2014 Periodic Review Report

January 2014 - December 2014

Autohaus of Rochester Site (828084)

Monroe County, Perinton, New York

This report was prepared by William B. Welling, Engineering Geologist 2, NYSDEC. 2014 data was provided by Haley & Aldrich and 99 Marsh Road Real Estate Holdings LLC

March 2015

Table of Contents

List of Abbreviations	. 2
Executive Summary	. 3
Site Overview	. 4
Evaluation of Remedy Performance, Effectiveness, and Protectiveness	. 5
Status of Institutional Controls and Engineering Controls	. 5
Institutional Control	. 5
Engineering Control	. 5
Groundwater Monitoring	.6
Groundwater Analytical Data	6
2014 Analytical Results	. 7
Site Activity in 2014	. 8
Conclusions and Recommendations	. 8

FIGURES

Figure 1 – Site Location Map
Figure 2 – Site Map Showing Sampling Locations
Figure 3 – Groundwater Elevations, September 2014.
Figure 4 – Volatile Organic Compounds in Groundwater Samples, 2014
Figure 5 – GP-09 Volatile Compounds, 2007 – 2014, ug/l

TABLES

Table 1 – Summary Of Volatile Organic Compounds In Groundwater October 2007 Table 2 – Summary Of Volatile Organic Compounds In Groundwater October 2008 Table 3 – Summary Of Volatile Organic Compounds In Groundwater April 2009 Table 4 – Summary Of Volatile Organic Compounds In Groundwater December 2010 Table 5 – Summary Of Volatile Organic Compounds In Groundwater October 2011 Table 6 – Summary Of Volatile Organic Compounds In Groundwater November 2013 Table 7 – Summary Of Volatile Organic Compounds In Groundwater September 2014 Table 8 – Summary Of Volatile Organic Compounds In Groundwater September 2014

APPENDICES

Appendix 1 – IC/EC Certification Appendix 2 – Boring Logs and Well Completion Details

List of Abbreviations

AWQS	ambient water quality standards
EA	EA Engineering, P.C. and its affiliate EA Science and
	Technology
EC	engineering control
GP	small-diameter (1") well
IC	institutional control
IRM	Interim remedial measure
LTM	long-term monitoring
MW	monitoring well
NYSDEC	New York State Department of Environmental Conservation
PRR	periodic review report
QA/QC	quality assurance / quality control
RAO	remedial action objectives
ROD	record of decision
SMP	site management plan
USEPA	United States Environmental Protection Agency

2014 Periodic Review Report Autohaus of Rochester Site ID No. 828084

Prepared by Will Welling, Engineering Geologist 2 March 2015

Executive Summary

The purpose of this periodic review report (PRR) is to provide certification and sufficient documentation that the remedy remains in place, is performing properly and effectively, and is protective of public health and the environment.

In April 2014, Mary Elizabeth Van Bortel, as agent for 99 Marsh Road Real Estate Holdings LLC signed a consent order, Index No. CO 8-20130828-76, that defined its role as a remediation volunteer. At approximately the same time, 99 Marsh Road Real Estate Holdings LLC also purchased the property from Pat Cortese, operating as "99 Marsh Road, LLC." Associated with the transfer of ownership, in August, Haley & Aldrich submitted on behalf of the new owner the "Supplemental Remedial Action Work Plan – Chemical Oxidation Injection" for the Autohaus site. Implementation of the work plan has continued through the remainder of 2014.

The former Autohaus of Rochester site is located at 99 Marsh Road in the Village of East Rochester, New York and covers approximately 1.6 acres. The site is currently listed by the NYSDEC as a Class 4 inactive hazardous waste site. The site is surrounded by both commercial and residential development. In 1989 and 1990, subsurface investigations revealed the presence of volatile organic compounds (VOCs) in the groundwater adjacent to a drywell located in the parking area northeast of the Autohaus building. The drywell and surrounding soil were removed in 1992 under an interim remedial measure (IRM). A post-IRM site characterization, conducted in 1997, indicated that the majority of the impacted soil had been removed by the IRM. Subsequent groundwater monitoring indicated that the VOC concentrations in groundwater had decreased and the areal extent of impacted groundwater had not increased.

The Record of Decision (ROD) dated March 1998 authorized the selected remedy of no further action with continued monitoring in order to confirm the decreasing trend of VOC concentrations in groundwater. In 2014, groundwater samples were collected from nine monitoring wells and analyzed for VOCs. During the period from 2007 - 2014, two VOCs were detected at concentrations greater than NYSDEC Ambient Water Quality Standards (AWQS) with selected compounds sporadically detected at concentrations greater than their corresponding AWQS. Detected contaminant concentrations continue to gradually decline except at monitoring well GP-09 whose concentration of 1,2-dichlorobenzene is roughly the same from year to year.

1,2-dichlorobenzene at GP-09 remains above the groundwater standard. Based on groundwater monitoring results from Fall 2007 to Fall 2014, there is no indication that the concentrations of contaminants in groundwater at GP-09 are increasing or decreasing. Continuing groundwater monitoring is recommended pending outcome of the supplemental remediation intended to address 1,2-dichlorobenzene at GP-09.

Site Overview

The former Autohaus of Rochester site is currently listed by the NYSDEC as a Class 4 inactive hazardous waste site located at 99 Marsh Road in the Town of Perinton, NY (Figure 1). The property is zoned commercial. The 1.6 acre site property parcel is situated in two local municipalities: the Town of Perinton and the Village of East Rochester. Overlapping approximately twenty-five feet, the site straddles the East Rochester boundary on the west. East of the embankment on the western side, the Autohaus site is flat and contains an approximately 9,500 square foot former automobile showroom/service building. The Autohaus building and parking lots are used by the neighboring car dealership for vehicle storage. The westernmost twenty-five feet of the site are covered in brushy, scrub vegetation and the land rises abruptly twenty feet to the boundary of the Wells Landing housing development. All but a small area of grass in front of the building and the scrub-covered slope is paved.

The Autohaus of Rochester site was formerly a luxury car dealership. The East Rochester public water supply well field was formerly located on the adjacent parcel on the west side. After the well field was closed, the Village of East Rochester sold the thickly wooded land to a residential developer. In 2006 the woods were cleared and new home construction began.

In 1989 and 1990, subsurface investigations revealed the presence of VOCs in the groundwater adjacent to a drywell located beneath the parking area northwest of the Autohaus building. The drywell was connected to the shop floor drain in the building. An interim remedial measure (IRM), consisting of drywell and soil removal, was conducted in 1992. The adjacent public water supply well field was temporarily closed in 1992 and permanently closed in 1995 for reasons not connected to the Autohaus site. A post-IRM site characterization conducted in 1997 indicated that the majority of the impacted soil had been removed by the IRM. Subsequent groundwater monitoring indicated that the VOC concentration in groundwater had decreased and the areal extent of impacted groundwater had not increased.

The ROD prescribed a selected remedy of no further action with continued monitoring in order to confirm the decreasing trend of VOC concentrations in groundwater. In April 2014, new owners 99 Marsh Road Real Estate Holdings LLC signed a consent order that outlined its role as a volunteer in performing limited site management with additional remedial action beyond what was agreed to in the ROD. In April 99 Marsh Road Real Estate Holdings LLC also purchased the 99 Marsh Road property from Mr. Pat Cortese, the individual principal behind "99 Marsh Road, LLC."

In August 2012, the VanBortels submitted "Supplemental Remedial Action Work Plan – Chemical Oxidation Injection" for the Autohaus site. Implementation of the scope started in 2014 and will continue into 2015.

Evaluation of Remedy Performance, Effectiveness, and Protectiveness

The remedy for this site consists of "no further action" combined with groundwater monitoring to confirm that there continues to be a trend of declining contaminant concentrations in groundwater. Additional remedial measures are being performed by the new owners to clean up the groundwater in an effort to allow the delisting of the site. During the 2014 certification period, the site remedy has remained protective of human health and the environment. Certification documentation is included as Appendix 1.

Status of Institutional Controls and Engineering Controls

The next several sections pertain to the two types of remedial controls at the Autohaus site. The certification of these controls is located in Appendix 1. An institutional control (IC) is a legal measure that limits human exposure by restricting activity, use, and access to properties with residual contamination. The IC at the Autohaus site is the site management plan (SMP) which provides detailed instructions for protective and proper care of the site. An engineering control (EC) is a physical means to eliminate or reduce exposure to a chemical or physical hazard through the use or substitution of engineered machinery or equipment. The Autohaus site uses a network of monitoring wells to access the groundwater in order to measure the height of the water level below ground and to take samples to characterize the groundwater quality.

Institutional Control

The site parcel bears Monroe County parcel ID number 152.13-3-4. The institutional control for the site parcel consists of the site management plan which includes a monitoring plan. The SMP was finalized on March 29, 2013.

The Record of Decision, 1998 (ROD), states, "the NYSDEC has selected no further action as the remedy for this site. The remedy will continue monitoring the groundwater to confirm the current trend of declining groundwater contaminant concentrations in the wells at the site." This institutional control is still in effect in 2014. The Site Management Plan which contains the long-term monitoring plan is being adhered to for this parcel.

Engineering Control

A series of monitoring wells are used for long-term monitoring at the Autohaus site. As physical objects, these wells are the only engineered component of the remedy which requires inspection and maintenance periodically. There are nine wells in the network. Two of the monitoring wells in 2013 were in need repair or decommissioning. MW-08S had an obstruction below the water table which prevented a bailer or water sampling tubing from going down the well to remove water. This was not an issue in 2014; the well was accessible and successfully sampled. The second well requiring maintenance in 2013 was GP-09. In 2014 this well received a new tight-fitting riser cap.

New monitoring wells MW-101 and MW-102 were added in August 2014. Soil Boring SB-04 was converted into a 2-inch diameter PVC monitoring well (MW-101) and SB-05 was converted into MW-102. Both wells were installed in 29.8 foot boreholes with 10 feet of 10-slot screen from 29.5 to 19.5 feet. The wells were completed with 8-inch flush mounted road boxes.

Monitoring Well / Piezometer	Measuring Point Elevation				Water Elev	vation (ft A	MSL)	
	(ft AMSL)	October	October	April	December	October	November	September
		2007	2008	2009	2010	2011	2013	2014
MW-01	419.24	410.21	410.04	410.84	409	410.05	409.53	409.74
MW-08S	420.4	408.14	407.77	410.4	408.26	409.1	408.36	407.94
MW-08D	421.13	405.71	405.13	406.93	405.25	406.19	405.71	405.79
MW-09	430.78	406.05	405.48	406.15	(a)	(a)	(a)	(a)
MW-10	418.13	409.53	409.12	410.83	408.47	409.46	408.81	409.48
GP-09	418.35	405.83	405.19	406.37	405.5	406.64	405.93	407.01
MW-11	417.45	(b)	(b)	(b)	405.96	407.16	407.08	407.24
MW-12	417.93	(b)	(b)	(b)	406.64	406.73	408.48	409.16
MW-101 (c)	418.35	(d)	(d)	(d)	(d)	(d)	(d)	406.09
MW-102 (c)	418.35	(d)	(d)	(d)	(d)	(d)	(d)	406.3
	nitoring well N				-			ent.
(c) Mo	nitoring wells nitoring wells nitoring wells	MW-101 an	d MW-102	ground ele	evation is assu	umed to be	the same as C	

Groundwater Monitoring

NOTE: AMSL = Above mean sea level

Groundwater Analytical Data

Samples were collected on September 8, 2014, utilizing low flow techniques. The wells were purged using a bladder pump until aquifer parameters (pH, conductivity, dissolved oxygen, turbidity and ORP/eH) stabilized. Samples were collected and submitted to Paradigm Environmental Services, Inc. for analysis of VOCs using U.S. Environmental Protection Agency (USEPA) Method 8260C in accordance with the NYSDEC Analytical Services Protocol. Additional analysis was conducted for Iron (total and dissolved), sulfate and Total Organic Carbon (TOC) to assist in determining oxidant demand for the remedial enhancement.

Analytical results for aqueous and associated quality assurance/quality control (QA/QC) samples collected from site related monitoring wells were compared to NYSDEC AWQS and guidance

values from the Division of Water and Technical and Operational Guidance Series 1.1.1 (August 1999) for Class GA groundwater.

2014 Analytical Results

Analytical results for 2014 are tabulated on Table 7. Analytical results from each annual sampling event are summarized in Tables 1 through 7 and the 2014 detections in groundwater are mapped on Figure 4 and plotted over time on Figure 5. The primary contaminants of concern at this site are the volatile organic compounds (VOCs): acetone, methylene chloride, tetrachloroethene; l,l,l-trichloroethane; benzene; toluene; xylenes; ethylbenzene; and 1,2-dichlorobenzene. *Only two of these compounds were detected in groundwater in 2014*.

The contaminants of concern and a few others have been detected sporadically above their corresponding AWQS but only 1,2-dichlorobenzene has been consistently detected greater than the AWQS of 3 ug/l. In 2014 this compound was found in monitoring wells GP-09 and MW-102. MW-101 and MW-102 were installed in 2014. MW-102 showed 1,2-dichlorobenzene at 82.6 ug/l and 1,4-dichlorobenzene at 7.35 ug/l -- both at concentrations above the groundwater standard of 3 ug/l for each of them. Monitoring well MW-101 and the other eight wells showed no detectable volatile organic groundwater contamination. Of the two compounds detected in GP-09 in 2014, only 1,2-dichlorobenzene at a concentration of 24.7 ug/l exceeded the groundwater standard of 3 ug/l. The results are slightly lower than we have seen at this location since 2007.

The contaminants of concern that exceed NYSDEC AWQS are limited to wells GP-09 and MW-102 which are in close proximity to each other. Migration has not been observed in nearby wells. Both aerobic and anaerobic biodegradation pathways exist for BTEX and 1,2-dichlorobenzene. A targeted remedial action could reduce contaminants of concern to less than NYSDEC AWQS at which point the site could be considered for delisting.

The following chart summarizes the 2014 data and Figure 4 shows this data plotted on the site map. Figure 5 shows the values plotted chronologically since 2007.

Detected VO	Cs in Groundwater,	Autohaus	of Roche	ester, 20)14
Well	Compound	Value (ug/l)	Reporting Limit, ug/l	MDL ug/l	Class GA GW Standard ug/l
GP-09	1,2-Dichlorobenzene	24.7	2		3
	Ethylbenzene	2.46	2		5
MW-102	1,2-Dichlorobenzene	82.6	2		3
	1,4-Dichlorobenzene	7.35	2		3

Site Activity in 2014

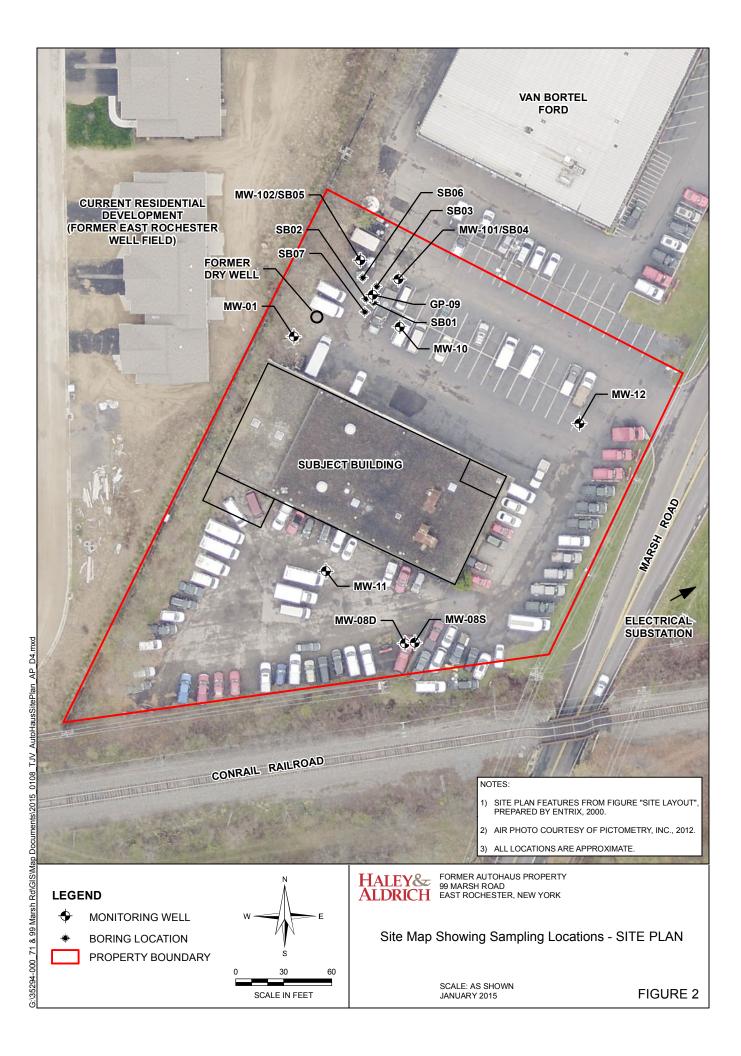
In accordance with the Supplemental Remedial Action Work Plan submitted to NYSDEC by Haley & Aldrich and the current groundwater data, the site is undergoing the proposed remedial enhancement. The enhancement comprises targeted in situ remediation through chemical oxidation (and indirectly, enhanced bioremediation) to expedite reduction in concentrations of COCs to less than AWQS. During the 2014 reporting period, the additional remedial measures undertaken by the owner included seven soil borings and installing two new groundwater monitoring wells down-gradient of GP-9 (to the north). The wells will be used to evaluate the oxidation and biological breakdown of the chemicals of concern in the vicinity of GP-09. Boring logs and well completion details are included in this report as Appendix 2.

