FINAL REMEDIAL INVESTIGATION / FEASIBILITY STUDY REPORT DINABURG DISTRIBUTING, INC. SITE NO. 828103

WORK ASSIGNMENT NO. D004434-17

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, P.C. Portland, Maine

PROJECT NO: 3612082107

FEBRUARY 2011

FINAL REMEDIAL INVESTIGATION / FEASIBILITY STUDY REPORT DINABURG DISTRIBUTING, INC. SITE NO. 828103

WORK ASSIGNMENT NO. D004434-17

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering and Consulting, P.C. Portland, Maine

PROJECT NO: 3612082107

FEBRUARY 2011

Submitted by:

ohn Peterson

Project Manager

Approved by:

Mark Stelmack, P.E.

Principal Professional

TABLE OF CONTENTS

LIST	OF TA	BLES		vi	
LIST	OF FIG	URES		vii	
GLO	SSARY	OF ACRO	ONYMS AND ABBREVIATIONS	viii	
1.0	INTRODUCTION				
	1.1	REPOR	T ORGANIZATION	1-2	
	1.2	PURPO	OSE OF REPORT	1-3	
	1.3	SITE B	ACKGROUND	1-5	
		1.3.1	Site Description	1-5	
		1.3.2	Site History	1-5	
		1.3.3	Previous Investigations	1-6	
2.0	RI FIELD INVESTIGATIONS				
	2.1	FIELD	OPERATIONS	2-1	
	2.2	SITE IN	NVESTIGATION ACTIVITIES		
		2.2.1	Groundwater Monitoring Well Installation		
		2.2.3	Groundwater Sampling	2-3	
		2.2.4	Soil Vapor Sampling	2-4	
		2.2.5	Geoprobe Soil Borings	2-5	
		2.2.6	Geoprobe Microwell Installation	2-6	
		2.2.7	Geoprobe Groundwater Points – May 2009	2-6	
		2.2.8	Water Level and Vacuum Measurements	2-7	
		2.2.9	MPE System Evaluation	2-7	
		2.2.10	Sewer Sampling	2-8	
		2.2.11	Supplemental Geoprobe Groundwater Points – December 2009	2-9	
	2.3	SITE S	URVEY	2-9	
3.0	SITE	PHYSICA	AL SETTING	3-1	
	3.1	SURRO	OUNDING LAND USE	3-1	
	3.2	TOPOGRAPHY		3-1	
	3.3	CLIMATE		3-1	
	3.4	GEOLOGY		3-2	
		3.4.1	Regional Geology	3-2	
		3.4.2	Site Stratigraphy		
	3.5	GROUNDWATER HYDROLOGY			
		3.5.1	Glacial Deposit Unit	3-4	
		3.5.2	Overburden/Weathered Bedrock Interface		
		3.5.3	Bedrock Unit	3-4	
	3.6	GROUI	NDWATER HYDROLOGY		
		3.6.1	Groundwater Flow	3-5	
	3.7	GROUNDWATER USE			

TABLE OF CONTENTS (CONTINUED)

4.0	NATURE AND EXTENT OF CONTAMINATION				
	4.1	SOURCE AREAS	4-1		
	4.2	SOIL			
	4.3	GROUNDWATER	4-5		
	4.4	SEWERS AND ONSITE DRAINAGE SYSTEM			
	4.5	OFFSITE VAPOR MIGRATION			
	4.5 MPE SYSTEM EVALUATION				
5.0	CONTAMINANT FATE AND TRANSPORT				
	5.1 SITE CONCEPTUAL MODEL				
	5.2	CONTAMINANT PERSISTENCE			
	5.3	CONTAMINANT MIGRATION	5-8		
6.0	QUA	LITATIVE EXPOSURE ASSESSMENT	6-1		
7.0	SUMMARY AND CONCLUSIONS				
	7.1	SUMMARY	7-1		
	7.2	CONCLUSIONS	7-4		
		7.2.1 Conclusions, Data Limitations and Recommendations for Future			
		Work	7-4		
8.0	DEVELOPMENT OF REMEDIAL ACTION GOALS AND OBJECTIVES, AND				
		ERAL RESPONSE ACTIONS FOR SOIL CONTAMINATION REQUIRING			
	REMEDIATION				
	8.1	IDENTIFICATION OF REMEDIAL ACTION GOALS AND OBJECTIVE			
		8.1.1 Remedial Action Objectives for Soil			
		8.1.2 Remedial Action Objectives for Groundwater			
		8.1.3 Remedial Action Objectives for Soil Vapor			
	8.2	IDENTIFICATION OF GENERAL RESPONSE ACTIONS			
		8.2.1 General Response Actions for Soil			
		8.2.2 General Response Actions for Groundwater	8-4		
		8.2.3 General Response Actions for Soil Vapor	8-4		
	8.3	EXTENT OF SOIL CONTAMINATION REQUIRING REMEDIAL			
		ACTION	8-4		
	8.4	EXTENT OF GROUNDWATER CONTAMINATION REQUIRING			
		REMEDIAL ACTION	8-5		
	8.5	EXTENT OF SOIL VAPOR CONTAMINATION REQUIRING REMEDI			
		ACTION			
9.0	IDENTIFICATION AND SCREENING OF TECHNOLOGIES				
	9.1	TECHNOLOGY IDENTIFICATION			
	9.2	TECHNOLOGY SCREENING			
10.0	DFV	ELOPMENT AND PRELIMINARY SCREENING OF ALTERNATIVES	10-1		
10.0	10.1	DEVELOPMENT OF REMEDIAL ALTERNATIVES			
	10.1	10.1.1 Alternative 1: No Action			
		10.1.1 / M.C.Hatty 1. 140 / M.Hott	10-1		

TABLE OF CONTENTS (CONTINUED)

		10.1.2	Alternative 2: No Further Action: Continued Multi-phase Extraction	10 1
		10.1.3	Alternative 3: Restoration to Pre-Disposal or Unrestricted	10-1
		10.1.5	Conditions	10-3
		10.1.4	Alternative 4: Enhanced Multi-phase Extraction	
		10.1.5	Alternative 5: In-Situ Source Treatment - Chemical Oxidation w	
			Soil Mixing	
		10.1.6	Alternative 6: Discrete Soil Source Excavation and Off-Site	
			Disposal and In-Situ Enhanced Biodegradation with Groundwate	er
			Monitoring	
		10.1.7	Alternative 7: In-Situ Electrical Resistance Heating	
	10.2	PRELIM	MINARY SCREENING OF ALTERNATIVES	10-7
11.0	DETA	ILED AN	ALYSIS OF ALTERNATIVES	11-1
	11.1	COST A	NALYSIS PROCEDURES	11-3
	11.2		NATIVE 1: NO ACTION	
	11.3	ALTER	NATIVE 2: CONTINUED MULTI-PHASE EXTRACTION	11-6
	11.4	ALTER	NATIVE 3: RESTORATION TO PRE-DISPOSAL OR	
		UNRES	TRICTED CONDITIONS	11-8
		11.4.1	Detailed Evaluation of Alternative 3	
	11.5	ALTER	NATIVE 4: ENHANCED MULTI-PHASE EXTRACTION	
		11.5.1	Detailed Evaluation of Alternative 4	11-13
	11.6		NATIVE 5: IN-SITU SOURCE TREATMENT - CHEMICAL	
			TION WITH SOIL MIXING	
		11.6.1	Detailed Evaluation of Alternative 5	
	11.7		NATIVE 6: DISCRETE SOIL SOURCE EXCAVATION AND O	
			SPOSAL AND IN-SITU ENHANCED BIODEGRADATION WI	
			IDWATER MONITORING	
		11.7.1	Detailed Evaluation of Alternative 6	
	11.8		NATIVE 7: ELECTRICAL RESISTANCE HEATING	
		11.8.1	Detailed Evaluation of Alternative 7	11-25
12.0	COM	ΡΔΡΔΤΙΛ	E ANALYSIS OF ALTERNATIVES	12 1
12.0	12.1		RATIVE ANALYSIS OF REMEDIAL ALTERNATIVES	
	12.1	COMIT	MATTI DAMAD 1010 OF NEWLORD ALTEMATIVES	12-1
13 0	DEEE	DENCES		13 1

TABLES

FIGURES

TABLE OF CONTENTS (CONTINUED)

APPENDICES:

APPENDIX A: SEARS BROWN AND URS EXHIBIT FIGURES

Sears Brown Figure 2: Site Plan (Sears Brown, 1995) URS Figure 1-3: Former Dinaburg Distributing, Inc. Historical Sample

Locations (URS, 2001)

URS Figure 2-2: Former Dinaburg Distributing, Inc. Remedial Investigation Sampling Locations (URS, 2001)

URS Figure 1-4: Former Dinaburg Distributing, Inc. Existing Soil Vapor Extraction System (URS, 2001)

URS Figure 1: Former Dinaburg Distributing, Inc. Indoor Air Sampling Locations (URS, 2004)

URS Figure 1-2: Former Dinaburg Distributing, Inc. Boring Locations and Proposed Source Removal Excavation Units (URS, 2004)

URS Figure 2: Locations Exceeding Unrestricted Use Objectives (URS, 2008)

URS Figure 3-6: Former Dinaburg Distributing, Inc. Groundwater Elevation Contours – Glacial Sediment Wells (February 13, 2001) (URS, 2001)

URS Figure 3-7: Former Dinaburg Distributing, Inc. Groundwater Elevation Contours – Interface Wells (February 13, 2001) (URS, 2001)

URS Figure 4-2: Former Dinaburg Distributing, Inc. PCE Groundwater Contaminant Concentration Contours – Overburden Glacial Sediments (URS, 2001)

URS Figure 4-3: Former Dinaburg Distributing, Inc. PCE Groundwater Contaminant Concentration Contours – Interface Zone (URS, 2001)

URS Figure 4-1: Former Dinaburg Distributing, Inc. Approximate Extent of Vadose Zone Soil Contamination (URS, 2006)

URS Dwg. 2B: Site Plan – System Layout and Well Locations

URS Dwg. 3A: Piping Diagram Legend Piping Diagram Sheet 1 of 2 URS Dwg. 3B: URS Dwg. 3C: Piping Diagram Sheet 2 of 2

URS Dwg. 4: Typical Well Details URS Dwg. 5: Treatment System Layout

MACTEC Engineering and Consulting, P.C. Project No. 3612082107

TABLE OF CONTENTS (CONTINUED)

APPENDIX B: URS EXHIBIT TABLES

- URS Table 1-2: Summary of February 1995 Soil Analytical Results (URS, 2001)
- URS Table 1-3: Summary of February 1995 Groundwater Analytical Results (URS, 2001)
- URS Table 1-4: Summary of November 1995 Sewer Analytical Results (URS, 2001)
- URS Table 1-5: Summary of October 1997 Soil Analytical Results (URS, 2001)
- URS Table 1-6: Summary of October/December 1997 Groundwater Analytical Results (URS, 2001)
- URS Table 1-7: Summary of April 1999 Soil Analytical Results (URS, 2001)
- URS Table 1-8: Summary of November 1999 Analytical Results (soil) (URS, 2001)
- URS Table 1-9: Summary of June 2000 Groundwater Analytical Results (URS, 2001)
- URS Table 1-10: Summary of March 2000 Passive Soil-Gas Survey Analytical Results (URS, 2001)
- URS Table 4-1: Soil Analytical Results (11/2000) (URS, 2001)
- URS Table 4-2: Groundwater Analytical Results (12/2000) (URS, 2001)
- URS Table 4-4: Sewer Analytical Results (10/2000) (URS, 2001)
- URS Table 1: Soil Analytical Results (2004) (URS, 2004)
- URS Table 2: Validated Groundwater Sample Results (5/2010) (URS, 2010)
- URS Table 1: 2008 Geoprobe Sampling Comparison to Unrestricted Use Cleanup Objectives (URS, 2008)
- URS Table A-1: 2008 Geoprobe Sampling PID Readings (URS, 2008)

APPENDIX C FIELD DATA RECORDS – 2009

APPENDIX D SITE SURVEY RESULTS

APPENDIX E DATA USABILITY SUMMARY REPORT AND COMPLETE

ANALYTICAL RESULTS

APPENDIX F: CALCULATIONS

APPENDIX G: MNA SCREENING FORMS

APPENDIX H: DETAILED COST ANALYSIS BACKUP

LIST OF TABLES

Table

3.1	Monitoring Well Construction Data
4.1	Summary of 2009 VOC Concentrations in Soil
4.2	Summary of 2009 Soil PID Readings
4.3	Historical Occurrence of PCE and TCE in Groundwater
4.4	Summary of 2009 VOC Concentrations in Groundwater
4.5	2009 Monitored Natural Attenuation Parameters
4.6	Summary of 2009 VOC Concentrations in Sewer Water Samples
4.7	2009 Sewer Sample Location Data
4.8	Summary of 2009 VOC Concentrations in Soil Vapor
4.9	Groundwater Elevation Summary - MPE System Evaluation
4.10	MPE System Vacuum Measurements
8.1	Nature and Extent of Soil Contamination
8.2	Nature and Extent of Groundwater Contamination
9.1	Identification and Screening of Remedial Technologies
10.1	Preliminary Screening of Remedial Alternatives
11.1	Applicable Location- and Action-Specific Standards, Criteria, and Guidance
11.2	Cost Summary for Alternative 2 – No Further Action: Continued Multiphase Extraction
11.3	Cost Summary for Alternative 3 – Restoration to Pre-Disposal or Unrestricted Conditions
11.4	Cost Summary for Alternative 4 – Enhanced Multiphase Extraction
11.5	Cost Summary for Alternative 5 – In-Situ Source Treatment – Chemical Oxidation with Soil Mixing
11.6	Cost Summary for Alternative 6 – Discrete Soil Source Excavation and Off-Site Disposal and In-Situ Enhanced Biodegradation with Groundwater Monitoring
11.7	Cost Summary for Alternative 7 – In-Situ Electrical Resistance Heating
12.1	Summary of Remedial Alternative Costs
12.2	Comparative Analysis of Remedial Alternatives

LIST OF FIGURES

Figure

1.1	Site Location
1.2	Historic Site Features and Soil Removal Area
1.3	URS Well Locations
2.1	Sample Locations
3.1	Cross Section Locations
3.2	Cross Section A-A'
3.3	Cross Section B-B'
3.4	Interpreted Bedrock Surface Contours
4.1	Estimated PCE Concentrations in Soil -2009
4.2	PCE in Shallow Overburden Groundwater –May 2010
4.3	Chlorinated Solvent Concentrations in Groundwater
4.4	Shutdown Evaluation Shallow Water Levels 5/25/2009 (Prior to MPE shutdown)
4.5	Shutdown Evaluation Shallow Water Levels 5/27/2009 (24 hours after shutdown)
4.6	Shutdown Evaluation Shallow Water Levels 6/3/2009 (8 days after shutdown)
4.7	Shutdown Evaluation Interface Water Levels 5/25/2009 (Prior to MPE shutdown)
4.8	Shutdown Evaluation Interface Water Levels 5/27/2009 (24 hours after shutdown)
4.9	Shutdown Evaluation Interface Water Levels 6/3/2009 (8 days after shutdown)
11.1	Proposed Extraction Well Locations

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

1,1-DCA 1,1-dichloroethane
1,1,1-TCA 1,1,1-trichloroethane
1,2-DCE 1,2-dichloroethene

AST above ground storage tank

AWQS Ambient Water Quality Standard and Guidance Values

bgs below ground surface

cm/sec centimeter(s) per second
COC Contaminant of Concern

Dinaburg Dinaburg Distributing, Inc.

DNAPL dense non-aqueous phase liquid

DO dissolved oxygen

ESA environmental site assessment

°F degrees Fahrenheit

ft/d feet per day ft/ft feet per foot

FS Feasibility Study

gpm gallon(s) per minute

GWE groundwater extraction

HRCTM Hydrogen Release CompoundTM

IRM Interim Remedial Measure

GLOSSARY OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

K hydraulic conductivity

Kg kilogram

L liter

lbs pounds

MACTEC Engineering and Consulting, P.C.

MCPW Monroe County Pure Waters

mg milligram

MNA monitoring natural attenuation

MPE multi-phase extraction

NAPL non-aqueous phase liquid

NPW net present worth

NYCRR New York Codes, Rules and Regulations

NYS New York State

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O&M Operation and Maintenance

PAH polycyclic-aromatic hydrocarbons

PCBs polychlorinated biphenyls
PCE 1,1,2,2-tetrachloroethylene
PID photoionization detector

PNOD permanganate natural oxidant demand

ppb parts per billion
ppm parts per million
PVC polyvinyl chloride

QC quality control

GLOSSARY OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

QEA Quality Exposure Assessment

RAO Remedial Action Objective

Report Remedial Investigation and Feasibility Study Report

RI Remedial Investigation

Site Dinaburg Distributing, Inc. site

SCGs standards, criteria and guidance values

SCO Soil Cleanup Objective SVE soil vapor extraction

SVOC semi volatile organic compound

TAGM Technical and Administrative Guidance Memorandum

TCE trichloroethylene

μg/L micrograms per liter

μg/m³ micrograms per cubic meter

URS URS Corporation

USEPA United States Environmental Protection Agency

VC vinyl chloride

VOC volatile organic compound

WA Work Assignment

1.0 INTRODUCTION

MACTEC Engineering and Consulting, P.C. (MACTEC), under contract to the New York State Department of Environmental Conservation (NYSDEC), is submitting this Remedial Investigation (RI) and Feasibility Study (FS) report (Report) for the Dinaburg Distributing, Inc. (Dinaburg) site (Site) located in the City of Rochester, Monroe County, New York (Figure 1.1). The Site, Site No. 8-28-103, is listed as a Class 2 hazardous waste site, in the Registry of Hazardous Waste Sites in New York State (NYS). This Report has been prepared in accordance with the NYSDEC requirements in Work Assignment (WA) No. D004434-17 dated July 3, 2008, and with the April 2005 Superfund Standby Contract No. 4434 between MACTEC and the NYSDEC.

The RI portion of this Report summarizes the investigations and remedial actions conducted to date at the Site. This RI/FS report was completed in accordance with the WA, as well as with the NYSDEC DER-10 "Technical Guidance for Site Investigation and Remediation" (NYSDEC, 2010). This approach integrates the RI and quality exposure assessment (QEA) with the screening and evaluation of alternatives performed during the FS.

The objectives of previous site investigations were to determine the nature and distribution of contamination associated with the Site. Previous and current investigations were conducted to gather data necessary to assess potential threats to human health and the environment by identifying potential contaminant source areas, delineating the extent of potential groundwater and soil contamination, and identifying areas of potential vapor/indoor air contamination. This Report presents results of the previous and current field activities/remedial measures and associated potential risks to human health and the environment.

The objectives of the FS are to evaluate potential remedial alternatives from an engineering, environmental, public health, and economic perspective and to develop a preferred alternative based on that evaluation.

1.1 REPORT ORGANIZATION

This RI/FS report is structured in accordance with the NYSDEC DER-10 (NYSDEC, 2010). The Sections of the RI/FS report are outlined below.

Section 1.0 Introduction:

Discusses the purpose of the RI/FS report and includes a description of the Site, the Site history, and findings of previous Site investigations.

Section 2.0 RI Field Work:

Describes the RI field work conducted by MACTEC.

Section 3.0 Physical Setting:

Summarizes the physical characteristics of the Site and surrounding area. This includes results of physical characteristics as determined during the various field programs.

Section 4.0 Nature and Extent of Contamination:

Presents a summary of the analytical data collected to date and discusses the nature and extent of contamination.

Section 5.0 Contaminant Fate and Transport:

Discusses the fate and transport of the Site contaminants.

Section 6.0 Qualitative Exposure Assessment:

Presents the QEA.

Section 7.0 Summary and Conclusions:

Presents the summary and conclusions of the RI, including a discussion of Remedial Action Objectives (RAOs).

Section 8.0 Development of RAOs and General Response Actions for Contamination Requiring Remediation:

MACTEC Engineering and Consulting, P.C. Project No. 3612082107

Presents the RAOs and General Response Actions which apply to soil contamination at the Site and identifies the extent of contamination to be addressed through remedial action.

Section 9.0 Identification and Screening of Technologies:

Describes the identification and screening of potential remedial technologies.

Section 10.0 Development and Screening of Alternatives:

Combines the retained remedial technologies into remedial alternatives for the Site.

Section 11.0 Detailed Analysis of Alternatives:

Presents the detailed analyses of remedial alternatives for the Site. The detailed analysis is intended to provide decision-makers with the relevant information with which to aid in selection of a site remedy.

Section 12.0 Comparative Analysis of Alternatives:

Evaluates the relative performance of each alternative using the same criteria by which the detailed analysis of each alternative was conducted. The purpose of the comparative analysis is to identify advantages and disadvantages of each alternative relative to one another to aid in selecting a remedy for the Site.

Section 13.0 References

Presents a list of references used in the preparation of this Report.

Field data sheets and supporting information are included in the Appendices attached to this Report.

1.2 PURPOSE OF REPORT

The purpose of this RI/FS Report is to present findings of previous and current site investigations, discuss the Interim Remedial Measure (IRM) currently being conducted at the Site as a result of previous investigation findings, develop RAOs to address potential receptor exposure to identified soil contaminants, and to identify and develop remedial alternatives to mitigate or prevent threats to human health and the environment.

Previous investigations and historical documentation at the Site indicated that solvents (including chemicals related to dry cleaning operations) exist in site soils at concentrations above the NYSDEC Technical and Administrative Guidance Memorandum (TAGM) 4046 "Soil Cleanup Objectives to Protect Groundwater" (NYSDEC, 1994). Title 6 of New York Codes, Rules and Regulations (6 NYCRR) Part 375-6 Remedial Program Soil Cleanup Objectives (SCOs) (effective December 14, 2006) replaces TAGM 4046, and has been used in preparing this RI/FS report. Previously collected groundwater data also indicated that chlorinated solvents, including tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), 1,1-dichloroethane (1,1-DCA), and 1,1,1-trichloroethane (1,1,1-TCA), and vinyl chloride (all listed hazardous wastes under 6 NYCRR Part 371 (NYS, 1999a) existed in Site groundwater at concentrations in exceedance of the state Class GA groundwater standards as defined in 6 NYCRR Part 700-705 (NYS, 1999b) and by the NYS Class GA Groundwater Quality Guidance Values from the Division of Water Technical and Operational Guidance Series 1.1.1 "Ambient Water Quality Standards and Guidance Values" (NYSDEC, 1998).

Based on previous investigations and data, the Site poses a potential significant threat to public health and the environment as defined in 6 NYCRR 375 (NYS, 2006). This RI/FS report will:

- Characterize the historical source area(s) and potential continuing source areas for chlorinated solvent contaminants.
- Characterize the areal and vertical extent of contaminants in Site groundwater.
- Characterize the extent of the solvent and fuel contamination source(s) in soil.
- Determine if other potential continuing sources of contamination exist.
- Characterize the potential and actual threat to human health and the environment. Evaluate potential present and future human health exposure pathways, such as through exposure to contaminated soils and groundwater, and vapor migration to indoor air (i.e., complete a QEA).
- Determine if there is sufficient data to evaluate the remedial action alternatives for the Site to mitigate the potential or actual threats to human health and the environment.
- Determine what soil and groundwater contamination remedies are the most applicable.

1.3 SITE BACKGROUND

Information pertaining to the history of the Site is contained in past reports. This information was reviewed and summarized in the following subsections.

1.3.1 Site Description

The Site is located at 1012 South Clinton Avenue in the City of Rochester in Monroe County, New York (see Figure 1.1). The property is located in a mixed commercial/residential area just inside the Rochester City limits. The Site occupies 0.25 acres on two parcels aligned perpendicular to one another, and is currently surfaced by a combination of pavement, a concrete former building slab, and soil. The property is currently vacant and abuts several residential and commercial properties.

1.3.2 Site History

The history of the Site is summarized from past Site reports which are discussed in more detail in Section 2. Tables and figures from past investigations are referenced throughout this report and, if referenced, are included in Appendix A (Sears Brown and URS Figures) and Appendix B (URS Tables).

The property and buildings were reportedly used as an automobile repair shop from around 1950 through approximately 1969. From 1971 to 1993, the Site was occupied by Dinaburg Distributing, Inc., which operated a dry cleaning supply company and sold chemical solvents to various dry cleaners in the area (Sears Brown Group, 1995b). Dinaburg stored TCE and PCE in above ground storage tanks (ASTs) located within the north area of the former site building (URS Corporation [URS], 2001). The former building layout is shown on Sears Brown Figure 2 in Appendix A, and the footprint of the former Site building is also shown on Figure 1.2. Property street numbers are also included on Figure 1.2. As a result of the previous Site operations, solvents and fuels were either spilled to the ground surface or to floor drains, where they flowed/leaked into the soils at the Site. The property has been vacant since 1995 and currently consists of a vacant lot. The building and an adjacent house at 350 Benton Street were demolished in 2004 (URS, 2004a).

A voluntary site investigation was completed in 1998 by the estate of Saul Dinaburg. On-site soils and groundwater were found to be contaminated with TCE, PCE, and their breakdown products. TCE and PCE were found in the groundwater at concentrations up to 93 parts per million (ppm) and 33 ppm, respectively. A second investigation completed in 1999 encountered volatile organic compounds (VOCs) at concentrations of up to 1% in the soil, and revealed that solvent vapors were migrating from the Site and into the basements of nearby properties. Indoor air samples in two of the properties contained PCE at levels above 100 milligrams (mg) per cubic meter (The New York State Department of Health [NYSDOH] indoor air guidance value for PCE is 100 micrograms per cubic meter [μ g/m³]).

Attempts to remediate the Site under the voluntary agreement program were unsuccessful and the agreement was terminated in 1999. Later that year, the NYSDEC installed two off-site soil vapor extraction (SVE) systems under an IRM to address the migration of solvent vapor contamination into the nearby basements. Additional soil investigations completed in 1999 confirmed the presence of TCE and PCE contamination in nearby off-site areas. An RI was performed by URS in 2001 to support the design of a multi-phase extraction (MPE) system. An MPE system was designed and constructed under the IRM program. Construction of the remedy began in the fall of 2005 and was completed in 2006. Operation of the MPE system (a groundwater and SVE system) began in April, 2006 and is currently ongoing.

1.3.3 Previous Investigations

Several field investigations were conducted at the Site from January 1994 through 2008. This Report is based in part on information and conclusions presented in the data sources listed below. Conclusions presented in this Report regarding contaminant extent, fate, and transport rely heavily on the information and data presented in these data sources.

The data sources include:

- Sear Brown Group, Inc., April 1995, Environmental Site Characterization Report, Former Dinaburg Distributing, Inc., 1012 South Clinton Avenue, Rochester, New York
- Sear Brown Group, Inc., December 1995, Basement Survey and Air Monitoring Report, Former Dinaburg Distributing, Inc., 1012 South Clinton Avenue, Rochester, New York

- Letter from Sear Brown Group, Inc. to NYSDEC, Dated December 15, 1997, RE: Progress Report, Voluntary Investigation, Former Dinaburg Distributing, Inc., 1012 South Clinton Avenue, Rochester, New York
- Sear Brown Group, Inc., April 1998, Voluntary Investigation Report, Former Dinaburg Distributing, Inc., 1012 South Clinton Avenue, Rochester, New York
- BEACON Environmental Services, Inc., March 29, 2000, EMFLUX® Passive, Non-Invasive Soil-Gas Survey, Dinaburg Distributing, Rochester, NY
- URS Corporation, May 2001, Remedial Investigation Report, Former Dinaburg Distributing, Inc., Site #8-28-103, Rochester, New York
- Letter from URS Corporation to NYSDEC, Dated January 23, 2004, RE: Supplemental Soil Gas Sampling Letter Report, Dinaburg Distributing, Inc., Work Assignment #D003825-26
- Letter from URS Corporation to NYSDEC, Dated December 2004, RE: WA# D003825-66, Pre-design Investigation Dinaburg Distributing Site, No. 8-28-103
- Daily Field Activity Report from URS Corporation, Dated February 16, 2006
- URS Corporation, April 2007, Final Remediation Report for Former Dinaburg Distributing, Inc., Site #8-28-103, Rochester, New York
- Memoranda to NYSDEC, RE: Former Dinaburg Distributing, Inc. (#8-28-103), Evaluation of Remedial System Performance:
 - ➤ Dated May 18, 2006– February 22 through March 31, 2006
 - Dated June 1, 2006– April 2006
 - > Dated June 29, 2006– May, 2006
 - Dated July 24, 2006– June 2006
 - Dated August 18, 2006– July 2006
 - ➤ Dated September 12, 2006– August 2006
 - Dated November 6, 2006– September 2006
 - ➤ Dated May 1, 2007 September 26 through November 7, 2006
 - ➤ Dated November 27, 2007– May 8 through August 8, 2007
 - ➤ Dated January 31, 2008– August 8 through November 13, 2007
 - ➤ Dated April 23, 2008– November 13, 2007 through February 6, 2008
 - Dated July 28, 2008–February 6 through May 6, 2008
 - ➤ Dated October 1, 2010–February 2, 2009 through May 17, 2010
- URS Corporation, Site CAD Drawing Dated December 2006, Site Plan Survey Information, Former Dinaburg Distributing, Inc. Site
- URS Corporation, Letter Report dated September 3, 2008 from Don McCall and Craig Pawlewski of URS Corporation to Will Welling, NYSDEC. Subject: Former Dinaburg Distributing, Inc. (#8-28-103), Evaluation of Remedial System Performance – Soil Sampling Assessment Report

The following discussions summarize the past investigations and the data presented in those sources.

Phase I Environmental Site Assessment – Empire Soils Investigations, Inc., January 1994.

This Phase I Environmental Site Assessment (ESA) was performed prior to an anticipated sale of the property. The Phase I report identified potential environmental concerns and recommended that a Phase II investigation be conducted specifically to investigate the hydraulic lift, TCE and PCE AST area, and the AST tank location in the rear of the building.

Phase I ESA Addendum – Empire Soils Investigations, Inc., March 1994

This Report provided additional information requested from various utilities and agencies. This Report identified spills at the Site which were reported to the Monroe County Health Department, the NYSDEC, and the United States Environmental Protection Agency (USEPA). The spills reportedly involved PCE, fuel oil/diesel oil and Varsol (mineral spirits). The Phase I Addendum reported that all of the spill files had been closed, suggesting that the spills were cleaned up to the satisfaction of the agencies.

Soil Vapor Survey Report – Marcor of New York, Inc., November 1994

This Report included further investigation of the extent of contamination by VOCs. The investigation included the installation of 35 soil-gas test points, the collection of a soil sample from beneath the concrete floor near the hydraulic lift and the collection of a water grab sample from a floor sump near the lift. The soil vapor survey identified elevated concentrations of total VOCs on the north and east sides of the Site. Results from the floor sump water sample identified exceedances of the NYSDEC groundwater quality criteria for a number of gasoline/diesel fuel compounds as well as for PCE and TCE. Analytical results from the floor soil sample identified the presence of PCE at a concentration of 175,830 parts per billion (ppb). This value exceeded the NYSDEC TAGM 4046 criteria for PCE in soil of 1,400 ppb, which is the SCO to protect groundwater quality. The 2006 6 NYCRR Part 375 SCO for PCE for unrestricted use is 1,300 ppb (NYS, 2006).

Environmental Site Characterization Report - Sear-Brown Group, Inc., April 1995

The Environmental Site Characterization Report investigation included a dye test in the floor drain, sampling of hydraulic oil from the hydraulic lifts, and sampling of soil and groundwater from four groundwater monitoring wells, MW-01, MW-01A, MW-02 and MW-03, at the locations shown on URS Figures 1-3 and 2-2 in Appendix A. The dye test confirmed that the floor drain in the building discharged into the city sewer system. PCE and TCE were detected in soil and groundwater samples at concentrations greatly exceeding their respective criteria, as shown in Appendix B, URS Tables 1-2 and 1-3, respectively. The highest contaminant concentrations in soil were encountered in the shallow (1 foot to 3 foot deep) sample from the B-2/MW-02 location, and the highest groundwater concentrations were detected in MW-02 and MW-03. The analytical result for the hydraulic oil in the automobile lift cylinders was non-detect for polychlorinated biphenyls (PCBs).

The Report concludes that the sanitary sewer lines likely drain the upper portion of the groundwater on Site. Sewer samples were subsequently collected at locations downstream from the Site by the Monroe County Pure Waters (MCPW). A summary of the sewer sampling analytical results of November 1995 is presented in URS Table 1-4 in Appendix B which shows that PCE, TCE, and 1,2-DCE were detected in sewer sample SEW-02 which is located on South Clinton Avenue downstream from the Site (see URS Figure 1-3 in Appendix A) (URS, 2001).

<u>Voluntary Investigation Report Former Dinaburg Distributing, Inc. – Sear Brown Group, Inc., April 1998</u>

This Report documented the installation of four additional monitoring wells (MW-03C, MW-04, MW-05, and MW-06) (see URS Figure 1-3 in Appendix A), and the sampling of soils and groundwater. Sampling revealed that concentrations of TCE and PCE in soil and TCE, PCE, and associated breakdown products in groundwater exceeded the NYSDEC standards, criteria, or guidance (SCG) values as shown in URS Tables 1-5 and 1-6 in Appendix B, respectively. Contaminants were not noted in the offsite groundwater samples at MW-04 and MW-05 at concentrations above SCGs.

The Report also includes the results of indoor air samples collected from the basements of five nearby buildings in October 1995, and two adjacent residences at 338 and 350 Benton Street in October 1997. During both rounds, neither PCE nor TCE were detected in the indoor air samples.

Soil Gas Survey Report, Galson Consulting, May, 1999

The Galson soil gas investigation included the collection of 31 soil gas samples from both onsite and offsite locations, 9 Geoprobe soil samples collected from four boring locations (B-01, B-03, B-06, F-04), and air sampling from the basements of 338 and 350 Benton Street during April 1999. The Report identified TCE and PCE in both onsite and offsite soil gas samples, and in onsite soil samples. Soil sample results area presented in URS Table 1-7 in Appendix B. Additionally, PCE was detected at concentrations of 245 μ g/m³ in the basement air sample from 350 Benton Street, and 72 μ g/m³ in the basement air sample from 338 Benton Street.

Geoprobe Survey, Zebra Environmental Corp., November 1999.

Zebra Environmental Corp. performed a Geoprobe soil and groundwater survey prior to the installation of SVE systems adjacent to 350 and 338 Benton Street (see next section for discussion). Four Geoprobe borings were installed between the Site and 350 Benton Street (GP-01 through GP-04), and four between the Site and 338 Benton Street (GP-05 through GP-08) (see URS Figure 1-3 in Appendix A – sample locations referenced with a (99) for the year 1999). The investigation included the collection of 17 soil samples and the installation of two offsite 1½-inch monitoring wells (GPW-01 and GPW-02) (see URS Figure 1-3 in Appendix A). Soil sample analytical results identified TCE and PCE at both Geoprobe locations, as shown in URS Table 1-8 in Appendix B. The highest concentrations of PCE were detected in the soil samples collected from 4.0-8.0 feet below ground surface (bgs) in boring GP-04 (110 ppm), and from 0.0-4.0 feet bgs in boring GP-07 (120 ppm). TCE, PCE, and associated breakdown products were detected at concentrations exceeding groundwater criteria in samples collected in June 2000 from GPW-01 and GPW-02, as shown in URS Table 1-9 in Appendix B.

EMFLUX® Soil Gas Survey, Beacon Environmental Services, Inc., March 2000

Between March 20 and March 23, 2000, eight passive soil gas samples were collected from beneath the basement concrete floor of 350 Benton Street and two passive soil gas samples were collected from the backyard, as shown in URS Figure 1-3 in Appendix A. The passive soil gas analytical results identified the presence, identity, and relative concentration of compounds in subsurface soil gas. The analytical results identified PCE and TCE at every sample location, as shown in URS Table 1-10 in Appendix B. Chloroform, toluene, 1,1-trichloroethene, 1,1,1-TCA, and cis-1,2-DCE were identified in various samples. Soil gas concentrations beneath the basement floor at 350 Benton Street were significantly high on the west (Dinaburg) side of the building.

SVE Remediation System Installation, NYSDEC, 1999

In the fall of 1999, a SVE system was installed by the NYSDEC to address indoor air contamination detected in the residential basements of 338 Benton Street and 350 Benton Street. As described by URS (URS, 2001), the SVE system consisted of two separate extraction trenches (338 Benton Street trench and 350 Benton Street trench) with two horizontal SVE wells in each trench separated by approximately 1 to 2 vertical feet. The trenches (approximately 6 feet deep) were located between the Former Dinaburg Distributing, Inc. buildings and the residential properties (URS Figure 1-4 in Appendix A). The 338 Benton Street trench was approximately 70 feet long and the 350 Benton Street trench was approximately 80 feet long. The SVE system became operational on December 16, 1999, with regular maintenance schedules needed to replace carbon filters.

Indoor air samples were regularly collected from 350 Benton Street and 338 Benton Street by the NYSDOH from April 1999 until after the SVE system was turned on in April 2000, with a limited number of samples collected from other buildings near the Site. TCE and PCE analytical results indicated that concentrations decreased after the system start up (URS, 2001).

Remedial Investigation Report, URS Corporation, May 2001

Work performed for this 2001 RI Report was designed to collect additional Site data to develop an IRM design for the Site. As discussed in the Report, specific goals of the RI were to determine the

extent of soil contamination in the northern portion of the Site, and to determine the extent of groundwater contamination to the north, east, and west of the Site. An MPE system was previously selected as an IRM for the Site with the purpose of the IRM being the remediation of onsite source contamination to the extent practicable as well as to prevent the migration of contaminated groundwater and soil vapors to offsite residential properties. Field activities performed for the RI included: a utility survey; site survey and mapping; soil gas survey including the collection and analysis of 59 soil gas samples from Geoprobe points; soil sampling at 23 of the Geoprobe soil gas locations; sewer sampling; a groundwater investigation including the installation of four water table (overburden) and overburden/bedrock interface (weathered bedrock interface zone) monitoring well couplets at locations around the Site; and, the installation of a recovery well and two piezometers inside the Dinaburg building. As part of the RI, a groundwater pumping test was performed to determine the underlying semi-confined overburden/bedrock interface zone aquifer characteristics, and a SVE pilot test was performed to determine the radius of influence for the vapor extraction component of an MPE system.

Results obtained in the soil gas survey helped direct the placement of 18 Geoprobe soil borings from which 23 soil samples were collected to help determine the nature and extent of soil contamination at the Site and immediate surroundings. Analytical results show that the primary soil contaminants (contaminants of concern [COCs]) at the Site are chlorinated compounds representative of dry cleaning solvents, specifically PCE and TCE, with PCE occurring at higher concentrations (URS Table 4-1 in Appendix B). The highest contaminant levels were found to occur in shallow soils with contaminant concentrations generally decreasing with depth in the vadose zone. Areas with high soil contaminant concentrations were found to occur beneath the tank storage room at the back of the Dinaburg building, the new building extension adjacent to the Benton Street driveway, and beneath the adjacent driveways at the 350 and 338 Benton Street properties. Although contamination was observed at offsite locations, the RI states that it is not believed to extend far offsite. Analytical results also indicated that there was no evidence of significant natural attenuation or a reduction of soil contamination with time, suggesting that biodegradation of PCE and TCE is not occurring at a significant rate.

For the RI, a total of 18 groundwater samples were analyzed for VOCs, semi-volatile organic compounds (SVOCs), and metals (URS Table 4-2 in Appendix B). Analytical results confirmed the primary chlorinated solvent COCs were PCE and TCE. These were detected at concentrations

exceeding the NYSDEC Class GA groundwater criteria [5 micrograms per liter (μ g/L), or ppb] in 11 of the 18 wells. As with the soils, the primary source area for the groundwater contamination was determined as being the Dinaburg building, including the former tank storage room, new building extension, and the Benton Street driveway. The results obtained indicated the existence of a source (contaminated soils) at the Site. Contaminated groundwater was determined to flow away from the source areas in directions ranging primarily from southeast to west, as controlled by the predominant groundwater flow directions. The extent of bedrock contamination was not determined in the RI because the only monitoring well screened within bedrock was the monitoring well MW-03C. Analytical results of this well show PCE, TCE, 1,2-DCE and vinyl chloride present in groundwater at concentrations that exceed Class GA groundwater criteria.

URS indicated that results of the sewer sampling (URS Table 4-4 in Appendix B) demonstrate that the sewer systems in Benton Street and South Clinton Avenue intercept groundwater contamination originating at the Site and likely act as drains to intercept the flow of groundwater flowing toward them.

The information collected during the RI enabled the design of a conceptual MPE system. The conceptual system included the installation of approximately 20 on-site and five off-site extraction wells which would be connected to separate groundwater and vapor-phase treatment systems. The system would treat soil vapor and groundwater simultaneously obtained from the same monitoring well network. The Report estimated that successful remediation of soil in the vadose zone would require at least 4 to 5 years of MPE system operation.

Supplemental Soil Gas Sampling Letter Report, URS Corporation, January 23, 2004

URS conducted soil gas sampling in three buildings near the Site: 354 Benton St., 338 Benton St., and 1018 Clinton St. (URS Figure 1 in Appendix A and Figure 1.2). Results of this sampling show that PCE is present in the soil vapor and is migrating into the buildings at 1018 Clinton St. and at 338 Benton St. At each of the three buildings, the concentration of PCE was higher in the sub-slab sample than in the ambient air sample, indicating that the PCE vapors found within the two residences are due to migration of vapors from the subsurface into the basements. For the third residence, 354 Benton St, PCE was detected at $2.6 \mu g/m^3$ in sub-slab and was not detected in indoor air, and TCE was not detected in either sub-slab or indoor air samples. Based on results of

the soil vapor sampling, URS did not recommend that any additional sampling be conducted or that

any specific activities other than the proposed remedy be performed.

Subsequent to this Report, a sub-slab depressurization system was installed at 338 Benton Street

(same building foundation as 1018 Clinton Avenue).

Predesign Investigation Report, URS Corporation, December 2004

URS and the NYSDEC agreed during the RI process that source removal of contaminated hot spots

should be incorporated into the project which would include the installation of a dual phase vapor

and groundwater extraction (GWE) system at the Site. It was during this process that the Site

buildings were removed, as well as the buildings at 350 Benton Street (early 2004). The Pre-

design Investigation Report presents the results of a field investigation that URS conducted to

better define the limits of excavation of contaminated soils on Site. The investigation conducted

included the installation of 16 Geoprobe borings (SB-01 to SB-16) for the collection of soil

samples for laboratory analysis (URS Table 1 [Soil Analytical Results (2004)] in Appendix B).

The fieldwork was performed on October 13 and 14, 2004.

Based results of the pre-design field work, URS recommended that soil hot spot removal be

performed to the extent practical on all soils above the water table (to a depth of approximately 8

feet bgs), but not under buildings where soil concentrations of PCE exceeded 100 mg per kilogram

(Kg). Under this scenario, the proposed excavation volume was 310 cubic yards, effectively

removing an estimated 1,070 pounds (lbs) of VOCs from the Site soils.

Final Remediation Report, URS Corporation, April 2007

This Report documents remedial activities completed to date including construction, operation, and

analysis of the MPE system installed as the IRM. The MPE system was installed to address the

source area of contamination (soil removal and groundwater treatment) and to provide a more

permanent solution to control off-Site vapor migration into nearby homes (vapor treatment) by

using vacuum pumps to extract contaminated groundwater and vapors from wells in the ground.

The MPE system construction and installation consisted of the following major components:

1-14

- Excavation of contaminated soils from the source area an approximately 32 feet square by 8 feet deep area, as well as soils to one foot bgs outside this hot spot (see URS Figure 1-2 in Appendix A for proposed excavation and Figure 1.2 for completed excavation).
- Backfilling with clean soil in the source area removal area.
- Installation of 18 multi-phase extraction wells (MPE-1 through MPE-18) to the top of till layer at around 10 to 13 feet bgs.
- Installation of three groundwater extraction wells (GWE-1 through GWE-3) to the top of bedrock, generally twice as deep as the MPE wells.
- Construction of a multi-phase extraction and treatment system for both groundwater and SVE and treatment systems.
- Connection and integration of the existing SVE trenches with the new system, and the removal of the existing treatment systems at the adjacent structures at 338 Benton Street and 1018 South Clinton Avenue.
- Construction of a discharge line from the groundwater treatment system to the MCPW combined sewer system located on Benton Street.
- System startup and performance testing, followed by six months of operation and maintenance (O&M) of the systems.
- Decommissioning of the existing wells and piezometers MW-2, PZ-1, PZ-2, and RW-1 which were located within the footprint for excavation of the source area soils.

On February 22, 2006 the MPE treatment system began operation, and April 1, 2006 was considered to be the official start of the six month operation period (MPE well locations are shown on Figure 1.3). On February 16, 2006, and prior to the startup of the treatment system, a round of groundwater samples and water levels were collected to set a baseline of the contaminant concentrations prior to operation of the treatment system. Since March 2006, no water samples have been collected from MW-11K because this well was damaged during RI activities; this well has not been repaired or replaced.

The goal of the MPE treatment system is to address contamination in both vadose soil gas and the saturated zones at the Site. Rather than having separate extraction and treatment of the contaminated soil vapors and groundwater, the MPE system was installed to use one set of extraction wells to concurrently extract soil vapor and groundwater. These concurrent systems benefit from the combined operation in that the vacuum in the vadose zone increases the efficiency of groundwater collection, while depression of the groundwater table from pumping exposes additional soil for remediation via vapor extraction. Most of the MPE wells were installed within the footprint of the buildings that were formerly located at the Site. A few of the MPE and GWE

wells are immediately adjacent to the former buildings, or farther east along Benton Street. In addition to the MPE wells, the SVE system is connected to two pre-existing trenches, one located at a property on Benton Street, and one located at a property on the corner of Benton Street and South Clinton Avenue. These trenches were previously connected to SVE systems (now removed) and were intended to continue to mitigate the intrusion of subsurface vapors into the adjacent buildings.

After a month of startup and shakedown of the MPE system, a six-month period of routine system O&M was conducted starting on April 1 and continuing through September 2006. At the completion of the six-month operating period, the system was turned over to the NYSDEC. The Report contains monthly operating reports that summarize sampling and estimated quantities of contamination removed by the MPE system. At the end of September 2006 the system was estimated to have removed approximately 212 lbs of contamination, with most of the contamination being removed via the MPE wells, primarily from the vapor phase (195.8 lbs). The recommendation to the NYSDEC was to continue with the MPE extraction and treatment system in its current configuration for at least an additional six-month period.

<u>Evaluation of Remedial System Performance – Multiple periods (see reference dates listed under data source above), URS Corporation</u>

These memoranda summarize data obtained during operation of the MPE system. Data includes analytical results of soil vapor and groundwater collected from the 18 dual phase extraction wells, three groundwater extraction wells, and existing 17 monitoring wells (well locations are shown on Figure 1.3). The memoranda were issued monthly from system start-up (February 2006) to September 2006, and then quarterly to May 2008. The most recent report was February 2009 to May 2010 (Reports from May 2008 to February 2009 were not available for review). The most recent report (February 25, 2009 through May 17, 2010) indicate that both the water and vapor extraction and treatment from the MPE wells continued to perform as designed, with a total removal of 41.7 lbs of contaminants during this sampling period. The total VOCs removed as of May 2010 was calculated at 382.8 lbs (with 69.7 lbs via water and 113.1 lbs via vapor). The rate of removal of contaminants from the MPE wells has decreased from a high of approximately 1.29 lbs per day at system startup to approximately 0.09 lbs per day. Of the three Groundwater Extraction wells, wells GWE-2 and GWE-3 contribute considerably more flow than GWE-1. Extraction flow

rates appear to have dropped from approximately 1.5 gallons per minute (gpm) at system startup to an average of 0.25 gpm over this sampling period, although the memorandum indicated that the GWE wells may not be operating (URS, 2010). May 2010 groundwater analytical results are presented in URS Table 2 (Validated Groundwater Sample Results [5/2010]) in Appendix B.

<u>Evaluation of Remedial System Performance – Soil Sampling Assessment Report, URS</u> <u>Corporation, dated September 3, 2008</u>

This Report summarizes results of 39 soil samples collected in July 2008 from 37 Geoprobe soil borings to assess the progress of the current remedial system. Soil sample results were compared to five SCOs outlined in 6 NYCRR 375 (unrestricted use, residential use, restricted residential use, commercial use, and industrial use). With the exception of the unrestricted use scenario, PCE and TCE were the only VOCs to exceed the SCOs, but they exceeded the SCOs for each use scenario.

VOCs were detected at concentrations above the SCOs for unrestricted use at 23 of the 37 locations. Soil boring sample locations are presented on URS Figure 2 in Appendix A and analytical results compared to unrestricted use SCOs are presented on URS Table 1 (2008 Geoprobe Sampling Comparison to Unrestricted Use Cleanup Objectives) in Appendix B. In addition, photoionization detector (PID) readings for each boring compared to PCE analytical results are presented on URS Table A-1 in Appendix B. Based on concentrations detected, URS estimated that there are approximately 53 lbs of TCE/PCE and approximately 64 lbs of total VOCs remaining in Site soils. Based on an estimated removal rate of 0.06 lbs per day, the current system would need to operate for approximately three additional years to achieve unrestricted use SCOs. URS stated that this projection was an estimate and the actual clean-up time frames could vary significantly (i.e. an order of magnitude) due to the varied lithology at the Site and the potential presence of PCE as a dense non-aqueous phase liquid (DNAPL) at the Site. It was recommended to complete another soil sampling event in one to two years.

2.0 RI FIELD INVESTIGATIONS

The RI field work was conducted to address data gaps identified after reviewing the results of previous Site investigations. The components included in the RI scope of work include:

- installation of four monitoring wells (MW-12S, MW-12K, MW-13K, and MW-14K)
- groundwater sampling of the four new wells and 13 existing wells
- completion of six Geoprobe groundwater points (GW-1 to GW-6) and collection of nine groundwater samples in May 2009
- collection of three exterior soil vapor samples (SV-1 to SV-3)
- collection of one sub-slab soil vapor sample (SV-4)
- collection of water level measurements
- collection of vacuum measurements from the MPE system during performance evaluation
- completion of 10 Geoprobe soil points (GS-1 to GS-10) between the MPE wells
- installation of 10 microwells within the above mentioned Geoprobe soil points
- completion of four Geoprobe soil points (GS-11 to GS-14) north of the Site
- collection of water samples (SL-1 to SL-6) from six sewer man ways
- completion of five additional Geoprobe groundwater points (GW-7 to GW-11) and collection of eight groundwater samples in December 2009

A summary of these field tasks and methodologies are described in more detail in the following subsections.

2.1 FIELD OPERATIONS

Field work was completed in general accordance with the Field Activities Plan (MACTEC, 2009) and MACTEC's Program Quality Assurance Program Plan (MACTEC, 2007).

The RI fieldwork was conducted in Level D personal protection. No health and safety incidences or near misses were reported.

2.2 SITE INVESTIGATION ACTIVITIES

The flowing subsections detail the specific field investigation activities conducted at the Site and the rationale for the activities.

2.2.1 Groundwater Monitoring Well Installation

Use of the existing Site groundwater monitoring well network was determined to exhibit the following data gaps:

- There were no groundwater monitoring points south of the Site,
- There were no overburden/bedrock interface zone groundwater wells on the east side of the Site, and therefore it was not known how far groundwater contamination in this zone extended to the east.
- The contamination boundary in the overburden/bedrock interface zone on the west side of the Site was not confirmed (PCE was detected at overburden/bedrock interface well GWE-1 at 2,400 µg/L, but was not detected in MW-1, located approximately 10 feet west of GWE-1).

To fill these data gaps and evaluate the presence of VOCs in the deep overburden/shallow bedrock (i.e. interface zone) groundwater at the Site perimeter, three two-inch interface zone monitoring wells (MW-12K, MW-13K and MW-14K) were installed (Figure 2.1). In addition, one well (MW-12K) was paired with a shallow overburden well (MW-12S) to evaluate shallow groundwater concentrations south of the Site and if site contaminants are migrating through the till layer and into the bedrock groundwater south of the Site.

Each deep overburden/bedrock interface monitoring well boring was advanced using hollow stem auger drilling techniques into the top of the weathered bedrock. Soil samples were collected at five-foot intervals using two-foot split spoons. For each five-foot interval, PID headspace readings, sample description and classification using the Unified Soil Classification System, and drilling observations were recorded on field data records (included in Appendix C). Borings MW-13K and 14K were continued two feet into bedrock using tri-cone drilling techniques. Boring MW-12K was augered two feet into what was interpreted as weathered bedrock.

The monitoring wells were constructed of 2-inch inside diameter schedule 40 polyvinyl chloride (PVC) with five-foot well screens and threaded flush joint. The deep overburden/bedrock interface

wells were constructed so that the well screens were set into the bedrock below the till layer with a bentonite seal within the till such that the wells were hydraulically isolated from the shallow overburden. The shallow overburden monitoring well was installed with five-foot screens set just below the water table to a depth of 14 feet bgs. Well screens have 0.010-inch wide machine slots with # 0 sand pack to two feet above the screen, a two foot bentonite seal above the sand pack and bentonite chip or clean backfill to the ground surface. The wells were completed with a locking cap and a sixinch flush mount steel cover.

Upon completion of monitoring well installations, the newly installed monitoring wells were developed (no sooner than 24 hours after installation) using pump and surge techniques. Well development activities were documented on a Well Development Record (Appendix C).

2.2.3 Groundwater Sampling

On May 25 and 26, 2009, the four newly installed wells and 13 existing monitoring wells (MW-1A, MW-1, MW-3 to MW-6, MW-3C, MW-8K, MW-9K, MW-10K, MW-11S [MW-11K was blocked], GPW-1, and GPW-2) were sampled for VOCs and the four new wells and 10 existing wells (above list of wells minus MW-5, GPW-1 and GPW-2) were sampled for natural attenuation parameters to get current groundwater data for the Site.

Prior to sampling, a synoptic round of water level measurements was collected from existing monitoring wells, MPE wells, and microwells (due to water lines and electrical wires in the well, water levels could not be collected from the groundwater extraction wells). Monitoring wells were sampled using low-flow sampling techniques. Samples were collected using a geopump with dedicated sample tubing. Field measurements for pH, temperature, specific conductivity, oxidation reduction potential, dissolved oxygen, and turbidity were collected through a flow through cell (with the exception of turbidity) from each well during pre-sample purging. Purge water was screened with a PID and observed for sheens and odors. If no evidence of contamination was detected then the water was poured on the ground at the well location. If contamination was observed in the development water then the water was containerized and pumped into the on-site treatment system for treatment prior to discharging to the local sewers.

Monitoring well sampling activities were documented using a Low Flow Groundwater Data Record (Included in Appendix C).

2.2.4 Soil Vapor Sampling

Soil vapor samples were collected to evaluate if contaminants of concern from the Site are present in off-Site soil vapor (either from direct vapor migration, or from volatilization from contaminated groundwater) and creating a potential exposure pathway via vapor intrusion. The soil vapor samples were collected from approximately seven to eight feet bgs, or just above the water table at each location. Groundwater was present at approximately 10 feet bgs; however the depth to groundwater was variable across the Site.

A total of three soil vapor samples were collected near the Site (SV-1 to SV-3), in the down gradient groundwater flow direction. Two soil vapor points (SV-2 and SV-3) were completed on the south side of Benton Street and one (SV-1) was located on the west side of Clinton Avenue. The soil vapor sample point locations are shown on Figure 1.2.

Soil vapor samples were collected using direct push technology by pushing the rods to approximately six to eight feet bgs, which was anticipated to be immediately above the water table.

Soil vapor samples were collected using the Geoprobe® PRT system using SUMMA canisters. Approximately one liter of soil vapor, plus the volume of the tubing, were purged using a personal air monitoring pump before collecting samples. During the soil vapor purge, vapors were screened with a PID. A helium leak test was conducted at soil vapor sample location SV-3 to assess the integrity of the soil vapor probe seal prior to sampling. Based on the leak test, the sample point was determined to be adequately sealed (i.e. less than 6% breakthrough as measured with a helium detector), and therefore the methods employed for the soil vapor sampling were determined to be acceptable.

In addition to the exterior soil vapor samples, one sub-slab soil vapor sample (SV-4) was collected from below the concrete floor of the business located to the west and adjacent the Site. The sample was collected by drilling a 3/8-inch diameter hole through the floor and inserting a 1/4-inch outside diameter tubing sealed at the floor with bentonite. The sub-slab sample was collected in an

approximate one-liter Summa-type can with over an approximate 20-minute time period (i.e. less than 0.1 liter per minute). The approximate sample location is shown on Figure 2.1.

Soil vapor sampling activities were documented using a Soil Vapor Sampling Record (included in Appendix C).

2.2.5 Geoprobe Soil Borings

Source Area Borings. Based on existing data, it was not clear if the contaminant source material was limited to the upper overburden/lacustrine soil, or if it had migrated down to the till layer. To fill this data gap, 10 Geoprobe soil borings (GS-1 to GS-10) were completed at the Site between the multiphase extraction wells. Figure 2.1 shows the location of the Geoprobe soil borings. Geoprobe borings were advanced using direct push. Soil samples were collected from four-foot long 2-inch diameter core sampler with an acrylic liner. Soil samples were collected continuously from the ground surface to approximately 16 feet bgs. PID headspace readings were used to screen soil samples for the presence of VOCs as each soil sample was removed from the sample collection tube. Samples were described in general accordance with the Unified Soil Classification System. The sample description and classification, VOC headspace reading, and boring observations were recorded on the Data Record (included in Appendix C). Based on the PID readings and physical evidence such as color or odor, 20 soil samples plus quality control (QC), were submitted to the off-Site laboratory for VOC analyses. The data was used to evaluate the vertical distribution of contaminants in the soil and whether the contamination source material was limited to the upper stratified lacustrine soils that overlie the till layer, or whether it has migrated into the till layer. A microwell was installed at each boring location as described in the following subsection.

Delineation Borings. Based on existing data, it was not clear if the soil contamination was limited to the Site property, or if it extends onto the property to the north of the Site. To fill this data gap, four Geoprobe soil borings (GS-11 to GS-14) were completed north of the Site in the vicinity of monitoring wells MW-10S and MW-10K (see Figure 2.1). Soil samples were collected continuously from the ground surface to 16 feet bgs, with the exception of GS-13, which was sampled continuously to refusal on assumed bedrock at approximately 21 feet bgs. PID headspace readings were used to screen soil samples for the presence of VOCs and samples were described in general accordance with the Unified Soil Classification System. Based on the PID readings and

physical evidence such as color or odor, 9 soil samples, were submitted to the off-Site laboratory for VOC analyses. The data was used to evaluate the potential presence of contamination north of the Site, and if present, the horizontal and vertical distribution of contaminants in the overburden north of the Site.

2.2.6 Geoprobe Microwell Installation

The zone of influence of the MPE system on both the soil vapor and water table drawdown was not known. To fill this data gap, 10 microwells were installed in the "source area borings" noted previously (GS-1 to GS-10) (see Figure 2.1). Each of the Geoprobe source area soil borings described previously was completed with a microwell (microwell numbers coincide with the GS numbers, but are labeled as GMW-1 to GMW-10). The Geoprobe soil borings/microwell exploration locations are shown on Figure 2.1. The microwells were constructed with 1-inch ID schedule 40 PVC. Well screens were five feet long with 0.01" slots and set across the water table from approximately 7 to 12 feet bgs. The well screens extend approximately 2 feet above the water table so that both water level and vacuum measurements can be collected. The water level and vacuum measurements were used to evaluate the influence of the MPE wells on both the groundwater drawdown and the zone of influence for vapor extraction. The microwells were backfilled with #0 sand to approximately 2 feet above the screen if possible and sealed with bentonite chips to approximately 1 foot bgs. Microwells were completed at the surface with a locking cap and a six inch flush mount casing cemented in place.

2.2.7 Geoprobe Groundwater Points – May 2009

The existing set of monitoring wells did not give sufficient coverage to adequately characterize the limits of the shallow and deep overburden groundwater contamination. To supplement data from the existing and new monitoring wells and to fill these data gaps, geoprobe groundwater points were completed at six locations around the perimeter of the Site (GW-1 to GW-6). The approximate locations are shown on Figure 2.1. Groundwater grab samples were collected from depths of approximately 12 feet bgs and 20 feet bgs at three locations and at approximately 20 feet bgs at the remaining three locations (due to poor water flow, shallow water samples could not be collected at three of the locations). The groundwater samples were collected by using direct push methods to advance a screen sampler to the desired depth and then pulling the casing back to

expose the well screen to the formation. Water was pumped using either a peristaltic pump or a Waterra foot valve type pump. One tubing volume of water was purged and one set of groundwater parameters including temperature, conductivity, pH, and turbidity were collected before sampling, if possible. Groundwater grab samples for VOC analysis were collected at a low purge rate (approximately 100 milliliters per minute) from each depth at each location to characterize the groundwater potentially migrating off Site and to evaluate the potential for vapor to migrate from the shallow groundwater to the vadose zone soils. Geoprobe groundwater sampling activities were documented on Field Data Records included in Appendix C.

2.2.8 Water Level and Vacuum Measurements

A round of water levels was collected from the MPE wells, the new microwells and the monitoring well network while the MPE system was operating. These water level measurements were used to evaluate the amount of drawdown the MPE system creates, as well as to evaluate groundwater flow direction.

2.2.9 MPE System Evaluation

The MPE system evaluation included the collection of vacuum readings and collection of water levels. The vacuum measurements were collected from the MPE wells and the new microwells to evaluate the area of influence of the vapor extraction system. While the system was operating, vacuum readings were recorded from each of the pressure indicators for the MPE wells from inside the treatment building. A manometer was used to measure the vacuum in the microwells. The MPE system was then turned off to allow the subsurface vapor pressures to equilibrate. To evaluate the recharge of the water table, water levels were periodically monitored in select wells (MPE-2, MPE-3, MPE-5, MPE-6, MPE-8, MPE-10, MPE-15, GS/GMW-4, and GS/GMW-2).

Prior to starting the blower for the SVE system, flow control valves to the MPE wells were closed off, and the dilution air flow control valve was fully opened. To test select MPE wells, the flow control valve to the individual well to be tested was opened, and then the dilution air valve was closed slowly until the vacuum reading for the select well reaches the pre-system shut-down reading. Once the appropriate vacuum has been reached, vacuum at the select well head, as well as in the surrounding MPE wells were measured to evaluate the radius of influence of the MPE wells.

Vacuum measurements were collected by attaching a magnehelic pressure gauge (MPE well) or Manometer (microwell) to the top of the PVC well riser in such a manner that there was an airtight seal. To ensure a secure seal has been achieved, two measurements were collected from each well, waiting 30 seconds between readings. MPE wells were tested in the following manner:

- 1. Turn on MPE-10.
- 2. Measure vacuum in GMW-6, GMW-7, GMW-8, and GMW-9.
- 3. Turn off MPE-10.
- 4. Turn on MPE-4.
- 5. Measure vacuum in GMW-1, GMW-2, and GMW-3.
- 6. Turn on MPE-6 (keep MPE-4 running).
- 7. Measure vacuum in GMW-3.
- 8. Turn off MPE-4.
- 9. Turn on MPE-10 (keeping MPE-6 running).
- 10. Measure vacuum in GMW-4, GMW-5, GMW-6, and GMW-7.
- 11. Return SVE system to normal operation.
- 12. Measure vacuum in all microwells and MPE wells.

Prior to returning system to normal operation, collect last round of water level data from MPE and microwells.

2.2.10 Sewer Sampling

Previous investigations indicate that shallow groundwater at the Site was contaminated with chlorinated solvents. Data collected to date indicates that groundwater present in the shallow overburden flows towards the city sewer lines, which were constructed in the late 1800s. Based on the date of construction, it is possible that contaminated groundwater is leaching into the city sewer system. The NYSDEC requested MACTEC to conduct sewer sampling along Benton Street and South Clinton Avenue to investigate if contaminants from the groundwater were migrating into the city sewer system. Six manholes (SL-1 to SL-6) shown on Figure 2.1 were sampled. Manholes were chosen based on their locations up-stream, adjacent, and downstream of the Site.

Sampling was conducted while the MPE system was shut down, to reduce extra water flow into the sewer lines. Water samples were collected by opening the manholes and sampling sewer water

from the road surface. The samples were collected using a Geopump to pull water through ¼-inch low density polyethylene tubing that was attached (for stability) to ½-inch PVC pipe using zip-ties. Dedicated sampling equipment was used to minimize the chance of cross-contamination. At each manhole, MACTEC collected one water sample for VOC analysis by method SW-846 8260B. Field observations were noted in the log book, including observations of manhole depths and approximate water levels (using an electronic conductivity meter). Upon completion of sampling, the manhole cover rims were cleaned of dirt prior to replacing to ensure they were properly seated.

2.2.11 Supplemental Geoprobe Groundwater Points – December 2009

Although additional groundwater sampling points were planned east of the Site (east and northeast of GPW-01), access could not be acquired from the adjacent property owners. Groundwater grab samples were collected from depths of approximately 10 feet bgs and 20 feet bgs at locations GW-8, GW-10, and GW-11, and approximately 16 feet bgs at locations GW-7 and GW-9 (these two points met with refusal at approximately 17 feet bgs). The groundwater samples were collected using direct push methods described in section 2.2.7 of this report. When possible, at least three volumes of water were purged and one set of groundwater parameters including temperature, conductivity, pH, and turbidity were collected before sampling. Groundwater grab samples for VOC analysis were collected at a low purge rate (approximately 100 milliliters per minute) from each location to characterize the groundwater potentially migrating off Site and to evaluate if contaminants are present in the shallow groundwater that have the potential to partition to soil vapor and migrate towards overburden buildings.

2.3 SITE SURVEY

A survey was performed for the four newly installed monitoring wells and the 10 new microwells by a licensed surveyor. Horizontal locations were tied to the NYS Plane Coordinate System using North American Datum of 1983, and measured to an accuracy of 0.1 foot. Vertical elevations of groundwater monitoring wells were tied to msl, using National Geodetic Vertical Datum of 1988, and measured to an accuracy of 0.01 foot. Results of the Site survey are provided in Appendix D Locations of the eleven Geoprobe groundwater grab sample borings, the Geoprobe soil borings GS-11 to GS-14, and the sewer samples were tied to fixed structures and plotted approximately using aerial photographs. Locations of these additional points are included on Figure 2.1.

3.0 SITE PHYSICAL SETTING

The physical characteristics of the site study area are presented in this section. Much of this information was previously submitted in the Remedial Investigation Report by URS Corporation (URS, 2001). MACTEC's investigations confirmed much of the physical characteristics as described by URS.

3.1 SURROUNDING LAND USE

The Site is zoned as commercial and residential and is situated in a combined commercial/residential area within the City of Rochester. Several small businesses including restaurants, a barbershop, a tool rental shop and a convenience store are located near the Site on South Clinton Avenue. Residences with detached garages are situated on small lots along Caroline Street to the north and along Benton Street to the south and east of the Site.

3.2 TOPOGRAPHY

The Site is located approximately 6,000 feet east of the Genesee River and approximately 1,000 feet north of the Pinnacle Hills, which are around 100 to 200 feet higher in elevation than the Site. The Site topography is nearly flat-lying with the elevation of the Site being approximately 515 feet above mean sea level. Surface water run-off is collected by the combined sewer system underlying the adjacent streets, with the Site itself having a slight downward-gradient towards the streets in the southwest and southeast directions.

3.3 CLIMATE

The climate of the area is characterized by moderately warm summers and cold winters. Mean monthly temperatures range from 24 degrees Fahrenheit (°F) in January to 71°F in July. Average annual precipitation is 34 inches. Average annual snowfall is 96 inches (National Climatic Data Center, 2004: for the period of 1971-2000, http://www.ncdc.noaa.gov/oa/ncdc.html).

3.4 GEOLOGY

The geology and hydrogeology at the Site were characterized by the installation of a number of soil borings and groundwater wells that were placed over the course of the historic and MACTEC investigations at the Site.

3.4.1 Regional Geology

The Site is located within the Erie-Ontario Lowlands Physiographic Province of NYS within which low plains with little relief characterize the province. The glaciated topography is an expression of nearly flat-lying sedimentary rock formations covered by glaciolacustrine deposits and till. Kame moraine deposits are found in the Pinnacle Hill located south of the Site. The bedrock structure is homoclinal with a gentle southerly dip into the Appalachian Basin. The bedrock is gently deformed with some scattered, small folds and faults (URS, 2001).

3.4.2 Site Stratigraphy

The Site stratigraphy is illustrated by geologic cross sections shown on Figures 3.1 and 3.2. Figure 3.3 shows the orientation of each of the geologic cross sections shown in Figures 3.1 and 3.2. The Site is underlain by approximately 20 to 25 feet of overburden overlying Silurian age dolostone bedrock. The overburden consists of man-made fill overlying glacial deposits. The glacial deposits are underlain by a weathered bedrock zone of variable thickness, referred to by URS as the overburden/bedrock interface zone.

The fill material consists of re-worked silty sand and contains gravel, bricks, concrete and wood. The fill material ranges in thickness from zero to approximately eight feet in and immediately around the Site, and, where present, overlies glaciolacustrine sediments.

The glacial deposits at the Site are a combination of both glacial tills (till) and glaciolacustrine (lacustrine) sediments. The till at the Site lies immediately above the overburden/bedrock interface (weathered bedrock) zone. The stratified lacustrine sediments lie upon the till and do not appear to contact the overburden/bedrock interface zone. The lacustrine sediments were differentiated from

the till based on the presence of alternating thin beds of clayey silt and sand observed in soil borings at the Site.

In general, the glacial deposits at the Site consist of clayey silt, sandy silt and silty clay interbedded with thin sand layers. Within the lacustrine sediments the sandier seams range in thickness between a few inches and a few feet. At depth the glacial deposits consist of angular dolostone fragments in a silty clay (till) with occasional boulders. A gravelly weathered bedrock (overburden/bedrock interface zone) is present atop competent bedrock.

The interpreted bedrock contours are presented on Figure 3.4. Bedrock at the Site consists of a low relief Silurian age dolostone of the Lockport Group, described by URS as medium gray, hard, fine to medium grained, mostly featureless or with some zones of wavy carbonaceous laminae. URS reports that there are a few scattered zones that contain vugs (small cavities) or smaller "pinpoints" of dissolution porosity, along with some white calcite and galena secondary mineralization observed in a few scattered zones. The recovered core samples were reported as being generally broken with rock quality designations ranging from 13 to 56 percent (very poor to fair rock quality) (URS, 2001).

3.5 GROUNDWATER HYDROLOGY

Groundwater at the Site exists in both overburden and bedrock water-bearing units. Further, the overburden water-bearing units exhibit unconfined and semi-confined properties that are distinguished by differences in their geology, hydraulic conductivities and water level elevations. Groundwater is generally encountered from approximately five to fifteen feet bgs.

Conceptually, there are three local water-bearing units below the Site. From top (ground surface) to bottom, the units consist of 1) a glacial deposit (lacustrine and till) unit, 2) an overburden/weathered bedrock interface unit, and 3) a bedrock unit. Fill material, where present, was reported to exist primarily within the vadose zone. Monitoring well construction data and water levels are presented in Table 3.1.

3.5.1 Glacial Deposit Unit

The glacial deposits, consisting of silt, clay, sand and gravel, is between 20 to 25 feet thick with saturated conditions starting between five feet bgs to 15 feet bgs (five to ten feet bgs measured by MACTEC in May and June 2009), with a typical depth to water of approximately five to ten feet bgs. This unit is further subdivided into an upper stratified lacustrine layer and a lower lodgment till layer (URS, 2001). The till layer is present at between seven and nine feet bgs, and extends to the top of weathered bedrock.

The lacustrine zone consists of discrete layers, seams and lenses of clayey silt and silty sand. Discontinuous perched groundwater lenses were identified in sand seams within the upper lacustrine layer and are represented by water level measurements in monitoring well MW-01A, which appears to fluctuate over time and at times appears to be "dry". Observations such as these are characteristic of a well that is screened in a perched water zone (URS, 2001).

The glacial till is characterized by unstratified silty clay with varying amounts of sand and gravel. The lodgment till was observed as being a semi-confining layer (or aquitard) to the interface and bedrock units immediately below it. An aquitard is defined as a confining bed that retards but does not prevent the flow of water to or from an adjacent aquifer; a leaky confining bed.

3.5.2 Overburden/Weathered Bedrock Interface

This interface unit, referred to as the overburden/bedrock interface zone, is a thin, semi-confined aquifer with a relatively high hydraulic conductivity (K) when compared to the units above and below it. This unit consists of sand and gravel-sized weathered bedrock with varying amounts of silt, clay and cobbles. The thickness of this unit was found to range from less than one foot (MW-08K) to approximately 5 feet (MW-09K) and generally increases in thickness to the northwest and south (URS, 2001).

3.5.3 Bedrock Unit

The bedrock located below the Site is a fossiliferous dolostone of Silurian age. Previous reports (Sear-Brown, 1995b and 1998) described the existence of dislocated and rotated slabs of bedrock,

based on steeply dipping laminae observed in the MW-03C rock core and "the highly localized variation in auger refusal" observed during drilling. The presence of dislocated and rotated slabs of bedrock may explain the unexpectedly high bedrock elevation encountered at RW-01. Of the borings installed to date, only MW-03C was installed deeper than the top of competent rock.

URS stated that for the purposes of pumping test data analysis, the bedrock unit was modeled as an aquiclude, i.e., a low-permeability unit that forms a boundary to the local groundwater flow system. URS further states that it is likely that the boundary is less than absolute.

3.6 GROUNDWATER HYDROLOGY

The hydraulic conductivities (K's) of the glacial deposits and bedrock were not directly investigated by URS for their Remedial Investigation Report (URS, 2001) or by MACTEC, but were previously estimated in the 1998 Sear-Brown report based on an analysis of grain-size distributions and slug test data (Sear-Brown, 1998). Sear-Brown calculated the following representative K's for the three units at the Site:

- Glacial Deposits: $K = 2.5 \times 10^{-4}$ centimeters per second (cm/sec), or 0.71 feet per day (ft/d)
- Overburden/Weathered Bedrock Interface: $K = 5.9 \times 10^{-3}$ cm/sec, or 16.7 ft/d
- Bedrock: $K = 8.2 \times 10^{-4}$ cm/sec, or 2.3 ft/d

The hydraulic conductivity of the overburden/weathered bedrock interface unit was calculated from data recorded during a 72-hour pumping test conducted by URS. The calculated K value for this unit was presented as 4.2 x 10⁻³ cm/sec (12 ft/d), which correlates well with Sear-Brown's previous estimate based on slug test data (URS, 2001).

3.6.1 Groundwater Flow

In URS's RI report (URS, 2001), monitoring wells used for interpreting groundwater contours were divided into two groups; glacial deposit wells and overburden/bedrock interface. Wells categorized as glacial deposits wells are GPW-01, GPW-02, MW-02, MW-08S, MW-09S, MW-10S, and MW-11S; those categorized as overburden/bedrock interface wells are MW-01, MW-03, MW-04, MW-05 MW-06, MW-08K, MW-09K, MW-10K, MW-11K PZ-01, PZ-02, and RW-01. Wells MW-05 MW-06, MW-08K, MW-09K, MW-10K, MW-11K PZ-01, PZ-02, and RW-01.

01A and MW-03C were not included in either the glacial deposit or overburden/bedrock interface groups because MW-01A is screened in a perched zone and MW03C is screened in bedrock only. MACTEC installed the additional glacial deposit wells GS-1 to GS-10 and MW-12S and the overburden/bedrock interface wells MW-12K, MW-13K, and MW-14K in 2009 (GS-1 to GS-10 were installed primarily to evaluate the existing MPE system).

Groundwater contours from prior to the installation of the MPE system are plotted on URS Figure 3-6 in Appendix A for the glacial deposit wells and URS Figure 3-7 in Appendix A for the interface wells. URS indicated that the natural flow of groundwater west and south of the Site is likely intercepted by the sewer line bedding, causing a preferential flow of groundwater along the path of the sewer. Therefore, groundwater contours were omitted for south of the Site along Benton Street and west of the Site along South Clinton Avenue where the elevations of the local storm/sanitary sewer lines/inlets are reportedly below the top of groundwater. MACTEC reviewed sewer installation drawings from the late 1800's and determined that the sewers are encased in concrete. The permeability of the sewer line bedding is not known.

The direction of local groundwater flow was interpreted by URS to be from the east and northeast to the west, southwest and southeast in both the glacial deposits and the overburden/bedrock interface units. The hydraulic gradient in the glacial deposits were calculated to range between 0.006 feet per foot (ft/ft) and 0.02 ft/ft, with the horizontal hydraulic gradient in the interface unit reported at around 0.02 ft/ft. Vertical flow observations indicated a significant downward gradient based on monitoring well pair measurements. Vertical hydraulic gradients were calculated by URS that range in the downward direction between 0.13 ft/ft at the MW-09 S/K well pair and 0.87 ft/ft at the MW-11 S/K well pair. Vertical gradients measured by MACTEC, eight days after the MPE system shutdown, ranged in the downward direction from 0.63 ft/ft at the MW-9S/K well pair to 1.76 ft/ft at the MW-10 S/K pair. There were also significant downward gradients measured from the SB-10 microwell to the adjacent MW-14K interface well, with gradients measured at 3.18 ft/ft. URS suggested that the high vertical gradients may be interpreted to indicate that the flow rate or "connectiveness" between units is low.

Currently there is a dual phase extraction system operating at the Site. MACTEC collected groundwater measurements both with the system operating, and with the system shut down. Groundwater flow was interpreted to flow generally from east to west, but there were also some

flow components to the southwest and northwest. The groundwater measurements collected by MACTEC are discussed in more detail in Section 4, as they relate to the MPE system evaluation.

3.7 GROUNDWATER USE

The Site and surrounding area is serviced by public water. The nearest body of surface water is the northward flowing Genesee River which is located approximately 6,000 feet west of the Site.

4.0 NATURE AND EXTENT OF CONTAMINATION

This section presents results of the previous and current field investigations performed at the Site. The subsections below describe results of laboratory analyses for soil, groundwater, soil vapor, and sewer water samples collected both historically and during the MACTEC RI program. Data as presented in the individual historic reports are assumed to have met the data quality objectives. Analytical data collected by MACTEC was reviewed and determined to be usable as presented in this report. Figures and tables from previous investigations conducted at the Site are also referenced in this section and are provided in Appendix A (Sears Brown and URS Figures) and Appendix B (URS Tables). Field data and observations documented as part of the MACTEC 2009 RI field work are provided in Appendix C. Results of the site survey are included in Appendix D. Analytical data, including a data usability summary report and complete analytical results for the 2009 sampling programs are provided in Appendix E.

4.1 SOURCE AREAS

The primary contaminant source areas reportedly consisted of leaks and spills from the now removed storage tanks on the property, as well as spills to the ground surface in the vicinity of the Benton Street Driveway. The likely secondary source area (contaminated soils) is represented by an area within which PCE in soil exceeds the SCO for unrestricted use of 1.3 mg/Kg. Prior to the 2005 hot spot removal action, this area was estimated by URS to be approximately 40 feet by 80 feet and included the former tank storage room, the former new building extension, Benton Street driveway, and portions of the adjacent residential driveways at 338 and 350 Benton Street (Sears Brown Figure 2 and URS Figure 1-3, both in Appendix A) (URS, 2004a). Within this source area, soils were excavated during a hot spot removal conducted in 2005 from an area measuring approximately 32 feet square by 8 feet deep as shown on URS Figure 1-2 in Appendix A and Figure 1.2. This area contained approximately 1,070 lbs of VOCs and included soils with PCE concentrations above 100 mg/Kg. Secondary source areas of groundwater contamination consisting of soil with concentrations above the SCO for unrestricted use of 1.3 mg/Kg continue to exist across the Site in areas surrounding and below the historically excavated area.

4.2 SOIL

Soil samples were collected and analyzed from explorations that included the drilling of soil borings, geoprobe borings, and monitoring well borings. Prior to 2008, selected soil samples were analyzed for VOCs (79 total samples), SVOCs (23 total samples), and PCBs (23 total samples). Sample locations from prior to 2008 are shown on URS Figure 1-2 in Appendix A and analytical data are presented in URS Tables 1-2, 1-5, 1-7, 1-8, 4-1 and 1 (Soil analytical Results [2004]) in Appendix B. In July 2008, 39 soil samples were collected from 37 Geoprobe soil borings by URS for VOC analysis to evaluate the MPE system performance. Samples were collected from the surface to 12 feet bgs, concentrating primarily on the soil from six to 12 feet bgs. Sample locations from the 2008 sampling are shown of URS Figure 2 in Appendix A and analytical results are presented in URS Table 1 (2008 Geoprobe Sampling Comparison to Unrestricted Use Cleanup Objectives) in Appendix B. As part of the 2009 RI field work, additional soil samples were collected to better delineate the extent of contamination in Site soils above the bedrock. In May 2009, 31 soil samples (including QC samples) were collected from 15 locations at depths ranging from 9 feet bgs to 21 feet bgs. Collected samples were analyzed for VOCs. Sample locations from the 2009 events are shown on Figure 2.1, and associated analytical data are summarized and presented in Table 4.1. In addition PID readings from the soil borings and associated total VOC results from the analytical laboratory are presented in Table 4.2.

The primary soil contaminants detected at the Site are chlorinated compounds which are representative of the dry cleaning chemicals formerly handled during Site operations. The highest contaminant concentrations for PCE and TCE prior to 2008 were observed in shallow soils beneath the former tank storage room and the former new building extension adjacent to the Benton Street driveway. These included the locations below, where PCE concentrations were reported at greater than 100 mg/Kg:

- MW-2: 292 mg/Kg of PCE at 1-3 feet bgs (1995)
- B-03: 9,100 mg/Kg of PCE at 0-4 feet bgs (1999)
- GP-17: 1,700 mg/Kg of PCE at 3-4 feet bgs (2000)
- GP- 19: 1,500 mg/Kg of PCE at 0-2 feet bgs (2000)
- SB-4: 490 mg/Kg of PCE at 3-4 feet bgs (2004)
- SB-5: 1,000 mg/Kg of PCE at 4-6 feet bgs (2004)
- SB-6: 170 mg/Kg of PCE at 4-5 feet bgs (2004)

- SB-7: 390 mg/Kg of PCE at 0-1 feet bgs (2004)
- SB-11: 1,100 mg/Kg of PCE at 3-4 feet bgs (2004)
- SB-15: 1,400 mg/Kg of PCE at 5-6 feet bgs (2004)

Within the source area, contaminant concentrations generally decreased with depth suggesting that surface spills acted as the main contaminant mechanism. PCE occurred almost everywhere at significantly higher concentrations than TCE. In areas outside the former building footprints (i.e. source area) where contaminant concentrations increased with depth (GP-02 (1999), GP-03 (1999), GP-04 (1999), MW-03 (1995), and B-06 (1997)), the concentrations were generally much lower than beneath the former building footprints. This may reflect lateral spread within the vadose zone as dry cleaning solvents migrated primarily downward and moved away from their source area. As discussed in Section 4.2, based on this data, a soil removal program was conducted in 2005 from an area measuring approximately 32 feet square by 8 feet deep. The above referenced locations were excavated as part of the removal action.

In 2008, two years after the soil removal activities and the start up of the MPE system, soil samples were collected from zero to 12 feet bgs by URS to evaluate the remedial efforts. The compounds PCE and/or TCE were detected in 36 out of 37 of the 2008 soil samples (not including duplicates), and at concentrations exceeding the SCO for unrestricted use in 22 of the 37 samples. Soils were collected based on the highest PID reading per boring, with the maximum concentration of PCE detected in the offsite samples of 310 mg/Kg from 8-9 feet bgs in boring 08GP19. PID readings from several of the borings appeared to increase with depth. In addition to PCE and TCE, soil sample results obtained in 2008 indicated that cis-1,2-DCE and ethylbenzene slightly exceeded their unrestricted use SCO at one location (08GP07), and xylene exceeded its SCO for unrestricted use at two locations (08GP07 and 08GP17). The ethylbenzene exceedance and the higher of the xylene exceedances were detected in a sample collected in the vicinity of the former hydraulic lifts. The remainder of the detected VOCs in the 2008 sampling event were below their respective SCO for unrestricted use.

Previous reports indicated that the chlorinated solvents were confined primarily to the lacustrine overburden, and that the underlying till was acting as a barrier layer to continued downward migration of the contaminants. Part of the 2009 sampling objective was to collect data to evaluate the effectiveness of till layer to limit downward migration. Based on data collected during 2009 RI

field work, it appears as if the chlorinated solvents have migrated downward into the underlying till layer. Similar to previous investigations, PCE and TCE were detected in most soil samples from the 2009 RI field efforts at concentrations exceeding the SCO for unrestricted use (see Table 4.1). The highest detected concentrations of PCE and TCE during the 2009 field programs were observed in Geoprobe soil borings GS-2 (1,700 mg/Kg of PCE at 11 feet bgs) and GS-7 (1,400 mg/Kg of TCE at 16 feet bgs). Contaminant concentrations show an increase with depth at nine locations (GS-1, GS-2, GS-4, GS-6, GS-7, GS-8, GS-9, GS-12 and GS-13) for TCE, and at five locations (GS-4, GS-7, GS-8, GS-10 and GS-12) for PCE, indicating contaminants have migrated downward from the glaciolacustrine overburden into the till layer. Unrestricted use SCOs were also exceeded for cis-1,2-DCE (GS-1, GS-4 and GS-13), 1,1-DCA (GS-3 and GS-4), xylene (m/p and o [GS-2 and GS-7]) and 1,1,1-TCA (GS-3).

Interpreted isoconcentration lines for PCE (the primary contaminant at the Site) in soil are presented on Figure 4.1. These contours are based on MACTEC's 2009 soil sample analytical results, as well as a review of the URS 2008 soil sample results. These contours are interpreted to represent the primary soil sources of the chlorinated solvent groundwater contamination. Due to the limited number of data points, an interpreted outer isoconcentration line of 10 mg/Kg PCE contamination was used and not the SCG for the protection of groundwater of 1.3 mg/Kg.

Based on concentrations of TCE and PCE detected in the 2009 soil samples, as well as an estimated area of soil contamination exceeding SCGs for unrestricted use (based on the data collected by MACTEC in 2009 and URS in 2008), the mass of remaining PCE and TCE contamination in soil at the Site is estimated to be 835 pounds (combined mass). This assumes that contamination is present in the till to approximately the top of bedrock. Calculations used for this estimate are included in Appendix F.

In addition to VOCs, 23 soil samples from the Site have also been analyzed for SVOCs. Polycyclic-aromatic hydrocarbons (PAHs) were detected in 12 of the 23 soil samples collected for the URS RI in 2000, but generally at concentrations less than 1 mg/Kg and generally less than their individual SCOs for unrestricted use (See URS Table 4-1 in Appendix B). PAH concentrations exceeded their individual SCOs for unrestricted use at the two vadose zone sample locations GP-17 and GP-42 (see URS Figure 2-2 in Appendix A for locations). Although the PAHs may reflect spills or leakages associated with the facility's use as an automobile repair shop, PAHs are

relatively common in urban areas, and are frequently associated with fill material. Soil PAH contamination at GP-17 was removed with the soil removal action as part of the IRM and location GP-24 is on an adjacent property to the north at a depth of three to five feet bgs. PAH results for GP-24 were less than five times the SCO for unrestricted use. Because the remaining PAHs detected above their respective SCO for unrestricted use (GP-24) were detected outside the Site property limits and are also associated with urban areas, PAHs may not be regarded as Site-related COCs.

Samples have also been collected from the Site for analysis of PCBs. A total of 23 samples were collected in 2000 from 18 locations and analyzed for PCBs. Of these samples, only three locations (GP-10, GP-11, and GP-19; see URS Figure 2-2 in Appendix A for locations) had detectable concentrations of PCBs. Although total detected aroclors at each of these three locations exceeded the SCO for unrestricted use of 0.100 mg/Kg, none of them exceeded the SCO for residential use of 1.0 mg/Kg or for the protection of groundwater of 3.2 mg/Kg. The highest concentration was from GP-19 in which total aroclors were detected at a concentration of 0.396 mg/Kg; this location was excavated as part of the soil removal action IRM.

4.3 GROUNDWATER

Groundwater samples from both previous and current investigations were collected and analyzed from fixed groundwater monitoring wells, extraction/recovery wells or MPE wells, and temporary geoprobe groundwater sampling locations. Prior to November of 2006, wells were sampled infrequently. Since that time, a number of wells have been installed as part of the MPE system, followed by ongoing quarterly sampling. Samples were analyzed for VOCs in each round of sampling, SVOCs were analyzed in two rounds (February 1995 and November/December 2000), metals were analyzed in the November/December 2000 round, and monitoring natural attenuation (MNA) parameters during the 2009 RI field work. The only locations at which VOCs have not been detected above 1 µg/L are MW-08S, and MW-09S. Locations that were never sampled include PZ-01, PZ-02, and RW-01, each of which were decommissioned along with MW-02 in 2006, prior to the hot spot soil source removal. Select groundwater analytical results prior to the 2009 investigations are present in URS Table 1-3 (1995), URS Table 1-6 (1997), URS Table 1-9 (2000), and URS Table 1 (Validated Groundwater Sampling Results [5/2008]), all in Appendix B.

Groundwater trends for PCE and TCE are presented in Table 4.3. Analytical data generated during the 2009 RI field work is summarized in Tables 4.4 (VOCs) and 4.5 (MNA parameters).

As with soils, the primary groundwater COCs are chlorinated organic compounds which are indicative of past leaks or spills of dry cleaning chemicals at the Site. The two primary chlorinated compounds of concern in groundwater are PCE and TCE. Occurrences of these two compounds in groundwater monitoring locations historically sampled at the Site are summarized in Table 4.3. The maximum concentrations detected have been in groundwater samples from the MPE system. The maximum concentration of PCE detected in groundwater was 220,000 μ g/L (compared to a solubility of PCE of 150,000 μ g/L) in a sample collected from MPE-16 in May 2008. The maximum concentration of TCE detected in groundwater was 570,000 μ g/L (compared to a solubility of TCE of 1,100,000 μ g/L) in a sample collected from MPE-10 in March 2006. Concentrations of TCE were detected as high as 170,000 μ g/L in May 2008 from a groundwater sample from MPE-10.

Results of the May 2009 sampling event show comparable concentrations of PCE and TCE in relation to the previous sampling rounds, and a general downward trend in concentrations from historic highs (Table 4.3) (the MPE wells were not sampled as part of the 2009 sampling event). Concentrations of PCE exceeded its NYS groundwater standard of 5 µg/L at 15 of the 26 locations sampled, and concentrations of TCE exceeded its NYS groundwater standard of 5 µg/L at 18 of the 26 locations sampled. The maximum concentration detected in groundwater samples collected during the May 2009 event was 9,100 µg/L for PCE in MW-3 and 5,100 µg/L for TCE in MW-14K. In addition to PCE and TCE, twenty-one VOCs were detected, with nine of these VOCs (1,1,1-trichloroethane, 1,1-DCA, 1,1-dichloroethene, benzene, cis-1,2-dichloroethene, ethyl benzene, trans-1,2-dichloroethene, vinyl chloride and o-xylene) exceeding NYS groundwater SCGs.

Additional groundwater sampling was conducted in December 2009 to obtain information downgradient of the Site extending southwest across South Clinton Avenue. Five geoprobe groundwater samples (GW-07 to GW-11) were collected for VOC analysis. Sample locations are shown on Figure 2.1. Although PCE and TCE were not detected above method detection limits in the December 2009 groundwater samples, nine other VOCs (primarily fuel related) were detected at three of the sample locations (GW-8, GW-10 and GW-12). Of the nine detected VOCs in

December 2009, only concentrations of acetone (59 μ g/L at location GW-11) exceeded its NYS SCG of 50 μ g/L (acetone is a common laboratory contaminant). Results from the May and December 2009 sampling events are presented in Table 4.4.

In addition to VOC analysis, MNA parameters were measured at 10 existing wells (MW-1, MW-1A, MW-3, MW-3C, MW-4, MW-6, MW-8K, MW-9K, MW-10K, MW-11S) and the four newly installed wells (MW-12K, MW-12S, MW-13K and MW-14K) to obtain current groundwater data for the Site. Results of the MNA sampling are presented in Table 4.5.

Based on the results of previous and current investigations, the following conclusions have been drawn regarding groundwater contamination for PCE and TCE at the Site:

- Source Area. The highest chlorinated solvent concentrations in overburden occur in the vicinity of the former Site building and driveway, confirming this area as the source area. Concentrations of PCE and TCE detected at various times in groundwater indicate the potential presence of these compounds as a non-aqueous phase liquid (NAPL) in Site soil. This is based on the general "rule of thumb" that NAPL is present if dissolved concentrations in groundwater exceed 1% of the effective solubility of the compound (Plankow, 1996) (PCE was detected in groundwater at greater than it's solubility at MPE-10 in May 2008). PCE and TCE occur in groundwater over a large area at and around the Site. The only wells in which these compounds have not been detected above 1 µg/L were MW-08S, and MW-09S. Concentrations of PCE in groundwater samples collected in May 2010 from the MPE wells and groundwater monitoring wells are presented on Figure 4.2 and highlight the anticipated shallow groundwater source area.
- Previous shallow overburden groundwater contamination. URS Figure 4-2 in Appendix A shows the December 2000 estimated extent of groundwater contamination at the Site within the overburden glacial deposits, expressed in terms of PCE concentration contours. This figure is based on the wells MW-01A, MW-2, GPW-01, GPW-02, MW-08S, MW-09S, MW-10S, and MW-11S, and is based on the groundwater data collected from these wells prior to MPE system startup. The figure illustrates that the primary source of groundwater contamination is the identified source area. Under natural conditions, contaminated groundwater moves away from this source area in directions ranging primarily from southeast to west, as controlled by the predominant groundwater flow directions (see URS Figures 3-6 and 3-7 in Appendix A). Based on the results from MW-09S and MW-11S, in which contamination is not present, the sampling data from 2000 indicated that shallow groundwater contamination from the Site did not extend across Benton Street or South Clinton Avenue. Groundwater data from the wells installed as part of the MPE system also confirmed the source area and general areas of groundwater contamination, although data, for the most part, indicates progressively lower concentrations due to the MPE system operation.
- Previous overburden/bedrock interface zone groundwater contamination. URS Figure 4-3 in Appendix A shows the December 2000 extent of groundwater contamination within the overburden/weathered bedrock interface zone. This figure is based on the wells MW-1, MW-3, MW-4, MW-6, MW-08K, MW-09K, MW-10K, and MW-11K. Again, this

figure represents data of wells monitored prior to MPE system startup. The pattern presented is generally similar to that of groundwater contamination in the glacial deposits, except that significantly elevated PCE concentrations extend farther to the southwest toward South Clinton Avenue. The non-detect PCE concentrations in MW-04 and MW-05, and the concentration of only 1 µg/L in MW-11K in December 2000, indicates that the sewer system in Benton Street and South Clinton Avenue may have previously intercepted shallow groundwater contamination originating at the Site. Recent data continues to indicate no detectable concentrations of PCE in these wells (MW-11 K was last sampled in May 2007). The sewer invert elevations in these two roadways is reportedly lower in elevation than the surrounding groundwater (approximately 9 feet bgs to groundwater at Clinton Avenue and the bottom of the 36-inch sewer channel near the Site in Clinton Avenue is approximately 12.5 feet bgs), and therefore URS indicated that the sewers may act as drains that intercept the flow of groundwater passing by them. Due to the sewers being historically encased in concrete, this pathway would not be as conductive as if it were placed in gravel, but based on the age of construction, it may still be a possible path of contaminant migration.

- **Recent groundwater concentrations.** Figure 4.3 shows the estimated extent of shallow overburden chlorinated solvent contamination detected in samples from Site groundwater monitoring wells and Geoprobe borings during the 2009 RI field work (the MPE wells were not sampled as part of the 2009 RI field work). When compared to URS Figures 4-2 and 4-3 in Appendix A, Figure 4.3 presents data collected from groundwater sampling locations monitored subsequent to MPE system startup, and shows concentrations of selected chlorinated solvents at the Site at varying depths. The extent of contamination presented in Figure 4.3 is generally similar to that previously depicted in URS Figures 4-2 and 4-3 in Appendix A, however chlorinated solvent concentrations in groundwater are at lower concentrations, and do not extend as far west and south toward South Clinton Avenue as shown on those figures. As indicated in Table 4.2, groundwater monitoring data obtained from Site wells after the MPE system startup show concentrations for PCE and TCE have noticeably decreased across the Site. Figure 4.2 shows concentrations of PCE (the primary contaminant at the Site) in shallow groundwater based on samples collected in May 2010 by URS. This figure highlights the anticipated shallow groundwater source area.
- Trends in groundwater concentrations from prior to the MPE system to the present. Detected concentrations of PCE and TCE over time are presented on Table 4.3. Prior to the startup of the MPE system on February 22, 2006, the concentrations of PCE and TCE were generally similar over time in the monitoring wells where they were detected. Both compounds were found at concentrations exceeding their NYSDEC Class GA groundwater criteria (5µg/L) in 13 of 15 wells which had detections of either PCE or TCE (MW-1 through MW11S in Table 4.3). Concentrations of PCE and TCE in wells GPW-01, GPW-02, MW-1, MW-3, MW-6, and MW-10S decreased after startup of the MPE System. The exceptions are MW-01A and MW-10K, which have not show a marked decrease in concentrations after MPE system startup.
- Trends in groundwater concentrations within the MPE system. Detected concentrations of PCE and TCE over time are presented on Table 4.3. Groundwater samples from the MPE and GWE wells (GWE-01 through GWE-03 and MPE-01 to MPE-18) do not show consistent trends in concentrations of PCE and TCE. Increase in contaminant concentrations in the extraction well GWE-02 might be the result of the large volume of water it is pumping when active (well pump not working in 2010).

Concentrations in extraction wells GWE-01 and GWE-03 have been fairly consistent, with slight fluctuations in concentrations over time. The consistent concentrations in GWE-01 may be the result of it pulling a significantly smaller amount of water and being spatially farther from the source area than GWE-02. Decreases in concentration, to a varying degree, were noted in nine extraction wells (MPE-01, MPE-02, MPE-04, MPE-05, MPE-06, MPE-08, MPE-09, MPE-11, and MPE-12). Concentrations in seven of the extraction wells (MPE-3 and MPE-13 to MPE-18) have fluctuated, but do not show a clear increasing or decreasing trend. Increases in contaminant concentrations were noted in MPE-10 (long term data was not available for MPE-7).

Bedrock groundwater contamination. Detected concentrations of PCE and TCE over time are presented on Table 4.3. Although bedrock groundwater contamination has been confirmed, the extent of contamination in bedrock cannot be fully characterized based upon existing data obtained during previous and 2009 investigations. Monitoring wells MW-03C, MW-13K and MW-14K, and extraction wells GWE-01, GWE-02, and GWE-03 are screened into the bedrock. MW-03C is totally screened within bedrock. The well screens of the GWE wells, MW-13K and MW-14K extend at least into the upper overburden/weathered bedrock interface zone. The three GWE wells have shown consistently high concentrations of PCE and TCE over time (i.e. both PCE and TCE concentrations fluctuate to above 1,000 µg/L). Detected concentrations of chlorinated VOCs in well MW-13K were above SCGs and are much higher than those historically found in well MW-01, located approximately 10 feet away and screened in the overburden (PCE and TCE concentrations in MW-13K of 5,800 µg/L and 1,300 µg/L compared to concentrations in MW-01 of 53 µg/L and 61 µg/L, respectively in May 2009). There is also inconsistency in the sampling records for MW-3 and MW-3C well pair as to which location is actually the overburden or bedrock well. Earlier site records from Sears and Brown Group show the reverse identifications to what has been recently shown on Site figures by URS. Measurements on the February 16, 2006 URS daily field report were reviewed and indicated an apparent discrepancy in the depths of these two wells (URS, 2006b) (i.e. MW-3 historic depth of 21.2 feet was crossed off and measured as 31.8 feet and MW-3C historic depth of 32.7 feet was crossed off and written as 18.59 feet). Their respective groundwater analytical results shown on Table 4.3 also suggest that their proper identification may have been switched in 2006 by URS, and carried forward for all URS data. Locations of the wells on the figures produced by MACTEC, as well as identification of MACTEC sample IDs, are based on well measurements collected during the 2009 sampling event. Due to uncertainty of results, trends shown on Table 4.3 represent sample analytical results and locations as presented by Sears Brown, URS, and MACTEC and have not been changed based.

Based on groundwater analytical results from the extraction and monitoring well network from previous and 2009 investigations, other VOCs are present in groundwater above their associated SCGs. These include 1,1,1-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethene, 2-butanone, acetone, cis-1,2-dichloroethene, ethyl benzene, tetrachloroethene, trans-1,2-dichloroethene, trichloroethene, vinyl chloride and o-xylene. URS Table 2 (Validated Groundwater Sample Results [5/2010]) in Appendix B summarizes data obtained during the May 2010 event, with VOC results from the 2009 groundwater sampling events summarized in Table 4.4.

4.4 SEWERS AND ONSITE DRAINAGE SYSTEM

Previous investigations have indicated that the onsite drainage system at the Site has been contaminated by past Site operations and that this contamination may also be impacting the sewer systems in the adjacent roadways. A July 1994 water sample collected from the floor sump within the building detected concentrations of various organic compounds, including PCE, TCE, benzene, toluene, ethylbenzene and xylenes. Later dye testing confirmed that the sump and associated floor drain were connected to the City of Rochester combined sanitary/storm sewer system along South Clinton Avenue. A November 1995 sewer system sample indicated the presence of PCE, TCE and 1,2-DCE at a manhole sampling location downstream from the Site, near the intersection of South Clinton Avenue and Carolina Street.

URS Table 4-4 in Appendix B summarizes the results of five sewer samples collected in October 2000. As shown on URS Figure 2-2 in Appendix A, two of these samples were collected from manholes upstream of the Site on South Clinton Avenue and Benton Street (SEW-01 and SEW-05, respectively); two were collected adjacent to the Site (SEW-03 and SEW-04); and one was collected downstream from the Site on South Clinton Avenue (SEW-02). Sewer water concentrations were evaluated to NYS groundwater SCGs for comparison purposes only (groundwater standards are not applicable from a regulatory standpoint to samples from within a sewer). As stated earlier, the sewer systems in Benton Street and South Clinton Avenue may intercept groundwater flow coming from the Site. As indicated by URS Table 4-4 in Appendix B, groundwater contaminants originating at the Site appear to be entering the adjacent sewer systems. VOCs were not detected at concentrations above groundwater SCGs in the two upstream sewer samples (SEW-01 and SEW-05); concentrations of several VOCs (TCE, total DCE, vinyl chloride, acetone, toluene, xylene, and/or 1,1,1-TCA) exceeded groundwater SCGs in the two adjacent samples (SEW-03 and SEW-04); and the downstream sample on South Clinton Avenue (SEW-02) had only one exceedance (PCE). When compared to soil and groundwater samples, 1,2-DCE and vinyl chloride appeared at much higher concentrations in the sewer samples relative to PCE and TCE. This may reflect an environment within the sewer system that is more conducive to biodegradation of PCE and TCE.

As part of the 2009 sampling event by MACTEC, six additional sewer samples were collected along Benton Street, South Clinton Avenue, and Caroline Street to evaluate current conditions and determine if contaminants from the groundwater were migrating into the city sewer system. Six manholes (SL-1 to SL-6) shown on Figure 2.1 were sampled (the historic manhole SEW-03 located in the Site parking lot was apparently no longer present). Three locations were sampled along South Clinton Avenue (SL-1 through SL-3), one location was sampled on Caroline Street (SL-4), and two locations were sampled along Benton Street (SL-5 and SL-6).

As summarized in Table 4.6, groundwater contaminants were detected at each of the six locations sampled during the 2009 event, although chlorinated solvents were not detected in the two upstream samples SL-1 and SL-5, or in the Caroline Street sample SL-4. Similar to the sewer water samples collected in 2000, contaminant concentrations for the 2009 sewer water sampling event were compared with NYSDEC Class GA groundwater criteria. Three samples collected along South Clinton Avenue (SL-1 through SL-3) had no compound concentrations exceeding groundwater criteria. Sample SL-6, the downstream location located south of the Site near the intersection of Benton Street and South Clinton Avenue had the highest detections of chlorinated solvents (PCE, TCE, and 1,2-DCE exceeded groundwater SCGs), although slightly lower than the concentrations detected in 2000.

The sewer samples collected in both 2000 and 2009 reflect conditions within the sewer pipes themselves and not from within the bedding material that underlies the sewers. Although the sewer line as-built drawings indicate the pipes are encased in concrete, chlorinated solvents appear to be migrating into the sewer line. Due to the sewer being installed in the late 1800's, it is possible that cracked concrete and possible surrounding more porous material may be intercepting groundwater coming from the Site. Vertical groundwater gradients at the Site were measured in the downward direction. In addition, the sewers installed along Benton Street and Clinton Avenue are located with the bottom of the channels varying in depths from 8 feet bgs to 13 feet bgs. The sewers are likely to be intercepting only shallow groundwater contamination.

Sewer sample depths, sewer size and construction material, and sewer installation dates are included on Table 4.7.

4.5 OFFSITE VAPOR MIGRATION

Organic vapors originating from soil and groundwater contamination at the Site have migrated into the basements of adjacent residences. The passive soil gas survey performed by BEACON Environmental Services, Inc. in March 2000 indicated that PCE and TCE were present at significant concentrations beneath the basement and back yard of 350 Benton Street (see Figure 1.2 for location), with the highest concentration occurring on the side of the property adjacent to the Site. This building has been since removed, and the MPE system is operating in this vicinity.

In January 2004 URS conducted soil vapor intrusion sampling in three buildings near the Site: 354 Benton St., 338 Benton St., and 1018 Clinton St. Results of this sampling show that PCE was present in the soil vapor and was migrating into the buildings at 1018 Clinton St. and at 338 Benton St (same building foundation) (URS, 2004b). Results of sampling at 354 Benton did not detect concentrations of VOCs requiring further action based on the NYSDOH soil vapor intrusion guidance (NYSDOH, 2006). In 2005, a sub-slab depressurization system was installed at 338 Benton St and 1018 Clinton St.

Additional soil vapor samples were collected in May 2009 to evaluate if contaminants of concern from the Site are present in off-Site soil vapor. A total of three soil vapor samples were collected near the Site (SV-1 to SV-3), in the down gradient groundwater flow direction. In addition to the exterior soil vapor samples, one sub-slab soil vapor sample (SV-4) was collected from below the concrete floor of the business located to the west of, and adjacent to, the Site. The soil vapor sample locations are shown on Figure 2.1. Soil vapor analytical results are presented on Table 4.8.

VOCs were detected at each of the 2009 sampling locations. Of the four soil vapor samples collected, sample SV-4 contained the highest number of detected VOCs, including elevated concentrations of PCE $(5,500 \, \mu g/m^3)$ and TCE $(3,500 \, \mu g/m^3)$.

4.5 MPE SYSTEM EVALUATION

Both the groundwater and vapor extraction portions of the MPE system were measured to evaluate the potential area of influence of the extraction system.

Soil Vapor Extraction. The range of influence of the MPE system vacuums were measured as described in Section 2.2.0. Vacuum measurements are presented on Table 4.9.

The MPE vacuum measurements were evaluated, but did not reveal consistent results. When individual MPE wells were tested, there appeared to be a good (measurable) vacuum within five feet of the operating MPE well (MPE-4 and MPE-10). There was not a measurable vacuum at a distance of 8 feet from operating well MPE-4 and 13 feet from operating well MPE-10. On the other hand, , vacuum measurements collected within the area of the historic hot spot removal indicated a measurable vacuum up to 15 feet from the operating MPE well (large area of influence presumable as a result of the more permeable back fill material).

When all wells in the MPE vacuum system were running, a strong vacuum was noted within the area excavated for the historic hot spot, and a recordable vacuum was noted under the adjacent commercial building (vacuum reading of 0.012 inches water column at SV-04, located approximately 12 feet from MPE-7). Vacuums were not noted in GS-2, GS-9, and GS-10, located approximately 8 feet, 13 feet, and 37 feet from operational MPE wells, respectively (Based on observed vacuum in the individual MPE wells, the vacuum extraction systems were apparently not working for wells MPE-1, MPE-2, MPE-5, MPE-9, MPE-11, MPE-12, and possibly MPE-17).

Shallow Groundwater Extraction. Shallow groundwater levels were collected from the Site prior to shutting down the MPE system, and then 24 hours, 31 hours, and eight days after shutting down the MPE system (although the groundwater extraction system was shut down during the entire time, the SVE portion of the MPE system was running during the water level round conducted 31 hours after shutting down the MPE system). Water level measurements are presented in Table 4.10. Groundwater extraction wells MPW-6, MPE-12 and MPE-13 were not operational during the pre-shutdown water level measurements. Water level elevation contours for pre and post shutdown time frames are presented on Figures 4.4 (pre-shutdown), 4.5 (24 hours after shutdown), and 4.6 (eight days after shutdown). Although some of the groundwater measurements collected from the MPE wells may have been skewed due to the operation of the vacuum extraction system, Figure 4.4 shows two clear groundwater depressions as a result of the MPE operation. After the MPE system was shut down, groundwater in these two areas rose approximately two feet. Outside of these two depressions, groundwater was depressed slightly (less than 0.5 feet). It is not known how

much of a radius of influence the three non operating groundwater extraction wells may have had if operating.

The groundwater extraction portion of the MPE system is operating to both remove and treat contaminated groundwater and to depress the groundwater table to increase the effectiveness of the soil vapor extraction system. The observed groundwater depression did not appear to cover the entire area of the MPE system and may not be allowing vapor extraction of some of the soil contamination at the Site. The areal extent areas of depressed groundwater likely indicate that the extraction wells are preventing the offsite migration of the shallow groundwater contamination. Figure 4.5 shows what is interpreted as a groundwater mound in the vicinity of GS-9, 24 hours after the groundwater extraction system is shut off. The source of this apparent mound is not clear. It is not known if there are potential utility leaks, or leaks from the MPE system that would cause this mound. Groundwater flow direction under non pumping conditions is interpreted to be primarily to the west/southwest.

The measured area of influence of the MPE system may be greater than that recorded during the 2009 sampling event if both the soil vapor extraction and groundwater extraction systems for all MPE wells are operational during measurement collection. Even if the area of influence is greater than that recorded, soil samples collected during the 2009 soil investigation indicate that soil contamination is present within the till at the Site at depths greater than the MPE wells (example of the detection of PCE at 1,400 mg/Kg at 16 feet bgs at location GS-7, compared to the depth of the MPE wells of between 10 and 13.5 feet bgs). Therefore, the MPE system will not be effective at remediating these deeper areas.

Deep Groundwater Extraction. Groundwater levels were collected the overburden/interface wells at the Site prior to shutting down the MPE system, and then 24 hours, 31 hours, and eight days after shutting down the groundwater extraction system. Water level measurements are presented in Table 4.10. Water levels for these time frames and groundwater elevation contours for the overburden/bedrock interface wells are presented on Figures 4.7 (pre-shutdown), 4.8 (24 hours after shutdown), and 4.9 (eight days after shutdown).

Interpreted groundwater contours during the MPE system pumping do not show a clear picture of groundwater response to pumping stresses and do not indicate that the deeper groundwater

extraction wells are effectively controlling contaminated groundwater in the overburden/interface zone. After shutdown of the MPE system, water levels from the overburden/interface groundwater are interpreted to indicate a more westerly flow direction.

5.0 CONTAMINANT FATE AND TRANSPORT

This section presents an assessment of contaminant movement and disposition within the environment.

5.1 SITE CONCEPTUAL MODEL

The Conceptual Site Model takes into consideration sources of contamination, fate and transport processes, potential receptors, exposure pathways, and exposure points. Contaminated media associated with the Site include soil, groundwater, soil vapor, and indoor air. The table below provides a summary of the contamination sources, migration pathways, and potential receptors.

Site Conceptual Model

Media	Source of	Type of	COPCs	Primary or	Migration	Potential Receptors
	Contamination	Contamination	(Specific)	Secondary	Pathways	
		(General)		Source		
				Release		
				mechanism		
Soil	Leaks/spills to	Solvents;	PCE; TCE;	Leaks and/	Infiltration /	Human: direct contact
	the ground		1,2-DCE;	or Spills	percolation	if excavation occurs in
	surface at:		ethylbenze	(Site		contaminated area (s)
	1) former tank		ne; xylene	operations		
	storage room			have ceased)		
	(primary source					
	gone)					
	2) new building					
	extension					
	3) Benton Street					
	driveway,					
	portions of					
	adjacent					
	residential					
	driveways at 338					
	and 350 Benton					
	Street.					
	Calmant					
	Solvent					
	contaminated					
	soil remains					
	outside of					
	excavated area at					
	the former new					

	building extension and driveways					
Groundwater	Contaminated Soil (Secondary Source)	Solvents; fuels	PCE; TCE; 1,2-DCE; 1,1,1- TCA; 1,1- DCA; vinyl chloride	Infiltration / percolation from soils	Groundwater flow / utility trenches (sewer lines)	Human or ecological receptors are not expected to be exposed, although site workers could come in contact with contaminated groundwater if excavation occurred below the water table.
Air / Soil Vapor	1) Contaminated soil or groundwater at and/or under the former Site building. 2) Contaminated groundwater down gradient from the Site building.	Solvents; fuels	TCE; PCE	Volatilizatio n of contaminated groundwater and/or soil	Vapor intrusion Partitioning to air during intrusive soil excavation	Human: Inhalation
Surface Water and Sediment	Erosion or discharge mechanisms and pathways are not currently expected to exist.	NA	NA	Contaminant s in groundwater are expected to attenuate prior to potential discharge point(s)	NA	Human or ecological receptors are not expected to be exposed

Site soil contamination is located in subsurface soil that is primarily covered by asphalt or beneath a concrete slab. Workers who excavate the soil for underground utility repair or maintenance, or

for construction activities, could be exposed to contaminants in soil through incidental ingestion of soil, dermal contact with the soil, or by inhaling dust or vapor that may be released from the soil.

Residential and commercial properties located within the potential groundwater plume path are serviced by public water. Therefore, direct exposure to groundwater associated with the Site through domestic or other uses is not anticipated. Workers excavating in the vicinity of the Site could come in contact with contaminated groundwater. Although the deep groundwater plume has not been fully defined, discharge of contaminants from groundwater to surface water is not expected, based on distances to local surface waters and attenuation processes (e.g., diffusion, dispersion, biological degradation).

Soil vapor sampling performed at the facility property has identified VOCs in soil vapor. Indoor air samples collected at an adjacent building (338 Benton Street and 1018 Clinton Street; same building footing) have identified the presence of VOCs in indoor air. A sub-slab depressurization system was installed at this location in 2005, mitigating this potential pathway. Although sub-slab sample results from the adjacent commercial building at 1010 Clinton Avenue were above the NYSDOH guidance value recommended for mitigation (based on the sub-slab soil vapor concentration for TCE exceeding 250 μ g/m³ and for PCE exceeding 1000 μ g/m³), a vacuum measured in the sub-slab vapor indicates that the existing MPE system is effectively mitigating the potential for vapor intrusion to indoor air.

5.2 CONTAMINANT PERSISTENCE

The following sections discuss contaminant persistence and characteristics of COCs at the Site.

VOCs

VOC COCs detected at concentrations greater than their associated NYS groundwater and/or soil SCGs include PCE, TCE, cis-1,2-DCE, 1,1,1-TCA, 1,1-DCA, vinyl chloride, ethylbenzene, and xylene (PCE and TCE are the primary contaminants). PCE and TCE are classified as halogenated hydrocarbons (specifically chlorinated hydrocarbons) and are present in groundwater and soils on Site. The processes that likely control the fate of VOCs (including PCE and TCE) at the Site

include volatilization, dissolution, and biodegradation. These processes are briefly discussed below.

Volatilization. The primary fate of VOCs in surface soils and shallow groundwater is likely volatilization, as VOCs partition rapidly to the atmosphere, and neither biodegradation nor hydrolysis (a photolytic decomposition due to exposure to sunlight) occurs at a rapid rate. (Agency for Toxic Substances and Disease Registry, 1997)

Dissolution. Dissolution of VOCs from site sources to groundwater is a significant transport mechanism for VOCs at the Site. Factors affecting dissolution of VOCs likely are: (1) water table elevation in comparison to source areas; (2) flow rate (residence time) of the groundwater in the contaminated material; (3) solubility of the compound; (4) amount of recharge through VOCs in the unsaturated zone; and (5) the degree of partitioning to soils and sediments.

Biodegradation. Biodegradation reactions can reduce the total mass of VOCs in groundwater. Naturally occurring bacteria in soil are capable of degrading VOCs. The microorganisms require oxygen to aerobically biodegrade VOCs and the concentration of dissolved oxygen (DO) is an indicator of the potential for aerobic biologic activity in groundwater. Aerobic biodegradation is particularly effective for aromatic hydrocarbons, such as benzene and toluene, and may be effective in mineralizing chlorinated solvent daughter products such as 1,2-DCE and vinyl chloride.

Under aerobic conditions, parent compounds PCE and TCE are relatively stable and persistent in the environment. Under suitable anaerobic conditions, however, PCE and TCE may undergo biologic transformation as the dominant fate process. Although PCE is typically the primary COC from dry cleaner sites, site records indicate that TCE was also stored at the Site; therefore the TCE detected is expected to be both a parent material and a daughter product of PCE. It has been shown that biodegradation of PCE and TCE in groundwater increases with the organic content of the soil.

The complete anaerobic biologic transformation pathway for PCE is:

PCE→TCE→1,2-DCE→vinyl chloride→ethane→carbon dioxide and water. Degradation pathways may not be complete, however, depending on the presence of suitable conditions to complete the process.

Persistence of VOCs in Site Media

Chlorinated solvents, the primary COCs at the Site, are fairly persistent in the environment. The chlorinated solvents associated with the dry cleaning process were reportedly no longer used at the Site after 1993.

Although it is likely that the primary source of contamination, PCE and TCE stored at the Site, was released to the environment over 17 years ago, concentrations of PCE were detected in soil during the URS RI investigation as high as 9,100 mg/Kg (B-03, at 0-4 ft bgs), and during the 2009 MACTEC soil investigation as high as 1,700 mg/Kg (GS-2 at 11 ft bgs). The properties of PCE and TCE are listed below.

Contaminant	Vapor pressure (mm Hg)	Henry's Law constant (atm-m³/mol)	Density constant (g/cm³)	Water solubility (mg/L)	Octanol- water partition coefficient (K _{ow})	$\begin{array}{c} \textbf{Organic} \\ \textbf{carbon} \\ \textbf{partition} \\ \textbf{coefficient} \\ \textbf{(} \textbf{K}_{oc} \textbf{)} \end{array}$
Trichloroethene (TCE)	5.79E+01	9.10E-03	1.4679	1.10E+03	240	126
Tetrachloroethene (PCE)	1.78E+01	2.59E-02	1.6311	1.50E+02	398	364

Reference (USEPA, 1990)

Based on the solubility (150 mg/L), Henry's Constant (0.754-unitless) and organic carbon partition coefficient (364 mg/g) of PCE and using the Soil Saturation Limit (C_{sat}^{-1}) equation assuming saturated conditions, DNAPL is possible if concentrations in soils exceed 370.6 mg/Kg.

The Csat equation, assuming saturated conditions is as follows:

C sat=
$$S/\rho_b$$
 ($K_d \rho_b + \Theta_w$)

Parameter = Definition (units)

Csat = soil saturation concentration (mg/Kg)

S = solubility in water (mg/L-water)

 ρ_b = dry soil bulk density (Kg/L) = assume 1.5

 $^{^{1}}$ C_{sat} is the concentration in soil at which the solubility limits of the soil pore water, the vapor phase limits of the soil pore air, and the absorptive limits of the soil particles have been reached. C_{sat} is a theoretical threshold above which a free phase liquid hazardous substance may exist. The equation is described in the USEPA "Soil Screening Guidance" (USEPA, 1996).

Remedial Investigation/FS Report — Dinaburg Distributing NYSDEC — Site No. 828103 MACTEC Engineering and Consulting, P.C. Project No. 3612082107

 K_d = soil-water partition coefficient (L/Kg) = K oc x foc

Koc /organic carbon partition coefficient (L/Kg)

Foc = fraction organic carbon in soil (g/g) = 0.006 (0.6%)

 $\Theta_{\rm w}$ = water-filled soil porosity (Lwater /Lsoil) = 0.43

The highest concentration of PCE in soil (9,100 ppm) was from a soil sample collected in 2000 from 0 to 4 ft bgs, or within the capillary fringe zone. This location was excavated in 2005 as part of the soil removal program. However, concentrations of PCE detected during the 2009 MACTEC sampling events indicate concentrations of PCE above the Csat concentration of 370 mg/Kg in soil samples from borings GS-2, GS-5, GS-6 and GS-7. This suggests that the presence of PCE as a DNAPL remains a possibility at the Site in soils surrounding the area excavated in 2005.

PCE and TCE were detected in groundwater in 2008 at concentrations as high as 220 mg/liter (L) and 170 mg/L, respectively. Based on the general "rule of thumb" that NAPL is present if dissolved concentrations in groundwater exceed 1% of the effective solubility of the compound (Plankow, 1996), these concentrations indicate the potential presence of these compounds as a NAPL in Site soil. (PCE was detected in groundwater at greater than it's solubility at MPE-10 in May 2008).

Soils below the Site exhibit high silt content and the majority of the remaining mass of PCE may have diffused into the soil silt matrix. Some of the mass may be also be located in sand lenses and "fractures" within the till. As stated above, the primary mechanisms of concentration reduction of VOCs are typically through volatilization into soil gas (for unsaturated soil or water table surface concentrations), and dispersion and diffusion in groundwater, as well as through biological degradation. If the mass of PCE is bound up within the soil matrix (i.e., adsorbed to the soils), then dispersion through advection will be less of a factor in concentration reduction.

To evaluate contaminant persistence in groundwater, contaminant concentrations in samples collected before and after the start up of the MPE system were reviewed. Table 4.3 shows the historical occurrence of PCE and TCE in groundwater for each sampling events at the Site. Contaminant concentrations for the two main COCs show that there is an overall decrease in their concentrations after the MPE treatment system was started, demonstrating the effectiveness of the remedial IRM. Of note is that some of these wells show a marked increase in concentrations followed by a decrease of concentrations after the MPE system was turned on. This may reflect an

initial increase in liberated contamination due to the Site soil removal work. For the wells installed as part of the MPE system, there are some wells which show decreased concentrations over time, some wells which show increased concentrations over time, and some wells where concentrations have remained fairly consistent over time. This may be a result of the location of these wells relative to the source area locations.

Considering the results of the site data gathered from the current set of monitoring wells, the understanding of groundwater movement at the Site, and the historical contaminant concentration data, it appears that the remediation system is successfully extracting Site contaminants, as designed, from shallow groundwater. However, the decrease in contaminant recovery, the fairly consistent solvent concentrations at some source area MPE wells, and the 2009 sample results that indicate solvent contamination in soil below the depth of the existing MPE well screens indicate that the MPE system as designed will likely not remediate the Site to meet groundwater standards. In addition, the soil contamination appears to be migrating via groundwater flow downward through the till layer to the bedrock, thereby acting as a continued source of bedrock groundwater contamination.

Evaluation of Biological Degradation/Natural Attenuation of VOCs at the Site

Natural attenuation refers to the presence of microorganisms which are capable of degrading chlorinated solvents. Anaerobic conditions occur under reducing conditions and with little to no DO. Aerobic conditions occur under oxygenated conditions or with high levels of DO.

Analytical results for the Site did not indicate that a significant reduction of contamination in soil was occurring prior to the installation of the MPE system, suggesting that biodegradation of PCE and TCE in soils was not occurring at a significant rate.

