

EVALUATION OF ENVIRONMENTAL SUBSURFACE CONDITIONS THE GLEASON WORKS 1000 UNIVERSITY AVENUE ROCHESTER, NEW YORK

Prepared for: The Gleason Works 1000 University Avenue Rochester, New York

Prepared by: Leader Environmental, Inc. 640 Kreag Road - Suite 300 Pittsford, New York

FEB 2 8 2000

EUREAU OF RADIATION & MATAGEOUS SITE MANAGEMENT 1976 SECRECULED & CATAGEOUS MATERIALS

February 2000

EVALUATION OF ENVIRONMENTAL SUBSURFACE CONDITIONS THE GLEASON WORKS 1000 UNIVERSITY AVENUE ROCHESTER, NEW YORK

Prepared for: The Gleason Works 1000 University Avenue Rochester, New York

Prepared by: Leader Environmental, Inc. 640 Kreag Road - Suite 300 Pittsford, New York

TABLE OF CONTENTS

Council

2

3

4

Tables, Figures And Data From Roy F. Weston

Tables, Figures And Data From Galson Corporation

Tables, Figures And Data From Alliance Environmental Services, Inc.

1.	INTR	ODUCTION	I
2.	BACK	GROUND AND FACILITY SETTING	1
<i>3</i> .	GEOL	LOGIC/HYDROGELOGIC SETTING	2
	3.1	Geology	2
	3.2	Hydrogeology	3
	3.3	Groundwater Quality in the Site Vicinity	4
4.	SUMN	MARY OF ENVIRONMENTAL INVESTIGATIONS	5
	4.1	Heat Treat Building	5
	4.2	Former Hazardous Waste Storage Pad	6
		4.2.1 Summary of Investigation Findings	7
	4.3	Former Paint Thinner Tanks	11
<i>5</i> .	NATU	RE AND EXTENT OF CONTAMINATION	12
	<i>5.1</i>	Heat Treat Building	12
	5.2	Former Hazardous Waste Storage Pad	12
	5.3	Former Paint Thinner Tanks	15
6.	CONT	TAMINANT MIGRATION POTENTIAL	15
7.	CONC	CLUSIONS	17
FIGURES	5		
1	Site La	ocation Map	
2	Facilit	y Plan	
TABLES			
APPENDI	ICES		
l Aei	rial Photos	raphs From Monroe County Environmental Managemen	ı <i>t</i>

1. Introduction

Leader Environmental, Inc. has prepared this evaluation for two purposes:

- To summarize all of the available information collected during previous investigations completed by: Roy F. Weston, Inc. ("Weston"); ERM Northeast ("ERM"); Galson Corporation ("Galson"); and Alliance Environmental Services, Inc. ("Alliance"); and
- To re-evaluate the geologic data and chemical analyses.

The previous investigations were completed to evaluate the environmental conditions and possible impacts resulting from three existing and former operations at the Gleason Works ("Gleason") facility. These operations include: Heat Treat Building; the former hazardous waste storage pad; and the former paint thinner underground storage tanks.

2. Background and Facility Setting

The Gleason facility has been in operation at the 1000 University Avenue, Rochester, New York location since approximately 1905 as a machine tool manufacturing operation. Since Gleason's operation began at this location, a number of changes have occurred; buildings have been built, and adjacent buildings have been bought and sold. In general, the main Gleason operation has remained in the same approximate area since its beginning. The facility covers approximately 30 acres.

Surrounding the Gleason facility, the land use has stayed relatively the same. To the north, Gleason is bordered by a large railroad yard which includes a railroad repair facility and switching yard. To the east, Gleason is bordered by other industrial facilities including a chemical blending plant. To the south, Gleason borders on University Avenue which is a main thoroughfare in Rochester. The University Avenue area is largely a residential area. To the west, the residential flavor of University Avenue changes slightly to include commercial use.

In general, the changes to the Gleason facility and the surrounding properties have been documented by aerial photographs collected by the Monroe County Environmental Management Council ("EMC") and copied for this report. The aerial photographs are provided as Appendix 1. The earliest available photograph was taken in 1930, and the photographic collection continues in approximately 10-year increments until 1999. As the photographs indicate, the most notable changes to the Gleason facility occur on the north side of the facility where building expansion has occurred and land use changes are discernible.

The most significant changes to the facility occurred between 1930 and 1951. Unfortunately, the photographic record of the facility during the 1940's is not owned by the EMC. Between 1930 and 1951, there was a large expansion to the north of the main manufacturing building and a removal of several smaller buildings on the west side of the facility. The north side of the facility was used for storage of materials and was criss-crossed by access roads and rail spurs. In 1951, the powerhouse building is evident on the north side of the facility as are coal piles. In the 1961, 1970, and 1978 photographs, the main manufacturing building is expanding on the east side. These photographs indicate that the northeast side of the facility was used for the outside storage of coal and raw materials. In addition, in the 1961 photograph, the north side of the facility appears to have been paved for the first time, and the difference in surface shading helps define the limits of materials in storage better than in previous photographs. However, in none of the photographs does there appear to be a significant storage of drums or materials which might indicate the storage of waste materials.

3. Geologic/Hydrogeologic Setting

3.1 Geology

Subsurface investigations at the Gleason facility have been completed on the west and north sides of the facility to evaluate conditions surrounding a leaking underground storage tank of paint thinner (on the west side of the facility), remediation of polychlorinated biphenyls ("PCBs") in the Heat Treat Building (north side), and the closure of the former hazardous waste pad (north side). Figure 2 shows the approximate locations of these areas.

A total of 71 borings have been completed to investigate the Gleason facility, and these have included soil borings and bedrock coring for the collection of soil and groundwater samples (see Appendix 2 and 4 for available boring logs). During the collection of these samples, the surficial deposits beneath the facility have been described. In general, three basic units have been defined above the bedrock:

- A non-native surficial silty sand and gravel which can include brick, coal and flyash;
- A silt and clay layer; and
- A sand and gravel layer.

The surficial silty sand and gravel layer appears to be relatively consistent across the facility and extends in depth ranging from 4 feet to 8 feet below ground surface. Below this layer, a silt and clay layer was encountered, and this may be part of a regional unit of lacustrine (sand, silt and clay lake deposits). In some areas of the facility, this unit is encountered at approximately 4 feet below ground surface and continues to the bedrock surface. Although found continuously across much of the southern shore of Lake Ontario, the borings within the Gleason building and near Atlantic Avenue (Test Borings

TB-12 and TB-13, see Appendix 2) did not encounter clay, but instead a layer of sand and gravel. The absence of silt and clay beneath the building is not unusual, since the silt and clay may not have supported the heavy use of the building slab or foundations and was removed for construction purposes. Elsewhere on the facility, the silt and clay layer has a thickness of 3 to 6 feet. The sand and gravel layer can reach a thickness of 12 feet in the vicinity of TB-12 and TB-13 on the north side of the facility. On the northeast side of the facility, the sand and gravel grades into a clay, silt, sand, gravel mixture which Alliance may have more accurately classified as a silt-clay with lesser amounts of sand and gravel based on grain size distribution analyses (see Table 1 of Appendix 3). On the west side of the facility, the soil types appear to be more consistent with those found on the northeast side of the facility. Galson found, in the vicinity of the paint thinner USTs, a sandy fill soil to a depth of approximately 4 feet to 7 feet before changing to a clay dominant soil.

Bedrock beneath the area consists of limestone and dolomitic rock types from the Lockport Dolomite. Bedrock was encountered at a depth ranging from 9 to 15 feet below the ground surface. Figure 4 presented in Appendix 3 provides a bedrock surface contour map of the former hazardous waste storage pad. At test boring TB-13, 3 feet of bedrock was cored and the exposed core showed up to 3 fractures per foot.

3.2 Hydrogeology

In general, only 10 of the 71 borings completed at the facility encountered groundwater. The boring logs indicate approximately 2 feet of the overburden was saturated (Weston 1993 and Galson 1997).

In the vicinity of the former hazardous waste pad, neither groundwater nor sand and gravel were encountered in any of the 30 borings (Alliance 1996). The absence of groundwater was unexpected, because groundwater is typically encountered on the top of the clay or the bedrock. Both the clay and the limestone bedrock have very low permeabilities, and it would be expected that water would accumulate and remain for long periods of time on the top of these surfaces.

Soil moistures measured during the grain size analyses (see Table 1 of Appendix 3) ranged from 10.6-percent (sandy clay) to 11.2 percent (silty sand found between the ground surface and 8 feet below ground surface). This relatively uniform moisture content of the soil suggests two scenarios:

- 1. That the soil is more porous than indicated by the grain size distribution, thus allowing water to pass through the soil and into the bedrock. Or,
- 2. The ground surface is so compact that water tends to run off as oppose to infiltrating into the soil.

Galson's analysis of the grain size distribution also estimated the hydraulic conductivity for the analyzed soils. The silty sand from the ground surface to the 4 foot sample interval and the 4 to 8 foot sample interval had the same estimated hydraulic conductivity values. 10⁻⁴ centimeter per second (cm/sec). The hydraulic conductivity for the 8 to 12 foot sample interval was much lower, 10⁻⁶ cm/sec, and is similar to the 10⁻⁷ cm/sec permeability value needed for the State approved landfill liners. The data from the 8 to 12 foot layer suggests that water infiltrating downward through the soil should accumulate on the clay, thus protecting groundwater quality from impacts from the overlying ground surface or soil. In addition, the clay should also keep groundwater from rising into the overburden as a result of high groundwater levels in the bedrock that can occur in the spring and fall. Where the clay is absent, groundwater would not have the protection of the low permeability clay.

The limited information available from the groundwater zone beneath the Gleason facility suggests there is no uniform direction of groundwater flow. It is suspected that groundwater flow is controlled by the surface of the bedrock; the presence and absence of the saturated sand and gravel present below the clay layer; and available discharge points. Based on these controlling factors, it is suspected that groundwater on the north side of the facility would tend to flow north toward Atlantic Avenue. On the south side of the facility, the direction of groundwater flow may be affected by the presence of utilities beneath University Avenue which have disturbed the native soil, and possibly the bedrock, and formed a more permeable path for groundwater flow.

3.3 Groundwater Quality in the Site Vicinity

The area surrounding Gleason is largely industrial to the north and residential to the south. As a result of the land use in the industrial area to the north, it is suspected that the area's groundwater quality has been compromised. Leader conducted a review of environmental site databases which list suspected and known sources of contamination. The list indicates that there are a number of suspected properties located directly adjacent to, and east of, Gleason and north of the Gleason property. The suspected properties are listed on Table 1 of this report.

Based on the assumed direction of groundwater flow, suspected off-site sources of contamination would be located to the east and south of the Gleason Works. Sources located north of Gleason should not be totally eliminated from suspicion, because spills that occur on the ground surface may migrate along the pavement or within sewers prior to infiltrating into the subsurface soil and groundwater. Where spill infiltration occurs may dramatically affect where groundwater contamination is observed.

4. Summary of Environmental Investigations

This section summarizes the environmental investigations completed at the Gleason facility to characterize any environmental impacts. Five investigations were completed in three areas: the Heat Treat Building, (see Appendix 2); the former hazardous waste storage pad (see Appendix 3); and the former paint thinner underground storage tanks (see Appendix 4). The investigations completed for these areas include:

- "Environmental Assessment Report on Subsurface PCB Contamination at the Heat Treat Building," Roy F. Weston, January 11, 1993.
- "Remedial Action Plan for the Gleason Works Former Waste Storage Area," ERM-Northeast, May 1994.
- "Waste Storage Pad Investigation," Galson Corporation, October 1995.
- "RCRA Facility Investigation and Feasibility Study for the Former Hazardous Waste Storage Pad," Alliance Environmental Services, Inc., April 12, 1996.
- "Environmental Subsurface Evaluation Tanks 1& 2," Galson Consulting, February 1997.

4.1 Heat Treat Building

The PCB investigation of the Heat Treat Building was caused by the discovery of PCBs in quenching oil used in Gleason's heat treating process. In addition to the PCB investigation, Gleason completed a massive cleanup of the Heat Treat Building which included: removal and disposal of process equipment, the decontamination of process equipment, and the decontamination and epoxy sealing of surfaces. An extensive sampling of potentially contaminated surfaces and media also occurred. The investigation report prepared by Weston details the subsurface investigation.

Sampling completed during the cleanup of the basement floor areas led to sampling of the soil below. The locations of the samples were selected randomly in open floor areas where drilling could occur without interference and with the intent of providing samples representative of the subsurface under the entire basement floor. These samples revealed the presence of PCBs. Additional investigation of the soil and groundwater outside the building footprint followed. The investigation included the drilling and sampling of 18 test borings (see Figure 2 prepared by Weston and included in Appendix 2).

The sampling and analysis of the soil found that measurable concentrations of PCBs were limited to the area beneath the building. Six test borings were advanced beneath the Heat Treat Building basement floor to a depth of approximately 3 feet before encountering bedrock. Of the six borings completed and the fourteen samples analyzed, PCBs were

found in only three locations; test borings TB-01, TB-03, and TB-06. The detected PCB concentrations ranged from 0.12 parts per million ("ppm") to 450 ppm. Only three samples found PCBs at concentrations greater than 1 ppm; test boring TB-03 at a depth of 1 foot and a concentration of 110 ppm; TB-06 at a depth of 1 foot and a concentration of 450 ppm and at a depth of 3 feet and a concentration of 68 ppm (see Table 1 of Appendix 2 for a copy of the Weston data table).

Groundwater sample analyses revealed no measurable PCB contamination and no evidence of a free oil product. Groundwater samples were collected from the following 6 sample locations located outside the Heat Treat Building: TB-08, TB-11, TC-01, TC-02, TC-03, and TC-04 (see Figure 2 of Appendix 2).

Soil samples collected outside the Heat Treat Building revealed only limited PCB contamination with no obvious connection to the contamination found beneath the building. Samples collected from four locations found PCBs:

- Three samples were collected from test boring TB-08: the sample collected at a depth of 1 foot below ground surface contained PCBs at a concentration of 6.5 ppm; the sample collected at 4 feet below ground surface contained PCBs at a concentration of 25 ppm; and the sample collected at 5 feet below ground surface contained PCBs at a concentration of 2.1 ppm.
- One sample was collected from test boring TB-10, at a depth of 1 foot below ground surface, and contained PCBs at a concentration of 1 ppm.
- One sample was collected from test boring TB-12, at a depth of 13 feet below ground surface, and contained PCBs at a concentration of 0.062 ppm.
- One sample was collected from test boring TB-13, at a depth of 6 feet below ground surface, and contained PCBs at a concentration of 0.026 ppm.

4.2 Former Hazardous Waste Pad

The former hazardous waste concrete pad was located on the northeast side of the facility and covered an area of approximately 1,700 square feet (see Figure 3 of Appendix 3 for a location map for the former pad). Only a small part of the pad was used for the temporary storage of hazardous waste. This 675 square foot area of the former pad was once part of a RCRA Treatment, Storage, and Disposal ("TSDF") Permit application (e.g., "Part A") by Gleason. Like many other companies, Gleason submitted the TSDF permit application to provide themselves with some relief from RCRA's 90-day hazardous waste storage requirements. The pad was used by Gleason for the temporary storage of waste materials from 1981 to 1990. The pad was located in an area that had been historically used for the facility's access roads, railroad spurs, and miscellaneous

storage of pig iron for Gleasons' former foundry, coal, and coal cinders and flyash from the facility's boilers.

In 1994, the flyash and coal cinders covering the pad, and the pad itself, were excavated and disposed of offsite. The uncovered soil was then covered with plastic and then covered with clean fill. The area is maintained in this condition today.

The investigations prepared for this area were completed to assist in the closure of the pad and to define the limits of soil contamination.

4.2.1 Summary of Investigation Findings

A total of 30 soil borings were completed by ERM, Galson, and Alliance for the investigations, and the locations of the borings are shown on Figure 4 of Appendix 3. Figure 4 was originally prepared by Alliance for their April 1996 "RCRA Facility Investigation And Feasibility Study For The Former Hazardous Waste Storage Pad." This figure, and others, and data tables are also presented in Appendix 3. From these soil borings, samples were visually inspected to determine the geologic/hydrogeologic setting of the area and selected samples were submitted for chemical analyses which include: volatile organic compounds ("VOCs"), PCBs, metals, and total organic carbon ("TOC"). In addition to these chemical analyses, soil gas headspace analyses, grain size distribution analyses, and moisture content analyses were completed on selected samples. The results of these analyses are summarized on Table 1 through 6 of Appendix 3.

VOCs

Two types of VOC data were collected during the investigations: soil gas data from soil sample headspace analyses and chemical analyses on soil samples. The samples from three former storage pad soil borings, B-9, B-16 and B-21, had elevated soil gas VOC concentrations (see Table 3 of Appendix 3). The VOCs most often detected were Trichloroethene ("TCE") and Cis 1,2-dichloroethene ("Cis"). These compounds are, however, rather ubiquitous across the investigation area. The majority of the VOCs identified by headspace analyses appear to be in the 4 to 6 foot of soil interval.

Soil VOC sample data mimics the soil headspace data in that TCE and Cis are the most common VOCs detected. Table 2 lists the VOC soil data and identifies those samples that exceed the NYSDEC's soil cleanup values for the protection of groundwater quality. The sample locations where soil concentrations appear to exceed the NYSDEC's soil cleanup values include the following sample areas:

- The pad area;
- An area extending from the west side of the pad to sample location B-22; and

• Three possibly isolated areas that include sample locations B-26, B-28, and B-29.

In addition to TCE and Cis, other chlorinated compounds, aromatic hydrocarbons, and ketones have been detected. These "other" chlorinated compounds that have been detected included Methylene Chloride, Perchloroethene ("PCE") and 1,1,1-Trichloroethane ("TCA"). Concentrations for these chlorinated VOCs ranged from below detection limits to 901 ppm (for TCE at sample location B-8 at the 0 to 2-foot sampling interval). Breakdown products from the degradation of PCE, TCE and TCA were identified in the soil samples and include the following compounds: 1,1-Dichloroethane ("DCA"), Cis and Trans 1,2-Dichloroethene ("Trans"), and Vinyl Chloride ("VC"). These breakdown products were found at concentrations ranging from below detection limits to 480 ppm (for Cis at sample location B-8 at a depth of 0 to 2 feet below ground surface). The NYSDEC soil cleanup value for Cis is 0.3 ppm.

In addition to chlorinated compounds, aromatic hydrocarbons have also been identified. These aromatic compounds include Xylene and Toluene. Xylene was found at a total of 4 sampling locations B-1, B-3, B-5 and B-27 at depths ranging from 1 to 4 feet below ground surface. Only once, at sampling location B-27, was the Xylene found above NYSDEC's cleanup value for the protection of groundwater quality. The concentration of Xylene found at B-27 was 6.9 ppm. NYSDEC's Xylene cleanup value is 1.2 ppm. Toluene was found only three times during sampling: at sample location B-3 at a concentration of 0.053 ppm, at sample location B-26 at a concentration of 0.037 ppm, and at sample location B-27 at a concentration of 15 ppm. The NYSDEC's Toluene soil cleanup value for the protection of groundwater quality is 1.5 ppm.

A minor VOC (ketone) contaminant found in the soil samples was Acetone. Acetone was found in 15 samples at concentrations ranging from below the detection limit to 0.740 ppm. The NYSDEC acetone cleanup value for the protection of groundwater is 0.110 ppm.

PCBs

A total of 53 soil samples, from 30 sampling locations, were analyzed for PCBs. PCB contamination was found to occur at 22 of 30 sampling locations. At 18 of the sampling locations samples were collected and analyzed from a depth of 0 to 2 feet below ground surface. NYSDEC's PCB surface soil cleanup criteria is 1 ppm. In 15 of the 18 surface soil samples, PCBs were found at concentrations which exceed the surface soil cleanup values. In most cases, PCB surface soil concentrations exceeded the PCB concentrations found below a depth of 2 feet. However, at 10 of the sampling locations, the level of PCBs also exceeded the subsurface cleanup value of 10 ppm.

The occurrence of PCBs and VOCs appear to be linked, suggesting a common source and migration pathway.

Metals

Forty soil samples were analyzed for 10 heavy metals and cyanide to define the horizontal and vertical of possible metal contamination. The metals analyzed include: arsenic. barium, cadmium, chromium, copper, lead, manganese, mercury, selenium, and silver. Of these metals, only barium, cadmium, chromium, copper, lead, mercury, and selenium were found at concentrations that exceeded NYSDEC's cleanup criteria. Cyanide was found once at a concentration that exceeded NYSDEC's cleanup criteria.

Barium was found at only 1 sampling location at a concentration that exceeded the NYSDEC's cleanup criteria of 300 ppm. The single exceedence of barium was found at sample location B-8 at a depth of 0 to 2 feet below ground surface.

Cadmium was found at 7 sampling locations at concentrations that are greater than or equal to the NYSDEC's cleanup criteria of 1 ppm. The elevated concentrations of cadmium were found at various depths without a consistent pattern. However, the lack of a pattern suggests this may be an artifact of the sampling rather than a statement about the occurrence of cadmium in the environment. In general, the majority of the samples that exceeded the NYSDEC's cleanup value contained cadmium within a narrow concentration range of 1 to 1.9 ppm. The highest concentration of cadmium was found at sample location B-20, at a depth of 8.5 to 10 feet below ground surface and at a concentration of 3.7 ppm.

Chromium was one of the most frequently detected metals found in the soil samples. Chromium was found at concentrations which exceed the NYSDEC's cleanup criteria of 10 ppm at sample locations B-1 through B-8 and B-21 in the former storage pad area. In addition, chromium was found at sample location B-30 next to the pad and at sample locations B-18, B-20, and B-28 north of the pad. Chromium was also found in the background samples at a concentration that exceeds NYSDEC's cleanup values. In general, chromium was found at all sample depths, but with the highest concentrations being found in the 2 to 4 and the 4 to 6 foot sampling intervals.

Copper was frequently found in samples and has a pattern of occurrence like chromium. In general, the highest concentrations of copper were found in the 0 to 2 feet below ground surface sampling interval. The NYSDEC's cleanup value for copper is 25 ppm. Thirty-five samples where analyzed for copper and 17 samples had concentrations greater than 25 ppm. The highest concentration was found at sampling location B-3 at a concentration of 439 ppm.

Cyanide was analyzed in 18 samples, but only one sample, from soil boring B-5 in the sample taken from 0 to 2 foot below ground surface, contained cyanide. Cyanide was found at a concentration of 5.46 ppm. The NYSDEC's cleanup value for cyanide is 0.1 ppm. In the samples collected directly below the 0 to 2-foot sample interval, cyanide was not detected.

Lead was found in every sample analyzed with the exception of the sample from soil boring B-7 at the 0 to 2 foot sampling interval. Only I sample, at sample location B-8 at a depth of 4 to 6 feet below ground surface, exceeded the NYSDEC's cleanup criteria 500 ppm for urban soil. This sample found lead at a concentration of 5,920 ppm. Lead found at this concentration must have been metallic lead and part of a metal fragment picked up inadvertently by the sampler.

Mercury was found in 14 samples at concentrations above detection limits. Twelve samples contained mercury at concentrations above the NYSDEC's cleanup criteria of 0.1 ppm. The mercury concentrations ranged from below the detection limit to 0.648 ppm. In general, the highest concentrations found were in the 0 to 2-foot sampling interval.

Selenium was analyzed in 6 soil samples, but only 1 sample exceeded the NYSDEC's cleanup criteria of 2 ppm. The single exceedence was found at sampling location B-30 at a depth of 2 to 4 feet below ground surface and at a concentration of 5.99 ppm.

Of the metals detected, it is probable that many are the result of keeping coal, coal cinders and flyash on the facility. The presence of mercury, cadmium, and selenium are typical indicator metals for coal wastes. The pad area appears to be a "hot spot" for metal contaminants. Barium and chromium may have been related to the storage of foundry materials in the pad area.

Other Analyses

During the investigations completed by ERM, Galson and Alliance, several unconventional analyses were completed, including TOC and leaching analyses.

TOC Content

The TOC analyses were completed to assess the potential leachability of the contaminants found on the Site. Carbon has a natural affinity for absorbing other carbon based compounds and some metals. Materials with high TOC content may absorb VOCs, PCBs, and metals equal to many times the weight of carbon. As a result, it can be an instructive parameter to analyze.

