2020 Periodic Review Report Davis-Howland Oil Corporation Site NYSDEC Site No. 828088 City of Rochester Monroe County, New York

March 2021

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

DEPARTMENT OF ENVIRONMENTAL REMEDIATION 625 Broadway, 12th FLOOR Albany, New York 12233-7013

Prepared by:

ECOLOGY AND ENVIRONMENT ENGINEERING AND GEOLOGY, P.C.

368 Pleasant View Drive Lancaster, New York 14086

able of Contents

Section	·	Page
	Enclosure 1	xi
1	Introduction and Background 1.1 Introduction 1.2 Site Description	1-1
2	Evaluation of Site Institutional and Engineering Controls 2.1 Institutional Controls 2.2 Engineering Controls	2-1
3	Soil Vapor Intrusion Sampling	3-1
4	In Situ Chemical-Oxidation Pilot Study	
5	General Status of Remedial Systems 5.1 SSD Systems 5.2 Groundwater Monitoring Well Network Inspection	5-1
6	2020 Groundwater Sampling Summary. 6.1 Field Activities 6.1.1 Monitoring Well Sampling. 6.1.2 Quality Assurance/Quality Control Review. 6.1.3 Investigation-Derived Waste Management 6.1.4 Private Well Sampling. 6.2 Site Hydrogeology. 6.2.1 Overburden Aquifer 6.2.2 Bedrock Aquifer. 6.3 Analytical Results 6.3.1 Overburden Groundwater Results 6.3.2 Bedrock Groundwater Results 6.3.3 Comparison with Historical Analytical Data	6-1 6-4 6-7 6-7 6-7 6-8 6-8 6-9 6-9
7	Actions to Support Eventual Site Closure	7-1

Table of Contents (cont.)

Section			Page
	7.1 7.2	Remedial System Optimization and System Decommissioning In Situ Chem-Ox Pilot Study	7-2
	7.3	Recommendations	7-2
8	Anı	nual Site Management Costs	8-1
9	Dej	partment or Local Public Reporting	9-1
	9.1 9.2	NYSDEC Fact Sheet	
10	Ref	ferences	10-1
Append	xib		
Α	Мо	nitoring Well Purge Records	A-1
В	Dat	ta Usability Summary Reports	B-1
С	Co	unty of Monroe Discharge Permit	C-1
D		E Requests to Monroe County for On-site Disposa DW Water	
E	Lak	poratory Reports	E-1

ist of Tables

Table		Page
3-1	Summary of Positive Analytical Results for SVI Samples, Davis-Howland Oil Corporation, Rochester, New York	3-3
5-1	Summary of 2020 Well Inspection, Davis-Howland Oil Corporation Site	5-2
6-1	October 2020 Annual Groundwater Elevations, Davis-Howland Oil Corporation Site	6-2
6-2	2020 One-Month Post-Injection Bedrock Groundwater Elevations, Davis-Howland Oil Corporation Site	6-3
6-3	October 2020 Annual Groundwater Quality Field Measurements, Davis-Howland Oil Corporation Site	6-5
6-4	2020 One-Month Post-Injection Bedrock Groundwater Quality Field Measurements, Davis-Howland Oil Corporation Site	6-6
6-5	Summary of September 2020 Analytical Results for Private Residence Samples	6-10
6-6	Summary of October 2020 Annual Positive VOC Analytical Results for Groundwater Samples from Overburden Monitoring Wells, Davis-Howland Oil Corporation Site, Rochester, NY	6-11
6-7	Summary of October 2020 Annual Positive VOC, Alkalinity, and Sulfate Analytical Results for Groundwater Samples from Bedrock Monitoring Wells, Davis-Howland Oil Corporation Site, Rochester, NY	6-13
6-8	Summary of December 2020 One-Month Post-Injection Positive VOC Analytical Results for Groundwater Samples from Bedrock Monitoring Wells, Davis-Howland Oil Corporation Site, Rochester, NY	6-15
6-9	Historical Total Chlorinated VOCs Results for Monitoring Wells	6-29
8-1	2020 Site Management Costs for the Davis-Howland Oil Corporation Site	8-1

ist of Figures

Figure		Page
1-1	Site Location Map, Davis-Howland Oil Corporation	1-3
1-2	Site Layout, Davis-Howland Oil Corporation Site	1-5
3-1	March 2020 SVI Sample Locations	3-1
6-1	Groundwater Elevation Isopleths, Overburden and Bedrock Monitoring Wells, October 2020 Annual Sampling	6-17
6-2	Groundwater Elevation Isopleths, Bedrock Monitoring Wells, December 2020 One-Month Post-Injection Sampling	6-19
6-3	Total VOCs in Overburden Groundwater, October 2020, Davis-Howland Oil Corporation Site Rochester, New York	6-23
6-4	Total VOCs in Bedrock Groundwater, October 2020 Davis-Howland Oil Corporation Site Rochester, New York	6-25
6-5	Total VOCs Bedrock Groundwater, December 2020, Davis-Howland Oil Corporation Site Rochester, New York	6-27

ist of Abbreviations and Acronyms

AOC area of concern

AS air sparge

BTEX benzene, toluene, ethyl benzene, and xylene

chem-ox chemical-oxidation

cVOC chlorinated aliphatic (straight-chained) volatile organic compound

DHOC Davis-Howland Oil Corporation

DO dissolved oxygen

DUSR Data Usability Summary Report

E & E Ecology and Environment Engineering and Geology, P.C

EC engineering controls

EPA (United States) Environmental Protection Agency

HDPE high-density polyethylene

IC institutional controls

IDW investigation-derived waste LaBella LaBella Associates, DPC

μg/L micrograms per liter

μg/m³ micrograms per cubic meter

MS/MSD matrix spike/matrix spike duplicate

MW monitoring well

NYCRR New York Codes, Rules, and Regulations

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O&M operations and management

OM&M operations, maintenance, and monitoring

ORP oxidation-reduction potential
Patriot Patriot Design & Consulting

PCE perchloroethylene or tetrachloroethylene

List of Abbreviations and Acronyms (cont.)

PPE personal protective equipment

PRR Periodic Review Report

QA/QC quality assurance/quality control

ROD record of decision

RSO Remedial Site Optimization

SCG standards, criteria, and guidance value

Site Davis-Howland Oil Corporation (DHOC) Site

SMP Site Management Plan

SSD sub-slab depressurization

SVE soil vapor extraction

TCA trichloroethane
TCE trichloroethene

TestAmerica Eurofins TestAmerica Laboratories, Inc.

VOC volatile organic compound

Enclosure 1

Engineering Controls – Standby Consultant/Contractor Certification Form

Davis-Howland Oil Corporation Site NYSDEC Site No. 828088

Enclosure 1 Engineering Controls - Standby Consultant/Contractor Certification Form

		Details		Box 1
Sit	e No. 828088			
Sit	e Name Davis-Howland Oil Corporation			
Cit Co	e Address: 200 ANDERSON AVENUE Zi y/Town: Rochester ounty: Monroe e Acreage: 2.0	ip Code: 14607		
Re	porting Period: December 31, 2019 to December	er 31, 2020		
			YES	NO
1.	Is the information above correct?		X	
	If NO, include handwritten above or on a separ	rate sheet.		
2.	To your knowledge has some or all of the site merged, or undergone a tax map amendment			x
3.	To your knowledge has there been any change Reporting Period (see 6NYCRR 375-1.11(d))?			\mathbf{x}
4.	To your knowledge have any federal, state, an discharge) been issued for or at the property d		×	
	County of Monroe discharge permit is attachme If you answered YES to questions 2 thru 4, that documentation has been previously su	include documentation or evidend		
5.	To your knowledge is the site currently underg	oing development?		$\bar{\mathbf{x}}$
				Box 2
			YES	NO
6.	Is the current site use consistent with the use(s Restricted-Residential, Commercial, and Indus		X	
7.	Are all ICs/ECs in place and functioning as des	signed?	X	
2017	s ICs/ECs certification does not include the sub- Consent Orders, the Department has no obligat cannot, and does not, certify that the vapor mitig	tion to maintain the SSDS in each bu	ıilding; the	refore,
DE	C PM regarding the development of a Correcti	ve Measures Work Plan to address	these issu	ies.
Sig	nature of Standby Consultant/Contractor	 Date	-	

SITE NO. 828088 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

106.84-1-11 Goodman Yard LLC

Soil Management Plan

Monitoring Plan

Site Management Plan

O&M Plan

The site has two records of decision (RODs) dating from March 1997 and March 1998.

106.84-1-4.002 Gary I & Marcia Stern

Soil Management Plan

Monitoring Plan

Site Management Plan

O&M Plan

The site has two records of decision (RODs) dating from March 1997 and March 1998.

106.84-1-5 John Nacca, Esq.

Soil Management Plan Site Management Plan

O&M Plan

Ground Water Use Restriction

Landuse Restriction Monitoring Plan IC/EC Plan

An Environmental Easement was signed on 5/11/2018. The Controls requires:

No disturbance that threatens the integrity of the Engineering controls, no disturbance of the engineering controls, adherence to the Site Management Plan, allowance of access by the NYSDEC, land use is to be used for industrial use only, and no groundwater water is to be used for drinking wate unless properly treated.

106.84-1-6 John Nacca

Ground Water Use Restriction

Landuse Restriction

IC/EC Plan

Monitoring Plan

Site Management Plan

An Environmental Easement was signed on 5/11/2018. The Controls requires:

No disturbance that threatens the integrity of the Engineering controls, no distrubance of the engineering controls, adherence to the Site Management Plan, allowance of access by the NYSDEC, land use is to be used for industrial use only, and no groundwater water is to be used for drinking water unless properly treated.

106.84-1-7 Anderson Acquisitions, Ilc

Soil Management Plan Site Management Plan

O&M Plan

Ground Water Use Restriction

Landuse Restriction Monitoring Plan IC/EC Plan

Environmental Easement originally signed on July 27, 2017. Updated on Feb. 4, 2019.

107.77-1-28.1

New York Central Lines, CSXT

The site has two records of decision (RODs) dating from March 1997 and March 1998.

121.28-2-4

Allan Stern

Monitoring Plan
Site Management Plan

O&M Plan

The site has two records of decision (RODs) dating from March 1997 and March 1998.

121.28-2-5

Allan Stern

Monitoring Plan
Site Management Plan

O&M Plan

The site has two records of decision (RODs) dating from March 1997 and March 1998.

Box 4

Description of Engineering Controls

Parcel

Engineering Control

106.84-1-11

Monitoring Wells

In 2018, it was shown that the groundwater treatment system and the air sparge/soil vapor extraction system had reached their performance limits whereby they were no longer cleaning up the groundwater. The treatmestystems were shutdown and decommissioned in 2018. Groundwater monitoring wells are the only remaining engineering control.

106.84-1-4.002

Monitoring Wells

In 2018, it was shown that the groundwater treatment system and the air sparge/soil vapor extraction system had reached their performance limits whereby they were no longer cleaning up the groundwater. The treatmestystems were shutdown and decommissioned in 2018. Groundwater monitoring wells are the only remaining engineering control.

106.84-1-5

Vapor Mitigation

A sub-slab depressurization system is the only remaining engineering control.

106.84-1-6

Vapor Mitigation Monitoring Wells

Groundwater monitoring wells and a sub-slab depressurization system are the only remaining engineering control.

106.84-1-7

Vapor Mitigation

A sub-slab depressurization system is the only remaining engineering control.

107.77-1-28.1

Monitoring Wells

In 2018, it was shown that the groundwater treatment system and the air sparge/soil vapor extraction system had reached their performance limits whereby they were no longer cleaning up the groundwater. The treatmestystems were shutdown and decommissioned in 2018. Groundwater monitoring wells and piezometers are the only remaining engineering control.

121.28-2-5

Monitoring Wells

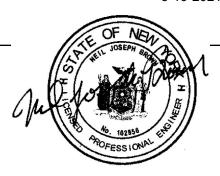
Monitoring wells are the only engineering control on this property.

Box 5

	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the directive reviewed by, the party making the certification, including data and material prepared contractors for the current certifying period, if any; 		
	 b) to the best of my knowledge and belief, the work and conclusions described i are in accordance with the requirements of the site remedial program, and gener engineering practices; and the information presented is accurate and compete. 		
	engineering practices, and the information presented is accurate and compete.	YES	NO
		x	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that following statements are true:		
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is since the date that the Control was put in-place, or was last approved by the Dep		
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	ealth and
	(c) nothing has occurred that would constitute a failure to comply with the Site M or equivalent if no Site Management Plan exists.	lanagen	nent Plan,
	&E's ICs/ECs certification does not include the sub-slab depressurization systems SSDSs). Pursuant to the 2017 Consent Orders, the Department has no obligation to	YES	NO
m	naintain the SSDS in each building; therefore, E&E cannot, and does not, certify that the apor mitigation systems are in place and functioning as designed.	X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and contact the DEC PM regarding the development of a Corrective Measures Work Plan to address the	oco icci	100
	DEC PM regarding the development of a Corrective Measures work Plan to address th	ese issi	ies.
	Signature of Standby Consultant/Contractor Date		

IC/EC CERTIFICATIONS

Professional Engineer Signature


I certify that all information in Boxes 2 through 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

1	Neil J. Brown	at	368 Pleasant View Drive	
	print name			
			Lancaster, New York 14086	
	-			
			(print husinges address)	,
			(print business address)	
am ce	rtifying as a Professional Engin	eer.		

Signature of Professional Engineer

Stamp (Required for PE)

Date 3-19-2021

Introduction and Background

Introduction 1.1

This Periodic Review Report (PRR) provides information on the operations, maintenance, monitoring, compliance, operating costs, and pilot study at the Davis-Howland Oil Corporation (DHOC) Site (hereinafter referred to as the "Site") during calendar year 2020. This PRR also provides information concerning the institutional controls (ICs) and engineering controls (ECs) facilitating the remedial cleanup of the Site.

This PRR was prepared by Ecology and Environment Engineering and Geology, P.C. (E & E) in accordance with the requirements in the Site Management Plan, Former Davis-Howland Oil Corporation Site, NYSDEC Site No. 8-28-088 (EEEPC 2014). This PRR also addresses comments from the New York State Department of Environmental Conservation (NYSDEC) contained in their email dated March 16, 2021.

Site Description

The Site was used from 1942 to 1972 to produce industrial chemicals, oils, greases, and other lubricants. From 1972 to 1994, the Site was used by DHOC to process and recycle waste oil, grease, and other lubricants. In 1994, DHOC closed and manufacturing and product-processing operations ceased.

Between 1974 and the early 1990s, NYSDEC received reports of releases of materials at the Site, including waste oil, mineral oil, hydrochloric acid, and sulfuric acid. However, no single incident has been identified that can account for a majority of the contamination found at the Site. NYSDEC inspected the Site in June 1991 and found several hundred drums of oils, solvents, and other materials. Some of the drums were leaking, and several areas with stained surficial soil were identified.

In 1993, the Site was listed on the New York State Inactive Hazardous Waste Disposal Site Remedial Program Registry as a Class 2 Site. The Site was defined as a single parcel (ID No. 106.84-1-6) located at 192 through 200 Anderson Avenue in the city of Rochester, Monroe County, New York (see Figure 1-1). Documentation in NYSDEC's Environmental Site Remediation Database defines the Site as encompassing the parcels described as 190 through 220 Anderson Avenue and the portion of 176 Anderson Avenue immediately north and west of 190 through 220 Anderson Avenue. After site boundary modifications in 2017, the site now

1 Introduction and Background

includes these additional parcels: 183 through 185 Anderson Avenue, 188 Anderson Avenue, 15 through 17 Norwood Avenue, 360 North Goodman, and 406 Atlantic Avenue.

Remedial actions have been performed and remedial systems (air sparge [AS]/soil vapor extraction [SVE] and groundwater treatment systems) were installed at the Site, specifically at the parcel located at 192 through 200 Anderson Avenue, the adjacent parcels at 190 and 220 Anderson Avenue, the portion of 176 Anderson Avenue immediately north and west of 190 through 220 Anderson Avenue, a portion of the CSX Railroad right-of-way to the north of 188 Anderson Avenue, and a small area south of Anderson Avenue encompassing the northern portions of 183 through 185 Anderson Avenue and 15 through 17 Norwood Avenue.

The groundwater treatment and AS/SVE systems were shut off in 2016 when it was determined that the treatment systems had reached asymptotic conditions and were no longer effectively removing VOC contamination. In 2018, the groundwater treatment and AS/SVE systems were decommissioned and sub-slab depressurization (SSD) systems were installed at 190 Anderson Avenue, 192 through 200 Anderson Avenue, and 220 Anderson Avenue. These SSD systems were intended to mitigate potential sub-slab soil vapors that may enter each building via soil vapor intrusion, while also reducing operation costs by switching from AS/SVE systems to SSD systems. These SSD systems were installed between August 6 and August 13, 2018, in accordance with the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York dated October 2006, as well as subsequent updates and the SSD system Work Plan dated April 2018. Following installation, indoor and outdoor air sampling was performed on December 11, 2018. These samples did not detect volatile organic compound (VOC) concentrations in indoor air that exceed the New York State Department of Health (NYSDOH) Air Guidance Values nor the United States Environmental Protection Agency (EPA) Building Assessment and Survey Evaluation Database 90th percentile values.

The approximately 2-acre Site is located in an area that includes residences and commercial and industrial facilities. Figure 1-2 presents the general Site layout. No significant surface water is located in the immediate vicinity of the Site.

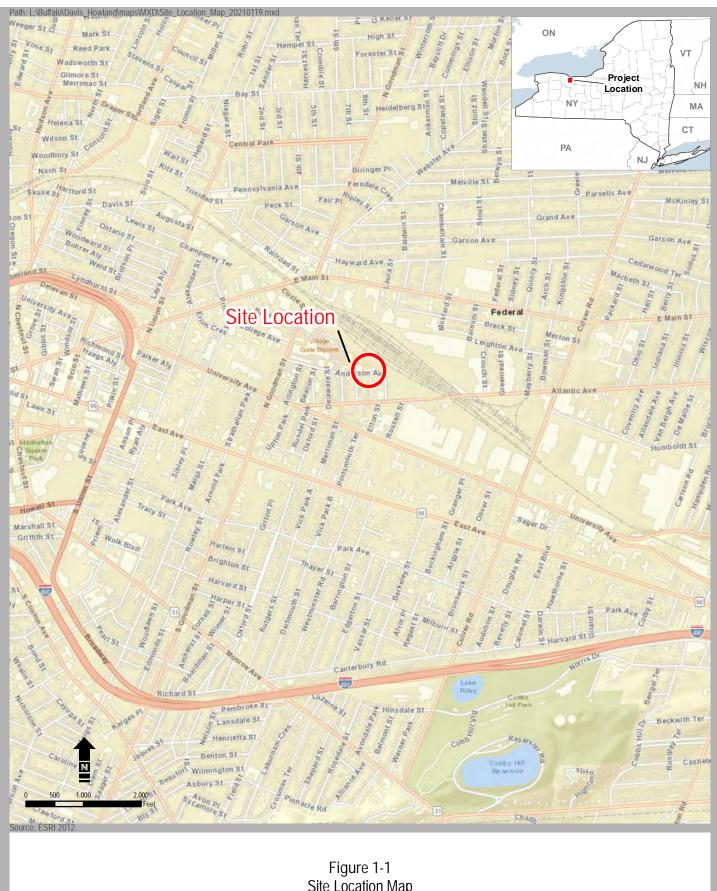
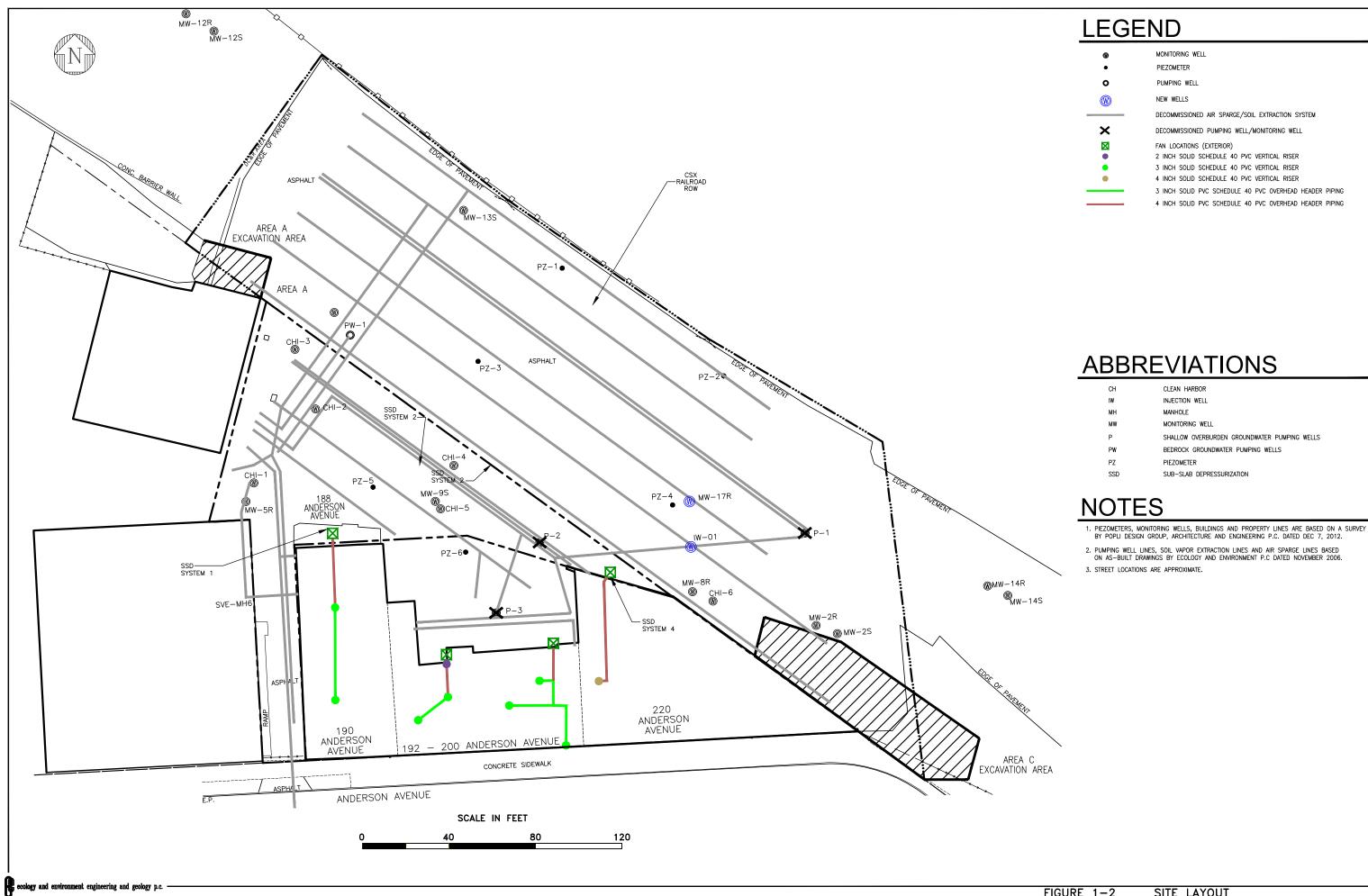



Figure 1-1 Site Location Map Davis-Howland Oil Corporation Rochester, NY

Evaluation of Site Institutional and Engineering Controls

Institutional Controls

No ICs were required by the two records of decision (RODs) issued for the Site; however, in accordance with 6 New York Codes, Rules, and Regulations (NYCRR) Part 375 regulations, NYSDEC required that ICs be applied to the DHOC Site. Programmatically, the ICs that are necessary to provide for the effectiveness of this phase of the remedial action include a Site Management Plan (SMP) and environmental easements. The following are currently listed as ICs for the Site on Enclosure 1 – Institutional Controls – Standby Consultant/Contractor Certification Form included with this report:

- SMP
- Soils Management Plan
- Monitoring Plan
- Operations and Management (O&M) Plan
- Ground Water Use Restriction
- Land Use Restriction
- IC/EC Plan

The current SMP (EEEPC 2014) includes a soils management plan, monitoring plan, and O&M plan.

An environmental notice was filed and recorded with the Monroe County Clerk on August 15, 2013, in Book 11290, pages 171-176, as a record that informs future owners of development restrictions on the property due to environmental concerns. The ICs require that there be no disturbance that threatens the integrity of the ECs, no disturbance of the ECs, adherence to the SMP, allowance of access by NYSDEC, that land be used for industrial use only, and that no groundwater is to be used for drinking water unless properly treated. A copy of the environmental notice for the Site is provided in Appendix D of the SMP.

An environmental easement for 190 Anderson Avenue (parcel 106.84-1-7) was filed and recorded with the Monroe County Clerk on July 27, 2017, and updated

2 Evaluation of Site Institutional and Engineering Controls

on February 4, 2019. An environmental easement for 192 through 220 Anderson Avenue (parcels 106.84-1-6 and 106-84-1-5) was filed and recorded with the Monroe County Clerk on May 3, 2018. Copies of the environmental easements for the Site are provided in Appendix D of the SMP.

Access agreements between NYSDEC and the property owners for 183 through 185 Anderson Avenue, 188 Anderson Avenue, 15 through 17 Norwood Avenue, and 400 North Goodman were signed on August 2, 2019.

The ICs at the Site restrict disturbance of on-site residual contaminated material. Current and future Site owners are required to perform soil characterization and disposal/reuse activities in accordance with NYSDEC regulations if residual contaminated soil is disturbed or excavated.

In 2020, the Site was in compliance with the ICs required by the SMP:

- The ICs employed at the Site are unchanged from the date the control was put in place and are compliant with NYSDEC-approved modifications;
- Nothing has occurred that would impair the ability of the ICs to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with Site-specific requirements of the SMP;
- Access to the Site will continue to be provided to NYSDEC to evaluate the remedy, including access to evaluate the continued maintenance of the ICs;
 and
- Use of the Site is in compliance with the environmental easements.

2.2 Engineering Controls

The ECs that support remedial operations at the Site are consistent with the SMP regarding operations, maintenance, and monitoring (OM&M) of the Site. The following are currently listed as ECs for the Site on Enclosure 1 – Engineering Controls – Standby Consultant/Contractor Certification Form included with this report:

- A groundwater monitoring well network consisting of both overburden and bedrock monitoring wells; and
- SSD systems were installed in three buildings: 190 Anderson Avenue, 192-220 Anderson Avenue, and 220 Anderson Avenue.

The decision to shut down and decommission the active treatment systems was made by NYSDEC on February 26, 2018 (NYSDEC 2018). This decision was made based on the results of the Remedial Site Optimization (RSO) evaluations performed in 2016 and 2017, which indicated that the remedial systems, as installed, were no longer effective in removing the remaining contamination at the Site. The groundwater treatment system (treatment trailer) and AS/SVE system

2 Evaluation of Site Institutional and Engineering Controls

(interior piping and AS/SVE points) were decommissioned between July and September 2018. The monitoring well system and piezometers remain in place; the status of each well in the monitoring network is provided in Section 5. The groundwater pumping wells, exterior below-grade AS points, lines, and trenches remain in place but are no longer operational. Further discussion regarding the decommissioning of the treatment system is provided in Section 7.1. Long-term groundwater monitoring of the well system will continue in order to evaluate the remaining VOC contamination.

Following the decommissioning of the active remedial systems, SSD systems were installed at 190 Anderson Avenue, 192 through 200 Anderson Avenue, and 220 Anderson Avenue in 2018. Locations of these systems are shown on Figure 1-2. These SSD systems were intended to mitigate potential sub-slab soil vapors that may enter each building via soil vapor intrusion, while also reducing operation costs by switching from AS/SVE systems to SSD systems. These SSD systems were installed between August 6 and August 13, 2018, in accordance with the *NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York* dated October 2006, as well as subsequent updates and the SSD system Work Plan dated April 2018. Following installation, indoor and outdoor air sampling was performed on December 11, 2018. These samples did not detect VOC concentrations in indoor air that exceed the NYSDOH Air Guidance Values nor the EPA Building Assessment and Survey Evaluation Database 90th percentile values.

Indoor and outdoor air sampling was performed at and is discussed in Section 3.

3

Soil Vapor Intrusion Sampling

On March 26 and March 27, 2020, E & E performed SVI sampling at two structures west of the Site, as requested by NYSDEC and NYSDOH. The structures are located at (see Figure 3-1). One indoor air (BA005), one duplicate indoor air (BA006Q), and one sub-slab (SS004) sample were collected in the basement of the structure at . One indoor air (BA001) and one sub-slab (SS002) sample were collected from the slab-on-grade . One outdoor air (OD003) sample was collected between the two structures.

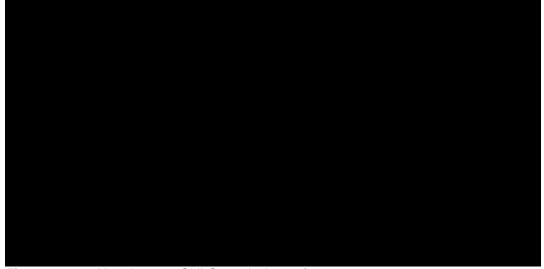


Figure 3-1 March 2020 SVI Sample Locations

E & E delivered the samples via mail carrier to NYSDEC's call-out laboratory, Eurofins TestAmerica Laboratories, Inc. (TestAmerica), in Knoxville, Tennessee. The samples were analyzed for VOCs using EPA Method TO-15. E & E validated the data and prepared a Data Usability Summary Report (DUSR).

The sample results were screened against the ambient air guideline values set forth in the October 2006 NYSDOH *Guidance for Evaluating Soil Vapor Intrusion in the State of New York* and subsequent updates. The indoor and outdoor sample results did not exceed the ambient indoor air screening criteria. NYSDOH does not provide guideline values for sub-slab vapor concentrations; however, the detected tetrachloroethylene (PCE) concentration for SS004 (310 micrograms per

3 Soil Vapor Intrusion Sampling

cubic meter [$\mu g/m^3$]) exceeded the ambient indoor air guideline value of 30 $\mu g/m^3$ and the trichloroethene (TCE) concentrations for SS002 (1,800 $\mu g/m^3$) and SS004 (570 $\mu g/m^3$) exceeded the ambient indoor air guideline value of 2 $\mu g/m^3$. The analytical results for each sample location are presented in Table 3-1.

Photos, the analytical report, DUSR, and questionnaire and building inventories from the SVI sampling are provided in the 2020 SVI Sampling Report (E & E 2020a). A second round of SVI sampling is tentatively planned to be conducted at the structures during the 2021/2022 heating season.

Table 3-1 Summary of Positive Analytical Results for SVI Samples Davis-Howland Oil Corporation, Rochester, New York

	Location ID:	BA001	BA005	BA006Q	OD003	SS002	SS004
	Sample Name:	BA001	BA005	BA006Q	OD003	SS002	SS004
	Date:	3/27/2020	3/27/2020	3/27/2020	3/27/2020	3/27/2020	3/27/2020
	Screening						
Analyte	Criteria ⁽¹⁾						
Volatile Organic Compounds by Method TO-15 (μg/m³)							
1,1,1-Trichloroethane	NA	0.20 U	1.1	0.91	0.20 U	37	670
1,1-Dichloroethane	NA	0.028 U	0.028 U	0.028 U	0.028 U	2.2 U	210
1,2,4-Trimethylbenzene	NA	0.098 U	0.098 U	0.42	0.098 U	7.5 U	2.5 U
1,4-Dioxane (P-Dioxane)	NA	5.6	0.11 U	0.11 U	0.11 U	8.3 U	2.7 U
2,2,4-Trimethylpentane	NA	0.037 U	1.3	1.3	0.037 U	2.9 U	0.93 U
Benzene	NA	0.48	0.70	0.58	0.46	2.0 U	0.64 U
Carbon Tetrachloride	NA	0.49	0.47	0.53	0.49	3.4 U	1.1 U
Chloromethane	NA	1.5	1.6	1.3	1.4	10 U	3.4 U
Cis-1,2-Dichloroethylene	NA	0.040 U	0.39	0.53	0.040 U	1900	320
Cyclohexane	NA	0.079 U	0.079 U	0.079 U	0.079 U	76	2.0 U
Dichlorodifluoromethane	NA	2.8	2.9	2.8	2.9	5.3 U	1.7 U
Ethanol	NA	20	240	250	9.1	130 U	120
Ethylbenzene	NA	0.056 U	1.3	1.1	0.056 U	28	11
m,p-Xylene	NA	0.47	4.9	4.3	0.13 U	120	52
Methyl Ethyl Ketone (2-Butanone)	NA	10	5.3	4.4	1.5	16 U	5.4 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NA	0.22 U	0.22 U	0.82	0.22 U	17 U	5.5 U
Methylene Chloride	60	0.56 U	3.4 J	27 J	0.56 U	43 U	14 U
n-Hexane	NA	0.92	1.1	1.6	0.79	140	22
O-Xylene (1,2-Dimethylbenzene)	NA	0.065 U	1.4	1.2	0.065 U	40	16
Tetrachloroethylene (PCE)	30	0.047 U	0.57	1.1	0.047 U	3.6 U	310
Toluene	NA	0.85	8.9	9.2	0.66	160	71
Trans-1,2-Dichloroethene	NA	0.028 U	0.028 U	0.028 U	0.028 U	2.1 U	10
Trichloroethylene (TCE)	2	0.63	0.57	0.76	0.032 U	1800	570
Trichlorofluoromethane	NA	1.4	3.1	4.5	1.4	4.7 U	1.5 U

Key:

Qualifiers

J = Estimated value

U = Not detected (method detection limit shown)

Notes

N/A = Not regulated/no available criteria

 $\mu g/m^3 = Micrograms per meter cubed$

Bold values denote positive hits.

Exceeds soil vapor intrusion ambient air guideline.

1. New York State Department of Health, Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 and subsequent updates.

4

In Situ Chemical-Oxidation Pilot Study

A pilot study was performed at the Site in the fall of 2020 with the objective to determine the effectiveness of in situ chemical-oxidation (chem-ox) treatment to decrease VOC concentrations in the bedrock groundwater in the vicinity of monitoring well (MW)-8R.

4.1 Pilot Study Field Activities

Pilot study field activities to date include the following:

- **September 14, 2020 through September 18, 2020** Installation and development of two new bedrock wells in the vicinity of MW-8R (MW-17R and IW-01);
- **September 25, 2020** Slug testing of MW-8R, MW-17R, and IW-01 was conducted;
- October 12, 2020 through October 15, 2020 2020 annual/baseline ground-water sampling for VOCs, sulfate, and alkalinity, and collection of field parameters (temperature, pH, conductivity, oxidation-reduction potential [ORP], dissolved oxygen [DO]) at the 10 bedrock monitoring wells (PW-1, MW-2R, MW-5R, MW-8R, MW-10R, MW-14R, MW-15R, MW-16R, and newly installed MW-17R and IW-01), and 2020 annual groundwater sampling for VOCs and collection of field parameters (temperature, pH, conductivity, ORP, DO) at the five overburden monitoring wells;
- October 27, 2020 through October 29, 2020 Injection of Regenesis PersulfOx reagent into MW-17R and MW-8R;
- November 30, 2020 through December 3, 2020 One-month post-injection groundwater sampling for VOCs, sulfate, and alkalinity and collection of field parameters at the ten bedrock monitoring wells; and
- **December 8, 2020** Survey of MW-17R and IW-01.

Future pilot study activities include post-injection groundwater sampling of bedrock wells for VOCs, alkalinity, and sulfate at three months and six months.

4 In Situ Chemical-Oxidation Pilot Study

E & E's subcontractor, LaBella Associates, DPC (LaBella), of Rochester, New York, installed MW-17R and IW-01 and performed injection of the chem-ox reagent into MW-17R and MW-8R. E & E developed MW-17R and IW-01 and conducted 2020 annual/baseline groundwater sampling and one-month post-injection groundwater sampling; and collected field parameters during injection. E & E's subcontractor, Patriot Design & Consulting (Patriot), of Rochester, New York, a service-disabled veteran-owned small business, surveyed the locations of MW-17R and IW-01. E & E was on-site to perform oversight of the subcontractors' field activities. Analytical services were provided by NYSDEC's call-out laboratory, TestAmerica.

Field activities were conducted by personnel wearing Level D personal protective equipment (PPE) during the work. Details of the pilot study activities are provided in the pilot study summary report (E & E 2021). Analytical results are presented and discussed in Section 6.

5

General Status of Remedial Systems

5.1 SSD Systems

As part of E & E's scope of work for the Site, monitoring of the SSD systems was not required. SSD system operation and maintenance is the responsibility of the property owner. Therefore, conclusions as to their operation and effectiveness cannot be made for the reporting year of 2020.

5.2 Groundwater Monitoring Well Network Inspection

E & E conducted inspections of the overburden and bedrock groundwater monitoring wells and piezometers in 2020. The purpose of these inspections was to document the physical condition of the wells and identify maintenance actions required to keep the groundwater monitoring well network operational for sampling purposes. A summary of the monitoring well inspection findings is presented in Table 5-1.

Table 5-1 Summary of 2020 Well Inspection, Former Davis-Howland Oil Corporation Site

Well Identification	Date Inspection Documented	Well Casing ID (inches)	Inspection Observations
MW-1S	12/8/2020	2	Bolts do not fasten well cap.
MW-2S	10/15/2020	2	Missing well cap bolts; gasket damaged.
MW-9S	10/15/2020	2	Missing well cap bolts; gasket damaged.
MW-12S	10/12/2020	2	Could not be sampled; covered by gravel/debris.
MW-13S	12/8/2020	2	Could not be sampled; covered with jersey barrier/debris.
MW-14S	10/15/2020	2	Surrounded by overgrowth; missing well cap bolts; gasket damaged.
MW-2R	10/13/2020	4	Missing well cap bolts and J plug lock.
MW-5R	10/13/2020	4	Missing well cap bolts and J plug lock.
MW-8R	10/12/2020	4	Missing well cap bolts.
MW-10R	12/8/2020	4	Missing well cap bolt.
MW-12R	10/12/2020	4	Could not be sampled; covered by gravel/debris.
MW-14R	12/8/2020	4	Missing well cap bolts.
MW-15R	10/14/2020	4	Missing well cap bolts and J plug lock.
MW-16R	10/14/2020	4	Missing well cap lock; concrete pad mis-shapen around curb box; curb box damaged.
MW-17R	11/8/2020	4	No issues.
IW-01	11/8/2020	4	No issues.
PZ-1	12/8/2020	1	Could not be sampled; covered with jersey barrier.
PZ-2	12/8/2020	1	Could not be sampled; covered with jersey barrier.
PZ-3	12/8/2020	1	Missing well cap bolts.
PZ-4	12/8/2020	1	Could not be sampled; covered with dirt/stone debris pile.
PW-1	10/15/2020	6	Centrifugal pump and transducer with wires are in well.

Key:

ID = inner diameter

6

2020 Groundwater Sampling Summary

This section discusses the groundwater monitoring activities performed at the Site in 2020 and compares the results to historical data.

Field activities were conducted according to the Groundwater Monitoring and Long-term Well Sampling Procedures included as Appendix J of the Final SMP (EEEPC 2014). Sampling locations are identified on Figure 1-2.

6.1 Field Activities

6.1.1 Monitoring Well Sampling

The 2020 annual groundwater sampling event was conducted from October 12, 2020, through October 15, 2020. Groundwater samples were collected from one piezometer and four shallow overburden monitoring wells and 10 deeper bedrock monitoring wells. The samples from the overburden wells were analyzed for VOCs, and the samples from the bedrock wells were analyzed for VOCs, alkalinity, and sulfate. Monitoring wells MW-13S, PZ-1, and PZ-2 were not sampled because jersey barriers were located on top of the wells; and MW-12S, MW-12R, and PZ-4 were not sampled because debris piles were on top of the wells. This sampling event also served as the baseline sampling for the bedrock wells prior to the chem-ox pilot study injection that was conducted from October 27, 2020, through October 29, 2020.

The 2020 groundwater monitoring activities also included the one-month post-injection sampling of the bedrock wells from November 30, 2020, through December 3, 2020. These samples were analyzed for VOCs, alkalinity, and sulfate.

Prior to purging, static water levels were measured to the nearest 0.01 foot in each monitoring well using an electronic water-level indicator. The water level and total depth of each well were recorded (see Tables 6-1 and 6-2). The suffix "R" in a monitoring well designation (for example, MW-2R) denotes a bedrock well, and the suffix "S" denotes a monitoring well that is screened in the shallow overburden groundwater zone.

Table 6-1 October 2020 Annual Groundwater Elevations, Former Davis-Howland Oil Corporation Site

	T CTITION DUTIE	Tiowiana On		U.I.O		
	Measurement	Measured Total Depth	Ground Elevation	TOIC Elevation	Depth to Water	Groundwater Elevation
Well ID	Date	(feet TOIC)	(feet amsl)	(feet amsl)	(feet TOIC)	(feet amsl)
Shallow O	verburden Wells	S				
MW-1S	10/15/2020	17.98	500.23	499.72	13.86	485.86
MW-2S	10/15/2020	13.97	496.03	497.48	6.10	491.38
MW-9S	10/15/2020	15.90	497.94	498.01	6.45	491.56
MW-14S	10/15/2020	12.93	495.48	495.16	4.38	490.78
PZ-3	10/15/2020	13.49	497.87	497.56	5.71	491.85
Deep Bed	rock Wells					
MW-2R	10/13/2020	30.5	497.72	497.54	17.9	479.64
MW-5R	10/13/2020	34.71	498.63	498.23	14.12	484.11
MW-8R	10/12/2020	35.36	498.09	497.64	22.88	474.76
MW-10R	10/14/2020	35.57	497.81	497.44	20.22	477.22
MW-14R	10/13/2020	33.91	495.44	495.18	9.44	485.74
MW-15R	10/14/2020	30.3	494.5	494.14	16.91	477.23
MW-16R	10/14/2020	31.1	493.43	493.04	22.2	470.84
MW-17R	10/12/2020	36.85	497.81	497.43	27.79	469.64
IW-01	10/12/2020	37.48	497.99	497.66	27.95	469.71
PW-1	10/15/2020	29.34	498.02	494.41	10.46	483.95

Key:

amsl = Above mean sea level.

MW = Monitoring well.

TOIC = Top of inner casing.

-- = Data not applicable or not obtained for these wells.

Table 6-2 2020 One-Month Post-Injection Bedrock Groundwater Elevations, Davis-Howland Oil Corporation Site

Well ID	Measurement Date	Measured Total Depth (feet TOIC)	Ground Elevation (feet amsl)	TOIC Elevation (feet amsl)	Depth to Water (feet TOIC)	Groundwater Elevation (feet amsl)
Deep Bedi	rock Wells					
MW-2R	12/1/2020	30.41	497.72	497.54	14.21	483.33
MW-5R	12/2/2020	34.73	498.63	498.23	14.15	484.08
MW-8R	12/1/2020	33.9	498.09	497.64	14.36	483.28
MW-10R	12/2/2020	35.55	497.81	497.44	19.45	477.99
MW-14R	12/2/2020	23.7	495.44	495.18	11.09	484.09
MW-15R	12/1/2020	30.32	494.5	494.14	16.44	477.7
MW-16R	12/1/2020	31.05	493.43	493.04	19.4	473.64
MW-17R	11/30/2020	36.6	497.81	497.43	26.29	471.14
IW-01	11/30/2020	37.4	497.99	497.66	26.74	470.92
PW-1	11/30/2020	28	498.02	494.41	10.62	483.79

Key:

amsl = Above mean sea level.

MW = Monitoring well.

TOIC = Top of inner casing.

-- = Data not applicable or not obtained for these wells.

Monitoring wells were sampled using the EPA low-flow sampling procedure (EPA 1998) with a QED bladder pump with new high-density polyethylene (HDPE) tubing. Dedicated poly bailers were used to purge water where the water level could not be maintained for low-flow procedures. Each well was considered adequately purged and ready for sampling when water level and water quality parameters stabilized, indicating fresh aquifer water was being removed from the well; or if the well was purged dry, after the well had sufficiently recharged to allow sample collection. Measurements of temperature, pH, conductivity, turbidity, DO, and ORP were recorded at regular intervals throughout the well-purging process and immediately prior to sampling. The final groundwater quality field measurements are presented in Table 6-3 and Table 6-4. Appendix A presents copies of the monitoring well purge records for both sampling events.

Non-dedicated sampling equipment was decontaminated in accordance with the groundwater monitoring and long-term well sampling procedures included as Appendix J of the SMP. The bladder in the QED bladder pump was replaced between each well. Purged and decontamination water were handled according to procedures outlined in Section 6.1.3.

Upon collection, samples were labeled and immediately placed in a cooler maintained with ice at approximately 4°Celsius. The groundwater samples were delivered directly to TestAmerica in Amherst, New York, by the E & E field team with chain-of-custody documents. Groundwater samples were submitted for analysis of VOCs by EPA Method 624.1 (all wells); analysis of alkalinity by Standard Method SM 2320B and analysis of sulfate by EPA Method 300.0 (bedrock wells).

6.1.2 Quality Assurance/Quality Control Review

In addition to the normal field samples, quality assurance/quality control (QA/QC) samples were collected. Trip blanks for VOC analysis accompanied each shipment to check for the possible introduction of VOCs from the time the samples were collected to the time they were analyzed. One field (equipment/rinsate) blank was collected for VOC analysis during each sampling event. The samples consisted of contaminant-free distilled water that was poured over a decontaminated bladder pump to check the thoroughness of decontamination procedures and to identify cross-contamination of samples.

To check consistency in sample collection, one duplicate sample was collected during each event. The samples consisted of aliquots of sample media placed in separate sample containers and labeled as separate samples. Additionally, extra volume for matrix spike/matrix spike duplicate (MS/MSD) analyses were collected to simulate the background effect and interferences found in the actual samples. The calculated percent recovery of the spike is used as a measure of the accuracy of the analytical method in the sample matrix, and the relative percent deviation between the recoveries of each spiked sample is used to measure the precision of the analytical method. Field duplicates and MS/MSD samples are typically collected at a rate of one per 20 field samples per the Master Quality Assurance Project Plan (E & E 2020b).

Table 6-3 October 2020 Annual Groundwater Quality Field Measurements, Davis-Howland Oil Corporation Site

Well ID	Measurement Date	pH (s.u.)	Temperature (°C)	ORP (mV)	Conductivity (mS/cm)	DO (mg/L)	Unfiltered Turbidity (NTU)				
Overburden Wells											
MW-1S	10/15/2020	7.06	16.56	124	1.23	8.28	4.31				
MW-2S	10/15/2020	6.45	17.38	-8	1.33	5.75	35.8				
MW-9S	10/15/2020	6.71	19.58	95	0.97	5.53	0				
MW-14S	10/15/2020	6.48	17.98	-23	0.59	3.70	0				
PZ-3	10/15/2020	6.86	20.21	6	1.98	8.93	0				
Bedrock Wells											
MW-2R	10/13/2020	6.95	14.83	-25	1.04	5.77	0				
MW-5R	10/13/2020	6.91	16.29	-80	1.28	0.38	30.2				
MW-8R	10/12/2020	7.44	14.84	-48	1.41	0	6.4				
MW-10R	10/14/2020	6.51	14.57	25	1.04	0.07	0				
MW-14R	10/13/2020	7.26	14.55	-157	0.87	0	23.1				
MW-15R	10/14/2020	7.16	14	23	1.14	7.47	17.7				
MW-16R	10/14/2020	7.02	15.6	-229	0.961	5.64	295				
MW-17R	10/12/2020	7.67	15.45	-35	1.47	3.51	11.9				
IW-01	10/12/2020	5.21	15.53	-36	1.09	0.51	1				
PW-1	10/15/2020	6.78	16.8	-116	1.6	0	0.2				

Key:

°C = degrees Celsius.

mV = millivolts

 $\mu S/cm = microsiemens per centimeter.$

NTU = nephelometric turbidity unit.

s.u. = standard units.

Table 6-4 One-Month Post-Injection Bedrock Groundwater Quality Field Measurements, Davis-Howland Oil Corporation Site

Well ID	Measurement Date	pH (s.u.)	Temperature (°C)	ORP (mV)	Conductivity (mS/cm)	DO (mg/L)	Unfiltered Turbidity (NTU)					
Bedrock Wells												
MW-2R	12/1/2020	7.52	11.25	273	0.129	11.42	35.6					
MW-5R	12/2/2020	6.52	12.58	410	1.85	0.35	6.1					
MW-8R	12/1/2020	8.17	13.53	350	23.4	0.79	31.5					
MW-10R	12/2/2020	7.06	11.76	-146	1.0	0.52	0					
MW-14R	12/1/2020	7.16	12.5	-65	0.819	0.56	16.6					
MW-15R	12/1/2020	7.42	12.53	30	1.12	8.91	46.5					
MW-16R	12/2/2020	6.11	14.03	165	1.07	11.55	66.5					
MW-17R	11/30/2020	7.95	13.59	-92	1.29	0.93	7.6					
IW-01	11/30/2020	7.55	12.43	-43	1.37	0	7.7					
PW-1	11/30/2020	7.52	14.98	-52	1.96	0.3	12.9					

Key:

°C = degrees Celsius.

mV = millivolts

 $\mu S/cm = microsiemens$ per centimeter.

NTU = nephelometric turbidity unit.

s.u. = standard units.

Analytical data were reviewed by an E & E chemist and DUSRs were prepared (see Appendix B). Data qualifiers were applied as described in the DUSRs and incorporated into the data summary tables. No significant issues were identified, and the analytical data is considered usable for the intended purpose.

6.1.3 Investigation-Derived Waste Management

Investigation-derived waste (IDW) generated during these investigations was handled according to procedures outlined in E & E's Groundwater Sampling Procedures. Three types of IDW were generated during each event: purged groundwater, decontamination water, and expendable materials, including PPE. Purged and decontamination water from the installation of the wells during the pilot study was stored on-site in a 750-gallon poly tank, and purged and decontamination water from each groundwater sampling event was stored on-site in 50-gallon drums until approval was granted by Monroe County, in accordance with the County of Monroe Sewer Use Permit (see Appendix C), to discharge the water into a sewer discharge location inside the building at 220 Anderson Avenue, Rochester, New York.

Approval was received from Monroe County for discharge of the 2020 annual sampling purge water on November 4, 2021, and E & E discharged the water on November 30, 2021. Approval was received from Monroe County for discharge of the pilot study IDW water on November 10, 2021, and E & E discharged the water on November 30, 2021. Approval was received from Monroe County for discharge of the one-month post-injection sampling purge water on January 11, 2021, and E & E will discharge the water during the week of the three-month post-injection sampling in February 2021. E & E's requests to the County to discharge the purge water on-site are provided in Appendix D.

Expendable PPE generated during the investigation (including gloves and plastic sheeting) was bagged and removed from the site for disposal as non-hazardous solid waste.

6.1.4 Private Well Sampling

On September 18, 2020, at the request of NYSDOH and NYSDEC, E & E collected a water sample at a private residence located approximately a half mile from the Site. The sample was collected from an outside tap and analyzed for perfluorinated alkyl substances by EPA Method 537-M and 1,4-dioxane by EPA Method SW-846 8270D-SIM (see Table 6-5).

6.2 Site Hydrogeology

The Site is situated on alluvial organic silt and sand overlaying glacial till deposits and lacustrine sand and silt of varying thickness. Bedrock beneath the Site is the Penfield Dolostone of the Middle Silurian Lockport Group and is encountered at depths of about 15 to 27 feet.

Two groundwater aquifers have been identified beneath the Site: a shallow overburden aquifer and an upper bedrock aquifer. These aquifers are not listed by the EPA as sole-source aquifers (Lawler, Matusky & Skelly Engineers, LLP, and Galson/Lozier Engineers 1996). A summary description of each water-bearing zone is provided below.

6.2.1 Overburden Aquifer

Historically, groundwater flow direction at the Site has been observed to be highly variable. In 1997, a flow divide existed near the railroad tracks, resulting in groundwater flow to the northeast, southeast, southwest, and south. In 2004, groundwater flow was observed to travel northeast across the Site, while in 2007 it was observed to travel southwest from a high area along the railroad tracks (EEEPC 2007). The overburden groundwater flow in 2009 through 2011 was observed to be primarily toward the south and west (EEEPC 2009, 2010, 2013). From 2012 through 2016, the flow was primarily to the southwest, with localized groundwater sinks in the middle of the Site, indicative of capture primarily by pumping well P-2 and, to a lesser extent, P-3 (EEEPC 2015, 2016a, 2017).

Overburden groundwater flow in November 2017 and August 2018 was primarily to the southwest, with localized variation in the northern portion of the site and without the localized sinks due to pumping well capture noted in prior years due to the shutdown of the groundwater extraction system (EEEPC 2018; E & E 2019).

In October 2020, the overburden groundwater flow was primarily to the south (see Figure 6-1).

6.2.2 Bedrock Aquifer

Historically, the bedrock groundwater flow direction at the Site has generally been more consistent than that in the overburden. In 1997 and 2004, groundwater was observed flowing radially outward from a groundwater mound beneath the Site, with the primary flow directions to the northeast and southeast (EEEPC 2004). In 2007, 2009, 2010, and 2011, groundwater flow in the bedrock aquifer appeared to be more variable, with radial flow from high areas on the west (near MW-5R) and east (near MW-14R/MW-15R) sides of the Site and a groundwater sink near MW-2R (EEEPC 2007, 2009, 2010, 2013). From 2012 through 2015, similar outward radial flow from MW-5R and MW-14R was observed, with radial capture at pumping wells PW-1 and PW-2. Groundwater capture was enhanced beginning in 2012, likely the result of routine well maintenance producing higher flow rates (EEEPC 2015, 2016a).

In October 2019, the regional bedrock groundwater flow direction was generally to the south across the Site. Figures 6-1 and 6-2 show the bedrock groundwater elevation isopleths, which were modeled from the groundwater elevations measured during the 2020 annual/baseline and one-month post-injection sampling events. There appears to be a groundwater sink (lower groundwater elevation) around the two new bedrock wells installed at the Site as part of the in situ chem-

ox pilot study (IW-01 and MW-17R). Bedrock groundwater elevation data and flow direction will be evaluated when the remaining pilot study groundwater data is collected.

6.3 Analytical Results

This subsection presents the analytical results for the 2020 annual overburden and bedrock groundwater samples and the one-month post-injection bedrock groundwater samples collected at the DHOC Site, and compares them to historical results. The laboratory results for VOCs detected in overburden monitoring well and piezometer samples during the October 2020 annual sampling event are presented in Table 6-6, and the laboratory results for VOCs detected in bedrock monitoring well samples during the October 2020 annual sampling and the December 2020 one-month post-injection sampling events are presented in Table 6-7 and Table 6-8. Groundwater sample results discussed in the following subsection were compared to the NYSDEC Class GA groundwater standards and guidance values (NYSDEC 1998). The laboratory reports for the sampling events are provided in Appendix E.

6.3.1 Overburden Groundwater Results

October 2020 Annual Sampling

Nine VOCs were detected in one or more groundwater samples collected from overburden wells. The majority of these compounds are chlorinated aliphatic (straight-chained) VOCs (cVOCs), including tetrachloroethylene (PCE); trichloroethene (TCE); 1,1,1-trichloroethane (TCA), and their degradation by-products. 1,2-dichlorobenzene and chloroform were also detected in one well at low concentrations.

Six VOCs were detected in one or more overburden monitoring wells at concentrations exceeding NYSDEC Class GA groundwater standards. These compounds are shaded in Table 6-6. The concentrations of VOCs in overburden groundwater were highest in MW-9S. The total concentration of VOCs was approximately 180 micrograms per liter (µg/L) in MW-9S. The primary contributors to this total concentration were TCA, 1,1-dichloroethane, dichloroethylenes, PCE, trans-1,2-dichloroethene, and TCE. The overburden VOC analytical results are presented in Table 6-6.

The 2020 annual concentration isopleths of VOCs in the overburden groundwater samples are presented on Figure 6-3.

Table 6-5 Summary of Analytical Results for Private Residence Water Samples

	Location ID:	Private Residence
Analyte	Screening Criteria (1)	03/10/20
Perfluorinated Alkyl Substances by EPA Method 537-M (ng/L)		
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	N/A	1.8 U
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	N/A	4.6 U
N-ethyl perfluorooctanesulfonamidoacetic acid	N/A	4.6 U
N-methyl perfluorooctanesulfonamidoacetic acid	N/A	4.6 U
Perfluorobutanesulfonic acid	N/A	1.8 U
Perfluorobutanoic acid	N/A	4.6 U
Perfluorodecanesulfonic acid	N/A	1.8 U
Perfluorodecanoic acid	N/A	1.8 U
Perfluorododecanoic acid	N/A	1.8 U
Perfluoroheptanesulfonic acid	N/A	1.8 U
Perfluoroheptanoic acid	N/A	0.52 J
Perfluorohexanesulfonic acid	N/A	1.8 U
Perfluorohexanoic acid	N/A	1.8 U
Perfluorononanoic acid	N/A	1.8 U
Perfluorooctane sulfonamide	N/A	1.2 J
Perfluorooctanesulfonic acid	10	1.8 U
Perfluorooctanoic acid	10	0.83 J
Perfluoropentanoic acid	N/A	0.60 J
Perfluorotetradecanoic acid	N/A	1.8 U
Perfluorotridecanoic acid	N/A	1.8 U
Perfluoroundecanoic acid	N/A	1.8 U
1,4-Dioxane by Method SW-846 8270D-SIM (µg/L)		
1,4-Dioxane	1	0.20 U

Source: Ecology and Environment Engineering and Geology, P.C. 2021

Key:

Qualifiers

J = Estimated value

U = Not detected (method detection limit shown)

Other

N/A = Not regulated/no available criteria

 $\mu g/L = Micrograms per liter$

ng/L = Nanograms per liter

Bold values denote positive hits.

1. 10 NYCRR 5-1.51 (Effective 08/26/2020).

Table 6-6 Summary of October 2020 Annual Positive VOC Analytical Results for Groundwater Samples from Overburden Monitoring Wells, Davis-Howland Oil Corpora-tion Site, Rochester, NY

Analyte		ation ID: e Name: Depth: Date: Notes	MW-1S MW-1S-OCT20 13 - 18 ft 10/15/20	MW-2S MW-2S-OCT20 5.4 - 14 ft 10/15/20	MW-9S MW-9S-OCT20 4.9 - 16 ft 10/15/20	MW-14S MW-14S-OCT20 2.1 - 13 ft 10/15/20	PZ-03 PZ-3-OCT20 4.5 - 13 ft 10/15/20
Volatile Organic Compounds by EPA M	ethod 624.1 (µ	ıg/L)					
1,1,1-Trichloroethane (TCA)	5		1.5 J	0.39 U	7.6	0.39 U	5.7
1,1-Dichloroethane	5		0.86 J	1.1 J	42	0.59 U	19
1,1-Dichloroethene	5		0.85 U	0.85 U	0.85 U	0.85 U	1.1 J
1,2-Dichlorobenzene	3		0.44 U	0.44 U	0.67 J	0.44 U	0.44 U
Chloroform	7		0.54 U	0.54 U	0.65 J	0.54 U	0.54 U
Dichloroethylenes	5		24	3.2 U	48	3.2 U	7.8 J
Tetrachloroethylene (PCE)	5		3.3 J	0.34 U	41	0.34 U	0.48 J
Trans-1,2-Dichloroethene	5		0.59 U	0.59 U	5.2	0.59 U	0.59 U
Trichloroethylene (TCE)	5		19	0.60 U	34	0.60 U	1.8 J
TOTAL VOCs			49	1.1	180	ND	36

Key:

Qualifiers

J = Estimated value

U = Not detected (method detection limit shown)

Notes

N/A = Not regulated/no available criteria

Other

μg/L = Micrograms per liter

"-Q" denotes field duplicate sample

Bold values denote positive hits.

Shaded values exceed groundwater screening criteria.

1. New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

Table 6-7 Summary of October 2020 Annual Positive VOC, Alkalinity, and Sulfate Analytical Results for Groundwater Samples from Bedrock Monitoring Wells, Davis-Howland Oil Corporation Site, Rochester, NY

Analyte	Sampl Screening	ation ID: e Name: Depth: Date: Notes	IW-01 IW-01-OCT20 26 - 37 ft 10/12/20	MW-2R MW-2R-OCT20 21 - 28 ft 10/14/20	MW-5R MW-5R-OCT20 12 - 35 ft 10/13/20	MW-8R MW-8-OCT20 20 - 38 ft 10/12/20	MW-10R MW-10R-OCT20 19 - 37 ft 10/14/20	MW-14R MW-14R-OCT20 6.1 - 24 ft 10/13/20	MW-15R MW-15R-OCT20 15 - 32 ft 10/15/20	MW-16R MW-16R-OCT20 20 - 33 ft 10/15/20	MW-17R MW-17R-OCT20 26 - 37 ft 10/12/20	MW-17R Q 26 - 37 ft 10/12/20	PW-1 PW-1-OCT20 7.9 - 29 ft 10/15/20		
	kalinity by Standard Method 2320B (mg/L) kalinity Bicarbonate (As CaCO3) N/A 308 I 310 302 326 344 205 406 326 332 I 33														
Alkalinity, Bicarbonate (As CaCO3)	N/A		308 J	319	302	326	344	295	406	326	332 J	332 J	322		
Alkalinity, Carbonate (As CaCO3)	N/A		0.79 UJ	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 UJ	0.79 UJ	0.79 U		
Alkalinity, Hydroxide (As CaCO3)	N/A		0.79 UJ	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 UJ	0.79 UJ	0.79 U		
Alkalinity, Total (As CaCO3)	N/A		308 J	319	302	326	344	295	406	326	332 J	332 J	322		
Sulfate by EPA Method 300.0 (mg/L)															
Sulfate (As SO4)	250		118	152	277	152	57.0	73.8	69.4	122	204	206	498		
Volatile Organic Compounds by EPA N	lethod 624.1 (μο	J/L)													
1,1-Dichloroethane	5		11 J	11 J	12 U	76	12 U	0.59 U	12 U	12 U	100	98	34 J		
1,1-Dichloroethene	5		4.3 U	6.8 U	17 U	35 J	17 U	0.85 U	17 U	17 U	23 J	23 J	17 U		
Dichloroethylenes	5		290	270	450	4000	64 U	8.4 J	64 U	390	1400	1400	290		
Tetrachloroethylene (PCE)	5		1.7 U	2.7 U	6.8 U	3.4 U	6.8 U	0.34 U	6.8 U	6.8 U	11 J	9.7 J	6.8 U		
Trans-1,2-Dichloroethene	5		3.4 J	4.7 U	12 U	5.9 U	12 U	1.0 J	12 U	12 U	6.2 J	6.4 J	12 U		
Trichloroethylene (TCE)	5		3.8 J	4.8 U	12 U	6.0 U	1100	1.7 J	12 U	12 U	120	110	12 U		
Vinyl Chloride	2		56	140	75 J	550	15 U	9.3	15 U	140	280	260	73 J		
TOTAL VOCs			310	420	530	4700	1100	20	ND	530	1900	1900	400		

Key:

Qualifiers

J = Estimated value

U = Not detected (method detection limit shown)

Notes

N/A = Not regulated/no available criteria

Other

 μ g/L = Micrograms per liter

"-Q" denotes field duplicate sample

Bold values denote positive hits.

Shaded values exceed groundwater screening criteria.

1. New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

Table 6-8 Summary of December 2020 One-Month Post-Injection Positive VOC Analytical Results for Groundwater Samples from Bedrock Monitoring Wells, Davis-Howland Oil Corporation Site, Rochester, NY

	Loca	ation ID: e Name: Depth: Date:	IW-01 IW-01-NOV20 26 - 37 ft 11/30/20	MW-2R MW-2R-DEC20 21 - 28 ft 12/01/20	MW-5R MW-5R-DEC20 12 - 35 ft 12/02/20	MW-8R MW-8-DEC20 20 - 38 ft 12/01/20	MW-8R MW-8-DEC20-Q 20 - 38 ft 12/01/20	MW-10R MW-10R-DEC20 19 - 37 ft 12/02/20	MW-14R MW-14R-DEC20 6.1 - 24 ft 12/02/20	MW-15R MW-15R-DEC20 15 - 32 ft 12/01/20	MW-16R MW-16R-DEC20 20 - 33 ft 12/02/20	MW-17R MW-17R-NOV20 26 - 37 ft 11/30/20	PW-1 PW-1-NOV20 7.9 - 29 ft 11/30/20
	Screening												
Analyte	Criteria (1)	Notes											
Alkalinity by Standard Method 2320B (mg/L)													
Alkalinity, Bicarbonate (As CaCO3)	N/A		358	41.5	304 J	909	918	337	335	402	430	319	338
Alkalinity, Carbonate (As CaCO3)	N/A		0.79 U	0.79 U	0.79 UJ	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.96 J	0.79 U
Alkalinity, Hydroxide (As CaCO3)	N/A		0.79 U	0.79 U	0.79 UJ	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U	0.79 U
Alkalinity, Total (As CaCO3)	N/A		359	41.5	304 J	909	918	337	335	402	430	320	338
Sulfate by EPA Method 300.0 (mg/L)													
Sulfate (As SO4)	250		260	10.4	298	5780	5950	51.8	60.2	85.3	475	187	642
Volatile Organic Compounds by EPA Method 624.1 (μg/L)													
1,1,1-Trichloroethane (TCA)	5		1.5	0.24 U	0.24 U	0.24 U	0.24 U	5.8	0.24 U	0.24 U	0.24 U	0.48 U	1.0
1,1,2-Trichloroethane	1		0.15 U	0.15 U	0.15 U	0.83 J	0.67 J	0.30 U	0.15 U	0.15 U	0.15 U	0.30 U	0.15 U
1,1-Dichloroethane	5		13	0.26 U	13	21	21	2.9	0.26 U	0.55 J	15	31	34
1,1-Dichloroethene	5		4.3	0.12 U	2.8	0.12 U	0.12 U	7.5	0.12 U	0.12 U	4.4	7.6	3.7
Benzene	1		0.43 U	0.43 U	1.0	0.43 U	0.43 U	0.86 U	0.43 U	0.43 U	0.43 U	0.86 U	1.2
Bromomethane	5		0.45 U	0.45 U	0.45 U	0.60 J	0.53 J	0.90 U	0.45 U	0.45 U	0.45 U	0.90 U	0.45 U
Chloroethane	5		0.32 U	0.32 U	0.32 U	0.91 J	0.79 J	0.64 U	0.32 U	0.32 U	0.32 U	0.64 U	0.32 U
Chloroform	7		0.33 U	0.33 U	0.33 U	1.7	1.6	0.65 U	0.33 U	0.33 U	0.33 U	0.65 U	0.33 U
Chloromethane	5		0.43 U	0.43 U	0.43 U	21	21	0.87 U	0.43 U	0.43 U	0.43 U	0.87 U	0.43 U
Dichloroethylenes	5		180	2.5	390	170	180	21	10	11	350	570	280
Tetrachloroethylene (PCE)	5		0.34 J	0.25 U	0.25 U	0.25 U	0.25 U	3.1	0.25 U	0.25 U	0.25 U	4.2	0.25 U
Trans-1,2-Dichloroethene	5		2.2	0.24 U	6.3	5.9	6.0	4.3	0.93 J	0.91 J	2.3	6.1	4.1
Trichloroethylene (TCE)	5		2.4	0.31 U	19	0.97 J	1.2 J	680	1.5	1.8	0.31 U	37	20
Vinyl Chloride	2		23	0.42 J	53	4.5	5.4	0.68 U	3.2	0.85 J	110	83	65
TOTAL VOCs			230	2.9	490	230	240	730	16	15	480	740	410

Key:

Qualifiers

J = Estimated valu

U = Not detected (method detection limit shown)

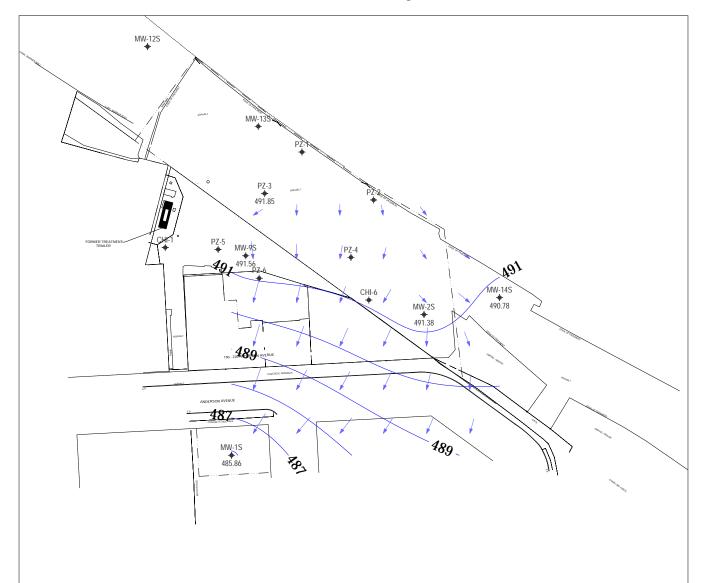
Notes

N/A = Not regulated/no available criteria

Other

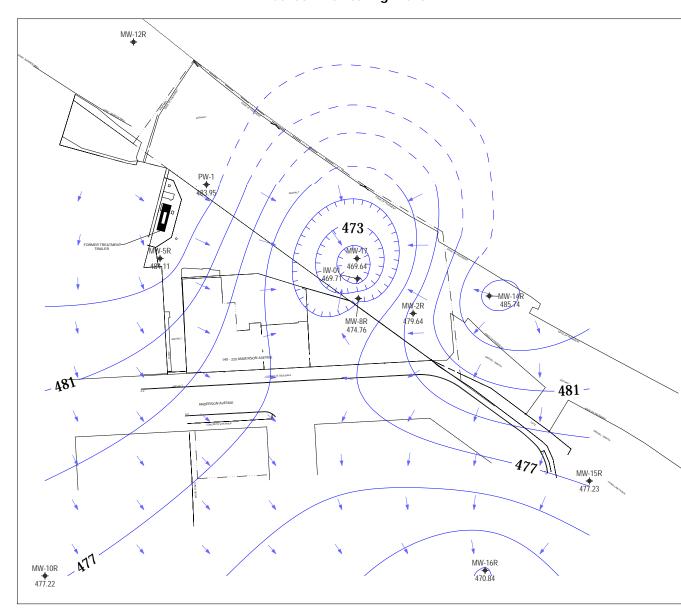
 $\mu g/L = Micrograms \ per \ liter$

"-Q" denotes field duplicate sample


Bold values denote positive hits.

Shaded values exceed groundwater screening criteria.

1. New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.


EE1705007.0009 DavisHowland_GW_Elev_2020.srf - 12/14/2020

Groundwater Elevation Isopleths Overburden Monitoring Wells

Groundwater Elevation Isopleths Bedrock Monitoring Wells

1) Groundwater elevations measured October 12 - 15, 2020.

ecology and environment engineering and geology, p.c. Global Environmental Specialists

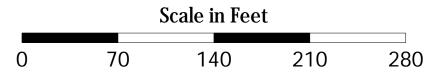
<u>Legend</u>

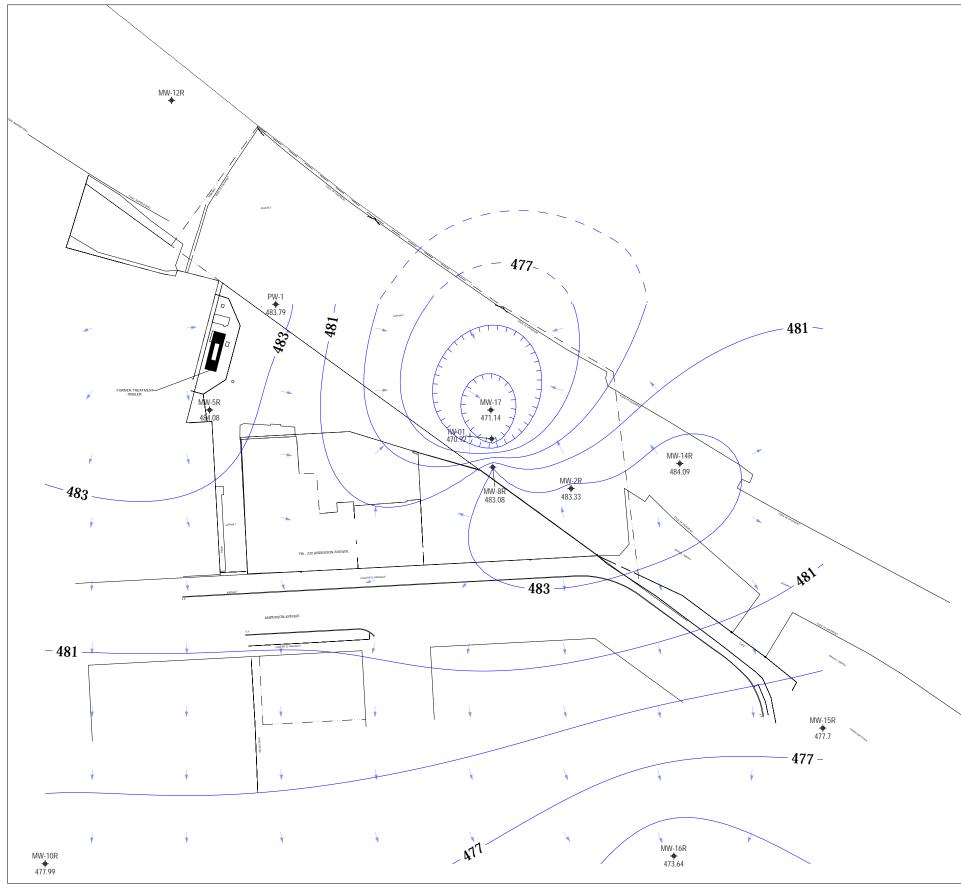
Groundwater Flow Direction and Relative Magnitude of Gradient

Groundwater Elevation Isopleth

Projected Groundwater Elevation Isopleth

Depression 200 SCALE IN FEET


FIGURE 6-1


Groundwater Elevation Isopleths Overburden and Bedrock Monitoring Wells October 2020

Davis-Howland Oil Corporation Site

Rochester, NY

Notes:

1) Groundwater elevations measured November 30 - December 2, 2020.

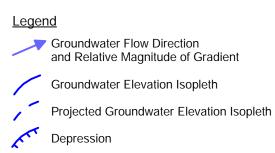


FIGURE 6-2 Groundwater Elevation Isopleths Bedrock Monitoring Wells, December 2020 Davis-Howland Oil Corporation Site Rochester, New York

6.3.2 Bedrock Groundwater Results

October 2020 Annual Sampling

Seven VOCs were detected in one or more of the groundwater samples collected from bedrock monitoring wells during the 2020 annual sampling event. These compounds are cVOCs (PCE, TCE, and their degradation by-products).

The concentrations of seven detected VOCs exceeded NYSDEC Class GA groundwater standards in at least one well. These compounds are shaded in Table 6-7 and Table 6-8. The highest concentrations of VOCs were detected in samples from MW-8R, with the total sum of VOCs reaching approximately 4,700 μ g/L. The compounds detected in this well were 1,1-dichloroethane, 1,1-dichloroethene, dichloroethylenes, and vinyl chloride.

The 2020 annual concentration isopleths of VOCs in the bedrock groundwater samples are presented on Figure 6-4.

December 2020 One-Month Post-Injection Sampling

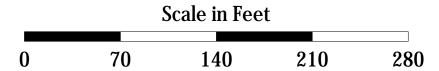
Fourteen VOCs were detected in one or more groundwater samples collected from bedrock monitoring wells during the one-month post-injection sampling event. The majority of these are cVOCs (PCE, TCE, and their degradation byproducts). Bromomethane, chloroethane, chloroform, and chloromethane were also detected in MW-8R, and benzene was detected in MW-5R and PW-1.

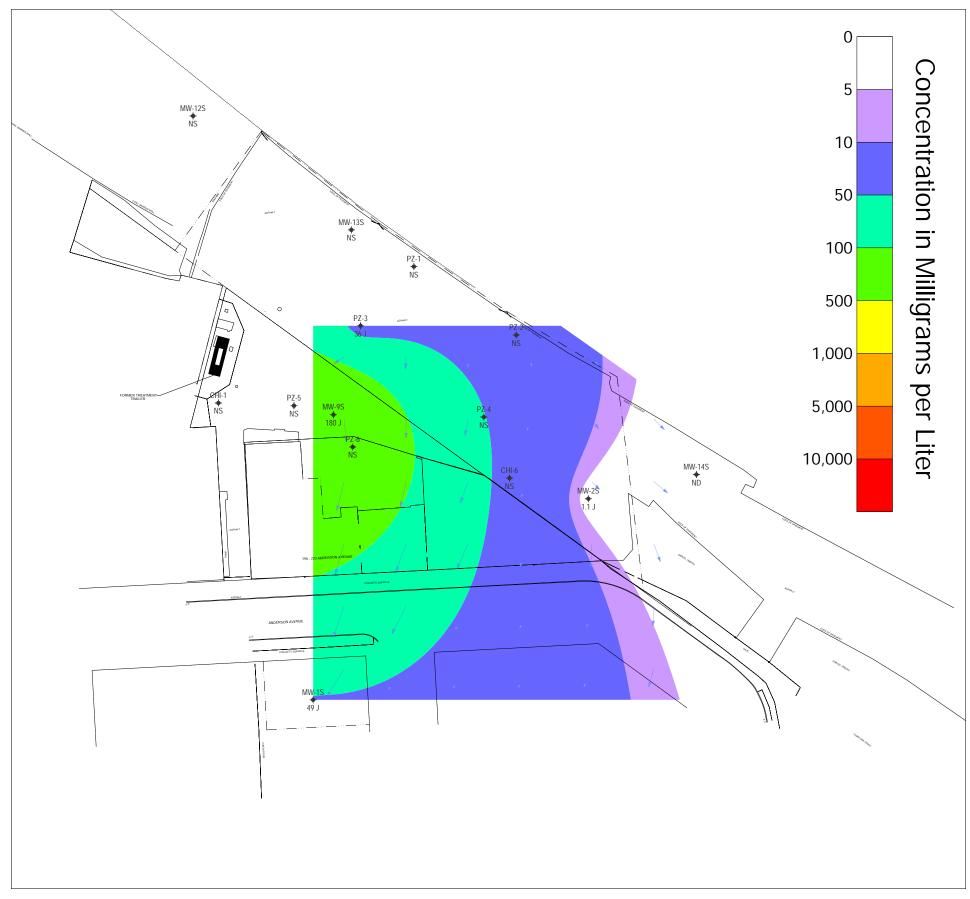
It is noted that the October 2020 samples required a high dilution to bring the concentrations of dichloroethylenes within the calibration range. The high-level dilutions resulted in higher reporting limits for the non-detect results for benzene, bromomethane, and chloroethane than the concentrations of those compounds detected in the December 2020 samples. The concentrations of dichloroethylenes were significantly lower in the December samples; therefore, a lower dilution was used and the reporting limits for benzene, bromomethane, and chloroethane were low enough to be detected by the analytical method.

The detected concentrations of nine VOCs exceeded NYSDEC Class GA ground-water standards in at least one well. These compounds are shaded in Table 6-7 and Table 6-8. The highest concentrations of VOCs were detected in samples from MW-17R, with the total sum of VOCs approximately 740 µg/L. The primary compounds detected in this well were 1,1-dichloroethane, 1,1-dichloroethene, dichloroethylenes, trans-1,2-dichloroethene, TCE, and vinyl chloride.

The 2020 one-month post-injection concentration isopleths of VOCs in the bedrock groundwater samples are presented on Figure 6-5.

6.3.3 Comparison with Historical Analytical Data


Table 6-9 presents historical cVOC results. The following is a summary of the findings:



- **cVOCs in overburden groundwater.** Overall, cVOC concentrations in the overburden wells have decreased significantly since 1997 and 1998. The highest concentrations of cVOCs were detected in 1998 (15,000 μg/L in MW-9S and 40,000 μg/L in MW-13S). Total cVOC concentrations decreased significantly between 1998 and 2004. Following the significant decrease in concentrations between 1998 and 2004, the most significant cVOC concentrations were detected in MW-9S. By 2015 and with the introduction of sampling in PZ-04, the highest concentrations of cVOCs detected in the overburden occurred in MW-1S, MW-9S, and PZ-04. Concentrations detected in MW-1S have ranged from 32 to 76 μg/L, concentrations detected MW-9S ranged from 110 μg/L to 180 μg/L, and concentrations in PZ-04 ranged from 400 μg/L to 590 μg/L. The cVOC concentration in MW-9S increased from 111 μg/L in 2018 to 164 μg/L in 2019, to 180 μg/L in 2020; PZ-04 was not sampled in 2019 and 2020 because debris covered the well.
- **cVOCs in bedrock groundwater.** Overall, cVOC concentrations in most bedrock wells have decreased since 1997 or 1998, when significant concentrations (>1,000 μg/L) were detected in six of the nine wells (MW-2R, MW-3R, MW-5R, MW-8R, MW-10R, and MW-16R). The cVOC concentrations generally decreased until 2010 and have remained relatively consistent since 2010 (all less than 2,700 μg/L except in MW-8R). The total cVOC concentration in MW-8R increased to a maximum of approximately 14,000 μg/L in 2010 and has since decreased, but this well continues to exhibit the highest cVOC concentrations (4,700 μg/L in 2019) of the wells at the Site, due primarily to dichloroethylenes and vinyl chloride. In October 2020, the cVOC concentrations detected at MW-2R, MW-5R, MW-8R, MW-10R, and MW-16R were higher than those detected in 2019. The cVOC concentrations in MW-14R decreased to 20 μg/L, and cVOCs were not detected in MW-15R in October 2020. The cVOC concentrations detected in newly installed wells MW-17R and IW-01 were 1,900 μg/L and 310 μg/L, respectively.
- cVOCs in bedrock groundwater one month after the chem-ox pilot study injection. Total cVOC concentrations decreased in most bedrock wells from the October 2020 annual sampling event to the one-month post-injection sampling event conducted from November 30, 2020, through December 3, 2020. The most significant decreases in cVOC concentrations were in MW-8R (4,700 μg/L to 240 μg/L), MW-10R (1,100 μg/L to 730 μg/L), and MW-17R (1,900 μg/L to 740 μg/L). Two of the 10 bedrock wells sampled had a slight increase in concentration from the October sampling event to the one-month post-injection sampling event: non-detect to 15 μg/L in MW-15R, and 400 μg/L to 410 μg/L in PW-1.

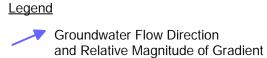
Total VOC Concentrations (µg/L)

Notes:

1) VOC = volatile organic compound.

2) ND = not detected.

3) NS = not sampled.



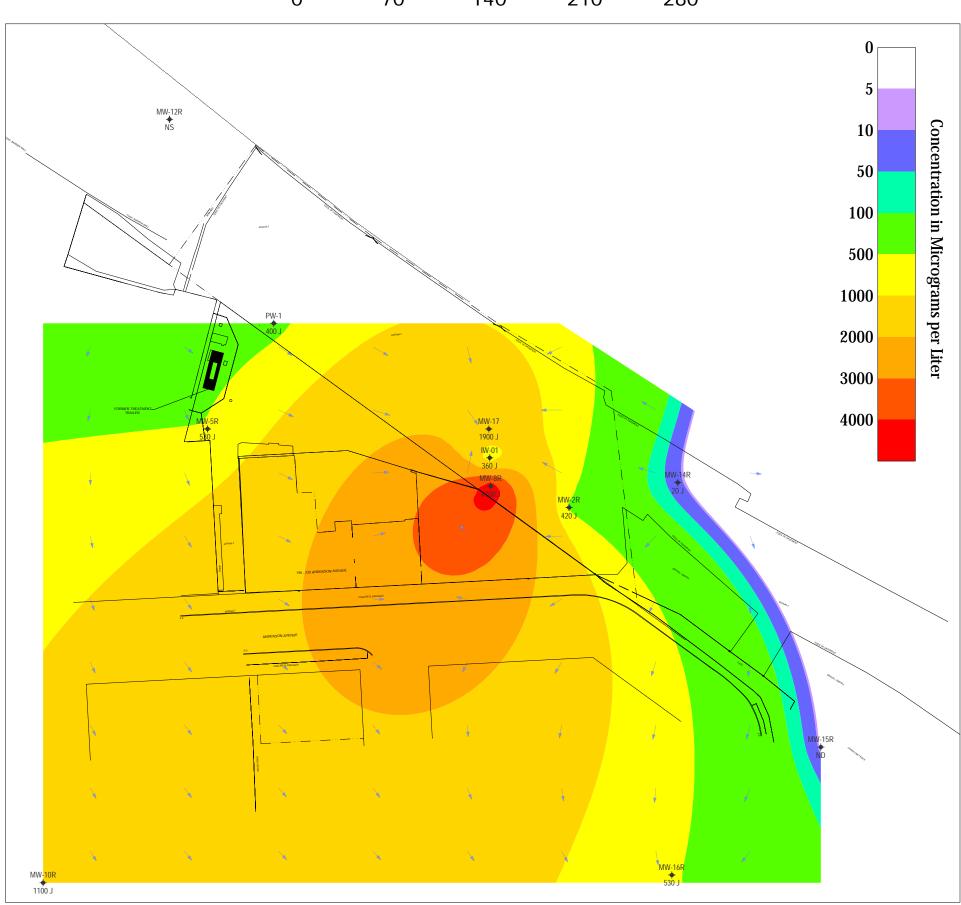
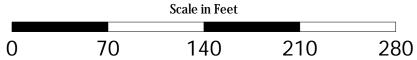


FIGURE 6-3 **Total VOCs** Overburden Groundwater, October 2020 Davis-Howland Oil Corporation Site Rochester, New York

Total VOC Concentrations (µg/L)

Notes:

- VOC = volatile organic compound.
 ND = not detected
- 3) NS = not sampled

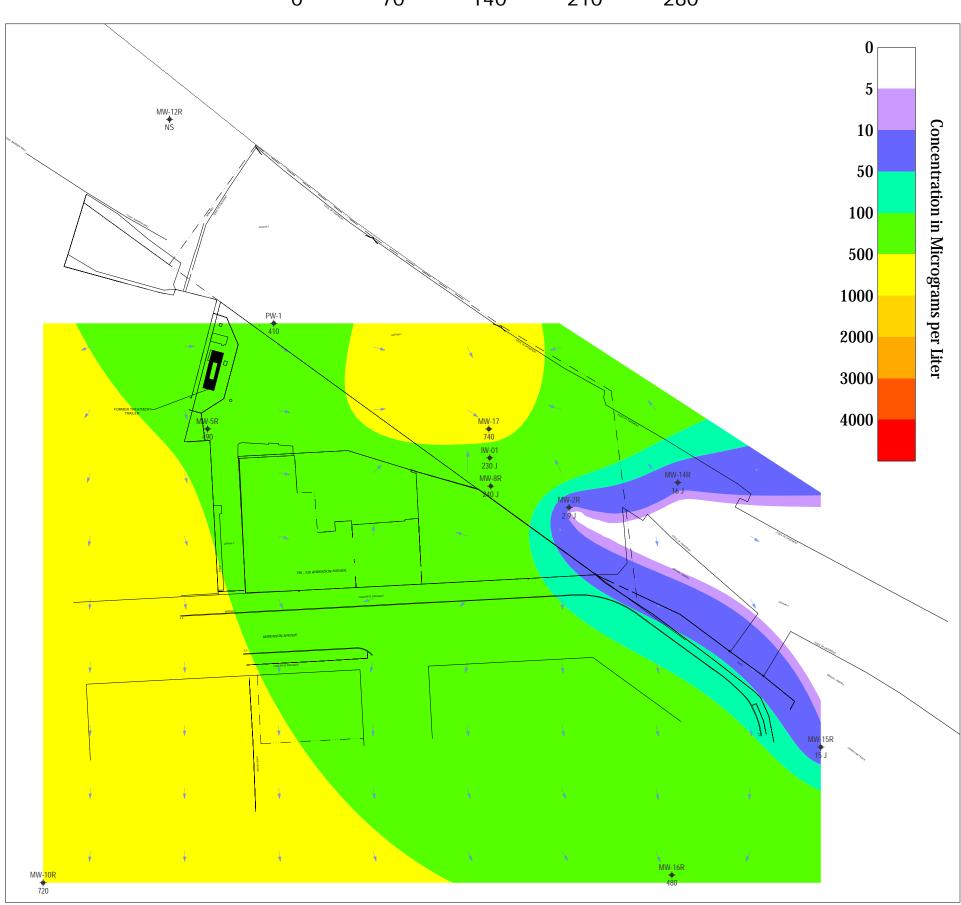


FIGURE 6-4 **Total VOCs** Bedrock Groundwater, October 2020 Davis-Howland Oil Corporation Site Rochester, New York

Total VOC Concentrations (µg/L)

Notes:

1) VOC = volatile organic compound.

2) NS = not sampled

FIGURE 6-5 Total VOCs Bedrock Groundwater, December 2020 Davis-Howland Oil Corporation Site Rochester, New York

Table 6-9 Historical Total Chlorinated VOCs Results for Monitoring Wells

				ica voo.					mple Eve	nt						
Well ID	2020 One- Month Post- Injection	2020 Annual	2019 Annual	2018 Annual	2017 Annual	2016 Annual	2015 Annual	2014 Annual	2013 Annual	2012 Annual	2011 Annual	2010 Annual	2009 Annual	2007 Annual	2004 Annual	1998 Annual
Overburde	n Monitori	ing Wells														
MW-1S	NS	49	63	45	32	76	37	38	41	68	67	NS	45	98	410	120
MW-2S	NS	1.1	ND	ND	2	4.6	7.0	6.3	2.5	1.7	1.9	1.3	ND	1.4	ND	
MW-9S	NS	180	164	111	121	110	140	180	240	140	140	140	92	48	32	15,000
MW-12S	NS	NS	NS	NS	NS	NS	ND	0.30	0.36	13	ND	ND	ND	4.4	ND	6.0
MW-13S	NS	NS	NS	10	NS	7.8	12	9.9	12	33	ND	19	3.7	69	41	40,000
MW-14S	NS	ND	4.2	ND	ND	ND	0.36	ND	2.0							
PZ-01	NS	NS	NS	12	NS	NS	11	NS								
PZ-02	NS	NS	NS	NS	5	6.9	8.6	NS								
PZ-03	NS	36	51	36	20	20	29	NS								
PZ-04	NS	NS	NS	505	400	590	430	NS								
Bedrock M	onitoring	Wells														
MW-2R	2.9	420	350	770	2,670	1,500	1,100	350	31	940	1,200	240	NS	NS	940	NS
MW-5R	490	530	433	410	786	500	550	650	340	1,200	160	1,400	210	2,700	1,100	4,200
MW-8R	240	4,700	4,590	3,618	6,175	4,200	3,400	5,400	4,600	5,600	5,700	14,000	5,800	4,300	3,800	NS
MW-10R	730	1,100	480	1,364	951	910	990	1,200	1,400	1,500	1,400	160	1,200	1,600	1,200	3,000
MW-12R	NS	NS	NS	NS	NS	NS	26	41	34	ND	45	35	66	75	22	NS
MW-14R	16	20	27	35	43	59	45	59	72	59	61	54	45	67	17	50
MW-15R	15	ND	11	12	NS	NS	10	12	11	11	11	6.4	4.7	7.4	7.7	NS
MW-16R	480	530	254	420	203	720	200	230	180	210	220	48	320	250	260	2,400
MW-17R	740	1,900	NS													
PW-1	410	400	NS													
IW-01	230	310	NS													

Notes:

Analytical results are all in micrograms per liter (µg/L).