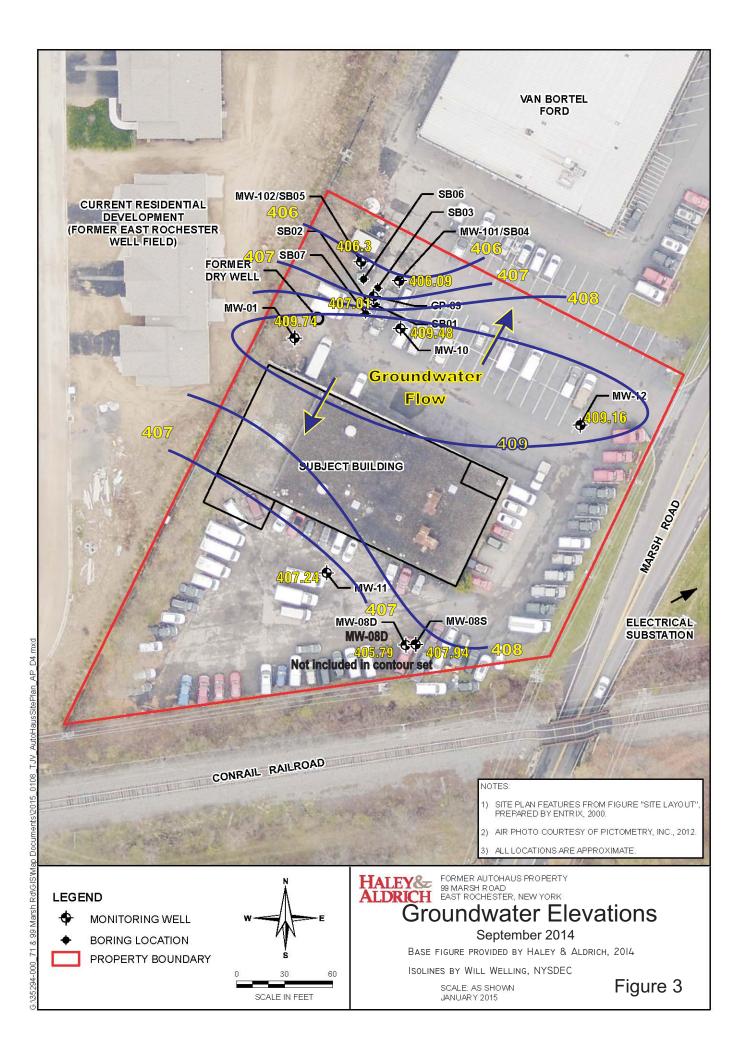
Results of soil testing are included as Table 8. Four volatile organic compounds (VOCs) were detected in seven soil borings. Acetone, xylenes, methylene chloride and ethylbenzene were detected. Only methylene chloride was detected above guidance values.

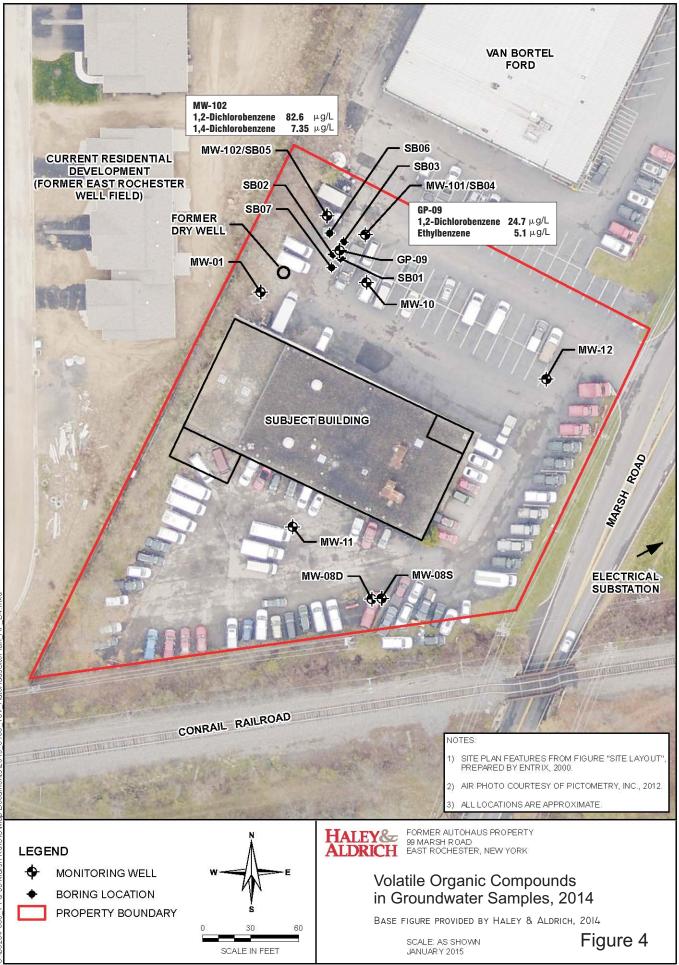
The injection is currently planned to be performed in February 2015, with monitoring of the supplemental remediation to follow in 2015.

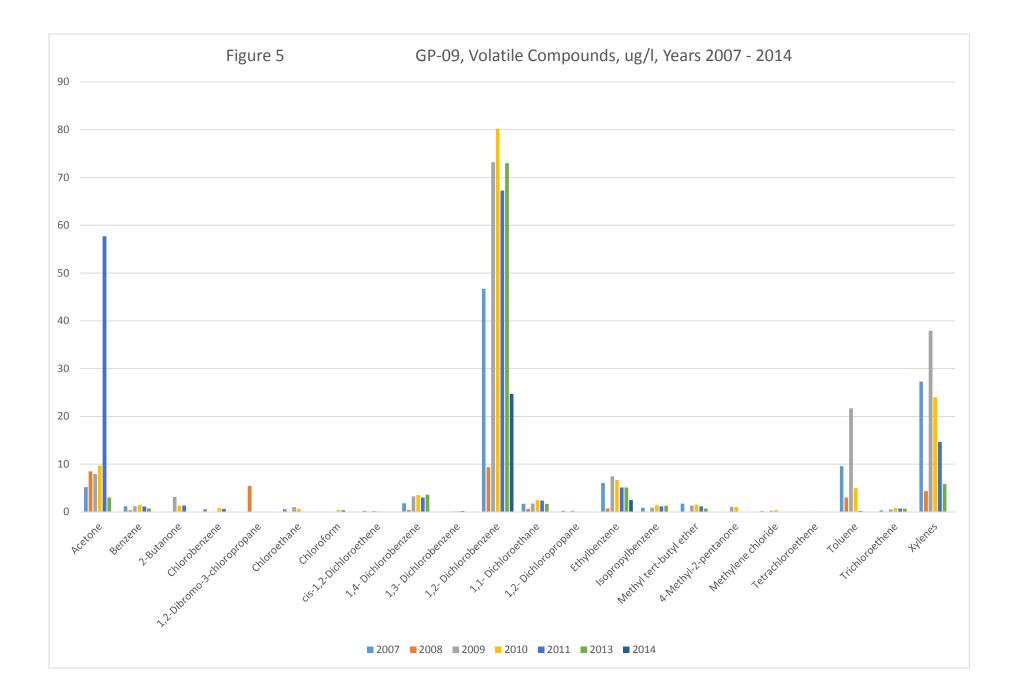
Conclusions and Recommendations

Based upon the current SMP and sampling results from the 2014 annual monitoring event, this section provides conclusions and recommendations for future site management. Any significant changes recommended and approved by the NYSDEC will be incorporated into an amended SMP.


- GP-09 was repaired by supplying and installing a new tight-fitting riser cap. No further repairs are needed at this time, but inspections of wells should continue on a yearly basis.
- Two new monitoring wells, MW-101 and MW-102, have been added to the well array. These additional points allow for a closer assessment of contaminant trends.
- Based upon the continued observation of contaminants in the groundwater it is recommended that the planned in-situ remediation continue to be performed.
- Based upon analytical data collected to date, this site currently meets the goals stated in the ROD of confirming the trend of declining groundwater contaminant concentrations within the wells at the site. As was stated in the 2011 and 2013 PRRs, some contaminants continue to remain in groundwater at levels exceeding AWQS standards for Class GA groundwater. 1,2-Dichlorobenzene is consistently detected in groundwater at concentrations greater than its AWQS in the vicinity of well GP-09. It is recommended that groundwater monitoring should continue.




Figure 1, Site Location Map Autohaus of Rochester - Site ID No. 828084 0 100 200 400 Feet


Municipal Boundaries in Orange

figure_1_site_location_map.mxd

TABLES

Table 1 – Summary Of Volatile Organic Compounds In Groundwater October 2007
Table 2 – Summary Of Volatile Organic Compounds In Groundwater October 2008
Table 3 – Summary Of Volatile Organic Compounds In Groundwater April 2009
Table 4 – Summary Of Volatile Organic Compounds In Groundwater December 2010
Table 5 – Summary Of Volatile Organic Compounds In Groundwater October 2011
Table 6 – Summary Of Volatile Organic Compounds In Groundwater November 2013
Table 7 – Summary Of Volatile Organic Compounds In Groundwater September 2014

TABLE 1 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER OCTOBER 2007

	Sample ID	8-24-084-MW	-01	8-28-084-MW	-08S	8-28-084-MW-	-08D	8-24-084-MW	-09	8-24-084-MW	-10	NYSDEC Ambient
	Lab ID	0710091-005		0710091-00		0710091-003		0710091-004		0710091-001		Water Quality
D (1)	Sample Type	Groundwate	er	Groundwat	er	Groundwate		Groundwate	r	Groundwate	r	Standard
Parameter List USEPA Method 8260B	Sample Date	10/11/2007		10/11/200		10/11/2007		10/11/2007		10/11/2007		Class GA (µg/L)
Acetone	μg/L	(<10)	U	(<10)	U	(<10)	U	(<10)	U	(<10)	U	50 (g)
Benzene	μg/L	(<0.5)	U	(<10)	U	(<0.5)	U	1.19	0	(<0.5)	U	1 (s)
Chlorobenzene	μg/L	(<0.5)	Ŭ	(<0.5)	Ŭ	(<0.5)	Ū	(<0.5)	U	(<0.5)	U	5 (s)
Chloroethane	μg/L	(<1)	Ŭ	(<1)	Ū	(<1)	Ū	(<1)	Ū	(<1)	Ū	5 (s)
cis-1,2-Dichloroethene	μg/L	0.5		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
1,4- Dichlorobenzene	μg/L	2.13		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,3- Dichlorobenzene	μg/L	0.51		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,2- Dichlorobenzene	μg/L	1.7		(<0.5)	U	(<0.5)	U	2.6		(<0.5)	U	3 (s)
1,1- Dichloroethane	µg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	5.77		(<0.5)	U	5 (s)
1,2- Dichloropropane	µg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	1 (s)
Ethylbenzene	µg/L	0.1	J	(<0.5)	U	(<0.5)	U	1.38		(<0.5)	U	5 (s)
Isopropylbenzene	μg/L	0.24	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Methyl tert-butyl ether	µg/L	(<1)	U	(<1)	U	(<1)	U	0.69		(<1)	U	
Methylene chloride	µg/L	(<2)	U	(<2)	U	(<2)	U	(<2)	U	(<2)	U	5 (s)
Tetrachloroethene	μg/L	3.06		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Toluene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Trichloroethene	μg/L	0.23	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Xylenes (total)	μg/L	(<1)	U	(<1)	U	(<1)	U	1.94		(<1)	U	5 (s)
							-					
	Sample ID	8-24-084-GP	-09	8-24-084-Du	p ^(a)	Trip Blank	:					NYSDEC Ambient
	Lab ID	0710091-006	iΑ	0710091-00	7A	0710091-008	3A					Water Quality
	Sample Type	Groundwate	or.	Groundwat	er	Groundwate	۶r					Standard
Parameter List							.1					Class GA
USEPA Method 8260B	Sample Date	10/11/2007		10/11/200		6/26/2007						(µg/L)
Acetone	μg/L	5.16	J	1.03	J	(<10)	U					50 (g)
Benzene	μg/L	1.16		(<0.5)	U	(<0.5)	U					1 (s)
Chlorobenzene	μg/L	0.59	-	(<0.5)	U	(<0.5)	U					5 (s)
Chloroethane	μg/L	0.58	J	(<1)	U	(<1)	U					5 (s)
cis-1,2-Dichloroethene	μg/L	0.22	J	(<0.5)	U	(<0.5)	U					5 (s)
1,4- Dichlorobenzene	μg/L	1.8	U	(<0.5)	U	(<0.5)	U U					3 (s)
1,3- Dichlorobenzene	μg/L	(<0.5)	-	(<0.5)		(<0.5)	-					3 (s)
1,2- Dichlorobenzene	μg/L	46.70	D	(<0.5)	U	(<0.5)	U					3 (s)
1,1- Dichloroethane	μg/L	1.68 0.27	J	(<0.5)	U	(<0.5)	U					5 (s)
1,2- Dichloropropane	μg/L		J	(<0.5)	U	(<0.5)	U					1 (s)
Ethylbenzene	μg/L	6.03 0.84		(<0.5) (<0.5)	U	(<0.5)	U					5 (s)
Isopropylbenzene	μg/L				U		U					5 (s)
Methyl tert-butyl ether Methylene chloride	μg/L μg/L	1.73 0.15	J	(<1)	U	(<1) 1.16	J					5 (s)
Tetrachloroethene	μg/L μg/L	(<0.5)	U	(<2)	U	(<0.5)	J U					5 (s)
Toluene	μg/L μg/L	9.57	U	(<0.5)	U	(<0.5)	U					5 (s)
Trichloroethene	101	0.32	J		U	(<0.5)	U					5 (s)
Xylenes (total)	μg/L μg/L	27.3	1	(<0.5)	U	(<0.5)	U					5 (s)
	4-MW-08S invironmental Protect artment of Environ	nental Conservat	bove				of the	analyte in the sa	mple.			

Analytical data results provided by Life Science Laboratories. Data Validation completed by Environmental Data Validation, Inc. Only analytes that had at least one detection from the data set are shown. **Bold** values indicate that the analyte was detected above the NYSDEC AWQS. (g) Value is listed as a guidance value. (s) Value is listed as a standard value.

