2012 Periodic Review Report Former Davis-Howland Oil Corporation Site NYSDEC Site No. 8-28-088

City of Rochester Monroe County, New York

July 2013

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DEPARTMENT OF ENVIRONMENTAL REMEDIATION 625 Broadway, 12th FLOOR Albany, New York 12233-7013

Prepared by:

ECOLOGY AND ENVIRONMENT ENGINEERING, P.C. 368 Pleasant View Drive Lancaster, New York 14086

©2013 Ecology and Environment Engineering, P.C.

Enclosure 1 Engineering Controls - Engineering Standby Contractor Certification Form

Site Details	Box 1	
Site No. 828088		
Site Name Davis-Howland Oil Corporation		
Site Address: 200 ANDERSON AVENUE Zip Code: 14607 City/Town: Rochester County: Monroe Site Acreage: 1.0		
Reporting Period: December 31, 2011 to December 31, 2012		
	YES	NO
1. Is the information above correct?	×	
If NO, include handwritten above or on a separate sheet.		
2. To your knowledge has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		$\not >$
3. To your knowledge has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		$ \triangleleft$
4. To your knowledge have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X
If you answered YES to questions 2 thru 4, include documentation or eviden that documentation has been previously submitted with this certification for		
5. To your knowledge is the site currently undergoing development?		X
	Box 2	
	YES	NO
Is the current site use consistent with the use(s) listed below? Industrial	X	
7. Are all ICs/ECs in place and functioning as designed?	×	
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and cont DEC PM regarding the development of a Corrective Measures Work Plan to address		ues.
NLA		
Signature of Engineering Standby Contractor Date		

SITE NO. 828088		Box 3
Description o	f Institutional Controls	
<u>Parcel</u> 106.84-1-6	<u>Owner</u> Samille, Inc.	<u>Institutional Control</u> Monitoring Plan Site Management Plan
The IC is the site m	anagement plan with its O&M plan	O&M Plan
		Box 4
Description o	f Engineering Controls	
Parcel 106-84-1-6	Engineering	Control
		r Treatment System /Soil Vapor Extraction
	ntrol on this site parcel is a dual-ph groundwater pumping, and soil-va	nase groundwater system with air sparge below the por extraction.
The sparge points below the watertable		1, AS-42, and AS-43 inject air into saturated soil
Working in conjunction with the sparge points, SVEP-3, SVEP-4, SVEP-5, SVEP-6, and SVEP-7 are shallow vacuum points which remove the injected air which has passed through the water and soil.		
The extracted air ca	arries away whatever organic vapo	ors have been stripped from the groundwater.
	Il belongs to a network of shallow vapor stripping through the soil.	groundwater pumping wells which lower the water table

Box 5 Periodic Review Report (PRR) Certification Statements 1. I certify by checking "YES" below that: a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification, including data and material prepared by previous contractors for the current certifying period, if any; b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO 2. If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true: (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment; (c) nothing has occurred that would constitute a failure to comply with the Site Management Plan, or equivalent if no Site Management Plan exists. YES NO X П IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and contact the DEC PM regarding the development of a Corrective Measures Work Plan to address these issues. Signature of Engineering Standby Contractor Date

	CERTIFICATIONS
Professio	Box 6 nal Engineer Signature
	n 5 are true. I understand that a false statement made anor, pursuant to Section 210.45 of the Penal Law.
Gerald A. Strobel at	Ecology & Environment Engineering, P.C.
print name	
	368 Pleasant View Drive
	Lancaster, New York 14086
· · · · · · · · · · · · · · · · · · ·	(print business address)
m certifying as a Professional Engineer.	LE OFNEW YORY
Signature of Professional Engineer	5 2 7/30/2013
	Stam Stam

Section

Page

1		roduction and Background	
	1.1	Introduction	
	1.2	Site Description	
	1.3	Air Sparge/Soil Vapor Extraction (AS/SVE) System	
	1.4	Groundwater Remediation System	1-2
2	Rei	medial Systems Compliance	2-1
	2.1	Groundwater Treatment	
	2.2	Air Sparge/Soil Vapor Extraction	2-2
3	Eva	aluation of Site Institutional and Engineering Controls	3-1
	3.1	Institutional Controls	
	3.2	Engineering Controls	
4	Eva	aluation of Remedial Treatment Operations	4-1
-	4.1	System Operational Uptime in 2012	
	4.2	Groundwater Processed and Discharged through the Remedial	
		Treatment System in 2012.	4-2
	4.3	Volatile Organic Compounds (VOCs) Removed from Groundwater in	
		2012 (Air Stripping Operations)	4-3
	4.4	Groundwater Treatment - 2012	
5	Ge	neral Status of Remedial Treatment Equipment	
•		ersight Activities	5_1
	5.1	Remedial Treatment Condition, Replacement, and Repairs in 2012	
	5.2	Groundwater Monitoring Well Network Inspection	
	5.2	Groundwater Wontorning wen Network inspection	
6		12 Groundwater Sampling Event Summary	
	6.1	Field Activities	
		6.1.1 Monitoring Well Sampling	
		6.1.2 Investigation-Derived Waste Management	
	6.2	Site Hydrogeology	
		6.2.1 Overburden Aquifer	
		6.2.2 Bedrock Aquifer	
	6.3	Analytical Results	
		6.3.1 Overburden Groundwater Results	
		6.3.2 Bedrock Groundwater Results	6-11

Table of Contents (cont.)

Section				Page
		6.3.3	Pumping Wells Groundwater Results	
		6.3.4	Comparison with Historical Analytical Data	
7	Act	ions t	to Support Eventual Site Closure	7-1
-	7.1		wements/Modifications to the Remedial Treatment System	
	7.2	-	s to Support Site Closure	
	7.3		m Optimization	
8	Anr	nual R	Remedial Action Costs	8-1
9	Der	bartm	ent or Local Public Reporting	9-1
			DEC Fact Sheet	
	9.2	Local	Public Reporting	
10	Ref	erenc	ces	10-1
Appendi	x			

Α	ALTA Survey	A-1
В	County of Monroe Discharge Permit and Moo Request Correspondence	
С	October 2012 Groundwater Monitoring Even and Analytical Data	
D	2009 Fact Sheet	Back pocket

ist of Tables

Table		Page
2-1	Effluent Discharge Criteria, Former Davis-Howland Oil Corporation Site	2-1
4-1	Former Davis-Howland Oil Corporation Site Remedial Treatment System Uptime in 2012	4-1
4-2	Groundwater Processed and Discharged by the Remedial Treatment System in 2012.	4-2
4-3	VOCs Removed from the Former Davis-Howland Oil Corporation Site Remedial Treatment System in 2012	4-3
4-4	2012 Monthly Compliance Results for Treated Groundwater Effluent, Former Davis-Howland Oil Corporation Site	4-5
5-1	Analytical Frequency Matrix, Former Davis-Howland Oil Corporation Site	5-1
5-2	Summary of October 2012 Well Inspection, Former Davis-Howland Oil Corporation Site	5-3
6-1	October 2012 Groundwater Elevations, Former Davis-Howland Oil Corporation Site, Rochester, New York	6-2
6-2	Summary of Groundwater Quality Field Measurements, Former Davis- Howland Oil Corporation Site, Rochester, New York	6-3
6-3	Summary of Positive Analytical Results for Groundwater Samples in Overburden Wells, Former Davis-Howland Oil Corporation Site, Rochester, New York	6-8
6-4	Summary of Positive Analytical Results for Groundwater Samples in Bedrock Wells, Former Davis-Howland Oil Corporation Site, Rochester, New York	6-9
6-5	Summary of Positive Analytical Results for Groundwater Samples in Pumping Wells, Former Davis-Howland Oil Corporation Site, Rochester, New York	6-10
6-6	Historical Total BTEX Results for Overburden Monitoring Wells	6-14
6-7	Historical Total Chlorinated VOCs Results for Overburden Monitoring Wells	6-15

List of Tables (cont.)

Table		Page
8-1	2012 Remedial Action Costs, Former Davis-Howland Oil Corporation Site	8-1

ist of Figures

Figure

Page

1-1	Site Location Map, Former Davis-Howland Oil Corporation	1-5
1-2	Site Layout Map, Former Davis-Howland Corporation Site	1-7
4-1	Historical Treatment Trends, 2003-2012	4-4
6-1	Groundwater Elevation Isopleths, Overburden and Bedrock Monitoring Wells, October 2012	6-5
6-2	Total BTEX and Chlorinated VOCs in Overburden Groundwater, October 2012	-17
6-3	Total BTEX and Chlorinated VOCs in Bedrock Groundwater, October 2012 6	-19

ist of Abbreviations and Acronyms

ALTA	American Land Title Association
AS/SVE	air sparge
BGS	below ground surface
BTEX	benzene, toluene, ethyl benzene, and xylene
CATOX	catalytic oxidizer
cVOC	chlorinated volatile organic compound
DHOC	Former Davis-Howland Oil Corporation Site
DCA	1,1-dichloroethane
DCB	dichlorobenzene
DCE	dichloroethene
DUSR	Data Usability Summary Report
EEEPC	Ecology and Environment Engineering, P.C.
EPA	(United States) Environmental Protection Agency
FS	feasibility study
ft/ft	feet per foot
IC	institutional control
IDW	investigation-derived waste
μg/L	micrograms per liter
MCDES	Monroe County Department of Environmental Services – Industrial Waste Section
MS/MSD	matrix spike/matrix spike duplicate

List of Abbreviations and Acronyms (cont.)

NYSDEC	New York State Department of Environmental Conservation
OM&M	operations, maintenance, and monitoring
РАН	polycyclic aromatic hydrocarbon
PCE	perchloroethylene or tetrachloroethene
PPE	personal protective equipment
PRR	Periodic Review Report
Popli	Popli Consulting Engineers and Surveyors, P.C.
QA/QC	quality assurance/quality control
RI	remedial investigation
RSO	Remedial Site Optimization
SMP	Site Management Plan
SVE	soil vapor extraction
SVOC	semivolatile organic compound
TCA	trichloroethane
TCE	trichloroethene
TPH	total petroleum hydrocarbon
VOC	volatile organic compound

1

Introduction and Background

1.1 Introduction

This Periodic Review Report (PRR) provides information on the operations, maintenance, monitoring, compliance, and operating costs at the former Davis-Howland Oil Corporation (DHOC) Remediation Site (hereinafter referred to as the "Site") during the calendar year 2012. This PRR also provides information concerning the engineering and institutional controls facilitating the remedial cleanup of the Site.

This PRR was prepared by Ecology and Environment Engineering, P.C. (EEEPC) in accordance with the requirements in the *Draft Site Management Plan, Davis-Howland Oil Corporation Site, NYSDEC Site No. 8-28-088* (EEEPC 2008).

1.2 Site Description

The Site was used from 1942 to 1972 to produce industrial chemicals, oils, greases, and other lubricants. From 1972 to 1994, the Site was used by DHOC. In 1994, DHOC closed and all manufacturing and product-processing operations ceased.

Between 1974 and the early 1990s, NYSDEC received reports of releases of materials at the Site; these materials included waste oil, mineral oil, hydrochloric acid, and sulfuric acid. However, no single incident has been identified that can account for a majority of the contamination now found at the Site. NYSDEC inspected the Site in June 1991 and found several hundred drums of oils, solvents, and other materials. Some of the drums were leaking, and several areas with stained surficial soil also were found.

In 1993, the Site was listed on the New York State Inactive Hazardous Waste Disposal Site Remedial Program Registry as a Class 2 Site. The Site was defined as a single parcel (ID No. 106.84-1-6) located at 192 through 200 Anderson Avenue in the city of Rochester, Monroe County, New York (see Figure 1-1). Documentation in the New York State Department of Environmental Conservation's (NYSDEC's) Environmental Site Remediation Database defines the Site as encompassing the parcels described as 190 through 220 Anderson Avenue and the portion of 176 Anderson Avenue immediately north and west of 190 through 220 Anderson Avenue. The remedial actions performed and remedial systems installed at the Site encompass the parcel located at 192 through 200 Anderson Avenue, the adjacent parcels at 190 Anderson Avenue and 220 Anderson Avenue, the portion of 176 Anderson Avenue immediately north and west of 190 through 220 Anderson Avenue, a portion of the CSX Railroad right-of-way to the north of 176 Anderson Avenue, and a small area south of Anderson Avenue encompassing the northern portions of 183 through 185 Anderson Avenue and 15 through 17 Norwood Avenue. A recent survey of the properties associated with the Site is presented in Appendix A.

The approximately 1.5-acre Site is located in an area that combines residential, commercial, and industrial facilities. No significant surface water is located in the immediate vicinity of the Site. Figure 1-2 presents the general Site layout. Groundwater and soil vapor at the Site are treated via multiple systems. A detailed description of each process and treatment system is provided below.

1.3 Air Sparge/Soil Vapor Extraction (AS/SVE) System

Remaining volatile organic compound (VOC) contamination in soils is currently being treated by stripping the VOCs adhered to soils to a vapor phase (augmented by an air sparge [AS] system), and then removing the VOC-laden soil vapor via a soil vapor extraction (SVE) system. The AS/SVE system was installed in shallow soils under an asphalt cap in the area to the north of the Site buildings and also under the Site building slabs. The AS components of the system utilize a lowpressure compressor designed to operate on a continuous basis to inject air into the soil via sparge points located around the Site. Forty-seven air sparging points were installed at approximately 12 feet below ground surface (BGS) inside and outside the buildings located at 200 Anderson Avenue. The SVE system extracts soil vapor under negative pressure from the air-sparging treatment zone via a network of outdoor and indoor underground collection piping. Depending on the location, the collection piping is either lateral collection slot-drain (outdoor) or collection points (indoor). The soil vapors are collected at a central location (treatment trailer) and discharged to the atmosphere.

1.4 Groundwater Remediation System

The groundwater treatment system consists of five pumping wells, which are capable of processing a combined flow of up to 30 gallons of water per minute on a continuous basis. Groundwater wells PW-1 and PW-2 were installed as deep bedrock groundwater pumping wells to extract groundwater from the bedrock aquifer. Overburden pumping wells P-1, P-2, and P-3 were installed to keep the shallow aquifer groundwater levels below the elevation of the SVE lines. All five pumping wells pump groundwater to the treatment trailer for processing. The groundwater pumping wells cycle on and off at preset water levels within each well.


The groundwater VOC treatment system in the treatment trailer consists of influent meters, a 500-gallon holding tank, a sequestering agent feed tank, a feed pump, a five-tray low-profile air stripper with air blower, an effluent pump, an effluent meter, and an effluent discharge line to the main trunk sewer under Anderson Avenue.

Groundwater is pumped from the shallow and bedrock-level extraction wells to the equalization tank, where it is then pumped to the air stripper on a batch basis. Contaminated water from the top of the air stripper tower drains down over a series of five stacked orifice trays in the column. A fan forces air countercurrent to the water flow and volatizes the VOCs in the groundwater. The air discharge from the air stripper is discharged to the atmosphere. A sump at the bottom of the tower collects the decontaminated water, which is discharged in batches to the Monroe County combined storm and sanitary sewer system under Monroe County Sewer Use Permit No. 864.

Six piezometers (PZ-1 through PZ-6) associated with the shallow overburden groundwater pumping wells (P-1, P-2, and P-3) are used to monitor the depth of groundwater under the paved AS/SVE area on a weekly basis.

Figure 1-1 Site Location Map Former Davis-Howland Oil Corporation Rochester, NY

LEGEND

8	MONITORING WELL
٠	PIEZOMETER
0	PUMPING WELL
8	AIR SPARGE POINT
	SOIL VAPOR EXTRACTION POINT
	SHALLOW GW PUMPING WELL COLLECTION TRENCH
	SOIL VAPOR EXTRACTION COLLECTION TRENCH/LINE
	PUMPING WELL LINES
	AIR SPARGE LINES

ABBREVIATIONS

AS	AIR SPARGE
СН	CLEAN HARBOR
мн	MANHOLE
MW	MONITORING WELL
PART	PARTIAL
Ρ	SHALLOW OVERBURDEN GROUNDWATER PUMPING WELLS
PW	BEDROCK GROUNDWATER PUMPING WELLS
PZ	PIEZOMETER
SVE	SOIL VAPOR EXTRACTION

NOTES

1. PIEZOMETERS, MONITORING WELLS, BUILDINGS AND PROPERTY LINES ARE BASED ON A SURVEY BY POPLI DESIGN GROUP, ARCHITECTURE AND ENGINEERING P.C. DATED DEC 7, 2012.

PUMPING WELL LINES, SOIL VAPOR EXTRACTION LINES AND AIR SPARGE LINES BASED ON AS-BUILT DRAWINGS BY ECOLOGY AND ENVIRONMENT P.C DATED NOVEMBER 2006.

3. STREET LOCATIONS ARE APPROXIMATE.

Remedial Systems Compliance

2.1 Groundwater Treatment

On September 6, 2012, EEEPC (on behalf of NYSDEC) submitted a petition to the Monroe County Department of Environmental Services (MCDES) – Industrial Waste Section to reduce the sampling and analytical parameters for Discharge Permit No. 864. Specifically, EEEPC requested the removal of the required monthly testing for total petroleum hydrocarbons (TPH) and semivolatile organic compounds (SVOCs), and the required semiannual testing for pesticides based on non-detectable levels of TPH, SVOCs, and pesticides since 2007. In response, MCDES issued a modified permit that reflected those requested changes. The modified permit became effective on October 1, 2012. Copies of the correspondence and the modified permit are provided in Appendix B.

Table 2-1 presents the permit criteria currently used for the treated groundwater being discharged from the Site to the Monroe County sanitary sewer system.

Corporation Site		
Parameter ¹	Analytical Methods	Permit Criteria
Effluent flow (average discharge);	-	Not to exceed 28 gpm
based on effluent meter		
pH (SU)	MCAWW 150.1	
Purgeable halocarbons	40CFR136-625 ²	
Purgeable aromatics	40CFR136-625 ²	group of contaminants shall not
		exceed 2.13 ppm in the effluent
		discharge.

Table 2-1 Effluent Discharge Criteria, Former Davis-Howland Oil Corporation Site

Note:

¹ PCBs were removed from the Permit Analyte List and pesticides were reduced to semi-annual sampling beginning in November 2006. Total petroleum hydrocarbons, semivolatile organic compounds (base neu-tral/acid extractables), and pesticides were removed from the Permit Analyte List beginning in October 2012.

² Analytical method was changed from 40 CFR136-601/602 to 40 CFR136-625 in order to monitor for acetone.

Key:

itey.		
CFR	=	Code of Federal Regulations
gpm	=	gallons per minute
MCAWW	=	(U.S. Environmental Protection Agency) Methods for Chemical Analysis of Water and Wastes
NA	=	not applicable
ppm	=	parts per million
SU	=	standard units

In 2012, the analytical results for all effluent discharges from the groundwater treatment system were in compliance with the permit criteria. Analytical data for the treated groundwater is provided in Sections 4.3 and 4.4.

2.2 Air Sparge/Soil Vapor Extraction

In 2002, an application was submitted to NYSDEC for a permit to discharge the soil vapors following treatment by the catalytic oxidizer (CATOX) unit. From 2002 to 2008, the soil vapors were treated by an on-site CATOX unit prior to being discharged to the atmosphere. In 2006, an air quality analysis was performed to evaluate the fate and transport of soil vapor constituents (EEEPC 2006). Based on the results of this analysis and subsequent recommendations, the CATOX unit was removed from service in 2008 at NYSDEC's direction. Soil vapors are evaluated under the NYSDEC's *Guidelines for the Control of Toxic Ambient Air Contaminants (Air Guide 1)* (NYSDEC 1997). Soil vapors are currently discharged to the atmosphere without treatment.

Evaluation of Site Institutional and Engineering Controls

Both institutional controls (ICs) and engineering controls (ECs) are employed on the Site to support remedial operations.

3.1 Institutional Controls

No ICs were required by the two records of decision issued for the Site. Programmatically, the ICs that are necessary to provide for the effectiveness of this phase of the remedial action include a site management plan (SMP) and deed restrictions/environmental notices. The following ICs are currently listed as part of the NYSDEC environmental database for the Site:

- SMP
- Soil Management Plan and Excavation Work Plan
- Monitoring Plan
- O&M Plan
- Deed Restriction/Environmental Notice

The existing SMP (EEEPC 2008) includes a monitoring plan and O&M plan. The SMP is currently being revised to incorporate a soil management plan, excavation work plan, and deed restriction/environmental notice.

The ICs at the Site are necessary to verify that residual contaminated material remains undisturbed. Current and future Site owners will be required to perform soil characterization and disposal/reuse activities in accordance with NYSDEC regulations if residual contaminated soil is disturbed and/or excavated.

A permanent easement that provides access to the adjacent CSX Transportation property was obtained to facilitate operation of the DHOC Site remedial treatment system. The existing permanent easement is adequate for site access at this time; however, if additional wells are installed as part of improvements to the groundwater monitoring well system, it may be necessary to obtain additional permanent easements from CSX Transportation. In addition, access to the 200 Anderson Avenue property has been obtained under a Consent Order with the owner (Mr. R. Klepper). This access will facilitate the continued operation of the remedial treatment system and underground equipment. A permanent environmental easement and/or deed restriction is also recommended by NYSDEC for the reme-

3 Evaluation of Site Institutional and Engineering Controls

dial Site to reduce the potential for direct human contact with the Site's contaminated soils. The buildings and property north of Anderson Avenue and the parcel to the south of Anderson Avenue will be included in this easement and/or deed restriction. Some occupants in the buildings have restricted the access needed by EEEPC and its operation, maintenance, and monitoring (OM&M) subcontractor, Popli Consulting Engineers and Surveyors, P.C. (Popli), to inspect the remedial equipment. This issue will be resolved by NYSDEC with either the building manager or the property owner, as unrestricted access to these areas is needed to maintain the remedial equipment.

To support the desired deed restriction/environmental notices, a revised property survey was performed. The survey included the minimum standard detail requirements established by the American Land Title Association (ALTA) as part of the survey, and included the following parcels: 188 Anderson Avenue, 190 Anderson Avenue, 192 through 200 Anderson Avenue, and 220 Anderson Avenue. In addition, the environmental easements for the work area on the CSX property and for the area around PW-2 on the southerly side of Anderson Avenue were mapped. This draft survey is presented in Appendix A. Minor changes to the survey regarding sample IDs are expected to be incorporated, and the survey will be finalized in the fall of 2013.

There are 18 operable monitoring wells in the groundwater monitoring well network around the DHOC Site: Four are located on the DHOC property, two are in the public highway right-of-way, nine are located on the CSX Transportation property easement, and three are located in the parking lot south of Anderson Avenue. The locations of these monitoring wells are identified on Figure 6-1. Based on a review of NYSDEC and EEEPC records, it is unknown whether access agreements to facilitate the future maintenance and monitoring of these wells were previously obtained as part of the remedial investigation/feasibility study (RI/FS) for this parcel south of Anderson Avenue. Accordingly, EEEPC recommends that an environmental easement be obtained for the parcel south of Anderson Avenue to facilitate access to perform OM&M activities.

3.2 Engineering Controls

The engineering controls (ECs) that support remedial operations at the Site are consistent with the SMP regarding OM&M of the Site. The following ECs are present at the Site:

- Groundwater Treatment System, consisting of monitoring wells, bedrock groundwater pumping wells, and air stripper;
- AS/SVE System, consisting of piezometers, shallow overburden groundwater pumping wells, AS points, SVE points, lines and trenches, and air-handling components of the on-site treatment plant; and
- Fencing/Access Control.

3 Evaluation of Site Institutional and Engineering Controls

The water treatment component of the on-site treatment plant is a component of both the groundwater treatment system and the AS/SVE system.

The ECs for the outdoor portion of the on-site parcel consist of shallow overburden groundwater well P-2 and two sets of AS/SVE points. The ECs for the indoor portion of the on-site parcel consists of 14 AS points and eight SVE points. The rest of the controls, which include the remaining wells, the water treatment system and the additional AS/SVE points, are located on off-site parcels. The AS/SVE points beneath the asphalt cover on the off-site parcels have been shut down since 2004 to focus the VOC extraction process under and near the buildings located at 190 through 220 Anderson Avenue. There have been no changes to ECs at the Site since the PRR for 2011 was prepared.

Evaluation of Remedial Treatment Operations

4.1 System Operational Uptime in 2012

The operational uptime percentages are calculated based on actual monthly hours of treatment system operations in the reporting period divided by the potential hours of operation in the reporting period.

Local power outages or equipment failure do affect operation of the remedial treatment system. To limit downtime, the system has an auto-dialer that sends an alarm to the OM&M subcontractor and EEEPC if an equipment failure occurs. In addition, the treatment facility can be called at any time at (585) 241-3431, unless phone service is down, to check on the status of the various operating equipment in the building.

Based on information from the weekly OM&M reports from the subcontractor, in 2012 the overall remedial treatment system operated 8,720 hours out of a possible 8,736 hours, for an uptime operation of approximately 99.8%. Major downtime incidents for various components of the treatment system included the following:

- The air stripper was cleaned on May 18 and 19, 2012, in order to maintain the stripper efficiency; and
- The air stripper was cleaned on November 13, 2012, in order to maintain the stripper efficiency.

Table 4-1 provides details on the monthly operation of the treatment system.

Reporting Period	Reporting Hours/ Maximum Hours	Operational Uptime (%)
December 30, 2011, to January 27, 2012	672/672	100%
January 27, 2012, to February 24, 2012	672/672	100%
February 24, 2012, to March 30, 2012	840/840	100%
March 30, 2012, to April 27, 2012	672/672	100%
April 27, 2012, to May 25, 2012	662/672	99%
May 25, 2012, to June 29, 2012	840/840	100%

Table 4-1 Former Davis-Howland Oil Corporation Site Remedial Treatment System Uptime in 2012

Reporting Period	Reporting Hours/ Maximum Hours	Operational Uptime (%)
June 29, 2012, to July 26, 2012	648/648	100%
July 26, 2012, to August 31, 2012	864/864	100%
August 31, 2012, to September 28, 2012	672/672	100%
September 28, 2012, to October 27, 2012	696/696	100%
October 27, 2012, to November 30, 2012	810/816	99%
November 30, 2012, to December 28, 2012	672/672	100%
Total Hours of Operation in 2012	8,720/8,736	99.8%

Table 4-1 Former Davis-Howland Oil Corporation Site Remedial Treatment System Uptime in 2012

Additional details can be found in the monthly OM&M reports (EEEPC 2012a through 2012l).

4.2 Groundwater Processed and Discharged through the Remedial Treatment System in 2012

The amount of groundwater processed and discharged is read directly from the effluent discharge meter located after the air-stripper unit. Readings are taken weekly at the master discharge meter and then calculated for each monthly reporting period.

Based on information obtained from the weekly monitoring reports from the OM&M subcontractor, the remedial treatment system processed and discharged 1,325,000 gallons of treated groundwater to the Monroe County sanitary sewer system from December 30, 2011, to December 28, 2012 (see Table 4-2). The increase in total discharge flow beginning in June 2012 was due to the cleaning of the transfer line from bedrock groundwater pumping well PW-1 to the treatment trailer. Variability in the number of gallons of groundwater treated on a monthly basis is due to several factors, including the number of weeks reported for that month (four or five), seasonal changes in groundwater elevations, and equipment efficiency and maintenance requirements.

Treatme	Treatment System in 2012						
Month	Actual Period	Gallons Treated					
January 2012	12/30/11 to 1/27/12	48,000					
February 2012	1/27/12 to 2/24/12	69,000					
March 2012	2/24/12 to3/30/12	66,000					
April 2012	3/30/12 to 4/27/12	34,000					
May 2012	4/27/12 to 5/25/12	73,000					
June 2012	5/25/12to 6/29/12	156,000					
July 2012	6/29/12 to 7/26/12	127,000					
August 2012	7/26/12 to 8/31/12	126,000					
September 2012	8/31/12 to 9/28/12	192,000					

Table 4-2 Groundwater Processed and Discharged by the RemedialTreatment System in 2012

Month	Actual Period	Gallons Treated
October 2012	9/28/12 to 10/27/12	149,000
November 2012	10/27/12 to 11/30/12	151,000
December 2012	11/30/12 to 12/28/12	134,000
Т	otal Gallons Treated in 2012	1,325,000

Table 4-2	Groundwater Processed and Discharged by the Remedial
	Treatment System in 2012

The average flow rate while the system was in operation was approximately 2.53 gallons per minute.

4.3 Volatile Organic Compounds (VOCs) Removed from Groundwater in 2012 (Air Stripping Operations)

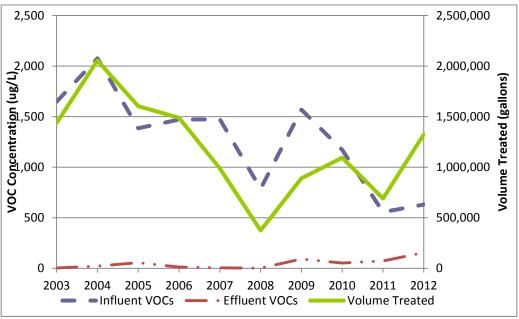
The amount of VOCs removed from the groundwater is estimated based on the influent and effluent analytical results and the amount of groundwater processed through the treatment system. Based on calculations prepared by EEEPC on the operation of the remedial treatment unit from January 2012 to December 2012, approximately 5.34 pounds of VOCs were removed from the groundwater by the air stripper system in 2012 (see Table 4-3). Total VOCs removed from the Site also include 1.99 pounds of VOCs not removed from the groundwater by the air stripper that were discharged to the Monroe County sanitary sewer system. Thus, a total of approximately 7.33 pounds of VOCs were removed from the Site by the groundwater pumping and treatment system during 2012. Additional VOC results are presented in the monthly OM&M reports (EEEPC 2012a through 2012l).

Month	Actual Period	Influent VOCs (µg/L)	Effluent VOCs (μg/L)	Removal Efficiency (%)	VOCs Removed by Air Stripper (pounds)	VOCs Removed from Site (pounds)
January 2012	12/30/11 to 1/27/12	186	96	48%	0.04	0.08
February 2012	1/27/12 to 2/24/12	156	86	45%	0.04	0.10
March 2012	2/24/12 to3/30/12	729	340	53%	0.23	0.42
April 2012	3/30/12 to 4/27/12	253	157	38%	0.03	0.07
May 2012	4/27/12 to 5/25/12	2,648	109	96%	1.66	1.73
June 2012	5/25/12to 6/29/12	223	51	77%	0.19	0.25
July 2012	6/29/12 to 7/26/12	511	152	70%	0.35	0.50
August 2012	7/26/12 to 8/31/12	458	110	76%	0.41	0.54
September 2012	8/31/12 to 9/28/12	496	248	50%	0.42	0.84
October 2012	9/28/12 to 10/27/12	396	96	76%	0.46	0.61
November 2012	10/27/12 to 11/30/12	585	242	59%	0.67	1.14

 Table 4-3
 VOCs Removed from the Former Davis-Howland Oil Corporation Site

 Remedial Treatment System in 2012

	j	Influent			VOCs Removed by Air	Removed
Month	Actual Period	VOCs (µg/L)	νοcs (μg/L)	Efficiency (%)		(pounds)
December 2012	11/30/12 to 12/28/12	926	184	80%	0.84	1.05
				Total	5.34	7.33


Table 4-3	VOCs Removed from the Former Davis-Howland Oil Corporation Site
	Remedial Treatment System in 2012

Key:

 $\mu g/L =$ Micrograms per liter.

VOC = Volatile organic compound.

Figure 4-1 shows the historical treatment trend for the DHOC Site from 2003 through 2012. Since 2003, the average total VOC concentration in the influent of the system has generally decreased, indicating the contaminant concentration in the extracted groundwater is decreasing.

Notes:

1. Deactivation of the CATOX unit occurred in March 2008, requiring the treatment system to be shut down for five months.

2. Pump rehabilitation/replacement occurred in August 2009.

3. The system was shut down in March 2011 due to damage caused by overflow of the system.

Figure 4-1 Historical Treatment Trends, 2003-2012

The increase in flow between 2009 and 2010 was due to the pump rehabilitation/replacement effort in August 2009, which resulted in an increase in the volume of groundwater that was being processed. The decrease in flow between 2010 and 2011 was due to the decrease in production from pumping well PW-1, which developed an obstruction in the transfer line from the well head to the treatment system trailer. This obstruction was cleared in spring 2012, and flows have since increased.

4.4 Groundwater Treatment - 2012

The effluent from the remedial treatment system met the discharge permit requirements (see Appendix B) for each month of 2012. Table 4-4 presents a summary of the monthly analytical results for the treated effluent and compares them to the Monroe County discharge permit criteria.

Table 4-4 2012 Monthly Compliance Results for Treated Groundwater Effluent, Former Davis-Howland Oil Corporation Site

Month	Average Effluent (gpm)	pH (SU)	Total Petroleum Hydrocarbons (ppm)	Purgeable Halocarbons, Purgeable Aromatics, Acid Extractables, Base Neutrals, and Pesticides (ppm)	Permit Compliance
Discharge Permit Limits	28	5.0-12.0	100	2.13	
January	1.27	7.69	ND	0.096	Yes
February	1.71	7.79	ND	0.081	Yes
March	1.31	7.60	ND	0.30	Yes
April	0.84	7.77	ND	0.16	Yes
May	1.81	8.00	ND	0.11	Yes
June	3.1	8.15	ND	0.05	Yes
July	3.27	8.09	ND	0.15	Yes
August	2.43	8.36	ND	0.11	Yes
September	4.76	8.36	ND	0.25	Yes
October	3.57	8.11		0.10^{3}	Yes
November	3.11	8.00		0.24^{3}	Yes
December	3.32	8.05		0.18 ³	Yes

Notes:

1. PCBs were removed from the Permit analyte list on October 28, 2008; refer to the SMP (EEEPC 2008), Appendix G.

2. System shutdown in March 2011 due to damage caused by overflow of system.

3. Total petroleum hydrocarbons, semivolatile organic compounds (base neutral/acid extractables), and pesticides were removed from the Permit Analyte List in October 2012.

Key:

gpm = gallons per minute

ND = not detected

ppm = parts per million

SU = standard units

5

General Status of Remedial Treatment Equipment Oversight Activities

In 2012, OM&M of the DHOC Site remedial treatment system was performed on a weekly basis by EEEPC's OM&M subcontractor, Popli. In the event of a major component malfunction (resulting in a component shutdown) or a trailer intrusion detection at the Site, an auto-dialer primary contact alarm alerts the OM&M subcontractor of the problem and a secondary alarm alerts EEEPC.

EEEPC provides NYSDEC with a monthly compliance report on the OM&M work performed on the remedial treatment system. When equipment repairs are required, the OM&M subcontractor reports the needed repairs to EEEPC, and EEEPC reports them to NYSDEC. Information regarding repairs performed on the remedial treatment system components is provided in the weekly OM&M reports submitted to EEEPC and in the monthly compliance reports provided to NYSDEC by EEEPC.

Equipment issues are handled on a case-by-case basis. Minor equipment issues such as electronic maintenance, repair, and replacement costs are funded through the contingency task established when the project was initiated. Major equipment issues that are not identified as a component of the contingency task budget are discussed with the NYSDEC project manager, and a corrective action approach is developed. Upon acceptance by NYSDEC, the corrective action is initiated.

Analytical services for the Site are provided by ALS Environmental (formerly Columbia Analytical Services). The analytical testing frequency matrix is provided in Table 5-1.

Table 5-1 Analytical Frequency Matrix, Former Davis-Howland Oil Corporation Site

	Groundwater	Air	Schedule
Treatment System (Influent and Effluent)	X	NA	Monthly
Groundwater Monitoring Wells Network	X	NA	Yearly
Kev.			

NA = Not applicable.

5.1 Remedial Treatment Condition, Replacement, and Repairs in 2012

The main components of the remedial treatment system, including the chemical sequestering system, equalization tank, bag filters, blowers, air-stripping unit, and groundwater pumping system, continue to operate at a high rate of efficiency as a result of the weekly monitoring and maintenance program.

The groundwater pumping network remains in working condition. Items that have had significant maintenance requirements over the last few years have been the pumps and the level transducers for the groundwater pumping system. These two active components have been in operation for over 10 years and are subject to harsh conditions. The groundwater pumps and transducers have an anticipated life expectancy of approximately two to three years. Replacement pumps and replacement transducers are, therefore, kept on hand for quick replacement after failure or for pre-emptive replacement. The following non-regular maintenance activities were performed in 2012:

- During the system check on January 27, 2012, it was determined that pump P-1 was not functional. Further investigation revealed that the contactor on the control board was malfunctioning. Replacement parts were ordered and installed on January 30, 2012. During replacement of the electrical components, some minor adjustments were made to the floating length of the "high" and "high-high" float switches. These modifications allowed the equalization tank transfer pump to be restored a higher pumping rate, allowing the groundwater pumps to also be restored to their normal pumping rate.
- The weekly effluent discharge volumes were noted to have decreased starting sometime during the week of March 19, 2012. It was determined that the contactor switch for pump P-1 had tripped, preventing the operation of that pump. The contactor for pump P-1 was noted as having tripped again on April 6, 2012, during the weekly inspection. On May 1, 2012, an electrical contractor examined the electrical system for pump P-1, and it was determined that the Warrick switch for P-1 was malfunctioning. The switch was reset and is inspected on a regular basis. A new switch was ordered so that it would be readily available for replacement if the switch is found to malfunction.
- Extraction of groundwater from pump PW-1 was negligible from January through May 2012. On June 8, 2012, the transfer line from pump PW-1 to the treatment trailer was cleaned with a de-scaler. Extraction of groundwater from PW-1 increased to an average of 31,215 gallons per week following cleaning of the transfer line.
- On August 31, 2012, EEEPC personnel arrived on-site to perform the regular O&M activities. Water was seen flowing from the PW-1 manhole, across the lot, and into the stone ballast adjacent to the CSX railroad tracks. Pump PW-1 was shut down immediately upon identification of the situation in order to facilitate inspection and identification of potential repairs. Upon inspection of

5 General Status of Remedial Treatment Equipment Oversight Activities

the system, a hose clamp between the riser on PW-1 and the transfer line to the treatment trailer was found to be broken, resulting in a break in the connection. The hose clamp was replaced, and operation of PW-1 was restarted and observed for proper operation. This event was reported to NYSDEC in the monthly OM&M report submitted on September 4, 2012.

- The 2012 comprehensive groundwater monitoring event was conducted during the week of October 15, 2012. EEEPC personnel were on-site to perform water level measurements and collect samples from the groundwater monitoring well network. The results of the groundwater monitoring event are presented in Section 6.
- The AS compressor was found to be malfunctioning on August 17, 2012. Following receipt of a renewed Work Authorization by NYSDEC, the compressor was removed and taken for repairs/rebuild on October 16, 2012. The repaired compressor was installed and placed back in service on November 26, 2012.

5.2 Groundwater Monitoring Well Network Inspection

Long-term groundwater sampling was performed in October 2012. On October 15, 2012, EEEPC conducted brief inspections of shallow and bedrock groundwater monitoring wells. The purpose of these inspections was to document the physical condition of the wells and to identify maintenance actions required to keep the groundwater monitoring well network operational. Based on the inspection, it was determined that the groundwater monitoring wells were in good condition. A summary of the monitoring well inspection findings is presented in Table 5-2.

COL	poration Site		
Well Identification	Date Inspected	Well Casing ID (inches)	Inspection Observations
CHI-1	10/17/2012	2	Replaced J-plug
CHI-6	10/17/2012	2	Replaced J-plug
MW-1S	10/17/2012	2	Replaced J-plug
MW-2S	10/17/2012	2	Replaced J-plug
MW-3S	10/17/2012	2	Replaced J-plug; replaced missing well cover
MW-9S	10/17/2012	2	Replaced J-plug
MW-12S	10/17/2012	2	Replaced J-plug
MW-13S	10/17/2012	2	Replaced J-plug
MW-14S	10/17/2012	2	Replaced J-plug
MW-2R	10/17/2012	4	Replaced J-plug
MW-3R	10/17/2012	2	Replaced J-plug; installed new curb box; con-
			structed new well pad
MW-5R	10/17/2012	4	Replaced J-plug
MW-8R	10/17/2012	4	Replaced J-plug
MW-10R	10/17/2012	4	Replaced J-plug
MW-12R	10/17/2012	4	Replaced J-plug
MW-14R	10/17/2012	4	Replaced J-plug

Table 5-2	Summary of October 2012 Well Inspection, Former Davis-Howland Oil
	Corporation Site

5 General Status of Remedial Treatment Equipment Oversight Activities

Table 5-2 Summary of October 2012 Well Inspection, Former Davis-Howland Oil Corporation Site

Well Identification	Date Inspected	Well Casing ID (inches)	Inspection Observations
MW-15R	10/17/2012	4	Replaced J-plug
MW-16R	10/17/2012	4	Replaced J-plug; replaced well collar and cap; constructed new well pad

Key: ID = inner diameter

2012 Groundwater Sampling Event Summary

This section discusses the groundwater monitoring well field activities performed at the Site in October 2012 and compares the results against historical data. Field activities were conducted according to EEEPC's Groundwater Monitoring and Long-term Well Sampling Procedures (Groundwater Sampling Procedures) prepared by EEEPC in 2004 (revised in 2008) and included as Appendix N of the draft SMP (EEEPC 2008). Sampling locations are identified on Figure 1-2. In addition to the revised 2008 Groundwater Sampling Procedures, an addendum to the existing EEEPC Site-specific health and safety plan was prepared and is included as Appendix I of the SMP.

6.1 Field Activities 6.1.1 Monitoring Well Sampling

One round of groundwater samples was collected from 16 monitoring wells at the Site from October 16 through 19, 2012. Sampling could not be conducted at two monitoring wells (CHI-1 and CHI-6) that were dry. In addition, samples from five pumping wells were collected from sampling ports located within the on-site treatment trailer by the maintenance contractor (Popli) on November 4, 2012. Non-dedicated sampling equipment was decontaminated in accordance with the Groundwater Sampling Procedures. Purge and decontamination water were handled according to procedures outlined in Section 6.1.2.

Prior to purging, static water levels were measured to within ± 0.01 foot in each monitoring well using an electronic water-level indicator. The water level and total depth of each well were recorded (see Table 6-1). Note that the suffix "R" in a monitoring well designation (for example, MW-12R) denotes a bedrock well. The suffix "S" denotes a monitoring well that is screened in the shallow overburden groundwater zone.

Monitoring well purging was completed using a submersible pump with new polyethylene tubing or using disposable polyethylene bailers on new polypropylene line. For the five pumping wells, the pumps were turned on manually and allowed to pump groundwater prior to collection of the sample. Measurements of temperature, pH, conductivity, and turbidity (see Table 6-2) and dissolved oxygen and oxidation-reduction potential (see Appendix C) were recorded throughout the well-purging process and immediately prior to sampling). Purging was continued until all the groundwater quality parameters except turbidity were stable for three consecutive readings after a minimum of three wells volumes of water had been purged from the wells except for five wells (MW-2R, MW-8R, MW-9S, MW-13S, and MW-16R), which were purged dry and sampled after sufficient recharge had occurred. Appendix C contains copies of the monitoring well purge and sample records obtained during the October 2012 sampling event.

Site, Rochester, New York						
		Measured	Ground	TOIC Casing	Water	Groundwater
		Total Depth	Elevation	Elevation	Level	Elevation
	Measurement				(feet	
Well ID	Date	(feet TOIC)	(feet amsl)	(feet amsl)	TOIC)	(feet amsl)
	erburden Wells					
CHI-1	10/15/2012	4.60	498.54	498.19	DRY	
CHI-6	10/15/2012	8.01	496.61	497.77	DRY	
MW-1S	10/15/2012	17.96	500.41	499.72	14.79	484.93
MW-2S	10/15/2012	14.00	496.23	497.48	7.14	490.34
MW-3S	10/15/2012	17.10	498.27	497.46	9.21	488.25
MW-9S	10/15/2012	15.93	498.57	498.01	9.62	488.39
MW-12S	10/15/2012	14.64	496.24	495.33	5.50	489.83
MW-13S	10/15/2012	13.70	496.58	496.95	5.97	490.98
MW-14S	10/15/2012	12.95	495.93	495.16	3.60	491.56
PZ-1	10/15/2012	12.21	497.21	496.92	4.57	492.35
PZ-2	10/15/2012	12.52	497.13	496.87	6.21	490.66
PZ-3	10/15/2012	13.49	497.87	497.56	10.79	486.77
PZ-4	10/15/2012	11.50	497.76	497.22	9.41	487.81
PZ-5	10/15/2012	12.07	498.41	497.80	8.80	489.00
PZ-6	10/15/2012	11.52	499.21	498.72	9.81	488.91
Deep Bedro	ck Wells					
MW-2R	10/15/2012	26.62	496.43	497.54	21.17	476.37
MW-3R	10/15/2012	38.65	498.43	497.74	21.36	476.38
MW-5R	10/15/2012	34.80	499.11	498.23	21.95	476.28
MW-8R	10/15/2012	36.34	497.1	497.64	22.94	474.70
MW-10R	10/15/2012	35.59	498.35	497.44	19.46	477.98
MW-12R	10/15/2012	31.97	496.26	495.42	21.05	474.37
MW-14R	10/15/2012	23.75	495.97	495.18	6.81	488.37
MW-15R	10/15/2012	30.30	494.96	494.14	14.39	479.75
MW-16R	10/15/2012	31.20	493.89	493.04	18.73	474.31
Vari						

Table 6-1 October 2012 Groundwater Elevations, Former Davis-Howland Oil Corporation Site, Rochester, New York

Key:

amsl = above mean sea level

TOIC = top of inner casing

Davis-Howland Oil Corporation Site, Rochester, New York							
Well ID	Sample Date	рН (s.u.)	Temperature (°C)	Conductivity (µS/cm)	Unfiltered Turbidity (NTUs)		
Overburde	Overburden Wells						
MW-1S	10/17/2012	7.04	15.05	1,275	1.62		
MW-2S	10/18/2012	6.79	20.5	1,582	0.50		
MW-3S	10/16/2012	7.00	18.3	859.7	0.38		
MW-9S	10/19/2012	7.19	19.3	900.4	>1,000		
MW-12S	10/18/2012	6.90	17.05	1,004	1.13		
MW-13S	10/18/2012	7.95	17.5	783.6	>1,000		
MW-14S	10/17/2012	7.06	19.2	617.1	0.78		
Bedrock W	/ells						
MW-2R	10/18/2012	7.30	16.9	1,550	10.90		
MW-3R	10/16/2012	7.22	15.5	1,481	0.13		
MW-5R	10/19/2012	7.32	15.3	2,079	0.72		
MW-8R	10/18/2012	7.19	17.1	1,989	32.90		
MW-10R	10/17/2012	7.29	14.4	932.1	0.97		
MW-12R	10/18/2012	7.37	15.4	863.4	0.13		
MW-14R	10/17/2012	7.50	16.4	1,137	0.29		
MW-15R	10/16/2012	7.09	13.5	1,092	0.50		
MW-16R	10/16/2012	7.19	13.8	1,320	>1,000		

 Table 6-2
 Summary of Groundwater Quality Field Measurements, Former

 Davis-Howland Oil Corporation Site, Rochester, New York

Key:

 $^{\circ}C$ = degrees Celsius

 μ S/cm = microSiemens per centimeter

NTU = Nephelometric turbidity unit.

s.u. = standard units

Upon collection, all samples were labeled and immediately placed in a cooler maintained with ice at 4 °C. The samples were then packaged and the cooler was driven to the laboratory with chain-of-custody documents prepared in accordance with the Groundwater Sampling Procedures. All monitoring well groundwater samples were submitted to ALS Environmental (formerly Columbia Analytical Services) for VOC analysis by United States Environmental Protection Agency (EPA) Method 601, SVOCs by EPA Method 625, and pH by EPA Method 150.1. The pumping well groundwater samples were submitted to ALS Environmental for VOC analysis by EPA Method 624, with pH and temperature by EPA Method SM 4500H.

In addition to the environmental samples, quality assurance/quality control (QA/QC) samples were collected. Trip blanks accompanied every shipment for VOC analysis to check for the possible introduction of VOCs from the time the samples were collected to the time they were analyzed. All sample portions for VOCs collected on a single day were transported in the same cooler. To check consistency in both sample collection and sample analysis, duplicate samples were collected. Duplicate samples were collected at a rate of approximately one per 20 field samples. The duplicate sample (MW-10RQ) consisted of aliquots of sample media placed in separate sample containers and labeled as separate samples. Additionally, a matrix spike/matrix spike duplicate (MS/MSD) sample

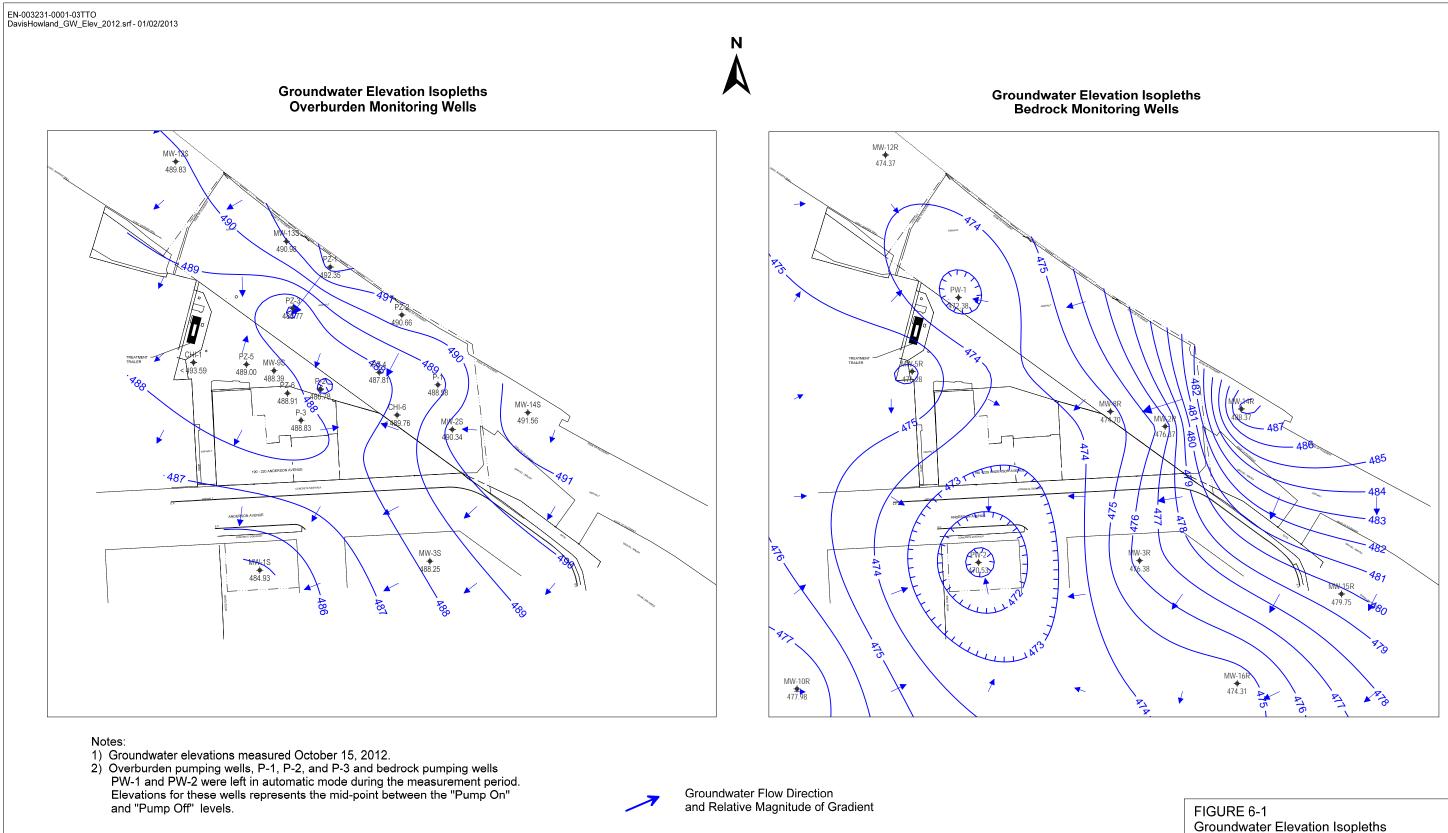
(MW-2S) was collected to simulate the background effect and interferences found in the actual samples. The calculated percent recovery of the spike is used as a measure of the accuracy of the total analytical method. MS/MSD samples were also collected at a rate of one per 20 field samples. QA/QC data were reviewed by an EEEPC chemist and a Data Usability Summary Report (DUSR) was prepared (see Appendix C). Data qualifiers were applied as described in the DUSR and incorporated into the data summary tables.

6.1.2 Investigation-Derived Waste Management

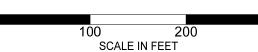
All investigation-derived waste (IDW) generated during this investigation was handled according to procedures outlined in EEEPC's Groundwater Sampling Procedures. Three types of IDW were generated: purged groundwater, decontamination water, and expendable materials, including personal protective equipment (PPE). Purged and decontamination water was filtered or left undisturbed to allow the solids to settle out of suspension. The low turbidity water was then placed into the equalization tank of the on-site groundwater treatment system.

All expendable PPE generated during the investigation (including gloves and plastic sheeting) was double-bagged and placed in an industrial dumpster for offsite disposal in a licensed landfill.

6.2 Site Hydrogeology


The Site is situated on alluvial organic silt and sand overlaying glacial till deposits and lacustrine sand and silt of varying thickness. Bedrock beneath the Site is the Penfield Dolostone of the Middle Silurian Lockport Group and is encountered about 15 to 27 feet BGS.

Two groundwater aquifers have been identified beneath the Site: a shallow overburden aquifer and an upper bedrock aquifer. These aquifers are not listed by the EPA as sole-source aquifers (Lawler, Matusky & Skelly Engineers, LLP and Galson/Lozier Engineers 1996). A summary of each water-bearing zone is provided below.


6.2.1 Overburden Aquifer

Historically, groundwater flow direction at the Site has been observed to be highly variable. In 1997, a flow divide existed near the railroad tracks, resulting in groundwater flow to the northeast, southeast, southwest, and south. In 2004, groundwater flow was observed to travel northeast across the Site, while in August 2007 it was observed to travel southwest from a high area along the railroad tracks (EEEPC 2007). The overburden groundwater flow in 2009 through 2011 was observed to be primarily toward the south and west (EEEPC 2009, 2010).

As shown on Figure 6-1, overburden groundwater flow in October 2012 was once again primarily toward the southwest corner of the Site (MW-1S), with localized groundwater sinks in the middle of the Site, near P-2 and PZ-3. The horizontal gradient at the Site generally ranges from 0.018 feet per foot (ft/ft) (between MW-3S and MW-1S) to 0.020 ft/ft (between MW-14S and MW-1S). These

ecology and environment engineering, p.c. Global Environmental Specialists

Ω

300

FIGURE 6-1 Groundwater Elevation Isopleths Overburden and Bedrock Monitoring Wells October 2012 Former Davis-Howland Oil Corporation Site Rochester, NY results are similar to the horizontal gradients calculated in 2011, which ranged from 0.013 to 0.031 ft/ft.

6.2.2 Bedrock Aquifer

Historically, bedrock groundwater flow direction at the Site has generally been more consistent than that in the overburden. In 1997 and 2004, groundwater flow was observed to be radially outward from a mound beneath the Site, with the primary flow directions to the northeast and southeast (EEEPC 2004). In 2007, 2009, 2010, and 2011, groundwater flow in the bedrock aquifer appeared to be more variable, with radial flow from high areas on the west (near MW-5R) and east (near MW-14R/MW-15R) sides of the Site and a groundwater sink near MW-2R (EEEPC 2007).

As shown on Figure 6-1, the primary bedrock groundwater flow direction for the majority of the Site in October 2012 was radially towards bedrock groundwater pumping wells PW-1 and PW-2. The decrease in bedrock groundwater elevations surrounding pumping well PW-1 may be due to the rehabilitation of pumping well PW-1 and subsequent increase in the volume of groundwater pumped from that location. A groundwater mound was observed in the vicinity of MW-14R. On the western half of the Site, the horizontal gradient toward PW-2 was about 0.0324 ft/ft (between MW-10R and PW-2), while the horizontal gradient towards PW-2 on the eastern half of the site ranged from 0.034 ft/ft (between MW-3R and PW-2) to 0.057 ft/ft (between MW-14R and PW-2). The horizontal gradient toward PW-1 in the northern part of the Site was about 0.012 ft/ft (between MW-12R and PW-1).

6.3 Analytical Results

This section presents the analytical results for the October 2012 groundwater samples collected at the DHOC Site and compares them to historical results. The October 2012 laboratory results of detected contaminants for overburden monitoring wells are presented in Table 6-3, the detected contaminants for bedrock monitoring wells are presented Table 6-4, and the detected contaminants for pumping wells are presented Table 6-5. Groundwater sample results discussed below were compared to the NYSDEC Technical and Operational Guidance Series 1.1.1, Class GA Drinking Water Standards and Guidance Values (NYSDEC 1998). The complete laboratory report for the October 2012 sampling event is provided in Appendix C.

6.3.1 Overburden Groundwater Results

VOCs

Ten different VOCs were detected in one or more groundwater samples from overburden wells, all of which are chlorinated VOCs (cVOCs): tetrachloroethene (PCE), trichloroethene (TCE), 1,1,1-trichloroethane (TCA) and their degradation byproducts; and dichlorobenzene (DCB) isomers. No petroleum hydrocarbons such as benzene, toluene, ethylbenzene, or xylenes (BTEX) were detected in any of the overburden groundwater samples.

Table 6-3 Summary of Positive An	alvtical Results for Groundwater Samp	les in Overburden Wells, Davis Howland Oil Comp	anv Site. Rochester. New York

				Sam	ple ID and I	Date		
	Screening	MW-1S	MW-2S	MW-3S	MW-9S	MW-12S	MW-13S	MW-14S
Analyte	Criteria ⁽¹⁾	10/17/12	10/18/12	10/16/12	10/19/12	10/18/12	10/18/12	10/17/12
VOCs by Method E601.2 (µg/L)								
1,1,1-TRICHLOROETHANE	5	3.4	0.36 U	0.14 UJ	3.7	0.36 U	0.36 U	0.36 U
1,1-DICHLOROETHANE	5	0.28 U	1.7	0.13 UJ	16	0.28 U	1.3	0.28 U
1,1-DICHLOROETHENE	5	0.41 U	0.41 U	0.11 UJ	0.41 U	0.41 U	0.41 U	0.41 U
1,2-DICHLOROBENZENE	3	0.16 U	0.16 U	0.27 UJ	49	0.16 U	0.16 U	0.16 U
1,3-DICHLOROBENZENE	3	0.21 U	0.21 U	0.21 UJ	1.2	0.21 U	0.21 U	0.21 U
BENZENE	1	0.26 U	0.26 U	0.08 UJ	0.26 U	0.26 U	0.26 U	0.26 U
CIS-1,2-DICHLOROETHENE	5	34	0.23 U	0.13 UJ	51	5.6	30	0.23 U
ETHYLBENZENE	5	0.28 U	0.28 U	0.07 UJ	0.28 U	0.28 U	0.28 U	0.28 U
M,P-XYLENE (SUM OF ISOMERS)	NA	0.58 U	0.58 U	0.14 UJ	0.58 U	0.58 U	0.58 U	0.58 U
O-XYLENE (1,2-DIMETHYLBENZENE)	5	0.24 U	0.24 U	0.08 UJ	0.24 U	0.24 U	0.24 U	0.24 U
TETRACHLOROETHENE (PCE)	5	4.4	0.39 U	0.12 UJ	22	0.39 U	0.39 U	0.39 U
TOLUENE	5	0.31 U	0.31 U	0.07 UJ	0.31 U	0.31 U	0.31 U	0.31 U
TRANS-1,2-DICHLOROETHENE	5	0.33 U	0.33 U	0.11 UJ	3.1	0.33 U	0.33 U	0.33 U
TRICHLOROETHENE (TCE)	5	26	0.35 U	0.1 UJ	30	7.8	0.35 U	4.2
VINYL CHLORIDE	2	0.43U	0.43U	0.17 UJ	19	0.43U	1.8	0.43U
TOTAL CHLORINATED VOCs	NA	67.8	1.7	0	195	13.4	33.1	4.2
SVOCs by Method E625 (µg/L)								
BENZO(A)PYRENE	ND	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
BENZO(B)FLUORANTHENE	0.002	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
BENZO(G,H,I)PERYLENE	NA	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
CHRYSENE	0.002	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
FLUORANTHENE	50	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
PYRENE	50	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
pH by Method SM 4500-H (SU)								
РН	NA	6.98	6.78	6.88	7.14	6.81	7.34	6.90

Notes:

1. New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Shaded cells exceed the screening value.

3. Bold values denote positive hits.

Key:

(g) = Guidance value (no applicable standard).

J = Estimated value.

ug/L = Micrograms per liter.

ND = NYSDEC Class GA standard for this compound is a "not detectable concentration".

Q Designates field duplicate sample.

SU = Standard Units.

UR = Not detected/Rejected Value.

NA = Not analyzed.

U = Not detected (lab reporting limit shown).

*C = Degrees Centigrade.

-- = Analyte not analyzed for.

UJ = Not detected/Estimated Value.

VOCs = Volatile organic compounds.

Table 6-4 Summary of Positive Analytical Results for Groundwater Samples in Bedrock Wells, Davis Howland Oil Company Site, Rochester, New York

						Sample II) and Date				
	Screening	MW-2R	MW-3R	MW-5R	MW-8R	MW-10R	MW-10RQ	MW-12R	MW-14R	MW-15R	MW-16R
Analyte	Criteria ⁽¹⁾	10/18/12	10/16/12	10/19/12	10/18/12	10/17/12	10/17/12	10/18/12	10/17/12	10/16/12	10/16/12
VOCs by Method E601.2 (µg/L)											
1,1,1-TRICHLOROETHANE	5	0.36 U	1.3	3.6 U	7.2 U	3.6 U	3.6 U	0.36 U	0.36 U	0.36 U	0.36 U
1,1-DICHLOROETHANE	5	25	23	74	150	2.9 U	2.9 U	0.28 U	0.28 U	0.28 U	7.4
1,1-DICHLOROETHENE	5	8.3	7.1	4.1 U	56	15	19	0.41 U	0.41 U	0.41 U	2.6
1,2-DICHLOROBENZENE	3	0.16 U	0.16 U	1.6 U	3.2 U	1.6 U	1.6 U	0.16 U	0.16 U	0.16 U	0.16 U
1,3-DICHLOROBENZENE	3	0.21 U	0.21 U	2.1 U	4.2 U	2.1 U	2.1 U	0.21 U	0.21 U	0.21 U	0.21 U
BENZENE	1	0.26 U	0.26 U	32	5.2 U	2.6 U	2.6 U	0.26 U	0.26 U	0.26 U	0.26 U
ETHYLBENZENE	5	0.28 U	0.28 U	2.9 U	5.7 U	2.9 U	2.9 U	0.28 U	0.28 U	0.28 U	0.28 U
M,P-XYLENE (SUM OF ISOMERS)	NA	0.58 U	0.58 U	5.8 U	12 U	5.8 U	5.8 U	0.58 U	0.58 U	0.58 U	0.58 U
O-XYLENE (1,2-DIMETHYLBENZENE)	5	0.24 U	0.24 U	2.4 U	4.8 U	2.4 U	2.4 U	0.24 U	0.24 U	0.24 U	0.24 U
TETRACHLOROETHENE (PCE)	5	0.39 U	0.39 U	4.0 U	7.9 U	4.0 U	4.0 U	0.39 U	0.39 U	0.39 U	0.39 U
TOLUENE	5	0.31 U	0.31 U	3.1 U	6.2 U	3.1 U	3.1 U	0.31 U	0.31 U	0.31 U	0.31 U
TRANS-1,2-DICHLOROETHENE	5	3.9	4.0	3.4 U	6.7 U	3.4 U	3.4 U	0.33 U	3.5	0.33 U	2.2
TRICHLOROETHENE (TCE)	5	0.35 U	14	26	7.0 U	1400	1300	0.35 U	49	2.0	1.2
VINYL CHLORIDE	2	260	95	350	800	4.3 U	4.3 U	0.43U	1.0	1.4	62
TOTAL CHLORINATED VOCs	NA	937	530	1,220	5,606	1452	1358	0	59.3	10.7	205
SVOCs by Method E625 (µg/L)											
BENZO(A)PYRENE	ND	4.8	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
BENZO(B)FLUORANTHENE	0.002	5.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
BENZO(G,H,I)PERYLENE	NA	4.8	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
CHRYSENE	0.002	5.7	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
FLUORANTHENE	50	11	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
PYRENE	50	8.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
pH by Method SM 4500-H (SU)											
РН	NA	7.39	7.15	7.32	7.11	7.17	7.21	7.18	7.35	7.07	7.14

Notes:

1. New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1Ambient Water Quality

Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Shaded cells exceed the screening value.

3. Bold values denote positive hits.

Key:

-- = Analyte not analyzed for.

J = Estimated value.

ug/L = Micrograms per liter.

NA = Not analyzed.

ND = NYSDEC Class GA standard for this compound is a "not detectable concentration".

Q Designates field duplicate sample.

U = Not detected (lab reporting limit shown).

VOCs = Volatile organic compounds.

Table 6-5 Summary of Positive Analytical Results for Groundwater Samples in Pumping Wells, Davis Howland Oil Company Site, Rochester, New York

		S	ample ID and Da	ite		
	Screening	P-1	P-2	P-3	PW-1	PW-2
Analyte	Criteria ⁽¹⁾	11/02/12	11/02/12	11/02/12	11/02/12	11/02/12
VOCs by Method E624 (µg/L)						
1,1,1-TRICHLOROETHANE	5	2.3 J	44 J	750 J	0.90 UJ	2.6 J
1,1,2-TRICHLOROETHANE	1	0.21 UJ	0.21 UJ	1.2 J	1.1 UJ	0.42 UJ
1,1-DICHLOROETHANE	5	9.4 J	200 J	150 J	40 J	12 J
1,1-DICHLOROETHENE	5	2.0 J	19 J	65 J	12 J	2.7 J
1,2-DICHLOROBENZENE	3	0.22 UJ	0.22 UJ	1.6 J	1.1 UJ	0.44 UJ
1,4-DICHLOROBENZENE	3	0.23 UJ	0.23 UJ	2.0 J	1.2 UJ	0.46 UJ
BENZENE	1	0.17 UJ	1.7 J	1.5 J	0.86 UJ	0.34 UJ
CARBON TETRACHLORIDE	5	0.24 UJ	0.24 UJ	1.7 J	1.2 UJ	0.48 UJ
CHLOROFORM	7	0.14 UJ	0.14 UJ	12 J	0.71 UJ	0.28 UJ
CIS-1,2-DICHLOROETHENE	5	100 J	1500 J	5600 J	860 J	200 J
TETRACHLOROETHENE (PCE)	5	17 J	180 J	2100 J	1.2 UJ	4.5 J
TRANS-1,2-DICHLOROETHENE	5	0.19 UJ	21 J	5.9 J	0.95 UJ	0.38 UJ
TRICHLOROETHENE (TCE)	5	43 J	92 J	920 J	46 J	19 J
VINYL CHLORIDE	2	2.4 J	990 J	3.7 J	160 J	9.2 J
TOTAL CHLORINATED VOCs	NA	176	3,046	9,613	1,118	250
pH by Method SM 4500-H (SU)						
РН	NA	7.01	6.84	7.15	7.20	7.15
Temperature by Method SM 4500-H (°C)						
TEMPERATURE	NA	18.1	18	17.9	18.1	18

Notes:

1. New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations*, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

2. Shaded cells exceed the screening value.

3. Bold values denote positive hits.

Key:

°C = Degrees Centigrade.

ug/L = Micrograms per liter.

UJ = Not detected/Estimated Value.

SU = Standard Units.

VOCs = Volatile organic compounds.

Six VOCs were detected at levels that exceed NYSDEC Class GA groundwater standards. These chemicals and their maximum concentrations in overburden groundwater samples included:

- 1,1-dichloroethane (DCA) (16 micrograms per liter [µg/L])
- 1,2-dichlorobenzene (49 μ g/L)
- cis-1,2-dichloroethene (DCE) (51 μ g/L)
- PCE (22 μg/L)
- TCE (30 µg/L)
- Vinyl chloride (19 μ g/L)

The maximum total cVOC concentration detected in the overburden groundwater samples was 195 μ g/L in a sample collected from MW-9S.

Semivolatile Organic Compounds

No SVOCs were detected in the overburden groundwater samples.

6.3.2 Bedrock Groundwater Results

VOCs

Eight different VOCs were detected in one or more groundwater samples from bedrock monitoring wells, including cVOCs (TCE, TCA, and their degradation byproducts) and benzene.

Six VOCs were detected at levels that exceed NYSDEC Class GA groundwater standards. These chemicals and their maximum concentrations in bedrock groundwater samples included:

- 1,1-DCA (150 µg/L)
- 1,1-DCE (56 µg/L)
- Benzene (32 μ g/L)
- cis-1,2-DCE (4,600 µg/L)
- TCE (1,400 µg/L)
- Vinyl chloride (800 μ g/L)

The maximum total cVOC concentration detected in bedrock groundwater samples was 5,606 μ g/L in MW-8R, primarily due to 4,600 μ g/L of cis-1,2-DCE.

Semivolatile Organic Compounds

Six different SVOCs were detected in the groundwater sample from MW-2R; no SVOCs were detected in any of the other bedrock groundwater samples. Two SVOCs were detected at levels that exceed NYSDEC Class GA groundwater standards: benzo(b)fluoranthene at $5.0 \mu g/L$ and chrysene at $5.7 \mu g/L$.

6.3.3 Pumping Wells Groundwater Results

VOCs

Fourteen different VOCs were detected in one or more groundwater samples from the five pumping well samples, most of which are cVOCs or benzene.

Eleven of the VOCs were detected at levels that exceed NYSDEC Class GA groundwater standards. The maximum total cVOC concentration detected in an overburden pumping well sample was 9,613 μ g/L at P-3, and the maximum total cVOC concentration detected in a bedrock pumping well sample was 1,118 μ g/L at PW-1.

6.3.4 Comparison with Historical Analytical Data

The October 2012 concentration isopleths of BTEX and cVOCs in the overburden and bedrock groundwater samples are presented on Figures 6-2 and 6-3, respectively. Tables 6-6 and 6-7 present comparisons of the historical BTEX and cVOC data with the data from samples collected in October 2012. The following is a summary of the findings:

- Overall, total BTEX concentrations in the overburden have decreased significantly since 1998, with no BTEX contamination being detected in the seven overburden wells since 2009. In 1997 and 1998, significant concentrations of BTEX were detected in overburden wells MW-9S (1,420 µg/L and 4,688 µg/L) and MW-13S (10,560 µg/L and 9,440 µg/L).
- BTEX concentrations in the bedrock groundwater have also generally decreased since 1997. Total BTEX has been detected in five of the nine bedrock wells at the Site, with the highest concentrations in 1997 found at MW-5R (200 µg/L) and MW-8R (126 µg/L). Since 1997, BTEX concentrations have decreased to the point where only one bedrock well (MW-5R) had detectable concentrations of BTEX in 2012 (32 µg/L).
- Overall, cVOC concentrations in the overburden wells have decreased significantly since 1997, when significant concentrations were detected in overburden wells MW-9S (6,278 µg/L) and MW-13S (35,980 µg/L). The highest concentrations of cVOCs were detected in 1998 (14,810 µg/L in MW-9S and 40,060 µg/L in MW-13S), with cVOC concentrations significantly decreasing between 1998 and 2004. However, while the number of wells with detectable levels of cVOCs have ranged from three to six wells since 2007, the overall cVOC concentrations at the Site have consistently remained between non-detect and 150 µg/L.

Overall, cVOC concentrations in the bedrock wells have decreased by about 40% since 1997, when significant concentrations (>1,000 µg/L) were detected in six of the nine of the wells (MW-2R, MW-3R, MW-5R, MW-8R, MW-10R, and MW-16R). Except for the low levels detected in 2010, since 2004 the combined values of the total cVOC concentrations in the nine monitoring wells have generally ranged from approximately 9,000 to 10,000 µg/L. MW-8R continues to exhibit the highest cVOC concentration (5,606 µg/L in 2012), which consists primarily of cis-1,2-DCE.

				Samp	le Date			
Well ID	2012	2011	2010	2009	2007	2004	1998	1997
Overburden M	onitoring We	ells						
MW-1S	ND	ND	ND	ND	ND	ND	ND	ND
MW-2S	ND	ND	ND	ND	ND	ND	ND	ND
MW-3S	ND	ND	ND	ND	ND	ND	ND	2
MW-9S	ND	ND	ND	ND	2	2	4,688	1,420
MW-12S	ND	ND	ND	ND	ND	ND	ND	ND
MW-13S	ND	ND	ND	ND	ND	0	9,440	10,560
MW-14S	ND	ND	ND	ND	ND	ND	ND	ND
Bedrock Monit	toring Wells							
MW-2R	ND	5	ND	ND	NA	1	NA	ND
MW-3R	ND	ND	ND	ND	ND	20	ND	ND
MW-5R	32	45	45	3	15	71	42	200
MW-8R	ND	ND	ND	ND	21	18	NA	126
MW-10R	ND	ND	ND	ND	ND	ND	ND	ND
MW-12R	ND	ND	ND	ND	ND	ND	NA	4
MW-14R	ND	ND	ND	ND	ND	ND	ND	ND
MW-15R	ND	ND	ND	ND	ND	ND	NA	ND
MW-16R	ND	ND	ND	ND	ND	ND	ND	ND

Table 6-6 Historical Total BTEX Results for Overburden Monitoring Wells

Notes:

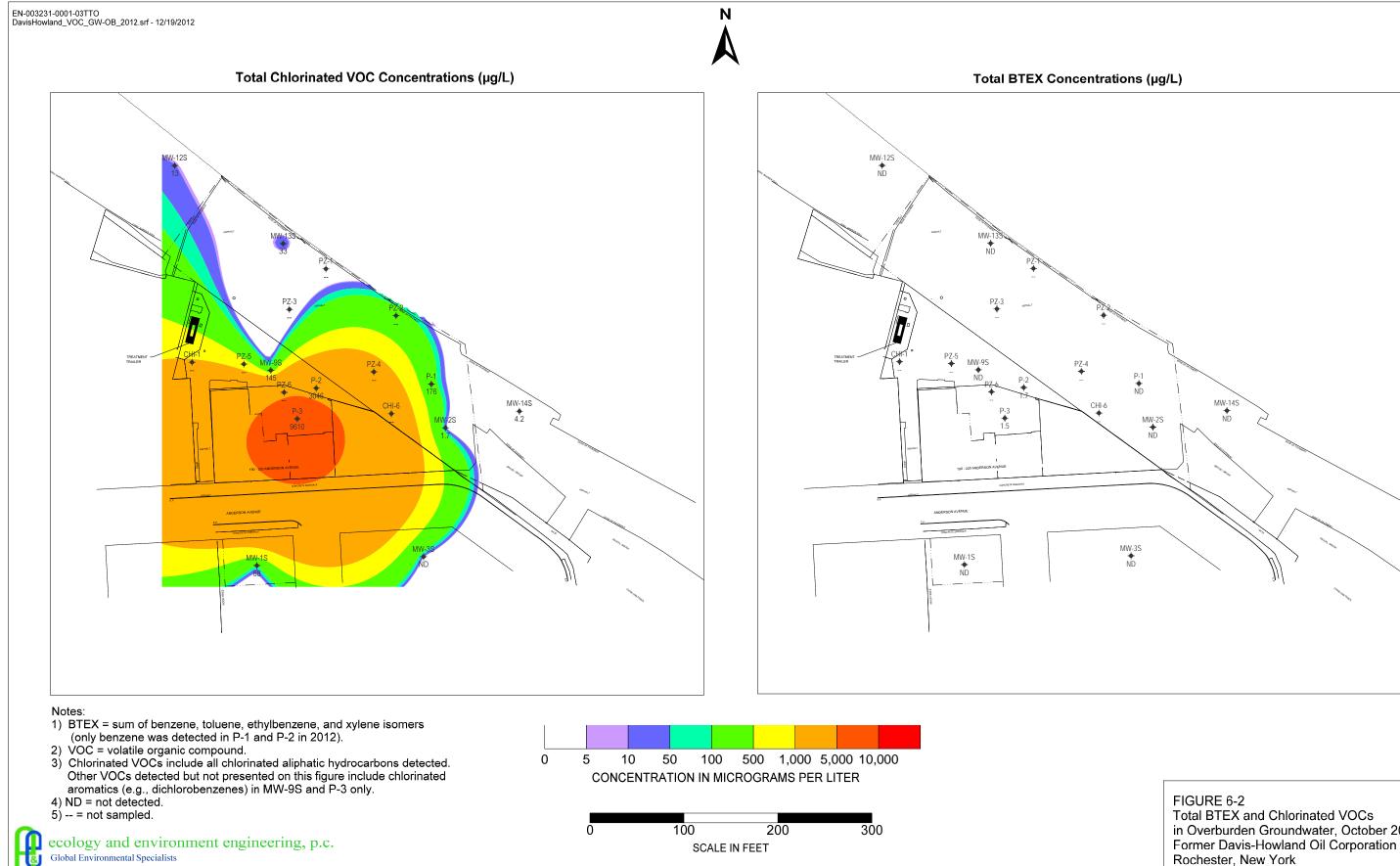
Analytical results are all in ug/L.

Key:

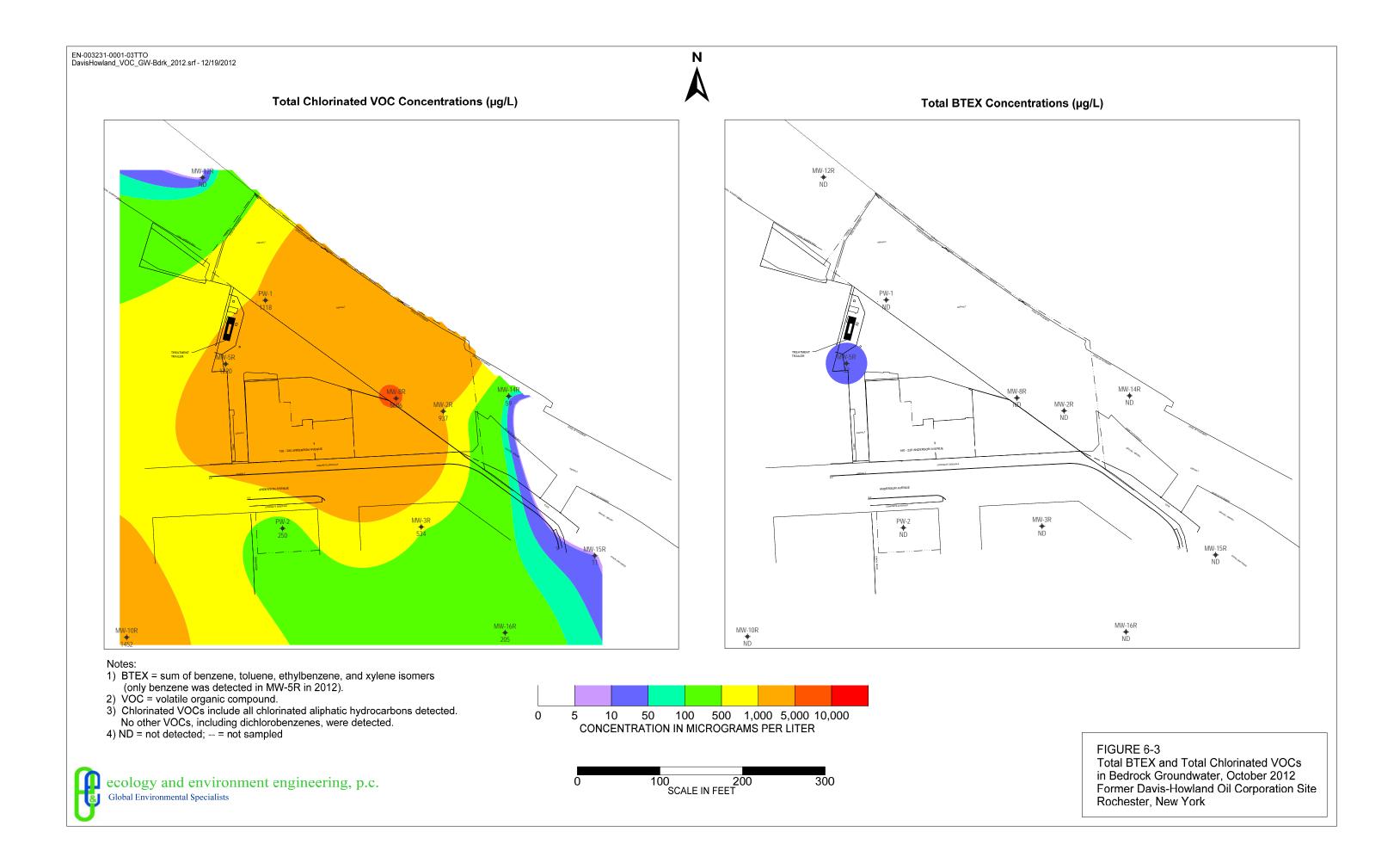
ND = Not detected

				Samp	le Date			
Well ID	2012	2011	2010	2009	2007	2004	1998	1997
Overburden M	onitoring We	ells						
MW-1S	68	67	N/A	45	98	407	122	19
MW-2S	2	2	1	ND	1	ND	NA	3
MW-3S	ND	ND	ND	ND	5	ND	ND	ND
MW-9S	145	139	142	92	48	32	14,810	6,278
MW-12S	13	ND	ND	ND	4	ND	6	29
MW-13S	33	ND	19	4	69	41	40,060	35,980
MW-14S	4	ND	ND	ND	0	ND	2	4
Bedrock Monit	toring Wells							
MW-2R	937	1,190	239	Dry	NA	942	NA	2,127
MW-3R	534	962	407	1,627	3,309	1,233	4,306	3,152
MW-5R	1,220	158	1,359	214	2,700	1,126	4,229	5,184
MW-8R	5,606	5,680	540	5,830	4,251	3,834	NA	2,575
MW-10R	1,452	1,379	160	1,242	1,633	1,179	3,038	2,319
MW-12R	ND	45	35	66	75	22	NA	274
MW-14R	59	61	54	45	67	17	50	22
MW-15R	11	11	6	5	7	8	NA	35
MW-16R	205	222	48	317	248	257	2,441	1,093

Table 6-7 Historical Total Chlorinated VOCs Results for Overburden Monitoring Wells


Notes:

Analytical results are all in ug/L.


Key:

NA = Not analyzed

ND = Not detected

in Overburden Groundwater, October 2012 Former Davis-Howland Oil Corporation Site

7

Actions to Support Eventual Site Closure

The overall project goals are to reduce the concentrations of VOCs in the soils beneath the capped or paved area north of the DHOC buildings on Anderson Avenue and reduce the concentrations of VOCs in the contaminated groundwater plume to below the groundwater standards established by NYSDEC. Attaining these goals will allow for the eventual closure of the bedrock groundwater recovery system and overall remedial treatment system. Suggested future actions or modifications that would improve individual operations and shorten the time required to attain the target VOC concentrations are presented below.

7.1 Improvements/Modifications to the Remedial Treatment System

The following activities should be considered in order to improve the operation of the existing remedial treatment systems:

- Monitoring well CHI-6 has been dry over the past several monitoring events. On January 3, 2001, a sample of oil was collected from this well and analyzed for PCBs and VOCs. Analytical results indicated an estimated concentration of 2.2 micrograms per gram (µg/g, or parts per billion [ppb]) of PCBs and 205,000 micrograms per kilogram (µg/kg, or parts per million [ppm]) of VOCs, primarily TCA and 1,1-DCA. Since that time, the operation of overburden pumping wells P-2 and P-3 have lowered the water table in this area such that CHI-6 has been dry and a sample of groundwater has not been collected from that well. Thus, this well should be decommissioned, and a new well with a deeper screened interval should be installed.
- The analytical results for samples collected from the individual pumping wells as part of the annual monitoring well sampling event indicates that groundwater in the vicinity of the courtyard at the rear of the on-site building (192 through 220 Anderson Avenue) is the area with the highest VOC concentrations. Since 2004, the AS points in this area have been turned off in order to enhance the collection of soil vapor from underneath the on-site and off-site buildings. The AS points associated with pumping well P-3 and SVE lateral S-10 should be re-opened to allow the AS points to enhance the recovery of VOCs from this area. The air pressure at the AS points within the buildings

will be monitored and adjusted to continue the enhanced collection of soil vapor from beneath the buildings.

- In conjunction with the change in operation of the AS/SVE system, the currently operational SVE points should be sampled to identify the points within the system that capture the greatest amounts of VOCs and to evaluate the current discharge concentrations to Air Guide 1. The sampling results could be used to identify potential improvements to the SVE system, such as installing individual venting systems that could operate more efficiently than the current system.
- Since the AS/SVE lines at the northern portion of the Site are turned off, there
 is no reason to continue to operate the overburden pumping well (P-1) in that
 area. P-1 was installed and operated in order to prevent groundwater from entering the SVE lines in that area, not to extract contaminated groundwater. P1 operates almost continuously and accounts for a majority of the water processed and discharged. It is suggested that this pumping well be turned off
 and, if warranted by future conditions, decommissioned.

7.2 Efforts to Support Site Closure

When in operation in 2012, the groundwater treatment system operated efficiently. Based on a review of the reported analytical data for the long-term groundwater monitoring program from January 1997, September 1998, May 2004, August 2007, May 2009, May 2010, and October 2012, VOC concentrations have decreased over time.

More specifically, polycyclic aromatic hydrocarbons (PAHs) are no longer present at concentrations exceeding NYSDEC's groundwater standards. BTEX concentrations have declined significantly in the bedrock groundwater and are no longer detectable in some wells where they were previously present. Only MW-5R contained concentrations of BTEX compounds above detection limits in 2012.

Based on the observed changes in the distribution of the BTEX and VOC concentrations beneath the Site, the groundwater treatment system, in conjunction with natural processes, appears to be effective at reducing overall contaminant concentrations.

The results of the long-term monitoring program indicate that the contaminant plume continues to extend to the northeast of the Site, toward the CSX Transportation property. Continued monitoring of the groundwater well network and rehabilitation of groundwater and/or pumping wells on a regular basis is recommended to maintain a high pumping rate for treatment.

7.3 System Optimization

A Remedial Site Optimization (RSO) report has not yet been prepared for this site. RSO is a multi-tiered approach to improve efficiency, effectiveness, and net environmental benefit of the existing remedy, thereby reducing costs and achiev-

7 Actions to Support Eventual Site Closure

ing Site closure. Although the PRR includes suggestions on improvements/modifications to the existing remedial system, it does not provide a comprehensive audit of the performance of the Site remedial systems. Preparation of an RSO should be considered during the 2013 calendar year.

Annual Remedial Action Costs

The 2012 costs of OM&M of the remedial treatment system at the Site, including equipment in the treatment trailer, the groundwater pumping system, long-term groundwater monitoring network, EEEPC oversight, subcontracted services, replacement equipment, and utilities, are presented in Table 8-1.

The total 2012 cost for operating the remedial treatment system at the Site was \$199,567.86.

Corporation Site	e		
Description	WA DC14	WA D007617-12	TOTAL
Sub – OM&M Services	\$10,462.50	\$12,142.01	\$22,604.51
Sub – Analytical Services	\$4,480.00	\$7,514.00	\$11,994.00
Utilities – Electric	\$5,842.78	\$3,925.65	\$9,768.43
Utilities – Telephone	\$227.05	\$166.06	\$393.11
Replacement Equipment	\$2,788.57	\$1,085.32	\$3,873.89
Long-term Monitoring	\$14,926.45	\$20,543.39	\$35,469.84
Program			
EEEPC Administration,	\$68,730.41	\$46,733.67	\$115,464.08
Management, and Report-			
ing			
2012 Grand Total	\$107,457.76	\$92,110.10	\$199,567.86
V ov:			

Table 8-1 2012 Remedial Action Costs, Former Davis-Howland Oil Corporation Site

Key:

OM&M = operations, maintenance, and monitoring

Department or Local Public Reporting

9.1 NYSDEC Fact Sheet

The most recent NYSDEC fact sheet was issued by NYSDEC in December 2009 and is provided in Appendix D.

9.2 Local Public Reporting

No local public reporting of the Site or remedial Site operations were brought to EEEPC's attention in 2012. The local reporting newspaper in Rochester, New York, is the *Democrat and Chronicle*.

10 References

Ecology and Environment Engineering, P.C. (EEEPC). 2004. Davis-Howland Oil Corporation Site, Groundwater Sampling Draft Data Summary Report 2004, Rochester, New York. Prepared for New York State Department of Environmental Conservation, Albany, New York.

_____. 2006. Air Quality Analysis, Davis-Howland Oil Corporation Site, NYSDEC Site No. 8-28-088. November 2006.

_____. 2007. Groundwater Sampling and Data Summary Report, Davis-Howland Oil Corporation Site.

_____. 2008. Draft Site Management Plan, Former Davis-Howland Oil Corporation Site, NYSDEC Site No. 8-28-088, City of Rochester, Monroe County, New York.

. 2009. Former Davis-Howland Oil Corporation Site 2009 Groundwater Sampling Draft Data Summary Report, Rochester, New York. July 2009. Prepared for New York State Department of Environmental Conservation, Albany, New York.

. 2010. Former Davis-Howland Oil Corporation Site 2010 Groundwater Sampling Draft Data Summary Report, Rochester, New York. July 2010. Prepared for New York State Department of Environmental Conservation, Albany, New York.

2012a. Davis-Howland Oil Company Site, EEEPC Contract # D004442, Site # 8-28-088, January 2012 Operations, Maintenance, and Monitoring Report.

_____. 2012b. Davis-Howland Oil Company Site, EEEPC Contract # D004442, Site # 8-28-088, February 2012 Operations, Maintenance, and Monitoring Report.

. 2012c. Davis-Howland Oil Company Site, EEEPC Contract # D004442, Site # 8-28-088, March 2012 Operations, Maintenance, and Monitoring Report. _____. 2012d. Davis-Howland Oil Company Site, EEEPC Contract # D004442, Site # 8-28-088, April 2012 Operations, Maintenance, and Monitoring Report.

_____. 2012e. Davis-Howland Oil Company Site, EEEPC Contract # D004442, Site # 8-28-088, May 2012 Operations, Maintenance, and Monitoring Report.

_____. 2012f. Davis-Howland Oil Company Site, EEEPC Contract # D004442, Site # 8-28-088, June 2012 Operations, Maintenance, and Monitoring Report.

_____. 2012g. Davis-Howland Oil Company Site, EEEPC Contract # D004442, Site # 8-28-088, July 2012 Operations, Maintenance, and Monitoring Report.

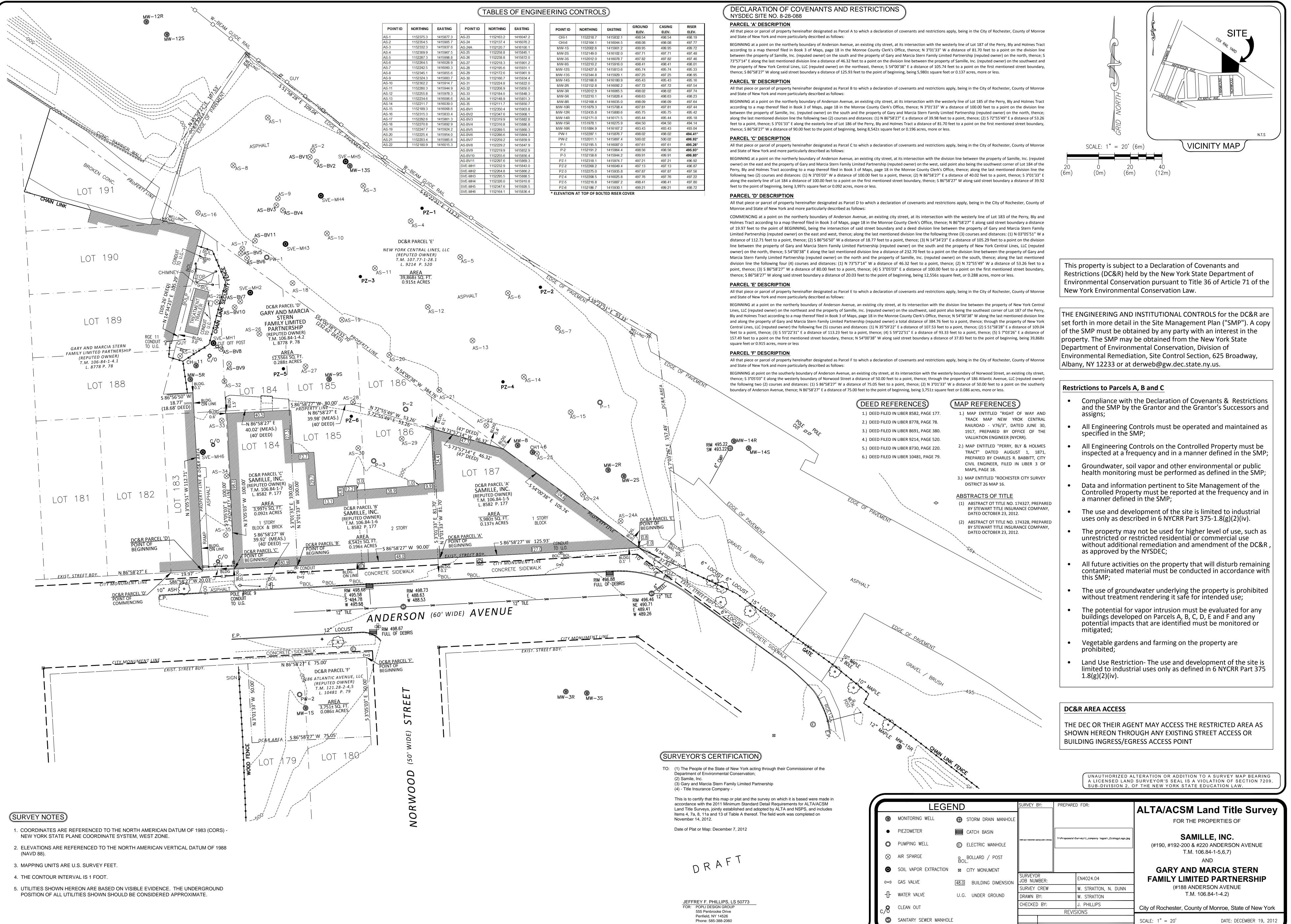
_____. 2012h. Davis-Howland Oil Company Site, EEEPC Contract # D004442, Site # 8-28-088, August 2012 Operations, Maintenance, and Monitoring Report.

_____. 2012i. Davis-Howland Oil Company Site, EEEPC Contract # D004442, Site # 8-28-088, September 2012 Operations, Maintenance, and Monitoring Report.

. 2012j. Davis-Howland Oil Company Site, EEEPC Contract # D004442, Site # 8-28-088, October 2012 Operations, Maintenance, and Monitoring Report.

_____. 2012k. Davis-Howland Oil Company Site, EEEPC Contract # D004442, Site # 8-28-088, November 2012 Operations, Maintenance, and Monitoring Report.

_____. 20121. Davis-Howland Oil Company Site, EEEPC Contract # D004442, Site # 8-28-088, December 2012 Operations, Maintenance, and Monitoring Report.


Lawler, Matusky Skelly Engineers, LLP and Galson/Lozier Engineers. 1996. New York State Superfund Contract, Remedial Investigation Report, Davis-Howland Oil Corporation Remedial Investigation/Feasibility Study. Vol. I. October 1996.

New York State Department of Environmental Conservation (NYSDEC). 1997. Division of Air Resources Guidance Series (Air Guide 1): *Guidelines for the Control of Toxic Ambient Air Contaminants*. Albany, New York: Division of Air Resources.

10. References

. 1998. Division of Water Technical and Operational Guidance Series (1.1.1): *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations*. Albany, New York: Division of Water.

