FINAL PERIODIC REVIEW REPORT (2011)

Autohaus of Rochester Site (828024) Monroe County, East Rochester, New York

New York State Department of Environmental Conservation Division of Environmental Remediation

Prepared by:

EA ENGINEERING, P.C. and Its Affiliate EA SCIENCE and TECHNOLOGY

June 2012

Periodic Review Report (2011) Autohaus of Rochester (828084) East Rochester, New York

Prepared for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, New York 13211-2158 (315) 431-4610

latoper of fer

Christopher J. Canonica, P.E., Program Manager EA Engineering, P.C.

Christopher J. Schroer, Project Manager EA Science and Technology 4 June 2012 Date

4 June 2012 Date

June 2012 Version: FINAL EA Project No. 14474.05

CONTENTS

LIST OF FIGURES LIST OF TABLES

		<u>P</u>	'age
ES	.EXF	ECUTIVE SUMMARY	1
1.	INT	RODUCTION	2
	1.1 1.2	Background Post-Closure Monitoring Objectives	2
		1.2.1 Previous Recommendations	3
	1.3 1.4	Periodic Review Report Report Organization	3 4
2.	GRO	OUNDWATER MONITORING ACTIVITIES	5
	2.1 2.2	Monitoring Well Gauging/Groundwater Flow Groundwater Sampling and Analysis	5 5
3.	SIT	E MANAGEMENT RESULTS	6
	3.1 3.2	Groundwater Elevations Groundwater Analytical Data	6 7
		3.2.1 October 2011Analytical Data	7
	3.3	Investigation Derived Waste	7
4.	CON	NCLUSIONS AND RECOMMENDATIONS	8
	4.1	CONCLUSIONS	8
		4.1.1 Groundwater Gauging4.1.2 Groundwater Monitoring	8 9
	4.2	RECOMMENDATIONS	11

APPENDIX A: DAILY FIELD REPORT APPENDIX B: GROUNDWATER SAMPLING FORMS APPENDIX C: ANALYTICAL FORM Is APPENDIX D: WASTE MANIFEST

LIST OF FIGURES

Number

Title

- 1 Site location.
- 2 Site detail.
- 3 Groundwater elevations October 2007.
- 4 Groundwater elevations October 2008.
- 5 Groundwater elevations April 2009.
- 6 Groundwater elevations December 2010.
- 7 Groundwater elevations October 2011.
- 8 Volatile organic compounds in groundwater samples.

LIST OF TABLES

Number

<u>Title</u>

- 1 Summary of volatile organic compounds in groundwater October 2007.
- 2 Summary of volatile organic compounds in groundwater October 2008.
- 3 Summary of volatile organic compounds in groundwater April 2009.
- 4 Summary of volatile organic compounds in groundwater December 2010.
- 5 Summary of volatile organic compounds in groundwater October 2011.

ES. EXECUTIVE SUMMARY

The Autohaus of Rochester site is located at 99 Marsh Road in the village of East Rochester, New York and covers approximately 1.6 acres. The site is surrounded by both commercial and residential development. In 1989 and 1990, subsurface investigations revealed the presence of volatile organic compounds (VOCs) in the groundwater adjacent to a drywell located in the parking area northeast of the Autohaus building. The drywell and surrounding soil were removed in 1992 under an interim remedial measure (IRM). A post-IRM site characterization, conducted in 1997, indicated that the majority of the impacted soil had been removed by the IRM. Subsequent groundwater monitoring indicated that the VOC concentrations in groundwater had decreased and the areal extent of impacted groundwater had not increased.

A Record of Decision (ROD) dated March 1998 (New York State Department of Environmental Conservation [NYSDEC])¹ authorized the selected remedy of no further action with continued monitoring in order to confirm the decreasing trend of VOC concentrations in groundwater. Currently, groundwater samples are collected annually from six monitoring wells and analyzed for VOCs.

Two additional groundwater monitoring wells were installed at the site in December 2010. These monitoring wells were installed with a screened interval similar to that of GP-09, for the purposes of evaluating overburden groundwater flow across the site. Following installation of the new monitoring wells, the monitoring well network was inspected and sampled. During this sampling event, monitoring well MW-09 was observed to be damaged beyond repair; as such, this well was not included in the December 2010 sampling effort.

Seven monitoring wells were sampled in October 2011. Detected contaminant concentrations continue to steadily decline except at monitoring well GP-09. Several VOCs were detected at concentrations greater than NYSDEC Ambient Water Quality Standards (AWQS) during the 2007-2011 annual monitoring events, with selected analytes sporadically detected at concentrations greater than their corresponding AWQS.

Based on groundwater monitoring results for Fall 2007, Fall 2008, Spring 2009, Winter 2010, and Fall 2011, which indicated exceedences of AWQS within GP-09, additional groundwater monitoring is recommended. Also, monitoring wells should be reviewed for serviceability and be replaced as necessary. There is little indication that the concentrations of contaminants in groundwater at GP-09 are increasing or decreasing significantly, and seasonal groundwater fluctuations may influence concentrations. In the ROD¹, it was noted that the groundwater table had risen and may have interacted with contaminated soil. EA recommends continuing monitoring and sampling during a single season.

¹ NYSDEC. 1998. Record of Decision, Autohaus of Rochester Site, Perinton (T), Monroe County, Site Number 8-28-084, March.

1. INTRODUCTION

The NYSDEC tasked EA Engineering, P.C. and its affiliate EA Science and Technology (EA) to provide site management from 28 May 2007 to 30 June 2012 at the Autohaus of Rochester site located at 99 Marsh Road in the village of East Rochester, town of Perinton, Monroe County, New York (Figure 1).

One groundwater monitoring well was installed at the site in August 2007 (EA, 2009)². Two additional groundwater monitoring wells were installed during December 2010 and the installation of these wells is summarized under this Periodic Review Report (PRR). The annual groundwater monitoring and facility maintenance programs, consisting of inspection and repair/replacement (if necessary), and sampling of groundwater monitoring wells, were completed at the site in October 2007, October 2008, April 2009, December 2010, and October 2011. Site monitoring is required by, and stipulated in, the ROD¹. The purpose of this PRR is to summarize the field activities and analytical results of the annual groundwater monitoring event, site management activities, and any monitoring well repair or installation that has been completed to date; and to offer recommendations for future site monitoring and maintenance activities.

1.1 BACKGROUND

The Autohaus of Rochester site covers approximately 1.6 acres, and is surrounded by commercial and residential development. A partially constructed residential development is located north of the site. The residential development property of approximately 16 acres was formerly used by the village of East Rochester as a public water supply well field. The remaining adjacent properties are occupied by a car dealership to the northeast, Marsh Road to the east and southeast, and a railroad embankment to the south. The site was a luxury car dealership and is currently listed by the NYSDEC as a Class 2 inactive hazardous waste site.

In 1989 and 1990, subsurface investigations revealed the presence of VOCs in the groundwater adjacent to a drywell located in the parking area northeast of the Autohaus building. The drywell was connected to the shop floor drain in the Autohaus building. An IRM, consisting of drywell and soil removal, was conducted in 1992. The adjacent public water supply well field was temporarily closed in 1992 and permanently closed in 1995 for reasons not connected to the Autohaus site. A post-IRM site characterization conducted in 1997 indicated that the majority of the impacted soil had been removed by the IRM. Subsequent groundwater monitoring indicated that the VOC concentration in groundwater had decreased and the areal extent of impacted groundwater had not increased.

² EA Engineering, P.C., and its affiliate EA Science and Technology, 2009. Final Periodic Review Report (August 2007-October 2008) for the Autohaus Site, East Rochester, Monroe County, New York (NYSDEC Site No. 8-28-084). March.

The ROD¹ prescribed a selected a remedy of no further action with continued monitoring in order to confirm the decreasing trend of VOC concentrations in groundwater. Currently, groundwater samples are taken annually from seven monitoring wells and are analyzed for VOCs.

1.2 POST-CLOSURE MONITORING OBJECTIVES

The Site Management Plan (SMP) (EA, 2012)³ requires that environmental monitoring points be maintained and sampled during the post-closure monitoring period. This includes collection of groundwater samples from various locations at the site. Sampling locations, methods and parameters, and other required maintenance activities, such as monitoring well installation activities, are documented in the SMP. It is anticipated that during the course of the work assignment, the SMP will be periodically re-evaluated based on the data collected at the site so that the monitoring plan may be refined to address site-specific issues.

The objectives of the monitoring program are to:

- Collect representative groundwater samples in order to confirm the current trend of declining groundwater contaminant concentrations in the monitoring wells
- Evaluate the data to determine whether any potential impacts may be occurring that could affect human health or the environment.

1.2.1 Previous Recommendations

Based upon the results of the 2007 through 2009 annual monitoring events, the PRR issued in January 2010 recommended changes to the annual monitoring program. Based on collected data presented in the PRR, the NYSDEC requested the installation of two additional groundwater monitoring wells to sufficiently determine on-site groundwater flow and the completion of one additional round of groundwater sampling to confirm the general downward trend of concentrations of benzene, toluene, ethylbenzene, and toluene (BTEX) and solvent-related contaminant concentrations within on-site groundwater.

In order to address the previous recommendations, two groundwater monitoring wells were installed in December 2010 to evaluate on-site groundwater flow. The monitoring wells installed in December 2010 were screened at intervals consistent with monitoring well GP-09 in order to assess groundwater flow within a specific portion of the overburden aquifer.

1.3 PERIODIC REVIEW REPORT

The purpose of this PRR is to summarize the results of the October 2011 groundwater sampling event and annual groundwater gauging; and to provide sufficient documentation that the remedy

EA Project No.: 14474.05

³ EA Engineering, P.C., and its affiliate EA Science and Technology, 2007. Site Management Plan for the Autohaus Site, East Rochester, Monroe County, New York (NYSDEC Site No. 828084). October.

	Version: FINAL
EA Engineering, P.C. and its Affiliate	Page 4 of 12
EA Science and Technology	June 2012

remains in place, is performing properly and effectively, and is protective of public health and the environment. This report also documents any problems or changes necessary for the site to be in compliance with the SMP including removal of institutional controls/engineering controls that are no longer applicable, modifications in monitoring, as applicable, or including a Corrective Action Work Plan and schedule, as necessary.

1.4 REPORT ORGANIZATION

A summary of field activities and analytical results is included in Sections 2 and 3. Section 4 presents the results of the site management to date. Analytical results are summarized in table format. Section 5 presents recommendations for future site management.

The following are provided as appendixes:

- Appendix A—Daily Field Report
- Appendix B—Groundwater Sampling Forms
- Appendix C—Analytical Forms Is
- Appendix D—Waste Manifest.

EA Project No.: 14474.05

2. GROUNDWATER MONITORING ACTIVITIES

Following the installation of the new groundwater monitoring wells, the annual groundwater sampling and gauging activities were completed by EA, in accordance with the SMP. The following sections summarize the field activities which took place on 22 October 2011.

2.1 MONITORING WELL GAUGING/GROUNDWATER FLOW

Prior to the start of the groundwater sampling event, water level measurements were taken from each monitoring location to prepare a groundwater contour map and evaluate groundwater flow patterns. In addition, an oil/water interface probe was used to measure non-aqueous phase liquid (NAPL) thickness (if any) in the groundwater monitoring locations. Monitoring well locations are illustrated on Figure 2.

Concurrent with the monitoring well gauging, a cursory inspection of each monitoring well was performed in order to determine evidence of vandalism or other damage to the wells. During this inspection, it was noted that monitoring well MW-09 had been damaged and was not in functional condition. As such, no gauging or sampling activities could be performed on the monitoring well.

2.2 GROUNDWATER SAMPLING AND ANALYSIS

The site monitoring wells were sampled in accordance with the SMP during the annual monitoring events. A total of seven groundwater samples were collected during this annual sampling event. Each well was purged using low-flow techniques (peristaltic pump) and water quality readings were allowed to stabilize prior to sample collection. Samples were collected in accordance with procedures outlined in the SMP utilizing a dedicated bailer. Samples were submitted to Life Science Laboratories of East Syracuse, New York for analysis of VOCs using U.S. Environmental Protection Agency (USEPA) Method 8260B in accordance with the NYSDEC Analytical Services Protocol. Daily field reports are included in Appendix A. Groundwater sampling forms are provided in Appendix B.

3. SITE MANAGEMENT RESULTS

This section presents the results of the field sampling activities conducted during the October 2011 annual groundwater sampling event. A summary of the results of the site management program to date is also presented.

3.1 GROUNDWATER ELEVATIONS

Groundwater elevations were calculated based on data from the shallow monitoring wells and piezometer. Water elevation data for each sampling event are summarized in the table below:

Monitoring	Measuring Point		Water	Elevation (ft	AMSL)					
Well /	Well / Elevation		October	April	December	October				
Piezometer	(ft AMSL)	2007	2008	2009	2010	2011				
MW-01	419.24	410.21	410.04	410.84	409.00	410.05				
MW-08S	420.40	408.14	407.77	410.40	408.26	409.1				
MW-08D	421.13	405.71	405.13	406.93	405.25	406.19				
MW-09	430.78	406.05	405.48	406.15	^(a)	^(a)				
MW-10	418.13	409.53	409.12	410.83	408.47	409.46				
GP-09	418.35	405.83	405.19	406.37	405.50	406.64				
MW-11	417.45	^(b)	^(b)	^(b)	405.96	407.16				
MW-12	417.93	^(b)	^(b)	^(b)	406.64	406.73				
(a) Monitoring	well MW-09 observ	ed to be unser	vicable during I	December 201	0 gauging event.					
(b) Monitoring	wells MW-11 and M	MW-12 installe	d prior to Decer	mber 2010 ga	uging event					
NOTE: AMSL = Above mean sea level										

The elevations of the shallow overburden monitoring wells were used to construct a groundwater flow map for each annual sampling event (Figures 3, 4, 5, 6, and 7). Based on the results of historic gauging, shallow groundwater flows were estimated to be generally to the north-northwest at the site. This indicated that groundwater appeared to be flowing locally towards the historic well field, and not towards the north-northeast as identified in the ROD¹. Based on the available data, there appeared to be a slight groundwater divide in the center of the site with groundwater moving to the north and south of the divide.

After groundwater gauging completed in December 2010, groundwater flow appears to be better delineated with a slight north/south divide (Figure 6) and flow radiating outward. Groundwater elevations collected from the October 2011 sampling event indicate that groundwater flow is to the south, southeast, and east (Figure 7). Groundwater elevation data collected previously were not adequate to determine flow direction. As previously determined in the ROD¹, groundwater flow in the vicinity of the former drywell is to the north/northeast. However, groundwater also flows to the south and east-northeast. This localized sink could be the result of the previously completed excavation and backfill of the former drywell. The change in estimated groundwater flow direction appears to be the result of sufficient monitoring point location, which was

completed with the installation of monitoring wells MW-11 and MW-12 in December 2010. The estimated flow direction based upon the gauging data collected in December 2010 is illustrated in Figure 6.

3.2 GROUNDWATER ANALYTICAL DATA

Analytical results for aqueous and associated quality assurance/quality control (QA/QC) samples collected from site related monitoring wells were compared to NYSDEC AWQS and guidance values from the Division of Water and Technical and Operational Guidance Series 1.1.1 (August 1999) for Class GA groundwater. Analytical results from each annual sampling event are summarized in Tables 1 through 4 and illustrated on Figure 8.

Several VOCs have been detected during the 2007-2011 annual monitoring events with selected analytes sporadically detected greater than their corresponding AWQS. However, only one VOC, 1,2-dichlorobenzene, was consistently detected greater than the AWQS and only at one sampling location (GP-09).

3.2.1 October 2011 Analytical Data

Six VOCs were detected greater than their respective AWQS during the October 2011 annual sampling event at one location (GP-09).

- Acetone (57.7 μ g/L) was detected greater than its AWQS of 50 μ g/L.
- Benzene (1.13 μ g/L) was detected greater than its AWQS of 1 μ g/L.
- 1,2-Dichlorobenzene (67.3 μ g/L) was detected greater than its AWQS of 5 μ g/L.
- 1,4- Dichlorobenzene $(3 \mu g/L)$ was detected equal to its AWQS of $3 \mu g/L$.
- Ethylbenzene (5.09 μ g/L) was detected greater than its AWQS of 5 μ g/L.
- Total xylenes (14.6 μ g/L) were detected greater than their AWQS of 5 μ g/L.

Analytical data are provided in Appendix C.

3.3 INVESTIGATION DERIVED WASTE

In June 2011, a representative soil sample was collected from three drums of soil cuttings on-site that were collected during well installation in December 2010. The soil cuttings were inadvertently drummed as waste and did not exhibit sheen or odors. The sample was submitted to Life Science Laboratories of East Syracuse, New York for analysis by the toxicity characteristic leaching procedure (TCLP), a soil sample extraction method for chemical analysis employed as an analytical method to simulate leaching through a landfill. Contaminants of concern were not detected in the soil sample and the waste soil was characterized as non-hazardous. Analytical results are included in Appendix C. The three drums were collected and disposed by Environmental Products and Services of Vermont on 4 November 2011. The manifest is also included in Appendix D.

4. CONCLUSIONS AND RECOMMENDATIONS

Based upon the current SMP and sampling results from 2011 annual monitoring event, this section provides conclusions and recommendations for future site management activities in comparison to previous sampling events and historical site data. Any significant changes recommended and approved by the NYSDEC will be incorporated into an amended SMP.

4.1 CONCLUSIONS

4.1.1 Groundwater Gauging

Prior to annual gauging and dependent on the operation of potable extraction wells to the northwest, shallow groundwater flows were generally believed to be to the north-northwest at the site. After the potable extraction wells were decommissioned, and based on data generated during annual monitoring from 2007 to 2009, groundwater flow appeared to return to a north-northeast direction.

October 2007

Groundwater flow patterns indicate that the direction of groundwater flow near the former drywell is to the north-northeast. Groundwater flow in the southern portion of the site is to the south-southwest.

October 2008

Groundwater flow patterns indicate that the direction of groundwater flow near the former drywell source area is to the north. Groundwater flow in the southern portion of the site is to the south.

April 2009

Groundwater flow patterns indicate that groundwater flows near the former source area are to the north-northeast. Groundwater flows in the southern portion of the site are to the west-southwest.

December 2010

In December 2010, two additional monitoring wells (MW-11 and MW-12) were installed to provide adequate spatial coverage and capture a more accurate estimate of groundwater flow. Groundwater flow patterns indicate a radial flow pattern away from the site.

October 2011

Groundwater flow patterns, including data collected from MW-11 and MW-12, returned to a pattern consistent with October 2007, October 2008, and April 2009 towards the northeast near the former drywell and to the south in the southern portion of the site.

The general flow direction near the drywell is to the northeast, consistent with the ROD. The estimated groundwater surface indicates that previously derived contours were incomplete, but shared a similar pattern and provide evidence that hydraulic conditions at the site have not changed. The installation of the additional monitoring wells provides a more complete estimate of the groundwater surface and flow directions at the site.

However, it is noted that small localized sinks or divides could impact groundwater velocity and not be captured by the existing monitoring well network. During the well gauging and inspection, monitoring well MW-09 was observed to be damaged and unserviceable. This well was initially installed as an early detection well when the East Rochester Well field to the west of the site was in operation. The steel protective casing was bent and the polyvinyl chloride (PVC) riser was crushed and disconnected from the remaining screened well casing.

4.1.2 Groundwater Monitoring

Based on the annual groundwater sampling analytical data collected since 2007, nine VOCs (i.e., acetone, benzene, 1,2-dibromo-3-chloropropane, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,1-dichloroethane, ethylbenzene, toluene, and total xylene) have been detected in on-site monitoring wells at concentrations greater than AWQS. Only benzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, ethylbenzene, toluene, and xylenes have been detected in more than one sampling event. Additionally, with the exception of MW-09 in 2007, reported concentrations greater than the respective AWQS have been restricted to one well, GP-09. Concentrations of VOCs detected in samples from the other monitoring wells have been less than the NYSDEC AWQS. Historical concentrations detected during sampling events are summarized below:

- 1,2-Dibromo-3-chloropropane was detected greater than its AWQS value of 0.04 μ g/L within GP-09 (5.42 μ g/L) during the October 2008 annual sampling event. This analyte was not detected greater than laboratory reporting limits during any other annual sampling event or in any historical data provided by the NYSDEC. Additionally, this compound was flagged as an estimated value. Because this compound was detected during only one sampling event, it is not considered to be a contaminant of concern.
- 1,2-Dichlorobenzene was detected within groundwater near the former drywell at a maximum concentration of 80.2 µg/L during the December 2010 sampling event. Recent sampling data from well GP-09 appears to indicate that the concentration of this analyte in groundwater is not decreasing. Annual monitoring indicates an average concentration of 55.2 µg/L with a high of 80.2 µg/L in December 2010 and a low of 9.36

 μ g/L in October 2008. Concentrations of 1,2-Dichlorobenzene have been consistently 20-25 times greater than the respective AQWS and is considered a contaminant of concern at the Site. However, 1,2-dichlorobenzene has not been detected in other wells greater than its AQWS.

- 1,4-Dichlorobenzene was detected at relatively low concentrations in each annual sampling event. The most recent groundwater sampling results reported 1,4-dichlorobenzene concentrations at GP-09 equal to or greater than its AWQS of 3 μ g/L in 2009 (3.27 μ g/L), 2010 (3.53 μ g/L), and 2011 (3 μ g/L). Historical site data indicate a maximum detection in groundwater of 9 μ g/L during the 1997 post-IRM site characterization. Due to the relatively low historical levels of this compound and only the slight exceedence of AWQS in 2009 and 2010 annual sampling, 1,4-dichlorobenzene is not considered a contaminant of concern at this time.
- Acetone has been previously detected at concentrations far less than its AWQS of 50 μ g/L. However during the October 2011 sampling event, acetone was detected at GP-09 at a concentration of 57.7 μ g/L, which exceeds it AWQS. At this time acetone, is not considered a contaminant of concern.
- Benzene has consistently been detected in GP-09 at concentrations that slightly exceed its AWQS of 1 μ g/L. The high concentration detected was 1.44 μ g/L during the December 2010 sampling event. Benzene is considered a contaminant of concern.
- Ethylbenzene historically was detected in groundwater at a maximum concentration of 53.7 μg/L in well MW-01 (July 1990). Annual monitoring since 2007 has shown a decrease in concentrations within on-site groundwater. While slight exceedences to its AWQS of 5 μg/L were observed within GP-09 during 2007 (6.03 μg/L), 2009 (7.470 μg/L), 2010 (6.7 μg/L), and 2011 (5.09 μg/L) annual sampling events, the overall trend of decreasing concentrations has continued to date.
- Toluene was detected within on-site groundwater at a maximum concentration of 944 μ g/L at MW-01 in July 1990. Annual monitoring has shown a decrease in concentrations within on-site groundwater. While exceedences of its AWQS of 5 μ g/L were observed within GP-09 during 2007 (9.57 μ g/L) and 2009 (21.7 μ g/L), results from the 2010 and 2011 annual events reported concentration of 4.96 μ g/L and 0.2 μ g/L, respectively. Overall, it appears that concentrations of toluene have decreased to acceptable levels.
- Total xylenes concentrations were detected at a maximum concentration of 347 μ g/L within MW-01 in July 1990. Annual monitoring has shown a decrease in concentrations within on-site groundwater. While exceedences to its AWQS of 5 μ g/L were observed within GP-09 during 2007 (27.3 μ g/L), 2009 (37.9 μ g/L), 2010 (24 μ g/L), and 2011 (14.6 μ g/L) annual sampling events, the general trend of decreasing concentrations has continued to date.

No analytes were detected at the remaining monitoring wells at concentrations that exceed their applicable AWQS values during the October 2011 annual monitoring event.

Based upon historical and recent site data, it appears that the concentration of most analytes detected within onsite groundwater have decreased over time; with the exception of 1,2-dichlorobenzene, which has fluctuated between annual sampling events. However, total VOC concentrations at GP-09 appear to have neither decreased nor increased, and have been relatively consistent with the exception of October 2008. The primary contaminants of concern, in addition to 1,2-dichlorobenzene are BTEX, which are typically identified together as contaminants in soil and groundwater when petroleum or petroleum derivatives are released into the environment from storage tanks containing gasoline or other petroleum-related products.

4.2 **RECOMMENDATIONS**

Based upon the data collected to date, the following recommendations are made:

• **Continued Annual Groundwater Sampling:** Based upon analytical data collected to date, this site currently meets the goals stated in the ROD^1 of confirming the trend of declining groundwater contaminant concentrations within the wells at the site and may be a candidate for removal from the Registry. However, some contaminants continue to remain in groundwater at levels exceeding AWQS standards for Class GA groundwater. 1,2-Dichlorobenzene is consistently detected in groundwater at concentrations much greater than its AWOS. EA recommends that additional annual groundwater sampling be completed to further assess the trend of groundwater contamination at the site and justify eventual delisting of the site from the Registry. While fluctuating concentrations at GP-09 could reflect changing groundwater elevations (which have varied by as much as 1 foot between sampling events), overall total VOC concentrations appear to be steady at GP-09. Seasonal groundwater fluctuation could provide for interaction between impacted soil and groundwater resulting in small localized releases of contaminants. The number of wells that are sampled should be reduced to three wells (MW-01, GP-09, and MW-10). Since 2007, contaminants of concern have not been detected in MW-08S, MW-08D, or MW-10. Additionally, contaminants of concern have not been detected in MW-11 or MW-12. Monitoring should continue at GP-09 due to continued detection of contaminants of concern, while MW-01 and MW-10 would provide reference monitoring points.

- **Targeted Remediation:** It is recommended that targeted *in situ* remediation through either enhanced bioremediation or chemical oxidation be considered to expedite reduction in concentrations of COCs to less than AWQS. The contaminants of concern that exceed NYSDEC AWQS are limited to one well (GP-09) and migration has not been observed in nearby wells. Both aerobic and anaerobic biodegradation pathways exist for BTEX and 1,2-dichlorobenzene. A targeted remedial action could reduce contaminants of concern concentrations to less than NYSDEC AWQS at which point the site could be delisted and annual monitoring could eliminated.
- **Damaged Monitoring Well MW-09:** MW-09 was previously installed as an early detection well for the well field historically located to the west of the site. During the December 2010 monitoring event, MW-09 was observed to be damaged and was not able to be gauged or sampled. Due to the proximity of the monitoring well to the site and the groundwater flow direction identified during the December 2010 gauging event, EA believes that replacement of this well is not necessary at this time. However, the damaged well should be properly decommissioned in accordance with NYSDEC CP-43: Groundwater Monitoring Well Decommissioning Policy by perforating the casing and grouting in place. The top 5 ft of the PVC casing will be removed and the area restored to grade.
- **Groundwater Gauging/Flow Direction:** Prior to the 2010 gauging event, flow direction data derived from field sampling and gauging events appeared inconclusive. With the installation of two additional groundwater monitoring wells in December 2010, EA has confirmed a flow direction in the source area to the north-northeast, as previously identified in the ROD¹. EA recommends additional on-site gauging activities to further confirm groundwater flow direction.

