01	MW-05	OW-03S	OW-04S
Sample ID		B1/PZ-3	B4/PZ-01	MW-05	OW-3S	OW-04S
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	1.0 U	27	22	8.0 U	930
1,1,2,2-Tetrachloroethane	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
1,1,2-Trichloroethane	UG/L	1.0 U	0.24 J	10 U	8.0 U	20 U
1,1-Dichloroethane	UG/L	1.0 U	15	74	350	910
1,1-Dichloroethene	UG/L	1.0 U	5.8	8.5 J	41	240
1,2,4-Trichlorobenzene	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
1,2-Dibromo-3-chloropropane	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
1,2-Dichlorobenzene	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
1,2-Dichloroethane	UG/L	1.0 U	0.22 J	10 U	8.0 U	20 U
1,2-Dichloroethene (cis)	UG/L	1.0 U	2.7	210	360	130
1,2-Dichloroethene (trans)	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
1,2-Dichloropropane	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
1,3-Dichlorobenzene	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
1,3-Dichloropropene (cis)	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
1,3-Dichloropropene (trans)	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
1,4-Dichlorobenzene	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
1,4-Dioxane	UG/L	NA	NA	NA	NA	NA
2-Hexanone	UG/L	5.0 U	5.0 U	50 U	40 U	100 UJ
4-Methyl-2-pentanone	UG/L	5.0 U	5.0 U	50 U	40 U	100 U
Acetone	UG/L	10 U	10 U	100 U	80 U	200 U
Benzene	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Bromodichloromethane	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Bromoform	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U

Flags assigned during chemistry validation are shown.

Location ID		B1/PZ-03	B4/PZ-01	MW-05	OW-03S	OW-04S
Sample ID		B1/PZ-3	B4/PZ-01	MW-05	OW-3S	OW-04S
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units					
Volatile Organic Compounds						
Bromomethane	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Carbon disulfide	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Carbon tetrachloride	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Chlorobenzene	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Chloroethane	UG/L	1.0 U	0.66 J	10 U	8.0 U	20 U
Chloroform	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Chloromethane	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Cyclohexane	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Dibromochloromethane	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Dichlorodifluoromethane	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 UJ
Ethylbenzene	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Isopropylbenzene (Cumene)	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Methyl acetate	UG/L	2.5 U	2.5 U	25 U	20 U	50 U
Methyl ethyl ketone (2-Butanone)	UG/L	10 U	10 U	100 U	80 U	200 U
Methyl tert-butyl ether	UG/L	1.0 U	1.0 U	3.5 J	8.0 U	20 U
Methylcyclohexane	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Methylene chloride	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Styrene	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Tetrachloroethene	UG/L	1.0 U	1.0 U	640	5.9 J	20 U
Toluene	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Trichloroethene	UG/L	1.0 U	2.4	200	140	25
Trichlorofluoromethane	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Vinyl chloride	UG/L	1.0 U	1.0 U	10 U	8.0 U	20 U
Xylene (total)	UG/L	2.0 U	2.0 U	20 U	16 U	40 U

Flags assigned during chemistry validation are shown.

Location ID		B1/PZ-03	B4/PZ-01	MW-05	OW-03S	OW-04S
Sample ID Matrix		B1/PZ-3	B4/PZ-01	MW-05	OW-3S	OW-04S
		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled	_	05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units					
Per- and Polyfluoroalkyl Substances						
N-Ethyl perfluorooctanesulfonamidoacetic acid (NETFOSAA)	NG/L	NA	NA	NA	NA	NA
N-Methyl perfluorooctanesulfonamidoacetic acid (NMEFOSAA)	NG/L	NA	NA	NA	NA	NA
Perfluorobutanesulfonic acid (PFBS)	NG/L	NA	NA	NA	NA	NA
Perfluorobutanoic acid (PFBA)	NG/L	NA	NA	NA	NA	NA
Perfluorodecane sulfonate (PFDS)	NG/L	NA	NA	NA	NA	NA
Perfluorodecanoic acid (PFDA)	NG/L	NA	NA	NA	NA	NA
Perfluorododecanoic acid (PFDoA)	NG/L	NA	NA	NA	NA	NA
Perfluoro-1-heptanesulfonate (PFHPS)	NG/L	NA	NA	NA	NA	NA
Perfluoroheptanoic acid (PFHpA)	NG/L	NA	NA	NA	NA	NA
Perfluorohexanesulfonic acid (PFHxS)	NG/L	NA	NA	NA	NA	NA
Perfluorohexanoic acid (PFHxA)	NG/L	NA	NA	NA	NA	NA
Perfluorononanoic acid (PFNA)	NG/L	NA	NA	NA	NA	NA
Perfluorooctane sulfonamide (FOSA)	NG/L	NA	NA	NA	NA	NA
Perfluorooctanesulfonic acid (PFOS)	NG/L	NA	NA	NA	NA	NA
Perfluorooctanoic acid (PFOA)	NG/L	NA	NA	NA	NA	NA
Perfluoropentanoic acid (PFPA)	NG/L	NA	NA	NA	NA	NA
Perfluorotetradecanoic acid (PFTeA)	NG/L	NA	NA	NA	NA	NA
Perfluorotridecanoic acid (PFTriA)	NG/L	NA	NA	NA	NA	NA
Perfluoroundecanoic acid (PFUnA)	NG/L	NA	NA	NA	NA	NA
6:2 Fluorotelomer sulfonate (62FTS)	NG/L	NA	NA	NA	NA	NA
8:2 Fluorotelomer sulfonate (82FTS)	NG/L	NA	NA	NA	NA	NA
Total PFOA and PFOS	NG/L	NA	NA	NA	NA	NA

Flags assigned during chemistry validation are shown.

Location ID		OW-05S	OW-06S	OW-06S	OW-07S	OW-07S
Sample ID		OW-5S	FD2-050218	OW-6S	FD1-050218	OW-7S
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units		Field Duplicate (1-1)		Field Duplicate (1-1)	
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	0.89 J	10 U	10 U	400 U	200 U
1,1,2,2-Tetrachloroethane	UG/L	1.0 U	10 U	10 U	400 U	200 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	1.5	10 U	10 U	400 U	200 U
1,1,2-Trichloroethane	UG/L	1.0 U	10 U	10 U	400 U	200 U
1,1-Dichloroethane	UG/L	14	26	28	1,400	1,300
1,1-Dichloroethene	UG/L	4.8	10 U	10 U	400 U	200 U
1,2,4-Trichlorobenzene	UG/L	1.0 U	10 U	10 U	400 U	200 U
1,2-Dibromo-3-chloropropane	UG/L	1.0 U	10 U	10 U	400 U	200 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	1.0 U	10 U	10 U	400 U	200 U
1,2-Dichlorobenzene	UG/L	1.0 U	10 U	10 U	400 U	200 U
1,2-Dichloroethane	UG/L	1.0 U	10 U	10 U	400 U	200 U
1,2-Dichloroethene (cis)	UG/L	11	520	550	10,000	10,000
1,2-Dichloroethene (trans)	UG/L	1.0 U	10 U	9.4 J	400 U	200 U
1,2-Dichloropropane	UG/L	1.0 U	10 U	10 U	400 U	200 U
1,3-Dichlorobenzene	UG/L	1.0 U	10 U	10 U	400 U	200 U
1,3-Dichloropropene (cis)	UG/L	1.0 U	10 U	10 U	400 U	200 U
1,3-Dichloropropene (trans)	UG/L	1.0 U	10 U	10 U	400 U	200 U
1,4-Dichlorobenzene	UG/L	1.0 U	10 U	10 U	400 U	200 U
1,4-Dioxane	UG/L	NA	NA	NA	NA	NA
2-Hexanone	UG/L	5.0 U	50 UJ	50 U	2,000 U	1,000 U
4-Methyl-2-pentanone	UG/L	5.0 U	50 U	50 U	2,000 U	1,000 U
Acetone	UG/L	10 U	100 U	100 U	4,000 U	2,000 U
Benzene	UG/L	1.0 U	10 U	10 U	400 U	200 U
Bromodichloromethane	UG/L	1.0 U	10 U	10 U	400 U	200 U
Bromoform	UG/L	1.0 U	10 U	10 UJ	400 U	200 U

Flags assigned during chemistry validation are shown.

Location ID		OW-05S	OW-06S	OW-06S	OW-07S	OW-07S
Sample ID		OW-5S	FD2-050218	OW-6S	FD1-050218	OW-7S
Matrix Depth Interval (ft)		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
		-	-	-	-	-
Date Sampled		05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units		Field Duplicate (1-1)		Field Duplicate (1-1)	
Volatile Organic Compounds						
Bromomethane	UG/L	1.0 U	10 U	10 U	400 U	200 U
Carbon disulfide	UG/L	1.0 U	10 U	10 U	400 U	200 U
Carbon tetrachloride	UG/L	1.0 U	10 U	10 U	400 U	200 U
Chlorobenzene	UG/L	1.0 U	10 U	10 U	400 U	200 U
Chloroethane	UG/L	1.0 U	10 U	10 U	400 U	200 U
Chloroform	UG/L	1.0 U	10 U	10 U	400 U	200 U
Chloromethane	UG/L	1.0 U	10 U	10 U	400 U	200 U
Cyclohexane	UG/L	1.0 U	10 U	10 U	400 U	200 U
Dibromochloromethane	UG/L	1.0 U	10 U	10 U	400 U	200 U
Dichlorodifluoromethane	UG/L	1.0 U	10 UJ	10 U	400 U	200 U
Ethylbenzene	UG/L	1.0 U	10 U	10 U	400 U	200 U
Isopropylbenzene (Cumene)	UG/L	1.0 U	10 U	10 U	400 U	200 U
Methyl acetate	UG/L	2.5 U	25 U	25 U	1,000 U	500 U
Methyl ethyl ketone (2-Butanone)	UG/L	10 U	100 U	100 U	4,000 U	2,000 U
Methyl tert-butyl ether	UG/L	1.0 U	10 U	10 U	400 U	200 U
Methylcyclohexane	UG/L	1.0 U	10 U	10 U	400 U	200 U
Methylene chloride	UG/L	1.0 U	10 U	10 U	400 U	200 U
Styrene	UG/L	1.0 U	10 U	10 U	400 U	200 U
Tetrachloroethene	UG/L	1.0 U	21	20	400 U	200 U
Toluene	UG/L	1.0 U	10 U	10 U	400 U	200 U
Trichloroethene	UG/L	33	20	19	230 J	210
Trichlorofluoromethane	UG/L	1.0 U	10 U	10 U	400 U	200 U
Vinyl chloride	UG/L	1.0 U	17	19	1,900	1,800
Xylene (total)	UG/L	2.0 U	20 U	20 U	800 U	400 U

Flags assigned during chemistry validation are shown.

Location ID		OW-05S	OW-06S	OW-06S	OW-07S	OW-07S
Sample ID Matrix		OW-5S Groundwater	FD2-050218 Groundwater	OW-6S Groundwater	FD1-050218 Groundwater	OW-7S Groundwater
Date Sampled		05/02/18	05/02/18	05/02/18	05/02/18	
Parameter	Units		Field Duplicate (1-1)		Field Duplicate (1-1)	
Per- and Polyfluoroalkyl Substances						
N-Ethyl perfluorooctanesulfonamidoacetic acid (NETFOSAA)	NG/L	NA	NA	NA	NA	NA
N-Methyl perfluorooctanesulfonamidoacetic acid (NMEFOSAA)	NG/L	NA	NA	NA	NA	NA
Perfluorobutanesulfonic acid (PFBS)	NG/L	NA	NA	NA	NA	NA
Perfluorobutanoic acid (PFBA)	NG/L	NA	NA	NA	NA	NA
Perfluorodecane sulfonate (PFDS)	NG/L	NA	NA	NA	NA	NA
Perfluorodecanoic acid (PFDA)	NG/L	NA	NA	NA	NA	NA
Perfluorododecanoic acid (PFDoA)	NG/L	NA	NA	NA	NA	NA
Perfluoro-1-heptanesulfonate (PFHPS)	NG/L	NA	NA	NA	NA	NA
Perfluoroheptanoic acid (PFHpA)	NG/L	NA	NA	NA	NA	NA
Perfluorohexanesulfonic acid (PFHxS)	NG/L	NA	NA	NA	NA	NA
Perfluorohexanoic acid (PFHxA)	NG/L	NA	NA	NA	NA	NA
Perfluorononanoic acid (PFNA)	NG/L	NA	NA	NA	NA	NA
Perfluorooctane sulfonamide (FOSA)	NG/L	NA	NA	NA	NA	NA
Perfluorooctanesulfonic acid (PFOS)	NG/L	NA	NA	NA	NA	NA
Perfluorooctanoic acid (PFOA)	NG/L	NA	NA	NA	NA	NA
Perfluoropentanoic acid (PFPA)	NG/L	NA	NA	NA	NA	NA
Perfluorotetradecanoic acid (PFTeA)	NG/L	NA	NA	NA	NA	NA
Perfluorotridecanoic acid (PFTriA)	NG/L	NA	NA	NA	NA	NA
Perfluoroundecanoic acid (PFUnA)	NG/L	NA	NA	NA	NA	NA
6:2 Fluorotelomer sulfonate (62FTS)	NG/L	NA	NA	NA	NA	NA
8:2 Fluorotelomer sulfonate (82FTS)	NG/L	NA	NA	NA	NA	NA
Total PFOA and PFOS	NG/L	NA	NA	NA	NA	NA

Flags assigned during chemistry validation are shown.

Location ID		SW-32	SW-33	SW-37	URS-01	URS-02
Sample ID		SW-32	SW-33	SW-37	URS-01	URS-02
Matrix Depth Interval (ft)		Groundwater -	Groundwater	Groundwater	Groundwater -	Groundwater -
			-	-		
Date Sampled		05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	630,000	10,000 UJ	1,200	420	4.0 U
1,1,2,2-Tetrachloroethane	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	20,000 U	10,000 UJ	400 U	82	4.0 U
1,1,2-Trichloroethane	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
1,1-Dichloroethane	UG/L	90,000	20,000 J	7,700	2,700 D	4.6
1,1-Dichloroethene	UG/L	20,000 U	10,000 UJ	400 U	160	4.0 U
1,2,4-Trichlorobenzene	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
1,2-Dibromo-3-chloropropane	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
1,2-Dichlorobenzene	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
1,2-Dichloroethane	UG/L	20,000 U	10,000 UJ	400 U	5.7 J	4.0 U
1,2-Dichloroethene (cis)	UG/L	20,000 U	10,000 UJ	6,200	3,700 D	4.0 U
1,2-Dichloroethene (trans)	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
1,2-Dichloropropane	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
1,3-Dichlorobenzene	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
1,3-Dichloropropene (cis)	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
1,3-Dichloropropene (trans)	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
1,4-Dichlorobenzene	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
1,4-Dioxane	UG/L	8,000	3,400 J	NA	NA	1,800
2-Hexanone	UG/L	100,000 U	50,000 UJ	2,000 U	100 U	20 U
4-Methyl-2-pentanone	UG/L	100,000 U	50,000 UJ	2,000 U	100 U	20 U
Acetone	UG/L	200,000 U	100,000 UJ	4,000 U	200 U	40 U
Benzene	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Bromodichloromethane	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Bromoform	UG/L	20,000 UJ	10,000 UJ	400 UJ	20 UJ	4.0 UJ

Flags assigned during chemistry validation are shown.

Location ID		SW-32	SW-33	SW-37	URS-01	URS-02
Sample ID		SW-32	SW-33	SW-37	URS-01	URS-02
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units					
Volatile Organic Compounds						
Bromomethane	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Carbon disulfide	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Carbon tetrachloride	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Chlorobenzene	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Chloroethane	UG/L	20,000 U	16,000 J	400 U	160	2.6 J
Chloroform	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Chloromethane	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Cyclohexane	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Dibromochloromethane	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Dichlorodifluoromethane	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Ethylbenzene	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Isopropylbenzene (Cumene)	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Methyl acetate	UG/L	50,000 U	25,000 UJ	1,000 U	50 U	10 U
Methyl ethyl ketone (2-Butanone)	UG/L	200,000 U	100,000 UJ	4,000 U	200 U	40 U
Methyl tert-butyl ether	UG/L	20,000 U	10,000 UJ	400 U	20 U	7.4
Methylcyclohexane	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Methylene chloride	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Styrene	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Tetrachloroethene	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Toluene	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Trichloroethene	UG/L	20,000 U	10,000 UJ	400 U	780	4.0 U
Trichlorofluoromethane	UG/L	20,000 U	10,000 UJ	400 U	20 U	4.0 U
Vinyl chloride	UG/L	20,000 U	10,000 UJ	2,700	1,500	4.0 U
Xylene (total)	UG/L	40,000 U	20,000 UJ	800 U	40 U	8.0 U

Flags assigned during chemistry validation are shown.

Location ID		SW-32	SW-33	SW-37	URS-01	URS-02
Sample ID Matrix		SW-32	SW-33	SW-37	URS-01	URS-02
		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled	_	05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units					
Per- and Polyfluoroalkyl Substances						
N-Ethyl perfluorooctanesulfonamidoacetic acid (NETFOSAA)	NG/L	17.6 U	17.5 U	NA	NA	17.1 U
N-Methyl perfluorooctanesulfonamidoacetic acid (NMEFOSAA)	NG/L	17.6 U	17.5 U	NA	NA	17.1 U
Perfluorobutanesulfonic acid (PFBS)	NG/L	8.49 NJ	1.75 U	NA	NA	2.29
Perfluorobutanoic acid (PFBA)	NG/L	98.5	64.8	NA	NA	14.6
Perfluorodecane sulfonate (PFDS)	NG/L	1.76 U	1.75 U	NA	NA	1.71 U
Perfluorodecanoic acid (PFDA)	NG/L	2.26	1.21 J	NA	NA	1.71 U
Perfluorododecanoic acid (PFDoA)	NG/L	1.76 U	1.75 U	NA	NA	1.71 U
Perfluoro-1-heptanesulfonate (PFHPS)	NG/L	0.77 J	0.81 J	NA	NA	1.71 U
Perfluoroheptanoic acid (PFHpA)	NG/L	12.0	18.7	NA	NA	2.50
Perfluorohexanesulfonic acid (PFHxS)	NG/L	3.56	4.95	NA	NA	1.71 U
Perfluorohexanoic acid (PFHxA)	NG/L	37.7	73.8	NA	NA	6.97
Perfluorononanoic acid (PFNA)	NG/L	1.73 J	2.80	NA	NA	0.44 J
Perfluorooctane sulfonamide (FOSA)	NG/L	1.76 U	1.75 U	NA	NA	1.71 U
Perfluorooctanesulfonic acid (PFOS)	NG/L	36.0	58.8	NA	NA	7.49
Perfluorooctanoic acid (PFOA)	NG/L	31.7	58.5	NA	NA	4.80
Perfluoropentanoic acid (PFPA)	NG/L	37.1	60.0	NA	NA	8.95
Perfluorotetradecanoic acid (PFTeA)	NG/L	1.76 U	1.75 U	NA	NA	1.71 U
Perfluorotridecanoic acid (PFTriA)	NG/L	1.76 U	1.75 U	NA	NA	1.71 U
Perfluoroundecanoic acid (PFUnA)	NG/L	1.76 U	1.75 U	NA	NA	1.71 U
6:2 Fluorotelomer sulfonate (62FTS)	NG/L	17.6 U	17.5 U	NA	NA	17.1 U
8:2 Fluorotelomer sulfonate (82FTS)	NG/L	17.6 U	17.5 U	NA	NA	17.1 U
Total PFOA and PFOS	NG/L	67.7	117	NA	NA	12.3

Flags assigned during chemistry validation are shown.

Location ID		URS-03	URS-05	URS-06	URS-08	URS-09
Sample ID Matrix Depth Interval (ft)		URS-03	URS-05	URS-06	URS-08	URS-09
		Groundwater -	Groundwater	Groundwater	Groundwater -	Groundwater -
			-	-		
Date Sampled		05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	640	1.0 U	4.0 U	0.96 J	NA
1,1,2,2-Tetrachloroethane	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	140	1.0 U	4.0 U	1.0 U	NA
1,1,2-Trichloroethane	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
1,1-Dichloroethane	UG/L	210	1.0 U	4.0 U	1.0	NA
1,1-Dichloroethene	UG/L	16	1.0 U	4.0 U	1.0 U	NA
1,2,4-Trichlorobenzene	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
1,2-Dibromo-3-chloropropane	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
1,2-Dibromoethane (Ethylene dibromide)	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
1,2-Dichlorobenzene	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
1,2-Dichloroethane	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
1,2-Dichloroethene (cis)	UG/L	35	1.0 U	4.0 U	1.0 U	NA
1,2-Dichloroethene (trans)	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
1,2-Dichloropropane	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
1,3-Dichlorobenzene	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
1,3-Dichloropropene (cis)	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
1,3-Dichloropropene (trans)	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
1,4-Dichlorobenzene	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
1,4-Dioxane	UG/L	62	0.40 U	NA	0.40 U	NA
2-Hexanone	UG/L	50 U	5.0 U	20 U	5.0 U	NA
4-Methyl-2-pentanone	UG/L	50 U	5.0 U	20 U	5.0 U	NA
Acetone	UG/L	100 U	10 U	40 U	10 U	NA
Benzene	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Bromodichloromethane	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Bromoform	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA

Flags assigned during chemistry validation are shown.

Location ID		URS-03	URS-05	URS-06	URS-08	URS-09
Sample ID		URS-03	URS-05	URS-06	URS-08	URS-09
Matrix Depth Interval (ft)		Groundwater -	Groundwater -	Groundwater -	Groundwater -	Groundwater -
Parameter	Units					
Volatile Organic Compounds						
Bromomethane	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Carbon disulfide	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Carbon tetrachloride	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Chlorobenzene	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Chloroethane	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Chloroform	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Chloromethane	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Cyclohexane	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Dibromochloromethane	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Dichlorodifluoromethane	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Ethylbenzene	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Isopropylbenzene (Cumene)	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Methyl acetate	UG/L	25 U	2.5 U	10 U	2.5 U	NA
Methyl ethyl ketone (2-Butanone)	UG/L	100 U	10 U	40 U	10 U	NA
Methyl tert-butyl ether	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Methylcyclohexane	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Methylene chloride	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Styrene	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Tetrachloroethene	UG/L	5.1 J	1.0 U	4.0 U	1.0 U	NA
Toluene	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Trichloroethene	UG/L	37	1.0 U	4.0 U	1.0 U	NA
Trichlorofluoromethane	UG/L	10 U	1.0 U	4.0 U	1.0 U	NA
Vinyl chloride	UG/L	14	1.0 U	4.0 U	1.0 U	NA
Xylene (total)	UG/L	20 U	2.0 U	8.0 U	2.0 U	NA

Flags assigned during chemistry validation are shown.

Location ID		URS-03	URS-05	URS-06	URS-08	URS-09
Sample ID Matrix		URS-03	URS-05	URS-06	URS-08	URS-09
		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units					
Per- and Polyfluoroalkyl Substances						
N-Ethyl perfluorooctanesulfonamidoacetic acid (NETFOSAA)	NG/L	22.0 U	16.8 U	NA	20.7 U	22.2 U
N-Methyl perfluorooctanesulfonamidoacetic acid (NMEFOSAA)	NG/L	22.0 U	16.8 U	NA	20.7 U	22.2 U
Perfluorobutanesulfonic acid (PFBS)	NG/L	0.96 J	1.36 J	NA	1.20 J	1.37 J
Perfluorobutanoic acid (PFBA)	NG/L	8.85	63.7	NA	18.9	7.75
Perfluorodecane sulfonate (PFDS)	NG/L	2.20 U	1.68 U	NA	2.07 U	2.22 U
Perfluorodecanoic acid (PFDA)	NG/L	3.39	1.68 U	NA	5.64	1.44 J
Perfluorododecanoic acid (PFDoA)	NG/L	1.65 J	1.68 U	NA	2.07 U	2.22 U
Perfluoro-1-heptanesulfonate (PFHPS)	NG/L	0.64 J	1.68 U	NA	1.0 J	1.13 J
Perfluoroheptanoic acid (PFHpA)	NG/L	4.88	1.65 J	NA	11.5	2.30
Perfluorohexanesulfonic acid (PFHxS)	NG/L	2.43	1.68 U	NA	2.79	3.01
Perfluorohexanoic acid (PFHxA)	NG/L	9.45	2.52	NA	25.6	4.84
Perfluorononanoic acid (PFNA)	NG/L	2.19 J	0.63 J	NA	2.93	0.83 J
Perfluorooctane sulfonamide (FOSA)	NG/L	0.43 J	1.68 U	NA	2.07 U	2.22 U
Perfluorooctanesulfonic acid (PFOS)	NG/L	56.7	12.6	NA	65.6	187
Perfluorooctanoic acid (PFOA)	NG/L	15.9	2.19	NA	25.9	5.12
Perfluoropentanoic acid (PFPA)	NG/L	9.21	2.24	NA	25.6	2.08 J
Perfluorotetradecanoic acid (PFTeA)	NG/L	2.20 U	1.68 U	NA	2.07 U	2.22 U
Perfluorotridecanoic acid (PFTriA)	NG/L	2.20 U	1.68 U	NA	2.07 U	2.22 U
Perfluoroundecanoic acid (PFUnA)	NG/L	2.20 U	1.68 U	NA	2.07 U	2.22 U
6:2 Fluorotelomer sulfonate (62FTS)	NG/L	22.0 U	16.8 U	NA	20.7 U	22.2 U
8:2 Fluorotelomer sulfonate (82FTS)	NG/L	22.0 U	16.8 U	NA	20.7 U	22.2 U
Total PFOA and PFOS	NG/L	72.6	14.8	NA	91.5	192

Flags assigned during chemistry validation are shown.

Location ID		URS-11	URS-12	URS-13	URS-14	URS-15
Sample ID Matrix Depth Interval (ft)		URS-11	URS-12	URS-13	URS-14	URS-15
		Groundwater -	Groundwater -	Groundwater -	Groundwater -	Groundwater -
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
1,1,2,2-Tetrachloroethane	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
1,1,2-Trichloroethane	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
1,1-Dichloroethane	UG/L	6,100	10 U	2.0 U	1.0 U	640
1,1-Dichloroethene	UG/L	1,000 U	10 U	2.0 U	1.0 U	31
1,2,4-Trichlorobenzene	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
1,2-Dibromo-3-chloropropane	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
1,2-Dichlorobenzene	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
1,2-Dichloroethane	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
1,2-Dichloroethene (cis)	UG/L	1,000 U	10 U	2.0 U	1.0 U	2,300 D
1,2-Dichloroethene (trans)	UG/L	1,000 U	10 U	2.0 U	1.0 U	120
1,2-Dichloropropane	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
1,3-Dichlorobenzene	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
1,3-Dichloropropene (cis)	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
1,3-Dichloropropene (trans)	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
1,4-Dichlorobenzene	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
1,4-Dioxane	UG/L	NA	NA	2.2	NA	89
2-Hexanone	UG/L	5,000 U	50 U	10 U	5.0 U	100 U
4-Methyl-2-pentanone	UG/L	5,000 U	50 U	10 U	5.0 U	100 U
Acetone	UG/L	10,000 U	100 U	20 U	10 U	200 U
Benzene	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Bromodichloromethane	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Bromoform	UG/L	1,000 UJ	10 UJ	2.0 U	1.0 U	20 UJ

Flags assigned during chemistry validation are shown.