TABLE 2 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER OCTOBER 2008

	Sample ID	8-24-084-MV		8-28-084-MW		8-28-084-MW-		8-24-084-MW		8-24-084-MV		NYSDEC Ambient Water Quality
	Lab ID	0810111-00		0810111-00		0810111-003		0810111-004		0810111-00		Standard
Parameter List	Sample Type	Groundwat	er	Groundwat	er	Groundwate	er	Groundwate	r	Groundwat	er	Class GA
USEPA Method 8260B	Sample Date	10/14/200	8	10/14/200	8	10/14/2008	8	10/14/2008		10/14/200	8	(µg/L)
Acetone	µg/L	(<10)	U	(<10)	U	(<10)	U	(<10)	U	(<10)	U	50 (g)
Benzene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	1 (s)
1,2- Dibromo-3-chloropropane	µg/L	(<5)	U	(<5)	U	(<5)	U	(<5)	U	(<5)	U	0.04 (s)
1,4- Dichlorobenzene	μg/L	0.51		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,2- Dichlorobenzene	μg/L	0.25	J	(<0.5)	U	(<0.5)	U	0.16	J	(<0.5)	U	3 s)
1,1- Dichloroethane	µg/L	0.24	J	(<0.5)	U	(<0.5)	U	2.7		(<0.5)	U	5 (s)
cis-1,2- Dichloroethene	µg/L	0.26	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Ethylbenzene	µg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Methyl tert-butyl ether	µg/L	(<1)	U	(<1)	U	(<1)	U	0.75	J	(<1)	U	
Tetrachloroethene	µg/L	1.72		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Toluene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Trichloroethene	μg/L	0.24	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Xylenes (total)	μg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	5 (s)
					(a)		_					
	Sample ID	8-24-084-GI	P-09	8-24-084-Du	ıp ^(u)	Trip Blank	C C					NYSDEC Ambient
	Lab ID	0810111-00	5A	0810111-00	7A	0810111-008	8A					Water Quality
Parameter List	Sample Type	Groundwat	er	Groundwat	er	Groundwate	er					Standard Class GA
USEPA Method 8260B	Sample Date	10/14/200	8	10/14/200	8	10/14/2008	8	1				(µg/L)
Acetone	μg/L	4.51	J	(<10)	U	(<10)	U					50 (g)
Benzene	μg/L	0.35	J	(<0.5)	U	(<0.5)	U					1 (s)
1,2- Dibromo-3-chloropropane	μg/L	5.42	J	(<5)	U	(<5)	U					0.04 (s)
1,4- Dichlorobenzene	μg/L	0.44	J	0.87		(<0.5)	U					3 (s)
1,2- Dichlorobenzene	μg/L	9.36		0.48	J	(<0.5)	U					3 s)
1,1- Dichloroethane	μg/L	0.61	-	0.29	J	(<0.5)	Ū					5 (s)
cis-1,2- Dichloroethene	μg/L	(<0.5)	U	0.73	-	(<0.5)	Ū					5 (s)
Ethylbenzene	μg/L	0.71	0	(<0.5)	U	(<0.5)	U					5 (s)
Methyl tert-butyl ether	μg/L	(<1)	U	(<1)	Ŭ	(<1)	Ū					
Tetrachloroethene	μg/L μg/L	(<0.5)	U	1.8	Ū	(<0.5)	U					5 (s)
Toluene	μg/L	3	0	(<0.5)	U	(<0.5)	U					5 (s)
Trichloroethene	μg/L μg/L	(<0.5)	U	0.27	J	(<0.5)	U					5 (s)
Xylenes (total)	μg/L μg/L	4.34	0	(<1)	U	(<0.5)	U					5 (s)
(a) Duplicate was collected at 8-28-084	,	4.54	_	(<1)	0	(<1)	U					5 (3)
NOTE: USEPA = United States En	vironmental Protect	ction Agency nental Conserva	tion									

Bold values indicate that the analyte was detected above the NYSDEC AWQS. (g) Value is listed as a guidance value. (s) Value is listed as a standard value.

TABLE 3 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER APRIL 2009

	Sample ID	8-24-084-MW	7.01	8-28-084-MW-	000	8-28-084-MW-	000	8-24-084-MW	00	8-24-084-MW	10	
	Lab ID	0810111-00	-			0810111-003		0810111-004				NYSDEC Ambient
				0810111-002						0810111-006		Water Quality
Parameter List	Sample Type	Groundwate	er	Groundwate		Groundwate	er	Groundwate	r	Groundwate	er	Standard Class GA
USEPA Method 8260B	Sample Date	4/22/2009	_	4/22/2009		4/22/2009	_	4/22/2009		4/22/2009		(µg/L)
Acetone	μg/L	2.01	J	(<10)	U	2.53	J	1	J	(<10)	U	50 (g)
Benzene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	0.51		(<0.5)	U	1 (s)
2- Butanone	μg/L	(<10)	U	(<10)	U	(<10)	U	(<10)	U	(<10)	U	
Carbon disulfide	μg/L	(<0.5)	U	(<0.5)	U	0.12	J	(<0.5)	U	(<0.5)	U	
Chloroethane	μg/L	(<1)	UJ	(<1)	UJ	(<1)	UJ	(<1)	UJ	(<1)	UJ	5 (s)
Chloroform	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	0.52		7 (s)
1,2- Dichlorobenzene	μg/L	1.71		(<0.5)	U	(<0.5)	U	2.92		(<0.5)	U	3 (s)
1,3- Dichlorobenzene	μg/L	0.47	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,4- Dichlorobenzene	μg/L	2.3		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,1- Dichloroethane	μg/L	0.63		(<0.5)	U	(<0.5)	U	3.42		(<0.5)	U	5 (s)
cis-1,2- Dichloroethene	μg/L	3.43		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
1,2- Dichloropropane	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	0.16	J	(<0.5)	U	5 (s)
Ethylbenzene	μg/L	0.5		(<0.5)	U	(<0.5)	U	1.05		(<0.5)	U	5 (s)
Isopropylbenzene	μg/L	0.12	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Methyl tert-butyl ether	μg/L	(<1)	U	(<1)	U	(<1)	U	0.52	J	(<1)	U	10 (g)
4- Methyl-2-pentanone	μg/L	(<5)	U	(<5)	U	(<5)	U	(<5)	U	(<5)	U	
Methylene chloride	μg/L	(<2)	U	(<2)	U	(<2)	U	(<2)	U	(<2)	U	5 (s)
Tetrachloroethene	μg/L	2.51		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Toluene	μg/L	0.12	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Trichloroethene	μg/L	0.36	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Xylenes (total)	μg/L	1.4	<u> </u>	(<1)	U	(<1)	U	1.34		(<1)	U	5 (s)
	Sample ID	8-24-084-GP	00	8-28-084-Dup	01(a)	Trip Blank						
						*						NYSDEC Ambient
	Lab ID	0810111-003	5A	0904141-007	A	0810111-008	3A					Water Quality
Parameter List	Sample Type	Groundwate	er	Groundwate	er	Groundwate	r					Standard Class GA
USEPA Method 8260B	Sample Date	4/22/2009		4/22/2009		4/22/2009						(µg/L)
Acetone	μg/L	7.92	J	1.45	J	(<10)	U					50 (g)
Benzene	μg/L	1.22		(<0.5)	U	(<0.5)	U					1 (s)
2- Butanone	μg/L	3.16	J	(<10)	U	(<10)	U					
Carbon disulfide	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U					
Chloroethane	μg/L	1.04	J	(<1)	UJ	(<1)	U					5 (s)
Chloroform	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U					7 (s)
1,2- Dichlorobenzene	μg/L	73.2	D	1.83		(<0.5)	U					3 (s)
1,3- Dichlorobenzene	μg/L	0.12	J	0.5		(<0.5)	U					3 (s)
1,4- Dichlorobenzene	μg/L	3.27		2.43		(<0.5)	U					3 (s)
1,1- Dichloroethane	μg/L	1.77		0.62		(<0.5)	U					5 (s)
cis-1,2- Dichloroethene	μg/L	0.19	J	3.42		(<0.5)	U					5 (s)
1,2- Dichloropropane	μg/L	0.26	J	(<0.5)	U	(<0.5)	U					5 (s)
Ethylbenzene	μg/L	7.47		0.51		(<0.5)	U					5 (s)
Isopropylbenzene	μg/L	0.89		0.13	J	(<0.5)	U					5 (s)
Methyl tert-butyl ether	μg/L	1.34		(<1)	U	(<1)	U					10 (g)
4- Methyl-2-pentanone	μg/L	1.09	J	(<5)	U	(<5)	U					
Methylene chloride	μg/L	0.27	J	0.18	J	(<2)	U					5 (s)
Tetrachloroethene	μg/L	(<0.5)	U	2.68		(<0.5)	Ū					5 (s)
Toluene	μg/L	21.7	1	0.13	J	(<0.5)	U					5 (s)
Trichloroethene	μg/L	0.51	1	0.37	J	(<0.5)	U					5 (s)
Xylenes (total)	μg/L	37.9	1	1.46	1	(<1)	U					5 (s)
-	nvironmental Protect artment of Environn r Liter s analyzed for, but v sitively identified; th	nental Conservati vas not detected a ne associated nun	ibove nerical	value is the appr	oxima				nple.			

Analytical data results provided by Life Science Laboratories. Data Validation completed by Environmental Data Validation, Inc. Only analytes that had at least one detection from the data set are shown. Bold values indicate that the analyte was detected above the NYSDEC AWQS. (g) Value is listed as a guidance value. (s) Value is listed as a standard value.

TABLE 4 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER DECEMBER 2010

	6 I ID	0.04.004.100	01	0.00.004.100	000	0.00.004.100	000	0.04.004.109	10	0.04.004.159	1.1	
	Sample ID	8-24-084-MW		8-28-084-MW-		8-28-084-MW-		8-24-084-MW-		8-24-084-MW-		NVODEC A 11 A
	Lab ID	K1012255-00		K1012255-004		K1012255-00		K1012255-002		K1012255-006		NYSDEC Ambient Water Quality
Parameter List	Sample Type	Groundwate		Groundwate		Groundwate		Groundwater		Groundwater		Standard Class GA
USEPA Method 8260B	Sample Date	12/22/2010	_	12/22/2010		12/22/2010	-	12/22/2010		12/22/2010		(µg/L)
1,1-Dichloroethane	μg/L	0.25	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
1,2-Dichlorobenzene	μg/L	0.8	T	(<0.5)	U U	(<0.5)	U U	(<0.5)	U	(<0.5)	U U	3 (s)
1,3-Dichlorobenzene	μg/L	0.39	J	(<0.5)	U	(<0.5)	U	(<0.5)	U U	(<0.5)	U	3 (s)
1,4-Dichlorobenzene	μg/L μg/L		U	(<0.5)	U	(<0.5)	U	(<0.5) (<10)	U	(<0.5)	U	3 (s)
2-Butanone	μg/L μg/L	(<10) (<5)	U	(<10)	U	(<10)	U	(<10)	U	(<10)	U	
4-Methyl-2-pentanone	μg/L μg/L	(<10)	U	(<10)	U	(<10)	U	(<10)	U	(<3)	U	 50 (g)
Acetone Benzene	μg/L μg/L	(<10)	U	(<10)	U	(<10)	U	(<10)	U	(<10)	U	1 (s)
Bromodichloromethane	μg/L	(<0.5)	U	(<0.5)	U	0.15	J	0.46	J	(<0.5)	U	50 (g)
Chlorobenzene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	50 (g) 5 (s)
Chloroethane	μg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	5 (s)
Chloroform	μg/L	(<0.5)	U	(<0.5)	Ū	0.19	J	2.87	-	(<0.5)	Ū	7 (s)
cis-1,2-Dichloroethene	μg/L	0.28	J	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	Ū	5 (s)
Dibromochloromethane	μg/L	(<0.5)	U	(<0.5)	U	1.31		(<0.5)	U	(<0.5)	U	50 (s)
Dichlorodifluoromethane	μg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	5 (s)
Ethylbenzene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Isopropylbenzene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5(s)
Methyl tert-butyl ether	μg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	10 (g)
Methylene chloride	μg/L	(<2)	U	(<2)	U	(<2)	U	(<2)	U	(<2)	U	5 (s)
Tetrachloroethene	μg/L	1.91		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Toluene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	0.13	J	5 (s)
Trichloroethene	μg/L	0.56		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Xylenes (total)	μg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	5 (s)
	Sample ID	8-24-084-MW	-12	8-24-084-GP-	.09	8-28-084-MW-D	DIP ^(a)	Trip Blank				
	Lab ID	K1012255-00		K1012255-00		K1012255-00		K1012255-009	A			NYSDEC Ambient
	Sample Type	Groundwate		Groundwate		QA/QC Duplic		QA/QC Trip Bl				Water Quality
Parameter List									uik			Standard Class GA
USEPA Method 8260B	Sample Date µg/L	12/22/2010 (<0.5)	U	12/22/2010 2.46		0.25	J	12/22/2010	U			(µg/L) 5 (s)
1,1-Dichloroethane 1,2-Dichlorobenzene	μg/L μg/L	(<0.5)	U	80.2		0.23	J	(<0.5)	U			3 (s)
1,2-Dichlorobenzene	μg/L μg/L	(<0.5)	U	0.17	J	0.39	J	(<0.5)	U			3 (s)
1,4-Dichlorobenzene	μg/L	(<0.5)	U	3.53		1.87		(<0.5)	U			3 (s)
2-Butanone	μg/L	(<10)	U	1.33	J	(<10)	U	(<10)	U			
4-Methyl-2-pentanone	μg/L	(<5)	U	1.05	J	(<5)	U	(<5)	U			
Acetone	μg/L	(<10)	U	9.71	J	(<10)	U	(<10)	U			50 (g)
Benzene	μg/L	(<0.5)	U	1.44		(<0.5)	U	(<0.5)	U			1 (s)
Bromodichloromethane	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U			50 (g)
Chlorobenzene	μg/L	(<0.5)	U	0.75		(<0.5)	U	(<0.5)	U			5 (s)
Chloroethane	µg/L	(<1)	U	0.61	J	(<1)	U	(<1)	U			5 (s)
Chloroform	μg/L	(<0.5)	U	0.38	J	(<0.5)	U	0.13	J			7 (s)
cis-1,2-Dichloroethene	μg/L	(<0.5)	U	0.12	J	0.27	J	(<0.5)	U			5 (s)
Dibromochloromethane	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U			50 (s)
Dichlorodifluoromethane	µg/L	0.19	J	(<1)	U	(<1)	U	(<1)	U			5(s)
Ethylbenzene	μg/L	(<0.5)	U	6.7		(<0.5)	U	(<0.5)	U			5(s)
Isopropylbenzene	µg/L	(<0.5)	U	1.4	_	(<0.5)	U	(<0.5)	U			5(s)
Methyl tert-butyl ether	μg/L	(<1)	U	1.51	-	(<1)	U	(<1)	U			10 (g)
Methylene chloride	μg/L	(<2)	U	0.39	J	(<2)	U	0.41	J			5 (s)
Tetrachloroethene	μg/L	(<0.5)	U	0.11	-	1.87		0.5	J			5 (s)
Toluene	μg/L	(<0.5)	U	4.96	-	(<0.5)	U	(<0.5)	U			5 (s)
Trichloroethene Vylenes (total)	μg/L	(<0.5)	U U	0.81	-	0.55	U	(<0.5)	U U			5 (s)
Xylenes (total)	μg/L	(<1)	U	24		(<1)	U	(<1)	U			5 (s)
 (a) Duplicate was collected at 8-28-084-M NOTE: USEPA = United States Env NYSDEC = New State Depar μg/L = Micrograms per I U = The analyte was a J = Analyte was positi QA/QC = Quality Assurance 	vironmental Protection tment of Environme Liter nalyzed for, but was ively identified; the a	ntal Conservation				ncentration of the	analyt	e in the sample.				

Bold values indicate that he analyte was detected above the NYSDEC AWQS. (g) Value is listed as a guidance value. (s) Value is listed as a standard value.

