Golder Associates Inc.

2221 Niagara Falls Boulevard, Suite 9 Niagara Falls, NY USA 14304 Telephone (716) 731-1560 Fax (716) 731-1652

REPORT ON

RECEIVED

MAY 2 4 1999

J.R. KOLANEK

SUBSURFACE INVESTIGATION
42-INCH SEWER LINE
VALEO MANUFACTURING FACILITY
1555 LYELL AVENUE
ROCHESTER, NEW YORK

Submitted to:

Valeo Wiper Systems Wiper Systems & Electric Motors North America Division One 3000 University Drive Auburn Hills, MI 48326-2356

DISTRIBUTION:

3 Copies - Valeo Wiper Systems; Auburn Hills, Michigan

2 Copies - General Motors; Detroit, Michigan

1 Copy
1 Copy
Golder Associates Inc.; Buffalo, New York

May 1999

RECEIVED

MAY 2 5 1999

DER/HAZ. WASTE REMED REGION 8

993-9211

Golder Associates Inc.

2221 Niagara Falls Boulevard, Sulte 9 Niagara Falls, NY USA 14304 Telephone (716) 731-1560 Fax (716) 731-1652

May 20, 1999

993-9211

Valeo Wiper Systems Wiper Systems & Electric Motors North America Division One 3000 University Drive Auburn Hills, MI 48326-2356

Attention: Mr. James R. Kolanek, CHMM

RE: REPORT ON SUBSURFACE INVESTIGATION

42-INCH SEWER LINE

VALEO MANUFACTURING FACILITY

1555 LYELL AVENUE ROCHESTER, NEW YORK

Gentlemen:

Golder Associates Inc. (Golder) is pleased to submit this report on the subsurface investigation performed in March 1999, in the vicinity of the 42-inch diameter sewer line traversing the Valeo manufacturing facility at 1555 Lyell Avenue in Rochester, New York.

Golder appreciates the opportunity to provide professional engineering services to Valeo. If you have any questions regarding this report, please do not hesitate to call.

Very truly yours,

GOLDER ASSOCIATES INC.

Anthony W. Grasso, P.G.

Associate

Attachments

F/N: C:\Common\Projects\993-9211\Reports\finalrpt.doc

TABLE OF CONTENTS

Co	ver Letter	
Ta	ble of Contents	i
SE	CTION	PAGE
1.	INTRODUCTION	1
2.	SUBSURFACE INVESTIGATION. 2.1 General	2 4 4 5
3.	SUBSURFACE INVESTIGATION RESULTS 3.1 Air Monitoring 3.2 Hydrogeology 3.3 Groundwater and Soil Chemistry	7 7
4.	CONCLUSIONS AND RECOMMENDATIONS	10
RI	EFERENCES	13
		In Order Following Page 13
	ABLE 1 - Soil Analytical Results ABLE 2 - Groundwater Analytical Results	
FI	GURE 1 - Groundwater Potentiometric Surface of Upper Bedrock	
AI AI AI	PPENDIX A - Field Borings Logs/Monitoring Well Installation Logs PPENDIX B - Air Monitoring Forms PPENDIX C - Well Development Field Records PPENDIX D - Variable Head Test Results PPENDIX E - Sample Collection Information Forms PPENDIX F - Laboratory Analytical Results	

1. INTRODUCTION

1.1 General

Golder Associates Inc. (Golder) is pleased to present this report on the recent subsurface investigation conducted at the Valeo manufacturing facility, located at 1555 Lyell Avenue, Rochester, New York. Golder conducted the subsurface investigation in the vicinity of the 42-inch diameter combination sanitary/storm/process wastewater sewer that extends from the Valeo facility north under Parking Area A and along Colfax Street. The 42-inch sewer discharges into a 60-inch public sewer line adjacent to Lyell Avenue (see Figure 1).

1.2 Background Information

In September 1998, Valeo's contractor visually inspected select sewers at the facility, which included a video tape recording of the inspection. The objective of the inspection was to determine if there were any obstructions that could account for sewer inundation that was experienced during storm events. No obstructions were observed, however, the 42-inch sewer was found to be deteriorated along the bottom portion of the pipe for the entire length of the sewer from the Valeo facility to the tie-in at the 60-inch sewer line along Lyell Avenue. The 42-inch sewer is reportedly installed in the top of bedrock at the facility. Bedrock ranges from approximately 8 to 10 feet below ground surface (bgs) under Parking Area A, then descends to approximately 17 feet bgs at the tie-in with the 60-inch sewer (Drawing M-1, dated Oct. 29, 1951, Manufacturing Building for Delco Appliance Division, Rochester, New York, Argonaut Realty Division, General Motors Corp.). Based on past investigation data collected at the facility, the water table in the area of the 42-inch sewer line was approximately 12 feet bgs (Haley & Aldrich, August 1996), and therefore, an outward hydraulic gradient may exist from the 42-inch sewer line to the groundwater table.

2. SUBSURFACE INVESTIGATION

2.1 General

Based on the conditions described above, it was realized that the potential existed for fluids in the sewer line to have migrated from the deteriorated sewer line into the bedrock aquifer. Because of this potential for sewer backfill material and/or groundwater to have been impacted, Golder developed a scope of work to evaluate this potential impact. Golder conducted the field portion of the subsurface investigation from March 25, 1999 through March 30, 1999. The investigation consisted of the installation of three groundwater monitoring wells installed in the upper portion of the bedrock aquifer at the facility near the southern portion of the sewer line in Parking Area A, as shown on Figure 1. Monitoring well MW-99-3 was placed approximately 100 feet east and upgradient of the sewer line and monitoring wells MW-99-1 and MW-99-2 were placed approximately 20 feet west and downgradient of the sewer line (see Figure 1).

These wells were installed to evaluate groundwater quality in the shallow bedrock aquifer in the vicinity of the sewer line. The location of the wells was selected near the southern portion of the sewer line because that is where the sanitary waste in the 42-inch sewer line receives process wastewater from the facility. This area is thought to be the location where the concentration of contaminants in the wastewater is highest, as dilution occurs further downstream from storm water entering the combined sewer.

In addition to the monitoring wells, four borings (designated B-99-1 through B-99-4) were advanced adjacent to the sewer line within the sewer line backfill materials. These borings, spaced approximately 130 feet apart (see Figure 1), were installed to evaluate the potential impact from the sewer line to these backfill materials.

Golder subcontracted Nothnagle Drilling as the drilling contractor; Columbia Analytical Services, Inc. as the analytical laboratory; and Wendel as the surveying contractor.

2.2 Drilling and Monitoring Well Installation

The monitoring wells were installed using a truck-mounted drill rig. Air rotary drilling was utilized for the bedrock monitoring wells. A 6-inch diameter downhole hammer was advanced through the overburden soil and into the bedrock to approximately 25 feet bgs (at MW-99-2, the overburden soil collapsed into the borehole, therefore, a temporary, 6inch steel casing was advanced to the top of bedrock (approximately 10 feet bgs) and the borehole was washed out using water and air). Upon reaching termination depth, the drill rods were removed from the borehole and a 2-inch diameter PVC well with a 10-foot, number 10-slotted well screen was installed. A filter pack was installed around the screen extending from the base of the well to approximately two feet above the screen, followed by a bentonite seal, followed by cement-bentonite grout. Each well was then completed at ground surface by installing a flush-mount roadbox into concrete, with the well ID painted on the underside of the roadbox lid. The well riser caps were secured with a lock. The installation of MW-99-2 required approximately 150 gallons of grout compared to 50 gallons of grout for the installation of wells MW-99-1 and MW-99-3. The additional grout likely migrated into the overburden-bedrock interface, where the soils were observed to have collapsed during drilling. The well drilling and installation information for each well is presented on Field Boring Logs and Monitoring Well Installation Logs, in Appendix A.

Workspace air was routinely monitored during drilling and sampling activities for VOCs using an organic vapor survey instrument. Results of this monitoring were recorded on Air Monitoring forms, presented in Appendix B. The soil and water generated during drilling was containerized in 55-gallon drums that were staged at the Valeo facility. Following installation, the top of each monitoring well riser was surveyed for elevation and location, along with the elevation of the surrounding ground surface. Survey information is presented on the Monitoring Well Installation Logs (Appendix A).

2.3 Monitoring Well Development and Hydraulic Testing

The wells were developed by bailing a minimum of five well volumes from each well. Field measurements for pH, total dissolved solids, and temperature were stable by the completion of well development. Well development information was recorded on Well Development Field Records, which are presented in Appendix C. Well development was conducted a minimum of 12 hours after well installation. The pH measurements of the groundwater from MW-99-2 were elevated (~11.8 compared to ~7 for the other two wells). The elevated pH is most likely due to grout contamination; as noted previously, more grout (and filter sand) was required at MW-99-2 than at the other two wells because the more fractured nature of the soils and upper bedrock in the vicinity of this well allowed grout to penetrate further into the formation. The elevated pH should disappear as the grout cures. A precleaned, stainless steel dedicated bailer, attached to new, nylon rope, was used to develop each well. The water generated during development was contained in 55-gallon drums and staged at the Valeo facility.

Upon completion of development, a variable head test was conducted in each well to calculate the horizontal hydraulic conductivity of the rock formation adjacent to the well screen. The test involved removing a slug of water from the well bore with the dedicated bailer and monitoring the water level recovery in the well with an electronic water level indicator. Monitoring well variable head test results were recorded in the field and are presented in Appendix D.

2.4 Drilling of Borings Adjacent to Sewer Line

The borings along the sewer line were advanced using a truck-mounted drill rig with 2½-inch inside diameter, hollow stem augers. The borings were positioned approximately 30 to 48 inches west of the centerline of the sewer line and advanced to refusal. The depth to the invert of the 42-inch sewer line was estimated at each boring location based on measured invert depths at two manholes located along the sewer line in Parking Area A. The invert depth ranged from approximately 12 feet bgs at B-99-1 to approximately 11 feet bgs at B-99-4. Soil samples were collected from 7 feet bgs to refusal, using a split

spoon soil sampler. An analytical laboratory analyzed the soil samples collected from the bottom of each borehole. Borings B-99-1 through B-99-3 were advanced to a depth that was estimated to be at the mid-point of the 42-inch sewer (not below the sewer invert elevation). Boring B-99-4 was advanced to a depth that was estimated to be below the invert elevation of the 42-inch sewer line.

Work space air was routinely monitored during drilling and sampling activities for VOCs, % LEL, and hydrogen sulfide using an organic vapor survey instrument and a trigas meter. Results of this monitoring were recorded on Air Monitoring forms, presented in Appendix B. Upon completion of drilling, the soil generated during drilling was containerized in 55-gallon drums and staged at the Valeo facility. The borehole was then grouted to within three inches of the surface and then capped with an asphalt patch material.

2.5 Groundwater Sampling and Groundwater Measurements

Groundwater from the three newly installed wells was sampled on March 27, 1999, using the same bailers and rope used to develop the wells. Sampling of the groundwater was performed after a minimum of 24 hours had passed after the wells were installed, with the exception of MW-99-2, which was sampled only after approximately 18.5 hours (necessary to meet the project schedule). Three well volumes were purged from the wells prior to sampling. A well volume is calculated based on the standing water column length in the well and the size of the well casing. The standing water column length is determined by subtracting the water level in the well from the depth of the well. The standing water column length is multiplied by 3.14 and the square of the well casing radius to arrive at the standing well volume. Sample Collection Information Forms documenting the groundwater sampling are presented in Appendix E.

Water level measurements from the newly installed wells were obtained during well development and hydraulic testing, prior to sampling, and several days after sampling of the wells. Water level measurements were obtained from the newly installed wells plus existing wells MW-309-2 and MW-7, on March 30, 1999, three days after sampling of the new wells. These water level measurements are considered most representative of static water table conditions, as presented in Figure 1.

2.6 Chemical Analyses and Quality Assurance/Quality Control

The groundwater and soil samples collected during the investigation were analyzed for volatile organic compounds (VOCs) by USEPA Method 8260 and for priority pollutant metals (PP Metals) by USEPA Method 6000/7000 series. The samples were collected, handled, and submitted to the analytical laboratory under chain-of-custody procedures. Field Quality Assurance/Quality Control (QA/QC) samples included one field duplicate groundwater sample and one field equipment blank sample (of one of the precleaned bailers, collected prior to sampling) analyzed for VOCs and PP Metals. In addition, a trip blank was prepared by the laboratory and sent with the sample shuttle to the laboratory with the samples collected in the field. The trip blank was only analyzed for VOCs. Laboratory batch matrix spike and matrix spike duplicate samples were analyzed for both the groundwater samples and soil samples.

2.7 Decontamination

Golder's drilling subcontractor constructed a temporary decontamination pad at the facility. The drilling equipment was decontaminated prior to drilling, between boreholes, and at the completion of drilling. The water and solids generated during decontamination were containerized in 55-gallon drums and staged at the Valeo facility.

3. SUBSURFACE INVESTIGATION RESULTS

3.1 Air Monitoring

During drilling and sampling, air monitoring for VOCs, % LEL, and hydrogen sulfide using an organic vapor survey instrument and a tri-gas meter resulted in no readings above background. Also, Golder personnel did not notice any odors or visible signs of contamination.

3.2 Hydrogeology

Figure 1 presents the potentiometric surface and groundwater flow direction of the groundwater in the upper bedrock aquifer in the vicinity of the 42-inch sewer line. The direction of groundwater flow as determined from this investigation is toward the northwest. The groundwater flow direction observed at the facility during prior investigations were reportedly also toward the northwest in this section of the facility (Haley and Aldrich, August 1996). The depth to the invert of the 42-inch sewer line was estimated based on measured invert depths at two manholes located along the sewer line in Parking Area A. The invert depth ranged from approximately 12 feet bgs at boring B-99-1 to approximately 11 feet bgs at boring B-99-4. The depth to the water table ranged from approximately 9.5 feet bgs at well MW-99-2 (adjacent to boring B-99-4) to an estimated 14 feet bgs at boring B-99-1. The water table elevation observed in the area of the 42-inch sewer during the investigation was slightly higher (approximately 1 to 1.7 feet higher) than noted during past investigations (Haley and Aldrich, August 1996). Calculated hydraulic conductivity for the rock formation surrounding the monitoring wells ranges from a high of 8.95x10⁻⁴ cm/sec at well MW-99-2 to a low of 3.83x10⁻⁶ cm/sec at well MW-99-3 (see Appendix D).

3.3 Groundwater and Soil Chemistry

Results of the analytical testing were summarized and are presented in Tables 1 and 2. Table 1 presents the results of the soil sampling from borings B-99-1 through B-99-4 and Table 2 presents the groundwater sampling from monitoring wells MW-99-1 through MW-99-3. Full laboratory results are presented in Appendix F.

VOCs were not detected in any soil samples collected from borings B-99-1 through B-99-4 and the metals detected are below New York State Department of Environmental Conservation's (NYSDEC's) guidance values (NYSDEC, January 1994). In addition, the metals concentrations detected in these soil samples are in the range detected in previous site background samples.

VOCs were only detected in groundwater samples from MW-99-2 and MW-99-3, as shown in Table 2. Chloroform was detected at 0.0083 mg/l in a groundwater sample obtained from MW-99-2 (the NYSDEC's class GA groundwater standard is 0.005 mg/l). Acetone was detected at 0.035 mg/l in a groundwater sampled obtained from MW-99-3. Also, there is no reported groundwater standard for acetone. M+P xylene was also detected at 0.0062 mg/l in a groundwater sample obtained from MW-99-3, just above the detection limit of 0.005 mg/l (which is also the NYSDEC's class GA groundwater standard). Acetone, chloroform, and M+P xylene were not detected in the blank QA/QC samples analyzed.

The metals detected in the groundwater samples collected from MW-99-1 through MW-99-3 included arsenic, chromium, copper, lead, nickel, selenium, and zinc. As indicated in Table 2, several of the metal concentrations, particularly from MW-99-2 and MW-99-3 are above NYSDEC's class GA groundwater standards (NYSDEC, June 1998). The groundwater samples from these wells were observed to be very turbid in the field at the time of sampling and were not filtered prior to analysis, in accordance with NYSDEC sampling guidelines.

The NYSDEC GA standard for drinking water resources are used for comparison purposes only. Reference to the GA standard does not imply that these values are necessarily the applicable standards for the site. This standard was used as a conservative benchmark for evaluating VOCs and metals in groundwater at the site in the absence of 1) regulatory standards specifically applicable to the site and 2) to be consistent with past work at the site (Haley and Aldrich, August 1996).

The field QA/QC samples included a duplicate groundwater sample collected from MW-99-1 for VOC and PP Metals analysis, a trip blank for VOC analysis, and a field equipment blank for VOC and PP Metals analysis. The constituents and concentration of constituents detected in the duplicate sample are consistent with the results of the analyses from MW-99-1. No VOCs were detected in the trip blank and no VOCs or metals were detected in the field equipment blank. Batch laboratory matrix spike and matrix spike duplicate results were acceptable (Appendix F).

4. CONCLUSIONS AND RECOMMENDATIONS

The direction of groundwater flow as determined from this investigation is toward the northwest, which is consistent with the groundwater flow direction observed at the facility in the past (Haley and Aldrich, August 1996). The New York State Barge Canal is located to the west of the facility and this is a likely groundwater discharge point for the local groundwater, thus influencing groundwater flow direction. At the time of this investigation, the water table is estimated to be lower than the invert elevation of the 42-inch sewer pipe along the northern section of the pipe in Parking Lot A. Based on this investigation data, the potential exists for an outward gradient along northern portions of the sewer line to the groundwater table. However, during times of dry weather periods, the water table may be lowered to an elevation that is below the entire 42-inch sewer line. Thus, there is the potential for migration of materials from the interior of the sewer to the surrounding soil and groundwater.