Location ID		URS-11	URS-12	URS-13	URS-14	URS-15
Sample ID		URS-11	URS-12	URS-13	URS-14	URS-15
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units					
Volatile Organic Compounds						
Bromomethane	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Carbon disulfide	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Carbon tetrachloride	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Chlorobenzene	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Chloroethane	UG/L	22,000	10 U	2.0 U	1.0 U	120
Chloroform	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Chloromethane	UG/L	400 J	10 U	2.0 U	1.0 U	20 U
Cyclohexane	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Dibromochloromethane	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Dichlorodifluoromethane	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Ethylbenzene	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Isopropylbenzene (Cumene)	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Methyl acetate	UG/L	2,500 U	25 U	5.0 U	2.5 U	50 U
Methyl ethyl ketone (2-Butanone)	UG/L	10,000 U	100 U	20 U	10 U	200 U
Methyl tert-butyl ether	UG/L	1,000 U	10 U	0.37 J	1.0 U	20 U
Methylcyclohexane	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Methylene chloride	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Styrene	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Tetrachloroethene	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Toluene	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Trichloroethene	UG/L	1,000 U	10 U	2.0 U	1.0 U	13 J
Trichlorofluoromethane	UG/L	1,000 U	10 U	2.0 U	1.0 U	20 U
Vinyl chloride	UG/L	1,000 U	10 U	2.0 U	1.0 U	2,000 D
Xylene (total)	UG/L	2,000 U	20 U	4.0 U	2.0 U	40 U

Flags assigned during chemistry validation are shown.

Location ID		URS-11	URS-12	URS-13	URS-14	URS-15
Sample ID Matrix		URS-11	URS-12	URS-13	URS-14	URS-15
		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled	_	05/02/18	05/02/18	05/02/18	05/02/18	05/02/18
Parameter	Units					
Per- and Polyfluoroalkyl Substances						
N-Ethyl perfluorooctanesulfonamidoacetic acid (NETFOSAA)	NG/L	NA	NA	19.8 U	NA	20.2 U
N-Methyl perfluorooctanesulfonamidoacetic acid (NMEFOSAA)	NG/L	NA	NA	19.8 U	NA	20.2 U
Perfluorobutanesulfonic acid (PFBS)	NG/L	NA	NA	4.71	NA	2.02 U
Perfluorobutanoic acid (PFBA)	NG/L	NA	NA	64.6	NA	34.2
Perfluorodecane sulfonate (PFDS)	NG/L	NA	NA	1.98 U	NA	2.02 U
Perfluorodecanoic acid (PFDA)	NG/L	NA	NA	11.4	NA	0.70 J
Perfluorododecanoic acid (PFDoA)	NG/L	NA	NA	1.22 J	NA	2.02 U
Perfluoro-1-heptanesulfonate (PFHPS)	NG/L	NA	NA	2.02	NA	0.95 J
Perfluoroheptanoic acid (PFHpA)	NG/L	NA	NA	71.0	NA	18.5
Perfluorohexanesulfonic acid (PFHxS)	NG/L	NA	NA	9.27	NA	4.58
Perfluorohexanoic acid (PFHxA)	NG/L	NA	NA	119	NA	55.3
Perfluorononanoic acid (PFNA)	NG/L	NA	NA	36.4	NA	2.07
Perfluorooctane sulfonamide (FOSA)	NG/L	NA	NA	1.98 U	NA	2.02 U
Perfluorooctanesulfonic acid (PFOS)	NG/L	NA	NA	51.4	NA	46.0
Perfluorooctanoic acid (PFOA)	NG/L	NA	NA	112	NA	33.8
Perfluoropentanoic acid (PFPA)	NG/L	NA	NA	133	NA	49.0
Perfluorotetradecanoic acid (PFTeA)	NG/L	NA	NA	1.98 U	NA	0.62 J
Perfluorotridecanoic acid (PFTriA)	NG/L	NA	NA	1.98 U	NA	2.02 U
Perfluoroundecanoic acid (PFUnA)	NG/L	NA	NA	1.58 J	NA	2.02 U
6:2 Fluorotelomer sulfonate (62FTS)	NG/L	NA	NA	19.8 U	NA	20.2 U
8:2 Fluorotelomer sulfonate (82FTS)	NG/L	NA	NA	19.8 U	NA	20.2 U
Total PFOA and PFOS	NG/L	NA	NA	163	NA	79.8

Flags assigned during chemistry validation are shown.

Location ID		URS-16
Sample ID	URS-16	
Matrix	Groundwater	
Depth Interval (ft)		-
Date Sampled		05/02/18
Parameter	Units	
Volatile Organic Compounds		
1,1,1-Trichloroethane	UG/L	80 U
1,1,2,2-Tetrachloroethane	UG/L	80 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	80 U
1,1,2-Trichloroethane	UG/L	80 U
1,1-Dichloroethane	UG/L	260
1,1-Dichloroethene	UG/L	80 U
1,2,4-Trichlorobenzene	UG/L	80 U
1,2-Dibromo-3-chloropropane	UG/L	80 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	80 U
1,2-Dichlorobenzene	UG/L	80 U
1,2-Dichloroethane	UG/L	80 U
1,2-Dichloroethene (cis)	UG/L	1,800
1,2-Dichloroethene (trans)	UG/L	80 U
1,2-Dichloropropane	UG/L	80 U
1,3-Dichlorobenzene	UG/L	80 U
1,3-Dichloropropene (cis)	UG/L	80 U
1,3-Dichloropropene (trans)	UG/L	80 U
1,4-Dichlorobenzene	UG/L	80 U
1,4-Dioxane	UG/L	NA
2-Hexanone	UG/L	400 U
4-Methyl-2-pentanone	UG/L	400 U
Acetone	UG/L	800 U
Benzene	UG/L	80 U
Bromodichloromethane	UG/L	80 U
Bromoform	UG/L	80 UJ

Flags assigned during chemistry validation are shown.

Location ID	URS-16	
Sample ID	URS-16	
Matrix	Groundwater	
Depth Interval (ft)		-
Date Sampled		05/02/18
Parameter	Units	
Volatile Organic Compounds		
Bromomethane	UG/L	80 U
Carbon disulfide	UG/L	80 U
Carbon tetrachloride	UG/L	80 U
Chlorobenzene	UG/L	80 U
Chloroethane	UG/L	80 U
Chloroform	UG/L	80 U
Chloromethane	UG/L	80 U
Cyclohexane	UG/L	80 U
Dibromochloromethane	UG/L	80 U
Dichlorodifluoromethane	UG/L	80 U
Ethylbenzene	UG/L	80 U
Isopropylbenzene (Cumene)	UG/L	80 U
Methyl acetate	UG/L	200 U
Methyl ethyl ketone (2-Butanone)	UG/L	800 U
Methyl tert-butyl ether	UG/L	80 U
Methylcyclohexane	UG/L	80 U
Methylene chloride	UG/L	80 U
Styrene	UG/L	80 U
Tetrachloroethene	UG/L	2,600
Toluene	UG/L	80 U
Trichloroethene	UG/L	630
Trichlorofluoromethane	UG/L	80 U
Vinyl chloride	UG/L	95
Xylene (total)	UG/L	160 U

Flags assigned during chemistry validation are shown.

Location ID	URS-16	
Sample ID	URS-16 Groundwater	
Matrix		
Depth Interval (ft)		-
Date Sampled		05/02/18
Parameter	Units	
Per- and Polyfluoroalkyl Substances		
N-Ethyl perfluorooctanesulfonamidoacetic acid (NETFOSAA)	NG/L	NA
N-Methyl perfluorooctanesulfonamidoacetic acid (NMEFOSAA)	NG/L	NA
Perfluorobutanesulfonic acid (PFBS)	NG/L	NA
Perfluorobutanoic acid (PFBA)	NG/L	NA
Perfluorodecane sulfonate (PFDS)	NG/L	NA
Perfluorodecanoic acid (PFDA)	NG/L	NA
Perfluorododecanoic acid (PFDoA)	NG/L	NA
Perfluoro-1-heptanesulfonate (PFHPS)	NG/L	NA
Perfluoroheptanoic acid (PFHpA)	NG/L	NA
Perfluorohexanesulfonic acid (PFHxS)	NG/L	NA
Perfluorohexanoic acid (PFHxA)	NG/L	NA
Perfluorononanoic acid (PFNA)	NG/L	NA
Perfluorooctane sulfonamide (FOSA)	NG/L	NA
Perfluorooctanesulfonic acid (PFOS)	NG/L	NA
Perfluorooctanoic acid (PFOA)	NG/L	NA
Perfluoropentanoic acid (PFPA)	NG/L	NA
Perfluorotetradecanoic acid (PFTeA)	NG/L	NA
Perfluorotridecanoic acid (PFTriA)	NG/L	NA
Perfluoroundecanoic acid (PFUnA)	NG/L	NA
6:2 Fluorotelomer sulfonate (62FTS)	NG/L	NA
8:2 Fluorotelomer sulfonate (82FTS)	NG/L	NA
Total PFOA and PFOS	NG/L	NA

Flags assigned during chemistry validation are shown.

TABLE 3 VALIDATED FIELD QC SAMPLE ANALYTICAL RESULTS STUART OLVER HOLTZ SITE

Location ID		FIELDQC	FIELDQC	FIELDQC
Sample ID Matrix		EB-050218	FB-050218	TRIP BLANK
		Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	•	-
Date Sampled		05/02/18	05/02/18	05/02/18
Parameter	Units	Equipment Blank (1-1)	Field Blank (1-1)	Trip Blank (1-1)
Volatile Organic Compounds				
1,1,1-Trichloroethane	UG/L	NA	NA	1.0 U
1,1,2,2-Tetrachioroethane	UG/L	NA	NA	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	NA	NA	1.0 U
1,1,2-Trichloroethane	UG/L	NA	NA	1.0 U
1,1-Dichloroethane	UG/L	NA .	NA	1.0 U
1,1-Dichloroethene	UG/L	NA NA	NA	1.0 U
1,2,4-Trichlorobenzene	UG/L	NA	NA NA	1.0 U
1,2-Dibromo-3-chloropropane	UG/L	, NA	NA	1.0 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	NA	NA	1.0 U
1,2-Dichlorobenzene	UG/L	NA NA	NA	1.0 U
1,2-Dichloroethane	UG/L	NA	NA	1.0 U
1,2-Dichloroethene (cis)	UG/L	NA	NA	1.0 U
1,2-Dichloroethene (trans)	UG/L	NA	NA	1.0 U
1,2-Dichloropropane	UG/L	NA	NA	1.0 U
1,3-Dichlorobenzene	UG/L	NA	NA	1.0 U
1,3-Dichloropropene (cis)	UG/L	NA	NA	1.0 U
1,3-Dichloropropene (trans)	UG/L	NA	NA	1.0 U
1,4-Dichlorobenzene	UG/L	NA	NA	1.0 U
2-Hexanone	UG/L	NA	NA	5.0 U
4-Methyl-2-pentanone	UG/L	NA	NA	5.0 U
Acetone	UG/L	NA	NA	3.7 J
Benzene	UG/L	NA	NA	1.0 U
Bromodichloromethane	UG/L	NA	NA	1.0 U
Bromoform	UG/L	NA	NA	1.0 UJ
Bromomethane	UG/L	NA	NA	1.0 U

Flags assigned during chemistry validation are shown.

TABLE 3 VALIDATED FIELD QC SAMPLE ANALYTICAL RESULTS STUART OLVER HOLTZ SITE

Location ID		FIELDQC	FIELDQC	FIELDQC
Sample ID Matrix Depth Interval (ft)		EB-050218	FB-050218	TRIP BLANK
		Groundwater	Groundwater	Groundwater
			•	-
Date Sampled		05/02/18	05/02/18	05/02/18
Parameter	Units	Equipment Blank (1-1)	Field Blank (1-1)	Trip Blank (1-1)
Volatile Organic Compounds				
Carbon disulfide	UG/L	NA ·	NA	1.0 U
Carbon tetrachloride	UG/L	NA	NA	1.0 U
Chlorobenzene	UG/L	NA	NA	1.0 U
Chloroethane	UG/L	NA	NA	1.0 U
Chloroform	UG/L	NA	NA	1.0 U
Chloromethane	UG/L	NA	NA	1.0 U
Cyclohexane	UG/L	NA NA	NA	1.0 U
Dibromochloromethane	UG/L	NA	NA	1.0 U
Dichlorodifluoromethane	UG/L	NA	NA	1.0 U
Ethylbenzene	UG/L	NA	NA	1.0 U
sopropylbenzene (Cumene)	UG/L	NA	NA	1.0 Ú
Methyl acetate	UG/L	NA	NA	2.5 U
Methyl ethyl ketone (2-Butanone)	UG/L	NA	NA	10 U
Methyl tert-butyl ether	UG/L	NA	NA	1.0 U
Methylcyclohexane	UG/L	NA	NA	1.0 U
Methylene chloride	UG/L	NA	NA	1.0 U
Styrene	UG/L	NA	NA	1.0 U
Tetrachloroethene	UG/L	NA	NA	1.0 U
oluene	UG/L	NA	NA	1.0 U
richloroethene	UG/L	NA	NA	1.0 U
richlorofluoromethane	UG/L	NA	NA	1.0 U
finyl chloride	UG/L	NA	NA	1.0 U
(ylene (total)	UG/L	NA	NA	2.0 U
Per- and Polyfluoroalkyl Substances				
I-Methyl perfluorooctanesulfonamidoacetic acid	NG/L	17.2 U	18.1 U	NA

Flags assigned during chemistry validation are shown.

TABLE 3 VALIDATED FIELD QC SAMPLE ANALYTICAL RESULTS STUART OLVER HOLTZ SITE

Location ID		FIELDQC	FIELDQC	FIELDQC					
Sample ID Matrix Depth Interval (ft) Date Sampled		EB-050218	FB-050218	TRIP BLANK					
		Groundwater - 05/02/18	Groundwater - 05/02/18	Groundwater					
					Parameter	Units	Equipment Blank (1-1)	Field Blank (1-1)	Trip Blank (1-1)
					Per- and Polyfluoroalkyl Substances				
Perfluorobutanesulfonic acid (PFBS)	NG/L	1.72 U	1.81 U	NA					
Perfluorobutanoic acid (PFBA)	NG/L	1.72 U	1.81 U	NA					
Perfluorodecane sulfonate (PFDS)	NG/L	1.72 U	1.81 U	. NA					
Perfluorodecanoic acid (PFDA)	NG/L	1.72 U	1.81 U	NA					
N-Ethyl perfluorooctanesulfonamidoacetic acid (NETFOSAA)	NG/L	17.2 U	18.1 U	NA					
Perfluorododecanoic acid (PFDoA)	NG/L	1.72 U	1.81 U	NA					
Perfluoro-1-heptanesulfonate (PFHPS)	NG/L	1.72 U	1.81 U	NA:					
Perfluoroheptanoic acid (PFHpA)	NG/L	1.72 U	1.81 U	NA					
Perfluorohexanesulfonic acid (PFHxS)	NG/L	0.21 J	0.24 J	NA					
Perfluorohexanoic acid (PFHxA)	NG/L	1.72 U	1.81 U	NA					
Perfluorononanoic acid (PFNA)	NG/L	1.72 U	1.81 U	NA					
Perfluorooctane sulfonamide (FOSA)	NG/L	1.72 U	1.81 U	NA					
Perfluorooctanesulfonic acid (PFOS)	NG/L	1.72 U	1.81 U	NA					
Perfluorooctanoic acid (PFOA)	NG/L	1.72 U	1.81 U	NA					
Perfluoropentanoic acid (PFPA)	NG/L	1.72 U	1.81 U	NA					
Perfluorotetradecanoic acid (PFTeA)	NG/L	1.72 U	1.81 U	. NA					
Perfluorotridecanoic acid (PFTriA)	NG/L	1.72 U	1.81 U	NA					
Perfluoroundecanoic acid (PFUnA)	NG/L	1.72 U	1.81 U	NA					
6:2 Fluorotelomer sulfonate (62FTS)	NG/L	1.72 J	2.09 J	NA					
3:2 Fluorotelomer sulfonate (82FTS)	NG/L	17.2 U	18.1 U	NA					

Flags assigned during chemistry validation are shown,

ATTACHMENT A

VALIDATED FORM Is

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1				
SDG No.:					
Client Sample ID: B1/PZ-3	Lab Sample ID: 480-135305-4				
Matrix: Water	Lab File ID: P32708.D				
Analysis Method: 8260C	Date Collected: 05/02/2018 14:00				
Sample wt/vol: 5 (mL)	Date Analyzed: 05/10/2018 13:46				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 413540	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND	1	1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND	1	1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
110-82-7	Cyclohexane	ND		1.0	0.18
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2,5	1.3

Lab Name: TestAmerica Buffalo Job No.: 480-135305-1

SDG No.:

Client Sample ID: B1/PZ-3 Lab Sample ID: 480-135305-4

Matrix: Water Lab File ID: P32708.D

Analysis Method: 8260C Date Collected: 05/02/2018 14:00

Sample wt/vol: 5(mL) Date Analyzed: 05/10/2018 13:46

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: <u>ZB-624 (60)</u> ID: <u>0.25 (mm)</u>

% Moisture: Level: (low/med) Low

Analysis Batch No.: 413540 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND	Ť	1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND	•	1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
100-42-5	Styrene	ND		1.0	0.73

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	92		77-120
460-00-4	4-Bromofluorobenzene (Surr)	93		73-120
2037-26-5	Toluene-d8 (Surr)	99		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: <u>B4/PZ-01</u>	Lab Sample ID: 480-135305-17
Matrix: Water	Lab File ID: P32714.D
Analysis Method: 8260C	Date Collected: 05/02/2018 16:05
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 16:31
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413540	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL ,	MDL
71-55-6	1,1,1-Trichloroethane	27		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	0.24	J	1.0	0.23
75-34-3	1,1-Dichloroethane	15		1.0	0.38
75-35-4	1,1-Dichloroethene	5.8		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	0.22	J	1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	. ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-00-3	Chloroethane	0.66	J	1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	2.7		1.0	0.81
110-82-7	Cyclohexane	ND		1.0	0.18
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
98-82-8	Isopropylbenzene	ND	+-	1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.3

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1	
SDG No.:		
Client Sample ID: B4/PZ-01	Lab Sample ID: 480-135305-17	
Matrix: Water	Lab File ID: P32714.D	
Analysis Method: 8260C	Date Collected: 05/02/2018 16:05	
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 16:31	
Soil Aliquot Vol:	Dilution Factor: 1	
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)	
% Moisture: Level: (low/med) Low		
Analysis Batch No.: 413540	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND.		1.0	0.37
79-01-6	Trichloroethene	2.4		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
100-42-5	Styrene	ND		1.0	0.73

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	91		77-120
460-00-4	4-Bromofluorobenzene (Surr)	87		73-120
2037-26-5	Toluene-d8 (Surr)	96		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1				
SDG No.:					
Client Sample ID: MW-05	Lab Sample ID: 480-135305-20				
Matrix: Water	Lab File ID: P32716.D				
Analysis Method: 8260C	Date Collected: 05/02/2018 16:20				
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 17:26				
Soil Aliquot Vol:	Dilution Factor: 10				
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 413540	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	22		10	8.2
79-34-5	1,1,2,2-Tetrachloroethane	ND		10	2.1
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		10	3.1
79-00-5	1,1,2-Trichloroethane	ND		10	2.3
75-34-3	1,1-Dichloroethane	74		10	3.8
75-35-4	1,1-Dichloroethene	8.5	J	10	2.9
120-82-1	1,2,4-Trichlorobenzene	ND		10	4.1
96-12-8	1,2-Dibromo-3-Chloropropane	ND		10	3.9
95-50-1	1,2-Dichlorobenzene	ND	•	10	7.9
107-06-2	1,2-Dichloroethane	ND		10	2.1
78-87-5	1,2-Dichloropropane	ND		10	7.2
541-73-1	1,3-Dichlorobenzene	ND		10	7.8
106-46-7	1,4-Dichlorobenzene	ND		10	8.4
78-93-3	2-Butanone (MEK)	ND	1	100	13
591-78-6	2-Hexanone	ND		50	12
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		50	21
67-64-1	Acetone	ND		100	30
71-43-2	Benzene	ND		10	4.1
75-25-2	Bromoform	ND		10	2.6
74-83-9	Bromomethane	ND		10	6.9
75-15-0	Carbon disulfide	ND		10	1.9
56-23-5	Carbon tetrachloride	ND		10	2.7
108-90-7	Chlorobenzene	ND		10	7.5
124-48-1	Dibromochloromethane	ND		10	3.2
75-00-3	Chloroethane	ND		10	3.2
67-66-3	Chloroform	ND		10	3.4
74-87-3	Chloromethane	ND		10	3.5
156-59-2	cis-1,2-Dichloroethene	210		10	8.1
110-82-7	Cyclohexane	ND		10	1.8
75-27-4	Bromodichloromethane	ND		10	3.9
75-71-8	Dichlorodifluoromethane	ND		10	6.8
100-41-4	Ethylbenzene	ND	- +-	10	7.4
106-93-4	1,2-Dibromoethane	ND		10	7.3
98-82-8	Isopropylbenzene	ND		10	7.9
79-20-9	Methyl acetate	ND	-	25	13

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: MW-05	Lab Sample ID: 480-135305-20
Matrix: Water	Lab File ID: P32716.D
Analysis Method: 8260C	Date Collected: 05/02/2018 16:20
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 17:26
Soil Aliquot Vol:	Dilution Factor: 10
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413540	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	3.5	J	10	1.6
108-87-2	Methylcyclohexane	ND		10	1.6
75-09-2	Methylene Chloride	ND		10	4.4
127-18-4	Tetrachloroethene	640		10	3.6
108-88-3	Toluene	ND		10	5.1
156-60-5	trans-1,2-Dichloroethene	ND		10	9.0
10061-02-6	trans-1,3-Dichloropropene	ND		10	3.7
79-01-6	Trichloroethene	200		10	4.6
75-69-4	Trichlorofluoromethane	ND		10	8.8
75-01-4	Vinyl chloride	ND		10	9.0
1330-20-7	Xylenes, Total	ND		20	6.6
10061-01-5	cis-1,3-Dichloropropene	ND		10	3.6
100-42-5	Styrene	ND		10	7.3

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	87		77-120
460-00-4	4-Bromofluorobenzene (Surr)	88		73-120
2037-26-5	Toluene-d8 (Surr)	95	,	80-120

Lab Name: TestAmerica Buffalo Job No.: 480-135305-1 SDG No.: Client Sample ID: OW-3S Lab Sample ID: 480-135305-22 Lab File ID: P32715.D Matrix: Water Analysis Method: 8260C Date Collected: 05/02/2018 16:30 Sample wt/vol: 5(mL) Date Analyzed: 05/10/2018 16:58 Dilution Factor: 8 Soil Aliquot Vol: GC Column: ZB-624 (60) ID: 0.25 (mm) Soil Extract Vol.: Level: (low/med) Low % Moisture: Analysis Batch No.: 413540 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	, Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		8.0	6.6
79-34-5	1,1,2,2-Tetrachloroethane	ND		8.0	1.7
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		8.0	2.5
79-00-5	1,1,2-Trichloroethane	ND		8.0	1.8
75-34-3	1,1-Dichloroethane	350		8.0	3.0
75-35-4	1,1-Dichloroethene	41		8.0	2.3
120-82-1	1,2,4-Trichlorobenzene	ND		8.0	3.3
96-12-8	1,2-Dibromo-3-Chloropropane	ND		8.0	3.1
95-50-1	1,2-Dichlorobenzene	ND		8.0	6.3
107-06-2	1,2-Dichloroethane	ND	*	8.0	1.7
78-87-5	1,2-Dichloropropane	ND		8.0	5.8
541-73-1	1,3-Dichlorobenzene	ND		8.0	6.2
106-46-7	1,4-Dichlorobenzene	ND	<u>-</u>	8.0	6.7
78-93-3	2-Butanone (MEK)	ND		80	11
591-78-6	2-Hexanone	ND		40	9.9
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		40	17
67-64-1	Acetone	ND		80	24
71-43-2	Benzene	ND		8.0	3.3
75-25-2	Bromoform	ND		8.0	2.1
74-83-9	Bromomethane	ND ND		8.0	5.5
75-15-0	Carbon disulfide	ND		8.0	1.5
56-23-5	Carbon tetrachloride	ND		8.0	2.2
108-90-7	Chlorobenzene	ND		8.0	6.0
124-48-1	Dibromochloromethane	ND		8.0	2.6
75-00-3	Chloroethane	ND		8.0	2.6
67-66-3	Chloroform	ND		8.0	2.7
74-87-3	Chloromethane	. ND		8.0	2.8
156-59-2	cis-1,2-Dichloroethene	360		8.0	6.5
110-82-7	Cyclohexane	ND		8.0	1.4
75-27-4	Bromodichloromethane	ND		8.0	3.1
75-71-8	Dichlorodifluoromethane	ND		8.0	5.4
100-41-4	Ethylbenzene	ND		8.0	5.9
106-93-4	1,2-Dibromoethane	ND		8.0	5.8
98-82-8	Isopropylbenzene	ND		8.0	6.3
79-20-9	Methyl acetate	ND		20	10

Lab Name: TestAmerica Buffalo Job No.: 480-135305-1 SDG No.: Client Sample ID: OW-3S Lab Sample ID: 480-135305-22 Lab File ID: P32715.D Matrix: Water Analysis Method: 8260C Date Collected: 05/02/2018 16:30 Sample wt/vol: 5(mL) Date Analyzed: 05/10/2018 16:58 Dilution Factor: 8 Soil Aliquot Vol:

Soil Extract Vol.: GC Column: ZB-624 (60) ID: 0.25(mm)

Level: (low/med) Low % Moisture:

Units: ug/L Analysis Batch No.: 413540

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		8.0	1.3
108-87-2	Methylcyclohexane	ND		8.0	1.3
75-09-2	Methylene Chloride	ND		8.0	3.5
127-18-4	Tetrachloroethene	5.9	J	8.0	2.9
108-88-3	Toluene	ND		8.0	4.1
156-60-5	trans-1,2-Dichloroethene	ND		8.0	7.2
10061-02-6	trans-1,3-Dichloropropene	ND		8.0	3.0
79-01-6	Trichloroethene	140		8.0	3.7
75-69-4	Trichlorofluoromethane	ND		8.0	7.0
75-01-4	Vinyl chloride	ND		8.0	7.2
1330-20-7	Xylenes, Total	ND		16	5.3
10061-01-5	cis-1,3-Dichloropropene	ND		8.0	2.9
100-42-5	Styrene	ND		8.0	5.8
	<u> </u>		1		

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	90		77-120
460-00-4	4-Bromofluorobenzene (Surr)	89		73-120
2037-26-5	Toluene-d8 (Surr)	95		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: OW-04S	Lab Sample ID: 480-135305-18
Matrix: Water	Lab File ID: P32729.D
Analysis Method: 8260C	Date Collected: 05/02/2018 16:10
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 23:55
Soil Aliquot Vol:	Dilution Factor: 20
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413745	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	0	RL	MDL
· · · · · · · · · · · · · · · · · · ·	COMI COND NAPIE	KESOHI		KL	
71-55-6	1,1,1-Trichloroethane	930		20	16
79-34-5	1,1,2,2-Tetrachloroethane	ND		20	4.2
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND	-	20	6.2
79-00-5	1,1,2-Trichloroethane	ND		20	4.6
75-34-3	1,1-Dichloroethane	910		20	7.6
75-35-4	1,1-Dichloroethene	240		20	5.8
120-82-1	1,2,4-Trichlorobenzene	ND		20	8.2
96-12-8	1,2-Dibromo-3-Chloropropane	ND		20	7.8
95-50-1	1,2-Dichlorobenzene	ND		20	16
107-06-2	1,2-Dichloroethane	ND		20	4.2
78-87-5	1,2-Dichloropropane	ND		20	14
541-73-1	1,3-Dichlorobenzene	ND	· ·	20	16
106-46-7	1,4-Dichlorobenzene	ND		20	17
78-93-3	2-Butanone (MEK)	ND		200	26
591-78-6	2-Hexanone	ND	()	100	25
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		100	42
67-64-1	Acetone	ND		200	60
71-43-2	Benzene	ND		20	8.2
75-25-2	Bromoform	ND		20	5.2
74-83-9	Bromomethane	ND		20	14
75-15-0	Carbon disulfide	ND		20	3.8
56-23-5	Carbon tetrachloride	ND		20	5.4
108-90-7	Chlorobenzene	ND		20	15
124-48-1	Dibromochloromethane	ND		20	6.4
75-00-3	Chloroethane	ND		20	6.4
67-66-3	Chloroform	ND		20	6.8
74-87-3	Chloromethane	ND		20	7.0
156-59-2	cis-1,2-Dichloroethene	130		20	16
110-82-7	Cyclohexane	ND		20	3.6
75-27-4	Bromodichloromethane	ND		20	7.8
75-71-8	Dichlorodifluoromethane	ND	IX	20	14
100-41-4	Ethylbenzene	ND	٠, ن	20	15
106-93-4	1,2-Dibromoethane	ND		20	15
98-82-8	Isopropylbenzene	ND		20	16
79-20-9	Methyl acetate	ND		50	26