		1.00				10 M	and the second second		0× 1×	×	24		1 21	0	2
N	14	The second			a start	1 4 3 6	1		GP-09	Oct-07 µg/L	Oct-08 µg/L	Apr-09 µg/L	Dec-10 µg/L	Oct-11 µg/L	10
		1.24	1.2	65	6			Aceton Benzel	ne	5.16 J 1.16	4.51 J 0.35 J	7.92 J 1.22	9.71 J 1.44	57.7 J 1.13	6
						SALE AND A		2-Buta	anone	ND 0.50	ND	3.16 J	1.33 J	1.33 J	
3	1 an							Chloro	pethane	0.59 0.58 J	ND	ND 1.04 J	0.75 0.61 J	0.62 ND	
			1 - 10				SV-1	Chloro 1.2-Dit	oform bromo-3-chloropropane	ND ND	ND 5.42 J	ND ND	0.38 J ND	0.32 J ND	
	and the second		Oat 07	Oct 08	Arr 00		1-1	1,2-Dic	chlorobenzene	46.7 D	9.36	73.2 D	80.2	67.3	
	MW-	09*	Uct-07 µa/L	Uct-08	Apr-09 ug/L			1,3-Dic 1,4-Dic	chlorobenzene ichlorobenzene	ND 1.8	ND 0.44 J	0.12 J 3.27	0.17 J 3.53	0.2 J 3	
	Acetone		ND	ND	1 J	1 1		1,1-Dic	chloroethane P-Dichloroethene	1.68 0.22 J	0.61 ND	1.77 019 J	2.46 0.12 J	2.36 ND	-
S. Art	Benzene		1.19	ND	0.51	1. 1. 1.		1,2-Dic	ichloropropane	0.22 J	ND	0.26 J	ND	ND	-
and the	1,2-Dichloro	benzene	2.6	0.16 J	2.92		/	Ethylbe	enzene pylbenzene	6.03 0.84	0.71 ND	7.47 0.89	6.7 1.4	5.1 1.17	
Sec. Sec. 4	1,2-Dichloro	propane	ND	ND	0.16 J	STATE.		Methyl 4-Meth	l tert-butyl ether hvl-2-pentanone	1.73 ND	ND ND	1.34	1.51 1.05.I	1.16 ND	
	Ethylbenzen	e	1.38	ND	1.05	33.8/2		Methyl	lene chloride	0.15 J	ND	0.27 J	0.39 J	ND	
Sec. Sec.	Isopropylber	nzene	0.69	ND	ND		-	Toluen	ne proethene	9.57 0.32 J	3 ND	21.7 0.51	4.96 0.81	0.2	-
	Xvlenes (tota	utyi etner al)	ND 1.94	0.75 J ND	0.52 J			Xylene	es (total)	27.3	4.34	37.9	24	14.6	
						and a	4.5			10	1		2.6		
	1.			×.		at	A SE		NA P						
	ale de			CHE .		10 50	4 6	EER T	\$/ 1/1	14/100					
A Stations	Oct 07	Oct 08	Apr 00	Dec 10	Oct 11		de	and the second	£11/1	45	2 de	Sec.			-
MW-01	µg/L	μg/L	µg/L	µg/L	µg/L	\sim $\langle \rangle$	SPE .	FE		-	-				A LA
Acetone	ND 1 7	ND 0.25	2.01 J	ND 0.8	8				1 Martin		12	No.			-
1,3-Dichlorobenzene	0.51	0.23	0.47 J	0.39 J	0.26				al Maria		- 35				-
1,4-Dichlorobenzene	2.13	0.51	2.3	1.92	1.19		2mg		A HAR						1
cis-1,2-Dichloroethene	0.5	0.26	3.43	0.23 J	0.17 A	oproximate loc	ation		11.18	Part of the second				in the second	1
Ethylbenzene	0.1	ND	0.5	ND	ND O	f former drywell			1	Dec-10	Oct.12				
Tetrachloroethene	0.24 3.06	ND 1.72	0.12 J 2.51	ND 1.91	1.54		1		MW-12	μg/L	µg/L		12		
Toluene	ND	ND	0.12 J	ND	ND	Em 1				Man .					
Xylenes (total)	0.23 ND	0.24 ND	0.36 J 1.4	0.56 ND	0.43 ND	-		St 1 4 1		1 Martin	×	EX.			
			Sec. 1		10	R P		MW-10 Oct-0	07 Oct-08 A	ua/L L	ec-10 (Ja/L	Dct-11 ua/L			
		(all	and the second	100	1 1 1 A		ton to	Bromodichloromethane ND	ND	ND 0.	.46 J	0.38			
MW-11	Dec-10 Oc	t-12	1				1.1	Chloroform ND	ND	0.52 2	2.87	1.22			
Toluene	0.13 J 0.1	13 J	A A		-0 6.01	INARABA PAR	A AFC	C. A. Start				and the second s		- Salara	
	10 M			in the		AL AL		Contraction of the local division of the loc		N.			1		
				and a	Section 4		MW-08S		The second	the second		per a		1	
	· · · · ·		and a	1 Alexandre		No	detections	A CARLER	A Frank		Arras.	Pr.			
ALC: NOT	100					the second	PER MILLE	1000							
and the	-		MW-08D	00	t-07 Oct-08	Apr-09 Dec-10 Oct-11		Shi Law St			1			The second	
		7	Acetone	ц 1	nd ND	μg/L μg/L μg/L 2.53 J ND ND					A.Y				
A AL		E	Bromodichlorom	ethane N	ND ND	ND 0.15 J 0.15 J	- 500	States in the				1			
- C- CA	1.00		Chlorotorm Carbon disulfide	r N	ND ND	0.12 J ND ND		X	思考这是		12				
		Kar	Dibromochlorom	nethane N	ND ND	ND 1.31 1.31					LOOK,	- AND	$\mathbb{R}^{\mathcal{A}}$		
all here and	A. M.	The second second		-											1
San and	A		110	-	-Pr. 15						1				
A MARINE	-P			1 2			1/100000			No.			the second	2.5	4
S States	-			N.C. Sec.	- the star		1 MAY	Start Og				Carles	all'		
- Aller		-					Bal Mars	Service Service							
EN NAME	To Casto	10	Not a	C. C	A STREET		ALL AN					1.		A a	
			1. A.	Contra las	Contraction of the		CAL D				. V	AL.			
	_			edend											
		\$	`` کے		operty Boundar	,					0			100	
	3	ł	{		tected value is	an estimate						_			
X			٤	BOLD Va	lue detected is	above Ambient Wate	r Quality Standard	I				Fee	et		
<u>ــــــــــــــــــــــــــــــــــــ</u>		(ND No	t Detected		,		0		015		•		
	Z	Jest	Er.	D Dil	ution				Sour	ce: NYS	Uffice c	Coordir	Securit ation (C	y and SCIC)	
	2	5		🔶 Mo	onitoring well				1				(-	/	
		R ,	FENVIRONMENT	K CO		HAUS OF ROC	HESTER SI	TE (828084)		F	FIGUE	RE 8			
		TMEN		NSERVA		PERIODIC R	EVIEW REP	ORT	VOLATI	LE OR	GAN	C CC	MPO		s
		avdao		No.		EAST ROCHES	STER, NEW	YORK	IN GF	ROUNE	DWAT	ER S	AMPI	ES	
			VEW YORK STATE												
PROJECT	MGR:	DESI	GNED B	Y: CR	EATED BY	CHECKED BY	SCALE:	DATE:	PROJE	CT NO:		\(GIS\		
CJS		2201	DCC		DCC	CJS	AS SHOWN	FEBRUARY 2012	1447	4.05	1	Figur	e_8.mx	d	

TABLE 1 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER OCTOBER 2007

	Sample ID	8-24-084-MW	7-01	8-28-084-MW	-08S	8-28-084-MW-	08D	8-24-084-MW	-09	8-24-084-MW	-10	NYSDEC Ambient
	Lab ID	0710091-004	5A	0710091-00	2A	0710091-003	A	0710091-004	A	0710091-001	A	Water Quality
	0 1 T	6,100,100		0710051 00		6710071005		6710051 001		0710001 000		Standard
Parameter List	Sample Type	Groundwate	er	Groundwat	er	Groundwate	r	Groundwate	r	Groundwate	r	Class GA
USEPA Method 8260B	Sample Date	10/11/2007	/	10/11/200	7	10/11/2007		10/11/2007		10/11/2007		(µg/L)
Acetone	μg/L	(<10)	U	(<10)	U	(<10)	U	(<10)	U	(<10)	U	50 (g)
Benzene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	1.19		(<0.5)	U	1 (s)
Chlorobenzene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Chloroethane	μg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	5 (s)
cis-1,2-Dichloroethene	μg/L	0.5		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
1,4- Dichlorobenzene	μg/L	2.13		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,3- Dichlorobenzene	μg/L	0.51	_	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,2- Dichlorobenzene	μg/L	1.7		(<0.5)	U	(<0.5)	U	2.6		(<0.5)	U	3 (s)
1,1- Dichloroethane	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	5.77		(<0.5)	U	5 (s)
1,2- Dichloropropane	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	1 (s)
Ethylbenzene	μg/L	0.1	J	(<0.5)	U	(<0.5)	U	1.38		(<0.5)	U	5 (s)
Isopropylbenzene	μg/L	0.24	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Methyl tert-butyl ether	μg/L	(<1)	U	(<1)	U	(<1)	U	0.69		(<1)	U	
Methylene chloride	μg/L	(<2)	U	(<2)	U	(<2)	U	(<2)	U	(<2)	U	5 (s)
Tetrachloroethene	μg/L	3.06		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Toluene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Trichloroethene	μg/L	0.23	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Xylenes (total)	μg/L	(<1)	U	(<1)	U	(<1)	U	1.94		(<1)	U	5 (s)
	a 1 m	0.04.004.00	00	0.04.004.5	(a)	T : D 1						
	Sample ID	8-24-084-GP	-09	8-24-084-Du	ıp ⁽¹⁾	Trip Blank						NYSDEC Ambient
	Lab ID	0710091-000	бA	0710091-00	7A	0710091-008	A					Water Quality
Demonster List	Sample Type	Groundwate	er	Groundwat	er	Groundwate	r					Standard
USEPA Method 8260B	Sample Date	10/11/2007	7	10/11/200	7	6/26/2007						(ug/L)
Acetone	ug/L	5.16	Ĵ	1.03	Ĵ	(<10)	Ū					50 (g)
Benzene	ug/L	1.16		(<0.5)	U	(<0.5)	Ū					1 (s)
Chlorobenzene	119/L	0.59		(<0.5)	U	(<0.5)	Ū					5(s)
Chloroethane	ug/L	0.58	T	(<1)	U	(<1)	U					5 (s)
cis-1 2-Dichloroethene	ug/L	0.22	I	(<0.5)	U	(<0.5)	U					5 (s)
1.4- Dichlorobenzene	ug/L	1.8		(<0.5)	U	(<0.5)	U					3 (s)
1.3- Dichlorobenzene	ug/L	(<0.5)	U	(<0.5)	U	(<0.5)	Ū					3 (s)
1.2- Dichlorobenzene	ug/L	46.70	D	(<0.5)	U	(<0.5)	U					3(s)
1 1- Dichloroethane	ug/L	1.68	-	(<0.5)	U	(<0.5)	U					5 (s)
1.2- Dichloropropane	ug/L	0.27	J	(<0.5)	U	(<0.5)	Ū					1 (s)
Ethylbenzene	μg/L	6.03		(<0.5)	U	(<0.5)	U					5 (s)
Isopropylbenzene	ug/L	0.84		(<0.5)	Ŭ	(<0.5)	Ŭ					5 (s)
Methyl tert-butyl ether	ug/L	1.73		(<1)	U	(<1)	U					
Methylene chloride	ug/L	0.15	J	(<2)	U	1.16	J					5 (s)
Tetrachloroethene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U					5 (s)
Toluene	ug/L	9.57	-	(<0.5)	U	(<0.5)	Ū					5 (s)
Trichloroethene	μg/L	0.32	J	(<0.5)	Ŭ	(<0.5)	Ŭ					5 (s)
Xylenes (total)	ug/L	27.3		(<1)	Ŭ	(<1)	Ŭ					5 (s)
(a) Duplicate was collected at 8-28-084	-MW-08S	1										
NOTE: USEPA = United States E NYSDEC = New State Dep μg/L = Micrograms per U = The analyte was J = Analyte was pos D = Dilution	nvironmental Prote artment of Environ r Liter analyzed for, but w itively identified; th	ction Agency mental Conserva vas not detected a ne associated nun	tion Ibove Ierical	the sample repor value is the app	ting lin roxim	mit. ate concentration	of the	e analyte in the sa	mple.			
D - Dhuuoli												

Analytical data results provided by Life Science Laboratories. Data Validation completed by Environmental Data Validation, Inc. Only analytes that had at least one detection from the data set are shown. **Bold** values indicate that the analyte was detected above the NYSDEC AWQS. (g) Value is listed as a guidance value. (s) Value is listed as a standard value.

TABLE 2 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER OCTOBER 2008

	Sample ID	8-24-084-MW	-01	8-28-084-MW-	08S	8-28-084-MW-0)8D	8-24-084-MW	-09	8-24-084-MW	-10	NYSDEC Ambient
	Lab ID	0810111-001	A	0810111-002	A	0810111-003	A	0810111-004	A	0810111-006	A	Water Quality
Parameter List	Sample Type	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	r	Groundwate	r	Class GA
USEPA Method 8260B	Sample Date	10/14/2008		10/14/2008		10/14/2008		10/14/2008		10/14/2008		(µg/L)
Acetone	µg/L	(<10)	U	(<10)	U	(<10)	U	(<10)	U	(<10)	U	50 (g)
Benzene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	1 (s)
1,2- Dibromo-3-chloropropane	µg/L	(<5)	U	(<5)	U	(<5)	U	(<5)	U	(<5)	U	0.04 (s)
1,4- Dichlorobenzene	µg/L	0.51		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,2- Dichlorobenzene	µg/L	0.25	J	(<0.5)	U	(<0.5)	U	0.16	J	(<0.5)	U	3 s)
1,1- Dichloroethane	µg/L	0.24	J	(<0.5)	U	(<0.5)	U	2.7		(<0.5)	U	5 (s)
cis-1,2- Dichloroethene	µg/L	0.26	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Ethylbenzene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Methyl tert-butyl ether	µg/L	(<1)	U	(<1)	U	(<1)	U	0.75	J	(<1)	U	
Tetrachloroethene	µg/L	1.72		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Toluene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Trichloroethene	µg/L	0.24	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Xylenes (total)	μg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	5 (s)
					65							
	Sample ID	8-24-084-GP-	09	8-24-084-Dup	o ^(a)	Trip Blank						NYSDEC Ambient
	Lab ID	0810111-005	Α	0810111-007	A	0810111-008	A					Water Quality
Paramatan List	Sample Type	Groundwate	r	Groundwate	r	Groundwate	r					Standard
USEPA Method 8260B	Sample Date	10/14/2008		10/14/2008		10/14/2008						(µg/L)
Acetone	μg/L	4.51	J	(<10)	U	(<10)	U					50 (g)
Benzene	μg/L	0.35	J	(<0.5)	U	(<0.5)	U					1 (s)
1,2- Dibromo-3-chloropropane	μg/L	5.42	J	(<5)	U	(<5)	U					0.04 (s)
1,4- Dichlorobenzene	μg/L	0.44	J	0.87		(<0.5)	U					3 (s)
1,2- Dichlorobenzene	μg/L	9.36		0.48	J	(<0.5)	U					3 s)
1,1- Dichloroethane	μg/L	0.61		0.29	J	(<0.5)	U					5 (s)
cis-1,2- Dichloroethene	μg/L	(<0.5)	U	0.73		(<0.5)	U					5 (s)
Ethylbenzene	μg/L	0.71		(<0.5)	U	(<0.5)	U					5 (s)
Methyl tert-butyl ether	μg/L	(<1)	U	(<1)	U	(<1)	U					
Tetrachloroethene	μg/L	(<0.5)	U	1.8		(<0.5)	U					5 (s)
Toluene	μg/L	3		(<0.5)	U	(<0.5)	U					5 (s)
Trichloroethene	μg/L	(<0.5)	U	0.27	J	(<0.5)	U					5 (s)
Xylenes (total)	μg/L	4.34		(<1)	U	(<1)	U					5 (s)
(a) Duplicate was collected at 8-28-084	-MW-01											
	101 00 01											
NOTE: USEPA = United States En	vironmental Protec	ction Agency										
NOTE: USEPA = United States En NYSDEC = New State Depa	vironmental Protect rtment of Environm	ction Agency nental Conservati	on									
NOTE: USEPA = United States En NYSDEC = New State Depa $\mu g/L$ = Micrograms per	wironmental Protect rtment of Environm Liter	ction Agency mental Conservati	on		. ,.							
NOTE: USEPA = United States In NYSDEC = New State Depa $\mu g/L$ = Micrograms per U = The analyte was L = Analyte was posi	wironmental Protect rtment of Environm Liter analyzed for, but w tively identified: th	ction Agency mental Conservati as not detected a e associated num	on bove	the sample report	ing lin	nit.	ofth	analyte in the ca	mnle			

Bold values indicate that the analyte was detected above the NYSDEC AWQS. (g) Value is listed as a guidance value. (s) Value is listed as a standard value.

TABLE 3 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER APRIL 2009

	Sample ID	8-24-084-MW	-01	8-28-084-MW-	08S	8-28-084-MW-(08D	8-24-084-MW	-09	8-24-084-MW-	-10	
	Lab ID	0810111-001	A	0810111-002	A	0810111-003.	A	0810111-004	A	0810111-006	A	NYSDEC Ambient
Parameter List	Sample Type	Groundwate	r	Groundwate	r	Groundwater	r	Groundwater	r	Groundwate	r	Water Quality
USEPA Method 8260B	Sample Date	4/22/2009		4/22/2009		4/22/2009		4/22/2009		4/22/2009		(µg/L)
Acetone	μg/L	2.01	J	(<10)	U	2.53	J	1	J	(<10)	U	50 (g)
Benzene	µg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	0.51	\Box	(<0.5)	U	1 (s)
2- Butanone	μg/L	(<10)	U	(<10)	U	(<10)	U	(<10)	U	(<10)	U	
Carbon disulfide	μg/L	(<0.5)	U	(<0.5)	U	0.12	J	(<0.5)	U	(<0.5)	U	
Chloroethane	μg/L	(<1)	UJ	(<1)	UJ	(<1)	UJ	(<1)	UJ	(<1)	UJ	5 (s)
Chloroform	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	0.52	Ľ	7 (s)
1,2- Dichlorobenzene	μg/L	1.71		(<0.5)	U	(<0.5)	U	2.92		(<0.5)	U	3 (s)
1,3- Dichlorobenzene	μg/L	0.47	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,4- Dichlorobenzene	μg/L	2.3	<u> </u> _'	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,1- Dichloroethane	μg/L	0.63	Ľ	(<0.5)	U	(<0.5)	U	3.42	Ē	(<0.5)	U	5 (s)
cis-1,2- Dichloroethene	μg/L	3.43	<u> </u>	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
1,2- Dichloropropane	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	0.16	J	(<0.5)	U	5 (s)
Ethylbenzene	μg/L	0.5	<u> </u> '	(<0.5)	U	(<0.5)	U	1.05	Ĺ	(<0.5)	U	5 (s)
Isopropylbenzene	μg/L	0.12	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Methyl tert-butyl ether	μg/L	(<1)	U	(<1)	U	(<1)	U	0.52	J	(<1)	U	10 (g)
4- Methyl-2-pentanone	μg/L	(<5)	U	(<5)	U	(<5)	U	(<5)	U	(<5)	U	
Methylene chloride	μg/L	(<2)	U	(<2)	U	(<2)	U	(<2)	U	(<2)	U	5 (s)
Tetrachloroethene	μg/L	2.51	<u> </u>	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Toluene	μg/L	0.12	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Trichloroethene	μg/L	0.36	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Xylenes (total)	μg/L	1.4	<u> </u>	(<1)	U	(<1)	U	1.34		(<1)	U	5 (s)
		0.01.004.00		2 20 204 D	• (a)	T : D1 1						
	Sample ID	8-24-084-GP-	09	8-28-084-Dup0	114	Trip Blank						NYSDEC Ambient
	Lab ID	0810111-005	A	0904141-007	A	0810111-008	A					Water Quality
Paramatar List	Sample Type	Groundwate	r	Groundwates	r	Groundwater	r _					Standard Class GA
USEPA Method 8260B	Sample Date	4/22/2009		4/22/2009		4/22/2009						(ug/L)
Acetone	ug/L	7.92	J	1.45	J	(<10)	U					50 (g)
Benzene	ug/L	1,22	+÷-	(<0.5)	U	(<0,5)	U					1 (s)
2- Butanone	μg/L	3.16	J	(<10)	U	(<10)	U					
Carbon disulfide	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U					
Chloroethane	μg/L	1.04	J	(<1)	UJ	(<1)	U					5 (s)
Chloroform	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U					7 (s)
1,2- Dichlorobenzene	10,		+	N 1 1			-	4				<u> </u>
· · · · · · · · · · · · · · · · · · ·	μg/L	73.2	D	1.83		(<0.5)	U					3 (s)
1,3- Dichlorobenzene	μg/L μg/L	73.2 0.12	D J	1.83 0.5		(<0.5) (<0.5)	U U					3 (s) 3 (s)
1,3- Dichlorobenzene 1,4- Dichlorobenzene	μg/L μg/L μg/L	73.2 0.12 3.27	J	1.83 0.5 2.43		(<0.5) (<0.5) (<0.5)	U U U					3 (s) 3 (s) 3 (s)
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethane	μg/L μg/L μg/L μg/L	73.2 0.12 3.27 1.77	J	1.83 0.5 2.43 0.62		(<0.5) (<0.5) (<0.5) (<0.5)	U U U U					3 (s) 3 (s) 3 (s) 5 (s)
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethane cis-1,2- Dichloroethene	μg/L μg/L μg/L μg/L μg/L	73.2 0.12 3.27 1.77 0.19	J	1.83 0.5 2.43 0.62 3.42		(<0.5) (<0.5) (<0.5) (<0.5) (<0.5)	U U U U U					3 (s) 3 (s) 3 (s) 5 (s) 5 (s)
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethane cis-1,2- Dichloroethene 1,2- Dichloropropane	μg/L μg/L μg/L μg/L μg/L μg/L	73.2 0.12 3.27 1.77 0.19 0.26	1 1 1 D	1.83 0.5 2.43 0.62 3.42 (<0.5)	U	(<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5)	U U U U U U					3 (s) 3 (s) 3 (s) 5 (s) 5 (s) 5 (s)
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethane cis-1,2- Dichloroethene 1,2- Dichloropropane Ethylbenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	73.2 0.12 3.27 1.77 0.19 0.26 7.47	1 1 1 D	1.83 0.5 2.43 0.62 3.42 (<0.5)	U	(<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5)	U U U U U U U U					3 (s) 3 (s) 3 (s) 5 (s) 5 (s) 5 (s) 5 (s) 5 (s)
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethane cis-1,2- Dichloroethene 1,2- Dichloropropane Ethylbenzene Isopropylbenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	73.2 0.12 3.27 1.77 0.19 0.26 7.47 0.89	J J J	1.83 0.5 2.43 0.62 3.42 (<0.5)	U	(<0.5)	U U U U U U U U U					$ \begin{array}{r} 3 (s) \\ 3 (s) \\ 5 (s) \\ $
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethane cis-1,2- Dichloroethene 1,2- Dichloropropane Ethylbenzene Isopropylbenzene Isopropylbenzene Methyl tert-butyl ether	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	73.2 0.12 3.27 1.77 0.19 0.26 7.47 0.89 1.34	J J	1.83 0.5 2.43 0.62 3.42 (<0.5) 0.51 0.13 (<1)	U J U	(<0.5)	U U U U U U U U U U U					$ \begin{array}{r} 3 (s) \\ 3 (s) \\ 5 (s) \\ 10 (g) \end{array} $
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethene cis-1,2- Dichloroethene 1,2- Dichloropropane Ethylbenzene Isopropylbenzene Methyl tert-butyl ether 4- 4- Methyl-2-pentanone	μg/L	73.2 0.12 3.27 1.77 0.19 0.26 7.47 0.89 1.34	1 1 1 1 D	1.83 0.5 2.43 0.62 3.42 (<0.5) 0.13 (<1) (<5)	U U U U	(<0.5)	U U U U U U U U U U U					3 (s) 3 (s) 5 (s) 5 (s) 5 (s) 5 (s) 5 (s) 10 (g)
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethane cis-1,2- Dichloroethene 1,2- Dichloropropane Ethylbenzene Isopropylbenzene Methyl tert-butyl ether 4- Methyl-2-pentanone Methyl-2-pentanone	μg/L	73.2 0.12 3.27 1.77 0.19 0.26 7.47 0.89 1.34 1.09 0.27	1 1 1 1 1 1 1 1	1.83 0.5 2.43 0.62 3.42 (<0.5) 0.51 0.13 (<1) (<5) 0.18	U U U J J J J J J	$\begin{array}{c} (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!1.5) \\ (<\!1.5) \\ (<\!1.5) \\ (<\!2.5) \\ (<\!2.5) \end{array}$	U U U U U U U U U U U U U U U					$ \begin{array}{r} 3 (s) \\ 3 (s) \\ \hline 3 (s) \\ \hline 5 (s) \\ \hline 10 (g) \\ \hline \\ \hline \\ \hline 5 (s) \\ \hline \end{array} $
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethene cis-1,2- Dichloropropane Ethylbenzene Isopropylbenzene Methyl tert-butyl ether 4- Methyl-2-pentanone Methyl-choride Tetrachloroethene Tetrachloroethene	μg/L	73.2 0.12 3.27 1.77 0.19 0.26 7.47 0.89 1.34 1.09 0.27 (<0.5)	1 1 1 1 1 1	$\begin{array}{c} 1.83 \\ 0.5 \\ 2.43 \\ 0.62 \\ 3.42 \\ (<\!0.5) \\ 0.51 \\ 0.13 \\ (<\!1) \\ (<\!5) \\ 0.18 \\ 2.68 \end{array}$	U J U J J J	$\begin{array}{c} (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!1) \\ (<\!5) \\ (<\!2) \\ (<\!0.5) \end{array}$	U U U U U U U U U U U U U U U					$ \begin{array}{r} 3 (s) \\ 3 (s) \\ \hline 3 (s) \\ \hline 5 (s) \\ \hline 10 (g) \\ \hline \\ \hline \\ \hline 5 (s) \\ \hline 5 (s) \\ \hline 5 (s) \\ \hline \end{array} $
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethane cis-1,2- Dichloroethene 1,2- Dichloropropane Ethylbenzene Isopropylbenzene Methyl tert-butyl ether 4- Methyl-2-pentanone Methylene chloride Tetrachloroethene Toluene	μg/L	73.2 0.12 3.27 1.77 0.19 0.26 7.47 0.89 1.34 1.09 0.27 (<0.5)	D J J J J U U	$ \begin{array}{c} 1.83 \\ 0.5 \\ 2.43 \\ 0.62 \\ 3.42 \\ (<0.5) \\ 0.51 \\ 0.13 \\ (<1) \\ (<5) \\ 0.18 \\ 2.68 \\ 0.13 \\ \end{array} $	U U U J J J J J	$\begin{array}{c} (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!1) \\ (<\!5) \\ (<\!2) \\ (<\!0.5) \\ (<\!0.5) \end{array}$	U U U U U U U U U U U U U U U U U U					$\begin{array}{c} 3 (s) \\ \hline 3 (s) \\ \hline 3 (s) \\ \hline 5 (s) \\ \hline 10 (g) \\ \hline \\ \hline \\ \hline 5 (s) \\ \hline 5 (s) \\ \hline 5 (s) \\ \hline \hline 5 (s) \\ \hline \end{array}$
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethane cis-1,2- Dichloropropane 1,2- Dichloropropane Ethylbenzene Isopropylbenzene Methyl tert-butyl ether 4- Methyl-2-pentanone Methylene chloride Tetrachloroethene Toluene Trichloroethene	μg/L	73.2 0.12 3.27 1.77 0.19 0.26 7.47 0.89 1.34 1.09 0.27 (<0.5)	D J J J J U U	$\begin{array}{c} 1.83 \\ \hline 0.5 \\ \hline 2.43 \\ \hline 0.62 \\ \hline 3.42 \\ \hline (<0.5) \\ \hline 0.51 \\ \hline 0.13 \\ \hline (<1) \\ \hline (<5) \\ \hline 0.18 \\ \hline 2.68 \\ \hline 0.13 \\ \hline 0.37 \\ \end{array}$		$\begin{array}{c} (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!1) \\ (<\!1) \\ (<\!5) \\ (<\!2) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \end{array}$	U U U U U U U U U U U U U U U U U U					$\begin{array}{c} 3 (s) \\ \hline 3 (s) \\ \hline 3 (s) \\ \hline 5 (s) \\ \hline 10 (g) \\ \hline \\ \hline \\ \hline 5 (s) \\ \hline \end{array}$
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethane cis-1,2- Dichloropropane 1,2- Dichloropropane Ethylbenzene Isopropylbenzene Methyl tert-butyl ether 4- Methyl-2-pentanone Methylene chloride Tetrachloroethene Toluene Trichloroethene Xylenes (total)	μg/L	73.2 0.12 3.27 1.77 0.19 0.26 7.47 0.89 1.34 1.09 0.27 (<0.5)	D J J J U U	$\begin{array}{c} 1.83 \\ \hline 0.5 \\ \hline 2.43 \\ \hline 0.62 \\ \hline 3.42 \\ \hline (<0.5) \\ \hline 0.51 \\ \hline 0.13 \\ \hline (<1) \\ \hline (<5) \\ \hline 0.18 \\ \hline 2.68 \\ \hline 0.13 \\ \hline 0.37 \\ \hline 1.46 \end{array}$	U U U U J J J J J	$\begin{array}{c} (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!1) \\ (<\!5) \\ (<\!2) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1) \\ (<\!1)$	U U U U U U U U U U U U U U U U U U					$\begin{array}{c} 3 (s) \\ \hline 3 (s) \\ \hline 3 (s) \\ \hline 5 (s) \\ \hline 10 (g) \\ \hline \\ \hline \\ \hline 5 (s) \\ \hline \end{array}$
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethane cis-1,2- Dichloropropane 1,2- Dichloropropane Ethylbenzene Isopropylbenzene Methyl tert-butyl ether 4- Methyl-2-pentanone Methylene chloride Tetrachloroethene Toluene Trichloroethene Xylenes (total) (a) Duplicate was collected at 8-28-084	µg/L	73.2 0.12 3.27 1.77 0.19 0.26 7.47 0.89 1.34 1.09 0.27 (<0.5)		$\begin{array}{c} 1.83 \\ \hline 0.5 \\ \hline 2.43 \\ \hline 0.62 \\ \hline 3.42 \\ \hline (<0.5) \\ \hline 0.51 \\ \hline 0.13 \\ \hline (<1) \\ \hline (<5) \\ \hline 0.18 \\ \hline 2.68 \\ \hline 0.13 \\ \hline 0.37 \\ \hline 1.46 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!1) \\ (<\!5) \\ (<\!2) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!1) \\ (<\!1) \end{array}$	U U U U U U U U U U U U U U U U U U U					$ \begin{array}{r} 3 (s) \\ 3 (s) \\ 5 (s) \\ 10 (g) \\ \\ 5 (s) \\ $
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethane cis-1,2- Dichloropropane 1,2- Dichloropropane Ethylbenzene Isopropylbenzene Methyl tert-butyl ether 4- Methyl-2-pentanone Methyl-enchloride Tetrachloroethene Toluene Trichloroethene Xylenes (total) (a) Duplicate was collected at 8-28-084 NOTE: USEPA = United States Er	µg/L •MW-01 vironmental Protector	73.2 0.12 3.27 1.77 0.19 0.26 7.47 0.89 1.34 1.09 0.27 (<0.5)	D 1 1 1 1 1	$\begin{array}{c} 1.83 \\ \hline 0.5 \\ \hline 2.43 \\ \hline 0.62 \\ \hline 3.42 \\ \hline (<0.5) \\ \hline 0.51 \\ \hline 0.13 \\ \hline (<1) \\ \hline (<5) \\ \hline 0.18 \\ \hline 2.68 \\ \hline 0.13 \\ \hline 0.37 \\ \hline 1.46 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!1) \\ (<\!5) \\ (<\!2) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!1) \\ (<\!1) \\ (<\!1) \end{array}$	U U U U U U U U U U U U U U U U U U U					$\begin{array}{c} 3 (s) \\ \hline 3 (s) \\ \hline 3 (s) \\ \hline 5 (s) \\ \hline \end{array}$
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethane cis-1,2- Dichloropropane 1,2- Dichloropropane Ethylbenzene Isopropylbenzene Methyl tert-butyl ether 4- Methyl-2-pentanone Methylene chloride Tetrachloroethene Toluene Trichloroethene Xylenes (total) (a) Duplicate was collected at 8-28-084 NOTE: USEPA = United States Er NYSDEC = New State Depa	µg/L	73.2 0.12 3.27 1.77 0.19 0.26 7.47 0.89 1.34 1.09 0.27 (<0.5))N	$\begin{array}{c} 1.83 \\ 0.5 \\ 2.43 \\ 0.62 \\ \hline 3.42 \\ (<\!0.5) \\ 0.51 \\ 0.13 \\ (<\!1) \\ (<\!5) \\ 0.18 \\ 2.68 \\ 0.13 \\ 0.37 \\ 1.46 \\ \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!1) \\ (<\!5) \\ (<\!2) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!1) \end{array}$	U U U U U U U U U U U U U U U U U U U					$\begin{array}{c} 3 (s) \\ \hline 3 (s) \\ \hline 3 (s) \\ \hline 5 (s) \\ \hline \end{array}$
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethane cis-1,2- Dichloropropane Ethylbenzene Isopropylbenzene Methyl tert-butyl ether 4- Methyl-2-pentanone Methylene chloride Tetrachloroethene Toluene Trichloroethene Xylenes (total) (a) Duplicate was collected at 8-28-084 NOTE: USEPA = United States Er NYSDEC = New State Depa µg/L = Micrograms per	µg/L µg/L	73.2 0.12 3.27 1.77 0.19 0.26 7.47 0.89 1.34 1.09 0.27 (<0.5))u	1.83 0.5 2.43 0.62 3.42 (<0.5) 0.51 0.13 (<1) (<5) 0.18 2.68 0.13 0.37 1.46	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(<0.5)	U U U U U U U U U U U U U U U U U U U					$ \begin{array}{r} 3 (s) \\ 3 (s) \\ 3 (s) \\ 5 (s) $
1,3- Dichlorobenzene 1,4- Dichlorobenzene 1,1- Dichloroethane cis-1,2- Dichloropropane Ethylbenzene Isopropylbenzene Methyl tert-butyl ether 4- Methyl-2-pentanone Methylene chloride Tetrachloroethene Toluene Trichloroethene Xylenes (total) (a) Duplicate was collected at 8-28-084 NOTE: USEPA USEPA = United States Er NYSDEC = New State Depa µg/L = Micrograms per U = The analyte was I = Analyte was pos	μg/L ug/L μg/L ug/L μg/L oright ug/L μg/L oright ug/L ug/L ug/L ug/L oright ug/L	73.2 0.12 3.27 1.77 0.19 0.26 7.47 0.89 1.34 1.09 0.27 (<0.5)	D J J J J J U U U D D D D D D D D D D D	1.83 0.5 2.43 0.62 3.42 (<0.5) 0.51 0.13 (<1) (<5) 0.18 2.68 0.13 0.37 1.46 he sample reporti value is the appr	U U U U J J J J J J s	(<0.5)	U U U U U U U U U U U U U U U U U U U	analyte in the sam	ple,			$ \begin{array}{r} 3 (s) \\ 3 (s) \\ 3 (s) \\ 5 (s) \\ 10 (g) \\ \\ 5 (s) \\ $

Analytical data results provided by Life Science Laboratories. Data Validation completed by Environmental Data Validation, Inc. Only analytes that had at least one detection from the data set are shown. Bold values indicate that the analyte was detected above the NYSDEC AWQS. (g) Value is listed as a guidance value. (s) Value is listed as a standard value.