Hydraulic conductivities calculated by Golder for the rock formation surrounding the monitoring wells vary substantially, indicating that there is some heterogeneity in the upper bedrock at the facility. This is likely due to the variability in the degree of rock fracturing and/or solution enlargement of discontinuities. These conditions are not atypical for this bedrock formation.

Based on Golder's review of the field and analytical data from this investigation, there does not appear to be evidence of an obvious release from the 42-inch sewer line to the soil or groundwater in the study area. However, the results are considered inconclusive due to potentially anomalous detections of VOCs and due to high turbidity observed in the groundwater samples, which may have affected the metals concentration results.

Only trace concentrations of VOCs were detected in the groundwater samples obtained from MW-99-2 and MW-99-3. Chloroform was detected at 0.0083 mg/l in a groundwater sample obtained from MW-99-2 and acetone was detected at 0.035 mg/l in a groundwater sampled obtained from MW-99-3. Acetone and chloroform are common laboratory

contaminants; therefore, this may account for these detections. However, it was noted that neither acetone nor chloroform was detected in the QA/QC blank samples (i.e. trip blank, field equipment blank, and the laboratory method blank). Therefore, we can not confirm that these detections are from laboratory sources. M+P xylene was also detected at 0.0062 mg/l in a groundwater sample obtained from MW-99-3, just above the detection limit of 0.005 mg/l (which is also the NYSDEC's class GA groundwater standard for each isomer). However, the air rotary drilling technique used to drill the boreholes for the newly installed wells may have aerated the groundwater in the vicinity of the wells. Thus, since sampling was performed just after the wells where installed, the drilling activity may have affected the VOC concentration results.

Metals concentrations detected appear to exceed NYSDEC class GA groundwater standards in samples obtained from the three monitoring wells. However, the metal concentrations detected in these samples may be elevated due to the presence of the suspended solids, as observed from the high turbidity in the groundwater samples (which were unfiltered). Additional development of the wells could result in a reduction of the detected concentrations of the groundwater samples.

The results of the QA/QC sampling, which included a duplicate groundwater sample, a trip blank, a field equipment (bailer) rinse blank, and a review of batch laboratory matrix spike and matrix spike duplicate results, are acceptable with respect to data quality objectives for this project.

As the results of the initial sampling event are considered inconclusive, Golder recommends resampling the monitoring wells and analyses for the same suite of parameters. Also, the additional time between the drilling activity and the next sampling event should result in more representative groundwater conditions, as the aquifer has been given time to equilibrate to impacts of drilling. Prior to sampling, additional development of the monitoring wells is recommended in an attempt to reduce the turbidity of the groundwater samples.

GOLDER ASSOCIATES INC.

David C. Wehn

Project Hydrogeologist

Anthony L. Grasso, P.G.

F/N: C:\Common\Projects\993-9211\Reports\finalrpt.doc

132

REFERENCES

13

- Haley and Aldrich, August 1996, "Baseline Study Report, Former Delco Chassis Facility, Rochester."
- New York State Department of Environmental Conservation, January 1994, "Technical and Administrative Guidance Memorandum (HWR-94-4046)."
- New York State Department of Environmental Conservation, August 1997, "Contained-In Action Levels, Technical and Administrative Guidance Memorandum No. 3028."
- New York State Department of Environmental Conservation, June 1998, "6 NYCRR, Part 703, Ambient Water Quality Standards and Guidance Values, for Class GA Groundwaters."

VALEO WIPER SYSTEMS ROCHESTER, NEW YORK SOIL ANALYTICAL RESULTS (DETECTIONS ONLY)

		ample Identi oncentration	(3) Typical Background	(4) Soil Action Level		
Analytes (1)	B-99-1	B-99-2	B-99-3	B-99-4	Levels (mg/kg)	(mg/kg)
Volatile Organic Compounds						
None Detected	ND	ND	ND	ND	NA	NA
Metals						
Arsenic	4.25	1.63	ND	ND	3 to 12	0.4
Chromium	7.01	4.46	5.70	4.10	1.5 to 40	•
Copper	4.27	5.99	13.8	7.90	1 to 50	-
Lead	10.4	7.21	7.72	4.55	4 to 500	400
Nickel	7.76	5.60	7.18	5.50	0.5 to 25	1600
Selenium	0.677	0.689	ND	ND	0.1 to 3.9	390
Zinc	22.9	15.1	23.7	13.1	9 to 50	23000

NOTES:

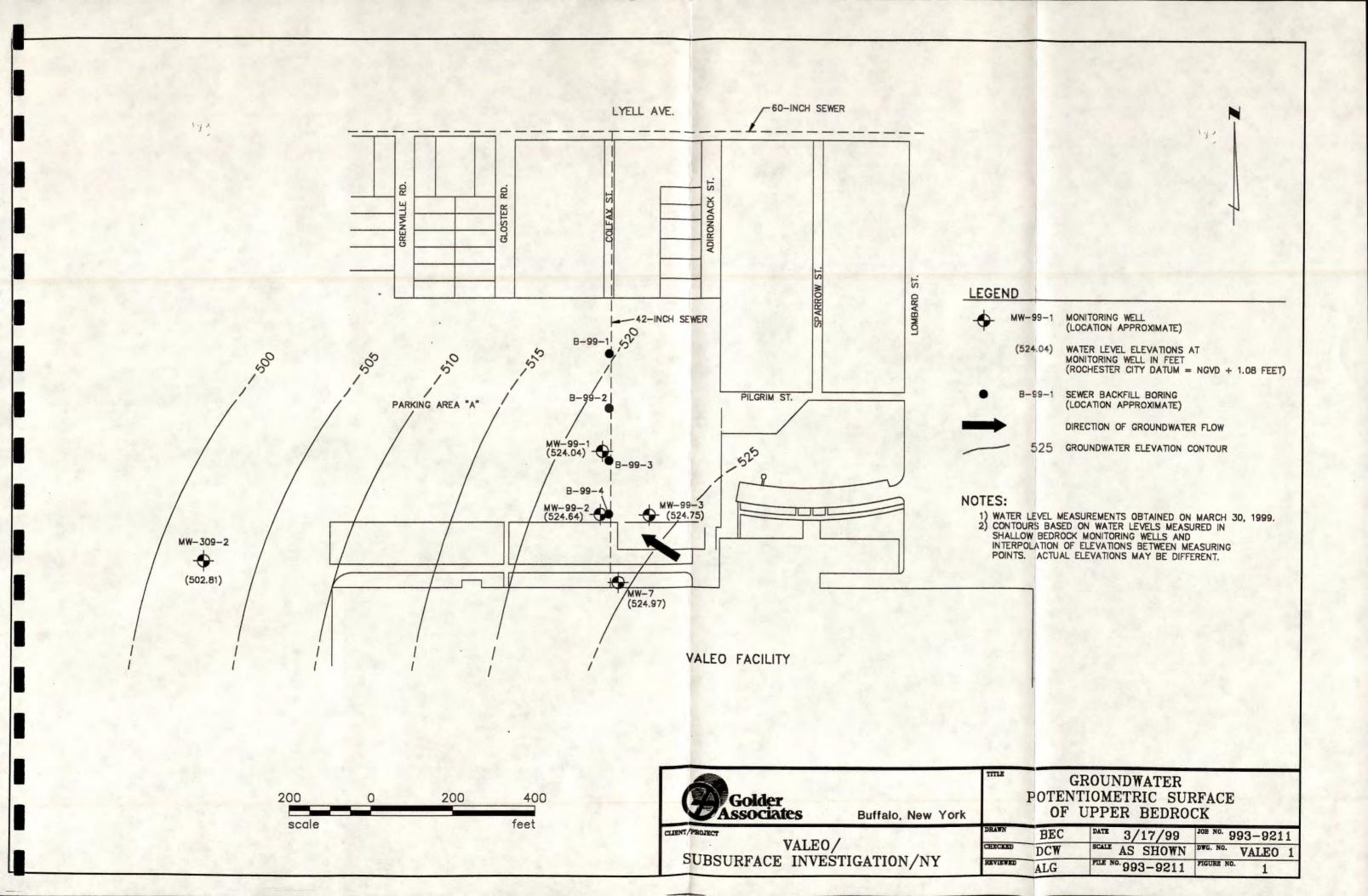

- (1) Analysis performed in accordance with USEPA SW846 Methods.
- (2) Detections only reported. Refer to laboratory results for detection limits.
- (3) Typical background levels and recommended soil cleanup objective are based on a 1% soil organic carbon content and was taken from the NYSDEC's "Technical and Administrative Guidance Memorandum (HWR-94-4046)", dated January 24, 1994.
- (4) NYSDEC Contained-In Action Levels, Technical and Administrative Guidance Memorandum No. 3028, dated August 26, 1997.
- (-) = No Standard
- ND = Not Detected
- NA = Not Applicable

TABLE 2 VALEO WIPER SYSTEMS ROCHESTER, NEW YORK GROUNDWATER ANALYTICAL RESULTS (DETECTIONS ONLY)

		Sample Ideni Concentrati	Groundwater		
Analytes (1)	MW-99-1	MW-99-2	MW-99-3	DUP	Standards (mg/l)(3)
Volatile Organic Compounds					
Acetone	ND	ND	0.035	ND	
Chloroform	ND	0.0083	- ND	ND	0.005
M+P-Xylene	ND	ND	0.0062	ND	0.005 each isomer
Metals					
Arsenic	0.0119	0.0532	0.137	0.0180	0.025
Chromium	0.0364	0.324	0.199	0.0410	0.05
Copper	0.0615	0.275	0.333	0.0775	0.2
Lead	0.102	0.189	0.234	0.127	0.025
Nickel	0.0460	0.200	0.219	0.0549	0.1
Selenium	0.00740	0.00881	0.0133	0.00904	140
Zinc	0.0949	0.520	0.431	0.108	• 2

Notes: (1) Analysis performed in accordance with USEPA Methods.

- (2) Detections only reported. Refer to laboratory results for detection limits.
- (3) Groundwater standards from the NYSDEC, 6 NYCRR, Part 703, "Ambient Water Quality Standards and Guidance Values", for Class GA groundwaters as amended, June 1998.
- (-) = No standard
- ND = Not Detected
- (Shade) = Exceed Standard
 - DUP = Duplicate sample of MW-99-1.

APPENDIX A

Field Boring Logs/Monitoring Well Installation Logs

Golder Associates

Field Boring Log

RE. HRS. DELAY BETYPES UGSR SAMPLE FUNN SAMPLE FUNN SAMPLE GROUPE FUNN SAMPLE GROUPE FUNN SAMPLE FUNN SAMPLE GROUPE FUNN SAMPLE FUNN	SLACK SACHING CLAFEY FINE SRAGMEN GRAVEL LAFERED UITTLE		A 8 6	C WAS CO	IA TIONS COMMISSION CONCEQUE GENERATIC RAPPE RESULENTER RESULENTER ESTAMBLE ES	juc	LA LAI SA	SOIL GESCRIPTION -RANGE OF PROPO TRACET 0 - NAME IS NOW AND NAME OF THE S - I - NOW NOTE: NAME IS NOW NOT NAME OF THE S - I - NOW NOTE: NAME OF THE SECOND OF THE SECON
DESCRIPTION	BLOWS		NO.		AMPLES LAMM. BLOWS PER & IN IPORCE	RECATT	DEPTII	SAMPLE DESCRIPTION AND BORING HOTES
Asphalt FILL - LS, d. brown to brown, SILT, some f-e sand, 10.9 Ton, gray rock, potentially side of seven pipe END OF BORING 11.0'		2-4-4-6-19-12	-	80 00		172.	7 9-10.9	Asphalt 0-3" FILE 3" to 7" - Drown SiH AND STATE OF SAND SAND SAND SAND SAND SAND SAND SAND

Golder Associates

DEPTH MOLE 11,5' JOB MQ 993-9211 PROJECT VALED SUBSULTACE IN. /NY
DEPTH SOIL DRILL 11 DA IMSP. ALG DRILLING METHOD 214" HSA
DEPTH ROCK CORE WEATHER CONDY DRILLING COMPANY NOTHINGS
NO. DIST. SA. _UO. SA TEMP. 35°F DRILL RIG CME-75 DRILLER S. LORA Field Boring Log _ вояния на. В-99-SHEET ___ SURFACE ELEV. - ORILLER S. LORANTY STARTED 1110 ,3/25/99 HRS. PROD. ___ WT. SAMPLER HAMMER _ 1 40 165. GROP_ COMPLETED 1145/3-25-99 _ HRS. DELAYED ____ WT. CASING HAMMER _ SOIL DESCRIPTION -RANGE OF PROPORTION ZHDITAIVBRBBA CHAFF I I'M ANN IT HA SAMPLE SAMP SAMP SAMP SAMPLE TYPES WEDDING WOLLTON WOLLTON WOLLTON

EV.	DESCRIPTION	BLOWS	N	g. TYP	SAMP	SLOWS	RECATT	ОЕРТИ	SAMPLE DESCRIPTION AND BORING HOTES
РТН	Asphalts				l l				Anaeved trum 0'+07' 1845 with no sampling
F	il - 1 heavy to		2-						As phalt - 0-3"
4 6	Brown, chyey SILT pradies to f-c		4=					-	Some fic sund, some grower
	grading to f-c SAND little silt		6-					7	SAILT-9) VLS, brown, CAYEN SILT
3	and gravel.		8	0	0 1-2	-L·3	4/24	9	some f-c sand, little grant!
			1.4	2 0	-	1-4-4	6/24	11-	SAZ (9-11) LS brown, SAND (f.c.)
11.5	1.0		1	-	-	16"	416	-	
12	Weathord bedrack		-	7	-	16			SA3 (11-11,5) VON gray polostor
1	DED FACE		1					-	TOOK SAZ for lab, analysis
	1	+	1 1						1000 200
	TOP OF ROCK END OF BOVING 11.5'		1 =						
	END OF BOVING 11,5"		1 4						
			1 3						
			1						
			1					-	
			1 1						
			1						
			1						
			1						
			1						
61			1		1				
			3						
E									

Golder Associates

Field Boring Log

PICO PICO PICO PICO PICO PICO PICO PICO	TYPES IN SAMPLE SR IN SAMPLE SR IN COPIN C COPIN C C C C C C C C C C C C C C C C C C C	SLACK SPOWN GRANSE CLAFEY FRAG FRAGMEN GRAVEL LATERED UITLE	rs		R E V 1.	ACEOUS TLEO MGE MGE LAMIC SSURE HTORAU SSURE MANUAL BOUAL	uc	Al S B	SOIL DESCRIPTION -RANGE OF PROPOR ACTIONS TO THE CONTROL OF PROPOR OF PROPOR OF PROPORTION OF PROPOR
v.	DESCRIPTION	BLOWS		NO. T		MPLES AMA. SLOWS PER 5 IN IFORCE	REC	DEPTH	SAMPLE DESCRIPTION AND BORING NOTES
2 4 60 8 9.5 L	FILL - DI brown to brown, LS to DN; chayey SILT grading fm SAND, I: Hle SIH and grave! TOP OF ROUK END OF Boring 9.5°		2-4-6-8-0-12	1 2		1-2-6-10	9/24	7-95	Aughred from 0-7 with No SAPONING Aphalt- 0-3" FILL- 3" to 7', D. Brown, clayer SILT, some for Sand, So gravel. SAI(7-91) LS, brown, fom SA INTO SIH, INTO GRAVEL, damp. TOOK SAZ for IAh, ANAlysis

OEFTH TIME W SAMPL AS A MOOD OF THE THE W TO THE	WAS DELAT	0°'	M MAIN MAIN MAIN MAIN MAIN MAIN MAIN MAI	CME	-75	40	SURFACE ELEV. ORILLER S. Dranty OATUM 25 OROP 30" STARTED 215 ,3-25-49 ORDP — COMPLETED 240 ,3-25-49 COMPLETED 240 ,3-25-49 COMPLETED 240 ,3-25-49 COMPLETED 250-60
ELEV.	GESCRIPTION	BLOWS FT	NG. TYPE	AMM. BLOWS	HECATT	DEPTH	ALARA FIRA D' to 7' AGS with
246802	Asphalt Fill-Lstopy, brown, sitt to chyer SLLI, grading to f-c SAND, little to t-gravel, little rock chips. TOP OF ROCK End of boring 115	8	100		01	7 9 11 115	Asphalt - 0.3" Asphalt - 0.3" Fill - 3" to 7' hrown, Silt, Some Fic Sand, Gravel SAI (7-9') LS, brown claver SILT, sure fic sand, little gravel, SA2 (9-11) CP, brown claver SILT some fic sund, little gravel, little rock chips, SA3 (11-11,5') DN brown, fic SAN little silt, trace gravel, little rock chips, mist. TOOK SA3 Fig. LAB. Analysis

EPTH A Q. CIST. EPTH M IME WI IAMPLE A A A A A A A A A A A A A	SAND UG. SAND TEMP.	55°F	ASSRE	G AEED SI PLER HAMMER	45A 11A 15A 15A 15A 15A 15A 15A 1	SAMPLE HAMMEY SHEET 1 OF 1 DE JUHCHING SURFACE ELEV. 533.75 DIGHLER S. KING DATUM MSC GROP NA STARTED 9:36 3/25/97 GROP NA COMPLETED 9:36 3/25/97 GROP NA COMPLETED 9:36 3/25/97 SAMPLE SAMPLE UFFLE S 1/2 AND 12 AND 12 AND 13 AND
ELEV.	DESCRIPTION	BLOWS		HAMM BLOWS REC	DEPTH	SAMPLE DESCRIPTION AND BORING HOTES
2 7 17° 0 2 7 10 10 10 10 10 10 10 10 10 10 10 10 10	LUCK DEAT DECEMBE		معنا بسيار بين المستور بينا بينيا			Score Stand and Stand. (Air Iramor jumple). 7-26-L FT LOWPEN delante