The analysis found that the TOC content of the surface soil ranged from 41 to 91 percent. Table 2. of this report, compiled from information obtained by H&A of New York for Galson lists the TOC concentrations measured. Figure 11 of Appendix 3 shows the locations of the TOC samples. One foot below ground surface, the TOC content dropped from 0.2 to 21 percent. Typical TOC values for soil range from 0.5 percent to 5 percent. The values appear to be elevated over these normal soil ranges and it is thought that the coal pieces in the soil, from Gleason's past use of coal, is responsible for these elevated levels. During the analysis of TOC, all sources of carbon, whether they are plant, coal or carbon based contaminants, can be part of the measured result.

Given that the Site soil has an elevated level of TOC, the soil should have increased ability to absorb organic compounds and in some instances metals. With such an increased capacity to absorb contaminants, there should be a lesser chance for the downward migration of contaminants through the soil at Gleason. To verify this ability, several tests using the toxicity characteristic leaching procedure ("TCLP") and synthetic precipitation leaching procedure ("SPLP") were completed.

Leaching Analyses

TCLP and SPLP tests were completed to determine if contaminants can migrate from the soil at Gleason. The TCLP test is used on materials suspected for being a hazardous waste. The procedure exposes the material to an acidic solution for 48 hours to forcibly leach contaminants from materials. The SPLP test uses a solution similar to the acidity of rain water and is therefore a less rigorous, but more realistic test to determine the leachability of contaminants in a non-landfill setting.

The results of these analyses are shown in Table 6. In general, the results show that both tests are capable of leaching contaminants from the soil, and that the contaminant concentrations are variable. The contaminant concentrations leached are probably different because of the different contaminant concentrations in the three soil mixes; the original soil sample analyzed using USEPA Method 8260, the TCLP extraction and the SPLP extraction. One general statement can be made, the SPLP did produce lower contaminant concentrations in the leachate.

4.3 Former Paint Thinner Tanks

An investigation was completed on the west side of the facility (see Figure 2) in the area of the former Paint Thinner underground storage tanks to investigate a spill that was discovered in 1994 during a tank upgrade program. A total of 19 soil borings and geoprobe borings were completed. Soil samples collected during the investigation detected aromatic hydrocarbons which include: Benzene, Xylene, Ethylbenzene, Trimethylbenzene, Isopropylbenzene, n-Propylbenzene, Toluene, n-Butylbenzene, and sec-Butylbenzene. No semi-volatile organic compounds were detected. The investigation determined that the contamination had not migrated away from the tanks and appeared to remain in the overburden.

To remove the contaminates, Gleason installed a soil vapor extraction system. In 1997, 4 additional soil borings were completed to determine if remedial efforts had removed the soil contaminants. In the spill area, 2 soil samples were collected and analyzed for NYSDEC STARS listed VOCs (see Table 1 of Appendix 4). Based on the levels detected, the use of the SVE system was continued.

Soil borings completed for the investigation suggest that the contamination is bound in the soil above the bedrock. Contamination was indicated by the presence of vapor screening of the soil which found organic vapor concentrations ranging from less than 1 ppm to 300 ppm at a depths ranging from 7 to 12 feet below ground surface (see Appendix 4 for soil boring logs).

5. Nature and Extent of Contamination

There are three areas of known contamination on the Gleason facility: the PCB contamination found beneath the basement floor of the Heat Treat Building; the VOC, PCB and metals contamination related to the former hazardous waste storage pad; and the VOCs related to the former paint thinner underground storage tanks.

5.1 Heat Treat Building

The data obtained during the PCB investigation of the Heat Treat Building does not indicate that the PCBs have migrated away from the original operation area. This assessment is based on where the PCBs were spilled and entered into the subsurface, in the basement area of the Heat Treat building.

Using this as a working premise, it is difficult to link a spill in the basement of the Heat Treat Building approximately 10 feet below ground surface to finding PCBs at shallow depths outside the building, e.g. test boring TB-08 where PCBs were found at depths of 1, 4, and 5 feet below ground surface or at TB-10 where PCBs were found at a depth of 1 foot. Even where PCBs were found at lower elevations, the connection between the source and test borings TB-12, where PCBs were found at very low concentrations is tenuous, because no PCB contaminated groundwater was found. The presence of PCBs at test boring TB-08 may be associated with PCBs found in the area of the former waste storage area.

5.2 Former Hazardous Waste Storage Pad

The contaminants found on the Site include VOCs, PCBs, and metals, and they are found across the former storage pad area. Alliance Figure 5, 6, 7 and 8, presented in Appendix 3, illustrate the distribution of the VOCs and PCBs across the Site. Metals are found to have a similar distribution as VOCs. The majority of sampling for metals occurred on the soils within the pad area, therefore, the appearance of metals appears (possibly incorrectly) to be concentrated in the pad area.

VOCs

Figures 5 and 6, of Appendix 3, show the distribution of VOCs in the Site area and suggests a hotspot of contamination in the pad area. The primary VOC contaminants found include TCE and Cis. Other VOCs are also present, but TCE and Cis appear to be most common and have the highest concentration in the sample results.

Figure 5 and Figure 6 show that the majority of contamination was found below the ground surface in the sampling intervals between 2 and 6 feet. In general, the VOC concentration trend shown by the sample results shows there are lower VOC concentrations at the ground surface followed by an increase in concentration at lower sampling intervals. The concentration of Cis at sample locations B-1, B-2, B-3, B-4, and B-7 are a good example of this distribution. It appears that between the ground surface of the and the 2-foot below ground surface sampling interval, there are lower contaminant concentrations. A possible explanation for lower VOC concentration may be the soil being exposed to the weather. Exposure to variable air temperatures and wind can cause the volatilization of the VOCs. Below the 4 foot sampling depth, a trend of decreasing " " contaminant concentrations appears to be present but harder to claim because of the lack of sample locations where samples were analyzed continuously. In some cases on the individual contaminant level, there does appear to be a noticeable trend. This trend may be a result of microbial degradation of contaminants and the appearance of daughter products. For example, at sample location B-8, daughter products of TCE; Cis, Trans, and VC, appear to be increasing at the expense (the decreasing concentration) of TCE until a depth of 6 to 8 feet where the concentration of TCE bounces back and Trans and VC disappear. This same pattern occurs to a lesser extent at sampling locations B-2, B-4 and B-5.

The same decreasing concentration with increasing depth trend is suggested in Alliance Table 3 (see Appendix 3) which shows the results of VOC headspace analyses completed on soil samples. The use of headspace data to make conclusions on contaminant concentrations in the soil is at times tenuous, because of vapors can originate from two contaminant sources: the absorbed contaminant on the soil and contaminants in the soil moisture or pore water. As a result of these two potential contaminant sources, the contaminants will tend to vaporize into the headspace gas at different rates. Therefore, the soil gas sample results may not give an accurate picture of the extent of contamination.

PCBs

Alliance Figures 7 and 8, provided in Appendix 3, provides an assessment of the distribution of PCBs across the pad area. Comparing these figures, and especially Figure 7 "Highest PCB Concentrations in 0-4' BGS Intervals," to Figure 5 suggests that the occurrence of PCBs and VOCs are linked. The figures show two "hot spots". One hot spot is located in the former pad area, and the other is located north of the pad. At lower sampling depths, there is still a level of consistency between the occurrence of VOCs and

PCBs (see Alliance Figures 6 and 8). Four hot spots are represented in each of the figures, and these appear to be outgrowths of the VOC hot spots shown on Figure 5.

The appearance of PCBs in the former hazardous waste storage pad area are not associated with PCB migration from the Heat Treat Building. This conclusion is based on the fact that there is PCB contamination at the ground surface within the former pad area, and the release of PCBs from the Heat Treat Building most likely occurred through the basement floor. In addition, no PCBs were found in the samples from below the Steam Tunnel which is located between the Heat Treat Building and the former hazardous waste storage pad.

The connection between the appearance of PCBs at test borings TB-10 and TB-13 and the finding of PCBs in the Heat Treat Building and the former hazardous waste storage pad is as of yet uncertain. PCBs were found at 1 ppm at a test boring, TB-10, located north of the Heat Treat Building, at a sampling interval between 0 and 1 foot below ground surface. The appearance of PCBs at this depth suggests diminimus losses from PCB contaminated equipment or vehicles tracking the PCB laden sediment across the facility.

The presence of PCBs in the soil at test boring TB-12 needs to be clarified. The log from this test boring indicates that the sample was collected from bedrock at a depth of 13 feet with fill materials present at a depth of at least 5 feet below ground surface. It is possible that some of the fill materials, present at 5 feet, could have fallen into the sampling zone and inadvertently contaminated the sample.

It is also possible, but unlikely, that the contamination is from contaminated groundwater since PCBs have a low solubility, approximately 0.031 milligrams per liter, and they have a high affinity for absorption onto soil, in particular soil with organic material. The tendency for PCBs to absorb onto soil is measured by its organic-water partitioning coefficient which is approximately 530,000 milliliters per gram. To illustrate PCBs tendency to absorb onto soil, if a soil has a 5-percent organic content (TOC content for subsurface soil at Gleason ranges from 0.2 to 21 percent), then 1 ppm PCBs in groundwater will be at equilibrium with 26,500 ppm in soil. As this example shows, it is unlikely that PCBs will dissolve into groundwater or migrate any appreciable distance. To support our example, PCBs have not been found in the groundwater in the vicinity of the Heat Treat Building.

A possible source of contamination is from the laboratory and from other sampling equipment. Supporting this accusation is the fact that 1 equipment blank sample was found to be contaminated with PCBs at a concentration of 1.3 ppm in water. This is a substantial concentration given the solubility and absorptive characteristics of PCBs. It would also seem likely that the PCBs were present on soil or as an oil residue on the tool being sampled for the equipment blank. After rinsing the tool for the equipment blank sample and use for soil sampling, it seems apparent that a trace amount could cross contaminate the following soil sample.

70 C

Metals

The occurrence of metals at concentrations which exceed the NYSDEC cleanup criteria for soil is relatively wide spread, but because of the sampling frequency appears to be biased toward the pad area. However, the appearance of metals in the soil may be caused by the use of coal, the generation of coal cinders and flyash, and Gleason's former operation of a foundry. Aerial photographs, presented in Appendix 1, show the former pad area as being in the middle of access roads, railroad spurs, and the storage of pig iron and coal. With this type of activity, the appearance of elevated concentrations of metals is not unusual.

To assess the Site soil sample results, given the historical use of the pad area, Alliance collected two background soil samples and analyzed them for metals. These results are shown on Alliance Table 5 provided in Appendix 3. In Table 5, the background sample results are compared to NYSDEC cleanup values for metals. As the table indicates, the background soil samples appear to be elevated when compared to NYSDEC cleanup standards for chromium, copper and mercury. This comparison suggests that the background soil may have been impacted by the same operations as the soil in the former pad area. If cleanup were to focus on metals, then the Site background levels should be considered as the cleanup level as allowed by the NYSDEC Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels.

5.3 Former Paint Thinner Tanks

Contamination surrounding the former paint thinner underground storage tanks is limited to the soil immediately surrounding the tanks and to contaminants consistent with the materials formerly held in the tanks. Table 1 of Appendix 4 lists the sample analyses completed as part of the tank closure process. Table 1 shows that contaminants are still present above NYSDEC's STARS Memo #1 cleanup values.

The presence of exhaust stacks, the air handler, and the building has, however, limited some contaminant delineation efforts, but investigation in accessible areas has shown contaminants limited to a zone approximately 7 to 12 feet below ground surface. This zone of contamination is consistent with the bottom of the tanks. The soil present in the zone of contamination is a clay which extends from a depth of approximately 5 feet below ground surface to bedrock, a depth that ranges from approximately 9 feet to 12 feet. Groundwater was not encountered, but some wet soil was found. Since the amount of available moisture from groundwater appears to be limited, the presence of the building and pavement over the remediation area is further limiting the amount of moisture infiltrating downward through the contaminated area. Given that there is a lack of water or moisture which could potentially contribute to contaminant migration, it is unlikely that contaminants have escaped the absorptive capacity of the clay and impacted groundwater. Gleason is actively remediating the tank area under NYSDEC supervision.

6. Contaminant Migration Potential

The existence of contaminated soil creates the potential for contaminants to migrate from the site. However, specific facility conditions can significantly lessen the degree which this can occur. As the background information indicates, the Gleason facility conditions where the majority of the contamination exists have been encapsulated by pavement, building space, or a layer of plastic and soil, thus lessening the role precipitation can play driving contaminants deeper into the soil. Outside the limits of these impervious coverings, the soil contamination is still prone to the effects of infiltrating precipitation; but at Gleason, we believe this is limited due to the following factors.

The physical characteristics of the facility are an advantage to controlling the potential downward migration of contaminants. In particular, the Site's geology consists of sandy silt and clay with hydraulic conductivity's ranging from 10⁻⁴ to 10⁻⁶ cm./sec. The clay layer is believed to blanket much of the facility with up to 3 feet of relatively impermeable material. The clay layer appears to be serving other functions on the facility as well as providing an impermeable barrier to the downward migration of contaminants. The clay also appears to be retarding the upward migration of groundwater from the bedrock. This is suggested by the absence of groundwater or moisture in the clay.

The absence of groundwater or a significant moisture content in the subsurface soil indicates that there is little precipitation migrating downward into the soil, and therefore, there is no mechanism to drive VOC, PCB or metal contaminant migration. Without water (precipitation or soil moisture) present, there can be no desorption of contaminants into an aqueous phase which can later migrate. Even if sufficient water was present for contaminant migration, the water chemistry must also be right for migration.

Metals. for example, are only mobile in certain circumstances such as reducing or acidic environments. The majority of the metals of concern on the facility (barium, cadmium, copper, lead and mercury) only migrate in acidic conditions. Chromium would tend to migrate in alkaline conditions. Given the presence of coal and flyash in the soil, any water in the soil would tend to be acidic, promoting the migration of barium, cadmium, copper, lead and mercury. The presence of acidic conditions, however, may be buffered by the native soil which originates in limestone bedrock regions. As a result of this apparent contradiction, additional analyses would be needed to determine if metals can migrate through the soil.

VOCs and PCBs, unlike metals, will migrate under a wider range of conditions, but still, the key element is water or the containment to be present in a liquid form, for example, TCE solvent or PCB oil. None of the soil sample results indicate pure solvent or PCB oil to be present. In a situation where a solvent is present and is not migrating under its own hydraulic force, migration can only be advanced by the presence of water. Even in these circumstances (with the exception of Acetone), the VOCs and PCBs have such low water

solubilities that it would require a large contaminant mass to dissolve even a small amount into the water. These minor amounts of VOCs and PCBs would then be susceptible to absorption onto the soil at lower depths.

7. Conclusions

There are three areas on the Gleason facility that have been environmentally impacted. These areas are located on the west side and north side of the facility (see Figure 2). The three areas of concern include: the Heat Treat Building; the former hazardous waste storage pad; and the former paint thinner underground storage tanks. To investigate these areas of concern, Gleason conducted five different investigations to define the limits of contamination or to assist in the closure of the former hazardous waste storage pad. This report was prepared to comprehensively summarize the information obtained previously by Weston, ERM, Galson, and Alliance, and to re-evaluate the geologic data and chemical analyses.

We believe, that based upon the accumulated data, there are several steps that can be taken to conclude the investigation and, concurrently, allow for the selection of site-specific remedial alternatives. We look forward to discussing these matters with the Department.

TABLE 1
Summary of Suspected Offsite Sources of Contamination

Site Name	Location	Suspected Contaminant
University Business Center,	East, adjacent	Fuel Oil, Groundwater
1044 University Ave.		contamination not
		suspected.
Bill Johnson Residence, 64	Southeast, 09 miles	Gasoline, Groundwater
Oliver Street		contamination not
		suspected.
Oser Press, 1239 University	East, 0.22 miles	Fuel Oil, Groundwater
Ave.		Contamination not
		suspected.
Patrick Media Group, 745	South, 0.33 miles	Gasoline, groundwater
Park Ave		affected.
Sunoco, 645 Culver Road	Northeast, 0.37 miles	Gasoline, groundwater
L		believed affected.
Davis-Howland Oil, 200	Northwest, 0.38 miles	Toluene and
Anderson Ave.		Trichloroethene,
		groundwater affected.
RP Meyers, Inc., 1 Merton	Northeast, 0.46 miles	Gasoline, Groundwater
Street		contamination not suspected
Railroad Yard, Atlantic	North, Adjacent	Suspected Site
Ave.		

TABLE 2
Summary of Total Organic Carbon Results

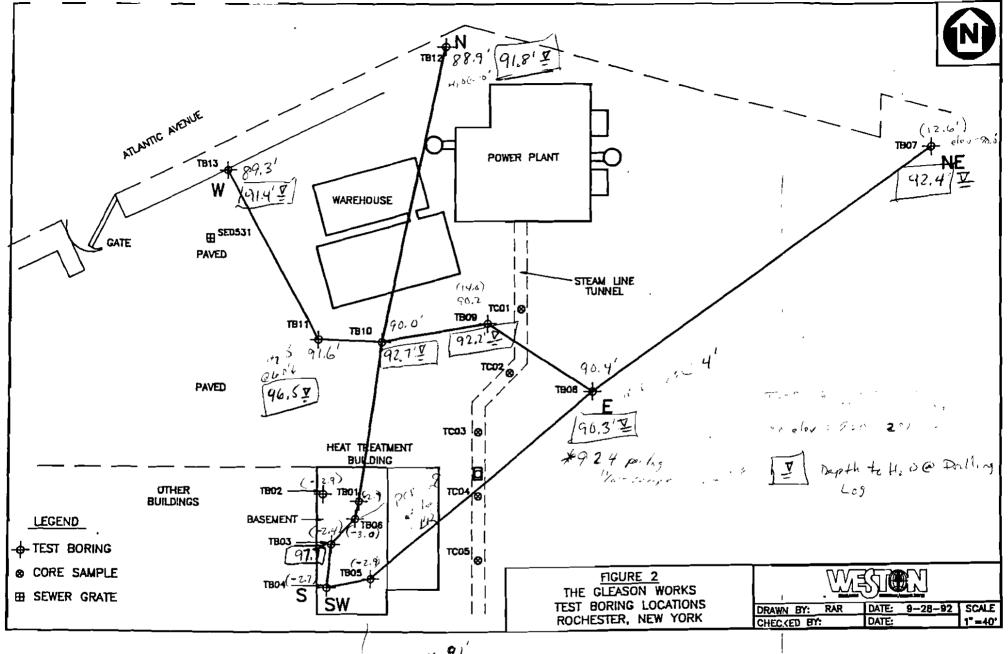
Sample Location	Sample Interval	Concentration (Percent)
SS-1	0-1 ft.	41
SS-2	0-1 ft.	91
SS-4	0-1 ft.	86
SS-5	0-1 ft.	71
SS-6	0-1 ft.	50
B-4	10-13 ft.	0.2
B-8	6-8 ft.	3
B-8	10-12 ft.	3 _
B-26	2-4 ft.	6
B-27	1-3 ft.	21

APPENDIX 1 HISTORIC AERIAL PHOTOGRAPHS

1930 AERIAL PHOTO

CLEASON WORKS

(Property Line as of January 2000)



APPENDIX 2 ROY F. WESTON TABLES, FIGURES, & DATA

1 76 de 2 91'

The Gleason Works
Environmental Assessment
7/8/92 - 7/10/92

Table 1 Summary of PCB Soil and Groundwater Results

Analyzed by: Roy F. Weston, Inc.

Sample Number	TB01-01-002	TB01-01-003		Sample Numbering Protocol:
Units	mg/kg	mg/kg		,
Aroclor-1016		0.087 U		TB0X-0X-00X
Aroclor-1221	0.087 U	0.087 U		TB0X = Test Boring Number
Aroclor-1232	0.087 U	0.087 U		0X = Sample Matrix
Aroclor-1242	0.087 U	0.087 U	•	01 = Soi
Aroclor – 1248	0.087 U	0.12		02 = Water
Aroclor-1254	0.17 U	0.17 U		00X = Depth in Feet Below Ground Surface
Aroclor-1260		0.17 ป		TB = Test Boring TC = Tunnel Core.EB = Equip. Blank.
Sample Number	TB02-01-001	TB02-01-003	and the second of the second o	
Unite	.mg/kg	ma/ka		
Aroclor-1018	0.18 U	0.09 U		
Aroclor-1221	0.18 U	0.09 U		
Aroclor-1232	0.18 U	0.09 U		
Aroclor-1242	0.18 U	0.09 U		
Aracior-1248	0.18 U	0.09 U		
Aroclor - 1254	0.36 U	0.18 U		
Aroclor-1260	0.36 U	0.18 U		
Sample Number	TB03-01-001	TB03-01-003		
Units	ma/kg	mg/kg		
Aroclor-1016	17.0 U	0.18 U	that is a state of the Control of the state	A CANADA CAN
Arocior 1221	17.0 U	0.18 U		
Aroclor-1232	17.0 U	0.18 U		
Aroclor-1242	17.0 U	0.18 U		
Aroclor-1248	110	0.42		
Aroclor-1254	35.0 U	0.36 U		
Aroclor-1260	35.0 U	0.36 U		
Sample Number	TB04-01-002	TB04-01-003		
Unite	mg/kg	mg/kg		
Aroclor-1016	0.090 U	0.088 U	A control for the control and a second decoration of the control and the control and the control appears.	respondence to the contract of
Arcelor-1221	0.090 U	0.088 U		
Aroclor-1232	0.090 U	0.088 U		
Aroclor-1242	0.090 U	0.088 U		
Aroclor-1248	0.090 U	0.088 U		
Aroclor-1254	0.180 U	0.180 U		
Aroclor-1260	0.180 U	0.180 U		
Sample Number		TB05-01-003		
Units	mg/kg	mg/kg		
Aroclor-1016	0.087 U	0.091 Ü		
Aroclor-1221	0.087 U	0.091 U		
Aroclor-1232	0.087 U	0,091 U		
Aroclor-1242	0.087 U	0.091 U		
Aroclor-1248	0.087 U	0.091 U		
Aroclor-1254	0.170 U	0,180 U		
Araclor-1260	0.170 U	0.180 U		

Sample Number	TB06-01-001	TROS-01-003		6,7346.g *** 9,34663; 24466;				
Unita	mg/kg	ma/ka						
Aroclor-1016	89.0 U	8.80 U			atha ath ia is simple 1980	The Control of State Administra		
Aroclor-1221	89,0 U	8.80 U						
Aroclor-1232	89.0 U	8.80 U						
Aroclor-1242	89.0 U	8.80 U						
Aroclor-1248	450	68.0						
Aroclor-1254	160 U	18.0 U						
Aroclor-1260	180 U	18.0 U						
Sample Number	TB07-01-002	TB07-01-003	T80701006	TB07-01-07	TB07-01-010	TB07-01-011	TB07-01-013	
Unite	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	
Aroclor-1016	0.480 U	0.520 U	0.10 Ü	0.096 U	0.110 U	0.086 U	0.160 U	
Araclar-1221	0.480 U	0.520 U	0.10 U	0.096 U	0.110 U	0.088 U	0.180 U	
Aroclor-1232	0.480 U	0.520 U	0.10 U	0.096 U	0.110 U	0.086 U	0.160 U	
Aroclor-1242	0.480 U	0.520 U	0.10 U	0.096 U	0.110 U	0.088 U	0.160 U	
Aroclor-1248	0.480 U	0.520 U	0.10 U	0.096 U	0.110 U	0.086 U	0.160 U	
Aroclor-1254	0.950 U	1.0 U	0.20 U	0.190 U	0.210 U	0.170 U	0.320 U	
Aroclor-1260	0.950 U	1.0 U	0.20 U	0.190 U	0.210 U	0.170 U	0.320 U	
Sample Number	TB08-01-001	TB08-01-004		TB08-01-007	TB08-01-010	TB08-01-011	TB08-01-013	TB08-02-013
Unite	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	lug/l
Arocior-1016	8.6 U	9.40 U	0.450 U	0.099 U	0.096 U	0.088 U	0.087 U	1.2 U
Aroclor-1221	8.6 U	9.40 U	0.450 U	0.099 U	0.096 U	0.088 U	0.087 U	1.2 U
Aroclor-1232	6.6 U	9.40 U	0.450 U	0.099 U	0.096 U	0.088 U	0.087 U	1.2 Ū
Aroclor-1242	6.6 U	9.40 U	0.450 U	0,099 U	0.096 U	0.088 U	0.087 U	1.2 U
Aroclor-1248	6,5 J	25.0	2.10	0.099 U	0.096 U	0.088 U	0.087 U	1.2 U
Aroclor-1254	17.0 U	19.0 U	0.90 U	0.20 U	0.190 U	0.180 U	0.170 U	2.4 U
Aroclor-1260	17.0 U	19.0 U	0.90 U	0.20 U	0.190 U	0.180 U	0.170 U	2.4 U
Sample Number	TB09-D1-001	TB09-01-003	TB09-01-006	TB09-01-006	TB0901009	TB09-01-012	TB09-01-013	
Unite	mg/kg	mp/ka	ma/ka	mg/kg	mg/kg	mg/kg	ma/ka	er en
Aroclor-1016	0.093 U	1.0 U	0.30 U	0.30 U	0.280 U	0.092 U	0.079 U	
Aroclor-1221	0.093 U	1.0 U	0.30 U	0.30 U	0.260 U	0.092 U	0.079 U	
Aroclor-1232	0.093 U	1.0 U	0.30 U	0.30 U	0.260 U	0.092 U	0.079 U	
Aroclor-1242	0.093 U	1.0 U	0.30 U	0.30 U	0.280 U	0.092 U	0.079 U	
Arocior-1248	0.093 U	1.0 U	0.30 U	0.30 U	0.280 U	0.092 U	0.079 U	
Aroclor-1254	0.190 U	2.0 U	0.590 U	0.590 U	0.560 U	0.180 U	0.160 U	
Aroclor-1260	0.190 U	2.0 U	0.590 じ	0.590 U	0.560 U	0.180 U	0.160 U	
Sample Number	TB10-01-001	TB10-01-003	TB10-01-006	TB10-01-007	TB10-01-009	TB10-01-011	TB10-01-013	TB10-01-016
Unite	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Aroclor-1016	0.50 Ü	0.270 U	0.290 U	0.30 U	0.099 U	0.086 U	0.090 U	0.093 U
Arocior-1221	0.50 U	0.270 U	0.290 U	0.30 U	0.099 U	0.086 U	0.090 U	0.093 U
Aroclor-1232	0.50 U	0.270 U	0.290 U	0.30 U	0.099 U	0.086 U	0.090 Ū	0.093 じ
Aroclor—1242	0.50 U	0.270 U	0.290 U	0.30 U	0.099 U	0.086 U	0.090 U	0.093 U
Arocior-1248	0.50 U	0.270 U	0.290 U	0.30 U	0.099 U	0.088 U	0.090 U	0.093 U
Aroclor-1254	1.0	0.550 U	0.580 U	0.590 U	0.20 U	0.170 U	0.180 U	0,190 U
Aroclor~1260	1.0 U	0.550 U	0.580 U	0.590 U	0.20 U	0.170 U	0.180 U	0.190 U

J

.