Steffs 18

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: OW-04S	Lab Sample ID: 480-135305-18
Matrix: Water	Lab File ID: P32729.D
Analysis Method: 8260C	Date Collected: 05/02/2018 16:10
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 23:55
Soil Aliquot Vol:	Dilution Factor: 20
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413745	Units: ug/L

COMPOUND NAME	RESULT	Q	RL	MDL		
Methyl tert-butyl ether	ND		20	3.2		
Methylcyclohexane	ND		20	3.2		
Methylene Chloride	ND		20	8.8		
Tetrachloroethene	ND	1	20	7.2		
Toluene	ND		20	10		
trans-1,2-Dichloroethene	ND		20	18		
trans-1,3-Dichloropropene	ND		20	7.4		
Trichloroethene	25		20	9.2		
Trichlorofluoromethane	ND		20	18		
Vinyl chloride	ND		20	18		
Xylenes, Total	ND		40	13		
cis-1,3-Dichloropropene	ND		20	7.2		
Styrene	ND		20	15		
	Methyl tert-butyl ether Methylcyclohexane Methylene Chloride Tetrachloroethene Toluene trans-1,2-Dichloroethene trans-1,3-Dichloropropene Trichloroethene Trichlorofluoromethane Vinyl chloride Xylenes, Total cis-1,3-Dichloropropene	Methyl tert-butyl etherNDMethylcyclohexaneNDMethylene ChlorideNDTetrachloroetheneNDTolueneNDtrans-1,2-DichloroetheneNDtrans-1,3-DichloropropeneNDTrichloroethene25TrichlorofluoromethaneNDVinyl chlorideNDXylenes, TotalNDcis-1,3-DichloropropeneND	Methyl tert-butyl ether ND Methylcyclohexane ND Methylene Chloride ND Tetrachloroethene ND Toluene ND trans-1,2-Dichloroethene ND trans-1,3-Dichloropropene ND Trichloroethene 25 Trichlorofluoromethane ND Vinyl chloride ND Xylenes, Total ND cis-1,3-Dichloropropene ND	Methyl tert-butyl ether ND 20 Methylcyclohexane ND 20 Methylene Chloride ND 20 Tetrachloroethene ND 20 Toluene ND 20 trans-1,2-Dichloroethene ND 20 trans-1,3-Dichloropropene ND 20 Trichloroethene 25 20 Trichlorofluoromethane ND 20 Vinyl chloride ND 20 Xylenes, Total ND 40 cis-1,3-Dichloropropene ND 20		

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	91		77-120
460-00-4	4-Bromofluorobenzene (Surr)	91		73-120
2037-26-5	Toluene-d8 (Surr)	96		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: OW-5S	Lab Sample ID: 480-135305-3
Matrix: Water	Lab File ID: P32707.D
Analysis Method: 8260C	Date Collected: 05/02/2018 13:55
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 13:18
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413540	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	0.89	J	1.0	0.8
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.2
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	1.5		1.0	0.3
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.2
75-34-3	1,1-Dichloroethane	14		1.0	0.3
75-35-4	1,1-Dichloroethene	4.8		1.0	0.2
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.4
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.3
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.7
107-06-2	1,2-Dichloroethane	ND		1.0	0.2
78-87-5	1,2-Dichloropropane	ND		1.0	0.7
541-73-1	1,3-Dichlorobenzene	ND	9.5	1.0	0.7
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.8
78-93-3	2-Butanone (MEK)	ND		10	1.
591-78-6	2-Hexanone	ND		5.0	1.
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.
67-64-1	Acetone	ND		10	3.
71-43-2	Benzene	ND	-	1.0	0.4
75-25-2	Bromoform	ND		1.0	0.2
74-83-9	Bromomethane	ND		1.0	0.6
75-15-0	Carbon disulfide	ND		1.0	0.1
56-23-5	Carbon tetrachloride	ND		1.0	0.2
108-90-7	Chlorobenzene	ND		1.0	0.7
124-48-1	Dibromochloromethane	ND	-	1.0	0.3
75-00-3	Chloroethane	ND		1.0	0.3
67-66-3	Chloroform	ND		1.0	0.3
74-87-3	Chloromethane	ND		1.0	0.3
156-59-2	cis-1,2-Dichloroethene	11		1.0	0.8
110-82-7	Cyclohexane	ND		1.0	0.1
75-27-4	Bromodichloromethane	ND		1.0	0.3
75-71-8	Dichlorodifluoromethane	ND		1.0	0.6
100-41-4	Ethylbenzene	ND		1.0	0.7
106-93-4	1,2-Dibromoethane	ND		1.0	0.7
98-82-8	Isopropylbenzene	ND		1.0	0.7
79-20-9	Methyl acetate	ND		2.5	1.:

Lab Name: TestAmerica Buffalo Job No.: 480-135305-1

SDG No.:

Client Sample ID: OW-5S Lab Sample ID: 480-135305-3

Matrix: Water Lab File ID: P32707.D

Analysis Method: 8260C Date Collected: 05/02/2018 13:55

Sample wt/vol: 5(mL) Date Analyzed: 05/10/2018 13:18

Soil Aliquot Vol: Dilution Factor: 1

Soil Extract Vol.: GC Column: ZB-624 (60) ID: 0.25 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 413540 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q ,	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND ND	Ī	1.0	0.10
108-87-2	Methylcyclohexane	ND		1.0	0.1
75-09-2	Methylene Chloride	ND	1	1.0	0.4
127-18-4	Tetrachloroethene	ND		1.0	0.3
108-88-3	Toluene	ND		1.0	0.5
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.9
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.3
79-01-6	Trichloroethene	33		1.0	0.4
75-69-4	Trichlorofluoromethane	ND		1.0	0.8
75-01-4	Vinyl chloride	ND		1.0	0.9
1330-20-7	Xylenes, Total	ND		2.0	0.6
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.3
100-42-5	Styrene	ND	<u> </u>	1.0	0.7

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	88		77-120
460-00-4	4-Bromofluorobenzene (Surr)	91		73-120
2037-26-5	Toluene-d8 (Surr)	94		80-120

 Lab Name: TestAmerica Buffalo
 Job No.: 480-135305-1

 SDG No.:
 Client Sample ID: 0W-6S
 Lab Sample ID: 480-135305-15

 Matrix: Water
 Lab File ID: P32691.D

 Analysis Method: 8260C
 Date Collected: 05/02/2018 15:50

 Sample wt/vol: 5 (mL)
 Date Analyzed: 05/10/2018 04:55

Soil Aliquot Vol: Dilution Factor: 10

Soil Extract Vol.: GC Column: ZB-624 (60) ID: 0.25(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 413509 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		10	8.2
79-34-5	1,1,2,2-Tetrachloroethane	ND		10	2.1
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		10	3.1
79-00-5	1,1,2-Trichloroethane	ND		10	2.3
75-34-3	1,1-Dichloroethane	28		10	3.8
75-35-4	1,1-Dichloroethene	ND		10	2.9
120-82-1	1,2,4-Trichlorobenzene	ND		10	4.1
96-12-8	1,2-Dibromo-3-Chloropropane	ND		10	3.9
95-50-1	1,2-Dichlorobenzene	ND		10	7.9
107-06-2	1,2-Dichloroethane	ND		10	2.1
78-87-5	1,2-Dichloropropane	ND		10	7.2
541-73-1	1,3-Dichlorobenzene	ND		10	7.8
106-46-7	1,4-Dichlorobenzene	ND		10	8.4
78-93-3	2-Butanone (MEK)	ND		100	13
591-78-6	2-Hexanone	. ND		50	12
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		50	21
67-64-1	Acetone	ND		100	30
71-43-2	Benzene	ND		10	4.1
75-25-2	Bromoform	ND	55	10	2.6
74-83-9	Bromomethane	ND		10	6.9
75-15-0	Carbon disulfide	ND		10	1.9
56-23-5	Carbon tetrachloride	ND		10	2.7
108-90-7	Chlorobenzene	ND		10	7.5
124-48-1	Dibromochloromethane	ND		10	3.2
75-00-3	Chloroethane	ND		10	3.2
67-66-3	Chloroform	ND		10	3.4
74-87-3	Chloromethane	ND		10	3.5
156-59-2	cis-1,2-Dichloroethene	550		10	8.1
110-82-7	Cyclohexane	ND		10	1.8
75-27-4	Bromodichloromethane	ND		10	3.9
75-71-8	Dichlorodifluoromethane	ND		10	6.8
100-41-4	Ethylbenzene	ND		10	7.4
106-93-4	1,2-Dibromoethane	ND		10	7.3
98-82-8	Isopropylbenzene	ND	<u> </u>	10	7.9
79-20-9	Methyl acetate	ND		25	13

dry (1910

Lab Name: TestAmerica Buffalo Job No.: 480-135305-1 SDG No.: Client Sample ID: OW-6S Lab Sample ID: 480-135305-15 Lab File ID: P32691.D Matrix: Water Date Collected: 05/02/2018 15:50 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 05/10/2018 04:55 Dilution Factor: 10 Soil Aliquot Vol: Soil Extract Vol.: GC Column: ZB-624 (60) ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 413509 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		10	1.
108-87-2	Methylcyclohexane	ND		10	1.
75-09-2	Methylene Chloride	ND		10	4.
127-18-4	Tetrachloroethene	20		10	3.
108-88-3	Toluene	ND		10	5.
156-60-5	trans-1,2-Dichloroethene	9.4	J	10	9.
10061-02-6	trans-1,3-Dichloropropene	ND		10	3.
79-01-6	Trichloroethene	19		10	4.
75-69-4	Trichlorofluoromethane	ND		10	8.
75-01-4	Vinyl chloride	19		10	9.
1330-20-7	Xylenes, Total	ND		20	6.
10061-01-5	cis-1,3-Dichloropropene	ND		10	3.
100-42-5	Styrene	ND		10	7.

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	90		77-120
460-00-4	4-Bromofluorobenzene (Surr)	93		73-120
2037-26-5	Toluene-d8 (Surr)	96		80-120

Lab Name: TestAmerica Buffalo Job No.: 480-135305-1 SDG No.: Client Sample ID: FD2-050218 Lab Sample ID: 480-135305-23 Lab File ID: P32730.D Matrix: Water Analysis Method: 8260C Date Collected: 05/02/2018 00:00 Sample wt/vol: 5(mL) Date Analyzed: 05/11/2018 00:22 Dilution Factor: 10 Soil Aliquot Vol: Soil Extract Vol.: GC Column: ZB-624 (60) ID: 0.25(mm) Level: (low/med) Low % Moisture: Units: ug/L Analysis Batch No.: 413745

CAS NO.	COMPOUND NAME	RESULT	Q	, RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		10	8.2
79-34-5	1,1,2,2-Tetrachloroethane	ND		10	2.1
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	, ND		10	3.1
79-00-5	1,1,2-Trichloroethane	ND		10	2.3
75-34-3	1,1-Dichloroethane	26		10	3.8
75-35-4	1,1-Dichloroethene	ND		10	2.9
120-82-1	1,2,4-Trichlorobenzene	ND		10	4.1
96-12-8	1,2-Dibromo-3-Chloropropane	ND		10	3.9
95-50-1	1,2-Dichlorobenzene	ND		10	7.9
107-06-2	1,2-Dichloroethane	ND		10	2.1
78-87-5	1,2-Dichloropropane	ND		10	7.2
541-73-1	1,3-Dichlorobenzene	ND		10	7.8
106-46-7	1,4-Dichlorobenzene	ND	1 1	10	8.4
78-93-3	2-Butanone (MEK)	ND		100	13
591-78-6	2-Hexanone	ND	155	50	12
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		50	21
67-64-1	Acetone	ND		100	30
71-43-2	Benzene	ND		10	4.1
75-25-2	Bromoform	ND		10	2.6
74-83-9	Bromomethane	ND		10	6.9
75-15-0	Carbon disulfide	ND		10	1.9
56-23-5	Carbon tetrachloride	ND		10	2.7
108-90-7	Chlorobenzene	ND	<u> </u>	10	7.5
124-48-1	Dibromochloromethane	ND		10	3.2
75-00-3	Chloroethane	ND		10	3.2
67-66-3	Chloroform	ND	-	10	3.4
74-87-3	Chloromethane	ND		10	3.5
156-59-2	cis-1,2-Dichloroethene	520		10	8.1
110-82-7	Cyclohexane	. ND		10	1.8
75-27-4	Bromodichloromethane	ND		10	3.9
75-71-8	Dichlorodifluoromethane	ND	12	10	6.8
100-41-4	Ethylbenzene	ND		10	7.4
106-93-4	1,2-Dibromoethane	ND		10	7.3
98-82-8	Isopropylbenzene	ND		10	7.9
79-20-9	Methyl acetate	ND		25	13

Orsk 18

Job No.: 480-135305-1

SDG No.:

Client Sample ID: FD2-050218

Lab Sample ID: 480-135305-23

Matrix: Water

Lab File ID: P32730.D

Analysis Method: 8260C

Date Collected: 05/02/2018 00:00

Sample wt/vol: 5(mL) Date Analyzed: 05/11/2018 00:22

Soil Aliquot Vol: Dilution Factor: 10

Soil Extract Vol.: GC Column: ZB-624 (60) ID: 0.25(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 413745 Units: ug/L

Lab Name: TestAmerica Buffalo

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		10	1.6
108-87-2	Methylcyclohexane	ND		10	1.6
75-09-2	Methylene Chloride	ND		10	4.4
127-18-4	Tetrachloroethene	21		10	3.6
108-88-3	Toluene	ND	1	10	5.1
156-60-5	trans-1,2-Dichloroethene	ND		10	9.0
10061-02-6	trans-1,3-Dichloropropene	ND		10	3.7
79-01-6	Trichloroethene	20		10	4.6
75-69-4	Trichlorofluoromethane	ND		10	8.8
75-01-4	Vinyl chloride	17		10	9.0
1330-20-7	Xylenes, Total	ND		20	6.6
10061-01-5	cis-1,3-Dichloropropene	ND		10	3.6
100-42-5	Styrene	ND		10	7.3

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	89		77-120
460-00-4	4-Bromofluorobenzene (Surr)	91		73-120
2037-26-5	Toluene-d8 (Surr)	94		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: OW-7S	Lab Sample ID: 480-135305-6
Matrix: Water	Lab File ID: P32710.D
Analysis Method: 8260C	Date Collected: 05/02/2018 14:10
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 14:41
Soil Aliquot Vol:	Dilution Factor: 200
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413540	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		200	160
79-34-5	1,1,2,2-Tetrachloroethane	ND		200	42
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		200	62
79-00-5	1,1,2-Trichloroethane	ND		200	46
75-34-3	1,1-Dichloroethane	1300		200	76
75-35-4	1,1-Dichloroethene	ND	İ	200	58
120-82-1	1,2,4-Trichlorobenzene	ND		200	82
96-12-8	1,2-Dibromo-3-Chloropropane	ND		200	78
95-50-1	1,2-Dichlorobenzene	ND		200	160
107-06-2	1,2-Dichloroethane	ND		200	42
78-87-5	1,2-Dichloropropane	ND		200	140
541-73-1	1,3-Dichlorobenzene	ND		200	160
106-46-7	1,4-Dichlorobenzene	ND		200	170
78-93-3	2-Butanone (MEK)	ND		2000	260
591-78-6	2-Hexanone	ND		1000	250
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	1	1000	420
67-64-1	Acetone	ND		2000	600
71-43-2	Benzene	ND .		200	82
75-25-2	Bromoform	ND		200	52
74-83-9	Bromomethane	ND		200	140
75-15-0	Carbon disulfide	ND		200	38
56-23-5	Carbon tetrachloride	ND		200	54
108-90-7	Chlorobenzene	ND		200	150
124-48-1	Dibromochloromethane	ND	1	200	64
75-00-3	Chloroethane	ND		200	64
67-66-3	Chloroform	ND		200	68
74-87-3	Chloromethane	ND		200	70
156-59-2	cis-1,2-Dichloroethene	10000		200	160
110-82-7	Cyclohexane	ND		200	36
75-27-4	Bromodichloromethane	ND		200	78
75-71-8	Dichlorodifluoromethane	ND	+	200	140
100-41-4	Ethylbenzene	ND		200	150
106-93-4	1,2-Dibromoethane	. ND		200	150
98-82-8	Isopropylbenzene	ND		200	160
79-20-9	Methyl acetate	ND		500	260

Lab Name: TestAmerica Buffalo Job No.: 480-135305-1 SDG No.: Client Sample ID: OW-7S Lab Sample ID: 480-135305-6 Lab File ID: P32710.D Matrix: Water Analysis Method: 8260C Date Collected: 05/02/2018 14:10 Date Analyzed: 05/10/2018 14:41 Sample wt/vol: 5(mL) Dilution Factor: 200 Soil Aliquot Vol: Soil Extract Vol.: GC Column: ZB-624 (60) ID: 0.25(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 413540 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		200	32
108-87-2	Methylcyclohexane	ND		200	32
75-09-2	Methylene Chloride	ND		200	88
127-18-4	Tetrachloroethene	ND		200	72
108-88-3	Toluene	. ND		200	100
156-60-5	trans-1,2-Dichloroethene	ND		200	180
10061-02-6	trans-1,3-Dichloropropene	ND		200	74
79-01-6	Trichloroethene	210		200	92
75-69-4	Trichlorofluoromethane	ND		200	180
75-01-4	Vinyl chloride	1800		200	180
1330-20-7	Xylenes, Total	ND		400	130
10061-01-5	cis-1,3-Dichloropropene	ND		200	72
100-42-5	Styrene	ND		200	150

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	89		77-120
460-00-4	4-Bromofluorobenzene (Surr)	90		73-120
2037-26-5	Toluene-d8 (Surr)	92		80-120

Job No.: 480-135305-1

 SDG No.:
 Client Sample ID: FD1-050218
 Lab Sample ID: 480-135305-5

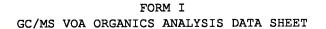
 Matrix: Water
 Lab File ID: P32709.D

Analysis Method: 8260C Date Collected: 05/02/2018 00:00

Sample wt/vol: 5(mL) Date Analyzed: 05/10/2018 14:14

Soil Aliquot Vol: Dilution Factor: 400

Soil Extract Vol.: _____ GC Column: <u>ZB-624 (60)</u> ID: <u>0.25 (mm)</u>


% Moisture: Level: (low/med) Low

Analysis Batch No.: 413540 Units: ug/L

Lab Name: TestAmerica Buffalo

CAS NO.	COMPOUND NAME	RESULT	, Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		400	330
79-34-5	1,1,2,2-Tetrachloroethane	ND		400	84
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		400	120
79-00-5	1,1,2-Trichloroethane	ND		400	92
75-34-3	1,1-Dichloroethane	1400		400	150
75-35-4	1,1-Dichloroethene	ND		400	120
120-82-1	1,2,4-Trichlorobenzene	ND		400	160
96-12-8	1,2-Dibromo-3-Chloropropane	ND		400	160
95-50-1	1,2-Dichlorobenzene	ND		400	320
107-06-2	1,2-Dichloroethane	ND		400	84
78-87-5	1,2-Dichloropropane	ND		400	290
541-73-1	1,3-Dichlorobenzene	ND		400	310
106-46-7	1,4-Dichlorobenzene	ND		400	340
78-93-3	2-Butanone (MEK)	ND		4000	530
591-78-6	2-Hexanone	ND		2000	500
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		2000	840
67-64-1	Acetone	ND		4000	1200
71-43-2	Benzene	ND		400	160
75-25-2	Bromoform	ND		400	100
74-83-9	Bromomethane	ND		400	280
75-15-0	Carbon disulfide	ND		400	76
56-23-5	Carbon tetrachloride	ND		400	110
108-90-7	Chlorobenzene	ND		400	300
124-48-1	Dibromochloromethane	ND		400	130
75-00-3	Chloroethane	ND		400	130
67-66-3	Chloroform	ND		400	140
74-87-3	Chloromethane	ND	,	400	140
156-59-2	cis-1,2-Dichloroethene	10000	F 1	400	320
110-82-7	Cyclohexane	ND		400	72
75-27-4	Bromodichloromethane	ND		400	160
75-71-8	Dichlorodifluoromethane	ND		400	270
100-41-4	Ethylbenzene	ND		400	300
106-93-4	1,2-Dibromoethane	ND		400	290
98-82-8	Isopropylbenzene	ND		400	320
79-20-9	Methyl acetate	ND		1000	520

318/18

Job No.: 480-135305-1 Lab Name: TestAmerica Buffalo SDG No.: Client Sample ID: FD1-050218 Lab Sample ID: 480-135305-5 Matrix: Water Lab File ID: P32709.D Date Collected: 05/02/2018 00:00 Analysis Method: 8260C Date Analyzed: 05/10/2018 14:14 Sample wt/vol: 5(mL) Dilution Factor: 400 Soil Aliquot Vol: GC Column: ZB-624 (60) ID: 0.25(mm) Soil Extract Vol.: Level: (low/med) Low % Moisture: Analysis Batch No.: 413540 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		400	64
108-87-2	Methylcyclohexane	ND		400	64
75-09-2	Methylene Chloride	ND		400	180
127-18-4	Tetrachloroethene	ND		400	140
108-88-3	Toluene	ND		400	200
156-60-5	trans-1,2-Dichloroethene	ND		400	360
10061-02-6	trans-1,3-Dichloropropene	ND		400	150
79-01-6	Trichloroethene	230	J	400	180
75-69-4	Trichlorofluoromethane	ND		400	350
75-01-4	Vinyl chloride	1900		400	360
1330-20-7	Xylenes, Total	ND		800	260
10061-01-5	cis-1,3-Dichloropropene	ND		400	140
100-42-5	Styrene	ND		400	290

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	89		77-120
460-00-4	4-Bromofluorobenzene (Surr)	92		73-120
2037-26-5	Toluene-d8 (Surr)	94		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: SW-32	Lab Sample ID: 480-135305-7
Matrix: Water	Lab File ID: P32685.D
Analysis Method: 8260C	Date Collected: 05/02/2018 14:20
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 02:09
Soil Aliquot Vol:	Dilution Factor: 20000
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413509	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	630000		20000	16000
79-34-5	1,1,2,2-Tetrachloroethane	ND		20000	4200
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		20000	6200
79-00-5	1,1,2-Trichloroethane	ND	2	20000	4600
75-34-3	1,1-Dichloroethane	90000		20000	7600
75-35-4	1,1-Dichloroethene	ND		20000	5800
120-82-1	1,2,4-Trichlorobenzene	ND		20000	8200
96-12-8	1,2-Dibromo-3-Chloropropane	ND		20000	7800
95-50-1	1,2-Dichlorobenzene	ND		20000	16000
107-06-2	1,2-Dichloroethane	ND		20000	4200
78-87-5	1,2-Dichloropropane	ND		20000	14000
541-73-1	1,3-Dichlorobenzene	ND		20000	16000
106-46-7	1,4-Dichlorobenzene	ND		20000	17000
78-93-3	2-Butanone (MEK)	ND		200000	26000
591-78-6	2-Hexanone	ND		100000	25000
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		100000	42000
67-64-1	Acetone	ND ·		200000	60000
71-43-2	Benzene	ND		20000	8200
75-25-2	Bromoform	ND	.55	20000	5200
74-83-9	Bromomethane	ND		20000	14000
75-15-0	Carbon disulfide	ND		20000	3800
56-23-5	Carbon tetrachloride	ND		20000	5400
108-90-7	Chlorobenzene	ND		20000	15000
124-48-1	Dibromochloromethane	ND		20000	6400
75-00-3	Chloroethane	ND		20000	6400
67-66-3	Chloroform	ND		20000	6800
74-87-3	Chloromethane	ND		20000	7000
156-59-2	cis-1,2-Dichloroethene	ND		20000	16000
110-82-7	Cyclohexane	ND		20000	3600
75-27-4	Bromodichloromethane	ND	- 1	20000	7800
75-71-8	Dichlorodifluoromethane	ND		20000	14000
100-41-4	Ethylbenzene	ND		20000	15000
106-93-4	1,2-Dibromoethane	ND		20000	15000
98-82-8	Isopropylbenzene	ND		20000	16000
79-20-9	Methyl acetate	ND	1.0	50000	26000

Del 3/40

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: SW-32	Lab Sample ID: 480-135305-7
Matrix: Water	Lab File ID: P32685.D
Analysis Method: 8260C	Date Collected: 05/02/2018 14:20
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 02:09
Soil Aliquot Vol:	Dilution Factor: 20000
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413509	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q ,	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND ND	T	20000	3200
108-87-2	Methylcyclohexane	ND		20000	3200
75-09-2	Methylene Chloride	ND		20000	8800
127-18-4	Tetrachloroethene	ND		20000	7200
108-88-3	Toluene	ND		20000	10000
156-60-5	trans-1,2-Dichloroethene	ND	-	20000	18000
10061-02-6	trans-1,3-Dichloropropene	ND		20000	7400
79-01-6	Trichloroethene	ND		20000	9200
75-69-4	Trichlorofluoromethane	ND		20000	18000
75-01-4	Vinyl chloride	ND		20000	18000
1330-20-7	Xylenes, Total	ND		40000	13000
10061-01-5	cis-1,3-Dichloropropene	ND		20000	7200
100-42-5	Styrene	ND		20000	15000

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	90		77-120
460-00-4	4-Bromofluorobenzene (Surr)	92		73-120
2037-26-5	Toluene-d8 (Surr)	95		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: SW-33	Lab Sample ID: 480-135305-8
Matrix: Water	Lab File ID: P32686.D
Analysis Method: 8260C	Date Collected: 05/02/2018 14:30
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 02:37
Soil Aliquot Vol:	Dilution Factor: 10000
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413509	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q .	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND	05	10000	8200
79-34-5	1,1,2,2-Tetrachloroethane	ND		10000	2100
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		10000	3100
79-00-5	1,1,2-Trichloroethane	ND	L	10000	2300
75-34-3	1,1-Dichloroethane	20000	3	10000	3800
75-35-4	1,1-Dichloroethene	ND	03	10000	2900
120-82-1	1,2,4-Trichlorobenzene	ND	i	10000	4100
96-12-8	1,2-Dibromo-3-Chloropropane	ND		10000	3900
95-50-1	1,2-Dichlorobenzene	ND		10000	7900
107-06-2	1,2-Dichloroethane	ND		10000	2100
78-87-5	1,2-Dichloropropane	ND		10000	7200
541-73-1	1,3-Dichlorobenzene	ND		10000	7800
106-46-7	1,4-Dichlorobenzene	ND		10000	8400
78-93-3	2-Butanone (MEK)	ND		100000	13000
591-78-6	2-Hexanone	ND		50000	12000
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	,	50000	21000
67-64-1	Acetone	ND	₽ ⁄2	100000	30000
71-43-2	Benzene	ND		10000	4100
75-25-2	Bromoform	ND		10000	2600
74-83-9	Bromomethane	ND		10000	6900
75-15-0	Carbon disulfide	ND		10000	1900
56-23-5	Carbon tetrachloride	ND		10000	2700
108-90-7	Chlorobenzene	ND		10000	7500
124-48-1	Dibromochloromethane	ND	•	10000	3200
75-00-3	Chloroethane	16000	~	10000	3200
67-66-3	Chloroform	ND	135	10000	3400
74-87-3	Chloromethane	ND		10000	3500
156-59-2	cis-1,2-Dichloroethene	ND		10000	8100
110-82-7	Cyclohexane	ND		10000	1800
75-27-4	Bromodichloromethane	ND		10000	3900
75-71-8	Dichlorodifluoromethane	ND		10000	6800
100-41-4	Ethylbenzene	ND		10000	7400
106-93-4	1,2-Dibromoethane	ND		10000	7300
98-82-8	Isopropylbenzene	ND		10000	7900
79-20-9	Methyl acetate	ND	1	25000	13000