GEPTH 30 GEPTH 40 TIME WL SAMPLE 15 AUGUST. 3 GEPTH 40 TIME WL SAMPLE 15 AUGUST. 3 GEPTH 40 TIME WL	TYPES TO THE SAMPLE TO THE SAMPLE	LOUDY 35°F NA	ORILLII ORILL WT. SA WT. G.	NG COMPANY RIG LEED MPLER HAM ASING HAMM HEVIATIONS HORIM HOLOGOM HOL	NOTHN. SKSAL MER NIA ER NIA SAL SAL SAL SAL SAL SAL SAL SAL SAL SA	H DOWNHOLE HAMMER SHEET OF I AGLE DEILLING SURFACE ELEV. 534,05 ORILLER SI LING GATUM MSL OROP NA STARTED 11:55 3 25 KG OROP NA COMPLETED SICO 3 25 KG SAMPLE STARTED SICO 3 25 KG OROP NA COMPLETED SICO 3 25 KG SAMPLE STARTED SICO 3 25 KG SAMPLE SAMPLE SICO 3 10 MS 11 MS 12 MS
ELEV.	GESCRIPTION	BLOWS	NO. T	SAMPLES HAMM, BLOV PER 5 IN (FORCE)	A RECEIT	SAMPLE DESCRIPTION AND BORING NOTES
3 4 b 8 3.2	CUERBULDEN SCIL LUCKPORT DOLLMITE BEDKUCK					De 9.2 FT Comple somple. A. human simple. Q.2 - PT Lock pert Delenite Vert -ran 182 - 183 Ft. Water at 18 ft. Slant sheen in ceture water. Probable drop of al from rig hydraulias. Overwarm collapsina into harehole. In Et Deris waster from hair water to make the cosing drupped from hair with menter and from the complete with menter as a complete for a size of a complete with menter as a complete wit
130	Y END OF BOKEHOLE		4			

		110.0	-		
GEPTH MOLE 35.0 GEPTH SQIL ORILL NIA GEPTH ROCK CORE NIX NO. GIST. 3A. NIAUQ. 3A.NIA GEPTH ML. NIA TIME WL. NIA	WEATHER P. SUNNY	GRILLING METHOD	KSAD GRILL	DRILLING ER G. KING	SURFACE ELEV. 532.51 OATUM MSL STARTED 15:10, 325146 COMPLETED 15:21 : 3447
		ZHOITAIVBREEA		SOIL DESCRIPT	HOITROSORS SO SONAR- HOL
SAMPLE TYPES	M MAGE	M MEDIUM	SA SAMPLE SAI SAFURACES		3 170 WG 20 30 7070
CS CHURCH SAMPLE	C CDARSE	WOT WOTTLED	SO SAMO		NOWS COMMISSION PRODUCT
TO SOME OPEN	CA CLEME	HE HOMELISTIC	SI SILF	AMARIVE GEARITY	Mignes Conditioner House Pressure
05 DENISON SAMPLE	a an	OR ORANGE	SM SQME	VERY LOOSE VES	THE THE CHAPT I THE
AC MOCK COME	CLY CLAFEY	DIJUARDY H-BRUZZERINE HE	TR TRACE	COMPAC! CP	10 30 Feets See MOLITS
			waten the		ton and offered and formation of a

H	DESCRIPTION	BLOWS	.wg.	TYPE	AMPLES AMM. BLOWS PER & IN IFORCE	REC TT O	SAMPLE DESCRIPTION AND BORING NOTES
1	SO:L CUERBURDEN		***************************************				D-11.5 FT Gray-trown Sill With some sand, gavel. Air hommer sample 11.5-25 FT Lockport delante
1,5	LOCKPORT DOWNTE BEDRUCK						
11.5			dennihman handan				
18 S 0	END OF BOREITHE		4.4.1.1				
						N. J.	
	-		Annalas				

MONITORING WELL INSTALLATION LOG

Well Casing 2 in dia 15.4 Lt. Well Screen Type 10.5 Lt. Section 15.5 Screen Type 10.5 Lt. Scr	Casing Type _	2 in dia 15.4		MA		416					9:55 TIME		14111	
Casing Type SCIL AU PUC Screen Type WARMING SECTION Joint Type FLUCH THREAD Sort Size OF OLD INCH Siter Pack Dy. 25C LBS Grout Type CTMENT /57 3EMONTE N: 5332.37 Elev/Depth Sall/Rock Description Sall/Rock Description WELL SKETCH Installation Method C.2.AVTY/ Elev/Depth Sall/Rock Description WELL SKETCH Installation Method C.2.AVTY/ Elev/Depth Sall/Rock Description WELL SKETCH Installation Notes Float mount Consing	Casing Type _	Scal Alla Dos	I Well	Стееп							f. Bentor	nite Seal	3/3 2021	ECCLO PEUST
Grout Quantity SO GAL Centralizers NOTE Filter Pack Type ILCSE CON Installation Method C22VIT/ E: \$124.65 Installation Notes Filter Pack Type ILCSE CON Installation Method C22VIT/ E: \$124.65 Installation Notes Filter Pack Type ILCSE CON Installation Method C22VIT/ Filter Pack Type Installation Notes Filter Pack Type Installation Notes Filter Pack Type ILCSE CON Installation Notes Filter Pack Type Installation Method C22VIT/ Filter Pack Type Installation Notes Filter Pack Type Installation Notes Filter Pack Type Installation Notes Filter Pack Type Installation Method C22VIT/ Installation Notes Filter Pack Type Installation Notes Filter Pack Type Installation Method C22VIT/ Installation Notes Filter Pack Type Installation Notes Filter Pack Type Installation Notes Filter Pack Type Installation Method C22VIT/ Installation Notes Filter Pack Type Installation Method C22VIT/ Installation Method C22VIT/ Installation Method C22VIT/ Installation Notes Filter Pack Type Installation Method C22VIT/ Installation Notes Filter Pack Type Installation Method C22VIT/ Instal	Court Quantity	3011 40 100	Screen	Type	, VL	CHI	NED		LLLT		_ Installa	ation Meth	od (- 2)	UT/
STOULT TYPE N: 523.2.37 Dealing Mad Type N: 523.2.37 E: 5124.65 Installation Method C2.VITY E: 5124.65 Installation Method C2.VITY Float mount Professing Cancing Surface O: 528.420 FN Careers floating Cancing Canci	group Goanuty	SO GAL	Cantra	lizers		NO	ME				_ Filter	ack Type	MICZIE	CON
Installation Notes Soil/Rock Description WELL SKETCH Installation Notes	Grout Type	CEMENT 15% BENJOVITE	Orilling	g Mud	Type _		4/4				Install	ation Meth	od <u>C2</u> A	um/
San Displace Supposed				E.				a (0	:H				nstallatio	n Notes
AND CHERRICE CONSTRUCT Construc	lea"\ nebru	2011/ Hack Description								1	+			
Control of Balance Action of B									Pf	otect	ve			
Lement terrante grout Lement terrante Lement terrante grout Lement terrante Lement terrante grout Lement terrante grout Lement terrante grout Lement terrante Lement terrante grout Lement terrante Lement terrante grout Lement terrante Lement te	0.0.			0	2-	T	+		C	sing				
STOUT DELEGATE DELEGATE BEDETECH 15.00 Bediente Petters 15.35 Sant Fiterpack Well Development Note 25.55 LU 26. 26 27. Well Screen Well Development Note 25.55 LU 26. 20 27. Well Development Note 28. 20 28. 20 29. 20 20		ON ENDINERA				4								
STOUT DELEMANTE BEDETERM 15.35 15.35 15.35 16 15.35 15.35 16 15.35 16 17 18 18 18 18 18 18 18 18 18	J							1	0	16				
DELICITIES BEDETICIT BEDETIC BE								17	- Cem	eut e	enioning :			
BEDEZEIL BEDEZE		3						4	- W	al ris	er			
Bentonte Composite Compos	5 7.0	BEDKEEN DECEMBE						1						
16 15.55 16 15.55 16 16 17 18 18 18 19 10 10 10 10 10 10 10 10 10	T				9:1		+		320	haita	3			
15. 35 - Well Screen 15. 35 - Well Screen Well Development Note 25. 55 - F. b-inch dia. SEE WELL DEVELOPM 26. 26. 26. 26. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	2						+		7	ellets	-			
Well Development Note 25. 55 25. 55 26. 20 26. 20 26. 20 26. 20 27. 20 28. 20 28. 20 29. 20 20. 20	14		10	~	3.0		-							
Well Development Note 26 26 26 27 28 28 29 20 20 20 21 20 21 20 21 20 21 20 20	16.		15.	– ھ	1	Ε,	+							
26 21 25. 55 25. 65 25. 65 26. 20 26. 20 26. 20 27 28 28 29 20 20 20 20 20 20 20 20 20							=	1						
Well Development Note 25. 65 - F b-inch dia. SEE WELL DEVELOPM 25. 25 - F b-inch dia. SEE WELL DEVELOPM 25. 25 - F b-inch dia. SEE WELL DEVELOPM 25. 25 - F b-inch dia. SEE WELL DEVELOPM 25. 25 - F b-inch dia. SEE WELL DEVELOPM 25. 25 - F b-inch dia. SEE WELL DEVELOPM 25. 25 - F b-inch dia. SEE WELL DEVELOPM 25. 25 - F b-inch dia. SEE WELL DEVELOPM 26. 20 - F b-inch dia. SEE WELL DEVELOPM 26. 20 - F b-inch dia. SEE WELL DEVELOPM 27. 26 - F b-inch dia. SEE WELL DEVELOPM 28. 20 - F b-inch dia. SEE WELL DEVELOPM 29. 20 - F b-inch dia. SEE WELL DEVELOPM 29. 20 - F b-inch dia. SEE WELL DEVELOPM 29. 20 - F b-inch dia. SEE WELL DEVELOPM 29. 20 - F b-inch dia. SEE WELL DEVELOPM 29. 20 - F b-inch dia. SEE WELL DEVELOPM 29. 20 - F b-inch dia. SEE WELL DEVELOPM 20. 20 - F B-inch dia. SEE WELL DEVELOPM	12						+	+	– we	300	een			
25. 55 F. b-inch dia. SEE WELL DEVELOPMENT FORM 25. 55 F. b-inch dia. SEE WELL DEVELOPMENT FORM 25. 55 F. b-inch dia. SEE WELL DEVELOPMENT FORM 25. 55 F. b-inch dia. SEE WELL DEVELOPMENT FORM 25. 55 F. b-inch dia. SEE WELL DEVELOPMENT FORM 25. 55 F. b-inch dia. SEE WELL DEVELOPMENT FORM 25. 55 F. b-inch dia. SEE WELL DEVELOPMENT FORM 25. 55 F. b-inch dia. SEE WELL DEVELOPMENT FORM 25. 55 F. b-inch dia. SEE WELL DEVELOPMENT FORM 25. 26 F. BOLLETON FORM 25. 2	26					•	主	:	San	a fit	erack			
26 ZGL END CF BOREINE 36.20 Corehole FORM 28 30	i.L					:	1	1				We	ell Develo	pment Notes
26 EM) CF BAZEIREF. 26.20	21		25.	65	_	Ŀ	ŧ		- b-1	nich				DEVELOPME
35	26 766	EMP OF BOSEINE	36.	20 -	-	÷			6	rene	-	FOR	<i>n</i>	
		Elias Cr Dalar ser			-	-								
	30				-	-								
										·				
														•
						-								

MONITORING WELL INSTALLATION LOG

GA Insp. D. Weather C. Temp. 35 Well Casing _ Casing Type _ Joint Type _	Project VACEO WELM Drilling Method 6" DONY Drilling Company A SOF Drill Rig REED in:dla. 16:1 1. CCH 40 PVC FLUSH THREAD	DOWN IN LOTHNAGE SK5AD MA f. Well Screen Screen Type Slot Size Controlled	D2 Drille TERI	ALS ACI	INV in.d	EN INC	TORY	round Electronic Elect	iev. 5 5.20 TIME	34.05 3 . 64 3/26/79 DATE nite Seal 48 ation Method Pack City	Water Depth_Date/Time_Completed_ISI_MALE COULD GRAVITY 350 Li	NA NA 30 3/24/7 OFFICETS
Court Type C	EMENT / 2% BENTONITE	Drilling Mud	Type _		N	12			Install	ation Method	GRAVIT	Υ
Elev./Depth			W			=1(H			Ins	tailation No	tes
	GROUND SURFACE					_	- pro	sing	ount :			
2	Seil Belokni	0.3	3			7		ent/be	entional			
6						4	gro - we	ot a	ec			
8 10 92 12	LECROST DELEMITE BEORECK	9,	.7-					onte ellet	5			
- 14 - 16		15.	4-	31	-		Sand	Rite	park			
-18 -20 -22								scr		Well	Developmen	t Notes
-24 -26 25.4	END OF BOJEHAE	25.H	3 =		1			ehole		SEE FORM	MEIT DEM	elopu en [
-28 -30												
	ē fi i											

MONITORING WELL INSTALLATION LOG

	SCH 40 PUL	. Well Screen	-	a: Mic	HINE	dla	54	I.I	Install	nite Seal 3/8 PUREGOLD PE	wer.
nint Trees	ELIXH THREAP	Slot Size	C	0,010)	INCL	f		Filter	Pack City. 250 LBS.	
Front Type	SO GAL. CEMENT / 2% BENTONITE 1: 5112 59	Drilling Mu	d Type		NI.	A			_ Filter	Pack Type Morale OON lation Method GRAUTY	
	Soil/Rock Description				L SK	ETC	Н			Installation Notes	
							- pro	tection	e		
0.0.	GROUND SURFACE	0.3	+=		+	7	cas	ing			
٤	CHECHULDEN			7		7	- Ce	ment A	centante		
4						1		Tue			
\$			-	1		V	- We	11 0	ser		
10		10	-				-Beni	onite:	pellets		-
12 11.5	LURPOINT DECEMENTE	13	+-	=		-		040	erpack		
16		14.	2		-		-Sano	-	erpe		
18				3.	1	-	- Wel	scr	en		
:L			1.		1		-6-	nch	1	Well Development Note	3
24		24	1	= 1		1:				SEE WELL DEVELOP	IEN
1625.0	END OF BOREHAE		-		-					FORM	
28											
.30											
			-								
-	1										

APPENDIX B

Air Monitoring Forms

GOLDER ASSOCIATES INC.

Air Monitoring During Drilling

Sheet _____ of ____

OJECT NAME	VALE: 1	SUBSULFACE INVER, NY	BORING NUMBER	SEE BELOW
JECT NUMBER			AMBIENT TEMPERATURE	3501
TRUMENT USED A	AND ID NO.	Mini RAE PID	WIND SPEED	5-10 inph
IBRATION NUMBE	96 pp	m /100 ppm Isodylane	WIND DIRECTION	SW changing to SE
DATE	TIME	DEPTH OF AUGER	INSTI	RUMENT READING
3/25/99	7:42	11W-79-1 - 1C	Oppm	
	9:45	NW -XI-1 Zi	Cppm	
	11:30	MW-99-2 - 5'	Oppm	
	11:37	MW-99-2 - 18	C) ppm	
	1): मम	MW-99-2 24	() 7pm	
	15:12	Mw-99-3 - 11	Oppm	
	15125	Mw-99-3 25	C pgn	
3/26/99	9:20	MW-99-2 Cleaning	Oppm	
	10:00	MW-99-2 Cleaning	Oppm	
	11:00	MW-99-2 Cleaning	Oppm	
·				

GOLDER ASSOCIATES INC.