Sample Number	TB11-01-002	TB11-01-003	TB11-01-005	TB11-01-008	TB11-01-				
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	มต/เ		**	
Araclor-1016	0.470 U	0.190 U	0.10 U	0.099 U	0.092 U	1.2 U			
Aroclor-1221	0.470 U	0.190 U	0.10 U	0,099 U	0.092 U	1.2 U			
Aroclor-1232	0.470 U	0.190 U	0.10 U	0,099 U	0.092 U	1.2 U			
Aroclor-1242	0.470 U	0.190 U	0,10 U	0,099 U	0.092 U	1.2 U			
Aroclor~1248	0.470 U	0.190 U	0.10 U	0.099 U	0.092 U	1.2 U			
Aroclor-1254	0.930 U	0.370 U	0.20 U	0.20 U	0.180 U	2.4 U			
Aroclor-1260	0.930 LI	0.370 U	0.20 U	0.20 U	0.180 U	2.4 U			
Sample Number	TB12-01-002	TB12-01-003		TB12-01-007	TB12-01-		Let et a All a Company		<u> </u>
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ma/kp	A Marketine and a		
Aroclor-1016	0.087 U	0.440 U	0.042 U	0.087 LI	0.086 U	0.086 U			
Aroclor-1221	0.087 LJ	0.440 U	0.042 U	0.087 U	0.086 U	0.086 U			
Aroclor-1232	0.087 U	0.440 U	0.042 U	0.087 U	0.086 U	0.086 U			
Aroclor-1242	0.087 U	0.440 U	0.042 U	0.087 U	U 880.0	U 380.0			
Arocior-1248	0.087 LI	0.440 LI	0.042 U	0.087 U	0.086 U	0.062 J			
Aroclor-1254	0.170 U	0.690 U	0.083 U	0.170 U	0.170 U	0.170 U			
Aroclor-1260	0.170 U	0.890 U	0.083 U	0.170 U	0.170 U	0.170 U			
Sample Number	TB13-01-000	TB1301006	TB13-01-007	TB13-01-009	TB13-01-	D11	ा, (जाप्रेक्षक केला विका	Transition of the Control of the Con	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg				
Arocior-1016	0.10 U	0.085 U	0.084 U	0.089 U	0.090 U				
Aroclor-1221	0.10 U	0,085 U	0.084 U	0.089 U	0.090 U				
Aroclor - 1232	0.10 U	0.085 U	0.084 U	0.089 U	0.090 U				
Arocior-1242	0.10 U	0.085 U	0.084 U	0.089 U	0.090 U				
Arodor-1248	0.10 U	0.026 J	0.064 U	0.089 U	0.090 U				
Arodor-1254	0.20 U	0.170 LI	0.170 U	0.90 U	0.180 U				
Aroclor-1260	0.20 U	0.1 <u>7</u> 0 U	0.170 U	0.90 U	0.180 U				
Sample Number	TC01-01	TC01-02	TC02-01	TC02-02	TC03-01	TC0302	TC0401	TCO402	TC05-01
Units	mg/kg	ug/l	mg/kg	ug/l	mg/kg	ug/l	mg/kg	ug/l	mg/kg
Aroclor-1016	0.560 U	0.52 U	0.25O U	0.58 U	0.270 U	0.56 U	0.230 U	0.58 U	0.480 U
Arocior-1221	0.560 U	0.52 U	0.25Q U	0.58 U	0.270 U	0.58 U	0.230 U	0.58 U	0.480 U
Aroclor-1232	0.560 U	0.52 U	0.25O U	0.58 U	0.270 U	0.58 U	0.230 U	0.58 U	0.480 U
Aroclor-1242	0.580 U	0.52 U	0.25O U	0.58 U	0.270 U	0.58 U	0.230 U	0.58 U	0.480 U
Asocior-1248	0.560 U	0.52 U	0.25O U	0.58 U	0.270 U	0.56 U	0.230 U	0.58 U	0.480 U
Aroclot - 1254	1.10 U	1.0 U	0.510 U	1.2 U	0.540 U	1.1 U	0.460 U	1.2 U	0.960 U
Arodor-1260	1.10 U	1.0 U	0.510 U	1.2 U	0.540 U	1. <u>1 U</u>	_ 0.460 U	1.2 U_	0.960 U
Sample Number	EB01-10	EB02-10	EB03-10	EB04+20	EB05-10	SE0531			
Unite	ug/l	rā\	ug/l	ug/l	ug/l	mg/kg	\$982998.214 * S	San	1844 - Edward
Aroclor-1016	0.59 U	0.57 U	0.50 U	0.50 U	0.50 U	0.94 U			
Aracior-1221	0.59 U	0.57 U	0.50 LJ	0.50 U	0.50 U	0.94 U			• *
Aroclor-1232	0.59 U	0.57 U	0.50 U	0.50 U	0.50 U	0.94 U			
Aroclor-1242	0.59 U	0,57 U	0.50 U	0.50 U	0.50 U	0.94 U			•
Arocior-1248	0.59 L/	0.57 U	0.50 U	0.50 U	1.3	0.94 U			
Aroclor-1254	1.2 U	1.1 U	1.0 U	1.0 U	1.0 U	1.90 U			
Aroclor-1260	12U	1.1 U	1.0 U	1.0.U	1.0 U	1.90 U		_	_

CLIENT : ENVIRONMENTAL ASSESSMENT

ASSESSMENT TOTAL DEPTH : 2.90

SITE NAME : GLEASON WORKS

LOGGER : SCOTT HUBBARD/WESTON
DRILLING COMPANY : EMPIRE SOILS INVESTIGATIONS

WELL ID : TB-01 DRILLING COMPANY : EMPIRE SOILS IN NORTHING : -94.7500 estimated DRILLING RIG : TRIPOD/CATHEAD

EASTING: 55.0000 estimated DATE STARTED: 07/09/92 ELEVATION: 100.000 estimated DATE COMPLETED: 07/09/92

ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
			100	SAND, SM SILT, IT GRAVEL	DK GRAYISHBROWN	SFT	MST	2000 2000 2000 2000 2000 2000 2000 200		Trace clay from 1.0-1.5 feet BGS (<5%), staining (black) noted in spoon.
99	- 1									
98	2		50	Sand, sm SILY, It GRAVEL	DK GRAY BROWN	LSE	MA	3000 1000		1.5 inch rock fragment in head of spoon. Bedrock at 2.9 feet BGS
97	3									
96	4									
95	5									
94	6		1]				
93	7									
92	8		ı							
	<u> </u>		ı							
91	,									
	10	(0.0							<u>.</u>	Page: 1 of 1

CLIENT : ENVIRONMENTAL ASSESSMENT

SITE NAME : GLEASON WORKS

WELL ID : TB-02

MORTHING : -87.0900 estimated

EASTING: 31.0000 estimated ELEVATION: 100.000 estimated

TOTAL DEPTH : 2.90

LOGGER : SCOTT HUBBARD/WESTON

DRILLING COMPANY : EMPIRE SOILS INVESTIGATIONS

DRILLING RIG : TRIPOD/CATHEAD

DATE STARTED : 07/09/92
DATE COMPLETED : 07/09/92

ELEVATION	DEPTH	HATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
99 -	- - - 1	165 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	60	SAND and SILT, sm GRAVEL	BROMN	SFT	MST	30		
98 -	- 2		25	SAND and SILT, Lt GRAVEL	DK GRYSH BROWN	SFT	WET	3000 1000		
97 -	3			,		 				
96 -	- 4						(
95 -	5		Ī)) ,				
94 -	6									
93 -	7									
92 1	8									
91 ⁻	9									
90 -	10									Page: 1 of 1

ENVIRONMENTAL ASSESSMENT CLIENT

SITE NAME : GLEASON WORKS

WELL ID TB-03

-119.5900 estimated NORTHING

37.6700 estimated EASTING ELEVATION :

TOTAL DEPTH : 2.40

: SCOTT HUBBARD/WESTON LOGGER

DRILLING COMPANY : EMPIRE SOILS INVESTIGATIONS

: TRIPOD/CATHEAD DRILLING RIG

: 07/10/92 DATE STARTED

DATE COMPLETED : 07/10/92 100.000 estimated COMMENTS COLOR CLASSIFICATION

ELEVA	DEPTH	MATER	REC	021120112011		STREN	HOIST	BLOW	FI Instr Rea	
99 -	-		50	SAND, SM SILT, It CLAY, tr GRAVEL	VERY DARK GREY	SFT	MST	283X		
98 -	- 2		15	SAND, sm SILY, It GRAVEL	DK BROWN	SFT	WET	100		Water entry at 2.3 BGS
97 -	- 3									
96 -	4									ı.
95 -	- 5									
94 -	- 6									
93 -	7									
92 -	- 8									
91 -	9									
90 -	- 10									

CLIENT : ENVIRONMENTAL ASSESSMENT

SITE NAME : GLEASON WORKS

WELL ID : TB-04

NORTHING : -146.5900 estimated

EASTING: 33.5000 estimated ELEVATION: 100.000 estimated

TOTAL DEPTH : 2.70

LOGGER : SCOTT HUBBARD/WESTON

DRILLING COMPANY : EMPIRE SOILS INVESTIGATIONS

DRILLING RIG : TRIPOD/CATHEAD

DATE STARTED : 07/10/92
DATE COMPLETED : 07/10/92

										•,
ELEVATION	рертн	HATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	HOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
	ļ.		75	SAND, SM SILT, It GRAVEL, tr CLAY	BROUN	SFT	DMP	7008		
99 -	-							,	5 5 5 5	
98 1	- 2		15	SAND, sm GRAVEL, sm SILT	BROWN	SFT	WET	37 100 0		Bedrock at 2.7 feet BGS. Water entry at 2.3 BGS. One inch of water noted in borehole.
97 -	- 3			,						
96 - -	- 4 -)					
95 -	r 5 -									
94 -	- 6 -				}					
93 -	7	j								
92 -	- 8			,						
91 -	- 9 -									
90 -	- 10									

CLIENT : ENVIRONMENTAL ASSESSMENT

SITE NAME : GLEASON WORKS LOGGER : S

WELL ID : TB-05

MORTHING : -137.9200 estimated

EASTING : 60.5000 estimated ELEVATION : 100.000 estimated

TOTAL DEPTH : 2.90

LOGGER : SCOTT HUBBARD/WESTON

DRILLING COMPANY : EMPIRE SOILS INVESTIGATIONS

DRILLING RIG : TRIPOD/CATHEAD

DATE STARTED : 07/10/92
DATE COMPLETED : 07/10/92

ELEVATION	TH.	HATERIAL	RECOVERY	CLASSIFICATION	COLOR	STRENGTH	HOISTURE	BLOW COUNT	FIELD Instrument Reading	COMMENTS
ELE	DEPTH	MAT	E .			STI			SH	
99 -	-		40	SAND, sm SILT, sm GRAVEL	DK GRAYISHBROWN	SFT	MST	145 335 49		
-	-									
98 -	2		25	SAND, SM SILT, LE CLAY, LE GRAVEL	DK GRAYISHBROWN	SFT	WET	NG00		
97 -	- 3									
96 - 2	- 4									
95 -	- 5 -									
94 -	- 6					li				
93 -	- 7 -									
92 -	- 8 -									
91 -	- 9									
90 -	- 10									

ENVIRONMENTAL ASSESSMENT CLIENT

GLEASON WORKS SITE NAME :

TB-06 WELL ID

NORTHING : -105.4200 estimated

EASTING : 54.6700 estimated

: 3.00 TOTAL DEPTH

: SCOTT HUBBARD/WESTON LOGGER

DRILLING COMPANY : EMPIRE SOILS INVESTIGATIONS

: TRIPOD/CATHEAD DRILLING RIG

: 07/10/92 DATE STARTED

: 07/10/92 DATE COMPLETED 100.000 estimated ELEVATION :

										•
ELEVATION	DEPTH	HATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	HOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
99	- 1		25	SAND and SILT, It GRAVEL	VRY DK GRBROWN	LSE	WET	NANO.		
98 -	- 2		15	SAND and silt, little gravel.	DK YELLOWBROWN	LSE	WET	3500 1500		Bedrock at 3.0 feet BGS.
97 -	- 3			,						
96 -	4									
95 -	- 5									
94 -										
92 -	-									
91 -	- 9									
90 -	- 10		_							

ENVIRONMENTAL ASSESSMENT CLIENT

: 12.60 TOTAL DEPTH : SCOTT HUBBARD/WESTON LOGGER

SITE NAME : GLEASON WORKS

DRILLING COMPANY : EMPIRE SOILS TB-07 WELL ID : SKID MOUNTED RIG DRILLING RIG NORTHING : 173.1300 estimated

: 07/13/92 375.4700 estimated DATE STARTED EASTING DATE COMPLETED : 07/13/92 102.670 estimated ELEVATION :

							_	-	-	
ELEVATION	DEPTH	HATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	HOISTURE	INNOO MOTE	FIELD INSTRUMENT READING	COMMENTS
	-	00 (00) 00 00 (00)	100	SAND, SM GRAVEL, It SILT	BLACK	LSE	DMP	150550		Coal fragments noted in sample. Sample stained black. We odor.
101 -	- 1	0.000 000 0								
100 -	- 2	o con los sos Boldis Baro	25	SAND, sm GRAVEL, It SILT	BLACK	LSE	DMP	MANAM		Photo 20. Same ms 0-2 feet.
99 -	- 3	00,000,000,000,000,000,000,000,000,000		•						
98 -	4	00000 00000 100000 100000	60	SILT and CLAY, tr GRAVEL	OLIVE	FRM	DMP	MUNN		
97 -	- - 5							3		
96 -	- 6	00000000000000000000000000000000000000	50	THY and PLAY IP SAND	LT CLIVE BROWN	FRM	DMP	4		Increasing sand as sample
		00000000000000000000000000000000000000	J 0	SILT and CLAY, (t SAND, tr GRAVEL	El octte prom			5223	,	Increasing sand as sample goes deeper.
95 -	7	20000000000000000000000000000000000000								
94 -	- 8		75	SILT and CLAY, tr SAND SAND, sm GRAVEL, It SILT	DK OLIVE BROWN DK OLIVE BROWN	FRM	DMP DMP	19994		Black staining noted. May be fill. Red coloration noted, possible brick. Photo 23
93 -	- 9					 				
92 1	- 10	APPRIORIS OF THE PROPERTY OF T	50	SAND, SM SILT, LE GRAVEL	DK GRAYISHBROLM	SFT	SAT	127		Decreasing sand with depth, trace clay at 10.7 to 11.0 feet. Water entry at 10.3 feet.

CLIENT ENVIRONMENTAL ASSESSMENT

: SCOTT HUBBARD/WESTON LOGGER SITE KAME : GLEASON WORKS

TOTAL DEPTH

: 12.60

TB-07 WELL ID :

DRILLING COMPANY : EMPIRE SOILS : SKID MOUNTED RIG 173.1300 estimated DRILLING RIG NORTHING :

DATE STARTED : 07/13/92 375.4700 estimated EASTING : : 07/13/92 DATE COMPLETED 102.670 estimated ELEVATION :

										4.
BLEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD Instrument Reading	COMMENTS
				SAND, SM SILT, It GRAVEL	DK GRAYISHBROWN	SFT	SAT			Decreasing sand with depth, trace clay at 10.7
91 -	- 11 -								13. 15.	Decreasing sand with depth, trace clay at 10.7 to 11.0 feet. Water entry at 10.3 feet.
90 -	- 12		5	SAND, SER SILT, SER GRAVEL	GRAY	LSE	SAT	1900 1000		Bedrock at 12.6. May not be enough sample for analysis. No library sample.
89 -	- 13			,						
88 -	- 14									
87	15									
86	- 16									
85 -	- 17									
84 -	- 18 -									
83 -	- 19 -									
82 -	20									Page: 2 of 2

CLIENT : ENVIRONMENTAL ASSESSMENT

SITE MANE : GLEASON WORKS

WELL ID : TB-08

NORTHING : -6.7200 estimated

EASTING : 184.6500 estimated ELEVATION : 104.270 estimated

TOTAL DEPTH : 13.90

LOGGER : SCOTT HUBBARD/WESTON

DRILLING COMPANY : EMIRE SOILS INVESTIGATIONS

DRILLING RIG : SKID MOUNTED RIG

DATE STARTED : 07/14/92
DATE COMPLETED : 07/14/92

									-	<u> </u>
ELEVATION	DEPTH	MATERIAL	R RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	PIELD Instrument Reading	COMMENTS
			50	SAND, sm GRAVEL, sm SILT	BLACK	LSE	DMP	55 100 0		Petroleum hydrocarbon odor. Refuse at 1 foot. Move rig west 10 feet and auger to 2 feet.
103	- 1 -									
102 -	- 2 -		50	SAND, sm GRAVEL, sm SILT	BLACK	LSE	MST	120 12		Heavily stained and petroleum odor.
101 -	- 3			•						
100 -	- 4 r		25	SAND SM SILT, SM GRAVEL,	BLACK	LSE	MST	11 8 10 10		Staining, Petroleum hydrocarbon odor, Not enough recovery for library sample.
99 -	- 5 -									
98 -	6		50	SILT, SM CLAY, SM SAND	GRAYISH BROWN	SFT	MST	6 11 8		
97 -	. 7									
96 -	- 8		75	SILY SM CLAY, SM SAND, It GRAVEL	GRAY	SFT	MST	781123		
95 -	- - 9							2	5	
94	- 10		50	SAND, It GRAVEL, It SILY	YELLOWISH BROWN	LSE	MST	3555		

ENVIRONMENTAL ASSESSMENT CLIENT

: SCOTT HUBBARD/WESTON GLEASON WORKS LOGGER SITE NAME : DRILLING COMPANY : EMIRE SOILS INVESTIGATIONS

TOTAL DEPTH

: 13.90

TB-08 WELL ID

: SKID MOUNTED RIG DRILLING RIG -6.7200 estimated NORTHING :

: 07/14/92 DATE STARTED 184.6500 estimated **EASTING** : 07/14/92 DATE COMPLETED 104.270 estimated ELEVATION :

										
ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
93 -	- 11			SAND, It GRAVEL, It SILT	YELLOWISH BROWN	LSE	MST			
92 -	- 12		50	SAND, SM GRAVEL	GRAY BROWN	LSE	SAT	35		Groundwater Sample
91 -	- 13	0.00 000000000000000000000000000000000		,			SAT	100		Groundwater Sample cpllected immediately above bedrock using hydropunch. BR = 13.9'BGS
90 -	- 14	0000								
89 -	- 15)			
88 -	- 16									
87 -	- - 17									
86	- 18									
85 -	- 19 -									
84 -	- 20									

CLIENT ENVIRONMENTAL ASSESSMENT TOTAL DEPTH

: 14.00 : SCOTT HUBBARD/WESTON

SITE NAME : WELL ID :

GLEASON WORKS

DRILLING COMPANY : EMPIRE SOILS INVESTIGATIONS

NORTHING :

TB-09

DRILLING RIG

LOGGER

32.9300 estimated

: SKID MOUNTED RIG

: 07/14/92

EASTING	:	116.9100 estimated	DATE STAKTED	•	0//14/32
ELEVATION	:	104.230 estimated	DATE COMPLETED	:	07/14/92

										
ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
103 -	- 1	Herbershrift Rofskeestrich	50	SAND, SEE SILT, SEE GRAVEL	YELLOW	LSE	DMP	007N		
102 -	- ~ z		50	SAND, sm GRAVEL, sm SILT	YELLOW	LSE	DMP	4159		
101 -	3			•						
100 -	4		75	SILT and SAND, It GRAVEL	BLACK	SFT	DMP	5578		2 inch sand zone at 5.0- 5.2 feet. Heavy staining follows sand bed.
99 -	5									
98 -	6	2 35304 39304 5034 39304 5034 3034 303 5035 3034 3036 7 3037 3037 5037 3037 3037 5037 3037 5037 3037 5037 3037 5037 3037 5037 3037 5037 3037 3037 5037 3037 5037 3037 5037 3037 5037 3037 5037 3037 5037 3037 3037 5037 3037 3037 5037 3037 3037 5037 3037 3037 5037 3037 5037 3037 3037 5037 3037 3037 5037 3037 3037 3037 5037 3037 3037 5037 3037 3037 3037 3037 5037 3037 3037 3037 3037 3037 3037 3037	75	SILT, sm SAND, sm CLAY	YELLOWISH BROWN	FRM	DMP	CORCILI		3 inch sand bed at 6.2- 6.5 feet stained black.
97 -	7	CONTROL 200 CONTROL 200 CONTRO								
96 -	8		50	SAND and SILT, It GRAVEL	YELLOWISH BROWN	SFT	DMP	- China		Stained from 8.8 -9.0 feet.
95 -	ĵ - 9									
94 -	- 10		50	CLAY and SILT, sa GRAVEL	BROWN	FRM	DMP	1930		

CLIENT : ENVIRONMENTAL ASSESSMENT

SITE NAME : GLEASON WORKS

WELL ID : TB-09

NORTHING : 32.9300 estimated

EASTING: 116.9100 estimated ELEVATION: 104.230 estimated

TOTAL DEPTH : 14.00

LOGGER : SCOTT HUBBARD/WESTON

DRILLING COMPANY : EMPIRE SOILS INVESTIGATIONS

DRILLING RIG : SKID MOUNTED RIG

DATE STARTED : 07/14/92
DATE COMPLETED : 07/14/92

ELEVATION	DEPTH	KATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	HOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				CLAY and SILT, sm GRAVEL	BROWN	FRM	DMP			,
93 -	- 11									
92 -	12		50	SAND, sm GRAVEL, sm SILT	GRAYISH BROWN	LSE	SAT	29 29 20 20		Bedrock at 14 feet below ground surfece, Water entry at 12.0 feet below ground surface.
91 -	13					ļ ļ			u I	
90 1	14									
89 -	15					1				
88 -	16		i I						9	
87 -	17									
86 -	18									
8 5 -	19									
84 -	20		l					_		