TABLE 5 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER OCTOBER 2011

	Sample ID	8-24-084-MW	-01	8-28-084-MW-	08S	8-28-084-MW-	08D	8-24-084-MW-	10	8-24-084-MW	-11	-
	Lab ID	K1012255-00	3A	K1012255-004	4A	K1012255-00	5A	K1012255-002	A	K1012255-000	6A	NYSDEC Ambient
Parameter List	Sample Type	Groundwate	r	Groundwate	r	Groundwate	er	Groundwater		Groundwate	r	Water Quality Standard Class GA
USEPA Method 8260B	Sample Date	10/25/2011		10/25/2011		10/25/2011		10/25/2011		10/25/2011		(µg/L)
1,1-Dichloroethane	μg/L	0.18		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
1,2-Dichlorobenzene	µg/L	0.56		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,3-Dichlorobenzene	μg/L	0.26		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
1,4-Dichlorobenzene	μg/L	1.19		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	3 (s)
2-Butanone	μg/L	(<10)	U	(<10)	U	(<10)	U	(<10)	U	(<10)	U	
Acetone	μg/L	8		(<10)	U	(<10)	U	(<10)	U	(<10)	U	50 (g)
Benzene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	1 (s)
Bromodichloromethane	μg/L	(<0.5)	U	(<0.5)	U	0.15	J	0.38		(<0.5)	U	50 (g)
Chlorobenzene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Chloroform	μg/L	(<0.5)	U	(<0.5)	U	0.19	J	1.22		(<0.5)	U	7 (s)
cis-1,2-Dichloroethene	μg/L	0.17		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Dibromochloromethane	μg/L	(<0.5)	U	(<0.5)	U	1.31		(<0.5)	U	(<0.5)	U	50 (s)
Dichlorodifluoromethane	μg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	5 (s)
Ethylbenzene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Isopropylbenzene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5(s)
Methyl tert-butyl ether	μg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	10 (g)
Tetrachloroethene	μg/L	1.54		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Toluene	μg/L	(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	0.13	J	5 (s)
Trichloroethene	μg/L	0.43		(<0.5)	U	(<0.5)	U	(<0.5)	U	(<0.5)	U	5 (s)
Xylenes (total)	μg/L	(<1)	U	(<1)	U	(<1)	U	(<1)	U	(<1)	U	5 (s)
	6 J ID	0.04.004.100	10	0.04.004.CD	00	0.00.004 1000	ALID(a)	T. D. I				
	Sample ID	8-24-084-MW		8-24-084-GP-		8-28-084-MW-D		Trip Blank				
	Lab ID	K1012255-00	7A	K1012255-00	lA	K1012255-00	8A	K1012255-009	A			NYSDEC Ambient
Parameter List	Sample Type	Groundwate	r	Groundwate	r	QA/QC Duplic	cate	QA/QC Trip Bl	ank			Water Quality
USEPA Method 8260B	Sample Date	10/25/2011		10/25/2011		10/25/2011		10/25/2011				Standard Class GA (µg/L)
1,1-Dichloroethane	μg/L	(<0.5)	U	2.36		0.18	J	(<0.5)	U			5 (s)
1,2-Dichlorobenzene	μg/L	(<0.5)	U	67.3		0.51		(<0.5)	U			3 (s)
1.3-Dichlorobenzene												
	μg/L	(<0.5)	U	0.2	J	0.26	J	(<0.5)	U			3 (s)
1.4-Dichlorobenzene	μg/L μg/L	(<0.5) (<0.5)	U U		J		J					3 (s)
/			-	0.2	J	0.26	J U	(<0.5)	U			
1,4-Dichlorobenzene 2-Butanone Acetone	μg/L	(<0.5)	U	0.2 3		0.26 1.18		(<0.5) (<0.5)	U U			3 (s) 3 (s)
2-Butanone Acetone	μg/L μg/L	(<0.5) (<10)	U U	0.2 3 1.33	J	0.26 1.18 (<10)	U	(<0.5) (<0.5) (<10)	U U U			3 (s) 3 (s)
2-Butanone	μg/L μg/L μg/L μg/L	(<0.5) (<10) (<10)	U U U	0.2 3 1.33 57.7	J	0.26 1.18 (<10) (<10)	U U	(<0.5) (<0.5) (<10) (<10)	U U U U			3 (s) 3 (s) 50 (g)
2-Butanone Acetone Benzene	μg/L μg/L μg/L μg/L μg/L	(<0.5) (<10) (<10) (<0.5)	U U U U U	0.2 3 1.33 57.7 1.13	J	0.26 1.18 (<10) (<10) (<0.5)	U U U	(<0.5) (<0.5) (<10) (<10) (<0.5)	U U U U U			3 (s) 3 (s) 50 (g) 1 (s)
2-Butanone Acetone Benzene Bromodichloromethane	μg/L μg/L μg/L μg/L μg/L μg/L	(<0.5) (<10) (<10) (<0.5) (<0.5)	U U U U U U	0.2 3 1.33 57.7 1.13 (<0.5)	J	0.26 1.18 (<10) (<10) (<0.5) (<0.5)	U U U U	(<0.5) (<0.5) (<10) (<10) (<0.5) (<0.5)	U U U U U U			3 (s) 3 (s) 50 (g) 1 (s) 50 (g)
2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	(<0.5)	U U U U U U U	0.2 3 1.33 57.7 1.13 (<0.5) 0.62	J J U	0.26 1.18 (<10) (<10) (<0.5) (<0.5) (<0.5)	U U U U U	(<0.5)	U U U U U U U U			3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s)
2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene Chloroform	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	(<0.5)	U U U U U U U U U U	0.2 3 1.33 57.7 1.13 (<0.5) 0.62 0.32	J J U J	0.26 1.18 (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5)	U U U U U U	(<0.5)	U U U U U U U U U U			3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s)
2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene Chloroform cis-1,2-Dichloroethene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	(<0.5)	U U U U U U U U U U	0.2 3 1.33 57.7 1.13 (<0.5) 0.62 0.32 (<0.5)	J J U J	0.26 1.18 (<10) (<10) (<0.5) (<0.5) (<0.5) (<0.5) 0.16	U U U U U J	(<0.5)	U U U U U U U U U U U			3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s)
2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	(<0.5)	U U U U U U U U U U U U	0.2 3 1.33 57.7 1.13 (<0.5) 0.62 0.32 (<0.5) 5.09	J J U J	$\begin{array}{c} 0.26 \\ \hline 1.18 \\ \hline (<10) \\ \hline (<0.5) \\ \hline 0.16 \\ \hline (<0.5) \\ \hline \end{array}$	U U U U U U U U U	(<0.5)	U U U U U U U U U U U			3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s) 5 (s) 5 (s)
2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Isopropylbenzene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	(<0.5)	U U U U U U U U U U U U U U	0.2 3 1.33 57.7 1.13 (<0.5) 0.62 0.32 (<0.5) 5.09 1.17	J J U J	$\begin{array}{c} 0.26 \\ \hline 1.18 \\ \hline (<10) \\ \hline (<0.5) \\ \hline 0.16 \\ \hline (<0.5) \\ \hline $	U U U U U U U U U U U U U	(<0.5)	U U U U U U U U U U U U U			3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s) 5 (s) 5 (s) 5 (s)
2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Isopropylbenzene Methyl tert-butyl ether	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	(<0.5)	U U U U U U U U U U U U U U U	0.2 3 1.33 57.7 1.13 (<0.5) 0.62 0.32 (<0.5) 5.09 1.17 1.16	J J J	$\begin{array}{c} 0.26 \\ \hline 1.18 \\ (<10) \\ (<10) \\ (<0.5) \\ (<0.5) \\ (<0.5) \\ (<0.5) \\ (<0.5) \\ (<0.5) \\ (<0.5) \\ (<0.5) \\ (<1) \\ (<1) \end{array}$	U U U U U U U U U U U U U	$\begin{array}{c} (<\!0.5) \\ (<\!0.5) \\ (<\!10) \\ (<\!10) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!1.5) \\ (<\!1.5) \\ (<\!1.5) \end{array}$	U U U U U U U U U U U U U U U U			3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s) 5 (s) 5 (s) 5 (s) 10 (g)
2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene Chloroform cis-1,2-Dichloroethene Ethylbenzene Isopropylbenzene Methyl tert-butyl ether Tetrachloroethene	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	$\begin{array}{c} (<0.5) \\ \hline (<10) \\ \hline (<10) \\ \hline (<0.5) \\ \hline (<1) \\ \hline (<1) \\ \hline (<0.5) \\ \hline (<1) \\ \hline (<0.5) \\ \hline (<0.5) \\ \hline (<1) \\ \hline (<0.5) \\ \hline (<0$	U U U U U U U U U U U U U U U U	0.2 3 1.33 57.7 1.13 (<0.5) 0.62 (<0.5) (<0.5) 5.09 1.17 1.16 (<0.5)	J J J	$\begin{array}{c} 0.26 \\ \hline 1.18 \\ (<10) \\ (<10) \\ (<0.5) \\ (<0.5) \\ (<0.5) \\ (<0.5) \\ (<0.5) \\ (<0.5) \\ (<0.5) \\ (<0.5) \\ (<1) \\ 1.42 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} (<\!0.5) \\ (<\!0.5) \\ (<\!10) \\ (<\!10) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!0.5) \\ (<\!1.5) \\ (<\!1.5) \\ (<\!0.5) \\ (<\!1.5) \\ (<\!0.5) \end{array}$	U U U U U U U U U U U U U U U U			3 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s)

(a) Duplicate was collected at 8-28-084-MW-01

NOTE: USEPA = United States Environmental Protection Agency NYSDEC = New State Department of Environmental Conservation

μg/L U = Micrograms per Liter

= The analyte was analyzed for, but was not detected above the sample reporting limit.

Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
 QA/QC = Quality Assurance/Quality Control

Analytical data results provided by Life Science Laboratories.

Bold values indicate that had at least one detection from the data set are shown. Bold values indicate that the analyte was detected above the NYSDEC AWQS. (g) Value is listed as a guidance value. (s) Value is listed as a standard value.

TABLE 6 SUMMARY OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER NOVEMBER 2013

	Sample ID	131121 MW-01		MW-08S		131121 MW-08D		131121 MW-10		131121 MW-11		
	Lab ID	480-50794-3				480-50794-2		480-50794-4		480-50794-6		
	Sample Type	Groundwater				Groundwater		Groundwater		Groundwater		NYSDEC Ambient
								11/21/2013		11/21/2013		Water Quality Standard
Parameter List USEPA Method 8260B	Sample Date	11/21/2013				11/21/2013						Class GA (µg/L)
1,1-Dichloroethane	µg/L	(<1)	_	Not Sampled		(<1)	U		U	(<1)	U	5 (s)
1,2-Dichlorobenzene	µg/L	(<1)	_	Not Sampled		(<1)	U		U	(<1)	U	3 (s)
1,3-Dichlorobenzene	μg/L	(<1)	U	Not Sampled		(<1)	U		U	(<1)	U	3 (s)
1,4-Dichlorobenzene	μg/L	(<1)		Not Sampled		(<1)	U	(<1)	U	(<1)	U	3 (s)
2-Butanone	μg/L	(<10)	U	Not Sampled		(<10)	U		U	(<10)	U	
Acetone	µg/L	3.50	J	Not Sampled		(<1)	U	(<1)	U	(<1)	U	50 (g)
Benzene	μg/L	(<1)	U	Not Sampled		(<1)	U		U	(<1)	U	1 (s)
Bromodichloromethane	µg/L	(<1)	U	Not Sampled		(<1)	U	(<1)	U	(<1)	U	50 (g)
Chlorobenzene	µg/L	(<1)	U	Not Sampled		(<1)	U		U	(<1)	U	5 (s)
Chloroform	μg/L	(<1)	U	Not Sampled	L	(<1)	U	0.94	J	(<1)	U	7 (s)
cis-1,2-Dichloroethene	μg/L	(<1)	U	Not Sampled	L	(<1)	U	(<1)	U	(<1)	U	5 (s)
Dibromochloromethane	μg/L	(<1)	U	Not Sampled		(<1)	U	(<1)	U	(<1)	U	50 (s)
Dichlorodifluoromethane	μg/L	(<1)	U	Not Sampled	L	(<1)	U		U	(<1)	U	5 (s)
Ethylbenzene	µg/L	(<1)	U	Not Sampled		(<1)	U	(<1)	U	(<1)	U	5 (s)
Isopropylbenzene	µg/L	(<1)	U	Not Sampled		(<1)	U	(<1)	U	(<1)	U	5(s)
Methyl tert-butyl ether	µg/L	(<1)	U	Not Sampled		(<1)	U	(<1)	U	(<1)	U	10 (g)
Tetrachloroethene	µg/L	1.10		Not Sampled		(<1)	U		U	(<1)	U	5 (s)
Toluene	µg/L	(<1)	U	Not Sampled		(<1)	U	()	U	(<1)	U	5 (s)
Trichloroethene	μg/L	(<1)		Not Sampled		(<1)	U	()	U	(<1)	U	5 (s)
Xylenes (total)	µg/L	(<2)	U	Not Sampled		(<1)	U	(<1)	U	(<1)	U	5 (s)
	Sample ID	131121 MW-12		131121 GP-09		131121 MW1 DUP(a)		Trip Blank				
	Sample ID Lab ID	131121 MW-12 480-50794-5		131121 GP-09 480-50794-1		131121 MW1 DUP _(a) 480-50794-7		Trip Blank 480-50794-8				
	-							-				NYSDEC Ambient
Parameter List USEPA Method 8260B	Lab ID	480-50794-5		480-50794-1		480-50794-7		480-50794-8				Water Quality Standard
Parameter List USEPA Method 8260B 1,1-Dichloroethane	Lab ID Sample Type Sample Date	480-50794-5 Groundwater 11/21/2013	U	480-50794-1 Groundwater 11/21/2013		480-50794-7 QA/QC Duplicate 11/21/2013	U	480-50794-8 QA/QC Trip Blank 11/21/2013	U			
	Lab ID Sample Type Sample Date µg/L	480-50794-5 Groundwater	UUU	480-50794-1 Groundwater 11/21/2013		480-50794-7 QA/QC Duplicate	UU	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1)	UU			Water Quality Standard Class GA (µg/L)
1,1-Dichloroethane	Lab ID Sample Type Sample Date	480-50794-5 Groundwater 11/21/2013 (<1)		480-50794-1 Groundwater 11/21/2013 1.70		480-50794-7 QA/QC Duplicate 11/21/2013 (<1)	-	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1)	-			Water Quality Standard Class GA (µg/L) 5 (s)
1,1-Dichloroethane 1,2-Dichlorobenzene	Lab ID Sample Type Sample Date µg/L µg/L	480-50794-5 Groundwater 11/21/2013 (<1) (<1)	U	480-50794-1 Groundwater 11/21/2013 1.70		480-50794-7 QA/QC Duplicate 11/21/2013 (<1) (<1)	-	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1) (<1)	-			Water Quality Standard Class GA (µg/L) 5 (s) 3 (s)
1,1-Dichloroethane	Lab ID Sample Type Sample Date µg/L µg/L	480-50794-5 Groundwater 11/21/2013 (<1)		480-50794-1 Groundwater 11/21/2013 1.70 73.00	U	480-50794-7 QA/QC Duplicate 11/21/2013 (<1)	U	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1) (<1) (<1)	-			Water Quality Standard Class GA (µg/L) 5 (s)
1,1-Dichloroethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene	Lab ID Sample Type Sample Date µg/L µg/L µg/L	480-50794-5 Groundwater 11/21/2013 (<1) (<1) (<1) (<1) (<10)	U U U	480-50794-1 Groundwater 11/21/2013 1.70 73.00 3.60	U	480-50794-7 QA/QC Duplicate 11/21/2013 (<1) (<1) (<1) (<1) (<10)	U U U	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1) (<1) (<1) (<10)	-			Water Quality Standard Class GA (μg/L) 5 (s) 3 (s)
1,1-Dichloroethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone	Lab ID Sample Type Sample Date µg/L µg/L µg/L µg/L	480-50794-5 Groundwater 11/21/2013 (<1) (<1) (<1) (<1)	U	480-50794-1 Groundwater 11/21/2013 73.00 3.60 (<10)	-	480-50794-7 QA/QC Duplicate 11/21/2013 (<1) (<1) (<1)	U	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1) (<1) (<1) (<10)	-			Water Quality Standard Class GA (µg/L) 5 (s) 3 (s) 3 (s)
1,1-Dichloroethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone Acetone	Lab ID Sample Type Sample Date µg/L µg/L µg/L µg/L µg/L	480-50794-5 Groundwater 11/21/2013 (<1) (<1) (<1) (<10) (<1) (<1)	U U U U U U	480-50794-1 Groundwater 11/21/2013 1.70 73.00 (<10) 3.00 0.73	J	480-50794-7 QA/QC Duplicate 11/21/2013 (<1) (<1) (<1) (<10) (<1) (<1) (<1)	U U U U U	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1) (<1) (<1) (<10) (<1) (<1) (<1)	-			Water Quality Standard Class GA (μg/L) 5 (s) 3 (s) 50 (g) 1 (s)
1,1-Dichloroethane 1,2-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane	Lab ID Sample Type Sample Date µg/L µg/L µg/L µg/L µg/L µg/L µg/L	480-50794-5 Groundwater 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U	480-50794-1 Groundwater 11/21/2013 1.70 73.00 3.60 (<10) 3.00 0.73 (<1)	J	480-50794-7 QA/QC Duplicate 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1) (<1) (<1) (<10) (<1) (<1) (<1) (<1)	-			Water Quality Standard Class GA (μg/L) 5 (s) 3 (s) 50 (g) 1 (s) 50 (g)
1,1-Dichloroethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone Acetone Benzene	Lab ID Sample Type Sample Date µg/L µg/L µg/L µg/L µg/L	480-50794-5 Groundwater 11/21/2013 (<1) (<1) (<1) (<10) (<1) (<1)	U U U U U U	480-50794-1 Groundwater 11/21/2013 1.70 73.00 (<10) 3.00 0.73	J J U	480-50794-7 QA/QC Duplicate 11/21/2013 (<1) (<1) (<1) (<10) (<1) (<1) (<1)	U U U U U U U	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	-			Water Quality Standard Class GA (μg/L) 5 (s) 3 (s) 50 (g) 1 (s)
1,1-Dichloroethane 1,2-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane	Lab ID Sample Type Sample Date µg/L µg/L µg/L µg/L µg/L µg/L µg/L	480-50794-5 Groundwater 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U U U	480-50794-1 Groundwater 11/21/2013 1.70 73.00 3.60 (<10) 3.00 0.73 (<1) (<1)	J J U	480-50794-7 QA/QC Duplicate 11/21/2013 (<1) (<1) (<1) (<10) (<1) (<1) (<1) (<1) (<1)	U U U U U U U	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1) (<1) (<10) (<10) (<10) (<1) (<1) (<1) (<1) (<1)	-			Water Quality Standard Class GA (µg/L) 5 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s)
1,1-Dichloroethane 1,2-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene	Lab ID Sample Type Sample Date μg/L	480-50794-5 Groundwater 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U U U U U	480-50794-1 Groundwater 11/21/2013 1.70 73.00 3.60 (<10) 3.00 0.73 (<1) (<1) (<1)	J J U U	480-50794-7 QA/QC Duplicate 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U U U U	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	-			Water Quality Standard Class GA (µg/L) 5 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s)
1,1-Dichloroethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene cis-1,2-Dichloroethene	Lab ID Sample Type Sample Date µg/L µg/L µg/L µg/L µg/L µg/L µg/L	480-50794-5 Groundwater 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U U U U U U	480-50794-1 Groundwater 11/21/2013 1.70 73.00 3.60 (<10) 3.00 0.73 (<1) (<1) (<1) (<1)	J J U U	480-50794-7 QA/QC Duplicate 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U U U U U U	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	-			Water Quality Standard Class GA (μg/L) 5 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s)
1,1-Dichloroethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene cis-1,2-Dichloroethene Ethylbenzene	Lab ID Sample Type Sample Date μg/L	480-50794-5 Groundwater 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U U U U U U U U U	480-50794-1 Groundwater 11/21/2013 73.00 3.60 (<10) 3.00 0.73 (<1) (<1) (<1) (<1) 5.10	J J U U	480-50794-7 QA/QC Duplicate 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U U U U U U U	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	-			Water Quality Standard Class GA (μg/L) 5 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s) 5 (s)
1,1-Dichloroethane 1,2-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene cis-1,2-Dichloroethene Ethylbenzene Isopropylbenzene Isopropylbenzene	Lab ID Sample Type Sample Date µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	480-50794-5 Groundwater 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U U U U U U U U U U	480-50794-1 Groundwater 11/21/2013 1.70 73.00 3.60 (<10) 3.60 (<10) 3.00 0.73 (<1) (<1) (<1) 5.10 1.30	J J U U U	480-50794-7 QA/QC Duplicate 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U U U U U U U U U U U	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1) (<1) (<10) (<10) (<10) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1	-			Water Quality Standard Class GA (µg/L) 5 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s) 5 (s) 5 (s) 5 (s)
1,1-Dichloroethane 1,2-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene cis-1,2-Dichloroethene Ethylbenzene Soprogylbenzene Methyl tert-butyl ether	Lab ID Sample Type Sample Date µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	480-50794-5 Groundwater 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U U U U U U U U U U U	480-50794-1 Groundwater 11/21/2013 1.70 73.00 3.60 (<10) 3.00 0.73 (<1) (<1) (<1) 5.10 1.30 0.67	J J U U U U	480-50794-7 QA/QC Duplicate 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U U U U U U U U U U U U U	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1) (<1) (<10) (<10) (<10) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1	-			Water Quality Standard Class GA (μg/L) 5 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s) 5 (s) 5 (s) 10 (g) 5 (s)
1,1-Dichloroethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene isol-1,2-Dichloroethene Ethylbenzene Methyl tert-butyl ether Tetrachloroethene	Lab ID Sample Type Sample Date μg/L μg/L	480-50794-5 Groundwater 11/21/2013 (<1)	U U U U U U U U U U U U U U U	480-50794-1 Groundwater 11/21/2013 1.70 73.00 3.60 (<10) 3.00 0.73 (<1) (<1) (<1) (<1) 5.10 1.30 0.67 (<1)	J J U U U U U J U	480-50794-7 QA/QC Duplicate 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U U U U U U U U U U U U U U U	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	-			Water Quality Standard Class GA (μg/L) 5 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s) 5 (s) 5 (s) 10 (g) 5 (s) 5
1,1-Dichloroethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone Acetone Benzene Bromodichloromethane Chlorobenzene iss-1,2-Dichloroethene Ethylbenzene Isopropylbenzene Methyl tert-butyl ether Toluene Toluene	Lab ID Sample Type Sample Date µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	480-50794-5 Groundwater 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U U U U U U U U U U U	480-50794-1 Groundwater 11/21/2013 1.70 73.00 3.60 (<10) 3.60 (<10) 3.00 0.73 (<1) (<1) (<1) 5.10 1.30 0.67 (<1) 0.66	J J U U U U J U U	480-50794-7 QA/QC Duplicate 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)	U U U U U U U U U U U U U U U U	480-50794-8 QA/QC Trip Blank 11/21/2013 (<1) (<1) (<1) (<1) (<1) (<1) (<1) (<1)				Water Quality Standard Class GA (μg/L) 5 (s) 3 (s) 50 (g) 1 (s) 50 (g) 5 (s) 7 (s) 5 (s) 5 (s) 5 (s) 10 (g) 5 (s)