Key:

ND = Not detected

NS = Not sampled

Chlorinated VOCs = sum of chlorinated aliphatic hydrocarbon concentrations (does not include dichlorobenzenes)

Actions to Support Eventual Site Closure

The overall project goals identified in the ROD are to: (1) eliminate the potential for direct human contact with the contaminated soils onsite; (2) mitigate the impacts of contaminated groundwater on the environment to the extent practicable; (3) prevent, to the extent practicable, the migration of soil contaminants to groundwater; and (4) provide for attainment of standards, criteria, and guidance values (SCGs) for groundwater quality at the limits of the area of concern (AOC), to the extent practicable. Attaining these goals will allow for the eventual closure of the site.

The ICs described previously in this report were put in place to reduce human exposure to the remaining contaminated site soils. Since remedial construction at the site was completed, contaminant concentrations in the site soils have been reduced and now meet Part 375 soil cleanup objectives for restricted residential use.

Contaminant concentrations in the site groundwater had decreased since installation of the remedial treatment systems. However, evaluations completed as part of the 2016 Remedial Site Optimization (RSO) described in Section 7.1 led to the determination that the active treatment systems were no longer effective in the removal of VOCs from the site groundwater and that the systems should be decommissioned. Recommendations for continued site management activities at the site are provided in Section 7.3.

7.1 Remedial System Optimization and System Decommissioning

In June 2016, E & E submitted an RSO Alternatives Report to NYSDEC (EEEPC 2016b). This report noted that contaminant removal by the pump-and-treat system had been declining over time, and VOC contamination in the groundwater remained above the SCGs. Recommendations in the RSO indicated that there was no single alternative that would result in optimization of the system. It was recommended that soil vapor mitigation systems be installed in on-site buildings impacted by soil vapor intrusion and a pilot bioremediation study be performed to evaluate the effectiveness of bioengineered materials injected into the overburden aquifer. Additionally, the groundwater monitoring network would be optimized by decommissioning damaged and unneeded wells, installing new wells, and re-

7 Actions to Support Eventual Site Closure

ducing the groundwater monitoring program based on historical results from annual sampling. The final recommendation was to implement a monitored natural attenuation pilot program to quantify the time frame in which attainment of the remedial action objectives is expected, and discontinue operation of the groundwater pump-and-treat system and the AS/SVE system.

Following submission of this report, NYSDEC made the determination to shut down the treatment systems on July 13, 2016, and to continue with long-term groundwater monitoring of the site. Following further review of site data and NYSDEC *DER-10/Technical Guidance for Site Investigation and Remediation* requirements, NYSDEC requested on September 14, 2016, that the treatment systems be restarted and additional sampling of the systems be performed, including a pulsed pumping evaluation and additional sampling of the AS/SVE system.

Following the completion of the pulse pumping evaluation of the groundwater treatment system and additional sampling of the AS/SVE system in 2017, the decision was made in February 2018 by NYSDEC to decommission the active treatment systems at the site. Decommissioning was completed in 2018.

7.2 In Situ Chem-Ox Pilot Study

In April 2020, E & E submitted a cost-benefit analysis for in situ groundwater treatment technologies that may be used to reduce cVOC groundwater concentrations at the Site (E & E 2020c). This report recommended implementation of an in situ chem-ox injection pilot study using Regenesis PersulfOx reagent in the area around MW-8R, where results of the annual groundwater monitoring program detected VOC concentrations that consistently exceeded 3,000 μ g/L.

Two wells, MW-17R and IW-01, were installed in September 2020 and reagent was injected into MW-8R and MW-17R in October 2020. One-month post-injection groundwater sampling was performed at the Site bedrock wells in November/December 2020.

Total cVOC concentrations decreased in two of the 10 bedrock wells, including MW-8R and MW-17R, one month after injection. Future pilot study activities include two more rounds of post-injection groundwater sampling at the Site bedrock wells in 2021. The results will be evaluated to determine the effectiveness of the treatment in decreasing VOC concentrations in the bedrock groundwater in the vicinity of MW-8R, and if full-scale treatment is warranted.

7.3 Recommendations

Following the 2020 groundwater sampling, E & E recommends the following for the Site:

■ Conduct a second round of SVI sampling at the structures at during the 2021/2022 heating season.

7 Actions to Support Eventual Site Closure

- Continue groundwater monitoring in the bedrock wells at three and nine months post-injection. Evaluate trends in VOCs concentrations to determine the effectiveness of the in situ chem-ox injection pilot study in decreasing VOC concentrations in the bedrock groundwater in the vicinity of MW-8R.
- Continue the long-term monitoring program. Continued long-term groundwater monitoring should occur on an annual basis to monitor VOC contamination at the site. It is recommended that the annual sampling be conducted every 15 months so that seasonal variations in concentrations can be assessed. The monitoring well network should be evaluated to determine whether some of the existing wells can be abandoned and whether new wells should be installed to better monitor the extent of the remaining contamination.
- Well cap bolts, locks, and gaskets should be replaced or fixed as appropriate.

Annual Site Management Costs

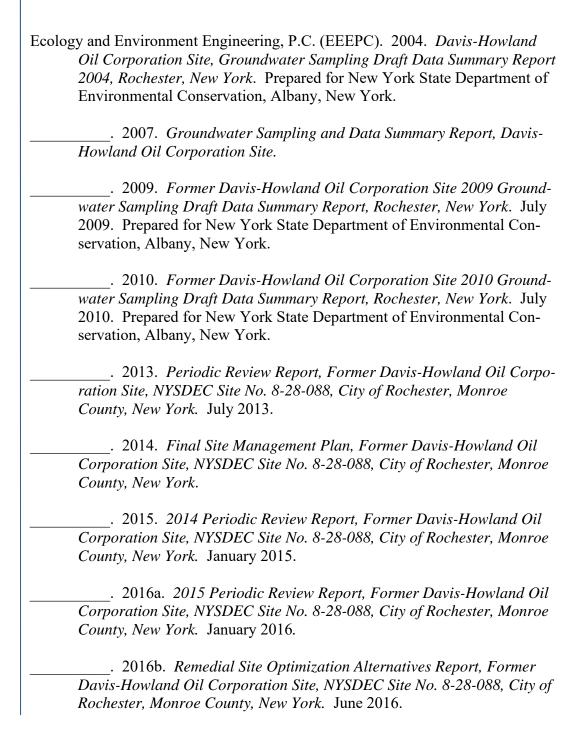
The total 2020 cost of site management at the Site was approximately \$228,500, including E & E subcontracted services. The cost breakdown is presented in Table 8-1.

Table 8-1 2020 Site Management Costs for the Davis-Howland Oil Corporation Site

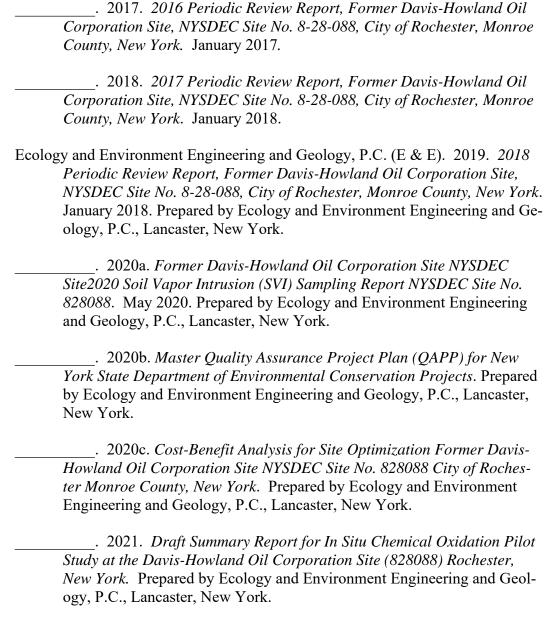
Description	WA D009807-9
E & E Scoping, Monitoring, and Reporting	\$82,100
E & E Cost-Benefit Analysis and Pilot Study	\$100,500
Subcontracted Pilot Study Services	\$45,900
2020 Total	\$228,500

Department or Local Public Reporting

9.1 NYSDEC Fact Sheet


The most recent information regarding the DHOC Site is provided in the Environmental Site Remediation Database Search online at:

http://www.dec.ny.gov/cfmx/extapps/derexternal/index.cfm?pageid=3.


9.2 Local Public Reporting

No local public reporting of the Site or remedial Site operations were brought to the attention of E & E in 2020. The local reporting newspaper in Rochester, New York, is the *Democrat and Chronicle*.

References

- Lawler, Matusky Skelly Engineers, LLP and Galson/Lozier Engineers. 1996.

 New York State Superfund Contract, Remedial Investigation Report, Davis-Howland Oil Corporation Remedial Investigation/Feasibility Study.

 Vol. I. October 1996.
- New York State Department of Environmental Conservation (NYSDEC). 1998 (with updates). Division of Water Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. Albany, New York: Division of Water.

_____. 2018. Site Management (SM) Periodic Review Report (PRR) Response Letter, Davis-Howland Oil Corporation, Rochester, Monroe County, Site No. 828088, February 26, 2018.

U.S. Environmental Protection Agency (EPA). 1998. Standard Operating Procedure Low-Stress (Low Flow)/Minimal Drawdown Ground-Water Sample Collection. Accessed online at: https://www.epa.gov/quality/standard-operating-procedure-low-stress-low-flow-minimal-drawdown-ground-water-sample

A Monitoring Well Purge Records

	WEL	L PURGE &	SAMPLE	KECOKD			
tion: Davis Howla	d Oil Corp.				Well ID:	IW	-01
No.: EE!	7050	07.0	009		Date:	10-10	2-2020
Vater: 27.95	feet TOIC			5	Start Time:	11*	5
Depth: 37.48	feet TOIC	,					
Pump: 36,48	feet TOIC						Pump
Rate: 0.30 (Lpm/ gpm	NUN	20	Pu	ump Type:	BLA	DDER
		1140					
ed to:	at			1x We	ell Volume:	6.22	gallons x 3 =
Purge Volume	рН	Temp.	ORP	Conductivity	DO	Turbidity	Water
		(©) °F)	(mV)	(µS/cm/mS/cm)	(mg/L)	(NTU)	Level (feet)
1.50	5.46	15.50	-8	1.06	1.20		27.95
3.00	5.45	15.41	-20	1.05	0.85	5.8	27.95
4.50	5.43	15.44	-27	1.05	0.73	6.3	27.95
6.00	5.41	15.46	-29	1.05	0.66	4.1	27.95
7.50	5.38	15,50	-32	1.00	0.60	1.6	27.95
8.50	5.35	15.55	-34	1.07	0.57	1.3	27.95
Secretary Control of the Control of	5.37	15.67	-35	1.07	0.55	2.6	27.95
allowed by a later and a second book	5.28		-36	State of the state	~	1.8	2295
make the factor and the second second	5.26	1611	2000		0.53	1.5	27.95
Committee of the Commit	TO A SECURITION OF THE PARTY OF		Series To a series of the	Proceedings of School and School and School	0.53		27.95
13 0			江州中省市大学省中国共和国	Marie Carlo Salaria		1 2	27.95
13,50	5.41	70.00		7.07		770	4 / / / /
				BRANCH STREET,			CHARLES AND LONG TO SELECT
mple Data:	5.a1	15.53	-36	1.09	0.51	1.0	27.95
IW-01-	5.al OCT a	20	Duplicate?	Dupe	e Samp ID: of Bottles		27.95
		20	Duplicate?	Dupe No.	e Samp ID: of Bottles		
		20	Duplicate?	Dupe No.	e Samp ID: of Bottles		
1	No.: ££/ Vater: 27.95 Pepth: 37.48 Rate: 0.30 (ed to: 0.20 ed to: 150 150 4.50	No.: <u>EF17050</u> Vater: <u>27.95</u> feet TOIC Pepth: <u>37.48</u> feet TOIC Pump: <u>36.48</u>	No.: EF 170 500 7.0 Vater: 27.95 feet TOIC Depth: 37.48 feet TOIC Pump: 36.48 feet TOIC Rate: 0.30 (Lpm)/gpm ed to: 0.20 at Purge Volume (gallons/liters) (s.u.) (€) °F) 150 5.46 15.50 2.50 5.38 15.50 8.50 5.35 15.55 9.50 5.36 15.68 11.50 5.26 15.66 12.50 5.23 15.66	No.: Davis Howlad Oil Corp. No.: $EF/705007.0009$ Vater: 27.95 feet TOIC Depth: 37.48 feet TOIC Depth: 36.48 feet TOIC Rate: 0.30 (Lpm)/gpm ed to: 0.20 at Purge Volume (gallons/kters) (s.u.) 0.20 $0.$	No.: Davis Howlad Oil Corp.	Davis Howlad Oil Corp. Well ID:	No.:

Sampler(s): _

☐ Dioxin

Site Name/Loca	ation: Davis Howla	ad Oil Corp.				Well ID:	MW.	-25	_
E & E Project	No.: EET	70500	7.00	09		Date:	10-1	5-20	
Initial Depth to V	Vater: 13,86	feet TOIC			8	Start Time:	131	2	
Total Well D	Depth: 17.98	feet TOIC				End Time:	1350		_
Depth to P	Pump:	feet TOIC					图		
Initial Pump	Rate: 0.40	(pm /)gpm	_		Pi	ump Type:	Perist.	altic	- 2
adjust	ed to: 0.20	at	1335	- 19	Well	Diameter:	2	inches	
	ed to:				1x We	II Volume:	0.67	gallons ×3=	7.01
	Purge Volume	pН	Temp.	ORP	Conductivity	DO	Turbidity	Water	286
Time	(gallons/liters)	(s.u.)	(C) (°F)	(mV)	(µS/cm(mS/cm)		(NTU)	Level (feet)	
1315	1.0	7.28	18,19	97	1.14	9.55		13,98	
1320	3,0		17.00	104	1.17				
1325	5.0	7.22	16.88	100	1.18	,		14.15	
1330	7.0	7.07	16.64	116	1.19		14.7	14.24	
1335	9.0	7.01	16.48	119	1.19	6.02	13.1	14.28	
1340	10.0	7.04	16.33	121	1.21	8.03	4.73	14.14	
1345	11.0	7.07	16.60	122	1.22	8,12	4.38	14,09	
1350	12.0	7.06	16.56	124	1.23	8.28	4.31	14.09	Total S
	-								
				-4-2-4-7					
Final Sa	mple Data:	7.06	16.56	124	1.23	8,28	4.31	14.09	
Sample ID:	MW-1.	OCT	2 (1	Duplicate?	□ Dune	Samp ID:			
Sample Time:	1355			MS/MSD?	<u> </u>	of Bottles:		3	
Analyses:	Methods:	Comments:	Clear	- no	sheen,	NO ST	Lrong	odor:	
KLVOCs	□ CLP	air	60666	5 10	tubing	51		,	
□SVOCs	□ SW846)	7	J	/)		
□ PCBs	□ EPA/CWA			1		/	/_		
□ Pest.					X	1			
☐ Metals/CN									
□ Dioxin		Sampler(s):	CF	>				\	

;	Site Name/Location: Davis Howlad Oil Corp. Well ID: MW-ZR										
	E & E Project	t No.: EE 17	05007.	0009,0	1			10/13/2			
Ir		Water: 17.90						11:03			
		(2) 29.50	feet TOIC			_		13:10			
	Depth to F	Pump: 28,92	feet TOIC				Bailer		Pump		
	Initial Pump	Rate: 0.05	Cpm ∕ gpm			P	ump Type:	Bladd	~		
	adjust	ted to: 0.225 L	n at	11:30			Diameter:		inches		
	adjust	ted to:	at			1x We	ell Volume:	7,53	gallons 3 = 2		
		Purge Volume	рН	Temp.	ORP	Conductivity	DO	Turbidity	Water		
	Time	(gallons/liters)	(s.u.)	(C) (°F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet)		
	11:11	0,4	6,34	16.25	42	1,23	1,48	24.4	17.90		
	11:16	0.65	6.64	16.10	-16	1.25	1.30	25.3	17.99		
	11:21	0.9	6.73	16.07	-37	1.35	1.16	18,9	18.02		
	11:26	1.15	6.83	15.96	-52	1,40	0.87	16.6	18.24		
	11:31	1.4	6.88	15.40	-62	1.47	2.79	10.3	1850		
	11:38	4	6.89	14.85	-67	1.38	6.07	9.7	19.37		
	11:43	6.5	7.00	14.80	-74	1.11	5.68	9.5	20,25		
	11:53	9	7.45	14.79	-91	0.700	5.19	0.0	21.49		
	12:03	13.5	7.29	14.8)	-73	0.678	5.21	0.0	23.03		
	12:13	16.5	7.15	14.82	-59	0.696	7.08	0.0	24.33		
	12:23	23.5	7.10	14.87	-46	0.707	7.08	0.0	25.73		
	12:33	(W)255 Z6	7.11	14.94	-40	0,704	6.22	0	26.72		
	12:43	30	7.01	14.92	-15	0.779	5.96	0	28.35		
1	12:53	33	6.95	14.83	-25	1.04	5,77	0.0	29.07		
	13:07	35			DRY				30.50		
	Final Sa	ample Data:	6.95	14.83	-25	1.04	5.77	0.0			
	Comple ID:	04/13/			Duplicate?		C ID:				
		MW-2R-60 10/14/2020	or the second parties of the Monte Par		MS/MSD?		Samp ID: of Bottles:	6			
	Gample Time.								0,		
	Analyses:					lize work	larel 1	to low-t	100		
	Ď VOCs	□ CLP	,	nethod		, ,	111	, ,			
	□ SVOCs	□ SW846	(Completa	d purgin	THE REPORT OF THE PARTY OF THE	1 dept	////	bailer.		
	□ PCBs	. D EPA/CWA	_ N	tes ferd		. / 1	Significant Alberta Color and	All the Park of the Republic of the Philippe	SS F4 TOIC		
	□ Pest.		<u> </u>	saugh w	lected u	in delicat	ed poly	bailer			
	□ Metals/CN										
	□ Dioxin Ø Sulfate, a	ilkalinit.	Sampler(s):	<u>cw</u>							

Site Name/Lo	ocation: Davis Howla	d Oil Corp.				Well ID:	MW-:	25
E & E Proje	ect No.:	5007.00	009.01			Date:	10/15	2020
	Water: 4.10						10:15	
	o Pump: 12.5					Bailer	(Z)	Pump
Initial Pun	np Rate: 0,9	pm/ gpm		- 76	Pı	ump Type:	pari	
adju	usted to: 6.24	4 at	10:42				2	inches
adju	usted to:	at			1x We	ell Volume:	1.28	gallons Z = 3
Time	Purge Volume (gallons/liters)	pH (s.u.)	Temp.	ORP (mV)	Conductivity (µS/cm mS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet)
10:15	0	6.56	17.75	93	1.34	4.94	119	7.96
10:20	4,5	6.47	17.46	27	1.34	4.08	38.2	10.68
10:25	8	6.44	17.33	4	1.34	6.58	39.4	10.95
10:30		6.43	17.31	-2	1.34	6.04	36.3	10,95
10:35	14	6.44	17.34	-4	1.33	5.89	37,2	10,95
10:40	17	6.45	17.38	-8	1.33	5.75	35.8	10.95
				0	1			
				Je.	<i>Y</i>			
				15/	20		42.3	
					90			
			3 Cg		27			
			100					
Final	Sample Data:	6-45	17.38	-8	1,33	5.75	35.8	10.95
Sample ID:	MW-25-00	T20		Duplicate	7 Dupe	Samp ID:		
Sample Tim			4	MS/MSD	? 🗆 No.	of Bottles:	3	
Analyses:	Methods: □ CLP	Comments:				ALC: N		
□ SVOCs	□ SW846							
□ PCBs	□ EPA/CWA							
□ Pest.								
□ Metals/C	N		1					
□ Dioxin		Sampler(s):	Cu					

Site Name/Loca	ation: Davis Howla	d Oil Corp.				Well ID:	MW-S	SR.	
E & E Project	No.: EE104	75007.0	009.01				10/13/2		
	•								
	Vater: 14,/2						13:4		
	epth: 34.71				**************************************		14:20		
	ump: 33.5					Bailer		Pump	
	Rate: 0,25 (Bladder		
adjust	ed to: 0,20	at	13:58		Well	Diameter:	inches		
adjust	ed to:	at			1x We	II Volume:		gallons	
	Purge Volume	рН	Temp.	ORP	Conductivity	DO	Turbidity	Water	
Time	(gallons/liters)	(s.u.)	(°C) / °F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet)	
13:45	0.5	6.70	16.78	-8	1.18	2.05	77,3	14.16	
13:48	1.75	6.87	16,95	-40	1.18	1.39	59.8	14.08	
13:53	3	6.91	17.06	-43	1.18	1,28	51.5	14.08	
13:58	4.25	6.94	17.22	-42	1.18	1.26	41.1	14.03	
14:03	5,25	6.89	16,48	-76	1.27	0.59	33.2	14.18	
14:08	6.25	6.89	16.40	-78	1.28	0.48	33.0	14.18	
14:13	7.25	6.90	16.33	-80	1,28	0,41	30.8	14.18	
14:18	8.25	6.91	16.29	-80	1.28	0.38	30,2	14.18	
				_	. 1				
			,						
			7	1	3/2020				
Final Sa	mple Data:	6.91	16-29	-80	1,28	2.38	30.2	14.18	
Camala ID:	-111 00			Duplicate?	: D	Comp ID:			
Sample Time:	MW-5R 14:20			MS/MSD?		Samp ID: of Bottles:	- 5		
Sample Time.	17.20			WO/WOD!		or bottles.			
Analyses:	Methods:	Comments:							
▼ VOCs	□ CLP								
SVOCs	□ SW846								
□ PCBs	□ EPA/CWA								
□ Pest.	<u> </u>								
☐ Metals/CN			211						
Dioxin	14 1 1	Sampler(s):	a						

	Environmental Sp	ecialists												
	WELL PURGE & SAMPLE RECORD													
,	Site Name/Loca	ition: Davis Howla	ad Oil Corp.				Well ID:	MW-	8					
	E & E Project	No.: EE	7050	07.0	009		Date:	10-1	2.2020					
In	nitial Depth to W	Vater: 22.88	feet TOIC			(Start Time:	1350						
	Total Well D	epth: <u>35,36</u>	feet TOIC				End Time:	150	б					
	Depth to P	ump: 34.36	feet TOIC				Bailer		Pump					
	Initial Pump	Rate: 0.10	(Lpm) gpm			Р	ump Type:	BLAD	DER					
	adjuste	ed to: 0.20	at	1410		Well	Diameter:	4	inches					
	adjuste	ed to: 0 , / O	at	1425		1x We	ell Volume:	8.15	gallons 13 =	24.4				
	,	Purge Volume	pН	Temp.	ORP	Conductivity	DO	Turbidity	Water					
	Time	(gallons/liters)	(s.u.)	(°C)/ °F)	(mV)	(µS/cm (nS/cm)	(mg/L)	(NTU)	Level (feet)					
	1400	1.0	7.46	15.21	-6	1.44	0.79	23.1	23.78					
	1410	2.0	7.43	14.88	-22	1.45	0,34	19.0	23.98					
	1415	20	742	1473	-30	1 45	127	122	7470					

,	Purge Volume	pН	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.)	(°C)/ °F)	(mV)	(µS/cm (nS/cm)	(mg/L)	(NTU)	Level (feet)
1400	1.0	7.46	15.21	-6	1.44	0.79	23.1	23.78
1410	2.0	7.43	14.88	-22	1.45	0,34	19.0	23.98
1415	3.0	7.42	14.73	-30	1.45	0.22	12.2	24.20
1420	4.0	7.42	14.70	- 35	1.46	0.15	9.3	24,36
1425	5.0	7.41	14.66	-39	1.40	0,09	9.7	24.45
1430	5,5	7.41	14.95	-35	1.40	0.49	12.8	24.45
1435	6.0	7,41	15.00	-32	1.47	0.26	11.3=	24.40
1440	6.5	7.41	15.01	-36	1.46	0,13	.9.2	24.39
1445	7.0	7.42	14.96	-40	1.46	0,07	8.4	24.38
1450	7.5	7.42	14.91	-42	1.46	0.03	7.4	24.35
1455	8.0	7.43	14.88	-45	1.44	0,00	6.5	24.32
1500	8.5	7.43	14.87	-47	1.42	0,00	6.3	24.32
1505	9.0	7.44	14.84	-48	1.41	0,00	6.4	24.32
Final Sa	mple Data:	7.44	14.84	-48	1.41	0,00	6.4	24.32

Sample ID: Sample Time:	MW-8-00	Duplicate? Dupe Samp ID: MS/MSD? No. of Bottles: 5
Analyses:	Methods:	Comments: Clear, no sheen, no strong ador
⊠ VOCs	□ CLP	
SVOCs	□ SW846	
□ PCBs	□ EPA/CWA	
□ Pest.	Alkalinity,	
☐ Metals/CN	Sulfate	
□ Dioxin		Sampler(s): CP CW

Site Name/Loc	ation: Davis Howla	ad Oil Corp.				Well ID:	MW-0	15
E & E Projec	t No.: _EE170	5007.0	09.01			Date:	10/15	12020
Initial Depth to V	Nater: <u>4.45</u>	feet TOIC			5	Start Time:	9:2	4
	20 20 20 20 20 20 20 20 20 20 20 20 20 2	feet TOIC				End Time:	10:01	<i>b</i>
	Pump: 14	feet TOIC			_	Bailer		Pump
	Rate: 0.7	70 1000-1-100			Pı	ump Type:	pari	
	ted to: 0.20L		9:46			Diameter:	1 -	inches
	ted to:	at			1x We	ell Volume:	1,54	gallons 3x=4.
	Purge Volume	pН	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.)	(℃/ °F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet)
9:26	8	5.92	18.28	182	1.00	8.90	9.4	7.59
9:31	0354	6.49	19.41	136	0.983	8,00	0. 0	9.69
9:36	8	6.60	19.69	119	0.977	7.21	0.0	10.68
9:41	12	6.62	19.67	1/2	0.975	6.72	0.0	11.57
9:46	. 16	6.66	19,61	104	0.972	5.00	0.0	12.44
9:51	17	6.70	19.57	97	0.969	5.56	8.0	12,49
9156	18	6.71	19.58	95	0.968	5.53	0.0	1249
				0				
				70	44/		- A 1	
					toro			
				G. S.				
Final Sa	ample Data:	6.71	19.58	95	0.968	5.53	0.0	12.49
Sample ID:	Muzocza	T30		Duplicate?	: П Dune	Samp ID:		
Sample Time:	MW-95-0	420		MS/MSD?		of Bottles:	7	
Campio Timo.	10.00					or Bouleo.		
Analyses:		Comments:						
VOCs	CLP							
□ SVOCs □ PCBs	□ SW846							
□ Pest.	□ EPA/CWA						45	
☐ Metals/CN								
□ Dioxin		Sampler(s):	(1)			0		
_ DIOAIII		Campion (d).						

2	11	5
ρ,	/	_

		WEL	L PURGE &	SAMPLE	RECORD				
	ation: Davis Howla			Well ID:	MW-	10R	_		
E & E Project	No.: EE	17050	07.0	5009		Date:	10-	14-20	-
Initial Depth to V	Vater: 20, 22	feet TOIC			5	Start Time:	1050)	_
Total Well D	Depth: 35,57	feet TOIC				End Time:	1315		_
Depth to F	Pump: 34.57	feet TOIC				Bailer	区	Pump	
Initial Pump	Rate: 0,2 (Lpm) gpm			Pi	ump Type:	BLADE	DER	
adjust	ed to:	at			Well	Diameter:	4	inches	
adjust	ed to:	at						gallons ⊭ 3 =	28
	Purge Volume	рН	Temp.	ORP	Conductivity	DO	Turbidity]
Time	(gallons(liters)	(s.u.)	((°C)(°F)	(mV)	(µS/cm mS/cm)) (mg/L)	(NTU)	Level (feet)	
1055	1.0	6.63	13.78	111		0,00	0.0	20,50	1
1100	2.0	6.66	13.84	93	1.09	Ø	Ø	20,54	1
1105	3.0	6.62	13.79	67	1.05	Ø	0	20,61	1
1110	4.0	6.63	13 79	64	1.05	0	0	20.69	1
1120	5.0	6.75	13.84	124	1.07	Ø	b	20.67	1
1/25	6.0	6.87	13.75	107	1.05	0	<i>D</i>	20.74	1
1130	7.0	6.89	13.76	97	1.05	6.00	B	20.78	1
1135	8.0	10.89	13.77	78	1.05	3,22	B	20.83	1
1140	9.0	6.91	13.79	65	1.05	0,00	Ø	20,89	
1145	10.0	6.92	13.80	58	1.05	4.81	Ø.	20.93	
1150	11.0	6.93	13,81	52	1.05	4.33	Ø	20,99	1
1155	12.0	6,94	13.82	47	1.04	0,0	Ø	21.03	
1200	13.0	6.93	13.82	43	1.05	6.59	0	21.06	
1205	19.0	6,90	13.83	41	1.05	5.21	Ø	21.09	1
1210	15.0	6.57	13.88	40	1.05	4.00	0	21.12	1
Final Sa	ample Data:	6.51	14.57	25	1.04	0.07	Ø	20,90	
	0	0 0.					7	0.0.	
Sample ID:	122 122	R. OLTZ	4	Duplicate?		Samp ID:		_	-
Sample Time:	130			MS/MSD?	Ш No.	of Bottles:) .	-
Analyses:	Methods:	Comments:	* Paused	@1110	to clear	n out	flow.	+through	9
E VOCs	□ CLP	thr	cell:	clear	, no sh	een,	no s	trong	_
□ SVOCs	□ SW846	00	01		1	\	1	J	_
□ PCBs	□ EPA/CWA			<u> </u>		1	1/		_
□ Pest.	Alkalinity,			\		X		_ \	
☐ Metals/CN	Sulfates O'					/			-
□ Dioxin		Sampler(s):	18	P			1		

Site Name/Location: Davis Howlad Oil Corp. Date: DAV DR			WEL	L PURGE &	SAMPLE	RECORD			
Initial Depth to Water:	Site Name/Loca	ation: Davis Howla	d Oil Corp.				Well ID:	MW-	10R
Total Well Depth: 35.57 feet TOIC	E & E Project	t No .: EE17	05007	,0009			Date:	10-	14-20
Total Well Depth: 35.57 feet TOIC	Initial Depth to V	Nater: 20,33	feet TOIC			5	Start Time:	105	ъ
Depth to Pump: 34:57 feet TOIC Initial Pump Rate: Q.2 Lpm/gpm adjusted to: at at adjusted to: at adjusted to: at adjusted to: at well Diameter: 1x Well Volume: 9.37 gallons yellons yello			A STATE OF THE STA						
Initial Pump Rate: O.2 Lpm/ gpm adjusted to: at						П			Pump
adjusted to: at									
adjusted to: at			$\overline{}$						•
Purge Volume									•
Time (gallons/fiters) (s.u.) (C) F) (mv) (us/cm fis/cm) (mg/L) (NTU) Level (feet) 1215 1/0,0	adjust	tea to:	at			1x vve	eli volume:	9.37	gallons
12"			2000			1			501000000000000000000000000000000000000
13 ²⁰		(gallons/liters)		(°C) °F)	(mV)	10:		(NTU)	
1315 28.0 6.95 14.58 27 1.04 0.07 20.90 1315 28.0 6.95 14.58 227 1.04 0.07 20.90 1315 28.0 6.95 14.58 227 1.04 0.07 0.090 1315 28.0 6.95 14.58 26 1.04 0.07 0.090 1315 28.0 6.95 14.58 26 1.04 0.07 0.090 1315 28.0 6.95 14.58 26 1.04 0.07 0.090 1315 28.0 6.95 14.58 2.5 14.58 2.5 1.04 0.07 0.090 1315 28.0 6.95 14.57 25 1.04 0.07 0.090 1315 28.0 6.95 14.57 25 1.04 0.07 0.090 1315 28.0 6.95 14.57 25 1.04 0.07 0.090 1315 28.0 6.95 14.57 25 1.04 0.07 0.090 1316 281		10.0		19.50	41	1 .	- 1	y)	
1230	1225	17.0	1101	19.11	91		3.11	0	
235 20,0 5,52 14,70 40 1,03 2,13 50 20,90 1245 22.0 5,95 14,59 35 1,03 1,50 50,90 125 23.0 6,05 14,57 34 1,03 1,03 0,20,90 125 24.0 6,25 14,58 31 1,03 1,03 0,20,90 125 24.0 6,41 14,58 27 1,04 0,68 50,90 130 27.0 6,41 14,58 27 1,04 0,40 50,90 1315 28.0 6,51 14,57 25 1,04 0,07 50,90 1315 28.0 6,51 14,57 25 1,04 0,07 50,90 Sample ID:	120	18.0	5,04	14.70	41	1.06	2.82	_2_	20.91
12 15 21 15 14 15 15 15 15 15 1	1230	19.0	5.32	14.85	41	1,05	2.59	9	20.40
12	12:53	20,0	5,52	14.70	40	1,03	2.13	<u> </u>	20.90
1350 23.0 6.05 14.57 34 1.03 1.33 20.90 1355 24.0 6.25 14.58 31 1.03 1.03 20.90 1300 25.0 6.36 14.58 29 1.04 0.68 20.90 1305 26.0 6.41 14.58 27 1.04 0.40 20.90 1315 28.0 6.51 14.57 25 1.04 0.07 20.90 1315 28.0 6.51 14.57 25 1.04 0.07 20.90 Sample ID:	12 40	21,0	5.72	14,64	37	1.02	1.81	ϕ	20.90
135	1245	23.0	5.95	14.59	35	1.03	1.50	Ø.	50.00
1300 25.0 6.36 14.58 29 1.04 0.68 0 20.90 1305 26.0 6.41 14.58 27 1.04 0.40 0 20.90 1310 27.0 6.47 14.58 26 1.04 0.72 0 20.90 1315 28.0 6.51 14.57 25 1.04 0.07 0 20.90 Sample ID:	1250	23.0	6.05	14.57	34	1.03	1,33	Ø	20.90
1305 26.0 6.41 14.58 27 1.04 0.40 0.30.90 1310 27.0 6.47 14.58 26 1.04 0.72 0.90 1315 28.0 6.51 14.57 25 1.04 0.07 0.07 0.090 Sample ID:	1255	24.0	6.25	14,58	31	1.03	1.03	Ø	20.90
1305 26.0 6.41 14.58 27 1.04 0.40 0	1300	25.0	Ce. 36e	14.58	29	1.04	0,68	Ø	20.90
13 10	1305		1 11	14.58	27	1,04	0,40	Ø	09.66
1315 28.0 6.51 14.57 25 1.04 0.07 0 20.90	1310	27.0	6,47	14.58	26	1.04		Ø	20,90
Final Sample Data:	1315	28.0	6,51	14.57		1	0.07	Ø	20,90
Sample ID:									
Sample ID:			1 -	10 ==	0-			<i>d</i>	
Sample Time: 320 No. of Bottles: S Analyses: Methods: Comments: VOCs CLP SVOCs SW846 PCBs EPA/CWA Pest. Alkalinity Metals/CN Sylfates	Final S	ample Data:	6.51	17.57	25	1,04	0.07	(V)	2090
Analyses: Methods: Comments: VOCs	Sample ID:	MW-10R	OCT Z)	Duplicate?	Dupe	Samp ID:		
VOCs CLP SVOCs SW846 PCBs EPA/CWA Pest. Alkulinity Metals/CN Sylfates	Sample Time:	1220			MS/MSD?	□ No.	of Bottles:	5	
VOCs CLP SVOCs SW846 PCBs EPA/CWA Pest. Alkalinity Metals/CN Sylfates	Analyses	Methods:	Comments:	1	0	\wedge		`	
SVOCs SW846 PCBs EPA/CWA Pest. Alkulinity Metals/CN Sylfates			/	/	()		1/		
PCBs EPA/CWA Alkalinity Sylfates			/				/	/	
Pest. Alkalinity, Metals/CN Sylfates				(/		
Metals/CN Sulfates						/ V	1		
□ Dioxin Sampler(s):									
	□ Dioxin		Sampler(s):		CP				

Site Name/Loca	ation: Davis Howla	ad Oil Corp.				Well ID:	MW-	14R	
E & E Project	No.: EE	70500	7.000	9		Date:	10-13	-20	i
Initial Depth to Water: 9,44 feet TOIC Start Time: 1245									
	Depth: 33,9/	•					115	3	5
	Pump: 32,91					Bailer		Pump.	¢
	Rate: 0,20						BLADI		
	ed to:	at				Diameter:	1.	inches	5
adjust		at						gallons X3=	47.
	Purge Volume	pН	Temp.	ORP	Conductivity	DO	Turbidity	Water	
Time	(gallons/liters)		(°C)°F)	(mV)	(µS/cm mS/cm)	000000000000000000000000000000000000000	(NTU)	Level (feet)	
1250	0.50	7.43	15.54	-154	0.700	0.11	406	9.65	
1255	1,00	7.23	14.93	-155	0.801	0.00	122	9.73	
130	2,00	7.33	14.81	-156	0,842	0.00	83.1	9,82	
1305	3.00	7.32	14.73	-155	0.869	0.00	66.60	9.84	
1310	4.00	7.30	14.64	-155	0.880	0,00	52.3	9.84	
1315	5.00	7,27	14.60	-155	0.887	0.00	43.0	9.91	
1320	6.00	7.26	14.60	-154	0.890	0.00	40.5	9.94	
1325	7.00	7.23	14,57	-154	0.893	0.00	36.7	9.96	
1330	8.00	7.23	14.51	-155	0.894	0,00	31.8	9.96	
1335	9,00	7.24	14.52	-156	0.894	0,00	30.3	9.96	
1340	10.00	7.26	14.54	-157	0.893	0.00	30,1	9.96	
1345	11.00	7.27	14.55	-158	0.889	0.00	24.5	9,92	
1350	(2.00	7.27	14.56	-158	0.881	0.00	22.5	9.88	
1355	13.00	7,26	14.55	-157	0.870	0.00	23.1	9.88	
									John,
Final Sa	mple Data:	7.26	14.55	-157	0.870	0.00	23.1	9.88	
Sample ID:	MW-14A	P-OCT	20	Duplicate?	□ Dune	Samp ID:			
Sample Time:	1400			MS/MSD?	_	of Bottles:		5	
Analyses:	Methods:	Comments:	Murky	at-	First, becom	mes c	lear; r	o Sheen	
Ø VOCs	□ CLP	No 5-	trong	odoc					1
□ SVOCs	□ SW846		\ \ \ \	Λ	N				
□ PCBs	□ EPA/CWA					1			
□ Pest.	Alkalihity, Sulfate				7X.				
☐ Metals/CN .	Suffaite								
□ Dioxin		Sampler(s):	CF			V			

Site Name/Lo	cation: Davis How	lad Oil Corp.				Well ID	_MW-	145
E & E Proje	ct No.: <u>EE17</u>	105007.	0009.0				10/15	
	Water: <u>4,38</u>					Start Time	:_11:09	
Total Well	Depth: 12.43	_feet TOIC				End Time	11:3	1
Depth to	Pump: 11.5	feet TOIC				Bailer	凶	Pump
Initial Pump	Rate: 0, 9	Com / gpm			Р	ump Type	pari	
adjus	sted to:	at					2	inches
adjus	sted to:	_ at			1x We	ell Volume:	1.39	gallons 3x2
Time	Purge Volume (gallons/liters)	pH (s.u.)	Temp.	ORP (mV)	Conductivity (µS/cm mS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet)
11:10	0	6.57	17.97	-4	0.599	0.48	117	5.34
11:15	5	6.48	18.26	21	0.692	4.38	10.8	7.85
11:20	8	6.45	18.41	-2	0.571	3.93	11.3	10,29
11:25	12	6.44	18.10	-9	0.567	3.82	0.0	12.32
11:30	14	6.48	17.98	-23	0.586	3.70	0.0	12:85
11:31	14.5 -			DRY -				12.93
					9.00			
				CI	1/			
				10/10				
					2020			
						,		
Final Sa	mple Data:	6.48	17.98	-23	6.986	3.70	0.0	
Sample ID: Sample Time:	MW-145 13:10			Ouplicate?		Samp ID: _ f Bottles:	2	
Analyses:	Methods: C	'ommonts:						
VOCs	□ CLP	omments	war w	y of 7	time of so	amplin	y = 5.0	5 F4 TOIC
□SVOCs	□ SW846							
□ PCBs	□ EPA/CWA							
□ Pest.								
☐ Metals/CN								
□ Dioxin	Š	ampler(s):	ch					

Site Name/Loca	ation: Davis Howla	ad Oil Corp.				Well ID:	MW-	15R
E & E Project	No.: EET	70500	7.0009.	0/		Date:	10/14/	2020
Initial Depth to V	Vater: 16.91	feet TOIC			8	Start Time:	12:4	2
	Depth: 30.30					End Time:	14:2	> >
	oump:	feet TOIC			Ž,	Bailer		Pump
Initial Pump	Rate:	Lpm / gpm			Pi	ump Type:	dedicat	- al sely
	ed to:	at				Diameter:		inches
	ed to:	at						gallons 3x
	Purge Volume	pH	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/(iters)	(s.u.)	(°C)°F)	(mV)	(µS/cm mS/cm)		(NTU)	Level (feet)
12:52		7.45	14.76	-15	1.15	12.56	37.9	17.15
13:02	9,5	7.47	14.24	-8	1.15	9,32	39.1	19,10
13:12	6 gal	7.48	14.12	-1	1.15	9.14	32.7	20,95
13:22	Wash	7.46	14.06	8	1.15	9.10	32.7	21.88
13:32	1550	7.34	14.00	15	1.15	8.84	27.8	22.89
13:42	17	7-16	14,00	23	1.14	7.47	17.7	25.98
14:00	23 —			DRY				-29.92
				00				
				9	1/			
				10/14	300			
Final Sa	ample Data:	7.16	14,00	23	1.14	7.47	17.7	29.92
				D				
	MW-15R-001			Duplicate? MS/MSD?		Samp ID:		
Sample Time:	10/15/2020		- , , ,			of Bottles:		. /
Analyses:	Methods:	Comments:	Unable	to State	rilize wata	level	at 50	nefusin.
VOCs	□ CLP	Will	puge sav	CHARLES A PACKET CONTROL OF THE RESIDENCE OF THE TOP OF THE PACKET.				
□ SVOCs	□ SW846	Wata	level =	16.76	TOIC at -	tine of	2 Saarphi	<u>i</u>
□ PCBs	□ EPA/CWA							
□ Pest.								
□ Metals/CN				1				
Dioxin Stalkalint	u. sulfate	Sampler(s):	Ch	/				
Balkalinto	4, Sultate							

		WEL	L PURGE &	SAMPLE	RECORD			
Site Name/Loc	ation: Davis Howla	d Oil Corp.				Well ID:	MW-1	GR
E & E Projec	t No.: EE1705	007.000	9.01			Date:	10/14/	2020
Initial Donth to \	Notor: 777	foot TOIC				tort Time:	10.00	
	Water: 22.2	feet TOIC					10:21	
	Depth: 31.1	feet TOIC					11:55	
	Pump: 30	feet TOIC						
Initial Pump	Rate: O.1	pm) gpm			Pı	ump Type:	Bladd	W
adjus	ted to: 0.375	at	10:51				4	
adjus	ted to:	at			1x We	II Volume:	5.82	gallons 322
	Purge Volume	pH	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/titers)	(s.u.)	(C)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet)
10:26	0.5	6.21	14.73	-86	155	3.09	13.4	20,3
10:31	1	6.65	15.04	-165	2.02	1.49	14,8	20.48
10:36	1,5	6.75	15.20	-703	2.20	0.86	8.4	20,47
10:41	2	6.78	15.23	-235	2.24	0.93	5.7	20,79
10:51	3	6.80	15.28	-260	2.23	0.81	1.3	21.05
11:01	6.75	6.85	14.87	-266	1,95	0.44	0.0	22.38
11:11	10.5	6.93	14.92	-254	1.39	0.44	0.0	22.83
11:21	14.25	6.94	15.03	-235	1.20	0.62	0.0	23.90
11:31	18	7.01	15.18	-230	1.03	2.09	0.0	24.89
11:41	21.75	7.17	15.34	-229	0.744	2.85	0.0	25.92
11:51	31	7.02	15.60	-229	0.961	5.64	295	28.90
11:54	34			DRY				29.90
				Ch	2/			
				10/14/	2020			
Final S	Sample Data:	7.02	15.60	-229	0.961	5.64	295	29.90
Sample ID:	10/11/1/4	, , , , , , ,		Duplicate?	Dune	Samp ID:		
	MW-168		2	MS/MSD?		of Bottles:		
Sample Time: 6/15/2020 12:30 MS/MSD? LI No. of Bottles: 5								
Analyses:	Methods:	Comments:	Unable	to sta	bilize was	ta la	rel at	50m/
X VOCs	□ CLP	Swita	bing from	10W-	How mother	1 to pu	ge met	had at
□ SVOCs	□ SW846	10:4	8, C	eaned	out flow-	thro	ugh wel	lat
□ PCBs	□ EPA/CWA	11:15	3. Swi	telest to	puller at	- 11:5	(.)	
□ Pest.		Wuta	level =	20.38 7	DIC at tin	ne of sov	yeling.	
☐ Metals/CN		Sulf	w odos					
□ Dioxin		Sampler(s):	CW					

Site Name/Loca	ation: Davis Howla	d Oil Corp.				Well ID:	MW-17	R	
E & E Project	No.: EE170	5007,00	09.01			Date:	10/12/	2020	
	Vater: 27.79 Depth: 36,85					Start Time: End Time:	12:15		
Depth to F	Pump: 34	feet TOIC				Bailer	Ø Pump		
					Pt	ump Type:	bladde	2	
adjust	ed to:	at			Well	Diameter:	4	inches	
adjust	ed to:	at			1x We	II Volume:	5.92	gallons 32 = 17	
Time	Purge Volume (gallons/liters)		Temp.	ORP (mV)	Conductivity (µS/cm (nS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet)	
12:20	1.25	7.71	17.68	-1	1.45	3.35	28.8	27.78	
12:25	2,5	7.68	16.25	-14	1.47	3.19	27.8	27.73	
12:38	3,75	7.68	15.86	-19	1.48	3.33	24.1	27.78	
12:35	4.0	7.68	15.64	-24	1.48	3.37	21.3	27.78	
12140	@4-5.25	7.66	15.52	-27	1.49	3.43	20.4	27.78	
12:45	6.5	7.68	15.56	-29	1.48	3.45	19.0	27.7B	
12:50	7.75	7.67	15.40	-30	1.49	3.55	15.8	27-78	
12:55	8.0	7.67	15.43	-32	1.48	3.55	13.2	27.78	
13:00	9,25	7.67	15.65	-33	1.47	3,50	12-1	27:78	
13:05	10.5	7.67	15.45	-35	1.47	3.51	11.9	27.73	
				a					
				10/	1/202				
								7	
Final Sa	ample Data:	7.67	15.45	-35	1-47	3.5/	11.9	27.78	
Sample ID: Sample Time:	MW-17R-00 13:10	T20	-	Duplicate? MS/MSD?		Samp ID: of Bottles:		R-00720-Q	
Analyses:	Methods: □ CLP	Comments:	10 00	lo, no	sheen				
□ SVOCs	□ SW846								
□ PCBs	□ EPA/CWA								
□ Pest.									
☐ Metals/CN			2.1						
Dioxin Dioxin	ty	Sampler(s):	<u> </u>	J					

5	Site Name/Loca	tion: Davis Howla	d Oil Corp.			Well ID:	PW-	1		
	E & E Project	No .: EE/	70500	7.000	9		Date:	10-13	5-20	
ln		/ater: 10.46						9 45		
		epth: 29,34						10 35		
		ump: <u>28,34</u>	-				Bailer		Pump	
		Rate: 0, 2 (10.10		Pi	ump Type:	BLAD	DER	
		ed to: 0, 1		1010				8		
	adjuste	ed to: 0.7	at	1020		1x We	II Volume:	49.30	gallons × 3 =	147.90
		Purge Volume	pН	Temp.	ORP	Conductivity	DO	Turbidity	Water	
	Time	(gallons liters)		(°C)°F)		(µS/cm/mS/cm)	Note the Particular State of the Yorks	Control of the Contro	Level (feet)	
	455	0.5	The Property of the State of th	17.48	A RESERVE WAS IN THE TAX		0.00		10,47	
	1000	/, 0		17.14		1.50	Ø	2.64	10,48	
	1005	2.0		17.07		1.56	Ø	2.2/	10.48	
	1010	3.0		17.36		1.57	Ø	2.21	10.47	
	1015	3,5		17.46		1.57	Ø	0.67	10.47	
	1020	4.0	6.79	16.96	-118	1.58	Ø	0.29	10.47	
	1025	5.0	6.79	16.85	-117	1,60	Ø	0.12	10.47	
	1030	6.0	6.79	16.82	-117	1.60	Ø	0,00	10.47	
	1035	7.0	6.78	16.80	-116	1.60	Ø	0.20	10.47	
	Final Sa	mple Data:	6.78	16.80	-11 le	1.60	Ø	0.20	10,47	
	Sample ID:	PUL 1 -	ハノエフ	1	Duplicate?	: D Duna	Carra ID:			
	Sample Time:	PW-1-	0012	.0	MS/MSD?		Samp ID: of Bottles:	-		
				(100					1 6	
	Analyses:		Comments:	Clea	s, no	sheen,	10 9	Tong	o do!	
	▼ VOCs	□ CLP	1	/	7 (\	7			
	□ SVOCs □ PCBs	☐ SW846 ☐ EPA/CWA	-			1				
					-/	1				
	☐ Metals/CN	Alkalinity Suffates	•		- (_
	□ Dioxin .		Sampler(s):	CF	>					
			Jampioi (3).							

Site Name/Loca	ation: Davis Howla	ad Oil Corp.				Well ID:	PZ-3	3	
E & E Project	No.: 1705	500 7.0	009.01			Date:	10/15/	2025	
Initial Depth to V	Vater: 5.71	feet TOIC			5	Start Time:	11:51		
	Depth: 13,49						13:00		ř
	Pump: 12.5						Q	Pump	
		0	3-				pari		
adjust	ed to: 0.1 Lpm	at	12:05	a)			2	inches	
	ed to:						Color Color Color Color Color	gallons 3 x = 4	0,96
Time	Purge Volume (gallons/liters)	pH (s.u.)	Temp.	ORP (mV)	Conductivity (µS/cm mS/cm)				Performance of the Street Line
11:52	G	6.61	20,47		1.66	8.86	55.5	Level (leet)	
11:57	2	6.62	20.15	35	1.72	8.32	140	8.23	
12:52	3	6.72	20.33	33	1,76	8.96	90,5	7.61	
12:07	5	6=70	20.37	22	1.76	8.22	2.4	8.45	
12:20	5.5	6.93	20,58	39	1-89	8,52	259		
12:25	6	6.37	21.48	93	1.47	8.31	55.9	7.23	
12:36	6.5	6.94	20.60	18	1.93	8.81	15.5	7.11	
+2:35	7								(ew)
12:40	7.75	6.89	20.35	8	1.97	8.96	6.0	7.11	
12:45	8.25	6.88	20.27	7	1.97	9.08	0,0	7.11	
13:00	8.75	6.86	20.21	6	1.98	8.93	0-0	7.11	
				al					
				101	5/2020				
								\	
Final Sa	mple Data:	6.86	20.21	6	1.98	8,93	0,0	チル	
Sample ID:	PZ-3-0CT	20		Duplicate?	☐ Dupe	Samp ID:			
Sample Time:				MS/MSD?		of Bottles:	3		
Analyses:	Methods:	Comments:	ch. 0.	·	b)w 11:57		2 6.4	- 11 . 1	
Analyses:	□ CLP	terbi.	Stopped p	12	woland in w	1100	2. Ces	Julia	
□SVOCs	□ SW846	5	7 /	,		1:07+	12:20	CW replace	1
□ PCBs	□ EPA/CWA	Sil	con tula	1) ,,	wing problem		r bubble	sin line	
□ Pest.		b/w	flow-th			Hose da	1	joint Lles	
☐ Metals/CN		silic	one tub	ing +p	shy troing	didn't f	x.	<i>y</i>	
□ Dioxin		Sampler(s):	Ch)) '	, 1				-

te Name/Locati	on:-Eastman Bus	iness Park	DHOC			Well ID:	MW-	ISR
E & E Project N	No.:							1/2020
ial Depth to Wa	ater: <u>16.44</u> f	eet TOIC			8	Start Time:	_11:20	1
Total Well De	epth: 30.32 f	eet TOIC					13:00	
	ımp: —					Bailer		Pump
	Rate:							ed poly
	d to:				Well	Diameter:	4	inches
	d to:						15-1	gallons عرج
Time	Purge Volume (gallons/liters)	pH (s.u.)	Temp. (◎/°F)	ORP (mV)	Conductivity (µS/cm (nS/cm))	DO (mg/L)	Turbidity	Water Level (feet)
11:24)	7.15	12.85	-43	6.513		25,3	_
11:33	@95	7.10	13.09	-6	1.05		67.2	20,14
11:46	lo	7.07	13.28	9	1.11	,	54.9	72.35
11:56	15	7.20	13.07	14	1.12	9.58	54.2	25.45
12:47	26	7.30	13.05	7 23 V 12	1.10		43.4	22.25
12:58	25	7.51	13.14	55	1.11		40.9	25.55
13:05	27.5	7.42	12.53	100000	1.12		46.5	24.88
				0				
				12/				
-		-		~	6020			
7		1						
	-			-				
Final S	ample Data:	7.42	12.53	30	1.12	8.9/	46.5	26.88
Sample ID: Sample Time:	MW-15R-1	OECZO	4.	Duplicate MS/MSD		e Samp ID:		70.08
	1.5	120.000.00	D,					
Analyses:	Methods:	Comments	: Paused	pargina	PM 15:0	1-0	2:40	
Ø VOCs	□ CLP					_		
☐ SVOCs ☐ PCBs	☐ SW846 ☐ EPA/CWA	_				-		-
□ Pest.		-						
☐ Metals/CN								
☐ Dioxin		Sampler(s)	. (1	V.				
Malk sulf		Jampier (s)						_

e Name/Local		WELI	PURGE &	SAMPLE	RECORD			
	tion: Eastman Bu	siness Park				Well ID:	IW-C	1
E & E Project	No.: EE170	5007	,0009			Date:	11-30	- 2020
ial Depth to W	/ater: 34.74	feet TOIC			S	tart Time:	102	5
	epth: 37.40					End Time:	11,	5
	rump: 36.40					Bailer	×	Pump
	Rate: 02				Pi	ımp Type:	BLAD	
	ed to:						id.	
	ed to:							gallons \3:
Time	Purge Volume (gallons/(iters)	pH (s.u.)	Temp.	ORP (mV)	Conductivity (µS/cm mS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet
1032	2.0	7.59	12.39	-43	1.36		39,0	26.94
049	3.0	7.59	12,51	-44	1.35	Ø	18.5	26.94
1045	4.0	7.57	12.55		1.37	0	10.5	26.94
1030	5.0	7.57			1.37	Ø	9.5	2694
1922	6.0	7.57		-43	1,36	S	9.6	26.94
1100	7.0	7.55	12.43	-43	1.37	P	7.7	26.94
				1,2	1.7.			
-				^				
			1	1		1		
				11	1			
		1		X	1		1	
					, ,			
				In a		1 4	1.7	
	ample Data:	7.55	12.43	-43	1.37	P	7.7	26.94

CP

Sampler(s):

☐ Dioxin

(H.37) May

		WE	LL PURGE	& SAMPLE	RECORD			
Site Name/Loc	ation: Eastman B	usiness Park	(Well ID	- Ph	1-1
E & E Projec	et No.:			*		Date	11/3	0/2020
Initial Depth to	Water: /0.62	feet TOIC				Start Time	: 12:	2 0
	Depth: 29.35					End Time	: 13:	30
	Pump: 28						B	-
	Rate: 0 . 2				F	ump Type	Blac	lder
	sted to:							
	sted to:	-		7				
	Purge Volume		Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)		(%) °F)	(mV)	(µS/cm nS/cm)	(mg/L)	(NTU)	Level (feet)
12:22	0.4	7.65	14.77	-29	1.83	1.19	653	10.58
12:27		7.60	15.04	-46	1.94	0.69	172	10.70
12:32	2.4	7.57	15.04	-46	1.96	0.63	81.5	10.70
12:37		7.55	15.04	-50	1.96	0.55	55.9	10.70
12:42	4.4	7.53	15.00	-49	1.97	0.53	44.2	10.70
12:47	5.4	757	14.98	-49	1.97	0.46	35.2	10.70
12:52	6,4	7.58	15.04	-48	1,97	0.43	26.3	10.70
12:57	7.4	7.58	14.98	-49	1.97	0,40	20.5	10.75
13:02	8.4	7.57	14.96	-52	1.97	0.38	19.8	10.75
13:07	9,4	7.53	14.99	-50	1.97	0.38	16.6	10.75
13:12	10.4	7.56	14.98	-50	1.97	0.34	16.2	10.75
13:17	11.4	7.52	14.97	-51	1.96	0.34	13.8	10.75
13:22	12.4	756	15.01	-51	1.96	0.31	13.2	10.75
13:27	13.4	7.52	14.98	-52	1.96	0.30	12.9	10.75
		-	WI	11/30/2	020-			
Final Sa	ample Data:	752	14.98	-52	1.96	0.30	12.9	10,75
Sample ID:	0.1.1.			Duplicate?	Dune	Samp ID:		
Sample Time:	13:20	10		MS/MSD?	_	of Bottles:	5	_
						or botties.		
Analyses:	1	Comments:						
ELVOCs	□ CLP							
☐ SVOCs	□ SW846	_						
□ PCBs	□ EPA/CWA			_		-	_	
☐ Pest.								
☐ Metals/CN		Sampler(s):	cw					_
Dioxin Dalk, sulf		sampler(s):_						

WELL	PURGE	& SAMPL	E RECORD
------	-------	---------	----------

	Site Name/Loca	ation: Eastman Bu	siness Park				Well ID:	MW-	17R
	E & E Project	No.:					Date:	11/30	2020
1	Total Well [Vater: 26.29 Depth: 36.60 Dump: 34	feet TOIC					10:0	50
								Blade	
	adjust	Rate: 0,200	at		a –	Well	Diameter:	Ч	inches
	adjust	ed to:						Cev a v av	
	Time	Purge Volume (gallons/(iters)	pH (s.u.)	Temp. ② / °F)	ORP (mV)	Conductivity (µS/cm (nS/cm))	DO (mg/L)	Turbidity (NTU)	Water Level (feet)
	10:07	Oorto.4	7.84	13.31	-88	1.32	1.62	28.2	26.40
	10:12	4.4	7.76	13.52	-83	1,30	1.08	12.5	26.40
	10:17	2.4	7.86	13.57	-87	1.29	094	9.5	26.40
	10:22	3.4	7.93	13,58	-90	1.29	0,92	9.6	26.40
	10:27	4.4	7.88	13.57	-92	1,29	0.86	9.7	26.40
	10:35	5.4	7.91	13.54	-92	1,29	0.87	10.9	26.40
	10:37	6.4	7.95	13.61	-91	1.29	0.88	8.20	26.40
10:42	48:38	7.4	7.88	13,56	-89	1,29	0.89	7.5	26.40
	10:47	8.4	7.95	13,59	-92	1,29	0.93	7.6	26.40
					Ce				
					1/2	Leon			
	Final Sa	ample Data:	7.95	13.59	-92	1.29	0.93	7.6	76.40
	Sample ID:	MW-17R			Duplicate'		e Samp ID:	1.6	24198
	Sample Time:	10:50			MS/MSD?	P □ No.	of Bottles:	5	
	Analyses:	Methods: ☐ CLP	Comments:						
	□ SVOCs	□ SW846			-				
	□ PCBs	□ EPA/CWA							
	□ Pest.								
	☐ Metals/CN								
	Dioxin		Sampler(s):		W				

WELL	PURGE	& SAMPL	F	RECORD

		WEL	L PURGE &	SAMPLE	RECORD			
Site Name/Loca	ation: Eastman Bu	siness Park	DHO:	Roch	M. Ester	Well ID:	MW-	10
E & E Project	No.: _ EE 170	2005	10000,			Date:	12-	2-2020
Initial Depth to V	Vater: 19,45	feet TOIC			\$	Start Time:	95	
Total Well D	Depth: 35,55	feet TOIC				End Time:	1	100
	Pump: 34.55					Bailer		Pump
Initial Pump	Rate: 0.2	(pm) gpm			P	ump Type:	BLAD	DER
	ed to:						4	
	ed to:						10.51	
	Purge Volume	pH	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.)	(°C) °F)	(mV)	(µS/cm (mS/cm)	(mg/L)	(NTU)	Level (feet)
1000	2.0	6.94	11.53	-167	0.663	101	8.62	19.85
1005	3.0	6.99	11.90	-17-2	0.692	0.81	7.13	19.85
100	4.6	7.01	12.11	-173	0.731	0.76	533	19.90
10:5	5.0	7.02	12.07	-173	0.753	0.73	4.58	19.95
1020	le.0	7.04	12.02	-171	0.834	0.63	2:65	1995
1035	7.0	7.04	11.94	-169	0864	0.60	3.29	20.00
1030	8.0	7.04	11.81	-165	0.905	0.55	1.12	20.00
10 35	9.0	7,04	11.75	-162	0.930	0.53	0.90	20,00
1040	10,0	7.05	11.77	-156	0.973	0.57	2.23	20.00
1045	11.0	7.05	11.78	152	0.987	0.50	Ø	20.00
1020.	12.0	7.06	11,760	-1460	1.00	0.52	Ø	20.00
							-	
Final Sa	ample Data:	7,06	11,76	-146	1,00	0.52	Ø	70,00
Sample ID:	MW-10-DE	053		Duplicate		e Samp ID:		
Sample Time:	1055		-	MS/MSD	/ LI NO	of Bottles	_	0 121
Analyses:	Methods:	Comments	Dark	12/0	w tint			Fades
⊠ ∨OCs	□ CLP	to	inglet	yell	01;10	Shill	210	
□ SVOCs	□ SW846		,,,	0	N /			
□ PCBs	□ EPA/CWA		1	-(1	1		
☐ Pest.	Alkalinity	i	-		1) /2	-9-	-	Name of Participant of Street, Advanced
☐ Metals/CN	suffates "	_						
☐ Dioxin		Sampler(s):		P				

		WEL	- AAC	10 1	and a C AIN		MA W	1-14
	ition: Eastman Bu			Boch	107 LUY	Well ID:	17 -7	-7071
E & E Project	No.: <u>E17</u>	1500 F	, 0009					-2021
Initial Depth to W	Vater: 11,09	feet TOIC				Start Time:	1215	,
	epth: 23.70					End Time:		
	Pump: 92.70					Bailer	×	Pump
	Rate: 0.2	-			Р	ump Type:	BLAN	DER
	ed to: 0,15 Lp		12:55				4	inches
	ed to:							gallons
dujust			Toma	ORP	Conductivity	DO	Turbidity	
Time	Purge Volume (gallons/liters)	pH (s.u.)	Temp.	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet)
1725	2.0	7.14	12.21	-89	0.820	1.37	61.2	11.60
1230	3,0	7.17	12,43	-97	0.832	093	45.4	11,75
1235	4.0	7.18	12.50	-101	0.836	0.70	37.9	11.80
1240	5.0	7.18	12,59	-97	0.834	0.63	21.0	11.80
1245	6,0	7.18	12,63	-94	0.834	0.60	11 1	11.80
1250	7.0	7.19	12.57	-114	0.841	0.57	275-27	11.78
1255	8.0	7.19	12.69	-118	0.837	0.55		11.78
1300	8.75	7.18	12.60		0.832	0.55	16.6	11.78
1305	9,5	7.18	12.57	-89	0.829	6.57	16.6	11,78
1310	10.25	7.17	12.59	-83	0.828	0.56	16.6	11.78
1315	11	7.18	12.55	-75	0,826	56	16.6	11.78
1320	11.75	7.17	12.52	-67	0.821	0,56	16.6	11.78
1325	12.5	7.16	12.50	-65	0.819	0,56	16.6	11.78
		7						
Final Sa	ample Data:							
Sample ID:	MW-148-0	EC22		Duplicate'	Dune	e Samp ID:		
Sample Time:		con		MS/MSD?		of Bottles:	5	
			<u> </u>					,
Analyses:	Methods:	Comments:	_ CN too	Kone	- readings	it T	1215	o due
	□ CLP		severe	tice pro	ssure dory	on CP	& truck	
	□ SW846							
□ PCBs	□ EPA/CWA	_						
☐ Pest.	<u>-</u>	-						
☐ Metals/CN			4. \					
Dioxin		Sampler(s):	_ (W					

Site Name/Loc	ation: -Eastman Bu	rsiness Park	- DHOC			Well ID:	MW-5	FR
E & E Projec	et No.:					Date:	12/2/	2020
	Water: <u> 4,15</u> Depth: <u>34,73</u>					End Time:	10:0	0
Depth to	Pump: 32	feet TOIC				Bailer	Ø.	Pump ·
Initial Pump	Rate: 0,15	Lpm / gpm			P	ump Type:	Bladd	W
adjus	ted to:	at			Well	Diameter:	_4_	inches
adjus	ted to:	at			1x We	ell Volume:		gallons
Time	Purge Volume (gallons/liters)	pH (s.u.)	Temp.	ORP (mV)	Conductivity (µS/cm/mS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet)
10:03	6.45	6.72	12.74	212	1.90	1.76	167	14.17
10:08	1,2	4.52	13.28	362	2,47	0.63	138	14.22
10:13	1.95	6.51	12.98	388	2.51	0.52	110	14.22
10:18	2.7	6.51	12,99	402	2,51	0.47	81.5	14.22
10:23	3.45	6.51	12.82	409	2,48	0.47	37.3	14,22
10:28	4.2	6,52	12.89	412	2,42	0,47	22.7	14.22
10:33	4.95	6.53	12.88	417	2.37	0.39	13.4	14,25
10138	5.7	6.55	12.82	416	2.25	0,41	9.1	14.25
10:43	6.45	6.59	12.72	414	1.91	0.40	9.86.8	14.25
10:48	7.2	6.56	12.60	412	1.88	0.40	6.5	14.25
10:53	7.95	6.52	12.60	408	1.88	0.35	5.9	14.25
10:58	8.7	6.52	12.58	410	1.85	0.35	6.1	14.25
				92/	frozo			
Final Sa	ample Data:	6.52	12.58	410	1.85	0.35	6.1	14.25
Sample ID: Sample Time:	MU-5R-0	ECLO		Duplicate?	_	Samp ID: of Bottles:	15	
Analyses:	Methods: 0	Comments:	mspas	1				
□ SVOCs	□ SW846							
□ PCBs	□ EPA/CWA							
□ Pest.	o							
☐ Metals/CN	1		4. 1					
Dioxin	8	Sampler(s):	cw					

	tion: Eastman Bu		DH-60			Well ID:	MW-16	R
E & E Project	No.:					Date:	12/1/	2020
tial Depth to W	/ater: 19,4	feet TOIC			5	Start Time:	10:2	5
Total Well D	epth: 31.05	feet TOIC						52
Depth to P	ump:	feet TOIC						
Initial Pump I	Rate:	Lpm / gpm			Pi	ump Type:	delit	d poly ba
adjuste	ed to:	at						
adjuste	ed to:				1x We	ell Volume:	7.60	gallons3x~
Time	Purge Volume	pH (s.u.)	Temp.	ORP (mV)	Conductivity	DO	Turbidity (NTU)	
10:25		6.2/	14.68	11	1.13	9.38	7.5	(3- E-1)
10:36	4	6.66	15.20	-40	1.41	9.92		25.14
10:49	7.5	7.14	15.60	-96	1.64	9.87	71000	29.60
10:52	% —		DR	Y			200	
\				P = V			1221	
					-			
				2			-	
				411				
		1	1	3/1/2				
				1	0			
		1 = 7						
Final S	ample Data:	6.11	14,03	165	1.07	11.55	66.5	19.37
imple ID:	MW-16R-D			Duplicate		e Samp ID:	104.0	111.7
Sample Time:	A STATE OF THE PARTY OF THE PAR	:20		MS/MSD	_	of Bottles:	5	
nahwas		Comments	D	1 .	1.1.4	1 1	1:1 '	1
nalyses: VOCs	Methods: □ CLP	1	TUZGA	I was p	lay pailer	due to	historia	el purge
SVOCs	□ SW846	1,35	I de c	1 11:00 A	location d	Vesa +	pridver 1	enter hel
I PCBs	□ EPA/CWA	Mora	h 76 5	111120	III U	at pu	1 rates	The
⊒ Pest.		- PILAP	1. 0'	+ Heril	el tion-thou	yn cel	$I \perp h$	AND WE
☐ Metals/CN		-Capite	ole of.					
□ Dioxin		Sampler(s)	cw					
ALK. Sulf		Jumpici (8)						

ite Name/Loca	ation: Eastman Bus	siness Park				Well ID:	Mw-	ZR
E & E Project	: No.: EE 17	05007	,0009			Date:	17/1	2020
itial Donth to V	14.21 Vater: 33.32	foot TOIC				Start Time	1210	
	Depth: 30,41						132	
	Pump:							
							Blade	
	Rate: 200 M						2/	
	ted to:						10.57	
adjus	ted to:	at			1 - 1 - 1 - 1			
Time	Purge Volume (gallons/liters)	pH (s.u.)	Temp. (℃) °F)	ORP (mV)	Conductivity (µS/cm(mS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet)
1210	0	1.77	10,21	353	0.661	17.18	29.8	14.87
1220	2	7.79	10.43	339	0.337	14.09	25.8	15.42
1230	4	7.74	10,74	304	0.099	11.94	2417	16.08
1240	6	7.67	10.95	295	0.099	11.94	25.6	16.78
1250	8	7.58	11.10	290	0.106	11.82	25.4	17.41
1300	61	7.55	11,20	285	0.115	11.56	28.4	18.00
1310	12	7.54	11.23		0.125	11.50		18.53
1320	14	7.52	11.25	713	0.129	11.42	35.6	18.98
								-
Final S	ample Data:							
Sample ID: Sample Time:	1000	V 44 7 1 2 1		Duplicate MS/MSD	-	e Samp ID: . of Bottles	5	
<u>Analyses:</u> Ø VOCs	Methods: ☐ CLP	Comments:						
□ SVOCs	□ SW846							
□ PCBs	□ EPA/CWA							
□ Pest.□ Metals/CN	10 Akalminy Sullars							
☐ Dioxin		Sampler(s):	s(

Environmental Sp			LL PURGE &	SAMPLE	RECORD	. 72-24-6		,
	tion: Eastman Bu					Well ID:	Mw-	12.73
	No.: EE410	130.	+, croi		-	Date:	12/1	12020
tial Depth to W	/ater: 14.34	feet TOIC			5	Start Time:	0953	5
Total Well D	epth: 35.7	feet TOIC				End Time:		
Depth to P	oump: 32.9	feet TOIC				Bailer	P	Pump
Initial Pump	Rate: 400 (m	Lpm)gpm					Block	
adjuste	ed to: 200 mL	M at	1005		Well	Diameter:	4	inches
	ed to:				1x We	ell Volume:	12.75	gallons / 5
Time	Purge Volume (gallons(liters)	pH (s.u.)	Temp.	ORP (mV)	Conductivity (µS/cm(nS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (feet)
0155	0	8.09	13.42	500	53.4	200	-	15,78
1005		8.16	13.83	403	36.1	1.24	-	16.08
1015		8.21	13.00	409	30.0	1.0	-	14.48
1025		8,22	13.48		28.4	0.90		14.68
1035		8,23	13.53		24.9	0.87	- 3-	16.78
1045		8.21	13.52	1162' 1	25.5	0.85	32-11	16.21
1055		8.19	13.51	355	24.1	0.80	47.0	16.81
100		8.17	13.53	350	23.4	0,79	31.5	16,82
							**	
Final Sa	mple Data:							
ample ID:	MW-8-DA	EC 7.0		Duplicate'	Dupe	Samp ID:	MW-8	-DECZO
ample Time:	1103			MS/MSD?	□ No.	of Bottles:	10	5-520
	The Year	Comments						
	☐ CLP ☐ SW846							-
00000	L 344040							

☐ Pest.
☐ Metals/CN
☐ Dioxin

Sampler(s):

B Data Usability Summary Reports

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 17, 2020	Completed by: Lynne Parker

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidance:

- NYSDEC Division of Environmental Remediation Guidance for Data Deliverables and the Development of Data Usability Summary Reports (in DER-10, May 2010);
- EPA Region 2 Data Validation Standard Operating Procedures.

Specific criteria for QC limits were obtained from EEEPC's Master QAPP for NYSDEC projects. Compliance with the project QA program is indicated in the checklist and tables below. Any major or minor concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project ID	Lab Work Order	Laboratory	
1705007.0009.01	480-178800-1	Test America; Buffalo	

Table 1 Sample Listing Summary

Table 1 Sample Listing Sammary							
Work		Sample		Sample	Field	Name	
Order	Matrix	ID	Lab ID	Date	QC	Corrections	
480-178800-1	WG	IW-01-NOV20	480-178800-3	11/30/2020			
400-170000-1	WG	100-01-100020	480-178800-3	11:05			
480-178800-1	WG	MW-17R-NOV20	480-178800-2	11/30/2020			
400-170000-1	WG	IVIVV-17K-INOVZU	400-170000-2	10:50			
480-178800-1	WG	PW-1-NOV20	480-178800-1	11/30/2020			
400-170000-1	WG	F VV- 1-INO V ZU	VVG	13:50			
480-178800-1	WO	TR 20201120	480-178800-4	11/30/2020			
400-170000-1	WQ	TB-20201130	400-170000-4	09:00			

Table 1A Sample Test Summary

Work Order	Matrix	Test Method	Method Name	Number of Samples	Sample Type
480-178800-1	WG	E624.1	Purgeables by GC/MS	3	N
480-178800-1	WQ	E624.1	Purgeables by GC/MS	1	TB
480-178800-1	WG	E300.0	Anions - Sulfate	3	N
480-178800-1	WG	SM2320B	Alkalinity	3	N

General Sample Information	
Do Samples and Analyses on COC check against La Sample Tracking Form?	No. Sample PW-1-NOV20 was inadvertently excluded from the COC. E & E provided the collection date and time to the lab for login.
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples MS/MSD – 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ 20 samples	A MS/MSD was not included in the sample delivery group. A field duplicate was not included in the sample delivery group. A trip blank was included. An equipment blank was not included in the sample delivery group.
Case narrative present and complete?	Yes.
Any holding time violations?	No.

DUSR_Davis-Howland 178800.docx Page 1 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 17, 2020	Completed by: Lynne Parker

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria:

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Volatile Organic Compounds by Method E624.1	
Description	Notes and Qualifiers
Any compounds present in method, trip, or, field blanks (see Table 2)?	No.
For samples, if results are < 5 times the blank or < 10 times the blank for common laboratory contaminants, then "U" flag data. Qualification also applies to TICs.	No qualification required.
Are surrogates for method blanks and LCS within limits?	Yes.
Are surrogates for samples and MS/MSD within limits? (See Table 3). If not, were all samples reanalyzed for VOCs? Matrix effects should be established.	Yes.
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes.
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	Yes.
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	No. Bromoform and carbon tetrachloride were recovered high in LCS 460-744142/4. The analytes were non-detect in the associated samples; therefore, no qualification was required.
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Unable to be assessed. Category A report provided.
Is initial calibration for target compounds <20 %RSD or curve fit? Is ICV 80-120%? Is LCV 70-130%?	Unable to be assessed. Category A report provided.
Is %D in the continuing calibration for target compounds less than method specifications?	The case narrative noted that the continuing calibration verification (CCV) associated with batch 460-744142 was recovered above the upper control limit for bromoform. The analyte in all samples were UJ qualified as estimated non-detect.
Does each target compound have a minimum response factor of 0.05 for the lowest calibration standard and for the average RF? Qualifications do not apply to ketones, alcohols and dioxanes due to poor purging efficiency.	Unable to be assessed. Category A report provided.

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 17, 2020	Completed by: Lynne Parker

Volatile Organic Compounds by Method E624.1				
Description	Notes and Qualifiers			
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	Sample MW-17R-NOV20 was diluted to bring target analytes within the calibration range. Elevated reporting limits for non-detect analytes are provided. The dilutions should not impact data usability and should be comparable to historical data.			
Do field duplicate results show good precision for all compounds (see Table 7)?	N/A			

Alkalinity by Standard Method 2320B				
Description	Notes and Qualifiers			
Any compounds present in method, trip, or, field	No.			
blanks (see Table 2)?				
For samples, if results are < 5 times the blank or <	No qualification required.			
10 times the blank for common laboratory				
contaminants, then "U" flag data.				
Is Laboratory QC frequency at least one blank and	Yes.			
LCS with each batch or 20 samples and one set of				
MS/MSD per 5 samples?				
Is MS/MSD within QC criteria (see Table 4)? If	N/A			
out and LCS is compliant, then "J" flag positive				
data in original sample due to matrix.				
Is LCS within QC criteria (see Table 5)? If out,	Yes.			
and the recovery is high with no positive values,				
then no data qualification is required.				
Is initial calibration for target compounds <20	Unable to be assessed. Category A report			
%RSD or curve fit?	provided.			
Is initial calibration verification frequency once	Unable to be assessed. Category A report			
immediately following calibration?	provided.			
Is %D in the continuing calibration for target	Unable to be assessed. Category A report			
compounds less than method specifications?	provided.			
Were any samples reanalyzed or diluted (see	No.			
Table 6)? For any sample reanalysis or dilutions,				
is only one reportable result flagged?				
Do field duplicate results show good precision for	N/A			
all compounds (see Table 7)?				

Sulfate by EPA Method 300.0				
Description	Notes and Qualifiers			
Any compounds present in method, trip, or, field	No.			
blanks (see Table 2)?				
For samples, if results are < 5 times the blank or <	N/A.			
10 times the blank for common laboratory				
contaminants, then "U" flag data.				
Is Laboratory QC frequency at least one blank and	Yes.			
LCS with each batch and one set of MS/MSD per				
20 samples?				
Is MS/MSD within QC criteria (see Table 4)? If	Yes.			
out and LCS is compliant, then "J" flag positive				
data in original sample due to matrix.				
Is LCS within QC criteria (see Table 5)? If out,	Yes.			
and the recovery is high with no positive values,				
then no data qualification is required.				

DUSR_Davis-Howland 178800.docx Page 3 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 17, 2020	Completed by: Lynne Parker

Sulfate by EPA Method 300.0	
Description	Notes and Qualifiers
Is initial calibration for target compounds <20 %RSD or curve fit?	Unable to be assessed. Category A report provided.
Is initial calibration verification frequency once immediately following calibration?	Unable to be assessed. Category A report provided.
Is %D in the continuing calibration for target compounds less than method specifications?	Unable to be assessed. Category A report provided.
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	Samples IW-01-NOV20, MW-17R-NOV20, and PW-1-NOV20 were diluted to bring sulfate concentrations within the calibration range. No impacts to data usability.
Do field duplicate results show good precision for all compounds (see Table 7)?	N/A

Summary of Findings

 Bromoform in all samples was UJ qualified as estimated non-detect due exceedances in the CCV.

DUSR_Davis-Howland 178800.docx Page 4 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 17, 2020	Completed by: Lynne Parker

Table 2 – List of Positive Results for Blank Samples

None

Table 2A – List of Samples Qualified for Method Blank Contamination

None

Table 2B – List of Samples Qualified for Field Blank Contamination

None

Table 3 – List of Samples with Surrogates outside Control Limits

None

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

None

Table 5 - List LCS Recoveries outside Control Limits

Method	Sample ID	Analyte	Rec.	Low Limit	High Limit	Sample Qualifier
E624.1	LCS 460-744142/4	Bromoform	157	70	130	None: High & ND
E624.1	LCS 460-744142/4	Carbon Tetrachloride	134	70	130	None: High & ND

Table 6 - Samples that were Re-analyzed

-			Sample	
Sample ID	Lab ID	Method	Type	Action
IW-01-NOV20	480-178800-3	E300.0	N	5X: Diluted to bring the target analyte within the calibration range.
MW-17R-NOV20	480-178800-2	E300.0	N	5X: Diluted to bring the target analyte within the calibration range.
PW-1-NOV20	480-178800-1	E300.0	N	10X: Diluted to bring the target analyte within the calibration range.
MW-17R-NOV20	480-178800-2	E624.1	N	2X: Diluted to bring target analytes within the calibration range. Elevated
10100-1710-140-020	400-170000-2	L024.1	14	reporting limits provided.

Table 7 – Summary of Field Duplicate Results

N/A

DUSR_Davis-Howland 178800.docx Page 5 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 17, 2020	Completed by: Lynne Parker

Acronym List and Table Key:

CCV = continuing calibration verification

COC = chain of custody

DUSR = data usability summary report

FD = field duplicate sample

GC/MS = gas chromatography / mass spectrometry

LCS = laboratory control sample

LCSD = laboratory control sample duplicate

MBLK = method blank MS = matrix spike

MSD = matrix spike duplicate
N = normal field sample
NC = not calculated
ND = not detected

NYSDEC = New York State Department of Environmental Conservation

PQL = practical quantitation limit

QA = quality assurance

QAPP = quality assurance project plan

QC = quality control

RB = Rinsate blank sample
RPD = relative percent difference
SDG = sample delivery group
TB = trip blank sample
TRG = target analyte

VOC = volatile organic compound WG = groundwater (matrix)

DUSR_Davis-Howland 178800.docx Page 6 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 21, 2020	Completed by: Lynne Parker

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidance:

- NYSDEC Division of Environmental Remediation Guidance for Data Deliverables and the Development of Data Usability Summary Reports (in DER-10, May 2010);
- EPA Region 2 Data Validation Standard Operating Procedures.

Specific criteria for QC limits were obtained from EEEPC's Master QAPP for NYSDEC projects. Compliance with the project QA program is indicated in the checklist and tables below. Any major or minor concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project ID	Lab Work Order	Laboratory
1705007.0009.01	480-178848-1	Test America; Buffalo

Table 1 Sample Listing Summary

lable 1 Sample Listing Summary						
Work		Sample		Sample	Field	Name
Order	Matrix	ID	Lab ID	Date	QC	Corrections
400 470040 4	WG	MW-15R-DEC20	480-178848-4	12/01/2020		
480-178848-1	WG	MMV-19K-DEC20	400-170040-4	13:15		
400 470040 4	WG	WG MW-2R-DEC20 480-178848-5	12/01/2020			
480-178848-1	WG	WWV-ZR-DECZU	480-178848-5	13:25		
400 470040 4	WG	MW-8-DEC20	480-178848-2	12/01/2020		MW-8R-
480-178848-1	WG	IVIVV-0-DECZU	400-170040-2	11:03		DEC20
480-178848-1	WG	MW-8-DEC20-Q	480-178848-3	12/01/2020		MW-8R-
400-170040-1	WG	WWV-0-DEC20-Q	400-170040-3	11:03		DEC20-Q
480-178848-1 WQ TB-20201201		480-178848-1	12/01/2020			
480-178848-1	WQ	16-20201201	400-170040-1	10:00		

Table 1A Sample Test Summary

Table IA Sample I	est Sullill	iai y			
Work Order	Matrix	Test Method	Method Name	Number of Samples	Sample Type
480-178848-1	WG	E624.1	Purgeables by GC/MS	4	N/FD
480-178848-1	WQ	E624.1	Purgeables by GC/MS	1	ТВ
480-178848-1	WG	E300.0	Anions - Sulfate	4	N/FD
480-178848-1	WG	SM2320B	Alkalinity	4	N/FD

General Sample Information	
Do Samples and Analyses on COC check against La Sample Tracking Form?	b Yes.
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples MS/MSD – 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ 20 samples	A MS/MSD was not included in the sample delivery group. One field duplicate was collected. A trip blank was included. An equipment blank was not included in the sample delivery group.
Case narrative present and complete?	Yes.
Any holding time violations?	No.

DUSR_Davis-Howland 178848.docx Page 1 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 21, 2020	Completed by: Lynne Parker

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria:

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Volatile Organic Compounds by Method E624.1						
Description	Notes and Qualifiers					
Any compounds present in method, trip, or, field blanks (see Table 2)?	Methylene chloride was detected in the trip blank TB-20201201 less than the PQL.					
For samples, if results are < 5 times the blank or < 10 times the blank for common laboratory contaminants, then "U" flag data. Qualification also applies to TICs.	The analyte was positively detected in samples MW-8-DEC20 and MW-8-DEC20-Q at approximately the same concentration. The analyte in the samples were U qualified as non-detect.					
Are surrogates for method blanks and LCS within limits?	Yes.					
Are surrogates for samples and MS/MSD within limits? (See Table 3). If not, were all samples reanalyzed for VOCs? Matrix effects should be established.	Yes.					
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes.					
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	Yes.					
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Yes.					
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Unable to be assessed. Category A report provided.					
Is initial calibration for target compounds <20 %RSD or curve fit? Is ICV 80-120%? Is LCV 70-130%?	Unable to be assessed. Category A report provided.					
Is %D in the continuing calibration for target compounds less than method specifications?	Unable to be assessed. Category A report provided.					
Does each target compound have a minimum response factor of 0.05 for the lowest calibration standard and for the average RF? Qualifications do not apply to ketones, alcohols and dioxanes due to poor purging efficiency.	Unable to be assessed. Category A report provided.					
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	No.					

DUSR_Davis-Howland 178848.docx Page 2 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 21, 2020	Completed by: Lynne Parker

Volatile Organic Compounds by Method E624.1	
Description	Notes and Qualifiers
Do field duplicate results show good precision for	1,1,2-Trichloroethane, methylene chloride, and
all compounds (see Table 7)?	trichloroethene exhibited poor precision in the field
	duplicate MW-8-DEC20. The results were J
	qualified as estimated; however, most of the
	results were already qualified due to the result
	being between he PQL and MDL.

Alkalinity by Standard Method 2320B	
Description	Notes and Qualifiers
Any compounds present in method, trip, or, field	No.
blanks (see Table 2)?	
For samples, if results are < 5 times the blank or <	No qualification required.
10 times the blank for common laboratory	
contaminants, then "U" flag data.	
Is Laboratory QC frequency at least one blank and	Yes.
LCS with each batch or 20 samples and one set of	
MS/MSD per 5 samples?	
Is MS/MSD within QC criteria (see Table 4)? If	N/A
out and LCS is compliant, then "J" flag positive	
data in original sample due to matrix.	
Is LCS within QC criteria (see Table 5)? If out,	Yes.
and the recovery is high with no positive values,	
then no data qualification is required.	
Is initial calibration for target compounds <20	Unable to be assessed. Category A report
%RSD or curve fit?	provided.
Is initial calibration verification frequency once	Unable to be assessed. Category A report
immediately following calibration?	provided.
Is %D in the continuing calibration for target	Unable to be assessed. Category A report
compounds less than method specifications?	provided.
Were any samples reanalyzed or diluted (see	No.
Table 6)? For any sample reanalysis or dilutions,	
is only one reportable result flagged?	
Do field duplicate results show good precision for	Yes.
all compounds (see Table 7)?	

Sulfate by EPA Method 300.0	
Description	Notes and Qualifiers
Any compounds present in method, trip, or, field blanks (see Table 2)?	No.
For samples, if results are < 5 times the blank or < 10 times the blank for common laboratory contaminants, then "U" flag data.	N/A.
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes.
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	Yes.
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Yes.
Is initial calibration for target compounds <20 %RSD or curve fit?	Unable to be assessed. Category A report provided.

DUSR_Davis-Howland 178848.docx Page 3 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company					
Date Completed: December 21, 2020	Completed by: Lynne Parker					

Sulfate by EPA Method 300.0					
Description	Notes and Qualifiers				
Is initial calibration verification frequency once immediately following calibration?	Unable to be assessed. Category A report provided.				
Is %D in the continuing calibration for target compounds less than method specifications?	Unable to be assessed. Category A report provided.				
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	Samples MW-15R-DEC20, MW-8-DEC20, and MW-8-DEC20-Q were diluted to bring sulfate concentrations within the calibration range. No impacts to data usability.				
Do field duplicate results show good precision for all compounds (see Table 7)?	Yes.				

Summary of Findings

- 1,1,2-Trichloroethane, methylene chloride, and trichloroethene were J qualified as estimated in MW-8R-DEC20 and MW-8R-DEC20-Q due to poor precision in the field duplicate.
- Methylene chloride results in samples MW-8R-DEC20 and MW-8R-DEC20-Q were U qualified as non-detect due to positive detections in the trip blank.

DUSR_Davis-Howland 178848.docx Page 4 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company					
Date Completed: December 21, 2020	Completed by: Lynne Parker					

Table 2 – List of Positive Results for Blank Samples

Method	Sample ID	Sample Type	Analyte	Result	Qualifier	Units	MDL	PQL
E624.1	TB-20201201	ТВ	Methylene Chloride	0.62	J	ug/L	0.32	1

Table 2A – List of Samples Qualified for Method Blank Contamination None

Table 2B – List of Samples Qualified for Field Blank Contamination

Method	Field Blank	Matrix	Analyte	Blank Result	Sample Result	Lab Qualifier	PQL	Affected Samples	Sample Flag
E624.1	TB-20201201	WG	Methylene Chloride	0.62		U	1.0	MW-15R-DEC20	
E624.1	TB-20201201	WG	Methylene Chloride	0.62		U	1.0	MW-2R-DEC20	
E624.1	TB-20201201	WG	Methylene Chloride	0.62	0.62	J	1.0	MW-8-DEC20	U Flag
E624.1	TB-20201201	WG	Methylene Chloride	0.62	0.48	J	1.0	MW-8-DEC20-Q	U Flag

Table 3 – List of Samples with Surrogates outside Control Limits None

Table 4 – List MS/MSD Recoveries and RPDs outside Control Limits None

Table 5 – List LCS Recoveries outside Control Limits

None

Table 6 – Samples that were Re-analyzed

Sample ID	Lab ID	Method	Sample Type	Action
MW-15R-DEC20	480-178848-4	E300.0	N	5X: Diluted to bring the target analyte within the calibration range.
MW-8-DEC20	480-178848-2	E300.0	N	100X: Diluted to bring the target analyte within the calibration range.
MW-8-DEC20-Q	480-178848-3	E300.0	N	100X: Diluted to bring the target analyte within the calibration range.