MNA parameters for groundwater were collected in May 2009 from select monitoring wells. MNA analytical results are presented in Table 4.5. BIOCHLOR Natural Attenuation Screening forms are included in Appendix G.

BIOCHLOR uses the MNA data to evaluate the likelihood that biodegradation of the chlorinated solvents is occurring in the aquifer. Evaluation results are presented as a numerical value

MACTEC Engineering and Consulting, P.C. Project No. 3612082107

(presented on Table 4.5) which represents whether there is inadequate evidence, limited evidence, adequate evidence, or strong evidence that anaerobic biodegradation of chlorinated organics is occurring in the aquifer. Based on an evaluation of the groundwater data from the Site, there is adequate evidence that biodegradation is occurring under anaerobic conditions in the overburden (MW-1 and MW-1A) and the bedrock interface zone (MW-10K, MW-13K, and MW-14K), as well as in the bedrock zone (MW-3C). Within the source area itself (MW-3), there is inadequate to limited evidence that biodegradation is occurring.

It is likely that the high concentrations within the source area and the potential presence of chlorinated solvents as a DNAPL are limiting the ability for microorganisms to biologically degrade the chlorinated solvents in the source area. Outside this area, where groundwater concentrations have diminished due to mechanical means (i.e. dispersion and dilution), it is likely that biodegradation is occurring and aiding in the diminished concentrations of chlorinated solvents.

SVOCs

Processes that are likely to control the fate of SVOCs (primarily PAHs) at the Site include adsorption, biodegradation, and dissolution. The SVOCs detected in source materials at the Site are expected to be relatively immobile because of strong adsorption of these compounds to the organic carbon fraction of the soil and the typically low solubility in water. Overall, adsorption to soil and sediment is the expected fate of SVOCs at the Site, while some biodegradation may occur in favorable locations (primarily aerobically).

5.3 CONTAMINANT MIGRATION

Sources and Migration Pathways

Contaminants detected in site media at concentrations above associated regulatory SCG values include VOCs.

Historical documentation and previously collected data indicate chlorinated solvents typically used in the dry cleaning industry were released to the environment. In addition, fuel related VOCs were

5-8

also reportedly released to the environment. Relatively high concentrations of chlorinated solvents in soil beneath the Site suggest one mechanism for release to be spills to the floor and to floor drains. Additionally, the existence of chlorinated solvents in soils outside the site building suggests releases in exterior locations as a result of handling. Concentrations of PCE detected in site soils are likely a continuing source of groundwater and indoor air contamination via diffusion, dissolution, or soil gas migration. The presence of petroleum contaminants are potentially related to past uses associated with the automobile repair shop formerly located at the Site prior to 1969.

VOCs can readily leach from soil with infiltration of precipitation, and migrate to groundwater. Once dissolved in groundwater, solvents can migrate with groundwater flow. Groundwater at and in the vicinity of the Site is located at approximately 9 feet bgs. Localized groundwater flow is interpreted to flow in a generally westerly direction with the regional flow also likely west toward the Genesee River. Groundwater data collected during the RI indicate that VOCs are present in wells throughout the Site. The highest concentrations of chlorinated VOCs are associated with sample locations in the south central portion of the Site in the vicinity of MW-3 (including the MPE wells 10, 15, 16, and 18). Although petroleum-related VOCs were detected in a historic sump sample, concentrations are much lower for these constituents, and the principal contaminants at the Site are PCE, TCE, and their degradation products (e.g., cis-1,2-DCE).

Although shallow groundwater can discharge to surface water, there are no nearby surface water bodies. Due to the distance to area surface waters and expected attenuation of solvent contamination, migration of groundwater contamination to surface water is not anticipated to be a complete migration pathway.

VOCs can partition from both soil and groundwater to soil vapor and then migrate through the soil column. Detections of VOCs in soil vapor samples collected at soil vapor sampling points indicate that VOCs are partitioning from soil (likely primary source) and groundwater to soil vapor. Soil vapor can be drawn into buildings through seams and cracks in foundations and floor slabs. Given the proximity of occupied buildings to locations where soil vapor samples indicated the presence of VOCs, soil vapor samples and indoor air samples were collected at on- and off-property locations during the URS RI field program. Air samples collected from beneath building floors and from within buildings located over the VOC-impacted groundwater indicate that, at some locations, the soil gas to indoor air migration pathway was complete. This location (338 Benton Street and 1018

Clinton Avenue; same building foundation) has been remediated with sub-slab depressurization systems. In addition, although high concentrations of PCE and TCE were detected in soil vapor below the adjacent commercial building (SV-4 collected from 1010 Clinton Avenue), the vacuum measurements recorded in the sub-slab indicate that the MPE system is creating a sufficient vacuum below this building to mitigate any potential vapor intrusion.

6.0 QUALITATIVE EXPOSURE ASSESSMENT

This section provides a QEA for the Site. The QEA is performed in accordance with NYSDEC Technical Guidance (NYSDEC, 2010), which indicates that the QEA should evaluate the populations of humans that may potentially be present at and in the vicinity of the Site, the mechanisms or exposure pathways by which those humans may be potentially exposed to contamination associated with the Site, and the significance of exposure that may occur through the potential exposure pathways. The exposure pathway elements include 1) a description of the contaminants source, 2) the contaminant release and transport mechanisms, 3) the potential human exposure points, 4) the routes of exposure, and 5) a characterization of the potential receptor population.

To complete the QEA, the following three steps were conducted:

- 1. Characterization of the exposure setting in terms of physical characteristics, current and future uses of the Site, and the populations that may be potentially exposed to site-related contamination under the current and future land uses;
- 2. Identification of potential exposure pathways and exposure points to which the populations may be exposed; and
- 3. Screening of potentially complete exposure pathways to identify the pathways and siterelated constituents of greatest concern from a health risk perspective.

Exposure Pathway Evaluation and Qualitative Risk Analysis

The Site property is zoned as commercial and residential. The area surrounding the Site is mixed use commercial and residential. It is expected that the Site will remain as a commercial and/or residential property into the future.

The Source areas and contaminant release and transport mechanisms were discussed in Sections 4 and 5. Potentially complete exposure pathways were identified for direct contact with soil and groundwater, and inhalation of vapors that may migrate from soil or groundwater to air within buildings. The significance of exposure pathways associated with these media is evaluated in this

section through comparison of analytical data to guideline concentrations published by the NYSDEC and/or background concentrations.

Soil

A comparison of analytical soil data to NYSDEC guideline values indicates that VOCs, principally PCE and TCE, as well as their breakdown product cis-1,2-DCE, and the fuel related compounds xylene and ethylbenzene, were detected in one or more soil samples on the facility property at concentrations greater than the SCOs for unrestricted use. PCE and TCE are the only compounds that exceed residential use SCOs. Based on the IRM removal of the top 1-foot of soil for the installation of the MPE system vapor barrier (see Figure 1.2), concentrations in excess of SCOs were generally detected in subsurface soil. In addition, the area with noted contamination as presented by Figure 4.1 is currently primarily surrounded by a fence. Construction or utility workers would potentially be exposed to subsurface soil if excavation activities were to occur, and under those circumstances exposures would be of a short duration (e.g., typically one week to one month). The principal exposure pathways to the VOCs detected in soil would be via incidental soil ingestion, dermal contact, and inhalation of vapor.

Although PCBs were detected at concentrations above unrestricted use SCOs in subsurface soils below the South Clinton Avenue parking lot, the concentrations were below SCOs for residential use and are therefore not deemed a human health risk.

Groundwater

There are no direct exposures to groundwater associated with the Site under the current or foreseeable land uses. However, a comparison of groundwater analytical data to NYS drinking water standards provides information concerning constituents that would be of concern from a health risk perspective if the groundwater was used as potable water under future conditions. A review of the analytical data indicates that chlorinated solvents (e.g., PCE and its breakdown products, as well as 1,1,1-TCA) were detected at concentrations that exceed drinking water standards. Detections in excess of drinking water standards were associated primarily with samples collected from monitoring wells located on the site property, with the exception of some detections in groundwater from monitoring wells to the north of the site property. Based on current groundwater data, it is not anticipated that overburden groundwater contamination above SCGs extends greater than 50 feet beyond the south, east and west site property boundaries. General

water contamination likely extends less than an estimated 100 feet beyond the northern property boundary. It is not known if bedrock groundwater contamination is present greater than 50 feet beyond the western site property boundary (the interpreted bedrock groundwater flow direction is to the west).

Construction or utility workers could potentially be exposed to groundwater if excavation activities were to occur to depths below the water table. Under those circumstances exposures would be of a short duration (e.g., typically one week to one month). The principal exposure pathways to the VOCs detected in groundwater during excavation work would be via incidental ingestion, dermal contact, and inhalation of vapor.

Groundwater that has been affected by releases from the Site is not being used as a source of drinking water due to the availability of public water supply and there are no direct contact exposures to constituents in groundwater. Although constituent concentrations in groundwater exceed drinking water standards, the drinking water/direct groundwater contact pathway is not an exposure pathway of concern from a health risk perspective under the existing and foreseeable land use conditions.

Vapor

A complete vapor intrusion pathway requires the presence of a VOC in soil vapor and in air within an overlying enclosed building. Evaluations of vapor intrusion pathways are often confounded by VOCs in indoor air which are present in part or all due to anthropogenic (background) sources and not to migration of soil gas into enclosed space. Therefore, the evaluation of vapor intrusion pathways was performed by comparing sub-slab soil vapor sampling data, indoor air sampling data from basements, air sampling data from first floors, and background/air guideline values as follows, based on the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, 2006).

Based on detected concentrations exceeding the values recommended for mitigation, one sub-slab depressurization system was installed at one off-site building (two addresses) by URS. Concentrations detected at other residential locations did not require further action based on NYSDOH guidance. The second commercial property with the potential for vapor intrusion (1010)

Clinton Avenue) was noted to have a negative pressure reading in the sub-slab (i.e. a vacuum), as a result of the operation of the MPE system.

In summary, it appears that VOCs that are related to releases from the Site (i.e., PCE and TCE) have the potential to result in vapor intrusion into adjacent off-site buildings (the adjacent commercial and mixed use buildings to the southwest of the Site (338 Benton Street and 1018 Clinton Avenue; same building foundation) and northwest of the MPE system (1010 Clinton Avenue). Because the mixed use building to the southwest of the Site has been mitigated and the MPE system is depressurizing the slab of the commercial building to the northwest of the Site, there are currently no expected exposures resulting from the vapor intrusion pathway at these locations.

7.0 SUMMARY AND CONCLUSIONS

This section presents a summary of the RI and resulting conclusions.

7.1 SUMMARY

The Site is located at 1012 South Clinton Avenue in the City of Rochester in Monroe County, New York (Figures 1.1 and 2.1). The property is located in a mixed commercial/residential area just inside the Rochester City limits. The Site occupies 0.25 acres on two parcels situated perpendicular to one another, and is currently surfaced by a combination of pavement, a concrete former building slab, and soil. The property is currently vacant and abuts several residential and commercial properties. The property and buildings were reportedly used as an automobile repair shop from around 1950 through around 1969. From 1971 to 1993, the Site was occupied by Dinaburg Distributing, Inc., which operated a dry cleaning supply company business and sold chemical solvents to various dry cleaners in the area. Dinaburg stored TCE and PCE in ASTs which were located in the northeast area of the Site building. The property has been vacant since 1995 and currently consists of a parking lot; the Site building and an adjacent house at 350 Benton Street were demolished in 2004 by the property owner to allow access for remediation of the Site.

The primary contaminant source areas reportedly consist of leaks and spills from the historic storage tanks on the property, and spills to the ground surface in the vicinity of the Benton Street Driveway. The likely secondary source area (contaminated soils) is represented by an area within which PCE in soil exceeds its SCO for unrestricted use of 1.3 mg/Kg, and TCE exceeds its SCO for unrestricted use of 0.47 mg/Kg. This area was estimated by URS in 2005 to extend approximately 40 feet by 80 feet and included the former tank storage room, the former new building extension, Benton Street driveway, and portions of the adjacent residential driveways at 338 and 350 Benton Street. Based on more recent soil and groundwater sample results, this area is likely larger, measuring approximately 6,300 square feet (Appendix F).

A hot spot removal IRM conducted in 2005 of the most contaminated soils remediated an area measuring approximately 32 feet square by 8 feet deep. This removal area was previously estimated by URS to contain approximately 1,070 lbs of VOCs including soils with VOCs

generally above 100 mg/Kg. Soils outside of this removal area contained PCE contamination with concentrations noted as high as 1,500 mg/Kg detected in GP-19 (from 0-2 feet bgs), (see URS Figure 4-1 in Appendix A). This contamination was evaluated by URS to be confined primarily to the upper stratified overburden and not extend into the till layer which was noted to be present at approximately 13 feet bgs. To remediate the remaining VOCs present in soil at concentrations above their SCOs for unrestricted use, URS installed an MPE system as an IRM. The MPE system consists of 18 soil and groundwater extraction wells (i.e. MPE wells) with screens set to between 10 and 13.5 feet bgs, as well as three bedrock interface groundwater extraction wells with screens set to between 20.7 and 23 feet bgs. This system began operating in February 2006. URS calculated that approximately 382 lbs of VOC contamination was removed via the MPE system between February 2006 and May 2010. Although continuing to operate, the rate of mass contaminant removal by the MPE system has reportedly decreased over time.

Soils data collected in 2009 by MACTEC indicate that VOCs above the SCO for unrestricted use continue to be present across the Site in soil below the water table (groundwater present at approximately eight feet bgs). Soil samples collected in 2009 outside of the 2005 removal area contained PCE and TCE contamination with concentrations noted as high as 1,700 mg/kg for PCE (detected in GS-2 at 11 feet bgs), and 1,400 mg/kg for TCE (detected in soil boring GS-7 at 16 feet bgs) (see Table 4.1). Most of the soil samples collected in 2009 contained concentrations of PCE and TCE above their respective SCO for the protection of groundwater, and many of the exceedances of SCOs were noted to be within the till layer. Soil contamination was also noted to be present in the till to the top of assumed bedrock at boring GS-13 (this location is off the Site property to the north). Based on the 2009 soil sample results, as well as an estimated area where PCE and TCE exceed their SCO for unrestricted use, the remaining combined mass of TCE and PCE contamination at the Site is estimated to be approximately 844 lbs.

This soil contamination continues to be a source of groundwater contamination. Groundwater at the Site is interpreted to flow primarily in a west to southwesterly direction, although the operation of the MPE system appears to be controlling shallow groundwater from flowing off the property. The VOC detected at the highest concentration in groundwater was PCE, detected in a sample collected in May 2008 from MPE-16 at a concentration of 220,000 μ g/L, compared to a Class GA groundwater standard of 5 μ g/L. This concentration is greater than the solubility of PCE (150,000 μ g/L), indicating that PCE product as a NAPL is likely present in the vicinity of this boring. TCE

was detected at the highest concentration of $170,000~\mu g/L$ at MPE-10, compared to the Class GA groundwater standard for TCE of $5~\mu g/L$. MPE-10 is located just south of the soil source hot spot removal. MPE-16 is located between the soil source hot spot removal and Benton Street, and is between the groundwater extraction wells GWE-2 and GWE-3. Groundwater sampling points outside the MPE system indicate primarily decreasing concentrations of contaminants over time, with total PCE and TCE concentrations in GPW-1, GPW-2, MW-1, MW-1A, MW-3, and MW-3C (the most contaminated wells outside the source areas) decreasing by 88% and 95%, respectively, since the start up of the MPE system.

Although groundwater concentrations of PCE and TCE detected in the MPE wells had an initial drop of just over 70% in the first four months of the system operation, concentrations do not appear to indicate any decreasing trend from June 2006 to May 2010. In addition, although the highest detected groundwater concentrations have occurred in samples from the overburden, VOCs, primarily PCE and TCE are also present in the groundwater in the overburden/bedrock interface zone, as well as in the deeper bedrock zone at concentrations above SCGs. This indicates continued migration of the contamination in groundwater from the shallow overburden source through the till layer.

Low concentrations of Site related VOCs in sewer samples also indicates infiltration of VOCs from shallow groundwater to the municipal sewer system. Based on the sewer system historically being encased in concrete, and the observed downward gradients in the shallow to deep overburden aquifer, the sewer line is not interpreted to be a significant contaminant migration pathway.

Analytical results from soil samples collected prior to the installation of the MPE system did not indicate evidence of significant natural attenuation or a reduction of contamination with time, suggesting that biodegradation of PCE and TCE was not occurring at a significant rate. Compared to concentrations of PCE and TCE, significant concentrations of PCE and TCE daughter products (including cis-1,2-DCE and vinyl chloride) were not detected in soil or groundwater samples collected in 2008 or 2009. An evaluation of MNA parameters collected by MACTEC in 2009 indicates adequate evidence that anaerobic biodegradation is occurring in groundwater outside the source areas. However, an evaluation of MNA parameters provides only limited evidence that natural attenuation of contaminants in the vicinity of the source is occurring. Absence of

biodegradation in the source area is likely due to the high concentrations of chlorinated solvents and the potential presence of the solvents as a DNAPL.

Sampling in the vicinity of the Site indicates that VOC contamination has partitioned from soil and groundwater to soil vapor. Results of 2004 soil vapor sampling in three buildings near the Site indicated that PCE was present in the soil vapor and was migrating into the buildings at two locations (same building foundation). Based on these results, a sub-slab depressurization system was installed at the two buildings (one system addresses both locations because of the shared foundation). In addition, although high concentrations of PCE and TCE were detected in a soil vapor sample collected in 2009 from below the commercial property at 1010 Clinton Avenue, the existing MPE system is currently depressurizing the buildings sub-slab. Site related contaminants have not been detected in soil vapor and indoor air at other buildings surrounding the Site at concentrations that warrant further action.

In addition to VOCs, PAHs were detected in two soil samples at concentrations above SCOs; contaminated soil was removed at one of the sample locations during the soil removal action; the second sample location is north of the Site property.

7.2 CONCLUSIONS

Conclusions, including data limitations, recommendations for future work, and recommended RAOs, are discussed in the following subsections.

7.2.1 Conclusions and Data Limitations

The Dinaburg site has been inactive for approximately 16 years. High concentrations of VOC contaminants (PCE detected at 310 mg/Kg at the 08GP-19 location in 2008 and at 1,700 mg/Kg at the GP-2 location in 2009) continue to be present in site soils near the historic source area, as well as generally in soil across the Site. PCE was detected in groundwater at a concentration of 220,000 µg/L in MPE-16, located approximately 60 feet south of the reported historic source area at the Site. PCE and TCE were also detected in sub-slab soil vapor samples collected from below buildings adjacent to the Site. Concentrations of PCE and TCE detected in Site media (soil and groundwater) in 2008 and 2009 indicate possible continued presence of DNAPL at the Site.

Site soil contamination is likely to be a continuing source of groundwater contamination. Groundwater in the shallow and deep overburden aquifer are interpreted to flow in a primarily west to southwesterly direction from the source area. Groundwater contamination has migrated from shallow soil to the overburden/interface bedrock zone, and based on concentrations detected in groundwater samples from MW-13K appears to be migrating in this zone off-site to the west at concentrations above SCGs.

Based on groundwater levels collected during 2009 MPE system evaluation, active dewatering of the source area is ongoing, limiting the offsite migration of contaminated shallow groundwater. In addition, the vapor extraction system appeared to pull air from a five to fifteen feet radius around individual MPE wells, depending on extraction well location and the surrounding soil type. Although this vacuum appeared sufficient to pull vapors from portions of the source area, other areas within the MPE system do not appear to be influenced by the system.

Although the system reportedly removed approximately 382 lbs of contamination from February 2006 to May 2010, removal rates were observed to be decreasing with time. The system as currently configured may not be able to remediate the VOC contamination above the till layer due to the potential insufficient vacuum and dewatering noted in some areas of the Site. In addition, large concentrations of VOCs are present in the till layer below the screened zone of the MPE wells.

Based on this evaluation, the MPE system is not expected to be capable of removing the estimated remaining mass of PCE and TCE contamination (approximately 844 lbs) at the Site, and thus incapable of remediating the Site to meet SCOs for the protection of groundwater.

Data Limitations/Data Gaps

<u>Soil.</u> The extent of VOC contamination in soil above SCOs for the protection of groundwater has not been characterized. Although the shallow overburden above the till is fairly well delineated, the extent of contamination within the till to bedrock has not been characterized. In addition, concentrations of PCE in a groundwater sample from MPE-16 indicate the potential presence of PCE as a DNAPL in this vicinity of the Site.

Groundwater. Overburden groundwater contamination has been sufficiently characterized, but the extent of groundwater contamination in the overburden/interface zone and the deeper bedrock zone has not. Although overburden groundwater samples across South Clinton Avenue to the west of the Site indicate that overburden groundwater in this area has not been impacted by contamination from the Site, the overburden/bedrock interface groundwater zone and bedrock groundwater zone have not been evaluated west of the Site. Based on concentrations of VOCs detected in a groundwater sample from MW-13K, contamination from the site may be migrating off site to the west in these deeper zones. Although apparent groundwater flow direction is to the west, concentrations of VOCs detected in the groundwater sample from MW-14K exceeded SCGs, and the extent of groundwater contamination in these deeper zones has also not been defined east of the Site.

8.0 DEVELOPMENT OF REMEDIAL ACTION GOALS AND OBJECTIVES, AND GENERAL RESPONSE ACTIONS FOR SOIL CONTAMINATION REQUIRING REMEDIATION

The FS portion of the RI/FS commences with this section. The FS addresses soil, groundwater and soil vapor contamination identified and characterized in previous sections of this Report. This section identifies:

- RAOs for contaminated site soil and groundwater;
- general response actions to address the RAOs; and
- extent of soil and groundwater contamination requiring remedial action.

8.1 IDENTIFICATION OF REMEDIAL ACTION GOALS AND OBJECTIVES

RAOs form the basis for identifying remedial technologies and developing remedial alternatives. RAOs are medium-specific or operable unit-specific goals established to protect public health and the environment; RAOs are developed based upon contaminant-specific SCGs (USEPA, 1988; NYSDEC, 2002).

Site-specific COCs were determined by comparison of contaminant concentrations to chemical-specific SCGs, which include 6 NYCRR Parts 700-706 Water Quality Standards (NYSDEC, 1998) and 6 NYCRR Part 375 Remedial Program Soil Cleanup Objectives (NYS, 2006).

The RI results indicate that concentrations of VOCs, principally PCE, TCE, and breakdown product cis-1,2-DCE, and the fuel related compounds xylene and ethylbenzene, were detected in one or more soil samples at or in the vicinity of the Site at concentrations greater than SCOs. PCE and associated breakdown products, as well as 1,1,1-TCA, were detected in groundwater at the Site at concentrations above drinking water standards. That nature and extent of site-related soil and groundwater contaminants are discussed in Subsections 4.2 and 4.3, respectively, and presented in Figures 4.1, 4.2 and 4.3. Soil vapor at and in the vicinity of the Site is also impacted by PCE and TCE. The soil vapor to indoor air exposure pathway of off-site buildings is currently being addressed through implementation of sub-slab depressurization IRMs.

The following RAOs have been developed in accordance with the remedy selection process set forth in 6 NYCRR Part 375 (NYS, 2006) and DER-10 (NYSDEC, 2010). The goal for remedial action is to restore, to the extent practicable, the Site to pre-disposal/pre-release conditions. At a minimum, the remedy shall eliminate or mitigate significant threats to public health and the environment presented by site contaminants through the proper application of scientific and engineering principles (NYSDEC, 2002).

8.1.1 Remedial Action Objectives for Soil

The QEA presented in Section 6.0 concluded that under current and projected future site land use scenarios, potentially complete exposure pathways include direct contact with VOC-contaminated sub-surface soil (for construction or utility workers), and inhalation of vapors that may migrate from soil to air within commercial or residential buildings. Further, the primary COCs detected in soil at the Site, which are also generally detected in Site groundwater, exceed the Protection of Groundwater SCOs. Therefore, the following RAOs are identified for site soil:

- prevent ingestion/direct contact with contaminated soil
- prevent migration of contaminants that would result in groundwater contamination (i.e. reduce soil concentrations to below Protection of Groundwater SCOs)
- prevent inhalation of, or exposure from, contaminants volatilizing from contaminants in soil.

8.1.2 Remedial Action Objectives for Groundwater

The QEA concluded that under existing and foreseeable land use conditions groundwater is not a complete human health exposure pathway since groundwater is not used as a public drinking supply. Therefore, the following RAOs are identified for site groundwater:

- prevent future use of site groundwater with contaminant concentrations in excess of drinking water standards
- restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable
- prevent the discharge of contaminants to surface water
- remove the source of groundwater contamination

8.1.3 Remedial Action Objectives for Soil Vapor

It is likely that the chosen remedial alternatives for soil and groundwater at the site will decrease the potential for soil vapor intrusion. The following RAOs are identified for soil vapor:

• mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at or near the site.

8.2 IDENTIFICATION OF GENERAL RESPONSE ACTIONS

General response actions describe those actions that will satisfy the RAOs (USEPA, 1988). General response actions may include treatment, containment, excavation, disposal, institutional actions, or a combination of these. Like RAOs, general response actions are medium-specific. The general response actions presented in the following subsections include those applicable to subsurface soil, groundwater and soil vapor which has been identified as potential threat to public health and the environment at the Site.

Site-specific RAOs were developed to address the contamination requiring remedial action for subsurface soil.

8.2.1 General Response Actions for Soil

The following general response actions would address the RAOs identified for soil:

- no further action
- access restrictions
- removal / off-site disposal
- in-situ treatment
- ex-situ treatment
- containment

These general response actions are appropriate for site-specific soil contamination requiring remediation.

8.2.2 General Response Actions for Groundwater

The following general response actions would address the RAOs identified for soil:

- no further action
- access restrictions and long term monitoring
- removal
- in-situ treatment
- ex-situ treatment
- containment

These general response actions are appropriate for site-specific groundwater contamination requiring remediation.

8.2.3 General Response Actions for Soil Vapor

The following general response actions would address the RAOs identified for soil vapor:

- no further action
- access restrictions
- engineering controls

These general response actions are appropriate for site-specific soil vapor contamination requiring remediation.

8.3 EXTENT OF SOIL CONTAMINATION REQUIRING REMEDIAL ACTION

This subsection identifies the extent of contaminated soil to which the RAOs and general response actions identified above, and the remedial alternatives to be developed in Section 10.0, will apply. Sample locations within the central to eastern portion of the Site as shown on URS Figure 4-1 in Appendix A exceed Unrestricted Use SCOs for VOCs in soil. Further, using PCE as an indicator of overall VOC contamination, isoconcentration lines as shown on Figure 4.1 indicate the approximate horizontal extents of contamination out to 10 mg/kg for PCE; RI activities to date have not defined the horizontal extents of PCE and thus overall extent of VOC contamination above Unrestricted Use SCOs. The vertical extent of soil contamination is greatest in the zone

below the water table which is generally eight feet bgs. Analytical results of subsurface soil samples collected during the RI are compared to both Unrestricted Use SCOs and the Protection of Groundwater SCO in Table 8.1. Remedial alternatives will be developed in Section 10.0 with consideration for the horizontal and vertical distribution of contaminants.

8.4 EXTENT OF GROUNDWATER CONTAMINATION REQUIRING REMEDIAL ACTION

This subsection identifies the extent of contaminated groundwater to which the RAOs and general response actions identified above, and the remedial alternatives to be developed in Section 10.0, will apply. Sample locations, corresponding exceedances of Ambient Water Quality Standard and Guidance Values (AWQS) for the primary VOC contaminants PCE, TCE, cis-1,2-DCE, and Vinyl Chloride (VC), and total chlorinated solvent isoconcentration lines shown on Figure 4.3 indicate the horizontal extents of chlorinated solvent contamination exceeding AWQS both on and off-site. The vertical extent of groundwater contamination extends throughout the saturated zone to bedrock. Analytical results of overburden and bedrock groundwater samples collected during the RI are compared to AWQS in Table 8.2. Remedial alternatives will be developed in Section 10.0 with consideration for the horizontal and vertical distribution of the contaminants.

8.5 EXTENT OF SOIL VAPOR CONTAMINATION REQUIRING REMEDIAL ACTION

This subsection identifies the extent of contaminated soil vapor to which the RAOs and general response actions identified above, and the remedial alternatives to be developed in Section 10.0, will apply. As described in Subsection 4.5, historic field investigations and MACTEC's own field investigations during the RI indicate the contamination of soil vapor by chlorinated solvents both on-site and at proximate buildings off-site. The MPE system operating on-site and the sub-slab depressurization systems installed at 338 Benton Street and 1018 Clinton Street currently address the public health risk of soil vapor intrusion. Continued evaluation and monitoring of potential vapor intrusion pathways will be assessed in conjunction with remedial alternatives for the treatment of contaminated soil and groundwater; these alternatives will be developed in Section 10.0 with consideration for the present and potential future extents of soil vapor contamination.

9.0 IDENTIFICATION AND SCREENING OF TECHNOLOGIES

This section describes the identification and screening of potential remedial technologies. Technologies are identified for the purpose of attaining the RAOs established in Subsection 8.1. Identified technologies correspond to the categories of general response actions described in Subsection 8.2.

Following identification, candidate technologies are screened based on applicability to Site- and contaminant-limiting characteristics. The purpose of the screening is to produce an inventory of suitable technologies that can be assembled into remedial alternatives capable of mitigating actual or potential risks at the Site. Potential technologies representing a range of general response actions (i.e., no action, limited action, removal, treatment, and disposal) are considered. The result of technology screening is a list of potential remedial technologies that may be developed into candidate remedial alternatives.

9.1 TECHNOLOGY IDENTIFICATION

Remedial technologies and specific process options applicable to hazardous waste sites are identified in USEPA's Guidance for Conducting RI/FS (USEPA, 1988). This guidance was used to generate the list of applicable remedial technologies and associated process options presented in Table 9.1 for each general response action developed for soil, groundwater and soil vapor in Subsection 8.2.

9.2 TECHNOLOGY SCREENING

The technology screening process reduces the number of potentially applicable technologies and process options by evaluating factors that may influence process-option effectiveness and implementability. This overall screening is consistent with guidance for conducting an FS under Comprehensive Environmental Response, Compensation, and Liability Act (USEPA, 1988). Effectiveness and implementability are incorporated into two screening criteria: waste- and site-limiting characteristics. Waste-limiting characteristics consider the suitability of a technology based on contaminant types, individual compound properties (e.g., volatility, solubility, specific

gravity, adsorption potential, and biodegradability), and interactions that may occur between mixtures of compounds. Site-limiting characteristics consider the effect of site-specific physical features on the implementability of a technology, such as site topography and geology, the location of buildings and underground utilities, available space, and proximity to sensitive operations. Technology screening serves the two-fold purpose of screening out technologies whose applicability is limited by site-specific waste or site considerations while retaining as many potentially applicable technologies as possible.

Table 9.1 presents the technology-screening process. Technologies and process options judged ineffective or prohibitively difficult to implement were eliminated from further consideration. The technologies retained following screening (see Table 9.1) represent an inventory of technologies considered most suitable for remediation of soil at the Site and may be used alone or integrated with other technologies to develop remedial alternatives. Pilot-scale treatability studies may be required prior to final technology selection to confirm the effectiveness of a given technology.

10.0 DEVELOPMENT AND PRELIMINARY SCREENING OF ALTERNATIVES

The retained technologies identified in Table 9.1 are considered technically feasible and applicable to the waste types and physical conditions at the Site. These medium-specific technologies were assembled into potential site-specific remedial alternatives capable of achieving the RAOs for the contaminated soil, groundwater and soil vapor requiring remediation.

10.1 DEVELOPMENT OF REMEDIAL ALTERNATIVES

The retained remedial technologies for soil and groundwater have been combined into the following remedial alternatives:

- Alternative 1: No Action
- Alternative 2: No Further Action: Continued Multi-phase Extraction
- Alternative 3: Restoration to Pre-Disposal or Unrestricted Conditions
- Alternative 4: Enhanced Multi-phase Extraction
- Alternative 5: In-Situ Source Treatment Chemical Oxidation with Soil Mixing
- Alternative 6: Discrete Soil Source Excavation and Off-Site Disposal and In-Situ Enhanced Biodegradation with Groundwater Monitoring
- Alternative 7: In-Situ Electrical Resistance Heating

10.1.1 Alternative 1: No Action

Alternative 1 was developed as a baseline against which to compare other remedial alternatives for soil, groundwater or soil vapor. This alternative involves no actions to protect human health or the environment and lacks remedial measures that would reduce soil, groundwater or soil vapor contamination at the Site.

10.1.2 Alternative 2: No Further Action: Continued Multi-phase Extraction

Alternative 2 consists of the following system components:

- institutional controls
- continued operation, maintenance, and monitoring of the existing MPE system

Institutional controls would be implemented to restrict future use of the Site for residential purposes. Institutional controls would likely include implementation of land-use restrictions limiting subsurface activity and would prohibit changes in zoning of the Site (e.g., change from commercial to residential use). Land-use restrictions would be implemented through legal instruments such as deeds and/or water well permitting processes.

As noted in Subsection 1.3.2, an initial RI field investigation and report was completed by URS in 2001 and the current MPE was designed and implemented as an IRM. Construction of the IRM began in the fall of 2005 and was completed in 2006, with operation of the MPE system beginning in April 2006 and continuing to date. The existing MPE system consists of four main components housed within an 8 foot wide by 40 foot long enclosed treatment system building (refer to Drawings 2B, 3A, 3B, 3C, 4 and 5 in Appendix A for depiction of MPE system layout and details).

This enclosure houses a vacuum extraction system, off-gas treatment system, groundwater extraction system, and groundwater treatment system. The vacuum extraction system consists of an air/water separator, associated liquid pump, and two regenerative SVE blowers installed in parallel, which receives influent from eighteen MPE wells. The off-gas treatment system, which receives vapor from the vacuum extraction and groundwater extraction systems, previously consisted of two 1,000-gallon vapor phase carbon filters installed in series. Usage of vapor phase carbon for air treatment was discontinued on March 21, 2008 as authorized by the NYSDEC, and the height of the treatment system exhaust stack was increased to allow direct discharge of untreated vapor to the atmosphere (URS, 2008). The groundwater extraction system consists of an air supply compressor, which operates pneumatic pumps present in the eighteen MPE wells and in three groundwater extraction wells. The groundwater treatment system consists of equalization tank, chemical feed system (to prevent mineral fouling), and a low-profile air stripper. Both treatment systems are operated by a programmable logic control based control system with alarm features.

The eighteen four-inch diameter MPE wells (MPE-1 through MPE-18) were installed to the top of till layer at around 10 to 13 feet bgs, with screened interval lengths of between 4 and 10 feet bgs. Each MPE well includes a controller-less pneumatic pump, air supply tubing, SVE piping, and liquid discharge piping.

The three four-inch diameter groundwater extraction wells (GWE-1 through GWE-3) were installed to the top of bedrock (located approximately 20 to 23 feet bgs). Each groundwater extraction well includes a three-foot screened interval, controller-less pneumatic pump, air supply tubing, and liquid discharge piping. The air supply, SVE, and liquid piping for the MPE and groundwater extraction wells were installed within subsurface pipe trenches.

Treated effluent from the off-gas treatment system is discharged to the atmosphere. Treated effluent from the groundwater treatment system is discharged to the MCPW combined sewer system located at Benton Street.

Operation of the existing MPE system includes monthly site visits during which flow readings and water levels from the eighteen MPE and three groundwater extraction wells are collected, and periodic or as-needed maintenance.

Quarterly long-term monitoring activities include collection of groundwater samples from a total of 36 groundwater monitoring, groundwater extraction, and MPE wells, and collection of vapor samples from 20 locations at the Site for VOC off-site laboratory analysis. Quarterly reports are prepared describing the results of the quarterly long-term monitoring and the monthly site visits and monitoring.

10.1.3 Alternative 3: Restoration to Pre-Disposal Conditions

Alternative 3 includes:

- demolition of the building at 1006 South Clinton Avenue
- shoring of the buildings at 1018 South Clinton Avenue and 354 Benton Street
- excavation and off-site disposal of on-site soils including all soil to bedrock within the extents of the property east of the historic former site building's western extents, as well as limited extents at 1006 S. Clinton Avenue and 491-493 Caroline Street
- repaying of the parking lot next to the building at 1018 South Clinton Avenue
- treating overburden and bedrock groundwater contamination in-situ through chemical oxidation.

Under this alternative on-site soils would first be excavated and then transported off-site for treatment and/or disposal.

Imported clean fill would be used to establish the designed finish grades.

Prior to backfilling, chemical oxidation reagent would be placed and mixed with backfill material below the water table. Approximately 72,916 pounds of chemical oxidant (Carus Remediation Technologies' RemOx® L ISCO Reagent is used for estimating purposes) would be mixed with backfill material using the excavator bucket.

10.1.4 Alternative 4: Enhanced Multi-phase Extraction

Alternative 4 consists of:

- enhancement of the existing MPE system
- institutional controls
- operation, maintenance, and monitoring of the enhanced MPE system

Alternative 4 includes installation of up to 20 additional multi-phase extraction wells to target subsurface contamination currently untreated by the current extraction point layout. The expanded network of MPE wells will increase recovery rates and accelerate the treatment of remaining soil contamination.

The September 3, 2008, URS Soil Sampling Assessment Report (URS, 2001) provides a summary of the most recent soil contaminant concentrations. Results of the soil contaminant data, along within an estimated 5 to 7 foot per-well radius of influence (URS, 2001), was used as the basis for the layout of the proposed extraction well points. The proposed enhancement includes the installation of up to 20 additional extraction points that would be connected to the existing MPE system.

Through reducing or eliminating operation of existing MPE points which contribute the least contaminant recovery, it is assumed that the treatment plant capacity will not have to be expanded. Operation, monitoring, and maintenance of the enhanced MPE system would be similar to that described for Alternative 2.

Institutional controls would be implemented as described for Alternative 2.

The additional MPE points will be added to the existing network of locations that are sampled on a quarterly basis. This analytical data will provide the basis to to evaluate the effectiveness of the enhanced MPE system. Long-term monitoring and reporting would be similar to that described for Alternative 2.

10.1.5 Alternative 5: In-Situ Source Treatment - Chemical Oxidation with Soil Mixing

Alternative 5 consists of:

- in-situ chemical oxidation with soil mixing of source area soils
- institutional controls
- long term groundwater monitoring

Alternative 5 includes in-situ soil mixing and treatment of the on-site soil source area. Soil mixing is a technology which developed by the construction industry allowing for in-situ stabilization/solidification of soils, including the subsurface placement of concrete, without excavation. This technology can be combined with the injection of amendments or reagents to provide treatment and/or stabilization of subsurface contamination. Implementation of this alternative would include mechanical mixing of the on-site source area soils with chemical reagents and/or amendments designed to aid in destruction of the VOC contamination. The targeted source area would be limited approximately to the area within the 10 mg/kg PCE isoconcentration lines as shown in Figure 4.1, due to the reduced cost efficiency typically realized by this technology in areas of lower contaminant concentrations.

Institutional controls would be implemented as described for Alternative 2.

Subsequent to completing site remediation activities, groundwater monitoring would occur on a quarterly basis for the first two years after completion, on a semiannual basis for the next two years, and then on an annual basis.

10.1.6 Alternative 6: Discrete Soil Source Excavation and Off-Site Disposal and In-Situ Enhanced Biodegradation with Groundwater Monitoring

Alternative 6 consists of:

- shoring of the building at 1006 South Clinton Avenue
- excavation of contaminated source area soils
- in-situ enhanced biodegradation
- institutional controls
- long term groundwater monitoring

Alternative 6 includes excavation and off-site disposal of the on-site soil source area, which is a continuing source of on-site and off-site groundwater contamination. Under this alternative, on-site source area soils located both above and below the water table would be excavated and transported off-site for treatment and/or disposal. The source area targeted for excavation would be limited approximately to the areas within the 100 mg/kg PCE isoconcentration lines as shown in Figure 4.1. Based upon results of soil sampling conducted during the RI, the majority of on-site vadose zone soil to a depth of 8 feet is anticipated to be uncontaminated by site-specific COCs, and would be stockpiled separately for potential use as excavation backfill. Approximately 878 cubic yards of contaminated soil would be removed. Clean fill would then be brought in to replace the excavated soil transported off-site for treatment/disposal and to establish the designed finish grades.

Subsequent to source area removal by excavation, enhanced biodegradation amendments would be injected within the remaining site boundary to accelerate degradation of VOCs in site soil and groundwater. Groundwater monitoring wells would be installed to allow for groundwater sampling to monitor the effects of biodegradation; four wells hydraulically downgradient from the site would be installed to track contaminant migration further off site. Additional biodegradation amendment injections may be warranted pending groundwater monitoring analytical results. Groundwater monitoring would continue until groundwater sampling demonstrated site cleanup in accordance with SCGs.

Institutional controls would be implemented as described for Alternative 2.

Subsequent to completing site remediation activities, groundwater monitoring would occur on a quarterly basis for the first two years after completion, on a semiannual basis for the next two years, and then on an annual basis.

10.1.7 Alternative 7: In-Situ Electrical Resistance Heating

Alternative 7 includes:

- implementation of in-situ electrical resistance heating to treat on-site VOC soil and groundwater contamination
- discontinuation of the existing MPE system.

Electrical resistance heating uses an electrical current to heat less permeable soils such as clays and fine-grained sediments so that water and contaminants trapped in these relatively conductive regions are vaporized and readied for vacuum extraction. Electrodes are placed directly into the less permeable soil matrix and activated so that electrical current passes through the soil, creating an electrical resistance which then heats the soil. Implementation of this alternative would include electrical resistance heating of on-site soil and groundwater to volatize VOC contamination, and vapor extraction to capture the resulting VOC emissions. The targeted source area would approximately be the 10 mg/kg PCE isoconcentration line as shown in Figure 4.1.

Subsequent to completing site remediation activities, groundwater monitoring would occur on a quarterly basis for the first two years after completion, on a semiannual basis for the next two years, and then on an annual basis.

10.2 PRELIMINARY SCREENING OF ALTERNATIVES

This Subsection presents a preliminary screening of the developed remedial alternatives for soil. Consistent with DER-10, the developed medium-specific remedial alternatives are screened on the basis of whether they are technically implementable (Implementability) for the site and whether they can meet the RAOs (Effectiveness). Additionally, based upon available information, the relative cost of each remedial alternative is also evaluated. Those remedial alternatives which are not technically implementable, would not achieve RAOs, or would incur costs significantly higher than other remedial alternatives without providing greater effectiveness or implementability are not evaluated further in the FS.

Screening of remedial alternatives is presented in Table 10.1. The No Action alternative for soil is not evaluated according to the screening criteria; it passes through screening to be evaluated during the detailed analysis as a baseline for other retained soil remediation alternatives.

Alternative 2: No Further Action: Continued Multi-phase Extraction would be effective in the long-term at reducing the concentration of potential VOCs near existing extraction points. However, the MPE system contaminant recovery rates have decreased from a high of approximately 1.29 lbs per day at system startup to approximately 0.09 lbs per day currently, and results of on-going long-term monitoring and recent investigations indicate that portions of the source area are not being effectively targeted by the current system configuration. Alternative 2 does not effectively target these residual source areas and therefore has limited long-tem site-wide effectiveness for treating the sum of the source area. This alternative could be readily implemented as it is the current remediation system at the Site.

Alternative 3: Restoration to Pre-Disposal Conditions would be effective in the short term at reducing VOC concentration on site below the unrestricted use criteria. The excavation of contaminated site soils and in-situ chemical oxidation of overburden and bedrock groundwater would eliminate VOC impacts on site soil, groundwater and soil vapor. This alternative would be readily implemented pending the demolition and removal of the existing MPE system and the building at 1006 South Clinton Avenue. Also, the unknown depth of contaminants in bedrock groundwater would require further site characterization prior to performing in-situ chemical oxidation of bedrock groundwater. This alternative would have high costs to implement due to the relatively large quantities of soil to excavate and haul, and the potentially large quantities of chemical oxidant required to treat overburden and bedrock groundwater. Furthermore, treatment of overburden groundwater may be difficult due to the low hydraulic conductivity of the tight site soils, and treatment of bedrock groundwater may be difficult given the unknown infiltration characteristics between the overburden-bedrock interface layer and bedrock.

Alternative 4: Enhanced Multi-phase Extraction would be effective in the long-term at reducing VOC concentrations of the source area at current and new extraction points. Enhanced remediation would thereby limit potential impacts of the source area on groundwater and soil gas and indoor air. This alternative would be readily implemented with the installation of new extraction points

and the connection of these points to the existing system. The enhanced Multi-phase extraction system would have greater cost to operate and maintain than for Alternative 2 due to its increased size. However, gains in rates of contaminant removal from targeting residual source areas would likely outweigh associated cost increases by reducing the time needed to achieve RAOs.

Alternative 5: In-Situ Source Treatment – Chemical Oxidation with Soil Mixing would be effective in the short term at reducing VOC concentrations at the source area and would reduce the greatest impacts of VOCs on site soil, groundwater and soil vapor. With the source area effectively treated, natural attenuation would remediate the remaining VOCs in site groundwater. This alternative would require at least partial deconstruction of the existing MPE system's piping and well infrastructure. Also, shoring would be installed at the building at 1006 South Clinton Avenue, as treatment of source area contamination near and underneath that building would otherwise be further complicated by effects of soil destabilization near the building foundation from mechanical mixing.

Alternative 6: Discrete Soil Source Excavation and Off-Site Disposal and In-Situ Enhanced Biodegradation with Groundwater Monitoring would be effective in the short term at reducing VOC concentrations at the source area and in the long term at reducing residual VOC contamination of site soil and groundwater. Excavation of the most heavily contaminated source soils would greatly reduce VOC impacts on site soils, groundwater and soil vapor, while enhanced biodegradation of contaminants through injection of bioremediation amendments would reduce residual contamination of site soils, groundwater, and soil vapor. This alternative would be readily implemented pending the partial demolition the existing MPE system. Also, shoring would be installed at the building at 1006 South Clinton Avenue, as the presence of contamination near and underneath an adjacent building would otherwise impede portions of the source removal. Further, the tight glacial soils and till may inhibit injection of the bioremediation amendment.

Alternative 7: In-Situ Electrical Resistance Heating would eliminate contaminants in site soils and groundwater. This alternative would effectively volatilize VOC contamination, even in the tight soils of the contaminant source area. Implementation of this alternative would only be limited by the ability to install and operate the system.

All of the above remedial alternatives have been retained for detailed analysis in Section 11.0.

11.0 DETAILED ANALYSIS OF ALTERNATIVES

This section presents the detailed analyses of remedial action alternatives for soil, groundwater and soil vapor at the Site. The detailed analysis is intended to provide decision-makers with the relevant information with which to aid in selection of a site remedy. The detailed description of technologies or processes used for each alternative includes, where appropriate, a discussion of limitations, assumptions, and uncertainties for each component. The descriptions provide a conceptual design of each alternative and are intended to support alternatives-comparison and costestimation.

The detailed analysis of each alternative includes evaluation using the first seven evaluation criteria identified in DER-10 (NYSDEC, 2010) and §375-1.8(f) (NYS, 2006), as presented in the following paragraphs.

Compliance with Standards, Criteria, and Guidance. Compliance with SCGs considers whether or not a remedy will meet applicable environmental laws, regulations, standards, and guidance. SCGs for the Site are identified along with a discussion of whether or not the remedy will achieve compliance. For those SCGs that will not be met, a discussion and evaluation of subsequent impacts and whether waivers are necessary is presented. Chemical-specific SCGs were previously identified in this Report. Location- and Action-specific SCGs are identified for each alternative in this Section and in Table 11.1.

Overall Protection of Public Health and the Environment. This criterion is an evaluation of the remedy's ability to protect public health and the environment, assessing how risks posed through each existing or potential pathway of exposure are eliminated, reduced, or controlled through removal, treatment, engineering controls, or institutional controls. The remedy's ability to achieve each of the RAOs is evaluated.

Short-term Effectiveness. The potential short-term adverse impacts and risks of the remedy upon the community, the workers, and the environment during the construction and/or implementation are evaluated. A discussion of how the identified adverse impacts and health risks to the community or workers at the Site will be controlled, and the effectiveness of the controls, are

considered. Engineering controls that will be used to mitigate short term impacts (e.g., dust control measures) is provided. The length of time needed to achieve the remedial objectives is estimated.

Long-term Effectiveness and Permanence. This criterion evaluates the long-term effectiveness of the remedy after implementation. If wastes or treated residuals remain on-site after the selected remedy has been implemented, the following items are evaluated:

1. magnitude of remaining risk

2. adequacy of the engineering and institutional controls intended to limit the risk

3. reliability of these controls

4. ability of the remedy to continue to meet RAOs in the future.

Effectiveness of alternatives in protecting human health and the environment after RAOs is also evaluated. This includes an evaluation of the permanence of the alternative, the magnitude of residual risk, and the adequacy and reliability of controls required to manage wastes or residuals remaining at the Site.

Reduction of Toxicity, Mobility, or Volume with Treatment. The remedy's ability to reduce the toxicity, mobility or volume of site contamination is evaluated. Preference should be given to remedies that permanently and significantly reduce the toxicity, mobility, or volume of site wastes.

Implementability. The technical and administrative feasibility of implementing the remedy is evaluated. Technical feasibility includes the difficulties associated with remedy construction and the ability to monitor the remedy's effectiveness. For administrative feasibility, the availability of the necessary personnel and material is evaluated along with potential difficulties in obtaining specific operating approvals, access for construction, or other issues.

Land Use. The current, intended, and reasonably anticipated future land uses of the Site and its surroundings will be considered in the evaluation of remedial alternatives.

Cost. Capital and Operation, Maintenance and Monitoring costs are estimated for the remedy and presented on a present worth basis.

Community Acceptance. In a format that responds to all questions raised (i.e. responsiveness summary), public comment, concerns, and overall perception of the remedy are evaluated following the public meeting presenting the proposed remedial action plan. This criterion is not evaluated in this draft Report.

11.1 COST ANALYSIS PROCEDURES

Costs presented in this Report are intended to be within the target accuracy range of minus 30 to plus 50 percent of actual cost (USEPA, 1988). Costs are presented as a present worth and as a total cost for up to a 30-year period.

A summary of the costs for each alternative identifying capital and net present worth (NPW) costs are included in each alternative's cost description. Each cost estimate includes a present worth analysis to evaluate expenditures that occur over different time periods. The analysis discounts future costs to a NPW and allows the cost of remedial alternatives to be compared on an equal basis. NPW represents the amount of money that, if invested now and disbursed as needed, would be sufficient to cover costs associated with the remedial action over its planned life. A discount rate of 5 percent was used to prepare the cost estimates per NYSDEC guidance.

Consistent with USEPA FS cost estimating guidance (USEPA, 2000), the remedial alternative cost estimates include costs for project management, remedial design, construction management, technical support, and scope contingency.

Project management includes planning and reporting, community relations support during construction or O&M, bid or contract administration, permitting (not already provided by the construction or O&M contractor), and legal services outside of institutional controls.

Remedial design applies to capital cost and includes services to design the remedial action. Activities that are part of remedial design include pre-design collection and analysis of field data, engineering survey for design, treatability study/pilot-scale testing, and the various design components such as design analysis, plans, specifications, cost estimate, and schedule.

Construction management applies to capital cost and includes services to manage construction or installation of the remedial action, except any similar services provided as part of regular construction activities. Activities include review of submittals, design modifications, construction observation or oversight, engineering survey for construction, preparation of O&M manual, documentation of quality control/quality assurance, and record drawings.

Technical support during O&M includes services to monitor, evaluate, and report progress of remedial action. This includes oversight of O&M activities, update of O&M manual, and progress reporting and is generally between 10 percent and 20 percent of total annual O&M costs depending on complexity of the remedial action (USEPA, 2000).

Scope contingency represents project risks associated with the feasibility-level of design presented in this Report. This type of contingency represents costs, unforeseeable at the time of estimate preparation, which are likely to become known as the remedial design proceeds. Scope contingency ranges from 10 to 25 percent, with higher values appropriate for alternatives with greater levels of cost growth potential (USEPA, 2000).

Project management, remedial design, and construction management costs presented in this Report are based upon the following matrix presented in the USEPA FS cost estimating guidance (USEPA, 2000).

Professional and Technical Costs as Percentage of Direct Costs					
Indirect Cost	<\$100K (%)	\$100K-	\$500K-\$2M	\$2M-\$10M	>\$10M (%)
		\$500K (%)	(%)	(%)	
Project	10	8	6	5	5
Management					
Remedial	20	15	12	8	6
Design					
Construction	15	10	8	6	6
Management					

All of the remedial alternatives developed in Section 10.0 were retained for detailed analysis.

The following subsections present a conceptual design and cost estimate for each of these remedial alternatives and a discussion of each alternative relative to the evaluation criteria as set forth in NYCRR Part 375 (NYS, 2006).

11.2 ALTERNATIVE 1: NO ACTION

This alternative would not include any actions to address soil contamination at the Site.

Compliance with Standards, Criteria, and Guidance. This alternative would not meet chemical-specific SCGs because it would not address soil contamination in excess of the 6 NYCRR Part 375 Remedial Program SCOs (NYS, 2006) and groundwater contamination in excess of 6 NYCRR Parts 700-706 Water Quality Standards (NYSDEC, 1998).

Overall Protection of Public Health and the Environment. This remedial alternative would not protect public health and the environment through eliminating, reducing, or controlling existing or potential exposure pathways through removal, treatment, engineering controls, or institutional controls. This remedial alternative would not achieve the RAOs for soil, groundwater or soil vapor.

Short-term Effectiveness. Because no actions would be taken, this alternative would not result in short-term adverse impacts and risks to the community, site workers, and the environment.

Long-term Effectiveness and Permanence. This alternative does not include actions to address soil contamination at the Site and its potential impacts to indoor air and groundwater. This remedy may meet RAOs associated with VOC soil, groundwater and soil vapor contamination in the future due to natural attenuation processes, although the time period required to meet RAOs is likely significant.

Reduction of Toxicity, Mobility, or Volume with Treatment. This alternative would not result in the reduction of the toxicity, mobility, or volume of VOC soil or groundwater contamination through treatment.

Implementability. No actions would be conducted, therefore there are no technical difficulties associated with this alternative. However, obtaining regulatory approval of this alternative would be difficult.

Land Use. This alternative does not include actions to remove or treat soil or groundwater contamination in excess of the Protection of Groundwater SCOs, and would therefore not be compatible with current and foreseeable future land use.

Cost. There are no costs associated with Alternative 1.

11.3 ALTERNATIVE 2: CONTINUED MULTI-PHASE EXTRACTION

Alternative 2 consists of the following components:

- Institutional controls
- Continued operation, maintenance, and monitoring of the existing MPE system.

Institutional Controls. Institutional controls would be implemented to restrict future use of the Site. Institutional controls would likely include implementation of land-use restrictions restricting subsurface activity and prohibiting changes in zoning of the Site (e.g., change from commercial to residential use). Land-use restrictions would be implemented through legal instruments such as deeds and/or water well permitting processes.

Continued Operation, Maintenance, and Monitoring of the Existing MPE System. This alternative will include no changes to the current operation, maintenance, and monitoring of the MPE system. The existing MPE system is described in detail in Subsection 10.1.2. Operation of the existing MPE system includes monthly site visits, during which flow readings and water levels from the eighteen MPE and three groundwater extraction wells are collected, and periodic or asneeded maintenance.

Quarterly long-term monitoring consists of the collection of groundwater samples from thirty-six monitoring, groundwater extraction, and MPE wells, and collection of vapor samples from twenty locations at the Site for VOC off-site laboratory analysis. Quarterly reports are prepared detailing the results of the quarterly long-term monitoring and the monthly site visits and monitoring.

Compliance with Standards, Criteria, and Guidance. This alternative includes continued operation of the existing MPE system which was designed and constructed to treat soil contamination at the Site. Operation of the existing MPE System to date, has resulted in the

removal of approximately 290 lbs. of VOCs, including the primary COCs, TCE and PCE, and the MPE System continues to provide reduction of VOC soil contamination at the Site. However, available data indicates that as of July 2008 PCE concentrations in site soil remain as high as 310 mg/Kg, and residual source areas exist that are not effectively being treated by the existing network of MPE wells. Therefore, this alternative likely does not comply with chemical-specific SCGs. The operation, maintenance, and monitoring of the existing MPE System is conducted in accordance with applicable action-specific SCGs, which include "Air Guide 1 – Guidelines for the Control of Air Toxic Ambient Air Contaminants". There are no location-specific SCGs that apply to this alternative.

Overall Protection of Public Health and the Environment. This remedial alternative would protect public health and the environment through reducing and controlling existing or potential exposure pathways through institutional controls and the operation of the existing MPE System to remove soil contamination at the Site. However, as previously stated, the current operation of the existing MPE System may not be capable of treating all soil contamination present at the Site in excess of the SCOs.

Short-term Effectiveness. This alternative does not include construction or other type of activities at the Site that would result in potential short-term adverse impacts and risks to the community, workers, or the environment during implementation.

Long-term Effectiveness and Permanence. Currently, the MPE System is reducing the VOC soil contamination at the Site as evidenced by on-going monitoring of performance (i.e., contaminant mass is being removed). However, evaluation of contaminant mass removal rates suggest that the contaminant mass removal rate of the current system layout has leveled off since August 2007 – which may indicate that the existing MPE system may not be capable of removing the remaining contamination at the Site.

Reduction of Toxicity, Mobility, or Volume with Treatment. This alternative includes continued operation of the existing MPE System which results in the reduction of contaminant volume in the subsurface. Reduction of toxicity, mobility, or volume through treatment would not occur because this alternative includes extraction of VOC soil contamination from the subsurface and direct discharge, without treatment, to the atmosphere.

Implementability. This alternative includes continued operation, maintenance, and monitoring of the existing MPE System, and therefore would not be technically difficult to implement. However, because limitations of the existing MPE System relative to achieving RAOs have been identified, obtaining regulatory approval of this alternative may be difficult.

Land Use. This alternative includes continued operation, maintenance, and monitoring of the existing MPE System. If RAOs are achieved, this alternative would be compatible with existing and foreseeable future land use. However, in the short-term, the presence of the MPE System and associated infrastructure at the Site would limit future use.

Cost. The capital cost of Alternative 2 is \$37,000, for the implemenation of institutional controls. Annual operation, maintenance, and monitoring costs total approximately \$1,559,000. The NPW of this Alternative is \$1,596,000. A summary of the costs associated with this alternative is presented in Table 11.2. These costs assume 10 years of further operation until contaminant mass removal trends become asymptotic and the treatment system is no longer cost-effective to operate. Detailed cost backup is provided in Appendix H.

11.4 ALTERNATIVE 3: RESTORATION TO PRE-DISPOSAL CONDITIONS

Alternative 3 consists of the following components:

- pre-design investigation
- mobilization and temporary facilities and controls
- demolition of the existing MPE system and paved or concrete surface covers
- demolition of the building at 1006 South Clinton Avenue
- shoring of the buildings at 1018 South Clinton Avenue and 354 Benton Street
- excavation and off-site treatment or disposal or both of on-site soils, including all soil to bedrock within the extents of the property east of the historic former site building's western extents and soil removals at 1006 S. Clinton Avenue and 491-493 Caroline Street
- in-situ chemical oxidation of bedrock groundwater
- site restoration, including repaying of the lot next to the building at 1018 South Clinton Avenue

Pre-Design Investigations and Studies. Pre-design investigations and/or studies would be conducted to support the remedial design, and would include, but not be limited to:

• subsurface soil sampling and analysis to provide characterization for treatment/disposal purposes.

Mobilization and Temporary Facilities and Controls. Site preparation, mobilization, and temporary facilities and controls would include activities required to prepare the Site for remediation, including, but not limited to:

- delivery and setup of site trailers
- installation of temporary utilities
- construction of wastewater treatment facilities and equipment decontamination facilities
- implementation of erosion and sediment control measures
- survey layout of the various work extents

Demolition of the Existing MPE System and Paved or Concrete Surface Covers. Prior to excavating contaminated site soils, the existing MPE system would be demolished, along with pavement and concrete surface covers overlying the excavation area. The existing treatment trailer may be retained on-site for treatment of contaminated groundwater generated during dewatering activities, depending on a pre-design analysis of the system's treatment capacity. Also, the existing one story concrete block building at 1006 South Clinton Avenue would be demolished to allow for excavation of contaminated soils underneath the building footprint.

Excavation and Off-Site Treatment or Disposal or Both of Site Soils. On-site soils would be excavated and transported off-site for treatment or disposal both. This alternative assumes that wastewater generated as a result of excavation would be treated and discharged on-site; this alternative also assumes that site space may not be available to dewater soils prior to transport, and hence an absorbent has been included in the cost estimate for excavated saturated zone soils. This alternative also assumes that the approximate excavation area would include the extents of the former site building (see Figure 1.2), the site soils remaining to the east at 1012 South Clinton Avenue and 350 Benton Street, and the contaminated soil present both underneath the building at 1006 South Clinton Avenue to the northwest and on the 491-493 Caroline Street property to the north. The excavation would be shored along its perimeter both for space considerations on site and to protect and support adjacent buildings. Dewatering throughout excavation will support the

identification of fractures in the bedrock surface for infiltration of chemical oxidant into the bedrock; dewatering will be discontinued once chemical oxidation activities commence.

Approximately 5,453 cubic yards of soil would be excavated. Per DER-10, 9 excavation floor samples would be taken (at a rate of 1 sample per 900 square feet); no side wall sampling would be taken due to the use of sheet piling.

In-Situ Chemical Oxidation of Bedrock Groundwater. Assuming the pre-design investigation activities do not reveal high concentrations of VOCs deep in bedrock groundwater, chemical oxidant will be administered to the excavation and allowed to infiltrate into the bedrock. It is assumed that approximately 72,916 pounds of oxidant would be added to the excavation to treat groundwater contamination in bedrock beneath the site as well as residual bedrock groundwater contamination outside of the excavation limits. It is assumed that contaminant concentrations in bedrock may be similar to concentrations shown in Figure 4.3 and may extend to a depth of 10 feet within bedrock; the vertical extents of bedrock contamination would need to be investigated during pre-design investigations. A permanganate natural oxidant demand (PNOD) of 2 grams/kg has been assumed for site soils and backfill (http://www.ncbi.nlm.nih.gov/pubmed/17140696).

Site Restoration. Site restoration would include backfilling, compacting, and grading the excavation area, and paving the excavation extent and the driveway to the east of the building at 1018 South Clinton Avenue.

11.4.1 Detailed Evaluation of Alternative 3

Compliance with Standards, Criteria, and Guidance. Alternative 3 would meet Chemical-specific SCGs for soil and groundwater by removing soil contamination on-site and at adjacent properties in excess of the Protection of Groundwater SCGs, extracting overburden and interface groundwater in excess of water quality standards and treating bedrock groundwater in excess of water quality standards. Implementation of excavation, transportation, and treatment and/or disposal would be implemented in accordance with Action- and Location-specific SCGs.

Overall Protection of Public Health and the Environment. Alternative 3 would protect public health and the environment through eliminating both the source of soil, groundwater and soil vapor

contamination and residual contamination. Existing engineering controls are in place to address the existing soil vapor to indoor air pathway adjacent to the Site. This remedial action would achieve the RAOs for soil, on-site groundwater, and soil vapor in the short-term and reduce the time to achieve RAOs for potentially contaminated, downgradient, and off-site groundwater and soil vapor.

Short-term Effectiveness. Alternative 3 includes excavation and off-site treatment or disposal or both of the on-site soils and groundwater and application of chemical oxidant to the open excavation. Short-term adverse impacts and risks to the community, site workers, and the environment are possible during the excavation and transportation of soils on-site and at adjacent properties. However, these risks could be controlled through coordination and communication, erosion, sedimentation, and dust control, and a comprehensive contractor health and safety program.

Long-term Effectiveness and Permanence. Alternative 3 would provide permanent reduction of site-related soil contamination through the excavation and off-site treatment and disposal of soils on-site and at adjacent properties. This alternative would rely upon natural attenuation to degrade downgradient groundwater VOC contamination and potential soil vapor contamination. The time required for Alternative 3 to achieve remediation goals for downgradient groundwater would be significant.

Reduction of Toxicity, Mobility, or Volume with Treatment. Alternative 3 would provide reduction in the mobility of VOC soil contamination, but would only provide reduction in toxicity and volume if off-site treatment is conducted prior to disposal. Removal of soils on-site and at adjacent properties, extraction of source area groundwater and in-situ treatment of bedrock groundwater would result in long-term reduction in the toxicity, mobility, and volume of groundwater contamination migrating off site.

Implementability. Implementation of Alternative 3 would be technically difficult due to the presence of source area contamination beneath an adjacent building, the limited site area available to support remediation activities, the relatively shallow water table which would require excavation dewatering, and the difficulty in treating bedrock groundwater in-situ through infiltration.

Land Use. The current and reasonably anticipated future land use of the Site is for commercial and residential purposes. This alternative would be protective of potential commercial workers conducting subsurface work at the Site.

Cost. The capital cost estimate for Alternative 3 is \$4,125,000. The NPW of this Alternative is estimated to be \$4,125,000. A summary of the costs associated with this alternative is presented in Table 11.3. Detailed cost analysis backup is provided in Appendix H.

11.5 ALTERNATIVE 4: ENHANCED MULTI-PHASE EXTRACTION

Alternative 4 consists of the following components:

- pre-design investigation
- enhancement of the existing MPE system
- institutional controls
- operation, maintenance, and monitoring of the enhanced MPE system.

Pre-Design Investigation. In support of the enhancement of the existing MPE system, a predesign investigation is proposed. The pre-design investigation would consist of the installation of small-diameter vacuum monitoring points to identify the radius of influence of existing MPE wells and monitor future performance. It is assumed that six small-diameter points would be installed using geoprobe, or equivalent, technology. The radius of influence would be measured through the collection of pressure readings at each point using a hand-held manometer or equivalent during the operation of the existing MPE System. Additional pre-design investigations and/or studies would be conducted as described for Alternative 3. Information collected during the pre-design activities would be used to refine the design of the MPE System enhancements.

Enhancement of the Existing MPE System. Alternative 4 includes installation of up to 20 additional multi-phase extraction wells to target subsurface contamination not treated by the current extraction point layout (refer to Figure 11.1 for proposed extraction point locations). Construction activities associated with enhancement of the existing system would include installation of the additional MPE wells, including associated pneumatic pumps, piping and conduit, valves, gauges and pipe trenches. Through reducing or eliminating operation of existing MPE points which contribute the least contaminant recovery, it is assumed that the treatment plant

capacity will not have to be expanded. Further, it is assumed that any increase in VOC soil contaminant removal would not result in concentration of VOCs in the effluent air discharge that would require re-institution of vapor treatment.

Institutional Controls. Institutional controls would be implemented to restrict future use of the Site until remediation objectives are achieved, as described for Alternative 2.

Operation, Maintenance, and Monitoring of the Enhanced MPE System. Operation, maintenance, and monitoring of the enhanced MPE System would be conducted similar to Alternative 2. The additional MPE points will be added to the existing network of locations that are sampled on a quarterly basis; otherwise long-term monitoring and reporting would be similar to that described for Alternative 2. It has been assumed for costing purposes that labor hours would increase 25 percent, electrical usage 10 percent, and chemical usage 25 percent as a result of the addition of twenty additional MPE wells (refer to Appendix H).

11.5.1 Detailed Evaluation of Alternative 4

Compliance with Standards, Criteria, and Guidance. This alternative includes enhancement and subsequent operation of the existing MPE System to treat the remaining soil contamination at the Site in excess of the SCOs. The operation, maintenance, and monitoring of the MPE System would continue to be conducted in accordance with applicable action-specific SCGs, which include "Air Guide 1 – Guidelines for the Control of Air Toxic Ambient Air Contaminants". There are no location-specific SCGs which apply to this alternative.

Overall Protection of Public Health and the Environment. This remedial alternative would protect public health and the environment through reducing and controlling existing or potential exposure pathways through institutional controls and operation of an enhanced MPE System to remove soil contamination remaining at the Site.

Short-term Effectiveness. This alternative includes construction activities associated with the enhancement of the existing MPE System which would result in potential short-term risks to the community, workers, and the environment. These risks would be addressed through coordination and communication with affected property owner(s) and preparation and implementation of a

construction health and safety plan. It is estimated that this alternative could be fully implemented in less than one year.

Long-Term Effectiveness and Permanence. This alternative includes enhancement of the existing system to treat soil contamination that the existing MPE system is not capable of removing. This alternative would be expected to provide long-term effectiveness and permanence through the removal of VOC soil contamination in excess of the SCOs.

Reduction of Toxicity, Mobility, or Volume with Treatment. This alternative includes operation of an enhanced MPE System at the Site, resulting in the reduction of contaminant volume in the subsurface. Reduction in toxicity, mobility, or volume through treatment would not occur because this alternative includes extraction of VOC soil contamination from the subsurface and direct discharge, without treatment, to the atmosphere.

Implementability. Technically, this alternative would not be difficult to implement. Because this alternative would be designed and implemented to treat residual soil contamination at the Site, obtaining regulatory approval of this alternative is not anticipated to be difficult.

Land Use. This alternative includes enhanced operation, maintenance, and monitoring of the existing MPE System. If RAOs are achieved (in approximately three years after system start-up), this alternative would be compatible with existing and foreseeable future land use. However, in the short-term, the presence of the MPE System and associated infrastructure at the Site would limit future use.

Cost. The capital cost of Alternative 4 is \$177,000 to design and build the expanded network of extraction points. Annual operation, maintenance, and monitoring costs total approximately \$1,235,000. The NPW of this Alternative is \$1,412,000. A summary of the costs associated with this alternative is presented in Table 11.4. These costs assume 5 years of further operation until mass removal trends become asymptotic and the treatment system is no longer cost-effective to operate. Detailed cost analysis backup is provided in Appendix H.

11.6 ALTERNATIVE 5: IN-SITU SOURCE TREATMENT - CHEMICAL OXIDATION WITH SOIL MIXING

Alternative 5 consists of the following components:

- pre-design investigation
- mobilization and temporary facilities and controls
- demolition of the existing MPE system and paved or concrete surface covers
- shoring installation at the building at 1006 South Clinton Avenue
- in-situ enhanced soil mixing
- site restoration
- institutional controls
- long-term monitoring
- periodic institutional control inspections and reporting

Pre-Design Investigations and Studies. Pre-design investigations and/or studies as described for Alternative 3 would be conducted to support the remedial design and would also include:

- ground-penetrating radar survey in support of subsurface utility/obstruction clearance of the proposed treatment area
- treatability study for proposed soil mixing amendments and/or reagents

Mobilization and Temporary Facilities and Controls. Site preparation, mobilization, and temporary facilities and controls would include activities required to prepare the Site for remediation, including, but not limited to:

- delivery and setup of site trailers
- installation of temporary utilities
- construction of wastewater treatment facilities and equipment decontamination facilities
- implementation of erosion and sediment control measures
- survey layout of the various work extents

Demolition of the Existing MPE System and Paved or Concrete Surface Covers. Prior to excavating contaminated site soils, the existing MPE system on site would be partially demolished and demobilized, along with pavement and concrete surface covers overlying the excavation area..

In-situ Enhanced Soil Mixing. Implementation of this alternative would include mechanical mixing of the on-site soils with potassium permanganate to provide removal of VOC source area soil contamination. It is assumed that due to the vertical limitation of 15 feet for soil mixing equipment that the top 5 feet of the soil mixing area would be excavated and stockpiled for reuse as backfill. Insufficient area is available on site to store the backfill, and it is assumed that the backfill would be stored off-site. It is assumed that the abutting faces of the building at 1006 South Clinton Avenue would be shored with a sheet piling system to protect the building during the mixing activities. It is assumed that approximately 81,439 pounds of oxidant would be added to the treatment area soils, assumed to be comparable to the limits of excavation in Alternative 3, excluding the soils underneath the building at 1006 South Clinton Avenue and at the 491-493 Caroline Street property. It is assumed that the bulk density of the soil is 125 pounds per cubic foot, **PNOD** and of 2g/kg been assumed for site soils and backfill a has (http://www.ncbi.nlm.nih.gov/pubmed/17140696).

Site Restoration. Site restoration would include paving over the areal extent of treatment...

Institutional Controls. Institutional controls would be implemented similar to Alternative 2.

Long-term Monitoring. Long-term monitoring would consist of the sampling and analysis of both on-site and off-site groundwater monitoring wells for VOCs. It is assumed that long-term monitoring would be conducted on a periodic basis for thirty years and that up to twenty groundwater monitoring wells would be included in the program.

Periodic Institutional Control Inspections and Reporting. Periodic inspections would be conducted to ensure deed and land-use restrictions are being enforced. A report would be prepared documenting the inspection and the conditions observed.

11.6.1 Detailed Evaluation of Alternative 5

Compliance with Standards, Criteria, and Guidance. Alternative 5 would meet Chemical-specific SCGs for soil by treatment of soil contamination in excess of the Protection of Groundwater SCGs and would also treat groundwater in excess of AWQS both in and immediately adjacent to the source area. However, unless the vertical extents of soil contamination in the

overburden/interface zone and horizontal extents east and west of the site are determined, RAOs for the site will not be achieved. This alternative would rely upon natural attenuation to meet RAOs for groundwater. Implementation of soil mixing, as well as institutional controls, would be implemented in accordance with Action- and Location-specific SCGs.

Overall Protection of Public Health and the Environment. Alternative 5 would protect public health and the environment through reducing the source of soil, groundwater and soil vapor contamination, and the implementation of institutional controls. Existing engineering controls are in place to address the existing soil vapor to indoor air pathway adjacent to the Site. This alternative would achieve the RAOs for soil in the short-term and reduce the time to achieve RAOs for downgradient groundwater and soil vapor.

Short-term Effectiveness. Alternative 5 includes in-situ mixing and treatment of the on-site source area soils using heavy equipment. Short-term adverse impacts and risks to the community, site workers, and the environment are possible during the course of the work; however, these risks could be controlled through coordination and communication, erosion, sedimentation, and dust control, and a comprehensive contractor health and safety program.

Long-term Effectiveness and Permanence. Alternative 5 would provide permanent reduction of site-related soil contamination through in-situ mixing and treatment of source area soils. This alternative would rely upon existing engineering controls to address downgradient soil vapor contamination and natural attenuation to address groundwater VOC contamination contributing to the downgradient groundwater and soil vapor contamination

Reduction of Toxicity, Mobility, or Volume with Treatment. Alternative 5 would provide reduction in the toxicity, mobility, or volume of VOC soil and groundwater contamination through in-situ treatment of source area soils and groundwater.

Implementability. Implementation of Alternative 5 would require shoring installation at the adjacent building at 1006 South Clinton Avenue in order to treat contaminated soil next to the building. Implementation may be technically difficult due to the small site area, which may require a phased approach to mixing and treatment. Further, the shallow water table may impede soil

mixing by reducing the rate of liquid chemical oxidant that can be injected into the soil's pore volume.

Land Use. The current and reasonably anticipated future land use of the Site is for commercial and residential purposes. This alternative would be protective of potential commercial workers conducting subsurface work at the Site.

Cost. The capital cost estimate for Alternative 5 is \$1,122,000. The NPW of this Alternative is estimated to be \$1,373,000. A summary of the costs associated with this alternative is presented in Table 11.5. Detailed cost analysis backup is provided in Appendix H.

11.7 ALTERNATIVE 6: DISCRETE SOIL SOURCE EXCAVATION AND OFF-SITE DISPOSAL AND IN-SITU ENHANCED BIODEGRADATION WITH GROUNDWATER MONITORING

Alternative 6 consists of the following components:

- pre-design investigation
- mobilization and temporary facilities and controls
- partial demolition of the existing MPE system and paved or concrete surface covers
- shoring installation at the building at 1006 South Clinton Avenue
- excavation and off-site treatment or disposal or both of source area soils
- in-situ enhanced biodegradation
- site restoration
- institutional controls
- long term monitoring
- periodic institutional control inspections and reporting

Pre-Design Investigations and Studies. Pre-design investigations and/or studies would be conducted to support the remedial design, and would include, but not be limited to:

- subsurface soil sampling and analysis to refine the extent of excavation and provide characterization for treatment/disposal purposes.
- installation of additional overburden/interface groundwater monitoring wells east and west of the Site property to evaluate potential groundwater contamination in these areas.

- additional direct push soil samples to better delineate the extent of soil contamination above SCOs for the protection of groundwater and to evaluate the potential for additional VOC hot spots. These would be installed outside the existing MPE system to the east and west, as well as deeper borings to bedrock within the suspected source areas.
- field pilot-scale and laboratory bench-scale testing in support of the design and implementation of in-situ enhanced biodegradation

Laboratory and field studies would be conducted to determine the appropriate amendment type, amendment dosage, and approach for the full-scale program, and to evaluate whether the current populations of micro-organisms in the aquifer are capable of degrading the COCs. In-situ enhanced biodegradation involves inoculation of micro-organisms (i.e., fungi or bacteria, and other microbes) and/or addition of carbon sources (amendments) to the subsurface for use by indigenous micro-organisms capable of degrading organic contaminants found in soil and/or groundwater. Carbon sources (organic substrates) for enhanced biodegradation include, but are not limited to:

- sodium lactate
- propionate/butyrate
- methanol
- ethanol
- emulsified vegetable oil
- chitin
- the Regenesis product Hydrogen Release CompoundTM (HRCTM), a slow release lactate
- molasses.

Unit costs for carbon source materials vary widely; the required quantities and delivery methods for implementation also vary widely and are best determined through site-specific laboratory and field studies. For purposes of the following FS conceptual design, it has been assumed that in-situ enhanced biodegradation would be conducted using the Regenesis product HRCTM. However, this is not meant to preclude the testing or use of other reagents. In some cases, carbon source amendments are accompanied by bacteria inoculations when indigenous bacteria populations are insufficient.

Mobilization and Temporary Facilities and Controls. Site preparation, mobilization, and temporary facilities and controls require activities to prepare the Site for remediation and would include, but not be limited to:

- delivery and setup of site trailers
- installation of temporary utilities
- construction of wastewater treatment facilities and equipment decontamination facilities
- implementation of erosion and sediment control measures
- site clearing and grubbing
- survey layout of the various work extents

Partial Demolition of the Existing MPE System and Paved or Concrete Surface Covers. Prior to excavating contaminated site soils, the existing MPE system would be partially demolished, with multiphase extraction wells and piping within the extents of excavation to be demolished and the treatment trailer to be at least temporarily if not permanently relocated on or off-site. Also, pavement and concrete surface covers overlying the excavation area would be demolished. The treatment trailer may be retained on-site for treatment of contaminated groundwater generated during dewatering activities, depending on the outcome of a pre-design analysis of the system's treatment capacity.

Excavation and Off-Site Treatment or Disposal or Both of Source Area Soils. Contaminated soils containing VOCs at concentrations greater than or equal to 100 mg/kg (as shown in Figure 4.1) would be excavated and transported off-site for treatment or disposal both. This alternative assumes that wastewater generated as a result of excavation would be treated and discharged onsite; this alternative also assumes that site space may not be available to dewater soils prior to transport, and hence an absorbent has been included in the cost estimate for excavated saturated zone soils. Vadose zone soil at various depths is anticipated to be uncontaminated by site-specific COCs, especially where previous soil removal actions occurred (see Figure 1.2 and Section 1.3.3), and is assumed to be suitable for use as backfill. However, limited site space may prevent stockpiling these soils for potential reuse as backfill, and hence this alternative also assumes that a stockpiling location could be found near the site. This alternative also assumes that soil in the overburden/interface layer, which has not been fully defined vertically, will be removed to bedrock. This alternative also assumes that the building adjacent to the source area at 1006 South Clinton Avenue will have shoring installed to protect the structure from damage during excavation

of nearby soil. Approximately 1,463 cubic yards of soil would be excavated. It is assumed that approximately 585 cubic yards would be suitable for reuse as backfill, and 878 cubic yards would be removed for off-site treatment and/or disposal. Per DER-10, 3 excavation floor samples would be taken (at a rate of 1 sample per 900 square feet); no side wall sampling would be taken due to the use of sheet piling.

In-situ Enhanced Biodegradation. In-situ enhanced biodegradation would be implemented to provide treatment of site-related groundwater contamination migrating from the Site. This alternative assumes for FS costing purposes that implementation would involve the injection of HRCTM 3DMe into temporary injection points on-site upgradient of the excavation areas and where total VOC concentrations exceed 5 ppm. HRC 3DMe would be applied directly to the excavation backfill to accelerate degradation of potential upgradient contamination as it passes through the excavation area. For the conceptual design, it is assumed that average hydraulic gradient would be the average gradient of the overburden and overburden-bedrock interface zones, 0.013 ft/ft. Concentrations of PCE and TCE were based on the average concentrations detected during MACTEC's RI activities in 2009 and sampling of the MPE wells in 2010, while concentrations of cis-1,2-DCE and VC were based on the average concentrations detected during MACTEC's RI activities in 2009. Concentrations of competing electron acceptors were based on the average of detections from MACTEC's RI activities in 2009.

Pre-design field and laboratory testing would be used to refine the full-scale injection design. However, the conceptual injection design includes injection of a total of 540 pounds of HRCTM at 6 injection locations spaced 15 feet on-center across the groundwater plume upgradient from the excavations within the 5 ppm isoconcentration line as shown on Figure 4.3. This approach includes a limited number of injections, although it is anticipated that the active ingredients added both in the excavation and the injection locations will travel downgradient with groundwater flow and accelerate degradation of on-site and off-site contamination. Injection of the amendment will occur from the water table depth to the depth of bedrock, approximately 20 feet. 58,748 pounds of amendment would be applied to the backfill in order to accelerate degradation of upgradient contamination as it migrates downgradient. Supporting calculations, including references and assumptions for the input parameters used, are provided in Appendix H.

MACTEC Engineering and Consulting, P.C. Project No. 3612082107

Site Restoration. Site restoration would include backfilling, compacting, and grading the excavation area, and paving the excavation extent.

Institutional Controls. Institutional controls would be implemented similar to Alternative 2.

Long-term Monitoring. Long-term monitoring would be similar to Alternative 5.

Periodic Institutional Control Inspections and Reporting. Periodic inspections would be conducted to ensure deed and land-use restrictions are being enforced. A report would be prepared documenting the inspection and the conditions observed.

11.7.1 Detailed Evaluation of Alternative 6

Compliance with Standards, Criteria, and Guidance. Alternative 6 would not meet Chemical-specific SCGs in the short term for soil and groundwater. However, by removing the source of soil and groundwater contamination and injecting enhanced biodegradation amendments, this alternative would satisfy Chemical-specific SCGs in the long term for soil and groundwater. Implementation of excavation, transportation, and treatment and/or disposal would be implemented in accordance with Action- and Location-specific SCGs.

Overall Protection of Public Health and the Environment. Alternative 6 would protect public health and the environment through eliminating a large source of soil, groundwater and soil vapor contamination. Existing engineering controls are in place to address the existing soil vapor to indoor air pathway adjacent to the Site. This alternative would achieve the RAOs for soil, on-site groundwater and soil vapor in the long-term.

Short-term Effectiveness. Alternative 6 includes excavation and off-site treatment or disposal or both of on-site source area soils. Short-term adverse impacts and risks to the community, site workers, and the environment are possible during the excavation and transportation of source areas soils. However, these risks could be controlled through coordination and communication, erosion, sedimentation, and dust control, and a comprehensive contractor health and safety program.

Long-term Effectiveness and Permanence. Alternative 6 would provide permanent reduction of site-related soil contamination through the excavation and off-site treatment and disposal of soils exceeding SCGs. This alternative would rely upon enhanced biodegradation to treat other on-site saturated zone soils and groundwater contamination and natural attenuation to address downgradient groundwater VOC contamination and potential soil vapor contamination. The time required for Alternative 6 to achieve RAOs for unexcavated soil and groundwater would be significant.

Reduction of Toxicity, Mobility, or Volume with Treatment. The excavation component of Alternative 6 would reduce the mobility of VOC soil contamination, but would only provide reduction in toxicity and volume if off-site treatment is conducted prior to disposal. Removal of the source area soils and enhanced biodegradation of VOCs in soil and groundwater would result in long-term reduction in the toxicity, mobility, and volume of groundwater contamination migrating off site.

Implementability. Implementation of Alternative 6 would require shoring installation at the adjacent building at 1006 South Clinton Avenue in order to excavate contaminated soil next to the building. Alternative 6 would be technically difficult due to the limited site area available to support excavation activities and the relatively shallow water table which would require excavation dewatering. Also, the tight glacial soils may inhibit injection and distribution of the enhanced biodegradation amendment.

Land Use. The current and reasonably anticipated future land use of the Site is for commercial and residential purposes. This alternative would be protective of potential commercial workers conducting subsurface work at the Site.

Cost. The capital cost estimate for Alternative 6 is \$2,100,000. The NPW of this Alternative is estimated to be \$2,360,000. A summary of the costs associated with this alternative is presented in Table 11.6. Detailed cost analysis backup is provided in Appendix H.

11.8 ALTERNATIVE 7: ELECTRICAL RESISTANCE HEATING

Alternative 7 consists of the following components:

- pre-design investigation
- mobilization and temporary facilities and controls
- full-scale in-situ electrical resistance heating system
- site restoration
- long-term monitoring

Pre-Design Investigations and Studies. Pre-design investigations and/or studies would be conducted to support the remedial design, and would include, but not be limited to:

- subsurface soil sampling and analysis to refine the extent of the treatment area
- ground-penetrating radar survey in support of subsurface utility/obstruction clearance of the proposed treatment area
- Additional direct push soil samples to better delineate the extent of soil contamination above SCOs for the protection of groundwater and to evaluate the potential for additional VOC hot spots. These would be installed outside the existing MPE system to the east and west, as well as deeper borings to bedrock within the suspected source areas.

Mobilization and Temporary Facilities and Controls. Site preparation, mobilization, and temporary facilities and controls would include activities required to prepare the Site for remediation, including, but not limited to:

- delivery and setup of site trailers
- installation of temporary utilities
- survey layout of the various work extents

Electrical Resistance Heating. Alternative 7 includes implementation of in-situ electrical resistance heating to treat on-site VOC soil and groundwater contamination. This alternative and the associated conceptual cost estimate are based in part upon information provided by Thermal Remediation Services, Inc. (http://www.thermalrs.com/). The provided estimated cost includes mobilization/demobilization, design, work plans, permits, drilling, soil disposal, electrode connection and usage, electricity, vapor recovery and treatment, operations, confirmatory sampling, well abandonment, and an additional 10% of total project cost to reflect guaranteed fixed pricing for the remediation (Michelle Nanista, personal communication, December 23, 2010). Guaranteed

MACTEC Engineering and Consulting, P.C. Project No. 3612082107

fixed price remediation was assumed for the cost estimate because it would ensure the site cleanup objectives are met. Implementation of this alternative would consist of the installation of 39 12-inch diameter electrodes installed throughout the source area on 14.5-foot spacing and 39 shallow horizontal vapor extraction wells for vapor recovery funds third-party certified carbon offset projects such as renewable energy, energy efficiency, and reforestation. Also, electricity consumed by electrical resistance heating may be purchased from cleaner or renewable sources through NYS's Green Power Program.

Site Restoration. Site restoration would include removing the electrodes and vapor extraction wells.

Long-term Monitoring. Long-term monitoring would be similar to Alternative 5.

11.8.1 Detailed Evaluation of Alternative 7

Compliance with Standards, Criteria, and Guidance. Alternative 7 would meet Chemical-specific SCGs for soil by treatment of soil and groundwater contamination in excess of SCGs but would rely upon natural attenuation to meet RAOs for groundwater outside the treatment area. Implementation of electrical resistance heating as well as institutional controls would be implemented in accordance with Action- and Location-specific SCGs.

Overall Protection of Public Health and the Environment. Alternative 7 would protect public health and the environment through reducing the source of groundwater and soil vapor contamination and through the implementation of institutional controls. Existing engineering controls are in place to address the existing soil vapor to indoor air pathway adjacent to the Site.

Short-term Effectiveness. Alternative 7 includes electrical resistance heating of the on-site source area soils, resulting in contaminated vapors which require capture and treatment. Short-term adverse impacts and risks to the community, site workers, and the environment are possible during the course of work; however, these risks could be controlled through coordination and communication, erosion, sedimentation, and dust control, and a comprehensive contractor health and safety program.

Long-term Effectiveness and Permanence. Alternative 7 would provide permanent reduction in site-related soil contamination through electrical resistance heating of source area soils and groundwater. This alternative would rely upon existing engineering controls to address downgradient soil vapor contamination and natural attenuation to address groundwater VOC contamination contributing to downgradient groundwater and soil vapor contamination.

Reduction of Toxicity, Mobility, or Volume with Treatment. Alternative 7 would provide reduction in the toxicity, mobility, or volume of VOC soil and groundwater contamination through in-situ treatment of source area soils and groundwater.

Implementability. Alternative 7 would not be technically difficult to implement.

Land Use. The current and reasonably anticipated future land use of the Site is for commercial and residential purposes. This alternative would be protective of potential commercial workers conducting subsurface work at the Site.

Cost. The capital cost estimate for Alternative 7 is \$1,900,000. The NPW of this Alternative is estimated to be \$2,020,000. A summary of the costs associated with this alternative is presented in Table 11.7. Detailed cost analysis backup, including a vendor quotation, is provided in Appendix H.

12.0 COMPARATIVE ANALYSIS OF ALTERNATIVES

This section presents a summary of the relative performance of each of the seven candidate alternatives based on the criteria evaluation in Section 11. The purpose of the comparative analysis is to identify the advantages and disadvantages of each alternative relative to one another to aid in selecting an overall remedy for the Site.

The comparative analysis includes a narrative discussion of the strengths and weaknesses of the alternatives relative to one another with respect to each criterion, and how reasonable variations of key uncertainties could change the expectations of their relative performance, as applicable. The comparative analysis presented in this document uses a qualitative approach to comparison, with the exceptions of comparing alternative costs and the required time to implement each alternative.

A comparison of the capital and long-term costs associated with the remedial alternatives is presented in Table 12.1. Detailed cost analysis backup is provided in Appendix H.

12.1 COMPARATIVE ANALYSIS OF REMEDIAL ALTERNATIVES

The following paragraphs present a comparison of the remedial alternatives which were evaluated in detail in Section 11.0, relative to the following evaluation criteria (an assessment of Community Acceptance will be presented in a future document). The following comparative analysis is presented in tabular form in Table 12.2.

Compliance with Standards, Criteria, and Guidance. Alternative 1 would not meet chemical-specific SCGs because it would not address contamination at and in the vicinity of the Site which exceeds applicable SCG values. Alternative 2 has a low potential to treat the entire source and residue areas and thus would not meet chemical-specific SCGs for soil and groundwater contamination.

Alternatives 4 and 6 would not meet chemical specific SCGs in the short term, but by removing source area contamination they would satisfy SCGs in the long term for soil and groundwater.

Alternative 6 would satisfy chemical-specific SCGs more favorably than Alternative 4 by accelerating the attenuation of contaminants by in-situ enhanced biodegradation.

Alternatives 3, 5 and 7 would meet chemical specific SCGs in the short term through their respective removal or treatment approaches. Alternative 3 would satisfy chemical-specific SCGs more favorably than Alternatives 5 or 7 by completing removing both source area and residual contamination. However, Alternative 7 would be able to treat source area contamination next to and underneath a building adjacent to the site more effectively than Alternatives 3 or 5.

Implementation of the alternatives would be conducted in accordance with applicable municipal, state, and federal guidance and regulations. Table 11.1 presents a summary of Location- and Action-Specific SCGs associated with the alternatives evaluated in this Section.

Overall Protection of Public Health and the Environment. Alternative 1 would not protect public health and the environment through eliminating, reducing, or controlling existing or potential exposure pathways through removal, treatment, engineering controls, or institutional controls. This remedial alternative would not achieve the RAOs for soil or groundwater.

Alternative 2 would protect public health and the environment through reducing and controlling existing or potential exposure pathways through institutional controls and the operation of the existing MPE System to remove soil contamination at the Site. However, the current operation of the existing MPE System is likely not capable of treating all soil contamination present at the Site in excess of SCOs.

Alternative 4 would provide more favorable protection of public health and the environment compared to Alternative 1 or 2 by reducing and controlling existing or potential exposure pathways through institutional controls and operation of an enhanced MPE System.

Alternatives 5, 6 and 7 would provide more favorable protection of public health and the environment compared to Alternative 4 through more immediate and effective reduction or removal of soil and groundwater contamination. Institutional controls and engineering controls would be used until RAOs were met allowing for unrestricted use of the site.

Alternative 3 would be most protective of public health and the environment through implementation of remedial actions to immediately and permanently reduce on-site soil and groundwater contamination. Alternative 3 would allow for unrestricted use of the Site.

Short-term Effectiveness. Because no actions would be taken, Alternative 1 would not result in short-term adverse impacts and risks to the community, site workers, and the environment. Alternative 2 does not include construction or other type of activities that would result in potential short-term adverse impacts and risks to the community, workers, or the environment during implementation. Alternatives 3, 4, 5, 6 and 7 include remedial activities which would result in potential short-term risks to the community, site workers, and the environment. However, the risks could be addressed through coordination and communication with the property owner(s), erosion, sedimentation and dust control where applicable, and preparation and implementation of a comprehensive contractor health and safety plan. It is estimated that these alternatives could be fully implemented in less than one year.

Alternative 4 consists of low impact construction that would least disturb contaminated soils and therefore present the least potential short-term adverse impacts and risks to the community, site workers, and the environment. Alternatives 5 and 7 consist primarily of in-situ treatment which would disturb contaminated soils more than Alternative 4 and therefore present greater potential short-term adverse impacts and risks to the community, site workers, and the environment. Alternatives 3 and 6 include the excavation and transportation off-site of source area soils, and would therefore present a greater potential short-term risk. Alternative 3 includes significantly more excavation and transportation off-site of contaminated soils than Alternative 6, presenting the greatest potential short-term risks to the community.

Alternatives 1 and 2 would provide the least short-term reduction in potential exposure pathways. Alternatives 4, 5, 6 and 7 would reduce source area contamination in the short-term to varying degrees of effectiveness, but Alternatives 4, 5 and 6 would rely upon institutional controls and off-site engineering controls until RAOs for groundwater were met. Alternative 3 would provide for unrestricted use of the Site in the short term and would reduce the time to meet RAOs for groundwater.

Long-term Effectiveness and Permanence. Alternative 1 would not include actions to address contaminated soils and groundwater at and in the vicinity of the Site. This remedy does not currently meet RAOs for soil and groundwater. While Alternative 1 may meet RAOs due to natural attenuation processes, this would not be expected in the near future due to the magnitude of the source area contamination.

Evaluation of contaminant mass removal rates associated with Alternative 2 suggest that the contaminant mass removal rate of the current system layout has leveled off since August 2007, which may indicate that the existing MPE system may not be capable of removing remaining contamination at the Site and thus not provide long-term effectiveness and permanence.

Through implementation of an enhanced system to treat soil contamination that the existing MPE system is not capable of removing, Alternative 4 would be expected to provide a greater degree of long-term effectiveness and permanence through the removal of VOC soil contamination in excess of the SCOs, compared to Alternative 2. However, even assuming Alternative 4 could consistently double current mass removal extraction rates, the time required to remove on-site soil contamination in compliance with RAOs would be significant.

Alternative 6 would allow for continued commercial use of the Site in the short-term, but would rely upon institutional and existing engineering controls to address human health exposure pathways until RAOs were met for off-site groundwater. The time required to meet RAOs could be reduced if enhanced biodegradation was applied to off-site as well as on-site residual groundwater contamination, but in either event the time required would be significant.

Alternatives 5 and 7 would allow for continued commercial use of part of the Site in the short-term, but would rely upon institutional and existing engineering controls to address human health exposure pathways until RAOs were met for off-site groundwater. The time required to meet RAOs through natural attenuation processes for off-site residual groundwater contamination would be significant.

Alternative 3 provides for the most aggressive approach to reducing site-related soil and groundwater contamination in the short-term and would allow for unrestricted use of the Site in the

short-term. However, Alternative 3 would not be expected to provide significantly increased

Reduction of Toxicity, Mobility, or Volume with Treatment. Alternatives 1 would not result in

the reduction of toxicity, mobility, or volume of soil or groundwater contamination through

treatment. Neither Alternative 2 nor Alternative 4 provide reduction in toxicity, mobility, or

volume through treatment because both alternatives include extraction of VOC soil contamination

from the subsurface and direct discharge, without treatment, to the atmosphere.

contamination reduction in the long-term relative to Alternatives 5, 6, and 7.

Alternatives 3 would result in the reduction of mobility and volume of soil and groundwater

contamination at and in the vicinity of the Site through excavation and off-site treatment and/or in-

situ remediation of VOC contaminated soils present at the Site. This alternative would not result in

a reduction in the toxicity of contamination unless contaminated soil removed from the Site

received off-site treatment prior to disposal.

Alternatives 5, 6, and 7 would result in the reduction of toxicity, mobility, and volume of soil and

groundwater contamination at and in the vicinity of the Site through in-situ treatment of on-site soil

and groundwater. Alternative 6 includes excavation of the source areas, and would provide

reduction in mobility and volume of source area contamination similar to Alternative 3, and also

includes implementation of remedial actions to reduce off-site groundwater contamination,

providing the greater potential for reduction of site-related contamination.

Alternative 3 would provide the greatest reduction in mobility and volume of soil contamination at

the Site, though potentially only marginally greater than Alternative 5 or 7. However, unless

excavated soils for Alternative 3 are treated off-site prior to disposal, Alternatives 5 or 7 would

provide greater reduction in the toxicity of contamination.

Implementability. No actions would be conducted under Alternative 1, therefore there are no

technical difficulties associated with this alternative. However, obtaining regulatory approval of

this alternative would be difficult.

Alternative 2 includes continued operation, maintenance, and monitoring of the existing MPE

System, and therefore would not be technically difficult to implement. However, because

12-5

limitations of the existing MPE System relative to achieving RAOs have been identified, obtaining regulatory approval of this alternative may be difficult.

Technically, Alternative 4 would not be difficult to implement. Because Alternative 4 would be designed and implemented to reduce residual soil contamination at the Site, obtaining regulatory approval of this alternative is not anticipated to be difficult.

There would be technical issues with implementing Alternatives 3, 5, and 6; these issues are associated with addressing contamination present beneath the adjacent off-site building. These alternatives may not be capable of providing remediation of contamination in the short-term. Alternative 5 would primarily rely upon natural attenuation of contamination, while Alternative 3 would rely upon in-situ chemical oxidation treatment of contamination, which may be ineffective due to the tightness of the soils. Alternative 6 would rely upon long-term remediation of contamination using in-situ enhanced biodegradation amendments.

Alternatives 3, 5, and 6 would also face technical difficulties due to the small site area available to support remediation activities. The limited space to stockpile excavated soils for characterization and dewatering prior to transportation and disposal may require a phased approach for these alternatives, which would increase the duration and cost of remediation activities.

Alternatives 3, 5, and 6 may also be difficult to implement due the shallow water table. Excavation of saturated zone soils may be impeded by the need to either dewater or apply an absorbent to excavated soils. Further, the shallow water table may impede mechanical mixing of saturated zone soils by reducing the rate of liquid chemical oxidant that can be injected into the soil's pore volume.

Relative to the other alternatives evaluated, Alternative 7 is the only alternative with the potential to provide effective short-term reduction of VOC contamination beneath the site building through implementation of electrical resistance heating.

Land Use. The current and reasonably anticipated future land use of the Site is for commercial and/or residential purposes; however, residential property is located adjacent to the site, including to the west and southwest. Because no further action would be taken as part of Alternative 1 and there would be no restrictions to future use, Alternative 1 would not be protective of potential

occupants/visitors to the Site and the immediate vicinity. In the short-term, the presence of the MPE System and associated infrastructure included with Alternatives 2 and 4 would limit future land use.

Alternatives 2 through 7 would be compatible with current land use and with reasonably anticipated future land use. Alternative 7 would allow for unrestricted use of the Site.

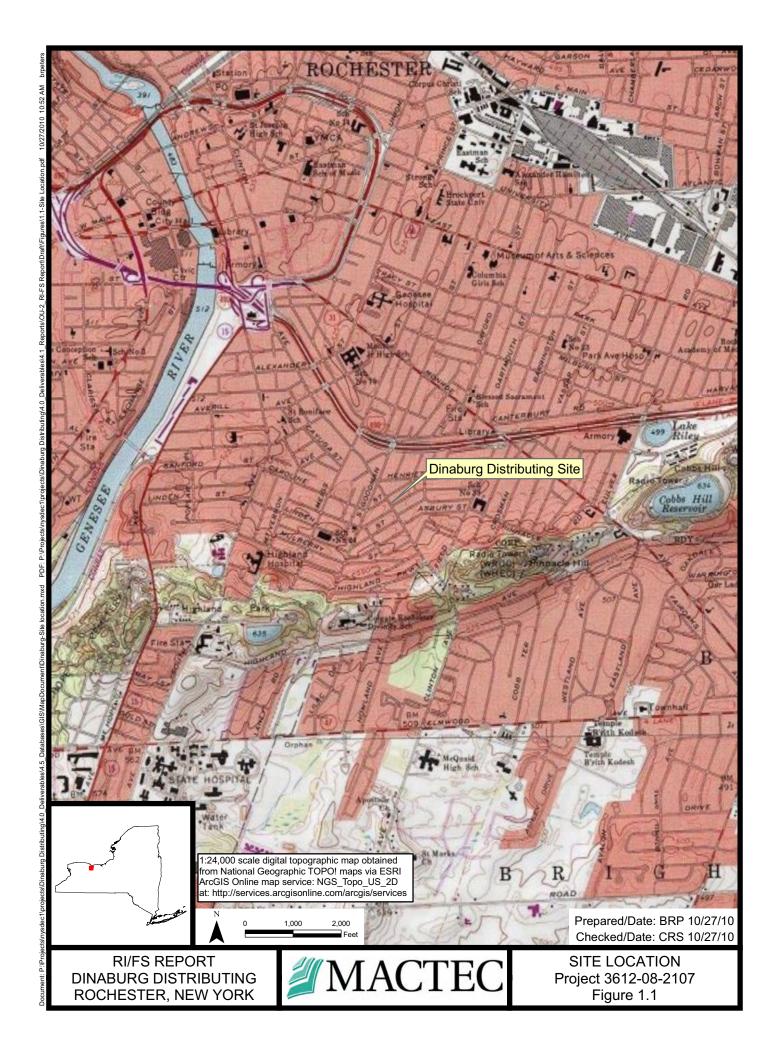
Cost. A comparison of estimated capital and long-term costs associated with the remedial alternatives is presented in Table 12.1.

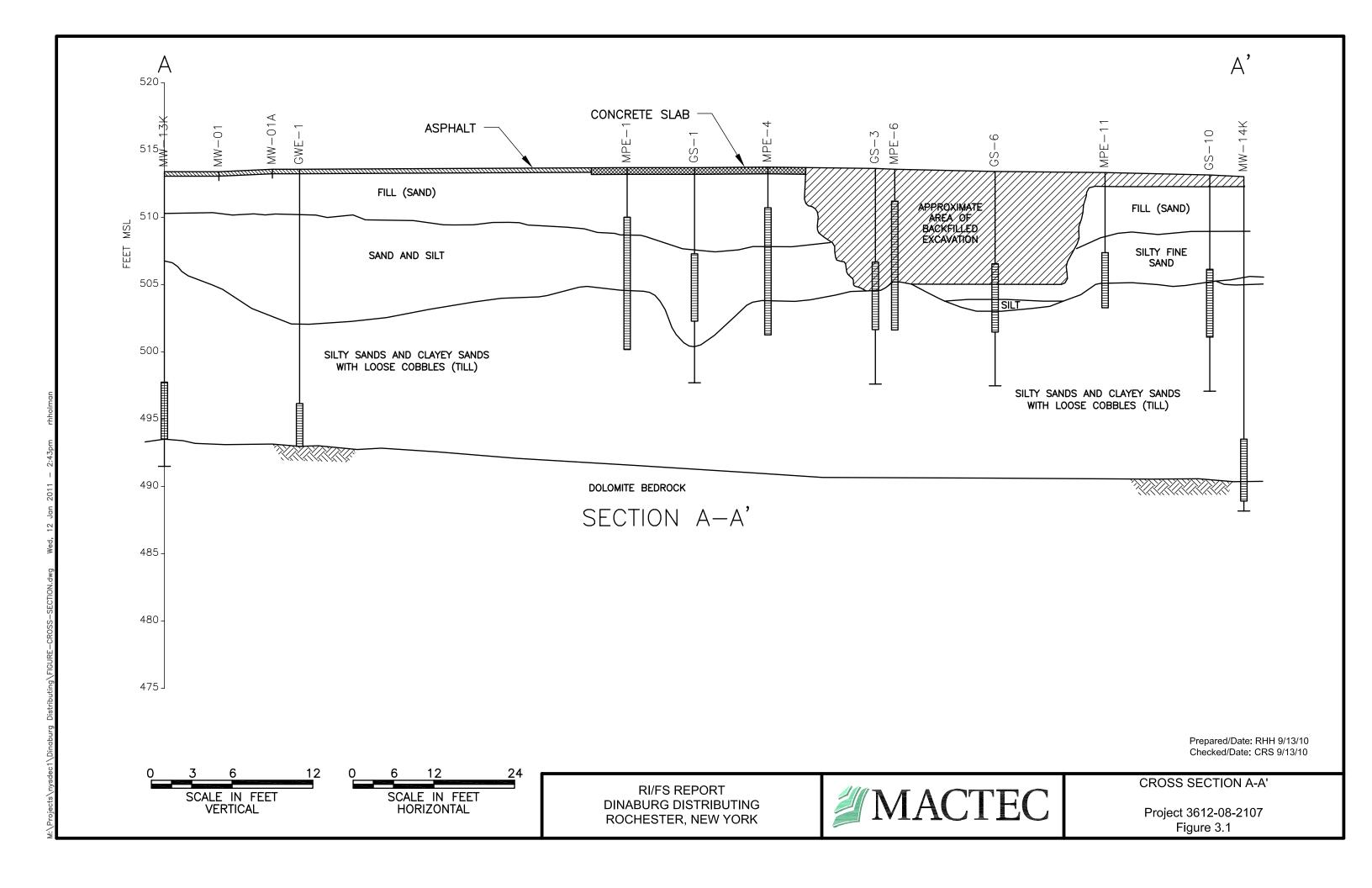
13.0 REFERENCES

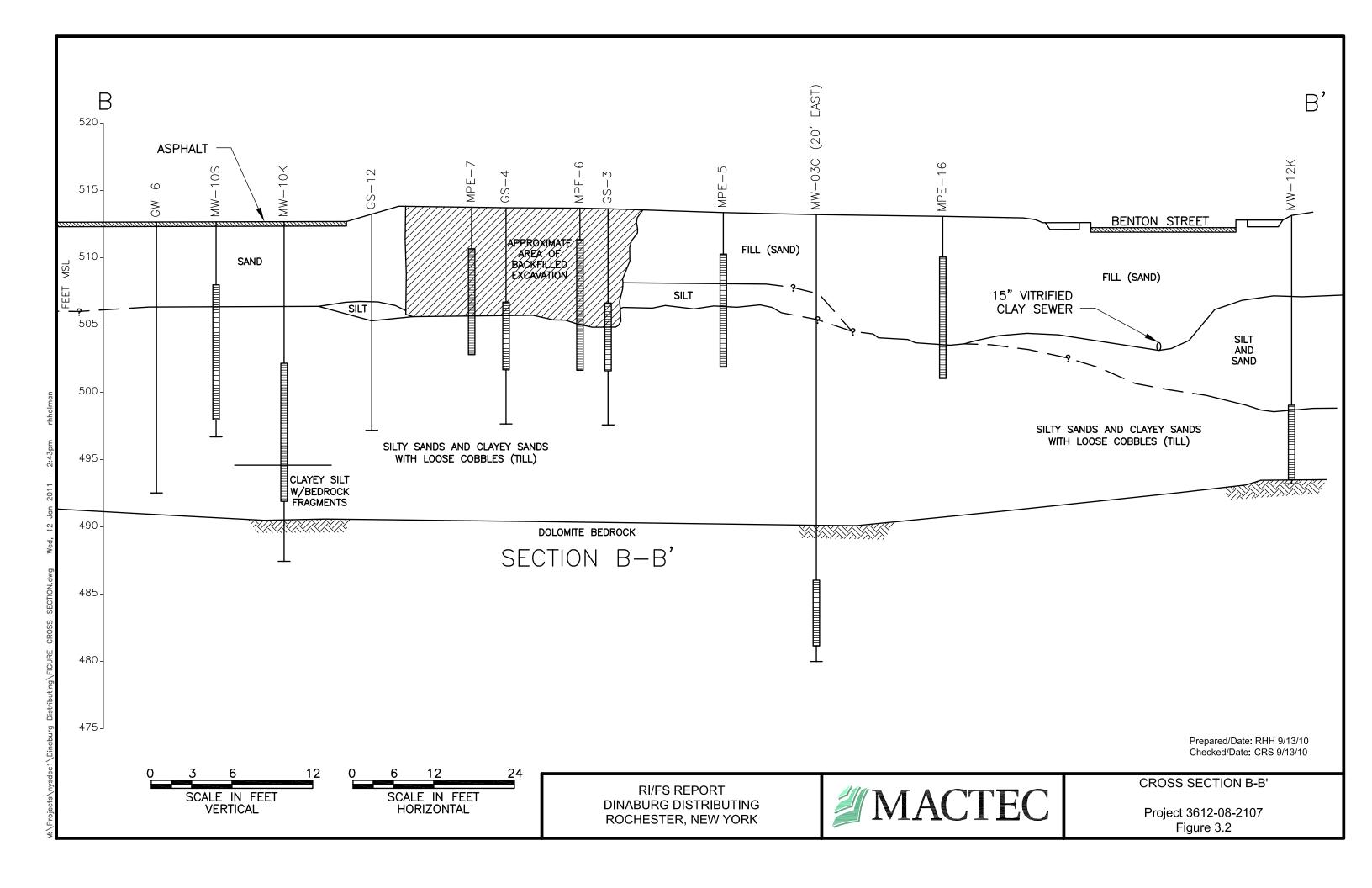
- Agency for Toxic Substances and Disease Registry, 1997. Toxicological profile for Tetrachloroethene. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
- BEACON Environmental Services, Inc., 2000. EMFLUX® Passive, Non-Invasive Soil-Gas Survey, Dinaburg Distributing, Rochester, NY. March 29, 2000.
- MACTEC Engineering and Consulting, P.C. (MACTEC), 2009. Final Field Activities Plan, Dinaburg Distributing, Inc., Site No. 828103. Prepared for the New York State Department of Environmental Conservation. April 2009.
- MACTEC, 2007. Program Quality Assurance Program Plan. Prepared for the New York State Department of Environmental Conservation, Albany, New York. October 2007.
- National Climatic Data Center (NCDC), 2004. Comparative Climactic Data for the United States, 1971 to 2000. February, 2004.
- New York State (NYS), 2006. New York Codes, Rules, and Regulations, Title 6, Part 375-Inactive Hazardous Waste Disposal Sites Remedial Program. Amended December 2006.
- NYS, 1999a. New York Codes, Rules, and Regulations, Title 6, Part 371- Identification and Listing of Hazardous Wastes. Amended November 1999.
- NYS, 1999b. New York Codes, Rules, and Regulations, Title 6, Part 700-705 Water Quality Regulations Surface Water and Groundwater Classifications and Standards. Amended August 1999.
- New York State Department of Environmental Conservation (NYSDEC), 2010. DER-10, Technical Guidance for Site Investigation and Remediation. May 2010.
- NYSDEC, 2002. Draft DER-10, Technical Guidance for Site Investigation and Remediation. December 2002.

- NYSDEC, 1998. Class GA Groundwater Quality Guidance Values from the Division of Water Technical and operational Guidance Series 1.1.1 "Ambient Water Quality Standards and Guidance Values", 1998.
- NYSDEC, 1994. Revised Technical and Administrative Guidance Memorandum HWR 94-4046: Determination of Soil Cleanup Objectives and Cleanup Levels. January 1994.
- New York State Department of Health (NYSDOH), 2006. "Guidance for Evaluating Soil Vapor Intrusion in the State of New York". October 2006.
- Plankow, James F., Cherry, John A., 1996; "Dense Chlorinated Solvents in Groundwater and other DNAPLs in Groundwater"; Waterloo Press, 1996.
- Sear Brown Group, Inc., 1998. Voluntary Investigation Report, Former Dinaburg Distributing, Inc., 1012 South Clinton Avenue, Rochester, New York. April 1998.
- Sear Brown Group, Inc., 1997. Letter from Sear Brown Group, Inc. to NYSDEC, Dated December 15, 1997, RE: Progress Report, Voluntary Investigation, Former Dinaburg Distributing, Inc., 1012 South Clinton Avenue, Rochester, New York. December 15, 1997.
- Sear Brown Group, Inc., 1995a. Basement Survey and Air Monitoring Report, Former Dinaburg Distributing, Inc., 1012 South Clinton Avenue, Rochester, New York. December 1995.
- Sear Brown Group, 1995b. Environmental Site Characterization Report, Former Dinaburg Distributing, Inc. Prepared for the Estate of Saul Dinaburg, Inc. April, 1995.
- URS Corporation (URS), 2010. Data Assessment Summary, Former Dinaburg Distributing, Inc. Site # 8-28-103; Periodic Monitoring February 2, 2009 May 17, 2010. October 1, 2010.
- URS, 2008. Evaluation of Remedial System Performance Soil Sampling Assessment Report, Former Dinaburg Distributing, Inc. Site # 8-28-103; prepared by URS Corporation. September 3, 2008.
- URS, 2007. Final Remediation Report for Former Dinaburg Distributing, Inc., Site # 8-28-103, Rochester, New York. April 2007.
- URS, 2006a. Site CAD Drawing, Site Plan Survey Information, Former Dinaburg Distributing, Inc. Site. December 2006.

- URS, 2006b. Daily Field Activity Report from URS Corporation, Dated February 16, 2006.
- URS, 2004a. Letter from URS Corporation to NYSDEC, RE: WA# D003825-66, Pre-design Investigation Dinaburg Distributing Site, No. 8-28-103, Dated December 2004
- URS, 2004b. Letter from URS Corporation to NYSDEC, Dated January 23, 2004, RE: Supplemental Soil Gas Sampling Letter Report, Dinaburg Distributing, Inc., Work Assignment #D003825-26. January 23, 2004.
- URS, 2001. Final Remedial Investigation Report, Former Dinaburg Distributing, Inc., Site # 828103, Rochester, New York; prepared by URS Corporation. May 2001.


URS, multiple. Memoranda to NYSDEC, RE: Former Dinaburg Distributing, Inc. (#8-28-103), Evaluation of Remedial System Performance


- Dated May 18, 2006– February 22 through March 31, 2006
- Dated June 1, 2006– April 2006
- > Dated June 29, 2006– May, 2006
- > Dated July 24, 2006– June 2006
- ➤ Dated August 18, 2006– July 2006
- ➤ Dated September 12, 2006– August 2006
- ➤ Dated November 6, 2006– September 2006
- ➤ Dated May 1, 2007 September 26 through November 7, 2006
- ➤ Dated November 27, 2007– May 8 through August 8, 2007
- ➤ Dated January 31, 2008– August 8 through November 13, 2007
- Dated April 23, 2008– November 13, 2007 through February 6, 2008
- ➤ Dated July 28, 2008 February 6 through May 6, 2008
- ➤ Dated October 1, 2010– February 2, 2009 through May 17, 2010
- United States Environmental Protection Agency (USEPA), 2000. "A Guide for Developing and Documenting Cost Estimates During the Feasibility Study"; EPA 540-R-00-002, OSWER 9355.0-75; U.S. Environmental Protection Agency; Washington, D.C., July 2000.
- USEPA, 1990. "Basics of Pump and Treat Groundwater Remediation Technology". James W. Mercer, et. al.; EPA-600/8-90/003; March 1990.


Remedial Investigation/FS Report — Dinaburg Distributing NYSDEC — Site No. 828103 MACTEC Engineering and Consulting, P.C. Project No. 3612082107

USEPA, 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA (Interim Final); EPA/540/G-89/004. October 1988.

FIGURES

TABLES

Table 3.1: Monitoring Well Construction Data

Well ID	Well Type	Northing	Easting	Ground Elevation (ft)	Measuring Point Elevation (riser, ft)	Total Depth (ft)	Depth Bedrock Encountered (ft)	Screen Length (ft)	Screened Zone
GPW-01	Monitoring Well	1145250.98	1412214.74	512.91	512.55	14.9	NA	NA	overburden
GPW-02	Monitoring Well	1145177.75	1412238.26	512.79	512.51	14.1	NA	NA	overburden
MW-01	Monitoring Well	1145163.18	1412088.14	513.43	513.06	20.4	NA	5.0	interface?
MW-01A	Monitoring Well	1145167.68	1412095.54	513.52	513.05	8.0	NA	5.0	overburden
MW-03C	Monitoring Well	1145186.36	1412204.99	513.14	512.72	32.7	22.7	5.0	bedrock
MW-03	Monitoring Well	1145182.30	1412208.19	513.34	513.10	21.2	NA	15.0	overburden/interface
MW-04	Monitoring Well	1145082.53	1412145.89	513.30	513.01	24.1	23.1	15.0	overburden/interface
MW-05	Monitoring Well	1145059.86	1412071.43	513.72	513.49	24.6	23.6	15.0	overburden/interface
MW-06	Monitoring Well	1145321.34	1412126.45	512.06	511.54	20.6	19.9	15.0	overburden/interface
MW-08K	Monitoring Well	1145200.50	1412282.75	512.57	512.24	19.2	17.8	10.0	interface
MW-08S	Monitoring Well	1145202.87	1412286.32	512.52	512.27	16.0	NA	10.0	overburden
MW-09K	Monitoring Well	1145215.07	1412036.01	513.27	513.01	22.7	23.3	10.0	interface
MW-09S	Monitoring Well	1145222.49	1412032.24	513.27	512.87	16.0	NA	10.0	overburden
MW-10K	Monitoring Well	1145249.96	1412155.07	512.84	512.49	21.8	22.0	10.0	overburden-interface?
MW-10S	Monitoring Well	1145262.12	1412157.04	512.70	512.25	16.0	NA	10.0	overburden
MW-11K	Monitoring Well	1145145.60	1412256.61	512.60	512.12	18.2	17.5	10.0	overburden-interface?
MW-11S	Monitoring Well	1145151.97	1412267.48	512.60	512.36	14.0	NA	10.0	overburden
MW-12K	Monitoring Well	1145115.83	1412212.98	513.09	512.67	19.5	19.3	5.0	interface
MW-12S	Monitoring Well	1145111.01	1412204.08	513.01	512.53	14.0	NA	5.0	overburden
MW-13K	Monitoring Well	1145154.38	1412083.68	513.41	513.13	21.5	19.2	5.0	interface
MW-14K	Monitoring Well	1145228.23	1412224.05	513.04	512.66	25.0	22.4	5.0	interface
GWE-1	Groundwater Extraction Well	1145169.39	1412098.43	513.43	512.98	20.7	20.7	3.0	interface
GWE-2	Groundwater Extraction Well	1145151.95	1412176.26	513.35	512.94	23.0	23.0	3.0	interface
GWE-3	Groundwater Extraction Well	1145168.73	1412208.74	513.52	513.27	22.0	22.0	3.0	interface
MPE-1	Multi-Phase-Extraction Well	1145189.13	1412143.94	513.91	513.40	13.5	NA	10.0	overburden
MPE-2	Multi-Phase-Extraction Well	1145171.10	1412147.41	514.02	513.42	13.5	NA	7.5	overburden
MPE-3	Multi-Phase-Extraction Well	1145181.83	1412160.55	513.86	513.41	13.5	NA	10.0	overburden
MPE-4	Multi-Phase-Extraction Well	1145200.46	1412161.40	513.76	513.39	12.5	NA	9.5	overburden
MPE-5	Multi-Phase-Extraction Well	1145190.10	1412179.15	513.82	513.43	11.5	NA	8.5	overburden
MPE-6	Multi-Phase-Extraction Well	1145211.17	1412177.81	513.63	513.22	12.0	NA	9.0	overburden
MPE-7	Multi-Phase-Extraction Well	1145220.68	1412160.77	513.86	513.30	11.0	NA	8.0	overburden
MPE-8	Multi-Phase-Extraction Well	1145231.20	1412177.91	513.91	513.48	10.0	NA	7.0	overburden
MPE-9	Multi-Phase-Extraction Well	1145229.69	1412207.77	513.64	513.14	10.0	NA	7.0	overburden

Table 3.1: Monitoring Well Construction Data

Well ID	Well Type	Northing	Easting	Ground Elevation (ft)	Measuring Point Elevation (riser, ft)	Total Depth (ft)	Depth Bedrock Encountered (ft)	Screen Length (ft)	Screened Zone
MPE-10	Multi-Phase-Extraction Well	1145199.56	1412195.89	513.54	513.12	12.0	NA	9.0	overburden
MPE-11	Multi-Phase-Extraction Well	1145211.47	1412213.41	513.35	513.02	10.0	NA	4.0	overburden
MPE-12	Multi-Phase-Extraction Well	1145216.47	1412230.87	513.24	512.90	10.0	NA	4.0	overburden
MPE-13	Multi-Phase-Extraction Well	1145189.52	1412201.53	513.21	512.89	11.5	NA	5.0	overburden
MPE-14	Multi-Phase-Extraction Well	1145180.74	1412231.49	512.69	512.23	11.0	NA	5.0	overburden
MPE-15	Multi-Phase-Extraction Well	1145171.41	1412213.05	513.30	512.97	11.0	NA	5.0	overburden
MPE-16	Multi-Phase-Extraction Well	1145159.52	1412199.50	513.60	513.31	12.0	NA	9.0	overburden
MPE-17	Multi-Phase-Extraction Well	1145160.22	1412170.78	513.47	512.97	13.5	NA	7.5	overburden
MPE-18	Multi-Phase-Extraction Well	1145181.52	1412197.70	513.55	513.12	11.0	NA	8.0	overburden
GS-1	Monitoring Well	1145194.63	1412151.61	513.75	513.38	16.0	NA	5.0	overburden
GS-2	Monitoring Well	1145199.72	1412152.72	513.85	513.59	16.0	NA	5.0	overburden
GS-3	Monitoring Well	1145207.41	1412176.89	513.70	513.49	16.0	NA	5.0	overburden
GS-4	Monitoring Well	1145222.77	1412177.42	513.67	513.43	16.0	NA	5.0	overburden
GS-5	Monitoring Well	1145219.63	1412192.82	513.61	513.38	16.0	NA	5.0	overburden
GS-6	Monitoring Well	1145209.00	1412195.65	513.51	513.22	16.0	NA	5.0	overburden
GS-7	Monitoring Well	1145203.60	1412195.81	513.54	513.25	16.0	NA	5.0	overburden
GS-8	Monitoring Well	1145199.95	1412200.38	513.53	513.37	16.0	NA	5.0	overburden
GS-9	Monitoring Well	1145199.78	1412209.46	513.45	513.23	16.0	NA	5.0	overburden
GS-10	Monitoring Well	1145227.33	1412219.93	513.11	512.90	16.0	NA	5.0	overburden

Wells surveyed by Popli Design Group.

Well data from URS, Inc. and MACTEC well logs.