LEGE	ND	SURVEY BY:	PREPARED FOR:	ALTA/A
MONITORING WELL	STORM DRAIN MANHOLE			
PIEZOMETER	CATCH BASIN			
PUMPING WELL	ELECTRIC MANHOLE	Ørddør Lager & Terpleckerfilder Lagerfilage grupht o edirentjøg	T:\Proposals\Survey\1_company logos_EcologyLogo.jpg	(#190, #1
AIR SPARGE	⊙ BOLLARD / POST BOL.			
SOIL VAPOR EXTRACTION	⊠ CITY MONUMENT			GAR
GAS VALVE	48.0 BUILDING DIMENSION	SURVEYOR JOB NUMBER:	EN4024.04	FAMILY
		SURVEY CREW	W. STRATTON, N. DUNN] (
WATER VALVE	U.G. UNDER GROUND	DRAWN BY:	W. STRATTON	
CLEAN OUT		CHECKED BY:	J. PHILLIPS	City of Roches
			REVISIONS	
SANITARY SEWER MANHOL	E			SCALE: 1" = 20

B County of Monroe Discharge Permit and Modification Request Correspondence

September 6, 2012

Mr. Harry Reiter, Pretreatment Coordinator County of Monroe Department of Environmental Services - Industrial Waste Section 444 East Henrietta Road Rochester, New York 14620

Re: Davis Howland Oil Company Site, 200 Anderson Avenue, Rochester, New York NYSDEC Contract # D007617-12, Site # 8-28-088, Petition for Reduction in Sampling and Analytical Parameters - Monroe County Sewer Use Permit #864

Dear Mr. Reiter:

Ecology and Environment Engineering, P.C. (EEEPC) has prepared this petition requesting a reduction in sampling and analytical parameters for Discharge Permit #864 - for the former Davis Howland Oil Company site at 200 Anderson Avenue, Rochester, New York.

EEEPC has been providing operations, maintenance, and compliance monitoring of the 200 Anderson Avenue site since the remedial treatment system was commissioned by NYSDEC in September 2002. After completion of an initial five month operation and maintenance startup period (September 2002 to March 2003) by the system installation contractor, The Tyree Organization, Ltd., the remedial treatment system was operated maintained, and monitored by EEEPC under a current work assignment from NYSDEC. EEEPC has been overseeing and providing compliance reports to Monroe County, Department of Environmental Services, since September 2002 and continues to perform those monitoring and compliance reporting services as required by the discharge permit.

In 2006, EEEPA and NYSDEC petitioned Monroe County for a reduction in sampling and analytical parameters (letter dated September 20, 2006). On October 27, 2006, the County of Monroe Department of Environmental Services granted a reduction in monitoring by eliminating the requirement for PCB analysis and a change in the monitoring requirements for pesticides to a semi-annual basis.

Mr. Harry Reiter, Pretreatment Coordinator 9/6/2012 Page 2

EEEPC has reviewed the influent and effluent analytical data collected between September 2006 and June 2012. A summary of the analytical data is presented in Table 1, and the laboratory results are presented in Attachment A (Volatile Organic Compounds), Attachment B (Semivolatile Organic Compounds), Attachment C (Total Petroleum Hydrocarbons), and Attachment D (Pesticides). These data are summarized below.

Volatile Organic Compounds (VOCs)

VOCs have been detected consistently since the start of the project. The primary constituent detected is cis-1,2-dichloroethylene, with lesser amounts of trans-1,2-dichloroethylene, tetrachloroethylene, and trichloroethylene, and other degradation byproducts. Total VOC concentrations in the influent water samples have ranged as high as 7,239 micrograms per liter (μ g/L).

Semivolatile Organic Compounds (SVOCs)

SVOCs have not been detected in the influent samples since or effluent samples since July 2007 in the influent samples and August 2007 in the effluent samples. Most compounds detected have been at estimated concentrations less than their respective laboratory reporting limits.

Total Petroleum Hydrocarbons (TPH)

Petroleum hydrocarbon compounds have not been detected in either the influent or effluent samples within the time period evaluated (August 2006 through August 2012).

Pesticides

The frequency of pesticide analyses were reduced to a biannual schedule in 2006. Further reduction in the frequency of pesticides analysis was not granted due to issues with laboratory blank contamination and the occurrence of low levels of pesticides detected in the samples. Since April 2007, pesticides have not been detected in either the influent or effluent samples collected from the treatment system, and there have been no issues with blank contamination from the analytical laboratory.

Based on an evaluation of the analytical results presented above, EEEPC is requesting the elimination of the monthly sampling and analysis of influent and effluent waters for:

NYSDOH 310 – 13 Total Petroleum Hydrocarbons 40 CFR 136 – 625 Semivolatile Organic Compounds

EEEPC is also requesting the elimination of the semi-annual sampling and analysis of influent and effluent waters for:

40 CFR 136 – 608 Pesticides

Mr. Harry Reiter, Pretreatment Coordinator 9/6/2012 Page 3

If the County of Monroe is in agreement with the petition request, EEEPC requests a letter to modify the site-specific permit (#864) and a proposed start date for the reduction in the analytical parameters. If you have any questions regarding the request, I can be reached at 716-684-8060 or William Welling, NYSDEC Project Manager, at 518-402-9638.

Very Truly Yours, Ecology and Environment Engineering, P. C.

Michael A. Alos

Michael A. Aloi, P.E. Project Manager

cc: T. Heins, EEEPC – Buffalo, New York
S. Keenan, Monroe County - Div. of Pure Waters
W. Welling, NYSDEC – Albany, New York
CTF – EN-003231-0001-02

	Sample Date: Permit	08/07/06	09/05/06	10/03/06	11/07/06	12/05/06	01/04/07	02/16/07	03/07/07	04/13/07	05/05/07	06/06/07	07/03/07
Analyte	Criteria ⁽¹⁾												
Influent Analytical Results													
pH (SU)	NA	7.38	7.23	7.48	7.64	7.42	7.70	7.83	7.72	7.67	7.51	7.60	7.92
VOCs by Method SW8260B (µg/L)	NA	589	599	1,403	1,679	7,239	917	1,470	636	610	913	414	455
SVOCs by Method E625 (µg/L)	NA	ND	ND	ND	ND	1.4	ND	0.6	0.8	ND	0.1	0.3	0.1
Pesticides by Method E608 (µg/L)	NA	0.030	0.022							ND			
Total Purgeable Halocarbons, Purgeable													
Aromatics, Acid Extractables, Base	NA	589	599	1,403	1,679	7,240	917	1,471	637	610	913	414	455
Neutrals, and Pesticides (µg/L)													
Total Petroleum Hydrocarbons by	NA	ND											
Method NY-310-13 (µg/L)	INA	ND	IND	ND	ND	ND	IND						
Effluent Analytical Results													
pH (SU)	5.0 - 12.0	8.25	8.44	8.35	8.26	8.16	8.00	7.98	8.38	8.35	8.26	7.91	8.23
VOCs by Method SW8260B (µg/L)	NA	0.4	0.2	0.9	3.0	2.5	1.1	1.1	0.4	0.4	ND	0.5	ND
SVOCs by Method E625 (µg/L)	NA	ND	ND	ND	ND	1.1	ND	ND	0.8	ND	0.1	ND	0.1
Pesticides by Method E608 (µg/L)	NA	0.024	0.017							ND			
Total Purgeable Halocarbons, Purgeable													
Aromatics, Acid Extractables, Base	2,130	0.4	0.2	0.9	3.0	3.6	1.1	1.1	1.2	0.4	0.1	0.5	0.1
Neutrals, and Pesticides (µg/L)	-												
Total Petroleum Hydrocarbons by	100.000	ND	ND			ND	ND			ND		ND	
Method NY-310-13 (µg/L)	100,000	ND											
Monthly Treatment Volumes													
Average Effluent Discharge Rate					0.7			<u> </u>					4 7
(gallons per minute)	28	3.3	3.0	4.1	3.7	2.8	3.2	2.4	2.4	3.3	1.9	1.4	1.7
Monthly Effluent Discharge (gallons)	NA	78,500	126,600	224,300	132,500	142,200	120,800	94,900	95,900	131,000	99,500	56,700	70,000

	Sample Date: Permit	08/08/07	09/13/07	10/04/07	11/08/07	12/07/07	01/11/08	02/08/08	03/03/08	09/18/08	10/23/08	11/12/08	12/09/08
Analyte	Criteria ⁽¹⁾												
Influent Analytical Results													
pH (SU)	NA	7.48	7.22	7.63	7.79	7.27	7.23	7.11	7.39	7.19	7.20	7.40	7.28
VOCs by Method SW8260B (µg/L)	NA	529	738	618	406	505	615	1,811	517	325	441	311	605
SVOCs by Method E625 (µg/L)	NA	ND											
Pesticides by Method E608 (µg/L)	NA			ND						ND			
Total Purgeable Halocarbons, Purgeable													1
Aromatics, Acid Extractables, Base	NA	529	738	618	406	505	615	1,811	517	325	441	311	605
Neutrals, and Pesticides (µg/L)													
Total Petroleum Hydrocarbons by	NA	ND											
Method NY-310-13 (µg/L)	114	ND											
Effluent Analytical Results													
pH (SU)	5.0 - 12.0	8.54	8.41	8.72	8.79	8.66	8.44	8.31	8.58	8.46	8.34	8.48	8.39
VOCs by Method SW8260B (µg/L)	NA	ND	1.7	2.6									
SVOCs by Method E625 (µg/L)	NA	130	ND	12	ND	ND							
Pesticides by Method E608 (µg/L)	NA			ND						ND			
Total Purgeable Halocarbons, Purgeable													
Aromatics, Acid Extractables, Base	2,130	130	0	0	0	0	0	0	0	0	12	1.7	2.6
Neutrals, and Pesticides (µg/L)													
Total Petroleum Hydrocarbons by	100.000	ND											
Method NY-310-13 (µg/L)	100,000	ND											
Monthly Treatment Volumes													
Average Effluent Discharge Rate			4.0	1.0		1.0	47	4 7			1.0		
(gallons per minute)	28	1.5	1.6	1.3	1.5	1.3	1.7	1.7	2.0	0.8	1.6	1.5	1.5
Monthly Effluent Discharge (gallons)	NA	59,600	52,400	48,000	59,600	59,600	69,900	64,000	23,000	17,000	65,000	45,900	75,000

	Sample	04/00/00	00/00/00	00/11/00	0.4/00/00	05/00/00	00/04/00	07/00/00	00/05/00	00/00/00	10/00/00	44/05/00	10/00/00
	Date: Permit	01/06/09	02/06/09	03/11/09	04/09/09	05/06/09	06/04/09	07/02/09	08/05/09	09/03/09	10/02/09	11/05/09	12/03/09
Analyte	Criteria ⁽¹⁾												
Influent Analytical Results	Onterna												
pH (SU)	NA	7.30	6.20	7.21	7.29	7.42	7.48	7.32	7.13	7.39	7.53	7.27	7.28
VOCs by Method SW8260B (µg/L)	NA	2,942	3,979	2,899	2,311	410	311	329	474	463	664	751	3,289
SVOCs by Method E625 (µg/L)	NA	ŃD	ND	ŃD	ŃD	ND	ŃD						
Pesticides by Method E608 (µg/L)	NA						ND				ND		
Total Purgeable Halocarbons, Purgeable													
Aromatics, Acid Extractables, Base	NA	2,942	3,979	2,899	2,311	410	311	329	474	463	664	751	3,289
Neutrals, and Pesticides (µg/L)													
Total Petroleum Hydrocarbons by	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Method NY-310-13 (µg/L)	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Effluent Analytical Results													
pH (SU)	5.0 - 12.0	8.51	8.18	8.25	7.99	8.15	7.94	8.00	7.53	8.06	8.42	8.27	8.32
VOCs by Method SW8260B (µg/L)	NA	2.4	ND	11	351	52	77	101	321	169	4.1	12	11
SVOCs by Method E625 (µg/L)	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pesticides by Method E608 (µg/L)	NA						ND				ND		
Total Purgeable Halocarbons, Purgeable													
Aromatics, Acid Extractables, Base	2,130	2.4	0	11	351	52	77	101	321	169	4.1	12	11
Neutrals, and Pesticides (µg/L)													
Total Petroleum Hydrocarbons by	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Method NY-310-13 (µg/L)	100,000	ND	ND	ND	ND	ND	ND	ND	ND	ND			ND
Monthly Treatment Volumes													
Average Effluent Discharge Rate	28		1.5	1.2	0.9	0.9	0.9	0.6	2.4	0.1	3.2	2.1	2.8
(gallons per minute)	28	1.1	1.5	1.2	0.9	0.9	0.9	0.0	2.4	3.1	3.2	2.1	2.ŏ
Monthly Effluent Discharge (gallons)	NA	32,000	58,000	49,000	44,400	35,300	39,300	26,100	99,400	129,800	158,700	108,000	113,500

	Sample Date: Permit	01/08/10	02/05/10	03/04/10	04/02/10	05/05/10	06/04/10	07/02/10	08/06/10	09/03/10	10/01/10	11/04/10	12/03/10
Analyte	Criteria ⁽¹⁾												
Influent Analytical Results													
pH (SU)	NA	7.48	7.52	7.30	7.29	7.35	7.34	7.28	6.81	7.26	7.31	7.18	7.16
VOCs by Method SW8260B (µg/L)	NA	816	679	1,079	1,400	3,539	2,968	1,620	1,296	270	272	330	288
SVOCs by Method E625 (µg/L)	NA	ND											
Pesticides by Method E608 (µg/L)	NA				ND						ND		
Total Purgeable Halocarbons, Purgeable													
Aromatics, Acid Extractables, Base	NA	816	679	1,079	1,400	3,539	2,968	1,620	1,296	270	272	330	288
Neutrals, and Pesticides (µg/L)													
Total Petroleum Hydrocarbons by	NA	ND											
Method NY-310-13 (µg/L)	11/4	ND											
Effluent Analytical Results													
pH (SU)	5.0 - 12.0	8.48	8.26	8.26	8.28	8.30	8.38	8.44	7.68	8.06	8.41	7.58	7.54
VOCs by Method SW8260B (µg/L)	NA	10	14	46	17	31	ND	ND	56	89	54	179	116
SVOCs by Method E625 (µg/L)	NA	ND											
Pesticides by Method E608 (µg/L)	NA				ND						ND		
Total Purgeable Halocarbons, Purgeable													
Aromatics, Acid Extractables, Base	2,130	10	14	46	17	31	0	0	56	89	54	179	116
Neutrals, and Pesticides (µg/L)													
Total Petroleum Hydrocarbons by	100.000	ND											
Method NY-310-13 (µg/L)	100,000	ND											
Monthly Treatment Volumes													
Average Effluent Discharge Rate	28	2.8	2.4	0 F	2.7	2.3	2.0	1.9	0.5	1.6	1.7	1.7	1.9
(gallons per minute)	20	2.8	2.4	3.5	2.1	2.3	2.0	1.9	2.5	0.1	1.7	1.7	1.9
Monthly Effluent Discharge (gallons)	NA	114,700	119,400	111,000	136,000	90,000	80,000	87,300	49,000	56,000	86,000	64,600	90,400

	Sample Date:	01/07/11	02/04/11	04/08/11	05/06/11	06/03/11	07/01/11	08/05/11	09/02/11	10/07/11	11/04/11	12/02/11	01/06/12
	Permit												
Analyte	Criteria ⁽¹⁾												
Influent Analytical Results													
pH (SU)	NA	7.23	7.19	7.27	7.18	7.25	7.31	7.32	7.55	7.31	7.42	7.29	7.32
VOCs by Method SW8260B (µg/L)	NA	395	530	165	4,037	225	270	271	187	199	192	224	186
SVOCs by Method E625 (µg/L)	NA	ND											
Pesticides by Method E608 (µg/L)	NA			ND						ND			
Total Purgeable Halocarbons, Purgeable													
Aromatics, Acid Extractables, Base	NA	395	530	165	4,037	225	270	271	187	199	192	224	186
Neutrals, and Pesticides (µg/L)													
Total Petroleum Hydrocarbons by	NA	ND											
Method NY-310-13 (µg/L)	IN/A	ND											
Effluent Analytical Results													
pH (SU)	5.0 - 12.0	7.48	7.45	8.11	8.28	8.05	8.19	8.53	8.17	8.27	8.26	8.17	7.69
VOCs by Method SW8260B (µg/L)	NA	221	366	46	52	11	7.7	32	51	36	20	49	96
SVOCs by Method E625 (µg/L)	NA	ND											
Pesticides by Method E608 (µg/L)	NA			ND						ND			
Total Purgeable Halocarbons, Purgeable													
Aromatics, Acid Extractables, Base	2,130	221	366	46	52	11	7.7	32	51	36	20	49	96
Neutrals, and Pesticides (µg/L)													
Total Petroleum Hydrocarbons by	100,000	ND											
Method NY-310-13 (µg/L)	100,000	ND											
Monthly Treatment Volumes													
Average Effluent Discharge Rate	28	0.6	0.4	2.3	2.3	1.8		1.4	1.0	2.0	1.4	1.6	1.2
(gallons per minute)	28	0.0	0.4	2.3	2.3	Ι.Ծ	1.1	1.4	1.6	2.0	1.4	1.0	1.2
Monthly Effluent Discharge (gallons)	NA	26,000	10,000	84,000	93,000	74,000	55,000	55,000	80,000	79,000	52,000	83,000	48,000

	Sample Date:	02/10/12	03/02/12	04/06/12	05/04/12	06/01/12	07/06/12	08/03/12
	Permit							
Analyte	Criteria ⁽¹⁾							
Influent Analytical Results								
pH (SU)	NA	7.19	7.19	7.22	7.18	7.30	7.54	7.38
VOCs by Method SW8260B (µg/L)	NA	156	731	253	2,648	223	511	458
SVOCs by Method E625 (µg/L)	NA	ND						
Pesticides by Method E608 (µg/L)	NA				ND			
Total Purgeable Halocarbons, Purgeable								
Aromatics, Acid Extractables, Base	NA	156	731	253	2,648	223	511	458
Neutrals, and Pesticides (µg/L)								
Total Petroleum Hydrocarbons by	NA	ND						
Method NY-310-13 (µg/L)	INA	ND	ND	ND	ND	IND	IND	ND
Effluent Analytical Results								
pH (SU)	5.0 - 12.0	7.79	7.60	7.77	8.00	8.15	8.09	8.36
VOCs by Method SW8260B (µg/L)	NA	86	340	157	109	51	152	110
SVOCs by Method E625 (µg/L)	NA	ND						
Pesticides by Method E608 (µg/L)	NA				ND			
Total Purgeable Halocarbons, Purgeable								
Aromatics, Acid Extractables, Base	2,130	86	340	157	109	51	152	110
Neutrals, and Pesticides (µg/L)								
Total Petroleum Hydrocarbons by	100.000	ND						
Method NY-310-13 (ug/L)	100,000	ND						
Monthly Treatment Volumes							č	
Average Effluent Discharge Rate		1.0	1.0		1.0	0.4		
(gallons per minute)	28	1.9	1.3	0.8	1.8	3.1	3.3	2.4
Monthly Effluent Discharge (gallons)	NA	69,000	66,000	34,000	73,000	156,000	127,000	126,000

Notes:

- 1. System was shut down from March 11, 2008 to September 18, 2008 due to CatOX decommissioning.
- 2. System was shut down from February 17, 2011 to April 4, 2011 due to equipment malfunction.
- 3. Petition accepted by County of Monroe, October 28, 2006, to drop PCBs from the analyte list and to perform pesticides on a semi-annual basis.

Attachment A

Influent and Effluent Volatile Organic Compound Analytical Results

O surrel a ID	lu flu and	Induced	Indianat	lu flui ant	Indianat	Indianat	In floor at	lu flui ant	la fluir and
Sample ID Date		Influent 09/05/06	Influent 10/03/06	Influent 11/07/06	Influent 12/05/06	Influent 01/04/07	Influent 02/16/07	Influent 03/07/07	Influent 04/13/07
VOCs by Method CFR136 601 or SW8260B (µg/L)	08/07/06	09/05/06	10/03/06	11/07/06	12/05/06	01/04/07	02/16/07	03/07/07	04/13/07
1.1.1-TRICHLOROETHANE	16	3.8 U	77	4.8 U	880	4.8 U	4.8 U	3.8 U	4.8 U
1.1.2.2-TETRACHLOROETHANE	3.7 U	3.7 U	3.7 U	4.7 U	19 U	4.7 U	4.8 U	2.2 U	4.3 U 2.7 U
1,1,2-TRICHLOROETHANE	1.7 U	1.7 U	1.7 U	2.1 U	8.4 U	2.1 U	2.7 U	1.7 U	2.1 U
1,1-DICHLOROETHANE	11	9.3	23	44	140	2.1 0	38	25	2.1 0
1,1-DICHLOROETHENE	4.1 U	4.1 U	4.1 U	16	53	5.1 U	12	17	19
1,2-DICHLOROBENZENE	2.7 U	2.7 U	2.7 U	3.4 U	14 U	3.4 U	3.4 U	2.7 U	3.4 U
1,2-DICHLOROETHANE	1.7 U	1.7 U	1.7 U	2.1 U	8.5 U	2.1 U	2.1 U	1.7 U	2.1 U
1,2-DICHLOROPROPANE	1.6 U	1.6 U	1.6 U	2.0 U	8.2 U	2.0 U	4.5 U	3.6 U	4.5 U
1,3-DICHLOROBENZENE	2.8 U	2.8 U	2.8 U	3.5 U	14 U	3.5 U	2.0 U	1.6 U	2.0 U
1,4-DICHLOROBENZENE	3.7 U	3.7 U	3.7 U	4.6 U	18 U	4.6 U	4.6 U	3.7 U	4.6 U
2-CHLOROETHYL VINYL ETHER	4.8 U	4.8 U	4.8 U	6.0 U	24 U	6.0 U	2.2 U	1.8 U	2.2 U
BROMODICHLOROMETHANE	2.7 U	2.7 U	2.7 U	3.3 U	13 U	3.3 U	3.3 U	2.7 U	3.3 U
BROMOFORM	3.0 U	3.0 U	3.0 U	3.7 U	15 U	3.7 U	2.1 U	1.7 U	2.1 U
BROMOMETHANE	3.0 U	3.0 U	3.0 U	3.8 U	15 U	3.8 U	2.0 U	1.6 U	2.0 U
CARBON TETRACHLORIDE	4.4 U	4.4 U	4.4 U	5.5 U	22 U	5.5 U	5.5 U	4.4 U	5.5 U
CHLOROBENZENE	7.1 U	7.1 U	7.1 U	8.9 U	35 U	8.9 U	2.0 U	1.6 U	2.0 U
CHLOROETHANE	2.9 U	2.9 U	2.9 U	3.7 U	15 U	3.7 U	3.7 U	2.9 U	3.7 U
CHLOROFORM	4.1 U	4.1 U	4.1 U	5.2 U	21 U	5.2 U	5.2 U	4.1 U	5.2 U
CHLOROMETHANE	9.4 U	9.4 U	9.4 U	12 U	47 U	12 U	2.4 U	1.9 U	2.4 U
CIS-1,2-DICHLOROETHYLENE	490	480	1100	1400	5300	780	1200	450	430
CIS-1,3-DICHLOROPROPENE	2.4 U	2.4 U	2.4 U	3.1 U	12 U	3.1 U	3.1 U	2.4 U	3.1 U
DIBROMOCHLOROMETHANE	2.5 U	2.5 U	2.5 U	3.1 U	12 U	3.1 U	3.1 U	2.5 U	3.1 U
DICHLORODIFLUOROMETHANE	3.2 U	3.2 U	3.2 U	3.9 U	16 U	3.9 U	2.0 U	1.6 U	2.0 U
METHYLENE CHLORIDE	9.2 U	16	21	11 U	96	11 U	5.6 U	19	5.6 U
TETRACHLOROETHYLENE(PCE)	2.0 U	2.0 U	41	2.5 U	350	2.5 U	2.5 U	18	21
TRANS-1,2-DICHLOROETHENE	2.5 U	2.5 U	2.5 U	3.2 U	13 U	3.2 U	3.2 U	2.5 U	3.2 U
TRANS-1,3-DICHLOROPROPENE	1.9 U	1.9 U	1.9 U	15	9.4 U	2.3 U	15	1.9 U	2.3 U
TRICHLOROETHYLENE (TCE)	42	60	96	130	200	73	110	63	75
TRICHLOROFLUOROMETHANE	3.4 U	3.4 U	3.4 U	4.2 U	17 U	4.2 U	4.2 U	3.4 U	4.2 U
VINYL CHLORIDE	30	34	45	74	220	40	95	44	39
VOCs by Method CFR136 602 or SW8260B (µg/L)		1	1			1			
BENZENE	0.93 U	0.93 U	0.93 U	1.2 U	4.6 U	1.2 U	1.2 U	1.0 U	1.2 U
ETHYLBENZENE	1.1 U	1.1 U	1.1 U	1.4 U	5.7 U	1.4 U	1.4 U	10 U	13 U
TOLUENE	1.4 U	1.4 U	1.4 U	1.8 U	7.1 U	1.8 U	1.8 U	1.4 U	1.8 U
M.P-XYLENES									
O-XYLENE (1,2-DIMETHYLBENZENE)									
TOTAL XYLENES	15 U	15 U	15 U	18 U	74 U	18 U	7.7 U	6.2 U	7.7 U
TOTAL VOCs	589	599	1,403	1,679	7,239	917	1,470	636	610

Sample ID		Influent	Influent	Influent	Influent	Influent	Influent	Influent	Influent
Date VOCs by Method CFR136 601 or SW8260B (µg/L)	05/09/07	06/06/07	07/03/07	08/08/07	10/04/07	11/08/07	12/07/07	01/11/08	02/08/08
1,1,1-TRICHLOROETHANE	4.8 U	4.8 U	4.8 U	28	16	5 U	10 U	17	41
1.1.2.2-TETRACHLOROETHANE	4.8 U 2.7 U	4.8 U 2.7 U	4.8 U 2.7 U	5 U	10 U	5 U	10 U	10 U	20 U
1.1.2-TRICHLOROETHANE	2.7 U	2.7 U	2.7 U	5 U	10 U	5 U	10 U	10 U	20 U
1.1-DICHLOROETHANE	33	2.1 0	2.1 0	14	10.0	19	10 0	29	110
1.1-DICHLOROETHENE	2.2 U	2.2 U	2.2 U	5 U	10 U	5 U	10 U	10 U	20 U
1.2-DICHLOROBENZENE	3.4 U	3.4 U	3.4 U	5 U	10 U	5 U	10 U	10 U	20 U
1.2-DICHLOROETHANE	2.1 U	2.1 U	2.1 U	5 U	10 U	5 U	10 U	10 U	20 U
1.2-DICHLOROPROPANE	4.5 U	4.5 U	4.5 U	5 U	10 U	5 U	10 U	10 U	20 U
1,3-DICHLOROBENZENE	2.0 U	2.0 U	2.0 U	5 U	10 U	5 U	10 U	10 U	20 U
1,4-DICHLOROBENZENE	4.6 U	4.6 U	4.6 U	5 U	10 U	5 U	10 U	10 U	20 U
2-CHLOROETHYL VINYL ETHER	2.2 U	2.2 U	2.2 U	5 U	10 U	5 U	10 U	10 U	20 U
BROMODICHLOROMETHANE	3.3 U	3.3 U	3.3 U	5 U	10 U	5 U	10 U	10 U	20 U
BROMOFORM	2.1 U	2.1 U	2.1 U	5 U	10 U	5 U	10 U	10 U	20 U
BROMOMETHANE	2.0 U	2.0 U	2.0 U	5 U	10 U	5 U	10 U	10 U	20 U
CARBON TETRACHLORIDE	5.5 U	5.5 U	5.5 U	5 U	10 U	5 U	10 U	10 U	20 U
CHLOROBENZENE	2.0 U	2.0 U	2.0 U	5 U	10 U	5 U	10 U	10 U	20 U
CHLOROETHANE	3.7 U	3.7 U	3.7 U	5 U	10 U	5 U	10 U	10 U	20 U
CHLOROFORM	5.2 U	5.2 U	5.2 U	5 U	10 U	5 U	10 U	10 U	20 U
CHLOROMETHANE	2.4 U	2.4 U	2.4 U	5 U	10 U	5 U	10 U	10 U	20 U
CIS-1,2-DICHLOROETHYLENE	710	360	350	380	510	350	400	350	1100
CIS-1,3-DICHLOROPROPENE	3.1 U	3.1 U	3.1 U	5 U	10 U	5 U	10 U	10 U	20 U
DIBROMOCHLOROMETHANE	3.1 U	3.1 U	3.1 U	5 U	10 U	5 U	10 U	10 U	20 U
DICHLORODIFLUOROMETHANE	2.0 U	2.0 U	2.0 U						
METHYLENE CHLORIDE	18	5.6 U	5.6 U	5 U	10 U	5 U	10 U	10 U	20 U
TETRACHLOROETHYLENE(PCE)	2.5 U	2.5 U	2.5 U	22	10 U	5 U	10	17	22
TRANS-1,2-DICHLOROETHENE	23	3.2 U	3.2 U	5 U	10 U	5 U	10 U	10 U	20 U
TRANS-1,3-DICHLOROPROPENE	2.3 U	2.3 U	2.3 U	5 U	10 U	5 U	10 U	10 U	20 U
TRICHLOROETHYLENE (TCE)	81	3.4 U	62	63	45	24	44	52	47
TRICHLOROFLUOROMETHANE	4.2 U	4.2 U	4.2 U	5 U	10 U	5 U	10 U	10 U	20 U
VINYL CHLORIDE	48	32	21	22	30	13	34	150	460
VOCs by Method CFR136 602 or SW8260B (µg/L)	•			•		•			
BENZENE	1.2 U	1.2 U	1.2 U	5 U	10 U	5 U	10 U	10 U	20 U
ETHYLBENZENE	13 U	13 U	13 U	5 U	10 U	5 U	10 U	10 U	31
TOLUENE	1.8 U	1.8 U	1.8 U	5 U	10 U	5 U	10 U	10 U	20 U
M,P-XYLENES				10 U	20 U	10 U	20 U	20 U	40 U
O-XYLENE (1,2-DIMETHYLBENZENE)				5 U	10 U	5 U	10 U	10 U	20 U
TOTAL XYLENES	7.7 U	7.7 U	7.7 U						
TOTAL VOCs	913	414	455	529	618	406	505	615	1,780

Sampl			Influent	Influent	Influent	Influent	Influent	Influent	Influent
	Date: 03/03/08	3 09/18/08	10/23/08	11/12/08	12/09/08	01/06/09	02/06/09	03/11/09	04/09/09
VOCs by Method CFR136 601 or SW8260B (µg/L)	10.11	24	5.6	11	==	390	520	200	2(0
1,1,1-TRICHLOROETHANE	10 U	3.4	5.6 5 U	11 2.5 U	55 5 U		530	300	260
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	10 U 10 U	2 U 2 U	5 U	2.5 U	5 U 5 U	20 U 20 U	20 U 20 U	20 U 20 U	10 U 10 U
1.1-DICHLOROETHANE	100	-	16	2.3 U 10	15	<u> </u>	43	33	36
1,1-DICHLOROETHANE	10 U	13	16 5 U	2.5 U	5 U	20 U	43 20 U	20 U	30 12
1.2-DICHLOROBENZENE	10 U	2.2 2 U	5 U	2.5 U	5 U	20 U	20 U 20 U	20 U 20 U	12 10 U
1.2-DICHLOROBENZENE	10 U	2 U 2 U	5 U	2.5 U	5 U	20 U 20 U	20 U 20 U	20 U	10 U
1.2-DICHLOROPTHANE	10 U	2 U 2 U	5 U	2.5 U	5 U	20 U	20 U	20 U	10 U
1.2-DICHLOROPROPANE	10 U	2 U 2 U	5 U	2.5 U	5 U	20 U 20 U	20 U 20 U	20 U	10 U
1.4-DICHLOROBENZENE	10 U	2 U 2 U	5 U	2.5 U	5 U	20 U	20 U	20 U	10 U
2-CHLOROETHYL VINYL ETHER	10 U	2 U 2 U	5 U	2.5 U	5 U	20 U	20 U 20 U	20 U	10 U
BROMODICHLOROMETHANE	10 U	2 U 2 U	5 U	2.5 U	5 U	20 U 20 U	20 U	20 U 20 U	10 U
BROMOFORM	10 U	2 U 2 U	5 U	2.5 U	5 U	20 U	20 U 20 U	20 U	10 U
BROMOMETHANE	10 U	2 U 2 U	5 U	2.5 U	5 U	20 U	20 U	20 U	10 U
CARBON TETRACHLORIDE	10 U	2 U 2 U	5 U	2.5 U	5 U	20 U	20 U	20 U	10 U
CHLOROBENZENE	10 U	2 U	5 U	2.5 U	5 U	20 U	20 U	20 U	10 U
CHLOROETHANE	10 U	2 U	5 U	2.5 U	5 U	20 U	20 U	20 U	10 U
CHLOROFORM	10 U	2 U	5 U	2.5 U	5 U	20 U	20 U	20 U	10 U
CHLOROMETHANE	10 U	2 U	5 U	2.5 U	5 U	20 U	20 U	20 U	10 U
CIS-1,2-DICHLOROETHYLENE	400	220	330	230	420	1900	2400	1800	1400
CIS-1.3-DICHLOROPROPENE	10 U	2 U	5 U	2.5 U	5 U	20 U	20 U	20 U	10 U
DIBROMOCHLOROMETHANE	10 U	2 U	5 U	2.5 U	5 U	20 U	20 U	20 U	10 U
DICHLORODIFLUOROMETHANE									
METHYLENE CHLORIDE	10 U	2 U	5 U	2.5 U	5 U	20 U	20 U	20 U	10 U
TETRACHLOROETHYLENE(PCE)	10 U	14	15	7.9	40	400	660	460	350
TRANS-1,2-DICHLOROETHENE	10 U	2	5 U	2.5 U	40	20 U	20 U	20 U	10 U
TRANS-1,2-DICHLOROPROPENE	10 U	2 U	5 U	2.5 U	5 U	20 U	20 U	20 U	10 U
TRICHLOROETHYLENE (TCE)	50	42	51	41	50	200	310	200	220
TRICHLOROFLUOROMETHANE	10 U	2 U	5 U	2.5 U	5 U	220 20 U	20 U	270 20 U	10 U
VINYL CHLORIDE	48	20	23	2.50	23	20 U	<u> </u>	<u> </u>	33
VIN YE CHLORIDE VOCs by Method CFR136 602 or SW8260B (µg/L)	48	28	23	11	23	20.0			
BENZENE	10 U	2 U	5 U	2.5 U	5 U	20 U	20 U	20 U	10 U
ETHYLBENZENE	10 U	2 U 2 U	5 U	2.5 U	5 U	20 U 20 U	20 U 20 U	20 U 20 U	10 U 10 U
			5 U 5 U						
TOLUENE	10 U	2 U		2.5 U	5 U	20 U	20 U	20 U	10 U
M,P-XYLENES	20 U	4 U	10 U	5 U	10 U	40 U	40 U	40 U	20 U
O-XYLENE (1,2-DIMETHYLBENZENE)	10 U	2 U	5 U	2.5 U	5 U	20 U	20 U	20 U	10 U
TOTAL XYLENES									
TOTAL VOCs	517	325	441	311	605	2,942	3,979	2,899	2,311

Sample ID		Influent	Influent	Influent	Influent	Influent	Influent	Influent	Influent
	05/06/09	06/04/09	07/02/09	08/05/09	09/03/09	10/02/09	11/05/09	12/03/09	01/08/10
VOCs by Method CFR136 601 or SW8260B (µg/L)		0 I I	2.5.11	0.7		6 T T	6 T T		20.11
1,1,1-TRICHLOROETHANE	5.3	2 U	2.5 U	9.5	3.6	5 U	5 U	250	20 U
1,1,2,2-TETRACHLOROETHANE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
1,1,2-TRICHLOROETHANE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
1,1-DICHLOROETHANE	15	13	14	36	16	23	25	43	34
1,1-DICHLOROETHENE	2.5 U	2 U	2.5 U	2.9	2.9	5 U	5 U	20 U	20 U
1,2-DICHLOROBENZENE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
1,2-DICHLOROETHANE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
1,2-DICHLOROPROPANE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
1,3-DICHLOROBENZENE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
1,4-DICHLOROBENZENE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
2-CHLOROETHYL VINYL ETHER	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
BROMODICHLOROMETHANE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
BROMOFORM	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
BROMOMETHANE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
CARBON TETRACHLORIDE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
CHLOROBENZENE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
CHLOROETHANE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
CHLOROFORM	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
CHLOROMETHANE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
CIS-1,2-DICHLOROETHYLENE	320	250	260	340	330	550	620	2100	680
CIS-1,3-DICHLOROPROPENE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
DIBROMOCHLOROMETHANE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
DICHLORODIFLUOROMETHANE									
METHYLENE CHLORIDE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
TETRACHLOROETHYLENE(PCE)	8.9	3.8	6.4	11	12	5 U	5 U	560	20 U
TRANS-1,2-DICHLOROETHENE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
TRANS-1,3-DICHLOROPROPENE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
TRICHLOROETHYLENE (TCE)	34	24	26	29	59	43	53	290	45
TRICHLOROFLUOROMETHANE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
VINYL CHLORIDE	27	20	23	46	39	48	53	46	57
VOCs by Method CFR136 602 or SW8260B (µg/L)	1	1	1	1	1	1	1	I	
BENZENE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
ETHYLBENZENE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
TOLUENE	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	20 U	20 U
M.P-XYLENES	5 U	4 U	5 U	5 U	5 U	10 U	10 U	40 U	40 U
O-XYLENE (1,2-DIMETHYLBENZENE)	2.5 U	2 U	2.5 U	2.5 U	2.5 U	5 U	5 U	40 U	20 U
TOTAL XYLENES									
TOTAL VOCs	410	311	329	474	463	664	751		816
TOTAL VOUS	410	511	329	4/4	403	004	/51	3,289	010

Sample ID:		Influent	Influent	Influent	Influent	Influent	Influent	Influent	Influent
Date: VOCs by Method CFR136 601 or SW8260B (µg/L)	02/05/10	03/04/10	04/02/10	05/05/10	06/04/10	07/02/10	08/06/10	09/03/10	10/01/10
1,1,1-TRICHLOROETHANE	20 U	58	120	180	210	110	78	5 U	5 U
1.1.2.2-TETRACHLOROETHANE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
1.1.2-TRICHLOROETHANE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
1.1-DICHLOROETHANE	20 0 21	20 U	50 U	<u>42</u>	50 U	50 U	25 U	9.6	7.9
1.1-DICHLOROETHENE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5.U	5 U
1.2-DICHLOROBENZENE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
1.2-DICHLOROETHANE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
1,2-DICHLOROPROPANE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
1,3-DICHLOROBENZENE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
1,4-DICHLOROBENZENE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
2-CHLOROETHYL VINYL ETHER	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
BROMODICHLOROMETHANE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
BROMOFORM	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
BROMOMETHANE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
CARBON TETRACHLORIDE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
CHLOROBENZENE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
CHLOROETHANE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
CHLOROFORM	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
CHLOROMETHANE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
CIS-1,2-DICHLOROETHYLENE	540	750	920	2300	1900	1100	840	210	220
CIS-1,3-DICHLOROPROPENE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
DIBROMOCHLOROMETHANE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
DICHLORODIFLUOROMETHANE									
METHYLENE CHLORIDE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
TETRACHLOROETHYLENE(PCE)	25	150	240	650	560	280	230	7	5.7
TRANS-1,2-DICHLOROETHENE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
TRANS-1,3-DICHLOROPROPENE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
TRICHLOROETHYLENE (TCE)	45	83	120	270	230	130	110	34	31
TRICHLOROFLUOROMETHANE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
VINYL CHLORIDE	48	38	50 U	97	68	50 U	38	9.6	7
VOCs by Method CFR136 602 or SW8260B (µg/L)	1	I	1		1		1		
BENZENE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
ETHYLBENZENE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
TOLUENE	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
M,P-XYLENES	40 U	40 U	100 U	50 U	100 U	100 U	50 U	10 U	10 U
O-XYLENE (1,2-DIMETHYLBENZENE)	20 U	20 U	50 U	25 U	50 U	50 U	25 U	5 U	5 U
TOTAL XYLENES									
TOTAL VOCs	679	1,079	1,400	3,539	2,968	1,620	1,296	270	272

	Sample ID:	Influent								
	Date:	11/04/10	12/03/10	01/07/11	02/04/11	04/08/11	05/06/11	06/03/11	07/01/11	08/05/11
VOCs by Method CFR136 601 or SW8260B (µg/L)	1			-		1				
1,1,1-TRICHLOROETHANE		5 U	5 U	5.8	11	0.28 U	210	2.1	0.28 U	0.28 U
1,1,2,2-TETRACHLOROETHANE		5 U	5 U	5 U	10 U	0.42 U	4.2 U	0.42 U	0.42 U	0.42 U
1,1,2-TRICHLOROETHANE		5 U	5 U	5 U	10 U	0.22 U	2.2 U	0.22 U	0.22 U	0.22 U
1,1-DICHLOROETHANE		11	9.5	15	19	6.9	88	9.2	12	11
1,1-DICHLOROETHENE		5 U	5 U	5 U	10 U	0.22 U	2.2 U	0.22 U	2.5	0.22 U
1,2-DICHLOROBENZENE		5 U	5 U	5 U	10 U	0.54 U	5.4 U	0.54 U	0.54 U	0.54 U
1,2-DICHLOROETHANE		5 U	5 U	5 U	10 U	0.18 U	1.8 U	0.18 U	0.18 U	0.18 U
1,2-DICHLOROPROPANE		5 U	5 U	5 U	10 U	0.16 U	1.6 U	0.16 U	0.16 U	0.16 U
1,3-DICHLOROBENZENE		5 U	5 U	5 U	10 U	0.42 U	4.2 U	0.42 U	0.42 U	0.42 U
1,4-DICHLOROBENZENE		5 U	5 U	5 U	10 U	0.56 U	5.7 U	0.56 U	0.56 U	0.56 U
2-CHLOROETHYL VINYL ETHER		5 U	5 U	5 U	10 U	0.2 U	2 U	0.2 U	0.2 U	0.2 U
BROMODICHLOROMETHANE		5 U	5 U	5 U	10 U	0.12 U	1.2 U	0.12 U	0.12 U	0.12 U
BROMOFORM		5 U	5 U	5 U	10 U	0.26 U	2.6 U	0.26 U	0.26 U	0.26 U
BROMOMETHANE		5 U	5 U	5 U	10 U	0.28 U	2.9 U	0.28 U	0.28 U	0.28 U
CARBON TETRACHLORIDE		5 U	5 U	5 U	10 U	0.2 U	2 U	0.2 U	0.2 U	0.2 U
CHLOROBENZENE		5 U	5 U	5 U	10 U	0.18 U	1.8 U	0.18 U	0.18 U	0.18 U
CHLOROETHANE		5 U	5 U	5 U	10 U	0.22 U	2.2 U	0.22 U	0.22 U	0.22 U
CHLOROFORM		5 U	5 U	5 U	10 U	0.22 U	2.2 U	0.22 U	0.22 U	0.22 U
CHLOROMETHANE		5 U	5 U	5 U	10 U	0.24 U	2.4 U	0.24 U	0.24 U	0.24 U
CIS-1,2-DICHLOROETHYLENE		270	230	330	440	110	1900	160	200	210
CIS-1,3-DICHLOROPROPENE		5 U	5 U	5 U	10 U	0.2 U	2 U	0.2 U	0.2 U	0.2 U
DIBROMOCHLOROMETHANE		5 U	5 U	5 U	10 U	0.16 U	1.6 U	0.16 U	0.16 U	0.16 U
DICHLORODIFLUOROMETHANE										
METHYLENE CHLORIDE		5 U	5 U	5 U	10 U	0.2 U	2 U	0.2 U	0.2 U	0.2 U
TETRACHLOROETHYLENE(PCE)		6.3	8.2	5.3	12	9	1200	13	9.9	10
TRANS-1.2-DICHLOROETHENE		5 U	5 U	5 U	10 U	0.22 U	2.2 U	0.22 U	0.22 U	0.22 U
TRANS-1,3-DICHLOROPROPENE		5 U	5 U	5 U	10 U	0.22 U	2.2 U	0.22 U	0.22 U	0.22 U
TRICHLOROETHYLENE (TCE)		34	33	20	24	26	550	32	34	36
TRICHLOROFLUOROMETHANE		5 U	5 U	5 U	10 U	0.2 U	2 U	0.2 U	0.2 U	0.2 U
VINYL CHLORIDE		8.3	7.7	19	24	13	89	9.1	12	4.1
VOCs by Method CFR136 602 or SW8260B (µg/L)										
BENZENE		5 U	5 U	5 U	10 U	0.16 U	1.6 U	0.16 U	0.16 U	0.16 U
ETHYLBENZENE		5 U	5 U	5 U	10 U	0.14 U	1.5 U	0.14 U	0.14 U	0.14 U
TOLUENE		5 U	5 U	5 U	10 U	0.14 U	1.5 U	0.14 U	0.14 U	0.14 U
M.P-XYLENES		10 U	10 U	10 U	20 U	0.28 U	2.9 U	0.28 U	0.28 U	0.28 U
O-XYLENE (1,2-DIMETHYLBENZENE)		5 U	5 U	5 U	10 U	0.26 U	1.6 U	0.26 U	0.26 U	0.26 U
TOTAL XYLENES										
TOTAL VOCs		330	288	395	530	165	4,037	225	270	271

Sample ID:		Influent	Influent	Influent	Influent	Influent	Influent	Influent	Influent
Date:	09/02/11	10/07/11	11/04/11	12/02/11	01/06/12	02/10/12	03/02/12	04/06/12	05/04/12
VOCs by Method CFR136 601 or SW8260B (µg/L)		0.06.11	• •		0.00.00		0.7	0.0477	
1,1,1-TRICHLOROETHANE	0.36 U	0.36 U	2.0	0.28 U	0.28 U	2.2	8.5	0.36 U	95
1,1,2,2-TETRACHLOROETHANE	0.53 U	0.53 U	0.21 U	0.42 U	0.42 U	0.21 U	0.21 U	0.53 U	4.2 U
1,1,2-TRICHLOROETHANE	0.28 U	0.28 U	0.11 U	0.22 U	0.22 U	0.11 U	0.11 U	0.28 U	2.2 U
1,1-DICHLOROETHANE	9.2	9.8	10	11	10	8.1	80	14	60
1,1-DICHLOROETHENE	0.28 U	0.28 U	1.8	0.22 U	0.22 U	1.3	5.3	0.28 U	2.2 U
1,2-DICHLOROBENZENE	0.68 U	0.68 U	0.27 U	0.54 U	0.54 U	0.27 U	0.27 U	0.68 U	5.4 U
1,2-DICHLOROETHANE	0.23 U	0.23 U	0.09 U	0.18 U	0.18 U	0.09 U	0.09 U	0.23 U	1.8 U
1,2-DICHLOROPROPANE	0.2 U	0.2 U	0.08 U	0.16 U	0.16 U	0.08 U	0.08 U	0.2 U	1.6 U
1,3-DICHLOROBENZENE	0.53 U	0.53 U	0.21 U	0.42 U	0.42 U	0.21 U	0.21 U	0.53 U	4.2 U
1,4-DICHLOROBENZENE	0.71 U	0.71 U	0.28 U	0.56 U	0.56 U	0.28 U	0.28 U	0.71 U	5.7 U
2-CHLOROETHYL VINYL ETHER	0.25 U	0.25 U	0.1 U	0.2 U	0.2 U	0.1 U	0.1 U	0.25 U	2 U
BROMODICHLOROMETHANE	0.15 U	0.15 U	0.06 U	0.12 U	0.12 U	0.06 U	0.06 U	0.15 U	1.2 U
BROMOFORM	0.33 U	0.33 U	0.13 U	0.26 U	0.26 U	0.13 U	0.13 U	0.33 U	2.6 U
BROMOMETHANE	0.36 U	0.36 U	0.14 U	0.28 U	0.28 U	0.14 U	0.14 U	0.36 U	2.9 U
CARBON TETRACHLORIDE	0.25 U	0.25 U	0.1 U	0.2 U	0.2 U	0.1 U	0.1 U	0.25 U	2 U
CHLOROBENZENE	0.23 U	0.23 U	0.09 U	0.18 U	0.18 U	0.09 U	0.09 U	0.23 U	1.8 U
CHLOROETHANE	0.28 U	0.28 U	0.11 U	0.22 U	0.22 U	0.11 U	1.2	0.28 U	2.2 U
CHLOROFORM	0.28 U	0.28 U	0.11 U	0.22 U	0.22 U	0.11 U	0.11 U	0.28 U	2.2 U
CHLOROMETHANE	0.3 U	0.3 U	0.12 U	0.24 U	0.24 U	0.12 U	0.12 U	0.3 U	2.4 U
CIS-1,2-DICHLOROETHYLENE	140	150	140	170	140	93	370	210	1200
CIS-1,3-DICHLOROPROPENE	0.25 U		0.1 U	0.2 U	0.2 U	0.1 U	0.1 U	0.25 U	2 U
DIBROMOCHLOROMETHANE	0.2 U	0.2 U	0.08 U	0.16 U	0.16 U	0.08 U	0.08 U	0.2 U	1.6 U
DICHLORODIFLUOROMETHANE									
METHYLENE CHLORIDE	0.25 U	0.25 U	0.1 U	0.2 U	0.2 U	0.1 U	0.1 U	0.25 U	2 U
TETRACHLOROETHYLENE(PCE)	8.3	6.9	8.5	11	7.6	15	18	6.6	860
TRANS-1,2-DICHLOROETHENE	0.28 U	0.28 U	0.11 U	0.22 U	0.22 U	1.7	7.2	0.28 U	2.2 U
TRANS-1,3-DICHLOROPROPENE	0.28 U	0.28 U	0.11 U	0.22 U	0.22 U	0.11 U	0.11 U	0.28 U	2.2 U
TRICHLOROETHYLENE (TCE)	26	23	26	25	26	31	98	17	390
TRICHLOROFLUOROMETHANE	0.25 U	0.25 U	0.1 U	0.2 U	0.2 U	0.1 U	0.1 U	0.25 U	2 U
VINYL CHLORIDE	3.5	9.1	3.8	6.9	2.1	3.9	140	5.5	43
VOCs by Method CFR136 602 or SW8260B (µg/L)									
BENZENE	0.2 U	0.2 U	0.08 U	0.16 U	0.16 U	0.08 U	0.08 U	0.2 U	1.6 U
ETHYLBENZENE	0.18 U	0.18 U	0.07 U	0.14 U	0.14 U	0.07 U	2.4	0.18 U	1.5 U
TOLUENE	0.18 U	0.18 U	0.07 U	0.14 U	0.14 U	0.07 U	0.07 U	0.18 U	1.5 U
M,P-XYLENES	0.36 U	0.36 U	0.14 U	0.28 U	0.28 U	0.14 U	0.14 U	0.36 U	2.9 U
O-XYLENE (1,2-DIMETHYLBENZENE)	0.2 U	0.2 U	0.08 U	0.26 U	0.26 U	0.08 U	0.08 U	0.2 U	1.6 U
TOTAL XYLENES		0.2 C				0.00 C			
TOTAL VOCs	187	199	192	224	186	156	728	253	2,648
IUIAL VOCS	10/	177	174	44 4	100	150	140	433	2,040

Sample		Influent	Influent
Da VOCs by Method CFR136 601 or SW8260B (µg/L)	te: 06/01/12	07/06/12	08/03/12
1.1.1-TRICHLOROETHANE	0.28 U	2 U	5 U
	0.28 U	2 U 2 U	5 U
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	0.42 U 0.22 U	2 U 2 U	5 U
1.1-DICHLOROETHANE	0.22 0	19	17
1.1-DICHLOROETHANE	0.22 U	4.1	17 5 U
		4.1 2 U	
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	0.54 U 0.18 U	2 U 2 U	5 U 5 U
		2 U 2 U	5 U
1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE	0.16 U 0.42 U	2 U 2 U	5 U
1,4-DICHLOROBENZENE 2-CHLOROETHYL VINYL ETHER	0.56 U 0.2 U	2 U 2 U	5 U 5 U
BROMODICHLOROMETHANE	0.12 U	2 U 2 U	5 U
BROMODICHLOROMETHANE	0.12 U 0.26 U	2 U 2 U	5 U
BROMOFORM BROMOMETHANE	0.28 U	2 U 2 U	5 U
CARBON TETRACHLORIDE	0.28 U	2 U 2 U	5 U
CHLOROBENZENE	0.18 U	2 U 2 U	5 U
CHLOROETHANE	0.18 U	2 U 2 U	5 U
CHLOROFORM	0.22 U	2 U 2 U	5 U
CHLOROMETHANE	0.22 U 0.24 U	2 U 2 U	5 U
CIS-1,2-DICHLOROETHYLENE	160	400	370
CIS-1,3-DICHLOROPROPENE	0.2 U	2 U	5 U
DIBROMOCHLOROMETHANE	0.16 U	2 U 2 U	5 U
	0.10 0		<u> </u>
DICHLORODIFLUOROMETHANE			
METHYLENE CHLORIDE	0.2 U	2 U	5 U
TETRACHLOROETHYLENE(PCE)	12	2.5	5 U
TRANS-1,2-DICHLOROETHENE	0.22 U	2 U	5 U
TRANS-1,3-DICHLOROPROPENE	0.22 U	2 U	5 U
TRICHLOROETHYLENE (TCE)	40	34	32
TRICHLOROFLUOROMETHANE	0.2 U	2 U	5 U
VINYL CHLORIDE	0.34 U	51	39
VOCs by Method CFR136 602 or SW8260B (µg/L)			
BENZENE	0.16 U	2 U	5 U
ETHYLBENZENE	0.14 U	2 U	5 U
TOLUENE	0.14 U	2 U	5 U
M,P-XYLENES	0.28 U	4 U	10 U
O-XYLENE (1,2-DIMETHYLBENZENE)	0.16 U	2 U	5 U
TOTAL XYLENES			
TOTAL VOCs	223	511	458

Notes:

1. System was shut down from March 11, 2008 to September 18, 2008 due to CatOX decommissioning.

- 2. System was shut down from February 17, 2011 to April 4, 2011 due to equipment malfunction.
- 3. Petition accepted by County of Monroe, October 28, 2006, to drop PCBs from the analyte list and to perform pesticides on a semi-annual basis.

4. J = Estimated value.

- 5. U = Not detected (lab reporting limit shown).
- 6. UJ = Not detected/Estimated Value.
- 7. B = Compound detected in associated method blank.

8. $\mu g/L =$ Micrograms per liter.

9. -- = Compound not analyzed.

Sample ID:	Effluent								
Date:		09/05/06	10/03/06	11/07/06	12/05/06	01/04/07	02/16/07	03/07/07	04/13/07
VOCs by Method CFR136 601 or SW8260B (µg/L)	06/07/06	09/05/06	10/03/06	11/07/06	12/05/06	01/04/07	02/16/07	03/07/07	04/13/07
1,1,1-TRICHLOROETHANE	0.4 U	1 U	1 U						
1.1.2.2-TETRACHLOROETHANE	0.4 U	1 U	1 U						
1.1.2-TRICHLOROETHANE	0.4 U	1 U	1 U						
1.1-DICHLOROETHANE	0.4 U	0.4 U	0.1 U	0.4 U	0.1 U	0.4 U	0.1 U	1 U	1 U
1.1-DICHLOROETHENE	0.4 U	1 U	1 U						
1.2-DICHLOROBENZENE	0.4 U	1 U	1 U						
1.2-DICHLOROETHANE	0.4 U	1 U	1 U						
1,2-DICHLOROPROPANE	0.4 U	1 U	1 U						
1,3-DICHLOROBENZENE	0.4 U	1 U	1 U						
1,4-DICHLOROBENZENE	0.4 U	1 U	1 U						
2-CHLOROETHYL VINYL ETHER	1.0 U	1 U	1 U						
BROMODICHLOROMETHANE	0.4 U	1 U	1 U						
BROMOFORM	1.0 U	1 U	1 U						
BROMOMETHANE	1.0 U	1 U	1 U						
CARBON TETRACHLORIDE	0.4 U	1 U	1 U						
CHLOROBENZENE	0.4 U	1 U	1 U						
CHLOROETHANE	1.0 U	1 U	1 U						
CHLOROFORM	0.6 U	1 U	1 U						
CHLOROMETHANE	1.0 U	1 U	1 U						
CIS-1,2-DICHLOROETHYLENE	0.35 J	0.22 J	0.20 J	0.4 U	0.22 J	0.34 J	0.47	0.41 J	0.41 J
CIS-1,3-DICHLOROPROPENE	0.4 U	1 U	1 U						
DIBROMOCHLOROMETHANE	0.4 U	1 U	1 U						
DICHLORODIFLUOROMETHANE	1.0 U	1 U	1 U						
METHYLENE CHLORIDE	1.0 U	1 U	1 U						
TETRACHLOROETHYLENE(PCE)	0.4 U	1 U	1 U						
TRANS-1,2-DICHLOROETHENE	0.4 U	0.4 U	0.68	3.0	2.3	0.80	0.62	1 U	1 U
TRANS-1,3-DICHLOROPROPENE	0.4 U	1 U	1 U						
TRICHLOROETHYLENE (TCE)	0.4 U	1 U	1 U						
TRICHLOROFLUOROMETHANE	0.4 U	1 U	1 U						
VINYL CHLORIDE	1.0 U	1 U	1 U						
VOCs by Method CFR136 602 or SW8260B (µg/L)									
BENZENE	0.4 U	1 U	1 U						
ETHYLBENZENE	0.4 U	1 U	1 U						
TOLUENE	0.4 U	1 U	1 U						
M.P-XYLENES									
O-XYLENE (1,2-DIMETHYLBENZENE)									
TOTAL XYLENES	0.6 U	1.2 U	3 U	3 U					
TOTAL VOCs	0.35	0.0 0	0.0 0	3.0	2.5	1.1	1.2 0	0.41	0.41

Sample		Effluent							
	ate: 05/09/07	06/06/07	07/03/07	08/08/07	10/04/07	11/08/07	12/07/07	01/11/08	02/08/08
VOCs by Method CFR136 601 or SW8260B (µg/L)	1.17	1.1.1	1.11	1.17	1.1.1	1.1.1	1.1.1	1.1.1	1 1 1
1,1,1-TRICHLOROETHANE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-TETRACHLOROETHANE	1 U	1 U	1 U	1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U	1 U 1 U
1,1,2-TRICHLOROETHANE	1 U	1 U 1 U	1 U		1 U	1 U 1 U		1 U	1 U 1 U
1,1-DICHLOROETHANE 1.1-DICHLOROETHENE	1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
1.2-DICHLOROBENZENE	1 U	1 U	1 U 1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	1 U	1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U	1 U 1 U
1.2-DICHLOROPTHANE	1 U	1 U	1 U 1 U	1 U	1 U 1 U	1 U	1 U 1 U	1 U	1 U
1,2-DICHLOROPROPANE	1 U	1 U	1 U 1 U	1 U 1 U	1 U	1 U	1 U	1 U	1 U
1,4-DICHLOROBENZENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-CHLOROETHYL VINYL ETHER	1 U	1 U	1 U 1 U	1 U	1 U	1 U	1 U	1 U	1 U
BROMODICHLOROMETHANE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BROMOFORM	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BROMOMETHANE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CARBON TETRACHLORIDE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CHLOROBENZENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CHLOROETHANE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CHLOROFORM	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CHLOROMETHANE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CIS-1,2-DICHLOROETHYLENE	1 U	0.50 J	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CIS-1.3-DICHLOROPROPENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
DIBROMOCHLOROMETHANE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
DICHLORODIFLUOROMETHANE	1 U	1 U	1 U						
METHYLENE CHLORIDE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
TETRACHLOROETHYLENE(PCE)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
TRANS-1,2-DICHLOROETHENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
TRANS-1,2-DICHLOROPENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
	-	1 U	1 U	1 U 1 U	-	1 U 1 U	-	1 U	1 U
TRICHLOROETHYLENE (TCE)	1 U	-	-	-	1 U	-	1 U	-	-
TRICHLOROFLUOROMETHANE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VINYL CHLORIDE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs by Method CFR136 602 or SW8260B (µg/L)			1 77	1 77	1 77	1 77	1 77	1.77	1 77
BENZENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ETHYLBENZENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
TOLUENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
M,P-XYLENES				2 U	2 U	2 U	2 U	2 U	2 U
O-XYLENE (1,2-DIMETHYLBENZENE)				1 U	1 U	1 U	1 U	1 U	1 U
TOTAL XYLENES	3 U	3 U	3 U						
TOTAL VOCs	0	0.50	0	0	0	0	0	0	0

	Sample ID: Date:	Effluent 03/03/08	Effluent 09/18/08	Effluent 10/23/08	Effluent 11/12/08	Effluent 12/09/08	Effluent 01/06/09	Effluent 02/06/09	Effluent 03/11/09	Effluent 04/09/09
VOCs by Method CFR136 601 or SW8260B (µg/L)				1				1		
1,1,1-TRICHLOROETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	24
1,1,2,2-TETRACHLOROETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
1,1,2-TRICHLOROETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
1,1-DICHLOROETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5.7
1,1-DICHLOROETHENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
1,2-DICHLOROBENZENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
1,2-DICHLOROETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
1,2-DICHLOROPROPANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
1,3-DICHLOROBENZENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
1,4-DICHLOROBENZENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
2-CHLOROETHYL VINYL ETHER		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
BROMODICHLOROMETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
BROMOFORM		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
BROMOMETHANE CARBON TETRACHLORIDE		1 U 1 U	2 U 2 U							
CHLOROBENZENE		1 U	1 U 1 U	1 U	1 U	1 U	1 U	1 U	1 U 1 U	2 U 2 U
CHLOROBENZENE CHLOROETHANE		1 U	1 U	1 U	1 U 1 U	1 U	1 U	1 U	1 U	2 U 2 U
CHLOROFORM		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U 2 U
CHLOROFORM		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U 2 U
CIS-1,2-DICHLOROETHYLENE		1 U	1 U	1 U	1.7	2.6	2.4	1 U	10	2.0
CIS-1,2-DICHLOROPROPENE		1 U	1 U	1 U	1.7 1 U	1 U	1 U	1 U	10 1 U	200 2 U
DIBROMOCHLOROMETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U 2 U
DICHLORODIFLUOROMETHANE										
METHYLENE CHLORIDE		 1 U	 2 U							
TETRACHLOROETHYLENE(PCE)		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.2	34
		-	-	-	-	-	-			. .
TRANS-1,2-DICHLOROETHENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
TRANS-1,3-DICHLOROPROPENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
TRICHLOROETHYLENE (TCE)		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	27
TRICHLOROFLUOROMETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
VINYL CHLORIDE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
VOCs by Method CFR136 602 or SW8260B (µg/L)										
BENZENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
ETHYLBENZENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
TOLUENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
M,P-XYLENES		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	4 U
O-XYLENE (1,2-DIMETHYLBENZENE)		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2 U
TOTAL XYLENES										
TOTAL VOCs		0	0	0	1.7	2.6	2.4	0	11.2	350.7

		Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
5	ample ID: Date:	05/06/09	Effluent 06/04/09	07/02/09	08/05/09	09/03/09	10/02/09	11/05/09	12/03/09	01/08/10
VOCs by Method CFR136 601 or SW8260B (µg/L)	Date.	05/00/09	00/04/09	07/02/09	08/05/09	09/03/09	10/02/09	11/05/09	12/03/09	01/06/10
1.1.1-TRICHLOROETHANE			1 U	1 U	3.7	1 U	1 U	1 U	1 U	1 U
1.1.2.2-TETRACHLOROETHANE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
1.1.2-TRICHLOROETHANE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
1.1-DICHLOROETHANE		1.1	2.3	3.4	24	5.6	1 U	1 U	1 U	1 U
1,1-DICHLOROETHENE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
1,2-DICHLOROBENZENE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
1,2-DICHLOROETHANE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
1,2-DICHLOROPROPANE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
1,3-DICHLOROBENZENE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
1,4-DICHLOROBENZENE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
2-CHLOROETHYL VINYL ETHER			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
BROMODICHLOROMETHANE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
BROMOFORM			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
BROMOMETHANE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
CARBON TETRACHLORIDE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
CHLOROBENZENE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
CHLOROETHANE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
CHLOROFORM			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
CHLOROMETHANE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
CIS-1,2-DICHLOROETHYLENE		48	70	90	260	140	4.1	12	11	10
CIS-1,3-DICHLOROPROPENE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
DIBROMOCHLOROMETHANE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
DICHLORODIFLUOROMETHANE										
METHYLENE CHLORIDE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
TETRACHLOROETHYLENE(PCE)			1 U	1 U	4.7	2.9	1 U	1 U	1 U	1 U
TRANS-1,2-DICHLOROETHENE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
TRANS-1,3-DICHLOROPROPENE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
TRICHLOROETHYLENE (TCE)		2.7	4.3	5.8	16	17	1 U	1 U	1 U	1 U
TRICHLOROFLUOROMETHANE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
VINYL CHLORIDE			1 U	1.7	13	3.3	1 U	1 U	1 U	1 U
VOCs by Method CFR136 602 or SW8260B (µg/L)			-		-		-			-
BENZENE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
ETHYLBENZENE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
TOLUENE			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
M.P-XYLENES			2 U	2 U	5 U	2 U	2 U	2 U	2 U	2 U
O-XYLENE (1,2-DIMETHYLBENZENE)			1 U	1 U	2.5 U	1 U	1 U	1 U	1 U	1 U
TOTAL XYLENES										
TOTAL VOCs		51.8	76.6	100.9	321.4	168.8	4.1	12		10

5	Sample ID: Date:	Effluent 02/05/10	Effluent 03/04/10	Effluent 04/02/10	Effluent 05/05/10	Effluent 06/04/10	Effluent 07/02/10	Effluent 08/06/10	Effluent 09/03/10	Effluent 10/01/10
VOCs by Method CFR136 601 or SW8260B (µg/L)	· · · · ·									
1,1,1-TRICHLOROETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2,2-TETRACHLOROETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1,2-TRICHLOROETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-DICHLOROETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1.8	3	1.5
1,1-DICHLOROETHENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-DICHLOROBENZENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-DICHLOROETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-DICHLOROPROPANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,3-DICHLOROBENZENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,4-DICHLOROBENZENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-CHLOROETHYL VINYL ETHER		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BROMODICHLOROMETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BROMOFORM		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BROMOMETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CARBON TETRACHLORIDE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CHLOROBENZENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CHLOROETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CHLOROFORM		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CHLOROMETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CIS-1,2-DICHLOROETHYLENE		14	41	16	28	1 U	1 U	48	78	49
CIS-1,3-DICHLOROPROPENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
DIBROMOCHLOROMETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
DICHLORODIFLUOROMETHANE										
METHYLENE CHLORIDE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
TETRACHLOROETHYLENE(PCE)		1 U	2.8	1.2	2.2	1 U	1 U	1.4	1.2	1 U
TRANS-1,2-DICHLOROETHENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
TRANS-1,3-DICHLOROPROPENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
TRICHLOROETHYLENE (TCE)		1 U	2.1	1 U	1.2	1 U	1 U	4.7	6.9	3.9
TRICHLOROFLUOROMETHANE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VINYL CHLORIDE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
VOCs by Method CFR136 602 or SW8260B (µg/L)										
BENZENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ETHYLBENZENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
TOLUENE		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
M,P-XYLENES		2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
O-XYLENE (1,2-DIMETHYLBENZENE)		1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
TOTAL XYLENES										
TOTAL VOCs		14	45.9	17.2	31.4	0	0	55.9	89.1	54.4

s	ample ID: Date:	Effluent 11/04/10	Effluent 12/03/10	Effluent 01/07/11	Effluent 02/04/11	Effluent 04/08/11	Effluent 05/06/11	Effluent 06/03/11	Effluent 07/01/11	Effluent 08/05/11
VOCs by Method CFR136 601 or SW8260B (µg/L)	Bute.	11/04/10	12/00/10	01/01/11	02/04/11	04/00/11	00/00/11	00/00/11	01/01/11	00/00/11
1,1,1-TRICHLOROETHANE		2 U	1 U	2.5 U	5 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
1,1,2,2-TETRACHLOROETHANE		2 U	1 U	2.5 U	5 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,1,2-TRICHLOROETHANE		2 U	1 U	2.5 U	5 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
1,1-DICHLOROETHANE		6.5	4.7	9.4	15	1.7	1.4	0.13 U	0.13 U	0.13 U
1,1-DICHLOROETHENE		2 U	1 U	2.5 U	5 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
1,2-DICHLOROBENZENE		2 U	1 U	2.5 U	5 U	0.27 U	0.27 U	0.27 U	0.27 U	0.27 U
1,2-DICHLOROETHANE		2 U	1 U	2.5 U	5 U	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
1,2-DICHLOROPROPANE		2 U	1 U	2.5 U	5 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U
1,3-DICHLOROBENZENE		2 U	1 U	2.5 U	5 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U
1,4-DICHLOROBENZENE		2 U	1 U	2.5 U	5 U	0.28 U	0.28 U	0.28 U	0.28 U	0.28 U
2-CHLOROETHYL VINYL ETHER		2 U	1 U	2.5 U	5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
BROMODICHLOROMETHANE		2 U	1 U	2.5 U	5 U	0.06 U	0.06 U	0.06 U	0.06 U	0.06 U
BROMOFORM		2 U	1 U	2.5 U	5 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U
BROMOMETHANE		2 U	1 U	2.5 U	5 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
CARBON TETRACHLORIDE		2 U	1 U	2.5 U	5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
CHLOROBENZENE		2 U	1 U	2.5 U	5 U	0.09 U	0.09 U	0.09 U	0.09 U	0.09 U
CHLOROETHANE		2 U	1 U	2.5 U	5 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
CHLOROFORM		2 U	1 U	2.5 U	5 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
CHLOROMETHANE		2 U	1 U	2.5 U	5 U	0.12 U	0.12 U	0.12 U	0.12 U	0.12 U
CIS-1,2-DICHLOROETHYLENE		150	91	190	320	38	40	11	7.7	30
CIS-1,3-DICHLOROPROPENE		2 U	1 U	2.5 U	5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
DIBROMOCHLOROMETHANE		2 U	1 U	2.5 U	5 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U
DICHLORODIFLUOROMETHANE										
METHYLENE CHLORIDE		2 U	1 U	2.5 U	5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
TETRACHLOROETHYLENE(PCE)		2.8	3.6	2.5 U	5 U	1.3	5	0.12 U	0.12 U	0.12 U
TRANS-1,2-DICHLOROETHENE		2 U	1 U	2.5 U	5 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
TRANS-1,3-DICHLOROPROPENE		2 U	1 U	2.5 U	5 U	0.11 U	0.11 U	0.11 U	0.11 U	0.11 U
TRICHLOROETHYLENE (TCE)		17	14	12	14	5.2	5.2	0.1 U	0.1 U	2.2
TRICHLOROFLUOROMETHANE		2 U	1 U	2.5 U	5 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
VINYL CHLORIDE		2.6	2.2	9.7	17	0.17 U				
VOCs by Method CFR136 602 or SW8260B (µg/L)										
BENZENE		2 U	1 U	2.5 U	5 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U
ETHYLBENZENE		2 U	1 U	2.5 U	5 U	0.07 U	0.07 U	0.07 U	0.07 U	0.07 U
TOLUENE		2 U	1 U	2.5 U	5 U	0.07 U	0.07 U	0.07 U	0.07 U	0.07 U
M.P-XYLENES		4 U	2 U	5 U	10 U	0.14 U	0.14 U	0.14 U	0.14 U	0.14 U
O-XYLENE (1,2-DIMETHYLBENZENE)		2 U	1 U	2.5 U	5 U	0.08 U	0.08 U	0.08 U	0.08 U	0.08 U
TOTAL XYLENES							0.00 C			
TOTAL VOCs		178.9	115.5	221.1	366	46.2	51.6	11	7.7	32.2

Date: 09/0211 10/0711 11/04/11 12/0711 01/0612 02/01/2 03/0212 04/0612 04/011 0.021 0.021 0.021 0.021 0.021 <											
VOCs by Method CFR138 601 or SW8260B (gpl.) Intervention		Sample ID:	Effluent								
I.I.TRICHLOROETHANE 0.14 U 0.11 U 0.12 U 0.21 U <th0.21 th="" u<=""> 0.21 U <th0.21 th="" u<=""></th0.21></th0.21>		Date:	09/02/11	10/07/11	11/04/11	12/02/11	01/06/12	02/10/12	03/02/12	04/06/12	05/04/12
I1.22-TERTRACHLOROETHANE 0.11 U 0.12 U 0.22 U 0.25 U 0.21 U 0.21 U	, , , , , , , , , , , , , , , , , , , ,		0.4.4.77	0.44.77	0.44.77	0.4.4.77	0.4.4.77	0.4.4.77		0.00.00	0.4.4.77
I.JTRICILLOROETHANE 0.11 0.271 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
IL-DICHLOROETHANE 22 1.5 0.13 U 2 5.2 4.7 48 8.1 5.3 IL-DICHLOROETHANE 0.11 U 0.01 U 0.27 U 0.28 U 0.20 U 0.12 U											
I.I.DICHLOROETHENE 0.11 U 0.27 U 0.07 U <th0.01 th="" u<=""></th0.01>											
12-DICHLOROBEXENE 0.27 U 0.08 U 0.09 U 0.08 U 0.02 U 0.21 U 0.1 U			-			_			-		
12-DICHLOROBETHANE 0.09 U 0.08 U 0.01 U 0.21 U <th0.21 th="" u<=""></th0.21>											
12-DICHLOROPROPANE 0.08 U 0.01 U 0.21 U 0.01 U 0.11 U <th0.11 th="" u<=""></th0.11>											
I.3-DICHLOROBENZENE 0.21 U 0.12 U											
I_4-DICHLOROBENZENE 0.28 U 0.12 U 0.10 U 0.1 U <th0.1 th="" u<=""> 0.1 U 0.1 U<</th0.1>											
2-CHLOROETHYLVINVLETHER 0.1 U 0.1											
BROMODICHLOROMETHANE 0.06 U 0.03 U 0.13 U 0.14 U 0.12 U 0.12 U 0.10 U 0.11 U 0.12 U									1		
BROMOFORM 0.13 U 0.14 U 0.11 U 0.12									1		
BROMOMETHANE 0.14 U 0.11 U 0.12 U 0.12 U 0.12 U 0.12 U 0.12 U 0.02 U 0.12 U 0											
CARBON TETRACHLORIDE 0.1 U 0.0 0 U 0.0 U 0.1 U <th0.1 th="" u<=""></th0.1>											
CHLOROBENZENE 0.09 U 0.01 U 0.11 U 0.11 U 0.11 U 0.11 U 0.11 U 0.12 U 0.22 U 0.12 U 0.22 U 0.11 U 0.1 U 0											
CHLOROETHANE 0.11 U 0.12 U 0.1 U 0.											
CHLOROFORM 0.11 U 0.12 U 0.11 U 0.08 U 0.1											
CHLOROMETHANE 0.12 U 0.11 U 0.1 U									0.000		
CIS-1,2-DICHLOROETHYLENE 43 32 18 44 76 58 170 140 78 CIS-1,3-DICHLOROPROPENE 0.1 U 0.08 U 0.1 U <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
CIS-1,3-DICHLOROPROPENE 0.1 U 0.08 U 0.01 U 0.1 U <td></td>											
DIBROMOCHLOROMETHANE 0.08 U 0.01 U 0.1 U <			-				-		-	-	-
DICHLORODIFLUOROMETHANE											
METHYLENE CHLORIDE 0.1 U 0.1 U <td></td> <td></td> <td>0.08 U</td> <td>0.16 U</td> <td>0.08 U</td>			0.08 U	0.16 U	0.08 U						
TETRACHLOROETHYLENE(PCE) 1.1 0.12 U 0.12 U 0.12 U 3 5.7 9.2 2.3 6.7 TRANS-1,2-DICHLOROETHENE 0.11 U											
TRANS-1,2-DICHLOROETHENE 0.11 U			0.1 U	0.2 U	0.1 U						
TRANS-1,3-DICHLOROPROPENE 0.11 U	TETRACHLOROETHYLENE(PCE)		1.1	0.12 U	0.12 U	0.12 U	3	5.7	9.2	2.3	6.7
TRICHLOROETHYLENE (TCE) 4.5 2.7 2 3.1 12 16 38 6.5 18 TRICHLOROFLUOROMETHANE 0.1 U 0.0 U	TRANS-1,2-DICHLOROETHENE		0.11 U	3.3	0.22 U	0.11 U					
TRICHLOROFLUOROMETHANE 0.1 U 0.0 U 0.0 U	TRANS-1,3-DICHLOROPROPENE		0.11 U	0.22 U	0.11 U						
VINYL CHLORIDE 0.17 U 1.4 65 0.34 U 1.4 VOCs by Method CFR136 602 or SW8260B (µg/L) Image: Constraint of the constraint o	TRICHLOROETHYLENE (TCE)		4.5	2.7	2	3.1	12	16	38	6.5	18
VOCs by Method CFR136 602 or SW8260B (µg/L) Image: mark the table of ta	TRICHLOROFLUOROMETHANE		0.1 U	0.2 U	0.1 U						
BENZENE 0.08 U 0.07 U	VINYL CHLORIDE		0.17 U	1.4	65	0.34 U	1.4				
BENZENE 0.08 U 0.07 U	VOCs by Method CFR136 602 or SW8260B (µa/L)										
TOLUENE 0.07 U 0.14 U 0.14 U 0.07 U M,P-XYLENES 0.14 U			0.08 U	0.16 U	0.08 U						
TOLUENE 0.07 U 0.14 U 0.14 U 0.07 U M,P-XYLENES 0.14 U	ETHYLBENZENE		0.07 U	1.1	0.14 U	0.07 U					
M.P-XYLENES 0.14 U 0.14 U </td <td>TOLUENE</td> <td></td> <td>0.07 U</td> <td></td> <td></td>	TOLUENE		0.07 U								
O-XYLENE (1,2-DIMETHYLBENZENE) 0.08 U 0.16 U 0.08 U TOTAL XYLENES											
TOTAL XYLENES	· · · ·										
	TOTAL VOCs		50.8	36.2	20	49.1	96.2	85.8	338.8	156.9	109.4

	Sample ID:	Effluent	Effluent	Effluent
VOCs by Method CFR136 601 or SW8260B (µg/L)	Date:	06/01/12	07/06/12	08/03/12
1.1.1-TRICHLOROETHANE		0.14 U	1 U	2 U
1,1,2,2-TETRACHLOROETHANE		0.14 U 0.21 U	1 U	2 U 2 U
1,1,2-TRICHLOROETHANE		0.21 U 0.11 U	1 U	2 U 2 U
1,1-DICHLOROETHANE		2.2	6.4	4
1.1-DICHLOROETHENE		0.11 U	1 U	2 U
1.2-DICHLOROBENZENE		0.11 U	1 U	2 U
1.2-DICHLOROETHANE		0.27 U	1 U	2 U 2 U
1.2-DICHLOROPROPANE		0.09 U	1 U	2 U
1,3-DICHLOROBENZENE		0.00 U	1 U	2 U
1,4-DICHLOROBENZENE		0.21 U	1 U	2 U
2-CHLOROETHYL VINYL ETHER		0.1 U	1 U	2 U
BROMODICHLOROMETHANE		0.06 U	1 U	2 U
BROMOFORM		0.13 U	1 U	2 U
BROMOMETHANE		0.14 U	1 U	2 U
CARBON TETRACHLORIDE		0.1 U	1 U	2 U
CHLOROBENZENE		0.09 U	1 U	2 U
CHLOROETHANE		0.11 U	1 U	2 U
CHLOROFORM		0.11 U	1 U	2 U
CHLOROMETHANE		0.12 U	1 U	2 U
CIS-1,2-DICHLOROETHYLENE		41	130	99
CIS-1,3-DICHLOROPROPENE		0.1 U	1 U	2 U
DIBROMOCHLOROMETHANE		0.08 U	1 U	2 U
DICHLORODIFLUOROMETHANE				
METHYLENE CHLORIDE		0.1 U	1 U	2 U
TETRACHLOROETHYLENE(PCE)		1.4	1 U	2 U
TRANS-1,2-DICHLOROETHENE		0.11 U	1 U	2 U
TRANS-1,3-DICHLOROPROPENE		0.11 U	1 U	2 U
TRICHLOROETHYLENE (TCE)		6.7	10	6.7
TRICHLOROFLUOROMETHANE		0.1 U	1 U	2 U
VINYL CHLORIDE		0.17 U	5.1	2 U
VOCs by Method CFR136 602 or SW8260B (µg/L)				
BENZENE		0.08 U	1 U	2 U
ETHYLBENZENE		0.07 U	1 U	2 U
TOLUENE		0.07 U	1 U	2 U
M,P-XYLENES		0.07 U	2 U	4 U
O-XYLENE (1,2-DIMETHYLBENZENE)		0.14 U	1 U	2 U
TOTAL XYLENES				
TOTAL VOCs		51.3	 151.5	109.7
TOTAL VOUS		31.3	151.5	107./

Notes:

- 1. System was shut down from March 11, 2008 to September 18, 2008 due to CatOX decommissioning.
- 2. System was shut down from February 17, 2011 to April 4, 2011 due to equipment malfunction.
- 3. Petition accepted by County of Monroe, October 28, 2006, to drop PCBs from the analyte list and to perform pesticides on a semi-annual basis.
- 4. J = Estimated value.
- 5. U = Not detected (lab reporting limit shown).
- 6. UJ = Not detected/Estimated Value.
- 7. B = Compound detected in associated method blank.
- 8. $\mu g/L =$ Micrograms per liter.
- 9. -- = Compound not analyzed.