Job No.: 480-135305-1 Lab Name: TestAmerica Buffalo SDG No.:

Lab Sample ID: 480-135305-8 Client Sample ID: SW-33

Matrix: Water Lab File ID: P32686.D

Date Collected: 05/02/2018 14:30 Analysis Method: 8260C

Date Analyzed: 05/10/2018 02:37 Sample wt/vol: 5(mL)

Dilution Factor: 10000 Soil Aliquot Vol:

Soil Extract Vol.: GC Column: ZB-624 (60) ID: 0.25(mm)

Level: (low/med) Low % Moisture:

Analysis Batch No.: 413509 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND	70	10000	1600
108-87-2	Methylcyclohexane	ND	4	10000	1600
75-09-2	Methylene Chloride	ND		10000	4400
127-18-4	Tetrachloroethene	ND		10000	3600
108-88-3	Toluene	ND		10000	5100
156-60-5	trans-1,2-Dichloroethene	ND		10000	9000
10061-02-6	trans-1,3-Dichloropropene	ND		10000	3700
79-01-6	Trichloroethene	ND		10000	4600
75-69-4	Trichlorofluoromethane	ND		10000	8800
75-01-4	Vinyl chloride	ND		10000	9000
1330-20-7	Xylenes, Total	ND	<u> </u>	20000	6600
10061-01-5	cis-1,3-Dichloropropene	ND		10000	3600
100-42-5	Styrene	ND	1,	10000	7300

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	89		77-120
460-00-4	4-Bromofluorobenzene (Surr)	94		73-120
2037-26-5	Toluene-d8 (Surr)	96		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: SW-37	Lab Sample ID: 480-135305-9
Matrix: Water	Lab File ID: P32687.D
Analysis Method: 8260C	Date Collected: 05/02/2018 15:00
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 03:05
Soil Aliquot Vol:	Dilution Factor: 400
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413509	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	1200		400	330
79-34-5	1,1,2,2-Tetrachloroethane	ND		400	84
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		400	120
79-00-5	1,1,2-Trichloroethane	ND		400	92
75-34-3	1,1-Dichloroethane	7700		400	150
75-35-4	1,1-Dichloroethene	ND		400	120
120-82-1	1,2,4-Trichlorobenzene	ND		400	160
96-12-8	1,2-Dibromo-3-Chloropropane	ND		400	160
95-50-1	1,2-Dichlorobenzene	ND		400	320
107-06-2	1,2-Dichloroethane	ND		400	84
78-87-5	1,2-Dichloropropane	ND		400	290
541-73-1	1,3-Dichlorobenzene	ND		400	310
106-46-7	1,4-Dichlorobenzene	ND		400	340
78-93-3	2-Butanone (MEK)	ND		4000	530
591-78-6	2-Hexanone	ND		2000	500
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		2000	840
67-64-1	Acetone	ND		4000	1200
71-43-2	Benzene	ND		400	160
75-25-2	Bromoform	ND	5	400	100
74-83-9	Bromomethane	ND		400	280
75-15-0	Carbon disulfide	ND		400	76
56-23-5	Carbon tetrachloride	ND		400	110
108-90-7	Chlorobenzene	ND		400	300
124-48-1	Dibromochloromethane	ND		400	130
75-00-3	Chloroethane	. ND		400	130
67-66-3	Chloroform	ND		400	140
74-87-3	Chloromethane	ND		400	140
156-59-2	cis-1,2-Dichloroethene	6200		400	320
110-82-7	Cyclohexane	ND		400	72
75-27-4	Bromodichloromethane	ND		400	160
75-71-8	Dichlorodifluoromethane	ND		400	270
100-41-4	Ethylbenzene	ND		400	300
106-93-4	1,2-Dibromoethane	ND		400	290
98-82-8	Isopropylbenzene	ND		400	320
79-20-9	Methyl acetate	ND	-	1000	520

and slie

Job No.: 480-135305-1 Lab Name: TestAmerica Buffalo SDG No.: Lab Sample ID: 480-135305-9 Client Sample ID: SW-37 Matrix: Water Lab File ID: P32687.D Date Collected: 05/02/2018 15:00 Analysis Method: 8260C Sample wt/vol: 5(mL) Date Analyzed: 05/10/2018 03:05 Dilution Factor: 400 Soil Aliquot Vol: GC Column: ZB-624 (60) ID: 0.25(mm) Soil Extract Vol.: % Moisture: Level: (low/med) Low Analysis Batch No.: 413509 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		400	64
108-87-2	Methylcyclohexane	ND		400	64
75-09-2	Methylene Chloride	ND		400	180
127-18-4	Tetrachloroethene	ND	-	400	140
108-88-3	Toluene	ND	-	400	200
156-60-5	trans-1,2-Dichloroethene	ND		400	360
10061-02-6	trans-1,3-Dichloropropene	ND		400	150
79-01-6	Trichloroethene	ND		400	180
75-69-4	Trichlorofluoromethane	ND		400	350
75-01-4	Vinyl chloride	2700		400	360
1330-20-7	Xylenes, Total	ND		800	260
10061-01-5	cis-1,3-Dichloropropene	ND		400	140
100-42-5	Styrene	ND		400	290

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	90		77-120
460-00-4	4-Bromofluorobenzene (Surr)	89		73-120
2037-26-5	Toluene-d8 (Surr)	95		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: URS-01	Lab Sample ID: 480-135305-16
Matrix: Water	Lab File ID: P32692.D
Analysis Method: 8260C	Date Collected: 05/02/2018 15:57
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 05:22
Soil Aliquot Vol:	Dilution Factor: 20
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413509	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	420		20	16
79-34-5	1,1,2,2-Tetrachloroethane	ND		20	4.2
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	82		20	6.2
79-00-5	1,1,2-Trichloroethane	ND	,	20	4.6
75-34-3	1,1-Dichloroethane	3100	Z	20	7.6
75-35-4	1,1-Dichloroethene	160		20	5.8
120-82-1	1,2,4-Trichlorobenzene	ND		20	8.2
96-12-8	1,2-Dibromo-3-Chloropropane	ND		20	7.8
95-50-1	1,2-Dichlorobenzene	ND -		20	16
107-06-2	1,2-Dichloroethane	5.7	J	20	4.2
78-87-5	1,2-Dichloropropane	ND.		20	14
541-73-1	1,3-Dichlorobenzene	ND		20	16
106-46-7	1,4-Dichlorobenzene	ND		20	17
78-93-3	2-Butanone (MEK)	ND		200	26
591-78-6	2-Hexanone	ND		100	25
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		100	42
67-64-1	Acetone	ND		200	60
71-43-2	Benzene	ND		20	8.2
75-25-2	Bromoform	ND	155	20	5.2
74-83-9	Bromomethane	ND	-	20	14
75-15-0	Carbon disulfide	ND		20	3.8
56-23-5	Carbon tetrachloride	ND		20	5.4
108-90-7	Chlorobenzene	ND		20	15
124-48-1	Dibromochloromethane	ND		20	6.4
75-00-3	Chloroethane	160		20	6.4
67-66-3	Chloroform	ND		20	6.8
74-87-3	Chloromethane	ND		20	7.0
156-59-2	cis-1,2-Dichloroethene	270 4400	E	20	16
110-82-7	Cyclohexane	ND		20	3.6
75-27-4	Bromodichloromethane	ND		20	7.8
75-71-8	Dichlorodifluoromethane	ND		20	14
100-41-4	Ethylbenzene	ND		20	15
106-93-4	1,2-Dibromoethane	ND		20	15
98-82-8	Isopropylbenzene	ND		20	16
79-20-9	Methyl acetate	ND		50	26

Dr. 13118

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1				
SDG No.:					
Client Sample ID: URS-01	Lab Sample ID: 480-135305-16				
Matrix: Water	Lab File ID: P32692.D				
Analysis Method: 8260C	Date Collected: 05/02/2018 15:57				
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 05:22				
Soil Aliquot Vol:	Dilution Factor: 20				
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 413509	Units: ug/L				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		20	3.2
108-87-2	Methylcyclohexane	ND		20	3.2
75-09-2	Methylene Chloride	ND		20	8.8
127-18-4	Tetrachloroethene	ND		20	7.2
108-88-3	Toluene	ND		20	10
156-60-5	trans-1,2-Dichloroethene	ND		20	18
10061-02-6	trans-1,3-Dichloropropene	ND		20	7.4
79-01-6	Trichloroethene	780		20	9.2
75-69-4	Trichlorofluoromethane	ND		20	18
75-01-4	Vinyl chloride	1500		20	18
1330-20-7	Xylenes, Total	ND		40	13
10061-01-5	cis-1,3-Dichloropropene	ND		20	7.2
100-42-5	Styrene	ND		20	15

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	90		77-120
460-00-4	4-Bromofluorobenzene (Surr)	89		73-120
2037-26-5	Toluene-d8 (Surr)	95		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: URS-01 DL	Lab Sample ID: 480-135305-16 DL
Matrix: Water	Lab File ID: P32713.D
Analysis Method: 8260C	Date Collected: 05/02/2018 15:57
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 16:03
Soil Aliquot Vol:	Dilution Factor: 80
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413540	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	390	/	80	66
79-34-5	1,1,2,2-Tetrachloroethane	ND		80	17
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	34	J	80	25
79-00-5	1,1,2-Trichloroethane	/ ND		80	18
75-34-3	1,1-Dichloroethane	/2700		80	30
75-35-4	1,1-Dichloroethene	/ 160		80	23
120-82-1	1,2,4-Trichlorobenzene	/ ND		80	33
96-12-8	1,2-Dibromo-3-Chloropropane	/ ND		80	31
95-50-1	1,2-Dichlorobenzene	ND		80	63
107-06-2	1,2-Dichloroethane	ND		80	17
78-87-5	1,2-Dichloropropane	ND		80	58
541-73-1	1,3-Dichlorobenzene	ND		. 80	62
106-46-7	1,4-Dichlorobenzene	ND		80	67
78-93-3	2-Butanone (MEK)	ND		800	110
591-78-6	2-Hexanone	ND		400	99
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	-	400	170
67-64-1	Acetone	ND		800	240
71-43-2	Benzene /	ND		80	33
75-25-2	Bromoform	ND		80	21
74-83-9	Bromomethane /	ND		80	55
75-15-0	Carbon disulfide	ND		80	15
56-23-5	Carbon tetrachloride	ND		80	22
108-90-7	Chlorobenzene /	ND.		80	60
124-48-1	Dibromochlorométhane	ND		80	26
75-00-3	Chloroethane/	130		80	26
67-66-3	Chloroform /	ND		80	27
74-87-3	Chloromethane	ND		80	28
156-59-2	cis-1,2-Dichloroethene	3700		80	65
110-82-7	Cyclohexane	ND		80	14
75-27-4	Bromodichloromethane	ND		80	31
75-71-8	Dichlorodifluoromethane	ND		80	54
100-41-4	Ethylbenzene	ND		80	59
106-93-4	1,2-Dibromoethane	ND		80	58
98-82-8	Isopropylbenzene	ND.		80	63
79-20-9	Methyl acetate	ND		200	100

06/06/2018

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1			
SDG No.:				
Client Sample ID: URS-01 DL	Lab Sample ID: 480-135305-16 DL			
Matrix: Water	Lab File ID: P32713.D			
Analysis Method: 8260C	Date Collected: 05/02/2018 15:57			
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 16:03			
Soil Aliquot Vol:	Dilution Factor: 80			
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 413540	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		80	13
108-87-2	Methylcyclohexane	ND		80	13
75-09-2	Methylene Chloride	ND	. /	80	35
127-18-4	Tetrachloroethene	ND		80	29
108-88-3	Toluene	ND		80	41
156-60-5	trans-1,2-Dichloroethene	ND		80	72
10061-02-6	trans-1,3-Dichloropropene	ND		80	30
79-01-6	Trichloroethene	/650		80	37
75-69-4	Trichlorofluoromethane	/ ND		80	70
75-01-4	Vinyl chloride	1500		80	72
1330-20-7	Xylenes, Total	ND ND		160	53
10061-01-5	cis-1,3-Dichloropropene	ND ND		80	29
100-42-5	Styrene	ND ND	-	80	58

CAS NO.	SURROGATE	%REC Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	87	77-120
460-00-4	4-Bromofluorobenzene (Surr)	89	73-120
2037-26-5	Toluene-d8 (Surr)	96	80-120

ON SIDIE

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: URS-02	Lab Sample ID: 480-135305-19
Matrix: Water	Lab File ID: P32693.D
Analysis Method: 8260C	Date Collected: 05/02/2018 16:15
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 05:49
Soil Aliquot Vol:	Dilution Factor: 4
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Applyaic Patch No . 412500	Units: ua/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		4.0	3.3
79-34-5	1,1,2,2-Tetrachloroethane	ND		4.0	0.84
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		4.0	1.2
79-00-5	1,1,2-Trichloroethane	ND		4.0	0.92
75-34-3	1,1-Dichloroethane	4.6		4.0	1.5
75-35-4	1,1-Dichloroethene	ND		4.0	1.2
120-82-1	1,2,4-Trichlorobenzene	ND		4.0	1.
96-12-8	1,2-Dibromo-3-Chloropropane	ND		4.0	1.0
95-50-1	1,2-Dichlorobenzene	ND		4.0	3.2
107-06-2	1,2-Dichloroethane	ND		4.0	0.84
78-87-5	1,2-Dichloropropane	ND		4.0	2.
541-73-1	1,3-Dichlorobenzene	ND		4.0	3.
106-46-7	1,4-Dichlorobenzene	ND		4.0	3.
78-93-3	2-Butanone (MEK)	ND		40	5.
591-78-6	2-Hexanone	ND		20	5.
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		20	8.
67-64-1	Acetone	ND	,	40	1:
71-43-2	Benzene	ND		4.0	1.
75-25-2	Bromoform	ND	05	4.0	1.
74-83-9	Bromomethane	ND		4.0	2.
75-15-0	Carbon disulfide	ND		4.0	0.7
56-23-5	Carbon tetrachloride	ND		4.0	1.
108-90-7	Chlorobenzene	ND		4.0	3.
124-48-1	Dibromochloromethane	ND		4.0	1.
75-00-3	Chloroethane	2.6	J	4.0	1.
67-66-3	Chloroform	ND.		4.0	1.4
74-87-3	Chloromethane	ND		4.0	1.
156-59-2	cis-1,2-Dichloroethene	ND		4.0	3.
110-82-7	Cyclohexane	ND		4.0	0.7
75-27-4	Bromodichloromethane	ND		4.0	1.
75-71-8	Dichlorodifluoromethane	ND		4.0	2.
100-41-4	Ethylbenzene	ND		4.0	3.
106-93-4	1,2-Dibromoethane	ND		4.0	2.
98-82-8	Isopropylbenzene	ND		4.0	3.
79-20-9	Methyl acetate	ND		10	5.

Origine

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: URS-02	Lab Sample ID: 480-135305-19
Matrix: Water	Lab File ID: P32693.D
Analysis Method: 8260C	Date Collected: 05/02/2018 16:15
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 05:49
Soil Aliquot Vol:	Dilution Factor: 4
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413509	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	7.4		4.0	0.64
108-87-2	Methylcyclohexane	. ND		4.0	0.64
75-09-2	Methylene Chloride	ND		4.0	1.8
127-18-4	Tetrachloroethene	ND		4.0	1.4
108-88-3	Toluene	ND		4.0	2.0
156-60-5	trans-1,2-Dichloroethene	ND		4.0	3.6
10061-02-6	trans-1,3-Dichloropropene	ND		4.0	1.5
79-01-6	Trichloroethene	ND		4.0	1.8
75-69-4	Trichlorofluoromethane	ND		4.0	3.5
75-01-4	Vinyl chloride	ND		4.0	3.6
1330-20-7	Xylenes, Total	ND		8.0	2.6
10061-01-5	cis-1,3-Dichloropropene	ND		4.0	1.4
100-42-5	Styrene	ND		4.0	2.9

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	89		77-120
460-00-4	4-Bromofluorobenzene (Surr)	89		73-120
2037-26-5	Toluene-d8 (Surr)	94		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: URS-03	Lab Sample ID: 480-135305-1
Matrix: Water	Lab File ID: P32705.D
Analysis Method: 8260C	Date Collected: 05/02/2018 13:36
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 12:24
Soil Aliquot Vol:	Dilution Factor: 10
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413540	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	640		10	8.2
79-34-5	1,1,2,2-Tetrachloroethane	. ND		10	2.1
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	140		10	3.1
79-00-5	1,1,2-Trichloroethane	ND		10	2.3
75-34-3	1,1-Dichloroethane	210		10	3.8
75-35-4	1,1-Dichloroethene	16		10	2.9
120-82-1	1,2,4-Trichlorobenzene	ND		10	4.1
96-12-8	1,2-Dibromo-3-Chloropropane	ND		10	3.9
95-50-1	1,2-Dichlorobenzene	ND		10	7.9
107-06-2	1,2-Dichloroethane	ND		10	2.1
78-87-5	1,2-Dichloropropane	ND		. 10	72
541-73-1	1,3-Dichlorobenzene	ND		10	7.8
106-46-7	1,4-Dichlorobenzene	ND -		10	8.4
78-93-3	2-Butanone (MEK)	ND		100	13
591-78-6	2-Hexanone	ND		50	12
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		50	21
67-64-1	Acetone	ND		100	30
71-43-2	Benzene	ND		10	4.1
75-25-2	Bromoform	ND		10	2.6
74-83-9	Bromomethane	ND		10	6.9
75-15-0	Carbon disulfide	ND		10	1.9
56-23-5	Carbon tetrachloride	ND		10	2.7
108-90-7	Chlorobenzene	ND		10	7.5
124-48-1	Dibromochloromethane	ND		10	3.2
75-00-3	Chloroethane	ND		10	3.2
67-66-3	Chloroform	ND		10	3.4
74-87-3	Chloromethane	ND		10	3.5
156-59-2	cis-1,2-Dichloroethene	35		10	8.1
110-82-7	Cyclohexane	ND		10	1.8
75-27-4	Bromodichloromethane	ND		10	3.9
75-71-8	Dichlorodifluoromethane	ND		10	6.8
100-41-4	Ethylbenzene	ND		10	7.4
106-93-4	1,2-Dibromoethane	ND		10	7.3
98-82-8	Isopropylbenzene	ND.		10	7.9
79-20-9	Methyl acetate	ND		25	13

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: URS-03	Lab Sample ID: 480-135305-1
Matrix: Water	Lab File ID: P32705.D
Analysis Method: 8260C	Date Collected: 05/02/2018 13:36
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 12:24
Soil Aliquot Vol:	Dilution Factor: 10
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413540	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		10	1.6
108-87-2	Methylcyclohexane	ND		10	1.6
75-09-2	Methylene Chloride	ND		10	4.4
127-18-4	Tetrachloroethene	5.1	J	10	3.6
108-88-3	Toluene	ND		10	5.1
156-60-5	trans-1,2-Dichloroethene	ND		10	9.0
10061-02-6	trans-1,3-Dichloropropene	ND		10	3.7
79-01-6	Trichloroethene	37		10	4.6
75-69-4	Trichlorofluoromethane	ND		10	8.8
75-01-4	Vinyl chloride	14		10	9.0
1330-20-7	Xylenes, Total	ND	, †	. 20	6.6
10061-01-5	cis-1,3-Dichloropropene	ND		10	3.6
100-42-5	Styrene	ND		10	7.3

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	89		77-120
460-00-4	4-Bromofluorobenzene (Surr)	92		73-120
2037-26-5	Toluene-d8 (Surr)	97		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1			
SDG No.:	9			
Client Sample ID: URS-05	Lab Sample ID: 480-135305-24			
Matrix: Water	Lab File ID: P32717.D			
Analysis Method: 8260C	Date Collected: 05/02/2018 16:50			
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 17:53			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 413540	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-25-2	Bromoform	ND		1.0	0.20
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.3
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.83
110-82-7	Cyclohexane	ND		1.0	0.18
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-71-8	Dichlorodifluoromethane	ND		1.0	0.6
100-41-4	Ethylbenzene	ND		1.0	0.74
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.3

 SDG No.:
 Client Sample ID: URS-05
 Lab Sample ID: 480-135305-24

 Matrix: Water
 Lab File ID: P32717.D

 Analysis Method: 8260C
 Date Collected: 05/02/2018 16:50

Job No.: 480-135305-1

Analysis Method: 8260C Date Collected: 05/02/2018 16:50

Sample wt/vol: 5(mL) Date Analyzed: 05/10/2018 17:53

Soil Aliquot Vol: _____ Dilution Factor: 1

Soil Extract Vol.: _____ GC Column: <u>ZB-624 (60)</u> ID: <u>0.25 (mm)</u>

% Moisture: Level: (low/med) Low

Analysis Batch No.: 413540 Units: ug/L

Lab Name: TestAmerica Buffalo

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
100-42-5	Styrene	ND		1.0	0.73

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	92		77-120
460-00-4	4-Bromofluorobenzene (Surr)	88		73-120
2037-26-5	Toluene-d8 (Surr)	95		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: URS-06	Lab Sample ID: 480-135305-25
Matrix: Water	Lab File ID: P32718.D
Analysis Method: 8260C	Date Collected: 05/02/2018 17:10
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 18:20
Soil Aliquot Vol:	Dilution Factor: 4
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413540	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		4.0	3.3
79-34-5	1,1,2,2-Tetrachloroethane	ND		4.0	0.84
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND		4.0	1.2
79-00-5	1,1,2-Trichloroethane	ND		4.0	0.92
75-34-3	1,1-Dichloroethane	ND		4.0	1.5
75-35-4	1,1-Dichloroethene	ND		4.0	1.2
120-82-1	1,2,4-Trichlorobenzene	ND		4.0	1.6
96-12-8	1,2-Dibromo-3-Chloropropane	ND		4.0	1.6
95-50-1	1,2-Dichlorobenzene	ND		4.0	3.2
107-06-2	1,2-Dichloroethane	ND		4.0	0.84
78-87-5	1,2-Dichloropropane	ND		4.0	2.9
541-73-1	1,3-Dichlorobenzene	ND		4.0	3.1
106-46-7	1,4-Dichlorobenzene	ND		4.0	3.4
78-93-3	2-Butanone (MEK)	ND		40	5.3
591-78-6	2-Hexanone	= ND		20	5.0
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		20	8.4
67-64-1	Acetone	ND		40	12
71-43-2	Benzene	ND		4.0	1.6
75-25-2	Bromoform	ND	****	4.0	1.0
74-83-9	Bromomethane	ND		4.0	2.8
75-15-0	Carbon disulfide	ND		4.0	0.76
56-23-5	Carbon tetrachloride	ND		4.0	1.1
108-90-7	Chlorobenzene	ND		4.0	3.0
124-48-1	Dibromochloromethane	ND		4.0	1.3
75-00-3	Chloroethane	ND		4.0	1.3
67-66-3	Chloroform	ND		4.0	1.4
74-87-3	Chloromethane	ND		4.0	1.4
156-59-2	cis-1,2-Dichloroethene	ND		4.0	3.2
110-82-7	Cyclohexane	ND		4.0	0.72
75-27-4	Bromodichloromethane	ND		4.0	1.6
75-71-8	Dichlorodifluoromethane	ND		4.0	2.7
100-41-4	Ethylbenzene	ND		4.0	3.0
106-93-4	1,2-Dibromoethane	ND		4.0	2.9
98-82-8	Isopropylbenzene	ND		4.0	3.2
79-20-9	Methyl acetate	ND		10	5.2

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: URS-06	Lab Sample ID: 480-135305-25
Matrix: Water	Lab File ID: P32718.D
Analysis Method: 8260C	Date Collected: 05/02/2018 17:10
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 18:20
Soil Aliquot Vol:	Dilution Factor: 4
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413540	Units: ug/L

CAS NO.	COMPOUND NAME	RESU	LT Q	RL	MDL
1634-04-4	Methyl tert-butyl ether		ND	4.0	0.64
108-87-2	Methylcyclohexane		ND	4.0	0.64
75-09-2	Methylene Chloride		ND	4.0	1.8
127-18-4	Tetrachloroethene		ND	4.0	1.4
108-88-3	Toluene		ND	4.0	2.0
156-60-5	trans-1,2-Dichloroethene		ND	4.0	3.6
10061-02-6	trans-1,3-Dichloropropene		ND	4.0	1.5
79-01-6	Trichloroethene		ND	4.0	1.8
75-69-4	Trichlorofluoromethane		ND	4.0	3.5
75-01-4	Vinyl chloride	0	ND	4.0	3.6
1330-20-7	Xylenes, Total		ND	8.0	2.6
10061-01-5	cis-1,3-Dichloropropene		ND	4.0	1.4
100-42-5	Styrene		ND	4.0	2.9

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	91		77-120
460-00-4	4-Bromofluorobenzene (Surr)	90		73-120
2037-26-5	Toluene-d8 (Surr)	95		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	*
Client Sample ID: URS-08	Lab Sample ID: 480-135305-12
Matrix: Water	Lab File ID: P32711.D
Analysis Method: 8260C	Date Collected: 05/02/2018 15:15
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 15:09
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No · 413540	Units: ug/I

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	0.96	J	1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	1.0		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-25-2	Bromoform	ND		1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND	- +	1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND		1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
110-82-7	Cyclohexane	ND		1.0	0.18
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
106-93-4	1,2-Dibromoethane	ND	-	1.0	0.73
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND	+	2.5	1.3

 Lab Name: TestAmerica Buffalo
 Job No.: 480-135305-1

 SDG No.:
 Client Sample ID: URS-08
 Lab Sample ID: 480-135305-12

 Matrix: Water
 Lab File ID: P32711.D

 Analysis Method: 8260C
 Date Collected: 05/02/2018 15:15

 Sample wt/vol: 5(mL)
 Date Analyzed: 05/10/2018 15:09

 Soil Aliquot Vol:
 Dilution Factor: 1

 Soil Extract Vol.:
 GC Column: ZB-624 (60) ID: 0.25 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 413540
 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL 1	MDL
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
100-42-5	Styrene	ND		1.0	0.73

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	89		77-120
460-00-4	4-Bromofluorobenzene (Surr)	91		73-120
2037-26-5	Toluene-d8 (Surr)	96		80-120

SDG No.: Client Sample ID: URS-11 Lab Sample ID: 480-135305-10 Matrix: Water Lab File ID: P32688.D

Job No.: 480-135305-1

Analysis Method: 8260C Date Collected: 05/02/2018 15:05

Date Analyzed: 05/10/2018 03:32 Sample wt/vol: 5(mL)

Dilution Factor: 1000 Soil Aliquot Vol: ____

Soil Extract Vol.: ___ GC Column: ZB-624 (60) ID: 0.25(mm)

Level: (low/med) Low % Moisture:

Analysis Batch No.: 413509 Units: ug/L

Lab Name: TestAmerica Buffalo

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1000	820
79-34-5	1,1,2,2-Tetrachloroethane	ND		1000	210
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		1000	310
79-00-5	1,1,2-Trichloroethane	ND		1000	230
75-34-3	1,1-Dichloroethane	6100		1000	380
75-35-4	1,1-Dichloroethene	ND		1000	290
120-82-1	1,2,4-Trichlorobenzene	ND		1000	410
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1000	390
95-50-1	1,2-Dichlorobenzene	ND		1000	790
107-06-2	1,2-Dichloroethane	ND		1000	210
78-87-5	1,2-Dichloropropane	ND		1000	720
541-73-1	1,3-Dichlorobenzene	ND		1000	780
106-46-7	1,4-Dichlorobenzene	ND		1000	840
78-93-3	2-Butanone (MEK)	ND		10000	1300
591-78-6	2-Hexanone	ND		5000	1200
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5000	2100
67-64-1	Acetone	ND		10000	3000
71-43-2	Benzene	ND		1000	410
75-25-2	Bromoform	ND	15	1000	260
74-83-9	Bromomethane	ND		1000	690
75-15-0	Carbon disulfide	ND		1000	190
56-23-5	Carbon tetrachloride	ND		1000	270
108-90-7	Chlorobenzene	ND		1000	750
124-48-1	Dibromochloromethane	ND		1000	320
75-00-3	Chloroethane	22000		1000	320
67-66-3	Chloroform	ND		1000	340
74-87-3	Chloromethane	400	J	1000	350
156-59-2	cis-1,2-Dichloroethene	ND		1000	810
110-82-7	Cyclohexane	ND		1000	180
75-27-4	Bromodichloromethane	ND		1000	390
75-71-8	Dichlorodifluoromethane	ND		1000	680
100-41-4	Ethylbenzene	ND		1000	740
106-93-4	1,2-Dibromoethane	ND		1000	730
98-82-8	Isopropylbenzene	ND		1000	790
79-20-9	Methyl acetate	ND		2500	1300

 Lab Name: TestAmerica Buffalo
 Job No.: 480-135305-1

 SDG No.:
 Client Sample ID: URS-11
 Lab Sample ID: 480-135305-10

 Matrix: Water
 Lab File ID: P32688.D

 Analysis Method: 8260C
 Date Collected: 05/02/2018 15:05

 Sample wt/vol: 5(mL)
 Date Analyzed: 05/10/2018 03:32

 Soil Aliquot Vol:
 Dilution Factor: 1000

 Soil Extract Vol.:
 GC Column: ZB-624 (60) ID: 0.25 (mm)

 % Moisture:
 Level: (low/med) Low

Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		1000	160
108-87-2	Methylcyclohexane	ND		1000	160
75-09-2	Methylene Chloride	ND		1000	440
127-18-4	Tetrachloroethene	ND		1000	360
108-88-3	Toluene	ND		1000	510
156-60-5	trans-1,2-Dichloroethene	ND		1000	900
10061-02-6	trans-1,3-Dichloropropene	ND		1000	370
79-01-6	Trichloroethene	ND		1000	460
75-69-4	Trichlorofluoromethane	ND		1000	880
75-01-4	Vinyl chloride	ND		1000	900
1330-20-7	Xylenes, Total	ND		2000	660
10061-01-5	cis-1,3-Dichloropropene	ND		1000	360
100-42-5	Styrene	ND	+	1000	730

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	88		77-120
460-00-4	4-Bromofluorobenzene (Surr)	94		73-120
2037-26-5	Toluene-d8 (Surr)	97		80-120

Analysis Batch No.: 413509

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1		
SDG No.:			
Client Sample ID: URS-12	Lab Sample ID: 480-135305-11		
Matrix: Water	Lab File ID: P32689.D		
Analysis Method: 8260C	Date Collected: 05/02/2018 15:10		
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 04:00		
Soil Aliquot Vol:	Dilution Factor: 10		
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 413509	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		10	8.2
79-34-5	1,1,2,2-Tetrachloroethane	ND		10	2.1
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		10	3.1
79-00-5	1,1,2-Trichloroethane	ND	İ	10	2.3
75-34-3	1,1-Dichloroethane	ND		10	3.8
75-35-4	1,1-Dichloroethene	ND		10	2.9
120-82-1	1,2,4-Trichlorobenzene	ND		10	4.1
96-12-8	1,2-Dibromo-3-Chloropropane	ND		10	3.9
95-50-1	1,2-Dichlorobenzene	ND		10	7.9
107-06-2	1,2-Dichloroethane	ND		10	2.1
78-87-5	1,2-Dichloropropane	ND		10	7.2
541-73-1	1,3-Dichlorobenzene	ND		10	7.8
106-46-7	1,4-Dichlorobenzene	ND		10	8.4
78-93-3	2-Butanone (MEK)	ND		100	13
591-78-6	2-Hexanone	ND		50	12
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		50	21
67-64-1	Acetone	ND		100	30
71-43-2	Benzene	ND		10	4.1
75-25-2	Bromoform	ND	155	10	2.6
74-83-9	Bromomethane	ND		10	6.9
75-15-0	Carbon disulfide	ND		10	1.9
56-23-5	Carbon tetrachloride	ND		10	2.7
108-90-7	Chlorobenzene	ND		10	7.5
124-48-1	Dibromochloromethane	ND		10	3.2
75-00-3	Chloroethane	ND		10	3.2
67-66-3	Chloroform	ND		10	3.4
74-87-3	Chloromethane	ND		10	3.5
156-59-2	cis-1,2-Dichloroethene	ND		10	8.1
110-82-7	Cyclohexane	ND		10	1.8
75-27-4	Bromodichloromethane	ND		10	3.9
75-71-8	Dichlorodifluoromethane	ND		10	6.8
100-41-4	Ethylbenzene	ND		10	7.4
106-93-4	1,2-Dibromoethane	ND		10	7.3
98-82-8	Isopropylbenzene	ND		10	7.9
79-20-9	Methyl acetate	ND		25	13

019/9/8

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1	
SDG No.:		
Client Sample ID: URS-12	Lab Sample ID: 480-135305-11	
Matrix: Water	Lab File ID: P32689.D	
Analysis Method: 8260C	Date Collected: 05/02/2018 15:10	
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 04:00	
Soil Aliquot Vol:	Dilution Factor: 10	
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)	
% Moisture:	Level: (low/med) Low	
Analysis Batch No.: 413509	Units: ug/L	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND	· · · · · · · · · · · · · · · · · · ·	10	1.6
108-87-2	Methylcyclohexane	ND		10	1.6
75-09-2	Methylene Chloride	ND		10	4.4
127-18-4	Tetrachloroethene	ND		10	3.6
108-88-3	Toluene	ND		10	5.1
156-60-5	trans-1,2-Dichloroethene	ND		10	9.0
10061-02-6	trans-1,3-Dichloropropene	ND		10	3.7
79-01-6	Trichloroethene	ND		10	4.6
75-69-4	Trichlorofluoromethane	ND		10	8.8
75-01-4	Vinyl chloride	ND		10	9.0
1330-20-7	Xylenes, Total	ND		20	6.6
10061-01-5	cis-1,3-Dichloropropene	ND		10	3.6
100-42-5	Styrene	ND		10	7.3

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	87		77-120
460-00-4	4-Bromofluorobenzene (Surr)	92		73-120
2037-26-5	Toluene-d8 (Surr)	96		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1		
SDG No.:			
Client Sample ID: URS-13	Lab Sample ID: 480-135305-26		
Matrix: Water	Lab File ID: P32719.D		
Analysis Method: 8260C	Date Collected: 05/02/2018 17:20		
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 18:48		
Soil Aliquot Vol:	Dilution Factor: 2		
Soil Extract Vol.:	GC Column: <u>ZB-624 (60)</u> ID: 0.25(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Ratch No · 413540	Units: ug/I		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		2.0	1.6
79-34-5	1,1,2,2-Tetrachloroethane	ND	•	2.0	0.42
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan	ND	122	2.0	0.62
79-00-5	1,1,2-Trichloroethane	nD ND		2.0	0.46
75-34-3	1,1-Dichloroethane	ND		2.0	0.76
75-35-4	1,1-Dichloroethene	ND	1883	2.0	0.58
120-82-1	1,2,4-Trichlorobenzene	ND		2.0	0.82
96-12-8	1,2-Dibromo-3-Chloropropane	ND		2.0	0.78
95-50-1	1,2-Dichlorobenzene	ND		2.0	1.6
107-06-2	1,2-Dichloroethane	ND		2.0	0.42
78-87-5	1,2-Dichloropropane	ND		2.0	1.4
541-73-1	1,3-Dichlorobenzene	ND		2.0	1.6
106-46-7	1,4-Dichlorobenzene	ND		2.0	1.7
78-93-3	2-Butanone (MEK)	ND		20	2.6
591-78-6	2-Hexanone	ND		10	2.5
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		10	4.2
67-64-1	Acetone	ND		20	6.0
71-43-2	Benzene	ND		2.0	0.82
75-25-2	Bromoform	ND		2.0	0.52
74-83-9	Bromomethane	ND		2.0	1.4
75-15-0	Carbon disulfide	ND		2.0	0.38
56-23-5	Carbon tetrachloride	ND		2.0	0.54
108-90-7	Chlorobenzene	ND		2.0	1.5
124-48-1	Dibromochloromethane	ND		2.0	0.64
75-00-3	Chloroethane	ND		2.0	0.64
67-66-3	Chloroform	ND		2.0	0.68
74-87-3	Chloromethane	ND		2.0	0.70
156-59-2	cis-1,2-Dichloroethene	ND		2.0	1.6
110-82-7	Cyclohexane	ND		2.0	0.36
75-27-4	Bromodichloromethane	ND		2.0	0.78
75-71-8	Dichlorodifluoromethane	ND		2.0	1.4
100-41-4	Ethylbenzene	ND		2.0	1.5
106-93-4	1,2-Dibromoethane	ND		2.0	1.5
98-82-8	Isopropylbenzene	ND		2.0	1.6
79-20-9	Methyl acetate	ND	-	5.0	2,6

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1		
SDG No.:			
Client Sample ID: URS-13	Lab Sample ID: 480-135305-26		
Matrix: Water	Lab File ID: P32719.D		
Analysis Method: 8260C	Date Collected: 05/02/2018 17:20		
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 18:48		
Soil Aliquot Vol:	Dilution Factor: 2		
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 413540	Units: ug/L		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	0.37	J	2.0	0.32
108-87-2	Methylcyclohexane	ND		2.0	0.32
75-09-2	Methylene Chloride	ND		2.0	0.88
127-18-4	Tetrachloroethene	ND		2.0	0.72
108-88-3	Toluene	ND		2.0	1.0
156-60-5	trans-1,2-Dichloroethene	ND		2.0	1.8
10061-02-6	trans-1,3-Dichloropropene	ND		2.0	0.74
79-01-6	Trichloroethene	ND		2.0	0.92
75-69-4	Trichlorofluoromethane	ND		2.0	1.8
75-01-4	Vinyl chloride	ND		2.0	1.8
1330-20-7	Xylenes, Total	ND		4.0	1.3
10061-01-5	cis-1,3-Dichloropropene	ND	10	2.0	0.72
100-42-5	Styrene	ND		2.0	1.5

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	94		77-120
460-00-4	4-Bromofluorobenzene (Surr)	92	,	73-120
2037-26-5	Toluene-d8 (Surr)	95	-	80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: URS-14 14	Lab Sample ID: 480-135305-2
Matrix: Water	Lab File ID: P32706.D
Analysis Method: 8260C	Date Collected: 05/02/2018 13:47
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 12:51
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No • 413540	United ug/I

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.2
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		1.0	0.3
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.2
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.4
96-12-8	1,2-Dibromo-3-Chloropropane	ND	1	1.0	0.39
95-50-1	1,2-Dichlorobenzene	ND	1	1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.2
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	ND		10	1
591-78-6	2-Hexanone	. ND	+	5.0	1.3
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	1	5.0	2.
67-64-1	Acetone	ND		10	3.0
71-43-2	Benzene	ND		1.0	0.4
75-25-2	Bromoform	ND		1.0	0.2
74-83-9	Bromomethane	ND		1.0	0.6
75-15-0	Carbon disulfide	ND		1.0	0.1
56-23-5	Carbon tetrachloride	ND		1.0	0.2
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-00-3	Chloroethane	ND	-	1.0	0.32
67-66-3	Chloroform	ND	,	1.0	0.34
74-87-3	Chloromethane	ND	. 1	1.0	0.3
156-59-2	cis-1,2-Dichloroethene	ND	-	1.0	0.83
110-82-7	Cyclohexane	ND		1.0	0.18
75-27-4	Bromodichloromethane	ND		1.0	0.3
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.7
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.

Or office

Lab Name: TestAmerica Buffalo Job No.: 480-135305-1 SDG No.: Client Sample ID: URS-1A 14 Lab Sample ID: 480-135305-2 Matrix: Water Lab File ID: P32706.D Analysis Method: 8260C Date Collected: 05/02/2018 13:47 Sample wt/vol: 5(mL) Date Analyzed: 05/10/2018 12:51 Dilution Factor: 1 Soil Aliquot Vol: Soil Extract Vol.: GC Column: ZB-624 (60) ID: 0.25 (mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 413540 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND	- <u> </u>	1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND	1	1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND	1	2.0	0.66
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
100-42-5	Styrene	ND		1.0	0.73

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	87		77-120
460-00-4	4-Bromofluorobenzene (Surr)	91		73-120
2037-26-5	Toluene-d8 (Surr)	94		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1			
SDG No.:				
Client Sample ID: URS-15	Lab Sample ID: 480-135305-14			
Matrix: Water	Lab File ID: P32690.D			
Analysis Method: 8260C	Date Collected: 05/02/2018 15:40			
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 04:27			
Soil Aliquot Vol:	Dilution Factor: 20			
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 413509	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND	<u>+</u>	20	16
79-34-5	1,1,2,2-Tetrachloroethane	ND		20	4.2
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		20	6.2
79-00-5	1,1,2-Trichloroethane	ND		20	4.6
75-34-3	1,1-Dichloroethane	640		20	7.6
75-35-4	1,1-Dichloroethene	31		20	5.8
120-82-1	1,2,4-Trichlorobenzene	ND		20	8.2
96-12-8	1,2-Dibromo-3-Chloropropane	ND		20	7.8
95-50-1	1,2-Dichlorobenzene	ND		20	16
107-06-2	1,2-Dichloroethane	ND		20	4.2
78-87-5	1,2-Dichloropropane	ND		20	14
541-73-1	1,3-Dichlorobenzene	ND		20	16
106-46-7	1,4-Dichlorobenzene	ND		20	17
78-93-3	2-Butanone (MEK)	ND		200	26
591-78-6	2-Hexanone	ND		100	25
108-10-1	4-Methyl-2-pentanone (MIBK)	, ND		100	42
67-64-1	Acetone	ND		200	60
71-43-2	Benzene	ND		20	8.2
75-25-2	Bromoform	ND	35	20	5.2
74-83-9	Bromomethane	ND		20	14
75-15-0	Carbon disulfide	ND		20	3.8
56-23-5	Carbon tetrachloride	ND		20	5.4
108-90-7	Chlorobenzene	ND		20	15
124-48-1	Dibromochloromethane	ND		20	6.4
75-00-3	Chloroethane	120		20	6.4
67-66-3	Chloroform	ND		20	6.8
74-87-3	Chloromethane	ND		20	7.0
156-59-2	cis-1,2-Dichloroethene	2600	E	20	16
110-82-7	Cyclohexane	ND		20	3.6
75-27-4	Bromodichloromethane	ND		20	7.8
75-71-8	Dichlorodifluoromethane	ND		20	14
100-41-4	Ethylbenzene	ND		20	15
106-93-4	1,2-Dibromoethane	ND		20	15
98-82-8	Isopropylbenzene	ND		20	16
79-20-9	Methyl acetate	ND		50	26

dishe

Job No.: 480-135305-1

SDG No.:

Client Sample ID: URS-15

Lab Sample ID: 480-135305-14

Matrix: Water

Lab File ID: P32690.D

Analysis Method: 8260C Date Collected: 05/02/2018 15:40

Sample wt/vol: 5(mL) Date Analyzed: 05/10/2018 04:27

Soil Aliquot Vol: _____ Dilution Factor: 20

Soil Extract Vol.: GC Column: ZB-624 (60) ID: 0.25 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 413509 Units: ug/L

Lab Name: TestAmerica Buffalo

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		20	3.2
108-87-2	Methylcyclohexane	ND		20	3.2
75-09-2	Methylene Chloride	ND		20	8.8
127-18-4	Tetrachloroethene	ND		20	7.2
108-88-3	Toluene	ND		20	10
156-60-5	trans-1,2-Dichloroethene	120		20	18
10061-02-6	trans-1,3-Dichloropropene	ND		20	7.4
79-01-6	Trichloroethene	13	J	20	9.2
75-69-4	Trichlorofluoromethane	ND		20	18
75-01-4	Vinyl chloride	2 200	E	20	18
1330-20-7	Xylenes, Total	ND		40	13
10061-01-5	cis-1,3-Dichloropropene	ND		20	7.2
100-42-5	Styrene	ND		20	15

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	91		77-120
460-00-4	4-Bromofluorobenzene (Surr)	89		73-120
2037-26-5	Toluene-d8 (Surr)	94		80-120

 Lab Name: TestAmerica Buffalo
 Job No.: 480-135305-1

 SDG No.:
 Client Sample ID: URS-15 DL
 Lab Sample ID: 480-135305-14 DL

 Matrix: Water
 Lab File ID: P32712.D

 Analysis Method: 8260C
 Date Collected: 05/02/2018 15:40

 Sample wt/vol: 5(mL)
 Date Analyzed: 05/10/2018 15:36

 Soil Aliquot Vol:
 Dilution Factor: 50

 Soil Extract Vol.:
 GC Column: ZB-624 (60) ID: 0.25 (mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 413540 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		50	41
79-34-5	1,1,2,2-Tetrachloroethane	ND		50	13
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		50	16
79-00-5	1,1,2-Trichloroethane	ND		50	12
75-34-3	1,1-Dichloroethane	570		50	19
75-35-4	1,1-Dichloroethene	/ 25	J	50	13
120-82-1	1,2,4-Trichlorobenzene	/ ND		50	21
96-12-8	1,2-Dibromo-3-Chloropropane	/ ND		50	20
95-50-1	1,2-Dichlorobenzene	/ ND		50	40
107-06-2	1,2-Dichloroethane	/ ND		50	11
78-87-5	1,2-Dichloropropane	ND		50	36
541-73-1	1,3-Dichlorobenzene	ND		50	39
106-46-7	1,4-Dichlorobenzene	ND		50	42
78-93-3	2-Butanone (MEK)	ND		500	66
591-78-6	2-Hexanone	ND		250	62
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		250	110
67-64-1	Acetone	ND		500	150
71-43-2	Benzene	ND		50	21
75-25-2	Bromoform	N D		50	13
74-83-9	Bromomethane /	ND		50	35
75-15-0	Carbon disulfide	ND		50	9.5
56-23-5	Carbon tetrachloride/	ND		50	14
108-90-7	Chlorobenzene /	ND		50	38
124-48-1	Dibromochloromethane	ND		50	16
75-00-3	Chloroethane /	100		50	16
67-66-3	Chloroform /	ND		50	17
74-87-3	Chloromethane	ND		50	18
156-59-2	cis-1,2-Dichloroethene	2300		50	41
110-82-7	Cyclohexane	ND		50	9.0
75 - 27-4	Bromodichloromethane	ND		50	20
75-71-8	Dichlorodifluoromethane	ND		50	34
100-41-4	Ethylbenzene	ND		50	37
106-93-4	1,2-Dibromoethane	ND		50	37
98-82-8	Isopropylbenzene	ND		50	40
79-20-9	Methyl acetate	ND		130	65

Lab Name: TestAmerica Buffalo Job No.: 480-135305-1

SDG No.:

Client Sample ID: URS-15 DL Lab Sample ID: 480-135305-14 DL

Matrix: Water Lab File ID: P32712.D

Analysis Method: 8260C Date Collected: 05/02/2018 15:40

Sample wt/vol: 5(mL) Date Analyzed: 05/10/2018 15:36

Soil Aliquot Vol: Dilution Factor: 50

Soil Extract Vol.: GC Column: ZB-624 (60) ID: 0.25(mm)

% Moisture: Level: (low/med) Low

Analysis Batch No.: 413540 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	g Q /	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		50	8.0
108-87-2	Methylcyclohexane	ND		50	8.0
75-09-2	Methylene Chloride	ND	/	50	22
127-18-4	Tetrachloroethene	ND		. 50	18
108-88-3	Toluene	/ND		50	26
156-60-5	trans-1,2-Dichloroethene	/110		50	45
10061-02-6	trans-1,3-Dichloropropene	ND.		50	19
79-01-6	Trichloroethene	ND.		50	23
75-69-4	Trichlorofluoromethane	/ ND		50	44
75-01-4	Vinyl chloride	2000		50	45
1330-20-7	Xylenes, Total	ND		100	33
10061-01-5	cis-1,3-Dichloropropene	ND		50	18
100-42-5	Styrene	ND		50	37

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	91		77-120
460-00-4	4-Bromofluorobenzene (Surr)	94		73-120
2037-26-5	Toluene-d8 (Surr)	96		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1			
SDG No.:				
Client Sample ID: URS-16	Lab Sample ID: 480-135305-21			
Matrix: Water	Lab File ID: P32694.D			
Analysis Method: 8260C	Date Collected: 05/02/2018 16:25			
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 06:17			
Soil Aliquot Vol:	Dilution Factor: 80			
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25 (mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No. : 413509	Units: ua/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		80	66
79-34-5	1,1,2,2-Tetrachloroethane	ND		80	17
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		80	25
79-00-5	1,1,2-Trichloroethane	ND		80	18
75-34-3	1,1-Dichloroethane	260		80	30
75-35-4	1,1-Dichloroethene	ND		80	23
120-82-1	1,2,4-Trichlorobenzene	ND		80	33
96-12-8	1,2-Dibromo-3-Chloropropane	ND		80	31
95-50-1	1,2-Dichlorobenzene	ND.		80	63
107-06-2	1,2-Dichloroethane	ND		80	17
78-87-5	1,2-Dichloropropane	ND		80	58
541-73-1	1,3-Dichlorobenzene	ND		80	62
106-46-7	1,4-Dichlorobenzene	ND		80	67
78-93-3	2-Butanone (MEK)	ND		800	110
591-78-6	2-Hexanone	ND		400	99
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		400	170
67-64-1	Acetone	ND		800	240
71-43-2	Benzene	ND		80	33
75-25-2	Bromoform	ND	155	80	21
74-83-9	Bromomethane	ND		80	55
75-15-0	Carbon disulfide	ND		80	15
56-23-5	Carbon tetrachloride	ND		80	22
108-90-7	Chlorobenzene	ND		80	60
124-48-1	Dibromochloromethane	ND		80	26
75-00-3	Chloroethane	ND		80	26
67-66-3	Chloroform	ND		80	27
74-87-3	Chloromethane	ND		80	28
156-59-2	cis-1,2-Dichloroethene	1800		80	65
110-82-7	Cyclohexane	ND		80	14
75-27-4	Bromodichloromethane	ND		80	31
75-71-8	Dichlorodifluoromethane	ND		80	54
100-41-4	Ethylbenzene	ND		80	59
106-93-4	1,2-Dibromoethane	ND		80	58
98-82-8	Isopropylbenzene	ND		80	63
79-20-9	Methyl acetate	ND	 	200	100

Des 1410

Lab Name: TestAmerica Buffalo Job No.: 480-135305-1				
SDG No.:				
Client Sample ID: URS-16	Lab Sample ID: 480-135305-21			
Matrix: Water	Lab File ID: P32694.D			
Analysis Method: 8260C	Date Collected: 05/02/2018 16:25			
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 06:17			
Soil Aliquot Vol:	Dilution Factor: 80			
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 413509	Units: ug/L			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		80	13
108-87-2	Methylcyclohexane	ND		80	13
75-09-2	Methylene Chloride	ND		80	35
127-18-4	Tetrachloroethene	2600		80	29
108-88-3	Toluene	ND		80	41
156-60-5	trans-1,2-Dichloroethene	ND		80	72
10061-02-6	trans-1,3-Dichloropropene	ND		80	30
79-01-6	Trichloroethene	630		80	37
75-69-4	Trichlorofluoromethane	ND		80	70
75-01-4	Vinyl chloride	95		80	72
1330-20-7	Xylenes, Total	ND		160	53
10061-01-5	cis-1,3-Dichloropropene	ND		80	29
100-42-5	Styrene	ND		80	58

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	92		77-120
460-00-4	4-Bromofluorobenzene (Surr)	91		73-120
2037-26-5	Toluene-d8 (Surr)	94		80-120

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: TRIP BLANK	Lab Sample ID: 480-135305-29
Matrix: Water	Lab File ID: P32696.D
Analysis Method: 8260C Date Collected: 05/02/2018 00:00	
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 07:12
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No · 413509	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
71-55-6	1,1,1-Trichloroethane	ND		1.0	0.82
79-34-5	1,1,2,2-Tetrachloroethane	ND		1.0	0.21
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		1.0	0.31
79-00-5	1,1,2-Trichloroethane	ND		1.0	0.23
75-34-3	1,1-Dichloroethane	ND		1.0	0.38
75-35-4	1,1-Dichloroethene	ND		1.0	0.29
120-82-1	1,2,4-Trichlorobenzene	ND		1.0	0.41
96-12-8	1,2-Dibromo-3-Chloropropane	ND		1.0	0.39
95-50-1	1,2-Dichlorobenzene	ND		1.0	0.79
107-06-2	1,2-Dichloroethane	ND		1.0	0.21
78-87-5	1,2-Dichloropropane	ND		1.0	0.72
541-73-1	1,3-Dichlorobenzene	ND		1.0	0.78
106-46-7	1,4-Dichlorobenzene	ND		1.0	0.84
78-93-3	2-Butanone (MEK)	ND		10	1.3
591-78-6	2-Hexanone	ND		5.0	1.2
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1
67-64-1	Acetone	3.7	J	10	3.0
71-43-2	Benzene	ND		1.0	0.41
75-25-2	Bromoform	ND	(55	1.0	0.26
74-83-9	Bromomethane	ND		1.0	0.69
75-15-0	Carbon disulfide	ND		1.0	0.19
56-23-5	Carbon tetrachloride	ND		1.0	0.27
108-90-7	Chlorobenzene	ND		1.0	0.75
124-48-1	Dibromochloromethane	ND		1.0	0.32
75-00-3	Chloroethane	ND		1.0	0.32
67-66-3	Chloroform	ND	İ	1.0	0.34
74-87-3	Chloromethane	ND		1.0	0.35
156-59-2	cis-1,2-Dichloroethene	ND		1.0	0.81
110-82-7	Cyclohexane	ND		1.0	0.18
75-27-4	Bromodichloromethane	ND		1.0	0.39
75-71-8	Dichlorodifluoromethane	ND		1.0	0.68
100-41-4	Ethylbenzene	ND		1.0	0.74
106-93-4	1,2-Dibromoethane	ND		1.0	0.73
98-82-8	Isopropylbenzene	ND		1.0	0.79
79-20-9	Methyl acetate	ND		2.5	1.3

MX 1318 05

Lab Name: TestAmerica Buffalo	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: TRIP BLANK	Lab Sample ID: 480-135305-29
Matrix: Water	Lab File ID: P32696.D
Analysis Method: 8260C	Date Collected: 05/02/2018 00:00
Sample wt/vol: 5(mL)	Date Analyzed: 05/10/2018 07:12
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: ZB-624 (60) ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 413509	Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
1634-04-4	Methyl tert-butyl ether	ND		1.0	0.16
108-87-2	Methylcyclohexane	ND		1.0	0.16
75-09-2	Methylene Chloride	ND		1.0	0.44
127-18-4	Tetrachloroethene	ND		1.0	0.36
108-88-3	Toluene	ND		1.0	0.51
156-60-5	trans-1,2-Dichloroethene	ND		1.0	0.90
10061-02-6	trans-1,3-Dichloropropene	ND		1.0	0.37
79-01-6	Trichloroethene	ND		1.0	0.46
75-69-4	Trichlorofluoromethane	ND		1.0	0.88
75-01-4	Vinyl chloride	ND		1.0	0.90
1330-20-7	Xylenes, Total	ND		2.0	0.66
10061-01-5	cis-1,3-Dichloropropene	ND		1.0	0.36
100-42-5	Styrene	ND		1.0	0.73