TABLE 4 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER DECEMBER 2010

r										1		
	Sample ID	8-24-084-MW	-01	8-28-084-MW	-08S	8-28-084-MW	-08D	8-24-084-MW	-10	8-24-084-MW-	11	
	L oh ID	V1012255 00	12 4	V 1012255 00	14.4	K1012255 00)5 A	V 1012255 00	2.4	V1012255 004	. A	NVSDEC Ambient
		K1012255-00	JJA	K1012255-00	JHA	K1012255-00	JJA	K1012255-00	2A	K1012255-000	A	Water Quality
Parameter List	Sample Type	Groundwate	er	Groundwate	er	Groundwat	er	Groundwate	r	Groundwater		Standard Class GA
USEPA Method 8260B	Sample Date	12/22/2010)	12/22/2010	0	12/22/2010	0	12/22/2010	-	12/22/2010	_	(µg/L)
1,1-Dichloroethane	μg/L	0.25	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
1,2-Dichlorobenzene	μg/L	0.8		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,3-Dichlorobenzene	μg/L	0.39	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,4-Dichlorobenzene	µg/L	1.92		(<0.5)	0	(<0.5)	U	(<0.5)	0	(<0.5)	U	3 (s)
2-Butanone	µg/L	(<10)	U	(<10)	U	(<10)	U	(<10)	U	(<10)	U	
4-Methyl-2-pentanone	μg/L	(<5)	U	(<5)	U	(<5)	U	(<5)	U	(<5)	U	 50 (-)
Acetone	µg/L	(<10)	0	(<10)	U	(<10)	U	(<10)	U	(<10)	U	50 (g)
Benzene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	1 (s)
Bromodichloromethane	µg/L	(<0.5)	U	(<0.5)	U	0.15	J	0.46	J	(<0.5)	U	50 (g)
Chlorobenzene	µg/L	(<0.3)	U	(<0.3)	U	(<0.3)	U	(<0.3)	U	(<0.3)	U	5 (s)
Chloroferm	μg/L	(<1)	U	(<1)	U	0.10	I	(<1)	0	(<1)	U	7 (s)
Chloroform	μg/L	(<0.3)	1	(<0.3)	U	(<0.5)	J	2.87	II	(<0.3)	U	7 (s)
CIS-1,2-Dichiofoethene	μg/L	(<0.5)	U	(<0.5)	U	1 31	U	(<0.5)	U	(<0.5)	U	50 (s)
Distance	μg/L	(<0.3)	U	(<0.3)	U	(<1)	IJ	(<0.3)	U	(<0.3)	U	5 (s)
Dichlorodifluoromethane	μg/L	(<1)	U	(<1)	U	(<0.5)	U	(<1)	U	(<1)	U	5 (s)
Laopropulhangana	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5(s)
Mathyl tart hutyl athar	μg/L	(<0.5)	U	(<0.3)	U	(<0:3)	U	(<0.5)	U	(<0.5)	U	10 (g)
Methylere shloride	μg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	10 (g)
Tatrachloroothono	μg/L	1.91	0	(<0.5)	U	(<0.5)	U	(<2)	U	(<2)	U	5 (s)
Teluene	μg/L	(<0.5)	П	(<0.5)	U	(<0.5)	U	(<0.5)	U	0.13	I	5 (s)
Trichloroothono	μg/L	0.56		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Xylenes (total)	μg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	5 (s)
	49.2	((1))	ů	((1)	Ű	((1)	Ű	(**)	Ű	((4)	U	0 (5)
	Sample ID	8-24-084-MW	7-12	8-24-084-GP	-09	8-28-084-MW-I	DUP ^(a)	Trip Blank				
	Lab ID	K1012255-00)7A	K1012255-00)1A	K1012255-00)8A	K1012255-00	9A			NYSDEC Ambient
	Sample Tupe	Groundwate	or.	Groundwate	or	04/0C Dupli	ionto	OA/OC Trip P	ank			Water Quality
Parameter List	Sample Type	Gioundwald		Gioundwald	0	QA/QC Dupi		QAQC IIIp B	ank			Standard Class GA
USEPA Method 8260B	Sample Date	12/22/2010)	12/22/2010		12/22/2010	0	12/22/2010	II			(μg/L)
1,1-Dichloroethane	µg/L	(<0.5)	U	2.46	_	0.25	J	(<0.5)	U			5 (s)
1,2-Dichlorobenzene	μg/L	(<0.5)	U	0.17	т	0.71	т	(<0.5)	U			3 (8)
1,3-Dichlorobenzene	μg/L	(<0.3)	U	3.53	J	1.87	J	(<0.3)	U			3 (s)
1,4-Dichlorobenzene	μg/L	(<0.3)	U	1 22	т	(<10)	II	(<0.3)	U			5 (8)
2-Butanone	μg/L	(<10)	U	1.55	J	(<10)	U	(<10)	U			
4-Methyl-2-pentanone	μg/L	(<)	U	0.71	I	(<)	U	(<)	U			50 (g)
Renzene	μg/L	(<10)	U	1 44	3	(<10)	U	(<10)	U			1 (s)
Bromodiabloromothono	μg/L	(<0.5)	U	(<0.5)	II	(<0.5)	U	(<0.5)	U			50 (g)
Chlorobonzono	μg/L	(<0.5)	U	0.75	0	(<0.5)	U	(<0.5)	U			50 (g)
Chloroothana	μg/L	(<1)	U	0.61	T	(<1)	U	(<1)	U			5 (s)
Chloroform	μg/L	(<0.5)	U	0.38	J	(<0.5)	U	0.13	J			7 (s)
cis-1 2-Dichloroethene	μg/L	(<0.5)	U	0.12	J	0.27	J	(<0.5)	U			5 (s)
Dibromochloromethane	µg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	Ū			50 (s)
Dichlorodifluoromethane	ug/L	0.19	J	(<1)	Ū	(<1)	U	(<1)	Ū			5(s)
Ethylbenzene	ug/L	(<0.5)	U	6.7	-	(<0.5)	Ū	(<0.5)	Ū			5(s)
Isopropylbenzene	ug/L	(<0.5)	U	1.4		(<0.5)	U	(<0.5)	U			5(s)
Methyl tert-butyl ether	µg/L	(<1)	U	1.51		(<1)	U	(<1)	U			10 (g)
Methylene chloride	ug/L	(<2)	U	0.39	J	(<2)	U	0.41	J			5 (s)
Tetrachloroethene	µg/L	(<0.5)	U	0.11		1.87		0.5	J			5 (s)
Toluene	μg/L	(<0.5)	U	4.96		(<0.5)	U	(<0.5)	U			5 (s)
Trichloroethene	µg/L	(<0.5)	U	0.81		0.55		(<0.5)	U			5 (s)
Xylenes (total)	μg/L	(<1)	U	24		(<1)	U	(<1)	U			5 (s)
(a) Duplicate was collected at 8-28-08	4-MW-01					•						• • • • •
NOTE: USEPA = United States	Environmental Protecti	on Agency										
NYSDEC = New State De	partment of Environme	ental Conservation										
μg/L = Micrograms p	er Liter	not detected abov	ve the	ample reporting 1	limit							
J = Analyte was po	sitively identified; the	associated numeri	cal val	ue is the approxin	nate co	ncentration of the	analyt	e in the sample.				
QA/QC = Quality Assura	ince/Quality Control											

Analytical data results provided by Life Science Laboratories.

Bold values indicate that he analyte was detected above the NYSDEC AWQS. (g) Value is listed as a guidance value. (s) Value is listed as a standard value.

TABLE 5 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER OCTOBER 2011

	Sample ID	8-24-084-MW-	-01	8-28-084-MW-	08S	8-28-084-MW-	08D	8-24-084-MW-	-10	8-24-084-MW-	11	-
	Lab ID	K1012255-003	3A	K1012255-004	1A	K1012255-005	5A	K1012255-002	2A	K1012255-006	A	NYSDEC Ambient
	Sample Type	Groundwate	r	Groundwate	r	Groundwate	r	Groundwater	r	Groundwater		Water Quality
Parameter List USEPA Method 8260B	Sample Date	10/25/2011		10/25/2011		10/25/2011		10/25/2011		10/25/2011		Standard Class GA (µg/L)
1,1-Dichloroethane	μg/L	0.18		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
1,2-Dichlorobenzene	μg/L	0.56		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,3-Dichlorobenzene	µg/L	0.26		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,4-Dichlorobenzene	μg/L	1.19		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
2-Butanone	µg/L	(<10)	U	(<10)	U	(<10)	U	(<10)	U	(<10)	U	
Acetone	μg/L	8		(<10)	U	(<10)	U	(<10)	U	(<10)	U	50 (g)
Benzene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	1 (s)
Bromodichloromethane	μg/L	(<0.5)	U	(<0.5)	U	0.15	J	0.38		(<0.5)	U	50 (g)
Chlorobenzene	µg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Chloroform	μg/L	(<0.5)	U	(<0.5)	U	0.19	J	1.22		(<0.5)	U	7 (s)
cis-1,2-Dichloroethene	μg/L	0.17		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Dibromochloromethane	μg/L	(<0.5)	U	(<0.5)	U	1.31		(<0.5)	U	(<0.5)	U	50 (s)
Dichlorodifluoromethane	μg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	5 (s)
Ethylbenzene	µg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Isopropylbenzene	µg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5(s)
Methyl tert-butyl ether	μg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	10 (g)
Tetrachloroethene	μg/L	1.54		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Toluene	µg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	0.13	J	5 (s)
Trichloroethene	μg/L	0.43		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Vulanas (total)	a	(1)										
Aylelles (total)	µg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	5 (s)
Xyienes (total)	µg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	5 (s)
Ayienes (totai)	µg/L Sample ID	(<1) 8-24-084-MW-	·12	(<1) 8-24-084-GP-	U 09	(<1) 8-28-084-MW-D	UP ^(a)	(<1) Trip Blank	U	(<1)	U	5 (s)
Aylenes (totai)	μg/L Sample ID Lab ID	(<1) 8-24-084-MW- K1012255-007	-12 7A	(<1) 8-24-084-GP- K1012255-00	U 09 I A	(<1) 8-28-084-MW-D K1012255-008	U UP ^(a) BA	(<1) Trip Blank K1012255-009	U DA	(<1)	U	5 (s)
Ayrenes (total)	μg/L Sample ID Lab ID Sample Type	(<1) 8-24-084-MW- K1012255-007 Groundwate:	-12 7A r	(<1) 8-24-084-GP- K1012255-00 Groundwate	09 IA	(<1) 8-28-084-MW-D K1012255-008 QA/QC Duplic	UP ^(a) BA	(<1) Trip Blank K1012255-009 QA/QC Trip Bl	U DA ank	(<1)	U	5 (s) NYSDEC Ambient Water Quality
Parameter List	μg/L Sample ID Lab ID Sample Type Sample Date	(<1) 8-24-084-MW- K1012255-007 Groundwater 10/25/2011	-12 7A	(<1) 8-24-084-GP- K1012255-00 Groundwate:	09 IA	(<1) 8-28-084-MW-D K1012255-008 QA/QC Duplic	UP ^(a) 3A ate	(<1) Trip Blank K1012255-009 QA/QC Trip Bl	DA ank	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA
Parameter List USEPA Method 8260B	цу/L Sample ID Lab ID Sample Type Sample Date	(<1) 8-24-084-MW- K1012255-007 Groundwater 10/25/2011 (<0.5)	-12 7A r	(<1) 8-24-084-GP- K1012255-00 Groundwate 10/25/2011 2.36	09 1A r	(<1) 8-28-084-MW-D K1012255-008 QA/QC Duplic 10/25/2011 0.18	UP ^(a) BA ate	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5)	DA ank	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (ug/L) 5 (s)
Parameter List USEPA Method 8260B 1,1-Dichloroethane	μg/L Sample ID Lab ID Sample Type Sample Date μg/L μg/L	(<1) 8-24-084-MW- K1012255-007 Groundwate: 10/25/2011 (<0.5) (<0.5)	·12 7A r	(<1) 8-24-084-GP- K1012255-00: Groundwate: 10/25/2011 2.36 67.3	09 IA r	(<1) 8-28-084-MW-D K1012255-009 QA/QC Duplic 10/25/2011 0.18 0.51	UP ^(a) BA ate	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5)	DA ank U	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (ug/L) 5 (s) 3 (s)
Parameter List USEPA Method 8260B 1,1-Dichlorobenzene 1,2-Dichlorobenzene	μg/L Sample ID Lab ID Sample Type Sample Date μg/L μg/L μg/L	(<1) 8-24-084-MW- K1012255-007 Groundwate: 10/25/2011 (<0.5) (<0.5) (<0.5)	-12 7A r U U U	(<1) 8-24-084-GP- K1012255-00: Groundwate: 10/25/2011 2.36 67.3 0.2	U 09 A r J	(<1) 8-28-084-MW-D K1012255-009 QA/QC Duplic 10/25/2011 0.18 0.51 0.26	UP ^(a) BA ate	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5)	DA ank U U U	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (ug/L) 5 (s) 3 (s) 3 (s)
Parameter List USEPA Method 8260B 1,1-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	μg/L Sample ID Lab ID Sample Type Sample Date μg/L μg/L μg/L μg/L	(<1) 8-24-084-MW- K1012255-007 Groundwate: 10/25/2011 (<0.5) (<0.5) (<0.5) (<0.5)	-12 7A r U U U U U	(<1) 8-24-084-GP- K1012255-00: Groundwate: 10/25/2011 2.36 67.3 0.2 3	U 09 A r J	(<1) 8-28-084-MW-D K1012255-008 QA/QC Duplic 10/25/2011 0.18 0.51 0.26 1.18	UP ^(a) BA ate	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5) (<0.5)	DA ank U U U U	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (ug/L) 5 (s) 3 (s) 3 (s) 3 (s)
Parameter List USEPA Method 8260B 1,1-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone	μg/L Sample ID Lab ID Sample Type Sample Date μg/L μg/L μg/L μg/L μg/L	(<1) 8-24-084-MW- K1012255-007 Groundwate: 10/25/2011 (<0.5) (<0.5) (<0.5) (<0.5) (<10)	-12 7A r U U U U U U	(<1) 8-24-084-GP- K1012255-00. Groundwate 10/25/2011 2.36 67.3 0.2 3 1.33	U 09 IA r J J	(<1) <u>8-28-084-MW-D</u> <u>K1012255-003</u> <u>QA/QC Duplic</u> <u>10/25/2011</u> 0.18 0.51 0.26 1.18 (<10)	UP ^(a) 3A ate J J U	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5) (<0.5) (<10)	DA ank U U U U U U	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (ug/L) 5 (s) 3 (s) 3 (s) 3 (s)
Parameter List USEPA Method 8260B 1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone Acetone	μg/L Sample ID Lab ID Sample Type Sample Date μg/L μg/L μg/L μg/L μg/L μg/L	(<1)	-12 7A r U U U U U U U U	(<1) 8-24-084-GP- K1012255-00. Groundwate 10/25/2011 2.36 67.3 0.2 3 1.33 57.7	U 09 IA 7 J J J	(<1) 8-28-084-MW-D K1012255-003 QA/QC Duplic 10/25/2011 0.18 0.51 0.26 1.18 (<10) (<10)	UP ^(a) 3A ate J J U U U	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5) (<0.5) (<10) (<10)	U A ank U U U U U U U	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (ug/L) 5 (s) 3 (s) 3 (s) 50 (g)
Parameter List USEPA Method 8260B 1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone Acetone Benzene	μg/L Sample ID Lab ID Sample Type Sample Date μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	(<1)	-12 7A r U U U U U U U U U U	(<1) 8-24-084-GP- K1012255-00. Groundwate 10/25/2011 2.36 67.3 0.2 3 1.33 57.7 1.13		(<1) <u>8-28-084-MW-D</u> <u>K1012255-003</u> <u>QA/QC Duplic</u> <u>10/25/2011</u> 0.18 0.51 0.26 1.18 (<10) (<10) (<0.5)	UP ^(a) BA ate J J U U U	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5) (<0.5) (<10) (<10) (<10) (<0.5)	DA ank U U U U U U U U U U	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (ug/L) 5 (s) 3 (s) 3 (s) 50 (g) 1 (s)
Parameter List USEPA Method 8260B 1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane	μg/L Sample ID Lab ID Sample Type Sample Date μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	(<1)	U -12 7A r U U U U U U U U U U U U U U	(<1) 8-24-084-GP- K1012255-00. Groundwate 10/25/2011 2.36 67.3 0.2 3 1.33 57.7 1.13 (<0.5)	U 09 A F J J J J U	(<1) <u>8-28-084-MW-D</u> <u>K1012255-003</u> <u>QA/QC Duplic</u> <u>10/25/2011</u> 0.18 0.51 0.26 1.18 (<10) (<10) (<0.5) (<0.5)	UP ^(a) BA ate J J U U U U U	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5) (<10) (<10) (<10) (<0.5) (<0.5) (<0.5)	U DA ank U U U U U U U U U U U U U U U	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (ug/L) 5 (s) 3 (s) 3 (s) 50 (g) 1 (s) 50 (g)
Parameter List USEPA Method 8260B 1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene	μg/L Sample ID Lab ID Sample Type Sample Date μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	(<1)	U -12 7A r U U U U U U U U U U U U U U U	(<1) 8-24-084-GP- K1012255-00: Groundwate 10/25/2011 2.36 67.3 0.2 3 1.33 57.7 1.13 (<0.5) 0.62	U 09 (A () () () () () () () () ()	(<1) <u>8-28-084-MW-D</u> <u>K1012255-003</u> <u>QA/QC Duplic</u> <u>10/25/2011</u> 0.18 0.51 0.26 1.18 (<10) (<10) (<0.5) (<0.5) (<0.5)	UP ^(a) 3A ate J U U U U U U U U	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5) (<10) (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5)	U A ank U U U U U U U U U U U U U	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (µg/L) 5 (s) 3 (s) 3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s)
Parameter List USEPA Method 8260B 1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene Chlorobenzene	μg/L Sample ID Lab ID Sample Type Sample Date μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	(<1)	U -12 7A r U U U U U U U U U U U U U U	(<1) 8-24-084-GP- K1012255-00: Groundwate 10/25/2011 2.36 67.3 0.2 3 1.33 57.7 1.13 (<0.5) 0.62 0.32	U 09 IA 7 J J J U U U	(<1) 8-28-084-MW-D K1012255-003 QA/QC Duplic 10/25/2011 0.18 0.51 0.26 1.18 (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5)	UUP ^(a) BA ate J UU U U U U U U U	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5) (<10) (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5)	U DA ank U U U U U U U U U U U U U	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (µg/L) 5 (s) 3 (s) 3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s)
Parameter List USEPA Method 8260B 1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene Chloroform cisul 2-Dichloroethene	μg/L Sample ID Lab ID Sample Type Sample Date μg/L	(<1)	U -12 7A r U U U U U U U U U U U U U U U U U U	(<1) 8-24-084-GP- K1012255-00: Groundwate 10/25/2011 2.36 67.3 0.2 3 1.33 57.7 1.13 (<0.5) 0.62 0.32 (<0.5)	U 09 IA r J J J J J J J J J U U U U	(<1) 8-28-084-MW-D K1012255-003 QA/QC Duplic 10/25/2011 0.18 0.51 0.26 1.18 (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) 0.16	UP ^(a) BA ate J J U U U U U U U U U U U U J	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5) (<10) (<10) (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5)	U A ank U U U U U U U U U U U U U	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (µg/L) 5 (s) 3 (s) 3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s)
Parameter List USEPA Method 8260B 1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene	μg/L Sample ID Lab ID Sample Type Sample Date μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	(<1)	12 7A r U U U U U U U U U U U U U U U U U U	(<1) 8-24-084-GP- K1012255-00: Groundwate 10/25/2011 2.36 67.3 0.2 3 1.33 57.7 1.13 (<0.5) 0.62 0.32 (<0.5) 5.09	U 09 A 7 J J J U U U U U U U U	(<1) 8-28-084-MW-D K1012255-003 QA/QC Duplic 10/25/2011 0.18 0.51 0.26 1.18 (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) 0.16 (<0.5)	UP ^(a) 3A ate J J U U U U U U U U U U U U U	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5) (<0.5) (<10) (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5)	U PA ank U U U U U U U U U U U U U	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (µg/L) 5 (s) 3 (s) 3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s) 5 (s)
Parameter List USEPA Method 8260B 1,1-Dichloroethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene Chlorobenzene Chlorootorm cis-1,2-Dichloroethene Ethylbenzene Isopropylbenzene	<u>µg/L</u> <u>Sample ID</u> <u>Sample Type</u> <u>Sample Date</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u>	(<1)	12 7A r U U U U U U U U U U U U U U U U U U	(<1) 8-24-084-GP- K1012255-00: Groundwate: 10/25/2011 2.36 67.3 0.2 3 1.33 57.7 1.13 (<0.5) 0.62 0.32 (<0.5) 5.09 1.17	U 09 A F J J J U U U U U	(<1) 8-28-084-MW-D K1012255-003 QA/QC Duplic 10/25/2011 0.18 0.51 0.26 1.18 (<10) (<10) (<10) (<0.5) (<0.5) (<0.5) 0.16 (<0.5) (<0.5)	UP ^(a) BA ate J J U U U U U U U U U U U U U	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5) (<0.5) (<10) (<10) (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5)	U DA ank U U U U U U U U U U U U U	(<1)		5 (s) NYSDEC Ambient Water Quality Standard Class GA (µg/L) 5 (s) 3 (s) 3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s) 5 (s) 5 (s) 5 (s)
Parameter List USEPA Method 8260B 1,1-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Methyl tert_butyl ather	<u>µg/L</u> <u>Sample ID</u> <u>Lab ID</u> <u>Sample Type</u> <u>Sample Date</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u>	(<1)	U 12 7A T U U U U U U U U U U U U U	(<1) 8-24-084-GP- K1012255-00: Groundwate: 10/25/2011 2.36 67.3 0.2 3 1.33 57.7 1.13 (<0.5) 0.62 0.32 (<0.5) 5.09 1.17 1.16	U 09 1A 1 1 1 1 1 1 1 1 1 1 1 1 1	(<1) 8-28-084-MW-D K1012255-003 QA/QC Duplic 10/25/2011 0.18 0.51 0.26 1.18 (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<1) (<1)	UP ^(a) BA ate J J U U U U U U U U U U U U U	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5) (<0.5) (<10) (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5)	U DA ank U U U U U U U U U U U U U U U U U U U	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (µg/L) 5 (s) 3 (s) 3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s) 5 (s) 5 (s) 10 (g)
Parameter List USEPA Method 8260B 1,1-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene Chlorobenzene Ethylbenzene Isopropylbenzene Methyl tert-butyl ether Tetrachloroethene	μg/L Sample ID Lab ID Sample Type g/L μg/L	(<1)	U 12 7A T U U U U U U U U U U U U U	(<1) 8-24-084-GP- K1012255-00. Groundwate: 10/25/2011 2.36 67.3 0.2 3 1.33 57.7 1.13 (<0.5) 0.62 0.32 (<0.5) 5.09 1.17 1.16 (<0.5)	U 09 1A 7 1 1 1 1 1 1 1 1 1 1 1 1 1	(<1) 8-28-084-MW-D K1012255-003 QA/QC Duplic 10/25/2011 0.18 0.51 0.26 1.18 (<10) (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<1) (<1) (<1) (<1,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<2,0) (<	UP ^(a) 3A ate J U U U U U U U U U U U U U	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5) (<10) (<10) (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5)	U DA ank U U U U U U U U U U U U U U U U U U U	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (µg/L) 5 (s) 3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s)
Parameter List USEPA Method 8260B 1,1-Dichloroothane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Isopropylbenzene Methyl tert-butyl ether Tetrachloroethene Tolyene	<u>µg/L</u> <u>Sample ID</u> <u>Lab ID</u> <u>Sample Type</u> <u>g/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L}</u> <u>µg/L</u> <u>µg/L</u>	(<1)	U 12 7A r U	(<1) 8-24-084-GP- K1012255-00. Groundwate 10/25/2011 2.36 67.3 0.2 3 1.33 57.7 1.13 (<0.5) 0.62 0.32 (<0.5) 5.09 1.17 1.16 (<0.5) 0.2	U 09 1A 7 1 1 1 1 1 1 1 1 1 1 1 1 1	(<1) 8-28-084-MW-D K1012255-003 QA/QC Duplic 10/25/2011 0.18 0.51 0.26 1.18 (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<1) (<1) (<1) (<1,5) (<0.5) (<0.5) (<1) (<1,5) (<0.5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (<1,5) (),	UP ^(a) 3A ate J U U U U U U U U U U U U U	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5) (<0.5) (<10) (<10) (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5)	U A A A A A A A A A A A A A	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (ug/L) 5 (s) 3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 5 (s)
Parameter List USEPA Method 8260B 1,1-Dichloroothane 1,2-Dichloroothane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene Chlorobenzene Chlorobenzene Ethylbenzene Isopropylbenzene Isopropylbenzene Methyl tert-butyl ether Tetrachloroethene Toluene Trichloroethene	<u>µg/L</u> <u>Sample ID</u> <u>Lab ID</u> <u>Sample Type</u> <u>gg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u>	(<1)	U 7A 7 U U U U U U U U U U U U U U U U U	(<1) 8-24-084-GP- K1012255-00. Groundwate 10/25/2011 2.36 67.3 0.2 3 1.33 57.7 1.13 (<0.5) 0.62 0.32 (<0.5) 5.09 1.17 1.16 (<0.5) 0.2 0.67	U 09 1A 7 1 1 1 1 1 1 1 1 1 1 1 1 1	(<1) 8-28-084-MW-D K1012255-003 QA/QC Duplic 10/25/2011 0.18 0.51 0.26 1.18 (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<1) 1.42 (<0.5) (<1) 1.42 (<0.5) 0.43	UP ^(a) 3A ate J J J U U U U U U U U U U U U U	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5) (<0.5) (<10) (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5)	U A A A A A A A A A A A A A	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (ug/L) 5 (s) 3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s)
Parameter List <u>USEPA Method 8260B</u> 1,1-Dichloroothane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene Chlorobenzene Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Isopropylbenzene Methyl tert-butyl ether Tetrachloroethene Toluene Xvlenes (total)	<u>µg/L</u> <u>Sample ID</u> <u>Lab ID</u> <u>Sample Type</u> <u>g/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L</u> <u>µg/L}</u> <u>µg/L</u>	(<1)	U 12 7A T U U U U U U U U U U U U U	(<1) 8-24-084-GP- K1012255-00. Groundwate: 10/25/2011 2.36 67.3 0.2 3 1.33 57.7 1.13 (<0.5) 0.62 0.32 (<0.5) 5.09 1.17 1.16 (<0.5) 0.2 0.2 1.16 (<0.5) 1.17 1.16 (<0.5) 0.2 0.2 1.17 1.16 (<0.5) 0.2 0.2 1.17 1.16 (<0.5) 0.2 0.2 0.67 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (<1) 14.6 (1) 14.6 (1) 14.6 (1) 14.6 (1) 14.6 (1) 14.6 (1)	U U U U U U U U U U U U U U U U U U U	(<1) 8-28-084-MW-D K1012255-003 QA/QC Duplic 10/25/2011 0.18 0.51 0.26 1.18 (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<1) 1.42 (<0.5) 0.43 (<1)	UP ^(a) 3A ate J J J U U U U U U U U U U U U U U U U	(<1) Trip Blank K1012255-009 QA/QC Trip Bl 10/25/2011 (<0.5) (<0.5) (<0.5) (<0.5) (<10) (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5) (<0.5)	U A A A A A A A A A A A A A	(<1)	U	5 (s) NYSDEC Ambient Water Quality Standard Class GA (ug/L) 5 (s) 3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s)

(a) Duplicate was collected at 8-28-084-MW-01

NOTE: USEPA = United States Environmental Protection Agency NYSDEC = New State Department of Environmental Conservation

μg/L U = Micrograms per Liter

= The analyte was analyzed for, but was not detected above the sample reporting limit.

Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
 QA/QC = Quality Assurance/Quality Control

Analytical data results provided by Life Science Laboratories.

Bold values indicate that the analyte was detected above the NYSDEC AWQS. (g) Value is listed as a guidance value. (s) Value is listed as a standard value.

Appendix A

Daily Field Report

DAILY OBSERVATION	REPORT		Day	: <u>TUESC</u>	<u>AY</u>	Date: <u>1</u>	0/25/201 1
E A®	NYSDEC		Temperature: (F)	50	(am)	60	(pm)
			Wind Direction:	SE	(am)	SE	(pm)
Project Name			Weather:	(am) cole	d, sunny		
NYSDEC Site # 8-28-08	4			(pm) coc	ol, sunny		
Contract # D-004441.05			Arrive at site	830	(am)		
East Rochester, New York			Leave site:	330	(pm)		
HEALTH & SAFETY:							
Are there any changes to the (If yes, list the deviation under	Health & Safety r items for conce	Plan? ern)	Yes ()	No (x)			
Are monitoring results at acce	ptable levels?	Soil Waters Air	Yes() Yes() Yes()	n/a (x) n/a (x) n/a (x)	* No * No * No) ()) ()) ()	
OTHER ITEMS:			•	If No, prov	ide comm	ents	
Site Sketch Attached: Photos Taken:	Yes() Yes()	No(x) No(x)					

DESCRIPTION OF DAILY WORK PERFORMED:

EA Onsite at 830 am, gauged entire well network.

All wells sampled with peristaltic pump using low flow techniques, allowing parameters to stabilize prior to collecting samples.

Duplicate sample collected at MW-01, MS/MSD at MW-08D

EA offsite at 330 pm

PROJECT TOTALS:

SAMPLING (Soil/Water/Air) NA

Contractor Sample ID:

DEC Sample ID:

Description:

Groundwater samples for VOCs by 8260 B. MS/MSD at MW-08D, Duplicate at MW-01.

MW-01, MW-08S, MW-08D, MW-10, MW-11, MW-12, GP-09

DAILY OBSERVATION REPORT

Day: <u>TUESDAY</u> Date: <u>10/25/2011</u>

CONTRACTOR/SUBCONTRACTOR EQUIPMENT AND PERSONNEL ON SITE:

(Name of contractor) personnel: Sean Blakeney, Sarah Nelson

(Name of Subcontractor) personnel:

(Name of contractor) equipment: Peristaltic Pump (Geopump II), water level indicator, Horiba U-52

(*Indicates active equipment)

Other Subcontractors:

VISITORS TO SITE:

1. NA

PROJECT SCHEDULE ISSUES:

NA

PROJECT BUDGET ISSUES: None.

ITEMS OF CONCERN: None

COMMENTS:

None

ATTACHMENT(S) TO THIS REPORT:

SITE REPRESENTATIVE:

Name: Sean Blakeney Sarah Nelson

CC:

Photolog

Appendix B

Groundwater Sampling Forms

EA Engineering PC and its Affliate, EA Science and Technology

GROUNDWATER SAMPLING PURGE FORM

Well I.D.:	EA Personnel:	Client:					
MW-01	S. Blakeney / S. Nelson	NYSDEC					
Location:	Well Condition:	Weather:					
Rochester Autohaus	Good	65 F, sunny					
Sounding Method:	Gauge Date:	Measurement Ref:					
WLI	25-Oct-11	Top of Casing					
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):					
Down 6in.	1420	2 in.					