SITE NAME :

WELL ID

CLIENT ENVIRONMENTAL ASSESSMENT

GLEASON WORKS

TB-10

5.9300 estimated NORTHING : 56.6900 estimated

EASTING ELEVATION : 104.710 estimated

: 14.70 TOTAL DEPTH

: SCOTT HUBBARD/WESTON LOGGER

DRILLING COMPANY : EMPIRE SOILS INVESTIGATIONS

: SKID HOUNTED RIG DRILLING RIG

: 07/14/92 DATE STARTED

: 07/14/92 DATE COMPLETED

							-			
ELEVATION	нтаяо	MATERIAL	& RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
		104012		SAND, SM GRAVEL, SM SILT	DK YELLOW BROWN	LSE	DMP	0007		Staining from 0-0.7 feet below ground surface.
103	- - 1 -							11		
102	- 2		50	SAND, Sm SILY, Sm GRAVEL	GRAY	LSE	DMP	88-05		Staining at 2.5-3.0 feet.
101 -	- 3			•						
100 -	4		75	SILT SM GRAVEL, Lt SAND,	GRAY	SFT	DMP	6565		Staining.
99 -	- 5									
98 -	6		25	SILT SM GRAVEL, SM SAND,	BLACK	LSE	DMP	4000		Staining. Not enough recovery for library sample.
97	7									
96 - -	- 8		50	CLAY and SILY, sm GRAVEL	GRAY	FRM	DNP	6 11 15		Sand from 8.8-9.0 feet.
95	-9									
94 -	10	y.,7a. 	50	CLAY, SM STLY	GRAY BROWN	FRM	DMP	15 18 25		

WELL ID

ENVIRONMENTAL ASSESSMENT CLIENT

SITE NAME :

GLEASON WORKS

TB-10

MORTHING : 5.9300 estimated 56.6900 estimated EASTING

104.710 estimated ELEVATION :

: 14.70 TOTAL DEPTH

: SCOTT HUBBARD/WESTON LOGGER DRILLING COMPANT : EMPIRE SOILS INVESTIGATIONS

: SKID MOUNTED RIG DRILLING RIG

: 07/14/92 DATE STARTED DATE COMPLETED : 07/14/92

ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				CLAY, sm SILT	GRAY BROWN	FRM	DMP			
4	-			SAND and GRAVEL	DK BROWN	LSE	MST			
				SILT, SM SAND	DK YELLOW BROWN	SFT	MST			
93 -	- 11 -									
92 -	12	0.70 0.00 0.70 0.00	50	SAND and GRAVEL		SFT	SAT	160		Water entry at 12.0 feet below ground surface.
91 -	•	0,00,00,00,00,00,00,00,00,00,00,00,00,0		,		l				
	- 14 -	40 56 66 66 66 66 66 66 66 66 66 66 66 66	50	SAND and GRAVEL, It SILY	GRAY	LSE	SAT	35 100 0		Bedrock at 14.7 feet.
89 -	- 15 -									
88 -	- 16 -									
87 -	- 17 -					1				
86 -	- 18 -									
85 -	- 19									
84 -	- 20									

CLIENT : ENVIRONMENTAL ASSESSMENT

SITE NAME : GLEASON WORKS

WELL ID : TB-11

NORTHING : 41.5400 estimated

EASTING: -40.4700 estimated ELEVATION: 102.500 estimated

TOTAL DEPTH : 10.90

LOGGER : SCOTT HUBBARD/WESTON

ORILLING COMPANY : EMPIRE SOILS INVESTIGATIONS

DRILLING RIG : SKID MOUNTED RIG

DATE STARTED : 07/13/92

DATE COMPLETED : 07/14/92

ELEVATION	DEPTH	HATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	HOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
			75	SAND, sm SILT, Lt GRAVEL	BLACK	LSE	DMP	evice		Drilled through 6 inch concrete. 0 to 1 foot black staining. 1 to 1.2 feet oxidation.
101 -	1									
100 -	- 2	00.000	50	SAND, sm GRAVEL, Lt SILT	BLACK	LSE		16		Black staining noted in spoon.
99 -	3	00,000,000,000 00,000,000,000		,						
98 -	4		50	CLAY and SILT, tr GRAVEL	DK GRAY BROWN	FRM	MST	33666		Sand bed from 4.5 to 4.7 feet BGS.
97	5									
96	6	# # # # # # # # # # # # # # # # # # #		SAND, It GRAVEL, It SILT	DK YELLOW BROWN YELLOWISH BROWN	SFT FRM	SAT SMP	5000		Water entry at 6 to 6.5 feet BGS. Possible confining or semi- confining unit.
95 -	7	\$6.000.000 \$6.000.000 \$6.000.000 \$6.000.000 \$6.000.000 \$6.000.000 \$6.000.000 \$6.000.000								
94 -	8		50	SAND and SILT	DK YELLOW BROWN		SAT SAT	7 160 22		Possible oxidation.
93 -	9									
92 -	10			SAND				27 100 0		Bedrock at 10.9 feet BGS. Spoon Wet. No Recovery

CLIENT : ENVIRONMENTAL ASSESSMENT

SITE MANE : GLEASON WORKS

WELL ID : TB-11

NORTHING : 41.5400 estimated

EASTING : -40.4700 estimated ELEVATION : 102.500 estimated

TOTAL DEPTH : 10.90

LOGGER : SCOTT HUBBARD/WESTON

DRILLING COMPANY : EMPIRE SOILS INVESTIGATIONS

DRILLING RIG : SKID MOUNTED RIG

DATE STARTED : 07/13/92
DATE COMPLETED : 07/14/92

ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	HOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
				SAND		3		1		Bedrock at 10.9 feet BGS. Spoon Wet. No Recovery
91 -	- 11 -									
90 -	- 12								Ç.	
89 -	13			,						
88 -	- 14									
87	- 15									
86 -	- 16 -									
85 -	- 17									
84 -	18									
83 -	19									
82 -	- 20									

CLIENT : ENVIRONMENTAL ASSESSMENT

SITE NAME : GLEASON WORKS

WELL ID : TB-12

NORTHING : 188.0800 estimated

EASTING : 102.9200 estimated ELEVATION : 101.840 estimated

TOTAL DEPTH : 12.90

LOGGER : SCOTT HUBBARD/WESTON

DRILLING COMPANY : EMPIRE SOILS INVESTIGATIONS

DRILLING RIG : SKID MOUNTED RIG

DATE STARTED : 07/13/92 DATE COMPLETED : 07/13/92

										<u> </u>
ELEVATION	DEPTH	HATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
100 -	1	\$ 000,000,000,000,000,000,000,000,000,00	ぉ	SAND and GRAVEL	BROWN	LSE	DMP	25		0-6 inch asphalt, 6-8 inch white/gray staining, 8-12 inch sand/fill.
99 -	2		50	GRAVEL, Sm SAND, Sm SILT	YELLOWISH RED	LSE	DMP	125005		Staining photo number 4.
98 -										
97	+	10000000000000000000000000000000000000	50	GRAVEL, Sm SAND	GRAY	LSE	DMP	25 30 100		4.0-4.5 feet mixture of fragmented concrete and sand, 4.5-5.0 feet fragmented masonry brick.
95	6	00,000,000,000,000,000,000,000,000,000	25	SAND, SM GRAVEL, 18 SILT	DK YELLOWISH BR	LSE	DMP	15000		
94	7	0,000,000,000,000,000,000,000,000,000,								
93	8			SAND, SM GRAVEL, It SILT					55 155 155 155 155	No Recovery
92 -	9	0.0000000000000000000000000000000000000	75	SAND, SM SILY, It GRAVEL	GRAYISH BROWN	SFT	SAT	25		Water entry at 10.0 feet below ground surface.
								30 25		

ENVIRONMENTAL ASSESSMENT CLIENT

TOTAL DEPTH

: 12.90

SITE NAME :

GLEASON WORKS

LOGGER

: SCOTT HUBBARD/WESTON

WELL ID

TB-12

DRILLING COMPANY : EMPIRE SOILS INVESTIGATIONS

NORTHING :

188.0800 estimated

DRILLING RIG

: SKID MOUNTED RIG

EASTING

102.9200 estimated

DATE STARTED

: 07/13/92

101.840 estimated ELEVATION :

: 07/13/92 DATE COMPLETED

BLEVATION	DEPTH	HATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	HOISTURE	BLOW COUNT	FIBLD Instrument Reading	COMMENTS
				SAND, SM SILT, LE GRAVEL	GRAYISH BROWN	SFT	SAT			Water entry at 10.0 feet below ground surface.
90 -	11									
89 -	12		25	SAND, It GRAVEL, It SILT	DK GRAY BROWN	SFT	SAT	4000 1000		Bedrock at 12.9 feet BGS.
88 -	13			,						
87	14]					
86	15									
85	16									
84 -	17									
83 -	18									
82 -	19									
81	20							l		Page 1 2 0f 2

CLIENT : ENVIRONMENTAL ASSESSMENT

SITE NAME : GLEASON WORKS

WELL ID : TB-13

MORTHING: 151.9700 estimated

EASTING: -73.9200 estimated ELEVATION: 101.390 estimated TOTAL DEPTH : 13.60

LOGGER : SCOTT HUBBARD/WESTON

DRILLING COMPANY : EMPIRE SOILS INVESTIGATIONS
DRILLING RIG : SKID MOUNTED RIG

DRILLING RIG : SKID MOUNTED

DATE STARTED : 07/13/00

DATE COMPLETED : 07/14/92

						-		_		
BLEVATION	ОЕРТН	HATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	MOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
100 -	- 1	6 50 50 50 50 50 50 50 50 50 50 50 50 50	5	GRAVEL, sm SAND		LSE	DMP	NN		Not enough recovery for sample. Vegetative matter noted in sample (wood etc).
99 -	- 2		10	SAND SM STLY, It CLAY, tr GRAVEL	YELLOW BROWN	FRM	DMP	4000		No library sample collected. Plastic noted in spoon.
98 -	- 3			,						
97 -	4		75	SAND, SM SILT	VY DK YEL BRN	SFT	DMP	7 10 13		Photo 3.
96	5			SAND	DK YELLOW BROWN	SHP	DMP	77 19		
95 -	6		50	SAND	BROWN	LSE	DMP'	73		Interbedding from 6.2 to 6.3 feet. Iron-oxide staining 1/2 inch width, ironoxide also 7 feet 8GS
94 -	7								i.	
93 -	8		50	SAND, SM SILT, IT GRAVEL	DK GRAY BROWN	FRM	WET	80N7		Interbedding was exidized . Possible iron-exide.
92 -	9									
91 -	10		50	GRAVEL, SM SAND, LE SILT,	DK YELLOW BROWN	LSE	SAT	237		Fill like material noted. Contained steel wool, and verious stone fragments. Water entry at 10.0 BGS.

ENVIRONMENTAL ASSESSMENT CLIENT

SITE NAME : GLEASON WORKS

WELL ID : TB-13

MORTHING: 151.9700 estimated

: -73.9200 estimated **EASTING**

ELEVATION : 101.390 estimated

: 13.60 TOTAL DEPTH

: SCOTT HUBBARD/WESTON LOGGER

DRILLING COMPANY : EMPIRE SOILS INVESTIGATIONS

: SKID MOUNTED RIG DRILLING RIG

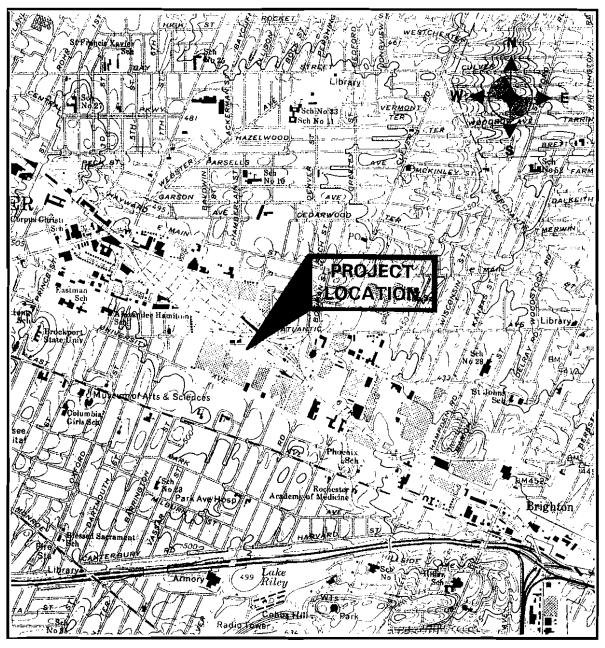
: 07/13/00 DATE STARTED : 07/14/92 DATE COMPLETED

										<u></u>
ELEVATION	DEPTH	MATERIAL	* RECOVERY	CLASSIFICATION	COLOR	STRENGTH	HOISTURE	BLOW COUNT	FIELD INSTRUMENT READING	COMMENTS
90 -	- 11	20 00 00 00 00 00 00 00 00 00 00 00 00 0		GRAVEL, sm SAND, lt SILT, tr CLAY	DK YELLOW BROWN	LSE	SAT			Fill like material noted Contained steel wool, and Various stone fragments. Water entry at 10.0 BGS.
89 -	- 12			Lockport Dolomite Bedrock				10000		Refusal at 12.1 feet BGS. Bedrock Confirmed by 47 Core
88 -	- 13			,						
87 -	- 14									
86 -	- 15 -									
85 -	- 16 _									
84 -	17									
83 -	- 1 8									
82 -	- 19									
81 -	- 20									

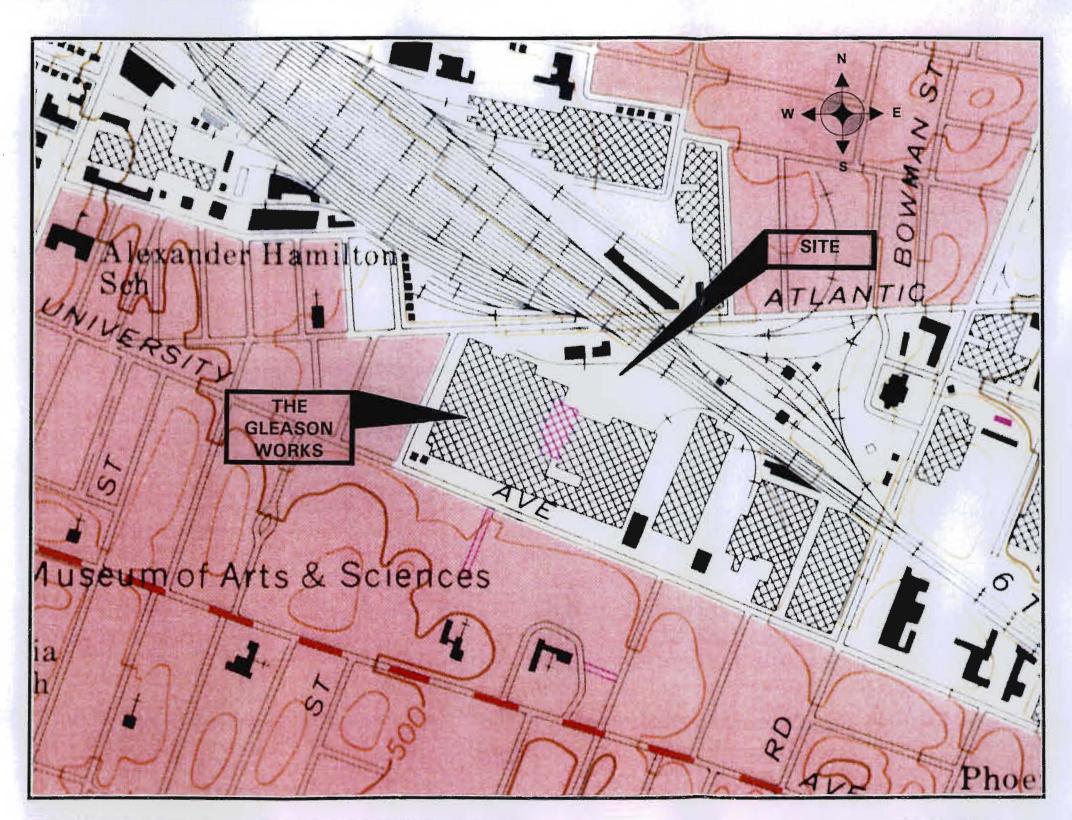
APPENDIX 3 ALLIANCE ENVIRONMENTAL SERVICES, INC. TABLES, FIGURES & DATA

SCALE: 1'' = 2000'

2000 Feet 4000


DRAWN BY	REVISIONS	DATE
BAM		APR. 1996
CHECKED BY		PROJECT NO.
JDY		96010.020
APPROVED BY		CAD FILE NAME
PEN		96010PLM

THE GLEASON WORKS


1000 University Avenue
City of Rochester, Monroe County
New York

PROJECT LOCATION MAP

FIGURE 1

BASE MAP: ROCHESTER EAST, N.Y. USGS 7.5 MINUTE TOPOGRAPHIC QUADRANGLE (1971, PHOTOREVISED 1978)

BASE MAP: ROCHESTER EAST, N.Y. USGS 7.5 MINUTE TOPOGRAPHIC QUADRANGLE (1971, PHOTOREVISED 1978) (ENLARGED 400%)

THE GLEASON WORKS

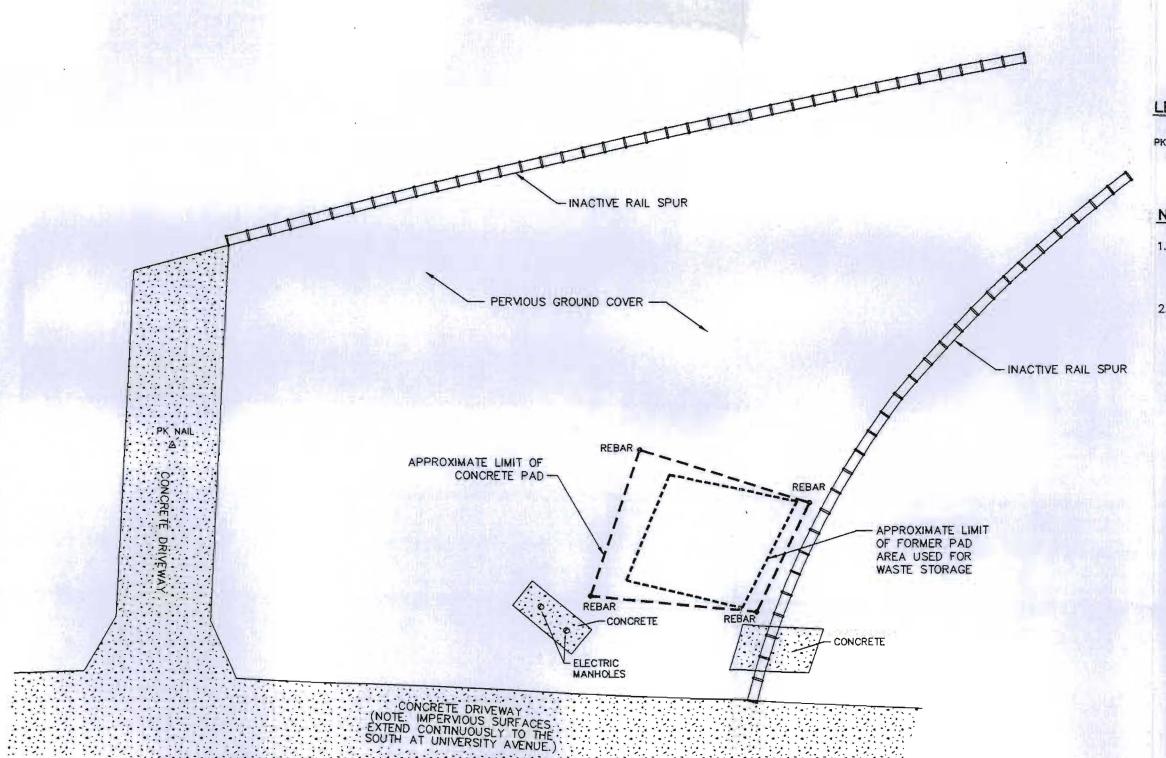
1000 University Avenue
City of Rochester, Monroe County
New York

IMMEDIATE PROJECT AREA MAP

FIGURE 2

0

500


1000

Approximate Scale In Feet

DRAWN BY	REVISIONS	APR. 1996
CHECKED BY		PROJECT NO. 96010.020
APPROVED BY PEN		96010 FIG2

LEGEND:

PK NAIL

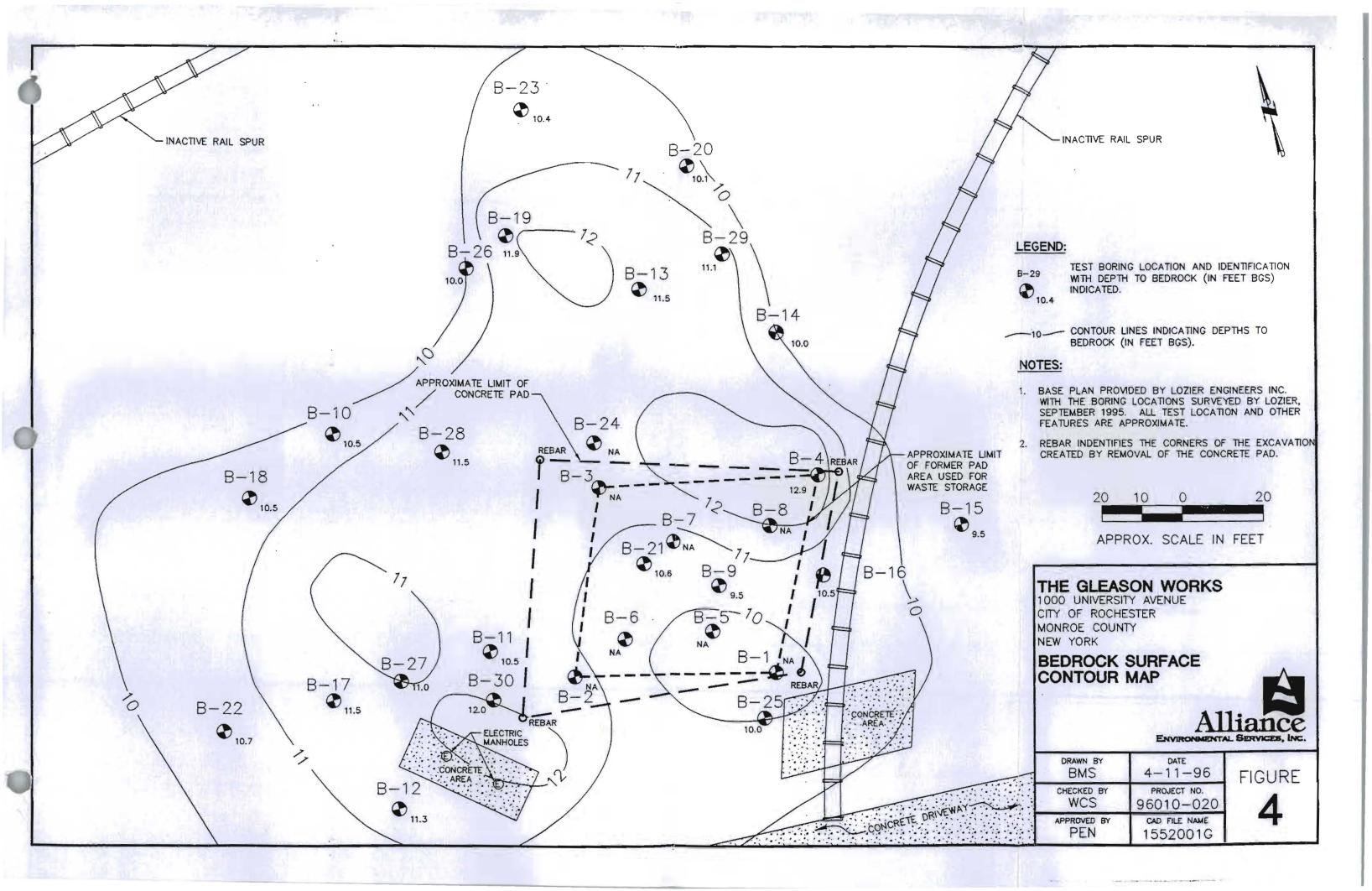
SURVEY BENCHMARK

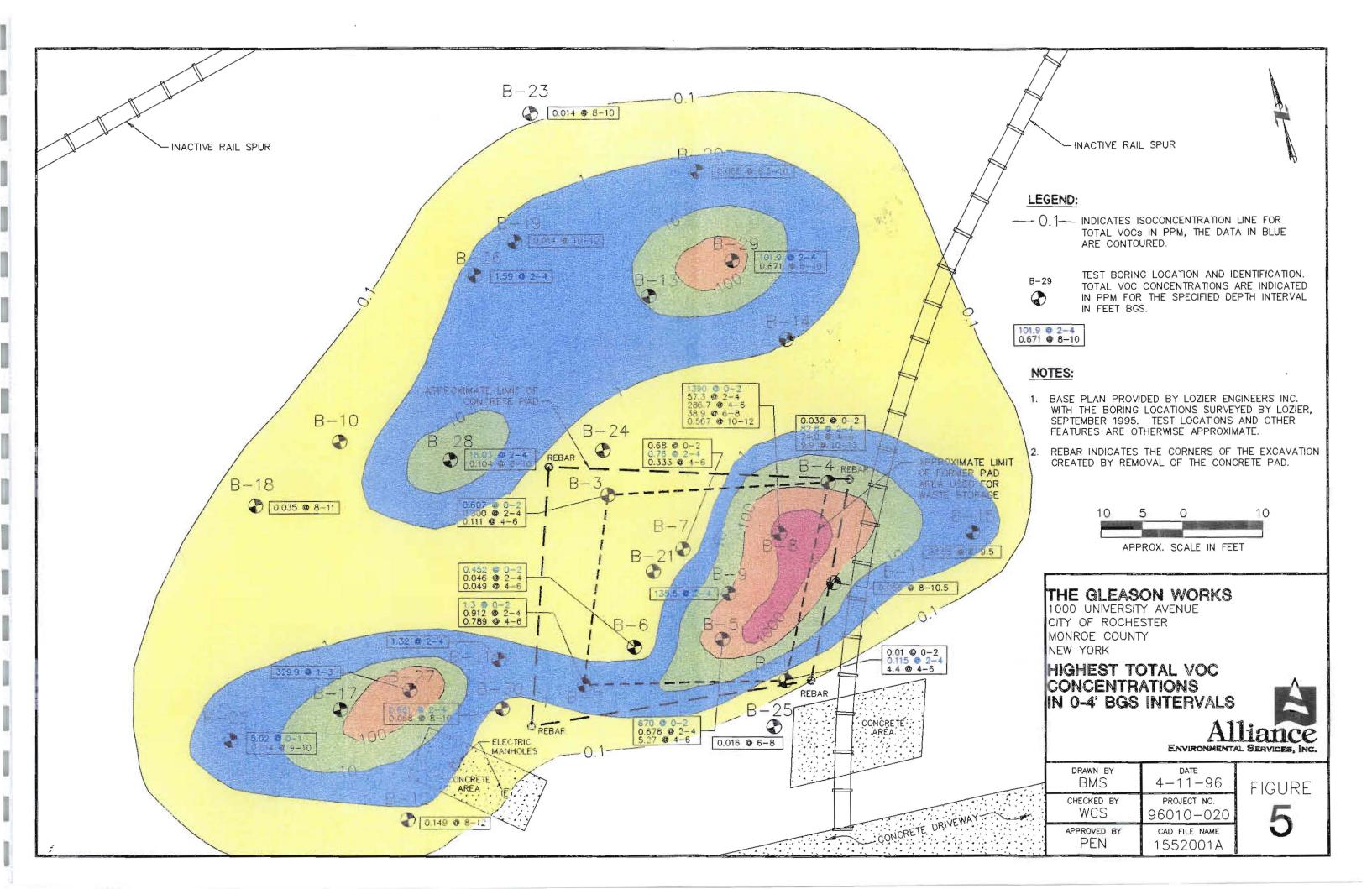
NOTES:

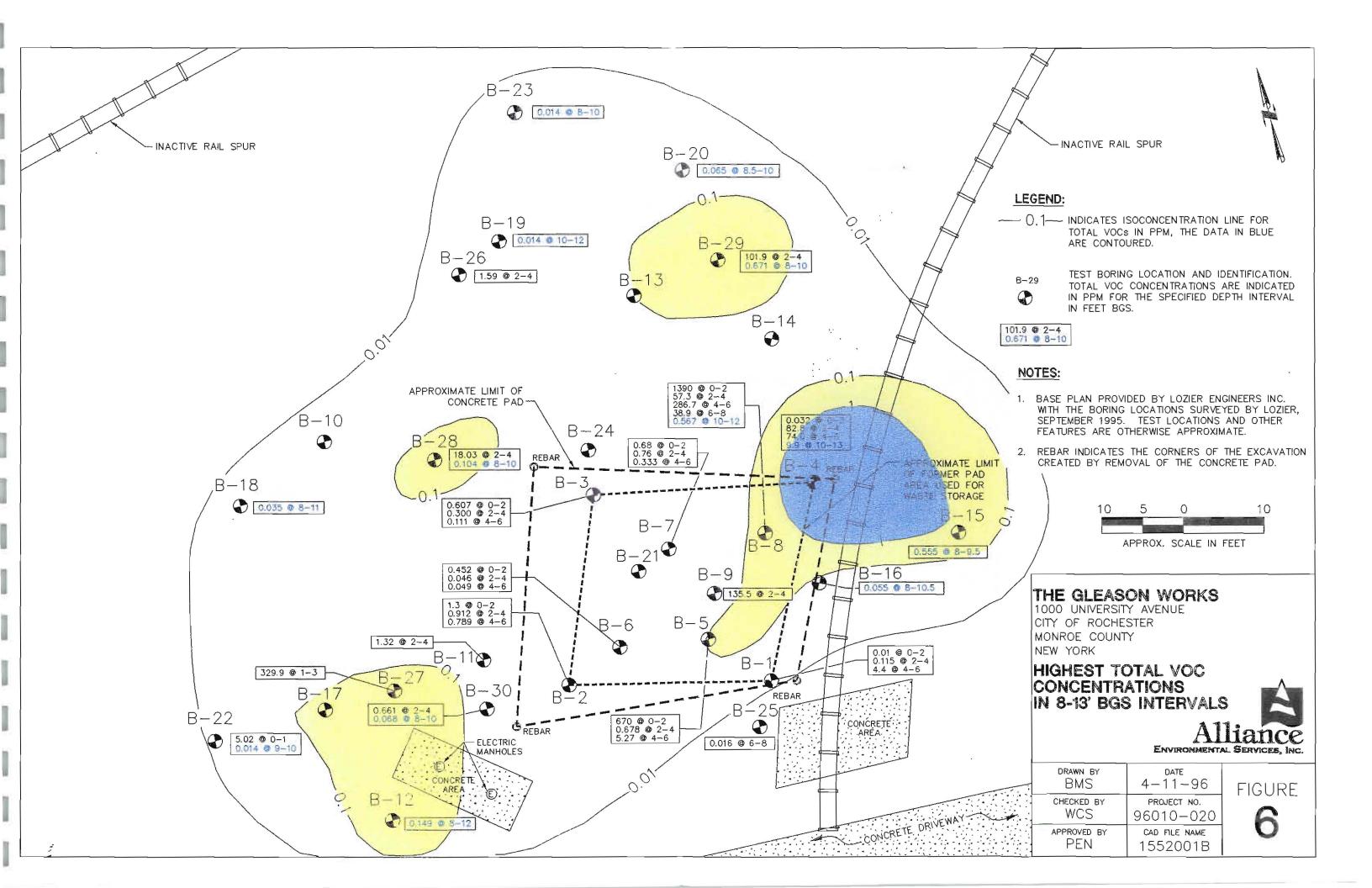
- BASE PLAN PROVIDED BY LOZIER ENGINEERS INC. WITH THE BORING LOCATIONS SURVEYED BY LOZIER, SEPTEMBER 1995. ALL TEST LOCATION AND OTHER FEATURES ARE APPROXIMATE.
- REBAR INDENTIFIES THE CORNERS OF THE EXCAVATION CREATED BY REMOVAL OF THE CONCRETE PAD.

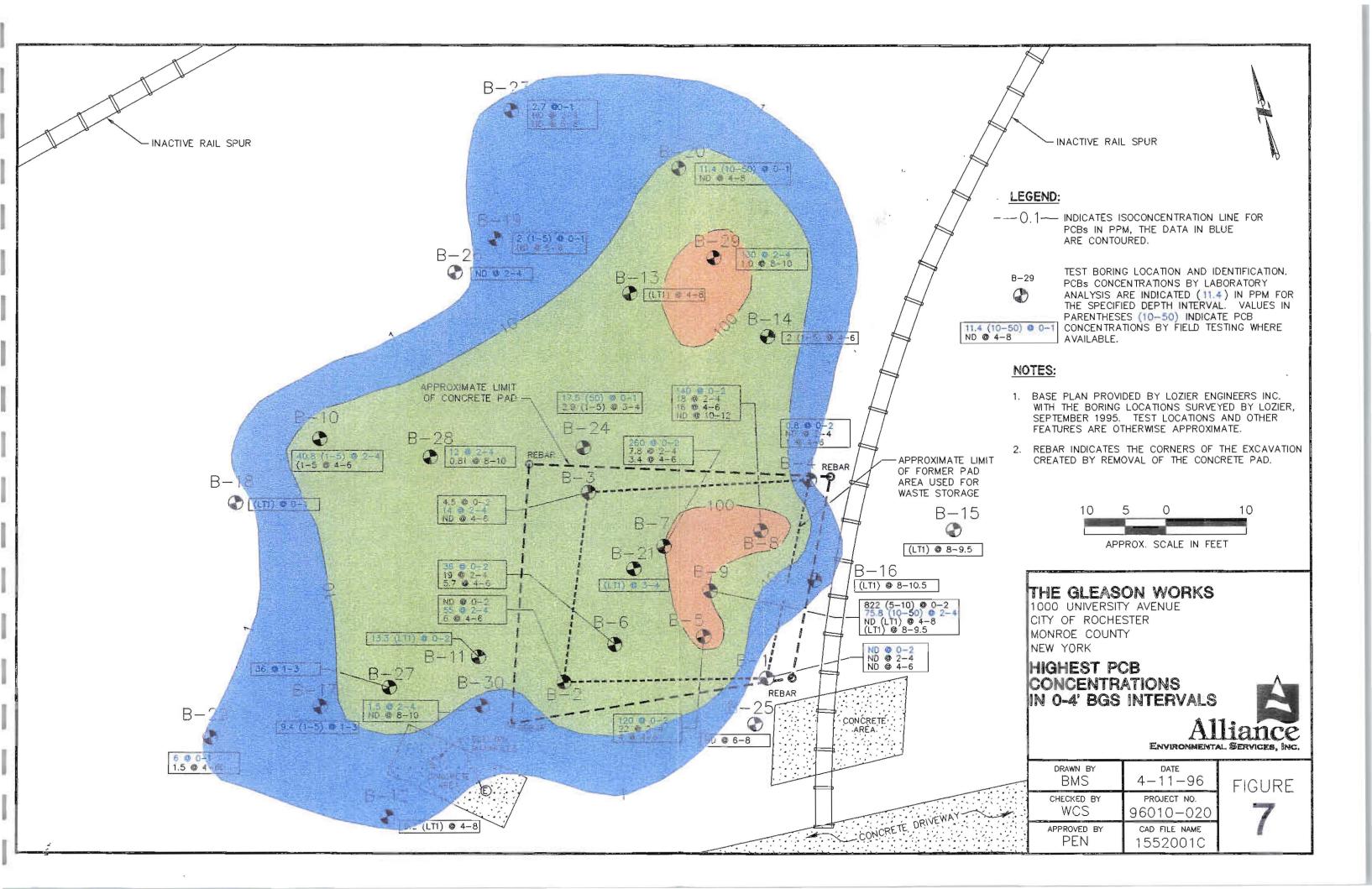
APPROX. SCALE IN FEET

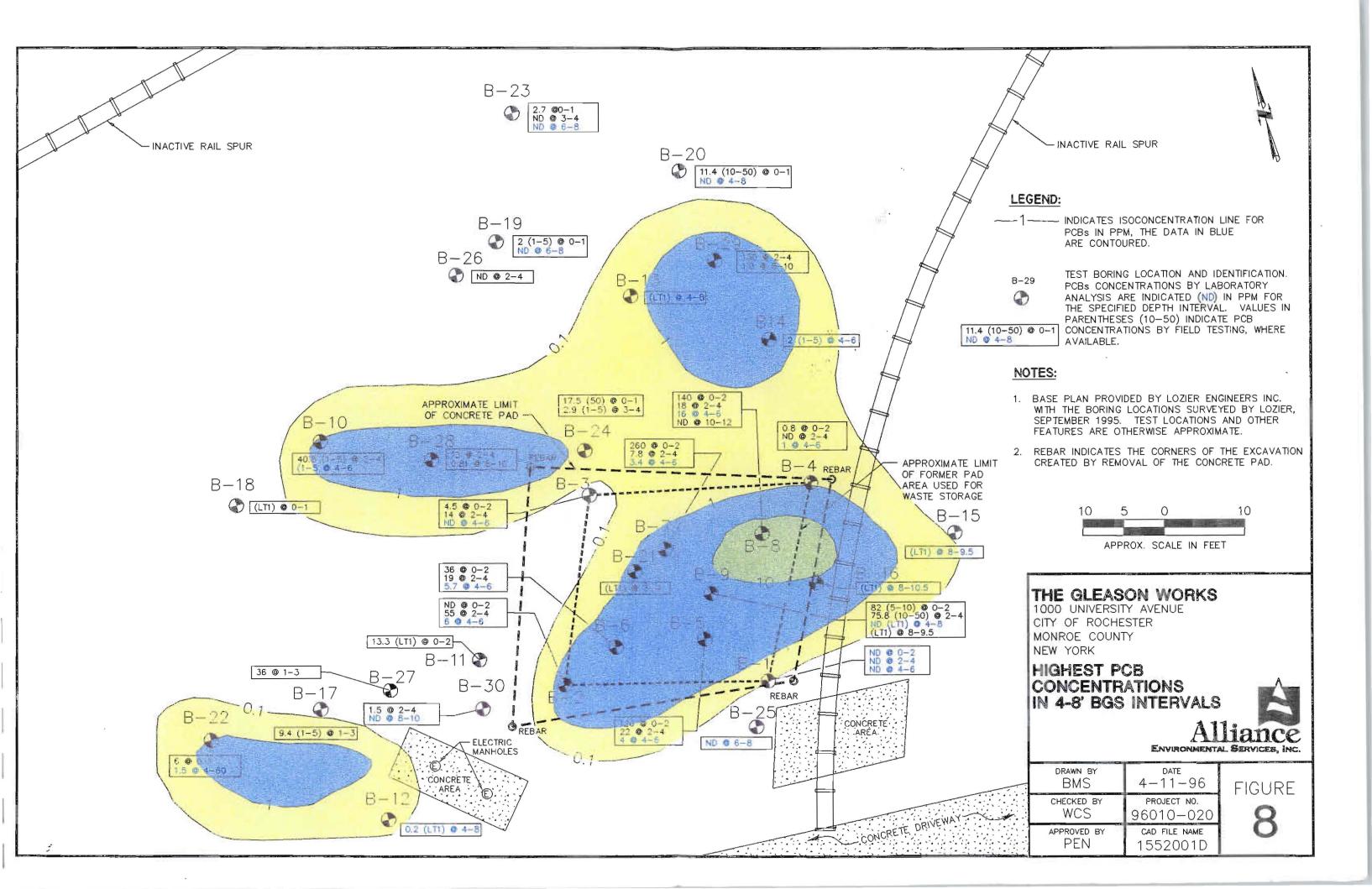
THE GLEASON WORKS

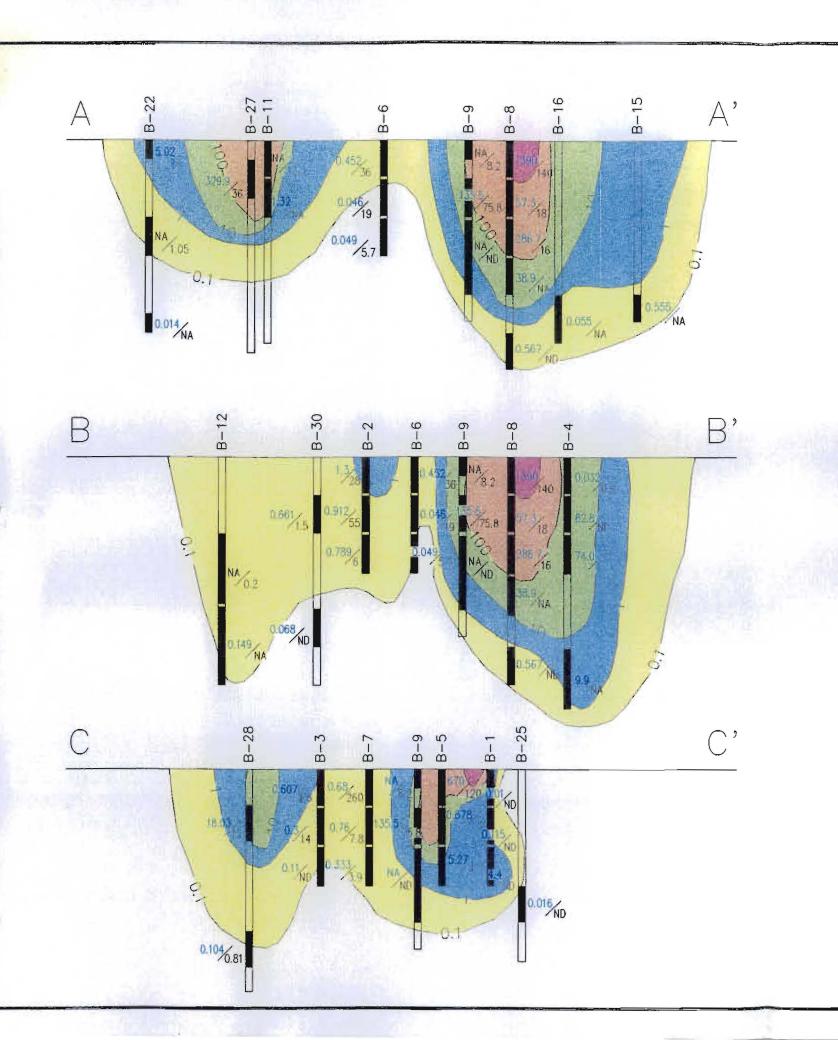

1000 UNIVERSITY AVENUE CITY OF ROCHESTER MONROE COUNTY NEW YORK

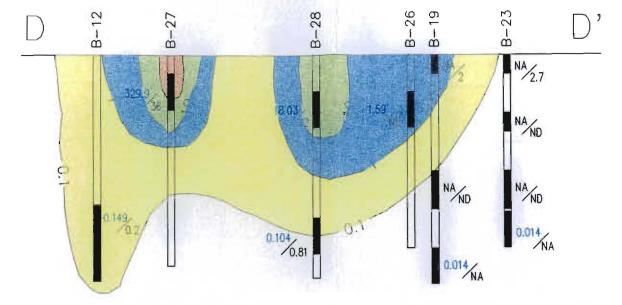

SITE AREA




	DEC/TKG	DATE 4-11-96				
	CHECKED BY	PROJECT NO. 96010-020				
	APPROVED BY PEN	1552001H				


FIGURE 3





LEGEND:

1.3/28

INDICATES A SAMPLE INTERVAL WITH THE TOTAL VOC CONCENTRATION (†,3 PPM) AND THE TOTAL PCB CONCENTRATION (28 PPM) IN A SAMPLE SUBMITTED FOR LABORATORY ANALYSIS.

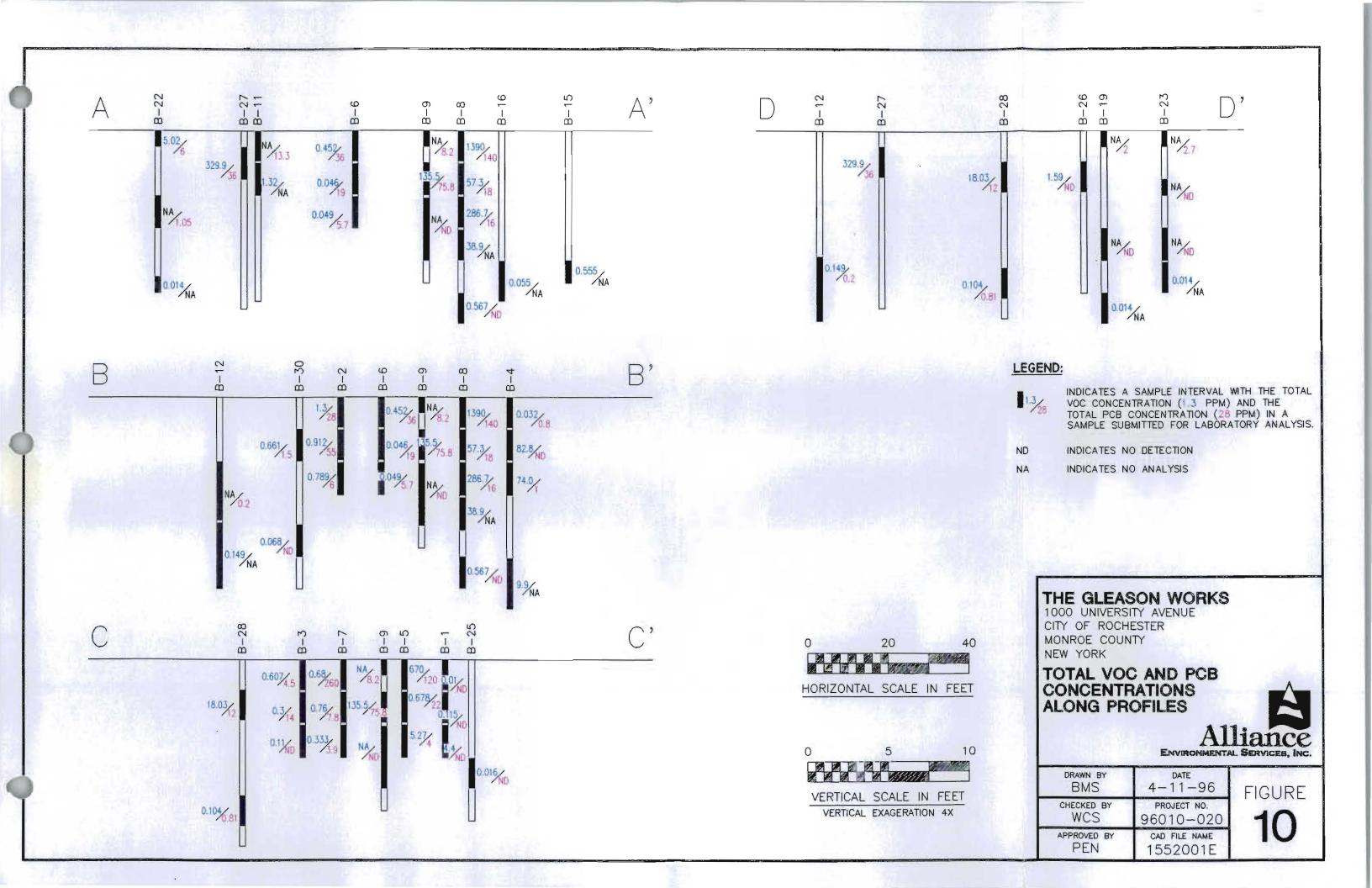
-0.1- INDICATES ISOCONCENTRATION LINE FOR TOTAL VOCs, THE DATA IN BLUE ARE CONTOURED.