NA = not available

Table 4.1: Summary of 2009 VOC Concentrations in Soil

	Media	SC	OIL	SC	DIL	SC	DIL
	Location	GS	S-1	GS	S-2	GS	S-3
	Sample Date	5/6/2	2009	5/6/2	2009	5/6/2	2009
	Sample ID	828103-GS10909	828103-GS11609	828103-GS21109	828103-GS21609	828103-GS31109	828103-GS31609
	Sample Depth (ft bgs)	09	16	11	16	11	16
	Qc Code	FS	FS	FS	FS	FS	FS
Parameter	Criteria	Result Qualifier					
1,1,1-Trichloroethane	0.68	0.55 U	0.41 U	0.36 U	0.49 U	0.86	0.6
1,1-Dichloroethane	0.27	0.55 U	0.41 U	0.36 U	0.49 U	0.2 J	0.59
Cis-1,2-Dichloroethene	0.25	5.2	0.41 U	0.36 U	0.49 U	0.32 U	0.36 U
Cyclohexane	NA	0.55 U	0.41 U	3.5	0.49 U	0.32 U	0.36 U
Ethyl benzene	1	0.55 U	0.41 U	2.1	0.49 U	0.32 U	0.36 U
Isopropylbenzene	NA	0.55 U	0.41 U	1.1	0.49 U	0.32 U	0.36 U
Methyl cyclohexane	NA	0.55 U	0.41 U	83 DJ	0.49 U	0.32 U	0.36 U
Methylene chloride	0.05	0.55 U	0.41 U	0.36 U	0.49 U	0.32 U	0.36 U
Tetrachloroethene	1.3	52 DJ	3.7	1700 DJ	15	5.6	0.64
Toluene	0.7	0.55 U	0.41 U	0.36 U	0.49 U	0.32 U	0.16 J
Trichloroethene	0.47	9	27 D	3.7	29 D	8.1	7
Xylene, m/p	0.26	0.25 J	0.83 U	51 D	0.22 J	0.16 J	0.72 U
Xylene, o	0.26	0.55 U	0.41 U	7.6	0.49 U	0.32 U	0.36 U
Percent Moisture	NA	14	8	9	9	12	9

Results in milligrams per kilogram (mg/Kg)

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method 8260B

ft bgs = feet below ground surface

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Soil Cleanup Objective for unrestricted

use - from 6 NYCRR Part 375

Detections are indicated in BOLD

Highlighted results exceed criteria

Created by: LJB 4/9/10 Checked By: CRS 11/4/10

Table 4.1: Summary of 2009 VOC Concentrations in Soil

	Media	SC	OIL	SC	DIL		SOIL	
	Location	GS	5-4	GS	S-5		GS-6	
	Sample Date	5/8/2	2009	5/6/2	2009		5/7/2009	
	Sample ID	828103-GS41109	828103-GS41609	828103-GS51109	828103-GS51509	828103-GS61009	828103-GS61009D	828103-GS61509
	Sample Depth (ft bgs)	11	16	11	15	10	10	15
	Qc Code	FS	FS	FS	FS	FS	FD	FS
Parameter	Criteria	Result Qualifier						
1,1,1-Trichloroethane	0.68	0.56 U	0.54 UJ	0.47 U	0.34 U	0.6 U	0.6 UJ	0.54 UJ
1,1-Dichloroethane	0.27	0.56 U	0.94 J	0.47 U	0.34 U	0.6 U	0.6 UJ	0.54 UJ
Cis-1,2-Dichloroethene	0.25	0.37 J	0.54 UJ	0.47 U	0.34 U	0.6 UJ	0.6 UJ	0.54 UJ
Cyclohexane	NA	0.54 J	0.54 UJ	0.47 U	0.34 U	0.6 U	0.6 UJ	0.54 UJ
Ethyl benzene	1	0.56 U	0.54 UJ	0.47 U	0.34 U	0.6 U	0.6 UJ	0.54 UJ
Isopropylbenzene	NA	0.56 U	0.54 UJ	0.47 U	0.34 U	0.6 U	0.6 UJ	0.54 UJ
Methyl cyclohexane	NA	2.6 J	0.54 UJ	0.47 U	0.34 U	0.6 UJ	0.6 UJ	0.54 UJ
Methylene chloride	0.05	0.56 U	0.54 UJ	0.47 UJ	0.34 U	0.6 U	0.6 UJ	0.54 UJ
Tetrachloroethene	1.3	21 D	84 D	990 D	340 DJ	1200 D	750 D	670 D
Toluene	0.7	0.56 U	0.26 J	0.47 U	0.34 U	0.6 U	0.6 UJ	0.54 UJ
Trichloroethene	0.47	3	35 D	630 D	370 D	150 DJ	79 DJ	490 D
Xylene, m/p	0.26	1.1 U	0.5 J	0.94 U	0.68 U	1.2 U	1.2 UJ	1.1 UJ
Xylene, o	0.26	0.56 U	0.54 UJ	0.47 U	0.34 U	0.6 U	0.6 UJ	0.54 UJ
Percent Moisture	NA	11	7	9	10	16	16	8

Results in milligrams per kilogram (mg/Kg) $\,$

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method 8260B

ft bgs = feet below ground surface

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

 $Criteria = Soil \ Cleanup \ Objective \ for \ unrestricted$

use - from 6 NYCRR Part 375

Detections are indicated in **BOLD**

Table 4.1: Summary of 2009 VOC Concentrations in Soil

	Media	SC	OIL	SC	DIL	SC	DIL	
	Location	GS	S-7	GS	S-8	GS	S-9	
	Sample Date	5/8/2	2009	5/7/2	2009	5/8/2	2009	
	•		828103-GS71609	828103-GS81109	828103-GS81509	828103-GS91209	828103-GS91509	
	Sample Depth (ft bgs)	12	16	11	15	12	15	
	Qc Code	FS	FS	FS	FS	FS	FS	
Parameter	Criteria	Result Qualifier						
1,1,1-Trichloroethane	0.68	0.55 U	0.55 UJ	27 U	58 U	54 U	0.56 U	
1,1-Dichloroethane	0.27	0.55 U	0.55 UJ	27 UJ	58 UJ	54 UJ	0.56 U	
Cis-1,2-Dichloroethene	0.25	0.55 UJ	0.55 UJ	27 UJ	58 UJ	54 UJ	0.56 UJ	
Cyclohexane	NA	0.55 U	0.55 UJ	27 U	58 U	54 U	0.56 U	
Ethyl benzene	1	0.55 U	0.55 UJ	27 U	58 U	54 U	0.56 U	
Isopropylbenzene	NA	0.55 U	0.55 UJ	27 U	58 U	54 U	0.56 U	
Methyl cyclohexane	NA	0.55 UJ	270 U	27 U	58 U	54 U	0.56 UJ	
Methylene chloride	0.05	0.55 U	0.55 UJ	27 U	58 U	54 U	0.56 U	
Tetrachloroethene	1.3	110 D	1200 D	51 D	64 D	93 D	43 D	
Toluene	0.7	0.55 U	0.29 J	27 U	58 U	54 U	0.56 U	
Trichloroethene	0.47	160 D	1400 D	12 DJ	26 DJ	110 D	160 D	
Xylene, m/p	0.26	1.1 U	0.25 J	55 U	120 U	110 U	1.1 U	
Xylene, o	0.26	0.55 U	0.34 J	27 U	58 U	54 U	0.56 U	
Percent Moisture	NA	9	9	9	14	8	10	

Results in milligrams per kilogram (mg/Kg)

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method 8260B

ft bgs = feet below ground surface

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Soil Cleanup Objective for unrestricted

use - from 6 NYCRR Part 375

Detections are indicated in BOLD

Highlighted results exceed criteria

Created by: LJB 4/9/10 Checked By: CRS 11/4/10

4.1 Table 4.1;4.4-4.6; 4.8.xlsx Page 3 of 5

Final

Table 4.1: Summary of 2009 VOC Concentrations in Soil

	Media	SO	OIL	SC)IL	SC)IL
	Location	GS-	-10	GS	-11	GS	-12
	Sample Date	5/8/2	2009	5/5/2	2009	5/5/2	2009
	Sample ID	828103-GS101209	828103-GS101509	828103-GS111009	828103-GS111609	828103-GS121109	828103-GS121309
	Sample Depth (ft bgs)	12	15	10	16	11	13
	Qc Code	FS	FS	FS	FS	FS	FS
Parameter	Criteria	Result Qualifier					
1,1,1-Trichloroethane	0.68	0.55 U	0.54 UJ	0.31 U	0.36 U	0.35 U	0.33 U
1,1-Dichloroethane	0.27	0.55 U	0.54 UJ	0.31 U	0.36 U	0.35 U	0.33 U
Cis-1,2-Dichloroethene	0.25	0.55 UJ	0.54 UJ	0.31 U	0.36 U	0.35 U	0.33 U
Cyclohexane	NA	0.55 U	0.54 UJ	0.31 U	0.36 U	0.35 U	0.33 U
Ethyl benzene	1	0.55 U	0.54 UJ	0.31 U	0.36 U	0.35 U	0.33 U
Isopropylbenzene	NA	0.55 U	0.54 U	0.31 U	0.36 U	0.35 U	0.33 U
Methyl cyclohexane	NA	0.55 UJ	0.54 UJ	0.31 U	0.36 U	0.35 U	0.33 U
Methylene chloride	0.05	0.55 U	0.54 UJ	0.31 U	0.36 U	0.35 U	0.33 U
Tetrachloroethene	1.3	12 D	15 DJ	0.63	0.36 U	7.2	30 DJ
Toluene	0.7	0.55 U	0.54 UJ	0.31 U	0.36 U	0.35 U	0.33 U
Trichloroethene	0.47	15	15 J	0.44 J	0.36 UJ	1.1 J	3 J
Xylene, m/p	0.26	1.1 U	1.1 UJ	0.61 U	0.72 U	0.71 U	0.66 U
Xylene, o	0.26	0.55 U	0.54 UJ	0.31 U	0.36 U	0.35 U	0.33 U
Percent Moisture	NA	9	8	6	7	9	7

Notes:

Results in milligrams per kilogram (mg/Kg)

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method 8260B

ft bgs = feet below ground surface

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Soil Cleanup Objective for unrestricted

use - from 6 NYCRR Part 375

Detections are indicated in BOLD

Highlighted results exceed criteria

Created by: LJB 4/9/10 Checked By: CRS 11/4/10

Table 4.1: Summary of 2009 VOC Concentrations in Soil

	Media		SOIL		SO	OIL	SOIL
	Location		GS-13		GS	-14	MW-13K
	Sample Date		5/5/2009		5/5/2		5/5/2009
	Sample ID	828103-GS131209	828103-GS131609	828103-GS132109	828103-GS141209	828103-GS141409	828103-MW131509
	Sample Depth (ft bgs)	12	16	21	12	14	15
	Qc Code		FS	FS	FS	FS	FS
Parameter	Criteria	Result Qualifier					
1,1,1-Trichloroethane	0.68	0.37 U	0.38 U	0.34 U	0.44 U	0.41 U	0.25 U
1,1-Dichloroethane	0.27	0.37 U	0.38 U	0.34 U	0.44 U	0.41 U	0.25 U
Cis-1,2-Dichloroethene	0.25	0.36 J	0.51	0.2 J	0.44 U	0.41 U	0.24 J
Cyclohexane	NA	0.37 U	0.38 U	0.34 U	0.44 U	0.41 U	0.25 U
Ethyl benzene	1	0.37 U	0.38 U	0.34 U	0.44 U	0.41 U	0.25 U
Isopropylbenzene	NA	0.37 U	0.38 U	0.34 U	0.44 U	0.41 U	0.25 U
Methyl cyclohexane	NA	0.37 U	0.38 U	0.34 U	0.44 U	0.41 U	0.25 U
Methylene chloride	0.05	0.37 U	0.38 U	0.34 U	0.44 U	0.41 U	0.25 U
Tetrachloroethene	1.3	30 DJ	9.5	1.1	0.44 U	0.41 U	10 D
Toluene	0.7	0.37 U	0.38 U	0.34 U	0.44 U	0.41 U	0.25 U
Trichloroethene	0.47	3.3 J	26 D	16 D	5.8 J	5.7 J	2.5 J
Xylene, m/p	0.26	0.74 U	0.77 U	0.68 U	0.87 U	0.82 U	0.49 U
Xylene, o	0.26	0.37 U	0.38 U	0.34 U	0.44 U	0.41 U	0.25 U
Percent Moisture	NA	8	10	11	8	8	9

Results in milligrams per kilogram (mg/Kg) $\,$

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method $8260B\,$

ft bgs = feet below ground surface

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Soil Cleanup Objective for unrestricted

use - from 6 NYCRR Part 375

Detections are indicated in **BOLD**

MACTEC Engineering and Consulting, P.C., Project No. 3612082107

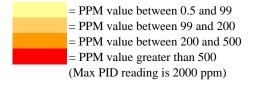
Table 4.2: Summary of 2009 Soil PID Readings

Date	5/6/2	2009	5/6/2	.009	5/6/2	2009	5/8/2	2009	5/6/2	009	5/7/2	.009	5/8/2	2009	5/7/2	2009
Boring ID	GS	5-1	GS	-2	GS	5-3	GS	5-4	GS	-5	GS	-6	GS	S-7	GS	- 8
Depth	Field PID	Lab	Field PID	Lab												
(feet bgs)	(ppm)	Value	(ppm)	Value												
0 - 1	NM		0		0		0		0		4		1.2		0	
1 - 2	NM		0		0		0.6		0		7		1.2		18.2	l
2 - 3	NM		0		3.7		1.1		0		0		0		20.2	l
3 - 4	NM		0		3.7		0		0		0		0		0	
4 - 5	NM		0		0		0		0		0		0		0	l
5 - 6	NM		0		0		0		0		0		0		0	l
6 - 7	NM		0		0		0		0		6		0		68	l
7 - 8	NM		146		0		0		6.8		6		22		68	
8 - 9	NM		0		0		114		2000		64		6.7		8	l
9 - 10	300	66.45	0		385		21.6		2000		2000	1350	50		186	
10 - 11	NM		2000	1852	385	14.92	638	27.53	2000	1620	2000		100		186	63
11 - 12	NM		2000		985		95		2000		2000		337	270	22	
12 - 13	0		50		20		300		2000		2000		337		28	l
13 - 14	0		50		20		300		2000		2000		106		28	
14 - 15	20	30.7	75		20		300		2000	710	2000	1160	2000		343	90
15 - 16	10		75	44.22	20	8.99	321	120.7	2000		433		2000	2600.88	48	
16 - 17																l
17 - 18																l
18 - 19																İ
19 - 20																İ
20 - 21																İ
21 - 22																

Notes:

bgs = below ground surface

PID = Thermo Electronics 580 B Photoionization Detector


PID readings collected over soil sleeve

ppm = parts per million (0 reading indicates less than instrument quantitation limit of 0.1 ppm)

Lab Value = Total VOCs detected by USEPA Method 8260B

NM = Not Measured

Horizontal lines indicate approximate discrete sample sections (either Geoprobe or split spoon)

MACTEC Engineering and Consulting, P.C., Project No. 3612082107

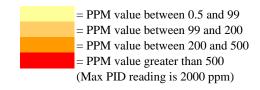
Table 4.2: Summary of 2009 Soil PID Readings

Date	5/8/2	2009	5/8/2	2009	5/5/2	.009	5/5/2	2009	5/5/2	2009	5/5/2	2009	5/4/2009	5/5/2	009	5/7/2009
Boring ID	GS	5-9	GS	-10	GS-	·11	GS-	-12	GS-	-13	GS	-14	MW-12K	MW-	13K	MW-14K
Depth	Field PID	Lab	Field PID	Field PID	Lab	Field PID										
(feet bgs)	(ppm)	Value	(ppm)	Value	(ppm)	Value	(ppm)	Value	(ppm)	Value	(ppm)	Value	(ppm)	(ppm)	Value	(ppm)
0 - 1	0		0		0		0		0		0		0.1	0		0
1 - 2	2.2		0		0		0		0		0		0.1	0.3		0
2 - 3	1.9		0		1		0		0		0		0.1	0.3		0
3 - 4	0		0		0		0		0		0		0.1	3.2		0
4 - 5	0		0		0		0		0		0		0.1	3.4		NM
5 - 6	0		0		0		0		0		0		0.1	3.2		NM
6 - 7	5.6		6.7		0		0		0		0		0.2	0		0
7 - 8	64		6.7		0		0		0		0		NM	0		0
8 - 9	430		2.6		0		0		0		0		NM	0.2		3.2
9 - 10	220		22		0		0		0		0		NM	4.4		22
10 - 11	480		74		40	1.99	6	8.33	17		30		0	340		NM
11 - 12	104	203	26	27	40		6		17	33.66	45	5.8	0	NM		NM
12 - 13	400		9.9		0		10		4		45		NM	NM		NM
13 - 14	533		9.9		0		61	33	4		45	5.7	NM	NM		NM
14 - 15	2000	203	68	30	0	0	61		145		45		NM	55	12.74	28
15 - 16	733		26		0		61		145	36.01	45		0.1	32		180
16 - 17									65				0	NM		NM
17 - 18									70				NM	NM		NM
18 - 19									89]		NM	NM		NM
19 - 20									20				Bedrock	Bedrock		19
20 - 21									45	17.3						100
21 - 22									bedrock?							Bedrock

Notes:

bgs = below ground surface

PID = Thermo Electronics 580 B Photoionization Detector


PID readings collected over soil sleeve

ppm = parts per million (0 reading indicates less than instrument quantitation limit of 0.1 ppm)

Lab Value = Total VOCs detected by USEPA Method 8260B

NM = Not Measured

Horizontal lines indicate approximate discrete sample sections (either Geoprobe or split spoon)

Well ID	GPV	V-01	GPV	V-02	M	W-1	MW	-01A	MV	V-2*	MW	7-3**	MW	-3C**
Sample Date	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)
February-95	-	-	-	-	3,480	2,114	-	-	83,989	22,890	160,503	14,163	-	-
October-97	-	-	-	-	16,000	18,000	-	-	93,000	33,000	99,000	21,000	300	570
Nov-Dec-2000	3,500	2	44,000	16,000	8,400	20,000	11	36	110,000	69,000	16,000	33,000	2,000	900
February-06	3,800	360	56,000	14,000	9,300	21,000	510	1,000	-	-	950	910	14,000	28,000
March-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-
April-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-
May-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-
June-06	3,000	ND	6,700	2,000	2,000	4,100	58	160	-	-	400	580	12,000	17,000
November-06	1,500	110	2,800	920	1	2	11	37	-	-	77	110	4,100	9,400
February-07	500	5	13,000	6,600	ND	ND	-	-	-	-	100	71	5,200	8,700
May-07	110	5	1,600	540	3	1	120	300	-	-	390	340	2,000	6,900
August-07	1,400	4	-	-	27	90	68	220	-	-	240	200	1,600	-
November-07	1,800	28	5,800	1,500	3	ND	260	580	-	-	190	170	4,100	8,900
February-08	120	ND	-	-	ND	ND	32	150	-	-	260	180	1,200	5,800
May-08	120	12	1,600	630	ND	ND	200	620	-	-	200	110	1,800	6,400
August-08	1,500	27	3,400	1,700	2	1	320	460	-	-	160	96	1,400	5,200
February-09	220	2	1,800	600	3	1	140	330	-	-	170	78	1,000	3,200
May-09 [†]	1,600	7	5,200	830	61	53	67	44	-	-	2,200	9,100	1,100	370
May-10	410	35	2,400	670	490	5,000	ND	ND	-	-	480	100	130	1,600

Results shown are only the reported detected values. Results from historic URS analytical reports, with the exception of †.

ND = not detected above reporting limit.

NA = results not available

Results do not include all data collected to date (some dates may be missing).

Results do not include validation flags identifying estimated values or other qualifiers.

Detections are indicated in BOLD

Highlighted results exceed NYSDEC groundwater standards

= start up of treatment system, February 22, 2006

Indicates highest concentration per well

^{- =} Indicates no sample taken

^{* =} MW-2 was decommissioned in 2006.

^{**=} MW-3 and MW-3C appear to be misidentified at some point between 2000 and Feb. 2006, with this mislabeling assumed to be carried through all URS data (May 2009 RI locations and results for MW-3 and MW-3C were based on well depth).

^{*** =} MW-11K was damaged after May 2007 and has not been replaced.

 $[\]dagger$ = Results for the MACTEC May 2009 sampling event do not include all sampling locations.

Well ID	MV	N-4	MV	N-5	MV	V-6	MW	-08K	MW	-08S	MW	′-09K	MW	'-09S
Sample Date	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)
February-95	ī	-	-	-	-	-	-	-	-	-	-	-	-	-
October-97	ND	ND	ND	ND	380	970	-	-	-	-	-	-	-	-
Nov-Dec-2000	ND	ND	ND	ND	94	390	4	5	ND	ND	14	15	ND	ND
February-06	ND	ND	ND	ND	76	15	ND							
March-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-
April-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-
May-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-
June-06	ND	3	ND	ND	17	4	ND							
November-06	ND	ND	ND	ND	17	13	71	45	ND	ND	ND	ND	ND	ND
February-07	ND	ND	ND	ND	18	18	ND							
May-07	ND	ND	ND	ND	14	13	ND							
August-07	ND	ND	ND	ND	13	3	ND	ND	ND	1	ND	ND	ND	ND
November-07	ND	ND	ND	ND	12	ND								
February-08	ND	ND	ND	ND	2	ND								
May-08	ND	ND	ND	ND	4	5	ND							
August-08	ND	ND	ND	ND	12	1	ND							
February-09	ND	ND	ND	ND	2	2	1	1	ND	ND	1	1	1	ND
May-09 [†]	ND	ND	5	ND	5	1	ND	ND	-	-	2	ND	-	-
May-10	ND	ND	ND	ND	2	ND								

Results shown are only the reported detected values. Results from historic URS analytical reports, with the exception of †.

ND = not detected above reporting limit.

NA = results not available

Results do not include all data collected to date (some dates may be missing).

Results do not include validation flags identifying estimated values or other qualifiers.

Detections are indicated in BOLD

Highlighted results exceed NYSDEC groundwater standards

= start up of treatment system, February 22, 2006

- = Indicates no sample taken
- * = MW-2 was decommissioned in 2006.
- ** = MW-3 and MW-3C appear to be misidentified at some point between 2000 and Feb. 2006, with this mislabeling assumed to be carried through all URS data (May 2009 RI locations and results for MW-3 and MW-3C were based on well depth).
- *** = MW-11K was damaged after May 2007 and has not been replaced.
- \dagger = Results for the MACTEC May 2009 sampling event do not include all sampling locations.

Indicates highest concentration per well

Well ID	MW	-10K	MW	'-10S	MW-1	1K***	MW	-11S	GW	E-01	GW	E-02	GW	E-03
Sample Date	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)
February-95	-	-	-	-	-	-	-	-	-	-	-	-	-	-
October-97	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nov-Dec-2000	60	22	99	12	2	1	3	4	-	-	-	-	-	-
February-06	1,000	ND	80	ND	ND	ND	ND	ND	-	-	-	-	-	-
March-06	-	-	-	-	-	-	-	-	1,400	3,300	1,100	3,000	3,100	1,200
April-06	-	-	-	-	-	-	-	-	580	2,400	310	730	1,600	630
May-06	-	-	-	-	-	-	-	-	870	2,400	160	450	970	430
June-06	930	ND	88	8	-	-	ND	ND	600	1,500	190	410	910	290
November-06	770	ND	43	6	-	-	ND	ND	1,000	2,300	160	300	810	280
February-07	1,200	1	77	11	-	-	ND	ND	-	-	120	240	470	150
May-07	860	ND	27	5	ND	ND	ND	ND	810	2,900	32,000	17,000	680	200
August-07	670	130	64	7	-	-	ND	ND	500	1,000	5,400	1,300	3,200	1,400
November-07	750	ND	77	ND	-	-	ND	ND	3,100	3,300	330	410	2,300	1,400
February-08	400	ND	ND	ND	-	-	ND	ND	630	1,100	580	620	2,900	410
May-08	890	ND	4	2	-	-	ND	ND	800	2,400	6,400	11,000	1,700	640
August-08	440	ND	63	8	-	-	ND	ND	NA	NA	NA	NA	NA	NA
February-09	1,000	ND	4	1	-	-	3	1	1,900	850	1,400	650	2,300	420
May-09 [†]	410	39	-	-	-	-	ND	ND	-	-	-	-	-	-
May-10	770	ND	7	ND	-	-	ND	ND	3,000	5,500	-	-	-	-

Results shown are only the reported detected values. Results from historic URS analytical reports, with the exception of †.

ND = not detected above reporting limit.

NA = results not available

Results do not include all data collected to date (some dates may be missing).

Results do not include validation flags identifying estimated values or other qualifiers.

Detections are indicated in BOLD

Highlighted results exceed NYSDEC groundwater standards

= start up of treatment system, February 22, 2006

Indicates highest concentration per well

^{- =} Indicates no sample taken

^{* =} MW-2 was decommissioned in 2006.

^{** =} MW-3 and MW-3C appear to be misidentified at some point between 2000 and Feb. 2006, with this mislabeling assumed to be carried through all URS data (May 2009 RI locations and results for MW-3 and MW-3C were based on well depth).

^{*** =} MW-11K was damaged after May 2007 and has not been replaced.

 $[\]dagger$ = Results for the MACTEC May 2009 sampling event do not include all sampling locations.

RI/FS Report — Dinaburg Distributing NYSDEC — Site No. 828103 MACTEC, P.N. 3612082107

Well ID	MP	E-01	MP	E-02	MP	E-03	MP	E-04	MP	E-05	MP	E-06	MP	E-07
Sample Date	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)
February-95	1	-	-	-	-	-	-	-	-	-	-	-	-	-
October-97	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nov-Dec-2000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
February-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-
March-06	17,000	8,300	1,900	17,000	2,700	2,300	79,000	73,000	4,900	3,400	9,300	20,000	15,000	1,500
April-06	9,500	2,800	610	3,600	960	6,400	360	460	780	920	1,300	2,100	17,000	4,500
May-06	11,000	4,300	1,000	5,800	4,200	3,700	19,000	29,000	1,300	2,800	490	550	16,000	11,000
June-06	10,000	3,200	1,300	4,100	2,500	2,000	1,800	2,900	1,100	2,000	860	680	14,000	12,000
November-06	3,700	1,700	1,200	1,800	23,000	11,000	23,000	26,000	670	1,000	1,200	660	-	-
February-07	3,400	2,300	490	830	4,100	3,000	20,000	21,000	150	420	-	-	-	-
May-07	1,800	580	650	3,800	780	2,400	-	-	310	830	2,800	2,300	-	-
August-07	690	170	360	3,000	420	1,300	2,400	780	180	540	550	370	-	-
November-07	4,900	1,200	130	750	2,600	1,700	7,500	11,000	390	1,100	1,500	970	-	-
February-08	190	69	30	780	450	950	7,700	12,000	28	75	340	200	-	-
May-08	940	1,500	480	580	1,500	1,300	680	1,100	610	1,300	870	560	-	-
August-08	NA													
February-09	3,200	1,100	420	1,600	970	810	7,400	12,000	450	860	1,900	2,500	-	-
May-09 [†]	-	-	-	-	-	-	-	-	-	-	-	-	-	_
May-10	3,600	1,400	400	2,900	3,700	5,700	9,900	12,000	530	1,300	3,700	1,800	130	95

Notes:

Results shown are only the reported detected values. Results from historic URS analytical reports, with the exception of †.

ND = not detected above reporting limit.

NA = results not available

Results do not include all data collected to date (some dates may be missing).

Results do not include validation flags identifying estimated values or other qualifiers.

Detections are indicated in BOLD

Highlighted results exceed NYSDEC groundwater standards

= start up of treatment system, February 22, 2006

Indicates highest concentration per well

^{- =} Indicates no sample taken

^{* =} MW-2 was decommissioned in 2006.

^{** =} MW-3 and MW-3C appear to be misidentified at some point between 2000 and Feb. 2006, with this mislabeling assumed to be carried through all URS data (May 2009 RI locations and results for MW-3 and MW-3C were based on well depth).

^{*** =} MW-11K was damaged after May 2007 and has not been replaced.

 $[\]dagger$ = Results for the MACTEC May 2009 sampling event do not include all sampling locations.

RI/FS Report — Dinaburg Distributing NYSDEC — Site No. 828103 MACTEC, P.N. 3612082107

Well ID	MP	E-08	MP	E-09	MP	E-10	MP	E-11	MP	E-12	MP	E-13	MP	E-14
Sample Date	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)
February-95	1	-	-	-	-	-	-	-	-	-	-	-	-	-
October-97	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nov-Dec-2000	-	-	-	-	-	-	-	-	-	-	-	-	-	-
February-06	-	-	-	-	-	-	-	-	-	-	-	-	-	-
March-06	5,300	9,000	12,000	7,700	50,000	43,000	570,000	160,000	1,300	1,300	3,100	11,000	2,000	830
April-06	770	1,000	38,000	22,000	20,000	12,000	330,000	87,000	1,000	1,000	2,800	8,100	920	320
May-06	210	150	13,000	7,600	55,000	59,000	130,000	150,000	7,700	16,000	5,000	11,000	3,700	1,500
June-06	260	230	16,000	6,900	65,000	60,000	76,000	29,000	850	600	2,000	3,600	88	38
November-06	1,300	800	3,900	1,800	34,000	19,000	7,900	4,300	270	390	1,200	2,300	220	190
February-07	480	260	11,000	5,200	68,000	29,000	8,900	4,400	93	160	7,800	12,000	250	120
May-07	170	220	6,300	2,900	-	-	36,000	17,000	200	250	4,600	5,900	710	280
August-07	100	120	-	-	62,000	32,000	140,000	40,000	-	-	12,000	15,000	1,800	1,200
November-07	1,600	780	4,500	720	96,000	54,000	60,000	71,000	6	6	8,900	10,000	160	73
February-08	200	190	7,300	4,100	37,000	15,000	7,900	4,100	8	9	120	190	350	210
May-08	490	510	13,000	3,900	170,000	64,000	2,300	1,300	130	170	1,100	2,000	2,400	1,000
August-08	NA													
February-09	1,900	1,100	6,300	1,800	90,000	24,000	33,000	15,000	140	140	2,800	1,700	1,100	420
May-09 [†]	-	_	-	-	-	-	-	-	-	-	-	_	-	-
May-10	2,600	2,700	-	-	-	-	25,000	13,000	65	130	2,500	4,100	ND	ND

Notes:

Results shown are only the reported detected values. Results from historic URS analytical reports, with the exception of †.

ND = not detected above reporting limit.

NA = results not available

Results do not include all data collected to date (some dates may be missing).

Results do not include validation flags identifying estimated values or other qualifiers.

Detections are indicated in BOLD

Highlighted results exceed NYSDEC groundwater standards

= start up of treatment system, February 22, 2006

Indicates highest concentration per well

^{- =} Indicates no sample taken

^{* =} MW-2 was decommissioned in 2006.

^{** =} MW-3 and MW-3C appear to be misidentified at some point between 2000 and Feb. 2006, with this mislabeling assumed to be carried through all URS data (May 2009 RI locations and results for MW-3 and MW-3C were based on well depth).

^{*** =} MW-11K was damaged after May 2007 and has not been replaced.

 $[\]dagger$ = Results for the MACTEC May 2009 sampling event do not include all sampling locations.

W	ell ID	MPI	E-15	MP	E-16	MP	E-17	MP	E-18
Sample Date	,	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)	TCE (µg/L)	PCE (µg/L)
February-95		-	-	-	-	-	-	-	-
October-97		-	-	-	-	-	-	-	-
Nov-Dec-2000		-	-	-	-	-	-	-	-
February-06		-	-	-	-	-	-	-	-
March-06		1,500	18,000	21,000	180,000	2,700	2,200	30,000	110,000
April-06		4,000	11,000	6,900	55,000	440	200	8,700	16,000
May-06		2,600	14,000	10,000	96,000	260	600	5,000	17,000
June-06		2,600	11,000	7,500	60,000	130	370	1,200	2,300
November-06		780	400	9,600	120,000	12	36	15,000	7,600
February-07		560	980	6,200	10,000	100	210	22,000	17,000
May-07		740	3,600	9,400	98,000	-	-	-	-
August-07		1,700	6,300	5,800	44,000	45	ND	-	-
November-07		1,200	4,500	7,200	52,000	92	180	1,900	2,300
February-08		110	320	2,400	20,000	1,600	1,400	1,300	3,500
May-08		3,800	9,300	12,000	220,000	3,900	1,900	5,100	19,000
August-08		NA							
February-09		42	100	5,600	51,000	990	1,300	450	1,600
May-09 [†]		-	-	-	-	-	-	-	-
May-10	Î	-	_	4,800	81,000	ND	ND	-	-

Results shown are only the reported detected values. Results from historic URS analytical reports, with the exception of \dagger ND = not detected above reporting limit.

NA = results not available

Results do not include all data collected to date (some dates may be missing).

Results do not include validation flags identifying estimated values or other qualifiers.

Detections are indicated in BOLD

Highlighted results exceed NYSDEC groundwater standards

= start up of treatment system, February 22, 2006

Indicates highest concentration per well

^{- =} Indicates no sample taken

^{* =} MW-2 was decommissioned in 2006.

^{**=} MW-3 and MW-3C appear to be misidentified at some point between 2000 and Feb. 2006, with this mislabeling assure to be carried through all URS data (May 2009 RI locations and results for MW-3 and MW-3C were based on well depth

^{*** =} MW-11K was damaged after May 2007 and has not been replaced.

 $[\]dagger$ = Results for the MACTEC May 2009 sampling event do not include all sampling locations.

Table 4.4: Summary of 2009 VOC Concentrations in Groundwater

	Location	GPW-01	GPW-02	GW-1	GW-1	GW-2	GW-3	GW-3
	Sample Date	5/25/2009	5/25/2009	5/4/2009	5/4/2009	5/5/2009	5/4/2009	5/4/2009
	Sample Depth		12	12	20	19	12	20
		828103GPW0101309				828103-GW201909	828103-GW301209	828103-GW302009
	Oc Code		FS	FS	FS	FS	FS	FS
Parameter	GW Standard	Result Oualifier	Result Oualifier			Result Oualifier		
1.1.1-Trichloroethane	5	1 U	1 U	49	41	1 U	1 U	1 II
1.1-Dichloroethane	5	1 U	1 U	11	27	15	1.2	0.99 J
1,1-Dichloroethene	5	1 U	1 U	4.6	8.1	5,3	3.2	3.6
1.2.4-Trichlorobenzene	5	1 U	1 U	0.82 J	1 U	1 U	1 U	1 U
2-Butanone	50*	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NA	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50*	5 U	5 U	5 U	11	5 U	5 U	5 U
Benzene	1	1 U	1 U	1 U	0.99 J	1.4	1 U	1 U
Carbon disulfide	60*	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloromethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cis-1,2-Dichloroethene	5	38	81	480 DJ	720 DJ	390 DJ	150 DJ	110 DJ
Cyclohexane	NA	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethyl benzene	5	1 U	1 U	1 U	1.1	1 U	1 U	1 U
Isopropylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tertbutyl Ether	10*	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5	7.4	830 D	640 DJ	2900 DJ	150 DJ	720 DJ	730 DJ
Toluene	5	1 U	1 U	1 U	2.7	0.77 J	1 U	1 U
trans-1,2-Dichloroethene	5	2.6	1.2	5.1	19	3.1	0.73 J	1
Trichloroethene	5	1600 D	5200 D	420 DJ	840 DJ	310 DJ	120 DJ	110 DJ
Vinyl chloride	2	1 U	7.6	28	57	55	30	45
Xylene, m/p	5	2 U	2 U	2 U	1.6 J	2 U	2 U	2 U
Xylene, o	5	1 U	1 U	1 U	2.5	1 U	1 U	1 U

Results in microgram per liter (µg/L)

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

4.1 Table 4.1;4.4-4.6; 4.8.xlsx

U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Number shown is standard unless *.

Detections are indicated in BOLD

Table 4.4: Summary of 2009 VOC Concentrations in Groundwater

	Location	GW-4	GW-5	GW-5	GW-6	GW-7	GW-8	GW-8
	Sample Date	5/5/2009	5/4/2009	5/4/2009	5/5/2009	12/9/2009	12/10/2009	12/9/2009
	Sample Depth	20	12	19	19	15	10	20
	Sample ID	828103-GW402009	828103-GW501209	828103-GW501909	828103-GW601909	828103-GW071509	828103-GW081009	828103-GW082009
	Qc Code	FS						
Parameter	GW Standard	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifie
1,1,1-Trichloroethane	5	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5	1 U	1 UJ	1 U	2.2	1 U	1 U	1 U
1,1-Dichloroethene	5	1 U	1 UJ	1 U	3.1	1 U	1 U	1 U
1,2,4-Trichlorobenzene	5	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
2-Butanone	50*	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NA	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U
Acetone	50*	5 U	5 UJ	5 U	5 U	5 UJ	12 J	5 UJ
Benzene	1	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60*	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Chloroform	7	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Chloromethane	5	1 U	3.3 J	1 U	1 U	1 U	1 U	1 U
Cis-1,2-Dichloroethene	5	1 U	1 UJ	2.7	31	1 U	1 U	1 U
Cyclohexane	NA	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	5	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Ethyl benzene	5	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Isopropylbenzene	5	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Methyl Tertbutyl Ether	10*	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Methylene chloride	5	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5	1 UJ	29 J	3	3.4	1 U	1 U	1 U
Toluene	5	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	5	1 U	1 UJ	1 U	1.3	1 U	1 U	1 U
Trichloroethene	5	1 U	9.6 J	34	81	1 U	1 U	1 U
Vinyl chloride	2	1 U	1 UJ	1 U	7.1	1 U	1 U	1 U
Xylene, m/p	5	2 U	2 UJ	2 U	2 U	2 U	2 U	2 U
Xylene, o	5	1 U	1 UJ	1 U	1 U	1 U	1 U	1 U

Page 2 of 5

Notes:

Results in microgram per liter (µg/L)

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration

greater than the reporting limit J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998

Number shown is standard unless *.

Detections are indicated in BOLD

Table 4.4: Summary of 2009 VOC Concentrations in Groundwater

	Location	GW-9	GW-10	GW-10	GW-11	GW-11	MW-01	MW-01A
	Sample Date	12/9/2009	12/9/2009	12/9/2009	12/9/2009	12/9/2009	5/26/2009	5/26/2009
	Sample Depth	15	8	19	11	18	15	7
	Sample ID	828103-GW091509	828103-GW100809	828103-GW101909	828103-GW111109	828103-GW111809	828103-MW0101509	28103-MW01A0070
	Qc Code	FS						
Parameter	GW Standard	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifie
1,1,1-Trichloroethane	5	1 U	1 U	1 U	1 U	1 U	1 UJ	1 UJ
1,1-Dichloroethane	5	1 U	1 U	1 U	1 U	1 U	4	1 U
1,1-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	2.5 J	1 U
1,2,4-Trichlorobenzene	5	1 U	1 UJ	1 U	1 UJ	1 U	1 U	1 U
2-Butanone	50*	5 U	10	5 U	18	5 U	5 U	5 U
4-Methyl-2-pentanone	NA	5 U	5 U	5 U	7.6	5 U	5 U	5 U
Acetone	50*	5 UJ	32	5 UJ	59	5 UJ	5 U	5 U
Benzene	1	1 U	0.9 J	1 U	0.72 J	1 U	1 U	1 U
Carbon disulfide	60*	1 U	1 U	1 U	0.86 J	1 U	1 U	1 U
Chloroform	7	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloromethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cis-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	450 D	310 D
Cyclohexane	NA	1 U	1.2	1 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	5	1 U	1 UJ	1 U	1 UJ	1 U	1 U	1 U
Ethyl benzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Isopropylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tertbutyl Ether	10*	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	5	1 U	1 UJ	1 U	1 UJ	1 U	1 U	1 U
Tetrachloroethene	5	1 U	1 U	1 U	1 U	1 U	53	44 D
Toluene	5	1 U	1.4	1 U	0.5 J	1 U	1 U	1 U
trans-1,2-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	7	2.3
Trichloroethene	5	1 U	1 U	1 U	1 U	1 U	61 D	67 D
Vinyl chloride	2	1 U	1 U	1 U	1 U	1 U	37 D	5.4 J
Xylene, m/p	5	2 U	1.6 J	2 U	2 U	2 U	2 U	2 U
Xylene, o	5	1 U	0.5 J	1 U	1 U	1 U	1 U	1 U

Page 3 of 5

Notes:

Results in microgram per liter (µg/L)

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998

Number shown is standard unless *.

Detections are indicated in BOLD

Table 4.4: Summary of 2009 VOC Concentrations in Groundwater

	Location	MW-03	MW-03C	MW-04	MW-05	MW-06	MW-08K	MW-09K
	Sample Date	5/26/2009	5/26/2009	5/25/2009	5/25/2009	5/25/2009	5/26/2009	5/25/2009
	Sample Depth	10	28	18	18	16	17	18
	Sample ID	828103-MW0301009	328103-MW03C02809	828103-MW0401809	828103-MW0501809	828103-MW0601609	28103-MW08K0170	28103-MW09K0180
	Qc Code	FS	FS	FS	FS	FS	FS	FS
Parameter	GW Standard	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	5	47 J	1 UJ	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	5	3.5	32 J	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	5	16 J	1.8 J	1 U	1 U	1 U	1 U	1 U
1,2,4-Trichlorobenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone	50*	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NA	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50*	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	1	1 U	0.82 J	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60*	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7	0.74 J	1 U	1 U	1 U	1 U	1 U	1 U
Chloromethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cis-1,2-Dichloroethene	5	190 D	220 D	1 U	1 U	13	1 U	1 U
Cyclohexane	NA	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Ethyl benzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Isopropylbenzene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl Tertbutyl Ether	10*	1 U	1 U	1.3	1 U	1 U	1 U	1 U
Methylene chloride	5	1 U	1 U	0.52 J	1 U	1 U	1 U	1 U
Tetrachloroethene	5	9100 D	370 D	1 U	1 UJ	1.1 U	1 U	1 UJ
Toluene	5	1.1	1 U	1 U	1 U	1 U	1 U	1 U
trans-1,2-Dichloroethene	5	4.3	1.1 J	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5	2200 D	1100 D	1 U	4.6	4.6	1 U	1.9
Vinyl chloride	2	1 U	7.5 J	1 U	1 U	0.59 J	1 U	1 U
Xylene, m/p	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Xylene, o	5	1.9	1 U	1 U	1 U	1 U	1 U	1 U

Results in microgram per liter (µg/L)

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998

Number shown is standard unless *.

Detections are indicated in BOLD

Table 4.4: Summary of 2009 VOC Concentrations in Groundwater

	Location	MW-10K	MW-11S	MW-12K	MW-12K	MW-12S	MW-13K	MW-14K
	Sample Date	5/26/2009	5/26/2009	5/26/2009	5/26/2009	5/25/2009	5/26/2009	5/26/2009
	Sample Depth	18	12	16	16	10	16	16
	Sample ID	328103-MW10K01809	328103-MW11S01209	328103-MW12K01609	28103-MW12K01609	828103-MW12S01009	28103-MW13K0160	828103-MW14K0190
	Qc Code	FS	FS	FS	FD	FS	FS	FS
Parameter	GW Standard	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1,1-Trichloroethane	5	1 U	1 U	1 U	1 U	1 U	59 J	1 U
1,1-Dichloroethane	5	3.9	1 U	1 U	1 U	1 U	47 J	1 U
1,1-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	38 J	1 U
1,2,4-Trichlorobenzene	5	1 U	1 U	1 U	1 U	1 U	4 U	1 U
2-Butanone	50*	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	NA	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	50*	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	1	0.61 J	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60*	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloromethane	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cis-1,2-Dichloroethene	5	100 D	1 U	1 U	1 U	1 U	1100 D	98
Cyclohexane	NA	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Dichlorodifluoromethane	5	1 U	1 U	1 U	1 U	1 U	2.6 J	1 U
Ethyl benzene	5	1 U	1 U	1 U	1 U	1 U	7 J	1 U
Isopropylbenzene	5	1 U	1 U	1 U	1 U	1 U	4 J	1 U
Methyl Tertbutyl Ether	10*	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5	39	1 UJ	1 UJ	1 UJ	1 UJ	5800 D	250 D
Toluene	5	1 U	1 U	1 U	1 U	1 U	2 J	1 U
trans-1,2-Dichloroethene	5	1.6	1 U	1 U	1 U	1 U	25 J	1.8
Trichloroethene	5	410 D	1 U	8.2	6.9	1 U	1300 D	5100 D
Vinyl chloride	2	5.8	1 U	1 U	1 U	1 U	69 D	1 U
Xylene, m/p	5	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Xylene, o	5	1 U	1 U	1 U	1 U	1 U	13 J	1 U

Results in microgram per liter (µg/L)

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998

Number shown is standard unless *.

Detections are indicated in BOLD

MACTEC Engineering and Consulting, P.C. Project No. 3612082107

Table 4.5: 2009 Monitored Natural Attenuation Parameters

		Location	MW-01	MW-01A	MW-03	MW-03C	MW-04
		Sample Date	5/26/2009	5/26/2009	5/26/2009	5/26/2009	5/25/2009
		Sample ID	828103-MW0101509	828103-MW01A00709	828103-MW0301009	828103-MW03C02809	828103-MW0401809
		QC Code	FS	FS	FS	FS	FS
Parameter	Analysis Method	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
Iron	SW6010	μg/L	3860		95	1190	59.2
Manganese	SW6010	μg/L	248		44.1	45.1	31.9
Ethane	RSK175	μg/L	5 U	5 U	5 U	5 U	5 U
Ethene	RSK175	μg/L	5 U	5 U	5 U	5 U	5 U
Methane	RSK175	μg/L	18.8	5 U	5 U	5 U	5 U
Sulfide	9034	mg/L	1 UJ		1 UJ	1 UJ	1 UJ
Chloride	E300	mg/L	91 D	62 D	35 D	210 D	66 D
Nitrate as N	E300	mg/L	0.1 UJ	0.378 J	10 J	0.1 UJ	0.266 J
Nitrite as N	E300	mg/L	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ	0.05 UJ
Sulfate	E300	mg/L	44	18	96 D	160 D	100 D
Alkalinity, Total	SM2320 B(Alk)	mg/L	270	270	210	440	350
Carbon Dioxide	SM2320 B(CO2)	mg/L	100	100	93	200	200
Total Organic Carbon	SM5310B	mg/L	8.32	4.37	4	1.67	1.5
ORP	Field Measurement		-120	-140	140	-20	40
DO	Field Measurement		3.8	2.1	1.3	<0.1	<0.1
pН	Field Measurement		7.8	7.7	8.0	7.1	7.6
MNA Scoring			16	16	6	19	6

Notes:

 $\mu g/L = microgram per liter$ mg/L= milligram per liter

-- = Not Analyzed

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Detections are indicated in **BOLD**

MACTEC Engineering and Consulting, P.C. Project No. 3612082107

Table 4.5: 2009 Monitored Natural Attenuation Parameters

		Location	MW-06	MW-08K	MW-09K	MW-10K	MW-11S
		Sample Date	5/25/2009	5/26/2009	5/25/2009	5/26/2009	5/26/2009
		Sample ID	828103-MW0601609	828103-MW08K01709	828103-MW09K01809	828103-MW10K01809	828103-MW11S01209
		QC Code	FS	FS	FS	FS	FS
Parameter	Analysis Method	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
Iron	SW6010	μg/L	50 U	50 U	949	1710	50 U
Manganese	SW6010	μg/L	28.6	24.8	47.9	58.6	10 U
Ethane	RSK175	μg/L	5 U	5 U	5 U	5 U	5 U
Ethene	RSK175	μg/L	5 U	5 U	5 U	5 U	5 U
Methane	RSK175	μg/L	5 U	5 U	5 U	5 U	5 U
Sulfide	9034	mg/L	1 UJ	1 UJ	1 UJ	1.6 J	1 UJ
Chloride	E300	mg/L	490 D	57 D	340 D	61 D	100 D
Nitrate as N	E300	mg/L	0.788 J	4.25	0.1 UJ	0.1 U	9.21
Nitrite as N	E300	mg/L	0.05 UJ	0.05 U	0.05 UJ	0.05 U	0.05 U
Sulfate	E300	mg/L	150 D	44	140 D	130 D	43
Alkalinity, Total	SM2320 B(Alk)	mg/L	550	300	420	590	240
Carbon Dioxide	SM2320 B(CO2)	mg/L	200	100	200	300	100
Total Organic Carbon	SM5310B	mg/L	6.02	1.5	2.24	2.69	2.61
ORP	Field Measurement		80		-40	-30	190
DO	Field Measurement		2.0		<0.1	0.3	1.6
pН	Field Measurement		7.5		7.4	7.0	7.4
MNA Scoring			4		8	19	9

Notes:

μg/L= microgram per liter mg/L= milligram per liter

-- = Not Analyzed

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Detections are indicated in **BOLD**

Table 4.5: 2009 Monitored Natural Attenuation Parameters

		Location	MW-12K	MW-12K	MW-12S	MW-13K	MW-14K
		Sample Date	5/26/2009	5/26/2009	5/25/2009	5/26/2009	5/26/2009
		Sample ID	828103-MW12K01609	328103-MW12K01609D	828103-MW12S01009	828103-MW13K01609	828103-MW14K01909
		QC Code	FS	FD	FS	FS	FS
Parameter	Analysis Method	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
Iron	SW6010	μg/L	89.6	86.9	50 U	838	481
Manganese	SW6010	μg/L	118	111	77.5	75	37.6
Ethane	RSK175	μg/L	5 U	5 U	5 U	5 U	5 U
Ethene	RSK175	μg/L	5 U	5 U	5 U	5 U	5 U
Methane	RSK175	μg/L	5 U	5 U	5 U	7.8	5 U
Sulfide	9034	mg/L	1.6 J		1 UJ	1.6 J	1.6 J
Chloride	E300	mg/L	18 D	22 D	41 D	340 D	130 D
Nitrate as N	E300	mg/L	0.285	0.291	0.257 J	0.1 U	0.1 U
Nitrite as N	E300	mg/L	0.05 U	0.05 U	0.05 UJ	0.05 U	0.05 U
Sulfate	E300	mg/L	77 D	82 D	210 D	100 D	120 D
Alkalinity, Total	SM2320 B(Alk)	mg/L	440	440	440	470	360
Carbon Dioxide	SM2320 B(CO2)	mg/L	200	200	200	200	200
Total Organic Carbon	SM5310B	mg/L	1.91	1.75	2.18	2.64	1.49
ORP	Field Measurement		80		180	-30	-50
DO	Field Measurement		2.0		3.0	0.3	<0.1
pH	Field Measurement		7.3		7.4	7.4	7.6
MNA Scoring			5		2	19	15

μg/L= microgram per liter mg/L= milligram per liter

-- = Not Analyzed

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

 $\label{eq:U} U = Not \ detected \ at \ a \ concentration$ greater than the reporting limit

J = Estimated value

D = Result from diluted run

Detections are indicated in **BOLD**

Table 4.6: Summary of 2009 VOC Concentrations in Sewer Water Samples

	Location	SL-	-1	SL	-2	SL	-3	SL-	-4	SL-	-5	SL	₋ -6	
	Sample Date	5/27/2	2009	5/27/2	2009	5/27/2	2009	5/27/2	2009	5/27/2	2009	5/27/	2009	
	Sample ID	828103-SI	L101209	828103-SL201309		828103-SL301309		828103-SL400609		828103-SL500809		828103-S	L601109	
	QC Code	FS	3	FS		F:	S	FS		FS		F	S	
Parameter	Criteria (µg/L)	Result			Qualifier	Result	Qualifier	Result	Qualifier	Result	Result Qualifier		Qualifier	
1,2,4-Trichlorobenzene	5	0.0	0.8 J		1 U		1 U	1 U			1 U		1 U	
1,4-Dichlorobenzene	3		1 U		1 U		1 U	2.3	2	0	5 J		1 U	
Acetic acid, methyl ester	NA		1 U		1 U		1 U	1,	3	5		3.	.7	
Acetone	50*	23	3	2	7	3	5	5.3		34		1	14	
Bromodichloromethane	50*	0.52	2 J	1 U		1 U			1 U		1 U		1 U	
Carbon disulfide	60*	0.71	1 J		1 U	1 U		0.54 J			1 U		1 U	
Chloroform	7	2	2		2	1.5		0.8 J			1 U	0.8	87 J	
Cis-1,2-Dichloroethene	5		1 U	1.	1	1.	4		1 U		1 U	2	27	
Methylene chloride	5	1	1 J	0.8	0.88 J 0.93 J 1 U 1 U		1 U		1 U					
Tetrachloroethene	5	-	1 U		8	4.	2		1 U		1 U	7	73	
Toluene	5	3.2	3.2		2	2.	2	3(0	1	0	5.	.1	
Trichloroethene	5		1 U		1.4		2.1		1 U		U 1 U		12	
Vinyl chloride	2		1 U		1 U		1 U		1 U		1 U 1 U		1.	.3

Results in microgram per liter ($\mu g/L$) Only detected compounds shown.

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

NS = No Standard

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Number shown is standard unless *.

Detections are indicated in **BOLD**

Table 4.7: 2009 Sewer Sample Location Data

Sewer Sample ID	Location	Depth to Bottom of Channel	Flow Direction	Size	Туре	Year Built	
SL-1	Clinton Avenue	12.5	North to SL-2	36-inch	Brick in Concrete	1895	
SL-2	Clinton Avenue	12.9	North to SL-3	36-inch	Brick in Concrete	1895	
SL-3	Clinton Avenue	13.0	North	36-inch	Brick in Concrete	1895	
SL-4	Caroline Street	6.2	East	12-inch	Vitrifide Clay	1892	
SL-5	Benton Street	8.2	West to SL-6	15-inch	Vitrifide Clay in Concrete	1898	
SL-6	Benton Street	11.0	West to S. Clinton	15-inch	Vitrifide Clay in Concrete	1898	

Depth measured in feet below top of rim on 5/27/09. (measurement is to bottom of flow channel)

Table 4.8: Summary of 2009 VOC Concentrations in Soil Vapor

Location	SV-01	SV-01	SV-02	SV-03	SV-04		
Sample Date	5/7/2009	5/7/2009	5/6/2009	5/6/2009	5/7/2009		
Sample ID	828103-GV1080	9 828103-GV10809D	828103-GV20709	828103-GV30709	828103-GV40109		
Oc Code	FS	FD	FS	FS	FS		
Parameter	Result Qual	ifier Result Qualifie	r Result Qualifier	Result Qualifier	Result Qualifier		
1,1,1-Trichloroethane	0.54 U	0.54 U	0.54 U	0.54 U	9.4		
1,1,2-Trichloro-1,2,2-Trifluoro	0.76 U	0.76 U	0.76 U	0.76 U	1.1		
1,1-Dichloroethane	0.4 U	0.4 U	0.4 U	0.4 U	1.9		
1,2,4-Trichlorobenzene	0.89	0.88	0.91	0.74 U	1.9		
1,2,4-Trimethylbenzene	1.5	1.7	2.2	1.7	25		
1,2-Dichlorobenzene	0.6 U	0.6 U	0.6 U	0.6 U	0.76		
1,3,5-Trimethylbenzene	0.56	0.54	0.8	0.67	9.8		
2-Butanone	12 J	21 J	78	17	12		
2-Hexanone	2.6	3	13	4.9	0.4 U		
2-Propanol	7.3	4.6	7.7	4.2	18		
4-Ethyltoluene	0.5 U	0.5 U	0.55	0.5 U	2.9		
4-Methyl-2-pentanone	0.58	0.4 U	2.9	2.3	3.4		
Acetone	76 J	160 J	350 J	66 J	370 J		
Benzene	0.93	1.2	5.8	52	14		
Carbon disulfide	0.82	0.32 U	3.7	1.5	3.3		
Chloroethane	0.26 U	0.26 U	0.85	0.26 U	0.26 U		
Chloroform	0.48 U	0.48 U	0.48 U	0.48 U	1.9		
Chloromethane	1.4	1.5	2.6	1.4	0.34		
Cis-1,2-Dichloroethene	0.4 U	0.4 U	0.4 U	3.4	5.4		
Cyclohexane	0.34 U	0.34 U	15	0.34 U	42		
Dichlorodifluoromethane	2.3	2.1	2.2	2.2	2.1		
Ethanol	18 J	20 J	36 J	13 J	86 J		
Ethyl benzene	0.58	0.84	1.1	2.1	11		
Heptane	0.66	0.58	9.2	3.7	97		
Hexane	2.4	2.8	38	5.5	120		
Styrene	0.42 U	0.42 U	0.42 U	0.42 U	0.54		
Tetrachloroethene	5.5 J	3 J	0.68 U	240	5500		
Toluene	2.4	3.6	5.6	9.7	45		
trans-1,2-Dichloroethene	0.4 U	0.4 U	0.4 U	0.63	0.4 U		
Trichloroethene	0.9	0.54 U	0.54 U	130	3500		
Trichlorofluoromethane	1.5	1.3	1.3	1.2	1.5		
Xylene, m/p	1.5	2.3	2.3	4.5	43		
Xylene, o	0.57	0.95	0.76	1.5	14		

Only Detected Compounds Shown (detections are bolded) Samples analyzed for VOCs by USEPA Method TO-15.

Results in microgram per cubic meter ($\mu g/m3$)

QC Code:

FS = Field Sample

Qualifiers:

U = Not detected at a concentration greater than the RL

J = Estimated value

Location ID = Sample location name (First two Digits)

SV = Soil Vapor

Table 4.9: MPE System Vacuum Measurements

	Comments	Background Readings	MPE-1	0 on only	MPE-4	on only		E-6 on PE-4 on	MPE-4 MPE-10 an	SVE System Fully Operational (GWE system off)	
	Comments	(System off 24+ hours)	Initial Initial + 30 sec.		Initial	Initial + 20 min.	Initial	Initial + 3 min.	Initial	Initial + 15 min.	SVE System Fully Operational (GWE system off)
Exploration ID	Units Exploration Type	Vacuum (inches H ₂ O)	Vacuum (inches H ₂ O)	Vacuum (inches H ₂ O)	Vacuum (inches H ₂ O)	Vacuum (inches H ₂ O)	Vacuum (inches H ₂ O)	Vacuum (inches H ₂ O)	Vacuum (inches H ₂ O)	Vacuum (inches H ₂ O)	Vacuum (inches H ₂ O)
GS-1	Geoprobe Microwell	-	-	-	0.058	0.076	-	-	-	-	-0.133
GS-2	Geoprobe Microwell	-	-	-	-0.046	0.140	-	-	-	-	0.299
GS-3	Geoprobe Microwell	-	-	-	-0.421	-0.423	-1.090	-1.086	-	-	-2.790
GS-4	Geoprobe Microwell	-	-	-	-	-	-	-	-0.308	-0.306	-3.080
GS-5	Geoprobe Microwell	-	-	-	-	-	-	-	-0.464	-0.460	-3.020
GS-6	Geoprobe Microwell	0.128	-0.250	-0.260	-	-	-	-	-0.474	-0.555	-1.560
GS-7	Geoprobe Microwell	0.228	-0.555	-0.570	-	-	-	-	-0.677	-0.679	-1.997
GS-8	Geoprobe Microwell	0.136	-0.477	-0.482	-	-	-	-	-	-	-1.620
GS-9	Geoprobe Microwell	0.196	0.346	0.470	-	-	-	-	-	-	0.261
GS-10	Geoprobe Microwell	-	-	-	-	-	-	-	-	-	0.217
MPE-1	Multiphase Extraction Well	-	-	-	-	-	-	-	-	-	-0.019
MPE-2	Multiphase Extraction Well	-	-	-	-	-	-	-	-	-	-0.026
MPE-3	Multiphase Extraction Well	-	-	-	-	-	-	-	-	-	15.0
MPE-4	Multiphase Extraction Well	T.	1	-	1	-	-	-	ı	-	15.0
MPE-5	Multiphase Extraction Well	-		-	i	-	-	-	ī	-	-0.566
MPE-6	Multiphase Extraction Well	-	-	-	-	-	-	-	-	-	15.0
MPE-7	Multiphase Extraction Well	T.	1	-	1	-	-	-	ı	-	15.0
MPE-8	Multiphase Extraction Well	T.	1	-	1	-	-	-	ı	-	15.0
MPE-9	Multiphase Extraction Well	T.	1	-	1	-	-	-	ı	-	-0.075
MPE-10	Multiphase Extraction Well	T.	1	-	1	-	-	-	ı	-	15.000
MPE-11	Multiphase Extraction Well	T.	1	-	1	-	-	-	ı	-	-1.120
MPE-12	Multiphase Extraction Well	-	-	-	-	-	-	-	-	-	-0.020
MPE-13	Multiphase Extraction Well	-	-	-	-	-	-	-	-	-	15.0
MPE-14	Multiphase Extraction Well	-	-	-	-	-	-	-	-	-	15.0
MPE-15	Multiphase Extraction Well	-	-	-	-	-	-	-	-	-	15.0
MPE-16	Multiphase Extraction Well	-	-	-	-	-	-	-	-	-	15.0
MPE-17	Multiphase Extraction Well	-	-	-	-	-	-	-	-	-	-
MPE-18	Multiphase Extraction Well	=	1	-	-	-	-	-	1	-	15.0

Measurements collected using a TSI VelociCalc meter.

Barometric pressure at time of measurement = 29.37 inches Hg.
- = Indicates Vacuum Was Not Measured At This Location
FR = First Reading

MACTEC Engineering and Consulting, P.C., Project No. 3612082107

Table 4.10: Groundwater Elevation Summary - MPE System Evaluation

							5/25/2009 Event									6/3/2009 Event		
							3/23/2009 Event			24 hrs after shutdown			31 hrs after shutdown; SVE on			(8 days after shutdown)		
Well ID	Ground Elevation (ft)	Measuring Point Elevation (riser, ft)	Total Depth (ft)	Screen Length (ft)	Depth to Bedrock (ft bgs)	Screened Zone	Initial Water Levels (ft bmp)	Water Elevation (ft)	Water Elevation bgs (ft)	Water Levels (ft bmp)	Water Elevation (ft)	Water Elevation bgs (ft)	Water Levels (ft bmp)	Water Elevation (ft)	Water Elevation bgs (ft)	Water Levels (ft bmp)	Water Elevation (ft)	Water Elevation bgs (ft)
GPW-01	512.91	512.55	14.85	NA	NA	overburden	8.41	504.14	8.77	7.31	505.24	7.67	7.27	505.28	7.63	6.86	505.69	7.22
GPW-02	512.79	512.51	14.05	NA	NA	overburden	7.52	504.99	7.80	7.41	505.10	7.69	7.55	504.96	7.83	6.69	505.82	6.97
MW-01	513.43	513.06	20.40	5.0	NA	interface?	8.45	504.61	8.82	9.11	503.95	9.48	9.09	503.97	9.46	4.69	508.37	5.06
MW-01A	513.52	513.05	8.00	5.0	NA	overburden	5.85	507.20	6.32	7.04	506.01	7.51	7.4*	505.65	7.87	8.75	504.30	9.22
MW-03C	513.14	512.72	32.70	5.0	22.7	bedrock	13.79	498.93	14.21	13.56	499.16	13.98	13.55	499.17	13.97	13.52	499.20	13.94
MW-03	513.34	513.10	21.20	15.0	NA	overburden/interface	7.60	505.50	7.84	7.55	505.55	7.79	7.64	505.46	7.88	6.80	506.30	7.04
MW-04	513.30	513.01	24.10	15.0	23.1	overburden/interface	9.85	503.16	10.14	9.33	503.68	9.62	9.32	503.69	9.61	9.08	503.93	9.37
MW-05	513.72	513.49	24.60	15.0	23.6	overburden/interface	10.17	503.32	10.40	9.64	503.85	9.87	9.61	503.88	9.84	9.36	504.13	9.59
MW-06	512.06	511.54	20.60	15.0	19.9	overburden/interface	8.27	503.27	8.79	7.76	503.78	8.28	7.72	503.82	8.24	7.50	504.04	8.02
MW-08K	512.57	512.24	19.20	10.0	17.8	interface	6.96	505.28	7.29	7.28	504.96	7.61	7.32	504.92	7.65	6.89	505.35	7.22
MW-08S	512.52	512.27	16.00	10.0	NA	overburden	7.06	505.21	7.31	6.97	505.30	7.22	6.95	505.32	7.20	6.29	505.98	6.54
MW-09K	513.27	513.01	22.70	10.0	23.3	interface	9.75	503.26	10.01	9.26	503.75	9.52	9.24	503.77	9.50	9.02	503.99	9.28
MW-09S	513.27	512.87	16.00	10.0	NA	overburden	8.33	504.54	8.73	8.07	504.80	8.47	8.03	504.84	8.43	7.74	505.13	8.14
MW-10K	512.84	512.49	21.80	10.0	22.0	overburden-interface?	8.81	503.68	9.16	8.30	504.19	8.65	8.26	504.23	8.61	8.01	504.48	8.36
MW-10S	512.70	512.25	16.00	10.0	NA	overburden	6.43	505.82	6.88	6.43	505.82	6.88	6.44	505.81	6.89	6.01	506.24	6.46
MW-11K	512.60	512.12	18.20	10.0	17.5	overburden-interface?												
MW-11S	512.60	512.36	14.00	10.0	NA	overburden	7.41	504.95	7.65	7.99	504.37	8.23	7.55	504.81	7.79	6.75	505.61	6.99
MW-12K	513.09	512.67	19.50	5.0	19.3	interface	9.28	503.39	9.70	8.79	503.88	9.21	8.78	503.89	9.20	8.48	504.19	8.90
MW-12S	513.01	512.53	14.00	10.0	NA	overburden	8.09	504.44	8.57	7.97	504.56	8.45	7.95	504.58	8.43	6.76	505.77	7.24
MW-13K	513.41	513.13	21.50	5.0	19.6	interface	8.83	504.30	9.11	9.33	503.80	9.61	9.30	503.83	9.58	9.08	504.05	9.36
MW-14K	513.04	512.66	25.00	5.0	22.4	interface	9.41	503.25	9.79	8.84	503.82	9.22	8.84	503.82	9.22	8.60	504.06	8.98
MPE-1	513.91	513.40	13.50	10.0	20.7	overburden	10.65	502.75	11.16	9.27	504.13	9.78	9.17	504.23	9.68	5.95	507.45	6.46
MPE-2	514.02	513.42	13.50	7.5	NA	overburden	11.21	502.21	11.81	9.23	504.19	9.83	9.16	504.26	9.76	5.97	507.45	6.57
MPE-3	513.86	513.41	13.50	10.0	22.0	overburden	11.11	502.30	11.56	9.19	504.22	9.64	9.09	504.32	9.54	5.97	507.44	6.42
MPE-4	513.76	513.39	12.50	9.5	NA	overburden	7.95	505.44	8.32	9.20	504.19	9.57	7.33	506.06	7.70	5.98	507.41	6.35
MPE-5	513.82	513.43	11.50	8.5	NA	overburden	9.03	504.40	9.42	7.54	505.89	7.93	7.61	505.82	8.00	6.06	507.37	6.45
MPE-6	513.63	513.22	12.00	9.0	NA	overburden	6.63	506.59	7.04	8.17	505.05	8.58	6.56	506.66	6.97	6.95	506.27	7.36
MPE-7	513.86	513.30	11.00	8.0	NA	overburden	5.98	507.32	6.54	7.77	505.53	8.33	6.65	506.65	7.21	6.72	506.58	7.28
MPE-8	513.91	513.48	10.00	7.0	NA	overburden	8.19	505.29	8.62	8.35	505.13	8.78	7.55	505.93	7.98	7.22	506.26	7.65
MPE-9	513.64	513.14	10.00	7.0	NA	overburden	7.07	506.07	7.57	7.19	505.95	7.69	7.17	505.97	7.67	6.26	506.88	6.76
MPE-10	513.54	513.12	12.00	9.0	NA	overburden	10.19	502.93	10.61	7.17	505.95	7.59	5.55	507.57	5.97	6.13	506.99	6.55
MPE-11	513.35	513.02	10.00	4.0	NA	overburden	7.25	505.77	7.58	6.87	506.15	7.20	6.75	506.27	7.08	5.77	507.25	6.10
MPE-12	513.24	512.90	10.00	4.0	NA	overburden	6.76	506.14	7.10	6.72	506.18	7.06	6.75	506.15	7.09	5.70	507.20	6.04
MPE-13	513.21	512.89	11.50	5.0	NA	overburden	5.81	507.08	6.13	5.94	506.95	6.26	**	508.99	4.22	5.63	507.26	5.95
MPE-14	512.69	512.23	11.00	5.0	NA	overburden	4.01	508.22	4.47	6.75	505.48	7.21	**	NA	NA	5.69	506.54	6.15
MPE-15	513.30	512.97	11.00	5.0	NA	overburden	9.16	503.81	9.49	7.25	505.72	7.58	**	508.47	4.83	6.61	506.36	6.94

Table 4.10: Groundwater Elevation Summary - MPE System Evaluation

								5/25/2009 Eve	nt	5/27/2009 Event						6/3/2009 Event			
						5/25/2009 Event		24 hrs after shutdown 3:			31 hrs after shutdown; SVE on			(8 days after shutdown)					
Well ID	Ground Elevation (ft)	Measuring Point Elevation (riser, ft)	Total Depth (ft)	Screen Length (ft)	Depth to Bedrock (ft bgs)	Screened Zone	Initial Water Levels (ft bmp)	Water Elevation (ft)	Water Elevation bgs (ft)	Water Levels (ft bmp)	Water Elevation (ft)	Water Elevation bgs (ft)	Water Levels (ft bmp)	Water Elevation (ft)	Water Elevation bgs (ft)	Water Levels (ft bmp)	Water Elevation (ft)	Water Elevation bgs (ft)	
MPE-16	513.60	513.31	12.00	9.0	NA	overburden	9.69	503.62	9.98	6.92	506.39	7.21	**	508.01	5.59	6.88	506.43	7.17	
MPE-17	513.47	512.97	13.50	7.5	NA	overburden	8.20	504.77	8.70	7.64	505.33	8.14	7.52	505.45	8.02	5.47	507.50	5.97	
MPE-18	513.55	513.12	11.00	8.0	NA	overburden	7.31	505.81	7.74	6.67	506.45	7.10	5.45	507.67	5.88	6.65	506.47	7.08	
GS-1	513.75	513.38	16.00	5.0	NA	overburden	10.71	502.67	11.08	9.13	504.25	9.50	9.02	504.36	9.39	5.88	507.50	6.25	
GS-2	513.85	513.59	16.00	5.0	NA	overburden	10.74	502.85	11.00	9.28	504.31	9.54	9.20	504.39	9.46	6.06	507.53	6.32	
GS-3	513.70	513.49	16.00	5.0	NA	overburden	8.63	504.86	8.84	8.41	505.08	8.62	8.49	505.00	8.70	7.16	506.33	7.37	
GS-4	513.67	513.43	16.00	5.0	NA	overburden	8.70	504.73	8.94	8.36	505.07	8.60	8.45	504.98	8.69	7.12	506.31	7.36	
GS-5	513.61	513.38	16.00	5.0	NA	overburden	7.78	505.60	8.01	7.62	505.76	7.85	7.56	505.82	7.79	6.78	506.60	7.01	
GS-6	513.51	513.22	16.00	5.0	NA	overburden	7.41	505.81	7.70	7.22	506.00	7.51	7.35	505.87	7.64	6.43	506.79	6.72	
GS-7	513.54	513.25	16.00	5.0	NA	overburden	7.80	505.45	8.09	7.06	506.19	7.35	7.48	505.77	7.77	6.31	506.94	6.60	
GS-8	513.53	513.37	16.00	5.0	NA	overburden	7.39	505.98	7.55	6.96	506.41	7.12	7.28	506.09	7.44	6.23	507.14	6.39	
GS-9	513.45	513.23	16.00	5.0	NA	overburden	7.08	506.15	7.30	6.89	506.34	7.11	7.03	506.20	7.25	6.00	507.23	6.22	
GS-10	513.11	512.90	16.00	5.0	NA	overburden	6.71	506.19	6.92	6.67	506.23	6.88	6.66	506.24	6.87	5.66	507.24	5.87	

Notes:

Wells surveyed by Popli Design Group.

Well data from URS, Inc. and MACTEC well logs.

NA = not available

Water levels collected by MACTEC.

bmp = below measuring point

bgs = below ground surface

ft = feet

-- = blockage encountered in well, unable to obtain measurement

MPE Wells 6, 12, and 13 not operating prior to system shutdown

Table 8.1 - Nature and Extent of Soil Contamination

Detected Constituents	Concentration Range Detected (ppm) ^a	Unrestricted SCG ^b (ppm)	Frequency Exceeding Unrestricted SCG	Residential SCG ^c (ppm)	Frequency Exceeding Residential SCG	Commercial SCG ^d (ppm)	Frequency Exceeding Commercial SCG	Protection of Groundwater SCG ^e (ppm)	Frequency Exceeding Protection of Groundwater SCG
VOCs 1,1,1-Trichloroethane	0.6 - 0.86	0.68	1 / 30	100	0 / 30	500	0 / 30	0.68	1 / 30
1.1-Dichloroethane	0.0 - 0.80	0.08	2 / 30	19	0 / 30	240	0 / 30	0.08	2 / 30
Cis-1,2-Dichloroethene	0.2 - 5.2	0.25	4 / 30	59	0 / 30	500	0 / 30	0.25	4 / 30
Cyclohexane	0.54 - 3.5	NS	NA / 30	NS	NA / 30	NS	NA / 30	NS	NA / 30
Ethyl benzene	2.1 - 2.1	1	1 / 30	30	0 / 30	390	0 / 30	1	1 / 30
Isopropylbenzene	1.1 - 1.1	NS	NA / 30	NS	NA / 30	NS	NA / 30	NS	NA / 30
Methyl cyclohexane	2.6 - 83	NS	NA / 30	NS	NA / 30	NS	NA / 30	NS	NA / 30
Tetrachloroethene	0.63 - 1700	1.3	24 / 30	5.5	23 / 30	150	6 / 30	1.3	24 / 30
Toluene	0.16 - 0.29	0.7	0 / 30	100	0 / 30	500	0 / 30	0.7	0 / 30
Trichloroethene	0.44 - 1400	0.47	28 / 30	10	17 / 30	200	4 / 30	0.47	28 / 30
Xylene, m/p	0.16 - 51	0.26	2 / 30	100	0 / 30	500	0 / 30	1.6	1 / 30
Xylene, o	0.34 - 7.6	0.26	2 / 30	100	0 / 30	500	0 / 30	1.6	1 / 30

^a ppm: parts per million, which is equivalent to milligrams per kilogram, mg/kg, in soil;

NS: No Standard NA: Not Applicable

Soil Samples Collected by MACTEC in May 2009.

Prepared by / Date: KJC 1/10/11 Checked by / Date: BPN 1/10/11

^b SCG: Part 375-6.8(a), Unrestricted Soil Cleanup Objectives.

^c SCG: Part 375-6.8(b), Residential Soil Cleanup Objectives.

^d SCG: Part 375-6.8(b), Commercial Soil Cleanup Objectives.

 $^{^{\}rm e}$ SCG: Part 375-6.8(b), Restricted (Protection of groundwater) Soil Cleanup Objectives.

Table 8.2 – Nature and Extent of Groundwater Contamination

	Concentration Range	L				
	Detected	SCG^b	Frequency			
Detected Constituents	(ppb) ^a	(ppb)	Exceeding SCG			
Volatile Organic Compounds						
1,1,1-Trichloroethane	1.4 - 6300	5	16 / 65			
1,1,2-Trichloroethane	2.8 - 2.8	1	1 / 65			
1,1-Dichloroethane	0.99 - 1100	5	14 / 65			
1,1-Dichloroethene	1.4 - 240	5	13 / 65			
1,2,4-Trichlorobenzene	0.82 - 0.82	5	0 / 65			
1,2-Dichloroethane	1.4 - 1.4	0.6	1 / 65			
2-Butanone	5.1 - 2600	50	2 / 50			
4-Methyl-2-pentanone	3.9 - 7.6	NS	0 / 65			
Acetone	9 - 530	50	2 / 40			
Benzene	0.61 - 7	1	8 / 65			
Carbon disulfide	0.86 - 0.86	60	0 / 65			
Carbon Tetrachloride	1.5 - 1.5	5	0 / 65			
Chloroethane	2.6 - 2.6	5	0 / 65			
Chloroform	0.74 - 0.74	7	0 / 65			
Chloromethane	3.3 - 3.3	5	0 / 65			
Cis-1,2-Dichloroethene	1.7 - 1100	5	36 / 65			
Cyclohexane	1.2 - 38	NS	0 / 65			
Dichlorodifluoromethane	2.6 - 2.6	5	0 / 65			
Ethyl benzene	1.1 - 23	5	3 / 65			
Isopropylbenzene	1.8 - 4	5	0 / 65			
Methyl Tertbutyl Ether	1.3 - 3.1	10	0 / 65			
Methylcyclohexane	27 - 27	NS	0 / 65			
Methylene chloride	0.52 - 0.52	5	0 / 65			
Tetrachloroethene	3 - 81000	5	33 / 65			
Toluene	0.5 - 96	5	2 / 65			
trans-1,2-Dichloroethene	0.73 - 25	5	4 / 65			
Trichloroethene	1.9 - 25000	5	38 / 65			
Vinyl chloride	0.59 - 360	2	14 / 65			
Xylene, m/p	1.6 - 1.6	5	0 / 34			
Xylene, o	0.5 - 13	5	1 / 34			
Xylene, total	31 - 140	5	2 / 31			
Metals, Dissolved						
Iron	59.2 - 3860	300	6 / 13			
Manganese	24.8 - 248	300	0 / 13			

^a ppb: parts per billion, which is equivalent to micrograms per liter, ug/L, in water.

Prepared by / Date: KJC 12/10/10 Checked by / Date: CRS 1/11/11

b SCG: Standard Criteria or Guidance - Ambient Water Quality Standards and Guidance Values (TOGs 1.1.1), 6 NYCRR Part 703, Surface water and Groundwater Quality Standards, and Part 5 of the New York State Sanitary Code (10 NYCRR Part 5).
Includes groundwater samples collected from May 2009 through May 2010 by MACTEC and URS.

Table 9.1: Identification and Screening of Remedial Technologies

Environmental Media	General Response Action	Remedial Technology	Process Option	Process Option Applicability to			Comments
	•			Site-Limiting Characteristics	Waste-Limiting Characteristics		
Soil	No Action			Not Applicable	Not Applicable	Retained.	Retained to be carried through detailed analysis of alternatives for comparison to alternatives that satisfy RAOs.
	Access Restrictions	Land Use Restrictions		Would require coordination and approval from the current owner and affected adjacent property owners.	Would provide human exposure control. Would not reduce toxicity, mobility, or volume of contaminants.	Retained.	Viable as a component of remedial actions which do not involve remediation allowing for unrestricted use.
		Fencing		Would require coordination and approval from the current owner and possibly affected adjacent property owners.	Would provide unauthorized site entry and human exposure control. Would not reduce toxicity, mobility, or volume of contaminants.	Retained.	Viable as a component of remedial actions which do not involve remediation allowing for unrestricted use.
	Removal / Off Site Disposal	Excavation	Solids Excavation	Source area contamination extends beneath an occupied building and is near adjacent residences. Also, excavation of soils below the water table would require additional technology to dewater the soils and dispose of the water.	Would not prevent potential further leaching from soil left underneath building.	Retained.	Retained for discrete source removal.
		Disposal On-site	Not Applicable	The site is not appropriate for on-site disposal given its proximity to residences; only excavated soils treated exsitu may be suitable for on-site disposal as backfill.	None.	Eliminated.	
		Disposal Off-site	Not Applicable	None.	None.	Retained.	
	In-Situ Treatment	Biological Treatment	_	Materials injected to enhance biodegradation generally rely upon groundwater for release and distribution. Hence, biological treatment would not address contaminants in the vadose zone soil. Injections would limited in the saturated zone by the tight glacial soils.	Would not effectively treat relatively high concentrations of contaminants or suspected presence of contamination as a non-aqueous phase liquid.	Retained.	Viable as a component of treatment of saturated zone soils in conjuction with groundwater. Retained as a component of remedial actions that address source area contamination and contamination as non-aqueous phase liquid.
		Physical Treatment	Vapor Extraction	Remaining contamination is generally below the water table. Also, tight glacial soils would limit vapor extraction.	None.	Retained.	This technology is currently used at the site and remains a viable option for treatment of VOCs in soil. Would also address soil vapor contamination.
			Solidification/ Stabilization	Implementation would be impacted by building on adjacent property and site utilities.	Would not effectively treat VOCs, which could still leach.	Eliminated.	
		Thermal Treatment	Electrical Resistance Heating	There appear to be no site limiting characteristics for this general response action.	Requires capture of VOC off-gases.	Retained	
		Chemical Treatment	Oxidation/Reduction	Injection of chemicals may be limited by poor hydraulic conductivity due to the characteristics of the site soils (tight glacial deposits).	None.	Retained	Retained only as a component of remedial actions that includes soil mixing to distribute chemical oxidant.
	Ex-situ Treatment	Thermal Treatment	On-site Incineration	The Site is not appropriate for on-site ex-situ treatment due to proximity to residential areas.	None.	Retained for off-site only.	Off-site treatment refers to treatment at a properly licensed treatment facility.
			On-site Thermal Desorption	due to proximity to residential areas.	None.	Retained for off-site only.	Off-site treatment refers to treatment at a properly licensed treatment facility.
		Chemical Treatment		due to proximity to residential areas.	None.	Retained for off-site only.	Off-site treatment refers to treatment at a properly licensed treatment facility.
		Physical Treatment	Soil Washing	The Site is not appropriate for on-site ex-situ treatment due to proximity to residential areas.	Typically used for SVOC, fuel, and heavy metal contaminated soils.		Off-site treatment refers to treatment at a properly licensed treatment facility.

Table 9.1: Identification and Screening of Remedial Technologies

Environmental Media	General Response Action	Remedial Technology	Process Option	Applicability to			Comments
				Site-Limiting Characteristics	Waste-Limiting Characteristics		
			Solidification	The Site is not appropriate for on-site ex-situ treatment	Would not effectively treat VOCs, which could	Retained for	Off-site treatment refers to treatment at a
			Stabilization	due to proximity to residential areas.	still leach.	off-site only.	properly licensed treatment facility.
	Containment	Capping	Soil Cover	Site is currently paved.	Would provide human exposure control. Would not prevent leaching of soil contaminants to groundwater.	Eliminated.	
			Low Permeability Cover System	Contamination in the saturated zone would not be remedied and therefore this technology would not reduce leaching to the groundwater.	Would reduce leaching of soil contaminants in the vadose zone to groundwater, but not reduce volatilization of soil contaminants.	Eliminated.	
		Vertical Barriers	Slurry wall, sheet piling	Implementation would be limited by utilities and proximity to adjacent off-site buildings. Available slurry wall placement locations are not ideal.	Would reduce off-site migration of contaminated groundwater, but would not address leaching of soil contaminants to groundwater, and volatilization of contaminants.	Eliminated.	Viable as a component of remedial actions to reduce migration of groundwater contaminants.
		Surface Controls	Diversion / collection, grading, soil stabilization	Contamination in the saturated zone would not be remedied and therefore this technology would not reduce leaching to the groundwater.	None.	Eliminated.	
Groundwater	No Action			Not Applicable	Not Applicable	Retained.	Retained to be carried through detailed analysis of alternatives for comparison to alternatives that satisfy RAOs.
	Access Restrictions and Long Term Monitoring	Land Use Restrictions		Would require coordination and approval with current owner.	Would not reduce toxicity, mobility, or volume of contaminants.	Retained.	Viable as a component of remedial actions which do not involve remediation allowing for unrestricted use.
	In-Situ Treatment	Biological Treatment	Enhanced Biodegradation	Injections would limited in the saturated zone by the tight glacial soils.	Would not effectively treat relatively high concentrations of contaminants or suspected presence of contamination as a non-aqueous phase liquid.	Retained.	Viable in conjunction with other remedial actions.
		Physical Treatment	Permeable Reactive Barrier	Limited by adjacent buildings and relatively flat hydraulic gradient (i.e., contaminant migration in multiple directions).	None.	Eliminated.	Viable as a component of remedial actions to reduce migration of groundwater contaminants.
			Air Sparging	This technology would require the capture and treatment of generated vapors and would also be limited by tight glacial soils.		Eliminated.	Viable as a component of remedial actions that utilize the existing MPE system's soil vapor extraction elements.
		Thermal Treatment		extents of contamination (i.e. more probe points required to heat media).	Requires capture of VOC off-gases.	Retained.	
		Chemical Treatment	Oxidation/Reduction	Oxidation/Reduction may be limited by poor conductivity due to the characteristics of the site soils (glacial deposits).	None.	Retained.	Retained only as a component of remedial actions that includes soil mixing to distribute chemical oxidant.
	Ex-situ Treatment	Onsite Treatment	Granular Activated Carbon	None.	None.	Retained.	This technology was previously used at the Site for off-gas treatment but remains a viable option if it should be required again.
			Air Stripping	None.	None.	Retained.	This technology is currently used at the site and remains a viable option for treatment of VOCs in groundwater.

Table 9.1: Identification and Screening of Remedial Technologies

Environmental Media	General Response Action	Remedial Technology	Process Option	Applicabili	y to	Screening Status	Comments
	•	3.0		Site-Limiting Characteristics	Waste-Limiting Characteristics		
		Offsite Treatment and Diposal	Discharge to POTW after treatment.	None.	None.	Retained.	This technology is currently used at the Site and remains a viable discharge option for offsite treatment and disposal of groundwater.
			Discharge to surface water after treatment.	No proximate surface water receiving bodies.	None.	Eliminated.	
			Reinjection after treatment.	Limited by the high water table and tight glacial soils.	None.	Eliminated.	
	Containment	Capping	Low Permeability Cover System	Would not prevent upgradient groundwater from passing through the saturated zone soil contamination or off-site migration of groundawter contamination.	None.	Eliminated.	
		Vertical Barriers	Slurry wall, sheet piling	This technology would require the wall to be keyed into the bedrock and would be limited by adjacent buildings, utilities and relatively flat hydraulic gradient (i.e., contaminant migration in multiple directions).	None.	Eliminated.	Viable as a component of remedial actions to reduce the mirgration of contamination in conjunction with a permeable reactive barrier.
		Surface Controls	Diversion/collection, grading, soil stabilization	Surface controls alone would not prevent leaching of VOC soil contamination to groundwater and prevent infiltration of precipitation.	None.	Eliminated.	
		Collection	Extraction Wells / Monitoring Wells	None.	None.	Retained.	This technology is currently used at the site and remains a viable option for collection of groundwater for treatment.
			Collection Trench	Limited by adjacent buildings and relatively flat hydraulic gradient (i.e., contaminant migration in multiple directions).	None.	Eliminated.	
Soil vapor	No Action			Not Applicable	Not Applicable	Retained.	Retained to be carried through detailed analysis of alternatives for comparison to alternatives that satisfy RAOs.
	Access Restrictions			Would require coordination and approval from the current owner and affected adjacent property owners.	Would not reduce toxicity, mobility, or volume of contaminants.	Eliminated.	
	Engineering Controls	Sub-slab depressurization system		Would require coordination and approval from the current owner and affected adjacent property owners.	None.	Retained.	Viable as a component of remedial actions which do not continue to utilize the existing MPE system for soil vapor extraction.

Table 10.1: Preliminary Screening of Remedial Alternatives

Remedial Alternative	Effectiveness	Implementability	Cost	Comments
Alternative 1: No Action	Not evaluated.	Not evaluated.	No cost.	Retained as a baseline for comparison.
Alternative 2: No Further Action: Continued Multi-phase Extraction	Institutional controls would control exposure to subsurface soil contamination. The existing multi-phase extraction system would not be modified. This alternative would not effectively treat residual contamination that remains untreated by the current system.	This alternative uses the existing remedial system, and thus would not be difficult to implement.	Costs associated with this alternative are moderate. The primary cost items include long term operations, maintenance, and monitoring of the system.	Retained.
Alternative 3: Restoration to Pre-Disposal or Unrestricted Conditions	This alternative would address all contamination on site by excavating all soils above clean-up objectives, dewatering to bedrock and treating bedrock groundwater through in-situ chemical oxidation. No annual operation, maintenance or monitoring activities would be required on site.	Technical issues with implementing this alternative primarily include the proximity of adjacent buildings and the existing MPE system piping and wells and the ability to treat bedrock groundwater in-situ.	Costs associated with this alternative are high. The primary cost items include excavation and off-site disposal of the excavated soil.	Retained per DER-10 as an alternative that allows for unrestricted use of the site.
Alternative 4: Enhanced Multi-phase Extraction	In the long term, this alternative would effectively reduce VOC concentrations in soil above and below the water table as well as groundwater. Institutional controls would control exposure to subsurface soil contamination.	This alternative would require installation of additional multi-phase extraction points to address residual areas of contamination.	Costs associated with this alternative are moderate. The primary cost items include long term operations, maintenance, and monitoring of the system and system enhancement.	Retained.
Alternative 5: In-Situ Source Treatment - Chemical Oxidation with Soil Mixing	This alternative would oxidize VOC groundwater contaminants. The actual VOC contaminants (i.e., chlorinated, fuel-related, etc.) treated would depend upon the reagent applied. VOC contaminant degredation would be evaluated during bench-scale analyses.			Retained only as a component of discrete soil source area treatment; could be used for partial source area treatment.
Alternative 6: Discrete Soil Source Excavation and Off- Site Disposal and In-Situ Enhanced Biodegradation with Groundwater Monitoring	This alternative would effectively remove the accessible source of on-site soil and groundwater contamination and reduce both on- and off-site groundwater contamination by excavation of source area soils. In-situ enhanced biodegredation of on-site saturated soil and groundwater would address residual contamination subsequent to source removal.	Technical issues with implementing this alternative include the proximity of adjacent buildings and the existing MPE system piping and wells, the ability to inject amendments into the tight soils, and obtaining multiple access agreements to conduct enhanced biodegradation at multiple properties.	Costs associated with this alternative are high. The primary cost items include excavation and off-site disposal of the excavated soil.	Retained.
Alternative 7: In-Situ Electrical Resistance Heating	This alternative would effectively meet RAOs for soil, groundwater, and soil vapor in the area of treatment by volatilizing and extracting VOC contaminants through electrical resistanace heating.	Implementation of this alternative would only be limited by the ability to install and operate the system.	Costs associated with this alternative are high. Cost considerations include utility costs associated with electrical heating systems.	Retained.

Prepared by: BPN 12/07/10
Page 1 of 1
Checked by: RTB 12/10/10

Table 11.1: Applicable Location- and Action-Specific Standards, Criteria, and Guidance

Requirement	Consideration in the Remedial Response Process
29 CFR Part 1910.120 - Hazardous Waste	Applicable to implementation of Health and Safety implementation,
Operations and Emergency Response	enforcement, and emergency response.
6 NYCRR Part 371 - Identification and Listing of	Applicable to the characterization, handling, transportation, and
Hazardous Wastes (November 1998)	treatment/disposal of soils to be removed from the Site.
6 NYCRR Part 372 - Hazardous Waste Manifest	Applicable to the handling, transportation, and treatment/disposal
System and Related Standards for Generators,	of soils to be removed from the Site.
Transporters and Facilities (November 1998)	
6 NYCRR Part 375 - Environmental Remediation	Applicable to the development and implementation of remedial
Programs (as amended December 2006)	programs.
6 NYCRR Part 376 - Land Disposal Restrictions	Applicable to disposal of hazardous wastes. Identifies those wastes
	that are restricted from land disposal.
6 NYCRR Part 750 through 758 - Implementation of	Applicable to construction in and adjacent to water bodies and
NPDES Program in NYS ("SPDES Regulations")	discharge of treated wastewater.
DER-10 Technical Guidance for Site Investigation	Applicable to the development and implementation of remedial
and Remediation	programs.
Citizen Participation in New York's Hazardous	Applicable to the development and implementation of remedial
Waste Site Remediation Program: A Guidebook	programs.
(June 1998)	
TOGS 1.1.1 - Ambient Water Quality Standards &	Applicable to discharge of treated wastewater.
Guidance Values and Groundwater Effluent	
Limitations	
Solidification/Stabilization and its Application to	Applicable to disposal of wastes generated during implementation
Waste Materials	of remedial program.
Air Guide 1 – Guidelines for the Control of Air Toxic	Applicable to the control of toxic ambient air contaminants.
Ambient Air Contaminants	

Table 11.2: Cost Summary for Alternative 2 - No Further Action: Continued Multiphase Extraction

ITEM	COST
DIRECT CAPITAL COSTS	
Institutional Controls	\$ 27,000
Direct Cost Subtotal	\$ 27,000
INDIRECT CAPITAL COSTS	
Project Management (@ 10 Percent)	\$ 3,000
Remedial Design (none included)	\$ -
Construction Management (none included)	\$ -
Contingency (@ 25 Percent)	\$ 7,000
Indirect Cost Subtotal	\$ 10,000
TOTAL CAPITAL COSTS	\$ 37,000
ANNUAL OPERATION AND MAINTENANCE COSTS*	
OM&M of the Existing MPE System (years 1-10)	\$ 173,000
Quarterly Monitoring (years 11-12)	\$ 42,000
Semi-annual Monitoring (years 13-14)	\$ 21,000
Annual Monitoring (years 15-30)	\$ 11,000
PERIODIC COSTS*	
Periodic Inspections and Reporting (Years 1-30)	\$ 5,000
PRESENT WORTH OF ANNUAL AND PERIODIC COSTS (30 yrs)	\$ 1,559,000
TOTAL PRESENT WORTH OF ALTERNATIVE 2 (30 yrs)	\$ 1,596,000
TOTAL NON-DISCOUNTED COST OF ALTERNATIVE 2 (30 yrs)	\$ 2,088,000

Costs have been rounded to the nearest thousand.

Costs based on annual inspection and reporting.

Prepared by: BPN 12/09/10 Checked by: NRL 12/14/10 Revised by: BPN 1/13/11 Checked by: MJS 1/14/11

4.1 Dinaburg - Cost Table_2011-01-14.xlsx

 $[\]ast$ Costs include additional 10 percent for technical support and 25 percent contingency for unforeseen project complexities including insurance, taxes, and licensing costs.

Table 11.3: Cost Summary for Alternative 3 – Restoration to Unrestricted Conditions

ITEM		COST
DIRECT CAPITAL COSTS		0001
Pre-Design Investigation	\$	78,000
Mobilization and Temporary Facilities and Controls	\$	138,000
Excavation and Off-site Disposal of Site Soil	\$	2,246,000
In-Situ Chemical Oxidation	\$	233,000
Site Restoration	\$	168,000
Direct Cost Subtotal	\$	2,863,000
INDIRECT CAPITAL COSTS		
Project Management (@ 5 Percent)	\$	144,000
Remedial Design (@ 8 Percent)	\$	230,000
Construction Management (@ 6 Percent)	\$	172,000
Contingency (@ 25 Percent)	\$	716,000
Indirect Cost Subtotal	\$	1,262,000
TOTAL CAPITAL COSTS	\$	4,125,000
ANNUAL OPERATION AND MAINTENANCE COSTS*		
Quarterly Monitoring (years 1-2)	\$	-
Semi-annual Monitoring (years 3-4)	\$	-
Annual Monitoring (years 5-30)	\$	-
Annual Performance Reporting (years 1-30)	\$	-
DESCRITE WORTH OF ANNHAL AND DEDLODIC COSTS (20	ά	
PRESENT WORTH OF ANNUAL AND PERIODIC COSTS (30 yrs)	\$	•
TOTAL PRESENT WORTH OF ALTERNATIVE 3 (30 yrs)	\$	4,125,000
TOTAL NON-DISCOUNTED COST OF ALTERNATIVE 3 (30 yrs)	\$	4,125,000

Costs have been rounded to the nearest thousand.

Prepared by: BPN 12/09/10 Checked by: NRL 12/14/10 Revised by: BPN 1/13/11 Checked by: MJS 1/14/11

^{*} Costs include additional 10 percent for bid contingency and 25 percent for scope contingency unforeseen project complexities including insurance, taxes, and licensing costs (USEPA 2000).

Table 11.4: Cost Summary for Alternative 4 - Enhanced Multiphase Extraction

ITEM		COST
DIRECT CAPITAL COSTS		COSI
Institutional Controls	\$	27,000
Pre-Design Investigation	\$	7,000
Expansion of existing MPE system	\$	70,000
Direct Cost Subtotal	\$	104,000
INDIRECT CAPITAL COSTS		
Project Management (@ 10 Percent)	\$	10,000
Remedial Design (@ 20 Percent)	\$	21,000
Construction Management (@15 Percent)	\$	16,000
Contingency (@ 25 Percent)	\$	26,000
Indirect Cost Subtotal	\$	73,000
TOTAL CAPITAL COSTS	\$	177,000
ANNUAL OPERATION AND MAINTENANCE COSTS*		
OM&M of the Upgraded MPE System (years 1-5)	¢	230,000
Quarterly Monitoring (Years 6-7)	\$ \$	42,000
Semi-Annual Monitoring (Years 8-9)	\$ \$	21,000
Annual Monitoring (Years 10-30)	\$	11,000
PERIODIC COSTS*		
Periodic Inspections and Reporting (Years 1-30)	\$	5,000
PRESENT WORTH OF ANNUAL AND PERIODIC COSTS (30 yrs)	\$	1,235,000
TOTAL PRESENT WORTH OF ALTERNATIVE 4 (30 yrs)	\$	1,412,000

Costs have been rounded to the nearest thousand.

Costs based on annual inspection and reporting.

Prepared by: BPN 12/09/10 Checked by: NRL 12/14/10 Revised by: BPN 1/13/11

4.1 Dinaburg - Cost Table_2011-01-14.xlsx Page 1 of 1 Checked by: MJS 1/14/11

^{*} Costs include additional 10 percent for technical support and 25 percent contingency for unforeseen project complexities including insurance, taxes, and licensing costs.

Table 11.5: Cost Summary for Alternative 5 - In-Situ Source Treatment - Chemical Oxidation with Soil Mixing

ITEM		COST
DIRECT CAPITAL COSTS		
	ф	70.000
- Pre-Design Investigation	\$	78,000
- Institutional Controls	\$	27,000
- Mobilization and Temporary Facilities and Controls	\$	112,000
- In-Situ Soil Mixing	\$	503,000
- Site Restoration	\$	23,000
- Direct Cost Subtotal	\$	743,000
INDIRECT CAPITAL COSTS		
- Project Management (@ 6 Percent)	\$	45,000
- Remedial Design (@ 12 Percent)	\$	89,000
- Construction Management (@ 8 Percent)	\$	59,000
- Contingency (@ 25 Percent)	\$	186,000
- Indirect Cost Subtotal	\$	379,000
TOTAL CAPITAL COSTS	\$	1,122,000
OPERATION AND MAINTENANCE COSTS*		
- Quarterly Monitoring (years 1-2)	\$	42,000
- Quarterly Monitoring (years 1-2) - Semi-annual Monitoring (years 3-4)	Ф \$	21,000
- Annual Monitoring (years 5-30)	\$	11,000
- Annual Monitoring (years 3-30)	φ	11,000
PERIODIC COSTS*		
- Periodic Institutional Control Inspections and Reporting	\$	5,000
PRESENT WORTH OF ANNUAL AND PERIODIC COSTS (30 yrs)	\$	251,000
TOTAL PRESENT WORTH OF ALTERNATIVE 5 (30 yrs)	\$	1,373,000
TOTAL NON-DISCOUNTED COST OF ALTERNATIVE 5 (30 yrs)	\$	1,520,000

Costs have been rounded to the nearest thousand.

Prepared by: BPN 12/09/10 Checked by: NRL 12/14/10

Revised by: BPN 1/13/11 Checked by: MJS 1/14/11

^{*} Costs include additional 10 percent for technical support and 25 percent contingency for unforeseen project complexities including insurance, taxes, and licensing costs. Costs based on annual inspection and reporting.

Table 11.6: Cost Summary for Alternative 6 – Discrete Soil Source Excavation and Off-Site Disposal and In-Situ Enhanced Biodegradation with Groundwater Monitoring

ITEM		COST
DIRECT CAPITAL COSTS		COSI
Pre-Design Investigation	\$	78,000
Institutional Controls	\$	27,000
Mobilization and Temporary Facilities and Controls	\$	65,000
Excavation and Off-site Disposal of Source Area Soil	\$	1,106,000
In-Situ Enhanced Biodegradation	\$	57,000
Site Restoration	\$	53,000
Direct Cost Subtotal	\$	1,386,000
INDIRECT CAPITAL COSTS		
Project Management (@ 6 Percent)	\$	84,000
Remedial Design (@ 12 Percent)	\$	167,000
Construction Management (@ 8 Percent)	\$	111,000
Contingency (@ 25 Percent)	\$	334,000
Indirect Cost Subtotal	\$	696,000
TOTAL CAPITAL COSTS	\$	2,100,000
ANNUAL OPERATION AND MAINTENANCE COSTS*		
Follow-up Amendment Injection (Year 1 or 2)	\$	13,000
Quarterly Monitoring (years 1-2)	\$	42,000
Semi-annual Monitoring (years 3-4)	\$	21,000
Annual Monitoring (years 5-30)	\$	11,000
Annual Performance Reporting (years 1-30)	\$	5,000
PRESENT WORTH OF ANNUAL AND PERIODIC COSTS (30 yrs)	\$	260,000
	Ψ	
TOTAL PRESENT WORTH OF ALTERNATIVE 6 (30 yrs)	\$	2,360,000
TOTAL NON-DISCOUNTED COST OF ALTERNATIVE 6 (30 yrs)	\$	2,508,000

Costs have been rounded to the nearest thousand.

Costs based on annual inspection and reporting.

Prepared by: BPN 12/09/10 Checked by: NRL 12/14/10 Revised by: BPN 1/13/11 Checked by: MJS 1/14/11

^{*} Costs include additional 10 percent for bid contingency and 25 percent for scope contingency unforeseen project complexities including insurance, taxes, and licensing costs (USEPA 2000).

Table 11.7: Cost Summary for Alternative 7 - In-Situ Electrical Resistance Heating

- Direct Cost Subtotal \$ INDIRECT CAPITAL COSTS - Project Management (@ 6 Percent) \$ - Remedial Design (@ 12 Percent) \$ - Construction Management (@ 8 Percent) \$ - Contingency (@ 25 Percent) \$ - Indirect Cost Subtotal \$	COST
- Direct Cost Subtotal \$ INDIRECT CAPITAL COSTS - Project Management (@ 6 Percent) \$ - Remedial Design (@ 12 Percent) \$ - Construction Management (@ 8 Percent) \$ - Contingency (@ 25 Percent) \$ - Indirect Cost Subtotal \$ TOTAL CAPITAL COSTS \$ OPERATION AND MAINTENANCE COSTS* - Quarterly Monitoring (years 1-2) \$ - Semi-annual Monitoring (years 3-4) \$ - Annual Monitoring (years 5-10) \$ PERIODIC COSTS* - None -	
INDIRECT CAPITAL COSTS - Project Management (@ 6 Percent) \$ - Remedial Design (@ 12 Percent) \$ - Construction Management (@ 8 Percent) \$ - Contingency (@ 25 Percent) \$ - Indirect Cost Subtotal \$ TOTAL CAPITAL COSTS OPERATION AND MAINTENANCE COSTS* - Quarterly Monitoring (years 1-2) \$ - Semi-annual Monitoring (years 3-4) \$ - Annual Monitoring (years 5-10) \$ PERIODIC COSTS* - None -	1,345,300
- Project Management (@ 6 Percent) \$ - Remedial Design (@ 12 Percent) \$ - Construction Management (@ 8 Percent) \$ - Contingency (@ 25 Percent) \$ - Indirect Cost Subtotal \$ TOTAL CAPITAL COSTS \$ OPERATION AND MAINTENANCE COSTS* - Quarterly Monitoring (years 1-2) \$ - Semi-annual Monitoring (years 3-4) \$ - Annual Monitoring (years 5-10) \$ PERIODIC COSTS* - None -	1,345,300
- Remedial Design (@ 12 Percent) \$ - Construction Management (@ 8 Percent) \$ - Contingency (@ 25 Percent) \$ - Indirect Cost Subtotal \$ TOTAL CAPITAL COSTS \$ OPERATION AND MAINTENANCE COSTS* - Quarterly Monitoring (years 1-2) \$ - Semi-annual Monitoring (years 3-4) \$ - Annual Monitoring (years 5-10) \$ PERIODIC COSTS* - None -	
- Construction Management (@ 8 Percent) - Contingency (@ 25 Percent) - Indirect Cost Subtotal **TOTAL CAPITAL COSTS **OPERATION AND MAINTENANCE COSTS* - Quarterly Monitoring (years 1-2) - Semi-annual Monitoring (years 3-4) - Annual Monitoring (years 5-10) **PERIODIC COSTS* - None - **None**	81,000
- Contingency (@ 25 Percent) - Indirect Cost Subtotal **TOTAL CAPITAL COSTS** - Quarterly Monitoring (years 1-2) - Semi-annual Monitoring (years 3-4) - Annual Monitoring (years 5-10) **PERIODIC COSTS** - None - None	-
- Indirect Cost Subtotal \$ TOTAL CAPITAL COSTS \$ OPERATION AND MAINTENANCE COSTS* - Quarterly Monitoring (years 1-2) \$ - Semi-annual Monitoring (years 3-4) \$ - Annual Monitoring (years 5-10) \$ PERIODIC COSTS* - None -	108,000
TOTAL CAPITAL COSTS OPERATION AND MAINTENANCE COSTS* - Quarterly Monitoring (years 1-2) \$ - Semi-annual Monitoring (years 3-4) \$ - Annual Monitoring (years 5-10) \$ PERIODIC COSTS* - None -	336,000
OPERATION AND MAINTENANCE COSTS* - Quarterly Monitoring (years 1-2) \$ - Semi-annual Monitoring (years 3-4) \$ - Annual Monitoring (years 5-10) \$ PERIODIC COSTS* - None -	525,000
- Quarterly Monitoring (years 1-2) \$ - Semi-annual Monitoring (years 3-4) \$ - Annual Monitoring (years 5-10) \$ PERIODIC COSTS* - None -	1,900,000
- Semi-annual Monitoring (years 3-4) - Annual Monitoring (years 5-10) PERIODIC COSTS* - None -	
- Annual Monitoring (years 5-10) \$ PERIODIC COSTS* - None -	42,000
PERIODIC COSTS* - None	21,000
- None -	11,000
- None -	
PRESENT WORTH OF ANNUAL AND PERIODIC COSTS (30 yrs) \$	
	120,000
	,
TOTAL PRESENT WORTH OF ALTERNATIVE 7 (30 yrs) \$	2,020,000
TOTAL NON-DISCOUNTED COST OF ALTERNATIVE 7 (30 yrs) \$	2,032,000

Costs have been rounded to the nearest thousand.

Remedial Design costs not included at percentage of capital costs since vendor quote includes design.

Revised by: BPN 1/13/11 Checked by: MJS 1/14/11

^{*} Costs include additional 10 percent for technical support and 25 percent contingency for unforeseen project complexities including insurance, taxes, and licensing costs. Costs based on annual inspection and reporting.

Table 12.1: Summary of Remedial Alternative Costs

		Alternative	Alternative	Alternative	Alternative	Alternative	Alternative	Alternative
Item	Description	1	2	3	4	5	6	7
1	Capital Costs	\$ -	\$ 37,000	\$ 4,125,000	\$ 177,000	\$ 1,122,000	\$ 2,100,000	\$ 1,900,000
2	Present Worth of Annual and Periodic Costs	\$ -	\$ 1,559,000	\$ -	\$ 1,235,000	\$ 251,000	\$ 260,000	\$ 120,000
3	Total Present Worth (Item 1 plus 2)	\$ -	\$ 1,596,000	\$ 4,125,000	\$ 1,412,000	\$ 1,373,000	\$ 2,360,000	\$ 2,020,000
4	Annual Costs Years 1 and 2	\$ -	\$ 173,000	\$ -	\$ 230,000	\$ 42,000	\$ 42,000	\$ 42,000
5	Annual Costs Years 3 and 4	\$ -	\$ 173,000	\$ -	\$ 230,000	\$ 21,000	\$ 21,000	\$ 21,000
6	Annual Costs Years 5 through 30	\$ -	See Note 4	\$ -	See Note 5	\$ 11,000	\$ 11,000	\$ 11,000
7	Periodic Costs (see Note 1)	\$ -	\$ 5,000	\$ -	\$ 5,000	\$ 5,000	\$ 5,000	\$ -
8	Remedial Timeframe (yrs) (Note 3)	>30	30	30	30	30	30	30

Notes:

- 1. Present Worth costs shown above are based upon the assumed Remedial Timeframe.
- 2. Annual and Periodic Costs (Item 2, 4 7) presented are non-discounted (future) costs.
- 3. Estimated costs presented in this table are intended to be within the target accuracy range of minus 30 to plus 50 percent of actual cost.
- 4. Annual Costs for Alternative 2 are \$173,000 through year 10, \$46,000 for years 11-12, \$23,000 for years 13-14, and \$12,000 for years 15-30
- 5. Annual Costs for Alternative 4 are \$230,000 through year 5, \$46,000 for years 6-7, \$23,000 for years 8-9, and \$12,000 for years 10-30

Alternative Descriptions:

- 1 =No Action
- 2 = No Further Action: Continued Multiphase Extraction
- 3 = Restoration to Pre-Disposal Conditions
- 4 = Enhanced Multiphase Extraction
- 5 = In-Situ Source Treatment Chemical Oxidation with Soil Mixing
- 6 = Discrete Soil Source Excavation and Off-Site Disposal and In-Situ Enhanced Biodegradation with Groundwater Monitoring
- 7 = In-Situ Electrical Resistance Heating

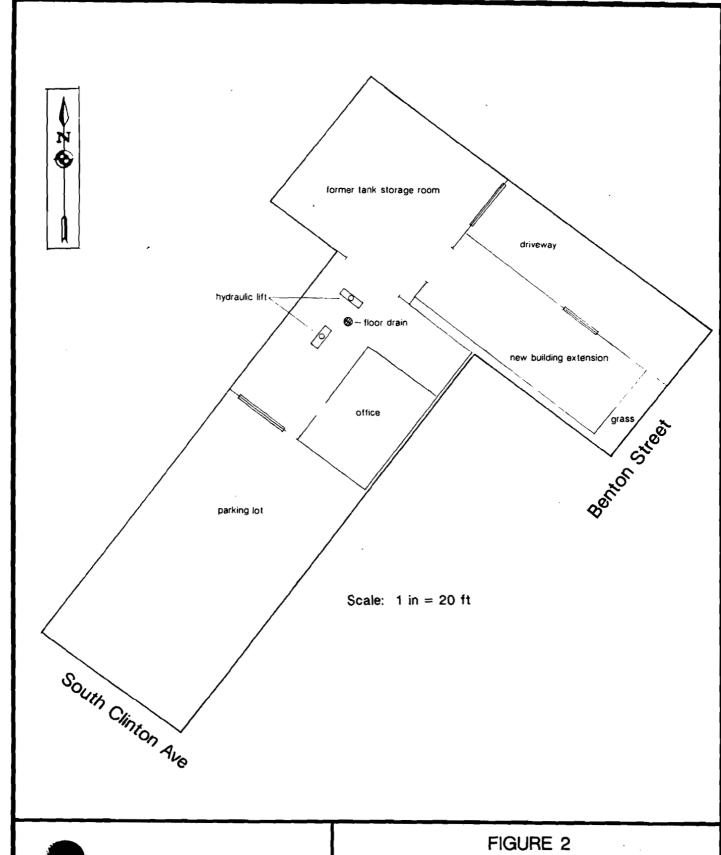
Remedial Alternative	Alternative 1: No Action	Alternative 2: No Further Action: Continued Multiphase Extraction	Alternative 3: Restoration to Pre-Disposal or Unrestricted Conditions	Alternative 4: Enhanced Multiphase Extraction
Compliance with New York State SCGs	Alternative 1 would not meet chemical-specific SCGs because it would not address soil contamination in excess of the 6 NYCRR Part 375 Remedial Program SCOs (NYSDEC, 2006) and groundwater contamination in excess of 6 NYCRR Parts 700-706 Water Quality Standards (NYSDEC, 1998).	Alternative 2 would have a low potential to treat the entire source area and treat the residual source area. Therefore, this alternative would not meet Chemical-specific SCGs for vadose and saturated zone VOC soil contamination and VOC groundwater contamination.	Alternative 3 would meet Chemical-specific SCGs for soil and groundwater by removing soil contamination in excess of the Protection of Groundwater SCGs, extracting overburden and interface groundwater in excess of water quality standards and treating bedrock groundwater in excess of water quality standards. Implementation of excavation, transportation, and treatment and/or disposal would be implemented in accordance with Action- and Location-specific SCGs.	operation of the existing MPE System to address the remaining soil contamination at the Site in excess of the SCOs. The operation, maintenance, and
Overall Protection of Human Health and the Environment	Alternative 1 would not would not protect public health and the environment through eliminating, reducing, or controlling existing or potential exposure pathways through removal, treatment, engineering controls, or institutional controls. This remedial alternative would not achieve the RAOs for soil, groundwater or soil vapor.			Alternative 4 would protect public health and the environment through reducing and controlling existing or potential exposure pathways through institutional controls and operation of an enhanced MPE System to remove soil contamination remaining at the Site.
Short-term Impacts and Effectiveness	Alternative 1 would include no actions, and therefore would not result in short-term adverse impacts and risks to the community, site workers, and the environment.	Alternative 2 would not include construction or other type of activities at the Site that would result in potential short-term adverse impacts and risks to the community, workers, or the environment during implementation.	Alternative 3 includes excavation and off-site treatment or disposal or both of the on-site source area soils and groundwater and application of chemical oxidant to the open excavation. Short-term adverse impacts and risks to the community, site workers, and the environment are possible during the excavation and transportation of source areas soils. However, these risks could be controlled through coordination and communication, erosion, sedimentation, and dust control, and a comprehensive contractor health and safety program.	System which would result in potential short-term risks to the community, workers, and the environment.

Prepared by: BPN 12/10/10 Checked by:

4.1 Table 12.2 Comparative Analysis_Dinaburg.xls Page 1 of 4

Remedial Alternative	Alternative 5: In-Situ Source Treatment - Chemical Oxidation with Soil Mixing	Alternative 6: Discrete Soil Source Excavation and Off-Site Disposal and In-Situ Enhanced Biodegradation with Groundwater Monitoring	Alternative 7: In-Situ Electrical Resistance Heating
Compliance with New York State SCGs	Alternative 5 would meet Chemical-specific SCGs for soil by treatment of soil contamination in excess of the Protection of Groundwater SCGs. However, unless the vertical extents of soil contamination in the overburden/interface zone and horizontal extents east and west of the site are determined, RAOs for the site will not be satisfied. This alternative would rely upon natural attenuation to meet RAOs for groundwater. Implementation of soil mixing, as well as institutional controls, would be implemented in accordance with Action- and Location-specific SCGs.		Alternative 7 would meet Chemical-specific SCGs for soil by treatment of soil and groundwater contamination in excess of SCGs but would rely upon natural attenuation to meet RAOs for groundwater outside the treatment area. Implementation of electrical resistance heating would be implemented in accordance with Action- and Location-specific SCGs.
Overall Protection of Human Health and the Environment	Alternative 5 would protect public health and the environment through reducing the source of soil, groundwater and soil vapor contamination and the implementation of institutional controls. Existing engineering controls are in place to address the existing soil vapor to indoor air pathway adjacent to the Site. This alternative would achieve the RAOs for soil in the short-term and reduce the time to achieve RAOs for downgradient groundwater and soil vapor.	Alternative 6 would protect public health and the environment through eliminating a large source of soil, groundwater and soil vapor contamination. Existing engineering controls are in place to address the existing soil vapor to indoor air pathway adjacent to the Site. This alternative would achieve the RAOs for soil, on-site groundwater and soil vapor in the long term.	Alternative 7 would protect public health and the environment through reducing the source of groundwater and soil vapor contamination and through the implementation of institutional controls. Existing engineering controls are in place to address the existing soil vapor to indoor air pathway adjacent to the Site.
Short-term Impacts and Effectiveness	Alternative 5 includes in-situ mixing and treatment of the on-site source area soils using heavy equipment. Short-term adverse impacts and risks to the community, site workers, and the environment are possible during the course of work; however, these risks could be controlled through coordination and communication, erosion, sedimentation, and dust control, and a comprehensive contractor health and safety program.	Alternative 6 includes excavation and off-site treatment or disposal or both of on-site source area soils. Short-term adverse impacts and risks to the community, site workers, and the environment are possible during the excavation and transportation of source areas soils. However, these risks could be controlled through coordination and communication, erosion, sedimentation, and dust control, and a comprehensive contractor health and safety program.	Alternative 7 includes electrical resistance heating of the on-site source area soils, resulting in contaminated vapors which require capture and treatment. Short-term adverse impacts and risks to the community, site workers, and the environment are possible during the course of work; however, these risks could be controlled through coordination and communication, erosion, sedimentation, and dust control, and a comprehensive contractor health and safety program.

Remedial Alternative	Alternative 1: No Action	Alternative 2: No Further Action: Continued Multiphase Extraction	Alternative 3: Restoration to Pre-Disposal or Unrestricted Conditions	Alternative 4: Enhanced Multiphase Extraction
Long-term Effectiveness and Permanence	Alternative 1 does not include actions to address soil contamination at the Site and its potential impacts to indoor air and groundwater. This remedy may meet RAOs associated with VOC soil, groundwater and soil vapor contamination in the future due to natural attenuation processes, although the time period required to meet RAOs is likely significant.	Alternative 2 is currently reducing the VOC soil contamination at the Site as evidenced by on-going monitoring of performance (i.e., contaminant mass is being removed). However, evaluation of contaminant mass removal rates suggest that the contaminant mass removal rate of the current system layout has leveled off since August 2007 – which may indicate that the existing MPE system may not be capable of removing the remaining contamination at the Site.	and off-site treatment and disposal of soils exceeding SCGs This alternative would rely upon natural attenuation to address downgradient groundwater VOC contamination and potential soil vapor contamination.	Alternative 4 would include enhancement of the existing system to address soil contamination that the existing MPE system is not capable of removing. This alternative would be expected to provide long-term effectiveness and permanence through the removal of VOC soil contamination in excess of the SCOs.
Reduction of Toxicity, Mobility, and Volume	Alternative 1 would not provide reduction in the toxicity, mobility, or volume of VOC soil or groundwater contamination through treatment.	Alternative 2 includes continued operation of the existing MPE System which results in the reduction of contaminant volume in the subsurface. Reduction of toxicity, mobility, or volume through treatment would not occur because this alternative includes extraction of VOC soil contamination from the subsurface and direct discharge, without treatment, to the atmosphere.	reduction in toxicity and volume if off-site treatment is conducted prior to disposal. Removal of the source area soils, extraction of source area groundwater and in-situ treatment of bedrock groundwater would result	Alternative 4 includes operation of an enhanced MPE System at the Site, resulting in the reduction of contaminant volume in the subsurface. Reduction in toxicity, mobility, or volume through treatment would not occur because this alternative includes extraction of VOC soil contamination from the subsurface and direct discharge, without treatment, to the atmosphere.
Implementability	alternative. However, obtaining regulatory approval of this alternative would be difficult.	Alternative 2 includes continued operation, maintenance, and monitoring of the existing MPE System, and therefore would not be technically difficult to implement. However, because limitations of the existing MPE System relative to achieving RAOs have been identified, obtaining regulatory approval of this alternative may be difficult.	Alternative 3 would be technically difficult due to the presence of source area contamination beneath an adjacent building, the limited site area available to support remediation activities, the relatively shallow water table which would require excavation dewatering, and the difficulty in treating bedrock groundwater in-situ through infiltration.	Alternative 4 would not be difficult to implement. Because this alternative would be designed and implemented to address residual soil contamination at the Site, obtaining regulatory approval of this alternative is not anticipated to be difficult.
Land Use	the Protection of Groundwater SCOs, and would therefore not be compatible with current and foreseeable future land use.	Alternative 2 includes continued operation, maintenance, and monitoring of the existing MPE System. If RAOs are achieved, this alternative would be compatible with existing and foreseeable future land use. However, in the short-term, the presence of the MPE System, and associated infrastructure at the Site would limit future use.	potential commercial workers conducting subsurface	Alternative 4 includes enhanced operation, maintenance, and monitoring of the existing MPE System. Once RAOs are achieved (in approximately three years after system start-up), this alternative would be compatible with existing and foreseeable future land use. However, in the short-term, the presence of the MPE System, and associated infrastructure at the Site would limit future land use.


Prepared by: BPN 12/10/10 Checked by:

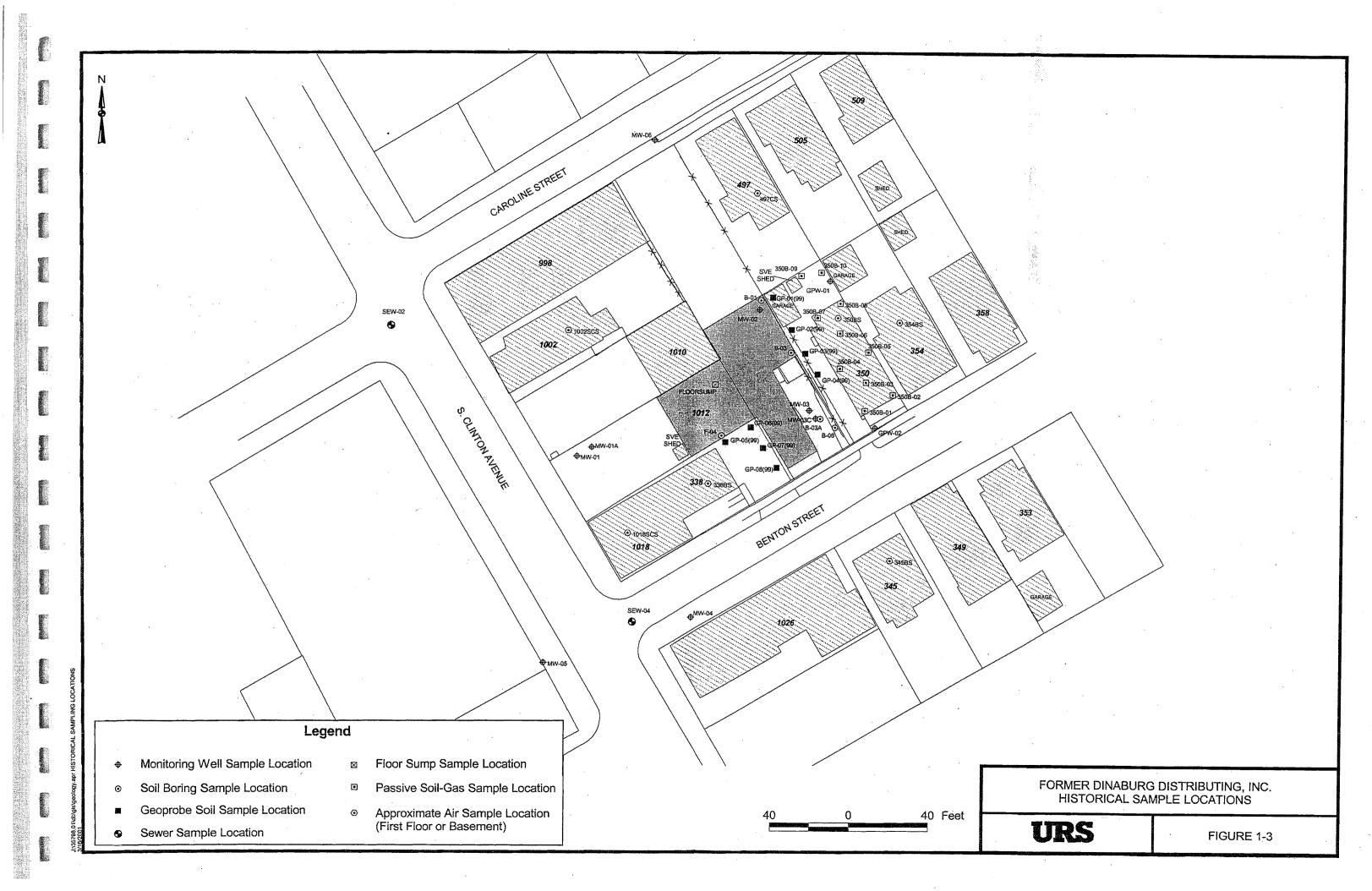
4.1 Table 12.2 Comparative Analysis_Dinaburg.xls Page 3 of 4

Remedial Alternative	Alternative 5: In-Situ Source Treatment - Chemical Oxidation with Soil Mixing	Alternative 6: Discrete Soil Source Excavation and Off-Site Disposal and In-Situ Enhanced Biodegradation with Groundwater Monitoring	Alternative 7: In-Situ Electrical Resistance Heating
Long-term Effectiveness and Permanence	Alternative 5 would provide permanent reduction of site-related soil contamination through in-situ mixing and treatment of source area soils. This alternative would rely upon existing engineering controls to address downgradient soil vapor contamination and natural attenuation (unless optional in-situ enhanced biodegradation was implemented) to address groundwater VOC contamination contributing to the downgradient groundwater and soil vapor contamination.	Alternative 6 would provide permanent reduction of site-related soil contamination through the excavation and off-site treatment and disposal of soils exceeding SCGs This alternative would rely upon enhanced biodegradation to address other on-site soil and groundwater contamination and natural attenuation to address downgradient groundwater VOC	Alternative 7 would provide permanent reduction in site-related soil contamination through electrical resistance heating of source area soils and groundwater. This alternative would rely upon existing engineering controls to address downgradient soil vapor contamination and natural attenuation (unless optional in-situ enhanced biodegradation was implemented) to address groundwater VOC contamination contributing to downgradient groundwater and soil vapor contamination.
Reduction of Toxicity, Mobility, and Volume	Alternative 5 would provide reduction in the toxicity, mobility, or volume of VOC soil and groundwater contamination through in-situ treatment of source area soils and groundwater.	if off-site treatment is conducted prior to disposal. Removal of the source area soils and enhanced biodegradation of VOCs in soil and groundwater would result in long-term reduction in the toxicity, mobility, and volume of groundwater contamination migrating off site.	Alternative 7 would provide reduction in the toxicity, mobility, or volume of VOC soil and groundwater contamination through in-situ treatment of source area soils and groundwater.
Implementability	Alternative 5 would be technically difficult due to the presence of source area contamination beneath the site building, the shallow water table, which may impede soil mixing by reducing the rate of liquid chemical oxidant injection, and the small site area, which may require a phased approach to mixing and treatment.	Alternative 6 would be technically difficult due to the presence of source area contamination beneath an adjacent building, the limited site area available to support excavation activities, and the relatively shallow water table which would require excavation dewatering.	Alternative 7 would not be technically difficult to implement.
Land Use	The current and reasonably anticipated future land use of the Site is for commercial and/or residential purposes. This alternative would be protective of potential commercial workers conducting subsurface work at the Site.	The current and reasonably anticipated future land use of the Site is for commercial and/or residential purposes. This alternative would be protective of potential commercial workers conducting subsurface work at the Site.	The current and reasonably anticipated future land use of the Site is for commercial and/or residential purposes. This alternative would be protective of potential commercial workers conducting subsurface work at the Site.