Purge Date:	Purge Time:
25-Oct-11	1422 - 1502
Purge Method:	Field Technician:
Peristaltic Pump - low flow purge/sample	S. Blakeney / S. Nelson

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
23.85	0.16	Down 6 in.			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
9.19	2.3456	Geopump and dedicated tubing			
C. Liquid Depth (ft) (A-B):	F. Five Well Volumes (gal) (E3):	Pump Designation:			
14.66	7.0368	peristaltic pump			

Water Quality Parameters									
Time	DTW	Volume	Rate	рН	ORP	Femperature	Conductivity	DO	Turbidity
(hrs)	(ft btoc)	(liters)	(Gpm)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)
1426	10.90	1	0.25	7.28	-105	16.33	0.518	0.23	8.1
1430	10.96	2	0.25	7.20	-114	15.93	0.524	0.15	6.3
1434	11.04	3	0.25	7.16	-118	15.66	0.529	0.11	8.7
1438	11.16	4	0.25	7.14	-121	15.48	0.532	0.10	6.6
1442	11.24	5	0.25	7.12	-123	15.36	0.531	0.10	5.8
1446	11.26	6	0.25	7.11	-123	15.26	0.525	0.49	6.0
1450	11.29	7	0.25	7.10	-120	15.20	0.518	2.25	5.9
1454	11.29	8	0.25	7.09	-117	15.12	0.516	2.16	5.2
1458	11.29	9	0.25	7.08	-116	15.11	0.516	2.16	5.3
1502	11.29	10	0.25	7.08	-116	15.10	0.516	2.12	5.5

Total Quantity of Water Removed (Liters):		
Samplers:	SB/SN	
Sampling Date:	25-Oct-11	

1505
DUP
GW

COMMENTS AND OBSERVATIONS:

GROUNDWATER SAMPLING PURGE FORM

Well I.D.:	EA Personnel:	Client:	
MW-8S	S. Blakeney / S. Nelson	NYSDEC	
Location:	Well Condition:	Weather:	
Rochester Autohaus	good	cold, 45 F, sunny	
Sounding Method:	Gauge Date:	Measurement Ref:	
WLI	25-Oct-11	Top of Casing	
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):	
up 1ft	843	2 in.	

Purge Date:	Purge Time:
25-Oct-11	0909 - 0937
Purge Method:	Field Technician:
Peristaltic Pump - low flow purge/sample	S. Blakeney / S. Nelson

Well Volume					
A. Well Depth (ft): D. Well Volume (ft):		Depth/Height of Top of PVC:			
24.22	0.16	up 1ft			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
11.3	2.0672	Geopump and dedicated tubing			
C. Liquid Depth (ft) (A-B):	F. Five Well Volumes (gal) (E3):	Pump Designation:			
12.92	6.2016	peristaltic pump			

	Water Quality Parameters								
Time	DTW	Volume	Rate	рН	ORP	Temperature	Conductivity	DO	Turbidity
(hrs)	(ft btoc)	(liters)	(Gpm)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)
913	11.69	1	0.25	9.30	4	16.04	0.503	7.09	71.9
917	11.69	2	0.25	8.28	86	15.67	0.487	6.62	39.2
921	11.68	3	0.25	8.05	108	15.68	0.486	6.70	49.3
925	11.69	4	0.25	7.77	122	16.45	0.481	6.71	34.8
929	11.68	5	0.25	7.68	125	16.59	0.481	6.52	43.0
933	12.03	6	0.25	7.64	130	16.54	0.479	6.38	43.1
937	12.01	7	0.25	7.58	134	16.51	0.479	6.39	35.4

Total Quantity of Water Removed (liters):		7	Sampling Time:	939	
Samplers:	SB/SN		Split Sample With:	-	
Sampling Date:	25-Oct-11		Sample Type:	GW	
COMMENTS AND OBSER	VATIONS:				

GROUNDWATER SAMPLING PURGE FORM

Well I.D.:	EA Personnel:	Client:	
MW-8D	S. Blakeney / S. Nelson	NYSDEC	
Location:	Well Condition:	Weather:	
Rochester Autohaus	good	sunny, 50 F	
Sounding Method:	Gauge Date:	Measurement Ref:	
WLI	25-Oct-11	Top of Casing	
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):	
up 2ft	942	2 in.	

Purge Date:	Purge Time:
25-Oct-11	944 - 1005
Purge Method:	Field Technician:
Peristaltic Pump - low flow purge/sample	S. Blakeney / S. Nelson

Well Volume					
A. Well Depth (ft): D. Well Volume (ft):		Depth/Height of Top of PVC:			
71.95	0.16	up 2ft			
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:			
14.94	9.1216	Geopump and dedicated tubing			
C. Liquid Depth (ft) (A-B):	F. Five Well Volumes (gal) (E3):	Pump Designation:			
57.01	27.3648	peristaltic pump			

	Water Quality Parameters								
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (Gpm)	pH (pH units)	ORP (mV)	Temperature (oC)	Conductivity (uS/cm)	DO (ug/L)	Turbidity (ntu)
945	15.04	1	0.25	8.83	101	15.24	0.329	6.55	52.7
949	15.04	2	0.25	10.02	76	14.71	0.341	6.00	28.6
953	15.04	3	0.25	10.52	70	14.61	0.344	5.91	21.4
957	15.04	4	0.25	10.39	64	14.41	0.346	5.86	16.1
1001	15.04	5	0.25	10.48	60	14.31	0.347	5.87	16.8
1005	15.05	6	0.25	10.53	56	14.30	0.348	5.73	12.4

Total Quantity of Water Re	moved (liters):	6	Sampling Time:	1007
Samplers:	SB/SN		Split Sample With:	MS/MSD
Sampling Date: 25-Oct-11			Sample Type:	GW

COMMENTS AND OBSERVATIONS:

GROUNDWATER SAMPLING PURGE FORM

Well I.D.:	EA Personnel:	Client:	
MW-10	S. Blakeney / S. Nelson	NYSDEC	
Location:	Well Condition:	Weather:	
Rochester Autohaus	good	partly sunny, 60 F	
Sounding Method:	Gauge Date:	Measurement Ref:	
WLI	25-Oct-11	Top of Casing	
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):	
down 6 in.	1336	2 in.	

Purge Date:	Purge Time:
25-Oct-11	1342 - 1414
Purge Method:	Field Technician:
Peristaltic Pump - low flow purge/sample	S. Blakeney / S. Nelson

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:				
18.31	0.16	Down 6 in.				
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:				
8.67	1.5424	Geopump and dedicated tubing				
C. Liquid Depth (ft) (A-B):	F. Five Well Volumes (gal) (E3):	Pump Designation:				
9.64	4.6272	perstaltic pump				

	Water Quality Parameters								
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (Gpm)	pH (pH units)	ORP (mV)	Temperature (oC)	Conductivity (uS/cm)	DO (ug/L)	Turbidity (ntu)
1346	9.05	1	0.25	7.57	86	16.34	0.609	9.98	5.7
1350	9.10	2	0.25	7.53	95	16.51	0.609	9.90	1.8
1354	9.15	3	0.25	7.50	104	16.62	0.608	9.79	0
1358	9.20	4	0.25	7.49	109	16.70	0.606	9.71	0
1402	9.20	5	0.25	7.47	113	16.76	0.617	9.62	0
1406	9.25	6	0.25	7.46	115	16.87	0.620	9.60	0
1410	9.30	7	0.25	7.45	120	13.90	0.624	9.57	0
1414	9.30	8	0.25	7.45	122	16.91	0.628	9.54	0

Total Quantity of Water Re	emoved (liters):	8	Sampling Time:	1415
Samplers:	SB/SN		Split Sample With:	-
Sampling Date:	25-Oct-11		Sample Type:	GW

COMMENTS AND OBSERVATIONS:

well head was full of water that covered the well plug, had to remove water

before collecting the sample

GROUNDWATER SAMPLING PURGE FORM

Well I.D.:	EA Personnel:	Client:	
MW-11	S. Blakeney / S. Nelson	NYSDEC	
Location:	Well Condition:	Weather:	
Rochester Autohaus	good	sunny, 50 F	
Sounding Method:	Gauge Date:	Measurement Ref:	
WLI	25-Oct-11	Top of Casing	
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):	
Down 6 in.	1028	1 in.	

Purge Date:	Purge Time:
25-Oct-11	1033 - 1059
Purge Method:	Field Technician:
Peristaltic Pump - low flow purge/sample	S. Blakeney / S. Nelson

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:				
28.75	0.04	down 1 in.				
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:				
10.29	0.7384	Geopump and dedicated tubing				
C. Liquid Depth (ft) (A-B):	F. Five Well Volumes (gal) (E3):	Pump Designation:				
18.46	2.2152	peristaltic pump				

Water Quality Parameters									
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (Gpm)	pH (pH units)	ORP (mV)	Temperature (oC)	Conductivity (uS/cm)	DO (ug/L)	Turbidity (ntu)
1035		1	0.25	9.06	110	14.97	0.415	230	140
1039		2	0.25	8.98	79	14.99	0.469	9.34	46.0
1043		3	0.25	8.33	48	14.89	0.469	9.25	39.1
1047		4	0.25	8.06	34	14.83	0.477	8.56	33.4
1051		5	0.25	7.96	32	14.85	0.477	8.18	31.9
1055		6	0.25	7.91	32	14.84	0.477	7.91	29.0
1059		7	0.25	7.83	32	14.81	0.477	7.87	27.8

Total Quantity of Water Removed (liters):		7	Sampling Time:	1100
Samplers:	SB/SN		Split Sample With:	-
Sampling Date:	25-Oct-11		Sample Type:	GW

COMMENTS AND OBSERVATIONS:

1 in well to narrow to fit the interface probe and tubing down the well together

GROUNDWATER SAMPLING PURGE FORM

Well I.D.:	EA Personnel:	Client:	
MW-12	S. Blakeney / S. Nelson	NYSDEC	
Location:	Well Condition:	Weather:	
Rochester Autohaus	good	sunny, 50 F	
Sounding Method:	Gauge Date:	Measurement Ref:	
WLI	25-Oct-11	Top of Casing	
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):	
Down 6 in	1105	1 in	

Purge Date:	Purge Time:
25-Oct-11	1113 - 1139
Purge Method:	Field Technician:
Peristaltic Pump - low flow purge/sample	S. Blakeney / S. Nelson

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:				
29.05	0.04	down 1 in.				
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:				
11.2	0.714	Geopump and dedicated tubing				
C. Liquid Depth (ft) (A-B):	F. Five Well Volumes (gal) (E3):	Pump Designation:				
17.85	2.142	peristaltic pump				

Water Quality Parameters									
Time	Time DTW Volume Rate pH ORP Temperature Conductivity DO Turbidity								
(hrs)	(ft btoc)	(liters)	(Gpm)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)
1115		1	0.25	7.78	-29	15.40	0.530	2.95	49.5
1119		2	0.25	7.71	-70	15.31	0.551	3.10	38.3
1123		3	0.25	7.67	-76	15.31	0.564	2.85	32.4
1127		4	0.25	7.65	-79	15.30	0.565	2.75	30.5
1131		5	0.25	7.63	-83	15.30	0.562	2.61	28.7
1135		6	0.25	7.62	-84	15.28	0.561	2.42	25.3
1139		7	0.25	7.62	-86	15.30	0.562	2.31	25.4

Total Quantity of Water Re	emoved (liters):	7	Sampling Time:	1145
Samplers:	SB/SN		Split Sample With:	-
Sampling Date:	25-Oct-11		Sample Type:	GW

COMMENTS AND OBSERVATIONS:

1 in well to narrow to fit the interface probe and tubing down the well together

GROUNDWATER SAMPLING PURGE FORM

Well I.D.:	EA Personnel:	Client:
GP-09	S. Blakeney / S. Nelson	NYSDEC
Location:	Well Condition:	Weather:
Rochester Autohaus	good	sunny, 60 F
Sounding Method:	Gauge Date:	Measurement Ref:
WLI	25-Oct-11	Top of Casing
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
Down 1 in.	1238	1 in.

Purge Date:	Purge Time:
25-Oct-11	1245 - 1320
Purge Method:	Field Technician:
Peristaltic Pump - low flow purge/sample	S. Blakeney / S. Nelson

	Well Volume	
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:
29.31	0.04	down 1 in.
B. Depth to Water (ft):	E. Well Volume (gal) C*D):	Pump Type:
11.71	0.704	Geopump and dedicated tubing
C. Liquid Depth (ft) (A-B):	F. Five Well Volumes (gal) (E3):	Pump Designation:
17.6	2.112	

			۷	Vater Qual	ity Param	eters			
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (Gpm)	pH (pH units)	ORP (mV)	Temperature (oC)	Conductivity (uS/cm)	DO (ug/L)	Turbidity (ntu)
1249		1	0.25	7.41	113	15.1	0.570	7.75	66.0
1253		2	0.25	7.27	44	15.14	0.660	7.40	48.1
1257		3	0.25	7.27	-16	14.91	0.773	6.89	38.5
1301		4	0.25	7.27	-27	14.84	0.800	6.68	38.3
1305		5	0.25	7.28	-37	14.80	0.854	6.31	35.0
1309		6	0.25	7.28	-43	14.77	0.880	6.03	35.4
1313		7	0.25	7.29	-51	14.69	0.906	5.57	33.6
1316		8	0.25	7.27	-55	14.57	0.912	5.21	32.2
1320		9	0.25	7.28	-59	14.46	0.915	4.97	28.7

Total Quantity of Water Re	emoved (liters):	9	Sampling Time:	1325
Samplers:	SB/SN		Split Sample With:	-
Sampling Date:	25-Oct-11		Sample Type:	GW

COMMENTS AND OBSERVATIONS:

1 in well to narrow to fit the interface probe and tubing down the well together

Appendix C

Analytical Form Is

Christopher Schroer EA Engineering, Science and Technology 6712 Brooklawn Parkway Suite 104 Syracuse, NY 13211 Phone: (315) 431-4610 FAX: (315) 431-4280 Authorization: Project 1447405

Laboratory Analysis Report For

EA Engineering, Science and Technology

Client Project ID:

Autohaus Site

LSL Project ID: 1109400

Receive Date/Time: 06/29/11 11:08

Project Received by: RD

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1105 Fax (315) 445-1301 NYS DOH ELAP #10248 PA DEP #68-2556 LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667 LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906 NYS DOH ELAP #10760 LSL MidLakes Lab 699 South Main Street Canandaigua, NY 14424 Tel. (585) 396-0270 Fax (585) 396-0377 NYS DOH ELAP #11369

This report was reviewed by:

Date: 17/26

								0.0.1
Sam	ple ID:	Autohaus 828084-W	aste			LSL Sample ID:	1109400-0	001
Loca	ition:	06/00/11 0.45	Sompled But					
Sam	pied:	00/28/11 8:43	Sampled by:					
Sam	ple Matrix:	SHW as Reco				Duon		Analyst
Anal	lytical Metho Analyte	od		Result	Units	Date	Date & Time	<u>Initials</u>
<i>(1)</i> E	EPA 1311 TC	CLP Extraction		•			7/6/11	
	TCLP Non	-Volatile Extraction					//5/11	
(1) E	EPA 1311 TC TCLP Zero	CLP Z.H. Extraction o Headspace Extraction					6/29/11	JK
<i>(1)</i> E	EPA 335.4 To	otal Cyanide						
	Cyanide, T	otal		<1	mg/kg	7/5/11	7/5/11	nc
<i>(1)</i> E	EPA 8151A T	CLP Herbicides						65 T
	2,4-D			< 0.01	mg/l	7/12/11	7/19/11	CRT
	2,4,5-TP (S	Silvex)		<0.01	mg/l	7/12/11	7/19/11	CRT
	Surrogate	(DCAA)		12	70K	//12/11	11 1 7/ 1 1	en
<i>(1)</i> E	EPA 8260 TC	CLP Volatiles					(2011)	MOV
	Benzene			<0.05	mg/l		6/30/11	MSV
	Carbon tet	trachloride		< 0.05	mg/I		6/30/11	MSV
	Chlorofor	zene		<0.03	mg/l		6/30/11	MSV
	1 4-Dichlor	rohenzene		< 0.05	mg/l		6/30/11	MSV
	1,4-Dichlor	roethane		<0.05	mg/l		6/30/11	MSV
	1,1-Dichlor	roethene		< 0.05	mg/l		6/30/11	MSV
	2-Butanon	e (MEK)		<0.1	mg/l		6/30/11	MSV
	Tetrachlor	oethene		< 0.05	mg/l		6/30/11	MSV
	Trichloroe	thene		<0.05	mg/l		6/30/11	MSV
	Vinyl chlo	ride		< 0.02	mg/l		6/30/11	MSV
	Surrogate	(1,2-DCA-d4)		123	%K		6/30/11	MSV
	Surrogate	(Tol-d8)		97	%R 9/D		6/30/11	MSV
	Surrogate	(4-BFB)		90	70K		0/50/11	1110 1
(I) E	EPA 8270 TC	CLP Pesticides				- 14 / 4	5 /00/11	CDT
	gamma-Bl	HC (Lindane)		< 0.01	mg/l	7/6/11	7/22/11	
	Chlordane	e, Total		<0.02	mg/l	7/6/11	7/22/11	CRT
	Endrin			<0.01	mg/l	7/6/11	7/22/11	CRT
	Heptachio	r r anovide		<0.005	mg/l	7/6/11	7/22/11	CRT
	Methoxyc	hlor		< 0.05	mg/l	7/6/11	7/22/11	CRŤ
	Toxaphen	e		< 0.05	mg/1	7/6/11	7/22/11	CRT
<i>(1</i>) 1	ΕDA 8270 ΤΟ	□ P Semi-Volatiles						
(4) 1	Creed To	stal		< 0.01	mg/l	7/6/11	7/22/11	CRT
	2 4.Dinitra	otoluene		< 0.01	mg/l	7/6/11	7/22/11	CRT
	Hexachlor	obenzene		<0.01	mg/l	7/6/11	7/22/11	CRT
	Hexachlor	robutadiene		<0.01	mg/l	7/6/11	7/22/11	CRT
	Hexachlor	roethane		< 0.01	mg/l	7/6/11	7/22/11	CRT
	Nitrobenz	ene		< 0.01	mg/l	7/6/11	7/22/11	CRT
	Pentachlo	rophenol		< 0.02	mg/l	7/6/11	7/22/11	CRT
	Pyridine			< 0.02	mg/l	7/6/11	7/22/11	CRT
	2,4,5-Tric	hlorophenol		< 0.01	mg/l	7/6/11	7/22/11	
	2,4,6-Tric	hlorophenol		<0.01 2 c	mg/i %p	7/0/11	7/22/11	CRT
	Surrogate	(2-Fluorophenol)		00	/01	norri		5.11

Date Printed: 7/26/11

Analysis performed at: (1) LSL Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

Life Science Labora 5854 Butternut Drive	tories,	Inc.			Anal	ytical Results
East Syracuse, NY 13057	(315)) 445-1105		!	StateCert	t No: 10248
CLIENT: Life Science Labs-LIMS Project: 1109400-EAEng			La C	ab ID: lient Sample ID	K1106 : Autoha	5354-001A Hus 828084 - Waste
W Order: K1106354 Matrix: SOIL			C D	ollection Date: ate Received:	06/28/1 06/29/1	1 8:45 1 11:08
Analyte	Result	Qual	PQL	Units	DF	Date Analyzed
TCLP MERCURY Mercury	ND		SW131 0.00040	1/7470A mg/L	(SW	/7470A) 07/07/11 12:12
TCLP METALS BY ICP			SW601	0B	(SW	/3010A)
Aluminum	ND		0.50	mg/L	1	07/08/11 14:21
Antimony	ND		0.30	mg/L	1	07/08/11 14:21
Arsenic	ND		0.50	mg/L	1	07/08/11 14:21
Barium	ND		0.50	mg/L	1	07/08/11 14:21
Beryllium	ND		0.050	mg/L	1	07/08/11 14:21
Cadmium	ND		0.10	mg/L	1	07/08/11 14:21
Calcium	770		5.0	mg/L	1	07/08/11 14:21
Chromium	ND		0.50	mg/L	1	07/08/11 14:21
Cobalt	ND		0.25	mg/L	1	07/08/11 14:21
Copper	ND		0.050	mg/L	1	07/08/11 14:21
Iron	ND		0.25	mg/L	1	07/08/11 14:21
Lead	ND		0.50	mg/L	1	07/08/11 14:21
Magnesium	17		5.0	mg/L	1	07/08/11 14:21
Manganese	4.8		0.25	mg/L	1	07/08/11 14:21
Nickel	ND		0.25	mg/L	1	07/08/11 14:21
Potassium	ND		25	mg/L	1	07/08/11 14:21
Selenium	ND		0.10	mg/L	1	07/08/11 14:21
Silver	ND		0.50	mg/L	1	07/08/11 14:21
Sodium	1400		5.0	mg/L	1	07/08/11 14:21
I nailium	ND		0.10	mg/L	1	07/08/11 14:21
Vanadium	ND		0.25	mg/L	1	07/08/11 14:21
Zinc	ND		0.50	mg/L	1	07/08/11 14:21

Qualifiers:

.

.

* Value exceeds Maximum Contaminant Level

- E Value exceeds the instrument calibration range
- J Analyte detected below the PQL
- P Prim./Conf. column %D or RPD exceeds limit
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Practical Quantitation Limit (PQL)

S Spike Recovery outside accepted recovery limits

Life Scie.	nce Lal	boratories, In	nc.			A	NALYTI	ICAL QC SU	MMARY RI	EPORT
5854 Butternut East Syracuse,	Drive NY 13057	(315) 445-1105				Z Z	lethod: /ork Order:	SW6010B K1106354		
CLIENT: Lii	fe Science Lai	ps-LIMS				Pı	roject:	1109400-EAEng	50	
Sanglu u Turu Ctort :D: ZZZZ Instrument		Scient Jpul TBLK Batch ID: 13497 ColumnID:	TestCo	SW6010B	Units: mg/L (SW3010A)	Prep Da Analysis	te: 7/7/ Date: 7/8/11	RunNo SeqNo	: 22(07 : 56259 2	
		QC Sample	ö.		Parent Sample		High Land		S.R.P.D. RPDLent	ପମ ପ
Aluminum		QN	0.50]
Antimony		QN	0.30							
Arsenic		QN	0.50							
Barium		QN	0.50							
Beryllium		Q :	0.050							
Cadmium		Q S	0.10							
Calcium		6.13 ND	0.c							
Cobalt		Q	0.25							
Copper		QN	0:050							
lron		QN	0.25							
Lead		QN	0.50							
Magnesium		QN	5.0							
Manganese		Q	0.25							
Nickel		QN	0.25							
Potassium		QN	25							
Selenium		QN	0.10							
Silver		QN	0.50							
Sodium		1270	5.0							
Thallium		QN	0.10							
Vanadium		QN	0.25							
Zinc		Q	0.50							
MAQualifiers: B	 Amalytextetic More Detected 	stud: in the associated Method. tatchedratical Onivertification	Blank Jimit (POL)	E Ataliye R RPD (exceeds the instrument	it calibration range sion timit environ	1. (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Analyte detected below! Spike Recovery outside	the PQL stated to see limit	 Yearson Con- its 2.1, 19 Inter-Schwarz
n	Not Detected	at the MDC or RL			, , , , , , , , , , , , , , , , , , ,					
Date:	25-Jul-11	•	• • •			in the second			2.7462.5	Page 2 of 2

.

Monday, November 28, 2011

Mr. Joe Von Uderitz EA Engineering Science and Technology 6712 Brooklawn Parkway, Suite 104 Syracuse, NY 13211-2158

TEL: 315-431-4610

Project: NYS DEC - AUTOHAUS RE: Analytical Results

Order No.: K1110294

Dear Mr. Joe Von Uderitz:

Life Science Laboratories, Inc. received 9 sample(s) on 10/26/2011 for the analyses presented in the following report. Sample results relate only to the samples as received by the laboratory.

Very truly yours, Life Science Laboratories, Inc.

ath Cmi

Anthony Crescenzi Project Manager

Sample Data Summary Package

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

FORM S-I

SAMPLE IDENTIFICATION AND

ANALYTICAL SUMMARY

					Analytical R	equirements	S	
NYS DEC SAMPLE ID	LABORATORY SAMPLE ID	Туре	VOA GC/MS Method #	BNA GC/MS Method #	VOA GC Method #	MISC GC Method #	METALS Method #	OTHER Method #
828084-GP-09	K1110294-001	SAMP	SW8260B		· · · · · · · · ·			
828084-MW-10	K1110294-002	SAMP	SW8260B	. <u> </u>	·	 	ļ 	
828084-MW-01	K1110294-003	SAMP	SW8260B		ļ	 		ļ_ <u> </u>
828084-MW-08S	K1110294-004	SAMP	SW8260B			<u> </u>	<u> </u>	
828084-MW-08D	K1110294-005	MS	SW8260B		Ļ	·		
828084-MW-08D	K1110294-005	MSD	SW8260B			 	· · · · · · · · · · · · · · · · · · ·	
828084-MW-08D	K1110294-005	SAMP	SW8260B		!	<u> </u>	<u> </u>	<u> </u>
828084-MW-11	K1110294-006	SAMP	SW8260B					+
828084-MW-12	K1110294-007	SAMP	SW8260B				<u> </u>	+
828084-MW-DUP	K1110294-008	SAMP	SW8260B			<u> </u>		
Trip Blank	K1110294-009	SAMP	SW8260B	<u>i</u>	<u> </u>	<u> </u>	—	

SW8260B

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE ANALYSES

LABORATORY SAMPLE	MATRIX	ANALYTICAL PROTOCOL	EXTRACTION METHOD	AUXILIARY CLEANUP	DIL/CONC FACTOR
K1110294-001A	Groundwater	SW8260B	NONE	NONE	1X
K1110294-002A	Groundwater	SW8260B	NONE	NONE	1X
K1110294-003A	Groundwater	SW8260B	NONE	NONE	1X
K1110294-004A	Groundwater	SW8260B	NONE	NONE	1X
K1110294-005A	Groundwater	SW8260B	NONE	NONE	1X
K1110294-005AMS	Groundwater	SW8260B	NONE	NONE	1X
K1110294-005AMSD	Groundwater	SW8260B	NONE	NONE	1X
K1110294-006A	Groundwater	SW8260B	NONE	NONE	1X
K1110294-007A	Groundwater	SW8260B	NONE	NONE	1X
K1110294-008A	Groundwater	SW8260B	NONE	NONE	1X
K1110294-009A	Water Q	SW8260B	NONE	NONE	1X

4

SW8260B

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

FORM S-IIb

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE (VOA) ANALYSES

	MATRIX	DATE COLLECTED	DATE REC'D AT LAB	DATE EXTRACTED	DATE ANALYZED
K1110294-001A	Groundwater	10/25/11	10/26/11		10/28/11
K1110294-007A	Groundwater	10/25/11	10/26/11		10/28/11
K1110204-002A	Groundwater	10/25/11	10/26/11		10/28/11
K1110294-005A	Groundwater	10/25/11	10/26/11		10/28/11
K1110294-005A	Groundwater	10/25/11	10/26/11		10/28/11
V1110204-005AMS	Groundwater	10/25/11	10/28/11		10/28/11
K1110294-005AMSD	Groundwater	10/25/11	10/26/11		10/28/11
K1110294-000AMOD	Groundwater	10/25/11	10/26/11		10/28/11
K1110204-000A	Groundwater	10/25/11	10/26/11		10/28/11
K1110294-007A	Groundwater	10/25/11	10/26/11		10/28/11
K1110294-009A	Water Q	10/25/11	10/26/11		10/28/11

Project Management Case Narrative

INTRODUCTION/ANALYTICAL RESULTS

This report summarizes the laboratory results for EA Engineering Science & Technology, DEC-Autohaus project.

CONDITION UPON RECEIPT/CHAIN OF CUSTODY

The cooler(s) were received intact. When the cooler(s) were received by the laboratory, the sample custodian(s) opened and inspected the shipment(s) for damage and custody inconsistencies. Chain of custodies documenting receipt are presented in the chain of custody section. Each sample was assigned a unique laboratory number and a custody file created. The samples were placed in a secured walk-in cooler and signed in and out by the chemists performing the tests. The sign out record, or lab chronicle, is presented in the chain of custody section.

There were no discrepancies noted upon receipt. The temperature of the iced coolers was 1.0°C.

METHODOLOGY

The following methods were used to perform the analyses:

PARAMETER	METHOD	REFERENCE
Volatile Organics	8260B	1

1) <u>Test Methods for Evaluation Solid Wastes</u>, SW-846 Third Edition, Final Update III, December 1996.

QUALITY CONTROL

QA/QC results are summarized in the Laboratory Report Package and are also included in the raw data.

RAW DATA

The raw data is organized in the New York State Department of Environmental Conservation Analytical Services Protocol Catagory "B" order of data requirements.

Total # of pages in this report 53

Client: Project/Order: Work Order #: Methodology: EA NYS DEC - Autohaus K1110294 8260B

Analyzed/Reviewed by (Initials/Date):

Supervisor/Reviewed by (Initials/Date):

QA/QC Review (Initials/Date):

U:\Narratives\MSVoa\K1110294msvnar.doc

File Name:

GC/MS Volatile Organics

The GC/MS Volatile instruments are equipped with a Restek Rtx-VMS, 60 m x 0.25 mm ID capillary column (MS01, MS04, MSK, and MSN), Restek Rtx-502.2, 105 m x 0.53 mm ID capillary column (MS02), and a Restek Rtx-502.2, 60 m x 0.25 mm ID capillary column (MS03).

Holding Times and Sample Preservation

All samples were prepared and analyzed within the method and/or QAPP specified holding time requirements. Samples had a pH of < 2.

Laboratory Control Sample

The following compound(s) did not meet laboratory control sample recovery criteria:

LCS No.	Compound	Corrective Action
LCS-23024	Methyl acetate	1
	2-Butanone	1
	4-Methyl-2-pentanone	1
	1,2-Dibromo-3-chloropropane	1

1 The recovery exceeded the upper control limit and was not detected above the PQL/RL in the associated samples. No corrective action was taken.

MS/MSD/MSB

The following compound(s) did not meet matrix spike or matrix spike duplicate percent recovery and/or RPD criteria:

Sample			%		Corrective
Description	Sample #	Compound	REC	RPD	Action
······	MSB-23024	Methyl acetate	X		1
		1,2-Dibromo-3-chloropropane	Х		1
828084-MW-	K1110294-	Methyl acetate	X		1,2
08D	005AMS/MSD				[

1 The recovery exceeded the upper control limit and was not detected above the PQL/RL in the associated samples. No corrective action was taken.

GC/MS Volatile Organics Case Narrative - Page 2

Client: Project/Order: Work Order #: Methodology: EA NYS DEC - Autohaus K1110294 8260B

2 The recovery for this compound also exceeded acceptance limits in the associated LCS and MSB. No corrective action was taken.

Surrogate Standards

All surrogate standard recoveries met method and/or project specific QC criteria.

Internal Standards

All internal standard areas met method and/or project specific QC criteria.

Calibrations

All initial calibrations met method and/or project specific QC criteria.

The following continuing calibration compound(s) exceeded method percent drift and/or RRF criteria:

Calibration					Corrective
ID	Instrument	Compound	%D	RRF	Action
CCV-23024	MSK_75	Methyl acetate	58.3		1

1 The recovery exceeded the upper control limit and was not detected above the PQL/RL in the associated samples. No corrective action was taken.

Preparation Blanks

All preparation blanks met method and/or project specific QC criteria.