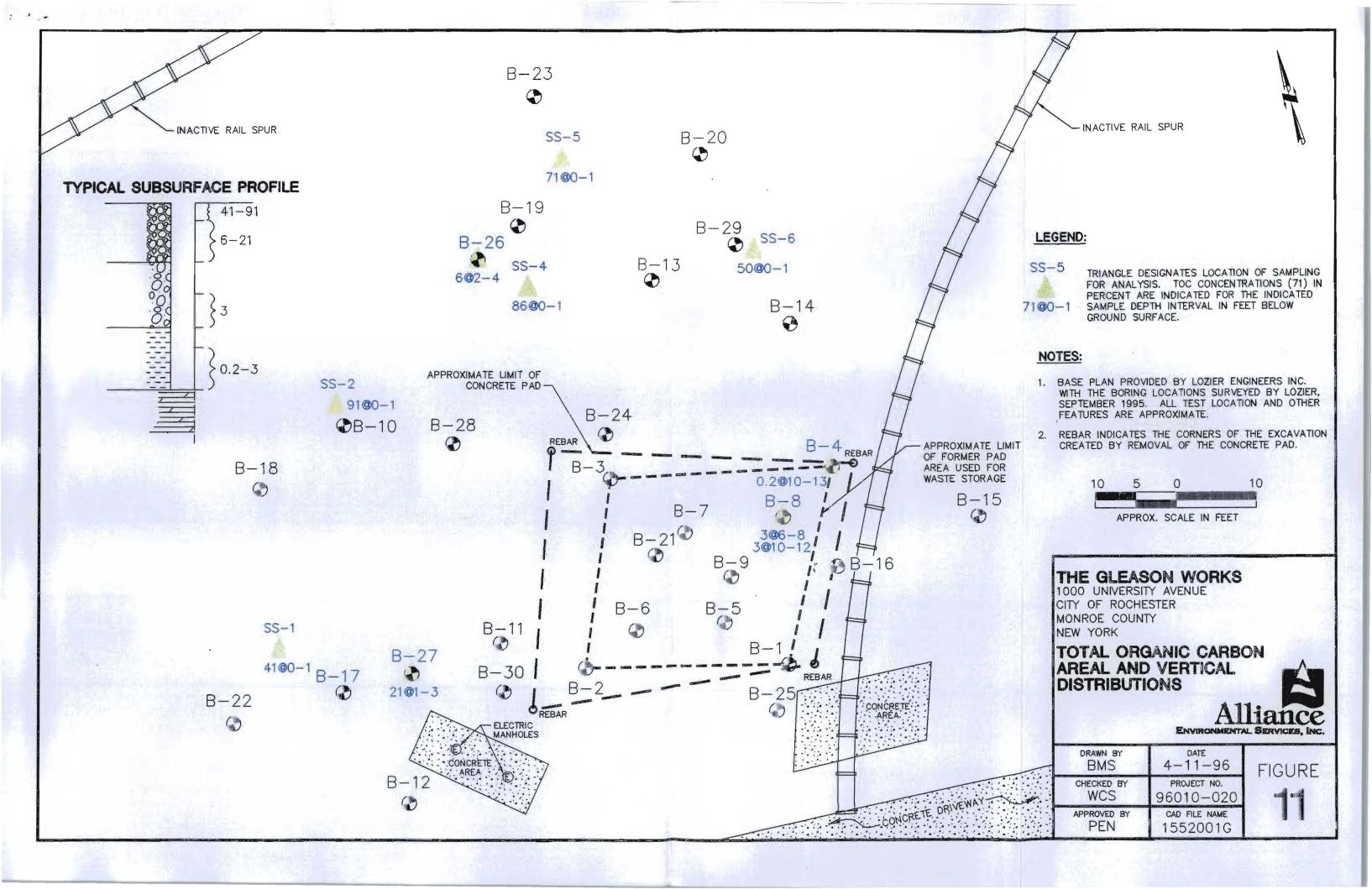
ND INDICATES NO DETECTION

0 20 40
HORIZONTAL SCALE IN FEET

THE GLEASON WORKS

INDICATES NO ANALYSIS


1000 UNIVERSITY AVENUE CITY OF ROCHESTER MONROE COUNTY NEW YORK


VERTICAL OCCURENCES OF TOTAL VOCS AT THE FORMER PAD AREA

FIGURE

		The second secon			
	DRAWN BY BMS	DATE 4-11-96			
	CHECKED BY WCS	PROJECT NO. 96010-020			
Γ	APPROVED BY PEN	CAD FILE NAME 1552001F			

TABLE 1: SUMMARY OF GRAIN SIZE DISTRIBUTION The Gleason Works, Former Pad Storage Area City of Rochester, Monroe County, New York

0 - 4 Feet I	nterval	4 - 8 Feet I	nterval	8 - 12 Feet Interval		
Sieve Size Percent Passing		Sieve Size	Percent Passing	Sieve Size	Percent Passing	
1/2"	99.7		99.6	3/8"	96.5	
3/8"	88.4	3/4"	95.1 88.7	No. 4	88.9 82.3	
No. 4	80.5	1/2"		No. 8		
No. 8	79.6	3/8"	77.9	No. 10	78.2	
No. 10	76.0	No. 4	69.3	No. 30	72.1	
No. 30	66.5	No. 8	57.9	No. 100	63.9	
No. 100 47,9		No. 10	52.1	No. 200	51.3	
No. 200	39.5	No. 30	47.0			
		No. 100	41.3			
		No. 200	36.8			
Diameter of Particle Percent Passing		Diameter of Particle Percent Pas		Diameter of Particle	Percent Passing	
0.0328	27.4	0.0309	33.3	0.0301	55.7	
0.0210	25.3 0.0201		29.4	0.0199	50.0	
0.0124 22.1		0.0120	25.5	0.0174	44.3	
0.0088 21.0		0.0086 23.5		0.0085	38.6	
0.0063	18.9	18.9 0.0061		0.0062	32.9	
0.0031	17.9	17.9 0.0030		0.0031	28.6	
0.0013 16.8		0.0013 18.6		0.0013 22.9		
Percent Moisture 11.2		Percent Moisture	10.8	Percent Moisture	10.6	
Saturation Potential		Saturation Potential		Saturation Potential		
Hydraulic Conductivity	10 ⁻⁴ cm/sec	Ilydraulic Conductivity	10 ⁻⁴ cm/sec	Hydraulic Conductivity		

Table 2
Summary of Volatile Organic Compounds Detected in Soil
(All concentrations shown in parts per million)

Sample ID	Depth (Feet)	Acetone	B.methane	C methane	Chloreform	1,1-DCA	1,1-DCE	CIS
NYDEC Clean up Value		0.110	NL	NL	300	0.2	0.4	0.3
B-1	0-2	ND	ND	ND	ND	ND	ND	ŃD
B-1	2-4	ND	ND	ND	ND	ND	ND	0.100
B-1	4-6	ND	ND	ND	ND	ND	ND	4.400
B-2	0-2	0.740	ND	ND	IND	0.160	IND	0.180
B-2	2-4	0.120	ND	ND	ND	0.075	ND	0.610
B-2	4-6	ND	ND	ND	ND	0.059	ND	0.620
B-3	0-2	0.060	ND	ND	ND	0.140	ND	0.099
B-3	2-4	0.065	ND	ND	ND	ND	ND	0.200
B-3	4-6	ND	ND	ND	ND	ND	ND	0.110
B-4	0-2	0.023	ND	ND	ND	IND	ND	ND
B-4	2-4	ND	ND	ND	ND	ND	ND	55.00
B-4	4-6	ND	ND	ND	ND	ND	ND	47.00
B-4	10-13	ND	ND	ND	ND	ND	ND	9.900
B-5	0-2	ND	ND	ND	ND	ND	ND	130
B-5	2-4	ND	ND	ND	ND	0.100	ND	0.170
B-5	4-6	ND	ND	ND	ND	ND	ND	4.400
B-6	0-2	ND	ND	ND	ND	0.290	ND	ND
B-6	2-4	0.046	ND	ND	ND	ND	ND	ND
B-6	4-6	0.049	ND	ND	ND	ND	ND	ND

Table 2
Summary of Volatile Organic Compounds Detected in Soil
(All concentrations shown in parts per million)

Sample ID	Depth (Feet)	Acetone	B.methane	C methane	Chloraform	1,1-DCA	1,1-DCE	Cis
NYDEC Clea	n up Value	0.110	NL	NL	300	0.2	0.4	0.3
B-7	0-2	0.500	ND	ND	ND	0.180	ND	ND
B-7	2-4	ND	ND	ND	ND	ND	ND	0.760
B-7	4-6	ND	ND	ND	ND	ND	ND	0.290
B-8	0-2	ND	ND	ND	ND	ND	ND	480.0
B-8	2-4	ND	ND	ND	ND	ND	ND	52.0
B-8	4-6	ND	ND	ND	ND	ND	ND	280.0
B-8	6-8	ND	ND	ND	ND	ND	ND	9.900
B-8	10-12	0.097	ND	ND	ND	ND	ND	0.280
<u></u>	<u> </u>	Luc	<u></u> _		lun.	<u></u>	1	Ta io
B-9	2-4	ND	0.0013	ND	ND	ND _	ND	ND_
B-10	NS	NA	ND	ND	ND	NA	NA	NA
					<u> </u>		<u> </u>	
B-11	2-4	ND	0.650B	ND	0.130B	ND	ND	ND
	, -							
B-12	8-12	ND	ND	ND	ND	0.0034	ND	ND
B-13	INS	NA .	ND	ND ND	IND	NA	NA	NA
		147		1110			142	14.
B-14	NS	NA	ND	ND	ND	NA	NA	NA
B-15	8-9.5	ND	0.0085	0.0079	0.0068	0.028	ND	ND
B-16	8-10.5	ND	ND	ND	ND	0.002	ND	ND
-	0 10.0	1110	1110	110		0.002	1110	
B-17	NS	NA	ND	ND	ND	NA	NA	NA
								_
B-18	8- <u>11</u>	ND	ND	.006	ND	0.007	ND	ND
B-19	10-12	ND	ND	ND	ND	ND	ND	ND
- In	10-12	וייט	שאון	מאון	Iun		Iun	TIO
B-20	8.5-10	ND	ND	ND	ND	0.012	ND	ND

Table 2
Summary of Volatile Organic Compounds Detected in Soil
(All concentrations shown in parts per million)

Sample ID	Depth (Feet)	Acetone	B.methane	C methane	Chloroform	1,1-DCA	1,1-DCE	CIS
NYDEC Cle	an up Value	0 110	NL 3	NL	300	0.2	0.4	0,3
B-21	NS	NA	NO	ND	ND	NA	NA	NA
B-22	T ₀₋₁	IND	0.460B	1.250B	0.120B	0.580	ND	ND
B-22	9-10	ND.	0.0007	0.0006	ND	0.007	ND	ND
B-23	8-10	ND	0.001B	0.0007	ND	0.006	ND	ND
	1	T				Table 1		
B-24	NS	NA	ND	ND	ND	NA	NA	NA
B-25	6-8	0.016	ND	ND	ND	ND	ND	ND
B-26	2-4	0.180	ND	ND	ND	0.095	ND	0.860
B-27	1-3	ND	ND	ND	ND	38.00	2.300	86.00
B-28	2-4	ND	ND	ND	ND	0.830	ND	10
B-28	8-10	0.050	ND	ND	ND	ND	ND	0.042
B-29	2-4	ND	ND	ND	ND	4.500	ND	59.00
B-29	8-10	0.088	ND	ND	ND	ND	ND	0.470
B-30	2-4	0.036	ND	ND	ND	0.042	ND	0.350
B-30	8-10	0 031	ND	ND	ND	ND	ND	0.024

NS	Not Sampled	CIS	Cis 1,2 Dichloroethene
NA	Not Analyzed	TRANS	Trans 1,2 Dichloroethene
ND	Not Detected	PCE	Perchloroethene
ACE	Acetone	TOL	Toluene
DÇA	1,1-Dichloroethane	TCA	1,1,1-Trichloroethane
DCE	1,1 Dichloroethene	VC	Vinyl Chloride
MC	Methylene Chloride	XYL	Xylene

Table 2
Summary of Volatile Organic Compounds Detected in Soil
(All concentrations shown in parts per million)

Sample ID	Depth (Feet)	MIBK	TRANS	PCE	Toluene	TCA	TCE	V¢	Xylene	MC
NYDEC Clea	in up Value	1.0	0.3	1.4	1,5	0.76	0.7	0.12	1,2	0.1
B-1	0-2	ND	ND	ND	ND	ND	ND	ND	0.0095	ND
B-1	2-4	ND	ND	ND	ND	ND	0.015	ND	ND	ND
B-1	4-6	ND	ND	ND	ND	1.7	ND	ND	ND	ND
B-2	0-2	ND	ND	ND	ND	ND	ND	0.180	ND	0.040
B-2	2-4	ND	0.043	ND	ND	ND	0.064	ND	ND	ND
B-2	4-6	ND	ND	ND	ND	ND	0.110	ND	ND	ND
B-3	0-2	ND	ND	NO	0.053	ND	0.054	0.091	0.110	ND
B-3	2-4	ND	ND	ND	ND	ND	0.035	ND	0.033	ND
B-3	4-6	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-4	0-2	ND	IND	ND	ND	ND	0.009	ND	ND	ND
B-4	2-4	ND	ND	ND	ND	ND	25.00	2.800	ND	ND
B-4	4-6	ND	ND	ND	ND	ND	27.00	ND	ND	ND
B-4	10-13	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-5	0-2	ND	ND	ND	ND	ND	540	ND	ND	ND
B-5	2-4	ND	ND	ND	ND	ND	0.220	0.038	0.150	ND
B-5	4-6	ND	ND	ND	ND	ND	0.870	ND	ND	ND
								,		
B-6	0-2	0.059	ND	ND	ND	0.032	ND	0.095	ND	0.035
B-6	2-4	ND	ND	ND	ND	ND	ND.	ND	ND	ND
B-6	4-6	ND	ND	ND	ND	ND	ND	ND	ND_	ND

Table 2
Summary of Volatile Organic Compounds Detected in Soil
(All concentrations shown in parts per million)

Sample ID	Depth (Feet)	MIBK	TRANS	PCE	Toluene	TÇA	TCE	VC	Xylene	MC
NYDEC Clea	in up Value	1.0	0.3	1.4	1.5	0.76	0.7	0.12	1.2	0.1
B-7	0-2	ND	ND	ND	ND	ND	ND	ND	ND	ND
B-7	2-4	ND	ND	ND	ND	ND	ND	ND	ND_	ND
B-7	4-6	ND	ND	ND	ND	ND	0.043	ND	ND	ND
									_	
B-8	0-2	ND	ND	ND_	ND	ND	910.0	ND	ND	ND
B-8	2-4	ND	1.600	ND	ND	ND	3.700	ND	ND	ND
B-8	4-6	ND	1.700	ND	ND	ND	ND	5.000	ND	ND
B-8	6-8	ND	ND	ND	ND	ND	29.00	ND	ND	ND
B-8	10-12	ND	ND	ND	ND	ND	0.190	ND	ND	ND
	_									
B-9	2-4	ND	ND	2.800	ND	ND	130	ND	ND	2.700
B-10	NS	ND	NA	NA	NA	NA	NA	NA	NA	NA
	_			т						
B-11	2-4	ND	ND	ND	ND	0.150	0.990	ND	ND	0.180B
		, -								
B-12	8-12	ND	ND	0.015	ND	0 0058	0.120	ND_	ND	0.0045B
	т		-							
B-13	NS	ND	NA	NA	NA _	NA	NA	NA	NA	NA
_	1	_								1
B-14	NS	ND	NA	NA	NA	NA	NA	NA	NA	NA
	1005	J	To 2005	T	Tue	Ta aaa		To 204	Luc	Ta ana
B-15	8-9.5	ND	0 0085	ND	ND	0 036	0 440	0.021	ND	0.021
0.46	0.40.5	lup.	0.004	lup.	Lup	0.004	0.040	lup	IAID	10.000
B-16	8-10 5	ND	0 001	ND	ND	0 001	0 049	ND	ND	0.002
D 17	NS	ND	NA	NA .	NA	NA	NA .	INIA	NA	NA NA
B-17	INO	IND	INA	IIAY	TIAN	Tua	INA	NA	INA	INA
B-18	8-11	ND	0 0008	0 012	ND	0.002	0.0087	0 0006	ND	0 0025
0-10	10-11		0 0008	012	ואט	10.002	10.0087	<u> </u>		10 0023
B-19	10-12	ND	ND	ND	ND	ND	0 012	ND	ND	0.002
D-13	10-14	140	<u> </u>	THD	יאט	ואט	0012	TIAD.	טאון	10.002
B-20	8.5-10	ND	0.0011	ND	ND	0.0033	0.046	ND	ND	0.0029
<u> </u>	10.0-10		0.0011	1110	1110	0.0000	10.070	1,10	1.45	10.0029

Table 2
Summary of Volatile Organic Compounds Detected in Soil
(All concentrations shown in parts per million)

Depth (Feet)	MIBK	TRANS	PCE	Toluene	TCA	TCE	VC	Xylene	MC
an up Value	1.0	0.3	1.4	1,5	0.76	0.7	0.12	1.2	0.1
NS	ND	NA	NA	NA	NA	NA	NA	NA	NA
0-1	ND	ND	0.510	ND	3.000	0.740	ND	ND	0.190
9-10	ND	ND	ND	ND	0.001	0 004	ND	ND	0 002
8-10	ND	ND_	ND	ND_	0.0012	0.0036	0.0028	ND	0.002
INC	IND	INIA	INA	INA	INIA	INA	INIA	TNIA	INA
INO	IND	INA	INA	INA	INA	INA	INA	JINA	INA
6-8	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-4	ND	0.028	ND	0.037	ND	0.280	0.110	ND	ND
1-3	ND	8.700	5.000	15.00	92.00	76.00	ND	6.900	ND
2-4	IND	IND	IND	IND	IND	7 200	מאל	IND	ND
8-10	ND	ND	ND	ND	ND	0.012	ND	ND	ND
2-4	IND	1.800	IND	IND	1.200	27.00	8.400	IND	ND
8-10	ND	ND	ND	ND	ND	0.084	0.029	ND	ND
24	IND	IND —	10.014	IND	In 010	In 200	IND	IND	IND
							_		ND ND
	NS	NS	NS	NS	NS	NS	NS	NS	2-4 ND ND ND ND ND ND ND N

NS	Not Sampled	CIS	Cis 1,2 Dichloroethene
NA	Not Analyzed	TRANS	Trans 1,2 Dichloroethene
ND	Not Detected	PCE	Perchloroethene
ACE	Acetone	TOL	Toluene
DCA	1,1-Dichloroethane	TCA	1,1,1-Trichloroethane
DCE	1,1 Dichloroethene	VC	Vinyl Chloride
MC	Methylene Chloride	XYL	Xylene

TABLE 3: VAPOR PHASE VOC DATA
The Gleason Works. Former Pad Storage Area
City of Rochester, Monroe County, New York

Sample	Depth										Total	VOCs
Location	(Feet)	DCA	TRANS	CIS	TCA	TCE	TOL	EB	XYL	Unknowns	by G.C.	by PID
B-9	0-1	ND	ND	ND	ND	0.01	ND	ND	ND	DN.	0.01	<2
B-9	2-4	3.60	0.02	1.40	ND	0.10	ND	ND	ND.	0.42	5.54	<2
B-9	4-8	ND	ND	0.09	ND	0.03	ND	ND	ND	0.24	0.36	ND
B-9	8-9.5	ND	ND	0.77	ND	0.03	ND	ND	ND	0.08	0.88	ND
B-10	2-4	ND	0.01	0.77	ND	0.05	ND	ND	ND	0.17	1.00	15
B-10	4-6	ND	0.08	0.01	ND_	ND	ND	_ND_	.ND	0.17	0.26	10
B-10	6-8	ND	מא	ND	ND	ND	ND	ND	ND	ND	0.00	<u> 5</u>
B-10_	8-9.8	ND	ND_	0.11	ND	< 0.01	ND	ND	ND	0.32	0.43	5
<u> </u>	00 1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 10	-0 O1 I	NID	NID I	NID I	ND	ŊĎ	0.01	0.01	
B-11	0-2	ND	ND	<0.01	ND	ND	ND	ND		0.01	1 2.20	5 20-100
B-11	2-4	1.50	0.01	0.48	ND	< 0.01	ND	ND ND	ND	<u> </u>		
B-11	4-6	ND	ND	0.21	ND	0.01	ND	ND_	ND	0.01	0.23	30
B-11	8-10.5	ND	ND_	0.01	<u>_ND</u> _	<0.01	ND	ND	_ ער	<0.01	0.01_	15
B-12	4-8	ND	ND	0.07	0.02	0.09	ND	ND	ND	0.03	0.21	10
B-12	8-12	ND	ND	0.05	0.02	0.13	ND	ND	ND	0.02	0.22	5
B-12	0-12-1		110	0.05	- 0.02	0.15		. 12		0.02		
B-13	4-8	ND	ND	0.09	ND	ND	ND	ND	ND	0.31	0.40	2
B-13	10-11.5	ND	ND	1.50	ND	0.01	ND	ND	ND	0.19	1.70	25-30
	<u>. </u>					·						
B-14	4-6	ND	0.01	0.50	80.0	0.02	0.01	ND	ND	1.30	1.92	15
B-14	8-10	ND	ND	< 0.01	ND	ND	ND	ND	МD	0.02	0.02	2
<u> </u>	-			0.15	2.01	1 0 05		175	1.575	\	1 0.00	1
B-15	8-9.5	ND	ND	0.13	0.04	0.05	ND	ND	ND	ND	0.22	<2
B-16	8-10.5	ND	ND	0.04	ND	0.01	ND	ND	ND	0.06	0.11	5
- 5-10	0-10.5		IND	0.04		0.01	ND	110	- 112	0.00	1 0.11	<u>, , , , , , , , , , , , , , , , , , , </u>
B-17	1-0	1.80	ND	0.20	8.60	0.20	0.01	ND	ND	0.12	10.93	<1
B-17	8-9	1.40	ND	0.63	0.56	0.02	ND	ND	ND	0.65	3.26	20
B-17	9-11.5	ND	ND	. 0.03	0.05	0.02	ND	ND	ND	0.03	0.13	3
B-18	0-1	ND	ND	ND	ND	ND	ND	ND	ND	0.12	0.12	<1
B-18	2-4	ND	ND_	0.64	0.15	0.18	ND	ND	ND	0.07	1.04	20
B-18	8-11	ND	ND	0.35	<u> N</u> D	0.02	<0.01	ND	ND	0.20	0.57	10
B-19	0-1	ND	ND	0.02	ND	< 0.01	ND	ND	ND	0.12	0.14	
ļ	3-4	4.60	טאי	1.00	ND	0.20	ND			0.12	1 6.59	<2
B-19 B-19	6-8	0.69	0.02	0.79	ND	0.20	ND	ND ND	ND	0.77	1 2.09	10
	10-11.9			 -	ND	0.10					1.25	
B-19	1 10-11.9	ND.	<u>D</u> ND	1.10	I MD	1 0.02	ND	<u> </u> ND	<u> </u> ND	0.13	1 1.2	20
B-20	0-1	ND	ND	0.01	ND	ND	ND	ND	ND.	0.24	0.25	<3
B-20	3-1	12.00	_	0.93	ND	0.08	ND	ND	ND	ND	13.02	10
B-20	1-8	ND	ND	0.68	ND	0.05	ND	ND	ND	0.33	1.06	10
B-20	8.5-10	ND	ND	0.03	ND	< 0.01	ND	ND	ND	0.09	0.12	1 1
	1 0.0				<u>,</u>	,				, , , , , , , , , , , , , , , , , , , 		<u>' _ </u>
B-21	3-4	ND	ND	0.01	DN	ND	מא	ND	ND	0.18	0.19	<2
B-21	8-10	ND	ND	ND	ND	I ND	! ND	ND	ND	ND	l ND	5

TABLE 3: VAPOR PHASE VOC DATA (Continued)
The Gleason Works, Former Pad Storage Area
City of Rochester, Monroe County, New York