Air Monitoring During Drilling

Sheet ______ of ____

PROJECT NAME		instruce Assessment/NY	BORING NUMBER	37- 1/0-49-2/13-99-3/				
FOJECT NUMBER			AMBIENT TEMPERATURE	32- F				
INSTRUMENT USED		GT 402	WIND SPEED					
LIBRATION NUMB	ER		WIND DIRECTION	0-5mph				
DATE	TIME	DEPTH OF AUGER	INST	RUMENT READING				
3/25/49	955-005	0-10.9' B-99-1	OLEL O	He O, D Apm				
725/99	1110-1145	0-11.5' B422	Ø 11 h	h H				
3/27/97	1250-1:15	0-9.5' B-99.3	Ø 11 11	u u w				
3/25/99	245-240	0-11,5' B-99-4	Ø 11 11	u u				
		- •						
		4						
				· [-]				

APPENDIX C

Well Development Field Records

WELL DEVELOPMENT FIELD RECORD

/.L. BEFORE DEVI	D. LOTHY 310-FR / DATE EL / DEPTH D ORE DEVEL. COLUMN (FT.)	13:55 TIME 3b6 / 13:55 ATE TIME 25 FT 13.9		DATE OF COMPLE AFTER DO AFTER DO STANDIN	INSTALL STED DEVEL	3/26/99 SH	EET / 14: E TIM 26 / 1 E TIME FLL DIA. (23	14:40 In) 2 gal
DATE/TIME	VOLUME REMOVED (GALS)	TDS FIELD SPEC. COND. (umires/cm)	TEMP.	pH (s.u.)	OTHER		EMARKS	
312699 W:00	2.3	7 1990	13	6.9		Water	very.	sity
14: 0.5 14:14	6.9	7 1990	12	69				
14:25 14:35	9.2	7 1990	10	6.9				
7,55	11.1-2	77.10		-6-1				
							1	
				/				
								•
				DELICITED.	(==1)			
	11.5	- TOTAL V	OLUME	HEMOVED	(gai.)	•		
DEVELOPMENT M	ETHOD:	SS Pa	ler,	nylon	rebe			
NOTES:							-1	- 1

WELL DEVELOPMENT FIELD RECORD

JOB NAME DEVELOPED BY STARTED DEVEL 3/37/99 DATE W.L. BEFORE DEVEL 7/21 DEPTH WELL DEPTH: BEFORE DEVEL STANDING WATER COLUMN (F	1 9:20 TIME 13k7k91 9:25 DATE TIME 25.42 T.) 16:2	6	DATE OF COMPLE AFTER D AFTER D STANDIN	INSTALL 3	3/27 K 3/27 K 9.21 13 DEPTH D 25.12 V LUME	SHEET SHEET SHEET SHEET ATE TIME ATE TIME VELL DIA. (In	10:00 1) 2 gal.
DATE/TIME REMOVED (GALS)	TDS FIELD SPEC. COND.		рН	OTHER		REMARKS	
3/27/99 9:30 2.6	1470	14	11.6				
9:35 5.2	1910	12	11.8				
9:45 7.8	>1990	17	11.8				
9:51 10 4	7 1990	13	11.8		1-		
10:00 13.0	7 1990	13	11.8				
13.0	= TOTAL V	DLUME	REMOVED	(gai.)			
DEVELOPMENT METHOD: NOTES:	5.5. Ba	,	nylon		e		

WELL DEVELOPMENT FIELD RECORD

JOB NAME DEVELOPED BY STARTED DEVEL. W.L. BEFORE DEV WELL DEPTH: BEI STANDING WATEI SCREEN LENGTH	D. WEHN 3269 / DATE VEL. 9.5 / DEPTH D FORE DEVEL. R COLUMN (FT.)	12:45 TIME 5/26 / 12:45 ATE TIME 23:2 FT		AFTER D	INSTALL 3	3/25/99 St 3/27/49 DA 9.26 / 1 DEPTH DA 24.6 W	-	I OF I
DATE/TIME	VOLUME REMOVED (GALS)	TDS FIELD SPEC. COND.	PARAME TEMP. (C)	TERS pH (s.u.)	OTHER		REMARKS	
3/26/99 12:50		> 1990	12	7.4		Well be	ils dry 6	2 4 द्वा
13:10	5.0	7 1990	13	7.4		In 4	min	
3/22/99 08:4		7 1990	10	7.5				
9:10		7 1990	13	7.4				
			Þ					
			•					
	12.5	· = TOTAL V	OLUMF F	REMOVED	(gal.)			
DEVELOPMENT		S.S. Bail		ylon	who			

APPENDIX D

Variable Head Test Results

161

RISING HEAD TEST

WELL

MW-99-1

DATE OF TEST:

3/27/99

STATIC WATER DEPTH =

9.52 FEET BELOW TOC

STANDPIPE DIAMETER =

2.00 INCHES

SANDPACK DIAMETER =

6.00 INCHES 12.80 FEET BELOW TOC

TOP OF SATURATED SAND = BOTTOM OF SANDPACK = 26.00 FEET BELOW TOC

24 HOUR C	LOCK		ELAPSED TIME	DEPTH TO WATER	HEAD	HEAD RATIO	LOG HEAD
HR	MIN	SEC	(MIN)	(FT TOC)	(FEET)	(H/Ho)	RATIO
12	42	59	0.00	12.70	-3.18	1.000	0.0000
12	43	10	0.18	12.00	-2.48	0.780 *	-0.1080
12	43	34	0.58	11.50	-1.98	0.623 *	-0.2058

NOTES:

K= 2.98E-04 CM/SEC

	ELAPSED	HEAD
	TIME	RATIO
POINT 1	0.180	0.780
POINT 2	0.580	0.623

^{1) *} INDICATES THE BEST FIT LINE PASSES THROUGH THESE POINTS WHICH ARE USED TO CALCULATE HYDRAULIC CONDUCTIVITY

0.70 0.60 0.50 0.40 ELAPSED TIME (MIN) RISING HEAD TEST WELL MW-99-1 0.30 0.20 0.10 0.00 -0.2500 0.0000 LOG HEAD RATIO 6-150 -0.2000 -0.0500

April 1999 993-9211

RISING HEAD TEST

WELL MW-99-2 DATE OF TEST: 3/27/99

STATIC WATER DEPTH = 8.98 FEET BELOW TOC

STANDPIPE DIAMETER = 2.00 INCHES SANDPACK DIAMETER = 6.00 INCHES

TOP OF SATURATED SAND = 12.40 FEET BELOW TOC BOTTOM OF SANDPACK = 25.50 FEET BELOW TOC

24 HOUR C	CLOCK		ELAPSED TIME	DEPTH TO WATER	HEAD	HEAD RATIO	LOG HEAD
HR	MIN	SEC	(MIN)	(FT TOC)	(FEET)	(H/Ho)	RATIO
12	31	46	0.00	11.05	-2.07	1.000 *	0.0000
12	31	57	0.18	10.50	-1.52	0.734	-0.1341
12	32	5	0.32	10.20	-1.22	0.589	-0.2296
12	32	12	0.43	10.00	-1.02	0.493	-0.3074
12	32	19	0.55	9.80	-0.82	0.396	-0.4022
12	32	29	0.72	9.60	-0.62	0.300	-0.5236
12	32	43	0.95	9.40	-0.42	0 <mark>.</mark> 203 *	-0.6927

NOTES:

1) * INDICATES THE BEST FIT LINE PASSES THROUGH THESE POINTS WHICH ARE USED TO CALCULATE HYDRAULIC CONDUCTIVITY

K= 8.95E-04 CM/SEC

ELAPSED HEAD TIME RATIO
POINT 1 0.000 1.000
POINT 2 0.950 0.203

1.00 0.90 0.80 0.70 09.0 ELAPSED TIME (MIN) P RISING HEAD TEST WELL MW-99-2 0.50 0.40 0.30 0.20 0.10 0.00 ⊕ 00000.0 -0.8000 LOG HEAD RATIO

1.06 HEAD RATIO

1.06 HEAD RATIO

1.06 HEAD RATIO -0.1000 -0.2000 -0.6000 -0.7000

Esi

RISING HEAD TEST

WELL MW-99-3 DATE OF TEST: 3/27/99

9.26 FEET BELOW TOC STATIC WATER DEPTH = STANDPIPE DIAMETER = 2.00 INCHES SANDPACK DIAMETER = 6.00 INCHES TOP OF SATURATED SAND = 12.90 FEET BELOW TOC

BOTTOM OF SANDPACK = 24.80 FEET BELOW TOC

24 HOUR	CLOCK		ELAPSED TIME	DEPTH TO WATER	HEAD	HEAD RATIO	LOG
HR	MIN	SEC	(MIN)	(FT TOC)	(FEET)	(H/Ho)	RATIO
9	20	0	0.00	23.45	-14.19	1.000 *	0.0000
10	7	0	47.00	21.76	-12.50	0.881	-0.0551
12	55	0	215.00	12.63	-3.37	0.237 *	-0.6244

NOTES:

1) * INDICATES THE BEST FIT LINE PASSES THROUGH THESE POINTS WHICH ARE USED TO CALCULATE HYDRAULIC CONDUCTIVITY

> K= 3.83E-06 CM/SEC

ELAPSED HEAD TIME RATIO POINT 1 0.000 1.000 215.000 0.237 POINT 2 .

250.00 200.00 150.00 ELAPSED TIME (MIN) 100.00 50.00 0.00 0.0000 LOG HEAD AETIO -0.7000 -0.1000 -0.2000 -0.5000 -0.6000

RISING HEAD TEST WELL MW-99-3

APPENDIX E

Sample Collection Information Forms

SAMPLE COLLECTION INFORMATION FORM

AI PROJECT NAME UNCEC JUNEST NY	GAI PROJECT NO.	993-9311	
MW-99-1	SOURCE CODES: RIVER	OR STREAM, WELL, S	OIL, OTHER (CIRCLE ONE)
PURGING	GLECT NAME VILLE JAVES AND GAI PROJECT NO. 373-9311 SOURCE CODES: RIVER OR STREAM, WELL SOIL, OTHER (CIRC PURGING INFORMATION (IF APPLICABLE) DATE (ty/mm/dd) 79 / C 3 / 37 TIME (24 HR CLOCK) 10:6 ELAPSED HRS. GAL PURGED (Gal.) 10:9 DEDICATED (MIN) SAMPLE COLLECTION INFORMATION SAMPLE COLLECTION INFORMATION SAMPLE COLLECTION INFORMATION LING DATE (ty/mm/dd) 99 / C 3 / 37 TIME (24 HR CLOCK) 10:30 MATRIX FILTERED (MIN) SAMPLE COLLECTION INFORMATION LING DEVICE (SEE BELOW) 5S SAMPLE TYPE GRADICOMPOSITE (CIRCLE ONE) FILTERED (MIN) FILTERED (MIN) WELL INFORMATION (IF APPLICABLE) LENCE POINT TO LEV. (FT. MSL.) NA WELL DEPTH (FT.) 25 05 STICKUP (FT.) STICKUP (FT.) AND WELL DEPTH (INCHES) 10:4 Matrix Filter (I		
CASING VOL(Gal.)	GAL PURGED (Gal.)	_7.0_	
	E COLLECTION INFORM	IATION	
SAMPLING DEVICE (SEE BELOW	DEDICATED (Y/N) SAMPLE TYPE GRABI	FIL COMPOSITE (CIRCLE C	TERED (YN)
DEE DT SIEV (FT MSL)	WELL DEPTH (FT.) STICKUP (FT.)	_25.05 NA	
FIELD ME			
ph (STD) SPEC. COND.(UMHOS/CM) TEMPERATURE (C)	_6.9_	6.9	
	OMMENITS/CALCULATION	Ne	
<i>p p p p p p p p p p</i>			
SAMPLE APPEARANCE	6.6.4		
2" DIA. CASING CONTAINS .163 Gal./Ft. 4" DIA. CASING CONTAINS .652 Gal./Ft.	DUP cal	lected here	
(A)			
PLEASE INCLUDE SAMPLE BOTTLE SIZE, BOTTLE COLOR, BOTTLE MATERIAL	PRESERVATIVES AND ANALYTICAL ME		ODY FORMS. TE 3/27/99

SAMPLE COLLECTION INFORMATION FORM

BAI PROJECT NAME VALES	SUBSUPACE NO	GAI PROJECT NO.	993-9	211	
SAMPLE ID. M	W-99-2	SOURCE CODES: RIV	ER OR STREAM, WE	SOIL, OTHER (CIRCLE ONE)
	PURGING	INFORMATION (IF AP	PLICABLE)		
PURGE DATE (yy/mm/dd) CASING VOL.(Gal.) PURGING DEVICE (SEE BELOW)	99,03,27 -26_E	TIME (24 HR CLOCK) GAL. PURGED (Gal.) PURGING DEVICE MA	9:25 	ELAPSED HRS.	3/4
	SAMPLE	E COLLECTION INFOR	RMATION		
SAMPLING DATE (yy/mm/dd) SAMPLING DEVICE (SEE BELOW SAMPLING DEVICE MATERIAL	2'2'	TIME (24 HR CLOCK) DEDICATED (YTN) SAMPLE TYPE - GRA		MATRIX FILTERED (Y(N) ICLE ONE)	1,0
(A) AIR-LIFT PUMP (B) BLADDER PUMP (C) P		VEL (E) BAILER (F) OTHER (SPECI NFORMATION (IF APP			
REFERENCE POINT REF. PT. ELEV.(FT. MSL) DEPTH TO WATER (REF. PT.) GW. ELEV.(FT. MSL.)	79 - NA - 9 24 - NA	LAND ELEVATION (FI WELL DEPTH (FT.) STICKUP (FT.) WELL DIAMETER (INC	2s. NA.	<u> </u>	
	FIELD MEA	SURMENTS (FOUR R	REPLICATES) Rinal Somele	•	
pH (STD) SPEC. COND.(UMBOS/CM) TEMPERATURE (C) OTHER (SPECIFY)	_11.8				
	co	MMENTS/CALCULATI	IONS		
WEATHER CONDITIONS SAMPLE APPEARANCE		Turbidy			
2" DIA. CASING CONTAINS .163 4" DIA. CASING CONTAINS .652	Gal./Ft. Gal./Ft.				
PLEASE INCLUDE SAMPLE BOTTLE SIZE, BO	TTLE COLOR, BOTTLE MATERIAL, I	PRESERVATIVES AND ANALYTICAL	METHOOS ON LABORATOR	Y CUSTODY FORMS.	1
SAMPLER SIGNATURE	Dia	1		DATE 3/2	7/99

Golder Associates					
ASSOCIATED	SAMPLE COLL	ECTION INFORMA	TION FOR	M	
AI PROJECT NAME VALED	SUBSURFICE NY	GAI PROJECT NO.	993-92	11	
· ·	1w-99-3	SOURCE CODES: RIVER C	R STREAM, WEL	, SOIL, OTHER (CI	RCLE ONE)
	PURGING	INFORMATION (IF APPLIC	CABLE)		
PURGE DATE (yy/mm/dd) CASING VOL.(Gal.) PURGING DEVICE (SEE BELOW	99 <u>103 127</u> - <u>2.5</u> - E	TIME (24 HR CLOCK) GAL. PURGED (Gal.) PURGING DEVICE MATER	8:40 5.070 Der	ELAPSED HRS. DEDICATED (N)	3/4
	SAMPL	E COLLECTION INFORMA	TION		
SAMPLING DATE (yy/mm/dd) SAMPLING DEVICE (SEE BELO SAMPLING DEVICE MATERIAL	2.2.	TIME (24 HR CLOCK) DEDICATED-ON) SAMPLE TYPE - GRAB	_9:20 OMPOSITE (CIRC	MATRIX FILTERED (Y/16) LE ONE)	H20
(A) AIR-LIFT PUMP (B) BLADDER PUMP (C)					
	WELL I	NFORMATION (IF APPLICA	ABLE)		
REFERENCE POINT REF. PT. ELEV.(FT. MSL) DEPTH TO WATER (REF. PT.) GW. ELEV.(FT. MSL.)	TCR	LAND ELEVATION (FT./MS WELL DEPTH (FT.) STICKUP (FT.) WELL DIAMETER (INCHES	21/2: b	=	
	FIELD ME	ASURMENTS (FOUR REPL	ICATES)		
pH (STD) SPEC. COND.(UMHOS/C TEMPERATURE (C) OTHER (SPECIFY)	M)		7.4		-
OTTLET (or con 1)		OMMENTS/CALCULATIONS			
THE CONDITIONS		ONIVER TO TORE OF	3		,
WEATHER CONDITIONS SAMPLE APPEARANCE	Very to	- Lid			
2" DIA. CASING CONTAINS .16 4" DIA. CASING CONTAINS .65	3 Gal./Ft. 2 Gal./Ft.				
71.					
PLEASE INCLUDE SAMPLE BOTTLE SIZE, E	OTTLE COLOR, BOTTLE MATERIAL	, PRESERVATIVES AND ANALYTICAL METH	ODS ON LABORATORY	CUSTODY FORMS.	
SAMPLER SIGNATURE	D.	wh		DATE 3/21	194

APPENDIX F

Laboratory Analytical Results

A FULL SERVICE ENVIRONMENTAL LABORATORY

REC'D

 ∞

GOLDER ANSOCIATES

APR | 9 1999

BUFFALO, NY

PN

FN

ROUTE

April 14, 1999

Mr. Anthony Grasso Golder Associates 2221 Niagara Falls Blvd. LPO Box 4069 Niagara Falls, NY 14304-4069

PROJECT: VALEO
Submission #:9903000341

Dear Mr. Grasso:

Enclosed are the analytical results of the analyses requested. The analytical data was provided to you on 03/30/99 per a Facsimile transmittal. All data has been reviewed prior to report submission.

Should you have any questions please contact me at (716) 288-5380.

Thank you for letting us provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Mark Wilson

Client Service Manager

Enc.

This package has been reviewed by Columbia Analytical Services OA Department/Laboratory Director prior to report submittal.

Effective 04/01/96

CAS LIST OF QUALIFIERS

(The basis of this proposal are the EPA-CLP Qualifiers)

- U Indicates compound was analyzed for but was not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. For further explanation see case narrative / cover letter.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- N Spiked sample recovery not within control limits.

 (Flag the entire batch Inorganic analysis only)
- Duplicate analysis not within control limits.
 (Flag the entire batch Inorganic analysis only)
 - Also used to qualify Organics QC data outside limits.
- D Spike diluted out.
- S Reported value determined by Method of Standard Additions. (MSA)
- X As specified in the case narrative.