Attachment B

Influent and Effluent Semivolatile Organic Compound Analytical Results

Sample ID:	Influent	Influent	Influent	Influent	Influent	Influent	Influent	Influent	Influent
Date:	08/07/06	09/05/06	10/03/06	11/07/06	12/05/06	01/04/07	02/16/07	03/07/07	04/13/07
SVOCs by Method E625 (µg/L)	00/01/00	03/03/00	10/03/00	11/07/00	12/03/00	01/04/01	02/10/01	03/01/01	04/13/07
1.2.4-TRICHLOROBENZENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
1,2-DICHLOROBENZENE	9.5 U	48 U	47 U	9.4 U	0.31 J	9.5 U	9.4 U	9.4 U	9.5 U
1,2-DIPHENYLHYDRAZINE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
1,3-DICHLOROBENZENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
1,4-DICHLOROBENZENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
2,4,6-TRICHLOROPHENOL	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
2,4-DICHLOROPHENOL	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
2,4-DIMETHYLPHENOL	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
2,4-DINITROPHENOL	48 U	240 U	240 U	47 U	48 U	48 U	47 U	47 U	47 U
2,4-DINITROTOLUENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
2,6-DINITROTOLUENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
2-CHLORONAPHTHALENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
2-CHLOROPHENOL	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
2-NITROPHENOL	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
3,3'-DICHLOROBENZIDINE	19 U	95 U	94 U	19 U	19 U	19 U	19 U	19 U	19 U
4,6-DINITRO-2-METHYLPHENOL	48 U	240 U	240 U	47 U	48 U	48 U	47 U	47 U	47 U
4-BROMOPHENYL PHENYL ETHER	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
4-CHLORO-3-METHYLPHENOL	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
4-CHLOROPHENYL PHENYL ETHER	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
4-NITROPHENOL	48 U	240 U	240 U	47 U	48 U	48 U	47 U	47 U	47 U
ACENAPHTHENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
ACENAPHTHYLENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
ANTHRACENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
BENZIDINE	76 U	380 U	380 U	75 U	76 U	76 U	75 U	75 U	76 U
BENZO(A)ANTHRACENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
BENZO(A)PYRENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
BENZO(B)FLUORANTHENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
BENZO(G,H,I)PERYLENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
BENZO(K)FLUORANTHENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
BENZYL BUTYL PHTHALATE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
BIS(2-CHLOROETHOXY) METHANE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
BIS(2-CHLOROISOPROPYL) ETHER	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
BIS(2-ETHYLHEXYL) PHTHALATE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
CHRYSENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
DIBENZ(A,H)ANTHRACENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
DIBENZ(A,II)ANTIKACENE DIETHYL PHTHALATE	9.5 U	48 U	47 U	9.4 U 9.4 U	9.5 U 9.5 U	9.5 U	9.4 U 9.4 U	9.4 U 9.4 U	9.5 U 9.5 U
						9.5 U 9.5 U			9.5 U 9.5 U
DIMETHYL PHTHALATE	9.5 U	48 U	47 U	9.4 U	9.5 U		9.4 U	9.4 U	
DI-N-BUTYL PHTHALATE	9.5 U	48 U	47 U	9.4 U	1.1 BJ	9.5 U	0.56 J	0.82 BJ	9.5 U

Sample ID		Influent 09/05/06	Influent 10/03/06	Influent 11/07/06	Influent 12/05/06	Influent 01/04/07	Influent 02/16/07	Influent 03/07/07	Influent 04/13/07
DI-N-OCTYLPHTHALATE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
FLUORANTHENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
FLUORENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
HEXACHLOROBENZENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
HEXACHLOROBUTADIENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
HEXACHLOROCYCLOPENTADIENE	43 U	210 U	210 U	42 U	43 U	43 U	42 U	42 U	43 U
HEXACHLOROETHANE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
INDENO(1,2,3-C,D)PYRENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
ISOPHORONE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
NAPHTHALENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
NITROBENZENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
N-NITROSODIMETHYLAMINE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
N-NITROSODI-N-PROPYLAMINE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
N-NITROSODIPHENYLAMINE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
PENTACHLOROPHENOL	48 U	240 U	240 U	47 U	48 U	48 U	47 U	47 U	47 U
PHENANTHRENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
PHENOL	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
PYRENE	9.5 U	48 U	47 U	9.4 U	9.5 U	9.5 U	9.4 U	9.4 U	9.5 U
TOTAL SVOCS	0	0	0	0	1.4	0	0.56	0.82	0

Sample ID:	Influent	Influent	Influent	Influent	Influent	Influent	Influent	Influent	Influent
Date:	05/09/07	06/06/07	07/03/07	08/08/07	10/04/07	11/08/07	12/07/07	01/11/08	02/08/08
SVOCs by Method E625 (µg/L)									
1,2,4-TRICHLOROBENZENE	9.5 U	9.6 U	9.5 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
1,2-DICHLOROBENZENE	9.5 U	9.6 U	9.5 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
1,2-DIPHENYLHYDRAZINE	9.5 U	9.6 U	9.5 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
1,3-DICHLOROBENZENE	9.5 U	9.6 U	9.5 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
1,4-DICHLOROBENZENE	9.5 U	9.6 U	9.5 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
2,4,6-TRICHLOROPHENOL	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
2,4-DICHLOROPHENOL	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
2,4-DIMETHYLPHENOL	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
2,4-DINITROPHENOL	9.5 U	9.6 U	9.5 U	47 U	47 U	48 U	48 U	49 U	48 U
2,4-DINITROTOLUENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
2,6-DINITROTOLUENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
2-CHLORONAPHTHALENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
2-CHLOROPHENOL	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
2-NITROPHENOL	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
3,3'-DICHLOROBENZIDINE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
4,6-DINITRO-2-METHYLPHENOL	9.5 U	9.6 U	9.5 U	47 U	47 U	48 U	48 U	49 U	48 U
4-BROMOPHENYL PHENYL ETHER	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
4-CHLORO-3-METHYLPHENOL	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
4-CHLOROPHENYL PHENYL ETHER	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
4-NITROPHENOL	9.5 U	9.6 U	9.5 U	47 U	47 U	48 U	48 U	49 U	48 U
ACENAPHTHENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
ACENAPHTHYLENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
ANTHRACENE	0.12 J	9.6 U	0.14 J	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
BENZIDINE	76 U	76 U	76 U	94 U	94 U	95 U	95 U	97 U	96 U
BENZO(A)ANTHRACENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
BENZO(A)PYRENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
BENZO(B)FLUORANTHENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
BENZO(G,H,I)PERYLENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
BENZO(K)FLUORANTHENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
BENZYL BUTYL PHTHALATE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
BIS(2-CHLOROETHOXY) METHANE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
BIS(2-CHLOROISOPROPYL) ETHER	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
BIS(2-ETHYLHEXYL) PHTHALATE	9.5 U	9.6 U	9.5 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
CHRYSENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
DIBENZ(A,H)ANTHRACENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
DIETHYL PHTHALATE	4.8 U	4.8 U	4.7 U 4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U 4.9 U	4.8 U
DIMETHYL PHTHALATE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
DI-N-BUTYL PHTHALATE	4.8 U	0.28 BJ	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U

Sample ID Date		Influent 06/06/07	Influent 07/03/07	Influent 08/08/07	Influent 10/04/07	Influent 11/08/07	Influent 12/07/07	Influent 01/11/08	Influent 02/08/08
DI-N-OCTYLPHTHALATE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
FLUORANTHENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
FLUORENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
HEXACHLOROBENZENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
HEXACHLOROBUTADIENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
HEXACHLOROCYCLOPENTADIENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
HEXACHLOROETHANE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
INDENO(1,2,3-C,D)PYRENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
ISOPHORONE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
NAPHTHALENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
NITROBENZENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
N-NITROSODIMETHYLAMINE	9.5 U	9.6 U	9.5 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
N-NITROSODI-N-PROPYLAMINE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
N-NITROSODIPHENYLAMINE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
PENTACHLOROPHENOL	9.5 U	9.6 U	9.5 U	47 U	47 U	48 U	48 U	49 U	48 U
PHENANTHRENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
PHENOL	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
PYRENE	4.8 U	4.8 U	4.7 U	4.7 U	4.7 U	4.8 U	4.8 U	4.9 U	4.8 U
TOTAL SVOCS	0.12	0.28	0.14	0	0	0	0	0	0

Sample ID:	Influent	Influent	Influent	Influent	Influent	Influent	Influent	Influent	Influent
Date:	03/03/08	09/18/08	10/23/08	11/12/08	12/09/08	01/06/09	02/06/09	03/11/09	04/09/09
SVOCs by Method E625 (µg/L)	00/00/00	03/10/00	10/20/00	11/12/00	12/03/00	01/00/03	02/00/03	00/11/03	04/03/03
1.2.4-TRICHLOROBENZENE	4.7 U	4.8 U	4.7 U	4.7 U					
1,2-DICHLOROBENZENE	4.7 U		4.8 U	4.7 U	4.7 U				
1.2-DIPHENYLHYDRAZINE	4.7 U	4.8 U	4.7 U	4.7 U					
1,3-DICHLOROBENZENE	4.7 U		4.8 U	4.7 U	4.7 U				
1,4-DICHLOROBENZENE	4.7 U		4.8 U	4.7 U	4.7 U				
2,4,6-TRICHLOROPHENOL	4.7 U	4.8 U	4.7 U	4.7 U					
2,4-DICHLOROPHENOL	4.7 U	4.8 U	4.7 U	4.7 U					
2,4-DIMETHYLPHENOL	4.7 U	4.8 U	4.7 U	4.7 U					
2,4-DINITROPHENOL	47 U	48 U	47 U	47 U					
2,4-DINITROTOLUENE	4.7 U	4.8 U	4.7 U	4.7 U					
2,6-DINITROTOLUENE	4.7 U	4.8 U	4.7 U	4.7 U					
2-CHLORONAPHTHALENE	4.7 U	4.8 U	4.7 U	4.7 U					
2-CHLOROPHENOL	4.7 U	4.8 U	4.7 U	4.7 U					
2-NITROPHENOL	4.7 U	4.8 U	4.7 U	4.7 U					
3,3'-DICHLOROBENZIDINE	4.7 U	4.8 U	4.7 U	4.7 U					
4,6-DINITRO-2-METHYLPHENOL	47 U	48 U	47 U	47 U					
4-BROMOPHENYL PHENYL ETHER	4.7 U	4.8 U	4.7 U	4.7 U					
4-CHLORO-3-METHYLPHENOL	4.7 U	4.8 U	4.7 U	4.7 U					
4-CHLOROPHENYL PHENYL ETHER	4.7 U	4.8 U	4.7 U	4.7 U					
4-NITROPHENOL	47 U	48 U	47 U	47 U					
ACENAPHTHENE	4.7 U	4.8 U	4.7 U	4.7 U					
ACENAPHTHYLENE	4.7 U	4.8 U	4.7 U	4.7 U					
ANTHRACENE	4.7 U	4.8 U	4.7 U	4.7 U					
BENZIDINE	94 U	95 U	94 U	94 U					
BENZO(A)ANTHRACENE	4.7 U	4.8 U	4.7 U	4.7 U					
BENZO(A)PYRENE	4.7 U	4.8 U	4.7 U	4.7 U					
BENZO(B)FLUORANTHENE	4.7 U	4.8 U	4.7 U	4.7 U					
BENZO(G,H,I)PERYLENE	4.7 U	4.8 U	4.7 U	4.7 U					
BENZO(K)FLUORANTHENE	4.7 U	4.8 U	4.7 U	4.7 U					
BENZYL BUTYL PHTHALATE	4.7 U	4.8 U	4.7 U	4.7 U					
BIS(2-CHLOROETHOXY) METHANE	4.7 U	4.8 U	4.7 U	4.7 U					
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	4.7 U	4.8 U	4.7 U	4.7 U					
BIS(2-CHLOROISOPROPYL) ETHER	4.7 U	4.8 U	4.7 U	4.7 U					
BIS(2-ETHYLHEXYL) PHTHALATE	4.7 U	4.8 U	4.7 U	4.7 U					
CHRYSENE	4.7 U	4.8 U	4.7 U	4.7 U					
DIBENZ(A,H)ANTHRACENE	4.7 U	4.8 U	4.7 U	4.7 U					
DIBENZ(A,II)ANTIKACENE DIETHYL PHTHALATE	4.7 U	4.8 U	4.7 U	4.7 U					
						4.7 U 4.7 U			
DIMETHYL PHTHALATE	4.7 U		4.8 U	4.7 U	4.7 U				
DI-N-BUTYL PHTHALATE	4.7 U	4.8 U	4.7 U	4.7 U					

Sample IE Date		Influent 09/18/08	Influent 10/23/08	Influent 11/12/08	Influent 12/09/08	Influent 01/06/09	Influent 02/06/09	Influent 03/11/09	Influent 04/09/09
DI-N-OCTYLPHTHALATE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
FLUORANTHENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
FLUORENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
HEXACHLOROBENZENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
HEXACHLOROBUTADIENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
HEXACHLOROCYCLOPENTADIENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
HEXACHLOROETHANE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
INDENO(1,2,3-C,D)PYRENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
ISOPHORONE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
NAPHTHALENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
NITROBENZENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
N-NITROSODIMETHYLAMINE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
N-NITROSODI-N-PROPYLAMINE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
N-NITROSODIPHENYLAMINE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
PENTACHLOROPHENOL	47 U	47 U	47 U	47 U	47 U	47 U	48 U	47 U	47 U
PHENANTHRENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
PHENOL	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
PYRENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
TOTAL SVOCS	0	0	0	0	0	0	0	0	0

O-mula ID	In the end	In the end	lu flu and	In floor and	In floor and	le flere et	Indianat	I	lu flui ant
Sample ID: Date:		Influent 07/02/09	Influent 08/05/09	Influent 09/03/09	Influent 10/02/09	Influent 11/05/09	Influent 12/03/09	Influent 01/08/10	Influent 02/05/10
SVOCs by Method E625 (µg/L)	06/04/09	07/02/09	00/05/09	09/03/09	10/02/09	11/05/09	12/03/09	01/06/10	02/05/10
1.2.4-TRICHLOROBENZENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
1,2-DICHLOROBENZENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
1.2-DIPHENYLHYDRAZINE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
1.3-DICHLOROBENZENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
1,4-DICHLOROBENZENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2.4.6-TRICHLOROPHENOL	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2,4-DICHLOROPHENOL	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2,4-DIMETHYLPHENOL	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2,4-DINITROPHENOL	47 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U
2,4-DINITROTOLUENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2,6-DINITROTOLUENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2-CHLORONAPHTHALENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2-CHLOROPHENOL	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2-NITROPHENOL	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
3,3'-DICHLOROBENZIDINE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
4,6-DINITRO-2-METHYLPHENOL	47 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U
4-BROMOPHENYL PHENYL ETHER	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
4-CHLORO-3-METHYLPHENOL	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
4-CHLOROPHENYL PHENYL ETHER	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
4-NITROPHENOL	47 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U
ACENAPHTHENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
ACENAPHTHYLENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
ANTHRACENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZIDINE	94 U	94 U	94 U	94 U	94 U	94 U	94 U	94 U	94 U
BENZO(A)ANTHRACENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZO(A)PYRENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZO(B)FLUORANTHENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZO(G,H,I)PERYLENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZO(K)FLUORANTHENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZYL BUTYL PHTHALATE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BIS(2-CHLOROETHOXY) METHANE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BIS(2-CHLOROISOPROPYL) ETHER	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BIS(2-ETHYLHEXYL) PHTHALATE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
CHRYSENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
DIBENZ(A,H)ANTHRACENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
DIETHYL PHTHALATE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
DIMETHYL PHTHALATE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
DINEITTE PITHALATE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U 4.7 U	4.7 U	4.7 U
DI-N-DUIILFHIHALAIE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4./U

Sample II Dat		Influent 07/02/09	Influent 08/05/09	Influent 09/03/09	Influent 10/02/09	Influent 11/05/09	Influent 12/03/09	Influent 01/08/10	Influent 02/05/10
DI-N-OCTYLPHTHALATE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
FLUORANTHENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
FLUORENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
HEXACHLOROBENZENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
HEXACHLOROBUTADIENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
HEXACHLOROCYCLOPENTADIENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
HEXACHLOROETHANE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
INDENO(1,2,3-C,D)PYRENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
ISOPHORONE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
NAPHTHALENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
NITROBENZENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
N-NITROSODIMETHYLAMINE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
N-NITROSODI-N-PROPYLAMINE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
N-NITROSODIPHENYLAMINE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
PENTACHLOROPHENOL	47 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U
PHENANTHRENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
PHENOL	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
PYRENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
TOTAL SVOCS	0	0	0	0	0	0	0	0	0

Sample ID:	Influent	Influent	Influent	Influent	Influent	Influent	Influent	Influent	Influent
Date:	03/04/10	04/02/10	05/05/10	06/04/10	07/02/10	08/06/10	09/03/10	10/01/10	11/04/10
SVOCs by Method E625 (µg/L)	03/04/10	04/02/10	03/03/10	00/04/10	07/02/10	00/00/10	03/03/10	10/01/10	11/04/10
1.2.4-TRICHLOROBENZENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
1.2-DICHLOROBENZENE	5 U	4.7 U	4.7 U						
1,2-DIPHENYLHYDRAZINE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
1.3-DICHLOROBENZENE	5 U	4.7 U	4.7 U						
1,4-DICHLOROBENZENE	5 U	4.7 U	4.7 U						
2,4,6-TRICHLOROPHENOL	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2,4-DICHLOROPHENOL	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2,4-DIMETHYLPHENOL	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2,4-DINITROPHENOL	50 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U
2,4-DINITROTOLUENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2,6-DINITROTOLUENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2-CHLORONAPHTHALENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2-CHLOROPHENOL	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2-NITROPHENOL	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
3,3'-DICHLOROBENZIDINE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
4,6-DINITRO-2-METHYLPHENOL	50 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U
4-BROMOPHENYL PHENYL ETHER	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
4-CHLORO-3-METHYLPHENOL	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
4-CHLOROPHENYL PHENYL ETHER	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
4-NITROPHENOL	50 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U
ACENAPHTHENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
ACENAPHTHYLENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
ANTHRACENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZIDINE	100 U	94 U	94 U	94 U	94 U	94 U	94 U	94 U	94 U
BENZO(A)ANTHRACENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZO(A)PYRENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZO(B)FLUORANTHENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZO(G,H,I)PERYLENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZO(K)FLUORANTHENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZYL BUTYL PHTHALATE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BIS(2-CHLOROETHOXY) METHANE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BIS(2-CHLOROISOPROPYL) ETHER	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BIS(2-ETHYLHEXYL) PHTHALATE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
CHRYSENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
DIBENZ(A,H)ANTHRACENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
	5 U		4.7 U 4.7 U	4.7 U 4.7 U		4.7 U 4.7 U		4.7 U 4.7 U	4.7 U 4.7 U
DIETHYL PHTHALATE	5 U	4.7 U			4.7 U		4.7 U		
DIMETHYL PHTHALATE		4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
DI-N-BUTYL PHTHALATE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U

	Sample ID: Date:	Influent 03/04/10	Influent 04/02/10	Influent 05/05/10	Influent 06/04/10	Influent 07/02/10	Influent 08/06/10	Influent 09/03/10	Influent 10/01/10	Influent 11/04/10
DI-N-OCTYLPHTHALATE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
FLUORANTHENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
FLUORENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
HEXACHLOROBENZENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
HEXACHLOROBUTADIENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
HEXACHLOROCYCLOPENTADIENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
HEXACHLOROETHANE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
INDENO(1,2,3-C,D)PYRENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
ISOPHORONE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
NAPHTHALENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
NITROBENZENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
N-NITROSODIMETHYLAMINE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
N-NITROSODI-N-PROPYLAMINE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
N-NITROSODIPHENYLAMINE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
PENTACHLOROPHENOL		50 U	47 U							
PHENANTHRENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
PHENOL		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
PYRENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
TOTAL SVOCS		0	0	0	0	0	0	0	0	0

Sample ID:		Influent	Influent	Influent	Influent	Influent	Influent	Influent	Influent
Date: SVOCs by Method E625 (µg/L)	12/03/10	01/07/11	02/04/11	04/08/11	05/06/11	06/03/11	07/01/11	08/05/11	09/02/11
1.2.4-TRICHLOROBENZENE	4.7 U	4.7 U	4.7 U	0.73 U	1 U	1 U	1 U	1 U	1 U
1.2-DICHLOROBENZENE	4.7 0		4.7 0	0.75 0					
1,2-DIPHENYLHYDRAZINE	4.7 U	4.7 U	4.7 U	0.71 U	1 U	1 U	1 U	1 U	1 U
1.3-DICHLOROBENZENE									
1,4-DICHLOROBENZENE									
2.4.6-TRICHLOROPHENOL	4.7 U	4.7 U	4.7 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
2.4-DICHLOROPHENOL	4.7 U	4.7 U	4.7 U	0.91 U	1 U	1 U	1 U	1 U	1 U
2.4-DIMETHYLPHENOL	4.7 U	4.7 U	4.7 U	1.6 U	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U
2,4-DINITROPHENOL	47 U	47 U	47 U	34 U	34 U	34 U	34 U	34 U	34 U
2,4-DINITROTOLUENE	4.7 U	4.7 U	4.7 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
2,6-DINITROTOLUENE	4.7 U	4.7 U	4.7 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
2-CHLORONAPHTHALENE	4.7 U	4.7 U	4.7 U	0.97 U	1 U	1 U	1 U	1 U	1 U
2-CHLOROPHENOL	4.7 U	4.7 U	4.7 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
2-NITROPHENOL	4.7 U	4.7 U	4.7 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
3,3'-DICHLOROBENZIDINE	4.7 U	4.7 U	4.7 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
4,6-DINITRO-2-METHYLPHENOL	47 U	47 U	47 U	22 U	22 U	22 U	22 U	22 U	22 U
4-BROMOPHENYL PHENYL ETHER	4.7 U	4.7 U	4.7 U	0.84 U	1 U	1 U	1 U	1 U	1 U
4-CHLORO-3-METHYLPHENOL	4.7 U	4.7 U	4.7 U	0.76 U	1 U	1 U	1 U	1 U	1 U
4-CHLOROPHENYL PHENYL ETHER	4.7 U	4.7 U	4.7 U	0.73 U	1 U	1 U	1 U	1 U	1 U
4-NITROPHENOL	47 U	47 U	47 U	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
ACENAPHTHENE	4.7 U	4.7 U	4.7 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
ACENAPHTHYLENE	4.7 U	4.7 U	4.7 U	0.97 U	1 U	1 U	1 U	1 U	1 U
ANTHRACENE	4.7 U	4.7 U	4.7 U	0.6 U	1 U	1 U	1 U	1 U	1 U
BENZIDINE	94 U	94 U	94 U	53 U	53 U	53 U	53 U	53 U	53 U
BENZO(A)ANTHRACENE	4.7 U	4.7 U	4.7 U	0.73 U	1 U	1 U	1 U	1 U	1 U
BENZO(A)PYRENE	4.7 U	4.7 U	4.7 U	0.5 U	1 U	1 U	1 U	1 U	1 U
BENZO(B)FLUORANTHENE	4.7 U	4.7 U	4.7 U	0.75 U	1 U	1 U	1 U	1 U	1 U
BENZO(G,H,I)PERYLENE	4.7 U	4.7 U	4.7 U	0.79 U	1 U	1 U	1 U	1 U	1 U
BENZO(K)FLUORANTHENE	4.7 U	4.7 U	4.7 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
BENZYL BUTYL PHTHALATE	4.7 U	4.7 U	4.7 U	0.87 U	1 U	1 U	1 U	1 U	1 U
BIS(2-CHLOROETHOXY) METHANE	4.7 U	4.7 U	4.7 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	4.7 U	4.7 U	4.7 U	1 U	1 U	1 U	1 U	1 U	1 U
BIS(2-CHLOROISOPROPYL) ETHER	4.7 U	4.7 U	4.7 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
BIS(2-ETHYLHEXYL) PHTHALATE	4.7 U	4.7 U	4.7 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
CHRYSENE	4.7 U	4.7 U	4.7 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
DIBENZ(A,H)ANTHRACENE	4.7 U	4.7 U	4.7 U	0.82 U	1.2 U 1 U	1.2 U 1 U	1.2 U 1 U	1.2 U	1.2 U 1 U
	4.7 U		4.7 U		1 U	1 U	1 U	1 U	1 U
DIETHYL PHTHALATE		4.7 U		0.89 U		1 U 1 U			-
DIMETHYL PHTHALATE	4.7 U	4.7 U	4.7 U	0.65 U	1 U		1 U	1 U	1 U
DI-N-BUTYL PHTHALATE	4.7 U	4.7 U	4.7 U	0.91 U	1 U	1 U	1 U	1 U	1 U

Sample ID Date		Influent 01/07/11	Influent 02/04/11	Influent 04/08/11	Influent 05/06/11	Influent 06/03/11	Influent 07/01/11	Influent 08/05/11	Influent 09/02/11
DI-N-OCTYLPHTHALATE	4.7 U	4.7 U	4.7 U	1.1 U					
FLUORANTHENE	4.7 U	4.7 U	4.7 U	0.98 U	1 U	1 U	1 U	1 U	1 U
FLUORENE	4.7 U	4.7 U	4.7 U	1.1 U					
HEXACHLOROBENZENE	4.7 U	4.7 U	4.7 U	1.1 U					
HEXACHLOROBUTADIENE	4.7 U	4.7 U	4.7 U	1.3 U					
HEXACHLOROCYCLOPENTADIENE	4.7 U	4.7 U	4.7 U	2 U	2 U	2 U	2 U	2 U	2 U
HEXACHLOROETHANE	4.7 U	4.7 U	4.7 U	1.3 U					
INDENO(1,2,3-C,D)PYRENE	4.7 U	4.7 U	4.7 U	0.77 U	1 U	1 U	1 U	1 U	1 U
ISOPHORONE	4.7 U	4.7 U	4.7 U	1.4 U					
NAPHTHALENE	4.7 U	4.7 U	4.7 U	1.1 U					
NITROBENZENE	4.7 U	4.7 U	4.7 U	1.3 U					
N-NITROSODIMETHYLAMINE	4.7 U	4.7 U	4.7 U	0.88 U	1 U	1 U	1 U	1 U	1 U
N-NITROSODI-N-PROPYLAMINE	4.7 U	4.7 U	4.7 U	1.6 U					
N-NITROSODIPHENYLAMINE	4.7 U	4.7 U	4.7 U	1.2 U					
PENTACHLOROPHENOL	47 U	47 U	47 U	23 U					
PHENANTHRENE	4.7 U	4.7 U	4.7 U	0.85 U	1 U	1 U	1 U	1 U	1 U
PHENOL	4.7 U	4.7 U	4.7 U	0.4 U	1 U	1 U	1 U	1 U	1 U
PYRENE	4.7 U	4.7 U	4.7 U	0.85 U	1 U	1 U	1 U	1 U	1 U
TOTAL SVOCS	0	0	0	0	0	0	0	0	0

Sample ID:	Influent 10/07/11	Influent 11/04/11	Influent 12/02/11	Influent 01/06/12	Influent 02/10/12	Influent 03/02/12	Influent 04/06/12	Influent 05/04/12	Influent 06/01/12
Date: SVOCs by Method E625 (µg/L)	10/07/11	11/04/11	12/02/11	01/06/12	02/10/12	03/02/12	04/06/12	05/04/12	06/01/12
1.2.4-TRICHLOROBENZENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1.2-DICHLOROBENZENE									
1,2-DIPHENYLHYDRAZINE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1.3-DICHLOROBENZENE									
1,4-DICHLOROBENZENE									
2.4.6-TRICHLOROPHENOL	1.1 U								
2.4-DICHLOROPHENOL	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2.4-DIMETHYLPHENOL	2.2 U								
2,4-DINITROPHENOL	34 U								
2,4-DINITROTOLUENE	1.2 U								
2,6-DINITROTOLUENE	1.3 U								
2-CHLORONAPHTHALENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-CHLOROPHENOL	1.3 U								
2-NITROPHENOL	1.2 U								
3,3'-DICHLOROBENZIDINE	1.5 U								
4,6-DINITRO-2-METHYLPHENOL	22 U								
4-BROMOPHENYL PHENYL ETHER	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
4-CHLORO-3-METHYLPHENOL	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
4-CHLOROPHENYL PHENYL ETHER	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
4-NITROPHENOL	9.4 U								
ACENAPHTHENE	1.2 U								
ACENAPHTHYLENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ANTHRACENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BENZIDINE	53 U								
BENZO(A)ANTHRACENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BENZO(A)PYRENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BENZO(B)FLUORANTHENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BENZO(G,H,I)PERYLENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BENZO(K)FLUORANTHENE	1.1 U								
BENZYL BUTYL PHTHALATE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BIS(2-CHLOROETHOXY) METHANE	1.3 U								
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BIS(2-CHLOROISOPROPYL) ETHER	1.4 U								
BIS(2-ETHYLHEXYL) PHTHALATE	1.4 U								
CHRYSENE	1.2 U								
DIBENZ(A,H)ANTHRACENE	1.2 U	1.2 U 1 U	1.2 U	1.2 U	1.2 U				
DIBENZ(A,II)AN ITIKACENE DIETHYL PHTHALATE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
DIRETHYL PHTHALATE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
			1 U 1 U			1 U	1 U		1 U
DI-N-BUTYL PHTHALATE	1 U	1 U	ĨŬ	1 U	1 U	ΙU	10	1 U	ΙU

Sample ID Date		Influent 11/04/11	Influent 12/02/11	Influent 01/06/12	Influent 02/10/12	Influent 03/02/12	Influent 04/06/12	Influent 05/04/12	Influent 06/01/12
DI-N-OCTYLPHTHALATE	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
FLUORANTHENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
FLUORENE	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
HEXACHLOROBENZENE	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
HEXACHLOROBUTADIENE	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
HEXACHLOROCYCLOPENTADIENE	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
HEXACHLOROETHANE	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
INDENO(1,2,3-C,D)PYRENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ISOPHORONE	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
NAPHTHALENE	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
NITROBENZENE	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
N-NITROSODIMETHYLAMINE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
N-NITROSODI-N-PROPYLAMINE	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
N-NITROSODIPHENYLAMINE	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
PENTACHLOROPHENOL	23 U	23 U	23 U	23 U	23 U	23 U	23 U	23 U	23 U
PHENANTHRENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PHENOL	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PYRENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
TOTAL SVOCS	0	0	0	0	0	0	0	0	0

Sample ID:	Influent	Influent
Date:	07/06/12	08/03/12
SVOCs by Method E625 (µg/L)	-	
1,2,4-TRICHLOROBENZENE	4.7 U	4.7 U
1,2-DICHLOROBENZENE		
1,2-DIPHENYLHYDRAZINE	4.7 U	4.7 U
1,3-DICHLOROBENZENE		
1,4-DICHLOROBENZENE		
2,4,6-TRICHLOROPHENOL	4.7 U	4.7 U
2,4-DICHLOROPHENOL	4.7 U	4.7 U
2,4-DIMETHYLPHENOL	4.7 U	4.7 U
2,4-DINITROPHENOL	47 U	47 U
2,4-DINITROTOLUENE	4.7 U	4.7 U
2,6-DINITROTOLUENE	4.7 U	4.7 U
2-CHLORONAPHTHALENE	4.7 U	4.7 U
2-CHLOROPHENOL	4.7 U	4.7 U
2-NITROPHENOL	4.7 U	4.7 U
3,3'-DICHLOROBENZIDINE	4.7 U	4.7 U
4,6-DINITRO-2-METHYLPHENOL	47 U	47 U
4-BROMOPHENYL PHENYL ETHER	4.7 U	4.7 U
4-CHLORO-3-METHYLPHENOL	4.7 U	4.7 U
4-CHLOROPHENYL PHENYL ETHER	4.7 U	4.7 U
4-NITROPHENOL	47 U	47 U
ACENAPHTHENE	4.7 U	4.7 U
ACENAPHTHYLENE	4.7 U	4.7 U
ANTHRACENE	4.7 U	4.7 U
BENZIDINE	94 U	94 U
BENZO(A)ANTHRACENE	4.7 U	4.7 U
BENZO(A)PYRENE	4.7 U	4.7 U
BENZO(B)FLUORANTHENE	4.7 U	4.7 U
BENZO(G,H,I)PERYLENE	4.7 U	4.7 U
BENZO(K)FLUORANTHENE	4.7 U	4.7 U
BENZYL BUTYL PHTHALATE	4.7 U	4.7 U
BIS(2-CHLOROETHOXY) METHANE	4.7 U	4.7 U
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	4.7 U	4.7 U
BIS(2-CHLOROISOPROPYL) ETHER	4.7 U	4.7 U
BIS(2-ETHYLHEXYL) PHTHALATE	4.7 U	4.7 U
CHRYSENE	4.7 U	4.7 U
DIBENZ(A,H)ANTHRACENE	4.7 U	4.7 U
DIBENZ(A,H)ANTHKACENE DIETHYL PHTHALATE		
	4.7 U	4.7 U
DIMETHYL PHTHALATE	4.7 U	4.7 U
DI-N-BUTYL PHTHALATE	4.7 U	4.7 U

Sample ID: Date:		Influent 08/03/12
DI-N-OCTYLPHTHALATE	4.7 U	4.7 U
FLUORANTHENE	4.7 U	4.7 U
FLUORENE	4.7 U	4.7 U
HEXACHLOROBENZENE	4.7 U	4.7 U
HEXACHLOROBUTADIENE	4.7 U	4.7 U
HEXACHLOROCYCLOPENTADIENE	4.7 U	4.7 U
HEXACHLOROETHANE	4.7 U	4.7 U
INDENO(1,2,3-C,D)PYRENE	4.7 U	4.7 U
ISOPHORONE	4.7 U	4.7 U
NAPHTHALENE	4.7 U	4.7 U
NITROBENZENE	4.7 U	4.7 U
N-NITROSODIMETHYLAMINE	4.7 U	4.7 U
N-NITROSODI-N-PROPYLAMINE	4.7 U	4.7 U
N-NITROSODIPHENYLAMINE	4.7 U	4.7 U
PENTACHLOROPHENOL	47 U	47 U
PHENANTHRENE	4.7 U	4.7 U
PHENOL	4.7 U	4.7 U
PYRENE	4.7 U	4.7 U
TOTAL SVOCS	0	0

Notes:

- 1. System was shut down from March 11, 2008 to September 18, 2008 due to CatOX decommissioning.
- 2. System was shut down from February 17, 2011 to April 4, 2011 due to equipment malfunction.
- 3. Petition accepted by County of Monroe, October 28, 2006, to drop PCBs from the analyte list and to perform pesticides on a semi-annual basis.
- 4. J = Estimated value.
- 5. U = Not detected (lab reporting limit shown).
- 6. UJ = Not detected/Estimated Value.
- 7. B = Compound detected in associated method blank.
- 8. $\mu g/L =$ Micrograms per liter.
- 9. -- = Compound not analyzed.

Sample ID:	Effluent								
Date:	08/07/06	09/05/06	10/03/06	11/07/06	12/05/06	01/04/07	02/16/07	03/07/07	04/13/07
SVOCs by Method E625 (µg/L)	00/01/00	09/03/00	10/03/00	11/07/00	12/03/00	01/04/07	02/10/07	03/01/01	04/13/07
1.2.4-TRICHLOROBENZENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
1,2-DICHLOROBENZENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
1.2-DIPHENYLHYDRAZINE									
1,3-DICHLOROBENZENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
1,4-DICHLOROBENZENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
2,2'-OXYBIS(1-CHLOROPROPANE)	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
2,4,6-TRICHLOROPHENOL	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
2,4-DICHLOROPHENOL	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
2,4-DIMETHYLPHENOL	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
2,4-DINITROPHENOL	47 U	48 U	47 U	48 U	47 U				
2,4-DINITROTOLUENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
2,6-DINITROTOLUENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
2-CHLORONAPHTHALENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
2-CHLOROPHENOL	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
2-NITROPHENOL	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
3,3'-DICHLOROBENZIDINE	19 U								
4,6-DINITRO-2-METHYLPHENOL	47 U	48 U	47 U	48 U	47 U				
4-BROMOPHENYL PHENYL ETHER	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
4-CHLORO-3-METHYLPHENOL	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
4-CHLOROPHENYL PHENYL ETHER	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
4-NITROPHENOL	47 U	48 U	47 U	48 U	47 U				
ACENAPHTHENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
ACENAPHTHYLENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
ANTHRACENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	0.10 J	9.4 U
BENZIDINE	76 U	76 U	75 U	75 U	75 U	76 U	75 U	76 U	75 U
BENZO(A)ANTHRACENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
BENZO(A)PYRENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
BENZO(B)FLUORANTHENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
BENZO(G,H,I)PERYLENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
BENZO(K)FLUORANTHENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
BIS(2-CHLOROETHOXY) METHANE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
BIS(2-CHLOROISOPROPYL) ETHER	J.J U		J.+ 0 	J.+ 0	J.+ 0 	J.5 C	J.+ 0 	 	·
BIS(2-ETHEOROISOT KOTTE) ETHER BIS(2-ETHYLHEXYL) PHTHALATE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
BUTYL BENZYL PHTHALATE	9.5 U	9.5 U	9.4 U 9.4 U	9.4 U 9.4 U	9.4 U 9.4 U	9.5 U	9.4 U 9.4 U	9.5 U	9.4 U 9.4 U
CHRYSENE	9.5 U 9.5 U	9.5 U 9.5 U	9.4 U 9.4 U	9.4 U 9.4 U	9.4 U 9.4 U	9.5 U 9.5 U	9.4 U 9.4 U	9.5 U 9.5 U	9.4 U 9.4 U
DI-N-BUTYL PHTHALATE	9.5 U	9.5 U	9.4 U	9.4 U	1.1 BJ	9.5 U	9.4 U	0.54 BJ	9.4 U
DI-N-OCTYLPHTHALATE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
DIBENZ(A,H)ANTHRACENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U

Sampi	e ID: Effluen	t Effluent	Effluent						
	Date: 08/07/0	6 09/05/06	10/03/06	11/07/06	12/05/06	01/04/07	02/16/07	03/07/07	04/13/07
DIETHYL PHTHALATE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
DIMETHYL PHTHALATE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
FLUORANTHENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
FLUORENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
HEXACHLOROBENZENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
HEXACHLOROBUTADIENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
HEXACHLOROCYCLOPENTADIENE	43 U	43 U	42 U	42 U	42 U	43 U	42 U	43 U	42 U
HEXACHLOROETHANE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
INDENO(1,2,3-C,D)PYRENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
ISOPHORONE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	0.098 J	9.4 U
N-NITROSODI-N-PROPYLAMINE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
N-NITROSODIMETHYLAMINE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
N-NITROSODIPHENYLAMINE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
NAPHTHALENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	0.096 J	9.4 U
NITROBENZENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
PENTACHLOROPHENOL	47 U	47 U	47 U	47 U	47 U	48 U	47 U	48 U	47 U
PHENANTHRENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
PHENOL	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
PYRENE	9.5 U	9.5 U	9.4 U	9.4 U	9.4 U	9.5 U	9.4 U	9.5 U	9.4 U
TOTAL SVOCS	0	0	0	0	1.1	0	0	0.83	0

Sample ID:	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
Date:	05/09/07	06/06/07	07/03/07	08/08/07	10/04/07	11/08/07	12/07/07	01/11/08	02/08/08
SVOCs by Method E625 (µg/L)	05/09/07	00/00/07	07/03/07	06/06/07	10/04/07	11/06/07	12/07/07	01/11/06	02/06/08
1.2.4-TRICHLOROBENZENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
1,2-DICHLOROBENZENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
1.2-DIPHENYLHYDRAZINE				5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
1,3-DICHLOROBENZENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
1,4-DICHLOROBENZENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
2,2'-OXYBIS(1-CHLOROPROPANE)	9.4 U	9.4 U	9.5 U						
2,4,6-TRICHLOROPHENOL	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
2.4-DICHLOROPHENOL	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
2,4-DIMETHYLPHENOL	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
2,4-DINITROPHENOL	47 U	47 U	48 U	50 U	53 U	50 U	47 U	47 U	47 U
2,4-DINITROTOLUENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
2,6-DINITROTOLUENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
2-CHLORONAPHTHALENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
2-CHLOROPHENOL	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
2-NITROPHENOL	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
3,3'-DICHLOROBENZIDINE	19 U	19 U	19 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
4,6-DINITRO-2-METHYLPHENOL	47 U	47 U	48 U	50 U	53 U	50 U	47 U	47 U	47 U
4-BROMOPHENYL PHENYL ETHER	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
4-CHLORO-3-METHYLPHENOL	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
4-CHLOROPHENYL PHENYL ETHER	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
4-NITROPHENOL	47 U	47 U	48 U	50 U	53 U	50 U	47 U	47 U	47 U
ACENAPHTHENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
ACENAPHTHYLENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
ANTHRACENE	0.10 J	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
BENZIDINE	75 U	75 U	76 U	100 U	110 U	100 U	94 U	94 U	94 U
BENZO(A)ANTHRACENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
BENZO(A)PYRENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
BENZO(B)FLUORANTHENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
BENZO(G,H,I)PERYLENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
BENZO(K)FLUORANTHENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
BIS(2-CHLOROETHOXY) METHANE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
BIS(2-CHLOROISOPROPYL) ETHER				5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
BIS(2-ETHYLHEXYL) PHTHALATE	9.4 U	9.4 U	9.5 U	130	5.3 U	5 U	4.7 U	4.7 U	4.7 U
BUTYL BENZYL PHTHALATE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
CHRYSENE	9.4 U	9.4 U 9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
DI-N-BUTYL PHTHALATE	9.4 U 9.4 U	9.4 U 9.4 U	9.5 U 9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
DI-N-OCTYLPHTHALATE	9.4 U 9.4 U	9.4 U 9.4 U	9.5 U 9.5 U	5 U	5.3 U	5 U	4.7 U 4.7 U	4.7 U 4.7 U	4.7 U 4.7 U
						5 U			
DIBENZ(A,H)ANTHRACENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	50	4.7 U	4.7 U	4.7 U

Sample ID: Date:		Effluent 06/06/07	Effluent 07/03/07	Effluent 08/08/07	Effluent 10/04/07	Effluent 11/08/07	Effluent 12/07/07	Effluent 01/11/08	Effluent 02/08/08
DIETHYL PHTHALATE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
DIMETHYL PHTHALATE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
FLUORANTHENE	9.4 U	9.4 U	0.11 J	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
FLUORENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
HEXACHLOROBENZENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
HEXACHLOROBUTADIENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
HEXACHLOROCYCLOPENTADIENE	42 U	42 U	43 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
HEXACHLOROETHANE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
INDENO(1,2,3-C,D)PYRENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
ISOPHORONE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
N-NITROSODI-N-PROPYLAMINE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
N-NITROSODIMETHYLAMINE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
N-NITROSODIPHENYLAMINE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
NAPHTHALENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
NITROBENZENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
PENTACHLOROPHENOL	47 U	47 U	48 U	50 U	53 U	50 U	47 U	47 U	47 U
PHENANTHRENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
PHENOL	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
PYRENE	9.4 U	9.4 U	9.5 U	5 U	5.3 U	5 U	4.7 U	4.7 U	4.7 U
TOTAL SVOCS	0.10	0	0.11	130	0	0	0	0	0

Sample ID:	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
Date:	03/03/08	09/18/08	10/23/08	11/12/08	12/09/08	01/06/09	02/06/09	03/11/09	04/09/09
SVOCs by Method E625 (μg/L)	4711	4711	4.7 U	4711	4711	4711	4011	4711	4711
1,2,4-TRICHLOROBENZENE	4.7 U	4.7 U		4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
1,2-DICHLOROBENZENE	4.7 U		4.8 U	4.7 U	4.7 U				
1,2-DIPHENYLHYDRAZINE	4.7 U	4.8 U	4.7 U	4.7 U					
1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE	4.7 U		4.8 U	4.7 U	4.7 U				
	4.7 U		4.8 U	4.7 U	4.7 U				
2,2'-OXYBIS(1-CHLOROPROPANE)									
2,4,6-TRICHLOROPHENOL	4.7 U	4.8 U	4.7 U	4.7 U					
2,4-DICHLOROPHENOL	4.7 U	4.8 U	4.7 U	4.7 U					
2,4-DIMETHYLPHENOL	4.7 U	4.8 U	4.7 U	4.7 U					
2,4-DINITROPHENOL	47 U	48 U	47 U	47 U					
2,4-DINITROTOLUENE	4.7 U	4.8 U	4.7 U	4.7 U					
2,6-DINITROTOLUENE	4.7 U	4.8 U	4.7 U	4.7 U					
2-CHLORONAPHTHALENE	4.7 U	4.8 U	4.7 U	4.7 U					
2-CHLOROPHENOL	4.7 U	4.8 U	4.7 U	4.7 U					
2-NITROPHENOL	4.7 U	4.8 U	4.7 U	4.7 U					
3,3'-DICHLOROBENZIDINE	4.7 U	4.8 U	4.7 U	4.7 U					
4,6-DINITRO-2-METHYLPHENOL	47 U	47 U 4.7 U	48 U	47 U	47 U				
4-BROMOPHENYL PHENYL ETHER	4.7 U		4.8 U	4.7 U	4.7 U				
4-CHLORO-3-METHYLPHENOL	4.7 U	4.8 U	4.7 U	4.7 U					
4-CHLOROPHENYL PHENYL ETHER	4.7 U	4.8 U	4.7 U	4.7 U					
4-NITROPHENOL	47 U	48 U	47 U	47 U					
ACENAPHTHENE	4.7 U	4.8 U	4.7 U	4.7 U					
ACENAPHTHYLENE	4.7 U	4.8 U	4.7 U	4.7 U					
ANTHRACENE	4.7 U	4.8 U	4.7 U	4.7 U					
BENZIDINE	94 U	95 U	94 U	94 U					
BENZO(A)ANTHRACENE	4.7 U	4.8 U	4.7 U	4.7 U					
BENZO(A)PYRENE	4.7 U	4.8 U	4.7 U	4.7 U					
BENZO(B)FLUORANTHENE	4.7 U	4.8 U	4.7 U	4.7 U					
BENZO(G,H,I)PERYLENE	4.7 U	4.8 U	4.7 U	4.7 U					
BENZO(K)FLUORANTHENE	4.7 U	4.8 U	4.7 U	4.7 U					
BIS(2-CHLOROETHOXY) METHANE	4.7 U	4.8 U	4.7 U	4.7 U					
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	4.7 U	4.8 U	4.7 U	4.7 U					
BIS(2-CHLOROISOPROPYL) ETHER	4.7 U	4.8 U	4.7 U	4.7 U					
BIS(2-ETHYLHEXYL) PHTHALATE	4.7 U	4.8 U	4.7 U	4.7 U					
BUTYL BENZYL PHTHALATE	4.7 U	4.8 U	4.7 U	4.7 U					
CHRYSENE	4.7 U	4.8 U	4.7 U	4.7 U					
DI-N-BUTYL PHTHALATE	4.7 U	4.8 U	4.7 U	4.7 U					
DI-N-OCTYLPHTHALATE	4.7 U	4.8 U	4.7 U	4.7 U					
DIBENZ(A,H)ANTHRACENE	4.7 U	4.8 U	4.7 U	4.7 U					

Sample ID: Date:		Effluent 09/18/08	Effluent 10/23/08	Effluent 11/12/08	Effluent 12/09/08	Effluent 01/06/09	Effluent 02/06/09	Effluent 03/11/09	Effluent 04/09/09
DIETHYL PHTHALATE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
DIMETHYL PHTHALATE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
FLUORANTHENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
FLUORENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
HEXACHLOROBENZENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
HEXACHLOROBUTADIENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
HEXACHLOROCYCLOPENTADIENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
HEXACHLOROETHANE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
INDENO(1,2,3-C,D)PYRENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
ISOPHORONE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
N-NITROSODI-N-PROPYLAMINE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
N-NITROSODIMETHYLAMINE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
N-NITROSODIPHENYLAMINE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
NAPHTHALENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
NITROBENZENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
PENTACHLOROPHENOL	47 U	47 U	47 U	47 U	47 U	47 U	48 U	47 U	47 U
PHENANTHRENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
PHENOL	4.7 U	4.7 U	12	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
PYRENE	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.8 U	4.7 U	4.7 U
TOTAL SVOCS	0	0	12	0	0	0	0	0	0

Ormula ID:	- 40	E filment	E filment	Fillerant	- 40	E filment	E #1	F #Justic	E (1)
Sample ID: Date:	Effluent 06/04/09	Effluent 07/02/09	Effluent 08/05/09	Effluent 09/03/09	Effluent 10/02/09	Effluent 11/05/09	Effluent 12/03/09	Effluent 01/08/10	Effluent 02/05/10
SVOCs by Method E625 (µg/L)	00/04/09	07/02/09	00/05/09	09/03/09	10/02/09	11/05/09	12/03/09	01/06/10	02/05/10
1.2.4-TRICHLOROBENZENE	4.7 U								
1.2-DICHLOROBENZENE	4.7 U								
1.2-DIPHENYLHYDRAZINE	4.7 U								
1,3-DICHLOROBENZENE	4.7 U								
1,4-DICHLOROBENZENE	4.7 U								
2,2'-OXYBIS(1-CHLOROPROPANE)									
2,4,6-TRICHLOROPHENOL	4.7 U								
2.4-DICHLOROPHENOL	4.7 U								
2,4-DIMETHYLPHENOL	4.7 U								
2.4-DINITROPHENOL	47 U								
2,4-DINITROTOLUENE	4.7 U								
2,6-DINITROTOLUENE	4.7 U								
2-CHLORONAPHTHALENE	4.7 U								
2-CHLOROPHENOL	4.7 U								
2-NITROPHENOL	4.7 U								
3,3'-DICHLOROBENZIDINE	4.7 U								
4,6-DINITRO-2-METHYLPHENOL	47 U								
4-BROMOPHENYL PHENYL ETHER	4.7 U								
4-CHLORO-3-METHYLPHENOL	4.7 U								
4-CHLOROPHENYL PHENYL ETHER	4.7 U								
4-NITROPHENOL	47 U								
ACENAPHTHENE	4.7 U								
ACENAPHTHYLENE	4.7 U								
ANTHRACENE	4.7 U								
BENZIDINE	94 U								
BENZO(A)ANTHRACENE	4.7 U								
BENZO(A)PYRENE	4.7 U								
BENZO(B)FLUORANTHENE	4.7 U								
BENZO(G,H,I)PERYLENE	4.7 U								
BENZO(K)FLUORANTHENE	4.7 U								
BIS(2-CHLOROETHOXY) METHANE	4.7 U								
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	4.7 U								
BIS(2-CHLOROISOPROPYL) ETHER	4.7 U								
BIS(2-ETHEOROISOT KOTTE) ETHER BIS(2-ETHYLHEXYL) PHTHALATE	4.7 U								
BUTYL BENZYL PHTHALATE	4.7 U								
CHRYSENE	4.7 U	4.7 U 4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U 4.7 U	4.7 U	4.7 U
DI-N-BUTYL PHTHALATE	4.7 U	4.7 U 4.7 U	4.7 U 4.7 U	4.7 U 4.7 U	4.7 U	4.7 U 4.7 U	4.7 U 4.7 U	4.7 U	4.7 U 4.7 U
DI-N-OCTYLPHTHALATE	4.7 U								
DIBENZ(A,H)ANTHRACENE	4.7 U								

Sample ID: Date:	Effluent 06/04/09	Effluent 07/02/09	Effluent 08/05/09	Effluent 09/03/09	Effluent 10/02/09	Effluent 11/05/09	Effluent 12/03/09	Effluent 01/08/10	Effluent 02/05/10
DIETHYL PHTHALATE	4.7 U								
DIMETHYL PHTHALATE	4.7 U								
FLUORANTHENE	4.7 U								
FLUORENE	4.7 U								
HEXACHLOROBENZENE	4.7 U								
HEXACHLOROBUTADIENE	4.7 U								
HEXACHLOROCYCLOPENTADIENE	4.7 U								
HEXACHLOROETHANE	4.7 U								
INDENO(1,2,3-C,D)PYRENE	4.7 U								
ISOPHORONE	4.7 U								
N-NITROSODI-N-PROPYLAMINE	4.7 U								
N-NITROSODIMETHYLAMINE	4.7 U								
N-NITROSODIPHENYLAMINE	4.7 U								
NAPHTHALENE	4.7 U								
NITROBENZENE	4.7 U								
PENTACHLOROPHENOL	47 U								
PHENANTHRENE	4.7 U								
PHENOL	4.7 U								
PYRENE	4.7 U								
TOTAL SVOCS	0	0	0	0	0	0	0	0	0

Sample ID:	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
Date:	03/04/10	04/02/10	05/05/10	06/04/10	07/02/10	08/06/10	09/03/10	10/01/10	11/04/10
SVOCs by Method E625 (µg/L)									
1,2,4-TRICHLOROBENZENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
1,2-DICHLOROBENZENE	5 U	4.7 U	4.7 U						
1,2-DIPHENYLHYDRAZINE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
1,3-DICHLOROBENZENE	5 U	4.7 U	4.7 U						
1,4-DICHLOROBENZENE	5 U	4.7 U	4.7 U						
2,2'-OXYBIS(1-CHLOROPROPANE)									
2,4,6-TRICHLOROPHENOL	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2,4-DICHLOROPHENOL	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2,4-DIMETHYLPHENOL	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2,4-DINITROPHENOL	50 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U
2,4-DINITROTOLUENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2,6-DINITROTOLUENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2-CHLORONAPHTHALENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2-CHLOROPHENOL	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
2-NITROPHENOL	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
3,3'-DICHLOROBENZIDINE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
4,6-DINITRO-2-METHYLPHENOL	50 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U
4-BROMOPHENYL PHENYL ETHER	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
4-CHLORO-3-METHYLPHENOL	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
4-CHLOROPHENYL PHENYL ETHER	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
4-NITROPHENOL	50 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U	47 U
ACENAPHTHENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
ACENAPHTHYLENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
ANTHRACENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZIDINE	100 U	94 U	94 U	94 U	94 U	94 U	94 U	94 U	94 U
BENZO(A)ANTHRACENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZO(A)PYRENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZO(B)FLUORANTHENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZO(G,H,I)PERYLENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BENZO(K)FLUORANTHENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BIS(2-CHLOROETHOXY) METHANE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BIS(2-CHLOROISOPROPYL) ETHER	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BIS(2-ETHYLHEXYL) PHTHALATE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
BUTYL BENZYL PHTHALATE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
CHRYSENE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
DI-N-BUTYL PHTHALATE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
DI-N-OCTYLPHTHALATE	5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
	5 U		4.7 U 4.7 U	4.7 U 4.7 U	4.7 U 4.7 U		4.7 U 4.7 U	4.7 U 4.7 U	4.7 U 4.7 U
DIBENZ(A,H)ANTHRACENE	5 U	4.7 U	4./U	4./U	4./U	4.7 U	4./U	4./U	4./U

	Sample ID:	Effluent								
	Date:	03/04/10	04/02/10	05/05/10	06/04/10	07/02/10	08/06/10	09/03/10	10/01/10	11/04/10
DIETHYL PHTHALATE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
DIMETHYL PHTHALATE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
FLUORANTHENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
FLUORENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
HEXACHLOROBENZENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
HEXACHLOROBUTADIENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
HEXACHLOROCYCLOPENTADIENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
HEXACHLOROETHANE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
INDENO(1,2,3-C,D)PYRENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
ISOPHORONE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
N-NITROSODI-N-PROPYLAMINE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
N-NITROSODIMETHYLAMINE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
N-NITROSODIPHENYLAMINE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
NAPHTHALENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
NITROBENZENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
PENTACHLOROPHENOL		50 U	47 U							
PHENANTHRENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
PHENOL		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
PYRENE		5 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U	4.7 U
TOTAL SVOCS		0	0	0	0	0	0	0	0	0

Sample ID:		Effluent							
Date:	12/03/10	01/07/11	02/04/11	04/08/11	05/06/11	06/03/11	07/01/11	08/05/11	09/02/11
SVOCs by Method E625 (µg/L)									
1,2,4-TRICHLOROBENZENE	4.7 U	4.7 U	4.7 U	0.73 U	1 U	1 U	1 U	1 U	1 U
1,2-DICHLOROBENZENE									
1,2-DIPHENYLHYDRAZINE	4.7 U	4.7 U	4.7 U	0.71 U	1 U	1 U	1 U	1 U	1 U
1,3-DICHLOROBENZENE									
1,4-DICHLOROBENZENE									
2,2'-OXYBIS(1-CHLOROPROPANE)									
2,4,6-TRICHLOROPHENOL	4.7 U	4.7 U	4.7 U	1.1 U					
2,4-DICHLOROPHENOL	4.7 U	4.7 U	4.7 U	0.91 U	1 U	1 U	1 U	1 U	1 U
2,4-DIMETHYLPHENOL	4.7 U	4.7 U	4.7 U	1.6 U	2.2 U				
2,4-DINITROPHENOL	47 U	47 U	47 U	34 U					
2,4-DINITROTOLUENE	4.7 U	4.7 U	4.7 U	1.2 U					
2,6-DINITROTOLUENE	4.7 U	4.7 U	4.7 U	1.3 U					
2-CHLORONAPHTHALENE	4.7 U	4.7 U	4.7 U	0.97 U	1 U	1 U	1 U	1 U	1 U
2-CHLOROPHENOL	4.7 U	4.7 U	4.7 U	1.3 U					
2-NITROPHENOL	4.7 U	4.7 U	4.7 U	1.2 U					
3,3'-DICHLOROBENZIDINE	4.7 U	4.7 U	4.7 U	1.5 U					
4,6-DINITRO-2-METHYLPHENOL	47 U	47 U	47 U	22 U					
4-BROMOPHENYL PHENYL ETHER	4.7 U	4.7 U	4.7 U	0.84 U	1 U	1 U	1 U	1 U	1 U
4-CHLORO-3-METHYLPHENOL	4.7 U	4.7 U	4.7 U	0.76 U	1 U	1 U	1 U	1 U	1 U
4-CHLOROPHENYL PHENYL ETHER	4.7 U	4.7 U	4.7 U	0.73 U	1 U	1 U	1 U	1 U	1 U
4-NITROPHENOL	47 U	47 U	47 U	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U	9.4 U
ACENAPHTHENE	4.7 U	4.7 U	4.7 U	1.2 U					
ACENAPHTHYLENE	4.7 U	4.7 U	4.7 U	0.97 U	1 U	1 U	1 U	1 U	1 U
ANTHRACENE	4.7 U	4.7 U	4.7 U	0.6 U	1 U	1 U	1 U	1 U	1 U
BENZIDINE	94 U	94 U	94 U	53 U					
BENZO(A)ANTHRACENE	4.7 U	4.7 U	4.7 U	0.73 U	1 U	1 U	1 U	1 U	1 U
BENZO(A)PYRENE	4.7 U	4.7 U	4.7 U	0.5 U	1 U	1 U	1 U	1 U	1 U
BENZO(B)FLUORANTHENE	4.7 U	4.7 U	4.7 U	0.75 U	1 U	1 U	1 U	1 U	1 U
BENZO(G,H,I)PERYLENE	4.7 U	4.7 U	4.7 U	0.79 U	1 U	1 U	1 U	1 U	1 U
BENZO(K)FLUORANTHENE	4.7 U	4.7 U	4.7 U	1.1 U					
BIS(2-CHLOROETHOXY) METHANE	4.7 U	4.7 U	4.7 U	1.3 U					
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	4.7 U	4.7 U	4.7 U	1 U	1 U	1 U	1 U	1 U	1 U
BIS(2-CHLOROISOPROPYL) ETHER	4.7 U	4.7 U	4.7 U	1.4 U					
BIS(2-ETHYLHEXYL) PHTHALATE	4.7 U	4.7 U	4.7 U	1.2 U					
BUTYL BENZYL PHTHALATE	4.7 U	4.7 U	4.7 U	0.87 U	1 U	1 U	1 U	1 U	1 U
CHRYSENE	4.7 U	4.7 U	4.7 U	1.2 U					
DI-N-BUTYL PHTHALATE	4.7 U	4.7 U	4.7 U	0.91 U	1 U	1 U	1 U	1 U	1 U
DI-N-OCTYLPHTHALATE	4.7 U	4.7 U	4.7 U	1.1 U					
DIBENZ(A.H)ANTHRACENE	4.7 U	4.7 U	4.7 U	0.82 U	1 U	1 U	1 U	1 U	1 U

Sample ID: Date:		Effluent 01/07/11	Effluent 02/04/11	Effluent 04/08/11	Effluent 05/06/11	Effluent 06/03/11	Effluent 07/01/11	Effluent 08/05/11	Effluent 09/02/11
DIETHYL PHTHALATE	4.7 U	4.7 U	4.7 U	0.89 U	1 U	1 U	1 U	1 U	1 U
DIMETHYL PHTHALATE	4.7 U	4.7 U	4.7 U	0.65 U	1 U	1 U	1 U	1 U	1 U
FLUORANTHENE	4.7 U	4.7 U	4.7 U	0.98 U	1 U	1 U	1 U	1 U	1 U
FLUORENE	4.7 U	4.7 U	4.7 U	1.1 U					
HEXACHLOROBENZENE	4.7 U	4.7 U	4.7 U	1.1 U					
HEXACHLOROBUTADIENE	4.7 U	4.7 U	4.7 U	1.3 U					
HEXACHLOROCYCLOPENTADIENE	4.7 U	4.7 U	4.7 U	2 U	2 U	2 U	2 U	2 U	2 U
HEXACHLOROETHANE	4.7 U	4.7 U	4.7 U	1.3 U					
INDENO(1,2,3-C,D)PYRENE	4.7 U	4.7 U	4.7 U	0.77 U	1 U	1 U	1 U	1 U	1 U
ISOPHORONE	4.7 U	4.7 U	4.7 U	1.4 U					
N-NITROSODI-N-PROPYLAMINE	4.7 U	4.7 U	4.7 U	1.6 U					
N-NITROSODIMETHYLAMINE	4.7 U	4.7 U	4.7 U	0.88 U	1 U	1 U	1 U	1 U	1 U
N-NITROSODIPHENYLAMINE	4.7 U	4.7 U	4.7 U	1.2 U					
NAPHTHALENE	4.7 U	4.7 U	4.7 U	1.1 U					
NITROBENZENE	4.7 U	4.7 U	4.7 U	1.3 U					
PENTACHLOROPHENOL	47 U	47 U	47 U	23 U					
PHENANTHRENE	4.7 U	4.7 U	4.7 U	0.85 U	1 U	1 U	1 U	1 U	1 U
PHENOL	4.7 U	4.7 U	4.7 U	0.4 U	1 U	1 U	1 U	1 U	1 U
PYRENE	4.7 U	4.7 U	4.7 U	0.85 U	1 U	1 U	1 U	1 U	1 U
TOTAL SVOCS	0	0	0	0	0	0	0	0	0

Sample ID:	Effluent								
Date:	10/07/11	11/04/11	12/02/11	01/06/12	02/10/12	03/02/12	04/06/12	05/04/12	06/01/12
SVOCs by Method E625 (µg/L)									
1,2,4-TRICHLOROBENZENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-DICHLOROBENZENE									
1,2-DIPHENYLHYDRAZINE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,3-DICHLOROBENZENE									
1,4-DICHLOROBENZENE									
2,2'-OXYBIS(1-CHLOROPROPANE)									
2,4,6-TRICHLOROPHENOL	1.1 U								
2,4-DICHLOROPHENOL	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2,4-DIMETHYLPHENOL	2.2 U								
2,4-DINITROPHENOL	34 U								
2,4-DINITROTOLUENE	1.2 U								
2,6-DINITROTOLUENE	1.3 U								
2-CHLORONAPHTHALENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-CHLOROPHENOL	1.3 U								
2-NITROPHENOL	1.2 U								
3,3'-DICHLOROBENZIDINE	1.5 U								
4,6-DINITRO-2-METHYLPHENOL	22 U								
4-BROMOPHENYL PHENYL ETHER	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
4-CHLORO-3-METHYLPHENOL	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
4-CHLOROPHENYL PHENYL ETHER	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
4-NITROPHENOL	9.4 U								
ACENAPHTHENE	1.2 U								
ACENAPHTHYLENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ANTHRACENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BENZIDINE	53 U								
BENZO(A)ANTHRACENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BENZO(A)PYRENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BENZO(B)FLUORANTHENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BENZO(G,H,I)PERYLENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BENZO(K)FLUORANTHENE	1.1 U								
BIS(2-CHLOROETHOXY) METHANE	1.3 U								
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
BIS(2-CHLOROISOPROPYL) ETHER	1.4 U								
BIS(2-ETHYLHEXYL) PHTHALATE	1.2 U								
BUTYL BENZYL PHTHALATE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
CHRYSENE	1.2 U								
DI-N-BUTYL PHTHALATE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
DI-N-OCTYLPHTHALATE	1.1 U								
DIBENZ(A.H)ANTHRACENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Sample I Da		Effluent 11/04/11	Effluent 12/02/11	Effluent 01/06/12	Effluent 02/10/12	Effluent 03/02/12	Effluent 04/06/12	Effluent 05/04/12	Effluent 06/01/12
DIETHYL PHTHALATE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
DIMETHYL PHTHALATE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
FLUORANTHENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
FLUORENE	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
HEXACHLOROBENZENE	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
HEXACHLOROBUTADIENE	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
HEXACHLOROCYCLOPENTADIENE	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
HEXACHLOROETHANE	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
INDENO(1,2,3-C,D)PYRENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
ISOPHORONE	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
N-NITROSODI-N-PROPYLAMINE	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
N-NITROSODIMETHYLAMINE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
N-NITROSODIPHENYLAMINE	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
NAPHTHALENE	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
NITROBENZENE	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U	1.3 U
PENTACHLOROPHENOL	23 U	23 U	23 U	23 U	23 U	23 U	23 U	23 U	23 U
PHENANTHRENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PHENOL	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
PYRENE	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
TOTAL SVOCS	0	0	0	0	0	0	0	0	0

Sample ID:	Effluent	Effluent
Date:	07/06/12	08/03/12
SVOCs by Method E625 (µg/L)		
1,2,4-TRICHLOROBENZENE	4.7 U	4.7 U
1,2-DICHLOROBENZENE		
1,2-DIPHENYLHYDRAZINE	4.7 U	4.7 U
1,3-DICHLOROBENZENE		
1,4-DICHLOROBENZENE		
2,2'-OXYBIS(1-CHLOROPROPANE)		
2,4,6-TRICHLOROPHENOL	4.7 U	4.7 U
2,4-DICHLOROPHENOL	4.7 U	4.7 U
2,4-DIMETHYLPHENOL	4.7 U	4.7 U
2,4-DINITROPHENOL	47 U	47 U
2,4-DINITROTOLUENE	4.7 U	4.7 U
2,6-DINITROTOLUENE	4.7 U	4.7 U
2-CHLORONAPHTHALENE	4.7 U	4.7 U
2-CHLOROPHENOL	4.7 U	4.7 U
2-NITROPHENOL	4.7 U	4.7 U
3,3'-DICHLOROBENZIDINE	4.7 U	4.7 U
4,6-DINITRO-2-METHYLPHENOL	47 U	47 U
4-BROMOPHENYL PHENYL ETHER	4.7 U	4.7 U
4-CHLORO-3-METHYLPHENOL	4.7 U	4.7 U
4-CHLOROPHENYL PHENYL ETHER	4.7 U	4.7 U
4-NITROPHENOL	47 U	47 U
ACENAPHTHENE	4.7 U	4.7 U
ACENAPHTHYLENE	4.7 U	4.7 U
ANTHRACENE	4.7 U	4.7 U
BENZIDINE	94 U	94 U
BENZO(A)ANTHRACENE	4.7 U	4.7 U
BENZO(A)PYRENE	4.7 U	4.7 U
BENZO(B)FLUORANTHENE	4.7 U	4.7 U
BENZO(G,H,I)PERYLENE	4.7 U	4.7 U
BENZO(K)FLUORANTHENE	4.7 U	4.7 U
BIS(2-CHLOROETHOXY) METHANE	4.7 U	4.7 U
BIS(2-CHLOROETHYL) ETHER (2-CHLOROETHYL ETHER)	4.7 U	4.7 U
BIS(2-CHLOROISOPROPYL) ETHER	4.7 U	4.7 U
BIS(2-ETHEOROISOFROFTE) ETHER BIS(2-ETHYLHEXYL) PHTHALATE	4.7 U	4.7 U
BUTYL BENZYL PHTHALATE	4.7 U	4.7 U 4.7 U
CHRYSENE	4.7 U	4.7 U
DI-N-BUTYL PHTHALATE	4.7 U	4.7 U
DI-N-OCTYLPHTHALATE	4.7 U	4.7 U
DIBENZ(A,H)ANTHRACENE	4.7 U	4.7 U

Sample ID: Date:		Effluent 08/03/12
DIETHYL PHTHALATE	4.7 U	4.7 U
DIMETHYL PHTHALATE	4.7 U	4.7 U
FLUORANTHENE	4.7 U	4.7 U
FLUORENE	4.7 U	4.7 U
HEXACHLOROBENZENE	4.7 U	4.7 U
HEXACHLOROBUTADIENE	4.7 U	4.7 U
HEXACHLOROCYCLOPENTADIENE	4.7 U	4.7 U
HEXACHLOROETHANE	4.7 U	4.7 U
INDENO(1,2,3-C,D)PYRENE	4.7 U	4.7 U
ISOPHORONE	4.7 U	4.7 U
N-NITROSODI-N-PROPYLAMINE	4.7 U	4.7 U
N-NITROSODIMETHYLAMINE	4.7 U	4.7 U
N-NITROSODIPHENYLAMINE	4.7 U	4.7 U
NAPHTHALENE	4.7 U	4.7 U
NITROBENZENE	4.7 U	4.7 U
PENTACHLOROPHENOL	47 U	47 U
PHENANTHRENE	4.7 U	4.7 U
PHENOL	4.7 U	4.7 U
PYRENE	4.7 U	4.7 U
TOTAL SVOCS	0	0

Notes:

- 1. System was shut down from March 11, 2008 to September 18, 2008 due to CatOX decommissioning.
- 2. System was shut down from February 17, 2011 to April 4, 2011 due to equipment malfunction.
- 3. Petition accepted by County of Monroe, October 28, 2006, to drop PCBs from the analyte list and to perform pesticides on a semi-annual basis.
- 4. J = Estimated value.
- 5. U = Not detected (lab reporting limit shown).
- 6. UJ = Not detected/Estimated Value.
- 7. B = Compound detected in associated method blank.
- 8. $\mu g/L =$ Micrograms per liter.
- 9. -- = Compound not analyzed.

Attachment C

Influent and Effluent Petroleum Hydrocarbon Analytical Results

Sample ID: Date:	Influent 08/07/06	Influent 09/05/06	Influent 10/03/06	Influent 11/07/06	Influent 12/05/06	Influent 01/04/07	Influent 02/16/07	Influent 03/07/07	Influent 04/13/07
Fuels by Method NY-310-13 (μg/L)									
FUEL OIL #2	96 U	97 U	94 U	95 U	96 U	96 U	94 U	95 U	94 U
FUEL OIL #4	190 U								
FUEL OIL #6	96 U	97 U	94 U	95 U	96 U	96 U	94 U	95 U	94 U
GASOLINE RANGE ORGANICS	96 U	97 U	94 U	95 U	96 U	96 U	94 U	95 U	94 U
KEROSENE	190 U								
MINERAL SPIRITS	960 U	970 U	940 U	950 U	960 U	960 U	940 U	950 U	940 U
Lube Oil									
N-DODECANE	960 U	970 U	940 U	950 U	960 U	960 U	940 U	950 U	940 U
OTHER	960 U	970 U	940 U	950 U	960 U	960 U	940 U	950 U	940 U
PHC AS #2 FUEL OILS C10-C23 #2 DIESEL, #2 FUEL OIL									
TOTAL FUELS	0	0	0	0	0	0	0	0	0

Sample ID: Date:		Influent 06/06/07	Influent 07/03/07	Influent 08/08/07	Influent 10/04/07	Influent 11/08/07	Influent 12/07/07	Influent 01/11/08	Influent 02/08/08
Fuels by Method NY-310-13 (µg/L)									
FUEL OIL #2	94 U	94 U	95 U						
FUEL OIL #4	190 U	190 U	190 U	1000 U	1000 U	1000 U	1000 U	1000 U	1000 U
FUEL OIL #6	94 U	94 U	95 U	1000 U	1000 U	1000 U	1000 U	1000 U	1000 U
GASOLINE RANGE ORGANICS	94 U	94 U	95 U	1000 U	1000 U	1000 U	1000 U	1000 U	1000 U
KEROSENE	190 U	190 U	190 U	1000 U	1000 U	1000 U	1000 U	1000 U	1000 U
MINERAL SPIRITS	940 U	940 U	950 U						
Lube Oil				1000 U					
N-DODECANE	940 U	940 U	950 U	1000 U	1000 U	1000 U	1000 U	1000 U	1000 U
OTHER	940 U	940 U	950 U						
PHC AS #2 FUEL OILS C10-C23 #2 DIESEL, #2 FUEL OIL				1000 U					
TOTAL FUELS	0	0	0	0	0	0	0	0	0

Sample ID: Date:	Influent 03/03/08	Influent 09/18/08	Influent 10/23/08	Influent 11/12/08	Influent 12/09/08	Influent 01/06/09	Influent 02/06/09	Influent 03/11/09	Influent 04/09/09
Fuels by Method NY-310-13 (µg/L)									
FUEL OIL #2									
FUEL OIL #4	1000 U	940 U	950 U	940 U	940 U				
FUEL OIL #6	1000 U	940 U	950 U	940 U	940 U				
GASOLINE RANGE ORGANICS	1000 U	940 U	950 U	940 U	940 U				
KEROSENE	1000 U	940 U	950 U	940 U	940 U				
MINERAL SPIRITS									
Lube Oil	1000 U	940 U	950 U	940 U	940 U				
N-DODECANE	1000 U	940 U	950 U	940 U	940 U				
OTHER									
PHC AS #2 FUEL OILS C10-C23 #2 DIESEL, #2 FUEL OIL	1000 U	940 U	950 U	940 U	940 U				
TOTAL FUELS	0	0	0	0	0	0	0	0	0

Sample ID: Date:		Influent 07/02/09	Influent 08/05/09	Influent 09/03/09	Influent 12/03/09	Influent 01/08/10	Influent 02/05/10	Influent 03/04/10	Influent 04/02/10
Fuels by Method NY-310-13 (µg/L)									
FUEL OIL #2									
FUEL OIL #4	940 U	940 U	940 U	940 U	940 U	940 U	940 U	1000 U	940 U
FUEL OIL #6	940 U	940 U	940 U	940 U	940 U	940 U	940 U	1000 U	940 U
GASOLINE RANGE ORGANICS	940 U	940 U	940 U	940 U	940 U	940 U	940 U	1000 U	940 U
KEROSENE	940 U	940 U	940 U	940 U	940 U	940 U	940 U	1000 U	940 U
MINERAL SPIRITS									
Lube Oil	940 U	940 U	940 U	940 U	940 U	940 U	940 U	1000 U	940 U
N-DODECANE	940 U	940 U	940 U	940 U	940 U	940 U	940 U	1000 U	940 U
OTHER									
PHC AS #2 FUEL OILS C10-C23 #2 DIESEL, #2 FUEL OIL	940 U	940 U	940 U	940 U	940 U	940 U	940 U	1000 U	940 U
TOTAL FUELS	0	0	0	0	0	0	0	0	0

Sample ID: Date:		Influent 06/04/10	Influent 07/02/10	Influent 08/06/10	Influent 09/03/10	Influent 10/01/10	Influent 11/04/10	Influent 12/03/10	Influent 01/07/11
Fuels by Method NY-310-13 (µg/L)									
FUEL OIL #2									
FUEL OIL #4	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
FUEL OIL #6	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
GASOLINE RANGE ORGANICS	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
KEROSENE	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
MINERAL SPIRITS									
Lube Oil	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
N-DODECANE	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
OTHER									
PHC AS #2 FUEL OILS C10-C23 #2 DIESEL, #2 FUEL OIL	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
TOTAL FUELS	0	0	0	0	0	0	0	0	0

Sample ID: Date:		Influent 04/08/11	Influent 05/06/11	Influent 06/03/11	Influent 07/01/11	Influent 08/05/11	Influent 09/02/11	Influent 10/07/11	Influent 11/04/11
Fuels by Method NY-310-13 (µg/L)									
FUEL OIL #2					190 U			190 U	190 U
FUEL OIL #4	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
FUEL OIL #6	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
GASOLINE RANGE ORGANICS	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
KEROSENE	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
MINERAL SPIRITS									
Lube Oil	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
N-DODECANE	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
OTHER									
PHC AS #2 FUEL OILS C10-C23 #2 DIESEL, #2 FUEL OIL	940 U	190 U	190 U	190 U		190 U	190 U		
TOTAL FUELS	0	0	0	0	0	0	0	0	0

Sample ID: Date:	Influent 12/02/11	Influent 01/06/12	Influent 02/10/12	Influent 03/02/12	Influent 04/06/12	Influent 05/04/12	Influent 06/01/12	Influent 07/06/12	Influent 08/03/12
Fuels by Method NY-310-13 (µg/L)									
FUEL OIL #2	190 U	940 U	940 U						
FUEL OIL #4	940 U								
FUEL OIL #6	940 U								
GASOLINE RANGE ORGANICS	940 U								
KEROSENE	940 U								
MINERAL SPIRITS									
Lube Oil	940 U								
N-DODECANE	940 U								
OTHER									
PHC AS #2 FUEL OILS C10-C23 #2 DIESEL, #2 FUEL OIL									
TOTAL FUELS	0	0	0	0	0	0	0	0	0

Notes:

- 1. System was shut down from March 11, 2008 to September 18, 2008 due to CatOX decommissioning.
- 2. System was shut down from February 17, 2011 to April 4, 2011 due to equipment malfunction.
- 3. Petition accepted by County of Monroe, October 28, 2006, to drop PCBs from the analyte list and to perform pesticides on a semi-annual basis.
- 4. J = Estimated value.
- 5. U = Not detected (lab reporting limit shown).
- 6. UJ = Not detected/Estimated Value.
- 7. B = Compound detected in associated method blank.
- 8. $\mu g/L =$ Micrograms per liter.
- 9. -- = Compound not analyzed.

Sample ID: Date:		Effluent 09/05/06	Effluent 10/03/06	Effluent 11/07/06	Effluent 12/05/06	Effluent 01/04/07	Effluent 02/16/07	Effluent 03/07/07	Effluent 04/13/07
Fuels by Method NY310-13 (µg/L)									
FUEL OIL #2	94 U	94 U	94 U	96 U	96 U	96 U	94 U	95 U	94 U
FUEL OIL #4	190 U	190 U	190 U	190 U	190 U	190 U	190 U	190 U	190 U
FUEL OIL #6	94 U	94 U	94 U	96 U	96 U	96 U	94 U	95 U	94 U
GASOLINE RANGE ORGANICS	94 U	94 U	94 U	96 U	96 U	96 U	94 U	95 U	94 U
KEROSENE	190 U	190 U	190 U	190 U	190 U	190 U	190 U	190 U	190 U
MINERAL SPIRITS	940 U	940 U	940 U	960 U	960 U	960 U	940 U	950 U	940 U
Lube Oil									
N-DODECANE	940 U	940 U	940 U	960 U	960 U	960 U	940 U	950 U	940 U
OTHER	940 U	940 U	940 U	960 U	960 U	960 U	940 U	950 U	940 U
PHC AS #2 FUEL OILS C10-C23 #2 DIESEL, #2 FUEL OIL									
FUEL TOTAL	0	0	0	0	0	0	0	0	0

Sample ID: Date:	Effluent 05/09/07	Effluent 06/06/07	Effluent 07/03/07	Effluent 08/08/07	Effluent 10/04/07	Effluent 11/08/07	Effluent 12/07/07	Effluent 01/11/08	Effluent 02/08/08
Fuels by Method NY310-13 (µg/L)									
FUEL OIL #2	94 U	94 U	95 U						
FUEL OIL #4	190 U	190 U	190 U	1000 U	1000 U	1000 U	1000 U	1000 U	1000 U
FUEL OIL #6	94 U	94 U	95 U	1000 U	1000 U	1000 U	1000 U	1000 U	1000 U
GASOLINE RANGE ORGANICS	94 U	94 U	95 U	1000 U	1000 U	1000 U	1000 U	1000 U	1000 U
KEROSENE	190 U	190 U	190 U	1000 U	1000 U	1000 U	1000 U	1000 U	1000 U
MINERAL SPIRITS	940 U	940 U	950 U						
Lube Oil				1000 U					
N-DODECANE	940 U	940 U	950 U	1000 U	1000 U	1000 U	1000 U	1000 U	1000 U
OTHER	940 U	940 U	950 U						
PHC AS #2 FUEL OILS C10-C23 #2 DIESEL, #2 FUEL OIL				1000 U					
FUEL TOTAL	0	0	0	0	0	0	0	0	0

Sample ID: Date:	Effluent 03/03/08	Effluent 09/18/08	Effluent 10/23/08	Effluent 11/12/08	Effluent 12/09/08	Effluent 01/06/09	Effluent 02/06/09	Effluent 03/11/09	Effluent 04/09/09
Fuels by Method NY310-13 (µg/L)									
FUEL OIL #2									
FUEL OIL #4	1000 U	940 U	950 U	940 U	940 U				
FUEL OIL #6	1000 U	940 U	950 U	940 U	940 U				
GASOLINE RANGE ORGANICS	1000 U	940 U	950 U	940 U	940 U				
KEROSENE	1000 U	940 U	950 U	940 U	940 U				
MINERAL SPIRITS									
Lube Oil	1000 U	940 U	950 U	940 U	940 U				
N-DODECANE	1000 U	940 U	950 U	940 U	940 U				
OTHER									
PHC AS #2 FUEL OILS C10-C23 #2 DIESEL, #2 FUEL OIL	1000 U	940 U	950 U	940 U	940 U				
FUEL TOTAL	0	0	0	0	0	0	0	0	0

Sample ID: Date:		Effluent 07/02/09	Effluent 08/05/09	Effluent 09/03/09	Effluent 12/03/09	Effluent 01/08/10	Effluent 02/05/10	Effluent 03/04/10	Effluent 04/02/10
Fuels by Method NY310-13 (µg/L)									
FUEL OIL #2									
FUEL OIL #4	940 U	940 U	940 U	940 U	940 U	940 U	940 U	1000 U	940 U
FUEL OIL #6	940 U	940 U	940 U	940 U	940 U	940 U	940 U	1000 U	940 U
GASOLINE RANGE ORGANICS	940 U	940 U	940 U	940 U	940 U	940 U	940 U	1000 U	940 U
KEROSENE	940 U	940 U	940 U	940 U	940 U	940 U	940 U	1000 U	940 U
MINERAL SPIRITS									
Lube Oil	940 U	940 U	940 U	940 U	940 U	940 U	940 U	1000 U	940 U
N-DODECANE	940 U	940 U	940 U	940 U	940 U	940 U	940 U	1000 U	940 U
OTHER									
PHC AS #2 FUEL OILS C10-C23 #2 DIESEL, #2 FUEL OIL	940 U	940 U	940 U	940 U	940 U	940 U	940 U	1000 U	940 U
FUEL TOTAL	0	0	0	0	0	0	0	0	0

Sample ID: Date:		Effluent 06/04/10	Effluent 07/02/10	Effluent 08/06/10	Effluent 09/03/10	Effluent 10/01/10	Effluent 11/04/10	Effluent 12/03/10	Effluent 01/07/11
Fuels by Method NY310-13 (µg/L)									
FUEL OIL #2									
FUEL OIL #4	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
FUEL OIL #6	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
GASOLINE RANGE ORGANICS	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
KEROSENE	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
MINERAL SPIRITS									
Lube Oil	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
N-DODECANE	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
OTHER									
PHC AS #2 FUEL OILS C10-C23 #2 DIESEL, #2 FUEL OIL	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
FUEL TOTAL	0	0	0	0	0	0	0	0	0

Sample ID: Date:		Effluent 04/08/11	Effluent 05/06/11	Effluent 06/03/11	Effluent 07/01/11	Effluent 08/05/11	Effluent 09/02/11	Effluent 10/07/11	Effluent 11/04/11
Fuels by Method NY310-13 (µg/L)									
FUEL OIL #2					190 U			190 U	190 U
FUEL OIL #4	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
FUEL OIL #6	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
GASOLINE RANGE ORGANICS	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
KEROSENE	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
MINERAL SPIRITS									
Lube Oil	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
N-DODECANE	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
OTHER									
PHC AS #2 FUEL OILS C10-C23 #2 DIESEL, #2 FUEL OIL	940 U	190 U	190 U	190 U		190 U	190 U		
FUEL TOTAL	0	0	0	0	0	0	0	0	0

Sample ID: Date:		Effluent 01/06/12	Effluent 02/10/12	Effluent 03/02/12	Effluent 04/06/12	Effluent 05/04/12	Effluent 06/01/12	Effluent 07/06/12	Effluent 08/03/12
Fuels by Method NY310-13 (µg/L)									
FUEL OIL #2	190 U	190 U	190 U	190 U	190 U	190 U	190 U	940 U	940 U
FUEL OIL #4	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
FUEL OIL #6	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
GASOLINE RANGE ORGANICS	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
KEROSENE	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
MINERAL SPIRITS									
Lube Oil	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
N-DODECANE	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U	940 U
OTHER									
PHC AS #2 FUEL OILS C10-C23 #2 DIESEL, #2 FUEL OIL									
FUEL TOTAL	0	0	0	0	0	0	0	0	0

Notes:

- 1. System was shut down from March 11, 2008 to September 18, 2008 due to CatOX decommissioning.
- 2. System was shut down from February 17, 2011 to April 4, 2011 due to equipment malfunction.
- 3. Petition accepted by County of Monroe, October 28, 2006, to drop PCBs from the analyte list and to perform pesticides on a semi-annual basis.
- 4. J = Estimated value.
- 5. U = Not detected (lab reporting limit shown).
- 6. UJ = Not detected/Estimated Value.
- 7. B = Compound detected in associated method blank.
- 8. $\mu g/L =$ Micrograms per liter.
- 9. -- = Compound not analyzed.

Attachment D

Influent and Effluent Pesticide Analytical Results

Sample ID:	Influent	Influent	Influent	Influent	Influent	Influent	Influent	Influent	Influent		
Date:	08/07/06	09/05/06	04/13/07	10/12/07	09/18/08	06/04/09	10/02/09	04/02/10	10/01/10		
Pesticides by Method E608 (μg/L)											
P,P'-DDD	0.005 U	0.01 U	0.05 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U		
P,P'-DDE	0.005 U	0.0036 J	0.05 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U		
P,P'-DDT	0.0057	0.01 U	0.05 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U		
ALDRIN	0.0032 J	0.01 U	0.05 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U		
ALPHA BHC (ALPHA HEXACHLOROCYCLOHEXANE)	0.005 U	0.0022 BJ	0.05 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U		
ALPHA CHLORDANE	0.005 U	0.0011 BJ	0.05 U								
ALPHA ENDOSULFAN	0.005 U	0.01 U	0.05 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U		
BETA BHC (BETA HEXACHLOROCYCLOHEXANE)	0.005 U	0.0028 BJ	0.05 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U		
BETA ENDOSULFAN	0.005 U	0.0025 J	0.05 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U		
CHLORDANE	0.05 U	0.05 U	0.5 U	2.5 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U		
DELTA BHC (DELTA HEXACHLOROCYCLOHEXANE)	0.0066	0.0044 J	0.05 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U		
DIELDRIN	0.0030 J	0.0034 J	0.5 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U		
ENDOSULFAN SULFATE	0.005 U	0.0019 J	0.05 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U		
ENDRIN	0.05 U	0.1 U	0.5 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U		
ENDRIN ALDEHYDE	0.0052 B	0.01 U	0.05 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U		
GAMMA BHC (LINDANE)	0.05 U	0.1 U	0.5 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U		
HEPTACHLOR	0.0036 BJ	0.01 U	0.05 U	0.05 U	0.051 U	0.047 U	0.047 U	0.047 U	0.047 U		
HEPTACHLOR EPOXIDE	0.0025 J	0.1 U	0.5 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U		
METHOXYCHLOR	0.005 U	0.01 U	0.05 U	0.5 U							
TOXAPHENE	0.1 U	0.1 U	0.1 U	5 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U		
TOTAL PESTICIDES	0.030	0.022	0	0	0	0	0	0	0		

Sample ID: Date:		Influent 10/07/11	Influent 05/04/12
Pesticides by Method E608 (µg/L)			
P,P'-DDD	0.0067 U	0.0067 U	0.0067 U
P,P'-DDE	0.0031 U	0.0031 U	0.0031 U
P,P'-DDT	0.0054 U	0.0054 U	0.0054 U
ALDRIN	0.0029 U	0.0029 U	0.0029 U
ALPHA BHC (ALPHA HEXACHLOROCYCLOHEXANE)	0.0057 U	0.0057 U	0.0057 U
ALPHA CHLORDANE			
ALPHA ENDOSULFAN	0.0028 U	0.0028 U	0.0028 U
BETA BHC (BETA HEXACHLOROCYCLOHEXANE)	0.0043 U	0.0043 U	0.0043 U
BETA ENDOSULFAN	0.0044 U	0.0044 U	0.0044 U
CHLORDANE	0.046 U	0.046 U	0.046 U
DELTA BHC (DELTA HEXACHLOROCYCLOHEXANE)	0.0024 U	0.0024 U	0.0024 U
DIELDRIN	0.0043 U	0.0043 U	0.0043 U
ENDOSULFAN SULFATE	0.0046 U	0.0046 U	0.0046 U
ENDRIN	0.0045 U	0.0045 U	0.0045 U
ENDRIN ALDEHYDE	0.012 U	0.012 U	0.012 U
GAMMA BHC (LINDANE)	0.0044 U	0.0044 U	0.0044 U
HEPTACHLOR	0.0036 U	0.0036 U	0.0036 U
HEPTACHLOR EPOXIDE	0.0039 U	0.0039 U	0.0039 U
METHOXYCHLOR			
TOXAPHENE	0.2 U	0.2 U	0.2 U
TOTAL PESTICIDES	0	0	0

Notes:

- 1. System was shut down from March 11, 2008 to September 18, 2008 due to CatOX decommissioning.
- 2. System was shut down from February 17, 2011 to April 4, 2011 due to equipment malfunction.
- 3. Petition accepted by County of Monroe, October 28, 2006, to drop PCBs from the analyte list and to perform pesticides on a semi-annual basis.
- 4. J = Estimated value.
- 5. U = Not detected (lab reporting limit shown).
- 6. UJ = Not detected/Estimated Value.
- 7. B = Compound detected in associated method blank.
- 8. $\mu g/L =$ Micrograms per liter.
- 9. -- = Compound not analyzed.

Sample ID:	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent	Effluent
Date:	08/07/06	09/05/06	04/13/07	10/12/07	09/18/08	06/04/09	10/02/09	04/02/10	10/01/10
Pesticides by Method E608 (µg/L)	00/07/00	09/03/00	04/13/07	10/12/07	09/10/00	00/04/09	10/02/09	04/02/10	10/01/10
P.P'-DDD	0.0030 J	0.005 U	0.05 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U
P.P'-DDE	0.005 U	0.0034 J	0.05 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U
P,P'-DDT	0.0055	0.005 U	0.05 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U
ALDRIN	0.0030 J	0.005 U	0.05 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U
ALPHA BHC (ALPHA HEXACHLOROCYCLOHEXANE)	0.0055	0.0022 BJ	0.05 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U
ALPHA CHLORDANE	0.005 U	0.0010 BJ	0.05 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U
ALPHA ENDOSULFAN	0.005 U	0.005 U	0.05 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U
BETA BHC (BETA HEXACHLOROCYCLOHEXANE)	0.005 U	0.005 U	0.05 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U
BETA ENDOSULFAN	0.005 U	0.005 U	0.05 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U
CHLORDANE	0.05 U	0.05 U	0.5 U	2.5 U	0.24 U	0.24 U	0.24 U	0.24 U	0.24 U
DELTA BHC (DELTA HEXACHLOROCYCLOHEXANE)	0.0044 J	0.0040 J	0.05 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U
DIELDRIN	0.005 U	0.0030 J	0.05 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U
ENDOSULFAN SULFATE	0.005 U	0.005 U	0.05 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U
ENDRIN	0.005 U	0.005 U	0.05 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U
ENDRIN ALDEHYDE	0.005 U	0.005 U	0.05 U	0.1 U	0.094 U	0.094 U	0.094 U	0.094 U	0.094 U
GAMMA BHC (LINDANE)	0.005 U	0.005 U	0.05 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U
GAMMA CHLORDANE	0.005 U	0.0030 J	0.05 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U
HEPTACHLOR	0.005 U	0.005 U	0.05 U	0.05 U	0.051 U	0.047 U	0.047 U	0.047 U	0.047 U
HEPTACHLOR EPOXIDE	0.0023 J	0.005 U	0.05 U	0.05 U	0.047 U	0.047 U	0.047 U	0.047 U	0.047 U
METHOXYCHLOR	0.005 U	0.005 U	0.05 U	0.5 U					
TOXAPHENE	0.1 U	0.1 U	1.0 U	5 U	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U
TOTAL PESTICIDES	0.024	0.017	0	0	0	0	0	0	0

Table D-2. Summary of Effluent Pesticide Analytical Results for Treatment System Samples Former Davis Howland Oil Company Site, Rochester, New York

Sample ID:	Effluent	Effluent	Effluent
Date:	04/08/11	10/07/11	05/04/12
Pesticides by Method E608 (µg/L)	04/08/11	10/07/11	05/04/12
P.P'-DDD	0.0067 U	0.0067 U	0.0067 U
P.P'-DDE	0.0031 U	0.0031 U	0.0031 U
P.P'-DDT	0.0054 U	0.0054 U	0.0054 U
ALDRIN	0.0034 U	0.0034 U	0.0034 U
ALDRIN ALPHA BHC (ALPHA HEXACHLOROCYCLOHEXANE)	0.0029 U	0.0029 U 0.0057 U	0.0023 U 0.0057 U
ALPHA CHLORDANE	0.0057 U	0.0057 U	0.0057 U
ALPHA ENDOSULFAN	0.0037 U 0.0028 U	0.0037 U 0.0028 U	0.0037 U 0.0028 U
BETA BHC (BETA HEXACHLOROCYCLOHEXANE)	0.0043 U	0.0043 U	0.0043 U
BETA ENDOSULFAN	0.0044 U	0.0044 U	0.0044 U
CHLORDANE	0.046 U	0.046 U	0.046 U
DELTA BHC (DELTA HEXACHLOROCYCLOHEXANE)	0.0024 U	0.0024 U	0.0024 U
DIELDRIN	0.0043 U	0.0043 U	0.0043 U
ENDOSULFAN SULFATE	0.0046 U	0.0046 U	0.0046 U
ENDRIN	0.0045 U	0.0045 U	0.0045 U
ENDRIN ALDEHYDE	0.012 U	0.012 U	0.012 U
GAMMA BHC (LINDANE)	0.0044 U	0.0044 U	0.0044 U
GAMMA CHLORDANE	0.0057 U	0.0057 U	0.0057 U
HEPTACHLOR	0.0036 U	0.0036 U	0.0036 U
HEPTACHLOR EPOXIDE	0.0039 U	0.0039 U	0.0039 U
METHOXYCHLOR			
TOXAPHENE	0.2 U	0.2 U	0.2 U
TOTAL PESTICIDES	0	0	0

Table D-2. Summary of Effluent Pesticide Analytical Results for Treatment System Samples Former Davis Howland Oil Company Site, Rochester, New York

Notes:

- 1. System was shut down from March 11, 2008 to September 18, 2008 due to CatOX decommissioning.
- 2. System was shut down from February 17, 2011 to April 4, 2011 due to equipment malfunction.
- 3. Petition accepted by County of Monroe, October 28, 2006, to drop PCBs from the analyte list and to perform pesticides on a semi-annual basis.
- 4. J = Estimated value.
- 5. U = Not detected (lab reporting limit shown).
- 6. UJ = Not detected/Estimated Value.
- 7. B = Compound detected in associated method blank.
- 8. $\mu g/L =$ Micrograms per liter.
- 9. -- = Compound not analyzed.

Department of Environmental Services

Monroe County, New York

Maggie Brooks County Executive Michael J. Garland, P.E. Director

September 10, 2012

Mr. Michael A. Aloi, P.E. Ecology & Environment Engineering, p.c. Buffalo Corporate Center 368 Pleasant View Drive Lancaster, NY 14086

Re: Petition for Reduction in Sampling and Analytical Parameters at the Davis Howland Oil Co. site, 200 Anderson Avenue, Rochester, NY. Monroe County Sewer Use Permit # 864.

Dear Mr. Aloi:

This office has received your letter dated September 6, 2012 in which you have petitioned this office for reduction in monitoring at the above referenced site. With your letter you have submitted historical data compiled for the period 2006 to 2012.

After a review of the data, this office finds that a reduction in monitoring will be granted. The permit required testing for Total Petroleum Hydrocarbons (TPH) and Semi Volatile Organic Compounds (SVOC) on a monthly basis have been eliminated. The requirement for pesticides testing on a semi-annual basis has also been removed. The decision to remove these testing and reporting requirements was based on the analytical data package and historical analytical testing results from 2006 to 2012 showing non detection of compounds in the above mentioned testing methods for at least the last three years.

Attached you will find a modified permit enclosure which has been modified to reflect these changes. Please replace the current enclosure with this modified copy as it will supersede your current enclosure and become effective October 1, 2012.

If you have any questions or concerns, please call me at 585-753-7658.

Sincerely,

Sean Keenan Industrial Waste Engineer

xc: file, Harry Reiter(Pretreatment Coordinator)

Printed on recycled paper

COUNTY OF MONROE SEWER USE PERMIT ENCLOSURE

NYSDEC Division of Environmental Remediation

PERMIT NUMBER:864**DISTRICT NUMBER:**8575

625 Broadway, 12th Floor Albany, NY 12233-7013

TYPE OF BUSINESS: Groundwater Remediation LOCATION: Davis Howland Oil Co. Site – 200 Anderson Ave. Rochester, NY

SAMPLE POINT: IWC-864.1 - Sample Port – Air Stripper

REQUIRED MONITORING & EFFLUENT LIMITS

SAMPLE POINT: IWC-864.1 - Sample Port – Air Stripper

SELF-MONITORING FREQUENCY: Monthly

SAMPLING PROTOCOL: Sampling and analysis shall be performed in accordance with the techniques prescribed in 40CFR part 136 and amendments thereto. In the absence of 40 CFR Part 136 testing methodology, a New York State Department of Health, approved method is acceptable. A grab sample, collected from the above noted sample point shall be analyzed for the following:

Purgeable Halocarbons Purgeable Aromatics pH Acetone (Monitor Only)

DISCHARGE LIMITATIONS: The summation of purgeable aromatics and purgeable halocarbons greater than 10 µg/l shall not exceed 2.13 mg/l. The pH shall be within 5.0-12.0 su.

SPECIAL CONDITIONS:

- 1. All groundwater must be treated regardless of the influent concentrations.
- 2. Monthly flow summaries shall be submitted for billing purposes. It is imperative these summaries are submitted in a timely manner. If there is no discharge for a given month, then a letter must be submitted stating so.

TERMS AND CONDITIONS

GENERAL REQUIREMENTS:

- A. The permittee agrees to accept and abide by all provisions of the Sewer Use Law of Monroe County(MCSUL) and of all pertinent rules or regulations now in force or shall be adopted in the future.
- **B.1** In addition to the parameters/limits outlined, the total facility discharge shall meet all other concentration values as described in Article II, Section 10e of the Monroe County Pure Waters Districts, Rules and Regulations-Sewer Use Law of the County of Monroe.
- **B.2** Included in Article II, Section 10e, is the definition of "Normal Sewage". "Normal Sewage" may be discharged to the sewer system in excess of the concentrations outlined in the Joint Rules and Regulations, however, the facility will be subject to the imposition of a sewer surcharge and possible self monitoring requirements as a result. Surcharging procedures are outlined in Article X of the MCSUL.
- **B.3** Regulatory sampling for analytes not specified under "required monitoring" shall be conducted by the Industrial Waste Section at a minimum frequency of once every three (3) years.
- C. This permit is not assignable or transferable. The permit is issued to a specific user and location.
- **D.** Per Article VIII, Section 8.11 of the MCSUL, a violation by the permittee of the permit conditions may be cause for revocation or suspension of the permit after a Hearing by the Administrative Board, or if the violation is found to be within the emergency powers of the Director under Sections 4.5 or 5.5. The revocation is immediate upon receipt of notice to the Industrial User, however a Hearing shall be held as soon as possible.
- **E.** As provided under Article VIII, Section 8.1, the Director and his duly authorized representatives shall gain entry on to private lands by permission or duly issued warrant for the purpose of inspection, observation, measurement sampling and testing in accordance with the provisions of
 - this law and its implementing Rules and Regulations. The Director or his representatives shall not have authority to inquire into any processes used in any industrial operation beyond that information having a direct bearing on the kind and source of discharge to the sewers or the on-site facilities for waste treatment. While performing the necessary work on private lands, referred to above, the Director or his duly authorized representative shall observe all safety rules applicable to the premises as established by the owner and/or occupant.

SPECIAL CONDITION:

- A. All required monitoring shall be analyzed by a New York State Department of Health certified laboratory. All sampling and analysis must be performed in accordance with Title 40 Code of Federal Regulations Part 136.
- **B.** The pH range for this permit is 5.0 12.0 su. This range is specifically permitted by the Director as allowed under Article IV, Section 4.2 of the Monroe County Sewer Use Law. PH must be analyzed immediately.
- C. The summation of all Total Toxic Organics(TTO) Compounds as defined in the Code of Federal Regulations (40 CFR part 433.11(e)) with detection levels above 10 ug/l shall not exceed 2.13 mg/l as imposed by the Director under Article IV, Section 4.3 of the Monroe County Sewer Use Law unless Federal limits are more stringent under which the Federal limits will apply.
- **D.** Petroleum Oil and Grease shall not exceed 100 mg/l as imposed by the Director under Article IV, Section 4.3 of the Monroe County Sewer Use Law.
- E. Discharges containing Phenolic compounds shall not exceed 2.13 mg/l as imposed by the Director under Article IV, Section 4.3 of the Monroe County Sewer Use Law unless otherwise specified in the permit. These limits are applicable unless Federal limits are more stringent under which Federal limits will apply.

SURCHARGE CONCENTRATIONS:

Concentration and/or characteristics of normal sewage:

"Normal Sewage" shall mean sewage, industrial wastes or other wastes, which when analyzed, show concentration values with the following characteristics based on daily maximum limits:

a. B.O.D.	300 mg/l
b. Total Suspended Solids	300 mg/l
c. Total Phosphorus, as P	10 mg/l

Annual average concentrations above normal sewage are subject to surcharge as defined in Article X of the sewer use law.

DISCHARGE LIMITATIONS (SEWER USE LIMITS)

Permissible concentrations of toxic substances and/or substances the Department wishes to control: The concentration in sewage of any of the following toxic substances and/or substances the Department wishes to control shall not exceed the concentration limits specified when discharged into the County Sewer System; metal pollutants are expressed as <u>total</u> metals in mg/l (ppm): the following pollutant limits are based on daily maximum values:

a. Antimony (Sb)	1.0 mg/l
b. Arsenic (As)	0.5 mg/l
c. Barium (Ba)	2.0 mg/l
d. Beryllium (Be)	5.0 mg/l
e. Cadmium (Cd)	1.0 mg/l
f. Chromium (Cr)	3.0 mg/l
g. Copper (Cu)	3.0 mg/l
h. Cyanide (CN)	1.0 mg/l
i. Iron (Fe)	5.0 mg/l
j. Lead (Pb)	1.0 mg/l
k. Manganese (Mn)	5.0 mg/l
1. Mercury (Hg)	0.05 mg/l
m. Nickel (Ni)	3.0 mg/l
n. Selenium (Se)	2.0 mg/l
o. Silver (Ag)	2.0 mg/l
p. Thallium (Tl)	1.0 mg/l
q. Zinc (Zn)	5.0 mg/l

REPORTING REQUIREMENTS:

. .

- A. Per the requirements of 40 CFR, Part 403.5, Significant Industrial Users must submit Periodic Reports on Continued Compliance to the Control Authority on a biannual (2/yr) basis. Deadline dates of submission for these reports will be August 15 and February 15, respectively.
- **B.** Discharge monitoring reports shall be submitted to the Control Authority upon receipt from the permittee's testing laboratory.
- C. Any Industrial User subject to the reporting requirements of the General Pretreatment Regulations shall maintain records of all information resulting from any monitoring activities required by 403.12 for a minimum of three (3) years. These records shall be available for inspection and copying by the Control Authority. This period of retention shall be extended during the course of any unresolved litigation regarding the discharge of pollutants by the Industrial User or the operation of the POTW Pretreatment Program or when requested by the Director or the Regional Administrator.

NOTIFICATION REQUIREMENTS:

- A. Pursuant to Article VIII, Section 8.4K, the permittee shall notify the Department within 24 hours of becoming aware that discharge monitoring is in violation of any permit limit. This notification shall be directed to the Industrial Waste Section at 585-753-7600 Option 4. The User shall also repeat sampling and analysis for the analyte in non-compliance and submit the results of the repeat analysis to Monroe County within 30 days after becoming aware of the violation.
- **B.** Notify the Director in writing when considering a revision to the plant sewer system or any change in industrial waste discharges to the public sewers. The later encompasses either an increase or decrease in average daily volume or strength of waste or new wastes.
- C. Notify the Director immediately of any accident, negligence, breakdown of pretreatment equipment or other occurrence that occasions discharge to the public sewer of any waste or process waters not covered by this permit.

SLUG CONTROL

An Industrial User-shall be required to report any/all slug discharges to the Monroe County sewer system by calling 585-753-7600 option 4. For the purpose of this permit enclosure, a slug discharge shall be identified as any discharge of a non-routine, episodic nature, including but not limited to an accidental spill or a non-customary batch discharge. Following a review process, the Control Authority (Monroe County) shall determine the applicability of a facility slug control plan. If the Control Authority decides that a slug control plan is needed, the plan shall contain, at a minimum, the following elements:

- 1. Description of discharge practices, including non-routine batch discharges.
- 2. Description of stored chemicals.
- 3. Procedures for immediately notifying the Control Authority of slug discharges, including any discharge that would violate a prohibition under 40 CFR 403.5 (b), with procedures for follow up written notification within five (5) days.
- 4. If necessary, procedures to prevent adverse impact from accidental spills, including, but not limited to, inspection and maintenance of storage areas, handling and transfer of materials, loading and unloading operations, control of plant site run-off, worker training, building of containment structures or equipment, measures for containing toxic organic pollutants (including solvents) and/or measures and equipment for emergency purposes.

SNC DEFINITION:

In accordance with 40 CFR 403.8 (f) (vii), an Industrial User is in significant noncompliance (SNC) if its violations meet one or more of the following criteria:

- A. Chronic violations of wastewater discharge limits defined as those which 66% or more of all the measurements taken during a six-month period exceed (by any magnitude) the daily maximum limit or the average limit for the same pollutant parameter. This criteria does NOT apply to the following Monroe County surchargeable parameters: Biochemical Oxygen Demand, Total Suspended Solids, Chlorine Demand and Total Phosphorus (ref. Article X Monroe County Sewer Use Law).
- **B.** Technical review criteria (TRC) violations defined as those in which 33% or more of all the measurements for each pollutant parameter taken during a six month period equal or exceed the product of the daily maximum limit or the average limit times the applicable TRC. This criteria does NOT apply to the following Monroe County surchargeable parameters: Biochemical Oxygen Demand, Total Suspended Solids, Chlorine Demand and Total Phosphorus (ref. Article X Monroe County Sewer Use Law).
- **C.** Any other violation of a pretreatment effluent limit (daily maximum or longer-term average) that the Control Authority determines has caused, alone or in combination with other discharges, interference or pass-through (including endangering the health or POTW personnel or the general public).
- **D.** Any discharge of a pollutant that has caused imminent endangerment to human health, welfare or the environment or has resulted in the POTW's exercise of its emergency authority under paragraph (t)(1)(vi)(8) of 40 CFR part 403 to prevent such a discharge.
- **E.** Failure to meet, within 90 days after the scheduled date, a compliance schedule milestone contained in a local control mechanism or enforcement order, for starting construction, completing construction or attaining final compliance.
- **F.** Failure to provide, within 30 days after the due date, required reports such as BMRs, 90 day compliance reports, period reports on continued compliance.
- G. Failure to accurately report noncompliance.
- **H.** Any other violation or group of violations that the Control Authority determines will adversely affect the operation and implementation of the local Pretreatment Program.

PENALTIES

Should the facility be considered in Significant Non-Compliance (SNC), based on the above mentioned criteria, the minimum enforcement response by Monroe County will be the publication of the company name in the Gannett Rochester newspaper. The company will be published as an Industrial User in Significant Non-Compliance (SNC). Fines and criminal penalties may follow this publication (ref. Article XII – Monroe County Sewer Use Law).

Nothing in this permit shall be construed to relieve the permittees from civil/criminal penalties for noncompliance under Article XII, Section 12.1(D) of the Sewer Use Law of the County of Monroe. Article XII, Section 12.1(D) provides that any person who violates a permit condition is subject to a civil penalty not to exceed \$10,000 for any one case and an additional penalty not to exceed \$10,000 for each day of continued violation.