Table 7 - Summary of Field Duplicate Results

Method	Analyte	Unit	Matrix	PQL	MW-8- DEC20	MW-8- DEC20- Q	RPD	RPD Rating	Sample Qual
A2320B	ALKALINITY, TOTAL (AS CACO3)	mg/l	Water	5.0	909	918	1.0%	Good	None
E300.0	SULFATE (AS SO4)	mg/l	Water	200	5780	5950	2.9%	Good	None

DUSR_Davis-Howland 178848.docx Page 5 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 21, 2020	Completed by: Lynne Parker

Method	Analyte	Unit	Matrix	PQL	MW-8- DEC20	MW-8- DEC20- Q	RPD	RPD Rating	Sample Qual
E624.1	1,1,2-TRICHLOROETHANE	ug/l	Water	1.0	0.83	0.67	21.3%	Poor	J Flag
E624.1	1,1-DICHLOROETHANE	ug/l	Water	1.0	21	21	0.0%	Good	None
E624.1	BROMOMETHANE	ug/l	Water	1.0	0.60	0.53	12.4%	Good	None
E624.1	CHLOROETHANE	ug/l	Water	1.0	0.91	0.79	14.1%	Good	None
E624.1	CHLOROFORM	ug/l	Water	1.0	1.7	1.6	6.1%	Good	None
E624.1	CHLOROMETHANE	ug/l	Water	1.0	21	21	0.0%	Good	None
E624.1	DICHLOROETHYLENES	ug/l	Water	2.0	170	180	5.7%	Good	None
E624.1	METHYLENE CHLORIDE	ug/l	Water	1.0	0.62	0.48	25.5%	Poor	J Flag
E624.1	TRANS-1,2-DICHLOROETHENE	ug/l	Water	1.0	5.9	6.0	1.7%	Good	None
E624.1	TRICHLOROETHYLENE (TCE)	ug/l	Water	1.0	0.97	1.2	21.2%	Poor	J Flag
E624.1	VINYL CHLORIDE	ug/l	Water	1.0	4.5	5.4	18.2%	Good	None

Acronym List and Table Key:

CCV = continuing calibration verification

COC = chain of custody

DUSR = data usability summary report

FD = field duplicate sample

GC/MS = gas chromatography / mass spectrometry

LCS = laboratory control sample

LCSD = laboratory control sample duplicate

MBLK = method blank MS = matrix spike

MSD = matrix spike duplicate N = normal field sample

NC = not calculated ND = not detected

NYSDEC = New York State Department of Environmental Conservation

PQL = practical quantitation limit

QA = quality assurance

QAPP = quality assurance project plan

QC = quality control

DUSR_Davis-Howland 178848.docx Page 6 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 21, 2020	Completed by: Lynne Parker

Acronym List and Table Key:

RB = Rinsate blank sample
RPD = relative percent difference
SDG = sample delivery group
TB = trip blank sample
TRG = target analyte

VOC = volatile organic compound WG = groundwater (matrix)

DUSR_Davis-Howland 178848.docx Page 7 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 21, 2020	Completed by: Lynne Parker

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidance:

- NYSDEC Division of Environmental Remediation Guidance for Data Deliverables and the Development of Data Usability Summary Reports (in DER-10, May 2010);
- EPA Region 2 Data Validation Standard Operating Procedures.

Specific criteria for QC limits were obtained from EEEPC's Master QAPP for NYSDEC projects. Compliance with the project QA program is indicated in the checklist and tables below. Any major or minor concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project ID	Lab Work Order	Laboratory
1705007.0009.01	480-178915-1	Test America; Buffalo

Table 1 Sample Listing Summary

Work		Sample		Sample	Field	Name
Order	Matrix	ID	Lab ID	Date	QC	Corrections
480-178915-1	WG	MW-10R-DEC20	480-178915-5	12/02/2020 10:55		
480-178915-1	WG	MW-14R-DEC20	480-178915-4	12/02/2020 13:25		
480-178915-1	WG	MW-16R-DEC20	480-178915-6	12/02/2020 09:20		
480-178915-1	WG	MW-5R-DEC20	480-178915-2	12/02/2020 11:05	MS/MSD	
480-178915-1	WH	RB-20201202- FA1805	480-178915-3	12/02/2020 12:30		
480-178915-1	WQ	TB-20201202	480-178915-1	12/02/2020 09:00		

Table 1A Sample Test Summary

Work Order	Matrix	Test Method	Method Name	Number of Samples	Sample Type
480-178915-1	WG	E624.1	Purgeables by GC/MS	4	N
480-178915-1	WQ	E624.1	Purgeables by GC/MS	1	ТВ
480-178915-1	WH	E624.1	Purgeables by GC/MS	1	RB
480-178915-1	WG	E300.0	Anions - Sulfate	4	N
480-178915-1	WG	SM2320B	Alkalinity	4	N

General Sample Information	
Do Samples and Analyses on COC check against La Sample Tracking Form?	b Yes.
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes. One container for the following samples were received broken or leaking: TB-20201202, MW-5R-DEC20, RB-20201202-FA1805, MW-14R-DEC20, MW-10R-DEC20, and MW-16R-DEC20.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples MS/MSD – 1/20 samples Trip Blank - Every cooler with VOCs waters only	A MS/MSD was collected. One field duplicate was not included in the sample delivery group. A trip blank was included.

DUSR_Davis-Howland 178915.docx Page 1 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 21, 2020	Completed by: Lynne Parker

General Sample Information	
Equipment Blank - 1/ 20 samples	An equipment blank was not included in the sample delivery group.
Case narrative present and complete?	Yes.
Any holding time violations?	No.

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria:

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Volatile Organic Compounds by Method E624.1	
Description	Notes and Qualifiers
Any compounds present in method, trip, or, field blanks (see Table 2)?	Methylene chloride was detected in the trip blank TB-20201202 less than the PQL.
For samples, if results are < 5 times the blank or < 10 times the blank for common laboratory contaminants, then "U" flag data. Qualification also applies to TICs.	The associated sample results for the analyte were non-detect; therefore, no qualification was required.
Are surrogates for method blanks and LCS within limits?	Yes.
Are surrogates for samples and MS/MSD within limits? (See Table 3). If not, were all samples reanalyzed for VOCs? Matrix effects should be established.	Yes.
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes.
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	Yes.
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Yes.
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Unable to be assessed. Category A report provided.
Is initial calibration for target compounds <20 %RSD or curve fit? Is ICV 80-120%? Is LCV 70-130%?	Unable to be assessed. Category A report provided.
Is %D in the continuing calibration for target compounds less than method specifications?	Unable to be assessed. Category A report provided.
Does each target compound have a minimum response factor of 0.05 for the lowest calibration standard and for the average RF? Qualifications do not apply to ketones, alcohols and dioxanes due to poor purging efficiency.	Unable to be assessed. Category A report provided.

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 21, 2020	Completed by: Lynne Parker

Volatile Organic Compounds by Method E624.1	
Description	Notes and Qualifiers
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	Sample MW-10R-DEC20 was diluted to bring target analytes within the calibration range. Elevated reporting limits for non-detect analytes are provided. The dilutions should not impact data usability and should be comparable to historical data.
Do field duplicate results show good precision for all compounds (see Table 7)?	N/A

Alkalinity by Standard Method 2320B	
Description	Notes and Qualifiers
Any compounds present in method, trip, or, field	No.
blanks (see Table 2)?	
For samples, if results are < 5 times the blank or <	No qualification required.
10 times the blank for common laboratory	
contaminants, then "U" flag data.	
Is Laboratory QC frequency at least one blank and	Yes.
LCS with each batch or 20 samples and one set of	
MS/MSD per 5 samples?	
Is MS/MSD within QC criteria (see Table 4)? If	Alkalinity was recovered low in the MS and MSD
out and LCS is compliant, then "J" flag positive	of MW-5R-DEC20. The results in the parent
data in original sample due to matrix.	sample were J qualified as estimated.
Is LCS within QC criteria (see Table 5)? If out,	Yes.
and the recovery is high with no positive values,	
then no data qualification is required.	
Is initial calibration for target compounds <20	Unable to be assessed. Category A report
%RSD or curve fit?	provided.
Is initial calibration verification frequency once	Unable to be assessed. Category A report
immediately following calibration?	provided.
Is %D in the continuing calibration for target	Unable to be assessed. Category A report
compounds less than method specifications?	provided.
Were any samples reanalyzed or diluted (see	No.
Table 6)? For any sample reanalysis or dilutions,	
is only one reportable result flagged?	
Do field duplicate results show good precision for	N/A
all compounds (see Table 7)?	

Sulfate by EPA Method 300.0					
Description	Notes and Qualifiers				
Any compounds present in method, trip, or, field	No.				
blanks (see Table 2)?					
For samples, if results are < 5 times the blank or <	N/A.				
10 times the blank for common laboratory					
contaminants, then "U" flag data.					
Is Laboratory QC frequency at least one blank and	Yes.				
LCS with each batch and one set of MS/MSD per					
20 samples?					
Is MS/MSD within QC criteria (see Table 4)? If	Yes.				
out and LCS is compliant, then "J" flag positive					
data in original sample due to matrix.					
Is LCS within QC criteria (see Table 5)? If out,	Yes.				
and the recovery is high with no positive values,					
then no data qualification is required.					

DUSR_Davis-Howland 178915.docx Page 3 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 21, 2020	Completed by: Lynne Parker

Sulfate by EPA Method 300.0	
Description	Notes and Qualifiers
Is initial calibration for target compounds <20 %RSD or curve fit?	Unable to be assessed. Category A report provided.
Is initial calibration verification frequency once immediately following calibration?	Unable to be assessed. Category A report provided.
Is %D in the continuing calibration for target compounds less than method specifications?	Unable to be assessed. Category A report provided.
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	Samples MW-10R-DEC20, MW-14R-DEC20, MW-16R-DEC20, and MW-5R-DEC20 were diluted to bring sulfate concentrations within the calibration range. No impacts to data usability.
Do field duplicate results show good precision for all compounds (see Table 7)?	N/A

Summary of Findings

 The alkalinity results in sample MW-5R-DEC20 were J qualified as estimated due to low MS/MSD recovery.

DUSR_Davis-Howland 178915.docx Page 4 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 21, 2020	Completed by: Lynne Parker

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Sample Type	Analyte	Result	Qualifier	Units	MDL	PQL
E624.1	TB-20201202	ТВ	Methylene Chloride	0.35	J	ug/L	0.32	1

Table 2A – List of Samples Qualified for Method Blank Contamination

None

Table 2B – List of Samples Qualified for Field Blank Contamination

None

Table 3 – List of Samples with Surrogates outside Control Limits

None

Table 4 – List MS/MSD Recoveries and RPDs outside Control Limits

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil. Fac.	Low Limit	High Limit	Sample Qualifier
SM2320B	MW-5R-DEC20	MS	Alkalinity, Total	304	100	53	1	60	140	J Flag
SM2320B	MW-5R-DEC20	MSD	Alkalinity, Total	304	100	50	1	60	140	J Flag

Table 5 - List LCS Recoveries outside Control Limits

None

Table 6 - Samples that were Re-analyzed

_			Sample	
Sample ID	Lab ID	Method	Type	Action
MW-10R-DEC20	480-178915-5	E300.0	N	5X: Diluted to bring the target analyte within the calibration range.
MW-14R-DEC20	480-178915-4	E300.0	N	5X: Diluted to bring the target analyte within the calibration range.
MW-16R-DEC20	480-178915-6	E300.0	N	5X: Diluted to bring the target analyte within the calibration range.
MW-5R-DEC20	480-178915-2	E300.0	N	5X: Diluted to bring the target analyte within the calibration range.
MW-10R-DEC20	480-178915-5	E624.1	N	2X: Diluted to bring target analytes within the calibration range. Elevated reporting limits provided.

Table 7 – Summary of Field Duplicate Results N/A

Acronym List and Table Key:

CCV = continuing calibration verification

DUSR_Davis-Howland 178915.docx Page 5 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 21, 2020	Completed by: Lynne Parker

Acronym List and Table Key:

COC = chain of custody

DUSR = data usability summary report

FD = field duplicate sample

GC/MS = gas chromatography / mass spectrometry

LCS = laboratory control sample

LCSD = laboratory control sample duplicate

MBLK = method blank MS = matrix spike

MSD = matrix spike duplicate N = normal field sample

NC = not calculated ND = not detected

NYSDEC = New York State Department of Environmental Conservation

PQL = practical quantitation limit

QA = quality assurance

QAPP = quality assurance project plan

QC = quality control

RB = Rinsate blank sample
RPD = relative percent difference
SDG = sample delivery group
TB = trip blank sample

TRG = target analyte

VOC = volatile organic compound

WG = groundwater (matrix)

DUSR_Davis-Howland 178915.docx Page 6 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 17, 2020	Completed by: Lynne Parker

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidance:

- NYSDEC Division of Environmental Remediation Guidance for Data Deliverables and the Development of Data Usability Summary Reports (in DER-10, May 2010);
- EPA Region 2 Data Validation Standard Operating Procedures.

Specific criteria for QC limits were obtained from EEEGPC's Master QAPP for NYSDEC projects. Compliance with the project QA program is indicated in the checklist and tables below. Any major or minor concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project ID	Lab Work Order	Laboratory
1705007.0009.01	480-178952-1	Test America; Buffalo

Table 1 Sample Listing Summary

Work		Sample		Sample	Field	Name
Order	Matrix	ID Lab ID		Date	QC	Corrections
480-178952-1	IDW	IDW- PURGEWATER- DEC20	480-178952-2	12/03/2020 12:00		
480-178952-1	WG	MW-16R-DEC20	480-178952-1	12/03/2020 11:40		
480-178952-1	WQ	TB-20201203	480-178952-3	12/03/2020 00:00		

Table 1A Sample Test Summary

Table 1A Cample Test Cammary						
Work		Test		Number of	Sample	
Order	Matrix	Method	Method Name	Samples	Type	
480-178952-1	WG	E624.1	Purgeables by GC/MS	1	N	
480-178952-1	WQ	E624.1	Purgeables by GC/MS	1	TB	
480-178952-1	IDW	E624.1	Purgeables by GC/MS	1	WC	

General Sample Information					
Do Samples and Analyses on COC check against La Sample Tracking Form?	b Yes.				
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes.				
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples MS/MSD – 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ 20 samples	A MS/MSD was not included in the sample delivery group. A field duplicate was not included in the sample delivery group. A trip blank was included. An equipment blank was not included in the sample delivery group.				
Case narrative present and complete?	Yes.				
Any holding time violations?	No.				

DUSR_Davis-Howland 178952.docx Page 1 of 5

Data Usability Summary Report	Project: Davis Howland Oil Company			
Date Completed: December 17, 2020	Completed by: Lynne Parker			

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria:

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Volatile Organic Compounds by Method E624.1						
Description	Notes and Qualifiers					
Any compounds present in method, trip, or, field blanks (see Table 2)?	Methylene chloride was detected in the trip blank TB-20201203 less than the PQL.					
For samples, if results are < 5 times the blank or < 10 times the blank for common laboratory contaminants, then "U" flag data. Qualification also applies to TICs.	The associated sample results for the analyte were non-detect; therefore, no qualification was required.					
Are surrogates for method blanks and LCS within limits?	Yes.					
Are surrogates for samples and MS/MSD within limits? (See Table 3). If not, were all samples reanalyzed for VOCs? Matrix effects should be established.	Yes.					
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes.					
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	Yes.					
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Yes.					
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Unable to be assessed. Category A report provided.					
Is initial calibration for target compounds <20 %RSD or curve fit? Is ICV 80-120%? Is LCV 70-130%?	Unable to be assessed. Category A report provided.					
Is %D in the continuing calibration for target compounds less than method specifications?	Unable to be assessed. Category A report provided.					
Does each target compound have a minimum response factor of 0.05 for the lowest calibration standard and for the average RF? Qualifications do not apply to ketones, alcohols and dioxanes due to poor purging efficiency.	Unable to be assessed. Category A report provided.					
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	No.					
Do field duplicate results show good precision for all compounds (see Table 7)?	N/A					

DUSR_Davis-Howland 178952.docx Page 2 of 5

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: December 17, 2020	Completed by: Lynne Parker

Summary of Findings	
 None. 	

DUSR_Davis-Howland 178952.docx Page 3 of 5

Data Usability Summary Report	Project: Davis Howland Oil Company			
Date Completed: December 17, 2020	Completed by: Lynne Parker			

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Sample Type	Analyte	Result	Qualifier	Units	MDL	PQL
E624.1	TB-20201203	ТВ	Methylene Chloride	0.39	J	ug/L	0.32	1

Table 2A – List of Samples Qualified for Method Blank ContaminationNone

Table 2B – List of Samples Qualified for Field Blank Contamination None

Table 3 – List of Samples with Surrogates outside Control Limits None

Table 4 – List MS/MSD Recoveries and RPDs outside Control Limits None

Table 5 – List LCS Recoveries outside Control Limits None

Table 6 – Samples that were Re-analyzedNone

Table 7 – Summary of Field Duplicate Results N/A

DUSR_Davis-Howland 178952.docx Page 4 of 5

Data Usability Summary Report	Project: Davis Howland Oil Company			
Date Completed: December 17, 2020	Completed by: Lynne Parker			

Acronym List and Table Key:

CCV = continuing calibration verification

COC = chain of custody

DUSR = data usability summary report

FD = field duplicate sample

GC/MS = gas chromatography / mass spectrometry

LCS = laboratory control sample

LCSD = laboratory control sample duplicate

MBLK = method blank MS = matrix spike

MSD = matrix spike duplicate
N = normal field sample
NC = not calculated
ND = not detected

NYSDEC = New York State Department of Environmental Conservation

PQL = practical quantitation limit

QA = quality assurance

QAPP = quality assurance project plan

QC = quality control

RB = rinsate blank sample
RPD = relative percent difference
SDG = sample delivery group
TB = trip blank sample
TRG = target analyte

VOC = volatile organic compound WG = groundwater (matrix)

DUSR_Davis-Howland 178952.docx Page 5 of 5

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 05, 2020	Completed by: Lynne Parker

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidance:

- NYSDEC Division of Environmental Remediation Guidance for Data Deliverables and the Development of Data Usability Summary Reports (in DER-10, May 2010);
- EPA Region 2 Data Validation Standard Operating Procedures.

Specific criteria for QC limits were obtained from EEEPC's Master QAPP for NYSDEC projects. Compliance with the project QA program is indicated in the checklist and tables below. Any major or minor concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project ID	Lab Work Order	Laboratory
1705007.0009.01	480-176371-1	Test America; Buffalo

Table 1 Sample Listing Summary

Work		Sample		Sample	Field	Name
Order	Matrix	ID	Lab ID	Date	QC	Corrections
480-176371-1	WG	IW-01-OCT20	480-176371-1	10/12/2020 12:15	MS/ MSD	
480-176371-1	WG	MW-17R-OCT20	480-176371-2	10/12/2020 13:10		
480-176371-1	WG	MW-17R-OCT20-Q	480-176371-3	10/12/2020 13:10		
480-176371-1	WG	MW-8-OCT20	480-176371-4	10/12/2020 15:10		MW-8R- OCT20

Table 1A Sample Test Summary

Work Order	Matrix	Test Method	Method Name	Number of	Sample
Order	Matrix	Method	Welliou Name	Samples	Туре
480-176371-1	WG	E624.1	Purgeables by GC/MS	3	N
480-176371-1	WG	E624.1	Purgeables by GC/MS	1	FD
480-176371-1	WG	E300.0	Anions - Sulfate	3	N
480-176371-1	WG	E300.0	Anions - Sulfate	1	FD
480-176371-1	WG	SM2320B	Alkalinity	3	N
480-176371-1	WG	SM2320B	Alkalinity	1	FD

General Sample Information	
Do Samples and Analyses on COC check against La	
Sample Tracking Form?	One sample name was changed to reflect the actual well sampled.
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples MS/MSD – 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ 20 samples	MS/MSD was collected. field duplicate was collected. A trip blank was not sent in with the samples. An equipment blank was not collected.
Case narrative present and complete?	Yes.
Any holding time violations?	No.

DUSR_Davis-Howland 176371.docx Page 1 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 05, 2020	Completed by: Lynne Parker

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria:

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Volatile Organic Compounds by Method E624.1	
Description	Notes and Qualifiers
Any compounds present in method, trip, or, field blanks (see Table 2)?	No.
For samples, if results are < 5 times the blank or < 10 times the blank for common laboratory contaminants, then "U" flag data. Qualification also applies to TICs.	No qualification required.
Are surrogates for method blanks and LCS within limits?	Yes.
Are surrogates for samples and MS/MSD within limits? (See Table 3). If not, were all samples reanalyzed for VOCs? Matrix effects should be established.	Yes.
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Unable to determine from report if a MS/MSD was analyzed with batch 553610.
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	1,1,-Dichloroethane, trans-1,2-dichloroethene, and trichloroethene were recovered outside of control limits in the MS and MSD of IW-01-OCT20. The native sample concentration was greater than 4X the spiking concentration; therefore, no qualification was required.
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Yes.
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Unable to be assessed. Category A report provided.
Is initial calibration for target compounds <20 %RSD or curve fit? Is ICV 80-120%? Is LCV 70-130%?	Unable to be assessed. Category A report provided.
Is %D in the continuing calibration for target compounds less than method specifications?	Unable to be assessed. Category A report provided.
Does each target compound have a minimum response factor of 0.05 for the lowest calibration standard and for the average RF? Qualifications do not apply to ketones, alcohols and dioxanes due to poor purging efficiency.	Unable to be assessed. Category A report provided.

DUSR_Davis-Howland 176371.docx Page 2 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 05, 2020	Completed by: Lynne Parker

Volatile Organic Compounds by Method E624.1	
Description	Notes and Qualifiers
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	All of the samples were diluted to bring target analytes within the calibration range. Elevated reporting limits for non-detect analytes are provided. The dilutions should not impact data usability and should be comparable to historical data.
Do field duplicate results show good precision for all compounds (see Table 7)?	Yes.

Alkalinity by Standard Method 2320B		
Description	Notes and Qualifiers	
Any compounds present in method, trip, or, field blanks (see Table 2)?	Yes.	
For samples, if results are < 5 times the blank or < 10 times the blank for common laboratory contaminants, then "U" flag data.	No qualification required.	
Is Laboratory QC frequency at least one blank and LCS with each batch or 20 samples and one set of MS/MSD per 5 samples?	Yes.	
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	No. Total alkalinity was recovered low in the MS and MSD of sample MW-17R-OCT20, and total alkalinity was recovered low in the MSD of IW-01-OCT20. The total alkalinity and bicarbonate results were J qualified as estimated and the carbonate and hydroxide results were UJ qualified as estimated in samples MW-17R-OCT20, MW-17R-OCT20-Q, and IW-01-OCT20.	
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Yes.	
Is initial calibration for target compounds <20 %RSD or curve fit?	Unable to be assessed. Category A report provided.	
Is initial calibration verification frequency once immediately following calibration?	Unable to be assessed. Category A report provided.	
Is %D in the continuing calibration for target compounds less than method specifications?	Unable to be assessed. Category A report provided.	
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	No.	
Do field duplicate results show good precision for all compounds (see Table 7)?	Yes.	

Sulfate by EPA Method 300.0		
Description	Notes and Qualifiers	
Any compounds present in method, trip, or, field	No.	
blanks (see Table 2)?		
For samples, if results are < 5 times the blank or <	No qualification required.	
10 times the blank for common laboratory		
contaminants, then "U" flag data.		
Is Laboratory QC frequency at least one blank and	Yes.	
LCS with each batch and one set of MS/MSD per		
20 samples?		

DUSR_Davis-Howland 176371.docx Page 3 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 05, 2020	Completed by: Lynne Parker

Sulfate by EPA Method 300.0						
Description	Notes and Qualifiers					
Is MS/MSD within QC criteria (see Table 4)? If	Yes.					
out and LCS is compliant, then "J" flag positive						
data in original sample due to matrix.						
Is LCS within QC criteria (see Table 5)? If out,	Yes.					
and the recovery is high with no positive values,						
then no data qualification is required.						
Is initial calibration for target compounds <20	Unable to be assessed. Category A report					
%RSD or curve fit?	provided.					
Is initial calibration verification frequency once	Unable to be assessed. Category A report					
immediately following calibration?	provided.					
Is %D in the continuing calibration for target	Unable to be assessed. Category A report					
compounds less than method specifications?	provided.					
Were any samples reanalyzed or diluted (see	All of the samples were diluted to bring the sulfate					
Table 6)? For any sample reanalysis or dilutions,	concentration within the calibration range. No					
is only one reportable result flagged?	impact to data usability.					
Do field duplicate results show good precision for	Yes.					
all compounds (see Table 7)?						

Summary of Findings

- Total alkalinity and bicarbonate were J qualified as estimated in MW-17R-OCT20, MW-17R-OCT20-Q, and IW-01-OCT20.due to low MS/MSD recoveries.
- Carbonate and hydroxide were UJ qualified as estimated non-detect in MW-17R-OCT20, MW-17R-OCT20-Q, and IW-01-OCT20.due to low MS/MSD recoveries.

DUSR_Davis-Howland 176371.docx Page 4 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 05, 2020	Completed by: Lynne Parker

Table 2 - List of Positive Results for Blank Samples

None

Table 2A - List of Samples Qualified for Method Blank Contamination

None

Table 2B - List of Samples Qualified for Field Blank Contamination

None

Table 3 - List of Samples with Surrogates outside Control Limits

None

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

	Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	MS	MSD	Low Limit	High Limit	Sample Qualifier
ĺ	SM2320B	MW-17R-OCT20	N	Alkalinity, Total	332	100	39	39	60	140	J Flag
	SM2320B	IW-01-OCT20	N	Alkalinity, Total	311	100	63	64	60	140	J Flag

Table 5 - List LCS Recoveries outside Control Limits

None

Table 6 -Samples that were Re-analyzed

			Sample	
Sample ID	Lab ID	Method	Туре	Action
IW-01-OCT20	480-176371-1	E624.1	N	5X: Diluted to bring target analytes within the calibration range. Elevated reporting limits provided.
MW-17R-OCT20	480-176371-2	E624.1	N	10X: Diluted to bring target analytes within the calibration range. Elevated reporting limits provided. 20X: Sample further diluted for dichloroethylenes.
MW-17R-OCT20-Q	480-176371-3	E624.1	FD	10X: Diluted to bring target analytes within the calibration range. Elevated reporting limits provided. 20X: Sample further diluted for dichloroethylenes.
MW-8-OCT20	480-176371-4	E624.1	N	10X: Diluted to bring target analytes within the calibration range. Elevated reporting limits provided. 50X: Sample further diluted for dichloroethylenes.
IW-01-OCT20	480-176371-1	E300.0	N	5X: Diluted to bring the target concentration within the calibration range.
MW-17R-OCT20	480-176371-2	E300.0	N	5X: Diluted to bring the target concentration within the calibration range.
MW-17R-OCT20-Q	480-176371-3	E300.0	FD	5X: Diluted to bring the target concentration within the calibration range.
MW-8-OCT20	480-176371-4	E300.0	N	5X: Diluted to bring the target concentration within the calibration range.

DUSR_Davis-Howland 176371.docx Page 5 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 05, 2020	Completed by: Lynne Parker

Table 7 – Summary of Field Duplicate Results

Method	Analyte	Unit	Matrix	PQL	MW-17R- OCT20	MW-17R- OCT20-Q	RPD	RPD Rating	Sample Qual
A2320B	ALKALINITY, BICARBONATE (AS CACO3)	mg/l	Water	5.0	332	332	0.0%	Good	None
A2320B	ALKALINITY, TOTAL (AS CACO3)	mg/l	Water	5.0	332	332	0.0%	Good	None
E300.0	SULFATE (AS SO4)	mg/l	Water	10.0	204	206	1.0%	Good	None
E624.1	1,1-DICHLOROETHANE	ug/l	Water	50	100	98	2.0%	Good	None
E624.1	1,1-DICHLOROETHENE	ug/l	Water	50	23	23	0.0%	Good	None
E624.1	DICHLOROETHYLENES	ug/l	Water	200	1400	1400	0.0%	Good	None
E624.1	TETRACHLOROETHYLENE(PCE)	ug/l	Water	50	11	9.7	12.6%	Good	None
E624.1	TRANS-1,2-DICHLOROETHENE	ug/l	Water	50	6.2	6.4	3.2%	Good	None
E624.1	TRICHLOROETHYLENE (TCE)	ug/l	Water	50	120	110	8.7%	Good	None
E624.1	VINYL CHLORIDE	ug/l	Water	50	280	260	7.4%	Good	None

DUSR_Davis-Howland 176371.docx Page 6 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 05, 2020	Completed by: Lynne Parker

Acronym List and Table Key:

COC = chain of custody

DUSR = data usability summary report

FD = field duplicate sample

GC/MS = gas chromatography / mass spectrometry

LCS = laboratory control sample

LCSD = laboratory control sample duplicate

MBLK = method blank MS = matrix spike

MSD = matrix spike duplicate N = Normal field sample

NC = not calculated ND = not detected

NYSDEC = New York State Department of Environmental Conservation

PQL = practical quantitation limit

QA = quality assurance

QAPP = quality assurance project plan

QC = quality control

RB = rinsate blank sample
RPD = relative percent difference
SDG = sample delivery group
TB = trip blank sample

TRG = target analyte

VOC = volatile organic compound WG = Groundwater (matrix)

DUSR_Davis-Howland 176371.docx Page 7 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 05, 2020	Completed by: Lynne Parker

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidance:

- NYSDEC Division of Environmental Remediation Guidance for Data Deliverables and the Development of Data Usability Summary Reports (in DER-10, May 2010);
- EPA Region 2 Data Validation Standard Operating Procedures.

Specific criteria for QC limits were obtained from EEEPC's Master QAPP for NYSDEC projects. Compliance with the project QA program is indicated in the checklist and tables below. Any major or minor concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project ID	Lab Work Order	Laboratory
1705007.0009.01	480-176469-1	Test America; Buffalo

Table 1 Sample Listing Summary

Work		Sample		Sample	Field	Name
Order	Matrix	ID [.]	Lab ID	Date	QC	Corrections
480-176469-1	WQ	TB-20201013	480-176469-1	10/13/2020		
460-170409-1	WQ	10-20201013	460-170409-1	10:00		
480-176469-1	WG	MW-5R-OCT20	480-176469-2	10/13/2020		
460-170409-1	WG	1V1VV-3IN-OC120	460-170409-2	14:20		
480-176469-1	WG	MW-14R-OCT20	480-176469-3	10/13/2020		
400-170409-1	VVG	WW-14R-00120	400-170409-3	14:00		

Table 1A Sample Test Summary

Table 1A Sample Test Sammary						
Work Order	Matrix	Test Method	Method Name	Number of Samples	Sample Type	
480-176469-1	WG	E624.1	Purgeables by GC/MS	2	Ν	
480-176469-1	WG	E624.1	Purgeables by GC/MS	1	TB	
480-176469-1	WG	E300.0	Anions - Sulfate	2	N	
480-176469-1	WG	SM2320B	Alkalinity	2	N	

General Sample Information					
Do Samples and Analyses on COC check against La Sample Tracking Form?	b Yes.				
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes.				
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples MS/MSD – 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ 20 samples	A MS/MSD was not included in the sample delivery group. A field duplicate was not included in the sample delivery group. A trip blank was included. An equipment blank was not collected.				
Case narrative present and complete?	Yes.				
Any holding time violations?	No.				

DUSR_Davis-Howland 176469.docx Page 1 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 05, 2020	Completed by: Lynne Parker

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria:

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Volatile Organic Compounds by Method E624.1	
Description	Notes and Qualifiers
Any compounds present in method, trip, or, field blanks (see Table 2)?	No.
For samples, if results are < 5 times the blank or < 10 times the blank for common laboratory contaminants, then "U" flag data. Qualification also applies to TICs.	No qualification required.
Are surrogates for method blanks and LCS within limits?	Yes.
Are surrogates for samples and MS/MSD within limits? (See Table 3). If not, were all samples reanalyzed for VOCs? Matrix effects should be established.	Yes.
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes.
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	Yes.
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Yes.
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Unable to be assessed. Category A report provided.
Is initial calibration for target compounds <20 %RSD or curve fit? Is ICV 80-120%? Is LCV 70-130%?	Unable to be assessed. Category A report provided.
Is %D in the continuing calibration for target compounds less than method specifications?	Unable to be assessed. Category A report provided.
Does each target compound have a minimum response factor of 0.05 for the lowest calibration standard and for the average RF? Qualifications do not apply to ketones, alcohols and dioxanes due to poor purging efficiency.	Unable to be assessed. Category A report provided.
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	Sample MW-5R-OCT20 was diluted to bring target analytes within the calibration range. Elevated reporting limits for non-detect analytes are provided. The dilutions should not impact data usability and should be comparable to historical data.

DUSR_Davis-Howland 176469.docx Page 2 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 05, 2020	Completed by: Lynne Parker

Volatile Organic Compounds by Method E624.1		
Description	Notes and Qualifiers	
Do field duplicate results show good precision for	Yes.	
all compounds (see Table 7)?		

Alkalinity by Standard Method 2320B		
Description	Notes and Qualifiers	
Any compounds present in method, trip, or, field	No.	
blanks (see Table 2)?		
For samples, if results are < 5 times the blank or <	No qualification required.	
10 times the blank for common laboratory		
contaminants, then "U" flag data.		
Is Laboratory QC frequency at least one blank and	Yes.	
LCS with each batch or 20 samples and one set of		
MS/MSD per 5 samples?		
Is MS/MSD within QC criteria (see Table 4)? If	N/A	
out and LCS is compliant, then "J" flag positive		
data in original sample due to matrix.		
Is LCS within QC criteria (see Table 5)? If out,	Yes.	
and the recovery is high with no positive values,		
then no data qualification is required.		
Is initial calibration for target compounds <20	Unable to be assessed. Category A report	
%RSD or curve fit?	provided.	
Is initial calibration verification frequency once	Unable to be assessed. Category A report	
immediately following calibration?	provided.	
Is %D in the continuing calibration for target	Unable to be assessed. Category A report	
compounds less than method specifications?	provided.	
Were any samples reanalyzed or diluted (see	No.	
Table 6)? For any sample reanalysis or dilutions,		
is only one reportable result flagged?		
Do field duplicate results show good precision for	Yes.	
all compounds (see Table 7)?		

Sulfate by EPA Method 300.0		
Description	Notes and Qualifiers	
Any compounds present in method, trip, or, field	No.	
blanks (see Table 2)?		
For samples, if results are < 5 times the blank or <	N/A.	
10 times the blank for common laboratory		
contaminants, then "U" flag data.		
Is Laboratory QC frequency at least one blank and	Yes.	
LCS with each batch and one set of MS/MSD per		
20 samples?		
Is MS/MSD within QC criteria (see Table 4)? If	Yes.	
out and LCS is compliant, then "J" flag positive		
data in original sample due to matrix.		
Is LCS within QC criteria (see Table 5)? If out,	Yes.	
and the recovery is high with no positive values,		
then no data qualification is required.		
Is initial calibration for target compounds <20	Unable to be assessed. Category A report	
%RSD or curve fit?	provided.	
Is initial calibration verification frequency once	Unable to be assessed. Category A report	
immediately following calibration?	provided.	
Is %D in the continuing calibration for target	Unable to be assessed. Category A report	
compounds less than method specifications?	provided.	

DUSR_Davis-Howland 176469.docx Page 3 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 05, 2020	Completed by: Lynne Parker

Sulfate by EPA Method 300.0	
Description	Notes and Qualifiers
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	All of the samples were diluted to bring the sulfate concentration within the calibration range. No impact to data usability.
Do field duplicate results show good precision for all compounds (see Table 7)?	Yes.

Summary of Findings	
 None 	

DUSR_Davis-Howland 176469.docx Page 4 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 05, 2020	Completed by: Lynne Parker

Table 2 - List of Positive Results for Blank Samples

None

Table 2A - List of Samples Qualified for Method Blank Contamination

None

Table 2B - List of Samples Qualified for Field Blank Contamination

None

Table 3 - List of Samples with Surrogates outside Control Limits

None

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

None

Table 5 - List LCS Recoveries outside Control Limits

None

Table 6 -Samples that were Re-analyzed

Sample ID	Lab ID	Method	Sample Type	Action
MW-5R-OCT20	480-176469-2	E624.1	N	20X: Diluted to bring target analytes within the calibration range. Elevated reporting limits provided.
MW-5R-OCT20	480-176469-2	E300.0	Ν	5X: Diluted to bring the target analyte within the calibration range.
MW-14R-OCT20	480-176469-3	E300.0	N	2X: Diluted to bring the target analyte within the calibration range.

Table 7 – Summary of Field Duplicate Results

N/A

DUSR_Davis-Howland 176469.docx Page 5 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 05, 2020	Completed by: Lynne Parker

Acronym List and Table Key:

COC = chain of custody

DUSR = data usability summary report

FD = Field duplicate sample

GC/MS = gas chromatography / mass spectrometry

LCS = laboratory control sample

LCSD = laboratory control sample duplicate

MBLK = method blank MS = matrix spike

MSD = matrix spike duplicate N = Normal field sample

NC = not calculated ND = not detected

NYSDEC = New York State Department of Environmental Conservation

PQL = practical quantitation limit

QA = quality assurance

QAPP = quality assurance project plan

QC = quality control

RB = Rinsate blank sample
RPD = relative percent difference
SDG = sample delivery group
TB = Trip blank sample
TRG = Target analyte

μg/l = Micrograms per liter VOC = volatile organic compound

WG = Groundwater (matrix)

DUSR_Davis-Howland 176469.docx Page 6 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 06, 2020	Completed by: Lynne Parker

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidance:

- NYSDEC Division of Environmental Remediation Guidance for Data Deliverables and the Development of Data Usability Summary Reports (in DER-10, May 2010);
- EPA Region 2 Data Validation Standard Operating Procedures.

Specific criteria for QC limits were obtained from EEEPC's Master QAPP for NYSDEC projects. Compliance with the project QA program is indicated in the checklist and tables below. Any major or minor concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project ID	Lab Work Order	Laboratory
1705007.0009.01	480-176565-1	Test America; Buffalo

Table 1 Sample Listing Summary

Table 1 Sample Listing Summary						
Work		Sample		Sample	Field	Name
Order	Matrix	ID	Lab ID	Date	QC	Corrections
480-176565-1	WQ	TB-20201014	480-176565-1	10/14/2020 09:30		
480-176565-1	WG	MW-10R-OCT20	480-176565-2	10/14/2020 13:20		
480-176565-1	WH	RB-20201014-a	480-176565-3	10/14/2020 13:50		
480-176565-1	WH	RB-20201014-b	480-176565-4	10/14/2020 14:00		
480-176565-1	WG	MW-2R-OCT20	480-176565-5	10/14/2020 09:50		

Table 1A Sample Test Summary

Work Order	Matrix	Test Method	Method Name	Number of Samples	Sample Type
480-176565-1	WG	E624.1	Purgeables by GC/MS	2	N
480-176565-1	WG	E624.1	Purgeables by GC/MS	1	ТВ
480-176565-1	WG	E624.1	Purgeables by GC/MS	2	RB
480-176565-1	WG	E300.0	Anions - Sulfate	2	N
480-176565-1	WG	SM2320B	Alkalinity	2	N

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes.
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes.
	A MS/MSD was not included in the sample delivery group. A field duplicate was not included in the sample delivery group. A trip blank was included. Two equipment blanks were collected.

DUSR_Davis-Howland 176565.docx Page 1 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 06, 2020	Completed by: Lynne Parker

Case narrative present and complete?	Yes.
Any holding time violations?	No.

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria:

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Volatile Organic Compounds by Method E624.1		
Description	Notes and Qualifiers	
Any compounds present in method, trip, or, field	No.	
blanks (see Table 2)?	No qualification required	
For samples, if results are < 5 times the blank or < 10 times the blank for common laboratory	No qualification required.	
contaminants, then "U" flag data. Qualification		
also applies to TICs.		
Are surrogates for method blanks and LCS within	Yes.	
limits?		
Are surrogates for samples and MS/MSD within	Yes.	
limits? (See Table 3). If not, were all samples		
reanalyzed for VOCs? Matrix effects should be		
established. Is Laboratory QC frequency at least one blank and	Unable to determine from report if a MS/MSD was	
LCS with each batch and one set of MS/MSD per	analyzed with batches 554226 and 554564.	
20 samples?	undivided with butones 604226 and 604664.	
Is MS/MSD within QC criteria (see Table 4)? If out	Yes.	
and LCS is compliant, then "J" flag positive data in		
original sample due to matrix.		
Is LCS within QC criteria (see Table 5)? If out,	Yes.	
and the recovery is high with no positive values,		
then no data qualification is required. Do internal standards areas and retention time	Unable to be accessed. Category A remove	
meet criteria? If not was sample re-analyzed to	Unable to be assessed. Category A report provided.	
establish matrix (see Table 6)?	provided.	
Is initial calibration for target compounds <20	Unable to be assessed. Category A report	
%RSD or curve fit? Is ICV 80-120%? Is LCV 70-	provided.	
130%?	<u>'</u>	
Is %D in the continuing calibration for target	Unable to be assessed. Category A report	
compounds less than method specifications?	provided.	
Does each target compound have a minimum	Unable to be assessed. Category A report	
response factor of 0.05 for the lowest calibration	provided.	
standard and for the average RF? Qualifications		
do not apply to ketones, alcohols and dioxanes		
due to poor purging efficiency.		

DUSR_Davis-Howland 176565.docx Page 2 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 06, 2020	Completed by: Lynne Parker

Volatile Organic Compounds by Method E624.1	
Description	Notes and Qualifiers
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	Sample MW-2R-OCT20 was overdiluted and reanalyzed at a lower dilution. The lower diluted sample was marked as reportable. Per the method requirements acrolein should be analyzed within 3 day of sample collection; therefore, acrolein was outside of hold time for the reanalysis. Acrolein is not an analyte of concern for the site and was UJ qualified as estimated non-detect. The dilutions should not impact data usability and should be comparable to historical data.
Do field duplicate results show good precision for all compounds (see Table 7)?	N/A

Alkalinity by Standard Method 2320B		
Description	Notes and Qualifiers	
Any compounds present in method, trip, or, field	No.	
blanks (see Table 2)?		
For samples, if results are < 5 times the blank or <	No qualification required.	
10 times the blank for common laboratory		
contaminants, then "U" flag data.		
Is Laboratory QC frequency at least one blank and	Unable to determine from report if a MS/MSD was	
LCS with each batch or 20 samples and one set of	analyzed with batch 554659.	
MS/MSD per 5 samples?		
Is MS/MSD within QC criteria (see Table 4)? If	N/A	
out and LCS is compliant, then "J" flag positive		
data in original sample due to matrix.		
Is LCS within QC criteria (see Table 5)? If out,	Yes.	
and the recovery is high with no positive values,		
then no data qualification is required.		
Is initial calibration for target compounds <20	Unable to be assessed. Category A report	
%RSD or curve fit?	provided.	
Is initial calibration verification frequency once	Unable to be assessed. Category A report	
immediately following calibration?	provided.	
Is %D in the continuing calibration for target	Unable to be assessed. Category A report	
compounds less than method specifications?	provided.	
Were any samples reanalyzed or diluted (see	No.	
Table 6)? For any sample reanalysis or dilutions,		
is only one reportable result flagged?	NI/A	
Do field duplicate results show good precision for	N/A	
all compounds (see Table 7)?		

Sulfate by EPA Method 300.0		
Description	Notes and Qualifiers	
Any compounds present in method, trip, or, field blanks (see Table 2)?	No.	
For samples, if results are < 5 times the blank or < 10 times the blank for common laboratory contaminants, then "U" flag data.	N/A.	
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Unable to determine from report if a MS/MSD was analyzed with batch 554356.	
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	Yes.	

DUSR_Davis-Howland 176565.docx Page 3 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company	
Date Completed: November 06, 2020	Completed by: Lynne Parker	

Sulfate by EPA Method 300.0					
Description	Notes and Qualifiers				
Is LCS within QC criteria (see Table 5)? If out,	Yes.				
and the recovery is high with no positive values, then no data qualification is required.					
Is initial calibration for target compounds <20 %RSD or curve fit?	Unable to be assessed. Category A report provided.				
Is %D in the continuing calibration for target compounds less than method specifications?	Unable to be assessed. Category A report provided.				
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	All of the samples were diluted to bring the sulfate concentration within the calibration range. No impact to data usability.				
Do field duplicate results show good precision for all compounds (see Table 7)?	N/A				

Summary of Findings

 Acrolein was UJ qualified as estimated non-detect in sample MW-2R-OCT20 due to the sample being reanalyzed outside of method hold for the analyte.

DUSR_Davis-Howland 176565.docx Page 4 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company	
Date Completed: November 06, 2020	Completed by: Lynne Parker	

Table 2 - List of Positive Results for Blank Samples

None

Table 2A - List of Samples Qualified for Method Blank Contamination

None

Table 2B - List of Samples Qualified for Field Blank Contamination

None

Table 3 - List of Samples with Surrogates outside Control Limits

None

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

None

Table 5 - List LCS Recoveries outside Control Limits

None

Table 6 -Samples that were Re-analyzed

			Sample	
Sample ID	Lab ID	Method	Type	Action
MW-10R-OCT20	480-176565-2	E624.1 N 20X: Diluted to bring target analytes within the calibration range. reporting limits provided.		20X: Diluted to bring target analytes within the calibration range. Elevated reporting limits provided.
MW-10R-OCT20	480-176565-2	E300.0	N	5X: Diluted to bring the target analyte within the calibration range.
MW-2R-OCT20	480-176565-5	E624.1	N	20X: The laboratory initially overdiluted the sample. The sample was reanalyzed at a 8X dilution. The 8X dilution was reported with elevated reporting limits.
MW-2R-OCT20	480-176565-5	E300.0	N	5X: Diluted to bring the target analyte within the calibration range.

Table 7 – Summary of Field Duplicate Results

N/A

DUSR_Davis-Howland 176565.docx Page 5 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company
Date Completed: November 06, 2020	Completed by: Lynne Parker

Acronym List and Table Key:

COC = chain of custody

DUSR = data usability summary report

FD = Field duplicate sample

GC/MS = gas chromatography / mass spectrometry

LCS = laboratory control sample

LCSD = laboratory control sample duplicate

MBLK = method blank MS = matrix spike

MSD = matrix spike duplicate N = Normal field sample

NC = not calculated ND = not detected

NYSDEC = New York State Department of Environmental Conservation

PQL = practical quantitation limit

QA = quality assurance

QAPP = quality assurance project plan

QC = quality control

RB = Rinsate blank sample
RPD = relative percent difference
SDG = sample delivery group
TB = trip blank sample

TRG = target analyte

VOC = volatile organic compound

WG = groundwater (matrix)

DUSR_Davis-Howland 176565.docx Page 6 of 6

Data Usability Summary Report	Project: Davis Howland Oil Company	
Date Completed: November 06, 2020	Completed by: Lynne Parker	

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidance:

- NYSDEC Division of Environmental Remediation Guidance for Data Deliverables and the Development of Data Usability Summary Reports (in DER-10, May 2010);
- EPA Region 2 Data Validation Standard Operating Procedures.

Specific criteria for QC limits were obtained from EEEPC's Master QAPP for NYSDEC projects. Compliance with the project QA program is indicated in the checklist and tables below. Any major or minor concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project ID	Lab Work Order	Laboratory
1705007.0009.01	480-176636-1 480-176636-2	Test America; Buffalo

Table 1 Sample Listing Summary

Work		Sample		Sample	Field	Name
Order	Matrix	ID	Lab ID	Date	QC	Corrections
480-176636-1	WQ	TB-20201015	480-176636-1	10/15/2020 09:00		
480-176636-1	WG	MW-9S-OCT20	480-176636-2	10/15/2020 10:00		
480-176636-1	WG	MW-2S-OCT20	480-176636-3	10/15/2020 10:42		
480-176636-1	WG	PZ-3-OCT20	480-176636-7	10/15/2020 13:05		
480-176636-1	WG	MW-14S-OCT20	480-176636-8	10/15/2020 13:10		
480-176636-1	WG	MW-1S-OCT20	480-176636-9	10/15/2020 13:50		
480-176636-1	IDW	10W-PURGE WATER-OCT20	480-176636- 10	10/15/2020 14:10		
480-176636-1	WG	PW-1-OCT20	480-176636-4	10/15/2020 10:40		
480-176636-1	WG	MW-15R-OCT20	480-176636-5	10/15/2020 11:55		
480-176636-1	WG	MW-16R-OCT20	480-176636-6	10/15/2020 12:30		

Table 1A Sample Test Summary

Table 1A Gample Test Gammary					
Work Order	Matrix	Test Method	Method Name	Number of Samples	Sample Type
Order	IVIALITA	Wiethou	Welliou Name	Samples	Type
480-176565-1	WG	E624.1	Purgeables by GC/MS	5	N
480-176565-2	WG	E624.1	Purgeables by GC/MS	3	N
480-176565-1	WG	E624.1	Purgeables by GC/MS	1	ТВ
480-176565-1	WG	E624.1	Purgeables by GC/MS	1	WC
480-176565-2	WG	E300.0	Anions - Sulfate	3	N
480-176565-2	WG	SM2320B	Alkalinity	3	N

DUSR_Davis-Howland 176636.docx Page 1 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company	
Date Completed: November 06, 2020	Completed by: Lynne Parker	

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes.
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples MS/MSD – 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ 20 samples	A MS/MSD was not included in the sample delivery group. A field duplicate was not included in the sample delivery group. A trip blank was included. An equipment blank was not included.
Case narrative present and complete?	Yes.
Any holding time violations?	No.

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria:

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Volatile Organic Compounds by Method E624.1				
Description	Notes and Qualifiers			
Any compounds present in method, trip, or, field blanks (see Table 2)?	No.			
For samples, if results are < 5 times the blank or < 10 times the blank for common laboratory contaminants, then "U" flag data. Qualification also applies to TICs.	No qualification required.			
Are surrogates for method blanks and LCS within limits?	Yes.			
Are surrogates for samples and MS/MSD within limits? (See Table 3). If not, were all samples reanalyzed for VOCs? Matrix effects should be established.	Yes.			
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Unable to determine from report if a MS/MSD was analyzed with batches 554226 and 554564.			
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	Yes.			
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Yes.			

DUSR_Davis-Howland 176636.docx Page 2 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company		
Date Completed: November 06, 2020	Completed by: Lynne Parker		

Volatile Organic Compounds by Method E624.1						
Description	Notes and Qualifiers					
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Unable to be assessed. Category A report provided.					
Is initial calibration for target compounds <20 %RSD or curve fit? Is ICV 80-120%? Is LCV 70-130%?	Unable to be assessed. Category A report provided.					
Is %D in the continuing calibration for target compounds less than method specifications?	Unable to be assessed. Category A report provided.					
Does each target compound have a minimum response factor of 0.05 for the lowest calibration standard and for the average RF? Qualifications do not apply to ketones, alcohols and dioxanes due to poor purging efficiency.	Unable to be assessed. Category A report provided.					
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	All of the samples were initially overdiluted and reanalyzed. Samples MW-16R-OCT20 and PW-1-OCT20 were reanalyzed at an 8X dilution and elevated reporting limits were provided. All other samples were reanalyzed with no dilution. The lowest dilution was marked as reportable. Per the method requirements acrolein should be analyzed within 3 day of sample collection; therefore, acrolein was outside of hold time for the reanalysis. Acrolein is not an analyte of concern for the site and was UJ qualified as estimated non-detect. The dilutions should not impact data usability and should be comparable to historical data.					
Do field duplicate results show good precision for all compounds (see Table 7)?	N/A					

Alkalinity by Standard Method 2320B	
Description	Notes and Qualifiers
Any compounds present in method, trip, or, field	No.
blanks (see Table 2)?	
For samples, if results are < 5 times the blank or <	No qualification required.
10 times the blank for common laboratory	
contaminants, then "U" flag data.	
Is Laboratory QC frequency at least one blank and	Yes.
LCS with each batch or 20 samples and one set of	
MS/MSD per 5 samples?	
Is MS/MSD within QC criteria (see Table 4)? If	N/A
out and LCS is compliant, then "J" flag positive	
data in original sample due to matrix.	
Is LCS within QC criteria (see Table 5)? If out,	Yes.
and the recovery is high with no positive values,	
then no data qualification is required.	
Is initial calibration for target compounds <20	Unable to be assessed. Category A report
%RSD or curve fit?	provided.
Is initial calibration verification frequency once	Unable to be assessed. Category A report
immediately following calibration?	provided.
Is %D in the continuing calibration for target	Unable to be assessed. Category A report
compounds less than method specifications?	provided.
Were any samples reanalyzed or diluted (see	No.
Table 6)? For any sample reanalysis or dilutions,	
is only one reportable result flagged?	

DUSR_Davis-Howland 176636.docx Page 3 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company		
Date Completed: November 06, 2020	Completed by: Lynne Parker		

Alkalinity by Standard Method 2320B					
Description	Notes and Qualifiers				
Do field duplicate results show good precision for	N/A				
all compounds (see Table 7)?					

Sulfate by EPA Method 300.0							
Description	Notes and Qualifiers						
Any compounds present in method, trip, or, field	No.						
blanks (see Table 2)?							
For samples, if results are < 5 times the blank or <	N/A.						
10 times the blank for common laboratory							
contaminants, then "U" flag data.							
Is Laboratory QC frequency at least one blank and	Unable to determine from report if a MS/MSD was						
LCS with each batch and one set of MS/MSD per	analyzed with batch 554356.						
20 samples?							
Is MS/MSD within QC criteria (see Table 4)? If	Yes.						
out and LCS is compliant, then "J" flag positive							
data in original sample due to matrix.							
Is LCS within QC criteria (see Table 5)? If out,	Yes.						
and the recovery is high with no positive values,							
then no data qualification is required.							
Is initial calibration for target compounds <20	Unable to be assessed. Category A report						
%RSD or curve fit?	provided.						
Is %D in the continuing calibration for target	Unable to be assessed. Category A report						
compounds less than method specifications?	provided.						
Were any samples reanalyzed or diluted (see	All of the samples were diluted to bring the sulfate						
Table 6)? For any sample reanalysis or dilutions,	concentration within the calibration range. No						
is only one reportable result flagged?	impact to data usability.						
Do field duplicate results show good precision for	N/A						
all compounds (see Table 7)?							

Summary of Findings

Acrolein was UJ qualified as estimated non-detect in samples MW-9S-OCT20, MW-2S-OCT20, PZ-3-OCT20, MW-14S-OCT20, MW-1S-OCT20, 10W-PURGE WATER-OCT20, PW-1-OCT20, MW-15R-OCT20, MW-16R-OCT20 due to the sample being reanalyzed outside of method hold for the analyte.

DUSR_Davis-Howland 176636.docx Page 4 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company		
Date Completed: November 06, 2020	Completed by: Lynne Parker		

Table 2 - List of Positive Results for Blank Samples

None

Table 2A - List of Samples Qualified for Method Blank Contamination None

Table 2B - List of Samples Qualified for Field Blank Contamination None

Table 3 - List of Samples with Surrogates outside Control Limits None

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits None

Table 5 - List LCS Recoveries outside Control Limits None

Table 6 -Samples that were Re-analyzed

			Sample		
Sample ID	Lab ID	Method	Type	Action	
10W-PURGE WATER-OCT20	480-176636-10	E624.1	N	20X: The laboratory initially overdiluted the sample. The sample was reanalyzed undiluted.	
MW-14S-OCT20	480-176636-8	E624.1	N	20X: The laboratory initially overdiluted the sample. The sample was reanalyzed undiluted.	
MW-1S-OCT20	480-176636-9	E624.1	N	20X: The laboratory initially overdiluted the sample. The sample was reanalyzed undiluted.	
MW-2S-OCT20	480-176636-3	E624.1	N	20X: The laboratory initially overdiluted the sample. The sample was reanalyzed undiluted.	
MW-9S-OCT20	480-176636-2	E624.1	N	20X: The laboratory initially overdiluted the sample. The sample was reanalyzed undiluted.	
MW-9S-OCT20	480-176636-7	E624.1	N	20X: The laboratory initially overdiluted the sample. The sample was reanalyzed undiluted.	
MW-15R-OCT20	480-176636-5	E300.0	N	5X: Diluted to bring the target analyte within the calibration range.	
MW-15R-OCT20	480-176636-5	E624.1	N	20X: The laboratory initially overdiluted the sample. The sample was reanalyzed undiluted.	
MW-16R-OCT20	480-176636-6	E300.0	N	5X: Diluted to bring the target analyte within the calibration range.	
MW-16R-OCT20	480-176636-6	E624.1	N	20X: The laboratory initially overdiluted the sample. The sample was reanalyz at an 8X dilution. The 8X dilution was reported with elevated reporting limits.	

DUSR_Davis-Howland 176636.docx Page 5 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company		
Date Completed: November 06, 2020	Completed by: Lynne Parker		

Sample ID	Lab ID	Method	Sample Type	Action
PW-1-OCT20	480-176636-4	36-4 E300.0 N		5X: Diluted to bring the target analyte within the calibration range.
PW-1-OCT20	480-176636-4	E624.1	N	20X: The laboratory initially overdiluted the sample. The sample was reanalyzed at an 8X dilution. The 8X dilution was reported with elevated reporting limits.

Table 7 – Summary of Field Duplicate Results $\ensuremath{\text{N/A}}$

DUSR_Davis-Howland 176636.docx Page 6 of 7

Data Usability Summary Report	Project: Davis Howland Oil Company		
Date Completed: November 06, 2020	Completed by: Lynne Parker		

Acronym List and Table Key:

COC = chain of custody

DUSR = data usability summary report

FD = Field duplicate sample

GC/MS = gas chromatography / mass spectrometry

LCS = laboratory control sample

LCSD = laboratory control sample duplicate

MBLK = method blank MS = matrix spike

MSD = matrix spike duplicate N = Normal field sample

NC = not calculated ND = not detected

NYSDEC = New York State Department of Environmental Conservation

PQL = practical quantitation limit

QA = quality assurance

QAPP = quality assurance project plan

QC = quality control

RB = Rinsate blank sample
RPD = relative percent difference
SDG = sample delivery group
TB = Trip blank sample
TRG = Target analyte

μg/l = Micrograms per liter VOC = volatile organic compound

WG = Groundwater (matrix)

DUSR_Davis-Howland 176636.docx Page 7 of 7

C County of Monroe Discharge Permit

Issued this 2 day of 20 17

COUNTY OF MONROE SEWER USE PERMIT RENEWAL

Firm Name: NYSDEC Division of Environmental Remediation

Renewal Approved by:

	Firm Name:	NYSDEC Division of Enviro 200 Anderson (Davis Howland		Permit Number: Fee: Expires:	IWC-864 \$ 75.00 May 31, 2022
	Mailing Addr:	625 Broadway, 12th Floor Albany, NY 12233-7013		W/C Expire: District No:	N/A 8/1/2020 8575
	Business Type:	Pretreatment			
	in the past twelve m			stes discharged to the	e public sewer
		es: No: X If yes, please ex	•		
	Average monthly co	onsumption for the past twelve (12) months:	8	-
	Water Account N	o.(s) N/A	(cu ft/gal) N/A		
		he granting of this renewal permit		ply with all the requi	irements in the
	Ji	e contacted for inspection & samp Il Gulczewski cology and Environment	•••)	
		UST BE SIGNED AS FOLLOWS			
1	1. For a corporation: by a re (a) A president, secretary who performs similar (b) The manager of one of annual sales or experi	esponsible corporate officer. A corporate y, treasurer or vice - president of the corporate policy - or decision - making functions for more manufacturing, production, or open ditures exceeding \$25 million (in second to the manager in accordance with corp	e officer means; coration in charge of a principal busi for the corporation; or peration facilities employing more th d - quarter 1980 dollars), if authority	an 250 persons or having	gross
2	2. For a partnership or sole	proprietorship: by a general partner or th	ne proprietor, respectively; or		
3	3. By a duly authorized rep	resentative of the individual designated i	in items (1) or (2) above if		
may	(b) The authorization spe which the Industrial or an individual or p thus be either a named inc	made in writing by the individual describe ecifies either an individual or a position has been a position of the position of the position having overall responsibility for a dividual or any individual occupying nanution is submitted to this Department.	naving responsibility for the overall of n of plant manager, superintendent, penvironmental matters for the companied position), and	osition of equivalent resp	onsibility.
	Print or Type: Jene Signatur	and Days	Phone No: 518-402-	9813 <u> </u> 19	
	Title: NYSI	DEC Project Manager			

Michael J. Garland, P.E. Director of Environmental Services-PureWaters

Monroe County

COUNTY OF MONROE SEWER USE PERMIT ENCLOSURE

NYSDEC Division of Environmental Remediation

PERMIT NUMBER: DISTRICT NUMBER:

864 8575

625 Broadway, 12th Floor Albany, NY 12233-7013

ibany, NY 12233-7013

TYPE OF BUSINESS: Groundwater Remediation

LOCATION: Davis Howland Oil Co. Site – 200 Anderson Ave.

Rochester, NY

SAMPLE POINT:

IWC-864.2 – Monitoring Well Purge Water

REQUIRED MONITORING & EFFLUENT LIMITS

SAMPLE POINT:

IWC-864.2 – Monitoring Well Purge Water

SELF-MONITORING FREQUENCY: Each and Every Batch Discharge

SAMPLING PROTOCOL: Sampling and analysis shall be performed in accordance with the techniques prescribed in 40CFR part 136 and amendments thereto. In the absence of 40 CFR Part 136 testing methodology, a New York State Department of Health, approved method is acceptable. A grab sample, collected from the above noted sample point shall be analyzed for the following:

ParameterSewer Use LimitAction LevelPurgeable Aromatics2.13 mg/L*Purgeable Halocarbons2.13 mg/L*Acetone(monitor only)

DISCHARGE LIMITATIONS: The summation of purgeable aromatics and purgeable halocarbons greater than 10 μ g/L shall not exceed 2.13 mg/L.

SPECIAL CONDITION:

Quarterly flow summaries shall be submitted for billing purposes. It is imperative these summaries are submitted in a timely manner. If there is no discharge for a given quarter, then a letter must be submitted stating so.

TERMS AND CONDITIONS

GENERAL REQUIRMENTS:

- A. The permittee agrees to accept and abide by all provisions of the Sewer Use Law of Monroe County (MCSUL) and of all pertinent rules or regulations now in force or shall be adopted in the future.
- **B.** In addition to the parameters/limits outlined, the total facility discharge shall meet all other concentration values listed within the MCSUL and as described in Article III, Section 3.3(d) of the Law.
- C. Included in Article II, Section 2.1 of the MCSUL, is the definition of "Normal Sewage". "Normal Sewage" may be discharged to the sewer system in excess of the concentrations outlined in the definition, however, the facility will be subject to the imposition of a sewer surcharge and possible self-monitoring requirements as a result. Surcharging procedures are outlined in Article X of the MCSUL.
- **D.** Regulatory sampling for analytes not specified under "required monitoring" shall be conducted by Monroe County at a minimum frequency of once every three (3) years.
- E. This permit is not assignable or transferable. The permit is issued to a specific user and location.
- F. Per Article IX, section 9.9 of the MCSUL, a violation by the permittee of the permit conditions may be cause for revocation or suspension of the permit after a Hearing by the Administrative Board, or if the violation is found to be within the emergency powers of the Director under Section 9.6. The revocation is immediate upon receipt of notice to the Industrial User. If the revocation or suspension is issued under Section 9.6, a Hearing shall be held as soon as possible.
- G. As provided under Article VI, Section 6.1 of the MCSUL, the Director and/or his duly authorized representatives shall gain entry on to private lands by permission or duly issued warrant for the purpose of inspection, observation, measurement sampling and testing in accordance with the provisions of this law and its implementing Rules and Regulations. The Director or his representatives shall not have authority to inquire into any processes used in any industrial operation beyond that information having a direct bearing on the kind and source of discharge to the sewers or the on-site facilities for waste treatment. While performing the necessary work on private lands, referred to above, the Director or his duly authorized representative shall observe all safety rules applicable to the premises as established by the owner and/or occupant.
- **H.** All required monitoring shall be analyzed by a New York State Department of Health certified laboratory. All sampling and analysis must be performed in accordance with Title 40 Code of Federal Regulations Part 136.
- I. The pH range for this permit is 5.0 12.0 su. This range is specifically permitted by the Director as allowed under Article III, Section 3.3(b) of the MCSUL. pH must be analyzed within 15 minutes of the time of collection as specified in 40 CFR, part 136.
- J. Discharges of wax, fats, oil or grease shall not exceed 100 mg/L as imposed by the Director under Article III, Section 3.3 of the MCSUL.

SURCHARGE CONCENTRATIONS:

Concentration and/or characteristics of normal sewage:

"Normal Sewage" shall mean sewage, industrial wastes or other wastes, which when analyzed, show concentration values with the following characteristics based on daily maximum limits:

a. B. O. D.	300 mg/L
b. Total Suspended Solids	300 mg/L
c. Total Phosphorus, as P	10 mg/L

Annual average concentrations above normal sewage are subject to surcharge as defined in Article X, section 10.7 of the MCSUL.

DISCHARGE LIMITATIONS (SEWER USE LIMITS)

Permissible concentrations of toxic substances and/or substances the Department wishes to control:

The concentration in sewage of any of the following toxic substances and/or substances the Department wishes to control shall not exceed the concentration limits specified when discharged into the County Sewer System; metal pollutants are expressed as <u>total</u> metals in mg/L (ppm): the following pollutant limits are based on daily maximum values:

a.	Antimony (Sb)	1.0 mg/L
b.	Arsenic (As)	0.5 mg/L
c.	Barium (Ba)	2.0 mg/L
d.	Beryllium (Be)	5.0 mg/L
e.	Cadmium (Cd)	1.0 mg/L
f.	Chromium (Cr)	3.0 mg/L
g.	Copper (Cu)	3.0 mg/L
h.	Cyanide (CN)	1.0 mg/L
i.	Iron (Fe)	5.0 mg/L
j.	Lead (Pb)	1.0 mg/L
k.	Manganese (Mn)	5.0 mg/L
1.	Mercury (Hg)	0.05 mg/L
m.	Nickel (Ni)	3.0 mg/L
n.	Selenium (Se)	2.0 mg/L
о.	Silver (Ag)	2.0 mg/L
p.	Thallium (Tl)	1.0 mg/L
q.	Zinc (Zn)	5.0 mg/L
		_

REPORTING REQUIREMENTS:

- A. Per the requirements of 40 CFR, Part 403.12, Significant Industrial Users must submit Periodic Reports on Continued Compliance to the Control Authority on a biannual (2/yr) basis. Deadline dates of submission for these reports will be August 15 and February 15, respectively.
- **B.** Discharge monitoring reports shall be submitted to the Control Authority upon receipt from the permittee's testing laboratory. Reports submitted from industrial users identified as Significant Industrial Users (SIU) must be accompanied by a certification statement as required by 40 CFR part 403 and the MCSUL, Article VI, section 6.12.
- C. Any Industrial User subject to the reporting requirements of the General Pretreatment Regulations shall maintain records of all information resulting from any monitoring activities required by 40 CFR, part 403.12 for a minimum of three (3) years. These records shall be available for inspection and copying by the Control Authority. This period of retention shall be extended during the course

- of any unresolved litigation regarding the discharge of pollutants by the Industrial User or the operation of the POTW Pretreatment Program or when requested by the Director or the Regional Administrator.
- **D.** Pursuant to Article VI, Section 6.10 (4) of the MCSUL and the reporting requirements of the Code of Federal Regulations 40 CFR part 403.12, if a permitted user elects to perform monitoring at compliance monitoring locations more often than required and uses approved laboratory procedures, the results of all such additional monitoring and any additional flow measurements shall be reported to the Director on a timely basis and shall be included in reports as outlined in the MCSUL section 6.10(1)-(4).

NOTIFICATION REQUIREMENTS:

- A. Pursuant to Article VI, Section 6.10(5), the permittee shall notify the Department within 24 hours of becoming aware that discharge monitoring is in violation of any permit limit. This notification shall be directed to the Industrial Waste Section at 585-753-7600 Option 4. The User shall also repeat sampling and analysis for the analyte in non-compliance and submit the results of the repeat analysis to Monroe County within 30 days after becoming aware of the violation.
- **B.** Notify the Director in writing when considering a revision to the plant sewer system or any change in industrial waste discharges to the public sewers. The later encompasses either an increase or decrease in average daily volume or strength of waste or new wastes.
- C. Notify the Director immediately of any accident, negligence, breakdown of pretreatment equipment or other occurrence that occasions discharge to the public sewer of any waste or process waters not covered by this permit.

SLUG CONTROL

An Industrial User shall be required to report any/all slug discharges to the Monroe County sewer system by calling 585-753-7600 option 4. For the purpose of this permit enclosure, a slug discharge shall be identified as any discharge of a non-routine, episodic nature, including but not limited to an accidental spill or a non-customary batch discharge. Following a review process, the Control Authority (Monroe County) shall determine the applicability of a facility slug control plan. If the Control Authority decides that a Slug Discharge Control Plan (SDCP) is needed, the plan shall contain, at a minimum, the following elements:

- 1. Description of discharge practices, including non-routine batch discharges.
- 2. Description of stored chemicals.
- 3. Procedures for immediately notifying the Control Authority of slug discharges, including any discharge that would violate a prohibition under 40 CFR 403.5 (b), with procedures for follow up written notification within five (5) days.
- 4. If necessary, procedures to prevent adverse impact from accidental spills, including, but not limited to, inspection and maintenance of storage areas, handling and transfer of materials, loading and unloading operations, control of plant site run-off, worker training, building of containment structures or equipment, measures for containing toxic organic pollutants (including solvents) and/or measures and equipment for emergency purposes.

SNC DEFINITION:

In accordance with 40 CFR 403.8 (f) (vii), an Industrial User is in significant noncompliance (SNC) if its violations meet one or more of the following criteria:

- A. Chronic violations of wastewater discharge limits defined as those which 66% or more of all the measurements taken during a six-month period exceed (by any magnitude) the daily maximum limit or the average limit for the same pollutant parameter (ref. Article IX, section 9.19 MCSUL). This criteria does NOT apply to the following Monroe County surchargeable parameters: Biochemical Oxygen Demand, Total Suspended Solids, Chlorine Demand and Total Phosphorus.
- B. Technical review criteria (TRC) violations defined as those in which 33% or more of all the measurements for each pollutant parameter taken during a six month period equal or exceed the product of the daily maximum limit or the average limit times the applicable TRC (ref. Article IX, section 9.19 MCSUL). This criteria does NOT apply to the following Monroe County surchargeable parameters: Biochemical Oxygen Demand, Total Suspended Solids, Chlorine Demand and Total Phosphorus.
- C. Any other violation of a pretreatment effluent limit (daily maximum or longer-term average) that the Control Authority determines has caused, alone or in combination with other discharges, interference or pass-through (including endangering the health or POTW personnel or the general public).
- D. Any discharge of a pollutant that has caused imminent endangerment to human health, welfare or the environment or has resulted in the POTW's exercise of its emergency authority under paragraph (t)(1)(vi)(8) of 40 CFR part 403 to prevent such a discharge.
- E. Failure to meet, within 90 days after the scheduled date, a compliance schedule milestone contained in a local control mechanism or enforcement order, for starting construction, completing construction or attaining final compliance.
- F. Failure to provide, within 30 days after the due date, required reports such as BMRs, 90 day compliance reports, periodic reports on continued compliance.
- **G.** Failure to accurately report noncompliance.
- H. Any other violation or group of violations that the Control Authority determines will adversely affect the operation and implementation of the local Pretreatment Program.

PENALTIES

Should the facility be considered in Significant Non-Compliance (SNC), based on the above mentioned criteria, the minimum enforcement response by Monroe County will be the publication of the company name in the Gannett Rochester newspaper. The company will be published as an Industrial User in Significant Non-Compliance (SNC). Fines and criminal penalties may follow this publication (ref. Article IX – MCSUL).

Nothing in this permit shall be construed to relieve the permittees from civil/criminal penalties for noncompliance under Article IX, Section 9.7(a)(5) MCSUL. Article IX provides that any person who violates a permit condition is subject to a civil penalty not to exceed \$25,000 for any one case and an additional penalty not to exceed \$25,000 for each day of continued violation.

CERTIFICATE OF LIABILITY INSURANCE

DATE (MM/DD/YYYY) 09/19/2019

THIS CERTIFICATE IS ISSUED AS A MATTER OF INFORMATION ONLY AND CONFERS NO RIGHTS UPON THE CERTIFICATE HOLDER. THIS CERTIFICATE DOES NOT AFFIRMATIVELY OR NEGATIVELY AMEND, EXTEND OR ALTER THE COVERAGE AFFORDED BY THE POLICIES BELOW. THIS CERTIFICATE OF INSURANCE DOES NOT CONSTITUTE A CONTRACT BETWEEN THE ISSUING INSURER(S), AUTHORIZED REPRESENTATIVE OR PRODUCER, AND THE CERTIFICATE HOLDER.

IMPORTANT: If the certificate holder is an ADDITIONAL INSURED, the policy(les) must have ADDITIONAL INSURED provisions or be endorsed. If SUBROGATION IS WAIVED, subject to the terms and conditions of the policy, certain policies may require an endorsement. A statement on this certificate does not confer rights to the certificate holder in lieu of such endorsement(s).

PRODUCER	CONTACT NAME:				
Willis Towers Watson Northeast, Inc. fka Willis of New York, Inc. c/o 26 Century Blvd	PHONE (A/C, No, Ext): 1-877-945-7378 FAX (A/C, No): 1-888-4	67-2378			
P.O. Box 305191	E-MAIL ADDRESS: certificates@willis.com				
Nashville, TN 372305191 USA	INSURER(S) AFFORDING COVERAGE	NAIC#			
	MSURER A: Great Divide Insurance Company	25224			
INSURED Ecology and Environment Engineering and Geology, F.C.	INSURER 8: Federal Insurance Company	20281			
368 Pleasant View Drive Lancaster, NY 14086	INSURER C:				
	INSURER D:				
	INSURER E:				
	INSURER F:				
COVERAGES CERTIFICATE NUMBER: W12738705	REVISION NUMBER:				

THIS IS TO CERTIFY THAT THE POLICIES OF INSURANCE LISTED BELOW HAVE BEEN ISSUED TO THE INSURED NAMED ABOVE FOR THE POLICY PERIOD INDICATED. NOTWITHSTANDING ANY REQUIREMENT, TERM OR CONDITION OF ANY CONTRACT OR OTHER DOCUMENT WITH RESPECT TO WHICH THIS CERTIFICATE MAY BE ISSUED OR MAY PERTAIN, THE INSURANCE AFFORDED BY THE POLICIES DESCRIBED HEREIN IS SUBJECT TO ALL THE TERMS, EXCLUSIONS AND CONDITIONS OF SUCH POLICIES, LIMITS SHOWN MAY HAVE BEEN REDUCED BY PAID CLAIMS.

NSR LTR	TYPE OF INSURANCE	INSD WVD	POLICY NUMBER	POLICY EFF (MM/DD/YYYY)	POLICY EXP (MM/DD/YYYY)	LIMIT	S
A	X COMMERCIAL GENERAL LIABILITY CLAIMS-MADE X OCCUR				9 08/01/2020	EACH OCCURRENCE DAMAGE TO RENTED PREMISES (Ea occurrence)	\$ 3,000,000 \$ 1,000,000
	X Blanket Contractual Liability					MED EXP (Any one person)	\$ 30,000
			GLP2005977-17			PERSONAL & ADV INJURY	\$ 3,000,000
	GEN'L AGGREGATE LIMIT APPLIES PER:					GENERAL AGGREGATE	\$ 3,000,000
	POLICY X PRO-					PRODUCTS - COMP/OP AGG	\$ 3,000,000
	OTHER:						\$
_ <u> </u>	AUTOMOBILE LIABILITY					COMBINED SINGLE LIMIT (Ea accident)	\$ 1,000,000
	X ANY AUTO					BODILY INJURY (Per person)	\$
	OWNED SCHEDULED AUTOS		BAP2005983-17	08/01/2019	08/01/2020	BODILY INJURY (Per accident)	s
	HIRED NON-OWNED AUTOS ONLY					PROPERTY DAMAGE (Per accident)	\$
							\$
В _	UMBRELLA LIAB X OCCUR	7987-27-63	-7/1	-63 08/01/2019	9 08/01/2020	EACH OCCURRENCE	\$ 15,000,000
	X EXCESS LIAB CLAIMS-MADE		7987-27-63			AGGREGATE	\$ 15,000,000
	DED RETENTION \$					Prod/Compl Ops.	\$ 15,000,000
A	WORKERS COMPENSATION AND EMPLOYERS' LIABILITY		A WCA2005979-17 08/0			X PER OTH-	
	ANYPROPRIETOR/PARTNER/EXECUTIVE TIN	N/A		09/01/2010	08/01/2020	E.L. EACH ACCIDENT	\$ 1,000,000
	(Mandatory In NH)		WCR2003979-17	08/01/2019	08/01/2020	E.L. DISEASE - EA EMPLOYEE	\$ 1,000,000
	If yes, describe under DESCRIPTION OF OPERATIONS below	90				E.L. DISEASE - POLICY LIMIT	\$ 1,000,000
A	Consultants Poll & Prof Liab		CCP2005976-17	08/01/2019	08/01/2020	Aggregate Limit	\$11,000,000
	(Pollution - Occurrence)					Each Poll. Condition	\$11,000,000
- 1	(Professional - Claims-made)					Each Prof. Claim	\$11,000,000

DESCRIPTION OF OPERATIONS / LOCATIONS / VEHICLES (ACORD 101, Additional Remarks Schedule, may be attached if more space is required) Re: Former Davis Howland Oil Corporation Site, Site 8-28-088, NYSDEC Contract D007617, WA#12

Excess Liability policy is following form and supports all listed coverages except Pollution and Professional Liability.

CERTIFICATE HOLDER	CANCELLATION
	SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS.
County of Monroe: Department of Environmental Services 145 Paul Road, Bldg. 1 Rochester, NY 14624	AUTHORIZED REPRESENTATIVE
	1292

© 1988-2016 ACORD CORPORATION. All rights reserved.

E & E Requests to Monroe County for On-site Disposal of IDW Water

ecology and environment engineering and geology, p.c. Environmental Specialists BUFFALO CORPORATE CENTER 200 Place and Minus Drive

368 Pleasant View Drive Lancaster, New York 14086 Tel: (716) 684-8060, Fax: (716) 684-0844

November 3, 2020

Donald Wolf Industrial Waste Engineer Monroe County Department of Environmental Services Office of Industrial Waste 145 Paul Road, Bldg. 1 Rochester, NY 14624

Dear Mr. Wolf,

Ecology and Environment Engineering and Geology, P.C. (E&E) is pleased to provide the attached analytical results for the purge water collected during the groundwater sampling event for the former Davis-Howland Oil Company (DHOC) Site (No. 828088), located in Rochester, New York. The annual groundwater sampling event was performed at the site in October 2020. The groundwater monitoring wells are purged prior to sampling. This purge water was containerized onsite in two 50-gallon drums. The total amount of purge water is approximately 100 gallons.

Samples were collected in accordance with the County of Monroe Sewer Use Permit #IWC-864 for the DHOC site, and analyses performed in accordance with the parameters listed in the permit including purgeable aromatics and purgeable halocarbons. The analytical data report is included as Attachment 1 to this letter. Total VOC concentration in the purge water was $101 \ \mu g/L$.

E&E is requesting to batch discharge the sampling purge water to the previously agreed upon discharge point, located inside the building at 220 Anderson Avenue, upon approval by Monroe County Division of Pure Waters.

If you have any questions regarding this letter or the attached analytical results, please do not hesitate to contact me.

Sincerely,

Ecology and Environment Engineering and Geology, P. C.

Jill Gulczewski Project Manager

cc: Jenelle Gaylord - NYSDEC Project Manager

Attachment 1 Analytical Results

Eurofins TestAmerica, Buffalo, NY October 2020

Laboratory Submission: 480-176636-1

Lab Sample ID: 480-176636-10

Detection Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-176636-1

- 5

- 4

5

7

8

10

12

14

46

13

Client Sample ID: 10W-PURGE WATER-OCT20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	34	J	100	12	ug/L	20	_	624.1	Total/NA
1,1,1-Trichloroethane - RA	0.52	J	5.0	0.39	ug/L	1		624.1	Total/NA
1,1-Dichloroethane - RA	3.5	J	5.0	0.59	ug/L	1		624.1	Total/NA
1,2-Dichloroethene, Total - RA	36		10	3.2	ug/L	1		624.1	Total/NA
Tetrachloroethene - RA	1.8	J	5.0	0.34	ug/L	1		624.1	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-176636-10

Detection Summary

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: 10W-PURGE WATER-OCT20 (Continued)

Lab Sample ID: 480-176636-10

	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
	Trichloroethene - RA	21		5.0	0.60	ug/L	1	_	624.1	Total/NA	_
١	Vinyl chloride - RA	4.5	J	5.0	0.75	ug/L	1		624.1	Total/NA	

3

_

Я

9

11

13

14

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: 10W-PURGE WATER-OCT20 Lab Sample ID: 480-176636-10

Date Collected: 10/15/20 14:10 **Matrix: Water** Date Received: 10/15/20 16:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		100	7.7	ug/L			10/16/20 19:50	20
1,1,2,2-Tetrachloroethane	ND		100	5.2	ug/L			10/16/20 19:50	20
1,1,2-Trichloroethane	ND		100	9.6	ug/L			10/16/20 19:50	20
1,1-Dichloroethane	ND		100	12	ug/L			10/16/20 19:50	20
1,1-Dichloroethene	ND		100	17	ug/L			10/16/20 19:50	20
1,2-Dichlorobenzene	ND		100	8.9	ug/L			10/16/20 19:50	20
1,2-Dichloroethane	ND		100	12	ug/L			10/16/20 19:50	20
1,2-Dichloroethene, Total	ND		200	64	ug/L			10/16/20 19:50	20
1,2-Dichloropropane	ND		100	12	ug/L			10/16/20 19:50	20
1,3-Dichlorobenzene	ND		100	11	ug/L			10/16/20 19:50	20
1,4-Dichlorobenzene	ND		100	10	ug/L			10/16/20 19:50	20
2-Chloroethyl vinyl ether	ND		500	37	ug/L			10/16/20 19:50	20
Acrolein	ND		2000	350	ug/L			10/16/20 19:50	20
Acrylonitrile	ND		1000	38	ug/L			10/16/20 19:50	20
Benzene	ND		100	12	ug/L			10/16/20 19:50	20
Bromoform	ND		100	9.4	ug/L			10/16/20 19:50	20

Eurofins TestAmerica, Buffalo

Page 17 of 32 10/21/2020 Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: 10W-PURGE WATER-OCT20 Lab Sample ID: 480-176636-10

Date Collected: 10/15/20 14:10 Matrix: Water

Date Received: 10/15/20 16:00

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND		100	24	ug/L			10/16/20 19:50	20
Carbon tetrachloride	ND		100	10	ug/L			10/16/20 19:50	20
Chlorobenzene	ND		100	9.5	ug/L			10/16/20 19:50	20
Chlorodibromomethane	ND		100	8.3	ug/L			10/16/20 19:50	20
Chloroethane	ND		100	17	ug/L			10/16/20 19:50	20
Chloroform	ND		100	11	ug/L			10/16/20 19:50	20
Chloromethane	ND		100	13	ug/L			10/16/20 19:50	20
cis-1,3-Dichloropropene	ND		100	6.6	ug/L			10/16/20 19:50	20
Dichlorobromomethane	ND		100	11	ug/L			10/16/20 19:50	20
Ethylbenzene	ND		100	9.3	ug/L			10/16/20 19:50	20
Methylene Chloride	ND		100	16	ug/L			10/16/20 19:50	20
Tetrachloroethene	ND		100	6.8	ug/L			10/16/20 19:50	20
Toluene	ND		100	9.1	ug/L			10/16/20 19:50	20
trans-1,2-Dichloroethene	ND		100	12	ug/L			10/16/20 19:50	20
trans-1,3-Dichloropropene	ND		100	8.8	ug/L			10/16/20 19:50	20
Trichloroethene	34	J	100	12	ug/L			10/16/20 19:50	20
Vinyl chloride	ND		100	15	ug/L			10/16/20 19:50	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		68 - 130					10/16/20 19:50	20
4-Bromofluorobenzene (Surr)	97		76 - 123					10/16/20 19:50	20

75 - 123

77 - 120

99

98

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.52	J	5.0	0.39	ug/L			10/19/20 17:33	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/19/20 17:33	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/19/20 17:33	1
1,1-Dichloroethane	3.5	J	5.0	0.59	ug/L			10/19/20 17:33	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/19/20 17:33	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/19/20 17:33	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/19/20 17:33	1
1,2-Dichloroethene, Total	36		10	3.2	ug/L			10/19/20 17:33	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/19/20 17:33	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/19/20 17:33	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/19/20 17:33	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/19/20 17:33	1
Acrolein	ND	Н	100	17	ug/L			10/19/20 17:33	1
Acrylonitrile	ND		50	1.9	ug/L			10/19/20 17:33	1
Benzene	ND		5.0	0.60	ug/L			10/19/20 17:33	1
Bromoform	ND		5.0	0.47	ug/L			10/19/20 17:33	1
Bromomethane	ND		5.0	1.2	ug/L			10/19/20 17:33	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/19/20 17:33	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/19/20 17:33	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/19/20 17:33	1
Chloroethane	ND		5.0	0.87	ug/L			10/19/20 17:33	1
Chloroform	ND		5.0		ug/L			10/19/20 17:33	1
Chloromethane	ND		5.0	0.64	ug/L			10/19/20 17:33	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/19/20 17:33	1

Eurofins TestAmerica, Buffalo

10/16/20 19:50

10/16/20 19:50

Page 18 of 32

2

3

5

7

9

11

13

14

15

20

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: 10W-PURGE WATER-OCT20

Lab Sample ID: 480-176636-10 **Matrix: Water**

Date Collected: 10/15/20 14:10 Date Received: 10/15/20 16:00

Method: 624.1 - \	/olatile Organic Com	pounds (GC/MS)	- RA (Continu	ed)
A I 4 -	_	, , ,	D	

Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorobromomethane	ND ND	5.0	0.54	ug/L			10/19/20 17:33	1
Ethylbenzene	ND	5.0	0.46	ug/L			10/19/20 17:33	1
Methylene Chloride	ND	5.0	0.81	ug/L			10/19/20 17:33	1
Tetrachloroethene	1.8 J	5.0	0.34	ug/L			10/19/20 17:33	1
Toluene	ND	5.0	0.45	ug/L			10/19/20 17:33	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			10/19/20 17:33	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			10/19/20 17:33	1
Trichloroethene	21	5.0	0.60	ug/L			10/19/20 17:33	1
Vinyl chloride	4.5 J	5.0	0.75	ug/L			10/19/20 17:33	1

	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
'	1,2-Dichloroethane-d4 (Surr)	92		68 - 130	-		10/19/20 17:33	1
	4-Bromofluorobenzene (Surr)	97		76 - 123			10/19/20 17:33	1
	Dibromofluoromethane (Surr)	101		75 - 123			10/19/20 17:33	1
	Toluene-d8 (Surr)	95		77 - 120			10/19/20 17:33	1

Eurofins TestAmerica, Buffalo

10/21/2020

ecology and environment engineering and geology, p.c. Environmental Specialists

BUFFALO CORPORATE CENTER

368 Pleasant View Drive Lancaster, New York 14086 Tel: (716) 684-8060, Fax: (716) 684-0844

November 10, 2020

Donald Wolf Industrial Waste Engineer Monroe County Department of Environmental Services Office of Industrial Waste 145 Paul Road, Bldg. 1 Rochester, NY 14624

Dear Mr. Wolf,

Ecology and Environment Engineering and Geology, P.C. (E&E) is pleased to provide the attached analytical results for the purge water collected during installation and development of two wells (IW-01 and MW-17R) at the former Davis-Howland Oil Company (DHOC) Site (No. 828088), located in Rochester, New York. These activities were performed at the site in September 2020. This purge water was containerized onsite in a 750-gallon poly tank. The total amount of purge water is approximately 400 gallons.

Samples were collected in accordance with the County of Monroe Sewer Use Permit #IWC-864 for the DHOC site, and analyses performed in accordance with the parameters listed in the permit including purgeable aromatics and purgeable halocarbons. The analytical data report is included as Attachment 1 to this letter. Total VOC concentration in the purge water was $4.1~\mu g/L$.

E&E is requesting to batch discharge the purge water to the previously agreed upon discharge point, located inside the building at 220 Anderson Avenue, upon approval by Monroe County Division of Pure Waters.

If you have any questions regarding this letter or the attached analytical results, please do not hesitate to contact me.

Sincerely,

Ecology and Environment Engineering and Geology, P. C.

Jill Gulczewski Project Manager

cc: Jenelle Gaylord – NYSDEC Project Manager

Attachment 1 Analytical Results

Eurofins TestAmerica, Buffalo, NY November 2020

Laboratory Submission: 480-177337-1

Lab Sample ID: 480-177337-2 and 480-177337-3

Detection Summary

Client: New York State D.E.C. Job ID: 480-177337-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201029 Lab Sample ID: 480-177337-1

No Detections.

Client Sample ID: IDW-POLYTANK-20201029-A Lab Sample ID: 480-177337-2

No Detections.