Sample	Depth		1			-					Total	VOCs
Location	(Feet)	DCA	TRANS	CIS	TCA	TCE	TOL	EB	XYL	Unknowns	by G.C.	by PID
B-22	0-1 (0.38	ND	0.01	0.58	0.01	ND	ND	ND	0.04	1.02	49
B-22	3-4	ND	ND	ND	ND	ND	ND	ND	ND	.ND	DD	15
B-22	4-6	0.30	ND	0.06	0.17	0.02	0.01	ND	ND	0.04	0.60	7
B-22	6-8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
B-22	9-10	ND	ND	0.01	ND	ND	ND	ND	ND	0.01	0.02	2
B-23	0-1	ND	ND	ND	ND	ND	ND	ND	ND.	0.03	0.03	<2
B-23	3-4	ND	ND	ND	ND	ND	ND	ND	ND	ND	DV.	5
B-23 _	6-8	_ND_	ND	0.03	ND	ND .	ND	ND	ND .	0.13	0.16	<1
B-23	8-10	ND	ND_]	0.08	ND	ND	_ DN	ND	ND	0.06	0.14	<1
 _	- 0.1		NID	NID	ND	NID	NT	ND	ND	ND	ND	1 2
B-24	0-1	ND	ND	ND	ND	ND	ND	_				4
B-24	<u> 3-4 </u>	ND	ND	ND	ND_	ND_	ND	ND	ND	ND_	ND_	4
B-25	0-2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	3.6
B-25	2-4	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	109
B-25	4-6	NA	NA NA	NA	NA	NA	NA	NA	NA	l NA	l NA	21.8
B-25	6-7.5	NA	NA	NA	NA	NA	NA	NA	NA	l NA	NA	10.9
B-25	7.5-8	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	10.9
B-25	8-10	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	0.0
<u> </u>				_		-				<u>' </u>		
B-26	0-2	NA	NA	NA	_NA	NA_	NA	NA	NA	NA	NA	47.1
B-26	0-0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	47.1
B-26	2-4	NA	NA	_NA	NA	NA	NA	NA	NA	NA	l NA	51.3
B-26	4-6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	15.1
B-26	6-8	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	15.1
B-26	8-9.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	20.2
								T		1		1 100
B-27	1-3_	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA_	NA	123
B-27	3-5	NA	NA	NA_	NA_	l NA	NA_	NA NA	NA_	NA_	NA_	125
B-27	5-7	NA	NA	NA	NA NA	NA	I NA	NA NA	NA_	NA NA	NA NA	41.9
B-27	7-9	NA_	NA	NA	NA	NA_	NA NA	NA	NA NA	NA NA	NA NA	48.7
B-27	9-11	NA	NA	. NA	NA	NA	NA	NA	<u>NA</u>	NA	NA	22.8
B-28	0-2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	60.2
B-28	2-3	NA	NA	NA	NA	NA	NA	NA	l NA	NA	l NA	125
B-28	3-4	NA	NA	NA	NA	NA	NA	NA	NA	l NA	NA.	125
B-28	4-6	NA	NA	NA	NA	NA	NA	l NA	NA	NA	1 NA	73.1
B-28	6-8	NA	NA	l NA	NA	NA	NA	NA	NA	NA	NA	15.1
B-28	8-10	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	35.7
B-28	10-11	l NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	21.1
						<u> </u>						
B-29	0-2	NA	NA	NA	I_NA	NA	l NA	NA	NA	l NA	NA_	72.7
B-29	2-4	NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	1 71.2
B-29	4-6	l NA	NA	NA	NA	NA	NA	NA	NA NA	l NA	NA_	68.4
B-29	6-8	NA	NA	NA	NA	NA	l NA	NA	NA NA	lNA	NA	68.4
B-29	8-8.5	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	8.08
B-29	8.5-10	NA	NA	NA	NA	NA	l NA	NA	NA	I NA	NA NA	80.8
B-29	10-11.1	NA	NA_	NA	NA	NA	NA	NA	NA	NA	NA	21.8

TABLE 3: VAPOR PHASE VOC DATA (Continued) The Gleason Works, Former Pad Storage Area City of Rochester, Monroe County, New York

Sample	Depth	_		_						<u> </u>	Totai	VOCs
Location	(Feet)	DCA	TRANS	CIS	TCA	TCE	TOL	EB	XYL	Unknowns	bv G.C.	by PID
B-30	0-2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	÷.1
B-30	2-4	NA	NA	NA	NA	NA_	l NA	NA	NA.	NA	NA	64.1
B-30	4-6	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	45.7
B-30	6-8	NA	NA I	NA	NA :	NA	NA	NA.	NA	NA	NA	45.7
B-30	8-10	NA	NA	NA	NA	NA	NA	NA	NA_	NA	NA _	27.5
B-30	10-12	NA	NA I	N <u>A</u>	NA.	NA	NA	NA	l NA	NA NA	NA.	21.7

TABLE 3 (Continued) ADDITIONAL VAPOR PHASE VOC DATA

SUMMARY OF ERM SAMPLE ANALYTICAL DATA GLEASON WORKS - STORAGE PAD INVESTIGATION

SAMPLE DEPTH (PT.)	0-	-2	2-	-4	4-	-6
SAMPLE RESULT	TOTAL VOC:	PCB's	TOTAL VOC's	PCB's	TOTAL VOC's	PCB's
ERM B-1	<1 ppm	<1 ppm	<1 ppm	<1 ppm	4.4 ppm	<1 ppm
ERM B-2	1.3 ppm	28 ррт	<1 ppm	55 ppm	<1 ppm	б ррт
ERM B-3	<1 ppm	4.5 ppm	<1 ppm	14 ppm	<1 ppm	<1 ppm
ERM B-4	<1 ppm	<1 ppm	82.8 ppm	<1 ppm	74 ppm	1 ppm
ERM B-5	670 ppm	120 ррт	<1 ppm	22 ppm	5.3 ppm	4 ppm
ERM B-6	<1 ppm	36 ppm	<1 ppm	19 ppm	<1 ppm	5.7 ppm
ERM B-7	<1 ppm	260 ppm	<1 ppm	7.8 ppm	<1 ppm	3.9 ppm
ERM B-8	1390 ppm	140 ppm	57.3 ppm	18 ppm	286.7 ррт	16 ppm

NOTES

- 1. These data are summarized from the "remedial action plan for the gleason works former waste storage area" by dated may 1994 by ERM-Northeast, Inc.
- 2. SEE TEXT OF REPORT FOR EXPLANATION OF DATA PRESENTED AND BORING LOCATIONS.
- 3. ABBREVIATIONS:
 - PPM PARTS PER MILLION OR MG/KG
 - VOC VOLATILE ORGANIC COMPOUNDS
 - PCB POLYCHLORINATED BIPHENYLS

TABLE 4: SUMMARY OF PCB ANALYTICAL AND FIELD KIT DATA
The Gleason Works, Former Pad Storage Area
City of Rochester, Monroe County, New York

Sample	Depth		,
Identification	(feet)	PCBs	Field Kit
B-1	0-2	ND	
B-1	2-4	ND	
B-1	4-6	ND	
B-2	0-2	• 28	
B-2	2-4	55	<u></u>
B-2	4-6	6	
B-3	0-2	4.5	<u> </u>
B-3	2-4	14	<u> </u>
B-3	4-6	ND _	
		0.800	1
B-4	0-2	0.800	1
B-4 B-4	2-4 4-6	ND 1	1
			<u>.</u>
B-5	0-2	120	
B-5	2-4	22	<u> </u>
B-5	4-6	4	
B-6	0-2	36	<u> </u>
B-6	2-4	19	<u> </u>
B-6	4-6	5.7	
B-7		262	
	0-2	260	<u> </u>
B-7 B-7	2-4 4-6	7.8	<u>-</u>
B-8	0-2	140	
B-8	2-4	18	<u> </u>
B-8	4-6	16	
B-8E	10-12	ND	
B-9	0-1	8.2	5 to 10
B-9	2-4	75.8	10 to 50
B-9	4-8	ND	LT 1
В-9	8-9.5	NA NA	LT 1
B-10	2-4	40.8	1 to 5
B-10	<u>-</u>	NA NA	1 1 10 5
D-10			1 100
B-11	0-2	13.3	LT 1
B-12	4-8	0.2	LTI

TABLE 4: SUMMARY OF PCB ANALYTICAL AND FIELD KIT DATA (Continued)

The Gleason Works, Former Pad Storage Area
City of Rochester, Monroe County, New York

Sample	Depth		
Identification	(feet)	PCBs	Field Kit
B-13	1-8	NA	LT!
B-14	4-6	2	1 to 5
216	P.O.5		LTI
B-15	8-9.5	NA	
B-16	8-10.5	NA	LTI
B-17	0-1	9.4	1 to 5
B-18	0-1	NA	LTI
B-19	0-1	2	1 105
B-19	6-8	2 ND	.NA
B-20	0-1	11.4	10 to 50
B-20	4-8	ND	NA
B-21	3-4	NA	LTI
B-22	0-1	6	NA
B-22	4-6	1.05	NA
B-23	0-1	2.7	NA
B-23	3-4	ND	NA
B-23	6-8	ND	NA
B-24	0-1	17.5	50
B-24	3-4	2.9	1 to 5
B-25	6-8	ND	
B-26	2~4	ND_	
B-27	1-3	36	
B-28	2-4	12	
B-28	8-10	0.810	
B-29	2-4		
B-29 B-29		130 1.000	
B-30	2-4	1,500	
B-30	8-10	ND ND	<u> </u>

TABLE 5 SUMMARY OF METALS IN SOIL

(All Concentration in Units of Parts Per Million)

Sample Id	Depth (Ft.)	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Manganese	Mercury	Selenium	Cyanide
NYSDEC Cleanup Level		7.5	300	1	10	25	500	Background	0.1	2	1
Background 1		NA	64.9	ND	15.2	34.9	42.9	406	0.217	NÃ	NA
Background 2		NA	57	ND	18.3	30.5	46	608	0.225	NA	NA
B-1	0-2	NA	121	0.968	43	117	172	398	0.648	NA	ND
B-1	2-4	NA	51.2	0.605	14.6	87	286	261	0.059	NA_	NA
B-1	4-6	NA	35.6	ND	21.7	19.2	6.46	994	ND _	NA	NA
B-2	0-2	NA	89.3	ND	21.9	19.3	14.1	4700	0.192	NA	ND
B-2	2-4	NA	80.7	0.636	618	180	405	414	ND	NA	NΑ
B-2	4-6	NA	47.3	ND	12.2	11.8	14.6	504	ND	NA	NA
<u> </u>				,							
B-3	0-2	NA	60.3	ND	31.9	439	90.6	352	0.132	NA	ND
B-3	2-4	NA	72.1	ND	16.1	47.4	49.8	267	0.167	NA	NA
B-3	4-6	NA	57.1	ND	16.1	12.6	13.1	369	0.145	NA	NA
B-4	0-2	NA	1114	0.687	737	297	86.3	220	0.076	JNA	ND
B-4	2-4	NA NA	50.2	ND	663	173	19.4	740	ND	NA -	NA NA
B-4	4-6	NA -	35.1	ND -	13.9	17.3	9.72	418	ND	NA -	NA NA
	<u> </u>			1,12	1.0.0	11.0			11.5		1
B-5	0-2	NA	58	ND	14.7	187	77.7	294	0.296	NA .	5.46
B-5	2-4	NA	54.7	ND	9.27	26.5	28.4	318	ND	NA	ND
B-5	4-6	NA	125	ND	48.4	38.9	11.4	579	ND	NA	ND
B-6	0-2	NA	32.9	ND	8.58	15	23.5	404	0.184	NA	ND
B-6	2-4	NA	53.3	ND	15	29.3	83.6	509_	ND .	NA	NA
B-6	4-6	NA	59.4	ND	12.6	15.9	23.3	214	ND	NA	NA
		,								•	
B-7	0-2	NA	24.7	ND	7.51	11	ND	293	0.103	NA	ND
B-7	2-4	NA	56.6	ND	12.3	18.1	6.54	373	ND	NA	NA
B-7	4-6	NA	49.8	ND	104	108	13.9	256	ND	NA	NA

TABLE 5
SUMMARY OF METALS IN SOIL

(All Concentration in Units of Parts Per Million)

Sample Id	Depth (Ft.)	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Manganese	Mercury	Selenium	Cyanide
NYSDEC Cleanup Level		7.5	300	1	10	25	500	Background	0.1	2	1
Background 1		NA	64.9	ND	15.2	34.9	42.9	406	0.217	NA	NA
Background 2	1	NA	57	ND	18.3	30.5	46	608	0.225	NA	NA
B-8	0-2	NA	426	ND	689	113	165	381	0.251	NA	ND
B-8	2-4	NA	59.4	ND	11.6	16.6	28.7	383	0.11	NA	NA
B-8	4-6	NA	261	ND	11.4	69.9	5920	278	ND	NA	NA
B-8E	10-12	2.08	36.7	ND	8.72	NA	7.46	NA	ND	ND	NA
B-17	9-11.5	NA	[31	0.94	5.8	10	8.3	420	ND	NA	ND_
B-18	2-4	NA	33	1.9	17	36	55	400	ND	NA	ND
B-19	10-15.5	NA	27	1	5.9	7.1	8.2	420	ND	NA	ND
B-20	8.5-10	NA	150	3.7	20	24	22	680	ND	NA	ND
B-21	9-10	NA	95	1.5	14	13	9.4	200	ND	NA	ND_
B-22	3-4	NA	30	1.1	7.8	23	14	140	ND	NA	ND
B-23	8-10	NA	36	1.3	8.4	10	8.9	190	ND	NA	ND
B-24	3-4	NA	41	1.4	9.9	13	15	290	ND	NA	ND_
B-28	2-4	1.17	29.9	ND	8.69	ND	30.6	NA	ND	1.11	NA
B-28	8-10	ND	56.6	ND	10.2	NA	7.83		ND	ND	NA
B-29	2-4	2.9	22.4	ND	6.23	NA	26.1	NA	ND	0.87	NA
B-30	2-4	ND	49.7	ND	504	NA	75.8	NA	ND	5.99	NA
B-30	8-10	ND	60.2	ND	12.8	NA	22.6	NA	ND	ND	NA

Note: Samples from soil borings B-9 to B-16 and B-25 to B-27 were not analyzed for metals.

Silver was also analyzed in the following samples, but not detected: B-8E; B-28 (2-4 ft.); B-28 (8-10 ft.); B-30 (2-4 ft.); and B-30 (8-10 ft.).

NA = Not Analyzed ND = Not Detected

TABLE 6
Summary of Leaching Procedure Tests
(All concentrations shown in parts per million)

	Sample ID	Depth (Feet)	ACE	DCA	DCE	CIS	TRANS	PCE	TOL.	TCA	TCE	VC	XYL	МС
NYDEC Groundwater Std.			0.050	0.050	0 050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050
USEPA Method 8260	B-5	0-2	ND	ND	ND	130	ND	ND	ND	ND	540	ND	ND	ND
TCLP			NA	NA	ND	NA	NA	ND	NA	NA	2.1	ND	ND	ND
USEPA Method 8260	B-8	0-2	ND	סא	ND	480.0	ND	ND	ND	ND	910.0	ND	ND	ND
TCLP			NA	NA	מא	NA	NA	ND	NA	NA	7.6	ND	NA	NA
USEPA Method 8260	B-8	6-8	ND	ND	ND	9.900	ND	ND	ND	ND	29.00	ND	ND	ND
TCLP			ND	ND	ND	0.42	ND	ND	ND	ND	0.66	0.13	ND	ND
SPLP			סא	ND	ND	0.34	ND	ND	ND	ND	0.67	0.008	ND	ND
USEPA Method 8260	B-8	10-12	0.097	ND	ND	0.280	NĐ	ND	ND	ND	0.190	ND	ND	ND OIN
TCLP			0.018	ND	ND	0.015	ND	ND	ND	ND	0.023	ND	ND	ND
SPLP			0.039	ND	ND	NO	ND							
USEPA Method 8260	B-27	1-3	ND	38.00	2.300	86.00	8.700	5.000	15.00	92.00	76.00	ND	6.900	ND
TCLP			0.026	0.15	ND	0.14	.009	ND	0.022	0.63	0.038	ND	ND	ND
SPLP			ND	.082	ND	0.085	ND	ND	0.011	0.15	0.021	ND	ND	ND

TCLP Toxicity Characteristic Leaching Procedure
SPLP Synthetic Precipitation Leaching Procedure

ACE Acetone

DCA 1,1-Dichloroethane
DCE 1,1 Dichloroethene
CIS Cis 1,2 Dichloroethene
TRANS Trans 1,2 Dichloroethene

PCE Perchloroethene

TOL Toluene

TCA 1,1,1-Trichloroethane

VC Vinyl Chloride

XYL Xylene

MC Methylene Chloride ND Not Detected

Note: Samples from B-5, B-8 and B-27 were the only samples analyzed using TCLP and SPLP procedures.

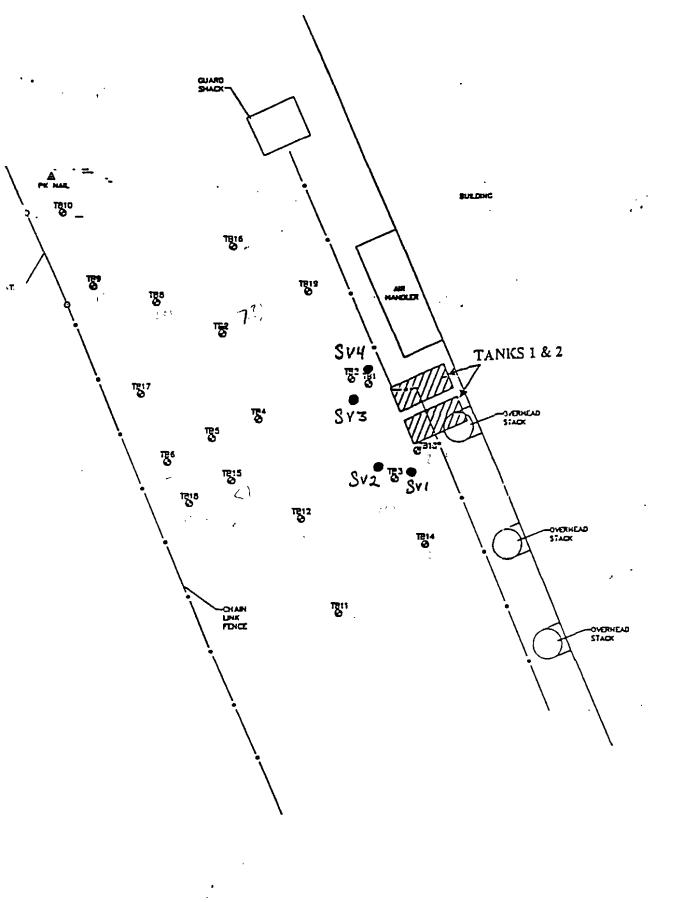

APPENDIX 4 GALSON CORPORATION TABLES, FIGURES, & DATA

TABLE 1 FORMER PAINT THINNER TANKS SOIL SAMPLE RESULTS

(All Concentrations Shown in Units of Micrograms/Kilogram)

Volatile Organic	Cleanup	TB-3	TB-2	TB-4	TB-10	TB-12	TB-16	TB-17	SV-1	SV-4
Compounds	Values	(8/94)	(8/94)	(9/95)	(9/95)	(9/95)	(9/95)	(9/95)	(1/97)	(1/97)
		Depth	Depth	10.5-11	11-11.9	10-11.3	9-10 ft.	11.5-12	Depth	Depth
		Unk.	Unk.	ft.	ft.	ft.		ft.	Unk.	Unk.
Benzene	14	ND	ND	ND	ND	1.2	ND	ND	ND	ND
n-Butylbenzene	100	230	<270	ND	ND	ND	ND	ND	280	<700
sec-Butylbenzene	100	<140	<270	ND	ND	ND	ND	ND	150	<700
Ethylbenzene	100	2300	5600	64	ND	ND	ND	58	<140	14000
lsopropylbezene	100	200	<270	ND	ND	ND	ND	ND	570	<700
n-Propylbenzene	100	600	<270	11	ND	ND	ND	ND	1100	760
Toluene	100	6400	<270	7.1	.9	1.9	1.7	ND	610	<700
1,2,4-Trimethylbenzene	100	650	<270	12	ND	ND	ND	ND	1100	850
1,3,5-Trimethylbezene	100	750	<270	6.8	ND	ND	ND	ND _	1100	800
m,p-Xylene	100	1600	6000	48	ND	.8	1.2	15	2800	71000
o-Xylene	100	680	2000	7.5	ND	ND	ND	ND	1200	20000
Acenaphthalene	400	NA	NA	ND	ND	NA	NA	NA	NA	NA
Fluorene	1,000	NA	NA	ND	ND	NA	NA	NA	NA	NA
Phenanthrene	1,000	NA	NA	ND	ND	NA	NA	NA	NA	NA
Anthracene	1,000	NA	NA	ND	ND	NA	NA	NA	NA	NA
Fluoranthene	1,000	NA	NA NA	ND	ND	NA	NA	NA	NA	NA
Pyrene	1,000	NA	NA	ND	ND_	NA_	NA	NA	NA	NA
Benzo(a) anthracene	0.04	NA	NA	ND	ND	NA	NA	NA	N <u>A</u>	NA
Chrysene	0.04	NA	NA	ND	ND	NA	NA	NA _	NA	NA
Benzo(b) fluoranthene	0.04	NA	NA	ND	ND	NA	NA	NA	NA	NA
Benzo(k) fluoranthene	0.04	NA	NA	ND	ND	NA	NA	NA	NA .	NA
Benzo(a) pyrene	0.04	NA	NA	ND	ND	NA_	NA	NA	NA	NA
Indeno (1,2,3-cd) pyrene	0.04	NA	NA	ND	ND	NA	NA	NA	NA	NA
Dibenzo (a,h) anthracene	1,000	NA	NA	ND	ND	NA	NA	NA _	NA	NA
Benzo (g,h,i) perylene	0.04	NA	NA	ND	ND	NA	NA	NA	NA	NA

Note: Samples listed are the only samples analyzed for this investigation area.

} · .	PROJECT TANKE 1 12 ADDN. TAV.
GALSON CORPORATION	
SITE ACTIVITY LOG	LOCATION THE GLASON WORLS
	1000 1/NETERSETY AVE
•	(West Coe of Burning)
CLIENT /ELEASON	DATE(S)
·	TOTAL MILEAGE
JOB NUMBER 974921	ARRIVAL TIME 7:15
	DEPARTURE TIME 12 4
PURPOSE OF TRIP: Some Boneway - Attempt to Determ Some Vapor Extract	MENE EFFETTERLY OF CURRENT TON (SVE) SYSTEM
AMBIENT WEATHER CONDITIONS OVERCAST 25° F	
NUMBER AND TYPE OF SAMPLING LOCATIONS:	
o Four Same Burents .	
	_
· 2 SIEL SAMPLES SUBMETTED FUR	EDA GOST ZIYKZ
1. 2 berrys new ergent TB2 (5	504, 503) 502, 501)
COMMENTS:	Norm
~ ~ ~ ~ ~ ~ ~ ~ .	The state of the s
SAH •	
° •	σ °
5√3	Sv 2
.*	E
<i>(</i> :	•
JUPLERIST: Sem Serescond	. PAGE OF

PROJECT TRUKS 1 (2 Appl Taves—American

LOCATION The Glesson Works

Rochester, New York

Morroe County

JOB NUMBER	.974821	
WELL DIAMETER	2:0	 •

DATE(S) DRILLED 1:-33-97

DRILLING METHOD Geographs

G W DEPTH NA SHEET / OF _____

DRILLING CO. MARCEL

DEPTH	SAMPLE INTERVAL	SOIL / ROCK CLASSIFICATION	HNu (ppm)	PROFILE	NOTES	,
	1-3 3-4 4-5 6-7	SOIL / ROCK CLASSIFICATION FINE SEMO / BRILLE THE BRILL THE BR	HNu (ppm)	PROFILE	NOTES NO CODER Sp. 14 2 200 pml ODUR - STRUNG LAG	
SAMPLING	METHOD Geoprobe	LOGGED BY Scheidelman		BORIN	GMRAGER SVI	

The Gleason Works LOCATION Rochester, New York Monroe County

JOB NUMBER 974821 WELL DIAMETER 2 -

SHEET _2 OF_

DATE(S) DRILLED 1-30-47 DRILLING METHOD _ Geographe

TOTAL DEPTH __ /65' DRILLING CO. MARCOR

DEPTH	SAMPLE INTERVAL	SOIL / ROCK CLASSIFICATION	HNu (ppm)	PROFILE	NO	TES
	۱ - د	Pave			3' 1766	E
2 —	1-3	DARK FILL Whomen	41			
	3-4	Sind/Course / Fill	41			E
6	<u>-:</u> - 7	Stiff brown ely type	~ {		no obor	
		@ 7.5 sund luyer (thin) Sino w/ almy stiff, bluck streak	70		UDOR.	· [7]
	2-9 9-10.0 70.5	Wet sousy way Type	70		OSER	No LAB
12 -		·				
			}	ĺ		

SAMPLING METHOD

Geoprobe

LOGGED BY

Scheidelman

BORING NUMBER

Svz

DCATION	The Glesson Works	
	Rochester, New York	
•	Monroe County	
,		
ATE(S) DRI	LLED _ 1-30-47	
RILLING ME		
I JIEE HAG INT		•

IOB NUMBER 474421	_ _
NELL DIAMETER	_
3 W DEPTH NA.	_
SHEET _3 OF	_

TOTAL DEPTH 10.5

DRILLING CO. Naccar

)EPTH	SAMPLE	SOIL / ROCK CLASSIFICATION	HNu (ppm)	PROFILE	NOTES	
	2-1 2-1	PENE Fill STIFF brown swlfly mix	4 1		NI 000K	11111111
1 11111	•	5-2 SARD	Z1		No coa	
7 11	9-10-5	Most stop town and	2 m		الحديد عصد	
10 1	Zease	•			NU BLACK VISITLE	1 1 1 1 1 1
	-					1 1 1 1 1 1 1
11111	•	•				
AMPLING M	ЕТНОВ Беоргова	LOGGED BY Scheidelman		SORIN	G MANSER 5v3	

*

PROJECT _____ / {2 Ason. INV. The Glesson Works LOCATION Rochester, New York Montroe County

JOB NUMBER	74821		
WELL BUILDING	7"		

DATE(S) DRILLED 1-30-11

WELL DIAMETER ____

DRILLING METHOD Geograpia

G W DEPTH __ NA .