Monitoring Event Field Notes and Analytical Data

Daily Field	Activity Summary
EEEPC Project No.: EN - 00323- 000/-03	NYSDEC WA No.:
Project Name: Javis Houland	Project Location: Rochester, NY
Date: Monday 1500 jober 2012	Weather:

Personnel On Site	Affiliation	Hours	Level of PPE
S. Craig	EEEPC	9	Ð
L. Reseal	EEEPC EEEPC	9	D

Gauge G	equipvent	tions, pick up Sa	mple k	xoffles +
	(Due To Weather, Mainte		ting For Do	ecisions)
	countered And Deviation	s From Work Plan		
	Verbal Instruction By NYS	SDEC (Include name of N	YSDEC rep	presentative)
	AY			
New Safety Is	NA			
Site Manager	Signature:		Date:	10/15/12

Daily Field	Activity Summary
EEEPC Project No.: EN-003231-0001-03112	NYSDEC WA No.:
Project Name: Dawis How bart	Project Location: Rechester NY
Date: Monday 15 Croper 202	Weather:

Summary of Activities			
Equipment Used	Task	Activities Performed	
		Gauge wells	
Hein Dippert		Gauge wells "Sniff" wells	

Field Tests Performed (Samples, Field Screening, Chemical Testing, etc.)						
gouther a	vater line	tertal	depth	ofall	well'S +	Piegometer
IDW Generated	and Stored Onsi	te				
				· A ·		
the second se	ies for Next Work	the second se				
Remarks: (Visit	ors, Completion	of Fieldwork	c, etc.)			
,					×	
\bigcirc	20'					10/15/12
ite Manager Sig	mature					Date

2

Activity Summary
NYSDEC WA No.:
Project Location: Rochester NY
Weather: Overcast, Misty

Personnel On Site	Affiliation	Hours	Level of PPE
Sarah Clarg	EEEPC	12.25	A
Lains Roedl	EEEPC	12.05	D
Tin Belon	EEEPC		Ď
	~		

Summary of Today's Activities			
Pickup Sample bottles (6 Kits). Same	a wells.	MW-35	MW-3R,
Pickup Samplebottles (6kits). Same MW-16R, NW-15R			

Work Delays (Due To Weather, Maintenance, Breakdowns, Waiting For Decisions) Only I vehicle So Cimited as to # of weeks able to Sample

Problems Encountered And Deviations From Work Plan

AN

NA

AN

Written And Verbal Instruction By NYSDEC (Include name of NYSDEC representative)

)

1

Date: 10 10 12

New Safety Issues

Site Manager Signature: (

EEEPC Project No.:	NYSDEC WA No.:
Project Name: Dawis tousland	Project Location: Rochester, NY
Date: 10/10/12 Tuesday	Weather: Mostly Cloudy Scattered Showers S

Summary of Activities		
Task	Activities Performed	
	S Collecturation Samples	
	2 Color	
)	
	the second se	

Field Tests Performed (Samples, Field Screening, C	nemical Testing, etc.)
Callect 4 MW Samples MW SR	
MW33 MW101	2
MWS	2
IDW Generated and Stored Onsite	
ALA	
DP	
Planned Activities for Next Work Day	
Continue Sampling wells, Begin	1 Il ais relevance
Constitute administ meters, seges	had had
Demoster (Visiters Completion of Fieldwork etc.)	
Remarks: (Visitors, Completion of Fieldwork, etc.)	
CAS	10/10/12
ite Manager Signature	Date
8	

Daily Field	A ativity Cummany
EEEPC Project No .: EN - 2003231- 2001 - 03 70	Activity Summary NYSDEC WA No.:
Project Name: Devis Howland	Project Location: Rochester, NY

Personnel On Site	Affiliation	Hours	Level of PPE
S. Craia	EEER	12.5	D
T. Dillen	EEEPL	12.5	D
L. Roedl	EEEPC	12.5	D
		1	1
			· · · · · · · · · · · · · · · · · · ·
		_	
		-	

Sample: N	day's Activities	145 ANW-14R
cumper.		
Work Delays (D	ue To Weather, Maintenance, Bre	akdowns, Waiting For Decisions)
Only IV	ehicle	
E. C. Martine Martine		
Problems Enco	untered And Deviations From Wo	ork Plan
	NR	
Sector Contractor		
Written And Ver	bal Instruction By NYSDEC (Incl	ude name of NYSDEC representative
	NA	
0.000		
New Safety Issu	les	
	010	
	NA	
	gnature:	Date: 10/17/12
Site Manager Si		
Site Manager Si	Xcos	

Daily Field	Activity Summary
EEEPC Project No .: 2N-003731-0001-03710	NYSDEC WA No.:
Project Name:	Project Location: Por bester NY
Date: 10/17/12	Weather: Sunny brazy, high pear to

Summary of Activities		
Equipment Used	Task	Activities Performed
(2) Myron 6 Pulliame		D
(2) Lamotte 2020me		S collet water Samples
(2) Heron Dippert		200
(2) Minifee 3000 FID		

Field Tests Performed (Samples, Field Screening, Chemical Testing, etc.)	
Sample: MW-19	
nw-ior	
MW-145	
MW-14R	
PA-ba-	
IDW Generated and Stored Onsite	
Planned Activities for Next Work Day	
Continue Sampling + updacing well pads	
Remarks: (Visitors, Completion of Fieldwork, etc.)	

10/17/12 Date

Site Manager Signature

1

Daily Fi	eld Activity Summary		1000 - Color
EEEPC Project No .: EN -00 3031-0001-0	SHO NYSDEC WA No .:		
Project Name: Dawis Houland	Project Location:	Dectester,	NY
Date: Thursday 18 october 2012	Weather: Survey	, wholy h	igh rear los
Personnel On Site	Affiliation	Hours	Level of PP
Sarah Cipig	ELEPC	125	Ð
Los D'How	FFFRC	170	D

Personnel On Site	Affiliation	Hours	Level of PPI
Sarah Cirg	ELEPC	125	P
Tim Dillon	ELERC	12.5	D
henry Pered (ÉFEPC	125	D
0			
		1	
		-	

Summary of Today's Activities	your well maintenance
and manys and	affine were hearthouse C
Nork Delavs (Due To Weather, Maintenar	nce, Breakdowns, Waiting For Decisions)
One vehicle - well mandenan	
One vebicle - web manyeau	a issues actains maggar
	and March Direct
Problems Encountered And Deviations F	rom work Plan
4U	
Written And Verbal Instruction By NYSDE	EC (Include name of NYSDEC representative
had an end of the state of the service of the servi	
ALA	
h.	
New Safety Issues	
AL A	
NA	
Site Manager Signature:	Data: +-/15/15
Site Manager Signature:	Date: 10/18/12
No)
SDEC Daily Activity Summary Form_General.doc-10/3/11	

Daily Field A	Activity Summary
FN-00331-0001-0310	NYSDEC WA No.:
Project Name DANTS HOWLAND	Project Location: Portester, NY
Date: 0/18/12	Weather:

Summary of Activities					
Equipment Used	Task	Activities Performed			
2) Myron 62 Ultianut 2) Lamoste 2020me furb 2) Mini Rae 3000 PZD		7			
2) Lamoste 2020 we firb					
(2) Mini Rae BOOD PID		Z Collect Gw Samples			
(2) Heron Dipper T					
*		-			

ample	MW-125	les, Field Screening, Chemical T Mພ-ຣR	
1	MW-12R	MW 135	
· · · · · · · · · · · · · · · · · · ·	MW-25		
	MW-2R		
DW Gener	ated and Stored C	neito	
Dw Genera	aleu anu Storeu C	nane	
Planned Ac	tivities for Next V	/ork Day	
Comple	te Gw San	pleng Setup and com	dete ndero e an
Sarias	ry Complex	è util mansence	
	5		
Remarks: (Visitors, Complet	on of Fieldwork, etc.)	
	the		
1000			
/	11-	4	1.1
(IR		10/18/12
te Manager	Signature		Date

è

2

Daily Field A	Activity Summary	
EEEPC Project No.: EN-003231-0001-03110	NYSDEC WA No.:	
Project Name: DAVIS Howland	Project Location: Rochester NY	
Date: Juday 19 October 2012	Weather: Overcast broken Clouds high	ear 60°

Personnel On Site	Affiliation	Hours	Level of PPE
S. Claig	EEEPC		D
L. Roed (EEEPC EEEPC		D
TiDillan	EEEPC		D
	1		
			and the second second
		-	
		-	

Summary of Today's Activities	
Complete New Sampling Complete well marvenence	
Complete well maintenence	
Work Delays (Due To Weather, Mair	ntenance, Breakdowns, Waiting For Decisions)
AIA	
Problems Encountered And Deviati	ons From Work Plan
AU	
101	
Written And Verbal Instruction By N	IYSDEC (Include name of NYSDEC representative)
NA	
101-	
New Safety Issues	
AU	
Site Manager Signature: ()	Date: 10/19/22

Daily Field	Activity Summary
EEEPC Project No .: EN-003231-0001-03710	NYSDEC WA No.:
Project Name: Davis Howland	Project Location: Rochester, Ny
Date: 10/19/12	Weather:

Summary of Activities					
Equipment Used	Task	Activities Performed			
(2) Nurron Ultraneter lep (2) Lamette 2020 me		7			
(2) Lamette 2020me		6			
(2) Ileron D: pperT (2) Mini Pace 3000 FID		Scalled GW Samples			
(2) Mini Rae 3000 FID) collect air Samples			
And the second se					

Field Tests Performed (Samples, Field Screening, Chemical Testing,	etc.)
w Somples: MW-95, MW-SR; RB-101912	
DW Generated and Stored Onsite	
44	
Planned Activities for Next Work Day	
NA	
Remarks: (Visitors, Completion of Fieldwork, etc.)	
An word compute	
OPS.	10/19/12
te Manager Signature	Date

WE Wood 3231* 75 feet TOIC 19 feet TOIC 29 feet TOIC 19 feet TOIC 19 feet TOIC 11 12 13 14 14 15 16 17 17 10 10 11 12 12 13 14 14 15 16 17 17 18 19 10 10 11 12 12 13 14 15 16 17 17 18 19 10 10 10		& SAMPLE _minutes _minutes ORP	S D Pu Well	Date: tart Time: End Time: Bailer imp Type: Diameter:	Typhe	2
W 03 23 1 19 feet TOIC 14 feet TOIC 19 feet TOIC 14 100 19 feet TOIC 100 100 10 Lpm / gpm 100 100 100 10 Lpm / gpm 100 100 100 100 10 Lpm / gpm 100 100 100 100 100 100 100 100 100 100	Temp.	minutes	Pu Well	Date: tart Time: End Time: Bailer imp Type: Diameter:	10/17/1 0955 10:35	2
75 feet TOIC 19 feet TOIC 79 feet TOIC 1 Lpm / gpm at at lume pH iters) (s.u.)	Temp.	minutes	Pu Well	tart Time: End Time: Bailer Imp Type: Diameter:	0955 10:15 10:15	Pump
feet TOIC feet TOIC Lpm / gpm at at lume pH iters) (s.u.)	Temp.	minutes	Pu Well	End Time: Bailer Imp Type: Diameter:	10:25 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 10 12 10 12 10 12 10 12 10 12 10	Pump
feet TOIC Lpm / gpm at at lume pH iters) (s.u.)	Temp.	minutes	D Pu Well	Bailer ımp Type: Diameter:	Typhe	Pump
Lpm / gpm at at lume pH iters) (s.u.)	Temp.	minutes	Pu Well	imp Type: Diameter:	Typhe	· · · · ·
at at lume pH iters) (s.u.)	Temp.	minutes	Well	Diameter:		
at lume pH iters) (s.u.)	1000	minutes			2 "	
lume pH iters) (s.u.)	1000	a province the set of the	1x We			inches
iters) (s.u.)	1000	ORP		Il Volume:	.52	gallons * /
702	a management of the second	(mV)	Conductivity (µS/cm mS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet)
14.9	55.9	155	1344	-	21.1	15 09
7.02	58,1	127	1289	-	8.81	15.30
7.04	588	108	1205		3.45	
7.10	58.3	99		-	355	-
7.05	57.3	98		~	7.56	-
7.05	59.3	98	1278	-	3.89	-
7.04	59.2	98	1275	-	286	-
7.04	51.1	98	12.75	-	1.62	-
7.04	59.1	28	1275		1.62	
	7.10 7.05 7.05 7.04 7.04 7.04 7.04 7.04 -15 35	7.10 59.3 7.05 59.3 7.05 59.3 7.04 59.2 7.04 59.1 7.04 59.1 7.04 59.1	7.10 \$7.3 \$9 7.05 \$9.3 98 7.05 \$9.3 98 7.05 \$9.3 98 7.04 \$9.2 98 7.04 \$9.2 98 7.04 \$9.2 98 7.04 \$9.2 98 7.04 \$9.2 98 7.04 \$9.2 98 7.04 \$9.2 98 7.04 \$9.1 98 7.04 \$9.1 98 98 98 98 7.04 \$9.1 98 98 98 98 7.04 \$9.1 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98 98	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ite Name/Loca	. , , , , , , , , , , , , , , , , , , ,	<: 716/684-08	44		e, Lancaster, Nev	w York 14086)	
ite Name/Loca	-		LL PURGE 8					0
	ation: Davis						MW-0	
EEPC Project	t No .: ENroc	3231-00	201-03	710		Date:	10/18	112
tial Depth to V	Water: 19.53	feet TOIC				Start Time:	1200	0
	Depth: 24.62						123	
	Pump: 21.42	The second second second second				Bailer		Pump
	Rate:(Pump Type:		
	ted to:	<u> </u>		minutes				inches Svol-
	ted to:			minutes				gallons 13,10
aujust				A construction of	the second s		No. of Concession, Name	
Time	Purge Volume (gallons/liters)	рН (s.u.)	Temp. (°C/°F)	ORP (mV)	Conductivity	A DECK MANUAL PROPERTY AND A D	Turbidity (NTU)	Water Level (feet)
1200		7.74	17.7	-30	Tuos		11.6	26.9
1210		7.40	17.5	-59	958.6	-	11.3	21.0
1224		7.31	14:5	-141	1553	-	10.89	21.7
	Well Dave	1						
	pace pace	pea an	9					
				1.00				
						-		
						-		
						-		
		-1.2 -	1.0	1200	1		10.00	2100
	ample Data:	7.30	10.9	-138	1550	-	10,90	21.8

U Tel	JFFALO CORPOR 1: 716/684-8060, Fa	x: 716/684-08	R 368 Pleasa 344 LL PURGE			York 14086	5	
te Name/Loc	ation: Deuis				RECORD	Well ID:	MW-a	25
	t No .: EN-CO							Z
	A CARLES						-	
	Water: 7.22						12:1	
	Depth: 14.00						IZ:SO V Pump	
	Pump: 12.00 Rate: [~				Bailer		Fump
	ted to:	-		minutes		Diameter	- April	inches
	ted to:	7		minutes	1x We	Il Volume:	1.10	gallons 500
adjus	Purge Volume	No. of Concession, Name	Tomp	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	рн (s.u.)	Temp. (°C/′F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet
2:10	()	6.87	67.7	-44	1357	~	10.99	18.51
2:15	Ĩ	6.87	67.6	-14	1325	1	9:60	10.89
12:20	n	6.83	68.4	-45	1435	1	4.26	10.75
12:25	3	6.80	60.3	-44	1486	-	3.79	10.80
12.30	Y	6.81	68.7.	-47	1555	-	1.27	10.80
12:35	5	6.83	68.9	-48	1579	-	0.45	10.80
12:46	6	6,79	689	-48	1581	-	0.60	10.80
12:41	7	6.79	68.9	-49	1580		0.64	10.80
2:50	8	6.79	68-9	-48	1582	-	0.50	10.80
								_
						-		
		6.79	68.9	-48	1582		0,50	10.50
	ample Data:							

tial Depth to Water: $\underline{S} \cdot \underline{S} \cdot \underline{S}$ feet TOICStart Time: 1050 Total Well Depth: $\underline{17,10}$ feet TOICEnd Time: $\underline{1225}$ Depth to Pump: $\underline{10,10}$ feet TOICEnd Time: $\underline{1225}$ Depth to Pump: $\underline{10,10}$ feet TOICEnd Time: $\underline{1225}$ Depth to Pump: $\underline{10,10}$ feet TOICEnd Time: $\underline{1225}$ nitial Pump Rate: $\underline{10m}$ gpmPump Type: $\underline{10m}$ gpmadjusted to: $\underline{500}$ M/L atORPconductivityD0TurbidityMell Diameter: $\underline{2}$ inchesadjusted to: $\underline{500}$ M/L atminutesWell Diameter: $\underline{2}$ inchesadjusted to: $\underline{500}$ M/L atORPconductivityD0TurbidityWell Volume: $[1,33]$ gallonsTime(gallons/2)ters)(s.u.)(%)???(MUU)Pump Type: $\underline{100}$ TurbidityWell Volume: $[1,33]$ gallonsTime(gallons/2)ters)(s.u.)(%)???(mV)(m/V)TurbidityMute: $\underline{1050}$ 1.74 125 0.71 7.95 1055 1.95 1.74 125 0.74 <td cols<="" th=""><th></th><th>JFFALO CORPOR/ : 716/684-8060, Fax</th><th></th><th></th><th>nt View Driv</th><th>ve, Lancaster, N</th><th>ew York 14086</th><th></th><th></th></td>	<th></th> <th>JFFALO CORPOR/ : 716/684-8060, Fax</th> <th></th> <th></th> <th>nt View Driv</th> <th>ve, Lancaster, N</th> <th>ew York 14086</th> <th></th> <th></th>		JFFALO CORPOR/ : 716/684-8060, Fax			nt View Driv	ve, Lancaster, N	ew York 14086		
EEPC Project No.: $E \ N - 003331 - 0001 - 0370$ Date: $10 10 12$ tial Depth to Water: 5.51 feet TOIC Start Time: 1050 Total Well Depth: 17.10 feet TOIC End Time: 1235 Depth to Pump: 10.10 feet TOIC End Time: 1235 Depth to Pump: 10.10 feet TOIC End Time: 1235 Depth to Pump: 10.10 feet TOIC End Time: 1235 Multicle Pump gpm adjusted to: 500 m/L at minutes Tweel Volume: 1.33 gallons Time (gallons)iters) (s.u.) (°C.?F) (mV) (mVell Volume: 1.33 gallons Time (gallons)iters) (s.u.) (°C.?F) (mV) (mVell Volume: 1.33 gallons Time (gallons)iters) (s.u.) (°C.?F) (mV) (mVell Volume: 1.33 gallons Time (gallons)iters) (s.u.) (°C.?F) (SCO Turbidity Water (SCO Turbidity Multicolsp		1		-				34.1	75	
tial Depth to Water: $\underline{\S},\underline{\$}$ feet TOICStart Time: 1050Total Well Depth: $\underline{(1,1,0)}$ feet TOICEnd Time: $\underline{(225)}$ Depth to Pump: $\underline{[1,1,0]}$ feet TOICEnd Time: $\underline{(225)}$ Initial Pump Rate: $\underline{(1,0)}$ feet TOICEnd Time: $\underline{(225)}$ Initial Pump Rate: $\underline{(1,0)}$ feet TOICEnd Time: $\underline{(225)}$ adjusted to: $\underline{500}$ mL ator $\underline{0}$ minutesWell Diameter: $\underline{2}$ inchesadjusted to: $\underline{500}$ mL ator $\underline{0}$ minutesWell Volume: $\underline{1,33}$ gallonsTimefunge VolumepHTemp.ORPconductivityDoTurbidityWater10557.00TOTAinchesTomeORPDOTurbidityVell Joint 135Start Time: $\underline{1,235}$ Time(gallons)// iters)(s.u.)(COMPF)(mv)(my) match 135Total Well Volume: $\underline{1,33}$ gallonsTime(gallons)// iters)(s.u.)(b50Total $\underline{1,43}$ O(J						any				
Total Well Depth: $1/1.0$ feet TOIC End Time: 1225 Depth to Pump: $1/2.10$ feet TOIC End Time: 1225 Initial Pump Rate: 1 (pm) gpm Pump Type: 4.0 for the tors of the top gpm adjusted to: 500 ML at 0.750 minutes Well Diameter: 2 inches adjusted to: 500 ML at 0.750 minutes Well Diameter: 2 inches adjusted to: 500 ML at 0.776 minutes Tump Type: $4.00 \text{ for the top gpm}$ Pump Type: 4.00 for top gpm adjusted to: 500 ML at $0.776 \text{ for top gpm}$ Pump Volume pH Temp. $0RP$ Conductivity DO Turbidity Water Time (gallons/)iters) (s.u.) ($^{\circ}O^{\circ}F$) (mV) ($^{\circ}O^{\circ}F$) Multicle (feet TOIC IDOS 7.00 17.42 1.02 7.00 7.00 17.42 9.55 1055 7.00 17.42 12.5 0.410 9.55 1105 <t< th=""><th>EEPC Projec</th><th>t No.: EN-00</th><th>3231-0</th><th>001-03</th><th>πο</th><th></th><th>Date:</th><th>1011</th><th>0/12</th></t<>	EEPC Projec	t No.: EN-00	3231-0	001-03	πο		Date:	1011	0/12	
Total Well Depth: $1/1.0$ feet TOIC End Time: 1225 Depth to Pump: $1/2.10$ feet TOIC End Time: 1225 Initial Pump Rate: 1 (pm) gpm Pump Type: 4.0 for the tors of the top gpm adjusted to: 500 ML at 0.750 minutes Well Diameter: 2 inches adjusted to: 500 ML at 0.750 minutes Well Diameter: 2 inches adjusted to: 500 ML at 0.776 minutes Tump Type: $4.00 \text{ for the top gpm}$ Pump Type: 4.00 for top gpm adjusted to: 500 ML at $0.776 \text{ for top gpm}$ Pump Volume pH Temp. $0RP$ Conductivity DO Turbidity Water Time (gallons/)iters) (s.u.) ($^{\circ}O^{\circ}F$) (mV) ($^{\circ}O^{\circ}F$) Multicle (feet TOIC IDOS 7.00 17.42 1.02 7.00 7.00 17.42 9.55 1055 7.00 17.42 12.5 0.410 9.55 1105 <t< th=""><th>tial Depth to \</th><th>Water: 5.89</th><th>feet TOIC</th><th></th><th></th><th></th><th>Start Time:</th><th>1050</th><th></th></t<>	tial Depth to \	Water: 5.89	feet TOIC				Start Time:	1050		
Depth to Pump: $[\underline{u}, l]$ feet TOIC \Box									-	
Initial Pump Rate: Image of the problem Image of the problem Pump Type: Image of the problem adjusted to: 500 m at 633 minutes Well Diameter: 2 inches adjusted to: at minutes $1x \text{ Well Volume}$ $I.33$ gallons Time (gallons/liters) (s.u.) ($60/PF$) (mV) ($18/em \ln S/m$) (mg/L) ($1TU$) Level (fe $IOSO$ 7.95 $I7.7$ $I2.5$ 834.8 $ 9.10$ 9.31 $IOSS$ 7.00 $I7.3$ $I2.5$ $8748 \cdot I$ $ 6.72$ 9.31 $IOSS$ 7.00 $I7.8$ $I21$ 858.2 $ I.83$ 9.54 $IIOS$ 7.00 $I7.8$ $I21$ 858.2 $ I.83$ 9.54 $IIOS$ 4.95 $I7.8$ 95 849.5 $ 0.711$ 9.59 $IIOS$ 4.95 $I7.8$ 95 849.5 $ 0.40$ $9.9.7$ $IIIS$ 4.97 17.9 IIP			feet TOIC			[Bailer	Ø	Pump	
adjusted to: 500 mL at 633 minutes Well Diameter: 2 inches adjusted to: at minutes 1x Well Volume: 1.33 gallons Time (gallons)/iters) (s.u.) (°C/°F) (mV) Conductivity DO Turbidity Water 1050 7.95 17.7 125 834.8 9.10 9.31 1055 7.00 17.3 125 834.8 9.10 9.31 1055 7.00 17.3 125 848.1 6.72 9.42 1105 7.00 17.8 121 858.2 1.83 9.54 1110 2.5 4.95 17.8 95 849.5 0.711 9.59 1115 4.95 17.8 95 849.5 0.711 9.59 1125 4.95 17.7 97 $849.4.8$ 0.433 10.66 1135 5.5 4.97 17.9 114 $849.5.4$ - $0.49.4$		A STATE OF STREET, STR	(Lpm) gpm				Pump Type:	44Dho	in	
adjusted to: at minutes 1x Well Volume: 1.33 gallons Time Purge Volume (gallons/)iters) pH (s.u.) Temp. (%C/°F) ORP (mV) Conductivity (µS/cm mS/cm) DO Turbidity (NTU) Water Level (fe (NTU) 1055 7.00 17.74 125 834.8 — 9.10 9.31 1055 7.00 17.73 125 8748.1 — 6.772 9.433 1055 7.00 17.8 121 858.2 — 1.833 9.54 1105 7.00 17.8 121 858.72 — 1.833 9.54 1110 2.55 4.455 17.8 9.5 849.55 — 0.711 9.59 11125 4.977 17.4 9.7 849.58 — 0.433 10.06 1125 6.977 17.9 114 849.58 — 0.433 10.06 1135 5.5 6.977 17.9 114		A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE		03	minutes	V		1		
Time(gallons/iters)(s.u.)(${}^{\circ}C_{1}{}^{\circ}F_{1}$ (mV)(μ S/cm mS/cm)(mg/L)(NTU)Level (terms)10507.9517.7125 834.8 —9.109.3110557.0017.3125 848.1 —6.729.4311057.0017.8121 858.2 —1.839.541110 2.5 4.95 17.8121 858.2 —0.719.591110 2.5 4.95 17.895 849.5 —0.719.591115 4.97 17.884 872.4 —0.40 $49.9.9.9$ 1125 4.98 17.797 844.44 —0.5310.0111355.5 6.97 17.9114 849.8 —0.41310.0811457.0017.9121 849.7 —0.41410.0511557.0017.9121 841.3 —0.41410.0512058.07.0017.9121 841.3 —0.41410.05120513.017.9121 840.7 —0.3510.35120513.017.9121 840.7 —0.3510.3512058.07.0018.3127 801.8 —0.3510.35		C.V. S.L.		-	minutes	1x '	Well Volume:	1.33	gallons 3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	121	Purge Volume	рН	Temp.	ORP	Conductivi	ty DO	Turbidity	Water	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(gallons <i>i</i> liters)			(mV)				Level (feet)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				17.4	-				0 0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1105	A							9.54	
1125 6.98 17.7 97 844.4 - 0.53 10.01 1135 5.5 6.97 17.9 114 849.8 - 0.43 10.06 1145 7.00 17.9 113 863.4 - 0.43 10.06 1155 7.00 17.9 113 863.4 - 0.49 10.06 1155 7.00 17.9 121 861.3 - 0.44 10.06 1205 8.0 7.00 17.9 121 860.7 - 0.35 10.15 1205 8.0 7.00 18.3 127 801.8 - 0.355 10.26 1215 7.00 18.3 127 801.8 - 0.355 10.26	1110	2.5								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1115					1	-		10.9.94	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1125		6.98	The second second			-			
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		5.5				-			10.08	
1205 8.0 7.00 18.1 135 840.7 - 0.35 10.15 1215 7.00 18.3 127 861.8 - 0.35 10.20	A CARLES AND A CARLES AND A		1000				-		10.09	
1215 7.00 18.3 127 801.8 - 0.35 10.20	1							-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1205	8.0					-		×	
1225 10 7.00 18,3 129 859.7 - 0.38 10.24						and the second se	-			
	1225	10	7.00	(6,3	127	859.7		0,38	10.24	
Einal Sample Data: 7,00 18.3 129 259.7 - 038 10.24	Final S	ample Data:	7.00	18.3	124	354 7		0138	10.24	
Final Sample Data: 7.00 18.3 124 354.7 - 0.38 10.34 Sample ID:	Sample ID:	MW-35	7.00	18.3	Duplicate	? - D				

	JFFALO CORPOR/ l: 716/684-8060, Fax			nt View Driv	ve, Lancaster, New	York 14086		
	0		LL PURGE 8	SAMPLE	RECORD			- 11
	ation: Paul		A. M. C. W. M.					32
EEPC Projec	t No.: EN-	003271	-0001.0	03		Date:	10/1	6/12
tial Depth to	Water: 21.34	feet TOIC			S	Start Time:	10:	27
	Depth: 38.65	0 10 M Y 10 M				End Time:	12:3	27 Y
	Pump: 35.65	a for the state of the				Bailer		Pump
Initial Pump	Rate: / /	Lpm / gpm			P	ump Type:	typh	ion
adjus	ted to:	at	1	minutes	Well	Diameter:	typh 4	inches
adjus	ted to:	at		minutes	1x We	II Volume:	11.29	gallons 33
Time	Purge Volume (gallons/liters)	рН (s.u.)	Temp. (°C/°F)	ORP (mV)	Conductivity (µS/cm mS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet)
1027	0	7.85	58.0	15	1514	-	11.33	20.79
1037	3	7.18	59.7	ir	1387	-	7.01	20.59
10 87	6	7.20	19.1	20	1507	()	248	2-95
1057	9	7.14	5-9.2	19	(503	. (1058	21.23
11:07	72	7.22	59.4	12	1497	-	0.41	Z1.80
11:17	15	7,22	59.2	9	1440	-	0.19	22.11
1127	18	7.23	59.Y	1	1471	-	0.19	22.14
1137	2(7-23	60.0	2	1484	-	0.02	22.14
11.47	24	7.23	59.9	9	1482	/	0.12	22.14
1207	27	7.21	59.9	9	1481	-	0:07	22.14
12:17	30	7.22	60.0	9	1482	_	0.13	22.14
1227	35	7.22	57.9	/	1481		0-13	22,14
Final S	ample Data:	7.22	59.9	9	1881	1	8.13	22.14
Sample ID: Sample Time	M60 3R		•	Duplicate1 MS/MSD?		Samp ID:		
Analyses:	Methods:	Comments:	11.00					
☑ VOCs	CLP	Sam	pled win	In bai	ler			
⊐ SVOCs	⊠ SW846		1		<u> </u>			
⊐ PCBs	Drink. Wtr.							
Metals								

	FFALO CORPORA 716/684-8060, Fax	TE CENTE: 716/684-08	R 368 Pleasa 44	nt View Drive	e, Lancaster, New	York 14086	5		
	. T				RECORD			0	
	ation: Druis				A		NW-5		
EEPC Project	No .: EN-00;	5231-0	001-05	110				1	
itial Depth to V	Vater: 21.69	feet TOIC			S	start Time:	094	7	
Total Well D	epth: 34.80	feet TOIC				End Time:	114	5	
Depth to P	Pump: 32-50	feet TOIC				Bailer	6	Pump	
Initial Pump	Rate:	Lpm/ gpm			Pi	ump Type:	typhon	7	
adjust	ed to:	at		minutes	Well	Diameter:	4	inches	25.7
adjust	ed to:	at		minutes	1x We	II Volume:	8.5	gallons SUCL = 4	12.8
Time	Purge Volume (gallons/liters)	рН (s.u.)	Temp. (°C/°F)	ORP (mV)	Conductivity (µS/cm mS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet)	
0947	0	7.44	15.1	-74	2094		\$9.17	22.21	
0957		7.30	15.1	-51	2100	-	3.22	22.12	
1007	5	7.38	14.9	-78	2104	-	2.85	22.61	
1017		7.33	14.9	-77	2108	-	1.54	22.90	
1027	10	7.37	14.9	-79	2088	-	5.77	23.27	
1037		1.33	15.3	-51	2067	-	344	23.72	
1047	15	7.31	15.2	-79	2083	-	2.22	23.72	
1057		7.31	15.1	- 80	2077	-	1.25	23.72	
1107	20	7.3	15.2	-79	2077	-	1.03	23.70	
1117		7.32	15.3	-79	2077	-	0.93	2370	
1127	25	7.31	15.3	-50	2079	-	0.84	23.70	
1137	30	7.32	15.3	- 50	2079	-	0.72	23.70	
Final Sa	ample Data:	7.32	5.3	-80	12079	-	0.72	23.70	
	MW-5R 1140			Duplicate? MS/MSD?	Dupe	Samp ID:	-		
Analyses: ☑ VOCs □ SVOCs □ PCBs □ Metals	Methods: □ CLP ☑ SW846 □ Drink. Wtr.	Comments: Sam	ple w	ith pa	iler				

WELL PURGE & SAMPLE RECORD Well ID: $\underline{MW-8L}$ Date: $\underline{DU/S} \underline{MU} \underline{MU} \underline{MU}$ Date: $\underline{DU/S} $		FFALO CORPOR 716/684-8060, Fa			ant View Drive	e, Lancaster, New	York 14086		
EEPC Project No: $E N - 003331 - 0001 - 05710$ Date: $10/15/17$ all Depth to Water: 22.74 feet TOIC Start Time: 1340 Total Well Depth: 32.32 feet TOIC End Time: 1520 Depth to Pump: 35.30 feet TOIC End Time: 1520 Dupth to Pump: 35.30 feet TOIC End Time: 1520 Dupth to Pump: 35.30 feet TOIC End Time: 1520 Dupt Total Well Diameter: $4400000000000000000000000000000000000$						RECORD			1
all Depth to Water: 22.74 feet TOIC Start Time: 1340 Total Well Depth: 32.34 feet TOIC End Time: 1520 Depth to Pump: 35.30 feet TOIC Bailer 1520 Initial Pump Rate: 1 (Ipm) / gpm Pump Type: 1520 adjusted to: at minutes $1x$ Well Volume: 8.78 gallons $3x6 - 3x$ Time Purge Volume pH Temp. ORP Conductivity Do Turbidity Well 13400 7.30 14:3 -95 1555 $ 0.65$ 32.35 1350 7.17 15.5 -75 1933 $ 440$ 25.05 1400 7.30 14:3 -95 1955 $ 0.65$ 32.35 1350 7.17 15.5 -75 1933 $ 440$ 25.05 1400 7.18 10.1 -71 1921 $ 40.7$ 35.45 1420 7.18 10.1 -71 1928 $ 32.9$									
Total Well Depth: 3U.34 feet TOIC End Time: 1520 Depth to Pump: 35.30 feet TOIC Bailer Bailer BP Pump Initial Pump Rate: 1 Uppl / gpm Pump Type: 44 inches 3064-3 adjusted to: at	EEPC Project	No .: EN-	003231-	0001-0	5710		Date:	10/18	117
Total Well Depth: 32.34 feet TOICEnd Time: 1520 Depth to Pump: 35.30 feet TOICEnd Time: 1520 Depth to Pump: 35.30 feet TOICInitial Pump Rate:1 $1000 / gpmadjusted to:atminutesWell Diameter:4 inchesadjusted to:atminutesWell Volume:8.78 gallonsTime (gallons/iters)(s.u.)(PCPF)(mV)(uslem mS/cm)Time (gallons/iters)(s.u.)Pump.ORPconductivityDOTurbidityWaterTime (gallons/iters)(s.u.)(PCPF)(mV)(uslem mS/cm)(mg/L)Time (gallons/iters)(s.u.)Total Well Total Well Volume:Time (gallons/iters)(s.u.)Time:(S.u.)(PCPF)(mV)(uslem mS/cm)(mg/L)Turbidity WaterTime:(S.u.)(S.u.)(S.u.)(S.u.)(S.u.)$	tial Depth to W	/ater: 22.94	feet TOIC			S	Start Time:	1340)
Depth to Pump: 35.30 feet TOIC Bailer Pump Initial Pump Rate:							End Time:	152	0
adjusted to: at minutes Well Diameter: $\frac{1}{4}$ inches adjusted to: at minutes 1x Well Volume: 8:78 gallons Time (gallons/iters) pH Temp. ORP Conductivity DO Turbidity Water 1340 O 7.30 14:3 -98 1955 - 10.05 22.35 1350 7.17 15:5 -78 1933 - 7.40 25.05 1400 5 7.18 10.1 -50 1917 - 7.20 25.05 1400 5 7.18 10.1 -51 1921 - 40.9 25.05 1400 5 7.18 10.1 -51 1921 - 40.7 25.45 1400 7.20 15.9 -0.00 1918 - 70.8 25.75 1430 7.18 15.9 -0.01 1948 - 87.4 25.74 1430 7.20 10.0 -70 1948 - 87.3 25.73 <							Bailer	Ø	Pump
adjusted to: at minutes 1x Well Volume: State - 44 Time (gallons/iters) pH Temp. ORP Conductivity DO Turbidity Water Time (gallons/iters) (S.U.) (%CPF) (mV) (ms/cm ms/cm) ORP Turbidity Water Time (gallons/iters) ORP Conductivity DO Turbidity Water 1340 T.30 (u: 3 - 96 Figs: - Nue& Suct - 44 Time (gallons/iters) (u: 3 - 96 Turbidity Water 1340 T.18 (u: 1 Suct - 44 1400 T.18 (U: 1 Time (93:5 - Time (92:5:5 1430 T.16 Suct - 44 1430 T.16	Initial Pump I	Rate: 1	Lpm / gpm			P	ump Type:	tento	xon
Purge Volume (gallons/iters) pH (s.u.) Temp. ($CCPF$) ORP (mV) Conductivity ($us/cm mS/cm$) DO Turbidity (mg/L) Water Level (feet) 1340 O 7.30 14.3 -98 1955 - 10.68 22.25 1350 7.17 15.5 -78 1933 - 7.40 25.05 1400 7.18 10.1 -50 1917 - 7.20 25.05 1400 5 7.18 10.1 -71 1921 - 10.7 25.05 1410 5 7.18 10.1 -71 1921 - 10.7 25.05 1410 5 7.18 10.1 -71 1921 - 10.7 25.45 1430 7.18 15.7 09 1935 - 79.4 25.74 1430 7.20 16.0 -70 1948 - 87.3 25.73 1500 15 7.23 15.8 -88 1982	adjuste	ed to:	at		_ minutes	Well	Diameter:	4	inches
Purge Volume (gallons/iters) pH (s.u.) Temp. ($CCPF$) ORP (mV) Conductivity ($us/cm mS/cm$) DO Turbidity (mg/L) Water Level (feet) 1340 O 7.30 14.3 -98 1955 - 10.68 22.25 1350 7.17 15.5 -78 1933 - 7.40 25.05 1400 7.18 10.1 -50 1917 - 7.20 25.05 1400 5 7.18 10.1 -71 1921 - 10.7 25.05 1410 5 7.18 10.1 -71 1921 - 10.7 25.05 1410 5 7.18 10.1 -71 1921 - 10.7 25.45 1430 7.18 15.7 09 1935 - 79.4 25.74 1430 7.20 16.0 -70 1948 - 87.3 25.73 1500 15 7.23 15.8 -88 1982	adjuste	ed to:	at		minutes	1x We	II Volume:	8.78	gallons Stat-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-	Contraction of the second		Provide States of the second	and the second se	a second state of the seco	and the second second	Turbidity	Water
1350 7.17 15.5 -78 1933 -740 25.05 1400 7.18 10.1 -80 1917 -7.20 25.08 1410 5 7.18 10.1 -71 1921 -40.7 25.05 1410 5 7.18 10.1 -71 1921 -40.7 25.45 1420 7.20 15.0 -60 1918 -70.8 25.75 1430 7.20 15.0 -60 1918 -70.8 25.74 1430 7.20 10.0 -70 1948 -87.3 25.74 1430 7.20 10.0 -70 1948 -87.3 25.74 1450 7.20 10.1 -89 1983 03.0 25.73 1500 15 7.23 15.8 -88 1982 -32.9 25.73 1520 10 $pugdddy$ $uadd for undy day$ $uadd for undy day$ $uadd for undy day$ $aab - 32.9$ 25.71 <		(gallons/liters)					(mg/L)		
1400 7.18 10.1 -80 1917 -7.20 25.08 1410 5 7.18 10.1 -71 1921 -40.9 25.45 1420 7.20 (5.6) -600 1918 -70.8 25.45 1430 7.20 (5.6) -600 1918 -70.8 25.75 1430 7.18 1587 109 1935 -79.4 25.74 1430 7.20 10.0 -70 1948 -87.3 25.74 1430 7.20 10.0 -70 1948 -87.3 25.74 1450 7.20 10.0 -70 1948 -87.3 25.73 1500 15 7.23 15.8 -88 1983 -100.00 25.73 1500 15 7.23 15.8 -88 1982 -32.9 25.71 1520 100 17.1 -87 1989 -32.9 25.71 1530 19.9		0					-		
1410 5 7.18 10.1 -71 1921 -40.9 35.45 1430 7.30 15.4 -40 1918 -70.8 35.75 1430 7.18 1587 109 1935 -74.4 25.44 1430 7.30 10.0 -70 1948 -87.3 25.74 14450 7.20 10.0 -70 1948 -87.3 25.74 14450 7.20 10.0 -70 1948 -87.3 25.74 1450 7.20 10.0 -70 1948 -87.3 25.73 1500 7.22 10.1 -89 1983 -100.0 25.73 1500 15 7.23 15.8 -88 1982 -32.9 25.73 1520 10 $pugddug$ $waither for wather aschauge aschauge aschauge Final Sample Data: 7.19 17.1 -87 1989 -32.9 25.71 $							-		
1/20 $1/20$ $1/5.6$ -60 1918 -70.8 25.75 1430 7.16 15.6 -60 1918 -70.8 25.74 1430 7.16 15.7 169 1935 -79.4 25.74 1440 10 7.20 10.0 -70 1948 -87.3 25.74 1450 7.20 10.0 -70 1948 -87.3 25.74 1450 7.20 10.1 -81 1966 -106.0 25.73 1500 15 7.23 15.8 -88 1982 -32.9 25.73 1500 15 7.23 15.8 -88 1982 -32.9 25.73 1520 10 $Duogd duy$ $waither for reachange$ $-1000000000000000000000000000000000000$		5		1			-		
1430 7.1% $15\%7$ 10% 1935 $ 79.4$ 25.74 1440 $j0$ 7.20 10.0 -70 194% $ 87.3$ 25.74 1450 7.20 10.0 -70 194% $ 87.3$ 25.74 1450 7.20 10.1 -81 1906 $ 106.0$ 25.73 1500 7.22 10.1 -89 1983 $ 03.0$ 25.73 1510 15 7.23 $15.\%$ -8% 1982 $ 32.9$ 25.73 1520 10 $p.u.ogcd.dug.$ $wait.for .echauge$ $ -$ 1520 10 $p.u.ogcd.dug.$ $wait.for .echauge$ $ -$							-		
iyyu iQ							-	1	
1450 7.20 10.1 -81 1900 - 100.0 25.73 1500 7.22 10.1 -89 1983 - 03.0 25.73 1510 15 7.23 15.8 -88 1982 - 32.9 25.73 1520 10 10 10 10.8 25.73 15.8 -88 1982 - 32.9 25.73 1520 10 10 10.4 10.8 10.8 25.73 25.73 1520 10 10 10.8 10.8 10.8 25.73 1520 10 10.4 10.8 10.8 25.73 1520 10 10.4 10.8 10.8 25.73 1520 10 11.4 10.8 10.8 10.8 1520 10 10.8 10.8 10.8 10.8 1520 10 10.8 10.8 10.8 10.8 1520 10 10.8 10.8 10.8 10.8 1520 10.8 10.8	A STATE A STATE OF	iD					-	the second s	Contraction of the second second
1500 7.22 10.1 -89 1983 - 03.0 25.73 1510 15 7.23 15.8 -88 1982 - 32.9 25.73 1520 10 Puggd dug. weit for vechange - - - 1520 10 Puggd dug. weit for vechange - - - 1520 10 Puggd dug. weit for vechange - - - 1520 10 Puggd dug. weit for vechange - - - 1520 10 Puggd dug. weit for vechange - - - 1520 10 Puggd dug. weit for vechange - - - 1520 10 Puggd dug. - - - - - 1520 10 - - - - - - - 1520 - 7.19 17.1 - - - 32.9 25.71 3201 - - - - - 32.9 </td <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>and the second second</td> <td></td>		10					-	and the second second	
ISIN IS 7.23 IS.K -88 I982 -32.9 35.73 ISON IVP Purged duy. weith for recharge							-	63.0	
1520 10 puggd dug. wait for recharge Final Sample Data: 7.19 17.1 -87 1989 - 32.9 25.71 Sample ID: MW-SR Duplicate? Dupe Samp ID:		15					_	32.9	
Final Sample Data: 7.19 17.1 -87 1989 - 32.9 25.71 Sample ID:	1100				wait.		nge		
ample ID: <u>MW-SR</u> <u>Duplicate?</u> Dupe Samp ID:		(0			0		
ample ID: <u>MW-SR</u> <u>Duplicate?</u> Dupe Samp ID:		1							
ample ID: <u>MW-SR</u> <u>Duplicate?</u> Dupe Samp ID:			710			1966		37.0	2571
	Final Sa	mple Data:	17.17	1 + 1	-87	1131		ا بهر	27.11
			2		77.777.777.777.7	The second se	Samp ID;		
			Samp	ed wit	h Daile	F			
□ SVOCs Ø SW846									
□ SVOCs Ø SW846	Metals			~	Sec. 1				

	UFFALO CORPO			nt View Driv	ve, Lancaster, New	York 1408	6		
	cation: Daw,	WE	LL PURGE 8		RECORD	Well ID:	MW-	95	
	t No .: EN-O	A CONTRACT OF				Date:	1 1	12	
								-	
	Water: <u>9.89</u>	feet TOIC					010		
	Depth: 15.93	feet TOIC					093		
	Pump: 13.95	feet TOIC				Bailer		Pump	
	Rate:						typhe		
2363	ted to:	at		minutes		Diameter		inches	3vol = 3 g
adjus	ted to:	at		minutes	1x We	ell Volume:	1	gallons	Sud= Sgal
-	Purge Volum		Temp.	ORP	Conductivity	DO	Turbidity	Water	S 1 1 1 1 1
Time 0905	gallons/liters		(°C/°F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (fe	
0910		7.63	18.2	100	432.9		71000	- 1 -	
0915		7,62	18.7	83	4971	-	39.3	11.9	A
0920		7.39	19.2	105	612,7	-	13.8	12.4	
0925	3.5	7.19	19.2	109	902.7	-	10,22	Jai 1	
0930.	0	d dry	war	for_	kechana	a 41	en Sam	de -	>
0150	punge	any	. when	401-	rechand	K, Th	on Doom	pu	
	1								
-					-				
Final S	ample Data:	7.19	19.3	-	900,4	-	21000		
ample ID:	<u>Mw-95</u> 0950 <u>Methods:</u>	Comments:		Duplicate? MS/MSD?	Dupe	Samp ID:		-	
⊠ VOCs		Samp	de with	baile	r				
] SVOCs	⊠ SW846								
] PCBs] Metals	Drink. Wtr.	# miley	or logg	cd					

te Name/Locat		: 716/684-08		int View Driv	e, Lancaster, New	York 14086	•	
te Name/Local		WE		SAMPLE	RECORD			414
	tion: Davist	buland	Oil Cor	pratio	m -	Well ID:	MW-	IOR
EEPC Project	No .: EN-0					Date:	10/1-	7/12
ial Depth to W	ater: 19.35	feet TOIC			S	Start Time:	10	
Total Well De	epth: 35.59	feet TOIC				End Time:	125	0
Depth to Pu	ump: 33.59	feet TOIC				Bailer	Þ	Pump
Initial Pump F	Rate: /	Lpm / gpm			Pu	ump Type:	typh	oon
adjuste	ed to:	at		minutes		Diameter:	4	inches 300
adjuste	ed to:	at	_	minutes	1x We	Il Volume:	17.12	gallons Sud
Time	Purge Volume (gallons/liters)	рН (s.u.)	Temp. (°C.°F)	ORP (mV)	Conductivity (µS/cm mS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet)
1000	0	744	13.9	152	936.8	-	4.62	19.60
00		7.34	13.8	157	938.8	-	5.00	20.21
1020	5	7.31	13.8	155	907.0	-	3.23	20.52
1030		7.33	13.9	143	896.0	-	1.38	20.74
1040	+0-	7.32	14.1	135	894.9		1.17	20.75
1050	10	7.41	14.2	142	898.3	-	1.44	2097
100		7.34	13.9	130	892.7	-	1.03	21.45
1110	15	7.30	13.9	131	892.5	-	0.72	21.85
1120	20	7.31	13.9	129	900.8	1	0.90	22.05
1130	25	7.31	13.9	125	902.1	-	2.91	22.31
1040		7.32	14.1	122	863.7	-	3.92	22.42
1150		7.35	14.3	120	748,2	-	6.01	22.65
1200	35	7.30	14.4	119	810.9	-	3.07	22.47
1210	40	7.29	14.4	112	840.1		3.02	
1220		7.29	14.4	109	899.6	-	2,58	22.44
	mple Data:	7.29	14.4	104	932.1	-	0.97	22.21

.

-

	FFALO CORPORA 716/684-8060, Fax			ant View Driv	ve, Lancaster, New	York 14086	5	
			L PURGE	0				
te Name/Loca	tion: Davis	Stoulo	und oil	Corp.		Well ID:	MW-1	OR
EEPC Project	No .: EN-C	03231-	0001-03	170		Date:	10/17	-112
ial Danth to M	lator	fact TOIC		1.1	0	Start Time		
Tetel Mall D	anth:	feet TOIC	Dee fi	ist po	j ser .			
Denth to D	/ater:	feet TOIC	info	imat	on n			Rump
Deptilitor	ump	leet 1010			_			L. C. LAND
	Rate:							
	ed to:			_minutes				
adjuste	ed to:	International Contractored		minutes		-		
Time	Purge Volume (gallons/liters)	рН [*] (s.u.)	Temp. (°C/°F)	ORP (mV)	Conductivity (µS/cm inS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet)
1230	45	7.30	14.4	104	919.6	(119/2)	1.80	22.41
1240	-15	7.33	14.5	104	913.4	-	1.68	22.21
1250	50	7.29	14.4	109	932,1	-	0.97	22.21
1230	00	tecki	19.9	104	1041		0.17	Low
						12		
		× 1						
Einel Co	male Dates							
Final Sa	mple Data:			L				
ample ID:				Duplicate?		Samp ID:		
ample Time:				MS/MSD?				
nalyses:	Methods:	Comments:						_
a de later des	CLP	Sea	fus	Da Por	Saudin	of Ser a	pert	8
2 VOCs				1),				
	☑ SW846							
SVOCs	☑ SW846 □ Drink. Wtr.							

×

ite Name/Loca EEPC Project	tion Day.	NA/EI						
		Hewlen			RECORD	Well ID:	125	
	No.: UND	03431-0	2201-0	23		Date:	101:81	12
	/ater: epth: <u>Ĵ,</u> ⊆ Ø	feet TOIC					1024	
Depth to P	ump: <u>/4.65</u>	feet TOIC				Bailer		Pump
Initial Pump I	Rate: 1 (Lpm / gpm					Typh	
adjuste	ed to:	at		_minutes			2	
adjuste	ed to:	at		_ minutes	1x We	II Volume:	1.47	_gallons ∡3 ᠂{
	Purge Volume	рН	Temp.	ORP	Conductivity	DO	Turbidity	and the second
Time 950	(gallons/liters)	(s.u.)	(°C/′F)	(mV)	(µS/cm mS/cm) 996.2	(mg/L)	(NTU) 14.2	Level (feet) 5.92
156		6.90	632	178	1008	-	7.75	6 09
10:01	2	6.87	63.2	146	1012	-	4.38	6.2.9
10.01	2	6.86	62.9	135	1011	-	2.35	6.29
	14	6.90	62.6	133	1010	-	1.58	6.49
10411	e	10.90	62.6	132	1009		1.11	6.49
1021	Le le	6.91	62.5	130	1006	_	1.15	6.45
1020	7	6.90	62.7	130	1004	-	1.13	6.49
1								
			-		-			
Final Sa	mple Data:	6.90	62.7	130	1004	1	1.13	6.49
	MW-125 1030			D uplicate? MS/MSD?	1 31 /	Samp ID:		
201.11.12.C/	Methods:	Comments: Saud	ed wit	h bil	Y-			
	☑ SW846	_		_				
	Drink. Wtr.							
Metals	□	Sampler(s):	01					

BU Tel	JFFALO CORPOR/ 1: 716/684-8060, Fax	TE CENTE	R 368 Pleasa 44	ant View Driv	ve, Lancaster, New	York 14086	5	
			L PURGE		RECORD	dia da	1205	20
	ation: Jawis							IZR
EEPC Projec	tNo .: EN-C	03231-	0001.1	OBTIO		Date:	10/18	112
ial Depth to \	Nater: 21.30	feet TOIC			S	tart Time:	0920	
	Depth: 31.97						1020	
	No. of the second se	feet TOIC				Bailer	Ø	Pump
Initial Pump	Rate:	Lpm/ gpm			Pu	mp Type:	typher	m
adjus	ted to:	at		minutes	Mall	Diamotor	"44	inchos
	ted to:			minutes	1x We	Il Volume:	6.964	gallons 34
	Purge Volume	pH	Temp.	ORP	Conductivity	DO	Turbidity (NTU)	Water
Time CI2O	(gallons/liters)	(s.u.) 7.40	(°C/°F)	(mV) 74	(µS/cm nS/cm) 867.8	(mg/L)	11.94	Level (feet)
0930	×	7.34	15.0	51	844.4	-	3.87	22.07
0940		7.33	15.2	58	863.7	-	0.71	22.13
0950	5	7.33	15.4	55	844,1	-	021	22.31
000		7.36	15.4	62	863.5	-	0.21	22.37
1010		7.40	15.4	48	863.3	-	0.04	22.31
1020	10	7.34	15.3	51	843.3	-	0.01	22.32
1030	+0-	7.38	15.3	44	863,8	_	0.0	22.31
040		7.42	15.4	47	844.2		0.18	22.31
050	15	7.38	15.5	50	862.2	1	0.19	22.31
100		7.37	15.4	48	864.3		002	22.31
1110		7.38	15.5	52	844.9	-	0.13	22.32
1120	30	7.37	15.4	53	863.4	-	0.13	22.32
Einal S	ample Data:	131	15.11	52	51,211		0,13	27 32
	MW-12R	7.37	15.4	53 Duplicate	543,4 Dune	Samp ID:		22.32
	1025			MS/MSD?		Samp IS.		
nalyses:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Comments:						
1 VOCs		Dans	de wit	h bail	er			
SVOCs	SW846		<u> </u>	-			_	
PCBs	Drink. Wtr.							
] Metals			S.C.					

G 811		sts in the Envir	onment	1.25	e, Lancaster, New			
	716/684-8060, Fa	ix: 716/684-08				TOTK 1408	٥	
ite Name/Loca	ation: Da				neoonb	Well ID:	MW	135
	No.: Ch			-03		Date:	10/1	18/12
	A CARL ST THE ST							56
	Vater: 6-86				S	tart Time:	_ [9	15
	Depth: 14.71						15	
 Construction 	Pump: 1271	777337710				Bailer		Pump
	Rate:	e na staffen av					Typh	
125.00	ed to:	50 I X - 11		minutes			2	inches
adjuste	ed to:	at		minutes	1x We	Il Volume:	1.2	gallons 3
Sec.	Purge Volume	Contraction of the local division of the loc	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.) 7.57	(°C/°F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU) 36.6	Level (feet)
14:56	0	7.36	64.7	81	8643	-	2	8.25
15:01	2	7.35	69.1	70	761.9	-	\$1000	10.35
15:06	3	7.35	66.3	74	624.7 739.8	-	\$1000	14.71
15:11	1		10.1	17	121.0		×000	. (
1515	~ 9	DRY				_		
			-					
						_		
				1				
a second second second			63.5	102	783.6		61000	
	ample Data:	7.95			-11614			

U Te	UFFALO CORPOR/ bl: 716/684-8060, Fax	c 716/684-08	H 368 Pleasa 344 LL PURGE {					
te Name/Loo	cation: Davis	Howlan	rt 0,((op.			MW-	
EEPC Projec	ct No.: EN-0	003231-	0001-0	3770		Date:	10/17	112
ial Depth to	Water: 3.50	feet TOIC			5	Start Time:	2:0	3
	Depth: 12.95	- feet TOIC					2:3	
	Pump: 10.15	feet TOIC				Bailer	' Ø	Pump
Initial Pump	Rate:	Lpm / gpm			P	ump Type:	typha	on
adjus	sted to:	at		minutes		Diameter:	2	inches
adjus	sted to:	at		minutes	1x We	ell Volume:	1.54	gallons 3vol = 4
Time	Purge Volume (gallons/Eters)	рН (s.u.)	Temp. (°C/°F)	ORP (mV)	Conductivity (µS/cm mS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet)
R:03	0	7.01	67.5	170	586.7	-	4.95	3.96
2:08	1	7.04	66.6	131	599.5	-	3.48	4.25
2:13	2	7.05	66.4	94	628.5	-	1.50	458
7:18	3	705	100.7	52	629.9	-	1.20	4.80
2:23		7.06	67.2	77	629.0	-	0:00	4.80
2:28	14	7.06	60.5	103	Geo 618.1	-	0.57	5.02
2:38	5	7.06	66.6	100	617.1	-	0.78	5.00
	Sample Data:	7.06	66.6	101	617.1	-	6.78	5.00

ite Name/Loca	. / 10/064-6000, Fa:	x: 716/684-08		nt View Driv	e, Lancaster, New	York 14086	õ	
ite Name/Loca	1.0		L PURGE					
	ation: Jawis	Howlan	d Oil Co	npray	ioni	Well ID:	MW	YR
EEPC Project	t No .: EN-	003231-	0001-0	07150		Date:	10/17/	12
tial Depth to V	Water: (0.50	feet TOIC			5	Start Time:	135	8
	Depth: 23.75	- 1000 BANK					ILDHE	
	Pump: 22.75	The Market Market Street				Bailer		Pump
		Lpm/ gpm					yythe	C. C. P.
	ted to:	-		minutes	Well	Diameter:	aH	inches
	ted to:	at		minutes	1x We	Il Volume:	11.00	gallons 31d = 33
	Purge Volume	-	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.)	(°C/°F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet)
1358	0	7.30	19.0	-22	195.2	-	5.17	7.37
1408		7.38	17.6	-92	818.8	-	12.1	7.34
1415		7.42	17.3	-87	985,1	-	4.47	7.55
1428	4	7.48	17.4	-64	1098	-	1.67	7.62
1438	5	7.53	17.3	-37	1171		1.30	7.63
1448		7.52	172	-27	1189	-	0.60	7.52
1458		7.48	17.0	-26	1120	-	0.08	7.808
1508		7.52	17.0	-24	1170	-	0.40	7.81
1518	10	7.53	17.1	-22	1195	-	0.22	7.83
1528		7.53	17.0	-15	1160	-	0.56	7.02
1538	15	7.48	14.7	-18	1138	-	0.62	7.83
1548		7.53	17.0	-23	1098	-	0.18	7.83
1568	20	7,50	10.9	-20	11.48	-	0.37	7.83
1408		7.49	10.8	-15	1131	-	0.45	
1618	25	7.48	14.5	-18	1153		0.26	7.83
1410	ample Data:	7.50	10.4	22	1137		0,29	7.82

.

	FALO CORPORA 16/684-8060, Fax			nt View Driv	e, Lancaster, New	York 14086	;	
V lei: 7	10/084-8000, Fax		L PURGE 8		RECORD			
ite Nome/Leasti	on: Davis						0.11.2-	14R
								and the second sec
	10.: <u>EN-0</u>							17/12
tial Depth to Wa	iter:	feet TOIC	Seel	STST D	nge s	tart Time:		/
Total Well De	pth:	feet TOIC	Part	No Cen	watin 1	End Time:	/	
Depth to Pu	mp:	feet TOIC	for		ò	Bailer	D-	Pump
	ate:	1950 6555					6	
Contract of the second	to:			minutes				inches
1000				minutes				
	I to:	and the second se		Section and residences		-	State of the local division of the local div	And in case of the local division of the
the second se	Purge Volume	рН (s.u.)	Temp. (°C/°F)	ORP	Conductivity (µS/cm mS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet)
	(gallons/liters)	7.48		(mV) -19	1147	(mg/⊑)	0.34	7.81
1628	22		14.4	-22		-	0.23	7.82
1638	33	7.46			1131		0.29	
1648	34	1.50	16.4	-22	1137		Under	7.82
						_		
					1			
				-				
		1						
		1						
							1	
Final San	ple Data:				1			
				_				
Sample ID:				Duplicate'		Samp ID:		
Sample Time:				MS/MSD?	Ш.			
Analyses: <u>N</u>	lethods:	Comments:					~	-
VOCs [] CLP	See f	isst pe	age L	on Samp	dive i	nform	ation
SVOCs	Z SW846	<u> </u>	1		•			
	Drink. Wtr.							
□ Metals I								
o (

	5/684-8060, Fa:			int View Driv	e, Lancaster, New	York 14086	Ĵ		
		WE	LL PURGE	& SAMPLE	RECORD			1.11	
ite Name/Location	: Davo	Herwla	1.0 h	Corpore	ation	Well ID:	MW-ISR		
EEPC Project No	: EN-00	3231-0	00100	3770		Date:	10/14	112	
ial Depth to Wate	3030	feet TOIC			9	Start Time:	155	5	
Total Well Depth: <u>14.39</u> Depth to Pump: <u>13.35</u> Initial Pump Rate: adjusted to:		feet TOIC					1745		
		feet TOIC		1		Bailer Pump Type:		Pump <u>+uphorem</u> <u>4"</u> inches <u>10.42</u> gallons 3vol Svol Turbidity Water	
					Pu				
		at		minutes					
adjusted t	o:	at		minutes	1x We	Il Volume:	10.42	gallons Svot	
	urge Volume allons/liters)	рН (s.u.)	Temp. (℃/°F)	ORP (mV)	Conductivity (µS/cm mS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet)	
1555	0	7.40	13.3	101	1088		7.00	15.05	
1405		7.11	13.7	74	1064	-	5.30	16:03	
1625		7.11	13.8	75	995.7	_	4.00	16.07	
1435		7.12	13.8	- 41	900.1	-	2.51	16.20	
1645		7.10	13.8	-69	914.3	-	1.41	14.30	
1655		7.08	13.6	Vo	966,9	-	1.40	10.33	
1765		7.13	13.6	40	824.4	_	1.28	14.35	
1715		7.04	13.0	59	901.1	-	0.63	16.35	
1725		7.08	13.5	43	997.2		054	16.37	
1735		7.08	13.5	71	1038	-	0.53	10.35	
1745	45	7.09	13.5	77	1092	-	0.50	14.35	
Final Samp	le Data:	7.09	13.5	77	1092	-1	0.50	16.35	

Site Name/Loca	. 710/084-8000, Fa.	x: 716/684-08	R 368 Pleasa 44	int View Driv	e, Lancaster, New	v York 14086	5	
site Name/Loc				& SAMPLE	RECORD			
	- 11-1 · · · · · · · · · · · · · · · · ·		Contraction of the second					W-lep
EEPC Project	t No .: EN-00	3231.000	1-03 110	>		Date:	10/10	112
itial Depth to V	Water: 19.14	feet TOIC			1	Start Time:	1310	
Total Well [Depth: 31.20	feet TOIC				End Time:	1438	5
Depth to F	Pump: 30.20	feet TOIC				Bailer		Pump
Initial Pump	Rate:	_Lpm / gpm			P	ump Type:	typher	n
	ted to: 325-	2-1-1-201-1-1		minutes	Mal	Diamotor	11	inchos
	ted to:			minutes	1x We	ell Volume:	7.87	gallons عاماً
Time	Purge Volume	pH	Temp.	ORP (m)()	Conductivity	DO	Turbidity	Water Level (feet)
Time	(gallons/liters)	(s.u.) 7.19	(°C/?F) 15.2	(mV) -221	(µS/cm mS/cm)	(mg/L)	(NTU) 4.0	
1310	2	7.14	15.8	-199	1576	-	51.4	21.39
1330	~	7.111	15.7	- 199	1568	-	21.0	22.38
1340	5	7.15	15.8	-187		-	15.4	22.90
1350		7.25	10.1	-172	1441	-	32.0	23.52
1400		725	16.1	-14	1164		44.0	
1410		7.29	16.4	-135	870.3	-	115	25.02
1420	8.5	7.26	16.7	-84	919.6	-	1170	25.90
1430		7.20	14.2	-48	973.2	-	1869	26.40
1438 -	well pu	inges a	min -			· · · · · ·		
		0	0					
				·				
		110			12-1		1	2
	ample Data:	7.19	13.8	-125	1320	-	21000	24.40

November 05, 2012

Service Request No: R1207074

Mr. Michael Aloi Ecology And Environment, Incorporated 368 Pleasantview Drive Lancaster, NY 14086

Laboratory Results for: Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03110

Dear Mr. Aloi:

Enclosed are the results of the sample(s) submitted to our laboratory between October 17, 2012 and October 19, 2012. For your reference, these analyses have been assigned our service request number **R1207074**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Please contact me if you have any questions. My extension is 7471. You may also contact me via email at Karen.Bunker@alsglobal.com.

Respectfully submitted,

Columbia Analytical Services, Inc. dba ALS Environmental

garen Burles

Karen Bunker Project Manager

Pagel of 187

ADDRESS 1555 Jefferson Rd, Building 300, Suite 350, Rochester, NY 14523 PHONE 585-288-5380 FAX 585-288-8475 Columbia Analytical Services, Inc. Part of the ALS Group A Campbell Brothers Limited Company

nulronmental.

www.caslab.com = www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Client: Ecology & Environment Davis Howland Oil Co Site Water - Wells Project: Sample Matrix: Water

Service Request No.: R1207074 Date Received:

10/17-19/2012

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD).

Sample Receipt

Twenty-two water samples were received for analysis at ALS/Columbia Analytical Services on 10/17 - 19/2012. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator between 1°C and 6°C upon receipt at the laboratory.

General Chemistry Parameters

pH was not performed in the field as recommended by EPA to meet a holding time of "immediate." An "H" flag indicates the problem. pH is a temperature dependent analysis, so the pH and temperature analysis were conducted by the laboratory as soon as possible upon receipt.

No other analytical or quality control problems were encountered during analysis.

Total Petroleum Hydrocarbons by DOH Method 310-13

No analytical or quality control problems were encountered during analysis.

Volatile Organic Compounds by EPA Method 601/602

2-Chloroethylvinyl ether is degraded by samples preserved to pH<2. The recoveries of this compound may be biased low.

Site OC is included for sample MW-2S (R1207074-015). All Matrix Spike (MS) and MS Duplicate (MSD) recoveries were within limits except for 2-Chloroethylvinyl ether due to the above noted issue. The recoveries are flagged as "*".

The initial and continuing calibration criteria were met for all analytes except the ICAL performed on 4/9/11 in which Tetrachloroethene (11.5%), Bromomethane (10.3%), Carbon Tetrachloride (10.6%), trans-1,3-Dichloropropene (10.8%), Dibromochloromethane (10.9%), Chlorobenzene (10.7%), and Bromoform (10.7%) exceeded the 10% limit. The above compounds do not satisfy criteria of low-point std (0.5ppb) being within 30% of true-value when placed on LR fit. The above compounds do satisfy criteria of low-point standard being within 30% OF True-value when using average RF fit, therefore these compounds wil remain on average RF fits. The Continuing Calibration Verification (CCV) and Laboratory Control Sample (LCS) had acceptable recoveries for these compounds. Only the samples MW-1S and MW-9S (R1207074-006 and -020 respectively) were affected as they had hits for Tetrachloroethene above the Method Reporting Limit (MRL). All data has been reported,

Hits above the calibration range of the standards are flagged as "E", estimated. The sample is then repeated at the appropriate dilution for the hit. Both sets of data are included in the report. Subsequent hits in the dilution are flagged as "D".

No other analytical or quality control problems were encountered during analysis.

Approved by Teon Beenlee Date 11/6/12

Page 2 R1207074 Continued

Semivolatile Organic Compounds by EPA Method 625

Site QC is included for sample MW-2S (R1207074-015). All Matrix Spike (MS) and MS Duplicate (MSD) recoveries were within limits except for Benzidine. LCS and DLCS recoveries were within QC acceptance limits with the exception of Benzidine which was outside of acceptable range low in the LCS and DLCS. Sample data may be biased low. The Relative Percent Difference between the LCS and DLCS was acceptable except for Benzidine. QC outliers are "*" flagged on the appropriate form.

No other analytical or quality control problems were encountered during analysis.

aren Brenker) Date 11/6/12 Approved by

CASE NARRATIVE

This report contains analytical results for the following samples: Service Request Number: R1207074

<u>Lab ID</u>	<u>Client ID</u>
R1207074-001	MW-3S
R1207074-002	MW-3R
R1207074-003	TB101612
R1207074-004	MW-16R
R1207074-005	MW-15R
R1207074-006	MW-1S
R1207074-007	TB101712
R1207074-008	MW-10R
R1207074-009	MW-10RQ
R1207074-010	MW-14S
R1207074-011	MW-14R
R1207074-012	TB101812
R1207074-013	MW-12S
R1207074-014	MW-12R
R1207074-015	MW-2S
R1207074-016	MW-2R
R1207074-017	MW-8R
R1207074-018	MW-13S
R1207074-019	TB101922
R1207074-020	MW-9S
R1207074-021	RB-101912
R1207074-022	MW-5R

REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.
- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (>100% Difference between two GC columns).
- X See Case Narrative for discussion.

Rochester Lab ID # for State Certifications¹

NELAP Accredited	Maine ID #NY0032	New Hampshire ID #			
Connecticut ID # PH0556	Nebraska Accredited	294100 A/B			
Delaware Accredited	Nevada ID # NY-00032	North Carolina #676			
DoD ELAP #65817	New Jersey ID # NY004	Pennsylvania ID# 68-786			
Florida ID # E87674	New York ID # 10145	Rhode Island ID # 158			
Illinois ID #200047		Virginia #460167			

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to <u>http://alsglobal.com/environmental/laboratories/rochester-environmental-lab.aspx</u>

ALS GROUP USA, CORP. Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

H:\FORMS\QUALIF_routine.DOC

COLUMBIA ANALYTICAL SERVICES, INC. Now part of the ALS Group

Analytical Report

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTODate Collected:10/16/12 1230Sample Matrix:WaterDate Received:10/17/12Sample Name:MW-3SEnvironment, IncorporatedBasis:Lab Code:R1207074-001Basis:NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	6.88	pH Units		1	NA	10/17/12 18:36	H
Temperature of pH Analysis	SM 4500-H+ B	20.1	deg C		1	NA	10/17/12 18:36	Η

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/16/12 1230 10/17/12
Sample Name:	MW-3S	Units:	
Lab Code:	R1207074-001	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: Data File Name:	601/602 1008.run			Analysis Lot: 315240 Instrument Name: R-GC-03 Dilution Factor: 1
CAS No.	Analyte Name	Result Q	MRL	Note
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0	
107-06-2	1,2-Dichloroethane	1.0 U	1.0	
78-87-5	1,2-Dichloropropane	1.0 U	1.0	
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0	
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0	
71-43-2	Benzene	1.0 U	1.0	
75-27-4	Bromodichloromethane	1.0 U	1.0	
75-25-2	Bromoform	1.0 U	1.0	
74-83-9	Bromomethane	1.0 U	1.0	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	
08-90-7	Chlorobenzene	1.0 U	1.0	
75-00-3	Chloroethane	1.0 U	1.0	
7-66-3	Chloroform	1.0 U	1.0	
74-87-3	Chloromethane	1.0 U	1.0	
24-48-1	Dibromochloromethane	1.0 U	1.0	
5-09-2	Methylene Chloride	1.0 U	1.0	
00-41-4	Ethylbenzene	1.0 U	1.0	
27-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	
08-88-3	Toluene	1.0 U	1.0	
9-01-6	Trichloroethene (TCE)	1.0 U	1.0	
5-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	
5-01-4	Vinyl Chloride	1.0 U	1.0	
	cis-1,2-Dichloroethene	1.0 U	1.0	
0061 01 5	ais 1.2 Disklananna an a			

10061-01-5

179601-23-1

95-47-6

156-60-5

10061-02-6

cis-1,3-Dichloropropene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

m,p-Xylenes

o-Xylene

1.0 U

2.0 U

1.0 U

1.0 U

1.0 U

1.0

2.0

1.0

1.0

1.0

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/16/12 1230 10/17/12
Sample Name:	MW-3S	Units:	Percent
Lab Code:	R1207074-001	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1008.run

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
3-Fluorochlorobenzene	85	78-142	10/24/12 15:04	
Bromochloromethane	80	48-120	10/24/12 15:04	
3-Fluorochlorobenzene (PID)	88	83-126	10/24/12 15:04	

Client:	Ecology And Environment, Incorporated	Service Request: R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Date Collected: 10/16/12 1230
Sample Matrix:	Water	Date Received: 10/17/12

Date Received: 10/17/12 Date Extracted: 10/22/12 Date Analyzed: 10/23/12 22:45

> Units: µg/L Basis: NA

Sample Name:MVLab Code:R12

MW-3S R1207074-001

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN539.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note
120-82-1	1,2,4-Trichlorobenzene	4.7 U	4.7	
122-66-7	1,2-Diphenylhydrazine	4.7 U	4.7	
88-06-2	2,4,6-Trichlorophenol	4.7 U	4.7	
120-83-2	2,4-Dichlorophenol	4.7 U	4.7	
105-67-9	2,4-Dimethylphenol	4.7 U	4.7	
51-28-5	2,4-Dinitrophenol	47 U	47	
121-14-2	2,4-Dinitrotoluene	4.7 U	4.7	
606-20-2	2,6-Dinitrotoluene	4.7 U	4.7	
91-58-7	2-Chloronaphthalene	4.7 U	4.7	
95-57-8	2-Chlorophenol	4.7 U	4.7	
88-75-5	2-Nitrophenol	4.7 U	4.7	
91-94-1	3,3'-Dichlorobenzidine	4.7 U	4.7	
534-52-1	4,6-Dinitro-o-cresol	47 U	47	
101-55-3	4-Bromophenyl Phenyl Ether	4.7 U	4.7	
59-50-7	4-Chloro-m-cresol	4.7 U	4.7	
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7 U	4.7	
100-02-7	4-Nitrophenol	47 U	47	
83-32-9	Acenaphthene	4.7 U	4.7	
208-96-8	Acenaphthylene	4.7 U	4.7	
120-12-7	Anthracene	4.7 U	4.7	
56-55-3	Benz(a)anthracene	4.7 U	4.7	
92-87-5	Benzidine	94 U	94	
50-32-8	Benzo(a)pyrene	4.7 U	4.7	
205-99-2	3,4-Benzofluoranthene	4.7 U	4.7	
191-24 - 2	Benzo(g,h,i)perylene	4.7 U	4.7	
207-08-9	Benzo(k)fluoranthene	4.7 U	4.7	
108-60-1	Bis(1-chloroisopropyl) Ether	4.7 U	4.7	
111-91-1	Bis(2-chloroethoxy)methane	4.7 U	4.7	······································
111-44-4	Bis(2-chloroethyl) Ether	4.7 U	4.7	
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7 U	4.7	
85-68-7	Butyl Benzyl Phthalate	4.7 U	4.7	
218-01-9	Chrysene	4.7 U	4.7	
84-74-2	Di-n-butyl Phthalate	4.7 U	4.7	

.

Client:	Ecology And Environment, Incorporated	Service Request: R120707	4
Project:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Date Collected: 10/16/12	1230
Sample Matrix:	Water	Date Received: 10/17/12	

Date Extracted: 10/22/12 Date Analyzed: 10/23/12 22:45

> Units: µg/L Basis: NA

Sample Name: Lab Code: MW-3S R1207074-001

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN539.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7		
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7	······································	
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7	· · ·	
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7		· ···· · ·-
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
2,4,6-Tribromophenol	86	28-157	10/23/12 22:45	
2-Fluorobiphenyl	84	39-119	10/23/12 22:45	
2-Fluorophenol	47	10-105	10/23/12 22:45	
Nitrobenzene-d5	81	37-117	10/23/12 22:45	
Phenol-d6	34	10-107	10/23/12 22:45	
p-Terphenyl-d14	90	40-133	10/23/12 22:45	

Client:	Ecology And Environment, Incorporated	Service Request: R1207074	
Project:	Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO	Date Collected: 10/16/12 123	0
Sample Matrix:	Water	Date Received: 10/17/12	
		Date Extracted: 10/23/12	

Date Extracted: 10/23/12 Date Analyzed: 10/24/12 08:30 Units: µg/L

Basis: NA

Sample Name:MW-3SLab Code:R1207074-001

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method:NY 310-13Prep Method:MethodData File Name:I:\ACQUDATA\6890I\DATA\102412\An324.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59		
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940		
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940	-,	
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940		

Analyst Summary Report

Client:Ecology And Environment, IncorporatedProject:Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-037			Service Request: R1207074
Sample Name: Lab Code: Matrix:	MW-3S R1207074-001 Water		Date Collected: 10/16/12 Date Received: 10/17/12
Analysis Method	Ex	tracted/Digested By	Analyzed By
601/602 625	И	MURPHY	BWOJTASIEWICZ ZMIAO

DMURPHY

601/602 625 NY 310-13 SM 4500-H+ B

MCYMBAL

DWARD

Now part of the ALS Group

Analytical Report

Client:	Ecology And Environment, Incorporated	Service Request: R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO	Date Collected: 10/16/12 1234
Sample Matrix:	Water	Date Received: 10/17/12
Sample Name: Lab Code:	MW-3R R1207074-002	Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilutior Factor	n Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	7.15	pH Units		1	NA	10/17/12 18:36	Η
Temperature of pH Analysis	SM 4500-H+ B	20.0	deg C		1	NA	10/17/12 18:36	Η

Client: Project:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Service Request: Date Collected:	
Sample Matrix:	Water	Date Received: Date Analyzed:	10/17/12
Sample Name:	MW-3R	Units:	

Units: µg/L Basis: NA

Lab Code:

MW-3R R1207074-002

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

.

Analytical Method:	601/602
Data File Name:	1006.run

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	1.3	1.0		
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	23	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	7.1	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0		
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	14	1.0		
75- 69- 4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	110 E	1.0		
156-59-2	cis-1,2-Dichloroethene	360 E	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	4.0	1.0		
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/16/12 1234 10/17/12
Sample Name:	MW-3R	Units:	Percent
Lab Code:	R1207074-002	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1006.run

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	86	78-142	10/24/12 13:22	· · · · · · · · · · · · · · · · · · ·
Bromochloromethane	86	48-120	10/24/12 13:22	
3-Fluorochlorobenzene (PID)	90	83-126	10/24/12 13:22	

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/16/12 1234 10/17/12
Sample Name: Lab Code: Run Type:	MW-3R R1207074-002 Dilution	Units: Basis:	. •

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1007.run

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	5.0 U	5.0		
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0		
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	20 D	5.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	6.1 D	5.0		
95-50-1	1,2-Dichlorobenzene	5.0 U	5.0		
107-06-2	1,2-Dichloroethane	5.0 U	5.0		
78-87-5	1,2-Dichloropropane	5.0 U	5.0		
541-73-1	1,3-Dichlorobenzene	5.0 U	5,0		
106-46-7	1,4-Dichlorobenzene	5.0 U	5.0		
110-75-8	2-Chloroethyl Vinyl Ether	5.0 U	5.0		
71-43-2	Benzene	5.0 U	5.0		
75-27-4	Bromodichloromethane	5.0 U	5.0	· · · · · · · · · · · · · · · · · · ·	
75-25 - 2	Bromoform	5.0 U	5.0		
74-83-9	Bromomethane	5.0 U	5.0		
56-23-5	Carbon Tetrachloride	5.0 U	5.0		
108-90-7	Chlorobenzene	5.0 U	5.0		
75-00-3	Chloroethane	5.0 U	5.0		
67-66-3	Chloroform	5.0 U	5.0		
74-87-3	Chloromethane	5.0 U	5.0		
124-48-1	Dibromochloromethane	5.0 U	5.0		
75-09-2	Methylene Chloride	5.0 U	5.0		
100-41-4	Ethylbenzene	5.0 U	5.0		
127-18-4	Tetrachloroethene (PCE)	5.0 U	5.0		
108-88-3	Toluene	5.0 U	5.0		
79-01-6	Trichloroethene (TCE)	12 D	5.0		
75-69-4	Trichlorofluoromethane (CFC 11)	5.0 U	5.0		
75-01-4	Vinyl Chloride	95 D	5.0		
156-59-2	cis-1,2-Dichloroethene	390 D	5.0		
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0		
179601-23-1	m,p-Xylenes	10 U	10		
95-47-6	o-Xylene	5.0 U	5.0		
156-60-5	trans-1,2-Dichloroethene	5.0 U	5.0		
0061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0		· · · · · · ·
	· · · ·				

Client: Ecology And Environment, Incorporated Service Request: R1207074 **Project:** Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO Date Collected: 10/16/12 1234 Date Received: 10/17/12 Sample Matrix: Water Date Analyzed: 10/24/12 14:14 Units: Percent Sample Name: MW-3R Basis: NA Lab Code: R1207074-002

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:601/602Data File Name:1007.run

Dilution

Run Type:

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene		78-142	10/24/12 14:14	
Bromochloromethane	85	48-120	10/24/12 14:14	
3-Fluorochlorobenzene (PID)	88	83-126	10/24/12 14:14	

Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Sample Matrix: Water

Service Request: R1207074 Date Collected: 10/16/12 1234 **Date Received:** 10/17/12 Date Extracted: 10/22/12 Date Analyzed: 10/23/12 23:24

Units: µg/L

Basis: NA

Sample Name: Lab Code:

Client:

Project:

MW-3R R1207074-002

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625
Prep Method:	EPA 3510C
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN540.D\

Analysis Lot: 315259 Extraction Lot: 169751 Instrument Name: R-MS-51 **Dilution Factor:** 1

CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7	U	4.7		
122-66-7	1,2-Diphenylhydrazine	4.7	U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7	U	4.7		
120-83-2	2,4-Dichlorophenol	4.7	U	4.7		
105-67-9	2,4-Dimethylphenol	4.7	U	4.7		
51-28-5	2,4-Dinitrophenol	47	U	47		
121-14-2	2,4-Dinitrotoluene	4.7	U	4.7		
606-20-2	2,6-Dinitrotoluene	4.7	U	4.7		
91-58-7	2-Chloronaphthalene	4.7	U	4.7		
95-57-8	2-Chlorophenol	4.7	U	4.7		
88-75-5	2-Nitrophenol	4.7	U	4.7		
91-94-1	3,3'-Dichlorobenzidine	4.7	U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47	U	47		
101-55-3	4-Bromophenyl Phenyl Ether	4.7	U	4.7		
59-50-7	4-Chloro-m-cresol	4.7	U	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7	U	4.7		
100-02-7	4-Nitrophenol	47	U	47		
83-32-9	Acenaphthene	4.7	U	4.7		
208-96-8	Acenaphthylene	4.7	U	4.7		
120-12-7	Anthracene	4.7	U	4.7		
56-55-3	Benz(a)anthracene	4.7	U	4.7		
92-87-5	Benzidine	94	U	94		
50-32-8	Benzo(a)pyrene	4.7	U	4.7		
205-99-2	3,4-Benzofluoranthene	4.7	U	4.7		
191-24-2	Benzo(g,h,i)perylene	4.7	U	4.7		
207-08-9	Benzo(k)fluoranthene	4.7	U	4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7	U	4.7		
111-91-1	Bis(2-chloroethoxy)methane	4.7	U	4.7		
111-44-4	Bis(2-chloroethyl) Ether	4.7	U	4.7		
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7	U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7	U	4.7		
218-01-9	Chrysene	4.7	U	4.7		
84-74-2	Di-n-butyl Phthalate	4.7	U	4.7		

Ecology And Environment, Incorporated	Service Request:	R1207074
Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO	Date Collected:	10/16/12 12
Water	Date Received:	10/17/12
	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO Date Collected:

Date Collected:10/16/12 1234Date Received:10/17/12Date Extracted:10/22/12Date Analyzed:10/23/12 23:24

Units: μg/L Basis: NA

Sample Name:MLab Code:R1

MW-3R R1207074-002

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN540.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7		
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7		
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7		
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7		
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	95	28-157	10/23/12 23:24	
2-Fluorobiphenyl	81	39-119	10/23/12 23:24	
2-Fluorophenol	44	10-105	10/23/12 23:24	
Nitrobenzene-d5	73	37-117	10/23/12 23:24	
Phenol-d6	30	10-107	10/23/12 23:24	
p-Terphenyl-d14	87	40-133	10/23/12 23:24	

Client:	Ecology And Environment, Incorporated	Service Request: R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Date Collected: 10/16/12 1234
Sample Matrix:	Water	Date Received: 10/17/12
		Date Extracted: 10/23/12

Date Analyzed: 10/23/12 Date Analyzed: 10/24/12 08:57

Units: µg/L

Basis: NA

Sample Name:MW-3Lab Code:R1207

MW-3R R1207074-002

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method:NY 310-13Prep Method:MethodData File Name:I:\ACQUDATA\6890I\DATA\102412\An325.D\		Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59			
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940		
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940		

•

Analyst Summary Report

Analysis Method	Extracted/Dige	sted By Analyzed By
Sample Name: Lab Code: Matrix:	MW-3R R1207074-002 Water	Date Collected: 10/16/12 Date Received: 10/17/12
Client: Project:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN	

625 NY 310-13 SM 4500-H+ B DMURPHY DMURPHY BWOJTASIEWIC ZMIAO MCYMBAL DWARD

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/16/12 0900 10/17/12
Sample Name:	TB101612	Units:	
Lab Code:	R1207074-003	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1009.run

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0		<u>_</u>
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0	······	
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0	·····	
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0		
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	1.0 U	1.0		
75 - 69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	1.0 U	1.0		
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0		
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/16/12 0900 10/17/12
Sample Name:	TB101612	Units:	Percent
Lab Code:	R1207074-003	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1009.run

Analysis Lot: 315240 Instrument Name: R-GC-03 Dilution Factor: 1

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	82	78-142	10/24/12 15:55	
Bromochloromethane	80	48-120	10/24/12 15:55	
3-Fluorochlorobenzene (PID)	88	83-126	10/24/12 15:55	

.

Analyst Summary Report

Client: Project:	Ecology And Environment, Incorporat Davis Howland Oil Company Site -We		Service Request:	R1207074
Sample Name: Lab Code: Matrix:	TB101612 R1207074-003 Water		Date Collected: Date Received:	
Analysis Method	E	stracted/Digested By	Analyzed By	4

601/602

BWOJTASIEWICZ

Now part of the ALS Group Analytical Report

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTODate Collected:10/16/12 1610Sample Matrix:WaterDate Received:10/17/12Sample Name:MW-16RBasis:NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	1 Date Extracted	Date Analyzed	Note
рН	SM 4500-H+B	7.14	pH Units		1	NA	10/17/12 18:36	Н
Temperature of pH Analysis	SM 4500-H+ B	20.1	deg C		1	NA	10/17/12 18:36	Н

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/16/12 1610 10/17/12
Sample Name:	MW-16R	Units:	
Lab Code:	R1207074-004	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: Data File Name:	601/602 1010.run			Analysis Lot: 315240 Instrument Name: R-GC-03 Dilution Factor: 1
CAS No.	Analyte Name	Result Q	MRL	Note
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0	
75-34-3	1,1-Dichloroethane (1,1-DCA)	7.4	1.0	
75-35-4	1,1-Dichloroethene (1,1-DCE)	2.6	1.0	
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0	
107-06-2	1,2-Dichloroethane	1.0 U	1.0	
78-87-5	1,2-Dichloropropane	1.0 U	1.0	
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0	
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0	
71-43-2	Benzene	1.0 U	1.0	
75-27-4	Bromodichloromethane	1.0 U	1.0	
75-25-2	Bromoform	1.0 U	1.0	
74-83-9	Bromomethane	1.0 U	1.0	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	
108-90-7	Chlorobenzene	1.0 U	1.0	
75-00-3	Chloroethane	1.0 U	1.0	
57-66-3	Chloroform	1.0 U	1.0	
74-87-3	Chloromethane	1.0 U	1.0	
24-48-1	Dibromochloromethane	1.0 U	1.0	
75-09-2	Methylene Chloride	1.0 U	1.0	· · · · · · · · · · · · · · · · · · ·
00-41-4	Ethylbenzene	1.0 U	1.0	
27-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	
08-88-3	Toluene	1.0 U	1.0	
9-01-6	Trichloroethene (TCE)	1.2	1.0	
5-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	
/5-01-4	Vinyl Chloride	62	1.0	
	cis-1,2-Dichloroethene	140 E	1.0	
	cis-1,3-Dichloropropene	1.0 U	1.0	
79601-23-1	m,p-Xylenes	2.0 U	2.0	
	o-Xylene	1.0 U	1.0	
	trans-1,2-Dichloroethene	2.2	1.0	
0061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0	

---- -----

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/16/12 1610 10/17/12
Sample Name:	MW-16R	Units:	Percent
Lab Code:	R1207074-004	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1010.run

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	85	78-142	10/24/12 16:45	
Bromochloromethane	84	48-120	10/24/12 16:45	
3-Fluorochlorobenzene (PID)	87	83-126	10/24/12 16:45	

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/16/12 1610 10/17/12
Sample Name: Lab Code: Run Type:	MW-16R R1207074-004 Dilution	Units: Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1012.run

CAS No.	Analyte Name	Result Q	MRI	_ Note	
71-55-6	1,1,1-Trichloroethane (TCA)	2.0 U	2,0		
79-34-5	1,1,2,2-Tetrachloroethane	2.0 U			
79-00-5	1,1,2-Trichloroethane	2.0 U	2.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	6.5 D	2.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	2.1 D			
95-50-1	1,2-Dichlorobenzene	2.0 U	2.0		
107-06-2	1,2-Dichloroethane	2.0 U	2.0		
78-87-5	1,2-Dichloropropane	2.0 U	2.0		
541-73-1	1,3-Dichlorobenzene	2.0 U	2.0		
106-46-7	1,4-Dichlorobenzene	2.0 U	2.0		
110-75-8	2-Chloroethyl Vinyl Ether	2.0 U	2.0		
71-43-2	Benzene	2.0 U	2.0		
75-27-4	Bromodichloromethane	2.0 U	2.0		
75-25-2	Bromoform	2.0 U			
74-83-9	Bromomethane	2.0 U	2.0		
56-23-5	Carbon Tetrachloride	2.0 U	2.0		
108-90-7	Chlorobenzene	2.0 U	2.0		
75-00-3	Chloroethane	2.0 U	2.0		
67-66-3	Chloroform	2.0 U	2.0		
74-87-3	Chloromethane	2.0 U			
124-48-1	Dibromochloromethane	2.0 U	2.0		
75-09-2	Methylene Chloride	2.0 U	2.0		
100-41-4	Ethylbenzene	2.0 U	2.0		
127-18-4	Tetrachloroethene (PCE)	2.0 U	2.0		
108-88-3	Toluene	2.0 U	2.0		
79-01-6	Trichloroethene (TCE)	2.0 U	2.0		
75-69-4	Trichlorofluoromethane (CFC 11)	2.0 U	2.0		
75-01-4	Vinyl Chloride	54 D	2.0		
156-59-2	cis-1,2-Dichloroethene	130 D	2.0		
10061-01-5	cis-1,3-Dichloropropene	2.0 U	2.0		
179601-23-1	m,p-Xylenes	4.0 U	4.0		
95-47-6	o-Xylene	2.0 U	2.0		
156-60-5	trans-1,2-Dichloroethene	2.0 U	2.0		
10061-02-6	trans-1,3-Dichloropropene	2.0 U	2.0		

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTODate Collected:10/16/12 1610Sample Matrix:WaterDate Received:10/17/12Sample Name:MW-16RUnits:PercentLab Code:R1207074-004Basis:NA

Lab Code:R120707Run Type:Dilution

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:601/602Data File Name:1012.run

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed	Q
3-Fluorochlorobenzene	83	78-142	10/25/12 19:00	
Bromochloromethane	82	48-120	10/25/12 19:00	
3-Fluorochlorobenzene (PID)	87	83-126	10/25/12 19:00	

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTODate Collected:10/16/12 10Sample Matrix:WaterDate Received:10/17/12

 Date Collected:
 10/16/12 1610

 Date Received:
 10/17/12

 Date Extracted:
 10/22/12

 Date Analyzed:
 10/24/12 00:02

Units: µg/L

Basis: NA

Sample Name: Lab Code: MW-16R R1207074-004

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN541.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7	U	4.7		
122-66-7	1,2-Diphenylhydrazine	4.7	U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7	U	4.7		
120-83-2	2,4-Dichlorophenol	4.7	U	4.7		
105-67-9	2,4-Dimethylphenol	4.7	U	4.7		
51-28-5	2,4-Dinitrophenol	47	U	47		
121-14-2	2,4-Dinitrotoluene	4.7	U	4.7		
606-20-2	2,6-Dinitrotoluene	4.7	U	4.7		
91-58-7	2-Chloronaphthalene	4.7	U	4.7		
95-57-8	2-Chlorophenol	4.7	U	4.7		
88-75-5	2-Nitrophenol	4.7	U	4.7		
91-94-1	3,3'-Dichlorobenzidine	4.7	U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47	U	47		
101-55-3	4-Bromophenyl Phenyl Ether	4.7	U	4.7		
59-50-7	4-Chloro-m-cresol	4.7	U.	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7	U	4.7		
100-02-7	4-Nitrophenol	47	U	47		
83-32-9	Acenaphthene	4.7	U	4.7		
208-96-8	Acenaphthylene	4.7	U	4.7		
120-12-7	Anthracene	4.7	U	4.7		
56-55-3	Benz(a)anthracene	4.7	U	4.7		
92-87-5	Benzidine	94	U	94		
50-32-8	Benzo(a)pyrene	4.7	U	4.7		
205-99-2	3,4-Benzofluoranthene	4.7	U	4.7		
191-24-2	Benzo(g,h,i)perylene	4.7	U	4.7		
207-08-9	Benzo(k)fluoranthene	4.7	U	4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7	U	4.7		
111-91-1	Bis(2-chloroethoxy)methane	4.7	U	4.7		
111-44-4	Bis(2-chloroethyl) Ether	4.7	U	4.7		
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7	U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7	U	4.7		
218-01-9	Chrysene	4.7	U	4.7		
84-74-2	Di-n-butyl Phthalate	4.7	U	4.7		

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTODate Collected:10/16/12 10Sample Matrix:WaterDate Received:10/17/12

Date Collected: 10/16/12 1610 Date Received: 10/17/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 00:02

> Units: μg/L Basis: NA

Sample Name: M Lab Code: R

MW-16R R1207074-004

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625
Prep Method:	EPA 3510C
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN541.D\

Analysis Lot: 315259 Extraction Lot: 169751 Instrument Name: R-MS-51 Dilution Factor: 1

CAS No.	Analyte Name	Result	Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7	U	4.7	······	
53-70 - 3	Dibenz(a,h)anthracene	4.7	U	4.7		
84-66-2	Diethyl Phthalate	4.7	U	4.7		
131-11-3	Dimethyl Phthalate	4.7	U	4.7		
206-44-0	Fluoranthene	4.7	U	4.7		
86-73-7	Fluorene	4.7	U	4.7		
118-74-1	Hexachlorobenzene	4.7	U	4.7		
87-68-3	Hexachlorobutadiene	4.7	U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7	U	4.7		
67-72-1	Hexachloroethane	4.7	U	4.7		
193-39-5	Indeno(1,2,3-cd)pyrene	4.7	U	4.7		
78-59-I	Isophorone	4.7	U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7	U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7	U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7	U	4.7		
91-20-3	Naphthalene	4.7	U	4.7		
98-95-3	Nitrobenzene	4.7	U	4.7		
87-86-5	Pentachlorophenol (PCP)	47	U	47		
85-01-8	Phenanthrene	4.7	U	4.7		·····
108-95-2	Phenol	4.7		4.7		
129-00-0	Pyrene	4.7		4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
2,4,6-Tribromophenol	85	28-157	10/24/12 00:02	
2-Fluorobiphenyl	77	39-119	10/24/12 00:02	
2-Fluorophenol	44	10-105	10/24/12 00:02	
Nitrobenzene-d5	76	37-117	10/24/12 00:02	
Phenol-d6	30	10-107	10/24/12 00:02	
p-Terphenyl-d14	80	40-133	10/24/12 00:02	

00031

ı.