APPENDIX A

SEARS BROWN AND URS EXHIBIT FIGURES

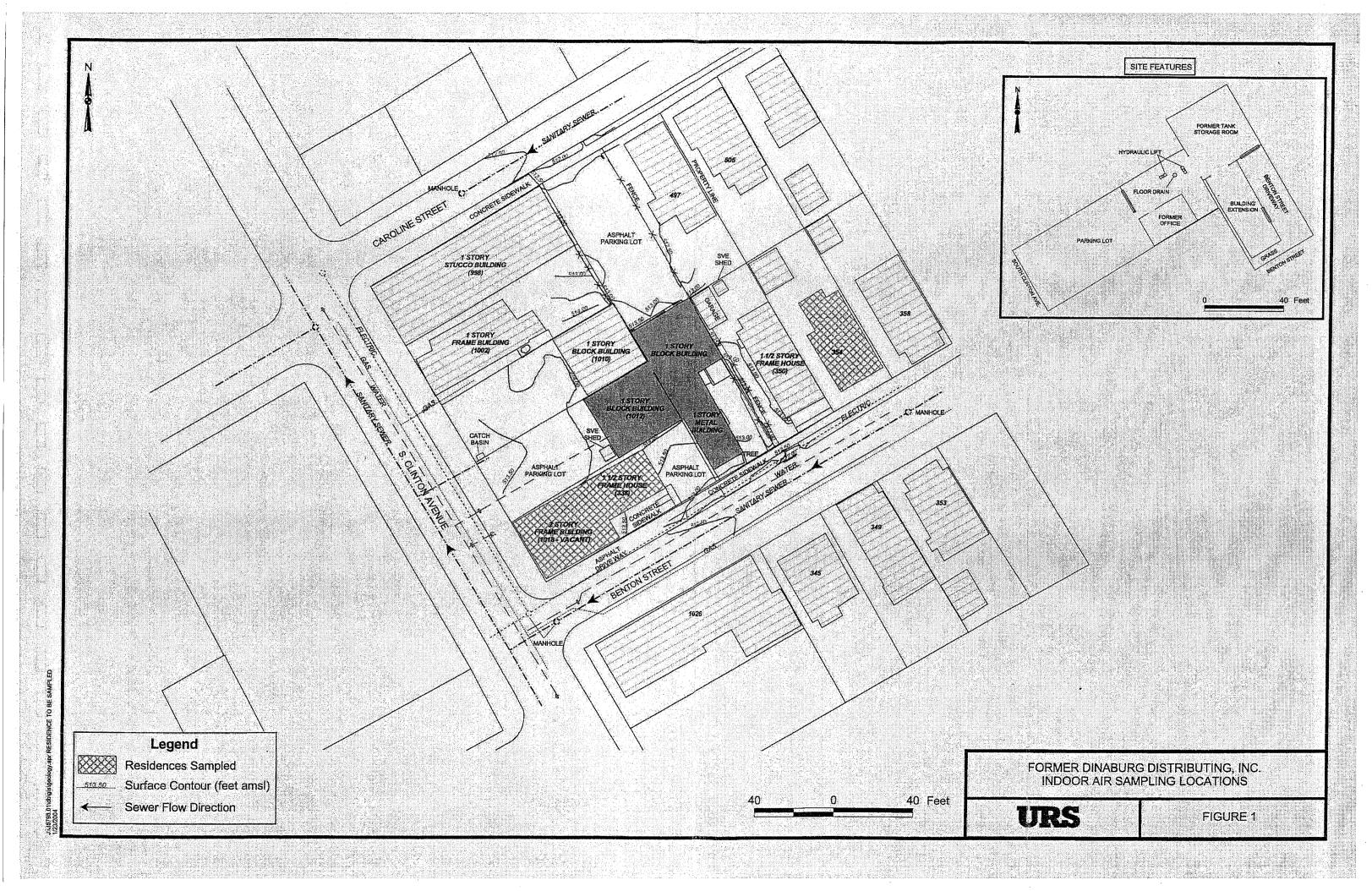
THE **SEAR-BROWN** GROUP FULL-SERVICE DESIGN PROFESSIONALS

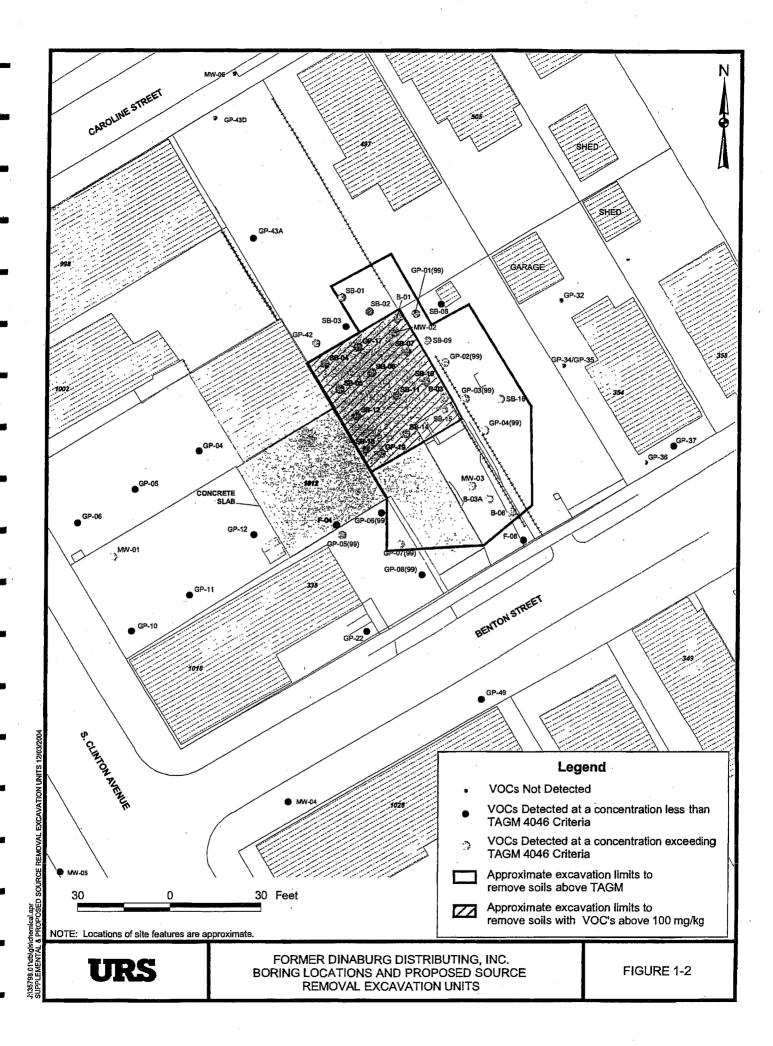

85 METRO PARK ROCHESTER NEW YORK 14623

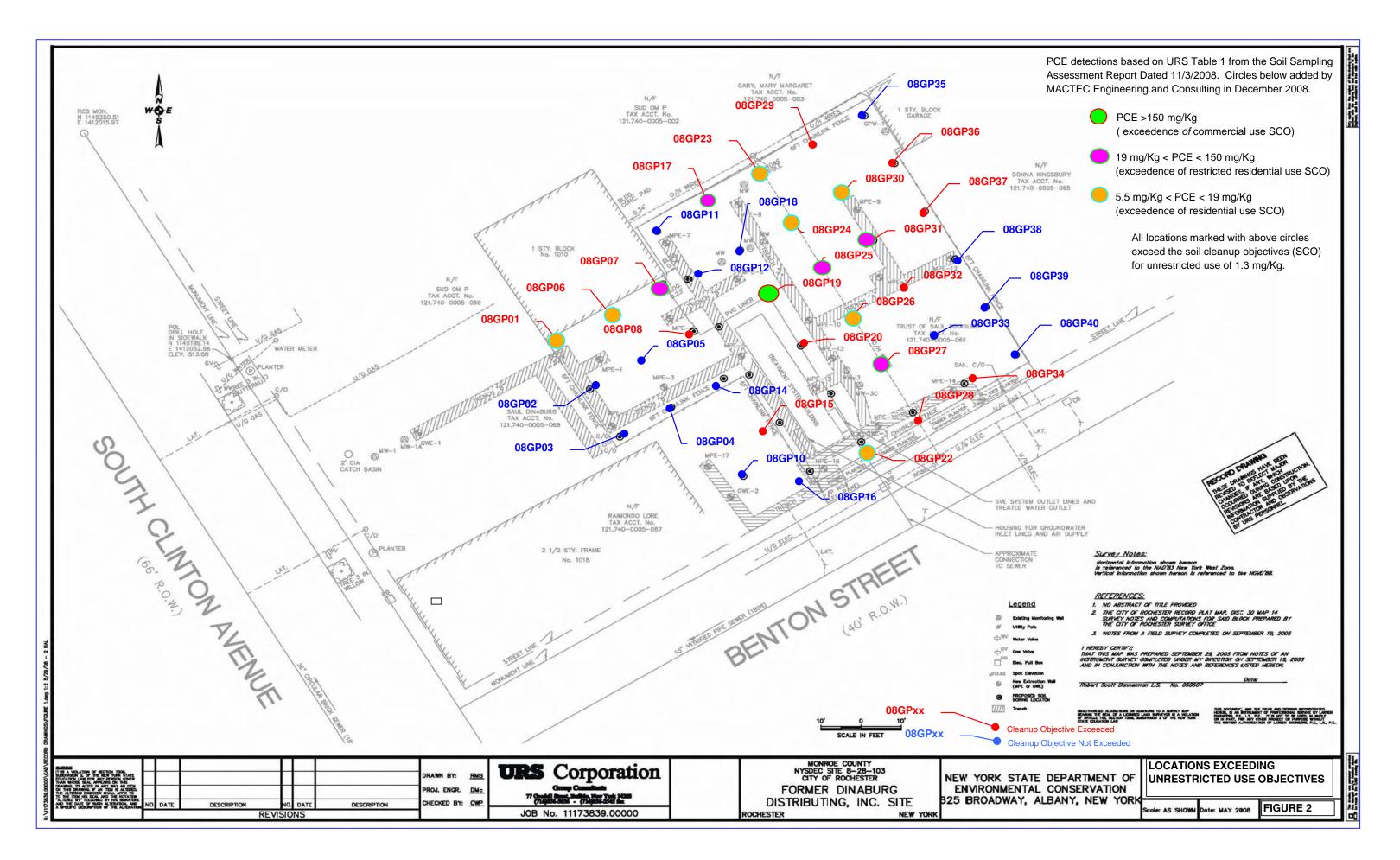
716-475-1440 FAX: 716-272-1814

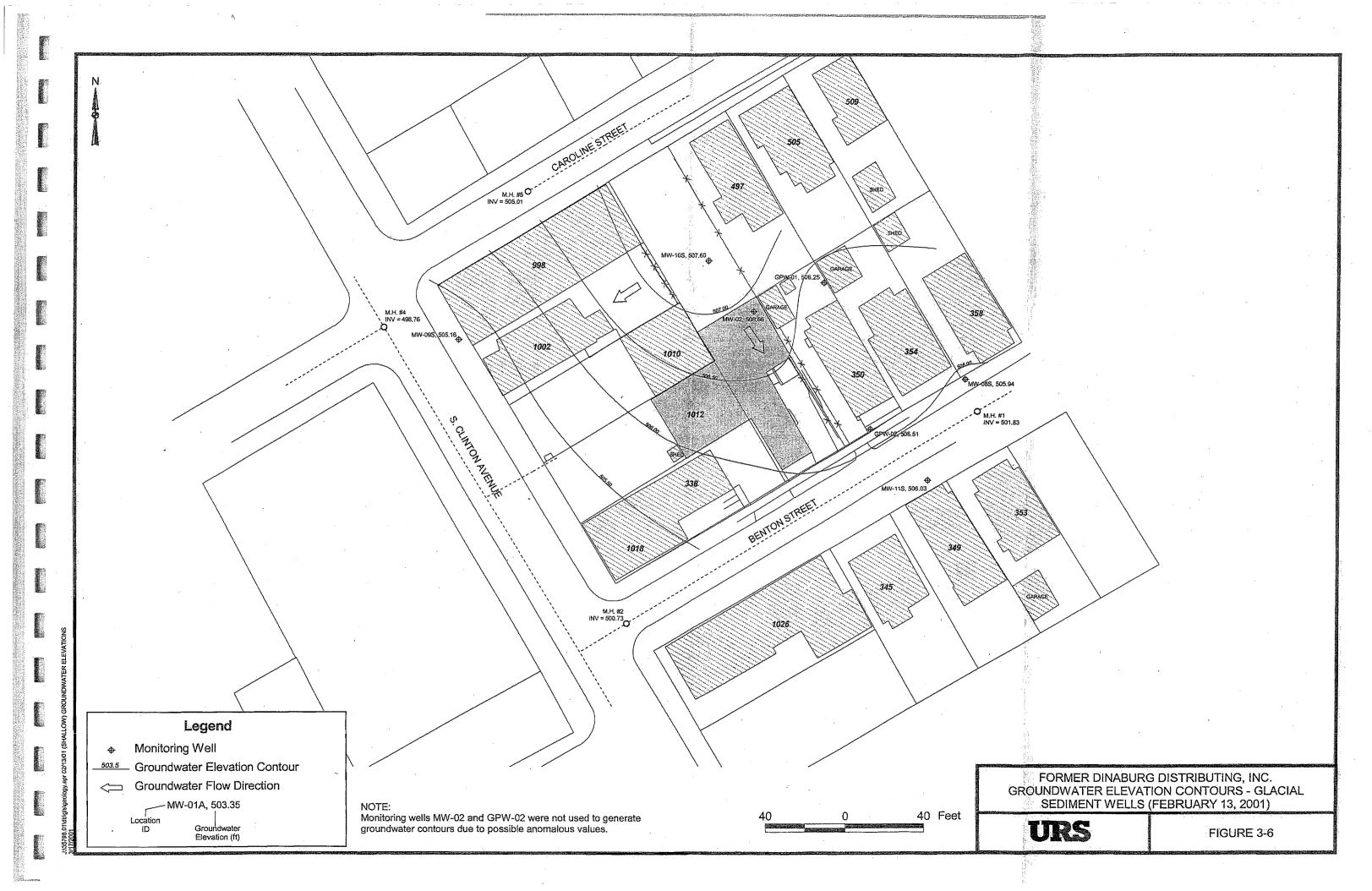

SITE PLAN

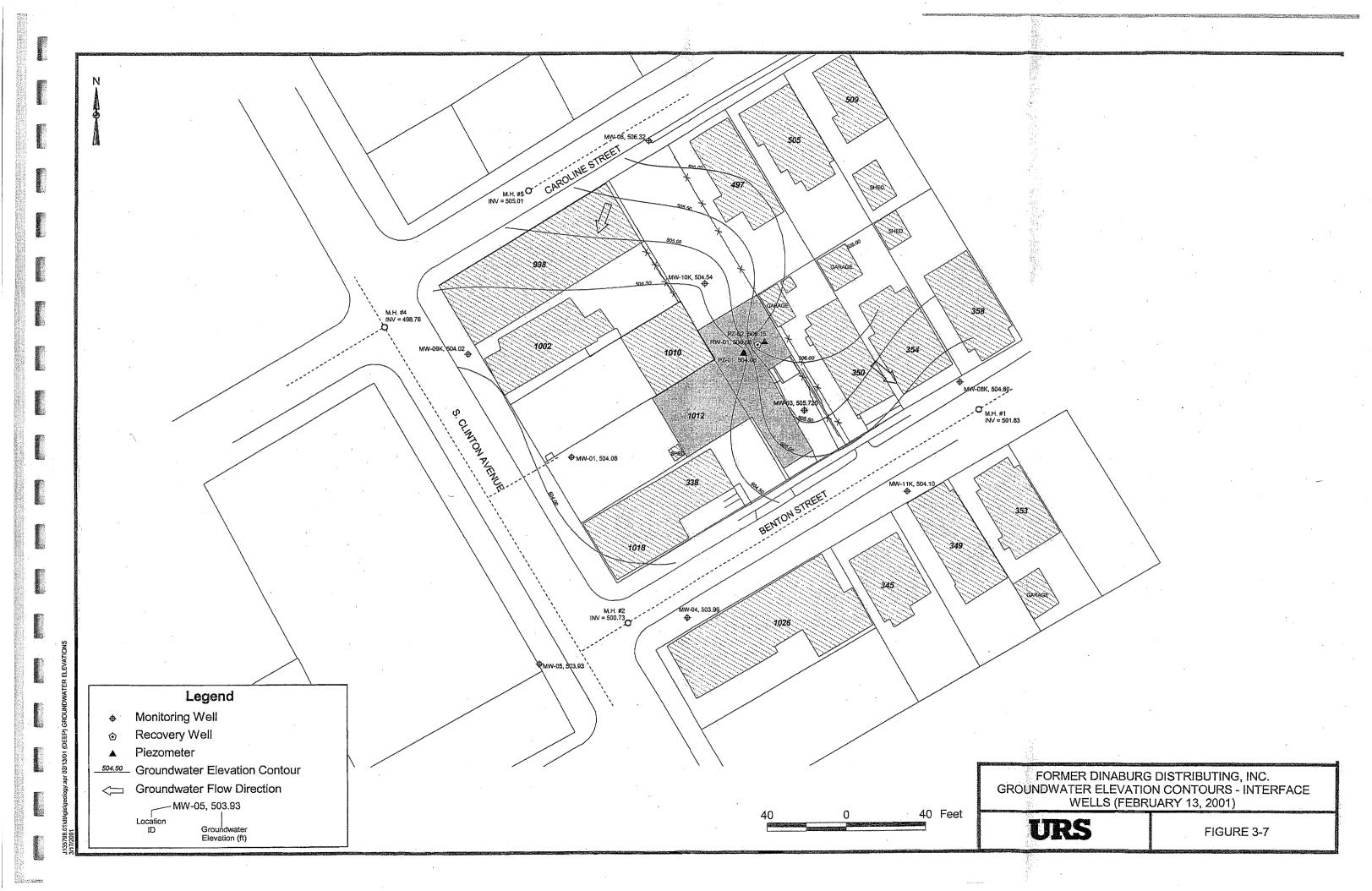
DINABURG DISTRIBUTING 1012 SOUTH CLINTON AVE ROCHESTER, NY

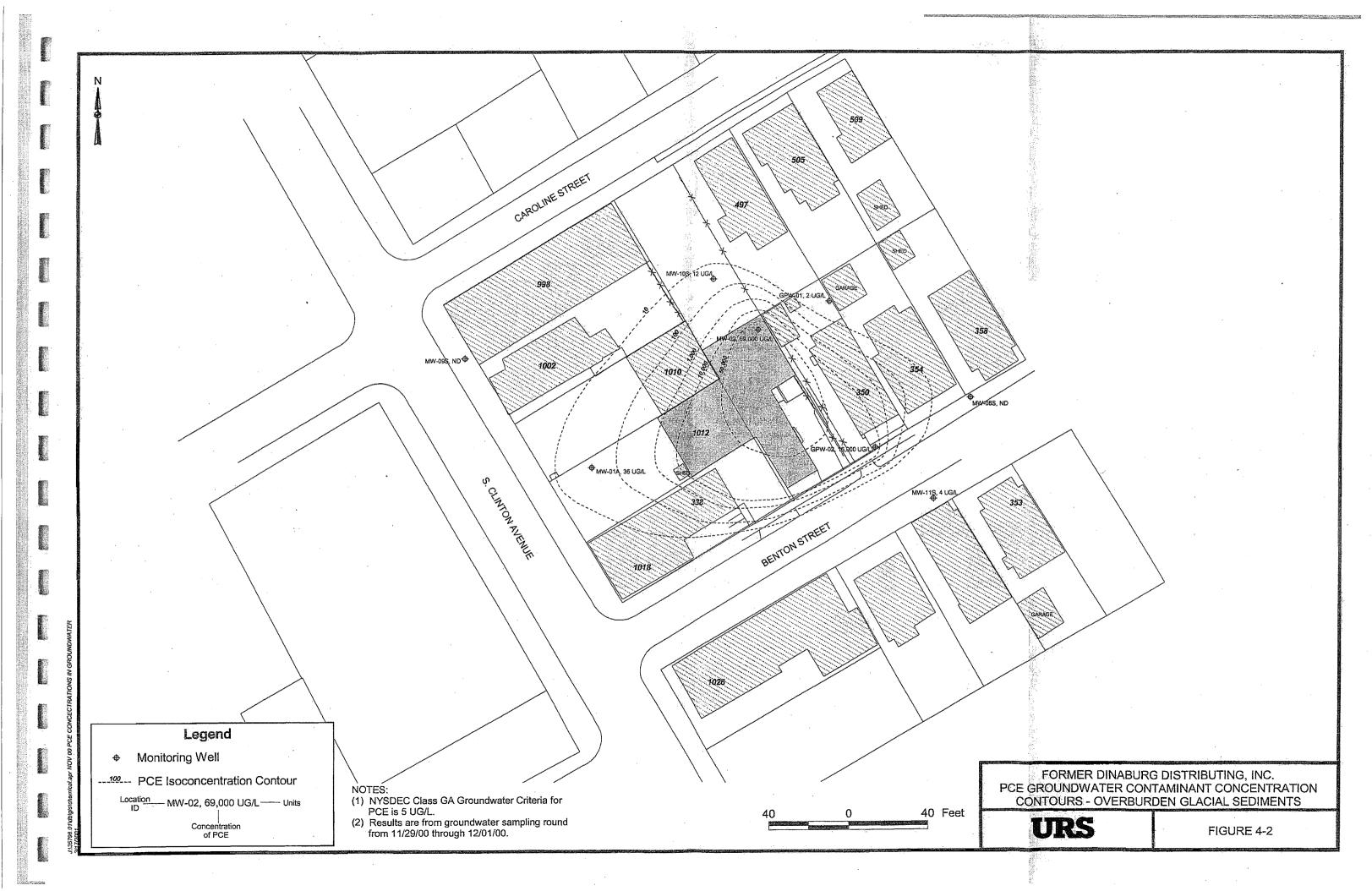

Base Map: Tape Location Map, 4/10/90

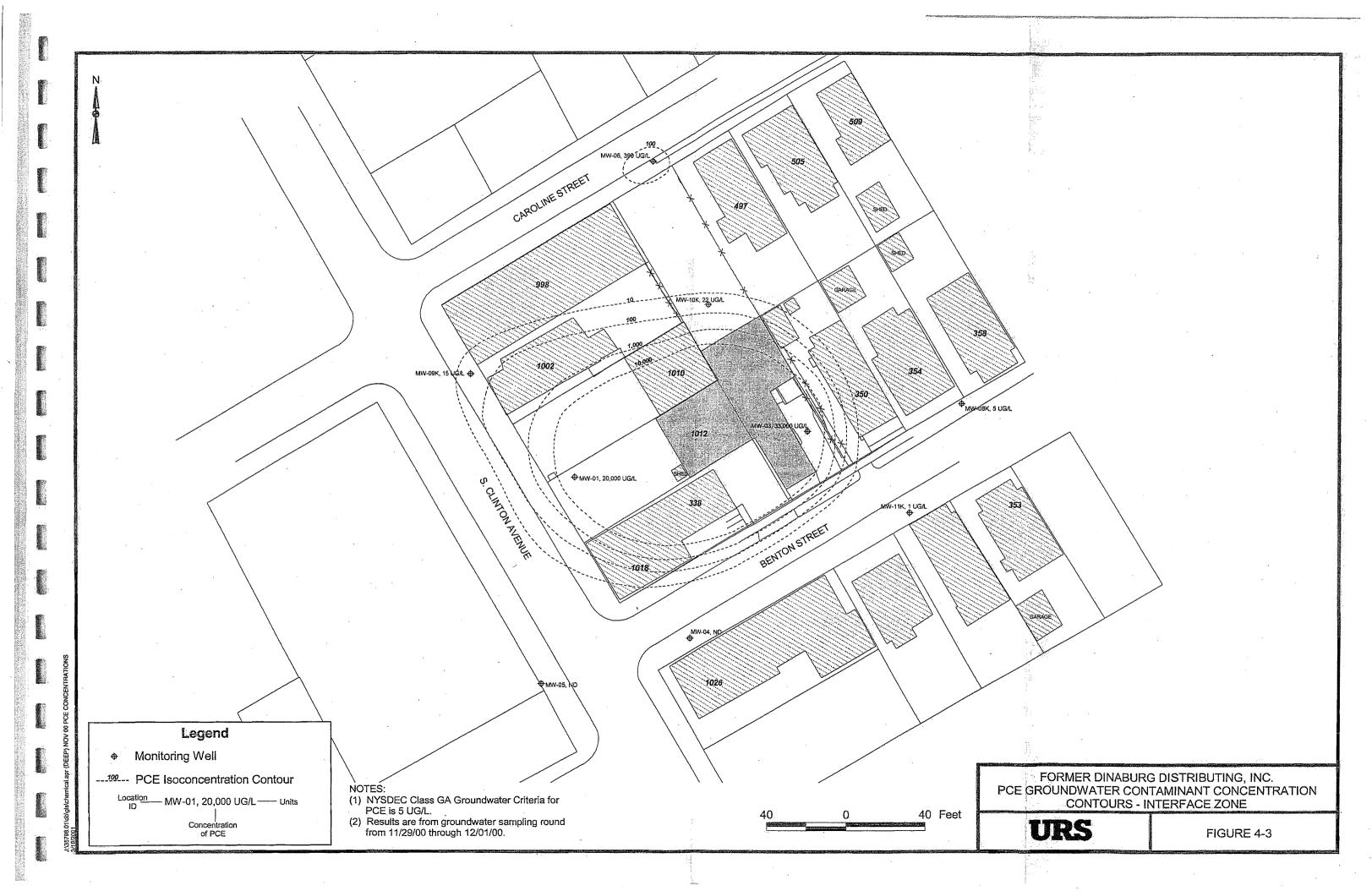


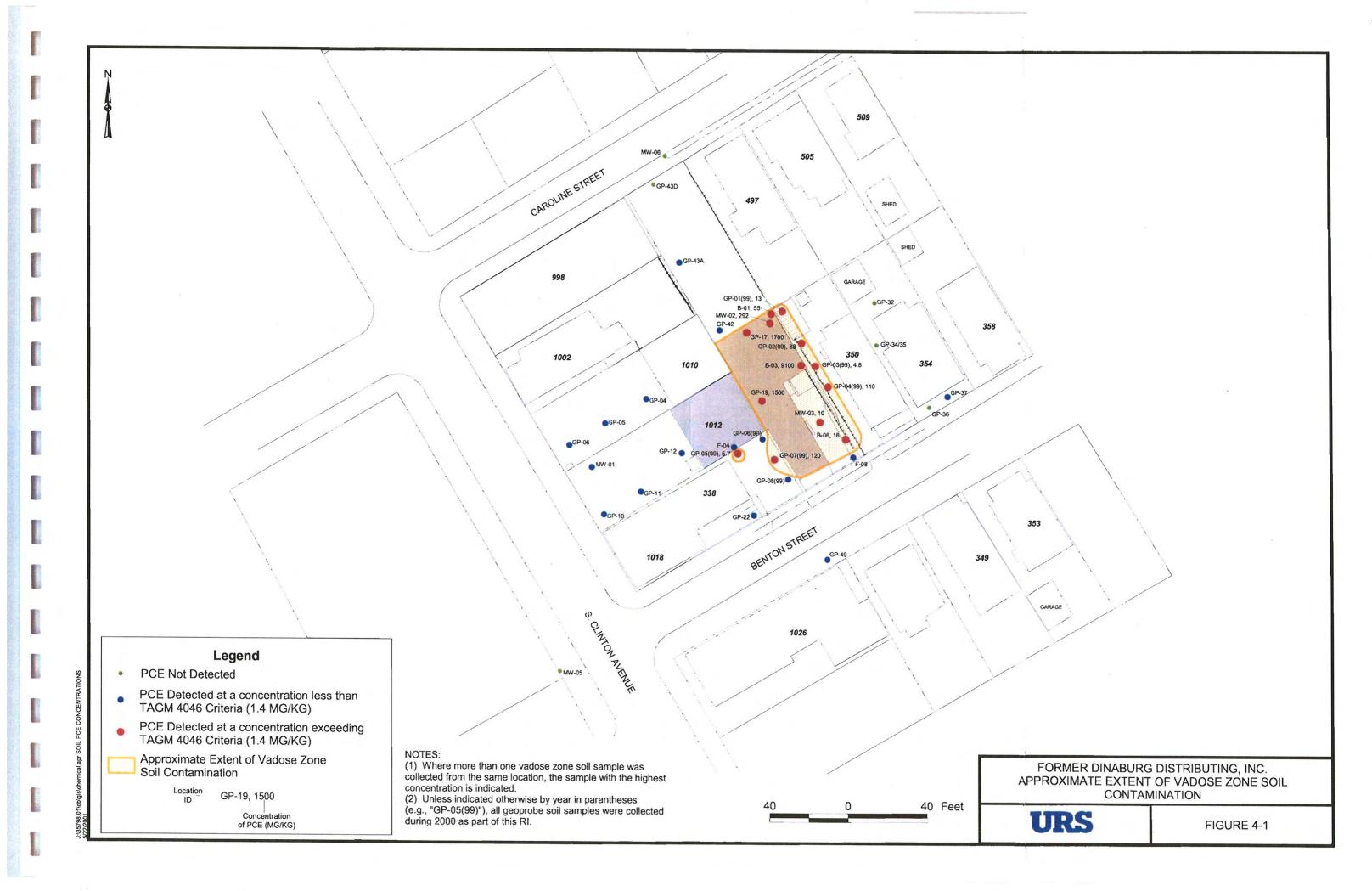


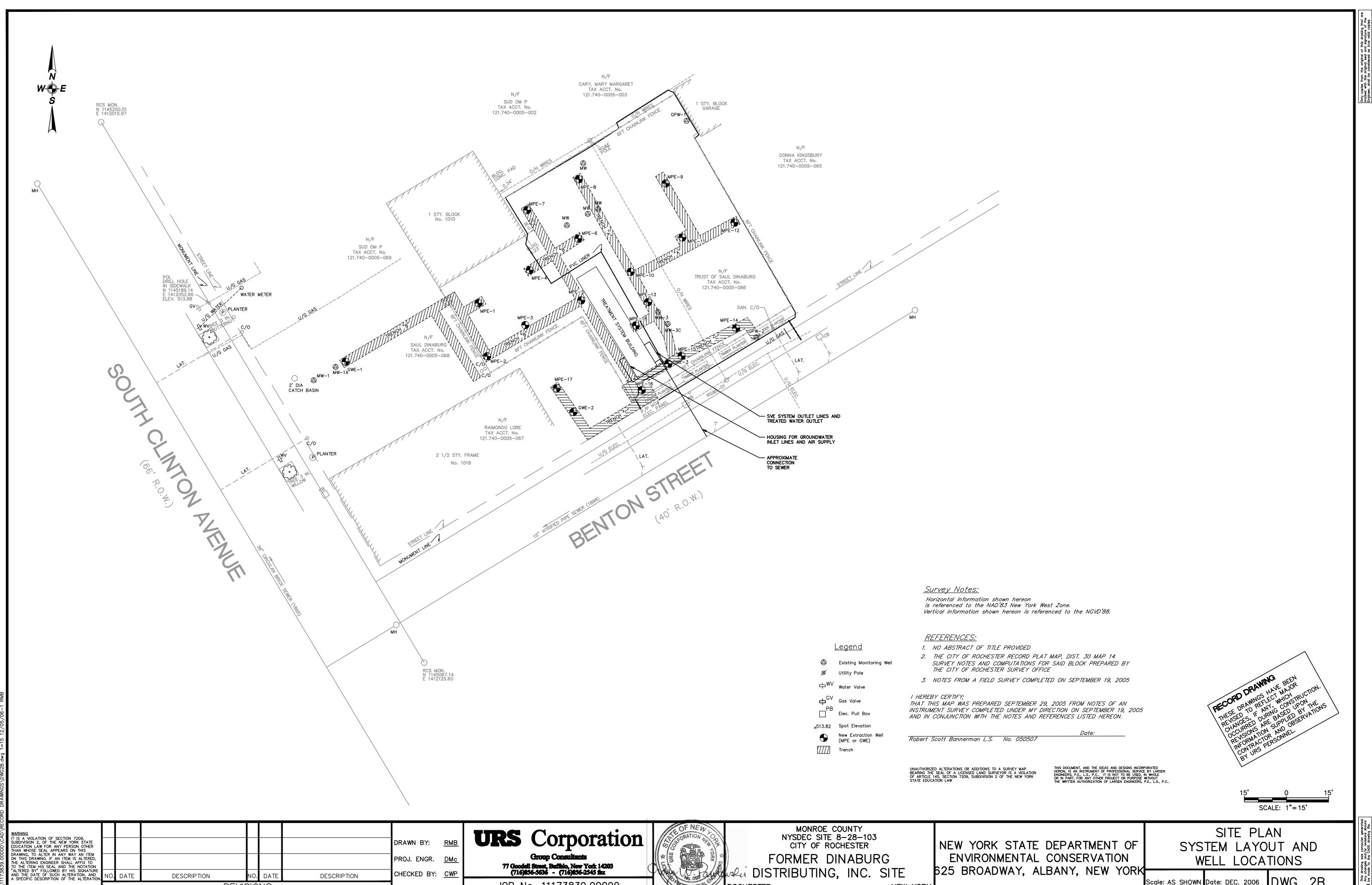


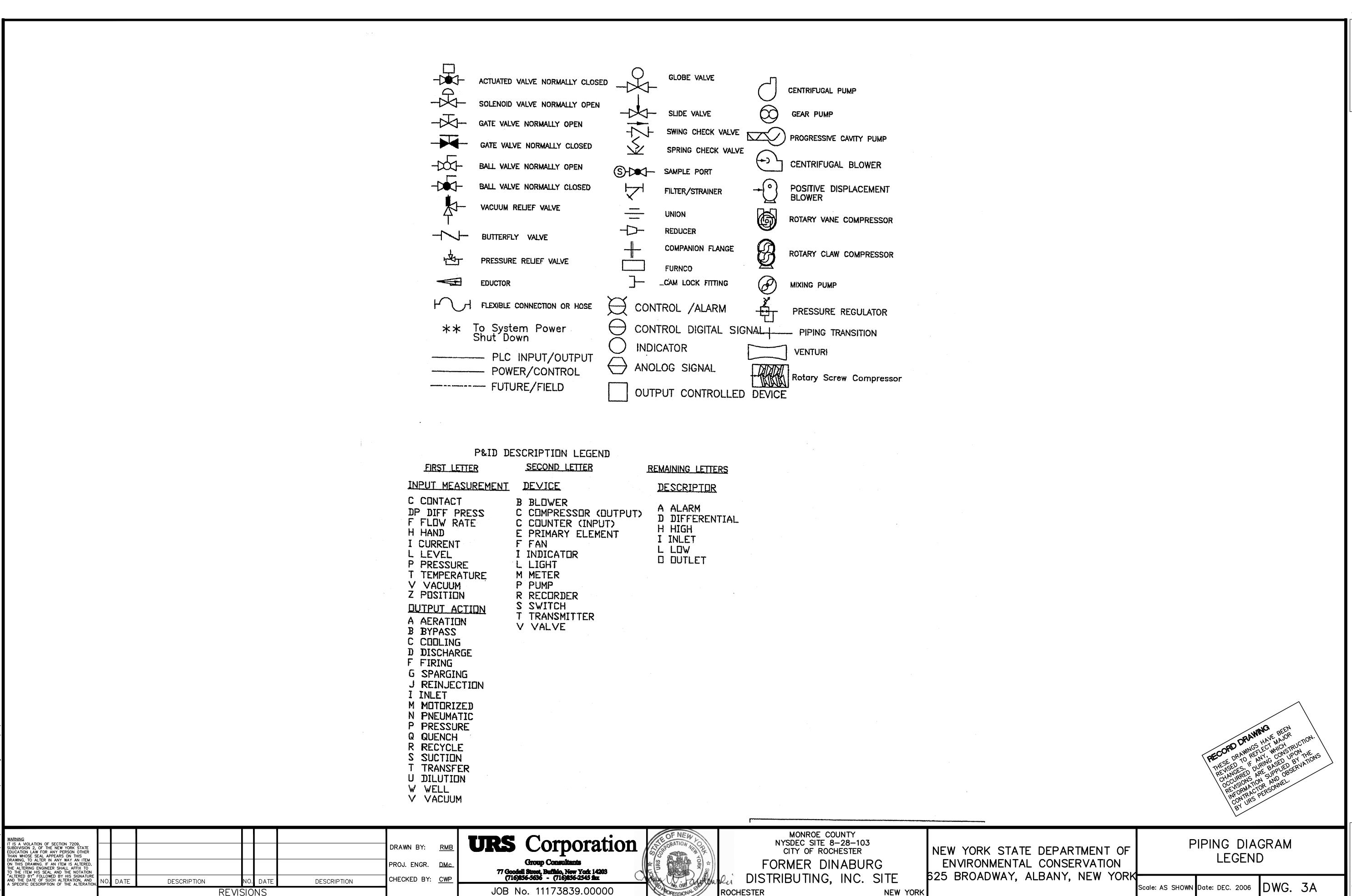

J:\3579B.01\db\gis\geology.apr SOIL VAPOR EXTRACTION SYSTEM 31\ftizin:







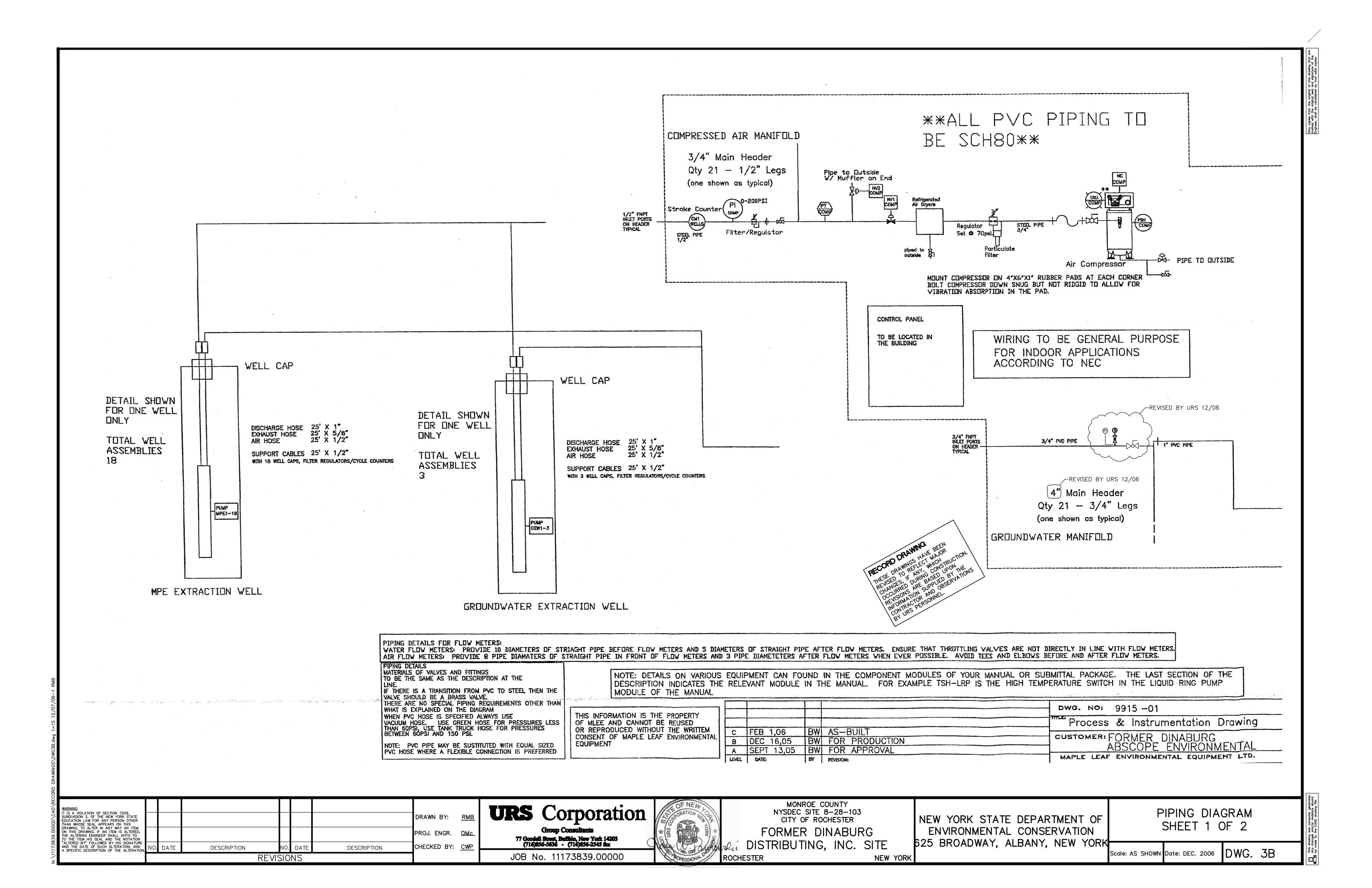


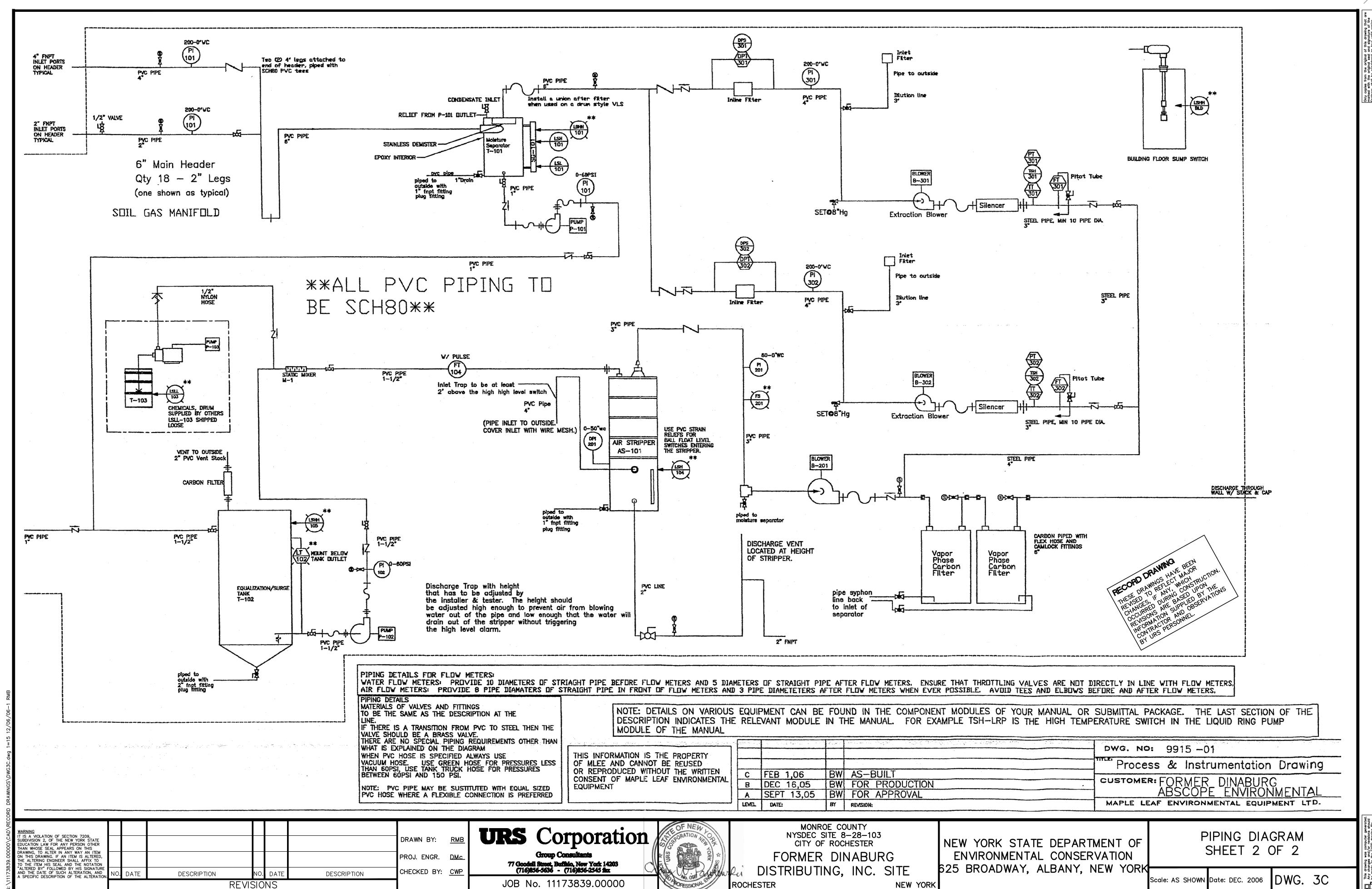

ROCHESTER

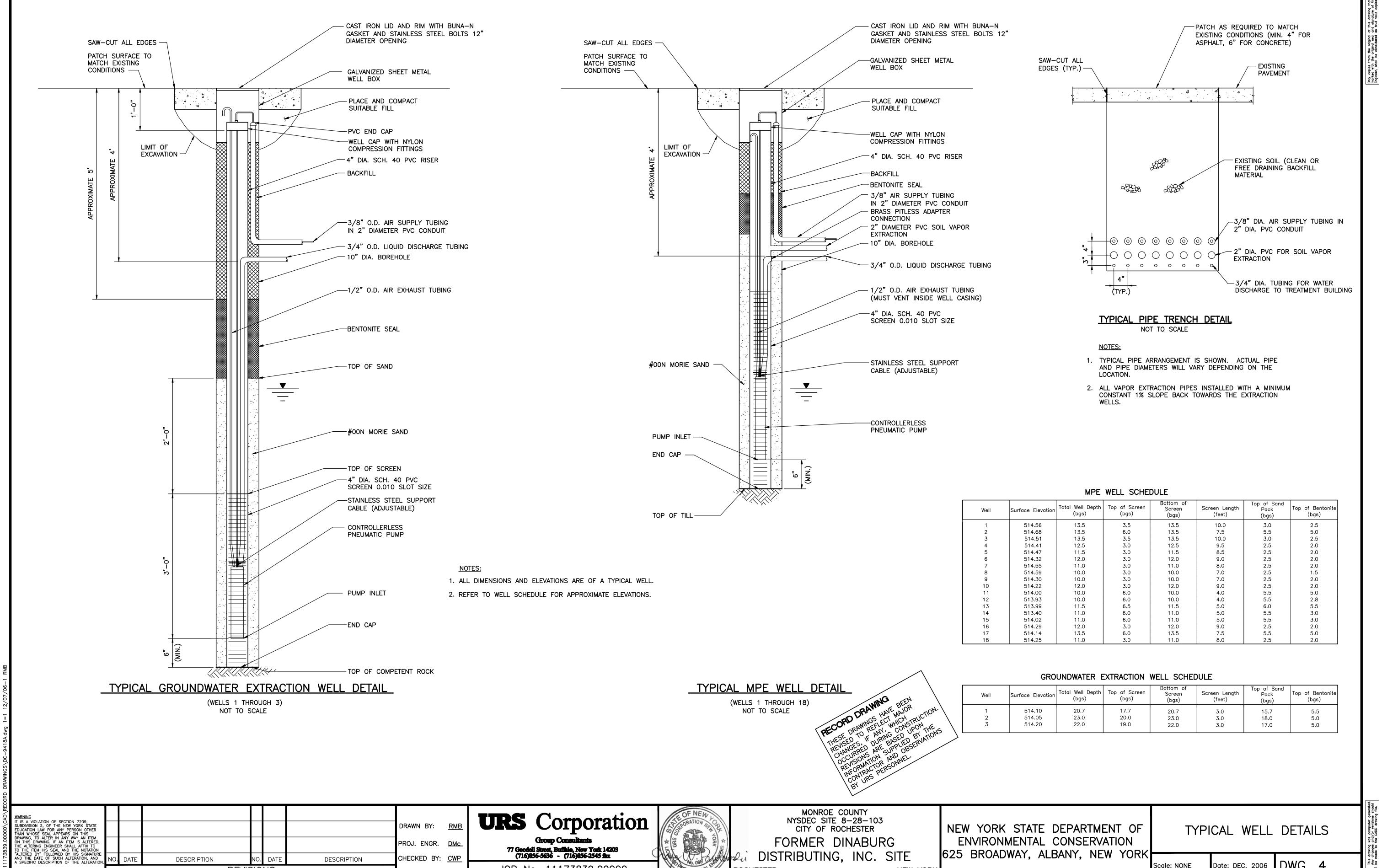
NEW YORK

JOB No. 11173839.00000

REVISIONS


Scale: AS SHOWN Date: DEC. 2006 DWG. 2B

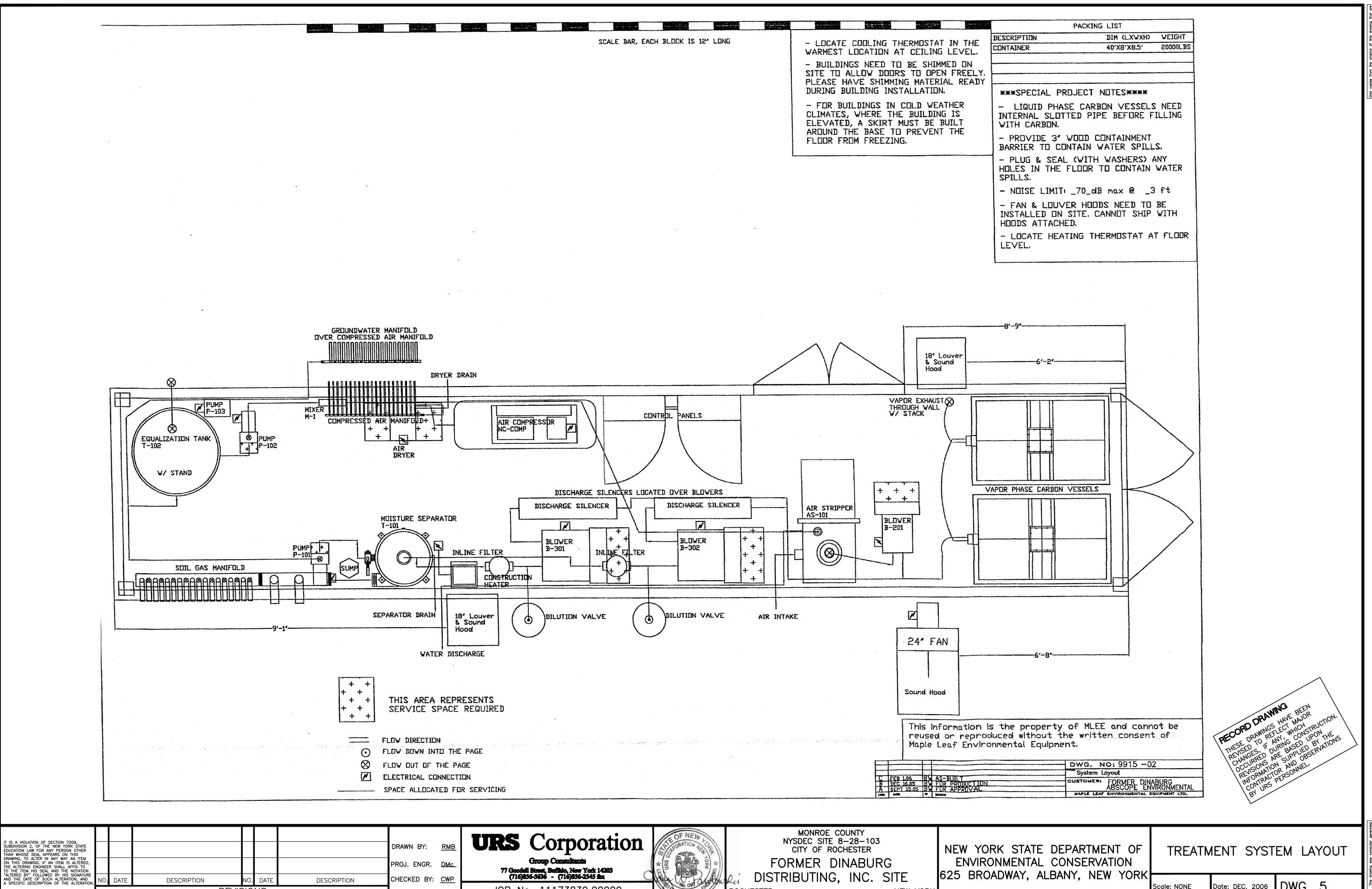



ROCHESTER

NEW YORK

REVISIONS

ROCHESTER


NEW YORK

JOB No. 11173839.00000

REVISIONS

Date: DEC. 2006 DWG. 4

Scale: NONE

CHECKED BY: <u>CWP</u>

JOB No. 11173839.00000

DESCRIPTION

DESCRIPTION

REVISIONS

Date: DEC. 2006 DWG. 5

Scale: NONE

NEW YORK

APPENDIX B

URS EXHIBIT TABLES

TABLE 1-2 SUMMARY OF FEBRUARY 1995 SOIL ANALYTICAL RESULTS FORMER DINABURG DISTRIBUTING, INC.

Location ID			MW-01	MW-01	MW-02	MW-02	MW-03
Sample ID		<u>†</u>	B-01	B-01	B-02	B-02	B-03
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (Depth Interval (ft.)		1.0-3.0	9.0-11.0	1.0-3.0	5.0-7.0	1.0-3.0
Date Sampled			02/01/95	02/01/95	02/02/95	02/02/95	02/06/95
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Trichloroethene	UG/KG	700	11.5	799	170787	127.9	
Tetrachioroethene	UG/KG	1400	49	10008	291585	375.9	8590
Semivolatile Organic Compounds							
Naphthalene	UG/KG	13000	NA	NA	591		NA
Phenanthrene	UG/KG	50000	NA	NA	784		· NA
Fluoranthene	UG/KG	50000	NA	NA	563		NA
Pyrene	UG/KG	50000	NA	NA	424		NA
Chrysene	UG/KG	400	NA	NA	425		NA
Benzo(b)fluoranthene	UG/KG	1100	NA	NA	431		NA

Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised).

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

Source: Environmental Site Characterization Report - Sear-Brown Group, Inc., April 1995

TABLE 1-2 SUMMARY OF FEBRUARY 1995 SOIL ANALYTICAL RESULTS FORMER DINABURG DISTRIBUTING, INC.

Location ID			MW-03	
Sample ID			B-03	
Matrix			Soil	
Depth Interval (ft.)	·	7.0-9.0	
Date Sampled	02/06/95			
Parameter	Units C			
Volatile Organic Compounds				
Trichloroethene	UG/KG	700	2110	
Tetrachloroethene	UG/KG	1400	10278	
Semivolatile Organic Compounds				
Naphthalene	UG/KG	13000	NA	
Phenanthrene	UG/KG	50000	NA	
Fluoranthene	UG/KG	50000	NA	
Pyrene	UG/KG	50000	NA	
Chrysene	UG/KG	400	NA	
Benzo(b)fluoranthene	UG/KG	1100	NA .	

Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised). Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

Source: Environmental Site Characterization Report - Sear-Brown Group, Inc., April 1995

TABLE 1-3 SUMMARY OF FEBRUARY 1995 GROUNDWATER ANALYTICAL RESULTS FORMER DINABURG DISTRIBUTING, INC.

Location ID			MW-01	MW-02	MW-03
Sample ID		MW-01	MW-D2	MW-03	
Matrix		Groundwater	Groundwater	Groundwater	
Depth Interval	(ft.)	-			
Date Sample	ď	02/10/95	02/10/95	02/10/95	
Parameter	Units	Criteria*			
Votatile Organic Compounds					
1,2-Dichloroethene (total)	UG/L	5	519		
Trichloroethene	UG/L	5	3480	83989	160503
Tetrachloroethene	UG/L	5	2114	22890	14163

Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June, 1998, Class GA (Amended April 2000).

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

Source: Environmental Site Characterization Report - Sear-Brown Group, Inc., April 1995

Location ID		SEW-02	SEW-04			
Sample ID		MHCAR_SCL	MHBEN_SCLI			
Matrix	Matrix					
Depth Interval (ft.)	-	•				
Date Sampled	Date Sampled					
Parameter						
Volatile Organic Compounds						
1,2-Dichloroethene (total)	UG/L	2.20				
Chloroform	UG/L	9.80	6.60			
1,2-Dichloropropane	UG/L	1.6				
Trichloroethene	UG/L	6.00				
Tetrachloroethene	UG/L	15.0				

Flags assigned during chemistry validation are shown.

Source: Monroe County Pure Waters Laboratory

Location ID			B-03A	B-03A	MW-04	MW-04	MW-05
Sample ID			B-03A	B-03A	MW-04	MW-04	MW-05
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval	Depth Interval (ft.)			15.0-16.8	8.0-11.0	22.0-22.8	7.0-9.0
Date Sample	d		10/16/97	10/16/97	10/17/97	10/17/97	10/13/97
Parameter Units Criteria*		· · · · · · · · · · · · · · · · · · ·					
Volatile Organic Compounds					_		
Trichloroethene	UG/KG	700	1300	1200	11		
Tetrachloroethene	UG/KG	1400	2900	5700			
Toluene	UG/KG	1500					12
Ethylbenzene	UG/KG	5500	-				8.6
Xylene (total)	UG/KG	1200					34
General Chemistry Parameters							
Total Organic Carbon (TOC)	MG/KG	-	1060	2540	1020	6110	NA NA

Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised).

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

Location ID			MW-05	MW-06	MW-06
Sample ID			MW-05	MW-06	MW-06
Matrix			Soil	Soil	Soil
Depth Interval	(ft.)		21.0-22.8	7.0-9.0	19.0-19.8
Date Sample	d	10/13/97	10/13/97	10/13/97	
Parameter					
Volatile Organic Compounds					
Trichloroethene	UG/KG	700			
Tetrachloroethene	UG/KG	1400			
Toluene	UG/KG	1500	6.9		
Ethylbenzene	UG/KG	5500			
Xylene (total)	UG/KG	1200			
General Chemistry Parameters					
Total Organic Carbon (TOC)	MG/KG	-	NA	NA *	NA

Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised).

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

TABLE 1-6 SUMMARY OF OCTOBER/DECEMBER 1997 GROUNDWATER ANALYTICAL RESULTS FORMER DINABURG DISTRIBUTING, INC.

Location ID			MW-01	MW-01	. MW-02	MW-02	MW-03	
Sample ID			MW-01	MW-01	MW-02	MW-02	MW-03	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (-	-	-	<u> </u>	•	
Date Sample	Date Sampled		10/28/97	12/11/97	10/28/97	12/11/97	10/29/97	
Parameter	Units	Criteria*						
Volatile Organic Compounds					,			
1,1-Dichloroethane	UG/L	5		NA .	1200	NA NA		
1,2-Dichloroethene (total)	UG/L	5	1200	NA_		NA		
1,1,1-Trichloroethane	UG/L	5		NA	2600	NA		
1,2-Dichloropropane	UG/L	1		NA .		NA	·	
Frichloroethene	UG/L	. 5	16000	NA	93000	NA	99000	
Fetrachloroethene	UG/L	5	18000	NA NA	33000	NA	21000	
Metals								
Calcium	UG/L	-	NA	28000	NA:	140000	NA	
Magnesium	UG/L	35000	NA	3100	NA	31000	NA	
Potassium	UG/L	-	NA		NA	18000	NA	
Sodium	UG/L	20000	NA NA	41000	NA NA	65000	NA	
Lead	UG/L	25	NA		NA		NA	
ron	UG/L	300	NA	8600	NA	2700	NA	
General Chemistry Parameters								
Alkalinity	MG/L	• •	NA	66	NA	180 '	NA	
Chloride	MG/L	-	. NA	73	NA NA	76	NA	
Sulfate	MG/L	-	NA .	21	NA NA	68	NA	

Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June, 1998, Class GA (Amended April 2000).

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

TABLE 1-6 SUMMARY OF OCTOBER/DECEMBER 1997 GROUNDWATER ANALYTICAL RESULTS FORMER DINABURG DISTRIBUTING, INC.

Location ID			MW-03	MW-03C	MW-03C	MW-04	MW-04
Sample ID			NW-03 MW-03C		MW-03C	MW-04	MW-04
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (Depth Interval (ft.)		-	-		- ·	•
Date Sample	3		12/11/97	10/29/97	12/11/97	10/28/97	12/11/97
Parameter	Units	Criteria*			•	·	
Volatile Organic Compounds							
1,1-Dichloroethane	UG/L	5	NA	ч	NA		NA
1,2-Dichloroethene (total)	UG/L	5	NA	35	NA		NA
1,1,1-Trichloroethane	UG/L	5	, NA		NA		NA
1,2-Dichloropropane	UG/L	1	NA		NA		NA NA
Trichloroethene	UG/L	5	NA	300	NA		NA
Tetrachloroethene	UG/L	5	NA	570	NA		, NA
Metals							
Calcium	UG/L		280000	NA	120000	NA	92000
Magnesium	UG/L	35000	63000	NA .	51000	NA	42000
Potassium	UG/L		9300	NA	4600	NA	5800
Sodium	UG/L	20000	20000	NA	110000	NA	47000
Lead	UG/L	25	36.0	NA		NA	
iron :	UG/L	300	32000	NA	350	NA	1200
General Chemistry Parameters							
Alkalinity	MG/L	-	360	NA	400	NA	340
Chloride	MG/L	-	5.6	NA NA	220	NA	67
Sulfate	MG/L	-	38	NA	170	NA	120

Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June, 1998, Class GA (Amended April 2000). Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

TABLE 1-6 SUMMARY OF OCTOBER/DECEMBER 1997 GROUNDWATER ANALYTICAL RESULTS FORMER DINABURG DISTRIBUTING, INC.

Location ID			MW-05	MW-05	MW-06	MW-06	
Sample ID			MVV-05	MW-05	MW-06	MW-06	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (-	-	-	12/11/97	
Date Sampled	i 	· · · · ·	10/28/97	12/11/97	10/28/97		
Parameter	Units	Criteria*	-				
Volatile Organic Compounds							
1,1-Dichloroethane	UG/L	5		NA	·	NA	
1,2-Dichloroethene (total)	UG/L	5		NA		NA	
1,1,1-Trichloroethane	UG/L	5		NA.	·	NA	
1,2-Dichloropropane	UG/L	1		NA	55	NA	
Trichloroethene	UG/L	5		NA	380	NA	
Tetrachloroethene	UG/L	5		NA	970	NA .	
Metals							
Calcium	UG/L		NA.	58000	NA .	140000	
Magnesium	UG/L	35000	NA	22000	NA	21000	
Potassium	UG/L	-	NA	12000	NA	3900	
Sodium	UG/L	20000	NA	320000	NA	170000	
ead	UG/L	25	NA		NA		
ron	UG/L	300	NA	760	NA	2600	
General Chemistry Parameters							
Alkalinity	MG/L	-	NA	360	NA	450	
Chloride	MG/L	-	NA	700	NA	190	
Sulfate	MG/L	-	NA ·	120	NA	100	

Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June, 1998, Class GA (Amended April 2000). Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

TABLE 1-7 SUMMARY OF APRIL 1999 SOIL ANALYTICAL RESULTS FORMER DINABURG DISTRIBUTING, INC.

Location ID			B-01	B-01	B-01	B-03	B-03
Sample ID			G-1S	G-1W	G-18	G-2S	G-2W
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (ft.) Date Sampled		0.0-4.0	4.0-8.0	15.0-17.0	0.0-4.0	4.0-8.0	
			04/30/99	04/30/99	04/30/99	04/30/99	04/30/99
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Methylene Chloride	UG/KG	100			34		
Acetone	UG/KG	200					
cis-1,2-Dichloroethene	.UG/KG	•					
Trichtoroethene	UG/KG	700	20000	2200 D	860	690000 D	3600
Tetrachloroethene	UG/KG	1400	55000	9400 D	1200 D	9100000 D	44000
Toluene	UG/KG	1500					
m&p-Xylene	UG/KG	1200					

Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised).

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

Source: Soil Gas Survey Report, Galson Consulting, May 1999.

TABLE 1-7 SUMMARY OF APRIL 1999 SOIL ANALYTICAL RESULTS FORMER DINABURG DISTRIBUTING, INC.

Location ID			B-06	B-06	F-04	F-04
Sample ID		-1	G-4S	G-4W	G-3S	G-3W
Matrix			Soil	Soil	Soil	Soil
Depth Interval	ft.)		0.0-4.0	4.0-8.0	0.0-4.0	4.0-8.0
Date Sample	1		04/30/99	04/30/99	04/30/99	04/30/99
Parameter	Units	Criteria*				
Volatile Organic Compounds						
Methylene Chloride	UG/KG	100	11	8.2	6.2	
Acetone	UG/KG	200	28			
cis-1,2-Dichloroethene	UG/KG	-				5.9
Trichloroethene	UG/KG	700	670 E	810 D	47	94
Tetrachloroethene	UG/KG	1400	10000 D	16000 D	210	780 D
Toluene	UG/KG	1500		10	12	6,4
m&p-Xylene	UG/KG	1200		7.5	13	6.6

Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised).
Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

Source: Soil Gas Survey Report, Galson Consulting, May 1999.

Location ID			GP-01(99)	GP-01(99)	GP-02(99)	GP-02(99)	GP-02(99)
Sample ID			GP-01(99)	GP-01(99)	GP-02(99)	GP-02(99)	GP-02(99)
Matrix			Soil	Soil	Şoil	Soil	Soil
Depth Interval	(ft.)		0.0-4.0	4.0-8.0	0.0-4.0	4.0-8.0	8.0-12.0
Date Sample	Date Sampled			11/30/99	11/30/99	11/30/99	11/30/99
Parameter	Units	Criteria*					
Volatile Organic Compounds	I						
Methylene Chloride	UG/KG	100					
Acetone	UG/KG	200			<u> </u>		
Trichloroethene	UG/KG	700	11000	7700	720	9400	21000
Tetrachloroethene	UG/KG	1400	13000	3200	11000	88000	73000
Xylene (total)	UG/KG	1200					

Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised).

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

Source: Geoprobe Survey, Zebra Environmental Corp., November 1999.

Location ID			GP-03(99)	GP-03(99)	GP-04(99)	GP-04(99)	GP-05(99)
Sample ID			GP-03(99)	GP-03(99)	GP-04(99)	GP-04(99)	GP-05(99)
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (ft.)			0.0-4.0	4.0-8.0	0.0-4.0	4.0-8.0	0.0-4.0
Date Sampled		11/30/99	11/30/99	11/30/99	11/30/99	11/30/99	
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Methylene Chloride	UG/KG	100			2		
Acetone	UG/KG	200	5				
Trichloroethene	UG/KG	700	2	280	6	10000	160
Tetrachloroethene	UG/KG	1400	320	4800	400	110000	5700
Xylene (total)	UG/KG	1200	1 .		1	1300	

Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised). Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

Source: Geoprobe Survey, Zebra Environmental Corp., November 1999.

Location ID)		GP-05(99)	GP-06(99)	GP-06(99)	GP-07(99)	GP-07(99)
Sample ID	*****		GP-05(99) Soil	GP-06(99)	GP-06(99)	GP-07(99)	GP-07(99)
Matrix				Soil	Soil	Soil	Soil
Depth Interval (ft.)			4.0-8.0 11/30/99	0.0-4.0	4.0-8.0	0.0-4.0	4.0-8.0
Date Sampled		11/30/99		11/30/99	11/30/99	11/30/99	
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Methylene Chloride	UG/KG	100	1				
Acetone	UG/KG	200					
Trichloroethene	UG/KG	700	20	3		950	
Tetrachloroethene	UG/KG	1400	120	120	18	120000	11000
Xylene (total)	UG/KG	1200					

Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised).
Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

Location ID			GP-08(99)	GP-08(99)
Sample ID			GP-08(99)	GP-08(99)
Matrix			Soil	Soit
Depth Interval	(ft.)		0.0-4.0	4.0-8.0
Date Sample	d		11/30/99	11/30/99
Parameter	Units	Criteria*		
Volatile Organic Compounds				
Methylene Chloride	UG/KG	100		
Acetone	UG/KG	200		
Trichloroethene	UG/KG	700	110	17
Tetrachloroethene	UG/KG	1400	660	610
Xylene (total)	UG/KG	1200		

Criteria- NYSDEC TAGM: Determination of Soil Cleanup Objectives and Cleanup Levels; HWR-94-4046 January 24, 1994 (Revised).

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

Source: Geoprobe Survey, Zebra Environmental Corp., November 1999.

TABLE 1-9 SUMMARY OF JUNE 2000 GROUNDWATER ANALYTICAL RESULTS FORMER DINABURG DISTRIBUTING, INC.

Location ID			GPW-01	GPW-02	
Sample ID			GPW-01	GPW-02	
Matrix			Groundwater	Groundwater	
Depth Interval	(ft.)		-	06/29/00	
Date Sample	d		06/29/00		
Parameter	Units	Criteria*			
Volatile Organic Compounds					
Vinyl Chloride	UG/L	2		17	
1,1-Dichloroethene	UG/L	. 5	1 J	2 J	
cis-1,2-Dichloroethene	UG/L	5	19	180	
trans-1,2-Dichloroethene	UG/L	5		2 J	
1,1,1-Trichloroethane	UG/L	5		2 J	
Trichloroethene	UG/L	5	2100 D	40000 D	
Tetrachloroethene	UG/L	5	19	14000 D	

Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June, 1998, Class GA (Amended April 2000).

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

Source: Geoprobe Survey, Zebra Environmental Corp., November 1999.

TABLE 1-10 SUMMARY OF MARCH 2000 PASSIVE SOIL-GAS SURVEY ANALYTICAL RESULTS FORMER DINABURG DISTRIBUTING, INC.

Location ID		350B-01	350B-02	350B-03	350B-04	350B-05
Sample ID		350B-01	350B-02 Ambient Air	350B-03	350B-04	350B-05
Matrix		Ambient Air		Ambient Air	Ambient Air	Ambient Air
Depth Interval (ft.) Date Sampled Parameter Units		03/20/00	•		03/20/00	-
			03/20/00	03/20/00		03/20/00
Volatile Organic Compounds						
1,1-Dichloroethene	NG/C					
cis-1,2-Dichloroethene	NG/C	100		76	61	
Chloraform	NG/C	38		66	56	42
1,1,1-Trichloroethane	NG/C					
Trichloroethene	NG/C	1200	180	550	460	120
Fetrachloroethene	NG/C	1000	200	610	610	160
Toluene	NG/C		39	35	32	30

Flags assigned during chemistry validation are shown.

Source: Emflux Soil Gas Survey, Beacon Environmental Services, Inc. March 2000 NG/C - Nanograms/cartridge

TABLE 1-10 SUMMARY OF MARCH 2000 PASSIVE SOIL-GAS SURVEY ANALYTICAL RESULTS FORMER DINABURG DISTRIBUTING, INC.

		2500.00	2500.07	2500.00	350B-09	3500 40
Location ID		350B-06	350B-07	350B-08		350B-10
Sample ID		350B-06	3508-07	350B-08	350B-09	350B-10
Matrix		Ambient Air	Ambient Air	Ambient Air	Ambient Air	Ambient Air
Depth Interval (ft.)	-	03/20/00	03/20/00	- 03/20/00	-	
Date Sampled					03/20/00	03/20/00
Parameter Units						
Volatile Organic Compounds						
1,1-Dichloroethene	NG/C		230			
cis-1,2-Dichloroethene	NG/C		120			
Chloroform	NG/C	93				
1,1,1-Trichloroethane	NG/C		80			
Trichloroethene	NG/C	240	2600	180	600	190
Tetrachloroethene	NG/C	310	3800	170	670	180
Toluene	NG/C		31		•	180

Flags assigned during chemistry validation are shown.

Source: Emflux Soil Gas Survey, Beacon Environmental Services, Inc. March 2000 NG/C - Nanograms/canridge

Exhibit Table 12

Page 1 of 10

TABLE 4-1 SOIL ANALYTICAL RESULTS FORMER DINABURG DISTRIBUTING, INC.

Location ID			F-08	, F-08	GP-04	GP-05	GP-05
Sample ID			F-08	F-08	GP-04	GP-05	GP-05
Matrix	······································		Soll	Soil	Soil	Soil	Soil
Depth Interval (fi	:.)		3.0-4.0	6.0-7.0	4.0-6.0	3.0-4.0	7.0-8.0
Date Sampled			11/03/00	11/03/00	11/03/00	11/03/00	11/03/00
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Methylene Chloride	ug/Kg	50				·	
Acetone	UG/KG	50			<u> </u>		
1,2-Dichloroethene (total)	ug/kg	250			10 J	9 J	
Methyl Ethyl Ketone (2-Butanone)	UG/KG	120		ì	3.1		
1,1,1-Trichloroethane	UG/KG	680				4 J	ļ
Trichloroethene	- UG/KG	470	·13	10 J	72	81	14
Tetrachloroethene	UG/KG	1300	380 D	· 110	36	360 D	170
Toluene	UG/KG	700	2 J				
Ethylbenzene	UG/KG	1000					• .
Xylene (Total)	UG/KG	260					
Semivolatile Organic Compounds							
4-Methylphenol	UG/KG	330					
Naphthalene	UG/KG	12,000			·		
2-Methylnaphthalene	UG/KG	7		·			
Acenaphthylene	· UG/KG	100,000	**				
Acenaphthene	UG/KG.	20,000					
Dibenzofuran	UG/KG	7,000		<u></u>			
Fluorene	UG/KG	30,000					
Phenanthrene	UG/KG	100,000					. 41 J
Anthracene	UG/KG	100,000					
Carbazole	UGIKG				<u> </u>		
Fluoranthene	UG/KG	100,000	,			<u> </u>	63 J

Criteria - 6 NY CRR Part 375 Soil Cleanup Objectives for Unrestricted Use Flags assigned during chemistry validation are shown.

Only Detected Results Reported.

Advanced Selection: 4-1
J 105/98/JU (Microgram) programmee
Printed: 3/20/01 4/25 15 PM
MATRIXI = 'SO' AND (LOGDATE) = #1/A/20/04

Location ID			F-08	F-08	GP-04	GP-05	GP-05
Sample ID			F-08	F-08 Soil 6.0-7.0	GP-04	GP-05	GP-05
Matrix			Soll 3.0-4.0		Soil	Soil	Soil
Depth Interval (fi	t.)	·			4.0-6.0	3.0-4.0	7.0-8.0
Date Sampled		11/03/00	11/03/00	11/03/00	11/03/00	11/03/00	
Parameter	Units	Criteria*		·		·	
Semivolatile Organic Compounds				·	•		
Pyrene	UG/KG	100,000					51 J
Butylbenzylphthalate .	UG/KG						
Berizo(a)anthracene	UG/KG	1,000					
Chrysene ·	UG/KG	1,000					39 J
Benzo(b)fluoranthene	ÚG/KG	1000				`	
Benzo(k)fluoranthene	UG/KG	800	•				,,
Benzo(a)pyrene	UG/KG	1,000					
Indeno(1,2,3-cd)pyrene	UG/KG	500				·	
Benzo(g,h,i)perylene	UG/KG	100,000	·				
PCBs			٠.				
Aroclor 1248	UG/KG	100			·		·
Aroclor 1254	UG/KG	100					
Aroclor 1260	UG/KG	100			·		

Criteria - 6 NYCRR Part 375 Soil Cleanup Objectives for Unrestricted Use

Flags assigned during chemistry validation are shown.

Location ID			GP-06	GP-10	GP-11	GP-11	GP-12
Sample ID	·		GP-06	. GP-10	GP-11	GP-11	GP-12
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (f	i.)		3.0-4.0	3.0-4.0	3.0-5.0	8.0-10.0	5.0-7.0
Date Sampled			11/03/00	11/03/00	11/03/00	11/03/00	11/03/00
Parameter .	Units	Criteria*					
Voiatile Organic Compounds							
Methylene Chloride	UG/KG	50		•			·
Acetone	ug/kg	50	l.				
1,2-Dichloroethene (total)	UGIKG	250	2 J			2 J	
Methyl Ethyl Ketone (2-Butanone)	UG/KG	120		3 J	2 J		
1,1,1-Trichloroethane	UG/KG	680	,				
Trichloroethene	UG/KG	470	38 .	12 J	44	15	
Tetrachloroethene	UG/KG	1,300	140	13 J	200	77	35
Toluene	UG/KG	700					
Ethylbenzene	UG/KG	1,000		78			
Xylene (Total)	UG/KG	260		560			
Semivolatile Organic Compounds							
4-Methylphenol	UG/KG	330			<u> </u>		
Naphthalene	, ug/kg	12,000	;	660			,
2-Methylnaphthalene	UG/KG			1200			
Acenaphthylene	UG/KG	1001000					
Acenaphthene	UG/KG	20,000		70 J			·
Dibenzofuran	UG/KG	7,000					
Fluorene	UG/KG	30,∞0		84 J			
Phenanthrene	UG/KG	100,000		480	200 J	170 J	
Anthracene	UG/KG	100,000		120 J	47 J		
Carbazole	UG/KG	-		91 J	42 J		
Fluoranthene	UG/KG	100,000		800	440	200 J	

Criteria - 6 NYCRR Part 375 Soil Cleanup Objectives for Unrestricted Use Flags assigned during chemistry validation are shown.

Location ID			GP-06	GP-10	GP-11	GP-11	GP-12
Sample ID			GP-06	GP-10	GP-11	GP-11	GP-12
Matrix			Soil	Soil	Soil	Soll	Soil
Depth Interval (f	t.)	,	3.0-4,0	3.0-4.0	3.0-5.0	8.0-10.0	5.0-7.0
Date Sampled	:	1	11/03/00	11/03/00	11/03/00	11/03/00	11/03/00
Parameter	Units Criteria*						
Semivolatile Organic Compounds							
yrene .	UG/KG	100,000		760	. 390	280 J	
Butylbenzylphthalate	UG/KG			· 53 J			•
Benzo(a)anthracene	UG/KG	1000		4 <i>5</i> 0	280 J	97 J	
Chrysene .	UG/KG	1,000		630	390	120 J	
Benzo(b)fluoranthene	·UG/KG	1,000		600	290 J	94 J	
Benzo(k)fluoranthene	UG/KG	800		440	210 J	100 J	
Benzo(a)pyrene	· UG/KG	1,000		530 J	290 J		
Indeno(1,2,3-cd)pyrene	UG/KG	500		310 J	170 J	49 J	
Benzo(g,h,i)perylene .	UG/KG	100,000		290 J	170 J	47 J	
PCBs							
Aroclor 1248	UG/KG	100			·		
Arocior 1254	UG/KG	100		150 J	120	81	
Arodor 1260	UG/KG	100		34 J			

Criteria -6 NyCRR Part 375 Soil Cleanup Objectives for unrestricted use

Flags assigned during chemistry validation are shown.

Location ID			GP-17	GP-17	GP-19	GP-19	GP-22
Sample ID			GP-17	GP-17	GP-19 .	GP-19	GP-22
Matrix			Soli	Soil	Soil	· Soil	Soil
Depth Interval (fi	t.)		3.0-4.0	5,0-7.0	0.0-2.0	7.0-8.0	4.0-6.0
Date Sampled			11/03/00	11/03/00	11/03/00	11/03/00	11/03/00
Parameter	Units	Criteria*					
Volatile Organic Compounds		·			٠		
Methylene Chloride	UG/KG	50	,				1
Acetone	ug/kg	50					
1,2-Dichloroethene (total)	ug/kg ⁻	250				19	1J
Methyl Ethyl Ketone (2-Butanone)	UG/KG	120					
1,1,1-Trichloroethane	UG/KG	680				13	
Trichloroethene	UG/KG	470	180000	650 J	140000 J	4600 D	16
Tetrachioroethene	UG/KG	1,300	170000D	12000	1500000	12000 D	200
Toluene	UG/KG	700					
Ethylbenzene	UG/KG	1,000					
Xylene (Total)	UG/KG	260			,	. 2 J	
Semivolatile Organic Compounds	·				<u>.</u>	;	
4-Methylphenol	UG/KG	330	•				
Naphthalene .	UG/KG	12,000	1500		270 J		
2-Methylnaphthalene	UG/KG		1100		800		
Acenaphthylene .	UG/KG	100,000	390 J		190 J		•
Acenaphthene	ug/kg	20,000	2000				
Dibenzofuran	UG/KG	7,000	2400				
Fluorene	UG/KG	30,000	2000				
Phenanthrene	ug/kg	100,000	51000 D	- 58 J	200 J		
Anthracene	ug/kg	100,000	1 0 000 D		64 J		
Carbazole	UG/KG	-	7900 J				
Fluoranthene	UG/KG	100,000	46000 D	71 J	190 J		

Criteria -6 NyCRR Part 375 Soil Cleanup Objectives for unrestricted Use

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

Location ID			GP-17	GP-17	GP-19	GP-19	GP-22
Sample ID			GP-17	GP-17	GP-19	GP-19	GP-22
Matrix			Soil	Soil	Soil	Soil	Soil
Depth Interval (fi	t.)		3,0-4,0	5.0-7.0	0.0-2.0	7.0-8.0	4.0-6.0
Date Sampled			11/03/00	11/03/00	11/03/00	11/03/0D	11/03/00
Parameter	Units Criteria*			·			
Semivolatile Organic Compounds							
Pyrene	UG/KG	100,000	43000 D	89 J	. · 190 J		
Butylbenzylphthalate	ug/kg ´					. :	
Benzo(a)anthracene	UG/KG	1,000	22000 D		130 J		
Chrysene	UG/KG	1,000	28000 D	42 J	230 J		
Benzo(b)fluoranthene	UG/KG	1,000	20000 D		230 J		• .
Benzo(k)fluoranthene	UG/KG	800	10000 D	·	210 J		
Benzo(a)pyrene	UG/KG	1,000	16000 D		140 J		
Indena(1,2,3-cd)pyrene	UG/KG	500	11000 D		110 J		•
Benzo(g,h,i)perylene	-UG/KG	100,000	10000 D	·	84 J	•	
PCBs							
Aroclor 1248	ug/kg	100			96 NJ		
Aroclor 1254	UG/KG	100			210		
Aroclor 1260	UG/KG	LOD			. 90		

Criteria - 6 NYCRR Part 375 Soil Cleanup Objectives for unrestricted Use

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

Location ID Sample ID Matrix			GP-32	GP-34/35	GP-36	GP-37	GP-42
			GP-32	GP-34/35	GP-36	GP-37 Soil	GP-42
			Soil	Soll	Soll		Soil
Depth Interval (fi	<u>.)</u>		3.0-4.0	3.0-5.0	4.0-6.0	4.0-6.0	3.0-5.0
Date Sampled			11/03/00	11/03/00	11/03/00	11/03/00	11/03/00
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Methylene Chloride	UG/KG	50	•				170 J
Acetone	UGIKG	50					58
1,2-Dichloroethene (total)	UG/KG	250				······································	330
Methyl Ethyl Ketone (2-Butanone)	UG/KG	120					. 5J
1,1,1-Trichloroethane	UG/KG	680					
Trichloroethene	UG/KG	470					78
Tetrachloroethene	UG/KG	1,300			₹**	3 J	160
Toluene	UG/KG	700					
Ethylbenzene	UG/KG	1,000					
Xylene (Total)	UG/KG	260		`		• .	
Semivolatile Organic Compounds							
4-Methylphenol	UG/KG	330					170 J
Naphthalene	UG/KG	12,000					170 J
2-Methylnaphthalene \	UG/KG			·			120 J
Acenaphthylene	UG/KG	100,000					. 420 J
Acenaphthene .	UG/KG	20,000		130 J		•	220 J
Dibenzofuran .	UG/KG	7,000	1	80 J	. :		240 J
Fluorene .	UG/KG	30,000		130 J			490 J
Phenanthrene	UG/KG	100,000	330 J	1100			4200
Anthracene	UG/KG	100,000	65 J	190 J			1000
Carbazole	UG/KG	-	48 J	250 J			710 J
Fluoranthene	UG/KG	100,000	490	1200	95 J		6100

Criteria - 6 Ny CRR Part 375 Soil Cleanup Objectives for Unrestricted USR

Flags assigned during	chemistry validation are shown,
	Concentration Exceeds Criteria.

Location ID			GP-32	GP-34/35	GP-36	GP-37	GP-42
Sample ID			GP-32	GP-34/35	GP-36	GP-37	GP-42
Matrix			Soil	Soil	Soil	Soil	Soli
Depth Interval (f	L.)		3.0-4.0	3.0-5.0	4.0-6.0	4.0-6.0	3.0-5.0
Date Sampled		· .	11/03/00	11/03/00	11/03/00	11/03/00	11/03/00
Parameter	Units	Criteria*				·	·
Semivolatile Organic Compounds				•			
Pyrene	UG/KG	100,000	410	1100	92 J	·	. 5800
Butylbenzylphthalate	UG/KG						
Benzo(a)anthracene	UG/KG	1,000	170 J	400 J			3700
Chrysene	UG/KG	1,000	230 J	530	64 J		4600
Benzo(b)fluoranthene	UG/KG	1,000	190 J	390 7	56 J		3000
Benzo(k)fluoranthene	UG/KG	800	150 J	270 J	46 J		3100
Benzo(a)pyrene	UG/KG	1,000	170 J	410 J	46 J	: ' .	3000
Indeno(1,2,3-cd)pyrene	UG/KG	500	94 J	180 J			1700
Benzo(g,h,i)perylene	UG/KG	100,000	89 J	170 J			1500
PCBs			· · · · · · · · · · · · · · · · · · ·				
Aroclor 1248	. UG/KG	100		`			
Aroclor 1254	UG/KG	100					
Arodor 1260	UGIĶG	100					

Criteria - 6 NYCRR Part 375 Soil Cleanup Objectives for Unrestricted Use

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

Location ID		GP-43A	GP-43D	.GP-49	
Sample ID		GP-43A	GP-43D	GP-49	
Matrix		Soil	Soil	Soit	
Depth Interval (fi	:.)	2.0-4.0	4.0-6.0	3.0-5.0	
Date Sampled		11/03/00	11/03/00	11/03/00	
Parameter	Units	Criteria*			
Volatile Organic Compounds			•		
Methylene Chloride	UG/KG	50			
Acetone	ug/kg	50			
1,2-Dichloroethene (total)	UG/KG	250			
Methyl Ethyl Kelone (2-Butanone)	UG/KG	120			
1,1,1-Trichloroethane	UG/KG	680			
Trichloroethene	UG/KG	470	8.J		15
Tetrachloroethene	UG/KG	1,300	13		35
Toluene	UG/KG	700		 	
Ethylbenzene	UG/KG	1,000			
Xylene (Total)	UG/KG	260			
Semivolatile Organic Compounds					
4-Methytphenol	UG/KG	330			
Naphthalene	UG/KG	12,000			
2-Methylnaphthalene	UG/KG				
Acenaphthylene	UG/KG	(00,000			
Acenaphthene	UG/KG	20,000			
Dibenzofuran	UG/KG	7,000			
Fluorene /	UG/KG	30,000	57 J		
Phenanthrene	UG/KG	100,000	490		
Anthracene	ug/Kg	100,000	110 J		
Carbazole	UG/KG	-	83 J		
Fluoranthene	UG/KG	100,000	470		

Criteria - 6 NYCRR Part 375 Soil Cleanup Objectives for unrestricted USE

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria.

Location ID		GP-43A	GP-43D	GP-49	
Sample ID		GP-43A	GP-43D	GP-49 Soll	
Matrix		Soil	Soil		
Depth Interval (fi	t.)		2.0-4.0	4.0-6.0	3.0-5.0
Date Sampled			11/03/00	11/03/00	11/03/00
Parameter	Units	Criteria*			
Semivolatile Organic Compounds					
Pyrene	UG/KG	100,000	360 J		
Butylbenzylphthalate	UG/KG			,	
Benzo(a)anthracene	UG/KG	1,000	220 J		
Chrysene	UG/KG	1,000	240 J		
Benzo(b)fluoranthene	UG/KG	1,000	150 J		
Benzo(k)fluoranthene	UG/KG	800	120 J		
Вепzo(а)ругеле	UG/KG	1,000	150 J		
indeno(1,2,3-cd)pyrene	UG/KG	500	99.J		
Benzo(g,h,i)perylene	UG/KG	1,000	92 J		
PCBs					
Aroclor 1248	UG/KG	100			
Aroclor 1254	UG/KG	100			
Aroclor 1260	UG/KG	100			

Criteria - 6 NyCRR Part 375 Soil Cleanup Objectives for Unrestricted Use

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

Only Detected Results Reported.

Advanced Selection 4-1

J 135798 Of Hibbings an incommune

Printed: 3/2001 4:35-17 PM

(MATRIX) = 'SO' AND (LOGDATE) = #11/300*

Location ID		_	GPW-01	GPW-02	MW-01	MW-01A	MW-02
Sample ID Matrix			GPW01	GPW02 Groundwater	MW01	MW01A Groundwater	MW02 Groundwater
			Groundwater		Groundwater		
Depth Interval (f	t.)	_	<u>-</u>			<u> </u>	-
Date Sampled			12/01/00	12/01/00	11/29/00	12/01/00	12/01/00
Parameter	Units	Criteria*					
Volatile Organic Compounds			<u> </u>				
Vinyl Chloride	UG/L	2		91	110		
Acetone	UG/L	50				<u> </u>	
Carbon Disulfide	UG/L	60		5 J			
1,1-Dichloroethene	UG/L	5	2 J	4 J	46		100 J
1,1-Dichloroethane	UG/L	5			150		310 J
1,2-Dichloroethene (total)	UG/L	5	21 J	560 DJ	1600 DJ		130 J
Chloroform	UG/L	7					
1,2-Dichloroethane	UG/L	0.6					11 J
1,1,1-Trichloroethane	UG/L	5		2 J	\bigcirc		1600 DJ
Trichloroethene	UG/L	5	3500 D	44000 D	8400 D	11	110000 D
1,1,2-Trichloroethane	UG/L	1					7,1
Benzene	UG/L	1					46 J
Tetrachloroethene	UG/L	5	2 J	16000 D	20000 D	36	69000 D
Toluene	UG/L	5			2 J		30 J
Ethylbenzene	UG/L	5			5 J		2 J
Xylene (Total)	UG/L	5			12		
Semivolatile Organic Compounds							
Isophorone	UG/L	50	NA	NA_			1 J
Naphthalene	UG/L	10	NA	NA	1 J		8 J
Bis(2-ethylhexyl)phthalate	UG/L	5	NA	NA	2 J	3 J	1 J
Metals							
Aluminum	UG/L	-	NA	NA	60.4 B	232 J	224 J

Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June, 1998, Class GA (Amended April 2000). Flags assigned during chemistry validation are shown.

-							
Location ID Sample ID Matrix		GPW-01	GPW-02	MW-01	MW-01A	MW-02	
		GPW01 Groundwater	GPW02 Groundwater	MW01	MW01A	MW02 Groundwater	
				Groundwater	Groundwater		
Depth Ir	nterval (ft.)		-	-	-	•	
Date 9	Sampled		12/01/00	12/01/00	11/29/00	12/01/00	12/01/00
Parameter	Units	Criteria*					
Metals							
Barium	UG/L	1000	NA	NA	27.8 B	15.2 B	87.2 B
Beryllium	UG/L	3	NA	NA			
Cadmium	UG/L	5	NA	NA	7.9	4.5 B	6.9
Calcium	UG/L	-	NA	NA	145000	20500	132000
Chromium	UG/L	50	NA	NA			
Cobalt	UG/L	-	NA	NA	1.8 B		1.6 B
Copper	UG/L	200	NA	NA		9.2 B	8.3 B
Iron	UG/L	300	NA	NA	6540	403	392
Lead	UG/L	25	NA NA	NA	2.4 B	17.3	8.0
Magnesium	UG/L	35000	NA	NA	63400	1780 B	30400
Manganese	UG/L	300	NA	NA	66.3	29.7	138
Nickel	UG/L	100	NA	NA		2.4 B	3.0 B
Potassium	UG/L	-	NA	NA_	7210 J	694 B	16500 J
Selenium	UG/L	10	NA	NA NA			3.0 B
Sodium	UG/L	20000	NA	NA	183000	10900	74400
Vanadium	UG/L	-	NA	NA		1.9 B	0.86 B
Zinc	UG/L	2000	NA	NA	27.8	60.1	19.8 B

Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June, 1998, Class GA (Amended April 2000). Flags assigned during chemistry validation are shown.

Location ID Sample ID		MW-03	MW-03C	MW-04	MW-05 MW05	MW-06	
			MW03C	MW04			
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (f	t.)		· ·		-		
Date Sampled			11/29/00	11/28/00	11/30/00	11/30/00	11/29/00
Parameter	Units	Criteria*		_			
Volatile Organic Compounds							
Vinyl Chloride	UG/L	2		3 J			11 J
Acetone	UG/L	50					
Carbon Disulfide	UG/L	60					
1,1-Dichloroethene	UG/L	5	18 J	2 J			
1,1-Dichloroethane	UG/L	5	31 J	32 J			2 J
1,2-Dichloroethene (total)	UG/L	5	410 J	44 J			33
Chloroform	UG/L	7	3 J				
1,2-Dichloroethane	UG/L	0.6					
1,1,1-Trichloroethane	UG/L	5	110 J	3 J			
Trichloroethene	UG/L	5	16000 D	2000 D			94
1,1,2-Trichloroethane	UG/L	1					
Benzene	UG/L	1					
Tetrachloroethene	UG/L	5	33000 D	900 D			390
Toluene	UG/L	5					
Ethylbenzene	UG/L	5					
Xylene (Total)	UG/L_	5					
Semivolatile Organic Compounds							
Isophorone	UG/L	50					
Naphthalene	UG/L	10					
Bis(2-ethylhexyl)phthalate	UG/L	5					
Metals							
Aluminum	UG/L	-	214 J		90.9 B	78.0 B	201 J

Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June, 1998, Class GA (Amended April 2000). Flags assigned during chemistry validation are shown.

Location ID			MW-03	MW-03C	MW-04	MW-05	MW-06
Sample ID Matrix		MW03	MW03C	MW04	MW05	MW06 Groundwater	
		Groundwater	Groundwater	Groundwater	Groundwater		
Depth Into	erval (ft.)			-	-	-	
Date Sa	mpled		11/29/00	11/28/00	11/30/00	11/30/00	11/29/00
Parameter	Units	Criteria*					
Metals			-				
Barium	UG/L	1000	132 B	42.0 B	61.1 B	123 B	112 B
Beryllium	UG/L	3					
Cadmium	UG/L	5	3.2 B		3.3 B	3.2 B	0.55 B
Calcium	UG/L	-	139000	145000	115000	130000	173000
Chromium	UG/L	50					3.6 B
Cobalt	UG/L	-	0.99 B			23.1 B	6.9 B
Copper	UG/L	200	2.0 B			1.6 B	6.4 B
Iron	UG/L	300	431	919	1420	3720	4700
Lead	UG/L	25			_	2.4 B	5.9
Magnesium	UG/L	35000	30400	61700	47900	47700	50800
Manganese	UG/L	300	323	40.1	61.8	90.6	367
Nickel	UG/L	100	4.0 B			2.0 B	8.2 B
Potassium	UG/L	-	4680 B	4810 B	4650 B	9410 J	8500 J
Selenium	UG/L	10	2.5 B				2.2 B
Sodium	UG/L	20000	17500	104000	54100	453000	146000
Vanadium	UG/L	•	0.83 B			0.78 B	3.2 B
Zinc	UG/L	2000	17.9 B	8.9 B	6.1 B	13.4 B	20.8

Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June, 1998, Class GA (Amended April 2000). Flags assigned during chemistry validation are shown.

Location ID		MW-08K	MW-08S	MW-09K	MW-09S	MW-10K	
Sample ID Matrix			MW08K	MW08S Groundwater	WW09K	MW09S Groundwater	MW10K Groundwater
			Groundwater		Groundwater		
Depth Interval (f	t.)				- <u>- </u>	•	11/29/00
Date Sampled			12/01/00	12/01/00	11/29/00	11/30/00	
Parameter	Units	Criteria*					
Volatile Organic Compounds							
Vinyl Chloride	UG/L	2					_
Acetone	UG/L	50					41 J
Carbon Disulfide	UG/L	60					
1,1-Dichloroethene	UG/L	5					
1,1-Dichloroethane	UG/L	5					1 J
1,2-Dichloroethene (total)	UG/L	5					4 J
Chloroform	UG/L	7					
1,2-Dichloroetharie	UG/L	0.6					
1,1,1-Trichloroethane	UG/L	5					
Trichloroethene	UG/L	5	4 J		14		60 J
1,1,2-Trichloroethane	UG/L	1					
Benzene	UG/L	1					
Tetrachioroethene	UG/L	5	5 J		15		
Toluene	UG/L	5					
Ethylbenzene	UG/L	5				<u> </u>	
Xylene (Total)	UG/L	5					
Semivolatile Organic Compounds							
Isophorone	UG/L	50					
Naphthalene	UG/L	10					
Bis(2-ethylhexyl)phthalate	UG/L	5					
Metals	<u> </u>						
Aluminum	UG/L			20.1 B	273 J	42.5 B	16.9 B

Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June, 1998, Class GA (Amended April 2000). Flags assigned during chemistry validation are shown.

TABLE 4-2 GROUNDWATER ANALYTICAL RESULTS FORMER DINABURG DISTRIBUTING, INC.

	otion ID		MW-08K	MW-085	MW-09K	MW-09S	MW-10K
	ation ID		MW08K	MW08S	MW09K	MW09S	MW10K
	nple ID						J
	latrix		Groundwater	Groundwater	Groundwater	Groundwater -	Groundwater -
	nterval (ft.)		-	-	•		
Date	Sampled		12/01/00	12/01/00	11/29/00	11/30/00	11/29/00
Parameter	Units	Criteria*					
Metals							
Barium	UG/L	1000	116 B	107 B	46.3 B	220	57.3 B
Beryllium	UG/L	3			0.13 B		
Cadmium	UG/L	5					
Calcium	UG/L	-	110000	117000	182000	136000	153000
Chromium	UG/L	50	_				
Cobalt	UG/L	-	1.0 B				1.2 B
Copper	UG/L	200	1.5 B	1.7 B	2.1 B	1.7 B	1.1 B
Iron	UG/L	300	21.0 B	30.3 B	2000	31.9 B	137
Lead	UG/L	25			13.2		
Magnesium	UG/L	35000	33000	29200	78400	41700	70100
Manganese	UG/L	300	82.5	63.6	167	32.3	140
Nickel	UG/L	100					2.8 B
Potassium	UG/L	-	4680 B	2890 B	5630 J	35000 J	19100 J
Selenium	UG/L	10	2.0 B	2.9 B	3.5 B	2.7 B	1.7 B
Sodium	UG/L	20000	30600	30300	98500	661000	38600
Vanadium	UG/L				1.0 B		0.74 B
Zinc	UG/L	2000	2.7 B	4.5 B	11.2 B	2.7 B	9.5 B

Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June, 1998, Class GA (Amended April 2000). Flags assigned during chemistry validation are shown.

TABLE 4-2 GROUNDWATER ANALYTICAL RESULTS FORMER DINABURG DISTRIBUTING, INC.

Location ID		====	MW-10S	MW-11K	MW-11S	
Sample ID			MW10S	MW11K	MW11S	
Matrix			Groundwater	Groundwater	Groundwater	
Depth Interval (f				-	-	
Date Sampled			11/28/00	12/01/00	12/01/00	
Parameter	Units	Criteria*				
Volatile Organic Compounds						
Vinyl Chloride	UG/L	2				
Acetone	UG/L	50				
Carbon Disulfide	UG/L	60				
1,1-Dichloroethene	UG/L	5				
1,1-Dichloroethane	UG/L	5	4 J			
1,2-Dichloroethene (total)	UG/L	5	160			
Chloroform	UG/L	7		. <u></u>		
1,2-Dichloroethane	UG/L	0.6				
1,1,1-Trichloroethane	UG/L	5	3 J			
Trichloroethene	UG/L	5	99	2 J	3 J	
1,1,2-Trichloroethane	UG/L	1				
Benzene	UG/L	1				
Tetrachloroethene	UG/L	5	12	1 J	4 J	
Toluene	UG/L	5				
Ethylbenzene	UG/L	5				
Xylene (Total)	UG/L	5				
Semivolatile Organic Compounds			1		•	
Isophorone	UG/L	50				
Naphthalene	UG/L	10				
Bis(2-ethylhexyl)phthalate	UG/L	5				
Metals						
Aluminum	UG/L	-	143 B	61.4 B	138 B	

Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June, 1998, Class GA (Amended April 2000). Flags assigned during chemistry validation are shown.

TABLE 4-2 GROUNDWATER ANALYTICAL RESULTS FORMER DINABURG DISTRIBUTING, INC.

Location	ID		MW-10S	MW-11K	MW-11S
Sample I	D		MW10S	MW11K	MW115
Matrix			Groundwater	Groundwater	Groundwater
Depth Interva	al (ft.)		-		-
Date Samp	led		11/28/00	12/01/00	12/01/00
Parameter	Units	Criteria*			
Metals					
Barium	UG/L	1000	210	49.0 B	74.4 B
Beryllium	UG/L	3			
Cadmium	UG/L	5			0.55 B
Calcium	UG/L	-	170000	113000	154000
Chromium	UG/L	50	6.5 B		
Cobalt	UG/L	-	1.3 B		1.7 B
Copper	UG/L	200	1.6 B		2.7 B
iron	UG/L	300	3150	1250	140
Lead	UG/L	25			
Magnesium	UG/L	35000	64400	46200	57700
Manganese	UG/L	300	229	40.3	106
Nickel	UG/L	100	12.1 B		5.0 B
Potassium	UG/L	•	27100 J	9880 J	25000 J
Selenium	UG/L	10	2.0 B	2.4 B	
Sodium	UG/L	20000	26100	50400	86800
Vanadium	UG/L	-			2.1 B
Zinc	UG/L	2000	11.1 B		5.4 B

Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June, 1998, Class GA (Amended April 2000). Flags assigned during chemistry validation are shown.

Location ID			SEW-01	SEW-02	SEW-03	SEW-04	SEW-05
Sample ID			SEW-1	SEW-2	SEW-3	SEW-4	SEW-5
Matrix		Waste Water	Waste Water	Waste Water	Waste Water	Waste Water	
Depth interval	(ft.)		•	10/25/00	-	-	-
Date Sample	d		10/25/00		10/25/00	10/25/00	10/25/00
Parameter	Units	Criteria*					-
Volatile Organic Compounds							
Vinyl Chloride	UG/L	2			570 D	3 J	
Methylene Chloride	UG/L	5	4 J	1 J	_	2 J	2 J
Acetone	UG/L	50	22 J	26 J	69 J	22 J	25 J
1,1-Dichloroethane	UG/L	5			4 J		
1,2-Dichloroethene (total)	UG/L	5		2 J	970 D		
Chloroform	UG/L	7	4 J	5 J		1 J	-3 J
Methyl Ethyl Ketone (2-Butanone)	UG/L	50	10 J	8 J	19 J	4 J	2 J
1,1,1-Trichioroethane	UG/L	5				2 J	
Trichloroethene	UG/L	5		3 J	10 J	84	
4-Methyl-2-Pentanone	UG/L	-	1 J	3 J	2800 DJ	11	450 J
Tetrachloroethene	UG/L	5			4 J	190 D	1 NJ
Toluene	UG/L	5	2 J	1 J	45	1 J	4 J
Ethylbenzene	UG/L	5			2 J		
Xylene (Total)	UG/L	5			B J		

Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June, 1998, Class GA (Amended April 2000). Flags assigned during chemistry validation are shown.

Location ID	· I	SB-01	SB-02	\$B-03 .	SB-04 SB-4 Soil	SB-05 SB-5 Soil
Sample ID		SB-1 Soil	SB-2 Soil	SB-3		
Matrix				Soil		
Depth Interval (ft) Date Sampled		3.0-4.0	3.0-4.0	3.0-4.0	3.0-4.0	4.0-6.0
		10/14/04	10/14/04	10/14/04	10/13/04	10/13/04
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/KG	2 U	98 UJ	2 U	98 U	98 UJ
1,2,4-Trichiorobenzene	UG/KG	1.7 U	69 NJ	1.7 U	69 U	11,000 J
1,2-Dichlorobenzene	UG/KG	1.2 U	62 UJ	1.2 U	62 U	. 62 UJ
4-Methyl-2-Pentanone	UG/KG	1.6 UJ	81 UJ	1.6 UJ	81 U	- 81 UJ
Ethylbenzene	UG/KG	1.7 U	85 UJ	1.7 U	85 U	85 UJ
sopropylbenzene (Cumene)	UG/KG	1.4 U	68 UJ	1.4 U	68 U	110,000 J
Methyl acetate	UG/KG	2.3 U	120 UJ	2.3 U	120 U	120 UJ
Methylcyclohexane	UG/KG	1.9 U	96 UJ	1.9 U	96 U	38,000 J
Methylene Chloride	UG/KG	4 J	91 UJ	1.8 U	91 U	91 UJ
Tetrachloroethene	UG/KG	660 DJ	3,000 J	1,900 DJ	490,000	1,000,000 J
Toluene	UG/KG	1.9 U	96 UJ	(3J	96 U	96 UJ
Trichloroethene	UG/KG	110	1,500 J	74	58,000	290,000 J
Kylene (total)	UG/KG	3 J	0.01 UJ	2 J	0.01 U	150,000 J

U - Not Detected

J - Estimated concentration below the sample quantitation limit, or due to quality control outliers.

NA - Not Analyzed

Only Detected Results Reported.

Location ID	.]	SB-06	SB-07	SB-08 .	SB-09 SB-9	SB-10
Sample ID		SB-6	SB-7 Soil	SB-8		SB-10 Soil
Matrix		Soil		Soil	Soil	
Depth Interval (ft) Date Sampled		4.0-5.0	0.0-1.0	5.0-6.0	2.0-3.0	1.0-2.0
		10/13/04	10/13/04	10/14/04	10/14/04	10/13/04
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/KG	98 U	98 UJ	2 U	98 UJ	98 UJ
1,2,4-Trichlorobenzene	UG/KG	69 U	4,900 J	1.7 U	69 ÜJ	69 UJ
1,2-Dichlorobenzene	UG/KG	62 U	62 UJ	1.2 U	62 UJ	62 UJ
4-Methyl-2-Pentanone	UG/KG	81 U	81 UJ	1.6 UJ	81 UJ	81 UJ
Ethylbenzene	UG/KG	85 U	85 UJ	1.7 U	85 UJ	85 UJ
Isopropylbenzene (Cumerie)	UG/KG	68 U	68 UJ	1.4 U	68 UJ	68 UJ
Methyl acetate	UG/KG	120 U	, 120 UJ	2.3 U	120 UJ	120 UJ
Methylcyclohexane	UG/KG	96 U	96 UJ	1.9 U	96 UJ	96 UJ
Methylene Chloride	UG/KG	91 U	91 UJ	4 J	91 UJ	91 UJ
Tetrachloroethene	UG/KG	170,000	390,000 J	260 J	L 008,8	68,000 J
Toluene	. UG/KG	96 U ·	96 UJ	1.9 U	96 UJ	96 UJ .
Trichloroethene	UG/KG	16,000 J	73,000 J	8 J	-2,600 J	22,000 J
Xylene (total)	UG/KG	0.01 Ų	0.01 UJ	0.01 Ü	0.01 UJ	0.01 UJ

U - Not Detected

J - Estimated concentration below the sample quantitation limit, or due to quality control outliers.

NA - Not Analyzed

Location ID		SB-11	SB-12	SB-13	SB-14 SB-14	SB-15 SB-15
Sample ID		SB-11	SB-12	SB-13		
Matrix	Matrix		Soil 7.0-8.0	Soil	Soil	Soil
Depth Interval (ft) Date Sampled		3.0-4.0		7.0-8.0	4.0-5.0	5.0-6.0
		10/13/04	10/13/04	10/14/04	10/14/04	10/13/04
Parameter	Units					
Volatile Organic Compounds						
,1,1-Trichloroethane	UG/KG	98 UJ	98 UJ	5,900 J	98 U	98 UJ
1,2,4-Trichlorobenzene	UG/KG	69 VJ	69 UJ	69 UJ	69 U	69 UJ
1,2-Dichlorobenzene	UG/KG	62 UJ	62 UJ	200 J	62 U	62 UJ
4-Methyl-2-Pentanone	UG/KG	81 UJ	81 UJ	81 UJ	81 U	81 UJ
Ethylbenzene	UG/KG	85 UJ	570 J	2,200 J	85 U	85 UJ
sopropylbenzene (Cumene)	UG/KG	68 UJ '	68 UJ	1,100 J	68 U	68 UJ
Methyl acetate	UG/KG	120 UJ	120 UJ	120 UJ	1,100 J	120 UÜ
Methylcyclohexane	UG/KG	96 UJ	960 J	17,000 J	96 U	96 UJ
dethylene Chloride	UG/KG	91 UJ	91 UJ	91 UJ	91 U	91 UJ
Tetrachloroethene	UG/KG	1,100,000 J	4,800 J	1,400 J	39,000	1,400,000 J
foluene	UG/KG	96 UJ	96 UJ	510 J	96 U	96 UJ
richloroethene	UG/KG	180,000 J	96 UJ	3,600 J	3,500 J	96 UJ
Kylene (total)	UG/KG	0.01 UJ	970 J	14,000 J	0.01 U	0.01 UJ

U - Not Detected

J - Estimated concentration below the sample quantitation limit, or due to quality control outliers. NA - Not Analyzed

Only Detected Results Reported.

Location ID	l l	SB-16
Sample ID		SB-16
Matrix		Soll
Depth Interval (ft)		6.0-7.0
Date Sampled		10/14/04
Parameter	Units	
Volatile Organic Compounds		
1,1,1-Trichloroethane	UG/KG	98 UJ
1,2,4-Trichlorobenzene	UG/KG	69 UJ
1,2-Dichlorobenzene	UG/KG	62 UJ
4-Methyl-2-Pentanone	UG/KG	280 J
Ethylbenzene	UG/KG	85 UJ
Isopropylbenzene (Cumene)	UG/KG	68 UJ
Methyl acetate	UG/KG	120 UJ
Methylcyclohexane	UG/KG	96 UJ
Methylene Chioride	UG/KG	91 UJ
Tetrachloroethene	ug/kg	3,400 J
Toluene	UG/KG	96 UJ
Trichloroethene	UG/KG	96 UJ
Xyiene (totai)	ug/kg	0.01 UJ

U - Not Detected

J - Estimated concentration below the sample quantitation limit, or due to quality control outliers.

NA - Not Analyzed

Location ID		GEW-01	GEW-02	GEW-03	GPW-01	GPW-02
Sample ID		GEW-01	GEW-02	GEW-03	GPW-01	GPW-02 Groundwater -
Matrix		Groundwater -	Groundwater	Groundwater -	Groundwater -	
Depth Interval (ft)			-			
Date Sampled	,	05/07/08	05/06/08	05/06/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	50	400 U	80 U	5 U	25 U
1,1,2,2-Tetrachloroethane	UG/L	5 U	400 U	80 U	5 U	25 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5 U	400 U	80 U	5 U	25 U
1,1,2-Trichloroethane	UG/L	5 UJ	400 U	80 UJ	5 U	25 U
1,1-Dichloroethane	UG/L	15	400 U	80 U	5 U	25 U
1,1-Dichloroethene	UG/L	4 J	400 U	80 U	5 U	25 U
1,2,4-Trichlorobenzene	UG/L	5 U	400 U	80 U	5 U	25 U
1,2-Dibromo-3-chloropropane	UG/L	5 U	400 UJ	80 U	5 UJ	25 U
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	5 U	400 U	80 U	5 U	25 U
1,2-Dichlorobenzene	UG/L	5 U	400 U	80 U	5 U	25 U
1,2-Dichloroethane	UG/L	5 U	400 U	80 U	5 U	25 U
1,2-Dichloroethene (cis)	UG/L	290 DJ	400 U	26 J	1 J	25 U
1,2-Dichloroethene (trans)	UG/L	1 J	400 U	80 U	5 U	25 U
1,2-Dichloropropane	UG/L	5 U	400 U	80 U	5 U	25 U
1,3-Dichlorobenzene	UG/L	5 U	400 U	80 U	5 U	25 U
1,3-Dichloropropene (cis)	UG/L	5 U	400 U	80 U	5 U	25 U
1,3-Dichloropropene (trans)	UG/L	5 U	400 U	80 U	5 U	25 U
1,4-Dichlorobenzene	UG/L	5 U	400 U	80 U	5 U	25 U
2-Hexanone	UG/L	5 U	400 UJ	80 U	5 UJ	25 U
4-Methyl-2-Pentanone	UG/L	5 U	400 UJ	80 U	5 UJ	25 U
Acetone	UG/L	R	R	R	31 J	R
Benzene	UG/L	5 U	400 U	80 U	5 U	25 U
Bromodichloromethane	UG/L	5 U	400 U	80 U	5 U	25 U

Flags assigned during chemistry validation are shown.

Location ID		GEW-01	GEW-02	GEW-03	GPW-01	GPW-02
Sample ID		GEW-01	GEW-02	GEW-03	GPW-01	GPW-02
Matrix		Groundwater	Groundwater	Groundwater	Groundwater -	Groundwater -
Depth Interval (ft)		-	-	-		
Date Sampled			05/06/08	05/06/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
Bromoform	UG/L	5 U	400 U	80 U	5 U	25 U
Bromomethane	UG/L	5 UJ	400 U	80 UJ	5 U	25 UJ
Carbon Disulfide	UG/L	5 U	400 U	80 U	5 U	25 UJ
Carbon Tetrachloride	UG/L	5 U	400 U	80 U	5 U	25 U
Chlorobenzene	UG/L	5 UJ	400 U	80 UJ	5 U	25 U
Chloroethane	UG/L	5 U	400 U	80 U	5 U	25 U
Chloroform	UG/L	5 U	400 U	80 U	5 U	25 U
Chloromethane	UG/L	5 U	400 U	80 U	5 U	25 U
Cyclohexane	UG/L	5 U	400 U	80 U	5 U	25 U
Dibromochloromethane	UG/L	5 U	400 U	80 U	5 U	25 U
Dichlorodifluoromethane	UG/L	5 UJ	400 UJ	80 UJ	5 UJ	25 UJ
Ethylbenzene	UG/L	5 U	400 U	80 U	5 U	25 U
Isopropylbenzene (Curnene)	UG/L	5 U	400 U	80 U	5 U	25 U
Methyl acetate	UG/L	5 U	400 UJ	80 U	5 UJ	25 U
Methyl Ethyl Ketone (2-Butanone)	UG/L	R	R	R	R	R
Methyl tert-butyl ether	UG/L	5 UJ	400 UJ	80 UJ	5 UJ	25 U
Methylcyclohexane	UG/L	5 U	400 U	80 U	5 U	25 U
Methylene Chloride	UG/L	5 U	400 U	80 U	5 U	25 U
Styrene	UG/L	5 U	400 U	80 U	5 U	25 U
Tetrachloroethene	UG/L	2,400 DJ	11,000	640 J	12	630
Toluene	UG/L	5 U	400 U	80 U	5 U	25 U
Trichloroethene	UG/L	800 DJ	6,400	1,700	120	1,600 D
Trichlorofluoromethane	UG/L	5 U	400 U	80 U	5 U	25 U

Flags assigned during chemistry validation are shown.