Client Sample ID: IDW-POLYTANK-20201029-B Lab Sample ID: 480-177337-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
1.2-Dichloroethene, Total	4.1 J	10	3.2 ug/L	1 624.1	Total/NA

4

5

b

9

11

4.0

14

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201029

Date Collected: 10/29/20 10:00 Date Received: 10/29/20 15:35 Lab Sample ID: 480-177337-1

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND ND	1.0	0.21	ug/L			10/31/20 12:47	1
2-Butanone (MEK)	ND	10	1.3	ug/L			10/31/20 12:47	1
Benzene	ND	1.0	0.41	ug/L			10/31/20 12:47	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			10/31/20 12:47	1
Chlorobenzene	ND	1.0	0.75	ug/L			10/31/20 12:47	1
Chloroform	ND	1.0	0.34	ug/L			10/31/20 12:47	1
Tetrachloroethene	ND	1.0	0.36	ug/L			10/31/20 12:47	1
Trichloroethene	ND	1.0	0.46	ug/L			10/31/20 12:47	1
Vinyl chloride	ND	1.0	0.90	ug/L			10/31/20 12:47	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			10/31/20 12:47	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	77 - 120			-		10/31/20 12:47	1

Client Sample ID: IDW-POLYTANK-20201029-A Lab Sample ID: 480-177337-2

73 - 120

80 - 120

75 - 123

Date Collected: 10/29/20 10:10

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Date Received: 10/29/20 15:35

10/31/20 12:47

10/31/20 12:47

10/31/20 12:47

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS

91

98

95

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane	ND	1.0	0.21	ug/L			11/02/20 11:41	1
2-Butanone (MEK)	ND	10	1.3	ug/L			11/02/20 11:41	1
Benzene	ND	1.0	0.41	ug/L			11/02/20 11:41	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			11/02/20 11:41	1
Chlorobenzene	ND	1.0	0.75	ug/L			11/02/20 11:41	1
Chloroform	ND	1.0	0.34	ug/L			11/02/20 11:41	1
Tetrachloroethene	ND	1.0	0.36	ug/L			11/02/20 11:41	1
Trichloroethene	ND	1.0	0.46	ug/L			11/02/20 11:41	1
Vinyl chloride	ND	1.0	0.90	ug/L			11/02/20 11:41	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			11/02/20 11:41	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107	77 - 120		11/02/20 11:41	1
4-Bromofluorobenzene (Surr)	105	73 - 120		11/02/20 11:41	1
Toluene-d8 (Surr)	104	80 - 120		11/02/20 11:41	1
Dibromofluoromethane (Surr)	111	75 - 123		11/02/20 11:41	1

Client Sample ID: IDW-POLYTANK-20201029-B

Date Collected: 10/29/20 10:15 Date Received: 10/29/20 15:35

Lab Sample ID: 480-177337-3

Matrix: Water

hod: 624.1 - Volatile Orga	nic Compounds (GC/M	S)				
yte	Result Qualifier	RL	MDL Unit	D Prepa	red Analyzed	Dil Fac
-Trichloroethane	ND —	5.0	0.39 ug/L		10/30/20 17:20	1
2,2-Tetrachloroethane	ND	5.0	0.26 ug/L		10/30/20 17:20	1
2-Trichloroethane	ND	5.0	0.48 ug/L		10/30/20 17:20	1
Dichloroethane	ND	5.0	0.59 ug/L		10/30/20 17:20	1
Dichloroethene	ND	5.0	0.85 ug/L		10/30/20 17:20	1
	thod: 624.1 - Volatile Orgal yte -Trichloroethane 2,2-Tetrachloroethane 2-Trichloroethane Dichloroethane Dichloroethane	yte Result Qualifier -Trichloroethane ND 2,2-Tetrachloroethane ND 2-Trichloroethane ND Dichloroethane ND	-Trichloroethane ND 5.0 2,2-Tetrachloroethane ND 5.0 2-Trichloroethane ND 5.0 Dichloroethane ND 5.0	yte Result or Trichloroethane Qualifier RL or Trichloroethane MDL or Trichloroethane Unit or Trichloroethane 2,2-Tetrachloroethane ND 5.0 0.26 ug/L or Ug/L	Result of the substitution of the properties of the propertie	yte Result or Trichloroethane Qualifier RL or Trichloroethane MDL or Trichloroethane Unit or Trichloroethane D or Trichloroethane Prepared or Trichloroethane Analyzed or Trichloroethane 2-2-Tetrachloroethane ND or Trichloroethane 5.0 or 26 ug/L or 30.26 ug/L 10/30/20 17:20 or 30.20 ug/L 10/30/20 17:20 or 30.20 ug/L 2-Trichloroethane ND or Trichloroethane 5.0 or 50 ug/L 10/30/20 17:20 or 30.20 ug/L

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-177337-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: IDW-POLYTANK-20201029-B

Date Collected: 10/29/20 10:15 Date Received: 10/29/20 15:35

Toluene-d8 (Surr)

Lab Sample ID: 480-177337-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/30/20 17:20	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/30/20 17:20	1
1,2-Dichloroethene, Total	4.1	J	10	3.2	ug/L			10/30/20 17:20	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/30/20 17:20	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/30/20 17:20	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/30/20 17:20	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/30/20 17:20	1
Acrolein	ND		100	17	ug/L			10/30/20 17:20	1
Acrylonitrile	ND		50	1.9	ug/L			10/30/20 17:20	1
Benzene	ND		5.0	0.60	ug/L			10/30/20 17:20	1
Bromoform	ND		5.0	0.47	ug/L			10/30/20 17:20	1
Bromomethane	ND		5.0	1.2	ug/L			10/30/20 17:20	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/30/20 17:20	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/30/20 17:20	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/30/20 17:20	1
Chloroethane	ND		5.0	0.87	ug/L			10/30/20 17:20	1
Chloroform	ND		5.0	0.54	ug/L			10/30/20 17:20	1
Chloromethane	ND		5.0	0.64	ug/L			10/30/20 17:20	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/30/20 17:20	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/30/20 17:20	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/30/20 17:20	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/30/20 17:20	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/30/20 17:20	1
Toluene	ND		5.0	0.45	ug/L			10/30/20 17:20	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/30/20 17:20	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/30/20 17:20	1
Trichloroethene	ND		5.0	0.60	ug/L			10/30/20 17:20	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/30/20 17:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	81		68 - 130			-		10/30/20 17:20	1
4-Bromofluorobenzene (Surr)	93		76 - 123					10/30/20 17:20	1
Dibromofluoromethane (Surr)	93		75 - 123					10/30/20 17:20	1

77 - 120

10/30/20 17:20

ecology and environment engineering and geology, p.c. Environmental Specialists BUFFALO CORPORATE CENTER

368 Pleasant View Drive Lancaster, New York 14086 Tel: (716) 684-8060, Fax: (716) 684-0844

January 11, 2021

Donald Wolf Industrial Waste Engineer Monroe County Department of Environmental Services Office of Industrial Waste 145 Paul Road, Bldg. 1 Rochester, NY 14624

Dear Mr. Wolf,

Ecology and Environment Engineering and Geology, P.C. (E&E) is pleased to provide the attached analytical results for the purge water collected during the groundwater sampling event for the former Davis-Howland Oil Company (DHOC) Site (No. 828088), located in Rochester, New York. The groundwater sampling event was performed at the site November 30 – December 3, 2020. The groundwater monitoring wells are purged prior to sampling. This purge water was containerized onsite in one 50-gallon drum. The total amount of purge water is approximately 45 gallons.

Samples were collected in accordance with the County of Monroe Sewer Use Permit #IWC-864 for the DHOC site, and analyses performed in accordance with the parameters listed in the permit including purgeable aromatics and purgeable halocarbons. The analytical data report is included as Attachment 1 to this letter. Total VOC concentration in the purge water was $14 \mu g/L$.

E&E is requesting to batch discharge the sampling purge water to the previously agreed upon discharge point, located inside the building at 220 Anderson Avenue, upon approval by Monroe County Division of Pure Waters.

If you have any questions regarding this letter or the attached analytical results, please do not hesitate to contact me.

Sincerely,

Ecology and Environment Engineering and Geology, P. C.

Jill Gulczewski Project Manager

cc: Jenelle Gaylord - NYSDEC Project Manager

Attachment 1 Analytical Results

Eurofins TestAmerica, Buffalo, NY December 2020

Laboratory Submission: 480-178952-1

Lab Sample ID: 480-178952-2

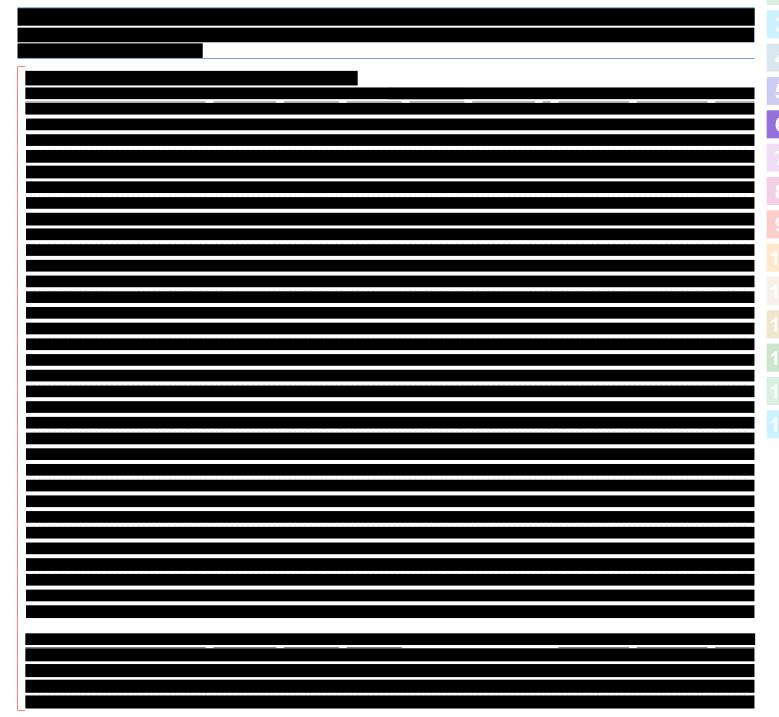
Detection Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: IDW-PURGEWATER-DEC20

Job ID: 480-178952-1


Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	0.34	J –	1.0	0.24	ug/L	1	_	624.1	Total/NA
1,1-Dichloroethane	5.8		1.0	0.26	ug/L	1		624.1	Total/NA
1,2-Dichloroethene, Total	1.9	J	2.0	0.44	ug/L	1		624.1	Total/NA
Chloromethane	2.5		1.0	0.43	ug/L	1		624.1	Total/NA
trans-1,2-Dichloroethene	0.33	J	1.0	0.24	ug/L	1		624.1	Total/NA
Trichloroethene	3.4		1.0	0.31	ug/L	1		624.1	Total/NA

13

14

Client: New York State D.E.C. Job ID: 480-178952-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: IDW-PURGEWATER-DEC20 Lab Sample ID: 480-178952-2 **Matrix: Water**

Date Collected: 12/03/20 12:00 Date Received: 12/03/20 13:45

Method: 624.1 - Volatile Org	anic Compou	nds (GC/MS))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.34	J	1.0	0.24	ug/L			12/04/20 17:00	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			12/04/20 17:00	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			12/04/20 17:00	1
1.1-Dichloroethane	5.8		1.0	0.26	ug/L			12/04/20 17:00	1

Eurofins TestAmerica, Buffalo

Page 7 of 24 12/14/2020

Client: New York State D.E.C. Job ID: 480-178952-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: IDW-PURGEWATER-DEC20

Date Collected: 12/03/20 12:00 Date Received: 12/03/20 13:45

Vinyl chloride

Lab Sample ID: 480-178952-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.0	0.12	ug/L			12/04/20 17:00	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/04/20 17:00	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			12/04/20 17:00	1
1,2-Dichloroethene, Total	1.9	J	2.0	0.44	ug/L			12/04/20 17:00	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			12/04/20 17:00	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/04/20 17:00	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/04/20 17:00	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/04/20 17:00	1
Acrolein	ND		4.0	1.1	ug/L			12/04/20 17:00	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/04/20 17:00	1
Benzene	ND		1.0	0.43	ug/L			12/04/20 17:00	1
Bromoform	ND		1.0	0.54	ug/L			12/04/20 17:00	1
Bromomethane	ND		1.0	0.45	ug/L			12/04/20 17:00	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/04/20 17:00	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/04/20 17:00	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/04/20 17:00	1
Chloroethane	ND		1.0	0.32	ug/L			12/04/20 17:00	1
Chloroform	ND		1.0	0.33	ug/L			12/04/20 17:00	1
Chloromethane	2.5		1.0	0.43	ug/L			12/04/20 17:00	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/04/20 17:00	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/04/20 17:00	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/04/20 17:00	1
Methylene Chloride	ND		1.0	0.32	ug/L			12/04/20 17:00	1
Tetrachloroethene	ND		1.0	0.25	ug/L			12/04/20 17:00	1
Toluene	ND		1.0	0.38	ug/L			12/04/20 17:00	1
trans-1,2-Dichloroethene	0.33	J	1.0	0.24	ug/L			12/04/20 17:00	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			12/04/20 17:00	1
Trichloroethene	3.4		1.0	0.31	ug/L			12/04/20 17:00	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	120		60 - 140		12/04/20 17:00	1
4-Bromofluorobenzene	86		60 - 140		12/04/20 17:00	1
Toluene-d8 (Surr)	100		60 - 140		12/04/20 17:00	1
Dibromofluoromethane (Surr)	121		60 - 140		12/04/20 17:00	1

1.0

0.34 ug/L

ND

Eurofins TestAmerica, Buffalo

12/04/20 17:00

Page 8 of 24

12/14/2020

E Laboratory Reports

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-178800-1

Client Project/Site: Davis-Howland Oil Corp #828088

For:

New York State D.E.C. 625 Broadway Division of Environmental Remediation Albany, New York 12233-7014

Attn: Jenelle Gaylord

Authorized for release by: 12/14/2020 12:43:35 PM

Orlette Johnson, Senior Project Manager (484)685-0864

Orlette.Johnson@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

3

6

8

11

12

Orlette Johnson

Senior Project Manager 12/14/2020 12:43:35 PM

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	22

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-178800-1

Project/Site: Davis-Howland Oil Corp #828088

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

LCS or LCSD is outside acceptance limits.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier **Qualifier Description**

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

n Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DΙ Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MOI Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins TestAmerica, Buffalo

Page 4 of 23

12/14/2020

Case Narrative

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-178800-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-178800-1

Receipt

The samples were received on 11/30/2020 3:25 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.2° C.

Receipt Exceptions

The following sample was submitted for analysis; however, it was not listed on the Chain-of-Custody (COC): PW-1-NOV20 (480-178800-1); per client log from container label info and proceed with analysis.

GC/MS VOA

Method 624.1: The continuing calibration verification (CCV) associated with batch 460-744142 recovered above the upper control limit for Bromoform. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 624.1: The laboratory control sample (LCS) for analytical batch 460-744142 recovered outside control limits for the following analytes: Bromoform and Carbon tetrachloride. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 624.1: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-17R-NOV20 (480-178800-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: PW-1-NOV20 (480-178800-1), MW-17R-NOV20 (480-178800-2) and IW-01-NOV20 (480-178800-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

9

Job ID: 480-178800-1

3

Л

6

0

9

11

12

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: PW-1-NOV20

Lab Sample ID: 480-178800-1

Job ID: 480-178800-1

•									
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	1.0		1.0	0.24	ug/L	1	_	624.1	Total/NA
1,1-Dichloroethane	34		1.0	0.26	ug/L	1		624.1	Total/NA
1,1-Dichloroethene	3.7		1.0	0.12	ug/L	1		624.1	Total/NA
1,2-Dichloroethene, Total	280		2.0	0.44	ug/L	1		624.1	Total/NA
Benzene	1.2		1.0	0.43	ug/L	1		624.1	Total/NA
trans-1,2-Dichloroethene	4.1		1.0	0.24	ug/L	1		624.1	Total/NA
Trichloroethene	20		1.0	0.31	ug/L	1		624.1	Total/NA
Vinyl chloride	65		1.0	0.34	ug/L	1		624.1	Total/NA
Sulfate	642		20.0	3.5	mg/L	10		300.0	Total/NA
Alkalinity, Total	338		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Alkalinity, Bicarbonate	338		5.0	0.79	mg/L	1		SM 2320B	Total/NA

Client Sample ID: MW-17R-NOV20

Lab Sam	ple ID: 480-	-178800-2
=us ouiii	P.O .DOO	

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,1-Dichloroethane	31		2.0	0.53	ug/L		624.1	Total/NA
1,1-Dichloroethene	7.6		2.0	0.23	ug/L	2	624.1	Total/NA
1,2-Dichloroethene, Total	570		4.0	0.87	ug/L	2	624.1	Total/NA
Tetrachloroethene	4.2		2.0	0.50	ug/L	2	624.1	Total/NA
trans-1,2-Dichloroethene	6.1		2.0	0.47	ug/L	2	624.1	Total/NA
Trichloroethene	37		2.0	0.63	ug/L	2	624.1	Total/NA
Vinyl chloride	83		2.0	0.68	ug/L	2	624.1	Total/NA
Sulfate	187		10.0	1.7	mg/L	5	300.0	Total/NA
Alkalinity, Total	320		5.0	0.79	mg/L	1	SM 2320B	Total/NA
Alkalinity, Bicarbonate	319		5.0	0.79	mg/L	1	SM 2320B	Total/NA
Alkalinity, Carbonate	0.96 J	J	5.0	0.79	mg/L	1	SM 2320B	Total/NA

Client Sample ID: IW-01-NOV20

Lab Sample ID: 480-178800-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	1.5		1.0	0.24	ug/L	1	_	624.1	Total/NA
1,1-Dichloroethane	13		1.0	0.26	ug/L	1		624.1	Total/NA
1,1-Dichloroethene	4.3		1.0	0.12	ug/L	1		624.1	Total/NA
1,2-Dichloroethene, Total	180		2.0	0.44	ug/L	1		624.1	Total/NA
Tetrachloroethene	0.34	J	1.0	0.25	ug/L	1		624.1	Total/NA
trans-1,2-Dichloroethene	2.2		1.0	0.24	ug/L	1		624.1	Total/NA
Trichloroethene	2.4		1.0	0.31	ug/L	1		624.1	Total/NA
Vinyl chloride	23		1.0	0.34	ug/L	1		624.1	Total/NA
Sulfate	260		10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Total	359		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Alkalinity, Bicarbonate	358		5.0	0.79	mg/L	1		SM 2320B	Total/NA

Client Sample ID: TB-20201130

Lab Sample ID: 480-178800-4

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-178800-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: PW-1-NOV20

Date Collected: 11/30/20 13:50 Date Received: 11/30/20 15:25

Lab Sample ID: 480-178800-1

Matrix: Water

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.0		1.0	0.24	ug/L			12/03/20 10:19	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			12/03/20 10:19	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			12/03/20 10:19	1
1,1-Dichloroethane	34		1.0	0.26	ug/L			12/03/20 10:19	1
1,1-Dichloroethene	3.7		1.0	0.12	ug/L			12/03/20 10:19	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/03/20 10:19	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			12/03/20 10:19	1
1,2-Dichloroethene, Total	280		2.0	0.44	ug/L			12/03/20 10:19	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			12/03/20 10:19	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/03/20 10:19	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/03/20 10:19	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/03/20 10:19	1
Acrolein	ND		4.0	1.1	ug/L			12/03/20 10:19	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/03/20 10:19	1
Benzene	1.2		1.0	0.43	ug/L			12/03/20 10:19	1
Bromoform	ND	*	1.0	0.54	ug/L			12/03/20 10:19	1
Bromomethane	ND		1.0	0.45	ug/L			12/03/20 10:19	1
Carbon tetrachloride	ND	*	1.0	0.21	ug/L			12/03/20 10:19	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/03/20 10:19	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/03/20 10:19	1
Chloroethane	ND		1.0	0.32	ug/L			12/03/20 10:19	1
Chloroform	ND		1.0	0.33	ug/L			12/03/20 10:19	1
Chloromethane	ND		1.0	0.43	ug/L			12/03/20 10:19	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/03/20 10:19	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/03/20 10:19	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/03/20 10:19	1
Methylene Chloride	ND		1.0	0.32	ug/L			12/03/20 10:19	1
Tetrachloroethene	ND		1.0	0.25	ug/L			12/03/20 10:19	1
Toluene	ND		1.0	0.38	ug/L			12/03/20 10:19	1
trans-1,2-Dichloroethene	4.1		1.0	0.24	ug/L			12/03/20 10:19	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			12/03/20 10:19	1
Trichloroethene	20		1.0	0.31	ug/L			12/03/20 10:19	1
Vinyl chloride	65		1.0	0.34	ug/L			12/03/20 10:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		60 - 140				<u> </u>	12/03/20 10:19	1
4-Bromofluorobenzene	119		60 - 140					12/03/20 10:19	1
Toluene-d8 (Surr)	100		60 - 140					12/03/20 10:19	1
Dibromofluoromethane (Surr)	112		60 - 140					12/03/20 10:19	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	642		20.0	3.5	mg/L			12/03/20 17:31	10
Alkalinity, Total	338		5.0	0.79	mg/L			12/08/20 19:51	1
Alkalinity, Bicarbonate	338		5.0	0.79	mg/L			12/08/20 19:51	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			12/08/20 19:51	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			12/08/20 19:51	1

Page 7 of 23

Client: New York State D.E.C. Job ID: 480-178800-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-17R-NOV20

Date Collected: 11/30/20 10:50 Date Received: 11/30/20 15:25 Lab Sample ID: 480-178800-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		2.0	0.48	ug/L			12/03/20 10:43	2
1,1,2,2-Tetrachloroethane	ND		2.0	0.73	ug/L			12/03/20 10:43	2
1,1,2-Trichloroethane	ND		2.0	0.30	ug/L			12/03/20 10:43	2
1,1-Dichloroethane	31		2.0	0.53	ug/L			12/03/20 10:43	2
1,1-Dichloroethene	7.6		2.0	0.23	ug/L			12/03/20 10:43	2
1,2-Dichlorobenzene	ND		2.0	0.37	ug/L			12/03/20 10:43	2
1,2-Dichloroethane	ND		2.0	1.7	ug/L			12/03/20 10:43	2
1,2-Dichloroethene, Total	570		4.0	0.87	ug/L			12/03/20 10:43	2
1,2-Dichloropropane	ND		2.0	0.71	ug/L			12/03/20 10:43	2
1,3-Dichlorobenzene	ND		2.0	0.26	ug/L			12/03/20 10:43	2
1,4-Dichlorobenzene	ND		2.0	0.35	ug/L			12/03/20 10:43	2
2-Chloroethyl vinyl ether	ND		2.0	1.8	ug/L			12/03/20 10:43	2
Acrolein	ND		8.0	2.2	ug/L			12/03/20 10:43	2
Acrylonitrile	ND		4.0	1.5	ug/L			12/03/20 10:43	2
Benzene	ND		2.0	0.86	ug/L			12/03/20 10:43	2
Bromoform	ND	*	2.0	1.1	ug/L			12/03/20 10:43	2
Bromomethane	ND		2.0	0.90	ug/L			12/03/20 10:43	2
Carbon tetrachloride	ND	*	2.0	0.42	ug/L			12/03/20 10:43	2
Chlorobenzene	ND		2.0	0.75	ug/L			12/03/20 10:43	2
Chlorodibromomethane	ND		2.0	0.26	ug/L			12/03/20 10:43	2
Chloroethane	ND		2.0	0.64	ug/L			12/03/20 10:43	2
Chloroform	ND		2.0	0.65	ug/L			12/03/20 10:43	2
Chloromethane	ND		2.0	0.87	ug/L			12/03/20 10:43	2
cis-1,3-Dichloropropene	ND		2.0	0.91	ug/L			12/03/20 10:43	2
Dichlorobromomethane	ND		2.0	0.69	ug/L			12/03/20 10:43	2
Ethylbenzene	ND		2.0	0.60	ug/L			12/03/20 10:43	2
Methylene Chloride	ND		2.0	0.63	ug/L			12/03/20 10:43	2
Tetrachloroethene	4.2		2.0	0.50	ug/L			12/03/20 10:43	2
Toluene	ND		2.0	0.76	ug/L			12/03/20 10:43	2
trans-1,2-Dichloroethene	6.1		2.0	0.47	ug/L			12/03/20 10:43	2
trans-1,3-Dichloropropene	ND		2.0	0.43	ug/L			12/03/20 10:43	2
Trichloroethene	37		2.0	0.63	ug/L			12/03/20 10:43	2
Vinyl chloride	83		2.0	0.68	ug/L			12/03/20 10:43	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		60 - 140			•		12/03/20 10:43	2
4-Bromofluorobenzene	116		60 - 140					12/03/20 10:43	2
Toluene-d8 (Surr)	98		60 - 140					12/03/20 10:43	2
Dibromofluoromethane (Surr)	110		60 - 140					12/03/20 10:43	2

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	187		10.0	1.7	mg/L			12/02/20 14:13	5
Alkalinity, Total	320		5.0	0.79	mg/L			12/08/20 19:57	1
Alkalinity, Bicarbonate	319		5.0	0.79	mg/L			12/08/20 19:57	1
Alkalinity, Carbonate	0.96	J	5.0	0.79	mg/L			12/08/20 19:57	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			12/08/20 19:57	1

Eurofins TestAmerica, Buffalo

3

5

0

10

11

13

14

Client: New York State D.E.C. Job ID: 480-178800-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: IW-01-NOV20

Date Collected: 11/30/20 11:05 Date Received: 11/30/20 15:25 Lab Sample ID: 480-178800-3

Matrix: Water

Analyte	Result Qualifie		MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.5	1.0	0.24	ug/L			12/03/20 09:54	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.37	ug/L			12/03/20 09:54	1
1,1,2-Trichloroethane	ND	1.0	0.15	ug/L			12/03/20 09:54	1
1,1-Dichloroethane	13	1.0	0.26	ug/L			12/03/20 09:54	1
1,1-Dichloroethene	4.3	1.0	0.12	ug/L			12/03/20 09:54	1
1,2-Dichlorobenzene	ND	1.0	0.19	ug/L			12/03/20 09:54	1
1,2-Dichloroethane	ND	1.0	0.84	ug/L			12/03/20 09:54	1
1,2-Dichloroethene, Total	180	2.0	0.44	ug/L			12/03/20 09:54	1
1,2-Dichloropropane	ND	1.0	0.35	ug/L			12/03/20 09:54	1
1,3-Dichlorobenzene	ND	1.0	0.13	ug/L			12/03/20 09:54	1
1,4-Dichlorobenzene	ND	1.0	0.18	ug/L			12/03/20 09:54	1
2-Chloroethyl vinyl ether	ND	1.0	0.91	ug/L			12/03/20 09:54	1
Acrolein	ND	4.0	1.1	ug/L			12/03/20 09:54	1
Acrylonitrile	ND	2.0	0.77	ug/L			12/03/20 09:54	1
Benzene	ND	1.0	0.43	ug/L			12/03/20 09:54	1
Bromoform	ND *	1.0	0.54	ug/L			12/03/20 09:54	1
Bromomethane	ND	1.0	0.45	ug/L			12/03/20 09:54	1
Carbon tetrachloride	ND *	1.0	0.21	ug/L			12/03/20 09:54	1
Chlorobenzene	ND	1.0	0.38	ug/L			12/03/20 09:54	1
Chlorodibromomethane	ND	1.0	0.13	ug/L			12/03/20 09:54	1
Chloroethane	ND	1.0	0.32	ug/L			12/03/20 09:54	1
Chloroform	ND	1.0	0.33	ug/L			12/03/20 09:54	1
Chloromethane	ND	1.0	0.43	ug/L			12/03/20 09:54	1
cis-1,3-Dichloropropene	ND	1.0	0.46	ug/L			12/03/20 09:54	1
Dichlorobromomethane	ND	1.0	0.34	ug/L			12/03/20 09:54	1
Ethylbenzene	ND	1.0	0.30	ug/L			12/03/20 09:54	1
Methylene Chloride	ND	1.0	0.32	ug/L			12/03/20 09:54	1
Tetrachloroethene	0.34 J	1.0	0.25	ug/L			12/03/20 09:54	1
Toluene	ND	1.0		ug/L			12/03/20 09:54	1
trans-1,2-Dichloroethene	2.2	1.0	0.24	ug/L			12/03/20 09:54	1
trans-1,3-Dichloropropene	ND	1.0	0.22	ug/L			12/03/20 09:54	1
Trichloroethene	2.4	1.0	0.31	ug/L			12/03/20 09:54	1
Vinyl chloride	23	1.0	0.34	ug/L			12/03/20 09:54	1
Surrogate	%Recovery Qualifie	r Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94	60 - 140			-		12/03/20 09:54	1
4-Bromofluorobenzene	117	60 - 140					12/03/20 09:54	1
Toluene-d8 (Surr)	99	60 - 140					12/03/20 09:54	1
Dibromofluoromethane (Surr)	112	60 - 140					12/03/20 09:54	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	260		10.0	1.7	mg/L			12/02/20 14:28	5
Alkalinity, Total	359		5.0	0.79	mg/L			12/08/20 20:04	1
Alkalinity, Bicarbonate	358		5.0	0.79	mg/L			12/08/20 20:04	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			12/08/20 20:04	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			12/08/20 20:04	1

Eurofins TestAmerica, Buffalo

Page 9 of 23

9

3

5

0

10

12

13

Job ID: 480-178800-1 Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201130

Date Collected: 11/30/20 09:00 Date Received: 11/30/20 15:25

Dibromofluoromethane (Surr)

Lab Sample ID: 480-178800-4

Matrix: Water

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0	0.24	ug/L			12/03/20 09:05	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.37	ug/L			12/03/20 09:05	1
1,1,2-Trichloroethane	ND	1.0	0.15	ug/L			12/03/20 09:05	1
1,1-Dichloroethane	ND	1.0	0.26	ug/L			12/03/20 09:05	1
1,1-Dichloroethene	ND	1.0	0.12	ug/L			12/03/20 09:05	1
1,2-Dichlorobenzene	ND	1.0	0.19	ug/L			12/03/20 09:05	1
1,2-Dichloroethane	ND	1.0	0.84	ug/L			12/03/20 09:05	1
1,2-Dichloroethene, Total	ND	2.0	0.44	ug/L			12/03/20 09:05	1
1,2-Dichloropropane	ND	1.0	0.35	ug/L			12/03/20 09:05	1
1,3-Dichlorobenzene	ND	1.0	0.13	ug/L			12/03/20 09:05	1
1,4-Dichlorobenzene	ND	1.0	0.18	ug/L			12/03/20 09:05	1
2-Chloroethyl vinyl ether	ND	1.0	0.91	ug/L			12/03/20 09:05	1
Acrolein	ND	4.0	1.1	ug/L			12/03/20 09:05	1
Acrylonitrile	ND	2.0	0.77	ug/L			12/03/20 09:05	1
Benzene	ND	1.0	0.43	ug/L			12/03/20 09:05	1
Bromoform	ND *	1.0	0.54	ug/L			12/03/20 09:05	1
Bromomethane	ND	1.0	0.45	ug/L			12/03/20 09:05	1
Carbon tetrachloride	ND *	1.0	0.21	ug/L			12/03/20 09:05	1
Chlorobenzene	ND	1.0	0.38	ug/L			12/03/20 09:05	1
Chlorodibromomethane	ND	1.0	0.13	ug/L			12/03/20 09:05	1
Chloroethane	ND	1.0	0.32	ug/L			12/03/20 09:05	1
Chloroform	ND	1.0	0.33	ug/L			12/03/20 09:05	1
Chloromethane	ND	1.0	0.43	ug/L			12/03/20 09:05	1
cis-1,3-Dichloropropene	ND	1.0	0.46	ug/L			12/03/20 09:05	1
Dichlorobromomethane	ND	1.0	0.34	ug/L			12/03/20 09:05	1
Ethylbenzene	ND	1.0	0.30	ug/L			12/03/20 09:05	1
Methylene Chloride	ND	1.0	0.32	ug/L			12/03/20 09:05	1
Tetrachloroethene	ND	1.0	0.25	ug/L			12/03/20 09:05	1
Toluene	ND	1.0	0.38	ug/L			12/03/20 09:05	1
trans-1,2-Dichloroethene	ND	1.0	0.24	ug/L			12/03/20 09:05	1
trans-1,3-Dichloropropene	ND	1.0	0.22	ug/L			12/03/20 09:05	1
Trichloroethene	ND	1.0	0.31	ug/L			12/03/20 09:05	1
Vinyl chloride	ND	1.0	0.34	ug/L			12/03/20 09:05	1
Surrogate	%Recovery Qu	ualifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	82	60 - 140					12/03/20 09:05	1
4-Bromofluorobenzene	112	60 - 140					12/03/20 09:05	1
Toluene-d8 (Surr)	94	60 - 140					12/03/20 09:05	1

60 - 140

102

12/03/20 09:05

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-178800-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(60-140)	(60-140)	(60-140)	(60-140)
480-178800-1	PW-1-NOV20	93	119	100	112
480-178800-2	MW-17R-NOV20	93	116	98	110
480-178800-3	IW-01-NOV20	94	117	99	112
480-178800-4	TB-20201130	82	112	94	102
LCS 460-744142/4	Lab Control Sample	94	113	100	109
MB 460-744142/8	Method Blank	95	116	99	111

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Eurofins TestAmerica, Buffalo

12/14/2020

Client: New York State D.E.C. Job ID: 480-178800-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 460-744142/8

Matrix: Water

Analysis Batch: 744142

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared Analyzed 1,1,1-Trichloroethane ND 1.0 0.24 ug/L 12/03/20 08:41 1,1,2,2-Tetrachloroethane ND 1.0 0.37 ug/L 12/03/20 08:41 1 1,1,2-Trichloroethane ND 1.0 0.15 ug/L 12/03/20 08:41 1 1,1-Dichloroethane ND 1.0 0.26 ug/L 12/03/20 08:41 1 1-Dichloroethene ND 1.0 0.12 ug/L 12/03/20 08:41 ND 1,2-Dichlorobenzene 1.0 0.19 ug/L 12/03/20 08:41 1,2-Dichloroethane ND 1.0 0.84 ug/L 12/03/20 08:41 1,2-Dichloroethene, Total ND 2.0 0.44 ug/L 12/03/20 08:41 1,2-Dichloropropane ND 1.0 0.35 ug/L 12/03/20 08:41 1,3-Dichlorobenzene ND 1.0 0.13 ug/L 12/03/20 08:41 ND 1,4-Dichlorobenzene 1.0 0.18 ug/L 12/03/20 08:41 2-Chloroethyl vinyl ether ND 1.0 0.91 ug/L 12/03/20 08:41 Acrolein ND 4.0 12/03/20 08:41 1.1 ug/L Acrylonitrile ND 2.0 0.77 ug/L 12/03/20 08:41 Benzene ND 1.0 0.43 ug/L 12/03/20 08:41 Bromoform ND 0.54 ug/L 1.0 12/03/20 08:41 Bromomethane ND 1.0 0.45 ug/L 12/03/20 08:41 0.21 ug/L Carbon tetrachloride ND 1.0 12/03/20 08:41 Chlorobenzene ND 1.0 0.38 ug/L 12/03/20 08:41 Chlorodibromomethane ND 1.0 0.13 ug/L 12/03/20 08:41 Chloroethane 1.0 0.32 ug/L ND 12/03/20 08:41 Chloroform ND 1.0 0.33 ug/L 12/03/20 08:41 Chloromethane ND 1.0 0.43 ug/L 12/03/20 08:41 cis-1,3-Dichloropropene ND 1.0 12/03/20 08:41 0.46 ug/L Dichlorobromomethane ND 1.0 0.34 ug/L 12/03/20 08:41 Ethylbenzene ND 1.0 0.30 ug/L 12/03/20 08:41 Methylene Chloride ND 1.0 0.32 ug/L 12/03/20 08:41 Tetrachloroethene ND 1.0 0.25 ug/L 12/03/20 08:41 Toluene ND 1.0 0.38 ug/L 12/03/20 08:41 trans-1,2-Dichloroethene ND 1.0 0.24 ug/L 12/03/20 08:41 ND trans-1,3-Dichloropropene 1.0 0.22 ug/L 12/03/20 08:41 Trichloroethene ND 1.0 0.31 ug/L 12/03/20 08:41

MB MB

ND

	IND IND					
Surrogate	%Recovery Quality	fier Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	95	60 - 140		12/03/20 08:41	1	
4-Bromofluorobenzene	116	60 - 140		12/03/20 08:41	1	
Toluene-d8 (Surr)	99	60 - 140		12/03/20 08:41	1	
Dibromofluoromethane (Surr)	111	60 - 140		12/03/20 08:41	1	

1.0

0.34 ug/L

Lab Sample ID: LCS 460-744142/4

Matrix: Water

Vinyl chloride

Analysis Batch: 744142

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	20.4		ug/L		102	70 - 130	
1,1,2,2-Tetrachloroethane	20.0	17.8		ug/L		89	60 - 140	
1,1,2-Trichloroethane	20.0	18.7		ug/L		94	70 - 130	

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

12/03/20 08:41

Client Sample ID: Lab Control Sample

Page 12 of 23

2

3

8

10

12

14

15

nonoa, Banaio

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-178800-1

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-744142/4

Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA Analysis Batch: 744142 LCS LCS Spike %Rec.

	Spike	LCS	LUG				/orvec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	20.0	19.9		ug/L		99	70 - 130	
1,1-Dichloroethene	20.0	18.2		ug/L		91	50 - 150	
1,2-Dichlorobenzene	20.0	19.2		ug/L		96	65 - 135	
1,2-Dichloroethane	20.0	18.4		ug/L		92	70 - 130	
1,2-Dichloropropane	20.0	19.2		ug/L		96	35 - 165	
1,3-Dichlorobenzene	20.0	19.7		ug/L		99	70 - 130	
1,4-Dichlorobenzene	20.0	19.4		ug/L		97	65 - 135	
2-Chloroethyl vinyl ether	20.0	16.5		ug/L		83	0.1 - 225	
Benzene	20.0	20.2		ug/L		101	65 - 135	
Bromoform	20.0	31.4	*	ug/L		157	70 - 130	
Bromomethane	20.0	16.2		ug/L		81	15 - 185	
Carbon tetrachloride	20.0	26.7	*	ug/L		134	70 - 130	
Chlorobenzene	20.0	20.1		ug/L		101	65 - 135	
Chlorodibromomethane	20.0	25.6		ug/L		128	70 - 135	
Chloroethane	20.0	18.2		ug/L		91	40 - 160	
Chloroform	20.0	19.8		ug/L		99	70 - 135	
Chloromethane	20.0	18.3		ug/L		91	0.1 - 205	
cis-1,3-Dichloropropene	20.0	19.2		ug/L		96	25 - 175	
Dichlorobromomethane	20.0	21.4		ug/L		107	65 - 135	
Ethylbenzene	20.0	19.1		ug/L		96	60 - 140	
Methylene Chloride	20.0	17.5		ug/L		87	60 - 140	
Tetrachloroethene	20.0	22.9		ug/L		114	70 - 130	
Toluene	20.0	19.4		ug/L		97	70 - 130	
trans-1,2-Dichloroethene	20.0	18.3		ug/L		92	70 - 130	
trans-1,3-Dichloropropene	20.0	19.1		ug/L		95	50 - 150	
Trichloroethene	20.0	19.5		ug/L		98	65 - 135	
Vinyl chloride	20.0	18.4		ug/L		92	5 - 195	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	94		60 - 140
4-Bromofluorobenzene	113		60 - 140
Toluene-d8 (Surr)	100		60 - 140
Dibromofluoromethane (Surr)	109		60 - 140

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-561644/4

Matrix: Water

Analysis Batch: 561644

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

12/14/2020

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed 2.0 Sulfate ND 0.35 mg/L 12/02/20 13:29

Lab Sample ID: LCS 480-561644/3

Matrix: Water

Analysis Batch: 561644

Alialysis Dalcil. 301044								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	50.0	50.19		mg/L		100	90 - 110	

Eurofins TestAmerica, Buffalo

Page 13 of 23

Job ID: 480-178800-1

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Project/Site: Davis-Howland Oil Corp #828088

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-561871/4

Matrix: Water

Analyte

Sulfate

Analysis Batch: 561871

Client: New York State D.E.C.

Client Sample ID: Method Blank **Prep Type: Total/NA**

MB MB Result Qualifier RL **MDL** Unit Dil Fac D Prepared Analyzed 2.0 12/03/20 17:17 ND 0.35 mg/L

Lab Sample ID: LCS 480-561871/3

Matrix: Water

Analysis Batch: 561871

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits Analyte 50.0 Sulfate 50.00 mg/L 100 90 - 110

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 480-562567/28 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 562567

MB MB Result Qualifier RL **MDL** Unit Dil Fac **Analyte** D Prepared Analyzed Alkalinity, Total ND 5.0 0.79 mg/L 12/08/20 20:51 Alkalinity, Bicarbonate ND 5.0 0.79 mg/L 12/08/20 20:51 ND 5.0 Alkalinity, Carbonate 0.79 mg/L 12/08/20 20:51 Hydroxide Alkalinity ND 5.0 0.79 mg/L 12/08/20 20:51

Lab Sample ID: MB 480-562567/4

Matrix: Water

Analysis Batch: 562567

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Alkalinity, Total 5.0 0.79 mg/L 12/08/20 17:16 ND Alkalinity, Bicarbonate ND 5.0 0.79 mg/L 12/08/20 17:16 Alkalinity, Carbonate ND 5.0 0.79 mg/L 12/08/20 17:16 Hydroxide Alkalinity ND 5.0 0.79 mg/L 12/08/20 17:16

Lab Sample ID: LCS 480-562567/29

Matrix: Water

Analysis Batch: 562567

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Alkalinity, Total 100 100.9 mg/L 101 90 - 110

Lab Sample ID: LCS 480-562567/5

Matrix: Water

Analysis Batch: 562567

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Alkalinity, Total 100 101.8 mg/L 102 90 - 110

Eurofins TestAmerica, Buffalo

12/14/2020

QC Association Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-178800-1

GC/MS VOA

Analysis Batch: 744142

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178800-1	PW-1-NOV20	Total/NA	Water	624.1	
480-178800-2	MW-17R-NOV20	Total/NA	Water	624.1	
480-178800-3	IW-01-NOV20	Total/NA	Water	624.1	
480-178800-4	TB-20201130	Total/NA	Water	624.1	
MB 460-744142/8	Method Blank	Total/NA	Water	624.1	
LCS 460-744142/4	Lab Control Sample	Total/NA	Water	624.1	

General Chemistry

Analysis Batch: 561644

Lab Sample ID 480-178800-2	Client Sample ID MW-17R-NOV20	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
480-178800-3	IW-01-NOV20	Total/NA	Water	300.0	
MB 480-561644/4	Method Blank	Total/NA	Water	300.0	
LCS 480-561644/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 561871

	Sample ID 178800-1	Client Sample ID PW-1-NOV20	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
MB 4	80-561871/4	Method Blank	Total/NA	Water	300.0	
LCS -	480-561871/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 562567

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178800-1	PW-1-NOV20	Total/NA	Water	SM 2320B	_
480-178800-2	MW-17R-NOV20	Total/NA	Water	SM 2320B	
480-178800-3	IW-01-NOV20	Total/NA	Water	SM 2320B	
MB 480-562567/28	Method Blank	Total/NA	Water	SM 2320B	
MB 480-562567/4	Method Blank	Total/NA	Water	SM 2320B	
LCS 480-562567/29	Lab Control Sample	Total/NA	Water	SM 2320B	
LCS 480-562567/5	Lab Control Sample	Total/NA	Water	SM 2320B	

5

7

9

10

12

13

14

Lab Chronicle

Client: New York State D.E.C. Job ID: 480-178800-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: PW-1-NOV20

Lab Sample ID: 480-178800-1 Date Collected: 11/30/20 13:50 **Matrix: Water** Date Received: 11/30/20 15:25

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA CJM Analysis 624.1 744142 12/03/20 10:19 TAL EDI Total/NA Analysis 300.0 10 561871 12/03/20 17:31 IMZ TAL BUF Total/NA Analysis SM 2320B 1 562567 12/08/20 19:51 KEB TAL BUF

Client Sample ID: MW-17R-NOV20 Lab Sample ID: 480-178800-2

CJM

12/03/20 09:05

TAL EDI

Date Collected: 11/30/20 10:50 **Matrix: Water** Date Received: 11/30/20 15:25

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab

624.1 744142 12/03/20 10:43 CJM Total/NA Analysis 2 TAL EDI Total/NA Analysis 300.0 5 561644 12/02/20 14:13 IMZ TAL BUF Total/NA Analysis SM 2320B 1 562567 12/08/20 19:57 KEB TAL BUF

Client Sample ID: IW-01-NOV20 Lab Sample ID: 480-178800-3

Date Collected: 11/30/20 11:05 **Matrix: Water**

Date Received: 11/30/20 15:25

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA 624.1 12/03/20 09:54 CJM Analysis 744142 TAL EDI Total/NA Analysis 300.0 5 561644 12/02/20 14:28 IMZ TAL BUF Total/NA TAL BUF Analysis SM 2320B 1 562567 12/08/20 20:04 KEB

Client Sample ID: TB-20201130 Lab Sample ID: 480-178800-4

Date Collected: 11/30/20 09:00 **Matrix: Water** Date Received: 11/30/20 15:25

744142

Batch Batch Dilution Batch Prepared Method Number **Prep Type** Type Run **Factor** or Analyzed Analyst Lab

Laboratory References:

Total/NA

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

624.1

Analysis

Eurofins TestAmerica, Buffalo

Accreditation/Certification Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-178800-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
New York	NE	ELAP	10026	04-01-21
The following analytes	s are included in this repo	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for whic
the agency does not o				,
Analysis Method	offer certification. Prep Method	Matrix	Analyte	
0 ,		Matrix Water		
Analysis Method			Analyte	

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	rogram	Identification Number	Expiration Date
New York	NI	ELAP	11452	04-01-21
The following analyte	'	ort, but the laboratory is n	ot certified by the governing authority.	This list may include analytes for which
the agency does not	offer certification.			
the agency does not on the Analysis Method	offer certification. Prep Method	Matrix	Analyte	

-

3

6

8

10

40

13

Method Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL EDI
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
SM 2320B	Alkalinity	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

5

Job ID: 480-178800-1

3

4

5

8

9

12

4 4

Sample Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-178800-1	PW-1-NOV20	Water	11/30/20 13:50	11/30/20 15:25	
480-178800-2	MW-17R-NOV20	Water	11/30/20 10:50	11/30/20 15:25	
480-178800-3	IW-01-NOV20	Water	11/30/20 11:05	11/30/20 15:25	
480-178800-4	TB-20201130	Water	11/30/20 09:00	11/30/20 15:25	

Job ID: 480-178800-1

3

4

5

7

8

11

12

4 4

۳

Client Information Client Contact Jenelle Gaylord				
Client Contact: Jenelle Gaylord	Sampler: CW, CP	Lab PM: Johnson, Orlette S	Carrier Tracking No(s):	GOC No: 480-153402-34083.1
	Phone: (716)864-8060	E-Mail: Orlette. Johnson@Eurofinset.com	State of Origin;	Page:
Company. New York State D.E.C.	PWSID:	Analys	Analysis Requested	
Address: 625 Broadway Division of Environmental Remediation	Due Date Requested:			ation Codes:
City: Albany	TAT Requested (days):	_		N - Hexane N - None N - O - AshaO2
State, Zip. NY, 12233-7014	Compliance Project: A Yes A No		(pots)	
Phone;	PO#: CallOut ID: 136612	/OA-1	78800 Chain of Cur	or vic Acid
Email: Jeneile.gaylord@dec.ny.gov	WO#:	No)	_	I - Ice J - DI Water
Project Name: Davis-Howland Oil Corp #828088 Site:	Project #; 48019422 SSOW#:	(Yes or	anietnos	K-EDTA L-EDA Other:
	Sample	Matrix (Www.aer.ix) Oww.aere.ix Oww.aere.i	30 vodmud leto	Jo 1edmuk listo
Sample Identification	Sample Date Time G≃grab)	ation Code: X N N		Special Instructions/Note:
TB-20201130	11 18 12 22 09:00 TB	Water 7		1 TroBlack
MW-17-8-NOV20	1 10:50 C	Water X X		10
IW-01-NOV20	4 11:05 C	Water X X X	- UN	2
		Water		
		Water 7/1		
		Water		
		Water 450 403		
		Water	1	
		Water		
		Water		
		Water		/
int	Poison B Unknown Radiological		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Abisposal By Lab Mont	chive For Months
I, III, IV, Other (specify)		Special Instructions/QC Requirements:	uirements:	
Empty Kit Relinquished by:	Date:	Time:	Method of Shipment:	,
Reinquished by: CLI Reinquished by:	Date/Time. 1/30/2020 15:25	Company Received by: M. V. Company Received by:	Mow (Wolford DaterTime	36/24 (5 Formany T)
Dalican inhald by	Date Time		Constitution of the consti	Company
- 1	Date I line:	Company Received by	Date/Time	Company
Custody Seals Intact: Custody Seal No.:		Cooler Temperature(s) "C and Other Remarks.	Other Remarks: 4,2 #	1

Environment Testing

Chain of Custody Record

Eurofins TestAmerica, Buffalo

10 Hazelwood Drive

Phone: /16-691-2600 Fax: /16-691-/991											
Client Information (Sub Contract Lab)	Sampler.			Johnso	Lab PM: Johnson, Orlette S	S		Carrier Tracking No(s)	o(s):	COC No. 480-60649.1	
Client Contact: Shipping/Receiving	Phone:			E-Mail Orlett	te. Johnsor	E-Mail: Orlette.Johnson@Eurofinset.com	шо	State of Origin: New York		Page: Page 1 of 1	
Company: TestAmerica Laboratories, Inc.					Accreditations Required NELAP - New York	Accreditations Required (See note) NELAP - New York	ote):			Job #. 480-178800-1	
Address: 777 New Durham Road, ,	Due Date Requested: 12/11/2020	÷				Ā	nalysis R	Analysis Requested		ion Code	22
City Edison State Zip NI DR847	TAT Requested (days):	3ys):			Justulle					A - HCL B - NaOH C - Zn Acetate D - Nitric Acid	M - Hexane N - None O - AsNaO2 P - Na2O4S
Phone: 732-549-3900(Tel) 732-549-3679(Fax)	#Od									7	R - Na2S203 S - H2S04
Email:	WO#				(0)					I - Ice J - Di Water	U - Acetone V - MCAA
Project Name: Davis-Howland Oil Corp #828088	Project #: 48019422				1 10 se					K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
Site	*#MOSS				A) as					other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W-water, 5=solid, O-waste/38,	Field Filtered S 624.1_PREC/624 List - VOA - 62	50.401.50				Some Some Some Some Some Some Some Some	Special Instructions/Note:
		X	Preserva	Preservation Code.	X					\bigwedge	V
PW-01 (480-178800-1)	11/30/20	Eastern		Water	×					8	
MW-17R (480-178800-2)	11/30/20	10:50 Eastern		Water	×					8	
IW-01 (480-178800-3)	11/30/20	11:05 Eastern		Water	×					n	
TB (480-178800-4)	11/30/20	09:00 Eastern		Water	×					+	

Note Since aboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyte & accreditation compliance upon out subcontract laboratorys. This sample must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins. TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Moni Possible Hazard Identification

Months

Deliverable Requested:	Deliverable Requested: 1, III, III, IV, Other (specify)	Primary Deliverable Rank: 2	0,	Special Instructions/QC Requirements:		
Empty Kit Relinquished by	ph: /	Date:	Time:	o o	Method of Shipment:	
Refinquished by:	(How Wolls	0241 2110 15mm	Company	Received by J. C. FOLLY	Fx Date [11:54]	13:11
Relinquished by:		Date/Time:	Сотралу	Received by:		
Relinquished by:		Date/Time	Company	Received by	Date/Time:	
Custody Seals Intact:	Custody Seal No.: 1 YZH 66	की (परमास्य प्राट	10 01	Cooler Temperature(s) °C and Other Remarks:	210 4.40 2000	70C IN

Unconfirmed

Client: New York State D.E.C. Job Number: 480-178800-1

Login Number: 178800 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Stopa, Erik S

Creator. Stopa, Erik S		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	WSP
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Eurofins TestAmerica, Buffalo

Job Number: 480-178800-1

Client: New York State D.E.C.

Login Number: 178800

List Number: 2

Creator: Armbruster, Chris

List Source: Eurofins TestAmerica, Edison

List Creation: 12/02/20 02:36 PM

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	1427168, 1427170
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	5.1, 4.4, 3.0°C IR11
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Buffalo

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-178848-1

Client Project/Site: Davis-Howland Oil Corp #828088

Revision: 1

For:

New York State D.E.C. 625 Broadway Division of Environmental Remediation Albany, New York 12233-7014

Attn: Jenelle Gaylord

Authorized for release by: 1/5/2021 10:16:29 AM

Orlette Johnson, Senior Project Manager (484)685-0864

Orlette.Johnson@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

6

8

9

11

12

Project/Site: Davis-Howland Oil Corp #828088

Laboratory Job ID: 480-178848-1

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Orlette Johnson

Senior Project Manager

1/5/2021 10:16:29 AM

4

3

4

E

7

8

9

4 4

12

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	19
Lab Chronicle	20
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	26

3

4

6

R

9

11

12

14

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-178848-1

Project/Site: Davis-Howland Oil Corp #828088

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

E Result exceeded calibration range.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

3

Ę

__

7

8

46

11

12

14

Case Narrative

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-178848-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-178848-1

Revision 1

The report being provided is a revision of the original report sent on 12/15/2020. The report (revision 1) is being revised due to: client request to add Bicarbonate, Carbonate and Hydroxide Alkalinity data.

Receipt

The samples were received on 12/1/2020 3:20 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.0° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-8-DEC20 (480-178848-2), MW-8-DEC20-Q (480-178848-3) and MW-15R-DEC20 (480-178848-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method SM 2320B: The method requirement for no headspace was not met. The following Alkalinity samples were analyzed with headspace in the sample container(s): MW-8-DEC20 (480-178848-2), MW-8-DEC20-Q (480-178848-3), MW-15R-DEC20 (480-178848-4) and MW-2R-DEC20 (480-178848-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

Job ID: 480-178848-1

3

4

5

6

8

9

11

14

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-178848-1

Client Sample ID: TB-20201201

Lab Sam	ple ID:	480-178848-1
---------	---------	--------------

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Methylene Chloride	0.62 J	1.0	0.32 ug/L	<u> </u>	Total/NA

Client Sample ID: MW-8-DEC20

Lab Sample ID: 480-178848-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
1,1,2-Trichloroethane	0.83	J	1.0	0.15	ug/L	1	624.1	Total/NA
1,1-Dichloroethane	21		1.0	0.26	ug/L	1	624.1	Total/NA
1,2-Dichloroethene, Total	170		2.0	0.44	ug/L	1	624.1	Total/NA
Bromomethane	0.60	J	1.0	0.45	ug/L	1	624.1	Total/NA
Chloroethane	0.91	J	1.0	0.32	ug/L	1	624.1	Total/NA
Chloroform	1.7		1.0	0.33	ug/L	1	624.1	Total/NA
Chloromethane	21		1.0	0.43	ug/L	1	624.1	Total/NA
Methylene Chloride	0.62	J	1.0	0.32	ug/L	1	624.1	Total/NA
trans-1,2-Dichloroethene	5.9		1.0	0.24	ug/L	1	624.1	Total/NA
Trichloroethene	0.97	J	1.0	0.31	ug/L	1	624.1	Total/NA
Vinyl chloride	4.5		1.0	0.34	ug/L	1	624.1	Total/NA
Sulfate	5780		200	34.9	mg/L	100	300.0	Total/NA
Alkalinity, Total	909		5.0	0.79	mg/L	1	SM 2320B	Total/NA
Alkalinity, Bicarbonate	909		5.0	0.79	mg/L	1	SM 2320B	Total/NA

Client Sample ID: MW-8-DEC20-Q

Lab Sample ID: 480-178848-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,2-Trichloroethane	0.67	J	1.0	0.15	ug/L	1	_	624.1	Total/NA
1,1-Dichloroethane	21		1.0	0.26	ug/L	1		624.1	Total/NA
1,2-Dichloroethene, Total	180		2.0	0.44	ug/L	1		624.1	Total/NA
Bromomethane	0.53	J	1.0	0.45	ug/L	1		624.1	Total/NA
Chloroethane	0.79	J	1.0	0.32	ug/L	1		624.1	Total/NA
Chloroform	1.6		1.0	0.33	ug/L	1		624.1	Total/NA
Chloromethane	21		1.0	0.43	ug/L	1		624.1	Total/NA
Methylene Chloride	0.48	J	1.0	0.32	ug/L	1		624.1	Total/NA
trans-1,2-Dichloroethene	6.0		1.0	0.24	ug/L	1		624.1	Total/NA
Trichloroethene	1.2		1.0	0.31	ug/L	1		624.1	Total/NA
Vinyl chloride	5.4		1.0	0.34	ug/L	1		624.1	Total/NA
Sulfate	5950		200	34.9	mg/L	100		300.0	Total/NA
Alkalinity, Total	918		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Alkalinity, Bicarbonate	918		5.0	0.79	mg/L	1		SM 2320B	Total/NA

Client Sample ID: MW-15R-DEC20

Lab Sample ID: 480-178848-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	0.55	J	1.0	0.26	ug/L	1	_	624.1	Total/NA
1,2-Dichloroethene, Total	11		2.0	0.44	ug/L	1		624.1	Total/NA
trans-1,2-Dichloroethene	0.91	J	1.0	0.24	ug/L	1		624.1	Total/NA
Trichloroethene	1.8		1.0	0.31	ug/L	1		624.1	Total/NA
Vinyl chloride	0.85	J	1.0	0.34	ug/L	1		624.1	Total/NA
Sulfate	85.3		10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Total	402		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Alkalinity, Bicarbonate	402		5.0	0.79	mg/L	1		SM 2320B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Detection Summary

Client: New York State D.E.C. Job ID: 480-178848-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-2R-DEC20

Lab Sample ID: 480-178848-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	2.5		2.0	0.44	ug/L	1	_	624.1	Total/NA
Vinyl chloride	0.42	J	1.0	0.34	ug/L	1		624.1	Total/NA
Sulfate	10.4		2.0	0.35	mg/L	1		300.0	Total/NA
Alkalinity, Total	41.5		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Alkalinity, Bicarbonate	41.5		5.0	0.79	mg/L	1		SM 2320B	Total/NA

3

-

9

11

14

14

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201201

Date Collected: 12/01/20 10:00 Date Received: 12/01/20 15:20

Lab Sample ID: 480-178848-1

Matrix: Water

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	MD		1.0	0.24	ug/L			12/03/20 23:28	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			12/03/20 23:28	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			12/03/20 23:28	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			12/03/20 23:28	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			12/03/20 23:28	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/03/20 23:28	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			12/03/20 23:28	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			12/03/20 23:28	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			12/03/20 23:28	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/03/20 23:28	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/03/20 23:28	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/03/20 23:28	1
Acrolein	ND		4.0	1.1	ug/L			12/03/20 23:28	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/03/20 23:28	1
Benzene	ND		1.0	0.43	ug/L			12/03/20 23:28	1
Bromoform	ND		1.0	0.54	ug/L			12/03/20 23:28	1
Bromomethane	ND		1.0	0.45	ug/L			12/03/20 23:28	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/03/20 23:28	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/03/20 23:28	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/03/20 23:28	1
Chloroethane	ND		1.0	0.32	ug/L			12/03/20 23:28	1
Chloroform	ND		1.0	0.33	ug/L			12/03/20 23:28	1
Chloromethane	ND		1.0	0.43	ug/L			12/03/20 23:28	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/03/20 23:28	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/03/20 23:28	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/03/20 23:28	1
Methylene Chloride	0.62	J	1.0	0.32	ug/L			12/03/20 23:28	1
Tetrachloroethene	ND		1.0	0.25	ug/L			12/03/20 23:28	1
Toluene	ND		1.0	0.38	ug/L			12/03/20 23:28	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			12/03/20 23:28	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			12/03/20 23:28	1
Trichloroethene	ND		1.0	0.31	ug/L			12/03/20 23:28	1
Vinyl chloride	ND		1.0	0.34	ug/L			12/03/20 23:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	114		60 - 140			-		12/03/20 23:28	1
4-Bromofluorobenzene	93		60 - 140					12/03/20 23:28	1

Client Sample ID: MW-8-DEC20 Lab Sample ID: 480-178848-2 Date Collected: 12/01/20 11:03 **Matrix: Water**

60 - 140

60 - 140

100

116

Date Received: 12/01/20 15:20

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	Result Qualifi	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0	0.24	ug/L			12/04/20 06:15	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.37	ug/L			12/04/20 06:15	1
1,1,2-Trichloroethane	0.83 J	1.0	0.15	ug/L			12/04/20 06:15	1
1,1-Dichloroethane	21	1.0	0.26	ug/L			12/04/20 06:15	1

Eurofins TestAmerica, Buffalo

12/03/20 23:28

12/03/20 23:28

Client: New York State D.E.C. Job ID: 480-178848-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-8-DEC20

Date Collected: 12/01/20 11:03 Date Received: 12/01/20 15:20

Dichlorobromomethane

Methylene Chloride
Tetrachloroethene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichloroethene

Vinyl chloride

Ethylbenzene

Toluene

Lab Sample ID: 480-178848-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.0	0.12	ug/L			12/04/20 06:15	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/04/20 06:15	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			12/04/20 06:15	1
1,2-Dichloroethene, Total	170		2.0	0.44	ug/L			12/04/20 06:15	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			12/04/20 06:15	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/04/20 06:15	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/04/20 06:15	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/04/20 06:15	1
Acrolein	ND		4.0	1.1	ug/L			12/04/20 06:15	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/04/20 06:15	1
Benzene	ND		1.0	0.43	ug/L			12/04/20 06:15	1
Bromoform	ND		1.0	0.54	ug/L			12/04/20 06:15	1
Bromomethane	0.60	J	1.0	0.45	ug/L			12/04/20 06:15	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/04/20 06:15	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/04/20 06:15	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/04/20 06:15	1
Chloroethane	0.91	J	1.0	0.32	ug/L			12/04/20 06:15	1
Chloroform	1.7		1.0	0.33	ug/L			12/04/20 06:15	1
Chloromethane	21		1.0	0.43	ug/L			12/04/20 06:15	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/04/20 06:15	1

ND

ND

ND

ND

5.9

ND

4.5

0.97 J

0.62 J

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	123		60 - 140		2/04/20 06:15	1
4-Bromofluorobenzene	91		60 - 140	1	2/04/20 06:15	1
Toluene-d8 (Surr)	103		60 - 140	1	2/04/20 06:15	1
Dibromofluoromethane (Surr)	119		60 - 140	1	2/04/20 06:15	1

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

0.34 ug/L

0.30 ug/L

0.32 ug/L

0.25 ug/L

0.38 ug/L

0.24 ug/L

0.22 ug/L

0.31 ug/L

0.34 ug/L

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	5780		200	34.9	mg/L		-	12/02/20 14:57	100
Alkalinity, Total	909		5.0	0.79	mg/L			12/14/20 09:09	1
Alkalinity, Bicarbonate	909		5.0	0.79	mg/L			12/14/20 09:09	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			12/14/20 09:09	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			12/14/20 09:09	1

Eurofins TestAmerica, Buffalo

12/04/20 06:15

12/04/20 06:15

12/04/20 06:15

12/04/20 06:15

12/04/20 06:15

12/04/20 06:15

12/04/20 06:15

12/04/20 06:15

12/04/20 06:15

3

5

6

10

12

14

4 -

Client: New York State D.E.C. Job ID: 480-178848-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-8-DEC20-Q

Date Collected: 12/01/20 11:03 Date Received: 12/01/20 15:20 Lab Sample ID: 480-178848-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			12/04/20 05:52	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			12/04/20 05:52	1
1,1,2-Trichloroethane	0.67	J	1.0	0.15	ug/L			12/04/20 05:52	1
1,1-Dichloroethane	21		1.0	0.26	ug/L			12/04/20 05:52	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			12/04/20 05:52	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/04/20 05:52	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			12/04/20 05:52	1
1,2-Dichloroethene, Total	180		2.0	0.44	ug/L			12/04/20 05:52	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			12/04/20 05:52	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/04/20 05:52	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/04/20 05:52	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/04/20 05:52	1
Acrolein	ND		4.0	1.1	ug/L			12/04/20 05:52	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/04/20 05:52	1
Benzene	ND		1.0	0.43	ug/L			12/04/20 05:52	1
Bromoform	ND		1.0	0.54	ug/L			12/04/20 05:52	1
Bromomethane	0.53	J	1.0	0.45	ug/L			12/04/20 05:52	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/04/20 05:52	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/04/20 05:52	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/04/20 05:52	1
Chloroethane	0.79	J	1.0	0.32	ug/L			12/04/20 05:52	1
Chloroform	1.6		1.0	0.33	ug/L			12/04/20 05:52	1
Chloromethane	21		1.0	0.43	ug/L			12/04/20 05:52	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/04/20 05:52	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/04/20 05:52	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/04/20 05:52	1
Methylene Chloride	0.48	J	1.0	0.32	ug/L			12/04/20 05:52	1
Tetrachloroethene	ND		1.0	0.25	ug/L			12/04/20 05:52	1
Toluene	ND		1.0	0.38	ug/L			12/04/20 05:52	1
trans-1,2-Dichloroethene	6.0		1.0		ug/L			12/04/20 05:52	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			12/04/20 05:52	1
Trichloroethene	1.2		1.0	0.31	ug/L			12/04/20 05:52	1
Vinyl chloride	5.4		1.0	0.34	ug/L			12/04/20 05:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	123		60 - 140					12/04/20 05:52	1
4-Bromofluorobenzene	87		60 - 140					12/04/20 05:52	1

General	Chemistry

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Ocheral Ohenhous										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Sulfate	5950		200	34.9	mg/L			12/02/20 16:10	100	
Alkalinity, Total	918		5.0	0.79	mg/L			12/14/20 09:21	1	
Alkalinity, Bicarbonate	918		5.0	0.79	mg/L			12/14/20 09:21	1	
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			12/14/20 09:21	1	
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			12/14/20 09:21	1	

60 - 140

60 - 140

102

117

Eurofins TestAmerica, Buffalo

12/04/20 05:52

12/04/20 05:52

2

<u>ئ</u>

5

7

9

10

12

1 /

Client: New York State D.E.C. Job ID: 480-178848-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-15R-DEC20

Date Collected: 12/01/20 13:15 Date Received: 12/01/20 15:20 Lab Sample ID: 480-178848-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			12/04/20 05:30	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			12/04/20 05:30	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			12/04/20 05:30	1
1,1-Dichloroethane	0.55	J	1.0	0.26	ug/L			12/04/20 05:30	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			12/04/20 05:30	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/04/20 05:30	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			12/04/20 05:30	1
1,2-Dichloroethene, Total	11		2.0	0.44	ug/L			12/04/20 05:30	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			12/04/20 05:30	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/04/20 05:30	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/04/20 05:30	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/04/20 05:30	1
Acrolein	ND		4.0	1.1	ug/L			12/04/20 05:30	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/04/20 05:30	1
Benzene	ND		1.0	0.43	ug/L			12/04/20 05:30	1
Bromoform	ND		1.0	0.54				12/04/20 05:30	1
Bromomethane	ND		1.0	0.45	ug/L			12/04/20 05:30	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/04/20 05:30	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/04/20 05:30	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/04/20 05:30	1
Chloroethane	ND		1.0	0.32	ug/L			12/04/20 05:30	1
Chloroform	ND		1.0	0.33	ug/L			12/04/20 05:30	1
Chloromethane	ND		1.0	0.43	ug/L			12/04/20 05:30	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/04/20 05:30	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/04/20 05:30	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/04/20 05:30	1
Methylene Chloride	ND		1.0	0.32	ug/L			12/04/20 05:30	1
Tetrachloroethene	ND		1.0	0.25	ug/L			12/04/20 05:30	1
Toluene	ND		1.0	0.38	ug/L			12/04/20 05:30	1
trans-1,2-Dichloroethene	0.91	J	1.0	0.24	ug/L			12/04/20 05:30	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			12/04/20 05:30	1
Trichloroethene	1.8		1.0	0.31	ug/L			12/04/20 05:30	1
Vinyl chloride	0.85	J	1.0	0.34	_			12/04/20 05:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	121		60 - 140			-		12/04/20 05:30	1
4-Bromofluorobenzene	93		60 - 140					12/04/20 05:30	1
Toluene-d8 (Surr)	101		60 - 140					12/04/20 05:30	1
Dibromofluoromethane (Surr)	117		60 - 140					12/04/20 05:30	1

General	Chemistry

ocheral offermony									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	85.3		10.0	1.7	mg/L			12/02/20 16:25	5
Alkalinity, Total	402		5.0	0.79	mg/L			12/14/20 09:28	1
Alkalinity, Bicarbonate	402		5.0	0.79	mg/L			12/14/20 09:28	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			12/14/20 09:28	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			12/14/20 09:28	1

Eurofins TestAmerica, Buffalo

2

4

6

8

46

11

13

14

Client: New York State D.E.C. Job ID: 480-178848-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-2R-DEC20

Date Collected: 12/01/20 13:25 Date Received: 12/01/20 15:20

General Chemistry

Alkalinity, Bicarbonate

Analyte

Sulfate

Alkalinity, Total

Alkalinity, Carbonate

Hydroxide Alkalinity

Lab Sample ID: 480-178848-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			12/04/20 05:07	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			12/04/20 05:07	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			12/04/20 05:07	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			12/04/20 05:07	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			12/04/20 05:07	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/04/20 05:07	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			12/04/20 05:07	1
1,2-Dichloroethene, Total	2.5		2.0	0.44	ug/L			12/04/20 05:07	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			12/04/20 05:07	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/04/20 05:07	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/04/20 05:07	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/04/20 05:07	1
Acrolein	ND		4.0	1.1	ug/L			12/04/20 05:07	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/04/20 05:07	1
Benzene	ND		1.0	0.43	ug/L			12/04/20 05:07	1
Bromoform	ND		1.0	0.54	ug/L			12/04/20 05:07	1
Bromomethane	ND		1.0	0.45	_			12/04/20 05:07	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/04/20 05:07	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/04/20 05:07	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/04/20 05:07	1
Chloroethane	ND		1.0	0.32	ug/L			12/04/20 05:07	1
Chloroform	ND		1.0	0.33	ug/L			12/04/20 05:07	1
Chloromethane	ND		1.0	0.43				12/04/20 05:07	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/04/20 05:07	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/04/20 05:07	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/04/20 05:07	1
Methylene Chloride	ND		1.0	0.32	_			12/04/20 05:07	1
Tetrachloroethene	ND		1.0	0.25	ug/L			12/04/20 05:07	1
Toluene	ND		1.0	0.38	ug/L			12/04/20 05:07	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			12/04/20 05:07	1
trans-1,3-Dichloropropene	ND		1.0	0.22				12/04/20 05:07	1
Trichloroethene	ND		1.0	0.31	•			12/04/20 05:07	1
Vinyl chloride	0.42	J	1.0	0.34	•			12/04/20 05:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	119		60 - 140			_		12/04/20 05:07	1
4-Bromofluorobenzene	89		60 - 140					12/04/20 05:07	1
Toluene-d8 (Surr)	100		60 - 140					12/04/20 05:07	1
Dibromofluoromethane (Surr)	116		60 - 140					12/04/20 05:07	1

Eurofins TestAmerica, Buffalo

Analyzed

12/02/20 16:39

12/14/20 09:34

12/14/20 09:34

12/14/20 09:34

12/14/20 09:34

Prepared

RL

2.0

5.0

5.0

5.0

5.0

MDL Unit

0.35 mg/L

0.79 mg/L

0.79 mg/L

0.79 mg/L

0.79 mg/L

Result Qualifier

10.4

41.5

41.5

ND

ND

Dil Fac

_

1

8

10

12

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-178848-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Rec
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(60-140)	(60-140)	(60-140)	(60-140)
480-178848-1	TB-20201201	114	93	100	116
480-178848-2	MW-8-DEC20	123	91	103	119
480-178848-3	MW-8-DEC20-Q	123	87	102	117
480-178848-4	MW-15R-DEC20	121	93	101	117
480-178848-5	MW-2R-DEC20	119	89	100	116
LCS 460-744294/5	Lab Control Sample	115	92	102	115
LCSD 460-744294/6	Lab Control Sample Dup	117	96	101	113
MB 460-744294/9	Method Blank	116	92	102	118

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Job ID: 480-178848-1 Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 460-744294/9

Matrix: Water

Analysis Batch: 744294

Client Sample ID: Method Blank

Prep Type: Total/NA

		МВ							
Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0		ug/L			12/03/20 21:33	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			12/03/20 21:33	1
1,1,2-Trichloroethane	ND		1.0		ug/L			12/03/20 21:33	1
1,1-Dichloroethane	ND		1.0		ug/L			12/03/20 21:33	1
1,1-Dichloroethene	ND		1.0		ug/L			12/03/20 21:33	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/03/20 21:33	1
1,2-Dichloroethane	ND		1.0		ug/L			12/03/20 21:33	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			12/03/20 21:33	1
1,2-Dichloropropane	ND		1.0		ug/L			12/03/20 21:33	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/03/20 21:33	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/03/20 21:33	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/03/20 21:33	1
Acrolein	ND		4.0	1.1	ug/L			12/03/20 21:33	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/03/20 21:33	1
Benzene	ND		1.0	0.43	ug/L			12/03/20 21:33	1
Bromoform	ND		1.0	0.54	ug/L			12/03/20 21:33	1
Bromomethane	ND		1.0	0.45	ug/L			12/03/20 21:33	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/03/20 21:33	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/03/20 21:33	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/03/20 21:33	1
Chloroethane	ND		1.0	0.32	ug/L			12/03/20 21:33	1
Chloroform	ND		1.0	0.33	ug/L			12/03/20 21:33	1
Chloromethane	ND		1.0	0.43	ug/L			12/03/20 21:33	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/03/20 21:33	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/03/20 21:33	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/03/20 21:33	1
Methylene Chloride	ND		1.0	0.32	ug/L			12/03/20 21:33	1
Tetrachloroethene	ND		1.0	0.25	ug/L			12/03/20 21:33	1
Toluene	ND		1.0		ug/L			12/03/20 21:33	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			12/03/20 21:33	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			12/03/20 21:33	1
Trichloroethene	ND		1.0		ug/L			12/03/20 21:33	1
Vinyl chloride	ND		1.0		ug/L			12/03/20 21:33	1

Surrogate	%Recovery	Qualifier	
	MB	MB	

Surrogate	%Recovery Qualifier	Limits	Prepared Anal	lyzed Dil Fac
1,2-Dichloroethane-d4 (Surr)	116	60 - 140	12/03/2	20 21:33 1
4-Bromofluorobenzene	92	60 - 140	12/03/2	20 21:33 1
Toluene-d8 (Surr)	102	60 - 140	12/03/2	20 21:33 1
Dibromofluoromethane (Surr)	118	60 - 140	12/03/2	20 21:33 1

Lab Sample ID: LCS 460-744294/5

Matrix: Water

Analysis Batch: 744294

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	22.0		ug/L		110	70 - 130	
1,1,2,2-Tetrachloroethane	20.0	20.4		ug/L		102	60 - 140	
1,1,2-Trichloroethane	20.0	19.8		ug/L		99	70 - 130	

Eurofins TestAmerica, Buffalo

Client Sample ID: Lab Control Sample

Page 14 of 27

Prep Type: Total/NA

QC Sample Results

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-744294/5

Matrix: Water

Analysis Batch: 744294

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-178848-1

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	20.0	22.2		ug/L		111	70 - 130	
1,1-Dichloroethene	20.0	22.7		ug/L		113	50 - 150	
1,2-Dichlorobenzene	20.0	18.5		ug/L		92	65 - 135	
1,2-Dichloroethane	20.0	22.2		ug/L		111	70 - 130	
1,2-Dichloropropane	20.0	22.6		ug/L		113	35 - 165	
1,3-Dichlorobenzene	20.0	17.9		ug/L		89	70 - 130	
1,4-Dichlorobenzene	20.0	18.2		ug/L		91	65 - 135	
2-Chloroethyl vinyl ether	20.0	22.2		ug/L		111	0.1 - 225	
Benzene	20.0	19.9		ug/L		100	65 - 135	
Bromoform	20.0	22.3		ug/L		111	70 - 130	
Bromomethane	20.0	23.7		ug/L		119	15 - 185	
Carbon tetrachloride	20.0	22.4		ug/L		112	70 - 130	
Chlorobenzene	20.0	19.7		ug/L		99	65 - 135	
Chlorodibromomethane	20.0	19.6		ug/L		98	70 - 135	
Chloroethane	20.0	22.1		ug/L		111	40 - 160	
Chloroform	20.0	23.4		ug/L		117	70 - 135	
Chloromethane	20.0	20.6		ug/L		103	0.1 - 205	
cis-1,3-Dichloropropene	20.0	20.4		ug/L		102	25 - 175	
Dichlorobromomethane	20.0	21.4		ug/L		107	65 - 135	
Ethylbenzene	20.0	19.0		ug/L		95	60 - 140	
Methylene Chloride	20.0	21.9		ug/L		109	60 - 140	
Tetrachloroethene	20.0	18.1		ug/L		91	70 - 130	
Toluene	20.0	19.1		ug/L		95	70 - 130	
trans-1,2-Dichloroethene	20.0	23.0		ug/L		115	70 - 130	
trans-1,3-Dichloropropene	20.0	20.9		ug/L		104	50 - 150	
Trichloroethene	20.0	21.4		ug/L		107	65 - 135	
Vinyl chloride	20.0	20.4		ug/L		102	5 - 195	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	115		60 - 140
4-Bromofluorobenzene	92		60 - 140
Toluene-d8 (Surr)	102		60 - 140
Dibromofluoromethane (Surr)	115		60 - 140

Lab Sample ID: LCSD 460-744294/6

Matrix: Water

Analysis Batch: 744294

Client Sample	ID: Lab	Contr	ol Sam	ple Dup
		Prep	Type: ⁻	Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	20.0	22.3		ug/L		111	70 - 130	1	36
1,1,2,2-Tetrachloroethane	20.0	20.6		ug/L		103	60 - 140	1	61
1,1,2-Trichloroethane	20.0	19.7		ug/L		98	70 - 130	1	45
1,1-Dichloroethane	20.0	21.1		ug/L		106	70 - 130	5	40
1,1-Dichloroethene	20.0	22.0		ug/L		110	50 - 150	3	32
1,2-Dichlorobenzene	20.0	18.4		ug/L		92	65 - 135	0	57
1,2-Dichloroethane	20.0	22.4		ug/L		112	70 - 130	1	49
1,2-Dichloropropane	20.0	22.4		ug/L		112	35 - 165	1	55
1,3-Dichlorobenzene	20.0	17.4		ug/L		87	70 - 130	3	43

Eurofins TestAmerica, Buffalo

Page 15 of 27

1/5/2021 (Rev. 1)

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-744294/6

Matrix: Water

Analysis Batch: 744294

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 480-178848-1

•	Spike		LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,4-Dichlorobenzene	20.0	17.8		ug/L		89	65 - 135	2	57
2-Chloroethyl vinyl ether	20.0	23.7		ug/L		118	0.1 - 225	7	71
Benzene	20.0	19.4		ug/L		97	65 - 135	3	61
Bromoform	20.0	21.9		ug/L		109	70 - 130	2	42
Bromomethane	20.0	23.9		ug/L		119	15 - 185	1	61
Carbon tetrachloride	20.0	21.8		ug/L		109	70 - 130	3	41
Chlorobenzene	20.0	18.9		ug/L		95	65 - 135	4	53
Chlorodibromomethane	20.0	19.4		ug/L		97	70 - 135	1	50
Chloroethane	20.0	22.7		ug/L		114	40 - 160	3	78
Chloroform	20.0	22.3		ug/L		112	70 - 135	5	54
Chloromethane	20.0	20.6		ug/L		103	0.1 - 205	0	60
cis-1,3-Dichloropropene	20.0	20.4		ug/L		102	25 - 175	0	58
Dichlorobromomethane	20.0	21.6		ug/L		108	65 - 135	1	56
Ethylbenzene	20.0	18.7		ug/L		94	60 - 140	1	63
Methylene Chloride	20.0	22.2		ug/L		111	60 - 140	2	28
Tetrachloroethene	20.0	17.8		ug/L		89	70 - 130	2	39
Toluene	20.0	19.2		ug/L		96	70 - 130	1	41
trans-1,2-Dichloroethene	20.0	22.1		ug/L		111	70 - 130	4	45
trans-1,3-Dichloropropene	20.0	20.7		ug/L		104	50 - 150	1	86
Trichloroethene	20.0	20.9		ug/L		104	65 - 135	3	48
Vinyl chloride	20.0	21.0		ug/L		105	5 - 195	3	66

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	117		60 - 140
4-Bromofluorobenzene	96		60 - 140
Toluene-d8 (Surr)	101		60 - 140
Dibromofluoromethane (Surr)	113		60 - 140

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-561644/4

Matrix: Water

Analysis Batch: 561644

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	ND		2.0	0.35	mg/L			12/02/20 13:29	1

Lab Sample ID: LCS 480-561644/3

Matrix: Water

Analysis Batch: 561644

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Sulfate	50.0	50.19		mg/L		100	90 - 110

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Job ID: 480-178848-1

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 300.0 - Anions, Ion Chromatography (Continued)

Client Sample ID: MW-8-DEC20 Prep Type: Total/NA

Lab Sample ID: 480-178848-2 MS **Matrix: Water**

Analysis Batch: 561644

Sample Sample Spike MS MS %Rec. D %Rec Analyte Result Qualifier Added Result Qualifier Unit Limits Sulfate 5000 5780 10500 E mg/L 94 80 - 120

Lab Sample ID: 480-178848-2 MSD Client Sample ID: MW-8-DEC20 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 561644

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfate	5780		5000	10550	E	mg/L		95	80 - 120	0	15

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 480-563199/28 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 563199

	MB MB							
Analyte	Result Qual	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	ND	5.0	0.79	mg/L			12/14/20 11:54	1
Alkalinity, Bicarbonate	ND	5.0	0.79	mg/L			12/14/20 11:54	1
Alkalinity, Carbonate	ND	5.0	0.79	mg/L			12/14/20 11:54	1
Hydroxide Alkalinity	ND	5.0	0.79	mg/L			12/14/20 11:54	1

Lab Sample ID: MB 480-563199/4 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 563199

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	ND		5.0	0.79	mg/L			12/14/20 08:50	1
Alkalinity, Bicarbonate	ND		5.0	0.79	mg/L			12/14/20 08:50	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			12/14/20 08:50	1
Hydroxide Alkalinity	ND		5.0	0.79	ma/L			12/14/20 08:50	1

Lab Sample ID: MB 480-563199/52 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 563199

	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Alkalinity, Total	ND		5.0	0.79	mg/L			12/14/20 15:05	1	
Alkalinity, Bicarbonate	ND		5.0	0.79	mg/L			12/14/20 15:05	1	
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			12/14/20 15:05	1	
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			12/14/20 15:05	1	

Lab Sample ID: LCS 480-563199/29 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 563199

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit D %Rec Limits 100 Alkalinity, Total 96.72 mg/L 97 90 - 110

Eurofins TestAmerica, Buffalo

QC Sample Results

Client: New York State D.E.C. Job ID: 480-178848-1

Project/Site: Davis-Howland Oil Corp #828088

Method: SM 2320B - Alkalinity (Continued)

Lab Sample ID: LCS 480-563199/5 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 563199 LCS LCS Spike %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Alkalinity, Total 100 97.92 mg/L 98 90 - 110

Lab Sample ID: LCS 480-563199/53 **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total/NA

Analysis Batch: 563199

Spike LCS LCS %Rec. Limits **Analyte** Added Result Qualifier Unit D %Rec

Alkalinity, Total 100 96.16 96 90 - 110 mg/L

1/5/2021 (Rev. 1)

Prep Type: Total/NA

QC Association Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-178848-1

GC/MS VOA

Analysis Batch: 744294

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178848-1	TB-20201201	Total/NA	Water	624.1	
480-178848-2	MW-8-DEC20	Total/NA	Water	624.1	
480-178848-3	MW-8-DEC20-Q	Total/NA	Water	624.1	
480-178848-4	MW-15R-DEC20	Total/NA	Water	624.1	
480-178848-5	MW-2R-DEC20	Total/NA	Water	624.1	
MB 460-744294/9	Method Blank	Total/NA	Water	624.1	
LCS 460-744294/5	Lab Control Sample	Total/NA	Water	624.1	
LCSD 460-744294/6	Lab Control Sample Dup	Total/NA	Water	624.1	

General Chemistry

Analysis Batch: 561644

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178848-2	MW-8-DEC20	Total/NA	Water	300.0	<u> </u>
480-178848-3	MW-8-DEC20-Q	Total/NA	Water	300.0	
480-178848-4	MW-15R-DEC20	Total/NA	Water	300.0	
480-178848-5	MW-2R-DEC20	Total/NA	Water	300.0	
MB 480-561644/4	Method Blank	Total/NA	Water	300.0	
LCS 480-561644/3	Lab Control Sample	Total/NA	Water	300.0	
480-178848-2 MS	MW-8-DEC20	Total/NA	Water	300.0	
480-178848-2 MSD	MW-8-DEC20	Total/NA	Water	300.0	

Analysis Batch: 563199

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178848-2	MW-8-DEC20	Total/NA	Water	SM 2320B	
480-178848-3	MW-8-DEC20-Q	Total/NA	Water	SM 2320B	
480-178848-4	MW-15R-DEC20	Total/NA	Water	SM 2320B	
480-178848-5	MW-2R-DEC20	Total/NA	Water	SM 2320B	
MB 480-563199/28	Method Blank	Total/NA	Water	SM 2320B	
MB 480-563199/4	Method Blank	Total/NA	Water	SM 2320B	
MB 480-563199/52	Method Blank	Total/NA	Water	SM 2320B	
LCS 480-563199/29	Lab Control Sample	Total/NA	Water	SM 2320B	
LCS 480-563199/5	Lab Control Sample	Total/NA	Water	SM 2320B	
LCS 480-563199/53	Lab Control Sample	Total/NA	Water	SM 2320B	

4

5

8

9

11

14

14

10

Client Sample ID: TB-20201201

Client: New York State D.E.C.

Lab Sample ID: 480-178848-1 Date Collected: 12/01/20 10:00 Date Received: 12/01/20 15:20

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Dilution Batch Batch Batch **Prepared** Method Factor or Analyzed **Prep Type** Type Run Number Analyst Lab 744294 12/03/20 23:28 GXY TAL EDI Total/NA Analysis 624.1

Client Sample ID: MW-8-DEC20

Lab Sample ID: 480-178848-2 Date Collected: 12/01/20 11:03 **Matrix: Water**

Date Received: 12/01/20 15:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	744294	12/04/20 06:15	GXY	TAL EDI
Total/NA	Analysis	300.0		100	561644	12/02/20 14:57	IMZ	TAL BUF
Total/NA	Analysis	SM 2320B		1	563199	12/14/20 09:09	DLG	TAL BUF

Client Sample ID: MW-8-DEC20-Q Lab Sample ID: 480-178848-3

Date Collected: 12/01/20 11:03 Date Received: 12/01/20 15:20

Batch Batch Dilution Batch **Prepared** Method Number or Analyzed **Prep Type** Type Run **Factor** Analyst Lab Total/NA 624.1 744294 12/04/20 05:52 GXY TAL EDI Analysis Total/NA Analysis 300.0 100 12/02/20 16:10 IMZ TAL BUF 561644 Total/NA Analysis SM 2320B 563199 12/14/20 09:21 DLG TAL BUF 1

Lab Sample ID: 480-178848-4 Client Sample ID: MW-15R-DEC20

Date Collected: 12/01/20 13:15 Date Received: 12/01/20 15:20

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 624.1 744294 12/04/20 05:30 **GXY** TAL EDI Total/NA Analysis 300.0 5 561644 12/02/20 16:25 TAL BUF Total/NA Analysis 1 563199 12/14/20 09:28 DLG TAL BUF SM 2320B

Client Sample ID: MW-2R-DEC20 Lab Sample ID: 480-178848-5

Date Collected: 12/01/20 13:25

Date Received: 12/01/20 15:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	744294	12/04/20 05:07	GXY	TAL EDI
Total/NA	Analysis	300.0		1	561644	12/02/20 16:39	IMZ	TAL BUF
Total/NA	Analysis	SM 2320B		1	563199	12/14/20 09:34	DLG	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins TestAmerica, Buffalo

Accreditation/Certification Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-178848-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	I	Program	Identification Number	Expiration Date
New York	-	NELAP	10026	04-01-21
the agency does not o	offer certification.	,	, , ,	This list may include analytes for which
		Motrix	Analyta	
Analysis Method SM 2320B	Prep Method	Matrix Water	Analyte Alkalinity. Bicarbonate	
	Prep Method		Analyte Alkalinity, Bicarbonate Alkalinity, Carbonate	

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
New York	NE	ELAP	11452	04-01-21
The following englyte	a ara inaludad in this rana			Title 19 4
the agency does not	•	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
0 ,	•	ort, but the laboratory is r Matrix	Analyte	I his list may include analytes for which

Eurofins TestAmerica, Buffalo

3

4

9

12

Method Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL EDI
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
SM 2320B	Alkalinity	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Job ID: 480-178848-1

3

4

7

8

9

11

12

14

Sample Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-178848-1	TB-20201201	Water	12/01/20 10:00	12/01/20 15:20	
480-178848-2	MW-8-DEC20	Water	12/01/20 11:03	12/01/20 15:20	
480-178848-3	MW-8-DEC20-Q	Water	12/01/20 11:03	12/01/20 15:20	
480-178848-4	MW-15R-DEC20	Water	12/01/20 13:15	12/01/20 15:20	
480-178848-5	MW-2R-DEC20	Water	12/01/20 13:25	12/01/20 15:20	

Job ID: 480-178848-1

3

4

5

8

9

44

12

11

Chain of Custody Record

Eurofins TestAmerica, Buffalo

seurofins Environment Testing America

	Champlan			I Sh Dh			Carrior Teaching Molati	COO No.
lient Information	Sample.	SC		Johnse	Johnson, Orlette S	S	Cather (racking No(s).	480-153402-34083.2
Client Contact. Jenelle Gaylord	Phone: (716)6	20	0908-	E-Mail: Orlette	Johnson.	E-Malt: Orlette, Johnson@Eurofinset.com	State of Origin:	Page-2013 1.4 \
Company. New York State D.E.C.			PWSID:			Analysi	Analysis Requested	Job #.
Address. 625 Broadway Division of Environmental Remediation	Due Date Requested:	ted:						des:
Chy. Albany	TAT Requested (days)				ľ			B-NaOH N-None C-Zn Acetate O-AsNaO2
State, Ztp: NY, 12233-7014	Compliance Project:	A Yes	A No		779 - V			
Phone:	Po #; CallOut ID: 136612	6612						
Email: jenelle.gaylord@dec.ny.gov	WO#.				(oN			J - Di Water
Project Name: Davis-Howland Oil Corp #828088	Project #, 48019422				10 58,	əfelli		L-EDA
Site:	SSOW				u) as	100		of co
Samole Identification	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (Wewater, Sesolid, Orwaste(oil, BT-Tisase, A-Alr)	Field Filtered S Perform MS/M 624.1 PREC - P	300.0_28D - (MC		Total Number Special Instructions/Note:
	\setminus		00		Ż	z		
TES-2020 1201	12/1/20	00:01	12	Water	X			1 Trip Blank
MW-8-05020	-	11:03	J	Water	X	X X		N
MJ-8-DEC20-B		11:03	J	Water	X	X		S dupe
MW-15-R-DEC20		13:45	J	Water	X	X		IN
MW-LR-PECLO	1	13:25	J	Water	X	イイ		M
				Water		0		
				Water	(11/1		
				Water)9	1/201		
				Water				Custody
				Water			480-178848 Chain U	/
				Water				
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B Unknown	П	Radiological		Sample	eturn To Client	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Mont	retained longer than 1 month) Archive For Months
2					Special	Special Instructions/QC Requirements	irements:	
Empty Kit Relinquished by:		Date:			Time:		Method of Shipment:	
Relinquished by:	Date/Time:	1/2020 15	. 25	Company	Rec	Received by:	Date/Time:	Company
Refinquished by:	Date/Time:			Company	Rece	Received by:	Date/Time:	Сотрапу
Relinquished by	Date/Time:		O	Company	Rec	Received by.	Date/Time	26 1520 Company
Custody Copie Infact Custody Copi No					-			

Chain of Custody Record

Eurofins TestAmerica, Buffalo

10 Hazelwood Drive

Client Information (Sub Contract Lab) Compense. Client Contact Shipping/Receiving Company. TestAmerica Laboratories, Inc. Taboratories, Inc. Due Date Requested: 12/14/2020 Address. TAT Requested (days) Edison Sale. Zip. City. For #: Project Wanne: Po#: Project Name: Project #: Project Name: A8019422 Site: SSOW#: Sample Identification - Client ID (Lab ID) Sample Date	Sample (6	Sample (************************************	Orlette S Connson MSM (New or No) Perform MSMSD (Yes or No)	Analysis Requested	A80-60681.1 Page 1 of 1 Job #	codes: N. Hexane N. None O. AsNaO2 O. Na2O4S Q. Na2SO3 R. Na2SO3 R. Na2SO3 R. Na2SO4 U. Acetone U. Acetone V. MCAA W. pH 4-5 Z. other (specify)
ing/Receiving ing/Receiving ing. ing. ing. ing. ing. ing. ing. i	Sample (6	Matr (Wwws Second Companies BT-TISEUR. Watt	Required Sample (Yes or No) NELAP - No - Sample (Yes or No) No - No - Sample (Yes or No) No - No - Sample (Yes or No) No - No - Sample (No - Sam	ysis Red	Charles and the control of the contr	Codes: M - Hexane N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 S - H2SO4 T - TSP Dodecaby U - Acetone V - MCAA W - PH 4-5 Z - other (specify)
nny: st. tew Durtham Road, nn	Sample (6	Matr (wwws Seson Companies BF-Thausa	NEIGHT Fliet Sample (Yes or No) Perform MS/MSD (Yes or No) An Acceptation (See Jeep. 20 (MOD) Priority Pollutant **Cont. New York (See Jeep. 20 (MOD) Priority Pollutant New York (See Jeep. 20 (MOD) Priority Pollutant	lysis Requested	The State of the control of the State of the	M. Hexane N. None O. AsNa0.2 Q. Na280.3 Q. Na280.3 R. Na280.3 R. Na280.3 R. Na280.3 G. Na280.3 V. MCAA W. PH 4-5 Z. other (specify)
lew Durham Road, In	Sample (6	Matrix (W-water, S=solid, O-wastelol, O-wastelol, Water Water	Field Filtered Sample (Yes or No) Perform MS/MSD (Yes or No) 624.1_PREC/624_Prep_3D (MOD) Priority Pollutant X List - VOA - 62 AB AB AB AB AB AB AB AB AB A	lysis Requested	AND THE RESIDENCE OF THE PROPERTY OF THE PROPE	M - Hexane M - None O - AsNaO2 P - NaZO4S G - NaZSO3 R - NaZSO3 R - NaZSO4 I T - TSP Dodecahy U - Acetone V - MCA4 W - pH 4-5 Z - other (specify)
In Zp. 2p. 149-3900(Tel) 732-549-3679(Fax) Name: -Howland Oil Corp #828088	ample (6	Matrix (w-watrix (w-watrix 0-wasold, 0-watrix 0-watrix 0-watrix 0-watrix Water	Perform MS/MSD (Yes or No) 624.1_PREC/624_Prep_3D (MOD) Priority Pollutant		A Smooth Control of the Control of the Control of Contr	The second secon
149-3900(Tel) 732-549-3679(Fax) Name: -Howland Oil Corp #828088 Sle Identification - Client ID (Lab ID)	Sample (6	Matrix (w-water, s-sold, o-water, d-water) Mater	Perform MS/MSD (Yes or No)		E - MarkOv F - MeOH G - Amchlor H - Ascorbic I - Ice C - EDTA L - EDA Other:	1
149-3900(Tel) 732-549-3679(Fax) Name: -Howland Oil Corp #828088 Sle Identification - Client ID (Lab ID)	Sample (6	Matrix (Wewser, Swede) Swede, Ownstelou, Ownstelou, BT-Tiksus, A-ab) ation Code. Water	Perform MS/MSD (Yes or No) 624.1_PREC(624_Prep_3D (MOD) Priority		G - Amchlor H - Ascorbic J - Di Water K - EDTA L - EDA Other:	
Name:Howland Oil Corp #828088	Sample (6	Matrix (Wrwater, Secolar, Comman, Mater Water	Perform MS/MSD (Yes or No)			U - Acetone V - MCAA W - pH 4-5 Z - other (specify)
land Oil Corp #828088 44 45 61 61 61 61 61 61 61 61 61 61 61 61 61	Sample (6	Matrix (Wewser, Secold, Ownstellor) BT-Tissue, A-ab) ation Code. Water	Perform MS/MSD (Yes or N		COLUMN TO A STATE OF THE PARTY	W - pH 4-5 Z - other (specify)
s nple Identification - Client ID (Lab ID)	Sample (6	Matrix (www.str., Sacold., Ownstra, BTTISSUS, ACAR) Water Water	Perform MS/MSD (Ye		AND STREET, SANSAGE STREET, ST	
	Sample (6	Matrix (www.ster, S*sold, O*waste(ol), BT=Tissue, A*Alr) ation Code: Water Water	Perform MS/M:		redmul/ I	
	10:00	ation Code: Water Water	X			Special Instructions/Note:
の 一般の 一般の 一般の 一般の 一般の 一般の 一般の 一般の 一般の 一般	10:00	Water	×		/\ ×	
TB-20201201 (480-178848-1)	Fastern	Water			-	
MW-8-DEC20 (480-178848-2)			×		ю	
MW-8-DEC20-Q (480-178848-3)	11:03 Eastern	Water	×		ю	
MW-15R-DEC20 (480-178848-4)	13:15 Eastern	Water	×		ю	
MW-2R-DEC20 (480-178848-5) 12/1/20	13:25 Eastern	Water	×		3	
Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samp TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Ch	ership of method, analyte he samples must be ship igned Chain of Custody &	& accreditation compliar ped back to the Eurofins ttesting to said complicar	ice upon out subcontract laboratori TestAmerica laboratory or other in ice to Eurofins TestAmerica.	method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently les must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins ain of Custody attesting to said complicance to Eurofins TestAmerica.	under chain-of-custody. If the lab	boratory does not curre e brought to Eurofins
Possible Hazard Identification			Sample Disposal (A fe	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	are retained longer than	n 1 month)
			Return To Client	Disposal By Lab	Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify) Primary Deliv	Primary Deliverable Rank: 2		Special Instructions/QC Requirements:	Requirements:		
Empty Kit Relinquished by:	Date:		Time:	Method of Shipment	nt	
Relinquished by: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	E1 921261	Company Company	Received by:	Date/Time	13/20 1015 me:	Company
Relinquished by: Date/Time:		Company	Received by:	Date/Time	me:	Company
Custody Seals Intact: Custody Seal No.: 4) 9100 1	(1) ARS		Cooler Temperature(s) °C and Other Remarks:	3 and Other Remarks:	()	

Job Number: 480-178848-1

List Source: Eurofins TestAmerica, Buffalo

Client: New York State D.E.C.