TOTAL DEPTH 105

	тн <u>_ка:</u> _ Ч _ of		DRILLING CO	. Marcia		
DEPTH	SAMPLE INTERVAL	SOIL / ROCK CLASSIFICATION	. (pps	PROFILE	NOTES	
	o-L	3uc - F.1				1111
1 -	 Έ ሣ	Being - SEND MATERIAL	د ا		אנ טספת	
4 -			در		NU OOK	1111
7	6-7 7.5-8	Brun- Ft. Ff Sand Grey - Moist cluy	1.0	· .	NE UDOR Sight was peidle	1111
' 🖠		5-4 M.ST	35:0		COOR (AS)	1111
1	10.52		.			E
7						
[111]	•					
11111	S					
1111			:			111
AMPLING:	WET-KOO	LOGGED BY		BORI	KG NUMBER	
	Geoproba	Scheidelr	mauni		5v4	. [

Page Blank - No Log Is Available For TB-1

PROJECT _	Green Time (mar (m + m)
LOCATION	T32
	(N. W or Nemue Tane)
, -	HILLED 8/.5/9J

TOTAL DEPTH 12.2'

DRILLING CO. FLEW WILLE

SAMPLE INTERVAL SPOON OVA SOIL / ROCK DEPTH BLOWS (PPM) CLASSIFICATION **PROFILE** NOTES c. 5 Fine Sam /Sau-6" V== LD 41 DACK BROWN HEADERSON 18-2 2 41 MUSERATE SAMO/GRAVEL 7 2.0 PUDEN SORTE 3 CLOY TO GRAIDS SCOEMEUT 115 2-4 7 -1 4 BROWN, CLAY 4,5 3 11 5 H.S 6-711;41 5 6-8 . 41 BROWN, DAME, CLEY 6.0 <u>رح</u> 30 5-1.1 10-20 at J-P. 4 170 2-9.5' med. 9.5 sand 7 /6701 170 was at 16 be Hom of spoon 1) Dark Brown clay 13 ppm - parts per million in methane equilvalents 4.5. 10-10,3: 110 pp soil sample head space measurements

Benzeerma

B-+#2

- Annual

-

}

SAMPLING METHOD ASTM D- 1586-67

LOCATION ______

	
JOB NUMBER _ GG 24 3	DATE(S) DRILLED 8/5/41
WELL DIAMETER	DRILLING METHOD Ker-ve
G W DEPTH	TOTAL DEPTH

SW DEPTH ______ TOTAL DEPTH ______ DRILLING CO. Para & Win

SHEET	<u> </u>	<u></u>	_	DRILLING CO.	Parant	Win
DEPTH	SAMPLE INTERVAL	SPOON BLOWS	OVA (ppm)	SOIL / ROCK CLASSIFICATION	PROFILE	NOTES
// -	10-3	:5).3	140	Dark Brown clay matrix w/ med grain gand		Reford & 10.3
	. 2 . 2	75	>2=	LORCE ROLK FRAGMIN AT BETTE UF SAMORE (12.24) WET SAMORE (12.24)		201 20 20 00 00 00 00 00 00 00 00 00 00 00
19 15 11						
						- - - - - - - - - - - - - - - - - - -
1111111	ppm - parts per soil sample her					- - - - - - - - - - - - - - - - - - -
SAMPLING M	ETHOD ASTM D- 15	586-67		LOGGED BY	BORIN	IG NUMBER TB-2

<u>ا</u> ا

	PROJECT	The Gleason Works
		UST/AST Bulk Storage Closure
GALSON CORPORATION	LOCATION	1000 University Avenue
SAMPLING LOG		Rochester, New York
	-	
CLIENT The Gleason Works	DATE(S)	15/4
JOB NUMBER GQ-242	TIME(S)	- 50
TASK2		•
SAMPLE 1. D. :		
SAMPLE LOCATION: Was- or Flat		
1410 192 S.W.	A 14000 - 1	 5 \
DEPTH: 10'-10-2'		
DESCRIPTION ()		
DESCRIPTION: CLAY DEMT		
100 K1 1200 1/1	Cr. 15.	
SAMPLING METHOD USED : Aura Con.	Secret	
LIST OF CONTAINERS AND AMOUNT SAMPLED:		

COMMENTS: All top = 90 pm	_	
		

SAMPLED BY:

Necurso Concerne

PAGE

OF

PROJECT Circum This Crimas Time LOCATION TB 3

(S.W. of Theyer TANK)

JOB NUMBER (-3.342 WELL DIAMETER ______ DATE(S) DRILLED 8/5/44 DRILLING METHOD A.

SHEET /_ OF 2 TOTAL DEPTH 11.2'

DRILLING CO. Person Ware

DEPTH	SAMPLE INTERVAL	SPOON BLOWS	OVA (ppm)	SOIL / ROCK CLASSIFICATION	PROFILE	NOTES
·	<i>:</i>	NT Q	<u></u>	Brown Sec-		1' y: 15' Henrique .5-2: 21
,	2.4	3	\ I	SCHE, MED - FINE GENERAL GERVEL ITHRUSH RECE OF COMENT	}	6" y'cld
4	41.0	2 14 2 4	21	BROWN /CLAY		H.S. 2-4 + 2-80-
5 1 1 1 1 1 1 1 1 1	G. 4	7		61 LE BLACK / REPHANT DEERE		H, S 4-6' : -1
2 1		? 9 12	7.2	CLAY, DOMP BROWN		LAST 4" OF Z' SOMPA DEFERENT MOMENTERS
8	8.0	+6		9", SAND (COLET TO MES.) DONN GRAVESH COLER		H.S 6-3': 30 pm
	pom - parts per soil sample hea					- - - - - - - - -
SAMPLING ME	ETHOD ASTM D- 15	86-67		NEGET BY		NG NUMBER

PROJECT	(millian)	
LOCATION	TB3	
DATE(S) DE	RILLED 8/5/54	
DRILLING N	METHOD	
TOTAL DES	TU .	

JOB NUMBER CARE	DATE(S) DRILLED 5/5/54
WELL DIAMETER	DRILLING METHOD
G W DEPTH <u>M'A</u>	TOTAL DEPTH
SHEET 2 OF 2	DRILLING CO.

DEPTH	SAMPLE INTERVAL	SPOON BLOWS	OVA (ppm)	SOIL / ROCK CLASSIFICATION	PROFILE	NOTES
8.		:1	HC	CLOV /JAHP LATE 6" CLEV W/CHAPEL RVELDERT EVA - GE OPEN		3-100 Cour 200 non
!>	19 G 19 G	12 75	qe	compensation	<u> </u>	Serves Osen
	11	<u> </u>	7,6	Parew Sums Ruk Fremmons		However 1-11.2: 16com
111111						- - - -
udu						
	ppm - parts per	million in met	nane equ	ilivalents		
SAMPLING M	soil sample hea	ad space meas				S NUMBER

ŧ

GAL	.50N	CORP	ORATIC	N
TEST E	BOREH	IOLE /	WELL	LOG

Taxes 1 4 2
LOCATION CLEAS WORKS
ROCHETTER ALY
DATE(S) DRILLED SEFTMEN 13 1995
DATE(S) DRILLED SEFTMEN 13 1995 DRILLING METHOD GEOPLOSE 857 TOTAL DEPTH 16.3 A

√ELL DIAMETER	
₹V DEPTH	
,EET <u>)</u> OF	

3 NUMBER -

₽⊤н	SAMPLE INTERVAL	SPOON BLOWS	<i>iქ.l u</i> (ppm)	SOIL / ROCK CLASSIFICATION	PROFILE	NOTES
2		3- 4	41	1' PHICMENT 2' BELLIN SIND (DIZK) 1' SAND (HINL CLUP) FILL RECLIEVE	21	3'-u' =-=================================
	. 1/- 3		21 22 200	BRUM MET CLAY Type (Sumo Mx) 3' Rocard Brum (Eng (2.5) .5 Brum (2.5) .5 Brum (2.5) .0.5-11 REFLER (2.5)	21 200	7'-8' ===================================
MACING M	ppm - parts per soil sample hea	d space meas			воям	IG NUMBER

GALSON CORPORATION
TEST BOREHOLE / WELL LOG

CONTROL WORKS

ROCHETTER ANY

DATE(S) DRILLED SCHURGER 13 1995 933

GW DEPTH NA DRILLING METHOD GEOPZOGG

GW DEPTH NA TOTAL DEPTH 1/1/

HEET Z OF DRILLING CO. NOTHWASEE.

HEET_	_ <u>_</u> _ OF			DAILLING CO.	_N/2-Kes 1	<u> </u>	-
пертн	SAMPLE INTERVAL	SPOØN BLØWS	(ppm)	SOIL / FIOCK CLASSIFICATION	PROFILE	NOTES	
	Z-4	2-4	<u> </u> _1	71,0 Fine 2.5 BEOWN / SAND MIX		Box com	1111111
	4-6	5-6	41	Beard Sano/Car Mis			11111
. 8	- \$- 11.1	7-8	د ا د ع	Brow that the	I I	But 0000	11111
7/2	11.1	16-11 17-1	2 = 0	Hot of 15-1 has But Resuser Must Clay	7 44	v / L.L	
							11111
111111					·		11111
	ppm - parts per soil sample hea						
MPLING M	Епноо			LOGGED BY	BORIA	IG NUMBER 785	
			•				

LOCATION CLESS WORKS

ROCHESTER NY

DATE(S) DRILLED SEPTEMBER 13 1995 10100

DRILLING METHOD GEOPZOCE

TOTAL DEPTH 12121

DRILLING CO. Normanice

HEET OF		DAILLING CO.	1 w Hu	<u>•< </u>	_
SAMPLE INTERVAL	SPOØN /144 BJOWS (ppm)	SOIL / ROCK CLASSIFICATION	PROFILE	NOTES	
PDM - parts per	3-4 21	Bring Clay Jerus Durk Shing Med Email Shad Min clay Bring Mrs Zury Type Jan Mrs Zury Clay Jet Shing REF-Shi	21 c(JAN BAC JAN VIII/CAS VIII/CAS	
<u> </u>					
<u>-</u>					
WPUNG METHOD GE & P/2	<u> </u>	LOGGED BY	BORIA	G NUMBER 786	

GALSON	CORPO	ORATIO	N
TEST BORE	HOLE /	MELL	LOG

LOCATION CLESTER LIV

DATE(S) DRILLED SEFENCER 13 1935

ELL DIAMETER NA DRILLING METHOD GEORGE

W DEPTH NA TOTAL DEPTH 10:7

DRILLING CO. North AND CO.

HEET _4	.∺ ∠ OF			DRILLING CO.	1/2-ile 1	<u>ه</u> خو <u> ا</u>
:PTH	SAMPLE INTERVAL	SPOON BLOWS	(maa)	SOIL / ROCK CLASSIFICATION	PROFILE	NOTES
	L	r million in mel	Zu-		2 co	7-8 Jac. 3-9 V.d/2-d Jan. 9-10 812/L.d
IPLING M	و الم	2135		LOGGED BY	BOR	B7-

GALSON CORPOTEST BOREHOLE / STATEST BOREHOLE / STATEST BOREHOLE / STATEST STAT		LOCATION &	ED <u>Scr</u> HOD <u>Geo</u>	EMBER 13 1995 1	7/5
SAMPLE SPOON BLOWS		SOIL / ROCK CLASSIFICATION	PROFILE	NOTES	
pom - parts per million in met soil sample head space means	SAVO (The Gray (Kottos (CLAY CLAY ME 1.2 CLAY CLAY	7 X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	9-10 July / 10-11 10-12 414/206	

BORING NUMBER

708

WPLING WETHOO GE PZJBE

LOCATION GEFTER WORKS

ROCKETTER NY

OB NUMBER 554 30 79

WELL DIAMETER NA

GW DEPTH NA

HEET <u>6</u> OF _____

DATE(S) DRILLED SCHEMES 13 1995 1315

DRILLING METHOD George

TOTAL DEPTH 12.0'

DRILLING CO. No-maries

EPTH SAMPLE INTERVAL	SPOON BLOWS (ppm)	SOIL / ROCK CLASSIFICATION	PROFILE	NOTES
	ELOWS (PPM)		2)	NOTES 2-7 V-1/5 V-1/2-4 L-1/V-1
	million in methane equ d space measurement			

LOCATION CLESS GIVENS
ROCKESTER IN

DATE(S) DRILLED SEPTEMBER 13 1995 1400

DRILLING METHOD GEOPZOBE

TOTAL DEPTH 11: 9'

DRILLING CO. Normanice

JEPTH	SAMPLE INTERVAL	SPOON BLOWS	(ppm)	SOIL / ROCK CLASSIFICATION	PROFILE	NOTES
	7-6 7-8	16-11 H11-9	21	CLASSIFICATION BLACK BOND BLACK CLAY Brown 644	21	B-7-8
1111	ppm - parts per soil sample hea				}	
WPLING MET	HOD GEVER	:S-E		LOGGED BY Serin Series Darman	BORIN	G NUMBER 7010

:		
į	TEST BOREHOLE / WELL LOG	
		•

LOCATION GEFORE LIGHTS

ROCHFITTER AIY

DATE(S) DRILLED SETTINGS 7. 1995 1-132

WELL DIAMETER NA DRILLING METHOD GEOPEOSE

GW DEPTH NA TOTAL DEPTH 11-3

HEET & OF DRILLING CO. Normanie

TEPTH	SAMPLE INTERVAL	SPOON BLOWS	(ppm)	SOIL / ROCK CLASSIFICATION	PROFILE	NOTES	
	ppm - parts per soil sample hea	7 - 8 Fi - Ju Ju - III	i			V-6 V-5/L-4	
empling M	ETHOD GEO PRE	ರ ಕ	_	LOGGED BY	AIROB	IG NUMBER	

TAXES 162 GALSON CORPORATION LOCATION CERTIFIC WORKS TEST BOREHOLE / WELL LOG ROCHESTER AIY DATE(S) DRILLED Scorenes 13 1995 1543 DRILLING METHOD Geop2036 HELL DIAMETER __NA TOTAL DEPTH 11.3 ₹W DEPTH ____NA DRILLING CO. No-Kun six on HEET 4 OF SOIL/ROCK CLASSIFICATION SAMPLE SPOON INTERVAL BLOWS (ppm) EPTH PROFILE NOTES OLL PEUE 1.5-25 4 Bines, Brun Sind كدهرسحح Beens, 51+ Sul ۷. 5--6 32--- / in , type Ung 8,5-12 VI.1/2-1 21 8:5-10 14-11.3 111/21 BLANK SAME MIY 14-163 21 41 -//-3

soil sample head space measurements

WPLING METHOD GEOFRUBE

strelleylipe ensitem ni noillim sec shaq - maq

roades and

BORING NUMBER TB12

j

GALSON	CORP	ORATIC	N
TEST BORE	HOLE /	WELL	LOG

(1) OULD MERCAND VIEW
TANKS 162
LOCATION CLESS WORKS
ROCHESTER ANY
DATE(S) DRILLED SEFTEMBER 14 1995
DRILLING METHOD GEOPZOES
TOTAL DEPTH 9.3
TOTAL DEPTH

SAMPLE	SPOON		DRILLING CO. SOIL / ROCK	1	
INTERVAL	8LOWS	(ppm)	CLASSIFICATION	PROFILE	NOTES
	2- J	۷,	3.0' Rom 1.0 Part 2.0 Cm - Scoto Marst / Com - Sories	2-4	÷ (1-
7 7 7 1 1	1-8	ا د د			Sec
4.3	₹.>Z 9			2.57	v1/=- Las
9.87.					
ppm - parts per soil sample hea			valents		
S METHOD GLED FROM					

GALSON	CORPORATIO	NC
TEST BORE	HOLE / WELL	LOG

18 NUMBER - 954 30 79

"W DEPTH _____ NE___

DATE(S) DRILLED SEPTEMBER 14 1995

DRILLING METHOD GEOPLOSE

TOTAL DEPTH 9.5

KEET _	//_ OF		DRILLING CO.	North A	646	_
;:РТН <u> </u>	SAMPLE INTERVAL	SPOON 1245 BLOWS (PPIII		PROFILE	NOTES	_
	Z-Y	3-4 4	1.0 fore 3:7-30' Eran Mat Suly 4-7.5 Brance Un Tyr			
			7.5-3 brown Sung Brown Rober Charles	42	5,7-4.5 V-J/LRE	
	soil sample hea	million in methane eq d space measuremen	uilvalents its			
MPLING ME	THOO GEOFRIN	<u> </u>	LOGGED BY SCOTT SCHOLDER MAN	BORIN	NO NUMBER 7014	

	GA	LSO	4 CC	RPO	DRATIC	NC
TE	EST	BOR	EHOL	E /	WELL	LOG

3 NUMBER - 552 36 79

ELL DIAMETER ____NA

LUGGEO: Weeson A	
TANES 1 & 2	
LOCATION CLESS WORKS	
ROCHESTER MY	
DATE(S) DRILLED SEFTEMBER 14 1935	
· ·	
DRILLING METHOD GEOP2086	
TOTAL DEPTH _ //- 2'	

SAMPLE SPOON MAN CLASSIFICATION PROFILE NOTES 3TH INTERVAL BLOWS (ppm) CLASSIFICATION PROFILE NOTES 2 ' Gran Maid Char 2 ' Gran Maid Char 3 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	V DEPTH N △	TOTAL DEPTH	11-2'	
STH INTERVAL BLOWS (spm) CLASSIFICATION PROFILE NOTES 1' Bran Mid Chev 1' Bran Mid Chev 1' Bran Mid Chev 2' Charles Street Charles 1' Charles Street Ch		DRILLING CO.	No-141 A	<u> </u>
3-4 41 3-4 41 3-4 41 3-4 41 3-4 41 3-4 41 3-4 5-4 5-4 5-4 5-4 5-4 5-4 5-4 5-4 5-4 5	SAMPLE SPOON HAND BLOWS (PPM)	SOIL / ROCK CLASSIFICATION	PROFILE	NOTES
ppm - parts per million in methane equilvalents sail sample head space measurements	3-4 4	. ' Bren Mild Char	3.4	
Still sample head space measurements		·	21	25-14. VIJA
MPLING METHOD SORING NUMBER TOIS	Still sample head space measurements			
	MPLING METHOD FEDPENSE	GOED BY SETT SELLED & MAN	BORI	IG NUMBER 1815

1	GΑ	LSON	CORF	ORATIO	NC
TE	ST	BORE	HOLE	/ WELL	LOG

7	ANES 1 \$ 2
LOCATION	CLESS WORKS
	ROCHESTER NY

NUMBER	554 30 3	79	 	
-			•	
ELL DIAMETER	<u> </u>		 	
V DEPTH	. P.B.			

EET _____OF__

DATE(S) DRILLED SEPTEMBER 14 1995 1050

DRILLING METHOD GEOPEOSE

TOTAL DEPTH 10.3

DRILLING CO. NOTHER SICE

₽тн	SAMPLE INTERVAL	SPOON BLOWS	(bbw) fright	l	PROFILE	NOTES
	ppm - parts per soil sample hea	million in meth	ans squ	<u> </u>		G NUMBER
MPLING M	GE OPE	res	<u>-</u>	LOGGED SY SENT SENTEDEM		7316

GALSON	CORPORATION	ИС
TEST BORE	HOLE / WELL	LOG

LOCATION GLESING WORKS
ROCHESTER ANY

NUMBER 754 30 79

ELL DIAMETER NC

EET // OF____

DATE(S) DRILLED SCHEMBER 14 1995 1130

DRILLING METHOD GENDROBE

TOTAL DEPTH 12.1

DRILLING CO. Normanger

TH S	AMPLE FERVAL	SPOON BLOWS	(bbw)	SOIL / ROCK CLASSIFICATION	PROFILE	NOTES
			- 1 5-4	PRICE TO COUNTY 2.5 COUNTY STORY SONO (Min Cly) 2.5 Round 8.5-10.5 Sono Muni SANO (1.5-12 Blue Sano (Foreson 1.2 Water 1.3 Re	KI fr	F 1015 11.5-12
PPI Soli	m - parts per m I sample head	nillion in meth space meast	ane equ	ilvalents		

GALSON CORPORATION · · · LOCATION CLESSEN WORKS TEST BOREHOLE / WELL LOG 8 NUMBER __ 554 30 79 DATE(S) DRILLED Scoremes 14 DRILLING METHOD GEOP2036 /ELL DIAMETER _ 474 N£ W DEPTH _____ DRILLING CO. No-144 1 5-46 HEET _/S OF_ SPOON HUX BLOWS (PPM) SAMPLE SOIL / ROCK ₽ТН INTERVAL CLASSIFICATION PROFILE NOTES 11 0-1: --1 Born Mond Sam 3 -4 7.4 5-6 < 1 Beill Wit Shoo Griv Shoo 3' Run 2 ppm | vist | 2 ppm | vist | 1 / L - 1 2.5- 9.0 95-10 54-0 75-10 10-10-5 10-10 3 Errosic ppm - parts per million in methane equilyalents soil sample head space measurements PLING METHOD GEOFESE BORING NUMBER TB18

TANES 1 62 LOCATION CLASSIC WORKS

ROCHETER MY

3 NUMBER - 554 30 79 ELL DIAMETER ______N^_ V DEPTH _____NA

DATE(S) DRILLED Scorman 14 1995 DRILLING METHOD George

PROJECT GLEASEN WILLS

DRILLING CO. No-ilu noice

HEET _/6 OF DRILLING CO.					υ. <u>///»</u>	Nother note		
РТН	SAMPLE INTERVAL	SPOON HA	m)	SOIL / FIOCK CLASSIFICATION	PROFILE	NOTES		
	SAMPLE INTERVAL	BLOWS (PP	(15 B)	CLASSIFICATION Beam Scale (CLASS) Brown Sud/Chy Place & clay 11.3	<u>ک</u> ا	NOTES UNI / 2-11 12-11-5 VICI / 2-5 11-11-5		
	ppm - parts pe soil sample he	r million in methane ad space measurer	equilvalents nents					
PLING I	MEJHOD		LOGGED	**************************************	BOR	BORING NUMBER		
PLING METHOD GE-PERT LOGGED BY SETT SENEEDEMEN BORING NUMBER TE19								