CAS Lab ID # for State Certifications

10145 NJ ID # in Rochester: 73004 NY ID # in Rochester: CT ID # in Rochester: PH0556 RI ID # in Rochester: 158 M-NY032 NH ID # in Rochester: 294198-A MA ID # in Rochester: OH EPA # in Rochester: VAP AIHA # in Rochester: 7889

Reported: 04/14/99

Golder Associates
Project Reference: VALEO/SUBSURFACE INV./NY
Client Sample ID : B-99-1

Date Sampled: 03/25/99 Date Received: 03/25/99 Order #: 280827 Sample Matrix: SOIL/SEDIMENT

Submission #:9903000341

ANALYTE	PQL	RESULT	DRY WEIGHT UNITS	DATE ANALYZED	ANALYTICAL DILUTION
)	
METALS					
ANTIMONY	6.00	7.46 U	MG/KG	03/30/99	1.0
ARSENIC	1.00	4.25	MG/KG	03/30/99	1.0
BERYLLIUM	0.500	0.622 U	MG/KG	03/30/99	1.0
CADMIUM	0.500	0.622 U	MG/KG	03/30/99	1.0
CHROMIUM	1.00	7.01	MG/KG	03/30/99	1.0
COPPER	2.00	4.27	MG/KG	03/30/99	1.0
LEAD	0.500	10.4	MG/KG	03/30/99	1.0
MERCURY	0.0500	0.0622 U	MG/KG	03/30/99	1.0
NICKEL	4.00	7.76	MG/KG	03/30/99	1.0
SELENIUM	0.500	0.677	MG/KG	03/30/99	1.0
SILVER	1.00	1.24 U	MG/KG	03/30/99	1.0
THALLIUM	1.00	1.24 U	MG/KG	03/30/99	1.0
	2.00	22.9	MG/KG	03/30/99	1.0
ZINC	2.00	44.5	120/100	33,30,33	2.0
WET CHEMISTRY				22 /22 /22	
PERCENT SOLIDS	1.0	80.4	ક	03/29/99	1.0

VOLATILE ORGANICS METHOD 8260B TCL Reported: 04/14/99

Golder Associates

Project Reference: VALEO/SUBSURFACE INV./NY

Client Sample ID : B-99-1

Date Sampled: 03/25/99 Order #: 280827 Sample Matrix: SOIL/SEDIMENT

Date Received: 03/25/99 Submission #: 9903000341 Percent Solid: 80.4

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 03/29/99			
ANALYTICAL DILUTION: 1.00			Dry Weight
ACETONE	20	25 U	UG/KG
BENZENE	5.0	6.2 U	UG/KG
BROMODICHLOROMETHANE	5.0	6.2 U	UG/KG
BROMOFORM	5.0	6.2 U	UG/KG
BROMOMETHANE	5.0	6.2 U	UG/KG
2-BUTANONE (MEK)	10	12 U	UG/KG
CARBON DISULFIDE	10	12 U	UG/KG
CARBON TETRACHLORIDE	5.0	6.2 U	UG/KG
	5.0	6.2 U	UG/KG
CHLOROBENZENE	5.0	6.2 U	UG/KG
CHLOROETHANE	5.0	6.2 U	UG/KG
CHLOROFORM			
CHLOROMETHANE	5.0	6.2 U	UG/KG
DIBROMOCHLOROMETHANE	5.0	6.2 U	UG/KG
1,1-DICHLOROETHANE	5.0	6.2 U	UG/KG
L, 2-DICHLOROETHANE	5.0	6.2 U	UG/KG
1,1-DICHLOROETHENE	5.0	6.2 U	UG/KG
CIS-1,2-DICHLOROETHENE	5.0	6.2 U	UG/KG
TRANS-1,2-DICHLOROETHENE	5.0	6.2 U	UG/KG
1,2-DICHLOROPROPANE	5.0	6.2 U	UG/KG
CIS-1,3-DICHLOROPROPENE	5.0	6.2 U	UG/KG
TRANS-1,3-DICHLOROPROPENE	5.0	6.2 U	UG/KG
ETHYLBENZENE	5.0	6.2 U	UG/KG
2-HEXANONE	10	12 U	UG/KG
METHYLENE CHLORIDE	5.0	6.2 U	UG/KG
4-METHYL-2-PENTANONE (MIBK)	10	12 U	UG/KG
STYRENE	5.0	6.2 U	UG/KG
1,1,2,2-TETRACHLOROETHANE	5.0	6.2 U	UG/KG
TETRACHLOROETHENE	5.0	6.2 U	UG/KG
TOLUENE	5.0	6.2 U	UG/KG
1,1,1-TRICHLOROETHANE	5.0	6.2 U	UG/KG
1,1,1-TRICHLOROETHANE	5.0	6.2 U	UG/KG
1,1,2-TRICHLOROETHANE	5.0	6.2 U	UG/KG
TRICHLOROETHENE		6.2 U	UG/KG
VINYL CHLORIDE	5.0		
O-XYLENE	5.0	6.2 U	UG/KG
M+P-XYLENE	5.0	6.2 U	UG/KG
SURROGATE RECOVERIES QC	LIŅIŢS		
4-BROMOFLUOROBENZENE (74	- 121 %)	98	8
TOLUENE-D8 (81		102	ક
DIBROMOFLUOROMETHANE (80	- 120 %)	99	8

0200

.

Reported: 04/14/99

Golder Associates Project Reference: VALEO/SUBSURFACE INV./NY Client Sample ID : B-99-2

Date Sampled: 03/25/99 Date Received: 03/25/99 Order #: 280828 Sample Matrix: SOIL/SEDIMENT

Submission #:9903000341

PQL	RESULT	DRY WEIGHT UNITS	DATE ANALYZED	ANALYTICAL DILUTION	
				1.0	
1.00	1.63			1.0	
0.500	0.578 U	MG/KG		1.0	
0.500	0.578 U	MG/KG	03/30/99	1.0	
1.00	4.46	MG/KG	03/30/99	1.0	
2.00	5.99	MG/KG	03/30/99	1.0	
0.500	7.21	MG/KG	03/30/99	1.0	
0.0500	0.0578 U	MG/KG	03/30/99	1.0	
4.00	5.60			1.0	
0.500	0.689			1.0	
	1.16 U			1.0	
	1.16 U			1.0	
	15.1			1.0	
1.0	86.5	ક	03/29/99	1.0	
	6.00 1.00 0.500 0.500 1.00 2.00 0.500	6.00 6.94 U 1.00 1.63 0.500 0.578 U 0.500 0.578 U 1.00 4.46 2.00 5.99 0.500 7.21 0.0500 0.0578 U 4.00 5.60 0.500 0.689 1.00 1.16 U 1.00 1.16 U 2.00 15.1	6.00 6.94 U MG/KG 1.00 1.63 MG/KG 0.500 0.578 U MG/KG 0.500 0.578 U MG/KG 1.00 4.46 MG/KG 2.00 5.99 MG/KG 0.500 7.21 MG/KG 0.0500 0.0578 U MG/KG 0.0500 0.0578 U MG/KG 1.00 1.16 U MG/KG 1.00 1.16 U MG/KG 2.00 15.1 MG/KG	6.00 6.94 U MG/KG 03/30/99 1.00 1.63 MG/KG 03/30/99 0.500 0.578 U MG/KG 03/30/99 0.500 0.578 U MG/KG 03/30/99 1.00 4.46 MG/KG 03/30/99 2.00 5.99 MG/KG 03/30/99 0.500 7.21 MG/KG 03/30/99 0.500 7.21 MG/KG 03/30/99 0.0500 0.0578 U MG/KG 03/30/99 4.00 5.60 MG/KG 03/30/99 4.00 5.60 MG/KG 03/30/99 0.500 0.689 MG/KG 03/30/99 1.00 1.16 U MG/KG 03/30/99 1.00 1.16 U MG/KG 03/30/99 2.00 15.1 MG/KG 03/30/99	

VOLATILE ORGANICS METHOD 8260B TCL Reported: 04/14/99

Golder Associates

Project Reference: VALEO/SUBSURFACE INV./NY

Client Sample ID : B-99-2

Date Sampled: 03/25/99 Order #: 280828 Sample Matrix: SOIL/ Date Received: 03/25/99 Submission #: 9903000341 Percent Solid: 86.5 Sample Matrix: SOIL/SEDIMENT

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 03/29/99			
ANALYTICAL DILUTION: 1.00			Dry Weight
ACETONE	20	23 U	UG/KG
BENZENE	5.0	5.8 U	UG/KG
BROMODICHLOROMETHANE	5.0	5.8 U	UG/KG
BROMOFORM	5.0	5.8 U	UG/KG
BROMOMETHANE	5.0	5.8 U	UG/KG
2-BUTANONE (MEK)	10	12 U	UG/KG
CARBON DISULFIDE	10	12 U	UG/KG
CARBON TETRACHLORIDE	5.0	5.8 U	UG/KG
CHLOROBENZENE	5.0	5.8 U	UG/KG
CHLOROETHANE	5.0	5.8 U	UG/KG
CHLOROFORM	5.0	5.8 U	UG/KG
CHLOROMETHANE	5.0	5.8 U	UG/KG
DIBROMOCHLOROMETHANE	5.0	5.8 U	UG/KG
	5.0	5.8 U	UG/KG
1,1-DICHLOROETHANE	5.0	5.8 U	UG/KG
1,2-DICHLOROETHANE	5.0	5.8 U	UG/KG
1,1-DICHLOROETHENE	5.0	5.8 U	UG/KG
CIS-1,2-DICHLOROETHENE	5.0	5.8 U	UG/KG
TRANS-1,2-DICHLOROETHENE	5.0	5.8 U	UG/KG
1,2-DICHLOROPROPANE	5.0	5.8 U	UG/KG
CIS-1,3-DICHLOROPROPENE	5.0	5.8 U	UG/KG
TRANS-1,3-DICHLOROPROPENE	5.0	5.8 U	UG/KG
ETHYLBENZENE	10	12 U	UG/KG
2-HEXANONE	5.0	5.8 U	UG/KG
METHYLENE CHLORIDE	10	12 U	UG/KG
4-METHYL-2-PENTANONE (MIBK)	5.0	5.8 U	UG/KG
STYRENE	5.0	5.8 U	UG/KG
1,1,2,2-TETRACHLOROETHANE	5.0	5.8 U	UG/KG
TETRACHLOROETHENE		5.8 U	UG/KG
TOLUENE	5.0	5.8 U	UG/KG
1,1,1-TRICHLOROETHANE	5.0	5.8 U	UG/KG
1,1,2-TRICHLOROETHANE	5.0		
TRICHLOROETHENE	5.0	5.8 U	UG/KG UG/KG
VINYL CHLORIDE	5.0	5.8 U	UG/KG
O-XYLENE	5.0	5.8 U	UG/KG
M+P-XYLENE	5.0	5.8 U	OG/KG
SURROGATE RECOVERIES QC LI	MITS	rhi	
4-BROMOFLUOROBENZENE (74 -	121 %)	99	96
1 Ditolio 1 Douto Dati -	117 %)	97	20
	120 %)	103	9
DIBROMOF HOOROPHE THANKS	,		

Reported: 04/14/99

Golder Associates
Project Reference: VALEO/SUBSURFACE INV./NY
Client Sample ID : B-9.9-3

Sample Matrix: SOIL/SEDIMENT Date Sampled: 03/25/99 Date Received: 03/25/99 Order #: 280829

Submission #:9903000341

ANALYTE	PQL	RESULT	DRY WEIGHT UNITS	DATE ANALYZED	ANALYTICAL DILUTION
	REPORT TO MAKE WE THE TOTAL TO	725-20-20-20-20-20-20-20-20-20-20-20-20-20-			
METALS					
ANTIMONY	6.00	6.85 U	MG/KG	03/30/99	1.0
ARSENIC	1.00	1.14 U	MG/KG	03/30/99	1.0
BERYLLIUM	0.500	0.571 U	MG/KG	03/30/99	1.0
CADMIUM	0.500	0.571 U	MG/KG	03/30/99	1.0
CHROMIUM	1.00	5.70	MG/KG	03/30/99	1.0
COPPER	2.00	13.8	MG/KG	03/30/99	1.0
LEAD	0.500	7.72	MG/KG	03/30/99	1.0
MERCURY	0.0500	0.0571 U	MG/KG	03/30/99	1.0
NICKEL	4.00	7.18	MG/KG	03/30/99	1.0
SELENIUM	0.500	0.571 U	MG/KG	03/30/99	1.0
SILVER	1.00	1.14 U	MG/KG	03/30/99	1.0
THALLIUM	1.00	1.14 U	MG/KG	03/30/99	1.0
ZINC	2.00	23.7	MG/KG	03/30/99	1.0
WET CHEMISTRY			9		
PERCENT SOLIDS	1.0	87.6	*	03/29/99	1.0

VOLATILE ORGANICS METHOD 8260B TCL Reported: 04/14/99

Golder Associates

Project Reference: VALEO/SUBSURFACE INV./NY

Client Sample ID : B-99-3

Date Sampled: 03/25/99 Order #: 280829 Sample Matrix: SOIL/SEDIMENT Date Received: 03/25/99 Submission #: 9903000341 Percent Solid: 87.6

ANALYTE				PQL	RE	SULT	UNITS
DATE ANALYZED : 03/29/99							
ANALYTICAL DILUTION: 1.00	0						Dry Weigh
ACREONE				20	2	3 U	UG/KG
ACETONE				5.0		7 U	UG/KG
BENZENE				5.0		7 U	UG/KG
BROMODICHLOROMETHANE				5.0		7 U	UG/KG
BROMOFORM				5.0		7 U	UG/KG
BROMOMETHANE				10		1 U	UG/KG
2-BUTANONE (MEK)				10		1 U	UG/KG
CARBON DISULFIDE				5.0		7 U	UG/KG
CARBON TETRACHLORIDE						7 U	UG/KG
CHLOROBENZENE				5.0		7 U	
CHLOROETHANE				5.0			UG/KG
CHLOROFORM				5.0		7 U	UG/KG
CHLOROMETHANE				5.0		7 U	UG/KG
DIBROMOCHLOROMETHANE				5.0		7 U	UG/KG
1,1-DICHLOROETHANE				5.0		7 U	UG/KG
1,2-DICHLOROETHANE				5.0		7 U	UG/KG
1,1-DICHLOROETHENE				5.0	5.	7 U	UG/KG
CIS-1,2-DICHLOROETHENE				5.0	5.	7 U	UG/KG
TRANS-1,2-DICHLOROETHENE				5.0	5.	7 U	UG/KG
1,2-DICHLOROPROPANE				5.0	5.	7 U	UG/KG
CIS-1,3-DICHLOROPROPENE				5.0	5.	7 U	UG/KG
TRANS-1,3-DICHLOROPROPENE				5.0		7 U	UG/KG
ETHYLBENZENE				5.0		7 U	UG/KG
2-HEXANONE				10		1 U	UG/KG
METHYLENE CHLORIDE				5.0		7 U	UG/KG
4-METHYL-2-PENTANONE (MIBK)				10		1 U	UG/KG
STYRENE				5.0		7 U	UG/KG
1,1,2,2-TETRACHLOROETHANE				5.0		7 U	UG/KG
TETRACHLOROETHENE				5.0		7 U	UG/KG
TOLUENE				5.0		7 U	UG/KG
1,1,1-TRICHLOROETHANE				5.0		7 U	UG/KG
1,1,2-TRICHLOROETHANE				5.0	5.	7 U	UG/KG
TRICHLOROETHENE				5.0	5.	7 U	UG/KG
VINYL CHLORIDE				5.0	5.	7 U	UG/KG
O-XYLENE				5.0	5.	7 U	UG/KG
M+P-XYLENE				5.0	5.	7 U	UG/KG
SURROGATE RECOVERIES	QC	LIM	AITS				
4-BROMOFLUOROBENZENE	(74	-	121	8)	10	6	8
TOLUENE-D8	(81		117		10		ક
DIBROMOFLUOROMETHANE	(80		120		10		%

Reported: 04/14/99

Golder Associates

Project Reference: VALEO/SUBSURFACE INV./NY Client Sample ID: B-99-4

Sample Matrix: SOIL/SEDIMENT Date Sampled: 03/25/99 Date Received: 03/25/99 Order #: 280830

Submission #:9903000341

ANALYTE	PQL	RESULT	DRY WEIGHT UNITS	DATE ANALYZED	ANALYTICAL DILUTION
METALS					
ANTIMONY	6.00	7.17 U	MG/KG	03/30/99	1.0
ARSENIC	1.00	1.19 U	MG/KG	03/30/99	1.0
BERYLLIUM	0.500	0.597 U	MG/KG	03/30/99	1.0
CADMIUM	0.500	0.597 U	MG/KG	03/30/99	1.0
CHROMIUM	1.00	4.10	MG/KG	03/30/99	1.0
COPPER	2.00	7.90	MG/KG	03/30/99	1.0
LEAD	0.500	4.55	MG/KG	03/30/99	1.0
MERCURY	0.0500	0.0597 U	MG/KG	03/30/99	1.0
NICKEL	4.00	5.50	MG/KG	03/30/99	1.0
SELENIUM	0.500	0.597 U	MG/KG	03/30/99	1.0
	1.00	1.19 U	MG/KG	03/30/99	1.0
SILVER	1.00	1.19 U	MG/KG	03/30/99	1.0
THALLIUM	2.00	13.1	MG/KG	03/30/99	1.0
ZINC	2.00	23.2	110/110	33/30/99	1.0
WET CHEMISTRY					
PERCENT SOLIDS	1.0	83.7	ક	03/29/99	1.0

VOLATILE ORGANICS METHOD 8260B TCL Reported: 04/14/99

Golder Associates

Project Reference: VALEO/SUBSURFACE INV./NY

Client Sample ID : B-99-4

Date Sampled: 03/25/99 Order #: 280830 Sample Matrix: SOIL/SEDIMENT Date Received: 03/25/99 Submission #: 9903000341 Percent Solid: 83.7

ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 03/29/99				
ANALYTICAL DILUTION: 1.	00			Dry Weight
ACETONE		20	24 U	UG/KG
BENZENE		5.0	6.0 U	UG/KG
BROMODICHLOROMETHANE		5.0	6.0 U	UG/KG
BROMOFORM		5.0	6.0 U	UG/KG
BROMOMETHANE		5.0	6.0 U	UG/KG
2-BUTANONE (MEK)		10	12 U	UG/KG
CARBON DISULFIDE		10	12 U	UG/KG
CARBON TETRACHLORIDE		5.0	6.0 U	UG/KG
CHLOROBENZENE		5.0	6.0 U	UG/KG
CHLOROBENZENE		5.0	6.0 U	UG/KG
CHLOROFORM		5.0	6.0 U	UG/KG
		5.0	6.0 U	UG/KG
CHLOROMETHANE		5.0	6.0 U	UG/KG
DIBROMOCHLOROMETHANE		5.0	6.0 U	UG/KG
1,1-DICHLOROETHANE		5.0	6.0 U	UG/KG
1,2-DICHLOROETHANE		5.0	6.0 U	UG/KG
1,1-DICHLOROETHENE		5.0	6.0 U	UG/KG
CIS-1,2-DICHLOROETHENE		5.0	6.0 U	UG/KG
TRANS-1,2-DICHLOROETHENE		5.0	6.0 U	UG/KG
1,2-DICHLOROPROPANE				UG/KG
CIS-1,3-DICHLOROPROPENE		5.0	6.0 U	
TRANS-1,3-DICHLOROPROPENE		5.0	6.0 U	UG/KG
ETHYLBENZENE		5.0	6.0 U	UG/KG
2-HEXANONE		10	12 U	UG/KG
METHYLENE CHLORIDE		5.0	6.0 U	UG/KG
4-METHYL-2-PENTANONE (MIBK)		10	12 U	UG/KG
STYRENE		5.0	6.0 U	UG/KG
1,1,2,2-TETRACHLOROETHANE		5.0	6.0 U	UG/KG
TETRACHLOROETHENE		5.0	6.0 U	UG/KG
TOLUENE		5.0	6.0 U	UG/KG
1,1,1-TRICHLOROETHANE		5.0	6.0 U	UG/KG
1,1,2-TRICHLOROETHANE		5.0	6.0 U	UG/KG
TRICHLOROETHENE		5.0	6.0 U	UG/KG
VINYL CHLORIDE		5.0	6.0 U	UG/KG
O-XYLENE		5.0	6.0 U	UG/KG
M+P-XYLENE		5.0	6.0 U	UG/KG
SURROGATE RECOVERIES	QC LI	MITS	c for	
4-BROMOFLUOROBENZENE	(74 -	121 %)	97	ક
TOLUENE-D8	(81 -	117 %)	99	8
DIBROMOFLUOROMETHANE		120 %)	101	%

Reported: 04/14/99

Golder Associates Project Reference:VALEO Client Sample ID :MW-99-1

Date Sampled: 03/27/99 Date Received: 03/27/99 Order #: 281228 Submission #:9903000341 Sample Matrix: WATER

ANALYTE	PQL	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION
METALS	0.0600	0.0600 U	MG/L	03/30/99	1.0
ANTIMONY	0.0600 0.0100	0.0119	MG/L	03/30/99	1.0
ARSENIC	0.0100	0.00500 U	MG/L	03/30/99	1.0
BERYLLIUM	0.00500	0.00500 U	MG/L	03/30/99	1.0
CADMIUM	0.00300	0.0364	MG/L	03/30/99	1.0
CHROMIUM	0.0100	0.0615	MG/L	03/30/99	1.0
COPPER		0.102	MG/L	03/30/99	1.0
LEAD	0.00500	0.000300 U	MG/L	03/29/99	1.0
MERCURY	0.000300	0.00300 0	MG/L	03/30/99	1.0
NICKEL	0.0500	0.0440	MG/L	03/30/99	1.0
SELENIUM		0.0100 T	MG/L	03/30/99	1.0
SILVER	0.0100	0.0100 U	MG/L	03/30/99	1.0
THALLIUM	0.0100	0.0100 0	MG/L	03/30/99	1.0
ZINC	0.0200	0.0949	10/1	03/30/33	 •

VOLATILE ORGANICS METHOD 8260B TCL Reported: 04/14/99

Golder Associates

Project Reference: VALEO Client Sample ID : MW-99-1

Date Sampled: 03/27/99 Order #: 281228 Sample Matrix: WATER Date Received: 03/27/99 Submission #: 9903000341 Analytical Run 36510

ANALYTE	-	PQL	RESULT	UNITS
DATE ANALYZED : 03/29/99	9		-	
ANALYTICAL DILUTION: 1	.00			
ACETONE		20	20 U	UG/L
BENZENE		5.0	5.0 U	UG/L
BROMODICHLOROMETHANE		5.0	5.0 U	UG/L
BROMOFORM		5.0	5.0 U	UG/L
BROMOMETHANE		5.0	5.0 U	UG/L
2-BUTANONE (MEK)		10	10 U	UG/L
CARBON DISULFIDE		10	10 U	UG/L
CARBON TETRACHLORIDE		5.0	5.0 U	UG/L
CHLOROBENZENE		5.0	5.0 U	UG/L
CHLOROETHANE		5.0	5.0 U	UG/L
CHLOROFORM		5.0	5.0 U	UG/L
CHLOROMETHANE		5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHANE		5.0	5.0 U	UG/L
1,2-DICHLOROETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHENE		5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE		5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE		5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE		5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
ETHYLBENZENE		5.0	5.0 U	UG/L
2-HEXANONE		10	10 U	UG/L
METHYLENE CHLORIDE		5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)		10	10 U	UG/L
STYRENE		5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE		5.0	5.0 U	UG/L
TETRACHLOROETHENE		5.0	5.0 U	UG/L
TOLUENE		5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE		5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE		5.0	5.0 U	UG/L
TRICHLOROETHENE		5.0	5.0 U	UG/L
VINYL CHLORIDE		5.0	5.0 U	UG/L
O-XYLENE		5.0	5.0 U	UG/L
M+P-XYLENE		5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIM			
	100	c.(-)	107	0.
4-BROMOFLUOROBENZENE		115 %)	107	8
TOLUENE-D8		110 %)	104	8
DIBROMOFLUOROMETHANE	(86 - :	118 %)	102	ક

Reported: 04/14/99

Golder Associates Project Reference:VALEO Client Sample ID :MW-99-2

Date Sampled: 03/27/99 Date Received: 03/27/99 Sample Matrix: WATER Order #: 281229

Submission #:9903000341

ANALYTE	PQL	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION
METALS					
ANTIMONY	0.0600	0.0600 U	MG/L	03/30/99	1.0
ARSENIC	0.0100	0.0532	MG/L	03/30/99	1.0
BERYLLIUM	0.00500	0.00500 U	MG/L	03/30/99	1.0
CADMIUM	0.00500	0.00500 U	MG/L	03/30/99	1.0
CHROMIUM	0.0100	0.324	MG/L	03/30/99	1.0
COPPER	0.0200	0.275	MG/L	03/30/99	1.0
LEAD	0.00500	0.189	MG/L	03/30/99	1.0
MERCURY	0.000300	0.000300 U	MG/L	03/29/99	1.0
	0.0400	0.200	MG/L	03/30/99	1.0
NICKEL	0.00500	0.00881	MG/L	03/30/99	1.0
SELENIUM	0.00300	0.0100 U	MG/L	03/30/99	1.0
SILVER		0.0100 U	MG/L	03/30/99	1.0
THALLIUM	0.0100				1.0
ZINC	0.0200	0.520	MG/L	03/30/99	1.0

VOLATILE ORGANICS METHOD 8260B TCL Reported: 04/14/99

Golder Associates

Project Reference: VALEO Client Sample ID: MW-99-2

Date Sampled: 03/27/99 Order #: 281229 Sample Matrix: WATER Date Received: 03/27/99 Submission #: 9903000341 Analytical Run 36510

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 03/29/99		= -	
ANALYTICAL DILUTION: 1.00			
CETONE	20	20 U	UG/L
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 U	UG/L
-BUTANONE (MEK)	10	10 U	UG/L
CARBON DISULFIDE	10	10 U	UG/L
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L
CHLOROFORM	5.0	8.3	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
,1-DICHLOROETHANE	5.0	5.0 U	UG/L
,2-DICHLOROETHANE	5.0	5.0 U	UG/L
,1-DICHLOROETHENE	5.0	5.0 U	UG/L
IS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L
,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
THYLBENZENE	5.0	5.0 U	UG/L
-HEXANONE	10	10 U	UG/L
METHYLENE CHLORIDE	- 5.0	5.0 U	UG/L
-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L
STYRENE	5.0	5.0 U	UG/L
,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L
COLUENE	5.0	5.0 U	UG/L
,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0	5.0 U	UG/L
VINYL CHLORIDE	5.0	5.0 U	UG/L
O-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE (8	36 - 115 %)	110	ક
	38 - 110 %)	103	ક
	36 - 118 %)	103	%

60 - '

Reported: 04/14/99

Golder Associates Project Reference:VALEO Client Sample ID :MW-99-3

Date Sampled: 03/27/99 Date Received: 03/27/99 Order #: 281230 Submission #:9903000341

Sample Matrix: WATER

POL	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION
0.0600	0.0600 U			1.0
0.0100	0.137	MG/L	03/30/99	1.0
0.00500	0.00500 U	MG/L	03/30/99	1.0
0.00500	0.00500 U	MG/L	03/30/99	1.0
0.0100	0.199	MG/L	03/30/99	1.0
	0.333		03/30/99	1.0
				1.0
				1.0
				1.0
				1.0
				1.0
				1.0
				1.0
	0.0100 0.00500 0.00500	0.0600 0.0600 U 0.0100 0.137 0.00500 0.00500 U 0.00500 0.00500 U 0.0100 0.199 0.0200 0.333 0.00500 0.234 0.000300 0.000300 U 0.0400 0.219 0.00500 0.0133 0.0100 0.0100 U	0.0600 0.0600 U MG/L 0.0100 0.137 MG/L 0.00500 0.00500 U MG/L 0.00500 0.00500 U MG/L 0.0100 0.199 MG/L 0.0200 0.333 MG/L 0.00500 0.234 MG/L 0.00500 0.234 MG/L 0.00400 0.219 MG/L 0.00500 0.0133 MG/L 0.00500 0.0133 MG/L 0.0100 0.0100 U MG/L 0.0100 0.0100 U MG/L	PQL RESULT UNITS ANALYZED 0.0600 0.0600 U MG/L 03/30/99 0.0100 0.137 MG/L 03/30/99 0.00500 0.00500 U MG/L 03/30/99 0.0100 0.199 MG/L 03/30/99 0.0200 0.333 MG/L 03/30/99 0.00500 0.234 MG/L 03/30/99 0.000300 0.000300 U MG/L 03/30/99 0.0400 0.219 MG/L 03/30/99 0.00500 0.0133 MG/L 03/30/99 0.0100 0.0100 U MG/L 03/30/99 0.0100 0.0100 U MG/L 03/30/99

VOLATILE ORGANICS METHOD 8260B TCL Reported: 04/14/99

Golder Associates

Project Reference: VALEO Client Sample ID: MW-99-3

Date Sampled: 03/27/99 Order #: 281230 Sample Matrix: WATER
Date Received: 03/27/99 Submission #: 9903000341 Analytical Run 36510

ANALYTE	4	PQL	RESULT	UNITS
DATE ANALYZED : 03/29	/99			
ANALYTICAL DILUTION:	1.00			
		20	25	TTG /T
ACETONE		20	35	UG/L
BENZENE		5.0	5.0 U	UG/L
BROMODICHLOROMETHANE		5.0	5.0 U	UG/L
BROMOFORM		5.0	5.0 U	UG/L
BROMOMETHANE		5.0	5.0 U	UG/L
2-BUTANONE (MEK)		10	10 U	UG/L
CARBON DISULFIDE		10	10 U	UG/L
CARBON TETRACHLORIDE		5.0	5.0 U	UG/L
CHLOROBENZENE		5.0	5.0 U	UG/L
CHLOROETHANE		5.0	5.0 U	UG/L
CHLOROFORM		5.0	5.0 U	UG/L
CHLOROMETHANE		5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHANE		5.0	5.0 U	UG/L
1,2-DICHLOROETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHENE		5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE		5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE		5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE		5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	•	5.0	5.0 U	UG/L
TRANS-1, 3-DICHLOROPROPENE		5.0	5.0 U	UG/L
ETHYLBENZENE		5.0	5.0 U	UG/L
2-HEXANONE		10	10 U	UG/L
METHYLENE CHLORIDE	•	5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)		10	10 U	UG/L
STYRENE		5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE		5.0	5.0 U	UG/L
TETRACHLOROETHENE		5.0	5.0 U	UG/L
TOLUENE		5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE		5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE		5.0	5.0 U	UG/L
TRICHLOROETHENE		5.0	5.0 U	UG/L
VINYL CHLORIDE		5.0	5.0 U	UG/L
O-XYLENE		5.0	5.0 U	UG/L
M+P-XYLENE		5.0	6.2	UG/L
SURROGATE RECOVERIES	QC LIM	ITS (A)		
4-BROMOFLUOROBENZENE	(86 - 1	15 %)	111	%
TOLUENE-D8		110 %)	104	%
DIBROMOFLUOROMETHANE		18 %)	103	%

Reported: 04/14/99

Golder Associates Project Reference: VALEO Client Sample ID : DUP.

Order #: 281231 Sample Matrix: WATER Date Sampled: 03/27/99 Date Received: 03/27/99

Submission #:9903000341

ANALYTE	bÕr	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION
METALS					
ANTIMONY	0.0600	0.0600 U	MG/L	03/30/99	1.0
ARSENIC	0.0100	0.0180	MG/L	03/30/99	1.0
BERYLLIUM	0.00500	0.00500 U	MG/L	03/30/99	1.0
CADMIUM	0.00500	0.00500 U	MG/L	03/30/99	1.0
CHROMIUM	0.0100	0.0410	MG/L	03/30/99	1.0
COPPER	0.0200	0.0775	MG/L	03/30/99	1.0
	0.00500	0.127	MG/L	03/30/99	1.0
LEAD MERCURY	0.000300	0.000300 U	MG/L	03/29/99	1.0
	0.0400	0.0549	MG/L	03/30/99	1.0
NICKEL	0.00500	0.00904	MG/L	03/30/99	1.0
SELENIUM				03/30/99	
SILVER	0.0100	0.0100 U	MG/L		1.0
THALLIUM	0.0100	0.0100 0	MG/L	03/30/99	1.0
ZINC	0.0200	0.108	MG/L	03/30/99	1.0

VOLATILE ORGANICS METHOD 8260B TCL Reported: 04/14/99

Golder Associates

Project Reference: VALEO Client Sample ID : DUP

Date Sampled: 03/27/99 Order #: 281231 Sample Matrix: WATER Date Received: 03/27/99 Submission #: 9903000341 Analytical Run 36510

ANALYTE	P	ДГ	RESULT	UNITS
DATE ANALYZED : 03/29/99				
ANALYTICAL DILUTION: 1.00				
ANADITICAL DILOTTON.				
ACETONE		20	20 U	UG/L
BENZENE		5.0	5.0 U	UG/L
BROMODICHLOROMETHANE		5.0	5.0 U	UG/L
BROMOFORM		5.0	5.0 U	UG/L
BROMOMETHANE		5.0	5.0 U	UG/L
2-BUTANONE (MEK)		10	10 U	UG/L
CARBON DISULFIDE		10	10 U	UG/L
CARBON TETRACHLORIDE		5.0	5.0 U	UG/L
CHLOROBENZENE		5.0	5.0 U	UG/L
CHLOROETHANE		5.0	5.0 U	UG/L
CHLOROFORM		5.0	5.0 U	UG/L
CHLOROMETHANE		5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHANE		5.0	5.0 U	UG/L
1,2-DICHLOROETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHENE		5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE		5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE		5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE		5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
ETHYLBENZENE		5.0	5.0 U	UG/L
2-HEXANONE		10	10 U	UG/L
METHYLENE CHLORIDE		5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)		10	10 U	UG/L
STYRENE		5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE		5.0	5.0 U	UG/L
TETRACHLOROETHENE		5.0	5.0 U	UG/L
TOLUENE		5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE		5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE		5.0	5.0 U	UG/L
TRICHLOROETHENE		5.0	5.0 U	UG/L
VINYL CHLORIDE		5.0	5.0 U	UG/L
O-XYLENE		5.0	5.0 U	UG/L
M+P-XYLENE		5.0	5.0 U	UG/L
SURROGATE RECOVERIES QC	LIMITS			261
4-BROMOFLUOROBENZENE (86	- 115 %)		114	8
TOLUENE-D8 (88			110	%
DIBROMOFLUOROMETHANE (86			105	ક

Reported: 04/14/99

Golder Associates Project Reference:VALEO Client Sample ID :RB

Date Sampled: 03/27/99 Date Received: 03/27/99 Order #: 281232 Submission #:9903000341 Sample Matrix: WATER