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	93		77-120
460-00-4	4-Bromofluorobenzene (Surr)	91		73-120
2037-26-5	Toluene-d8 (Surr)	95		80-120

Lab Name: TestAmerica Edison	Job No.: 480-135305-1			
SDG No.:				
Client Sample ID: SW-32	Lab Sample ID: 480-135305-7			
Matrix: Water	Lab File ID: D49800.D			
Analysis Method: 8260C SIM	Date Collected: 05/02/2018 14:20			
Sample wt/vol: 10(mL)	Date Analyzed: 05/07/2018 03:03			
Soil Aliquot Vol:	Dilution Factor: 250			
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 516924	Units: ug/L			
127				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	8000		100	50
		12			

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	101		71-144
460-00-4	4-Bromofluorobenzene	85		72-133

Lab Name: TestAmerica Edison Job No.: 480-135305-1 SDG No.: Lab Sample ID: 480-135305-8 Client Sample ID: SW-33 Matrix: Water Lab File ID: D49855.D Analysis Method: 8260C SIM Date Collected: 05/02/2018 14:30 Sample wt/vol: 10(mL) Date Analyzed: 05/08/2018 04:26 Soil Aliquot Vol: Dilution Factor: 100 Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25(mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 517179 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	3400	3	40	20

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		71-144
460-00-4	4-Bromofluorobenzene	92		72-133

Lab Name: TestAmerica Edison Job No.: 480-135305-1 SDG No.: Client Sample ID: URS-02 Lab Sample ID: 480-135305-19 Matrix: Water Lab File ID: D49854.D Analysis Method: 8260C SIM Date Collected: 05/02/2018 16:15 Sample wt/vol: 10(mL) Date Analyzed: 05/08/2018 03:59 Dilution Factor: 100 Soil Aliquot Vol: Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25 (mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 517179 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	1800		40	20

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	95		71-144
460-00-4	4-Bromofluorobenzene	83		72-133

Lab Name: TestAmerica Edison Job No.: 480-135305-1								
SDG No.:								
Client Sampl	e ID: URS-03	Lak	Sample ID:	480-1353	05-1			
Matrix: Water		Lak	File ID:	49853.D				
Analysis Met	hod: 8260C SIM	Dat	e Collected	1: 05/02/2	018 13:3	36		
Sample wt/vo	l: 10 (mL)	Dat	e Analyzed:	05/08/20	18 03:32			
Soil Aliquot Vol:		Dil	Dilution Factor: 2					
Soil Extract	Vol.:	GC	Column: Rtx	Rtx-624 ID: 0.25 (mm)				
% Moisture:		Lev	Level: (low/med) Low					
Analysis Bat	ch No.: 517179	Uni	ts: ug/L					
CAS NO.	COMPOUND NAME		RESULT	Q	RL	MDL		
123-91-1	1,4-Dioxane		62		0.80	0.40		
CAS NO.	SURROGATE			%REC	Q	LIMITS		

103

86

71-144

72-133

17060-07-0

460-00-4

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene

Lab Name: TestAmerica Edison	Job No.: 480-135305-1
SDG No.:	
Client Sample ID: URS-05	Lab Sample ID: 480-135305-24
Matrix: Water	Lab File ID: D49851.D
Analysis Method: 8260C SIM	Date Collected: 05/02/2018 16:50
Sample wt/vol: 10 (mL)	Date Analyzed: 05/08/2018 02:36
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: Rtx-624 ID: 0.25(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 517179	Units: ug/L
·	

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	ND		0.40	0.20

CAS NO.	SURROGATE	₽REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		71-144
460-00-4	4-Bromofluorobenzene	84	59	72-133

Lab Name: TestAmerica Edison Job No.: 480-135305-1							
SDG No.:	1						
Client Sample	e ID: URS-08	Lab Sample ID: 480-135305-12					
Matrix: Water	-	Lab File ID: D49850.D					
Analysis Meth	nod: 8260C SIM	Date Collected: 05/02/2018 15:15					
Sample wt/vol: 10(mL)		Date Analyzed: 05/08/2018 02:09					
Soil Aliquot	Vol:	Dilution Factor: 1					
Soil Extract	Vol.:	GC Column: Rtx-624 ID: 0.25(mm)					
% Moisture: _		Level: (low/med) Low					
Analysis Bato	ch No.: 517179	Units: ug/L					
CAS NO.	COMPOUND NAME	RESULT Q RL MDI	 L				
123-91-1	1,4-Dioxane	ND 0.40	0.20				

Lab Name: TestAmerica Edison			Job No.: 480-135305-1					
SDG No.:		×						
Client Sample	e ID: URS-13	Lab	Sample ID:	480-1353	305-26	77		
Matrix: Water		Lab	File ID: D	49718.D				
Analysis Method: 8260C SIM		Dat	e Collected	: 05/02/2	018 17:	20		
Sample wt/vol: 10(mL)		Dat	e Analyzed:	05/05/20	18 07:5	7		
Soil Aliquot Vol:		Dil	Dilution Factor: 1					
Soil Extract	Vol.:	GC	GC Column: Rtx-624 ID: 0.25(mm)					
% Moisture:		Lev	Level: (low/med) Low					
Analysis Bato	ch No.: 516643	Uni	ts: ug/L			8 4		
	120					8		
CAS NO.	COMPOUND NAME	_ = =	RESULT	Q	RL	MDL		
123-91-1	1,4-Dioxane		2.2		0.40	0.20		
CAS NO.	SURROGATE	¥		%REC	Q	LIMITS		

111

82

17060-07-0

460-00-4

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene

71-144

72-133

Lab Name: TestAmerica Edison Job No.: 480-135305-1 SDG No.: Client Sample ID: URS-15 Lab Sample ID: 480-135305-14 Matrix: Water Lab File ID: D49852.D Analysis Method: 8260C SIM Date Collected: 05/02/2018 15:40 Sample wt/vol: 10(mL) Date Analyzed: 05/08/2018 03:03 Dilution Factor: 5 Soil Aliquot Vol: Soil Extract Vol.: GC Column: Rtx-624 ID: 0.25 (mm) Level: (low/med) Low % Moisture: Analysis Batch No.: 517179 Units: ug/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
123-91-1	1,4-Dioxane	89		2.0	1.0

CAS NO.	SURROGATE	%REC	Q	LIMITS
17060-07-0	1,2-Dichloroethane-d4 (Surr)	99		71-144
460-00-4	4-Bromofluorobenzene	85		72-133

Lab File ID: 2018.05.15LLAA_019.d

Lab Name: TestAmerica Sacramento Job No.: 480-135305-1

SDG No.:

Client Sample ID: SW-32 Lab Sample ID: 480-135305-7

Matrix: Water

Analysis Method: 537 (modified) Date Collected: 05/02/2018 14:20

Extraction Method: 3535 Date Extracted: 05/11/2018 13:02

Sample wt/vol: 283.3(mL) Date Analyzed: 05/15/2018 19:24

Con. Extract Vol.: 10.00 (mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup: (Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	98		1.8	0.31
2706-90-3	Perfluoropentanoic acid (PFPeA)	37		1.8	0.43
307-24-4	Perfluorohexanoic acid (PFHxA)	38		1.8	0.51
375-85-9	Perfluoroheptanoic acid (PFHpA)	12		1.8	0.22
335-67-1	Perfluorooctanoic acid (PFOA)	32		1.8	0.75
375-95-1	Perfluorononanoic acid (PFNA)	1.7	J	1.8	0.24
335-76-2	Perfluorodecanoic acid (PFDA)	2.3		1.8	0.27
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.97
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	ND		1.8	1.1
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.26
375-73-5	Perfluorobutanesulfonic acid (PFBS)	8.5	8/2 N	1.8	0.18
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	3.6	3 8′	1.8	0.15
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.77	J	1.8	0.17
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	36		1.8	0.48
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.28
754-91-6	Perfluorooctane Sulfonamide (FOSA)	ND		1.8	0.31
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		18	2.7
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ND		18	1.7
27619-97-2	6:2FTS	NO 2.9	_3 ₽′	18	18 -1-8
39108-34-4	8:2FTS	ND		18	1.8

Lab Name: TestAmerica Sacramento Job No.: 480-135305-1 SDG No.: Lab Sample ID: 480-135305-8 Client Sample ID: SW-33 Matrix: Water Lab File ID: 2018.05.15LLAA 020.d Date Collected: 05/02/2018 14:30 Analysis Method: 537 (modified) Extraction Method: 3535 Date Extracted: 05/11/2018 13:02 Date Analyzed: 05/15/2018 19:32 Sample wt/vol: 285.2(mL) Con. Extract Vol.: 10.00(mL) Dilution Factor: 1 GC Column: GeminiC18 3x100 ID: 3 (mm) Injection Volume: 2(uL) GPC Cleanup: (Y/N) N % Moisture: Analysis Batch No.: 223461 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	65		1.8	0.31
2706-90-3	Perfluoropentanoic acid (PFPeA)	60		1.8	0.43
307-24-4	Perfluorohexanoic acid (PFHxA)	74		1.8	0.51
375-85-9	Perfluoroheptanoic acid (PFHpA)	19		1.8	0.22
335-67-1	Perfluorooctanoic acid (PFOA)	59		1.8	0.75
375-95-1	Perfluorononanoic acid (PFNA)	2.8		1.8	0.24
335-76-2	Perfluorodecanoic acid (PFDA)	1.2	J	1.8	0.27
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.96
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.8	0.48
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	ND		1.8	1.1
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.25
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND	,	1.8	0.18
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	5.0	. B	1.8	0.15
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.81	J	1.8	0.17
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	59		1.8	0.47
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.28
754-91-6	Perfluorooctane Sulfonamide (FOSA)	ND		1.8	0.31
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		18	2.7
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ND		18	1.7
27619-97-2	6:2FTS	10-4:0	A B	18	18 1.8
39108-34-4	8:2FTS	ND		18	1.8

Lab Name: TestAmerica Sacramento Job No.: 480-135305-1

SDG No.:

Client Sample ID: URS-02 Lab Sample ID: 480-135305-19

Matrix: Water Lab File ID: 2018.05.15LLAA_024.d

Analysis Method: 537 (modified) Date Collected: 05/02/2018 16:15

Extraction Method: 3535 Date Extracted: 05/11/2018 13:02

Sample wt/vol: 292.4(mL) Date Analyzed: 05/15/2018 20:03

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup: (Y/N) N

		and the same of the			11 2
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	15		1.7	0.30
2706-90-3	Perfluoropentanoic acid (PFPeA)	8.9		1.7	0.42
307-24-4	Perfluorohexanoic acid (PFHxA)	7.0		1.7	0.50
375-85-9	Perfluoroheptanoic acid (PFHpA)	2.5	1	1.7	0.21
335-67-1	Perfluorooctanoic acid (PFOA)	4.8		1.7	0.73
375-95-1	Perfluorononanoic acid (PFNA)	0.44	J	1.7	0.23
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.7	0.27
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.94
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	ND		1.7	1.1
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND	<u> </u>	1.7	0.25
375-73-5	Perfluorobutanesulfonic acid (PFBS)	2.3		1.7	0.17
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	1.0	J B	1.7	0.15
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.16
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	7.5		1.7	0.46
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.27
754-91-6	Perfluorooctane Sulfonamide (FOSA)	ND		1.7	0.30
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		17	2.7
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ND		17	1.6
27619-97-2	6:2FTS	3.9	,2f /25	17	1.7
39108-34-4	8:2FTS	ND		17	1.7

Lab Name: TestAmerica Sacramento Job No.: 480-135305-1

SDG No.:

Client Sample ID: URS-03 Lab Sample ID: 480-135305-1

Matrix: Water Lab File ID: 2018.05.15LLAA_018.d

Analysis Method: 537 (modified) Date Collected: 05/02/2018 13:36

Extraction Method: 3535 Date Extracted: 05/11/2018 13:02

Sample wt/vol: 227.7(mL) Date Analyzed: 05/15/2018 19:16

Con. Extract Vol.: 10.00 (mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup: (Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	8.9	1	2.2	0.38
2706-90-3	Perfluoropentanoic acid (PFPeA)	9.2		2.2	0.54
307-24-4	Perfluorohexanoic acid (PFHxA)	9.4		2.2	0.64
375-85-9	Perfluoroheptanoic acid (PFHpA)	4.9		2.2	0.27
335-67-1	Perfluorooctanoic acid (PFOA)	16		2.2	0.93
375-95-1	Perfluorononanoic acid (PFNA)	2.2		2.2	0.30
335-76-2	Perfluorodecanoic acid (PFDA)	3.4		2.2	0.34
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.2	1.2
307-55-1	Perfluorododecanoic acid (PFDoA)	1.7	J	2.2	0.60
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	ND		2.2	1.4
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		2.2	0.32
375-73-5	Perfluorobutanesulfonic acid (PFBS)	0.96	J	2.2	0.22
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	2.4	B	2.2	0.19
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.64	J	2.2	0.21
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	57		2.2	0.59
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.2	0.35
754-91-6	Perfluorooctane Sulfonamide (FOSA)	0.43	J	2.2	0.38
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		22	3.4
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ND		22	2.1
27619-97-2	6:2FTS	4-5	jī jī	22	22 2.2
39108-34-4	8:2FTS	ND		22	2.2

Lab Name: TestAmerica Sacramento Job No.: 480-135305-1

SDG No.:

Client Sample ID: URS-05 Lab Sample ID: 480-135305-24

Matrix: Water Lab File ID: 2018.05.15LLAA_027.d

Analysis Method: 537 (modified) Date Collected: 05/02/2018 16:50

Extraction Method: 3535 Date Extracted: 05/11/2018 13:02

Sample wt/vol: 297.5(mL) Date Analyzed: 05/15/2018 20:27

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup: (Y/N) N

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	64		1.7	0.29
2706-90-3	Perfluoropentanoic acid (PFPeA)	2.2		1.7	0.41
307-24-4	Perfluorohexanoic acid (PFHxA)	2.5		1.7	0.49
375-85-9	Perfluoroheptanoic acid (PFHpA)	1.6	J	1.7	0.21
335-67-1	Perfluorooctanoic acid (PFOA)	2.2		1.7	0.71
375-95-1	Perfluorononanoic acid (PFNA)	0.63	J	1.7	0.23
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.7	0.26
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.92
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.46
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	ND		1.7	1.1
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.24
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.4	J	1.7	0.17
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.37	J B	1.7	0.14
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.16
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	13		1.7	0.45
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.27
754-91-6	Perfluorooctane Sulfonamide (FOSA)	ND		1.7	0.29
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		17	2.6
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ND		17	1.6
27619-97-2	6:2FTS	2.0	J 3	17	17 1.7
39108-34-4	8:2FTS	ND		17	1.7

Job No.: 480-135305-1

 SDG No.:

 Client Sample ID: URS-08
 Lab Sample ID: 480-135305-12

 Matrix: Water
 Lab File ID: 2018.05.15LLAA_021.d

 Analysis Method: 537 (modified)
 Date Collected: 05/02/2018 15:15

 Extraction Method: 3535
 Date Extracted: 05/11/2018 13:02

 Sample wt/vol: 241.3 (mL)
 Date Analyzed: 05/15/2018 19:40

Con. Extract Vol.: 10.00 (mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 223461 Units: ng/L

Lab Name: TestAmerica Sacramento

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	19		2.1	0.36
2706-90-3	Perfluoropentanoic acid (PFPeA)	26		2.1	0.51
307-24-4	Perfluorohexanoic acid (PFHxA)	26		2.1	0.60
375-85-9	Perfluoroheptanoic acid (PFHpA)	11	1	2.1	0.26
335-67-1	Perfluorooctanoic acid (PFOA)	26		2.1	0.88
375-95-1	Perfluorononanoic acid (PFNA)	2.9		2.1	0.28
335-76-2	Perfluorodecanoic acid (PFDA)	5.6		2.1	0.32
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.1	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.1	0.57
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	ND		2.1	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		2.1	0.30
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.2	J	2.1	0.21
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	2.8	Æ	2.1	0.18
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	1.0	J	2.1	0.20
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	66		2.1	0.56
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.1	0.33
754-91-6	Perfluorooctane Sulfonamide (FOSA)	ND		2.1	0.36
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		21	3.2
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ND		21	2.0
27619-97-2	6:2FTS	NO 2.6	18 B	21	21 -2.1
39108-34-4	8:2FTS	ND		21	2.1

Lab Name: TestAmerica Sacramento Job No.: 480-135305-1

SDG No.:

Client Sample ID: URS-09 Lab Sample ID: 480-135305-13

Matrix: Water

Lab File ID: 2018.05.15LLAA_022.d

Analysis Method: 537 (modified) Date Collected: 05/02/2018 15:20 Extraction Method: 3535 Date Extracted: 05/11/2018 13:02

Sample wt/vol: 225(mL) Date Analyzed: 05/15/2018 19:48

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N % Moisture:

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	7.7		2.2	0.39
2706-90-3	Perfluoropentanoic acid (PFPeA)	2.1	J	2.2	0.54
307-24-4	Perfluorohexanoic acid (PFHxA)	4.8		2.2	0.64
375-85-9	Perfluoroheptanoic acid (PFHpA)	2.3		2.2	0.28
335-67-1	Perfluorooctanoic acid (PFOA)	5.1		2.2	0.94
375-95-1	Perfluorononanoic acid (PFNA)	0.83	J	2.2	0.30
335-76-2	Perfluorodecanoic acid (PFDA)	1.4	J	2.2	0.34
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.2	1.2
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.2	0.61
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	ND		2.2	1.4
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		2.2	0.32
375-73-5	Perfluorobutanesulfonic acid (PFBS)	1.4	J	2.2	0.22
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	3.0	≥ .	2.2	0.19
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	1.1	J	2.2	0.21
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	190		2.2	0.60
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.2	0.36
754-91-6	Perfluorooctane Sulfonamide (FOSA)	ND		2.2	0.39
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		22	3.4
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ND		22	2.1
27619-97-2	6:2FTS	4.3	J B	22	20 2.2
39108-34-4	8:2FTS	ND		22	2.2

Lab Name: TestAmerica Sacramento Job No.: 480-135305-1

SDG No.:

Client Sample ID: URS-13

Matrix: Water

Analysis Method: 537 (modified)

Extraction Method: 3535

Sample wt/vol: 252.3(mL)

Con. Extract Vol.: 10.00(mL)

Injection Volume: 2(uL)

% Moisture:

Analysis Batch No.: 223461

Lab Sample ID: 480-135305-26

Lab File ID: 2018.05.15LLAA_028.d

Date Collected: 05/02/2018 17:20

Date Extracted: 05/11/2018 13:02

Date Analyzed: 05/15/2018 20:34

Dilution Factor: 1

GC Column: GeminiC18 3x100 ID: 3(mm)

GPC Cleanup: (Y/N) N

Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	65		2.0	0.35
2706-90-3	Perfluoropentanoic acid (PFPeA)	130		2.0	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	120		2.0	0.57
375-85-9	Perfluoroheptanoic acid (PFHpA)	71		2.0	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	110		2.0	0.84
375-95-1	Perfluorononanoic acid (PFNA)	36		2.0	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	11		2.0	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	1.6	J	2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	1.2	J	2.0	0.54
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	4.7		2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	9.3	B	2.0	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	2.0		2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	51		2.0	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32
754-91-6	Perfluorooctane Sulfonamide (FOSA)	ND		2.0	0.35
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		20	3.1
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ND		20	1.9
27619-97-2	6:2FTS	DO 2.4	J B	20	20 2.0
39108-34-4	8:2FTS	ND		20	2.0

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab File ID: 2018.05.15LLAA_023.d

Lab Name: TestAmerica Sacramento Job No.: 480-135305-1

SDG No.:

Client Sample ID: URS-15 Lab Sample ID: 480-135305-14

Matrix: Water

Analysis Method: 537 (modified) Date Collected: 05/02/2018 15:40

Extraction Method: 3535 Date Extracted: 05/11/2018 13:02

Sample wt/vol: 248.1(mL) Date Analyzed: 05/15/2018 19:55

Con. Extract Vol.: 10.00 (mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 223461 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	34	Ī	2.0	0.35
2706-90-3	Perfluoropentanoic acid (PFPeA)	49		2.0	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	55		2.0	0.58
375-85-9	Perfluoroheptanoic acid (PFHpA)	18		2.0	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	34		2.0	0.86
375-95-1	Perfluorononanoic acid (PFNA)	2.1		2.0	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	0.70	J	2.0	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	0.62	J	2.0	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	4.6	B	2.0	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	0.95	J	2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	46		2.0	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32
754-91-6	Perfluorooctane Sulfonamide (FOSA)	ND		2.0	0.35
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		20	3.1
2991-50-6	N-ethyl perfluorocctane sulfonamidoacetic acid (NEtFOSAA)	ND		20	1.9
27619-97-2	6:2FTS	2.9	J B	20	2.0
39108-34-4	8:2FTS	ND		20	2.0

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Sacramento Job No.: 480-135305-1

SDG No.:

Client Sample ID: EB-050218 Lab Sample ID: 480-135305-27

Matrix: Water Lab File ID: 2018.05.15LLAA_029.d

Analysis Method: 537 (modified) Date Collected: 05/02/2018 16:45

Extraction Method: 3535 Date Extracted: 05/11/2018 13:02

Sample wt/vol: 290.6(mL) Date Analyzed: 05/15/2018 20:42

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 223461 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	ND		1.7	0.30
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		1.7	0.42
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		1.7	0.50
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		1.7	0.22
335-67-1	Perfluorooctanoic acid (PFOA)	ND	† • • • †	1.7	0.73
375-95-1	Perfluorononanoic acid (PFNA)	ND	<u> </u>	1.7	0.23
335-76-2	Perfluorodecanoic acid (PFDA)	ND		1.7	0.27
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.7	0.95
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.7	0.47
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	ND		1.7	1.1
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND		1.7	0.25
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND.		1.7	0.17
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.21	JØ	1.7	0.15
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.7	0.16
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		1.7	0.46
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.7	0.28
754-91-6	Perfluorooctane Sulfonamide (FOSA)	ND		1.7	0.30
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		17	2.7
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ND		17	1.6
27619-97-2	6:2FTS	1.7	J 🗷	17	1.7
39108-34-4	8:2FTS	ND		17	1.7

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Sacramento Job No.: 480-135305-1

SDG No.:

Client Sample ID: FB-050218 Lab Sample ID: 480-135305-28

Matrix: Water Lab File ID: 2018.05.15LLAA_030.d

Analysis Method: 537 (modified) Date Collected: 05/02/2018 16:50

Extraction Method: 3535 Date Extracted: 05/11/2018 13:02

Sample wt/vol: 276.5(mL) Date Analyzed: 05/15/2018 20:50

Con. Extract Vol.: 10.00(mL) Dilution Factor: 1

Injection Volume: 2(uL) GC Column: GeminiC18 3x100 ID: 3(mm)

% Moisture: GPC Cleanup: (Y/N) N

Analysis Batch No.: 223461 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	ND		1.8	0.32
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND		1.8	0.44
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		1.8	0.52
375-85-9	Perfluoroheptanoic acid (PFHpA)	. ND		1.8	0.23
335-67-1	Perfluorooctanoic acid (PFOA)	ND	1	1.8	0.77
375-95-1	Perfluorononanoic acid (PFNA)	ND		1.8	0.24
335-76-2	Perfluorodecanoic acid (PFDA)	ND	1	1.8	0.28
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.99
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	ND		1.8	1.2
376-06-7	Perfluorotetradecanoic acid (PFTeA)	. ND		1.8	0.26
375-73-5	Perfluorobutanesulfonic acid (PFBS)	ND	-	1.8	0.18
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.24	J B	1.8	0.15
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8	0.17
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.49
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		1.8	0.29
754-91-6	Perfluorooctane Sulfonamide (FOSA)	ND		1.8	0.32
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		18	2.8
2991-50-6	N-ethyl perfluorocctane sulfonamidoacetic acid (NEtFOSAA)	ND		18	1.7
27619-97-2	6:2FTS	2.1	J.B	18	1.8
39108-34-4	8:2FTS	ND		18	1.8

ATTACHMENT B

SUPPORT DOCUMENTATION

کے

THE

77

7

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont

Unknown Radiological

Poison B

Skin Imtani

Deliverable Requested 1, 11, 111, IV, Other (specify)

Empty Kit Relinquished by

Reimquered by Reimqueshed by Reimqueshed by

05/21/2018

Possible Hazard Identification
Non-Hazard Flammable

Melhod of Shupnter

Company

Date/I vme

Received by

gripany.