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site - Wells 10/12/EN-003231-0001-03TTODate Collected:10/16/12 1610Sample Matrix:WaterDate Received:10/17/12Date Received:10/12/12Date Received:10/12/12

Date Extracted: 10/23/12 Date Analyzed: 10/24/12 09:24

Units: µg/L

Basis: NA

Sample Name:MW-16RLab Code:R1207074-004

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method:NY 310-13Prep Method:MethodData File Name:I:\ACQUDATA\6890I\DATA\102412\An326.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59		
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940		
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940		÷ *

Analyst Summary Report

Client:	Ecology And Environment, Incorporated	Service Request: R1207074
Project:	Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-	037.
Sample Name:	MW-16R	Date Collected: 10/16/12
Lab Code:	R1207074-004	Date Received: 10/17/12
Matrix:	Water	
Analysis Method	Extracted/Digested By	Analyzed By
601/602		BWOJTASIEWICZ
625	DMURPHY	ZMIAO

DMURPHY

NY 310-13

SM 4500-H+ B

MCYMBAL

DWARD

Now part of the ALS Group

Analytical Report Client: Ecology And Environment, Incorporated Service Request: R1207074 Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Date Collected: 10/16/12 1750 **Project: Date Received:** 10/17/12 Sample Matrix: Water MW-15R Sample Name: Lab Code: R1207074-005 Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	1 Date Extracted	Date Analyzed	Note
pН	SM 4500-H+ B	7.07	pH Units		1	NA	10/17/12 18:36	Н
Temperature of pH Analysis	SM 4500-H+ B	19.9	deg C		1	NA	10/17/12 18:36	Η

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/16/12 1750 10/17/12
Sample Name:	MW-15R	Units:	μg/L

R1207074-005

Basis: NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1011.run

Lab Code:

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0		
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0		
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	2.0	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	1.4	1.0		
156-59-2	cis-1,2-Dichloroethene	7.3	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0		
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/16/12 1750 10/17/12	
Sample Name: Lab Code:	MW-15R R1207074-005	Units: Basis:	Percent NA	
Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved				

Analytical Method:601/602Data File Name:1011.run

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
3-Fluorochlorobenzene	82	78-142	10/24/12 17:34	
Bromochloromethane	79	48-120	10/24/12 17:34	
3-Fluorochlorobenzene (PID)	89	83-126	10/24/12 17:34	

Client:Ecology And Environment, IncorporatedServiProject:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTODateSample Matrix:WaterDate

 Service Request:
 R1207074

 Date Collected:
 10/16/12 1750

 Date Received:
 10/17/12

 Date Extracted:
 10/22/12

 Date Analyzed:
 10/24/12 00:40

Sample Name: Lab Code:

MW-15R R1207074-005

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN542.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7 U	4.7		
122-66-7	1,2-Diphenylhydrazine	4.7 U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7 U	4.7		
120-83-2	2,4-Dichlorophenol	4.7 U	4.7		
105-67-9	2,4-Dimethylphenol	4.7 U	4.7		
51-28-5	2,4-Dinitrophenol	47 U	47		
121-14-2	2,4-Dinitrotoluene	4.7 U	4.7		
606-20-2	2,6-Dinitrotoluene	4.7 U	4.7		
91-58-7	2-Chloronaphthalene	4.7 U	4.7		
95-57-8	2-Chlorophenol	4.7 U	4.7		
88-75-5	2-Nitrophenol	4.7 U	4.7		
91-94-1	3,3'-Dichlorobenzidine	4.7 U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47 U	47	· · · · · · · · · · · · · · · · · · ·	
101-55-3	4-Bromophenyl Phenyl Ether	4.7 U	4.7		
59-50-7	4-Chloro-m-cresol	4.7 U	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7 U	4.7		
100-02-7	4-Nitrophenol	47 U	47		
83-32-9	Acenaphthene	4.7 U	4.7		
208-96-8	Acenaphthylene	4.7 U	4.7		
120-12-7	Anthracene	4.7 U	4.7		
56-55-3	Benz(a)anthracene	4.7 U	4.7		
92-87-5	Benzidine	94 U	94		
50-32-8	Benzo(a)pyrene	4.7 U	4.7		
205-99-2	3,4-Benzofluoranthene	4.7 U	4.7		
191-24-2	Benzo(g,h,i)perylene	4.7 U	4.7		
207-08-9	Benzo(k)fluoranthene	4.7 U	4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7 U	4.7		
111-91-1	Bis(2-chloroethoxy)methane	4.7 U	4.7		
111-44-4	Bis(2-chloroethyl) Ether	4.7 U	4.7		
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7 U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7 U	4.7		
218-01 - 9	Chrysene	4.7 U	4.7		
84-74-2	Di-n-butyl Phthalate	4.7 U	4.7		

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTODate Collected:10/16/12 1Sample Matrix:WaterDate Received:10/17/12

Date Collected:10/16/12 1750Date Received:10/17/12Date Extracted:10/22/12Date Analyzed:10/24/12 00:40

Units: µg/L Basis: NA

Sample Name: MW-15R Lab Code: R1207074-005

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625	Analysis Lot: 315259	
Prep Method:	EPA 3510C	Extraction Lot: 169751	
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN542.D\	Instrument Name: R-MS-51	
	-	Dilution Factor: 1	

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7		
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7		
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7		
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7		
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	4 7 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	95	28-157	10/24/12 00:40	
2-Fluorobiphenyl	90	39-119	10/24/12 00:40	
2-Fluorophenol	52	10-105	10/24/12 00:40	
Nitrobenzene-d5	89	37-117	10/24/12 00:40	
Phenol-d6	34	10-107	10/24/12 00:40	
p-Terphenyl-d14	90	40-133	10/24/12 00:40	

Client:	Ecology And Environment, Incorporated	Service Request:	R1207074
Project:	Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO	Date Collected:	10/16/12 1750
Sample Matrix:	Water	Date Received:	10/17/12
-		Date Extracted:	10/23/12

Date Analyzed: 10/24/12 09:51 Units: μg/L

Basis: NA

Sample Name:MW-15RLab Code:R1207074-005

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method: NY 310-13 Prep Method: Method Data File Name: I:\ACQUDATA\6890I\DATA\102412\An327.D\)\		Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59	
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940		
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940		

Analyst Summary Report

601/602 625	DMURP		BWOJTASI ZMIAO	·
Analysis Method	Extracted	I/Digested By	Analyzed B	v
Matrix:	Water			
Lab Code:	R1207074-005		Date Received:	10/17/12
Sample Name:	MW-15R		Date Collected:	10/16/12
Project:	Davis Howland Oil Company Site -Wells 10/1	2/EN-003231-0001-037		
Client:	Ecology And Environment, Incorporated	Service Request:	R1207074	

DMURPHY

NY 310-13

SM 4500-H+ B

MCYMBAL DWARD

Now part of the ALS Group

Analytical Report

Client:	Ecology And Environment, Incorporated	Service Request:	R1207074
Project:	Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO	Date Collected:	10/17/12 1035
Sample Matrix:	Water	Date Received:	10/17/12
Sample Name: Lab Code:	MW-1S R1207074-006	Basis:	NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	6.98	pH Units		1	NA	10/18/12 18:01	н
Temperature of pH Analysis	SM 4500-H+ B	20.1	deg C		1	NA	10/18/12 18:01	H

Ecology And Environment, Incorporated Service Request: R1207074 Client: Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO Date Collected: 10/17/12 1035 Project: Date Received: 10/17/12 Sample Matrix: Water Date Analyzed: 10/24/12 18:27 Sample Name: MW-1S Units: µg/L Lab Code: Basis: NA R1207074-006

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1012.run

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	3.4	1.0		
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	4.4	1.0		
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	26	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	1.0 U	1.0		
156-59-2	cis-1,2-Dichloroethene	34	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0		
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/17/12 1035 10/17/12
Sample Name:	MW-1S	Units:	Percent
Lab Code:	R1207074-006	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1012.run

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	82	78-142	10/24/12 18:27	
Bromochloromethane	80	48-120	10/24/12 18:27	
3-Fluorochlorobenzene (PID)	88	83-126	10/24/12 18:27	

Client:	Ecology And Environment, Incorporated	Service Req
Project:	Davis Howland Oil Company Site - Wells 10/12/EN-003231-0001-03TTO	Date Colle
Sample Matrix:	Water	Date Rece

uest: R1207074 cted: 10/17/12 1035 eived: 10/17/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 01:17

> Units: µg/L Basis: NA

Sample Name: Lab Code:

MW-1S R1207074-006

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625
Prep Method:	EPA 3510C
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN543.D\

Analysis Lot: 315259 Extraction Lot: 169751 Instrument Name: R-MS-51 **Dilution Factor:** 1

CAS No.	Analyte Name	Result Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7 U	4.7		
122-66-7	1,2-Diphenylhydrazine	4.7 U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7 U	4.7		
120-83-2	2,4-Dichlorophenol	4.7 U	4.7		
105-67-9	2,4-Dimethylphenol	4.7 U	4.7		
51-28-5	2,4-Dinitrophenol	47 U	47		
121-14-2	2,4-Dinitrotoluene	4.7 U	4.7		
606-20-2	2,6-Dinitrotoluene	4.7 U	4.7		
91-58-7	2-Chloronaphthalene	4.7 U	4.7		
95-57-8	2-Chlorophenol	4.7 U	4.7		
88-75-5	2-Nitrophenol	4.7 U	4.7		
91-94-1	3,3'-Dichlorobenzidine	4.7 U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47 U	47		
101-55-3	4-Bromophenyl Phenyl Ether	4.7 U	4.7		
59-50-7	4-Chloro-m-cresol	4.7 U	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7 U	4.7		
100-02-7	4-Nitrophenol	47 U	47		
83-32-9	Acenaphthene	4.7 U	4.7		
208-96-8	Acenaphthylene	4.7 U	4.7		
120-12-7	Anthracene	4.7 U	4.7		
56-55-3	Benz(a)anthracene	4.7 U	4.7		
92-87-5	Benzidine	94 U	94		
50-32-8	Benzo(a)pyrene	4.7 U	4.7		
205-99-2	3,4-Benzofluoranthene	4.7 U	4.7		
191-24-2	Benzo(g,h,i)perylene	4.7 U	4.7		
207-08-9	Benzo(k)fluoranthene	4.7 U	4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7 U	4.7		
111-91-1	Bis(2-chloroethoxy)methane	4.7 U	4.7		
111-44-4	Bis(2-chloroethyl) Ether	4.7 U	4.7		
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7 U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7 U	4.7		
218-01-9	Chrysene	4.7 U	4.7		
84-74-2	Di-n-butyl Phthalate	4.7 U	4.7		

Client:Ecology And Environment, IncorporatedServiceProject:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTODateSample Matrix:WaterDate

 Service Request:
 R1207074

 Date Collected:
 10/17/12 1035

 Date Received:
 10/17/12

 Date Extracted:
 10/22/12

 Date Analyzed:
 10/24/12 01:17

Units: μg/L Basis: NA

Sample Name: Lab Code:

MW-1S R1207074-006

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625	Analysis Lot: 315259
Prep Method:	EPA 3510C	Extraction Lot: 169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN543.D\	Instrument Name: R-MS-51
		Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7		-
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4,7 U	4.7		
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7		
193-39 - 5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7		
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7	· · · · ·	
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
2,4,6-Tribromophenol	93	28-157	10/24/12 01:17	
2-Fluorobiphenyl	89	39-119	10/24/12 01:17	
2-Fluorophenol	50	10-105	10/24/12 01:17	
Nitrobenzene-d5	89	37-117	10/24/12 01:17	
Phenol-d6	33	10-107	10/24/12 01:17	
p-Terphenyl-d14	80	40-133	10/24/12 01:17	

Client:	Ecology And Environment, Incorporated	Service Request:	R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Date Collected:	10/17/12 1035
Sample Matrix:	Water	Date Received:	10/17/12
-		Date Extracted:	10/23/12

Date Extracted: 10/23/12 Date Analyzed: 10/24/12 10:17

Units: µg/L Basis: NA

Sample Name:MW-Lab Code:R120

MW-1S R1207074-006

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method: Prep Method: Data File Name:	Method	Extraction B90I\DATA\102412\An328.D\ Instrument N			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	t: 169858 e: R-GC-59	
CAS No.	Analyte Name	Result	Q	MRL	Note		
68476-30-2	Fuel Oil No. 2	940	U	940			
68476-31-3	Fuel Oil No. 4	940	U	940			
68476-33-5	Fuel Oil No. 6	940	U	940			
8006-61-9	Gasoline	940	U	940			
8008-20-6	Kerosene	940	U	940			
	Lube Oil	940	U	940			
112-40-3	n-Dodecane	940	U	940			

.

Analyst Summary Report

Client: Project:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-037			R1207074	
Sample Name: Lab Code: Matrix:	MW-1S R1207074-006 Water		Date Collected: Date Received:		
Analysis Method	Extracted	/Digested By	Analyzed B	у	
601/602	· · · · · · · · · · · · · · · · · · ·		BWOJTASI	EWICZ	
625	DMURPH	ſΥ	ZMIAO		
NY 310-13	DMURPH	IY	MCYMBAL		

Printed 11/5/12 9:55 \Unflow2\StarlimsLimsReps\AnalystSummary.rpt

SM 4500-H+ B

. 、

DWARD

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: R1207074 Date Collected: 10/17/12 0 Date Received: 10/17/12 Date Analyzed: 10/24/12 1	900
Sample Name:	TB101712	Units: µg/L	
Lab Code:	R1207074-007	Basis: NA	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: Data File Name:	601/602 1013.run			Analysis Lot: 3 Instrument Name: R Dilution Factor: 1	R-GC-03
CARNO	Analyta Nama	Posult O	MDI	Note	

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0		
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0		
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	1.0 U	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	1.0 U	1.0		
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0		
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/17/12 0900 10/17/12
Sample Name:	TB101712	Units:	Percent
Lab Code:	R1207074-007	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: 601/602 Data File Name: 1013.run

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	84	78-142	10/24/12 19:17	
Bromochloromethane	80	48-120	10/24/12 19:17	
3-Fluorochlorobenzene (PID)	87	83-126	10/24/12 19:17	

Analyst Summary Report

Client: Project:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells		Service Request:	R1207074
Sample Name: Lab Code: Matrix:	TB101712 R1207074-007 Water		Date Collected: Date Received:	
Analysis Method	Extra	acted/Digested By	Analyzed B	y

601/602

BWOJTASIEWICZ

Now part of the ALS Group Analytical Report

Ecology And Environment, Incorporated Service Request: R1207074 **Client: Project:** Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Date Collected: 10/17/12 1255 Sample Matrix: Water Date Received: 10/17/12 MW-10R Sample Name: Lab Code: R1207074-008

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilutior Factor	n Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	7,17	pH Units		1	NA	10/18/12 18:01	Н
Temperature of pH Analysis	SM 4500-H+ B	20.1	deg C		1	NA	10/18/12 18:01	Н

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/17/12 1255 10/17/12
Sample Name:	MW-10R	Units:	
Lab Code:	R1207074-008	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1022.run

Analysis Lot:315240Instrument Name:R-GC-03Dilution Factor:10

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	10 U	10		
79-34-5	1,1,2,2-Tetrachloroethane	10 U	10		
79-00-5	1,1,2-Trichloroethane	10 U	10		
75-34-3	1,1-Dichloroethane (1,1-DCA)	10 U	10		
75-35-4	1,1-Dichloroethene (1,1-DCE)	15	10		
95-50-1	1,2-Dichlorobenzene	10 U	10		
107-06-2	1,2-Dichloroethane	10 U	10		
78-87-5	1,2-Dichloropropane	10 U	10		
541-73-1	1,3-Dichlorobenzene	10 U	10		
106-46-7	1,4-Dichlorobenzene	10 U	10		
110-75-8	2-Chloroethyl Vinyl Ether	10 U	10		
71-43-2	Benzene	10 U	10		
75-27-4	Bromodichloromethane	10 U	10		
75-25-2	Bromoform	10 U	10		
74-83-9	Bromomethane	10 U	10		
56-23-5	Carbon Tetrachloride	10 U	10		
108-90-7	Chlorobenzene	10 U	10		
75-00-3	Chloroethane	10 U	10		
67-66-3	Chloroform	10 U	10		
74-87-3	Chloromethane	10 U	10		
124-48-1	Dibromochloromethane	10 U	10		
75-09-2	Methylene Chloride	10 U	10		
100-41-4	Ethylbenzene	10 U	10		
127-18-4	Tetrachloroethene (PCE)	10 U	10		
108-88-3	Toluene	10 U	10		
79-01-6	Trichloroethene (TCE)	1100 E	10		
75-69-4	Trichlorofluoromethane (CFC 11)	10 U	10		
75-01-4	Vinyl Chloride	10 U	10		
156-59-2	cis-1,2-Dichloroethene	37	10		
10061-01-5	cis-1,3-Dichloropropene	10 U	10		
179601-23-1	m,p-Xylenes	20 U	20		
95-47-6	o-Xylene	10 U	10		
156-60-5	trans-1,2-Dichloroethene	10 U	10		
10061-02-6	trans-1,3-Dichloropropene	10 U	10		

.

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/17/12 1255 10/17/12
Sample Name:	MW-10R	Units:	
Lab Code:	R1207074-008	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:601/602Data File Name:1022.run

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	85	78-142	10/25/12 02:50	
Bromochloromethane	81	48-120	10/25/12 02:50	
3-Fluorochlorobenzene (PID)	86	83-126	10/25/12 02:50	

Client:	Ecology And Environment, Incorporated	Service Request:	R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO	Date Collected:	10/17/12 1255
Sample Matrix:	Water	Date Received:	10/17/12
		Date Analyzed:	10/25/12 19:50

Sample Name:	•
Lab Code:	
Run Type:	

MW-10R R1207074-008 Dilution

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: 601/602 Data File Name: 1013.run Analysis Lot: 315382 Instrument Name: R-GC-03 Dilution Factor: 20

Units: µg/L

Basis: NA

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	20 U	20		
79-34-5	1,1,2,2-Tetrachloroethane	20 U	20		
79-00-5	1,1,2-Trichloroethane	20 U	20		
75-34-3	1,1-Dichloroethane (1,1-DCA)	20 U	20		
75-35-4	1,1-Dichloroethene (1,1-DCE)	20 U	20		
95-50-1	1,2-Dichlorobenzene	20 U	20		
107-06-2	1,2-Dichloroethane	20 U	20		
78-87-5	1,2-Dichloropropane	20 U	20		
541-73-1	1,3-Dichlorobenzene	20 U	20		
106-46-7	1,4-Dichlorobenzene	20 U	20		
110-75-8	2-Chloroethyl Vinyl Ether	20 U	20		
71-43-2	Benzene	20 U	20		
75-27-4	Bromodichloromethane	20 U	20		
75-25-2	Bromoform	20 U	20		
74-83-9	Bromomethane	20 U	20		
56-23-5	Carbon Tetrachloride	20 U	20		
108-90-7	Chlorobenzene	20 U	20		
75-00-3	Chloroethane	20 U	20		
67-66-3	Chloroform	20 U	20		·
74-87-3	Chloromethane	20 U	20		
124-48-1	Dibromochloromethane	20 U	20		
75-09-2	Methylene Chloride	20 U	20		
100-41-4	Ethylbenzene	20 U	20		
127-18-4	Tetrachloroethene (PCE)	20 U	20		
108-88-3	Toluene	20 U	20		
79-01-6	Trichloroethene (TCE)	1400 D	20		
75-69-4	Trichlorofluoromethane (CFC 11)	20 U	20		
75-01-4	Vinyl Chloride	20 U	20		
156-59-2	cis-1,2-Dichloroethene	48 D	20		
10061-01-5	cis-1,3-Dichloropropene	20 U	20		
179601-23-1	m,p-Xylenes	40 U	40		
95-47-6	o-Xylene	20 U	20		
156-60-5	trans-1,2-Dichloroethene	20 U	20		
10061-02-6	trans-1,3-Dichloropropene	20 U	20		

Service Request: R1207074 **Client:** Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Date Collected: 10/17/12 1255 **Project:** Water Date Received: 10/17/12 Sample Matrix: Date Analyzed: 10/25/12 19:50 Units: Percent Sample Name: MW-10R Basis: NA Lab Code: R1207074-008 Run Type: Dilution

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: 601/602 Data File Name: 1013.run

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	83	78-142	10/25/12 19:50	
Bromochloromethane	78	48-120	10/25/12 19:50	
3-Fluorochlorobenzene (PID)	88	83-126	10/25/12 19:50	

Client:	Ecology And Environment, Incorporated	Service Reque
Project:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Date Collecte
Sample Matrix:	Water	Date Receive

 Service Request:
 R1207074

 Date Collected:
 10/17/12 1255

 Date Received:
 10/17/12

 Date Extracted:
 10/22/12

 Date Analyzed:
 10/24/12 01:55

Units: µg/L Basis: NA

Sample Name:NLab Code:H

MW-10R R1207074-008

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625
Prep Method:	EPA 3510C
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN544.D\

Analysis Lot: 315259 Extraction Lot: 169751 Instrument Name: R-MS-51 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7 U	4.7		· · ·
122-66-7	1,2-Diphenylhydrazine	4.7 U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7 U	4.7		
120-83-2	2,4-Dichlorophenol	4.7 U	4.7		
105-67-9	2,4-Dimethylphenol	4.7 U	4.7		
51-28-5	2,4-Dinitrophenol	47 U	47		
121-14-2	2,4-Dinitrotoluene	4.7 U	4.7		
606-20-2	2,6-Dinitrotoluene	4.7 U	4.7		
91-58-7	2-Chloronaphthalene	4.7 U	4.7		
95-57-8	2-Chlorophenol	4.7 U	4.7		
88-75-5	2-Nitrophenol	4.7 U	4.7		
91-94-1	3,3'-Dichlorobenzidine	4.7 U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47 U	47		
101-55-3	4-Bromophenyl Phenyl Ether	4.7 U	4.7		
59-50-7	4-Chloro-m-cresol	4.7 U	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7 U	4.7		
100-02-7	4-Nitrophenol	47 U	47		
83-32-9	Acenaphthene	4.7 U	4.7		
208-96-8	Acenaphthylene	4.7 U	4.7		
120-12-7	Anthracene	4.7 U	4.7		
56-55-3	Benz(a)anthracene	4.7 U	4.7		
92-87-5	Benzidine	94 U	94		
50-32-8	Benzo(a)pyrene	4.7 U	4.7		
205-99-2	3,4-Benzofluoranthene	4.7 U	4.7		
191-24-2	Benzo(g,h,i)perylene	4.7 U	4.7		
207-08-9	Benzo(k)fluoranthene	4.7 U	4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7 U	4.7		
111-91-1	Bis(2-chloroethoxy)methane	4.7 U	4.7		
111-44-4	Bis(2-chloroethyl) Ether	4.7 U	4.7		
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7 U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7 U	4.7		
218-01-9	Chrysene	4.7 U	4.7		
84-74-2	Di-n-butyl Phthalate	4.7 U	4.7		

Ecology And Environment, Incorporated	Service Reques
Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO	Date Collected
Water	Date Received
	Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO

 Service Request:
 R1207074

 Date Collected:
 10/17/12 1255

 Date Received:
 10/17/12

 Date Extracted:
 10/22/12

 Date Analyzed:
 10/24/12 01:55

Units: μg/L Basis: NA

Sample Name:MLab Code:RI

MW-10R R1207074-008

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN544.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7		
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7		
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7		
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7	· · · ·	
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		··· ··· ··· ··· ··· ·
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	89	28-157	10/24/12 01:55	
2-Fluorobiphenyl	84	39-119	10/24/12 01:55	
2-Fluorophenol	47	10-105	10/24/12 01:55	
Nitrobenzene-d5	85	37-117	10/24/12 01:55	
Phenol-d6	31	10-107	10/24/12 01:55	
p-Terphenyl-d14	92	40-133	10/24/12 01:55	

Client:	Ecology And Environment, Incorporated	Service Request: R120707	'4
Project:	Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03 TTO	Date Collected: 10/17/12	1255
Sample Matrix:	Water	Date Received: 10/17/12	
-		Date Extracted: 10/23/12	

Date Analyzed: 10/24/12 10:44

Units: μg/L Basis: NA

Sample Name:MW-Lab Code:R120

MW-10R R1207074-008

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method: Prep Method: Data File Name:	NY 310-13 Method I:\ACQUDATA\6890I\DAT	'A\102412\An329.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940	·····	
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940		

Analyst Summary Report

Client: Project:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 1	Service Request: 0/12/ EN-003231-0001-037	R1207074
Sample Name: Lab Code: Matrix:	MW-10R R1207074-008 Water	Date Collected: Date Received:	
Analysis Method	Extract	ted/Digested By Analyzed B	у

601/602 625 NY 310-13 SM 4500-H+ B

DMURPHY DMURPHY BWOJTASIEWICZ ZMIAO MCYMBAL DWARD

Now part of the ALS Group Analytical Report

Client: Ecology And Environment, Incorporated Service Request: R1207074 Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Date Collected: 10/17/12 1255 **Project:** Sample Matrix: Water **Date Received:** 10/17/12 MW-10RQ Sample Name: R1207074-009 Basis: NA Lab Code:

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	7.21	pH Units		1	NA	10/18/12 18:01	H
Temperature of pH Analysis	SM 4500-H+ B	20.1	deg C		1	NA	10/18/12 18:01	Н

.

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/17/12 1255 10/17/12
Sample Name:	MW-10RQ	Units:	μg/L
Lab Code:	R1207074-009	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1023.run

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	10 U	10		
79-34-5	1,1,2,2-Tetrachloroethane	10 U	10		
79-00-5	1,1,2-Trichloroethane	10 U	10		
75-34-3	1,1-Dichloroethane (1,1-DCA)	10 U	10		
75-35-4	1,1-Dichloroethene (1,1-DCE)	19	10		
95-50-1	1,2-Dichlorobenzene	10 U	10		
107-06-2	1,2-Dichloroethane	10 U	10		
78-87-5	1,2-Dichloropropane	10 U	10		
541-73-1	1,3-Dichlorobenzene	10 U	10		
106-46-7	1,4-Dichlorobenzene	10 U	10		
110-75-8	2-Chloroethyl Vinyl Ether	10 U	10		
71-43-2	Benzene	10 U	10		
75-27-4	Bromodichloromethane	10 U	10		
75-25-2	Bromoform	10 U	10		
74-83-9	Bromomethane	10 U	10		
56-23-5	Carbon Tetrachloride	10 U	10		
108-90-7	Chlorobenzene	10 U	10		
75-00-3	Chloroethane	10 U	10		
67-66-3	Chloroform	10 U	10	, ···	· · · · · · · · · · · · · · · · · · ·
74-87-3	Chloromethane	10 U	10		
124-48-1	Dibromochloromethane	10 U	10		
75-09-2	Methylene Chloride	10 U	10		
100-41-4	Ethylbenzene	10 U	10		
127-18-4	Tetrachloroethene (PCE)	10 U	10		
108-88-3	Toluene	10 U	10		
79-01-6	Trichloroethene (TCE)	1200 E	10		
75-69-4	Trichlorofluoromethane (CFC 11)	10 U	10		
75-01-4	Vinyl Chloride	10 U	10		
156-59-2	cis-1,2-Dichloroethene	39	10		
10061-01-5	cis-1,3-Dichloropropene	10 U	10		
179601-23-1	m,p-Xylenes	20 U	20		
95-47-6	o-Xylene	10 U	10		
156-60-5	trans-1,2-Dichloroethene	10 U	10		
0061-02-6	trans-1,3-Dichloropropene	10 U	10		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/17/12 1255 10/17/12
Sample Name:	MW-10RQ	Units:	Percent
Lab Code:	R1207074-009	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1023.run

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed Q	2
3-Fluorochlorobenzene	83	78-142	10/25/12 03:42	······································
Bromochloromethane	82	48-120	10/25/12 03:42	
3-Fluorochlorobenzene (PID)	88	83-126	10/25/12 03:42	

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTODate Collected:10/17/12 1255Sample Matrix:WaterDate Received:10/17/12

Sample Name:	MW-10RQ
Lab Code:	R1207074-009
Run Type:	Dilution

Date Analyzed: 10/25/12 20:40 Units: µg/L Basis: NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1014.run

CAS No.	Analyte Name	Result	Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	20	U	20	· · · · · · · · · · · · · · · · · · ·	
79-34-5	1,1,2,2-Tetrachloroethane	20	U	20		
79-00-5	1,1,2-Trichloroethane	20	U	20		
75-34-3	1,1-Dichloroethane (1,1-DCA)	20	U	20		
75-35-4	1,1-Dichloroethene (1,1-DCE)	20	U	20		
95-50-1	1,2-Dichlorobenzene	20	U	20		
107-06-2	1,2-Dichloroethane	20 1		20		
78-87-5	1,2-Dichloropropane	20 1		20		
541-73-1	1,3-Dichlorobenzene	20 (U	20		
106-46-7	1,4-Dichlorobenzene	20 (U	20		
110-75-8	2-Chloroethyl Vinyl Ether	20 U	U	20		
71-43-2	Benzene	20 U	U	20		
75-27-4	Bromodichloromethane	20 (U	20		
75-25-2	Bromoform	20 U	U	20		
74-83-9	Bromomethane	20 U	U	20		
56-23-5	Carbon Tetrachloride	20 L	IJ	20	· · · · · · · · · · · · · · · · · · ·	
108-90-7	Chlorobenzene	20 U	J	20		
75-00-3	Chloroethane	20 L	J	20		
67-66-3	Chloroform	20 L	J	20		
74-87-3	Chloromethane	20 L	J	20		
124-48-1	Dibromochloromethane	20 L	J	20		
75-09-2	Methylene Chloride	20 L	J	20		
100-41-4	Ethylbenzene	20 L	J	20		
127-18-4	Tetrachloroethene (PCE)	20 U	J	20		
108-88-3	Toluene	20 U	J	20		
79-01-6	Trichloroethene (TCE)	1300 D)	20		
75-69-4	Trichlorofluoromethane (CFC 11)	20 U	J	20		
75-01-4	Vinyl Chloride	20 U	J	20	· · · · · · · · · · · · · · · · · · ·	·· · · · · ·
156-59-2	cis-1,2-Dichloroethene	41 D)	20		
10061-01-5	cis-1,3-Dichloropropene	20 U	J	20		
179601-23-1	m,p-Xylenes	40 U	J	40	· · · · · · · · · · · · · · · · · · ·	
95-4 7- 6	o-Xylene	20 U	l	20		
156-60-5	trans-1,2-Dichloroethene	20 U	l	20		
0061-02-6	trans-1,3-Dichloropropene		l	20		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/17/12 1255 10/17/12
Sample Name: Lab Code: Run Type:	MW-10RQ R1207074-009 Dilution	Units: Basis:	Percent NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1014.run

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	85	78-142	10/25/12 20:40	
Bromochloromethane	79	48-120	10/25/12 20:40	
3-Fluorochlorobenzene (PID)	86	83-126	10/25/12 20:40	

Client:Ecology And Environment, IncorporatedServiceProject:Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTODateSample Matrix:WaterDate

Service Request: R1207074 Date Collected: 10/17/12 1255 Date Received: 10/17/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 02:33

> Units: µg/L Basis: NA

Sample Name: Lab Code: MW-10RQ R1207074-009

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN545.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7	U	4.7		
122-66-7	1,2-Diphenylhydrazine	4.7	U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7	U	4.7		
120-83-2	2,4-Dichlorophenol	4.7	U	4.7		
105-67-9	2,4-Dimethylphenol	4.7	U	4.7		
51-28-5	2,4-Dinitrophenol	47	U	47		
121-14-2	2,4-Dinitrotoluene	4.7	U	4.7		-
606-20-2	2,6-Dinitrotoluene	4.7	U	4.7		
91-58-7	2-Chloronaphthalene	4.7	U	4.7		
95-57-8	2-Chlorophenol	4.7	U	4.7		
88-75-5	2-Nitrophenol	4.7	U	4.7		
91-94-1	3,3'-Dichlorobenzidine	4.7	U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47	U	47		
101-55-3	4-Bromophenyl Phenyl Ether	4.7	U	4.7		
59-50-7	4-Chloro-m-cresol	4.7	U	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7	U	4.7		
100-02-7	4-Nitrophenol	47	U	47		
83-32-9	Acenaphthene	4.7	U	4.7		
208-96-8	Acenaphthylene	4.7	U	4.7		
120-12-7	Anthracene	4.7	U	4.7		
56-55-3	Benz(a)anthracene	4.7	U	4.7		
92-87-5	Benzidine	94		94		
50-32-8	Benzo(a)pyrene	4.7		4.7		
205-99-2	3,4-Benzofluoranthene	4.7	U	4.7		
191-24-2	Benzo(g,h,i)perylene	4.7		4.7		
207-08-9	Benzo(k)fluoranthene	4.7		4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7	U	4.7		
111-91-1	Bis(2-chloroethoxy)methane	4.7		4.7		
111-44-4	Bis(2-chloroethyl) Ether	4.7		4.7		
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7	U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7		4.7		
218-01-9	Chrysene	4.7		4.7		
84-74-2	Di-n-butyl Phthalate	4.7	U	4.7		

Client:Ecology And Environment, IncorporatedProject:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTOSample Matrix:Water

 Service Request:
 R1207074

 Date Collected:
 10/17/12 1255

 Date Received:
 10/17/12

 Date Extracted:
 10/22/12

 Date Analyzed:
 10/24/12 02:33

Units: µg/L Basis: NA

Sample Name: Lab Code: MW-10RQ R1207074-009

Semivolatile Organic Compounds by GC/MS

Analytical Method	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN545.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7		· · · · · · · · · · · · · · · · · · ·
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7		
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7	<u> </u>	· · · · · · · · · · · · · · · · · · ·
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7		
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	95	28-157	10/24/12 02:33	
2-Fluorobiphenyl	88	39-119	10/24/12 02:33	
2-Fluorophenol	47	10-105	10/24/12 02:33	
Nitrobenzene-d5	88	37-117	10/24/12 02:33	
Phenol-d6	32	10-107	10/24/12 02:33	
p-Terphenyl-d14	91	40-133	10/24/12 02:33	

Client:	Ecology And Environment, Incorporated	Service Request: R1207074
Project:	Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO	Date Collected: 10/17/12 1255
Sample Matrix:	Water	Date Received: 10/17/12
-		Date Extracted: 10/23/12

Date Extracted: 10/23/12 Date Analyzed: 10/24/12 11:11

> Units: µg/L Basis: NA

Sample Name:MLab Code:H

MW-10RQ R1207074-009

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method:NY 310-13Prep Method:MethodData File Name:I:\ACQUDATA\6890I\DATA\102412\An330.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59		
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940		
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940	· · · · · · · · · · · · · · · · · · ·	

Analyst Summary Report

	7 Hinty		
Client: Project:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells		Service Request: R1207074
Sample Name: Lab Code: Matrix:	MW-10RQ R1207074-009 Water		Date Collected: 10/17/12 Date Received: 10/17/12
Analysis Method	Extr	acted/Digested By	Analyzed By
601/602			BWOJTASIEWICZ
625	DMU	JRPHY	ZMIAO
NY 310-13	DMU	JRPHY	MCYMBAL

SM 4500-H+ B

DWARD

Now part of the ALS Group

Analytical Report

Client:	Ecology And Environment, Incorporated	Service Request: R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO	Date Collected: 10/17/12 1440
Sample Matrix:	Water	Date Received: 10/17/12
Sample Name: Lab Code:	MW-14S R1207074-010	Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
pН	SM 4500-H+ B	6.90	pH Units		1	NA	10/18/12 18:01	Н
Temperature of pH Analysis	SM 4500-H+ B	20.0	deg C		1	NA	10/18/12 18:01	Н

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: R1207074 Date Collected: 10/17/12 1440 Date Received: 10/17/12 Date Analyzed: 10/24/12 21:48
Sample Name:	MW-14S	Units: μg/L
Lab Code:	R1207074-010	Basis: NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

ī

Analytical Method:	601/602
Data File Name:	1016.run

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	I,1,1-Trichloroethane (TCA)	1.0 U	1.0		
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	·	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0		
95 -50- 1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0		
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	4.2	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	1.0 U	1.0		
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0		
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/17/12 1440 10/17/12
Sample Name:	MW-14S	Units:	Percent
Lab Code:	R1207074-010	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:601/602Data File Name:1016.run

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	83	78-142	10/24/12 21:48	
Bromochloromethane	80	48-120	10/24/12 21:48	
3-Fluorochlorobenzene (PID)	88	83-126	10/24/12 21:48	

Client:Ecology And Environment, IncorporatedService RequeProject:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTODate CollecterSample Matrix:WaterDate Received

 Service Request:
 R1207074

 Date Collected:
 10/17/12 1440

 Date Received:
 10/17/12

 Date Extracted:
 10/22/12

 Date Analyzed:
 10/24/12 03:10

.....

Units: μg/L Basis: NA

Sample Name:MLab Code:R

MW-14S R1207074-010

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN546.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7 U	4.7		
122-66-7	1,2-Diphenylhydrazine	4.7 U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7 U	4.7		
120-83-2	2,4-Dichlorophenol	4.7 U	4.7		· · · · · · · · · · · · · · · · · · ·
105-67-9	2,4-Dimethylphenol	4.7 U	4.7		
51-28-5	2,4-Dinitrophenol	47 U	47		
121-14-2	2,4-Dinitrotoluene	4.7 U	4.7		
606-20-2	2,6-Dinitrotoluene	4.7 U	4.7		
91-58-7	2-Chloronaphthalene	4.7 U	4.7		
95-57-8	2-Chlorophenol	4.7 U	4.7		
88-75-5	2-Nitrophenol	4.7 U	4.7		
91-94-1	3,3'-Dichlorobenzidine	4.7 U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47 U	47		
101-55-3	4-Bromophenyl Phenyl Ether	4.7 U	4.7		
59-50-7	4-Chloro-m-cresol	4.7 U	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7 U	4.7		
100-02-7	4-Nitrophenol	47 U	47		
83-32-9	Acenaphthene	4.7 U	4.7		
208-96-8	Acenaphthylene	4.7 U	4.7		
120-12 -7	Anthracene	4.7 U	4.7		
56-55-3	Benz(a)anthracene	4.7 U	4.7		
92-87-5	Benzidine	94 U	94		
50-32-8	Benzo(a)pyrene	4.7 U	4.7		
205-99-2	3,4-Benzofluoranthene	4.7 U	4.7		
191-24-2	Benzo(g,h,i)perylene	4.7 U	4.7		
207-08-9	Benzo(k)fluoranthene	4.7 U	4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7 U	4.7		
111-91-1	Bis(2-chloroethoxy)methane	4.7 U	4.7		
111-44-4	Bis(2-chloroethyl) Ether	4.7 U	4.7		
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7 U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7 U	4.7		·····
218-01-9	Chrysene	4.7 U	4.7		
84-74-2	Di-n-butyl Phthalate	4.7 U	4.7		

00072

Client:Ecology And Environment, IncorporatedServiceProject:Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTODate CSample Matrix:WaterDate I

Service Request: R1207074 Date Collected: 10/17/12 1440 Date Received: 10/17/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 03:10

> Units: μg/L Basis: NA

Sample Name: Lab Code:

MW-14S R1207074-010

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN546.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7		
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7		
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7		
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7	· · · · · · · · · · · · · · · · · · ·	
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7		
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
2,4,6-Tribromophenol	95	28-157	10/24/12 03:10	
2-Fluorobiphenyl	87	39-119	10/24/12 03:10	
2-Fluorophenol	46	10-105	10/24/12 03:10	
Nitrobenzene-d5	85	37-117	10/24/12 03:10	
Phenol-d6	32	10-107	10/24/12 03:10	
p-Terphenyl-d14	92	40-133	10/24/12 03:10	

Client:	Ecology And Environment, Incorporated	Service Request: R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO	Date Collected: 10/17/12 1440
Sample Matrix:	Water	Date Received: 10/17/12
		Date Extracted: 10/23/12

Date Analyzed: 10/24/12 11:38 Units: µg/L

Basis: NA

Sample Name: Lab Code:

MW-14S R1207074-010

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method: Prep Method: Data File Name:	NY 310-13 Method I:\ACQUDATA\6890I\DATA\102412\An331.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59	
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940		
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940		

Analyst Summary Report

Client:Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03*Service Request: R1207074Sample Name: Lab Code: R1207074-010 WaterMW-14S R1207074-010 WaterDate Collected: 10/17/12 Date Received: 10/17/12Analysis MethodExtracted/Digested ByAnalyzed By	4		5.0.0 m l 6700 000
Project:Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03 ⁺ Sample Name:MW-14SDate Collected: 10/17/12Lab Code:R1207074-010Date Received: 10/17/12	Analysis Method	Extracted/Digested By	Analyzed By
Project: Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03	Lab Code:	R1207074-010	
	Sample Name:	MW-14S	Date Collected: 10/17/12
			-

601/602BWOJTASIEWICZ625DMURPHYZMIAONY 310-13DMURPHYMCYMBALSM 4500-H+ BDWARD

Now part of the ALS Group Analytical Report

Client: Ecology And Environment, Incorporated Service Request: R1207074 Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO Date Collected: 10/17/12 1652 **Project:** Water Date Received: 10/17/12 Sample Matrix: Sample Name: MW-14R Lab Code: R1207074-011

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	7.35	pH Units		1	NA	10/18/12 18:01	Н
Temperature of pH Analysis	SM 4500-H+ B	20.0	deg C		1	NA	10/18/12 18:01	Н

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/17/12 1652 10/17/12
Sample Name:	MW-14R	Units:	
Lab Code:	R1207074-011	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

	Analysta Nama	D.	 MDT	Nata	
Data File Name:	1017.run			Instrument Name: Dilution Factor:	
Analytical Method:	_			Analysis Lot:	

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0		
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0		
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	49	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	1.0	1.0		
156-59-2	cis-1,2-Dichloroethene	5.8	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	3.5	1.0		
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed;	10/17/12 1652 10/17/12
Sample Name:	MW-14R	Units:	Percent
Lab Code:	R1207074-011	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1017.run

Analysis Lot: 315240 Instrument Name: R-GC-03 Dilution Factor: 1

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed	Q
3-Fluorochlorobenzene	87	78-142	10/24/12 22:38	
Bromochloromethane	84	48-120	10/24/12 22:38	
3-Fluorochlorobenzene (PID)	88	83-126	10/24/12 22:38	

Client:	Ecology And Environment, Incorporated	Service
Project:	Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO	Date (
Sample Matrix:	Water	Date

Request: R1207074 Collected: 10/17/12 1652 **Received:** 10/17/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 03:48

Units: µg/L

Basis: NA

Sample Name: Lab Code:

MW-14R R1207074-011

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625
Prep Method:	EPA 3510C
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN547.D\

Analysis Lot: 315259 Extraction Lot: 169751 Instrument Name: R-MS-51 **Dilution Factor:** 1

CAS No.	Analyte Name	Result Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7 U	4.7		······································
122-66-7	1,2-Diphenylhydrazine	4.7 U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7 U	4.7		
120-83-2	2,4-Dichlorophenol	4.7 U	4.7		
105-67-9	2,4-Dimethylphenol	4.7 U	4.7		
51-28-5	2,4-Dinitrophenol	47 U	47		
121-14-2	2,4-Dinitrotoluene	4.7 U	4.7	· · · · ·	······································
606-20-2	2,6-Dinitrotoluene	4.7 U	4.7		
91-58-7	2-Chloronaphthalene	4.7 U	4.7		
95-57-8	2-Chlorophenol	4.7 U	4.7		
88-75-5	2-Nitrophenol	4.7 U	4.7		
91-94-1	3,3'-Dichlorobenzidine	4.7 U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47 U	47		
101-55-3	4-Bromophenyl Phenyl Ether	4.7 U	4.7		
59-50-7	4-Chloro-m-cresol	4.7 U	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7 U	4.7		
100-02-7	4-Nitrophenol	47 U	47		
83-32-9	Acenaphthene	4.7 U	4.7		
208-96-8	Acenaphthylene	4.7 U	4.7		
120-12-7	Anthracene	4.7 U	4.7		
56-55-3	Benz(a)anthracene	4.7 U	4.7		
92-87-5	Benzidine	94 U	94		
50-32-8	Benzo(a)pyrene	4.7 U	4.7		
205-99-2	3,4-Benzofluoranthene	4.7 U	4.7		
191-24-2	Benzo(g,h,i)perylene	4.7 U	4.7		
207-08-9	Benzo(k)fluoranthene	4.7 U	4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7 U	4.7		
111-91-1	Bis(2-chloroethoxy)methane	4.7 U	4.7		
111-44-4	Bis(2-chloroethyl) Ether	4.7 U	4.7		
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7 U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7 U	4.7		
218-01-9	Chrysene	4.7 U	4.7		
84-74-2	Di-n-butyl Phthalate	4.7 U	4.7		

12-0000228391 rev 00 00079

Client:Ecology And Environment, IncorporatedService RProject:Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTODate CoSample Matrix:WaterDate Re

Service Request: R1207074 Date Collected: 10/17/12 1652 Date Received: 10/17/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 03:48

......

Units: μg/L Basis: NA

Sample Name: N Lab Code: F

MW-14R R1207074-011

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN547.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7	······	
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7		
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7		
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7		
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		· · · · · · · · · · · · · · · · · · ·
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
2,4,6-Tribromophenol	96	28-157	10/24/12 03:48	
2-Fluorobiphenyl	88	39-119	10/24/12 03:48	
2-Fluorophenol	51	10-105	10/24/12 03:48	
Nitrobenzene-d5	87	37-117	10/24/12 03:48	
Phenol-d6	35	10-107	10/24/12 03:48	
p-Terphenyl-d14	93	40-133	10/24/12 03:48	

Client:	Ecology And Environment, Incorporated	Service Request:	R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO	Date Collected:	10/17/12 16
Sample Matrix:	Water	Date Received:	10/17/12
-		Date Friting stade	10/00/10

/12 1652 /12 Date Extracted: 10/23/12 Date Analyzed: 10/24/12 12:05

Units: µg/L

Basis: NA

Sample Name: Lab Code:

MW-14R R1207074-011

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method:NY 310-13Prep Method:MethodData File Name:I:\ACQUDATA\68901\DATA\102412\An332.D\				Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59	
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940		
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940		

Analyst Summary Report

Analysis Method		/Digested By Analyzed	d By
Lab Code: Matrix:	R1207074-011 Water	Date Receive	ed: 10/17/12
Sample Name:	MW-14R	Date Collecto	ed: 10/17/12
Client: Project:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12	Service Reque 2/ EN-003231-0001-03?	st: R1207074

601/602		BWOJTASIEWICZ
625	DMURPHY	ZMIAO
NY 310-13	DMURPHY	MCYMBAL
SM 4500-H+ B		DWARD

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/18/12 10/18/12
Sample Name:	TB101812	Units:	
Lab Code:	R1207074-012	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: Data File Name:	601/602 1018.run			Analysis Lot: 315240 Instrument Name: R-GC-03 Dilution Factor: 1
CAS No.	Analyte Name	Result Q	MRL	Note
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0	
107-06-2	1,2-Dichloroethane	1.0 U	1.0	
78-87-5	1,2-Dichloropropane	1.0 U	1.0	
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0	
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0	
71-43 - 2	Benzene	1.0 U	1.0	
75-27-4	Bromodichloromethane	1.0 U	1.0	
75-25-2	Bromoform	1.0 U	1.0	
74-83-9	Bromomethane	1.0 U	1.0	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	
108-90-7	Chlorobenzene	1.0 U	1.0	

74-83-9	Bromomethane	1.0 U	1.0	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	
108-90-7	Chlorobenzene	1.0 U	1.0	
75-00-3	Chloroethane	1.0 U	1.0	
67-66-3	Chloroform	1.0 U	1.0	
74-87-3	Chloromethane	1.0 U	1.0	
124-48-1	Dibromochloromethane	1.0 U	1.0	
75-09-2	Methylene Chloride	1.0 U	1.0	
100-41-4	Ethylbenzene	1.0 U	1.0	
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	
108-88-3	Toluene	1.0 U	1.0	
79-01-6	Trichloroethene (TCE)	1.0 U	1.0	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	
75-01-4	Vinyl Chloride	1.0 U	1.0	
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0	
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0	
179601-23-1	m,p-Xylenes	2.0 U	2.0	
95-47 - 6	o-Xylene	1.0 U	1.0	
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0	

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/18/12 10/18/12
Sample Name:	TB101812	Units:	Percent
Lab Code:	R1207074-012	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1018.run

Analysis Lot: 315240 Instrument Name: R-GC-03 Dilution Factor: 1

Surrogate Name	%Rec	Control Limits	Date Analyzed Q
3-Fluorochlorobenzene	82	78-142	10/24/12 23:28
Bromochloromethane	79	48-120	10/24/12 23:28
3-Fluorochlorobenzene (PID)	89	83-126	10/24/12 23:28

Analyst Summary Report

Client: Project:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-037	Service Request: R1207074
Sample Name: Lab Code: Matrix:	TB101812 R1207074-012 Water	Date Collected: 10/18/12 Date Received: 10/18/12
Analysis Method	Extracted/Digested By	Analyzed By

601/602

•

Analyzed By

BWOJTASIEWICZ

Now part of the ALS Group

Analytical Report

Client:	Ecology And Environment, Incorporated	Service Request: R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Date Collected: 10/18/12 1030
Sample Matrix:	Water	Date Received: 10/18/12
Sample Name: Lab Code:	MW-12S R1207074-013	Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilutior Factor	Date Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	6.81	pH Units		1	NA	10/18/12 18:01	Н
Temperature of pH Analysis	SM 4500-H+ B	20.2	deg C		1	NA	10/18/12 18:01	Н

.

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: R1207074 Date Collected: 10/18/12 1030 Date Received: 10/18/12 Date Analyzed: 10/25/12 00:19
Sample Name:	MW-12S	Units: µg/L
Lab Code:	R1207074-013	Basis: NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1019. r un

Analysis Lot: 315240 Instrument Name: R-GC-03 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	·····
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0	
107-06-2	1,2-Dichloroethane	1.0 U	1.0	
78-87-5	1,2-Dichloropropane	1.0 U	1.0	
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0	
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0	
71-43-2	Benzene	1.0 U	1.0	
75-27-4	Bromodichloromethane	1.0 U	1.0	
75-25-2	Bromoform	1.0 U	1.0	
74-83-9	Bromomethane	1.0 U	1.0	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	
108-90-7	Chlorobenzene	1.0 U	1.0	
75-00-3	Chloroethane	1.0 U	1.0	
67-66-3	Chloroform	1.0 U	1.0	
74-87-3	Chloromethane	1.0 U	1.0	
124-48-1	Dibromochloromethane	1.0 U	1.0	
75-09-2	Methylene Chloride	1.0 U	1.0	
100-41-4	Ethylbenzene	1.0 U	1.0	
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	
108-88-3	Toluene	1.0 U	1.0	
79-01-6	Trichloroethene (TCE)	7.8	1.0	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	
75-01-4	Vinyl Chloride	1.0 U	1.0	
156-59-2	cis-1,2-Dichloroethene	5.6	1.0	
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0	
179601-23-1	m,p-Xylenes	2.0 U	2.0	
95-47-6	o-Xylene	1.0 U	1.0	
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0	

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/18/12 1030 10/18/12
Sample Name:	MW-12S	Units:	Percent
Lab Code:	R1207074-013	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1019.run

Analysis Lot:315240Instrument Name:R-GC-03Dilution Factor:1

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
3-Fluorochlorobenzene	86	78-142	10/25/12 00:19	· · · · · · · · · · · · · · · · · · ·
Bromochloromethane	82	48-120	10/25/12 00:19	
3-Fluorochlorobenzene (PID)	86	83-126	10/25/12 00:19	

Client:Ecology And Environment, IncorporatedService RProject:Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTODate CoSample Matrix:WaterDate Ro

Service Request: R1207074 Date Collected: 10/18/12 1030 Date Received: 10/18/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 04:25

Sample Name:MLab Code:R

MW-12S R1207074-013

Analytical Method: Prep Method: Data File Name:	625 EPA 3510C I:\ACQUDATA\5973A\DATA\102312\CN548.D\			Analysis Lot: 315259 Extraction Lot: 169751 Instrument Name: R-MS-51 Dilution Factor: 1
CAS No.	Analyte Name	Result Q	MRL	Note
120-82-1	1,2,4-Trichlorobenzene	4.7 U	4.7	
122-66-7	1,2-Diphenylhydrazine	4.7 U	4.7	
88-06-2	2,4,6-Trichlorophenol	4.7 U	4.7	
120-83-2	2,4-Dichlorophenol	4.7 U	4.7	
105-67-9	2,4-Dimethylphenol	4.7 U	4.7	
51-28-5	2,4-Dinitrophenol	47 U	47	

122-00-7	1,2-Dipnenyinydrazine	4.7 U	4.7	
88-06-2	2,4,6-Trichlorophenol	4.7 U	4.7	
120-83-2	2,4-Dichlorophenol	4.7 U	4.7	
105-67-9	2,4-Dimethylphenol	4.7 U	4.7	
51-28-5	2,4-Dinitrophenol	47 U	47	
121-14-2	2,4-Dinitrotoluene	4.7 U	4.7	· · · · · · · · · · · · · · · · · · ·
606-20-2	2,6-Dinitrotoluene	4.7 U	4.7	
91-58-7	2-Chloronaphthalene	4.7 U	4.7	
95-57-8	2-Chlorophenol	4.7 U	4.7	
88-75-5	2-Nitrophenol	4.7 U	4.7	
91-94-1	3,3'-Dichlorobenzidine	4.7 U	4.7	
534-52-1	4,6-Dinitro-o-cresol	47 U	47	
101-55-3	4-Bromophenyl Phenyl Ether	4.7 U	4.7	
59-50-7	4-Chloro-m-cresol	4.7 U	4.7	
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7 U	4.7	
100-02-7	4-Nitrophenol	47 U	47	
83-32-9	Acenaphthene	4.7 U	4.7	
208-96-8	Acenaphthylene	4.7 U	4.7	····
120-12-7	Anthracene	4.7 U	4.7	
56-55-3	Benz(a)anthracene	4.7 U	4.7	
92-87-5	Benzidine	94 U	94	
50-32-8	Benzo(a)pyrene	4.7 U	4.7	
205-99-2	3,4-Benzofluoranthene	4.7 U	4.7	
191-24-2	Benzo(g,h,i)perylene	4.7 U	4.7	
207-08-9	Benzo(k)fluoranthene	4.7 U	4.7	
108-60-1	Bis(1-chloroisopropyl) Ether	4.7 U	4.7	
111-91-1	Bis(2-chloroethoxy)methane	4.7 U	4.7	
111-44-4	Bis(2-chloroethyl) Ether	4.7 U	4.7	
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7 U	4.7	
85-68-7	Butyl Benzyl Phthalate	4.7 U	4.7	
218-01-9	Chrysene	4.7 U	4.7	
84-74-2	Di-n-butyl Phthalate	4.7 U	4.7	

Client:	Ecology And Environment, Incorporated	Service Request: I
Project:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Date Collected:
Sample Matrix:	Water	Date Received:

Date Received: 10/18/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 04:25

R1207074 10/18/12 1030

Units: μg/L Basis: NA

Sample Name:MLab Code:R

MW-12S R1207074-013

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN548.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7		· · · ·
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7	· · · · · · · · · · · · · · · · · · ·	
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7	······································	
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4,7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7	· · · · · ·	
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed (5
2,4,6-Tribromophenol	95	28-157	10/24/12 04:25	·····
2-Fluorobiphenyl	90	39-119	10/24/12 04:25	
2-Fluorophenol	47	10-105	10/24/12 04:25	
Nitrobenzene-d5	84	37-117	10/24/12 04:25	
Phenol-d6	34	10-107	10/24/12 04:25	
p-Terphenyl-d14	91	40-133	10/24/12 04:25	

Service Request: R1207074 Client: Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO **Project:** Sample Matrix: Water

Date Collected: 10/18/12 1030 Date Received: 10/18/12 Date Extracted: 10/23/12 Date Analyzed: 10/24/12 12:32

> Units: µg/L Basis: NA

MW-12S Sample Name: Lab Code: R1207074-013

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method: Prep Method: Data File Name:	NY 310-13 Method I:\ACQUDATA\6890I\DATA\102412\An333.D\			Analysis Lot: 315433 Extraction Lot: 169858 Instrument Name: R-GC-59 Dilution Factor: 1		
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940		
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940		

Analyst Summary Report

Client: Project:	Ecology And Environment, Incorporate Davis Howland Oil Company Site -We		Service Request:	
Sample Name: Lab Code: Matrix:	MW-12S R1207074-013 Water		Date Collected: Date Received:	+ •••
Analysis Method	Ex	tracted/Digested By	Analyzed B	y

601/602	
625	DMURPHY
NY 310-13	DMURPHY
SM 4500-H+ B	

BWOJTASIEWICZ ZMIAO MCYMBAL DWARD

Now part of the ALS Group

Analytical Report Service Request: R1207074 Client: Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Date Collected: 10/18/12 1125 **Project: Date Received:** 10/18/12 Sample Matrix: Water MW-12R Sample Name: R1207074-014 Lab Code:

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilutior Factor		Date Analyzed	Note
рН	SM 4500-H+ B	7.18	pH Units		1	NA	10/18/12 18:01	Н
Temperature of pH Analysis	SM 4500-H+ B	20.0	deg C		1	NA	10/18/12 18:01	Н

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/18/12 1125 10/18/12
Sample Name:	MW-12R	Units:	
Lab Code:	R1207074-014	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: Data File Name:	601/602 1020.run			Analysis Lot: 315240 Instrument Name: R-GC-03 Dilution Factor: 1
CAS No.	Analyte Name	Result Q	MRL	Note
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	
95-50-1	1.2-Dichlorobenzene	1.0 U	1.0	

75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		aa
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0	<u> </u>	
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0		
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	1.0 U	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	1.0 U	1.0		······································
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0		
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/18/12 1125 10/18/12
Sample Name:	MW-12R	Units:	Percent
Lab Code:	R1207074-014	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:601/602Data File Name:1020.run

Analysis Lot: 315240 Instrument Name: R-GC-03 Dilution Factor: 1

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	84	78-142	10/25/12 01:09	
Bromochloromethane	78	48-120	10/25/12 01:09	
3-Fluorochlorobenzene (PID)	87	83-126	10/25/12 01:09	

Client: Ecology And Environment, Incorporated Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO **Project:** Sample Matrix: Water

Service Request: R1207074 Date Collected: 10/18/12 1125 Date Received: 10/18/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 05:03

MW-12R

Units: µg/L Basis: NA

Sample Name: Lab Code:

R1207074-014

Analytical Method:	625
Prep Method:	EPA 3510C
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN549.D\

Analysis Lot:	315259
Extraction Lot:	169751
Instrument Name:	R-MS-51
Dilution Factor:	1

CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7	U	4.7		
122-66-7	1,2-Diphenylhydrazine	4.7	U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7	U	4.7		
120-83-2	2,4-Dichlorophenol	4.7	U	4.7		
105-67-9	2,4-Dimethylphenol	4.7	U	4.7		
51-28-5	2,4-Dinitrophenol	47	U	47		
121-14-2	2,4-Dinitrotoluene	4.7	U	4.7		
606-20-2	2,6-Dinitrotoluene	4.7	U	4.7		
91-58-7	2-Chloronaphthalene	4.7	U	4.7		
95-57-8	2-Chlorophenol	4.7	U	4.7		
88-75-5	2-Nitrophenol	4.7	U	4.7		
91 - 94-1	3,3'-Dichlorobenzidine	4.7	U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47	U	47		
101-55-3	4-Bromophenyl Phenyl Ether	4.7	U	4.7		
59-50-7	4-Chloro-m-cresol	4.7	U	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7	U	4.7	· · · · · · · · · · · · · · · · · · ·	
100-02-7	4-Nitrophenol	47	U	47		
83-32-9	Acenaphthene	4.7	U	4.7		
208-96-8	Acenaphthylene	4.7	U	4.7		
120-12-7	Anthracene	4.7	U	4.7		
56-55-3	Benz(a)anthracene	4.7	U	4.7		
92-87-5	Benzidine	94	U	94		
50-32-8	Benzo(a)pyrene	4.7	U	4.7		
205-99-2	3,4-Benzofluoranthene	4.7	U	4.7		
191-24-2	Benzo(g,h,i)perylene	4.7	U	4.7		
207-08-9	Benzo(k)fluoranthene	4.7	U	4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7	U	4.7		
111-91-1	Bis(2-chloroethoxy)methane	4.7	U	4.7		
111-44-4	Bis(2-chloroethyl) Ether	4.7		4.7		
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7	U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7		4.7		
218-01-9	Chrysene	4.7		4.7		
84-74-2	Di-n-butyl Phthalate	4.7	U	4.7		

Ecology And Environment, Incorporated

 Project:
 Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO
 Date Col

 Sample Matrix:
 Water
 Date Re

 Date Ext
 Date Ext

 Service Request:
 R1207074

 Date Collected:
 10/18/12 1125

 Date Received:
 10/18/12

 Date Extracted:
 10/22/12

 Date Analyzed:
 10/24/12 05:03

Units: μg/L Basis: NA

Sample Name: MW Lab Code: R12

Client:

MW-12R R1207074-014

Analytical Method	625	Analysis Lot: 315259
Prep Method:	EPA 3510C	Extraction Lot: 169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN549.D\	Instrument Name: R-MS-51
		Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7		
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7	·	
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7		
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7		
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	92	28-157	10/24/12 05:03	
2-Fluorobiphenyl	86	39-119	10/24/12 05:03	
2-Fluorophenol	49	10-105	10/24/12 05:03	
Nitrobenzene-d5	86	37-117	10/24/12 05:03	····-
Phenol-d6	33	10-107	10/24/12 05:03	
p-Terphenyl-d14	86	40-133	10/24/12 05:03	

Client:	Ecology And Environment, Incorporated	Service Request:	R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO	Date Collected:	10/18/12 1125
Sample Matrix:	Water	Date Received:	10/18/12
		Date Extracted:	10/23/12

Date Extracted: 10/23/12 Date Analyzed: 10/24/12 13:26 Units: μg/L

Basis: NA

Sample Name:MW-12RLab Code:R1207074-014

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method:NY 310-13Prep Method:MethodData File Name:I:\ACQUDATA\6890I\DATA\102412\An335.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59		
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940		
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940		<u> </u>

Analyst Summary Report

Client: Project:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-0	Service Request: R1207074
Sample Name: Lab Code: Matrix:	MW-12R R1207074-014 Water	Date Collected: 10/18/12 Date Received: 10/18/12
Analysis Method	Extracted/Digest	ed By Analyzed By
601/602		BWOJTASIEWICZ

625 NY 310-13 SM 4500-H+ B DMURPHY DMURPHY BWOJTASIEWIC ZMIAO MCYMBAL DWARD

Now part of the ALS Group

Analytical Report

Client:	Ecology And Environment, Incorporated	Service Request: R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Date Collected: 10/18/12 1250
Sample Matrix:	Water	Date Received: 10/18/12
Sample Name:	MW-2S	
Lab Code:	R1207074-015	Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	6.78	pH Units		1	NA	10/18/12 18:01	Н
Temperature of pH Analysis	SM 4500-H+ B	20.4	deg C		1	NA	10/18/12 18:01	Η

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/18/12 1250 10/18/12
Sample Name:	MW-2S	Units:	
Lab Code:	R1207074-015	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1021.run

Analysis Lot: 315240 Instrument Name: R-GC-03 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0		
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.7	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0		
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	1.0 U	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	1.0 U	1.0		
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0		
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/18/12 1250 10/18/12
Sample Name:	MW-2S	Units:	Percent
Lab Code:	R1207074-015	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:601/602Data File Name:1021.run

Analysis Lot: 315240 Instrument Name: R-GC-03 Dilution Factor: 1

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q	
3-Fluorochlorobenzene	84	78-142	10/25/12 02:01		· · · · · · · · · · · · · · · · · · ·
Bromochloromethane	82	48-120	10/25/12 02:01		
3-Fluorochlorobenzene (PID)	88	83-126	10/25/12 02:01		

Client:Ecology And Environment, IncorporatedServicProject:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTODateSample Matrix:WaterDate

Service Request: R1207074 Date Collected: 10/18/12 1250 Date Received: 10/18/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 05:41

Units: µg/L

Basis: NA

Sample Name: Lab Code: MW-2S R1207074-015

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN550.D\	Instrument Name:	R-MS-51
	· ·	Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7 U	4.7		
122-66-7	1,2-Diphenylhydrazine	4.7 U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7 U	4.7		
120-83-2	2,4-Dichlorophenol	4.7 U	4.7		······
105-67-9	2,4-Dimethylphenol	4.7 U	4.7		
51-28-5	2,4-Dinitrophenol	47 U	47		
121-14-2	2,4-Dinitrotoluene	4.7 U	4.7	······································	
606-20-2	2,6-Dinitrotoluene	4.7 U	4.7		
91-58-7	2-Chloronaphthalene	4.7 U	4.7		
95-57-8	2-Chlorophenol	4.7 U	4.7		
88-75-5	2-Nitrophenol	4.7 U	4.7		
91-94-1	3,3'-Dichlorobenzidine	4.7 U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47 U	47		
101-55-3	4-Bromophenyl Phenyl Ether	4.7 U	4.7		
59-50-7	4-Chloro-m-cresol	4.7 U	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7 U	4.7		
100-02-7	4-Nitrophenol	47 U	47		
83-32-9	Acenaphthene	4.7 U	4.7		
208-96-8	Acenaphthylene	4.7 U	4.7		······
120-12-7	Anthracene	4.7 U	4.7		
56-55-3	Benz(a)anthracene	4.7 U	4.7		
92-87-5	Benzidine	94 U	94	·	
50-32-8	Benzo(a)pyrene	4.7 U	4.7		
205-99-2	3,4-Benzofluoranthene	4.7 U	4.7		
191-24-2	Benzo(g,h,i)perylene	4.7 U	4.7		
207-08-9	Benzo(k)fluoranthene	4.7 U	4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7 U	4.7		
111-91-1	Bis(2-chloroethoxy)methane	4.7 U	4.7		
111-44-4	Bis(2-chloroethyl) Ether	4.7 U	4.7		
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7 U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7 U	4.7	· · · · · · · · · · · · · · · · · · ·	
218-01-9	Chrysene	4.7 U	4.7		
84-74-2	Di-n-butyl Phthalate	4.7 U	4.7		

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTODate Collected:10/18/12Sample Matrix:WaterDate Received:10/18/12

Date Collected:10/18/121250Date Received:10/18/12Date Extracted:10/22/12Date Analyzed:10/24/1205:41

Units: μg/L Basis: NA

Sample Name:M'Lab Code:R1

MW-2S R1207074-015

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN550.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7		
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7		
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7		
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7	·····	
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7		
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	106	28-157	10/24/12 05:41	
2-Fluorobiphenyl	88	39-119	10/24/12 05:41	
2-Fluorophenol	47	10-105	10/24/12 05:41	
Nitrobenzene-d5	84	37-117	10/24/12 05:41	
Phenol-d6	33	10-107	10/24/12 05:41	
p-Terphenyl-d14	88	40-133	10/24/12 05:41	

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed;	10/18/12 1250 10/18/12 10/23/12
Sample Name:	MW-2S	Units:	• •
Lab Code:	R1207074-015	Basis:	

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method: Prep Method: Data File Name:	NY 310-13 Method I:\ACQUDATA\6890I\DATA	Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59			
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940	·····	<u> </u>
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940	·	

 ._. _

Analyst Summary Report

Client: Project:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-00323	Service Request: R1207074
Sample Name: Lab Code: Matrix:	MW-2S R1207074-015 Water	Date Collected: 10/18/12 Date Received: 10/18/12
Analysis Method	Extracted/Digested B	y Analyzed By
601/602		BWOITASIEWIC7

625 NY 310-13 SM 4500-H+ B DMURPHY DMURPHY BWOJTASIEWICZ ZMIAO MCYMBAL DWARD

Now part of the ALS Group

Analytical Report

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTODate Collected:10/18/12 1320Sample Matrix:WaterDate Received:10/18/12Sample Name:MW-2REnvironment, IncorporatedBasis:NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
рН	SM 4500-H+ B	7.39	pH Units		1	NA	10/18/12 18:01	H
Temperature of pH Analysis	SM 4500-H+ B	20.5	deg C		1	NA	10/18/12 18:01	H

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/18/12 1320 10/18/12
Sample Name:	MW-2R	Units:	
Lab Code:	R1207074-016	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: Data File Name:	1001.run			Analysis Lot: Instrument Name: Dilution Factor:	R-GC-03
CAS No.	Analyte Name	Result Q	MRL	Note	

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0		· · · · · · · · · · · · · · · · · · ·
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	25	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	8.3	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0	<u> </u>	
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0		
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	1.0 U	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	21 0 E	1.0		
156-59-2	cis-1,2-Dichloroethene	450 E	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	3.9	1.0		
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		
	· • •				

Client:	Ecology And Environment, Incorporated	Service Request:	R1207074
Project:	Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO	Date Collected:	10/18/12 1320
Sample Matrix:	Water	Date Received:	10/18/12
		Date Analyzed:	10/25/12 09:33
Sample Name:	MW-2R	Units:	Percent
Lab Code:	R1207074-016	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1001.run

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	87	78-142	10/25/12 09:33	
Bromochloromethane	91	48-120	10/25/12 09:33	
3-Fluorochlorobenzene (PID)	86	83-126	10/25/12 09:33	

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/18/12 1320 10/18/12
Sample Name: Lab Code: Run Type:	MW-2R R1207074-016 Dilution	Units: Basis:	· · •

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1015.run

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	10 U	10		· · · · · · · · · · · ·
79-34-5	1,1,2,2-Tetrachloroethane	10 U	10		
79-00-5	1,1,2-Trichloroethane	10 U	10		
75-34-3	1,1-Dichloroethane (1,1-DCA)	31 D	10		
75-35-4	1,1-Dichloroethene (1,1-DCE)	10 U	10		
95-50-1	1,2-Dichlorobenzene	10 U	10		
107-06-2	1,2-Dichloroethane	10 U	10		
78-87-5	1,2-Dichloropropane	10 U	10		
541-73-1	1,3-Dichlorobenzene	10 U	10		
106-46-7	1,4-Dichlorobenzene	10 U	10		· · · · · · · · · · · · · · · · · · ·
110-75-8	2-Chloroethyl Vinyl Ether	10 U	10		
71-43-2	Benzene	10 U	10		
75-27-4	Bromodichloromethane	10 U	10		
75-25-2	Bromoform	10 U	10		
74-83-9	Bromomethane	10 U	10		
56-23-5	Carbon Tetrachloride	10 U	10		
108-90-7	Chlorobenzene	10 U	10		
75-00-3	Chloroethane	10 U	10		
67-66-3	Chloroform	10 U	10		
74 -8 7-3	Chloromethane	10 U	10		
124-48-1	Dibromochloromethane	10 U	10		
75-09-2	Methylene Chloride	10 U	10		
100-41-4	Ethylbenzene	10 U	10		
127-1 8- 4	Tetrachloroethene (PCE)	10 U	10		
108-88-3	Toluene	10 U	10		
79-01-6	Trichloroethene (TCE)	10 U	10		
75-69-4	Trichlorofluoromethane (CFC 11)	10 U	10		
75-01-4	Vinyl Chloride	260 D	10		
156-59-2	cis-1,2-Dichloroethene	640 D	10		
10061-01-5	cis-1,3-Dichloropropene	10 U	10		
179601-23-1	m,p-Xylenes	20 U	20		
95-47-6	o-Xylene	10 U	10		
156-60-5	trans-1,2-Dichloroethene	10 U	10		
10061-02-6	trans-1,3-Dichloropropene	10 U	10		

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTODate Collected:10/18/12 1320Sample Matrix:WaterDate Received:10/18/12Sample Name:MW-2RUnits:Percent

Units: Percen Basis: NA

Sample Name:MW-2RLab Code:R1207074-016Run Type:Dilution

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:601/602Data File Name:1015.run

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	82	78-142	10/25/12 21:31	
Bromochloromethane	81	48-120	10/25/12 21:31	
3-Fluorochlorobenzene (PID)	88	83-126	10/25/12 21:31	

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site - Wells 10/12/EN-003231-0001-03TTODate Collected:10/18/12 1320Sample Matrix:WaterDate Received:10/18/12

Date Extracted: 10/22/12 Date Analyzed: 10/24/12 10:42

> Units: µg/L Basis: NA

Sample Name: Lab Code:

MW-2R R1207074-016

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN558.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7 U	4.7		
122-66-7	1,2-Diphenylhydrazine	4.7 U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7 U	4.7		
120-83-2	2,4-Dichlorophenol	4.7 U	4.7		
105-67-9	2,4-Dimethylphenol	4.7 U	4.7		
51-28-5	2,4-Dinitrophenol	47 U	47		
121-14-2	2,4-Dinitrotoluene	4.7 U	4.7		
606-20-2	2,6-Dinitrotoluene	4.7 U	4.7		
91-58-7	2-Chloronaphthalene	4.7 U	4.7		
95-57-8	2-Chlorophenol	4.7 U	4.7	- · · · · · ·	
88-75-5	2-Nitrophenol	4.7 U	4.7		
91-94-1	3,3'-Dichlorobenzidine	4.7 U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47 U	47		
101-55-3	4-Bromophenyl Phenyl Ether	4.7 U	4.7		
59-50-7	4-Chloro-m-cresol	4.7 U	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7 U	4.7		
100-02-7	4-Nitrophenol	47 U	47		
83-32-9	Acenaphthene	4.7 U	4.7		
208-96-8	Acenaphthylene	4.7 U	4.7		······
120-12-7	Anthracene	4.7 U	4.7		
56-55-3	Benz(a)anthracene	4.7 U	4.7		
92-87-5	Benzidine	94 U	94		
50-32-8	Benzo(a)pyrene	4.8	4.7		
205-99-2	3,4-Benzofluoranthene	5.0	4.7		
191-24-2	Benzo(g,h,i)perylene	4.8	4.7		
207-08-9	Benzo(k)fluoranthene	4.7 U	4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7 U	4.7		
111-91-1	Bis(2-chloroethoxy)methane	4.7 U	4.7		
111-44-4	Bis(2-chloroethyl) Ether	4.7 U	4.7		
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7 U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7 U	4.7		
218-01-9	Chrysene	5.7	4.7		
84-74-2	Di-n-butyl Phthalate	4.7 U	4.7		

Client:Ecology And Environment, IncorporatedService IProject:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTODate Company Compa

Service Request: R1207074 Date Collected: 10/18/12 1320 Date Received: 10/18/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 10:42

> Units: μg/L Basis: NA

Sample Name:MLab Code:R1

MW-2R R1207074-016

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN558.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7		
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7		
206-44-0	Fluoranthene	11	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
7 7- 47 - 4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7	··· , ,, ··· ····	
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7		
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	8.0	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
2,4,6-Tribromophenol	96	28-157	10/24/12 10:42	
2-Fluorobiphenyl	91	39-119	10/24/12 10:42	
2-Fluorophenol	49	10-105	10/24/12 10:42	
Nitrobenzene-d5	96	37-117	10/24/12 10:42	
Phenol-d6	32	10-107	10/24/12 10:42	
p-Terphenyl-d14	76	40-133	10/24/12 10:42	

Client:	Ecology And Environment, Incorporated	Service Request:	R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Date Collected:	10/18/12 1320
Sample Matrix:	Water	Date Received:	10/18/12
		Date Extracted:	10/23/12
		Date Analyzed:	10/24/12 15:14

Units: μg/L Basis: NA

Sample Name:MW-2RLab Code:R1207074-016

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method: Prep Method: Data File Name:	NY 310-13 Method I:\ACQUDATA\6890I\DAT	A\102412\An339.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940	· · · · · · · · · · · · · · · · · · ·	
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940		

Analyst Summary Report

601/602		• •	BWOJTASI	EWICZ
Analysis Method	Extr	acted/Digested By	Analyzed B	y
Matrix:	Water			
Lab Code:	R1207074-016		Date Received:	10/18/12
Sample Name:	MW-2R		Date Collected:	10/18/12
Project:	Davis Howland Oil Company Site -Wells		Set vice Kequest.	K1207074
Client:	Ecology And Environment, Incorporated		Service Request:	R1207074

625 NY 310-13 SM 4500-H+ B DMURPHY DMURPHY BWOJTASIEWICZ ZMIAO MCYMBAL DWARD

Now part of the ALS Group

Analytical Report

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTODate Collected:10/18/12 1600Sample Matrix:WaterDate Received:10/18/12Sample Name:MW-8RExample Sample Samp

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	7.11	pH Units		1	NA	10/18/12 18:01	Н
Temperature of pH Analysis	SM 4500-H+ B	20.3	deg C		1	NA	10/18/12 18:01	Н

Client: Ecology And Environment, Incorporated Service Request: R1207074 Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Date Collected: 10/18/12 1600 **Project:** Sample Matrix: Water **Date Received:** 10/18/12 Date Analyzed: 10/25/12 11:16 Sample Name: MW-8R Units: µg/L Lab Code: R1207074-017 Basis: NA

Purgeable Halocarbons and Purgeable Aromatics by GC/P1D/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1003.run

CAS No.	Analyte Name	Result	Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	20	U	20		
79-34-5	1,1,2,2-Tetrachloroethane	20	U	20		
79-00-5	1,1,2-Trichloroethane	20	U	20		
75-34-3	1,1-Dichloroethane (1,1-DCA)	150		20		
75-35-4	1,1-Dichloroethene (1,1-DCE)	56		20		
95-50-1	1,2-Dichlorobenzene	20	U	20		
107-06-2	1,2-Dichloroethane	20	U	20		··
78-87-5	1,2-Dichloropropane	20	U	20		
541-73-1	1,3-Dichlorobenzene	20	U	20		
106-46-7	1,4-Dichlorobenzene	20	U	20		
110-75-8	2-Chloroethyl Vinyl Ether	20	U	20		
71-43-2	Benzene	20	U	20		
75-27-4	Bromodichloromethane	20	U	20		
75-25-2	Bromoform	20	U	20		
74-83-9	Bromomethane	20	U	20		
56-23-5	Carbon Tetrachloride	20	U	20	·	
108-90-7	Chlorobenzene	20	U	20		
75-00-3	Chloroethane	20	U	20		
67-66-3	Chloroform	20	U	20		
74-87-3	Chloromethane	20	U	20		
124-48-1	Dibromochloromethane	20	U	20		
75-09-2	Methylene Chloride	20	U	20		
100-41-4	Ethylbenzene	20	U	20		
127-18-4	Tetrachloroethene (PCE)	20	U	20		
108-88-3	Toluene	20	U	20		
79-01-6	Trichloroethene (TCE)	20	U	20		
75-69-4	Trichlorofluoromethane (CFC 11)	20	U	20		
75-01-4	Vinyl Chloride	800		20		
156-59-2	cis-1,2-Dichloroethene	4100	E	20		
10061-01-5	cis-1,3-Dichloropropene	20	U	20		
179601-23-1	m,p-Xylenes	40	U	40		
95-47-6	o-Xylene	20	U	20		
156-60-5	trans-1,2-Dichloroethene	20	U	20		
10061-02-6	trans-1,3-Dichloropropene	20	U	20		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/18/12 1600 10/18/12
Sample Name:	MW-8R	Units:	Percent
Lab Code:	R1207074-017	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1003.run

Surrogate Name	%Rec	Control Limits	Date Analyzed (Q
3-Fluorochlorobenzene	84	78-142	10/25/12 11:16	
Bromochloromethane	82	48-120	10/25/12 11:16	
3-Fluorochlorobenzene (PID)	85	83-126	10/25/12 11:16	

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/18/12 1600 10/18/12
Sample Name: Lab Code: Run Type:	MW-8R R1207074-017 Dilution	Units: Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602	Analysis Lot:	315382
Data File Name:	1004.run	Instrument Name:	R-GC-03
		Dilution Factor:	50

CAS No.	Analyte Name	Result	Q	MRL	Note
71-55-6	1,1,1-Trichloroethane (TCA)	50	U	50	
79-34-5	1,1,2,2-Tetrachloroethane	50	U	50	
79 - 00-5	1,1,2-Trichloroethane	50	U	50	
75-34-3	1,1-Dichloroethane (1,1-DCA)	150	D	50	
75-35-4	1,1-Dichloroethene (1,1-DCE)	60	D	50	
95-50-1	1,2-Dichlorobenzene	50	U	50	
107-06-2	1,2-Dichloroethane	50	U	50	
78-87-5	1,2-Dichloropropane	50	U	50	
541-73-1	1,3-Dichlorobenzene	50	U	50	
106-46-7	1,4-Dichlorobenzene	50	U	50	
110-75-8	2-Chloroethyl Vinyl Ether	50	U	50	
71-43-2	Benzene	50	U	50	
75-27-4	Bromodichloromethane	50	U	50	
75-25-2	Bromoform	50	U	50	
74-83-9	Bromomethane	50	U	50	
56-23-5	Carbon Tetrachloride	50	U	50	
108-90-7	Chlorobenzene	50	U	50	
75-00-3	Chloroethane	50	U	50	
67-66-3	Chloroform	50	U	50	
74-87-3	Chloromethane	50	U	50	
124-48-1	Dibromochloromethane	50	U	50	
75-09-2	Methylene Chloride	50	U	50	
100-41-4	Ethylbenzene	50	U	50	
127-18-4	Tetrachloroethene (PCE)	50	U	50	
108-88-3	Toluene	50	U	50	
79-01-6	Trichloroethene (TCE)	50	U	50	
75-69-4	Trichlorofluoromethane (CFC 11)	50	U	50	
75-01-4	Vinyl Chloride	820	D	50	
156-59-2	cis-1,2-Dichloroethene	4600	D	50	
10061-01-5	cis-1,3-Dichloropropene	50	U	50	
179601-23-1	m,p-Xylenes	100	U	100	
95-47 - 6	o-Xylene	50		50	
156-60-5	trans-1,2-Dichloroethene	50	U	50	
10061-02-6	trans-1,3-Dichloropropene	50	U	50	

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/18/12 1600 10/18/12
Sample Name:	MW-8R	Units:	Percent
Lab Code:	R1207074-017	Basis:	NA

Run Type:

Dilution

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: 601/602 Data File Name: 1004.run

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	83	78-142	10/25/12 12:07	
Bromochloromethane	81	48-120	10/25/12 12:07	
3-Fluorochlorobenzene (PID)	87	83-126	10/25/12 12:07	

Client:Ecology And Environment, IncorporatedService ReqProject:Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTODate ColleeSample Matrix:WaterDate Recei

Service Request: R1207074 Date Collected: 10/18/12 1600 Date Received: 10/18/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 08:11

Units: µg/L

Basis: NA

Sample Name: Lab Code: MW-8R R1207074-017

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN554.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7 U	4.7		
122-66-7	1,2-Diphenylhydrazine	4.7 U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7 U	4.7		
120-83-2	2,4-Dichlorophenol	4.7 U	4.7		
105-67-9	2,4-Dimethylphenol	4.7 U	4.7		
51-28-5	2,4-Dinitrophenol	47 U	47		
121-14-2	2,4-Dinitrotoluene	4.7 U	4.7		
606-20-2	2,6-Dinitrotoluene	4.7 U	4.7		
91-58-7	2-Chloronaphthalene	4.7 U	4.7		
95-57-8	2-Chlorophenol	4.7 U	4.7	····	
88-75-5	2-Nitrophenol	4.7 U	4.7		
91-94-1	3,3'-Dichlorobenzidine	4.7 U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47 U	47		
101-55-3	4-Bromophenyl Phenyl Ether	4.7 U	4.7		
59-50-7	4-Chloro-m-cresol	4.7 Ŭ	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7 U	4.7		
100-02-7	4-Nitrophenol	47 U	47		
83-32-9	Acenaphthene	4.7 U	4.7		
208-96-8	Acenaphthylene	4.7 U	4.7		
120-12-7	Anthracene	4.7 U	4.7		
56-55-3	Benz(a)anthracene	4.7 U	4.7		
92-87-5	Benzidine	94 U	94		
50-32-8	Benzo(a)pyrene	4.7 U	4.7		
205-99-2	3,4-Benzofluoranthene	4.7 U	4.7		
191-24-2	Benzo(g,h,i)perylene	4.7 U	4.7		
207-08-9	Benzo(k)fluoranthene	4.7 U	4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7 U	4.7		
111-91-1	Bis(2-chloroethoxy)methane	4.7 Ŭ	4.7		
111-44-4	Bis(2-chloroethyl) Ether	4.7 U	4.7		
11 7-81-7	Bis(2-ethylhexyl) Phthalate	4.7 U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7 U	4.7	· · · · · · · · · · · · · · · · · · ·	
218-01-9	Chrysene	4.7 U	4.7		
84-74-2	Di-n-butyl Phthalate	4.7 U	4.7		

Client:Ecology And Environment, IncorporatedServiceProject:Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTODateSample Matrix:WaterDate

Service Request: R1207074 Date Collected: 10/18/12 1600 Date Received: 10/18/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 08:11

> Units: µg/L Basis: NA

Sample Name: Lab Code:

MW-8R R1207074-017

Analytical Method:	625	
Prep Method:	EPA 3510C	F
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN554.D\	Inst

Analysis Lot:	315259
Extraction Lot:	
Instrument Name:	R-MS-51
Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7		
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7		
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7		
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7		
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	108	28-157	10/24/12 08:11	
2-Fluorobiphenyl	90	39-119	10/24/12 08:11	
2-Fluorophenol	50	10-105	10/24/12 08:11	
Nitrobenzene-d5	97	37-117	10/24/12 08:11	
Phenol-d6	34	10-107	10/24/12 08:11	
p-Terphenyl-d14	88	40-133	10/24/12 08:11	

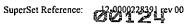
Client:	Ecology And Environment, Incorporated	Service Request: R1207074
Project:	Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO	Date Collected: 10/18/12 1600
Sample Matrix:	Water	Date Received: 10/18/12
_		Date Extracted: 10/23/12

Date Analyzed: 10/25/12 08:22

Units: μg/L Basis: NA

Sample Name:MWLab Code:R12

MW-8R R1207074-017


Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method: Prep Method: Data File Name:	NY 310-13 Method I:\ACQUDATA\6890I\DAT	A\102412\An351.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940		· ·
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940		· · ·

Analyst Summary Report

Sample Name:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-00 MW-8R	Date Collected: 10/18/12
Lab Code: Matrix:	R1207074-017 Water	Date Received: 10/18/12
Analysis Method	Extracted/Digested By	Analyzed By

625 NY 310-13 SM 4500-H+ B DMURPHY DMURPHY ZMIAO MCYMBAL DWARD

Now part of the ALS Group

Analytical Report

Client:	Ecology And Environment, Incorporated	Service Request:	10/18/12 1600
Project:	Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO	Date Collected:	
Sample Matrix:	Water	Date Received:	
Sample Name: Lab Code:	MW-13S R1207074-018	Basis:	NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilutior Factor	n Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	7.34	pH Units	•••••	1	NA	10/18/12 18:01	н
Temperature of pH Analysis	SM 4500-H+ B	20.4	deg C		1	NA	10/18/12 18:01	Η

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/18/12 1600 10/18/12
Sample Name:	MW-13S	Units:	
Lab Code:	R1207074-018	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: Data File Name:	601/602 1005.run				Analysis Lot: Instrument Name: Dilution Factor:	R-GC-03
CAS No.	Analyte Name	Result (Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 L	J	1.0	· · · · · · · · · · · · · · · · · · ·	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	J	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	J	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.3		1.0	······	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 L	J	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 L	J	1.0		
107-06-2	1,2-Dichloroethane	1.0 L	J	1.0		
78-87-5	1,2-Dichloropropane	1.0 L	J	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 L	J	1.0		

95-50-1	1,2-Dichlorobenzene	1.0 U	1.0	
107-06-2	1,2-Dichloroethane	1.0 U	1.0	
78-87-5	1,2-Dichloropropane	1.0 U	1.0	
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0	
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0	
71-43-2	Benzene	1.0 U	1.0	
75-27-4	Bromodichloromethane	1.0 U	1.0	
75-25-2	Bromoform	1.0 U	1.0	
74 -8 3-9	Bromomethane	1.0 U	1.0	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	
108-90-7	Chlorobenzene	1.0 U	1.0	
75-00-3	Chloroethane	1.0 U	1.0	
67-66-3	Chloroform	1.0 U	1.0	
74-87-3	Chloromethane	1.0 U	1.0	
124-48-1	Dibromochloromethane	1.0 U	1.0	
75-09-2	Methylene Chloride	1.0 U	1.0	
100-41-4	Ethylbenzene	1.0 U	1.0	
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	
108-88-3	Toluene	1.0 U	1.0	
79-01-6	Trichloroethene (TCE)	1.0 U	1.0	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	
75-01-4	Vinyl Chloride	1.8	1.0	<u> </u>
156-59-2	cis-1,2-Dichloroethene	30	1.0	
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0	
179601-23-1	m,p-Xylenes	2.0 U	2.0	
95-47-6	o-Xylene	1.0 U	1.0	
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0	

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/18/12 1600 10/18/12
Sample Name:	MW-13S	Units:	Percent
Lab Code:	R1207074-018	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1005.run

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	82	78-142	10/25/12 12:57	
Bromochloromethane	78	48-120	10/25/12 12:57	
3-Fluorochlorobenzene (PID)	87	83-126	10/25/12 12:57	

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTODate Collected:10/18/12Sample Matrix:WaterDate Received:10/18/12

 Date Collected:
 10/18/12 1600

 Date Received:
 10/18/12

 Date Extracted:
 10/22/12

 Date Analyzed:
 10/24/12 08:49

Units: µg/L Basis: NA

Sample Name:MLab Code:R

MW-13S R1207074-018

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN555.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7	U	4.7		
122-66-7	1,2-Diphenylhydrazine	4.7	U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7	U	4.7		
120-83-2	2,4-Dichlorophenol	4.7	U	4.7		
105-67-9	2,4-Dimethylphenol	4.7	U	4.7		
51-28-5	2,4-Dinitrophenol	47	U	47		
121-14-2	2,4-Dinitrotoluene	4.7	U	4.7		
606-20-2	2,6-Dinitrotoluene	4.7	U	4.7		
91-58-7	2-Chloronaphthalene	4.7	U	4.7		
95-57-8	2-Chlorophenol	4.7	U	4.7		
88-75-5	2-Nitrophenol	4.7	U	4.7		
91-94-1	3,3'-Dichlorobenzidine	4.7	U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47	U	47		
101-55-3	4-Bromophenyl Phenyl Ether	4.7	U	4.7		
59-50-7	4-Chloro-m-cresol	4.7	U	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7	U	4.7		
100-02-7	4-Nitrophenol	47	U	47		
83-32-9	Acenaphthene	4.7	U	4.7		
208-96-8	Acenaphthylene	4.7	U	4.7		
120-12-7	Anthracene	4.7	U	4.7		
56-55-3	Benz(a)anthracene	4.7	U	4.7		
92-87-5	Benzidine	94	U	94		
50-32-8	Benzo(a)pyrene	4.7	U	4.7		
205-99-2	3,4-Benzofluoranthene	4.7	U	4.7		
191-24-2	Benzo(g,h,i)perylene	4.7	U	4.7	· · · · · · · · · · · · · · · · · · ·	
207-08-9	Benzo(k)fluoranthene	4.7	U	4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7	U	4.7		
111-91-1	Bis(2-chloroethoxy)methane	4.7	U	4.7		
111-44-4	Bis(2-chloroethyl) Ether	4.7	U	4.7		
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7	U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7	U	4.7		
218-01-9	Chrysene	4.7	U	4.7		
84-74-2	Di-n-butyl Phthalate	4.7	U	4.7		

Client:	Ecology And Environment, Incorporated	Service Requ
Project:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Date Collec
Sample Matrix:	Water	Date Receiv

 Service Request:
 R1207074

 Date Collected:
 10/18/12 1600

 Date Received:
 10/18/12

 Date Extracted:
 10/22/12

 Date Analyzed:
 10/24/12 08:49

Units: μg/L Basis: NA

Sample Name: M Lab Code: H

MW-13S R1207074-018

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN555.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7		
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7		
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		÷
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7		
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7		
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
2,4,6-Tribromophenol	94	28-157	10/24/12 08:49	
2-Fluorobiphenyl	76	39-119	10/24/12 08:49	
2-Fluorophenol	54	10-105	10/24/12 08:49	
Nitrobenzene-d5	89	37-117	10/24/12 08:49	
Phenol-d6	37	10-107	10/24/12 08:49	
p-Terphenyl-d14	63	40-133	10/24/12 08:49	_

Client:	Ecology And Environment, Incorporated	Service Request:	R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO	Date Collected:	10/18/12 1600
Sample Matrix:	Water	Date Received:	10/18/12
		Date Extracted:	10/23/12

Date Analyzed: 10/24/12 16:08 Units: µg/L Basis: NA

Sample Name: MW-13S Lab Code: R1207074-018

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method: Prep Method: Data File Name:	NY 310-13 Method I:\ACQUDATA\6890I\DAT	`A\102412\An341.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940		
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940		

Analyst Summary Report

Client: Ecology And Environment, Incorporated Service Request: R1207074 Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-037 Project: Sample Name: **MW-13S** Date Collected: 10/18/12 Lab Code: R1207074-018 Date Received: 10/18/12 Matrix: Water Analysis Method Extracted/Digested By Analyzed By 601/602 **BWOJTASIEWICZ** 625 DMURPHY ZMIAO

DMURPHY

Printed 11/5/12 9:55 \\Inflow2\Starlims\LimsReps\AnalystSummary.rpt

NY 310-13

SM 4500-H+ B

MCYMBAL

DWARD

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/19/12 10/19/12
Sample Name:	TB101922	Units:	• •
Lab Code:	R1207074-019	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: Data File Name:	601/602 1011.run			Analysis Lot: 315382 Instrument Name: R-GC-03 Dilution Factor: 1
CAS No.	Analyte Name	Result Q	MRL	Note
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0	
107-06-2	1,2-Dichloroethane	1.0 U	1,0	
78-87-5	1,2-Dichloropropane	1.0 U	1.0	
- 4 ·				

79-00-5	1,1,2-Trichloroethane	1.0 U	1.0	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0	
107-06-2	1,2-Dichloroethane	1.0 U	1.0	
78-87-5	1,2-Dichloropropane	1.0 U	1.0	
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0	
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0	
71-43-2	Benzene	1.0 U	1.0	
75-27-4	Bromodichloromethane	1.0 U	1.0	
75-25-2	Bromoform	1.0 U	1.0	
74-83-9	Bromomethane	1.0 U	1.0	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	
108-90-7	Chlorobenzene	1.0 U	1.0	
75-00-3	Chloroethane	1.0 U	1.0	
67-66-3	Chloroform	1.0 U	1.0	
74-87-3	Chloromethane	1.0 U	1.0	
124-48-1	Dibromochloromethane	1.0 U	1.0	
75-09-2	Methylene Chloride	1.0 U	1.0	
100-41-4	Ethylbenzene	1.0 U	1.0	
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	
108-88-3	Toluene	1.0 U	1.0	
79-01-6	Trichloroethene (TCE)	1.0 U	1.0	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	
75-01-4	Vinyl Chloride	1.0 U	1.0	
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0	
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0	
179601-23-1	m,p-Xylenes	2.0 U	2.0	
95-47-6	o-Xylene	1.0 U	1.0	
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0	
156-60-5 10061-02-6				

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/19/12 10/19/12
Sample Name:	TB101922	Units:	Percent
Lab Code:	R1207074-019	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:601/602Data File Name:1011.run

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	82	78-142	10/25/12 18:09	
Bromochloromethane	77	48-120	10/25/12 18:09	
3-Fluorochlorobenzene (PID)	86	83-126	10/25/12 18:09	

Analyst Summary Report

Analysis Method	Extracted/Digested By	Analyzed By
Sample Name: Lab Code: Matrix:	TB101922 R1207074-019 Water	Date Collected: 10/19/12 Date Received: 10/19/12
Client: Project:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-037	Service Request: R1207074

601/602

BWOJTASIEWICZ

Now part of the ALS Group

 Analytical Report

 Client:
 Ecology And Environment, Incorporated
 Service Request:
 R1207074

 Project:
 Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO
 Date Collected:
 10/19/12 0950

 Sample Matrix:
 Water
 Date Received:
 10/19/12

 Sample Name:
 MW-9S
 Basis:
 NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
рН	SM 4500-H+ B	7.14	pH Units		1	NA	10/19/12 18:25	Н
Temperature of pH Analysis	SM 4500-H+ B	20.1	deg C		1	NA	10/19/12 18:25	Н

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/19/12 0950 10/19/12
Sample Name:	MW-9S	Units:	
Lab Code:	R1207074-020	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1006.run

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	3.7	1.0		
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	16	1.0		·· · · · · · · · · · · · · · · · · · ·
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0		
95-50-1	1,2-Dichlorobenzene	49	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.2	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	22	1.0		
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	30	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	19	1.0		
156-59-2	cis-1,2-Dichloroethene	51	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	3.1	1.0		
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		
	· · · ·				

Client: Project:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Service Request: Date Collected:	
Sample Matrix:	Water	Date Received:	10/19/12
•		Date Analyzed:	10/25/12 13:48

Sample Name:MW-9SLab Code:R1207074-020

Units: Percent Basis: NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1006.run

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed	Q
3-Fluorochlorobenzene	85	78-142	10/25/12 13:48	
Bromochloromethane	80	48-120	10/25/12 13:48	
3-Fluorochlorobenzene (PID)	86	83-126	10/25/12 13:48	

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTODate Collected:10/19/12 0950Sample Matrix:WaterDate Received:10/19/12

Date Received: 10/19/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 09:27

> Units: μg/L Basis: NA

Sample Name: Lab Code: MW-9S R1207074-020

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN556.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7	U	4.7		
122-66-7	1,2-Diphenylhydrazine	4.7	U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7	U	4.7		
120-83-2	2,4-Dichlorophenol	4.7	U	4.7		
105-67-9	2,4-Dimethylphenol	4.7	U	4.7		
51-28-5	2,4-Dinitrophenol	47	U	47		
121-14-2	2,4-Dinitrotoluene	4.7	U	4.7	· · · · · · · · · · · · · · · · · · ·	
606-20-2	2,6-Dinitrotoluene	4.7	U	4.7		
91-58-7	2-Chloronaphthalene	4.7	U	4.7		
95-57-8	2-Chlorophenol	4.7	U	4.7		·····
88-75-5	2-Nitrophenol	4.7	U	4.7		
91-94-1	3,3'-Dichlorobenzidine	4.7	U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47	U	47		
101-55-3	4-Bromophenyl Phenyl Ether	4.7	U	4.7		
59-50-7	4-Chloro-m-cresol	4.7	U	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7	U	4.7		
100-02-7	4-Nitrophenol	47	U	47		
83-32-9	Acenaphthene	4.7	U	4.7		
208-96-8	Acenaphthylene	4.7	U	4.7		
120-12-7	Anthracene	4.7	U	4.7		
56-55-3	Benz(a)anthracene	4.7	U	4.7		
92-87-5	Benzidine	94	U	94		
50-32-8	Benzo(a)pyrene	4.7	U	4.7		
205-99-2	3,4-Benzofluoranthene	4.7	U	4.7		
191-24-2	Benzo(g,h,i)perylene	4.7	U	4.7		
207-08-9	Benzo(k)fluoranthene	4.7	U	4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7	U	4.7		
111-91-1	Bis(2-chloroethoxy)methane	4.7	U	4.7	-	
111-44-4	Bis(2-chloroethyl) Ether	4.7	U	4.7		
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7	U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7	U	4.7		
218-01-9	Chrysene	4.7	U	4.7		
84-74-2	Di-n-butyl Phthalate	4.7	U	4.7		

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTODate Collected:10/19/12 0950Sample Matrix:WaterDate Received:10/19/12

Date Received: 10/19/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 09:27

> Units: μg/L Basis: NA

Sample Name: Lab Code: MW-9S R1207074-020

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN556.D\	Instrument Name:	R-MS-51
		Dilution Factor:	I

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7		
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7		
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7		
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7		
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		· · · · ·
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
2,4,6-Tribromophenol	86	28-157	10/24/12 09:27	
2-Fluorobiphenyl	74	39-119	10/24/12 09:27	
2-Fluorophenol	46	10-105	10/24/12 09:27	
Nitrobenzene-d5	75	37-117	10/24/12 09:27	
Phenol-d6	31	10-107	10/24/12 09:27	
p-Terphenyl-d14	80	40-133	10/24/12 09:27	

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	10/19/12 0950 10/19/12 10/23/12
Sample Name:	MW-9S	Units:	
Lab Code:	R1207074-020	Basis:	

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method: NY 310-13 Prep Method: Method Data File Name: I:\ACQUDATA\6890I\DATA\102412\An342.D\				Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59	
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940	•	
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940	· · · · · · · · · · · · · · · · · · ·	

Analyst Summary Report

Client: Project:	Ecology And Environment, Incorpo Davis Howland Oil Company Site	orated -Wells 10/12/ EN-003231-0001-037.	Service Request: R1207074
Sample Name: Lab Code: Matrix:	MW-9S R1207074-020 Water		Date Collected: 10/19/12 Date Received: 10/19/12
Analysis Method		Extracted/Digested By	Analyzed By
601/602			BWOJTASIEWICZ
625		DMURPHY	ZMIAO
NY 310-13		DMURPHY	MCYMBAL

SM 4500-H+ B

DWARD

COLUMBIA ANALYTICAL SERVICES, INC. Now part of the ALS Group

Analytical Report

	Analytical Report		
Client:	Ecology And Environment, Incorporated	Service Request:	R1207
Project:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Date Collected:	10/19/
Sample Matrix:	Water	Date Received:	10/19/
Sample Name:	RB-101912		
Lab Code:	R1207074-021	Basis:	NA

7074 9/12 1040 9/12

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	6.57	pH Units		1	NA	10/19/12 18:25	H
Temperature of pH Analysis	SM 4500-H+ B	19.8	deg C		1	NA	10/19/12 18:25	Η

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/19/12 1040 10/19/12
Sample Name:	RB-101912	Units:	
Lab Code:	R1207074-021	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602	
Data File Name:	1007.run	

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0		
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0		
108-88-3	Toluene	1,0 U	1.0	1.8 m	
79-01-6	Trichloroethene (TCE)	1.0 U	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	1.0 U	1.0	······································	
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0		
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTODate Collected:10/19/12 1040Sample Matrix:WaterDate Received:10/19/12Sample Name:RB-101912Units:Percent

 Sample Name:
 RB-101912

 Lab Code:
 R1207074-021

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:601/602Data File Name:1007.run

Analysis Lot: 315382 Instrument Name: R-GC-03 Dilution Factor: 1

Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	82	78-142	10/25/12 14:38	
Bromochloromethane	79	48-120	10/25/12 14:38	
3-Fluorochlorobenzene (PID)	87	83-126	10/25/12 14:38	_

Client:	Ecology And Environment, Incorporated	Service R
Project:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Date Co
Sample Matrix:	Water	Date Re

Request: R1207074 ollected: 10/19/12 1040 eceived: 10/19/12 Date Extracted: 10/22/12 Date Analyzed: 10/24/12 10:05

Sample Name: Lab Code:

RB-101912 R1207074-021

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625
Prep Method:	EPA 3510C
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN557.D\

Analysis Lot: 315259 Extraction Lot: 169751 Instrument Name: R-MS-51 **Dilution Factor:** 1

CAS No.	Analyte Name	Result Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7 U	4.7		
122-66-7	1,2-Diphenylhydrazine	4.7 U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7 U	4.7		
120-83-2	2,4-Dichlorophenol	4.7 U	4.7		
105-67-9	2,4-Dimethylphenol	4.7 U	4.7		
51-28-5	2,4-Dinitrophenol	47 U	47		
121-14-2	2,4-Dinitrotoluene	4.7 U	4.7		
606-20-2	2,6-Dinitrotoluene	4.7 U	4.7		
91-58-7	2-Chloronaphthalene	4.7 U	4.7		
95-57-8	2-Chlorophenol	4.7 U	4.7		
88-75-5	2-Nitrophenol	4.7 U	4.7		
91-94-1	3,3'-Dichlorobenzidine	4.7 U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47 U	47		
101-55-3	4-Bromophenyl Phenyl Ether	4.7 U	4.7		
59-50-7	4-Chloro-m-cresol	4.7 U	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7 U	4.7		
100-02-7	4-Nitrophenol	47 U	47		
83-32-9	Acenaphthene	4.7 U	4.7		
208-96-8	Acenaphthylene	4.7 U	4.7		
120-12-7	Anthracene	4.7 U	4.7		
56-55-3	Benz(a)anthracene	4.7 U	4.7		
92-87-5	Benzidine	94 U	94		
50-32-8	Benzo(a)pyrene	4.7 U	4.7		
205-99-2	3,4-Benzofluoranthene	4.7 U	4.7		
191-24-2	Benzo(g,h,i)perylene	4.7 U	4.7		
207-08-9	Benzo(k)fluoranthene	4.7 U	4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7 U	4.7		_
111-91-1	Bis(2-chloroethoxy)methane	4.7 U	4.7		
111-44-4	Bis(2-chloroethyl) Ether	4.7 U	4.7		
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7 U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7 U	4.7		
218-01-9	Chrysene	4.7 U	4.7		
84-74-2	Di-n-butyl Phthalate	4.7 U	4.7		

Client:	Ecology And Environment, Incorporated	Service Request: R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Date Collected: 10/19/12 1040
Sample Matrix:	Water	Date Received: 10/19/12
		D · D · · · 1 10/00/10

Date Extracted: 10/22/12 Date Analyzed: 10/24/12 10:05

> Units: µg/L Basis: NA

Sample Name:RILab Code:RI

RB-101912 R1207074-021

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625	Analysis Lot:	315259
Prep Method:	EPA 3510C	Extraction Lot:	169751
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN557.D\	Instrument Name:	R-MS-51
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 U	4.7		
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7		
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7		
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene	4.7 U	4.7		
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
2,4,6-Tribromophenol	100	28-157	10/24/12 10:05	
2-Fluorobiphenyl	83	39-119	10/24/12 10:05	
2-Fluorophenol	51	10-105	10/24/12 10:05	
Nitrobenzene-d5	89	37-117	10/24/12 10:05	
Phenol-d6	33	10-107	10/24/12 10:05	
p-Terphenyl-d14	93	40-133	10/24/12 10:05	

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	10/19/12 1040 10/19/12 10/23/12
Sample Name:	RB-101912	Units:	
Lab Code:	R1207074-021	Basis:	

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method:NY 310-13Prep Method:MethodData File Name:I:\ACQUDATA\6890I\DATA\102412\An343.D\				Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59	
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940		
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940		

- - <u>-</u>

Analyst Summary Report

Client:Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03*Service Request: R1207074Sample Name:RB-101912 R1207074-021 WaterDate Collected: 10/19/12 Date Received: 10/19/12Analysis MethodExtracted/Digested ByAnalyzed By	601/602		BWOJTASIEWICZ
Project:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-037Sample Name:RB-101912Lab Code:R1207074-021Date Collected:10/19/12Date Received:10/19/12	Analysis Method	Extracted/Digested By	Analyzed By
Project: Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-037	Lab Code:	R1207074-021	
	Sample Name:	RB-101912	Date Collected: 10/19/12
			Service Request: R1207074

625 NY 310-13 SM 4500-H+ B DMURPHY DMURPHY BWOJTASIEWIC ZMIAO MCYMBAL DWARD

Now part of the ALS Group

Analytical Report

Client:	Ecology And Environment, Incorporated	Service Request: R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTO	Date Collected: 10/19/12 1143
Sample Matrix:	Water	Date Received: 10/19/12
Sample Name: Lab Code:	MW-5R R1207074-022	Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	7.32	pH Units		1	NA	10/19/12 18:25	H
Temperature of pH Analysis	SM 4500-H+ B	20.1	deg C		1	NA	10/19/12 18:25	Н

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: R1207074 Date Collected: 10/19/12 1143 Date Received: 10/19/12 Date Analyzed: 10/25/12 15:38
Sample Name:	MW-5R	Units: µg/L
Lab Code:	R1207074-022	Basis: NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

.