(a) Duplicate was collected at 131121 MW-01 NOTE: USEPA = United States Environmental Protection Agency NYSDEC = New State Department of Environmental Conservation

NOTE: USEPA = Onited states Environmental Protection Agency NTSDEX = New State Department of Environmental Conservation
 gefL = Micrograms per Liter
 U = The analyte was analyzed for, but was not detected above the sample reporting limit.
 J = Analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. QA/QC = Quality Assurance/Quality Control
 Analytical data results provided by Life Science Laboratories.
 Only analytes that had at least one detection from the data set are shown.
 Blue indicates a detection above the method detection limit. Red indicates that the analyte was detected above the NYSDEC AWQS. (g) Value is listed as a guidance value. (s) Value is listed as a standard value.

Locati		GF	p-09		MW-1		MW	/-10	MW-101	MW-102	MV	V-11	MW	/-12		MW-8D		MW-8S
Sample	NYDEC_TOG S_AMBIENT_ WATER_Clas s GA	131121 GP9	GP009- 090814-1315	131121 MW1	131121 MW1 DUP	MW001- 090814-1545	131121 MW10	MW010- 090814-1430	MW101- 090814-0900	MW102- 090814-1030	131121 MW- 11	MW011- 090914-1200	131121 MW12	MW012- 090814-1720	131121 MW8D	MW08D- 090914-0950	4542-090914- 0002	MW08S- 090914-1055
Sample Da	te	11/21/2013	09/08/2014	11/21/2013	11/21/2013	09/08/2014	11/21/2013	09/08/2014	09/08/2014	09/08/2014	11/21/2013	09/09/2014	11/21/2013	09/08/2014	11/21/2013	09/09/2014	09/09/2014	09/09/2014
Sample Ty Sample Depth (bo		N 19.3 - 29.3 (ft)	N 19.3 - 29.3 (ft)	N 13.9 - 23.9 (ft)	N 13.9 - 23.9 (ft)	N 13.9 - 23.9 (ft)	N 8.3 - 18.3 (ft)	N 8.3 - 18.3 (ft)	N 19.5 - 29.5 (ft)	N 19.5 - 29.5 (ft)	N 18.8 - 28.8 (ft)	N 18.8 - 28.8 (ft)	N 19.1 - 29.1 (ft)	N 19.1 - 29.1 (ft)	N 62 - 72 (ft)	N 62 - 72 (ft)	FD 62 - 72 (ft)	N 14.2 - 24.2 (ft
norganic Compounds (mg/L)																		
Iron, Dissolved Iron, Total	-	-	ND (0.1) 3.3	-	-	ND (0.1) 5.02	-	ND (0.1) 0.192	ND (0.1) 1.67	0.191 6.76	-	-	-	-	-	-	-	-
Other (mg/L)																		
Sulfate Fotal Organic Carbon (TOC)	-	-	120 9.71	-	-	14 7.61	-	28 1.93	47 5.06	29 13.9	-	-	-	-	-	-	-	-
/olatile Organic Compounds (ug/L)																		
,1,1-Trichloroethane ,1,2,2-Tetrachloroethane	5	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (2) ND (2)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (2) ND (2)	ND (2) ND (2)
,1,2-Trichloroethane	1	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
,1-Dichloroethane	5	1.7	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
,1-Dichloroethene	5	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
,2,3-Trichlorobenzene	- 5	- ND (1)	ND (5)	- ND (1)	- ND (1)	ND (5)	- ND (1)	ND (5)	ND (5)	ND (5)	- ND (1)	ND (5)	- ND (1)	ND (5)	- ND (1)	ND (5)	ND (5)	ND (5)
,2,4-Trichlorobenzene ,2-Dibromo-3-chloropropane (DBCP)	5 0.04	ND (1) ND (1)	ND (5) ND (10)	ND (1) ND (1)	ND (1) ND (1)	ND (5) ND (10)	ND (1) ND (1)	ND (5) ND (10)	ND (5) ND (10)	ND (5) ND (10)	ND (1) ND (1)	ND (5) ND (10)	ND (1) ND (1)	ND (5) ND (10)	ND (1) ND (1)	ND (5) ND (10)	ND (5) ND (10)	ND (5) ND (10)
,2-Dibromoethane (Ethylene Dibromide)	0.004	ND (1)	ND (2)	ND (1)	ND (1)	ND (10)	ND (1)	ND (10)	ND (10)	ND (10)	ND (1)	ND (10)	ND (1)	ND (10)	ND (1)	ND (10)	ND (10)	ND (10)
,2-Dichlorobenzene	3	73 ^[A]	24.7 ^[A]	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	82.6 ^[A]	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
2-Dichloroethane	0.6	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
2-Dichloropropane	1	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
3-Dichlorobenzene	3	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
4-Dichlorobenzene	3	3.6 ^[A]	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	7.35 ^[A]	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
4-Dioxane Butanone (Methyl Ethyl Ketone)	50	- ND (10)	ND (20) ND (10)	- ND (10)	- ND (10)	ND (20) ND (10)	- ND (10)	ND (20) ND (10)	ND (20) ND (10)	ND (20) ND (10)	- ND (10)	ND (20) ND (10)	- ND (10)	ND (20) ND (10)	- ND (10)	ND (20) ND (10)	ND (20) ND (10)	ND (20) ND (10)
Hexanone	50	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (10)	ND (5)	ND (10)	ND (10)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (10)	ND (5)	ND (10)
Methyl-2-Pentanone (Methyl Isobutyl Ketone)	-	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)	ND (5)
cetone	50	3 Ĵ	ND (10)	3.5 J	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)	ND (10)
enzene	1	0.73 J	ND (0.7)	ND (1)	ND (1)	ND (0.7)	ND (1)	ND (0.7)	ND (0.7)	ND (0.7)	ND (1)	ND (0.7)	ND (1)	ND (0.7)	ND (1)	ND (0.7)	ND (0.7)	ND (0.7)
romodichloromethane	50	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
omoform	50 5	ND (1)	ND (5)	ND (1)	ND (1)	ND (5) ND (2)	ND (1)	ND (5)	ND (5) ND (2)	ND (5)	ND (1)	ND (5)	ND (1) ND (1)	ND (5)	ND (1)	ND (5)	ND (5) ND (2)	ND (5)
omomethane (Methyl Bromide) arbon disulfide	5 60	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (2) ND (2)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (2) ND (2)	ND (2) ND (2)
arbon tetrachloride	5	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
hlorobenzene	5	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
hlorobromomethane	-	-	ND (5)	-	-	ND (5)	-	ND (5)	ND (5)	ND (5)	-	ND (5)	-	ND (5)	-	ND (5)	ND (5)	ND (5)
hloroethane	5	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
hloroform (Trichloromethane)	7	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	0.94 J	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
hloromethane (Methyl Chloride) s-1,2-Dichloroethene	5	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (2) ND (2)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (2) ND (2)	ND (2) ND (2)
s-1,3-Dichloropropene	5 0.4	ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (2) ND (2)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (2) ND (2)	ND (2) ND (2)
yclohexane	-	ND (1)	ND (10)	ND (1)	ND (1)	ND (10)	ND (1)	ND (10)	ND (10)	ND (10)	ND (1)	ND (10)	ND (1)	ND (10)	ND (1)	ND (10)	ND (10)	ND (10)
ibromochloromethane	50	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
ichlorodifluoromethane (CFC-12)	5	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
thylbenzene	5	5.1 ^[A]	2.46	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
opropylbenzene	5	1.3	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
ı,p-Xylenes lethyl acetate	5	- ND (1)	ND (2) ND (2)	- ND (1)	- ND (1)	ND (2) ND (2)	- ND (1)	ND (2) ND (2)	ND (2) ND (2)	ND (2) ND (2)	- ND (1)	ND (2) ND (2)	- ND (1)	ND (2) ND (2)	- ND (1)	ND (2) ND (2)	ND (2) ND (2)	ND (2) ND (2)
ethyl cyclohexane	-	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2) ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2) ND (2)	ND (1)	ND (2) ND (2)	ND (2)	ND (2)
ethyl Tert Butyl Ether	-	0.67 J	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
ethylene chloride	5	ND (1)	ND (5)	ND (1)	ND (1)	ND (5)	ND (1)	ND (5)	ND (5)	ND (5)	ND (1)	ND (5)	ND (1)	ND (5)	ND (1)	ND (5)	ND (5)	ND (5)
Xylene	5	-	ND (2)	-	-	ND (2)	-	ND (2)	ND (2)	ND (2)	-	ND (2)	-	ND (2)	-	ND (2)	ND (2)	ND (2)
tyrene	5	ND (1)	ND (5)	ND (1)	ND (1)	ND (5)	ND (1)	ND (5)	ND (5)	ND (5)	ND (1)	ND (5)	ND (1)	ND (5)	ND (1)	ND (5)	ND (5)	ND (5)
etrachloroethene	5	ND (1)	ND (2)	1.1	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
oluene ans-1,2-Dichloroethene	5 5	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2)	ND (2)	ND (2) ND (2)	ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (2) ND (2)	ND (2) ND (2)
ans-1,2-Dichloroptopene	5 0.4	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (2) ND (2)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (1) ND (1)	ND (2) ND (2)	ND (2) ND (2)	ND (2) ND (2)
ichloroethene	5	0.66 J	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
ichlorofluoromethane (CFC-11)	5	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
rifluorotrichloroethane (Freon 113)	5	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
inyl chloride	2	ND (1)	ND (2)	ND (1)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (1)	ND (2)	ND (2)	ND (2)
ylene (total)	5	5.8 ^[A]	-	ND (2)	ND (2)	-	ND (2)	-	-	-	ND (2)	-	ND (2)	-	ND (2)	-	-	-

Notes: ନ୍ୟାଇନ୍ମୁଅନ୍ମୁଅନୁସ୍ପାର୍ବରେ AMBIENT_WATER_Class_GA C:\Users\wbwellin\Documents\SITES\autohaus\prr\2014\2014-2013 Groundwater - Summary Table.xlsx