Login Number: 178848

List Number: 1

Creator: Sabuda, Brendan D

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	- Common
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.0 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Client: New York State D.E.C. Job Number: 480-178848-1

List Source: En List Number: 2 List Source: En List Number: 2

Creator: Armbruster. Chris

List Source: Eurofins TestAmerica, Edison List Creation: 12/03/20 11:43 AM

Creator: Armbruster, Chris		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	1427183, 1427182
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.9, 5.2°C IR11
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

True

True

N/A

Eurofins TestAmerica, Buffalo

<6mm (1/4").

Multiphasic samples are not present.

Residual Chlorine Checked.

Samples do not require splitting or compositing.

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-178915-1

Client Project/Site: Davis-Howland Oil Corp #828088

For:

New York State D.E.C. 625 Broadway Division of Environmental Remediation Albany, New York 12233-7014

Attn: Jenelle Gaylord

Wyst Bloton

Authorized for release by: 12/16/2020 4:11:35 PM Wyatt Watson, Project Management Assistant I Wyatt.Watson@Eurofinset.com

Designee for

Orlette Johnson, Senior Project Manager (484)685-0864

Orlette.Johnson@Eurofinset.com

LINKS

results through
Total Access

Review your project

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

6

8

11

13

14

Project/Site: Davis-Howland Oil Corp #828088

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Wyst Bloton

Wyatt Watson Project Management Assistant I 12/16/2020 4:11:35 PM

3

4

5

6

7

8

4.0

11

13

14

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	23
Lab Chronicle	24
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	32

9

10

12

14

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-178915-1

Project/Site: Davis-Howland Oil Corp #828088

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

E Result exceeded calibration range.

F1 MS and/or MSD recovery exceeds control limits.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

3

4

Ę

7

8

10

12

13

Case Narrative

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Trojection Barrie Frenhand on Gerp Wezees

Job ID: 480-178915-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-178915-1

Comments

No additional comments.

Receipt

The samples were received on 12/2/2020 5:15 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.6° C.

Receipt Exceptions

One container for the following samples were received broken or leaking: TB-20201202 (480-178915-1), MW-5R-DEC20 (480-178915-2), MW-5R-DEC20 (480-178915-2[MSD]), RB-20201202-FA1805 (480-178915-3), MW-14R-DEC20 (480-178915-4), MW-10R-DEC20 (480-178915-5) and MW-16R-DEC20 (480-178915-6).

GC/MS VOA

Method 624.1: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-10R-DEC20 (480-178915-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-5R-DEC20 (480-178915-2), MW-14R-DEC20 (480-178915-4) and MW-16R-DEC20 (480-178915-6). Elevated reporting limits (RLs) are provided.

Method 300.0: The following sample was diluted due to the abundance of non-target analytes: MW-10R-DEC20 (480-178915-5). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method SM 2320B: The method requirement for no headspace was not met. The following Alkalinity samples were analyzed with headspace in the sample container(s): MW-5R-DEC20 (480-178915-2[MS]), MW-5R-DEC20 (480-178915-2[MSD]), MW-14R-DEC20 (480-178915-4), MW-10R-DEC20 (480-178915-5) and MW-16R-DEC20 (480-178915-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 480-178915-1

3

Л

6

7

_

10

12

13

14

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Lab Sample ID: 480-178915-1

Lab Sample ID: 480-178915-3

Lab Sample ID: 480-178915-5

Lab Sample ID: 480-178915-6

Client Samp	ole ID:	TB-20201202
-------------	---------	-------------

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Methylene Chloride		1.0	0.32 ma/l		Total/NA

Client Sample ID: MW-5R-DEC20	Lab Sample ID: 480-178915-2

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane		1.0	0.26	ug/L		_	624.1	Total/NA
1,1-Dichloroethene	2.8	1.0	0.12	ug/L	1		624.1	Total/NA
1,2-Dichloroethene, Total	390	2.0	0.44	ug/L	1		624.1	Total/NA
Benzene	1.0	1.0	0.43	ug/L	1		624.1	Total/NA
trans-1,2-Dichloroethene	6.3	1.0	0.24	ug/L	1		624.1	Total/NA
Trichloroethene	19	1.0	0.31	ug/L	1		624.1	Total/NA
Vinyl chloride	53	1.0	0.34	ug/L	1		624.1	Total/NA
Sulfate	298	10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Total	304 F1	5.0	0.79	mg/L	1		SM 2320B	Total/NA
Alkalinity, Bicarbonate	304	5.0	0.79	mg/L	1		SM 2320B	Total/NA

Client Sample ID: RB-20201202-FA1805

No Detections.

Client Sample ID: MW-14R-DEC20 Lab Sample ID: 480-178915-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2-Dichloroethene, Total	10	2.0	0.44	ug/L	1	_	624.1	Total/NA
trans-1,2-Dichloroethene	0.93 J	1.0	0.24	ug/L	1		624.1	Total/NA
Trichloroethene	1.5	1.0	0.31	ug/L	1		624.1	Total/NA
Vinyl chloride	3.2	1.0	0.34	ug/L	1		624.1	Total/NA
Sulfate	60.2	4.0	0.70	mg/L	2		300.0	Total/NA
Alkalinity, Total	335	5.0	0.79	mg/L	1		SM 2320B	Total/NA
Alkalinity, Bicarbonate	335	5.0	0.79	mg/L	1		SM 2320B	Total/NA

Client Sample ID: MW-10R-DEC20

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	5.8	2.0	0.48	ug/L	2	_	624.1	Total/NA
1,1-Dichloroethane	2.9	2.0	0.53	ug/L	2	(624.1	Total/NA
1,1-Dichloroethene	7.5	2.0	0.23	ug/L	2	(624.1	Total/NA
1,2-Dichloroethene, Total	21	4.0	0.87	ug/L	2	(624.1	Total/NA
Tetrachloroethene	3.1	2.0	0.50	ug/L	2	(624.1	Total/NA
trans-1,2-Dichloroethene	4.3	2.0	0.47	ug/L	2	(624.1	Total/NA
Trichloroethene	680	2.0	0.63	ug/L	2		624.1	Total/NA
Sulfate	51.8	10.0	1.7	mg/L	5	;	300.0	Total/NA
Alkalinity, Total	337	5.0	0.79	mg/L	1		SM 2320B	Total/NA
Alkalinity Bicarbonate	337	5.0	0.79	ma/l	1	:	SM 2320B	Total/NA

Client Sample ID: MW-16R-DEC20

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type	
Sulfate	475	10.0	1.7	mg/L		300.0	Total/NA	
Alkalinity, Total	430	5.0	0.79	mg/L	1	SM 2320B	Total/NA	
Alkalinity, Bicarbonate	430	5.0	0.79	ma/L	1	SM 2320B	Total/NA	

This Detection Summary does not include radiochemical test results.

Job ID: 480-178915-1

Client: New York State D.E.C. Job ID: 480-178915-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201202

Date Collected: 12/02/20 09:00 Date Received: 12/02/20 17:15 Lab Sample ID: 480-178915-1

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			12/04/20 14:44	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			12/04/20 14:44	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			12/04/20 14:44	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			12/04/20 14:44	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			12/04/20 14:44	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/04/20 14:44	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			12/04/20 14:44	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			12/04/20 14:44	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			12/04/20 14:44	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/04/20 14:44	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/04/20 14:44	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/04/20 14:44	1
Acrolein	ND		4.0	1.1	ug/L			12/04/20 14:44	1
Acrylonitrile	ND		2.0		ug/L			12/04/20 14:44	1
Benzene	ND		1.0	0.43	ug/L			12/04/20 14:44	1
Bromoform	ND		1.0	0.54	ug/L			12/04/20 14:44	1
Bromomethane	ND		1.0		ug/L			12/04/20 14:44	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/04/20 14:44	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/04/20 14:44	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/04/20 14:44	1
Chloroethane	ND		1.0		ug/L			12/04/20 14:44	1
Chloroform	ND		1.0	0.33	ug/L			12/04/20 14:44	1
Chloromethane	ND		1.0	0.43	ug/L			12/04/20 14:44	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/04/20 14:44	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/04/20 14:44	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/04/20 14:44	1
Methylene Chloride	0.35	J	1.0		ug/L			12/04/20 14:44	1
Tetrachloroethene	ND		1.0		ug/L			12/04/20 14:44	1
Toluene	ND		1.0	0.38	-			12/04/20 14:44	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			12/04/20 14:44	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			12/04/20 14:44	1
Trichloroethene	ND		1.0		ug/L			12/04/20 14:44	1
Vinyl chloride	ND		1.0		ug/L			12/04/20 14:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	121		60 - 140			-		12/04/20 14:44	1

Surrogate	∕₀Recovery	Qualifier	LIIIIII	rrepareu	Allalyzeu	DII Fac	
1,2-Dichloroethane-d4 (Surr)	121		60 - 140		12/04/20 14:44	1	
4-Bromofluorobenzene	89		60 - 140		12/04/20 14:44	1	
Toluene-d8 (Surr)	102		60 - 140		12/04/20 14:44	1	
Dibromofluoromethane (Surr)	120		60 - 140		12/04/20 14:44	1	

Client Sample ID: MW-5R-DEC20

Date Collected: 12/02/20 11:05

1,1-Dichloroethane

Lab Sample ID: 480-178915-2 **Matrix: Water** Date Received: 12/02/20 17:15

0.26 ug/L

Method: 624.1 - Volatile Org	Method: 624.1 - Volatile Organic Compounds (GC/MS)									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,1,1-Trichloroethane	ND ND	1.0	0.24	ug/L			12/04/20 15:29	1		
1,1,2,2-Tetrachloroethane	ND	1.0	0.37	ug/L			12/04/20 15:29	1		
1.1.2-Trichloroethane	ND	1.0	0.15	ua/L			12/04/20 15:29	1		

1.0

Eurofins TestAmerica, Buffalo

12/04/20 15:29

Page 7 of 33 12/16/2020

Client: New York State D.E.C. Job ID: 480-178915-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-5R-DEC20

Date Collected: 12/02/20 11:05 Date Received: 12/02/20 17:15

General Chemistry

Alkalinity, Bicarbonate

Analyte

Sulfate

Alkalinity, Total

Alkalinity, Carbonate

Hydroxide Alkalinity

Lab Sample ID: 480-178915-2

Matrix: Water

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	2.8		1.0	0.12	ug/L			12/04/20 15:29	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/04/20 15:29	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			12/04/20 15:29	1
1,2-Dichloroethene, Total	390		2.0	0.44	ug/L			12/04/20 15:29	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			12/04/20 15:29	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/04/20 15:29	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/04/20 15:29	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/04/20 15:29	1
Acrolein	ND		4.0	1.1	ug/L			12/04/20 15:29	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/04/20 15:29	1
Benzene	1.0		1.0	0.43	ug/L			12/04/20 15:29	1
Bromoform	ND		1.0	0.54	ug/L			12/04/20 15:29	1
Bromomethane	ND		1.0	0.45	ug/L			12/04/20 15:29	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/04/20 15:29	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/04/20 15:29	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/04/20 15:29	1
Chloroethane	ND		1.0	0.32	ug/L			12/04/20 15:29	1
Chloroform	ND		1.0	0.33	ug/L			12/04/20 15:29	1
Chloromethane	ND		1.0	0.43	ug/L			12/04/20 15:29	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/04/20 15:29	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/04/20 15:29	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/04/20 15:29	1
Methylene Chloride	ND		1.0	0.32	ug/L			12/04/20 15:29	1
Tetrachloroethene	ND		1.0	0.25	ug/L			12/04/20 15:29	1
Toluene	ND		1.0	0.38	ug/L			12/04/20 15:29	1
trans-1,2-Dichloroethene	6.3		1.0	0.24	ug/L			12/04/20 15:29	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			12/04/20 15:29	1
Trichloroethene	19		1.0	0.31	ug/L			12/04/20 15:29	1
Vinyl chloride	53		1.0	0.34	ug/L			12/04/20 15:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		60 - 140			-		12/04/20 15:29	1
4-Bromofluorobenzene	87		60 - 140					12/04/20 15:29	1
Toluene-d8 (Surr)	101		60 - 140					12/04/20 15:29	1
Dibromofluoromethane (Surr)	112		60 - 140					12/04/20 15:29	1

Analyzed

12/04/20 00:34

12/14/20 12:07

12/14/20 12:07

12/14/20 12:07

12/14/20 12:07

Dil Fac

5

1

Prepared

RL

10.0

5.0

5.0

5.0

5.0

MDL Unit

1.7 mg/L

0.79 mg/L

0.79 mg/L

0.79 mg/L

0.79 mg/L

Result Qualifier

298

304

ND

ND

304 F1

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: RB-20201202-FA1805

Date Collected: 12/02/20 12:30 Date Received: 12/02/20 17:15 Lab Sample ID: 480-178915-3

Matrix: Water

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0	0.24	ug/L			12/04/20 15:06	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.37	ug/L			12/04/20 15:06	1
1,1,2-Trichloroethane	ND	1.0	0.15	ug/L			12/04/20 15:06	1
1,1-Dichloroethane	ND	1.0	0.26	ug/L			12/04/20 15:06	1
1,1-Dichloroethene	ND	1.0	0.12	ug/L			12/04/20 15:06	1
1,2-Dichlorobenzene	ND	1.0	0.19	ug/L			12/04/20 15:06	1
1,2-Dichloroethane	ND	1.0	0.84	ug/L			12/04/20 15:06	1
1,2-Dichloroethene, Total	ND	2.0	0.44	ug/L			12/04/20 15:06	1
1,2-Dichloropropane	ND	1.0	0.35	ug/L			12/04/20 15:06	1
1,3-Dichlorobenzene	ND	1.0	0.13	ug/L			12/04/20 15:06	1
1,4-Dichlorobenzene	ND	1.0	0.18	ug/L			12/04/20 15:06	1
2-Chloroethyl vinyl ether	ND	1.0	0.91	ug/L			12/04/20 15:06	1
Acrolein	ND	4.0	1.1	ug/L			12/04/20 15:06	1
Acrylonitrile	ND	2.0	0.77	ug/L			12/04/20 15:06	1
Benzene	ND	1.0	0.43	ug/L			12/04/20 15:06	1
Bromoform	ND	1.0	0.54	ug/L			12/04/20 15:06	1
Bromomethane	ND	1.0	0.45	ug/L			12/04/20 15:06	1
Carbon tetrachloride	ND	1.0	0.21	ug/L			12/04/20 15:06	1
Chlorobenzene	ND	1.0	0.38	ug/L			12/04/20 15:06	1
Chlorodibromomethane	ND	1.0	0.13	ug/L			12/04/20 15:06	1
Chloroethane	ND	1.0	0.32	ug/L			12/04/20 15:06	1
Chloroform	ND	1.0	0.33	ug/L			12/04/20 15:06	1
Chloromethane	ND	1.0	0.43	ug/L			12/04/20 15:06	1
cis-1,3-Dichloropropene	ND	1.0	0.46	ug/L			12/04/20 15:06	1
Dichlorobromomethane	ND	1.0	0.34	ug/L			12/04/20 15:06	1
Ethylbenzene	ND	1.0	0.30	ug/L			12/04/20 15:06	1
Methylene Chloride	ND	1.0	0.32	ug/L			12/04/20 15:06	1
Tetrachloroethene	ND	1.0	0.25	ug/L			12/04/20 15:06	1
Toluene	ND	1.0	0.38	ug/L			12/04/20 15:06	1
trans-1,2-Dichloroethene	ND	1.0	0.24	ug/L			12/04/20 15:06	1
trans-1,3-Dichloropropene	ND	1.0	0.22	ug/L			12/04/20 15:06	1
Trichloroethene	ND	1.0	0.31	ug/L			12/04/20 15:06	1
Vinyl chloride	ND	1.0	0.34	ug/L			12/04/20 15:06	1
Surrogate	%Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	121	60 - 140					12/04/20 15:06	1
4-Bromofluorobenzene	89	60 - 140					12/04/20 15:06	1
Toluene-d8 (Surr)	103	60 - 140					12/04/20 15:06	1

Client Sample ID: MW-14R-DEC20

117

Date Collected: 12/02/20 13:25

Date Received: 12/02/20 17:15

Dibromofluoromethane (Surr)

Lab Sample ID: 480-178915-4

12/04/20 15:06

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS)											
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
1,1,1-Trichloroethane	ND ND	1.0	0.24	ug/L			12/04/20 15:52	1			
1,1,2,2-Tetrachloroethane	ND	1.0	0.37	ug/L			12/04/20 15:52	1			
1,1,2-Trichloroethane	ND	1.0	0.15	ug/L			12/04/20 15:52	1			
1,1-Dichloroethane	ND	1.0	0.26	ug/L			12/04/20 15:52	1			

60 - 140

Eurofins TestAmerica, Buffalo

Page 9 of 33

12/16/2020

Client: New York State D.E.C. Job ID: 480-178915-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-14R-DEC20

Date Collected: 12/02/20 13:25 Date Received: 12/02/20 17:15 Lab Sample ID: 480-178915-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.0	0.12	ug/L			12/04/20 15:52	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/04/20 15:52	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			12/04/20 15:52	1
1,2-Dichloroethene, Total	10		2.0	0.44	ug/L			12/04/20 15:52	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			12/04/20 15:52	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/04/20 15:52	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/04/20 15:52	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/04/20 15:52	1
Acrolein	ND		4.0	1.1	ug/L			12/04/20 15:52	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/04/20 15:52	1
Benzene	ND		1.0	0.43	ug/L			12/04/20 15:52	1
Bromoform	ND		1.0	0.54	ug/L			12/04/20 15:52	1
Bromomethane	ND		1.0	0.45	ug/L			12/04/20 15:52	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/04/20 15:52	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/04/20 15:52	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/04/20 15:52	1
Chloroethane	ND		1.0	0.32	ug/L			12/04/20 15:52	1
Chloroform	ND		1.0	0.33	ug/L			12/04/20 15:52	1
Chloromethane	ND		1.0	0.43	ug/L			12/04/20 15:52	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/04/20 15:52	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/04/20 15:52	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/04/20 15:52	1
Methylene Chloride	ND		1.0	0.32	ug/L			12/04/20 15:52	1
Tetrachloroethene	ND		1.0	0.25	ug/L			12/04/20 15:52	1
Toluene	ND		1.0	0.38	ug/L			12/04/20 15:52	1
trans-1,2-Dichloroethene	0.93	J	1.0	0.24	ug/L			12/04/20 15:52	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			12/04/20 15:52	1
Trichloroethene	1.5		1.0	0.31	ug/L			12/04/20 15:52	1
Vinyl chloride	3.2		1.0	0.34	ug/L			12/04/20 15:52	1
•					-				

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	121		60 - 140		12/04/20 15:52	1
4-Bromofluorobenzene	91		60 - 140		12/04/20 15:52	1
Toluene-d8 (Surr)	102		60 - 140		12/04/20 15:52	1
Dibromofluoromethane (Surr)	118		60 - 140		12/04/20 15:52	1

General Chemistry

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	60.2		4.0	0.70	mg/L			12/03/20 20:55	2
Alkalinity, Total	335		5.0	0.79	mg/L			12/14/20 10:38	1
Alkalinity, Bicarbonate	335		5.0	0.79	mg/L			12/14/20 10:38	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			12/14/20 10:38	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			12/14/20 10:38	1

Client: New York State D.E.C. Job ID: 480-178915-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-10R-DEC20

Date Collected: 12/02/20 10:55 Date Received: 12/02/20 17:15 Lab Sample ID: 480-178915-5

Matrix: Water

Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	5.8		2.0	0.48	ug/L			12/04/20 23:00	2
1,1,2,2-Tetrachloroethane	ND		2.0	0.73	ug/L			12/04/20 23:00	2
1,1,2-Trichloroethane	ND		2.0	0.30	ug/L			12/04/20 23:00	2
1,1-Dichloroethane	2.9		2.0	0.53	ug/L			12/04/20 23:00	2
1,1-Dichloroethene	7.5		2.0	0.23	ug/L			12/04/20 23:00	2
1,2-Dichlorobenzene	ND		2.0	0.37	ug/L			12/04/20 23:00	2
1,2-Dichloroethane	ND		2.0	1.7	ug/L			12/04/20 23:00	2
1,2-Dichloroethene, Total	21		4.0	0.87	ug/L			12/04/20 23:00	2
1,2-Dichloropropane	ND		2.0	0.71	ug/L			12/04/20 23:00	2
1,3-Dichlorobenzene	ND		2.0	0.26	ug/L			12/04/20 23:00	2
1,4-Dichlorobenzene	ND		2.0	0.35	ug/L			12/04/20 23:00	2
2-Chloroethyl vinyl ether	ND		2.0	1.8	ug/L			12/04/20 23:00	2
Acrolein	ND		8.0	2.2	ug/L			12/04/20 23:00	2
Acrylonitrile	ND		4.0	1.5	ug/L			12/04/20 23:00	2
Benzene	ND		2.0	0.86	ug/L			12/04/20 23:00	2
Bromoform	ND		2.0	1.1	ug/L			12/04/20 23:00	2
Bromomethane	ND		2.0	0.90	ug/L			12/04/20 23:00	2
Carbon tetrachloride	ND		2.0	0.42	ug/L			12/04/20 23:00	2
Chlorobenzene	ND		2.0	0.75	ug/L			12/04/20 23:00	2
Chlorodibromomethane	ND		2.0	0.26	ug/L			12/04/20 23:00	2
Chloroethane	ND		2.0	0.64	ug/L			12/04/20 23:00	2
Chloroform	ND		2.0	0.65	ug/L			12/04/20 23:00	2
Chloromethane	ND		2.0	0.87	ug/L			12/04/20 23:00	2
cis-1,3-Dichloropropene	ND		2.0	0.91	ug/L			12/04/20 23:00	2
Dichlorobromomethane	ND		2.0	0.69	ug/L			12/04/20 23:00	2
Ethylbenzene	ND		2.0	0.60	ug/L			12/04/20 23:00	2
Methylene Chloride	ND		2.0	0.63	ug/L			12/04/20 23:00	2
Tetrachloroethene	3.1		2.0	0.50	ug/L			12/04/20 23:00	2
Toluene	ND		2.0	0.76	ug/L			12/04/20 23:00	2
trans-1,2-Dichloroethene	4.3		2.0	0.47	ug/L			12/04/20 23:00	2
trans-1,3-Dichloropropene	ND		2.0	0.43	ug/L			12/04/20 23:00	2
Trichloroethene	680		2.0	0.63	ug/L			12/04/20 23:00	2
Vinyl chloride	ND		2.0	0.68	ug/L			12/04/20 23:00	2
Surrogate	%Recovery Q	ualifier L	.imits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	121	6	60 - 140			-		12/04/20 23:00	2
4-Bromofluorobenzene	93	6	60 - 140					12/04/20 23:00	2
Toluene-d8 (Surr)	102	6	60 - 140					12/04/20 23:00	2
Dibromofluoromethane (Surr)	117	6	60 ₋ 140					12/04/20 23:00	2

General Chemistry							
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed
Sulfate	51.8	10.0	1.7	mg/L			12/03/20 21:10
Allertheiter Tatal	007	F 0	0.70	no ar/l			10/11/00 10:15

12/14/20 10:45 **Alkalinity, Total** 5.0 0.79 mg/L 337 337 5.0 0.79 mg/L 12/14/20 10:45 Alkalinity, Bicarbonate Alkalinity, Carbonate ND 5.0 0.79 mg/L 12/14/20 10:45 Hydroxide Alkalinity ND 5.0 0.79 mg/L 12/14/20 10:45

Eurofins TestAmerica, Buffalo

3

5

Ω

3

11

13

14

1

Dil Fac

Client: New York State D.E.C. Job ID: 480-178915-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-16R-DEC20

Lab Sample ID: 480-178915-6

Date Collected: 12/02/20 09:20 **Matrix: Water** Date Received: 12/02/20 17:15

General Chemistry									
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	475		10.0	1.7	mg/L			12/03/20 21:25	5
Alkalinity, Total	430		5.0	0.79	mg/L			12/14/20 10:53	1
Alkalinity, Bicarbonate	430		5.0	0.79	mg/L			12/14/20 10:53	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			12/14/20 10:53	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			12/14/20 10:53	1

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-178915-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			cceptance Limits)			
		DCA	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(60-140)	(60-140)	(60-140)	(60-140)	
480-178915-1	TB-20201202	121	89	102	120	
480-178915-2	MW-5R-DEC20	118	87	101	112	
480-178915-2 MS	MW-5R-DEC20	126	94	103	123	
480-178915-2 MSD	MW-5R-DEC20	122	94	103	118	
480-178915-3	RB-20201202-FA1805	121	89	103	117	
480-178915-4	MW-14R-DEC20	121	91	102	118	
480-178915-5	MW-10R-DEC20	121	93	102	117	
LCS 460-744421/4	Lab Control Sample	115	90	102	119	
LCS 460-744596/5	Lab Control Sample	116	91	100	117	
LCSD 460-744596/6	Lab Control Sample Dup	116	91	100	116	
MB 460-744421/8	Method Blank	116	88	100	116	
MB 460-744596/9	Method Blank	118	90	97	116	

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

4

6

7

a

10

12

Client: New York State D.E.C. Job ID: 480-178915-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 460-744421/8

Matrix: Water

Analysis Batch: 744421

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared Analyzed 1,1,1-Trichloroethane ND 1.0 0.24 ug/L 12/04/20 09:49 1,1,2,2-Tetrachloroethane ND 1.0 0.37 ug/L 12/04/20 09:49 1 1,1,2-Trichloroethane ND 1.0 0.15 ug/L 12/04/20 09:49 1 1,1-Dichloroethane ND 1.0 0.26 ug/L 12/04/20 09:49 1 1-Dichloroethene ND 1.0 0.12 ug/L 12/04/20 09:49 ND 1,2-Dichlorobenzene 1.0 0.19 ug/L 12/04/20 09:49 1,2-Dichloroethane ND 1.0 0.84 ug/L 12/04/20 09:49 1,2-Dichloroethene, Total ND 2.0 0.44 ug/L 12/04/20 09:49 1,2-Dichloropropane ND 1.0 0.35 ug/L 12/04/20 09:49 1,3-Dichlorobenzene ND 1.0 0.13 ug/L 12/04/20 09:49 ND 1,4-Dichlorobenzene 1.0 0.18 ug/L 12/04/20 09:49 2-Chloroethyl vinyl ether ND 1.0 0.91 ug/L 12/04/20 09:49 Acrolein ND 4.0 12/04/20 09:49 1.1 ug/L Acrylonitrile ND 2.0 0.77 ug/L 12/04/20 09:49 Benzene ND 1.0 0.43 ug/L 12/04/20 09:49 Bromoform ND 0.54 ug/L 1.0 12/04/20 09:49 Bromomethane ND 1.0 0.45 ug/L 12/04/20 09:49 Carbon tetrachloride ND 1.0 0.21 ug/L 12/04/20 09:49 Chlorobenzene ND 1.0 0.38 ug/L 12/04/20 09:49 Chlorodibromomethane ND 1.0 0.13 ug/L 12/04/20 09:49 Chloroethane 1.0 0.32 ug/L ND 12/04/20 09:49 Chloroform ND 1.0 0.33 ug/L 12/04/20 09:49 Chloromethane ND 1.0 0.43 ug/L 12/04/20 09:49 cis-1,3-Dichloropropene ND 1.0 12/04/20 09:49 0.46 ug/L Dichlorobromomethane ND 1.0 0.34 ug/L 12/04/20 09:49 Ethylbenzene ND 1.0 0.30 ug/L 12/04/20 09:49 Methylene Chloride ND 1.0 0.32 ug/L 12/04/20 09:49 Tetrachloroethene ND 1.0 0.25 ug/L 12/04/20 09:49 Toluene ND 1.0 0.38 ug/L 12/04/20 09:49 trans-1,2-Dichloroethene ND 1.0 0.24 ug/L 12/04/20 09:49 ND trans-1,3-Dichloropropene 1.0 0.22 ug/L 12/04/20 09:49 Trichloroethene ND 1.0 0.31 ug/L 12/04/20 09:49

MB MB

ND

Surrogate	%Recovery Qualifie	r Limits	Prepared Analy	zed Dil Fac
1,2-Dichloroethane-d4 (Surr)	116	60 - 140	12/04/20	09:49 1
4-Bromofluorobenzene	88	60 - 140	12/04/20	09:49 1
Toluene-d8 (Surr)	100	60 - 140	12/04/20	09:49 1
Dibromofluoromethane (Surr)	116	60 - 140	12/04/20	09:49 1

1.0

0.34 ug/L

Lab Sample ID: LCS 460-744421/4

Matrix: Water

Vinyl chloride

Analysis Batch: 744421

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	21.9		ug/L		109	70 - 130	
1,1,2,2-Tetrachloroethane	20.0	20.7		ug/L		104	60 - 140	
1,1,2-Trichloroethane	20.0	18.8		ug/L		94	70 - 130	

Prep Type: Total/NA

12/04/20 09:49

Client Sample ID: Lab Control Sample

Page 14 of 33

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-744421/4

Matrix: Water

Analysis Batch: 744421

Client Sample ID: Lab Control Sample

100

111

65 - 135

5 - 195

Client Sample ID: MW-5R-DEC20

Prep Type: Total/NA

Prep Type: Total/NA

Job ID: 480-178915-1

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 1,1-Dichloroethane 20.0 21.6 108 70 - 130 ug/L 1,1-Dichloroethene 20.0 21.2 ug/L 106 50 - 150 1,2-Dichlorobenzene 20.0 ug/L 89 65 - 135 17.7 1,2-Dichloroethane 20.0 22.0 ug/L 110 70 - 130 20.0 21.0 105 35 - 165 1,2-Dichloropropane ug/L 1,3-Dichlorobenzene 20.0 17.6 ug/L 88 70 - 130 1,4-Dichlorobenzene 20.0 17.7 ug/L 89 65 - 135 2-Chloroethyl vinyl ether 20.0 19.6 ug/L 98 0.1 - 225Benzene 20.0 18.8 ug/L 94 65 - 13520.5 70 - 130 Bromoform 20.0 ug/L 102 Bromomethane 20.0 23.0 ug/L 115 15 - 185 109 Carbon tetrachloride 20.0 ug/L 70 - 130 21.8 Chlorobenzene 20.0 90 65 - 135 17.9 ug/L Chlorodibromomethane 20.0 17.8 ug/L 89 70 - 135 Chloroethane 20.0 22.0 ug/L 110 40 - 160 Chloroform 20.0 21.9 ug/L 109 70 - 135 Chloromethane 20.0 20.8 104 0.1 - 205ug/L cis-1,3-Dichloropropene 20.0 19.5 97 ug/L 25 - 175 Dichlorobromomethane 20.0 20.9 ug/L 104 65 - 135 ug/L Ethylbenzene 20.0 18.8 94 60 - 140 Methylene Chloride 20.0 21.5 ug/L 108 60 - 140 Tetrachloroethene 20.0 17.4 ug/L 87 70 - 130 Toluene 20.0 18.4 ug/L 92 70 - 130 trans-1,2-Dichloroethene 20.0 22.6 113 70 - 130 ug/L 20.0 19.8 99 trans-1,3-Dichloropropene ug/L 50 - 150

20.0

20.0

20.1

22.1

ug/L

ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	115		60 - 140
4-Bromofluorobenzene	90		60 - 140
Toluene-d8 (Surr)	102		60 - 140
Dibromofluoromethane (Surr)	119		60 - 140

Lab Sample ID: 480-178915-2 MS

Matrix: Water

Trichloroethene

Vinyl chloride

Analysis Batch: 744421

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		20.0	22.4		ug/L		112	52 - 162	
1,1,2,2-Tetrachloroethane	ND		20.0	20.8		ug/L		104	46 - 157	
1,1,2-Trichloroethane	ND		20.0	19.7		ug/L		99	52 - 150	
1,1-Dichloroethane	13		20.0	32.7		ug/L		100	59 - 155	
1,1-Dichloroethene	2.8		20.0	25.5		ug/L		114	0.1 - 234	
1,2-Dichlorobenzene	ND		20.0	16.7		ug/L		83	18 - 190	
1,2-Dichloroethane	ND		20.0	24.2		ug/L		121	49 - 155	
1,2-Dichloropropane	ND		20.0	23.3		ug/L		116	0.1 - 210	
1,3-Dichlorobenzene	ND		20.0	17.3		ug/L		87	59 - 156	

Eurofins TestAmerica, Buffalo

Page 15 of 33

12/16/2020

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-178915-2 MS

Matrix: Water

Analysis Batch: 744421

Client Sample ID: MW-5R-DEC20

Job ID: 480-178915-1

Prep Type: Total/NA

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	ND		20.0	17.5		ug/L		87	18 - 190	_
2-Chloroethyl vinyl ether	ND		20.0	22.6		ug/L		112	0.1 - 305	
Benzene	1.0		20.0	20.9		ug/L		99	37 - 151	
Bromoform	ND		20.0	20.7		ug/L		103	45 - 169	
Bromomethane	ND		20.0	24.6		ug/L		123	0.1 - 242	
Carbon tetrachloride	ND		20.0	22.7		ug/L		113	70 - 140	
Chlorobenzene	ND		20.0	18.7		ug/L		94	37 - 160	
Chlorodibromomethane	ND		20.0	19.3		ug/L		97	53 - 149	
Chloroethane	ND		20.0	23.4		ug/L		117	14 - 230	
Chloroform	ND		20.0	23.2		ug/L		116	51 - 138	
Chloromethane	ND		20.0	20.2		ug/L		101	0.1 - 273	
cis-1,3-Dichloropropene	ND		20.0	19.9		ug/L		100	0.1 - 227	
Dichlorobromomethane	ND		20.0	22.4		ug/L		112	35 - 155	
Ethylbenzene	ND		20.0	19.2		ug/L		96	37 - 162	
Methylene Chloride	ND		20.0	23.6		ug/L		118	0.1 - 221	
Tetrachloroethene	ND		20.0	17.6		ug/L		88	64 - 148	
Toluene	ND		20.0	19.1		ug/L		95	47 - 150	
trans-1,2-Dichloroethene	6.3		20.0	27.3		ug/L		105	54 - 156	
trans-1,3-Dichloropropene	ND		20.0	20.9		ug/L		104	17 - 183	
Trichloroethene	19		20.0	36.2		ug/L		88	70 - 157	
Vinyl chloride	53		20.0	61.0		ug/L		41	0.1 - 251	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	126		60 - 140
4-Bromofluorobenzene	94		60 - 140
Toluene-d8 (Surr)	103		60 - 140
Dibromofluoromethane (Surr)	123		60 - 140

Lab Sample ID: 480-178915-2 MSD

Matrix: Water

Analysis Batch: 744421

Client Sample ID: MW-5	R-DEC20
Prep Type:	Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		20.0	23.2		ug/L		116	52 - 162	4	36
1,1,2,2-Tetrachloroethane	ND		20.0	21.9		ug/L		110	46 - 157	6	61
1,1,2-Trichloroethane	ND		20.0	19.6		ug/L		98	52 - 150	0	45
1,1-Dichloroethane	13		20.0	32.7		ug/L		100	59 - 155	0	40
1,1-Dichloroethene	2.8		20.0	25.6		ug/L		114	0.1 - 234	0	32
1,2-Dichlorobenzene	ND		20.0	17.9		ug/L		89	18 - 190	7	57
1,2-Dichloroethane	ND		20.0	22.8		ug/L		114	49 - 155	6	49
1,2-Dichloropropane	ND		20.0	23.4		ug/L		117	0.1 - 210	1	55
1,3-Dichlorobenzene	ND		20.0	17.7		ug/L		88	59 - 156	2	43
1,4-Dichlorobenzene	ND		20.0	18.0		ug/L		90	18 - 190	3	57
2-Chloroethyl vinyl ether	ND		20.0	23.1		ug/L		115	0.1 - 305	2	71
Benzene	1.0		20.0	20.8		ug/L		99	37 - 151	1	61
Bromoform	ND		20.0	21.0		ug/L		105	45 - 169	1	42
Bromomethane	ND		20.0	24.8		ug/L		124	0.1 - 242	1	61
Carbon tetrachloride	ND		20.0	22.4		ug/L		112	70 - 140	1	41

Eurofins TestAmerica, Buffalo

Page 16 of 33

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

20.0

22.7

19.0

23.6

18.4

19.6

27.2

20.9

35.5

61.5

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Sample Sample

Qualifier

Result

ND

6.3

ND

19

Lab Sample ID: 480-178915-2 MSD

Matrix: Water

Chlorobenzene

Chloroethane

Chloromethane

Ethylbenzene

Toluene

Chloroform

Chlorodibromomethane

cis-1,3-Dichloropropene

Dichlorobromomethane

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Lab Sample ID: MB 460-744596/9

Analysis Batch: 744596

Methylene Chloride

Tetrachloroethene

Trichloroethene

Matrix: Water

Vinyl chloride

Analyte

Analysis Batch: 744421

Client Sample ID: MW-5R-DEC20

Prep Type: Total/NA

Job ID: 480-178915-1

MSD MSD RPD %Rec. Spike Added Result Qualifier Unit %Rec Limits RPD Limit 20.0 18.7 ug/L 94 37 - 160 0 53 20.0 19.5 ug/L 98 53 - 149 50 14 - 230 78 20.0 24.5 ug/L 123 5 20.0 23.2 ug/L 116 51 - 138 0 54 20.0 20.5 ug/L 102 0.1 - 273 2 60 20.0 19.6

ug/L 98 0.1 - 22758 ug/L 113 35 - 155 56 95 ug/L 37 - 162 63 118 ug/L 0.1 - 22128 92 64 - 148 39 ug/L ug/L 98 47 - 150 41

104

104

84

43

53 **MSD MSD**

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	122		60 - 140
4-Bromofluorobenzene	94		60 - 140
Toluene-d8 (Surr)	103		60 - 140
Dibromofluoromethane (Surr)	118		60 - 140

Client Sample ID: Method Blank

54 - 156

17 - 183

70 - 157

0.1 - 251

Prep Type: Total/NA

ug/L

ug/L

ug/L

ug/L

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			12/04/20 21:30	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			12/04/20 21:30	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			12/04/20 21:30	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			12/04/20 21:30	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			12/04/20 21:30	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/04/20 21:30	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			12/04/20 21:30	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			12/04/20 21:30	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			12/04/20 21:30	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/04/20 21:30	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/04/20 21:30	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/04/20 21:30	1
Acrolein	ND		4.0	1.1	ug/L			12/04/20 21:30	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/04/20 21:30	1
Benzene	ND		1.0	0.43	ug/L			12/04/20 21:30	1
Bromoform	ND		1.0	0.54	ug/L			12/04/20 21:30	1
Bromomethane	ND		1.0	0.45	ug/L			12/04/20 21:30	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/04/20 21:30	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/04/20 21:30	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/04/20 21:30	1
Chloroethane	ND		1.0	0.32	ug/L			12/04/20 21:30	1

Eurofins TestAmerica, Buffalo

Page 17 of 33

2

3

5

<u>____</u>

9

11

45

86

48

O

12

14

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 460-744596/9

Matrix: Water

Analysis Batch: 744596

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-178915-1

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloroform	ND		1.0	0.33	ug/L			12/04/20 21:30	1
Chloromethane	ND		1.0	0.43	ug/L			12/04/20 21:30	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/04/20 21:30	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/04/20 21:30	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/04/20 21:30	1
Methylene Chloride	ND		1.0	0.32	ug/L			12/04/20 21:30	1
Tetrachloroethene	ND		1.0	0.25	ug/L			12/04/20 21:30	1
Toluene	ND		1.0	0.38	ug/L			12/04/20 21:30	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			12/04/20 21:30	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			12/04/20 21:30	1
Trichloroethene	ND		1.0	0.31	ug/L			12/04/20 21:30	1
Vinyl chloride	ND		1.0	0.34	ua/l			12/04/20 21:30	1

MB MB

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118	60 - 140		12/04/20 21:30	1
4-Bromofluorobenzene	90	60 - 140		12/04/20 21:30	1
Toluene-d8 (Surr)	97	60 - 140		12/04/20 21:30	1
Dibromofluoromethane (Surr)	116	60 - 140		12/04/20 21:30	1

Lab Sample ID: LCS 460-744596/5

Matrix: Water

Analysis Batch: 744596

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 20.0 22.4 70 - 130 1,1,1-Trichloroethane ug/L 112 20.0 1,1,2,2-Tetrachloroethane 20.8 ug/L 104 60 - 14020.0 70 - 130 1,1,2-Trichloroethane 18.7 ug/L 94 20.0 22.2 111 70 - 130 1,1-Dichloroethane ug/L 20.0 1,1-Dichloroethene 21.2 ug/L 106 50 - 150 1,2-Dichlorobenzene 20.0 17.0 ug/L 85 65 - 135 1,2-Dichloroethane 20.0 116 70 - 130 23.1 ug/L ug/L 1,2-Dichloropropane 20.0 22.6 113 35 - 165 20.0 1,3-Dichlorobenzene 17.8 ug/L 89 70 - 130 1,4-Dichlorobenzene 20.0 17.7 ug/L 88 65 - 135 ug/L 2-Chloroethyl vinyl ether 20.0 23.0 115 0.1 - 225Benzene 20.0 19.5 ug/L 98 65 - 135 Bromoform 20.0 19.9 ug/L 100 70 - 130 20.0 Bromomethane 22.8 ug/L 114 15 - 185 Carbon tetrachloride 20.0 21.3 ug/L 107 70 - 130 Chlorobenzene 20.0 18.4 ug/L 92 65 - 135Chlorodibromomethane 20.0 18.9 ug/L 95 70 - 135 20.8 104 Chloroethane 20.0 ug/L 40 - 160 Chloroform 20.0 22.0 110 70 - 135 ug/L Chloromethane 20.0 20.5 ug/L 103 0.1 - 205cis-1,3-Dichloropropene 20.0 19.6 ug/L 98 25 - 175 20.0 Dichlorobromomethane 22.1 ug/L 110 65 - 135 Ethylbenzene 20.0 19.8 ug/L 99 60 - 140 Methylene Chloride 20.0 22.4 ug/L 112 60 - 140

Eurofins TestAmerica, Buffalo

Page 18 of 33

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-744596/5

Matrix: Water

Analysis Batch: 744596

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-178915-1

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	20.0	17.0		ug/L		85	70 - 130	
Toluene	20.0	19.1		ug/L		95	70 - 130	
trans-1,2-Dichloroethene	20.0	22.0		ug/L		110	70 - 130	
trans-1,3-Dichloropropene	20.0	20.9		ug/L		105	50 - 150	
Trichloroethene	20.0	21.0		ug/L		105	65 - 135	
Vinyl chloride	20.0	21.5		ug/L		108	5 - 195	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	116		60 - 140
4-Bromofluorobenzene	91		60 - 140
Toluene-d8 (Surr)	100		60 - 140
Dibromofluoromethane (Surr)	117		60 - 140

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water

Lab Sample ID: LCSD 460-744596/6

Analysis Batch: 744596									
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	20.0	23.0		ug/L		115	70 - 130	2	36
1,1,2,2-Tetrachloroethane	20.0	22.2		ug/L		111	60 - 140	6	61
1,1,2-Trichloroethane	20.0	20.2		ug/L		101	70 - 130	8	45
1,1-Dichloroethane	20.0	23.7		ug/L		118	70 - 130	6	40
1,1-Dichloroethene	20.0	23.4		ug/L		117	50 - 150	10	32
1,2-Dichlorobenzene	20.0	18.1		ug/L		90	65 - 135	6	57
1,2-Dichloroethane	20.0	23.7		ug/L		119	70 - 130	2	49
1,2-Dichloropropane	20.0	23.3		ug/L		117	35 - 165	3	55
1,3-Dichlorobenzene	20.0	18.4		ug/L		92	70 - 130	4	43
1,4-Dichlorobenzene	20.0	18.2		ug/L		91	65 - 135	3	57
2-Chloroethyl vinyl ether	20.0	22.0		ug/L		110	0.1 - 225	4	71
Benzene	20.0	20.4		ug/L		102	65 - 135	4	61
Bromoform	20.0	20.7		ug/L		103	70 - 130	4	42
Bromomethane	20.0	23.8		ug/L		119	15 - 185	4	61
Carbon tetrachloride	20.0	22.6		ug/L		113	70 - 130	6	41
Chlorobenzene	20.0	19.6		ug/L		98	65 - 135	6	53
Chlorodibromomethane	20.0	19.1		ug/L		96	70 - 135	1	50
Chloroethane	20.0	22.5		ug/L		113	40 - 160	8	78
Chloroform	20.0	23.3		ug/L		116	70 - 135	6	54
Chloromethane	20.0	20.7		ug/L		103	0.1 - 205	1	60
cis-1,3-Dichloropropene	20.0	21.1		ug/L		105	25 - 175	7	58
Dichlorobromomethane	20.0	23.1		ug/L		116	65 - 135	5	56
Ethylbenzene	20.0	19.6		ug/L		98	60 - 140	1	63
Methylene Chloride	20.0	23.1		ug/L		115	60 - 140	3	28
Tetrachloroethene	20.0	17.9		ug/L		90	70 - 130	5	39
Toluene	20.0	20.1		ug/L		100	70 - 130	5	41
trans-1,2-Dichloroethene	20.0	23.3		ug/L		117	70 - 130	6	45
trans-1,3-Dichloropropene	20.0	21.3		ug/L		106	50 - 150	2	86
Trichloroethene	20.0	22.0		ug/L		110	65 - 135	4	48
Vinyl chloride	20.0	22.3		ug/L		112	5 - 195	4	66

Eurofins TestAmerica, Buffalo

Page 19 of 33

12/16/2020

Client: New York State D.E.C. Job ID: 480-178915-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

100

Lab Sample ID: LCSD 460-744596/6 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

> Limits 60 - 140 60 - 140

60 - 140

Matrix: Water

Analysis Batch: 744596

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	
1,2-Dichloroethane-d4 (Surr)	116		
4-Bromofluorobenzene	91		

Dibromofluoromethane (Surr) 116 60 - 140 Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-561871/28 **Client Sample ID: Method Blank**

Matrix: Water

Toluene-d8 (Surr)

Analysis Batch: 561871

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	ND	2.0	0.35 mg/L			12/03/20 23:07	1

Lab Sample ID: MB 480-561871/4 Client Sample ID: Method Blank **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 561871

	IAID IAID						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	ND —	2.0	0.35 mg/L			12/03/20 17:17	1

Lab Sample ID: LCS 480-561871/27 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 561871

	Spike	LCS LCS				%Rec.	
Analyte	Added	Result Qualifi	er Unit	D	%Rec	Limits	
Sulfate	50.0	49.66	ma/l		99	90 110	

Lab Sample ID: LCS 480-561871/3 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 561871

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	 	50.0	50.00		ma/L		100	90 - 110	

Lab Sample ID: 480-178915-2 MS Client Sample ID: MW-5R-DEC20 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 561871

7 maryolo Batom oo lor 1										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	298		250	523.1	E	mg/L		90	80 - 120	

Lab Sample ID: 480-178915-2 MSD Client Sample ID: MW-5R-DEC20 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 561871

Allalysis Batchi. 001071											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfate	298		250	524.7	E	mg/L		91	80 - 120	0	15

Eurofins TestAmerica, Buffalo

12/16/2020

Prep Type: Total/NA

Job ID: 480-178915-1

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 480-563199/28

Matrix: Water

Analysis Batch: 563199

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac ND 5.0 0.79 mg/L 12/14/20 11:54 0.79 mg/L ND 5.0 12/14/20 11:54 ND 5.0 0.79 mg/L 12/14/20 11:54 ND 5.0 0.79 mg/L 12/14/20 11:54

Lab Sample ID: MB 480-563199/4

Matrix: Water

Analyte

Alkalinity, Total

Alkalinity, Bicarbonate

Alkalinity, Carbonate

Hydroxide Alkalinity

Analysis Batch: 563199

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Alkalinity, Total ND 5.0 0.79 mg/L 12/14/20 08:50 Alkalinity, Bicarbonate ND 5.0 0.79 mg/L 12/14/20 08:50 Alkalinity, Carbonate ND 5.0 0.79 mg/L 12/14/20 08:50 Hydroxide Alkalinity ND 5.0 0.79 mg/L 12/14/20 08:50

Lab Sample ID: MB 480-563199/52

Matrix: Water

Analysis Batch: 563199

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Alkalinity, Total	ND -	5.0	0.79 mg/L		12/14/20 15:05	1
Alkalinity, Bicarbonate	ND	5.0	0.79 mg/L		12/14/20 15:05	1
Alkalinity, Carbonate	ND	5.0	0.79 mg/L		12/14/20 15:05	1
Hydroxide Alkalinity	ND	5.0	0.79 mg/L		12/14/20 15:05	1

Lab Sample ID: LCS 480-563199/29

Matrix: Water

Analysis Batch: 563199

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity Total		96 72		ma/l		97	90 - 110	

Lab Sample ID: LCS 480-563199/5

Matrix: Water

Analysis Batch: 563199

	Spike	LCS LCS			%Rec.	
Analyte	Added	Result Qualifier	Unit D	%Rec	Limits	
Alkalinity. Total		97.92	ma/L	98	90 - 110	

Lab Sample ID: LCS 480-563199/53

Matrix: Water

Analysis Batch: 563199

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity, Total	100	96.16		mg/L		96	90 - 110	

Eurofins TestAmerica, Buffalo

12/16/2020

Client: New York State D.E.C. Job ID: 480-178915-1

Project/Site: Davis-Howland Oil Corp #828088

Method: SM 2320B - Alkalinity (Continued)

Lab Sample ID: 480-178915-2 MS Client Sample ID: MW-5R-DEC20 **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 563199

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Alkalinity, Total 304 F1 100 356.3 F1 mg/L 53 60 - 140

Lab Sample ID: 480-178915-2 MSD Client Sample ID: MW-5R-DEC20 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 563199

RPD Sample Sample Spike MSD MSD %Rec. **Analyte** Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Alkalinity, Total 304 F1 100 353.2 F1 50 60 - 140 mg/L

QC Association Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

GC/MS VOA

Analysis Batch: 744421

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178915-1	TB-20201202	Total/NA	Water	624.1	
480-178915-2	MW-5R-DEC20	Total/NA	Water	624.1	
480-178915-3	RB-20201202-FA1805	Total/NA	Water	624.1	
480-178915-4	MW-14R-DEC20	Total/NA	Water	624.1	
MB 460-744421/8	Method Blank	Total/NA	Water	624.1	
LCS 460-744421/4	Lab Control Sample	Total/NA	Water	624.1	
480-178915-2 MS	MW-5R-DEC20	Total/NA	Water	624.1	
480-178915-2 MSD	MW-5R-DEC20	Total/NA	Water	624.1	

Analysis Batch: 744596

Lab Sample ID 480-178915-5	Client Sample ID MW-10R-DEC20	Prep Type Total/NA	Matrix Water	Method 624.1	Prep Batch
MB 460-744596/9	Method Blank	Total/NA	Water	624.1	
LCS 460-744596/5	Lab Control Sample	Total/NA	Water	624.1	
LCSD 460-744596/6	Lab Control Sample Dup	Total/NA	Water	624.1	

General Chemistry

Analysis Batch: 561871

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178915-2	MW-5R-DEC20	Total/NA	Water	300.0	
480-178915-4	MW-14R-DEC20	Total/NA	Water	300.0	
480-178915-5	MW-10R-DEC20	Total/NA	Water	300.0	
480-178915-6	MW-16R-DEC20	Total/NA	Water	300.0	
MB 480-561871/28	Method Blank	Total/NA	Water	300.0	
MB 480-561871/4	Method Blank	Total/NA	Water	300.0	
LCS 480-561871/27	Lab Control Sample	Total/NA	Water	300.0	
LCS 480-561871/3	Lab Control Sample	Total/NA	Water	300.0	
480-178915-2 MS	MW-5R-DEC20	Total/NA	Water	300.0	
480-178915-2 MSD	MW-5R-DEC20	Total/NA	Water	300.0	

Analysis Batch: 563199

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178915-2	MW-5R-DEC20	Total/NA	Water	SM 2320B	
480-178915-4	MW-14R-DEC20	Total/NA	Water	SM 2320B	
480-178915-5	MW-10R-DEC20	Total/NA	Water	SM 2320B	
480-178915-6	MW-16R-DEC20	Total/NA	Water	SM 2320B	
MB 480-563199/28	Method Blank	Total/NA	Water	SM 2320B	
MB 480-563199/4	Method Blank	Total/NA	Water	SM 2320B	
MB 480-563199/52	Method Blank	Total/NA	Water	SM 2320B	
LCS 480-563199/29	Lab Control Sample	Total/NA	Water	SM 2320B	
LCS 480-563199/5	Lab Control Sample	Total/NA	Water	SM 2320B	
LCS 480-563199/53	Lab Control Sample	Total/NA	Water	SM 2320B	
480-178915-2 MS	MW-5R-DEC20	Total/NA	Water	SM 2320B	
480-178915-2 MSD	MW-5R-DEC20	Total/NA	Water	SM 2320B	

Page 23 of 33

Job ID: 480-178915-1

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201202

Date Collected: 12/02/20 09:00

Date Received: 12/02/20 17:15

Lab Sample ID: 480-178915-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1			744421	12/04/20 14:44	CJM	TAL EDI

Client Sample ID: MW-5R-DEC20

Date Collected: 12/02/20 11:05 Date Received: 12/02/20 17:15

Lab Sample ID: 480-178915-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1			744421	12/04/20 15:29	CJM	TAL EDI
Total/NA	Analysis	300.0		5	561871	12/04/20 00:34	IMZ	TAL BUF
Total/NA	Analysis	SM 2320B		1	563199	12/14/20 12:07	DLG	TAL BUF

Client Sample ID: RB-20201202-FA1805

Date Collected: 12/02/20 12:30 Date Received: 12/02/20 17:15 Lab Sample ID: 480-178915-3

Matrix: Water

Dilution Batch Batch Batch Prepared **Prep Type** Type Method **Factor** Number or Analyzed Run Analyst Lab TAL EDI Total/NA Analysis 624.1 744421 12/04/20 15:06 CJM

Client Sample ID: MW-14R-DEC20

Date Collected: 12/02/20 13:25 Date Received: 12/02/20 17:15

Lab Sample ID: 480-178915-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	744421	12/04/20 15:52	CJM	TAL EDI
Total/NA	Analysis	300.0		2	561871	12/03/20 20:55	IMZ	TAL BUF
Total/NA	Analysis	SM 2320B		1	563199	12/14/20 10:38	DLG	TAL BUF

Client Sample ID: MW-10R-DEC20

Date Collected: 12/02/20 10:55

Date Received: 12/02/20 17:15

Lab S	ample	ID:	480-178	3915-5
			Matrix	: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		2	744596	12/04/20 23:00	MZS	TAL EDI
Total/NA	Analysis	300.0		5	561871	12/03/20 21:10	IMZ	TAL BUF
Total/NA	Analysis	SM 2320B		1	563199	12/14/20 10:45	DLG	TAL BUF

Client Sample ID: MW-16R-DEC20

Date Collected: 12/02/20 09:20

Date Received: 12/02/20 17:15

Lab Sample ID: 480-178915-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	561871	12/03/20 21:25	IMZ	TAL BUF
Total/NA	Analysis	SM 2320B		1	563199	12/14/20 10:53	DLG	TAL BUF

Lab Chronicle

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Job ID: 480-178915-1

Accreditation/Certification Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-178915-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date
New York		NELAP	10026	04-01-21
the agency does not o	offer certification.	•	, , ,	This list may include analytes for which
Analysis Mathed				
Analysis Method SM 2320B	Prep Method	Matrix Water	Analyte Alkalinity Bicarbonate	
Analysis Method SM 2320B SM 2320B	Prep Method	Matrix Water Water	Analyte Alkalinity, Bicarbonate Alkalinity, Carbonate	

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
New York	NE	ELAP	11452	04-01-21
The following englyte	a ara inaludad in this rana			Title 19 4
the agency does not	•	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
0 ,	•	ort, but the laboratory is r Matrix	Analyte	I his list may include analytes for which

Method Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method **Method Description** Protocol Laboratory 40CFR136A TAL EDI 624.1 Volatile Organic Compounds (GC/MS) MCAWW 300.0 Anions, Ion Chromatography **TAL BUF** SM 2320B SM **TAL BUF** Alkalinity

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Job ID: 480-178915-1

3

4

O

7

ŏ

9

11

12

14

Sample Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-178915-1	TB-20201202	Water	12/02/20 09:00	12/02/20 17:15	
480-178915-2	MW-5R-DEC20	Water	12/02/20 11:05	12/02/20 17:15	
480-178915-3	RB-20201202-FA1805	Water	12/02/20 12:30	12/02/20 17:15	
480-178915-4	MW-14R-DEC20	Water	12/02/20 13:25	12/02/20 17:15	
480-178915-5	MW-10R-DEC20	Water	12/02/20 10:55	12/02/20 17:15	
480-178915-6	MW-16R-DEC20	Water	12/02/20 09:20	12/02/20 17:15	

Job ID: 480-178915-1

3

4

D

7

10

11

13

14

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

Erotromment Testing

: eurofins

M - Hexane
N - Nane
N - Nane
N - Na204S
P - Na204S
Q - Na2S03
R - Na2S03
S - H2S04
T - TSP Dodecahydrate 3 Sulfite bottes - (1) toone, (1) 25 0-me, (1) 125 me, rische plank COMPANY CARCAMO Special Instructions/Note: U - Acetone V - MCAA W - pH 4-5 Z - other (specify) Months Fire sate stack Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Quisposal By Lab Archive For Month Page aots | of COC No: 480-153402-34083.3 Preservation Codes. Tro 814 A - HCL
B - NaOH
C - Zn Acetate
D - Ninre Acid
dat/SO4
Northlor
Amchlor
Amchlor
Ascorbic Acid ie Ol Water EDTA 175 3 T N W Total Number of Date/Time: |20 Date/Time: thod of Shipment 480-178915 Chain of Custody State of Origin: J Analysis Requested Cooler Temperature(s) "C and Other Remarks." Special Instructions/QC Requirements 2 E-Mail: Orlette:Johnson@Eurofinset.com 2/2/20 X 5350B - VIKBIIUITÀ eceived by: X 00.0 28D - (MOD) Sulfate Lab PM: Johnson, Orlette S I × F.ASB - AOV - 121J Instulled Vinoing -Time: 7 Perform MS/MSD (Yes or No) illered Sample (Yes or No) USP Water Water Water Preservation Code Water Water Water Matrix Water Water Radiological Type (C=comp, G=grab) 17 Sample 88 13 1345 KB none: 1716/864-8060 13:40 10:55 12/2020 09:00 2/2/20/12:30 12/2/12/13:25 12/2/11/11:05 2/1/2020 Sample Time SW. B Date: Unknown 'AT Requested (days): CallOut ID: 136612 Due Date Requested: Compliance Project: 12/2/20 Sample Date Project #: 48019422 SSOW#: Jate/Time: Poison B #OM RB-201262-143089 Skin trritant 325 Broadway Division of Environmental Remediation FOU PURGETHER PECTO R8-20201202-FA1805 Deliverable Requested: I. III, IV, Other (specify) Custody Seal No. MW-16R-DEC20 MW-14K-DEC 20 まる もの・かけつり -26201202 Davis-Howland Oll Corp #828088 Possible Hazard Identification MW-58-0E (2) lenelle.gaylord@dec.ny.gov Empty Kit Relinquished by Custody Seals Intact: Client Information Sample Identification New York State D.E.C. A Yes A No Non-Hazard State, Zip: NY, 12233-7014 enelle Gaylord 12 inquished by. riquished by: yd bedsingr Albany

eurofins Environment Testing America

EUROTINS LESTAMERICA, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Client Information	Sampler: CW, C	Lab PM: Johnson	Lab PM: Johnson, Orlette S	Carrier Tracking No(s):	COC No: 480-153402-34083.1	83.1
Client Contact: Jenelle Gaylord	Phone: (716 % 84-8060	E-Mail: Orlette.J	E-Mail: Orlette.Johnson@Eurofinset.com	State of Origin:	Page:	
Company: New York State D.E.C.	DWSID		Analysis Requested	equested	Job #:	
Address: 625 Broadway Division of Environmental Remediation	Due Date Requested:				Preservation Codes	es:
Gity:	TAT Requested (days):				A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
State, Zip: NY, 12233-7014	Compliance Project: A Yes A No		624.		D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3
Phone:	Po #. CallOut ID: 136612	(0	AOV -		G - Amchlor H - Ascorbic Acid	R - Nazszo3 S - H2SO4 T - TSP Dodecahydrate
Email: jenelle.gaylord@dec.ny.gov	WO#.	S OF N	-		I - Ice	U - Acetone V - MCAA
Project Name: Davis-Howland Oil Corp #828088	Project #: 48019422	6 (Yes	Polluta		taine L-EDA	W - pH 4-5 Z - other (specify)
Site:	SSOW#:	Sampl	riority I		of con	
Samnle Identification	Sample Date Time G=	Sample Matrix 60 Type (W-water, LC-Comp. C-sasolid, C-Comp. G-sasolid, G-Crab.) RTTTraus Asia) 10 G-Crab.) RTTTraus Asia) 10 G-Crab.) RTTTraus Asia) 10 G-Crab.	MZM morheq 200.02 - PREC - PI 300.02 - Alkalinin		Total Number	Special Instructions Note:
	X	ation Code:	z			
MW)-162-DEC20	12/2/2020 9:20	Water	1		2	
		Water			10,1	
		Water			SAMPLES	BROKE IN-
		Water			TRANSIT TO CASS	rocass bud
		Water	9		10) N	A
	,	Water	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		Water	42/2/			
		Water	7/			
		Water				
		Water				
		Water				
Possible Hazard Identification	Ded mucuyal	leginoloiped	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	/ be assessed if samples	s are retained longer than	1 month)
ssted: I, II, III, IV, Other (specify)	Ollviowi	in officer	Requi	ements:	D. DANS	2000
		_	Time:	Method of Shipment:	nt	
Relinquished by: CW	Date/Time: 12/2/2020	Company	Received by	Date/Time:	The 2/20 1715	Company ETA SUPPAL
Relinquished by:	Date/Time:	Company	Received by:	Date/Time	īme:	Company
Relinquished by:	Date/Time:	Company	Received by:	Date/Time	īme:	Company
Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s) °C and Other Remarks	er Remarks:		
						Ver: 11/01/2020

Simple Section Simp	Carrier Tracking No(s); COC No: 480-60711 1
Analysis	State of Origin: Page. New York Page 1 of 1
1215/2020 1215	
The properties of the page Properties	
120	A HCL M. Hekane B. NaOH N. None C. ZA Acade O. AsNaOz
Poper	
Note: Note: Note:	
Sample Matrix Sample M	I - Ice J - DI Water
Sample Identification - Client ID (Lab ID) Sample Date Time Sample Watrix Sample Watrix Sample Watrix Sample Carcinon C	K - EDTA L - EDA
Sample Identification - Client ID (Lab ID) Sample Date Sample C=Comp c=com	oo to tedmuM
12/2/20 12/2	Special Instructions/Note:
12/2/20	
W-SR-DEC20 (480-178915-2) 12/2/20 12/2/20 11:05 assignment MS between the compliance are subject to change. Eurofine TestAmerica places the connected attention in the State of Ongin Islaed above for analysishest bimmary Deliverable Rank: 2 12/2/20 12/2/20 12/2/20 12/2/20 Resident to change. Eurofine TestAmerica places the connecting of method, analyse & accreditations are subject to change. Eurofine TestAmerica places the connecting of method, analyse & accreditation on the State of Ongin Islaed above for analysishests/mentor abecome the samples must be shipped back to the Eurofine TestAmerica. NA Ample Disposal (A fee majoratory or other insporatory or other insporatory. Sample Disposal (A fee majoratory or other insporatory or other insporatory or other insporatory. Accepted by: Accepted	-
IW-SR-DEC20 (480-178915-2MS) 11:05 MSD Water X IW-SR-DEC20 (480-178915-3) 12/2/20 12/2/20 12/2/20 12/2/20 12/2/20 X X IB-20201202-FA1805 (480-178915-4) 12/2/20 12/2/20 13:25 Water X X IB-20201202-FA1805 (480-178915-4) 12/2/20 12/2/20 13:25 Water X X IW-10R-DEC20 (480-178915-4) 12/2/20 12/2/20 13:25 Water X X IW-10R-DEC20 (480-178915-5) 12/2/20 12/2/20 13:25 Water X X IW-10R-DEC20 (480-178915-5) 12/2/20 12/2/20 Eastern X X X IW-10R-DEC20 (480-178915-5) 12/2/20 12/2/20 Eastern X X X IN-10R-DEC20 (480-178915-5) 12/2/20 12/2/20 Eastern X X X Incompanion on the State of Origin listed above for analysis/restriction are subject to change Eurofine Testkomerica above for analysis/restriction are current to date, return the signed Change Eurofine Testkomerica are subject to change Eurofine Testkom	3
WV-5R-DEC20 (480-178915-2MSD) 12/2/20 Eastern for a state of the control of the cont	8
B-20201202-FA1805 (480-178915-3) 12/2/20 Eastern X X X X X X X X X X X X X X X X X X X	8
IW-10R-DEC20 (480-178915-4) IW-10R-DEC20 (480-178915-4) IW-10R-DEC20 (480-178915-4) IW-10R-DEC20 (480-178915-5) IW-10R-DEC20 (480-178915-5) IW-10R-DEC20 (480-178915-5) IW-10R-DEC20 (480-178915-5) IW-10R-DEC20 (480-178915-4) IW-10R-DEC20 (48	W
IW-10R-DEC20 (480-178915-5) Water X Water X Water X I 2/2/20 Eastern Fastern F	n
increasing the British of Mark Relinquished by: Experiment	6
ossible Hazard Identification confirmed and confirmed are current to date, including the signed chain of custody susain confirmed and confirmed are current to date, including the signed chain of custody and confirmed are current to date. Sample Disposal (A fee ma) Action To Client and Special Instructions/QC Required by: Time:	This sample shipment is forwarded under chain-of-custody. If the laboratory doe silons will be provided. Any changes to accreditation status should be brought to
inquished by: Tinguished by: Company Co	to catanins i seventenca. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
Inquished by: Machine C 63 2 C Company Triniary Date: Triniary Date: Triniary Date: Triniary Date: Company Triniary Date: Triniary	Disposal By Lab Archive For Months
WWW. Wow (Wolls Date/Time (2/63/20 Powerty)	qui emems. Method of Shioment
Date Time	Falley Date/Ime. 14/20 11CC
Company	
Received by: Company Received by:	Date/Time: Company

Client: New York State D.E.C.

Job Number: 480-178915-1

Login Number: 178915 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

Creator. Sabuda, Brendan D		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.6 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Client: New York State D.E.C. Job Number: 480-178915-1

Login Number: 178915
List Source: Eurofins TestAmerica, Edison
List Number: 2
List Creation: 12/04/20 12:56 PM

Creator: Armbruster, Chris

Creator: Armbruster, Chris		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	1427197, 1427196
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	5.9, 4.2°C IR11
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	False	Containers recd broken. Sufficient sample in remaining containers for analysis.
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

5

4

7

9

10

12

.

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-178952-1

Client Project/Site: Davis-Howland Oil Corp #828088

For:

New York State D.E.C. 625 Broadway Division of Environmental Remediation Albany, New York 12233-7014

Attn: Jenelle Gaylord

Authorized for release by:

12/14/2020 12:44:16 PM

Orlette Johnson, Senior Project Manager (484)685-0864

Orlette.Johnson@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

6

Q

9

11

12

Orlette Johnson

Senior Project Manager 12/14/2020 12:44:16 PM Laboratory Job ID: 480-178952-1

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Page 2 of 24

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	16
Lab Chronicle	17
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	23

10

12

13

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-178952-1

Project/Site: Davis-Howland Oil Corp #828088

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Case Narrative

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-178952-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-178952-1

Receipt

The samples were received on 12/3/2020 1:45 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.4° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

1

Job ID: 480-178952-1

3

4

_

Я

9

10

13

14

Detection Summary

Client: New York State D.E.C. Job ID: 480-178952-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-16R-DEC20

Lab Sample ID: 480-178952-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane		1.0	0.26	ug/L	1	_	624.1	Total/NA
1,1-Dichloroethene	4.4	1.0	0.12	ug/L	1		624.1	Total/NA
1,2-Dichloroethene, Total	350	2.0	0.44	ug/L	1		624.1	Total/NA
trans-1,2-Dichloroethene	2.3	1.0	0.24	ug/L	1		624.1	Total/NA
Vinyl chloride	110	1.0	0.34	ug/L	1		624.1	Total/NA

Client Sample ID: IDW-PURGEWATER-DEC20

Lab Sample ID: 480-178952-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Met	hod	Prep Type
1,1,1-Trichloroethane	0.34	J –	1.0	0.24	ug/L	1	624	.1	Total/NA
1,1-Dichloroethane	5.8		1.0	0.26	ug/L	1	624	.1	Total/NA
1,2-Dichloroethene, Total	1.9	J	2.0	0.44	ug/L	1	624	.1	Total/NA
Chloromethane	2.5		1.0	0.43	ug/L	1	624	.1	Total/NA
trans-1,2-Dichloroethene	0.33	J	1.0	0.24	ug/L	1	624	.1	Total/NA
Trichloroethene	3.4		1.0	0.31	ug/L	1	624	.1	Total/NA

Client Sample ID: TB-20201203

Lab Sample ID: 480-178952-3

	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Ī	Methylene Chloride	0.39	J	1.0	0.32	ug/L	1	_	624.1	Total/NA

This Detection Summary does not include radiochemical test results.

3

5

8

1 1

12

13

14

15

12/14/2020

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-16R-DEC20

Client: New York State D.E.C.

Lab Sample ID: 480-178952-1

Date Collected: 12/03/20 11:40 **Matrix: Water** Date Received: 12/03/20 13:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			12/04/20 22:38	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			12/04/20 22:38	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			12/04/20 22:38	1
1,1-Dichloroethane	15		1.0	0.26	ug/L			12/04/20 22:38	1
1,1-Dichloroethene	4.4		1.0	0.12	ug/L			12/04/20 22:38	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/04/20 22:38	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			12/04/20 22:38	1
1,2-Dichloroethene, Total	350		2.0	0.44	ug/L			12/04/20 22:38	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			12/04/20 22:38	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/04/20 22:38	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/04/20 22:38	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/04/20 22:38	1
Acrolein	ND		4.0	1.1	ug/L			12/04/20 22:38	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/04/20 22:38	1
Benzene	ND		1.0	0.43	ug/L			12/04/20 22:38	1
Bromoform	ND		1.0	0.54	ug/L			12/04/20 22:38	1
Bromomethane	ND		1.0	0.45	ug/L			12/04/20 22:38	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/04/20 22:38	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/04/20 22:38	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/04/20 22:38	1
Chloroethane	ND		1.0	0.32	ug/L			12/04/20 22:38	1
Chloroform	ND		1.0	0.33	ug/L			12/04/20 22:38	1
Chloromethane	ND		1.0	0.43	ug/L			12/04/20 22:38	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/04/20 22:38	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/04/20 22:38	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/04/20 22:38	1
Methylene Chloride	ND		1.0	0.32	ug/L			12/04/20 22:38	1
Tetrachloroethene	ND		1.0	0.25	ug/L			12/04/20 22:38	1
Toluene	ND		1.0	0.38	ug/L			12/04/20 22:38	1
trans-1,2-Dichloroethene	2.3		1.0	0.24	ug/L			12/04/20 22:38	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			12/04/20 22:38	1
Trichloroethene	ND		1.0	0.31	ug/L			12/04/20 22:38	1
Vinyl chloride	110		1.0	0.34	ug/L			12/04/20 22:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	120		60 - 140			-		12/04/20 22:38	1
4-Bromofluorobenzene	84		60 - 140					12/04/20 22:38	1
Toluene-d8 (Surr)	99		60 - 140					12/04/20 22:38	1
Dibromofluoromethane (Surr)	116		60 - 140					12/04/20 22:38	1

Client Sample ID: IDW-PURGEWATER-DEC20 Lab Sample ID: 480-178952-2

Date Collected: 12/03/20 12:00 Date Received: 12/03/20 13:45

Method: 624.1 - Volatile Organic Compounds (GC/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.34	J	1.0	0.24	ug/L			12/04/20 17:00	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			12/04/20 17:00	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			12/04/20 17:00	1
1.1-Dichloroethane	5.8		1.0	0.26	ua/L			12/04/20 17:00	1

Eurofins TestAmerica, Buffalo

Matrix: Water

Page 7 of 24 12/14/2020

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: IDW-PURGEWATER-DEC20

Date Collected: 12/03/20 12:00 Date Received: 12/03/20 13:45 Lab Sample ID: 480-178952-2

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.0	0.12	ug/L			12/04/20 17:00	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/04/20 17:00	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			12/04/20 17:00	1
1,2-Dichloroethene, Total	1.9	J	2.0	0.44	ug/L			12/04/20 17:00	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			12/04/20 17:00	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/04/20 17:00	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/04/20 17:00	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/04/20 17:00	1
Acrolein	ND		4.0	1.1	ug/L			12/04/20 17:00	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/04/20 17:00	1
Benzene	ND		1.0	0.43	ug/L			12/04/20 17:00	1
Bromoform	ND		1.0	0.54	ug/L			12/04/20 17:00	1
Bromomethane	ND		1.0	0.45	ug/L			12/04/20 17:00	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/04/20 17:00	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/04/20 17:00	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/04/20 17:00	1
Chloroethane	ND		1.0	0.32	ug/L			12/04/20 17:00	1
Chloroform	ND		1.0	0.33	ug/L			12/04/20 17:00	1
Chloromethane	2.5		1.0	0.43	ug/L			12/04/20 17:00	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/04/20 17:00	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/04/20 17:00	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/04/20 17:00	1
Methylene Chloride	ND		1.0	0.32	ug/L			12/04/20 17:00	1
Tetrachloroethene	ND		1.0	0.25	ug/L			12/04/20 17:00	1
Toluene	ND		1.0	0.38	ug/L			12/04/20 17:00	1
trans-1,2-Dichloroethene	0.33	J	1.0	0.24	ug/L			12/04/20 17:00	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			12/04/20 17:00	1
Trichloroethene	3.4		1.0	0.31	ug/L			12/04/20 17:00	1
Vinyl chloride	ND		1.0	0.34	ug/L			12/04/20 17:00	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	120		60 - 140	12/04/20 17:0) 1
4-Bromofluorobenzene	86		60 - 140	12/04/20 17:0) 1
Toluene-d8 (Surr)	100		60 - 140	12/04/20 17:0) 1
Dibromofluoromethane (Surr)	121		60 - 140	12/04/20 17:0) 1

Client Sample ID: TB-20201203

Date Collected: 12/03/20 00:00 Date Received: 12/03/20 13:45 Lab Sample ID: 480-178952-3

Matrix: Water

Method: 624.1 - Volatile O	rganic Compounds ((GC/MS)
----------------------------	--------------------	---------

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0	0.24	ug/L			12/04/20 14:21	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.37	ug/L			12/04/20 14:21	1
1,1,2-Trichloroethane	ND	1.0	0.15	ug/L			12/04/20 14:21	1
1,1-Dichloroethane	ND	1.0	0.26	ug/L			12/04/20 14:21	1
1,1-Dichloroethene	ND	1.0	0.12	ug/L			12/04/20 14:21	1
1,2-Dichlorobenzene	ND	1.0	0.19	ug/L			12/04/20 14:21	1
1,2-Dichloroethane	ND	1.0	0.84	ug/L			12/04/20 14:21	1
1,2-Dichloroethene, Total	ND	2.0	0.44	ug/L			12/04/20 14:21	1

Eurofins TestAmerica, Buffalo

Page 8 of 24

12/14/2020

Client: New York State D.E.C. Job ID: 480-178952-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201203

Date Collected: 12/03/20 00:00 Date Received: 12/03/20 13:45 Lab Sample ID: 480-178952-3

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND ND		1.0	0.35	ug/L			12/04/20 14:21	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/04/20 14:21	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/04/20 14:21	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/04/20 14:21	1
Acrolein	ND		4.0	1.1	ug/L			12/04/20 14:21	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/04/20 14:21	1
Benzene	ND		1.0	0.43	ug/L			12/04/20 14:21	1
Bromoform	ND		1.0	0.54	ug/L			12/04/20 14:21	1
Bromomethane	ND		1.0	0.45	ug/L			12/04/20 14:21	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/04/20 14:21	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/04/20 14:21	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/04/20 14:21	1
Chloroethane	ND		1.0	0.32	ug/L			12/04/20 14:21	1
Chloroform	ND		1.0	0.33	ug/L			12/04/20 14:21	1
Chloromethane	ND		1.0	0.43	ug/L			12/04/20 14:21	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/04/20 14:21	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/04/20 14:21	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/04/20 14:21	1
Methylene Chloride	0.39	J	1.0	0.32	ug/L			12/04/20 14:21	1
Tetrachloroethene	ND		1.0	0.25	ug/L			12/04/20 14:21	1
Toluene	ND		1.0	0.38	ug/L			12/04/20 14:21	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			12/04/20 14:21	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			12/04/20 14:21	1
Trichloroethene	ND		1.0	0.31	ug/L			12/04/20 14:21	1
Vinyl chloride	ND		1.0	0.34	ug/L			12/04/20 14:21	1

Surrogate	%Recovery 0	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	121	60 - 14)	12/04/20 14:21	1
4-Bromofluorobenzene	91	60 - 14)	12/04/20 14:21	1
Toluene-d8 (Surr)	102	60 - 14)	12/04/20 14:21	1
Dibromofluoromethane (Surr)	120	60 - 14)	12/04/20 14:21	1

Eurofins TestAmerica, Buffalo

3

5

8

10

11 12

13

14

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-178952-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				ercent Surro	•
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(60-140)	(60-140)	(60-140)	(60-140)
480-178952-1	MW-16R-DEC20	120	84	99	116
480-178952-2	IDW-PURGEWATER-DEC20	120	86	100	121
480-178952-3	TB-20201203	121	91	102	120
LCS 460-744421/4	Lab Control Sample	115	90	102	119
LCS 460-744596/5	Lab Control Sample	116	91	100	117
LCSD 460-744596/6	Lab Control Sample Dup	116	91	100	116
MB 460-744421/8	Method Blank	116	88	100	116
MB 460-744596/9	Method Blank	118	90	97	116

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Client: New York State D.E.C. Job ID: 480-178952-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 460-744421/8

Matrix: Water

Analysis Batch: 744421

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			12/04/20 09:49	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			12/04/20 09:49	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			12/04/20 09:49	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			12/04/20 09:49	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			12/04/20 09:49	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/04/20 09:49	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			12/04/20 09:49	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			12/04/20 09:49	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			12/04/20 09:49	1
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L			12/04/20 09:49	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/04/20 09:49	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/04/20 09:49	1
Acrolein	ND		4.0	1.1	ug/L			12/04/20 09:49	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/04/20 09:49	1
Benzene	ND		1.0	0.43	ug/L			12/04/20 09:49	1
Bromoform	ND		1.0	0.54	ug/L			12/04/20 09:49	1
Bromomethane	ND		1.0	0.45	ug/L			12/04/20 09:49	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/04/20 09:49	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/04/20 09:49	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/04/20 09:49	1
Chloroethane	ND		1.0	0.32	ug/L			12/04/20 09:49	1
Chloroform	ND		1.0	0.33	ug/L			12/04/20 09:49	1
Chloromethane	ND		1.0	0.43	ug/L			12/04/20 09:49	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/04/20 09:49	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/04/20 09:49	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/04/20 09:49	1
Methylene Chloride	ND		1.0	0.32	ug/L			12/04/20 09:49	1
Tetrachloroethene	ND		1.0	0.25	ug/L			12/04/20 09:49	1
Toluene	ND		1.0	0.38	ug/L			12/04/20 09:49	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			12/04/20 09:49	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			12/04/20 09:49	1
Trichloroethene	ND		1.0	0.31	ug/L			12/04/20 09:49	1
Vinyl chloride	ND		1.0	0.34	ug/L			12/04/20 09:49	1

Surrogate	%Recovery 0	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116		60 - 140		12/04/20 09:49	1
4-Bromofluorobenzene	88		60 - 140		12/04/20 09:49	1
Toluene-d8 (Surr)	100		60 - 140		12/04/20 09:49	1
Dibromofluoromethane (Surr)	116		60 - 140		12/04/20 09:49	1

Lab Sample ID: LCS 460-744421/4

Matrix: Water

Analysis Batch: 744421

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	21.9		ug/L		109	70 - 130	
1,1,2,2-Tetrachloroethane	20.0	20.7		ug/L		104	60 - 140	
1,1,2-Trichloroethane	20.0	18.8		ug/L		94	70 - 130	

Eurofins TestAmerica, Buffalo

Client Sample ID: Lab Control Sample

Page 11 of 24

Prep Type: Total/NA

QC Sample Results

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-744421/4

Matrix: Water

Analysis Batch: 744421

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-178952-1

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 1,1-Dichloroethane 20.0 21.6 108 70 - 130 ug/L 1,1-Dichloroethene 20.0 21.2 ug/L 106 50 - 150 1,2-Dichlorobenzene 20.0 ug/L 89 65 - 135 17.7 1,2-Dichloroethane 20.0 22.0 ug/L 110 70 - 130 20.0 21.0 105 35 - 165 1,2-Dichloropropane ug/L 1,3-Dichlorobenzene 20.0 17.6 ug/L 88 70 - 130 1,4-Dichlorobenzene 20.0 17.7 ug/L 89 65 - 135 2-Chloroethyl vinyl ether 20.0 19.6 ug/L 98 0.1 - 225Benzene 20.0 18.8 ug/L 94 65 - 13520.5 70 - 130 Bromoform 20.0 ug/L 102 Bromomethane 20.0 115 23.0 ug/L 15 - 185 109 Carbon tetrachloride 20.0 ug/L 70 - 130 21.8 Chlorobenzene 20.0 90 65 - 135 17.9 ug/L Chlorodibromomethane 20.0 17.8 ug/L 89 70 - 135 Chloroethane 20.0 22.0 ug/L 110 40 - 160 Chloroform 20.0 109 21.9 ug/L 70 - 135 Chloromethane 20.0 20.8 104 0.1 - 205ug/L cis-1,3-Dichloropropene 20.0 19.5 97 25 - 175 ug/L Dichlorobromomethane 20.0 20.9 ug/L 104 65 - 135 ug/L Ethylbenzene 20.0 18.8 94 60 - 140 Methylene Chloride 20.0 21.5 ug/L 108 60 - 140 Tetrachloroethene 20.0 17.4 ug/L 87 70 - 130Toluene 20.0 18.4 ug/L 92 70 - 130 trans-1,2-Dichloroethene 20.0 22.6 ug/L 113 70 - 130 trans-1,3-Dichloropropene 20.0 19.8 99 50 - 150 ug/L Trichloroethene 20.0 20.1 100 65 - 135 ug/L Vinyl chloride 20.0 22.1 5 - 195 ug/L 111

LCS LCS

MR MR

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	115		60 - 140
4-Bromofluorobenzene	90		60 - 140
Toluene-d8 (Surr)	102		60 - 140
Dibromofluoromethane (Surr)	119		60 - 140

Lab Sample ID: MB 460-744596/9

Matrix: Water

Analysis Batch: 744596

Client Sample ID: Method Blank Prep Type: Total/NA

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.24	ug/L			12/04/20 21:30	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.37	ug/L			12/04/20 21:30	1
1,1,2-Trichloroethane	ND		1.0	0.15	ug/L			12/04/20 21:30	1
1,1-Dichloroethane	ND		1.0	0.26	ug/L			12/04/20 21:30	1
1,1-Dichloroethene	ND		1.0	0.12	ug/L			12/04/20 21:30	1
1,2-Dichlorobenzene	ND		1.0	0.19	ug/L			12/04/20 21:30	1
1,2-Dichloroethane	ND		1.0	0.84	ug/L			12/04/20 21:30	1
1,2-Dichloroethene, Total	ND		2.0	0.44	ug/L			12/04/20 21:30	1
1,2-Dichloropropane	ND		1.0	0.35	ug/L			12/04/20 21:30	1

Eurofins TestAmerica, Buffalo

Page 12 of 24

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 460-744596/9

Matrix: Water

Analysis Batch: 744596

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-178952-1

7 maryoro Datom 1 1 1000	МВ	МВ							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND		1.0	0.13	ug/L		<u> </u>	12/04/20 21:30	1
1,4-Dichlorobenzene	ND		1.0	0.18	ug/L			12/04/20 21:30	1
2-Chloroethyl vinyl ether	ND		1.0	0.91	ug/L			12/04/20 21:30	1
Acrolein	ND		4.0	1.1	ug/L			12/04/20 21:30	1
Acrylonitrile	ND		2.0	0.77	ug/L			12/04/20 21:30	1
Benzene	ND		1.0	0.43	ug/L			12/04/20 21:30	1
Bromoform	ND		1.0	0.54	ug/L			12/04/20 21:30	1
Bromomethane	ND		1.0	0.45	ug/L			12/04/20 21:30	1
Carbon tetrachloride	ND		1.0	0.21	ug/L			12/04/20 21:30	1
Chlorobenzene	ND		1.0	0.38	ug/L			12/04/20 21:30	1
Chlorodibromomethane	ND		1.0	0.13	ug/L			12/04/20 21:30	1
Chloroethane	ND		1.0	0.32	ug/L			12/04/20 21:30	1
Chloroform	ND		1.0	0.33	ug/L			12/04/20 21:30	1
Chloromethane	ND		1.0	0.43	ug/L			12/04/20 21:30	1
cis-1,3-Dichloropropene	ND		1.0	0.46	ug/L			12/04/20 21:30	1
Dichlorobromomethane	ND		1.0	0.34	ug/L			12/04/20 21:30	1
Ethylbenzene	ND		1.0	0.30	ug/L			12/04/20 21:30	1
Methylene Chloride	ND		1.0	0.32	ug/L			12/04/20 21:30	1
Tetrachloroethene	ND		1.0	0.25	ug/L			12/04/20 21:30	1
Toluene	ND		1.0	0.38	ug/L			12/04/20 21:30	1
trans-1,2-Dichloroethene	ND		1.0	0.24	ug/L			12/04/20 21:30	1
trans-1,3-Dichloropropene	ND		1.0	0.22	ug/L			12/04/20 21:30	1
Trichloroethene	ND		1.0	0.31	ug/L			12/04/20 21:30	1
Vinyl chloride	ND		1.0	0.34	ug/L			12/04/20 21:30	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		60 - 140		12/04/20 21:30	1
4-Bromofluorobenzene	90		60 - 140		12/04/20 21:30	1
Toluene-d8 (Surr)	97		60 - 140		12/04/20 21:30	1
Dibromofluoromethane (Surr)	116		60 - 140		12/04/20 21:30	1