Analytical Method:	601/602
Data File Name:	1008.run

Analysis Lot: 315382 Instrument Name: R-GC-03 Dilution Factor: 10

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	10 U	10		
79-34-5	1,1,2,2-Tetrachloroethane	10 U	10		
79-00-5	1,1,2-Trichloroethane	10 U	10		
75-34-3	1,1-Dichloroethane (1,1-DCA)	74	10	· · · ·	
75-35-4	1,1-Dichloroethene (1,1-DCE)	10 U	10		
95-50-1	1,2-Dichlorobenzene	10 U	10		
107-06-2	1,2-Dichloroethane	10 U	10		
78-87-5	1,2-Dichloropropane	10 U	10		
541-73-1	1,3-Dichlorobenzene	10 U	10		
106-46-7	1,4-Dichlorobenzene	10 U	10		
110-75-8	2-Chloroethyl Vinyl Ether	10 U	10		
71-43-2	Benzene	32	10		
75-27-4	Bromodichloromethane	10 U	10		
75-25-2	Bromoform	10 U	10		
74-83-9	Bromomethane	10 U	10		
56-23-5	Carbon Tetrachloride	10 U	10	· · · · · · · · · · · · · · · · · · ·	
108-90-7	Chlorobenzene	10 U	10		
75-00-3	Chloroethane	10 U	10		
67-66-3	Chloroform	10 U	10		
74-87-3	Chloromethane	10 U	10		
124-48-1	Dibromochloromethane	10 U	10		
75-09-2	Methylene Chloride	10 U	10		
100-41-4	Ethylbenzene	10 U	10		
127-18-4	Tetrachloroethene (PCE)	10 U	10		
108-88-3	Toluene	10 U	10		
79-01-6	Trichloroethene (TCE)	26	10		
75-69-4	Trichlorofluoromethane (CFC 11)	10 U	10		
75-01-4	Vinyl Chloride	350	10		
156-59-2	cis-1,2-Dichloroethene	770	10		
10061-01-5	cis-1,3-Dichloropropene	10 U	10		
179601-23-1	m,p-Xylenes	20 U	20		
95-47-6	o-Xylene	10 U	10		
156-60-5	trans-1,2-Dichloroethene	10 U	10		
10061-02-6	trans-1,3-Dichloropropene	10 U	10		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	10/19/12 1143 10/19/12
Sample Name:	MW-5R	Units:	
Lab Code:	R1207074-022	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1008.run

Analysis Lot:315382Instrument Name:R-GC-03Dilution Factor:10

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed	Q
3-Fluorochlorobenzene	84	78-142	10/25/12 15:38	
Bromochloromethane	81	48-120	10/25/12 15:38	
3-Fluorochlorobenzene (PID)	87	83-126	10/25/12 15:38	

Client: Ecology And Environment, Incorporated Service Request: R1207074 Project: Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO Date Collected: 10/19/12 1143 Date Received: 10/19/12 Sample Matrix: Water

Date Extracted: 10/26/12 Date Analyzed: 11/1/12 00:12

> Units: µg/L Basis: NA

Sample Name: MW-5R Lab Code:

R1207074-022

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625	Analysis Lot:	316547
Prep Method:	EPA 3510C	Extraction Lot:	170155
Data File Name:	I:\ACQUDATA\5973D\DATA\103112\AM187.D\	Instrument Name:	R-MS-54
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	4.7 U	4.7		
1 22-66-7	1,2-Diphenylhydrazine	4.7 U	4.7		
88-06-2	2,4,6-Trichlorophenol	4.7 U	4.7		
120-83-2	2,4-Dichlorophenol	4.7 U	4.7		
105-67-9	2,4-Dimethylphenol	4.7 U	4.7		
51-28-5	2,4-Dinitrophenol	47 U	47		
121-14-2	2,4-Dinitrotoluene	4.7 U	4.7		
606-20-2	2,6-Dinitrotoluene	4.7 U	4.7		
91-58-7	2-Chloronaphthalene	4.7 U	4.7		
95-57-8	2-Chlorophenol	4.7 U	4.7		
88-75-5	2-Nitrophenol	4.7 U	4.7		
91-94-1	3,3'-Dichlorobenzidine	4.7 U	4.7		
534-52-1	4,6-Dinitro-o-cresol	47 U	47		
101-55-3	4-Bromophenyl Phenyl Ether	4.7 U	4.7		
59-50-7	4-Chloro-m-cresol	4.7 U	4.7		
7005-72-3	4-Chlorophenyl Phenyl Ether	4.7 U	4.7		
100-02-7	4-Nitrophenol	47 U	47		
83-32-9	Acenaphthene	4.7 U	4.7		
208-96-8	Acenaphthylene	4.7 U	4.7		
120-12-7	Anthracene	4.7 U	4.7		
56-55-3	Benz(a)anthracene	4.7 U	4.7		
92-87-5	Benzidine	94 U	94		
50-32-8	Benzo(a)pyrene	4.7 U	4.7		
205-99-2	3,4-Benzofluoranthene	4.7 U	4.7		
191-24-2	Benzo(g,h,i)perylene	4.7 U	4.7		
207-08-9	Benzo(k)fluoranthene	4.7 U	4.7		
108-60-1	Bis(1-chloroisopropyl) Ether	4.7 U	4.7		
111-91-1	Bis(2-chloroethoxy)methane	4.7 U	4.7		
111-44-4	Bis(2-chloroethyl) Ether	4.7 U	4.7		
117-81-7	Bis(2-ethylhexyl) Phthalate	4.7 U	4.7		
85-68-7	Butyl Benzyl Phthalate	4.7 U	4.7		
218-01-9	Chrysene	4.7 U	4.7		
84-74-2	Di-n-butyl Phthalate	4.7 U	4.7		

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTODate Collected:10/19/12Sample Matrix:WaterDate Received:10/19/12

Date Collected:10/19/12 1143Date Received:10/19/12Date Extracted:10/26/12Date Analyzed:11/1/12 00:12

Units: µg/L

Basis: NA

Sample Name: Lab Code: MW-5R R1207074-022

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625	Analysis Lot:	316547
Prep Method:	EPA 3510C	Extraction Lot:	170155
Data File Name:	I:\ACQUDATA\5973D\DATA\103112\AM187.D\	Instrument Name:	R-MS-54
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	4.7 Ŭ	4.7		
53-70-3	Dibenz(a,h)anthracene	4.7 U	4.7		
84-66-2	Diethyl Phthalate	4.7 U	4.7		
131-11-3	Dimethyl Phthalate	4.7 U	4.7		
206-44-0	Fluoranthene	4.7 U	4.7		
86-73-7	Fluorene	4.7 U	4.7		
118-74-1	Hexachlorobenzene	4.7 U	4.7		
87-68-3	Hexachlorobutadiene	4.7 U	4.7		
77-47-4	Hexachlorocyclopentadiene	4.7 U	4.7		
67-72-1	Hexachloroethane	4.7 U	4.7		
193-39-5	Indeno(1,2,3-cd)pyrene	4.7 U	4.7		
78-59-1	Isophorone	4.7 U	4.7		
621-64-7	N-Nitrosodi-n-propylamine	4.7 U	4.7		
62-75-9	N-Nitrosodimethylamine	4.7 U	4.7		
86-30-6	N-Nitrosodiphenylamine	4.7 U	4.7		
91-20-3	Naphthalene		4.7		
98-95-3	Nitrobenzene	4.7 U	4.7		
87-86-5	Pentachlorophenol (PCP)	47 U	47		
85-01-8	Phenanthrene	4.7 U	4.7		
108-95-2	Phenol	4.7 U	4.7		
129-00-0	Pyrene	4.7 U	4.7		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	101	28-157	11/1/12 00:12	
2-Fluorobiphenyl	75	39-119	11/1/12 00:12	
2-Fluorophenol	43	10-105	11/1/12 00:12	
Nitrobenzene-d5	83	37-117	11/1/12 00:12	
Phenol-d6	30	10-107	11/1/12 00:12	
p-Terphenyl-d14	83	40-133	11/1/12 00:12	

Client: Ecology And Environment, Incorporated Service Request: R1207074 Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO **Project:** Date Collected: 10/19/12 1143 Sample Matrix: Water **Date Received:** 10/19/12 Date Extracted: 10/23/12

Date Analyzed: 10/24/12 17:29

Units: µg/L

Basis: NA

Sample Name: MW-5R Lab Code: R1207074-022

Analytical Method: Prep Method: Data File Name:	NY 310-13 Method I:\ACQUDATA\6890I\DATA\102412\An344.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59	
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	940	U	940		
68476-31-3	Fuel Oil No. 4	940	U	940		
68476-33-5	Fuel Oil No. 6	940	U	940		
8006-61-9	Gasoline	940	U	940		
8008-20-6	Kerosene	940	U	940		
	Lube Oil	940	U	940		
112-40-3	n-Dodecane	940	U	940		· · ·

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analyst Summary Report

Client: Project:	Ecology And Environment, Incorporate Davis Howland Oil Company Site -Wel		Service Request:	R1207074
Sample Name: Lab Code: Matrix:	MW-5R R1207074-022 Water		Date Collected: Date Received:	
Analysis Method	Ext	racted/Digested By	Analyzed B	у

Thaijbis Meenod	Extracted Digested Dj	
601/602		BWOJTASIEWICZ
625	DMURPHY	JWU
NY 310-13	DMURPHY	MCYMBAL
SM 4500-H+ B		DWARD

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	NA NA
Sample Name:	Method Blank	Units:	
Lab Code:	RQ1212732-01	Basis:	

Basis: NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: Data File Name:	601/602 1004.run			Analysis Lot: Instrument Name: Dilution Factor:	R-GC-03
CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0		- · · · · ·
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	·······	
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		

71-43-2	Benzene	1.0 U	1.0	
75-27-4	Bromodichloromethane	1.0 U	1.0	
75-25-2	Bromoform	1.0 U	1.0	
74-83-9	Bromomethane	1.0 U	1.0	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	
108-90-7	Chlorobenzene	1.0 U	1.0	
75-00-3	Chloroethane	1.0 U	1.0	
67-66-3	Chloroform	1.0 U	1.0	
74-87-3	Chloromethane	1.0 U	1.0	
124-48-1	Dibromochloromethane	1.0 U	1.0	
75-09-2	Methylene Chloride	1.0 U	1.0	· · · ·
100-41-4	Ethylbenzene	1.0 U	1.0	
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	
108-88-3	Toluene	1.0 U	1.0	
79-01-6	Trichloroethene (TCE)	1.0 U	1.0	
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0	
75-01-4	Vinyl Chloride	1.0 U	1.0	
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0	
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0	
179601-23-1	m,p-Xylenes	2.0 U	2.0	
95-47-6	o-Xylene	1.0 U	1.0	
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0	

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed;	NA NA
Sample Name:	Method Blank	Units:	Percent
Lab Code:	RQ1212732-01	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1004.run

Analysis Lot: 315240 Instrument Name: R-GC-03 Dilution Factor: 1

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
3-Fluorochlorobenzene	85	78-142	10/24/12 10:31	
Bromochloromethane	82	48-120	10/24/12 10:31	
3-Fluorochlorobenzene (PID)	89	83-126	10/24/12 10:31	

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Water	Service Request: Date Collected: Date Received: Date Analyzed:	NA NA
Sample Name:	Method Blank	Units:	· •
Lab Code:	RQ1212733-01	Basis:	

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: Data File Name:	601/602 1027.run			Analysis Lot: Instrument Name: Dilution Factor:	R-GC-03
CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	· · · ·····	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0	· · · · · · · · · · · · · · · · · · ·	
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	1.0 U	1.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		······································
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
57-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
27-18-4	Tetrachloroethene (PCE)	1.0 U	1.0		
08-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	1.0 U	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	1.0 U	1.0		
56-59-2	cis-1,2-Dichloroethene	1.0 U	1.0		
0061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
79601-23-1	m,p-Xylenes	2.0 U	2.0	·····	
5-47-6	o-Xylene	1.0 U	1.0		
56-60-5	trans-1,2-Dichloroethene	1.0 U	1.0		

trans-1,3-Dichloropropene

10061-02-6

1.0 U

1.0

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03 T TO Water	Service Request: Date Collected: Date Received: Date Analyzed:	NA NA
Sample Name:	Method Blank	Units:	Percent
Lab Code:	RQ1212733-01	Basis:	NA

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method:	601/602
Data File Name:	1027.run

Analysis Lot: 315382 Instrument Name: R-GC-03 Dilution Factor: 1

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed Q	
3-Fluorochlorobenzene	85	78-142	10/25/12 07:17	
Bromochloromethane	79	48-120	10/25/12 07:17	
3-Fluorochlorobenzene (PID)	86	83-126	10/25/12 07:17	

Client:Ecology And Environment, IncorporatedServiceProject:Davis Howland Oil Company Site -Wells 10/12/EN-003231-0001-03TTODate CSample Matrix:WaterDate R

Service Request: R1207074 Date Collected: NA Date Received: NA Date Extracted: 10/22/12 Date Analyzed: 10/23/12 17:00

> Units: μg/L Basis: NA

Sample Name: Lab Code: Method Blank RQ1212499-01

Semivolatile Organic Compounds by GC/MS

Analytical Method: Prep Method: Data File Name:	625 EPA 3510C I:\ACQUDATA\5973A\DATA\102	312\CN530.D\			Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169751 R-MS-51
CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	5.0	U	5.0		
122-66-7	1,2-Diphenylhydrazine	` 5.0		5.0		
88-06-2	2,4,6-Trichlorophenol	5.0	U	5.0		
120-83-2	2,4-Dichlorophenol	5.0	U	5.0		
105-67-9	2,4-Dimethylphenol	5.0		5.0		
51-28-5	2,4-Dinitrophenol	50	U	50		
121-14-2	2,4-Dinitrotoluene	5.0	U	5.0		
606-20-2	2,6-Dinitrotoluene	5.0	U	5.0		
91-58-7	2-Chloronaphthalene	5.0	U	5.0		
95-57-8	2-Chlorophenol	5.0	U	5.0		
88-75-5	2-Nitrophenol	5.0	U	5.0		
91-94-1	3,3'-Dichlorobenzidine	5.0	U	5.0		
534-52-1	4,6-Dinitro-o-cresol	50	U	50		
101-55-3	4-Bromophenyl Phenyl Ether	5.0	U	5.0		
59-50-7	4-Chloro-m-cresol	5.0	U	5.0		
7005-72-3	4-Chlorophenyl Phenyl Ether	5.0	U	5.0		
100-02-7	4-Nitrophenol	50	U	50		
83-32-9	Acenaphthene	5.0	U	5.0		
208-96-8	Acenaphthylene	5.0	U	5.0		
120-12-7	Anthracene	5.0	U	5.0		
56-55-3	Benz(a)anthracene	5.0	U	5.0		
92-87-5	Benzidine	100	U	100		
50-32-8	Benzo(a)pyrene	5.0	U	5.0		
205-99-2	3,4-Benzofluoranthene	5.0	U	5.0		
191-24-2	Benzo(g,h,i)perylene	5.0	U	5.0		•
	Benzo(k)fluoranthene	5.0		5.0		
	Bis(1-chloroisopropyl) Ether	5.0		5.0		
111-91-1	Bis(2-chloroethoxy)methane	5.0	U	5.0		
	Bis(2-chloroethyl) Ether	5.0		5.0		
	Bis(2-ethylhexyl) Phthalate	5.0		5.0		
85-68-7	Butyl Benzyl Phthalate	5.0	U	5.0		
	Chrysene	5.0		5.0		
	Di-n-butyl Phthalate	5.0		5.0		

00150

Client:Ecology And Environment, IncorporatedProject:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTOSample Matrix:Water

Service Request: R1207074 Date Collected: NA Date Received: NA Date Extracted: 10/22/12 Date Analyzed: 10/23/12 17:00

> Units: µg/L Basis: NA

Sample Name: Lab Code: Method Blank RQ1212499-01

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625
Prep Method:	EPA 3510C
Data File Name:	I:\ACQUDATA\5973A\DATA\102312\CN530.D\

Analysis Lot: 315259 Extraction Lot: 169751 Instrument Name: R-MS-51 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	5.0 U	5.0		
53-70-3	Dibenz(a,h)anthracene	5.0 U	5.0		
84-66-2	Diethyl Phthalate	5.0 U	5.0		
131-11-3	Dimethyl Phthalate	5.0 U	5.0	······································	
206-44-0	Fluoranthene	5.0 U	5.0		
86-73-7	Fluorene	5.0 U	5.0		
118-74-1	Hexachlorobenzene	5.0 U	5.0	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
87-68-3	Hexachlorobutadiene	5.0 U	5.0		
77-47-4	Hexachlorocyclopentadiene	5.0 U	5.0		
67-72-1	Hexachloroethane	5.0 U	5.0		
193-39 - 5	Indeno(1,2,3-cd)pyrene	5.0 U	5.0		
78-59-1	Isophorone	5.0 U	5.0		
621-64-7	N-Nitrosodi-n-propylamine	5.0 U	5.0		
62-75-9	N-Nitrosodimethylamine	5.0 U	5.0		
86-30-6	N-Nitrosodiphenylamine	5.0 U	5.0		
91-20-3	Naphthalene	5.0 U	5.0		
98-95-3	Nitrobenzene	5.0 U	5.0		
87-86-5	Pentachlorophenol (PCP)	50 U	50		
85-01-8	Phenanthrene	5.0 U	5.0		
108-95-2	Phenol	5.0 U	5.0		
129-00-0	Pyrene	5.0 U	5.0		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Q
2,4,6-Tribromophenol	83	28-157	10/23/12 17:00	······································
2-Fluorobiphenyl	87	39-119	10/23/12 17:00	
2-Fluorophenol	46	10-105	10/23/12 17:00	
Nitrobenzene-d5	79	37-117	10/23/12 17:00	
Phenol-d6	33	10-107	10/23/12 17:00	
p-Terphenyl-d14	91	40-133	10/23/12 17:00	

Service Request: R1207074 Client: Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO **Project:** Sample Matrix: Water

Date Collected: NA Date Received: NA Date Extracted: 10/26/12 Date Analyzed: 10/31/12 22:21

> Units: µg/L Basis: NA

Sample Name: Method Blank Lab Code:

RQ1212837-01

Semivolatile Organic Compounds by GC/MS

Analytical Method	625	Analysis Lot: 316547
Prep Method:	EPA 3510C	Extraction Lot: 170155
Data File Name:	I:\ACQUDATA\5973D\DATA\103112\AM184.D\	Instrument Name: R-MS-54
		Dilution Factor: 1

CAS No.	Analyte Name	Result	Q	MRL	Note	
120-82-1	1,2,4-Trichlorobenzene	5.0	U	5.0		· · ·
122-66-7	1,2-Diphenylhydrazine	5.0	U	5.0		
88-06-2	2,4,6-Trichlorophenol	5.0	U	5.0		
120-83-2	2,4-Dichlorophenol	5.0	U	5.0		
105-67-9	2,4-Dimethylphenol	5.0	U	5.0		
51-28-5	2,4-Dinitrophenol	50	U	50		
121-14-2	2,4-Dinitrotoluene	5.0	U	5.0	<u> </u>	
606-20-2	2,6-Dinitrotoluene	5,0	U	5.0		
91-58-7	2-Chloronaphthalene	5.0	U	5.0		
95-57-8	2-Chlorophenol	5.0	U	5.0		
88-75-5	2-Nitrophenol	5.0	U	5.0		
9 1- 9 4-1	3,3'-Dichlorobenzidine	5.0	U	5.0		
534-52-1	4,6-Dinitro-o-cresol	50	U	50		
101-55-3	4-Bromophenyl Phenyl Ether	5.0	U	5.0		
59-50-7	4-Chloro-m-cresol	5.0	U	5.0		
7005-72-3	4-Chlorophenyl Phenyl Ether	5.0	U	5.0		
100-02-7	4-Nitrophenol	50	U	50		
83-32-9	Acenaphthene	5.0	U	5.0		
208-96-8	Acenaphthylene	5.0	U	5.0		
120-12-7	Anthracene	5.0	U	5.0		
56-55-3	Benz(a)anthracene	5.0	U	5.0		
92-87-5	Benzidine	100	U	100		
50-32-8	Benzo(a)pyrene	5.0	U	5.0		
205-99-2	3,4-Benzofluoranthene	5.0	U	5.0		
191-24-2	Benzo(g,h,i)perylene	5.0	U	5.0		
207-08-9	Benzo(k)fluoranthene	5.0	U	5.0		
108-60-1	Bis(1-chloroisopropyl) Ether	5.0	U	5.0		
111-91-1	Bis(2-chloroethoxy)methane	5.0	U	5.0		• • • •
111-44-4	Bis(2-chloroethyl) Ether	5.0	U	5.0		
117-81-7	Bis(2-ethylhexyl) Phthalate	5.0	U	5.0		
85-68-7	Butyl Benzyl Phthalate	5.0	U	5.0		
218-01-9	Chrysene	5.0	U	5.0		
84-74-2	Di-n-butyl Phthalate	5.0	U	5.0		

Client:Ecology And Environment, IncorporatedService Request:R1207074Project:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTODate Collected:NASample Matrix:WaterDate Received:NA

Date Collected: NA Date Received: NA Date Extracted: 10/26/12 Date Analyzed: 10/31/12 22:21

> Units: μg/L Basis: NA

Sample Name:Method BlankLab Code:RQ1212837-01

Semivolatile Organic Compounds by GC/MS

Analytical Method:	625	Analysis Lot:	316547
Prep Method:	EPA 3510C	Extraction Lot:	170155
Data File Name:	I:\ACQUDATA\5973D\DATA\103112\AM184,D\	Instrument Name:	R-MS-54
		Dilution Factor:	1

CAS No.	Analyte Name	Result Q	MRL	Note	
117-84-0	Di-n-octyl Phthalate	5.0 U	5.0	······································	
53-70-3	Dibenz(a,h)anthracene	5.0 U	5.0		
84-66-2	Diethyl Phthalate	5.0 U	5.0		
131-11-3	Dimethyl Phthalate	5.0 U	5.0		
206-44-0	Fluoranthene	5.0 U	5.0		
86-73-7	Fluorene	5.0 U	5.0		
118-74-1	Hexachlorobenzene	5.0 U	5.0		· · · · · · · · · · · · · · · · · · ·
87-68-3	Hexachlorobutadiene	5.0 U	5.0		
77-47-4	Hexachlorocyclopentadiene	5.0 U	5.0		
67-72-1	Hexachloroethane	5.0 U	5.0		· · · · · · · · · · · · · · · · · · ·
193-39-5	Indeno(1,2,3-cd)pyrene	5.0 U	5.0		
78-59-1	Isophorone	5.0 U	5.0		
621-64-7	N-Nitrosodi-n-propylamine	5.0 U	5.0		
62-75-9	N-Nitrosodimethylamine	5.0 U	5.0		
86-30-6	N-Nitrosodiphenylamine	5.0 U	5.0		
91-20-3	Naphthalene	5.0 U	5.0		
98-95-3	Nitrobenzene	5.0 U	5.0		
87-86-5	Pentachlorophenol (PCP)	50 U	50		
85-01-8	Phenanthrene	5.0 U	5.0		
108-95-2	Phenol	5.0 U	5.0		
129-00-0	Pyrene	5.0 U	5.0		

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
2,4,6-Tribromophenol	88	28-157	10/31/12 22:21	
2-Fluorobiphenyl	75	39-119	10/31/12 22:21	
2-Fluorophenol	49	10-105	10/31/12 22:21	
Nitrobenzene-d5	82	37-117	10/31/12 22:21	
Phenol-d6	34	10-107	10/31/12 22:21	
p-Terphenyl-d14	79	40-133	10/31/12 22:21	

Client:	Ecology And Environment, Incorporated	Service Request:	R1207074
Project:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
		Date Extracted:	10/23/12
		Date Analyzed:	10/24/12 18:23

Units: μg/L Basis: NA

Sample Name:Method BlankLab Code:RQ1212576-01

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method:NY 310-13Prep Method:MethodData File Name:I:\ACQUDATA\6890I\DATA\102412\An346.D\					Analysis Lot: Extraction Lot: Instrument Name: Dilution Factor:	169858 R-GC-59
CAS No.	Analyte Name	Result	Q	MRL	Note	
68476-30-2	Fuel Oil No. 2	1000	U	1000		
68476-31-3	Fuel Oil No. 4	1000	U	1000		
68476-33-5	Fuel Oil No. 6	1000	U	1000		
8006-61-9	Gasoline	1000	U	1000		
8008-20-6	Kerosene	1000	U	1000		
	Lube Oil	1000	U	1000		
112-40-3	n-Dodecane	1000	U	1000		

Now part of the ALS Group OA/OC Report

4 4------------										
Client:	Ecology And Environment, Incorporated	Service Request: R1207074								
Project:	Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO	Date Collected: 10/18/12								
Sample Matrix:	Water	Date Received: 10/18/12								
-		Date Analyzed: 10/18/12								

Replicate Sample Summary General Chemistry Parameters

Sample Name: Lab Code:	MW-2S R1207074-015		Jnits: pH U Basis: NA	Jnits			
Analyte Name	Method	MRL	Sample Result	Duplica	2SDUP te Sample 4-015DUP Average	RPD	RPD Limit
pH	SM 4500-H+ B	-	6.78	6.81	6.79	<1	0.10

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Now part of the ALS Group

QA/QC Report

Client:Ecology And Environment, IncorporatedProject:Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTOSample Matrix:Water

Service Request: R1207074 Date Collected: 10/18/12 Date Received: 10/18/12 Date Analyzed: 10/25/12

Matrix Spike Summary

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Sample Name:	MW-2S	Units: µg/L
Lab Code:	R1207074-015	Basis: NA

Analytical Method: 601/602

	Sample	N	MW-2SMS Matrix Spike Q1212732-0 Spike		Duplic	AW-2SDMS ate Matrix Q1212732-0 Spike	Spike	% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,1,1-Trichloroethane (TCA)	ND	18.2	20.0	91	17.7	20.0	89	41 - 138	2	30
1,1,2,2-Tetrachloroethane	ND	16.3	20.0	81	17.0	20.0	85	8 - 184	4	30
1,1,2-Trichloroethane	ND	16.0	20.0	80	15.8	20.0	79	39 - 136	1	30
1,1-Dichloroethane (1,1-DCA)	1.7	18.6	20.0	85	18.1	20.0	82	47 - 132	3	30
1,1-Dichloroethene (1,1-DCE)	ND	18.5	20.0	92	18.2	20.0	91	28 - 167	2	30
1,2-Dichlorobenzene	ND	16.9	20.0	84	17.4	20.0	87	0 - 208	3	30
1,2-Dichloroethane	ND	16.2	20.0	81	15.9	20.0	79	51 - 147	2	30
1,2-Dichloropropane	ND	17.5	20.0	87	17.1	20.0	85	44 - 156	2	30
1,3-Dichlorobenzene	ND	17.5	20.0	87	18.0	20.0	90	7 - 187	3	30
1,4-Dichlorobenzene	ND	16.7	20.0	83	16.9	20.0	85	42 - 143	1	30
2-Chloroethyl Vinyl Ether	ND	ND	20.0	0 / *	ND	20.0	0 *	14 - 186	<1	30
Benzene	ND	17.0	20.0	85	17.6	20.0	88	39 - 150	4	30
Bromodichloromethane	ND	16.3	20.0	82	15.9	20.0	80	42 - 172	2	30
Bromoform	ND	16.7	20.0	84	17.0	20.0	85	13 - 159	1	30
Bromomethane	ND	18.6	20.0	93	19.4	20.0	97	0 - 144	4	30
Carbon Tetrachloride	ND	17.2	20.0	86	16.6	20.0	83	43 - 143	3	30
Chlorobenzene	ND	17.3	20.0	87	17.4	20.0	87	38 - 150	<1	30
Chloroethane	ND	18.7	20.0	93	18.4	20.0	92	46 - 137	2	30
Chloroform	ND	18.2	20.0	91	17.5	20.0	88	49 - 133	4	30
Chloromethane	ND	23.6	20.0	118	23.4	20.0	117	0 - 193	<1	30
Dibromochloromethane	ND	15.4	20.0	77	15.3	20.0	77	24 - 191	<1	30
Methylene Chloride	ND	17.6	20.0	88	16.9	20.0	84	25 - 162	4	30
Ethylbenzene	ND	16.5	20.0	82	16.9	20.0	84	32 - 160	2	30
Tetrachloroethene (PCE)	ND	17.2	20.0	86	16.5	20.0	82	26 - 162	4	30
Toluene	ND	16.9	20.0	84	17.5	20.0	87	46 - 148	4	30
Trichloroethene (TCE)	ND	18.0	20.0	90	17.3	20.0	87	35 - 146	4	30
Trichlorofluoromethane (CFC 11)	ND	18.0	20.0	90	17.5	20.0	88	21 - 156	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Now part of the ALS Group

QA/QC Report

Client:Ecology And Environment, IncorporatedProject:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTOSample Matrix:Water

Service Request: R1207074 Date Collected: 10/18/12 Date Received: 10/18/12 Date Analyzed: 10/25/12

> Units: µg/L Basis: NA

Matrix Spike Summary

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Sample Name:	MW-2S
Lab Code:	R1207074-015

Analytical Method: 601/602

		ľ	MW-2SMS Matrix Spike Q1212732-0		Duplie	MW-2SDMS ate Matrix Q1212732-0	Spike			
Analyte Name	Sample Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Vinyl Chloride	ND	22.9	20.0	114	23.1	20.0		28 - 163	<1	30
cis-1,2-Dichloroethene	ND	18.3	20.0	91	17.6	20.0		24 - 191	3	30
cis-1,3-Dichloropropene	ND	16.6	20.0	83	15.9	20.0	79	22 - 178	4	30
m,p-Xylenes	ND	30.6	40.0	77	31.4	40.0	78	68 - 111	2	30
o-Xylene	ND	15.9	20.0	79	16.2	20.0	81	70 - 113	2	30
trans-1,2-Dichloroethene	ND	17.5	20.0	87	16.9	20.0	84	38 - 155	4	30
trans-1,3-Dichloropropene	ND	16.8	20.0	84	16.4	20.0	82	22 - 178	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

ØØ166

Now part of the ALS Group

QA/QC Report

Client:Ecology And Environment, IncorporatedProject:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTOSample Matrix:Water

Service Request: R1207074 Date Collected: 10/18/12 Date Received: 10/18/12 Date Analyzed: 10/24/12

> μg/L NA

Matrix Spike Summary Semivolatile Organic Compounds by GC/MS

Analytical Method: 625 Prep Method: EPA 3510C

	Sample	Ν	MW-2SMS fatrix Spike Q1212499-0 Spike		Duplic	4W-2SDMS ate Matrix Q1212499-0 Spike	Spike	% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	ND	69.5	94.3	74	69.4	94.3	74	29 - 85	<1	30
1,2-Diphenylhydrazine	ND	96.6	94.3	102	94 .1	94.3	100	64 - 1 14	3	30
2,4,6-Trichlorophenol	ND	101	94.3	107	101	94.3	107	37 - 144	<1	30
2,4-Dichlorophenol	ND	92.4	94.3	98	90.2	94.3	96	39 - 135	2	30
2,4-Dimethylphenol	ND	95.7	94.3	101	91.7	94.3	97	32 - 119	4	30
2,4-Dinitrophenol	ND	97.5	94.3	103	97.5	94.3	103	0 - 191	<1	30
2,4-Dinitrotoluene	ND	98.7	94.3	105	104	94.3	110	39 - 139	5	30
2,6-Dinitrotoluene	ND	105	94.3	111	112	94.3	119	50 - 158	7	30
2-Chloronaphthalene	ND	81.5	94.3	86	84.5	94.3	90	60 - 118	4	30
2-Chlorophenol	ND	81.2	94.3	86	82.4	94.3	87	23 - 134	1	30
2-Nitrophenol	ND	102	94.3	108	101	94.3	107	29 - 182	1	30
3,3'-Dichlorobenzidine	ND	ND	94.3	0	ND	94.3	0	0 - 262	<1	30
4,6-Dinitro-o-cresol	ND	100	94.3	106	101	94.3	107	0 - 181	<1	30
4-Bromophenyl Phenyl Ether	ND	97.6	94.3	103	97.1	94.3	103	53 - 127	<1	30
4-Chloro-m-cresol	ND	98.1	94.3	104	97.9	94.3	104	22 - 147	<1	30
4-Chlorophenyl Phenyl Ether	ND	93.5	94.3	99	92.3	94.3	98	25 - 158	1	30
4-Nitrophenol	ND	49.1	94.3	52	65.9	94.3	70	0 - 132	29	30
Acenaphthene	ND	94.5	94.3	100	96.6	94.3	102	47 - 145	2	30
Acenaphthylene	ND	94.0	94.3	100	95.5	94.3	101	33 - 145	2	30
Anthracene	ND	105	94.3	111	102	94.3	108	27 - 133	3	30
Benz(a)anthracene	ND	1 02	94.3	109	99.2	94.3	105	33 - 143	3	30
Benzidine	ND	ND	94.4	0 *	ND	94.4	0 *	10 - 144	<1	30
Benzo(a)pyrene	ND	93.7	94.3	99	91.6	94.3	97	17 - 163	2	30
3,4-Benzofluoranthene	ND	101	94.3	107	93.6	94.3	99	24 - 159	8	30
Benzo(g,h,i)perylene	ND	128	94.3	136	127	94.3	135	0 - 219	1	30
Benzo(k)fluoranthene	ND	90.4	94.3	96	89.8	94.3	95	11 - 162	<1	30
Bis(1-chloroisopropyl) Ether	ND	85.9	94.3	91	83.3	94.3	88	36 - 166	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Now part of the ALS Group

QA/QC Report

Ecology And Environment, Incorporated

Project:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTOSample Matrix:Water

Service Request: R1207074 Date Collected: 10/18/12 Date Received: 10/18/12 Date Analyzed: 10/24/12

Matrix Spike Summary Semivolatile Organic Compounds by GC/MS

Sample Name:	MW-2S	Units: µg/L
Lab Code:	R1207074-015	Basis: NA
Analytical Method	: 625	

Prep Method: EPA 3510C

Client:

	Sample	N	MW-2SMS Aatrix Spike Q1212499-0 Spike		Duplic	MW-2SDMS cate Matrix Q1212499-0	Spike	97 D		000
Analyte Name	Result	Result	Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Bis(2-chloroethoxy)methane	ND	87.0	94.3	92	83.9	94.3	89	33 - 184	4	30
Bis(2-chloroethyl) Ether	ND	80.0	94.3	85	79.5	94.3	84	12 - 158	<1	30
Bis(2-ethylhexyl) Phthalate	ND	101	94.3	107	95.3	94.3	101	8 - 158	6	30
Butyl Benzyl Phthalate	ND	94.8	94.3	100	90.9	94.3	96	0 - 152	4	30
Chrysene	ND	104	94.3	110	99.4	94.3	105	17 - 168	5	30
Di-n-butyl Phthalate	ND	104	94.3	110	99.5	94.3	105	1 - 118	4	30
Di-n-octyl Phthalate	ND	86.3	94.3	92	84.3	94.3	89	4 - 146	2	30
Dibenz(a,h)anthracene	ND	121	94.3	129	119	94.3	126	0 - 227	2	30
Diethyl Phthalate	ND	100	94.3	106	99.7	94.3	106	0 - 114	<1	30
Dimethyl Phthalate	ND	96.9	94.3	103	98.2	94.3	104	0 - 112	1	30
Fluoranthene	ND	110	94.3	117	105	94.3	111	26 - 137	5	30
Fluorene	ND	98.3	94.3	104	97.8	94.3	104	59 - 121	<1	30
Hexachlorobenzene	ND	99.3	94.3	105	99.9	94.3	106	0 - 152	<1	30
Hexachlorobutadiene	ND	66.8	94.3	71	70.8	94.3	75	24 - 116	6	30
Hexachlorocyclopentadiene	ND	54,7	94.3	58	64.1	94.3	68	30 - 93	16	30
Hexachloroethane	ND	64.6	94.3	69	63.9	94.3	68	40 - 113	1	30
Indeno(1,2,3-cd)pyrene	ND	120	94.3	127	116	94.3	123	0 - 171	3	30
Isophorone	ND	94.8	94.3	101	90.9	94.3	96	21 - 196	4	30
N-Nitrosodi-n-propylamine	ND	90.2	94.3	96	88.2	94.3	94	0 - 230	2	30
N-Nitrosodimethylamine	ND	56.9	94.3	60	57.3	94.3	61	39 - 67	<1	30
N-Nitrosodiphenylamine	ND	110	94.3	116	108	94.3	114	50 - 117	2	30
Naphthalene	ND	80.1	94.3	85	79.7	94.3	84	21 - 133	<1	30
Nitrobenzene	ND	91.3	94.3	97	88.2	94.3	94	35 - 180	3	30
Pentachlorophenol (PCP)	NĎ	109	94.3	116	109	94.3	116	14 - 176	<1	30
Phenanthrene	ND	107	94.3	113	104	94.3	110	54 - 120	3	30
Phenol	ND	37.4	94.3	40	49.9	94.3	53	5 - 112	29	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable,

Now part of the ALS Group

QA/QC Report

Ecology And Environment, Incorporated

Client:

Project:Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTOSample Matrix:Water

Service Request: R1207074 Date Collected: 10/18/12 Date Received: 10/18/12 Date Analyzed: 10/24/12

Matrix Spike Summary Semivolatile Organic Compounds by GC/MS

Pyrene	ND	95.7	94.3	101	95.0	94.3	101	52 - 115	<1	30
Analyte Name	Result	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
	Sample	Γ	MW-2SMS Matrix Spike RQ1212499-04		MW-2SDMS Duplicate Matrix Spike RQ1212499-05					
Analytical Method: Prep Method:	625 EPA 3510C									
Sample Name: Lab Code:	MW-2S R1207074-015		-					Units: Basis:		

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Now part of the ALS Group

QA/QC Report

Client:	Ecology And Environment, Incorporated	Service Request:
Project:	Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO	Date Collected:
Sample Matrix:	Water	Date Received:

Service Request: R1207074 Date Collected: 10/18/12 Date Received: 10/18/12 Date Analyzed: 10/24/12

Matrix Spike Summary

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Sample Name: Lab Code:	MW-28 R1207074-015							Units: Basis:		
Analytical Method:										
Prep Method:	Method									
			MW-2SMS		ז	MW-2SDMS				
		Γ	MW-2SMS Matrix Spike			cate Matrix				
		R	Q1212576-0	4	R	Q1212576-0	5			
	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Fuel Oil No. 2	ND	4730	4800	98	4340	4800	90	56 - 185	8	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Now part of the ALS Group

QA/QC Report

Service Request: R1207074 Date Analyzed: 10/24/12

Client: Project: Sample Matrix:

Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO

Lab Control Sample Summary

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: 601/602

Water

Units: µg/L Basis: NA

Analysis Lot: 315240

		Control Sa Q1212732-0	-	04 D	
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits	
1,1,1-Trichloroethane (TCA)	19.5	20.0	97	41 - 138	
1,1,2,2-Tetrachloroethane	19.0	20.0	95 02	8 - 184	
1,1,2-Trichloroethane	18.5	20.0	93	39 - 136	 .
1,1-Dichloroethane (1,1-DCA)	18.8	20.0	94	47 - 132	
1,1-Dichloroethene (1,1-DCE)	18.8 19.5	20.0 20.0	94 97	28 - 167 0 - 208	
1,2-Dichlorobenzene				·····	
1,2-Dichloroethane	18.8	20.0	94	51 - 147	
1,2-Dichloropropane	20.2 20.5	20.0 20.0	101 102	44 - 156 7 - 187	
1,3-Dichlorobenzene					
1,4-Dichlorobenzene	19.7	20.0	98 92	42 - 143	
2-Chloroethyl Vinyl Ether Benzene	16.6 18.5	20.0 20.0	83 93	14 - 186 39 - 150	
		· · · ·			
Bromodichloromethane	19.2	20.0	96	42 - 172 13 - 159	
Bromoform Bromomethane	22.0 21.5	20.0 20.0	110 108	13 - 159 0 - 144	
Carbon Tetrachloride Chlorobenzene	18.7 20.0	20.0 20.0	94 100	43 - 143 38 - 150	
Chloroethane	19.5	20.0	98	46 - 137	
· · · · ·			-		
Chloroform Chloromethane	20.1 23.2	20.0 20.0	101 116	49 - 133 0 - 193	
Dibromochloromethane	19.3	20.0	96	24 - 191	
	18.5	20.0	93	25 - 162	
Methylene Chloride Ethylbenzene	18.5	20.0	93 94	23 - 162 32 - 160	
Tetrachloroethene (PCE)	19.2	20.0	96	26 - 162	
Toluene	18.8	20.0	 94	46 - 148	
Frichloroethene (TCE)	19.4	20.0	97	35 - 146	
Trichlorofluoromethane (CFC 11)	19.2	20.0	96	21 - 156	
/inyl Chloride	23.8	20.0	119	28 - 163	
is-1,2-Dichloroethene	19.4	20.0	97	24 - 191	
cis-1,3-Dichloropropene	20.1	20.0	100	22 - 178	
m,p-Xylenes	36.5	40.0	9 1	68 - 1 11	
p-Xylene	18,6	20.0	93	70 - 113	

Results flagged with an asterisk (*) indicate values outside control criteria.

Now part of the ALS Group

QA/QC Report

Ecology And Environment, Incorporated

Client: **Project:**

Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO Sample Matrix: Water

Service Request: R1207074 Date Analyzed: 10/24/12

Lab Control Sample Summary

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: 601/602 Units: µg/L Basis: NA

Analysis Lot: 315240

		Control San Q1212732-0	-		
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits	
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	18.6 21.4	20.0 20.0	93 107	38 - 155 22 - 178	

Results flagged with an asterisk (*) indicate values outside control criteria.

Now part of the ALS Group

QA/QC Report

Client: Project:

Water

Sample Matrix:

Ecology And Environment, Incorporated Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO

Service Request: R1207074 Date Analyzed: 10/25/12

Lab Control Sample Summary

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: 601/602 Units: µg/L Basis: NA

Analysis Lot: 315382

		Control Sa Q1212733-0 Spike		% Rec		
Analyte Name	Result	Amount	% Rec	Limits		
1,1,1-Trichloroethane (TCA)	16.6	20.0	83	41 - 138		
1,1,2,2-Tetrachloroethane	18.2	20.0	91 91	8 - 184		
1,1,2-Trichloroethane	17.2	20.0	86	39 - 136	 	
1,1-Dichloroethane (1,1-DCA)	16.2	20.0	81	47 - 132		
1,1-Dichloroethene (1,1-DCE)	15.5	20.0	77	28 - 167		
1,2-Dichlorobenzene	18.6	20.0	93	0 - 208		
1,2-Dichloroethane	17.3	20.0	87	51 - 147		
1,2-Dichloropropane	18.1	20.0	90	44 - 156		
1,3-Dichlorobenzene	19.0	20.0	95	7 - 187		
1,4-Dichlorobenzene	18.2	20.0	91	42 - 143		
2-Chloroethyl Vinyl Ether	15.0	20.0	75	14 - 186		
Benzene	16.2	20.0	81	39 - 150		
Bromodichloromethane	1 7.6	20.0	88	42 - 172		
Bromoform	20.8	20.0	104	13 - 159		
Bromomethane	18.3	20.0	91	0 - 144	 	
Carbon Tetrachloride	15.5	20.0	77	43 - 143		
Chlorobenzene	18.2	20,0	91	38 - 150		
Chloroethane	16.2	20.0	81	46 - 137		
Chloroform	18.0	20.0	90	49 - 133		" <u></u>
Chloromethane	19.0	20.0	95	0 - 193		
Dibromochloromethane	18.1	20.0	90	24 - 19 1		
Methylene Chloride	16.7	20.0	83	25 - 162		
Ethylbenzene	16.4	20.0	82	32 - 160		
Tetrachloroethene (PCE)	16.3	20.0	81	26 - 162	ţ	
Toluene	16.5	20.0	83	46 - 148	 	
Trichloroethene (TCE)	16.4	20.0	82	35 - 146		
Trichlorofluoromethane (CFC 11)	15.9	20.0	79	21 - 156		
Vinyl Chloride	19.2	20.0	96	28 - 163		
cis-1,2-Dichloroethene	17.5	20.0	88	24 - 191		
cis-1,3-Dichloropropene	18.3	20.0	92	22 - 178		
m,p-Xylenes	32.0	40.0	80	68 - 111	 	
o-Xylene	16.7	20.0	83	70 - 113		
•						

Results flagged with an asterisk (*) indicate values outside control criteria.

Now part of the ALS Group

Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO

QA/QC Report

Service Request: R1207074 Date Analyzed: 10/25/12

Client: Project: Sample Matrix:

Water

Ecology And Environment, Incorporated

Lab Control Sample Summary

Purgeable Halocarbons and Purgeable Aromatics by GC/PID/ELCD - Field Preserved

Analytical Method: 601/602

Units: µg/L Basis: NA

Analysis Lot: 315382

		Control San Q1212733-0	-	
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	15.3 19.7	20.0 20.0	76 99	38 - 155 22 - 178

Results flagged with an asterisk (*) indicate values outside control criteria.

Now part of the ALS Group

QA/QC Report

Ecology And Environment, Incorporated

Client: **Project:** Sample Matrix:

Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO

Water

Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Analytical Method: 625 Prep Method: EPA 3510C Units: µg/L Basis: NA

Service Request: R1207074

Date Analyzed: 10/23/12

Extraction Lot: 169751

	Lab Control Sample RQ1212499-02				e Lab Contra Q1212499-0	% Rec		RPD	
Analyte Name	Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	⁷⁶ Rec Limits	RPD	RPD Limit
1,2,4-Trichlorobenzene	68.6	100	69	67.7	100	68	29 - 85	1	30
1,2-Diphenylhydrazine	99.0	100	99	94.4	100	94	64 - 114	5	30
2,4,6-Trichlorophenol	99.9	100	100	95.3	100	95	37 - 144	5	30
2,4-Dichlorophenol	94.1	100	94	90.4	100	90	39 - 135	4	30
2,4-Dimethylphenol	89.7	100	90	89.8	100	90	32 - 119	<1	30
2,4-Dinitrophenol	78.8	100	79	76.6	100	77	0 - 191	3	30
2,4-Dinitrotoluene	90.6	100	91	90.0	100	90	39 - 139	<1	30
2,6-Dinitrotoluene	106	100	106	105	100	105	50 - 158	<1	30
2-Chloronaphthalene	87.0	100	87	83.7	100	84	60 - 118	4	30
2-Chlorophenol	84.0	100	84	83.5	100	83	23 - 134	<1	30
2-Nitrophenol	90.3	100	90	90.9	100	91	29 - 182	<1	30
3,3'-Dichlorobenzidine	91.2	100	91	86.0	100	86	0 - 262	6	30
4,6-Dinitro-o-cresol	94.6	100	95	91.7	100	92	0 - 181	3	30
4-Bromophenyl Phenyl Ether	102	100	102	97.9	100	98	53 - 127	4	30
4-Chloro-m-cresol	99.3	100	99	97.5	100	97	22 - 147	2	30
4-Chlorophenyl Phenyl Ether	99.6	100	100	93.7	100	94	25 - 158	6	30
4-Nitrophenol	44.0	100	44	42.9	100	43	0 - 132	3	30
Acenaphthene	99.3	100	99	94.8	100	95	47 - 145	5	30
Acenaphthylene	99.1	100	99	97.4	100	97	33 - 145	2	30
Anthracene	105	100	105	101	100	101	27 - 133	4	30
Benz(a)anthracene	106	100	106	101	100	101	33 - 143	5	30
Benzidine	100 U	100	0 *	100 U	100	0 *	10 111	36 *	50
Benzo(a)pyrene	97.8	100	98	95.2	100	95	17 - 163	3	30
3,4-Benzofluoranthene	108	100	108	101	100	101	24 - 159	7	30
Benzo(g,h,i)perylene	110	100	110	104	100	104	0 - 219	5	30
Benzo(k)fluoranthene	102	100	102	99.1	100	99	11 - 162	3	30
Bis(1-chloroisopropyl) Ether	92.1	100	92	91.1	100	91	36 - 166	1	30
Bis(2-chloroethoxy)methane	94.2	100	94	89.2	100	89	33 - 184	5	30
Bis(2-chloroethyl) Ether	85.4	100	85	84.0	100	84	12 - 158	2	30
Bis(2-ethylhexyl) Phthalate	108	100	108	102	100	102	8 - 158	6	30
Butyl Benzyl Phthalate	102	100	102	98.3	100	98	0 - 152	4	30
Chrysene	108	100	108	103	100	103	17 - 168	5	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Now part of the ALS Group

Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO

Ecology And Environment, Incorporated

QA/QC Report

Client: **Project:**

Water

Sample Matrix:

Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Analytical Method: 625 Prep Method: EPA 3510C Units: µg/L Basis: NA

Service Request: R1207074

Date Analyzed: 10/23/12

Extraction Lot: 169751

		Lab Control Sample RQ1212499-02 Spike			e Lab Contro Q1212499-0 Spike	% Rec		RPD	
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Di-n-butyl Phthalate	104	100	104	98.5	100	98	1 - 118	6	30
Di-n-octyl Phthalate	105	100	105	102	100	102	4 - 146	3	30
Dibenz(a,h)anthracene	107	100	107	103	100	103	0 - 227	3	30
Diethyl Phthalate	103	100	103	96.3	100	96	0 - 114	7	30
Dimethyl Phthalate	101	100	101	97.0	100	97	0 - 112	4	30
Fluoranthene	108	100	108	104	100	104	26 - 137	4	30
Fluorene	104	100	104	98.2	100	98	59 - 121	6	30
Hexachlorobenzene	101	100	101	94.8	100	95	0 - 152	7	30
Hexachlorobutadiene	65.2	100	65	66.0	100	66	24 - 116	1	30
Hexachlorocyclopentadiene	66.3	100	66	66.3	100	66	30 - 93	<1	30
Hexachloroethane	64.1	100	64	62.6	100	63	40 - 113	2	30
Indeno(1,2,3-cd)pyrene	105	100	105	101	100	101	0 - 171	4	30
Isophorone	99.8	100	100	96.8	100	97	21 - 196	3	30
N-Nitrosodi-n-propylamine	96.8	100	97	92.6	100	93	0 - 230	4	30
N-Nitrosodimethylamine	64.4	100	64	63.7	100	64	39 - 67	1	30
N-Nitrosodiphenylamine	111	100	111	106	100	106	50 - 117	5	30
Naphthalene	79.9	100	80	78.1	100	78	21 - 133	2	30
Nitrobenzene	88.7	100	89	90.1	100	90	35 - 180	2	30
Pentachlorophenol (PCP)	91.9	100	92	88.1	100	88	14 - 176	4	30
Phenanthrene	109	100	109	103	100	103	54 - 120	6	30
Phenol	42.2	100	42	39.1	100	39	5 - 112	8	30
Pyrene	108	100	108	104	100	104	52 - 115	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Now part of the ALS Group

QA/QC Report

Ecology And Environment, Incorporated

Client: **Project:**

Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO Sample Matrix: Water

Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Analytical Method: 625 Prep Method: EPA 3510C

Units: µg/L Basis: NA

Service Request: R1207074 Date Analyzed: 10/31/12

Extraction Lot: 170155

		Lab Control Sample RQ1212837-02 Spike			e Lab Contr (Q1212837-(Spike	% Rec		RPD	
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	72.4	100	72	77.6	100	78	29 - 85	7	30
1,2-Diphenylhydrazine	82.4	100	82	83.3	100	83	64 - 114	1	30
2,4,6-Trichlorophenol	94.0	100	94	99.8	100	100	37 - 144	6	30
2,4-Dichlorophenol	84.8	100	85	93.3	100	93	39 - 135	10	30
2,4-Dimethylphenol	75.3	100	75	81.5	100	82	32 - 119	8	30
2,4-Dinitrophenol	114	100	114	123	100	123	0 - 191	8	30
2,4-Dinitrotoluene	105	100	105	111	100	111	39 - 139	5	30
2,6-Dinitrotoluene	101	100	101	107	100	107	50 - 158	6	30
2-Chloronaphthalene	82.7	100	83	87.0	100	87	60 - 118	5	30
2-Chlorophenol	74.3	100	74	79.4	100	79	23 - 134	7	30
2-Nitrophenol	82.6	100	83	92.1	100	92	29 - 182	11	30
3,3'-Dichlorobenzidine	97.9	100	98	102	100	102	0 - 262	4	30
4,6-Dinitro-o-cresol	111	100	111	115	100	115	0 - 181	4	30
4-Bromophenyl Phenyl Ether	96.8	100	97	98.4	100	98	53 - 127	2	30
4-Chloro-m-cresol	87.8	100	88	96.8	100	97	22 - 147	10	30
4-Chlorophenyl Phenyl Ether	94.3	100	94	99.5	100	100	25 - 158	5	30
4-Nitrophenol	42.4	100	42	44.8	100	45	0 - 132	5	30
Acenaphthene	90.4	100	90	95.8	100	96	47 - 145	6	30
Acenaphthylene	92.2	100	92	98.9	100	99	33 - 145	7	30
Anthracene	96.5	100	96	97.4	100	97	27 - 133	<1	30
Benz(a)anthracene	96.8	100	97	98.5	100	99	33 - 143	2	30
Benzidine	100 U	100	0 *	100 U	100	0 *	10 - 144	9	30
Benzo(a)pyrene	93.1	100	93	95.4	100	95	17 - 163	2	30
3,4-Benzofluoranthene	107	100	107	107	100	107	24 - 159	<1	30
Benzo(g,h,i)perylene	103	100	103	101	100	101	0 - 219	2	30
Benzo(k)fluoranthene	95.2	100	95	94.1	100	94	11 - 162	1	30
Bis(1-chloroisopropyl) Ether	82.4	100	82	87.5	100	87	36 - 166	6	30
Bis(2-chloroethoxy)methane	89.7	100	90	98.5	100	99	33 - 184	9	30
Bis(2-chloroethyl) Ether	76.5	100	77	81.5	100	82	12 - 158	6	30
Bis(2-ethylhexyl) Phthalate	94.2	100	94	95.1	100	95	8 - 158	1	30
Butyl Benzyl Phthalate	90.3	100	90	91.4	100	91	0 - 152	1	30
Chrysene	96.3	100	96	98.6	100	99	17 - 168	2	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

12-0000228391 rev 00 00177

Now part of the ALS Group

QA/QC Report

Ecology And Environment, Incorporated

Client: Project:

Davis Howland Oil Company Site - Wells 10/12/ EN-003231-0001-03TTO Sample Matrix: Water

Lab Control Sample Summary Semivolatile Organic Compounds by GC/MS

Analytical Method:	625
Prep Method:	EPA 3510C

Units: µg/L Basis: NA

Service Request: R1207074

Date Analyzed: 10/31/12

Extraction Lot: 170155

		Lab Control Sample RQ1212837-02 Spike			e Lab Contro Q1212837-0 Spike	% Rec		RPD	
Analyte Name	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Di-n-butyl Phthalate	92.9	100	93	95.4	100	95	1 - 118	3	30
Di-n-octyl Phthalate	96.8	100	97	99.4	100	99	4 - 146	3	30
Dibenz(a,h)anthracene	101	100	101	100	100	100	0 - 227	<1	30
Diethyl Phthalate	92.4	100	92	96.7	100	97	0 - 114	5	30
Dimethyl Phthalate	92.3	100	92	96.2	100	96	0 - 112	4	30
Fluoranthene	99.4	100	99	104	100	104	26 - 137	5	30
Fluorene	94.9	100	95	101	100	101	59 - 121	6	30
Hexachlorobenzene	94.8	100	95	95.3	100	95	0 - 152	<1	30
Hexachlorobutadiene	71.1	100	71	75.4	100	75	24 - 116	6	30
Hexachlorocyclopentadiene	86.0	100	86	90.6	100	91	30 - 93	5	30
Hexachloroethane	60.0	100	60	60.9	100	61	40 - 113	2	30
Indeno(1,2,3-cd)pyrene	97.8	100	98	97.3	100	97	0 - 171	<1	30
Isophorone	82.8	100	83	91.0	100	91	21 - 196	9	30
N-Nitrosodi-n-propylamine	81.1	100	81	86.6	100	87	0 - 230	6	30
N-Nitrosodimethylamine	45.7	100	46	47.0	100	47	39 - 67	3	30
N-Nitrosodiphenylamine	102	100	102	103	100	103	50 - 117	<1	30
Naphthalene	76.6	100	77	82.8	100	83	21 - 133	8	30
Nitrobenzene	80.5	100	80	89.4	100	89	35 - 180	11	30
Pentachlorophenol (PCP)	96.2	100	96	101	100	101	14 - 176	5	30
Phenanthrene	98.1	100	98	100	100	100	54 - 120	2	30
Phenol	35.7	100	36	37.6	100	38	5 - 112	5	30
Pyrene	98.4	100	98	98.7	100	99	52 - 115	<1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Now part of the ALS Group QA/QC Report

 Client:
 Ecology And Environment, Incorporated
 Service Request:
 R1207074

 Project:
 Davis Howland Oil Company Site -Wells 10/12/ EN-003231-0001-03TTO
 Date Analyzed:
 10/24/12

 Sample Matrix:
 Water
 Value
 Date Analyzed:
 10/24/12

Lab Control Sample Summary

Petroleum Products in Water (Hydrocarbon Scan) for State of New York

Analytical Method: Prep Method:	NY 310-13 Method							Units: Basis:		
							Extra	ction Lot:	169858	
			Control Sa Q1212576-0	-	-	e Lab Contr RQ1212576-0	-			
Analyte Name		Result	Spike Amount	% Rec	Result	Spike Amount	% Rec	% Rec Limits	RPD	RPD Limit
Fuel Oil No. 2		4850	5090	95	4870	5090	96	56 - 185	<1	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Đ
Ē
÷.
E.
2
Ē
ū
(i)
N L 7
- v
-

3923 CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

-

ALS) Environmentat							(
156	1565 Jefferson Road, Building 300, Suite 360 •	1 300, Suite 360		IY 14623 +1	Rochester, NY 14623 +1 585 288 5380 +1 585	585 288 8475 (fax) PAGE	
Project Name Davis Houtand	$\frac{Project Number}{EN - 00333}$	3231 -0001 -03 MD	10		ANALYSIS REQUESTED (In	ANALYSIS REQUESTED (Include Method Number and Container Preservative)	sr Preservative)
Project Manager NTKE ALOT	g			PRESERVATIVE	1 Q	ρ	
COMPANYAddress ZPOLOGIU + ENVITRON MENT	NHENT		SHE	<u> </u>	/////	<u> </u> <u> </u> <u> </u>	Preservative Key 0. NONE
368 FLEASANT VTEW DR	EWDR		aniatn				2 HN03 3. H2S04 4. NaOH
LANCASTER, NY HOSG	HOSC		DF CO	075	0199 51U 217 200 205 / 2010		5. Zn. Acetate 6. MeOH
Prione #		NECON	MBER (10 20 20 20 20 20 20 20 20 20 20 20 20 20			6. Other
Sampler	SARA CLATC	AIG	INN	1⁄05°	201 22 40 88 8 12 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	<u> </u>	ALTERNATE DESCRIPTION
C CLIENT SAMPLE ID	FOR OFFICE USE S/ ONLY LAB ID DATE	IG TIME	MATRIX				
NW- 35	1-001 10/112	02Cl	Bu B	$ \downarrow $		×	
MW-32	-002 0/10/12	2 12.34		4		×	
TBIOLOI	-003 10/112	2 0900	(J) (J)	≁ 			
NW-10R	N OI	2 100	3	*			5 6
MW-ISR	<u>1 al 10 10 10 10 10 10 10 10 10 10 10 10 10 </u>	12 1750	GU 8	7 7			
-		/		∦			
		,	ļ		ł		
		1			7		
SPECIAL INSTRUCTIONS/COMMENTS				TURN	TURNAROUND REQUIREMENTS	REPORT REQUIREMENTS	INVOICE INFORMATION
Melais				۳ ۲	RUSH (SURCHARGES APPLY)	1. Results Only	
]		II. Results + QC Summaries (LCS. DLIP MS/MSD as required)	PO #
					-4 day - 5 day 14 doug (Staundord)	HII. Results + QC and Calibration	BILL TO:
				REQUES	REQUESTED REPORT DATE	 Summansa IV. Data Validation Report with Raw Data 	
See QAPP						È	207074
STATE WHERE SAMPLES WERE COLLECTED							igy and Environment, incorpt action the Hewland Oli Company Site - SA
RELINQUISHED BY	RECEIVED BY	BELIN	RELINQUISHED BY		RECEIVED BY	RELINQUISHED BY	
Sentence of the sentence of th	Signature de las	Signature		Signature		Signature	Signature
VEA HCRATG	A Narge L	Printed Name		Printed Name	Je	Printed Name	Printed Name
	Fim K O C	Firm		Ē		Firm	Firm
Date/Time 10 17 12 0620 1	Date 170/11/12 0870	Date/Time		Date/Time		Date/Time	Date/Time

Distribution: White - Lab Copy; Yellow - Return to Originator

© 2012 by ALS Group

00180

Proje	LS) ct/Client_	Er	(- <u>e</u>	Cooler Receip		Preserv Folder N		Davis How	07074 d Environment, Ind and Oil Company s	5 corporated site -Wells 10	
Coole	r received	on_/	s/17	//z_ by:		RIER:	ÅLS	UPS	FEDEX	VELO	CITY CLIENT
1. 2. 3. 4. 5. 6. 7.	Were cu Did all b Did <u>VO</u> Were Ice Where di	stody ottles A vial e or I id the	pap arri s, A ce pa bott	s on outside of control of contro	l out (ini tion (unt de have	roken)?			YES VES YES ALS/RO	NO NO NO NO NO NO O, CL	N/A JENT
	Is the ten	рега	ture	within 0° - 6° C?	: 2	Yes	<u>A</u> e	9	Yes	Yes	Yes
	If No, Ex	plain	n Bel	low]	No	No		No	No	No
	Thermom of Temper	eter] ratur	⊡:⊲ e, no	atures Taken: R GUN#3 / IR ote packing/ice of ge location	onditio	n &Clie	nt Ap	proval	'emp Blank to Run San	ples:	
				orage location	<u> </u>	<u>bz</u> by	',-Æ		n <u>io/n/12</u> n	at at	0825
PC Sec	ondary Re	view		<u> ye sy</u>	<u>112</u>						
	Breakdow Were all b			10/17/12. Is complete (<i>i.e.</i> 1	Tin		<u>03</u>	etc)?	by: AU	<u> </u> N0	
2.	Did all bot	ttle Ia	bels	and tags agree w	ith custo	dy pape	rs?	010.71		NO	
				ners used for the						NO	\bigcirc
	any discre			ettes / Tubes Inta	ict C	anisters	Pressu	irized	Tedlar®	Bags In	flated (N/A)
			,					- ·			
pН	Reagent	YES	NO	Lot Received	Exp	Sample	D	Vol. Added	Lot Added	Final pH	Yes = All
≥12	NaOH	<u> </u>									samples OK
≤2	HNO3	<u> </u>		 							No =
<u>≤2</u>	H ₂ SO ₄	ļ			<u> </u>	ļ					Samples were
<4 Residual	NaHSO₄ For TCN	i		If man and a set						<u> </u>	preserved at
Chlorine	Phenol		ļ	If present, contact add ascorbic acid		Î					lab as listed
(-)	and 522			Or sodium sulfite							PM OK to
	$Na_2S_2O_3$	-	•						e analysis – pł		Adjust:
	Zn Aceta	-	•						VOAs or Gen	Chem	·····
	HCI	*	*	4111.00	10/13			vorkshee			
Bottle lot r Other Com	umbers:	2-20	<u>xe-(</u>	202, BDBZG12		61812-	14.11	36041	2-uN,_		

PC Secondary Review: <u>VB 11/cell2</u> H:\SMODOCS\Cooler Receipt 5.doc

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

	tal
	Űa
÷.	5
	Ū
5	M
	١

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 3924

156	1565 Jefferson Road, Building 300, Suite 360 • Ro	ling 300, Suite 360	• Rochester, NY	cchester, NY 14623 +1 585 288 5380 +1 58	+1 585 288 8475 (fax) PAGE	OF Ì
Project Name	Project Number	Project Number EN-003231-0001 - 0371	3710	ANALYSIS REQUESTED	ANALYSIS REQUESTED (Include Method Number and Container Preservative)	er Preservative)
Project Manager Mike ALOI	Report CC		PRESERVATIVE			
Company/Address ECOLOGAY + ENVE LENMENT	TUDMUCIT	١	58		1/1/	Preservative Key
JUS PLEASANT VIEW DR	I NTEW DR		ATAINE INIATU			/ / 1. HCL 2. HNO3 3. H2SO4
	NY 14080				nojeg siu	4. NaOH 5. Zn. Acetate 6. MeOH
C+16) USU-8000	Ernal Maloi C Sampler's Printed Name	Ene ican		10000000000000000000000000000000000000		6. Other
	FOR OFFICE USE	AMPLING	2	2 8 6 8 2 8 8 8 8 W	<u>}</u>	ALTERNATE DESCRIPTION
CLIENT SAMPLE ID		TIME	.			
CITIO ST			5 5 5 7 0 7	2 ×	×	
MW-10R	1-006 1017112		<u></u>	× ×	×	
MW-10RQ		12	<u> </u>	× ×	X	
MW-HS	F101 00-	ß	2	х Х Х		
MW-14K		12 1052	(Juc 8)	× ×		
					1 2112101	_/
SPECIAL INSTRUCTIONS/COMMENTS Metals					REPORT REQUIREMENTS	INVOICE INFORMATION
					I. Results Only	
				1 day2 day3 day3	 II. Results + QC Summaries (LCS, DUP, MS/MSD as required) 	# 0d
				え	K III. Results + OC and Calibration Summaries	
				REQUESTED REPORT DATE	IV. Data Validation Report with Raw Data	•
See QAPP						- 2 - 2
STATE WHERE SAMPLES WERE COLLECTED						Ecology And Environment, Incorporated
RELINQUISHED BY	with RECEIVED BY	RELI	RELINQUISHED BY	RECEIVED BY	RELINQUISHED BY	
Se la compañía de la comp	signifiel mid	Signature		Signature	Signature	oignature
BEARAH CRATG		Printed Name		Printed Name	Printed Name	Printed Name
	FIFT /17/12/1741-	Firm		Firm	Firm	Firm
Date/Time to 17/12 1747	Date/Time	Date/Time		Date/Time	Date/Time	Date/Time
Distribution: White - Lab Copy; Yellow - Return to Originator	to Originator					© 2012 hv AI S Grain

opy: 16

© 2012 by ALS Group

Å	LS)			Cooler Receip	t and I	Preserv	ation	R1	207074	Gorgorated	5
Proje	ct/Client	E۲	E	······································]	Folder N	umber_		Wind Oil Company	Site -Wells 1	0/12
Coole	er received	on_//	5/17	1/12 by: In	_COU	RIER:	ALS	UPS	FEDEX	VELC	CITY CLIENT
1. 2. 3. 4. 5. 6. 7.	Were cus Did all bo Did VOA Were Cce Where die	tody ottles vial or Ic d the	pap arri s, A ce p a bott	s on outside of co ers properly filled ve in good condit lkalinity, or Sulfic acks present? les originate? oler(s) upon recei	l out (inl ion (unb le have ;	roken)?			YES YES XES YES YES ALS/RO	NO NO NO NO NO NO DC, CL	N/A JENT
	Is the tem	perat	ure	within 0° - 6° C?:		Yes	Yes	I	Yes	Yes	Yes
	If No, Ex Date/Time	-		low atures Taken: <u>//</u> //////////////////////////////////	117/12/	1811	No		No	No	No
All Sa 5035 s PC Sec	of Temper amples hele amples pla ondary Re	atur 1 in s aced i 21ew	e, no tora in st	R GUN#3 / IR te packing/ice c ge location orage location Key 10 19 12	ondition R-002	n &Clien	t App	roval 0	n_10/17/12	nples:	
1. 2. 3. 4.	Were all be Did all bot Were corre	ottle i tle la ect co es: 0	labe bels ntai Cass	1018/12 Is complete (<i>i.e.</i> a and tags agree wi ners used for the t ettes / Tubes Inta	ith custo ests ind	preserva dy paper	rs?		by: KU TES TES Tedlar®	NO NO NO	flated N/A
pH	Reagent	YES	NO	Lot Received	Exp	Sample	D	Vol. Added	Lot Added	Final pH	Yes = All
≥12	NaOH					1			•	Pi1	samples OK
<u><</u> 2	HNO ₃								· · · · ·		No =
≤2	H ₂ SO ₄										Samples
<4	NaHSO₄										were preserved at
Residual Chlorine (-)	For TCN Phenol and 522			If present, contact add ascorbic acid Or sodium sulfite							lab as listed
	Na ₂ S ₂ O ₃ Zn Aceta	-	-				nd record	ied by	e analysis – pH VOAs or Gen t		Adjust:
D-#1-1-1	HC1		*	411100	10/13	_			•		
Bottle lot 1 Other Corr	numbers: (nments:	<u>العال</u>	19-	1X, Ole1812-1	it, d-a	xU6-00	<u> 32</u> ,		<u> </u>		·

11/6/12KB PC Secondary Review: <u>\\\</u> H:\SMODOCS\Cooler Receipt 5.doc

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

L
۵
=
E
Ē
5
Ĺ.
=
Ē
ш
~
11
12
- V

3989 CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

ALS) Enulronmental	ronmental	CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM	DY/LAB	ORATO	RY ANALYSIS RE(QUEST FORM 3989	ຽ	
	-	1565 Jefferson Road, Building 300, Suite 360 • Rochester, NY 14623 +1 585 288 5380 +1 585 288 8475 (fax)	300, Suite 360 •	Rochester, 1	VY 14623 +1 585 288 5380 -	+1 585 288 8475 (fax) PAGE	OF	
Project Name	Provis Howlard	Project Number EN - CO3D31 - COO (- C377	£⊳-)∞∽-	Tto	ANALYSIS REQUES	ANALYSIS REQUESTED (include Method Number and Container Preservative)	er Preservative)	
Project Manager	Mai	Report CC				0		
Company/Address どでしてみ	č Col Cosil + ENTERONNENT	ownerst		SH			Preservative Key	
3687	SUS PLEASANT VIEW DR	ICU DE		ATAINE			1. HCL 2. HNO3 3. H2SO4	
L-ANCA	LANCASTER, NY	14066		DF COI		10/29 SU	6. MeOH	
$C + (6) \zeta$	C716) Co84-8000	Email MALCIE ENE COUN	NE COUL	NBEF (09 09 09 09 09 09 09 09 09 09 09 09 09 0	SSIQ'S	7. NaHSO4 8. Other	
Sampler's Signature	Į	Sampler's Printed Name SALAH CLATG	ACC.		0.25 C 0.05 D 0.00 D 0.	UI ISIT		
CLIE	CLIENT SAMPLE ID	FOR OFFICE USE SAM ONLY LAB ID DATE	ИE	MATRIX		┼──		,
TB IOIED	٩	-ora 10/18/12		ی ع	X			
SE-UN	S		1030	-	XX	×		
JCI-MM	ġ	-014 10/18/12			X X	×		
MW-25					×	Υ		,
C-MM	S WS	-QC 10118/12	0Se I	GU 8	×			
MW- JS MS	SMSD	<u>10(18/12</u>	0SC		¥ 7			ر ا
NW-26	~	-016 10/18/12	1300	G (7) (2)	¥ 7			
MW-82	d	21/31/01 10/18/12	89	Gw 8	ی ع ع			
MW-135	35	- <u>-018 10 12</u>		(Ju) &	9 9	8		
								-
SPECIAL INSTR Metals	SPECIAL INSTRUCTIONS/COMMENTS Metals				TURNAROUND REQUIREMENTS	ENTS REPORT REQUIREMENTS	INVOICE INFORMATION	
					RUSH (SURCHARGES APPLY)	.Y) I. Results Only		
						y (LCS, DUP, MS/MSD as required)	PO #	
					Shandard K	Mill. Results + QC and Calibration	BILL TO:	
-					REQUESTED REPORT DATE	Unification Seport with Raw Data		,
See QAPP						, Å	1207074 5	
	STATE WHERE SAMPLES WERE COLLECTED					Edata X ves Davis	 Ecology And Environment, Incorporated Davis Howdand Oil Company Site -Wells 10/12 	
	RELINQUISHED BY	Alm Prent	BELINQUIS	QUISHED BY	RECEIVED BY	RELINQUISHED BY		
	J,	signature I narc	Signature		Signature	Signature	Signature	
Printed Walter	PHINGS AP CLATG	1	Printed Name		Printed Name	Printed Name	Printed Name	
した		121/21/8/10L	Firm		Firm	Firm	Firm	
	18 12 1735	Date/Time	Date/Time		Date/Time	Date/Time	Date/Time	

Distribution: White - Lab Copy; Yellow - Return to Originator

© 2012 by ALS Group

A	LS	_	C	ooler Receipt	and P	reservatio	R12	d Environment, Inc	5 orporated	
Proje	ct/Client	ΥĒ			F	Folder Numb		and Oil Company S	ite -vvens 10/	
Coole	r received o	on_/04	181	z by: Oh	_COU	RIER: ALS	S UPS	FEDEX	VELO	CITY CLIENT
1. 2. 3. 4. 5. 6. 7.	Were cust Did all bo Did VOA Were free Where did	tody ottles vials or Ic d the	pape arriv s, All e pa bottl	on outside of co rs properly filled e in good conditi kalinity, or Sulfic cks present? es originate? bler(s) upon receip	out (ink on (unb le have s	roken)? significant* a	•	YES YES YES YES XES ALS/RC	NO NO NO NO NO NO NO C, CL	N/A IENT
	Is the tem	perat	ure v	vithin 0° - 6° C?:	,	Yes 🕅	es}⊁	€ s ≠	Yes	Yes
	If No, Ex	-		ow atures Taken: <u>/</u> 2	L L	No No	o	No	No	No
5035 :		iced i	n sto	ge location prage location	Rwz Rwz	by	<u> </u>	n 10/18/17 n Schipteel	at	745
Cooler 1. 2. 3. 4.	Were all bo Did all bot Were corre Air Sample	ottle l tle lai ect co es: (label bels ntair Cass	<u>JO / 9 / 12</u> s complete (<i>i.e.</i> a and tags agree w hers used for the f ettes / Tubes Inta	nalysis, ith custo tests ind	dy papers?	5 , etc.)?	V	D NO NO NO	flated NA
Cooler 1. 2. 3. 4. Explain	Were all bo Did all bot Were corre Air Sample any discre	ottle l tle lai ect co es: (label bels ntair Cass	s complete (i.e. a and tags agree w hers used for the t ettes / Tubes Inta	nalysis, ith custo tests ind ct C	preservation ody papers? icated? anisters Pres	5 , etc.)? surized	by:	NO NO NO Bags Int	
Cooler 1. 2. 3. 4. Explain	Were all bo Did all bot Were corre Air Sample any discre Reagent	ottle l tle lai ect co es: (label bels ntair Cass	s complete (<i>i.e.</i> a and tags agree wi ters used for the t ettes / Tubes Inta	nalysis, ith custo tests ind	preservation dy papers? icated?	5 , etc.)?	by:@	D NO NO NO	flated NA Yes = All samples OK
Cooler 1. 2. 3. 4. Explain H	Were all bo Did all bot Were corre Air Sample any discre Reagent NaOH	ottle lai tle lai ect co es: (panci	label bels ntair Casse es:	s complete (i.e. a and tags agree w hers used for the t ettes / Tubes Inta	nalysis, ith custo tests ind ct C	preservation ody papers? icated? anisters Pres	5 , etc.)? surized	by:	NO NO NO Bags Int Final	Yes = All samples OK
Cooler 2. Explain H 12 2	Were all bo Did all bot Were corre Air Sample any discre Reagent NaOH HNO ₃	ottle lai tle lai ect co es: (panci	label bels ntair Casse es:	s complete (i.e. a and tags agree w hers used for the t ettes / Tubes Inta	nalysis, ith custo tests ind ct C	preservation ody papers? icated? anisters Pres	5 , etc.)? surized	by:	NO NO NO Bags Int Final	Yes = All samples OK No =
Cooler 1. 2. 3. 4. 5xplair H 12 2 2	Were all bo Did all bot Were corre Air Sample any discrep Reagent NaOH HNO ₃ H ₂ SO ₄	ottle lai tle lai ect co es: (panci	label bels ntair Casse es:	s complete (i.e. a and tags agree w hers used for the t ettes / Tubes Inta	nalysis, ith custo tests ind ct C	preservation ody papers? icated? anisters Pres	5 , etc.)? surized	by:	NO NO NO Bags Int Final	Yes = All samples OK
Cooler 1. 2. 3. 4. Explain bH 12 2 2 4. Explain bH 12 2 2 4. Explain bH 12 2 2 4. Explain bH	Were all bo Did all bot Were corre Air Sample any discre Reagent NaOH HNO ₃	ottle lai tle lai ect co es: (panci	label bels ntair Casse es:	s complete (i.e. a and tags agree w hers used for the t ettes / Tubes Inta	nalysis, ith custo tests ind ct C Exp PM to	preservation ody papers? icated? anisters Pres	5 , etc.)? surized	by:	NO NO NO Bags Int Final	Yes = All samples OK No = Samples were preserved at lab as listed
Cooler 1. 2. 3. 4. Explain bH 12 2 2 4. Explain bH 12 2 2 4. Explain bH 12 2 2 4. Explain bH	Were all bo Did all bot Were corre Air Sample any discre Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For TCN Phenol	ottle lai tle lai ect co es: (panci	label bels ntair Casse es:	s complete (i.e. a and tags agree with ters used for the t ettes / Tubes Inta Lot Received If present, contact add ascorbic acid	nalysis, ith custo tests ind ct C Exp PM to	preservation ody papers? icated? anisters Pres Sample ID *Not to be te	vol. Added	by: ES Tedlar® Lot Added e analysis – pl	NO NO NO Bags Int Final pH	Yes = All samples OK No = Samples were preserved at
Cooler 1. 2. 3. 4.	Were all bo Did all bot Were corre Air Sample any discre Reagent NaOH HNO ₃ H ₂ SO ₄ NaHSO ₄ For TCN Phenol and 522	ottle lalect co es: (panci	label bels ntair Casso es:	s complete (i.e. a and tags agree with ters used for the t ettes / Tubes Inta Lot Received If present, contact add ascorbic acid	nalysis, ith custo tests ind ct C Exp PM to	preservation ody papers? icated? anisters Pres Sample ID *Not to be te	5 , etc.)? surized Added sted befor corded by	by: TES Tedlar® Lot Added Lot Added VOAs or Gen	NO NO NO Bags Int Final pH	Yes = All samples OK No = Samples were preserved at lab as listed PM OK to

PC Secondary Review: 11/6/12/CB H:\SMODOCS\Cooler Receipt 5.doc

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

	_
	12
	-
	Ξ
	- 22
	0
	ē
	Ē
	Ē
	-
	•
	2
	긑
	Ξ
	2
	-
	.8
	Ē
	\sim
_	U.
	•
	_
	~
	a.
	<u>ر ا</u>
- 1	~
- 3	
1	
1	

а .

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 3987

L.		1565 Jefferson Road, Building 300, Suite 360 •		э <mark>г,</mark> NY 14623	Rochester, NY 14623 +1 585 288 5380		+1 585 288 8475 (fax)	PAGE	OF	1
	Project Name	Project Number EN-008231-0001-03710	2001-03 TIO		ANALYSIS	REQUESTED (II	ANALYSIS REQUESTED (Include Method Number and Container Preservative)	nber and Contain	er Preservative)	
	Project Manager Mike Alor	Report CC	4	PRESERVATIVE	0		0			
	companyindross E Coloraci + Environnent	ennort							Pre-	servative Key NONE
	Jos Pleasent/iew Dr	اللارىية.					_ "	///	3.2.1	HCL HNO3 H2SO4
	Laneover NV 14086	D80HI N			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Mojog stil	Solution of the second		4.0,0	4. NaOH 5. Zn. Acetate 6. MeOH
	Phone # 14) (241- 8000	- Email Maloi	ļ	- PO1 SI		02 COULUS	-018	/ /	7. 8.	NaHSO4 Other
	Sampler's Signature	JAN Surrey		W25	C 027 0580	808 NET NET	1			A TERNATE DESCRIPTION
	CLIENT SAMPLE ID	FOR OFFICE USE SAMPLING ONLY LAB ID DATE T	VLING TIME MATRIX							
	TBIOGRA	-019 10/1922	3	у Ж	×					
	NW-95		-				×			
	RB-IORIZ	-02/ 10/19/12	3	× 9	7		2			
	NW-52	-032 10/11/12	1143 020 8	8	ر	-	R			
<u> </u>					,					
						101 10	19 17			
	-)		/	
	SPECIAL INSTRUCTIONS/COMMENTS			н ———	TURNAROUND REQUIREMENTS	QUIREMENTS	REPORT RE	REPORT REQUIREMENTS	INVOICE INFORMATION	RMATION
	Meiars			1	RUSH (SURCHARGES APPLY)	(GES APPLY)	I. Results Only			
						3 day	II. Results + QC Summaries /I CS. DI IP MS/MSD as rem	ll. Results + QC Summaries /I CS_DLIP_MS/MSD_as_recurited)	PO #	
				15	Slandord L	શ્ર	A II. Results + OC	III. Results + OC and Calibration	BILL TO:	
				REC	REQUESTED REPORT DATE	DATE	Summaries IV Data Validati	Summaries W Data Validation Renort with P- · · · · · ·	,	
	See OAPP					1		5	207074	ŷ
Ø	STATE WHERE SAMPLES WERE COLLECTED							Yes Davis H	Ecology And Environment, Incorporated Davis Howand Oil Company Site -Wells 10/1	Porated -Wells 10/12
218	RELINQUISHED BY	Checeryed By	RELINQUISHED BY	-	RECEIVED BY	BY	RELINQU	RELINQUISHED BY		
		signeture (white	Signature	Signature	ture		Signature	-	Signature	
	CLAIG		Printed Name	Printe	Printed Name		Printed Name		Printed Name	
		59171 / 21/101/QL	Firm	Firm			Firm		Fim	
	Date/Time jo/ 6/12 1453	Date/Time	Date/Time	Date/Time	Time		Date/Time		Date/Time	

Distribution: White - Lab Copy; Yellow - Return to Griginator

© 2012 by ALS Group

			C	ooler Receipt	t and P	reserva	atio R	120	7074 Environment, Inco	5 Irporated	
Projec	t/Client_	-0		y+ Env.		Folder Nu	Dav	vis Howlan	d Oll Company Si	te -Wells 10/1	
Cooler	received o	on <u>l(</u>	2/19	12 by: Hild	COU	RIER:	ALS	UPS	FEDEX	VELO	CITY CLIENT
1. 2. 3. 4. 5. 6. 7.	Were cus Did all bo Did VOA Were Ice Where did	tody ottles vials or Ic d the	pape arriv s, Al e pa bottl	s on outside of co rs properly filled re in good conditi kalinity, or Sulfic cks present? es originate? oler(s) upon recei	out (ink ion (unb le have s	roken)?	-	bubble	YES YES s? YES ALS/RC	202 20 20 20 202 20 2) N/A JENT
	Is the tem	perat	ure v	vithin 0° - 6° C?:	6	res	Yes		Yes	Yes	Yes
	If No, Ex	plain	Bel	0W	1	٩v	No		No	No	No
	Date/Time	e Ten	npera	atures Taken:	1	oligliz		ાવડ્ય			
				R GUN#3 7 IR te packing/ice c			ng Fro	m:T	emp Blank)/ Samj	ple Bottle
5035 s		iced i	n sto	ge location prage location 1 QPS (C) 19	_ <u>R-</u>	<u>````</u> by by	_the	0 0	n <u>10/19/12</u> n	at) at	455
1. 2. 3.	Did all bot Were corre	ottle l tle lal ect co	label bels ntair	10/19/17 s complete (<i>i.e.</i> a and tags agree w hers used for the t ettes / Tubes Inta	inalysis, ith custo tests ind	dy paper	tion, ei s?		by: DA~ CES CES CES Tedlar®	NO NO NO Bags In	flated NA
	any discre										
рН	Reagent	YES	NO	Lot Received	Exp	Sample	ID	Vol.	Lot Added	Final	Yes = All
≥12	NaOH	123				+		Added	· · · · · · · · · · · · · · · · · · ·	pH	samples OK
≤2	HNO3										No =
≤2	H ₂ SO ₄										Samples were
<4	NaHSO₄										preserved at
Residual Chlorine (-)	For TCN Phenol and 522			If present, contact add ascorbic acid Or sodium sulfite							lab as listed
· /	Na ₂ S ₂ O ₃	-	-	St Statum Summe		*Not to I	be teste	d before	e analysis – pl	H	PM OK to Adjust:
	Zn Aceta	-	-	<u> </u>		tested an	id recor	ded by	VOAs or Gen		
ŀ	HC1	*	*	4111100	10/13	on a sepa	arate wo	orkshee	t		
Bottle lot r Other Com		-20(,	-007	, 082012-2HH	, BOSZ	61220					···· ·

PC Secondary Review: 116612168 H:\SMODOCS\Cooler Receipt 5.doc

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

November 20, 2012

Service Request No: R1207525

Mr. Michael Aloi Ecology And Environment, Incorporated 368 Pleasantview Drive Lancaster, NY 14086

Laboratory Results for: Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01

Dear Mr. Aloi:

Enclosed are the results of the sample(s) submitted to our laboratory on November 2, 2012. For your reference, these analyses have been assigned our service request number **R1207525**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report. The measurement uncertainty of the results included in this report is within that expected when using the prescribed method(s) for analysis of these samples, and represented by Laboratory Control Sample control limits. Any events, such as QC failures, which may add to the uncertainty are explained in the report narrative.