Location ID		GEW-01	GEW-02	GEW-03	GPW-01	GPW-02
Sample ID		GEW-01	GEW-02	GEW-03	GPW-01	GPW-02
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-		-
Date Sampled		05/07/08	05/06/08	05/06/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
Vinyl Chloride	UG/L	2 J	400 U	80 UJ	5 U	25 U
Xylene (total)	UG/L	5 U	400 U	80 U	5 U	25 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-01	MPE-02	MPE-03	MPE-04	MPE-05
Sample ID		MPE-01	MPE-02	MPE-03	MPE-04	MPE-05
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/06/08	05/06/08	05/06/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	45 J	30	43 J	330	110
1,1,2,2-Tetrachloroethane	UG/L	50 U	20 U	50 U	40 U	50 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	50 U	20 U	50 U	40 U	50 U
1,1,2-Trichloroethane	UG/L	50 U	20 UJ	50 UJ	40 U	50 U
1,1-Dichloroethane	UG/L	10 J	81	11 J	45	23 J
1,1-Dichloroethene	UG/L	50 U	20 U	50 U	40 U	50 U
1,2,4-Trichlorobenzene	UG/L	50 U	20 U	50 U	40 U	50 U
1,2-Dibromo-3-chloropropane	UG/L	50 UJ	20 U	50 U	40 U	50 U
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	50 U	20 U	50 U	40 U	50 U
1,2-Dichlorobenzene	UG/L	50 U	20 U	50 U	40 U	50 U
1,2-Dichloroethane	UG/L	50 U	20 U	50 U	40 U	50 U
1,2-Dichloroethene (cis)	UG/L	59	59	56	140	48 J
1,2-Dichloroethene (trans)	UG/L	50 U	20 U	50 U	40 U	50 U
1,2-Dichloropropane	UG/L	50 U	20 U	50 U	40 U	50 U
1,3-Dichlorobenzene	UG/L	50 U	20 U	50 U	40 U	50 U
1,3-Dichloropropene (cis)	UG/L	50 U	20 U	50 U	40 U	50 U
1,3-Dichloropropene (trans)	UG/L	50 U	20 U	50 U	40 U	50 U
1,4-Dichlorobenzene	UG/L	50 U	20 U	50 U	40 U	50 U
2-Hexanone	UG/L	50 UJ	20 U	50 U	40 U	50 U
4-Methyl-2-Pentanone	UG/L	50 UJ	20 U	50 U	40 U	50 U
Acetone	UG/L	R	R	R	R	R
Benzene	UG/L	50 U	20 U	50 U	40 U	50 U
Bromodichloromethane	UG/L	50 U	20 U	50 U	40 U	50 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-01	MPE-02	MPE-03	MPE-04	MPE-05
Sample ID		MPE-01	MPE-02	MPE-03	MPE-04	MPE-05
Matrix		Groundwater -	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)			-	-	•	05/07/08
Date Sampled		05/06/08	05/06/08	05/06/08	05/07/08	
Parameter	Units					
Volatile Organic Compounds						
Bromoform	UG/L	50 U	20 U	50 U	40 U	50 U
Bromomethane	UG/L	50 U	20 UJ	50 UJ	40 UJ	50 UJ
Carbon Disulfide	UG/L	50 U	20 U	50 U	40 UJ	50 UJ
Carbon Tetrachloride	UG/L	50 U	20 U	50 U	40 U	50 U
Chlorobenzene	UG/L	50 U	20 UJ	50 UJ	40 U	50 U
Chloroethane	UG/L	50 U	20 U	50 U	40 U	50 U
Chloroform	UG/L	50 U	20 U	50 U	40 U	50 U
Chloromethane	UG/L	50 U	20 U	50 U	40 U	50 U
Cyclohexane	UG/L	50 U	20 U	50 U	40 U	50 U
Dibromochloromethane	UG/L	50 U	20 U	50 U	40 U	50 U
Dichlorodifluoromethane	UG/L	50 UJ	20 UJ	50 UJ	40 UJ	50 UJ
Ethylbenzene	UG/L	50 U	20 U	50 U	40 U	50 U
Isopropylbenzene (Cumene)	UG/L	50 U	20 U	50 U	40 U	50 U
Methyl acetate	UG/L	50 UJ	20 U	50 U	40 U	50 U
Methyl Ethyl Ketone (2-Butanone)	UG/L	R	R	R	R	R
Methyl tert-butyl ether	UG/L	50 UJ	20 UJ	50 UJ	40 U	50 U
Methylcyclohexane	UG/L	50 U	20 U	50 U	40 U	50 U
Methylene Chloride	UG/L	50 U	20 U	50 U	40 U	50 U
Styrene	UG/L	50 U	20 U	50 U	40 U	50 U
Tetrachloroethene	UG/L	1,500	580 J	1,300 J	1,100	1,300
Toluene	UG/L	50 U	20 U	50 U	40 U	50 U
Trichloroethene	UG/L	940	480	1,500	680	610
Trichlorofluoromethane	UG/L	50 U	20 U	50 U	40 U	50 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-01	MPE-02	MPE-03	MPE-04	MPE-05
Sample ID		MPE-01	MPE-02	MPE-03	MPE-04	MPE-05
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/06/08	05/06/08	05/06/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
/inyl Chloride	UG/L	50 U	20 UJ	50 UJ	40 U	50 U
Kylene (total)	UG/L	50 U	20 U	50 U	40 U	50 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-06	MPE-08	MPE-09	MPE-10	MPE-11
Sample ID		MPE-06	MPE-08	MPE-09	MPE-10	MPE-11
Matrix Depth Interval (ft)		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
		-	-	-	-	-
Date Sampled		05/06/08	05/06/08	05/06/08	05/07/08	05/06/08
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	170	4 J	400 U	8,000 U	100 U
1,1,2,2-Tetrachloroethane	UG/L	25 U	20 U	400 U	8,000 U	100 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	25 U	20 U	400 U	8,000 U	100 U
1,1,2-Trichloroethane	UG/L	25 U	20 U	400 U	8,000 U	100 U
1,1-Dichloroethane	UG/L	84	20 U	400 U	8,000 U	100 U
1,1-Dichloroethene	UG/L	25 U	20 U	400 U	8,000 U	100 U
1,2,4-Trichlorobenzene	UG/L	25 U	20 U	400 U	8,000 U	100 U
1,2-Dibromo-3-chloropropane	UG/L	25 UJ	20 UJ	400 UJ	8,000 U	100 UJ
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	25 U	20 U	400 U	8,000 U	100 U
1,2-Dichlorobenzene	UG/L	25 U	20 U	400 U	8,000 U	100 U
1,2-Dichloroethane	UG/L	25 U	20 U	400 U	8,000 U	100 U
1,2-Dichloroethene (cis)	UG/L	57	22	400 U	8,000 U	100 U
1,2-Dichloroethene (trans)	UG/L	25 U	20 U	400 U	8,000 U	100 U
1,2-Dichloropropane	UG/L	25 U	20 U	400 U	8,000 U	100 U
1,3-Dichlorobenzene	UG/L	25 U	20 U	400 U	8,000 U	100 U
1,3-Dichloropropene (cis)	UG/L	25 U	20 U	400 U	8,000 U	100 U
1,3-Dichloropropene (trans)	UG/L	25 U	20 U	400 U	8,000 U	100 U
1,4-Dichlorobenzene	UG/L	25 U	20 U	400 U	8,000 U	100 U
2-Hexanone	UG/L	25 UJ	20 UJ	400 UJ	8,000 U	100 UJ
4-Methyl-2-Pentanone	UG/L	25 UJ	20 UJ	400 UJ	8,000 U	100 UJ
Acetone	UG/L	R	R	R	R	R
Benzene	UG/L	25 U	20 U	400 U	8,000 U	100 U
Bromodichloromethane	UG/L	25 U	20 U	400 U	8,000 U	100 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-06	MPE-08	MPE-09	MPE-10	MPE-11
Sample ID		MPE-06	MPE-08	MPE-09	MPE-10	MPE-11
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-		-	-
Date Sampled	,	05/06/08	05/06/08	05/06/08	05/07/08	05/06/08
Parameter	Units					
Volatile Organic Compounds						
Bromoform	UG/L	25 U	20 U	400 U	8,000 U	100 U
Bromomethane	UG/L	25 U	20 U	400 U	8,000 UJ	100 U
Carbon Disulfide	UG/L	25 U	20 U	400 U	8,000 UJ	100 U
Carbon Tetrachloride	UG/L	25 U	20 U	400 U	8,000 U	100 U
Chlorobenzene	UG/L	25 U	20 U	400 U	8,000 U	100 U
Chloroethane	UG/L	25 U	20 U	400 U	8,000 U	100 U
Chloroform	UG/L	25 U	20 U	400 U	8,000 U	100 U
Chloromethane	UG/L	25 U	20 U	400 U	8,000 U	100 U
Cyclohexane	UG/L	25 U	20 U	400 U	8,000 U	100 U
Dibromochloromethane	UG/L	25 U	20 U	400 U	8,000 U	100 U
Dichlorodifluoromethane	UG/L	25 UJ	20 UJ	400 UJ	8,000 UJ	100 UJ
Ethylbenzene	UG/L	25 U	20 U	400 U	8,000 U	100 U
Isopropylbenzene (Cumene)	UG/L	25 U	20 U	400 U	8,000 U	100 U
Methyl acetate	UG/L	25 UJ	20 UJ	400 UJ	8,000 U	100 UJ
Methyl Ethyl Ketone (2-Butanone)	UG/L	R	R	R	R	R
Methyl tert-butyl ether	UG/L	25 UJ	20 UJ	400 UJ	8,000 U	100 UJ
Methylcyclohexane	UG/L	25 U	20 U	400 U	8,000 U	100 U
Methylene Chloride	UG/L	25 U	20 U	400 U	8,000 U	100 U
Styrene	UG/L	25 U	20 U	400 U	8,000 U	100 U
Tetrachloroethene	UG/L	560	510	3,900	64,000	1,300
Toluene	UG/L	25 U	20 U	400 U	8,000 U	100 U
Trichloroethene	UG/L	870	490	13,000	170,000	2,300
Trichlorofluoromethane	UG/L	25 U	20 U	400 U	8,000 U	100 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-06	MPE-08	MPE-09	MPE-10	MPE-11
Sample ID		MPE-06	MPE-08	MPE-09	MPE-10	MPE-11
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)	. ,	-	•	-	-	-
Date Sampled		05/06/08	05/06/08	05/06/08	05/07/08	05/06/08
Parameter	Units					
Volatile Organic Compounds						
Vinyl Chloride	UG/L	25 U	20 U	400 U	8,000 U	100 U
Xylene (total)	UG/L	25 U	20 U	400 U	8,000 U	100 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-12	MPE-13	MPE-14	MPE-15	MPE-16
Sample ID		MPE-12	MPE-13	MPE-14	MPE-15	MPE-16
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/07/08	05/06/08	05/06/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	10 U	80 U	100 U	400 U	8,000 U
1,1,2,2-Tetrachloroethane	UG/L	10 U	80 U	100 U	400 U	8,000 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	10 U	80 U	100 U	400 U	8,000 U
1,1,2-Trichloroethane	UG/L	10 U	80 U	100 UJ	400 U	8,000 U
1,1-Dichloroethane	UG/L	10 U	80 U	100 U	400 U	8,000 U
1,1-Dichloroethene	UG/L	10 U	80 U	100 U	400 U	8,000 U
1,2,4-Trichlorobenzene	UG/L	10 U	80 U	100 U	400 U	8,000 U
1,2-Dibromo-3-chloropropane	UG/L	10 U	80 UJ	100 U	400 U	8,000 U
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	10 U	80 U	100 U	400 U	8,000 U
1,2-Dichlorobenzene	UG/L	10 U	80 U	100 U	400 U	8,000 U
1,2-Dichloroethane	UG/L	10 U	80 U	100 U	400 U	8,000 U
1,2-Dichloroethene (cis)	UG/L	10 U	29 J	100 U	400 U	8,000 U
1,2-Dichloroethene (trans)	UG/L	10 U	80 U	100 U	400 U	8,000 U
1,2-Dichloropropane	UG/L	10 U	80 U	100 U	400 U	8,000 U
1,3-Dichlorobenzene	UG/L	10 U	80 U	100 U	400 U	8,000 U
1,3-Dichloropropene (cis)	UG/L	10 U	80 U	100 U	400 U	8,000 U
1,3-Dichloropropene (trans)	UG/L	10 U	80 U	100 U	400 U	8,000 U
1,4-Dichlorobenzene	UG/L	10 U	80 U	100 U	400 U	8,000 U
2-Hexanone	UG/L	10 U	80 U	100 U	400 U	8,000 U
4-Methyl-2-Pentanone	UG/L	10 U	80 UJ	100 U	400 U	8,000 U
Acetone	UG/L	R	R	R	R	R
Benzene	UG/L	10 U	80 U	100 U	400 U	8,000 U
Bromodichloromethane	UG/L	10 U	80 U	100 U	400 U	8,000 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-12	MPE-13	MPE-14	MPE-15	MPE-16
Sample ID		MPE-12	MPE-13	MPE-14	MPE-15	MPE-16
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/07/08	05/06/08	05/06/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
Bromoform	UG/L	10 U	80 U	100 U	400 U	8,000 U
Bromomethane	UG/L	10 UJ	80 U	100 UJ	400 UJ	8,000 UJ
Carbon Disulfide	UG/L	10 UJ	80 U	100 U	400 UJ	8,000 UJ
Carbon Tetrachloride	UG/L	10 U	80 U	100 U	400 U	8,000 U
Chlorobenzene	UG/L	10 U	80 U	100 UJ	400 U	8,000 U
Chloroethane	UG/L	10 U	80 U	100 U	400 U	8,000 U
Chloroform	UG/L	10 U	80 U	100 U	400 U	8,000 U
Chloromethane	UG/L	10 U	80 U	100 U	400 U	8,000 U
Cyclohexane	UG/L	10 U	80 U	100 U	400 U	8,000 U
Dibromochloromethane	UG/L	10 U	80 U	100 U	400 U	8,000 U
Dichlorodifluoromethane	UG/L	10 UJ	80 UJ	, 100 UJ	400 UJ	8,000 UJ
Ethylbenzene	UG/L	10 U	80 U	100 U	400 U	8,000 U
Isopropylbenzene (Cumene)	UG/L	10 U	80 U	100 U	400 U	8,000 U
Methyl acetate	UG/L	10 U	80 UJ	100 U	400 U	8,000 U
Methyl Ethyl Ketone (2-Butanone)	UG/L	R	R	R	R	R
Methyl tert-butyl ether	UG/L	10 U	80 UJ	100 UJ	400 U	8,000 U
Methylcyclohexane	UG/L	10 U	80 U	100 U	400 U	8,000 U
Methylene Chloride	UG/L	10 U	80 U	100 U	400 U	8,000 U
Styrene	UG/L	10 U	80 U	100 U	400 U	8,000 U
Tetrachloroethene	UG/L	170	2,000	1,000 J	9,300	220,000
Toluene	UG/L	10 U	80 U	100 U	400 U	8,000 U
Trichloroethene	UG/L	130	1,100	2,400	3,800	12,000
Trichlorofluoromethane	UG/L	10 U	80 U	100 U	400 U	8,000 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-12	MPE-13	MPE-14	MPE-15	MPE-16
Sample ID		MPE-12	MPE-13	MPE-14	MPE-15	MPE-16
• Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-		-	-	-
Date Sampled		05/07/08	05/06/08	05/06/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
/inyl Chloride	UG/L	10 U	80 U	100 UJ	400 U	8,000 U
(ylene (total)	UG/L	10 U	80 U	100 U	400 U	8,000 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-17	MPE-18	MW-01	MW-01A	MVV-03
Sample ID		MPE-17	MPE-18	MW-01	MW-01A	MW-03
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/06/08	05/06/08	05/07/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	200 U	1,000 U	5 U	20 U	10 U
1,1,2,2-Tetrachloroethane	UG/L	200 U	1,000 U	5 U	20 U	10 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	200 U	1,000 U	5 U	20 U	10 U
1,1,2-Trichloroethane	UG/L	200 U	1,000 U	5 U	20 U	10 U
1,1-Dichloroethane	UG/L	200 U	1,000 U	5 U	20 U	3 J
1,1-Dichloroethene	UG/L	200 U	1,000 U	5 U	20 U	10 U
1,2,4-Trichlorobenzene	UG/L	200 U	1,000 U	5 U	20 U	10 U
1,2-Dibromo-3-chloropropane	UG/L	200 UJ	1,000 U	5 UJ	20 UJ	10 UJ
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	200 U	1,000 U	5 U	20 U	10 U
1,2-Dichlorobenzene	UG/L	200 U	1,000 U	5 U	20 U	10 U
1,2-Dichloroethane	UG/L	200 U	1,000 U	5 U	20 U	10 U
1,2-Dichloroethene (cis)	UG/L	200 U	230 J	5 U	170	18
1,2-Dichloroethene (trans)	UG/L	200 U	1,000 U	5 U	20 U	10 U
1,2-Dichloropropane	UG/L	200 U	1,000 U	5 U	20 U	10 U
1,3-Dichlorobenzene	UG/L	200 U	1,000 U	5 U	20 U	10 U
1,3-Dichloropropene (cis)	UG/L	200 U	1,000 U	5 U	20 U	10 U
1,3-Dichloropropene (trans)	UG/L	200 U	1,000 U	5 U	20 U	10 U
1,4-Dichlorobenzene	UG/L	200 U	1,000 U	5 U	20 U	10 U
2-Hexanone	UG/L	200 UJ	1,000 U	5 UJ	20 UJ	10 UJ
4-Methyl-2-Pentanone	UG/L	200 UJ	1,000 U	5 UJ	20 UJ	10 UJ
Acetone	UG/L	R	R	R	R	R
Benzene	UG/L	200 U	1,000 U	5 U	20 U	10 U
Bromodichloromethane	UG/L	200 U	1,000 U	5 U	20 U	10 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-17	MPE-18	MW-01	MW-01A	MW-03
Sample ID		MPE-17	MPE-18	MW-01	MW-01A	MW-03
Matrix Depth Interval (ft)		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater -
		-		-	-	
Date Sampled		05/06/08	05/06/08	05/07/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
Bromoform	UG/L	200 U	1,000 U	5 U	20 U	10 U
Bromomethane	UG/L	200 U	1,000 UJ	5 U	20 U	10 U
Carbon Disulfide	UG/L	200 U	1,000 UJ	5 U	20 U	10 U
Carbon Tetrachloride	UG/L	200 U	1,000 U	5 U	20 U	10 U
Chlorobenzene	UG/L	200 U	1,000 U	5 U	20 U	10 U
Chloroethane	UG/L	200 U	1,000 U	5 U	20 U	10 U
Chloroform	UG/L	200 U	1,000 U	5 U	20 U	10 U
Chloromethane	UG/L	200 U	1,000 U	5 U	20 U	10 U
Cyclohexane	UG/L	200 U	1,000 U	5 U	20 U	10 U
Dibromochloromethane	UG/L	200 U	1,000 U	5 U	20 U	10 U
Dichlorodifluoromethane	UG/L	200 UJ	1,000 UJ	5 UJ	20 UJ	10 UJ
Ethylbenzene	UG/L	200 U	1,000 U	5 U	20 U	10 U
Isopropylbenzene (Cumene)	UG/L	200 U	1,000 U	5 U	20 U	10 U
Methyl acetate	UG/L	200 UJ	1,000 U	5 UJ	20 UJ	10 UJ
Methyl Ethyl Ketone (2-Butanone)	UG/L	R	R	R	R	R
Methyl tert-butyl ether	UG/L	200 UJ	1,000 U	5 UJ	20 UJ	10 UJ
Methylcyclohexane	UG/L	200 U	1,000 U	5 U	20 U	10 U
Methylene Chloride	UG/L	200 U	1,000 U	5 U	20 U	10 U
Styrene	UG/L	200 U	1,000 U	5 U	20 U	10 U
Tetrachloroethene	UG/L	1,900	19,000	5 U	620	110
Toluene	UG/L	200 U	1,000 U	5 U	20 U	10 U
Trichloroethene	UG/L	3,900	5,100	5 U	200	200
Trichlorofluoromethane	UG/L	200 U	1,000 U	5 U	20 U	10 U

Flags assigned during chemistry validation are shown.

The state of the s		•				
Location ID		MPE-17	MPE-18	MW-01	MW-01A	MW-03
Sample ID		MPE-17	MPE-18	MW-01	MW-01A	MW-03
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/06/08	05/06/08	05/07/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
Vinyl Chloride	UG/L	200 U	1,000 U	5 U	20 U	10 U
Xylene (total)	UG/L	200 U	1,000 U	5 U	20 U	10 U

Flags assigned during chemistry validation are shown.

Location ID		MW-03C	MW-04	MW-05	MW-06	MW-08K
Sample ID		MW-03C	MW-04	MW-05	MW-06	MW-08K
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/07/08	05/07/08	05/07/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	250 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	UG/L	250 U	5 U	5 U	5 U	5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	250 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	UG/L	250 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	UG/L	250 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	UG/L	250 U	5 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	UG/L	250 U	5 U	5 U	5 U	5 U
1,2-Dibromo-3-chloropropane	UG/L	250 U	5 UJ	5 UJ	5 UJ	5 U.J
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	250 U	5 U	5 U	5 U	5 U
1,2-Dichlorobenzene	UG/L	250 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	UG/L	250 U	5 U	5 U	5 U	5 U
1,2-Dichloroethene (cis)	UG/L	120 J	5 U	5 U	6	5 U
1,2-Dichloroethene (trans)	UG/L	250 U	5 U	5 U	5 U	5 U
1,2-Dichloropropane	UG/L	250 U	5 U	5 U	5 U	5 U
1,3-Dichlorobenzene	UG/L	250 U	5 U	5 U	5 U	5 U
1,3-Dichloropropene (cis)	UG/L	250 U	5 U	5 U	5 U	5 U
1,3-Dichloropropene (trans)	UG/L	250 U	5 U	5 U	5 U	5 U
1,4-Dichlorobenzene	UG/L	250 U	5 U	5 U	5 U	5 U
2-Hexanone	UG/L	250 U	5 UJ	5 UJ	5 UJ	5 UJ
4-Methyl-2-Pentanone	UG/L	250 U	5 UJ	5 UJ	5 UJ	5 UJ
Acetone	UG/L	R	R	R	R	R
Benzene	UG/L	250 U	5 U	5 U	5 U	5 U
Bromodichloromethane	UG/L	250 U	5 U	5 U	5 U	5 U

Flags assigned during chemistry validation are shown.

Location ID		MW-03C	MW-04	MW-05	MW-06	MW-08K
Sample ID Matrix		MW-03C	MW-04	MW-05	MW-06	MW-08K
		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	•	-	-	-
Date Sampled		05/07/08	05/07/08	05/07/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
Bromoform	UG/L	250 U	5 U	5 U	5 U	5 U
Bromomethane	UG/L	250 UJ	5 U	5 U	5 U	5 U
Carbon Disulfide	UG/L	250 UJ	5 U	5 U	5 U	5 U
Carbon Tetrachloride	UG/L	250 U	5 U	5 U	5 U	5 U
Chlorobenzene	UG/L	250 U	5 U	5 U	5 U	5 U
Chloroethane	UG/L	250 U	5 U	5 U	5 U	5 U
Chloroform	UG/L	250 U	5 U	5 U	5 U	5 U
Chloromethane	UG/L	250 U	5 U	5 U	5 U	5 U
Cyclohexane	UG/L	250 U	5 U	5 U	5 U	5 U
Dibromochloromethane	UG/L	250 U	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	UG/L	250 UJ	5 UJ	5 UJ	5 UJ	5 UJ
Ethylbenzene	UG/L	250 U	5 U	5 U	5 U	5 U
Isopropylbenzene (Cumene)	UG/L	250 U	5 U	5 U	5 U	5 U
Methyl acetate	UG/L	250 U	5 UJ	5 UJ	5 UJ	5 UJ
Methyl Ethyl Ketone (2-Butanone)	UG/L	R	R	R	R	R
Methyl tert-butyl ether	UG/L	250 U	2 J	5 UJ	5 UJ	5 UJ
Methylcyclohexane	UG/L	250 U	5 U	5 U	5 U	5 U
Methylene Chloride	UG/L	250 U	5 U	5 U	5 U	5 U
Styrene	UG/L	250 U	5 U	5 U	5 U	5 U
Tetrachloroethene	UG/L	6,400	5 U	5 U	5	5 U
Toluene	UG/L	250 U	5 U	5 U	5 U	5 U
Trichloroethene	UG/L	1,800	5 U	5 U	4 J	5 U
Trichlorofluoromethane	UG/L	250 U	5 U	5 U	5 U	5 U

Flags assigned during chemistry validation are shown.

Location ID		MW-03C	MW-04	MW-05	MW-06	MW-08K
Sample ID		MW-03C	MW-04	MW-05	MW-06	MW-08K
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	-	-	-	-
Date Sampled		05/07/08	05/07/08	05/07/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
Vinyl Chloride	UG/L	250 U	5 U	5 U	5 U	5 U
Xylene (total)	UG/L	250 U	5 U	5 U	5 U	5 U

Flags assigned during chemistry validation are shown.

Location ID		MW-08S	MW-09K	MW-09S	MW-10K	MW-10S
Sample ID Matrix Depth Interval (ft)		MW-08S	MW-09K	MW-09S	MW-10K	MW-10S
		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
		-	-	-	-	-
Date Sampled		05/07/08	05/07/08	05/07/08	05/07/08	05/07/08
Parameter	Units		•			
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	5 U	5 U	5 U	25 U	5 U
1,1,2,2-Tetrachloroethane	UG/L	5 U	5 U	5 U	25 U	5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5 U	5 U	5 U	25 U	5 U
1,1,2-Trichloroethane	UG/L	5 U	5 U	5 U	25 U	5 U
1,1-Dichloroethane	UG/L	5 U	5 U	5 U	25 U	5 U
1,1-Dichloroethene	UG/L	5 U	5 U	5 U	25 U	5 U
1,2,4-Trichlorobenzene	UG/L	5 U	5 U	5 U	25 U	5 U
1,2-Dibromo-3-chloropropane	UG/L	5 UJ	5 UJ	5 UJ	25 U	5 UJ
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	5 U	5 U	5 U	25 U	5 U
1,2-Dichlorobenzene	UG/L	5 U	5 U	5 U	25 U	5 U
1,2-Dichloroethane	UG/L	5 U	5 U	5 U	25 U	5 U
1,2-Dichloroethene (cis)	UG/L	5 U	5 U	5 U	52	5 U
1,2-Dichloroethene (trans)	UG/L	5 U	5 U	5 U	25 U	5 U
1,2-Dichloropropane	UG/L	5 U	5 U	5 U	25 U	5 U
1,3-Dichlorobenzene	UG/L	5 U	5 U	5 U	25 U	5 U
1,3-Dichloropropene (cis)	UG/L	5 U	5 U	5 U	25 U	5 U
1,3-Dichloropropene (trans)	UG/L	5 U	5 U	5 U	25 U	5 U
1,4-Dichlorobenzene	UG/L	5 U	5 U	5 U	25 U	5 U
2-Hexanone	UG/L	5 UJ	5 UJ	5 UJ	25 U	5 UJ
4-Methyl-2-Pentanone	UG/L	5 UJ	5 UJ	5 UJ	25 U	5 UJ
Acetone	UG/L	R	R	R	R	R
Benzene	UG/L	5 U	5 U	5 U	25 U	5 U
Bromodichloromethane	UG/L	5 U	5 U	5 U	25 U	5 U

Flags assigned during chemistry validation are shown.

Location ID		MW-08S	MW-09K	MW-09S	MW-10K	MW-10S
Sample ID Matrix		MW-08S	MW-09K	MW-09S	MW-10K	MW-10S
		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/07/08	05/07/08	05/07/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
Bromoform	UG/L	5 U	5 U	5 U	25 U	5 U
Bromomethane	UG/L	5 U	5 U	5 U	25 UJ	5 U
Carbon Disulfide	UG/L	5 U	5 U	5 U	25 UJ	5 U
Carbon Tetrachloride	UG/L	5 U	5 U	5 U	25 U	5 U
Chlorobenzene	UG/L	5 U	5 U	5 U	25 U	5 U
Chloroethane	UG/L	5 U	5 U	5 U	25 U	5 U
Chloroform	UG/L	5 U	5 U	5 U	25 U	5 U
Chloromethane	UG/L	5 U	5 U	5 U	25 U	5 U
Cyclohexane	UG/L	5 U	5 U	5 U	25 U	5 U
Dibromochloromethane	UG/L	5 U	5 U	5 U	25 U	5 U
Dichlorodifluoromethane	UG/L	5 UJ	5 UJ	5 UJ	25 UJ	5 UJ
Ethylbenzene	UG/L	5 U	5 U	5 U	25 U	5 U
Isopropylbenzene (Cumene)	UG/L	5 U	5 U	5 U	25 U	5 U
Methyl acetate	UG/L	5 UJ	5 UJ	5 UJ	25 U	5 UJ
Methyl Ethyl Ketone (2-Butanone)	UG/L	R	R	R	R	R
Methyl tert-butyl ether	UG/L	5 UJ	5 UJ	5 UJ	25 U	5 UJ
Methylcyclohexane	UG/L	5 U	5 U	5 U	25 U	5 U
Methylene Chloride	UG/L	5 U	5 U	5 U	25 U	5 U
Styrene	UG/L	5 U	5 U	5 U	25 U	5 U
Tetrachloroethene	UG/L	5 U	5 U	5 U	25 U	2 J
Toluene	UG/L	5 U	5 U	5 U	25 U	5 U
Trichloroethene	UG/L	5 U	5 U	5 U	890	4 J
Trichlorofluoromethane	UG/L	5 U	5 U	5 U	25 U	5 U

Flags assigned during chemistry validation are shown.

Location ID		MW-08S	MW-09K	MW-09S	MW-10K	MW-10S
Sample ID		MW-08S	MW-09K	MW-09S	MW-10K	MW-10S
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	÷	-	-
Date Sampled		05/07/08	05/07/08	05/07/08	05/07/08	05/07/08
Parameter	Units					
Volatile Organic Compounds						
Vinyl Chloride	UG/L	5 U	5 U	5 U	25 U	5 U
Xylene (total)	UG/L	5 U	5 U	5 U	25 U	5 U

Flags assigned during chemistry validation are shown.

Location ID		MW-11S
Sample ID	MW-11S	
Matrix	Groundwater	
Depth Interval (ft)		-
Date Sampled		05/07/08
Parameter	Units	
Volatile Organic Compounds		
1,1,1-Trichloroethane	UG/L	5 U
1,1,2,2-Tetrachloroethane	UG/L	5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5 U
1,1,2-Trichloroethane	UG/L	5 U
1,1-Dichloroethane	UG/L	5 U
1,1-Dichloroethene	UG/L	5 U
1,2,4-Trichlorobenzene	UG/L	5 U
1,2-Dibromo-3-chloropropane	UG/L	5 UJ
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	5 U
1,2-Dichlorobenzene	UG/L	5 U
1,2-Dichloroethane	UG/L	5 U
1,2-Dichloroethene (cis)	UG/L	5 U
1,2-Dichloroethene (trans)	UG/L	5 U
1,2-Dichloropropane	UG/L	5 U
1,3-Dichlorobenzene	UG/L	5 U
1,3-Dichloropropene (cis)	UG/L	5 U
1,3-Dichloropropene (trans)	UG/L	5 U
1,4-Dichlorobenzene	UG/L	. 5 U
2-Hexanone	UG/L	5 UJ
4-Methyl-2-Pentanone	UG/L	5 UJ
Acetone	UG/L	R
Benzene	UG/L	5 U
Bromodichloromethane	UG/L	5 U

Flags assigned during chemistry validation are shown.

Location ID		MW-11S
Sample ID	MW-11S	
Matrix		Groundwater
Depth Interval (ft)	-	
Date Sampled Parameter		05/07/08
raiameter	Units	
Volatile Organic Compounds		
Bromoform	UG/L	5 U
Bromomethane	UG/L	5 U
Carbon Disulfide	UG/L	5 U
Carbon Tetrachloride	UG/L	5 U
Chlorobenzene	UG/L	5 U
Chloroethane	UG/L	5 U
Chloroform	UG/L	5 U
Chloromethane	UG/L	5 U
Cyclohexane	UG/L	5 U
Dibromochloromethane	UG/L	5 U
Dichlorodifluoromethane	UG/L	5 UJ
Ethylbenzene	UG/L	5 U
Isopropylbenzene (Cumene)	UG/L	5 U
Methyl acetate	UG/L	5 UJ
Methyl Ethyl Ketone (2-Butanone)	UG/L	R
Methyl tert-butyl ether	UG/L	5 UJ
Methylcyclohexane	UG/L	5 U
Methylene Chloride	UG/L	5 U
Styrene	UG/L	5 U
Tetrachloroethene	UG/L	5 U
Toluene	UG/L	5 U
Trichloroethene	UG/L	5 U
Trichlorofluoromethane	UG/L	5 U

Flags assigned during chemistry validation are shown.

	MW-11S		
Sample ID			
Matrix			
Depth Interval (ft)			
	05/07/08		
Units			
UG/L	5 U		
UG/L	5 U		
	UG/L		

Flags assigned during chemistry validation are shown.

Location ID		MPE-01	MPE-02	MPE-03	MPE-04	MPE-05
Sample ID Matrix Depth Interval (ft)		MPE-01 Gas Exhaust	MPE-02 Gas Exhaust	MPE-03 Gas Exhaust	MPE-04 Gas Exhaust	MPE-05 Gas Exhaust
		Date Sampled		05/18/10	05/18/10	
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/M3	2.7	. 16	170	19	46
1,1,2,2-Tetrachloroethane	UG/M3	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/M3	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U
1,1,2-Trichloroethane	UG/M3	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
1,1-Dichloroethane	UG/M3	1.0 U	4.3	51	1.2	8.4
1,1-Dichloroethene	UG/M3	0.99 U	0.99 U	12	0.99 U	1.2
1,2,4-Trichlorobenzene	UG/M3	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U
1,2-Dibromo-3-chloropropane	UG/M3	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U
1,2-Dibromoethane (Ethylene Dibromide)	UG/M3	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U
1,2-Dichlorobenzene	UG/M3	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
1,2-Dichloroethane	UG/M3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (cis)	UG/M3	23	48	390	30	63
1,2-Dichloroethene (trans)	UG/M3	0.99 U	0.99 U	2.0	0.99 U	0.99 U
1,2-Dichloropropane	UG/M3	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
1,3-Dichlorobenzene	UG/M3	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
1,3-Dichloropropene (cis)	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
1,3-Dichloropropene (trans)	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
1,4-Dichlorobenzene	UG/M3	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
2-Hexanone	UG/M3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
4-Methyl-2-Pentanone	UG/M3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Acetone	UG/M3	99	37	12 U	7.9 U	11 U
Benzene	UG/M3	5.0	6.9	3.2	0.80 U	1.2
Bromodichloromethane	UG/M3	1.7 U	1.7 U	1,7 U	1.7 U	1.7 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-01	MPE-02	MPE-03	MPE-04	MPE-05
Sample ID	_	MPE-01	MPE-02	MPE-03	MPE-04	MPE-05
Matrix		Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/18/10	05/18/10	05/18/10	05/18/10	05/18/10
Parameter	Units					
Volatile Organic Compounds						
Bromoform	UG/M3	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U
Bromomethane	UG/M3	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U
Carbon Disulfide	UG/M3	0.78 U	0.78 U	0.78 U	0.78 U	0.78 U
Carbon Tetrachloride	UG/M3	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
Chlorobenzene	UG/M3	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Chloroethane	UG/M3	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U
Chloroform	UG/M3	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Chloromethane	UG/M3	1.6	1.2	0.52 U	0.52 U	2.9
Cyclohexane	UG/M3	0.86 U	0.86 U	0.86 U	0.86 U	0.86 U
Dibromochloromethane	UG/M3	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U
Dichlorodifluoromethane	UG/M3	2.2	2.0	2.1	2.0	2.0
Ethylbenzene	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
Isopropylbenzene (Cumene)	UG/M3	3.1 U	3.1 U	3.1 U	5.2	3.1 U
m&p-Xylene	UG/M3	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U
Methyl acetate	UG/M3	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U
Methyl Ethyl Ketone (2-Butanone)	UG/M3	21	11	3.1	1.4	2.8
Methyl tert-butyl ether	UG/M3	0.90 U	0.90 ป	0.90 U	0.90 U	0.90 U
Methylcyclohexane	UG/M3	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U
Methylene Chloride	UG/M3	3.5 U	3.5 U	3.5 U	3.5 U	3.5 U
o-Xylene	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
Styrene	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
Tetrachloroethene	UG/M3	1,300	2,200	6,100	500	2,000
Toluene	UG/M3	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-01	MPE-02 MPE-02	MPE-03	MPE-04	MPE-05 MPE-05
Sample ID		MPE-01		MPE-03	MPE-04	
Matrix Depth Interval (ft) Date Sampled		Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust
		-	•	-	-	•
		05/18/10	05/18/10	05/18/10	05/18/10	05/18/10
Parameter	Units					
Volatile Organic Compounds						
richloroethene	UG/M3	510	650	2,200	140	850
richlorofluoromethane	UG/M3	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
/inyl Chloride	UG/M3	0.64 U	0.64 U	0.68	0.64 U	0.88

Flags assigned during chemistry validation are shown.

Location ID		MPE-06	MPE-07	MPE-08	MPE-09	MPE-10
Sample ID Matrix Depth Interval (ft)		MPE-06	MPE-07	MPE-08	MPE-09 Gas Exhaust	MPE-10 Gas Exhaust
		Gas Exhaust	Gas Exhaust	Gas Exhaust		
		-	-	-		
Date Sampled	,	05/18/10	05/18/10	05/18/10	05/18/10	05/18/10
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/M3	180	1.4	2.0	2.0	2.2
1,1,2,2-Tetrachloroethane	UG/M3	1.7 U	1.7 U	1.7 U	1,7 U	1.7 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/M3	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U
1,1,2-Trichloroethane	UG/M3	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
1,1-Dichloroethane	UG/M3	50	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	UG/M3	2.0	0.99 U	0.99 U	0.99 U	0.99 Ų
1,2,4-Trichlorobenzene	UG/M3	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U
1,2-Dibromo-3-chloropropane	UG/M3	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U
1,2-Dibromoethane (Ethylene Dibromide)	UG/M3	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U
1,2-Dichlorobenzene	UG/M3	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
1,2-Dichloroethane	UG/M3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (cis)	UG/M3	76	5.0	9.8	19	19
1,2-Dichloroethene (trans)	UG/M3	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U
1,2-Dichloropropane	UG/M3	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
1,3-Dichlorobenzene	UG/M3	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
1,3-Dichloropropene (cis)	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
1,3-Dichloropropene (trans)	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
1,4-Dichlorobenzene	UG/M3	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
2-Hexanone	UG/M3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
4-Methyl-2-Pentanone	UG/M3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Acetone	UG/M3	6.4 U	13 U	15 U	6.9 U	9.5 U
Benzene	UG/M3	0.80 U	0.80 U	0.80 U	1.1	0.80 ป
Bromodichloromethane	UG/M3	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-06	MPE-07	MPE-08	MPE-09	MPE-10
Sample ID		MPE-06	MPE-07	MPE-08	MPE-09	MPE-10
Matrix		Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust
Depth Interval (ft)		<u>-</u>				
Date Sampled		05/18/10	05/18/10	05/18/10	05/18/10	05/18/10
Parameter	Units					
Volatile Organic Compounds						
Bromoform	UG/M3	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U
Bromomethane	UG/M3	0.97 U	0.97 U	0.97 U	0.97 U	0.97 ป
Carbon Disulfide	UG/M3	0.78 U	0.78 U	0.78 ป	0.78 U	0.78 U
Carbon Tetrachloride	UG/M3	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
Chlorobenzene	UG/M3	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Chloroethane	UG/M3	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U
Chloroform	UG/M3	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
Chloromethane	UG/M3	0.52 U	0.52 U	0.52 U	0.59	0.52 U
Cyclohexane	UG/M3	0.86 U	0.86 U	0.86 U	0.86 U	0.86 U
Dibromochloromethane	UG/M3	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U
Dichlorodifluoromethane	UG/M3	2.0	2.1	2.0	2.0	2,0
Ethylbenzene	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
Isopropylbenzene (Cumene)	UG/M3	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U
m&p-Xylene	UG/M3	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U
Methyl acetate	UG/M3	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U
Methyl Ethyl Ketone (2-Butanone)	UG/M3	0.74 U	2.6	2.6	1.3	2.0
Methyl tert-butyl ether	UG/M3	0.90 U	0.90 ป	0.90 U	0.90 U	0.90 U
Methylcyclohexane	UG/M3	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U
Methylene Chloride	UG/M3	3.5 U	3.5 U	3.5 U	3.5 U	3.8
o-Xylene	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
Styrene	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
Tetrachloroethene	UG/M3	1,500	200	690	1,200	1,400
Toluene	UG/M3	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U

Flags assigned during chemistry validation are shown.

TABLE 1 VALIDATED AIR SAMPLE RESULTS MAY 2010

DINABURG DISTRIBUTING SITE

Location ID		MPE-06	MPE-07	MPE-08	MPE-09	MPE-10
Sample ID		MPE-06	MPE-07	MPE-08	MPE-09	MPE-10
Matrix		Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust
Depth Interval (ft)		-	-	•	-	-
Date Sampled		05/18/10	05/18/10	05/18/10	05/18/10	05/18/10
Parameter	Units	- 1				
Volatile Organic Compounds		-				
Trichloroethene	UG/M3	790	38	440	500	210
Trichlorofluoromethane	UG/M3	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
Vinyl Chloride	UG/M3	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-11	MPE-12	MPE-13	MPE-14	MPE-15
Sample ID		MPE-11	MPE-12	MPE-13	MPE-14	MPE-15
Matrix		Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust
Depth Interval (ft)				-		
Date Sampled		05/18/10	05/18/10	05/18/10	05/18/10	05/18/10
Parameter	Units					
Volatile Organic Compounds					· · · · ·	
1,1,1-Trichloroethane	UG/M3	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
1,1,2,2-Tetrachloroethane	UG/M3	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/M3	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U
1,1,2-Trichloroethane	UG/M3	1.4 U	1.4 U	1.4 U	1.4 U	1.4 U
1,1-Dichloroethane	UG/M3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	UG/M3	0.99 U	0.99 U	0.99 U	0.99 U	0.99 U
1,2,4-Trichlorobenzene	UG/M3	1.9 U	1.9 U	1.9 Ü	1.9 U	1.9 U
1,2-Dibromo-3-chloropropane	UG/M3	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U
1,2-Dibromoethane (Ethylene Dibromide)	UG/M3	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U
1,2-Dichlorobenzene	UG/M3	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
1,2-Dichloroethane	UG/M3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethene (cis)	UG/M3	13	11	15	5.9	3.0
1,2-Dichloroethene (trans)	UG/M3	0.99 U	0.99 U	0,99 U	0.99 U	0.99 U
1,2-Dichloropropane	UG/M3	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U
1,3-Dichlorobenzene	UG/M3	1.5 U	1,5 U	1.5 U	1.5 U	1.5 U
1,3-Dichloropropene (cis)	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
1,3-Dichloropropene (trans)	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
1,4-Dichlorobenzene	UG/M3	1.5 U	1.5 U	1.5 U	1.5 U	1.5 U
2-Hexanone	UG/M3	1.1	1.0 U	1.0 U	2.7	1.0 U
4-Methyl-2-Pentanone	UG/M3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Acetone	UG/M3	58 U	31 U	19 U	81	17 U
Benzene	UG/M3	3.0	0.80 U	0.83	0.80 U	0.80 U
Bromodichloromethane	UG/M3	1.7 U	1.7 U	1.7 U	1.7 U	1.7 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-11	MPE-12	MPE-13	MPE-14	MPE-15	
Sample ID		MPE-11	MPE-12	MPE-13	MPE-14	E-14 MPE-15	
Matrix		Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust	
Depth Interval (ft)				-			
Date Sampled		05/18/10	05/18/10	05/18/10	05/18/10	05/18/10	
Parameter	Units						
Volatile Organic Compounds							
Bromoform	UG/M3	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	
Bromomethane	UG/M3	0.97 U	0.97 U	0.97 U	0.97 U	0.97 U	
Carbon Disulfide	UG/M3	0.78 ป	0.86	0.78 U	0.78 U	0.78 U	
Carbon Tetrachloride	UG/M3	1.6 U	1.6 U	1.6 U	1.6 U	1.6 Ų	
Chlorobenzene	UG/M3	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	
Chloroethane	UG/M3	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U	
Chloroform	UG/M3	1.2 U	1.2 U	1.2 U	1.2 U	1.2 U	
Chloromethane	UG/M3	0.88	1.1	0.83	0.74	0.52 U	
Cyclohexane	UG/M3	0.86 U	0.86 U	0.86 U	0.86 U	0.86 U	
Dibromochloromethane	UG/M3	2.1 U	2.1 U	2.1 U	2.1 U	2.1 U	
Dichlorodifluoromethane	UG/M3	2.1	2.0	2.1	1.6	2.2	
Ethylbenzene	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	
Isopropylbenzene (Cumene)	UG/M3	5.6	3.1 U	3.1 U	3.1 U	3.1 U	
m&p-Xylene	UG/M3	2.2 U	2.2 U	2.2 U	2.2 U	2.2 U	
Methyl acetate	UG/M3	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U	
Methyl Ethyl Ketone (2-Butanone)	UG/M3	13	5.5	5,5	16	4.3 U	
Methyl tert-butyl ether	UG/M3	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	
Methylcyclohexane	UG/M3	3.1 U	3.1 U	3.1 U	3.1 U	3.1 U	
Methylene Chloride	UG/M3	13	3.5 U	3.5 U	7.5	3.5 U	
o-Xylene	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	
Styrene	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	
Tetrachloroethene	UG/M3	1,200	990	1,300	270	510	
Toluene	UG/M3	0.94 U	0.94 U	0.94 U	0.94 U	0.94 U	

Flags assigned during chemistry validation are shown.

Location ID		MPE-11	MPE-12	MPE-13	MPE-14	MPE-15
Sample ID		MPE-11	MPE-12	MPE-13	MPE-14	MPE-15
Matrix		Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust
Depth Interval (ft)		•	•	-	-	•
Date Sampled		05/18/10	05/18/10	05/18/10	05/18/10	05/18/10
Parameter	Units					
Volatile Organic Compounds						-
richloroethene	UG/M3	630	330	310	140	99
richlorofluoromethane	UG/M3	1.7	1.4 U	1.4 U	1.4 U	1.4 U
/inyl Chloride	UG/M3	0.64 U	0.64 U	0.64 U	0.64 U	0.64 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-16	MPE-17	MPE-18	VPCAS-2	
Sample ID		MPE-16	MPE-17	MPE-18	AS-Effluent	
Matrix		Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust	
Depth Interval (ft)			•	-		
Date Sampled		05/18/10	05/18/10	05/18/10	05/18/10	
Parameter	Units					
Volatile Organic Compounds			:			
1,1,1-Trichloroethane	UG/M3	1.6	1.4 U	1.4 U	440	
1,1,2,2-Tetrachloroethane	UG/M3	1.7 U	1.7 U	1.7 U	1.7 U	
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/M3	1.9 U	1.9 U	1.9 U	1.9 U	
1,1,2-Trichloroethane	UG/M3	1.4 U	1.4 U	1.4 U	1.4 U	
1,1-Dichloroethane	UG/M3	1.0 U	1.0 U	1.0 U	130	
1,1-Dichloroethene	UG/M3	0.99 U	0.99 U	0.99 U	8.6	
1,2,4-Trichlorobenzene	UG/M3	1.9 U	1.9 U	1.9 U	1.9 U	
1,2-Dibromo-3-chloropropane	UG/M3	3.1 U	3.1 U	3.1 U	3.1 U	
1,2-Dibromoethane (Ethylene Dibromide)	UG/M3	1.9 U	1.9 U	1.9 U	1.9 U	
1,2-Dichlorobenzene	UG/M3	1.5 U	1.5 U	1.5 U	1.5 U	
1,2-Dichloroethane	UG/M3	1.0 U	1.0 U	1.0 U	1.0 U	
1,2-Dichloroethene (cis)	UG/M3	19	1.7	28	750	
1,2-Dichloroethene (trans)	UG/M3	0.99 U	0.99 U	0.99 U	2.6	
1,2-Dichloropropane	UG/M3	1.2 U	1.2 U	1.2 U	1.2 U	
1,3-Dichlorobenzene	UG/M3	1.5 U	1.5 U	1.5 U	1.5 U	
1,3-Dichloropropene (cis)	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	
1,3-Dichloropropene (trans)	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U	
1,4-Dichlorobenzene	UG/M3	1.5 U	1.5 U	1.5 U	1.5 U	
2-Hexanone	UG/M3	1.0 U	1.0 U	1.0 U	1.0 U	
4-Methyl-2-Pentanone	UG/M3	1.0 U	1.0 U	1.0 U	1.0 U	
Acetone	UG/M3	14 U	9.2 U	14 U	25 U	
Benzene	UG/M3	1.4	0.80 U	0.80 U	19	
Bromodichloromethane	UG/M3	1.7 U	1.7 U	1.7 U	1.7 U	

Flags assigned during chemistry validation are shown.

Location ID		MPE-16	MPE-17	MPE-18	VPCAS-2
Sample ID		MPE-16	MPE-17	MPE-18	AS-Effluent
Matrix		Gas Exhaust	Gas Exhaust	Gas Exhaust	Gas Exhaust
Depth Interval (ft)		-	-		-
Date Sampled		05/18/10	05/18/10	05/18/10	05/18/10
Parameter	Units	_			
Volatile Organic Compounds					
Bromoform	UG/M3	2.6 U	2.6 U	2.6 U	2.6 U
Bromomethane	UG/M3	0.97 U	0.97 U	0.97 U	0.97 U
Carbon Disulfide	UG/M3	0.78 U	0.78 U	0.78 U	0.78 U
Carbon Tetrachloride	UG/M3	1.6 U	1.6 U	1.6 U	1.6 U
Chlorobenzene	UG/M3	1.2 U	1.2 U	1.2 U	1.2 U
Chloroethane	UG/M3	0.66 U	0.66 U	0.66 U	0.66 U
Chloroform	UG/M3	1.2 U	1.2 U	1.2 U	1.2 U
Chloromethane	UG/M3	0.52 U	0.75	0.52 U	1.0
Cyclohexane	UG/M3	0.86 U	0.86 U	0.86 U	0.86 U
Dibromochloromethane	UG/M3	2.1 U	2.1 U	2.1 U	2.1 U
Dichlorodifluoromethane	UG/M3	2.1	2.2	2.3	2.2
Ethylbenzene	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U
Isopropylbenzene (Cumene)	UG/M3	3.1 U	3.1 U	3.1 U	22
m&p-Xylene	UG/M3	2.2 U	2.2 U	2.2 U	2.2 U
Methyl acetate	UG/M3	3.1 U	3.1 U	3.1 U	3.1 U
Methyl Ethyl Ketone (2-Butanone)	UG/M3	3.3 U	2.4 U	2.5 U	5.0 U
Methyl tert-butyl ether	UG/M3	0.90 U	0.90 U	0.90 U	0.90 U
Methylcyclohexane	UG/M3	3.1 U	3.1 U	3.1 U	3.1 U
Methylene Chloride	UG/M3	3.5 U	3.5 U	3.5 U	5.9
o-Xylene	UG/M3	1.1 U	1.1 U	1.1 U	1.5
Styrene	UG/M3	1.1 U	1.1 U	1.1 U	1.1 U
Tetrachloroethene	UG/M3	2,600	86	840	8,500
Toluene	UG/M3	0.94 U	0.94 U	0.94 U	3.6

Flags assigned during chemistry validation are shown.

Location ID		MPE-16	MPE-17	MPE-18	VPCAS-2
Sample ID	Sample ID		MPE-17	MPE-18	AS-Effluent
Matrix	Matrix Depth Interval (ft)		Gas Exhaust	Gas Exhaust	Gas Exhaust
Depth Interval (ft)			-	•	
Date Sampled		05/18/10	05/18/10	05/18/10	05/18/10
Parameter	Units				
Volatile Organic Compounds					
Frichloroethene	UG/M3	2,800	19	59	3,300
Trichlorofluoromethane	UG/M3	1.4 U	1.4 U	1.4 U	1.4 U
Vinyl Chloride	UG/M3	0.64 U	0.64 U	0.64 U	21

Flags assigned during chemistry validation are shown.

Location ID		GEW-01	GPW-01	GPW-02	MPE-01	MPE-02
Sample ID		GEW-1	GPW-01	GPW-02	MPE-01	MPE-02
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	-
Date Sampled		05/18/10	05/18/10	05/17/10	05/18/10	05/17/10
Parameter	Units					
Volatile Organic Compounds					-	
1,1,1-Trichloroethane	UG/L	690 D	5.0 U	5.0 U	37	24
1,1,2,2-Tetrachloroethane	UG/L	5,0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2-Trichloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1-Dichloroethane	UG/L	240 DJ	5.0 U	5.0 U	180	11
1,1-Dichloroethene	UG/L	12	5.0 U	5.0 U	130	6.9
1,2,4-Trichlorobenzene	UG/L	5.0 UJ	5.0 UJ	5.0 U	5.0 UJ	5.0 U
1,2-Dibromo-3-chloropropane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichlorobenzene	UG/L	5,0 Ù	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichloroethane	UG/L	5.0 U	5.0 Ü	5,0 U	5.0 U	5.0 U
1,2-Dichloroethene (cis)	UG/L	570 D	23	45	470 D	45
1,2-Dichloroethene (trans)	UG/L	2.6 J	5.0 U	5.0 U	2.6 J	5.0 U
1,2-Dichloropropane	UG/L	5.0 U	5,0 U	5.0 U	5,0 U	5.0 U
1,3-Dichlorobenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,3-Dichloropropene (cis)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,3-Dichloropropene (trans)	UG/L	5.0 U	5.0 ป	5.0 U	5.0 U	5.0 U
1,4-Dichlorobenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Hexanone	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-Pentanone	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	UG/L	9.0 J	R	R	R	10 J
Benzene	UG/L	1.9 J	5.0 U	5.0 U	6.0	5.0 U
Bromodichloromethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U

Flags assigned during chemistry validation are shown.

Location ID		GEW-01	GPW-01	GPW-02	MPE-01	MPE-02
Sample ID		GEW-1	GPW-01	GPW-02	MPE-01	MPE-02
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		_	<u> </u>	-	-	-
Date Sampled		05/18/10	05/18/10	05/17/10	05/18/10	05/17/10
Parameter	Units					
Volatile Organic Compounds						
Bromoform	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Bromomethane	UG/L	5.0 U	5.0 U	5.0 UJ	5.0 U	5.0 UJ
Carbon Disulfide	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Carbon Tetrachloride	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chlorobenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloroform	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloromethane	UG/L	5.0 UJ	5.0 UJ	5.0 ∪	5.0 UJ	5.0 U
Cyclohexane	UG/L	5.0 U	5.0 U	5.0 U	1.8 J	5.0 U
Dibromochloromethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dichlorodifluoromethane	UG/L	5,0 UJ	5.0 UJ	5.0 U	5.0 UJ	5.0 U
Ethylbenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Isopropylbenzene (Cumene)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methyl acetate	UG/L	5.0 U	5.0 U	5.0 UJ	5.0 U	5.0 UJ
Methyl Ethyl Ketone (2-Butanone)	UG/L	25	5.0 U	R	6.5	R
Methyl tert-butyl ether	UG/L	5.0 U	5.0 U	5.0 UJ	5.0 U	5.0 UJ
Methylcyclohexane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylene Chloride	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Styrene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Tetrachloroethene	UG/L	5,500 D	35	670 D	1,400 D	2,900 D
Toluene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Trichloroethene	UG/L	3,000 D	410 D	2,400 D	3,600 D	400 D
Trichlorofluoromethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U

Flags assigned during chemistry validation are shown.

Location ID	·	GEW-01	GPW-01	GPW-02	MPE-01	MPE-02
Sample ID		GEW-1	GPW-01	GPW-02	MPE-01	MPE-02
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	-	-	•	-
Date Sampled		05/18/10	05/18/10	05/17/10	05/18/10	05/17/10
Parameter	Units					-
Volatile Organic Compounds						
Vinyl Chloride	UG/L	5.0 U	5.0 U	5.0 U	1.5 J	5.0 U
Xylene (total)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-03	MPE-04	MPE-05	MPE-06	MPE-07
Sample ID		MPE-03	MPE-04	MPE-05	MPE-06 Groundwater	MPE-07 Groundwater -
Matrix		Groundwater	Groundwater	Groundwater		
Depth Interval (ft)		- 05/17/10	- 05/17/10	05/17/10		
Date Sampled					05/17/10	05/17/10
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	600 D	6,300 D	48	1,200 D	7.6
1,1,2,2-Tetrachloroethane	UG/L	5.0 U	5.0 U	5.0 U	5,0 U	5.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2-Trichloroethane	UG/L	5.0 U	2.8 J	5.0 U	5.0 U	5.0 U
1,1-Dichloroethane	UG/L	180	1,100 D	22	450 D	11
1,1-Dichloroethene	UG/L	50	240 DJ	5.0 J	65	5.0 U
1,2,4-Trichlorobenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dibromo-3-chloropropane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichlorobenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichloroethane	UG/L	5.0 U	1.4 J	5.0 U	5.0 U	5.0 U
1,2-Dichloroethene (cis)	UG/L	200 DJ	750 D	180	330 D	24
1,2-Dichloroethene (trans)	ŲG/L	1.3 J	3.2 J	5.0 U	5.0 U	5.0 U
1,2-Dichloropropane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,3-Dichlorobenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,3-Dichloropropene (cis)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,3-Dichloropropene (trans)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,4-Dichlorobenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Hexanone	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-Pentanone	UG/L	5.0 U	5.0 U	5.0 U	5,0 U	5.0 U
Acetone	UG/L	23 J	16 J	R	R	R
Benzene	UG/L	1.9 J	7.0	5.0 U	3.8 J	5.0 U
Bromodichloromethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-03	MPE-04	MPE-05	MPE-06	MPE-07
Sample ID		MPE-03	MPE-04	MPE-05	MPE-06	MPE-07
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	-	-	-	-
Date Sampled		05/17/10	05/17/10	05/17/10	05/17/10	05/17/10
Parameter	Units					
Volatile Organic Compounds						
Bromoform	UG/L	5.0 U				
Bromomethane	UG/L	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 U
Carbon Disulfide	UG/L	5.0 U				
Carbon Tetrachloride	UG/L	5.0 U				
Chlorobenzene	UG/L	5.0 U				
Chloroethane	UG/L	5.0 U	2.6 J	5.0 U	5.0 U	5.0 U
Chloroform	UG/L	5.0 U	5,0 U	5.0 U	5.0 U	5.0 U
Chloromethane	UG/L	5.0 U				
Cyclohexane	UG/L	5.0 U	38	5.0 U	5.0 U	5.0 U
Dibromochloromethane	UG/L	5.0 U				
Dichlorodifluoromethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ
Ethylbenzene	UG/L	5.0 U	23	5.0 U	5.0 U	5.0 U
Isopropylbenzene (Cumene)	UG/L	5.0 U	1.8 J	5.0 U	5.0 U	5.0 U
Methyl acetate	UG/L	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 U
Methyl Ethyl Ketone (2-Butanone)	UG/L	R	R	R	R	R
Methyl tert-butyl ether	UG/L	5.0 UJ	5.0 UJ	5.0 UJ	5.0 UJ	5.0 U
Methylcyclohexane	UG/L	5.0 U	27	5.0 U	5.0 U	5.0 U
Methylene Chloride	UG/L	5.0 U				
Styrene	UG/L	5.0 U				
Tetrachloroethene	UG/L	5,700 D	12,000 D	1,300 D	1,800 D	95
Toluene	UG/L	2.4 J	96	5.0 U	5.0 U	5.0 U
Trichloroethene	UG/L	3,700 D	9,900 D	530 D	3,700 D	130
Trichlorofluoromethane	UG/L	5.0 U				

Flags assigned during chemistry validation are shown.

Location ID		MPE-03	MPE-04	MPE-05	MPE-06	MPE-07
Sample ID		MPE-03	MPE-04	MPE-05	MPE-06	MPE-07
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	- .	•	-	-
Date Sampled		05/17/10	05/17/10	05/17/10	05/17/10	05/17/10
Parameter	Units					
Volatile Organic Compounds						
Vinyl Chloride	UG/L	5.0 U	2.6 J	5.0 U	5.0 U	5.0 U
(ylene (total)	UG/L	5.0 U	140	5.0 U	5.0 U	5.0 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-08	MPE-11	MPE-12	MPE-13	MPE-14
Sample ID		MPE-08 Groundwater -	MPE-11	MPE-12	MPE-13	MPE-14 Groundwater
Matrix			Groundwater	Groundwater	Groundwater	
Depth Interval (ft)			-	-	•	
Date Sampled		05/17/10	05/17/10	05/17/10	05/18/10	05/18/10
Parameter	Units				·	
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	12	9.5	5.0 U	1.4 J	40 U
1,1,2,2-Tetrachloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
1,1,2-Trichloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
1,1-Dichloroethane	UG/L	11	2.0 J	5.0 U	1.1 J	40 U
1,1-Dichloroethene	UG/L	1.4 J	5.0 U	5.0 U	5.0 ∪	40 U
1,2,4-Trichlorobenzene	UG/L	5.0 U	5.0 UJ	5.0 UJ	5.0 UJ	40 UJ
1,2-Dibromo-3-chloropropane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
1,2-Dichlorobenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
1,2-Dichloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
1,2-Dichloroethene (cis)	UG/L	67	9.4	5.0 U	50	71
1,2-Dichloroethene (trans)	UG/L	5.0 U	5.0 U	5.0 U	1.6 J	40 U
1,2-Dichloropropane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
1,3-Dichlorobenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
1,3-Dichloropropene (cis)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
1,3-Dichloropropene (trans)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
1,4-Dichlorobenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
2-Hexanone	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
4-Methyl-2-Pentanone	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
Acetone	UG/L	R	12 J	R	R	R
Benzene	UG/L	3.1 J	5.0 U	5.0 U	5.0 U	40 U
Bromodichloromethane	UG/L	5,0 ∪	5.0 U	5.0 U	5,0 U	40 U
	1		L	L	ال	

Flags assigned during chemistry validation are shown.

Location ID		MPE-08	MPE-11	MPE-12	MPE-13	MPE-14
Sample ID		MPE-08	MPE-11	MPE-12	MPE-13	MPE-14
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	
Date Sampled		05/17/10	05/17/10	05/17/10	05/18/10	05/18/10
Parameter	Units					
Volatile Organic Compounds		-				
Bromoform	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
Bromomethane	UG/L	5.0 UJ	5.0 U	5.0 U	5.0 U	40 U
Carbon Disulfide	UG/L	5.0 ∪	5,0 U	5.0 U	5.0 U	40 U
Carbon Tetrachloride	UG/L	5.0 U	1.5 J	5.0 U	5.0 U	40 U
Chlorobenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
Chloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
Chloroform	UG/L	5.0 U	5,0 U	5.0 U	5.0 U	40 U
Chloromethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 UJ	40 U
Cyclohexane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
Dibromochloromethane	UG/L	5.0 U	5.0 U	5.0 U	5,0 U	40 U
Dichlorodifluoromethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 UJ	40 U
Ethylbenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
Isopropylbenzene (Cumene)	UG/L	5.0 U	5.0 U	5,0 U	5.0 ป	40 U
Methyl acetate	UG/L	5.0 UJ	5.0 UJ	5.0 U	5.0 U	40 U
Methyl Ethyl Ketone (2-Butanone)	UG/L	R	5.0 U	5.0 U	5.0 U	600
Methyl tert-butyl ether	UG/L	5.0 UJ	5.0 Ŭ	5.0 U	5.0 U	40 U
Methylcyclohexane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
Methylene Chloride	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
Styrene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
Tetrachloroethene	UG/L	2,700 D	13,000 D	130	4,100 D	40 U
Toluene	UG/L	5.0 U	1.0 J	5.0 U	5.0 U	40 U
Trichloroethene	UG/L	2,600 D	25,000 D	65	2,500 D	40 U
Trichlorofluoromethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-08	MPE-11	MPE-12	MPE-13	MPE-14
Sample ID		MPE-08	MPE-11	MPE-12	MPE-13	MPE-14
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	-	-		-
Date Sampled		05/17/10	05/17/10	05/17/10	05/18/10	05/18/10
Parameter	Units				·	
Volatile Organic Compounds		ve		-		
Vinyl Chloride	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U
Xylene (total)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	40 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-16	MPE-17	MW-01	MW-01A	MW-03
Sample ID		MPE-16	MPE-17	MW-01	MW-01A	MW-03
Matrix		Groundwater -	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)			-	-	•	-
Date Sampled		05/18/10	05/18/10	05/18/10	05/18/10	05/18/10
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	280 J	100 U	7.5	5.0 U	1.5 J
1,1,2,2-Tetrachloroethane	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
1,1,2-Trichloroethane	UG/L	5.0 U	100 U	5.0 U	5.0 U	5,0 U
1,1-Dichloroethane	UG/L	4.2 J	100 U	1.0 J	5.0 U	5.0 U
1,1-Dichloroethene	UG/L	6.2	100 U	5.0 U	5.0 U	5.0 U
1,2,4-Trichlorobenzene	UG/L	5.0 UJ	100 UJ	5.0 UJ	5.0 UJ	5.0 UJ
1,2-Dibromo-3-chloropropane	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
1,2-Dichlorobenzene	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
1,2-Dichloroethane	UG/L	5.0 U	100 U	5.0 U	5.0 U	5,0 U
1,2-Dichloroethene (cis)	UG/L	190	98 J	81	5.0 U	7.9
1,2-Dichloroethene (trans)	UG/L	2.6 J	100 U	1.5 J	5.0 U	5.0 U
1,2-Dichloropropane	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
1,3-Dichlorobenzene	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
1,3-Dichloropropene (cis)	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
1,3-Dichloropropene (trans)	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
1,4-Dichlorobenzene	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
2-Hexanone	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-Pentanone	UG/L	5.0 U	100 U	5.0 U	3.9 J	5.0 U
Acetone	UG/L	R	530 J	R	R	R
Benzene	UG/L	2.4 J	100 U	5.0 U	5.0 U	5.0 U
Bromodichloromethane	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U

Flags assigned during chemistry validation are shown.

Location ID		MPE-16	MPE-17	MW-01	MW-01A	MVV-03
Sample ID		MPE-16	MPE-17	MW-01	MW-01A	MW-03
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	•	-	-	-
Date Sampled	,	05/18/10	05/18/10	05/18/10	05/18/10	05/18/10
Parameter	Units					
Volatile Organic Compounds						
Bromoform	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
Bromomethane	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
Carbon Disulfide	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
Carbon Tetrachloride	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
Chlorobenzene	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
Chloroethane	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
Chloroform	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
Chloromethane	UG/L	5.0 U J	100 U	5.0 UJ	5.0 U	5.0 UJ
Cyclohexane	UG/L	2.1 J	100 U	5.0 U	5.0 U	5.0 U
Dibromochloromethane	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
Dichlorodifluoromethane	UG/L	5.0 UJ	100 U	5.0 UJ	5.0 U	5.0 UJ
Ethylbenzene	UG/L	6.3	100 U	5.0 U	5.0 U	5.0 U
Isopropylbenzene (Cumene)	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
Methyl acetate	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
Methyl Ethyl Ketone (2-Butanone)	UG/L	5.1	2,600	5.0 ህ	5.0 U	5.0 U
Methyl tert-butyl ether	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
Methylcyclohexane	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
Methylene Chloride	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
Styrene	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U
Tetrachloroethene	UG/L	81,000 D	100 U	5,000 D	5.0 U	1,600 D
Toluene	UG/L	26	100 U	5.0 U	5.0 U	5.0 U
Trichloroethene	UG/L	4,800 D	100 U	490 D	5.0 U	480 D
Trichlorofluoromethane	UG/L	5.0 U	100 U	5.0 U	5.0 U	5.0 U

Flags assigned during chemistry validation are shown.

TABLE 2 **VALIDATED GROUNDWATER SAMPLE RESULTS MAY 2010**

DINABURG DISTRIBUTING SITE

Location ID		MPE-16	MPE-17	MW-01	MW-01A	MW-03
Sample ID		MPE-16	MPE-17	MW-01	MW-01A	MW-03
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		-	-	-	-	
Date Sampled		05/18/10	05/18/10	05/18/10	05/18/10	05/18/10
Parameter	Units		·			
Volatile Organic Compounds						
Vinyl Chloride	UG/L	9.7	360	5.0 U	5.0 U	5.0 U
Kylene (total)	UG/L	31	100 U	5.0 U	5.0 U	5.0 U

Flags assigned during chemistry validation are shown.

Location ID		MW-03C	MW-04	MW-05	MW-06	MW-08K
Sample ID	-	MW-03C	MW-04	MW-05	MW-06	MW-08K
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	05/17/10	-	-	05/17/10
Date Sampled		05/18/10		05/17/10	05/17/10	
Parameter	Units					
Volatile Organic Compounds						
1,1,1-Trichloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2,2-Tetrachloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2-Trichloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1-Dichloroethane	UG/L	3.4 J	5.0 U	5.0 U	5.0 U	5.0 U
1,1-Dichloroethene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2,4-Trichlorobenzene	UG/L	5.0 UJ	5.0 U	5.0 U	5.0 UJ	5.0 U
1,2-Dibromo-3-chloropropane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichlorobenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichloroethene (cis)	UG/L	26	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichloroethene (trans)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichloropropane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,3-Dichlorobenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,3-Dichloropropene (cis)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,3-Dichloropropene (trans)	UG/L	5.0 U	5.0 U	5.0 U	5,0 U	5.0 U
1,4-Dichlorobenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-Hexanone	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-Pentanone	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	UG/L	R	R	R	R	R
Benzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ
Bromodichloromethane	UG/L	5,0 U	5.0 U	5.0 U	5.0 U	5.0 U

Flags assigned during chemistry validation are shown.

Location ID		MW-03C	MW-04	MW-05	MW-06	MW-08K
Sample ID		MW-03C	MW-04	MW-05	MW-06	MW-08K
Matrix	•	Groundwater -	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)			- 05/17/10		-	05/17/10
Date Sampled		05/18/10		05/17/10	05/17/10	
Parameter	Units					
Volatile Organic Compounds						
Bromoform	UG/L	5.0 U	5.0 Ų	5.0 U	5.0 U	5.0 U
Bromomethane	UG/L	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 UJ
Carbon Disulfide	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Carbon Tetrachloride	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chlorobenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloroform	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloromethane	UG/L	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 U
Cyclohexane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dibromochloromethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dichlorodifluoromethane	UG/L	5.0 UJ	5.0 U	5.0 UJ	5,0 U	5.0 U
Ethylbenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Isopropylbenzene (Cumene)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methyl acetate	UG/L	5.0 U	5.0 UJ	5.0 U	5.0 UJ	5.0 UJ
Methyl Ethyl Ketone (2-Butanone)	UG/L	5.0 U	R	R	5.0 U	R
Methyl tert-butyl ether	UG/L	5.0 U	3.1 J	5.0 U	5.0 U	5.0 UJ
Methylcyclohexane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylene Chloride	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Styrene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Tetrachloroethene	UG/L	100	5.0 U	5.0 U	5.0 U	5.0 U
Toluene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Trichloroethene	UG/L	130	5,0 ₺	5.0 U	2.0 J	5.0 U
Trichlorofluoromethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U

Flags assigned during chemistry validation are shown.

Location ID		MW-03C	MW-04	MW-05	MW-06	MW-08K
Sample ID		MW-03C	MW-04	MVV-05	MW-06	MW-08K
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		•	-	•	-	-
Date Sampled		05/18/10	05/17/10	05/17/10	05/17/10	05/17/10
Parameter	Units			_		
Volatile Organic Compounds						
Vinyl Chloride	UG/l.	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Kylene (total)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U

Flags assigned during chemistry validation are shown.

Location ID		MW-08S	MW-09K	MW-09S	MW-10K	MW-10S
Sample ID		MW-08S	MW-09K	MW-09S	MW-10K	MW-10S
Matrix		Groundwater -	Groundwater	Groundwater	Groundwater	Groundwater -
Depth Interval (ft)			-	-	-	
Date Sampled		05/17/10	05/17/10	05/17/10	05/17/10	05/17/10
Parameter	Units					
Volatile Organic Compounds		······				
1,1,1-Trichloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2,2-Tetrachloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2-Trichloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1-Dichloroethane	UG/L	5.0 U	5.0 U	5.0 U	2.0 J	5.0 U
1,1-Dichloroethene	UG/L	5.0 U	5.0 U	5.0 U	1.6 J	5.0 U
1,2,4-Trichlorobenzene	UG/L	5.0 U	5.0 UJ	5.0 U	5.0 UJ	5.0 UJ
1,2-Dibromo-3-chloropropane	UG/L	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichlorobenzene	UG/L	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U
1,2-Dichloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichloroethene (cis)	UG/L	5.0 U	5.0 U	5.0 U	51	1.7 J
1,2-Dichloroethene (trans)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dichloropropane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,3-Dichlorobenzene	UG/L	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U
1,3-Dichloropropene (cis)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,3-Dichloropropene (trans)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,4-Dichlorobenzene	UG/L	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U
2-Hexanone	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
4-Methyl-2-Pentanone	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Acetone	UG/L	R	R	R	R	R
Benzene	UG/L	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 U
Bromodichloromethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U

Flags assigned during chemistry validation are shown.

Location ID		MW-08S	MW-09K	MW-09S	MW-10K	MW-10S
Sample ID		MW-08S	MW-09K	MW-09S	MW-10K	MW-10S
Matrix		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Depth Interval (ft)		<u> </u>	•	-	-	-
Date Sampled		05/17/10	05/17/10	05/17/10	05/17/10	05/17/10
Parameter	Units					
Volatile Organic Compounds						
Bromoform	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Bromomethane	UG/L	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 U
Carbon Disulfide	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Carbon Tetrachloride	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chlorobenzene	UG/L	5.0 U	5.0 U	5,0 U	5.0 U	5.0 U
Chloroethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloroform	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Chloromethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Cyclohexane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dibromochloromethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Dichlorodifluoromethane ·	UG/L	5.0 U	5.0 UJ	5.0 UJ	5.0 U	5.0 U
Ethylbenzene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Isopropylbenzene (Cumene)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methyl acetate	UG/L	5.0 UJ	5.0 U	5.0 U	5.0 UJ	5.0 U
Methyl Ethyl Ketone (2-Butanone)	UG/L	R	R	R	5.0 U	5.0 U
Methyl tert-butyl ether	UG/L	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 U
Methylcyclohexane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methylene Chloride	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Styrene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Tetrachloroethene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Toluene	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Trichloroethene	UG/L	5.0 U	5.0 U	5.0 ∪	770 D	7.3
Trichlorofluoromethane	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U

Flags assigned during chemistry validation are shown.

Location ID		MW-08S	MW-09K	MW-09S	MW-10K	MW-10S
Sample ID Matrix Depth Interval (ft)		MW-08S	MW-09K	MW-09S	MW-10K	MW-10S
		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
		-	-	-	-	
Date Sampled		05/17/10	05/17/10	05/17/10	05/17/10	05/17/10
Parameter	Units					
Volatile Organic Compounds						
/inyl Chloride	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
(ylene (total)	UG/L	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U

Flags assigned during chemistry validation are shown.

Location ID		MW-11S
Sample ID		MW-11S
Matrix		Groundwater
Depth Interval (ft)		-
Date Sampled	05/17/10	
Parameter	Units	
Volatile Organic Compounds		
1,1,1-Trichloroethane	UG/L	5.0 U
1,1,2,2-Tetrachloroethane	UG/L	5.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5.0 U
1,1,2-Trichloroethane	UG/L	5.0 U
1,1-Dichloroethane	UG/L	5.0 U
1,1-Dichloroethene	UG/L	5.0 U
1,2,4-Trichlorobenzene	UG/L	5.0 U
1,2-Dibromo-3-chloropropane	UG/L	5.0 U
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	5.0 U
1,2-Dichlorobenzene	UG/L	5.0 U
1,2-Dichloroethane	UG/L	5.0 U
1,2-Dichloroethene (cis)	UG/L	5.0 U
1,2-Dichloroethene (trans)	UG/L	5.0 U
1,2-Dichloropropane	UG/L	5.0 U
1,3-Dichlorobenzene	UG/L	5.0 U
1,3-Dichloropropene (cis)	UG/L	5.0 U
1,3-Dichloropropene (trans)	UG/L	5.0 U
1,4-Dichlorobenzene	UG/L	5.0 U
2-Hexanone	UG/L	5.0 U
4-Methyl-2-Pentanone	UG/L	5.0 U
Acetone	UG/L	R
Benzene	UG/L	5.0 U
Bromodichloromethane	UG/L	5.0 U

Flags assigned during chemistry validation are shown.

Location ID		MW-11S
Sample ID		MW-11S
Matrix		Groundwater
Depth Interval (ft)	-	
Date Sampled Parameter		05/17/10
rarameter	Units	
Volatile Organic Compounds		······································
Bromoform	UG/L	5.0 U
Bromomethane	UG/L	5.0 UJ
Carbon Disulfide	UG/L	5.0 U
Carbon Tetrachloride	UG/L	5.0 U
Chlorobenzene	UG/L	5.0 U
Chloroethane	UG/L	5.0 U
Chloroform	UG/L	5.0 U
Chloromethane	UG/L	5.0 U
Cyclohexane	UG/L	5.0 U
Dibromochloromethane	UG/L	5.0 U
Dichlorodifluoromethane	UG/L	5.0 U
Ethylbenzene	UG/L	5.0 U
Isopropylbenzene (Cumene)	UG/L	5.0 U
Methyl acetate	UG/L	5.0 UJ
Methyl Ethyl Ketone (2-Butanone)	UG/L	R
Methyl tert-butyl ether	UG/L	5.0 UJ
Methylcyclohexane	UG/L	5.0 U
Methylene Chloride	UG/L	5.0 U
Styrene	UG/L	5.0 U
Tetrachloroethene	UG/L	5.0 U
Toluene	UG/L	5.0 U
Trichloroethene	UG/L	5.0 U
Trichlorofluoromethane	UG/L	5.0 U

Flags assigned during chemistry validation are shown.

Location ID	Location ID					
Sample ID	MW-11S					
Matrix	Groundwater					
Depth Interval (ft)	•					
Date Sampled	05/17/10					
Parameter	Units					
Volatile Organic Compounds		"				
Vinyl Chloride	UG/L	5.0 U				
Xylene (total)	UG/L	5.0 U				

Flags assigned during chemistry validation are shown.

Location ID		FIELDQC	FIELDQC		
Sample ID		TRIP BLANK	TRIP BLANK		
Matrix		Groundwater	Groundwater		
Depth Interval (ft)			-		
Date Sampled	Date Sampled				
Parameter	Units	Trip Blank (1-1)	Trip Blank (1-1)		
Volatile Organic Compounds					
1,1,1-Trichloroethane	UG/L	5.0 U	5.0 U		
1,1,2,2-Tetrachloroethane	UG/L	5.0 U	5.0 U		
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5.0 U	5.0 U		
1,1,2-Trichloroethane	UG/L	5.0 U	5.0 U		
1,1-Dichloroethane	UG/L	5.0 U	5.0 U		
1,1-Dichloroethene	UG/L	5.0 U	5.0 U		
1,2,4-Trichlorobenzene	UG/L	5.0 U	5.0 UJ		
1,2-Dibromo-3-chloropropane	UG/L	5.0 U	5.0 U		
1,2-Dibromoethane (Ethylene Dibromide)	UG/L	5.0 U	5.0 U		
1,2-Dichlorobenzene	UG/L	5.0 U	5.0 U		
1,2-Dichloroethane	UG/L	5.0 U	5.0 U		
1,2-Dichloroethene (cis)	UG/L	5.0 U	5.0 U		
1,2-Dichloroethene (trans)	UG/L	5.0 U	5.0 U		
1,2-Dichloropropane	UG/L	5.0 U	5.0 U		
1,3-Dichlorobenzene	UG/L	5.0 U	5.0 U		
1,3-Dichloropropene (cis)	UG/L	5.0 U	5.0 U		
1,3-Dichloropropene (trans)	UG/L	5.0 U	5.0 U		
1,4-Dichlorobenzene	UG/L	5.0 U	5.0 U		
2-Hexanone	UG/L	5.0 U	5.0 U		
4-Methyl-2-Pentanone	UG/L	5.0 U	5.0 U		
Acetone	UG/L	R	R		
Benzene	UG/L	5.0 UJ	5.0 U		
Bromodichloromethane	UG/L	5.0 U	5.0 U		

Flags assigned during chemistry validation are shown.

Location ID		FIELDQC	FIELDQC
Sample ID		TRIP BLANK	TRIP BLANK
Matrix		Groundwater	Groundwater
Depth Interval (ft)		-	-
Date Sampled		05/17/10	05/18/10
Parameter	Units	Trip Blank (1-1)	Trip Blank (1-1)
Volatile Organic Compounds			
Bromoform	UG/L	5.0 U	5.0 U
Bromomethane	UG/L	5.0 UJ	5.0 U
Carbon Disulfide	UG/L	5.0 U	5.0 U
Carbon Tetrachloride	UG/L	5.0 U	5.0 U
Chlorobenzene	UG/L	5.0 U	5.0 U
Chloroethane	UG/L	5.0 U	5,0 U
Chloroform	UG/L	5.0 U	5.0 U
Chloromethane	UG/L	5.0 U	5.0 UJ
Cyclohexane	UG/L	5.0 U	5.0 U
Dibromochloromethane	UG/L	5.0 U	5.0 U
Dichlorodifluoromethane	UG/L	5.0 U	5.0 UJ
Ethylbenzene	UG/L	5.0 U	5.0 U
Isopropylbenzene (Cumene)	UG/L	5.0 U	5.0 U
Methyl acetate	UG/L	5.0 UJ	5.0 U
Methyl Ethyl Ketone (2-Butanone)	UG/L	R	5.0 U
Methyl tert-butyl ether	UG/L	5.0 UJ	5.0 U
Methylcyclohexane	UG/L	5.0 U	5.0 U
Methylene Chloride	UG/L	5.0 U	5.0 U
Styrene	UG/L	5.0 U	5.0 U
Tetrachloroethene	UG/L	5.0 U	5.0 U
Toluene	UG/L	5.0 U	5.0 U
Trichloroethene	UG/L	5,0 U	5.0 U
Trichlorofluoromethane	UG/L	5.0 U	5.0 U

Flags assigned during chemistry validation are shown.

Location ID	Location ID Sample ID				
Sample ID					
Matrix	Groundwater	Groundwater			
Depth Interval (ft)					
Date Sampled	05/17/10	05/18/10			
Parameter	Units	Trip Blank (1-1)	Trip Blank (1-1)		
Volatile Organic Compounds					
Vinyl Chloride	UG/L	5.0 U	5.0 U		
Xylene (total)	UG/L	5.0 U	5.0 U		

Flags assigned during chemistry validation are shown.

TABLE 1 2008 GEOPROBE SAMPLING COMPARISON TO UNRESTRICTED USE CLEANUO OBJECTIVES

	UNRESTRICTED USE OBJECTIVE	,		DETECTE	D CONCEN	NTRATION	microg/kg)	
COMPOUND	(microg/kg)	08GP01	08GP02	08GP03	08GP04	08GP05	08GP06	08GP07	08GP08
Sample depth (bgs)		1,-8,	7'-8'	7'-8'	10'-11'	11-12'	6'-7	10, -11,	0.4'-1'
1,1,1-trichloroethane	680							480	
1,2-dichloroethene(cis)	250		,					780	290
Acetone	50				l				
Cyclohexane	NV				ŀ			3,500	
Ethylbenzene	1,000							1,500	
Isoproplybenzene	NV			ļ				480	
Methylcyclohexane	NV							16,000	ļ
Methylene Chloride	50		6.6	8.5	6.3	5.8		j	42
Tetrachloroethene	1,300	12,000	88	37	170	170	11,000	39,000	1,100
Toluene	700				1				
Trichloroethene	470	1,500	6.6	8.3	35	17		3,300	100
Xylene	260							: 18,000	
Xylene	1							v.shwinen-wineraneoneoneostopocope; 6040	i e

	UNRESTRICTED USE OBJECTIVE			DETECTE	D CONCE	TRATION(microg/kg)	
COMPOUND	(microg/kg)	08GP10	08GP11	08GP12	08GP14	08GP15	08GP16	08GP17	08GP18
Sample depth (bgs)		4-51	9'-10'	6'-7'	6'-7'	10'-11'	9'-10'	11'-12'	8'-9'
1,1,1-trichloroethane	680			İ	1		1		1
1,2-dichloroethene(cis)	250		Ì		1			1	
Acetone	50	· ·		6.2	8.1		l	1	5.1
Cyclohexane	NV	l				1	1		1
Ethylbenzene	1,000	l	1	ŀ	1				
Isoproplybenzene	NV		1	1				1	Į.
Methylcyclohexane	NV	ļ						1	İ
Methylene Chloride	50	i		7.4	9.1	1			
Tetrachloroethene	1,300	26	41	35	170	4,500	360	32,000	*
Toluene	700		Į.		1.4				
Trichloroethene	470	8.2	ì	13	51	ľ	31	1.300	100 200 200 200 200 200 200 200 200 200
Xylene	260		1	1				340	
	ļ			I	i	1	1		1

UNRESTRICTED								
USE OBJECTIVE								
(microg/kg)	08GP19	08GP19d	08GP20	08GP22	08GP23	08GP24	08GP25	08GP26
	8'-9'	8,-4,	10'-11'	9-10	11'-12'	10'-12'	7'-8'	11'-12'
680				l '				,
250			l				1	
50			1	1	1			
NV			i					
1,000		· ·	1 ·					
NV				j			İ	
NV				i e	1			1
50		l						
1,300	170,000	310,000	3,600	8,500	5,900	15,000	38,000	13,000
700								
470	22,000	21,000	=5,300		- 1,800	2,000	300	2;100
260								
	(microg/kg) 680 250 50 NV 1,000 NV NV 50 1,300 700 470	(microg/kg) 08GP19 680 250 50 NV 1,000 NV NV 50 1,300 700 470 22,000	(microg/kg) 08GP19 08GP19d 680 250 50 NV 1,000 NV NV 50 1,300 700 470 08GP19 8'-9' 8'-9' 310;000 310;000 310;000	(microg/kg) 08GP19 08GP19d 08GP20 8'-9' 8'-9' 10'-11' 680 250 50 NV 1,000 NV NV 50 1,300 700 470 22,000 21,000 310,000 55,300	(microg/kg) 08GP19 08GP19d 08GP20 08GP22 8'-9' 8'-9' 10'-11' 9'-10' 680 250 50 NV 1,000 NV NV 50 1,300 700 470 22,000 21,000 316,000 55,300	(microg/kg) 08GP19 08GP19d 08GP20 08GP22 08GP23 8'-9' 8'-9' 10'-11' 9'-10' 11'-12' 680 250 50 NV 1,000 NV NV NV 50 1,300 700 470 22,000 21,000 35,300 55,300	(microg/kg)	(microg/kg) 08GP19 08GP19d 08GP20 08GP22 08GP23 08GP24 08GP25 680 250 50 1,000 1,000 1,000 1,000 1,300 1,70;000 310;000 3;600 8;500 15;800 15;000 38:000 470 22,000 21,000 5;300 1,800 2:000 300

NV = No Value

Gray shading indicates that concentration exceeds the cleanup objective. Blank cells indicate that the compound was not detected.

TABLE 1 2008 GEOPROBE SAMPLING COMPARISON TO UNRESTRICTED USE CLEANUP OBJECTIVES

	UNRESTRICTED USE OBJECTIVE			DETECTE	D CONCE	ITRATION(microg/kg)	l	
COMPOUND	(microg/kg)	08GP27	08GP28	08GP29	08GP30	08GP31	08GP32	08GP33	08GP34
Sample depth Cogs)		10'-12'	7'-8'	7'-8'	10'-11'	10'-11'	7'-8'	7'-8'	11'-12'
1,1,1-trichloroethane	680								1
1,2-dichloroethene(cis)	250								1.
Acetone	50				l			l	
Cyclohexane	NV								
Ethylbenzene	1,000				İ			·	
Isoproplybenzene	NV								
Methylcyclohexane	NV				ŀ				
Methylene Chloride	50.								
Tetrachloroethene	1,300	22,000	1,400	1,600	13,000	24,000	4,800	1,300	3,900
Toluene	700		25	26				16	
Trichloroethene	470	2,000	42	170	6,100	==:1;900==	290	270	:::530::::
Xylene	260		1			1	1		
									<u> </u>

UNRESTRICTED USE OBJECTIVE			DETECTE	D CONCEN	ITRATION(microg/kg)	
(microg/kg)	08GP35	08GP36	08GP37	08GP37d	08GP38	08GP39	08GP40	
	11'-12'	11,-15,	11'-12'	11'-12'	11'-12'	10'-11'	11'-12'	
680							1	
250				i		l		
50				9		1		
NV						Ì	ļ	
1,000		1					1	
NV	,				ļ			ŀ
NV					Ì			İ
50				4.1	4.6	4.6	3.7	
1,300		2,400	160	99	4.5	9.6	12	
700	2.9		·					
470	310	820	570	260	9	26	77	1
260								
	USE OBJECTIVE (microg/kg) 680 250 50 NV 1,000 NV NV 50 1,300 700 470	USE OBJECTIVE (microg/kg) 08GP35 680 250 50 NV 1,000 NV NV 50 1,300 700 470 310	USE OBJECTIVE (microg/kg) 08GP35 08GP36 680 250 50 NV 1,000 NV NV 50 1,300 700 2.9 470 310	USE OBJECTIVE (microg/kg) 08GP35 08GP36 08GP37 680 250 50 NV 1,000 NV NV NV 50 1,300 700 2.9 470 310 DETECTE DETECTE DETECTE DETECTE DETECTE DETECTE DETECTE DETECTE DETECTE DETECTE DETECTE DETECTE 11'-12'	USE OBJECTIVE (microg/kg) 08GP35 08GP36 08GP37 08GP37d 680 250 50 9 9 NV 1,000 NV NV 50 1,300 700 2.9 470 310 820 570 1 260	USE OBJECTIVE (microg/kg) 08GP35 08GP36 08GP37 08GP37d 08GP38 680 250 50 NV 1,000 NV NV NV 50 1,300 700 2.9 470 310 DETECTED CONCENTRATION(08GP37 08GP37d 08GP38 11'-12' 11'-12' 11'-12' 11'-12' 11'-12' 11'-12' 4.1 4.6 99 4.5	USE OBJECTIVE (microg/kg) 08GP35 08GP36 08GP37 08GP37d 08GP38 08GP39 11'-12' 11'-	USE OBJECTIVE

NV = No Value

Gray shading indicates that concentration exceeds the cleanup objective. Blank cells indicate that the compound was not detected.

TABLE A-1 2008 GEOPROBE SAMPLING PID READINGS

	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/
SAMPLE INTERVAL	(ppm)	kg)	(ppm)	kg)	(ppm)	kg)	(ppm)	kg)	(ppm)	kg)	(ppm)	kg)	(ppm)	kg)
	08GP01	08GP01	08GP02	08GP02	08GP03	08GP03	08GP04	08GP04	08GP05	08GP05	08GP06	08GP06	08GP07	08GP07
0 to 1 feet bgs	1.9		0.3		0.2		0.3		0.7		0.4		1.3	
1 to 2 feet bgs	1.9		0.3		0.2		0.3		0.7		0.4		1.3	
2 to 3 feet bgs	0.7		0.3		0.2		0.3		0.4		0.4		0.8	
3 to 4 feet bgs	0.4		0.3		0.2		0.3		0.4		0.4		8.0	
4 to 5 feet bgs	1.8		0.3		0.2		0.3		0		0.5		0.5	
5 to 6 feet bgs	1.8		6.6		0.2		0.4		0.5		1.0		2.0	
6 to 7 feet bgs	0.7		3.0		0.3		0.5		0.5		152.0	11,000	156.0	
7 to 8 feet bgs	25.7	12,000	12.4	88	0.5	37	0.3		1		16.0		305.0	
8 to 9 feet bgs	9.0		3.0		0.2		0.4		1		3.7		12.0	
9 to 10 feet bgs	20.0		2.1		0.2		0.4		0.7		21.0		424.0	
10 to 11 feet bgs	9.0		4.0		0.3		0.5	170	1.7		81.0		621.0	39,000
11 to 12 feet bgs	7.0		2.0		0.2		0.3		3.1	170	EOB		423.0	

SAMPLE INTERVAL	PID (ppm)	PCE CONC. (microg/ kg)	(ppm)	PCE CONC. (microg/ kg)	(ppm)	PCE CONC. (microg/ kg)	(ppm)	PCE CONC. (microg/ kg)	(ppm)	PCE CONC. (microg/ kg)	(ppm)	PCE CONC. (microg/ kg)	(ppm)	PCE CONC. (microg/ kg)
				08GP10		08GP11		08GP12		08GP14		08GP15		08GP16
0 to 1 feet bgs	65.0	1,100	1.9		0.5		0.3		0.5		0.4		0.3	1
1 to 2 feet bgs	65.0		9.0		0.5		0.3		0.5		1.1		0.3	1
2 to 3 feet bgs	14.0		8.0		0.2		0.5		0.5		1.2		0.2	i
3 to 4 feet bgs	8.0		5.0		0.7		0.4		0.5		0.7		0.6	i
4 to 5 feet bgs	16.2		14.6	26	0.3		0.4		0.5		0.3		0.1	i
5 to 6 feet bgs	7.0		3.0		0.4		0.4		0.2		0.5		0.2	i
6 to 7 feet bgs	2.0		2.0		0.7		1.2	35	2.4	170	1.0		0.5	i
7 to 8 feet bgs	2.0		1.0		2.6		0.3		1.3		3.3		0.8	i
8 to 9 feet bgs	0.7		2.0		0.6		1.1		EOB		0.4		36.0	i
9 to 10 feet bgs	0.7		1.0		6.3	41	1.1				0.4		36.0	360
10 to 11 feet bgs	0.5		1.7		3.6		1.1				11.0	4,500	36.0	
11 to 12 feet bgs	2.4		0.7		4.0		1.1				7.0		EOB	

	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/
SAMPLE INTERVAL	(ppm)	kg)	(ppm)	kg)	(ppm)	kg)	(ppm)	kg)	(ppm)	kg)	(ppm)	kg)	(ppm)	kg)
	08GP17	08GP17	08GP18	08GP10	08GP19	08GP19	08GP20	08GP20	08GP22	08GP22	08GP23	08GP23	08GP24	08GP24
0 to 1 feet bgs	0.4		1.6		0.6		0.6		0.6		0.3		0.2	
1 to 2 feet bgs	0.4		1.6		0.6		0.6		0.6		0.3		0.4	
2 to 3 feet bgs	0.3		0.7		2.6		27.0		1.3		0.5		0.2	
3 to 4 feet bgs	0.4		0.5		0.5		5.0		2.0		0.4		0.2	
4 to 5 feet bgs	0.5		0.5		0.5		0.8		0.2		0.4		0.1	
5 to 6 feet bgs	0.5		0.5		0.5		1.0		0.6		0.4		0.5	
6 to 7 feet bgs	0.4		0.6		0.7		3.0		0.8		0.4		2.3	
7 to 8 feet bgs	0.7		0.5		6.3		1.1		4.2		1.2		5.7	
8 to 9 feet bgs	0.5		0.6		1429.0	170,000	1.0		2		3.0		110.0	
9 to 10 feet bgs	8.0		0.6	ND	56.0		2.4		141	8,500	5.0		110.0	
10 to 11 feet bgs	5.0		0.5		151.0		46.0	3,600	40		7.0		164.0	15,000
11 to 12 feet bgs	17.0	32,000	0.5		21.0		15.6		EOB		43.0	5,900	EOB	

EOB = End of Boring

TABLE A-1 2008 GEOPROBE SAMPLING PID READINGS

	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/
SAMPLE INTERVAL	(ppm)	kg)	(ppm)	kg)	(ppm)	kg)	(ppm)	kg)	(ppm)	kg)	(ppm)	kg)	(ppm)	kg)
	08GP25	08GP25	08GP26	08GP26	08GP27	08GP27	08GP28	08GP28	08GP29	08GP29	08GP30	08GP30	08GP31	08GP31
0 to 1 feet bgs	8.0		0.6		0.7		8.0		8.0		0.7		0.7	
1 to 2 feet bgs	8.0		0.6		0.7		8.0		8.0		0.7		0.7	
2 to 3 feet bgs	0.7		0.7		0.7		0.7		0.7		0.6		0.5	
3 to 4 feet bgs	0.9		0.6		0.7		0.7		0.8		0.6		0.6	
4 to 5 feet bgs	2.0		0.9		0.7		0.7		0.7		1.0		0.7	
5 to 6 feet bgs	2.0		0.9		0.8		0.7		0.7		1.0		0.6	
6 to 7 feet bgs	14.0		2.9		0.7		1.0		0.8		2.3		0.7	
7 to 8 feet bgs	1801.0	38,000	2.6		0.7		1.2	1,400	1.8	1,600	1.3		2.4	
8 to 9 feet bgs	1109.0		0.7		2.0		1.1		0.7		5.1		2.0	
9 to 10 feet bgs	1109.0		65.0		28.0		1.1		0.7		80.0		5.0	
10 to 11 feet bgs	300.0		45.0		65.0	22,000	1.1		1.0		146.0	13,000	194.0	24,000
11 to 12 feet bgs	586.0		351.0	13,000	32.0		1.1		1.0		EOB		20.0	

SAMPLE INTERVAL	PID (ppm)	PCE CONC. (microg/ kg)	(ppm)	PCE CONC. (microg/ kg)	(ppm)	PCE CONC. (microg/ kg)	(ppm)	PCE CONC. (microg/ kg)	(ppm)	PCE CONC. (microg/ kg)	(ppm)	PCE CONC. (microg/ kg)	(ppm)	PCE CONC. (microg/ kg)
	08GP32	08GP32	08GP33	08GP33	08GP34	08GP34	08GP35	08GP35	08GP36	08GP36	08GP37	08GP37	08GP38	08GP38
0 to 1 feet bgs	0.6		0.7		0.7		0.7		0.5		0.5		0.3	
1 to 2 feet bgs	0.6		0.7		0.7		0.7		0.5		0.5		0.3	
2 to 3 feet bgs	0.7		0.8		8.0		0.7		0.5		0.5		0.4	
3 to 4 feet bgs	0.7		0.7		0.8		0.7		0.5		0.5		0.4	
4 to 5 feet bgs	0.7		0.7		0.8		0.7		0.6		0.6		0.3	
5 to 6 feet bgs	0.7		0.7		0.8		0.7		0.6		0.6		0.3	
6 to 7 feet bgs	0.8		0.8		1.2		0.7		0.7		0.7		0.3	
7 to 8 feet bgs	2.0	4,800	2.2	1,300	0.7		0.8		0.8		0.8		0.4	
8 to 9 feet bgs	EOB		EOB		0.6		1.1		1		0.7		0.6	
9 to 10 feet bgs					0.6		1.1		0.7		0.7		0.7	
10 to 11 feet bgs					0.7		1.2		7.2		7.2		0.7	
11 to 12 feet bgs					2.2	3,900	2.1	ND	15.2	2,400	15.2	160	0.8	5

	PID	PCE CONC. (microg/	PID	PCE CONC. (microg/					
SAMPLE INTERVAL	(ppm)	kg)	(ppm)	kg)					
	08GP39	08GP39	08GP40	08GP40					
0 to 1 feet bgs	0.4		0.0						
1 to 2 feet bgs	0.4		0.0						
2 to 3 feet bgs	0.3		0.0						
3 to 4 feet bgs	0.3		0.0						
4 to 5 feet bgs	0.3		0.0						
5 to 6 feet bgs	0.3		0.0						
6 to 7 feet bgs	0.3		0.0						
7 to 8 feet bgs	0.3		0.0						
8 to 9 feet bgs	0.1		0.0						
9 to 10 feet bgs	0.4		0.0						
10 to 11 feet bgs	0.5	4.6	0.1						
11 to 12 feet bgs	EOB		0.3	3.7					

EOB = End of Boring

APPENDIX C

FIELD DATA RECORDS - 2009

					SOIL BO	RING	LOG							
Projec	t Di	rabu	γ	Dost	h bu tensy		Boring/We	ell No. - I	Pro	oject l	Vo. US 21	و ک		
Client	nysa	ec (· · · · · · · · · · · · · · · · · · ·	Pish	rub. HAR		lo	L	_ of	2_		
Logge	d By M	Louns	box		nd Elevation	Star	rt Date 5/6/	99	Finish	Date	sici	69		
Drilling	Contract	Site Din by Distrib HAM Sheet No. L of Z By M Louisby Ground Elevation Start Date 5/6/69 Finish Date 5/6/69 Ontractor Gelagic NV Diller's Name Joe Menzel Flig Type Geophies Bethod Direct Posts Protection Level P.I.D. (eV) Casing Size Auger Size MA Box Drilled Total Depth 10 Depth to Groundwater/Date 5.88' ADR 6/3/197 By M Louisby Ground Elevation Start Date 5/6/69 Auger Size MA Auger Si												
Drilling	Method	Direct	· Po	_	1 10		P.I.D. (eV)	Casing	size ∕~ ∂	2	Auge	Size		.,
Soil D	rilled 16	Rock	Drilled		Total Depth	Depth	to Groundwat	er/Date		Piez	Well]	
	& ار eet)	.e."		· · · · · · · · · · · · · · · · · · ·		······································	· ·	, , ,		J00			4)	
Depth(Feet)	Sample No. Penetration Recovery (Fe	SPT Blows/ or Core Rec./Rq	SPT-N (Blows/Ft.		Sam	ole De	scription			USCS Group Syml	-			
1 —	0.5/	WA	WA	Fire	Coarse Sur	el, h	are Sult	Soft, - Brown	-	sp	NA	NA	NA	w^,
3—							·		_			6 Ex	MH	5/13/
5	g Contractor (elogic NV) Driller's Name Joe Menzel Flig Type (euprobe growth of the logic NV) Driller's Name Joe Menzel Flig Type (euprobe growth of the logic NV) Driller's Name Joe Menzel Flig Type (euprobe growth of the logic NV) Protection Level P.I.D. (eV) Casing Size Auger													
7-8				TIL	<u>L, </u>				-				ot 015%	2
9-				Grove Evel Hus	ly knd, Sulf 1-like oclar been rewa	- orf iced	openrs that	the S	eiL_	GP/GIAN	326		7099	Ro
12-				SAM	le tuten from	SI+ 2	lote at 9°-	, with 3-300		· .	8	3 103	215,95	34 D
													<u> </u>	-
	MAC 511 Congr					٠.				(R 5	ابكاوه		

					SOIL BO	RING	LOG							l
Projec	ρ	ia Burl	ر ا	Jistn'	Duting		Boring/W	ell No. GS-		roject (6120		フ		
Client	NYSC	PC.		Site	i. Clinton Ave,	Roch	esterny	Sheet N		2	_ ofc	_		
Logge	ed By ,	us bure		Grou	nd Elevation	Start	Date 5/6	109	Finisi	n Date				
	g Contract				Driller's Name Me	wze.1		Rig Ty	pe C	cobr				
	g Method		······································		Protection Level)	P.I.D. (eV)		g Size	1=	7	r Size		
	rilled 16	Dook	Drilled	o	Total Depth	Depth	to Groundwa	ter/Date		Piez		Borin	g	
Depth(Feet)	Sample No. & Penetration/	SPT Blows/6" or Core Rec./Rqd. %	SPT-N \$ (Blows/Ft.)		Samp	fron from	ecription about about by With Sarel.		dect	USCS Group Symbol		0	Lab Tests ID Sample	25%
	MAC	TEC		B0410	mofbony=1	6 B65	No refr	isol						
	511 Congre Portland, M		,								H	R 5/1	12/99	

					SOIL BO	RING	LOG						
rojec	t Divi	er (Bia-). () 51 (m	ab Wing		Boring/Well	No.	Project 1	No.	רי		
Client	1745		,		Dinalong 10=1	shobe	Leng	Sheet No.	1	of	2_		
.ogge	d By M,	Louns	~~{		nd Elevation 513,9	Star	t Date SILLO	۶ Fin	ish Date	09			
Prilling	g Contract	or Festo	SOLA	14	Driller's Name	be	Menzel	Rig Type	George	as e			
	g Method				Protection Level		P.I.D. (eV)	Casing Siz	ፈ ሎን"	Auge	Size		i
	rilled 16		Drilled	7	Total Depth	Depth	to Groundwater	/Date 3/04	Piez	Well	Boring		l
Feet)				· · · · · ·			· · ·			Moni (pp	toring m)		
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)			oie De	scription		USCS Group Symbol	Pl Meter Field Scan	PI Meter Head Space	Lab Tests ID Sample	
-					Conerile	<u> </u>				<i>(</i>)	NH.	M	_
	0.5/	WA	NA	ipork 1907	poor reading Brown, Sill Fuel-like	it, si sclor	udghke,	DAMP	3m				
- - 						•							
, -	25/40	m	NA	, ,	was silty De I Dre Growe 1-146 At	P	~ Hestura	L	Sm	0	V.	2	
				at	7.3' - mov	e or	Keep bo	ر در			ļ		Ļ
b - 1 	ارم	WA	NA	TILL BROCK	1 Jelosh Brawa 192 Soul Ovel (1 Sulfzone at	. Gld Grave	Sones wi	gu Pmboo OANS	sw/	0	iviz	69	1
<u>.</u>					solf 20th W	W ·	PID- over	runge	-	Nev	\$281	11590	6
\}-													T
	/ MAC	CTEC		· ·									1
	511 Congr Portland, N									AR	5/11/0	9	

				SOIL BO	ring	LOG					
Project D_{i}	nabur	()ish.	6 utena		Boring/We	il No. -2	Project I	۱۰. ۱۲ <i>۵ کا</i> د	フ	
Client MTS	DEC	<i>,</i>) ssho	on Lang	Sheet No.	-'2	of	<u></u>	
Logged By 🃉	Louns	buy	Grou	nd Elevation	Star	t Date 5/6/o	5 Fir	nish Date	6/09		
Orilling Contrac	Bed By M. Lownsburg Ground Elevation Start Date 16 60 7 Finish Date 16 60 9 Finish Dat										
Orilling Method	Method Drest Push Protection Level P.I.D. (eV) Casing Size 222 Auger Size Auger Size Auger										
Soil Drilled	Ground Elevation Start Date 5/6/05 Finish Date 5/6/09 ground Elevation ST37 Start Date 5/6/05 Finish Date 5/6/09 ground Elevation Drivert Past Protection Level P1.D.(eV) Casing Size 22 Nay August Size 20 Nay August Size										
Ground Elevation Start Dates 16 16 5 Finish Date 16/69 Filling Contractor Globsec NV Driller's Name Joe Menze L Rig Type Geoprobe Filling Method Dreat Past Protection Level P.I.D. (eV) Casing Size 22 Auger Size Filling Method Dreat Past Protection Level P.I.D. (eV) Casing Size 22 Auger Size Filling Method Dreat Past Protection Level P.I.D. (eV) Casing Size 22 Auger Size Filling Method Dreat Past Protection Level P.I.D. (eV) Casing Size 22 Auger Size Filling Method Dreat Past Protection Level P.I.D. (eV) Casing Size 22 Auger Size Filling Method Dreat Past Protection Level P.I.D. (eV) Casing Size 22 Auger Size Filling Method Dreat Past Past Protection Level P.I.D. (eV) Casing Size 22 Auger Size Filling Method Dreat Past Past Protection Level P.I.D. (eV) Casing Size 22 Auger Size Filling Method Dreat Past Past Past Past Past Past Past Pa											
43	NA		Bedel Emil Gra	loch Brown Declosed Corr el, Dense,	DAN	p	Sleeve		-6		6531609
			abb	veared to be	Wou	Server pot	volen =		86	8103	-65
								_			

Holy was stable Sanely, bravely nonse of his my has liver. All other pan bookly a soft of the stable ocher at the stable ocher at the stable ocher at the color at the parties a soft of the stable ocher at the color at the color at the color of the parties at soft of the soft of the soft of the color of					SOIL BO	:11/1C	LOG							
Logged By M. Lo Unstay Ground Elevation Start Date Stoke Pinish Stoke Pinish Date Stoke Pinish Date Stoke Pinish Stoke	Project Div	na burg	Dost	n bu t	tang	·	Boring/We	II No.	Proje	ct N	o. 82/0	<u>ر</u>		
Logged By (h. Lo Linsburg Start) Start Date \$16/69 Finish Date \$16/69 Drilling Contractor (res losic NV Driller's Name Se Menzet Filig Type (reapretoe) Drilling Method () rect fail by Protection Level P.D. (eV) Casing Size of Auger Size Drilling Method () rect fail by Protection Level P.D. (eV) Casing Size of Auger Size Drilling Method () rect fail by Protection Level P.D. (eV) Casing Size of Auger Size Drilling Method () rect fail by Protection Level P.D. (eV) Casing Size of Auger Size Drilling Method () rect fail by Protection Level Depth to Groundwater/Date P.D. (eV) Drilling Method () rect fail by Protection Level Depth to Groundwater/Date The Protection Level Depth to Groundwater/Date P.D. (eV) Depth to Groundwater/Date Drilling Method () rect fail by Protection Level Depth to Groundwater/Date Depth to Groundwater/Date Drilling Method () rect fail by Protection Level Depth to Groundwater/Date Depth to Groundwater/Date Drilling Method () rect fail by Protection Level Depth to Groundwater/Date Depth to Groundwater/Date Drilling Method () rect fail by Protection Level Depth to Groundwater/Date Depth to Groundwater/Date Drilling Method () rect fail by Protection Level Depth to Groundwater/Date Depth to Groundwater/Date Drilling Method () rect fail by Protection Level Depth to Groundwater/Date Depth to Groundwater/Date Drilling Method () rect fail by Protection Level Depth to Groundwater/Date Depth to Groundwater/Date Drilling Method () rect fail by Protection Level Depth to Groundwater/Date Depth to Groundwater/Date Drilling Method () rect fail by Protection Level Depth to Groundwater/Date Depth to Groundwater/Date Drilling Method () rect fail by Protection Level Depth to Groundwater/Date Depth to Groundwater/Date Drilling Method () rect fail by Protection Depth to Groundwater/Date Depth to Groundwater/Date Drilling Method () Rect fail by Protection Depth to Groundwater/Date				Site	Dina bus	10 rs	in buttag	Sheet No.	<u> </u>				_	
Drilling Contractor (-00 loss: NY Driller's Name Se Menzet Rig Type (-05) Loss Drilling Method () Treat Mast Protection Level P.I.D. (eV) Casing Size 2012 Auger Size 2012 Aug	Logged By	hi Lo h	nsby	Grou	513.7	Sta	rt Date 5/6	169 F	inish Da	ate	sle	69		
Soil Drilled 16 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 17 Rock Drilled 18 Rock Dr	Drilling Contra	ctor (Fe	losac	NY	Driller's Name	be	Menzel	Rig Type	0					
(1) Particular of the properties and the proof of the pro	Drilling Metho	Direc	+ Pus	H	Protection Level		P.I.D. (eV)	Casing S	ize	2"	Auger	Şize		
Sample Description Sample Description Solver John John John John John John John John	Soil Drilled /	- Roci	Orilled	•	Total Depth	Depth	to Groundwate	er/Date 3/09	P	iez	Well		J	
Holy NA M Poorly Stacked Savely, Gravely Monse Sp 9.7 And Mg Liberat 1.0' (PED 7.7) while Liver. All other PDN Mosely a Stop D Mg NA Jo Many-Stoph Fuel-like other Stoph Fuel-like other at typ 8 - A- Mahne 9-12 - Till Realeto & Brown 5.140 Soul and h Sm/sp 3.85 Mg Gravel Gravel Take at 10' 2 1" and and Gravel Grave	(Feet) e No. & tration/	slows/6" or c:/Rqd. %	T-N vs/Ft.)		Samr				scs	Symbol	(ppr	n)	Tests ample	
Holy was the food scaled surely brough nonse of and my Liverat 1.0' (PRO 3711 under 1.0') food of and hop and food of and surely of and surely of an and at top of a true of a food of a f	Sampl Pener	SPT B	SP vol8)	· · · · · · · · · · · · · · · · · · ·					Sn Ne	Group	PI Meter Field Scal	PI Meter Head Spa	Lab ID Sa	
Poorly gracked Sucky Gravel, Danse, Dry to Map - Stockt Fuel-like oclor at typ 8-9-18-71LL Rocleto L Brown Silts Suck Curt h Embodded Cubric and Gravel Gravel Zine at 10' 2 1" wide With with - PDM-0 Fig. 12-53		o my	M	FILL POSA DAY Like	by Studed Source of Liberat er. AM off	rels) 1.0°(er 1	Grovely 1 (PED 3.71) IDN Model	Nense unden Ju	SI	ρ	1	hrg	NO	
8-9-Atlande 9-12-TICL Reclets h Brown Sitts Soul Curt h Sings 378 Embedded Cotre at Circuet Gravel Zore at 10'2 1" wide With Water - PDy-0 12 12 1308 5389 5389 538103-653		ω		food to at 1	of graded Swel Namp-Slogh top	sy Ga	iwel i Nense uel-like o	den	59/	6P			NA	
	7 4.0			9-12 Grav	ecletish Bi myoclded Con el Zore at	10/	! In wid	lust h	Si	Ysp	735 Pr. L		5 6 5 5 11 6 9	7.27.
MACTEC 511 Congress Steet Portland, ME 04101 A 512139	511 Co	ngress Steet								··. · · ·	a 0			

				SOIL BOI	RING L	OG						
Project Dinas	jurg Disd	ribud	ung			Boring/We	11 No. 65-3	P 3	roject N ර <i>ෘච</i> ති	10. 210 i	! -03	./
Client NV51	DEC		Site 5, C	dinton toe Ro	chesta	NY	Sheet No.	·	2	of	2	
Logged By	. hounsh	vry	Grour	nd Elevation 513,7	Start D	ate 5/6(0-(Date	5/6	109	
Drilling Contrac	ir iv	,			enze	el	Rig Type	G	eopn	be		
Drilling Method	Let Rus	el.		Protection Level	> P	I.D. (eV) /0:0	Casing S	ize X) z	Auge	Size	
Soil Drilled	→ Rock	Drilled	0	Total Depth		Groundwat			Piez	Well	Boring	,
- X F	* %			1					lc		toring	
Feet) No. & ation/ y (Fee	ows/6 r ./Rqd	r-N s/Ft.)		Comp	le Desc	rintion			USCS up Symb	(pp		Lab Tests ID Sample
Depth(Feet) Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd.	SPT-N (Blows/Ft.)		Samp	ie Desc	приоп			USCS Group Symbol	Pl Meter Field Scan	PI Meter Head Space	Lab T
S S	S Co					· · · · · · · · · · · · · · · · · · ·				PI M Field	PI M Hea	
NA NA	M	M/A-	Till	1	11 é		14		SW		MA	
- Stuck			Dal	lith Brown S backed Coars	e Sun	all be	th	_		20		س.
tube						med (F)	rive!	-				6531609
								-	1			53
16-			Λ.		· 			-/	T -	52810	3-63	1516
			Bot	tow of Bo	ry =	16 B6	SNONER	ısk.	<u> </u>			
			,					-		-		
						:		-	-			
111							*					
-					•							
							•	•				
				•								
									-			
1		<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·				-		1		<u> </u>
			•									,
MA	CTEC										*	
	gress Steet ME 04101							A	R_5	12/09		

Series (S					SOLBO	:111/1c	14016				i de la como i		
Projec	ot Dir	ra bu	<u> </u>	Doll	Insulina		Boring/Wei	No.	Project !	No. 08 71	W)		ļ
Client	1000	DEC	-	Site	Dona bux		vi butany	Sheet No	1	_ of	1		
Logge	ed By M	Ao cm	5 b~	Grou	nd Elevation	Star	t Date Side	los Fini	sh Date	SI	809		
Drillin	g Contract	or Ges	lojic	NY	Driller's Name	Toem	Menzel	Rig Type	beop	ske	 لي		
Drillin	g Method	Direct	pusi	h	Protection Level	D	P.I.D. (eV)	Casing Size	r≈Jz	Auger	Size	,	
Soil D	rilled_	l l	Drilled		Total Depth		to Groundwate		Pięz	Well	Borin	g	
		_ %	701		<u> </u>	· 		<i>k</i>		Monit	-		
Feet)	No. & ation/ y (Fee	ows/6	s/Ft.)		0	1 - D -			SS	(pp		ests mple	
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd.	SPT-N (Blows/Ft.)		Samp	ile Des	scription		USCS Group Symbol	PI Meter Field Scan	PI Meter Head Space	Lab Tests ID Sample	
Ш	S. B.	S							0	PI Me	P1 M6 Head		
- - -		NA	NA	FILL	~)					Q	MA		
	400		-	Liver	~ 0.3° b. (1. 100	nse . V	3 minus Sine	s. It,	GP	0.6			
- 1,7		W	4	D.A.	mp	7	-40004	•	-	1.1			
-	40	<u>د</u>			-, - 6.3 ~ we'y Swel, Loc MP				-				
<u>ر ٔ ٔ ٔ ٔ ٔ ٔ ٔ ٔ ٔ ٔ ٔ ٔ ٔ ٔ ٔ ٔ ٔ ٔ ٔ</u>										0			_
	111	٨٨٨	21.2	FILL									
-	10/	M	IV:	Saw	ne as above				GP	Ø			
					•								
v													
0							0 11 5		1	114			┢
	201			111	1- Dockela H				TUL	21,6		L. Control	
	Me			. '	Riheral 2				٦,,	638		14 MG9	\ <u></u>
-	1				We wan 2	ore %	, 11.0 143 PPO-		SWGM	95		24	C
12								·		828	703-	654	10
	1			<u> </u>					· <u> </u>		<u> </u>		
		12	16 =	7,16	. C SAMe Gollet S	Stuk	Du SLee	be j	Sleve				
21	MAC				Glat S	Angle	frm bo	Hom et	PED-3	\$21	\$ 1	<u></u>	
	511 Congre Portland, N						gr 5/12	189	6. -		7.57	<u>ت</u>	
							700 3112	1 - 1	828103	- G54	100	4	╛

	3.5 (1.5)				SO	IL BO	HINE	LOG						
Projec	t pm	e bus	Ŋ ₀ .	itribul	tins		··········	Boring/Well	No.	Project 1	10. 1871	ر د		
Client	hy	IHEC		Site	Dona	buy	Di	str.buting	Sheet No.	1	of			
Logge	ed By	Louisi	מין	Groui	nd Elevat タルとし	ion		rt Date 5/6/6	Fin	ish Date	161	04		I
Drilling	g Contract	or (-00	losic		Driller's	Name J	10°C	MenzeL	Rig Type	6-00	Proli	e_		
Drilling	g Method	 			Protection	on Level		P.I.D. (eV)	Casing Siz	10A	Auge	Size		
Soil D	rilled (Rock	Drilled んみ		Total De	pth 6		to Groundwate	er/Date		Well		9	
Depth(Feat)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)			Samp	ole De	scription		USCS Group Symbol	PI Meter Scan G ju	PI Meter 3 or Head Space 6	Lab Tests ID Sample	
1	Lolu	MV	NT	Fill, Gran	at hi	s Pat H, Bro	, Po	ord Grack	1 Sinch, e 1 Didys	RII	0	w <i>a</i>	nes	
\(\)_	25/40	WA	WA	21-	8.0			Sabure Brown Sil		Fill Son	6.8			
12_	2.5/	Ma	MA	T. C. Rock	clith clith secled y Vin	Bran LOA	Sulf Se S	Surl we ord gra	th vel	-5m/5p	L7000	28103	36654169	37
	MAC 511 Congre								∌ (2 5/12/0	1			

************					SOILBO	RING	LOG		er i de la companya de la companya de la companya de la companya de la companya de la companya de la companya La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co	and the second		gangalah kabulangan Panjangan	en en viele	
Proje	1.33	na bu	>	D324	hubsting		Boring/M	/ell No. 5 -5		Project 3612	No.	167		
	W45	DEC			Dina bus	Dost	rbuling	Sh	eet No	~	_ of			
Logge	ed By M	Louish	26~	Grou	nd Elevation	Star		blo	Finis	sh Date	5/6	109		
Drillin	g Contract	or Geo	logia	LNY	Driller's Name	نو	Menze	ر Ri	g Type	6-eo				
1	g Method	Direct)wsH	Protection Level		P.I.D. (eV)		asing Size	xgz	Auge	r Size		
Soil D	Prilled /		Drilled	•	Total Depth	Depth	to Groundwa			Piez		Borin	g	
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %			· · · · · · · · · · · · · · · · · · ·		scription	<i></i>		USCS Group Symbol	7		Lab Tests ID Sample	
13-	3.6/4.0	MA	NA	Rec Cun	lolith Brom rie fond ord	S, lf	s Smel, el, Dense	In5	ecldes	GM Basel Ison	7 Qosa	MA	5551569	50
				Both	on of born	7=10	o' B65	No	refus	z l		38103	-655	
	MAC 511 Congre									R.	5/12/0	99		

					SOIL BO	RING	LOG	la Martine a september a ser a september a la companya de la companya de la companya de la companya de la comp La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co	ang di kacamatan di kacamatan di kacamatan di kacamatan di kacamatan di kacamatan di kacamatan di kacamatan di Kacamatan di kacamatan	ga veter a distribution British and grade		K Samuel	
Proje	ct Dia	na bu	irs	Ois	itu bitang		Boring/Well	No. 6	Project 3612	No.	1/07		
	nys	OBC			·Λ ()	Dos tra	beting	Sheet No.	1	_ of	2.		
Logge	ed By M	Loun	sbug	Grou	and Elevation		t Date Sl7lo	۶ Fin	ish Date	5/	710	9	
Drillin	Ing Contractor (Pullagical NY Differs Name Joe Menzel Fig Type Groups & no part of Pullaginal NY Differs Name Joe Menzel Fig Type Groups & no part of Pullaginal Ny Differs Name Joe Menzel Pullaginal Ny Differs Name Joe Menzel Pullaginal Ny Differs Name Joe Name Jo												
Drillin	g Method	Direc	扩充	Jush	Protection Level		P.I.D. (eV)	Casing Siz		Auge	r Size		
Soil E	rilled	Rock	Drilled		Total Depth	Depth	to Groundwater はっている	/Date			Borin		
		/6" ld. %					<u> </u>	<u> </u>		Moni	toring		
Depth(Feet)	Sample No Penetratio Recovery (F	SPT Blows or Core Rec./Rc	SPT-N (Blows/Ft.		Samp	le De:	scription		USCS Group Symb	ļ		Lab Tests ID Sample	
7	40/40	NA	wg		/			grades	5%p	4.0			
3-				40-	Geo Brown G	16 5	graded	sune	7	0			
5 6 7	7.01	WA	WA		PP0-60	cl, nonse rse v	non-plasoe , Losht I noterial,	Irown	SP				
8-	70/		-	8-10	1- Fill as	- So	to tal . D.	20-) 200	52a	64	Q.	ž	dMCI
0-	74.0				with Fu Dersen	beclda Weth	ron Silty Be d Greek ~ Openth	beion	70 €	3		36.56 10c	OSWINE SO
12-								×					1.00
	MAC 511 Congre							J	IR 5/12	109	2		

					SUIL BU	211/1C		Alterial Course on the				in etc.	g de la pellectione Protonicales		į
Proje	ct Dy	ra bu	y 0:	140.52	Husq		Bor	ing/Weil GS-	No. 6	F	roject 76 1;	No. 208	J (U))	
Client	1,1)	DEC	<u>-</u>	Site	nonabay	D=14	r. 4 L	ng	Sheet N	lo	7	_ of	2_		
Logge	ed By M	Lo un	1560		nd Elevation	Star	rt Date	Strlog		Finisi	n Date	5/7	lag		
Drillin	g Contract	or _ vocác j	VY		Driller's Name	e Me			Rig Ty	oe Ge	solow	obe			
Drillin	g Method	0 ireat	Push		Protection Level	D	P.I.D.	(eV)	Casing			Auge	r Size		
Soil D		Boo	k Drilled	0	Total Depth			ndwater ~ 6/3/			Piez	Well	Borin	g	
						1	, , , .					-	toring		
(Feet)	No. & ation/ y (Feet	ows/6	SPT-N (Blows/Ft.)			da Da					SS Symbo	(pp	0	tb Tests Sample	
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rod %	SP- (Blow		Samp	ole De	scripu	Of I			USCS Group Symbol	Pł Meter Field Scan	PI Meter Head Space	Lab Tests ID Sample	
	0, 2				1-4-4						6		PI M Head		
-	_	NA	w	Tim	1sr. 10	• • •	<i>c</i> .	_			_	453	MA		
	3.0/		į	Tml	loth Brown S Docked Comme	ally Soul	duel cont l	Dense	wth	· -	SM/ ISP	7202		40	
	40				······································	···u	· ·	J + 12 C		-				510	8
15				Pt	n-choppen	to '	CEP	ppn	ut P	ip		4,33	828	4051959	ر 25
6				0 5	thom of born	-1	10 BG	< 1)	Dof						
				100	nom of har n	My -1		ン・/V	2 1-610	150(_	1				
-	•	·								-					
	•									-					
-										-					
-	-		,							-					
-	1									-	-				ļ
	- - -					,									
			.												
en	<i>!</i> ```\ <i>T</i> \ <i>C</i>	ਪਾਜਾਜ਼ਾਵ						-,							
	511 Congre										JR.	حاررا	na		
ł	Portland, M	ı⊏ U47U7				•				/	₩ <u></u>	2/14	O-1		

					SOILED	E411 7	GLOG		ili saari maarada	and the same		
Projec	t Di	nce bear		Dostr	ib whing		Boring/Well	No. 7			2197)
Client	Dina hars Distributing Boring/Well No. Project No. 3612032167											
Logge			buy	Grou			V	Fini	sh Date	5/8	109	
		5 77	Ũ	NY	Driller's Name	Tve	Menzel	Rig Type	Fes	pri	ر و	
Drilling	Method	_	•				P.I.D. (eV)	Casing Size	1×2°	Auge	Size	
Soil D	rilled 6	Rock	Drilled WA		Total Depth 16				Piez	Well	Boring	g
Depth(Feet)	ole No. & etration/ ery (Feet)		PT-N ws/Ft.)		Samp				scs Symbol	(pp	m)	Tests sample
deQ	Samp Pen Recov	SPT Core R	S (Bic						Group	Pl Meter Field Sca	PI Meter Head Sp	Lab ID 9
\	7.6j 40	NA	NA	0-03	8 - Grand So Loners	alj So	Loose, Manys ne Selt, Stoss Damo Oct	My	GW/SM		MA	
5—1 \{-\frac{1}{2}}	3.i						•			0		
φ - - - -	***Y ₁₀	nA	NΑ	(5-0	Be Down	n A	uth Dubelo	lat Grave	1 SM			
8 — 9 —	20/40	ha	Nis	Bri ond	eddish pour strails	Ti Abel A S	in Coars	e Grove Plustoc	i			1
1/2/2.		-				- PAN	at Tip	~6	2357	337	878	85°
12-				1								1

					SOILBI		LOG			en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	Ping Institute		the state of the contract of	Ě
Proje	^{ct} Omal	org D	isotib	uting			Boring/W	ell No. GS~7		Project		フ		
Clien	NYSC	BC		Site	B. Clinton Ave	, Roch	ester.NY	Sheet I		2	_ of	2		1
Logge	^{∍d By} M∕,	houns!	ary	Grou	nd Elevation 513:5	Sta	rt Date 5/8	109	Finis	h Date	8100	9	 -	
Drillin	g Contract	tor ,	7		Driller's Name	Joe II	Neuzel	Rig Ty		eop				
Drillin	g Method	Direct	Vsh		Protection Leve	D	P.I.D. (eV) /O. O					r Size	—— A—	
Soil E		/	Drilled	O	Total Depth	Depth	to Groundwa	ter/Date			Well		g	
	- 2	- %					D7 7010 6	3/3/01				toring	Ì	
(Feet)	No. & ration/	ows/6	SPT-N slows/Ft.)		C	onio Do				SS Symbo	(pp		ests	-
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd.	SPT-N (Blows/Ft.)		San	ibie De	scription			USCS Group Symbol	PI Meter Field Scan	PI Meter Head Space	Lab Tests ID Sample	
	0, E	ి క									PI M Field	PI M Head		
12				Till	<u>.</u>						337	NA		
	4.01	WA	wy	Recl	bolish 132 relebed son use, Dunp	in 5.	11 San	of un	4	FILL	loc	8281	₩3-G	57
-	40			ber	rse, Diamo	rel Cvr -	ud Cuprse	Such	-	Sw/ GW	7 2000			
15—											7200		6571669	
16				Q all	nu of boo	11	1000					-		+-
-				DOW	om of bom	9-16	1565. M	o refus	el.					
-									-	-				
-									-					
-				,					-					
-														
_	-													
											,			
	···	·		1							1	1	<u> </u>	
en	″ л . г . с													
	511 Congre						•	٠	į	R	do l	.૧૯૧		
1	Portland, M	IE 04101				•			/	11 -	115	U (