Company

Lich

DeterTime

Date

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

Chain of Custody Record

TestAmerica

A 12 250 MC + 1124000 UNA N None
O Astado2
D Astado2
O Na2040
O Na20503
S H2504
U Astado2
V MCAA Special Instructions/Note: 21-00 COC No 480-111899-25950 1 reservation Code - Ascorbic Acid Page 1 of 9 A - HCL B - NaOH C - Zn Acatala D - Nitnc Acid E - NaHSO4 F MeOH G - Amorior Dr Water EDTA EDA Total Number of containers 3 480-135305 COC Analysis Requested Lab PM Johnson, Orlette S E Ma-orlette johnson@testamencainc com ZEOC ZIM · (MOD) I e-gloxana outh FC_IDA - (MOD) PFAS, Standard List 2 Perform MS/MSD (Yes or No) Freservation Code Water Water Water Water Water Мазег Water Water Water Water Water Medican/D McDray Type (C=comp. G=grab) Phone 716 89 923 132] Sample 5 1920 1500 Sample Time 1336 しなり 1400 1410 430 0151 lios 1355 PO# CallOut (D120539 WO# IAT Requested (days) Due Date Requested 5-2-18 Sample Date 5.7-13 Project 8 48005134 SSCWe ŧ -650218 40500 F02 Project Name Stuart-Oliver-Holtz #828079 george kisluk@aecom.com Address 257 W Genesee Street Client Information Sample Identification 131/12-3 0W-75 Caent Contact
Mr. George Kisluk **URS** Corporation 0W-58 125-03 5W-33 5.0.5 752-17 125-14 U25-11 State, 2:p NY, 14202 Crty Buffalo

1# (305

Chain of Custody Record

Amherst. NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

TestAmerica Buffalo

10 Hazelwood Drive

TestAmerica

H - Nume 0 - Actia02 P - Na2'045 Q - Na2'503 G - Na2'503 S - H75.04 T - 150 Doddeniydrate T - 150 Doddeniydrate V - MCAA V - MCAA V - MCAA Z - cthaf (\$\$900\$) CHT THE Special Instructions/Note: Semple Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Clent Disposal By Lab Archive For Mont COC No 480-111899-25960-2 reservation Code: Page 2 of 80 1947 A - HCL
B - NaOH
C - Zn Acctate
D - Ntroc Acta
E - NatSO4
F - MacOH
G - AmcHtor
H - Ascottoc Actd 1-10 J-Di Water K-EDTA L-EDA Date/Timp Vettod of Shipmen enter Tracking Nots Analysis Requested Cooler Temperature(s)*C and Other Remain Special Instructions/QC Requirements i an PM
Johnson, Oriette S
E 4731
oriette johnson@lestamencanc com SECC_SIM (NOO) 1,4-dioxene aniy ROCEIVED Cy Received by E riest Pinered Sample (Yes of No.) (C=Comp. Common Break Water Matrix Preservation Code Water Water Water Water Water Water Water Water Water Water AURICH. Same K. McLosca W. D. Halbers Radiological Sample 19:7 76-523-132 639 1620 625 1500 1610 1540 1550 1551 1605 512 1515 Date Unknown IAT Requested (days) Due Date Requested PO # CaliOut 10120539 Sample Date 7-7-5 Poson B Project # 48005134 SSOW# BIR TINTO Skin Imfant Jehverable Requested 1, II, III, IV, Other (specify) Custody Seal No Flammable Possible Hazard Identification のころ Stuart-Oliver-Holtz #828079 george kisluk@aecom com empty Kit Relinquished by Custody Seals Intact: 257 W Genesee Street Client Information Sample identification 0.20 W-045 20-521 Non-Hazard Mr George Kistuk 125-68 51-JRS Corporation 128-09 Jw- 65 125-16 MW-05 0520 queshed by State 2p NY, 14202 225 Buffalo

TestAmerica

Chain of Custody Record

TestAmerica Buffalo
10 Hazelwood Divo
Amherst NY 14228 2298
Phone (716) 691-2600 Fax (716) 691-7991

Client Information	Samolar K. McLowan / D. McDay	ON Oly		n Ortette S	Camer Tracking No(s)	COC No 480-111899-25960 6	
Chent Contact	Phone		T	E Wad	1	Page	-
Mr George Kisluk	116-923-1321	1351	oriette	orlette johnson@testamericainc com		Page Botter June	
Correany URS Corporation				Analysis Requested	quested	क पंची	
Addrass 257 W Genesee Straet	Due Oste Requested			200		ation Code	
Cay Buffalo	TAT Requested (days):						
Siste, 20 NY, 14202	T					E - National Control of Control o	
Phone	PO# CallOut ID120539		(0	1917		G - Amenton S - H2SQ4 H - Aycorbic Acid F - TSP Dodecatydrale	- "-
Emzd gedrge kistuk@aecom com	# CW		N 10 4	(ON		1 - Ice J - Di Water	
Propert Name Stuart-Oliver-Holtz #828075	Propect # 48005134		10,710	2 200 04 3		in K. EDIA VV. pH 4.5	
Site	SSOW		and S	DI DEV		Other:	
C. com le lefe celfic et less	algumeS	Sample Type (C=comp.	Matrix Ma	8400 - 101 list 2600 - 101 list 2600 - 21M - 1M		redmul late	
לפוולים ירסוימורשתיתו	X	Preserva	on Code	d Z		Special Instructions/Note:	_
5 12020-203	5-2-18	5	Water J	×.		3 00-65	_
0.25-05	1		Water	イベイ			_
<i>~ ∽ ∽ ∽ ⊘⊘-5≿∩</i>	17,0		Water	マ		~	1
- 81-520	V 1720	→	Water	メスメ			T
613-050218 -	G-2-18 1695	5	Water	, ,			
8 (2020-8-1	0511 81-63	5	Water	1/1 1/2			
The BLANK -	1	1	Water N	XM	19	3	
		Ξ	Water	30			11.1
							1
	5.0						
Possible Hazard Idantification Non-Hazard Flammable Skin Imtant Po	Poison B Unknown	Radiological	-	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Clean Disposal By Lab Only Return To Clean	Osposal By Lab	tained langer then 1 month) Archive For Months	
10				Special Instructions/QC Requirements	ents		_
Emply Kit Relinquished by	Date		П	Time	Method of Supment		Ţ
Reindusned by	Decernment / 2/15	(3.17	Company	Receivador	Mr. Salestone	State Company	T
Reknquished by	Date/Fime		Company	Received by	DateTime	Сотрычу	1
Reimquished by	DaleTime		Сопрасу	Received by	DataTime	Company	1
Custody Seals Intact Custody Seal No.				Cooler Temperaturaris) TC and Other Remarks	Remarks	14 (3)4	T
						Ver ON DIT AND	7

Amherst, NY 14228-2298 Phone (715) 691-2600 Fax (715) 691-7991 TestAmerica Buffalo 10 Hazelwood Drive

	-	
THE REAL PROPERTY.		
7		

TestAmerica

	Dan Bar			- Cap 122					Same?	Camer Insching Note)	n n		COCNO		_
Client Information (Sub Contract Lab)				Johns	Johnson, Orlette S	te S							480-41945 1		_
Client Contact	Phone			E-Mari			0		State	State of Cngm			Page		
Shipping/Receiving				oriette	iosuuoi iosuuoi	(@testarr	oriette johnson@testamencainc com	E	New York	York			Page 1 of 2		_
Company			65		coreditate	ms Require	Accreditations Required (See note)					200000	Job #		
TestAmerica Laboratones, Inc					ELAP	NELAP - New York						-	480-135305-1		_
Address	Due Date Requested.	į.					Anal	of of	4000	7			Preservation Codes	ydes.	
DOU RIVERSIDE PAIRWAY.	0107/51/6						Alla	Alialysis naquesta	ולחפאו	3			A-HCL	M - Mexans	-10
Cnty West Sacramento	TAT Requested (days)	.;;							80 88				B - NaOH C - Zn Acetate	N - None O - AshaO2	
State Zp CA, 95605					12)			_					E - NaHSO4	P - Ma204S O - Na2SO3	
Phone 916-373-5600(Tel) 916-372-1059(Fax)	PO#												G - Amchior H - Ascomir And	H - NA2S2O3 S - M2SO4 T - TSP Doducatedrate	essenie.
Enai	# OW				(ON							ån	I - Ice J - Di Weler	U - Acelone V - MCAA	
Project Name Stuart-Oliver-Holtz #828079	Project # 48005134				10 20,	alama -						enieta	K - EDTA L - EDA	W - pH 4-5 Z - other (spscrify)	
She	SSOW#				SD (03 10	Other		
		Samo	Sample Type	WBITIX (Wester E-sold Devestered	betatli† bi M&M mot _atac\aci_;	(Alea)						sedmuki is			
Sample Identification - Client ID (Lab ID)	Sample Date	Time	_			₽U₩				_		30T	Special	Special Instructions/Note:	
age	\bigvee	X	Preservation Code	n Code	8							X			
URS-03 (480-135305-1)	5/2/18	13.36 Eastern		Water		×						1			
SW-32 (480-135305-7)	5/2/18	14.20 Eastern		Water		×						٢			
SW-33 (480-135305-8)	5/2/18	14 30 Eastern		Water		×						1			
O URS-08 (480-135305-12)	5/2/18	13 15 Eastern		Water		×						1			
URS-09 (480-135305-13)	5/2/18	15 20 Еа <u></u> втегп		Water		×						1			
URS-15 (480-135305-14)	5/2/18	15 40 Eastern		Water		×	_					ï			
URS-02 (480-135305-19)	5/2/18	16 15 Eastern		Water		×						F			
URS-05 (480-135305-24)	5/2/18	16 50 Eastern		Water		×						1			_
URS-13 (480-135305-26)	5/2/18	17.20 Eastern		Water		×						-			
	4														_

Note Since incratory accretations are subject to charge, TestAmenta Laboratores inc. places the comerand of method analyte & accreditation compliance upon out subcentract laboratory or an subject to charge in analysis less and charge in analysis analysis must be sinced to charge in analysis analysis analysis must be supported back to the TestAmenta laboratory or other instructions will be provided. Any charges to accreditation status around the brought to TestAmenta laboratory or other instructions will be provided in a status around the brought to TestAmenta Laboratory or other instructions. It all requested accreditations are current to calle return the signed Chain of Custody attesting to said complicance, inc.

Possible Hazard Identification		Ø	imple Disposal (A fee may be assess	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	n 1 month)
Unconfirmed			Return To Chent Dispos	al By Lab Archive For	Months
Deliverable Requested 1, II, III, IV, Other (specify)	Primary Deliverable Rank 1	S	Special Instructions/QC Requirements		
Empty Kit Relinquished by	Date	Time	//	Mainod of Shipment	
Reinquished by	0631 81/8 1830	Atribute OES	Bergwall by He	026 8/1/2/S	The San
Reinqueshed by	DateTime	Company	December by	Бабелта	Сомрапу
Reinduished by	Date/Timp	Сотралу	Received by	Datesfirme	Сотралу
Custody Seals Intact Custody Seal No			Corder Temperature(s) "C and Other Remarks	2.6	

TestAmerica

Chain of Custody Record

TestAmerica Buffalo
10 Hazelwood Drive
Amherst, NY 14228-2298
Phone (716) 691-2600 Fax (716) 691-7991

	Samuter			11 34 044				١		Transfer Transfer	10,000		ľ	1000		
Client Information (Sub Contract Lab)				John	Johnson, Oriette S	S					le loss fi			480-41945 2		
Crient Contact Shipping/Receiving	Phone			E-Mad Oriette	E-Mad oriette johnson@lestamencainc.com	testamenc	ainc.com		Stade o	State of Origin New York	_			Page 2 of 2		
Company TestAmerica Laboratories, Inc.					Acceptations Required (See note) NELAP - New York	Required (Si EW York	a note)							Jcb # 480-135305-1		
Address 880 Riverside Parkway,	Due Date Requested 5/14/2018	10					Analysis Requested	is Re	quest	Ba		×	9	Preservation Codes	goog	
Crty West Sacramento	TAT Requested (days)	· ·						-						B - NGOH C - Zn Aceter	M - Hexane N - None C - Asna02	-
State Zp CA, 95605	1				34								78%	D. NITC ACIE	6 0	
Phone 916-373-5600(Tel) 916-372-1059(Fax)	PO#				TV	11				(ii)		61		F - МеОн G - Атсліог H - Вестріг	7	4
Ental	WOR				(oN									1-1ce J - Di Water	÷ 5 5	
Project Name Stuart-Oliver-Holtz #828079	Project # 48005134				10 28		ì			-			enist	K-EDTA L-EDA	W - pH 4-5 Z - ather (specify)	<u> </u>
B;6	SSOWe		i n		A) asi					_				Other		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp,	Matrix (re-mate. ***********************************	Field Filtered Perform MSIM PFC_IDA3556_ Prolitical			0		<u> </u>			redmuN lstoT	5000	Special Instructions (Note:	ja.
	V	17	Preservation Code	100	X	S 100							X		V	
EB-050218 (480-135305-27)	512718	16.45 Eastern		Water	×			_					+			
FB-050218 (480-135305-28)	5/2/18	16.50 Fastern		Water	×			-		┢			+			
								-		\vdash						
								()		 					-	
2								-			17		3.07			
		7														
Professional Control of the Control								U	ž.			_	12			
							_						÷Щ			
		-										\vdash	211	A		
Nels Serus laboratory accreditatons are subject to change, TestAmenca Laboratores, inc. places the ownership of enablys & accreditation compliance upon out subcortract taboratores. This sample subpect that he harboratores must be shipped back to the Samples above for analysis resistances be ownered and season and provided the samples must be shipped back to the Samples above for analysis resistances for analysis and analysis and analysis and provided the samples must be shipped back to the Samples and accreditation in the State of Origin I state above for analysis and provided the samples and compliance and accreditation in the Samples are content to date, return the 3 pred Chan of Custory all establishes to a season and acceptances in a tentum innertalisty. If all requested accreditation are content to date, return the 3 pred Chan of Custory allesting to said compliance in a tentum innertalisty. If all requested accreditation satisfies are current to date, return the 3 pred Chan of Custory allesting to said compliance in a tentum innertalisty. If all requested accreditation satisfies are current to date, return the 3 pred Chan of Custory allesting to said compliances. In a tentum innertalisty if all requested accreditation satisfies are current to date, return the samples and acceptance in a second satisfies are considered accreditation and acceptance and acceptance and acceptance acceptance and acceptance acceptance and acceptance acceptance and acceptance acceptance and acceptance acceptance acceptance and acceptance acceptance acceptance acceptance acceptance acceptance and acceptance acceptance acceptance and acceptance acceptan	ratories, inc. places the essential analyze estsmatrix being analyze ent to date, return the si	ownership of n ed, the sample gned Chan of	s the ownership of method enalyte & acceptation compliance upon cut subscribod tobics in colysed the samples must be shipped back to the TestAmenca laboratory or other nasuruking the 3 ghed Chan of Custody attesting to said complicance to TestAmenca Laboratones, the	& accreditation pec tack to the ng to said com	Complance TestAmenca	upon cud subi taboratory or estAmenca La	contract top other instru boratones,	Cratones Actions w Inc	This sa	uncie st	upment Iny cnar	is forwar	rded unde accredita	or chan-of-cust oon status shou	ody. If the laboratory lid be prought to Test	Joes out
Possible Hazard Identification					Sample	Disposal	A fee m	ay be	SSess	ed If s	ample	Sare	etaine	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	n 1 month)	
Oncommed Deliverable Requested 1, II, IV, Other (specify)	Primary Deliveral	verable Rank 1	e.		Special	Special Instructions/QC Requirements	VOC Req	nieme	Disposal By Lab ements	ByL	ရွ		Archive For	e For	Months	
Empty Kit Relinquished by		Date		ľ	Time			l		Method of Shipment	# Shipm	ant.				T
#	Date/Tung 2 //	7	2/2/2	Company	_	Recupation	1		1		Date/Juns	Juma J		07.	Company	
Reinquished by	7		7	Compariy		Received by	4				Date/Time			2 0	Company	1
Retinguished by	Date/fime		io_	Сотралу	Rece	Received by	-				Date/Time	Tome			Сомрану	
Custody Seals Infact: Custody Seal No					C GOO	Cooler Temperature(s, 'C and Other Remerks	oue D, (s)a	Other R	emeries	13	10/	1.				
						-									Ver. 09/20/2016	91

TestAmerica Buffalo

Phone (716) 691-2600 Fax (716) 691-7991 Amherst, NY 14228-2298 10 Hazelwood Drive

Client Information (Sub Contract Lab)
Clent Contact
Shipping/Receiving

astAmerica Laboratories, Inc.

77 New Durham Road,

Record
Custody
o
Chain

Lab PM:
Johnson, Oriette S
E-Mail:
oriette, Johnson@testamericainc.com
Accreditations Required (See note):
NELAP - New York

TestAmerica Carrier Tracking No(s)

THE LEADER IN ENVIRONMENTAL TESTING Job#: 480-135305-1 Preservation Codes: Page: Page 1 of 1 480-41950.1

O - Asklado P - NaZO4S Q - NaZS203 S - HSS4 T - TSP Dodeshy U - Acabma V - MCAA V - MCAA State of Origin: New York **Analysis Requested**

Due Date Requested: 5/14/2018 TAT Requested (days):

ms/msd shared volume ms/msd shared volume 9 **城市**

李老老在

17

Matrix (True,

Project #: 48005134 SSOW#:

ğ ě

732-549-3900(Tel) 732-549-3679(Fax)

Starte, Zip: NJ, 08617

Project Name: Stuart-Oliver-Holtz #828079

Type (C=comp. G=grab) Sample

Sample Date

Sample Identification - Client ID (Lab ID)

JRS-03 (480-135305-1) SW-32 (480-135305-7) SW-33 (480-135305-8)

× × × × × × ×

> MSD Σ

> > 16:50

5/2/18

5/2/18 5/2/18

SW-33 (480-135305-8MSD)

JRS-08 (480-135305-12)

URS-05 (480-135305-24) URS-02 (480-135305-19)

SW-33 (480-135305-8MS)

Eastem 14:30 Eastem 14:30 Eastern 13:15

Water Water Water Water Water Water Water Water

5/2/18 5/2/18 5/2/18 5/2/18 5/2/18

Page 1162 of 1166

N. W. W. W. W.

tote: Since laboratory secreditations are subject to change, TestAmerica, Inc. places the ownership of method, analyse & accorditation complicance upon out subcontract laboratories. This sample stripment is forwarded under chain-of-custody. If the laboratory does not analysed, the samples must be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accorditation status should be brought to TestAmerica Laboratories, Inc. attention immediately. If all requested accorditations are current to date, return the signed Chain of Custody attention to SestAmerica Laboratories, Inc.

Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Asthod of Shipment Special Instructions/QC Requirements: Primary Deliverable Rank: 1 Jeliverable Requested: I, II, III, IV, Other (specify) Possible Hazard Identification Empty Kit Relinquished by: dinquished by:

Months

SE SE

Coder Temperature(s) °C and Other Remarks: ٢. eceived by. teceived by:

Date/Time:

009934

Custody Seals Intact. | Custody Seal No.:

elinquished by: elinquished by:

1325

つった Sette/Time:

5

Ver. 09/20/2016

Job Narrative 480-135305-1

Revision 1

Per client, the data package was revised to report 'ND' value for all PFC nondetects.

Receipt

The samples were received on 5/2/2018 7:47 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 5.0° C and 5.3° C.

Receipt Exceptions

The Vials for Sample Point URS-09 were not delivered.

GC/MS VOA

Method(s) 8260C SIM: The following sample was diluted to bring the concentration of target analytes within the calibration range: SW-32 (480-135305-7). Elevated reporting limits (RLs) are provided.

Method(s) 8260C SIM: The following samples were diluted to bring the concentration of target analytes within the calibration range: URS-03 (480-135305-1), SW-33 (480-135305-8), URS-15 (480-135305-14) and URS-02 (480-135305-19). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: SW-32 (480-135305-7), URS-11 (480-135305-10), URS-15 (480-135305-14), OW-6S (480-135305-15), URS-01 (480-135305-16) and URS-16 (480-135305-21). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: SW-33 (480-135305-8), SW-33 (480-135305-8[MS]), SW-37 (480-135305-9), URS-12 (480-135305-11) and URS-02 (480-135305-19). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following sample(s) were collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: SW-33 (480-135305-8).

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: URS-03 (480-135305-1), FD1-050218 (480-135305-5), OW-7S (480-135305-6), URS-15 (480-135305-14), URS-01 (480-135305-16), MW-05 (480-135305-20), OW-3S (480-135305-22), (480-135305-B-5 MS) and (480-135305-B-5 MSD). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: URS-06 (480-135305-25) and URS-13 (480-135305-26). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-413745 recovered above the upper control limit for 2-Hexanone. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: OW-04S (480-135305-18) and FD2-050218 (480-135305-23).

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: OW-04S (480-135305-18) and FD2-050218 (480-135305-23). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

LCMS

Method(s) 537 (modified): Isotope Dilution Analyte (IDA) recoveries were significantly above the method recommended limit for several analytes in the following samples: URS-03 (480-135305-1), SW-32 (480-135305-7), SW-33 (480-135305-8), URS-08 (480-135305-12), URS-02 (480-135305-19) and URS-05 (480-135305-24). These samples were re-analyzed at dilution with improved IDA recoveries indicating possible matrix affect; however, the target analyte response did not differ from the original analysis. Therefore, results were reported from the original analysis. Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

Method(s) 537 (modified): The Isotope Dilution Analyte (IDA) recovery associated with the following samples is below the method recommended limit for 13C4 PFBA: SW-32 (480-135305-7) and URS-05 (480-135305-24). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the samples.

Method(s) 537 (modified): Isotope Dilution Analyte (IDA) recoveries are above the method recommended limit for M2-6:2FTS and M2-8:2FTS the following samples: URS-09 (480-135305-13) and URS-15 (480-135305-14). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

Method(s) 537 (modified): Isotope Dilution Analyte (IDA) recoveries are above the method recommended limit for several analytes in the following sample: URS-13 (480-135305-26). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

Method(s) 537 (modified): The following sample has chromatographic interferences that could adversely impact the identification and quantitation of Perfluorobutanesulfonic acid (PFBS): SW-32 (480-135305-7) These interferences could cause false positive results.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-222744.

Method(s) 3535: The following samples URS-08 (480-135305-12) and URS-02 (480-135305-19) in preparation batch 320-222744 were observed to be cloudy after being brought to final volume.

Method(s) 3535: The following samples SW-32 (480-135305-7) and SW-33 (480-135305-8) in preparation batch 320-222744 were observed to be an orange color after being brought to final volume.

Method(s) 3535: The following samples URS-09 (480-135305-13) and URS-15 (480-135305-14) in preparation batch 320-222744 were observed to be a light yellow color after being brought to final volume.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TestAmerica Buffalo Job No.: 480-135305-1

SDG No.:

Lab File ID: P32675.D BFB Injection Date: 05/09/2018

Instrument ID: HP5973P BFB Injection Time: 21:08

Analysis Batch No.: 413509

M/E	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0 % of mass 95	28.5
75	30.0 - 60.0 % of mass 95	58.3
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0 % of mass 95	8.5
173	Less than 2.0 % of mass 174	0.9 (1.2) 1
174	50.0 - 120.00 % of mass 95	76.5
175	5.0 - 9.0 % of mass 174	4.0 (5.2) 1
176	95.0 - 101.0 % of mass 174	76.0 (99.2) 1
177	5.0 - 9.0 % of mass 176	4.4 (5.8) 2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 480-413509/3	P32676.D	05/09/2018	21:37
	LCS 480-413509/5	P32678.D	05/09/2018	22:31
N2 N2	MB 480-413509/7	P32680.D	05/09/2018	23:34
SW-32	480-135305-7	P32685.D	05/10/2018	02:09
SW-33	480-135305-8	P32686.D	05/10/2018	02:37
SW-37	480-135305-9	P32687.D	05/10/2018	03:05
URS-11	480-135305-10	P32688.D	05/10/2018	03:32
URS-12	480-135305-11	P32689.D	05/10/2018	04:00
URS-15	480-135305-14	P32690.D	05/10/2018	04:27
OW-6S	480-135305-15	P32691.D	05/10/2018	04:55
URS-07	480-135305-16	P32692.D	05/10/2018	05:22
URS-02	480-135305-19	P32693.D	05/10/2018	05:49
URS-16	480-135305-21	P32694.D	05/10/2018	06:17
TRIP BLANK	480-135305-29	P32696.D	05/10/2018	07:12
SW-33 MS	480-135305-8 MS	P32697.D	05/10/2018	07:40
SW-33 MSD	480-135305-8 MSD	P32698.D	05/10/2018	08:07

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-135305-1

SDG No.:

Lab Sample ID: CCVIS 480-413509/3 Calibration Date: 05/09/2018 21:37

Instrument ID: HP5973P Calib Start Date: 04/23/2018 22:24

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 04/24/2018 01:09

Lab File ID: P32676.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Methylcyclohexane	Ave	1.634	1.728	0.1000	26.4	25.0	5.7	20.0
1,2-Dichloropropane	Ave	1.687	1.515	0.1000	22.5	25.0	-10.2	20.0
1,4-Dioxane	Ave	0.0086	0.0088		511	500	2.2	50.0
Dibromomethane	Ave	1.205	1.011	0.1000	21.0	25.0	-16.1	20.0
Bromodichloromethane	Ave	2.404	1.996	0.2000	20.8	25.0	-17.0	20.0
2-Chloroethyl vinyl ether	Ave	1.024	0.9309		22.7	25.0	-9.0	20.0
cis-1,3-Dichloropropene	Ave	2.649	2.389	0.2000	22.5	25.0	-9.8	20.0
4-Methyl-2-pentanone (MIBK)	Ave	1.107	1.136	0.1000	128	125	2.6	20.0
Toluene	Ave	1.881	1.792	0.4000	23.8	25.0	-4.7	20.0
Ethyl methacrylate	Ave	0.9472	0.8951		23.6	25.0	-5.5	20.0
trans-1,3-Dichloropropene	Ave	1.214	1.187	0.1000	24.4	25.0	-2.3	20.0
1,1,2-Trichloroethane	Ave	0.5978	0.5261	0.1000	22.0	25.0	-12.0	20.0
Tetrachloroethene	Ave	0.6994	0.6551	0.2000	23.4	25.0	-6.3	20.0
2-Hexanone	Ave	0.8158	0.8284	0.1000	127	125	1.5	20.0
1,3-Dichloropropane	Ave	1.250	1.187	.,	23.7	25.0	-5.0	20.0
Dibromochloromethane	Ave	0.7449	0.7090	0.1000	23.8	25.0	-4.8	20.0
1,2-Dibromoethane	Ave	0.7054	0.6184		21.9	25.0	-12.3	20.0
Chlorobenzene	Ave	2.157	1.968	0.5000	22.8	25.0	-8.8	20.0
Ethylbenzene	Ave	3.495	3.276	0.1000	23.4	25.0	-6.3	20.0
1,1,1,2-Tetrachloroethane	Ave	0.7579	0.6975		23.0	25.0	-8.0	20.0
m,p-Xylene	Ave	1.232	1.210	0.1000	24.6	25.0	-1.7	20.0
o-Xylene	Ave	1.199	1.127	0.3000	23.5	25.0	-6.0	20.0
Styrene	Ave	2.089	1.957	0.3000	23.4	25.0	-6.4	20.0
Bromoform	Ave	0.5164	0.4088	0.1000	19.8	25.0	(-20.8	50.0
Isopropylbenzene	Ave	3.228	3.312	0.1000	25.6	25.0	2.6	20.0
1,1,2,2-Tetrachloroethane	Ave	1.049	0.9803	0.3000	23.4	25.0	-6.6	20.0
trans-1,4-Dichloro-2-butene	Ave	0.4077	0.3113		19.1	25.0	-23.6	50.0
N-Propylbenzene	Ave	4.130	4.125		25.0	25.0	-0.1	20.0
Bromobenzene	Ave	0.9202	0.8685		23.6	25.0	-5.6	20.0
1,2,3-Trichloropropane	Ave	0.3276	0.2969		22.7	25.0	-9.4	20.0
1,3,5-Trimethylbenzene	Ave	2.715	2.750		25.3	25.0	1.3	20.0
2-Chlorotoluene	Ave	0.8112	0.7880		24.3	25.0	-2.9	20.0
4-Chlorotoluene	Ave	0.8848	0.8309		23.5	25.0	-6.1	20.0
tert-Butylbenzene	Ave	0.5303	0.5448	-	25.7	25.0	2.7	20.0
1,2,4-Trimethylbenzene	Ave	2.869	2.913		25.4	25.0	1.5	20.0
sec-Butylbenzene	Ave	2.848	3.066		26.9	25.0	7.6	20.0
4-Isopropyltoluene	Ave	2.616	2.727	-, -, -, -,	26.1	25.0	4.3	20.0
1,3-Dichlorobenzene	Ave	1.754	1.617	0.6000	23.0	25.0	-7.8	20.0
1,4-Dichlorobenzene	Ave	1.793	1.698	0.5000	23.7	25.0	-5.3	20.0
n-Butylbenzene	Ave	2.298	2.424		26.4	25.0	5.5	20.0
1,2-Dichlorobenzene	Ave	1.670	1.607	0.4000	24.1	25.0	-3.8	20.0

FORM V GC/MS VOA INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TestAmerica Buffalo Job No.: 480-135305-1

SDG No.:

Lab File ID: P32723.D BFB Injection Date: 05/10/2018

Instrument ID: HP5973P BFB Injection Time: 20:41

Analysis Batch No.: 413745

M/E	ION ABUNDANCE CRITERIA	% RELA ABUNDA	
50	15.0 - 40.0 % of mass 95	29.6	
75	30.0 - 60.0 % of mass 95	53.3	
95	Base Peak, 100% relative abundance	100.0	
96	5.0 - 9.0 % of mass 95	8.0	
173	Less than 2.0 % of mass 174	0.2	(0.3) 1
174	50.0 - 120.00 % of mass 95	68.2	
175	5.0 - 9.0 % of mass 174	5.7	(8.4) 1
176	95.0 - 101.0 % of mass 174	65.2	(95.5) 1
177	5.0 - 9.0 % of mass 176	4.9	(7.5) 2

1-Value is % mass 174

2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS AND STANDARDS:

CLIENT SAMPLE ID	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
	CCVIS 480-413745/3	P32724.D	05/10/2018	21:13
	LCS 480-413745/5	P32726.D	05/10/2018	22:08
â	MB 480-413745/7	P32728.D	05/10/2018	23:03
OW-04S	480-135305-18	P32729.D	05/10/2018	23:55
FD2-050218	480-135305-23	P32730.D	05/11/2018	00:22