Date: 28-Nov-11

CLIENT: Project: Lab Order:	EA Engineering Science and Technology NYS DEC - Autohaus K1110294		Work Order Sample Summa				
Lab Sample ID	Client Sample ID	Tag Number	Collection Date	Date Received			
K1110294-001A	828084-GP-09		10/25/2011	10/26/2011			
K1110294-002A	828084-MW-10		10/25/2011	10/26/2011			
K1110294-003A	828084-MW-01		10/25/2011	10/26/2011			
K1110294-004A	828084-MW-08S		10/25/2011	10/26/2011			
K1110294-005A	828084-MW-08D		10/25/2011	10/26/2011			
K1110294-006A	828084-MW-11		10/25/2011	10/26/2011			
K1110294-007A	828084-MW-12		10/25/2011	10/26/2011			
K1110294-008A	828084-MW-DUP		10/25/2011	10/26/2011			
K1110294-009A	Trip Blank		10/25/2011	10/26/2011			

10/28/2011 10/28/2011 Analysis Date 10/28/2011 10/28/2011 10/28/2011 10/28/2011 10/28/2011 10/28/2011 10/28/2011 DATES REPORT TCLP Date Prep Date Volatile Organic Compounds by GC/MS Test Name Groundwater Water Q Matrix 10/25/2011 10:07:00 AM 10/25/2011 11:00:00 AM 10/25/2011 11:45:00 AM 10/25/2011 3:05:00 PM MA 00:25/2011 9:39:00 AM 10/25/2011 1:25:00 PM 10/25/2011 2:15:00 PM EA Engineering Science and Technology **Collection Date** 10/25/2011 NYS DEC - Autohaus 828084-MW-DUP Client Sample ID 828084-MW-08D 828084-MW-08S 828084-MW-10 828084-MW-01 828084-MW-11 828084-MW-12 K1110294 828084-GP-09 Trip Blank K1110294-001A K1110294-002A K1110294-004A K1110294-006A K1110294-007A K1110294-008A K1110294-009A K1110294-003A K1110294-005A Lab Order: Sample ID Project: Client:

Page 1 of 1

Analytical Results

Analytical Results

E	ast Syracuse, NY 1305	7 (315)	445-1900	5	StateCertNo: 10248
CLIENT Project:	EA Engineering Scienc NYS DEC - Autohaus	e and Technol	ogy	Lab ID: Client Sample ID:	K1110294-001A 828084-GP-09
W Order: Matrix:	K1110294 GROUNDWATER			Collection Date: Date Received:	10/25/11 13:25 10/26/11 12:59
Inst. ID: ColumnID: Revision:	MSK_75 Rtx-VMS 11/18/11 11:37	Sample Size %Moisture: TestCode:	10 mL 8260W_OLM42	PrepDate: BatchNo: FileID:	R23024 1-SAMP-K6458.D

Coi Type:						D.P.	Note Analyzer
Analyte		Result Qua	I PQL	MDL	Units	DR	
VOLATILE ORG	SANIC COMPOUND	S BY GC/MS			SW8260)B	10000/41 11:20
Dichlorodifluorome	thane	ND	1.00	0.10	µg/L	1	10/28/11 11:20
Chioromethane		ND	1.00	0.33	µg/L	1	10/28/11 11:20
Vinvi chloride		ND	1.00	0.33	μg/L	1	10/28/11 11:20
Bromomethane		ND	1.00	0.33	µg/L	1	10/28/11 11:20
Chloroethane		ND	1.00	0.33	µg/L	1	10/28/11 11:20
Trichlorofluorometi	nane	ND	1.00	0.10	µg/L	1	10/28/11 11:20
1 1-Dichloroethene)	ND	0.50	0.16	µg/L	1	10/28/11 11:20
1 1.2-Trichloro-1.2	.2-trifluoroethane	ND	0.50	0.10	µg/L	1	10/28/11 11:20
Acetone		57.7	10.0	1.00	µg/L	1	10/28/11 11:20
Carbon disulfide		ND	0.50	0.11	µg/⊾	1	10/28/11 11:20
Mothyl acetate		ND	5.00	1.00	µg/L	1	10/28/11 11:20
Mathylane chloride		ND	2.00	0.16	µg/L	1	10/28/11 11:20
trans_1_2_Dicbloro	ethene	ND	0.50	0.10	µg/L	1	10/28/11 11:20
Mathy lort-hublet	har	1,16	1.00	0.16	µg/L	1	10/28/11 11:20
1 1 Dichloraethan		2.36	0.50	0.10	µg/L	1	10/28/11 11:20
r, r-Dichloroetiane	2000	ND	0.50	0.10	µg/L	1	10/28/11 11:20
CIS-1,2-Dicinoroeu	10110	ND	10.0	1.00	µg/L	1	10/28/11 11:20
2-Bulanone		0.32.J	0.50	0.10	µg/L	1	10/28/11 11:20
GROUGHI			0.50	0.10	µg/L	1	10/28/11 11:20
1,1,1-Trichloroeum		ND	0.50	0.10	µg/L	1	10/28/11 11:20
Cyclonexarie	-h-	ND	0.50	0.10	μg/L	1	10/28/11 11:20
Carbon tetrachiori	Qe	113	0.50	0.10	µg/L	1	10/28/11 11:20
Benzené		1.15 ND	0.50	0.16	ug/L	1	10/28/11 11:20
1,2-Dichloroethan	e	140	0.50	0.10	ua/L	1	10/28/11 11:20
Trichloroethene		0.07	0.50	0.10	ua/L	1	10/28/11 11:20
Methylcyclohexan	8		0.50	0.16	ua/l	1	10/28/11 11:20
1,2-Dichloropropa	ine	0.23 J	0.50	0.10	µg/-	1	10/28/11 11:20
Bromodichlorome	thane	NU	0.00	0.10	µş,~ ua/l	1	10/28/11 11:20
cis-1,3-Dichloropr	ropene	NU	0.50	1.00	ра-с ца/L	1	10/28/11 11:20
4-Methyl-2-pentar	none		0.00	0.10	PS'-	1	10/28/11 11:20
Toluene		0,20 J	0.50	0.16	µg/⊏ ug/l	1	10/28/11 11:20
trans-1,3-Dichlore	opropene	ND	0.50	0.10	pg/C	1	10/28/11 11:20
1,1,2-Trichloroeth	ane	ND	0.50	0.10	pg/L	1	10/28/11 11:20
Tetrachloroethen	ê	ND	0.50	0.10	µg/=	1	10/28/11 11:20
2-Hexanone		ND	5.00	1.00	իֆւր	·	
Onelifiam	* Value exceeds Maxin	mum Contaminant Leve	<u> </u>	B Analyt	e detected in the	associated	Method Blank
Quanters:	E Value exceeds the in	strument calibration ran	ge	H Holdir	ig times for prep	varation or a	nalysis exceeded
	J Analyte detected bel	ow the PQL		ND Not D	etected at the Pr	actical Quar	titation Limit (PQL)
	P Prim./Conf. column	%D or RPD exceeds lift	iit	S Spike	Recovery outsid	le accepted 1	ecovery limits

Print Date: 11/18/11 11:38 582261 Project Supervisor: Anthony Crescenzi

.

Analytical Results

E	ast Syracuse, NY 1305	7 (315)	445-1900	S	stateCertNo: 10248
CLIENT Project:	EA Engineering Scienc	e and Technol	ogy	Lab ID: Client Sample ID:	K1110294-001A 828084-GP-09
W Order:	K1110294 GROUNDWATER			Collection Date: Date Received:	10/25/11 13:25 10/26/11 12:59
Inst. ID: ColumnID: Revision:	MSK_75 Rtx-VMS 11/18/11 11:37	Sample Size %Moisture: TestCode:	10 mL 8260W_OLM42	PrepDate: BatchNo: FileID:	R23024 1-SAMP-K6458,D

Col Type:						
Analyte	Result Qua	l PQL	MDL	Units	DF	Date Analyzed
	IDS BY GC/MS		· · · · · · · · · · · · · · · · · · ·	SW8260)B	
VOLATILE ORGANIC COMPOSI		0.50	0.10	µg/L	1	10/28/11 11:20
Dibromochioromethane		0.50	0.16	µg/L	1	10/28/11 11:20
1,2-Dibromoethane	0.82	0.50	0.10	ua/L	1	10/28/11 11:20
Chlorobenzene	0.02 E 00	0.50	0.10	ug/L	1	10/28/11 11:20
Ethylbenzene	5.09	1.00	0.30	ua/L	1	10/28/11 11:20
Xylenes (total)	14.0	1.00	0.00	ua/L	1	10/28/11 11:20
Styrene	NU	0.50	0.10	на/L	1	10/28/11 11:20
Bromoform	ND	1.00	0.55	P\$/-	1	10/28/11 11:20
isopropylbenzene	1.17	0.50	0.10	µg/t	1	10/28/11 11:20
1,1,2,2-Tetrachloroethane	ND	0.50	0.10	µg/L	•	10/28/11 11:20
1,3-Dichlorobenzene	0.20 J	0.50	0.10	hâ.r	4	10/28/11 11:20
1,4-Dichlorobanzene	3.00	0.50	0,16	μg/L	4	10/28/11 11:20
1.2-Dichlorobenzene	67.3	0.50	0.10	µg/L	i A	10/28/11 11:20
1.2-Dibromo-3-chloropropane	ND	5.00	1.00	µg/L	1	10/20/11 11:20
1 2 4-Trichlorobenzene	ND	1.00	0.10	µg/L	1	10/20/11 11:20
Surr 1.2-Dichloroethane-d4	110	75-128	0.16	%REC	1	10/28/11 (1.20
Surr: Toluene.d8	104	75-125	0.10	%REC	1	10/28/11 11:20
Surr: 4-Bromofluorobenzene	99	75-125	0.10	%REC	1	10/28/11 11:20

CLIENT SAMPLE NO.

Form 1 TIC

Volatile Organic Compounds by GC/MS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	TENTATIVELY IDENTI	FIED COMPOUNDS	828084-GP-09
Lab Name: Life Science	E Laboratories, Inc.	Contract:	
Lab Code: LIFESCIENCES	<u>6</u> Case No.: <u>EA</u>	SAS No.:SDG I	No.: <u>K1110294</u>
Matrix: (soil/water)	WATER	Lab Sample ID:	<u>K1110294-001A</u>
Sample wt/vol: 10	(g/mL) <u>ML</u>	Lab File ID:	K6458.D
Level: LOW		Date Received:	10/26/2011
& Moisture: not dec.		Date Analyzed;	10/28/2011
GC Column: <u>Rtx-VMS</u>	ID: 0.25 (mm)	Dilution Factor:	1.00
Extract Volume:	(µ1)		

Number TICs found:

.

.

7

. CONCENTRATION UNITS:

UG/L

7

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
CAS NONELI		10 /3	3.24	JN
1 000611-14-3	Benzene, 1-ethyl-2-methyl- 18.	10.33	3,42	JN
2.000095-63-6	Benzene, 1,2,4-trimethyl- 18.6	10.00	3.03	JN
3,000496-11-7	Indane 19.600	19.00	0.64	JN
4.000767-58-8	Indan, 1-methyl- 20.427	20.43	0.64	
5.000767-58-8	Indan, 1-methyl- 20.430	20.43	0.04	TN
6 002234-20-0	2,4-Dimethylstyrene 21.570	21.57	0.70	
7,000091-20-3	Naphthalene 22.870	22.87	0.80	

FORM I TIC 1

SW8260B

Col Type:

.

Analytical Results

LIJLID	ast Syracuse, NY 1305	7 (315)	445-1900	5	stateCertNo: 10248	
CLIENT Project:	EA Engineering Scienc NYS DEC - Autohaus	e and Technol	ogy	Lab ID: Client Sample ID:	K1110294-002A 828084-MW-10	
W Order: Matrix:	K1110294 GROUNDWATER			Collection Date: Date Received:	10/25/11 14:15 10/26/11 12:59	
Inst. ID: ColumnID: Revision:	MSK_75 Rtx-VMS 11/18/11 11:37	Sample Size %Moisture: TestCode:	10 mL 8260W_OLM42	PrepDate: BatchNo: FileID:	R23024 1-SAMP-K6460.D	

Anglyte		Result Oual	PQL	MDL	Units	DF	Date Analyzed
Anaryte		B BY CCIMS			SW8260	08	
VOLATILE OR			1.00	0.10	µg/L	1	10/28/11 12:22
Dichlorodifluorome	ethane .		1.00	0.33	µg/L	1	10/28/11 12:22
Chloromethane			1.00	0.33	µg/L	1	10/28/11 12:22
Vinyl chloride			1.00	0.33	µg/L	1	10/28/11 12:22
Bromomethane			1.00	0.33	μg/L	1	10/28/11 12:22
Chloroethane			1.00	0.10	µg/L	1	10/28/11 12:22
Trichlorofluorome	ihane	ND	0.50	0.16	µg/L	1	10/28/11 12:22
1,1-Dichlorcethen	e	ND	0.50	0.10	ug/L	1	10/28/11 12: 22
1,1,2-Trichloro-1,3	2,2-trifluoroethane	ND	40.0	1.00	ua/L	1	10/28/11 12:22
Acetone			0.50	0.11	ua/L	1	10/28/11 12:22
Carbon disulfide		NU	0.00	1.00	ua/L	1	10/28/11 12:22
Methyl acetate		NU	0.00	0.16	ua/L	1	10/28/11 12:22
Methylene chlorid	e	ND	2.00	0.10	ua/L	1	10/28/11 12:22
trans-1,2-Dichloro	pethene	ND	0.50	0.16	ua/L	1	10/28/11 12:22
Methyl tert-butyl e	ether	NU	1.00	0.10	ua/L	1	10/28/11 12:22
1,1-Dichloroethar	1ê	ND	0.50	0.10	ua/l	1	10/28/11 12:22
cis-1,2-Dichloroe	thene	ND	0.00	1.00	rə∵~ ua/L	1	10/28/11 12:22
2-Butanone		ND	10.0	0.10	ua/L	1	10/28/11 12:22
Chloroform		1.22	0.50	0.10	ua/l	1	10/28/11 12:22
1,1,1-Trichloroet	hane	ND	0.50	0.10	н о -	1	10/28/11 12:22
Cyclohexane		ND	0.50	0.10	uo/l	1	10/28/11 12:22
Carbon tetrachlo	ride	ND	0.50	0.10	P9/-	1	10/28/11 12:22
Benzene		ND	0.50	0.10	P9/2	1	10/28/11 12:22
1,2-Dichloroetha	ne	ND	0.50	0.10	µg/c ua/l	1	10/28/11 12:22
Trichloroethene		ND	0.50	0.10	pg/c	1	10/28/11 12:22
Methylcyclohexa	ne	ND	0.50	0.10	µg/⊏ ug/l	1	10/28/11 12:22
1,2-Dichioroprop	ane	ND	0. 50	0.16	hðir na li		10/28/11 12:22
Bromodichlorom	ethane	0.38 J	0.50	0.10	pa.	4	10/28/11 12:22
cis-1,3-Dichloro	propene	ND	0.50	0,16	µy/s_ uw/s	1	10/28/11 12:22
4-Methyl-2-penta	anone	ND	5.00	1.00	µg/L	1	10/28/11 12:22
Toluene		ND	0.50	0.10	µg/∟ ua/l	1	10/28/11 12:22
trans-1,3-Dichlo	ropropene	ND	0.50	0.16	µg/⊑ uell	1	10/28/11 12:22
1,1,2-Trichloroe	thane	ND	0.50	0.16	µg/r_	4	10/28/11 12:22
Tetrachloroethe	ne	ND	0.50	0.10	µgru	4	10/28/11 12:22
2-Hexanone		ND	5.00	1.00	μg/L	1	
	* Value exceeds Mavir	num Contaminant Leve		B Analyt	e detected in th	e associated	Method Blank
Qualifiers:	E Value exceeds the int	strument calibration ran	ge	H Holdir	g times for pre	paration or a	analysis exceeded
	C Value exceeds the lik	ow the POL	0	ND Not D	ND Not Detected at the Practical Quantitation Limit (PQL)		
	P Prim./Conf. column	%D or RPD exceeds lin	nit	S Spike	Recovery outsi	de accepted	recovery limits

Print Date: 11/18/11 11:38 582263 Project Supervisor: Anthony Crescenzi

·

e. Anal

Analytical Results

E	ast Syracuse, NY 1305	7 (315)	445-1900	5	StateCertNo: 10248
CLIENT Project:	EA Engineering Science NYS DEC - Autohaus	e and Technol	ogy	Lab ID: Client Sample ID:	K1110294-002A 828084-MW-10
W Order: Matrix:	K1110294 GROUNDWATER			Collection Date: Date Received:	10/25/11 14:15 10/26/11 12:59
Inst. ID: ColumnID: Revision;	MSK_75 Rtx-VMS 11/18/11 11:37	Sample Size %Moisture: TestCode:	10 mL 8260W_OLM42	PrepDate: BatchNo: FileID:	R23024 1-SAMP-K6460.D
Col Type:					

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
	IDS BY GCIMS			SW8260)B	
VOLATILE ORGANIC COMPOUN		0.50	0.10	ua/L	1	10/28/11 12:22
Dibromochloromethane		0.50	0.18	ua/L	1	10/28/11 12:22
1,2-Dibromoethane	NU	0.50	0.10	F9	1	10/28/11 12:22
Chlorobenzene	ND	0.50	0.10	pg/c	1	10/28/11 12:22
Ethylbenzene	ND	0.50	0.10	μg/c		10/28/11 12:22
Xylenes (total)	ND	1.00	0.30	µg/L	1	10/20/11 12:22
Styrene	ND	0.50	0.10	µg/∟	1	10/28/11 12 22
Bromotorm	ND	1.00	0.33	µg/L	1	10/28/11 12:22
Brotholom	ND	0.50	0.10	μg/L	1	10/28/11 12:22
	ND	0.50	0.10	µg/L	1	10/28/11 12:22
1,1,2,2-Tetrachloroethane	ND	0.00	0.10	uo/L	1	10/28/11 12:22
1,3-Dichlorobenzene	UN 	0.50	0.10	на/I	1	10/28/11 12:22
1,4-Dichlorobenzene	ND	0.50	0.10	Hâle Hâle	4	10/28/11 12:22
1,2-Dichlorobenzene	ND	0.50	0.10	hðhr	1	10/2011 10:20
1.2-Dibromo-3-chloropropane	ND	5.00	1.00	hð\r	1	10/20/11 12.22
1 2 4 Trichlorobenzene	ND	1.00	0.10	µg/L	1	10/28/11 12:22
Surr 1.2-Dichloraethane-d4	117	75-128	0,16	%REC	1	10/28/11 12:22
Surr: Teluene de	103	75-125	0.10	%REC	1	10/28/11 12:22
Surr: 4-Bromofluorobenzene	118	75-125	0.10	%REC	1	10/28/11 12:22

	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
Qualifiers:	ਸ	Value exceeds the instrument calibration range	н	Holding times for preparation or analysis exceeded
	1	Analyte detected below the POL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	י ס	Prim (Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Volatile Organic Compounds by GC/MS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS 828084-MW-10 Contract: Lab Name: Life Science Laboratories, Inc. Lab Code: LIFESCIENCES Case No.: EA SAS No.: _____ SDG No.: K1110294 K1110294-002A Lab Sample ID: Matrix: (soil/water) WATER <u>K6460.D</u> Lab File ID: Sample wt/vol: 10 (g/mL) ML 10/26/2011 Date Received: LOW Level: Date Analyzed: <u>10/28/2011</u> % Moisture: not dec. Dilution Factor: 1.00 GC Column: Rtx-VMS ID: 0.25 (mm) (µ1) Extract Volume:

•.

Form 1 TIC

umber	TICs	found:	0	CONCENTRATION	UNITS:	<u>UG/L</u>	·
l	c	AS NUMBER	COMPOUND	NAME	RT	EST.CONC.	Q
					-		
			2				ľ
							Í
		1 9 1					
		• •					
							=

FORM I TIC 1

SW8260B

•

Analytical Results

	East Syracuse, NY 1305	7 (315)	445-1900	5	StateCertNo: 10248
CLIENT Project:	EA Engineering Scienc NYS DEC - Autohaus	e and Technol	ogy	Lab ID: Client Sample ID:	K1110294-003A 828084-MW-01
W Order: Matrix:	K1110294 GROUNDWATER			Collection Date: Date Received:	10/25/11 15:05 10/26/11 12:59
Inst. ID: ColumnID Revision	MSK_75 : Rtx-VMS 11/18/11 11:37	Sample Size %Moisture: TestCode:	10 mL 8260W_OLM42	PrepDate: BatchNo: FileID:	R23024 1-SAMP-K6462.D
Col Type:			-		

VOLATILE ORGANIC COMPOUNDS BY Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-trifluoroethane Acetone Carbon disulfide Methyl acetate Methyl acetate Methyl acetate Methyl acetate Methyl acetate Methyl tert-butyl ether 1,1-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	Y GC/MS ND ND ND	1.00 1.00	0.10	SW8260 μg/L	B	10/28/11 13:24
Dichlorodifluoromethane Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-trifluoroethane Acetone Carbon disulfide Methyl acetate Methyl acetate Methyl acetate Methyl acetate Methyl tert-butyl ether 1,1-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	ND ND ND	1.00 1.00	0.10	μg/L	1	10/28/11 13:24
Chloromethane Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-trifluoroethane Acetone Carbon disulfide Methyl acetate Methyl acetate Methyl acetate Methyl acetate Methyl acetate Methyl tert-butyl ether 1,1-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	ND ND	1.00				10/20/11 10:47
Vinyl chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-trifluoroethane Acetone Carbon disulfide Methyl acetate Methyl acetate Methyl acetate Methyl acetate Methyl tert-butyl ether 1,1-Dichloroethene Cis-1,2-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	ND		0.33	µg/L	1	10/28/11 13:24
Bromomethane Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-trifluoroethane Acetone Carbon disulfide Methyl acetate Methyl acetate Methyl acetate Methyl acetate Methyl tert-butyl ether 1,1-Dichloroethene Cis-1,2-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	•••	. 1.00	0.33	μg/L	1	10/28/11 13:24
Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-trifluoroethane Acetone Carbon disulfide Methyl acetate Methyl acetate Methyl acetate Methyl tert-butyl ether 1,1-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	ND	1.00	0,33	µg/L	1	10/28/11 13:24
Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-trifluoroethane Acetone Carbon disulfide Methyl acetate Methyl acetate Methyl acetate Methyl tare-butyl ether 1,1-Dichloroethene cis-1,2-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	ND	1.00	0.33	µg/L	1	10/28/11 13:24
1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-trifluoroethane Acetone Carbon disulfide Methyl acetate Methylene chloride trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	ND	1.00	0.10	µg/L	1	10/28/11 13:24
1, 1-Dichloroethane 1, 1, 2-Trichloro-1, 2, 2-trifluoroethane Acetone Carbon disulfide Methyl acetate Methylene chloride trans-1, 2-Dichloroethane Methyl tert-butyl ether 1, 1-Dichloroethane cis-1, 2-Dichloroethane 2-Butanone Chloroform 1, 1, 1-Trichloroethane	ND	0.50	0.16	µg/L	1	10/28/11 13:24
1,1,2-Inchloro-1,2,2-timuordetname Acetone Carbon disulfide Methyl acetate Methylene chloride trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	ND	0.50	0.10	µg/L	1	10/28/11 13:24
Acetone Carbon disulfide Methyl acetate Methylene chloride trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	8.00.1	10.0	1.00	µg/L	1	10/28/11 13:24
Methyl acetate Methylene chloride trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	ND	0.50	0.11	µg/L	1	10/28/11 13:24
Methyl acetate Methylene chloride trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	ND	5.00	1.00	µg/L	1	10/28/11 13:24
Methylene chloride trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	ND	2.00	0.16	µg/L	1	10/28/11 13:24
trans-1,2-Dichloroethene Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	ND	2.00	0.10	ug/L	1	10/28/11 13:24
Methyl tert-butyl ether 1,1-Dichloroethane cis-1,2-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	ND	1.00	0.16	ua/L	1	10/28/11 13:24
1,1-Dichloroethane cis-1,2-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane		0.50	0.10	ua/L	1	10/28/11 13:24
cis-1,2-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane	0.165	0.50	0.10	ua/L	1	10/28/11 13:24
2-Butanone Chloroform 1,1,1-Trichloroethane	0.175	0.30	1.00	ua/L	1	10/28/11 13:24
Chloroform 1,1,1-Trichloroethane	NU	0.50	0.10	ua/L	1	10/28/11 13:24
1,1,1-Trichloroethane	ND	0.50	0.10	ua/L	1	10/28/11 13:24
	NU	0.50	0.10	ua/L	1	10/28/11 13:24
Cyclohexane	NU	0.50	0.10	10/k	1	10/28/11 13:24
Carbon tetrachloride	ND	0.50	0.10	µg/c uc/l	1	10/28/11 13:24
Benzene	ND	0.50	0,10	µg/2	1	10/28/11 13:24
1,2-Dichloroethane	ND	0.50	0.10	µg/2	1	10/28/11 13:24
Trichloroethene	0.43 J	0.50	0.10	ygyr Doll	1	10/28/11 13:24
Methylcyclohexane	ND	0.50	0.10	µg/c	1	10/28/11 13:24
1,2-Dichloropropane	ND	0.50	0.16	µg/L	1	10/28/11 13:24
Bromodichloromethane	ND	0.50	0,10	ից/ե	1	10/28/11 13:24
cis-1,3-Dichloropropene	ND	0.50	0.16	ມຄາດ	4	10/28/11 13:24
4-Methyl-2-pentanone	ND	5.00	1.00	բացու	4	10/28/11 13:24
Toluene	ND	0.50	0.10	µg/L	1	10/28/11 13:24
trans-1,3-Dichloropropene	ND	0.50	0.16	µg/L	4	10/28/11 13:24
1,1,2-Trichloroethane	ND	0.50	0.16	µg/L	4	10/28/11 13:24
Tetrachloroethene	1,54	0.50	0.10	µg⁄∟	4	10/28/11 13:24
2-Hexanone	ND	5.00	1.00	µg/L	1	10/20/11 10:24
* Value exceeds Maximum (Contaminant Lave		B Analy	te detected in the	e associated	Method Blank
Qualifiers: Value exceeds the instrume	ent calibration ran	ee.	H Holdi	ng times for pres	paration or a	nalysis exceeded
E Value exceeds the instrume	POT.	0-	ND Not I	etected at the Pr	actical Quar	ntitation Limit (PQL)
J Analyte detected below the	1					

Print Date: 11/18/11 11:38 582264 Project Supervisor: Anthony Crescenzi

Analytical Results

Ŧ	- C TT			
8	S. 8	. 5854	Rutternut	Drive
	11 1 2 2	11000-	TARKEY INCOM	JP1170

E	ast Syracuse, NY 1305'	7 (315)	445-1900	5	stateCertNo: 10248
CLIENT Project:	EA Engineering Science NYS DEC - Autohaus	e and Technol	ogy	Lab ID: Client Sample ID:	K1110294-003A 828084-MW-01
W Order: Matrix:	K1110294 GROUNDWATER			Collection Date: Date Received:	10/25/11 15:05 10/26/11 12:59
Inst. ID: ColumnID: Revision:	MSK_75 Rtx-VMS 11/18/11 11:37	Sample Size %Moisture: TestCode:	10 mL 8260W_OLM42	PrepDate: BatchNo: FileID:	R23024 1-SAMP-K6462.D
Col Type:					

Analyte	Result Qua	I PQL	MDL	Units	DF	Date Analyzed
	IDS BY GC/MS			SW8260	B	
VULATILE ORGANIC COMPOSIT		0.50	0.10	μg/L	1	10/28/11 13:24
Dibromochlorometnane	ND	0.00	0.16	ua/L	1	10/28/11 13:24
1,2-Dibromoethane	ND	0.50	0.10	ug/L	1	10/28/11 13:24
Chlorobenzene	NU	0.50	0,10		1	10/28/11 13:24
Ethylbenzene	ND	0.50	0.10	h At	•	10/28/11 13:24
Xylenes (total)	ND	1.00	0.30	µg/c		10/28/11 13:24
Styrene	ND	0.50	0.10	µg/∟	1	10/20/11 13:24
Bromotorm	ND	1.00	0.33	µg/L	1	10/20/11 13:24
Isopropylbenzene	ND	0.50	0.10	µg/L	1	10/26/11 13.24
1 1 2 2 Tetrachloroethane	ND	0.50	0.10	µg/L	1	10/28/11 13:24
	D 26 J	0.50	0.10	µg/L	1	10/28/11 13:24
	1 19	0.50	0.16	µg/L	1	10/28/11 13:24
1,4-Dichloropenzene	0.56	0.50	0.10	µg/L	1	10/28/11 13:24
1,2-Dichlorobenzene	0.00	0.00	1.00	ua/L	1	10/28/11 13:24
1,2-Dibromo-3-chloropropane	ND	5.00	1.00	pg.4	4	10/28/11 13:24
1,2,4-Trichlorobenzene	ND	1.00	0.10	PUPE C	1	10/28/11 13:24
Surr: 1,2-Dichloroethane-d4	117	75-128	0.16	%REC	1	10/28/11 13:24
Surr: Toluene-d8	103	75-125	0.10	%REC	1	10/20/11 10:27
Surr: 4-Bromofluorobenzene	110	75-125	0.10	%REC	1	10/20/11 13:24

				has data and in the associated Method Blank
	*	Value exceeds Maximum Contaminant Level	В	Analyte detected of the associated meanor predat
Qualiflers:	E	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	P	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery muss

CLIENT SAMPLE NO.

ſ

Form 1 TIC Volatile Organic Compounds by GC/MS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

			828084-MW-01
Lab Name: <u>Life</u>	Science Laboratories, Inc.	Contract:	
Lab Code: LIFES	SCIENCES Case No.: EA	SAS No.: SDG N	o.: <u>K1110294</u>
Matrix: (soil/wate	er) <u>WATER</u>	Lab Sample ID:	K1110294-003A
Sample wt/vol:	<u>10</u> (g/mL) <u>ML</u>	Lab File ID:	<u>K6462.D</u>
Level: LOW		Date Received:	10/26/2011
% Moisture: not de	ec.	Date Analyzed:	10/28/2011
GC Column: <u>Rtx-VN</u>	<u>45</u> ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Extract Volume:	(µl)		

Number TICs found:

.