TABLE 8 SUMMARY OF ANALYTICAL RESULTS SOIL AUTOHAUS

,

	Location Action		SB-01	SB-02	SB-03	SB-04	SB-05	SB-06	SB-07
	ample ID NYDEC 3							5 SB06-081914-1050	
	nple Date 12 RU		18/2014	08/18/2014	08/18/2014	08/18/2014	08/19/2014	08/19/2014	08/19/2014
	iple Type		N	N	N	N	N	N	N
Sample De	pth (bgs)	0.3	- 1.5 (ft)	6 - 7.6 (ft)	6 - 7.5 (ft)	6 - 7.1 (ft)	3 - 4 (ft)	7 - 9 (ft)	7 - 9 (ft)
Volatile Organic Compounds (ug/kg)									
1,1,1-Trichloroethane	68	0 NE	D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
1,1,2,2-Tetrachloroethane	60		D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
1.1.2-Trichloroethane			D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
1.1-Dichloroethane	27		D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
1,1-Dichloroethene	33		D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
1,2,3-Trichlorobenzene			D (17.2)	ND (23.1)	ND (23.4)	ND (22.4)	ND (19.1)	ND (23.2)	ND (20.6)
1,2,4-Trichlorobenzene	34		D (17.2)	ND (23.1)	ND (23.4)	ND (22.4)	ND (19.1)	ND (23.2)	ND (20.6)
1,2-Dibromo-3-chloropropane (DBCP)			D (34.4)	ND (46.3)	ND (46.8)	ND (44.9)	ND (38.1)	ND (46.4)	ND (41.3)
1,2-Dibromoethane (Ethylene Dibromide	-		D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
1,2-Dichlorobenzene	=) 11		(6.87) M	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
1,2-Dichloroethane	2		(0.07) M D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
1,2-Dichloropropane	2		D (6.87) D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
1,2-Dichloropropane 1,3-Dichlorobenzene	24		(6.87) (6.87) M	ND (9.25) ND (9.25)	ND (9.36) ND (9.36)	ND (8.97) ND (8.97)	ND (7.62) ND (7.62)	ND (9.28) ND (9.28)	ND (8.25) ND (8.25)
	24					, ,	. ,		
1,4-Dichlorobenzene			(6.87) M	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
1,4-Dioxane	10		D (68.7)	ND (92.5)	ND (93.6)	ND (89.7)	ND (76.2)	ND (92.8)	ND (82.5)
2-Butanone (Methyl Ethyl Ketone)	30		0 (34.4)	ND (46.3)	ND (46.8)	ND (44.9)	ND (38.1)	ND (46.4)	ND (41.3)
2-Hexanone	-		D (17.2)	ND (23.1)	ND (23.4)	ND (22.4)	ND (19.1)	ND (23.2)	ND (20.6)
4-Methyl-2-Pentanone (Methyl Isobutyl I			D (17.2)	ND (23.1)	ND (23.4)	ND (22.4)	ND (19.1)	ND (23.2)	ND (20.6)
Acetone	5		49.6	ND (46.3)	ND (46.8)	ND (44.9)	ND (38.1)	ND (46.4)	ND (41.3)
Benzene	6		D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Bromodichloromethane	-		D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Bromoform	-		D (17.2)	ND (23.1)	ND (23.4)	ND (22.4)	ND (19.1)	ND (23.2)	ND (20.6)
Bromomethane (Methyl Bromide)	-		(6.87) M	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Carbon disulfide	27		D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Carbon tetrachloride	76	0 NE	D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Chlorobenzene	11	00 NE	D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Chlorobromomethane	-	NE	D (17.2)	ND (23.1)	ND (23.4)	ND (22.4)	ND (19.1)	ND (23.2)	ND (20.6)
Chloroethane	19	00 NE	D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Chloroform (Trichloromethane)	37	'0 NE	D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Chloromethane (Methyl Chloride)	-	NE	D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
cis-1,2-Dichloroethene	25	0 NE	D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
cis-1,3-Dichloropropene	-	NE	0 (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Cyclohexane	-	NE	D (34.4)	ND (46.3)	ND (46.8)	ND (44.9)	ND (38.1)	ND (46.4)	ND (41.3)
Dibromochloromethane	-	ND	(6.87) M	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Dichlorodifluoromethane (CFC-12)	-	NE	D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Ethylbenzene	10) (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	15.2	ND (8.25)
Isopropylbenzene	23		D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
m,p-Xylenes			32.7	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	69.6	ND (8.25)
Methyl acetate			D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Methyl cyclohexane	-		D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Methyl Tert Butyl Ether	93		D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Methylene chloride	5		23.9	43.9	55.2 ^[A]	113 ^[A]	ND (19.1)	86 ^[A]	33
o-Xylene	0		9.81	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	26.3	ND (8.25)
Styrene			D (17.2)	ND (23.1)	ND (23.4)	ND (22.4)	ND (19.1)	ND (23.2)	ND (20.6)
Tetrachloroethene	13		D (17.2) D (6.87)	ND (23.1) ND (9.25)	ND (9.36)	ND (22.4) ND (8.97)	ND (19.1) ND (7.62)	ND (23.2) ND (9.28)	ND (20.0) ND (8.25)
Toluene	70		D (6.87) D (6.87)	ND (9.25) ND (9.25)	ND (9.36) ND (9.36)	ND (8.97) ND (8.97)	ND (7.62) ND (7.62)	ND (9.28) ND (9.28)	ND (8.25) ND (8.25)
	19								
rans-1,2-Dichloroethene	19		D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
rans-1,3-Dichloropropene	-		D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Trichloroethene	47		D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Trichlorofluoromethane (CFC-11)	-		D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Trifluorotrichloroethane (Freon 113)	60		D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)
Vinyl chloride	2) NE	D (6.87)	ND (9.25)	ND (9.36)	ND (8.97)	ND (7.62)	ND (9.28)	ND (8.25)

Notes:

A - NYDEC_375_2006-12_RU-PGW

APPENDICES

Appendix 1 – IC/EC Certification

Appendix 2 – Boring Logs and Well Completion Details

Appendix 1 – IC/EC Certification

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	te No.	828084	Site Details	Вс	ox 1
Sit	e Name	Autohaus of Rochester	r		
Cit Co			Zip Code: 14445		
Re	porting P	Period: January 1, 2014 to	o December 31, 2014		
				YES	NO
1.	Is the ir	nformation above correct?		ХJ	
	lf NO, ir	nclude handwritten above	or on a separate sheet.		
2.			rty been sold, subdivided, merged, or undergone a Reporting Period? Order On Consent April 21, 2014	X	
3.		ere been any change of us NYCRR 375-1.11(d))?	e at the site during this Reporting Period		α
4.		ny federal, state, and/or lo t the property during this R	cal permits (e.g., building, discharge) been issued Reporting Period?		Ø.
			ons 2 thru 4, include documentation or evidence previously submitted with this certification form		
5.	Is the s	ite currently undergoing de	evelopment?		CX
				Bo	x 2
				YES	NO
6.		urrent site use consistent v ercial and industrial	with the use(s) listed below?	X	٥
7.	Are all I	Cs/ECs in place and funct	tioning as designed?	X	
	IF '	THE ANSWER TO EITHER DO NOT COMPLETE TH	QUESTION 6 OR 7 IS NO, sign and date below an IE REST OF THIS FORM. Otherwise continue.	d	
Corre	ctive Me	asures Work Plan must b	e submitted along with this form to address these	issues.	
Sig	nature of	Owner, Remedial Party or (Designated Representative Date		5

SITE NO. 828084		
Description of Ins	titutional Controls	
Parcel	Owner	Institutional Control
152.13-3-4	99 Marsh Road Real Estate Holdings,	Monitoring Plan Site Management Plan
Consent Order with the owne	r requires compliance with and implement	tation of the Site Management Plan
Description of Eng	gineering Controls	

Periodic Review Report (PRR) Certification Statements		
1. I certify by checking "YES" below that:		
 a) the Periodic Review report and all attachments were prepared under the direction reviewed by, the party making the certification; 	n of, and	ł
b) to the best of my knowledge and belief, the work and conclusions described in th are in accordance with the requirements of the site remedial program, and generally	is certifi accepte YES	cation d NO
	N	
 If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for ea or Engineering control listed in Boxes 3 and/or 4, 1 certify by checking "YES" below that a following statements are true: 	ach Insti III of the	tutional
(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged Control was put in-place, or was last approved by the Department;	d since t	he date that the
(b) nothing has occurred that would impair the ability of such Control, to protect public health the environment;	h and	
(c) access to the site will continue to be provided to the Department, to evaluate the remedy evaluate the continued maintenance of this Control;	, includi	ng access to
(d) nothing has occurred that would constitute a violation or failure to comply with the Site M Control; and	lanagen	nent Plan for this
(e) if a financial assurance mechanism is required by the oversight document for the site, the and sufficient for its intended purpose established in the document.	e mecha	anism remains valid
	YES	NO
	នា	
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
A Corrective Measures Work Plan must be submitted along with this form to address these	issues.	

Signature of Owner, Remedial Party or Designated Representative

Date

٦

IC CERTIFICATIONS SITE NO. 828084	Box 6
	007.0
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGN/ I certify that all information and statements in Boxes 1,2, and 3 are true. I under statement made herein is punishable as a Class "A" misdemeanor, pursuant to S Law.	stand that a false
Mary C. YanBoetel at 11 Marsh Boad, East Print hame print business address	Bochester, NY
am certifying as(Ow	ner or Remedial Party)
for the Site named in the Site Details Section of this form.	
Signature of Owner, Remedial Party, or Designated Representative Date	20/14
0	

IC/EC CI	ERTIFICATIONS
	Box 7 Signature
certify that all information in Boxes 4 and 5 are tr	rue. I understand that a false statement made herein is
unishable as a Class "A" misdemeanor, pursuan	it to Section 210,45 of the Penal Law.
at	
print name	print business address
m certifying as a for the	
	(Owner or Remedial Party)
	(Owner or Remedial Party)
Signature of , for the Owner or Remedial Party, Rendering Certification	(Owner or Remedial Party) Stamp Date (Required for PE)

2 V 2 V 2

Appendix 2 – Boring Logs and Well Completion Details

Boring Logs

H A		EY& RICI	$\overline{\mathbf{H}}$				GEO	GEOPROBE REPORT								SB	-0]	1
Proj Clie Cor		99	Marc		Real 1	Estate H								of 3 Au	-006 2 Igust Igust	t 20		
				Casing	San	npler	Barrel	Drilling Equipmen	t and Procedures		inis Drille		N.					
Туре	е					-	-	Rig Make & Model: CM	E Geoprobe Truck	F	I&A	Re	э.	R.	Lyċ	lell		
Insid	le Diar	neter (ii	n.)	_		-	-	Bit Type: Drill Mud:			Elev Datu	atior	۱					
Ham	nmer V	Veight (lb)	-		-	-	Casing:		-		ation	S	ee P	lan			
Harr	nmer F	all (in.))	-		-	-	Hoist/Hammer: _ PID Make & Model:										
£	SWC	ف ج		sb	log	ŧ		/ISUAL-MANUAL IDENTIFICA	TION AND DESCRIPTION	G	Grave	el	San	b			eld 1	Гes
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)		(Color, GROUP NAME,				Coarse	% Medium		ŝ	δ	I oughness	Plasticity
Jepi	mple	Rec	Sar	L N N	SCS	Str.		structure, odor, moisture, GEOLOGIC INTER	optional descriptions	0, 0,000		Coa	Med	% Fine	Fines	Dilatancy	ugno	Plasticity
0 -	Sa				n Sin Sin Sin Sin Sin Sin Sin Sin Sin Si				·	6	° 8	° %	%	%	%		≚ i	đ
5		G1 38	0.0 4.0		SW	0.3	Brown	-ASPHA well graded SAND with grave				1						
			7.0	0.0	SP	1.0	moist/c	lry	· · •	1	Τ	T			- †	Ť	T	. –
				220				own poorly graded SAND (Sl dor, moist/dry	P), mps <1 mm, slight "carl	oon-								
		G2 48	4.0	78 50.1														
5 -		+0	8.0	11.9														
				3.5 3.3			Wet at	8 0 ft										
		G3	8.0		SW-	8.0	Fine br	own poorly graded SAND with	th silt (SW-SM), mps < 1 m	n, 🕇	t	+	+-	[]	-†	-†	- †	
		20	10.0		SM		slight "	carbon-like odor", wet										
10 -		G4	10.0		SW-		Similar	to G3 except increase in silt of	content with depth									
		20	14.0	0.0	SM													
				0.0														
				0.0														
				0.0	ML	13.5		SILT with sand (ML), mps 0.	5 cm, no odor, wet, occasio	nal	+	+	+-	$\left \right $	-+	-+	- +	
1-		G5 30	14.0 18.0	0.0	ML		gravel Grav sa	andy SILT (ML), mps 1.0 in.,	no odor, moist, occasional									
15 -			10.0	0.0			gravel		ouor, moist, occusional									
				0.0														
		G6	18.0	0.0	ML		Similar	to G5										
		24	20.0	0.0														
20 -				0.0	ML		Similar	to G6 except soft, wet, mps	< 1 cm									
		G7 38	20.0 24.0															
				0.0														
				0.0		23.5	L						L.					
		G8	24.0	0.0	SM	23.5	Gray si	Ity SAND (SM), mps < 1mn	n, no odor, wet									
25 -		48		0.0														
				evel Dat		oth (ft) to):	Sample ID	Well Diagram	0			nma		•			
D	ate	Time		e (hr) B	ottom	Bottom	Water	O - Open End Rod T - Thin Wall Tube	Screen	Overbu Rock C		•	·		30			
			-	· 10	Jasing	of Hole		U - Undisturbed Sample S - Splitspoon Sample	िं <u>व</u> ै Filter Sand िं व ै Cuttings	Sample		u (II	.) 9	G	-			
								G - Geoprobe	Grout	· ·				5	SB	-01		
Field	d Tests	:		Dilatan	cy : R -	- Rapid S	S-Slow 1		Bentonite Seal		ium	H-I		1.16				
								n H - High Dry St eservation within the limitation	rength: N - None L - Low N	I - IVIEQIUI	n F	1 - Hi	yn \	/ - VE	ery Hi	gn		—

			H		GEOPROBE REPORT						Boring No. File No. 3529 Sheet No. 2						
£	lows 1.	No. No.	ff e	ings	lodn	с ц	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION		avel		Sano				eld 🤅		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	
25 -			28.0	0.0													
				0.0													
		G9	28.0	0.0	SM		Similar to G8										
		24	30.0	0.0 0.0													
30 -				0.0		30.0	BOTTOM OF EXPLORATION 30.0 FT										
								B							-01	_	

HAL ALD Project Client	Supp	oleme			tion, Fo		PROBE REPOR		UIK	ile N	No. t No	35	5294	-006	SB-	02	
Contracto		nangle	Drillin Casing			Barrel	Drilling Equipmen	t and Procedures		inisi inisi	า	18	8 Au 8 Au	igust igust			
Hammer V Hammer F	. ,		- -		-	- - -	Rig Make & Model: CM] Bit Type: Drill Mud: Casing: Hoist/Hammer: - PID Make & Model:	E Geoprobe Truck	E				R. ee P	Lyde Plan	ell		
Depth (ft) Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)		VISUAL-MANUAL IDENTIFICA (Color, GROUP NAME, structure, odor, moisture, GEOLOGIC INTER	max. particle size*, optional descriptions	% Coarse	% Fine	Coarse	% Medium		% Fines	Toughness B	Plasticity a D	Τ
0 0	G1	0.0	ш.				-ASPHA	LT-			0.	0.	0,	8° L			+
	39	4.0	0.0 0.0 0.0	SW SP	0.3 0.9	\moist/c	raded SAND with gravel (SW) <u>lry</u>		, /								
5 -	G2 36	4.0 8.0	0.0 0.0 0.0	SP- SM	6.0	Similar	to G2 except with silt			-				_	-		
	G3 48	8.0 12.0	0.0 0.0	5101		Wet at	7.6 ft										
10 -			0.0 0.0 0.0	ML ML	9.3		own SILT with sand ((ML), m LT with sand (ML), mps 1 mm	-		+				_	+		
15 -		12.0 16.0	0.0 0.0 0.0 0.0 0.0														
	1 10	16.0 20.0	0.0 0.0 0.0 0.0	ML		Gray s	andy SILT with gravel (ML), r	nps 1 mm, no odor, moist									
20		20.0 24.0	0.0 0.0 0.0 0.0	ML		Gray S	ILT with sand (ML), mps <1	mm, no odor, moist/wet									
25	30	24.0	0.0	ML		Similar	• to G6										
Date	Time	Elap	Level Data lapsed Depth ne (hr.) Bottom B of Casing o			o: Water	Sample ID O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample S - Splitspoon Sample	ा Screen Filter Sand जिल्ले Cuttings	Overbu Rock C Sample	rder orec	• •)		28			
			Dilat		Derivit		G - Geoprobe	Bentonite Seal	Boring	·		-ايرا		SB-	02		_
Field Tests	5:					S - Slow I 1 - Mediur		ity: N - Nonplastic L - Low rength: N - None L - Low N					/ - Ve	erv Hic	۱h		