- 85	and the state of t				SOILBO	RING	LOG						
Projec	(V	nu bu	ጉ	Dus	tributing		Boring/Well	No.	Project I	1891 Vo.	67		
Client	Nysoi	BC	V			Doita	.6 cutena	Sheet No.		_ of	2		
Logge	ed By M	Lour	ish	Grou	nd Elevation		t Date S1つん	ļ	ish Date	sh.	109		
Drillin	g Contract	or (-00	slage	.NY	Driller's Name	lue_	Menzel	Rig Type	bec	pre	be		
Drillin	g Method	Direct	t Pu	i lt	Protection Level		P.I.D. (eV)	Casing Siz	20 x22	Auge	r Size		
Soil D	orilled 16	1	Drilled NA		Total Depth	Depth	to Groundwate ろっている/3	r/Date 3/69	Piez	Well	Borin	g	
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)		Samr	nle De	scription		USCS Group Symbol	(pp		Lab Tests ID Sample	
Depth	Sample No. Penetration Recovery (Fe	SPT B Core Re	SP vola)	J (P		, produced to			Group	PI Meter Field Scan		Lab ID Se	
۱ -	3,0/	MY	NA	Poly Ordal Ground Ground	notice C ety Samely & but buttle Su	then.	- , Simels poo use	£	-69/sp	187 20,2	M	•	
3_										O			
5-	Roffie	WA	NA	47-	L Fire Surel, Maclin Mars	fure e, Loi	at from NA	plaitec typ-let	SP	0			
7-				78.	Sity/Cly- P PPN-	edclin	Brown - B	lense 1400	SM	68			
8-3-19-1-19-1-19-1-19-1-19-1-19-1-19-1-1	7,0			8-12	Dockelis 17 Freeloded Granth Wept			el, with Jenjen	- SM/	8.0 186		50	27
11-							-			22	8281		046 8110
	1	,				· · · · · · · · ·							
ea	Mark C												**
	511 Congre Portland, N								R	त्रीय	19		

			110000		SOLEO	-11/1C	106						Substance of the	
Projec	ot Di	nu bu	^	Dostr	buters		Boring/Wel	No.	F	roject i	No. 2087	רטו		
Client	1173	DEC		Site	Dana bung	Distr	butes	Sheet I	۷o	2	_ of	_		
	ed By \hbar		nsby	Grou	nd Elevation 513,5	Sta	rt Date S/フル	09	Finis	h Date	17100			·.
Drillin	g Contract	tor feel	SICI	ιγ	Driller's Name	ve	Menzel	Rig Ty	/pe (reup	عطما	2		
Drillin	g Method	Direc	t Pi	rs ff	Protection Level	.,	P.I.D. (eV)	Casing	g Size	x Jr	Augei	Size		
Soil D	rilled	Rock	Drilled WA		Total Depth	Depth 6.2	to Groundwate	r/Date /09		Piez	Well	Borin	g	
(Feet)	no. & ration/ y (Feet)	SPT Blows/6" or Jore Rec./Rqd. %	r-N s/Ft.)		0	· D -				SS symbol	(pp		ests nple	
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd.	SPT-N (Blows/Ft.)	-	Samp	ие ре	scription			USCS Group Symbol	Pl Meter Field Scan	PI Meter Head Space	Lab Tests ID Sample	
13-	2,01	m	w	T.LL Beck	elich Brown	Sills	Sort act	h			38	-		c inc.
14_	40			Dal	podded Con	se su	nd and a	ravel	-		343	ठेन्ड <u>ी</u>	3-63	81504
15				pors	lclick Brown podded Coar se, Damp -	si lt	100 37	v. ~ 73	. -		48		6281857	375
					SAmple Le When peck	aked	p-ethanof							
-					Whan pecle	led S	or Ships	awt.	_ {					
				Both	om of boru	9=1	16 B65 1	lo ref	usel				-	
									-					
-									-					
=		į			·				-					
-														
							,							
	1		<u></u>				·			<u> </u>	<u> </u>		<u> </u>	
							•							
	MAC 511 Congre Portland, M									R	5/12/13	29		

l •							51-05	The second second second	hapter to the age. April again to	and in the standing	taga kalèn pelikira da M	Server Server Server	
Proje	Ct Dine	i burg	··	Dost.	r.b uting		Boring/We	ell No. 9	Project 361)	No. ! ፡፡ ኔ ን	267		
Clien	t hysa)尼C		Site	Dina burg	Ŋċ	stabuting	Sheet No	. 4	_ of			
Logg	ed By 🏡		buy	Grou	nd Elevation 513.5	St	art Date 518	log	Finish Date	518	loz		`
Drillin	g Contract			VÝ	Driller's Name	oe	Menzel	Rig Typ	e bear				
	g Method	Direc			Protection Level		P.I.D. (eV)	Casing	Size ~ 2 Z	Auge			
Soil E	Orilled ,		Drilled		Total Depth		th to Groundwat	er/Date	Piez	Well	Borin		
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)			,	escription	,,,,	USCS Group Symbol		PI Meter (a) Head Space	sts ple	
2 3	7.014.0	MA	M	0.6-	L- 1.6-Graves ! 40-SAG Sa Loose, un at 0.6	Party of (Loose, Asys Frank, Sulf, Plasfor	Durk	-696p F GM	0 22 1,9	W		
4- 5- 6- 7-	UN R-			4.0-	6.0 = S.16 ! bust, 8-0- Beeleloi Grovel PDy.	h Sv	16- C. 1 1	Tubeclele	d The	6 5.6			
9-11-11-11	40			P.LL Rect Gran					eclife T. U. Snycm	430	878	6591204 S	9 1209 S
	MAC 511 Congre								AR 5/12				

tan Ara					SOIL BO	RING	LOG			e de la companya de l		and the state of t	
Proje	ot Dis	ru bu	rb-	Dist	r.b. lers		Boring/We	II No. - S-9	Project 3612	No.	(d)		
Client		OBC		Site	Dina bung	Dill	tributers	Sheet No.	2	_ of	2		
Logge	ed By M,	Louis	biny	Grou	nd Elevation	Stan	t Date 5/8	log Fin	ish Date	5/8	log		
Drillin	g Contract	ior Ges	larc		Driller's Name	- نه ک	Menzel	Rig Type	Geo.	Probe	2		
Drillin	g Method	Direc	t P	45 <i>6</i> 7	Protection Level		P.I.D. (eV)	Casing Siz	Ey≈ Jr	Auge	Size		
Soil D	rilled 16	Rock	(Drilled	0	Total Depth	Depth	to Groundwate	er/Date 3/09	Piez	Well	Boring]	
Depth(Feet)	Sample No. & · Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)		Samp	le Des	scription		USCS Group Symbol	7	toring m)	Lab Tests ID Sample	
13-				T.LL Redc Pm	last Brown bodded con	n Sil	by Surf only and all	with 5-ravel-	Du San/GM	461 533 7000 733	8103	EC5415 69	15
				B-047	om of bori	Nor	16'B6 efusul	5		,			i i
	MAC 511 Congre Portland, M								JR.	ક્રીમ	99		

					SOIL BO	RINC	G LOG						
Proje	ect Pin	a bury	1 Də	stru6	i tang		Boring/Well	No. -10	Project	No.	luz		
Clien	1177	DEC		Site	Dina burg	O_i	1 Stribiting	Sheet No.	1	_ of	2		
Logg	ed By 🇥	lousb	~/	Grou	nd Elevation 513.1	Sta	art Date 5/8/	log Fir	ish Date	1860	7		
Drillin	ng Contract	tor Geolo	STE N	J\/	Driller's Name	- Je	Menzel	Rig Type	Jeops	be	<u> </u>		
	ng Method				Protection Level		P.I.D. (eV)	Casing Siz		Auge	Size		
Soil E	Orilled	Rock	Drilled		Total Depth		h to Groundwate	r/Date		Well	Boring	g	
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)				escription		CS Symbol	Moni (pp	toring m)	Lab Tests ID Sample	
Deb	Sam Pen Recov	SPT Core B	S (Bk		- (1		P*****		US Group	Pl Meter Field Scan		Lat ID 8	
1 – 2 – 3 –	24/2	NA	MA	0.3	or Grandy Si Liker he - Grandy &				- - - -	0	MA		
9- 5- 6- 7-	10/	M	ng	40-	or Bewy 25-Solty Sodo Sa- Beddosy B Sone Fre	Srun Srun	Amp, Loose, Sulty Saul	Bran arth NAUP	-	6			
8- 9- 10- 11-	Zoffo	WA	wrg	T. L Rock	L- Slith Brown ! Copyle Soci	ol al	y Soul Wiff Comel, Ne	h Tureelu n 1	24	212 22 24 26	2810	(Slone)	01209
12					·								
	MAC 511 Congre					•			R	5/14	09		

					SOIL B	OHING	LUG					
Projec	ot Dina	abus	.	Dista	butens		Boring/We	ll No.	Project I	۷o. اد ۲ ک	(a")	
Client	nyso			Site	Dina bur	s Oist	~buten9	Sheet No.	\sim	_ of		
	ed By	Louis	رها ا	<u> </u>	nd Elevation	1		los F	inish Date	5/8	los	
Drilling	g Contract	or tel	osoc 1	vÝ	Driller's Name	Toe	Menzel	Rig Type	beop			
Drilling	g Method	Direct	Pa		Protection Lev	el	P.I.D. (eV)	Casing S	ize ~ 22	Auge	Size	
Soil D		l	Drilled WA		Total Depth		to Groundwate	er/Date	Piez	Well	Boring	g
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)		Sa		escription	.3107	USCS Group Symbol	PI Meter Field Scan do uo	Pi Meter (3 or Head Space (4)	Lab Tests ID Sample
13-11-15-1	14.0	W1	WU	Pool Til Georgia	or Docay 1) blixh Bron el Bense	n SMz	Suce with	h Prybek	-Sin/ /GM - 9.4 - 68	9.9 68 2-6	8281	15-510 VEG
				Botton	n of borry:	=16 BG	S. Woref	usul.				
	MAC 511 Congre	CTEC ess Steet							R	5/12/1)9	

Client NYS)EC	istributors Site Dina bur	y Dish		Sheet No	roject N 3612	of	107 P	
Logged By \hbar		Ground Elevation ≈ 512.8 Same as		31510	7	Date	5/5/	09	
Drilling Contrac	tor Geolgic		10e 11h	enzel		recip			
Drilling Method	TOTAL FOLL				Casing Size	22°		<i>J</i> (/	
Soil Drilled	Rock Drilled	Total Depth	Depth to G	roundwater/[Date W	Piez		Boring	j
Depth(Feet) Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. % SPT-N (Blows/Ft.)	S	ample Descri _l	otion		. USCS Group Symbol	Pl Meter Field Scan d		Lab Tests ID Sample
3.014.0	WA WA	013 -018 Blace Wan	CLC Organic L Corride Sum April Fill A Graely Sona Sonaly Silty So Time, Some Silty Time, Some Silty Time, Some Silty Time, Some Silty Time, Some Silty	1/bowel- 1, 51th, Ox wel Rie-	Look - Imp-Fill- Codrie	FIFSA	ن ن ا.ت و	100	
3.6/40	my wa	4.0 _ 4.6 F.n. B.n. 4.6 - S.2 GS 5.2 - 6.6 S.17 C. 8.0 As al.	obae Color I Plasfic Oran Olohal Coarce	chorse po 15/9 rg 10 8 Soud, Ric	inflorer	SIM SM SM	0		
9- 20/16	, Wa wa	8.0-120 T.IL- Send Sad ac Sagle Colocte	Wath Imb A Gravel, D	Deckled Anp	e Silty Coarse	Swy /Gun	0 1 0		828103- 65112009
MMA(CTEC								
7111	ress Steet					H	5/12/0	9	٠

					50	IL RO	HIME		19 M (18	Real Control					
Project	Dia	a bu	·)istab	ntens			Borin (ig/Well l ζ−/ /	No.	P	roject N S(120	10. 8210	<u>7</u>	
Client	1451			Site	Dona	bus		tabui:		Sheet N		2	of	2	
Logged B	110		ns boy	Groui	nd Elevat りみを	tion		rt Date 🔊	Isleq		Finish	Date	15%	9	
Drilling Co	ontracto	or (real	651Cl	14	Driller's	Name J	se V	Mende	(Rig Ty	<i>[</i>	Popic			
Drilling M		Direct			Protection	on Level		P.I.D. (e	V) 5	Casing	Size ₩Ą	Jr.	Auger / (Size	
Soil Drille	8-16	✓ Rock	Drilled		Total De	epth 16	Depth	ı to Grour ∫	ndwater	/Date	J	Piez	Well	Boring	1
	æ	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)			Samp	ile De	scriptic	n			USCS Group Symbol	Pi Meter Field Scan		Lab Tests ID Sample
19-3	0/40	NA	NA	Tob Dec Wati	i- lelosh n Em	Brown beclal	, De Coav	nse, So le Son	16 Si I av	wel el W	ruel.	Sm/ /GM	0	MD	828103-65111609
16				Botto	m of b	orty = ()	o BGS	. Nor	cfusr	l.					
5.	MAC 11 Congre								•		. (R	5/12/0	99	

					SOIL BOI	:} \\(<u>C</u>	LOG						
Projec	it Din	a bur	D	istr.	butting		Boring/Wel	1.No.	Project 3600	No.	(T)		
Client	nyso				Dinabus D	istribu	tang	Sheet No	. <u>l</u>	_ of	2_		
Logge	^{d By} ₩'	Louns	buy	Grou	nd Elevation & Scucos MW-101	Sta	t Date SIS	109	Finish Date	5/5/	9		
	g Contract	<i> </i> ^	losic		Driller's Name	ve	Menzel	Rig Type					
Drilling	g Method				Protection Level)	P.I.D. (eV)	Casing	Size≈ jz	Auge	r Size		
Soil Di			Drilled	0	Total Depth 16		to Groundwate		Piez	Well		9	
					J					Moni	toring		
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd.	SPT-N (Blows/Ft.)		Samp	le De	scription		USCS Group Symbol	PI Meter Field Scan	0	Lab Tests ID Sample	
1-	3.0/	NA		0-2	O-Fill, Son Some ton a Loose	ich, q	gravely si f, multip	16 OA	mp -	Q		W.A.	
3-				ĝ.∪ −`	You Fine Son Loght 1	d, So Bran-	ne Sult, Lou	sie, Pa	mb] w	0	Na	Ng	
5-	25/	Orn	wr	1.00	Go-Alaba Go-Denie S	ocue j	Loyerel, DAMP, P	wet lostoc	Sp	O	ay	gin	
7-	1413			GiV-8	ro- Pedeloss Grael ad	Brown	is sort ma	outh to clown bence	n bazel 6 Sin/ON	O	Wg	ws	
9-	3.6/4.	WA	Wy		Sord, was	wel,	mbeckyl Ornie Opi	Gravel o	sm,	60	wA	171769	
11				SAN	de Collecter.	forz	Zose Wi	th PDn.	ł	රිග්	6103	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2110
12	1												
			 										
Da		,											
	511 Congre Portland, N								H	2 5/	12/06	7	

					(2)	OIL BO		NG L	OG .								
Projec	et Pin	abun	Ĺ)istri	bute	ng .			Boring/	Well ا ا ک	No.	P 3	roject 1	No.	רנ		
	nysa			Site	Dino	buy	L)istri	but	44	Sheet N		2	of _ _			
Logge	od By	Lounsh	~ <u>{</u>	Groun	nd Elev รัไม.ช	vation		Start Da	te S	~lo	લ	Finish	Date/	Mog	'		
Drilling	g Contract	or Geol	este i	VV	Drille	r's Name	Soe	Me	nze	1	Rig Typ	pe G	eupin	e b Q			
		Direct		Wh	Prote	ction Level	a	P.I	D. (eV)	Casing			Auger	Size	·	
Soil D	rilled 16	Rock	Drilled WA	,	Total	Depth 16	De	epth to C	round	water	/Date	(Piez	Well	Boring		
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)	•		Sam	ole	Descr	ption				. USCS Group Symbol	PI Meter G W		Lab Tests ID Sample	
13	25/	WA	ng	TI	ecc ecc	losh By	ow rel	n Ei Gru	It 1	with	h Rind Yeu	podd _t	sm/ /6m	6	ma	21369	
ĵ6	·			SAm	le (oblected	. {	iren 7	u. l	wh	PDy-	61 <u> </u>			ક્કા ઝ	1,503	13 0°
-				Bois	omo	Frel fromy=	0 = 14	1 Bc	N.	o red	fusul	-					
												. <u>-</u>					
									, .								
	-																
	MAC 511 Congre	CTEC ess Steet ME 04101	•										K	2 s/1	મેડવ		

					S	OIL BO	RING	à LOG				A+ 1		
Projec	Lina	. Burg	D	ostrob				Boring/Well	No. ~13	Project	No. 2087	167		
Client	NYSA) Ec		Site	Din	- burg	000	strbutera	Sheet No.		_ of _2			
Logge	ed By My	Louis	Guy	Groui ≈517	nd Elev L& <i>(Su</i>	ation we as MW-1014	Sta	nt Date Siplo	n Fi	nish Date	slsa	-4		
Drilling	g Contract	or Geol	gic	ΝY	Driller'	s Name	. ~	Menzel	Rig Type	George	robe			
Drilling	g Method	Direct	Push		Protec	tion Level	Þ	P.I.D. (eV)	Casing S	ize 222	Auger	Size		
Soil D	rilled,	Rock	Drilled		Total [Depth タレ		n to Groundwate '슈	r/Date	Piez		Boring]	
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)					escription		USCS Group Symbol	PI Meter Field Scan do	PI Meter 3 0	Lab Tests ID Sample	
3	dist ko	WA	NA	Pil	Por	nel, gra celarn, i	ive h 20012,	Brick, The	eta L Wrc ble	r- -	O	ay	W4	
5-), 0/1/ ₀	WA	M	1		Fill - Rine Sou bott, Da		about ly Lager het	ed, Bro.	0 5m - 60	0	NA	wx	
9-10-					be	th Imi	eleli(Pe <i>ecle</i> y U	h Bron, 1 Graplac cleme b in Dare-1	e Coan		10.0	N 4.	65171709	
1,7-									- P pro-					
	MAC 511 Congr									JR 51	12/00	<u></u>	·	

					SOI	L BO	RING	LOG							
Projec	ot Pin	a burs		Osstr	i bulens			Boring/We	II No.	F	Project N 3612	10. 58) 1e	٠2		
	Mysn			Site	Dana b	uz	Oich	vila ters	Sheet	No	2	of _2			
Logge	ed By 🍌 ,	Lours	bury	Groui ≈ 51	nd Elevatio 2.8			t Date S/F	69	Finis	h Date	Clirk	9		·.
Drilling	g Contract	or Ges	losec	NY	Driller's N	ame 了	oe	Monzel	Rig T	уре	beap	rc be	· .		
Drilling	g Method	Direct	Pus t	+	Protection	C O		P.I.D. (eV)	Casin	g Size	222	Auger	Size		
Soil D	rilled 21	Rock	Drilled N 19		Total Dep	th	Depth NA	to Groundwa	ter/Date	Q.	Piez	ン ^{Well}	Boring	j	
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)			Samp	le De	scription			USCS Group Symbol	Pl Meter Scan G S D D D D D D D D D D D D D D D D D D		Lab Tests ID Sample	
13-	4.0	NA	NA	T. cl	Chow						Sui/ GM	4.0 14		ट्रेंट्राग्राहरू	13/600
17-	200			Tiu-	Dub.	lish reled	Bran	silty re Son	outh or G	rael	Sw/	65 to 89			21/90
20-	20			Beck		Arsar.			·		Su/ /Gm	20141		G1133/08	
-						10 0	=21 och ,	'BGS. Re	efisel	91		8) &103	- 651	32109
	MAC	CTEC ess Steet		•							Λ/.	5/1.	1.0		
1	Portland, N										y	_ >//•	401		

	SOIL BORING	LOG			
Project Dinu bury	Distributary	Boring/Well No.	Project	No. 108710つ	
Olient NYSDEC	Site Dina bury Distribe		1	of 2	
ogged By Mrlouns b	Ground Elevation Start	Date Shop Fir	ish Date	5/5/69	
Drilling Contractor (Jest 6)	S128 (Same as MW-10K) Driller's Name T	enzec Rig Type	6-0-0	1.0	
				1	
KNYEU		75.4	<u> </u>	Auger Size	
10 /	Total Depth 16 Depth to	Groundwater/Date	ar R	Well Borin	
Depth(Feet) Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or or Core Rec./Rqd. %			70	Monitoring (ppm)	
Depth(Feet) Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Or SPT-N	Sample Desc	cription	USCS Group Symbol		Lab Tests ID Sample
Deptl Samp Pene ecove SPT E	(B)		US	PI Meter Field Scan PI Meter Head Space	Lab ID Se
3 H 3 O				PI M Fielc PI M Hea	
	O-Oir- Bijone- Locus	, Topson.		73	
1- 20/6 WA 1	un Loose, Rive	Said 1. 17 Damp	-	0 m	MA
	-6018, 1-18	ion cut typ	-		
3			-		
1,=					
	4-60- Fire Sond, Sill Eugenel, Soft Cro-800- Colon Change Some Head, Become Dest had	f, Wet, Conera	+ Sm	6	
140	Laguel, Suft				
	Coox, Colon Chuze	he clock Brangel	1		
7-]	pe, th, beary	g Bersen with	- Sm	0	
8	The state of the s	Depter With			
a _	Refusal 907-	home to the as	m 0	0	-
VWK	8-120	3.30	30	40	
4.0	Till,		4	45	39
	Recklish Brown Sult Finheacted Come soul	, Soud, with	Sm/	1	119
[Finheacted Curie Soul	ad Grovel	/6M		215
				828103-0	314
#MACTEC					

511 Congress Steet Portland, ME 04101

DR 5/12/09

			No. 1		SUL	L BO										
Project	10	ina bi	νζ	Wist	r. Sw tans	9		Boring/	Well	No.	Pr	oject N 3612	10. 082	607		
Client	• • •	DEC		Site	Dinabo	y_	Dost	table tu	19	Sheet No	·	2	of	2		-
Logged l	$^{By} \mathcal{N}_{2}$	Loun	s buy	Groun	nd Elevatio	n	Star		15/	05 F	inish	Date	5-15	109		
Drilling C		reole	SIC	۷y	Driller's N	ame 🧻	se	Menze	u	Rig Type		Geo/	0,012	૯		
Drilling N	Method	D'rect	- Pu	sh	Protection	Level D		P.I.D. (eV)	Casing S	Size	22		Size		
0-11 0-111			Drilled N A		Total Dep	th	Depth .W.A-	to Ground	wate	r/Date	B	Piez	Well	Boring	J	
Depth(Feet)	t)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)			Samp	le De:	scription				USCS Group Symbol	PI Meter Field Scan do		Lab Tests ID Sample	***************************************
13— J	UM2 400	NA	NA		edish beckeled Den		sil re s	ty Son	ed vd	luth Grene l		Suf Gu		ws	6-5141409	1
				Bott	om of	bora	y=16	o'B6S.	N.	o refra	- - -		€	7810	3-65	141
	MAC 511 Congr	CTEC ess Steet ME 04101									IR	5/10	409			

Overburden Well Construction Diag	ram Well No.: 65-1
Project No.: 3 3612.08207.1 Project Name:	Dina burg Distrubutions
NVSDEC Project Area:	NA Christon Aue, Ruchester N.Y.
Contractor: Geologic NY Driller: Te Menzel	Method: Geofrobe :
Logged By: M. Louns bury	Date Started: 5/6/69 Completed: 5/6/69
Checked By: JとR Date: 5 1210의	Well Development Date: NA
Not To Scale	
Surface Casing Type:	
Plush mount aluminum	
Ground Surface Elevation:	(AZ)
513.8'	Type of Surface Concrete Renormal
	Jeal.
Surface Casing Diameter: 9 ¹⁰	
	711
Inside Diameter of Surface Casing:	Borehole Diameter:
Surface Casing:	Inside Diameter of
	Borehole Casing:
	Type of Backfill: San WA
Depth/Elevation of Top of Well Seal:	
1.5'B6S / 4.572.3'	Type of Riser Schillip VC
Depth/Elevation of	Riser Inside Diameter: 2200 12
Top of Sand: 45'665 / 5043	A
10 00	Type of Seal: Bontonite chips/pounder
Depth/Elevation of	
Top of Screen: 65'865 / 507.3' 6 F2	Type of Sand Pack: # O US Silica Sand
99 669	Type of Sand Pack: 500 Silica Sand
	Comp PU
	Type of Screen: Sdu 40 PV C
	Slot Size x Length: 5 y 0.010
	Inside Diameter of Screen:
Depth/Elevation of	UI DUI GGI I.
Bottom of Screen: H. FSO23'	
Depth/Elevation of	Depth of Sediment Sump with Plug: UNKWWW
Bottom of Boring:	Sump with ring.
16'BLS 1 76.0 497.8'	AR 6/8/49
MACTEC → MACTEC	FIGURE 4-7
	NITORING WELL CONSTRUCTION DIAGRAM DEC QUALITY ASSURANCE PROJECT PLAN

Overburden Well Constr	uction Diagr	am	Well No.: GS-3
Project No.: 3612082107.	Project Name:	Dina bux Dostrab	Henry
NUSDEC	Project Area:	NA Clinton Aue. Roch	
Contractor: Geologic NY Driller:)	e Marrel		ish
Logged By: M. Lounsbury		Date Started: 5/6/69	Completed: 5/6/09
Checked By: TKR Ship	e:	Well Development Date:	WA
Not To Scale		`	
		•	
Surface Casing Type: (37) Especie Plush mount	taluminum		
Ground Surface Elevation:			
513.9		Type of Surface ←———————————————————————————————————	Concrete
- * //	1 50.26	, Z	•
Surface Casing Diameter:	1 50.28		
Inside Diameter of	-	— Borehole Diameter:	2"
Ourte as Conings		Doleriole Diameter.	
Surface Casing.		Inside Diameter of Borehole Casing:	NA
		Dolonolo Odolig.	
Depth/Elevation of		Type of Backfill:	PUC Sch 40
Top of Well Seal:			Puc Shun
2.0'865 / 25511.9'		Type of Riser:	·
Depth/Elevation of Top of Sand:		Riser Inside Diameter:	12
5.0'BLS 1 5.0508.9'	•	Type of Seal:	Bontonite chips/ponder
Depth/Elevation of			, g r .
Top of Screen:			#O US Silica
7.0 965		— Type of Sand Pack:	V = V > SITICAL
			PUC Sch 40
		Type of Screen:	
		Slot Size x Length:	010"x51
		Inside Diameter of Screen:	1111
Depth/Elevation of		Of Scienti.	
Bottom of Screen: 12.0 865 / 12.501.9			
Depth/Elevation of		Depth of Sediment Sump with Plug:	NA/UNRNOWN
Bottom of Boring: 1636497.9		Sump with ring	NA/UNRNOWN JR 48/09
■ MMACTEC □	PERSONAL PROPERTY OF THE PROP		FIGURE 4-7
511 Congress Street Portland, ME 04101		NITORING WELL CONST DEC QUALITY ASSURAN	RUCTION DIAGRAM

Overburden Well Co	nstruction Diagı	am	Well No.: 65-3
Project No.: 3 3612 0.87107	, Project Name:	Dina burg Dostris	ntipa
NUSDEC	Project Area:	NA Clinton Ave. Roc	
Contractor: Geologic NY Drille	er. Joe Menzel	Method: Geofrice	
Logged By: M. Lourshund	,	Date Started: \$1669	Completed: 6/6 leg
Checked By: JKR	Date: 5/12/09	Well Development Date: 1	UM
Not To Scale			
Surface Casing Type: (A) Control Flush move	talumnum		
Ground Surface Elevation: 513.7		Type of Surface Seal:	Concrete
Surface Casing Diameter: \mathfrak{Z}^{ν}	5021		A 10
Inside Diameter of Surface Casing:		Borehole Diameter: Inside Diameter of	2"
		Borehole Casing:	NA
Depth/Elevation of Top of Well Seal:		Type of Backfill:	Bonchute chips/puller PULSch40
Depth/Elevation of Top of Sand:		Riser Inside Diameter:	<u>ju</u>
5.0'β6ς 1508.7' 3.66 Depth/Elevation of		Type of Seal:	Bontonite chips/purder
Top of Screen: 7.0′ 665 15067 7.0		Type of Sand Pack:	#O US Silvin
		Type of Screen:	PVL Sch40
		Slot Size x Length:	0.010"x5'
		Inside Diameter	t ^u
Depth/Elevation of Bottom of Screen:		of Screen:	
Depth/Elevation of Bottom of Boring:		Depth of Sediment Sump with Plug:	WA/Unkanorain
16'665 1 16:00 497	.7'		X 48/09
511 Congress Street Portland, ME 04101		IITORING WELL CONSTR DEC QUALITY ASSURANC	

Overburden Well Constr	uction Diagr	am Well No.: 65-4
Project No.: 7 361209 2007	Project Name:	Pona buy Distorbutora
NUSDEC	Project Area:	ANT Cluston tue Rechester, UY
Contractor Geologic NY Driller: J.	re mennes	Method: beginne
Logged By: M Jours lang		Date Started: \$\langle Slock Completed: \$\langle Slock
Checked By: TKR Date	: 5/12/09	Well Development Date: NA
Not To Scale	`	
	•	
Surface Casing Type:		
Push mount aluminum	,	
Ground Surface Elevation:		
513.7		Type of Surface Coneret / Cement
- + ///	12 h . mg 12 /	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Surface Casing Diameter:	F0.24	
10		— Rorehola Diameter: 24
Inside Diameter of Surface Casing:		— Borehole Diameter: ♣ ⁴¹
2,,		Inside Diameter of Borehole Casing:
		Butefible Casing.
Depth/Elevation of		Type of Backfill: Box tente chips/privaler
Top of Well Seal: (b)		Tunas Binas PUC
1.0'86S / 10512.7'	 	Type of Riser.
Depth/Elevation of Top of Sand:		Riser Inside Diameter:
5.0'665 1 5:0508:7'		Type of Seal: Bantoni E chips/puder
		Type of Seal: Town Town Con popular
Depth/Elevation of Top of Screen:		
7.0'665 1 2050617		Type of Sand Pack: #0 US Since
		——Type of Screen:
		10 000 000 2
		Incide Diameter
Double/Flouration of		of Screen:
Depth/Elevation of Bottom of Screen:		
120B65 / 150301.7		Depth of Sediment
Depth/Elevation of Bottom of Boring:	4	Depth of Sediment NA/Unknown
16'865 / 188497.7'		AR 6/8/09
MACTEC -		FIGURE 4-7
511 Congress Street Portland, ME 04101		NITORING WELL CONSTRUCTION DIAGRAM DEC QUALITY ASSURANCE PROJECT PLAN

Overburden Well Constr	uction Diagı	am	Well No.: 6-5-5
Project No.: 3 36 120 8 2107 ,	Project Name:	Dona lavy Ash	ou tanta
NUSDEC	Project Area:	WA Clinton Ave, Ro	
	Joe Memer	Method: Geofrape	
Logged By: M. Lounsh um		Date Started: 5/6/69	Completed: 5/6/69
	e: 5/12/59	Well Development Date:	M
Not To Scale			
			·
Surface Casing Type: Plush mount Hummm			
Ground Surface Elevation:		Type of Surface Seal: —	Concrete
Surface Casing Diameter:	50.23		2.4
Inside Diameter of Surface Casing:	<u>-</u> <u>J</u>	Borehole Diameter: Inside Diameter of Borehole Casing:	MA-
Depth/Elevation of		Type of Backfill:	Bontonte
Top of Well Seal: 1.0 865 Depth/Elevation of		Type of Riser:	PUC SchyopVC
Top of Sand: 5.0 665 / 508.6 5 6		Riser Inside Diameter: Type of Seal:	Bentante chins/pruder
Depth/Elevation of Top of Screen:		, , , , , , , , , , , , , , , , , , ,	40 US Silica
7.0'865 1506.6 189		—— Type of Sand Pack: ——	
		Type of Screen:	0.010"x5'
Depth/Elevation of		Slot Size x Length: Inside Diameter of Screen:	111
Bottom of Screen:		Depth of Sediment	1 A A
Depth/Elevation of Bottom of Boring: 16'86S 147.6	+	Sump with Plug:	WA /UNKNOWY & G/8/09
#MACTEC	+		FIGURE 4-7
511 Congress Street Portland, ME 04101		NITORING WELL CONST DEC QUALITY ASSURAI	

Overburden Well Constri	uction Diagr	am	Well No.: 65-6
Project No.: 36120 82107.	Project Name:	Durabum Distribut	ASS/A
NUSDET	Project Area:	1.15	whester NY.
Contractor: Geologic NY Driller: J	se Menzel	Method: Geofrabe	
Logged By: M. Louns bury		Date Started: \$ 17/09	Completed: \$ (7 /oq
	: 5/12/09	Well Development Date:	WA
Not To Scale			
		· ·	
Conform Coming Type:			
Surface Casing Type: Flush mount aluminum			
Ground Surface Elevation:			
513.5		Type of Surface Seal:	Concrete
		ZZ	
Surface Casing Diameter:	\$ 0:24		
<u> </u>			2"
Inside Diameter of Surface Casing:	-	Borehole Diameter:	
2"		Inside Diameter of	@7"NA
		Borehole Casing:	
- style - series of		Type of Backfill:	Bentopite
Depth/Elevation of Top of Well Seal:		Type of busining	PVLSalvo
1.0'665 15125 +	 - -	Type of Riser:	
Depth/Elevation of Top of Sand:		Riser Inside Diameter:	iu
5.0 865 15085 \$			Bentonite chips/huder
	1	Type of Seal:	A) EN LOUNT COMIS PRIMED
Depth/Elevation of Top of Screen:			
7:0°665 / 5065		Type of Sand Pack:	# O US Siticasand
		· · · · · · · · · · · · · · · · · · ·	
		Tune of Coroon'	PUL Sch 40
		Type of Screen:	PV C Sch 40 0,010"x5'
·		Slot Size x Length: Inside Diameter	
Danish /Claushing of		of Screen:	111
Depth/Elevation of Bottom of Screen:			
120°BGS / 12501.5		Depth of Sediment	. (4)
Depth/Elevation of Bottom of Boring:	4	Sump with Plug:	WITUNKUOWN
16'665 / 10 4975'			WA/UNKUDIWN DR 6/8/09
		•	
IVIACTEC OVE	RBURDEN MON	NITORING WELL CONST	FIGURE 4-7 RUCTION DIAGRAM
511 Congress Street Portland, ME 04101		DEC QUALITY ASSURAN	

Overburden Well Cons	truction Diagr	am	Well No.: 65.7
Project No.: 2 361208.2167.	Project Name:	Dina burg Distur	isutensa
NUSDEC	Project Area.	NAS Clinton Ave &	
Contractor: Geologic NY Driller:	Joe Menzel	Method: Georgia	
Logged By: My lown Shury		Date Started: Siglia	Completed: 5/8/69
Checked By: JKR	Date: 5/12/09	Well Development Date:	WA
Not To Scale			
	•		
Surface Casing Type:		•	
Fush mount aluminum			
Ground Surface Elevation:			
513.5	r	Type of Surface Seal: ——	Concrete
Surface Continue	4/1/2011/	Z	
Surface Casing Diameter:	\$ 0.29		
Inside Diameter of		— Borehole Diameter:) 11
Surface Casing:			
2"		Inside Diameter of Borehole Casing:	74-NA
Depth/Elevation of		Type of Backfill:	Bertente
- : :: :: : : : : : : : : : : : : : : :			puc schyo
loop of Well Seal: (場) 1.0 多り 1.0 多		Type of Riser:	
Top of Sand: (36)		Riser Inside Diameter:	Vu
5:0' BUS 150815 5.00		Time of Carl	Bentante Chips/punbe
Depth/Elevation of		Type of Seal:	- July pour
Top of Screen: (%)			Howell
7.0 B65 1 705065		——Type of Sand Pack:	#OUS Silven Sand
		Type of Screen:	PUL Sch40
		•	0.610"x5'
		Slot Size x Length: Inside Diameter	, и
Depth/Elevation of		of Screen:	
Bottom of Screen:	, 		
12.0 BGS / 15015		Depth of Sediment	NA/UNICUOWA
Depth/Elevation of Bottom of Boring:	→	Sump with Plug:	
16'B65 1 16 4975'		·	JR 6/8/09
#MACTEC			FIGURE 4-7
511 Congress Street Portland, ME 04101		IITORING WELL CONST DEC QUALITY ASSURAN	RUCTION DIAGRAM

Overburden Well Const	ruction Diagr	am		Well No.: 65-8
Project No.: 73617083107	Project Name:	Dina bung	Distribu	dhma
NUSDEC	Project Area:	WA-S.a	intantue,	Rocker NY
Contractor: Geologic NY Driller: J	de Menzel		eophbe	
Logged By: M. Lours 6~		Date Started:	5/7/09	Completed: 5/7/09
Checked By: TKC Date	e: 5/12/09	Well Developn	nent Date:	NY
Not To Scale	,			
	•			
Surface Casing Type: Flush mount aluminum				
Ground Surface Elevation:		Type of	Surface — Seal: ——	Concrete
Surface Casing Diameter: Inside Diameter of	\$0.16	Borehole D	liameter	L u
Surface Casing:		Inside Dia Borehole	meter of	24NA
Depth/Elevation of Top of Well Seal: 1.0'865 / 5125 Depth/Elevation of Top of Sand:	-		Backfill: of Riser:	PUCSA40
S.D'84 /508-5 Depth/Elevation of	+		of Seal:	Bentonite
Top of Screen: 7.0'665 / 75065		——Type of Sa	nd Pack:	# O Us Silicin soul
		——— Type o	f Screen:	PV L Sch 40
		Slot Size	x Length:	0.010×5'
			Diameter f Screen:	\mathcal{U}
Depth/Elevation of Bottom of-Screen: 12.0 665 /5015		Depth of	Sediment	all 100 110 100
Depth/Elevation of Bottom of Boring:	4	Sump v	with Plug:	DR 6/8/09
MACTEC 511 Congress Street Portland, ME 04101				FIGURE 4-7 RUCTION DIAGRAM ICE PROJECT PLAN

Overburden Well Construction Diag	gram Well No.: 6-5-9
Project No.: 3 36/2 0% 2167 Project Name:	Dina burg Distributing
NUSDEC Project Area:	WARD Clinton Ave, Rochester NY
Contractor: Geologic NY Driller: Jue Menze	Method: Geophe
Logged By: M. Lounibu	Date Started: 5/8/65 Completed: 5/8/9
Checked By: Tに Date: 5/14/91	Well Development Date: NY_
Not To Scale	
	·
Surface Casing Type: Flush mount alumnum	
Ground Surface Elevation: 513.5'	Type of Surface Cement Seal:
Surface Casing Diameter: Inside Diameter of	← Borehole Diameter:
Surface Casing:	Inside Diameter of Borehole Casing:
Depth/Elevation of Top of Well Seal: 2.0 & / 5115 4 Depth/Elevation of	Type of Backfill: Type of Riser: Riser Inside Diameter:
Top of Sand: 5.0 665 /508,5 Depth/Elevation of Top of Screen:	Type of Seal: Bowle nite chips/punder
7.5 665 1 506.5 1	Type of Sand Pack: \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	Type of Screen: PUC Sch 40
	Slot Size x Length: O.o.iv" x 5 '
	Inside Diameter of Screen:
Depth/Elevation of Bottom of Screen:	
Depth/Elevation of Bottom of Boring:	Depth of Sediment Sump with Plug:
WN/ACTEC	M .
	FIGURE 4-7 NITORING WELL CONSTRUCTION DIAGRAM DEC QUALITY ASSURANCE PROJECT PLAN

Overburden Well Constr	uction Diagr	am	Well No.: 6510
Project No.: 3 612 03 2107	Project Name:	Dinabin Dos	to butting
NUSDEC	Project Area:		inton Ave
Contractor: Geologic NY Driller: J	ve Monzei	Method: (esp	•
Logged By: Who Lowis buy		Date Started: 5/9	log Completed: 5/8/09
	: 5/12/09	Well Development D	ate: NA
Not To Scale			
			·
Surface Casing Type:			
Flish mount alumin un			
Ground Surface Elevation:	. •	Type of Surfa	
		← Se	al
Surface Casing Diameter: 12	\$ 0.21		
		Dambel- Dise4	o 🤊 ℓ
Inside Diameter of Surface Casing:	-	Borehole Diamet	ы
Surface Gasing. 22		Inside Diameter Borehole Casi	
		<u> </u>	
Depth/Elevation of		Type of Back	fill: Bestout
Top of Well Seal:			Dir Caun
Depth/Elevation of		Type of Ris	i Vl
Top of Sand:		Riser Inside Diame	ter:
5.0'BGS 1 308.1		Type of Se	eal: Benten to chis/powder
Depth/Elevation of	Annahira	1,700 01 00	. 1//
Top of Screen:			ok: HOUSSilicusurd
7.0'BCS 1 X506.1'		——Type of Sand Pa	
			PUCSLYOPUL
		Type of Scre	VIII.
		Slot Size x Len	
		Inside Diame of Scre	eter a
Depth/Elevation of		·	(VI):
Bottom of Screen: 12.01565 / 12501.1			
Depth/Elevation of		Depth of Sedin Sump with P	
Bottom of Boring: (2) 16'865 / 1497.1			DR 4/8/09
Anna Ta Common			, ,
MACTEC	DDIIDDEN MOI	UTODING WELL O	FIGURE 4-7 ONSTRUCTION DIAGRAM
511 Congress Street Portland, ME 04101	NYSI NYSI	DEC QUALITY ASS	SURANCE PROJECT PLAN

Proje	ct o				SOIL BO	RING	Boring/Wel	I No	Project	No.		
	Uin	ia bin	ns P		butung		Gw-	1 140.	3617	0821	07	
	t hys			Site	Dinabura	Di	strabu ting	Sheet No.	_1_	_ of	<i>1</i>	
	ed By M _		buy	Groun Est 3	nd Elevation.	Star J47	t Date 514 [c	9 Fir	nish Date	style	2G	
Drillin	ng Contract	or beo	los-c		Driller's Name	be	Menzel	Rig Type	beup			
Drillin	ng Method	birect	PusH		Protection Level P.I.D. (eV) Casing Size			NA TO	Augei	Size		
Soil E	Orilled 20	Rock	Drilled WA		Total Depth みんぴ	Depth	to Groundwate	er/Date	eup.Piez) Well	Boring	g
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)		Sam	ole De	scription		USCS Group Symbol	PI Meter G D D D D D D D D D D D D D D D D D D	PI Meter 3 of Head Space	Lab Tests ID Sample
				Pht- Concl.	1 water 14 7,2 2,33 hs - 0.4 mg/	lim	,	d harge	-		ā Ī	
			5	remp. ovip- Heu	-12.5 25 clspuce - 5	4.0	ppm	86	- - - - - - - - - - - - - - - - - - -	GWI	012	* 09
	NA	WY	WA	Prill Grow	to 12	fo C	other 150	SAMple		240	54.0	
-		, ,	(PH. Corcl.	10 12 de enterper 7.9 3.74 visken 4.9 20.0 Drill to20	y Reac ORP Here	lings: = 52 Spale - J	· ~	328103	5-GW	ر 10	060
	-			Low	Encl of	Buc	ery poor	Pedhange		23		
				Bot	tomotboni	$\frac{1}{2}$	51.865					
							•		7			
	MAC 511 Congre	ss Steet					·		JR 5	1,210		

					SOIL E	BORING	G LOG						
Project	Dine	bug	Oi	stri6	uting		Boring/We	II No. 7- ว	Pr	oject N	10. つと り	107	
Client	NY5,)BC		Site	Dina bur	& Dis	tributing	Sheet No.		1	of	ì	<u> </u>
Logge	^{ву} ћ ,	Louis	b~	Groun Est 5	nd Elevation	Sta	art Date 5/5	lo9 F	inish	Date	ا محاث	09	
	Contract		y		Driller's Name	Joe 1	Men 2eL	Rig Type	U	-eup	robe	•	
Drilling	Method	Direct	Pust	•	Protection bev	vel	P.I.D. (eV)	Casing S	ize A	M B	Auger	Size WA	,
Soil Dr	illed A	Bock	Drilled ¡ ∕ \ ∕	_	Total Depth	Dept	h to Groundwat んみ	er/Date	Temp	.Piez)Well	Borin 図	9
(;	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)		Sa	ımple De	escription			USCS Group Symbol	Pi Meter G Scan G D		Lab Tests ID Sample
	W.	AN	NA	O	-12					ΝĀ	NA		
7- 6- 8- 10- 12-					nosl	hallow.	sample cull	eded.	_				
18-				PH-	7.7 4.84 -71000 UA	8281	28 ce- 24 pp o3-GW2 01 w Aechey	1909 <	-			24pp	* > *
\lambda	11 F. J. Jan 2011 F. J. J. J. J. J. J. J. J. J. J. J. J. J.	. 10.000.01 1 2 2 2 20 20 20 20 20 20 20 20 20 20 20			m 195	3 20.0 clot		an a fact and and a second as	_				
									_				
	MAC 511 Congre	TEC.	w-2	23	1 mlu-12 K	3vilding				K	L 5/	12/00	3

	SOIL BO	RING LOG				
Project Dina burg	Distributing	Boring/Well よいしろ	No. P	roject No. 了んじ	1082107	
Client NYSOEC	Site Dina bus	Distributings	Sheet No	<u> </u>	<u> </u>	
Logged By M. Lounsburg	Signal Ground Elevation (Simular - Oy)	Start Date Sly(s	ទ Finish	Date 14	lo1	
Drilling Contractor beolegic	Driller's Name	Driller's Name Joe Monzel Rig Type Ge				
Drilling Method Direct. Pus		P.I.D. (eV) 10 %	Casing Size	a JZ AL	iger Size	
Soil Drilled Rock Drilled	Total Depth	Depth to Groundwater	/Date Temy	Pież W	ell Boring	
Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Core Rec./Rqd. % SPT-N (Blows/Ft.)	Samp	ole Description		S	Field Scan (d) (d) (d) (d) (d) (d) (d) (d) (d) (d)	Lab Tests ID Sample
2 - NA NA M	Growelant: Peace for - 7.4 Conel. 1.6) MsCo ture. 71000 DU 60.1 Temp 12.7 Orp-35 Heackpare 32 Ground worth 12	n for row Sanle of Up to Sanle of May be but home	rome - Collecter Ted public R-12- Miyed	NA- N		.09
Botton of hours	Cond. 1.67 ms/c. furn. 71000 Do Lo.1 Temp. 13.3 Orp - 157- Heads pure 26	•	-8103 - GC	13 020	09	æ
MACTEC 511 Congress Steet Portland, ME 04101 PORT2007022w.mac	Sembly Street	Salvatores 5.5'		R	5/12/09	

	3.7				SOIL BO	DHINE							
Projec	ct Div	naburg	On	tribu	losing		Boring/Wel	II No.	P	roject N	No. 1871	37	
Client	11111	BC		Site	Dinabur	Dostor	i buting	Sheet No	o	<u>l</u>	_ of	1	
Logge	∍d By M.	Lour	show	Groun	nd Elevation	Star	rt Date SIN	09	Finish	n Date	5/6/	09	
Drillin	g Contract	or Geo	logic		Driller's Name Jue Menzel Rig Type			е	Ceop	onb	Q		
Drillin	g Method	Di reat	Push		Protection Level P.I.D. (eV) Casi			Casing	Casing Size 22			Size	
Soil D	orilled ≫ <i>₩₩₩</i>	Picci	Drilled WA		Total Depth Depth to Groundwater/Date			Ter	Teup Piez Well Boring			3	
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)		Sam	iple De	scription			USCS Group Symbol	Pl Meter Scan G So		Lab Tests ID Sample
ر ا	MA	WA	NA							MA	NA		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				Groun	8-12 K			~20~	- - -				
18- 18-				Turn.	- hyd ms/c - > 100c - > 0.1	k Shelle	terekperen	1 .	n 828 	103-	@ GU4	0.5 ppm	
				~ U 10									
#	MAC 511 Congre Portland, M								H	2 m	5/12/	94	

			SOIL BO	RING	LOG					
Project Div	in burg	Distri	buteng		Boring/Well	No.	Project I	No.	ゔ゚゚゚゙゚゙	
Client NYS)BC	Site	<i>i</i> /\ ~ 1	postr	chu dana	Sheet No.	l	_ of	ſ	
Logged By \bigwedge ,	Louis bu	Grou Ests	Ind Elevation for 40) Start	Date 5/4/	log Fini	ish Date 5/4/6	<u>ر</u> اج		
Drilling Contract					lenze 1	Rig Type		orch.	بع	
Drilling Method			Protection Level P.I.D. (eV) Casing S			Casing Siz				
Soil Drilled	Deals Dail		Total Depth		to Groundwate	r/Date	eup Piez		Boring	
Sample No. & Penetration/	SPT Blows/6" or Core Rec./Rqd. % SPT-N	(Blows/Ft.)	Samp		ecription		Group Symbol	PI Meter Field Scan d		Lab Tests ID Sample
d — NA	Me N	Concl ipo-	uclusta Devel 7.8 1. 1.32 ms/c NA- Very K p-20- Sun	} }	8-12 ¹	828103	MA -GWS	NA-	oc ₁	*
8 -		Ory	1-24 ls paie-1,2 4 Slow Devel	ze havzi	r rate					
2		Cond.	1.61 ms/cm	Orp	17-19- 125 Space 1,0 woel Dec	,	338103-	GWS	019	09
),			Ba) h = 6	10'B65					
				· }	. \ (1	1				
MAC	TEC		SITE SIDEWALK		Jou-5		,			
511 Congres Portland, ME		. 	< Benton	Street	<i>→</i>		Ж	25	12/09	7

						SOIL BO	DRING	LOG		N.				A j
Projec	<u> </u>	14	birg		oosta	bu tang		Boring/W	ell No.		Project	No. 38 21	ره)	
Client	1145	NEC				Dina burg		nsu hund	Shee	t No	l	_ of	1	
	ed By M	Lou	nih	× _	Groun Est 3	nd Elevation	Sta	rt Date 5/5	109	Finis	h Date	5/3	5109	
Drillin	g Contract	or (Polo	vi.		Driller's Name	Toe	Menze	/ Rig	Гуре	bea	prel	ع	
Drillin	g Method	Dir	eit	ρ_{\cdot}	rs H	Protection Level		P.I.D. (eV)	Casi	ng Size	1	Auge	r Size	
Soil D	rilled 20	(A)	ock Di	rilled /A		Total Depth	Depth	to Groundwa	ter/Date		ŽuβPięz)Well	Boring	g
	& n/ set)	9	3. %								jo	Moni (pp	toring	
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6"	Core Rec./Rqd. %	(Blows/Ft.)		Sam	ıple De	scription			USCS Group Symbol		ace	Lab Tests ID Sample
Dept	Samp Pene Recov	SPT	ore Re	5 eg				•			Group	Pl Meter Field Scan	PI Meter Head Space	Lab ID S
	NA	N/V		r A-								교뿐	교육	
2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10.46	/ •		1	8-12	Dr	>			- -			
\Y	• •													
<u></u>														
<u> </u>						,								
	·													
10-						•		. '		,				
\7			1.		Growe	dusto Rea	dina	10	106				·	
Y					PH-	701 . 120 m3/cn	3		7 m/V	•	1	-		
16					Tury.	71000	14	eulspie 3	2				3,2	, XÈ
18				,		13.3°C	EXCE	Heat Rec	han e	82	103-	GWG	०१५०	G 1
D						mothering							ļ,	
	<u>.</u>				- 50									
-											-			
						6w-6	<u>.</u>	<u> </u>			1			
						15.5'	* Mw	-105						
	1,11	TE	\mathcal{C}			mw-101C		K						
	511 Congre Portland, M	€ 04101					•	<u> </u>						·- <u>-</u> .
PORT2	007022w.ma	0			+	* 	X }	(* 	- ×	× (·	•			
						51	てで			1				
•			•					1		T				

		SO	IL V	APOR IMPI	LANT SAM	PLING RECORD		Boring ID:
Proje	ect No.:	3612082107		Project: Din	ubu Oi	Stributing Checked By: TR	5/12/09	SV-1
Clien	t Name	NVSI)FC	Logged Ry. IM	1. Louislom	Protection Level: O		n: Est 513,7 / from mw-0.
		nctor: Gealogic			Drilling Metl	Geoprobe.		nenzel
Insta	llation Da	5 17 log 1101	Sam 5	ple Date/Time: 709 は20	0	Start Time: End Ti	me: Alor Ri	g Type: Gapronne
He B	reakthrou	gh %: WA	,			Initial He %: NY Final H	Ie %: NA Au	iger Size: NA
(a)			g			<u>Overbu</u>	rden Drilling Note	
epth (feet)	_		Graphic Log	G 1177	Vapor Point	Start presse29		olin G-
Deptl	Recovery	Blow Counts	Grapl	Soil Vapor Diagram	Construction Notes	Find- pressur - 3	s tur Enc	7-29
0						MDD-0 Duplica	to Cullectect	3
	MAT	NA					oint Construction	Notes:
	<i>/ • / •</i>	7070				GV16809	6-41	0809D
		,			· .	٠		
-				•		808103-6V10809		v10809D -
					,	Canistat 1555	Canista #	153 2
		`					a a	_
	•					— Direct push of but to expose Nota permane	to 28'B65	hen pull -
						but to expose	e sample aven.	
						Nota permana	ut soll vapors	imple point
	·					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Р	
						/M		·
						/		·
					. /			·
	,				/]	/ Loca	section sidewalk	in transf
_		'				Stati	indo 1017 S.Cli	wton Ave.
						•	•	4
,								_
				******		, 1 , 1 A <	Guldon	
				in in in in in in in in in in in in in i		- Watertevels in oven	≈ 8-10 B65	
	et di a	<u> </u>	L	///// ///// //////				

MACTEC

FIGURE 4-11 SOIL VAPOR SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN

511 Congress Street, Portland, Maine 04101

	SOIL VAPOR IMPLANT SAMPLING RECORD Boring ID:											
Pro	ject No.: 3	1612082167		Project: QIA	abur k	VV (mozut Checked B	iy: TR 5/12/09	SV-2				
	nt Name:		DEC			Protection Level:		vation: EST 573.3 (From MW-0				
Dril	ling Contra	actor: (Feologic	NY		Drilling Metl	hod: Geoprabe		's Name: MenzeL				
Inst	allation Da	te/Time:	Sam	ple Date/Time: 5 (409 124		Start Time:	End Time: 1245	Rig Type: Geogrape.				
	Breakthrou		IA	JUN 124	15	Initial He %: WA	Final He %: WA	Auger Size: NA				
]	,,					Overburden Drilling I					
eet)	i 		Log			do not head	to do Wown	Test				
Oepth (feet)	Recovery	Blow Counts	Graphic Log	Soil Vapor	Vapor Point Construction	Stert =30	<u> </u>					
Dej			Gra	Diagram	Notes	Fred -3	(n) n	bust stene				
٨							828 163-640207	ris/4 /Per 4				
Ť	M	WA	+				apor Point Construct					
	3.410	///					1435	_				
							(((() () () () () () () () (· -				
-						- MA	•					
								_				
							•	=				
					:	O. T. D. Ous	a +n≈ 7'B65	Theopulladhuch - Nota permanat -				
						- Diver bus	and a coned	Nota remainent]				
						40 CX3000	semple of					
						Suple po	100.	` -				
					• /	411		7				
					j	,	nteil on south si	le of Benton]				
	-	•				stree	+ between builder	y and sidewalk _				
		·				46' F	our corner of bruld	ing next to MW-12K				
						,		γ - : _				
					/ / /]				
\dashv						·		· 4				
								-				
					/							
		•	·			- :	•]				
_						: A	. ^ -	1000				
_		-		124444 124444 144444		- Waterteville 1	in area × 8-10	1565				
				<u> </u>				·				
:All		7	~ ~		· —			FIGURE 4.44				

SOIL VAPOR SAMPLING RECORD

NYSDEC QUALITY ASSURANCE PROJECT PLAN

`

511 Congress Street, Portland, Maine 04101

			SOIL	VAPOR IMP	LANT SAM	IPLING R	RECORD			Boring ID:
Proi	ect No.: 3	6nos no)	Project: Dir	abuse lista	والاردامة	Checked B	y: OR \$\$12109		SV-3
	nt Name:			C Logged By:	, Louisyour	Protection	Level: D		evation	n: <i>Est 5</i> 73.0(from MW-125)
	ling Contra	V-60 II	SICN	4	Drilling Met			Drille	r's Na	me: e12e (_
		te/Time:		ample Date/Time	1030	Start Time	1050	End Time: 1110	Riş	Type: Geopoly
He I	Breakthrou	gh %: 😛	21%			Initial He	%: 100	Final He %: 60	Au	ger Size: WA
Depth (feet)	Recovery	Blow Coun	ts	Soil Vapor Diagram	Vapor Point Construction Notes	ì	- Collat	Dverburden Drilling Brook through lon clebet 21° Strile = 82816	3-6	iv30769
	MA	MA					•	apor Point Construc		
						M		lebing Preshe Bucky Preisn Counster # 1432		3 -
								Chimist - 1 196	•	
						- Dv	red pur	hto 6.8' BGS Leanu. Not C	sher	pullbulito
						Sa	uple poi	W.		
						NA	the s	ded in grass lecture street 15' northeast v MW-12K.	en th From	e siderable and - a corner of building - -
									• .	- -
1 500						NA			to some of	
				\$100,000 \$100,000 \$100,000 \$100,000 \$100,000		-6.9 =	BoHom	of SA MP -10'065 in are		
<u></u>	10 12					Wate	rlevels 8	-10'865 in are	4-	
		7								

MACTEC

FIGURE 4-11 SOIL VAPOR SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN

511 Congress Street, Portland, Maine 04101

	PLING RECORD Boring ID:					
	ect No.:	14 NO 82 67 NYSE	EC			Protection Level: D Ground Elevation: UNKNOWN
Dril	hod: Core I how Concrete J. Raw Cliffe					
Inst	allation Dat	te/Time: 109 1609	Sam	ple Date/Time:	1630	Start Time: End Time: 1630 Rig Type:
He I	Breakthrou			31 1601	, 0,00	Initial He %: WA. Final He %: WA Auger Size: J. A.
Depth (feet)	Recovery	Blow Counts	Graphic Log	Soil Vapor Diagram	Vapor Point Construction Notes	Overburden Drilling Notes: Star flore - 30 and pressure - 3 Valley posses a cos makes of laster
\vdash	M	NA				Soil Vapor Point Construction Notes:
						Sample Collected Insuite building -
						828103-GV40109 -
		·				Cannictor # 1445
	·					Orilled through concrete slab in side
						MA building horsing Mach Tak Compress -
	,				* •	Attempted to measure vacuuse beneath -
	·					No Slad using margreladic gauge. No Read a possible vaccure of . 005 miles of a water but due to sensitivity of moder - this may have been a flatse reading clue -
	Ĺ	.*				to operation error.
						NA Machitah
						SV-45
		·				NA 15.5 - 121 WAR - 7
						MA \$ ID IT MPE-4
	511 Cong	MAC				FIGURE 4-11 SOIL VAPOR SAMPLING RECORD NYSDEC QUALITY ASSURANCE PROJECT PLAN

FIELD D	ATA REC	ORD - LO	W FLOW	GROUNDW	ATER S	AMPLING	•	. J	OB NUMBER	R 3612082107-	
PROJECT N	IYSDEC Dinat	urg Ditributing		FIELD SAM	PLE NUMBER	< 82816	36PW6	1309			
SITE ID		PW-01	1/11/2	_	SITE TYPE	E WELL	e f		DATE	5-25-0	<u> </u>
		O ENI		SAMPLE TI	ME	19	<u>00, </u>				
WATER LEV		ETTINGS	TOP	REMENT POINT OF WELL RISER		PROTECTIVE	KUP C	<u></u> D	ASING / WE IFFER.	0.75	FT
INITIAL DEPTI		-,41	FT	OF PROTECTIVE	CASING	(FROM GROU	(DNC)	W	/ELL	ſ	
FINAL DEPTI		146	WELL DEPT (TOR)	14.	1 FT	PID AMBIENT AIF		PPM	IAM. /ELL INTER	CDITY:	<u>IN</u>
DRAWDOW:			SCREEN LENGTH		↑ FT	PID WELL MOUTH		PPM		YES NO	N/A
VOLUME	E <u>'</u>	02- h) or x 0.65 {4-ir	GAL	OF DRAWDOWN V		PRESSURE			CASING LOCKED	<u> </u>	
TOTAL VOI	·			TAL VOLUME PUF		TO PUMP			COLLAR		<u> </u>
PURGE	D 6		GAL	tes) x 0.00026 gal/m	nilliliter)	REFILL SETTING			ISCHARGE ETTING		
PURGE DAT	ГА	·		SPECIFIC							
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (mS/cm)	pH (units)	DISS. 02 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS (_ ,
1121	9 mmp	250	13.5	0.822	7.5	4.9	87.2	310	400V)	4 (0 N3)	595
1126	12-15	200	13.0	0.601	7.8	5.8	103.	250	1800		
1135	13.82 Well D	1/5 1/5 m	asting T	0.847 br 90%	reeman	qe av	ed Then	20 ~'	875	•	
1850	8 118	Plé GR	W-01 f	DERIC 1	-	,			875		
1855	11.19.	5/35/	12.3	0.487	7.8	3.8	130	60	3,,		
1905	13.48	, Sarpu.	thme (3)	1.08	7.8	5.1	49.2	40			
1007	jurp aff	-well	dry ag	inh.	•	, ,		,0			
			\ /								
•	-+										
										,	
		<u> </u>					·				
,					•						
	·	\(\(\cdot \)									
		12					,				
		1									
	T DOCUMEN	TATION				1					
TYPE OF GEO	<u>PUMP</u> DPUMP (perista	altic)	TYPE OF TUBIN	<u>IG</u> SITY POLYETHYLE		E OF PUMP M STAINLESS			ZEFLON	ADDER MATERIAL	
	BLADDER		OTHER_			OTHER	nore		OTHER 1	ione	
ANALYTICA	AL PARAMET	ERS		THOD .	PRES	SERVATION !	5 VOLUME	SAMPLE COLLECTE			
Voc				<u>MBER</u> EPA-8260B	_		X 40 ML	COLLECTE			·
Тос				5310B	,	04 / 4 DEG. C	•			<u>,</u>	;
	Fe/ Mang inity/chloride/su	Field Filter		6010B B/SM4500 CI C/300		03 to pH <2 EG. C	500 ml poly 1 Liter poly	=		8.	,
Sulfid	-		##	D/31/14300 CI C/300	•	OC/4 DEG. C	1 Liter poly	=	%	•	
Metha	an/ethane/ethe	ne	RSI	(175	HCI	to pH <2	3 X 40 ML				·
CO2			SM	1500	4 DE	EG. C	2 X 40 ML				ا ر
Othe	er			···········	7.1				· .	(311
NOTES:				. •		LOCATION NakluitCOM	SKETCH	X	* * C	GAV-01	Lang Jan Lang Lang Lang Lang Lang Lang Lang La
1	and the state of t	and the statement of th	Brank	lon Show		1		_		*	
10	10	•		·	11	N		$\overline{}$		*	1111
SIGNATURE					<u> </u>	$\rightarrow \downarrow \rightarrow$	- 	3 -		Jey Jaca	## <i> </i>
LOWFLO	OW.xlsx/Dinab	ırg					de la la la la la la la la la la la la la	Traile		() () \$\frac{1}{5}/22	12609 6 18h

FIELD DATA RECORD - LOW FLOW G	ROUNDWATER SAI	MPLING	JOB NUMBER 36	12082107-
PROJECT NYSDEC Dinaburg Ditributing	FIELD SAMPLE NUMBER	828/306PW02	.01204	
SITE ID GPW -02	SITE TYPE	WELL	DATE 5	25-09
ACTIVITY START 1140 END 1745	SAMPLE TIME	1835		
		ROTECTIVE ASING STICKUP	CASING/WELL DIFFER.	0.2 _{FT}
		ROM GROUND) O		i in
FINAL DEPTH TO WATER SCREEN	FT AI	MBIENT AIR	PPM WELL INTERGRITY:	NO N/A
DRAWDOWN VOLUME 0,03 GAL LENGTH	WUKKOM FT M	OUTH RESSURE	PPM CAP CASING LOCKED	
TOTAL VOI	AL VOLUME PURGED TO	D PUMP EFILL	PSI COLLAR DISCHARGE	
(purge volume (milliliters per minute) x time duration (minutes	s) x 0.00026 gal/milliliter) SI	ETTING	SETTING	
TIME WATER (ft) RATE (ml/m) (deg. c) 1147 DUMP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(mS/cm) (units)	DISS. O2 TURBIDITY (ntu)	REDOX COMM	ients
	0.595 7.9	1.7 251	130	
1203 well Dry: Will wait to	or 90% recharg	ž i		
802 8.04 Dung on again	O MON GPW-E	2		
1830 10.60 200 12.0	0.656 8.1 GDW -02	8.1 854	212	4)
1835 (1.03 Sample that (1.1838 13:13 250 129 0	1.627 S.5	8.1 71000	210 Supl	Time
1839 well Dry agat		. •		
				<u> </u>
				· · · · · · · · · · · · · · · · · · ·
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING	7/05	OF DUMP MATERIAL	TYPE OF BLADDED	MATERIAL
	TY POLYETHYLENE	OF BUMP MATERIAL STAINLESS STEEL OTHER 1000	TYPE OF BLADDER TE-LON OTHER_INCH	
ANALYTICAL PARAMETERS METH		RVATION VOLUME	SAMPLE	
NUME VVOC USEP		<u>FHOD</u> <u>REQUIRED</u> 4 DEG. C 2 X 40 ML	COLLECTED	
TOC SM53		4 / 4 DEG. C 500 ML poly		
Diss. Fe/ Mang Field Filtered USEPA 60	010B HNO3	to pH <2 500 ml poly	. 🔲	
	/SM4500 CI C/300 4 DEG			
Sulfide ##		C/4 DEG. C 1 Liter poly		
Methan/ethane/ethene RSK1		pH <2 3 X 40 ML S. C 2 X 40 ML	·]
Other		. 2 × 40 WIL		ļ
NOTES:		LOCATION SKETCH	P. *	4 11
	don Show	LOCATION SKETEH	N	House Jenstall
Bran	and show	(32)	55 BADTI- Plan	Jenstfalff
SIGNATURE:		SIDEWALK		MACTEC
GIORATORIA.	<u></u>	Bentan S.	heest	111110120

	JVV FLOVV	GROUNDW.	AIER SA	AMPLING	}		OB NUMBI	ER 3612082107	7-
PROJECT NYSDEC Dinaburg Ditributing		FIELD SAM	PLE NUMBER	3281	03mWO	01509			
SITE ID MWT			SITE TYPE	WELL	•		DATE	5-26	-09
ACTIVITY START 1115 EN	0 1255	SAMPLE TI	ме	1235)				
WATER LEVEL / PUMP SETTINGS		EMENT POINT		PROTECTIVE			ASING / W	ELL 0.3	
INITIAL DEPTH 7.43	FT TOP	OF WELL RISER OF PROTECTIVE	CASING	CASING STIC (FROM GROU		O FT	OIFFER.	ربو	FT
FINAL DEPTH 12.43	WELL DEPTH (TOR)	20.1	FT	AMBIENT AIR	:	PPM	DIAM. WELL INTE	RGRITY:	IN
	SCREEN LENGTH GAL	WKVEW		PID WELL MOUTH		РРМ	CAP CASING	YES NO	N/A
(initial - final x 0.16 (2-inch) or x 0.65 (4-inch)	TO TO	OF DRAWDOWN VO OTAL VOLUME PUR OUIS		PRESSURE TO PUMP			LOCKED COLLAR		
PURGED OF A CONTROL (purge volume (milliliters per minute) x tir	GAL me duration (minute	es) x 0.00026 gal/m	nilliliter)	REFILL SETTING			DISCHARG SETTING	E	
PURGE DATA		SPECIFIC				,	,		
DEPTH TO PURGE TIME WATER (ft) RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS	. /
	nw-1	0.281	80	71	92.3	-150	Tu	and sett	~ 15
1130 10.16 200.	13.8	0.281	80 50	3.4	150	-150			
1140 11.95 200.	13.7	0.276	8-0	0.7	134	-150			
1150 12.56 200	13.50	0.324.	7.9	0.6	68.5	-150 -140			
155 12-36 200	13.8	0.676	7.9	5.1	41.5	-120			
1200 12.40 200	13.6	0.711	7.8	4.6	23.9	-120	-	······································	
1210 12 41 200	13.8	0.815	7.8	3.6	16.1	~120 ~120			
1215 12.38 260	13.7	0.846	7-6	3.5	9.8	-120			
1220 12.41 200	13.6	0.845	7.8	3.7	T. ()	- 120			
1230 12.38 200	13.5	0.840	7.8	3.7	7.4	-120	(1011)	Verd 200	re
1235 Sample time	DMW-	010					1	m Airil	
1249 pumport 2	nu -01	•				12-		or purge	200
	14	V. X4n	7.8	3.8	,	- 100.		wol	: Lopar

 	+		 		•				
	<u>)</u>								
	1			-		<u> </u>			
			1 ' '				į.		
EQUIPMENT DOCUMENTATION			<u> </u>	·	· · · · · · · · · · · · · · · · · · ·	<u> </u>	<u> </u>		
TYPE OF PUMP	TYPE OF TUBIN			E OF PUMP M		<u></u>		LADDER MATERIA	AL.
		G Silashc		E OF PUMP M STAINLESS OTHER	STEEL	. 🗀	TEPLON		AL.
TYPE OF PUMP GEOPUMP (peristaltic)	HIGH DENS	SI KShc	NE	STAINLESS OTHER /	STEEL ONE				AL.
TYPE OF PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS	HIGH DENS OTHER MET		NE PRES	STAINLESS	STEEL ONE VOLUME	. 🗀	TEPLON OTHER		AL.
TYPE OF PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS VOC SUlfaite	HIGH DENS OTHER MET NUM USE	THOD MBER TPA-8260B	PRES	OTHER OTHER	VOLUME REQUIRED	SAMPLE	TEPLON OTHER		AL.
TYPE OF PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS	HIGH DENS OTHER MET NUM USE Trafe SM5	HOD MBER 19A-8260B	PRES MHCL	OTHER OTHER	VOLUME REQUIRED 2 X 40 ML 500 ML pol	SAMPLE COLLECTE	TEPLON OTHER		AL.
TYPE OF PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS VOC TOC Diss. Fe/ Mang Field Filter	MET NUM USE SM5	THOD MBER EPA-8260B 6010B	PRES MHCL	STAINLESS OTHER 1/2 SERVATION ETHOD /4 DEG. C 04/4 DEG. C 03 to pH <2	VOLUME REQUIRED 2 X 40 ML 500 ML pol	SAMPLE COLLECTE	TEPLON OTHER		AL.
TYPE OF PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS VOC Toc WHIK, Ci W Diss. Fe/ Mang Field Filter Alkalinity/chloride/sulfate/nitrate	MET NUM USE SM23201	HOD MBER 19A-8260B	PRES MHCL HDC HDC HDC HDC HDC HDC HDC HDC HDC HDC	STAINLESS OTHER 1/2 SERVATION ETHOD / 4 DEG. C 04/4 DEG. C 03 to pH <2 EG. C	VOLUME REQUIRED 2 X 40 ML 500 ML poly 1 Liter poly	SAMPLE COLLECTE	TEPLON OTHER		<u></u>
TYPE OF PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS VOC TOC Diss. Fe/ Mang Alkalinity/chloride/sulfate/nitrate Sulfide	MET NUM USE SM23201	THOD MBER 1310B 6010B B/SM4500 CI C/300	PRES M HCL 472S HNCC 2 A DE ZnAr	SERVATION ETHOD / 4 DEG. C 04 / 4 DEG. C 03 to pH <2 EG. C 00C/4 DEG. C	VOLUME REQUIRED 2 X 40 ML 500 ML poly 1 Liter poly 1 Liter poly	SAMPLE COLLECTE	TEPLON OTHER		AL.
TYPE F PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS VOC FOC WHILL OF M Diss. Fe/ Mang Field Filter Malkalinity/chloride/sulfate/nitrate Sulfide Methan/ethane/ethene	MET NUM USE SM52200 ## RSK	THOD MBER 19A-8260B 19310B 19610B 19610B 1975	PRES M HCL 1728 HNC 2 A DE ZnAC HCI	STAINLESS OTHER 100 ETHOD 74 DEG. C 04/4 DEG. C 03 to pH <2 EG. C 0C/4 DEG. C to pH <2	VOLUME REQUIRED 2 X 40 ML 500 ml poly 1 Liter poly 3 X 40 ML	SAMPLE COLLECTE	TEPLON OTHER		440
TYPE F PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS VOC Foc Field Filter Alkalinity/chloride/sulfate/nitrate Sulfide Wethan/ethane/ethene CO2	MET NUM USE SM23201	THOD MBER 19A-8260B 19310B 19610B 19610B 1975	PRES M HCL 1728 HNC 2 A DE ZnAC HCI	SERVATION ETHOD / 4 DEG. C 04 / 4 DEG. C 03 to pH <2 EG. C 00C/4 DEG. C	VOLUME REQUIRED 2 X 40 ML 500 ML poly 1 Liter poly 1 Liter poly	SAMPLE COLLECTE	TEPLON OTHER		AL
TYPE F PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS VOC VTOC VTOC VTOC VTOC VTOC VTOC VTOC	MET NUM USE SM23200 ## RSK SM4	THOD MBER 100 CI C/30	PRES MHCL 42S HNC ZnAH HCI 4 DE	STAINLESS OTHER 100 ETHOD 74 DEG. C 04/4 DEG. C 03 to pH <2 EG. C 0C/4 DEG. C to pH <2	VOLUME REQUIRED 2 X 40 ML 500 ml poly 1 Liter poly 3 X 40 ML	SAMPLE COLLECTE	TEPLON OTHER		AL AL
TYPE F PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS VOC VTOC VTOC VTOC Alkalinity/chloride/sulfate/nitrate Sulfide Methan/ethane/ethene VCO2 Other	MET NUM USE SM23200 ## RSK SM4	THOD MBER 100 CI C/30	PRES MHCL 42S HNC ZnAH HCI 4 DE	SERVATION ETHOD / 4 DEG. C O4 / 4 DEG. C O3 to pH <2 EG. C OC/4 DEG. C to pH <2 EG. C	VOLUME REQUIRED 2 X 40 ML 500 ML poly 1 Liter poly 3 X 40 ML 2 X 40 ML	SAMPLE COLLECTE COLLECTE	OTHER D		AL SI
TYPE F PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS VOC VTOC VTOC VTOC Alkalinity/chloride/sulfate/nitrate Sulfide Methan/ethane/ethene VCO2 Other	MET NUM USE SM23200 ## RSK SM4	THOD MBER 100 CI C/30	PRES MHCL 42S HNC ZnAH HCI 4 DE	STAINLESS OTHER OT	VOLUME REQUIRED 2 X 40 ML 500 ML poly 1 Liter poly 3 X 40 ML 2 X 40 ML	SAMPLE COLLECTE COLLECTE	OTHER D		AL 31
TYPE F PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS VOC VTOC VTOC VTOC Alkalinity/chloride/sulfate/nitrate Sulfide Methan/ethane/ethene VCO2 Other	MET NUM USE SM23200 ## RSK SM4	THOD MBER 100 CI C/30	PRES MHCL 42S HNC ZnAH HCI 4 DE	SERVATION ETHOD / 4 DEG. C O4 / 4 DEG. C O3 to pH <2 EG. C OC/4 DEG. C to pH <2 EG. C	VOLUME REQUIRED 2 X 40 ML 500 ML poly 1 Liter poly 3 X 40 ML 2 X 40 ML	SAMPLE COLLECTE COLLE	OTHER D		AL AL
TYPE F PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS VOC VTOC VTOC VTOC VTOC VTOC VTOC VTOC	MET NUM USE SM23200 ## RSK SM4	THOD MBER 100 CI C/30	PRES MHCL 42S HNC ZnAH HCI 4 DE	STAINLESS OTHER OT	VOLUME REQUIRED 2 X 40 ML 500 ML poly 1 Liter poly 3 X 40 ML 2 X 40 ML	SAMPLE COLLECTE COLLECTE	OTHER D		AL SI
TYPE F PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS VOC VTOC VTOC VTOC Alkalinity/chloride/sulfate/nitrate Sulfide Methan/ethane/ethene VCO2 Other	MET NUM USE SM23201 ## RSK SM4 Tas blace H fuel On pure	THOD ABER 19A-8260B 1310B 16010B 15000 175 1500 1-like odo 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500	PRES M HCL HDS TANK HCL 4 DE 2	STAINLESS OTHER OT	VOLUME REQUIRED 2 X 40 ML 500 ML poly 1 Liter poly 3 X 40 ML 2 X 40 ML SKETCH	SAMPLE COLLECTE COLLE	D OTHER		AL
TYPE F PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS VOC VTOC VTOC VTOC VTOC VTOC VTOC VTOC	MET NUM USE SM23201 ## RSK SM4 Tas blace H fuel On pure	THOD MBER 100 CI C/30	PRES M HCL HDS TANK HCL 4 DE 2	STAINLESS OTHER OT	VOLUME REQUIRED 2 X 40 ML 500 ML poly 1 Liter poly 3 X 40 ML 2 X 40 ML SKETCH	SAMPLE COLLECTE COLLE	D OTHER		AL AL
TYPE F PUMP GEOPUMP (peristaltic) QED BLADDER ANALYTICAL PARAMETERS VOC VTOC VTOC VTOC VTOC VAlkalinity/chloride/sulfate/nitrate Sulfide VMethan/ethane/ethene VCO2 Other	MET NUM USE SM23201 ## RSK SM4 Tas blace H fuel On pure	THOD ABER 19A-8260B 1310B 16010B 15000 175 1500 1-like odo 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500	PRES M HCL HDS TANK HCL 4 DE 2	STAINLESS OTHER OT	VOLUME REQUIRED 2 X 40 ML 500 ML poly 1 Liter poly 3 X 40 ML 2 X 40 ML SKETCH	SAMPLE COLLECTE COLLECTE	D OTHER	Jeny Ru	AL SI

FIELD I	DATA REC	CORD - LO	OW FLOW	GROUNDW	ATER S	AMPLING	3	, JO	B NUMBER	3612082107-	
PROJECT	NYSDEC Dinat	ourg Ditributing		FIELD SAM	PLE NUMBEI	R 828	103MW2	TACOR	I _	_ ,	
SITE ID	WW	-01A			SITE TYPE	E WEL	L		DATE	5-26-0	79
ACTIVITY	START 120	55 EN	0 1555	SAMPLE TI	ME	1545					
WATER LE	EVEL / PUMP S	SETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE	CKIID T		SING / WELL FFER.	6.1	FT
INITIAL DEF TO WAT	1 1	5.92		P OF PROTECTIVE	CASING	(FROM GRO		<i>O</i> FT w	ELL AM.	<u> </u>	IN
FINAL DEF		1.3	(TOR) FT SCREE	/.5	FT	AMBIENT AIR	R L	PPM	ELL INTERG	RITY:	N/A
DRAWDO'	ME	<u> </u>	LENGTH			MOUTH PRESSURE		c	CAP 1 ASING 1		
TOTAL V		1		DTAL VOLUME PUR		TO PUMP		PSI C	OLLAR SCHARGE		
				tes) x 0.00026 gal/m	nilfiliter)	SETTING			TTING		
PURGE DA	ATA DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP.	SPECIFIC CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	.,,	COMMENTS	
125 V	pump	8~ C	11- mm		7,5	4.7	0/2		Jubi	ng O-	7
1301	6.45	~150°	17.3	0.35/	45	3.0	78.6	-100.			
1311	G. 71	150	17.2	0416	76	3.7	476	-120			
1316	6.76	150	97.3	0.435	7.7	3.7	35.0	-130	3750		
134 1	7.15	200	15.9	0.465	7.7	4.0	17.8	-130	thoca	sed hun	70
1328	₹7.3	200	16.1	0.515	7.7	2.1	11.3	-140	vate	to Zww	
1329	Well Di	y j was	+ for	90% reev	arge				1 out 6	Na an	- X
540	6.12 Dumo a	San	le time						0000	o wter:	39 pp
550	oump o	4.561		OA; port	not	il pla	the.		4 /	~~··	
ļ	 '			,,		ļ			 · 		
									· 	·	
			<u> </u>								
						<u> </u>	<u> </u>	 	ļ		
											
			1			<u> </u>	ļ		<u> </u>		
							<u> </u>		-		
	NT DOCUMEN OF PUMP	ITATION	TYPE OF TUBI	NG.	TYP	E OF PUMP M	AATERIAI	TY	PF OF BLAD	DER MATERIAL	
	EOPUMP (perist	altic)	\rightarrow	SITY POLYETHYLE		STAINLESS	STEEL	Т	EFLON ,		
	D BLADDER		OTHER _	1 145776		OTHER	none		THER 12)NC	
ANALYTIC	CAL PARAMET	TERS	ME	THOD	PRES	SERVATION	VOLUME	SAMPLE	•	•	1
		SULTER		MBER	_	IETHOD		COLLECTED			
	عالم أبده	SULLAN	itatesm	EPA-8260B		./4 DEG. C	2 X 40 ML 5 00 ML po				
	S. Fe/ Maño	Field Filter				04	500 ml pol دور 500 ml pol	· . =/		- not colleu	Hell.
	is. re/ wang :alinity/chloride/si	,		0B/SM4500 CI C/300		EG. C	1 Liter poly	· =,	-	not collecte	,
30	-	unate/filtrate.	##		,	OC/4 DEG. C	1 Liter poly		<0	not collecte	ويل إ
1 = /	than/ethane/ethe	ene		K175		to pH <2	3 X 40 ML	· ==/		•	
17/00				4500		EG. C	2 X 40 ML	=/	•	~ ^4	1
==	ther		J	-					Je	un Paul II	Ko 6/8/104
						- 1		_		<u> </u>	
NOTES:						LOCATION	SKETCH .		[4]	4	^
						1 . 1	SKETCH NW 15 WW	MUNA		-	
	••		•	•		the	* * *	<i>\</i> v	[N]	*	
	•		,			1 1	•			k x	.
		77	Francion	Shaul		12					<u> </u>
1			, anaum			Huitan	1 Salves	ton's Piz	zer	4	¢
						121:				14	
SIGNATU						(' '	11			MACT	IEC

FIELD I	DATA REC	CORD - LC	W FLOW	GROUNDW	ATER S	AMPLING	}	JO	B NUMBER 36	12082107-
PROJECT	NYSDEC Dinat	ourg Ditributing		FIELD SAM	PLE NUMBE	R 82810	3MW03E	1009		
SITE ID	hw				SITE TYP				DATE 5	26 -09
	START 1	2)() ENI	172x	SAMPLE TI			٥٥.			
	EVEL / PUMP S			REMENT POINT		PROTECTIVE		CA	SING / WELL	
INITIAL DEF			TOF	OF WELL RISER OF PROTECTIVE	CASING	CASING STIC			FER.	0.4 _{FT}
TO WAT		7,34.	FT			PID	, ,	WE	ELL	3
FINAL DEF		,63	WELL DEPT (TOR)	14.	5 FT	AMBIENT AIR	,	PPM	AM:	IN
TO WAT	TER	<i>(0,5</i>	FT SCREEN			PID WELL		W	ELL INTERGRITY: YES	-NO N/A
DRAWDO VOLU	1 7 1	21 6	LENGTH	y in thour	FT	MOUTH			CAP ASING	·
		ch) or x 0.65 {4-in	ich}) RATIO (OF DRAWDOWN VO		PRESSURE		LC	OCKED	
TOTAL V		2.4		TAL VOLUME PUR	GED	TO PUMP			OLLAR	
PURO (purge v		`	BAL ne duration (minut	es) x 0.00026 gal/m	illiliter)	REFILL SETTING	-		SCHARGE TTING	
PURGE DA	ATA			SPECIFIC .	-					
TIME_	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	s COM	MENTS /
1615	rump	5	(459.57						tubing	Conh
1620	7.75	200	13.2	0.678	8:1	3.6	7.3 7.6	140	1	<u> </u>
1630	8.18	200	12.6	0.631	8.1	3.2	7.3	140		
1635	7.30	200	i2.5	0.649	SQ.	2.2	<u> </u>	140		
1640	0 52 0 52	200	12.5	0.65	8.0	1.4	470	140		
1650	X 28	700	12.5	0.660	FO	1.3	3.2	140		
1655	Statural	700.	12.4 6 MW	1)3	70	1.3	4.9	190		· · · · · · · · · · · · · · · · · · ·
1716	Samo	in off	E /VIW	-05		<u> </u>		42		
•	1	8 !	12	1.664	8.0		_5	140	,	
	 					,		•	,	
	\					1				
		\								
		12			•					
		1		· · · · · · · · · · · · · · · · · · ·						
		10								
	<u> </u>	 				1				
		\		i						
	NT DOCUMEN	ITATION								
	F PUMP EOPUMP (perista	altic)	TYPE OF TUBIN	<u>G</u> VITY POLYETHYLEI		PE OF PUMP M STAINLESS		, [T] TI	PE OF BLADDER EFLON	
. =	D BLADDER		OTHER_	i lastic			rone		THER NOV	<u> </u>
ANALYTIC	CAL PARAMET	TERS	MET	HOD	PRF	SERVATION	VOLUME	SAMPLE		
	_		NUM	<u>IBER</u>	1	METHOD	REQUIRED	COLLECTED		
V		CI-/NA	vile one	:PA-8260B :310B		L / 4 DEG. C SO4 / 4 DEG. C	2 X 40 ML		-	·
	s. Fe/ Mang	Field Filtere				O3 to pH <2	500 ML poly 500 ml poly			
	alinity/chloride/s			B/SM4500 CI C/300		EG. C	1 Liter poly			
V Sui	lfide		##		ZnA	AOC/4 DEG. C	1 Liter poly			
Me	than/ethane/ethe	ne	RSK	(175	нс	i to pH <2	3 X 40 ML			
Co)2		SM4	500	4 D	EG. C	2 X 40 ML			}
	her						•			Meurs .
	. 1 11	~ i i O M		1 to be Oline						W(10.Q(17V)
NOTES:	Wells were	Mislanted	- conerte	d tabelling 32.7/TOR well dept		LOCATION	SKETCH	l		z mily
based	on well	coprus	MW-3C	327 TOK	e l	(1)	14			6/8/09
			Λ.	and any	•	/ ĵ. l	الم الم الم	6 mm-	3C	
			Brand	en Shaw			e wh	1		*
_						11/1	1967	17 - mm-3		į.
			/	•		البر	K	*	X-X-	~×
SIGINATED	14				1					MACTEC

FIELD	DATA RE	CORD - LO	OW FLOW	GROUNDW	ATER S	AMPLIN	G	, J	OB NUMBER	3612082107-	
PROJECT	NYSDEC Dina	burg Ditributing		FIELD SAN	IPLE NUMBE	R \$28103	-mw0302	2809			
SITE ID	MW-	<u>3C</u>			SITE TYP	PE WEL	L		DATE	5/26/09	
ACTIVITY	START 15	5つ EN	D 1740	SAMPLE T	IME	1715				, ,	
WATER LI	EVEL / PUMP	SETTINGS		REMENT POINT P OF WELL RISER		PROTECTIVE			ASING / WELL	0.35	
INITIAL DE	TER 13	.57	FT TO	P OF PROTECTIVE		(FROM GRO) FT V	VELL	2=	FI
FINAL DEI		.32	WELL DEP	J2. 1	FT	PID AMBIENT AIR	₹	PPM	DIAM VELL INTERGI	RITY:	IN
DRAWDO VOLU	ME		SCREE LENGTI	H <u>l O</u>	FT	PID WELL MOUTH		PPM	CAP Z CASING Z	S NO N	N/A
TOTAL V	/OL. [ch) or x 0.65 (4-i		OF DRAWDOWN V OTAL VOLUME PUI OG		PRESSURE TO PUMP			COLLAR		_
PURO (purge v			GAL Land Land Land Land Land Land Land Lan	ites) x 0.00026 gal/n	nilliliter)	REFILL SETTING	NA		ISCHARGE ETTING	NA	
PURGE DA	ATA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	l	l piec oa	l TUDDUDUD	l penov	1		
TIME	WATER (ft)	RATE (ml/m)	(deg. c)	(mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS	
1610	14.08	5000 p	13.6	1.86	7.1	0.2	7/000	~47	6 stan	it won flock	
1630	14.23	130	12.7	1.84	7.1	0.5	100	-25	Cleved	at How there	U.
1635	14.26	130	12.7	1.83	7.1	400	520	-32			
1640	14.29	130	12.6	1.83	7.1	20.1	230 31	<u>-27</u> ~14	Cheme	of out How the	(cel/
1650	14.29		12.6	1.84	7.1	0.2	14	-15	1		
1655	14.31	130	12.5	1.84	7-1,	eu. 1	12	-18-			
1700	14.31	130	12.4	1.84	7.1	20.	13	-21	 -		
1703	1 (() ==	()0	100	0.5	7.7	20.1	1.5	-23			
			12	1.84	7.1	20.1	13	120			
						 					
						 			 -		
<u> </u>			·								
 				<u> </u>	,				+	• .	
	 			· · · · · · · · · · · · · · · · · · ·							
						ļ <u>.</u>					
					-						
	NT BOOLINE				L						
	NT DOCUMEN OF PUMP	TATION	TYPE OF TUBIN	1G	TYP	E OF PUMP M	ΔΤΕΡΙΔΙ	T\	/DE OE BLADE	DER MATERIAL	
	EOPUMP (perista	altic)	HIGH DEN	 SITY POLYETHYLEI		STAINLESS			EFLON	ZEIN MATERIAL	
	D BLADDER		OTHER _	ulasti E	_ X	OTHER 1	rene		OTHER IMOU	<u> </u>	
ANALYTIC	CAL PARAMET	ERS	MET	THOD	PRES	SERVATION	VOLUME	SAMPLE			
[A]	_		NUM	<u>MBER</u>	<u>M</u>	ETHOD	REQUIRED	COLLECTED	<u>!</u>		
✓ vo				EPA-8260B		/ 4 DEG. C	2 X 40 ML		". 0 ALL 1	61 / 111 C	
		F:-14 F91		5310B		04 74 DEG C	5 00 ML po ly	<u> </u>	notice 144 K/C	Chlor/sulphelmo	W
, ==	s. Fe/ Mang	Field Filtere				03 to pH <2	500 ml poly				
A Suit	alinity/chloride/su	inate/nitrate		B/SM4500 CI C/300	•	EG. C	1 Liter poly				
	ilide than/ethane/ether		##	/17E		OC/4 DEG. C	1 Liter poly				
I Co		ie .	SM4	(175		to pH <2 EG. C	3 X 40 ML 2 X 40 ML		•		
		•	SIVI	,500	4 00	.G. C	2 × 40 WL				
									<u> </u>		
NOTES: (vells are	mis(abl	led =/11/04		1	LOCATION	SKETCH		t	*	
l	/BA	-5 66	-/11/09	Í	 	trailer	D mu	_3C	7		
	\	0	Dyn			4	D mu	nite	+		
SIGNATUR	E: X+CUX	Nauv	$\forall \forall$						e d	MACTEC	
LOWF	LOW.xlsx/Dinabl	ırg	V							5/22/200)9

FIELD DATA RECORD - LOW FLOW G	ROUNDWATER SAMPLING		R 3612082107-
PROJECT NYSDEC Dinaburg Ditributing	FIELD SAMPLE NUMBER 128	130 MW 54016 09	
SITE ID MW-04	SITE TYPE WEL	DATE	5-25-09
ACTIVITY START 1550 END 1655	SAMPLE TIME	5	
	MENT POINT PROTECTIVE CASING STICE	NI ID	LL 0.4 FT
	OF PROTECTIVE CASING (FROM GRO		2 IN
FINAL DEPTH TO WATER D. 0 7 FT SCREEN	Z3 / FT AMBIENT AIR	R PPM WELL INTER	
DRAWDOWN VOLUME ,93 GAL LENGTH	DRAWDOWN VOLUME PRESSURE	PPM CAP CASING LOCKED	
то тот	AL VOLUME PURGED TO PUMP	PSI COLLAR	
PURGED GAL (purge volume (milliliters per minute) x time duration (minute)	x 0.00026 gal/milliliter) REFILL SETTING	DISCHARGE SETTING	
PURGE DATA DEPTH TO PURGE TEMP. C	SPECIFIC CONDUCTANCE pH DISS. 02	TURBIDITY REDOX	
TIME WATER (ft) RATE (ml/m) (deg. c)	(mS/cm) (units) (mg/L)	(ntu) (mv)	COMMENTS
1850 0000 000 00 NW-04	0-819 7.8 3.1	455, 150 Pun	g (18 - 29)
1557 10.07 300 13.0	9.811, 7.7 0.9	218 140	
1667 10.07 300 13.1	0.836 7.7 0.4	201 120	
1612 10 07 300 13.2	0.899 76 01	145 110	
1617 10.07 300. 13.2	0.914 7.7 0.1	100 1 90	
1627 1007 300 13.3	0.938 76 201	80.6 80	
1632 10.67 300 13.4	0.971 76 401	71.2 60	
1637 16.17 380 13.5	0.980 7.6 (3.1	62.3 50	
1642 10.07 300 13.5	0,991 7.6 6.1	57.3 50 54.9 40.	
1655 Dup of Anno			
1 14	0944 76 20.1	55 40.	
	0,992 1.6 2011	 33 40 	· · · · · · · · · · · · · · · · · · ·
	:		
EQUIPMENT DOCUMENTATION			
TYPE OF PUMP GEOPUMP (peristaltic) TYPE OF TUBING TYPE OF TUBING	TYPE OF PUMP IN TYPOLYETHYLENE TAINLESS		ADDER MATERIAL
QED BLADDER OTHER ST	145th VOTHER 1		race
ANALYTICAL PARAMETERS	IOD DESCRIVATION	VOLUME SAMPLE	
METH NUMB		REQUIRED COLLECTED	
	A-8260B HCL / 4 DEG. C	2 X 40 ML	
	·		
V Diss. Fe/ Mang Field Filtered USEPA 6		500 ml poly	
	/SM4500 CI C/300 4 DEG. C	1 Liter poly	
Y Sulfide ##	ZnAOC/4 DEG. C	1 Liter poly	
Methan/ethane/ethene RSK1	•	3 X 40 ML	
Other	+ DEG. 0	· ·	
	0 / 1		
NOTES: SOWE Orange-flock' IN	purge vater location	I SKETCH	
	P. A. Class	Benton Soreet	
	Brandon Shaw 35 F		Jerny willy
SIGNATURE:			L/8/04 MACTEC

FIELD DATA RECORD - LC	W FLOW	GROUNDW	ATER S	-			B NUMBER	3612082107-
PROJECT NYSDEC Dinaburg Ditributing	****	FIELD SAM	PLE NUMBER	· 1281	3MW05	01809	_	
SITE ID W-05			SITE TYPE	WELL			DATE	5-25-09
ACTIVITY START 1215 END	1345	SAMPLE TI	ме	•	<u> /330 </u>			
WATER LEVEL / PUMP SETTINGS		EMENT POINT OF WELL RISER		PROTECTIVE CASING STIC			SING / WELI FFER.	1 0.3 FT
INITIAL DEPTH 10.17	FT	OF PROTECTIVE	CASING	(FROM GROU	JND) C.	WI	ELL [
FINAL DEPTH	WELL DEPTH	22.7	FT	PID AMBIENT AIR	·	PPM	AM. [IN IN
	SCREEN	ila kua at	\ <u>\</u>	PID WELL				RITY: ES NO N/A
	LENGTH		-	MOUTH		c	CAP ASING	¥
(initial - final x 0.16 (2-inch) or x 0.65 (4-in		F DRAWDOWN VO TAL VOLUME PUR		PRESSURE TO PUMP			OCKED OLLAR	
	SAL	na) v 0 00026 ant/m	illilitor)	REFILL SETTING			SCHARGE	
(purge volume (milliliters per minute) x tim	ie duration (minute	SPECIFIC	illiniter)	SETTING			TTING	
DEPTH TO PURGE TIME WATER (ft) RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS /
1220 Jung on C	nv1 - 05		70	98	10)	190	pomp	
1277 10.22 325	12.	2.69	7.4	2.1	524	200	-	
1237 10.22 325	1.8	2.79	78	2.1	350.2	200		
1242 10.22 325	11.8 12.0	2.60	7.7	1.8	120	200 200		
1252 10.12 325	11.9	2,54	7.7	2.0	161	140		
1257 10.22 325	12.0	2.35	7.6	1.0	126	_ <u>ຂ</u> ∞ 2∩ວ	<u> </u>	
1307 10.22 325	12:1	217	7.5	0.9	874	200		
1312 10.22 325	12-2	2.10	13	0.5	75.9	200		···
1322 10.22 325	12.2	2.09	75	05	70.4	280		
1327 10.22 325 1320 Small the	16.3	2.00	7.5	0.4	68.5	200	 	·
1332 pup of F	-	TI 25/2	7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10	7 00		
	1,5	2.08	1/5	0-4	2 3	<u> 180.</u> −		
					1			
13								
EQUIPMENT DOCUMENTATION		<u></u>		<u> </u>			1	
TYPE OF PUMP	TYPE OF TUBIN			E OF PUMP M				DDER MATERIAL
GEOPUMP (peristaltic) QED BLADDER	MOTHER	TY POLYETHYLE	NE	OTHER	STEEL LEVL		EFLON THER 1/1	one.
ANALYTICAL PARAMETERS	V							•
		HOD IBER		ERVATION ETHOD	VOLUME REQUIRED	SAMPLE COLLECTED		
V voc		PA-8260B		/ 4 DEG. C	2:X 40 ML			
TOC Diss. Fe/ Mang Field Filtere		310B 3010B		O4 / 4 DEG. C)3 to pH <2	500 ML pol	· =		N.
Alkalinity/chloride/sulfate/nitrate		B/SM4500 CI C/300		G. C	1 Liter poly	- =		
Sulfide	##		ZnA	OC/4 DEG. C	1 Liter poly			
Methan/ethane/ethene	RSK			to pH <2	3 X 40 ML			
C02	SM4	500	4 DE	EG. C	2 X 40 ML	님		
Other Other								
NOTES:				LOCATION	SKETCH	1		1/4
		•				Calar	atome	. 1/1, 1
	· ·				1,05 2	Jaiv	atores	_] _
R	ndon Sha	i W		ww		<u> </u>		
OTAI		· • # =			\$ 2			-6/8/04
	<u> </u>			t		Bent	u Str	
SIGNATURE					5/01			MACTED
LOWFLOW.xlsx/Dinaburg				-	ا س			5/22/2009

FIELD DATA RECORD - LOW FLOW G	ROUNDWATER SA		JOB NUMBE	R 3612082107-
PROJECT NYSDEC Dinaburg Ditributing	FIELD SAMPLE NUMBER	8281300MW	0601609	
SITE ID MW-06	SITE TYPE		DATE	5-25-09
ACTIVITY START 1335 END 1545	SAMPLE TIME	<u> 1530.</u>		
		PROTECTIVE CASING STICKUP	CASING / W	ELL 0.5 FT
	OF PROTECTIVE CASING	(FROM GROUND)	WELL DIAM.	2 IN
FINAL DEPTH TO WATER (TOR) SCREEN	17.7 FT	AMBIENT AIR PID WELL	PPM WELL INTE	
DRAWDOWN OLUME 104 GAL LENGTH	MAKNOWN	MOUTH	PPM CAP CASING	
TO TOTAL VOL.	AL VOLUME PURGED	PRESSURE TO PUMP	PSI COLLAR	
PURGED GAL (purge volume (milliliters per minute) x time duration (minutes	-	REFILL SETTING	DISCHARGI SETTING	
PURGE DATA	SPECIFIC	DISS OS TURBURITY	I BEDOY I	
TIME WATER (ft) RATE (ml/m) (deg. c)	CONDUCTANCE pH (mS/cm) (units)	DISS. O2 TURBIDITY (mg/L) (ntu)	REDOX (mv)	COMMENTS
1498 85 275 130	3.40 7.5	5/ 14	1/00 Day	p E ~ 16
1453 8.56 275 12.4.	3.30 7.5	3.9 23.3	130	8
458 8.53 215 12.6	3.30 7.5	2-8 20.9	ilo	
1503 8.54 272 12.3	3.28 7.5	2.5 10.0	30	
1213 674 213/ 124	3.29 7.5	24 98	80	
1518 854 275 124	3.29 7.5	2-3 9-1	80	
1523 8.53, 275/ 12.3	3-29 7.5	2.2 53	80	
1528 8.54 213 12.4	3-29 75	2.0 6.8	1 80.	
1530 Single time (1 nw-0				
15-T) pamp of F (Solvers			7	
	3.24 75	2 7	80.	
				T-W-1
<u> </u>				
			<u> </u>	:
EQUIPMENT DOCUMENTATION TYPE OF TUBING	TYP	E OF PUMP MATERIAL	TYPE OF B	LADDER MATERIAL
	TY POLYETHYLENE	STAINLESS STEEL	TEFTON	
QED BLADDEROTHER	SIASHU	YOTHER <u>N.ON</u>	OTHER_	none
ANALYTICAL PARAMETERS METH	IOD PRES	ERVATION VOLUME	SAMPLE	
NUME NUME NUME			D COLLECTED	
		./4 DEG. C 2 X 40 ML		
Troc - w PHICI Nith C SM53	10B <u>∗H2S</u>	04/4 DEG. C 65 -500 ML po	- L	
Diss. Fe/ Mang Field Filtered USEPA 60	D10B HNC	03 to pH <2 500 ml po	ly 🔄	
Alkalinity/chloride/sulfate/nitrate SM2320B	/SM4500 CI C/300 4 DE	EG. C 1 Liter pol	у 🖳	
Sulfide ##	ZnA	OC/4 DEG. C 1 Liter pol	у	
Methan/ethane/ethene RSK1	75 HCI	to pH <2 3 X 40 ML		
Y CO2 SM45	500 4 DE	EG. C 2 X 40 ML		·
Other		<u>.</u>		
NOTES: DURSE WHEN has "Oro	inge-flock).	LOCATION SKETCH		
Brando	1 12	·	head	mm-00
		Contolive S	1100	SIDEWIK
Roada	, Shaw	2		3/00000
1		ì	ا اا	11
		Restauran	~ \	111
	/- [٠ ١ "٠٠٠	0.10	THAT III
SIGNATURE:		1 1	Jengler	MACTEC MACTEC
LOWFLOW.xlsx/Dinaburg			Gl860	9 5/22/2009

FIELD I	DATA REC	CORD - LO	OW FLOW	GROUNDW	ATER S	AMPLING	3	. JC	B NUMBER 36	12082107-
PROJECT	NYSDEC Dinal	ourg Ditributing		FIELD SAM	IPLE NUMBEI	R 8281	03-MW0	8160170	9	
SITE ID	mw-	814			SITE TYPE				' —	76/09
ACTIVITY	START / 05	ENI	D 1245	SAMPLE T	IME	1220)			
WATER LE	VEL / PUMP S	SETTINGS		REMENT POINT		PROTECTIVE	=		SING / WELL	0,35 =
INITIAL DEF		12	FT TO	P OF WELL RISER P OF PROTECTIVE	CASING	CASING STIC		<u>U</u> FT w	ELL	72
FINAL DEF		.14	WELL DEPT (TOR) FT	(8.8	FT	PID AMBIENT AIR	0,4	PPM	AM ELL INTERGRITY:	<u> </u>
DRAWDO'		32 (SCREE! LENGT!		FT	PID WELL 1.0			YES NO PM CAP A CASING A	
		ch} or x 0.65 {4-ir		OF DRAWDOWN V OTAL VOLUME PUR		PRESSURE TO PUMP			OCKED A	
TOTAL V PURG (purge v	ED /		GAL ne duration (minu	tes) x 0.00026 gal/m		REFILL SETTING			SCHARGE ETTING	
PURGE DA				SPECIFIC						
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (mS/cm)	pH (units)	DISS, O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	COM	MENTS
1117	7.20	South	up cur	cutate						
1125	8.41	150	4.5	0.96	7.5	2.3	35	214		
430	8.29	1,5-	12.5	0.96	7.4	20.1	17	210		
1135	8.44	150	12.5	0.96	2.4	20.1	14	209		
1140	8.57	16-	12.5	0,95	7.4	20.1	12	208		
1145	8.74	150	12.5	0.44 0.42	7.4	0,2	<u>র্</u>	205		
1155	8.88	150	12.5	0,91	7.5	0.5	7	200		
1200	8.98		12.6	0.92	7.5	0,4	70	144		
1205	9,02	150	12.6	0,43	7.5	0.3	10	199		
1210	9.14		12.5	७.५५	7.5	0.2	10	198		*******
			11	DG4	7.5	1.7	1î)	DêO		
			10	7.77	7	- <u> </u>	111			
	,							****		
										
										
								<u> </u>		* *
				· · · · · · · · · · · · · · · · · · ·		ļ				
					<u> </u>					
FOUIPME	NT DOCUMEN	TATION								
	F PUMP	;	TYPE OF TUBIN	<u>1G</u>	TYPE	E OF PUMP M	ATERIAL		PE OF BLADDER	MATERIAL
	EOPUMP (perista	altic)		SITY POLYETHYLE		STAINLESS			EFLON	
	D BLADDER		OTHER		×	OTHER	ww		THER Word	
ANALYTIC	CAL PARAMET	ERS	ME"	THOD .	PRES	ERVATION	VOLUME	SAMPLE		
F				MBER	<u>M</u>	ETHOD		COLLECTED		
XVO	C		USE	EPA-8260B		/ 4 DEG. C	2 X 40 ML	<u>X</u>	A Millet	1/01/11:
LA TO	3		SM	5310B	H 2S 4	04/4 DEG. d	500 ML pel	r <u>Q</u> w	ith MIKICH	luf Solfforinke
Diss	s. Fe/ Mang	Field Filtere	ed USEPA	6010B	HNO	3 to pH <2	500 ml poly			
Alka	alinity/chloride/su	ılfate/nitrate	SM2320	B/SM4500 CI C/300	,4 DE	G. C	1 Liter poly			
Sulf	fide		##	\mathcal{J}^{\prime}	ZnA	OC/4 DEG. C	1 Liter poly			
Met	than/ethane/ethe	ne	RSI	C175	HCI	to pH <2	3 X 40 ML	A		
<u></u>	2		SM	4500	4 DE	G. C	2 X 40 ML	α		
Ott	her					-	•			· .
										4
NOTES:						LOCATION	SKETCH	น	, ()	1 1
1	V BA	5	1 1 x	<i></i>	- 1		#35	1		1 11
1	y' ('	5 56	/11 /00	7			h	~)	1/1
			<i>!</i>			s	DEWALK	•	# /-	
1		\wedge	۸۸		-			Co mw-s	ik mungs	
1	٨	()	1 I I I I				Benton.	Str mu-	ALC MUNES	Management of the Control of the Con
	_ \\0 14.4	Wind	א על גע							
SIGNATUR	E: YVVV	11/m					·			MACTEC
LOWF	LOW.klsx/Direb	ura	/						•	5/22/2009

SITE OF ANY OF KITCHER STORY OF THE SAMPLE TIME SAMPLE	FIELD DATA RECORD - LOW FLOW G	ROUNDWATER SA	- C /	JOB NUMBER	3612082107-
MATER LEVEL / PUMP STETUS AND ALL STREET STATE SAMPLE THE WATER LEVEL / PUMP STETUS AND ALL STREET STATE STATE SAMPLE THE STATE STATE SAMPLE SAMPLE SAM	PROJECT NYSDEC Dinaburg Ditributing	FIELD SAMPLE NUMBER	828130MW	y Kely D9	
WATER LEVEL / PUMP SETTINGS WITH DEPTH TO FOR PROTECTIVE CASING CASING THE TOP OF PROTECTIVE CASING PART TO WATER TO WATER TO WATER TO FOR PROTECTIVE CASING PART TO WATER TO WATER TO FOR PROTECTIVE CASING PART TO WATER TO WATER TO FOR PROTECTIVE CASING PART TO WATER TO WATER TO WATER TO WATER TO PART TO PART TO PART TO PART TO WATER TO WATER TO PART TO PA	SITE ID NW-09K	SITE TYPE	WELL	DATE	5-25-09
NOTIAL GEFTH TO WIRE TO OF OF WELL RISER CASING STOCKED ON THE PRODUCTION CASING GROWN OF THE	ACTIVITY START 1335 END	SAMPLE TIME	1460.		
THAL BERTH OWNER PROVIDED TO WATER PRODUCTIVE COSING PRODUCTIVE CO					
FINAL DEPTH ON WATER	INITIAL DEPTH 7.87 FT TOP OF	PROTECTIVE CASING	(FROM GROUND)	V FT WELL	
DEADLOWN VOLUME VOLUME VOLUME PRESSURE RATE OF DEADLOWN VOLUME PRESSURE CORNER PRESSURE TO PLUME PRESSURE TO PLUME PRESSURE TO PLUME PRESSURE TO PLUME PRESSURE TO PLUME PRESSURE TO PLUME PRESSURE TO PLUME PRESSURE TO PLUME PRESSURE TO PLUME PRESSURE TO PLUME PRESSURE TO PLUME PRESSURE TO PLUME PRESSURE TO PLUME PRESSURE TO PLUME PRESSURE TO PLUME PRESSURE PRESSURE PRESSURE PRESSURE TO PLUME PRESSURE PRESS	FINAL DEPTH 9.79 FT (TOR)	23 (0 FT	AMBIENT AIR	PPM WELL INTERG	RITY:
TOTAL VICE PURSE PSI COLLAR Z PRINCIPLE PSI COLLAR Z PRINCIPLE PSI COLLAR Z PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DEPTH TO PURSE TO PURSE DATA THE PURSE DEPTH TO PURSE TO PURSE DATA THE PURSE DEPTH TO PURSE TO PURSE DATA THE PURSE DEPTH TO PURSE TO PURSE DATA THE PURSE DEPTH TO PURSE TO PURSE DATA THE PURSE DEPTH TO PURSE TO PURSE DATA THE PURSE DATA THE PURSE DATA THE PURSE DEPTH TO PURSE TO PURSE DATA THE PURSE DATA	DRAWDOWN COLUME CAL LENGTH			PPM CAP	N/A N/A
PURGED THOUSE OF THE AUTHOR OF THE PRODUCT OF THE P					
TIME WEEKER RATE (INCREDING TEAM (ISS) CONDUCTANCE (INCREDING TIME) TIME (WEEKER) RATE (INCREDING TEAM (ISS) CONDUCTANCE (INS) TO PLANT (INCREDING TEAM (INCREDING TEAM (INC)) TO PLANT (INS) TO PLANT (INCREDING TEAM (INC)) TO PLANT (INCREDING TEAM (INC)) TO PLANT (INCREDING TEAM (INCREDING TEAM (INC)) TO PLANT (INCREDING TEAM (INCREDING TEAM (INC)) TO PLANT (INCREDING TEAM (INCREDING TEAM (INC)) TO PLANT (INCREDING TEAM (INCREDING TEAM (INC)) TO PLANT (INCREDING TEAM (INCREDING TEAM (INC)) TO PLANT (INCREDING TEAM (INCREDING TEAM (INC)) TO PLANT (INCREDING TEAM (INCREDING TEAM (INC)) TO PLANT (INCREDING TEAM (INCREDING TEAM (INC)) TO PLANT (INCREDING TEAM (INCREDING TEAM (INC)) TO PLANT (INCREDING TEAM (INCREDING TEAM (INC)) TO PLANT (INCREDING TEAM (INC)) TO PLANT (INCREDING TEAM (INC)) TO PLANT (INCREDING TEAM (INC)) TO PLANT (INC) TO PLANT (INCREDING TEAM (INC)) TO PLANT (INC) TO PLANT (IN	PURGED 7. GAL	x 0.00026 gal/milliliter)			
THE F	PURGE DATA DEPTH TO PURGE TEMP CO		DISS. 02 TURBIDITY	REDOX I	
13 17 18 18 18 18 18 18 18	TIME WATER (ft) RATE (ml/m) (deg. c)	(mS/cm) (units)		(mv) (
13 13 13 13 13 13 13 13	1337 974 350 13.7	· · · · · · · · · · · · · · · · · · ·	3.0 53.4		o serials
EQUIPMENT POCUMENTATION TYPE OF PLIMP MATERIAL TOPE OF BLADDER MATER	1342 9.79 350 13.3	2.08 7.7	0.9 39.7	-20	
EQUIPMENT DOCUMENTATION 13		7-50 7-5		-40	
EQUIPMENT DOCUMENTATION TYPE OF FUMP POSCOPUMP (peristatic) POSCOPUM		2.47 7.4		-50	
EQUIPMENT DOCUMENTATION TYPE OF PLANE GEOPPHAP GEOPHAP GEOPPHAP GEOPPHAP GEOPPHAP GEOPPHAP GEOPPHAP GEOPPHA				-50	
EQUIPMENT DOCUMENTATION THE OF DUMP GEOPUMP (penistratic) GEOPUMP (penistratic) GEOPUMP (penistratic) GEOPUMP (penistratic) GEOPUMP (penistratic) GEOPUMP (penistratic) GEOPUMP (penistratic) GEOPUMP (penistratic) GEOPUMP (penistratic) GEOPUMP (penistratic) TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL TYPE OF BUMP MATERIAL TYPE OF BLADDER MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BUMP MATERIAL TYPE OF BLADDER MATERIAL TYPE OF BUMP MATERIAL		2.26 7.4 7 19 7.4		-40	
EQUIPMENT DOCUMENTATION TYPE OF FUMP MATERIAL TYPE OF FUMP THE OF FUMP T		2.6 7.4		-40.	
EQUIPMENT_DOCUMENTATION TYPE OF PLIMING TYPE O	1420 Sample the (> MW-	09 K.	1	•	
EQUIPMENT_DOCUMENTATION TYPE OF PLIMING TYPE O	1435 pmp off Charcol			4.	
EQUIPMENT DOCUMENTATION TYPE OF PLMP PRESERVATION METHOD NUMBER ANALYTICAL PARAMETERS METHOD NUMBER METHOD NUMBER METHOD NUMBER ANALYTICAL PARAMETERS METHOD NUMBER METHOD NUM	14	2.10 7.4	<0.18	-41.	
EQUIPMENT DOCUMENTATION TYPE OF PLMP PRESERVATION METHOD NUMBER ANALYTICAL PARAMETERS METHOD NUMBER METHOD NUMBER METHOD NUMBER ANALYTICAL PARAMETERS METHOD NUMBER METHOD NUM			·	<u> </u>	
EQUIPMENT DOCUMENTATION TYPE OF PLMP PRESERVATION METHOD NUMBER ANALYTICAL PARAMETERS METHOD NUMBER METHOD NUMBER METHOD NUMBER ANALYTICAL PARAMETERS METHOD NUMBER METHOD NUM					
EQUIPMENT DOCUMENTATION TYPE OF PUMP GEOPUMP (peristaltic) GEOPUMP (peristaltic) GEOD BLADDER ANALYTICAL PARAMETERS METHOD NUMBER NUMBER WOC TOC TOC TOC TOC TOC TOC TOC					
TYPE OF PUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) FIGURE (VOV) FIGURE (V					
TYPE OF PUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) FIGURE (VOV) FIGURE (V					
TYPE OF PUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) FIGURE (VOV) FIGURE (V		:			
TYPE OF PUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) FIGURE (VOV) FIGURE (V					
TYPE OF PUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) GEOPUMP (peristatic) JEFLON OTHER WOW OTHER WOW OTHER WOW OTHER WOW OTHER WOW OTHER OTH					
GEOPUMP (peristatic) GED BLADDER ANALYTICAL PARAMETERS METHOD NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER-A2800B HCL / 4 DEG. C 2 X 40 ML HS04+4-DEG. C SUBMER-SUBMER-SUBMER SUBMER-SUBMER-SUBMER Allganity/chloride/sulfate/nitrate SM2320B/SM4500 Cl C/300 Allganity/chloride/sulfate/nitrate SM2320B/SM4500 Cl C/300 A DEG. C 1 Liter poly METHOD NOTES: PRESERVATION NETHOD NETHOD NETHOD NETHOD NETHOD NETHOD NETHOD NETHOR NOTHER VOLUME SAMPLE GOULECTED HCL / 4 DEG. C 2 X 40 ML HS04+4-DEG. C 500 MI poly A DEG. C 1 Liter poly METHOD NOTES: NOTES:				TO 05 DI 05	DED MATERIAL '
QED BLADDER OTHER SAMPLE SAMPLE SAMPLE SOO MIL DOLL OTHER					DER MATERIAL
METHOD NUMBER METHOD REQUIRED COLLECTED HOLD A DEG. C 2 X 40 ML WESPA-8280B HOL I A DEG. C 2 X 40 ML WESPA-8280B HOL I A DEG. C 500 MI poly Dise Fe/ Mang Field Filtered USEPA 6010B HNO3 to pH <2 500 ml poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Sulfate ## ZnAOC/4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Method Resolvent Poly Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 MI Liter poly Method Resolvent Poly Alkannity/chloride/s					ronl_
NUMBER NUMBER USEPA-8260B HCL / 4 DEG. C 2 X 40 ML Dist. Fe/ Mang Field Filtered USEPA 6010B HN03 to pH <2 500 ml poly Alkanniv/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Alkanniv/chloride/sulfate/nitrate RSK175 HCl to pH <2 3 X 40 ML DO2 SM4500 4 DEG. C 1 Liter poly A DEG. C 1 Liter poly Cother NOTES: NOTES: NOTES: Brandon Shaw Brandon Shaw SIGNATURE: SIGNATURE: NACCIA DEG. C 2 X 40 ML A DEG. C 2 X 40 ML A DEG. C 2 X 40 ML A DEG. C 2 X 40 ML A DEG. C 2 X 40 ML A DEG. C 2 X 40 ML A DEG. C 3 X 40 ML A DEG. C 4 DEG. C 5 DEG. C 4 DEG. C 5 DEG. C		nn ppes	ERVATION VOLUME	SAMPLE	
Dise Fe/ Mang Field Filtered USEPA 6010B HNO3 to pH <2 500 ml poly Alkamity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Sulfde ## ZnAOC/4 DEG. C 1 Liter poly Liter poly Liter poly Alkamity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Liter poly Liter poly Alkamity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Liter poly Alkamity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Diserved Property of the poly Alkamity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Diserved Property of the poly NOTES: Purge water Mr Orange — flock Brawlen Shaw Brawlen Shaw Signature: Brawlen Shaw Signature: Doubland Mactec	NUMBI	<u>ER</u> <u>M</u>	ETHOD REQUIRED		
Disc. Fe/ Mang Field Filtered USEPA 6010B Alkannity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Inaccided begins of the sulfate of the sulf					
Mikenhity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly Interpoly Int	- WILL AND		,	— <u>–</u>	
Supple ## ZnAOC/4 DEG. C 1 Liter poly Methan/ethane/ethene			•	·	
Notes: Purge water has ovalue of ock location sketch Clinton the mw. 9kt the many of the signature: Brandon Show Signature: Signature: Methodology of the standard of the					
NOTES: Purge water has ovarge fock LOCATION SKETCH Clinton Are Martin			, ,		•
NOTES: Purge water has orange - froit LOCATION SKETCH Clinton Are Mit Brandon Shaw Brandon Shaw Brandon Shaw Brandon Shaw Brandon Shaw Brandon Shaw Brandon Shaw Brandon Shaw			•		
Brandon Show Br			<u> </u>		
Brandon Show Br	NOTES: Purge water has oran	ge-frock	LOCATION SKETCH	linton Are	
SIGNATURE:	h it	, ''	-	5 . 104 to Ca	
SIGNATURE:					3 -
SIGNATURE:	Brandon.	Shaw		Restaumst	
SIGNATURE: MACTEC				,	
The line of the chart of the ch	SIGNATURE:			l a a all	MACTEC
LOWFLOW.xlsx/Dinaburg 5/22/2009				1 year and	5/22/2009

FIELD DATA RECORD - LOW FLOW GROUNDWATER SAMPLING							OB NUMBER	3612082107-
PROJECT NYSDEC Dinaburg Ditribution		FIELD SAMI	PLE NUMBE	R 828103-1	umiokoi&	09		1
SITE ID MW-101] 7 .	SITE TYPE				DATE	5/26/09
WATER LEVEL / PUMP SETTINGS	END 1540	SAMPLE TII	ME L	1520			ASING / WELL	0.670
	A TOP (OF WELL RISER OF PROTECTIVE	CASING	CASING STIC	KUP (OIFFER.	0.42 FT
TO WATER 8.44	FT WELL DEPTH	210	2/	PID	,	v	VELL DIAM.	2 ^z
FINAL DEPTH TO WATER 15.61	(TOR)	J 1. /	FT	AMBIENT AIF	`	PPM	VELL INTERGR	NTY:
DRAWDOWN	SCREEN LENGTH	~10'	FT	PID WELL MOUTH		РРМ	CAP YE	<u> </u>
VOLUME (initial - final x 0.16 (2-inch) or x 0.65		DRAWDOWN VO		PRESSURE	v.	1	CASING / LOCKED / COLLAR /	
TOTAL VOL.		AL VOLUME PUR ・2フ	GED	TO PUMP		<u> </u>		
PURGED [1.1] (purge volume (milliliters per minute)	GAL L x time duration (minutes		illiliter)	REFILL SETTING	N		DISCHARGE SETTING	NA
PURGE DATA DEPTH TO PURGE	TEMP.	SPECIFIC CONDUCTANCE	pН	DISS. 02	TURBIDITY	REDOX	1	
TIME WATER (ft) RATE (ml/		(mS/cm)	(units)	(mg/L)	(ntu)	(mv)	С	OMMENTS
1308 9.39 140	14.60	1,54	7.0	0.6	280	-4		
1315 10.41 -	14.2	1.53	6.9	20.1	140	~13	+	
1325 11.40	14-0	1.52	6.9	4001	150	-20		
1330 11.63 120	13.5	1.55	6.9	0.3	150	- 22		
1335 11.81 -	13.5	1.55	6.5	0.4	140	-27		
1345 12.15	13.6	1155	7,0	0.4	120	-28		
1350 12.31 130	13.5	1.59	7.0 7.0	0.4	130	-26		
1400 12.72 130	13.6	1.52	7.0	0.4	110	-24		
1405 12.86 -	13.16	1.51	7.0	0.4	110	-34		
1410 /3.10 /30	13.6	1.51	7.0	0.3	110	-25		
1430 14.08 120	13.7	1.50	7,0	0.3	110	-25		
1435 14.37 -	13.8	1.50	7.0	0.3	100	-26	ļ	
1445 14.66 110	13.8	1.57	7.0	,	3 800			
1450 15.04 110	13.8	1.51	7.0	0.3	79	-27		
1500 15:40 -	13.9	1.52	7.0	6.2	63	-18		
1505 15.61 110	14-0	1.53	7.0	0.3	60	-28		· · · · · · · · · · · · · · · · · · ·
	1/1	1.43	7.0/	0.3	100	- 32		
EQUIPMENT DOCUMENTATION		1790	1.07	0.0	l all			
TYPE OF PUMP	TYPE OF TUBING	•		E OF PUMP M		,		DER MATERIAL
GEOPUMP (peristaltic) QED BLADDER	HIGH DENSI			STAINLESS OTHER 1	STEEL	H	TEFLON OTHER <u>MO</u>	vy
ANALYTICAL PARAMETERS								· · · · · · · · · · · · · · · · · · ·
	METH NUME			SERVATION IETHOD	VOLUME REQUIRED	SAMPLE COLLECTED	2	
✓voc	USEP	A-8260B		. / 4 DEG. C	2 X 40 ML		AIA AE	/chlor/Sul/Wirah
<u> </u>	SM53			-	GZ 500 ML pol		NUK MY	1-1101/201/140M
Diss. Fe/ Mang Field F				03 to pH <2	500 ml poly			
Alkalinity/chloride/sulfate/nitrate Sulfide	SM2320B	/SM4500 CI C/300	•	EG. C .OC/4 DEG. C	1 Liter poly 1 Liter poly	7		
Methan/ethane/ethene	RSK1	75		to pH <2	3 X 40 ML			
T _{CO2}	SM45			EG. C	2 X 40 ML	Ĭ,		
Other				<u>.</u>				
^ 40					····		****	
NOTES: Puned Ros in primetors stable e. Cuinto collects	one flow 2	hous		LOCATION	SKETCH	ſ	MACINTO	en T
primeters chelse e.	xuepor hor of	Josephen	\	٠,٠		الم بر	1.1201010	- N
Conto collects	wiple.	0.0		-07	* * *	- N		() 3
	$\Lambda \Lambda \Lambda$	BAS	2	Ì	A_ 6	nw-1312		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	W VII)	6/1/1	$\int_{\Delta C} $	ŧ	् भू		0	- 1-1
10 heil 16 10 .	JUM	U6 ' '	۲۷	ļ	muios			7
SIGNATURE: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N V A V	<u> </u>			•		9	MACTEÇ
LOWFLOW klsx/D naburg	YV			·	Cutoline S	Jet.		5/22/2009