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-135305-1

SDG No.:

Lab Sample ID: CCVIS 480-413745/3 Calibration Date: 05/10/2018 21:13

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 04/24/2018 01:09

Lab File ID: P32724.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D _∈	MAX %D
Methylcyclohexane	Ave	1.634	1.853	0.1000	28.4	25.0	13.4	20.0
1,2-Dichloropropane	Ave	1.687	1.687	0.1000	25.0	25.0	0.0	20.0
1,4-Dioxane	Ave	0.0086	0.0100		578	500	15.5	50.0
Dibromomethane	Ave	1.205	1.112	0.1000	23.1	25.0	-7.8	20.0
Bromodichloromethane	Ave	2.404	2.212	0.2000	23.0	25.0	-8.0	20.0
2-Chloroethyl vinyl ether	Ave	1.024	0.9600		23.4	25.0	-6.2	20.0
cis-1,3-Dichloropropene	Ave	2.649	2.537	0.2000	23.9	25.0	-4.2	20.0
4-Methyl-2-pentanone (MIBK)	Ave	1.107	1.313	0.1000	148	125	18.6	20.0
Toluene	Ave	1.881	2.052	0.4000	27.3	25.0	9.1	20.0
Ethyl methacrylate	Ave	0.9472	0.999		26.4	25.0	5.4	20.0
trans-1,3-Dichloropropene	Ave	1.214	1.346	0.1000	27.7	25.0	10.9	20.0
1,1,2-Trichloroethane	Ave	0.5978	0.5981	0.1000	25.0	25.0	0.0	20.0
Tetrachloroethene	Ave	0.6994	0.7302	0.2000	26.1	25.0	4.4	20.0
2-Hexanone	Ave	0.8158	0.997	0.1000	153	125	22.2*	20.0
1,3-Dichloropropane	Ave	1.250	1.326		26.5	25.0	6.1	20.0
Dibromochloromethane	Ave	0.7449	0.8033	0.1000	27.0	25.0	7.8	20.0
1,2-Dibromoethane	Ave	0.7054	0.7030		24.9	25.0	-0.3	20.0
Chlorobenzene	Ave	2.157	2.224	0.5000	25.8	25.0	3.1	20.0
Ethylbenzene	Ave	3.495	3.747	0.1000	26.8	25.0	7.2	20.0
1,1,1,2-Tetrachloroethane	Ave	0.7579	0.7813		25.8	25.0	3.1	20.0
m,p-Xylene	Ave	1.232	1.323	0.1000	26.8	25.0	7.4	20.0
o-Xylene	Ave	1.199	1.299	0.3000	27.1	25.0	8.4	20.0
Styrene	Ave	2.089	2.230	0.3000	26.7	25.0	6.7	20.0
Bromoform	Ave	0.5164	0.4856	0.1000	23.5	25.0	-6.0	50.0
Isopropylbenzene	Ave	3.228	3.644	0.1000	28.2	25.0	12.9	20.0
1,1,2,2-Tetrachloroethane	Ave	1.049	1.079	0.3000	25.7	25.0	2.9	20.0
trans-1,4-Dichloro-2-butene	Ave	0.4077	0.3865		23.7	25.0	-5.2	50.0
N-Propylbenzene	Ave	4.130	4.557		27.6	25.0	10.3	20.0
Bromobenzene	Ave	0.9202	0.9467		25.7	25.0	2.9	20.0
1,2,3-Trichloropropane	Ave	0.3276	0.3285		25.1	25.0	0.3	20.0
1,3,5-Trimethylbenzene	Ave	2.715	3.030		27.9	25.0	11.6	20.0
2-Chlorotoluene	Ave	0.8112	0.9017		27.8	25.0	11.2	20.0
4-Chlorotoluene	Ave	0.8848	0.9326		26.4	25.0	5.4	20.0
tert-Butylbenzene	Ave	0.5303	0.6139		28.9	25.0	15.7	20.0
1,2,4-Trimethylbenzene	Ave	2.869	3.185		27.8	25.0	11.0	20.0
sec-Butylbenzene	Ave	2.848	3.288		28.9	25.0	15.5	20.0
4-Isopropyltoluene	Ave	2.616	2.990	-	28.6	25.0	14.3	20.0
1,3-Dichlorobenzene	Ave	1.754	1.751	0.6000	25.0	25.0	-0.2	20.0
1,4-Dichlorobenzene	Ave	1.793	1.856	0.5000	25.9	25.0	3.5	20.0
n-Butylbenzene	Ave	2.298	2.608		28.4	25.0	13.5	20.0
1,2-Dichlorobenzene	Ave	1.670	1.698	0.4000	25.4	25.0	1.6	20.0

FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-135305-1

SDG No.:

Lab Sample ID: CCVIS 480-413745/3 Calibration Date: 05/10/2018 21:13

Instrument ID: HP5973P Calib Start Date: 04/23/2018 22:24

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 04/24/2018 01:09

Lab File ID: P32724.D Conc. Units: ug/L Heated Purge: (Y/N) N

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
Dichlorodifluoromethane	Ave	2.066	1.648	0.1000	19.9	25.0	(-20.2	50.0
Chloromethane	Ave	3.444	3.243	0.1000	23.5	25.0	-5.9	20.0
Vinyl chloride	Ave	2.914	2.644	0.1000	22.7	25.0	-9.3	20.0
Butadiene	Ave	2.209	2,572	· 8	29.1	25.0	16.5	20.0
Bromomethane	Ave	1.566	1.501	0.1000	24.0	25.0	-4.1	50.0
Chloroethane	Ave	1.357	1.479	0.1000	27.3	25.0	9.0	50.0
Dichlorofluoromethane	Ave	3.921	3.810		24.3	25.0	-2.8	20.0
Trichlorofluoromethane	Ave	3.019	2.912	0.1000	24.1	25.0	-3.5	20.0
Ethyl ether	Ave	1.552	1.579		25.4	25.0	1.7	20.0
Acrolein	Ave	0.3286	0.3839		146	125	16.8	50.0
1,1,2-Trichloro-1,2,2-triflu oroethane	Ave	1.279	1.514	0.1000	29.6	25.0	18.3	20.0
1,1-Dichloroethene	Ave	1.588	1.585	0.1000	25.0	25.0	-0.2	20.0
Acetone	Ave	0.9885	1.149	0.1000	145	125	16.3	50.0
Iodomethane	Ave	2.421	2.368		24.5	25.0	-2.2	20.0
Carbon disulfide	Ave	6.302	6.599	0.1000	26.2	25.0	4.7	20.0
Methyl acetate	Ave	1.920	2.013	0.1000	52.4	50.0	4.8	50.0
Allyl chloride	Ave	3,223	3.559	(F)	27.6	25.0	10.4	20.0
2-Methyl-2-propanol	Ave	0.3060	0.2750		225	250	-10.1	50.0
Methylene Chloride	Lin1		1.863	0.1000	24.4	25.0	-2.4	20.0
Methyl tert-butyl ether	Ave	5.104	5.004	0.1000	24.5	25.0	-2.0	20.0
trans-1,2-Dichloroethene	Ave	1.643	1.576	0.1000	24.0	25.0	-4.1	20.0
Acrylonitrile	Ave	0.8335	0.9047		271	250	8.5	20.0
Hexane	Ave	1.643	2.013		30.6	25.0	22.5*	20.0
Vinyl acetate	Ave	4.667	5.323		57.0	50.0	14.1	20.0
1,1-Dichloroethane	Ave	3.180	3.235	0.2000	25.4	25.0	1.7	20.0
2-Butanone (MEK)	Ave	1.242	1.409	0.1000	142	125	13.5	20.0
2,2-Dichloropropane	Ave	2.208	2.303	,	26.1	25.0	4.3	20.0
cis-1,2-Dichloroethene	Ave	1.896	1.778	0.1000	23.4	25.0	-6.2	20.0
Chlorobromomethane	Ave	0.8056	0.7590		23.6	25.0	-5.8	20.0
Tetrahydrofuran	Ave	0.7874	0.8248		52.4	50.0	4.7	20.0
Chloroform	Ave	3.030	2.874	0.2000	23.7	25.0	-5.1	20.0
1,1,1-Trichloroethane	Ave	2.660	2.545	0.1000	23.9	25.0	-4.3	20.0
Cyclohexane	Ave	2.245	2.687	0.1000	29.9	25.0	19.7	20.0
1,1-Dichloropropene	Ave	2.235	2.295		25.7	25.0	2.6	20.0
Isobutyl alcohol	Ave	0.1239	0.1390		701	625	12.1	50.0
Carbon tetrachloride	Ave	2.206	2.282	0.1000	25.9	25.0	3.4	20.0
Benzene	Ave	6.486	6.272	0.5000	24.2	25.0	-3.3	20.0
1,2-Dichloroethane	Ave	3.191	2.916	0.1000	22.8	25.0	-8.6	20.0
n-Heptane	Ave	1.565	1.791		28.6	25.0	14.5	20.0
Trichloroethene	Ave	1.648	1.569	0.2000	23.8	25.0	-4.8	20.0

FORM IV LCMS METHOD BLANK SUMMARY

Lab Name: TestAmerica Sacramento	Job No.: 480-135305-1
SDG No.:	
Lab File ID: 2018.05.15LLAA_007.d	Lab Sample ID: MB 320-222744/1-A
Matrix: Water	Date Extracted: 05/11/2018 13:02
Instrument ID: A8_N	Date Analyzed: 05/15/2018 17:50
Level: (Low/Med) Low	

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

	1.			
•		LAB		
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALY	YZED
	LCS 320-222744/2-A	2018.05.15L	05/15/2018	17:58
	2	LAA 008.d		
	LCSD 320-222744/3-A	2018.05.15L	05/15/2018	18:06
		LAA_009.d		
URS-03	480-135305-1	2018.05.15L	05/15/2018	19:16
· · · · · · · · · · · · · · · · · · ·		LAA_018.d		
SW-32	480-135305-7	2018.05.15L	05/15/2018	19:24
	· ·	LAA_019.d		*
SW-33	480-135305-8	2018.05.15L	05/15/2018	19:32
		LAA_020.d		
URS-08	480-135305-12	2018.05.15L	05/15/2018	19:40
	\$5	LAA_021.d		
URS-09	480-135305-13	2018.05.15L	05/15/2018	19:48
		LAA 022.d		
URS-15	480-135305-14	2018.05.15L	05/15/2018	19:55
	·	LAA_023.d		
URS-02	480-135305-19	2018.05.15L	05/15/2018	20:03
		LAA_024.d		
URS-05	480-135305-24	2018.05.15L	05/15/2018	20:27
No. of the second secon	·	LAA 027.d		
URS-13	480-135305-26	2018.05.15L	05/15/2018	20:34
		LAA_028.d		
EB-050218	480-135305-27	2018.05.15L	05/15/2018	20:42
		LAA 029.d		
FB-050218	480-135305-28	2018.05.15L	05/15/2018	20:50
		LAA 030.d		

FORM I LCMS ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Sacramento	Job No.: 480-135305-1
SDG No.:	М Э
Client Sample ID:	Lab Sample ID: MB 320-222744/1-A
Matrix: Water	Lab File ID: 2018.05.15LLAA_007.d
Analysis Method: 537 (modified)	Date Collected:
Extraction Method: 3535	Date Extracted: 05/11/2018 13:02
Sample wt/vol: 250(mL)	Date Analyzed: 05/15/2018 17:50
Con. Extract Vol.: 10.00(mL)	Dilution Factor: 1
Injection Volume: 2(uL)	GC Column: GeminiC18 3x100 ID: 3(mm)
% Moisture:	GPC Cleanup: (Y/N) N
Analysis Batch No.: 223461	Units: ng/L

60					
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
375-22-4	Perfluorobutanoic acid (PFBA)	ND		2.0	0.35
2706-90-3	Perfluoropentanoic acid (PFPeA)	ND	-	2.0	0.49
307-24-4	Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58
375-85-9	Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25
335-67-1	Perfluorooctanoic acid (PFOA)	ND		2.0	0.85
375-95-1	Perfluorononanoic acid (PFNA)	ND		2.0	0.27
335-76-2	Perfluorodecanoic acid (PFDA)	ND	i.	2.0	0.31
2058-94-8	Perfluoroundecanoic acid (PFUnA)	ND	711	2.0	1.1
307-55-1	Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55
72629-94-8	Perfluorotridecanoic Acid (PFTriA)	ND		2.0	1.3
376-06-7	Perfluorotetradecanoic acid (PFTeA)	ND	10	2.0	0.29
375-73-5	Perfluorobutanesulfonic acid (PFBS)	, ND	12.	2.0	0.20
355-46-4	Perfluorohexanesulfonic acid (PFHxS)	0.293	J	2.0	0.17
375-92-8	Perfluoroheptanesulfonic Acid (PFHpS)	- ND		2.0	0.19
1763-23-1	Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54
335-77-3	Perfluorodecanesulfonic acid (PFDS)	ND		2.0	0.32
754-91-6	Perfluorooctane Sulfonamide (FOSA)	ND		2.0	0.35
2355-31-9	N-methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	ND		20	3.1
2991-50-6	N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ND		20	1.9
27619-97-2	6:2FTS	2.31	J	20	2.0
39108-34-4	8:2FTS	ND		20	2.0

APPENDIX C MONITORING WELL INSPECTION FORMS

Well II):	131	102-3	Time:		08.50	,	
Area		Inspected (attach additional sheet if Mainten		ditional sheet if Maintena		nance	Inspecto Initial	
	Casing coll		6000		Yes	160	14	Tim
Exterior	Well	abel	Nove	Yes	No	1		
	Lock Cov	2000 111	6000		Yes	No		
	Well	cap	1		Yes	No		
Interior	Well	riser			Yes	No		
	Annu	4			Yes	No		,
Comments:			Tuoine u	wen.				

Well II);	134/	1-29		Time	e:	11100		
Area	Ite Inspe	m	Descr		of Condition ional sheet led)	if Mair	litional itenance eded?	Inspector Initials	
	Casin		G	or D		Ye	s No	19	su.
Exterior	Well	label				Ye	s/No		
	Lock					Ye	s / No		
Interior	Well	cap				Ye	s / No	Ī	
	Well	riser				Ye	s/No		
	Ann	2.7 0.0		1		Ye	s No		1
Comments:			Tusen	» /W	war				

Well II);	mu	Time:		ime:	4 11	11:20	r.		
Area	Item Inspected		Lattach additional choot it		Main	itional tenance eded?	Inspector' Initials			
	Casing coll		Go	nD .			Ye	s/Np	10	su
Exterior	Well l	abel	1				Ye	s/No		1
	Lock Cov						Ye	s/No		
	Well	cap		T			Ye	/No		
Interior	Well	riser					Ye	s No		
	Annu			/			Ye	s No		1
Comments:			Cus	ino in	i we					

Well II):	ow	35		Time:		11:32			
Area		Item Inspected Description of Condition (attach additional sheet if needed)			Maint	tional enance ded?	Inspector Initials			
	Casing coll		d Govo			Yes	1/1/0	ILSW		
Exterior	Well	label	1			Yes	No			
	Lock	4,14100.12				Yes	/ No			
	Well	cap				Yes	/ No			
Interior	Page 74	riser				Yes	No			
	Annular space			d a		Yes	/No)	
Comments:			Tues	re in	us Tr					

Well II);	ow-	45		Time:	_ 11	11:10		
Area	Ite Inspe			ption of C addition needed	al sheet if	Maint	tional enance ded?		pector's nitials
	Casing coll		Goo	0		Yes	/(No)	10.	su
Exterior	Well	label	NON	e		Yes	No	Li)
	Lock Cov	11810 - 51	600			Yes	/No		
	Well	cap				Yes	/No		
Interior	Well	riser				Yes	/No	1	
	Annu	27415				Yes	/ No		/
Comments:			Nows	LABGEI	re-				

Well II):	ow.	55		Time	S	08:45	
Area	Ite Inspe				of Condition ional sheet i led)	f Mai	ditional ntenance eeded?	Inspector's Initials
	Casing and collar		nd Good				es / No	1CS In
Exterior	Well	label	1			Y	es No	1
	Lock					Y	es/No	
	Well	cap				Y	es/No	
Interior	Well	riser				Y	es No	
	Ann		ī			Y	es / No	V
Comments:			Tug	ING EM	, wa			

);	ow	-65		Т	ime:	44.7	10:50		
		Description of Condition (attach additional sheet if needed)			Maint	enance	Inspector Initials		
collar		Gar	טיפ			Yes	/No	Kam	
Well	label		7			Yes	No		
						Yes	/ No		
Well	cap					Yes	No		
terior Well rise	riser					Yes	No		
	1,000		/			Yes	/No	l	/
		Tun	ING IN) and tan					
	Casing coll Well Lock Cov Well Well	Item Inspected Casing and collar Well label Lock and Cover Well cap Well riser Annular space	Item Inspected Desc (atta Casing and collar Well label Lock and Cover Well cap Well riser Annular space	Item Inspected Description (attach addinee Casing and collar Well label Lock and Cover Well cap Well riser Annular space	Item Inspected Casing and collar Well label Lock and Cover Well riser Annular space	Item Inspected Description of Condition (attach additional sheet if needed) Casing and collar Well label Lock and Cover Well cap Well riser Annular	Item Inspected Description of Condition (attach additional sheet if needed) Waint Nee Casing and collar Good Yes Well label Yes Lock and Cover Yes Well cap Yes Well riser Yes Annular space Yes	Item Inspected Description of Condition (attach additional sheet if needed) Casing and collar Good Yes/No Well label Yes/No Lock and Cover Yes/No Well cap Yes/No Well riser Yes/No Annular space	Item Inspected Description of Condition (attach additional sheet if needed) Maintenance Needed? Casing and collar Good Yes/No Well label Yes/No Well cap Yes/No Well riser Yes/No Annular space Yes/No

Well II):	ow	25	Time:		09:35		
Area	ITAM		ted (attach additional sheet if needed)			itional tenance eded?		ector's itials
	Casing		NONE (PU	c incaur)	Yes	/ No	161	in
Exterior	Well I	abel	Name		Yes	/No		1
	Lock Cov	27.00-57	l		Ve	/ No		
	Well	cap	6000		Yes	s (No		
Interior	nterior Well riser		V		Yes	No		
	Annu		ns		(Ve)	No No		/
Comments:			CASING. 1	a SCH 40 a w/S-Pluc ck up by 136				

Well II):	Sw	32		Tim	ie:	09:4	0	
Area	Ite Inspe			h addi	of Conditional sheet ded)	if Mair	ditional ntenance eded?		pector's nitials
	Casing and collar Well label Lock and		600			Ye	es /No	K	fu
Exterior			1			Ye	s/No	П	
	Lock					Ye	s / No	N	
	Well	cap				Ye	s/No		
Interior	Interior Well	riser				Ye	es No		
	Ann			/		Ye	es / No		U
Comments:			Turin	w, w	Wen				

Well II):	50	V-33		Time		09:4	4	
Area	Item Inspected		Lattach additional choot it			Main	itional tenance eded?	Ins	spector's Initials
	Casing and collar		Goo	איני		Yes	No	K	gu
Exterior	Well l	abel				Yes	No)
	Lock Cov					Yes	No		
	Well	cap				Yes	No		
Interior	Well	riser				Yes	No		
	Annu			V		Yes	i / No		1
Comments:			Tus	ing in	War				

Well II	D:	su	237		Time:	111	0930)	
Area	Item Inspected Description of Condition (attach additional sheet if needed) Addition Maintenan Needed		enance		spector's Initials				
	Casing		Gr	טי		Yes	No	10	su
Exterior	Well I	abel				Yes	/No	ling	
	Lock Cov	G-14/323 III				Yes	/No		
	Well	cap				Yes	No		
Interior	Well	riser				Yes	/ No		
	Annu	2.00		1		Yes	No		V
Comments:			Tun	ring IN	War		V		

Well II);	Urs	-02		Time:		11:15			
Area	Iter		Description of Condition (attach additional sheet if needed)			Main	litional tenance eded?	Inspector Initials		
	Casing and collar Prior Well label Lock and		Goo	O		Yes/No			gn.	
Exterior						Ye	s / No			
	Lock Cov	the same and				Ye	s / No			
	Well	cap				Ye	s/No			
Interior	nterior Well ris	riser				Ye	s / No			
	Annu	54724		V		Ye	s No		/	
Comments:			Tun	chs in	CUA PAN					

Well II):	uns-	03		Time:		08165			
Area	Ite Inspe	Appropriate to the second seco	Description of Condition (attach additional sheet if needed)			Maint	tional enance ded?		pector's nitials	
	Casing colla		Goo	ס		Yes	170	164		
Exterior	Well	label	1			Yes	No			
	Lock					Yes	No			
	Well	cap				Yes	No			
Interior We	Well	riser				Yes	No	.81		
2 11	Anni	2010/2019		1		Yes	/No		/	
Comments:			Tuzine	N 641	ICA.				V	

Well II):	u	es.04	Time:	-1	09.	30	
Area	Iter Inspec		(attach addi	of Condition tional sheet if eded)	Maint	tional enance ded?	Inspector Initials	
	Casing an collar		Broker		Yes	χNo	10	sn
Exterior	Well I	abel	None		Yes	/ No	1	1
	Lock Cov		WA P	Port	Yes	/ No		
	Well	cap	6000		Yes	/ No		
Interior	Well	iser	L		Yes	No		
	Annu		NEWW PO	BG BUG	Ves	No		/
Comments:			THEN'S AND BLOOM FOR ING PREVIOUS ING FROM SAMPL CURR BOX REPUSCOMON	TO WATER HYDROSUCKE				

Well II):	un	5-05	Time:		11:55	
Area	Iter Inspe	22 7 ~ 111	(attach add	n of Condition litional sheet if eded)	Additional Maintenance Needed?		Inspector's Initials
	Casing		6000		Ye	es (N)	1 con
Exterior	Well I	abel	None		(V	No	
-	Lock Cov		Coro		Y	s/No	
	Well	cap	18 1		*	s/No	
Interior	Well	riser			1/0	s/No	1
	Annu		/		Ye	No	V
Comments:			NEGOS VA	Ва		\	

Well II):	Uns	-06		Time:	31	13:00)	
Area	Item Inspected		Description of Condition (attach additional sheet if needed)			Addit Mainte Need	enance	Inspector Initials	
Casing and collar			6000			Yes	(No)	K	su
Exterior	Well	abel	,	vave		Yes	/ No		
	Lock and Cover		6000			Yes /No			
	Well	сар				Yes	No		
Interior	Well	riser				Yes	(No		
- 1	Annı	200		1		Yes	No		
Comments:			Scan Non		nnenw		>	l	

Well II):	uns	-0)		T	ime:		10:56		
Area				Description of Condition (attach additional sheet if needed)			Main	litional tenance eded?	Inspector Initials	
	Casing		Coro				Ye	s/No	Fuoto Wan	
Exterior	Well label		r				Ye	s/No		1
	Lock and Cover						Ye	s / No		
	Well	cap					Ye	s/No		
Interior	Well	riser					Ye	s/No		
	Anni			1			Ye	s No		/
Comments:		×	Tusir	6 IN	wa					

Well II):	un	5-08		T	ime:		10:15		
Area				Description of Condition (attach additional sheet if needed)			Addit Mainte Need	enance	Inspector' Initials	
	Casing coll		d Coro			Yes	No	14	sin	
Exterior	Well label						Yes	No		1
		and er					Yes	No		
	Well	cap					Yes	No		
Interior	Well	riser					Yes	No		
	Annu	10 March 2011		1			Yes	No		V
Comments:			Turin	e en c	war					
		- 0								

Well II);	un.	5-09	Time:		10:17		
Area	Item Inspected		Description (attach add ne	Main	litional tenance eded?	Inspector Initials		
	Casing and collar		G	00 O	Ye	s/100	10	su
Exterior	Well	label	No ist	600	Ye	s/No)		
	Lock and Cover		M LOCK,	(Pe	No No			
	Well	cap	Gno		Ye	s/No		
Interior	Well	riser			Ye	s/No		1
	Annı		b		Ye	s No	t	/
Comments:			NGOOS NON CASUNG TH	ETT - COCKUR-				

Well II):	Un	5-11		Time:		09: 5	82	
Area	Iter Inspe		Description of Condition (attach additional sheet if needed)			Maint	tional enance ded?	Inspector Initials	
Casing colla			C000			Yes	/No	KIN	
Exterior	Well label					Yes	/No		
	Lock and Cover					Yes	/ No		
	Well	cap				Yes	/ No		
Interior	Well	riser				Yes	/ No		
	Annu	14.1-2				Yes	No		1
Comments:			Tusino	in w	12				

Well II):	un	5-12		Time:	47	09:50	54		
Area		Item Inspected		Description of Condition (attach additional sheet if needed)			itional tenance eded?	Inspector Initials		
	Casing		Good		Yes/No		Ksu			
Exterior	Well label		1			Yes	/No			
1.1	Lock and Cover					Yes	s/No			
	Well	cap				Yes	/No			
Interior	Well	riser				Yes	No			
	Annu	1717/20				Yes	No		U	
Comments:			Tunne	en also						

Well II):	un	5-13			Time:		13115	13115		
Area		Item Inspected		Description of Condition (attach additional sheet if needed)			Main	litional tenance eded?	Inspector Initials		
	Casing and collar Well label Lock and Cover		600	D			Ye	s (No)	Kon		
Exterior			Nowe			Ye	No No		1		
						Ye	s/No	i			
	Well	cap					Ye	/ No			
Interior	Well	riser					Ye	s / No			
	Annu			1			Ye	s No	l	/	
Comments:			Mora.	s V	spa						

Well II):	Lus	-14		Time:		08:30	,	
Area		Item Inspected		Description of Condition (attach additional sheet if needed)			itional tenance eded?	Inspector Initials	
	Casing and collar Well label		Corv			Yes	1/10	10	Su
Exterior						Yes	i/No		1
		and ver				Yes	/No	ſ,	
	Well	cap				Yes	No No		
Interior	Well	riser				Yes	No		
	Anni			/		Yes	No		/
Comments:			Tun	'NG ,N	Woo				

Well II):	uns	.15		Time:		10:4	16	6	
Area		Item Inspected		Lattach additional chaot it			Mainte	tional enance ded?	Inspector Initials	
	Casing		60	9 D		Yes	No	14	Sin 1	
Exterior	Well label					Yes	/ No			
		Lock and Cover				Yes	No			
	Well	cap				Yes	No			
Interior	Well	riser				Yes	/No			
	Anni			/		Yes	/No		1	
Comments:			Tun	eina in	Won					

Well II):	Uns	.16		Time:	11:30			
Area		Item Inspected		Description of Condition (attach additional sheet if needed)			litional tenance eded?	Inspector' Initials	
	Casing and collar Well label		Gos	פיי		Ye	No	lcs	(m
Exterior						Ye	s/No	L	
	Lock and Cover					Ye	s / No		
	Well	cap				Ye	s / No		
Interior	Well	riser				Ye	No No		
	Annu			/		Ye	s No		1
Comments:			Tus	ero in	WARL				

APPENDIX D SITE INSPECTION FORM

GENERAL INFORMATION

Date:	5/2/18		Inspector:	Kom I.	MICGOVERN
Weather:	Sunny		Signature:	111-	
Temperature:	75°P		Company:	Deg un	es .
Season	(circle one):	Winter	Spring	Summer	Fall
			-		

SITE INSPECTION LOG SHEET*

Evidence of Site-Wide Disturbance(s)	Yes No	Description of Disturbance(s)	
Evidence of Surface Soil Disturbance(s)	Yes	Description of Disturbance(s)	
Evidence of Excavation	Yes	Description of Excavation	
Evidence of Building Construction	Yes No	Description of Building Construction	· ·
Evidence of Change in Site Use	Yes	Description of New/Additional Site Use	
Comments:			

^{*} If answering Yes, attach map showing locations and any other information as required.