CONCENTRATION UNITS:

•

4

UG/L

CAS NUMBER	COMPOUND NAME	RT	EST.CONC.	Q
1 000098-01-1	Furfural \$\$ 2-Furancarboxaldeh	17.14	1.02	JN
2	unknown hydrocarbon 18.840	18.84	0.63	J
3 000281-23-2	Adamantane 20.210	20.21	0.71	JN
4	unknown hydrocarbon 20.330	20.33	0.90	J
,				1
,				
				l
		l		1
1				
1				Ì
n N		ļ		
i i			1	
1				
				1
				1
				ł
				l
			1	
]

FORM I TIC 2

SW8260B

Analytical Results

E E	ast Syracuse, NY 1305'	7 (315)	445-1900	S	StateCertNo: 10248
CLIENT Project:	EA Engineering Science NYS DEC - Autohaus	e and Technol	ogy	Lab ID: Client Sample ID:	K1110294-004A 828084-MW-08S
W Order: Motrix:	K1110294 GROUNDWATER			Collection Date: Date Received:	10/25/11 9:39 10/26/11 12:59
Inst. ID: ColumnID: Revision:	MSK_75 Rtx-VMS 11/18/11 11:37	Sample Size %Moisture: TestCode:	10 mL 8260W_OLM42	PrepDate: BatchNo: FileD:	R23024 1-SAMP-K6463.D
Col Type:					Data Anglua

Analyte		Result Qua	I PQL	MDL	Units	DF	Date Analyzeu
		S BY GC/MS			SW826	0B	
		ND	1.00	0.10	μg/L	1	10/28/11 13:55
Chloremothana	ieniane	ND	1.00	0.33	μg/L	1	10/28/11 13:55
Chlorometriane		ND	1.00	0.33	µg/L	1	10/28/11 13:55
Vinyi Chionae		ND	1.00	0.33	μg/L	1	10/28/11 13:55
Bromomethane		ND	1.00	0.33	μ g/ L	1	10/28/11 13:55
Chloroethane	these	ND	1.00	0.10	μg/L	1	10/28/11 13:55
I nonioroniuoroni	ethane	ND	0.50	0.16	µg/L	1	10/28/11 13:55
	0.0 triffuoroeibane	ND	0.50	0.10	µg/L	1	10/28/11 13:55
1,1,2-1 richioro-1	,Z,Z-Imuoroemane	ND	10.0	1.00	µg/L	1	10/28/11 13:55
Acetone		ND	0.50	0.11	ug/L	1	10/28/11 13:55
Carbon disullide		ND	5.00	1.00	μg/L	1	10/28/11 13:55
Methyl acetate			2.00	0.16	μg/L	1	10/28/11 13:55
Methylene chlori	de	ND	0.50	0.10	ug/L	1	10/28/11 13:55
trans-1,2-Dichio	roetnene		1.00	0.16	ug/L	1	10/28/11 13:55
Methyl tert-butyl	ether		0.50	0.10	ua/L	1	10/28/11 13:55
1,1-Dichloroetha	ine		0.50	0.10	ua/L	1	10/28/11 13:55
cis-1,2-Dichloro	ethene		10.0	1.00	ua/L	1	10/28/11 13:55
2-Butanone		ND	0.50	0.10	uc/L	1	10/28/11 13:55
Chloroform		ND	0.50	0.10	ua/L	1	10/28/11 13:55
1,1,1-Trichloroe	thane	NU	0.50	0.10	ra∙- ⊔a/L	1	10/28/11 13:55
Cyclohexane		ND	0.50	0.10	108 108	1	10/28/11 13:55
Carbon tetrachi	oride	ND	0.50	0.10	1972 110/l	1	10/28/11 13:55
Benzene		ND	0.00	0.10	pare ua/l	1	10/28/11 13:55
1,2-Dichloroeth	ane	ND	0.50	0.10	PSrC Dall	1	10/28/11 13:55
Trichloroethene		ND	0.50	0.10	1975 11971	1	10/28/11 13:55
Methylcyclohex	ane	ND	0.50	0.10	µg/c ug/l	' 1	10/28/11 13:55
1,2-Dichloropro	pane	ND	0.50	0.16	нулс Полі	1	10/28/11 13:55
Bramodichloror	nethane	ND	0.50	0.10	μyrL	1	10/28/11 13:55
cis-1,3-Dichlor	propene	ND	0.50	0.16	µg/L	1	10/28/11 13:55
4-Methyl-2-pen	tanone	ND	5.00	1.00	µg/L	1	10/28/11 13:55
Toluene		ND	0.50	0.10	µgv∟	1	10/28/11 13:55
trans-1,3-Dichl	oropropene	ND	0.50	0,16	hâvr	4	10/28/11 13:55
1,1,2-Trichloro	ethane	ND	0.50	0.16	µg/L	,	10/28/11 13:55
Tetrachloroeth	ene	ND	0.50	0.10	hðvr	1	10/28/11 13:55
2-Hexanone		ND	5.00	1.00	µg/L	Ĩ	19/20/11 10:00
	* Value avaede Mavi	mum Contaminant Leve	1	B Analyt	e detected in th	e associated	Method Blank
Qualifiers:	value exceeds Maxi	etument calibration ran	- 2Ĉ	H Holdin	g times for pre	paration or a	nalysis exceeded
	E Yaine exceeds the f	ou the POL.	0	ND Not D	etected at the P	ractical Qua	ntitation Limit (PQL)
	J Analyte detected bel	%D or RPD exceeds lin	nit	S Spike	Recovery outsi	de accepted i	recovery limits
	r rum./Cont. commi	7047 OF INT 13 CAUCUS III.			<u> </u>		

Project Supervisor: Anthony Crescenzi Print Date: 11/18/11 11:38 582265

•

Analytical Results

LIJLIP	ast Syracuse, NY 1305	7 (315)	445-1900		StateCertNo: 10248
CLIENT Project:	EA Engineering Science NYS DEC - Autohaus	e and Technol	ogy	Lab ID: Client Sample ID:	K1110294-004A 828084-MW-08S
W Order: Matrix:	K1110294 GROUNDWATER			Collection Date: Date Received:	10/25/11 9:39 10/26/11 12:59
Inst. ID: ColumnID: Revision:	MSK_75 Rtx-VMS 11/18/11 11:37	Sample Size %Moisture: TestCode:	10 mL 8260W_OLM42	PrepDate: BatchNo: FileD:	R23024 1-SAMP-K6463.D
Col Type:					

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
	IDS BY GC/MS			SW8260)B	
VOLATILE ORGANIC COMPOSI		0.50	0.10	ua/L	1	10/28/11 13:55
Dibromochioromethane		0.50	0.16	ua/L	1	10/28/11 13:55
1,2-Dibromosthane	NU	0.50	0.10	µ9/4	1	10/28/11 13:55
Chlorobenzene	ND	: 0.50	0.10	P8/C	•	10/28/11 13:55
Ethylbenzene	ND	0.50	0.10	hâvr	4	10/28/11 13:55
Xylenes (total)	ND	1.00	0.30	µg/∟	1	10/20/11 10:00
Styrene	ND	0.50	0.10	µg/L	1	10/28/11 13.55
Bromotorm	ND	1.00	0.33	µg/L	1	10/28/11 13:55
	ND	0.50	0.10	µg/L	1	10/28/11 13:55
	ND	0.50	0.10	μg/L	1	10/28/11 13:55
1,1,2,2-Tetrachloroethane	ND	0.00	0.10	ua/L	1	10/28/11 13:55
1,3-Dichlorobenzene		0,50	0.10	µg/l	1	10/28/11 13:55
1,4-Dichlorobenzene	ND	0.50	0.16	µg/⊏ =0	1	10/28/11 13:55
1,2-Dichlorobenzene	ND	0.50	0.10	μg/L		10/20/11 12:55
1 2-Dibrome-3-chloropropane	ND	5.00	1.00	µg/L	1	10/20/11 13:55
1 2 4-Trichlorobenzene	ND	1.00	0.10	µg/L	1	10/28/11 13:55
Rows 4.0 Dichlomothane_da	118	75-128	0.16	%REC	1	10/28/11 13:55
	101	75-125	0.10	%REC	1	10/28/11 13:55
Surr: 1 Divene-do	114	75-125	0.10	%REC	1	10/28/11 13:55
Surr: 4-Bromonuorobenzene		10-120				

		te to the Latenting of Contemporat Land	B	Analyte detected in the associated Method Blank
Qualifiers:	*	Value exceeds Maximum Contaminant Level	2 V	Holding times for preparation or analysis exceeded
	E	Value exceeds the instrument calibration range	л	Holding times for preparation of any in the first (POL)
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation During (1 QD)
	Р	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits
	-			

Print Date: 11/18/11 11:38 582265 Project Supervisor: Anthony Crescenzi

CLIENT	SAMPLE	NO.
--------	--------	-----

Г

Form 1 TIC Volatile Organic Compounds by GC/MS ANALYSIS DATA SHEET COMPOUNDS

		TENTATIVELY IDENTIFI	ED COMPOUNT	15	828084-MW-08S
Lab Name:	Life Science	Laboratories, Inc.	Contrac [.]	t:	
Lab Code:	LIFESCIENCES	Case No.: <u>EA</u>	SAS No.: _	SDG No	K1110294
Matrix: (soi)	l/water)	WATER		Lab Sample ID:	K1110294-004A
Sample wt/vo	1: <u>10</u>	(g/mL) ML		Lab File ID:	<u>K6463.D</u>
Level:	LOW			Date Received:	10/26/2011
<pre>% Moisture:</pre>	not dec.			Date Analyzed:	10/28/2011
GC Column:	Rtx-VMS	ID: <u>0.25</u> (mm)		Dilution Factor:	1.00
Extract Volu	me:	(µl)			

er TIC:	er TICs found: 0		CONCENTRA	UG/L		
	CAS NUMBER		COMPOUND NAME	RT	EST.CONC.	
	• • •					ł
	· ·					
	• • •					
	1 1					
	•				Ì	E
ł	ь 1					
	1 1					
	•					
	•					
	, ,					1
	•					
	:					
		1				
	•					
	· ·					
				3	S	W8260B

.

23

.

Analytical Results

	ast Syracuse, NY 1305	7 (315)	445-1900	5	stateCertNo: 10248
CLIENT Project:	EA Engineering Scienc NYS DEC - Autohaus	e and Technolo	ogy	Lab ID: Client Sample ID:	K1110294-005A 828084-MW-08D
W Order: Matrix:	K1110294 GROUNDWATER			Collection Date: Date Received:	10/25/11 10:07 10/26/11 12:59
Inst. ID: ColumnID: Revision:	MSK_75 Rtx-VMS 11/18/11 11:37	Sample Size %Moisture: TestCode:	10 mL 8260W_OLM42	PrepDate: BatchNo: FileID:	R23024 1-SAMP-K6459.D

			34DI	- Unite	DF	Date Analyzed
Analyte	Result Qua	I PQL	MDL			
VOLATILE ORGANIC COMPO	UNDS BY GC/MS			SW8260	08	10/28/11 11:51
Dichlorodifluoromethane	ND	1.00	0.10	μg/L	1	10/28/11 11:51
Chloromethane	ND	1.00	0.33	µg/∟	1	10/28/11 11:51
Vinyl chloride	ND	1.00	0.33	μg/L	1	10/20/11 11:51
Bromomethane	ND	1.00	0.33	µg/L	1	10/20/11 11:51
Chloroethane	ND	1.00	0.33	µg/L	1	10/20/11 11:51
Trichlorofluoromethane	ND	1.00	0.10	µg/L	1	10/20/11 11:51
1 1-Dichloroethene	ND	0.50	0.16	µg/L	1	10/20/11 11:51
1 1 2-Trichloro-1.2.2-trifluoroethane	ND	0.50	0.10	µg/L	1	10/20/11 11:51
	ND	10.0	1.00	µg/L	1	10/28/11 11:51
Carbon disulfide	ND	0.50	0.11	µg/L	1	10/28/11 11:51
Mathul scelate	ND	5.00	1.00	μ g /L	1	10/28/11 11:51
Methylace chloride	ND	2.00	0.16	μg/L	1	10/28/11 11:51
trans 1.2 Dichloroethene	ND	0.50	0.10	µg/L	1	10/28/11 11:51
trails-1,2-Dichloroeuterie	ND	1.00	0.16	µg/L	1	10/28/11 11:51
Methy tert-bury cuse	ND	0.50	0.10	µg/L	1	10/28/11 11:51
	ND	0.50	0.10	µg/Լ	1	10/28/11 11:51
CIS-1,2-DICROIDENERE	ND	10.0	1.00	µg/L	1	10/28/11 11:51
2-Butanone	ND	0.50	0.10	μg/L	1	10/28/11 11:51
Chlorotorm	ND	0.50	0.10	µg/L	1	10/28/11 11:51
1,1,1-1richiorbeinane	ND	0.50	0,10	µg/L	1	10/28/11 11:51
Cyclohexane		0.50	0.10	µg/L	1	10/28/11 11:51
Carbon tetrachioride		0.50	0.10	ug/L	1	10/28/11 11:51
Benzene		0.00	0.15	µg/L	1	10/28/11 11:51
1,2-Dichloroethane		0,00	0.10	ud/L	1	10/28/11 11:51
Trichloroethene	ND	0.50	0.10	ug/L	1	10/28/11 11:51
Methylcyclohexane	NU	0.50	0,16	uo/L	1	10/28/11 11:51
1,2-Dichloropropane	NU	0.50	0.10	ua/L	1	10/28/11 11:51
Bromodichloromethane	ND	0.50	0.16	ua/L	1	10/28/11 11:51
cis-1,3-Dichloropropene	DN	0.50	1.00	ua/L	1	10/28/11 11:51
4-Methyl-2-pentanone	ND	5.00	0.10	+s	1	10/28/11 11:51
Toluene	ND	0.50	0.16	µa/=	1	10/28/11 11:51
trans-1,3-Dichloropropene	ND	0.50	0.10	µg/-	1	10/28/11 11:51
1,1,2-Trichloroethane	ND	0.50	0.10	µg/⊂ ⊔a/1	1	10/28/11 11:51
Tetrachloroethene	ND	0.50	0.10	µgr⊏ µg/l	1	10/28/11 11:51
2-Hexanone	ND	5.00	1.00	НА , г	•	
* Value avreade	Maximum Contaminant Lev	el	B Analy	te detected in th	e associated	Method Blank
Qualiflers: Value exceeds	the instrument calibration ra	nge	H Holdi	ng times for pre	paration or a	analysis exceeded
	rad halow the POL	U	ND Not D	letected at the P	ractical Qua	ntitation Limit (PQL)
J Analyte detect	Ieu neiow me i Qu	. .	E Soile	Recovery outsi	de acceoted	recovery limits

Print Date: 11/18/11 11:38 582262 Project Supervisor: Anthony Crescenzi

Analytical Results

E	ast Syracuse, NY 1305	7 (315)	445-1900	5	StateCertNo: 10248
CLIENT Project:	EA Engineering Science NYS DEC - Autohaus	e and Technol	ogy	Lab ID: Client Sample ID:	K1110294-005A 828084-MW-08D
W Order: Matrix:	K1110294 GROUNDWATER			Collection Date: Date Received:	10/25/11 10:07 10/26/11 12:59
Inst. ID: ColumnID: Revision:	MSK_75 Rtx-VMS 11/18/11 11:37	Sample Size %Moisture: TestCode:	10 mL 8260W_OLM42	PrepDate: BatchNo: FileID:	R23024 1-SAMP-K6459.D
Col Type:					

Analvie	Result Qua	d PQL	MDL	Units	DF	Date Analyzed
	SW8260B					
VULATILE ORGANIC COMPOUN		0.50	0.10	uo/L	1	10/28/11 11:51
Dibromochloromethane	. NU	0.50	0.10	rs ua/i	1	10/28/11 11:51
1,2-Dibromoethane	ND	0.50	0,10	P9'-	4	10/28/11 11:51
Chlorobenzene	ND	0.50	0.10	hðir	1	10/28/11 11:51
Fihvibenzene	ND	0.50	0.10	µg/∟	1	10/20/11 11.51
Yudener (total)	ND	1.00	0.30	μg/L	1	10/28/11 11:51
Ayleries (total)	ND	0.50	0.10	µg/L	1	10/28/11 11:51
Styrene	ND	1.00	0.33	ug/L	1	10/28/11 11:51
Bromoform		1.00	0.10	1.0/l	1	10/28/11 11:51
Isopropylbenzene	ND	0.50	0.10	F9-	1	10/28/11 11:51
1,1,2,2-Tetrachloroethane	NĎ	0.50	0.10	իցու		10/08/11 11:51
1 3-Dichlorobenzene	ND	0.50	0.10	μg/L	1	
	ND	0.50	0.18	µg/L	1	10/28/11 11:51
	0.53	0.50	0.10	μg/L	1	10/28/11 11:51
1,2-Dichlorobenzene	0.00	5.00	1.00	ud/L	1	10/28/11 11:51
1,2-Dibromo-3-chloropropane		5.00	0.40		1	10/28/11 11:51
1,2,4-Trichlorobenzene	ND	1.00	0.10	P9/2		10/28/11 11:51
Surr: 1,2-Dichloroethane-d4	113	75-128	0,16	%REC	1	10/20/11 11:01
Surr Toluene-d8	104	75-125	0.10	%REC	1	10/20/11 11.57
Surr: 4-Bromofluorobenzene	116	75-125	0.10	%REC	1	10/28/11 11:51

Qualifiers:	* E	Value exceeds Maximum Contaminant LevelBValue exceeds the instrument calibration rangeHAnalyte detected below the PQLNDPrim./Conf. column %D or RPD exceeds limitS	B H ND	Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Not Detected at the Practical Quantitation Limit (PQL)
	J P		Spike Recovery outside accepted recovery limits	
		Form 1 T	TIC	CLIENT SAMPLE NO.
------------------------	---------------------	----------------------	--	----------------------
	Volat:	le Organic Compound	<pre>s by GC/MS ANALYSIS DATA SHEET TTED COMPOUNDS</pre>	
Lab Name: Lif	<u>fe Science I</u>	aboratories, Inc.	Contract:	828084-MW-08D
Lab Code: LII	FESCIENCES	Case No.: <u>EA</u>	SAS No.: SDG N	No.: <u>K1110294</u>
Matrix: (soil/wa	ater)	WATER	Lab Sample ID:	K1110294-005A
Sample wt/vol:	<u>10</u>	(g/mL) ML	Lab File ID:	<u>K6459.D</u>
Level: LOW			Date Received:	10/26/2011
ኝ Moisture: not	dec.		Date Analyzed:	10/28/2011
GC Column: <u>Rtx-</u>	- VMS	[D: <u>0.25</u> (mm)	Dilution Factor:	1.00
Extract Volume:		(µl)		

۰.

.

•

Number	TICs found:	0	CONCENTRATIC	N UNITS:	UG/L	UG/L		
	CAS NUMBER		COMPOUND NAME	RT	EST.CONC.	Q		
		1						

FORM I TIC 4

SW8260B

•

.

Analytical Results

East Syracuse, NY 13057 (315) 445-1900					StateCertNo: 10248			
CLIENT FA Engineering Science and Technology					Lab ID: K1110294-006A			
Project: N	YS DEC - Autohaus		-05	Client Sam	ple ID: <i>82</i>	28084-M	W-11	
K Andrew KI	110204			Collection 3	Date: 10	/25/11 11	:00	
W Urder: KI				Date Recei	ved: 10	/26/11 12	:59	
Matrix; Or fmod The M ¹	ev 75	Sample Size	10 mL	PrepDate:				
ColumnID: Df	v-VMS	%Moisture:		BatchNo:	R2	3024		
Revision: 11	/18/11 11:37	TestCode:	8260W OLM42	FileID:	1-	SAMP-K6	464.D	
Col Type:			-					
Analyta		Regult C		MDL	Units	DF	Date Analyzed	
Analyte					SW826	30B		
VOLATILE OR	GANIC COMPOUNI	JS BY GC/MS	4.00	0.10	ua/L	1	10/28/11 14:26	
Dichlorodifluorome	sthane .	NU	1.00	0.33	ud/L	1	10/28/11 14:25	
Chloromethane		NU	1.00	0.00	ud/L	1	10/28/11 14:26	
Vinyl chloride		ND	1,00	0.33	на/- ца/L	1	10/28/11 14:26	
Bromomethane		NU	1.00	0.33	ua/L	1	10/28/11 14:26	
Chloroethane		ND	1.00	0.00	ua/l	1	10/28/11 14:26	
Trichlorofluoromet	ihane	ND	1.00	0.10	19/L	1	10/28/11 14:26	
1,1-Dichloroethene	e	ND	0.50	0.10	ue/L	1	10/28/11 14:26	
1,1,2-Trichloro-1,2	2,2-trifluoroethane	ND	0.50	4.00	ha.e	1	10/28/11 14:26	
Acetone		ND	10.0	1.00	1975 110/	1	10/28/11 14:26	
Carbon disulfide		ND	0.50	0.11	µg/t ug/l	1	10/28/11 14:26	
Methyl acetate		ND	5.00	1.00	իցու	1	10/28/11 14:26	
Methylene chloride	8	ND	2.00	0.16	µyrt ug/l	, 1	10/28/11 14:26	
trans-1,2-Dichlord	bethene	ND	0.50	0.10	µg/L	1	10/28/11 14:26	
Methyl tert-butyl e	ther	ND	1.00	0.16	hðir Nail	1	10/28/11 14:26	
1,1-Dichloroethan	le	ND	0.50	0.10	hâ\r Hâ\r	4	10/28/11 14:26	
cis-1,2-Dichloroet	thene	ND	0.50	0.10	րդրե	1	10/28/11 14:26	
2-Butanone		ND	10.0	1.00	µg/t.	1	10/28/11 14:26	
Chloroform		ND	0.50	0,10	µg/∟	1	10/28/11 14:26	
1,1,1-Trichloroeth	nane	ND	0.50	0.10	µg/L	4	10/28/11 14:26	
Cyclohexane		ND	0.50	0.10	µg/u	4	10/28/11 14:28	
Carbon tetrachlor	ride	ND	0.50	0.10	µg/∟	1	10/20/11 14:26	
Benzene		ND	0.50	0,10	µg/L	1	10/20/11 14:20	
1,2-Dichloroethar	ne	ND	0.50	0.16	µg/L	1	10/20/11 14:20	
Trichtoroethene		ND	0.50	0.10	µg/L	1	(W20/11 14.20 40/00/41 14:28	
Methvicvclohexar	ne	ND	0,50	0.10	µg/L	1	10/20/11 14:20	
1 2-Dichloroprop	ane	ND	0.50	0.16	µg/L	1	10/20/11 14:20	
Bromodichlorome	ethane	ND	0.50	0.10	µg/L	1	10/28/11 14:20	
cis-1.3-Dichloror	propene	ND	0.50	0.15	µg/L	1	10/20/11 14.20	
4-Methyl-2-pentz	Inone	ND	5.00	1.00	µg/L	1	10/28/11 14:20	
Toluene		ND	0.50	0.10	µg/L	1	10/28/11 14:20	
trans-1 3-Dichlor	ropropene	ND	0.50	0.16	µg/L	1	10/28/11 14:28	
1 1 2-Trichloreet	hane	ND	0.50	0.16	µg/L	1	10/28/11 14:26	
Tetrachloroether	ne	ND	0.50	0.10	µg/L	1	10/28/11 14:26	
2-Hexanone		ND	5.00	1.00	µg/L	1	10/28/11 14:26	
	* Value avaade Mar	imum Contaminant	evel	B Analy	te detected in t	he associated	Method Blank	
Qualifiers:	 Value exceeds Max Value and the second state 	imum Contaminant I	Level	B Analy H Holdir	te detected in the times for pro-	he associated	Method Blank analysis exceeded	
Qualifiers:	 Value exceeds Max E Value exceeds the it 	imum Contaminant I nstrument calibration	level 1 range	B Analyi H Holdir ND Not D	te detected in t ng times for pro etected at the I	he associated aparation or a Practical Qua	Method Blank malysis exceeded ntitation Limit (PQL)	

Project Supervisor: Anthony Crescenzi 582266 Print Date: 11/18/11 11:38

.

Analytical Results

LOLP	ast Syracuse, NY 1305	7 (315)	445-1900		StateCertNo: 10248
CLIENT Project:	EA Engineering Scienc	e and Technol	ogy	Lab ID: Client Sample ID:	K1110294-006A 828084-MW-11
W Order:	K1110294			Collection Date: Date Received:	10/25/11 11:00 10/26/11 12:59
Inst. ID: ColumnID:	MSK_75 Rtx-VMS	Sample Size %Moisture:	10 mL	PrepDate: BatchNo:	R23024
Revision: Col Type:	11/18/11 11:37	TestCode:	8260W_OLM42	FileID:	1-SAIWP-K0404.D

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
			SW8260)B		
VOLATILE ORGANIC COMPOUN		0.50	0.10	ua/L	1	10/28/11 14:26
Dibromochloromethane	ND	0.50	0.16	ua/l	1	10/28/11 14:26
1,2-Dibromoethane	NU	0,50	0,10	H9/1	1	10/28/11 14:26
Chlorobenzena	ND	0.50	0.10	pg/c		10/28/11 14:26
Ethylbenzene	ND	0.50	0.10	µg/t	4	10/28/11 14:28
Xvienes (total)	ND	- 1.00	0.30	μg/L		40/20/11 14:26
Shrone	ND	0.50	0.10	µg/L	1	10/20/11 14:20
Bromoform	ND	1.00	0.33	µg/L	1	10/28/11 14:20
Brotholorin	ND	0.50	0.10	μg/L	1	10/28/11 14:26
Isopropyidenzene	ND	0.50	0.10	µg/L	1	10/28/11 14:26
1,1,2,2-Tetrachioroethane	ND	0.50	0.10	ug/L	1	10/28/11 14:26
1,3-Dichlorobenzene		0.00	0.16	ua/I.	1	10/28/11 14:26
1,4-Dichlorobenzene	ND	0.30	0.10	<u>⊬s</u> .∽ u c t/l	1	10/28/11 14:26
1,2-Dichlorobenzene	ND	0.50	0.10	hâie Naij	1	10/28/11 14:26
1,2-Dibromo-3-chloropropane	ND	5.00	1.00	µg/L	4	10/28/11 14:26
1.2.4-Trichlorobenzene	ND	1.00	0.10	µgr∟		10/28/11 14:26
Surr 1 2-Dichloroethane-d4	113	75-128	0,16	%REC	1	10/20/11 14:20
Surr: Toluene-d8	105	75-125	0.10	%REC	1	10/28/11 14:20
Surr: 4-Bromofluorobenzene	117	75-125	0.10	%REC	1	10/28/11 14:26

Qualifiers:	•	Value exceeds Maximum Contaminant Level	B	Analyte detected in the associated Method Blank
	E	Value exceeds the instrument calibration range	H	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	P	Prim/Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Print Date: 11/18/11 11:38 582266 Project Supervisor: Anthony Crescenzi

CLIENT SAMPLE NO.

7

Form 1 TIC Volatile Organic Compounds by GC/MS ANALYSIS DATA SHEET TENTATIVELY TOENTIFIED COMPOUNDS

.

		-	
	A28084-MW-11		
Lab Name: Life Science	e Laboratories, Inc.	Contract:	
Lab Code: LIFESCIENCE	<u>S</u> Case No.: <u>EA</u>	SAS No.: SDG 1	No.: <u>K1110294</u>
Matrix: (soil/water)	WATER	Lab Sample ID:	K1110294-006A
Sample wt/vol: <u>10</u>	(g/mL) ML	Lab File ID:	<u>K6464.D</u>
Level: LOW		Date Received:	10/26/2011
<pre>% Moisture: not dec.</pre>		Date Analyzed:	10/28/2011
GC Column: <u>Rtx-VMS</u>	ID: <u>0.25</u> (mm)	Dilution Factor:	1.00
Extract Volume:	(µl)		

Number TICs found:		0	CONCENTRATIO	N UNITS:	UNITS: UG/L		
	CAS NUMBER		COMPOUND NAME	RT	EST.CONC.	Q	
					+		
	1 1						
ļ							
	•						
	с 1						
	, , ,						
	- - -						
	• •						
	:						
-							
	4 1 1						
ļ	, , ,						
	•						
						ľ	
	, ,				_ <u></u>		

FORM I TIC 5

SW8260B

29

Analytical Results

E	ast Syracuse, NY 1305	7 (315)	445-1900	S	StateCertNo: 10248
CLIENT Project:	EA Engineering Scienc NYS DEC - Autohaus	e and Technol	ogy	Lab ID: Client Sample ID:	K1110294-007A 828084-MW-12
W Order: Matrix:	K1110294 GROUNDWATER			Collection Date: Date Received:	10/25/11 11:45 10/26/11 12:59
Inst. ID: ColumnID: Revision:	MSK_75 Rtx-VMS 11/18/11 11:37	Sample Size %Moisture: TestCode:	10 mL 8260W_OLM42	PrepDate: BatchNo: FileID:	R23024 1-SAMP-K6465.D
Col Type:					

Analyte	Result Qua	I PQL	MDL	Units	DF	Date Analyzed
	S BY GC/MS			SW8260B		
	ND	1.00	0.10	μg/L	1	10/28/11 14:57
	ND	1.00	0.33	µg/L	1	10/28/11 14:57
Viewlighteride	ND	1.00	0.33	µg/L	1	10/28/11 14:57
Vinyi Chionde	ND	1.00	0,33	µg/L	1	10/28/11 14:57
Bromomethane	ND	1.00	0.33	µg/L	1	10/28/11 14:57
	ND	1.00	0.10	µg/L	1	10/28/11 14:57
1 1 Dishlaraathana	ND	0.50	0,16	µg/L	1	10/28/11 14:57
1, 1-Dichloroethene	. ND	0.50	0,10	µg/L	1	10/28/11 14:57
1,1,2-11(chioro-1,2,2-chiodoroechane	ND	10.0	1.00	µg/L	1	10/28/11 14:57
	ND	0.50	0.11	μg/L	1	10/28/11 14:57
Carbon disunde	ND	5.00	1.00	µg/L	1	10/28/11 14:57
Methyl acetale	ND	2.00	0.16	ug/L	1	10/28/11 14:57
	ND	0.50	0.10	ug/L	1	10/28/11 14:57
trans-1,2-Dichloroethene	ND	1.00	0.16	µg/L	1	10/28/11 14:57
Methyl tert-butyl ether	ND	0.50	0.10	ug/L	1	10/28/11 14:57
		0.50	0.10	µg/L	1	10/28/11 14:57
cis-1,2-Dichloroetnene	ND	10.00	1 00	ug/L	1	10/28/11 14:57
2-Butanone		0.50	0.10	ug/L	1	10/28/11 14:57
Chloroform	ND	0.50	0.10	ua/L	1	10/28/11 14:57
1,1,1-Trichloroethane		0.50	0.10	ua/L	1	10/28/11 14:57
Cyclohexane		0.50	0.10	ua/L	1	10/28/11 14:57
Carbon tetrachloride	ND ND	0.50	0.10	ua/L	1	10/28/11 14:57
Benzene	ND	0.50	0.16	ua/L	1	10/28/11 14:57
1,2-Dichloroethane	ND	0.50	0.10	ua/L	1	10/28/11 14:57
Trichlorcethene	ND	0.50	0.10	rgr− ug/L	1	10/28/11 14:57
Methylcyclohexane	NU	0.50	0.16	ua/l	1	10/28/11 14:57
1,2-Dichloropropane	ND	0.50	0.10	ug/1	1	10/28/11 14:57
Bromodichloromethane	ND	0.50	0.10	P9/5	1	10/28/11 14:57
cis-1,3-Dichloropropene	ND	0.00	1.00	на/1	1	10/28/11 14:57
4-Methyl-2-pentanone	NU	5.00	0.10	ua/l	1	10/28/11 14:57
Toluené	ND	06.0	0.10	µg/c 110/l	1	10/28/11 14:57
trans-1,3-Dichloropropene	ND	0.50	0.10	μ α /ί	1	10/28/11 14:57
1,1,2-Trichlorcethane	NO	0.50	0.10	10/l	1	10/28/11 14:57
Tetrachloroethena	ND	0.50	4.00	ua/l	1	10/28/11 14:57
2-Hexanone	ND	5.00	1.00	ትጸረታ	1	
Value exceeds Maxim	um Contaminant Leve	 :l	B Analyte	e detected in the	associated	Method Blank
E Value exceeds the inst	nument calibration rar	ge	H Holdin	g times for prep	aration or a	nalysis exceeded
J Analyte detected below	w the PQL		ND Not De	etected at the Pr	actical Quar	utitation Limit (PQL)
P Prim /Conf. column %	6D or RPD exceeds lin	nit	S Spike I	Recovery outsid	le accepted r	ecovery limits

Print Date: 11/18/11 11:38 582267 Project Supervisor: Anthony Crescenzi

.

Col Type:

.