Please contact me if you have any questions. My extension is 7471. You may also contact me via email at Karen.Bunker@alsglobal.com.

Respectfully submitted,

Columbia Analytical Services, Inc. dba ALS Environmental

Saren Bunker

Karen Bunker Project Manager

Page 1 of _____44

ADDRESS 1565 Jefferson Rd, Building 300, Suite 360, Rochester, NY 14623 PHONE 585-288-5380 | FAX 585-288-8475 Columbia Analytical Services, Inc. Part of the ALS Group A Campbell Brothers Limited Company

Environmental 💐

www.caslab.com • www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

88881

Client:Ecology & EnvironmentService Request No.:R1207525Project:Davis Howland Oil Co 002700.DC14.02.01.01Date Received:11/2/2012Sample Matrix:Water11/2/2012

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD).

Sample Receipt

Nine water samples were received for analysis at Columbia Analytical Services on 11/2/12. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator between 1°C and 6°C upon receipt at the laboratory. The samples arrived at a cooler temperature of 10.4°C, outside the guidelines of 0-6°C however they were on ice within hours of collection. General Chemistry Parameters

pH was not performed in the field as recommended by EPA to meet a holding time of "immediate." An "H" flag indicates the problem. pH is a temperature dependent analysis, so the pH and temperature analysis were conducted by the laboratory as soon as possible upon receipt.

No other analytical or quality control problems were encountered during analysis.

Volatile Organic Compounds by EPA Method 624

The samples required the compound Acetone to be added to the analyte list. To accomplish this, the samples were analyzed by GC/MS method 624.

2-Chloroethylvinyl ether is degraded by samples preserved to pH<2. The recoveries of this compound may be biased low.

Hits above the calibration range of the standards are flagged as "E". The samples are then repeated at the appropriate level for the hit. Both sets of data are included in the report. Subsequent hits on the diluted sample are flagged as "D".

Laboratory Control Sample (LCS) recoveries were within QC acceptance limits.

All sample vials are checked for preservation after analysis to protect the integrity of the sample. All samples were analyzed within the proper holding time of 14 days for preserved samples. One location was found to be at a ph of >2, unpreserved: 007-P3 (R1207525-007). The sample was analyzed outside of the 7 day holding time for unpreserved vials, initially on the 11th day and repeated on the 14th day from collection. All CAS vials are certified as preserved. Matrix interference is suspected.

No other analytical or quality control problems were encountered during analysis.

(Jacen) Busher Date 11/20/12 Approved by

CASE NARRATIVE

This report contains analytical results for the following samples: Service Request Number: R1207525

<u>Lab ID</u>	<u>Client ID</u>
R1207525-001	001 In
R1207525-002	002 Out
R1207525-003	003 In
R1207525-004	004 Out
R1207525-005	005-P1
R1207525-006	006-P2
R1207525-007	007-P3
R1207525-008	008-PW1
R1207525-009	009-PW2

All samples were received in good condition unless otherwise noted on the cooler receipt and preservation check form located at the end of this report.

All samples were preserved in accordance with approved analytical methods.

All samples have been analyzed by the approved methods cited on the analytical results pages.

All holding times and associated QC were within limits.

No analytical or QC problems were encountered.

All sampling activities performed by CAS personnel have been in accordance with "CAS Field Procedures and Measurements Manual" or by client specifications.

REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.
- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS

Enul

- Q DoD reports: indicates a pesticide/Aroclor is not confirmed ($\geq 100\%$ Difference between two GC columns).
- X See Case Narrative for discussion.

Rochester Lab ID # for State Certifications¹

Electronic Line as a vor State Certifications						
NELAP Accredited	Maine ID #NY0032	New Hampshire ID #				
Connecticut ID # PH0556	Nebraska Accredited	294100 A/B				
Delaware Accredited	Nevada ID # NY-00032	North Carolina #676				
DoD ELAP #65817	New Jersey ID # NY004	Pennsylvania ID# 68-786				
Florida ID # E87674	New York ID # 10145	Rhode Island ID # 158				
Illinois ID #200047		Virginia #460167				

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to <u>http://alsglobal.com/environmental/laboratories/rochester-environmental-lab.aspx</u>

ALS GROUP USA, CORP. Part of the ALS Group A Campbell Brothers Limited Company

ranmental J	www.alsglobal.com	
1. t	PICHT SOLUTIONS RICHT PARTNER	

H:\FORMS\QUALIF________DOC____

Client:Ecology And Environment, IncorporatedProject:Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01Sample Matrix:Water

Service Request: R1207525 Date Collected: 11/2/12 1430 Date Received: 11/2/12 Date Analyzed: 11/15/12 16:42

Units: µg/L

Basis: NA

. ...

Sample Name:001 InLab Code:R12075

R1207525-001

Volatile Organic Compounds by GC/MS

Analytical Method:	624
Data File Name:	I:\ACQUDATA\MSVOA5\DATA\111512\M1960.D\

Analysis Lot: 318379 Instrument Name: R-MS-05 Dilution Factor: 5

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	5.0 U	5.0		<u> </u>
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0		
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	22	5.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	5.2	5.0		
95-50-1	1,2-Dichlorobenzene	5.0 U	5.0		
107-06-2	1,2-Dichloroethane	5.0 U	5.0	····	
78-87-5	1,2-Dichloropropane	5.0 U	5.0		
541-73-1	1,3-Dichlorobenzene	5.0 U	5.0		
106-46-7	1,4-Dichlorobenzene	5.0 U	5.0		
110-75-8	2-Chloroethyl Vinyl Ether	50 U	50		
67-64-1	Acetone	25 U	25		
71-43-2	Benzene	5.0 U	5.0		
75-27-4	Bromodichloromethane	5.0 U	5.0		
75-25-2	Bromoform	5.0 U	5.0		
74-83-9	Bromomethane	5.0 U	5.0		
56-23-5	Carbon Tetrachloride	5.0 U	5.0		
108-90-7	Chlorobenzene	5.0 U	5.0		
75-00-3	Chloroethane	5.0 U	5.0		
67-66-3	Chloroform	5.0 U	5.0		
74-87-3	Chloromethane	5.0 U	5.0		
124-48-1	Dibromochloromethane	5.0 U	5.0		
75-09-2	Methylene Chloride	5.0 U	5.0		
100-41-4	Ethylbenzene	5.0 U	5.0		
27-18-4	Tetrachloroethene (PCE)	5.0 U	5.0		
08-88-3	Toluene	5.0 U	5.0		
9-01-6	Trichloroethene (TCE)	34	5.0		
5-69-4	Trichlorofluoromethane (CFC 11)	5.0 U	5.0		
5-01-4	Vinyl Chloride	54	5.0		
56-59-2	cis-1,2-Dichloroethene	470	5.0		
0061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0		
79601-23-1	m,p-Xylenes	10 U	10		
5-47-6	o-Xylene	5.0 U	5.0		
56-60-5	trans-1,2-Dichloroethene	5.0 U	5.0		
0061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01 Water	Service Request: Date Collected: Date Received: Date Analyzed:	11/ 2/12 1430 11/ 2/12
Sample Name: Lab Code:	001 In R1207525-001	Units: Basis:	
	Volatile Organic Compounds by GC/MS		
Analytical Method: Data File Name:	624 1:\ACQUDATA\MSVOA5\DATA\111512\M1960.D\	Analysis Lot: Instrument Name: Dilution Factor:	R-MS-05

Surrogate Name	%Rec	Control Limits	Date Analyzed Q
1,2-Dichloroethane-d4	116	79-123	11/15/12 16:42
4-Bromofluorobenzene	105	79-119	11/15/12 16:42
Toluene-d8	101	83-120	11/15/12 16:42

Result Q

MRL

Note

CAS No.

Analyte Name

Client:Ecology And Environment, IncorporatedService IProject:Davis Howland Oil Co Site - 11/2012/002700.DC14.02.01.01Date CoSample Matrix:WaterDate R

Service Request: R1207525 Date Collected: 11/2/12 1432 Date Received: 11/2/12 Date Analyzed: 11/15/12 '15:24

Units: µg/L

Basis: NA

.

Sample Name: Lab Code: 002 Out R1207525-002

Volatile Organic Compounds by GC/MS

Analytical Method:	624
Data File Name:	I:\ACQUDATA\MSVOA5\DATA\111512\M1958.D\

Analysis Lot: 318379 Instrument Name: R-MS-05 Dilution Factor: 2

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	2.0 U	2.0		
79-34-5	1,1,2,2-Tetrachloroethane	2.0 U	2.0		
79-00-5	1,1,2-Trichloroethane	2.0 U	2.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	9.1	2.0		· · · · · · · · · · · · · · · · · · ·
75-35-4	1,1-Dichloroethene (1,1-DCE)	2.0 U	2.0		
95-50-1	1,2-Dichlorobenzene	2.0 U	2.0		
107-06-2	1,2-Dichloroethane	2.0 U	2.0		
78-87-5	1,2-Dichloropropane	2.0 U	2.0		
541-73-1	1,3-Dichlorobenzene	2.0 U	2.0		
106-46-7	1,4-Dichlorobenzene	2.0 U	2.0	<u> </u>	
110-75-8	2-Chloroethyl Vinyl Ether	20 U	20		
67-64-1	Acetone	10 U	10		
71-43-2	Benzene	2.0 U	2.0		
75-27-4	Bromodichloromethane	2.0 Ū	2.0		
75-25-2	Bromoform	2.0 U	2.0		
74-83-9	Bromomethane	2.0 U	2.0		
56-23-5	Carbon Tetrachloride	2.0 U	2.0		
108-90-7	Chlorobenzene	2.0 U	2.0		
75-00-3	Chloroethane	2.0 U	2.0	······································	
67-66-3	Chloroform	2.0 U	2.0		
74-87-3	Chloromethane	2.0 U	2.0		
124-48-1	Dibromochloromethane	2.0 U	2.0		
75-09-2	Methylene Chloride	2.0 U	2.0		
100-41-4	Ethylbenzene	2.0 U	2.0		
127-18-4	Tetrachloroethene (PCE)	2.0 U	2.0		
108-88-3	Toluene	2.0 U	2.0		
79-01-6	Trichloroethene (TCE)	13	2.0		
75-69-4	Trichlorofluoromethane (CFC 11)	2.0 U	2.0		······································
75-01-4	Vinyl Chloride	10	2.0		
156-59-2	cis-1,2-Dichloroethene	210	2.0		
10061-01-5	cis-1,3-Dichloropropene	2.0 U	2.0		
179601-23-1	m,p-Xylenes	4.0 U	4.0		
95-47-6	o-Xylene	2.0 U	2.0		
156-60-5	trans-1,2-Dichloroethene	2.0 U	2.0		······
10061-02-6	trans-1,3-Dichloropropene	2.0 U	2.0		
	=				

00007

	•		···· / ··· · · · · · · · · · · · · · ·				
Client: Project: Sample Matrix:	Ecology And Environme Davis Howland Oil Co S Water			2.01.01		Service Request: Date Collected: Date Received: Date Analyzed:	11/ 2/12 1432 11/ 2/12
Sample Name: 002 Out Lab Code: R1207525-002						Units: Basis:	
		Volatile Organ	nic Compound	s by GC/MS			
Analytical Method: Data File Name:	624 I:\ACQUDATA\MSVOA	5\DATA\11151	2\M1958.D\			Analysis Lot: Instrument Name: Dilution Factor:	R-MS-05
CAS No.	Analyte Name		Result Q	MRL		Note	
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
1,2-Dichloroethane-d 4-Bromofluorobenzer Toluene-d8		114 107 104	79-123 79-119 83-120	11/15/12 15:24 11/15/12 15:24 11/15/12 15:24			

Now part of the ALS Group Analytical Report

	Analytical Report					
Client:	Ecology And Environment, Incorporated	Servic				
Project:	Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01	Date				
Sample Matrix:	Water	Date				
Sample Name:	003 In					
Lab Code:	R1207525-003					

Service Request: R1207525 Date Collected: 11/2/12 1438 Date Received: 11/2/12

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	7.30	pH Units		1	NA	11/5/12 17:15	H
Temperature of pH Analysis	SM 4500-H+ B	18.0	deg C		1	NA	11/5/12 17:15	Н

Now part of the ALS Group

Analytical Report

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01 Water	8
Sample Name: Lab Code:	004 Out R1207525-004	

Service Request: R1207525 Date Collected: 11/2/12 1440 Date Received: 11/2/12

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	1 Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	8.00	pH Units		1	NA	11/5/12 17:15	Н
Temperature of pH Analysis	SM 4500-H+ B	18.2	deg C		1	NA	11/5/12 17:15	Н

Now part of the ALS Group Analytical Report

	i linu juour report	
Client:	Ecology And Environment, Incorporated	Service Requ
Project:	Davis Howland Oil Co Site - 11/2012/002700.DC14.02.01.01	Date Collect
Sample Matrix:	Water	Date Receiv
Sample Name:	005-P1	
Lab Code:	R1207525-005	Ba

ervice Request: R1207525 Date Collected: 11/2/12 1450 Date Received: 11/2/12

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	7.01	pH Units		1	NA	11/5/12 17:15	H
Temperature of pH Analysis	SM 4500-H+ B	18.1	deg C		1	NA	11/5/12 17:15	Н

Ecology And Environment, Incorporated Service Request: R1207525 Client: Project: Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01 Date Collected: 11/2/12 1450 Sample Matrix: Water **Date Received:** 11/2/12 Date Analyzed: 11/13/12 01:00 Sample Name: 005-P1 Units: µg/L R1207525-005 Basis: NA Lab Code: Volatile Organic Compounds by GC/MS

Analytical Method: 624 Data File Name: I:\ACQUDATA\MSVOA5\DATA\11112\M1908.D\

Analysis Lot: 318045 Instrument Name: R-MS-05 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	2.3	1.0		
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	9.4	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	2.0	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	10 U	10		
67-64-1	Acetone	5.0 U	5.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	17	1.0		
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	43	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		<u> </u>
75-01-4	Vinyl Chloride	2.4	1.0		
156-59-2	cis-1,2-Dichloroethene	100	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0		
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01 Water	Service Request: Date Collected: Date Received: Date Analyzed:	11/ 2/12 1450 11/ 2/12		
Sample Name: Lab Code:	005-P1 R1207525-005	Units: Basis:			
Volatile Organic Compounds by GC/MS					

Analytical Method: Data File Name:		A5\DATA\111112\M1908.D\			Analysis Lot: 31804 Instrument Name: R-MS- Dilution Factor: 1		
CAS No.	Analyte Name		Result Q	MRL	Note		
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
1,2-Dichloroethane-c	14	108	79-123	11/13/12 01:00			
4-Bromofluorobenze	ne	100	79-119	11/13/12 01:00			
Toluene-d8		102	83-120	11/13/12 01:00			

Now part of the ALS Group Analytical Report

Servio
Date
Date

Service Request: R1207525 Date Collected: 11/2/12 1500 Date Received: 11/2/12

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	6.84	pH Units		1	NA	11/5/12 17:15	Н
Temperature of pH Analysis	SM 4500-H+ B	18.0	deg C		1	NA	11/5/12 17:15	Н

.

Client: Ecology And Environment, Incorporated Service Request: R1207525 **Project:** Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01 Date Collected: 11/2/12 1500 Sample Matrix: Water **Date Received:** 11/2/12 Date Analyzed: 11/13/12 01:39 Sample Name: 006-P2 Units: µg/L Lab Code: R1207525-006 Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method:	624
Data File Name:	I:\ACQUDATA\MSVOA5\DATA\111112\M1909.D\

Analysis Lot: 318045 Instrument Name: R-MS-05 Dilution Factor: 1

10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 21 1.0	CAS No.	Analyte Name	Result Q	MRL	Note	
79-00-5 1,1,2-Trichloroethane 1.0 1.0 75-34-3 1,1-Dichloroethane (1,1-DCA) 210 E 1.0 75-35-4 1,1-Dichloroethene (1,1-DCE) 19 1.0 95-50-1 1,2-Dichloroethene (1,1-DCE) 19 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 78-87-5 1,2-Dichloropropane 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 75-27-4 Bromoform 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 75-03-3 Chloroethane 1.0 U 1.0 75-09-2 Methylene Chloride 1.0 U </td <td>71-55-6</td> <td>1,1,1-Trichloroethane (TCA)</td> <td>44</td> <td>1.0</td> <td></td> <td></td>	71-55-6	1,1,1-Trichloroethane (TCA)	44	1.0		
75-34-3 1,1-Dichloroethane (1,1-DCA) 210 E 1.0 75-35-4 1,1-Dichloroethane (1,1-DCE) 19 1.0 95-50-1 1,2-Dichloroethane 1.0 U 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 78-87-5 1,2-Dichloroethyne 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 10 67-64-1 Acetone 5.0 U 5.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 75-00-3 Chloroethane 1.0 U 1.0 75-09-2 Chloroethane 1.0 U 1.0 75-09-2 Methylene Chloride 1.0 U 1.0 75-09-2 Methylenechloride 1.0 U	-			1.0		
75-35-4 1,1-Dichloroethene (1,1-DCE) 19 1.0 95-30-1 1,2-Dichlorobenzene 1.0 U 1.0 107-06-2 1,2-Dichloroptopane 1.0 U 1.0 78-87-5 1,2-Dichloroptopane 1.0 U 1.0 74-73-1 1,3-Dichlorobenzene 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 107-75-8 2-Chloroethyl Vinyl Ether 10 U 10 67-64-1 Acetone 5.0 U 5.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-5 Bromoform 1.0 U 1.0 75-00-3 Chloroethane 1.0 U 1.0 78-483-9 Biomomethane 1.0 U 1.0 78-60-3 Chloroethane 1.0 U 1.0 78-60-3 Chloromethane 1.0 U 1.0 78-483-9 Dibromochloromethane 1.0 U 1.0 78-60-3 Chloromethane 1.0 U	79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
95-50-1 1,2-Dichlorobenzene 1.0 U 1.0 107-06-2 1,2-Dichloropropane 1.0 U 1.0 78-37-5 1,2-Dichloropropane 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 10 71-43-2 Benzene 1.7 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 1.0 75-27-5 Bromoferm 1.0 U 1.0 1.0 1.0 74-83-9 Bromomethane 1.0 U 1.0 1.0 1.0 1.0 75-00-3 Chloroethane 1.0 U 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	75-34-3	1,1-Dichloroethane (1,1-DCA)	210 E	1.0		
107-06-2 1,2-Dichloroethane 1.0 U 1.0 78-87-5 1,2-Dichloropropane 1.0 U 1.0 541-73-1 1,3-Dichlorobenzene 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 106-75 2-Chloroethyl Viryl Ether 10 U 10 67-64-1 Acetone 5.0 U 5.0 71-43-2 Benzene 1.7 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 75-00-3 Chloroethane 1.0 U 1.0 75-03-3 Chloroform 1.0 U 1.0 75-04-3 Chloroform 1.0 U 1.0 75-05-3 Chloroformethane 1.0 U 1.0 124-48-1 Dibromechioromethane 1.0 U 1.0 100-41-4 Ethylbenzene 1.0 U 1.0 <	75-35-4					
78-87-5 1,2-Dichloropropane 1.0 U 1.0 541-73-1 1,3-Dichlorobenzene 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 10 67-64-1 Acetone 5.0 U 5.0 71-43-2 Benzene 1.7 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 75-07-3 Chloroethane 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 75-00-3 Chloromethane 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 102-41-4 Ethylbenzene 1.0 U 1.0 124-48-1 Dibromochloromethane 1.0 U 1.0	95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
541-73-1 1,3-Dichlorobenzene 1.0 U 1.0 $106-46-7$ 1,4-Dichlorobenzene 1.0 U 1.0 $110-75-8$ 2-Chloroethyl Vinyl Ether 10 U 10 $67-64-1$ Acetone 5.0 U 5.0 $71-43-2$ Benzene 1.7 1.0 $75-27-4$ Bromodichloromethane 1.0 U 1.0 $75-27-4$ Bromodethane 1.0 U 1.0 $75-27-4$ Bromodethane 1.0 U 1.0 $75-27-4$ Bromodethane 1.0 U 1.0 $74-83-9$ Bromodethane 1.0 U 1.0 $74-83-9$ Bromomethane 1.0 U 1.0 $75-07-3$ Chlorobenzene 1.0 U 1.0 $78-07-3$ Chlorobenzene 1.0 U 1.0 $74-87-3$ Chloromethane 1.0 U 1.0 $75-09-2$ Methylene Chloride 1.0 U 1.0 $100-41-4$ Ethylenezene 1.0 U 1	107-06-2	1,2-Dichloroethane	1.0 U	1.0		
106-46-7 $1,4$ -Dichlorobenzene 1.0 1.0 $110-75-8$ 2 -Chloroethyl Vinyl Ether 10 10 $67-54-1$ Acetone 5.0 10 $71-43-2$ Benzene 1.7 1.0 $75-27-4$ Bromodichloromethane 1.0 1.0 $75-27-2$ Bromodichloromethane 1.0 1.0 $75-27-2$ Bromomethane 1.0 1.0 $75-27-2$ Bromomethane 1.0 1.0 $75-27-2$ Bromomethane 1.0 1.0 $75-27-2$ Bromomethane 1.0 1.0 $76-00-3$ Chlorobenzene 1.0 1.0 $75-00-3$ Chloromethane 1.0 1.0 $75-00-3$ Chloromethane 1.0 1.0 $75-09-2$ Methylene Chloride 1.0 1.0 $100-41-4$ Ethylenzene 1.0 1.0 $100-41-4$ Ethylence (PCE) 180 1.0 $102-718-4$ Tetrachloroethene (CE) 92 1.0 $102-718-4$	78-87-5	1,2-Dichloropropane	1.0 U	1.0		
110-75-82-Chloroethyl Vinyl Ether10U10 $67-64-1$ Acetone 5.0 U 5.0 $71-43-2$ Benzene 1.7 1.0 $75-27-4$ Bromodichloromethane 1.0 U 1.0 $75-25-2$ Bromoform 1.0 U 1.0 $74-83-9$ Bromomethane 1.0 U 1.0 $75-02-3$ Chlorobenzene 1.0 U 1.0 $75-06-3$ Chloroform 1.0 U 1.0 $74-87-3$ Chloroform 1.0 U 1.0 $74-87-3$ Chloromethane 1.0 U 1.0 $124-48-1$ Dibromochloromethane 1.0 1.0 1.0 $124-48-1$ Dibromochloromethane 1.0 1.0 1.0 $127-18-4$ Tetrachloroethene (TCE) 92 <td>541-73-1</td> <td>1,3-Dichlorobenzene</td> <td>1.0 U</td> <td>1.0</td> <td></td> <td></td>	541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
67-64-1Acetone 5.0 U 5.0 $71-43-2$ Benzene 1.7 1.0 $75-27-4$ Bromodichloromethane 1.0 U 1.0 $75-27-4$ Bromodichloromethane 1.0 U 1.0 $75-27-2$ Bromoform 1.0 U 1.0 $75-27-2$ Bromomethane 1.0 U 1.0 $75-25-2$ Bromomethane 1.0 U 1.0 $75-25-2$ Bromomethane 1.0 U 1.0 $74-83-9$ Bromomethane 1.0 U 1.0 $108-90-7$ Chlorobenzene 1.0 U 1.0 $75-00-3$ Chloroethane 1.0 U 1.0 $75-03$ Chloroethane 1.0 U 1.0 $74-87-3$ Chloromethane 1.0 U 1.0 $74-48-1$ Dibromochloromethane 1.0 U 1.0 $100-41-4$ Ethylbenzene 1.0 U 1.0 $100-41-4$ Ethylbenzene 1.0 U 1.0 $102-41-4$ Ethylbenzene 1.0 U 1.0 $105-59-2$ cis- 1.3 -Dichloromethane $CFC 11$ 1.0 $1.$	106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
71-43-2Benzene1.71.075-27-4Bromodichloromethane1.0U1.075-25-2Bromoform1.0U1.074-83-9Bromomethane1.0U1.056-23-5Carbon Tetrachloride1.0U1.0108-90-7Chlorobenzene1.0U1.075-00-3Chlorothane1.0U1.067-66-3Chlorothane1.0U1.0124-48-1Dibromochloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.0100-41-4Ethylbenzene1.0U1.0127-18-4Tetrachloride1.0U1.0127-18-4Tetrachloroethene (PCE)1801.0108-88-3Toluene1.0U1.075-69-4Trichlorofluoromethane (CFC 11)1.0U1.075-69-4Trichlorofluoromethane (CFC 11)1.0U1.0156-59-2cis-1,3-Dichloropropene1.0U1.010061-01-5cis-1,3-Dichloropropene1.0U1.0179601-23-1m,p-Xylenes2.0U2.095-47-6o-Xylene1.0U1.0156-50-5trans-1,2-Dichloroethene211.0	110-75-8	2-Chloroethyl Vinyl Ether	10 U	10		
75-27-4Bromodichloromethane1.0U1.075-25-2Bromoform1.0U1.074-83-9Bromomethane1.0U1.056-23-5Carbon Tetrachloride1.0U1.0108-90-7Chlorobenzene1.0U1.075-00-3Chloroothane1.0U1.067-66-3Chloroform1.0U1.074-87-3Chloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.0100-41-4Ethylbenzene1.0U1.0127-18-4Tetrachloroethene (PCE)1801.0128-83-3Tohuene1.0U1.075-09-4Trichlorofhuromethane (CFC 11)1.0U1.075-01-4Vinyl Chloride300E1.0156-59-2cis-1,3-Dichlorooppene1.0U1.0179601-23-1m.p-Xylenes2.0U2.	67-64-1	Acetone	5.0 U	5.0		
75-25-2Bromoform1.0 U1.074-83-9Bromomethane1.0 U1.056-23-5Carbon Tetrachloride1.0 U1.0108-90-7Chlorobenzene1.0 U1.075-00-3Chloroethane1.0 U1.067-66-3Chloroform1.0 U1.074-87-3Chloromethane1.0 U1.0124-48-1Dibromochloromethane1.0 U1.0100-41-4Ethylbenzene1.0 U1.0107-18-4Tetrachlorothene (PCE)1801.0108-88-3Toluene1.0 U1.075-69-4Trichlorofhoromethane (CFC 11)1.0 U1.075-69-4Trichlorofhoromethane (CFC 11)1.0 U1.0156-59-2cis-1,2-Dichloroptene1.0 U1.010061-01-5cis-1,3-Dichloroptene1.0 U1.0179601-23-1m,p-Xylenes2.0 U2.095-47-6o-Xylene1.0 U1.0156-60-5trans-1,2-Dichloroethene211.0	71-43-2	Benzene	1.7	1.0		
74-83-9Bromomethane1.0U1.056-23-5Carbon Tetrachloride1.0U1.0108-90-7Chlorobenzene1.0U1.075-00-3Chloroethane1.0U1.067-66-3Chloroform1.0U1.074-87-3Chloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.0100-41-4Ethylene Chloride1.0U1.0107-18-4Tetrachloroethene (PCE)1801.0108-88-3Toluene1.0U1.075-69-4Trichloroethene (TCE)921.075-69-4Trichlorofluoromethane (CFC 11)1.01.0156-59-2cis-1,3-Dichloropropene1.0U1.010061-01-5cis-1,3-Dichloropropene1.0U1.0179601-23-1m,p-Xylenes2.0U2.095-47-6o-Xylene1.0U1.0156-60-5trans-1,2-Dichloroethene211.0	75-27-4	Bromodichloromethane	1.0 U	1.0		
56-23-5Carbon Tetrachloride1.0U1.0108-90-7Chlorobenzene1.0U1.075-00-3Chlorothane1.0U1.067-66-3Chloroform1.0U1.074-87-3Chloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.0100-41-4Ethylben Chloride1.0U1.0107-18-4Tetrachloroethene (PCE)1801.0108-88-3Toluene1.0U1.075-69-4Trichloroethene (TCE)921.075-69-4Trichlorofluoromethane (CFC 11)1.0U156-59-2cis-1,2-Dichloroethene640E1.010061-01-5cis-1,3-Dichloropropene1.0U1.0179601-23-1m,p-Xylenes2.0U2.095-47-6o-Xylene1.0U1.0156-60-5trans-1,2-Dichloroethene211.0	75-25-2	Bromoform	1.0 U	1.0		
108-90-7Chlorobenzene 1.0 1.0 1.0 $75-00-3$ Chloroethane 1.0 U 1.0 $67-66-3$ Chloroform 1.0 U 1.0 $74-87-3$ Chloromethane 1.0 U 1.0 $124-48-1$ Dibromochloromethane 1.0 U 1.0 $124-48-1$ Dibromochloromethane 1.0 U 1.0 $100-41-4$ Ethylbenzene 1.0 U 1.0 $100-41-4$ Ethylbenzene 1.0 U 1.0 $107-18-4$ Tetrachloroethene (PCE) 180 1.0 $108-88-3$ Toluene 1.0 U 1.0 $75-69-4$ Trichloroethene (TCE) 92 1.0 $75-69-4$ Trichlorofluoromethane (CFC 11) 1.0 U $156-59-2$ cis-1,2-Dichloroethene 640 E 1.0 $10061-01-5$ cis-1,3-Dichloropropene 1.0 U 1.0 $179601-23-1$ m,p-Xylenes 2.0 U 2.0 $95-47-6$ o -Xylene 1.0 U 1.0	74-83-9	Bromomethane	1.0 U	1.0		
75-00-3Chloroethane1.0U1.0 $67-66-3$ Chloroform1.0U1.0 $74-87-3$ Chloromethane1.0U1.0 $124-48-1$ Dibromochloromethane1.0U1.0 $124-48-1$ Dibromochloromethane1.0U1.0 $124-48-1$ Dibromochloromethane1.0U1.0 $124-48-1$ Dibromochloromethane1.0U1.0 $124-48-1$ Dibromochloromethane1.0U1.0 $100-41-4$ Ethylbenzene1.0U1.0 $100-41-4$ Ethylbenzene1.0U1.0 $127-18-4$ Tetrachloroethene (PCE)1801.0 $108-88-3$ Toluene1.0U1.0 $79-01-6$ Trichloroethene (TCE)921.0 $75-69-4$ Trichlorofluoromethane (CFC 11)1.0U $75-69-4$ Trichlorofluoromethane (CFC 11)1.0U $156-59-2$ cis-1,2-Dichloroethene640E $10061-01-5$ cis-1,3-Dichloropropene1.0U $10061-01-5$ cis-1,3-Dichloropropene1.0U $10061-01-5$ cis-1,3-Dichloropropene1.0U $10001-23-1$ m,p-Xylenes2.0U $95-47-6$ o-Xylene1.0U $156-60-5$ trans-1,2-Dichloroethene211.0	56-23-5	Carbon Tetrachloride	1.0 U	1.0		
67-66-3Chloroform1.0U1.0 $74-87-3$ Chloromethane1.0U1.0 $124-48-1$ Dibromochloromethane1.0U1.0 $124-48-1$ Dibromochloromethane1.0U1.0 $10-41-4$ Ethylbenzene1.0U1.0 $100-41-4$ Ethylbenzene1.0U1.0 $127-18-4$ Tetrachloroethene (PCE) 180 1.0 $127-18-4$ Tetrachloroethene (PCE) 180 1.0 $108-88-3$ Toluene1.0U1.0 $79-01-6$ Trichloroethene (TCE) 92 1.0 $75-69-4$ Trichlorofluoromethane (CFC 11)1.0U1.0 $75-69-4$ Trichlorofluoromethane (CFC 11)1.0U1.0 $156-59-2$ cis-1,2-Dichloroethene 640 E1.0 $10061-01-5$ cis-1,3-Dichloropropene1.0U1.0 $179601-23-1$ m,p-Xylenes2.0U2.0 $95-47-6$ o-Xylene1.0U1.0 $156-60-5$ trans-1,2-Dichloroethene 21 1.0	108-90-7	Chlorobenzene	1.0 U	1.0		
74-87-3Chloromethane1.0U1.0124-48-1Dibromochloromethane1.0U1.075-09-2Methylene Chloride1.0U1.0100-41-4Ethylbenzene1.0U1.0127-18-4Tetrachloroethene (PCE)1801.0108-88-3Toluene1.0U1.079-01-6Trichloroethene (TCE)921.075-69-4Trichlorofluoromethane (CFC 11)1.0U1.0156-59-2cis-1,2-Dichloroethene640E1.010061-01-5cis-1,3-Dichloropropene1.0U1.0179601-23-1m,p-Xylenes2.0U2.095-47-6o-Xylene1.0U1.0156-60-5trans-1,2-Dichloroethene211.0	75-00-3	Chloroethane	1.0 U	1.0		
124-48-1Dibromochloromethane1.0U1.075-09-2Methylene Chloride1.0U1.0100-41-4Ethylbenzene1.0U1.0127-18-4Tetrachloroethene (PCE)1801.0108-88-3Toluene1.0U1.079-01-6Trichloroethene (TCE)921.075-69-4Trichlorofluoromethane (CFC 11)1.0U1.0156-59-2cis-1,2-Dichloroethene640E1.010061-01-5cis-1,3-Dichloropropene1.0U1.0179601-23-1m,p-Xylenes2.0U2.095-47-6o-Xylene1.0U1.0156-60-5trans-1,2-Dichloroethene211.0	67-66-3	Chloroform	1.0 U	1.0		
75-09-2Methylene Chloride1.0U1.0 $100-41-4$ Ethylbenzene 1.0 1.0 1.0 $127-18-4$ Tetrachloroethene (PCE) 180 1.0 $108-88-3$ Toluene 1.0 1.0 $79-01-6$ Trichloroethene (TCE) 92 1.0 $75-69-4$ Trichlorofluoromethane (CFC 11) 1.0 1.0 $75-01-4$ Vinyl Chloride 300 E 1.0 $156-59-2$ cis-1,2-Dichloroethene 640 E 1.0 $10061-01-5$ cis-1,3-Dichloropropene 1.0 1.0 1.0 $179601-23-1$ m,p-Xylenes 2.0 2.0 2.0 $95-47-6$ $o-Xylene$ 1.0 1.0 1.0 $156-60-5$ trans-1,2-Dichloroethene 21 1.0	74-87-3	Chloromethane	1.0 U	1.0		
100-41-4 Ethylbenzene 1.0 1.0 127-18-4 Tetrachloroethene (PCE) 180 1.0 108-88-3 Toluene 1.0 1.0 79-01-6 Trichloroethene (TCE) 92 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 1.0 75-01-4 Vinyl Chloride 300 E 1.0 156-59-2 cis-1,2-Dichloroethene 640 E 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 21 1.0	124-48-1	Dibromochloromethane	1.0 U	1.0		
127-18-4 Tetrachloroethene (PCE) 180 1.0 108-88-3 Toluene 1.0 U 1.0 79-01-6 Trichloroethene (TCE) 92 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 75-01-4 Vinyl Chloride 300 E 1.0 156-59-2 cis-1,2-Dichloroethene 640 E 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 21 1.0	75-09-2	Methylene Chloride	1.0 U	1.0		
108-88-3 Toluene 1.0 U 1.0 79-01-6 Trichloroethene (TCE) 92 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 75-01-4 Vinyl Chloride 300 E 1.0 156-59-2 cis-1,2-Dichloroethene 640 E 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 21 1.0	100-41-4	Ethylbenzene	1.0 U	1.0		
79-01-6 Trichloroethene (TCE) 92 1.0 75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 75-01-4 Vinyl Chloride 300 E 1.0 156-59-2 cis-1,2-Dichloroethene 640 E 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 21 1.0	127-18-4	Tetrachloroethene (PCE)	180	1.0		
75-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 75-01-4 Vinyl Chloride 300 E 1.0 156-59-2 cis-1,2-Dichloroethene 640 E 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 21 1.0	108-88-3	Toluene	1.0 U			
75-01-4 Vinyl Chloride 300 E 1.0 156-59-2 cis-1,2-Dichloroethene 640 E 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 21 1.0	79-01-6	Trichloroethene (TCE)	92	1.0		
156-59-2 cis-1,2-Dichloroethene 640 E 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 21 1.0	75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 21 1.0	75-01-4	5	300 E	1.0		
179601-23-1 m,p-Xylenes 2.0 U 2.0 95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 21 1.0	156-59-2	cis-1,2-Dichloroethene	640 E	1.0		
95-47-6 o-Xylene 1.0 U 1.0 156-60-5 trans-1,2-Dichloroethene 21 1.0	10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
156-60-5 trans-1,2-Dichloroethene 21 1.0	179601-23-1	m,p-Xylenes	2.0 U	2.0		
,	95-47-6	o-Xylene	1.0 U	1.0		
·	156-60-5	trans-1,2-Dichloroethene	21	1.0		
	10061-02-6	•	1.0 U	1.0		

		••					
Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Co Site - 11/2012/002700.DC14.02.01.01 Water					Service Request: Date Collected: Date Received: Date Analyzed:	11/ 2/12 1500 11/ 2/12
Sample Name: Lab Code:	006-P2 R1207525-006					Units: Basis:	
		Volatile Orgar	nic Compound	s by GC/MS			
Analytical Method: Data File Name:	624 1:\ACQUDAT A\MS VOA	.5\DATA\11111	2\M1909.D\			Analysis Lot: Instrument Name: Dilution Factor:	R-MS-05
CAS No.	Analyte Name		Result Q	MRL		Note	
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
1,2-Dichloroethane-de 4-Bromofluorobenzer Toluene-d8		102 100 101	79-123 79-119 83-120	11/13/12 01:39 11/13/12 01:39 11/13/12 01:39			

Client:	Ecology And Environment, Incorporated
Project:	Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01
Sample Matrix:	Water

 Service Request:
 R1207525

 Date Collected:
 11/2/12 1500

 Date Received:
 11/2/12

 Date Analyzed:
 11/15/12 18:00

Sample Name:	006-P2
Lab Code:	R1207525-006
Run Type:	Dilution

Volatile Organic Compounds by GC/MS

Analytical Method:624Data File Name:I:\ACQUDATA\MSVOA5\DATA\111512\M1962.D\

Analysis Lot:	318379
Instrument Name:	R-MS-05
Dilution Factor:	10

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CAS No.	Analyte Name	Result	Q	MRL	Note	
79-34-5 1,1,2,2-Trickhoroethane 10 U 10 $79-00-5$ 1,1,2-Trickhoroethane 10 U 10 $75-34-3$ 1,1-Dichhoroethane (1,1-DCE) 29 D 10 $75-34-3$ 1,1-Dichhoroethane (1,1-DCE) 29 D 10 $75-35-1$ 1,2-Dichhoroethane 10 U 10 $79-62-2$ 1,2-Dichhoroethane 10 U 10 $78-75-3$ 1,2-Dichhoroethane 10 U 10 $74-64-7$ 1,4-Dichhorobenzene 10 U 10 $76-44-1$ Acetone 50 U 50 $71-43-2$ Benzene 10 U 10 $75-27-4$ Bromodichloromethane 10 U 10 $75-27-5$ Bromoferm 10 U 10 $75-34-3$ Bromomethane 10 U 10 $75-00-3$ Chloroethane 10 U 10 $75-00-3$ Chloroethane 10 U 10 $75-00-2$ Methylenc Choride 10	71-55-6	1,1,1-Trichloroethane (TCA)	35	D			
75-34-3 1,1-Dichloroethane (1,1-DCA) 200 D 10 75-34-3 1,1-Dichloroethane (1,1-DCE) 29 D 10 95-35-4 1,2-Dichloroethane (1,1-DCE) 29 D 10 95-36-1 1,2-Dichloroethane 10 U 10 107-06-2 1,2-Dichloropopane 10 U 10 8:87-5 1,2-Dichloropopane 10 U 10 106-46-7 1,4-Dichlorobenzene 10 U 10 106-75 2-Chloroethyl Vinyl Ether 100 U 100 67-64-1 Acetone 50 U 50 71-43-2 Benzene 10 U 10 75-27-4 Bromodichloromethane 10 U 10 75-25-2 Bromoform 10 U 10 75-25-2 Bromoform 10 U 10 75-03-2 Chloroethane 10 U 10 76-63 Chloromethane 10 U 10 76-64-3 Chloromethane 10 U 10<		1,1,2,2-Tetrachloroethane					
1.1-Dichloroethene (1,1-DCE) 29 D 10 95-30-1 1,2-Dichloroethane 10 U 10 107-06-2 1,2-Dichloroethane 10 U 10 78-87-5 1,2-Dichloroethane 10 U 10 541-73-1 1,3-Dichlorobenzene 10 U 10 106-46-7 1,4-Dichlorobenzene 10 U 10 106-46-7 1,4-Dichlorobenzene 10 U 10 107-5-8 2-Chloroethyl Vinyl Ether 100 U 100 71-43-2 Benzene 10 U 10 75-27-4 Bromodichloromethane 10 U 10 75-27-2 Bromoferm 10 U 10 75-27-3 Bromomethane 10 U 10 56-23-5 Carbon Tetrachloride 10 U 10 66-63 Chloroethane 10 U 10 74-487-3 Chloromethane 10 U 10 124-48-1 Dibromochloromethane 10 U 10 <td>79-00-5</td> <td>1,1,2-Trichloroethane</td> <td>10</td> <td>U</td> <td>10</td> <td></td> <td></td>	79-00-5	1,1,2-Trichloroethane	10	U	10		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75-34-3	1,1-Dichloroethane (1,1-DCA)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	75-35-4	1,1-Dichloroethene (1,1-DCE)					
10/1002 1,2-Dichloropropane 10 10 541-73-1 1,3-Dichlorobenzene 10 10 106-46-7 1,4-Dichlorobenzene 10 10 110-75-8 2-Chloroethyl Vinyl Ether 100 100 67-64-1 Acctone 50 U 50 71-43-2 Benzene 10 U 10 75-27-4 Bromodichloromethane 10 U 10 74-83-9 Bromomethane 10 U 10 74-83-9 Bromomethane 10 U 10 75-02-3 Chlorobtanzene 10 U 10 75-00-3 Chlorobtanzene 10 U 10 75-00-3 Chlorobtanzene 10 U 10 75-00-3 Chlorobtanzene 10 U 10 72-48-3 Chlorobtanzene 10 U 10 72-03-2 Methylene Chloride 10 U 10 72-04-2 Methylene Chloride 10 U 10 1024-14 Ethylbenzene 10 <td>95-50-1</td> <td>1,2-Dichlorobenzene</td> <td>10</td> <td>U</td> <td>10</td> <td></td> <td></td>	95-50-1	1,2-Dichlorobenzene	10	U	10		
13-01-01 13-Dichlorobenzene 10 10 106-46-7 1,4-Dichlorobenzene 10 10 110-75-8 2-Chloroethyl Vinyl Ether 100 100 67-64-1 Acetone 50 50 71-43-2 Benzene 10 U 10 75-27-4 Bromodichloromethane 10 U 10 74-83-9 Bromoform 10 U 10 75-27-4 Bromodichloromethane 10 U 10 74-83-9 Bromomethane 10 U 10 75-25-2 Bromoform 10 U 10 76-6-3 Chlorobenzene 10 U 10 75-00-3 Chloroethane 10 U 10 75-00-3 Chloroform 10 U 10 75-00-3 Chloroethane 10 U 10 76-6-3 Chloroformethane 10 U 10 10-41-4 Ethylbenzene 10 U 10 10-41-4 Ethylbenzene 10 U <	107-06-2	1,2-Dichloroethane					
106-46-7 $1,4$ -Dichlorobenzene 10 10 $106-46-7$ $1,4$ -Dichlorobenzene 10 10 $110-75-8$ 2 -Chloroethyl Vinyl Ether 100 100 $67-64-1$ Acetone 50 100 $67-64-1$ Acetone 50 100 $71-43-2$ Benzene 10 10 $75-25-2$ Bromodichloromethane 10 10 $75-25-2$ Bromomethane 10 10 $74-83-9$ Bromomethane 10 10 $74-83-9$ Bromomethane 10 10 $108-90-7$ Chlorobenzene 10 10 $108-90-7$ Chlorobenzene 10 10 $75-00-3$ Chloromethane 10 10 $74-87-3$ Chloromethane 10 10 $124-48-1$ Dibromochloromethane 10 10 $124-48-1$ Dibromochloromethane 10 10 $100-41-4$ Ethylbenzene 10 10 $107-18-4$ Tetrachloroethene (PCE) <td></td> <td>1,2-Dichloropropane</td> <td></td> <td></td> <td></td> <td></td> <td></td>		1,2-Dichloropropane					
100-75-8 2-Chloroethyl Vinyl Ether 100 100 110-75-8 2-Chloroethyl Vinyl Ether 100 100 71-43-2 Benzene 10 U 10 71-43-2 Benzene 10 U 10 75-27-4 Bromodichloromethane 10 U 10 75-25-2 Bromodichloromethane 10 U 10 74-83-9 Bromomethane 10 U 10 74-83-9 Bromomethane 10 U 10 76-62-3 Chlorobenzene 10 U 10 74-87-3 Chloroform 10 U 10 74-87-3 Chloromethane 10 U 10 124-48-1 Dibromochloromethane 10 U 10 124-48-1 Dibromchloromethane 10 U 10 10-41-4 Ethylbenzene 10 U 10 127-18-4 Tetrachloroethene (PCE) 81 D 10 75-69-4 Trichloroethene (CFC 11) 10 U 10 7	541-73-1	1,3-Dichlorobenzene	10	U	10		
110-75-8 2-Chloroethyl Vinyl Ether 100 U 100 67-64-1 Acetone 50 U 50 71-43-2 Benzene 10 U 10 75-27-4 Bromodichloromethane 10 U 10 75-27-2 Bromodethane 10 U 10 74-83-9 Bromomethane 10 U 10 76-00-3 Chlorobenzene 10 U 10 76-66-3 Chloroform 10 U 10 74-87-3 Chloromethane 10 U 10 74-87-3 Chloromethane 10 U 10 104-1-4 Ethylbenzene 10 U 10 102-18-4 Tetrachloroethene (PCE) 81 D 10 108-88-3 Toluene 10 U 10 75-69-4	106-46-7	1,4-Dichlorobenzene	10	U			
07-04-1 Factoria 71-43-2 Benzene 10 U 10 75-27-4 Bromodichloromethane 10 U 10 75-27-4 Bromodichloromethane 10 U 10 74-83-9 Bromomethane 10 U 10 74-83-9 Bromomethane 10 U 10 74-83-9 Bromomethane 10 U 10 108-90-7 Chlorobenzene 10 U 10 75-07-3 Chloroothane 10 U 10 67-66-3 Chloromethane 10 U 10 74-87-3 Chloromethane 10 U 10 124-48-1 Dibromochloromethane 10 U 10 100-41-4 Ethylbenzene 10 U 10 100-41-4 Ethylbenzene 10 U 10 102-18-4 Tetrachloroethene (PCE) 81 D 10 108-88-3 Toluene 10 U 10 75-01-4 Vinyl Chloride 990 <t< td=""><td></td><td>2-Chloroethyl Vinyl Ether</td><td></td><td></td><td></td><td></td><td></td></t<>		2-Chloroethyl Vinyl Ether					
75-27-4 Bromodichloromethane 10 U 10 75-27-4 Bromodichloromethane 10 U 10 74-83-9 Bromomethane 10 U 10 108-90-7 Chlorobenzene 10 U 10 75-07-3 Chloroform 10 U 10 74-87-3 Chloromethane 10 U 10 124-48-1 Dibromochloromethane 10 U 10 100-41-4 Ethylbenzene 10 U 10 100-41-4 Ethylbenzene 10 U 10 127-18-4 Tetrachloroethene (PCE) 81 D 10 108-88-3 Toluene 10 U 10 75-01-6 Trichlorofthoromethane (CFC 11) 10 U 10 156-59-2 cis-1,2-Dichloroethene 1500 D 10 <td>67-64-1</td> <td>Acetone</td> <td>50</td> <td>U</td> <td>50</td> <td></td> <td></td>	67-64-1	Acetone	50	U	50		
75-27-4Bromodichloromethane10U1075-25-2Bromoform10U1074-83-9Bromomethane10U1056-23-5Carbon Tetrachloride10U10108-90-7Chlorobenzene10U1075-00-3Chloroethane10U1067-66-3Chloroform10U1074-87-3Chloromethane10U10124-48-1Dibromochloromethane10U10124-48-1Dibromochloromethane10U10100-41-4Ethylbenzene10U10127-18-4Tetrachloroethene (PCE)81D10127-18-4Tetrachloroethene (TCE)74D1075-69-4Trichlorofutoromethane (CFC 11)10U1075-69-4Trichlorofutoromethane (CFC 11)10U10156-59-2cis-1,2-Dichloroethene1500D1010061-01-5cis-1,3-Dichloroptopene10U10179601-23-1m,p-Xylenes20U2095-47-6o-Xylene10U10156-60-5trans-1,2-Dichloroethene24D10	71-43-2	Benzene	10	U	10		
75-25-2 Bromoform 10 U 10 74-83-9 Bromomethane 10 U 10 56-23-5 Carbon Tetrachloride 10 U 10 108-90-7 Chlorobenzene 10 U 10 75-00-3 Chlorothane 10 U 10 67-66-3 Chloroform 10 U 10 74-87-3 Chloromethane 10 U 10 124-48-1 Dibromochloromethane 10 U 10 124-48-1 Dibromochloromethane 10 U 10 100-41-4 Ethylbenzene 10 U 10 100-41-4 Ethylbenzene 10 U 10 127-18-4 Tetrachloroethene (PCE) 81 D 10 108-88-3 Toluene 10 U 10 75-60-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-61-4 Vinyl Chloride 990 D 10 156-59-2 cis-1,3-Dichloroptopene 10 U 10							
7483-9 Distribution 56-23-5 Carbon Tetrachloride 10 U 108-90-7 Chlorobenzene 10 U 10 75-00-3 Chlorobenzene 10 U 10 75-00-3 Chlorobenzene 10 U 10 74-87-3 Chloroform 10 U 10 74-87-3 Chloromethane 10 U 10 124-48-1 Dibromochloromethane 10 U 10 175-09-2 Methylene Chloride 10 U 10 100-41-4 Ethylbenzene 10 U 10 100-41-4 Ethylbenzene 10 U 10 100-41-4 Ethylbenzene 10 U 10 108-88-3 Toluene 10 U 10 75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 156-59-2 cis-1,2-Dichloropethene 1500 D 10 10061-01-5 cis-1,3-Dichlor		Bromoform	10	U	10		
56-23-5Carbon Tetrachloride10U10 $108-90-7$ Chlorobenzene10U10 $75-00-3$ Chloroethane10U10 $67-66-3$ Chloroform10U10 $74-87-3$ Chloromethane10U10 $124-48-1$ Dibromochloromethane10U10 $100-41-4$ Ethylbenzene10U10 $100-41-4$ Ethylbenzene10U10 $127-18-4$ Tetrachloroethene (PCE) 81 D10 $108-88-3$ Toluene10U10 $19-01-6$ Trichlorofluoromethane (CFC 11)10U10 $75-69-4$ Trichlorofluoromethane (CFC 11)10U10 $156-59-2$ cis-1,2-Dichloroethene 1500 D10 $10061-01-5$ cis-1,3-Dichloropropene10U10 $179601-23-1$ m,p-Xylenes20U20 $95-47-6$ o-Xylene10U10 $156-60-5$ trans-1,2-Dichloroethene24D10	74-83-9	Bromomethane	10	U			
1000000000000000000000000000000000000		Carbon Tetrachloride					
67-66-3 Chloroform 10 10 74-87-3 Chloromethane 10 U 10 124-48-1 Dibromochloromethane 10 U 10 124-48-1 Dibromochloromethane 10 U 10 100-41-4 Ethylbenzene 10 U 10 100-41-4 Ethylbenzene 10 U 10 127-18-4 Tetrachloroethene (PCE) 81 D 10 108-88-3 Toluene 10 U 10 79-01-6 Trichloroethene (TCE) 74 D 10 75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-01-4 Vinyl Chloride 990 D 10 156-59-2 cis-1,3-Dichloropropene 10 U 10 10061-01-5 cis-1,3-Dichloropropene 10 U 10 179601-23-1 m,p-Xylenes 20 U 20 95-47-6 o-Xylene 10 U 10 156-60-5 trans-1,2-Dichloroethene 24 D 10 <td>108-90-7</td> <td>Chlorobenzene</td> <td>10</td> <td>U</td> <td>10</td> <td></td> <td></td>	108-90-7	Chlorobenzene	10	U	10		
74-87-3 Chloromethane 10 U 10 124-48-1 Dibromochloromethane 10 U 10 75-09-2 Methylene Chloride 10 U 10 100-41-4 Ethylbenzene 10 U 10 127-18-4 Tetrachloroethene (PCE) 81 D 10 108-88-3 Toluene 10 U 10 75-09-4 Trichloroethene (TCE) 74 D 10 75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-69-2 cis-1,2-Dichloroethene 1500 D 10 156-59-2 cis-1,3-Dichloropropene 10 U 10 10061-01-5 cis-1,3-Dichloropropene 10 U 10 179601-23-1 m,p-Xylenes 20 U 20 95-47-6 o-Xylene 10 U 10 156-60-5 trans-I,2-Dichloroethene 24 D 10	75-00-3	Chloroethane					
124-81-1 Dibromochloromethane 10 U 10 124-48-1 Dibromochloromethane 10 U 10 100-41-4 Ethylbenzene 10 U 10 100-41-4 Ethylbenzene 10 U 10 127-18-4 Tetrachloroethene (PCE) 81 D 10 127-18-4 Tetrachloroethene (TCE) 74 D 10 108-88-3 Toluene 10 U 10 79-01-6 Trichloroethene (TCE) 74 D 10 75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-69-2 cis-1,2-Dichloroethene 1500 D 10 156-59-2 cis-1,3-Dichloropropene 10 U 10 10061-01-5 cis-1,3-Dichloropropene 10 U 10 179601-23-1 m,p-Xylenes 20 U 20 95-47-6 o-Xylene 10 10 10 156-60-5 trans-1,2-Dichloroethene 24 D 10	67-66-3	Chloroform					
12-4-6-1 Distribution of the function of the fun	74-87-3	Chloromethane	10	U	10		
100-41-4 Ethylbenzene 10 10 127-18-4 Tetrachloroethene (PCE) 81 D 10 108-88-3 Toluene 10 U 10 79-01-6 Trichloroethene (TCE) 74 D 10 75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-69-2 cis-1,2-Dichloroethene 1500 D 10 10061-01-5 cis-1,3-Dichloropropene 10 U 10 10061-01-5 cis-1,3-Dichloropropene 10 U 10 179601-23-1 m,p-Xylenes 20 U 20 95-47-6 o-Xylene 10 U 10 156-60-5 trans-1,2-Dichloroethene 24 D 10	124-48-1	Dibromochloromethane					
10041-4 Entrylection 127-18-4 Tetrachloroethene (PCE) 81 D 10 108-88-3 Toluene 10 U 10 79-01-6 Trichloroethene (TCE) 74 D 10 75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-01-4 Vinyl Chloride 990 D 10 156-59-2 cis-1,2-Dichloroethene 1500 D 10 10061-01-5 cis-1,3-Dichloropropene 10 U 10 179601-23-1 m,p-Xylenes 20 U 20 95-47-6 o-Xylene 10 U 10 156-60-5 trans-I,2-Dichloroethene 24 D 10	75-09-2	Methylene Chloride					
12713-4 Toluene 10 10 108-88-3 Toluene 10 10 79-01-6 Trichloroethene (TCE) 74 D 10 75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-69-4 Vinyl Chloride 990 D 10 75-01-4 Vinyl Chloride 990 D 10 156-59-2 cis-1,2-Dichloroethene 1500 D 10 10061-01-5 cis-1,3-Dichloropropene 10 U 10 179601-23-1 m,p-Xylenes 20 U 20 95-47-6 o-Xylene 10 U 10 156-60-5 trans-I,2-Dichloroethene 24 D 10	100-41-4	Ethylbenzene	10	U			
103-36-5 Trichloroethene (TCE) 74 D 10 79-01-6 Trichloroethene (TCE) 74 D 10 75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-01-4 Vinyl Chloride 990 D 10 156-59-2 cis-1,2-Dichloroethene 1500 D 10 10061-01-5 cis-1,3-Dichloropropene 10 U 10 179601-23-1 m,p-Xylenes 20 U 20 95-47-6 o-Xylene 10 U 10 156-60-5 trans-1,2-Dichloroethene 24 D 10	127-18-4	Tetrachloroethene (PCE)					
75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-69-4 Trichlorofluoromethane (CFC 11) 10 U 10 75-01-4 Vinyl Chloride 990 D 10 156-59-2 cis-1,2-Dichloroethene 1500 D 10 10061-01-5 cis-1,3-Dichloropropene 10 U 10 179601-23-1 m,p-Xylenes 20 U 20 95-47-6 o-Xylene 10 U 10 156-60-5 trans-I,2-Dichloroethene 24 D 10	108-88-3	Toluene					
75-01-4 Vinyl Chloride 990 D 10 156-59-2 cis-1,2-Dichloroethene 1500 D 10 10061-01-5 cis-1,3-Dichloropropene 10 U 10 179601-23-1 m,p-Xylenes 20 U 20 95-47-6 o-Xylene 10 U 10 156-60-5 trans-I,2-Dichloroethene 24 D 10	79-01-6	Trichloroethene (TCE)	74	D	10		
156-59-2 cis-1,2-Dichloroethene 1500 D 10 10061-01-5 cis-1,3-Dichloropropene 10 U 10 179601-23-1 m,p-Xylenes 20 U 20 95-47-6 o-Xylene 10 U 10 156-60-5 trans-I,2-Dichloroethene 24 D 10	75-69-4	Trichlorofluoromethane (CFC 11)					
10061-01-5 cis-1,3-Dichloropropene 10 10 179601-23-1 m,p-Xylenes 20 U 20 95-47-6 o-Xylene 10 U 10 156-60-5 trans-1,2-Dichloroethene 24 D 10	75-01-4	•					
10001-01-5 chi 1,5 Diamorphymic 179601-23-1 m,p-Xylenes 95-47-6 o-Xylene 156-60-5 trans-I,2-Dichloroethene 24 D 10 10	156-59-2	cis-1,2-Dichloroethene	1500	D			
95-47-6 o-Xylene 10 U 10 156-60-5 trans-I,2-Dichloroethene 24 D 10	10061-01-5	cis-1,3-Dichloropropene					
156-60-5 trans-I,2-Dichloroethene 24 D 10	179601-23-1						
	95-47-6	o-Xylene	10	U	10		
	156-60-5	trans-1,2-Dichloroethene					
	10061-02-6	trans-1,3-Dichloropropene	10	U	10		

Client: Project: Sample Matrix:	Ecology And Environmer Davis Howland Oil Co Si Water			2.01.01		Service Request: Date Collected: Date Received: Date Analyzed:	11/ 2/12 1500 11/ 2/12
Sample Name: Lab Code: Run Type:	006-P2 R1207525-006 Dilution					Units: Basis:	
	Y	Volatile Organ	nic Compounds	by GC/MS			
Analytical Method: Data File Name:	624 I:\ACQUDATA\MSVOA5	\DATA\11151;	2\M1962.D\			Analysis Lot: Instrument Name: Dilution Factor:	R-MS-05
CAS No.	Analyte Name		Result Q	MRL		Note	
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
1,2-Dichloroethane-d 4-Bromofluorobenzer Toluene-d8		116 104 101	79-123 79-119 83-120	11/15/12 18:00 11/15/12 18:00 11/15/12 18:00	I		

Now part of the ALS Group Analytical Report

	Analytical Report	
Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01 Water	Service F Date Co Date R
Sample Name: Lab Code:	007-P3 R1207525-007	

Service Request: R1207525 Date Collected: 11/2/12 1510 Date Received: 11/2/12

Basis: NA

,

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	7.15	pH Units		1	NA	11/5/12 17:15	Н
Temperature of pH Analysis	SM 4500-H+ B	17.9	deg C		1	NA	11/5/12 17:15	Н

Client:	Ecology And Environment, Incorporated	Service Request: R1207525
Project:	Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01	Date Collected: 11/2/12 1510
Sample Matrix:	Water	Date Received: 11/2/12
		Date Analyzed: 11/13/12 02:18
Sample Name:	007-P3	Units: µg/L
Lab Code:	R1207525-007	Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method:	624
Data File Name:	I:\ACQUDATA\MSVOA5\DATA\111112\M1910.D\

Analysis Lot: 318045 Instrument Name: R-MS-05 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	750	1.0		
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.2	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	150	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	6 5	1.0		
95-50-1	1,2-Dichlorobenzene	1.6	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0		
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	2.0	1.0		
110-75-8	2-Chloroethyl Vinyl Ether	10 U	10		
67-64-1	Acetone	5.0 U	5.0		
71-43-2	Benzene	1.5	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.7	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	12	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	1800 E	1.0		
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	910 E	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	3.7	1.0		
156-59-2	cis-1,2-Dichloroethene	750 E	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	5.9	1.0		
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		
	· · ·				

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Co Site - 11/2012/002700.DC14.02.01.01 Water	Service Request: Date Collected: Date Received: Date Analyzed:	11/ 2/12 1510 11/ 2/12		
Sample Name: Lab Code:	007-P3 R1207525-007	Units: Basis:			
Volatile Organic Compounds by GC/MS					
Analytical Method: Data File Name:	624 I:\ACQUDATA\MSVOA5\DATA\111112\M1910.D\	Analysis Lot: Instrument Name: Dilution Factor:	R-MS-05		

Surrogate Name	%Rec	Control Limits	Date Analyzed Q	
1,2-Dichloroethane-d4	109	79-123	11/13/12 02:18	
4-Bromofluorobenzene	100	79-119	11/13/12 02:18	
Toluene-d8	101	83-120	11/13/12 02:18	

Result Q

MRL

Note

CAS No.

Analyte Name

Client:	Ecology And Environment, Incorporated
Project:	Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01
Sample Matrix:	Water

Service Request: R1207525 Date Collected: 11/2/12 1510 Date Received: 11/2/12 Date Analyzed: 11/16/12 07:44

Units: μg/L Basis: NA

Sample Name: Lab Code: Run Type:

007-P3 R1207525-007 Dilution

Volatile Organic Compounds by GC/MS

Analytical Method:	624
Data File Name:	I:\ACQUDATA\MSVOA5\DATA\111512\M1983.D\

Analysis Lot: 318698 Instrument Name: R-MS-05 Dilution Factor: 50

CAS No.	Analyte Name	Result	Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	830	D	50		
79-34-5	1,1,2,2-Tetrachloroethane	50	-	50		
79-00-5	1,1,2-Trichloroethane	50	U	50		_
75-34-3	1,1-Dichloroethane (1,1-DCA)	140	D	50		
75-35-4	1,1-Dichloroethene (1,1-DCE)	50		50		
95-50-1	1,2-Dichlorobenzene	50	U	50		
107-06-2	1,2-Dichloroethane	50	U	50		
78-87-5	1,2-Dichloropropane	50	U	50		
541-73-1	1,3-Dichlorobenzene	50	U	50	r	
106-46-7	1,4-Dichlorobenzene	50	U	50		
110-75-8	2-Chloroethyl Vinyl Ether	500	U	500		
67-64-1	Acetone	250	U	250		
71-43-2	Benzene	50	U	50		
75-27-4	Bromodichloromethane	50	U	50		
75-25-2	Bromoform	50	U	50		
74-83-9	Bromomethane	50	U	50		
56-23-5	Carbon Tetrachloride	50	U	50		
108-90-7	Chlorobenzene	50	U	50		
75-00-3	Chloroethane	50	U	50		
67-66-3	Chloroform	50	U	50		
74-87-3	Chloromethane	50	U	50		
124-48-1	Dibromochloromethane	50	U	50		
75-09-2	Methylene Chloride	50	U	50		
100-41-4	Ethylbenzene	50	U	50		
127-18-4	Tetrachloroethene (PCE)	2100	D	50		
108-88-3	Toluene	50	U	50		
79-01-6	Trichloroethene (TCE)	920	D	50		
75-69-4	Trichlorofluoromethane (CFC 11)	50	U	50		
75-01-4	Vinyl Chloride	50	U	50		
156-59-2	cis-1,2-Dichloroethene	5600	D	50		
10061-01-5	cis-1,3-Dichloropropene	50	U	50		
179601-23-1	m,p-Xylenes	100		100		
95-47-6	o-Xylene	50	U	50		
156-60-5	trans-1,2-Dichloroethene	50	U	50		
10061-02-6	trans-1,3-Dichloropropene	50		50		
	· · · · · · · ·					

		4 1	analytical Report				
Client:Ecology And Environment, IncorporatedProject:Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01Sample Matrix:Water						Service Request: Date Collected: Date Received: Date Analyzed:	11/ 2/12 1510 11/ 2/12
Sample Name: Lab Code: Run Type:	007-P3 R1207525-007 Dilution					Units: Basis:	
		Volatile Organ	nic Compound:	s by GC/MS			
Analytical Method: Data File Name:	624 I:\ACQUDATA\MSVOA	.5\DATA\11151	2\M1983.D\			Analysis Lot: Instrument Name: Dilution Factor:	R-MS-05
CAS No.	Analyte Name		Result Q	MRL		Note	
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
1,2-Dichloroethane-d- 4-Bromofluorobenzer Toluene-d8		104 103 100	79-123 79-119 83-120	11/16/12 07:44 11/16/12 07:44 11/16/12 07:44			

Now part of the ALS Group

Analytical Report

Client:	Ecology And Environment, Incorporated	Ş
Project:	Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01	
Sample Matrix:	Water	
Sample Name:	008-PW1	
Lab Code:	R1207525-008	

Service Request: R1207525 Date Collected: 11/2/12 1520 Date Received: 11/2/12

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	7.20	pH Units		1	NA	11/5/12 17:15	Н
Temperature of pH Analysis	SM 4500-H+ B	18.1	deg C		1	NA	11/5/12 17:15	Η

Client:	Ecology And Environment, Incorporated
Project:	Davis Howland Oil Co Site - 11/2012/002700.DC14.02.01.01
Sample Matrix:	Water

Service Request: R1207525 Date Collected: 11/2/12 1520 Date Received: 11/2/12 Date Analyzed: 11/15/12 17:21

Units: µg/L

Basis: NA

Sample Name:00Lab Code:R1

008-PW1 R1207525-008

Volatile Organic Compounds by GC/MS

Analytical Method:	624
Data File Name:	l:\ACQUDATA\MSVOA5\DATA\111512\M1961.D\

Analysis Lot: 318379 Instrument Name: R-MS-05 Dilution Factor: 5

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	5.0 U	5.0		
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0		
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	40	5.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	12	5.0		
95-50-1	1,2-Dichlorobenzene	5.0 U	5.0		
107-06-2	1,2-Dichloroethane	5.0 U	5.0		
78-87-5	1,2-Dichloropropane	5.0 U	5.0		
541-73-1	1,3-Dichlorobenzene	5.0 U	5.0		
106-46-7	1,4-Dichlorobenzene	5.0 U	5.0		
110-75-8	2-Chloroethyl Vinyl Ether	50 U	50		
67-64-1	Acetone	25 U	25		
71-43-2	Benzene	5.0 U	5.0		
75-27-4	Bromodichloromethane	5.0 U	5.0		
75-25-2	Bromoform	5.0 U	5.0		
74-83-9	Bromomethane	5.0 U	5.0		
56-23-5	Carbon Tetrachloride	5.0 U	5.0		
108-90-7	Chlorobenzene	5.0 U	5.0		
75-00-3	Chloroethane	5.0 U	5.0		
67-66-3	Chloroform	5.0 U	5.0		
74-87-3	Chloromethane	5.0 U	5.0		
124-48-1	Dibromochloromethane	5.0 U	5.0		· · · · ·
75-09-2	Methylene Chloride	5.0 U	5.0		
100-41-4	Ethylbenzene	5.0 U	5.0		
127-18-4	Tetrachloroethene (PCE)	5.0 U	5.0		
108-88-3	Toluene	5.0 U	5.0		
79-01-6	Trichloroethene (TCE)	46	5.0		
75-69-4	Trichlorofluoromethane (CFC 11)	5.0 U	5.0		
75-01-4	Vinyl Chloride	160	5.0		
156-59-2	cis-1,2-Dichloroethene	8 60	5.0		
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0		
179601-23-1	m,p-Xylenes	10 U	10		
95-47-6	o-Xylene	5.0 U	5.0		
156-60-5	trans-1,2-Dichloroethene	5.0 U	5.0	· · · ·	
10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Co Site - 11/2012/002700.DC14.02.01.01 Water	Service Request: Date Collected: Date Received: Date Analyzed:	11/2/12 1520 11/2/12
Sample Name:	008-PW1	Units:	
Lab Code:	RI207525-008	Basis:	
	Volatile Organic Compounds by GC/MS		
Analytical Method:	624	Analysis Lot:	
Data File Name:	I:\ACQUDATA\MSVOA5\DATA\111512\M1961.D\	Instrument Name:	

CAS No.	Analyte Name		Result Q	MRL	Note	
Surrogate Nan	ne	%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroeth	1ane-d4	114	79-123	11/15/12 17:21		
4-Bromofluorol	benzene	111	79- 119	11/15/12 17:21		
Toluene-d8		103	83-120	11/15/12 17:21		

Dilution Factor: 5

Now part of the ALS Group

Analytical Report

Client:	Ecology And Environment, Incorporated		
Project: Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01			
Sample Matrix:	Water	D	
Sample Name:	009-PW2		
Lab Code:	R1207525-009		

Service Request: R1207525 Date Collected: 11/2/12 1530 Date Received: 11/2/12

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	Dilutior Factor	Date Extracted	Date Analyzed	Note
pH	SM 4500-H+ B	7.15	pH Units		1	NA	11/5/12 17:15	Н
Temperature of pH Analysis	SM 4500-H+ B	18.0	deg C		1	NA	11/5/12 17:15	Н

Client:Ecology And Environment, IncorporatedProject:Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01Sample Matrix:Water

Service Request: R1207525 Date Collected: 11/2/12 1530 Date Received: 11/2/12 Date Analyzed: 11/15/12 16:03

Units: µg/L

Basis: NA

Sample Name: Lab Code:

009-PW2 R1207525-009

Volatile Organic Compounds by GC/MS

Analytical Method:	624
Data File Name:	I:\ACQUDATA\MSVOA5\DATA\111512\M1959.D\

Analysis Lot: 318379 Instrument Name: R-MS-05 Dilution Factor: 2

67-66-3 $74-87-3$ Chloroform 2.0 U 2.0 U 2.0 2.0 $124-48-1$ $100-41-4$ Dibromochloromethane 2.0 U 2.0 2.0 $100-41-4$ Ethylbenzene 2.0 U 2.0 $100-41-4$ Ethylbenzene 2.0 U 2.0 $127-18-4$ $108-88-3$ $7olueneTetrachloroethene (PCE)4.52.02.02.0108-88-37olueneToluene2.02.02.075-69-47richloroethene (TCE)192.02.075-69-47richlorofluoromethane (CFC 11)1002.02.02.0156-59-219-2cis-1,3-Dichloroethene2.02.02.010061-01-519-23-1m,p-Xylenes4.04.02.04.02.0156-60-5trans-1,2-Dichloroethene2.0U2.0$	CAS No.	Analyte Name	Result Q	MRL	Note	
79-00-5 1,1,2-Trichloroethane 2.0 U 2.0 75-34-3 1,1-Dichloroethane (1,1-DCA) 12 2.0 75-35-4 1,1-Dichloroethane (1,1-DCE) 2.7 2.0 95-30-1 1,2-Dichloroethane 2.0 U 2.0 107-06-2 1,2-Dichloropopane 2.0 U 2.0 217-31 1,3-Dichlorobenzene 2.0 U 2.0 106-46-7 1,4-Dichlorobenzene 2.0 U 2.0 106-46-7 1,4-Dichlorobenzene 2.0 U 2.0 110-75-8 2-Chloroethyl Vinjl Ether 2.0 U 2.0 75-32-2 Bromodichloromethane 2.0 U 2.0 75-35-2 Bromodefnorm 2.0 U 2.0 75-35-2 Bromodefnorm 2.0 U 2.0 75-35-2 Bromomethane 2.0 U 2.0 75-30-3 Chlorobenzene 2.0 U 2.0 74-487-3 Chloromethane 2.0 U 2.0 75-09-2 Methylene Chloride 2.0			2.6	2.0		
75-34-3 1,1-Dichloroethane (1,1-DCA) 12 2.0 75-35-4 1,1-Dichloroethane (1,1-DCE) 2.7 2.0 95-50-1 1,2-Dichloroethane (1,1-DCE) 2.7 2.0 95-50-1 1,2-Dichloroethane 2.0 U 2.0 107-06-2 1,2-Dichloroethane 2.0 U 2.0 78-87-5 1,2-Dichloroethane 2.0 U 2.0 106-46-7 1,4-Dichlorobenzene 2.0 U 2.0 106-46-7 1,4-Dichloroethane 2.0 U 2.0 110-75-8 2-Chloroethyl Vinyl Ether 20 U 2.0 75-27-4 Bernomodichloromethane 2.0 U 2.0 75-25-2 Bromodorm 2.0 U 2.0 75-25-2 Bromodorm 2.0 U 2.0 75-25-2 Bromodorm 2.0 U 2.0 75-00-3 Chloroethane 2.0 U 2.0 75-00-3 Chloroomethane 2.0 U 2.0 75-09-2 Methylene Chloride 2.0 U 2						
75-35-4 1,1-Dichloroethene (1,1-DCE) 2.7 2.0 95-50-1 1,2-Dichlorobenzene 2.0 U 2.0 107-06-2 1,2-Dichloroptane 2.0 U 2.0 541-73-1 1,3-Dichlorobenzene 2.0 U 2.0 106-46-7 1,4-Dichlorobenzene 2.0 U 2.0 110-75-8 2-Chloroethyl Vinyl Ether 20 U 2.0 67-64-1 Acetone 10 U 10 71-43-2 Benzene 2.0 U 2.0 75-27-4 Bromodichloromethane 2.0 U 2.0 75-25-5 Carbon Tetrachloride 2.0 U 2.0 75-25-4 Bromomethane 2.0 U 2.0 75-25-5 Carbon Tetrachloride 2.0 U 2.0 75-00-3 Chloroethane 2.0 U 2.0 74-87-3 Chloromethane 2.0 U 2.0 75-09-2 Methylen Chloride 2.0 U 2.0 75-09-2 Methylene Chloride 2.0 U <td>79-00-5</td> <td>1,1,2-Trichloroethane</td> <td>2.0 U</td> <td>2.0</td> <td></td> <td></td>	79-00-5	1,1,2-Trichloroethane	2.0 U	2.0		
95-50-1 1,2-Dichlorobenzene 2.0 U 2.0 107-06-2 1,2-Dichloroptane 2.0 U 2.0 78-87-5 1,2-Dichloroptane 2.0 U 2.0 106-46-7 1,4-Dichlorobenzene 2.0 U 2.0 106-46-7 1,4-Dichlorobenzene 2.0 U 2.0 106-46-7 1,4-Dichlorobenzene 2.0 U 2.0 107-75-8 2-Chloroethyl Vinyl Ether 20 U 20 71-43-2 Benzene 7.0 U 2.0 75-27-4 Bromodichloromethane 2.0 U 2.0 75-27-4 Bromodichloromethane 2.0 U 2.0 75-27-5 Berbon Tetrachloride 2.0 U 2.0 75-27-4 Bromodorthane 2.0 U 2.0 75-27-5 Bromoform 2.0 U 2.0 74-83-9 Bromomethane 2.0 U 2.0 108-90-7 Chlorobenzene 2.0 U 2.0 75-03 Chloromethane 2.0 U 2.0 74-87-3 Chloromethane 2.0 U 2.0 75-09-2 Methylene Chloride 2.0 U	75-34-3	1,1-Dichloroethane (1,1-DCA)	12	2.0		
107-06-2 1,2-Dichloroethane 2.0 U 2.0 78-87-5 1,2-Dichloropopane 2.0 U 2.0 541-73-1 1,3-Dichlorobenzene 2.0 U 2.0 106-46-7 1,4-Dichlorobenzene 2.0 U 2.0 110-75-8 2-Chloroethyl Vinyl Ether 2.0 U 2.0 67-64-1 Acetone 10 U 10 71-43-2 Benzene 2.0 U 2.0 75-27-4 Bromodichloromethane 2.0 U 2.0 75-25-5 Bromoform 2.0 U 2.0 74-83-9 Bromomethane 2.0 U 2.0 75-07-3 Chloroethane 2.0 U 2.0 75-08-3 Chloroethane 2.0 U 2.0 74-87-3 Chloromethane 2.0 U 2.0 75-09-2 Methylene Chloride 2.0 U 2.0 124-48-1 Dibromochloromethane 2.0 U 2.0 127-18-4 Tetrachloroethene (CE) 4.5 2.0 <td></td> <td>1,1-Dichloroethene (1,1-DCE)</td> <td>2.7</td> <td>2.0</td> <td></td> <td></td>		1,1-Dichloroethene (1,1-DCE)	2.7	2.0		
78-87-5 1,2-Dichloropropane 2.0 U 2.0 541-73-1 1,3-Dichlorobenzene 2.0 U 2.0 106-46-7 1,4-Dichlorobenzene 2.0 U 2.0 110-75-8 2-Chloroethyl Vinyl Ether 20 U 20 67-64-1 Acetone 10 U 10 71-43-2 Benzene 2.0 U 2.0 75-27-4 Bromodichloromethane 2.0 U 2.0 75-25-2 Bromodemhane 2.0 U 2.0 74-83-9 Bromomethane 2.0 U 2.0 75-07-3 Chloroethane 2.0 U 2.0 74-87-3 Chloroethane 2.0 U 2.0 74-87-3 Chloroethane 2.0 U 2.0 75-09-2 Methylene Chloride 2.0 U 2.0 124-48-1 Dibromochloromethane 2.0 U 2.0 124-48-1 Dibromochloromethane 2.0 U 2.0 124-148-1 Dibromochloromethane 2.0 U <td>95-50-1</td> <td>1,2-Dichlorobenzene</td> <td>2.0 U</td> <td>2.0</td> <td></td> <td></td>	95-50-1	1,2-Dichlorobenzene	2.0 U	2.0		
541-73-1 1,3-Dichlorobenzene 2.0 U 2.0 $106-46-7$ 1,4-Dichlorobenzene 2.0 U 2.0 $110-75-8$ 2-Chloroethyl Vinyl Ether 20 U 20 $7-45-1$ Acetone 10 U 10 $71-43-2$ Benzene 2.0 U 2.0 $75-27-4$ Bromodichloromethane 2.0 U 2.0 $75-27-4$ Bromodiethane 2.0 U 2.0 $74-83-9$ Bromomethane 2.0 U 2.0 $74-83-9$ Bromomethane 2.0 U 2.0 $75-0.3$ Chlorobenzene 2.0 U 2.0 $74-87-3$ Chloronethane 2.0 U 2.0 $74-87-3$ Chloromethane 2.0 U 2.0 $75-09-2$ Methylene Chloride 2.0 U 2.0 $100-41-4$ Ethylbenzene 2.0 U 2.0 $127-18-4$ Tetrachloroethene (PCE) 4.5 <td>107-06-2</td> <td>1,2-Dichloroethane</td> <td>2.0 U</td> <td>2.0</td> <td></td> <td></td>	107-06-2	1,2-Dichloroethane	2.0 U	2.0		
106-46-7 1,4-Dichlorobenzene 2.0 U 2.0 110-75-8 2-Chloroethyl Vinyl Ether 20 U 20 67-64-1 Acetone 10 U 10 71-43-2 Benzene 2.0 U 2.0 75-27-4 Bromodichloromethane 2.0 U 2.0 75-25-2 Bromoform 2.0 U 2.0 74-83-9 Bromomethane 2.0 U 2.0 56-23-5 Carbon Tetrachloride 2.0 U 2.0 75-06-3 Chloroethane 2.0 U 2.0 74-87-3 Chloroethane 2.0 U 2.0 74-87-3 Chloromethane 2.0 U 2.0 124-48-1 Dibromochloromethane 2.0 U 2.0 124-48-1 Dibromochloromethane 2.0 U 2.0 124-48-1 Dibromochloromethane 2.0 U 2.0 127-18-4 Tetrachloroethene (PCE) 4.5 2.0 2.0 127-18-4 Tetrachloroethene (CEC) 19	78-87-5	1,2-Dichloropropane	2.0 U	2.0		
110-75-82-Chloroethyl Vinyl Ether20U20 $67-64-1$ Acetone10U10 $71-43-2$ Benzene2.0U2.0 $75-27-4$ Bromodichloromethane2.0U2.0 $75-25-2$ Bromoform2.0U2.0 $74-83-9$ Bromomethane2.0U2.0 $56-23-5$ Carbon Tetrachloride2.0U2.0 $108-90-7$ Chlorobenzene2.0U2.0 $75-06-3$ Chlorofbanzene2.0U2.0 $74-87-3$ Chloroform2.0U2.0 $74-87-3$ Chloromethane2.0U2.0 $74-87-3$ Chloromethane2.0U2.0 $124-48-1$ Dibromochloromethane2.0U2.0 $100-41-4$ Ethylbenzene2.0U2.0 $127-18-4$ Tetrachloroethene (PCE) 4.5 2.0 $128-88-3$ Toluene2.0U2.0 $128-88-3$ Toluene2.0U2.0 $126-60-5$ trichloroethene (CFC 11)2.0U2.0 $156-60-5$ trans-1,2-Dichloroethene2.0U2.0 $156-60-5$ trans-1,2-Dichloroethene2.0U2.0 $156-60-5$ trans-1,2-Dichloroethene2.0U2.0 $156-60-5$ trans-1,2-Dichloroethene2.0U2.0 $156-60-5$ trans-1,2-Dichloroethene2.0U2.0 $156-60-5$ trans-1,2-Dichloroethene<	541-73-1	1,3-Dichlorobenzene	2.0 U	2.0		
110-75-82-Chloroethyl Vinyl Ether20U20 $67-64-1$ Acetone10U10 $71-43-2$ Benzene2.0U2.0 $75-27-4$ Bromodichloromethane2.0U2.0 $75-25-2$ Bromonethane2.0U2.0 $74-83-9$ Bromomethane2.0U2.0 $56-23-5$ Carbon Tetrachloride2.0U2.0 $108-90-7$ Chloroethane2.0U2.0 $75-03-3$ Chloroethane2.0U2.0 $74-87-3$ Chloroform2.0U2.0 $74-87-3$ Chloromethane2.0U2.0 $74-87-3$ Chloroethane2.0U2.0 $74-87-3$ Chloromethane2.0U2.0 $104-14$ Ethylene Chloride2.0U2.0 $10-41-4$ Ethylene for ethene (PCE) 4.5 2.0 $108-88-3$ Toluene2.0U2.0 $75-69-4$ Trichloroethene (TCE) 19 2.0 $75-69-4$ Trichloroethene (CFC 11)2.0U2.0 $1064-01-5$ cis-1,3-Dichloroethene 2.0 U2.0 $1066-01-23-1$ m,p-Xylenes 4.0 4.0 $95-47-6$ o-Xylene 2.0 U 2.0 $156-60-5$ trans-1,2-Dichloroethene 2.0 U 2.0	106-46-7	1,4-Dichlorobenzene	2.0 U	2.0		
71-43-2Benzene2.0U2.075-27-4Bromodichloromethane2.0U2.075-25-2Bromoform2.0U2.074-83-9Bromomethane2.0U2.056-23-5Carbon Tetrachloride2.0U2.056-30-7Chlorobenzene2.0U2.075-00-3Chloroethane2.0U2.067-66-3Chloromethane2.0U2.074-87-3Chloromethane2.0U2.074-87-3Chloromethane2.0U2.075-09-2Methylene Chloride2.0U2.0100-41-4Ethylbenzene2.0U2.0127-18-4Tetrachloroethene (PCE)4.52.0128-83-3Toluene2.0U2.075-69-4Trichloroethene (TCE)192.075-69-4Trichlorofluoromethane (CFC 11)2.0U126-59-2cis-1,3-Dichloropropene2.0U126-60-5trans-1,2-Dichloroethene2.0U126-60-5trans-1,2-Dichloroethene2.0U	110-75-8	2-Chloroethyl Vinyl Ether				
75-27-4Bromodichloromethane2.0U2.075-25-2Bromoform2.0U2.074-83-9Bromomethane2.0U2.056-23-5Carbon Tetrachloride2.0U2.0108-90-7Chlorobenzene2.0U2.075-00-3Chloroothane2.0U2.067-66-3Chloroform2.0U2.074-87-3Chloromethane2.0U2.0124-48-1Dibromochloromethane2.0U2.0124-48-1Dibromochloromethane2.0U2.0124-48-1Dibromochloromethane2.0U2.0124-48-1Dibromochloromethane2.0U2.0127-18-4Tetrachloroethene (PCE) 4.5 2.0108-88-3Toluene2.0U2.075-69-4Trichloroethene (TCE) 19 2.075-69-4Trichlorofluoromethane 2.0 U2.0136-59-2cis-1,2-Dichloroethene 200 2.010061-01-5cis-1,3-Dichloroppene2.0U2.0179601-23-1m,p-Xylenes4.0U4.095-47-6o-Xylene2.0U2.0156-60-5trans-1,2-Dichloroethene2.0U2.0	67-64-1	Acetone	`10 U	10		
75-27-4Bromodichloromethane2.0U2.075-25-2Bromoform2.0U2.074-83-9Bromomethane2.0U2.056-23-5Carbon Tetrachloride2.0U2.0108-90-7Chlorobenzene2.0U2.075-00-3Chloroethane2.0U2.067-66-3Chloroform2.0U2.074-87-3Chloromethane2.0U2.0124-48-1Dibromochloromethane2.0U2.0124-48-1Dibromochloromethane2.0U2.0124-48-1Dibromochloromethane2.0U2.0124-48-1Dibromochloromethane2.0U2.0124-48-1Dibromochloromethane2.0U2.0124-48-1Dibromochloromethane2.0U2.0127-18-4Tetrachloroethene (PCE) 4.5 2.0127-18-4Tetrachloroethene (PCE) 19 2.075-69-4Trichlorofhurormethane (CFC 11)2.0U75-01-4Vinyl Chloride 9.2 2.0136-59-2cis-1,3-Dichlorooppene2.0U19601-23-1m,p-Xylenes4.0U19601-23-1m,p-Xylenes4.0U95-47-6o-Xylene2.0U2.0156-60-5trans-1,2-Dichloroethene2.0U2.0	71-43-2	Benzene	2.0 U	2.0		•
75-25-2Bromoform 2.0 U 2.0 $74-83-9$ Bromomethane 2.0 U 2.0 $56-23-5$ Carbon Tetrachloride 2.0 U 2.0 $108-90-7$ Chlorobenzene 2.0 U 2.0 $75-00-3$ Chloroethane 2.0 U 2.0 $67-66-3$ Chloroform 2.0 U 2.0 $74-87-3$ Chloromethane 2.0 U 2.0 $124-48-1$ Dibromochloromethane 2.0 U 2.0 $124-48-1$ Dibromochloromethane 2.0 U 2.0 $100-41-4$ Ethylbenzene 2.0 U 2.0 $100-41-4$ Ethylbenzene 2.0 U 2.0 $127-18-4$ Tetrachloroethene (PCE) 4.5 2.0 $108-88-3$ Toluene 2.0 U 2.0 $75-69-4$ Trichlorofluoromethane (CFC 11) 2.0 U 2.0 $75-09-2$ cis-1,2-Dichloroethene 200 2.0 $156-59-2$ cis-1,3-Dichloropropene 2.0 U 2.0 $19601-23-1$ m,p-Xylenes 4.0 U 4.0 $95-47-6$ o -Xylene 2.0 U 2.0 $156-60-5$ trans-1,2-Dichloroethene 2.0 U 2.0	75-27-4	Bromodichloromethane				
56-23-5 Carbon Tetrachloride 2.0 U 2.0 $108-90-7$ Chlorobenzene 2.0 U 2.0 $75-00-3$ Chlorothane 2.0 U 2.0 $67-66-3$ Chlorothane 2.0 U 2.0 $74-87-3$ Chloromethane 2.0 U 2.0 $124-48-1$ Dibromochloromethane 2.0 U 2.0 $100-41-4$ Ethylben Chloride 2.0 U 2.0 $100-41-4$ Ethylbenzene 2.0 U 2.0 $100-41-4$ Ethylonzene 2.0 U 2.0 $100-41-4$ Ethylonzene 2.0 U 2.0 $100-41-4$ Ethylonzene 2.0 U 2.0 $107-18-4$ Tetrachloroethene (PCE) 4.5 2.0 2.0 $198-88-3$ Toluene 2.0 U 2.0 $75-69-4$ Trichlorofluoromethane (CFC 11) 2.0 U 2.0 $156-59-2$ cis-1,2-Dichloroethene 2.0 U 2.0 $10061-01-5$ cis-1,3-Dich	75-25-2	Bromoform	2.0 U	2.0		
56-23-5Carbon Tetrachloride2.0U2.0 $108-90-7$ Chlorobenzene2.0U2.0 $75-00-3$ Chlorothane2.0U2.0 $67-66-3$ Chloroform2.0U2.0 $74-87-3$ Chloromethane2.0U2.0 $124-48-1$ Dibromochloromethane2.0U2.0 $124-48-1$ Dibromochloromethane2.0U2.0 $100-41-4$ Ethylben Chloride2.0U2.0 $100-41-4$ Ethylbenzene2.0U2.0 $127-18-4$ Tetrachloroethene (PCE) 4.5 2.0 $108-88-3$ Toluene2.0U2.0 $75-69-4$ Trichlorofluoromethane (CFC 11)2.0U2.0 $75-69-4$ Trichlorofluoromethane (CFC 11)2.0U2.0 $156-59-2$ cis-1,2-Dichloroptene2.0U2.0 $10061-01-5$ cis-1,3-Dichloroptene2.0U2.0 $179601-23-1$ m,p-Xylenes4.0U4.0 $95-47-6$ o-Xylene2.0U2.0 $156-60-5$ trans-1,2-Dichloroethene2.0U2.0	74-83-9	Bromomethane	2.0 U	2.0		
75-00-3 Chloroethane 2.0 U 2.0 75-00-3 Chloroform 2.0 U 2.0 74-87-3 Chloromethane 2.0 U 2.0 124-48-1 Dibromochloromethane 2.0 U 2.0 124-48-1 Dibromochloromethane 2.0 U 2.0 124-48-1 Dibromochloromethane 2.0 U 2.0 100-41-4 Ethylbenzene 2.0 U 2.0 100-41-4 Ethylbenzene 2.0 U 2.0 127-18-4 Tetrachloroethene (PCE) 4.5 2.0 108-88-3 Toluene 2.0 U 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 156-59-2 cis-1,2-Dichloroethene 200 2.0 100 10061-01-5 cis-1,3-Dichloropropene 2.0 U 2.0 179601-23-1 m,p-Xylenes 4.0 U 4.0 95-47-6 95-47-6 o-Xylen	56-23-5	Carbon Tetrachloride				
67-66-3Chloroform 2.0 U 2.0 $74-87-3$ Chloromethane 2.0 U 2.0 $124-48-1$ Dibromochloromethane 2.0 U 2.0 $124-48-1$ Dibromochloromethane 2.0 U 2.0 $100-41-4$ Ethylbenzene 2.0 U 2.0 $100-41-4$ Ethylbenzene 2.0 U 2.0 $127-18-4$ Tetrachloroethene (PCE) 4.5 2.0 $127-18-4$ Tetrachloroethene (PCE) 4.5 2.0 $108-88-3$ Toluene 2.0 U 2.0 $79-01-6$ Trichloroethene (TCE) 19 2.0 $75-69-4$ Trichlorofluoromethane (CFC 11) 2.0 U 2.0 $75-69-4$ Trichlorofluoromethane (CFC 11) 2.0 U 2.0 $156-59-2$ cis-1,2-Dichloroethene 200 2.0 2.0 $10061-01-5$ cis-1,3-Dichloropropene 2.0 U 2.0 $179601-23-1$ m,p-Xylenes 4.0 U 4.0 $95-47-6$ $o-Xylene$ 2.0 U 2.0 $156-60-5$ trans-1,2-Dichloroethene 2.0 U 2.0	108-90-7	Chlorobenzene	2.0 U	2.0		
74-87-3 Chloromethane 2.0 U 2.0 124-48-1 Dibromochloromethane 2.0 U 2.0 75-09-2 Methylene Chloride 2.0 U 2.0 100-41-4 Ethylbenzene 2.0 U 2.0 127-18-4 Tetrachloroethene (PCE) 4.5 2.0 108-88-3 Toluene 2.0 U 2.0 75-69-4 Trichloroethene (TCE) 19 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 156-59-2 cis-1,2-Dichloroethene 200 2.0 10061-01-5 10061-01-5 cis-1,3-Dichloropropene 2.0 U 2.0 179601-23-1 m,p-Xylenes 4.0 U 4.0 95-47-6 o-Xylene 2.0 U 2.0 156-60-5 trans-1,2-Dichloroethene 2.0 U 2.0 <td>75-00-3</td> <td>Chloroethane</td> <td>2.0 U</td> <td>2.0</td> <td></td> <td></td>	75-00-3	Chloroethane	2.0 U	2.0		
124-48-1 Dibromochloromethane 2.0 U 2.0 75-09-2 Methylene Chloride 2.0 U 2.0 100-41-4 Ethylbenzene 2.0 U 2.0 127-18-4 Tetrachloroethene (PCE) 4.5 2.0 108-88-3 Toluene 2.0 U 2.0 75-69-4 Trichloroethene (TCE) 19 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 156-59-2 cis-1,2-Dichloroethene 200 2.0 10061-01-5 10061-01-5 cis-1,3-Dichloroptopene 2.0 U 2.0 179601-23-1 m,p-Xylenes 4.0 U 4.0 95-47-6 o-Xylene 2.0 U 2.0 156-60-5 trans-1,2-Dichloroethene 2.0 U 2.0	67-66-3	Chloroform	2.0 U			
75-09-2 Methylene Chloride 2.0 U 2.0 100-41-4 Ethylbenzene 2.0 U 2.0 127-18-4 Tetrachloroethene (PCE) 4.5 2.0 108-88-3 Toluene 2.0 U 2.0 79-01-6 Trichloroethene (TCE) 19 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 75-69-2 cis-1,2-Dichloroethene 200 2.0 2.0 10061-01-5 cis-1,3-Dichloropropene 2.0 U 2.0 10061-01-5 cis-1,3-Dichloropropene 2.0 U 2.0 95-47-6 o-Xylene 2.0 U 2.0 156-60-5 trans-1,2-Dichloroethene 2.0 U 2.0	74-87-3	Chloromethane	2.0 U	2.0		
100-41-4 Ethylbenzene 2.0 U 2.0 127-18-4 Tetrachloroethene (PCE) 4.5 2.0 108-88-3 Toluene 2.0 U 2.0 79-01-6 Trichloroethene (TCE) 19 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 75-69-2 cis-1,2-Dichloroethene 200 2.0 1061-01-5 cis-1,3-Dichloropropene 2.0 U 2.0 10061-01-5 cis-1,3-Dichloropropene 2.0 U 2.0 179601-23-1 m,p-Xylenes 4.0 U 4.0 95-47-6 o-Xylene 2.0 U 2.0 156-60-5 trans-1,2-Dichloroethene 2.0 U 2.0	124-48-1	Dibromochloromethane	2.0 U	2.0	· · · ·	
127-18-4 Tetrachloroethene (PCE) 4.5 2.0 108-88-3 Toluene 2.0 U 2.0 79-01-6 Trichloroethene (TCE) 19 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 75-01-4 Vinyl Chloride 9.2 2.0 100 100 156-59-2 cis-1,2-Dichloroethene 200 2.0 100	75-09-2	Methylene Chloride	2.0 U	2.0		
108-88-3 Toluene 2.0 U 2.0 79-01-6 Trichloroethene (TCE) 19 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 75-01-4 Vinyl Chloride 9.2 2.0 156-59-2 cis-1,2-Dichloroethene 200 2.0 10061-01-5 cis-1,3-Dichloropropene 2.0 U 2.0 179601-23-1 m,p-Xylenes 4.0 U 4.0 95-47-6 o-Xylene 2.0 U 2.0 156-60-5 trans-1,2-Dichloroethene 2.0 U 2.0	100-41-4	Ethylbenzene	2.0 U	2.0		
108-88-3 Toluene 2.0 U 2.0 79-01-6 Trichloroethene (TCE) 19 2.0 75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 75-01-4 Vinyl Chloride 9.2 2.0 156-59-2 cis-1,2-Dichloroethene 200 2.0 10061-01-5 cis-1,3-Dichloropropene 2.0 2.0 179601-23-1 m,p-Xylenes 4.0 U 4.0 95-47-6 o-Xylene 2.0 U 2.0 156-60-5 trans-1,2-Dichloroethene 2.0 U 2.0	127-18-4	Tetrachloroethene (PCE)	4.5	2.0		<u></u>
75-69-4 Trichlorofluoromethane (CFC 11) 2.0 U 2.0 75-01-4 Vinyl Chloride 9.2 2.0 156-59-2 cis-1,2-Dichloroethene 200 2.0 10061-01-5 cis-1,3-Dichloropropene 2.0 U 2.0 179601-23-1 m,p-Xylenes 4.0 U 4.0 95-47-6 o-Xylene 2.0 U 2.0 156-60-5 trans-1,2-Dichloroethene 2.0 U 2.0	108-88-3		2.0 U	2.0		
75-01-4 Vinyl Chloride 9.2 2.0 156-59-2 cis-1,2-Dichloroethene 200 2.0 10061-01-5 cis-1,3-Dichloropropene 2.0 2.0 179601-23-1 m,p-Xylenes 4.0 4.0 95-47-6 o-Xylene 2.0 2.0 156-60-5 trans-1,2-Dichloroethene 2.0 U	79-01-6	Trichloroethene (TCE)	19	2.0		
75-01-4 Vinyl Chloride 9.2 2.0 156-59-2 cis-1,2-Dichloroethene 200 2.0 10061-01-5 cis-1,3-Dichloropropene 2.0 2.0 179601-23-1 m,p-Xylenes 4.0 U 4.0 95-47-6 o-Xylene 2.0 U 2.0 156-60-5 trans-1,2-Dichloroethene 2.0 U 2.0	75-69-4	Trichlorofluoromethane (CFC 11)	2.0 U	2.0		
10061-01-5 cis-1,3-Dichloropropene 2.0 U 2.0 179601-23-1 m,p-Xylenes 4.0 U 4.0 95-47-6 o-Xylene 2.0 U 2.0 156-60-5 trans-1,2-Dichloroethene 2.0 U 2.0	75-01-4	Vinyl Chloride	9.2			
179601-23-1 m,p-Xylenes 4.0 U 4.0 95-47-6 o-Xylene 2.0 U 2.0 156-60-5 trans-1,2-Dichloroethene 2.0 U 2.0	156-59-2	cis-1,2-Dichloroethene	200	2.0		
179601-23-1 m,p-Xylenes 4.0 U 4.0 95-47-6 o-Xylene 2.0 U 2.0 156-60-5 trans-1,2-Dichloroethene 2.0 U 2.0	10061-01-5	cis-1,3-Dichloropropene	2.0 U	2.0		
95-47-6 o-Xylene 2.0 U 2.0 156-60-5 trans-1,2-Dichloroethene 2.0 U 2.0	179601-23-1					
),	95-47-6	o-Xylene	2.0 U			
)	156-60-5	trans-1,2-Dichloroethene	2.0 U	2.0		
	10061-02-6	trans-1,3-Dichloropropene	2.0 U	2.0		