Lab Sample ID: LCS 460-744596/5

Matrix: Water

Analysis Batch: 744596

Client Sample ID: Lab Control Sample Prep Type: Total/NA

randi, oto zatom r r rocc	0						0/ 🗖
	Spike	_	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	20.0	22.4		ug/L		112	70 - 130
1,1,2,2-Tetrachloroethane	20.0	20.8		ug/L		104	60 - 140
1,1,2-Trichloroethane	20.0	18.7		ug/L		94	70 - 130
1,1-Dichloroethane	20.0	22.2		ug/L		111	70 - 130
1,1-Dichloroethene	20.0	21.2		ug/L		106	50 - 150
1,2-Dichlorobenzene	20.0	17.0		ug/L		85	65 - 135
1,2-Dichloroethane	20.0	23.1		ug/L		116	70 - 130
1,2-Dichloropropane	20.0	22.6		ug/L		113	35 - 165
1,3-Dichlorobenzene	20.0	17.8		ug/L		89	70 - 130
1,4-Dichlorobenzene	20.0	17.7		ug/L		88	65 - 135
2-Chloroethyl vinyl ether	20.0	23.0		ug/L		115	0.1 - 225
Benzene	20.0	19.5		ug/L		98	65 - 135

Eurofins TestAmerica, Buffalo

Page 13 of 24

5

3

6

8

10

12

10

4 E

QC Sample Results

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 460-744596/5

Matrix: Water

Analysis Batch: 744596

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-178952-1

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromoform	20.0	19.9		ug/L		100	70 - 130	
Bromomethane	20.0	22.8		ug/L		114	15 - 185	
Carbon tetrachloride	20.0	21.3		ug/L		107	70 - 130	
Chlorobenzene	20.0	18.4		ug/L		92	65 - 135	
Chlorodibromomethane	20.0	18.9		ug/L		95	70 - 135	
Chloroethane	20.0	20.8		ug/L		104	40 - 160	
Chloroform	20.0	22.0		ug/L		110	70 - 135	
Chloromethane	20.0	20.5		ug/L		103	0.1 - 205	
cis-1,3-Dichloropropene	20.0	19.6		ug/L		98	25 - 175	
Dichlorobromomethane	20.0	22.1		ug/L		110	65 - 135	
Ethylbenzene	20.0	19.8		ug/L		99	60 - 140	
Methylene Chloride	20.0	22.4		ug/L		112	60 - 140	
Tetrachloroethene	20.0	17.0		ug/L		85	70 - 130	
Toluene	20.0	19.1		ug/L		95	70 - 130	
trans-1,2-Dichloroethene	20.0	22.0		ug/L		110	70 - 130	
trans-1,3-Dichloropropene	20.0	20.9		ug/L		105	50 - 150	
Trichloroethene	20.0	21.0		ug/L		105	65 - 135	
Vinyl chloride	20.0	21.5		ug/L		108	5 - 195	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	116		60 - 140
4-Bromofluorobenzene	91		60 - 140
Toluene-d8 (Surr)	100		60 - 140
Dibromofluoromethane (Surr)	117		60 - 140

Lab Sample ID: LCSD 460-744596/6

Matrix: Water

Analysis Batch: 744596

Client Sample	ID: Lab	Contro	I Sam	ple Dup
		Prep T	ype:	Total/NA

•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	20.0	23.0		ug/L		115	70 - 130	2	36
1,1,2,2-Tetrachloroethane	20.0	22.2		ug/L		111	60 - 140	6	61
1,1,2-Trichloroethane	20.0	20.2		ug/L		101	70 - 130	8	45
1,1-Dichloroethane	20.0	23.7		ug/L		118	70 - 130	6	40
1,1-Dichloroethene	20.0	23.4		ug/L		117	50 - 150	10	32
1,2-Dichlorobenzene	20.0	18.1		ug/L		90	65 - 135	6	57
1,2-Dichloroethane	20.0	23.7		ug/L		119	70 - 130	2	49
1,2-Dichloropropane	20.0	23.3		ug/L		117	35 - 165	3	55
1,3-Dichlorobenzene	20.0	18.4		ug/L		92	70 - 130	4	43
1,4-Dichlorobenzene	20.0	18.2		ug/L		91	65 - 135	3	57
2-Chloroethyl vinyl ether	20.0	22.0		ug/L		110	0.1 - 225	4	71
Benzene	20.0	20.4		ug/L		102	65 - 135	4	61
Bromoform	20.0	20.7		ug/L		103	70 - 130	4	42
Bromomethane	20.0	23.8		ug/L		119	15 - 185	4	61
Carbon tetrachloride	20.0	22.6		ug/L		113	70 - 130	6	41
Chlorobenzene	20.0	19.6		ug/L		98	65 - 135	6	53
Chlorodibromomethane	20.0	19.1		ug/L		96	70 - 135	1	50
Chloroethane	20.0	22.5		ug/L		113	40 - 160	8	78

Eurofins TestAmerica, Buffalo

Page 14 of 24

QC Sample Results

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-178952-1

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 460-744596/6

Matrix: Water

Analysis Batch: 744596

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloroform	20.0	23.3		ug/L		116	70 - 135	6	54
Chloromethane	20.0	20.7		ug/L		103	0.1 - 205	1	60
cis-1,3-Dichloropropene	20.0	21.1		ug/L		105	25 - 175	7	58
Dichlorobromomethane	20.0	23.1		ug/L		116	65 - 135	5	56
Ethylbenzene	20.0	19.6		ug/L		98	60 - 140	1	63
Methylene Chloride	20.0	23.1		ug/L		115	60 - 140	3	28
Tetrachloroethene	20.0	17.9		ug/L		90	70 - 130	5	39
Toluene	20.0	20.1		ug/L		100	70 - 130	5	41
trans-1,2-Dichloroethene	20.0	23.3		ug/L		117	70 - 130	6	45
trans-1,3-Dichloropropene	20.0	21.3		ug/L		106	50 - 150	2	86
Trichloroethene	20.0	22.0		ug/L		110	65 - 135	4	48
Vinvl chloride	20.0	22.3		ua/L		112	5 - 195	4	66

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	116		60 - 140
4-Bromofluorobenzene	91		60 - 140
Toluene-d8 (Surr)	100		60 - 140
Dibromofluoromethane (Surr)	116		60 - 140

QC Association Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-178952-1

GC/MS VOA

Analysis Batch: 744421

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178952-2	IDW-PURGEWATER-DEC20	Total/NA	Water	624.1	
480-178952-3	TB-20201203	Total/NA	Water	624.1	
MB 460-744421/8	Method Blank	Total/NA	Water	624.1	
LCS 460-744421/4	Lab Control Sample	Total/NA	Water	624.1	

Analysis Batch: 744596

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178952-1	MW-16R-DEC20	Total/NA	Water	624.1	
MB 460-744596/9	Method Blank	Total/NA	Water	624.1	
LCS 460-744596/5	Lab Control Sample	Total/NA	Water	624.1	
LCSD 460-744596/6	Lab Control Sample Dup	Total/NA	Water	624.1	

Lab Chronicle

Client: New York State D.E.C. Job ID: 480-178952-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-16R-DEC20

Lab Sample ID: 480-178952-1 Date Collected: 12/03/20 11:40

Matrix: Water

Date Received: 12/03/20 13:45

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA Analysis 624.1 744596 12/04/20 22:38 MZS TAL EDI

Client Sample ID: IDW-PURGEWATER-DEC20

Lab Sample ID: 480-178952-2 **Matrix: Water**

Date Collected: 12/03/20 12:00 Date Received: 12/03/20 13:45

Batch Batch Dilution **Batch** Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 624.1 744421 12/04/20 17:00 CJM TAL EDI

Client Sample ID: TB-20201203 Lab Sample ID: 480-178952-3

Date Collected: 12/03/20 00:00 **Matrix: Water**

Date Received: 12/03/20 13:45

Batch **Batch** Dilution Batch **Prepared** Method **Prep Type Factor** Number or Analyzed Type Run **Analyst** Lab Total/NA Analysis 624.1 744421 12/04/20 14:21 CJM TAL EDI

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-178952-1

Project/Site: Davis-Howland Oil Corp #828088

Laboratory: Eurofins TestAmerica, Edison

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority New York		Program NELAP	Identification Number 11452	Expiration Date 04-01-21
The following analyte the agency does not		eport, but the laboratory is r	ot certified by the governing authority.	This list may include analytes for v
Analysis Method	Prep Method	Matrix	Analyte	

Method Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL EDI

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Job ID: 480-178952-1

Л

6

9

10

12

11

Sample Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Lab Sample ID 480-178952-1	Client Sample ID MW-16R-DEC20	Matrix Water	Collected 12/03/20 11:40	Received 12/03/20 13:45	Asset
480-178952-2	IDW-PURGEWATER-DEC20	Water	12/03/20 12:00	12/03/20 13:45	
480-178952-3	TB-20201203	Water	12/03/20 00:00	12/03/20 13:45	

Job ID: 480-178952-1

3

4

5

10

11

13

14

Phone: 716-691-2600 Fax: 716-691-7991					
Client Information	Sampler, C. Porneca	Lab PM. Johnson, Orlette S	Oriette S	Carrier Tracking No(s):	COC No. 480-153402-34083.2
Client Contact Jenelle Gaylord	Phone 716 - 684 - 8060		E-Mail: Orlette.Johnson@Eurofinset.com	State of Origin:	Page 2013 of
Company: New York State D.E.C.	PWSID;		Analysis Requested	quested	# qor
Address: 625 Broadway Division of Environmental Remediation	Due Date Requested:				
City. Albany	TAT Requested (days):		ľ		A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Z.p.: NY, 12233-7014	Compliance Project: A Yes A No		- 624.		
Phone:	PO#. CallOut ID: 136612	(0	AOV -		
Email: jenelle:gaylord@dec.ny.gov	WO#				1 - Ice J - Di Water
Project Name: Davis-Howland Oil Corp #828088	Project#: 48019422		etullo		K-EDTA L-EDA
Sife;	#MOSS		riority P		of con
	Sample Type Sample (C=comp.	Matrix (Wewater, Smootid, Orwanterold, Orwan	74, 244 PREC - P. 00.0_285 - (MO		otal Mumber
Sample Identification	1	ation Code	E Z	は 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	
NW - 11-8-12-20	12-3-2020 1140 (5	Water	×		
Dow - PURCHEMATER - NECZO	12-3-2020 1700 (2	Water	X	_	
20201203	-	Water	X		
		Water			
	CROW	Water			
		Water		480-178952 Chain of Custody	of Custody
	5	Water	4-3		
		Water	7		5700
		Water		7	
		Water		/	
		Water			1
Possible Hazard Identification X	ison B Unknown Radiological		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	assessed if samples are n Disposal By Lab	etained longer than 1 month) Archive For Months
, III, IV, O		U)	Special Instructions/QC Requirements		
Empty Kit Relinquished by:	Date:	Time:		Method of Shipment	
Reinquished by	Date/Time Date/Time	Company	Received by:	Date/Time:	Company
Relinquished by	Date/Time.	Company	Received by:	DateTime:	Company
Relinquished by:	Date/Time.	Company	Received by	DateTime	13 13 45 Company

ahydrate

Environment Testing

Seurofins

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298 10 Hazelwood Drive

Client Information (Sub Contract Lab)	Sampler			Johns	Johnson, Orlette S	stte S			Carr	Camer Tracking No(s);	No(s):		480-60723.1		
Client Contact: Shipping/Receiving	Phone			E-Mail: Orlett	e.Johns	E-Mail: Orlette. Johnson@Eurofinset.com	ofinset.c	mo	State	State of Origin: New York			Page: Page 1 of 1		
Company: TestAmerica Laboratories, Inc.					Accreditati NELAP	Accreditations Required (See note) NELAP - New York	red (See n	ote):					Job #: 480-178952-1	-	
Address. 777 New Durham Road,	Due Date Requested: 12/16/2020	#					Ā	Analysis Requested	Rednes	ted			Preservation Codes:	Code	
City: Edison State, Zip: N. I ORBAT	TAT Requested (days):	ys):			tastulio								B - NaOH C - Zn Acetate D - Nitnc Acid E - NaHSO4		N - None O - AsNaO2 P - Na2O4S O - Na2SO3
Phone: 732-549-3900(Tel) 732-549-3679(Fax)	#0d												F - MeOH G - Amchlor H - Ascorbic Acid		R - Na2S2O3 S - H2SO4 T - TSP Dodecable
Email:	**OM				(0)							S	1 - Ice J - DI Water		U - Acetone V - MCAA
Project Name Davis-Howland Oil Corp #828088	Project #. 48019422				M 10 88	lur						nənisti	K-EDTA L-EDA	× 2	W - pH 4-5 Z - other (specify)
Site	SSOW#:				Y) as	de :						roo to	Other:		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp, G=grab)	Sample Matrix Type (weater, Sassolin, Cacomp, Carabibility	Field Filtered S Perform MS/M3 624.1_PREC/624	29 - AOV - 1811						Total Number	Specia	al Instru	Special Instructions/Not
		\setminus	Preserva	Preservation Code:	X							X		A	V
MW-16R (480-178952-1)	12/3/20	11;40 Eastern		Water		×						0			
IDW (480-178952-2)	12/3/20	12:00 Eastern		Water		×						6			
TB (480-178952-3)	12/3/20	Eastern		Water		×						2			
					1										
												dir.			

Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method, analyse & accreditation out subcontract laboratory accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Possible Hazard Identification

Months

Archive For

Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Kank: 2	special instructions/QC Requirements:	
Empty Kit Relinquished by:	Date:	Time:	Method of Shipment:
Relinquished by (WWW. M.O.W. (W.o.l. b)	Date/Time: (2 (63/26/34/50/pany)	TA Received by.	12 Datedime
Relinquished by.	Date/Time: Company		
Relinquished by:	Date/Time: Company	Received by:	Date/Time:
Custody Seals Intact: Custody Seal No. 147 + 197	7, 1427196	Cooler Temperature(s) ⁹ C and Other Remarks:	5.90,4

Unconfirmed

Client: New York State D.E.C.

Job Number: 480-178952-1

Login Number: 178952 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Stopa, Erik S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	ENE
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Client: New York State D.E.C.

Job Number: 480-178952-1

Login Number: 178952

List Number: 2

Creator: Armbruster, Chris

List Source: Eurofins TestAmerica, Edison

List Creation: 12/04/20 12:56 PM

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
he cooler's custody seal, if present, is intact.	True	1427197, 1427196
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	5.9, 4.2°C IR11
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
here is sufficient vol. for all requested analyses, incl. any requested //S/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-176371-1

Client Project/Site: Davis-Howland Oil Corp #828088

For:

New York State D.E.C. 625 Broadway Division of Environmental Remediation Albany, New York 12233-7014

Attn: Jenelle Gaylord

Authorized for release by: 10/20/2020 6:08:47 AM

Orlette Johnson, Senior Project Manager (484)685-0864

Orlette.Johnson@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

6

q

10

12

13

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Irlette J. Johnson

Orlette Johnson

Senior Project Manager

10/20/2020 6:08:47 AM

9

9

10

11

13

14

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	21
Lab Chronicle	22
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-176371-1

Project/Site: Davis-Howland Oil Corp #828088

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier Qualifier Description

F1 MS and/or MSD recovery exceeds control limits.

Glossary

Abbreviation	These commonly	v used abbreviations may	or may not be	present in this report.
ADDIEVIALIOII	THESE COMMISSION	/ useu abbievialions may	y OI IIIay IIOL De	present in tins repor

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

5

6

9

10

12

13

Case Narrative

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-176371-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-176371-1

Receipt

The samples were received on 10/12/2020 6:10 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.6° C.

GC/MS VOA

Method 624.1: The following sample were diluted to bring the concentration of target analytes within the calibration range: MW-17R-OCT20 (480-176371-2), MW-17R-OCT20-Q (480-176371-3) and MW-8-OCT20 (480-176371-4). Elevated reporting limits (RLs) are provided.

Method 624.1: The following samples were diluted to bring the concentration of target analytes within the calibration range: IW-01-OCT20 (480-176371-1), MW-17R-OCT20 (480-176371-2), MW-17R-OCT20-Q (480-176371-3) and MW-8-OCT20 (480-176371-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: IW-01-OCT20 (480-176371-1), MW-17R-OCT20 (480-176371-2), MW-17R-OCT20-Q (480-176371-3) and MW-8-OCT20 (480-176371-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 480-176371-1

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-176371-1

Client Sample ID: IW-01-OCT20

Lab Sample ID: 480-176371-1

Analyte	Result Qualifier	r RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane		25	2.9	ug/L		_	624.1	Total/NA
1,2-Dichloroethene, Total	290	50	16	ug/L	5		624.1	Total/NA
trans-1,2-Dichloroethene	3.4 J	25	2.9	ug/L	5		624.1	Total/NA
Trichloroethene	3.8 J	25	3.0	ug/L	5		624.1	Total/NA
Vinyl chloride	56	25	3.7	ug/L	5		624.1	Total/NA
Sulfate	118	10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Total	308	5.0	0.79	mg/L	1		SM 2320B	Total/NA
Alkalinity, Bicarbonate	308	5.0	0.79	mg/L	1		SM 2320B	Total/NA

Client Sample ID: MW-17R-OCT20

Lab Sample ID: 480-176371-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	100		50	5.9	ug/L	10	_	624.1	Total/NA
1,1-Dichloroethene	23	J	50	8.5	ug/L	10		624.1	Total/NA
Tetrachloroethene	11	J	50	3.4	ug/L	10		624.1	Total/NA
trans-1,2-Dichloroethene	6.2	J	50	5.9	ug/L	10		624.1	Total/NA
Trichloroethene	120		50	6.0	ug/L	10		624.1	Total/NA
Vinyl chloride	280		50	7.5	ug/L	10		624.1	Total/NA
1,2-Dichloroethene, Total - DL	1400		200	64	ug/L	20		624.1	Total/NA
Sulfate	204		10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Total	332	F1	5.0	0.79	mg/L	1		SM 2320B	Total/NA
Alkalinity, Bicarbonate	332		5.0	0.79	mg/L	1		SM 2320B	Total/NA

Client Sample ID: MW-17R-OCT20-Q

Lab Sample ID: 480-176371-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	98		50	5.9	ug/L	10	_	624.1	Total/NA
1,1-Dichloroethene	23	J	50	8.5	ug/L	10		624.1	Total/NA
Tetrachloroethene	9.7	J	50	3.4	ug/L	10		624.1	Total/NA
trans-1,2-Dichloroethene	6.4	J	50	5.9	ug/L	10		624.1	Total/NA
Trichloroethene	110		50	6.0	ug/L	10		624.1	Total/NA
Vinyl chloride	260		50	7.5	ug/L	10		624.1	Total/NA
1,2-Dichloroethene, Total - DL	1400		200	64	ug/L	20		624.1	Total/NA
Sulfate	206		10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Total	332		5.0	0.79	mg/L	1		SM 2320B	Total/NA
Alkalinity, Bicarbonate	332		5.0	0.79	mg/L	1		SM 2320B	Total/NA

Client Sample ID: MW-8-OCT20

Lab Sample ID: 480-176371-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane	76		5.9	ug/L	10	_	624.1	Total/NA
1,1-Dichloroethene	35 J	50	8.5	ug/L	10		624.1	Total/NA
Vinyl chloride	550	50	7.5	ug/L	10		624.1	Total/NA
1,2-Dichloroethene, Total - DL	4000	500	160	ug/L	50		624.1	Total/NA
Sulfate	152	10.0	1.7	mg/L	5		300.0	Total/NA
Alkalinity, Total	326	5.0	0.79	mg/L	1		SM 2320B	Total/NA
Alkalinity, Bicarbonate	326	5.0	0.79	mg/L	1		SM 2320B	Total/NA

This Detection Summary does not include radiochemical test results.

Client: New York State D.E.C. Job ID: 480-176371-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: IW-01-OCT20

Date Collected: 10/12/20 12:15 Date Received: 10/12/20 18:10

General Chemistry

Lab Sample ID: 480-176371-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		25	1.9	ug/L			10/14/20 11:56	5
1,1,2,2-Tetrachloroethane	ND		25	1.3	ug/L			10/14/20 11:56	5
1,1,2-Trichloroethane	ND		25	2.4	ug/L			10/14/20 11:56	5
1,1-Dichloroethane	11	J	25	2.9	ug/L			10/14/20 11:56	5
1,1-Dichloroethene	ND		25	4.3	ug/L			10/14/20 11:56	5
1,2-Dichlorobenzene	ND		25	2.2	ug/L			10/14/20 11:56	5
1,2-Dichloroethane	ND		25	3.0	ug/L			10/14/20 11:56	5
1,2-Dichloroethene, Total	290		50	16	ug/L			10/14/20 11:56	5
1,2-Dichloropropane	ND		25	3.1	ug/L			10/14/20 11:56	5
1,3-Dichlorobenzene	ND		25	2.7	ug/L			10/14/20 11:56	5
1,4-Dichlorobenzene	ND		25	2.5	ug/L			10/14/20 11:56	5
2-Chloroethyl vinyl ether	ND		130	9.3	ug/L			10/14/20 11:56	5
Acrolein	ND		500	87	ug/L			10/14/20 11:56	5
Acrylonitrile	ND		250	9.5	ug/L			10/14/20 11:56	5
Benzene	ND		25	3.0	ug/L			10/14/20 11:56	5
Bromoform	ND		25	2.3	ug/L			10/14/20 11:56	5
Bromomethane	ND		25	6.0	ug/L			10/14/20 11:56	5
Carbon tetrachloride	ND		25	2.6	ug/L			10/14/20 11:56	5
Chlorobenzene	ND		25	2.4	ug/L			10/14/20 11:56	5
Chlorodibromomethane	ND		25	2.1	ug/L			10/14/20 11:56	5
Chloroethane	ND		25	4.4	ug/L			10/14/20 11:56	5
Chloroform	ND		25	2.7	ug/L			10/14/20 11:56	5
Chloromethane	ND		25	3.2	ug/L			10/14/20 11:56	5
cis-1,3-Dichloropropene	ND		25	1.7	ug/L			10/14/20 11:56	5
Dichlorobromomethane	ND		25	2.7	ug/L			10/14/20 11:56	5
Ethylbenzene	ND		25	2.3	ug/L			10/14/20 11:56	5
Methylene Chloride	ND		25		ug/L			10/14/20 11:56	5
Tetrachloroethene	ND		25	1.7	ug/L			10/14/20 11:56	5
Toluene	ND		25		ug/L			10/14/20 11:56	5
trans-1,2-Dichloroethene	3.4	J	25		ug/L			10/14/20 11:56	5
trans-1,3-Dichloropropene	ND		25		ug/L			10/14/20 11:56	5
Trichloroethene	3.8	J	25		ug/L			10/14/20 11:56	5
Vinyl chloride	56		25		ug/L			10/14/20 11:56	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		68 - 130			-		10/14/20 11:56	5
4-Bromofluorobenzene (Surr)	97		76 - 123					10/14/20 11:56	5
Dibromofluoromethane (Surr)	102		75 - 123					10/14/20 11:56	5
Toluene-d8 (Surr)	99		77 - 120					10/14/20 11:56	5

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	118		10.0	1.7	mg/L			10/16/20 01:07	5
Alkalinity, Total	308		5.0	0.79	mg/L			10/13/20 17:35	1
Alkalinity, Bicarbonate	308		5.0	0.79	mg/L			10/13/20 17:35	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			10/13/20 17:35	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			10/13/20 17:35	1

Client: New York State D.E.C. Job ID: 480-176371-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-17R-OCT20

Data Callanta de 40/40/00 40:40

Date Collected: 10/12/20 13:10 Date Received: 10/12/20 18:10

Lab Sample ID: 480-176371-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		50	3.9	ug/L			10/13/20 18:29	10
1,1,2,2-Tetrachloroethane	ND		50	2.6	ug/L			10/13/20 18:29	10
1,1,2-Trichloroethane	ND		50	4.8	ug/L			10/13/20 18:29	10
1,1-Dichloroethane	100		50	5.9	ug/L			10/13/20 18:29	10
1,1-Dichloroethene	23	J	50	8.5	ug/L			10/13/20 18:29	10
1,2-Dichlorobenzene	ND		50	4.4	ug/L			10/13/20 18:29	10
1,2-Dichloroethane	ND		50	6.0	ug/L			10/13/20 18:29	10
1,2-Dichloropropane	ND		50	6.1	ug/L			10/13/20 18:29	10
1,3-Dichlorobenzene	ND		50	5.4	ug/L			10/13/20 18:29	10
1,4-Dichlorobenzene	ND		50	5.1	ug/L			10/13/20 18:29	10
2-Chloroethyl vinyl ether	ND		250	19	ug/L			10/13/20 18:29	10
Acrolein	ND		1000	170	ug/L			10/13/20 18:29	10
Acrylonitrile	ND		500	19	ug/L			10/13/20 18:29	10
Benzene	ND		50	6.0	ug/L			10/13/20 18:29	10
Bromoform	ND		50	4.7	ug/L			10/13/20 18:29	10
Bromomethane	ND		50	12	ug/L			10/13/20 18:29	10
Carbon tetrachloride	ND		50	5.1	ug/L			10/13/20 18:29	10
Chlorobenzene	ND		50	4.8	ug/L			10/13/20 18:29	10
Chlorodibromomethane	ND		50	4.1	ug/L			10/13/20 18:29	10
Chloroethane	ND		50	8.7	ug/L			10/13/20 18:29	10
Chloroform	ND		50	5.4	ug/L			10/13/20 18:29	10
Chloromethane	ND		50	6.4	ug/L			10/13/20 18:29	10
cis-1,3-Dichloropropene	ND		50	3.3	ug/L			10/13/20 18:29	10
Dichlorobromomethane	ND		50	5.4	ug/L			10/13/20 18:29	10
Ethylbenzene	ND		50	4.6	ug/L			10/13/20 18:29	10
Methylene Chloride	ND		50	8.1	ug/L			10/13/20 18:29	10
Tetrachloroethene	11	J	50	3.4	ug/L			10/13/20 18:29	10
Toluene	ND		50	4.5	ug/L			10/13/20 18:29	10
trans-1,2-Dichloroethene	6.2	J	50	5.9	ug/L			10/13/20 18:29	10
trans-1,3-Dichloropropene	ND		50	4.4	ug/L			10/13/20 18:29	10
Trichloroethene	120		50	6.0	ug/L			10/13/20 18:29	10
Vinyl chloride	280		50	7.5	ug/L			10/13/20 18:29	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		68 - 130			- -		10/13/20 18:29	10
4-Bromofluorobenzene (Surr)	96		76 - 123					10/13/20 18:29	10
Dibromofluoromethane (Surr)	104		75 - 123					10/13/20 18:29	10
Toluene-d8 (Surr)	99		77 - 120					10/13/20 18:29	10

Method: 624.1 - Volatile Or	ganic Compou	nds (GC/N	IS) - DL						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethene, Total	1400		200	64	ug/L			10/14/20 12:20	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		68 - 130			-		10/14/20 12:20	20
4-Bromofluorobenzene (Surr)	99		76 - 123					10/14/20 12:20	20
Dibromofluoromethane (Surr)	104		75 - 123					10/14/20 12:20	20
Toluene-d8 (Surr)	97		77 - 120					10/14/20 12:20	20

Eurofins TestAmerica, Buffalo

Page 8 of 27

S

3

5

8

46

11

13

14

Le

Client: New York State D.E.C. Job ID: 480-176371-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-17R-OCT20

Date Collected: 10/12/20 13:10 Date Received: 10/12/20 18:10 Lab Sample ID: 480-176371-2

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	204		10.0	1.7	mg/L		•	10/16/20 00:24	5
Alkalinity, Total	332	F1	5.0	0.79	mg/L			10/13/20 18:07	1
Alkalinity, Bicarbonate	332		5.0	0.79	mg/L			10/13/20 18:07	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			10/13/20 18:07	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			10/13/20 18:07	1

Client Sample ID: MW-17R-OCT20-Q Lab Sample ID: 480-176371-3

Date Collected: 10/12/20 13:10 Matrix: Water

Date Received: 10/12/20 18:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		50	3.9	ug/L			10/13/20 18:53	10
1,1,2,2-Tetrachloroethane	ND		50	2.6	ug/L			10/13/20 18:53	10
1,1,2-Trichloroethane	ND		50	4.8	ug/L			10/13/20 18:53	10
1,1-Dichloroethane	98		50	5.9	ug/L			10/13/20 18:53	10
1,1-Dichloroethene	23	J	50	8.5	ug/L			10/13/20 18:53	10
1,2-Dichlorobenzene	ND		50	4.4	ug/L			10/13/20 18:53	10
1,2-Dichloroethane	ND		50	6.0	ug/L			10/13/20 18:53	10
1,2-Dichloropropane	ND		50	6.1	ug/L			10/13/20 18:53	10
1,3-Dichlorobenzene	ND		50		ug/L			10/13/20 18:53	10
1,4-Dichlorobenzene	ND		50	5.1	ug/L			10/13/20 18:53	10
2-Chloroethyl vinyl ether	ND		250	19	ug/L			10/13/20 18:53	10
Acrolein	ND		1000	170	ug/L			10/13/20 18:53	10
Acrylonitrile	ND		500	19	ug/L			10/13/20 18:53	10
Benzene	ND		50	6.0	ug/L			10/13/20 18:53	10
Bromoform	ND		50	4.7	ug/L			10/13/20 18:53	10
Bromomethane	ND		50	12	ug/L			10/13/20 18:53	10
Carbon tetrachloride	ND		50	5.1	ug/L			10/13/20 18:53	10
Chlorobenzene	ND		50	4.8	ug/L			10/13/20 18:53	10
Chlorodibromomethane	ND		50	4.1	ug/L			10/13/20 18:53	10
Chloroethane	ND		50	8.7	ug/L			10/13/20 18:53	10
Chloroform	ND		50	5.4	ug/L			10/13/20 18:53	10
Chloromethane	ND		50	6.4	ug/L			10/13/20 18:53	10
cis-1,3-Dichloropropene	ND		50	3.3	ug/L			10/13/20 18:53	10
Dichlorobromomethane	ND		50	5.4	ug/L			10/13/20 18:53	10
Ethylbenzene	ND		50	4.6	ug/L			10/13/20 18:53	10
Methylene Chloride	ND		50	8.1	ug/L			10/13/20 18:53	10
Tetrachloroethene	9.7	J	50	3.4	ug/L			10/13/20 18:53	10
Toluene	ND		50	4.5	ug/L			10/13/20 18:53	10
trans-1,2-Dichloroethene	6.4	J	50	5.9	ug/L			10/13/20 18:53	10
trans-1,3-Dichloropropene	ND		50		ug/L			10/13/20 18:53	10
Trichloroethene	110		50		ug/L			10/13/20 18:53	10
Vinyl chloride	260		50		ug/L			10/13/20 18:53	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d4 (Surr)	95	·	68 130			_		10/13/20 18:53	10

Surrogate	%Recovery Qualif	er Limits	Prepared Analyzed	DII Fac
1,2-Dichloroethane-d4 (Surr)	95	68 - 130	10/13/20 18:5	3 10
4-Bromofluorobenzene (Surr)	98	76 - 123	10/13/20 18:5	3 10
Dibromofluoromethane (Surr)	105	75 - 123	10/13/20 18:5	3 10
Toluene-d8 (Surr)	100	77 - 120	10/13/20 18:5	3 10

Eurofins TestAmerica, Buffalo

10/20/2020

Page 9 of 27

2

3

5

b

8

9

11

12

Client: New York State D.E.C. Job ID: 480-176371-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-17R-OCT20-Q

Date Collected: 10/12/20 13:10 Date Received: 10/12/20 18:10 Lab Sample ID: 480-176371-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethene, Total	1400		200	64	ug/L			10/14/20 12:43	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		68 - 130					10/14/20 12:43	20
4-Bromofluorobenzene (Surr)	97		76 - 123					10/14/20 12:43	20
Dibromofluoromethane (Surr)	104		75 - 123					10/14/20 12:43	20
Toluene-d8 (Surr)	98		77 - 120					10/14/20 12:43	20

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	206		10.0	1.7	mg/L			10/16/20 00:38	5
Alkalinity, Total	332		5.0	0.79	mg/L			10/13/20 17:42	1
Alkalinity, Bicarbonate	332		5.0	0.79	mg/L			10/13/20 17:42	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			10/13/20 17:42	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			10/13/20 17:42	1

Client Sample ID: MW-8-OCT20 Lab Sample ID: 480-176371-4

Date Collected: 10/12/20 15:10 Matrix: Water

Date Received: 10/12/20 18:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		50	3.9	ug/L			10/13/20 19:16	10
1,1,2,2-Tetrachloroethane	ND		50	2.6	ug/L			10/13/20 19:16	10
1,1,2-Trichloroethane	ND		50	4.8	ug/L			10/13/20 19:16	10
1,1-Dichloroethane	76		50	5.9	ug/L			10/13/20 19:16	10
1,1-Dichloroethene	35	J	50	8.5	ug/L			10/13/20 19:16	10
1,2-Dichlorobenzene	ND		50	4.4	ug/L			10/13/20 19:16	10
1,2-Dichloroethane	ND		50	6.0	ug/L			10/13/20 19:16	10
1,2-Dichloropropane	ND		50	6.1	ug/L			10/13/20 19:16	10
1,3-Dichlorobenzene	ND		50	5.4	ug/L			10/13/20 19:16	10
1,4-Dichlorobenzene	ND		50	5.1	ug/L			10/13/20 19:16	10
2-Chloroethyl vinyl ether	ND		250	19	ug/L			10/13/20 19:16	10
Acrolein	ND		1000	170	ug/L			10/13/20 19:16	10
Acrylonitrile	ND		500	19	ug/L			10/13/20 19:16	10
Benzene	ND		50	6.0	ug/L			10/13/20 19:16	10
Bromoform	ND		50	4.7	ug/L			10/13/20 19:16	10
Bromomethane	ND		50	12	ug/L			10/13/20 19:16	10
Carbon tetrachloride	ND		50	5.1	ug/L			10/13/20 19:16	10
Chlorobenzene	ND		50	4.8	ug/L			10/13/20 19:16	10
Chlorodibromomethane	ND		50	4.1	ug/L			10/13/20 19:16	10
Chloroethane	ND		50	8.7	ug/L			10/13/20 19:16	10
Chloroform	ND		50	5.4	ug/L			10/13/20 19:16	10
Chloromethane	ND		50	6.4	ug/L			10/13/20 19:16	10
cis-1,3-Dichloropropene	ND		50	3.3	ug/L			10/13/20 19:16	10
Dichlorobromomethane	ND		50	5.4	ug/L			10/13/20 19:16	10
Ethylbenzene	ND		50	4.6	ug/L			10/13/20 19:16	10
Methylene Chloride	ND		50	8.1	ug/L			10/13/20 19:16	10
Tetrachloroethene	ND		50	3.4	ug/L			10/13/20 19:16	10
Toluene	ND		50	4.5	ug/L			10/13/20 19:16	10

Eurofins TestAmerica, Buffalo

Page 10 of 27

2

3

5

7

8

10

12

13

14

Client: New York State D.E.C. Job ID: 480-176371-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-8-OCT20

Date Collected: 10/12/20 15:10 Date Received: 10/12/20 18:10

Lab Sample ID: 480-176371-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		50	5.9	ug/L			10/13/20 19:16	10
trans-1,3-Dichloropropene	ND		50	4.4	ug/L			10/13/20 19:16	10
Trichloroethene	ND		50	6.0	ug/L			10/13/20 19:16	10
Vinyl chloride	550		50	7.5	ug/L			10/13/20 19:16	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		68 - 130					10/13/20 19:16	10
4-Bromofluorobenzene (Surr)	97		76 - 123					10/13/20 19:16	10
Dibromofluoromethane (Surr)	104		75 - 123					10/13/20 19:16	10
Toluene-d8 (Surr)	99		77 - 120					10/13/20 19:16	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethene, Total	4000		500	160	ug/L			10/14/20 13:06	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		68 - 130					10/14/20 13:06	50
4-Bromofluorobenzene (Surr)	97		76 - 123					10/14/20 13:06	50
Dibromofluoromethane (Surr)	102		75 - 123					10/14/20 13:06	50
Toluene-d8 (Surr)	97		77 - 120					10/14/20 13:06	50

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	152		10.0	1.7	mg/L			10/16/20 00:53	5
Alkalinity, Total	326		5.0	0.79	mg/L			10/13/20 17:49	1
Alkalinity, Bicarbonate	326		5.0	0.79	mg/L			10/13/20 17:49	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			10/13/20 17:49	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			10/13/20 17:49	1

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-176371-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Recov
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)
480-176371-1	IW-01-OCT20	92	97	102	99
480-176371-1 MS	IW-01-OCT20	97	98	101	99
480-176371-1 MSD	IW-01-OCT20	98	98	102	99
480-176371-2	MW-17R-OCT20	96	96	104	99
480-176371-2 - DL	MW-17R-OCT20	96	99	104	97
480-176371-3	MW-17R-OCT20-Q	95	98	105	100
480-176371-3 - DL	MW-17R-OCT20-Q	95	97	104	98
480-176371-4	MW-8-OCT20	95	97	104	99
480-176371-4 - DL	MW-8-OCT20	95	97	102	97
LCS 480-553610/6	Lab Control Sample	93	97	103	100
LCS 480-553815/6	Lab Control Sample	98	96	101	99
MB 480-553610/8	Method Blank	98	96	103	99
MB 480-553815/8	Method Blank	93	97	98	99

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

2

4

6

8

10

12

Client: New York State D.E.C. Job ID: 480-176371-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-553610/8

Matrix: Water

Analysis Batch: 553610

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Baton. 6666 fo	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/13/20 11:26	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/13/20 11:26	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/13/20 11:26	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/13/20 11:26	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/13/20 11:26	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/13/20 11:26	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/13/20 11:26	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/13/20 11:26	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/13/20 11:26	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/13/20 11:26	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/13/20 11:26	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/13/20 11:26	1
Acrolein	ND		100	17	ug/L			10/13/20 11:26	1
Acrylonitrile	ND		50	1.9	ug/L			10/13/20 11:26	1
Benzene	ND		5.0	0.60	ug/L			10/13/20 11:26	1
Bromoform	ND		5.0	0.47	ug/L			10/13/20 11:26	1
Bromomethane	ND		5.0	1.2	ug/L			10/13/20 11:26	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/13/20 11:26	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/13/20 11:26	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/13/20 11:26	1
Chloroethane	ND		5.0	0.87	ug/L			10/13/20 11:26	1
Chloroform	ND		5.0	0.54	ug/L			10/13/20 11:26	1
Chloromethane	ND		5.0	0.64	ug/L			10/13/20 11:26	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/13/20 11:26	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/13/20 11:26	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/13/20 11:26	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/13/20 11:26	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/13/20 11:26	1
Toluene	ND		5.0	0.45	ug/L			10/13/20 11:26	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/13/20 11:26	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/13/20 11:26	1
Trichloroethene	ND		5.0	0.60	ug/L			10/13/20 11:26	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/13/20 11:26	1

MB MB	
-------	--

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	68 - 130		10/13/20 11:26	1
4-Bromofluorobenzene (Surr)	96	76 - 123		10/13/20 11:26	1
Dibromofluoromethane (Surr)	103	75 - 123		10/13/20 11:26	1
Toluene-d8 (Surr)	99	77 - 120		10/13/20 11:26	1

Lab Sample ID: LCS 480-553610/6

Matrix: Water

Analysis Batch: 553610

·	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	20.5		ug/L		102	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	17.5		ug/L		87	46 - 157	
1,1,2-Trichloroethane	20.0	19.2		ug/L		96	52 - 150	

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 13 of 27

QC Sample Results

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-553610/6

Matrix: Water

Analysis Batch: 553610

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-176371-1

•	Spike	_	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D ^c	%Rec	Limits	
1,1-Dichloroethane	20.0	20.6		ug/L		103	59 - 155	
1,1-Dichloroethene	20.0	21.5		ug/L		107	1 - 234	
1,2-Dichlorobenzene	20.0	19.5		ug/L		98	18 - 190	
1,2-Dichloroethane	20.0	18.9		ug/L		94	49 - 155	
1,2-Dichloropropane	20.0	20.0		ug/L		100	1 - 210	
1,3-Dichlorobenzene	20.0	19.7		ug/L		98	59 - 156	
1,4-Dichlorobenzene	20.0	19.6		ug/L		98	18 - 190	
2-Chloroethyl vinyl ether	20.0	18.7	J	ug/L		94	1 - 305	
Benzene	20.0	20.5		ug/L		103	37 - 151	
Bromoform	20.0	18.2		ug/L		91	45 - 169	
Bromomethane	20.0	24.6		ug/L		123	1 - 242	
Carbon tetrachloride	20.0	20.4		ug/L		102	70 - 140	
Chlorobenzene	20.0	20.2		ug/L		101	37 - 160	
Chlorodibromomethane	20.0	18.6		ug/L		93	53 - 149	
Chloroethane	20.0	23.5		ug/L		118	14 - 230	
Chloroform	20.0	20.1		ug/L		101	51 - 138	
Chloromethane	20.0	24.9		ug/L		125	1 - 273	
cis-1,3-Dichloropropene	20.0	19.6		ug/L		98	1 - 227	
Dichlorobromomethane	20.0	19.3		ug/L		96	35 - 155	
Ethylbenzene	20.0	20.3		ug/L		102	37 - 162	
Methylene Chloride	20.0	21.0		ug/L		105	1 - 221	
Tetrachloroethene	20.0	21.1		ug/L		106	64 - 148	
Toluene	20.0	19.9		ug/L		99	47 - 150	
trans-1,2-Dichloroethene	20.0	21.2		ug/L		106	54 - 156	
trans-1,3-Dichloropropene	20.0	18.7		ug/L		93	17 - 183	
Trichloroethene	20.0	20.0		ug/L		100	71 - 157	
Vinyl chloride	20.0	24.5		ug/L		122	1 - 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		68 - 130
4-Bromofluorobenzene (Surr)	97		76 - 123
Dibromofluoromethane (Surr)	103		75 - 123
Toluene-d8 (Surr)	100		77 - 120

Lab Sample ID: MB 480-553815/8

Matrix: Water

Analysis Batch: 553815

Client Sample ID: Method Blank Prep Type: Total/NA

	MB N	ИB							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND		5.0	0.39	ug/L			10/14/20 11:26	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/14/20 11:26	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/14/20 11:26	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/14/20 11:26	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/14/20 11:26	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/14/20 11:26	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/14/20 11:26	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/14/20 11:26	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/14/20 11:26	1

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-176371-1

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-553815/8

Matrix: Water Analysis Batch: 553815

MB MB

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/14/20 11:26	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/14/20 11:26	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/14/20 11:26	1
Acrolein	ND		100	17	ug/L			10/14/20 11:26	1
Acrylonitrile	ND		50	1.9	ug/L			10/14/20 11:26	1
Benzene	ND		5.0	0.60	ug/L			10/14/20 11:26	1
Bromoform	ND		5.0	0.47	ug/L			10/14/20 11:26	1
Bromomethane	ND		5.0	1.2	ug/L			10/14/20 11:26	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/14/20 11:26	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/14/20 11:26	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/14/20 11:26	1
Chloroethane	ND		5.0	0.87	ug/L			10/14/20 11:26	1
Chloroform	ND		5.0	0.54	ug/L			10/14/20 11:26	1
Chloromethane	ND		5.0	0.64	ug/L			10/14/20 11:26	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/14/20 11:26	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/14/20 11:26	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/14/20 11:26	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/14/20 11:26	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/14/20 11:26	1
Toluene	ND		5.0	0.45	ug/L			10/14/20 11:26	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/14/20 11:26	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/14/20 11:26	1
Trichloroethene	ND		5.0	0.60	ug/L			10/14/20 11:26	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/14/20 11:26	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		68 - 130		10/14/20 11:26	1
4-Bromofluorobenzene (Surr)	97		76 - 123		10/14/20 11:26	1
Dibromofluoromethane (Surr)	98		75 - 123		10/14/20 11:26	1
Toluene-d8 (Surr)	99		77 - 120		10/14/20 11:26	1

Lab Sample ID: LCS 480-553815/6

Matrix: Water

Analysis Batch: 553815

Client Sample ID: Lab Control Sample Prep Type: Total/NA

7 , 0.0 0000 .0	Spike	1.00	LCS				%Rec.
Analyte	Added	_	Qualifier	Unit	D	%Rec	/intec.
			Quaiillei				
1,1,1-Trichloroethane	20.0	19.7		ug/L		98	52 - 162
1,1,2,2-Tetrachloroethane	20.0	17.6		ug/L		88	46 - 157
1,1,2-Trichloroethane	20.0	19.0		ug/L		95	52 - 150
1,1-Dichloroethane	20.0	20.3		ug/L		101	59 - 155
1,1-Dichloroethene	20.0	20.5		ug/L		102	1 - 234
1,2-Dichlorobenzene	20.0	18.9		ug/L		94	18 - 190
1,2-Dichloroethane	20.0	18.0		ug/L		90	49 - 155
1,2-Dichloropropane	20.0	19.2		ug/L		96	1 - 210
1,3-Dichlorobenzene	20.0	18.9		ug/L		95	59 - 156
1,4-Dichlorobenzene	20.0	18.9		ug/L		95	18 - 190
2-Chloroethyl vinyl ether	20.0	18.9	J	ug/L		95	1 - 305
Benzene	20.0	19.9		ug/L		100	37 - 151

Page 15 of 27

Eurofins TestAmerica, Buffalo

QC Sample Results

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-553815/6

Matrix: Water

Analysis Batch: 553815

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-176371-1

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Bromoform 20.0 18.4 ug/L 92 45 - 169 Bromomethane 20.0 24.1 ug/L 121 1 - 242 70 - 140 Carbon tetrachloride 20.0 19.4 ug/L 97 97 Chlorobenzene 20.0 19.4 ug/L 37 - 160 Chlorodibromomethane 20.0 ug/L 92 53 - 149 18.4 Chloroethane 20.0 22.9 ug/L 115 14 - 230 Chloroform 20.0 19.6 ug/L 98 51 - 138 20.0 1 - 273 Chloromethane 22.4 ug/L 112 cis-1,3-Dichloropropene 20.0 19.3 96 1 - 227 ug/L Dichlorobromomethane 20.0 93 35 - 155 18.7 ug/L Ethylbenzene 20.0 19.5 ug/L 98 37 - 162 101 Methylene Chloride 20.0 20.1 ug/L 1 - 221 Tetrachloroethene 20.0 20.2 ug/L 101 64 - 148 Toluene 20.0 47 - 150 19.3 ug/L 96 trans-1,2-Dichloroethene 20.0 20.4 ug/L 102 54 - 156 trans-1,3-Dichloropropene 20.0 18.2 17 - 183 ug/L 91 Trichloroethene 20.0 19.4 ug/L 97 71 - 157 Vinyl chloride 20.0 23.1 ug/L 115 1 - 251

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		68 - 130
4-Bromofluorobenzene (Surr)	96		76 - 123
Dibromofluoromethane (Surr)	101		75 - 123
Toluene-d8 (Surr)	99		77 - 120

	Sample Sample	Spike	MS MS	%Rec.
Analysis Batch: 553815				
Matrix: Water				Prep Type: Total/NA
Lab Sample ID: 480-1/63/1-1	MS		Client Sample ID: IW-01-0C120	

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		0.100	95.2		ug/L		NC	52 - 162	
1,1,2,2-Tetrachloroethane	ND		0.100	86.1		ug/L		NC	46 - 157	
1,1,2-Trichloroethane	ND		0.100	92.3		ug/L		NC	52 - 150	
1,1-Dichloroethane	11	J	0.100	107	4	ug/L		96526	59 - 155	
1,1-Dichloroethene	ND		0.100	105		ug/L		NC	1 - 234	
1,2-Dichlorobenzene	ND		0.100	92.5		ug/L		NC	18 - 190	
1,2-Dichloroethane	ND		0.100	88.3		ug/L		NC	49 - 155	
1,2-Dichloropropane	ND		0.100	96.0		ug/L		NC	1 - 210	
1,3-Dichlorobenzene	ND		0.100	92.8		ug/L		NC	59 - 156	
1,4-Dichlorobenzene	ND		0.100	93.0		ug/L		NC	18 - 190	
2-Chloroethyl vinyl ether	ND		0.100	91.8	J	ug/L		NC	1 - 305	
Benzene	ND		0.100	98.6		ug/L		NC	37 - 151	
Bromoform	ND		0.100	85.6		ug/L		NC	45 - 169	
Bromomethane	ND		0.100	126		ug/L		NC	1 - 242	
Carbon tetrachloride	ND		0.100	96.4		ug/L		NC	70 - 140	
Chlorobenzene	ND		0.100	95.9		ug/L		NC	37 - 160	
Chlorodibromomethane	ND		0.100	85.4		ug/L		NC	53 - 149	
Chloroethane	ND		0.100	125		ug/L		NC	14 - 230	

Eurofins TestAmerica, Buffalo

Page 16 of 27

QC Sample Results

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-176371-1 MS

Matrix: Water

Analysis Batch: 553815

Client Sample ID: IW-01-OCT20

Job ID: 480-176371-1

Prep Type: Total/NA

MS MS Sample Sample %Rec. Spike D %Rec Analyte Result Qualifier Added Result Qualifier Unit Limits Chloroform ND 0.100 95.1 ug/L NC 51 - 138 Chloromethane ND 0.100 127 ug/L NC 1 - 273 cis-1,3-Dichloropropene ND 0.100 90.8 NC 1 - 227 ug/L ND Dichlorobromomethane 0.100 90.6 ug/L NC 35 - 155 Ethylbenzene ND 0.100 96.5 ug/L NC 37 - 162 Methylene Chloride ND 0.100 99.3 ug/L NC 1 - 221 Tetrachloroethene ND 0.100 102 ug/L NC 64 - 148 Toluene ND 0.100 NC 47 - 150 95.4 ug/L trans-1,2-Dichloroethene 3.4 0.100 101 4 98036 54 - 156 ug/L trans-1,3-Dichloropropene ND 0.100 85.2 NC 17 - 183 ug/L Trichloroethene 3.8 0.100 100 4 ug/L 96429 71 - 157 Vinyl chloride 0.100 12521 1 - 251 56 181 4 ug/L

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		68 - 130
4-Bromofluorobenzene (Surr)	98		76 - 123
Dibromofluoromethane (Surr)	101		75 - 123
Toluene-d8 (Surr)	99		77 - 120

Lab Sample ID: 480-176371-1 MSD

Matrix: Water

Client Sample ID: IW-01-OCT20
Prep Type: Total/NA

Analysis Batch: 553815										•	
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		0.100	88.2		ug/L		NC	52 - 162	8	15
1,1,2,2-Tetrachloroethane	ND		0.100	77.7		ug/L		NC	46 - 157	10	15
1,1,2-Trichloroethane	ND		0.100	85.4		ug/L		NC	52 - 150	8	15
1,1-Dichloroethane	11	J	0.100	99.2	4	ug/L		88642	59 - 155	8	15
1,1-Dichloroethene	ND		0.100	96.6		ug/L		NC	1 - 234	9	15
1,2-Dichlorobenzene	ND		0.100	84.9		ug/L		NC	18 - 190	9	15
1,2-Dichloroethane	ND		0.100	83.6		ug/L		NC	49 - 155	5	15
1,2-Dichloropropane	ND		0.100	87.4		ug/L		NC	1 - 210	9	15
1,3-Dichlorobenzene	ND		0.100	85.3		ug/L		NC	59 - 156	8	15
1,4-Dichlorobenzene	ND		0.100	85.4		ug/L		NC	18 - 190	8	15
2-Chloroethyl vinyl ether	ND		0.100	86.5	J	ug/L		NC	1 - 305	6	15
Benzene	ND		0.100	94.0		ug/L		NC	37 - 151	5	15
Bromoform	ND		0.100	81.5		ug/L		NC	45 - 169	5	15
Bromomethane	ND		0.100	118		ug/L		NC	1 - 242	7	15
Carbon tetrachloride	ND		0.100	86.3		ug/L		NC	70 - 140	11	15
Chlorobenzene	ND		0.100	89.0		ug/L		NC	37 - 160	7	15
Chlorodibromomethane	ND		0.100	81.8		ug/L		NC	53 - 149	4	15
Chloroethane	ND		0.100	117		ug/L		NC	14 - 230	6	15
Chloroform	ND		0.100	89.0		ug/L		NC	51 - 138	7	15
Chloromethane	ND		0.100	119		ug/L		NC	1 - 273	7	15
cis-1,3-Dichloropropene	ND		0.100	85.8		ug/L		NC	1 - 227	6	15
Dichlorobromomethane	ND		0.100	84.0		ug/L		NC	35 - 155	8	15
Ethylbenzene	ND		0.100	89.0		ug/L		NC	37 - 162	8	15
Methylene Chloride	ND		0.100	93.1		ug/L		NC	1 - 221	6	15

Eurofins TestAmerica, Buffalo

Page 17 of 27

Client: New York State D.E.C. Job ID: 480-176371-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water

Analysis Batch: 553815

Lab Sample ID: 480-176371-1 MSD

MSD MSD **RPD** Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Tetrachloroethene ND 0.100 91.2 NC 64 - 148 15 ug/L 11 Toluene ND 0.100 87.2 ug/L NC 47 - 150 9 15 trans-1,2-Dichloroethene 0.100 54 - 156 3.4 96.3 4 ug/L 92972 5 15 trans-1,3-Dichloropropene ND 0.100 80.7 ug/L NC 17 - 183 5 15 Trichloroethene 3.8 J 0.100 91.3 4 ug/L 87423 71 - 157 9 15 0.100 10429 12 Vinyl chloride 56 160 4 ug/L 1 - 251 15

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		68 - 130
4-Bromofluorobenzene (Surr)	98		76 - 123
Dibromofluoromethane (Surr)	102		75 - 123
Toluene-d8 (Surr)	99		77 - 120

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-554094/4

Matrix: Water

Analysis Batch: 554094

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	ND		2.0	0.35	mg/L			10/15/20 23:42	1

Lab Sample ID: LCS 480-554094/3

Matrix: Water

Analysis Batch: 554094

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate		50.0	50.22		mg/L		100	90 - 110	

Lab Sample ID: 480-176371-1 MS

Matrix: Water

Analysis Batch: 554094

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	118		250	341.5		ma/l		90	80 - 120	 _

Lab Sample ID: 480-176371-1 MSD

Matrix: Water

Analysis Batch: 554094

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfate	118		250	342.5		mg/L		90	80 - 120	0	15

Client Sample ID: IW-01-OCT20

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: IW-01-OCT20

Client Sample ID: IW-01-OCT20

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

3

Prep Type: Total/NA

Eurofins TestAmerica, Buffalo

Job ID: 480-176371-1

Project/Site: Davis-Howland Oil Corp #828088

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 480-553797/4

Matrix: Water

Analysis Batch: 553797

Client: New York State D.E.C.

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: MW-17R-OCT20

Client Sample ID: MW-17R-OCT20

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte D Prepared Analyzed Alkalinity, Total ND 5.0 0.79 mg/L 10/13/20 16:32 Alkalinity, Bicarbonate ND 5.0 0.79 mg/L 10/13/20 16:32 ND Alkalinity, Carbonate 5.0 0.79 mg/L 10/13/20 16:32 0.79 mg/L Hydroxide Alkalinity ND 5.0 10/13/20 16:32

Lab Sample ID: LCS 480-553797/5

Matrix: Water

Analysis Batch: 553797

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Alkalinity, Total 100 98.80 99 90 - 110 mg/L

Lab Sample ID: 480-176371-2 MS

Matrix: Water

Analysis Batch: 553797

MS MS Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits 332 F1 100 370 7 F1 39 60 - 140 Alkalinity, Total mg/L

Lab Sample ID: 480-176371-2 MSD

Matrix: Water

Analysis Batch: 553797

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Analyte Result Qualifier Added Unit %Rec Limits RPD Limit Alkalinity, Total 332 F1 100 371.5 F1 60 - 140 mg/L 39

Lab Sample ID: MB 480-554162/4

Matrix: Water

Analysis Batch: 554162

MB MB

Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Analyte Alkalinity, Total ND 5.0 0.79 mg/L 10/15/20 13:08 Alkalinity, Bicarbonate ND 5.0 0.79 mg/L 10/15/20 13:08 5.0 Alkalinity, Carbonate ND 0.79 mg/L 10/15/20 13:08 Hydroxide Alkalinity ND 5.0 0.79 mg/L 10/15/20 13:08

Lab Sample ID: LCS 480-554162/5

Analysis Batch: 554162

Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Alkalinity, Total 100 98.88 mg/L 99 90 - 110

Lab Sample ID: 480-176371-1 MS

Matrix: Water

Analysis Batch: 554162

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity, Total	311	F1	100	373.5		mg/L		63	60 - 140	

Eurofins TestAmerica, Buffalo

Client Sample ID: IW-01-OCT20

Prep Type: Total/NA

Page 19 of 27

QC Sample Results

Client: New York State D.E.C. Job ID: 480-176371-1

Project/Site: Davis-Howland Oil Corp #828088

Method: SM 2320B - Alkalinity (Continued)

Lab Sample ID: 480-176371-1 MSD Client Sample ID: IW-01-OCT20 **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 554162

Sample Sample MSD MSD RPD Spike %Rec. Result Qualifier Added Result Qualifier Unit RPD Analyte D %Rec Limits Limit 311 F1 100 365.0 F1 54 2 Alkalinity, Total mg/L 60 - 140 20

QC Association Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

GC/MS VOA

Analysis Batch: 553610

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176371-2	MW-17R-OCT20	Total/NA	Water	624.1	
480-176371-3	MW-17R-OCT20-Q	Total/NA	Water	624.1	
480-176371-4	MW-8-OCT20	Total/NA	Water	624.1	
MB 480-553610/8	Method Blank	Total/NA	Water	624.1	
LCS 480-553610/6	Lab Control Sample	Total/NA	Water	624.1	

Analysis Batch: 553815

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176371-1	IW-01-OCT20	Total/NA	Water	624.1	
480-176371-2 - DL	MW-17R-OCT20	Total/NA	Water	624.1	
480-176371-3 - DL	MW-17R-OCT20-Q	Total/NA	Water	624.1	
480-176371-4 - DL	MW-8-OCT20	Total/NA	Water	624.1	
MB 480-553815/8	Method Blank	Total/NA	Water	624.1	
LCS 480-553815/6	Lab Control Sample	Total/NA	Water	624.1	
480-176371-1 MS	IW-01-OCT20	Total/NA	Water	624.1	
480-176371-1 MSD	IW-01-OCT20	Total/NA	Water	624.1	

General Chemistry

Analysis Batch: 553797

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176371-1	IW-01-OCT20	Total/NA	Water	SM 2320B	
480-176371-2	MW-17R-OCT20	Total/NA	Water	SM 2320B	
480-176371-3	MW-17R-OCT20-Q	Total/NA	Water	SM 2320B	
480-176371-4	MW-8-OCT20	Total/NA	Water	SM 2320B	
MB 480-553797/4	Method Blank	Total/NA	Water	SM 2320B	
LCS 480-553797/5	Lab Control Sample	Total/NA	Water	SM 2320B	
480-176371-2 MS	MW-17R-OCT20	Total/NA	Water	SM 2320B	
480-176371-2 MSD	MW-17R-OCT20	Total/NA	Water	SM 2320B	

Analysis Batch: 554094

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176371-1	IW-01-OCT20	Total/NA	Water	300.0	_
480-176371-2	MW-17R-OCT20	Total/NA	Water	300.0	
480-176371-3	MW-17R-OCT20-Q	Total/NA	Water	300.0	
480-176371-4	MW-8-OCT20	Total/NA	Water	300.0	
MB 480-554094/4	Method Blank	Total/NA	Water	300.0	
LCS 480-554094/3	Lab Control Sample	Total/NA	Water	300.0	
480-176371-1 MS	IW-01-OCT20	Total/NA	Water	300.0	
480-176371-1 MSD	IW-01-OCT20	Total/NA	Water	300.0	

Analysis Batch: 554162

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-554162/4	Method Blank	Total/NA	Water	SM 2320B	
LCS 480-554162/5	Lab Control Sample	Total/NA	Water	SM 2320B	
480-176371-1 MS	IW-01-OCT20	Total/NA	Water	SM 2320B	
480-176371-1 MSD	IW-01-OCT20	Total/NA	Water	SM 2320B	

Page 21 of 27

Job ID: 480-176371-1

Lab Chronicle

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: IW-01-OCT20

Lab Sample ID: 480-176371-1 Date Collected: 10/12/20 12:15 Date Received: 10/12/20 18:10

Matrix: Water

Job ID: 480-176371-1

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA WJD Analysis 624.1 5 553815 10/14/20 11:56 TAL BUF Total/NA 5 Analysis 300.0 554094 10/16/20 01:07 IMZ TAL BUF Total/NA Analysis SM 2320B 1 553797 10/13/20 17:35 BEF TAL BUF

Client Sample ID: MW-17R-OCT20 Lab Sample ID: 480-176371-2

Matrix: Water

TAL BUF

Date Collected: 10/12/20 13:10 Date Received: 10/12/20 18:10

Batch Dilution Batch **Prepared** Batch **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab 624.1 553610 10/13/20 18:29 WJD Total/NA Analysis 10 TAL BUF Total/NA Analysis 624.1 DL 20 553815 10/14/20 12:20 WJD TAL BUF Total/NA Analysis 300.0 5 554094 10/16/20 00:24 IMZ TAL BUF

Client Sample ID: MW-17R-OCT20-Q Lab Sample ID: 480-176371-3

553797 10/13/20 18:07 BEF

1

Date Collected: 10/12/20 13:10 **Matrix: Water**

Date Received: 10/12/20 18:10

Analysis

SM 2320B

Total/NA

Batch Batch Dilution Batch Prepared Method Type **Factor** Number **Prep Type** Run or Analyzed Analyst Lab Total/NA Analysis 624.1 10 553610 10/13/20 18:53 WJD TAL BUF Total/NA DL 20 Analysis 624.1 553815 10/14/20 12:43 WJD TAL BUF Total/NA Analysis 300.0 5 554094 10/16/20 00:38 IMZ TAL BUF Total/NA Analysis 1 10/13/20 17:42 BEF TAL BUF SM 2320B 553797

Client Sample ID: MW-8-OCT20 Lab Sample ID: 480-176371-4

Date Collected: 10/12/20 15:10 Date Received: 10/12/20 18:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		10	553610	10/13/20 19:16	WJD	TAL BUF
Total/NA	Analysis	624.1	DL	50	553815	10/14/20 13:06	WJD	TAL BUF
Total/NA	Analysis	300.0		5	554094	10/16/20 00:53	IMZ	TAL BUF
Total/NA	Analysis	SM 2320B		1	553797	10/13/20 17:49	BEF	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

10

Matrix: Water

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-176371-1

Project/Site: Davis-Howland Oil Corp #828088

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	F	Program	Identification Number	Expiration Date
New York	1	NELAP	10026	04-01-21
The following analytes the agency does not do		port, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
624.1		Water	1,2-Dichloroethene, Total	
SM 2320B		Water	Alkalinity, Bicarbonate	
SM 2320B		Water	Alkalinity, Carbonate	
SM 2320B		Water	Hydroxide Alkalinity	

4

5

7

4 4

12

Method Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method **Method Description** Protocol Laboratory 40CFR136A TAL BUF 624.1 Volatile Organic Compounds (GC/MS) MCAWW 300.0 Anions, Ion Chromatography **TAL BUF** SM 2320B SM TAL BUF Alkalinity

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-176371-1

3

4

^

7

8

44

12

4.4

Sample Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-176371-1

3

4

5

7

8

11

12

A A

eurofins Environment Testing America

Chain of Custody Record

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Client Information	Sampler: CW	9		Lab PN Johns	Lab PM: Johnson, Orlette S	S		Carrier Tracking No(s):	No(s):	COC No: 480-151692-33705.5	5.5
Client Contact: Jenelle Gavlord	Phone 716)	8-187	090	E-Mail:	Johnsor	E-Mail: Orlette, Johnson@Eurofinset.com	et.com			Page: Page	
Company New York State D.F.C.					-		Analysis Reguested	Politected		Job #:	
New York Clare D.E.C. Address ROS Broadway Division of Environmental Demodiation	Due Date Requested:									Preservation Codes	:s:
City and a control of civil control of civil control of civil control of civil	TAT Requested (days):	/s):								A - HCL B - NaOH	M - Hexane N - None
Sate 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 S clark	7			- 624.1						P - Na204S O - Na2SO3
Phone:	PO#: CallOut ID: 136612	512								G - Amchlor H - Ascorbic Acid	R - Na2S203 S - H2SO4 T - TSP Dodecahydrate
Email: jenelle.gaylord@dec.ny.gov	,#OM				ION					I - Ice J - Di Water	U - Acetone V - MCAA
Project Name: Davis-Howland Oll Corp #828088	Project #: 48019422				10 29		isii q			K-EDIA L-EDA	W - pri 4-5 Z - other (specify)
Site:	:#MOSS				A) ds	ns (ac	s, TCL			of co	
Sample Identification	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (wwwater. Smadid. Owwate/oil, BT=Issue, Awar)	Field Filtered : MSM msoftse 624.1 PREC - P	300.0_28D - (MC	8260C - Volatile			Total Number	Special Instructions/Note:
		X	122	ion Code:	Ž	z	A			\times	
- The xitable	10/12/2010	10:00	8	Water	+					-	
IW-01-0 CT26		12:15	U	Water	1 39	313.13				15 mspass	
MW-17K-0cT20		13:10	0	Water	W	=				5	
MW-17K-05120-B		13:10	S	Wite	3	1 1				5 dupe	
MW-8-0CT20	+	15:10	J	With	1 3	-					
			_	2011	/			_			
) \	olizh	020						
				, ,			1			Aport	
								163	MINIMUM of Custon	- Cial	
								480-11	+		
Possible Hazard Identification					Same	le Disposa	I A fee may	i hassasse ad	l are selomes	Sample Disnosal (4 fee may be assessed if samples are retained longer than 1 month)	month)
ile Skin Irritant	☐ Poison B ☐ Unknown		Radiological			Return To	Return To Client Disp	Disposal By Lab	ab ab	Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)					Speci	al Instructio	ns/QC Requir				
Empty Kit Relinquished by:		Date:			Time:	1	00	Method	Method of Shipment:		
Relinquished by: CLJ	Date/Time: /0/12/	12020	18:10	Company	TIP TIP	Received by:) V	/	Date/Timer	Fred Brill	COMPANIO
Reinquished by:	Date/Time:)	Company	œ	Received by)	Date/Time:		Company
Relinquished by:	Date/Time:			Сотралу	ď	Received by:			Date/Time:		Company
Custody Seals Inlact: Custody Seal No.:					Ü	ooler Tempera	Cooler Temperature(s) °C and Other Remarks	ther Remarks	4.6	1#	
					1						Man 01/16/3010

Client: New York State D.E.C.

Job Number: 480-176371-1

List Source: Eurofins TestAmerica, Buffalo

Login Number: 176371

List Number: 1

Creator: Sabuda, Brendan D

creator. Sabuda, Brendan D	_	
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.6 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	E+E
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-176469-1

Client Project/Site: Davis-Howland Oil Corp #828088

For:

New York State D.E.C. 625 Broadway Division of Environmental Remediation Albany, New York 12233-7014

Attn: Jenelle Gaylord

Authorized for release by: 10/20/2020 6:19:44 AM

Orlette Johnson, Senior Project Manager (484)685-0864

Orlette.Johnson@Eurofinset.com

Frette J. Johnson

Review your project results through
Total Access

Ask—The Expert

Visit us at: www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

4

_

10

15

13

14

Project/Site: Davis-Howland Oil Corp #828088

Laboratory Job ID: 480-176469-1

2

3

4

5

6

Q

9

11

13

14

15

Orlette Johnson

Orlette Johnson Senior Project Manager 10/20/2020 6:19:44 AM

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the

Laboratory Manager or his/her designee, as verified by the following signature.

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	
Lab Chronicle	20
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receint Checklists	25

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-176469-1

Project/Site: Davis-Howland Oil Corp #828088

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

E

J

7

8

10

13

Case Narrative

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-176469-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-176469-1

Receipt

The samples were received on 10/13/2020 4:10 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.6° C.

GC/MS VOA

Method 624.1: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-5R-OCT20 (480-176469-2), (480-176469-C-2 MS) and (480-176469-C-2 MSD). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following sample was diluted due to the nature of the sample matrix: MW-14R-OCT20 (480-176469-3). Elevated reporting limits (RLs) are provided.

Method 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-5R-OCT20 (480-176469-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

1

Job ID: 480-176469-1

2

4

5

6

9

10

12

13

Detection Summary

Client: New York State D.E.C. Job ID: 480-176469-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201013 Lab Sample ID: 480-176469-1

No Detections.

Client Sample ID: MW-5R-OCT20 Lab Sample ID: 480-176469-2

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
1,2-Dichloroethene, Total	450	200	64	ug/L	20	624.1	Total/NA
Vinyl chloride	75 J	100	15	ug/L	20	624.1	Total/NA
Sulfate	277	10.0	1.7	mg/L	5	300.0	Total/NA
Alkalinity, Total	302	5.0	0.79	mg/L	1	SM 2320B	Total/NA
Alkalinity, Bicarbonate	302	5.0	0.79	mg/L	1	SM 2320B	Total/NA

Client Sample ID: MW-14R-OCT20 Lab Sample ID: 480-176469-3

Analyte	Result Q	(ualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,2-Dichloroethene, Total	8.4 J		10	3.2	ug/L		624.1	Total/NA
trans-1,2-Dichloroethene	1.0 J		5.0	0.59	ug/L	1	624.1	Total/NA
Trichloroethene	1.7 J		5.0	0.60	ug/L	1	624.1	Total/NA
Vinyl chloride	9.3		5.0	0.75	ug/L	1	624.1	Total/NA
Sulfate	73.8		4.0	0.70	mg/L	2	300.0	Total/NA
Alkalinity, Total	295		5.0	0.79	mg/L	1	SM 2320B	Total/NA
Alkalinity, Bicarbonate	295		5.0	0.79	mg/L	1	SM 2320B	Total/NA

10/20/2020

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201013

Date Collected: 10/13/20 10:00 Date Received: 10/13/20 16:10

Lab Sample ID: 480-176469-1

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/15/20 11:39	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/15/20 11:39	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/15/20 11:39	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/15/20 11:39	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/15/20 11:39	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/15/20 11:39	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/15/20 11:39	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/15/20 11:39	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/15/20 11:39	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/15/20 11:39	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/15/20 11:39	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/15/20 11:39	1
Acrolein	ND		100	17	ug/L			10/15/20 11:39	1
Acrylonitrile	ND		50	1.9	ug/L			10/15/20 11:39	1
Benzene	ND		5.0	0.60	ug/L			10/15/20 11:39	1
Bromoform	ND		5.0	0.47	ug/L			10/15/20 11:39	1
Bromomethane	ND		5.0	1.2	ug/L			10/15/20 11:39	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/15/20 11:39	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/15/20 11:39	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/15/20 11:39	1
Chloroethane	ND		5.0	0.87	ug/L			10/15/20 11:39	1
Chloroform	ND		5.0	0.54	ug/L			10/15/20 11:39	1
Chloromethane	ND		5.0	0.64	ug/L			10/15/20 11:39	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/15/20 11:39	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/15/20 11:39	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/15/20 11:39	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/15/20 11:39	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/15/20 11:39	1
Toluene	ND		5.0	0.45	ug/L			10/15/20 11:39	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/15/20 11:39	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/15/20 11:39	1
Trichloroethene	ND		5.0	0.60	-			10/15/20 11:39	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/15/20 11:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		68 - 130					10/15/20 11:39	1

4-Bromofluorobenzene (Surr) 98 76 - 123 10/15/20 11:39 Dibromofluoromethane (Surr) 101 75 - 123 10/15/20 11:39 Toluene-d8 (Surr) 97 77 - 120 10/15/20 11:39

Date Collected: 10/13/20 14:20 Date Received: 10/13/20 16:10

Client Sample ID: MW-5R-OCT20

Lab Sample ID: 480-176469-2

Matrix: Water

Method: 624.1 - Volatile Organic C	ompound	us (GC/IVIS)							
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		100	7.7	ug/L			10/15/20 12:02	20
1,1,2,2-Tetrachloroethane	ND		100	5.2	ug/L			10/15/20 12:02	20
1,1,2-Trichloroethane	ND		100	9.6	ug/L			10/15/20 12:02	20
1,1-Dichloroethane	ND		100	12	ug/L			10/15/20 12:02	20

Eurofins TestAmerica, Buffalo

Page 7 of 25 10/20/2020

Client Sample Results

Client: New York State D.E.C. Job ID: 480-176469-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-5R-OCT20

Date Collected: 10/13/20 14:20 Date Received: 10/13/20 16:10

trans-1,3-Dichloropropene

Trichloroethene

Vinyl chloride

Lab Sample ID: 480-176469-2

Matrix: Water

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		100	17	ug/L			10/15/20 12:02	20
1,2-Dichlorobenzene	ND		100	8.9	ug/L			10/15/20 12:02	20
1,2-Dichloroethane	ND		100	12	ug/L			10/15/20 12:02	20
1,2-Dichloroethene, Total	450		200	64	ug/L			10/15/20 12:02	20
1,2-Dichloropropane	ND		100	12	ug/L			10/15/20 12:02	20
1,3-Dichlorobenzene	ND		100	11	ug/L			10/15/20 12:02	20
1,4-Dichlorobenzene	ND		100	10	ug/L			10/15/20 12:02	20
2-Chloroethyl vinyl ether	ND		500	37	ug/L			10/15/20 12:02	20
Acrolein	ND		2000	350	ug/L			10/15/20 12:02	20
Acrylonitrile	ND		1000	38	ug/L			10/15/20 12:02	20
Benzene	ND		100	12	ug/L			10/15/20 12:02	20
Bromoform	ND		100	9.4	ug/L			10/15/20 12:02	20
Bromomethane	ND		100	24	ug/L			10/15/20 12:02	20
Carbon tetrachloride	ND		100	10	ug/L			10/15/20 12:02	20
Chlorobenzene	ND		100	9.5	ug/L			10/15/20 12:02	20
Chlorodibromomethane	ND		100	8.3	ug/L			10/15/20 12:02	20
Chloroethane	ND		100	17	ug/L			10/15/20 12:02	20
Chloroform	ND		100	11	ug/L			10/15/20 12:02	20
Chloromethane	ND		100	13	ug/L			10/15/20 12:02	20
cis-1,3-Dichloropropene	ND		100	6.6	ug/L			10/15/20 12:02	20
Dichlorobromomethane	ND		100	11	ug/L			10/15/20 12:02	20
Ethylbenzene	ND		100	9.3	ug/L			10/15/20 12:02	20
Methylene Chloride	ND		100	16	ug/L			10/15/20 12:02	20
Tetrachloroethene	ND		100	6.8	ug/L			10/15/20 12:02	20
Toluene	ND		100	9.1	ug/L			10/15/20 12:02	20
trans-1,2-Dichloroethene	ND		100		ug/L			10/15/20 12:02	20

Surrogate	%Recovery	Qualifier	Limits	Prepared A	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		68 - 130	10/	15/20 12:02	20
4-Bromofluorobenzene (Surr)	99		76 - 123	10/	/15/20 12:02	20
Dibromofluoromethane (Surr)	104		75 - 123	10/	/15/20 12:02	20
Toluene-d8 (Surr)	99		77 - 120	10/	15/20 12:02	20

100

100

100

8.8 ug/L

12 ug/L

15 ug/L

ND

ND

75 J

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	277		10.0	1.7	mg/L			10/15/20 11:34	5
Alkalinity, Total	302		5.0	0.79	mg/L			10/15/20 13:50	1
Alkalinity, Bicarbonate	302		5.0	0.79	mg/L			10/15/20 13:50	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			10/15/20 13:50	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			10/15/20 13:50	1

10/15/20 12:02

10/15/20 12:02

10/15/20 12:02

20

20

Client Sample Results

Client: New York State D.E.C. Job ID: 480-176469-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-14R-OCT20

Date Collected: 10/13/20 14:00 Date Received: 10/13/20 16:10

Lab Sample ID: 480-176469-3

Matrix: Water

Analyte	Result (Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/15/20 15:31	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/15/20 15:31	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/15/20 15:31	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/15/20 15:31	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/15/20 15:31	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/15/20 15:31	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/15/20 15:31	1
1,2-Dichloroethene, Total	8.4	J	10	3.2	ug/L			10/15/20 15:31	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/15/20 15:31	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/15/20 15:31	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/15/20 15:31	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/15/20 15:31	1
Acrolein	ND		100	17	ug/L			10/15/20 15:31	1
Acrylonitrile	ND		50	1.9	ug/L			10/15/20 15:31	1
Benzene	ND		5.0	0.60	ug/L			10/15/20 15:31	1
Bromoform	ND		5.0	0.47	ug/L			10/15/20 15:31	1
Bromomethane	ND		5.0	1.2	ug/L			10/15/20 15:31	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/15/20 15:31	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/15/20 15:31	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/15/20 15:31	1
Chloroethane	ND		5.0	0.87	ug/L			10/15/20 15:31	1
Chloroform	ND		5.0	0.54	ug/L			10/15/20 15:31	1
Chloromethane	ND		5.0	0.64	ug/L			10/15/20 15:31	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/15/20 15:31	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/15/20 15:31	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/15/20 15:31	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/15/20 15:31	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/15/20 15:31	1
Toluene	ND		5.0	0.45	ug/L			10/15/20 15:31	1
trans-1,2-Dichloroethene	1.0	J	5.0	0.59	ug/L			10/15/20 15:31	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/15/20 15:31	1
Trichloroethene	1.7	J	5.0	0.60	ug/L			10/15/20 15:31	1
Vinyl chloride	9.3		5.0	0.75	ug/L			10/15/20 15:31	1
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		68 - 130					10/15/20 15:31	1
4-Bromofluorobenzene (Surr)	98		76 - 123					10/15/20 15:31	1
Dibromofluoromethane (Surr)	102		75 - 123					10/15/20 15:31	1
Toluene-d8 (Surr)	100		77 - 120					10/15/20 15:31	1

General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	73.8	4.0	0.70	mg/L			10/15/20 11:48	2
Alkalinity, Total	295	5.0	0.79	mg/L			10/15/20 13:57	1
Alkalinity, Bicarbonate	295	5.0	0.79	mg/L			10/15/20 13:57	1
Alkalinity, Carbonate	ND	5.0	0.79	mg/L			10/15/20 13:57	1
Hydroxide Alkalinity	ND	5.0	0.79	mg/L			10/15/20 13:57	1

10/20/2020

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-176469-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco	very (Acce _l	otance Limi	ts)	
		DCA	DCA	BFB	BFB	DBFM	DBFM	TOL	TOL
Lab Sample ID	Client Sample ID	(68-130)	(68-130)	(76-123)	(76-123)	(75-123)	(75-123)	(77-120)	(77-120)
480-176469-1	TB-20201013	92	92	98	98	101	101	97	97
480-176469-2	MW-5R-OCT20	95	95	99	99	104	104	99	99
480-176469-2 MS	MW-5R-OCT20	93	93	98	98	98	98	102	102
480-176469-2 MSD	MW-5R-OCT20	97	97	98	98	98	98	100	100
480-176469-3	MW-14R-OCT20	96	96	98	98	102	102	100	100
LCS 480-554001/6	Lab Control Sample	91	91	99	99	99	99	99	99
LCS 480-554003/6	Lab Control Sample	91	91	99	99	99	99	99	99
MB 480-554001/8	Method Blank	97	97	98	98	103	103	98	98
MB 480-554003/8	Method Blank	97	97	98	98	103	103	98	98

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Client: New York State D.E.C. Job ID: 480-176469-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-554001/8

Matrix: Water

Analysis Batch: 554001

Client Sample ID: Method Blank

Prep Type: Total/NA MB MB

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/15/20 11:05	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/15/20 11:05	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/15/20 11:05	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/15/20 11:05	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/15/20 11:05	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/15/20 11:05	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/15/20 11:05	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/15/20 11:05	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/15/20 11:05	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/15/20 11:05	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/15/20 11:05	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/15/20 11:05	1
Acrolein	ND		100	17	ug/L			10/15/20 11:05	1
Acrylonitrile	ND		50	1.9	ug/L			10/15/20 11:05	1
Benzene	ND		5.0	0.60	ug/L			10/15/20 11:05	1
Bromoform	ND		5.0	0.47	ug/L			10/15/20 11:05	1
Bromomethane	ND		5.0	1.2	ug/L			10/15/20 11:05	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/15/20 11:05	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/15/20 11:05	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/15/20 11:05	1
Chloroethane	ND		5.0	0.87	ug/L			10/15/20 11:05	1
Chloroform	ND		5.0	0.54	ug/L			10/15/20 11:05	1
Chloromethane	ND		5.0	0.64	ug/L			10/15/20 11:05	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/15/20 11:05	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/15/20 11:05	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/15/20 11:05	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/15/20 11:05	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/15/20 11:05	1
Toluene	ND		5.0	0.45	ug/L			10/15/20 11:05	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/15/20 11:05	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/15/20 11:05	1
Trichloroethene	ND		5.0	0.60	ug/L			10/15/20 11:05	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/15/20 11:05	1

		MB	MB
	~		_

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	68 - 130		10/15/20 11:05	1
4-Bromofluorobenzene (Surr)	98	76 - 123		10/15/20 11:05	1
Dibromofluoromethane (Surr)	103	75 - 123		10/15/20 11:05	1
Toluene-d8 (Surr)	98	77 - 120		10/15/20 11:05	1

Lab Sample ID: LCS 480-554001/6

Matrix: Water

1,1,2-Trichloroethane

Analysis Batch: 554001

Alialysis Dalcii. 55400 i								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	19.7		ug/L		99	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	17.1		ug/L		86	46 - 157	

19.0

ug/L

Eurofins TestAmerica, Buffalo

52 - 150

95

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 11 of 25

20.0

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-554001/6

Matrix: Water

Analysis Batch: 554001

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-176469-1

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	20.0	20.3		ug/L		101	59 - 155	
1,1-Dichloroethene	20.0	21.4		ug/L		107	1 - 234	
1,2-Dichlorobenzene	20.0	18.7		ug/L		93	18 - 190	
1,2-Dichloroethane	20.0	18.2		ug/L		91	49 - 155	
1,2-Dichloropropane	20.0	19.6		ug/L		98	1 - 210	
1,3-Dichlorobenzene	20.0	19.2		ug/L		96	59 - 156	
1,4-Dichlorobenzene	20.0	19.0		ug/L		95	18 - 190	
2-Chloroethyl vinyl ether	20.0	19.2	J	ug/L		96	1 - 305	
Benzene	20.0	20.3		ug/L		102	37 - 151	
Bromoform	20.0	18.2		ug/L		91	45 - 169	
Bromomethane	20.0	25.1		ug/L		125	1 - 242	
Carbon tetrachloride	20.0	20.1		ug/L		100	70 - 140	
Chlorobenzene	20.0	20.0		ug/L		100	37 - 160	
Chlorodibromomethane	20.0	18.1		ug/L		91	53 - 149	
Chloroethane	20.0	23.3		ug/L		116	14 - 230	
Chloroform	20.0	19.6		ug/L		98	51 - 138	
Chloromethane	20.0	23.0		ug/L		115	1 - 273	
cis-1,3-Dichloropropene	20.0	19.0		ug/L		95	1 - 227	
Dichlorobromomethane	20.0	18.7		ug/L		94	35 - 155	
Ethylbenzene	20.0	20.3		ug/L		101	37 - 162	
Methylene Chloride	20.0	20.2		ug/L		101	1 - 221	
Tetrachloroethene	20.0	21.3		ug/L		107	64 - 148	
Toluene	20.0	19.7		ug/L		98	47 - 150	
trans-1,2-Dichloroethene	20.0	20.8		ug/L		104	54 - 156	
trans-1,3-Dichloropropene	20.0	18.3		ug/L		91	17 - 183	
Trichloroethene	20.0	19.7		ug/L		99	71 ₋ 157	
Vinyl chloride	20.0	24.2		ug/L		121	1 - 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		68 - 130
4-Bromofluorobenzene (Surr)	99		76 - 123
Dibromofluoromethane (Surr)	99		75 - 123
Toluene-d8 (Surr)	99		77 - 120

Lab Sample ID: 480-176469-2 MS

Matrix: Water

Analysis Batch: 554001

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		400	403		ug/L		101	52 - 162	
1,1,2,2-Tetrachloroethane	ND		400	369		ug/L		92	46 - 157	
1,1,2-Trichloroethane	ND		400	402		ug/L		100	52 - 150	
1,1-Dichloroethane	ND		400	421		ug/L		105	59 - 155	
1,1-Dichloroethene	ND		400	435		ug/L		109	1 - 234	
1,2-Dichlorobenzene	ND		400	390		ug/L		97	18 - 190	
1,2-Dichloroethane	ND		400	375		ug/L		94	49 - 155	
1,2-Dichloropropane	ND		400	406		ug/L		102	1 - 210	
1,3-Dichlorobenzene	ND		400	396		ug/L		99	59 - 156	

Client Sample ID: MW-5R-OCT20

Prep Type: Total/NA

Page 12 of 25

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-176469-1

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-176469-2 MS

Matrix: Water

Analysis Batch: 554001

Client Sample ID: MW-5R-OCT20

Prep Type: Total/NA

7 maryolo Batom 004001	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dichlorobenzene	ND		400	397		ug/L		99	18 - 190	
2-Chloroethyl vinyl ether	ND		400	386	J	ug/L		97	1 - 305	
Benzene	ND		400	425		ug/L		106	37 - 151	
Bromoform	ND		400	369		ug/L		92	45 - 169	
Bromomethane	ND		400	459		ug/L		115	1 - 242	
Carbon tetrachloride	ND		400	404		ug/L		101	70 - 140	
Chlorobenzene	ND		400	414		ug/L		103	37 - 160	
Chlorodibromomethane	ND		400	374		ug/L		94	53 - 149	
Chloroethane	ND		400	454		ug/L		114	14 - 230	
Chloroform	ND		400	396		ug/L		99	51 - 138	
Chloromethane	ND		400	492		ug/L		123	1 - 273	
cis-1,3-Dichloropropene	ND		400	389		ug/L		97	1 - 227	
Dichlorobromomethane	ND		400	385		ug/L		96	35 - 155	
Ethylbenzene	ND		400	419		ug/L		105	37 - 162	
Methylene Chloride	ND		400	401		ug/L		100	1 - 221	
Tetrachloroethene	ND		400	456		ug/L		114	64 - 148	
Toluene	ND		400	423		ug/L		106	47 - 150	
trans-1,2-Dichloroethene	ND		400	430		ug/L		107	54 - 156	
trans-1,3-Dichloropropene	ND		400	371		ug/L		93	17 - 183	
Trichloroethene	ND		400	426		ug/L		107	71 - 157	
Vinyl chloride	75	J	400	487		ug/L		103	1 - 251	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		68 - 130
4-Bromofluorobenzene (Surr)	98		76 - 123
Dibromofluoromethane (Surr)	98		75 - 123
Toluene-d8 (Surr)	102		77 - 120

Lab Sample ID: 480-176469-2 MSD

Matrix: Water

Analysis Batch: 554001

Client Sample ID: MW-5R-OCT20
Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		400	367		ug/L		92	52 - 162	9	15
1,1,2,2-Tetrachloroethane	ND		400	366		ug/L		92	46 - 157	1	15
1,1,2-Trichloroethane	ND		400	395		ug/L		99	52 - 150	2	15
1,1-Dichloroethane	ND		400	396		ug/L		99	59 - 155	6	15
1,1-Dichloroethene	ND		400	398		ug/L		100	1 - 234	9	15
1,2-Dichlorobenzene	ND		400	378		ug/L		95	18 - 190	3	15
1,2-Dichloroethane	ND		400	362		ug/L		91	49 - 155	3	15
1,2-Dichloropropane	ND		400	391		ug/L		98	1 - 210	4	15
1,3-Dichlorobenzene	ND		400	379		ug/L		95	59 - 156	4	15
1,4-Dichlorobenzene	ND		400	381		ug/L		95	18 - 190	4	15
2-Chloroethyl vinyl ether	ND		400	389	J	ug/L		97	1 - 305	1	15
Benzene	ND		400	410		ug/L		103	37 - 151	4	15
Bromoform	ND		400	364		ug/L		91	45 - 169	1	15
Bromomethane	ND		400	438		ug/L		109	1 - 242	5	15
Carbon tetrachloride	ND		400	373		ug/L		93	70 - 140	8	15

Page 13 of 25

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-176469-2 MSD

Matrix: Water

Analysis Batch: 554001

Client Sample ID: MW-5R-OCT20

Prep Type: Total/NA

Job ID: 480-176469-1

Unit ug/L ug/L	D %Rec 98	%Rec. Limits 37 - 160	RPD 5	RPD Limit
ug/L ug/L	98	37 - 160		
ug/L			5	15
J	91			15
		53 - 149	3	15
ug/L	108	14 - 230	5	15
ug/L	94	51 - 138	5	15
ug/L	107	1 - 273	14	15
ug/L	95	1 - 227	2	15
ug/L	92	35 - 155	4	15
ug/L	98	37 - 162	6	15
ug/L	96	1 - 221	5	15
ug/L	103	64 - 148	10	15
ug/L	98	47 - 150	8	15
ug/L	98	54 - 156	9	15
ug/L	91	17 - 183	1	15
ug/L	98	71 - 157	8	15
ug/L	95	1 - 251	7	15
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ug/L 95 ug/L 92 ug/L 98 ug/L 96 ug/L 103 ug/L 98 ug/L 98 ug/L 98 ug/L 91 ug/L 98	ug/L 95 1 - 227 ug/L 92 35 - 155 ug/L 98 37 - 162 ug/L 96 1 - 221 ug/L 103 64 - 148 ug/L 98 47 - 150 ug/L 98 54 - 156 ug/L 91 17 - 183 ug/L 98 71 - 157	ug/L 95 1 - 227 2 ug/L 92 35 - 155 4 ug/L 98 37 - 162 6 ug/L 96 1 - 221 5 ug/L 103 64 - 148 10 ug/L 98 47 - 150 8 ug/L 98 54 - 156 9 ug/L 91 17 - 183 1 ug/L 98 71 - 157 8

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		68 - 130
4-Bromofluorobenzene (Surr)	98		76 - 123
Dibromofluoromethane (Surr)	98		75 - 123
Toluene-d8 (Surr)	100		77 - 120