Analytical Results

E	ast Syracuse, NY 1305	7 (315)	445-1900	5	stateCertNo: 10248
CLIENT Project:	EA Engineering Scienc NYS DEC - Autohaus	e and Technol	ogy	Lab ID: Client Sample ID:	K1110294-007A 828084-MW-12
W Order: Matrix:	K1110294 GROUNDWATER			Collection Date: Date Received:	10/25/11 11:45 10/26/11 12:59
Inst. ID: ColumnID: Revision:	MSK_75 Rtx-VMS 11/18/11 11:37	Sample Size %Moisture: TestCode:	10 mL 8260W_OLM42	PrepDate: BatchNo: FileID:	R23024 1-SAMP-K6465.D

Analyte	Result Qu	al PQL	MDL	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUN			SW8260	B		
VOLATILE ORGANIC COM COM		0.50	0.10	µg/L	1	10/28/11 14:57
Dipromocniorometriane		0.50	0.16	ua/L	1	10/28/11 14:57
1,2-Dibromoethane		0.00	0.10	ug/l	1	10/28/11 14:57
Chlorobenzene	NU	0.50	0,10	µg/⊏	1	10/28/11 14:57
Ethylbenzene	ND	0.50	0.10	pgr -		10/28/11 14:57
Xylenes (total)	ND	1.00	0.30	hôvr		10/28/11 14:57
Styrene	ND	0.50	0.10	µg/L	1	40/20/11 14:57
Bramoform	ND	1.00	0.33	µg/L	1	10/26/11 14:57
	ND	0.50	0.10	μ g /L	1	10/28/11 14:57
4.4.9.9. Totraphoroethere	ND	0.50	0.10	µg/L	1	10/28/11 14:57
	ND	0.50	0.10	µg/L	1	10/28/11 14:57
1,3-Dichlorobenzene	ND	0.50	0.16	uo/L	1	10/28/11 14:57
1,4-Dichlorobenzene	NU	0.50	0.10	rai uai	1	10/28/11 14:57
1,2-Dichlorobenzene	ND	0.50	0.10	µg/C	•	10/28/11 14:57
1,2-Dibremo-3-chloropropane	ND	5.00	1.00	μgyr		10/20/11 14:57
1.2.4-Trichlorobenzene	ND	1.00	0.10	µg/L	1	10/20/11 14.57
Surr 1 2-Dichloroethane-d4	111	75-128	0.16	%REC	1	10/28/11 14:57
Surr Toluone-d8	100	75-125	0.10	%REC	1	10/28/11 14:57
Surr: 4-Bromofluorobenzene	120	75-125	0.10	%REC	1	10/28/11 14:57

				I to the the amoninted Method Blank
	*	Value exceeds Maximum Contaminant Level	B Analy	yte detected in the associated method Diatax
Qualifiers:	E	Value exceeds the instrument calibration range	H Holdi	ing times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND Not I	Detected at the Practical Quantitation Limit (PQL)
	Р	Prim./Conf. column %D or RPD exceeds limit	S Spike	e Recovery outside accepted recovery limits

CLIENT SAMPLE NO.

۰.

-1

Form 1 TIC Volatile Organic Compounds by GC/MS ANALYSIS DATA SHEET MODINDS

TENTATIVELY IDENTIFIED COMPOUNDS					828084-MW-12
Lab Name:	Life Science	Laboratories, Inc.	Contract	:	020001 111 20
Lab Code:	LIFESCIENCES	Case No.: <u>EA</u>	SAS No.:	SDG NG	x1110294
Matrix: (soi	l/water)	WATER		Lab Sample ID:	<u>K1110294-007A</u>
Sample wt/vo	l: <u>10</u>	(g/mL) <u>ML</u>		Lab File ID:	<u>K6465.D</u>
Level:	LOW			Date Received:	10/26/2011
% Moisture:	not dec.			Date Analyzed:	10/28/2011
GC Column:	Rtx-VMS	ID: 0.25 (mm)		Dilution Factor:	1.00
Extract Volu	me:	(µl)			

.

.

Number	TICs	found:	0	CONCENTRATION	UNITS:	UG/L	
		CAS NUMBER	COMPOUND	NAME	RT	EST.CONC.	Q

SW8260B FORM I TIC 6

. •

•

Analytical Results

LJL 58	854 Butternut Drive ast Syracuse,NY 130	57 (315) 4	45-1900		Stat	eCertNo:	10248
CLIENT Project:	EA Engineering Scien NYS DEC - Autohaus	ce and Technolog	;y	Lab ID: Client Sample I	K1 D: <i>82</i>	1110294- 8084-M	008A W-DUP
W Order: Matrix: Inst. ID: ColumnID; Revision: Col Type:	K1110294 GROUNDWATER MSK_75 Rtx-VMS 11/18/11 11:37	Sample Size 1 %Moisture: TestCode: 8	0 mL 260W_OLM42	Collection Date: Date Received: PrepDate: BatchNo: FileID:	10, 10, R2 1-5	/25/11 0:0 /26/11 12 3024 SAMP-K6	0 59 466.D
Analyte		Result Qu	al PQL	MDL U	Inits	DF	Date Analyzed
VOLATILE Dichlorodifluor	ORGANIC COMPOUNI	DS BY GC/MS ND ND	1.00	0.10 k 0.33 k	W826 g/L g/L	1 1	10/28/11 15:28 10/28/11 15:28
Vinyl chloride Bromomethan	e		1.00 1.00 1.00	0.33 H 0.33 H 0.33 H	ig/L ig/L ig/L	i 1 1	10/28/11 15:28 10/28/11 15:28 10/28/11 15:28
Trichlorofluoro	omełhane Ihene		1.00	0.10 H 0.16 H	ig/L ig/L ig/L	1 1 1	10/28/11 15:28 10/28/11 15:28 10/28/11 15:28
1,1,2-Trichlor	o-1,2,2-tritiuoroethane		0,00	4.00	ia/l	1	10/28/11 15:28

ichlorodifluorome)	thane	ND	1.00	0.10	μg/L		
hloromethane		ND	1.00	0.33	µg/L	1	10/28/11 15:28
/invl chloride		ND	1.00	0.33	µg/L	1	10/28/11 15:20
Iromomethane		ND	1.00	0.33	µg/L	1	10/28/11 15:20
hioroethane		ND	1.00	0.33	µg/L	1	10/28/11 15:28
richlorofluoromet	hane	ЙИ	1.00	0.10	µg/L	1	10/28/11 15:26
1-Dichloroethen	B	ND	0.50	0.16	µg/L	1	10/28/11 15:20
1 2-Trichloro-1.2	2.2-trifluoroethane	ND	0,50	0.10	µg/L	1	10/28/11 15:28
cetona	-1	ND	10.0	1.00	µg/L	1	10/28/11 15:28
Carbon disulfide		ND	0.50	0.11	µg/L	1	10/28/11 15:28
Vethyl acetate		ND	5.00	1.00	µg/L	1	10/28/11 15:28
Methylene chloridi	e	ND	2.00	0.16	µg/L	1	10/28/11 15:28
rang-1 2-Dichloro	- eihene	ND	0.50	0.10	µg/L	1	10/28/11 15:28
Viothvi tert-bulvi e	ther	ND	1.00	0.16	µg/L	1	10/28/11 15:28
1 1-Dichloroethan	e	0.18 J	0.50	0.10	μ g /L	1	10/28/11 15:28
rie-1 2-Dichlomet	hene	0.16 J	0.50	0.10	µg/L	1	10/28/11 15:28
3 Butanone	alene -	ND	10.0	1.00	µg/L	1	10/28/11 15:28
Chloraform		ND	0.50	0.10	µg/L	1	10/28/11 15:28
1 1 1-Trichloroeth	IADA	ND	0.50	0.10	µg/L	1	10/28/11 15:28
Cuclobevane		ND	0.50	0.10	µg/L	1	10/28/11 15:28
Carbon tetrachior	ide	ND	0.50	0.10	µg/L	1	10/28/11 15:28
Ganzone		ND	0.50	0.10	μg/L	1	10/28/11 15:28
1 2 Dichlomether		ND	0.50	0.16	μ g /L	1	10/28/11 15:28
Trichleroethene		0.43 J	0.50	0.10	µg/L	1	10/28/11 15:28
Mathidouoloheva	1 0	ND	0.50	0.10	µg/L	1	10/28/11 15:28
1.2 Dichloroprop	1C 2D9	ND	0.50	0.16	µg/L	1	10/28/11 15:28
Premediablerom	ahana	ND	0.50	0.10	µg/L	1	10/28/11 15:28
ale 1.2 Dichlorof		ND	0.50	0.16	µg/L	1	10/28/11 15:28
A.Mothul. 2-Manta	none	ND	5.00	1.00	µg∕L	1	10/28/11 15:28
Tobooo	د ا الله ا	ND	0.50	0.10	μg/L	1	10/28/11 15:28
trans 1.3 Dichlor	00100908	ND	0.50	0.16	μg/L	1	10/28/11 15:28
4.4.2 Triphorost	vpropene kano	ND	0.50	0.16	µg/L	1	10/28/11 15:28
Totrachloraother	JIMITY NA	1.42	0.50	0.10	μg/L	1	10/28/11 15:28
	10	ND	5.00	1.00	µg/L	1	10/28/11 15:28
Z-Mexanona		1113					
	* Value exceeds Maximur	n Contaminant Leve	2	B Analyte detected in the associated Method Blank.			
Quampers:	E Value exceeds the instru	ment calibration rar	ıge	H Holdin	ig times for prep	aration or a	nalysis exceeded
	J Analyte detected below	the PQL		ND Not D	etected at the Pr	actical Qua	ntitation Limit (PQL)
Analyte detected below the FQL			S Spike Recovery outside accepted recovery limits				

Analytical Results

LIGLIS	ast Syracuse, NY 1305	7 (315)	445-1900	5	StateCertNo: 10248
CLIENT Project:	EA Engineering Scienc NYS DEC - Autohaus	e and Technol	ogy	Lab ID: Client Sample ID:	K1110294-008A 828084-MW-DUP
W Order: Matrix:	K1110294 GROUNDWATER			Collection Date: Date Received:	10/25/11 0:00 10/26/11 12:59
Inst. ID: ColumnID: Revision:	MSK_75 Rtx-VMS 11/18/11 11:37	Sample Size %Moisture: TestCode:	10 mL 8260W_OLM42	PrepDate: BatchNo: FileID:	R23024 I-SAMP-K6466.D
Col Type:					

Analyte	Result Qua	l PQL	MDL	Units	DF	Date Analyzed
	IDS BY GCIMS			SW8260)B	
VOLATILE ORGANIC COMPOUN		0.60	0.10	ua/L	1	10/28/11 15:28
Dibromochloromethane	NU	0.50	0.10	⊢ອ`÷ ແດ/ໂ	1	10/28/11 15:28
1,2-Dibromosthane	ND	0.50	0,16	₩9/C	4	10/28/11 15:28
Chlorobenzene	ND	0.50	0.10	μg/L		10/20/14 15:28
Ethvibenzene	ND	0.50	0.10	µg/L	1	10/20/11 10:20
Vulance (total)	ND	1.00	0.30	µg/L	1	10/28/11 15:20
	ND	0 50	0.10	µg/L	1	10/28/11 15:28
Styrene		1.00	0.33	ug/L	1	10/28/11 15:28
Bromoform	ND	1.00	0.10	ua/l	1	10/28/11 15:28
Isopropylbenzene	NU	0.50	0.10	-9	1	10/28/11 15:28
1,1,2,2-Tetrachloroethane	ND	0.50	0.10	μg/L		10/28/11 15:28
1 3-Dichlorabenzene	0.26 J	0.50	0.10	µg/L	1	10/20/11 10:20
1 4 Dichlorobenzene	1.18	0.50	0.16	µg/L	1	10/28/11 15:28
	0.51	0.50	0.10	µg/L	1	10/28/11 15:28
1,2-Dichlorobenzene	0.01	6.00	1.00	ua/L	1	10/28/11 15:28
1,2-Dibromo-3-chloropropane	ND	3.00	0.40	10	1	10/28/11 15:28
1,2,4-Trichlorobenzene	ND	1,00	0.10	pyrc N DEC	4	10/28/11 15:28
Surr: 1,2-Dichloroethane-d4	111	75-128	0.16	%REC		40/20/11 10:20
Surr Toluene-d8	99	75-125	0.10	%REC	1	10/20/11 10.20
Surr: 4-Bromofluorobenzene	108	75-125	0.10	%REC	1	10/28/11 15:28

				the late the supported Method Blank
	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Chant
Qualifiers:	Е	Value exceeds the instrument calibration range	Н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	P	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

CLIENT SAMPLE NO.

ſ

Volatile Organic Compounds by GC/MS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Form 1 TIC

	TENTATIVELI IDENIII	TED COMPOUNDS	828084-MW-DUP
Lab Name: Life Scien	ce Laboratories, Inc.	Contract:	
Lab Code: LIFESCIENC	<u>ES</u> Case No.: <u>EA</u>	SAS NO.: SDG N	No.: K1110294
Matrix: (soil/water)	WATER	Lab Sample ID:	K1110294-008A
Sample wt/vol: <u>10</u>	(g/mL) ML	Lab File ID:	K6466.D
Level: LOW		Date Received:	10/26/2011
% Moisture: not dec.		Date Analyzed:	10/28/2011
GC Column: <u>Rtx-VMS</u>	ID: 0.25 (mm)	Dilution Factor:	1.00
Extract Volume:	(µl)		

Number	TICS	found:	
--------	------	--------	--

4

CONCENTRATION UNITS:

.

UG/L

.

٦

COMPOUND NAME	RT	EST.CONC.	0
unknown hydrocarbon 18.840	18.84	0.60	J
unknown hydrocarbon 19.450	19.45	0.62	
Adamantane 20.210	20.21	0.56	JN
unknown hydrocarbon 20.330	20.33	0.89	
	Ţ		
			ł
			ĺ
			1
			1
	1		
		1	
			ĺ
	1		
	CONFOUND NAME Unknown hydrocarbon 18.840 unknown hydrocarbon 19.450 Adamantane 20.210 unknown hydrocarbon 20.330	COMPOUND NAMERTUnknown hydrocarbon 18.84016.84unknown hydrocarbon 19.45019.45Adamantane 20.21020.21unknown hydrocarbon 20.33020.33	COMPOUND NAME RT EST.CONC. unknown hydrocarbon 18.840 18.84 0.60 unknown hydrocarbon 19.450 19.45 0.62 Adamantane 20.210 20.21 0.56 unknown hydrocarbon 20.330 20.33 0.89

FORM I TIC 7

SW8260B

.

2-Hexanone

Analytical Results

99A
-
7.D
Date Analyze
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 15:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00
10/28/11 16:00

Qualifiers:	* E J	Value exceeds Maximum Contaminant Level Value exceeds the instrument calibration range Analyte detected below the PQL Drive (Comf. column %D or RPD exceeds limit	B H ND S	Analyte detected in the associated Method Blank Holding times for preparation or analysis exceeded Not Detected at the Practical Quantitation Limit (PQL) Spike Recovery outside accepted recovery limits
	P	Prim./Conf. column %D of RFD exceeds infin		

·

Analytical Results

	ast Syracuse, NY 1305	7 (315)	445-1900	5	StateCertNo: 10248
CLIENT Project:	EA Engineering Science NYS DEC - Autohaus	e and Technol	ogy	Lab ID: Client Sample ID:	K1110294-009A Trip Blank
W Order: Matrix:	K1110294 WATER O			Collection Date: Date Received:	10/25/11 0:00 10/26/11 12:59
Inst. ID: ColumbID:	MSK_75 Rtx-VMS	Sample Size %Moisture:	10 mL	PrepDate: BatchNo: FileID:	R23024 1-SAMP-K6467.D
Revision: Col Type:	11/18/11 11:37	TestCode:	8260 W_OLM42	FIICID.	

Analyte	Result Qua	I PQL	MDL	Units	DF	Date Analyzed
				SW8260)B	
VOLATILE ORGANIC COMPOUN		0.50	0.10	ua/L	1	10/28/11 16:00
Dibromochloromethane	. ND	0.50	0.10	ra-	1	10/28/11 16:00
1,2-Dibromoethane	ND	0.50	0.16	hên c Hên c	1	10/28/11 16:00
Chlorobenzene	ND	0.50	0.10	µg/L		10/28/11 16:00
Fihvibenzene	ND	0.50	0.10	µg/L	1	10/20/11 10:00
Yulanas (total)	ND	1.00	0.30	µg/L	1	10/28/11 10:00
Ayleties (total)	ND	0.50	0.10	μg/L	1	10/28/11 16:00
Styrene	ND	1.00	0.33	μg/L	1	10/28/11 16:00
Bromotorm	ND	0.50	0.10	ua/L	1	10/28/11 16:00
Isopropylbenzene	NU	0.50	0.10	₽9 - U0/l	1	10/28/11 16:00
1,1,2,2-Tetrachloroethane	ND	0.50	0.10	µg/c	4	10/28/11 16:00
1,3-Dichlorobenzene	ND	0.50	0.10	µg/L	1	10/28/11 16:00
1 4-Dichlorobenzene	ND ND	0.50	0.16	μg/L	1	10/20/11 10:00
1.2 Dichlorohenzene	ND	0.50	0.10	µg/L	1	10/28/11 10:00
	ND	5.00	1.00	μg/L.	1	10/28/11 16:00
1,2-Diptomo-3-chiloroptoparte	ND	1.00	0.10	µg/L	1	10/28/11 16:00
1,2,4-Trichlorobenzene	NU	7.00	0.16	%REC	1	10/28/11 16:00
Surr. 1,2-Dichloroethane-d4	114	75-126	0.10	04 PEC	1	10/28/11 18:00
Surr: Toluene-d8	105	75-125	0.10	WREC	4	10/28/11 16:00
Surr: 4-Bromofluorobenzene	117	75-125	0.10	%REC	I	10/20/11 10:00

·	*	Value exceeds Maximum Contaminant Level	B	Analyte detected in the associated Method Blank
Qualifiers:	E	Value exceeds the instrument calibration range	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below the PQL	ND	Not Detected at the Practical Quantitation Limit (PQL)
	P	Prim./Conf. column %D or RPD exceeds limit	S	Spike Recovery outside accepted recovery limits

Print Date: 11/18/11 11:38 582269 Project Supervisor: Anthony Crescenzi

			CLIENT	SAMPLE	NO.
STS	DATA	SHEET			

Γ

Volatile Organic Compounds by GC/MS ANALYSIS DATA S TENTATIVELY IDENTIFIED COMPOUNDS

Form 1 TIC

.

	TEMINITY DE TEMINIT		Trip Blank
Lab Name: Life Science	Laboratories, Inc.	Contract:	
Lab Code: LIFESCIENCES	Case No.: EA	SAS No.: SDG	No.: K1110294
Matrix: (soil/water)	WATER	Lab Sample ID:	K1110294-009A
Sample wt/vol: <u>10</u>	(g/mL) ML	Lab File ID:	<u>K6467.D</u>
Level: LOW		Date Received:	10/26/2011
% Moisture: not dec.		Date Analyzed:	10/28/2011
GC Column: <u>Rtx-VMS</u>	ID: <u>0.25</u> (mm)	Dilution Factor:	<u>1.00</u>
Extract Volume:	(µl)		

umber TICs found	1: 0	CONCENTRATI	ON UNITS:	UG/L	
CAS N	JMBER	COMPOUND NAME	RT	EST.CONC.	
		<i>_ •</i> • <i></i> -			
1					
					ļ
	•				
			l l		
					ł
			-		

FORM I TIC 8 SW8260B

Quality Control Results

i

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab	Name:	Life Science	Laboratorie	es, In	Contract:		
Lab	Code:	LIFESCIENCES	Case No.:	EA	SAS No.	SDG No.:	<u>K1110294</u>

į	EPA	1	SMC1	SMC2	SMC3	TOT
	SAMPLE NO.	LSL ID	(DCE) 1 #	(TOL) 1 #	(BFB) 1 #	 OUT
01	MSB-23024	MSB-23024	120	101	101	 0
02	LCS-23024	LCS-23024	120	101	101	
03	828084-MW-08DMS	K1110294-005AMS	112	102	102	
04	828084-MW-08DMSD	K1110294-005AMSD	111	103	102	
05	MB-23024	MB-23024	115	104	120	
06	828084-GP-09	K1110294-001A	110	104	99	 0
07	828084-MW-08D	K1110294-005A	113	104	116	0
08	828084-MW-10	x1110294-002A	. 117	103	118	
09	828084-MW-01	K1110294-003A	117	103	110	0
10	828084-MW-085	K1110294-004A	118	101	114	
11	828084-MW-11	K1110294-006A	113	105	117	
12	828084-MW-12	K1110294-007A	111	100	120	
13	828084-MW-DUP	K1110294-008A	111	99	108	
14	Trip Blank	K1110294-009A	114	105	117	
	÷		_1			

QC Limit

	SMC 1 SMC 2 SMC 3	(DCE) 1 = 1,2-Dichloroethane-d4 75-128 (TOL) 1 = Toluene-d8 75-125 (BFB) 1 = 4-Bromofluorobenzene 75-125	
	# Column	to be used to flag recovery values	
	* Values	outside of contract required QC limits	
Page 1	of l	FORM II VOA-1	SW8260B

.

40

Life Science La	boratories, In	ن ن				ANA	ILYTI	CAL QC SU	MMARY F	EPORT
5854 Butternut Drive						Meth	:po	SW8260B		
East Syracuse, NY 13057	(315) 445-1900					Work	Order:	K1110294		
CT IFNT. FA Engineeri	re Science and Technolog	Ŷ				Proje	ct:	NYS DEC - Au	tohaus	
			N IO INCOS	1		Oren Date		RunNo	23024	
Sample ID: K1110294-005AMS	SampType: MS	TestCode:		Handling have		top outo. Snakrejs Date	10/28/20	N1 SeqNo	582258	
Client ID: 828084-MW-08D	Batch (D: R23024	Method:	SWIKZOUC		•					
Instrument: MSK_75	CONTINUE. MAA-MAG									
	QC Sample			Sample			فأحمنا أطمنا ا	DDD Dof Vial		it Qual
Analyte	Result	PQL	SPK Added	Result	%REC					
Dichlorodifluxmethane	8.12	1.00	10	0	8	8	141			
	7.61	1.00	10	0	76	5	89			
Vind chords	8.07	1.00	10	o	81	72	1 29			
Promomethane	9.42	1.00	10	• •	94	2	137			
	9.22	1.00	10	D	92	61	152			
	9.19	1,00	10	0	92	4	160			
	08.6	0,500	10	0	8 6	72	125			
	06.0	0.500	10	0	66	88 88	134			
1,1,2-1 henioro-1,2,2-411100 ueu	31 IE つつ ビ つつ ビ	10.0	8	0	113	ខ្ល	133			
Acetone			9	0	84	89	135			
Carbon disulfide		90 Y	ç	0	156	59	149			S
Methyl acetate	0.01	8.0	2	0	8	75	125			
Methylene chloride	76.5	2.500	2 9	0	8 5	75	125			
trans-1,2-Dichloroethene	76'6		2 5		117	72	130			
Methyl tert-butyl ether	711 C 07	00°-	<u></u>	0	102	75	125			
1,1-Dichloroethane	2.01		2 ⊊	c	103	69	134			
cis-1,2-Dichloroethene	10.5		2 0	0	124	48	151			
2-Butanone	D. T .		ţ	¢	104	74	129			
Chloroform	4.01 1	0.500	e c	0	106	72	136			
1,1,1-Trichloroethane	0.01	0.500	2 2	0	94	75	128			
Cyclohexane		0.500	Q.	0	107	53	139			
Carbon tetrachloride	1.01		2 9	o	101	62	142			
Benzene	0.0F	0.000	ç Ç		112	75	128			
1,2-Dichloroethane	11.2	002.0	2 9	o c	101	67	132			
Trichloroethene	1.01 	0.000	2 5) C	5	75	125			
Methylcyclohexane	4.6	000.0	2 \$		101	75	125			
1,2-Dichloropropane	10.1	0.50	2 9	,		75	133			
Bromodichloromethane	10.9	0.500	01	2	2					
	hadden and a second	Dark	F. Value	exceeds the instru	ument calibratio	n range	~	Analyte dctocted below	the PQL	
Qualifiers: B Analyte	letected in the associated Memory	Limit (PQL)	R. RPDe	sceeds accepted	precision litruit		ŝ	Spike Recovery outsid	e accepted recovery li	mits
U Not Dete	cted at the MDC or RL	, ,					·			Page 3 of 10
										T

,

18-Nov-11

ย 41

Life Scier	nce Lat	oratories, In	చ				ł	INAL	YTIC	AL QC SUI	MMARY R	EPORJ	Ē
5854 Butternut 1	Jrive						F 4	Method:		SW8260B			
East Syracuse, 1	4Y 13057	(315) 445-1900						Vork Oi	rder:	K1110294			
CLIENT: EA	Engineering	Science and Technology	7					Project:		NYS DEC - Au	ohaus		ļſ
	0				A A A A A A A A A A A A A A A A A A A	1/51	Pren D	ate:		RunNo	23024		
Sample ID: K1110 Client ID: 82808	294-005AMS 4-MW-08D	SampType: MS Batch ID: R23024	l estudoe Method:	8260W_U		1	Analysi	s Date:	10/28/201	1 SeqNo	582258		
Instrument: MSK_	75	ColumnID: Rtx-VMS			i								
		QC Sample	2	срк Аллед	Parent Sample Result	*	REC LOW	imit Hig	hLìmít F	tPD Ref Val	%RPD RPDLim	it Qual	
Analyte		Tesur					107	75	125				1
cis-1,3-Dichloropro	pene	10.7	002.0	2 8		, 0	118	88	133				
4-Methyl-2-pentanc	ne	10.0	0.500	99	_	0	100	75	125				
Toluene		10.0	0.500	0		0	114	. 52	127				
trans-1,3-Dichlorop	ropene	2.01	0.500	P	_	0	107	71	137				
1,1,2-1 richloroetha	Pe	10.0	0.500	10	_	0	101	99	8				
		21.5	5.00	X		0	107	83	129				
Z-Hexanone	0000	11.5	0.500	¥		0	115	2	132				
		11.0	0.500	1		0	110	7	125				
1,2-UIDIOIIINELLIALIK Chiarabanzane		10.2	0.500	10	-	0	<u>1</u> 02	75	<u>8</u> 1				
		9.93	0.500	3		0	66	73	127				
Ethylbenzene Videoco (tetal)		29.6	1.00	Ř	0	0	8	73	126				
Aylenes (wau)		9.61	0.500	Ŧ	-	0	8	75	123				
Styrene		10.8	1.00	÷	•	0	108	61	142				
Broniousini I		10.1	0.500	÷	0	0	101	75	127				
Isopropyraenzene 4.4.5.5 Totrachlore	athane	11.0	0.500	÷	0	0	110	75	<u>5</u>				
1,1,2,2-1euduilui 1,3 Dishlombon7e		10.3	0.500	-	0	0	103	75	<u>8</u>				
		9.92	0.500	÷	0	0	8	2	81				
1, 4-Ulcilloroboliza		10.5	0.500	-	0	ß	<u>5</u>	5	8				
1,2-Ditanoioenia	loronnane	11.9	5.00	-	0	o	119	89	8				
1 2 4-Trichlorober	Izene	9.35	1.00	-	0	0	5	5 1	<u>8</u>				
Sum 1.2 Dichl	vroethane-d4	11.2	0.100	÷	Q	0	112	2					
Surr Toluene-c	18	10.2	0.100	-	ō	0	<u>8</u>	21	<u>ę</u> į				
Surr; 4-Bromof	luorobenzene	10.2	0.100	-	0	0	102	e	2				
	ł			- 1/2 -	the evceeds the	instrument C	libration range		「	Analyte detected below	the PQL		
Qualifiers:	B Analyte det	ected in the associated Method I a of the Descrived Countilation]	slarık imit (POL)	2 X 7 X	D exceeds accept	pted precision	a liimit		s	Spike Recovery outsid	e accepted recovery li	mits	
	I Not Detect	at the MDC or RL										Dana d af	£ 10
4	18_Mov-	11										ruge + vj	1 10
हु 2	-1015-01												

.

Life Scien	ce Lat	oratories, In	:				ANA	TYTIC	CAL QC SUI	MMA	RY RE	PORT
5854 Butternut D	rive						Methe	;pa	SW8260B			
East Syracuse, N	Y 13057	(315) 445-1900					Work	Order:	K1110294			
CLIENT: EA	Engineering	Science and Technolog	y				Projec	ij	NYS DEC - Aut	ohaus		
	0				114 1 Inder word		Pren Date		RunNo:	2302	54	
Sample ID: K1110	194-005AMSC) SampType: MSD	TestCode:		M4 Office PUL		Analysis Date	10/28/2(M1 SegNo:	6822	259	
Client ID: 828084	-MM-08D	Batch ID: R23024	Method:	50072MC		-			•			
Instrument: MSK_	5	COLUMNIU: KUX-VMS										
		OC Samole			Sample							c C
Analyte		Result	Pat	PK Added	Result	%REC	LowLimit	HighLimit	RPD Ket val			
Diahlomotific to remark	que	8.39	1.00	10	0	84	63	141	8.12	ю. 1	88	
		7.48	1.00	10	o	75	63	138	7.61	1.7	81	
Unioron leurarie		8.14	9.1	10	o	8	27	136	8.07	0.0	8	
Vinyi chioriae		955	1.00	Ģ	0.	8	5 2	137	9.42	1.4	ଷ	
Bromomemane		968 968	8	10	0	0 6	61	152	9.22	3.0	ଷ	
Chloroemane		9.56	1.00	6	0	8	49	160	9.19	9.0 9.0	8	
Trichlorofluorometri	ane	0.0	0.500	0	0	<u>6</u>	72	125	9.8	22	ଷ	
1 1-Dichloroethene			0500	10	o	102	68	134	6.6	3.2	ଷ	:
1,1,2-Trichloro-1,2,	2-triftuoroernar		10.0	2	0	114	53	133	22.5	4	8	
Acetone		0.77		i É	0	8	68	135	8.4	1.3	8	
Carbon disulfide		10.0		2 5	Ċ	15	3	149	15.6	1.4	ନ୍ଧ	S
Methyt acetate		4.CL	8 6 6	2 \$		67	75	125	9.92	23	8	
Methylene chloride				2 5		Ē	75	<u>†</u> 25	9.92	1.8	ଷ	
trans-1,2-Dichloroe	there	10.1	0.50	29	o c	117	2	130	11.7	0.1	8	
Methyl tert-butyl eth	ler.	11.7	<u>8</u>	2 9		, ç	1.1	125	10.2	0.2	8	
1 1-Dichloroethane		10.2	009:0	2 4	0	ξ	2 2	134	10.3	0.3	8	
cis-1,2-Dichloroeth	ene	10.3	0.500	28	, ,	<u>3</u>	3 4	151	24.9	1.3	8	
2-Butanone		24.6	0.01	25		2 2 2 2 2	74	129	10.4	0.9	ន	
Chlaroform		10.3	0.500	2 5	• c	106	22	136	10.6	0.2	8	
1,1,1-Trichloroetha	ŝ	0.0L		2) c	67	75	128	9.4	3.5	କ୍ଷ	
Cyclohexane		57'B	0.300	2 5		108	99 99	139	10.7	1.4	ର	
Carbon tetrachloric	le le	9.01 0.01		2 5		0	62	142	10	0.2	ଷ	
Benzene		0.01	0.000	2 \$		110	75	128	11.2	1.6	କ୍ଷ	
1,2-Dichloroethane	"	0.11	0.500	2 \$		Ę	67	132	10.1	•	ଷ	
Trichloroethene		10.1		2 \$		79	75	125	9.41	3.4	8	
Methylcyclohexane	,	9.74	0.000	2 9		ξ	75	125	10.1	1.5	20	
1,2-Dichloropropa	Je	9.98	0000	2 9			ι Γ	133	10.9	1.8	ส	
Bramodichloromet	hane	10.8	0.500	2		2	2	}				
						ment calibratio	n range		Analyte dctected below	the PQL		
Qualifiers: E	1 Analyte det	tected in the associated Method.	Blank	L van	ie exteeda ana matur.	actical limit	-	S	Spike Recovery outside	accepted re	ecovery limits	
Z	D Not Detect	ed at the Practical Quantitation.	Linnit (PQL)	K KYL) excocors acception fit			1				
4	J Not Detect	ed at the MDC or RL									ď	age 5 of 10
I :	70 37											, 0

.