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Co Site - 11/2012/002700.DC14.02.01.01 Water	Service Request: Date Collected: Date Received: Date Analyzed:	11/ 2/12 1530 11/ 2/12
Sample Name: Lab Code:	009-PW2 R1207525-009	Units: Basis:	
	Volatile Organic Compounds by GC/MS		

Analytical Method: 624 Data File Name: I:\ACQUDATA\MSVOA		MSVOA5\DATA\111512\M1959.D\			Analysis Lot: 31 Instrument Name: R- Dilution Factor: 2	
CAS No.	Analyte Name		Result Q	MRL	Note	
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q	
1,2-Dichloroethane-c	14	I14	79-123	11/15/12 16:03		··· <u>_</u>
4-Bromofluorobenze	ne	104	79- 119	11/15/12 16:03		
Toluene-d8		102	83-120	11/15/12 16:03		

Client:	Ecology And Environment, Incorporated	Service Request:	R1207
Project:	Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
		Date Analyzed:	11/12/

Sample Name: Method Blank Lab Code: RQ1213908-04

Volatile Organic Compounds by GC/MS

Analytical Method:	624
Data File Name:	1:\ACQUDATA\MSVOA5\DATA\111112\M1898.D\

7525 2/12 18:28 Units: µg/L Basis: NA

Analysis Lot: 318045 Instrument Name: R-MS-05

Data File Maine:	I:WCQUDATAWSVOAS/DATA(I)	Dilution Factor: 1		
CAS No.	Analyte Name	Result Q	MRL	Note
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0	
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0	
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	·
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0	
107-06-2	1,2-Dichloroethane	1.0 U	1.0	
78-87-5	1,2-Dichloropropane	1.0 U	1.0	
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0	
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	
110-75-8	2-Chloroethyl Vinyl Ether	10 U	10	
67-64-1	Acetone	5.0 U	5.0	
71-43-2	Benzene	1.0 U	1.0	
75-27-4	Bromodichloromethane	1.0 U	1.0	
75-25-2	Bromoform	1.0 U	1.0	
74-83-9	Bromomethane	1.0 U	1.0	
56-23-5	Carbon Tetrachloride	1.0 U	1.0	
108-90-7	Chlorobenzene	1.0 U	1.0	
75-00-3	Chloroethane	1.0 U	1.0	
67-66-3	Chloroform	1.0 U	1.0	
74-87-3	Chloromethane	1.0 U	1.0	
124-48-1	Dibromochloromethane	1.0 U	1.0	
75-09-2	Methylene Chloride	1.0 U	1.0	
100-41-4	Ethylbenzene	1.0 U	1.0	
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0	
108-88-3	Toluene	1.0 U	1.0	
79-01-6	Trichloroethene (TCE)	1.0 U	1.0	
75-69-4	Trichlorofluoromethane (CFC 11)	· 1.0 U	1.0	
75-01-4	Vinyl Chloride	1.0 U	1.0	
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0	
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0	
179601-23-1	m,p-Xylenes	2.0 U	2.0	
95-47-6	o-Xylene	1.0 U	1.0	
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0	

Client: Project: Sample Matrix:	Ecology And Environment, Incorporated Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01 ix: Water					Service Request: Date Collected: Date Received: Date Analyzed:	NA NA
Sample Name:Method BlankLab Code:RQ1213908-04						Units: Basis:	
		Volatile Organ	nic Compounds	s by GC/MS			
Analytical Method: Data File Name:	624 I:\ACQUDATA\MSVOA	5\DATA\11111	2\M1898.D\			Analysis Lot: Instrument Name: Dilution Factor:	R-MS-05
CAS No.	Analyte Name		Result Q	MRL		Note	
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
1,2-Dichloroethane-d 4-Bromofluorobenzer		107 100	79-123 79-119	11/12/12 18:28 11/12/12 18:28			

83-120

11/12/12 18:28

103

Toluene-d8

Client:	Ecology And Environment, Incorporated	Service Request:	R1207525
Project:	Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01	Date Collected:	
Sample Matrix:	Water	Date Received:	
		Date Analyzed:	11/15/12 10:51
Sample Name:	Method Blank	Units:	μg/L
Lab Code:	RQ1213994-04	Basis:	

Volatile Organic Compounds by GC/MS

Analytical Method:	624
Data File Name:	I:\ACQUDATA\MSVOA5\DATA\111512\M1951.D\

Analysis Lot: 318379 Instrument Name: R-MS-05

Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	Note	
71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0		
79-34-5	1,1,2,2-Tetrachloroethane	1.0 U	1.0		
79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0		
75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0		
95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
107-06-2	1,2-Dichloroethane	1.0 U	1.0	· · · · · · · · · · · · · · · · · · ·	
78-87-5	1,2-Dichloropropane	1.0 U	1.0		
541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
106-46-7	1,4-Dichlorobenzene	1.0 U	1.0	· · · · · · · · · · · · · · · · · · ·	· · · ·
110-75-8	2-Chloroethyl Vinyl Ether	10 U	10		
67-64- 1	Acetone	5.0 U	5.0		
71-43-2	Benzene	1.0 U	1.0		
75-27-4	Bromodichloromethane	1.0 U	1.0		
75-25-2	Bromoform	1.0 U	1.0		
74-83-9	Bromomethane	1.0 U	1.0		
56-23-5	Carbon Tetrachloride	1.0 U	1.0		
108-90-7	Chlorobenzene	1.0 U	1.0		
75-00-3	Chloroethane	1.0 U	1.0		
67-66-3	Chloroform	1.0 U	1.0		
74-87-3	Chloromethane	1.0 U	1.0		
124-48-1	Dibromochloromethane	1.0 U	1.0		
75-09-2	Methylene Chloride	1.0 U	1.0		
100-41-4	Ethylbenzene	1.0 U	1.0		
127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0		
108-88-3	Toluene	1.0 U	1.0		
79-01-6	Trichloroethene (TCE)	1.0 U	1.0		
75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
75-01-4	Vinyl Chloride	1.0 U	1.0		
156-59-2	cis-1,2-Dichloroethene	1.0 U	1.0		
10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
179601-23-1	m,p-Xylenes	2.0 U	2.0		
95-47-6	o-Xylene	1.0 U	1.0		
156-60-5	trans-1,2-Dichloroethene	1.0 U	1.0	·····	<u> </u>
10061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		

		л	патупсат Кероп				
Client:Ecology And Environment, IncorporatedProject:Davis Howland Oil Co Site - 11/2012/002700.DC14.02.01.01Sample Matrix:Water						Service Request: Date Collected: Date Received: Date Analyzed:	NA NA
Sample Name: Lab Code:	Method Blank RQ1213994-04					Units: Basis:	
		Volatile Orgar	ic Compounds	s by GC/MS			
Analytical Method: Data File Name:	624 I:\ACQUDATA\MSVOA	5\DATA\11151:	2\M1951.D\			Analysis Lot: Instrument Name: Dilution Factor:	R-MS-05
CAS No.	Analyte Name		Result Q	MRL		Note	
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
1,2-Dichloroethane-d 4-Bromofluorobenze Toluene-d8		120 110 105	79-123 79-119 83-120	11/15/12 10:51 11/15/12 10:51 11/15/12 10:51			

Client:	Ecology And Environment, Incorporated
Project:	Davis Howland Oil Co Site - 11/2012/002700.DC14.02.01.01
Sample Matrix:	Water

Service Request: R1207525 Date Collected: NA Date Received: NA Date Analyzed: 11/15/12 22:35 Units: µg/L Basis: NA

Sample Name:Method BlankLab Code:RQ1214082-04

Volatile Organic Compounds by GC/MS

Analytical Method:	624
Data File Name:	I:\ACQUDATA\MSVOA5\DATA\111512\M1969.D\

Analysis Lot: 318698 Instrument Name: R-MS-05 Dilution Factor: 1

79-34-5 1,1,2,2-Tetrachloroethane 1.0 U 1.0 79-00-5 1,1,2-Trichloroethane 1.0 U 1.0 75-34-3 1,1-Dichloroethane (1,1-DCA) 1.0 U 1.0 75-35-4 1,1-Dichloroethane (1,1-DCA) 1.0 U 1.0 95-50-1 1,2-Dichloroethane (1,1-DCE) 1.0 U 1.0 95-50-1 1,2-Dichloroethane 1.0 U 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 106-46-7 1,4-Dichloroethane 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 1.0 U 1.0 75-25-2 Bromodichloromethane 1.0 U 1.0 75-25-3 Bromomethane 1.0 U 1.0 75-0-3 Chloroethane 1.0 U 1.0 75-60-3 Chloroethane 1.0 U 1.0 75-60-3 Chloroethane 1.0 U 1.0 75-60-3	CAS No.	Analyte Name	Result Q	MRL	Note	
79-00-5 1,1,2-Trichloroethane 1.0 1.0 75-34-3 1,1-Dichloroethane (1,1-DCA) 1.0 1.0 75-35-4 1,1-Dichloroethane (1,1-DCE) 1.0 1.0 95-50-1 1,2-Dichloroethane 1.0 U 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 78-87-5 1,2-Dichloropropane 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 1.0 75-64-1 Acetone 5.0 U 5.0 75-74 Bromodichloromethane 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromodiethane 1.0 U 1.0 75-64-1 Acetone 1.0 U 1.0 75-63-2 Bromodiethane 1.0 U 1.0 75-27-4 Bromodiethane 1.0 U 1.0 76-63 Chlorobenzene 1.0 U 1.0 </td <td>71-55-6</td> <td>1,1,1-Trichloroethane (TCA)</td> <td>1.0 U</td> <td>1.0</td> <td>·····</td> <td></td>	71-55-6	1,1,1-Trichloroethane (TCA)	1.0 U	1.0	·····	
75-34-3 1,1-Dichloroethane (1,1-DCA) 1.0 1.0 75-35-4 1,1-Dichloroethane (1,1-DCE) 1.0 1.0 95-50-1 1,2-Dichloroethane (1,1-DCE) 1.0 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 78-87-5 1,2-Dichloroethane 1.0 U 1.0 78-87-5 1,2-Dichloroethane 1.0 U 1.0 106-46-7 1,4-Dichloroethane 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 1.0 75-27-4 Bernomothoromethane 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 76-63 Chloroethane 1.0 U 1.0 76-63 Chloroethane 1.0 U 1.0 76-63 Chloronethane 1.0	79-34-5		1.0 U	1.0		
75-35-4 1,1-Dichloroethere (1,1-DCE) 1.0 1.0 95-50-1 1,2-Dichlorobenzene 1.0 U 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 875-3 1,2-Dichloroethane 1.0 U 1.0 541-73-1 1,3-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 1.0 75-37-4 Benzene 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 75-63-5 Catbon Tetachloride 1.0 U 1.0 76-63 Chloroethane 1.0 U 1.0 76-64-3 Chloroform 1.0 U 1.0 76-63 Chloroformethane 1.0 U 1.0 <	79-00-5	1,1,2-Trichloroethane	1.0 U	1.0		
95-50-1 1,2-Dichlorobenzene 1.0 U 1.0 107-06-2 1,2-Dichloroethane 1.0 U 1.0 78-87-5 1,2-Dichloropropane 1.0 U 1.0 78-87-5 1,2-Dichlorobenzene 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 1.0 57-64-1 Acetone 5.0 U 5.0 71-43-2 Benzene 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromofern 1.0 U 1.0 76-23 Chlorobenzene 1.0 U 1.0 75-0-3 Chloroethane 1.0 U 1.0 75-66-3 Chloromethane 1.0 U 1.0 74-88-9 Dibromethane 1.0 U 1.0 75-06-3 Chloroethane 1.0 U 1.0 75-06-3 Chloroethane 1.0 U 1.0	75-34-3	1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0		
107-06-2 1,2-Dichloroethane 1.0 U 1.0 78-87-5 1,2-Dichloropropane 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 75-25-3 Carbon Tetrachloride 1.0 U 1.0 75-66-3 Chloroform 1.0 U 1.0 76-65-3 Chloroform 1.0 U 1.0 76-65-3 Chloroform 1.0 U 1.0 10-44-87-3 Chloroform 1.0	75-35-4	1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0		
78-87-5 1,2-Dichloropropane 1.0 U 1.0 541-73-1 1,3-Dichlorobenzene 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinyl Ether 10 U 10 57-64-1 Acetone 5.0 U 5.0 71-43-2 Benzene 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 75-25-2 Bromomethane 1.0 U 1.0 75-25-3 Carbon Tetrachloride 1.0 U 1.0 75-60-3 Chloroform 1.0 U 1.0 76-63-3 Chloroform 1.0 U 1.0 76-64-1 Dibromochloromethane 1.0 U 1.0 76-63 Chloroform 1.0 U 1.0 76-64 Dibromochloromethane 1.0 U 1.0 76-65-3 Chloroform 1.0 U 1.0	95-50-1	1,2-Dichlorobenzene	1.0 U	1.0		
78-87-5 1,2-Dichloroptopane 1.0 U 1.0 106-46-7 1,4-Dichlorobenzene 1.0 U 1.0 110-75-8 2-Chloroethyl Vinjl Ether 10 U 10 57-64-1 Acetone 5.0 U 5.0 71-43-2 Benzene 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 76-63 Chloroethane 1.0 U 1.0 76-63 Chloroethane 1.0 U 1.0 76-63 Chloroethane 1.0 U 1.0 76-64-3 Chloroethane 1.0 U 1.0 76-65-3 Chloroethane 1.0 U 1.0 76-65-3 Chloroform 1.0 U 1.0 24-48-1 Dibromochloromethane 1.0 U 1.0 <td< td=""><td>107-06-2</td><td>1,2-Dichloroethane</td><td>1.0 U</td><td>1.0</td><td></td><td></td></td<>	107-06-2	1,2-Dichloroethane	1.0 U	1.0		
106-46-7 1,4-Dichlorobenzene 1.0 1.0 110-75-8 2-Chloroethyl Vinjl Ether 10 10 57-64-1 Acetone 5.0 U 5.0 71-43-2 Benzene 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromomethane 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 56-23-5 Carbon Tetrachloride 1.0 U 1.0 75-06-3 Chlorobenzene 1.0 U 1.0 75-06-3 Chloroothane 1.0 U 1.0 75-06-3 Chloroothane 1.0 U 1.0 124-48-1 Dibromochloromethane 1.0 U 1.0 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0	78-87-5	1,2-Dichloropropane	1.0 U			
110-75-8 2-Chloroethyl Vinyl Ether 10 10 57-64-1 Acetone 5.0 U 5.0 71-43-2 Benzene 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromomethane 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 75-25-2 Carbon Tetrachloride 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 75-05-3 Chlorobenzene 1.0 U 1.0 75-06-3 Chloroothane 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 124-48-1 Dibromochloromethane 1.0 U 1.0 127-18-4 Tetrachlorocthene (PCE) 1.0 U 1	541-73-1	1,3-Dichlorobenzene	1.0 U	1.0		
110-75-8 2-Chloroethyl Vinyl Ether 10 U 10 57-64-1 Acetone 5.0 U 5.0 71-43-2 Benzene 1.0 U 1.0 75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 75-25-2 Carbon Tetrachloride 1.0 U 1.0 76-63 Chlorobenzene 1.0 U 1.0 75-06-3 Chloromethane 1.0 U 1.0 75-66-3 Chloromethane 1.0 U 1.0 75-07-3 Chloromethane 1.0 U 1.0 76-64-3 Chloromethane 1.0 U 1.0 76-65-3 Chloromethane 1.0 U 1.0 72-48-3 Chloromethane 1.0 U 1.0 72-48-3 Chloromethane 1.0 U 1.0 72-18-4 Tetrachloroethene (PCE) 1.0 U 1.0	106-46-7	1,4-Dichlorobenzene	1.0 U	1.0		
57-64-1 Acetone 5.0 U 5.0 $71-43-2$ Benzene 1.0 U 1.0 $75-27-4$ Bromodichloromethane 1.0 U 1.0 $75-27-4$ Bromodichloromethane 1.0 U 1.0 $75-25-2$ Bromomethane 1.0 U 1.0 $75-25-2$ Bromomethane 1.0 U 1.0 $74-83-9$ Bromomethane 1.0 U 1.0 $74-83-9$ Bromomethane 1.0 U 1.0 $108-90-7$ Chlorobenzene 1.0 U 1.0 $75-63$ Chlorothane 1.0 U 1.0 $77-66-3$ Chloroform 1.0 U 1.0 $124-48-1$ Dibromochloromethane 1.0 U 1.0 $124-48-1$ Dibromochloromethane 1.0 U 1.0 $00-41-4$ Ethylbenzene 1.0 1.0 1.0 $10-27-18-4$	110-75-8	2-Chloroethyl Vinyl Ether				
75-27-4 Bromodichloromethane 1.0 U 1.0 $75-25-2$ Bromoform 1.0 U 1.0 $74-83-9$ Bromomethane 1.0 U 1.0 $74-83-9$ Bromomethane 1.0 U 1.0 $56-23-5$ Carbon Tetrachloride 1.0 U 1.0 $108-90-7$ Chlorobenzene 1.0 U 1.0 $75-00-3$ Chloroform 1.0 U 1.0 $75-66-3$ Chloroform 1.0 U 1.0 $75-09-2$ Methylene Chloride 1.0 U 1.0 $1224-48-1$ Dibromochloromethane 1.0 U 1.0 $122-48-1$ Dibromochloromethane 1.0 U 1.0 $100-12-1-48-4$ Tetrachloroethene (PCE) 1.0 U 1.0 $10-6$ Tric	67-64-1		5.0 U	5.0		
75-27-4 Bromodichloromethane 1.0 U 1.0 75-25-2 Bromoform 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 76-23-5 Carbon Tetrachloride 1.0 U 1.0 108-90-7 Chlorobenzene 1.0 U 1.0 75-00-3 Chlorothane 1.0 U 1.0 75-66-3 Chloroform 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 74-487-3 Chloromethane 1.0 U 1.0 75-04-3 Chloromethane 1.0 U 1.0 74-487-3 Chloromethane 1.0 U 1.0 74-487-3 Chloromethane 1.0 U 1.0 124-48-1 Dibromochloromethane 1.0 U 1.0 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 19-01-6 Trichlorofloromethane (CFC 11) 1.0 U <td>71-43-2</td> <td>Benzene</td> <td>1.0 U</td> <td>1.0</td> <td> <u></u></td> <td></td>	71-43-2	Benzene	1.0 U	1.0	<u></u>	
75-25-2 Bromoform 1.0 U 1.0 74-83-9 Bromomethane 1.0 U 1.0 56-23-5 Carbon Tetrachloride 1.0 U 1.0 108-90-7 Chlorobenzene 1.0 U 1.0 75-00-3 Chlorothane 1.0 U 1.0 75-66-3 Chloroform 1.0 U 1.0 74-83-7 Chloronethane 1.0 U 1.0 74-847-3 Chloronethane 1.0 U 1.0 72-04-2 Methylen Chloride 1.0 U 1.0 72-05-2 Methylen Chloride 1.0 U 1.0 00-41-4 Ethylbenzene 1.0 U 1.0 9-01-6 Trichlorothene (PCE) 1.0 U 1.0 <	75-27-4	Bromodichloromethane				
56-23-5 Carbon Tetrachloride 1.0 U 1.0 108-90-7 Chlorobenzene 1.0 U 1.0 75-00-3 Chloroethane 1.0 U 1.0 57-66-3 Chloromethane 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 124-48-1 Dibromochloromethane 1.0 U 1.0 100-41-4 Ethylbenzene 1.0 U 1.0 127-18-4 Tetrachloroethene (TCE) 1.0 U 1.0 15-61-4 Vinyl Chloride	75-25-2	Bromoform				
56-23-5 Carbon Tetrachloride 1.0 U 1.0 $108-90-7$ Chlorobenzene 1.0 U 1.0 $75-00-3$ Chlorothane 1.0 U 1.0 $57-66-3$ Chloroform 1.0 U 1.0 $57-66-3$ Chloromethane 1.0 U 1.0 $74-87-3$ Chloromethane 1.0 U 1.0 $124-48-1$ Dibromochloromethane 1.0 U 1.0 $124-48-1$ Dibromochloromethane 1.0 U 1.0 $100-41-4$ Ethylene Chloride 1.0 U 1.0 $00-41-4$ Ethylenzene 1.0 U 1.0 $00-41-4$ Tetrachloroethene (PCE) 1.0 U 1.0 $00-56-59-2$ cis-1,2-Dichloroethene 1.0 U 1.0 $56-59-2$ cis-1,3-Dichloropropene	74-83-9	Bromomethane	1.0 U	1.0		
108-90-7 Chlorobenzene 1.0 U 1.0 75-00-3 Chloroethane 1.0 U 1.0 67-66-3 Chloroform 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 124-48-1 Dibromochloromethane 1.0 U 1.0 120-41-4 Ethylbenzene 1.0 U 1.0 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 19-01-6 Trichloroethene (TCE) 1.0 U 1.0 15-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 100061-01-5 cis-1,3-	56-23-5	Carbon Tetrachloride				
57-66-3 Chloroform 1.0 U 1.0 74-87-3 Chloromethane 1.0 U 1.0 124-48-1 Dibromochloromethane 1.0 U 1.0 124-48-1 Ethylbenzene 1.0 U 1.0 00-41-4 Ethylbenzene 1.0 U 1.0 27-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 27-18-4 Tetrachloroethene (TCE) 1.0 U 1.0 99-01-6 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 55-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 56-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 56-60-5	108-90-7					
57-66-3Chloroform1.0U1.0 $74-87-3$ Chloromethane1.0U1.0 $124-48-1$ Dibromochloromethane1.0U1.0 $124-48-1$ Dibromochloromethane1.0U1.0 $124-48-1$ Dibromochloromethane1.0U1.0 $100-41-4$ Ethylbenzene1.0U1.0 $100-41-4$ Ethylbenzene1.0U1.0 $27-18-4$ Tetrachloroethene (PCE)1.0U1.0 $27-18-4$ Tetrachloroethene (TCE)1.0U1.0 $9-01-6$ Trichloroethene (TCE)1.0U1.0 $9-01-6$ Trichlorofluoromethane (CFC 11)1.0U1.0 $56-69-4$ Trichlorofluoromethane (CFC 11)1.0U1.0 $56-59-2$ cis-1,2-Dichloroethene1.0U1.0 $0061-01-5$ cis-1,3-Dichloropropene1.0U1.0 $79601-23-1$ m,p-Xylenes2.0U2.0 $5-47-6$ o-Xylene1.0U1.0 $56-60-5$ trans-1,2-Dichloroethene1.0U1.0	75-00-3	Chloroethane	1.0 U	10		
74-87-3 Chloromethane 1.0 U 1.0 124-48-1 Dibronochloromethane 1.0 U 1.0 75-09-2 Methylene Chloride 1.0 U 1.0 00-41-4 Ethylbenzene 1.0 U 1.0 27-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 27-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 27-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 99-01-6 Trichloroethene (TCE) 1.0 U 1.0 99-01-6 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 15-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 15-69-2 cis-1,2-Dichloroethene 1.0 U 1.0 10001-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 10061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 10005-04 0.0 U 1.0 1.0	67-66-3	Chloroform				
75-09-2 Methylene Chloride 1.0 U 1.0 100-41-4 Ethylbenzene 1.0 U 1.0 100-41-4 Ethylbenzene 1.0 U 1.0 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 100-41-4 Ethylbenzene 1.0 U 1.0 127-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 100-88-83 Toluene 1.0 U 1.0 19-01-6 Trichloroethene (TCE) 1.0 U 1.0 19-01-6 Trichloroethene (CFC 11) 1.0 U 1.0 15-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 15-61-4 Vinyl Chloride 1.0 U 1.0 1005-5-59-2 cis-1,3-Dichloroethene 1.0 U 1.0 0061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 100-1-23-1 m,p-Xylenes 2.0 U 2.0 5-47-6 o-Xylene 1.0 U 1.0 56-60-5 trans-1,2-Dichloroeth	74-87-3	Chloromethane				
75-09-2 Methylene Chloride 1.0 U 1.0 100-41-4 Ethylbenzene 1.0 U 1.0 27-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 08-88-3 Toluene 1.0 U 1.0 99-01-6 Trichloroethene (TCE) 1.0 U 1.0 75-69-4 Trichloroethene (CFC 11) 1.0 U 1.0 75-01-4 Vinyl Chloride 1.0 U 1.0 56-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 79601-23-1 m,p-Xylenes 2.0 U 2.0 56-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	124-48-1	Dibromochloromethane	1.0 U	1.0		
1.0 U 1.0 U 1.0 1.7-18-4 Tetrachloroethene (PCE) 1.0 U 1.0 08-88-3 Toluene 1.0 U 1.0 19-01-6 Trichloroethene (TCE) 1.0 U 1.0 15-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 15-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 15-69-2 cis-1,2-Dichloroethene 1.0 U 1.0 10-5 cis-1,3-Dichloropropene 1.0 U 1.0 0061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 79601-23-1 m,p-Xylenes 2.0 U 2.0 5-47-6 o-Xylene 1.0 U 1.0 56-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	75-09-2	Methylene Chloride				
08-88-3 Toluene 1.0 U 1.0 '9-01-6 Trichloroethene (TCE) 1.0 U 1.0 '5-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 '5-01-4 Vinyl Chloride 1.0 U 1.0 '5-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 '5-47-6 o-Xylene 2.0 U 2.0 '5-6-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	100-41-4	Ethylbenzene	1.0 U			
08-88-3 Toluene 1.0 U 1.0 '9-01-6 Trichloroethene (TCE) 1.0 U 1.0 '5-69-4 Trichlorofluoromethane (CFC 11) 1.0 U 1.0 '5-01-4 Vinyl Chloride 1.0 U 1.0 56-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 79601-23-1 m,p-Xylenes 2.0 U 2.0 '5-47-6 o-Xylene 1.0 U 1.0 56-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	127-18-4	Tetrachloroethene (PCE)	1.0 U	1.0		
10 1.0 1.0 1.0 10 1.0	108-88-3					
75-01-4 Vinyl Chloride 1.0 1.0 56-59-2 cis-1,2-Dichloroethene 1.0 U 1.0 0061-01-5 cis-1,3-Dichloropropene 1.0 U 1.0 79601-23-1 m,p-Xylenes 2.0 U 2.0 5-47-6 o-Xylene 1.0 U 1.0 56-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	79-01-6	Trichloroethene (TCE)	1.0 U	1.0		
75-01-4 Vinyl Chloride 1.0 1.0 56-59-2 cis-1,2-Dichloroethene 1.0 1.0 0061-01-5 cis-1,3-Dichloropropene 1.0 1.0 0061-01-5 cis-1,3-Dichloropropene 1.0 1.0 79601-23-1 m,p-Xylenes 2.0 U 2.0 5-47-6 o-Xylene 1.0 U 1.0 56-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	75-69-4	Trichlorofluoromethane (CFC 11)	1.0 U	1.0		
56-59-2 cis-1,2-Dichloroethene 1.0 1.0 0061-01-5 cis-1,3-Dichloropropene 1.0 1.0 79601-23-1 m,p-Xylenes 2.0 2.0 5-47-6 o-Xylene 1.0 1.0 56-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	75-01-4	. ,				
79601-23-1 m,p-Xylenes 2.0 U 2.0 5-47-6 o-Xylene 1.0 1.0 56-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	156-59-2					
79601-23-1 m,p-Xylenes 2.0 U 2.0 5-47-6 o-Xylene 1.0 1.0 56-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	10061-01-5	cis-1,3-Dichloropropene	1.0 U	1.0		
5-47-6 o-Xylene 1.0 I.0 56-60-5 trans-1,2-Dichloroethene 1.0 I.0	179601-23-1	· • •	—			
56-60-5 trans-1,2-Dichloroethene 1.0 U 1.0	95-47-6	· · ·				
1.0 0 1.0	56-60-5	· · · · · · · · · · · · · · · · · · ·				
	0061-02-6	trans-1,3-Dichloropropene	1.0 U	1.0		

00034

Client: Project: Sample Matrix:	Ecology And Environme Davis Howland Oil Co S Water			2.01.01		Service Request: Date Collected: Date Received: Date Analyzed:	NA NA
Sample Name: Lab Code:	Method Blank RQ1214082-04					Units: Basis:	
		Volatile Organ	ic Compounds	s by GC/MS			
Analytical Method: Data File Name:	624 I:\ACQUDATA\MSVOA	5\DATA\11151	2\M1969.D\			Analysis Lot: Instrument Name: Dilution Factor:	R-MS-05
CAS No.	Analyte Name		Result Q	MRL		Note	
Surrogate Name		%Rec	Control Limits	Date Analyzed	Q		
1,2-Dichloroethane-d 4-Bromofluorobenzer		115 105	79-123 79-119	11/15/12 22:35 11/15/12 22:35			

83-120

11/15/12 22:35

101

Toluene-d8

COLUMBIA ANALYTICAL SERVICES, INC.

Now part of the ALS Group

QA/QC Report

Client: Ecology And Environment, Incorporated **Project:** Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01 Sample Matrix: Water

Service Request: R1207525 Date Analyzed: 11/12/12

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 624

Units: µg/L Basis: NA

Analysis Lot: 318045

		Control San Q1213908-0 Spike		% Rec
Analyte Name	Result	Amount	% Rec	Limits
1,1,1-Trichloroethane (TCA)	22.8	20.0	114	52 - 162
1,1,2,2-Tetrachloroethane	18.2	20.0	91	46 - 157
1,1,2-Trichloroethane	18.9	20.0	94	52 - 150
1,1-Dichloroethane (1,1-DCA)	24.4	20.0	122	59 - 155
1,1-Dichloroethene (1,1-DCE)	19.7	20.0	98	0 - 234
1,2-Dichlorobenzene	19.5	20.0	98	70 - 130
1,2-Dichloroethane	18.2	20.0	91	49 - 155
1,2-Dichloropropane	20.9	20.0	105	0 - 210
1,3-Dichlorobenzene	21.8	20.0	109	70 - 130
1,4-Dichlorobenzene	19.7	20.0	98	70 - 130
2-Chloroethyl Vinyl Ether	20.2	20.0	101	0 - 305
Acetone	19.1	20.0	95	59 - 136
Benzene	20.5	20.0	102	37 - 151
Bromodichloromethane	20.5	20.0	103	35 - 155
Bromoform	16.5	20.0	83	45 - 169
Bromomethane	19.5	20.0	97	0 - 242
Carbon Tetrachloride	21.1	20.0	105	70 - 140
Chlorobenzene	20.0	20.0	100	37 - 160
Chloroethane	22.4	20.0	112	14 - 230
Chloroform	24.3	20.0	122	51 - 138
Chloromethane	22,4	20.0	112	0 - 273
Dibromochloromethane	19.0	20.0	95	53 - 149
Methylene Chloride	19.8	20.0	99	0 - 221
Ethylbenzene	22.5	20.0	113	37 - 162
Tetrachloroethene (PCE)	22.1	20.0	110	64 - 148
Toluene	21.0	20.0	105	47 - 150
Trichloroethene (TCE)	20.7	20.0	104	71 - 157
Trichlorofluoromethane (CFC 11)	24.4	20.0	122	17 - 181
Vinyl Chloride	21.2	20.0	106	0 - 251
cis-1,2-Dichloroethene	21.3	20.0	107	78 - 122
cis-1,3-Dichloropropene	19.7	20.0	98	0 - 227
m,p-Xylenes	43.6	40.0	109	83 - 122

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

COLUMBIA ANALYTICAL S	SERVICES.	INC.
-----------------------	-----------	------

Now part of the ALS Group

QA/QC Report

Client:Ecology And Environment, IncorporatedProject:Davis Howland Oil Co Site - 11/2012/002700.DC14.02.01.01Sample Matrix:Water

Service Request: R1207525 Date Analyzed: 11/12/12

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 624

Units: μg/L Basis: NA

Analysis Lot: 318045

		Control San Q1213908-0	-		
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits	
o-Xylene	21.4	20.0	107	83 - 119	
trans-1,2-Dichloroethene	19.6	20.0	98	54 - 156	
trans-1,3-Dichloropropene	19.6	20.0	98	17 - 183	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

COLUMBIA ANALYTICAL SERVICES, INC.

Now part of the ALS Group

QA/QC Report

Client: Project: Sample Matrix:

Ecology And Environment, Incorporated Davis Howland Oil Co Site - 11/2012/ 002700.DC14.02.01.01 rix: Water

Service Request: R1207525 Date Analyzed: 11/15/12

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 624

Units: µg/L Basis: NA

Analysis Lot: 318379

Analyte NameSpike% RecLimits $1,1,1$ -Trichloroethane (TCA)20.720.010352 - 162 $1,1,2,2$ -Tetrachloroethane22.420.011246 - 157 $1,1,2,2$ -Trichloroethane22.720.011452 - 150 $1,1$ -Dichloroethane(1,1-DCB)16.020.0800 - 234 $1,2$ -Dichloroethane(1,1-DCB)16.020.010559 - 155 $1,2$ -Dichloroethane21.320.010649 - 155 $1,2$ -Dichloroethane21.320.010970 - 130 $1,2$ -Dichloroethane21.320.010970 - 130 $1,2$ -Dichloroethane21.320.010970 - 130 $1,2$ -Dichloroethane21.520.09870 - 130 $1,2$ -Dichloroethane19.520.09870 - 130 $1,4$ -Dichlorobenzene21.020.011553 - 155Acetone24.220.012159 - 136Benzene19.520.09737 - 151Bromodichloromethane15.820.0790 - 242Carbon Tetrachloride23.520.011351 - 138Chloroethane16.920.08514 - 230Chloroethane16.420.0820 - 273Dibromodhare16.420.0820 - 273Dibromothane16.420.09947 - 150Trichloroforom22.620.011853 - 149Mettylene Chloride <th></th> <th colspan="4">Lab Control Sample RQ1213994-03</th> <th></th>		Lab Control Sample RQ1213994-03				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Analyte Name	Result		% Rec		
1,1,2-Trichloroethane22.720.011452 · 1501,1-Dichloroethane(1,1-DCA)21.020.010559 · 1551,1-Dichloroethane(1,1-DCE)16.020.0800 · 2341,2-Dichlorobenzene20.520.010270 · 1301,2-Dichlorobenzene21.320.010649 · 1551,2-Dichlorobenzene21.820.010970 · 1301,3-Dichlorobenzene21.820.01200 · 3052-Chloroethyl Vinyl Ether24.020.012159 · 1362-Chloroethyl Vinyl Ether24.020.09737 · 151Benzene19.520.09737 · 151Bromodichloromethane15.820.0790 · 242Carbon Tetrachloride20.820.010470 · 140Chloroethane16.920.08514 · 230Chloroform22.620.011351 · 158Bromodichloromethane16.920.0840 · 221Chloroform22.620.011351 · 138Chloroethane16.920.0840 · 221Ethylbenzene22.020.011037 · 162Tetrachlorode16.920.011037 · 162Chloroethane16.920.09947 · 150Chloroethane19.920.09947 · 150Trichloroethene (TCE)19.120.09571 · 157Trichloroethene (TCE)19.1 <td></td> <td></td> <td></td> <td>103</td> <td>52 - 162</td> <td></td>				103	52 - 162	
1.1-Dichloroethane (1,1-DCA)21.020.010559 - 1551,1-Dichloroethane (1,1-DCE)16.020.0800 - 2341,2-Dichloroethane21.320.010270 - 1301,2-Dichloropropane22.220.01110 - 2101,3-Dichloropenzene21.820.010970 - 1301,4-Dichlorobenzene21.820.010970 - 1301,4-Dichlorobenzene21.820.010970 - 1301,4-Dichlorobenzene24.220.01200 - 3052-Chloroethyl Vinyl Ether24.020.01200 - 305Acetone24.220.09737 - 151Bromodichloromethane23.020.011535 - 155Bromoform21.520.0970 - 242Carbon Tetrachloride20.820.010037 - 160Chloroethane16.920.08514 - 230Chloroform22.620.011351 - 138Chloroform22.620.011351 - 138Chloroform22.620.011351 - 138Dibromochloromethane16.920.0840 - 221Ethylbenzene22.020.011037 - 162Tetrachloride16.920.0840 - 221Ethylbenzene22.020.011351 - 138Chloroethane16.920.0840 - 221Ethylbenzene22.020.010337 - 162			20.0	112	46 - 157	
1.1-Dichloroethene $(1,1-DCB)$ 16.020.0800 - 2341,2-Dichloroethane20.520.010270 - 1301,2-Dichloroethane21.320.010649 - 1551,2-Dichloropropane22.220.01110 - 2101,3-Dichlorobenzene21.820.010970 - 1301.4-Dichlorobenzene21.820.010970 - 1302-Chloroethyl Vinyl Ether24.020.01200 - 305Acetone24.220.012159 - 136Benzene19.520.09737 - 151Bromodichloromethane23.020.011535 - 155Bromoform21.520.070 - 140Chloroethane15.820.079 - 0 - 242Carbon Tetrachloride20.820.010037 - 160Chloroethane16.920.08514 - 230Chloroform22.620.011351 - 138Chloroform22.620.011351 - 138Chloroform22.620.011037 - 162Dibromochloromethane16.920.0840 - 221Ethylbenzene22.020.011037 - 152Trichloroethene (PCE)21.120.09917 - 181Othoromethane15.920.09917 - 157Trichloroethene (TCE)19.120.09571 - 157Trichloroethene (PCE)19.120.09571 - 157Trichloro	1,1,2-Trichloroethane	22.7	20.0	114	52 - 150	
1.2-Dichlorobenzene20.520.0102 $70 - 130$ 1.2-Dichloroethane21.320.0106 $49 - 155$ 1.2-Dichloroppane22.220.0111 $0 - 210$ 1.3-Dichlorobenzene21.820.0109 $70 - 130$ 1.4-Dichlorobenzene19.520.098 $70 - 130$ 2-Chloroethyl Vinyl Ether24.020.0121 $59 - 136$ Benzene19.520.097 $37 - 151$ Bromodichloromethane23.020.0115 $35 - 155$ Bromodichloromethane15.820.079 $0 - 242$ Carbon Tetrachloride20.820.0100 $37 - 160$ Chlorobenzene16.920.085 $14 - 230$ Chlorobenzene16.920.085 $14 - 230$ Chlorobenzene23.520.0118 $53 - 149$ Methylene Chloride16.920.084 $0 - 221$ Ehylbenzene22.020.0110 $37 - 160$ Chloroethane16.920.084 $0 - 221$ Ehylbenzene22.020.0110 $37 - 150$ Tickloroethene (PCE)21.120.0105 $64 - 148$ Toluene19.820.099 $47 - 150$ Trickloroethene (PCE)19.120.099 $17 - 157$ Trickloroethene (TCE)19.120.099 $17 - 157$ Trickloroethene19.020.099 $17 - 157$ Trickloroethene19.0 <t< td=""><td>1,1-Dichloroethane (1,1-DCA)</td><td>21.0</td><td>20.0</td><td>105</td><td>59 - 155</td><td></td></t<>	1,1-Dichloroethane (1,1-DCA)	21.0	20.0	105	59 - 155	
1.2-Dichloroethane21.320.010649 - 1551.2-Dichloropropane22.220.0111 $0 - 210$ 1.3-Dichlorobenzene21.820.0109 $70 - 130$ 1.4-Dichlorobenzene19.520.098 $70 - 130$ 2-Chloroethyl Vinyl Ether24.020.0120 $0 - 305$ Acetone24.220.097 $37 - 151$ Benzene19.520.097 $37 - 155$ Bromodichloromethane23.020.0115 $35 - 155$ Bromomethane15.820.079 $0 - 242$ Carbon Tetrachloride20.820.0104 $70 - 140$ Chloroethane16.920.08514 - 230Chloroform22.620.011351 - 138Chloroform22.620.011351 - 138Chloroform23.520.011853 - 149Dibromochloromethane16.920.084 $0 - 221$ Ethylbenzene23.520.011853 - 149Dibromochloromethane16.920.084 $0 - 221$ Ethylbenzene22.020.011853 - 149Dibromochloromethane19.820.099 $47 - 150$ Trichloroethene (PCE)21.120.0105 $64 - 148$ Toluene19.820.099 $47 - 150$ Trichloroethene (PCE)19.120.095 $71 - 157$ Trichloroethene19.020.095 $78 - $		16.0	20.0	80	0 - 234	
1,2-Dichloropropane22.220.0111 $0 - 210$ 1,3-Dichlorobenzene21.820.010970 - 1301,4-Dichlorobenzene19.520.09870 - 1302-Chloroethyl Vinyl Ether24.020.0120 $0 - 305$ Acetone24.220.012159 - 136Benzene19.520.09737 - 151Bromodichloromethane23.020.011535 - 155Bromonform21.520.079 $0 - 242$ Carbon Tetrachloride20.820.010470 - 140Chloroethane16.920.08514 - 230Chloroform22.620.011351 - 138Chloroform22.620.011853 - 149Methylene Chloride16.920.084 $0 - 273$ Dibromochloromethane23.520.011037 - 162Tetrachloride16.920.011351 - 138Chloroethane16.920.084 $0 - 273$ Dibromochloromethane23.020.011037 - 162Tetrachloride16.920.09947 - 150Trichloroethene (PCE)19.120.09917 - 157Trichloromethane (CFC 11)19.920.09917 - 157Trichloroethene (CCE)19.120.09917 - 157Trichloroethene19.020.09578 - 122cis-1,2-Dichloroethene19.020.09578 -	1,2-Dichlorobenzene	20.5	20.0	102	70 - 130	
1.2-Dichloropropane22.220.0111 $0 - 210$ 1.3-Dichlorobenzene21.820.010970 - 1301.4-Dichlorobenzene19.520.09870 - 1302-Chloroethyl Vinyl Ether24.020.0120 $0 - 305$ Acetone24.220.012159 - 136Benzene19.520.09737 - 151Bromodichloromethane23.020.011535 - 155Bromofarm21.520.079 $0 - 242$ Carbon Tetrachloride20.820.010037 - 160Chloroethane16.920.08514 - 230Chloroform22.620.011351 - 138Chloroform22.620.011351 - 138Chloromethane16.920.082 $0 - 221$ Ethylbenzene22.020.011037 - 162Dibromochloromethane16.920.084 $0 - 221$ Ethylbenzene22.020.011037 - 162Tetrachloride16.920.084 $0 - 221$ Ethylbenzene22.020.011037 - 162Tetrachloroethene (PCE)21.120.010564 - 148Toluene19.820.09947 - 150Trichloroethene (CFC 11)19.920.09571 - 157Trichloroethene15.220.076 $0 - 221$ cis-1,2-Dichloroethene19.020.09578 - 122cis-	1,2-Dichloroethane	21.3	20.0	106	49 - 155	
1,4-Dichlorobenzene19.520.09870 - 1302-Chloroethyl Vinyl Ether24.020.0120 $0 - 305$ Acetone24.220.012159 - 136Benzene19.520.097 $37 - 151$ Bromodichloromethane23.020.011535 - 155Bromoform21.520.079 $0 - 242$ Carbon Tetrachloride20.820.010470 - 140Chlorobenzene20.020.0100 $37 - 160$ Chlorobenzene20.020.011351 - 138Chloroform22.620.011351 - 138Chloroform22.620.011351 - 138Chloromethane16.920.082 $0 - 273$ Dibromochloromethane23.520.0110 $37 - 162$ Tetrachloride16.920.084 $0 - 221$ Ethylbenzene22.020.0110 $37 - 162$ Tetrachloroethene (PCE)21.120.099 $47 - 150$ Trichlorofluoromethane (CFC 11)19.920.099 $17 - 181$ Vinyl Chloride15.220.076 $0 - 221$ cis-1,2-Dichloroethene19.020.095 $78 - 122$ cis-1,2-Dichloropenee21.320.0107 $0 - 227$	1,2-Dichloropropane	22.2	20.0	111	0 - 210	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,3-Dichlorobenzene	21.8	20.0	109	70 - 130	
Acetone24.220.0121 $59 - 136$ Benzene19.520.097 $37 \cdot 151$ Bromodichloromethane23.020.0115 $35 - 155$ Bromomethane15.820.079 $0 - 242$ Carbon Tetrachloride20.820.0100 $37 \cdot 160$ Chlorobenzene20.020.0100 $37 \cdot 160$ Chlorothane16.920.08514 - 230Chloroform22.620.011351 - 138Chloromethane16.420.082 $0 - 273$ Dibromochloromethane23.520.011853 - 149Methylene Chloride16.920.084 $0 - 221$ Ethylbenzene22.020.0110 $37 - 162$ Tetrachloroethene (PCE)21.120.010564 - 148Toluene19.820.09947 - 150Trichlorofhuoromethane15.220.071 - 157Trichlorofhuoromethane15.220.09917 - 181Vinyl Chloride15.220.076 $0 - 251$ cis-1,3-Dichloropropene21.320.0107 $0 - 227$	1,4-Dichlorobenzene	19.5	20.0	98	70 - 130	
Benzene19.520.097 $37 \cdot 151$ Bromodichloromethane23.020.011535 \cdot 155Bromoform21.520.0108 $45 \cdot 169$ Bromomethane15.820.0790 - 242Carbon Tetrachloride20.820.010470 \cdot 140Chlorobenzene20.020.010037 - 160Chloroform22.620.011351 - 138Chloroform22.620.011351 - 138Chloromethane16.420.0820 - 273Dibromochloromethane23.520.011853 - 149Methylene Chloride16.920.0840 - 221Ethylbenzene22.020.011037 - 162Tetrachloroethene (PCE)21.120.010564 - 148Toluene19.820.09947 - 150Trichloroethene (TCE)19.120.09571 - 157Trichlorofluoromethane15.220.0760 - 251cis-1,2-Dichloroethene19.020.09578 - 122cis-1,3-Dichloropropene21.320.01070 - 227	2-Chloroethyl Vinyl Ether	24.0	20.0	120	0 - 305	
Bromodichloromethane23.020.011535 - 151Bromoform21.520.0108 $45 - 169$ Bromomethane15.820.079 $0 - 242$ Carbon Tetrachloride20.820.010470 - 140Chlorobenzene20.020.010037 - 160Chloroform22.620.011351 - 138Chloromethane16.420.082 $0 - 273$ Dibromochloromethane16.920.084 $0 - 221$ Ethylbenzene22.020.011037 - 162Tetrachloroethene (PCE)21.120.010564 - 148Toluene19.820.09947 - 150Trichloroethene (TCE)19.120.09571 - 181Vinyl Chloride15.220.076 $0 - 251$ cis-1,3-Dichloropropene21.320.0107 $0 - 227$	Acetone	24.2	20.0	121	59 - 136	
Bromoform 21.5 20.0 108 $45 - 169$ Bromomethane 15.8 20.0 79 $0 - 242$ Carbon Tetrachloride 20.8 20.0 104 $70 - 140$ Chlorobenzene 20.0 20.0 100 $37 - 160$ Chlorothane 16.9 20.0 85 $14 - 230$ Chloromethane 16.4 20.0 82 $0 - 273$ Dibromochloromethane 16.4 20.0 84 $0 - 221$ Ethylbenzene 22.0 20.0 110 $37 - 162$ Tetrachloroethene (PCE) 21.1 20.0 105 $64 - 148$ Toluene 19.8 20.0 99 $47 - 150$ Trichloroethene (TCE) 19.1 20.0 95 $71 - 157$ Trichloroethene (TCE) 19.2 20.0 99 $17 - 181$ Vinyl Chloride 15.2 20.0 76 $0 - 251$ cis-1,3-Dichloropropene 21.3 20.0 107 $0 - 227$	Benzene	19.5	20.0	97	37 - 151	
Bromomethane15.820.0790 - 242Carbon Tetrachloride20.820.010470 - 140Chlorobenzene20.020.010037 - 160Chlorothane16.920.08514 - 230Chlorothane16.420.0820 - 273Chloromethane16.920.0840 - 221Ethylbenzene22.020.011037 - 162Tetrachlorothere16.920.0840 - 221Ethylbenzene22.020.011037 - 162Tetrachlorothere (PCE)21.120.010564 - 148Toluene19.820.09947 - 150Trichlorothere (TCE)19.120.09571 - 157Trichlorothere15.220.0760 - 251cis-1,3-Dichloropropene21.320.01070 - 227		23.0	20.0	115	35 - 155	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bromoform	21.5	20.0	108	45 - 169	
Chlorobenzene 20.0 20.0 101 10 17 160 Chloroethane 16.9 20.0 85 $14 - 230$ Chloroform 22.6 20.0 113 $51 - 138$ Chloromethane 16.4 20.0 82 $0 - 273$ Dibromochloromethane 23.5 20.0 118 $53 - 149$ Methylene Chloride 16.9 20.0 84 $0 - 221$ Ethylbenzene 22.0 20.0 110 $37 - 162$ Tetrachloroethene (PCE) 21.1 20.0 105 $64 - 148$ Toluene 19.8 20.0 99 $47 - 150$ Trichlorofluoromethane (CFC 11) 19.9 20.0 99 $17 - 181$ Vinyl Chloride 15.2 20.0 76 $0 - 251$ cis-1,2-Dichloroethene 19.0 20.0 95 $78 - 122$ cis-1,3-Dichloropropene 21.3 20.0 107 $0 - 227$	Bromomethane	15.8	20.0	79	0 - 242	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· · · · · · · · · · · · · · · · · · ·	20.8	20.0	104	70 - 140	
Chloroform 22.6 20.0 113 $51 - 138$ Chloromethane 16.4 20.0 82 $0 - 273$ Dibromochloromethane 23.5 20.0 118 $53 - 149$ Methylene Chloride 16.9 20.0 84 $0 - 221$ Ethylbenzene 22.0 20.0 110 $37 - 162$ Tetrachloroethene (PCE) 21.1 20.0 105 $64 - 148$ Toluene 19.8 20.0 99 $47 - 150$ Trichloroethene (TCE) 19.1 20.0 95 $71 - 157$ Trichlorofluoromethane (CFC 11) 19.9 20.0 99 $17 - 181$ Vinyl Chloride 15.2 20.0 76 $0 - 251$ cis-1,2-Dichloroethene 19.0 20.0 95 $78 - 122$ cis-1,3-Dichloropropene 21.3 20.0 107 $0 - 227$	Chlorobenzene	20.0	20.0	100	37 - 160	
Chloromethane 16.4 20.0 82 $0 - 273$ Dibromochloromethane 23.5 20.0 118 $53 - 149$ Methylene Chloride 16.9 20.0 84 $0 - 221$ Ethylbenzene 22.0 20.0 110 $37 - 162$ Tetrachloroethene (PCE) 21.1 20.0 105 $64 - 148$ Toluene 19.8 20.0 99 $47 - 150$ Trichloroethene (TCE) 19.1 20.0 95 $71 - 157$ Trichlorofluoromethane (CFC 11) 19.9 20.0 99 $17 - 181$ Vinyl Chloride 15.2 20.0 76 $0 - 251$ cis-1,2-Dichloroethene 19.0 20.0 95 $78 - 122$ cis-1,3-Dichloropropene 21.3 20.0 107 $0 - 227$		16.9	20.0	85	14 - 230	
Dibromochloromethane23.520.011853 - 149Methylene Chloride16.920.084 $0 - 221$ Ethylbenzene22.020.0110 $37 - 162$ Tetrachloroethene (PCE)21.120.0105 $64 - 148$ Toluene19.820.099 $47 - 150$ Trichloroethene (TCE)19.120.095 $71 - 157$ Trichlorofluoromethane (CFC 11)19.920.099 $17 - 181$ Vinyl Chloride15.220.076 $0 - 251$ cis-1,2-Dichloroethene19.020.095 $78 - 122$ cis-1,3-Dichloropropene21.320.0107 $0 - 227$		22.6	20.0	113	51 - 138	
Methylene Chloride16.920.084 $0 - 221$ Ethylbenzene22.020.0110 $37 - 162$ Tetrachloroethene (PCE)21.120.0105 $64 - 148$ Toluene19.820.099 $47 - 150$ Trichloroethene (TCE)19.120.095 $71 - 157$ Trichlorofluoromethane (CFC 11)19.920.099 $17 - 181$ Vinyl Chloride15.220.076 $0 - 251$ cis-1,2-Dichloropropene21.320.0107 $0 - 227$	Chloromethane	16.4	20.0	82	0 - 273	
Ethylbenzene 22.0 20.0 110 $37 - 162$ Tetrachloroethene (PCE) 21.1 20.0 105 $64 - 148$ Toluene 19.8 20.0 99 $47 - 150$ Trichloroethene (TCE) 19.1 20.0 95 $71 - 157$ Trichlorofluoromethane (CFC 11) 19.9 20.0 99 $17 - 181$ Vinyl Chloride 15.2 20.0 76 $0 - 251$ cis-1,2-Dichloroethene 19.0 20.0 95 $78 - 122$ cis-1,3-Dichloropropene 21.3 20.0 107 $0 - 227$	Dibromochloromethane	23.5	20.0	118	53 - 149	
Tetrachloroethene (PCE) 21.1 20.0 105 $64 - 148$ Toluene 19.8 20.0 99 $47 - 150$ Trichloroethene (TCE) 19.1 20.0 95 $71 - 157$ Trichlorofluoromethane (CFC 11) 19.9 20.0 99 $17 - 181$ Vinyl Chloride 15.2 20.0 76 $0 - 251$ cis-1,2-Dichloroethene 19.0 20.0 95 $78 - 122$ cis-1,3-Dichloropropene 21.3 20.0 107 $0 - 227$		16.9	20.0	84	0 - 221	
Toluene19.820.09947 - 150Trichloroethene (TCE)19.120.09571 - 157Trichlorofluoromethane (CFC 11)19.920.09917 - 181Vinyl Chloride15.220.0760 - 251cis-1,2-Dichloroethene19.020.09578 - 122cis-1,3-Dichloropropene21.320.01070 - 227	Ethylbenzene	22.0	20.0	110	37 - 162	
Trichloroethene (TCE) 19.1 20.0 95 71 - 157 Trichlorofluoromethane (CFC 11) 19.9 20.0 99 17 - 181 Vinyl Chloride 15.2 20.0 76 0 - 251 cis-1,2-Dichloroptopene 19.0 20.0 95 78 - 122		21.1	20.0	105	64 - 148	
Trichlorofluoromethane (CFC 11) 19.9 20.0 99 17 - 181 Vinyl Chloride 15.2 20.0 76 0 - 251 cis-1,2-Dichloropthene 19.0 20.0 95 78 - 122 cis-1,3-Dichloropropene 21.3 20.0 107 0 - 227			20.0	99	47 - 150	
Vinyl Chloride 15.2 20.0 76 0 - 251 cis-1,2-Dichloroethene 19.0 20.0 95 78 - 122 cis-1,3-Dichloropropene 21.3 20.0 107 0 - 227	Trichloroethene (TCE)	19.1	20.0	95	71 - 157	
cis-1,2-Dichloroethene 19.0 20.0 95 78 - 122 cis-1,3-Dichloropropene 21.3 20.0 107 0 - 227			20.0	99	17 - 181	
cis-1,3-Dichloropropene 21.3 20.0 107 0-227	•		20.0	76	0-251	
	cis-1,2-Dichloroethene	19.0	20.0	95	78 - 122	
m,p-Xylenes 42.0 40.0 105 83 - 122		21.3	20.0	107	0 - 227	· · · · · · · · · · · · · · · · · · ·
	m,p-Xylenes	42.0	40.0	105	83 - 122	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

00038

	COLUMBIA ANALYTICAL SERVICES, INC. Now part of the ALS Group	
	QA/QC Report	
Client:	Ecology And Environment, Incorporated	Service Request: R1207525
Project:	Davis Howland Oil Co Site - 11/2012/002700.DC14.02.01.01	Date Analyzed: 11/15/12
Sample Matrix:	Water	-
	Lab Control Sample Summary Volatile Organic Compounds by GC/MS	
Analytical Method:	624	Units: µg/L Basis: NA

Analysis Lot: 318379

		Control Sa Q1213994-0	-	
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
o-Xylene	20.6	20.0	103	83 - 119
trans-1,2-Dichloroethene	15.7	20.0	78	54 - 156
trans-1,3-Dichloropropene	23.1	20.0	116	17 - 183

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

COLUMBIA ANALYTICAL SERVICES, INC.

Now part of the ALS Group

QA/QC Report

Client:Ecology And Environment, IncorporatedProject:Davis Howland Oil Co Site - 11/2012/ 002700.DCI4.02.01.01Sample Matrix:Water

Service Request: R1207525 Date Analyzed: 11/15/12

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 624

Units: μg/L Basis: NA

Analysis Lot: 318698

		Control San Q1214082-0		
Analyte Name	Result	Spike Amount	% Rec	% Rec Limits
1,1,1-Trichloroethane (TCA)	18.1	20.0	91	52 - 162
1,1,2,2-Tetrachloroethane	20.7	20.0	91 103	32 - 162 46 - 157
1,1,2-Trichloroethane	20.7	20.0	103	40 - 137 52 - 150
1,1-Dichloroethane (1,1-DCA)	19.4	20.0	97	59 - 155
1,1-Dichloroethene (1,1-DCE)	13.3	20.0	67	0 - 234
1,2-Dichlorobenzene	19.3	20.0	96	70 - 130
1,2-Dichloroethane	19.9	20.0	99	49 - 155
1,2-Dichloropropane	20.7	20.0	103	0 - 210
1,3-Dichlorobenzene	20.5	20.0	102	70 - 130
1,4-Dichlorobenzene	18.4	20.0	92	70 - 130
2-Chloroethyl Vinyl Ether	22.9	20.0	114	0 - 305
Acetone	22.3	20.0	111	59 - 136
	17.6	20.0	88	37 - 151
Benzene Bromodichloromethane	21,1	20.0	88 106	37 - 151 35 - 155
Bromoform	21.1	20.0	108	35 - 155 45 - 169
Bromomethane	12.8	20.0	64	0 - 242
Carbon Tetrachloride	18.3	20.0	92	70 - 140
Chlorobenzene	18.8	20.0	94	37 - 160
Chloroethane	14.6	20.0	73	14 - 230
Chloroform	20.8	20.0	104	51 - 138
Chloromethane	12.3	20.0	62	0 - 273
Dibromochloromethane	21,4	20.0	107	53 - 149
Methylene Chloride	15.5	20.0	77	0 - 221
Ethylbenzene	19.9	20.0	100	37 - 162
Tetrachloroethene (PCE)	18.6	20.0	93	64 - 148
Toluene	18.0	20.0	93 92	64 - 148 47 - 150
Trichloroethene (TCE)	18.4	20.0	92 92	47 - 150 71 - 157
Trichlorofluoromethane (CFC 11)	16.6	20.0	83	17 - 181
Vinyl Chloride	12.3	20.0	61	0 - 251
cis-1,2-Dichloroethene	17.6	20.0	88	78 - 122
cis-1,3-Dichloropropene	19.6	20.0	98	0 - 227
m,p-Xylenes	39.1	40.0	98	83 - 122

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

	Now part of the ALS Group		
	QA/QC Report		
Client:	Ecology And Environment, Incorporated	Service Request	: R1207525
Project:	Davis Howland Oil Co Site - 11/2012/002700.DC14.02.01.01	Date Analyzed	
Sample Matrix:	Water	-	
	Lab Control Sample Summary Volatile Organic Compounds by GC/MS		
	volatile organic compounds by OC/MIS		
Analytical Method:	624	Units:	μg/L
		Basis:	NA
		Analysis Lot:	318698

% Rec

97

69

105

% Rec

Limits

83 - 119

54 - 156

17 - 183

Lab Control Sample RQ1214082-03 Spike

Amount

20.0

20.0

20.0

Result

19.5

13.8

21.1

COLUMBIA ANALYTICAL SERVICES INC

.

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Analyte Name

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

o-Xylene

ntal
e E C
Enuire
U

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 4435

16	1565 Jefferson Road, Building 300, Suite 360 •	300, Suite 360		Rochester, NY 14623 +1 585 288 5380	3 5380 +1 585	+1 585 288 8475 (fax)	PAGE	- GF	
Project Name David How Jan	Project Number @ a Z 7 0 0, D C 1 4	,02,0	1.01	ANALYSIS	s requested (In	clude Method Nu	ANALYSIS REQUESTED (Include Method Number and Container Preservative)	er Preservative)	
Project Manager	Report CC		PRESERVATIVE	ATIVE		8			
Company/Address FEFPC			SH						Preservative Key
368 Pleasant View Drive	ieu Drive						/ /		1. HCL 2. HNO ₃ 3. H ₂ SO ₄
ast er	NY 14086			s - 10		10/00 511 03/1702 01/10/00/01/11/02		/	NaOH Zn. Acetate MeOH
684 80		0844		S30109 94001/09 950 2000 2000	809	High High		/	7. NaHSO4 8. Other
Sampler's Signature	ed Name	Crewtad	~	1000 000 000 000 000 000 000 000 000 00	WELVI WELVI	/ ¢/			TCC REMARKS/
CLIENT SAMPLE ID	15	IME	MATRIX						
001 IN	21/2/11 100-1	٥٤:2	m À	×				1, 2, 3	
00 Z 007		7:32	3	×					
	- CC - CC	3,3 t	-			×			
004 04	4	2:40				×			
						-			
							k		
SPECIAL INSTRUCTIONS/COMMENTS Metals				TURNAROUND REQUIREMENTS	EQUIREMENTS	REPORT RE	REPORT REQUIREMENTS	INVOICE IN	INVOICE INFORMATION
				RUSH (SURCHARGES APPLY)	RIGES APPLY)	f. Results Only		ĸ	
					ty3 day	II. Results + QC Summaries ILCS, DUP, MS/MSD as regi	II. Results + QC Summaries (LCS. DUP, MS/MSD as required)	# Od	
				Chand and	y	III. Results + Q(III. Results + QC and Calibration	BILL TO:	
				REQUESTED REPORT DATE	r date	U. Data Validati	ounnianes IV. Data Validation Report with Raw Data		
See QAPP									
STATE WHERE SAMPLES WERE COLLECTED	DLLECTED					Edata	_YesNo	8120	07575
UISHED BY	Mund water		RELINQUISHED BY	RECEIVED BY	DBY	RELINQU	RELINQUISHED BY	RECEIVED B)	ED BY
1 Ganford	Signature / Ward	Signature		Signature		Signature		Signature	
		Printed Name		Printed Name		Printed Name	-	Printed Name	
17:25	11/2/12 /1722	Firm		Firm		Firm		Firm	
Date/Time	Date/Time	Date/Time		Date/Time		Date/Time		Date/Time	

~.4

Distribution: White - Lab Copy; Yellow - Return to Originator

© 2012 by ALS Group

*8*8<u>8</u>42

	E
	Ō
	É
	5
	Ĉ
	ω
	~
	'N
C	1
	₫
	٣
	_

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM 4434

onmental	35 Jef	1565 Jefferson Road, Building 300, Suite 360 • R	ing 300, Suite 360) • Rochester, N	VY 14623	ochester, NY 14623 +1 585 288 5380	380 +1 585 2	+1 585 288 8475 (fax)	fax) PAGE _		OF	г
Project Name Davis 12-ward Project Number Oast 00, DC14.02,	00			10,10		ANALYSIS RI	EQUESTED (Inc	clude Metho	ANALYSIS REQUESTED (Include Method Number and Container Preservative)	tainer Preser	vative)	1
Project Manager M. 126 Aloi	Report CC			PRES	PRESERVATIVE	•			2			Ī
Company/Address FEEPC				SH			/ /	/	/ /	/	Preservative Key	
368 taxed to NUT Pleasant View	HUS Pleasant N			D C <		/ /		- Cr			2. HNO3 3. H2SO4 4. NaOH	
140	140			OF COI		100		Nis pelo	/ / /	/	5. Zhortate 6. MeOH 7 NaveO	
Phonof Ph		かるのかり			1048 0 104 1048 0 104 10 10 104 10 104 10 104 10 104 1048 1048 1048 1048 1048 1048 1048 1		101 'S7 102' 101 809 08	H			8. Other	
<	<	ael Crount		\sim	.00		88 15 is 88 15 is 88 15 is	/ / /		/ /	REMARKS/ ALTERNATE DESCRIPTION	
FOR OFFICE USE SAMPLING ONLY LAB ID DATE TIME	SAMPLING DATE	PLING		MATRIX						·,		
COS 11/2/12	11/2/11	1		3		×		×			A & B	
006 - PZ - COG > 3100		5.00				×		×			APB	I
007 - p3 - 607 3:10		01;2				×		×			APR .	
-008		3; to		-		×		×			A 48	
009 - PW 2 - 2:30	20 ° +	v2:2	ŀ	7		~		ĸ			A PB	- 1
			I								*. *	• I
			- 1			_						
SPECIAL INSTRUCTIONS/COMMENTS Metals					F	TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY)	DUIREMENTS SES APPLY)	REPORT RE	REPORT REQUIREMENTS I. Results Only		INVOICE INFORMATION	1.
								ll. Resul	II. Results + OC Summaries	PO #		
						— 1 day2 day - — 4 day5 day		(LCS, D	(LCS, DUP, MS/MSD as required)			
•				•		Standerb		III. Results - Summaries	 III. Results + QC and Calibration Summaries 			
					REO	REOUESTED REPORT DATE	ATE	IV. Data	IV. Data Validation Report with Raw Data	w Data		
See OAPP	•						-		Ϋ́	R1207525	25 5	
STATE WHERE SAMPLES WERE COLLECTED								Edata	Yes	ogy And Enviro 9/28/12 Davis h	inment, incorporated Jowland Oll Co Site - Monthly	
2 C C MINING AND A MAN ANAL	hour for the former of the for	RELI	15	RELINQUISHED BY		RECEIVED BY						\
Signature Las Tranks 1 Signature Ne W/C Signature	N W/C	Signature			Signature	ure		Signature		Signature	9	
Michael (autory Pringel Name		Printed Nam	a		Printec	Printed Name		Printed Name		Printed Name	Name	4 5
Fim EFEPC Fight z/1725 Fim	/1725-	Firm			ЕШ			Firm		Firm		1 1
Date/Time 11/2 1, 2 1, 2 1, Date/Time		Date/Time			Date/Time	īme		Date/Time		Date/Time	ą	i i

Distribution: White - Lab Copy; Yellow - Return to Originator

© 2012 by ALS Group

A	LS)		(Cooler Receip	t and F	reservatio	on Che	ck Form		
Projec	t/Client	E+E		····]	Fold <mark>er</mark> Numb	er_ <u>R</u> 1	207525	<u> </u>	
Coole	r received	on <u>1</u>	17/	'Z by:_∞	_cou	RIER: AL	S UPS	FEDEX	VELO	CITY CLIENT
1. 2. 3. 4. 5. 6. 7.	Were cus Did all bo Did VOA Were fce Where di	tody ottles Vial Cor Ic d the	pap arri s, A e pa bott	s on outside of co ers properly filled ve in good condit lkalinity, or Sulfi acks present? tles originate? oler(s) upon recei	l out (inl ion (unb de have	roken)?	-	YES YES YES YES ALS/R	NO NO NO NO OC, CL	NA LENT
	Is the tem	perat	ure	within 0° - 6° C?	: `	Yes Y	es	Yes	Yes	Yes
	If No, Ex	plair	ı Be	low	۵	N N	o	No	No	No
	Date/Time	e Ter	npei	low atures Taken:	11/2/12/	1726				
	Thermom	eter I	D:	IR GUN#3 / IR	GUN#4	Reading]				ple Bottle
				ote packing/ice o		n &Client A	pproval			
	-			ge location	R-007			on <u>11/2/12</u>	<u> </u>	750
	*****			orage location	÷/	by	(<u> </u>	at	
	CARTARY INC.	X452,075			**			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	Breakdow					ne: 100	5 090	by: (Ð	
				ls complete (i.e. a			, etc.)?	YES	NO	
2. Did all bottle labels and tags agree with custody papers? YES NO										
 Were correct containers used for the tests indicated? Air Samples: Cassettes / Tubes Intact Canisters Pressurized Tedlar® Bags Inflated N/A 										
							Surizeu		Dags III	flated N/A
 	-		·				1			1 • · · · · · ·
pH	Reagent	YES	мо	Lot Received	Exp	Sample ID	Vol. Added	Lot Added	Final pH	Yes = All samples OK
≥12	NaOH	<u> </u>			<u> </u>	l	<u> </u>			_
<u>≤</u> 2	HNO ₃			· · · · · · · · · · · · · · · · · · ·		<u> </u>			<u> </u>	No =
≤2	H₂SO₄					L	I	· · · · · · · · · · · · · · · · · · ·		Samples were
<4 Residual	NaHSO4			16			ļ			preserved at
Residual Chlorine	For TCN Phenol			If present, contact add ascorbic acid	I PM IO					lab as listed
(-)	and 522			Or sodium sulfite	(522)					PM OK to
	$Na_2S_2O_3$	-	-					e analysis – pł		Adjust:
	Zn Aceta	-	-		1			VOAs or Gen	Chem	-
	HCI	*	*	452800244	10/13	on a separate	worksnee	et i		
Bottle lot i Other Corr		20	<u>82</u>	452800244 1237 , 2-2	207-00	, /				

KB 11/20/12 PC Secondary Review: 100 H:\SMODOCS\Cooler Receipt 5.doc

*significant air bubbles: VOA > 5-6 mm : WC >1 in. diameter

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 28, 2012	Completed by: J. Z. Christopher

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per NYSDEC Division of Environmental Remediation Guidance for the Development of DUSRs (June 1999). Specific criteria for QC limits were obtained from the project QAPP. Compliance with the project QA program is indicated on the in the checklist and tables. Any major or minor concerns affected data usability are summarized listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

ProjectID	Lab Work Order
Davis Howland Oil Company Site Semiannual GW-October 2012	R1207074

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type
R1207074	WG	E601-2	Purgeable Halocarbons and Purgeable Aromatics by GC/MS	16	Ν
R1207074	WG	E601-2	Purgeable Halocarbons and Purgeable Aromatics by GC/MS	1	FD
R1207074	WQ	E601-2	Purgeable Halocarbons and Purgeable Aromatics by GC/MS	1	RB
R1207074	WQ	E601-2	Purgeable Halocarbons and Purgeable Aromatics by GC/MS	4	ТВ
R1207074	WG	E625	Semivolatile Organic Compounds by GC/MS	16	Ν
R1207074	WG	E625	Semivolatile Organic Compounds by GC/MS	1	FD
R1207074	WQ	E625	Semivolatile Organic Compounds by GC/MS	1	RB
R1207074	WG	NY 310-13	Petroleum Products in Water (Hydrocarbon Scan)	16	Ν
R1207074	WG	NY 310-13	Petroleum Products in Water (Hydrocarbon Scan)	1	FD
R1207074	WQ	NY 310-13	Petroleum Products in Water (Hydrocarbon Scan)	1	RB
R1207074	WG	SM 4500-H+B	pH and Temperature	16	N
R1207074	WG	SM 4500-H+B	pH and Temperature	1	FD
R1207074	WQ	SM 4500-H+B	pH and Temperature	1	RB

Work Orders, Tests and Number of Samples included in this DUSR

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 28, 2012	Completed by: J. Z. Christopher

Work Order	Matrix	Sample ID	Lab ID	Sample Date	Lab QC	MS/ MSD	ID Corrections
R1207074	WG	MW-3S	R1207074-001	10/16/12			None
R1207074	WG	MW-3R	R1207074-002	10/16/12			None
R1207074	WQ	TB101612	R1207074-003	10/16/12			None
R1207074	WG	MW-16R	R1207074-004	10/16/12			None
R1207074	WG	MW-15R	R1207074-005	10/16/12			None
R1207074	WG	MW-1S	R1207074-006	10/17/12			None
R1207074	WQ	TB101712	R1207074-007	10/17/12			None
R1207074	WG	MW-10R	R1207074-008	10/17/12			None
R1207074	WG	MW-10RQ	R1207074-009	10/17/12			None
R1207074	WG	MW-14S	R1207074-010	10/17/12			None
R1207074	WG	MW-14R	R1207074-011	10/17/12			None
R1207074	WQ	TB101812	R1207074-012	10/18/12			None
R1207074	WG	MW-12S	R1207074-013	10/18/12			None
R1207074	WG	MW-12R	R1207074-014	10/18/12			None
R1207074	WG	MW-2S	R1207074-015	10/18/12	MD	MS/MSD	None
R1207074	WG	MW-2R	R1207074-016	10/18/12			None
R1207074	WG	MW-8R	R1207074-017	10/18/12			None
R1207074	WG	MW-13S	R1207074-018	10/18/12			None
R1207074	WQ	TB101922	R1207074-019	10/19/12			None
R1207074	WG	MW-9S	R1207074-020	10/19/12			None
R1207074	WQ	RB-101912	R1207074-021	10/19/12			None
R1207074	WG	MW-5R	R1207074-022	10/19/12			None

Table 1 Sample Summary Tables from Electronic Data Deliverable

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes. pH/temperature analysis was not requested on the COCs; however they were required and were performed. The MS/MSD was not listed on the COC; however it was required and was performed.
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ set of samples per day?	Yes – Field duplicate was supplied for sample MW-10R, trip blanks supplied for each cooler/day. One rinsate blank was supplied for the sampling round.
All ASP Forms complete?	Yes
Case narrative present and complete?	Yes. The laboratory reported results for "Lube Oil" per method NY 310-13, however, the laboratory stated that the equivalent NYSDEC valid value is "Motor Oils"; therefore the validator renamed the cas_rn and analyte

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 28, 2012	Completed by: J. Z. Christopher

	accordingly in the EDD.
Any holding time violations (See table below)?	No - All samples were prepared and analyzed within holding times. Although pH was analyzed by the laboratory and the required holding time is specified in the procedure as "immediate", the samples were analyzed upon receipt in the laboratory within 24 hours of sampling; therefore the results were not qualified.

Insert Holding time table below.

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria.

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Volatile Organics and Semi-volatile Organics by GCMS							
Description	Notes and Qualifiers						
Any compounds present in method, trip and field blanks (see Table 2)?	No						
For samples, if results are <5 times the blank or < 10 times blank for common laboratory contaminants then "U" flag data. Qualification also applies to TICs.	None						
Surrogate for method blanks and LCS within limits?	Yes						
Surrogate for samples and MS/MSD within limits? (See Table 3). All samples should be re- analyzed for VOCs? Samples should re- analyzed if >1 BN and/or > AP for BNAs is out. Matrix effects should be established.	Yes						
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes						

Data Usability Summary Report	Project: Davis Howland Oil Company					
Date Completed: November 28, 2012	Completed by: J. Z. Christopher					

Volatile Organics and Semi-volatile Organics by GCMS							
Description	Notes and Qualifiers						
MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then J flag positive data in original sample due to matrix?	No – For volatile organics analyses, the MS and MSD for 2-Chloroethyl vinyl ether were below criteria. Acid preservation (which was used for these samples) is known to degrade this compound; therefore all sample results are qualified R (all are nondetects). For semivolatile organics analyses, the MS and MSD were below criteria for benzidine (below); benzidine was not detected in any of the samples. Sample results for benzidine are qualified with R because LCS and MS/MSD recoveries are 0%.						
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	No – For semivolatile organics analyses, LCS recovery for Benzidine is below critieria at 0%, therefore sample results for benzidine are qualified with R (all are nondetects).						
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	N/A						
Is initial calibration for target compounds <10 %RSD or curve fit?	No. For volatile organics several compounds in one initial calibration standard were slightly above 10% criteria; however, the remaining initial and continuing calibration criteria were met; therefore no results are qualified on this basis.						
Is continuing calibration for target compounds < 20.5%D.	N/A						
Were any samples re-analyzed or diluted (see Table 6)? For any sample re-analysis and dilutions is only one reportable result by flagged?	Yes. Several samples were diluted for volatile organics analyses due to high target compound concentration.						
For TICs are there any system related compounds that should not be reported?	No						
Do field duplicate results show good precision for all compounds except TICs (see Table 7)?	Yes						

General Analytical Methods	
Description	Notes and Qualifiers
Any compounds present in method and field blanks as noted on Table 2?	No.
For samples, if results are <5 times the blank then "U" flag data.	None.
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes
MS/MSD within QC criteria (see Table 4)? QC limits are not applicable to sample results greater than 4 times spike amount.	Yes
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes
Do field duplicate results show good precision for all compounds (see Table 7)?	Yes

Data Usability Summary Report	Project: Davis Howland Oil Company				
Date Completed: November 28, 2012	Completed by: J. Z. Christopher				

Summary of Potential Impacts on Data Usability

Major Concerns

Volatile organics: The use of hydrochloric acid to preserve the samples for VOA analysis caused rejection of 2-chloroethylvinyl ether results. Semivolatile organics: The 0% recovery for benzidine in both the LCS/LCSD and MS/MSD pairs resulted in rejection of the nondetect sample results. **Minor Concerns** None.

Data Usability Summary Report	Project: Davis Howland Oil Company				
Date Completed: November 28, 2012	Completed by: J. Z. Christopher				

 Table 2 - List of Positive Results for Blank Samples

 None

 Table 2A - List of Samples Qualified for Method Blank Contamination

 None

 Table 2B - List of Samples Qualified for Field Blank Contamination

 None

 Table 3 - List of Samples with Surrogates outside Control Limits

 None

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil Fac	Low Limit	High Limit	Sample Qual.
E601-2	MW- 2SMS	MS	2-Chloroethyl Vinyl Ether	ND	20.0	0	1	14	186	R
E601-2	MW- 2SDMS	MSD	2-Chloroethyl Vinyl Ether	ND	20.0	0	1	14	186	R
E625	MW- 2SMS	MS	Benzidine	ND	94.4	0	1	10	144	R
E625	MW- 2SDMS	MSD	Benzidine	ND	94.4	0	1	10	144	R

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

 Table 5 - List LCS Recoveries outside Control Limits

Method	Sample ID	Analyte	Spike Amount	Rec.	Low Limit	High Limit	Samp Qual
E625	RQ1212499-02	Benzidine	100	0	10	144	R
E625	RQ1212837-02	Benzidine	100	0	10	144	R

Data Usability Summary Report	Project: Davis Howland Oil Company				
Date Completed: November 28, 2012	Completed by: J. Z. Christopher				

Table 6 –Samples that were Reanalyzed

Sample ID	Lab ID	Method	Sample Type	Action
MW-10R	R1207074- 008	E601-2	SAMP/DL	Report SAMP results except report DL result for SAMP E flag data only
MW-10RQ	R1207074- 009	E601-2	SAMP/DL	Report SAMP results except report DL result for SAMP E flag data only
MW-16R	R1207074- 004	E601-2	SAMP/DL	Report SAMP results except report DL result for SAMP E flag data only
MW-2R	R1207074- 016	E601-2	SAMP/DL	Report SAMP results except report DL result for SAMP E flag data only
MW-3R	R1207074- 002	E601-2	SAMP/DL	Report SAMP results except report DL result for SAMP E flag data only
MW-8R	R1207074- 017	E601-2	SAMP/DL	Report SAMP results except report DL result for SAMP E flag data only

Table 7 – Summary of Field Duplicate Results

Method	Analyte	Unit	PQL	MW-10R	MW-10RQ	Relative Percent Difference (RPD)	Rating	Samp Qual
E601-2	1,1-DICHLOROETHENE	ug/L	1	15	19	23.5	Good	None
E601-2	CIS-1,2- DICHLOROETHYLENE	ug/L	1	37	39	5.26	Good	None
E601-2	TRICHLOROETHYLENE (TCE)	ug/L	1	1400	1300	7.41	Good	None
SM 4500-H+ B	рН	SU	N/A	7.21	7.17	0.56	Good	None

Key:

A = Analyte

NC = Not Calculated

ND = Not Detected

PQL = Practical Quantitation Limit

RPD = Relative Percent Difference

T = Tentatively Identified Compound

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 7, 2012	Completed by: J. Z. Christopher

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per NYSDEC Division of Environmental Remediation Guidance for the Development of DUSRs (June 1999). Specific criteria for QC limits were obtained from the project QAPP. Compliance with the project QA program is indicated on the in the checklist and tables. Any major or minor concerns affected data usability are summarized listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

ProjectID	Lab Work Order
Davis Howland Oil Company Site Semiannual GW-October 2012	R1207525

Work Orders, Tests and Number of Samples included in this DUSR

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type
R1207525	WG	E624	Purgeable Aromatics by GC/MS	7	N
R1207525	WG	SM 4500-H+B	pH and Temperature	7	N

Table 1 Sample Summary Tables from Electronic Data Deliverable

Work Order	Matrix	Sample ID	Lab ID	Sample Date	Lab QC	MS/ MSD	ID Corrections
R1207525	WG	001 IN	R1207525-001	11/2/12			None
R1207525	WG	002 OUT	R1207525-002	11/2/12			None
R1207525	WG	003 IN	R1207525-003	11/2/12			None
R1207525	WG	004 OUT	R1207525-004	11/2/12			None
R1207525	WQ	005-P1	R1207525-005	11/2/12			None
R1207525	WG	006-P2	R1207525-006	11/2/12			None
R1207525	WG	007-P3	R1207525-007	11/2/12			None
R1207525	WG	008-PW1	R1207525-008	11/2/12			None
R1207525	WG	009-PW2	R1207525-009	11/2/12			None

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes.
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	No. The samples arrived at a temperature greater than 10 degrees C; therefore, all detected VOC results are qualified with J and all nondetected results are qualified with UJ.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ set of samples per day?	Yes – No field duplicate, trip blank, or equipment blank was collected for this SDG; however, they were not required.
All ASP Forms complete?	Yes
Case narrative present and complete?	Yes.

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 7, 2012	Completed by: J. Z. Christopher

Any holding time violations (See table holew)?	No. All complex were prepared and
Any holding time violations (See table below)?	No - All samples were prepared and
	analyzed within holding times. Acid
	preservation (which was used for these
	samples) is known to degrade 2-
	Chloroethyl vinyl ether; therefore all
	sample results for this compound are
	qualified R (all are nondetects). The pH
	of one acid -reserved VOC vial for
	sample 007-P3 was found after analysis
	to be >2; matrix effect is suspected;
	however, the second vial (analyzed at
	dilution) was found to have ph <2 after
	analysis. Results are qualified J/UJ.
	Sample pH was analyzed by the
	laboratory and the required holding time
	is specified in the procedure as
	"immediate" (in the field), the samples
	were stored at 4 deg. C upon receipt at
	the laboratory and analyzed within three
	days of sampling; therefore the results
	were not qualified.

Insert Holding time table below.

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria.

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to <u>Tables</u> List

Volatile Organics by GCMS		
Description	Notes and Qualifiers	
Any compounds present in method, trip and field blanks (see Table 2)?	No	
For samples, if results are <5 times the blank or < 10 times blank for common laboratory contaminants then "U" flag data. Qualification also applies to TICs.	None	
Surrogate for method blanks and LCS within limits?	Yes	
Surrogate for samples and MS/MSD within limits? (See Table 3). All samples should be re- analyzed for VOCs? Samples should re- analyzed if >1 BN and/or > AP for BNAs is out. Matrix effects should be established.	Yes	
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes	

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 7, 2012	Completed by: J. Z. Christopher

Volatile Organics by GCMS	
Description	Notes and Qualifiers
MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then J flag positive data in original sample due to matrix?	Yes. MS/MSD for the analytical batch were performed using another client's sample.
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	N/A
Is initial calibration for target compounds <10 %RSD or curve fit?	Yes
Is continuing calibration for target compounds < 20.5%D.	Yes
Were any samples re-analyzed or diluted (see Table 6)? For any sample re-analysis and dilutions is only one reportable result by flagged?	Yes. Four samples were diluted for volatile organics analyses due to high target compound concentration. (Two of those samples were analyzed only with dilution >1X therefore are not included in Table 6.)
For TICs are there any system related compounds that should not be reported?	No
Do field duplicate results show good precision for all compounds except TICs (see Table 7)?	N/A – No field duplicate samples were required for this SDG.

General Analytical Methods			
Description	Notes and Qualifiers		
Any compounds present in method and field blanks as noted on Table 2?	N/A		
For samples, if results are <5 times the blank then "U" flag data.	N/A		
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	N/A		
MS/MSD within QC criteria (see Table 4)? QC	N/		
limits are not applicable to sample results greater than 4 times spike amount.	а		
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes		
Do field duplicate results show good precision for all compounds (see Table 7)?	N/A – No field duplicate samples were required for this SDG.		

Summary of Potential Impacts on Data Usability

Major Concerns

Volatile organics: The use of hydrochloric acid to preserve the samples for VOA analysis caused rejection of 2-chloroethylvinyl ether results. Samples received by the laboratory above 10 degrees C caused qualification of all VOC results J/UJ. One vial of one sample was found to be at pH >2 after VOC analysis; therefore VOC results for that sample are qualified J/UJ.

Minor Concerns

None.

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 7, 2012	Completed by: J. Z. Christopher

 Table 2 - List of Positive Results for Blank Samples

 None

 Table 2A - List of Samples Qualified for Method Blank Contamination

 None

 Table 2B - List of Samples Qualified for Field Blank Contamination

 None

 Table 3 - List of Samples with Surrogates outside Control Limits

 None

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits None

 Table 5 - List LCS Recoveries outside Control Limits

 None

Table 6 –Samples that were Reanalyzed

Sample ID	Lab ID	Method	Sample Type	Action
006-P2	R1207525-006	E624	SAMP/DL	Report SAMP results except report DL result for SAMP E flag data only
007-P3	R1207525-007	E624	SAMP/DL	Report SAMP results except report DL result for SAMP E flag data only

 Table 7 – Summary of Field Duplicate Results

 None

Key:

A = Analyte

NC = Not Calculated

ND = Not Detected

PQL = Practical Quantitation Limit

RPD = Relative Percent Difference

T = Tentatively Identified Compound

NEW YORK STATE DEPARTMENT OF

ENVIRONMENTAL CONSERVATION

Dear Interested Citizen:

This Fact Sheet is to inform you about the ongoing activities at the Davis Howland site. If you have any questions or would like more information, please do not hesitate to contact:

Mr. William Welling NYSDEC Project Manager 625 Broadway, 12th Floor Albany, N.Y. 12233-7013 (518) 402-9638

or

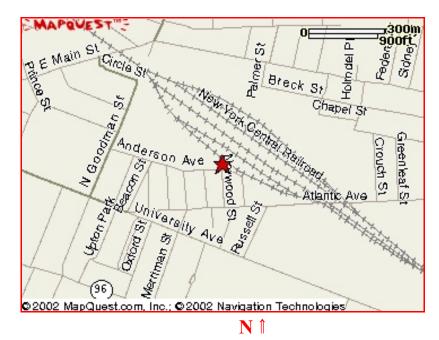
Lisa Silvestri Citizen Participation Specialist NYSDEC - Region 8 Avon 6274 East Avon-Lima Road Avon, NY 14414-9519 (585) 226-5326

For site related health questions, please contact the following New York State Department of Health (NYSDOH) representative:

Mr. Joseph Crua Public Health Specialist NYSDOH Flanigan Square, 547 River Street Troy, NY 12180 (518) 402-7860 or (800) 458-1158, ext. 27860

FACT SHEET

DAVIS HOWLAND OIL CORPORATION


Update of Cleanup Activities at the Davis Howland Oil Corporation Site 200 Anderson Avenue, Rochester, NY

December 2009

Introduction:

The New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH) want to update you on the cleanup at the Davis Howland Oil Corporation (Davis Howland) inactive hazardous waste disposal site. The NYSDEC is cleaning up this site as part of its State Superfund Program to investigate and remediate inactive hazardous waste disposal sites throughout New York State. The State implemented the cleanup plan using money from the 1986 Environmental Quality Bond Act.

The Davis Howland Site (site) is located at 200 Anderson Avenue in the City of Rochaster (see map below). The leanup was necessary to address groundwater and s ils be each the site that has been contaminated with chemicals known as volate organic compounds (SVCCs). OCL are thenicals that can evaporate easily and contain carbon, such as ingredients in paint thinners and some solvents. SVOCs are less volatile than VOCs, and include some of the chemicals found in petroleum fuels, coal products, and tar. The highest contaminant concentrations in soil and groundwater were in the immediate vicinity of the building. Although residents in the area are served with municipal water, cleanup is proceeding to prevent the potential exposure to chemicals in the soil and groundwater.

Davis Howland Site Location Map 200 Anderson Avenue, City of Rochester, County of Monroe

Operation and Maintenance:

As part of current activities at the site, NYSDEC representatives continue to operate and maintain a combined groundwater and soil treatment system that collects and treats contaminated groundwater and soil vapors (air trapped in soil and rock fractures) below the former spill area. The treatment system consists of 47 air injection points (to inject clean air into the ground), 6 soil vapor extraction points (to collect/remove contaminated air from underground), 3 groundwater extraction wells (to collect/remove contaminated groundwater), and 2 bedrock groundwater trench recovery wells (to collect/remove contaminated groundwater).

The remedial treatment system became operational in August 2002 and was monitored and maintained through February 2003 by a remedial construction contractor, the Tyree Organization (Tyree), under NYSDEC supervision. During this time, the treatment system was determined to be satisfactorily removing contamination from the groundwater and soil. In April 2003, the construction contract between the NYSDEC and Tyree was determined to be substantially complete. NYSDEC then contracted the engineering services of Ecology & Environment Engineers (E&E) from Buffalo to restart and operate the treatment system. E&E subsequently subcontracted Niagara Environmental Dynamics, Inc. (NEDI), to restart the treatment system in May 2003 and perform future operation, monitoring, and maintenance responsibilities. Currently, treated water is being sampled, monitored and discharged under permit to the existing Monroe County Department of Environmental Services sewer line along Anderson Avenue. Treated air is being sampled, monitored and discharged in accordance with NYS guidelines. Operation, monitoring, and maintenance will be performed on the system until such time it is determined that continued operation would not result in further significant groundwater and soil contaminant removal.

What Happens Next:

E&E and NEDI are currently under contract to operate and maintain the treatment system until April 2004. Groundwater contaminant levels will continue to be monitored and reported to the NYSDEC and NYSDOH during that time frame. Groundwater samples will be collected period cally tode crimine contaminant level trends, which are anticipated to decrease over time. Once all of the data have been collected and reviewed, he NYSDEC will evaluate the feasibility to continue operating the treatment system.

For More Information:

The Rochester Public Library (Rundell Branch) has been designated as the local document repository in order to provide you with access to project information. Documents regarding past site investigations, construction, and O&M activities at the Davis Howland site are available for review at:

Rochester Public Library	and at:	NYSDEC's Region 8 Avon Office
Rundell Branch		6274 East Avon-Lima Road
115 South Avenue		Avon, NY 14414
Rochester, NY 14604-1896		Hours: Monday - Friday 8:30am - 4:45pm
Hours: Monday 9am-9pm		For an appointment, contact Lisa Silvestri at
Tuesday & Wednesday 9am-6pm		(585) 226-5326.
Thursday 9am-9pm		
Friday 9am-6pm		
(585) 428-7300		

The NYSDEC and the NYSDOH will keep you informed throughout the remedial program. Your understanding and involvement in this project will help to ensure an effective remedial program. You are encouraged to contact the people listed on the front of this fact sheet at any time with questions, comments or concerns. Because our mailing list includes property owners of businesses and apartments, we encourage you and the building owners to share this fact sheet with your neighbors and tenants, and/or post this fact sheet in a prominent area of your building for tenants, employees, or visitors to view.