ANALYTE	PQL	RESULT	UNITS	DATE ANALYZED	ANALYTICAL DILUTION
ANALITE		331			
METALS					
ANTIMONY	0.0600	0.0600 U	MG/L	03/30/99	1.0
ARSENIC	0.0100	0.0100 U	MG/L	03/30/99	1.0
BERYLLIUM	0.00500	0.00500 U	MG/L	03/30/99	1.0
CADMIUM	0.00500	0.00500 U	MG/L	03/30/99	1.0
CHROMIUM	0.0100	0.0100 U	MG/L	03/30/99	1.0
COPPER	0.0200	0.0200 U	MG/L	03/30/99	1.0
LEAD	0.00500	0.00500 U	MG/L	03/30/99	1.0
MERCURY	0.000300	0.000300 U	MG/L	03/29/99	1.0
NICKEL	0.0400	0.0400 U	MG/L	03/30/99	1.0
SELENIUM	0.00500	0.00500 U	MG/L	03/30/99	1.0
SILVER	0.0100	0.0100 U	MG/L	03/30/99	1.0
THALLIUM	0.0100	0.0100 U	MG/L	03/30/99	1.0
ZINC	0.0200	0.0200 U	MG/L	03/30/99	1.0

VOLATILE ORGANICS METHOD 8260B TCL Reported: 04/14/99

Golder Associates

Project Reference: VALEO Client Sample ID : RB

Date Sampled: 03/27/99 Order #: 281232 Sample Matrix: WATER Date Received: 03/27/99 Submission #: 9903000341 Analytical Run 36510

ANALYTE			PQL	RESULT	UNITS
DATE ANALYZED : 03/29/	99				
ANALYTICAL DILUTION:	1.00				
ACETONE			20	20 U	UG/L
ACETONE			5.0	5.0 U	UG/L
BENZENE BROMODICHLOROMETHANE			5.0	5.0 U	UG/L
BROMOFORM			5.0	5.0 U	UG/L
BROMOMETHANE			5.0	5.0 U	UG/L
2-BUTANONE (MEK)			10	10 U	UG/L
CARBON DISULFIDE			10	10 U	UG/L
CARBON TETRACHLORIDE			5.0	5.0 U	UG/L
CHLOROBENZENE			5.0	5.0 U	UG/L
CHLOROBENZENE			5.0	5.0 U	UG/L
			5.0	5.0 U	UG/L
CHLOROFORM			5.0	5.0 U	UG/L
CHLOROMETHANE DIBROMOCHLOROMETHANE			5.0	5.0 U	UG/L
1,1-DICHLOROETHANE		*	5.0	5.0 U	UG/L
			5.0	5.0 U	UG/L
1,2-DICHLOROETHANE 1,1-DICHLOROETHENE			5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE			5.0	5.0 U	UG/L
CIS-1, 2-DICHLOROETHENE			5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE			5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE			5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE			5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE			5.0	5.0 U	UG/L
ETHYLBENZENE			10	10 U	UG/L
2-HEXANONE	•		5.0	5.0 U	UG/L
METHYLENE CHLORIDE			10	10 U	UG/L
4-METHYL-2-PENTANONE (MIBK)			5.0	5.0 U	UG/L
STYRENE			5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE			5.0	5.0 U	UG/L
TETRACHLOROETHENE			5.0	5.0 U	UG/L
TOLUENE			5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE			5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE			5.0	5.0 U	UG/L
TRICHLOROETHENE				5.0 U	UG/L
VINYL CHLORIDE			5.0	5.0 U	UG/L
O-XYLENE					
M+P-XYLENE			5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC	LIMITS			
4-BROMOFLUOROBENZENE	(86	- 115	8)	109	96
TOLUENE-D8	(88)	- 110		104	%
TOHOBINE DO	(86	- 118		105	%

VOLATILE ORGANICS METHOD 8260B TCL Reported: 04/14/99

Golder Associates

Project Reference: VALEO

Client Sample ID : TRIP BLANK

Date Sampled: 03/27/99 Order #: 281233 Sample Matrix: WATER Date Received: 03/27/99 Submission #: 9903000341 Analytical Run 36510

ANALYTE	, -	PQL	RESULT	UNITS
DATE ANALYZED : 03/29/9	99			
	1.00			
ACETONE		20	20 U	UG/L
BENZENE		5.0	5.0 U	UG/L
BROMODICHLOROMETHANE		5.0	5.0 U	UG/L
BROMOFORM		5.0	5.0 U	UG/L
BROMOMETHANE		5.0	5.0 U	UG/L
2-BUTANONE (MEK)		10	10 U	UG/L
CARBON DISULFIDE		10	10 U	UG/L
CARBON TETRACHLORIDE		5.0	5.0 U	UG/L
CHLOROBENZENE		5.0	5.0 U	UG/L
CHLOROETHANE		5.0	5.0 U	UG/L
CHLOROFORM		5.0	5.0 U	UG/L
CHLOROMETHANE		5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE		5.0	5.0 U	UG/L
L,1-DICHLOROETHANE		5.0	5.0 U	UG/L
1,2-DICHLOROETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHENE		5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHENE		5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE		5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE		5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE		5.0	5.0 U	UG/L
ETHYLBENZENE		5.0	5.0 U	UG/L
2-HEXANONE		10	10 U	UG/L
METHYLENE CHLORIDE	•	5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE (MIBK)		10	10 U	UG/L
STYRENE		5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROETHANE		5.0	5.0 U	UG/L
TETRACHLOROETHENE		5.0	5.0 U	UG/L
TOLUENE		5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE		5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE		5.0	5.0 U	UG/L
TRICHLOROETHENE		5.0	5.0 U	UG/L
VINYL CHLORIDE		5.0	5.0 U	UG/L
O-XYLENE		5.0	5.0 U	UG/L
M+P-XYLENE		5.0	5.0 U	UG/L
SURROGATE RECOVERIES	QC LIMITS	3		
4-BROMOFLUOROBENZENE	(86 - 115	5 %)	109	ક
TOLUENE-D8	(88 - 110) %)	105	ે
DIBROMOFLUOROMETHANE	(86 - 118		102	ક

2200

VOLATILE ORGANICS METHOD 8260B TCL Reported: 04/14/99

Order #: 281676 Sample Matrix: SOIL/SEDIMENT

Project Reference:

Date Sampled: .

Client Sample ID : METHOD BLANK

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 03/29/99			
ANALYTICAL DILUTION: 1.00			Dry Weight
ACETONE	20	20 U	UG/KG
BENZENE	5.0	5.0 U	UG/KG
BROMODICHLOROMETHANE	5.0	5.0 U	UG/KG
BROMOFORM	5.0	5.0 U	UG/KG
BROMOMETHANE	5.0	5.0 U	UG/KG
2-BUTANONE (MEK)	10	10 U	UG/KG
CARBON DISULFIDE	10	10 U	UG/KG
CARBON TETRACHLORIDE	5.0	5.0 U	UG/KG
	5.0	5.0 U	UG/KG
CHLOROBENZENE	5.0	5.0 U	UG/KG
CHLOROETHANE	5.0	5.0 U	UG/KG
CHLOROFORM	5.0	5.0 U	UG/KG
CHLOROMETHANE			UG/KG
DIBROMOCHLOROMETHANE	5.0	5.0 U	
1,1-DICHLOROETHANE	5.0	5.0 U	UG/KG
1,2-DICHLOROETHANE	5.0	5.0 U	UG/KG
1,1-DICHLOROETHENE	5.0	5.0 U	UG/KG
CIS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/KG
TRANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/KG
1,2-DICHLOROPROPANE	5.0	5.0 U	UG/KG
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/KG
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/KG
ETHYLBENZENE	5.0	5.0 U	UG/KG
2-HEXANONE	10	10 U	UG/KG
METHYLENE CHLORIDE	5.0	5.0 U	UG/KG
4-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/KG
STYRENE	5.0	5.0 U	UG/KG
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/KG
TETRACHLOROETHENE .	5.0	5.0 U	UG/KG
TOLUENE	5.0	5.0 U	UG/KG
1,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/KG
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/KG
TRICHLOROETHENE	5.0	5.0 U	UG/KG
VINYL CHLORIDE	5.0	5.0 U	UG/KG
O-XYLENE	5.0	5.0 U	UG/KG
M+P-XYLENE	5.0	5.0 U	UG/KG
SURROGATE RECOVERIES QC	LIMITS		
4-BROMOFLUOROBENZENE (74	- 121 %)	108	9
TOLUENE-D8 (81		105	%
DIBROMOFLUOROMETHANE (80		100	%

0000

VOLATILE ORGANICS METHOD 8260B TCL Reported: 04/14/99

Project Reference: Client Sample ID : METHOD BLANK

Date Sampled: Order Date Received: Submission			Sample Matrix: WATER Analytical Run 36510		
ANALYTE		PQL	RESULT	UNITS	
	03/29/99				
ANALYTICAL DILUTION:	1.00				
ACETONE		20	20 U	UG/L	
BENZENE		5.0	5.0 U	UG/L	
BROMODICHLOROMETHANE		5.0	5.0 U	UG/L	
BROMOFORM		5.0	5.0 U	UG/L	
BROMOMETHANE		5.0	5.0 U	UG/L	
2-BUTANONE (MEK)		10	10 U	UG/L	
		10	10 U	UG/L	
CARBON DISULFIDE		5.0	5.0 U	UG/L	
CARBON TETRACHLORIDE		5.0	5.0 U	UG/L	
CHLOROBENZENE		5.0	5.0 U	UG/L	
CHLOROETHANE		5.0	5.0 U	UG/L	
CHLOROFORM		5.0	5.0 U	UG/L	
CHLOROMETHANE		5.0	5.0 U	UG/L	
DIBROMOCHLOROMETHANE		5.0	5.0 U	UG/L	
1,1-DICHLOROETHANE			5.0 U	UG/L	
1,2-DICHLOROETHANE		5.0			
1,1-DICHLOROETHENE		5.0	5.0 U	UG/L	
CIS-1,2-DICHLOROETHENE		5.0	5.0 U	UG/L	
TRANS-1,2-DICHLOROETHE	NE	5.0	5.0 U	UG/L	
1,2-DICHLOROPROPANE		5.0	5.0 U	UG/L	
CIS-1,3-DICHLOROPROPEN	E	5.0	5.0 U	UG/L	
TRANS-1,3-DICHLOROPROP	ENE .	5.0	5.0 U	UG/L	
ETHYLBENZENE		5.0	5.0 U	UG/L	
2-HEXANONE		10	10 U	UG/L	
METHYLENE CHLORIDE		5.0	5.0 U	UG/L	
	MIBK)	10	10 U	UG/L	
STYRENE		5.0	5.0 U	UG/L	
1,1,2,2-TETRACHLOROETH	ANE	5.0	5.0 U	UG/L	
TETRACHLOROETHENE	•	5.0	5.0 U	UG/L	
TOLUENE		5.0	5.0 U	UG/L	
1,1,1-TRICHLOROETHANE		5.0	5.0 U	UG/L	
1,1,2-TRICHLOROETHANE		5.0	5.0 U	UG/L	
TRICHLOROETHENE		5.0	5.0 U	UG/L	
VINYL CHLORIDE		5.0	5.0 U	UG/L	
O-XYLENE		5.0	5.0 U	UG/L	
M+P-XYLENE		5.0	5.0 U	UG/L	
SURROGATE RECOVERIES	QC LIM	ITS			
4-BROMOFLUOROBENZENE	(86 -	115 %)	109	8	
TOLUENE - D8		110 %)	101	. %	
TOHORNE-DO	*	118 %)	102	%	

VOLATILE ORGANICS METHOD 8260B TCLP Reported: 04/14/99

Project Reference:

Client Sample ID : METHOD BLANK

Date Sampled: Order #: 283313 Sample Matrix: SOIL/SEDIMENT Date Received: Submission #: Analytical Run 36750

ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 03/30 ANALYTICAL DILUTION:	1.00			
BENZENE 2-BUTANONE (MEK) CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE TETRACHLOROETHENE TRICHLOROETHENE VINYL CHLORIDE		5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 U 10 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES	QC LIMITS			
BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(86 - 115 % (88 - 110 % (86 - 118 %)	96 100 101	do do do

Data Reported following TCLP Toxicity Characteristics Leaching Procedure. Federal Register, Part 261, Vol. 55, NO 126, June 29, 1990.

EXTRACTABLE ORGANICS

METHOD 8270C TCLP Reported: 04/14/99

Project Reference:

Client Sample ID : METHOD BLANK

Date Sampled :

Order #: 282365

Sample Matrix: SOIL/SEDIMENT

Submission #:

Analytical Run 36613

Date Received:	Submission #:	- 4	malytical kun	36613	
ANALYTE		PQL	RESULT	UNITS	
DATE EXTRACTED : DATE ANALYZED : ANALYTICAL DILUTION:	04/01/99 04/01/99 1.00				
1,4-DICHLOROBENZENE 2,4-DINITROTOLUENE HEXACHLOROBENZENE HEXACHLOROBUTADIENE HEXACHLOROETHANE 2-METHYLPHENOL 3+4-METHYLPHENOL NITROBENZENE PENTACHLOROPHENOL PYRIDINE 2,4,6-TRICHLOROPHENOL 2,4,5-TRICHLOROPHENOL		5.0 5.0 5.0 5.0 10 10 20 10 10	5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 10 U 10 U 20 U 10 U 10 U	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	
SURROGATE RECOVERIES	QC LIMI	TS			
TERPHENYL-D14 NITROBENZENE-D5 PHENOL-D6 2-FLUOROBIPHENYL 2-FLUOROPHENOL 2,4,6-TRIBROMOPHENOL	(35 - 1 (10 - 9 (43 - 1 (21 - 1	.41 %) .14 %) .4 %) .16 %) .10 %)	59 83 34 68 44 103	ග්ර ග්ර ශ්ර ශ්ර ග්ර	

Data Reported following TCLP Toxicity Characteristics Leaching Procedure. Federal Register, Part 261, Vol. 55, NO 126, June 29, 1990.

Columbia Mustard St., Suite 250, Rochester, NY 14609-69245 CHAIN OF CUSTODY/LABORATORY ANALYSIS REGUEST OF IN

Services Services	716) 288-5380	• FAX (716) 288-84	475											D	ATE_	3/2	15/	99		PAGE		o)F	1
PROJECT NAME VA		o free	TAN /NY									AI	VAL	YSIS	RE	QUE	STE	ED							
PROJECT NAME _V/	THU JUD.	A II	100.774									0	Z										PRES	ERVA	TION
PROJECT MANAGER	CONTACT_	thtubin	y Carasso			7	1 0		ကု	S	A's	F	ATIO												
COMPANY/ADDRESS	2221 V	liagar	a falls bl	vd.	S	0 95-1	395	01	35	Š.	SVC	8	50		ED										
Snite 9, Ni TEL (714) 731-1	agara	FUR !	NY 1430	4	CONTAINERS	1 0		/602	B'S	22	52	S.YO	TOS.		2	A.									
21/ 721-	20	7	1. 73 - 1/4	:7	M	A's 1624	A's 625	60	588	85	182	SV	A S	E S	SS(W	4					3				
TEL (114) 131-1	111	FAX ()	14) 13(-16)	,	NO.	N O	180	w -		LIS	LIS	ΣU	동미	20	100	5									
SAMPLER'S SIGNATU	RE_ LLD	Lax	· Drano		O	SAS	NS OZ	25A	IDE E	R'S OTA	R'S OTA	P C	STE	ALS	ALS T BE	九							< 2.0	> 12	6
SAMPLE I.D.	DATE	TIME	FOR OFFICE USE ONLY LAB I.D.	SAMPLE MATRIX	# OF	GCAMS 8260	GC/MS SVOA'S □ 8270 □ 625 □ 95-2	000	PES D 80	STAR'S LIST 8021 VOA'S	STAR'S LIST 8270 SVOA'S	호	WAS	MET (LIS	METALS, DISSOLVED (LIST BELOW)	Metal							Hd	F	Other
13-99-1	3/25/49	1005		Soil	2	l										1									
8-99-2	H	1145			12	1	1									1									
R 10 2	11			2011	12	1	-									1									
B-29-3		1315		lick	-	1	-				-	-		-								-			
B-99-4	u	240 pm	E 1	1211	2	1							_						_						
					+	1																			
					-	-	-			-	-	-	-				-					-			
																									_
						1																			
				TURI	NAROU	ND RE	QUIRE	MENTS	RE	PORT	REQU	IREME	NTS		INVO	CE INF	AMRO	TION:					RECEI		
affectinguisher	DAMA	Tom	RECEIVED BY:	à _2	hr.	48 hr.	5	day	-		Report											-	first		
Signature A. Lycan /	STACLO	Signature	Hasting &		andard (-2	. Houting Narrati	Rep. w	//CASE		P.O.						Shipp	ing Via:		,		
Printed Name Ider 145	sociates	Printed Nem	Harting 1		ovide Ve				3	EPA Le	wel III			Bill To):					Shipp			7.2	0	
Firm 3/25/99 Date/Time	1600	11/2/1	199 16:1	5	ovide F/					Validat	able Pac	ckage								Temp	erature:		70		
RELINQUISHE	D BY:	Date/Time	RECEIVED BY:		ested Re		•			Deliver	ables Le		oles							Subm	ission N	lo: _5	.3.	11	
Signature		Signature							6	. Site sp	ecific Q														
Printed Name		Printed Nam	10	SPI	CIAL	INSTI	RUCTI	ONS/	COM	MENTS	S:	R	INS	11-	43	h	our	5							
Firm		Firm		ME	TALS							-					٠.								
Date/Time		Date/Time			GANIC	٠٠. ٦	TOU		201		Only		IN Onl		Coool	al Liet									
RELINQUISHE	D BY:		RECEIVED BY:	OH OH	GANK	,5: L	1 ICL	LIF	r_	LI AE	Only		IN OU	у Ц	Speci	ai List									-
Signature		Signature																							—
Printed Name		Printed Nan	ne						_																
Flom		Firm																							
Date/Time		Date/Time															4								