.

U Not Detected at the MDC or RL 18-Nov-11

ä 43

Life Science Lab	oratories, In	ు				ANA	TYTIC	CAL QC SI	UMMA	RY REI	PORT
5854 Butternut Drive						Meth	:po	SW8260B			
East Syracuse, NY 13057	(315) 445-1900					Work	Order:	K1110294			
vermanne. DA Bachneeding	Science and Technology	2				Proje	;;	NYS DEC - /	Autohaus		
CLIENT: EA EUGINGUINS									No ⁻ 230	24	
Sample ID: K1110294-005AMSD	SampType: MSD	TestCode Method:	<pre>c 8260W_OLN SW8260B</pre>	14 Units: µg/L	- 4	rrep Late: Inalysis Date	10/28/20	11 Seq	No: 582	269	
Ctient ID: 828084-IMW-06U Instrument: MSK 75	ColumnID: Rtx-VMS										
				Parent							
	QC Sample Result	Pol	SPK Added	Sample Result	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alialyte	207	0,500	Ę	0	105	75	125	10.7	1.7	ន	
cis-1,3-Dichloropropene			Ę	0	121	83	133	23.7	20	ଷ	
4-Methyl-2-pentanone	7.4.7		1 5	c	101	75	125	10	0.4	8	
Toluene	1.01		2 9		112	52	127	11.4	2.2	8	
trans-1,3-Dichloropropene	2.01		2 5	0	107	71	137	10.7	0,4	8	
1,1,2-Trichloroethane	101		; 5	0	102	<u>66</u>	129	9	1.7	ନ୍ଦ	
Tetrachloroethene	7'0L		2 2	0	110	62	129	21.5	2.2	ы	
2-Hexanone	0.22		9 6	0	113	64	132	11.5	1.7	8	
Dibromochloromethane	0.11	0,500	; Ç	0	111	71	1 <u>7</u>	1	0.9	8	
1,2-Dibromoethane	1.11		; ₽		102	75	125	10.2	0.1	8	
Chiorobenzene	2.01		2 €	0	<u>5</u>	57	127	9.93	0.6	8	
Ethylbenzene			2 8	0	00 00	2	126	29.6	1.5	8	
Xylenes (total)	1.06		; ₽	0	8	75	125	9.61	2.3	8	
Styrene	50. 10 10	5	2 C	0	109	61	142	10.8	1.5	ନ୍ନ	
Bromoform	5.01 8 08	8.0	2 8	¢	104	75	127	10.1	2.2	8	
Isopropylbenzene	t. 0	050	0	0	110	75	129	:	0.6	ន	
1,1,2,2-Tetrachloroethane	0.11		ţ	c	102	75	125	10.3	0.8	କ୍ଷ	
1,3-Dichlorobenzene	10.2		2 5) C	8	75	125	9.92	0.2	ଷ୍ପ	
1,4-Dichlarobenzene	08:6 7 0 7			053	6	75	125	10.5	1	ନ୍ଦ	
1,2-Dichlorobenzene	10.4		2 5	C	118	<u>6</u> 8	128	11.9	0.8	8	
1,2-Dibromo-3-chloropropane	8.11 8.	3.5	<u></u>		95 25	2	125	9.35	1.4	8	
1,2,4-Trichlorobenzene	9.40	3.5	2 \$) C	111	75	128	¢		0	
Surr: 1,2-Dichloroethane-d4	C.11		5 5) c	103	52	125	0		¢	
Surr. Toluene-d8	5.01 0.01		5 5) C	19	75	125	0		o	
Surr 4-Bromofluorobenzene	10.2	31.0	2	•							

ANALYTICAL OC SUMMARY REPORT

•

Spike Recovery outside accepted recovery limits

Analyte detected below the PQL

۲ S

Value exceeds the instrument calibration range

RPD exceeds accepted precision limit

ചഷ

Not Detected at the Practical Quantitation Limit (PQL) Analyte detected in the associated Method Blank

Surr: 4-Bromofluorabenzene

Not Detected at the MDC or RL 18-Nov-11 a ĝ p

> ë 44

Qualifiers:

Life S	cience	Laboratorie	s, Inc.					ANA	ITYI	CAL QC SU	MMARY R	EPORT
5854 Butte	rnut Drive							Meth	:pe	SW8260B		
East Syrac	use, NY 13	057 (315) 445-1	006					Work	Order:	K1110294	,	
CLIENT:	EA Engin	neering Science and Tec	thnology					Proje	÷	NYS DEC - A	tohaus	
		E COM		Toch ndo	SPENW OI	MA 15nits' uol		Prep Date:		RunN	0: 23024	
Sample ID:	MSB-23024	Samp I ype: Mor		Lateroad.	CARPENE			Analvsis Date	10/28/2	011 SeqNo	i: 582270	
Client ID:	77772		174					•				
Instrument:	MSK_75		2007			4						
		QC Sample	a			Sample					mi IOda - Cda%	
Analyte		Result		PQL	SPK Added	Result			HIGHLIM			
Dichlorodiflu	loromethane	ß	13	1.00	10	Þ	0	3	Ē			
Chloromeths	Ine	æ	02	1.00 1	0	0	8	62	138			
Vind chlorid		œ	8	1.00	10	0	81	72	136			
Promoneths	2 COL		34	00 [.] E	0	o	66	54	137			
Chlorodhan	2	0	56	1.00	1 0	0	8	61	152			
Trickleroftig	ic somethane	େମ	8	1.00	10	0	2	49	160			
	othere.	(()	28	0.500	0	a	9 6	72	125			
		enethane 8	6	0.500	10	D	8	88	134			
1'1'<	1-7'7' I-010		47	10.0	20	¢	124	8	133			
Acetone		9 C		0.500	10	0	85	88	135			
Carbon dist	linde	•	2 4 F. 6	ξ Υ	9	0	166	56	149			s
Methyl acet	ate	- (0 8 0 8	8.6	2) C	8	75	125			
Methylene c	shloride	ית	7		2 4		100	75	125			
trans-1,2-D	ichloroethene		0.0	0.50	2 9			2. 62				
Methyl tert-	butyl ether	~ -	2.2	1 .8	01		771	2 4				
1.1-Dichtor	oethane	-	0.6	0.500	õ	0	8	ę (2			
cis-1 2-Dict	hioroethene	÷	0.3	0.500	9	0	103	69	<u>4</u>			
2-Butanone		()	6.3	10.0	ក្ត	Ö	131	8	151			
		-	0.8	0.500	10	0	108	74	129			
	locoethane.	·	6.0	0.500	10	0	109	72	136			
			1,32	0.500	10	o	93	75	128			
Cyclolexal	e setiorida		6.0	0.500	10	0	109	69	139			
		- •-	10.2	0.500	0	0	102	62	142			
Benzene		•		0.500	10	Q	120	75	128			
1,2-Dichio	oemane			0.500	Ę	Đ	103	67	132			
Trichloroet	hene		0.0		2		6	75	125			
Methylcycl	ohexane		9.03				103	75	125			
1 2-Dichlo	ropropane		10.3			, c	 	Ŕ	(33			
Bramodich	loromethane		5.11	006.0	2	2	-					
	.		A forbod Blan	4	E Valu	e exceeds the instri	ument calibratio	n range	г	Analyte detected below	v the PQL	
Qualifiers	an B	alyte detected in the association	Interior Lim		RPD	exceeds accepted	precision límit	•	S	Spike Recovery outsid	e accepted recovery lin	uits
	ON CIN	I Detected at the fractical Quan		1-1-1-1-1								
4	N N	(Detected at the MLAC OF ALL MALLER 1										Page 9 of 10

.

U Not Detected at 18-Nov-11

Ş 45

Life Science La	boratories, Inc					AN/	ILYT	CAL QC SI	UMMA	RY RE	PORT
5854 Butternut Drive						Meth	:po	SW8260B	`		
East Syracuse, NY 13057	(315) 445-1900					Worl	Order:	K1110294			
CLIENT: EA Engineerin	g Science and Technology					Proje	÷	NYS DEC - /	Autohaus		
Samole ID: MSB-23024	SampType: MSB	TestCode:	8260W_OLM4	Units: pg/L		rep Date:		Run	No: 230	124	
Client ID: ZZZZ	Batch ID: R23024	Method:	SW8260B		¢	nalysis Dati	10/28/2	111 Seq	No: 582	270	
Instrument: MSK_75	ColumnID: Rtx-VMS										
	QC Sample Result	iC d	SPK Added	Parent Sample Resuft	%REC	LowLimit	HighLímit	RPD Ref Val	%RPD	RPDLimit	Qual
	11 3	0.500	10	0	113	75	125				
cis-1,3-Dicitiotopiuperie A Mathud 2 ventanone	25.7	5.00	8	o	129	8	133				
4-Ive(II)-z-periorio	10.1	0.500	10	0	<u>1</u> 01	75	125				
trane_1 3 Dichlorobronene	11,9	0.500	10	o	119	75	127				
1 3. Trichlandthane	11.2	0.500	10	o	112	7	137				
Tetrachlomethene	9.50	0.500	10	0	35	66	129				
2-Hexanone	22.6	5.00	8	0	113	62	129				
Dihomochloromethane	11.4	0.500	10	o	114	23	132				
1 2-Dibromoethane	10.9	0.500	10	0	109	7	125				
Chlorobenzene	9,83	0.500	10	0	86 86	55	125				
	9.65	0.500	10	0	97	73	127				
Xv(enes (total)	28.4	00.1	ଚ	o	95 55	73	126				
Chrane Chrane	9.36	0.500	1	0	94	75	125				
Bronoform	10.7	1.00	10	٥	107	61	142				
le contronsi hen zene	10.1	0.500	10	o	101	75	127				
1 1 2 2. Tetrachloroethane	11.4	0.500	10	o	114	75	129				
1 3-Dichlorobenzene	10.2	0.500	10	0	102	75	125				
1 4 Dichlorobenzene	08'6	0.500	10	0	8	75	125				
1 2-Dichlorobenzene	10.5	0.500	9	0	105	75	. 125				
5-Dibromo-3-chloropropane	13.0	5.00	1	0	130	68	128				ა
1 2 4-Trichlarobenzene	9.01	1 .0	<u>5</u>	0	8	2	125				
Surr 1 2-Dichloroethane-d4	12.0	0.100	10	0	120	75	128				
Surr Toluene-d8	10.1	0.100	10	0	<u>1</u>	75	<u>5</u>				
Sum 4-Bromofiliorobenzene	10.1	0.100	10	0	101	75	7 3				
Qualifiers: B Analyte det	ected in the associated Method Bla	¥.	E Value ex	ceeds the instrume	ut calibration	range	- v	Analyte detected belo southe Pernvery onto	ow the PQL ide accented r	ecovery limits	

•

Spike Recovery outside accepted recovery limits

\$

RPD exceeds accepted precision limit

2

Page 10 of 10

B Analyte detected at the Practical Quantitation Limit (PQL) ND Not Detected at the MDC or RL 18-Nov-11

> <u>.</u> 46

Life S	cienc	ce Lab	orato	ries, In	<u>ر</u>				ANA	TYTI	CAL QC S	SUMN	AARY R]	EPORT
5854 Butte	srnut Dri	ive							Math	·þ.	SW8760R			
East Syrac	use, NY	13057	(315) 4	445-1900					Work	order:	K1110294			
CLIENT:	EA E	ngineering	Science an	td Technolog.	y				Proje	H	NYS DEC -	Autoha	IIS	
											ā	-Mo-	FCUSC	
Sample ID:	LCS-230:	24	SampType: Batch ID:	LCS P71/74	TestCode. Method:	SW8260B	ver units: Jigvi		Prep Dale. Analysis Date	10/28/2	011 Se	invo.	582256	
Instrument:	MSK 75		ColumnID:	Rtx-VMS										
	1						Parent							
l Analvie			о С	Sample tesuit	Par	SPK Added	Sample Result	%REC	LowLimit	HighLimit	RPD Ref Val	88	PD RPDLimit	Qual
Dichlorodiflu	oromethan	4		8.13	1.00	10	G	81	8	142				
Chiormetha	nne Nne	2		8.02	1.00	10	0	80	83	139				
Vinvi chloridi	2			8.09	1.00 00.1	10	0	81	7	136				
Bromometha	, ene			9.34	00. F	10	0	53	83	138				
Chloroethan	6			9.56	1.00	10	Ô	96	6 5	, 152 ,				
Trichlorofluo	romethane	1 1		9.35	1.00	10	0	94	S	159				
1.1-Dichloro	ethene			9.58	0.500	10	0	96	73	121				
1.1.2-Trichic	oro-1,2,2-tr	rifluoroethane		9.61	0.500	10	٥	<u> 3</u> 6	80	123				
Acetone	•			24.7	10.0	2	0	124	8	143				
Carbon disu	llîde			8.46	0.500	10	0	85	88	134				
Methy aceta	ate			16.6	5.00	5	0	166	8	141				S
Methylene d	hloride			9.92	2.00	10	0	66	69	122				
trans-1 2-Di	chloroethe	a		10.0	0.500	10	0	100	75	120				
Methyl tert-t	outh ether			12.2	1.00	0	o	<u>1</u> 2	£	127				
1.1-Dichioro	bethane			10.6	0.500	ę	0	106	62	122				
cis-1 2-Dich	vioroethene	a1		10.3	0.500	10	0	103	62	120				
2-Butanone				26.3	10.0	8	o	131	72	129				S
Chloroform				10.8	0.500	10	0	108	78	123				
1.1.1-Trichle	oroethane			10.9	0.500	10	0	109	75	131				
Cvclohexan	ų.			9.32	0.500	10	0	93	11	127				
Carbon tetra	achloride			10.9	0.500	1	0	109	7	137				
Benzene				10.2	0.500	10	0	102	8	120				
1.2-Dichlord	oethane			12.0	0.500	10	0	120	11	126				
Trichloroett	lene			10.3	0.500	10	0	103	6 2	121				
Methylcyclo	hexane			60.6	0.500	P	0	9	80	120				
1.2-Dichlor	opropane			10.3	0.500	5	0	5 <u>5</u>	8	123				
Bromodichi	loromethar	æ		11.3	0.500	10	0	113	ድ	131				
	į							and the first		,	Analyte detected ho	elow the P(
Qualifiers:	¢	Analyte detec	ared in the asso	ciated Method B.	lank	E value (∽क्रीत≎।।	7 G	Series Decourses on	a na	ead racculars limit	
	Q	Not Detected	at the Practics	al Quantitation L	imit (PQL)	R RPD c	xceeds accepted f	yrecusion lunar		0	spirke recovery ou			n
4	D	Not Detected	at the MDC o	r RL									~	Draw 1 of 1
تة 47		18-Nov-1.	1										7	n n n n n n

.

ಚ 47

Life Science Lal	boratories, l	nc.				ANA	TATIC	AL QC SI	UMMA	RY RE	PORT
5854 Butternut Drive						Metho	:pc	SW8260B			
East Syracuse, NY 13057	(315) 445-1900					Work	Order:	K1110294			
CLIENT: EA Engineering	g Science and Technol	ogy				Projec	Ŧ	NYS DEC - A	Autohaus		
Commission I CC 23024	SamnTune' LCS	TestCode	8260W OLN	14 Units: µ	g/L	Prep Date:		Runt	No: 230	24	
Client ID: 77772	Batch ID: R23024	Method:	SW8260B	1	I	Analysis Date:	10/28/201	1 Seq!	Vo: 582	256	
Instrument: MSK_75	ColumnID: Rtx-VMS										
	QC Sample			Parent Sample							
Analyte	Result	Par	SPK Added	Result	%REC	LowLimit	HighLimit F	cPD Ref Val	18 PD	RPDLimit	Qual
cis-1.3-Dichloropropene	11.3	0.500	10	0	113	78	124				
4-Methyl-2-pentanone	25.7	5.00	8	0	129	8	128				S
Totuene	10.1	0.500	10	0	101	8	120				
trans-1.3-Dichloropropene	11.9	0.500	10	2	119	72	127				
1.1.2-Trichtoroethane	11.2	0.500	10	0	112	8	124				
Tetrachloroethene	9.50	0.500	10	0	8	68	129				
2-Hexanone	22.6	5.00	8	0	113	65	129				
Dibromochloromethane	11.4	0.500	10	0	114	99	129				
1 2-Dihmmoethane	10.9	0.500	10	U	109	74	ā				
	9.83	0.500	10	U	98	80	120				
Citruthenzene	<u> 3</u> .65	0.500	1 0	U	97	80	120				
California (antal) Vulanas (antal)	28.4	1.00	90	U	96	78	120				
Shrene (com)	9.36	0.500	10	0	94	11	12				
Contractores Development	10.7	1.00	10	Ŭ	107	62	141				
endinitientii Isroninvithenzene	10.1	0.500	10	Ū	101	80	, 13				
1 4 2 2-Tetrachloroethane	11.4	0.500	10	Ū	114	. 73	131				
1.3-Dichlorobenzene	10.2	0.500	10	-	0 102	8	120				
1 4-Dichkrobenzene	9.80	0.500	10	-	8	80	12				
1 2-Dichlorobenzene	10.5	0.500	10	-	0 105	80	120				
1.2-Dibromo-3-chioropropane	13.0	5.00	6	-	130	69	125				'n
1.2.4 Trichlorobenzene	9.01	1.00	0	-	8	61	120				
Surr: 1.2-Dichloroethane-d4	12.0	0.100	10		1 X	15	1 28				
Surr: Toluene-d8	10.1	0.100	0		0 101	75	8				
Surr: 4-Bromofluorobenzene	10.1	0.100	10		0	5	129				
										·	
							ŀ				-
Oualifiers: B Analyte det	ected in the associated Metho	d Blank	E Value	exceeds the in	strument calibrati	on range	Υ.	nalyte detected belo	w the PQL	ہ۔ 1	
ND Not Detecte	d at the Practical Quantitatio	a Limit (PQL)	R RPD &	kceeds accepte	ed precision limit		20 20	pike Kecovery outsi	ide accepted r	scovery minus	
U Not Detects	d at the MDC or RL									à	01 Jul 10

ANALYTICAL QC SUMMARY REPORT

•

Page 2 of 10

18-Nov-11

ų, 48

41	A SAMPLE NO.	
VOLATILE METHOD	BLANK SUMMARY	
Lab Name: Life Science Laboratorie	Contract:	
Lab Code: LIFESCIE Case No.: EA	SAS No.: SDG No.: <u>K1110294</u>	<u>l</u>
Lab File ID: K6454.D	Lab Sample ID: MB-23024	
Date Analyzed: 10/28/2011	Time Analyzed: 9:15	
GC Column: <u>Rtx-VMS</u> ID: 0.25 (mm)	Heated Purge: (Y/N) <u>N</u>	
Instrument ID: MSK 75		

e.

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

Г	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	MSB-23024	MSB-23024	K6449.D	6:39
02	LCS-23024	LC 5-23024	K6449.D	6:39
03	828084-MW-08DMS	K1110294-005AMS	K6451.D	7:42
04	828084-MW-08DMSD	K1110294-005AMSD	K6452.D	8:13
05	828084-GP-09	K1110294-001A	K6458.D	11:20
06	828084-MW-08D	K1110294-005A	K6459.D	11:51
07	828084-MW-10	K1110294-002A	K6460.D	12:22
08	828084-MW-01	K1110294-003A	K6462.D	13:24
09	828084-MW-08S	K1110294-004A	K6463.D	13:55
10	828084-MW-11	K1110294-006A	K6464.D	14;26
11	828084-MW-12	K1110294-007A	K6465.D	14:57
12	828084-MW-DUP	K1110294-008A	K6466.D	15:28
13	Trip Blank	K1110294-009A	K6467.D	16:00

COMMENTS :

page <u>1</u> of <u>1</u>

8260W_0LM42

Life Sc	ience La	boratories, In	చ			ANALY	TICAL QC S	UMMARY]	REPORT
5854 Butteri	aut Drive					Method:	SW8260B		
East Syracu:	se, NY 13057	(315) 445-1900				Work Orde	IF: K1110294		
CLUENT:	EA Engineerin	g Science and Technology				Project:	NYS DEC -	Autohaus	
						Dran Date:	Rur	nNo: 23024	
Sample ID: N	AB-23024	SampType: MBLK	TestCode		M4 UIIIIS: hgir		Service Cor	4No: 682260	
Client ID: 2	ZZZZ .	Batch (D: R23024	Method:	SW8260B		Analysis Uate. IV			
Instrument: 1	ASK_75	ColumnID: Rtx-VMS							
					Parent				
Analyte		QC Sample Result	Pal	SPK Added	Result	%REC LowLimit HighLi	mit RPD Ref Val	%RPD RPDLI	nit Qual
Dichlorodifluor	omethane	QN	1.00						
Chloromethan	ð	QN	1.00						
Vinvi chloride		QN	1.00						
Bromomethan	ē	QN	1.00						
Chloroethane		QN	1.00						
Trichlorofluoro	methane	QN	1.00						
1,1-Dichloroet	hene	ON	0.500						
1.1.2-Trichlor	o-1,2,2-trifluoroetha	ne ND	0.500						
Acetone		QN	10.0						
Carbon disulfi	ide	ND	0.500						
Methyl acetat	~	Q	5.00						
Methylene chi	loride	QN	2.00						
trans-1,2-Dicl	hloroethene	QN	0.500						
Methyl tert-bu	ityl ether	QN	1.00						
1.1-Dichloroe	thane	QN	0.500						
cis-1,2-Dichle	proethene	QN	0.500						
2-Butanone		QN	10.0						
Chloroform		QN	0.500						
1.1.1-Trichloi	roethane	QN	0.500						
Cvclohexane		QN	0.500						
Carbon tetrac	chloride	QN	0.500						
Benzene		QN	0.500						
1,2-Dichlaroe	sthane	QN	0.500						
Trichloroethe	ine	Q	0.500						
Methylcycloh	lexane	an	0.500					-	
1,2-Dichloro	propane	QN	0.500						
Bramodichio	romethane	QN	0.500	-					
					and a standar was	ent celibration range	J Analyte detected be	elow the PQL	
Qualifiers:	B Analyte de	stected in the associated Method B	lank · · · · · · · ·	E Vauut	exocetts une une accented are	kill the second s	S Spike Recovery out	tside accepted recovery	imits
	ND Not Detect	ted at the Practical Quantitation L	innit (PQL)	K KU	exteens which has		•	I	
ļ	U Not Detect	ted at the MDC or RL							Page 7 of 10
<u>਼ੁ</u> 50	18-Nov-	-11							0

۰.

.

•

<u>ii</u> 50

Life Scier	nce La	boratories, Inc	4				ANAL	YTICAL	oc sur	MMAR	Y REF	ORT
5854 Butternut I	Drive						Method	MS .	8260B			
East Syracuse, P	VY 13057	(315) 445-1900					Work O	rder: Kl	110294			
CLIENT: EA	Engineerin	g Science and Technology					Project:	λΝ	S DEC - Aut	ohaus		
)))				Harris and the second se		ron Dato		RunNo.	23024		
Sample ID: MB-23	102 4	SampType: MBLK	lestCode: Mathod:	SW8260B	Hand International Andrews	- <	nalysis Date:	10/28/2011	SeqNo:	582260		
Client ID: ZZZZ	75	ColumnID: Rtx-VMS										
)				Parent							
		QC Sample			Sample		I mul imit Hic	th imit RPD F	tef Val	%RPD RF	DLimit	Qual
Analyte		Result	PQL	SPK Added	Result							
cis-1,3-Dichloroprot	cene contraction of the contract	QN	0.500									
4-Methyl-2-pentano	ne	QN	2.00									
Toluene		Q	0.500									
trans-1,3-Dichloropi	ropene	QN	0.500									
1,1,2-Trichloroethar	Эс	QN	0.500									
Tetrachloroethene		QN	0.500									
2-Hexanone		QN	5.00									
Dibromochlarometh	ane	QN	0.500									
1,2-Dibromoethane		QN	0.500									
Chlorobenzene		ON	0.500									
Ethvlbenzene		QN	0.500									
Xvienes (total)		QN	1.00									
Styrene		ON	0.500									
Bromoform		QN	1.00									
Isopropylbenzene		UN	0.500									
1.1.2.2-Tetrachioro	ethane	QN	0.500									
1, 3-Dichlorobenzer	Ъ.	QN	0.500									
1 4-Dichlorobenzei	Ă	QN	0.500									
1.2-Dichlorobenzer	ېو	QN	0.500									
1.2-Dibromo-3-chik	oropropane	QN	5.00									
1 2 A Trichlomhan		QN	1.00 1									
Sur 1 2-Dichlo	roethane-d4	11.5	0.100	1 0	0	115	75	128				
Survey Training	α	10.4	0.100	10	o	104	75	125				
Surr: 4-Bromofil	uorobenzene	12.0	0.100	10	0	120	75	125				
Qualificrs: E	3 Analyte de	tected in the associated Mcthod Bl	ank	E Value	exceeds the instr	ument calibration	range	J Analyt S Snike]	e detected below i Recovery outside	the PQL accepted recov	rery limits	
Z'	D Not Detect	ed at the Practical Quantitation Li	min (PQL)	K KFUC	XOCOOS AUCTORIO			, , ,			•	
້ 51	I NOI LICIUM	dalue mix a al									Pa	ge 8 of 10
5												

:: 51

CLIENT SAMPLE NO.

Γ

Form 1 TIC Volatile Organic Compounds by GC/MS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

		IDVINITADDI IDDVITI	LD COLLEGUED	
Lab Name:	Life Science	Laboratories, Inc.	Contract:	MB-23024
Lab Code:	LIFESCIENCES	Case No.: <u>EA</u>	5AS No.:	SDG No.: <u>K1110294</u>
Matrix: (soi)	l/water)	WATER	Lab Sample I	ID: <u>MB-23024</u>
Sample wt/vo	1: <u>10</u>	(g/mL) <u>ML</u>	Lab File ID:	<u>K6454.D</u>
Level: I	JOW		Date Receive	ed:
% Moisture: 1	not dec.		Date Analyze	ed: <u>10/28/2011</u>
GC Column: H	Rtx-VMS	ID: <u>0.25</u> (mm)	Dilution Fac	tor: <u>1.00</u>
Extract Volu	me:	(µ1)		

Number	TICs found:	0	CONCENTRATIO	N UNITS:	UG/L	
	CAS NUMBER		COMPOUND NAME	RT	EST.CONC.	Q
				+		
ļ						
		r I				

.

FORM I TIC 9 SW8260B

.

8

INTERNAL STANDARD AREA AND RT SUMMARY

Lab	Name:	Life Science	e Labo	ratories, Inc.			SDG No.:	<u>K1110294</u>			
Lab Code:		LIFESCIEN	CESS	X							
Lab File ID (Standard):				<u>K6</u>		50.D Date Analyzed		10/28/2011			
Inst	rument ID:	MS	K_75				Time Analyzed:	<u>7:11</u>	<u>7:11</u>		
GC Column:		<u>Rtx-VMS</u> ID:		<u>0.25</u>	(mm)		Heated Purge: (Y	/N) <u>h</u>	N		
				IS1		IS2		153	1 1		
				AREA #	RT#	AREA #	RT#	AREA #	RT #		
	12 HOUR STD		1.	2247691	11.89	944637	16.02	745718	19.36		
	UPPER LIMIT			4495382	12.39	1889274	16.52	1 491 436	19.86		
	LOWER LIMIT			1123846	11.39	472319	15.52	372859	18.86		
	SAMPLE										
!	1	NO.									
01	MSB-23024 (A	ASB-23024)		2245167	11.89	941639	16.02	735023	19.36		
02	LCS-23024 (LCS-23024)		ļ	2245167	11.89	941639	16.02	735023	19.36		1
03	03 828084-MW-08DMS			2225295	11.88	901080	16.02	728152	19.36		
04	(K1110294-005AMS) 04 828084-MW-08DMSD (K1110294-0054MSD)			2430651	11.88	984065	16.02	796598	19.36		
05	05 MB-23024 (MB-23024)		1	2218606	11.88	893177	16.03	587975	19.36		
06	06 828084-GP-09 (K1110294-			2345511	11.88	924103	16.03	740372	19.36		
07 828084-MVV-08D (K111029- 005A)		08D (K1110294-	•	2232253	11.88	900977	16.03	600303	19.36		}
08 828084-MW-10 (K1110294 002A)		IO (K1110294-		2127473	11.88	863901	16.02	553337	19.38		
09 828084-MW-01 003A)		01 (K1110294-		2287110	11.88	937909	16.02	633333	19.36		}
10 828084-MW-0 004A)		08S (K1110294-	·	2179224	11.88	894572	16.02	582222	19,36		
11 828084-MW-1 005A)		11 (K1110294-		2214269	11.88	870010	16.02	551627	19.36	. 	
12 828084-MW-1 007A)		12 (K1110294-		2417776	11.88	969921	16.03	582550	19.36	ļ	
13 828084-MW-C 008A)		OUP (K1110294	r	2348274	11.88	951626	16.02	633423	19.36		
14 Trip Blank (K1		1110294-009A)		2222688	11.88	870425	16.02	538472	19.36	<u> </u>	<u> </u>

S1 = Fluorobenzene

IS2 = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

IS3 = 1,4-Dichlorobenzene-d4

SW8260B

Appendix D

Waste Manifest

	Ploa			ENVIRONMENTAL PRODUCTS & SERVICES OF VERMONT, INC.		24-Hou	ur Emergency Pho 1-80	ne Numbe 10-843-8265				
						1. Documen	t No.	2. Page 1				
		3. Generator's Name and Mailing Address EA ENGINEERING 6712 BROOKLAWN PARKWAY SYRACUSE NY 13211 4. Generator's Phone (315) 431-4610	SYR4665 of 1 Site Address 99 MARSH ROAD ROCHESTER NY 14645									
		5. Trensporter 1 Company Name ENVIRONMENTAL PROD & SVCS OF V	A. State Tran	nsporter's ID 7618	<u> </u>							
		7. Transporter 2 Company Name	8.	111100011070	C. State Transporter's ID							
i		9. Designated Facility Name and Site Address ENVIRONMENTAL PROD & SVCS OF V	10 T, INC		D. Transporter 2 Phone E. State Facility's ID F. Facility's Phone 800 843-8265							
		532 STATE FAIR BLVD. SYRACUSE NY 13204 HM		NYR000115733								
					12. Co No.	ntainers Type	13. Total Quantity	14. Unit Wt./Vol.				
		^{a.} Non-RCRA, Non-DOT SOLIDS, N.O. CONTAMINATED SOIL)	S. (TRA	CE ORGANICS	03	DM-	1200-	р				
	G E N E	ь.										
	R A T	с.										
	O R	d.										
SILL OF LADING		G. Additional Descriptions for Materials Listed Above a. APP #:1111028-DT, 3 x 15GAL b. d. JOB #N10226 15. Special Handling Instructions and Additional Information 1)										
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this shipment are fully and accurately described and are in all respects in proper condition for transport. The materials described on this document are not subject to federal manifest requirements.											
		Rob Reference on behalf of NYSDE	C.	Signature Kolert Letersin			Month	Day Year				
	TRANS	17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Output Ou		Signature			Month	Date Day Year 04///				
	FOR TER	18. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name		Signature			Month	Date Day Year				
	F A C I L I T	19. Discrepancy Indication Space 20. Facility Owner or Operator; Certification of receipt of the materials covered by this bill of lading except as noted in item 19.										
	Printed Typed Name Stanks and Significant Stanks and St											