H&A-GEOPROBE-09 W/ PID HA-LIB09.GLB HA-TB+CORE+WELL-07-1.GDT G:35294-000_71 & 99 MARSH RD1006/GINT/35294-0066EO.GPJ 8 Sep 14

	H A	IAL LD	EY& RIC	H				GEOPROBE REPORT	F	Sori	No.	3	529	4-00 of	SB -	02	
┝					S	-	t)		_	avel		o. Sano				- hk	est
	£	л Slow	No.	le (ft)	ding (dm	њ Д	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION								ŝ	
	Depth (ft)	ir 6 i	ec.	Sample Depth (ft)	Read	s sy	ratu Janç Dept	(Color, GROUP NAME, max. particle size*,	arse	e	arse	∋diui	e	les	ancy	nne	igth
	Del	amp	san 3 Rt	Det	1 1 1 1	SC	lev[structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	6 Fir	° Cc	6 M€	6 Fir	6 Fir	Dilaté	5no	tren
F	25 -	S	5, 50				ш		<u>ن</u> ہ ا	5	~	~	<u>نې</u>	6			τ o
	<u>⊢</u> 25 –	Sampler Blows per 6 in.	Sample No. & Rec. (in.)		0.0 0.0 0.0 (ppm)	ML Inscs Symbol	Stratum Change 58.0	Similar to G7 Refusal at 28.0 ft BOTTOM OF EXPLORATION 28.0 FT		% Fine	% Coarse	% Medium	% Fine	% Fines			Prasticity Strength
		NOTE:	Soil id	lentifica	tion bas	ed on	visual-ma	nual methods of the USCS as practiced by Haley & Aldrich, Inc.	в	ori	ng	No	•		SB-	02	

H&A-GEOPROBE-09 W/ PID HA-LIB09 GLB HA-TB+CORE+WELL-07-1.GDT G:32294-000_71 & 99 MARSH RD:006/GINT/32294-006GEO.GPJ 8 Sep 14

		EY& RICI						PROBE REPORT				Sor	ing		lo .	1_00		B-0)3	
Projec Client Contr	t	99	Marc		Real 1	Estate H	ormer Au loldings	utohaus Facility, 99 Marsh , LLC	Road, Rochester, New			eet rt		1 18	of 8 Au	2 igus	st 20 st 20			
				Casing	San	npler	Barrel	Drilling Equipment	and Procedures		Dril		1		Sho	-				
Туре						-	-	Rig Make & Model: CMI	E Geoprobe Truck	- H			Rep.		R.	Ly	dell			
Inside	Dian	neter (i	n.)	-		-	-	Bit Type: Drill Mud:				vati um								
Hamm	ner W	/eight ((lb)	-		-	-	Casing: Hoist/Hammer: -				atio		Se	ee P	lan				
		all (in.))	-		-	-	PID Make & Model:												
ff)	lows I.	No. in.)	e ff)	ings	lodn	ר פ (ft) ר		VISUAL-MANUAL IDENTIFICA	TION AND DESCRIPTION		Grav			Sanc	ł			ield ഗ	Те	is S
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)		(Color, GROUP NAME,	max. particle size*,		% Coarse	e	% Coarse	% Medium	e	sət	ancy	Toughness	city	
Del	pe	Sam & R∉	Der S.	. C)SCE	lev[structure, odor, moisture, GEOLOGIC INTER		Ċ	3	% Fine	% Co	% Me	% Fine	% Fines	Dilatancy	Toug	Plasticity	
0 -	נו.	G1	0.0	<u> </u>				-ASPHA	LT-	f	+			J.		5.		•	-	-
		48	4.0	0.0	SW SP	0.3		well graded SAND with grave	l (SW), mps 1.0 in., no ode	or,	• +	- +	-+				-+		<u> </u>	_
				0.1		1.0	Poorly	graded fine SAND (SP), mps	<1 mm, no odor, moist/dr	<u>_</u> _'										
				0.1																
		<u> </u>	4.0	0.1																
5 -		G2 42	4.0 8.0																	
				0.0		6.0	L				.									
				0.0																
				0.0	SP- SM		Similar Wet at	r to G2 except with silt 7.5 ft												
		G3 36	8.0 12.0	0.0																
10			0	0.0		9.3				+	• +	-+	-+				-+			-
10 -				0.0																
				0.0																
		G4 38	12.0 16.0																	
			10.0	0.0	ML		Gray s	andy SILT with gravel (ML), r	nps 1 cm, no odor, moist/w	et										
				0.0																
15 -				0.0																
		G5 36	16.0																	
		50	20.0	0.0	ML		Simila	r to G4												
				0.0																
				0.0																
20 +		G6	20.0																	
		32	24.0	0.0	ML		Simila	r to G5												
				0.0																
				0.0																
\vdash		G7	24.0	0.0	ML		Simila	r to G6												
25		30			ta			0						mai						
				evel Da psed	Dep	th (ft) to	D:	Sample ID O - Open End Rod	Well Diagram	Overbu	Irde		um (ft)	ııld		28				-
Dat	le	Time		· hr B	ottom Casing	Bottom of Hole	Water	T - Thin Wall Tube	Screen	Rock C			• •			-				
_								S - Splitspoon Sample	ମି.୩.୩ Grout	Sample	es			70	3					
								G - Geoprobe		Borin	g l	No	-			SE	8-03	3		
			1					1	ity: N - Nonplastic L - Low											_

]	HAI ALD	EY) U				GEOPROBE REPORT	F	ile N	i ng No.	3	529	4-00	SB	-03	
			п	6	-			S	hee	et N	0.	2	of	2	- 1-1 -	
(#	Blox	No.	(t)	dings (oqm/	tr General General	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	-	avel		Sano E				ŝŝ	Test
Depth (ft)	l ů	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity Strength
- 25			28.0	0.0												
	Sam	San			ML	28.0	Similar to G7 Refusal at 28.0 ft BOTTOM OF EXPLORATION 28.0 FT				W %			Dilat		Plas Stret
	NOTE	: Soil io	lentifica	tion bas	ed on	visual-ma	nual methods of the USCS as practiced by Haley & Aldrich, Inc.	в	ori	ng	No			SB	-03	

H&A-GEOPROBE-09 W/ PID HA-LIB09 GLB HA-TB+CORE+WELL-07-1.GDT G:32294-000_71 & 99 MARSH RD:006/GINT/32294-006GEO.GPJ 8 Sep 14

		EY& RICI						PROBE REPOR				Bor					SB	8-04	4
Proje Clien Cont		99	Marc		Real	Estate H	ormer Au oldings	utohaus Facility, 99 Marsh , LLC	Road, Rochester, New			rt		1 18	294 of Au Au	2 gust	t 20		
				Casing	San	npler	Barrel	Drilling Equipmer	t and Procedures		Drill	ler			Shor	-			
Hamn	e Dian mer W	neter (ii /eight (all (in.)	lb)	- -		-	- - -	Rig Make & Model: CM Bit Type: Drill Mud: Casing: Hoist/Hammer: -	E Geoprobe Truck	E	Elev Dati	A R vati um atic	on		R.	Lyd lan	lell		
		. ,		s		Ê		PID Make & Model:			Grav	vel	S	and			Fie	eld -	Ter
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)		VISUAL-MANUAL IDENTIFIC/ (Color, GROUP NAME structure, odor, moisture GEOLOGIC INTE	, max. particle size*, , optional descriptions			% Fine		Ę	Fine	% Fines		ŝ	Plasticity
0		G1	0.0		SW	0.3		-ASPHA						-					
		48	4.0	0.0 0.0	SP	1.0	_moist/o	poorly graded fine SAND (SI		or,/							- +-		
				0.0															
5 -		G2 48	4.0 8.0	0.0															
				0.0 0.0 0.0	ML SP	6.6 7.1	<u> </u>	SILT (ML), mps <1 mm, no poorly graded fine SAND (SI		+	+	- +				- +	-+		
10 -		G3 32	8.0 12.0	0.0 0.0 0.0															
		G4	12.0	0.0															
		34	12.0		SP		Simila	r to G3											
15 -		G5	16.0	0.0	ML	15.5	Gray s	andy SILT with gravel (ML),	mps 1 cm, no odor, moist/w	et	+	- +				- +	-+		
		30	19.0	0.0 0.0															
20 -		S6 36	19.0 23.0	0.0	ML		Simila: depth	r to G5 above except no grave	l, silt content increases with										
		G7	23.0	0.0 0.0 0.0	SP- SM		Poorly	graded SAND with silt (SP-S	M), mps <1 mm, no odor,	wet									
		40	27.0																
25		Wa	ater L	evel Da	ita			Sample ID	Well Diagram			S	umr	mar	 γ				_
Dat	ite	Time	Ela	psed	Dep Bottom	oth (ft) to Bottom of Hole	o: Water	O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample	Riser Pipe Screen Filter Sand	Overbu Rock C	ore	en	(ft)		, ,	30 -			
								S - Splitspoon Sample G - Geoprobe	Grout Concrete Bentonite Seal	Sample Borin		No	•	80	-	SB	-04	ļ	
		:	-		-	· · · ·	S - Slow		city: N - Nonplastic L - Low										

Ā		EY& RIC	H				GEOPROBE REPORT	F	ile	ing No. et N	Nc 3 0.). 5294 2	1-00 of	6	-04	
ť)	SWO	og (;	f.	sɓu	lođ	(ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION	Gra	avel		Sano			F	ield	Tes
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
25 -				0.0	SP- SM		Similar to G7									
		G8	27.0	0.0												
		36	30.0	0.0	SP-		Similar to G8									
				0.0	SM											
30 -						30.0	BOTTOM OF EXPLORATION 30.0 FT							_		
											No			0	-04	

HALEY&			RVATION V			Well No. MW-101 Boring No.
	IN	STAL	LATION R	EPORT		SB-04
PROJECT	Supplemental Investigat	ion		H&A FIL	E NO. 35294	
LOCATION	Former Autohas Fachilit			PROJECT	MGR. M. Ra	msdell
CLIENT	99 Marsh Rd. Real Estat	te Holdings, L	LC	FIELD RE		
CONTRACTOR	Nothnagle Drilling, Inc.			DATE INS		014
DRILLER	N. Short			WATER I		
Ground El.	ft Lo	ocation			Guard Pip	
El. Datum	_					
SOIL/ROCK	BOREHOLE		Type of protective	cover/lock	Mancover	/Flushmount
CONDITIONS	BACKFILL	-				
	1/4 in.	┤ ┎─┿	Height/Depth of to		adway box	<u> </u>
	CONCRETE	_	above/below groun	id surface		
	6.0 in.		•			
			Height/Depth of to above/below groun			<u> </u>
			Type of protective	casing:	Steel/Fl	ushmount
			Length			<u> </u>
			Inside Diamete	r		<u> </u>
	GROUT		Depth of bottom of	f guard pipe/roadw	ay box	<u>13 1/4</u> ft
				Type of Seals	Top of Seal (ft)	Thickness (ft)
			_	Concrete	1/4"	5 3/4"
			B	Bentonite Seal/Grout	6"	13.5
	14.0 ft.	L1	—	Bentonite	14.0	3.5
	BENTONITE		-			
	CHIPS		Type of riser pipe:		P	VC
		-	Inside diameter			<u>2.0</u> in
	17.5 ft.		Type of backfil	l around riser	SAND, Benton	nite Chips, Grout
			Diameter of borehouse	ole		<u>8.0</u> in
			Depth to top of we	ll screen		<u>19.5</u> ft
	SAND		Type of screen		PVC	10 Slot
	(superior qurtz		Screen gauge of	r size of openings		<u> </u>
	filtration	L2	Diameter of scr	reen		<u>2.0</u> in
	meda filpro #9917)		← Type of backfill ar	ound screen	SA	AND
			Depth of bottom of	f well screen		ft
		L3	Bottom of Silt trap)		<u>29.8</u> ft
<u> </u>	29.8		Depth of bottom of	f borehole		29.8 ft
	om of Exploration)					_
(Numbers refer to de	epth from ground surface in feet)			(Not to Scale)		
Ricor	$\frac{19.1 \text{ft} + }{\text{r Pay Length (L1)}}$	10 Length of sci		0.3 ft of silt trap (L3)	= 29.4 Pay len	ft
COMMENTS:	r uj Longui (L1)	Lengui OI Sel		5 5 m uup (L3)	i ay ieli	5

Proj Clie	iect nt	99	oplen Mare	ch Road	Real I	tion, Fo Estate H	rmer Au	Utohaus Facility, 99 Marsh		S	ile	No. et N	0. 1	5294 . of	4-00 2		B-0		
Type Insid Ham	le Diar Imer V	neter (i Veight (Fall (in.)	n.) Ib)	gle Drill Casing - - -			Barrel - - -	Drilling Equipmer Rig Make & Model: CM Bit Type: Drill Mud: Casing: Hoist/Hammer: - PID Make & Model:	at and Procedures E Geoprobe Truck	F C F E	inis Drille 1&/ Elev Datu	sh er NRe vatio	1 N. p. n	9 A Sho	ugu ort . Ly	st 20 rdell	014		
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)		VISUAL-MANUAL IDENTIFIC/ (Color, GROUP NAME, structure, odor, moisture GEOLOGIC INTEI	max. particle size*, optional descriptions	0, Coarse		% Coarea	% Medium	_	% Fines		Toughness ai	Plasticity a	
0 -		G1 42	0.0	220 280 330	SW SP	0.3 0.9	Well g \odor", Mediu	-ASPH/ raded SAND with gravel (SW moist/dry m dense brown poorly graded -like odor, moist/dry), mps 1 cm, slight "carbon-	í									
5 -		G2 36	4.0 8.0				Similar	r to G1											
10 –		G3 38	8.0 12.0	5.3 7.1			Wet at	8.6 ft, increase in SILT with	depth										
15 –		G4 36	12.0 15.0) 1.8 1.3	SP- SM ML	12.5 14.0		graded SAND with silt (SP-S andy SILT with gravel (ML),			-	-							
		G5 25 G6	15.0 19.0 19.0	0.0 0.0 0.0 0.0															
20 -		32	25.0		ML SP-	23.0		andy SILT (ML), mps $< 1 \text{ mr}$ graded SAND with silt (SP-S		t	+	-							
- 25		Wa		0.0 _evel Da				Sample ID	Well Diagram			Su	mma	ary					
D	ate	Time			Bottom	th (ft) to Bottom of Hole	<u>water</u>	 O - Open End Rod T - Thin Wall Tube U - Undisturbed Sample S - Splitspoon Sample G - Geoprobe 	Screen Filter Sand State Cuttings Grout	Overbu Rock C Sample Borin ę	ore s	ed (1	ť)	G	30 - SH	3-0:	5		-
Field	l Tests	5:		Dilata Tough	iness: L	Rapid S - Low M	1 - Mediur	│ N - None Plastie n H - High Dry St	Bentonite Seal city: N - Nonplastic L - Low crength: N - None L - Low N						ery I	ligh			-

H A		EY& RIC	H				GEOPROBE REPORT	F	ile l	ing No. et N	3). 5294 2	-00	SB - 6 2	-05	
ft)	lows 1.	in.) in	e ft)	ings	lodr	n e h (ft)	VISUAL-MANUAL IDENTIFICATION AND DESCRIPTION		avel		Sano	ł			ŝ	Tes
Depth (ft)	Sampler Blows per 6 in.	Sample No. & Rec. (in.)	Sample Depth (ft)	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)	(Color, GROUP NAME, max. particle size*, structure, odor, moisture, optional descriptions GEOLOGIC INTERPRETATION)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity
25 -		G7 30	25.0 27.0	0.0 0.0												
		G8 36	27.0 30.0	0.0 0.0	SP- SM		Similar to G7									
30 -				0.0		30.0	BOTTOM OF EXPLORATION 30.0 FT									
							BOTTOM OF EXPLORATION 50.0 FT									
							nual methods of the USCS as practiced by Haley & Aldrich, Inc.			ng				SB	_05	_