Lab Sample ID: MB 480-554003/8

Matrix: Water

Analysis Batch: 554003

Client Sample ID: Method Blank

Prep Type: Total/NA

MB N	ИΒ							
Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		5.0	0.39	ug/L			10/15/20 11:05	1
ND		5.0	0.26	ug/L			10/15/20 11:05	1
ND		5.0	0.48	ug/L			10/15/20 11:05	1
ND		5.0	0.59	ug/L			10/15/20 11:05	1
ND		5.0	0.85	ug/L			10/15/20 11:05	1
ND		5.0	0.44	ug/L			10/15/20 11:05	1
ND		5.0	0.60	ug/L			10/15/20 11:05	1
ND		10	3.2	ug/L			10/15/20 11:05	1
ND		5.0	0.61	ug/L			10/15/20 11:05	1
ND		5.0	0.54	ug/L			10/15/20 11:05	1
ND		5.0	0.51	ug/L			10/15/20 11:05	1
ND		25	1.9	ug/L			10/15/20 11:05	1
ND		100	17	ug/L			10/15/20 11:05	1
ND		50	1.9	ug/L			10/15/20 11:05	1
ND		5.0	0.60	ug/L			10/15/20 11:05	1
ND		5.0	0.47	ug/L			10/15/20 11:05	1
ND		5.0	1.2	ug/L			10/15/20 11:05	1
ND		5.0	0.51	ug/L			10/15/20 11:05	1
ND		5.0	0.48	ug/L			10/15/20 11:05	1
ND		5.0	0.41	ug/L			10/15/20 11:05	1
ND		5.0	0.87	ug/L			10/15/20 11:05	1
	Result O	ND N	Result Qualifier RL ND 5.0 ND 10 ND 5.0 ND 5.0 ND 5.0 ND 50 ND 50 ND 5.0 ND 5.0	Result Qualifier RL MDL ND 5.0 0.39 ND 5.0 0.26 ND 5.0 0.48 ND 5.0 0.59 ND 5.0 0.85 ND 5.0 0.60 ND 10 3.2 ND 5.0 0.61 ND 5.0 0.54 ND 5.0 0.51 ND 100 17 ND 5.0 0.60 ND 5.0 0.60 ND 5.0 0.47 ND 5.0 0.51 ND 5.0 0.48 ND 5.0 0.41	Result Qualifier RL MDL Unit ND 5.0 0.39 ug/L ND 5.0 0.26 ug/L ND 5.0 0.48 ug/L ND 5.0 0.59 ug/L ND 5.0 0.85 ug/L ND 5.0 0.60 ug/L ND 5.0 0.61 ug/L ND 5.0 0.61 ug/L ND 5.0 0.54 ug/L ND 5.0 0.51 ug/L ND 5.0 0.51 ug/L ND 5.0 0.60 ug/L ND 5.0 0.60 ug/L ND 5.0 0.47 ug/L ND 5.0 0.51 ug/L ND 5.0 0.51 ug/L ND 5.0 0.51 ug/L ND 5.0 0.48 ug/L ND <t< td=""><td>Result Qualifier RL MDL Unit D ND 5.0 0.39 ug/L ug/L ND 5.0 0.26 ug/L ND 5.0 0.48 ug/L ND 5.0 0.59 ug/L ND 5.0 0.85 ug/L ND 5.0 0.60 ug/L ND 5.0 0.60 ug/L ND 5.0 0.61 ug/L ND 5.0 0.51 ug/L ND 5.0 0.51 ug/L ND 100 17 ug/L ND 5.0 0.60 ug/L ND 5.0 0.60 ug/L ND 5.0 0.47 ug/L ND 5.0 0.47 ug/L ND 5.0 0.51 ug/L ND 5.0 0.48 ug/L ND 5.0 0.48 ug/L</td><td>Result Qualifier RL MDL Unit D Prepared ND 5.0 0.39 ug/L Image: contract of the contract</td><td>Result Qualifier RL MDL Unit D Prepared Analyzed ND 5.0 0.39 ug/L 10/15/20 11:05 ND 5.0 0.26 ug/L 10/15/20 11:05 ND 5.0 0.48 ug/L 10/15/20 11:05 ND 5.0 0.59 ug/L 10/15/20 11:05 ND 5.0 0.85 ug/L 10/15/20 11:05 ND 5.0 0.44 ug/L 10/15/20 11:05 ND 5.0 0.60 ug/L 10/15/20 11:05 ND 5.0 0.61 ug/L 10/15/20 11:05 ND 5.0 0.54 ug/L 10/15/20 11:05 ND 5.0 0.54 ug/L 10/15/20 11:05 ND 5.0 0.51 ug/L 10/15/20 11:05 ND 25 1.9 ug/L 10/15/20 11:05 ND 50 1.9 ug/L 10/15/20 11:05 ND 5.0 0.60</td></t<>	Result Qualifier RL MDL Unit D ND 5.0 0.39 ug/L ug/L ND 5.0 0.26 ug/L ND 5.0 0.48 ug/L ND 5.0 0.59 ug/L ND 5.0 0.85 ug/L ND 5.0 0.60 ug/L ND 5.0 0.60 ug/L ND 5.0 0.61 ug/L ND 5.0 0.51 ug/L ND 5.0 0.51 ug/L ND 100 17 ug/L ND 5.0 0.60 ug/L ND 5.0 0.60 ug/L ND 5.0 0.47 ug/L ND 5.0 0.47 ug/L ND 5.0 0.51 ug/L ND 5.0 0.48 ug/L ND 5.0 0.48 ug/L	Result Qualifier RL MDL Unit D Prepared ND 5.0 0.39 ug/L Image: contract of the contract	Result Qualifier RL MDL Unit D Prepared Analyzed ND 5.0 0.39 ug/L 10/15/20 11:05 ND 5.0 0.26 ug/L 10/15/20 11:05 ND 5.0 0.48 ug/L 10/15/20 11:05 ND 5.0 0.59 ug/L 10/15/20 11:05 ND 5.0 0.85 ug/L 10/15/20 11:05 ND 5.0 0.44 ug/L 10/15/20 11:05 ND 5.0 0.60 ug/L 10/15/20 11:05 ND 5.0 0.61 ug/L 10/15/20 11:05 ND 5.0 0.54 ug/L 10/15/20 11:05 ND 5.0 0.54 ug/L 10/15/20 11:05 ND 5.0 0.51 ug/L 10/15/20 11:05 ND 25 1.9 ug/L 10/15/20 11:05 ND 50 1.9 ug/L 10/15/20 11:05 ND 5.0 0.60

Page 14 of 25

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-554003/8

Matrix: Water

Analysis Batch: 554003

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-176469-1

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 5.0 Chloroform ND 0.54 ug/L 10/15/20 11:05 Chloromethane ND 5.0 0.64 ug/L 10/15/20 11:05 ND cis-1,3-Dichloropropene 5.0 0.33 ug/L 10/15/20 11:05 Dichlorobromomethane ND 5.0 0.54 ug/L 10/15/20 11:05 Ethylbenzene ND 5.0 0.46 ug/L 10/15/20 11:05 Methylene Chloride ND 5.0 0.81 ug/L 10/15/20 11:05 Tetrachloroethene ND 5.0 0.34 ug/L 10/15/20 11:05 Toluene ND 5.0 0.45 ug/L 10/15/20 11:05 trans-1,2-Dichloroethene ND 5.0 0.59 ug/L 10/15/20 11:05 ND 5.0 trans-1,3-Dichloropropene 0.44 ug/L 10/15/20 11:05 Trichloroethene ND 5.0 0.60 ug/L 10/15/20 11:05 ND Vinyl chloride 5.0 0.75 ug/L 10/15/20 11:05

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		68 - 130	 	10/15/20 11:05	1
4-Bromofluorobenzene (Surr)	98		76 - 123		10/15/20 11:05	1
Dibromofluoromethane (Surr)	103		75 - 123		10/15/20 11:05	1
Toluene-d8 (Surr)	98		77 - 120		10/15/20 11:05	1

Lab Sample ID: LCS 480-554003/6

Matrix: Water

Analysis Batch: 554003

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Analyte D 20.0 52 - 162 1,1,1-Trichloroethane 19.7 ug/L 99 1,1,2,2-Tetrachloroethane 20.0 17.1 ug/L 86 46 - 157 20.0 1,1,2-Trichloroethane 19.0 ug/L 95 52 - 150 20.0 20.3 101 1,1-Dichloroethane ug/L 59 - 155 20.0 1,1-Dichloroethene 21.4 ug/L 107 1 - 234 1,2-Dichlorobenzene 20.0 18.7 ug/L 93 18 - 190 1,2-Dichloroethane 20.0 91 49 - 155 18.2 ug/L 20.0 19.6 98 1 - 210 1,2-Dichloropropane ug/L 20.0 96 1.3-Dichlorobenzene 192 ug/L 59 - 156 1,4-Dichlorobenzene 20.0 19.0 95 18 - 190 ug/L ug/L 2-Chloroethyl vinyl ether 20.0 19.2 J 96 1 - 305 Benzene 20.0 20.3 ug/L 102 37 - 151Bromoform 20.0 18.2 ug/L 91 45 - 169 20.0 25.1 125 Bromomethane ug/L 1 - 242 Carbon tetrachloride 20.0 20.1 ug/L 100 70 - 140Chlorobenzene 20.0 20.0 ug/L 100 37 - 160Chlorodibromomethane 20.0 18.1 ug/L 91 53 - 149 20.0 Chloroethane 23.3 ug/L 116 14 - 230 Chloroform 20.0 98 19.6 ug/L 51 - 138 Chloromethane 20.0 23.0 ug/L 115 1 - 273 cis-1,3-Dichloropropene 20.0 19.0 ug/L 95 1 - 227 20.0 Dichlorobromomethane 18.7 ug/L 94 35 - 155Ethylbenzene 20.0 20.3 ug/L 101 37 - 162Methylene Chloride 20.0 20.2 ug/L 101 1 - 221

Eurofins TestAmerica, Buffalo

Page 15 of 25

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-554003/6

Matrix: Water

Analysis Batch: 554003

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-176469-1

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	20.0	21.3		ug/L		107	64 - 148	
Toluene	20.0	19.7		ug/L		98	47 - 150	
trans-1,2-Dichloroethene	20.0	20.8		ug/L		104	54 - 156	
trans-1,3-Dichloropropene	20.0	18.3		ug/L		91	17 - 183	
Trichloroethene	20.0	19.7		ug/L		99	71 - 157	
Vinyl chloride	20.0	24.2		ug/L		121	1 - 251	

LCS LCS

Surrogate 1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr)	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		68 - 130
4-Bromofluorobenzene (Surr)	99		76 - 123
Dibromofluoromethane (Surr)	99		75 - 123
Toluene-d8 (Surr)	99		77 - 120

Client Sample ID: MW-5R-OCT20

Prep Type: Total/NA

Lab Sample ID: 480-176469-2 MS **Matrix: Water**

Analysis Batch: 554003

Analysis Batch: 554003										
	•	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	ND		400	403		ug/L		101	52 - 162	
1,1,2,2-Tetrachloroethane	ND		400	369		ug/L		92	46 - 157	
1,1,2-Trichloroethane	ND		400	402		ug/L		100	52 - 150	
1,1-Dichloroethane	ND		400	421		ug/L		105	59 - 155	
1,1-Dichloroethene	ND		400	435		ug/L		109	1 - 234	
1,2-Dichlorobenzene	ND		400	390		ug/L		97	18 - 190	
1,2-Dichloroethane	ND		400	375		ug/L		94	49 - 155	
1,2-Dichloropropane	ND		400	406		ug/L		102	1 - 210	
1,3-Dichlorobenzene	ND		400	396		ug/L		99	59 - 156	
1,4-Dichlorobenzene	ND		400	397		ug/L		99	18 - 190	
2-Chloroethyl vinyl ether	ND		400	386	J	ug/L		97	1 - 305	
Benzene	ND		400	425		ug/L		106	37 - 151	
Bromoform	ND		400	369		ug/L		92	45 - 169	
Bromomethane	ND		400	459		ug/L		115	1 - 242	
Carbon tetrachloride	ND		400	404		ug/L		101	70 - 140	
Chlorobenzene	ND		400	414		ug/L		103	37 - 160	
Chlorodibromomethane	ND		400	374		ug/L		94	53 - 149	
Chloroethane	ND		400	454		ug/L		114	14 - 230	
Chloroform	ND		400	396		ug/L		99	51 - 138	
Chloromethane	ND		400	492		ug/L		123	1 - 273	
cis-1,3-Dichloropropene	ND		400	389		ug/L		97	1 - 227	
Dichlorobromomethane	ND		400	385		ug/L		96	35 - 155	
Ethylbenzene	ND		400	419		ug/L		105	37 - 162	
Methylene Chloride	ND		400	401		ug/L		100	1 - 221	
Tetrachloroethene	ND		400	456		ug/L		114	64 - 148	
Toluene	ND		400	423		ug/L		106	47 - 150	
trans-1,2-Dichloroethene	ND		400	430		ug/L		107	54 - 156	
trans-1,3-Dichloropropene	ND		400	371		ug/L		93	17 - 183	
Trichloroethene	ND		400	426		ug/L		107	71 - 157	
Vinyl chloride	75	J	400	487		ug/L		103	1 - 251	

Eurofins TestAmerica, Buffalo

Page 16 of 25

Client: New York State D.E.C. Job ID: 480-176469-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-176469-2 MS

Lab Sample ID: 480-176469-2 MSD

Matrix: Water

Analysis Batch: 554003

Client Sample ID: MW-5R-OCT20

Prep Type: Total/NA

MS MS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 93 68 - 130 4-Bromofluorobenzene (Surr) 98 76 - 123 Dibromofluoromethane (Surr) 98 75 - 123 Toluene-d8 (Surr) 102 77 - 120

Client Sample ID: MW-5R-OCT20

Prep Type: Total/NA

Analysis Ratch: 554003

Matrix: Water

•	e Sample t Qualifier	Spike Added	MSD	MSD				%Rec.		RPD
		Added								
1 1 1-Trichloroethane NI)			Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1 monorodinane	,	400	367		ug/L		92	52 - 162	9	15
1,1,2,2-Tetrachloroethane NI)	400	366		ug/L		92	46 - 157	1	15
1,1,2-Trichloroethane NI)	400	395		ug/L		99	52 - 150	2	15
1,1-Dichloroethane NI)	400	396		ug/L		99	59 - 155	6	15
1,1-Dichloroethene NI)	400	398		ug/L		100	1 - 234	9	15
1,2-Dichlorobenzene NI)	400	378		ug/L		95	18 - 190	3	15
1,2-Dichloroethane NI)	400	362		ug/L		91	49 - 155	3	15
1,2-Dichloropropane NI)	400	391		ug/L		98	1 - 210	4	15
1,3-Dichlorobenzene NI)	400	379		ug/L		95	59 - 156	4	15
1,4-Dichlorobenzene NI)	400	381		ug/L		95	18 - 190	4	15
2-Chloroethyl vinyl ether NI)	400	389	J	ug/L		97	1 - 305	1	15
Benzene NI)	400	410		ug/L		103	37 - 151	4	15
Bromoform NI)	400	364		ug/L		91	45 - 169	1	15
Bromomethane NI)	400	438		ug/L		109	1 - 242	5	15
Carbon tetrachloride NI)	400	373		ug/L		93	70 - 140	8	15
Chlorobenzene NI)	400	394		ug/L		98	37 - 160	5	15
Chlorodibromomethane NI)	400	364		ug/L		91	53 - 149	3	15
Chloroethane NI)	400	433		ug/L		108	14 - 230	5	15
Chloroform NI)	400	377		ug/L		94	51 - 138	5	15
Chloromethane NI)	400	427		ug/L		107	1 - 273	14	15
cis-1,3-Dichloropropene NI)	400	380		ug/L		95	1 - 227	2	15
Dichlorobromomethane NI)	400	368		ug/L		92	35 - 155	4	15
Ethylbenzene NI)	400	393		ug/L		98	37 - 162	6	15
Methylene Chloride NI)	400	382		ug/L		96	1 - 221	5	15
Tetrachloroethene NI)	400	412		ug/L		103	64 - 148	10	15
Toluene NI)	400	390		ug/L		98	47 - 150	8	15
trans-1,2-Dichloroethene NI)	400	393		ug/L		98	54 - 156	9	15
trans-1,3-Dichloropropene NI)	400	366		ug/L		91	17 - 183	1	15
Trichloroethene NI)	400	393		ug/L		98	71 - 157	8	15
Vinyl chloride 7	5 J	400	455		ug/L		95	1 - 251	7	15

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		68 - 130
4-Bromofluorobenzene (Surr)	98		76 - 123
Dibromofluoromethane (Surr)	98		75 - 123
Toluene-d8 (Surr)	100		77 - 120

Eurofins TestAmerica, Buffalo

Page 17 of 25

10/20/2020

Client: New York State D.E.C. Job ID: 480-176469-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-554048/4

Matrix: Water

Analysis Batch: 554048

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac **Prepared** 2.0 0.35 mg/L 10/15/20 11:19 Sulfate ND

Lab Sample ID: LCS 480-554048/3

Matrix: Water

Analysis Batch: 554048

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Sulfate 50.0 48.63 mg/L 97 90 - 110

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 480-554162/4

Matrix: Water

Analysis Batch: 554162

MB MB Analyte Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed Alkalinity, Total ND 5.0 0.79 mg/L 10/15/20 13:08 Alkalinity, Bicarbonate ND 5.0 0.79 mg/L 10/15/20 13:08 ND 5.0 0.79 mg/L Alkalinity, Carbonate 10/15/20 13:08 ND 5.0 Hydroxide Alkalinity 0.79 mg/L 10/15/20 13:08

Lab Sample ID: LCS 480-554162/5

Matrix: Water

Analysis Batch: 554162

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Alkalinity, Total 100 98.88 mg/L 99 90 - 110

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

QC Association Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

GC/MS VOA

Analysis Batch: 554001

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-554001/8	Method Blank	Total/NA	Water	624.1	
LCS 480-554001/6	Lab Control Sample	Total/NA	Water	624.1	
480-176469-2 MS	MW-5R-OCT20	Total/NA	Water	624.1	
480-176469-2 MSD	MW-5R-OCT20	Total/NA	Water	624.1	

Analysis Batch: 554003

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176469-1	TB-20201013	Total/NA	Water	624.1	
480-176469-2	MW-5R-OCT20	Total/NA	Water	624.1	
480-176469-3	MW-14R-OCT20	Total/NA	Water	624.1	
MB 480-554003/8	Method Blank	Total/NA	Water	624.1	
LCS 480-554003/6	Lab Control Sample	Total/NA	Water	624.1	
480-176469-2 MS	MW-5R-OCT20	Total/NA	Water	624.1	
480-176469-2 MSD	MW-5R-OCT20	Total/NA	Water	624.1	

General Chemistry

Analysis Batch: 554048

Lab Sample ID 480-176469-2	Client Sample ID MW-5R-OCT20	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
480-176469-3	MW-14R-OCT20	Total/NA	Water	300.0	
MB 480-554048/4	Method Blank	Total/NA	Water	300.0	
LCS 480-554048/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 554162

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176469-2	MW-5R-OCT20	Total/NA	Water	SM 2320B	
480-176469-3	MW-14R-OCT20	Total/NA	Water	SM 2320B	
MB 480-554162/4	Method Blank	Total/NA	Water	SM 2320B	
LCS 480-554162/5	Lab Control Sample	Total/NA	Water	SM 2320B	

Job ID: 480-176469-1

Lab Chronicle

Job ID: 480-176469-1 Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201013

Lab Sample ID: 480-176469-1 Date Collected: 10/13/20 10:00

Matrix: Water

Date Received: 10/13/20 16:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	554003	10/15/20 11:39	WJD	TAL BUF

Client Sample ID: MW-5R-OCT20 Lab Sample ID: 480-176469-2

Date Collected: 10/13/20 14:20 **Matrix: Water**

Date Received: 10/13/20 16:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		20	554003	10/15/20 12:02	WJD	TAL BUF
Total/NA	Analysis	300.0		5	554048	10/15/20 11:34	IMZ	TAL BUF
Total/NA	Analysis	SM 2320B		1	554162	10/15/20 13:50	BEF	TAL BUF

Lab Sample ID: 480-176469-3 Client Sample ID: MW-14R-OCT20

Date Collected: 10/13/20 14:00 **Matrix: Water**

Date Received: 10/13/20 16:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	554003	10/15/20 15:31	WJD	TAL BUF
Total/NA	Analysis	300.0		2	554048	10/15/20 11:48	IMZ	TAL BUF
Total/NA	Analysis	SM 2320B		1	554162	10/15/20 13:57	BEF	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-176469-1

Project/Site: Davis-Howland Oil Corp #828088

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		Program	Identification Number	Expiration Date		
New York	ew York NELAP		10026	04-01-21		
The following analytes the agency does not o	•	port, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which		
Analysis Method	Prep Method	Matrix	Analyte			
624.1		Water	1,2-Dichloroethene, Total			
SM 2320B		Water	Alkalinity, Bicarbonate			
SM 2320B		Water	Alkalinity, Carbonate			
SM 2320B		Water	Hydroxide Alkalinity			

3

4

9

4.4

12

Te

Method Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method **Method Description** Protocol Laboratory 40CFR136A TAL BUF 624.1 Volatile Organic Compounds (GC/MS) MCAWW 300.0 Anions, Ion Chromatography **TAL BUF** SM 2320B SM TAL BUF Alkalinity

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-176469-1

4

6

7

8

44

12

14

Sample Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-176469-1	TB-20201013	Water	10/13/20 10:00	10/13/20 16:10	
180-176469-2	MW-5R-OCT20	Water	10/13/20 14:20	10/13/20 16:10	
480-176469-3	MW-14R-OCT20	Water	10/13/20 14:00	10/13/20 16:10	

Job ID: 480-176469-1

3

4

5

6

8

9

11

12

1 1

Eurofins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

Chain of Custody Record

Environment Testing America

💸 eurofins

M - Hexane
N - None
O - AsN3O2
P - Na2O4S
O - Na2SO3
R - Na2SO3
S - L7SO4
T - TSP Dodecahydrate U - Acetone V - MCAA W - pH 4-5 Z - other (specify) Special Instructions/Note: Ver: 01/16/2019 Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Month COC No: 480-151692-33705,4 Preservation Codes: TripBlank Page 4 of (Eur) 9 A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - MaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid I - Ice J - DI Water K - EDTA # Archive For Total Number of containers 480-176469 Chain of Custody Date/Time: lethod of Shipment Analysis Requested Cooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements: Lab PM: Johnson, Orlette S E-Mail: Orlette.Johnson@Eurofinset.com 8260C - Volatiles, TCLP list Received by: eived by: Received by: 800.0_28D - (MOD) Sulfate 3 ~ 624.1 PREC - Priority Pollutant List - VOA - 624.1 Time: Perform MS/MSD (Yes or No) -iltered Sample (Yes or No) Collegate 3 Company Company BT=Tissue, A=Air) Preservation Code: Water Matrix Company Radiological Type (C=comp, G=grab) Sample 100 (71C) (84-80 CC 2 0 019/ 10:00 14:00 Sample 14:20 10-13-20/ Date/Time: Unknown FAT Requested (days): Po #: // CallOut ID: 136612 Due Date Requested: 3 day Sample Date 10/13/2020 Project #: 48019422 SSOW#: Date/Time: 0 :# OM Poison B Skin Irritant 625 Broadway Division of Environmental Remediation Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No Flammable MW-14R-0CT20 Davis-Howland Oil Corp #828088 Rossible Hazard Identification MW-5R-0CT20 TB-26201013 Empty Kit Relinquished by: jenelle.gaylord@dec.ny.gov Custody Seals Intact: Sample Identification Client Information Sompany: New York State D.E.C. Non-Hazard State, Zip: NY, 12233-7014 Jenelle Gaylord nquished by: nquished by: quished by: Albany

Job Number: 480-176469-1

List Source: Eurofins TestAmerica, Buffalo

Client: New York State D.E.C.

Login Number: 176469

List Number: 1

Creator: Sabuda, Brendan D

Creator. Sabuda, Brendan D		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.6 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-176565-1

Client Project/Site: Davis-Howland Oil Corp #828088

For:

New York State D.E.C. 625 Broadway Division of Environmental Remediation Albany, New York 12233-7014

Attn: Jenelle Gaylord

Authorized for release by: 10/21/2020 11:05:06 AM Wyatt Watson, Project Management Assistant I Wyatt.Watson@Eurofinset.com

Designee for

Orlette Johnson, Senior Project Manager (484)685-0864

Orlette.Johnson@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

6

0

9

11

15

14

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Wigatt Bloton

Wyatt Watson

Project Management Assistant I

10/21/2020 11:05:06 AM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	19
Lab Chronicle	20
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	25

3

4

6

8

46

11

13

14

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-176565-1

Project/Site: Davis-Howland Oil Corp #828088

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

H Sample was prepped or analyzed beyond the specified holding time

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly	used abbreviations ma	v or mav r	not be prese	nt in this report
ADDIGNICION	THESE COMMISSIONS	, useu abbievialions ina	y Oi iiiay i	IOL DE PIESE	III III UIII I IOPOI L

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

5

6

9

11

12

14

Case Narrative

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-176565-1

Job ID: 480-176565-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-176565-1

Comments

No additional comments.

Receipt

The samples were received on 10/14/2020 4:10 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.3° C.

GC/MS VOA

Method 624.1: The following sample(s) were over-diluted. The sample will be reanalyzed outside of hold time: MW-2R-OCT20 (480-176565-5). Elevated reporting limits (RLs) are provided. Both sets of data will be provided.

Method 624.1: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-10R-OCT20 (480-176565-2). Elevated reporting limits (RLs) are provided.

Method 624.1: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-2R-OCT20 (480-176565-5). Elevated reporting limits (RLs) are provided.

Method 624.1: Reanalysis of the following sample was performed outside of the analytical holding time for Acrolein due to lack of history: MW-2R-OCT20 (480-176565-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: MW-2R-OCT20 (480-176565-5). Elevated reporting limits (RLs) are provided.

Method 300.0: The following sample was reported with elevated reporting limits for all analytes: MW-10R-OCT20 (480-176565-2). The sample was analyzed at a dilution based on screening results.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method SM 2320B: The method requirement for no headspace was not met. The following sample was analyzed with significant headspace in the sample container(s): (480-176439-A-1). Significant headspace is defined as a bubble greater than 6 mm in diameter.

Method SM 2320B: The method requirement for no headspace was not met. The following sample was analyzed with significant headspace in the sample container(s): (480-176595-A-8). Significant headspace is defined as a bubble greater than 6 mm in diameter.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: New York State D.E.C. Job ID: 480-176565-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201014 Lab Sample ID: 480-176565-1

No Detections.

Client Sample ID: MW-10R-OCT20 Lab Sample ID: 480-176565-2

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Trichloroethene	1100	100	12	ug/L	20	624.1	Total/NA
Sulfate	57.0	10.0	1.7	mg/L	5	300.0	Total/NA
Alkalinity, Total	344	5.0	0.79	mg/L	1	SM 2320B	Total/NA
Alkalinity, Bicarbonate	344	5.0	0.79	mg/L	1	SM 2320B	Total/NA

Client Sample ID: RB-20201014-a Lab Sample ID: 480-176565-3

No Detections.

Lab Sample ID: 480-176565-4 Client Sample ID: RB-20201014-b

No Detections.

Lab Sample ID: 480-176565-5 Client Sample ID: MW-2R-OCT20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
1,2-Dichloroethene, Total	290		200	64	ug/L		624.1	Total/NA
Vinyl chloride	160		100	15	ug/L	20	624.1	Total/NA
1,1-Dichloroethane - RA	11	J	40	4.7	ug/L	8	624.1	Total/NA
1,2-Dichloroethene, Total - RA	270		80	26	ug/L	8	624.1	Total/NA
Vinyl chloride - RA	140		40	6.0	ug/L	8	624.1	Total/NA
Sulfate	152		10.0	1.7	mg/L	5	300.0	Total/NA
Alkalinity, Total	319		5.0	0.79	mg/L	1	SM 2320B	Total/NA
Alkalinity, Bicarbonate	319		5.0	0.79	mg/L	1	SM 2320B	Total/NA

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201014

Date Collected: 10/14/20 09:30 Date Received: 10/14/20 16:10 Lab Sample ID: 480-176565-1

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/16/20 14:06	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/16/20 14:06	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/16/20 14:06	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/16/20 14:06	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/16/20 14:06	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/16/20 14:06	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/16/20 14:06	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/16/20 14:06	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/16/20 14:06	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/16/20 14:06	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/16/20 14:06	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/16/20 14:06	1
Acrolein	ND		100	17	ug/L			10/16/20 14:06	1
Acrylonitrile	ND		50	1.9	ug/L			10/16/20 14:06	1
Benzene	ND		5.0	0.60	ug/L			10/16/20 14:06	1
Bromoform	ND		5.0	0.47	ug/L			10/16/20 14:06	1
Bromomethane	ND		5.0	1.2	ug/L			10/16/20 14:06	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/16/20 14:06	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/16/20 14:06	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/16/20 14:06	1
Chloroethane	ND		5.0	0.87	ug/L			10/16/20 14:06	1
Chloroform	ND		5.0	0.54	ug/L			10/16/20 14:06	1
Chloromethane	ND		5.0	0.64	ug/L			10/16/20 14:06	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/16/20 14:06	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/16/20 14:06	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/16/20 14:06	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/16/20 14:06	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/16/20 14:06	1
Toluene	ND		5.0	0.45	ug/L			10/16/20 14:06	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/16/20 14:06	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/16/20 14:06	1
Trichloroethene	ND		5.0	0.60	ug/L			10/16/20 14:06	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/16/20 14:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.2-Dichloroethane-d/ (Surr)			69 130			_		10/16/20 14:06	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	95		68 - 130		10/16/20 14:06	1	
4-Bromofluorobenzene (Surr)	99		76 - 123		10/16/20 14:06	1	
Dibromofluoromethane (Surr)	99		75 - 123		10/16/20 14:06	1	
Toluene-d8 (Surr)	98		77 - 120		10/16/20 14:06	1	

Client Sample ID: MW-10R-OCT20

Date Collected: 10/14/20 13:20 Date Received: 10/14/20 16:10

Lab Sample ID: 480-176565-2 **Matrix: Water**

Method: 624.1 - Volatile Org	ganic Compounds (GC/MS)
Analyto	Popult Qualifier

wethou: 624.1 - volatile Organic	; Compour								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		100	7.7	ug/L			10/16/20 14:29	20
1,1,2,2-Tetrachloroethane	ND		100	5.2	ug/L			10/16/20 14:29	20
1,1,2-Trichloroethane	ND		100	9.6	ug/L			10/16/20 14:29	20
1,1-Dichloroethane	ND		100	12	ug/L			10/16/20 14:29	20
	Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	Analyte Result 1,1,1-Trichloroethane ND 1,1,2,2-Tetrachloroethane ND 1,1,2-Trichloroethane ND	Analyte Result Qualifier 1,1,1-Trichloroethane ND 1,1,2,2-Tetrachloroethane ND 1,1,2-Trichloroethane ND	Analyte Result 1,1,1-Trichloroethane Qualifier ND RL 100 1,1,2-Trichloroethane ND 100 1,1,2-Trichloroethane ND 100 1,1,2-Trichloroethane ND 100	1,1,1-Trichloroethane ND 100 7.7 1,1,2,2-Tetrachloroethane ND 100 5.2 1,1,2-Trichloroethane ND 100 9.6	Analyte Result 1,1,1-Trichloroethane Qualifier RL 100 MDL 101 Unit 100 1,1,1-Trichloroethane ND 100 7.7 ug/L 100 100 5.2 ug/L 100 100 9.6 ug/L 100 100 9.6 ug/L 100 100	Analyte Result 1,1,1-Trichloroethane Qualifier RL 100 MDL 101 Unit 20 D 1,1,1-Trichloroethane ND 100 7.7 ug/L 100 ug/L 100 5.2 ug/L 100 ug/L 100 100 9.6 ug/L 100 ug/L 100 0.0 ug/L 100 0	Analyte Result 1,1,1-Trichloroethane Qualifier RL 100 MDL 100 Unit ug/L ug/L ug/L D 2 Prepared 1,1,2-Tetrachloroethane ND 100 5.2 ug/L ug/L ug/L 1,1,2-Trichloroethane ND 100 9.6 ug/L ug/L	Analyte Result 1,1,1-Trichloroethane Qualifier RL 100 MDL 1 unit yell D Prepared 2 nalyzed 10/16/20 14:29 1,1,1-Trichloroethane ND 100 7.7 ug/L 10/16/20 14:29 10/16/20 14:29 1,1,2-Trichloroethane ND 100 9.6 ug/L 10/16/20 14:29 10/16/20 14:29

Eurofins TestAmerica, Buffalo

Page 7 of 25 10/21/2020

Client Sample Results

Client: New York State D.E.C. Job ID: 480-176565-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-10R-OCT20

Date Collected: 10/14/20 13:20 Date Received: 10/14/20 16:10 Lab Sample ID: 480-176565-2

Matrix: Water

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND ND		100	17	ug/L			10/16/20 14:29	20
1,2-Dichlorobenzene	ND		100	8.9	ug/L			10/16/20 14:29	20
1,2-Dichloroethane	ND		100	12	ug/L			10/16/20 14:29	20
1,2-Dichloroethene, Total	ND		200	64	ug/L			10/16/20 14:29	20
1,2-Dichloropropane	ND		100	12	ug/L			10/16/20 14:29	20
1,3-Dichlorobenzene	ND		100	11	ug/L			10/16/20 14:29	20
1,4-Dichlorobenzene	ND		100	10	ug/L			10/16/20 14:29	20
2-Chloroethyl vinyl ether	ND		500	37	ug/L			10/16/20 14:29	20
Acrolein	ND		2000	350	ug/L			10/16/20 14:29	20
Acrylonitrile	ND		1000	38	ug/L			10/16/20 14:29	20
Benzene	ND		100	12	ug/L			10/16/20 14:29	20
Bromoform	ND		100	9.4	ug/L			10/16/20 14:29	20
Bromomethane	ND		100	24	ug/L			10/16/20 14:29	20
Carbon tetrachloride	ND		100	10	ug/L			10/16/20 14:29	20
Chlorobenzene	ND		100	9.5	ug/L			10/16/20 14:29	20
Chlorodibromomethane	ND		100	8.3	ug/L			10/16/20 14:29	20
Chloroethane	ND		100	17	ug/L			10/16/20 14:29	20
Chloroform	ND		100	11	ug/L			10/16/20 14:29	20
Chloromethane	ND		100	13	ug/L			10/16/20 14:29	20
cis-1,3-Dichloropropene	ND		100	6.6	ug/L			10/16/20 14:29	20
Dichlorobromomethane	ND		100	11	ug/L			10/16/20 14:29	20
Ethylbenzene	ND		100	9.3	ug/L			10/16/20 14:29	20
Methylene Chloride	ND		100	16	ug/L			10/16/20 14:29	20
Tetrachloroethene	ND		100	6.8	ug/L			10/16/20 14:29	20
Toluene	ND		100	9.1	ug/L			10/16/20 14:29	20
trans-1,2-Dichloroethene	ND		100	12	ug/L			10/16/20 14:29	20
trans-1,3-Dichloropropene	ND		100	8.8	ug/L			10/16/20 14:29	20
Trichloroethene	1100		100	12	ug/L			10/16/20 14:29	20
Vinyl chloride	ND		100	15	ug/L			10/16/20 14:29	20
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		68 - 130					10/16/20 14:29	20
4-Bromofluorobenzene (Surr)	97		76 - 123					10/16/20 14:29	20
Dibromofluoromethane (Surr)	100		75 - 123					10/16/20 14:29	20
Toluene-d8 (Surr)	98		77 - 120					10/16/20 14:29	20

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	57.0		10.0	1.7	mg/L			10/17/20 00:09	5
Alkalinity, Total	344		5.0	0.79	mg/L			10/19/20 14:31	1
Alkalinity, Bicarbonate	344		5.0	0.79	mg/L			10/19/20 14:31	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			10/19/20 14:31	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			10/19/20 14:31	1

Client Sample ID: RB-20201014-a

Date Collected: 10/14/20 13:50 Date Received: 10/14/20 16:10

Client: New York State D.E.C.

Lab Sample ID: 480-176565-3

Matrix: Water

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			10/16/20 14:52	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			10/16/20 14:52	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			10/16/20 14:52	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			10/16/20 14:52	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			10/16/20 14:52	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			10/16/20 14:52	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			10/16/20 14:52	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			10/16/20 14:52	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			10/16/20 14:52	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			10/16/20 14:52	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			10/16/20 14:52	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			10/16/20 14:52	1
Acrolein	ND	100	17	ug/L			10/16/20 14:52	1
Acrylonitrile	ND	50	1.9	ug/L			10/16/20 14:52	1
Benzene	ND	5.0	0.60	ug/L			10/16/20 14:52	1
Bromoform	ND	5.0	0.47	ug/L			10/16/20 14:52	1
Bromomethane	ND	5.0	1.2	ug/L			10/16/20 14:52	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			10/16/20 14:52	1
Chlorobenzene	ND	5.0	0.48	ug/L			10/16/20 14:52	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			10/16/20 14:52	1
Chloroethane	ND	5.0	0.87	ug/L			10/16/20 14:52	1
Chloroform	ND	5.0	0.54	ug/L			10/16/20 14:52	1
Chloromethane	ND	5.0	0.64	ug/L			10/16/20 14:52	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			10/16/20 14:52	1
Dichlorobromomethane	ND	5.0	0.54	ug/L			10/16/20 14:52	1
Ethylbenzene	ND	5.0	0.46	ug/L			10/16/20 14:52	1
Methylene Chloride	ND	5.0	0.81	ug/L			10/16/20 14:52	1
Tetrachloroethene	ND	5.0	0.34	ug/L			10/16/20 14:52	1
Toluene	ND	5.0	0.45	ug/L			10/16/20 14:52	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			10/16/20 14:52	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			10/16/20 14:52	1
Trichloroethene	ND	5.0	0.60	ug/L			10/16/20 14:52	1
Vinyl chloride	ND	5.0	0.75	ug/L			10/16/20 14:52	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93	68 - 130					10/16/20 14:52	1
4-Bromofluorobenzene (Surr)	97	76 - 123					10/16/20 14:52	1
Dibromofluoromethane (Surr)	99	75 - 123					10/16/20 14:52	1

Client Sample ID: RB-20201014-b

98

Date Collected: 10/14/20 14:00 Date Received: 10/14/20 16:10

Toluene-d8 (Surr)

Lab Sample ID: 480-176565-4

10/16/20 14:52

Matrix: Water

Method: 624.1 - Volatile Or	ganic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			10/16/20 15:15	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			10/16/20 15:15	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			10/16/20 15:15	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			10/16/20 15:15	1

77 - 120

Eurofins TestAmerica, Buffalo

Page 9 of 25

Client: New York State D.E.C. Job ID: 480-176565-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: RB-20201014-b

Date Collected: 10/14/20 14:00 Date Received: 10/14/20 16:10 Lab Sample ID: 480-176565-4

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND ND	5.0	0.85	ug/L			10/16/20 15:15	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			10/16/20 15:15	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			10/16/20 15:15	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			10/16/20 15:15	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			10/16/20 15:15	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			10/16/20 15:15	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			10/16/20 15:15	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			10/16/20 15:15	1
Acrolein	ND	100	17	ug/L			10/16/20 15:15	1
Acrylonitrile	ND	50	1.9	ug/L			10/16/20 15:15	1
Benzene	ND	5.0	0.60	ug/L			10/16/20 15:15	1
Bromoform	ND	5.0	0.47	ug/L			10/16/20 15:15	1
Bromomethane	ND	5.0	1.2	ug/L			10/16/20 15:15	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			10/16/20 15:15	1
Chlorobenzene	ND	5.0	0.48	ug/L			10/16/20 15:15	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			10/16/20 15:15	1
Chloroethane	ND	5.0	0.87	ug/L			10/16/20 15:15	1
Chloroform	ND	5.0	0.54	ug/L			10/16/20 15:15	1
Chloromethane	ND	5.0	0.64	ug/L			10/16/20 15:15	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			10/16/20 15:15	1
Dichlorobromomethane	ND	5.0	0.54	ug/L			10/16/20 15:15	1
Ethylbenzene	ND	5.0	0.46	ug/L			10/16/20 15:15	1
Methylene Chloride	ND	5.0	0.81	ug/L			10/16/20 15:15	1
Tetrachloroethene	ND	5.0	0.34	ug/L			10/16/20 15:15	1
Toluene	ND	5.0	0.45	ug/L			10/16/20 15:15	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			10/16/20 15:15	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			10/16/20 15:15	1
Trichloroethene	ND	5.0	0.60	ug/L			10/16/20 15:15	1
Vinyl chloride	ND	5.0	0.75	ug/L			10/16/20 15:15	1

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94	68 - 130		10/16/20 15:15	1
4-Bromofluorobenzene (Surr)	96	76 - 123		10/16/20 15:15	1
Dibromofluoromethane (Surr)	101	75 - 123		10/16/20 15:15	1
Toluene-d8 (Surr)	98	77 - 120		10/16/20 15:15	1

Client Sample ID: MW-2R-OCT20

Date Collected: 10/14/20 09:50 Date Received: 10/14/20 16:10 Lab Sample ID: 480-176565-5

Matrix: Water

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	100	7.7	ug/L			10/16/20 15:37	20
1,1,2,2-Tetrachloroethane	ND	100	5.2	ug/L			10/16/20 15:37	20
1,1,2-Trichloroethane	ND	100	9.6	ug/L			10/16/20 15:37	20
1,1-Dichloroethane	ND	100	12	ug/L			10/16/20 15:37	20
1,1-Dichloroethene	ND	100	17	ug/L			10/16/20 15:37	20
1,2-Dichlorobenzene	ND	100	8.9	ug/L			10/16/20 15:37	20
1,2-Dichloroethane	ND	100	12	ug/L			10/16/20 15:37	20
1,2-Dichloroethene, Total	290	200	64	ug/L			10/16/20 15:37	20

Eurofins TestAmerica, Buffalo

Page 10 of 25

Client Sample Results

Client: New York State D.E.C. Job ID: 480-176565-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-2R-OCT20

Date Collected: 10/14/20 09:50 Date Received: 10/14/20 16:10 Lab Sample ID: 480-176565-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		100	12	ug/L			10/16/20 15:37	20
1,3-Dichlorobenzene	ND		100	11	ug/L			10/16/20 15:37	20
1,4-Dichlorobenzene	ND		100	10	ug/L			10/16/20 15:37	20
2-Chloroethyl vinyl ether	ND		500	37	ug/L			10/16/20 15:37	20
Acrolein	ND		2000	350	ug/L			10/16/20 15:37	20
Acrylonitrile	ND		1000	38	ug/L			10/16/20 15:37	20
Benzene	ND		100	12	ug/L			10/16/20 15:37	20
Bromoform	ND		100	9.4	ug/L			10/16/20 15:37	20
Bromomethane	ND		100	24	ug/L			10/16/20 15:37	20
Carbon tetrachloride	ND		100	10	ug/L			10/16/20 15:37	20
Chlorobenzene	ND		100	9.5	ug/L			10/16/20 15:37	20
Chlorodibromomethane	ND		100	8.3	ug/L			10/16/20 15:37	20
Chloroethane	ND		100	17	ug/L			10/16/20 15:37	20
Chloroform	ND		100	11	ug/L			10/16/20 15:37	20
Chloromethane	ND		100	13	ug/L			10/16/20 15:37	20
cis-1,3-Dichloropropene	ND		100	6.6	ug/L			10/16/20 15:37	20
Dichlorobromomethane	ND		100	11	ug/L			10/16/20 15:37	20
Ethylbenzene	ND		100	9.3	ug/L			10/16/20 15:37	20
Methylene Chloride	ND		100	16	ug/L			10/16/20 15:37	20
Tetrachloroethene	ND		100	6.8	ug/L			10/16/20 15:37	20
Toluene	ND		100	9.1	ug/L			10/16/20 15:37	20
trans-1,2-Dichloroethene	ND		100	12	ug/L			10/16/20 15:37	20
trans-1,3-Dichloropropene	ND		100	8.8	ug/L			10/16/20 15:37	20
Trichloroethene	ND		100	12	ug/L			10/16/20 15:37	20
Vinyl chloride	160		100	15	ug/L			10/16/20 15:37	20

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		68 - 130		10/16/20 15:37	20
4-Bromofluorobenzene (Surr)	97		76 - 123		10/16/20 15:37	20
Dibromofluoromethane (Surr)	101		75 - 123		10/16/20 15:37	20
Toluene-d8 (Surr)	96		77 - 120		10/16/20 15:37	20

l	Method: 624.1	 Volatile Or 	ganic Com	pounds	(GC/MS) - RA	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	40	3.1	ug/L			10/19/20 14:05	8
1,1,2,2-Tetrachloroethane	ND	40	2.1	ug/L			10/19/20 14:05	8
1,1,2-Trichloroethane	ND	40	3.9	ug/L			10/19/20 14:05	8
1,1-Dichloroethane	11 J	40	4.7	ug/L			10/19/20 14:05	8
1,1-Dichloroethene	ND	40	6.8	ug/L			10/19/20 14:05	8
1,2-Dichlorobenzene	ND	40	3.6	ug/L			10/19/20 14:05	8
1,2-Dichloroethane	ND	40	4.8	ug/L			10/19/20 14:05	8
1,2-Dichloroethene, Total	270	80	26	ug/L			10/19/20 14:05	8
1,2-Dichloropropane	ND	40	4.9	ug/L			10/19/20 14:05	8
1,3-Dichlorobenzene	ND	40	4.3	ug/L			10/19/20 14:05	8
1,4-Dichlorobenzene	ND	40	4.1	ug/L			10/19/20 14:05	8
2-Chloroethyl vinyl ether	ND	200	15	ug/L			10/19/20 14:05	8
Acrolein	ND H	800	140	ug/L			10/19/20 14:05	8
Acrylonitrile	ND	400	15	ug/L			10/19/20 14:05	8
Benzene	ND	40	4.8	ug/L			10/19/20 14:05	8
Bromoform	ND	40	3.7	ug/L			10/19/20 14:05	8

Eurofins TestAmerica, Buffalo

Page 11 of 25

2

3

6

8

10

11

13

14

Client Sample Results

Client: New York State D.E.C. Job ID: 480-176565-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-2R-OCT20

Date Collected: 10/14/20 09:50 Date Received: 10/14/20 16:10 Lab Sample ID: 480-176565-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND		40	9.5	ug/L			10/19/20 14:05	8
Carbon tetrachloride	ND		40	4.1	ug/L			10/19/20 14:05	8
Chlorobenzene	ND		40	3.8	ug/L			10/19/20 14:05	8
Chlorodibromomethane	ND		40	3.3	ug/L			10/19/20 14:05	8
Chloroethane	ND		40	7.0	ug/L			10/19/20 14:05	8
Chloroform	ND		40	4.3	ug/L			10/19/20 14:05	8
Chloromethane	ND		40	5.1	ug/L			10/19/20 14:05	8
cis-1,3-Dichloropropene	ND		40	2.6	ug/L			10/19/20 14:05	8
Dichlorobromomethane	ND		40	4.3	ug/L			10/19/20 14:05	8
Ethylbenzene	ND		40	3.7	ug/L			10/19/20 14:05	8
Methylene Chloride	ND		40	6.5	ug/L			10/19/20 14:05	8
Tetrachloroethene	ND		40	2.7	ug/L			10/19/20 14:05	8
Toluene	ND		40	3.6	ug/L			10/19/20 14:05	8
trans-1,2-Dichloroethene	ND		40	4.7	ug/L			10/19/20 14:05	8
trans-1,3-Dichloropropene	ND		40	3.5	ug/L			10/19/20 14:05	8
Trichloroethene	ND		40	4.8	ug/L			10/19/20 14:05	8
Vinyl chloride	140		40	6.0	ug/L			10/19/20 14:05	8
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		68 - 130			•		10/19/20 14:05	8
4-Bromofluorobenzene (Surr)	95		76 - 123					10/19/20 14:05	8
Dibromofluoromethane (Surr)	96		75 - 123					10/19/20 14:05	8
Toluene-d8 (Surr)	96		77 - 120					10/19/20 14:05	8

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	152		10.0	1.7	mg/L			10/17/20 00:23	5
Alkalinity, Total	319		5.0	0.79	mg/L			10/19/20 14:38	1
Alkalinity, Bicarbonate	319		5.0	0.79	mg/L			10/19/20 14:38	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			10/19/20 14:38	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			10/19/20 14:38	1

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-176565-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)
480-176565-1	TB-20201014	95	99	99	98
480-176565-2	MW-10R-OCT20	94	97	100	98
480-176565-3	RB-20201014-a	93	97	99	98
480-176565-4	RB-20201014-b	94	96	101	98
480-176565-5	MW-2R-OCT20	94	97	101	96
480-176565-5 - RA	MW-2R-OCT20	89	95	96	96
LCS 480-554226/6	Lab Control Sample	95	96	100	97
LCS 480-554564/6	Lab Control Sample	87	98	98	99
MB 480-554226/8	Method Blank	95	96	101	99
MB 480-554564/8	Method Blank	93	98	98	96

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

4

6

7

10

13

14

Job ID: 480-176565-1 Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-554226/8

Matrix: Water

Analysis Batch: 554226

Client Sample ID: Method Blank

Prep Type: Total/NA MD MD

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/16/20 11:38	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/16/20 11:38	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/16/20 11:38	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/16/20 11:38	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/16/20 11:38	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/16/20 11:38	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/16/20 11:38	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/16/20 11:38	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/16/20 11:38	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/16/20 11:38	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/16/20 11:38	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/16/20 11:38	1
Acrolein	ND		100	17	ug/L			10/16/20 11:38	1
Acrylonitrile	ND		50	1.9	ug/L			10/16/20 11:38	1
Benzene	ND		5.0	0.60	ug/L			10/16/20 11:38	1
Bromoform	ND		5.0	0.47	ug/L			10/16/20 11:38	1
Bromomethane	ND		5.0	1.2	ug/L			10/16/20 11:38	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/16/20 11:38	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/16/20 11:38	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/16/20 11:38	1
Chloroethane	ND		5.0	0.87	ug/L			10/16/20 11:38	1
Chloroform	ND		5.0	0.54	ug/L			10/16/20 11:38	1
Chloromethane	ND		5.0	0.64	ug/L			10/16/20 11:38	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/16/20 11:38	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/16/20 11:38	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/16/20 11:38	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/16/20 11:38	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/16/20 11:38	1
Toluene	ND		5.0	0.45	ug/L			10/16/20 11:38	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/16/20 11:38	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/16/20 11:38	1
Trichloroethene	ND		5.0	0.60	ug/L			10/16/20 11:38	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/16/20 11:38	1

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	68 - 130		10/16/20 11:38	1
4-Bromofluorobenzene (Surr)	96	76 - 123		10/16/20 11:38	1
Dibromofluoromethane (Surr)	101	75 ₋ 123		10/16/20 11:38	1

77 - 120

M

Toluene-d8 (Surr)

-ab Sample ID. LGS 460-554226/6			Chefft Sample ID. Lab Control Sample
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 554226			
	Spike	LCS LCS	%Rec.

	эріке	LCS	LUS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	18.3		ug/L		91	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	17.5		ug/L		87	46 - 157	
1,1,2-Trichloroethane	20.0	18.4		ug/L		92	52 - 150	

Eurofins TestAmerica, Buffalo

10/16/20 11:38

Page 14 of 25

QC Sample Results

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-554226/6

Matrix: Water

Analysis Batch: 554226

Client Sample ID: Lab Control Sample

Job ID: 480-176565-1

Prep Type: Total/NA

	Spike	LCS	LCS			%Rec.	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
1,1-Dichloroethane	20.0	19.3		ug/L	97	59 - 155	
1,1-Dichloroethene	20.0	19.8		ug/L	99	1 - 234	
1,2-Dichlorobenzene	20.0	18.5		ug/L	93	18 - 190	
1,2-Dichloroethane	20.0	17.6		ug/L	88	49 - 155	
1,2-Dichloropropane	20.0	19.2		ug/L	96	1 - 210	
1,3-Dichlorobenzene	20.0	18.7		ug/L	93	59 - 156	
1,4-Dichlorobenzene	20.0	18.7		ug/L	94	18 - 190	
2-Chloroethyl vinyl ether	20.0	19.0	J	ug/L	95	1 - 305	
Benzene	20.0	19.6		ug/L	98	37 - 151	
Bromoform	20.0	17.6		ug/L	88	45 - 169	
Bromomethane	20.0	23.8		ug/L	119	1 - 242	
Carbon tetrachloride	20.0	18.4		ug/L	92	70 - 140	
Chlorobenzene	20.0	18.9		ug/L	94	37 - 160	
Chlorodibromomethane	20.0	17.5		ug/L	87	53 - 149	
Chloroethane	20.0	22.7		ug/L	114	14 - 230	
Chloroform	20.0	19.1		ug/L	95	51 - 138	
Chloromethane	20.0	23.3		ug/L	116	1 - 273	
cis-1,3-Dichloropropene	20.0	18.4		ug/L	92	1 - 227	
Dichlorobromomethane	20.0	18.1		ug/L	91	35 - 155	
Ethylbenzene	20.0	19.0		ug/L	95	37 - 162	
Methylene Chloride	20.0	19.8		ug/L	99	1 - 221	
Tetrachloroethene	20.0	19.3		ug/L	97	64 - 148	
Toluene	20.0	18.6		ug/L	93	47 - 150	
trans-1,2-Dichloroethene	20.0	20.0		ug/L	100	54 - 156	
trans-1,3-Dichloropropene	20.0	17.6		ug/L	88	17 - 183	
Trichloroethene	20.0	19.0		ug/L	95	71 - 157	
Vinyl chloride	20.0	23.3		ug/L	117	1 - 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		68 - 130
4-Bromofluorobenzene (Surr)	96		76 - 123
Dibromofluoromethane (Surr)	100		75 - 123
Toluene-d8 (Surr)	97		77 - 120

Lab Sample ID: MB 480-554564/8

Matrix: Water

Analysis Batch: 554564

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/19/20 11:40	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/19/20 11:40	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/19/20 11:40	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/19/20 11:40	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/19/20 11:40	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/19/20 11:40	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/19/20 11:40	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/19/20 11:40	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/19/20 11:40	1

Eurofins TestAmerica, Buffalo

Page 15 of 25

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-554564/8

Matrix: Water

Analysis Batch: 554564

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-176565-1

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/19/20 11:40	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/19/20 11:40	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/19/20 11:40	1
Acrolein	ND		100	17	ug/L			10/19/20 11:40	1
Acrylonitrile	ND		50	1.9	ug/L			10/19/20 11:40	1
Benzene	ND		5.0	0.60	ug/L			10/19/20 11:40	1
Bromoform	ND		5.0	0.47	ug/L			10/19/20 11:40	1
Bromomethane	ND		5.0	1.2	ug/L			10/19/20 11:40	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/19/20 11:40	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/19/20 11:40	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/19/20 11:40	1
Chloroethane	ND		5.0	0.87	ug/L			10/19/20 11:40	1
Chloroform	ND		5.0	0.54	ug/L			10/19/20 11:40	1
Chloromethane	ND		5.0	0.64	ug/L			10/19/20 11:40	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/19/20 11:40	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/19/20 11:40	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/19/20 11:40	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/19/20 11:40	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/19/20 11:40	1
Toluene	ND		5.0	0.45	ug/L			10/19/20 11:40	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/19/20 11:40	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/19/20 11:40	1
Trichloroethene	ND		5.0	0.60	ug/L			10/19/20 11:40	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/19/20 11:40	1

40	MO	
ИB	IVIB	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		68 - 130		10/19/20 11:40	1
4-Bromofluorobenzene (Surr)	98		76 - 123		10/19/20 11:40	1
Dibromofluoromethane (Surr)	98		75 - 123		10/19/20 11:40	1
Toluene-d8 (Surr)	96		77 - 120		10/19/20 11:40	1

Lab Sample ID: LCS 480-554564/6

Matrix: Water

Analysis Batch: 554564

Client Sample ID: Lab Control Sample Prep Type: Total/NA

-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	20.0	18.4		ug/L		92	52 - 162
1,1,2,2-Tetrachloroethane	20.0	16.3		ug/L		81	46 - 157
1,1,2-Trichloroethane	20.0	18.0		ug/L		90	52 - 150
1,1-Dichloroethane	20.0	19.5		ug/L		98	59 - 155
1,1-Dichloroethene	20.0	20.4		ug/L		102	1 - 234
1,2-Dichlorobenzene	20.0	18.5		ug/L		92	18 - 190
1,2-Dichloroethane	20.0	17.4		ug/L		87	49 - 155
1,2-Dichloropropane	20.0	19.2		ug/L		96	1 - 210
1,3-Dichlorobenzene	20.0	18.9		ug/L		94	59 - 156
1,4-Dichlorobenzene	20.0	18.9		ug/L		95	18 - 190
2-Chloroethyl vinyl ether	20.0	17.8	J	ug/L		89	1 - 305
Benzene	20.0	20.0		ug/L		100	37 - 151

Page 16 of 25

Client: New York State D.E.C. Job ID: 480-176565-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-554564/6

Matrix: Water

Analysis Batch: 554564

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Bromoform 20.0 16.7 84 45 - 169 ug/L ug/L Bromomethane 20.0 22.9 115 1 - 242 70 - 140 Carbon tetrachloride 20.0 18.5 ug/L 93 Chlorobenzene 20.0 19.3 ug/L 97 37 - 160 Chlorodibromomethane 20.0 17.2 53 - 149 ug/L 86 Chloroethane 20.0 22.2 ug/L 111 14 - 230 Chloroform 20.0 18.8 ug/L 94 51 - 138 Chloromethane 20.0 21.6 ug/L 108 1 - 273 cis-1,3-Dichloropropene 20.0 18.3 ug/L 91 1 - 227 Dichlorobromomethane 91 35 - 155 20.0 18.3 ug/L 20.0 99 37 - 162 Ethylbenzene 19.7 ug/L 20.0 95 Methylene Chloride 18.9 ug/L 1 - 221 Tetrachloroethene 20.0 20.7 104 64 - 148 ug/L Toluene 20.0 47 - 150 19.5 ug/L 97 trans-1,2-Dichloroethene 20.0 19.6 ug/L 98 54 - 156 trans-1,3-Dichloropropene 20.0 86 17 - 183 17.2 ug/L Trichloroethene 20.0 19.2 ug/L 96 71 - 157 Vinyl chloride 20.0 22.3 ug/L 112 1 - 251

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	87		68 - 130
4-Bromofluorobenzene (Surr)	98		76 - 123
Dibromofluoromethane (Surr)	98		75 - 123
Toluene-d8 (Surr)	99		77 - 120

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-554356/4

Matrix: Water

Analysis Batch: 554356

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	ND		2.0	0.35	mg/L			10/16/20 23:55	1

Lab Sample ID: LCS 480-554356/3	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 554356	

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	50.0	50.41		mg/L	_	101	90 - 110	

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 480-554659/4 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA**

Analysis Batch: 554659

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	ND		5.0	0.79	mg/L	_		10/19/20 12:59	1

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

Prep Type: Total/NA

Page 17 of 25

QC Sample Results

Client: New York State D.E.C. Job ID: 480-176565-1

Project/Site: Davis-Howland Oil Corp #828088

Method: SM 2320B - Alkalinity (Continued)

Lab Sample ID: MB 480-554659/4 **Matrix: Water**

Analysis Batch: 554659

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Bicarbonate	ND		5.0	0.79	mg/L			10/19/20 12:59	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			10/19/20 12:59	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			10/19/20 12:59	1

Lab Sample ID: LCS 480-554659/5 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 554659

LCS LCS %Rec. Spike Added Result Qualifier Unit Limits D %Rec Alkalinity, Total 100 98.00 98 mg/L 90 - 110

QC Association Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

GC/MS VOA

Analysis Batch: 554226

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176565-1	TB-20201014	Total/NA	Water	624.1	
480-176565-2	MW-10R-OCT20	Total/NA	Water	624.1	
480-176565-3	RB-20201014-a	Total/NA	Water	624.1	
480-176565-4	RB-20201014-b	Total/NA	Water	624.1	
480-176565-5	MW-2R-OCT20	Total/NA	Water	624.1	
MB 480-554226/8	Method Blank	Total/NA	Water	624.1	
LCS 480-554226/6	Lab Control Sample	Total/NA	Water	624.1	

Analysis Batch: 554564

Lab Sample ID 480-176565-5 - RA	Client Sample ID MW-2R-OCT20	Prep Type Total/NA	Matrix Water	Method 624.1	Prep Batch
MB 480-554564/8	Method Blank	Total/NA	Water	624.1	
LCS 480-554564/6	Lab Control Sample	Total/NA	Water	624.1	

General Chemistry

Analysis Batch: 554356

Lab Sample ID 480-176565-2	Client Sample ID MW-10R-OCT20	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
480-176565-5	MW-2R-OCT20	Total/NA	Water	300.0	
MB 480-554356/4	Method Blank	Total/NA	Water	300.0	
LCS 480-554356/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 554659

Lab Sample ID 480-176565-2	Client Sample ID MW-10R-OCT20	Prep Type Total/NA	Matrix Water	Method SM 2320B	Prep Batch
480-176565-5	MW-2R-OCT20	Total/NA	Water	SM 2320B	
MB 480-554659/4	Method Blank	Total/NA	Water	SM 2320B	
LCS 480-554659/5	Lab Control Sample	Total/NA	Water	SM 2320B	

Job ID: 480-176565-1

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201014

Date Collected: 10/14/20 09:30

Date Received: 10/14/20 16:10

Lab Sample ID: 480-176565-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1			554226	10/16/20 14:06	WJD	TAL BUF

Client Sample ID: MW-10R-OCT20

Date Collected: 10/14/20 13:20 Date Received: 10/14/20 16:10

Lab Sample ID: 480-176565-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		20	554226	10/16/20 14:29	WJD	TAL BUF
Total/NA	Analysis	300.0		5	554356	10/17/20 00:09	IMZ	TAL BUF
Total/NA	Analysis	SM 2320B		1	554659	10/19/20 14:31	BEF	TAL BUF

Client Sample ID: RB-20201014-a

Date Collected: 10/14/20 13:50 Date Received: 10/14/20 16:10

Lab Sample ID: 480-176565-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	554226	10/16/20 14:52	WJD	TAL BUF

Client Sample ID: RB-20201014-b

Date Collected: 10/14/20 14:00

Date Received: 10/14/20 16:10

Lab Sample ID: 480-176565-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	554226	10/16/20 15:15	WJD	TAL BUF

Client Sample ID: MW-2R-OCT20

Date Collected: 10/14/20 09:50

Date Received: 10/14/20 16:10

Lab Sample ID: 480-176565-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		20	554226	10/16/20 15:37	WJD	TAL BUF
Total/NA	Analysis	624.1	RA	8	554564	10/19/20 14:05	WJD	TAL BUF
Total/NA	Analysis	300.0		5	554356	10/17/20 00:23	IMZ	TAL BUF
Total/NA	Analysis	SM 2320B		1	554659	10/19/20 14:38	BEF	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-176565-1

Project/Site: Davis-Howland Oil Corp #828088

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	P	Program	Identification Number	Expiration Date
New York	N	IELAP	10026	04-01-21
The following analytes the agency does not d	•	port, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
624.1		Water	1,2-Dichloroethene, Total	
SM 2320B		Water	Alkalinity, Bicarbonate	
SM 2320B		Water	Alkalinity, Carbonate	
SM 2320B		Water	Hydroxide Alkalinity	

4

O

7

O

10

10

13

Method Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method	Method Description	Protocol	Laboratory
624.1	Volatile Organic Compounds (GC/MS)	40CFR136A	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
SM 2320B	Alkalinity	SM	TAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-176565-1

Δ

6

Ö

46

11

12

14

Sample Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-176565-1	TB-20201014	Water	10/14/20 09:30	10/14/20 16:10	
480-176565-2	MW-10R-OCT20	Water	10/14/20 13:20	10/14/20 16:10	
480-176565-3	RB-20201014-a	Water	10/14/20 13:50	10/14/20 16:10	
480-176565-4	RB-20201014-b	Water	10/14/20 14:00	10/14/20 16:10	
480-176565-5	MW-2R-OCT20	Water	10/14/20 09:50	10/14/20 16:10	

Job ID: 480-176565-1

3

4

6

Ω

9

10

12

13

14

Carrier Tracking No(s)

Environment Testing

: eurofins

Chain of Custody Record

Eurotins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

M - Hexane
N - None
O - AsnaO2
P - Na2O4S
O - Na2SO3
R - Na2SO3
S - LPSO4
T - TSP Dodecahydrate
U - Acetone
U - Acetone
W - PH 4-5
Z - other (specify) Special Instructions/Note: Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Month my FAO232 fund FROMET 480-151692-33705.3 Preservation Codes Page 3 of 5 (2) A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
F - MeOH
G - Amchlor
H - Ascorbic Acid I - Ice J - DI Water K - EDTA L - EDA Archive For 480-176565 Chain of Custody Total Number of containers ethod of Shipmen 100 Analysis Requested Cooler Temperature(s) "C and Other Remarks Special Instructions/QC Requirements Lab PM: Johnson, Orlette S E-Mail: Orlette, Johnson@Eurofinset.com SZEOC - Volatiles, TCLP list Received by: Received by: 300.0 28D - (MOD) Sulfate M S 524.1 PREC - Priority Pollutant List - VOA - 624.1 WSP Filtered Sample (Yes or No) BT=Tissue, A=Air Preservation Code, Water Water Water Water Water Water Water Company Water Water Water Water Radiological Type (C=comp, G=grab) Sample K. B. 908-189 (3H 133 160 9:50 14:00 9:30 13:20 13:50 Sample Date: Unknown Po#: CallOut ID: 136612 10-14-50 TAT Requested (days): Due Date Requested: 10/14/2020 3 Sample Date Project #: 48019422 Date/Time :#OM Poison B ENE Skin Irritant 625 Broadway Division of Environmental Remediation Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. RB-202019-6 NW-28-0CT20 Flammable 4W-10K-20120 Davis-Howland Oil Corp #828088 Possible Hazard Identification 28-20201014-a B-20201014 enelle.gaylord@dec.ny.gov Empty Kit Relinquished by Custody Seals Intact: Client Information Sample Identification New York State D.E.C. State, Zp: NY, 12233-7014 Jenelle Gaylord yd bensiner Albany

Page 24 of 25

Job Number: 480-176565-1

List Source: Eurofins TestAmerica, Buffalo

Client: New York State D.E.C.

Login Number: 176565

List Number: 1

Creator: Sabuda, Brendan D

ordator. Cabada, Brondan B		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.3 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Eurofins TestAmerica, Buffalo

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-176636-1

Client Project/Site: Davis-Howland Oil Corp #828088

For:

New York State D.E.C. 625 Broadway Division of Environmental Remediation Albany, New York 12233-7014

Attn: Jenelle Gaylord

Authorized for release by: 10/21/2020 8:24:51 AM

Orlette Johnson, Senior Project Manager (484)685-0864

Orlette.Johnson@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

6

q

10

12

13

Orlette Johnson

Senior Project Manager 10/21/2020 8:24:51 AM

2

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

5

6

7

8

9

. .

12

14

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
Surrogate Summary	20
QC Sample Results	21
QC Association Summary	25
Lab Chronicle	26
Certification Summary	28
Method Summary	29
Sample Summary	30
Chain of Custody	31
Receipt Checklists	32

5

6

8

10

12

13

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

H Sample was prepped or analyzed beyond the specified holding time

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly	used abbreviations mag	y or may not be	present in this report.
, 1001011atioii		, acca approviduone ma	, oa,o	process and reperts

Example 2 Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

А

0

2

9

11

12

14

Case Narrative

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-176636-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-176636-1

Receipt

The samples were received on 10/15/2020 4:00 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.8° C.

GC/MS VOA

Method 624.1: The following sample(s) were over-diluted. The sample will be reanalyzed outside of hold time: MW-9S-OCT20 (480-176636-2), MW-2S-OCT20 (480-176636-3), PZ-3-OCT20 (480-176636-7), MW-14S-OCT20 (480-176636-8), MW-1S-OCT20 (480-176636-9) and 10W-PURGE WATER-OCT20 (480-176636-10). Elevated reporting limits (RLs) are provided. Both sets of data will be provided.

Method 624.1: Reanalysis of the following samples were performed outside of the analytical holding time for Acrolein due to lack of history: MW-9S-OCT20 (480-176636-2), MW-2S-OCT20 (480-176636-3), PZ-3-OCT20 (480-176636-7), MW-14S-OCT20 (480-176636-8), MW-1S-OCT20 (480-176636-9) and 10W-PURGE WATER-OCT20 (480-176636-10).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 480-176636-1

3

4

6

7

8

9

4 4

12

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201015

Lab Sample ID: 480-176636-1

Job ID: 480-176636-1

No Detections.

Client Sample ID: MW-9S-OCT20

Lab Sam	ole ID:	480-17	6636-2
---------	---------	--------	--------

Lab Sample ID: 480-176636-3

Lab Sample ID: 480-176636-7

Lab Sample ID: 480-176636-8

Lab Sample ID: 480-176636-9

Lab Sample ID: 480-176636-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	7.7	J	100	7.7	ug/L		_	624.1	Total/NA
1,1-Dichloroethane	46	J	100	12	ug/L	20		624.1	Total/NA
Tetrachloroethene	43	J	100	6.8	ug/L	20		624.1	Total/NA
Trichloroethene	38	J	100	12	ug/L	20		624.1	Total/NA
1,1,1-Trichloroethane - RA	7.6		5.0	0.39	ug/L	1		624.1	Total/NA
1,1-Dichloroethane - RA	42		5.0	0.59	ug/L	1		624.1	Total/NA
1,2-Dichlorobenzene - RA	0.67	J	5.0	0.44	ug/L	1		624.1	Total/NA
1,2-Dichloroethene, Total - RA	48		10	3.2	ug/L	1		624.1	Total/NA
Chloroform - RA	0.65	J	5.0	0.54	ug/L	1		624.1	Total/NA
Tetrachloroethene - RA	41		5.0	0.34	ug/L	1		624.1	Total/NA
trans-1,2-Dichloroethene - RA	5.2		5.0	0.59	ug/L	1		624.1	Total/NA
Trichloroethene - RA	34		5.0	0.60	ug/L	1		624.1	Total/NA

Client Sample ID: MW-2S-OCT20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1-Dichloroethane - RA	1.1	J	5.0	0.59	ug/L	1		624.1	Total/NA

Client Sample ID: PZ-3-OCT20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane - RA	5.7		5.0	0.39	ug/L	1	_	624.1	Total/NA
1,1-Dichloroethane - RA	19		5.0	0.59	ug/L	1		624.1	Total/NA
1,1-Dichloroethene - RA	1.1	J	5.0	0.85	ug/L	1		624.1	Total/NA
1,2-Dichloroethene, Total - RA	7.8	J	10	3.2	ug/L	1		624.1	Total/NA
Tetrachloroethene - RA	0.48	J	5.0	0.34	ug/L	1		624.1	Total/NA
Trichloroethene - RA	1.8	J	5.0	0.60	ug/L	1		624.1	Total/NA

Client Sample ID: MW-14S-OCT20

No Detections.

Client Sample ID: MW-1S-OCT20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	21	J	100	12	ug/L	20	_	624.1	Total/NA
1,1,1-Trichloroethane - RA	1.5	J	5.0	0.39	ug/L	1		624.1	Total/NA
1,1-Dichloroethane - RA	0.86	J	5.0	0.59	ug/L	1		624.1	Total/NA
1,2-Dichloroethene, Total - RA	24		10	3.2	ug/L	1		624.1	Total/NA
Tetrachloroethene - RA	3.3	J	5.0	0.34	ug/L	1		624.1	Total/NA
Trichloroethene - RA	19		5.0	0.60	ug/L	1		624.1	Total/NA

Client Sample ID: 10W-PURGE WATER-OCT20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	34	J	100	12	ug/L	20	_	624.1	Total/NA
1,1,1-Trichloroethane - RA	0.52	J	5.0	0.39	ug/L	1		624.1	Total/NA
1,1-Dichloroethane - RA	3.5	J	5.0	0.59	ug/L	1		624.1	Total/NA
1,2-Dichloroethene, Total - RA	36		10	3.2	ug/L	1		624.1	Total/NA
Tetrachloroethene - RA	1.8	J	5.0	0.34	ua/L	1		624.1	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

10/21/2020

Page 6 of 32

2

_

5

7

9

10

12

. .

Detection Summary

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: 10W-PURGE WATER-OCT20 (Continued)

Lab Sample ID: 480-176636-10

	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
	Trichloroethene - RA	21		5.0	0.60	ug/L	1	_	624.1	Total/NA	_
١	Vinyl chloride - RA	4.5	J	5.0	0.75	ug/L	1		624.1	Total/NA	

3

_

Я

9

11

13

14

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201015

Date Collected: 10/15/20 09:00 Date Received: 10/15/20 16:00 Lab Sample ID: 480-176636-1

Matrix: Water

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			10/16/20 16:24	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			10/16/20 16:24	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			10/16/20 16:24	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			10/16/20 16:24	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			10/16/20 16:24	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			10/16/20 16:24	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			10/16/20 16:24	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			10/16/20 16:24	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			10/16/20 16:24	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			10/16/20 16:24	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			10/16/20 16:24	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			10/16/20 16:24	1
Acrolein	ND	100	17	ug/L			10/16/20 16:24	1
Acrylonitrile	ND	50	1.9	ug/L			10/16/20 16:24	1
Benzene	ND	5.0	0.60	ug/L			10/16/20 16:24	1
Bromoform	ND	5.0	0.47	ug/L			10/16/20 16:24	1
Bromomethane	ND	5.0	1.2	ug/L			10/16/20 16:24	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			10/16/20 16:24	1
Chlorobenzene	ND	5.0	0.48	ug/L			10/16/20 16:24	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			10/16/20 16:24	1
Chloroethane	ND	5.0	0.87	ug/L			10/16/20 16:24	1
Chloroform	ND	5.0	0.54	ug/L			10/16/20 16:24	1
Chloromethane	ND	5.0	0.64	ug/L			10/16/20 16:24	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			10/16/20 16:24	1
Dichlorobromomethane	ND	5.0	0.54	ug/L			10/16/20 16:24	1
Ethylbenzene	ND	5.0	0.46	ug/L			10/16/20 16:24	1
Methylene Chloride	ND	5.0	0.81	ug/L			10/16/20 16:24	1
Tetrachloroethene	ND	5.0	0.34	ug/L			10/16/20 16:24	1
Toluene	ND	5.0	0.45	ug/L			10/16/20 16:24	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			10/16/20 16:24	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			10/16/20 16:24	1
Trichloroethene	ND	5.0	0.60	ug/L			10/16/20 16:24	1
Vinyl chloride	ND	5.0	0.75	ug/L			10/16/20 16:24	1
Surrogate	%Recovery Q	Qualifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94	68 - 130			-		10/16/20 16:24	1

Surrogate	%Recovery	Qualifier	Limits	Prepare	a Anaiyzea	DII Fac
1,2-Dichloroethane-d4 (Surr)	94		68 - 130		10/16/20 16:24	1
4-Bromofluorobenzene (Surr)	97		76 - 123		10/16/20 16:24	1
Dibromofluoromethane (Surr)	102		75 - 123		10/16/20 16:24	1
Toluene-d8 (Surr)	97		77 - 120		10/16/20 16:24	1

Client Sample ID: MW-9S-OCT20

Date Collected: 10/15/20 10:00

Date Received: 10/15/20 16:00

Lab Sample ID: 480-176636-2

Matrix: Water

Mothod: 624.1 - Volatila Organic Compounds (GC/MS)

Method: 624.1 - Volatile Organic Co	nethod: 624.1 - volatile Organic Compounds (GC/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	7.7	J	100	7.7	ug/L			10/16/20 16:46	20
1,1,2,2-Tetrachloroethane	ND		100	5.2	ug/L			10/16/20 16:46	20
1,1,2-Trichloroethane	ND		100	9.6	ug/L			10/16/20 16:46	20
1,1-Dichloroethane	46	J	100	12	ug/L			10/16/20 16:46	20

Eurofins TestAmerica, Buffalo

Page 8 of 32 10/21/2020

Client Sample Results

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-9S-OCT20

Date Collected: 10/15/20 10:00 Date Received: 10/15/20 16:00 Lab Sample ID: 480-176636-2

Matrix: Water

Method: 624.1 - Volatile Organic Compounds	(GC/MS) (Continued)
--	---------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		100	17	ug/L			10/16/20 16:46	20
1,2-Dichlorobenzene	ND		100	8.9	ug/L			10/16/20 16:46	20
1,2-Dichloroethane	ND		100	12	ug/L			10/16/20 16:46	20
1,2-Dichloroethene, Total	ND		200	64	ug/L			10/16/20 16:46	20
1,2-Dichloropropane	ND		100	12	ug/L			10/16/20 16:46	20
1,3-Dichlorobenzene	ND		100	11	ug/L			10/16/20 16:46	20
1,4-Dichlorobenzene	ND		100	10	ug/L			10/16/20 16:46	20
2-Chloroethyl vinyl ether	ND		500	37	ug/L			10/16/20 16:46	20
Acrolein	ND		2000	350	ug/L			10/16/20 16:46	20
Acrylonitrile	ND		1000	38	ug/L			10/16/20 16:46	20
Benzene	ND		100	12	ug/L			10/16/20 16:46	20
Bromoform	ND		100	9.4	ug/L			10/16/20 16:46	20
Bromomethane	ND		100	24	ug/L			10/16/20 16:46	20
Carbon tetrachloride	ND		100	10	ug/L			10/16/20 16:46	20
Chlorobenzene	ND		100	9.5	ug/L			10/16/20 16:46	20
Chlorodibromomethane	ND		100	8.3	ug/L			10/16/20 16:46	20
Chloroethane	ND		100	17	ug/L			10/16/20 16:46	20
Chloroform	ND		100	11	ug/L			10/16/20 16:46	20
Chloromethane	ND		100	13	ug/L			10/16/20 16:46	20
cis-1,3-Dichloropropene	ND		100	6.6	ug/L			10/16/20 16:46	20
Dichlorobromomethane	ND		100	11	ug/L			10/16/20 16:46	20
Ethylbenzene	ND		100	9.3	ug/L			10/16/20 16:46	20
Methylene Chloride	ND		100	16	ug/L			10/16/20 16:46	20
Tetrachloroethene	43	J	100	6.8	ug/L			10/16/20 16:46	20
Toluene	ND		100	9.1	ug/L			10/16/20 16:46	20
trans-1,2-Dichloroethene	ND		100	12	ug/L			10/16/20 16:46	20
trans-1,3-Dichloropropene	ND		100		ug/L			10/16/20 16:46	20
Trichloroethene	38	J	100	12	ug/L			10/16/20 16:46	20
Vinyl chloride	ND		100	15	ug/L			10/16/20 16:46	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		68 - 130			-		10/16/20 16:46	20
4-Bromofluorobenzene (Surr)	97		76 - 123					10/16/20 16:46	20

Method: 624 1	- Volatile Organic	Compounds (GC/MS) -	RΔ
MICHIOU. UZT. I	- Voiatile Ordanic	combounds i	GUINGI -	-

100

98

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	7.6	5.0	0.39	ug/L			10/19/20 14:29	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			10/19/20 14:29	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			10/19/20 14:29	1
1,1-Dichloroethane	42	5.0	0.59	ug/L			10/19/20 14:29	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			10/19/20 14:29	1
1,2-Dichlorobenzene	0.67 J	5.0	0.44	ug/L			10/19/20 14:29	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			10/19/20 14:29	1
1,2-Dichloroethene, Total	48	10	3.2	ug/L			10/19/20 14:29	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			10/19/20 14:29	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			10/19/20 14:29	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			10/19/20 14:29	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			10/19/20 14:29	1

75 - 123

77 - 120

Eurofins TestAmerica, Buffalo

10/16/20 16:46

10/16/20 16:46

20

20

Page 9 of 32 10/21/2020

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-9S-OCT20

Date Collected: 10/15/20 10:00 Date Received: 10/15/20 16:00

Lab Sample ID: 480-176636-2

Matrix: Water

Method: 624.1 - Volatile Organic Compounds (GC/MS) - RA (Continued)

Analyte	Result	Qualifier	RL	MDĹ	Unit	D	Prepared	Analyzed	Dil Fac
Acrolein	ND	Н	100	17	ug/L			10/19/20 14:29	1
Acrylonitrile	ND		50	1.9	ug/L			10/19/20 14:29	1
Benzene	ND		5.0	0.60	ug/L			10/19/20 14:29	1
Bromoform	ND		5.0	0.47	ug/L			10/19/20 14:29	1
Bromomethane	ND		5.0	1.2	ug/L			10/19/20 14:29	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/19/20 14:29	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/19/20 14:29	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/19/20 14:29	1
Chloroethane	ND		5.0	0.87	ug/L			10/19/20 14:29	1
Chloroform	0.65	J	5.0	0.54	ug/L			10/19/20 14:29	1
Chloromethane	ND		5.0	0.64	ug/L			10/19/20 14:29	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/19/20 14:29	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/19/20 14:29	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/19/20 14:29	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/19/20 14:29	1
Tetrachloroethene	41		5.0	0.34	ug/L			10/19/20 14:29	1
Toluene	ND		5.0	0.45	ug/L			10/19/20 14:29	1
trans-1,2-Dichloroethene	5.2		5.0	0.59	ug/L			10/19/20 14:29	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/19/20 14:29	1
Trichloroethene	34		5.0	0.60	ug/L			10/19/20 14:29	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/19/20 14:29	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		68 - 130		10/19/20 14:29	1
4-Bromofluorobenzene (Surr)	96		76 - 123		10/19/20 14:29	1
Dibromofluoromethane (Surr)	99		75 - 123		10/19/20 14:29	1
Toluene-d8 (Surr)	98		77 - 120		10/19/20 14:29	1

Client Sample ID: MW-2S-OCT20

Date Collected: 10/15/20 10:42 Date Received: 10/15/20 16:00

Lab Sample ID: 480-176636-3

Matrix: Water

Analyte	Result Qu	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	100	7.7	ug/L			10/16/20 17:09	20
1,1,2,2-Tetrachloroethane	ND	100	5.2	ug/L			10/16/20 17:09	20
1,1,2-Trichloroethane	ND	100	9.6	ug/L			10/16/20 17:09	20
1,1-Dichloroethane	ND	100	12	ug/L			10/16/20 17:09	20
1,1-Dichloroethene	ND	100	17	ug/L			10/16/20 17:09	20
1,2-Dichlorobenzene	ND	100	8.9	ug/L			10/16/20 17:09	20
1,2-Dichloroethane	ND	100	12	ug/L			10/16/20 17:09	20
1,2-Dichloroethene, Total	ND	200	64	ug/L			10/16/20 17:09	20
1,2-Dichloropropane	ND	100	12	ug/L			10/16/20 17:09	20
1,3-Dichlorobenzene	ND	100	11	ug/L			10/16/20 17:09	20
1,4-Dichlorobenzene	ND	100	10	ug/L			10/16/20 17:09	20
2-Chloroethyl vinyl ether	ND	500	37	ug/L			10/16/20 17:09	20
Acrolein	ND	2000	350	ug/L			10/16/20 17:09	20
Acrylonitrile	ND	1000	38	ug/L			10/16/20 17:09	20
Benzene	ND	100	12	ug/L			10/16/20 17:09	20
Bromoform	ND	100	9.4	ug/L			10/16/20 17:09	20

Page 10 of 32

Client Sample Results

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-2S-OCT20

Date Collected: 10/15/20 10:42 Date Received: 10/15/20 16:00

Lab Sample ID: 480-176636-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND		100	24	ug/L			10/16/20 17:09	20
Carbon tetrachloride	ND		100	10	ug/L			10/16/20 17:09	20
Chlorobenzene	ND		100	9.5	ug/L			10/16/20 17:09	20
Chlorodibromomethane	ND		100	8.3	ug/L			10/16/20 17:09	20
Chloroethane	ND		100	17	ug/L			10/16/20 17:09	20
Chloroform	ND		100	11	ug/L			10/16/20 17:09	20
Chloromethane	ND		100	13	ug/L			10/16/20 17:09	20
cis-1,3-Dichloropropene	ND		100	6.6	ug/L			10/16/20 17:09	20
Dichlorobromomethane	ND		100	11	ug/L			10/16/20 17:09	20
Ethylbenzene	ND		100	9.3	ug/L			10/16/20 17:09	20
Methylene Chloride	ND		100	16	ug/L			10/16/20 17:09	20
Tetrachloroethene	ND		100	6.8	ug/L			10/16/20 17:09	20
Toluene	ND		100	9.1	ug/L			10/16/20 17:09	20
trans-1,2-Dichloroethene	ND		100	12	ug/L			10/16/20 17:09	20
trans-1,3-Dichloropropene	ND		100	8.8	ug/L			10/16/20 17:09	20
Trichloroethene	ND		100	12	ug/L			10/16/20 17:09	20
Vinyl chloride	ND		100	15	ug/L			10/16/20 17:09	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepa	red Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		68 - 130		10/16/20 17:0	9 20
4-Bromofluorobenzene (Surr)	97		76 - 123		10/16/20 17:0	9 20
Dibromofluoromethane (Surr)	99		75 - 123		10/16/20 17:0	9 20
Toluene-d8 (Surr)	96		77 - 120		10/16/20 17:0	9 20

Method: 624.1 -	Volatile Organic (Compounds ((GC/MS) - RA
-----------------	--------------------	-------------	--------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/19/20 14:52	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/19/20 14:52	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/19/20 14:52	1
1,1-Dichloroethane	1.1	J	5.0	0.59	ug/L			10/19/20 14:52	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/19/20 14:52	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/19/20 14:52	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/19/20 14:52	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/19/20 14:52	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/19/20 14:52	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/19/20 14:52	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/19/20 14:52	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/19/20 14:52	1
Acrolein	ND	Н	100	17	ug/L			10/19/20 14:52	1
Acrylonitrile	ND		50	1.9	ug/L			10/19/20 14:52	1
Benzene	ND		5.0	0.60	ug/L			10/19/20 14:52	1
Bromoform	ND		5.0	0.47	ug/L			10/19/20 14:52	1
Bromomethane	ND		5.0	1.2	ug/L			10/19/20 14:52	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/19/20 14:52	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/19/20 14:52	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/19/20 14:52	1
Chloroethane	ND		5.0	0.87	ug/L			10/19/20 14:52	1
Chloroform	ND		5.0	0.54	ug/L			10/19/20 14:52	1
Chloromethane	ND		5.0	0.64	ug/L			10/19/20 14:52	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/19/20 14:52	1

Page 11 of 32

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-2S-OCT20

Date Collected: 10/15/20 10:42 Date Received: 10/15/20 16:00 Lab Sample ID: 480-176636-3

Matrix: Water

	Method: 624.1 - Volatile	Organic Compounds	(GC/MS) - RA (Continued)
--	--------------------------	--------------------------	--------------------------

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorobromomethane	ND	5.0	0.54	ug/L			10/19/20 14:52	1
Ethylbenzene	ND	5.0	0.46	ug/L			10/19/20 14:52	1
Methylene Chloride	ND	5.0	0.81	ug/L			10/19/20 14:52	1
Tetrachloroethene	ND	5.0	0.34	ug/L			10/19/20 14:52	1
Toluene	ND	5.0	0.45	ug/L			10/19/20 14:52	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			10/19/20 14:52	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			10/19/20 14:52	1
Trichloroethene	ND	5.0	0.60	ug/L			10/19/20 14:52	1
Vinyl chloride	ND	5.0	0.75	ug/L			10/19/20 14:52	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		68 - 130	10/19/20 14:52	1
4-Bromofluorobenzene (Surr)	97		76 - 123	10/19/20 14:52	1
Dibromofluoromethane (Surr)	102		75 - 123	10/19/20 14:52	1
Toluene-d8 (Surr)	96		77 - 120	10/19/20 14:52	1

Client Sample ID: PZ-3-OCT20

Date Collected: 10/15/20 13:05 Date Received: 10/15/20 16:00

Lab Sample ID: 480-176636-7

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		100	7.7	ug/L			10/16/20 18:41	20
1,1,2,2-Tetrachloroethane	ND		100	5.2	ug/L			10/16/20 18:41	20
1,1,2-Trichloroethane	ND		100	9.6	ug/L			10/16/20 18:41	20
1,1-Dichloroethane	ND		100	12	ug/L			10/16/20 18:41	20
1,1-Dichloroethene	ND		100	17	ug/L			10/16/20 18:41	20
1,2-Dichlorobenzene	ND		100	8.9	ug/L			10/16/20 18:41	20
1,2-Dichloroethane	ND		100	12	ug/L			10/16/20 18:41	20
1,2-Dichloroethene, Total	ND		200	64	ug/L			10/16/20 18:41	20
1,2-Dichloropropane	ND		100	12	ug/L			10/16/20 18:41	20
1,3-Dichlorobenzene	ND		100	11	ug/L			10/16/20 18:41	20
1,4-Dichlorobenzene	ND		100	10	ug/L			10/16/20 18:41	20
2-Chloroethyl vinyl ether	ND		500	37	ug/L			10/16/20 18:41	20
Acrolein	ND		2000	350	ug/L			10/16/20 18:41	20
Acrylonitrile	ND		1000	38	ug/L			10/16/20 18:41	20
Benzene	ND		100	12	ug/L			10/16/20 18:41	20
Bromoform	ND		100	9.4	ug/L			10/16/20 18:41	20
Bromomethane	ND		100	24	ug/L			10/16/20 18:41	20
Carbon tetrachloride	ND		100	10	ug/L			10/16/20 18:41	20
Chlorobenzene	ND		100	9.5	ug/L			10/16/20 18:41	20
Chlorodibromomethane	ND		100	8.3	ug/L			10/16/20 18:41	20
Chloroethane	ND		100	17	ug/L			10/16/20 18:41	20
Chloroform	ND		100	11	ug/L			10/16/20 18:41	20
Chloromethane	ND		100	13	ug/L			10/16/20 18:41	20
cis-1,3-Dichloropropene	ND		100	6.6	ug/L			10/16/20 18:41	20
Dichlorobromomethane	ND		100	11	ug/L			10/16/20 18:41	20
Ethylbenzene	ND		100	9.3	ug/L			10/16/20 18:41	20
Methylene Chloride	ND		100	16	ug/L			10/16/20 18:41	20
Tetrachloroethene	ND		100	6.8	ug/L			10/16/20 18:41	20

Eurofins TestAmerica, Buffalo

Page 12 of 32

10/21/2020

Client Sample Results

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: PZ-3-OCT20

Date Collected: 10/15/20 13:05 Date Received: 10/15/20 16:00

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 480-176636-7

10/16/20 18:41

10/16/20 18:41

Matrix: Water

Method: 624.1	· Volatile O	rganic (Compounds ((GC/MS)	(Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	ND		100	9.1	ug/L			10/16/20 18:41	20
trans-1,2-Dichloroethene	ND		100	12	ug/L			10/16/20 18:41	20
trans-1,3-Dichloropropene	ND		100	8.8	ug/L			10/16/20 18:41	20
Trichloroethene	ND		100	12	ug/L			10/16/20 18:41	20
Vinyl chloride	ND		100	15	ug/L			10/16/20 18:41	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		68 - 130			·		10/16/20 18:41	20
4-Bromofluorobenzene (Surr)	97		76 - 123					10/16/20 18:41	20