FIELD DATA RE	CORD - LO	OW FLOW (GROUNDW	ATER S	AMPLING	}		JOB NUMBER	3612082107-
PROJECT NYSDEC Dina	aburg Ditributing		FIELD SAM	IPLE NUMBE	R 82810	3-MW1/5	01209		
SITE ID MW-	1145			SITE TYPE	E WELL			DATE	5/26/09
ACTIVITY START US	(<i>0</i> EN	D 1810	SAMPLE TI	ме	17	53			
WATER LEVEL / PUMP	SETTINGS		EMENT POINT OF WELL RISER		PROTECTIVE CASING STIC			CASING / WEL	L 0:21 FT
INITIAL DEPTH TO WATER 7	.46		OF PROTECTIVE	CASING	(FROM GROU		O FT	WELL	
ENIAL DEDTIL	.8	WELL DEPTH (TOR)	<i>≈13.4</i>	FT	PID AMBIENT AIR	0.0	РРМ	DIAM. WELL INTERC	BRITY:
		SCREEN	10	FT	PID WELL MOUTH	0.8	РРМ		YES NO N/A
VOLUME (initial - final x 0.16 {2-in		GAL	F DRAWDOWN V		PRESSURE	4		CASING	<u> </u>
	· · · · · · · · · · · · · · · · · · ·	то то	TAL VOLUME PUR		TO PUMP	NA	PSI	COLLAR	<u> </u>
PURGED (purge volume (milliliter		GAL Long Long Minute Minute Control Market Market Market		nilliliter)	REFILL SETTING	NA		DISCHARGE SETTING	no
PURGE DATA	,		SPECIFIC	· · · · · · · · · · · · · · · · · · ·	.: .	· · · · · · · · · · · · · · · · · · ·			
DEPTH TO TIME WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (mS/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)		COMMENTS
0917 7.46	Startin	ys and s	etribe						
0920 7.68	120	11.7	(.14	71	3,6	<u>51</u> 37	234	660	4600
0930 8118	130	11.4	1.18	7.2	2.9		205	-	· · · · · · · · · · · · · · · · · · ·
0435 8,52	130	11.5	1.19	7.3	2.4	27	197	19570	•
0940 8.95		11-4	117	7.3	2.3	43	195		
0945 9,25	150	11.4	1.13	7,3	2.4	<u> 42 </u>	194		
0950 9.45	150	11.9	1.08	7.3	1.1	17 10	193		
1000 9.96	1,55	111.4	1.02	7.4	0.2	-9-	190		
1005 10.24	150	11.4	1.01	7.4	0:0	9	190		
1010 10:51	-	11.3	1.00	7.4	1.0	12	189		
1015 10,74	150	11.1	1.10	7.3	2.9	74	190		
1030 10.98	150	11:2	1.07	7,3	3,0	<u> </u>	188		
Crinto In		10.0	m und su		1. 6.	<u> </u>	133	8250	
1040 Proyect +		865 Will 8	while who		wind to	~8'			
\			V .		رار ا				
	-		10/	7.4	1-6	_23	140	7	
1 (6	-					·			· · · · · · · · · · · · · · · · · · ·
		1			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
	2								
									· · · · · · · · · · · · · · · · · · ·
FOURMENT POOLING	NTATION				l,,		ļ <u></u>		
TYPE OF PUMP	NIATION	TYPE OF TUBING	G.	TYP	E OF PUMP MA	ATERIAL		TYPE OF BLA	DDER MATERIAL
GEOPUMP (peris	taltic)	HIGH DENS	– ITY POLYETHYLEI		STAINLESS		. 🗀	TEFLON	
QED BLADDER		OTHER SI	actic	X	OTHER <u>V</u>	vone		OTHER W	oue
ANALYTICAL PARAME	TERS	L Aproper	100	DDEC	SED VAZION			_	
		METI NUM			SERVATION IETHOD	VOLUME REQUIRED	SAMPLI COLLECT		
✓voc		USEF	PA-8260B	HCL	. / 4 DEG. C	2 X 40 ML		-0 15	141 /01/115
Тос		SM53	310B	H2S	04 / 4 DEG. C	5 00-ML-po i	(B) [C	with All	k/Chlor/SN./Notine
Diss. Fe/ Mang	Field Filter	red USEPA 6	6010B	HNC	03 to pH <2	500 ml poly			
Alkalinity/chloride/s	sulfate/nitrate	SM2320E	3/SM4500 CI C/300	,4 DE	EG. C	1 Liter poly	Z]	
Sulfide		##		ZnA	OC/4 DEG. C	1 Liter poly	~		
Methan/ethane/eth	ene	RSK ²	175	HCI	to pH <2	3 X 40 ML	4		
CO2		SM4	500	4 DE	EG. C	2 X 40 ML	L		
Other	•								•
				- T			1		
NOTES: Porged	du - i	etwell	ster		LOCATION	SKETCH	#34	9 1	1 N
1 Page	07 0) _	· . V			1 (,,,,,],(
and sample	il reck	enge-					1		4
1		V 17			-		ha.	且」	1 4
		15	T		SIVE	nouse	The day	Say & W	mink
1	1 . 11	11	3/11/	nG	•	1,00	- WOLDOWN	017	i Tim
	// ///		~ [· ·]	~1 ·		~~~~~.	, ,	لتوسنسين. . جم	_
SIGNATURE:	July /	/				N. 1	weense	70C	MACTEC
LOWFL@W.xlsx(Djha	burg //			<u>-</u>					5/22/2009
	· /								

FIELD DATA RECORD - LO	W FLOW GR	OUNDWATE			JOB NUME	3612082107-
PROJECT NYSDEC Dinaburg Ditributing		FIELD SAMPLE N	JMBER <u>\$28</u>	130MW12	2501009	
SITE ID MW 12 S		SIT	TYPE WEL		DATE	5-25-09
ACTIVITY START 1705 END		SAMPLE TIME		<u> 750 · </u>		
WATER LEVEL / PUMP SETTINGS		WELL RISER	PROTECTIVE CASING STICE	CKUP A	CASING / V	0-45 FT
INITIAL DEPTH TO WATER	FT	PROTECTIVE CASIN	· =	UND) 0-0	WELL	2
FINAL DEPTH G 40	WELL DEPTH (TOR)	13.7 FT	PID AMBIENT AII	R	PPM DIAM.	IN IN
	SCREEN 6	~10 =	PID WELL		WELL INTI	YES NO N/A
	LENGTH L	F.			PPM CAP CASING	
(initial - final x 0.16 (2-inch) or x 0.65 (4-in		RAWDOWN VOLUME VOLUME PURGED	PRESSURE TO PUMP		LOCKED PSI COLLAR	
TOTAL VOL. PURGED (purge volume (milliliters per minute) x tim		0 00026 gal/millilitar)	REFILL SETTING		DISCHARO	GE
PURGE DATA		SPECIFIC	SETTING		JOETTING	. 200
DEPTH TO PURGE TIME WATER (ft) RATE (ml/m)	TEMP. CON		H DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	. COMMENTS . /
1705 pump son (1707 5.41 300	MW-125	1.32 7	5 (2)	19	150- tu	bing [21-10
17/2 850 200	11.4	120 7	4 3.0	2.4	150 1000	
1717 8 83 175	12.0	1.21 7	4 2.8 4 2.2	2.9	180	
1727 4.21 175	11.8	$\frac{1.22}{1.24}$ $\frac{7}{7}$	4 2.1	1.6	180	
1737 9:35 175		1.26 7.	1 2-7	1.3	180	
1747 9.41 175	-12.0	1,24 7.	2.4	1.4	150	
1750 Simple the	(NMW-1	25'				
1804 Poor CFT (S.)	nur -125		4 .2	n.	180	
	10	1.	4 3	1	100.	
	1					
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	. *				•
					· · · · · · · · · · · · · · · · · · ·	
EQUIPMENT DOCUMENTATION TYPE OF PUMP	TYPE OF TUBING	•	TYPE OF PUMP M	ΙΔΤΕΡΙΔΙ	TYPE OF F	BLADDER MATERIAL
GEOPUMP (peristaltic)	HIGH DENSITY	POLYETHYLENE	STAINLESS	STEEL	TEPLON	
QED BLADDER ANALYTICAL PARAMETERS	OTHER SY	45/16	OTHER_	none	OTHER_	none
	METHOD NUMBER	2	PRESERVATION METHOD	VOLUME REQUIRED	SAMPLE COLLECTED	
Voc	USEPA-8	//: h " i		2 X 40 ML		• .
Vicoc Diss. Fe/ Mang Field Filtere	SM5310E d USEPA 6010	Truly Clym	HNO3 to pH <2	. 500 ML poly 500 ml poly		
Alkalinity/chloride/sulfate/nitrate		14500 CI C/300	4 DEG. C	1 Liter poly		
Sulfide	##		ZnAOC/4 DEG. C	1 Liter poly		
Methan/ethane/ethene	RSK175 SM4500		HCl to pH <2 4 DEG. C	3 X 40 ML 2 X 40 ML		
Other		- '.				
	· · · · · ·		T,		4	0 0 11/1
NOTES:			LOCATION	SKETCH		Jery Milff
						6/8/04
	. 5	od.	12		A	
	Stein	don Shaw	1 12	Benton S	trut	
		•	inden		mw-125	* mw-121C
SIGNAT URE:			 		• •	MACTEC
LOWFLOW.xlsx/Dinaburg			7 ('			5/22/2009

FIELD DATA RECORD - LOW FLOW G	ROUNDWATE				NUMBER 3612082107-
PROJECT NYSDEC Dinaburg Ditributing	FIELD SAMPLE N	UMBER 32810	21609	DIMS, MSD-	
SITE ID MW-12E.	SITE	TYPE WELL		DATE 5-26-09	
ACTIVITY START 0830 END 1010.	SAMPLE TIME	0920			
WATER LEVEL / PUMP SETTINGS MEASUREI	MENT POINT OF WELL RISER	PROTECTIVE CASING STIC			FER. 0.35 FT
INITIAL DEPTH TO WATER TO WATER WELL DEPTH	F PROTECTIVE CASIN			FT WE	LL 3
FINAL DEPTH 7 FT (TOR)	<u>419.5</u> ы	AMBIENT AIR		PPM	LL INTERGRITY:
DRAWDOWN LENGTH	~10 F	PID WELL MOUTH			YES NO N/A AP ASING
(initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) RATIO OF	DRAWDOWN VOLUME AL VOLUME PURGED	PRESSURE TO PUMP			CKED DLLAR
PURGED	아) x 0.00026 gal/milliliter)	REFILL SETTING			CHARGE ITING
PURGE DATA DEPTH TO PURGE TEMP. C	SPECIFIC ONDUCTANCE p	H DISS. 02	TURBIDITY	REDOX	
JIME WATER (ft) RATE (ml/m) (deg. c)		nits) (mg/L)	(ntu)	(mv)	COMMENTS
1347 Cump S C MW-12K-	1.68 7.	2 4.1	20.6	230	tubing (is ~ 16 ins
0355 9.63 300 11.3	1.10 7.	3 7.8	14.5	130	
0400 9.74 300 11.1	1.06 7		6.6	110	
0905 9.79 300 11.0	1.05 7	3 2.2	3.1	90	
6910 9.30 300 11.0	1.05 7.	3 2.2	2.0	90	
0920 Samok the	7-03	<i></i>			
0954 Dunplet		, ,		127)	
	1.09 7	3 2	<u> </u>	K9-	
	:				
			<u> </u>		
EQUIPMENT DOCUMENTATION					
TYPE OF PUMP TYPE OF TUBING		TYPE OF PUMP M STAINLESS			PE OF BLADDER MATERIAL EFLON 5
GEOPUMP (peristaltic) QED BLADDER OTHER OTHER	Y POLYETHYLENE	OTHER_			THER hone
ANALYTICAL PARAMETERS					· · · · · · · · · · · · · · · · · · ·
METH NUMB		PRESERVATION METHOD	VOLUME REQUIRED	SAMPLE COLLECTED	_
LICETO	A-8260B	HCL / 4 DEG. C	约 2 X 40 ML		,
Troc W/AK, Cl, Nitrate SM53	10B	H2SO4-/-4-DEG. C	500 ML pely		
Diss. Fe/ Mang Field Filtered USEPA 60	010B	HNO3 to pH <2	500 ml poly		
Alkalinity/chloride/sulfate/nitrate SM2320B	/SM4500 CI C/300	4 DEG. C	1 Liter poly	V	
Sulfide ##	•	ZnAOC/4 DEG. C	1 Liter poly		•
Nytethan/ethane/ethene RSK1		HCl to pH <2	3 X 40 ML		•
V CO2 SM45		4 DEG. C	2 X 40 ML		
Other					211
NOTES: Collected Dup, MS & ,	15 100	LOCATION	CVETOU	11	Jour Routelle
	N JU WENC	LOCATION	I SKEIGH	'1	() ildich
also.		1 15	ľ .	\prod_{A}	- 6/8/07
		Bue		~	
Brandon Shaw		ž	<u></u>	<u> </u>	
Orindon svam		111902	Bento	n Street	
	•			MUTILS	DANN-12K
SIGNATURE.		1			MACTEC
LOWFLOW.xlsx/Dinaburg					5/22/2009

SITE ID MW-13 F SITE TYPE WELL DATE 5-26-69	FIELD D	ATA REC	ORD - LC	W FLOW	GROUNDW	ATER S	~ ^ .			DB NUMBER	3612082107-
MATER LEVEL / PUMP SETTINGS MATER LEVEL / PU	PROJECT	NYSDEC Dinab	ourg Ditributing		FIELD SAM	PLE NUMBER	× 728	03MW/31	(0160)	_	
MATER LEVEL / PUMP SETTINGS MITAL DEPTH GOOD PLAN RESERVE ASING PROPERTY ASING STICKUP DUPER PROPERTY	SITE ID	MW-1	3K			SITE TYPE	WELL			DATE	5-26-09
NITUL IBERTY TO WATER STORY FRAU DEPTH TO WATER FRAU DEPTH TO WATER FRAU DEPTH TO WATER FRAU DEPTH TO WATER FRAU DEPTH TO WATER FRAU DEPTH TO WATER FRAU DEPTH TO WATER FRAU DEPTH TO WATER FRAU DEPTH TO WATER FRAU DEPTH TO WATER FRAU DEPTH TO WATER FRAU DEPTH TO WATER FRAU DEPTH TO WATER FRAU DEPTH TO WATER FRAU DEPTH TO WATER FRAU DEPTH TO WATER FRAU DEPTH TO	ACTIVITY	START 101	C EN	1115	SAMPLE TI	ме	110	0.			
TO DO PO PROTECTIVE CASHS FROM DEPTH TO WATER FROM DEPTH TO WATER FROM SECRET TO WATER FROM DEPTH TO WATER FR	WATER LE	VEL / PUMP S	ETTINGS	MEASUF	REMENT POINT			SKIID .			0.3
FINAL DEPTH TO MATER 1.5 b F SOCIED 1 F MASERIAR PRIMATERIAL PRODUCTION VICE INTERGRITY: NO MATER 1.5 b F SOCIED 1 F MASERIAR PRODUCTION VICE INTERGRITY: NO MATER 1.5 b F SOCIED 1 F MOOTH PRODUCTION VICE INTERGRITY: NO MATER 1.5 b F SOCIED 1 F MOOTH PRODUCTION VICE INTERGRITY: PRIMATERIAL TO PARKET INTERGRITY PRIMATERIAL TO PARKET INTERGRITY PRIMATERIAL TO PARKET INTERGRITY PRIMATERIAL TO PARKET INTERGRITY PRIMATERIAL TO PARKET INTERGRITY PRIMATERIAL TO PARKET INTERGRITY PRIMATERIAL TO PARKET INTERGRITY PRIMATERIAL TO PARKET INTERGRITY PRIMATERIAL TO PARKET INTERGRITY PRIMATERIAL TO PARKET INTERGRITY PRIMATERIAL TO PARKET INTERGRITY PRIMATERIAL TO PARKET INT			51	FT TOF	OF PROTECTIVE	CASING	(FROM GROU		V FT W	ELL	2
DRANGOON VOLUME 100 SAL BROTH PRIVE OF THE WOUTH PRIVE OF THE STATE OF			56	(TOR)	21.2	• FT	AMBIENT AIR	3	PPM	'ELL INTERGR	ITY:
TOTAL VIC. DECEMBER FOR INTERIOR STURE SURFACE PROPERTY OF THE	VOLUM	ΛE Ιί		LENGTH	10		MOUTH			CAP <u>i</u> CASING <u>i</u>	NO N/A
PURGE DATA PURGE	TOTAL VO	OL.	ว ป	TO TO	OTAL VOLUME PUR		TO PUMP		PSI	COLLAR 1	
DEPTH TO PURCE THE PURCE PUR	(purge vo	olume (milliliters			tes) x 0.00026 gal/m	illiliter)					
1921 PLANT 0 1 1 1 1 1 1 1 1 1	PURGE DA		PURGE	ТЕМР.		рĤ	DISS, O2	TURBIDITY	REDOX	1	
12 15 32 12 2 2 4 1 1 4 5 5 6 5 6 5 6 6 5 6 6				(deg. c)	(mS/cm)	(units)	(mg/L)	(ntu)	(mv)		
Color				13.7	2-37	7.5		6.7		100119	(
Color	1027	9.56	325	12-7	2.46	7.4		4.5			· · · · · · · · · · · · · · · · · · ·
EQUIPMENT DOCUMENTATION 1100 1100	1032	7.56	325	12.4		7.4		43	-20		
EQUIPMENT DOCUMENTATION TYPE OF TUBING TYPE OF PUMP (peritabilic) GOED LADDER ANALYTICAL PARAMETERS METHOD NUMBER METHOD NU	1042	9,56	325	12-4		7.4		\$·L			
EQUIPMENT DOCUMENTATION TYPE OF PUMP MATERIAL TYPE OF BUADER MATERIAL TYPE OF BUADER TYPE OF PUMP MATERIAL TYPE OF BUADER TYPE OF PUMP MATERIAL TYPE OF BUADER TYPE OF BUADER TYPE OF BUADER TYPE OF BUADER TYPE OF BUADER TYPE OF BUADER TYPE OF BUADER TYPE OF BUADER TYPE OF BUADER TYPE OF BUADER TYPE OF BUADER TYPE OF BUADER TYPE OF BUADER TYPE OF BUADER TYPE OF BUADER TYPE OF BUADER MATERIAL TYPE OF BUADER MATERI	4	6.56		13 7		7.4		67		-	
EQUIPMENT DOCUMENTATION TYPE OF TUBING TYPE OF PUMP MATERIAL TYPE	1657	9.56	325	17.4	2.34	7.4		9.0.	- 30		
EQUIPMENT DOCUMENTATION TYPE OF PUMP MATERIAL TYPE OF PUMP MATERIAL TYPE OF PUMP MATERIAL TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL TYPE OF B	1100		the c	0	13/6						
EQUIPMENT DOCUMENTATION TYPE OF PUMP MATERIAL TYPE OF PUMP MATERIAL TYPE OF BLADDER TOTAL TYPE OF BLADDER TYPE OF BLADDER TOTAL TYPE OF BLADDER TYPE OF BLADDER TYPE OF BLA	1109	purpo	1-st \	1 1	9.20-	71	0.2	C'	1 10		
EQUIPMENT DOCUMENTATION TYPE OF PUMP MATERIAL TYPE OF PUMP MATERIAL STAINLESS STEEL JEFLON OGED BLADDER ANALYTICAL PARAMETERS METHOD NUMBER USEPA-8260B LOCATION SKETCH MINISTROP PRESERVATION METHOD NUMBER LOCATION SKETCH MINISTROP PRESERVATION METHOD NUMBER LOCATION SKETCH MINISTROP MINISTROP MINISTROP PRESERVATION METHOD NOTHER LOCATION SKETCH MINISTROP		<u>' </u>		100	2.34	1.4	0 2 2 3	1	70-		
EQUIPMENT DOCUMENTATION TYPE OF PUMP MATERIAL TYPE OF PUMP MATERIAL STAINLESS STEEL JEFLON OGED BLADDER ANALYTICAL PARAMETERS METHOD NUMBER USEPA-8260B LOCATION SKETCH MINISTROP PRESERVATION METHOD NUMBER LOCATION SKETCH MINISTROP PRESERVATION METHOD NUMBER LOCATION SKETCH MINISTROP MINISTROP MINISTROP PRESERVATION METHOD NOTHER LOCATION SKETCH MINISTROP											
EQUIPMENT DOCUMENTATION TYPE OF PUMP IYPE OF PUMP periodatic) OGED BLADDER ANALYTICAL PARAMETERS METHOD NUMBER USEPA-8260B USEPA-8260B USEPA-8260B HCL / 4 DEG. C ANALYTICAL PARAMeters METHOD NUMBER USEPA-8260B HCL / 4 DEG. C ANALYTICAL PARAMeters METHOD NUMBER USEPA-8260B HCL / 4 DEG. C ANALYTICAL PARAMeters METHOD NUMBER USEPA-8260B HCL / 4 DEG. C A 4 DEG. C A 5 On mi poly A 1 DEG. C A 5 On mi poly A 1 DEG. C A 1 Liter poly A 1 DEG. C A 1 Liter poly A 1 DEG. C A 1 DEG.		`			· · · · · · · · · · · · · · · · · · ·				1		
EQUIPMENT DOCUMENTATION TYPE OF PUMP IYPE OF PUMP periodatic) OGED BLADDER ANALYTICAL PARAMETERS METHOD NUMBER USEPA-8260B USEPA-8260B USEPA-8260B HCL / 4 DEG. C ANALYTICAL PARAMeters METHOD NUMBER USEPA-8260B HCL / 4 DEG. C ANALYTICAL PARAMeters METHOD NUMBER USEPA-8260B HCL / 4 DEG. C ANALYTICAL PARAMeters METHOD NUMBER USEPA-8260B HCL / 4 DEG. C A 4 DEG. C A 5 On mi poly A 1 DEG. C A 5 On mi poly A 1 DEG. C A 1 Liter poly A 1 DEG. C A 1 Liter poly A 1 DEG. C A 1 DEG.											
TYPE OF PUMP (peristaltic) GEO PUMP (peristaltic) GEO BLADDER WIGH DENSITY POLYETHYLENE OTHER WORLESS STEIL OTHER OTHER OTHER NOTHER OTHER											
TYPE OF PUMP (peristaltic) GEO PUMP (peristaltic) GEO BLADDER WIGH DENSITY POLYETHYLENE OTHER WORLESS STEIL OTHER OTHER OTHER NOTHER OTHER											
TYPE OF PUMP (peristaltic) GEO PUMP (peristaltic) GEO BLADDER WIGH DENSITY POLYETHYLENE OTHER WORLESS STEIL OTHER OTHER OTHER NOTHER OTHER	-	6				1		1			
TYPE OF PUMP (peristaltic) GEO PUMP (peristaltic) GEO BLADDER WIGH DENSITY POLYETHYLENE OTHER WORLESS STEIL OTHER OTHER OTHER NOTHER OTHER			The same		:						
TYPE OF PUMP (peristaltic) GEO PUMP (peristaltic) GEO BLADDER WIGH DENSITY POLYETHYLENE OTHER WORLESS STEIL OTHER OTHER OTHER NOTHER OTHER		7								-	
TYPE OF PUMP (peristaltic) GEO PUMP (peristaltic) GEO BLADDER WIGH DENSITY POLYETHYLENE OTHER WORLESS STEIL OTHER OTHER OTHER NOTHER OTHER			<u> </u>							-	
GEOPUMP (peristatic) GED BLADDER WOTHER SINSTIC GED BLADDER METHOD NUMBER ME	EQUIPMEN	NT DOCUMEN	ITATION				'	 	 		
ANALYTICAL PARAMETERS METHOD NUMBER USEPA-8260B METHOD NUMBER USEPA-8260B METHOD NUMBER USEPA-8260B METHOD NUMBER USEPA-8260B METHOD NUMBER USEPA-8260B METHOD NEGUIRED COLLECTED ALZSCA / A DEC. C A DEG. C A DEG. C A DEG. C A Liter poly Method beg. C A DEG. C A D			aliia):								DER MATERIAL
ANALYTICAL PARAMETERS METHOD NUMBER USEPA-8260B METHOD NUMBER USEPA-8260B METHOD NUMBER USEPA-8260B METHOD NUMBER USEPA-8260B METHOD NUMBER USEPA-8260B METHOD NEGUIRED COLLECTED ALZSCA / A DEC. C A DEG. C A DEG. C A DEG. C A Liter poly Method beg. C A DEG. C A D		**	anu)	OTHER	Silastic	ارا ارا	OTHER_	none	/	OTHER_	one
NOTES: NUMBER METHOD REQUIRED COLLECTED			TERS				<u> </u>			·	
Algelinity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly ZnAOC/4 DEG. C 1 Liter poly Martine/ethane/ethane RSK175 HCI to pH <2 3 X 40 ML GO2 SM4500 4 DEG. C 2 X 40 ML GO3 Other NOTES: Randon Shaw Randon Shaw Collection Rizari	/		1/1	ME' NUI	THOD MBER					2	
Algelinity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly ZnAOC/4 DEG. C 1 Liter poly ZnAOC/4 DEG. C 1 Liter poly ZnAOC/4 DEG. C 1 Liter poly A DEG. C 2 X 40 ML D CO2 SM4500 A DEG. C 2 X 40 ML D CO2 Other NOTES: Brandon Shaw Brandon Shaw Cultivities Poly A DEG. C 1 Liter poly Liter	Typo (C . / . i .	SUI for	USI	EPA-8260B	HCL	/4 DEG. C	2 X 40 ML	4		·
Algelinity/chloride/sulfate/nitrate SM2320B/SM4500 CI C/300 4 DEG. C 1 Liter poly ZnAOC/4 DEG. C 1 Liter poly ZnAOC/4 DEG. C 1 Liter poly ZnAOC/4 DEG. C 1 Liter poly A DEG. C 2 X 40 ML D CO2 SM4500 A DEG. C 2 X 40 ML D CO2 Other NOTES: Brandon Shaw Brandon Shaw Cultivities Poly A DEG. C 1 Liter poly Liter		c W/Alt	<, C1 , N	, traft SM	5310B	<u> H28</u>	04/4.DEC. 6	1) / 500 ML po	¥ [1]		
Methan/ethane/ethene ## ZnAOC/4 DEG. C 1 Liter poly Methan/ethane/ethene RSK175 HCI to pH <2 3 X 40 ML CO2 SM4500 4 DEG. C 2 X 40 ML Other NOTES: Recorden Shaw Recor				ed USEPA	.6010B			500 ml poly		_	.
Mothan/ethane/ethene RSK175 HCI to pH <2 3 X 40 ML CO2 SM4500 4 DEG. C 2 X 40 ML War with the control of	==/		ulfate/nitrate			-				_	
NOTES: SM4500 4 DEG. C 2 X 40 ML Jewyllully 6/8/0 NOTES: Brandon Shaw Brandon Shaw Collectory Pizza										/_	_
NOTES: LOCATION SKETCH K Maclustate.			ene				•			/ A	
NOTES: LOCATION SKETCH Maclutich. X				SM	4,500	4 Di	=G. C	2 X 40 ML	H	املا	untile Wille lot
Brandon Shaw Brandon Shaw Columbus Rizza	L Ot	ner		····						0	-01-100 (Venn-10-
Brandon Shaw Brandon Shaw Brandon Shaw	NOTES						LOCATION	EVETOV		Ma	clutech. 12
Brandon Shaw Brandon Shaw	INUTES:					1	LUCATION	JAETUHY .	7 YK	*	
Brandon Shaw Brandon Shaw 1224							[3]	Mm., min	1 WW.	T	/ T
Colomber Pizza							9	+ +	T'	k	
Columber Pizza				- Ra	undon Shace	,	12			1	
SIGNATURE: Solvations Pizza MACTEC	12		. •	7010	CALOND ACO. 1-10		2	,			**
SIGNATURE: SOME MACTEC							181	1101	whom D'=	zu	*
	SIGNATUR	RE:) >all	www.		MACTEC

FIELD D	DATA REC	ORD - LO	W FLOW	GROUNDW	ATER SA				B NUMBER	3612082107-	
PROJECT	NYSDEC Dinab	urg Ditributing		FIELD SAM	PLE NUMBER	828	103MW 1	4K0141	9 _		
SITE ID	MW	-14/			SITE TYPE	. WELL			DATE L	5-26-0	9
ACTIVITY	START 140) END	1515	SAMPLE TI	ME	150	0				
WATER LE	VEL / PUMP S	ETTINGS		REMENT POINT OF WELL RISER		PROTECTIVE			SING / WELL FFER.	0.4	FT
INITIAL DEP		92 -		OF PROTECTIVE	CASING	(FROM GROUPID		<u>-/ FT</u> w	ELL AM.	2	in
FINAL DEP		96	(TOR) T SCREEN	124.0	FT	AMBIENT AIF		PPM W	ELL INTERGR YES		N/A
DRAWDOV VOLUN	ие С С), () (_G h) or x 0.65 (4-inc	LENGTH		FT	MOUTH PRESSURE			CAP CASING OCKED		
TOTAL VO	OL. [1]	7		DTAL VOLUME PUR		TO PUMP			SCHARGE		
(purge vo	olume (milliliters	per minute) x tim	e duration (minu	tes) x 0.00026 gal/m	illiliter)	SETTING		SI	ETTING		
PURGE DA	TA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	pН	DISS. O2	TURBIDITY	REDOX	1		
TIME	PUMP D	RATE (ml/m)	(deg. c)	(mS/cm)	(units)	(mg/L)	(ntu)	(mv)	Lubine	OMMENTS	, 1
1407	896 /	325	12.8	0.806	8-1	0.6	17-0-	100	Tueste	/ \~ 17	
1412	8.96	325	12.6	3,806	8,1	₹0.1	47.8	96			
1417	5.96	325	12.6	0.505	21	201	23.1	40	 		
1422	5.96	325	12.7	0.805	8-1	2011	11.3	-50	-	·	
1432	8.46	325	12.6	0 535	79	₹0,1	20.7	-10	+		
1437	8.96,	325	12.6	0.427	7.7	LD.	33.8	-30			
1442	Y-96	325	126	1.09	7.7	40.	12.6	-40			
1447	8.96	325	12-7	1.27	76	20.	<u>'3,'3</u>	<u>-50</u>	· .		
1452	3.96	325	127	1 29	7.6	20.1	2.9	-50	00096	wake he	4.19594
145/	3.90	325	10	1-24	7.0	20.1	2.9	-50	100030	00119	om
1500	Sample	THE	MW	14K-					-	3 30 1 31	, ,
1216	Port				5	4		~0		•	
			13	1,29	7.10	20-1	0	-511.			
			·····			•		`			
ļ											
		, ph							+		
	\ \ \	-			 						
			· · · · · · · · · · · · · · · · · · ·	:							
		1									
		10									:
						<u> </u>	<u> </u>				
	NT DOCUMEN	TATION \	TYPE OF TUBI	v.c	TVD	E OF PUMP M	ATTEDIAL		VDE OE DI ADI	DER MATERIAL	.
	F PUMP EOPUMP (perista	altic)		SITY POLYETHYLE		STAINLESS			TEFLON	JEK MATERIAL	
	ED BLADDER	itic)	OTHER	Silashe			neve			one	
	CAL PARAMET	ERS			 		•				
	_			THOD MBER		ERVATION ETHOD	VOLUME	SAMPLE COLLECTE)		
TVO	c .	suffer	211	<u>мвек</u> ЕРА-8260В		/ 4 DEG. C	2 X 40 ML		Ť		
	CN/DIK	cl init	1a.b	5310B		0414 DEG. C		_ 🗔			
	• •						ioq <u>⊴ivi-eoc.</u> Voq in 500 ml	<u></u>			
	ss. Fe/ Mang	Field Filtere		6010B		03 to pH <2	' '		_		
	alinity/chloride/su	urate/nitrate		0B/SM4500 CI C/30	-	EG. C	1 Liter poly	— — .			
Sul			##			OC/4 DEG. C	1 Liter poly		,		
	Man/ethane/ethe	ine	RS	K175		to pH <2	3 X 40 ML			Λ ΛΛ	
cc	02		SM	14500	4 Di	EG. C	2 X 40 ML	V	0	y Ruliffe	det.
Ot	ther		_		-		-		Per	J. W	91810
NOTES:	Solven	t oder	on pu	uge wot	$-\prod$	Maclutch LOCATION	-X	X	*- *		<u>, , , , , , , , , , , , , , , , , , , </u>
		-	1	•		Core			(awl 7	
							-		X	MW-14K	. 1
						*			7		
			ລ	n <0.		X-x-	* 3 4		ما		1
			- B	randon Sh	aw	- /- /	信即个	7	*		- J
1				~			LEE	. ل	ł		
1/			-				¥		×	MAC	TEC

	SOIL BOF	RING LOG				
Project Dinabory Distribut	T	Boring/Well		roject No. 6120821.	<u>ن</u>	
Client NYSDEC	Site Rochester NY,	Clinton tre	Sheet No	of _	2	
Logged By J. Rawchiffe	Ground Elevation 513.09	Start Date 5/4)	9 Finish	Date 5/4	109	
Drilling Contractor Geologic NY	Driller's Name	reed 5	Rig Type Trucky	nounted	CM B	
Drilling Method 45 A	Protection Level	P.I.D. (eV)	Casing Size	4 Aug	ger Size	,
Soil Drilled Rock Drilled	Total Depth	Depth to Groundwater	/Date	Piez We	ll Boring	
Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Core Rec./Rqd. % SPT-N (Blows/Ft.)	Sampl	ร.48 ⁷ าอก 6/ร le Description		Mo	pnitoring	Lab Tests ID Sample
3 — 3 4 — 3	Topsoil 0-1. 1-5'BGS Pa	o shbowar Fil	U	O.	NA !	NA
5 SI 1230 9 4 6 5-7 10 40 7 1.0 15 15	andy fill with so Byton 0.7 Reddish with traces of medin	duditionan fine me sit coal, coal lorson fine said to coare sud a noist, (haven to	to cooke cash to rich yeith us depunt	Fill U		NA
9			· · · · · · · · · · · · · · · · · · ·			
2.0	Top 0.4 Gry togner with some qual a moist. Bottom 0.9 Reddell silvaith were of far consermeteral.	hounto reddyth	gry bowy	onl	•	NA
MACTEC 511 Congress Steet Portland, ME 04101			B45 65	13-2cc	ગુ	

	SOIL BOR	ING LOG				
Project Dinaburg Distribu	ting	Boring/Well		roject No. 6130834	37_	
Client NYSDEC	Site Christon Aue, K	Lochester, NY	Sheet No	2 of _	2	
Logged By J. Rawcliffe	Ground Elevation	Start Date 5/4/0	4 Finish	Date 5/4/0	19	
Drilling Contractor Geologic NY	Driller's Name Scott Breed	. s	Rig Type Truch mo	unted Ci	иВ	
Drilling Method	Protection Level	P.I.D. (eV)	Casing Size	Aug	er Size	
Soil Drilled Rock Drilled	Total Depth	Depth to Groundwater	/Date (1712)	Piez Wel	l Boring	1
		8.48 TOR 6/3			nitoring	
No. & No. & ation/ (Fee ws/6" //Rqd.		·		SS Symbo	opm)	ests nple
Depth(Feet) Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Ore Rec./Rqd. % SPT-N (Blows/Ft.)	Sampl	e Description		USCS Group Symbol Meter	Pield Scall Pi Meter Head Spac	Lab Tests ID Sample
Ss Ss Ss Ss Ss Ss Ss Ss Ss Ss Ss Ss Ss S				PI Me	Pl Meter Head Space	-
=				·		
14-	Chaye @ ≈ 14,5	-15 BOS toti	u.	3		
15 - S3 1310 25	Top 0. 3 Grayish toply	boly reldish lon	wy five	0	+	NA
15-17 25 45	Top 0.3 Grayish tosty such and sill with t Very morst, massul	mes or medium &	eul. . c. deu 1			
12 20 23	Bottom d.2 Grytog sitt matrix with s and grand. Very mo	mysel brown run	consesul	0,	1	
18-	Encountard boulder	3/bedrock at 21	7,5 365.			
19-	Augered through ext	shles or weath	ercel beeling	h		
	Secomes unch fi	ruer/hard at	219.3 BGS			
20-	Apparent top of	1. A	rostrat			
\text{\tin}\exitt{\text{\tin}\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\tin}}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex	19.3'.		•	1		
٦٦	Bottom of boning	19.5 BGS	, A			
23-	Refusil with	laugers in be	edrock.			
J.4.=					* .	
			•			
Notes: No elevated (HD realize en spl	it sporer sur	ples or	drill co	Huy	3 .
MACTEC 511 Congress Steet			DAG -	~ (A n.s.		
Portland, ME 04101			1877 2J	-13-200	1	

Overburden Well Cor	nstruction Diagr	am Well No.: MW-121
Project No.: 3612082107	, Project Name:	Ornaburg Distributing
NUSDEC	Project Area: C	Inton Ave, Rochester, NY
Contractor: Geologic NY Drille	er: Scott Breeds	Method: 1-15 A :
Logged By: J. Rawelifte		Date Started: 5/4/09 Completed: 5/4/09
Checked By: 'PA-S	Date: 65-13-09	Well Development Date: 5/7/09
Not To Scale		
	•	
Surface Casing Type: Flush Mount steel	· .	
Ground Surface Elevation:		Type of Surface
		Seal: Context
Surface Casing Diameter: 82 Inside Diameter of Surface Casing: 82 GW = 9.16 Tore 5 499 8.48' Tore 43109 Depth/Elevation of Top of Well Seal: 8'86' 5 1 505.1' Depth/Elevation of Top of Sand: 13.4'865 1 499.7' Depth/Elevation of Top of Screen: 143'865 1 498.8'		#05and Borehole Diameter: 81 Inside Diameter of Borehole Casing: NA Deutonf(Type of Backfill: Cleansoi land #Usud henhank Type of Riser: Sch 40 fr Riser Inside Diameter: 2 Type of Seal: Bentonik Chips Type of Sand Pack: #O US Silica sand
Depth/Elevation of Bottom of Screen: 19.05/365 / 494,05 Depth/Elevation of Bottom of Boring: 19.5/365 / 493,6 MACTEC 511 Congress Street Portland, ME 04101		Type of Screen: Sch 40 PVC Slot Size x Length: Or Ol 1 x 5 1 Inside Diameter of Screen: Depth of Sediment Sump with Plug: 19,2 665 FIGURE 4-7 NITORING WELL CONSTRUCTION DIAGRAM DEC QUALITY ASSURANCE PROJECT PLAN

WELL D	EVELOPMENT RECORD	
Project: Dinabury Distribution	Well Installation Date: 5/4/09	Project No. 361108 310フ
Client: NYSDEC	Well Development Date: 5/7/09	Logged by: Checked by:
Well/Site I.D.: MW-12K	Weather: Drizzle unerest 50-60%	Start Date: Finish Date:
Well Construction Record Data: Bottom of Screen 19.05 ft	Well Diameter 2 in.	Start Time: Finish Time: 1350.
Sediment Sump/Plug	om Ground Surface From Top of Riser	
Screen Length 4, 8 ft.	Fluids Lost during Drilling Ogal.	
Protective Casing Stick-up Oft. Protective	ve Casing/Well Diff. Ø . 44 ft. PID Read	Ambient Air ppm Well Mouth ppm
Well Levels: Sedin	nent:	
1	II Depth before Development 18-7 ft.	(from top of PVC)
End of Development 11.8 ft. Tov We	Il Depth after Development 18.75 ft.	
O via ir.	diment Depth Removed 0.05 ft.	
HT of Water Column 9.89 ft. X 19.05-9.16=9.89 Sad Sad	.68* gal./ft. = 5.24	gal./vol. *for 4" HSA Installed Wells
Equipment: ☐ Dedicated Submersible Pump Appro ☐ Surge Block	oximate Recharge Rage ~ 0.45gpm	
☐ Bailer ☐ 2" ☐ Total ☐ Grundfes Pump 2" 4"	Gallons Removed 75 gal.	Ven No
Well Development Criteria Met: Notes: Porced dry after 3 gullare	■ Well water clear t ■ Sediment thickne	
Notes. The year and agree squares	well is <1.0% of s ■ Total water remov	
	of 5x calculated w 5x drilling fluid los	vell volume plus
End of Well Development Sample (1 pint) Collected?	Yes No ■ Turbidity < 5NTU: ■10% change in field 10% change in field 10% change	s 🗆 🗷
Water Parameter Measurements	,	•
Record at start, twice during and at the end of development	- 7000	
Sport Time Volume Total Gallons	pH Temp. Conductance	Turbidity Pumping Rate
1057 25 13	7.2 10.3 1.17	71000 × 71.761m
1130 44 23	7.1 10.4 1.20	360
	7.2 10.5 1.22	635
1221 8.2 43	7.1 10.7 1.22	630
1250 101 53	7.1 10.7 1.24	600
Well Developer's Signature Alms Runling	7.1 10.6 1.23	200
1336 139 73 W	7.1 10.7 1.25	320 FIGURE 4-9
MACTEC 511 Congress Steet Portland. ME 04101	WELL DEVE NYSDEC QUALITY ASSURANC	LOPMENT RECORD

WELL D	EVELOPMENT REC	ORD			
Project: Dinabury Mistri Yvory	•	loa		Project No. 3612080(07	
Client: NYSDEC	Well Development Date:	7/09	Logged by: J. Randille	Checked by:	
Well/Site I.D.: WW-12-S	Weather: Cloudy, 50-6	over.caln	Start Date:	Finish Date: 5-/8/09	
Well Construction Record Data: Bottom of Screen 12 2	Well Diameter	2 in.	Start Time:	Finish Time: 0945.	
Sediment Sump/Plug 13.3 ft. Fr	om Ground Surface □ From	Top of Riser 🕱			
Screen Length 4.8 ft.	Fluids Lost during Drilling	O gal.		•	
Protective Casing Stick-up 0.0. ft. Protecti	ve Casing/Well Diff. 0 . 49	ft. PID Rea	dings: Ambient A	ppm	
Well Levels: Sedir	ment:				
Initial 7.6/ ft. TOV2 We	Il Depth before Development	13.7 ft.	(from top of PVC)	
n.	Il Depth after Development	13.7 ft.			
24 Hours after Development NA ft. Sec	diment Depth Removed	O ft.			
HT of Water Column 6.6 ft. × 1.68* gal./ft. = 4.5 gal./vol. 30.00 stalled Wells					
☐ Surge Block	<u>resume 5/8/09</u> ■ S	of 5x calculated v 5x drilling fluid los	ss remaining in screen length ved = a minimum vell volume plus st	Yes No Sa □ Sa □	
End of Well Development Sample (1 pint) Collected?	□ □ □ □ 1	Furbidity < 5NTU 0% change in fis 3≲ Hum			
Water Parameter Measurements					
Company of the Compan		m5/cm Conductance 1,52 1.61 	Turbidity F 93 95 WAY 55 38	rumping Rate /, 26PM	
Well Developer's Signature Lung Rawling MACTEC Purged duy repensent 511 Congress Steet Portland, ME 04101	ledy - very low red NYSDEC QUALITY	MELL DEVE	LOPMENT R		

PORT2007022h.mac

-21

Overburden Well Constr	uction Diagr	am	Well No.: MW-125
Project No.: 3612-083-107	Project Name: Y	Oinaburg Pistributa	~
NUSDEC		linton Ave, Rochester,	
	oft Breeds	Method: 175A	
Logged By: J. Rawdiffe		Date Started: 5/6/09	Completed: 5/6/09
[:05-13-09.	Well Development Date: 5	17/09
Not To Scale	` '		
,	•		
Surface Casing Type: Sicel Plush Mount			
Ground Surface Elevation:	*	Type of Surface	ment
513.0	J	Seal:	mets
Surface Casing Diameter: 8 2 Inside Diameter of Surface Casing: 8 2 GW = 7.6/ToR 5/709 6.76/ToR 6/3/09 Depth/Elevation of Top of Well Seal: 4.0/B65 / 509.0/ Depth/Elevation of Top of Sand: 7.0/B65 / 506.0/ Depth/Elevation of Top of Screen:		Type of Riser: Self Chemsoil Riser Inside Diameter: 37 Type of Seal: Bea	usoil and #0 swel
Depth/Elevation of Bottom of Screen: 13.8 & 1 499.2 Depth/Elevation of Bottom of Boring: 14.2665 / 498.8' MACTEC		Depth of Sediment Sump with Plug: 14	140 PVC 14×51 2 ,2'865 FIGURE 4-7 UCTION DIAGRAM
Portland, ME 04101		DEC QUALITY ASSURANC	

· · · · · · · · · · · · · · · · · · ·	SOIL BORING LOG	
Project Dinaburg Distribut	Boring/Well 1 MW-1	
Client NYSDEC	Site Clinition tre, Ruhester, NY	Sheet No of2
Logged By J. Rawcliffe	Ground Elevation Start Date 5/5/04	Finish Date 5/5/09
Drilling Contractor Geolugic NV	Driller's Name Scott Breeds	Rig Type Touch mounted CUTE
Drilling Method HSA/4=Drive + Wa	Protection Level P.I.D. (eV)	Casing Size Auger Size
Soil Drilled 19.6 Rock Drilled /.	Total Donth Donth to Groundwater	Date Piez Well Boring
Depth(Feet) Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Core Rec./Rqd. % SPT-N (Blows/Ft.)	9.08 топ ฝ3	Group Symbol PI Meter Field Scan PI Meter PI Meter Head Space Lab Tests ID Sample
	0-0.4 Asphalt. 0.4-3 Brown Fueto couse sule till with some coldules.	0 114
3 — 1	3 - Brown Fine soul with somes a little to troves of medium to soul	o course SM 3,2
5 SI 0905 15 45-65 25 45-65 50 45	Brown to stightly yellowish brown fine silt matrix with some growlend a media to course south (1-11!).	sandard _ 3,4 little _ 3,7
8-	Encountered something hard out? OGS colde or converte ribble? Augenced through a service of colobel	
9		0,2
10 - 52,0945 28 22 45-115 18 40	Brown to olive grayish brown becoming re the tip. Grand with face to cocose so Wet, grand is very angular, old Ruel-lib (Ether Fill or granuelly till).	eodor 130
12	Estmoted chare to till with sanly si	Finadrix.
MACTEC 511 Congress Steet Portland, ME 04101		BAS 05-13-09

	SOIL BORING LOG							
Project Dinabury Distributa	Boring/Well W W	No. Project No13K 361208210フ						
Client NYSDEC	Site of 1 /) A	Sheet No. <u>2</u> of <u>2</u>						
Logged By Rawclife	Ground Elevation Start Date 5/5/0	Finish Date 5/5/09						
Drilling Contractor らといったとり	Contractor Driller's Name Scott Breads Rig Type Truchmounted CINE							
Drilling Method 1+5A/4=Drive = Vash	Protection Level P.I.D. (eV)	Casing Size Auger Size						
Soil Drilled Rock Drilled	7 Total Depth Depth to Groundwater 9154 516	/Date Piez Well Boring						
Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Core Rec./Rqd. % SPT-N (Blows/Ft.)	9.08 To 1. 4 Sample Description							
14		-						
145-165 11 23	Redelish brown silt and fine Scalar a little medin to coarse sunt and growel. (T.11). Very moist	retrix with SW 55 - * Traces of Com 32						
17— 18— 19—	Simple 4º casing.	-						
20 - 54 120 50/1 - 7 21 - 195446	No recovery. Refusal on possible to 19.6-865. I Vsed tri come roller bit to drill 19.6 to 21.5' into roch.	85pm						
23— 24—	21.2-21.4 encountered from storted loosing unter. 21.5' Bottom of boray.	atroe -						
There appears to be	a smully met unit overlying fil	l that has some possible						
Vesidud Fuel as MACTEC 511 Congress Steet Portland, ME 04101	a smilly met mit overlying fil	RAS 05-13-09						

Overburden Well Constr	uction Diagr	am	Well No.: MW-13/C
Project No.: 3617082107	Project Name:	Oinabura Disdributan	
NUSDEC		indrais Aul. Rudieste	
	ottBreeds	Method: HSA/4".Dr	7
Logged By: J, Rawcliffe		Date Started: 5/5/09	Completed: 5/5/09
	: 05-13-09.	Well Development Date:	5/6/09
Not To Scale	.		
	;		
Surface Casing Type:		·,	
Flush mount steel cusing			
Ground Surface Elevation:			
513.4		Type of Surface Seal:	ament
- + //	4216 0 200	7/	
Surface Casing Diameter:	\$ 0.28		
<u> </u>		-#O sand	0-14865 4= 14-21,5BCS
Inside Diameter of Surface Casing:		*	4.0
8	A A	Inside Diameter of 4.0'865 Borehole Casing:	3110-14 4= 14-21,5BG
		4.5'B65 Bendoni Helys	
Double / Elevation of		——— Type of Backfill: 🗘	we 9 40 sand
Depth/Elevation of Top of Well Seal:		•	*
10.0'BGS 1 503,4	65XI 1 5// 1	Type of Riser.	dryopyc
Depth/Elevation of Top of Sand:	1151 601	Riser Inside Diameter:	<u> </u>
13.9'865 1 499,5'			Bentonitechip
		Type of Seal: 4	JEMIONINC COLLY
Depth/Elevation of Top of Screen:	•		
15.2'BGS 1498.2		——Type of Sand Pack: #	O Silica (USSilica Filho)
		•	
		Type of Screen:	Sch 40 PVC
		Slot Size x Length: O Inside Diameter	101.4.5
Double (Classical of		of Screen: _C)
Depth/Elevation of Bottom of Screen:		•	
2012/865/493.2		Depth of Sediment	
Depth/Elevation of Bottom of Boring:	4	Sump with Plug: 2	20,5 865
205 BCS 1 491.9		·	
2 IVIACIEC OVE	RBURDEN MO	NITORING WELL CONS	FIGURE 4-7 TRUCTION DIAGRAM
511 Congress Street Portland, ME 04101		DEC QUALITY ASSURA	

WELL D	EVELOPMENT REC			
Project: Dinatury Distribution	Well Installation Date: 05	- 05-20	G.	Project No. 3G/2U80-10フ
Client: NYSNEC	Well Development Date:	6/09	Logged by: でKR	Checked by:
Well/Site I.D.: MW-13K °	Weather: Partly cloudy, 55-	60°F	Start Date: 5/6/09	Finish Date:
Well Construction Record Data:	Well Diameter	2	Start Time:	Finish Time:
Bottom of Screen		ø in.	1630	1840.
Sediment Sump/Plug Transfer \$1\tau_1\tau	om Ground Surface 🔾 From	Top of Riser		
Screen Length 5 ft.	Fluids Lost during Drilling	30 gal.		
Drotocki	us Casing Mall Diff A 29	ft PID Rea	dings: Ambient A	Air —
Protective Casing Stick-up ft. Protecti	ve Casing/Well Diff. 0,29	ft. PID Rea	dings:	ppm
			Well Mou	tn ppm
W W L	ment:			
Well Ecocio.	Il Depth before Development	20,25 ft.	(from top of PV	C) _
The state of the s	ell Depth after Development	20.25 ft.		***
7754 10 1305	diment Depth Removed	O ft.		
	. 00x 1 /61) 1	
	-68*gal./ft.	2	gal./vol. *for 4" HSA Ins	stalled Wells
Equipment:	•		1	
□ Dedicated Submersible Pump Appr	oximate Recharge Rage	JiY gpm		
☐ Surge Block Total	Gallons Removed	155 gal.		•
☐ Bailer ☐ 2" ☐ 10tall ☐ Grundfos Pump 2" _		700 gai.		
I What I a		Well water clear	to unaided eve	Yes No ⋈ ⊓
Well Development Criteria Met: Notes: 1 Saturated well volume with sulpu		Sediment thickne	ess remaining in	X D
		well is <1.0% of	screen length oved = a minimum	n ø 🗅
prosidey = 2 gellous	· ·	of 5x calculated		
	the state of the s	5x drilling fluid ic		
End of Well Development Sample (1 pint) Collected?		Turbidity < 5NTU 10% change in fi		X D
Water Parameter Measurements		1	•	
Record at start, twice during and at the end of developn	nent (minimum):	m5/cm		
Time Volume Total Gallons	pH Temp.	Conductance		Pumping Rate
1637 Stat 15 3	$\frac{1}{2}$	0.010		21-1.50PM
1653 11,5 23	7.1 11.9	1,59	71000	
1707 215 43	74 119	1.58	370	
1721 31.5 63	7.1 12.0	1.60	196	
1734 41.5 83	7.0 11.9	1.6	135	
1751 515 103	7.0 119	1.62	25	\ //
1806 615 123	7.0 11.9	1.62	<u>~\sigma\sig</u>	<u> </u>
Well Developer's Signature June 143	119	1.62	9.2	
1833 77.5 155	7.0 11.9	1.63	40/	URE 4-9
MACTEC		WELL DEVE	ELOPMENT F	
511 Congress Steet Portland, ME 04101	NYSDEC QUALITY	/ ASSURAN	CE PROGRA	M PLAN

	SOIL BORI						
roject Dinabury Distrib	uting	Boring/Well $M\omega$ -	No. 1414	Project N 3 <i>612-</i> 08		7	
lient NYSDEC	Site Chronic Are Rock	oster,UV	Sheet No	1	of	2	
ogged By J. Rawchff	Ground Elevation 513.04	Start Date 5/6/0	g Finis	h Date	77/09	 1	
rilling Contractor Geologic NY	Driller's Name	eds	Rig Type Tyvch M	ounted (ME	•	
orilling Method Drive EWash	Protection Level D	P.I.D. (eV)	Casing Size		Auger	Size)
Dook Drilled	Total Depth	epth to Groundwate	r/Date	Piez	Well	Boring	
Depth(Feet) Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Core Rec./Rqd. % SPT-N (Blows/Ft.)	8	Description		USCS Group Symbol	Monito	oring	Lab Tests ID Sample
	Augered to 4.5' BGS 1 hill - Brown growle and a little fine see	through sand o ith median toca I and colbers,	and gravel eure seerl (Fi 11)	GP	0 0	NA	M
5 - 45 - 65 10 22	No recovery. appear	n to have pus	hed a	-	-		\ .
7— 0/2.0 (17) 7— 3—	Change 0 2 7,5' to said Brownto In	Ciner grawed : glet reddish bon	sily fine our moist.		0		
7_						5,2	
15-115 17 38	Top 0.6 Brown to yello sand with some cocire sit. Moist, nottled (it Bottom v.g. Reddichbrow with a little medium to	igh PID at intach	me) 22ppm	S <u>P</u> SM	1	I Jead Orit	
12-	moist, massue. (Till) Switchingto 4° casing				4.2		
MACTEC 511 Congress Steet Portland, ME 04101		1	SAS 05-	17 2			

plect Dinuburg Distrib			-14/	3612-0	1831	07	
ent NYSDEC	Site Chinton the Roa	chester, N.Y.	Sheet No	2	_ of	<u>a</u>	
gged By J. Rawcliff	Ground Elevation 5/3.0 Y	Start Date 5/6/0	9 Finis	h Date 5	17/0	99	
Illing Contractor Geologic NY	Driller's Name Scott Bree	ds	Rig Type Truck ma	unted	CME	5	
lling Method 1+5 A/42 Drive & Wash	Protection Level	P.I.D. (eV)	Casing Size	ID	Auger	Size	D
il Drilled Rock Drilled	Total Depth	Depth to Groundwater,	/Date 5-8-04	Piez	Well	Boring	j
£ %		8.60'TOR 6/3	5/09	-	Monit		,
No. & No. & Ation/ (Fee ws/6" / Rqd.	•	•	· ·	S: ymbc	(pp		tb Tests Sample
Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Core Rec./Rqd. % SPT-N (Blows/Ft.)	Sampl	le Description		USCS Group Symbol	Pi Meter Field Scan	PI Meter Head Space	Lab Tests ID Sample
							NA
	048/ 10	tish gruy fine said		CM			
- 53 1325 18 - 115 x 5 22 39	reddish brown to redo yet wells that hed with h	ceyers 2 5 mm clay/sitt	lenses and	Strino)	25-		
145-165 20 39	eddish bround to lethe betwell state hed with he faire scand layers. Gradi faire scand and silt ma sandland a little gran caractional sauly love.	in in with median 1. Welders, mostly in	hocloure nassue with	Guys	85		
`-	acardon sand was	3:000					
							l.
						54 pp	m=1
				<u> </u>	<u>.</u>	1 teal	spen
-54 1505 28	Shighely revelish aline gun silt with ground and s	1 to redden brown fin	e surand to course		19	w	er
-119.574.5	sandard grand colle coarse gravel in tip.	es (Till). Pieces of	-cobble or		100		
10 27	·			Ī		ļ	-
<u></u>]	Ontler ill-stoppingfort 5/7/09 1115 Resume	doubling at mov-	1414	-	A	18 pp	
A 2 3 4 1 2 1	Top of bedrock = 2:			-//	X	50	不
	Encountered freatme	at = 24.2 BGS a	unl stanted				'
	losing water. Drilled to 24.4 But						
, 	borchols. Bottomof borzy o		,-7,000				
			***************************************	···· /			

Overburden Well Constr	uction Diagram Well No.: MW-14K
Project No.: 3617082107.	Project Name: Dinaburg Distributing
NUSDEC	Project Area: Cliviou Aug, Ruchester, NY
Contractor: Geologic NY Driller: Su	of threedels March Method: 1+519/42 Orive & Wash
Logged By: J. Rawcliffe	Date Started: 5/0/09 Completed: 5/7/09
Checked By: BAS Date	205-13-09 Well Development Date: 5/8/09
Not To Scale	
en en en en en en en en en en en en en e	
Surface Casing Type:	
Flush mount steel	
Ground Surface Elevation:	Type of Surface
5/3,04	Type of Surface Cewent
Surface Casing	160.42
Diameter: 82	
Inside Diameter of	Borehole Diameter: 0-10/8" 10-34/4=
Surface Casing: 82	Inside Diameter of
C. 1-C.C.C. 1 . 0. ml. 100	Borehole Casing:
6W=8,99 TOR 5/8/09 8160'TOR 6/3/09	
Depth/Elevation of	Type of Backfill: Bewton, te chipc
Top of Well Seal: 15.5 865 / 497,54	Type of Riser: Sch 40 PVC
Depth/Elevation of	1315 Cave IM
Top of Sand:	
17.5'B65 1 495,54	Type of Seal: Bentonite chips
Depth/Elevation of	PARTY ATTRIBUTE
Top of Screen: 19.35'865 1 493,69'	to us sil
19.35 965 1493,69	Type of Sand Pack: #O VS Schica
	Type of Screen: Sol 40 PVC
	Slot Size x Length: O(01 × 5'
	Inside Diameter
Depth/Elevation of	
Bottom of Screen: 24.05'865 / 488.59'	22.4' Bedroch (BGS)
Depth/Elevation of	Depth of Sediment Sump with Plug: 24-41065
Bottom of Boring:	Sump with Flug. Le 12 L 999
24.4-865 1 488.68	
∦ MACTEC □	FIGURE 4-7
511 Congress Street Portland, ME 04101	RBURDEN MONITORING WELL CONSTRUCTION DIAGRAM NYSDEC QUALITY ASSURANCE PROJECT PLAN

WELL	DEVELOPMENT RECO			
Project: Dinaburg Distribution	Well Installation Date: 3) 7			Project No.
Olient: NYSOEC	Well Development Date: 51		Logged by:	Checked-by:
Well/Site I.D.: MW-14K	Weather: Sumy to part	fly closely	Start Date:	Finish Date:
	Well Diameter ☐	⊋ ² in.	Start Time:	Finish Time:
Screen Length O.35 ft. 4.8 ft.	Fluids Lost during Drilling	30 gal.	. ;	
Protective Casing Stick-up O ft. Protective	ctive Casing/Well Diff. 0.42	ft. PID Read	dings: Ambient A	ppm
Well Levels: Sec	diment:			
Initial 8.98 To 7	Vell Depth before Development	24.0 ft.	(from top of PV	C)
End of Development 9.29 ft.	Vell Depth after Development	24.0 ft.		
24 Hours after Development VWY ft.	Sediment Depth Removed	O ft.		
HI of water Column 1 13 1 20 5 ft. X	1.68* gal./ft. =	3.3	gal./vol. *for 4" HSA Ins	
☐ Surge Block	proximate Recharge Rage	1.5 gpm 170 gal.		· · · · · · · · · · · · · · · · · · ·
Well Development Criteria Met: Yes Notes:	■ S	Vell water clear t sediment thickne vell is <1.0% of s	ss remaining in creen length	Yes No Ø □ Ø □
	0 5	otal water remover 5x calculated water was drilling fluid los turbidity < 5NTU	vell volume plus st	a A o
End of Well Development Sample (1 pint) Collected?	? 	0% change in fie	eld parameters	X D
Record at start, twice during and at the end of development Total Gallons 1047	(30)	(m5/cm) Conductance 1.08 1.44 1.50 1.51 1.53 1.55	Turbidity 330 30 69 1.6 1.5 1.0 38	Pumping Rate 1.5 (64ppm heal recolarges w
Well Developer's Signature Dim MCell MACTEC	<u>\$</u>		∫} FIG	erdsmed o veloquet u URE 4-9
511 Congress Steet Batterney dide of Portland, ME 04101 got new Supply on	NYSDEC QUALITY	VELL DEVE		

PORT2007022h.mac

resume purpo det 1033

NOTHNAGLE DRILLING

1821 Scottsville-Mumford Road SCOTTSVILLE, NEW YORK 14546

Phone (716) 538-2328 Fax (716) 538-2357 FEB 1 6 1895 SEAF

Test Boring No. B-1

Page 1 of 1

ND Job # 0527

MW-1

	Projec Client								Rochester, New New York 14623	-	_	
E	Eleva	tion	_	_ Start	2/1/9	5	_ Comple	eted	2/1/95	Driller N. Short		
٧	Vater	r Level -	During D	rilling								
								r leve	els.			
		Blows on Sampler Sample							Soil and Rock Information			
0	С	0" 6"	6" 12"	12"	18"	N	Rec.	No	Depth	Remarks		
				ļ						Asphalt Gravel	0'6" 1'0"	
		24	13	14	6	27	17"	1	410" 010"	Compact brown moist medium	<u> </u>	
•		3	5	14	-	21	'/	+ -	1'0"-3'0"	to fine sand, some silt, trace		
5		3-	3	6	10	11	16"	2	3'0"-5'0"	fine gravel	3'0"	
<u> </u>		6	10					1	1 30 - 30	Firm brown-gray moist medium		
				17	18	27	11"	3	5'0"-7'0"	to fine sand, some silt, trace		
		27	38							clay and fine gravel		
				47	49	85	16"	4	7'0"-9'0"	Compact gray wet (trace coarse to fine gravel)		
<u>10</u>		9	10				400	<u> </u>	4	Very dense grav moist	9'0"	
		45		9	15	19	16"	5	9'0"-11'0"	Firm brown-red moist medium		
		17	21	25	26	46	15"	6	44107 40107	to fine sand, some silt and		
		9	10	23	-20	40	13	┞╬╴	11'0"-13'0"	coarse to fine gravel, trace clay	11'0"	
15			10	16	17	26	14"	7	13'0"-15'0"	Dense gray-brown wet fine sand,		
<u></u>		6	12						100-100	some silt, trace medium to fine		
				13_	15	25	21"	8	15'0"-17'0"	gravel and clay		
		12	20							Compact gray-red-brown moist Firm gray-red-brown moist		
		<u> </u>		27	20	47	16"	9	17'0"-19'0"	Dense gray-red-brown moist		
<u>20</u>		23	28	40	1001	74	4.0	10		Very dense gray moist	20'3"	
			_	43	100/1	71	4"	10	. 19'0"-20'7"	Very dense gray moist	_	
			_	_					1	weathered bedrock fragments		
		l						 	1	Advanced augers to refusal	20'7"	
25		_										
								ļ	-			
00		_			 			\vdash	-			
<u>30</u>								1	ł			
	_						-	1	1			
					<u> </u>							
]	Boring terminated at 207"		
<u>35</u>]	Advanced test boring with hollow		
										stem auger casing		
										Well installed in completed borehole. See attached well		
	\vdash				 			-	-	detail		
40					 			\vdash	{			
70_		L	<u> </u>	<u> </u>	L Spoon			Ь—	w 30"	Fa Blow		

C=No. of Blows to Drive _____ Casing _____ with _____ lb. wt. ____ Ea. Blow

ΜV	/-1	Α

NOTHNAGLE DRILLING

1821 Scottsville-Mumford Road SCOTTSVILLE, NEW YORK 14546

Phone (716) 538-2328 Fax (716) 538-2357 Test Boring No. B-1A

Page _1 of _1

ND Job # 0527

	•								Rochester, New New York 14623		_
										Driller N. Short	_
			During [•				
			_	-					<u> </u>		_
8	eas	onal and	climatic	changes	may alte	r obser	ed water	r leve	ls		
		BI	ows on S	Sampler			Sa	mple	9	Soil and Rock Information	
	С	0"/	6"	12"	18"			_		Remarks	
0		6"	12"	18"	24"	N_	Rec.	No	Depth		0'6"
	├	 	├	 				-		Asphalt Gravel	1'0"
		-								Very dense brown moist fine	
_		10		<u> </u>		_				sand, some silt and coarse to fine gravel	
<u>5</u>		16	23	43	51	-66	12"	1	4'0"-6'0"	Compact brown wet (little	
		28	16							coarse to fine gravel, trace	
				13	13	29	18"	2	6'0"-8'0"	clay)	8'0"
10		-	 			-					
10						-				}	
	<u> </u>		 	<u> </u>		-	 -	┼─┤			
15_											
			 	 -		<u> </u>	 	-			
20											
	<u> </u>		Ļ					<u> </u>		Boring terminated at 8'0"	
		 			 	_		\vdash		Advanced test boring with hollow stem auger casing	
	_									Well installed in completed	
<u>25</u>										borehole. See attached well	
	<u> </u>	<u> </u> -		 		_	<u> </u>	_		detail	
30	-	 -		 	 		-	\vdash			
				<u> </u>							
							ļ				
35		 		<u> </u>	 			-			
<u> </u>		\vdash	 	†	1 -			\vdash			
										j	
	├—	<u> </u>		<u> </u>			 	-		1	
40			 		 		 	\vdash		İ	
	la af	Blows t	o Drive		Spoon	12" wi	th 140	 lh	. wt30"	Ea. Blow	
		Diows t				wi				Ea Ploy	

MW-2

NOTHNAGLE DRILLING

1821 Scottsville-Mumford Road SCOTTSVILLE, NEW YORK 14546

Phone (716) 538-2328 Fax (716) 538-2357 Page 1 of 1

ND Job # 0527

	Client		Oour Di						New York 14623	Driller K. Busch
			During D	_			•		Inspector	
			At Comp	•					1113000101	
			•		may alte	r observ	ed water	rleve		
			ows on S							0 1 10 11 (11
		0"	6"	12"	18"	1	Sai	mpl	е	Soil and Rock Information
0	С	6"	12"	18"	24"	N	Rec.	No	Depth	Remarks
										Concrete 0'4'
		5	6_		10					Firm brown-black moist medium
			ļ <u>-</u> -	12	13	18	4"	1_	1'0"-3'0"	to fine sand, some silt, trace clay (odor noted)
5		4	 4 	9	21	13	12"	2	3'0"-5'0"	Firm brown-black moist
<u> </u>		14	19			'Ŭ	<u>'-</u> -	-	30-50	(trace fill, brick and concrete) 5'0
				29	30	48	14"	3	5'0"-7'0"	Dense black-brown moist medium
		100/2				100/2	2"	4	7'0"-7'2"	to fine sand, some silt, trace
					ļ		_	_		fine grave 5'2 Dense brown wet medium to
10		23	32	35	100/4	67	12"	5	01011 4 014 011	fine sand, some silt, little
		63	53	35	100/4	- 67	<u>''-</u>	13	9'0"-10'10"	coarse to fine gravel
			33	49	40_	102	12"	6	11'0"-13'0"	Very dense brown wet
		43	68							Very dense brown wet 10'10
15				100/4		168/10	16"	7_	13'0"-14'4"	Very dense brown wet fine
		83	100/4	ļ		100/4	12"	8	15'0"-15'10"	sand, some silt, trace clay and fine gravel
		48	84							Very dense red-brown moist
			<u> </u>	100/3	 	184/9	15"	9	17'0"-18'3"	(little clay and fine gravel)
20		25	100/4			100/4	8"	10		Very dense red-brown wet
								<u> </u>		(odor noted)
		63	100/2			100/2	3"	11	21'0"-21'8"	Very dense red-brown wet Very dense red-brown wet
								_	-	Very dense red-brown wet
25									1	Advanced augers to refusal 22'4"_
									1	
]	B :
					}			<u> </u>		Boring terminated at 22'4" Advanced test boring with hollow
30			<u> </u>		-				1	stem auger casing
<u>, , , , , , , , , , , , , , , , , , , </u>		_						1	1	Well installed in completed
				<u>-</u>					1	borehole. See attached well
]	detail
					ļ					
35			ļ <u> </u>					├—	1	
		_	-		-			\vdash	1	
					 		l		1	
									1	
40									1	_

NOTHNAGLE DRILLING

1821 Scottsville-Mumford Road SCOTTSVILLE, NEW YORK 14546

Phone (716) 538-2328 Fax (716) 538-2357

	MW-	3		
Test Boring	No.	E	3-3	
Page	· _	1_	of	_1_
ND Jol	b#	05	27	

		- During				-		2/6/95 Inspector		_
		- At Com	pletion changes							
562		Blows on			005614		mple		Soil and Rock Information	
c	0" 6"	6" 12"	12" 18"	18" 24"	N	Rec.	<u> </u>	_	Remarks	
									Asphalt Gravel	_
	5	6	8	6	14_	12"	1	1'0"-3'0"	Firm black moist coarse to fine sand, some silt	
	3	8	8	9	16	12"	2	3'0"-5'0"	Firm brown moist medium to	_
-	4	6	8	14_	14	16"	3	5'0"-7'0"	fine sand, some silt, trace coarse to fine gravel	
F	7	8_	10	10	18	16"	4	7'0"-9'0"	Firm brown moist Firm brown moist (trace clay)	
0	_5	7	11	11		18"	5	9'0"-11'0"	Firm red-brown moist Firm gray wet	
	14	19			18				Dense gray wet	
	14	15	31	32	50	14"_	6	11'0 " -13'0"		
5	15	17	16	17	31	<u>16"</u>	7_	13'0"-15'0"	Compact red-brown wet	
	18	18	19	25	36	20"	8	15'0"-17'0"	Compact red-brown-gray wet (some coarse to fine gravel)	
\Box	ļ		27	13	45	0"	9	17'0"-19'0"	No recovery sample No. 9	
<u> </u>	8	8	12	22	20	6"	10	19'0"-21'0"	Firm gray wet Very dense gray wet	
	68	100/3			100/3	3"	11	21'0"-21'9"	Very dense gray wet weathered	
	-								bedrock fragments Advanced augers to refusal	2
					_		_		Boring terminated at 21'9"	
									Advanced test boring with hollow stem auger casing	
•	-						ļ —		Well installed in completed borehole. See attached well	
			 						detail	
5		+								
	1									
			1							

NOTHNRGLE DRILLING

1821 Scottsville-Mumford Road SCOTTSVILLE, NEW YORK 14546

Phone (716) 538-2328

MW-3C-A Test Boring No. B-3A Page 1 of 1

ND Job # 1001 Fax (716) 538-2357 Project _____ Dinaburg Site, 1012 South Clinton Avenue, Rochester, New York Client ____ The Sear Brown Group, 85 Metro Park, Rochester, New York 14623 10/14/97 Completed 10/14/97 Driller S. Loranty Elevation ____ Start Water Level - During Drilling 14'0" Inspector P. Smith Water Level - At Completion __ Seasonal and climatic changes may alter observed water levels. Blows on Sampler Soil and Rock Information Sample 12" 🗸 Remarks C 0 12" Ν Rec. No Depth 18" 24" Asphalt and gravel 1'0" 8 7 Loose black moist coarse to 2'7" 5 12" fine sand, some silt (fill) 3 10 1'0"-3'0" 3 6 Loose brown moist fine sand, 12" some silt (odor noted) 5 7 5 13 3'0"-5'0" 5 5 Firm brown moist (odor noted) 4'6" 16" 9 8 3 5'0"-7'0" Firm brown moist coarse to 9 7 fine sand, some silt, trace 7 2" 7'0"-9'0" 7 14 4 gravel and clay <u>1</u>0 8 Firm brown moist 18" 5 13 20 21 9'0"-11'0" Firm brown moist 18 18 Firm gray moist 10'0" 25 24 43 20" 6 11'0"-13'0" Firm red-brown moist fine 13 13 sand, some silt and gravel, 18" 7 <u>15</u> 15 28 13'0"-15'0" 8 trace clay (odor noted) 11 Dense red-brown moist 16" 50 100/3 8 15'0"-16'9" 61 Compact gray wet (trace gravel) (odor noted) Very dense gray wet 15'10" 20 Very dense red-brown moist silt, some clay and fine sand (odor noted) 16'4" Very dense gray fine sand, 25 some silt and gravel (odor noted) Encountered boulder 16'9" Advanced augers to refusal 17'4" 30 Boring terminated at 17'4" Advanced test boring with hollow stem auger casing. 35 Boring grout abandoned on completion. 40 N=No. of Blows to Drive 2" Spoon 12" with 140 lb. wt. 30" Ea. Blow

C=No. of Blows to Drive _____ Casing _____ with _____ lb. wt. ____ Ea. Blow

ı	Proje	ct	Dinaburg	Site. 10	12 South	n Clinton	Avenue	. Ro	chester. New Yo	ork
									ster, New York 1	
										Driller S. Loranty
,	Wate	r Level	- During	Drilling					Inspector	P. Smith
5	Seaso	T-			s may al	ter obse	rved wa	ter le	evels.	
		В	lows on	Sampler		,	Sa	amp	le	Soil and Rock Information
0	С	0"6"	6" 12"	12" 18"	18"	N	Rec.	_	T	Remarks
5		1	11	3	6	4	12"	1	3'0"-5'0"	Loose gray moist fine sand, some silt
<u> </u>				3		4	16		30-30	
		2	10							Compact gray wet silt, some
<u>10</u>				16	10	26	12"	2	8'0"-10'0"	coarse to fine gravel and sand
		100/1			-	100/1	0"	3	13'0"-13'1"	No recovery sample no. 3
<u>15</u>		10071				100/1	V	3	130-131	Encountered boulder 13'1"
										Advanced augers to refusal
20							_			rataneou dagere to relaca.
20_							_			
										Boring terminated at 18'4"
			_							Advanced test boring with hollow
<u>25</u>										stem auger casing. Boring grout abandoned on comple
					_					Note: Boring moved 1/2 way bet
										B-3 and B-3A
30										
<u> </u>										
<u>35</u>										
			_							
40	ļ									

NOTHNAGLE DRILLING

1821 Scottsville-Mumford Road

MW-3C-B

B-3B

Test Boring No.

Page

MW-3C-C

NOTHNAGLE DRILLING

1821 Scottsville-Mumford Road SCOTTSVILLE, NEW YORK 14546

Project _____ Dinaburg Site, 1012 South Clinton Avenue, Rochester, New York

Phone (716) 538-2328 Fax (716) 538-2357

Test Boring No. <u>MW-3C</u>

Page <u>1</u> of <u>1</u>

ND Job # 1001

							•			Driller <u>S. Loranty</u> P. Smith
			-	-						
						Iter obse				
•	l					Ter obse	- wa	tei it		
		В	lows on	1		,	Sa	amp	le	Soil and Rock Information
	C	0"/	6"	12"	18"				т -	Remarks
0	<u> </u>	6"	12"	18"	24"	N	Rec.	No	Depth	
					-			_	1	
	<u></u>				-			-		
<u>5</u>										
			·							
10				<u> </u>	 			-	-	
10										
			_							
		5	14							Dense red-brown-gray moist sand
<u>15</u>				17	24	41	20"	1_	13'0"-15'0"	and gravel, some silt, trace clay Extremely difficult drilling
		-								15'0"- 18'0"
			-	_						
		21	19							
<u>20</u>				20	21	39	18"	2	18'0"-20'0"	Compact gray wet gravel, some s
		26	40	_	_					Vone donos grav wat
		100/5		40	35	80	16"	3	20'0"-22'0"	Very dense gray wet Very dense gray moist
		100/5				100/5	3"	4	22'0"-22'5" Run #1	Advanced augers to refusal
25									22'7"-27'7"	Medium hard gray dolomite mildly
							_		Rec. 56"	fractured horizontally
							_		R.Q.D. 66%	
			_		<u> </u>					
30									Run #2	(Mud filled fracture with
									Hun #2 27'7"-32'7"	odor noted 32'4") 3
									Rec. 58"	Boring terminated at 32'7"
									R.Q.D. 86%	Advanced test boring with hollow
<u>, </u>			-							stem auger casing. Cored with Series "M" double tubed
<u>35</u>			-							core barrel and diamond bit.
	\dashv									Well installed in completed borehol
					<u> </u>					See attached well diagram.
İ										Note: Boring moved 5.0' north of
40 [boring B-3.

				URS	Co	rpora	tion				TEST BORIN	G LO	G	
						•					BORING NO: MW-10K	-		
PROJEC	CT:	Dina	bura Di	stribut	ina S	ite. Roc	hester. N	lew York			SHEET:	1 of 1		
CLIENT		NYS				,	,				JOB NO.:		10 357	98.02
-	CONTRA			Buffal	o Dri	Iling Co.					BORING LOCATION:실			
	DWATER:						CAS.	SAMPLER	CORE	TUBE	GROUND ELEVATION:			
DATE		_	EVEL	TYF)E	TYPE	OAG.	Split spoon	NX	TODE	DATE STARTED: Octo			49
1/27/20	I DVIE	_	.49	TOP O		DIA.		2"	2.0		DATE STARTED: Octo			
42/100		202	.+1	RE	e I	WT.		140#	2.0		DRILLER: Don Rimbed		2000	
						FALL		30"			GEOLOGIST:	Tim Bu	rmeie	r
	<u> </u>	 					KET PE	NETROMET	L FR RFΔ	DING	REVIEWED BY: DA			
	1	l	SAMF			100	1	TE ITOME		CRIPTIO		+ +		-101
DEPTH		l -	JAWII	BLO	W/S	REC%		CONSIST			MATERIAL	1	DEM	IARKS
	STRATA	NO	TYPE	PER		RQD%	COLOR				SCRIPTION	uscs		Moist
1					17				ASPH	ACT P	AVING (0-4")			
	$\forall \forall \forall \forall$	1	24	7	6	65	GRAY	MED	FILL	- IRE	-workers sicty ace coal	FILL	0	M015T
	$\times \times$			5	7		BROWN	DENSE		ν. · ×			_	
	$\mathbb{K} \mathbb{X} \mathbb{X}$	2	16		16	5							0	
5	- 	[-	6	12	-	RED		FINE	£ 501	SAJUONA-CL	/ ->	UP	
		3	26	14	6	70	BROWN		(NU)	KTZ		SP	P109	
		<u>├</u>	~ 1	7	IZ	20.00			<i>c</i>	1=.1 -	·			VERY
	/(/	4	24	12	7	90		VERY			F, GROVEL	ML	0.9	MOIST
	[.(.)(.)	_	лл	2	15	~~		STITE					UP TO	
10		5	44		42	55		170		LA	YTHIN SAND		2.0	WET
	500	6	39	10	17.	5 0		HARD		→ D0	DSTONES DST. FRAGE		1.5	MOIST
	0/			22	14	۲			/		ILT W/GRAY	_	2.0	,
]/ \/	7	50	3 1	22	85			Morn	ES	7027		OA	MOIST
	((28	33								UM	WET
15	[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	8	31	11	14	85				<i>بر</i> دا	Y CONTENT REDSES		0.2	MUIST
			ار	17	29	0,5				100	ACDSES		012	
	1 1	9	83	1/	41	60							0.2	DRILL STRING WET
	00000		00		<u>355</u>	20			-	- w/.	ABUNDANT			1 45 A
	V (/)	10	45	16	25	60				DO	LOSTONE		0.2	14
20	00)0		_	20	30				Mean		OMENIE SBEDROCK -			
	7-/	11	33	15	18	100	MED	HARD	D060	STONE	FRAGSESILT	VBR	()2	
	//			19 "	75	41	GRAY	11	LOCK	4208	TOZOUP DOLO- IELY (ENSTINU) TUZELESS W/THIN IDEDITING STZ4-		<u> </u>	
	7	12	C-1			13		HARD	STON	EFIN	EW CENSTAIL			
25	7		C-Z	9		1/			يل أياد	23.77 2007	IDEDDING AT 24			
		-13 -				X	Before Successive on	TO SERVICE OF THE STREET AND AND AND AND AND AND AND AND AND AND			OTAL DEPTH = 25/			L
		4.4												
		14												
		15											-	
30				-										
		16												
									1					
		17												

35		18												
					, r								_	
	nts: Boring						f.				PROJECT NO.	05.00	0.357	98.02
	-1/4 inch ho			_			npling				BORING NO. M.M.	10	\times	
accompl	ished with	a ∠-IN	on split b	barrel S	агпріє	31 .								

Subsurface Log MPE-1

Project Name: Dinaburg

Owner: NYSDEC

Date: 10/31/2005

Location: 1012 S. Clinton, Rochester

Permit No.: NA

Boring Number: MPE-1

Log By: A Kearns Driller: Geologic

Drilling Method: 6 1/4 HSA

Sample Method: 2-inch Split Spoon

Borehole Dia: 10 inch

Consti	meti	on	let:	arts

Total Well Depth: 13.5 ft	Bentonite Interval: 3.0-2.5	Backfill
Screen Interval: 13.5-3.5	Cement/Grout Interval: NA	Cement/Grout
Sand Pack Interval: 13.5-3.0	Sand Pack Type: #00N Morie	Bentonite
Completion Details: 4-inch diameter Sch	40 PVC Screen (10-slot) and Riser	Sand

	l Pack Interval: pletion Details:		Sand Pack Type: #00N Morie neter Sch 40 PVC Screen (10-slot) and Riser	Bentonite Sand
Depth (ft)	Sample Depth (ft)	Blow Counts	Lithology: Burmeister Classification System	Well Schematic
	0.5-2.0	7-6-6	Concrete Asphalt Brown Fine SAND Brown Fine SAND and SILT	
	NC	NA		
5	5-7	5-10 19-10	Light Brown SILT, trace fine Sand Brown SILT, some fine Sand, trace Clay moist	
	7-9	28-30 38-41	Brown SILT, some fine to medium Sand, very moist Brown SILT and CLAY wet	
10	9-11	8-17 31-47	Brown SILT, trace Clay Brown SILT and CLAY, some fine to medium Sand Brown SILT, little Clay and medium Gravel	
	11-13	4-4 50/0.4	Brown SILT, little fine Sand, trace Clay Augered through boulder from 11-13.5	
15				
				i i

Subsurface Log MPE-4

Project Name: Dinaburg

Location: 1012 S. Clinton, Rochester

Owner: NYSDEC

Date: 11/1/2005

Boring Number: MPE-4

Permit No.: NA

Drilling Method: 6 1/4 HSA

Log By: A Kearns Driller: Geologic

Borehole Dia: 10 inch

Sample Method: 2-inch Split Spoon

Construction Details

Depth (ft)	Sample Depth (ft)	Blow Counts	neter Sch 40 PVC Screen (10-slot) and Riser Lithology: Burmeister Classification System	Sand Well Schematic
	0.5-2.5	50/0.3	Fine to coarse SAND and GRAVEL, trace concrete	
	NC	NA		
5	5-7	5-5 7-6	Brown SILT, some fine to coarse Gravel Brown SILT, some Clay	
	7-9	12-17 11-15	Brown SILT, some Clay Fine to medium SAND, little Silt Brown SAND and SILT Brown SILT and CLAY, some fine Sand and fine Gravel,wet	
10	9-11	16-17 15-16	Brown SILT and fine SAND Brown SILT and CLAY with fine to coarse Gravel some cobbles	
	11-12.5	25-30 50/0.3	Brown SILT and fine SAND, some fine to coarse Gravel	
15				

ABSCOPE ENVIRONMENTAL INC.

Former Dinaburg Distributing Rochester, New York

> Subsurface Log MPE-5

Project Name: Dinaburg

Location: 1012 S. Clinton, Rochester

Owner: NYSDEC

Date: 11/1/2005

Boring Number: MPE-5

Permit No.: NA

Log By: A Kearns Driller: Geologic

Borehole Dia: 10 inch

Drilling Method: 6 1/4 HSA Sample Method: 2-inch Split Spoon

Construction Details

Total Well Depth: 11.5 feet Bentonite Interval: 2.5-2.0

Screen Interval: 11.5-3

Cement/Grout Interval: NA

Sand Pack Interval: 11.5-2.5

Sand Pack Type: #00N Morie

Bentonite

Completing Details A inch Streets St. 40 BVC St. (10.1 st.) 1.83

Depth	Sample	Blow		
(ft)	Depth (ft)	Counts	Lithology: Burmeister Classification System	Well Schemati
			Concrete	
	0.5-2.5	5-4 4-3	Black fine to coarse SAND and SILT, some fine Gravel	
	NC	NA		
5	5-7	11-12 14-14	Black fine to coarse SAND and SILT, some fine Gravel Brown SILT Light Brown SILT Fine to coarse GRAVEL, little Silt	
	7-9	16-18 28-30	Light Brown SILT, little fine Sand and fine to coarse Gravel Brown SILT, little Clay and medium to coarse Gravel, wet	
10	9-11	14-12 17-15	Brown SILT, some Clay, little medium Gravel Brown fine SAND and SILT	
	11-11.5	14	Brown fine SAND and SILT	
15				

ABSCOPE ENVIRONMENTAL INC. Former Dinaburg Distributing

Rochester, New York

Subsurface Log MPE-6

Project Name: Dinaburg

Location: 1012 S. Clinton, Rochester

Owner: NYSDEC

Date: 10/31/2005

Boring Number: MPE-6

Log By: A Kearns

Permit No.: NA

Drilling Method: 6 1/4 HSA

Driller: Geologic

Borehole Dia: 10 inch

Sample Method: 2-inch Split Spoon

Construction Details

Total Well Depth: 12 feet Bentonite Interval: 2.5-2.0

Screen Interval: 12-3

Cement/Grout Interval: NA

Sand Pack Interval: 12-2.5

Sand Pack Type: #00N Morie

Completion Details: 4-inch diameter Sch 40 PVC Screen (10-slot) and Riser

Sand

Depth (ft)	Sample Depth (ft)	Blow Counts	Lithology: Burmeister Classification System	Well Schematic
	0-2	9-12 18-14	Brown fine to coarse SAND and Gravel	
	NC	NA		
5	5-7	8-19 21-26	Brown fine to medium SAND and GRAVEL, little Silt very moist	
	7-9	25-30 33-15	Brown fine to coarse SAND and GRAVEL some SILT wet	
10	9-11	9-4 8-7	Fine to Coarse GRAVEL, some Silt andfine to coarse SAND	
	11-12	11-12	Fine to Coarse SAND and GRAVEL, some Silt and Clay	
15				

Subsurface Log MPE-7

Project Name: Dinaburg

Owner: NYSDEC

Date: 10/31/2005

Location: 1012 S. Clinton, Rochester

Permit No.: NA

Boring Number: MPE-7

Log By: A Kearns

Drilling Method: 6 1/4 HSA

Driller: Geologic

Borehole Dia: 10 inch

Sample Method: 2-inch Split Spoon

Construction Details

Total Well Depth: 11 feet Bentonite Interval: 2.5-2.0
Screen Interval: 11-3 Cement/Grout Interval: NA
Sand Pack Interval: 11-2.5 Sand Pack Type: #00N Morie

Backfill
Cement/Grout
Bentonite

Sand

Completion Details: 4-inch Diameter Sch 40 PVC Screen (10-slot) and Riser

Depth	Sample	Blow		
(ft)	Depth (ft)	Counts	Lithology: Burmeister Classification System	Well Schematic
	0-2	9-9 12-15	Brown fine to coarse SAND and GRAVEL, some Silt	
	NC	NA		
5	5-7	8-8 9-12	Brown fine to coarse SAND and GRAVEL, some Silt Brown fine SAND and SILT Brown SILT, trace Clay	
	7-9	17-22 50/0.2	Brown fine SAND and SILT, trace Clay and and fine to coarse Gravel	
10	9-11	7-11 16-24	Brown fine SAND and SILT, some fine to coarse Gravel trace Clay wet	
15				

Subsurface Log

MPE-11
Date: 11/2/2005

Project Name: Dinaburg

Location: 1012 S. Clinton, Rochester

Boring Number: MPE-11

Drilling Method: 6-1/4 HSA

Owner: NYSDEC

Log By: A. Kearns Driller: Geologic

Sample Method: split-spoon

Borehole Dia: 10 inch

Construction Details

Total Well Depth: 10 feet

Screen Interval: 10-6
Sand Pack Interval: 10-5,5

Bentonite Interval: 5.5-5.0 Cement/Grout Interval: NA

Sand Pack Type: #00N Morie

Cement/Grout Bentonite

Backfill

Completion Details: 4-inch Diameter Sch 40 PVC Screen (10-slot) and Riser Sand Depth Sample (ft) Depth (ft) Blows Lithology: Burmeister Classification System Well Schematic Brown fine to coarse SAND and GRAVEL 1 0-2 4-8-22-10 Concrete Brown SILT and SAND, some fine to medium Gravel 2 3 4 5 Brown SILT and Fine SAND, some coarse Gravel 5-7 6 23 Yellow SILT and Fine SAND Brown Fine SAND, little Silt 7 Concrete 8 Brown SILT and CLAY, little fine to medium Gravel 9 8-10 14-14-10-7 10

Subsurface Log MPE-16

Project Name: Dinaburg

Location: 1012 S. Clinton, Rochester

Owner: NYSDEC

Date: 10/28/2005

Boring Number: MPE-16

Permit No.: NA Log By: M. Rinaldo-Lee

Drilling Method: 6 1/4 HSA

Driller: Geologic

Borehole Dia: 10 inch

Sample Method: 2-inch Split Spoon

Construction Details

Total Well Depth: 12 feet Bentonite Interval: 2.5-2.0

Screen Interval: 12-3

Sand Pack Interval: 12-2.5

Sand Pack Type: #00N Morie

Completion Details: 4-inch Diameter Sch 40 PVC Screen (10-slot) and Riser

Backfill

Cement/Grout

Bentonite

Bentonite

Sand

Sand

Sand

Sand

Sand

			ter Sch 40 PVC Screen (10-slot) and Riser	Sand
Depth (ft)	Sample Depth (ft)	Blow Counts	Lithology: Burmeister Classification System	Well Schematic
	0-2	2-3-3-5	Brown SILT and fine to coarse SAND occassional roots	
	NC	NA		
5	5-7	5-3-5-9	Brown SILT, little fine Sand, occassional organic matter lenses of medium sand: Fill	
	7-9	14-17-41-38		
10	9-11	23-27-24-30	Red-Brown SILT, fine SAND and embedded coarse SAND some embedded Gravel	
,	11-12	26-29	Red-Brown fine SAND, little Silt, embedded Gravel	
15				

Subsurface Log GWE-1

Project Name: Dinaburg

Owner: NYSDEC

Date: 11/7/2005

Location: 1012 S. Clinton, Rochester

Boring Number: GWE-1

Log By: A. Kearns

Drilling Method: 6-1/4 HSA

Driller: Geologic Borehole Dia: 10 inch

Sample Method: split-spoon

Construction Details

Total Well Depth: 20.7 Bentonite Interval: 15.7-5.5 Backfill Screen Interval: 20.7-17.7 Cement/Grout Interval: Cement/Grout Sand Pack Interval: 20.7-15.7 Sand Pack Type: #00N Morie Bentonite

		4-inch Diame	ter Sch 40 PVC Screen (10-slot) and Riser	Sand
Depth (ft)	Sample Depth (ft)	Blows	Lithology: Burmeister Classification System	Well Schematic
	0.5-2.5	10-22-14-19	Asphalt Fine to coarse GRAVEL and SAND Brown SILT trace fine to coarse Gravel Auger refusal at 5 feet Move location and auger to 5 feet	
5	5-7	5-9-14-23	Brown SILT and CLAY, some fine to coarse Gravel	
	7-9	18-20-24-24	wet at 8 feet	
10	9-11	16-15-18-22	Brown SILT, some Clay and fine to coarse Gravel	
	11-13	25-36-50/.2	Brown SILT some fine SAND, little fine to coarse gravel and Clay	
15	13-15	10-9-13-16		
	15-17		Brown SILT and fine SAND, some Clay, little fine to coarse Gravel	
	17-19	50/.4	Brown SILT and CLAY, some fine to coarse Gravel little fine Sand	
20	19-21	23-30-50/.3	Brown SILT and CLAY, little fine to coarse Gravel Bedrock refusal at 20.7	

Subsurface Log GWE-3

Borehole Dia: 10 inch

11/4/2005

Project Name: Dinaburg

Location: 1012 S. Clinton, Rochester

Boring Number: GWE-3

Drilling Method: 6-1/4 HSA

Total Well Depth: 22

Sand Pack Interval: 22-17

Screen Interval: 22-19

Sample Method: split-spoon

Owner: NYSDEC

Log By: A. Kearns Driller: Geologic

Construction Details

Bentonite Interval: 17-5 Cement/Grout Interval: NA

Sand Pack Type: #00N Morie

Backfill
Cement/Grout
Bentonite

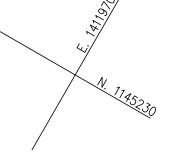
Completion Details: 4-inch Diameter Sch 40 PVC Screen (10-slot) and Riser Sand Depth Depth (ft) (ft) Blows Lithology: Burmeister Classification System Well Schematic Asphalt Brown SILT, trace Clay 5 10 Brown SILT, little fine to coarse Gravel and fine Sand 11-13 12-16-17-23 Brown SILT, some fine to coarse Gravel, trace fine sand 13-15 22-22-33-29 15 Brown SILT and CLAY 15-17 9-7-12-23 17-19 27-50/0.3 Brown SILT, some fine to coarse Gravel 17-17-18 Brown SILT and fine to coarse GRAVEL, some fine to 20 19-21 coarse Sand 21-23 38-50/0 fine to coarse SAND and GRAVEL, some Silt Auger refusal at 22 feet

APPENDIX D

SITE SURVEY RESULTS

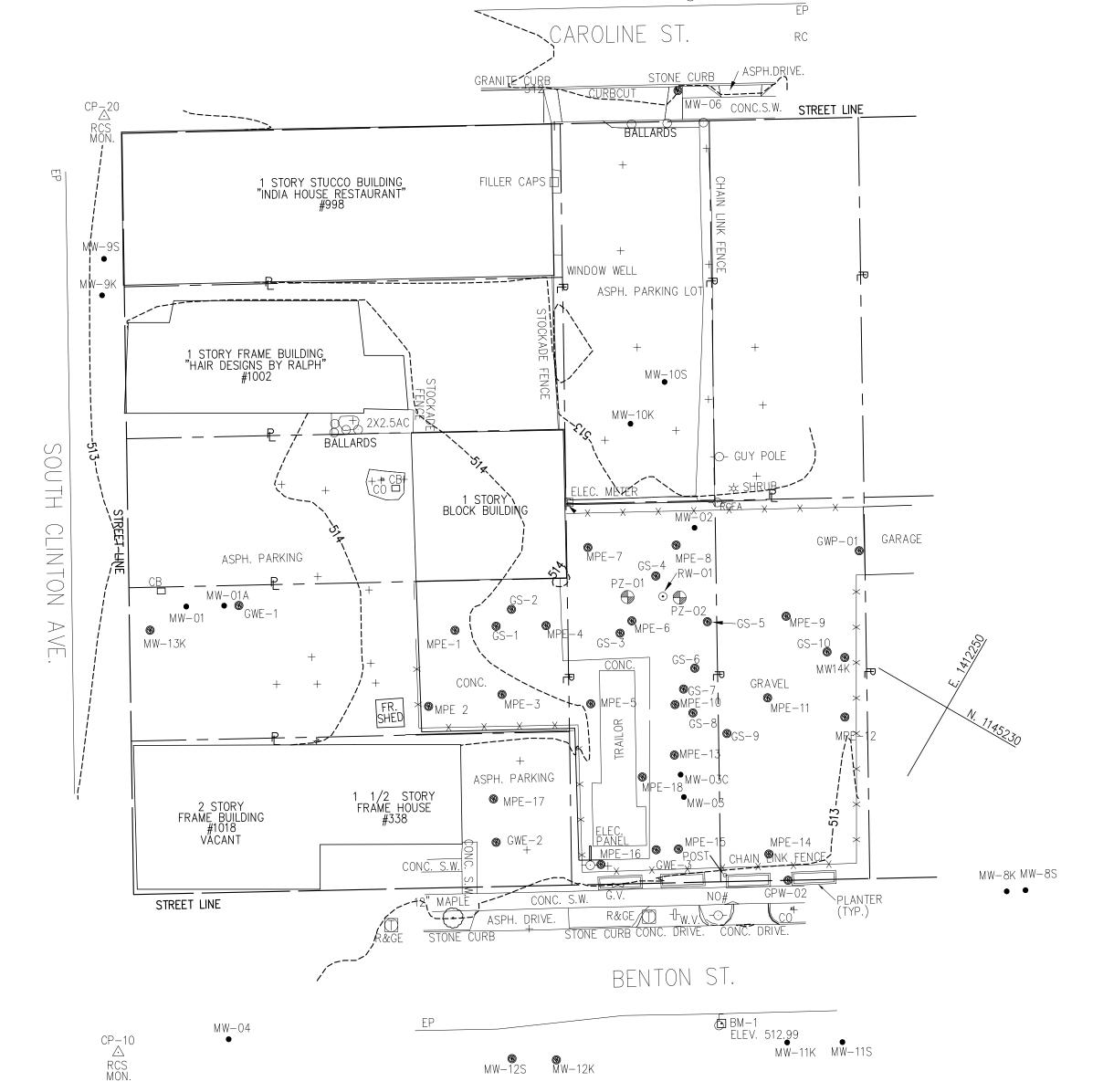
SAMPLE TABLE - NOVEMBER 2000

DECICAL A TION	NODTUNG		ELEVATION		
DESIGNATION	NORTHING	EASTING	RISER	CASE	GROUND
MW-01	1145163.2	1412088.1	513.06	513.36	513.4
MW-01A	1145167.7	1412095.5	513.05	513.43	513.5
MW-02	1145236.7	1412179.6	513.46	513.87	*513.85
MW-03	1145186.4	1412205.0	512.72	513.17	513.1
MW-03C	1145182.3	1412208.2	513.10	513.36	513.3
MW-04	1145082.5	1412145.9	513.01	513.38	513.3
MW-05	1145059.9	1412071.4	513.49	513.78	513.7
MW-06	1145321.3	1412126.5	511.54	512.06	512.1
MW-8K	1145200.5	1412282.8	512.24	512.61	512.6
MW-8S	1145202.9	1412286.3	512.27	512.54	512.5
MW-9K	1145215.1	1412036.0	513.01	513.26	513.3
MW-9S	1145222.5	1412032.2	512.87	513.24	513.2
MW-10K	1145250.0	1412155.1	512.49	512.90	512.8
MW-10S	1145262.1	1412157.0	512.25	512.74	512.7
MW-11K	1145145.6	1412256.6	512.12	512.61	512.6
MW-11S	1145152.0	1412267.5	512.36	512.58	512.6
GPW 1	1145251.1	1412214.9	512.60	512.92	512.9
GPW 2	1145177.7	1412238.4	512.60	512.84	512.8
PZ-01	1145215.4	1412174.3	513.11	513.80	*513.82
PZ-02	1145221.2	1412184.6	513.24	513.70	*513.72
RW-01	1145219.6	1412181.2	513.27	513.74	*513.73

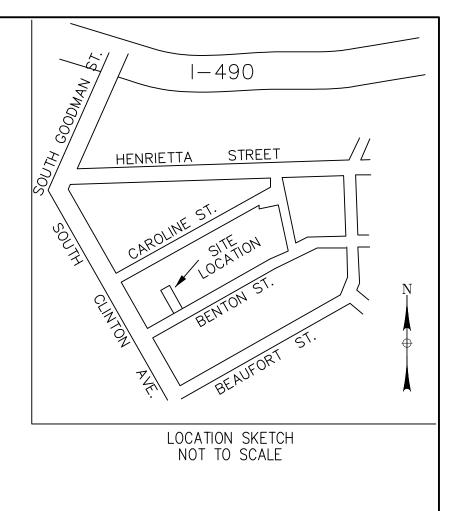

*ELEVATION INSIDE BUILDING

SAMPLE TABLE - MAY 2009

DECICNATION	NORTHNO		ELEVATION		
DESIGNATION	NORTHING	EASTING	RISER	CASE	GROUND
MW-12K	1145115.8	1412213.0	512.67	513.09	513.1
MW-12S	1145111.0	1412204.1	512.53	513.01	513.0
MW-13K	1145154.4	1412083.7	513.13	513.41	513.4
MW-14K	1145228.2	1412224.1	512.66	513.04	513.0
GS-1	1145194.6	1412151.6	513.38	513.75	513.8
GS-2	1145199.7	1412152.7	513.59	513.85	513.9
GS-3	1145207.4	1412176.9	513.49	513.70	513.7
GS-4	1145222.8	1412177.4	513.43	513.67	513.7
GS-5	1145219.6	1412192.8	513.38	513.61	513.6
GS-6	1145209.0	1412195.7	513.22	513.51	513.5
GS-7	1145203.6	1412195.8	513.25	513.54	513.5
GS-8	1145200.0	1412200.4	513.37	513.53	513.5
GS-9	1145199.8	1412209.5	513.23	513.45	513.5
GS-10	1145227.3	1412219.9	512.90	513.11	513.1
MPE-10	1145199.5	1412195.7	513.15	513.57	513.6
MPE-6	1145211.3	1412177.8	513.26	513.67	513.7


SAMPLE TABLE - JULY 2009

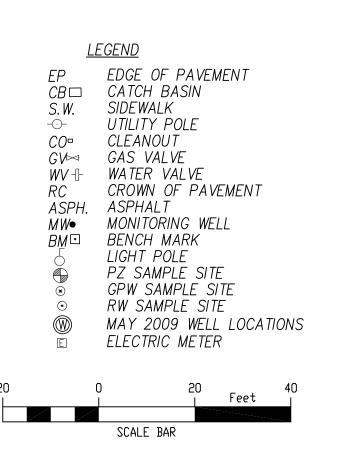
DESIGNATION	NORTHING	EASTING	ELEVATION			
			RISER	CASE	GROUND	
GPW-1	1145251.0	1412214.7	512.55	513.40	513.4	
GPW-2	1145177.7	1412238.3	512.51	512.72	512.7	
GWE-1	1145169.4	1412098.4	512.98	513.43	513.4	
GWE-2	1145152.0	1412176.3	512.94	513.35	513.4	
GWE-3	1145168.7	1412208.7	513.27	513.52	513.5	
MW-6	1145321.2	1412126.4	511.50	512.01	512.0	
MPE-1	1145189.1	1412143.9	513.40	513.91	513.9	
MPE-2	1145171.1	1412147.4	513.42	514.02	514.0	
MPE-3	1145181.8	1412160.5	513.41	513.86	513.9	
MPE-4	1145200.5	1412161.4	513.39	513.76	513.8	
MPE-5	1145190.1	1412179.2	513.43	513.82	513.8	
MPE-6	1145211.2	1412177.8	513.22	513.63	513.6	
MPE-7	1145220.7	1412160.8	513.30	513.86	513.9	
MPE-8	1145231.2	1412177.9	513.48	513.91	513.9	
MPE-9	1145229.7	1412207.8	513.14	513.64	513.6	
MPE-10	1145199.6	1412195.9	513.12	513.54	513.5	
MPE-11	1145211.5	1412213.4	513.02	513.35	513.4	
MPE-12	1145216.5	1412230.9	512.90	513.24	513.2	
MPE-13	1145189.5	1412201.5	512.89	513.21	513.2	
MPE-14	1145180.7	1412231.5	512.23	512.69	512.7	
MPE-15	1145171.4	1412213.0	512.97	513.30	513.3	
MPE-16	1145159.5	1412199.5	513.31	513.60	513.6	
MPE-17	1145160.2	1412170.8	512.97	513.47	513.5	
MPE-18	1145181.5	1412197.7	513.12	513.55	513.6	

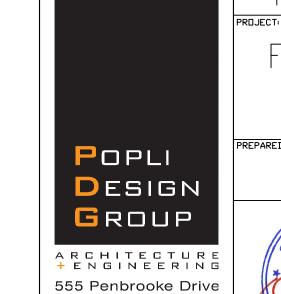


MW - 05

ELEV. 512.22

SURVEY NOTES: ALL LOCATIONS SHOWN HEREON ARE REFERENCED TO THE NEW YORK STATE PLANE COORDINATE SYSTEM (N.A.D. 83). THROUGH TIES TO THE FOLLOWING CONTROL MONUMENTS ACCOMPLISHED USING PROCEDURES NECESSARY TO ACHIEVE AN ACCURACY OF NOT LESS THAN 1 PART IN 10,000:


HERSCHELL (USC & GS 1925) N. 1144331.49 E. 1411314.95


LINDEN (USC & GS) N. 1145154.27 E. 1409101.88

THE VERTICAL INFORMATION SHOWN HEREON IS REFERENCED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD 88). THROUGH CONTROL TIES TO MONUMENT:

LINDEN (USC & GS) ELEV. 520.66 FÉET

CONTOUR INTERVAL IS 1/2 FOOT. ALL UTILITY LOCATIONS ARE FROM SURFACE EVIDENCE ONLY. PROPERTY LINES AND STREET LINES ARE APPROXIMATE AND BASED ON TAX MAP INFORMATION ONLY.

FORMER DINABURG DISTRIBUTING, INC

BENTON ST. ROCHESTER, N.Y.

Engineerir

Penfield NY 14526 585 388 2060 [tel] 700 [fax] 585 388 2070

ing and Consulting,	Inc.	
		REVISIONS
	5/09	TOPO UPDATE AND WELL LO
the state of the s	7/09	ADDITIONAL WELL LOCATIONS
1/17		
SII 1/1/		

LOCATIONS DATE: | SCALE: | DRAWN BY: DRAWING NO.: | NOVEMBER, 2000 | 1" = 20" | SRR | 3280. 09

WELL LOCATIONS

511 Congress Street Portland, Maine 04101

UNAUTHORIZED ALTERATION OR ADDITION TO A SURVEY MAP BEARING A LICENSED SURVEYOR'S SEAL IS A VIOLATION OF SECTION 7209 SUBDIVISION 2 OF THE NEW YORK STATE EDUCATION LAW.

APPENDIX E

DATA USABILITY SUMMARY REPORT AND COMPLETE ANALYTICAL RESULTS

DATA USABILITY SUMMARY REPORT IN SUPPORT OF THE REMEDIAL INVESSTIGATION DINABURG DISTRIBUTING SITE ROCHESTER, NEW YORK

1.0 INTRODUCTION

Soil, groundwater, and air samples were collected at the Dinaburg Distributing Site (Site) in Rochester, New York. Soil and groundwater samples were submitted to Chemtech Laboratories in Mountainside, NJ for analysis. Air samples were submitted to Contest Analytical Laboratories in East Longmeadow, MA for analysis. Results were reported in the following Sample Delivery Groups (SDGs): A2663, A2664, A2708, A2948, A2898, and LIMT-25188. A listing of samples included in this Data Usability Summary Report is presented in Table 1. A summary of the analytical results is presented in Table 2. Tentatively identified compounds (TICs) were reported for samples analyzed for VOCs by Method 8260B. TICs are presented in Table 3. Samples were analyzed for one or more of the following methods:

- Volatile Organic Compounds (VOCs) by USEPA Method 8260B
- Volatile Organic Compounds (VOCs) in air by Method TO-15
- Dissolved iron and manganese by USEPA Method 6010B
- Alkalinity by Method SM 2320B
- Total Organic Carbon (TOC) by Method SM5310B.
- Sulfide by Method 9034
- Chloride, sulfate, nitrate, and nitrite by Method 300
- Methane, ethane, and ethene by Method RSK-175
- Carbon dioxide by Method SM 2320B

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005) for all SDGs.

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2002) for SDGs A2663, A2664, A2708, A2948, A2898, and LIMT-25188. Laboratory QC limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification.

The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit

J = concentration is estimated

UJ = target analyte is not detected at the reported detection limit and is estimated

D = result is reported from a diluted analysis

JN = estimated concentration/tentative identification (TICs)

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

2.0 VOLATILE ORGANIC COMPOUNDS (VOCS) by Method 8260B

VOC - Hold Time

SDG A2664

The following samples had target compounds that were above the analytical range of the instrument and were re-analyzed at a dilution. The dilution analysis was performed 2 days outside of the 14-day hold time. Results reported from theses dilution analyses were qualified estimated (J).

Field Sample ID	Lab ID	Sample Date	Analysis Date
828103-GW101209	A2664-01DL	5/4/2009	5/20/2009
828103-GW102009	A2664-11DL	5/4/2009	5/20/2009
828103-GW301209	A2664-03DL	5/4/2009	5/20/2009
828103-GW302009	A2664-04DL	5/4/2009	5/20/2009
828103-GW201909	A2664-02DL	5/5/2009	5/20/2009

Sample 828103-GW501209 was also re-analyzed outside of the hold time (see internal standard section of DUSR below) and final results were qualified estimated (J/UJ).

VOC - Surrogates

SDG A2664

The surrogate percent recovery of 4-bromofluorobenzene in sample 828103-GW501209RE (76) was below the lower control limit. Results for all analytes were qualified estimated (J/UJ).

SDG A2898

The surrogate percent recovery of 1,2-dichloroethane-d4 in sample 828103-MW03C02809 (144) was above the upper control limit. Detections were qualified estimated (J).

VOC – Blanks

SDG A2664

Trip blank 828103-MWTB01 was analyzed on May 15, 2009 and had detections of tetrachloroethene (38 μ g/L), cis-1,2-dichloroethene (2.7 μ g/L) and trichloroethene (5.8 μ g/L). Sample 828103-GW102009 was analyzed prior to the trip blank and had elevated levels of tetrachloroethene (2400 E μ g/L), cis-1,2-dichloroethene (1100 E μ g/L) and trichloroethene (1700 E μ g/L). The laboratory suspected carry over from the analysis of 828103-GW102009 and reanalyzed the trip blank on May 19, 2009. There were no detections in the re-analysis of the trip blank. Based on professional judgment no samples were qualified due to this trip blank.

SDG A2898

Trip blank 828103-MWTB03 had detections of the following compounds:

Compound	Concentration (µg/L)	5X Action level	
1,2,4-Trichlorobenzene	4.1	20.5	
Tetrachloroethene	0.78	3.9	

The following samples were qualified:

Field Sample ID	Lab ID	compound	final_result (µg/L)	qualifier	lab_result (μg/L)	lab_qualifier
828103-MW13K01609	A2898-17	1,2,4-Trichlorobenzene	4	U	4	
828103-MW0501809	A2898-06RE	Tetrachloroethene	1	U	0.88	J
828103-MW0601609	A2898-07	Tetrachloroethene	1.1	U	1.1	

Hexachlorbutadiene (3.4 μ g/L) and 1,2,3-trichlorobenzene (3.4 μ g/L) were also reported as TICs in the trip blank. These compounds were also reported as TICs in sample 828103-MW13K01609 and were removed from the final data set for this sample.

VOC - Matrix Spikes (MS) and Matrix Spike Duplicate (MSD)

SDG A2663

Soil sample 828103-GS51109 was submitted for matrix spike analysis. The following compounds had percent recoveries below the lower laboratory control limit: chloroethane (55, 57), carbon disulfide (55, 55), methylene chloride (64), 4-methyl-2-pentanone (33, 35). These compounds were qualified estimated (UJ) in sample 828103-GS51109 and may be biased low.

VOC - Initial and Continuing Calibration Standards

SDG A2663

The continuing calibration analyzed on May 21, 2009 had a percent difference greater than the control limit of 20 for acetone (-22), carbon disulfide (-21), and tetrachloroethene (-28). These compounds were qualified estimated (J/UJ) in the following samples:

	828103-GS51509
	828103-GS121309
Г	828103-GS131209
	828103-GS131609

SDG A2664

The continuing calibration analyzed on May 19, 2009 had a percent difference greater than the control limit of 20 for tetrachloroethene (21). Tetrachloroethene was qualified estimated (UJ/J) in the following associated samples:

828103-GW402009	
828103-GW501209	

The continuing calibration analyzed on May 20, 2009 had a percent difference greater than the control limit of 20 for tetrachloroethene (-24). Tetrachloroethene was qualified estimated (J) in the following associated samples:

Field Sample ID	Lab ID	Dilution Factor
828103-GW101209	A2664-01DL	50
828103-GW102009	A2664-11DL	50
828103-GW201909	A2664-02DL	10
828103-GW301209	A2664-03DL	5
828103-GW302009	A2664-04DL	5

SDG A2708

The continuing calibration analyzed on May 14, 2009 had a percent difference greater than the control limit of 20 for trichlorofluoromethane (-21) and methylcyclohexane (-23). Trichlorofluoromethane and methylcyclohexane was qualified estimated (UJ) in the following associated samples:

Field Sample ID	Lab ID
828103-GS41109	A2708-01
828103-GS41609	A2708-02
828103-GS61009D	A2708-03
828103-GS61009	A2708-06
828103-GS61509	A2708-07
828103-GS71209	A2708-08
828103-GS71609	A2708-09
828103-GS91509	A2708-13
828103-GS101209	A2708-14

The continuing calibration analyzed on May 19, 2009 had a percent difference greater than the control limit of 20 for carbon disulfide (-24). Carbon disulfide was qualified estimated (UJ) in sample MW13K14KIDW09.

SDG A2898

The continuing calibration analyzed on June 5, 2009 (12:59) had a percent difference greater than the control limit of 20 for 1,1,2-trichlorotrifluorethane (-23). 1,1,2-Trichlorotrifluorethane was qualified estimated (UJ) in the following associated samples:

Field Sample ID	Lab ID
828103-MW10K01809	A2898-10
828103-MW14K01909	A2898-18
828103GPW0201209	A2898-20
828103GPW0101309	A2898-21

The continuing calibration analyzed on June 5, 2009 (00:36) had a percent difference greater than the control limit of 20 for tetrachloroethene (-31). Tetrachloroethene was qualified estimated (UJ/J) in the following associated samples:

Field Sample ID	Lab ID
828103-MW0501809	A2898-06RE
828103-MW09K01809	A2898-09
828103-MW11S01209	A2898-11
828103-MW12S01009	A2898-12
828103-MW12K01609	A2898-13
828103-MW12K01609D	A2898-16

The continuing calibration analyzed on June 8, 2009 had a percent difference greater than the control limit of 20 for bromoform (-22). Bromform was qualified estimated (UJ) in the following associated samples:

Field Sample ID	Lab ID
828103-MW0401809	A2898-05
828103-MW0601609	A2898-07
828103-MW08K01709	A2898-08

The continuing calibration analyzed on June 2, 2009 had a percent difference greater than the control limit of 20 for carbontetrachloride (-25). Carbontetrachloride was qualified estimated (UJ) in the following associated samples:

Field Sample ID	Lab ID
828103-MW0101509	A2898-01
828103-MW01A00709	A2898-02
828103-MW03C02809	A2898-03
828103-MW0301009	A2898-04

VOC - Lab Control Spikes

SDG A2663

The soil lab control spike (BSH0519M1) analyzed on May 19, 2009 had percent recoveries below the lower lab limit for the following compounds:

Compound	Percent Recovery	Control Limits
trans-1,2-Dichloroethene	80	82-120
Trichloroethene	80	84-113
1,3-Dichlorobenzene	85	88-114
1,4-Dichlorobenzene	85	88-112

These compounds were qualified estimated (J/UJ) in the following associated samples:

Note: The final result for trichloroethene was reported from a dilution analysis and not associated with this LCS (BSH0519M1) and therefore not qualified estimated.

The soil lab control spike (BSH0520M2) analyzed on May 21, 2009 had a percent recovery above the upper lab limit for the following compound:

Compound	Percent Recovery	Control Limits
Tetrachloroethene	135	75-131

Detections of tetrachloroethene were qualified estimated (J) in the following associated samples:

Field Sample ID	Lab Sample ID	Dilution factor
828103-GS51509	A2663-08DL	50
828103-GS121309	A2663-12DL	5
828103-GS131209	A2663-13DL	5

The soil lab control spike (BSH0522M1) analyzed on May 22, 2009 had a percent recoveries outside of lab control limits for the following compounds:

Compound	Percent Recovery	Control Limits
Methylcyclohexane	150	80-115
Tetrachloroethene	70	75-131

Results for tetrachloroethene and methylcyclohexane were qualified estimated (J) in the following associated samples:

·			
Field Sample ID	Lab Sample ID	Compound	Dilution factor
828103-GS10909	A2663-01DL	Tetrachloroethene	10
828103-GS21109	A2663-03DL	Methyl cyclohexane	10
828103-GS21109	A2663-03DL2	Tetrachloroethene	200

SDG A2664

The aqueous lab control spike (BSH0519W2) analyzed on May 19, 2009 had a percent recovery above the upper lab limit for the following compound:

Compound	Percent Recovery	Control Limits

Tetrachloroethene	160	60-154
Trichloroethene	127	76-122

Detections of tetrachloroethene and trichloroethene were qualified estimated (J) in sample 828103-GW501209RE.

SDG A2708

The soil lab control spike (BSH0514M1) analyzed on May 14, 2009 had a percent recoveries outside of lab control limits for the following compounds:

Compound	Percent recovery	Control limits		
trans-1,2-Dichloroethene	80	82-120		
cis-1,2-Dichloroethene	80	84-120		
Chlorodibromomethane	80	82-117		
1,3-Dichlorobenzene	85	88-114		

These compounds were qualified estimated in the following associated samples:

Field Sample ID	Lab Sample ID
828103-GS41109	A2708-01
828103-GS41609	A2708-02
828103-GS61009D	A2708-03
828103-GS61009	A2708-06
828103-GS61509	A2708-07
828103-GS71209	A2708-08
828103-GS71609	A2708-09
828103-GS91509	A2708-13
828103-GS101209	A2708-14

The soil lab control spike (BSH0522M1) analyzed on May 22, 2009 had a percent recovery of tetrachloroethene (70) that was below the lower limit of 75. Tetrachloroethene was qualified estimated in the 10X dilution analysis of 828103-GS101509.

The soil lab control spike (BSH0515M2) analyzed on May 15, 2009 had a percent recoveries outside of lab control limits for the following compounds:

Compound	Percent recovery	Control limits
trans-1,2-Dichloroethene	80	82-120
cis-1,2-Dichloroethene	75	84-120
1,1-dichloroethane	80	84-123
chloroform	80	85-125

These compounds were qualified estimated (UJ) in samples:

Field Sample ID	Lab Sample ID
828103-GS81109	A2708-10DL

828103-GS81509	A2708-11DL
828103-GS91209	A2708-12DL
828103-GS101509	A2708-15

SDG A2898

The aqueous lab control spike (BSE0602W1) analyzed on June 2, 2009 had a percent recoveries outside of lab control limits for the following compounds:

Compound	Percent recovery	Control limits	
Vinyl Chloride	130	61-127	
1,1-Dichloroethene	125	70-122	
1,1,1-Trichloroethane	75	76-121	
Trichloroethene	75	76-122	
t-1,3-Dichloropropene	75	77-123	
cis-1,3-Dichloropropene	65	77-121	

Detections of vinyl chloride and 1,1-dichloroethene were qualified estimated (J) and results (nodetects and detections) were qualified estimated (J/UJ) for 1,1,1-trichloroethane, trichloroethene, t-1.3-dichloropropene and cis-1,3-dichloropropene in the following associated samples:

Field Sample ID	Lab Sample ID
828103-MW0101509	A2898-01
828103-MW01A00709	A2898-02
828103-MW03C02809	A2898-03
828103-MW0301009	A2898-04

VOC - Internal Standards

SDG A2664

Internal standard area counts for all four internal standards were outside of the method control limits of +100% to -50% in sample 828103-GW501209. The laboratory re-analyzed the sample. The area counts in the re-analysis were within control limits; however, the re-analysis was performed one day outside of the 14-day hold time. Professional judgment was used to report the re-analysis (828103-GW501209RE) in the final data set and estimate the results (J/UJ) due to the exceeded hold time.

SDG A2708

Internal standards were below the lower area control limit in the multiple soil samples in SDG A2708. The laboratory attributed the low area counts to sample matrix interference. The samples with low internal areas were re-analyzed at dilutions due to elevated levels of trichloroethene and/or tetrachloroethene. The internal standard areas in the dilution analyses were within control limits. The following tables present the area counts that were below the lower quality control limits. Compounds associated with internal standards that are **bold** (< - 50%) were qualified estimated (UJ/J). In accordance with the 8260B Region II validation guidelines (January, 2006), non-detect compounds associated with internal standards that had area counts less than - 25% of

the 12-hour standard area (shaded below) were rejected (R) and detections were qualified estimated (J). Rejected results from the un-diluted analyses were replaced with results from the diluted runs in the final data set. Because of this, non-detects were reported with elevated reporting in samples that are shaded below.

· ·		•		
	IS 1 Area	IS 2 Area	IS 3 Area	IS 4 Area
12-hour Std area	339129	602858	538429	271955
Lower limit (- 50%)	169565	301429	269215	135978
25 % of 12-hour Std	84782	150715	134607	67989
Field Sample ID				
828103-GS41609	165114	309521	259847	143126
828103-GS61009D	102154	184137	155800	82873
. 828103-GS61509	127123	222103	192888	102196
828103-GS71609	102982	145134	153367	75101
828103-GS81109	73092	139081	117135	60910
828103-GS81509	29681	56064	49109	26053
828103-GS91209	65216	121199	102520	51865

	IS 1 Area	IS 2 Area	IS 3 Area	IS 4 Area
12-hour Std area	337133	633768	538124	266960
Lower limit (- 50%)	168566	316884	269062	133480
Field Sample ID				
828103-GS41609	162343	304113	252437	134942

SDG A2898

All internal standard areas were above the upper control limit in sample 828103-MW13K01609 and detections were qualified estimated (J).