Cooler Receipt And Preservation Check Form

(0)000 0110111	oller.		pt And I	Submis	sion Number_	3-3	41
cooler received on_	3/25/99 and	opened o	n345	19 by_	as		_
Were custody If yes, how now were signature. Were signature. Were custody Did all bottle. Were all bottle. Were all bottle. Were correct. Were VOA were VOA were did the temporal. Is the temporal. Is the temporal. Date/Tim	y seals on outside nany and where? are & date correctly papers properly a arrive in good the labels complete labels and tags at bottles used for vials checked for the bottles originature of cooler(s) the reature within 4 ± 20 lain Below the Temperatures there ID:	t? filled out condition te (i.e. an agree with the tests absence te? CAS apon receive?	at (ink, signal (unbroke alysis, proh custody indicated of air bubs) S/A CA sipt:	gned, etc)? en)? eservation, etc)? papers? bles, and noted i S/K CAS/S C 2. 2 es \ Yes \ No \ \	AS/L CAS/X Yes No D	NO NO NO NO NO NO NO NO NO Yes \Box No \Box	Yes No
		YES	NO	Sample I.D.	Reagent	Vol. A	dded
							duca
pH	Reagent				1		luded
pH 12	Reagent NaOH						
	-						
12	NaOH						
12	NaOH HNO ₃ H ₂ SO ₄ P/PCBs (608 only)						

CLIENT NOTIFICATION:

Columbia Analytical Services

Mustard St., Suite 250, Rochester, NY 14609-69245 CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORIVI (716) 288-5380 • FAX (716) 288-8475

DATE 3/27/97 PAGE 1 OF 1

PROJECT MANAGER/CONTACT ANTHONY GLASSO COMPANY/ADDRESS GOLDEN ASSOC. DEC CONTAINERS CON	PRESI	ERVATION
PROJECT MANAGER/CONTACT ANTHONY GLASSO COMPANY/ADDRESS GOLDER ASSOC. CONTAINERS CONTAIN		
COMPANY/ADDRESS GOLDER ASSC. OF CONTAINERS LET (1912) 131 1827 BEACH CONTAINERS CONTAI		
TEL (716) 731 1560 FAX (716) 731 1652 CONTAINE CONTAINE SOLOWS SO		
TEL (716) 731 1560 FAX (716) 731 1652 ONTA SUBJECT OF CONTA SUBJECT OF C	8	
SAMPLES SIGNATURE STATISTICS OF CONSTRUCT OF		
SAMPLER'S SIGNATURE LEGIS DESCRIPTION OF THE STATE OF TH	< 2.0	12
SOR DEFICE LISE ONLY SAMPLE OF THE PROPERTY OF		V 0
	표	₹ §
MW-99-1 367/99 10:30 28/228 A20 3 X		
MW-99-2 1 10:10 229 HLO 3 +		
mw-99-3 9:20 230 H20 3 X		
DUP - 231 HLO 3 X		
RB 10:00 232 HO 3 X		
SOIL 10:55 234 SOIL 1		
TRIP BLANK - 233 HO 2 K		
TET DEALER		
TURNAROUND REQUIREMENTS REPORT REQUIREMENTS INVOICE INFORMATION: SAMPLE	RECEIF	T:
BELINQUISHED BY: / RECEIVED BY: A Soutine Beard		A
Signature David Make Signature TONO HOLL Standard (10-15 working days) Nagrative	Les	y
Printed Name Galler Printed Name CAS Supplied Na	3 C	
Firm 3/27/49 10:55 Firm 3/27/99(0) 10:55 Provide FAX Preliminary Results Validatable Package Provide FAX Preliminary Results 4. N.J. Reduced Temperature:	2	. 1
RELINQUISHED BY: RECEIVED BY: Requested Report Date Deliverables Level IV 5. NY ASP/CLP Deliverables Submission No: 3	-37	7
Printed Name SPECIAL INSTRUCTIONS/COMMENTS:		
Firm METALS		
Date/Time Date/Time		
RELINQUISHED BY: RECEIVED BY: ORGANICS: □ TCL □ PPL □ AE Only □ BN Only □ Special List		
Signature Signature O.15th		
Printed Name ROSH		
Firm Firm Date/Time Date/Time		

Columbia Analytical Services Inc. Cooler Receipt And Preservation Check Form

roject/Client_HA	ldor			Submis	sion Number	
ooler received on 3		opened or	1 3/6	7/99 by J	H	
Were custody If yes, how m Were signatu Were custody Did all bottle Were all bott Did all bottle Were correct Were VOA w Where did th Temperat Is the tempe If No, Expl	y seals on outside hany and where? The & date correct by papers properly a sarrive in good of the labels and tags a bottles used for the bottles originate	e of coole ? filled out condition te (i.e. and agree with the tests it absence of the? CAS apon rece C?: Taken:	at (ink, signal (unbroken) (unbro	gned, etc)? en)? eservation, etc)? papers? bles, and noted in S/K CAS/S C S Yes No No No One: Temp Bl	YES N AS/L CAS/X Yes □ No □	10 10 10 10 10
SAPILITY CO.			3		Reagent	Vol. Added
рН	Reagent	YES	NO	Sample I.D.	Reagent	Voi. Nauca
12	NaOH					
2	HNO ₃					
2	H ₂ SO ₄					
5-9*	P/PCBs (608 only)					
YES = All samples OK						

CLIENT NOTIFICATION: _

QUALITY CONTROL SUMMARY MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY SOIL/SEDIMENT

Spiked Order No. : 280827 Golder Associates

Client ID: B-99-1

Test: 82608 TCL

Analytical Units: UG/KG

Run Number : 36510

Percent Solid : 80.4

			MATRIX	MATRIX :	PIKE	QC LIMITS			
ANALYTE	ADDED	CONCENT.	FOLIND	Z REC.	FOUND	% RE	RPD	RPD	REC.
BENZENE	62.2	0	62.2	100	65.9	100	6	21	66 - 142
CHLOROBENZENE	62.2		65.9	106	65.9	1 . 10	10	21	60 - 133
1,1-DICHLOROETHENE	62.2		64.7	104	68.4	111	16	22	59 - 172
TOLUENE	62.2		- 62.2	1 100	59.7	96	14	21	59 - 139
TRICHLOROETHENE	62.2		65.9	106	65.9	1 10	5 10	24	62 - 137

VOLATILE ORGANICS METHOD: 8260B TCL

ABORATORY REFERENCE SPIKE SUMMARY

REFERENCE ORDER #: 286019	ANALYT	ICAL RUN # :	36510
ANALYTE	TRUE VALUE	% RECOVERY	QC LIMITS
DATE ANALYZED : 3/29/99			
ANALYTICAL DILUTION: 1.0			
A CHEONE	20	64	21 - 165
ACETONE BENZENE	20	102	37 - 151
BROMODICHLOROMETHANE	20	100	35 - 155
BROMOFORM	20	91	45 - 169
BROMOFORM	20	110	10 - 242
2-BUTANONE (MEK)	20	64	25 - 162
CARBON DISULFIDE	20	86	45 - 148
CARBON TETRACHLORIDE	20	105	70 - 140
	20	103	37 - 160
CHLOROBENZENE	- 20	122	53 - 149
CHLOROETHANE	20	100	51 - 138
CHLOROFORM	20	125	10 - 273
CHLOROMETHANE DIBROMOCHLOROMETHANE	20	98	53 - 149
	- 20	103	59 - 155
1,1-DICHLOROETHANE	20	98	49 - 155
1,2-DICHLOROETHANE	20	109	10 - 234
1,1-DICHLOROETHENE	20	. 93	54 - 156
CIS-1,2-DICHLOROETHENE	20	- 98	54 - 156
TRANS-1,2-DICHLOROETHENE	20	98	10 - 210
1,2-DICHLOROPROPANE	20	97	10 - 227
CIS-1,3-DICHLOROPROPENE	20	94	17 - 183
TRANS-1,3-DICHLOROPROPENE	20	106	37 - 162
ETHYLBENZENE	20	61	22 - 155
2-HEXANONE METHYLENE CHLORIDE	20	107	10 - 221
4-METHYL-2-PENTANONE (MIBK)	20	58	46 - 157
	20	101	66 - 144
STYRENE	. 20	96	46 - 157
1,1,2,2-TETRACHLOROETHANE	20	104	64 - 148
TETRACHLOROETHENE	20	99	47 - 150
TOLUENE 1,1,1-TRICHLOROETHANE	20	102	52 - 162
1,1,1-TRICHLOROSTHANS 1,1,2-TRICHLOROETHANE	20	89	52 - 150
TRICHLOROETHENE	20	106	71 - 157
VINYL CHLORIDE	20	116	10 - 251
	20	102	71 - 135
O-XYLENE M+P-XYLENE	40	103	71 - 135
M+P-XILENE			

QUALITY CONTROL SUMMARY MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY SOIL/SEDIMENT

Spiked Order No.: 281234 Golder Associates

Client ID: SOIL

Test: 8260B TCLP

Analytical Units: UG/L

Run Number : 36750

			MATRIX :	SPIKE	OC LIMITS
ANALYTE	SPIKE	SAMPLE -	FOUND	% REC.	REC.
BENZENE	500	0	517	103	76 - 127
CHLOROBENZENE	500	0	49 0	98	75 - 130
1,1-DICHLOROETHENE	500	10	520	104	61 - 145
TETRACHLOROETHENE	500	io i	490	98	64 - 148
TRICHLOROETHENE	500	0	520	104	71 - 120

VOLATILE ORGANICS METHOD: 8260B TCLP

ABORATORY REFERENCE SPIKE SUMMARY

ANALYTE TRUE VALUE % RECOVERY QC LIMITS DATE ANALYZED : 3/30/99 ANALYTICAL DILUTION: 1.0 BENZENE 20 110 37 - 151 2-BUTANOME (MEK) 20 107 25 - 162 CARBON TETRACHLORIDE 20 117 70 - 140 CHIOROBENZENE 20 115 51 - 136 1,2-DICHLOROBETHANE 20 110 49 - 155 1,1-DICHLOROBETHENE 20 102 10 - 234 TETRACHLOROBTHENE 20 109 64 - 148 TRICHLOROBETHENE 20 120 71 - 157 TRICHLOROBETHENE 20 99 10 - 251	REFERENCE ORDER #:	283315	ANALYT	ICAL RUN # :	36750
### BENZENE 2-BUTANONE (MEK) CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE 20 110 37 - 151 25 - 162 20 117 70 - 140 20 115 37 - 160 215 37 - 160 215 210 210 234 249 - 155 251 271 - 138 271 - 138	ANALYTE	·	TRUE VALUE	* RECOVERY	QC LIMITS
BENZENE 20	ATE ANALYZED :	3/30/99			
	2-BUTANONE (MEK) CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE TETRACHLOROETHENE TRICHLOROETHENE		20 20 20 20 20 20 20 20	107 117 105 115 110 102 109 120	25 - 162 70 - 140 37 - 160 51 - 138 49 - 155 10 - 234 64 - 148 71 - 157
			2		
					

INORGANIC QUALITY CONTROL SUMMARY

Report Date : 04/20/99 CAS Order # : 280827 - B-99-1 : Golder Associates Client

VALEO/SUBSURFACE INV./NY

Reported Units: MG/KG
Run # : 36508
Percent Solid : 80.4

PRECISION

ACCURACY

	ORIGINAL	DUPLICATE	RPD	FOUND	ADDED	% REC.	LIMITS
ANTIMONY	7.46 U	7.46 U	NC	10.6	57.1	19 N	75 - 125
ARSENIC	4.25	3.77	12	8.07	4.56	84	75 - 125
BBRYLLIUM	0.622 U	0.622 U	NC	5.47	5.71	96	75 - 125
CADMIUM	0.622 U	0.622 U	NC	5.29	5.71	93	75 - 125
CHROMIUM	7,01	7.65	9	28.4	22.8	94	75 - 125
COPPER	4.27	5.12	18	33.5	28.5	103	75 - 125
LEAD	10.4	56.0	137	63.1	57.1	92	75 - 125
NICKEL	7.76	8.28	7	59.1	57.1	90	75 - 125
SELENIUM	0.677	0.771	13	106	115	91	75 - 125

INORGANIC QUALITY CONTROL SUMMARY

Report Date : 04/20/99 CAS Order # : 280827 - B-99-1 : Golder Associates Client

VALEO/SUBSURFACE INV./NY

Reported Units: MG/KG Run # : 36508 Percent Solid: 80.4

ILVER

HALLIUM

ZINC

PRECISION

ACCURACY

ORIGINAL	DUPLICATE	RPD	FOUND	ADDED	% REC.	LIMITS
1.24 U	1.24 U	NC	5.21	5.71	91	75 - 125
1.24 U	1.24 U	NC	224	228	98	75 - 125
22.9	25.0	9	77.4	57.1	95	75 - 125

INORGANIC QUALITY CONTROL SUMMARY

: 04/20/99 : 280827 - B-99-1 Report Date CAS Order # : Golder Associates Client

VALEO/SUBSURFACE INV./NY

Reported Units: MG/KG Run # : 36513 Percent Solid: 80.4

PRECISION

ACCURACY

ORIGINAL	DUPLICATE	RPD	FOUND	ADDED	% REC.	LIMITS
0.0622 U	0.0622 U	NC	0.223	0.199	112	75 - 125

MERCURY

CAS Submission #: 9903000341

NTIMONY

RSENIC

ERYLLIUM

MUIMOA

CHROMIUM

COPPER

NICKEL

SELENIUM

SILVER

LEAD

Client: Golder Associates

VALEO/SUBSURFACE INV./NY

BLANK SPIKES

BLANK	FOUND	ADDED	% REC	LIMITS	RON	UNITS
6.00 U	16.5	26.6	62	0 - 203	36508	MG/KG
1.00 U	151	163	93	62 - 138	36508	MG/KG
0.500 U	67.4	78.9	85	78 - 122	36508	MG/KG
0.500 U	105 ''	114	92	77 - 123	36508	MG/KG
1.00 U	153	175	88	73 - 126	36508	MG/KG
2.00 U	80.2	91.0	88	82 - 118	36508	MG/KG
0.500 U	62.3	66.0	94	68 - 132	36508	MG/KG
4.00 U	59.1	68.3	87	78 - 122	36508	MG/KG
0.500 U	110	123	89	74 - 126	36508	MG/KG
1.00 U	53.8	57.2	94	74 - 126	36508	MG/KG

INORGANIC BLANK SPIKE SUMMARY

CAS Submission #: 9903000341

Client: Golder Associates VALEO/SUBSURFACE INV./NY

BLANK SPIKES

BLANK	FOUND	ADDED	% REC	LIMITS	RUN	UNITS
1.00 U	84.4	80.0	106	57 - 142	36508	MG/KG
2.00 U	175	190	92	77 - 123	36508	MG/KG
0.0500 U	1.43	1,75	82	61 - 139	36513	MG/KG

CHALLIUM

ZINC

MERCURY

CAS Submission #: 9903000341

MERCURY

YNOMITMA

ARSBNIC

BERYLLIUM

CADMIUM

CHROMIUM

COPPER

LEAD

NICKEL

SELENIUM

Client: Golder Associates

VALEO

BLANK SPIKES

BLANK	FOUND	ADDED	% REC	LIMITS	RUN	UNITS
บ.000300 บ	0.00102	0.00100	102	80 - 120	36480	MG/L
0.0600 U	0.0514	0.0500	103	80 - 120	36509	MG/L
0.0100 U	0.0385	0.0400	96	80 - 120	36509	MG/L
0.00500 U	0'.0483	0.0500	97	80 - 120	36509	MG/L
0.00500 U	0.0511	0.0500	102	80 - 120	36509	MG/L
0.0100 U	0.199	0,200	99	80 - 120	36509	MG/L
0.0200 U	0,255	0.250	102	80 - 120	36509	MG/L
0.00500 U	0.522	0.500	104	80 - 120	36509	MG/L
0.0400 U	0.525	0.500	.105	80 - 120	36509	MG/L
0.00500 U	1.01	1.01	100	80 - 120	36509	MG/L

INORGANIC BLANK SPIKE SUMMARY

CAS Submission #: 9903000341

Client: Golder Associates

VALEO

BLANK SPIKES

BLANK	FOUND	ADDED	% REC	LIMITS	RUN	UNITS
0.0100 U	0,0531	0.0500	106	80 - 120	36509	MG/L
0.0100 U	2.23	2.00	111	80 - 120	36509	MG/L
0.0200 U	0.520	0.500	104	80 - 120	36509	MG/L

SILVER

THALLIUM

ZINC

CAS Submission #: 9903000341 Client: Golder Associates

ARSENIC

BARIUM

CADMIUM

CHROMIUM

SELENIUM

SILVER

MERCURY

LEAD

VALEO

BLANK SPIKES

BLANK	FOUND	ADDED	% REC	LIMITS	RUN	UNITS
0.500 U	4.70	5.00	94	80 - 120	36745	MG/L
1.00 U	4.61	5.00	92	80 - 120	36745	MG/L
0.100 U	0.972	1.00	97	80 - 120	36745	MG/L
0.100 U	4.93	5.00	99	80 - 120	36745	MG/L
0.100 U	4.77	5.00	95	80 - 120	36745	MG/L
0.500 U	0.985	1.00	99	80 - 120	36745	MG/L
0.100 U	5.14	5.00	103	80 - 120	36745	MG/L
0.0003000	0.00969	0.0100	97	48 - 182	36960	MG/L