75 - 123

77 - 120

Method: 624.1	- Volatile	Organic Com	pounds	(GC/MS)	- RA
Michiga, 024.1	- Voiatiic	Organic Com	poullus		- 11

100

98

Method: 624.1 - Volatile Or Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	5.7		5.0	0.39	ug/L			10/19/20 16:24	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/19/20 16:24	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/19/20 16:24	1
1,1-Dichloroethane	19		5.0	0.59	ug/L			10/19/20 16:24	1
1,1-Dichloroethene	1.1	J	5.0	0.85	ug/L			10/19/20 16:24	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/19/20 16:24	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/19/20 16:24	1
1,2-Dichloroethene, Total	7.8	J	10	3.2	ug/L			10/19/20 16:24	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/19/20 16:24	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/19/20 16:24	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/19/20 16:24	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/19/20 16:24	1
Acrolein	ND	Н	100	17	ug/L			10/19/20 16:24	1
Acrylonitrile	ND		50	1.9	ug/L			10/19/20 16:24	1
Benzene	ND		5.0	0.60	ug/L			10/19/20 16:24	1
Bromoform	ND		5.0	0.47	ug/L			10/19/20 16:24	1
Bromomethane	ND		5.0	1.2	ug/L			10/19/20 16:24	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/19/20 16:24	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/19/20 16:24	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/19/20 16:24	1
Chloroethane	ND		5.0	0.87	ug/L			10/19/20 16:24	1
Chloroform	ND		5.0	0.54	ug/L			10/19/20 16:24	1
Chloromethane	ND		5.0	0.64	ug/L			10/19/20 16:24	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/19/20 16:24	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/19/20 16:24	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/19/20 16:24	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/19/20 16:24	1
Tetrachloroethene	0.48	J	5.0	0.34	ug/L			10/19/20 16:24	1
Toluene	ND		5.0	0.45	ug/L			10/19/20 16:24	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/19/20 16:24	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/19/20 16:24	1
Trichloroethene	1.8	J	5.0	0.60	ug/L			10/19/20 16:24	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/19/20 16:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		68 - 130			-		10/19/20 16:24	1

Eurofins TestAmerica, Buffalo

Page 13 of 32

20

10/21/2020

Client Sample Results

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: PZ-3-OCT20

Lab Sample ID: 480-176636-7 Date Collected: 10/15/20 13:05

Matrix: Water

Date Received: 10/15/20 16:00

Method: 624.1 - Volatile Organic Compounds (GC/MS) - RA (Continued)

Surrogate	%Recovery Qua	ıalifier Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98	76 - 123		10/19/20 16:24	1
Dibromofluoromethane (Surr)	97	75 - 123		10/19/20 16:24	1
Toluene-d8 (Surr)	98	77 - 120		10/19/20 16:24	1

Client Sample ID: MW-14S-OCT20 Lab Sample ID: 480-176636-8

Date Collected: 10/15/20 13:10 **Matrix: Water**

Date Received: 10/15/20 16:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		100	7.7	ug/L			10/16/20 19:04	20
1,1,2,2-Tetrachloroethane	ND		100	5.2	ug/L			10/16/20 19:04	20
1,1,2-Trichloroethane	ND		100	9.6	ug/L			10/16/20 19:04	20
1,1-Dichloroethane	ND		100	12	ug/L			10/16/20 19:04	20
1,1-Dichloroethene	ND		100	17	ug/L			10/16/20 19:04	20
1,2-Dichlorobenzene	ND		100	8.9	ug/L			10/16/20 19:04	20
1,2-Dichloroethane	ND		100	12	ug/L			10/16/20 19:04	20
1,2-Dichloroethene, Total	ND		200	64	ug/L			10/16/20 19:04	20
1,2-Dichloropropane	ND		100	12	ug/L			10/16/20 19:04	20
1,3-Dichlorobenzene	ND		100	11	ug/L			10/16/20 19:04	20
1,4-Dichlorobenzene	ND		100	10	ug/L			10/16/20 19:04	20
2-Chloroethyl vinyl ether	ND		500	37	ug/L			10/16/20 19:04	20
Acrolein	ND		2000	350	ug/L			10/16/20 19:04	20
Acrylonitrile	ND		1000	38	ug/L			10/16/20 19:04	20
Benzene	ND		100	12	ug/L			10/16/20 19:04	20
Bromoform	ND		100	9.4	ug/L			10/16/20 19:04	20
Bromomethane	ND		100	24	ug/L			10/16/20 19:04	20
Carbon tetrachloride	ND		100	10	ug/L			10/16/20 19:04	20
Chlorobenzene	ND		100	9.5	ug/L			10/16/20 19:04	20
Chlorodibromomethane	ND		100	8.3	ug/L			10/16/20 19:04	20
Chloroethane	ND		100	17	ug/L			10/16/20 19:04	20
Chloroform	ND		100	11	ug/L			10/16/20 19:04	20
Chloromethane	ND		100	13	ug/L			10/16/20 19:04	20
cis-1,3-Dichloropropene	ND		100	6.6	ug/L			10/16/20 19:04	20
Dichlorobromomethane	ND		100	11	ug/L			10/16/20 19:04	20
Ethylbenzene	ND		100	9.3	ug/L			10/16/20 19:04	20
Methylene Chloride	ND		100	16	ug/L			10/16/20 19:04	20
Tetrachloroethene	ND		100	6.8	ug/L			10/16/20 19:04	20
Toluene	ND		100	9.1	ug/L			10/16/20 19:04	20
trans-1,2-Dichloroethene	ND		100	12	ug/L			10/16/20 19:04	20
trans-1,3-Dichloropropene	ND		100	8.8	ug/L			10/16/20 19:04	20
Trichloroethene	ND		100	12	ug/L			10/16/20 19:04	20
Vinyl chloride	ND		100	15	ug/L			10/16/20 19:04	20
Surrogate		Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		68 - 130			- -		10/16/20 19:04	20
4-Bromofluorobenzene (Surr)	97		76 - 123					10/16/20 19:04	20
Dibromofluoromethane (Surr)	101		75 - 123					10/16/20 19:04	20
Toluene-d8 (Surr)	97		77 - 120					10/16/20 19:04	20

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-14S-OCT20

Date Collected: 10/15/20 13:10 Date Received: 10/15/20 16:00

Lab Sample ID: 480-176636-8

Matrix: Water

Analyte	Result Qualifi	er RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.0	0.39	ug/L			10/19/20 16:47	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			10/19/20 16:47	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			10/19/20 16:47	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			10/19/20 16:47	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			10/19/20 16:47	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			10/19/20 16:47	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			10/19/20 16:47	1
1,2-Dichloroethene, Total	ND	10	3.2	ug/L			10/19/20 16:47	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			10/19/20 16:47	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			10/19/20 16:47	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			10/19/20 16:47	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			10/19/20 16:47	1
Acrolein	ND H	100	17	ug/L			10/19/20 16:47	1
Acrylonitrile	ND	50	1.9	ug/L			10/19/20 16:47	1
Benzene	ND	5.0	0.60	ug/L			10/19/20 16:47	1
Bromoform	ND	5.0	0.47	ug/L			10/19/20 16:47	1
Bromomethane	ND	5.0	1.2	ug/L			10/19/20 16:47	1
Carbon tetrachloride	ND	5.0	0.51	ug/L			10/19/20 16:47	1
Chlorobenzene	ND	5.0	0.48	ug/L			10/19/20 16:47	1
Chlorodibromomethane	ND	5.0	0.41	ug/L			10/19/20 16:47	1
Chloroethane	ND	5.0	0.87	ug/L			10/19/20 16:47	1
Chloroform	ND	5.0	0.54	ug/L			10/19/20 16:47	1
Chloromethane	ND	5.0	0.64	ug/L			10/19/20 16:47	1
cis-1,3-Dichloropropene	ND	5.0	0.33	ug/L			10/19/20 16:47	1
Dichlorobromomethane	ND	5.0	0.54	ug/L			10/19/20 16:47	1
Ethylbenzene	ND	5.0	0.46	ug/L			10/19/20 16:47	1
Methylene Chloride	ND	5.0	0.81	ug/L			10/19/20 16:47	1
Tetrachloroethene	ND	5.0	0.34	ug/L			10/19/20 16:47	1
Toluene	ND	5.0	0.45	ug/L			10/19/20 16:47	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			10/19/20 16:47	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			10/19/20 16:47	1
Trichloroethene	ND	5.0	0.60	ug/L			10/19/20 16:47	1
Vinyl chloride	ND	5.0	0.75	ug/L			10/19/20 16:47	1
Surrogate	%Recovery Qualifi	er Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89	68 - 130			-		10/19/20 16:47	1
4-Bromofluorobenzene (Surr)	96	76 - 123					10/19/20 16:47	1
Dibromofluoromethane (Surr)	100	75 - 123					10/19/20 16:47	1

Client Sample ID: MW-1S-OCT20

96

Date Collected: 10/15/20 13:50

Toluene-d8 (Surr)

Date Received: 10/15/20 16:00

Lab Sample ID: 480-176636-9

10/19/20 16:47

Matrix: Water

Method: 624.1 - Volatile Orga	anic Compounds (GC/MS	3)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	100	7.7	ug/L			10/16/20 19:27	20
1,1,2,2-Tetrachloroethane	ND	100	5.2	ug/L			10/16/20 19:27	20
1,1,2-Trichloroethane	ND	100	9.6	ug/L			10/16/20 19:27	20
1,1-Dichloroethane	ND	100	12	ug/L			10/16/20 19:27	20

77 - 120

Eurofins TestAmerica, Buffalo

Client Sample Results

Job ID: 480-176636-1 Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-1S-OCT20

Date Collected: 10/15/20 13:50 Date Received: 10/15/20 16:00

Lab Sample ID: 480-176636-9

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		100	17	ug/L			10/16/20 19:27	20
1,2-Dichlorobenzene	ND		100	8.9	ug/L			10/16/20 19:27	20
1,2-Dichloroethane	ND		100	12	ug/L			10/16/20 19:27	20
1,2-Dichloroethene, Total	ND		200	64	ug/L			10/16/20 19:27	20
1,2-Dichloropropane	ND		100	12	ug/L			10/16/20 19:27	20
1,3-Dichlorobenzene	ND		100	11	ug/L			10/16/20 19:27	20
1,4-Dichlorobenzene	ND		100	10	ug/L			10/16/20 19:27	20
2-Chloroethyl vinyl ether	ND		500	37	ug/L			10/16/20 19:27	20
Acrolein	ND		2000	350	ug/L			10/16/20 19:27	20
Acrylonitrile	ND		1000	38	ug/L			10/16/20 19:27	20
Benzene	ND		100	12	ug/L			10/16/20 19:27	20
Bromoform	ND		100	9.4	ug/L			10/16/20 19:27	20
Bromomethane	ND		100	24	ug/L			10/16/20 19:27	20
Carbon tetrachloride	ND		100	10	ug/L			10/16/20 19:27	20
Chlorobenzene	ND		100	9.5	ug/L			10/16/20 19:27	20
Chlorodibromomethane	ND		100	8.3	ug/L			10/16/20 19:27	20
Chloroethane	ND		100	17	ug/L			10/16/20 19:27	20
Chloroform	ND		100	11	ug/L			10/16/20 19:27	20
Chloromethane	ND		100	13	ug/L			10/16/20 19:27	20
cis-1,3-Dichloropropene	ND		100	6.6	ug/L			10/16/20 19:27	20
Dichlorobromomethane	ND		100	11	ug/L			10/16/20 19:27	20
Ethylbenzene	ND		100	9.3	ug/L			10/16/20 19:27	20
Methylene Chloride	ND		100	16	ug/L			10/16/20 19:27	20
Tetrachloroethene	ND		100	6.8	ug/L			10/16/20 19:27	20
Toluene	ND		100	9.1	ug/L			10/16/20 19:27	20
trans-1,2-Dichloroethene	ND		100	12	ug/L			10/16/20 19:27	20
trans-1,3-Dichloropropene	ND		100	8.8	ug/L			10/16/20 19:27	20
Trichloroethene	21	J	100	12	ug/L			10/16/20 19:27	20
Vinyl chloride	ND		100	15	ug/L			10/16/20 19:27	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		68 - 130					10/16/20 19:27	20
4-Bromofluorobenzene (Surr)	98		76 - 123					10/16/20 19:27	20

Method: 624 1	- Volatile Organic (Compounds ((C/MS) - RA
MELITOU. 024. I	- voiallie Organic v	compounds it	30/18131 - INA

101

99

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.5	J	5.0	0.39	ug/L			10/19/20 17:10	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/19/20 17:10	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/19/20 17:10	1
1,1-Dichloroethane	0.86	J	5.0	0.59	ug/L			10/19/20 17:10	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/19/20 17:10	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/19/20 17:10	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/19/20 17:10	1
1,2-Dichloroethene, Total	24		10	3.2	ug/L			10/19/20 17:10	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/19/20 17:10	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/19/20 17:10	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/19/20 17:10	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/19/20 17:10	1

75 - 123

77 - 120

10/16/20 19:27

10/16/20 19:27

Page 16 of 32

20

20

Eurofins TestAmerica, Buffalo

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-1S-OCT20

Date Collected: 10/15/20 13:50 Date Received: 10/15/20 16:00 Lab Sample ID: 480-176636-9

Matrix: Water

Method: 624.1 - Volatile	Organic Compounds (GC/MS)	- RA (Cont	inued)
Analyto	Popult Qualifier	DI	MDI

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acrolein	ND	H	100	17	ug/L			10/19/20 17:10	1
Acrylonitrile	ND		50	1.9	ug/L			10/19/20 17:10	1
Benzene	ND		5.0	0.60	ug/L			10/19/20 17:10	1
Bromoform	ND		5.0	0.47	ug/L			10/19/20 17:10	1
Bromomethane	ND		5.0	1.2	ug/L			10/19/20 17:10	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/19/20 17:10	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/19/20 17:10	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/19/20 17:10	1
Chloroethane	ND		5.0	0.87	ug/L			10/19/20 17:10	1
Chloroform	ND		5.0	0.54	ug/L			10/19/20 17:10	1
Chloromethane	ND		5.0	0.64	ug/L			10/19/20 17:10	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/19/20 17:10	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/19/20 17:10	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/19/20 17:10	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/19/20 17:10	1
Tetrachloroethene	3.3	J	5.0	0.34	ug/L			10/19/20 17:10	1
Toluene	ND		5.0	0.45	ug/L			10/19/20 17:10	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/19/20 17:10	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/19/20 17:10	1
Trichloroethene	19		5.0	0.60	ug/L			10/19/20 17:10	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/19/20 17:10	1

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87	68 - 130		10/19/20 17:10	1
4-Bromofluorobenzene (Surr)	96	76 - 123		10/19/20 17:10	1
Dibromofluoromethane (Surr)	98	75 - 123		10/19/20 17:10	1
Toluene-d8 (Surr)	95	77 - 120		10/19/20 17:10	1

Client Sample ID: 10W-PURGE WATER-OCT20

Date Collected: 10/15/20 14:10 Date Received: 10/15/20 16:00 Lab Sample ID: 480-176636-10

Matrix: Water

Analyte	Result (Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	100	7.7	ug/L			10/16/20 19:50	20
1,1,2,2-Tetrachloroethane	ND	100	5.2	ug/L			10/16/20 19:50	20
1,1,2-Trichloroethane	ND	100	9.6	ug/L			10/16/20 19:50	20
1,1-Dichloroethane	ND	100	12	ug/L			10/16/20 19:50	20
1,1-Dichloroethene	ND	100	17	ug/L			10/16/20 19:50	20
1,2-Dichlorobenzene	ND	100	8.9	ug/L			10/16/20 19:50	20
1,2-Dichloroethane	ND	100	12	ug/L			10/16/20 19:50	20
1,2-Dichloroethene, Total	ND	200	64	ug/L			10/16/20 19:50	20
1,2-Dichloropropane	ND	100	12	ug/L			10/16/20 19:50	20
1,3-Dichlorobenzene	ND	100	11	ug/L			10/16/20 19:50	20
1,4-Dichlorobenzene	ND	100	10	ug/L			10/16/20 19:50	20
2-Chloroethyl vinyl ether	ND	500	37	ug/L			10/16/20 19:50	20
Acrolein	ND	2000	350	ug/L			10/16/20 19:50	20
Acrylonitrile	ND	1000	38	ug/L			10/16/20 19:50	20
Benzene	ND	100	12	ug/L			10/16/20 19:50	20
Bromoform	ND	100	9.4	ug/L			10/16/20 19:50	20

Eurofins TestAmerica, Buffalo

Page 17 of 32

2

3

5

7

9

11

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: 10W-PURGE WATER-OCT20 Lab Sample ID: 480-176636-10

Date Collected: 10/15/20 14:10 Matrix: Water

Date Received: 10/15/20 16:00

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND		100	24	ug/L			10/16/20 19:50	20
Carbon tetrachloride	ND		100	10	ug/L			10/16/20 19:50	20
Chlorobenzene	ND		100	9.5	ug/L			10/16/20 19:50	20
Chlorodibromomethane	ND		100	8.3	ug/L			10/16/20 19:50	20
Chloroethane	ND		100	17	ug/L			10/16/20 19:50	20
Chloroform	ND		100	11	ug/L			10/16/20 19:50	20
Chloromethane	ND		100	13	ug/L			10/16/20 19:50	20
cis-1,3-Dichloropropene	ND		100	6.6	ug/L			10/16/20 19:50	20
Dichlorobromomethane	ND		100	11	ug/L			10/16/20 19:50	20
Ethylbenzene	ND		100	9.3	ug/L			10/16/20 19:50	20
Methylene Chloride	ND		100	16	ug/L			10/16/20 19:50	20
Tetrachloroethene	ND		100	6.8	ug/L			10/16/20 19:50	20
Toluene	ND		100	9.1	ug/L			10/16/20 19:50	20
trans-1,2-Dichloroethene	ND		100	12	ug/L			10/16/20 19:50	20
trans-1,3-Dichloropropene	ND		100	8.8	ug/L			10/16/20 19:50	20
Trichloroethene	34	J	100	12	ug/L			10/16/20 19:50	20
Vinyl chloride	ND		100	15	ug/L			10/16/20 19:50	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		68 - 130			-		10/16/20 19:50	20
4-Bromofluorobenzene (Surr)	97		76 - 123					10/16/20 19:50	20

75 - 123

77 - 120

99

98

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.52	J	5.0	0.39	ug/L			10/19/20 17:33	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/19/20 17:33	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/19/20 17:33	1
1,1-Dichloroethane	3.5	J	5.0	0.59	ug/L			10/19/20 17:33	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/19/20 17:33	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/19/20 17:33	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/19/20 17:33	1
1,2-Dichloroethene, Total	36		10	3.2	ug/L			10/19/20 17:33	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/19/20 17:33	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/19/20 17:33	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/19/20 17:33	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/19/20 17:33	1
Acrolein	ND	Н	100	17	ug/L			10/19/20 17:33	1
Acrylonitrile	ND		50	1.9	ug/L			10/19/20 17:33	1
Benzene	ND		5.0	0.60	ug/L			10/19/20 17:33	1
Bromoform	ND		5.0	0.47	ug/L			10/19/20 17:33	1
Bromomethane	ND		5.0	1.2	ug/L			10/19/20 17:33	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/19/20 17:33	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/19/20 17:33	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/19/20 17:33	1
Chloroethane	ND		5.0	0.87	ug/L			10/19/20 17:33	1
Chloroform	ND		5.0		ug/L			10/19/20 17:33	1
Chloromethane	ND		5.0	0.64	ug/L			10/19/20 17:33	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/19/20 17:33	1

Eurofins TestAmerica, Buffalo

10/16/20 19:50

10/16/20 19:50

Page 18 of 32

2

3

5

7

9

11

13

14

15

20

Client Sample Results

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: 10W-PURGE WATER-OCT20

Lab Sample ID: 480-176636-10 **Matrix: Water**

Date Collected: 10/15/20 14:10 Date Received: 10/15/20 16:00

Method: 624.1 - \	/olatile Organic Com	pounds (GC/MS)	- RA (Continu	ed)
A I 4 -	_	, , ,	D	

Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorobromomethane	ND ND	5.0	0.54	ug/L			10/19/20 17:33	1
Ethylbenzene	ND	5.0	0.46	ug/L			10/19/20 17:33	1
Methylene Chloride	ND	5.0	0.81	ug/L			10/19/20 17:33	1
Tetrachloroethene	1.8 J	5.0	0.34	ug/L			10/19/20 17:33	1
Toluene	ND	5.0	0.45	ug/L			10/19/20 17:33	1
trans-1,2-Dichloroethene	ND	5.0	0.59	ug/L			10/19/20 17:33	1
trans-1,3-Dichloropropene	ND	5.0	0.44	ug/L			10/19/20 17:33	1
Trichloroethene	21	5.0	0.60	ug/L			10/19/20 17:33	1
Vinyl chloride	4.5 J	5.0	0.75	ug/L			10/19/20 17:33	1

	Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
'	1,2-Dichloroethane-d4 (Surr)	92		68 - 130	-		10/19/20 17:33	1
	4-Bromofluorobenzene (Surr)	97		76 - 123			10/19/20 17:33	1
	Dibromofluoromethane (Surr)	101		75 - 123			10/19/20 17:33	1
	Toluene-d8 (Surr)	95		77 - 120			10/19/20 17:33	1

Eurofins TestAmerica, Buffalo

10/21/2020

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		DCA	BFB	DBFM	ogate Recov TOL	J. J. (AUCE
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)	
480-176636-1	TB-20201015	94	97	102	97	
480-176636-2	MW-9S-OCT20	93	97	100	98	
480-176636-2 - RA	MW-9S-OCT20	91	96	99	98	
480-176636-3	MW-2S-OCT20	93	97	99	96	
480-176636-3 - RA	MW-2S-OCT20	90	97	102	96	
480-176636-7	PZ-3-OCT20	95	97	100	98	
480-176636-7 - RA	PZ-3-OCT20	93	98	97	98	
480-176636-8	MW-14S-OCT20	96	97	101	97	
480-176636-8 - RA	MW-14S-OCT20	89	96	100	96	
480-176636-9	MW-1S-OCT20	94	98	101	99	
480-176636-9 - RA	MW-1S-OCT20	87	96	98	95	
480-176636-10	10W-PURGE WATER-OCT20	90	97	99	98	
480-176636-10 - RA	10W-PURGE WATER-OCT20	92	97	101	95	
LCS 480-554226/6	Lab Control Sample	95	96	100	97	
LCS 480-554564/6	Lab Control Sample	87	98	98	99	
MB 480-554226/8	Method Blank	95	96	101	99	
MB 480-554564/8	Method Blank	93	98	98	96	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

3

6

7

9

10

12

13

14

Job ID: 480-176636-1 Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-554226/8

Matrix: Water

Analysis Batch: 554226

Client Sample ID: Method Blank

Prep Type: Total/NA MB MB

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/16/20 11:38	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/16/20 11:38	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/16/20 11:38	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/16/20 11:38	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/16/20 11:38	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/16/20 11:38	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/16/20 11:38	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/16/20 11:38	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/16/20 11:38	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/16/20 11:38	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/16/20 11:38	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/16/20 11:38	1
Acrolein	ND		100	17	ug/L			10/16/20 11:38	1
Acrylonitrile	ND		50	1.9	ug/L			10/16/20 11:38	1
Benzene	ND		5.0	0.60	ug/L			10/16/20 11:38	1
Bromoform	ND		5.0	0.47	ug/L			10/16/20 11:38	1
Bromomethane	ND		5.0	1.2	ug/L			10/16/20 11:38	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/16/20 11:38	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/16/20 11:38	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/16/20 11:38	1
Chloroethane	ND		5.0	0.87	ug/L			10/16/20 11:38	1
Chloroform	ND		5.0	0.54	ug/L			10/16/20 11:38	1
Chloromethane	ND		5.0	0.64	ug/L			10/16/20 11:38	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/16/20 11:38	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/16/20 11:38	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/16/20 11:38	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/16/20 11:38	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/16/20 11:38	1
Toluene	ND		5.0	0.45	ug/L			10/16/20 11:38	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/16/20 11:38	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/16/20 11:38	1
Trichloroethene	ND		5.0	0.60	ug/L			10/16/20 11:38	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/16/20 11:38	1

		MB	MB
	~ -		_

Surrogate	%Recovery (Qualifier Lim	nits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	68 -	. 130		10/16/20 11:38	1
4-Bromofluorobenzene (Surr)	96	76 -	. 123		10/16/20 11:38	1
Dibromofluoromethane (Surr)	101	75 -	. 123		10/16/20 11:38	1
Toluene-d8 (Surr)	99	77 -	. 120		10/16/20 11:38	1

Lab Sample ID: LCS 480-554226/6

Matrix: Water

Analysis Batch: 554226

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	 20.0	18.3		ug/L		91	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	17.5		ug/L		87	46 - 157	
1,1,2-Trichloroethane	20.0	18.4		ug/L		92	52 - 150	

Prep Type: Total/NA

Page 21 of 32

Client Sample ID: Lab Control Sample

QC Sample Results

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-554226/6

Matrix: Water

Analysis Batch: 554226

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-176636-1

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 1,1-Dichloroethane 20.0 19.3 97 59 - 155 ug/L 1,1-Dichloroethene 20.0 19.8 ug/L 99 1 - 234 1,2-Dichlorobenzene 20.0 18.5 ug/L 93 18 - 190 1,2-Dichloroethane 20.0 17.6 ug/L 88 49 - 155 ug/L 20.0 19.2 96 1 - 210 1,2-Dichloropropane 1,3-Dichlorobenzene 20.0 18.7 ug/L 93 59 - 156 1,4-Dichlorobenzene 20.0 18.7 ug/L 94 18 - 190 95 1 - 305 2-Chloroethyl vinyl ether 20.0 19.0 J ug/L Benzene 20.0 19.6 ug/L 98 37 - 15188 45 - 169 Bromoform 20.0 17.6 ug/L Bromomethane 20.0 119 23.8 ug/L 1 - 242 92 Carbon tetrachloride 20.0 ug/L 70 - 140 18.4 Chlorobenzene 20.0 94 37 - 160 18.9 ug/L Chlorodibromomethane 20.0 87 53 - 149 17.5 ug/L Chloroethane 20.0 22.7 ug/L 114 14 - 230 Chloroform 20.0 19.1 ug/L 95 51 - 138Chloromethane 20.0 23.3 ug/L 116 1 - 273 cis-1,3-Dichloropropene 20.0 18.4 92 1 - 227 ug/L 91 Dichlorobromomethane 20.0 18.1 ug/L 35 - 155 ug/L Ethylbenzene 20.0 19.0 95 37 - 162 Methylene Chloride 20.0 19.8 ug/L 99 1 - 221 Tetrachloroethene 20.0 19.3 ug/L 97 64 - 148

20.0

20.0

20.0

20.0

20.0

18.6

20.0

17.6

19.0

23.3

ug/L

ug/L

ug/L

ug/L

ug/L

LCS LCS

MR MR

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		68 - 130
4-Bromofluorobenzene (Surr)	96		76 - 123
Dibromofluoromethane (Surr)	100		75 - 123
Toluene-d8 (Surr)	97		77 - 120

Lab Sample ID: MB 480-554564/8

Matrix: Water

Toluene

Trichloroethene

Vinyl chloride

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Analysis Batch: 554564

Client Sample ID: Method Blank

47 - 150

54 - 156

17 - 183

71 - 157

1 - 251

93

100

88

95

117

Prep Type: Total/NA

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/19/20 11:40	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/19/20 11:40	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/19/20 11:40	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/19/20 11:40	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/19/20 11:40	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/19/20 11:40	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/19/20 11:40	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/19/20 11:40	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/19/20 11:40	1

Eurofins TestAmerica, Buffalo

Page 22 of 32

10/21/2020

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-176636-1

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-554564/8

Matrix: Water

Analysis Batch: 554564

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 1.3-Dichlorobenzene ND 5.0 0.54 ug/L 10/19/20 11:40 1,4-Dichlorobenzene ND 5.0 0.51 ug/L 10/19/20 11:40 ND 25 2-Chloroethyl vinyl ether 10/19/20 11:40 1.9 ug/L Acrolein ND 100 17 ug/L 10/19/20 11:40 ND 50 Acrylonitrile ug/L 10/19/20 11:40 1.9 Benzene ND 5.0 0.60 ug/L 10/19/20 11:40

Bromoform ND 5.0 0.47 ug/L 10/19/20 11:40 Bromomethane ND 5.0 1.2 ug/L 10/19/20 11:40 10/19/20 11:40 Carbon tetrachloride ND 5.0 0.51 ug/L 5.0 Chlorobenzene ND 0.48 ug/L 10/19/20 11:40 Chlorodibromomethane ND 5.0 0.41 ug/L 10/19/20 11:40 Chloroethane ND 5.0 0.87 ug/L 10/19/20 11:40

Chloroform 5.0 ND 0.54 ug/L 10/19/20 11:40 Chloromethane ND 5.0 0.64 ug/L 10/19/20 11:40 cis-1,3-Dichloropropene ND 5.0 0.33 ug/L 10/19/20 11:40 ND 0.54 Dichlorobromomethane 5.0 ug/L 10/19/20 11:40 Ethylbenzene ND 5.0 0.46 ug/L 10/19/20 11:40

ND 5.0 Methylene Chloride 0.81 ug/L 10/19/20 11:40 Tetrachloroethene ND 5.0 0.34 ug/L 10/19/20 11:40 Toluene ND 5.0 0.45 ug/L 10/19/20 11:40 trans-1,2-Dichloroethene ND 5.0 0.59 ug/L 10/19/20 11:40 trans-1,3-Dichloropropene ND 5.0 0.44 ug/L 10/19/20 11:40 Trichloroethene ND 5.0 0.60 ug/L 10/19/20 11:40

Vinyl chloride 5.0 ND 0.75 ug/L 10/19/20 11:40

MB MB %Recovery Qualifier Limits Dil Fac Prepared Surrogate Analyzed 1,2-Dichloroethane-d4 (Surr) 68 - 130 10/19/20 11:40 93 4-Bromofluorobenzene (Surr) 98 76 - 123 10/19/20 11:40 98 Dibromofluoromethane (Surr) 75 - 12310/19/20 11:40 Toluene-d8 (Surr) 96 77 - 120 10/19/20 11:40

Lab Sample ID: LCS 480-554564/6

Matrix: Water

Analysis Batch: 554564

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS Spike %Rec. **Analyte** Added Result Qualifier Unit %Rec Limits 1,1,1-Trichloroethane 20.0 18.4 ug/L 92 52 - 162 1,1,2,2-Tetrachloroethane 20.0 16.3 ug/L 81 46 - 157 1.1.2-Trichloroethane 20.0 18.0 ug/L 90 52 - 150 1.1-Dichloroethane 20.0 19.5 ug/L 98 59 - 155 1,1-Dichloroethene 20.0 20.4 ug/L 102 1 - 234 92 1,2-Dichlorobenzene 20.0 18.5 ug/L 18 - 190 20.0 87 49 - 155 1,2-Dichloroethane 17.4 ug/L 1,2-Dichloropropane 20.0 19.2 ug/L 96 1 - 210 1,3-Dichlorobenzene 20.0 18.9 ug/L 94 59 - 156 95 1,4-Dichlorobenzene 20.0 18.9 ug/L 18 - 190 2-Chloroethyl vinyl ether 20.0 17.8 J ug/L 89 1 - 305 37 - 151 Benzene 20.0 20.0 ug/L 100

Page 23 of 32

QC Sample Results

LCS LCS

19.2

22.3

ug/L

ug/L

96

112

71 - 157

1 - 251

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-176636-1

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-554564/6

Matrix: Water

Trichloroethene

Vinyl chloride

Analysis Batch: 554564

Client Sample ID: Lab Control Sample

%Rec.

Prep Type: Total/NA

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromoform	20.0	16.7		ug/L		84	45 - 169	
Bromomethane	20.0	22.9		ug/L		115	1 - 242	
Carbon tetrachloride	20.0	18.5		ug/L		93	70 - 140	
Chlorobenzene	20.0	19.3		ug/L		97	37 - 160	
Chlorodibromomethane	20.0	17.2		ug/L		86	53 - 149	
Chloroethane	20.0	22.2		ug/L		111	14 - 230	
Chloroform	20.0	18.8		ug/L		94	51 - 138	
Chloromethane	20.0	21.6		ug/L		108	1 - 273	
cis-1,3-Dichloropropene	20.0	18.3		ug/L		91	1 - 227	
Dichlorobromomethane	20.0	18.3		ug/L		91	35 - 155	
Ethylbenzene	20.0	19.7		ug/L		99	37 - 162	
Methylene Chloride	20.0	18.9		ug/L		95	1 - 221	
Tetrachloroethene	20.0	20.7		ug/L		104	64 - 148	
Toluene	20.0	19.5		ug/L		97	47 - 150	
trans-1,2-Dichloroethene	20.0	19.6		ug/L		98	54 - 156	
trans-1,3-Dichloropropene	20.0	17.2		ug/L		86	17 - 183	

20.0

20.0

Spike

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	87		68 - 130
4-Bromofluorobenzene (Surr)	98		76 - 123
Dibromofluoromethane (Surr)	98		75 - 123
Toluene-d8 (Surr)	99		77 - 120

QC Association Summary

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

GC/MS VOA

Analysis Batch: 554226

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176636-1	TB-20201015	Total/NA	Water	624.1	
480-176636-2	MW-9S-OCT20	Total/NA	Water	624.1	
480-176636-3	MW-2S-OCT20	Total/NA	Water	624.1	
480-176636-7	PZ-3-OCT20	Total/NA	Water	624.1	
480-176636-8	MW-14S-OCT20	Total/NA	Water	624.1	
480-176636-9	MW-1S-OCT20	Total/NA	Water	624.1	
480-176636-10	10W-PURGE WATER-OCT20	Total/NA	Water	624.1	
MB 480-554226/8	Method Blank	Total/NA	Water	624.1	
LCS 480-554226/6	Lab Control Sample	Total/NA	Water	624.1	

Analysis Batch: 554564

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176636-2 - RA	MW-9S-OCT20	Total/NA	Water	624.1	_
480-176636-3 - RA	MW-2S-OCT20	Total/NA	Water	624.1	
480-176636-7 - RA	PZ-3-OCT20	Total/NA	Water	624.1	
480-176636-8 - RA	MW-14S-OCT20	Total/NA	Water	624.1	
480-176636-9 - RA	MW-1S-OCT20	Total/NA	Water	624.1	
480-176636-10 - RA	10W-PURGE WATER-OCT20	Total/NA	Water	624.1	
MB 480-554564/8	Method Blank	Total/NA	Water	624.1	
LCS 480-554564/6	Lab Control Sample	Total/NA	Water	624.1	

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: TB-20201015

Date Collected: 10/15/20 09:00 Date Received: 10/15/20 16:00

Lab Sample ID: 480-176636-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		1	554226	10/16/20 16:24	WJD	TAL BUF

Client Sample ID: MW-9S-OCT20

Date Collected: 10/15/20 10:00 Date Received: 10/15/20 16:00

Lab Sample ID: 480-176636-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		20	554226	10/16/20 16:46	WJD	TAL BUF
Total/NA	Analysis	624.1	RA	1	554564	10/19/20 14:29	WJD	TAL BUF

Client Sample ID: MW-2S-OCT20

Date Collected: 10/15/20 10:42 Date Received: 10/15/20 16:00

Lab Sample ID: 480-176636-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		20	554226	10/16/20 17:09	WJD	TAL BUF
Total/NA	Analysis	624.1	RA	1	554564	10/19/20 14:52	WJD	TAL BUF

Client Sample ID: PZ-3-OCT20

Date Collected: 10/15/20 13:05

Date Received: 10/15/20 16:00

Lab Sample ID: 480-176636-7

Lab Sample ID: 480-176636-8

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		20	554226	10/16/20 18:41	WJD	TAL BUF
Total/NA	Analysis	624.1	RA	1	554564	10/19/20 16:24	WJD	TAL BUF

Client Sample ID: MW-14S-OCT20

Date Collected: 10/15/20 13:10	Matrix: Water
Date Received: 10/15/20 16:00	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		20	554226	10/16/20 19:04	WJD	TAL BUF
Total/NA	Analysis	624.1	RA	1	554564	10/19/20 16:47	WJD	TAL BUF

Client Sample ID: MW-1S-OCT20

Date Collected: 10/15/20 13:50

Date Received: 10/15/20 16:00

Lab Sample ID: 480-176636-9

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		20	554226	10/16/20 19:27	WJD	TAL BUF
Total/NA	Analysis	624 1	RA	1	554564	10/19/20 17:10	W.ID	TAL BUF

Lab Chronicle

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: 10W-PURGE WATER-OCT20

Lab Sample ID: 480-176636-10 **Matrix: Water**

Date Collected: 10/15/20 14:10 Date Received: 10/15/20 16:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1		20	554226	10/16/20 19:50	WJD	TAL BUF
Total/NA	Analysis	624.1	RA	1	554564	10/19/20 17:33	WJD	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-176636-1

Project/Site: Davis-Howland Oil Corp #828088

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority New York		Program IELAP	Identification Number 10026	Expiration Date 04-01-21	
The following analyte the agency does not		port, but the laboratory is r	not certified by the governing authority.	This list may include analytes for w	
Analysis Method	Prep Method	Matrix	Analyte		
624.1		Water	1.2-Dichloroethene, Total		

Page 28 of 32

Method Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

MethodMethod DescriptionProtocolLaboratory624.1Volatile Organic Compounds (GC/MS)40CFR136ATAL BUF

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-176636-1

3

Δ

Ę

6

8

9

11

12

1A

Sample Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-176636-1	TB-20201015	Water	10/15/20 09:00	10/15/20 16:00	
480-176636-2	MW-9S-OCT20	Water	10/15/20 10:00	10/15/20 16:00	
480-176636-3	MW-2S-OCT20	Water	10/15/20 10:42	10/15/20 16:00	
480-176636-7	PZ-3-OCT20	Water	10/15/20 13:05	10/15/20 16:00	
480-176636-8	MW-14S-OCT20	Water	10/15/20 13:10	10/15/20 16:00	
480-176636-9	MW-1S-OCT20	Water	10/15/20 13:50	10/15/20 16:00	
480-176636-10	10W-PURGE WATER-OCT20	Water	10/15/20 14:10	10/15/20 16:00	

Job ID: 480-176636-1

3

4

5

10

11

40

14

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

eurofins Environment Testing

Pul -1 -0.720, MW-168.04720, decahydrate Special Instructions/Note: pecify) HIO1 20 M - Hexane N - None O - AsNaO2 P - Na204S Autol dryon 10/19. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Monti Ja/ 480-151602-33705.2 Preservation Codes: surped dry A - HCL B - NaOH C - Zn Acetate 120 480-176636 Chain of Custody 3 M Total Number of c M 4 0 3- Drug 77. Carrier Tracking No(s) 120 Analysis Requested Cooler Temperature(s) °C and Other Remarks. Special Instructions/QC Requirem Lab PM: Johnson, Orlette S E-Mail: Orlette, Johnson@Eurofinset.com 8260C - Volatiles, TCLP list Received by: Received by: eceived by 500.0 28D - (MOD) Sulfate W n N W M M M M 624.1 PREC - Priority Pollutant List - VOA - 624.1 3 Perform MS/MSD (Yes or No) Company Field Filtered Sample (Yes or No) MW-15R-0CT20 to Cothers Water Water Water Water Water (W=water, Sesolid, O=wastefoli, Preservation Code Water Water Water Water Water Water Matrix Company Company Radiological 8060 (C=comp, G=grab) Sample Type 8 5 09:00 78 S J J 2 Paraday 13.50 00:00 12:30 13:10 24:01 10:40 11:55 13.05 14:10 Sample 489(01t) Date Lay Unknown Po#: CallOut ID: 136612 AT Requested (days): Date/Time. 10-15-20 Due Date Requested: 101.5/2020 Sample Date 47 Sampler. Project #: 48019422 SSOW#: Date/Time Poison B Skin Irritant 625 Broadway Division of Environmental Remediation 100- PURCHEWATER-OCTZO Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. @ JAGS- PZ-3-0CTZ0 - Flammable MW-158-00720 WW-25-0CT20 MW-145-0CT26 MW-15-0CT20 Possible Hazard Identification Davis-Howland Oil Corp #828088 MW-16R- OCT 20 U10-95-00720 PW-1-6 CT 26 Empty Kit Relinquished by: TB-20201015 enelle.gaylord@dec.ny.gov Custody Seals Intact: Sample Identification Client Information New York State D.E.C A Yes A No State, Zp.: NY, 12233-7014 Jenelle Gaylord quished by: iquished by Albany

Client: New York State D.E.C.

Job Number: 480-176636-1

Login Number: 176636 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Kolb, Chris M

Cleator. Roll, Chins W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	ENE
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-176636-2

Client Project/Site: Davis-Howland Oil Corp #828088

For:

New York State D.E.C. 625 Broadway Division of Environmental Remediation Albany, New York 12233-7014

Attn: Jenelle Gaylord

Authorized for release by: 10/21/2020 11:43:22 AM Wyatt Watson, Project Management Assistant I Wyatt.Watson@Eurofinset.com

Designee for

Orlette Johnson, Senior Project Manager (484)685-0864

Orlette.Johnson@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

9

11

13

13

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Wyst Bloton

Wyatt Watson Project Management Assistant I 10/21/2020 11:43:22 AM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	
Lab Chronicle	20
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receint Checklists	25

Definitions/Glossary

Client: New York State D.E.C. Job ID: 480-176636-2

Project/Site: Davis-Howland Oil Corp #828088

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

H Sample was prepped or analyzed beyond the specified holding time

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly	used abbreviations ma	v or mav r	not be prese	nt in this report
ADDIGNICION	THESE COMMISSIONS	, useu abbievialions ina	y Oi iiiay i	IOL DE PIESE	III III UIII I IOPOI L

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

-

5

4

5

6

7

8

10

11

13

14

Case Narrative

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Job ID: 480-176636-2

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-176636-2

Comments

No additional comments.

Receipt

The samples were received on 10/15/2020 4:00 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.8° C.

GC/MS VOA

Method 624.1: The following sample(s) were over-diluted. The sample will be reanalyzed outside of hold time: PW-1-OCT20 (480-176636-4), MW-15R-OCT20 (480-176636-5) and MW-16R-OCT20 (480-176636-6). Elevated reporting limits (RLs) are provided. Both sets of data will be provided.

Method 624.1: The following samples were diluted to bring the concentration of target analytes within the calibration range: PW-1-OCT20 (480-176636-4) and MW-16R-OCT20 (480-176636-6). Elevated reporting limits (RLs) are provided.

Method 624.1: Reanalysis of the following samples were performed outside of the analytical holding time for Acrolein due to lack of history: PW-1-OCT20 (480-176636-4), MW-15R-OCT20 (480-176636-5) and MW-16R-OCT20 (480-176636-6).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: PW-1-OCT20 (480-176636-4) and MW-16R-OCT20 (480-176636-6). Elevated reporting limits (RLs) are provided.

Method 300.0: The following sample was reported with elevated reporting limits for all analytes: MW-15R-OCT20 (480-176636-5). The sample was analyzed at a dilution based on screening results.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 480-176636-2

3

4

<u>۾</u>

6

Q

9

11

12

14

Detection Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Lab Sample ID: 480-176636-4

Lab Sample ID: 480-176636-5

Lab Sample ID: 480-176636-6

Job ID: 480-176636-2

Client Sample ID: PW-1-OCT20

•									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	Method	Prep Type
1,1-Dichloroethane	34	J	100	12	ug/L	20	_ 6	524.1	Total/NA
1,2-Dichloroethene, Total	290		200	64	ug/L	20	6	324.1	Total/NA
Vinyl chloride	73	J	100	15	ug/L	20	6	324.1	Total/NA
1,1-Dichloroethane - RA	30	J	40	4.7	ug/L	8	6	324.1	Total/NA
1,2-Dichloroethene, Total - RA	250		80	26	ug/L	8	6	324.1	Total/NA
Trichloroethene - RA	17	J	40	4.8	ug/L	8	6	324.1	Total/NA
Vinyl chloride - RA	72		40	6.0	ug/L	8	6	324.1	Total/NA
Sulfate	498		10.0	1.7	mg/L	5	3	300.0	Total/NA
Alkalinity, Total	322		5.0	0.79	mg/L	1	S	SM 2320B	Total/NA
Alkalinity, Bicarbonate	322		5.0	0.79	mg/L	1	S	SM 2320B	Total/NA

Client Sample ID: MW-15R-OCT20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	Method	Prep Type
1,2-Dichloroethene, Total - RA	9.7	J	10	3.2	ug/L	1	_ 6	624.1	Total/NA
trans-1,2-Dichloroethene - RA	0.66	J	5.0	0.59	ug/L	1	6	624.1	Total/NA
Trichloroethene - RA	2.4	J	5.0	0.60	ug/L	1	6	624.1	Total/NA
Vinyl chloride - RA	1.0	J	5.0	0.75	ug/L	1	6	524.1	Total/NA
Sulfate	69.4		10.0	1.7	mg/L	5	3	300.0	Total/NA
Alkalinity, Total	406		5.0	0.79	mg/L	1	S	SM 2320B	Total/NA
Alkalinity, Bicarbonate	406		5.0	0.79	mg/L	1	S	SM 2320B	Total/NA

Client Sample ID: MW-16R-OCT20

<u> </u>							
Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
1,2-Dichloroethene, Total	390	200	64	ug/L	20	624.1	Total/NA
Vinyl chloride	140	100	15	ug/L	20	624.1	Total/NA
1,1-Dichloroethane - RA	15 J	40	4.7	ug/L	8	624.1	Total/NA
1,2-Dichloroethene, Total - RA	380	80	26	ug/L	8	624.1	Total/NA
Vinyl chloride - RA	140	40	6.0	ug/L	8	624.1	Total/NA
Sulfate	122	10.0	1.7	mg/L	5	300.0	Total/NA
Alkalinity, Total	326	5.0	0.79	mg/L	1	SM 2320B	Total/NA
Alkalinity, Bicarbonate	326	5.0	0.79	mg/L	1	SM 2320B	Total/NA

This Detection Summary does not include radiochemical test results.

Client: New York State D.E.C. Job ID: 480-176636-2

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: PW-1-OCT20

Date Collected: 10/15/20 10:40 Date Received: 10/15/20 16:00

Toluene-d8 (Surr)

Lab Sample ID: 480-176636-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		100	7.7	ug/L			10/16/20 17:32	20
1,1,2,2-Tetrachloroethane	ND		100	5.2	ug/L			10/16/20 17:32	20
1,1,2-Trichloroethane	ND		100	9.6	ug/L			10/16/20 17:32	20
1,1-Dichloroethane	34	J	100	12	ug/L			10/16/20 17:32	20
1,1-Dichloroethene	ND		100	17	ug/L			10/16/20 17:32	20
1,2-Dichlorobenzene	ND		100	8.9	ug/L			10/16/20 17:32	20
1,2-Dichloroethane	ND		100	12	ug/L			10/16/20 17:32	20
1,2-Dichloroethene, Total	290		200	64	ug/L			10/16/20 17:32	20
1,2-Dichloropropane	ND		100	12	ug/L			10/16/20 17:32	20
1,3-Dichlorobenzene	ND		100	11	ug/L			10/16/20 17:32	20
1,4-Dichlorobenzene	ND		100	10	ug/L			10/16/20 17:32	20
2-Chloroethyl vinyl ether	ND		500	37	ug/L			10/16/20 17:32	20
Acrolein	ND		2000	350	ug/L			10/16/20 17:32	20
Acrylonitrile	ND		1000	38	ug/L			10/16/20 17:32	20
Benzene	ND		100	12	ug/L			10/16/20 17:32	20
Bromoform	ND		100	9.4	ug/L			10/16/20 17:32	20
Bromomethane	ND		100	24	ug/L			10/16/20 17:32	20
Carbon tetrachloride	ND		100	10	ug/L			10/16/20 17:32	20
Chlorobenzene	ND		100	9.5	ug/L			10/16/20 17:32	20
Chlorodibromomethane	ND		100	8.3	ug/L			10/16/20 17:32	20
Chloroethane	ND		100	17	ug/L			10/16/20 17:32	20
Chloroform	ND		100	11	ug/L			10/16/20 17:32	20
Chloromethane	ND		100	13	ug/L			10/16/20 17:32	20
cis-1,3-Dichloropropene	ND		100	6.6	ug/L			10/16/20 17:32	20
Dichlorobromomethane	ND		100	11	ug/L			10/16/20 17:32	20
Ethylbenzene	ND		100	9.3	ug/L			10/16/20 17:32	20
Methylene Chloride	ND		100	16	ug/L			10/16/20 17:32	20
Tetrachloroethene	ND		100	6.8	ug/L			10/16/20 17:32	20
Toluene	ND		100		ug/L			10/16/20 17:32	20
trans-1,2-Dichloroethene	ND		100	12	ug/L			10/16/20 17:32	20
trans-1,3-Dichloropropene	ND		100		ug/L			10/16/20 17:32	20
Trichloroethene	ND		100	12	ug/L			10/16/20 17:32	20
Vinyl chloride	73	J	100		ug/L			10/16/20 17:32	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		68 - 130			-		10/16/20 17:32	20
4-Bromofluorobenzene (Surr)	99		76 - 123					10/16/20 17:32	20
Dibromofluoromethane (Surr)	104		75 ₋ 123					10/16/20 17:32	20

Method: 624.1 - Volatile Orga	nic Compou	nds (GC/MS)	- RA						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		40	3.1	ug/L			10/19/20 15:15	8
1,1,2,2-Tetrachloroethane	ND		40	2.1	ug/L			10/19/20 15:15	8
1,1,2-Trichloroethane	ND		40	3.9	ug/L			10/19/20 15:15	8
1,1-Dichloroethane	30	J	40	4.7	ug/L			10/19/20 15:15	8
1,1-Dichloroethene	ND		40	6.8	ug/L			10/19/20 15:15	8
1,2-Dichlorobenzene	ND		40	3.6	ug/L			10/19/20 15:15	8
1,2-Dichloroethane	ND		40	4.8	ug/L			10/19/20 15:15	8
1,2-Dichloroethene, Total	250		80	26	ug/L			10/19/20 15:15	8

77 - 120

Page 7 of 25

Eurofins TestAmerica, Buffalo

10/16/20 17:32

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: PW-1-OCT20

Date Collected: 10/15/20 10:40 Date Received: 10/15/20 16:00 Lab Sample ID: 480-176636-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		40	4.9	ug/L			10/19/20 15:15	8
1,3-Dichlorobenzene	ND		40	4.3	ug/L			10/19/20 15:15	8
1,4-Dichlorobenzene	ND		40	4.1	ug/L			10/19/20 15:15	8
2-Chloroethyl vinyl ether	ND		200	15	ug/L			10/19/20 15:15	8
Acrolein	ND	Н	800	140	ug/L			10/19/20 15:15	8
Acrylonitrile	ND		400	15	ug/L			10/19/20 15:15	8
Benzene	ND		40	4.8	ug/L			10/19/20 15:15	8
Bromoform	ND		40	3.7	ug/L			10/19/20 15:15	8
Bromomethane	ND		40	9.5	ug/L			10/19/20 15:15	8
Carbon tetrachloride	ND		40	4.1	ug/L			10/19/20 15:15	8
Chlorobenzene	ND		40	3.8	ug/L			10/19/20 15:15	8
Chlorodibromomethane	ND		40	3.3	ug/L			10/19/20 15:15	8
Chloroethane	ND		40	7.0	ug/L			10/19/20 15:15	8
Chloroform	ND		40	4.3	ug/L			10/19/20 15:15	8
Chloromethane	ND		40	5.1	ug/L			10/19/20 15:15	8
cis-1,3-Dichloropropene	ND		40	2.6	ug/L			10/19/20 15:15	8
Dichlorobromomethane	ND		40	4.3	ug/L			10/19/20 15:15	8
Ethylbenzene	ND		40	3.7	ug/L			10/19/20 15:15	8
Methylene Chloride	ND		40	6.5	ug/L			10/19/20 15:15	8
Tetrachloroethene	ND		40	2.7	ug/L			10/19/20 15:15	8
Toluene	ND		40	3.6	ug/L			10/19/20 15:15	8
trans-1,2-Dichloroethene	ND		40	4.7	ug/L			10/19/20 15:15	8
trans-1,3-Dichloropropene	ND		40	3.5	ug/L			10/19/20 15:15	8
Trichloroethene	17	J	40	4.8	ug/L			10/19/20 15:15	8
Vinyl chloride	72		40	6.0	ug/L			10/19/20 15:15	8
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Pi	repared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	91		68 - 130			10/19/20 15:15	8	
4-Bromofluorobenzene (Surr)	99		76 - 123			10/19/20 15:15	8	
Dibromofluoromethane (Surr)	100		75 - 123			10/19/20 15:15	8	
Toluene-d8 (Surr)	99		77 - 120			10/19/20 15:15	8	

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	498		10.0	1.7	mg/L			10/17/20 02:59	5
Alkalinity, Total	322		5.0	0.79	mg/L			10/20/20 16:29	1
Alkalinity, Bicarbonate	322		5.0	0.79	mg/L			10/20/20 16:29	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			10/20/20 16:29	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			10/20/20 16:29	1

Client Sample ID: MW-15R-OCT20

Date Collected: 10/15/20 11:55 Date Received: 10/15/20 16:00 Lab Sample ID: 480-176636-5

Matrix: Water

Method: 624.1 - Volatile Or	ganic Compounds (GC/MS)
-----------------------------	-------------------	--------

wethod: 624.1 - volatile Organ	nc Compounas (C	GC/IVIS)						
Analyte	Result Qualifi	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	100	7.7	ug/L			10/16/20 17:55	20
1,1,2,2-Tetrachloroethane	ND	100	5.2	ug/L			10/16/20 17:55	20
1,1,2-Trichloroethane	ND	100	9.6	ug/L			10/16/20 17:55	20
1,1-Dichloroethane	ND	100	12	ug/L			10/16/20 17:55	20

Eurofins TestAmerica, Buffalo

Page 8 of 25

Client Sample Results

Client: New York State D.E.C. Job ID: 480-176636-2

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-15R-OCT20

Date Collected: 10/15/20 11:55 Date Received: 10/15/20 16:00 Lab Sample ID: 480-176636-5

Matrix: Water

Method: 624.1 - Volatile Organic Compounds	(GC/MS) (Continued)
--	---------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	MD		100	17	ug/L			10/16/20 17:55	20
1,2-Dichlorobenzene	ND		100	8.9	ug/L			10/16/20 17:55	20
1,2-Dichloroethane	ND		100	12	ug/L			10/16/20 17:55	20
1,2-Dichloroethene, Total	ND		200	64	ug/L			10/16/20 17:55	20
1,2-Dichloropropane	ND		100	12	ug/L			10/16/20 17:55	20
1,3-Dichlorobenzene	ND		100	11	ug/L			10/16/20 17:55	20
1,4-Dichlorobenzene	ND		100	10	ug/L			10/16/20 17:55	20
2-Chloroethyl vinyl ether	ND		500	37	ug/L			10/16/20 17:55	20
Acrolein	ND		2000	350	ug/L			10/16/20 17:55	20
Acrylonitrile	ND		1000	38	ug/L			10/16/20 17:55	20
Benzene	ND		100	12	ug/L			10/16/20 17:55	20
Bromoform	ND		100	9.4	ug/L			10/16/20 17:55	20
Bromomethane	ND		100	24	ug/L			10/16/20 17:55	20
Carbon tetrachloride	ND		100	10	ug/L			10/16/20 17:55	20
Chlorobenzene	ND		100	9.5	ug/L			10/16/20 17:55	20
Chlorodibromomethane	ND		100	8.3	ug/L			10/16/20 17:55	20
Chloroethane	ND		100	17	ug/L			10/16/20 17:55	20
Chloroform	ND		100	11	ug/L			10/16/20 17:55	20
Chloromethane	ND		100	13	ug/L			10/16/20 17:55	20
cis-1,3-Dichloropropene	ND		100	6.6	ug/L			10/16/20 17:55	20
Dichlorobromomethane	ND		100	11	ug/L			10/16/20 17:55	20
Ethylbenzene	ND		100	9.3	ug/L			10/16/20 17:55	20
Methylene Chloride	ND		100	16	ug/L			10/16/20 17:55	20
Tetrachloroethene	ND		100	6.8	ug/L			10/16/20 17:55	20
Toluene	ND		100	9.1	ug/L			10/16/20 17:55	20
trans-1,2-Dichloroethene	ND		100	12	ug/L			10/16/20 17:55	20
trans-1,3-Dichloropropene	ND		100	8.8	ug/L			10/16/20 17:55	20
Trichloroethene	ND		100	12	ug/L			10/16/20 17:55	20
Vinyl chloride	ND		100	15	ug/L			10/16/20 17:55	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		68 - 130					10/16/20 17:55	20
4-Bromofluorobenzene (Surr)	97		76 - 123					10/16/20 17:55	20

Method: 624 1	- Volatile Organic	Compounds (GC/MS) - RA	Δ

96

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	Result Quali	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.39	ug/L			10/19/20 15:38	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.26	ug/L			10/19/20 15:38	1
1,1,2-Trichloroethane	ND	5.0	0.48	ug/L			10/19/20 15:38	1
1,1-Dichloroethane	ND	5.0	0.59	ug/L			10/19/20 15:38	1
1,1-Dichloroethene	ND	5.0	0.85	ug/L			10/19/20 15:38	1
1,2-Dichlorobenzene	ND	5.0	0.44	ug/L			10/19/20 15:38	1
1,2-Dichloroethane	ND	5.0	0.60	ug/L			10/19/20 15:38	1
1,2-Dichloroethene, Total	9.7 J	10	3.2	ug/L			10/19/20 15:38	1
1,2-Dichloropropane	ND	5.0	0.61	ug/L			10/19/20 15:38	1
1,3-Dichlorobenzene	ND	5.0	0.54	ug/L			10/19/20 15:38	1
1,4-Dichlorobenzene	ND	5.0	0.51	ug/L			10/19/20 15:38	1
2-Chloroethyl vinyl ether	ND	25	1.9	ug/L			10/19/20 15:38	1

75 - 123

77 - 120

Eurofins TestAmerica, Buffalo

10/16/20 17:55

10/16/20 17:55

20

20

Page 9 of 25 10/21/2020

Client Sample ID: MW-15R-OCT20

Date Collected: 10/15/20 11:55 Date Received: 10/15/20 16:00

Client: New York State D.E.C.

Lab Sample ID: 480-176636-5

Matrix: Water

Method: 624.1 - Volati	e Organic Compounds	(GC/MS) - RA (Continued)
------------------------	---------------------	--------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acrolein	ND	H	100	17	ug/L			10/19/20 15:38	
Acrylonitrile	ND		50	1.9	ug/L			10/19/20 15:38	
Benzene	ND		5.0	0.60	ug/L			10/19/20 15:38	•
Bromoform	ND		5.0	0.47	ug/L			10/19/20 15:38	
Bromomethane	ND		5.0	1.2	ug/L			10/19/20 15:38	
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/19/20 15:38	
Chlorobenzene	ND		5.0	0.48	ug/L			10/19/20 15:38	
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/19/20 15:38	
Chloroethane	ND		5.0	0.87	ug/L			10/19/20 15:38	
Chloroform	ND		5.0	0.54	ug/L			10/19/20 15:38	
Chloromethane	ND		5.0	0.64	ug/L			10/19/20 15:38	
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/19/20 15:38	
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/19/20 15:38	
Ethylbenzene	ND		5.0	0.46	ug/L			10/19/20 15:38	
Methylene Chloride	ND		5.0	0.81	ug/L			10/19/20 15:38	
Tetrachloroethene	ND		5.0	0.34	ug/L			10/19/20 15:38	
Toluene	ND		5.0	0.45	ug/L			10/19/20 15:38	
trans-1,2-Dichloroethene	0.66	J	5.0	0.59	ug/L			10/19/20 15:38	
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/19/20 15:38	
Trichloroethene	2.4	J	5.0	0.60	ug/L			10/19/20 15:38	
Vinyl chloride	1.0	J	5.0	0.75	ug/L			10/19/20 15:38	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92	68 - 130		10/19/20 15:38	1
4-Bromofluorobenzene (Surr)	99	76 - 123		10/19/20 15:38	1
Dibromofluoromethane (Surr)	101	75 - 123		10/19/20 15:38	1
Toluene-d8 (Surr)	90	77 120		10/10/20 15:38	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	69.4		10.0	1.7	mg/L			10/17/20 03:13	5
Alkalinity, Total	406		5.0	0.79	mg/L			10/20/20 16:37	1
Alkalinity, Bicarbonate	406		5.0	0.79	mg/L			10/20/20 16:37	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			10/20/20 16:37	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			10/20/20 16:37	1

Client Sample ID: MW-16R-OCT20

Date Collected: 10/15/20 12:30 Date Received: 10/15/20 16:00 Lab Sample ID: 480-176636-6

Matrix: Water

Analyte	Result Qualif	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	100	7.7	ug/L			10/16/20 18:18	20
1,1,2,2-Tetrachloroethane	ND	100	5.2	ug/L			10/16/20 18:18	20
1,1,2-Trichloroethane	ND	100	9.6	ug/L			10/16/20 18:18	20
1,1-Dichloroethane	ND	100	12	ug/L			10/16/20 18:18	20
1,1-Dichloroethene	ND	100	17	ug/L			10/16/20 18:18	20
1,2-Dichlorobenzene	ND	100	8.9	ug/L			10/16/20 18:18	20
1,2-Dichloroethane	ND	100	12	ug/L			10/16/20 18:18	20
1,2-Dichloroethene, Total	390	200	64	ug/L			10/16/20 18:18	20

Eurofins TestAmerica, Buffalo

Page 10 of 25

Client Sample Results

Client: New York State D.E.C. Job ID: 480-176636-2

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-16R-OCT20

Date Collected: 10/15/20 12:30 Date Received: 10/15/20 16:00 Lab Sample ID: 480-176636-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND		100	12	ug/L			10/16/20 18:18	20
1,3-Dichlorobenzene	ND		100	11	ug/L			10/16/20 18:18	20
1,4-Dichlorobenzene	ND		100	10	ug/L			10/16/20 18:18	20
2-Chloroethyl vinyl ether	ND		500	37	ug/L			10/16/20 18:18	20
Acrolein	ND		2000	350	ug/L			10/16/20 18:18	20
Acrylonitrile	ND		1000	38	ug/L			10/16/20 18:18	20
Benzene	ND		100	12	ug/L			10/16/20 18:18	20
Bromoform	ND		100	9.4	ug/L			10/16/20 18:18	20
Bromomethane	ND		100	24	ug/L			10/16/20 18:18	20
Carbon tetrachloride	ND		100	10	ug/L			10/16/20 18:18	20
Chlorobenzene	ND		100	9.5	ug/L			10/16/20 18:18	20
Chlorodibromomethane	ND		100	8.3	ug/L			10/16/20 18:18	20
Chloroethane	ND		100	17	ug/L			10/16/20 18:18	20
Chloroform	ND		100	11	ug/L			10/16/20 18:18	20
Chloromethane	ND		100	13	ug/L			10/16/20 18:18	20
cis-1,3-Dichloropropene	ND		100	6.6	ug/L			10/16/20 18:18	20
Dichlorobromomethane	ND		100	11	ug/L			10/16/20 18:18	20
Ethylbenzene	ND		100	9.3	ug/L			10/16/20 18:18	20
Methylene Chloride	ND		100	16	ug/L			10/16/20 18:18	20
Tetrachloroethene	ND		100	6.8	ug/L			10/16/20 18:18	20
Toluene	ND		100	9.1	ug/L			10/16/20 18:18	20
trans-1,2-Dichloroethene	ND		100	12	ug/L			10/16/20 18:18	20
trans-1,3-Dichloropropene	ND		100	8.8	ug/L			10/16/20 18:18	20
Trichloroethene	ND		100	12	ug/L			10/16/20 18:18	20
Vinyl chloride	140		100	15	ug/L			10/16/20 18:18	20

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		68 - 130		10/16/20 18:18	20
4-Bromofluorobenzene (Surr)	98		76 - 123		10/16/20 18:18	20
Dibromofluoromethane (Surr)	101		75 - 123		10/16/20 18:18	20
Toluene-d8 (Surr)	98		77 - 120		10/16/20 18:18	20

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		40	3.1	ug/L			10/19/20 16:01	8
1,1,2,2-Tetrachloroethane	ND		40	2.1	ug/L			10/19/20 16:01	8
1,1,2-Trichloroethane	ND		40	3.9	ug/L			10/19/20 16:01	8
1,1-Dichloroethane	15 、	J	40	4.7	ug/L			10/19/20 16:01	8
1,1-Dichloroethene	ND		40	6.8	ug/L			10/19/20 16:01	8
1,2-Dichlorobenzene	ND		40	3.6	ug/L			10/19/20 16:01	8
1,2-Dichloroethane	ND		40	4.8	ug/L			10/19/20 16:01	8
1,2-Dichloroethene, Total	380		80	26	ug/L			10/19/20 16:01	8
1,2-Dichloropropane	ND		40	4.9	ug/L			10/19/20 16:01	8
1,3-Dichlorobenzene	ND		40	4.3	ug/L			10/19/20 16:01	8
1,4-Dichlorobenzene	ND		40	4.1	ug/L			10/19/20 16:01	8
2-Chloroethyl vinyl ether	ND		200	15	ug/L			10/19/20 16:01	8
Acrolein	ND H	Н	800	140	ug/L			10/19/20 16:01	8
Acrylonitrile	ND		400	15	ug/L			10/19/20 16:01	8
Benzene	ND		40	4.8	ug/L			10/19/20 16:01	8
Bromoform	ND		40	3.7	ug/L			10/19/20 16:01	8

Eurofins TestAmerica, Buffalo

Page 11 of 25

2

3

5

8

10

12

Client Sample Results

Client: New York State D.E.C. Job ID: 480-176636-2

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: MW-16R-OCT20

Date Collected: 10/15/20 12:30 Date Received: 10/15/20 16:00 Lab Sample ID: 480-176636-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND		40	9.5	ug/L			10/19/20 16:01	8
Carbon tetrachloride	ND		40	4.1	ug/L			10/19/20 16:01	8
Chlorobenzene	ND		40	3.8	ug/L			10/19/20 16:01	8
Chlorodibromomethane	ND		40	3.3	ug/L			10/19/20 16:01	8
Chloroethane	ND		40	7.0	ug/L			10/19/20 16:01	8
Chloroform	ND		40	4.3	ug/L			10/19/20 16:01	8
Chloromethane	ND		40	5.1	ug/L			10/19/20 16:01	8
cis-1,3-Dichloropropene	ND		40	2.6	ug/L			10/19/20 16:01	8
Dichlorobromomethane	ND		40	4.3	ug/L			10/19/20 16:01	8
Ethylbenzene	ND		40	3.7	ug/L			10/19/20 16:01	8
Methylene Chloride	ND		40	6.5	ug/L			10/19/20 16:01	8
Tetrachloroethene	ND		40	2.7	ug/L			10/19/20 16:01	8
Toluene	ND		40	3.6	ug/L			10/19/20 16:01	8
trans-1,2-Dichloroethene	ND		40	4.7	ug/L			10/19/20 16:01	8
trans-1,3-Dichloropropene	ND		40	3.5	ug/L			10/19/20 16:01	8
Trichloroethene	ND		40	4.8	ug/L			10/19/20 16:01	8
Vinyl chloride	140		40	6.0	ug/L			10/19/20 16:01	8
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		68 - 130			-		10/19/20 16:01	8
4-Bromofluorobenzene (Surr)	97		76 - 123					10/19/20 16:01	8
Dibromofluoromethane (Surr)	99		75 - 123					10/19/20 16:01	8
Toluene-d8 (Surr)	97		77 - 120					10/19/20 16:01	8

General Chemistry Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	122		10.0	1.7	mg/L			10/17/20 03:27	5
Alkalinity, Total	326		5.0	0.79	mg/L			10/20/20 16:44	1
Alkalinity, Bicarbonate	326		5.0	0.79	mg/L			10/20/20 16:44	1
Alkalinity, Carbonate	ND		5.0	0.79	mg/L			10/20/20 16:44	1
Hydroxide Alkalinity	ND		5.0	0.79	mg/L			10/20/20 16:44	1

Surrogate Summary

Client: New York State D.E.C. Job ID: 480-176636-2

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	gate Recovery (Ad	cceptance Limits)
		DCA	BFB	DBFM	TOL	
Lab Sample ID	Client Sample ID	(68-130)	(76-123)	(75-123)	(77-120)	
480-176636-4	PW-1-OCT20	95	99	104	98	
480-176636-4 - RA	PW-1-OCT20	91	99	100	99	
480-176636-5	MW-15R-OCT20	91	97	96	98	
480-176636-5 - RA	MW-15R-OCT20	92	99	101	99	
480-176636-6	MW-16R-OCT20	91	98	101	98	
480-176636-6 - RA	MW-16R-OCT20	92	97	99	97	
LCS 480-554226/6	Lab Control Sample	95	96	100	97	
LCS 480-554564/6	Lab Control Sample	87	98	98	99	
MB 480-554226/8	Method Blank	95	96	101	99	
MB 480-554564/8	Method Blank	93	98	98	96	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Client: New York State D.E.C. Job ID: 480-176636-2

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 480-554226/8

Matrix: Water

Analysis Batch: 554226

Client Sample ID: Method Blank

Prep Type: Total/NA

	5								
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/16/20 11:38	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			10/16/20 11:38	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/16/20 11:38	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/16/20 11:38	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/16/20 11:38	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/16/20 11:38	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/16/20 11:38	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/16/20 11:38	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/16/20 11:38	1
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/16/20 11:38	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/16/20 11:38	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/16/20 11:38	1
Acrolein	ND		100	17	ug/L			10/16/20 11:38	1
Acrylonitrile	ND		50	1.9	ug/L			10/16/20 11:38	1
Benzene	ND		5.0	0.60	ug/L			10/16/20 11:38	1
Bromoform	ND		5.0	0.47	ug/L			10/16/20 11:38	1
Bromomethane	ND		5.0	1.2	ug/L			10/16/20 11:38	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/16/20 11:38	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/16/20 11:38	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/16/20 11:38	1
Chloroethane	ND		5.0	0.87	ug/L			10/16/20 11:38	1
Chloroform	ND		5.0	0.54	ug/L			10/16/20 11:38	1
Chloromethane	ND		5.0	0.64	ug/L			10/16/20 11:38	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/16/20 11:38	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/16/20 11:38	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/16/20 11:38	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/16/20 11:38	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/16/20 11:38	1
Toluene	ND		5.0	0.45	ug/L			10/16/20 11:38	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			10/16/20 11:38	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/16/20 11:38	1
Trichloroethene	ND		5.0		ug/L			10/16/20 11:38	1
Vinyl chloride	ND		5.0		ug/L			10/16/20 11:38	1
•					•				

MB MB	
-------	--

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	68 - 130		10/16/20 11:38	1
4-Bromofluorobenzene (Surr)	96	76 - 123		10/16/20 11:38	1
Dibromofluoromethane (Surr)	101	75 - 123		10/16/20 11:38	1
Toluene-d8 (Surr)	99	77 - 120		10/16/20 11:38	1

Lab Sample ID: LCS 480-554226/6

Matrix: Water

Analysis Batch: 554226

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	18.3		ug/L		91	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	17.5		ug/L		87	46 - 157	
1,1,2-Trichloroethane	20.0	18.4		ug/L		92	52 - 150	

Eurofins TestAmerica, Buffalo

Client Sample ID: Lab Control Sample

Page 14 of 25

Prep Type: Total/NA

QC Sample Results

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-554226/6

Matrix: Water

Analysis Batch: 554226

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-176636-2

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	20.0	19.3		ug/L		97	59 - 155	
1,1-Dichloroethene	20.0	19.8		ug/L		99	1 - 234	
1,2-Dichlorobenzene	20.0	18.5		ug/L		93	18 - 190	
1,2-Dichloroethane	20.0	17.6		ug/L		88	49 - 155	
1,2-Dichloropropane	20.0	19.2		ug/L		96	1 - 210	
1,3-Dichlorobenzene	20.0	18.7		ug/L		93	59 - 156	
1,4-Dichlorobenzene	20.0	18.7		ug/L		94	18 - 190	
2-Chloroethyl vinyl ether	20.0	19.0	J	ug/L		95	1 - 305	
Benzene	20.0	19.6		ug/L		98	37 - 151	
Bromoform	20.0	17.6		ug/L		88	45 - 169	
Bromomethane	20.0	23.8		ug/L		119	1 - 242	
Carbon tetrachloride	20.0	18.4		ug/L		92	70 - 140	
Chlorobenzene	20.0	18.9		ug/L		94	37 - 160	
Chlorodibromomethane	20.0	17.5		ug/L		87	53 - 149	
Chloroethane	20.0	22.7		ug/L		114	14 - 230	
Chloroform	20.0	19.1		ug/L		95	51 - 138	
Chloromethane	20.0	23.3		ug/L		116	1 - 273	
cis-1,3-Dichloropropene	20.0	18.4		ug/L		92	1 - 227	
Dichlorobromomethane	20.0	18.1		ug/L		91	35 - 155	
Ethylbenzene	20.0	19.0		ug/L		95	37 - 162	
Methylene Chloride	20.0	19.8		ug/L		99	1 - 221	
Tetrachloroethene	20.0	19.3		ug/L		97	64 - 148	
Toluene	20.0	18.6		ug/L		93	47 - 150	
trans-1,2-Dichloroethene	20.0	20.0		ug/L		100	54 - 156	
trans-1,3-Dichloropropene	20.0	17.6		ug/L		88	17 - 183	
Trichloroethene	20.0	19.0		ug/L		95	71 - 157	
Vinyl chloride	20.0	23.3		ug/L		117	1 - 251	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		68 - 130
4-Bromofluorobenzene (Surr)	96		76 - 123
Dibromofluoromethane (Surr)	100		75 - 123
Toluene-d8 (Surr)	97		77 - 120

Lab Sample ID: MB 480-554564/8

Matrix: Water

Analysis Batch: 554564

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.39	ug/L			10/19/20 11:40	1
1,1,2,2-Tetrachloroethane	ND		5.0	0.26	ug/L			10/19/20 11:40	1
1,1,2-Trichloroethane	ND		5.0	0.48	ug/L			10/19/20 11:40	1
1,1-Dichloroethane	ND		5.0	0.59	ug/L			10/19/20 11:40	1
1,1-Dichloroethene	ND		5.0	0.85	ug/L			10/19/20 11:40	1
1,2-Dichlorobenzene	ND		5.0	0.44	ug/L			10/19/20 11:40	1
1,2-Dichloroethane	ND		5.0	0.60	ug/L			10/19/20 11:40	1
1,2-Dichloroethene, Total	ND		10	3.2	ug/L			10/19/20 11:40	1
1,2-Dichloropropane	ND		5.0	0.61	ug/L			10/19/20 11:40	1

Page 15 of 25

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-554564/8

Matrix: Water

Analysis Batch: 554564

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-176636-2

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND		5.0	0.54	ug/L			10/19/20 11:40	1
1,4-Dichlorobenzene	ND		5.0	0.51	ug/L			10/19/20 11:40	1
2-Chloroethyl vinyl ether	ND		25	1.9	ug/L			10/19/20 11:40	1
Acrolein	ND		100	17	ug/L			10/19/20 11:40	1
Acrylonitrile	ND		50	1.9	ug/L			10/19/20 11:40	1
Benzene	ND		5.0	0.60	ug/L			10/19/20 11:40	1
Bromoform	ND		5.0	0.47	ug/L			10/19/20 11:40	1
Bromomethane	ND		5.0	1.2	ug/L			10/19/20 11:40	1
Carbon tetrachloride	ND		5.0	0.51	ug/L			10/19/20 11:40	1
Chlorobenzene	ND		5.0	0.48	ug/L			10/19/20 11:40	1
Chlorodibromomethane	ND		5.0	0.41	ug/L			10/19/20 11:40	1
Chloroethane	ND		5.0	0.87	ug/L			10/19/20 11:40	1
Chloroform	ND		5.0	0.54	ug/L			10/19/20 11:40	1
Chloromethane	ND		5.0	0.64	ug/L			10/19/20 11:40	1
cis-1,3-Dichloropropene	ND		5.0	0.33	ug/L			10/19/20 11:40	1
Dichlorobromomethane	ND		5.0	0.54	ug/L			10/19/20 11:40	1
Ethylbenzene	ND		5.0	0.46	ug/L			10/19/20 11:40	1
Methylene Chloride	ND		5.0	0.81	ug/L			10/19/20 11:40	1
Tetrachloroethene	ND		5.0	0.34	ug/L			10/19/20 11:40	1
Toluene	ND		5.0	0.45	ug/L			10/19/20 11:40	1
trans-1,2-Dichloroethene	ND		5.0	0.59	ug/L			10/19/20 11:40	1
trans-1,3-Dichloropropene	ND		5.0	0.44	ug/L			10/19/20 11:40	1
Trichloroethene	ND		5.0	0.60	ug/L			10/19/20 11:40	1
Vinyl chloride	ND		5.0	0.75	ug/L			10/19/20 11:40	1

ΜВ	MВ

Surrogate	%Recovery	Qualifier Limi	ts	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93	68 - 1	730		10/19/20 11:40	1
4-Bromofluorobenzene (Surr)	98	76 - 1	23		10/19/20 11:40	1
Dibromofluoromethane (Surr)	98	75 - 1	23		10/19/20 11:40	1
Toluene-d8 (Surr)	96	77 - 1	120		10/19/20 11:40	1

Lab Sample ID: LCS 480-554564/6

Matrix: Water

Analysis Batch: 554564

Client Sample ID: Lab Control Sample

ICIIL	Campie ii	J. Lab O	ond of C	ailipic
		Prep 1	Type: To	otal/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	20.0	18.4		ug/L		92	52 - 162	
1,1,2,2-Tetrachloroethane	20.0	16.3		ug/L		81	46 - 157	
1,1,2-Trichloroethane	20.0	18.0		ug/L		90	52 - 150	
1,1-Dichloroethane	20.0	19.5		ug/L		98	59 - 155	
1,1-Dichloroethene	20.0	20.4		ug/L		102	1 - 234	
1,2-Dichlorobenzene	20.0	18.5		ug/L		92	18 - 190	
1,2-Dichloroethane	20.0	17.4		ug/L		87	49 - 155	
1,2-Dichloropropane	20.0	19.2		ug/L		96	1 - 210	
1,3-Dichlorobenzene	20.0	18.9		ug/L		94	59 - 156	
1,4-Dichlorobenzene	20.0	18.9		ug/L		95	18 - 190	
2-Chloroethyl vinyl ether	20.0	17.8	J	ug/L		89	1 - 305	
Benzene	20.0	20.0		ug/L		100	37 - 151	

Eurofins TestAmerica, Buffalo

Page 16 of 25

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method: 624.1 - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-554564/6

Matrix: Water

Analysis Batch: 554564

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-176636-2

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Bromoform 20.0 16.7 84 45 - 169 ug/L Bromomethane 20.0 22.9 ug/L 115 1 - 242 70 - 140 Carbon tetrachloride 20.0 18.5 ug/L 93 Chlorobenzene 20.0 19.3 ug/L 97 37 - 160 Chlorodibromomethane 20.0 53 - 149 172 ug/L 86 Chloroethane 20.0 22.2 ug/L 111 14 - 230 Chloroform 20.0 18.8 ug/L 94 51 - 138 Chloromethane 20.0 21.6 ug/L 108 1 - 273 cis-1,3-Dichloropropene 20.0 18.3 ug/L 91 1 - 227 Dichlorobromomethane 91 35 - 155 20.0 18.3 ug/L 20.0 99 37 - 162 Ethylbenzene 19.7 ug/L 20.0 95 Methylene Chloride 18.9 ug/L 1 - 221 Tetrachloroethene 20.0 20.7 104 64 - 148 ug/L Toluene 20.0 47 - 150 19.5 ug/L 97 trans-1,2-Dichloroethene 20.0 19.6 ug/L 98 54 - 156 20.0 86 17 - 183 trans-1,3-Dichloropropene 17.2 ug/L Trichloroethene 20.0 19.2 ug/L 96 71 - 157

20.0

22.3

ug/L

112

1 - 251

Client Sample ID: Method Blank

Prep Type: Total/NA

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	87		68 - 130
4-Bromofluorobenzene (Surr)	98		76 - 123
Dibromofluoromethane (Surr)	98		75 - 123
Toluene-d8 (Surr)	99		77 - 120

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-554356/4

Matrix: Water

Vinyl chloride

Analysis Batch: 554356

MB	ME
IVID	IAII

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	ND ND	2.0	0.35 mg/L			10/16/20 23:55	1

Analysis Batch: 554356

Lab Sample ID: LCS 480-554356/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Sulfate	50.0	50.41		mg/L		101	90 - 110	

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 480-554865/4

Matrix: Water

Analysis Batch: 554865

1	 ,	 ••••	 				
						MB	MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	ND		5.0	0.79	mg/L			10/20/20 16:16	1

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

Prep Type: Total/NA

Page 17 of 25

QC Sample Results

Client: New York State D.E.C. Job ID: 480-176636-2

Project/Site: Davis-Howland Oil Corp #828088

Method: SM 2320B - Alkalinity (Continued)

Lab Sample ID: MB 480-554865/4

Matrix: Water

Alkalinity, Bicarbonate

Alkalinity, Carbonate

Hydroxide Alkalinity

Analysis Batch: 554865

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: MW-16R-OCT20

Client Sample ID: MW-16R-OCT20

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac ND 5.0 0.79 mg/L 10/20/20 16:16 ND 5.0 0.79 mg/L 10/20/20 16:16 ND 5.0 10/20/20 16:16 0.79 mg/L

Lab Sample ID: LCS 480-554865/5

Matrix: Water

Analysis Batch: 554865

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits 100 Alkalinity, Total 97.60 98 90 - 110 mg/L

Lab Sample ID: 480-176636-6 MS

Matrix: Water

Analysis Batch: 554865

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit Limits %Rec Alkalinity, Total 326 100 60 60 - 140 385.6 mg/L

Lab Sample ID: 480-176636-6 DU

Matrix: Water

Analysis Batch: 554865

DU DU RPD Sample Sample **Analyte** Result Qualifier Result Qualifier Unit D RPD Limit Alkalinity, Total 326 327.9 0.7 20 mg/L 326 327.9 0.7 20 Alkalinity, Bicarbonate mg/L Alkalinity, Carbonate ND ND mg/L NC 20 Hydroxide Alkalinity ND ND mg/L NC 20

QC Association Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

GC/MS VOA

Analysis Batch: 554226

Lab Sample ID 480-176636-4	PW-1-OCT20	Prep Type Total/NA	Matrix Water	Method 624.1	Prep Batch
480-176636-5	MW-15R-OCT20	Total/NA	Water	624.1	
480-176636-6	MW-16R-OCT20	Total/NA	Water	624.1	
MB 480-554226/8	Method Blank	Total/NA	Water	624.1	
LCS 480-554226/6	Lab Control Sample	Total/NA	Water	624.1	

Analysis Batch: 554564

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176636-4 - RA	PW-1-OCT20	Total/NA	Water	624.1	<u> </u>
480-176636-5 - RA	MW-15R-OCT20	Total/NA	Water	624.1	
480-176636-6 - RA	MW-16R-OCT20	Total/NA	Water	624.1	
MB 480-554564/8	Method Blank	Total/NA	Water	624.1	
LCS 480-554564/6	Lab Control Sample	Total/NA	Water	624.1	

General Chemistry

Analysis Batch: 554356

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176636-4	PW-1-OCT20	Total/NA	Water	300.0	
480-176636-5	MW-15R-OCT20	Total/NA	Water	300.0	
480-176636-6	MW-16R-OCT20	Total/NA	Water	300.0	
MB 480-554356/4	Method Blank	Total/NA	Water	300.0	
LCS 480-554356/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 554865

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-176636-4	PW-1-OCT20	Total/NA	Water	SM 2320B	
480-176636-5	MW-15R-OCT20	Total/NA	Water	SM 2320B	
480-176636-6	MW-16R-OCT20	Total/NA	Water	SM 2320B	
MB 480-554865/4	Method Blank	Total/NA	Water	SM 2320B	
LCS 480-554865/5	Lab Control Sample	Total/NA	Water	SM 2320B	
480-176636-6 MS	MW-16R-OCT20	Total/NA	Water	SM 2320B	
480-176636-6 DU	MW-16R-OCT20	Total/NA	Water	SM 2320B	

Job ID: 480-176636-2

7

Q

10

12

1 4

Lab Chronicle

Client: New York State D.E.C. Job ID: 480-176636-2

Project/Site: Davis-Howland Oil Corp #828088

Client Sample ID: PW-1-OCT20

Lab Sample ID: 480-176636-4 Date Collected: 10/15/20 10:40 Date Received: 10/15/20 16:00

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1			554226	10/16/20 17:32	WJD	TAL BUF
Total/NA	Analysis	624.1	RA	8	554564	10/19/20 15:15	WJD	TAL BUF
Total/NA	Analysis	300.0		5	554356	10/17/20 02:59	IMZ	TAL BUF
Total/NA	Analysis	SM 2320B		1	554865	10/20/20 16:29	BEF	TAL BUF

Client Sample ID: MW-15R-OCT20 Lab Sample ID: 480-176636-5 **Matrix: Water**

Date Collected: 10/15/20 11:55 Date Received: 10/15/20 16:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1			554226	10/16/20 17:55	WJD	TAL BUF
Total/NA	Analysis	624.1	RA	1	554564	10/19/20 15:38	WJD	TAL BUF
Total/NA	Analysis	300.0		5	554356	10/17/20 03:13	IMZ	TAL BUF
Total/NA	Analysis	SM 2320B		1	554865	10/20/20 16:37	BEF	TAL BUF

Lab Sample ID: 480-176636-6 Client Sample ID: MW-16R-OCT20

Date Collected: 10/15/20 12:30 **Matrix: Water**

Date Received: 10/15/20 16:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	624.1			554226	10/16/20 18:18	WJD	TAL BUF
Total/NA	Analysis	624.1	RA	8	554564	10/19/20 16:01	WJD	TAL BUF
Total/NA	Analysis	300.0		5	554356	10/17/20 03:27	IMZ	TAL BUF
Total/NA	Analysis	SM 2320B		1	554865	10/20/20 16:44	BEF	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: New York State D.E.C. Job ID: 480-176636-2

Project/Site: Davis-Howland Oil Corp #828088

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pi	rogram	Identification Number	Expiration Date
New York	N	ELAP	10026	04-01-21
The following analytes the agency does not do		ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
624.1		Water	1,2-Dichloroethene, Total	
SM 2320B		Water	Alkalinity, Bicarbonate	
SM 2320B		Water	Alkalinity, Carbonate	
SM 2320B		Water	Hydroxide Alkalinity	

1

8

10

11

13

14

Method Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Method **Method Description** Protocol Laboratory 40CFR136A TAL BUF 624.1 Volatile Organic Compounds (GC/MS) MCAWW 300.0 Anions, Ion Chromatography **TAL BUF** SM 2320B SM **TAL BUF** Alkalinity

Protocol References:

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-176636-2

Sample Summary

Client: New York State D.E.C.

Project/Site: Davis-Howland Oil Corp #828088

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-176636-4	PW-1-OCT20	Water	10/15/20 10:40	10/15/20 16:00	
480-176636-5	MW-15R-OCT20	Water	10/15/20 11:55	10/15/20 16:00	
480-176636-6	MW-16R-OCT20	Water	10/15/20 12:30	10/15/20 16:00	

Job ID: 480-176636-2

Δ

5

6

8

9

11

12

1A

4 E

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Amherst, NY 14228-2298

10 Hazelwood Drive

eurofins Environment Testing

PW-15R-0CT20, MW-16R.0CT20, decahydrate Special Instructions/Note: pecify) HIO1 20 M - Hexane N - None O - AsNaO2 P - Na204S Autol dryon 10/19. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Monti Ja/ 480-151602-33705.2 Preservation Codes: surped dry A - HCL B - NaOH C - Zn Acetate 120 480-176636 Chain of Custody 3 M Total Number of c M 4 0 3- Drug 77. Carrier Tracking No(s) 120 Analysis Requested Cooler Temperature(s) °C and Other Remarks. Special Instructions/QC Requirem Lab PM: Johnson, Orlette S E-Mail: Orlette, Johnson@Eurofinset.com 8260C - Volatiles, TCLP list Received by: Received by: eceived by 500.0 28D - (MOD) Sulfate W n N W M M M M 624.1 PREC - Priority Pollutant List - VOA - 624.1 3 Perform MS/MSD (Yes or No) Company Field Filtered Sample (Yes or No) MW-15R-0CT20 to Cothers Water Water Water Water (W=water, Sesolid, O=wastefoli, Preservation Code Water Water Water Water Water Water Water Matrix Company Company Radiological 8060 (C=comp, G=grab) Sample Type 8 5 09:00 78 S J J 2 Propusa, 13.50 00:00 12:30 13:10 24:01 10:40 11:55 13.05 14:10 Sample 489(01t) Date Lay Unknown Po#: CallOut ID: 136612 AT Requested (days): Date/Time. 10-15-20 Due Date Requested: 101.5/2020 Sample Date 47 Sampler. Project #: 48019422 SSOW#: Date/Time Poison B Skin Irritant 625 Broadway Division of Environmental Remediation 100- PURCHEWATER-OCTZO Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. @ JAGS- PZ-3-0CTZ0 Phone: 716-691-2600 Fax: 716-691-7991 - Flammable MW-158-00720 WW-25-0CT20 MW-145-0CT26 MW-15-0CT20 Possible Hazard Identification Davis-Howland Oil Corp #828088 MW-16R- OCT 20 U10-95-00720 PW-1-6 CT 26 Empty Kit Relinquished by: TB-20201015 enelle.gaylord@dec.ny.gov Custody Seals Intact: Sample Identification Client Information New York State D.E.C A Yes A No State, Zp.: NY, 12233-7014 Jenelle Gaylord quished by: iquished by Albany

Client: New York State D.E.C.

Job Number: 480-176636-2

Login Number: 176636 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator. Roll, Cillis W	
Question Answer Co	omment
Radioactivity either was not measured or, if measured, is at or below background True	
The cooler's custody seal, if present, is intact.	
The cooler or samples do not appear to have been compromised or tampered with.	
Samples were received on ice.	
Cooler Temperature is acceptable.	
Cooler Temperature is recorded. True	
COC is present. True	
COC is filled out in ink and legible.	
COC is filled out with all pertinent information.	
Is the Field Sampler's name present on COC?	
There are no discrepancies between the sample IDs on the containers and the COC.	
Samples are received within Holding Time (Excluding tests with immediate True HTs)	
Sample containers have legible labels. True	
Containers are not broken or leaking.	
Sample collection date/times are provided.	
Appropriate sample containers are used.	
Sample bottles are completely filled. True	
Sample Preservation Verified True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	
If necessary, staff have been informed of any short hold time or quick TAT True needs	
Multiphasic samples are not present.	
Samples do not require splitting or compositing.	
Sampling Company provided. True EN	NE
Samples received within 48 hours of sampling.	
Samples requiring field filtration have been filtered in the field. True	
Chlorine Residual checked. N/A	

Eurofins TestAmerica, Buffalo