Well Completion Details

HALEY&			RVATION W			Well No. MW-102 Boring No.
	IN	STAL	LATION RE	PORT		SB-05
PROJECT	Supplemental Investigat	ion		H&A FIL	E NO. 35294-	
LOCATION	Former Autohas Fachili	-		PROJECT	MGR. M. Ran	nsdell
CLIENT	99 Marsh Rd. Real Esta	te Holdings,	LLC	FIELD RE		
CONTRACTOR	Nothnagle Drilling, Inc.			DATE INS)14
DRILLER	N. Short			WATER I		
Ground El. El. Datum	ft	ocation			Guard Pip	
SOIL/ROCK	BOREHOLE		Type of protective co	over/lock	Mancover/	Flushmount
CONDITIONS		-				
	1/4 in.	┤┎──╸	Height/Depth of top above/below ground		adway box	<u> </u>
	CONCRETE	-	above/below ground	surrace		
	6.0 in.		≁╂┐			
			Height/Depth of top above/below ground			<u> </u>
			Type of protective ca	sing:	Steel/Flu	ishmount
			Length			1.1 ft
			Inside Diameter			8 in
	GROUT					
			Depth of bottom of g	uard pipe/roadw	ay box	<u>13 1/4</u> ft
			<u> </u>	ype of Seals	Top of Seal (ft)	Thickness (ft)
				Concrete	1/4"	5 3/4"
			Ben	tonite Seal/Grout	6"	13.5
	14.0 ft.	L1		Bentonite	14.0	3.5
	BENTONITE					
	CHIPS		Type of riser pipe:		P'	VC
			Inside diameter o	f riser pipe		2.0 in
	17.5 ft.		Type of backfill a	round riser	SAND, Benton	ite Chips, Grout
			• Diameter of borehold	2		<u>8.0</u> in
			Depth to top of wells	screen		<u> 19.5 </u> ft
	SAND		← Type of screen		PVC	10 Slot
	(superior qurtz		Screen gauge or s	ize of openings		0.01 in
	filtration	L2	Diameter of scree			2.0 in
	meda filpro #9917)		← Type of backfill arou	ind screen	SA	ND
			Depth of bottom of w	vell screen		ft
		L3	Bottom of Silt trap			<u>29.8</u> ft
—	29.8	┥╵╏	Depth of bottom of b	orehole		ft
	om of Exploration) epth from ground surface in feet)			(Not to Scale)		
		10	ft + 0.3		= 29.5	ft
Riser	$\frac{19.2 \text{ft}}{\text{r Pay Length (L1)}} + $	Length of s		silt trap (L3)	= 29.5 Pay leng	ftth
COMMENTS:					· · ·	
I –						

H A	IAL LD	EY& RIC	H				GEO	PROBE REPOR	г		B	oriı	ng l	No.		SI	3-0	6
Proj Clie Con		99	Marc	nental In ch Road, gle Drilli	Real	Estate I		utohaus Facility, 99 Marsh , LLC	Road, Rochester, New Y				0. 1 1	of 9 A	ugu)6 st 2(st 2(
				Casing	San	npler	Barrel	Drilling Equipmen	t and Procedures		Drille			Sho	-		/1 1	
Туре	9					-	-	Rig Make & Model: CM	E Geoprobe Truck	ŀ	1&A	Re				dell		
Insid	e Diar	neter (i	in.)	-		-	-	Bit Type: Drill Mud:			Elev Datu	atio	n					
Ham	mer V	Veight	(lb)	-		-	-	Casing:				ation	S	lee 1	Plan	1		
Ham	imer F	all (in.)	-		-	-	Hoist/Hammer: - PID Make & Model:										
t)	Blows in.	o cí		sbu	lođ	€	2	VISUAL-MANUAL IDENTIFICA	TION AND DESCRIPTION	-	Fav		San				ield	Tes
Depth (ft)	er Bl	c. (i	th (f	Readings (ppm)	Sym	atum ange	-	(Color, GROUP NAME,	max. particle size*.			Coarse	Medium	۵	es	ncy	nes	<u>it</u>
Dep	Sampler E per 6 i	Sample No. & Rec. (in.)	Sample Denth (ft)		USCS Symbol	Stratum Change Flev/Denth (ft)		structure, odor, moisture, GEOLOGIC INTEF	optional descriptions	d			% Me	% Fine	% Fines	Dilatancy	Toughness	Plasticity
0 -	Ś	G1	0.0		-			-ASPHA	LT-		\	` °	` ^`	<u>~</u>	6		-	<u>ш</u>
		40	4.0	0.0	SW SP	0.3		raded SAND with gravel (SW)	, mps 1 cm, no odor, moist		+	+	+.	⊢-	<u> </u>			
				0.0	51	1.0		poorly graded fine SAND (SP moist/dry), mps <1 mm, "carbon-lik	e								
				0.0														
		G2	4.0	0.0	SP		Simila	r to G1										
5 -		34	8.0	0.0														
				0.0														
				0.0			1											
		G3	8.0	0.0			Moist	at 7.6 ft										
		40	12.0		SP		Wet at	9.0 ft r to above except increase in sil	t content									
10 -				0.0	SP-	10.0		graded SAND with silt (SP-SI			+	_	<u>+</u> .	<u> </u>	<u> </u>			
				0.0	SM		roony	graded SAND with sitt (SF-SI	×1)									
-		G4 48	12.0 16.0		SP- SM		Simila	r to G3										
				0.0														
15 -				0.0	ML	15.0	Madiu	m stiff gray sandy SILT with g	raval (MI) mps 1 am po 6	dor -	_	+	_ .	<u> </u>	<u> </u>			
					ML		moist	in sull gray sandy SIL1 with g	raver (ML), https 1 cm, no c	dor,								
		G5 30	16.0 20.0															
				0.0	ML		Simila	r to G4										
				0.0			[
				0.0			[
20 -				1		20.0		BOTTOM OF EXPLO	RATION 20.0 FT		T							
							[
							[
							1											
		\	ator I	_evel Dat				Sample ID	Well Diagram			<u> </u>	mma					_
	ate		Fla	apsed	Dep	oth (ft) t	0:	Sample ID O - Open End Rod	Riser Pipe	Overbu	rde			а у	20			
D8	ate	Time		e (hr) B		Bottom of Hole	Water	T - Thin Wall Tube U - Undisturbed Sample	Screen Filter Sand	Rock C		`	<i>'</i>		-			
								S - Splitspoon Sample	ि.सं.ी Cuttings Grout	Sample			,	G				
								G - Geoprobe	Concrete	Borin	g N	lo.			SI	3-00	5	
Field	Tests						S - Slow		ity: N - Nonplastic L - Low									
			nortic					m H - High Dry Str bservation within the limitation	rength: N - None L - Low N	1 - Mediu	n ŀ	<u>1 - H</u>	gh '	v - v	ery I	ligh		

H&A-GE OPROBE-09 W/ PID HA-LIBO8 GLB HA-TB+CORE+WELL-07-1.GDT G:\32294-000_71 & 99 MARSH RD\006\GINT\32294-066GEO.GPJ 8 Sep 14

H A	IAL LD	EY& RIC	H				GEO		г			Во	rin	g١	lo.		SI	B- 0	7	
Proj Clie Con		99	Mare	nental Inv ch Road, gle Drilli	Real	Estate I		utohaus Facility, 99 Marsh , LLC	Road, Rochester, New Y	<i>č</i> ork	Sł St	le N neet art	No). 1 19	of A	1-00 1 1gus	st 2(
				Casing	San	npler	Barrel	Drilling Equipment	and Procedures			nish riller			Sho	-	51 20	J14		
Туре	9					-	_	Rig Make & Model: CMI	E Geoprobe Truck		На	&A F				Ly	dell			
		neter (in.)	-		-	-	Bit Type: Drill Mud:				eva								
Ham	mer V	Veight	(lb)	-		-	-	Casing:				atun ocati		S	ee I	Plan				
Ham	nmer F	all (in.)	-		-	-	Hoist/Hammer: - PID Make & Model:												
£	Sampler Blows per 6 in.	or (-	a í	ngs	lođ	€)	VISUAL-MANUAL IDENTIFICA	TION AND DESCRIPTION		Gr	avel		San			F	ield	Те	sf T
Depth (ft)	er Bl	ple N c. (i	th (f	pm)	Sym	atum ange	-	(Color, GROUP NAME,	max. particle size*,		arse	U	arse	dium	a a	es	ncy	nes	oity	
Dep	ampl	Sample No. & Rec. (in.)	Sample	PID Readings (ppm)	USCS Symbol	Stratum Change Elev/Depth (ft)		structure, odor, moisture, GEOLOGIC INTER	optional descriptions		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	
0 -	S	G1	0.0					-ASPHA	LT-		°`	0	<u>``</u>	<u>``</u>	<u>`</u>	°		-	ш	
		36	4.0		SW SP	0.3		raded SAND with gravel (SW)				+-	+		+					ł
				0.0		0.9	Poorly	graded fine SAND (SP), mps	< 1 mm, no odor, moist/dr	y										
				0.0																
				_	SP		Simila	r to G1												
5 -		G2 30	4.0 8.0	,	SP		Siinia	10 01												
-				0.0																
				0.0																
				0.0																
ĺ		G3 40	8.0 12.0																	
		10	12.0	0.0	SP-	9.0	Wet at	9.0 ft graded fine SAND with silt (S	$P_{\rm SM}$ mps < 1 mm no or			†-		<u> </u>						İ
10 -				0.0	SM		wet	graded line SAI(D with sht (S		101,										
				0.0																
Ī		G4	12.		SP-		Simila	r to G3												
		30	16.0	0.0	SM															
				0.0																
15 -				0.0		15.5						L.	L.	L.	L .					
		G5	16.	0.0	ML	15.5	Gray s	andy SILT with gravel (ML), r	nps 1 cm, no odor, moist											
		32	20.0	0.0	ML		Simila	r to G4												
				0.0																
				0.0																
20 -				_		20.0		BOTTOM OF EXPLO	RATION 20.0 FT											I
							1													
							1													
		W		_evel Dat		oth (ft) t	0.	Sample ID	Well Diagram					nma	iry					
Da	ate	Time			ottom	Bottom	0. Water	O - Open End Rod T - Thin Wall Tube	Screen	Overt Rock			• •			20				
			+		Casing	of Hole		U - Undisturbed Sample S - Splitspoon Sample	िंद्र Filter Sand िंद्र Cuttings	Samp			(IL) 5	G	-				
								G - Geoprobe	Grout Grout Concrete	Bori) .	-		SE	B-0 ′	7		-
ield	Tests			Dilatan	ICV: R	- Rapid	S - Slow	 N - None Plastic	ity: N - Nonplastic L - Low					ligh						-
ieiu			nc-41	Tough	ness: l	Low	N - Mediur		ength: N-None L-Low N						/ - V	ery ⊦	ligh			

H&A-GEOPROBE-09 W PID HA-LIB09.GLB HA-TB+CORE+WELL-07-1.GDT G:\35294-000_71 & 99 MARSH RD1006/GINT\35294-006GEO.GPJ 8 Sep 14

HALEY&	(DBSE	RVATION	WELL		Well No. MW-101
	I IN	STAL	LATION R	EPORT		Boring No. SB-04
PROJECT	Supplemental Investigat			H&A FIL		
LOCATION	Former Autohas Fachili		Rd., E Rochester, NY	PROJECT	MGR. M. Rar	nsdell
CLIENT	99 Marsh Rd. Real Esta		LLC	FIELD R		
CONTRACTOR	Nothnagle Drilling, Inc.				STALLED <u>8/18/20</u>)14
DRILLER	N. Short			WATER I		
Ground El. El. Datum	ft 	ocation			Guard Pip	
SOIL/ROCK	BOREHOLE		Type of protectiv	e cover/lock	Mancover/	Flushmount
CONDITIONS						
	1/4 in.	┥┎─╸	Height/Depth of t above/below grou	top of guard pipe/ro	adway box	<u> </u>
	CONCRETE	_	above/below grou			
	6.0 in.		Height/Depth of above/below grou			<u> </u>
			Type of protectiv	e casing:	Steel/Flu	ashmount
			Length			<u> </u>
			Inside Diamet	ter		<u>8.000</u> in
	GROUT		Depth of bottom	of guard pipe/roadv	vay box	<u>13 1/4</u> ft
				Type of Seals	Top of Seal (ft)	Thickness (ft)
			-	Concrete	1/4"	5 3/4"
			-	Bentonite Seal/Grout	6"	13.5
	14.0 ft.		-	Bentonite	14.0	3.5
	BENTONITE		-			
	CHIPS		Type of riser pipe		P	VC
	17.5 ft.			er of riser pipe ïll around riser	SAND, Benton	2.0 in ite Chips, Grout
			Diameter of bore	hole		8.0 in
			Depth to top of w	all concon		19.5 ft
			Deptil to top of w			<u> </u>
	SAND		Type of screen		PVC	10 Slot
	(superior qurtz		Screen gauge	or size of openings		<u>0.01</u> in
	filtration	L2	Diameter of se	creen		<u>2.0</u> in
	meda filpro #9917)		← Type of backfill a	around screen	SA	ND
			Depth of bottom	of well screen		ft
		L3	Bottom of Silt tra	ар		<u>29.8</u> ft
L		_ ⊺ [Depth of bottom	of borehole		<u>29.8</u> ft
	om of Exploration) epth from ground surface in feet)			(Not to Scale)		
Crumbers fefer fo u	19.1 ft +	10	ft +	0.3 ft	= 29.4	ft
Riser	r Pay Length (L1)	Length of so		of silt trap (L3)	Pay leng	
COMMENTS:						
I						

HALEY&			RVATION W			Well No. MW-102 Boring No.
	I IN	STAL	LATION RE	EPORT		SB-05
PROJECT	Supplemental Investigat	ion		H&A FIL	E NO. 35294-	
LOCATION	Former Autohas Fachili	-		PROJECT		
CLIENT	99 Marsh Rd. Real Esta		LLC	FIELD RI		
CONTRACTOR DRILLER	Nothnagle Drilling, Inc. N. Short			DATE INS WATER I	STALLED <u>8/19/20</u>)14
Ground El. El. Datum	ft L	ocation			☐ Guard Pip☑ Roadway I	
SOIL/ROCK	BOREHOLE		Type of protective c	over/lock	Mancover/	Flushmount
CONDITIONS		-		e 1 · /		
	1/4 in.	┤┌─⁺	Height/Depth of top above/below ground		adway box	<u> </u>
	CONCRETE		usore, selon ground			
	6.0 in.		Height/Depth of top above/below ground			<u>3 1/2</u> in
			Type of protective c	asing:	Steel/Fl	ushmount
						1.1 ft
			-			8.000 in
	GROUT					
			Depth of bottom of ;	guard pipe/roadw	vay box	<u>13 1/4</u> ft
				Type of Seals	Top of Seal (ft)	Thickness (ft)
				Concrete	1/4"	5 3/4"
			Be	ntonite Seal/Grout	6"	13.5
	14.0 ft.	Depth of bottom of guard pip <u>Type of S</u> <u>Concre</u> <u>Bentonite Ser</u>				3.5
	BENTONITE					
	CHIPS		Type of riser pipe:		P	VC
			Inside diameter	of riser pipe		<u>2.0</u> in
	17.5 ft.		Type of backfill	around riser	SAND, Benton	ite Chips, Grout
			• Diameter of borehol	le		<u>8.0</u> in
			Depth to top of well	screen		<u>19.5</u> ft
	SAND		← Type of screen		PVC	10 Slot
	(superior qurtz		Screen gauge or	size of openings		0.01 in
	filtration	L2	Diameter of scre	en		<u>2.0</u> in
	meda filpro #9917)		← ── Type of backfill aro	und screen	SA	ND
			Depth of bottom of	well screen		ft
		L3	Bottom of Silt trap			<u>29.8</u> ft
L		┥╵╏	Depth of bottom of	borehole		<u>29.8</u> ft
	om of Exploration) epth from ground surface in feet)			(Not to Scale)		
(rumbers refer to de		10	ft i 0	. ,		f.
Riser	$\frac{19.2 \text{ft} + }{\text{r Pay Length (L1)}}$	10 Length of so	$\frac{\text{ft}}{\text{creen (L2)}} + \frac{0}{\text{Length of}}$	3 ft silt trap (L3)	= <u>29.5</u> Pay leng	ft
COMMENTS:	· • · · · ·					