VOC - Field Duplicates

SDG A2708

Field duplicate sample 828103-GS61009D was submitted and analyzed in SDG A2708. Relative percent differences between the concentrations in the field sample and field duplicate sample were calculated.

	QC					
Sample ID	code	Lab ID	Compound	Conc (µg/kg)	Qual	RPD
828103-GS61009D	FD	A2708-03DL	Tetrachloroethene	750000	D	46.2%
828103-GS61009	FS	A2708-06DL	Tetrachloroethene	1200000	D	
828103-GS61009D	FD	A2708-03DL	Trichloroethene	79000	DJ	62.0%
828103-GS61009	FS	A2708-06DL	Trichloroethene	150000	DJ	

Trichloroethene had an RPD of 62, above the control limit of 50 and was qualified estimated (J) in the field sample and field duplicate.

VOC – Sample Reporting

SDG A2663

The following samples were analyzed at a dilution due to elevated levels of target compounds. Final results are a combination of an undiluted analysis and a diluted analysis:

F:-14 C1- ID	T -11- TO	Dilution Footon (a)
Field Sample ID	Lab sample ID	Dilution Factor (s)
828103-GS10909	A2663-01DL	10
828103-GS11609	A2663-02DL	5
828103-GS21109	A2663-03DL	10, 200
828103-GS21609	A2663-04DL	5
828103-GS51109	A2663-07DL	200
828103-GS51509	A2663-08DL	50
828103-GS121309	A2663-12DL	5
828103-GS131209	A2663-13DL	5
828103-GS131609	A2663-14DL	5
828103-GS132109	A2663-17DL	5
828103-MW131509	A2663-18DL	5

SDG A2664

The following samples were analyzed at a dilution due to elevated levels of target compounds. Final results are a combination of an undiluted analysis and a diluted analysis:

Field Sample ID	Lab ID	Dilution Factor
828103-GW101209	A2664-01DL	50
828103-GW102009	A2664-11DL	50
828103-GW201909	A2664-02DL	10
828103-GW301209	A2664-03DL	5
828103-GW302009	A2664-04DL	5

SDG A2708

The following samples were analyzed at a dilution due to elevated levels of target compounds. Final results are a combination of an undiluted analysis and a diluted analysis:

Field Sample ID	Lab ID	Dilution Factor
828103-GS41109	A2708-01DL	5
828103-GS41609	A2708-02DL	10
828103-GS61009D	A2708-03DL	200
828103-GS61009	A2708-06DL	200
828103-GS61509	A2708-07DL	200
828103-GS71209	A2708-08DL	50
828103-GS71609	A2708-09DL	500
828103-GS81109	A2708-10DL	50
828103-GS81509	A2708-11DL	100
828103-GS91209	A2708-12DL	100
828103-GS91509	A2708-13DL	20

828103-GS101209	A2708-14DL	5
828103-GS101509	A2708-15DL	10

SDG A2898

The following samples were analyzed at a dilution due to elevated levels of target compounds. Final results are a combination of an undiluted analysis and a diluted analysis:

Field Sample ID	Lab ID	Dilution Factor
828103-MW0101509	A2898-01DL	20
828103-MW01A00709	A2898-02DL	20
828103-MW03C02809	A2898-03DL	50
828103-MW0301009	A2898-04DL	100
828103-MW10K01809	A2898-10DL	10
828103-MW13K01609	A2898-17DL	10
828103-MW13K01609	A2898-17DL2	100
828103-MW14K01909	A2898-18DL	50
828103GPW0201209	A2898-20DL	50
828103GPW0101309	A2898-21DL	50

3.0 VOLATILE ORGANIC COMPOUNDS IN AIR by Method TO-15

SDG LIMT-25188

VOCs in Air - Blanks

Methylene chloride (1.53 $\mu g/m^3$) and acetone (0.52 $\mu g/m^3$) were detected in the blank associated with samples in SDG LIMT-25188. Action levels were calculated at ten times the blank concentration and compared to sample results. Low level detections of methylene chloride were qualified non-detect (U) in all samples in the SDG. Detections of acetone were reported in all samples at concentration above action levels, and results are reported without qualification.

field_sample_id	lab_sample_id	param_name	final_result (µg/m³)	final_qualifier
828103-GV10809	09B14161	Methylene chloride	4.5	U
828103-GV10809D	09B14162	Methylene chloride	5.4	U
828103-GV20709	09B14163	Methylene chloride	5.2	U
828103-GV30709	09B14164	Methylene chloride	6.0	U
828103-GV40109	09B14165	Methylene chloride	4.5	U U

VOCs in Air - Initial Calibration Standards

The initial calibration analyzed on June 19, 2009 had a percent difference greater than the control limit of 30 for acetone (42), ethanol (40), and propene (37). Acetone, ethanol, and propene were qualified estimated (J/UJ) in all samples in SDG LIMT-25188.

VOCs in Air - Field Duplicate

A field duplicate was collected for sample 828103-GV10809. 2-Butanone and tetrachloroethene had RPDs greater than 50. Final results for these two compounds were qualified estimated (J).

field_sample_id	qc_code	lab_sample_id	param_name	final_result (ug/m3)	RPD-
828103-GV10809	FS	09B14161	2-Butanone	12	54.5%
828103-GV10809D	FD	09B14162	2-Butanone	21	
828103-GV10809	FS	09B14161	Tetrachloroethene	5.5	58.8%
828103-GV10809D	FD	09B14162	Tetrachloroethene	3	

4.0 METALS and WET CHEMISTRY

SDG A2898

Wet Chemistry - Hold Time

The analytical hold time for nitrate and nitrite by method 300 is 48 hours. Nitrate and nitrite were analyzed past the analytical hold time and results were qualified estimated (J/UJ) in the following samples:

Field Sample ID	Lab ID	Sample Date	Analysis Date
828103-MW0401809	A2898-05	5/25/2,009	5/30/2009
828103-MW0601609	A2898-07	5/25/2009	5/28/2009
828103-MW09K01809	A2898-09	5/25/2009	5/28/2009
828103-MW12S01009	A2898-12	5/25/2009	5/28/2009
828103-MW0101509	A2898-01	5/26/2009	5/30/2009
828103-MW01A00709	A2898-02	5/26/2009	5/30/2009
828103-MW03C02809	A2898-03	5/26/2009	5/30/2009
828103-MW0301009	A2898-04	5/26/2009	5/30/2009

The analytical hold time for sulfide by method 9034 is 7 days. The following samples were analyzed past the analytical hold time and sulfide results were qualified estimated (J/UJ) in the following samples:

Field Sample	Lab ID	Sample Date	Analysis Date
828103-MW0101509	A2898-01	5/26/2009	6/6/2009
828103-MW03C02809	A2898-03	5/26/2009	6/6/2009
828103-MW0301009	A2898-04	5/26/2009	6/6/2009
828103-MW0401809	A2898-05	5/25/2009	6/6/2009
828103-MW0601609	A2898-07	5/25/2009	6/6/2009
828103-MW08K01709	A2898-08	5/26/2009	6/6/2009
828103-MW09K01809	A2898-09	5/25/2009	6/6/2009
828103-MW10K01809	A2898-10	5/26/2009	6/6/2009
828103-MW11S01209	A2898-11	5/26/2009	6/6/2009
828103-MW12S01009	A2898-12	5/25/2009	6/6/2009
828103-MW12K01609	A2898-13	5/26/2009	6/6/2009
828103-MW13K01609	A2898-17	5/26/2009	6/6/2009
828103-MW14K01909	A2898-18	5/26/2009	6/6/2009

Wet Chemistry - Sample Reporting

The following samples were analyzed by Method 300 for chloride, nitrate, nitrite, and sulfate and were analyzed at a dilution due to elevated concentrations. Samples results were combined with the un-diluted analysis in the final data set:

Field Sample ID	Lab ID	Dilution Factor
828103-MW0101509	A2898-01DL	10
828103-MW01A00709	A2898-02DL	10
828103-MW03C02809	A2898-03DL	5
828103-MW03C02809	A2898-03DL2	25
828103-MW0301009	A2898-04DL	3
828103-MW0401809	A2898-05DL	10
828103-MW0601609	A2898-07DL	100
828103-MW08K01709	A2898-08DL	10

MACTEC Engineering and Consulting, P.C., Project No. 3612082107

		1
828103-MW09K01809	A2898-09DL	50
828103-MW10K01809	A2898-10DL	10
828103-MW11S01209	A2898-11DL	: 15
828103-MW12S01009	A2898-12DL	. 5
828103-MW12K01609	A2898-13DL	2
828103-MW12K01609D	A2898-16DL	2
828103-MW13K01609	A2898-17DL	100
828103-MW14K01909	A2898-18DL	20

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2002. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; Draft DER-10; Division of Environmental Remediation; December 2002.

Data Validator: Tige Cunningham

Date: 7/15/09.

Reviewed by Chris Ricardi, NRCC-EAC

Quality Assurance Officer

Date: 7/31/09

Dinaburg Distributing, Inc. NYSDEC – Site No. 828103 MACTEC Engineering and Consulting, P.C., Project No. 3612082107

Table 1 – Sample Listing

Parameter VOC VOC Fe-Min Sulficia Diss. Classes Alik CO2 TOC NO. NO. NO. NO. NO. NO. NO. NO. NO. NO.				Class	VOCs	VOCs	Metals	Wet Chem	Wet Chem	Wet Chem	Wet Chem	Wet Chem	Wet Chem
Parametrical Description T C 10 SW6210 9034 RSK175 SM2320 SM3230 SM3210B SM3210B Fraction T T D T T T T T T T T T T T T T T T T T				Parameter	voc	voc	Fe/Mn	Sulfide	Diss. Gasses	Alk	C02	TOC	CI, NO3, NO2, SO4
Praction T<			Analy	sis Method	SW8260	TO-15	SW6010	9034	RSK175	SM2320 B(Alk)	SM2320 B(CO2)	SM5310B	E300
Operate X </td <td></td> <td></td> <td>:</td> <td>Fraction</td> <td>T.</td> <td>T</td> <td>D</td> <td>T</td> <td>T</td> <td>Т</td> <td>Т</td> <td>Т</td> <td>Т</td>			:	Fraction	T.	T	D	T	T	Т	Т	Т	Т
83 X	Sample ID		Sample Date	Qc Code									
Fig. X	828103GPW0101309		5/25/2009	FS	×		:						
88 88 <td< td=""><td>828103GPW0201209</td><td></td><td>5/25/2009</td><td>FS</td><td>×</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	828103GPW0201209		5/25/2009	FS	×								
83 X	828103-MW0101509		5/26/2009	FS	×	-	×	×	×	×	×	×	×
83 X	828103-MW01A00709		5/26/2009	FS	×				×	×	×	×	×
RS X	828103-MW0301009		5/26/2009	FS	×		X	×	X	×	Х	×	×
FIS X	828103-MW03C02809		5/26/2009	FS	×		×	×	X	×	X	×	×
HS X	828103-MW0401809		5/25/2009	FS	×	,	X	X	X	×	. '	X	Х
FS X	828103-MW0501809	-	5/25/2009	FS	X								
FS X	828103-MW0601609	\vdash	5/25/2009	FS	X		×	×	X	×	X	×	X
FS X	828103-MW08K01709		5/26/2009	FS	×		X	X	X	Х	X	Х	X
RS X	828103-MW09K01809		5/25/2009	FS	×		X	Х	×	×	X	×	×
RS X	828103-MW10K01809		5/26/2009	FS	×		×	×	×	×	X	×	×
RS X	828103-MW11S01209		5/26/2009.	FS	×		×	×	×	X	X	×	X
FIG. X	828103-MW12K01609	,	5/26/2009	S.E.	×		×	×	×	×	×	×	×
FS X	828103-MW12K01609D		5/26/2009	Œ	×		×		×	×	×	×	×
FS X	828103-MW12S01009		5/25/2009	FS	×		×	×	X	×	×	×	×
FS X X X X X X TB X	828103-MW13K01609		5/26/2009	FS	×		×	×	×	×	.	×	×
TB	828103-MW14K01909		5/26/2009.	FS	×		×	×	×	×	×	×	×
88 88 88 88 88 88 88 88 88 88 88 88 88	828103-MWTB03		5/25/2009	TB	×								
FS FS FS FS FS FS FS FS FS FS FS FS FS F	828103-GS10909		5/6/2009	FS	×	:							
FS FS FS	828103-GS11609		5/6/2009	FS	×								
FS FS FS FS FS FS FS FS FS FS FS FS FS F	828103-GS111009		5/5/2009	FS	×		:						
FS	828103-GS111609		5/5/2009	FS	×	:	:	-					
FS	828103-GS121109		5/5/2009	FS	×				:				
	828103-GS121309		5/5/2009	FS	×		:						

Dinaburg Distributing, Inc.
NYSDEC – Site No. 828103
MACTEC Engineering and Consulting, P.C., Project No. 3612082107

								5			į,	0, 22	5
				Class	NOCS.	აე ე	Metals	wet Chem	wet Chem	wet Cnem	wet Chem	wet Chem	wet Chem
				Parameter	voc	voc	Fe/Mn	Sulfide	Diss. Gasses	Alk	C02	TOC	Cl, NO ₃ , NO ₂ , SO ₄
		•	Analy	Analysis Method	SW8260	TO-15	SW6010	9034	RSK175.	SM2320 B(Alk)	SM2320 B(CO2)	SM5310B	E300
				Fraction	Т	T.	D	T	T	Т	L	Ţ	Ţ
SDG	Media	Sample ID	Sample Date	Qc Code									
A2663	SOIL	828103-GS131209	5/5/2009	FS	X								
A2663	SOIL	828103-GS131609	5/5/2009	FS	×								
A2663	SOIL	828103-GS132109	5/5/2009	FS	×								
A2663	SOIL	828103-GS141209	5/5/2009	S.	×		:						
A2663	SOIL	828103-GS141409	5/5/2009	FS	×								
A2663	SOIL	828103-GS21109	5/6/2009	FS	×				:				
A2663	SOIL	828103-GS21609	5/6/2009	FS	×								
A2663	SOIL	828103-GS31109	5/6/2009	FS	×						,		
A2663	SOIL	828103-GS31609	5/6/2009	FS	X								
A2663	SOIL	828103-GS51109	5/6/2009	FS	×								
A2663	SOIL	828103-GS51509	5/6/2009	FS	×			:					
A2663	SOIL	828103-MW131509	5/5/2009	FS	X								
A2664	GW	828103-GW101209	5/4/2009	FS	х								
A2664	GW	828103-GW102009	5/4/2009	FS	×								
A2664	GW	828103-GW201909	5/5/2009	FS.	X							·	
A2664	GW	828103-GW301209	5/4/2009	FS	×								
A2664	GW	828103-GW302009	5/4/2009	FS	×								
A2664	GW	828103-GW402009	5/5/2009	FS.	×	·	:				;		
A2664	GW	828103-GW501209	5/4/2009	FS	×								
A2664	GW	828103-GW501909	5/4/2009	FS	×								
A2664	GW	828103-GW601909	5/5/2009	FS	X		,						
A2664	BW	828103-MWTB01	5/4/2009	TB	X								
A2708	SOIL	828103-GS101209	5/8/2009	FS	X								
A2708	SOIL	828103-GS101509	5/8/2009	FS	×								
A2708	SOIL	828103-GS41109	5/8/2009	FS	×				:				
A2708	SOIL	828103-GS41609	5/8/2009	FS	×								
A2708	SOIL	828103-GS61009	5/7/2009	FS	X								
A2708	SOIL	828103-GS61009D	5/7/2009	FD	×						:		

Dinaburg Distributing, Inc. NYSDEC – Site No. 828103 MACTEC Engineering and Consulting, P.C., Project No. 3612082107

				Class	VOCs	VOCs	Metals	Wet Chem	Wet Chem	Wet Chem	Wet Chem	Wet Chem	Wet Chem
				Parameter	NOC	voc	Fe/Mn	Sulfide	Diss. Gasses	Alk	C02	TOC	CI, NO₃, NO₂, SO₄
		**************************************	Analy	Analysis Method	SW8260	TO-15	SW6010	9034	RSK175	SM2320 B(AIk)	SM2320 B(CO2)	SM5310B	E300
				Fraction	T	T	D	Т	T	Т	Т	Т	T
SDG	Media	Sample ID	Sample Date	Qc Code		:	-						
A2708	SOIL	828103-GS61509	5/1/2009	FS	×								
A2708	SOIL	828103-GS71209	5/8/2009	FS	×	,							
A2708	SOIL	828103-GS71609	5/8/2009	FS	×								
A2708	SOIL	828103-GS81109	5/7/2009	FS.	×								
A2708	SOIL	828103-GS81509	5/7/2009	FS	×								
A2708	SOIL	828103-GS91209	5/8/2009	FS	×								
A2708	SOIL	828103-GS91509	5/8/2009	FS	×						·		
A2708	SOIL	MW13K14KIDW09	5/8/2009	FS	×								
A2708	NA-L	828103-GSTB01	5/5/2009	TB	Х	:							
A2948	BW	828103-MWTB04	5/27/2009	TB	×								
A2948	WM	828103-SL101209	5/27/2009	FS	×								
A2948	WM	828103-SL201309	5/27/2009	FS	Х								
A2948	ww	828103-SL301309	5/27/2009	FS	×								
A2948	MM	828103-SL400609	5/27/2009	FS	×								
A2948	MM	828103-SL500809	5/27/2009	FS	×	:						-	
A2948	WM	828103-SL601109	5/27/2009	FS	×								
LIMT-25188	Air	828103-GV10809	5/1/2009	FS		×							
LIMT-25188	Air	828103-GV10809	5/7/2009	FS		×							
LIMT-25188	Air	828103-GV10809D	5/7/2009	FD		×						•	
LIMT-25188	Air	828103-GV10809D	5/7/2009	Ð		×		-					
LIMT-25188	Air	828103-GV20709	5/6/2009	FS		×	:						
LIMT-25188	Air	828103-GV20709	5/6/2009	FS		X							
LIMT-25188	Air	828103-GV30709	5/6/2009	FS		×							
LIMT-25188	Air	828103-GV30709	5/6/2009	FS		×	:	-					
LIMT-25188	Air	828103-GV40109	5/7/2009	FS		×							
LIMT-25188	Air	828103-GV40109	5/7/2009	FS		Х							

Table 3 - VOC - Tentatively Identified compounds

Tentatively identified compounds (TICs) were reported by the laboratory. TICs reported in samples are presented in Table 3. Only samples that had TICs reported are included on Table 3. If a sample is not listed, no TICs were reported.

																	T			ĺ			
	Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/L	ng/L	ng/L	ug/L	ug/L	ng/L	ug/kg	ug/kg	ug/kg	ug/kg
Validation	Qualifier	J.V.	Z.	N.	Ní	J.N.	Z.	Ν̈́	JN	J.	 Y.	Z.	N.	N.	Z.	J.V	Z.	Z.	Z.	N.	Z,	Ϊζ	N.
	Result	1300	280	2000	4400	370	16000	7300	4000	2400	1500	610	430	0.87	1.8	0.89	0.62	0.83	1.9	280	9400	2000	2400
	chemical name	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Benzene, 1-ethyl-2-methyl-	Decane	Naphthalene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Benzene, 1-ethyl-2-methyl-	Naphthalene	n-propylbenzene	p-Isopropyltoluene	sec-Butylbenzene	1,2,3-Trichlorobenzene	Hexachlorobutadiene	Naphthalene	n-Butylbenzene	1,2,4-Trimethylbenzene	Naphthalene	1,2,4-Trimethylbenzene	Decane	Decane, 4-methyl-	Decane, 5-methyl-
	CAS No	95-63-6	108-67-8	000611-14-3	000124-18-5	91-20-3	95-63-6	108-67-8	000611-14-3	91-20-3	103-65-1	9-28-66	135-98-8	87-61-6	87-68-3	91-20-3	104-51-8	95-63-6	91-20-3	95-63-6	000124-18-5	002847-72-5	013151-35-4
	Lab Sample ID	A2663-01	A2663-01	A2663-01	A2663-01	A2663-01	A2663-03	A2663-03	A2663-03	A2663-03	A2663-03	A2663-03	A2663-03	A2664-01	A2664-01	A2664-01	A2664-01	A2664-11	A2664-11	A2708-01	A2708-01	A2708-01	A2708-01
	Sample Date	5/6/2009	5/6/2009	2/6/2009	5/6/2009	5/6/2009	2/6/2009	5/6/2009	5/6/2009	5/6/2009	5/6/2009	5/6/2009	5/6/2009	5/4/2009	5/4/2009	5/4/2009	5/4/2009	5/4/2009	5/4/2009	5/8/2009	5/8/2009	5/8/2009	5/8/2009
	Field Sample ID	828103-GS10909	828103-GS10909	828103-GS10909	828103-GS10909	828103-GS10909	828103-GS21109	828103-GS21109	828103-GS21109	828103-GS21109	828103-GS21109	828103-GS21109	828103-GS21109	828103-GW101209	828103-GW101209	828103-GW101209	828103-GW101209	828103-GW102009	828103-GW102009	828103-GS41109	828103-GS41109	828103-GS41109	828103-GS41109
	SDG	A2663	A2663	A2663	A2663	A2663	A2663	A2663	A2663	A2663	A2663	A2663	A2663	A2664	A2664	A2664	A2664	A2664	A2664	A2708	A2708	A2708	A2708

Dinaburg Distributing, Inc. NYSDEC – Site No. 828103 MACTEC Engineering and Consulting, P.C., Project No. 3612082107

	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	Ţ	Ţ	Ţ	L	Ţ	Ţ	Ţ	Ţ	L	T/ott
	/gn	/gn	/gn	/gn	/gn	/gn	/gn	/gn	/gu	/gn	/gn	/gn	/gn	/gn	/gn	/gn	J/gn	T/gn	T/gn	J/gn	T/gn	J/gn	J/gn	T/gn	ug/L	,
;	Z,	N	N.	N	NI	N	N	N	NI	. NI	N.	Ζ,	Z.	N.	N.	N	Z	NI	Z.	Z.	Z	N.	Z	Z,	Ní	<u>ר</u>
	5400	230	6300	2200	2700	3400	2700	2300	250	370	270	1400	1100	340	360	300	38	4.7	9.2	6.9	17	4.7	4.4	1.4	1	010
	Heptane, 3;3,5-trimethyl-	Naphthalene	Nonane	Nonane, 4-methyl-	Octane	Octane, 2,6-dimethyl-	Octane, 2-methyl-	Octane, 3-methyl-	1,2,3-Trichlorobenzene	Hexachlorobutadiene	1,2,4-Trimethylbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	4-iso-Propyltoluene	Propylbenzene	sec-Butylbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Benzene, 1-ethyl-2-methyl-	Benzene, 1-ethyl-3-methyl-	Naphthalene	n-Butylbenzene	Propylbenzene	sec-Butylbenzene	1,2,3-Trichlorobenzene	-
	007154-80-5	91-20-3	000111-84-2	017301-94-9	000111-65-9	002051-30-1	003221-61-2	002216-33-3	87-61-6	87-68-3	95-63-6	95-63-6	108-67-8	99-87-6	103-65-1	135-98-8	95-63-6	108-67-8	000611-14-3	000620-14-4	91-20-3	104-51-8	103-65-1	135-98-8	87-61-6	,
	A2708-01	A2708-01	A2708-01	A2708-01	A2708-01	A2708-01	A2708-01	A2708-01	A2708-02	A2708-02	A2708-07	A2708-09	A2708-09	A2708-09	A2708-09	A2708-09	A2898-17	A2898-17	A2898-17	A2898-17	A2898-17	A2898-17	A2898-17	A2898-17	A2948-01	+ + + + + + + + + + + + + + + + + + + +
	5/8/2009	5/8/2009	5/8/2009	5/8/2009	5/8/2009	5/8/2009	5/8/2009	5/8/2009	5/8/2009	5/8/2009	5/7/2009	5/8/2009	5/8/2009	5/8/2009	5/8/2009	5/8/2009	5/26/2009	5/26/2009	5/26/2009	5/26/2009	5/26/2009	5/26/2009.	5/26/2009	5/26/2009	5/27/2009	
	828103-GS41109	828103-GS41109	828103-GS41109	828103-GS41109	828103-GS41109	828103-GS41109	828103-GS41109	828103-GS41109	828103-GS41609	828103-GS41609	828103-GS61509	828103-GS71609	828103-GS71609	828103-GS71609	828103-GS71609	828103-GS71609	828103- MW13K01609	828103- MW13K01609	828103- MW13K01609	828103- MW13K01609	828103- MW13K01609	828103- MW13K01609	828103- MW13K01609	828103- MW13K01609	828103-SL101209	
	A2708	A2708	A2708	A2708	A2708	A2708	A2708	A2708	A2708	A2708	A2708	A2708	A2708	A2708	A2708	A2708	A2898	A2898	A2898	A2898	A2898	A2898	A2898	A2898	A2948	

Dinaburg Distributing, Inc. NYSDEC – Site No. 828103 MACTEC Engineering and Consulting, P.C., Project No. 3612082107

					-		_	
A2948	828103-SL101209	5/27/2009	A2948-01	87-68-3	Hexachlorobutadiene	2.3	J.	ng/L
A2948	828103-SL101209	5/27/2009	A2948-01	91-20-3	Naphthalene	1.2	JN	ng/L
A2948	828103-SL400609	5/27/2009	A2948-04	99-87-6	4-iso-Propyltoluene	1.7	JŅ	ng/L
A2948	A2948 828103-SL400609	5/27/2009	A2948-04	002216-52-6	Cyclohexanol, 5-methyl-2-(1-methyl	7.7	J.	ng/L
A2948	828103-SL500809	5/27/2009	A2948-05	99-87-6	4-iso-Propyltoluene	0.81	JN	ng/L
A2948	A2948 828103-SL500809	5/27/2009	A2948-05	000089-78-1	Cyclohexanol, 5-methyl-2-(1-methyl	7.4	J.	ng/L
A2948	A2948 828103-SL601109	5/27/2009	A2948-06	002216-52-6	Cyclohexanol, 5-methyl-2-(1-methyl	9.9	Z;	ng/L
					1			

	Т	Sample T	elivery Group	A2664	A2664	A2664	A2664
		Sample 2	Location	GW-1	GW-1	GW-2	GW-3
			Sample Date	5/4/2009	5/4/2009	5/5/2009	5/4/2009
			Sample ID	828103-GW101209	828103-GW102009	828103-GW201909	828103-GW302009
			Qc Code	FS	FS	FS	FS
Analysis	Fraction	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	T	1,1,1-Trichloroethane	ug/l	49	41	1 U	1 U
SW8260	T	1,1,2,2-Tetrachloroethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,1,2-Trichloroethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,1-Dichloroethane	ug/l	11	27	15	0.99 J
SW8260	T	1,1-Dichloroethene	ug/l	4.6	8.1	5.3	3.6
SW8260	T	1,2,4-Trichlorobenzene	ug/l	0.82 J	1 U	. 1 U	1 U
SW8260	T	1,2-Dibromo-3-chloropropane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,2-Dibromoethane	ug/l	1 U	1 U	1 U	1 U
SW8260		1,2-Dichlorobenzene	ug/l	1 U	1 U	1 U 1 U	1 U
SW8260		1,2-Dichloroethane	ug/l	1 U	1 U 1 U	1 U	1 U
SW8260 SW8260	T	1,2-Dichloropropane	ug/l	1 U	1 U	1 U	1 U
SW8260 SW8260	1 T	1,3-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U 1 U
SW8260	T	2-Butanone	ug/l	5 U	5 U	5 U	5 U
SW8260 SW8260	1 T	2-Hexanone	ug/l ug/l	5 U	5 U	5 U	5 U
SW8260	T	4-Methyl-2-pentanone	ug/l ug/l	5 U	5 U	5 U	5 U
SW8260	T	Acetic acid, methyl ester	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Acetone	ug/I ug/I	5 U	11	5 U	5 U
SW8260	T	Benzene	ug/l	1 U	0.99 J	1.4	1 U
SW8260	T	Bromodichloromethane	ug/l ug/l	1 U	0.99 J	1.4 1 Ù	1 U
SW8260	T	Bromoform	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Bromomethane	ug/l	1 U	1 U	1 U	1 U
SW8260	+ <u>1</u>	Carbon disulfide	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Carbon tetrachloride	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Chlorobenzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Chlorodibromomethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Chloroethane	ug/l	1 U	1 U	ilu	1 U
SW8260	T	Chloroform	ug/i	1 U	1 U	1 U	1 U
SW8260	T	Chloromethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Cis-1,2-Dichloroethene	ug/l	480 DJ	720 DJ	390 DJ	110 DJ
SW8260	T	cis-1,3-Dichloropropene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Cyclohexane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Dichlorodifluoromethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Ethyl benzene	ug/l	1 U	1.1	1 U	1 U
SW8260	T	Isopropylbenzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Methyl cyclohexane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Methyl Tertbutyl Ether	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Methylene chloride	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Styrene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Tetrachloroethene	ug/l	640 DJ	2900 DJ	150 DJ	730 DJ
SW8260	T	Toluene	ug/l	1 U	2.7	0.77 J	1 U
SW8260	T	trans-1,2-Dichloroethene	ug/l	5.1	19	3.1	1
SW8260	T	trans-1,3-Dichloropropene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Trichloroethene	ug/l	420 DJ	840 DJ	310 DJ	110 DJ
SW8260	T	Trichlorofluoromethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Vinyl chloride	ug/l	28	57	55	45
SW8260	T	Xylene, m/p	ug/l	2 U	1.6 J	2 U	2 U
SW8260	T	Xylene, o	ug/l	1 U	2.5	1 U	1 U
SW6010	D	Iron	ug/l				
SW6010	D	Manganese	ug/l				
9034	T	Sulfide	mg/l				
E300	T	Chloride	mg/l				
E300	T	Nitrate as N	mg/l				
E300	T	Nitrite as N	mg/l				
E300	T	Sulfate	mg/l				
RSK175	T	Ethane	ug/l				
RSK175	T	Ethene	ug/l				
RSK175	T	Methane	ug/l				
SM2320 B(Alk)	T	Alkalinity, Total	mg/l				
SM2320 B(CO2)		Carbon Dioxide	mg/l				ļ
SM5310B	T	Total Organic Carbon	mg/l				
Notes:	1	<u> </u>					
Fraction: T = tota	at, D = diss	olved					<u> </u>
Units: ug/l = mici	rograms per	liter, mg/l = milligrams per liter					
Qualifier: U= nor	n-detect, J=	estimated, D= result from dilution analys	315				<u> </u>

		Sample I	Delivery Group	A26		A2664	A2	664	A266	54
			Location	GW-		GW-4		V-5	GW-	.5
			Sample Date	5/4/20		5/5/2009		2009	5/4/20	009
			Sample ID	828103-GV		828103-GW4020		W501209	828103-GW	V501909
			Qc Code	FS		FS	F		FS	
Analysis		Parameter	Units	Result	Qualifier		lifier Result	Qualifier	Result	Qualifier
SW8260 SW8260	T ·	1,1,1-Trichloroethane	ug/l		U	1 U		1 UJ		U
SW8260		1,1,2,2-Tetrachioroethane	ug/l ug/l		U U	1 U		1 UJ		U
SW8260	T	1,1,2-Trichloroethane	ug/l		U	1 U	·····	1 UJ 1 UJ		U U
SW8260	T	1,1-Dichloroethane	ug/l	1.2	0	1 U		1 UJ		U
SW8260	Ť	1,1-Dichloroethene	ug/l	3.2		1 U		1 UJ		U
SW8260	T	1,2,4-Trichlorobenzene	ug/l		U	1 U		1 UJ		U
SW8260	T	1,2-Dibromo-3-chloropropane	ug/l		U	1 U		1 UJ		U
SW8260	T	1,2-Dibromoethane .	ug/l	1	U	1 U		1 UJ	1	U
SW8260	T	1,2-Dichlorobenzene	ug/l	1	U ·	1 U		1 UJ	1	U
SW8260	T	1,2-Dichloroethane	ug/l		U	1 U		1 UJ	1	U
SW8260	T	1,2-Dichloropropane	ug/l		U	1 U		1 UJ	1	U
SW8260	T	1,3-Dichlorobenzene	ug/l		U	1 U		1 UJ	1	U
SW8260	T	1,4-Dichlorobenzene	ug/l		U	1 U		1 UJ		U
SW8260		2-Butanone	ug/l		U	5 U		5 UJ		U
SW8260		2-Hexanone	ug/l		U	5 U		5 UJ		U
SW8260 SW8260	T	4-Methyl-2-pentanone Acetic acid, methyl ester	ug/l		U	5 U		5 UJ		U
SW8260 SW8260	T	Acetic acid, methyl ester Acetone	ug/l ug/l		U U	1 U 5 U		1 UJ		U
SW8260	T T	Benzene	ug/l		U U	1 U		5 UJ 1 UJ		U U
SW8260	T	Bromodichloromethane	ug/l		Ū	1 U		1 UJ		Ŭ
SW8260	T	Bromoform	ug/l		Ū	1 U		1 UJ		U
SW8260	T	Bromomethane	ug/l		Ū	1 U		1 UJ		U
SW8260	T	Carbon disulfide	ug/l		Ū	1 U		1 UJ		U
SW8260	T	Carbon tetrachloride	ug/l		Ū	1 U		1 UJ		U
SW8260	T	Chlorobenzene	ug/l		Ū	1 U		1 UJ		Ū
SW8260	T	Chlorodibromomethane	ug/l	1	U	1 U		1 UJ		Ū
SW8260	T	Chloroethane	ug/l	1	U	1 U		1 UJ		Ū
SW8260		Chloroform	ug/l		U	1 U		1 UJ	1	U
SW8260	}	Chloromethane	ug/l		U	1 U	3.	3 J	1	U
SW8260		Cis-1,2-Dichloroethene	ug/l	150		1 U		1 UJ	2.7	
SW8260		cis-1,3-Dichloropropene	ug/l		U	1 U		1 UJ		U
SW8260		Cyclohexane	ug/l		U	1 U		1 UJ		U
SW8260		Dichlorodifluoromethane	ug/l		U	1 U		1 UJ		U
SW8260		Ethyl benzene	ug/l		U	1 U		1 UJ		U
SW8260 SW8260	T	Isopropylbenzene Methyl cyclohexane	ug/l		Ŭ	1 U		1 UJ		U
SW8260	T	Methyl Tertbutyl Ether	ug/l ug/l		U U	1 U 1 U		1 UJ 1 UJ		U
SW8260	T	Methylene chloride	ug/l		Ü	1 U		1 UJ		U U
SW8260	T	Styrene	ug/l		ŭ	1 U		1 UJ		U U
SW8260		Tetrachloroethene	ug/l	720		1 UJ		9 J	3	
SW8260	T	Toluene	ug/l		บ	1 U		l UJ		U
SW8260	T	trans-1,2-Dichloroethene	ug/l	0.73		1 U		1 UJ		U
SW8260	T	trans-1,3-Dichloropropene	ug/l		Ū	1 U		1 UJ		Ū
SW8260	T	Trichloroethene	ug/l	120		1 U		6 J	34	
SW8260	T	Trichlorofluoromethane	ug/l		U	1 U		1 UJ		U
SW8260	T	Vinyl chloride	ug/l	30		1 U		1 UJ	1	U
SW8260	T	Xylene, m/p	ug/l		U	2 U		2 UJ		U
SW8260	T	Xylene, o	ug/l	1	U	1 U		1 UJ	1	U
SW6010		Iron	ug/l							
SW6010		Manganese	ug/l		·					
9034 E300	T	Sulfide	mg/l							
E300 E300	T	Chloride Nitrate as N	mg/l							
E300	T	Nitrite as N	mg/l					-		
E300	T	Sulfate	mg/l mg/l							
RSK175	T	Ethane	ug/l		-					
RSK175		Ethene	ug/l							
RSK175		Methane	ug/l							
SM2320 B(Alk)		Alkalinity, Total	mg/l							
SM2320 B(CO2)		Carbon Dioxide	mg/l							
SM5310B		Total Organic Carbon	mg/l							
Notes:					·					
Fraction: T = total	, D = disso	lved								
		liter, mg/l = milligrams per liter								
		estimated, D= result from dilution analys	:							

		Sample I	Delivery Group	A2664	A2664	A2898	A2898
			Location	GW-6	QC	. GPW-01	GPW-02
	ļ		Sample Date	5/5/2009	5/4/2009	5/25/2009	5/25/2009
			Sample ID Oc Code	828103-GW601909 FS	828103-MWTB01 TB	828103GPW0101309 FS	828103GPW0201209 FS
Analysis	Fraction	Parameter ·	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	T	1,1,1-Trichloroethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,1,2,2-Tetrachloroethane	ug/l	1 Ú	1 U	1 U	1 U
SW8260	T	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	1 U	1 U	1 UJ	1 UJ
SW8260	T	1,1,2-Trichloroethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,1-Dichloroethane	ug/l	2.2	1 U	1 U	1 U
SW8260	T	1,1-Dichloroethene	ug/l	3.1	1 U	1 U	1 U
SW8260	T	1,2,4-Trichlorobenzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,2-Dibromo-3-chloropropane	ug/l	1 U	1 U	1 U	1 U
SW8260 SW8260	T	1,2-Dibromoethane	ug/l	1 U	1 U 1 U	1 U	1 U
SW8260	T	1,2-Dichlorobenzene 1,2-Dichloroethane	ug/l	1 U 1 U	1 U	1 U 1 U	1 U
SW8260		1,2-Dichloropropane	ug/l ug/l	1 U	1 U	1 U	1 U 1 U
SW8260	T	1,3-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,4-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U
SW8260	Ť	2-Butanone	ug/l	5 U	5 U	5 U	5 U
SW8260	T	2-Hexanone	ug/l	5 U	5 U	5 U	5 U
SW8260		4-Methyl-2-pentanone	ug/I	5 U	5 U	5 U	5 U
SW8260	T	Acetic acid, methyl ester	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Acetone	ug/l	5 U	5 U	5 U	5 U
SW8260	T	Benzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Bromodichloromethane	ug/l	1 U	1 U	1 U	1 U
SW8260 SW8260	T	Bromoform	ug/l	1 U 1 U	1 U 1 U	1 U	1 U
SW8260	T	Bromomethane Carbon disulfide	ug/l ug/l	1 U	1 U	1 U	1 U
SW8260	T	Carbon tetrachloride	ug/l	1 U	1 U	1 U	1 U
SW8260	Ť	Chlorobenzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Chlorodibromomethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Chloroethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Chloroform	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Chloromethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Cis-1,2-Dichloroethene	ug/l	31	1 U	38	81
SW8260	T	cis-1,3-Dichloropropene	ug/l	1 U	1 U	, 1 U	1 U
SW8260	T	Cyclohexane	ug/l	1 U	1 U	1 U	1 U
SW8260 SW8260	T	Dichlorodifluoromethane	ug/l	1 U 1 U	1 U	1 U	1 U
SW8260	_	Ethyl benzene Isopropylbenzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Methyl cyclohexane	ug/l ug/l	1 U	1 U	1 U	1 U
SW8260	T	Methyl Tertbutyl Ether	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Methylene chloride	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Styrene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Tetrachloroethene	ug/l	3.4	1 U	7.4	830 D
SW8260	T	Toluene	ug/l	1 U	1 U	. 1 U	1 U
SW8260	T	trans-1,2-Dichloroethene	ug/l	1.3	1 U	2.6	1.2
SW8260		trans-1,3-Dichloropropene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Trichloroethene	ug/l	81	1 U	1600 D	5200 D
SW8260	T	Trichlorofluoromethane	ug/l	1 U	1 U	1 U	1 U
SW8260 SW8260	T	Vinyl chloride Xylene, m/p	ug/l	7.1 2 U	1 U 2 U	1 U 2 U	7.6
SW8260	T	Xylene, o	ug/l ug/l	1 U	1 U	2 U	2 U 1 U
SW6010	D	Iron	ug/i ug/i	10	1 0	1 0	10
SW6010	D	Manganese	ug/l				
9034	T	Sulfide	mg/l				
E300	T	Chloride	mg/l				
E300	T	Nitrate as N	mg/l				
E300	T	Nitrite as N	mg/l				
E300	T	Sulfate	mg/l				
RSK175	T	Ethane	ug/l				
RSK175	T	Ethene	ug/l				
RSK175	T	Methane	ug/l				
SM2320 B(Alk)	T	Alkalinity, Total	mg/l				
SM2320 B(CO2) SM5310B	T	Carbon Dioxide	mg/l				
Notes:	1 1	Total Organic Carbon	mg/l				
Fraction : T = tota	1. D = diese	l					
		liter, mg/l = milligrams per liter				-	
		estimated, D= result from dilution analys					

		Sample 1	Delivery Group		398	A28		A28			898
			Location	MW		MW-		MW			7-03C
			Sample Date Sample ID	5/26/2 828103-MV		5/26/		5/26/2			/2009
			Qc Code	628103-1VI		828103-MV F		828103-MV			W03C02809
Analysis	Fraction	Parameter ·	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	S Qualifier
SW8260	T	1,1,1-Trichloroethane	ug/l		UJ		UJ	47			Quanner
SW8260	T	1,1,2,2-Tetrachloroethane	ug/l		Ū		U		U		iυ
SW8260	T	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l		Ū		Ü		Ū		เบ็
SW8260		1,1,2-Trichloroethane	ug/l		Ū		Ü		U		เป็
SW8260	T	1,1-Dichloroethane	ug/l	4			Ū	3.5			2 J
SW8260	T	1,1-Dichloroethene	ug/l	2.5			Ū	16		1.8	
SW8260	T	1,2,4-Trichlorobenzene	ug/l	1	U		U		Ū		Ū
SW8260	T	1,2-Dibromo-3-chloropropane	ug/l	1	U		Ū		Ū		Ū
SW8260	T	1,2-Dibromoethane	ug/l	1	U	1	Ū		Ū		Ū
SW8260		1,2-Dichlorobenzene	ug/l	1	U		U		Ū		Ū
SW8260	T	1,2-Dichloroethane	ug/l	1	U		U		Ū		เบ
SW8260		1,2-Dichloropropane	ug/l	1	U		U		Ū		Ü
SW8260		1,3-Dichlorobenzene	ug/l	1	U .	1	Ū		U		Ū
SW8260		1,4-Dichlorobenzene	ug/l	1	U	1	U		U		Ū
SW8260		2-Butanone	ug/l	. 5	U	5	U	5	U		U
SW8260		2-Hexanone	ug/l		U		U		Ū		Ū
SW8260		4-Methyl-2-pentanone	ug/l		U		U		Ū		Ū
SW8260	T	Acetic acid, methyl ester	ug/l		U	1	Ū		U		Ū
SW8260		Acetone	ug/l	5	U	5	U	5	U	5	U
SW8260		Benzene	ug/l		Ü		U		Ü	0.82	
SW8260		Bromodichloromethane	ug/l		U	1	U	1	U	1	U
SW8260		Bromoform	ug/l	1	U	1	U	1	U	1	U
SW8260		Bromomethane	ug/l		U	1	U	. 1	U	1	U
SW8260		Carbon disulfide	ug/l		U	1	U	1	U	1	U
SW8260		Carbon tetrachloride	ug/l		UJ	1	UJ		UJ	1	UJ
SW8260		Chlorobenzene	ug/l		U		U	1	U	1	U
SW8260		Chlorodibromomethane	ug/i		U		U	1	U	1	U
SW8260		Chloroethane	ug/l		Ū		U		U		U
SW8260		Chloroform	ug/l		U		U	0.74		1	U
SW8260		Chloromethane	ug/l		U .		U		U	1	U
SW8260	T	Cis-1,2-Dichloroethene	ug/l	450		310		190		220	D
SW8260		cis-1,3-Dichloropropene	ug/l		UJ		UJ		UJ	1	UJ
SW8260		Cyclohexane	ug/l		U		U		U		U
SW8260		Dichlorodifluoromethane	ug/l		U		U		U		U
SW8260 SW8260		Ethyl benzene	ug/l		U		U		บ		.U
SW8260		Isopropylbenzene	ug/l		U		U		U		' U
SW8260		Methyl cyclohexane	ug/l		U		U		U		U
SW8260		Methyl Tertbutyl Ether	ug/l		U		U		U		U
SW8260		Methylene chloride	ug/l		U		Ŭ		U		U
SW8260		Styrene Tetrachloroethene	ug/l		U		U		U		U
SW8260		Toluene	ug/l	53		44		9100	D	370	
SW8260		trans-1,2-Dichloroethene	ug/l		U		U	1.1			U
SW8260		trans-1,3-Dichloropropene	ug/l	7		2.3		4.3		1.1	
SW8260			ug/l		UJ	1	UJ		UJ		UJ
SW8260		Trichloroethene Trichlorofluoromethane	ug/l ug/l	61	U U	67		2200		1100	
SW8260		Vinyl chloride					U		U		U
SW8260		Xylene, m/p	ug/l ug/l	37	U U	5.4	U J		U	7.5	
SW8260		Xylene, o							U		U
SW6010		Aylene, 0	ug/l		U	1	U	1.9			U
SW6010		Manganese	ug/l ug/l	3860 248				95		1190	
9034		Sulfide			UJ			44.1		45.1	
E300		Chloride	mg/l mg/l	91		62	D		UJ		UJ
E300		Nitrate as N						35		210	
E300		Nitrite as N	mg/l mg/l	0.1		0.378 0.05		10			UJ
E300		Sulfate						0.05		0.05	
RSK175		Ethane	mg/l ug/l	44 5		18	Ū	96		. 160	
RSK175		Ethene	ug/l		U		บ		U		U
RSK175		Methane	ug/l	18.8			U		U U		U
SM2320 B(Alk)		Alkalinity, Total	mg/l	270						·	U
SM2320 B(CO2)		Carbon Dioxide	mg/l	100		270 100		210		440	
SM5310B		Total Organic Carbon	mg/l	8.32		4.37		93		200	
Notes:			1112/1	0.32		4.37		4		1.67	
Fraction : T = total	D = disso	lved				-					
		iter, mg/l = milligrams per liter	 -								
											1

	<u> </u>	Sample I	Delivery Group			A28			898	· · · · · · · · · · · · · · · · · · ·	398
			Location	MW		MW			V-06	MW-	
			Sample Date Sample ID	5/25/2 828103-M\		5/25/2 828103-MV			/2009	5/26/	
	 		Qc Code	628103-M		828103-MY			W0601609	828103-MV F	
Analysis	Fraction	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	T	1,1,1-Trichloroethane	ug/l		U		U		U		U
SW8260	T	1,1,2,2-Tetrachloroethane	ug/l	1	U	1	Ū'		U		Ū
SW8260	T	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	1	U	1	Ū		U	1	U
SW8260	T	1,1,2-Trichloroethane	ug/l	1	U	1	U	1	U	1	U
SW8260	T	1,1-Dichloroethane	ug/l		U		U		U		U
SW8260	T	1,1-Dichloroethene	ug/l		U		Ŭ		U		U
SW8260	T	1,2,4-Trichlorobenzene	ug/l		U		U		U		U
SW8260 SW8260	T	1,2-Dibromo-3-chloropropane	ug/I		U		U ·		U		U
SW8260	T	1,2-Dibromoethane 1,2-Dichlorobenzene	ug/l		U		U U		U		U
SW8260	T	1,2-Dichloroethane	ug/l ug/l		Ū		U		U		U
SW8260	T	1,2-Dichloropropane	ug/l		Ū		U		Ū		U
SW8260	T	1,3-Dichlorobenzene	ug/l		U		υ		Ū		U
SW8260	T	1,4-Dichlorobenzene	ug/l		Ū		Ū		Ū		U
SW8260	T	2-Butanone	ug/I		Ū		Ū		U		U
SW8260	T	2-Hexanone	ug/l		U		U		U		Ū
SW8260		4-Methyl-2-pentanone	ug/I		U		U		Ü		U
SW8260	T	Acetic acid, methyl ester	ug/l		U.		U		U		U
SW8260	T	Acetone	ug/l		U		U		U		U
SW8260	T	Benzene	ug/l		U		Ū		U		U
SW8260 SW8260	T	Bromodichloromethane Bromoform	ug/l		U		U		U		U
SW8260	T	Bromonethane	ug/l		U		U U		UJ		UJ
SW8260	T	Carbon disulfide	ug/l ug/l		Ü		Ū		U		U U
SW8260	T	Carbon tetrachloride	ug/l		Ū		Ū		Ū		Ü
SW8260	T	Chlorobenzene	ug/l		Ū		<u>ט</u>		Ū		Ū
SW8260	T	Chlorodibromomethane	ug/I		Ū		Ū		Ū		Ū
SW8260	T	Chloroethane	ug/l		U		Ū		Ū		Ū
SW8260	T	Chloroform	ug/l	1	U		Ū	1	U		Ū
SW8260	T	Chloromethane	ug/I		U	1	U	1	U	1	U
SW8260	T	Cis-1,2-Dichloroethene	ug/I		U		U	13			U
SW8260	T	cis-1,3-Dichloropropene	ug/l		Ŭ		U		U		U
SW8260	T	Cyclohexane	ug/l		U		U		U		U
SW8260 SW8260	T	Dichlorodifluoromethane	ug/l		U		U		U		U
SW8260		Ethyl benzene Isopropylbenzene	ug/l ug/l		U U		U U		U		U
SW8260		Methyl cyclohexane	ug/l		U		U.		U U		U U
SW8260		Methyl Tertbutyl Ether	ug/l	1.3	T		บ		U		U
SW8260		Methylene chloride	ug/l	0.52			U		บ		U
SW8260		Styrene	ug/l		U		Ū		U		U
SW8260	T	Tetrachloroethene	ug/l		U		UJ	1.1			Ū
SW8260	T	Toluene	ug/l	1	U	1	U	1	U		U
SW8260		trans-1,2-Dichloroethene	ug/l		U		U	1	U	1	Ŭ
SW8260		trans-1,3-Dichloropropene	ug/l		U		U		U	1	U
SW8260		Trichloroethene	ug/l		U	4.6		4.6			U
SW8260		Trichlorofluoromethane	ug/l		U		U		U ,		U
SW8260 SW8260	T	Vinyl chloride Xylene, m/p	ug/l		U		U	0.59		1	U
SW8260			ug/l		U		U		U		U
SW6010		Xylene, o Iron	ug/l ug/l	59.2	U	1	U		U U		U U
SW6010		Manganese	ug/l	31.9			 	28.6		24.8	
9034	T	Sulfide	mg/l		UJ				UJ		UJ
E300	T	Chloride	mg/l		D			490			D
E300		Nitrate as N	mg/l	0.266				0.788		4.25	
E300		Nitrite as N	mg/l	0.05				0.05		0.05	
E300	T	Sulfate	mg/l	100	D			150	D	44	
RSK175	T	Ethane	ug/l		Ŭ				Ŭ .	5	U
RSK175		Ethene	ug/l		U				U		Ū
RSK175		Methane	ug/l		U				U		U
SM2320 B(Alk)	T	Alkalinity, Total	mg/l	350				550		300	
SM2320 B(CO2)		Carbon Dioxide	mg/l	200				200		100	
SM5310B	T	Total Organic Carbon	mg/l	1.5	 	_		6.02		1.5	
Notes: Fraction : T = tota	 D = 4!===	lund									
		liter, mg/l = milligrams per liter			 						
	zianis det	mer, mg/r – minigrams per mer	F .		1		1 1	•			Ì

·		Sample D	elivery Group	A28		A28		A289		A289	
			Location	MW-		MW-		MW-1		MW-1	
			Sample Date	5/25/2		5/26/2		5/26/2		5/26/20	
			Sample ID Oc Code	828103-MW FS		828103-MW FS				828103-MW	
Analysis	Fraction	Parameter	Units	Result	Qualifier	Result	Oualifier	FS Result	Oualifier	FS Result	Oualifier
SW8260	T	1,1,1-Trichloroethane	ug/l		U		U		U		U
SW8260	T	1,1,2,2-Tetrachloroethane	ug/l	1			Ū		Ū		Ū
SW8260	T	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	1			UJ		Ū		U
SW8260	T	1,1,2-Trichloroethane	ug/l	1			U		Ū		U
SW8260	T	1,1-Dichloroethane	ug/l	1	U	3.9		1	Ü	1	U
SW8260	T	1,1-Dichloroethene	ug/l	1			U	1	U	1	U
SW8260	T	1,2,4-Trichlorobenzene	ug/l	1			U		U	1	U
SW8260	T	1,2-Dibromo-3-chloropropane	ug/l	1			U		U		U
SW8260 SW8260	T	1,2-Dibromoethane	ug/l	1			U		U		U
SW8260 SW8260		1,2-Dichlorobenzene 1,2-Dichloroethane	ug/l	1			U		U		U
SW8260	T	1,2-Dichloropropane	ug/l	1			U		U		U
SW8260	T	1,3-Dichlorobenzene	ug/l ug/l	1			U		U U		U U
SW8260	T	1,4-Dichlorobenzene	ug/l	1			U		Ū		U
SW8260	T	2-Butanone	ug/l	5			Ŭ		Ū		υ
SW8260	T	2-Hexanone	ug/l	5			Ū		U		Ü
SW8260		4-Methyl-2-pentanone	ug/l	5			Ū		Ū		Ū
SW8260	T	Acetic acid, methyl ester	ug/l	1	U		U		Ū		Ū
SW8260	T	Acetone	ug/l	5			U ·		U		U
SW8260	T	Benzene	ug/l	1		0.61			U		U
SW8260	T	Bromodichloromethane	ug/l	1			U		U		U
SW8260 SW8260	T	Bromoform	ug/l	1			U		U		U
SW8260	T	Bromomethane Carbon disulfide	ug/l	1			U		U		U
SW8260	T	Carbon distinde Carbon tetrachloride	ug/l	1	U		U U		U	_	U
SW8260	T	Chlorobenzene	ug/l ug/l	1			Ū		U		U
SW8260	T	Chlorodibromomethane	ug/l	1			Ü		Ū		U
SW8260	T	Chloroethane	ug/l	1			Ū		Ū		Ū
SW8260	T	Chloroform	ug/l	1			Ū		U		U
SW8260	T	Chloromethane	ug/l	1	Ū		Ū		Ū		U
SW8260	T	Cis-1,2-Dichloroethene	ug/l	1	U	100	D	1	U		U
SW8260	Ţ	cis-1,3-Dichloropropene	ug/l	1	U	1	Ŭ	1	U	1	U
SW8260	T	Cyclohexane	ug/l	1			Ŭ		U		U
SW8260		Dichlorodifluoromethane	ug/l	1			U		U		U
SW8260	T	Ethyl benzene	ug/l	1			U		U		U
SW8260 SW8260	T	Isopropylbenzene Methyl cyclohexane	ug/l	1			U		U		U
SW8260	T	Methyl Tertbutyl Ether	ug/l ug/l	1			U U		U		U
SW8260	T	Methylene chloride	ug/l	1			U		U		U U
SW8260	T	Styrene	ug/l	1			Ŭ		Ŭ		U
SW8260	T	Tetrachloroethene	ug/l		UJ	39			UJ		UJ
SW8260	T	Toluene	ug/l	1			U		U		U
SW8260	T	trans-1,2-Dichloroethene	ug/l	1	U	1.6			U		U
SW8260	T	trans-1,3-Dichloropropene	ug/l	. 1	U	1	Ŭ		U	1	U
SW8260		Trichloroethene	ug/l	1.9		410			U	8.2	
SW8260	T	Trichlorofluoromethane	ug/l	1			U		U		U
SW8260 SW8260	T	Vinyl chloride	ug/l	1		5.8			U		U
SW8260 SW8260	T	Xylene, m/p Xylene, o	ug/l	2			U		U		U
SW6010		Iron	ug/l ug/l	949	<u> </u>	1710	U	. 1	U		U
SW6010		Manganese	ug/l	47.9		58.6		10		89.6 118	
9034	T	Sulfide	mg/l		UJ	1.6			UJ	1.6	
E300	T	Chloride	mg/l	340		61		100			D
E300	Т	Nitrate as N	mg/l	0.1		0.1		9.21		0.285	
E300	Т	Nitrite as N	mg/l	0.05		0.05		0.05		0.05	
E300	T	Sulfate	mg/l	140	D	130	D	43		77	
RSK175	T	Ethane	ug/l	5		5	U		U	5	U
RSK175	T	Ethene	ug/l	5			U		U		U
RSK175	T	Methane	ug/l	5	U		U		U		U
SM2320 B(Alk)	T	Alkalinity, Total	mg/l	420		590		240		440	
SM2320 B(CO2)	T	Carbon Dioxide	mg/l	200		300		100		200	
SM5310B	T	Total Organic Carbon	mg/l	2.24		2.69		2.61		1.91	
Notes: Fraction: T = total	 D = dia	lved									
	ı, ルー aısso										
	orame nee	liter, mg/l = milligrams per liter	1			1			l		

		Sample D	elivery Group		A2898	A2898	A2898
			Location	MW-12K	MW-12S	MW-13K	MW-14K
			Sample Date	5/26/2009	5/25/2009	5/26/2009	5/26/2009
				828103-MW12K01609D			
			Qc Code	FD	FS	FS	FS
Analysis		Parameter	Units	Result Qualifier			
SW8260 SW8260		1,1,1-Trichloroethane	ug/l ug/l	1 U	1 U 1 U	59 J 1 U	1 U
SW8260		1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	1 U	1 U	1 U	1 UJ
SW8260		1,1,2-Trichloroethane	ug/l	1 U	1 0	1 U	1 U
SW8260		1,1-Dichloroethane	ug/l	1 U	1 U	47 J	1 U
SW8260		1,1-Dichloroethene	ug/l	1 U	1 U	38 J	1 U
SW8260		1.2.4-Trichlorobenzene	ug/l	1 U	1 U	4 U	1 U
SW8260		1,2-Dibromo-3-chloropropane	ug/l	1 U	1 U	1 U	1 U
SW8260		1,2-Dibromoethane	ug/l	1 U	1 0	1 U	1 U
SW8260		1,2-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,2-Dichloroethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,2-Dichloropropane	ug/l	1 U .	1 U	1 U	1 U
SW8260	T	1,3-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,4-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	2-Butanone	ug/l	5 U	5 U	5 U	5 U
SW8260	T	2-Hexanone	ug/l	5 U	5 U	5 U	5 U
SW8260		4-Methyl-2-pentanone	ug/l	5 U	5 U	5 U	5 U
SW8260	T	Acetic acid, methyl ester	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Acetone	ug/l	5 U	5 U	5 U	5 U
SW8260	T	Benzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Bromodichloromethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Bromoform	ug/l	1 U	1 U	1 U	· 1 U
SW8260	T	Bromomethane	ug/l	1 U	1 U	1 U	, 1 U
SW8260	T	Carbon disulfide	ug/l	1 U	1 U 1 U	1 U	1 U
SW8260 SW8260	T	Carbon tetrachloride Chlorobenzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Chlorodibromomethane	ug/l ug/l	1 U	1 U	1 0	1 U
SW8260	T	Chloroethane	ug/l	1 U	1 U	1 0	1 U
SW8260	T	Chloroform	ug/l	1 U	1 0	1 U	1 U
SW8260	T	Chloromethane	ug/l	1 U	iU	1 U	1 U
SW8260	T	Cis-1,2-Dichloroethene	ug/l	1 U	1 U	1100 D	98
SW8260	T	cis-1,3-Dichloropropene	ug/l	1 U	īŪ	1 U	1 U
SW8260		Cyclohexane	ug/l	1 U	1 U	1 1 0	1 U
SW8260	T	Dichlorodifluoromethane	ug/l	1 U	1 U	2.6 J	1 U
SW8260	T	Ethyl benzene	ug/l	· 1 U	1 U	7 J	1 U
SW8260	T	Isopropylbenzene	ug/l	1 U	1 U	4 J	1 U
SW8260	T	Methyl cyclohexane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Methyl Tertbutyl Ether	ug/I	1 U	1 U	1 U	1 U
SW8260	T	Methylene chloride	ug/I	1 U	1 U	1 U	1 U
SW8260	T	Styrene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Tetrachloroethene	ug/l	1 UJ	1 UJ	5800 D	250 D
SW8260	T	Toluene	ug/l	1 U	1 U	2 J	1 U
SW8260	T	trans-1,2-Dichloroethene	ug/l	1 U	1 U	25 J	1.8
SW8260	T	trans-1,3-Dichloropropene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Trichloroethene	ug/l	6.9	1 U	1300 D	5100 D 1 U
SW8260 SW8260	T	Trichlorofluoromethane Vinyl chloride	ug/l	1 U 1 U	1 U 1 U	1 U 69 D	1 U
SW8260	T	Xylene, m/p	ug/l ug/l	2 U	2 U	2 U	2 U
SW8260	1 T	Xylene, o	ug/l	1 U	1 U	13 J	1 U
SW6010	D	Iron	ug/l	86.9	50 U	838	481
SW6010	D	Manganese	ug/l	111	77.5	75	37.6
9034	T	Sulfide	mg/l	***	1 UJ	1.6 J	1.6 J
E300	T	Chloride	mg/l	22 D	41 D	340 D	130 D
E300		Nitrate as N	mg/l	0.291	0.257 J	0.1 U	0.1 U
E300	T	Nitrite as N	mg/l	0.05 U	0.05 UJ	0.05 U	0.05 U
E300	T	Sulfate	mg/l	82 D	210 D	100 D	120 D
RSK175	T	Ethane	ug/l	5 U	5 U	5 U	5 U
RSK175	T	Ethene	ug/l	5 U	5 U	5 U	5 U
RSK175	T	Methane	ug/l	5 U	5 U	7.8	5 U
SM2320 B(Alk)	T	Alkalinity, Total	mg/l	440	440	470	360
SM2320 B(CO2)	T	Carbon Dioxide	mg/l	200	200	200	200
SM5310B	T	Total Organic Carbon	mg/l	1.75	2.18	2.64	1.49
Notes:							
Fraction: T = tota	l, D = disso	liter, mg/l = milligrams per liter					
		114 114	1	1 1	1 1	- i	1 1

		Sample I	Delivery Group	A2898	A2948	A2948	A2948
			Location	QC 5/25/2009	- QC 5/27/2009	SL-1 5/27/2009	SL-2 5/27/2009
			Sample Date Sample ID	828103-MWTB03	828103-MWTB04	828103-SL101209	828103-SL201309
			Qc Code	TB	TB	FS	FS
Analysis	Fraction	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifie
SW8260 ·	T	1,1,1-Trichloroethane	ug/l	1· U	1 U	1 U	1 U
SW8260	T	1,1,2,2-Tetrachloroethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,1,2-Trichloroethane	ug/l	1 U	1 U	1 U	1 U
SW8260 SW8260	T	1,1-Dichloroethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,1-Dichloroethene 1,2,4-Trichlorobenzene	ug/l ug/l	1 U 4.1	1 U	1 U 0.8 J	1 U
SW8260	T	1,2-Dibromo-3-chloropropane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,2-Dibromoethane	ug/l	1 U	1 U	1 U	1 U
SW8260	Ť	1,2-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,2-Dichloroethane	ug/l	1 0	ilu	1 U	1 U
SW8260	T	1,2-Dichloropropane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,3-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,4-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U
SW8260		2-Butanone	ug/l	5 U	5 U -	5 U	5 U
SW8260		2-Hexanone	ug/l	5 U	5 U	5 U	. 5 U
SW8260		4-Methyl-2-pentanone	ug/l	5 U	5 U	5 U	5 U
SW8260	T	Acetic acid, methyl ester	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Acetone	ug/l	5 U	5 U	23	27
SW8260 SW8260	T	Benzene Bromodichloromethane	ug/l	1 U 1 U	1 U	1 U 0.52 J	1 U
SW8260	T	Bromoform	ug/l ug/l	1 U	1 U	1 U	1 U
SW8260	T	Bromomethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Carbon disulfide	ug/l	1 U	1 U	0.71 J	1 U
SW8260	T	Carbon tetrachloride	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Chlorobenzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Chlorodibromomethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Chloroethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Chloroform	ug/l	1 U	1 U	2	2
SW8260	T	Chloromethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Cis-1,2-Dichloroethene	ug/l	1 U	1 U	1 U	1.1
SW8260	T	cis-1,3-Dichloropropene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Cyclohexane	ug/l	1 U	1 U	1 U	1 U
SW8260 SW8260	T	Dichlorodifluoromethane Ethyl benzene	ug/l	1 U	1 U	1 U 1 U	1 U
SW8260		Isopropylbenzene	ug/l ug/l	1 U	1 U	1 U	1 U
SW8260		Methyl cyclohexane	ug/l	1 U	1 U	1 U	1 U
SW8260		Methyl Tertbutyl Ether	ug/l	1 U	ilu	1 U	1 0
SW8260	Ť	Methylene chloride	ug/l	1 U	1 U	1 J	0.88 J
SW8260		Styrene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Tetrachloroethene	ug/l	0.78 J	1 U	1 U	2.8
SW8260	T	Toluene	ug/l	1 U	1 U	3.2	2.2
SW8260	T	trans-1,2-Dichloroethene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	trans-1,3-Dichloropropene	ug/l	1 U	1 U	1 U	1 U
SW8260		Trichloroethene	ug/l	1 U	1 U	1 U	1.4
SW8260	T	Trichlorofluoromethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Vinyl chloride	ug/l	1 U	1 U	1 U	1 U
SW8260 SW8260	T T	Xylene, m/p Xylene, o	ug/l ug/l	2 U 1 U	2 U 1 U	2 U 1 U	2 U 1 U
SW6010	D	Iron	ug/i ug/i	1 0	1 0	1 U	1 0
SW6010	D	Manganese	ug/i ug/i				
9034	T	Sulfide	mg/l				·
E300		Chloride	mg/l				
E300	T	Nitrate as N	mg/l				
E300	T	Nitrite as N	mg/l				
E300	Т	Sulfate	mg/l				
RSK175	T	Ethane	ug/l				
RSK175	T	Ethene	ug/l				
RSK175	T	Methane	ug/l				
SM2320 B(Alk)		Alkalinity, Total	mg/l				
SM2320 B(CO2)	T	Carbon Dioxide	mg/l				
SM5310B	T	Total Organic Carbon	mg/l				
Notes:	<u> </u>						
Fraction: T = total							,
$ mits \cdot mo/l = micro$	ograms per	liter, mg/l = milligrams per liter					1

ROCHESTER, NEW YORK SDGs: A2663, A2664, A2708, A2948, A2898, and LIMT-25188

		Sample I	elivery Group	A2948	A2948	A2948	A2948
		-	Location	SL-3	SL-4	SL-5	SL-6
			Sample Date	5/27/2009	5/27/2009	5/27/2009	5/27/2009
			Sample ID	828103-SL301309	828103-SL40060		
Analysis	Exaction	Parameter ·	Qc Code Units	FS Result Qualifier	FS Result Qual	FS FS	FS FS
SW8260		1,1,1-Trichloroethane	ug/l	, 1 U	1 U	ifier Result Qual	ifier Result Qualifier
SW8260		1,1,2,2-Tetrachloroethane	ug/l	1 U	1 U	I U	1 U
SW8260		1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	1 U	1 U	1 U	1 U
SW8260		1,1,2-Trichloroethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,1-Dichloroethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,1-Dichloroethene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,2,4-Trichlorobenzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,2-Dibromo-3-chloropropane	ug/l	1 U	1 U	1 U	1 U
SW8260		1,2-Dibromoethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	1,2-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U
SW8260 SW8260	T	1,2-Dichloroethane	ug/l	1 U 1 U	1 U 1 U	1 U	1 U
SW8260		1,2-Dichloropropane 1,3-Dichlorobenzene	ug/l ug/l	1 U	1 U	1 U	1 U 1 U
SW8260		1,4-Dichlorobenzene	ug/l	1 U	2.2	0.5 J	1 U
SW8260		2-Butanone	ug/l	5 U	5 U	5 U	5 U
SW8260		2-Hexanone	ug/l	5 U	5 U	5 U	5 U
SW8260		4-Methyl-2-pentanone	ug/l	5 U	5 U	5 U	5 U
SW8260	Т	Acetic acid, methyl ester	ug/I	1 U	13	5	3.7
SW8260	T	Acetone	ug/l	35	5.3	34	14
SW8260	T	Benzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Bromodichloromethane	ug/l	1 U	1 U	1 U	1 U ·
SW8260	T	Bromoform	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Bromomethane	ug/l	1 U	1 U	1 Ü	1 U
SW8260 SW8260	T	Carbon disulfide Carbon tetrachloride	ug/l	1 U	0.54 J	1 U	1 U
SW8260	T	Chlorobenzene	ug/l	1 U 1 U	1 U	1 U	1 U
SW8260	T	Chlorodibromomethane	ug/l ug/l	1 U	1 U	1 U	1 U
SW8260	T	Chloroethane	ug/l	1 U	1 0	1 0	1 U
SW8260	T	Chloroform	ug/l	1.5	0.8 J	1 1 0	0.87 J
SW8260	T	Chloromethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Cis-1,2-Dichloroethene	ug/l	1.4	1 U	1 U	27
SW8260	T	cis-1,3-Dichloropropene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Cyclohexane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Dichlorodifluoromethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Ethyl benzene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Isopropylbenzene	ug/l	1 U	1 U	1 U	1 U
SW8260 SW8260	T	Methyl cyclohexane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Methyl Tertbutyl Ether Methylene chloride	ug/l	1 U 0.93 J	1 U	1 U	1 U 1 U
SW8260	T	Styrene	ug/l ug/l	1 U	1 U	1 U	1 U
SW8260	T	Tetrachloroethene	ug/l	4.2	1 U	1 U	73
SW8260	T	Toluene	ug/l	2.2	30	10	5.1
SW8260	Ť	trans-1,2-Dichloroethene	ug/l	1 U	1 U	1 U	1 U
SW8260	T	trans-1,3-Dichloropropene	ug/l	1 U	1 U	1 0	1 U
SW8260	Т	Trichloroethene	ug/l	2.1	1 U	1 U	42
SW8260	T	Trichlorofluoromethane	ug/l	1 U	1 U	1 U	1 U
SW8260	T	Vinyl chloride	ug/l	1 U	1 U	1 U	1.3
SW8260	T	Xylene, m/p	ug/l	2 U	· 2 U	2 U	2 U
SW8260	T	Xylene, o	ug/l	1 U	1 U	1 U	1 U
SW6010 SW6010	D D	Iron Mangapage	ug/l		<u> </u>		
9034	T	Manganese Sulfide	ug/l	·	 		
E300	T	Chloride	mg/l mg/l				
E300	T	Nitrate as N	mg/l				
E300	T	Nitrite as N	mg/l				
E300	T	Sulfate	mg/l				
RSK175	T	Ethane	ug/l	1			
RSK175	T	Ethene	ug/l				
RSK175	T	Methane	ug/l				
SM2320 B(Alk)	T	Alkalinity, Total	mg/l				
SM2320 B(CO2)	T	Carbon Dioxide	mg/i				
SM5310B	T	Total Organic Carbon	mg/l				
Notes:	1		ļ				
Fraction: T = total			-		ļ		
		liter, mg/l = milligrams per liter estimated, D= result from dilution analys	is		 		
Againter: O- non-	ucicul, j=	estimated, D- result from dilution analys	19				

	Sample L	Delivery Group	A2663	A2663	A2663
		Location	GS-1	GS-1	GS-11
		Sample Date	5/6/2009	5/6/2009	5/5/2009
	,	Sample ID	828103-GS10909	828103-GS11609	828103-GS111009
	.'	Qc Code	FS	.՝ FS	FS · · `
Analysis	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifie
SW8260	1,1,1-Trichloroethane	ug/kg	550 U	410 U	310 U
SW8260	1,1,2,2-Tetrachloroethane	ug/kg	550 U	410 U	310 U
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	550 U	410 U	310 U
SW8260	1,1,2-Trichloroethane	ug/kg	550 U	410 U	310 U
SW8260	1,1-Dichloroethane	ug/kg	550 U	410 U	310 U
SW8260	1,1-Dichloroethene	ug/kg	550 U	410 U	310 U
SW8260	1,2,4-Trichlorobenzene	ug/kg	550 U	410 U	310 U
SW8260	1,2-Dibromo-3-chloropropane	ug/kg	550 U	410 U	310 U
SW8260	1,2-Dibromoethane	ug/kg	550 U	410 U	310 U
SW8260	1,2-Dichlorobenzene	ug/kg	550 U	410 U	310 U
SW8260	1,2-Dichloroethane	ug/kg	550 U	410 U	310 U
SW8260	1,2-Dichloropropane	ug/kg	550 U	410 U	310 U
SW8260	1,3-Dichlorobenzene	ug/kg	550 U	410 U	310 UJ
SW8260	1,4-Dichlorobenzene	ug/kg	550 U	410 U	310 UJ
SW8260	2-Butanone	ug/kg	2700 U	2100 U	1500 U
SW8260	2-Hexanone	ug/kg	2700 U	2100 U	1500 U
SW8260	4-Methyl-2-pentanone	ug/kg	2700 U	2100 U	1500 U
SW8260	Acetic acid, methyl ester	ug/kg	550 U	410 U	310 U
SW8260	Acetone	ug/kg	2700 U	2100 U	1500 U
SW8260	Benzene	ug/kg	550 U	410 U	310 U
SW8260	Bromodichloromethane	ug/kg	550 U	410 U	310 U
SW8260	Bromoform	ug/kg	550 U	410 U	310 U
SW8260	Bromomethane	ug/kg	550 U	410 U	310 U
SW8260	Carbon disulfide	ug/kg	550 U	410 U	310 U
SW8260	Carbon tetrachloride	ug/kg	550 U	410 U	. 310 U
SW8260	Chlorobenzene	ug/kg	550 U	410 U	310 U
SW8260	Chlorodibromomethane	ug/kg	550 U	410 U	310 U
SW8260	Chloroethane	ug/kg	550 U	410 U	310 U
SW8260	Chloroform	ug/kg	550 U	410 U	310 U
SW8260	Chloromethane	ug/kg	550 U	410 U	310 U
SW8260	Cis-1,2-Dichloroethene	ug/kg	5200	410 U	310 U
SW8260	cis-1,3-Dichloropropene	ug/kg	550 U	410 U	310 U
SW8260	Cyclohexane	ug/kg	550 U	410 U	310 U
SW8260	Dichlorodifluoromethane	ug/kg	550 U	410 U	310 U
SW8260	Ethyl benzene	ug/kg	550 U	410 U	310 U
SW8260	Isopropylbenzene		550 U	410 U	310 U
SW8260	Methyl cyclohexane	ug/kg ug/kg	550 U	410 U	310 U
SW8260	Methyl Tertbutyl Ether	ug/kg ug/kg	550 U	410 U	310 U
SW8260	Methylene chloride	ug/kg	550 U	410 U	310 U
SW8260	Styrene		550 U	410 U	310 U
SW8260	Tetrachloroethene	ug/kg	52000 DJ		
SW8260	Toluene	ug/kg	550 U	3700	630 310 U
SW8260	trans-1,2-Dichloroethene	ug/kg		410 U	
SW8260	trans-1,2-Dichloropropene	ug/kg	550 U	410 U	310 UJ
SW8260 SW8260	Trichloroethene	ug/kg	550 U	410 U	310 U
		ug/kg	9000	27000 D	440 J
SW8260	Trichlorofluoromethane	ug/kg	550 U	410 U	310 U
SW8260	Vinyl chloride	ug/kg	550 U	410 U	310 U
SW8260	Xylene, m/p	ug/kg	250 J	830 U	610 U
SW8260	Xylene, o	ug/kg	550 U	410 U	310 U
Notes:					
	micrograms per kilogram				
Qualifier: U= :	non-detect, J= estimated,	1			

DATA USABILITY SUMMARY REPORT DINABURG DISTRIBUTING SITE

ROCHESTER, NEW YORK

	Sample Delivery Group		A2663 GS-11		A2663 GS-12		A2663	
Sample Date		Location					GS-12	
			5/5/20		5/5/20		5/5/20	
		Sample ID	828103-GS		828103-GS	121109	828103-GS	
		Qc Code	FS		FS		· FS	
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	1,1,1-Trichloroethane	ug/kg	360		350		330	
SW8260	1,1,2,2-Tetrachloroethane	ug/kg	360		350		330	
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	360		350		330	
SW8260	1,1,2-Trichloroethane	ug/kg	360		350		330	
SW8260	1,1-Dichloroethane	ug/kg	360		350		330	
SW8260	1,1-Dichloroethene	ug/kg	360		350		330	
SW8260	1,2,4-Trichlorobenzene	ug/kg	360		350		330	
SW8260	1,2-Dibromo-3-chloropropane	ug/kg	360		350		330	
SW8260	1,2-Dibromoethane	ug/kg	360		350		330	
SW8260	1,2-Dichlorobenzene	ug/kg	360		350		330	
SW8260	1,2-Dichloroethane	ug/kg	360		350		330	
SW8260	1,2-Dichloropropane	ug/kg	360		350		330	
SW8260	1,3-Dichlorobenzene	ug/kg	360		350		330	
SW8260	1,4-Dichlorobenzene	ug/kg	360	UJ	350	UJ	330	UJ
SW8260	2-Butanone	ug/kg	1800		1800		1600	
SW8260	2-Hexanone	ug/kg	1800	U	1800	U	1600	U
SW8260	4-Methyl-2-pentanone	ug/kg	1800	U	1800	U	1600	U
SW8260	Acetic acid, methyl ester	ug/kg	360	U	350	U	330	U
SW8260	Acetone	ug/kg	1800	U	1800	U	1600	U
SW8260	Benzene	ug/kg	360	U	350	U	330	U
SW8260	Bromodichloromethane	ug/kg	360	U	350	U	330	U
SW8260	Bromoform	ug/kg	360	U	350	U	330	U
SW8260	Bromomethane	ug/kg	360	U	350	U	330	U
SW8260	Carbon disulfide	ug/kg	360	Ū	350	U	330	
SW8260	Carbon tetrachloride	ug/kg	360		350		330	
SW8260	Chlorobenzene	ug/kg	360		350		330	
SW8260	Chlorodibromomethane	ug/kg	. 360		350		330	
SW8260	Chloroethane	ug/kg	360		350		330	
SW8260	Chloroform	ug/kg	360	U	350	U	330	U
SW8260	Chloromethane	ug/kg	360	U	350	U	,330	Ū
SW8260	Cis-1,2-Dichloroethene	ug/kg	360		350		330	
SW8260	cis-1,3-Dichloropropene	ug/kg	360	U	350	U	330	Ū
SW8260	Cyclohexane	ug/kg	360	U	350		330	
SW8260	Dichlorodifluoromethane	ug/kg	360	Ū	350	U	330	U
SW8260	Ethyl benzene	ug/kg	360	Ŭ	350	Ū	330	U
SW8260	Isopropylbenzene	ug/kg	360	U	350	Ū	330	U
SW8260	Methyl cyclohexane	ug/kg	360	U	350		330	U
SW8260	Methyl Tertbutyl Ether	ug/kg	. 360	U	350		330	
SW8260	Methylene chloride	ug/kg	360		350		330	
SW8260	Styrene	ug/kg	360		350		330	
SW8260	Tetrachloroethene	ug/kg	360		7200		30000	
SW8260	Toluene	ug/kg	360		350		330	
SW8260	trans-1,2-Dichloroethene	ug/kg	360		350		330	
SW8260	trans-1,3-Dichloropropene	ug/kg	360		350		330	
SW8260	Trichloroethene	ug/kg	360		1100		3000	
SW8260	Trichlorofluoromethane	ug/kg	360		350		330	
SW8260	Vinyl chloride	ug/kg	360		350		330	
SW8260	Xylene, m/p	ug/kg	720		710		660	
SW8260	Xylene, o	ug/kg	360		350		330	
Notes:	1-2 ******		500				330	-
	micrograms per kilogram	 						
	non-detect, J= estimated,			-				
	sult from dilution analysis			 				

·	Sample I	Delivery Group	A266		A266		A266	
		Location	GS-1		GS-1		GS-13	
		Sample Date	5/5/20		5/5/20		5/5/20	
		Sample ID	828103-GS	131209	828103-GS	131609	828103-GS	132109
		Qc Code	FS		FS		FS	
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifi
SW8260	1,1,1-Trichloroethane	ug/kg	370		380		340	
SW8260	1,1,2,2-Tetrachloroethane	ug/kg	370		380		340	
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	370		380		340	
SW8260	1,1,2-Trichloroethane	ug/kg	370		. 380		340	
SW8260	1,1-Dichloroethane	ug/kg	370		380		340	
SW8260	1,1-Dichloroethene	ug/kg	370		380		340	
SW8260	1,2,4-Trichlorobenzene	ug/kg	370		380		340	
SW8260	1,2-Dibromo-3-chloropropane	ug/kg	370		380		340	
SW8260	1,2-Dibromoethane	ug/kg	370		380		340	
SW8260	1,2-Dichlorobenzene	ug/kg	370		380		340	
SW8260	1,2-Dichloroethane	ug/kg	370		380		340	
SW8260	1,2-Dichloropropane	ug/kg	370		380		340	
SW8260	1,3-Dichlorobenzene	ug/kg	370		380		340	
SW8260	1,4-Dichlorobenzene	ug/kg	370		380		340	
SW8260	2-Butanone	ug/kg	1900		1900		1700	
SW8260	2-Hexanone	ug/kg	1900		1900		1700	
SW8260	4-Methyl-2-pentanone	ug/kg	1900		1900		1700	
SW8260	Acetic acid, methyl ester	ug/kg	370		380		340	
SW8260	Acetone	ug/kg	1900		1900		1700	
SW8260	Benzene	ug/kg	370		380		340	
SW8260	Bromodichloromethane	ug/kg	370		380		340	
SW8260	Bromoform	ug/kg	370		380		340	
SW8260	Bromomethane	ug/kg	370		380		340	
SW8260	Carbon disulfide	ug/kg	370		380		340	
SW8260	Carbon tetrachloride	ug/kg	370		380	<u> </u>	340	
SW8260	Chlorobenzene	ug/kg	370		380		340	
SW8260	Chlorodibromomethane	ug/kg	370		380		340	
SW8260	Chloroethane	ug/kg	370		380		340	
SW8260	Chloroform	ug/kg	370		380		340	
SW8260	Chloromethane	ug/kg	370		380		340	
SW8260	Cis-1,2-Dichloroethene	ug/kg	360		510		200	
SW8260	cis-1,3-Dichloropropene	ug/kg	370		380		340	
SW8260	Cyclohexane	ug/kg	370		380		340	
SW8260	Dichlorodifluoromethane	ug/kg	370		380		340	
SW8260	Ethyl benzene	ug/kg	370		380		340	
SW8260	Isopropylbenzene	ug/kg	370		380		340	
SW8260	Methyl cyclohexane	ug/kg	370		380		340	
SW8260	Methyl Tertbutyl Ether	ug/kg	370		380		340	
SW8260	Methylene chloride	ug/kg	370		380		340	U
SW8260	Styrene .	ug/kg	370		380	U	340	U
SW8260	Tetrachloroethene	ug/kg	30000	DJ	9500		1100	
SW8260	Toluene	ug/kg	370		380		340	
SW8260	trans-1,2-Dichloroethene	ug/kg	370	UJ	380	UJ	340	UJ
SW8260	trans-1,3-Dichloropropene	ug/kg	370		380	U	340	U
SW8260	Trichloroethene	ug/kg	3300		26000		16000	
SW8260	Trichlorofluoromethane	ug/kg	370	U	380		340	
SW8260	Vinyl chloride	ug/kg	370	U	380	U	340	U
SW8260	Xylene, m/p	ug/kg	740		770	U	680	Ü
SW8260	Xylene, o	ug/kg	370		380		340	
Notes:								
	= micrograms per kilogram						1	
	non-detect, J= estimated,			1				
	esult from dilution analysis					<u> </u>		T

	Sample I	Delivery Group	A2663	A2663	A2663
		Location	GS-14	GS-14	GS-2
		Sample Date	5/5/2009	5/5/2009	5/6/2009
i i		Sample ID	828103-GS141209	828103-GS141409	828103-GS21109
		Qc Code	FS	FS ·	FS
Analysis	Parameter	Units	Result Qualifier		Result Qualifier
SW8260	1,1,1-Trichloroethane	ug/kg	440 U	410 Ü	360 U
SW8260	1,1,2,2-Tetrachloroethane	ug/kg	440 U	410 U	360 U
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	440 U	410 U	360 U
SW8260	1,1,2-Trichloroethane	ug/kg	440 U	410 U	. 360 U
SW8260	1,1-Dichloroethane	ug/kg	440 U	410 U	360 U
SW8260	1,1-Dichloroethene	ug/kg	440 U	410 U	360 U
SW8260	1,2,4-Trichlorobenzene	ug/kg	440 U	410 U	360 U
SW8260	1,2-Dibromo-3-chloropropane	ug/kg	440 U	410 U	360 U
SW8260	1,2-Dibromoethane	ug/kg	440 U	410 U	360 U
SW8260	1,2-Dichlorobenzene	ug/kg	440 U	410 U	360 U
SW8260	1,2-Dichloroethane	ug/kg	440 U	'410 U	360 U
SW8260	1,2-Dichloropropane	ug/kg	440 U	410 U	360 U
SW8260	1,3-Dichlorobenzene	ug/kg	440 UJ	410 UJ	360 U
SW8260	1,4-Dichlorobenzene	ug/kg	440 UJ	410 UJ	360 U
SW8260	2-Butanone	ug/kg	2200 U	2000 U	1800 U
SW8260	2-Hexanone	ug/kg	2200 U	2000 U	1800 U
SW8260	4-Methyl-2-pentanone	ug/kg	2200 U	2000 U	1800 U
SW8260	Acetic acid, methyl ester	ug/kg	440 U	410 U	360 U
SW8260	Acetone	ug/kg	2200 U	2000 U	1800 U
SW8260	Benzene	ug/kg	440 U	410 U	360 U
SW8260	Bromodichloromethane	ug/kg	440 U	410 U	360 U
SW8260	Bromoform	ug/kg	440 U	410 U	360 U
SW8260	Bromomethane	ug/kg	440 U	410 U	360 U
SW8260	Carbon disulfide	ug/kg	440 U	410 U	360 U
SW8260	Carbon tetrachloride	ug/kg	440 U	410 U	360 U
SW8260	Chlorobenzene	ug/kg	440 U	410 U	360 U
SW8260	Chlorodibromomethane	ug/kg	440 U	410 U	360 U
SW8260	Chloroethane	ug/kg	440 U	410 U	360 U
SW8260	Chloroform	ug/kg	440 U	410 U	360 U
SW8260	Chloromethane	ug/kg	440 U	410 U	360 U
SW8260	Cis-1,2-Dichloroethene	ug/kg	440 U	410 U	360 U
SW8260	cis-1,3-Dichloropropene	ug/kg	440 U	410 U	360 U
SW8260	Cyclohexane	ug/kg	440 U	410 U	3500
SW8260	Dichlorodifluoromethane	ug/kg	440 U	410 U	360 U
SW8260	Ethyl benzene	ug/kg	440 U	410 U	2100
SW8260	Isopropylbenzene	ug/kg	440 U	410 U	1100
SW8260	Methyl cyclohexane	ug/kg	440 U	410 U	83000 DJ
SW8260	Methyl Tertbutyl Ether	ug/kg	440 U	410 U	360 U
SW8260	Methylene chloride	ug/kg	440 U	410 U	360 U
SW8260	Styrene	ug/kg	440 U	410 U	360 U
SW8260	Tetrachloroethene	ug/kg	440 U	410 U	1700000 DJ
SW8260	Toluene	ug/kg	440 U	410 U	360 U
SW8260	trans-1,2-Dichloroethene	ug/kg	440 UJ	410 UJ	360 U
SW8260	trans-1,3-Dichloropropene	ug/kg	440 U	410 U	360 U
SW8260	Trichloroethene	ug/kg	5800 J	5700 J	3700
SW8260	Trichlorofluoromethane	ug/kg	440 U	410 U	360 U
SW8260	Vinyl chloride	ug/kg	440 U	410 U	360 U
SW8260	Xylene, m/p	ug/kg	870 U	820 U	51000 D
SW8260	Xylene, o	ug/kg	440 U	410 U	7600
Notes:					
	= micrograms per kilogram				
	non-detect, J= estimated,				
D= r	esult from dilution analysis				

	Sample I	Delivery Group	A2663	A2663	A2663
		Location	GS-2	GS-3	GS-3
		Sample Date	5/6/2009	5/6/2009	5/6/2009
,		Sample ID	828103-GS21609	828103-GS31109	828103-GS31609
	· · · · · · · · · · · · · · · · · · ·	Qc Code	.' FS	FS	FS
Analysis	Parameter	Units	Result Qualifier		Result Qualific
SW8260	1,1,1-Trichloroethane	ug/kg	490 U	860	600
SW8260	1,1,2,2-Tetrachloroethane	ug/kg	490 U	320 U	360 U
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	490 U	320 U	360 U
SW8260	1,1,2-Trichloroethane	ug/kg	490 U	320 U	360 U
SW8260	1,1-Dichloroethane	ug/kg	490 U	200 J	590
SW8260	1,1-Dichloroethene	ug/kg	490 U	320 U	360 U
SW8260	1,2,4-Trichlorobenzene	ug/kg	490 U	320 U	360 U
SW8260	1,2-Dibromo-3-chloropropane	ug/kg	490 U	320 U	360 U
SW8260	1,2-Dibromoethane	ug/kg	490 U	320 U	360 U
SW8260	1,2-Dichlorobenzene	ug/kg	490 U	320 U	360 U
SW8260	1,2-Dichloroethane	ug/kg	490 U	320 U	360 U
SW8260	1,2-Dichloropropane	ug/kg	490 U	320 U	360 U
SW8260	1,3-Dichlorobenzene	ug/kg	490 U	320 U	360 U
SW8260	1,4-Dichlorobenzene	ug/kg	490 U	320 U	360 U
SW8260	2-Butanone	ug/kg	2500 U	1600 U	1800 U
SW8260	2-Hexanone	ug/kg	2500 U	1600 U	1800 U
SW8260	4-Methyl-2-pentanone	ug/kg	2500 U	1600 U	1800 U
SW8260	Acetic acid, methyl ester	ug/kg	490 U	320 U	360 U
SW8260	Acetone	ug/kg	2500 U	1600 U	1800 U
SW8260	Benzene	ug/kg	490 U	320 U	360 U
SW8260	Bromodichloromethane	ug/kg	490 U	320 U	360 U
SW8260	Bromoform	ug/kg	490 U	320 U	360 U
SW8260	Bromomethane	ug/kg	490 U	320 U	360 U
SW8260	Carbon disulfide	ug/kg	490 U	320 U	360 U
SW8260	Carbon tetrachloride	ug/kg	490 U	320 U	360 U
SW8260	Chlorobenzene	ug/kg	490 U	320 U	360 U
SW8260	Chlorodibromomethane	ug/kg	490 U	320 U	360 U
SW8260	Chloroethane	ug/kg	490 U	320 U	360 U
SW8260	Chloroform	ug/kg	490 U	320 U	360 U
SW8260	Chloromethane	ug/kg	490 U	320 U	360 U
SW8260	Cis-1,2-Dichloroethene	ug/kg	490 U	320 U	360 U
SW8260	cis-1,3-Dichloropropene	ug/kg	490 U	320 U	360 U
SW8260	Cyclohexane	ug/kg	490 U	320 U	360 U
SW8260	Dichlorodifluoromethane	ug/kg	490 U	320 U	360 U
SW8260	Ethyl benzene	ug/kg	490 U	320 U	360 U
SW8260	Isopropylbenzene	ug/kg	490 U	320 U	360 U
SW8260	Methyl cyclohexane	ug/kg	490 U	320 U	360 U
SW8260	Methyl Tertbutyl Ether	ug/kg	490 U	320 U	360 U
SW8260	Methylene chloride	ug/kg	490 U	320 U	360 U
SW8260	Styrene	ug/kg	490 U	320 U	360 U
SW8260	Tetrachloroethene	ug/kg	15000	5600	640
SW8260	Toluene	ug/kg	490 U	320 U	160 J
SW8260	trans-1,2-Dichloroethene	ug/kg	490 U	320 U	360 U
SW8260	trans-1,3-Dichloropropene	ug/kg	490 U	320 U	360 U
SW8260	Trichloroethene	ug/kg	29000 D	7 8100	7000
SW8260	Trichlorofluoromethane	ug/kg	490 U	320 U	360 U
SW8260	Vinyl chloride	ug/kg	490 U	320 U	360 U
SW8260	Xylene, m/p	ug/kg ug/kg	220 J	160 J	720 U
SW8260	Xylene, o	ug/kg ug/kg	490 U	320 U	360 U
	Aylene, 0	ug/kg	470 0	320 0	300 0
Notes:	miorograma nor leilo conse	 			
	micrograms per kilogram	 			
Quantier: U=	non-detect, J= estimated, esult from dilution analysis		l		

	Sample I	Delivery Group	A2663	A2663	A2663
		Location	GS-5	GS-5	MW-13K
1		Sample Date	5/6/2009	5/6/2009	5/5/2009
	;	Sample ID	828103-GS51109	828103-GS51509	828103-MW131509
		Qc Code	FS	· FS	FS .
Analysis	Parameter	Units	Result Qualifi	er Result Qualifier	Result Qualifier
SW8260	1,1,1-Trichloroethane	ug/kg	470 U	340 U	250 U
SW8260	1,1,2,2-Tetrachloroethane	ug/kg	470 U	340 U	250 U
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	470 U	340 U	250 U
SW8260	1,1,2-Trichloroethane	ug/kg	470 U	340 U	250 U
SW8260	1,1-Dichloroethane	ug/kg	470 U	340 U	250 U
SW8260	1,1-Dichloroethene	ug/kg	470 U	340 U	250 U
SW8260	1,2,4-Trichlorobenzene	ug/kg	470 U	340 U	250 U
SW8260	1,2-Dibromo-3-chloropropane	ug/kg	470 U	340 U	250 U
SW8260	1,2-Dibromoethane	ug/kg	470 U	340 U	250 U
SW8260	1,2-Dichlorobenzene	ug/kg	470 U	340 U	250 U
SW8260	1,2-Dichloroethane	ug/kg	470 U	340 U	250 U
SW8260	1,2-Dichloropropane	ug/kg	470 U	340 U	250 U
SW8260	1,3-Dichlorobenzene	ug/kg	470 UJ	340 UJ	250 UJ
SW8260	1,4-Dichlorobenzene	ug/kg	470 UJ	340 UJ	250 UJ
SW8260	2-Butanone	ug/kg	2400 U	1700 U	1200 U
SW8260	2-Hexanone	ug/kg	2400 U	1700 U	1200 U
SW8260	4-Methyl-2-pentanone	ug/kg	2400 UJ	1700 U	1200 U
SW8260	Acetic acid, methyl ester	ug/kg	470 U	340 U	250 U
SW8260	Acetone	ug/kg	2400 U	1700 U	1200 U
SW8260	Benzene	ug/kg	470 U	340 U	250 U
SW8260	Bromodichloromethane	ug/kg	470 U	340 U	250 U
SW8260	Bromoform	ug/kg	470 U	340 U	250 U
SW8260	Bromomethane	ug/kg	470 U	340 U	250 U
SW8260	Carbon disulfide	ug/kg	470 UJ	340 U	250 U
SW8260	Carbon tetrachloride	ug/kg	470 U	340 U	250 U
SW8260	Chlorobenzene	ug/kg	470 U	340 U	250 U
SW8260	Chlorodibromomethane	ug/kg	470 U	340 U	250 U
SW8260	Chloroethane	ug/kg	470 UJ	340 U	250 U
SW8260	Chloroform	ug/kg	470 U	340 U .	250 U
SW8260	Chloromethane	ug/kg	470 U	340 U	250 U
SW8260	Cis-1,2-Dichloroethene	ug/kg	470 U	340 U	240. J
SW8260	cis-1,3-Dichloropropene	ug/kg	470 U	340 U	250 U
SW8260	Cyclohexane	ug/kg	470 U	340 U	250 U
SW8260	Dichlorodifluoromethane	ug/kg	470 U	340 U	250 U
SW8260	Ethyl benzene	ug/kg	470 U	340 U	250 U
SW8260	Isopropylbenzene	ug/kg	470 U	340 U	250 U
SW8260	Methyl cyclohexane	ug/kg	470 U	340 U	250 U
SW8260	Methyl Tertbutyl Ether	ug/kg	470 U	340 U	250 U
SW8260	Methylene chloride	ug/kg	470 UJ	340 U	250 U
SW8260	Styrene	ug/kg	470 U	340 U	250 U
SW8260	Tetrachloroethene	ug/kg	990000 D	340000 DJ	10000 D
SW8260	Toluene	ug/kg	470 U	340 U	250 U
SW8260	trans-1,2-Dichloroethene	ug/kg	470 UJ	340 UJ	250 UJ
SW8260	trans-1,3-Dichloropropene	ug/kg	470 U	340 U	250 U
SW8260	Trichloroethene	ug/kg	630000 D	370000 D	2500 J
SW8260	Trichlorofluoromethane	ug/kg	470 U	340 U	250 U
SW8260	Vinyl chloride	ug/kg	470 U	340 U	250 U
SW8260	Xylene, m/p	ug/kg	940 U	680 U	490 U
SW8260	Xylene, o	ug/kg	470 U	340 U	250 U
Notes:					
	micrograms per kilogram				
	non-detect, J= estimated,				
D= re	esult from dilution analysis				

	Sample I	Delivery Group	A270		A270		A270	
		Location	GS-1		GS-1		GS-	
		Sample Date	5/8/20		5/8/20		5/8/20	
	<u> </u>		828103-GS	3101209	828103-GS	101509	828103-G	****
		Qc Code	FS	·	FS		FS	
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifie
SW8260	1,1,1-Trichloroethane	ug/kg	550		540		560	
SW8260	1,1,2,2-Tetrachloroethane	ug/kg	550		540		560	
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	550		540		560	
SW8260	1,1,2-Trichloroethane	ug/kg	550		540		560	
SW8260	1,1-Dichloroethane	ug/kg	550		540		560	
SW8260	1,1-Dichloroethene	ug/kg	550		540		560	
SW8260	1,2,4-Trichlorobenzene	ug/kg	550		540		560	
SW8260	1,2-Dibromo-3-chloropropane	ug/kg	550		540		560	
SW8260	1,2-Dibromoethane	ug/kg	550		540		560	
SW8260	1,2-Dichlorobenzene	ug/kg	550		540		560	
SW8260	1,2-Dichloroethane	ug/kg	550		540		560	
SW8260	1,2-Dichloropropane	ug/kg	550		540		560	
SW8260	1,3-Dichlorobenzene	ug/kg	550		540		560	
SW8260	1,4-Dichlorobenzene	ug/kg	550		540		560	
SW8260	2-Butanone	ug/kg	2700		2700		2800	
SW8260	2-Hexanone	ug/kg	2700		2700		2800	
SW8260	4-Methyl-2-pentanone	ug/kg	2700		2700		2800	
SW8260	Acetic acid, methyl ester	ug/kg	550		540		560	
SW8260	Acetone	ug/kg	2700		2700		2800	
SW8260	Benzene	ug/kg	550		540		560	
SW8260	Bromodichloromethane	ug/kg	550		540		560	
SW8260	Bromoform	ug/kg	550		540		560	
SW8260	Bromomethane	ug/kg	550		540		560	U
SW8260	Carbon disulfide	ug/kg	550		540		560	U
SW8260	Carbon tetrachloride	ug/kg	550		540		560	U
SW8260	Chlorobenzene	ug/kg	550	U	540	UJ	560	U
SW8260	Chlorodibromomethane	ug/kg	550	UJ	540	UJ	560	UJ
SW8260	Chloroethane	ug/kg	550	U	540	UJ	560	U
SW8260	Chloroform	ug/kg	550	U	540	UJ	560	U
SW8260	Chloromethane	ug/kg	550	U ·	540	UJ	560	U
SW8260	Cis-1,2-Dichloroethene	ug/kg	550	UJ	540	UJ	370	J
SW8260	cis-1,3-Dichloropropene	ug/kg	550	U	540	UJ	560	U
SW8260	Cyclohexane	ug/kg	550	U	540	UJ	540	J
SW8260	Dichlorodifluoromethane	ug/kg	550	U	540	UJ	560	
SW8260	Ethyl benzene	ug/kg	550	U	540	UJ	560	U
SW8260	Isopropylbenzene	ug/kg	550	U	540	U	560	U
SW8260	Methyl cyclohexane	ug/kg	550	UJ	540	UJ	2600	
SW8260	Methyl Tertbutyl Ether	ug/kg	550	U	540	UJ	560	
SW8260	Methylene chloride	ug/kg	550		540		560	
SW8260	Styrene	ug/kg	550		540		560	
SW8260	Tetrachloroethene	ug/kg	12000		15000		21000	
SW8260	Toluene	ug/kg	550		540		560	
SW8260	trans-1,2-Dichloroethene	ug/kg	550		540		560	
SW8260	trans-1,3-Dichloropropene	ug/kg	550		540		560	
SW8260	Trichloroethene	ug/kg	15000		15000		3000	
SW8260	Trichlorofluoromethane	ug/kg	550		540		560	
SW8260	Vinyl chloride	ug/kg	550		540		560	
SW8260 .	Xylene, m/p	ug/kg	1100		1100		1100	
SW8260	Xylene, o	ug/kg	550		540		560	
Notes:			,	<u> </u>	340	J.,		
	micrograms per kilogram							
	non-detect, J= estimated,				,			ļ
	sult from dilution analysis			<u> </u>				ļ

	Sample I	Delivery Group	A270		A270		A270	
		Location	GS-		GS-0		GS-6	
		Sample Date	5/8/20		5/7/20		5/7/20	
	i i	Sample ID	828103-G	S41609	828103-G	561009	828103-GS	
		Qc Code	FS		FS		FD	
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	1,1,1-Trichloroethane	ug/kg	540		600		600	
SW8260	1,1,2,2-Tetrachloroethane	ug/kg	540		600		600	
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	540		600		600	
SW8260	1,1,2-Trichloroethane	ug/kg	540	U	600	U	600	UJ
SW8260	1,1-Dichloroethane	ug/kg	940	J	600	U	600	UJ
SW8260	1,1-Dichloroethene	ug/kg	540	UJ	600	U	600	UJ
SW8260	1,2,4-Trichlorobenzene	ug/kg	540	UJ	600	U	600	UJ
SW8260	1,2-Dibromo-3-chloropropane	ug/kg	540	UJ	600	Ū	600	UJ
SW8260	1,2-Dibromoethane	ug/kg	540	Ŭ	600	Ū	600	UJ
SW8260	1,2-Dichlorobenzene	ug/kg	540	UJ	600	U	600	UJ
SW8260	1,2-Dichloroethane	ug/kg	540		600		600	UJ
SW8260	1,2-Dichloropropane	ug/kg	540		600		600	
SW8260	1,3-Dichlorobenzene	ug/kg	540		600		600	
SW8260	1,4-Dichlorobenzene	ug/kg	540		600		600	
SW8260	2-Butanone	ug/kg	2700		3000		3000	
SW8260	2-Hexanone	ug/kg	2700		3000		3000	
SW8260	4-Methyl-2-pentanone	ug/kg	2700		3000		3000	
SW8260	Acetic acid, methyl ester	ug/kg	540		600		600	
SW8260	Acetone	ug/kg	2700		3000	-	3000	
SW8260	Benzene	ug/kg	540		600		600	
SW8260	Bromodichloromethane	ug/kg ug/kg	540		600		600	
SW8260	Bromoform		540		600			
SW8260	Bromomethane	ug/kg	540		600		600 600	
SW8260		ug/kg						
SW8260	Carbon disulfide	ug/kg	540 540		600		600	
	Carbon tetrachloride Chlorobenzene	ug/kg			600		600	
SW8260		ug/kg	540		600		600	
SW8260	Chlorodibromomethane	ug/kg	540		600		600	
SW8260	Chloroethane	ug/kg	540		600		600	
SW8260	Chloroform	ug/kg	540		600		600	
SW8260	Chloromethane	ug/kg	540		600		600	
SW8260	Cis-1,2-Dichloroethene	ug/kg	540		600		600	
SW8260	cis-1,3-Dichloropropene	ug/kg	540		600		600	
SW8260	Cyclohexane	ug/kg	540		600		600	
SW8260	Dichlorodifluoromethane	ug/kg	540		600		600	
SW8260	Ethyl benzene	ug/kg	540		600		600	
SW8260	Isopropylbenzene	ug/kg	540		600		600	
SW8260	Methyl cyclohexane	ug/kg	540		600		600	
SW8260	Methyl Tertbutyl Ether	ug/kg	540		600		600	
SW8260	Methylene chloride	ug/kg	540		600		600	
SW8260	Styrene	ug/kg	540		600		600	
SW8260	Tetrachloroethene	ug/kg	84000		1200000		750000	D
SW8260	Toluene	ug/kg	260		600	U	600	UJ
SW8260	trans-1,2-Dichloroethene	ug/kg	540	UJ	600	UJ	600	UJ
SW8260	trans-1,3-Dichloropropene	ug/kg	540	U	600	U	600	UJ
SW8260	Trichloroethene	ug/kg	35000	D	150000	DJ	79000	DJ
SW8260	Trichlorofluoromethane	ug/kg	540		600		600	
SW8260	Vinyl chloride	ug/kg	540		600		600	
SW8260	Xylene, m/p	ug/kg	500		1200		1200	
SW8260	Xylene, o	ug/kg	540		600		600	
Notes:			2.0	···	230		230	
	micrograms per kilogram	1						
	non-detect, J= estimated,							
	sult from dilution analysis	 			·			-

	Sample I	Delivery Group	A270		A270		A270	
		Location	GS-		GS-		GS-	
-		Sample Date	5/7/20		5/8/20		5/8/20	
·		Sample ID	828103-G		828103-G		828103-G	571609
		Qc Code	FS		FS		FS	
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifie
SW8260	1,1,1-Trichloroethane	ug/kg	540		550		550	
SW8260	1,1,2,2-Tetrachloroethane	ug/kg	540		550		550	
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	540		550		550	
SW8260	1,1,2-Trichloroethane	ug/kg	540		550		270000	U
SW8260	1,1-Dichloroethane	ug/kg	540		550		550	UJ
SW8260	1,1-Dichloroethene	ug/kg	540		550	U	550	UJ
SW8260	1,2,4-Trichlorobenzene	ug/kg	540		550		550	UJ
SW8260	1,2-Dibromo-3-chloropropane	ug/kg	540		550		550	UJ
SW8260	1,2-Dibromoethane	ug/kg	540		550	U	270000	U
SW8260	1,2-Dichlorobenzene	ug/kg	540		550	U	550	UJ
SW8260	1,2-Dichloroethane	ug/kg	540		550	U	270000	U
SW8260	1,2-Dichloropropane	ug/kg	540	UJ	550	U	270000	U
SW8260	1,3-Dichlorobenzene	ug/kg	540		550		550	UJ
SW8260	1,4-Dichlorobenzene	ug/kg	540		550	U	550	
SW8260	2-Butanone	ug/kg	2700	UJ	2700	U	2700	UJ
SW8260	2-Hexanone	ug/kg	2700	UJ	2700	U	1400000	U
SW8260	4-Methyl-2-pentanone	ug/kg	2700	UJ	2700	U	1400000	U
SW8260	Acetic acid, methyl ester	ug/kg	540	UJ	550	U	550	
SW8260	Acetone	ug/kg	2700	UJ	2700	U	2700	
SW8260	Benzene	ug/kg	540	UJ	550	U	270000	
SW8260	Bromodichloromethane	ug/kg	540	UJ	550	Ū	270000	
SW8260	Bromoform	ug/kg	540		550		550	
SW8260	Bromomethane	ug/kg	540		550		550	
SW8260	Carbon disulfide	ug/kg	540		550		550	
SW8260	Carbon tetrachloride	ug/kg	540		550		270000	
SW8260	Chlorobenzene	ug/kg	540		550		550	
SW8260	Chlorodibromomethane	ug/kg	540		550		270000	
SW8260	Chloroethane	ug/kg	540		550		550	
SW8260	Chloroform	ug/kg	540		550		550	
SW8260	Chloromethane	ug/kg	540		550		550	
SW8260	Cis-1,2-Dichloroethene	ug/kg	540		550		550	
SW8260	cis-1,3-Dichloropropene	ug/kg	540		550		270000	
SW8260	Cyclohexane	ug/kg	540		550		550	
SW8260	Dichlorodifluoromethane	ug/kg	540		550		550	
SW8260	Ethyl benzene	ug/kg	540		550		550	
SW8260	Isopropylbenzene	ug/kg	540		550		550	
SW8260	Methyl cyclohexane	ug/kg	540		550		270000	
SW8260	Methyl Tertbutyl Ether	ug/kg	540		550		550	
SW8260	Methylene chloride	ug/kg	540		550		550	
SW8260	Styrene	ug/kg	540		550		550	
SW8260	Tetrachloroethene	ug/kg	670000		110000		1200000	
SW8260	Toluene	ug/kg	540		550		290	
SW8260	trans-1,2-Dichloroethene	ug/kg ug/kg	540		550		550	
SW8260	trans-1,3-Dichloropropene	ug/kg ug/kg	540		550		270000	
SW8260	Trichloroethene	ug/kg ug/kg	490000		160000			
SW8260	Trichlorofluoromethane	ug/kg ug/kg	540		550		1400000	
SW8260	Vinyl chloride						550	
SW8260	Xylene, m/p	ug/kg	540		550		550	
SW8260		ug/kg	1100		1100		250	
	Xylene, o	ug/kg	540	lo1	550	U	340	J
Notes:				ļ				
	micrograms per kilogram			ļ	****			
	non-detect, J= estimated, sult from dilution analysis			٠.				

	Sample I	Delivery Group	A2708	A2708	A2708
		Location	GS-8	GS-8	GS-9
		Sample Date	5/7/2009	5/7/2009	5/8/2009
<u>;</u>	<u>.</u>	Sample ID	828103-GS81109	828103-GS81509	828103-GS91209
•		Qc Code	FS	FS	FS
Analysis	Parameter	Units	Result Qualifi		Result Qualifier
SW8260	1,1,1-Trichloroethane	ug/kg	27000 U	58000 U	54000 U
SW8260	1,1,2,2-Tetrachloroethane	ug/kg	27000 U	58000 U	54000 U
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	27000 U	58000 U	54000 U
SW8260	1,1,2-Trichloroethane	ug/kg	27000 U	58000 U	54000 U
SW8260	1,1-Dichloroethane	ug/kg	27000 UJ	58000 UJ	54000 UJ
SW8260	1,1-Dichloroethene	ug/kg	27000 U	58000 U	54000 U
SW8260	1,2,4-Trichlorobenzene	ug/kg	27000 U	58000 U	54000 U
SW8260	1,2-Dibromo-3-chloropropane	ug/kg	27000 U	58000 U	54000 U
SW8260	1,2-Dibromoethane	ug/kg	27000 U	58000 U	54000 U
SW8260	1,2-Dichlorobenzene	ug/kg	27000 U	58000 U	54000 U
SW8260	1,2-Dichloroethane	ug/kg	27000 U	58000 U	54000 U
SW8260	1,2-Dichloropropane	ug/kg	27000 U	58000 U	54000 U
SW8260	1,3-Dichlorobenzene	ug/kg	27000 U	58000 U	54000 U
SW8260	1,4-Dichlorobenzene	ug/kg	27000 U	58000 U	54000 U
SW8260	2-Butanone	ug/kg	140000 U	290000 U	270000 U
SW8260	2-Hexanone	ug/kg	140000 U	290000 U	270000 U
SW8260	4-Methyl-2-pentanone	ug/kg	140000 U	290000 U	270000 U
SW8260	Acetic acid, methyl ester	ug/kg	27000 U	58000 U	54000 U
SW8260	Acetone	ug/kg	140000 U	290000 U	270000 U
SW8260	Benzene	ug/kg	27000 U	58000 U	54000 U
SW8260	Bromodichloromethane	ug/kg	27000 U	58000 U	54000 U
SW8260	Bromoform	ug/kg	27000 U	58000 U	54000 U
SW8260	Bromomethane	ug/kg	27000 U	58000 U	54000 U
SW8260	Carbon disulfide	ug/kg	27000 U	58000 U	54000 U
SW8260	Carbon tetrachloride	ug/kg	27000 U	58000 U	54000 U
SW8260	Chlorobenzene	ug/kg	27000 U	58000 U	54000 U
SW8260	Chlorodibromomethane	ug/kg	27000 U	58000 U	54000 U
SW8260	Chloroethane	ug/kg	27000 U	58000 U	54000 U
SW8260	Chloroform	ug/kg	27000 UJ	58000 UJ	54000 UJ
SW8260	Chloromethane	ug/kg	27000 U	58000 U	54000 U
SW8260	Cis-1,2-Dichloroethene	ug/kg	27000 UJ	58000 UJ	54000 UJ
SW8260	cis-1,3-Dichloropropene	ug/kg	27000 U	58000 U	54000 U
SW8260	Cyclohexane	ug/kg	27000 U	58000 U	54000 U
SW8260	Dichlorodifluoromethane	ug/kg	27000 U	58000 U	54000 U
SW8260	Ethyl benzene	ug/kg	27000 U	58000 U	54000 U
SW8260	Isopropylbenzene	ug/kg	27000 U	58000 U	, 54000 U
SW8260	Methyl cyclohexane	ug/kg	27000 U	58000 U	54000 U
SW8260	Methyl Tertbutyl Ether	ug/kg	27000 U	58000 U	54000 U
SW8260	Methylene chloride	ug/kg	27000 U	58000 U	54000 U
SW8260	Styrene	ug/kg	27000 U	58000 U	54000 U
SW8260	Tetrachloroethene	ug/kg	51000 D	64000 D	93000 D
SW8260	Toluene	ug/kg	27000 U	58000 U	54000 U
SW8260	trans-1,2-Dichloroethene	ug/kg	27000 UJ	58000 UJ	54000 UJ
SW8260	trans-1,3-Dichloropropene	ug/kg	27000 U	58000 U	54000 U
SW8260	Trichloroethene	ug/kg	12000 DJ	26000 DJ	110000 D
SW8260	Trichlorofluoromethane	ug/kg	27000 U	58000 U	54000 U
SW8260	Vinyl chloride	ug/kg	27000 U	58000 U	54000 U
SW8260	Xylene, m/p	ug/kg	55000 U	120000 U	110000 U
SW8260	Xylene, o	ug/kg	27000 U	58000 U	54000 U
Notes:					
	micrograms per kilogram				
	non-detect, J= estimated,				
	esult from dilution analysis	·			<u> </u>

	<u> Башрте т</u>	Delivery Group	A270	_	A270		A270	-
		Location	GS-9		IDW		QC	
		Sample Date	5/8/20		5/8/20		5/5/20	
	,	Sample ID	828103-GS	S91509	MW13K14I		828103-G	STB01
		Qc Code	FS		FS	1	TB	
Analysis	Parameter	Units	Result	Qualifier		Qualifier	Result	Qualifie
SW8260	1,1,1-Trichloroethane	ug/kg	560		28		500	
SW8260	1,1,2,2-Tetrachloroethane	ug/kg	560		28		500	
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	560		28		500	
SW8260	1,1,2-Trichloroethane	ug/kg	560		28		500	
SW8260	1,1-Dichloroethane	ug/kg	560		28		500	
SW8260	1,1-Dichloroethene	ug/kg	560		28		500	
SW8260	1,2,4-Trichlorobenzene	ug/kg	560		28		500	
SW8260	1,2-Dibromo-3-chloropropane	ug/kg	560		28		500	
SW8260	1,2-Dibromoethane	ug/kg	560		28		500	
SW8260	1,2-Dichlorobenzene	ug/kg	560		28		500	
SW8260	1,2-Dichloroethane	ug/kg	560		28		500	
SW8260	1,2-Dichloropropane	ug/kg	, 560		28		500	
SW8260	1,3-Dichlorobenzene	ug/kg	560		28		500	
SW8260	1,4-Dichlorobenzene	ug/kg	560		28		500	
SW8260	2-Butanone	ug/kg	2800		140		2500	
SW8260	2-Hexanone	ug/kg	2800		140		2500	
SW8260	4-Methyl-2-pentanone	ug/kg	2800		140		2500	
SW8260	Acetic acid, methyl ester	ug/kg	560		28		500	
SW8260	Acetone	ug/kg	2800		140		2500	
SW8260	Benzene	ug/kg	560		28		500	
SW8260	Bromodichloromethane	ug/kg	560		28		500	
SW8260	Bromoform	ug/kg	560		28		500	ט
SW8260	Bromomethane	ug/kg	560		28		500	
SW8260	Carbon disulfide	ug/kg	560			UJ	500	
SW8260	Carbon tetrachloride	ug/kg	560	U	28	U	500	บ
SW8260	Chlorobenzene	ug/kg	560	U	28	U	500	U
SW8260	Chlorodibromomethane	ug/kg	560	UJ	28	U	500	U
SW8260	Chloroethane	ug/kg	560	U	28	U	500	U
SW8260	Chloroform	ug/kg	560	U	28	U	500	ט
SW8260	Chloromethane	ug/kg	560	U	28	U	500	Ū
SW8260	Cis-1,2-Dichloroethene	ug/kg	560	UJ	28	U	500	Ū
SW8260	cis-1,3-Dichloropropene	ug/kg	560	Ū	28		500	
SW8260	Cyclohexane	ug/kg	560		28		500	
SW8260	Dichlorodifluoromethane	ug/kg	560		28		500	
SW8260	Ethyl benzene	ug/kg	560		28		500	
SW8260	Isopropylbenzene	ug/kg	560		28		500	
SW8260	Methyl cyclohexane	ug/kg	560		. 28		500	
SW8260	Methyl Tertbutyl Ether	ug/kg	560		28		500	
SW8260	Methylene chloride	ug/kg	560		23		500	
SW8260	Styrene	ug/kg	560		28		500	
SW8260	Tetrachloroethene	ug/kg	43000		240		240	
SW8260	Toluene	ug/kg	560		28		500	
SW8260	trans-1,2-Dichloroethene	ug/kg	560		28		500	
SW8260	trans-1,3-Dichloropropene	ug/kg	560		28		500	
SW8260	Trichloroethene	ug/kg	160000		330		500	
SW8260	Trichlorofluoromethane	ug/kg	560		28		500	
SW8260	Vinyl chloride		560		28		500	
SW8260 SW8260	Xylene, m/p	ug/kg	1100					
SW8260 SW8260	Xylene, o	ug/kg			56		1000	
	Ayrene, o	ug/kg	560	U	28	-	500	U
Notes:	1'1							
	micrograms per kilogram	-						
	non-detect, J= estimated,							
D= re	sult from dilution analysis				<u> </u>			

	Sample	e Delivery Group	LIMT-25188	LIMT-25188	LIMT-25188	LIMT-25188	LIMT-25188
		Location	SV-01	SV-01 '	SV-02	SV-03	SV-04
		Sample Date Sample ID	5/7/2009 828103-GV10809	5/7/2009 828103-GV10809D	5/6/2009 828103-GV20709	5/6/2009 828103-GV30709	5/7/2009
		Oc Code	FS	FD	FS	FS	828103-GV40109 FS
Analysis	Parameter ·	Units ·	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
TO-15	1,1,1-Trichloroethane	ug/m3·	0.54 U	0.54 U	0.54 U	0.54 U	9.4
TO-15	1,1,2,2-Tetrachloroethane	ug/m3	0.68 U	0.68 U	0.68 U	0.68 U	0.68 U
TO-15 TO-15	1,1,2-Trichloro-1,2,2-Trifluoroethane 1,1,2-Trichloroethane	ug/m3 ug/m3	0.76 U 0.54 U	0.76 U 0.54 U	0.76 U 0.54 U	0.76 U 0.54 U	1.1 0.54 U
TO-15	1,1-Dichloroethane	ug/m3	0.4 U	0.4 U	0.54 U	0.34 U	1.9
TO-15	1,1-Dichloroethene	ug/m3	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
TO-15	1,2,4-Trichlorobenzene	ug/m3	0.89	0.88	0.91	0.74 U	1.9
TO-15	1,2,4-Trimethylbenzene	ug/m3	1.5	1.7	2.2	1.7	25
TO-15	1,2-Dibromoethane	ug/m3	0.76 U	0.76 U	0.76 U	0.76 U	0.76 U
TO-15 TO-15	1,2-Dichloro-1,1,2,2-tetrafluoroethane 1,2-Dichlorobenzene	ug/m3 ug/m3	0.7 U 0.6 U	0.7 U 0.6 U	0.7 U 0.6 U	0.7 U 0.6 U	0.7 U 0.76
TO-15	1,2-Dichloroethane	ug/m3	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
TO-15	1,2-Dichloropropane	ug/m3	0.46 U	0.46 U	0.46 U	0.46 U	0.46 U
TO-15	1,3,5-Trimethylbenzene	ug/m3	0.56	0.54	0.8	0.67	9.8
TO-15	1,3-Dichlorobenzene	ug/m3	0.6 U	0.6 U	0.6 U	0.6 U	0.6 U
TO-15	1,4-Dichlorobenzene	ug/m3	0.6 U 12 J	0.6 U	0.6 U	0.6 U	0.6 U
TO-15 TO-15	2-Butanone 2-Hexanone	ug/m3	2.6	3	13	17 4.9	12 0.4 U
TO-15	2-Propanol	ug/m3	7.3	4.6	7.7	4.2	18
TO-15	4-Ethyltoluene	ug/m3	. 0.5 U	0.5 U	0.55	0.5 U	2.9
TO-15	4-Methyl-2-pentanone	ug/m3	0.58	0.4 U	2.9	2.3	3.4
TO-15	Acetone	ug/m3	76 J	160 J	350 J	66 J	370 J
TO-15 TO-15	Benzene Benzyl chloride	ug/m3 ug/m3	0.93 0.52 U	1.2 U	5.8 0.52 U	52 0.52 U	14 0.52 U
TO-15	Bromodichloromethane	ug/m3	0.66 U	0.66 U	0.66 U	0.52 U	0.52 U
TO-15	Bromoform	ug/m3	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U
TO-15	Bromomethane	ug/m3	· 0.38 U	0.38 U	0.38 U	0.38 U	0.38 U
TO-15	Butadiene, 1,3-	ug/m3	0.22 U	0.22 U	0.22 U	0.22 U	0.22 U
TO-15	Carbon disulfide	ug/m3	0.82	0.32 U	3.7	1.5	3.3
TO-15 TO-15	Carbon tetrachloride Chlorobenzene	ug/m3 ug/m3	0.62 U 0.46 U	0.62 U 0.46 U	0.62 U 0.46 U	0.62 U 0.46 U	0.62 U 0.46 U
TO-15	Chlorodibromomethane	ug/m3	0.86 U	0.86 U	0.46 U	0.86 U	0.46 U
TO-15	Chloroethane	ug/m3	0.26 U	0.26 U	0.85	0.26 U	0.26 U
TO-15	Chloroform	ug/m3	0.48 U	0.48 U	0.48 U	0.48 U	1.9
TO-15	Chloromethane	ug/m3	1.4	1.5	2.6	1.4	0.34
TO-15 TO-15	Cis-1,2-Dichloroethene cis-1,3-Dichloropropene	ug/m3	0.4 U 0.44 U	0.4 U 0.44 U	0.4 U 0.44 U	3.4	5.4
TO-15	Cvclohexane	ug/m3 ug/m3	0.34 U	0.34 U	15	0.44 U 0.34 U	0.44 U 42
TO-15	Dichlorodifluoromethane	ug/m3	2.3	2.1	2.2	2.2	2.1
TO-15	Ethanol	ug/m3	18 J	20 J	36 J	13 J	86 J
TO-15	Ethyl acetate	ug/m3	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U
TO-15	Ethyl benzene	ug/m3	0.58	0.84	1.1	2.1	11
TO-15 TO-15	Heptane Hexachlorobutadiene	ug/m3 ug/m3	0.66 1.1 U	0.58 1.1 U	9.2 1.1 U	3.7 1.1 U	97 1.1 U
TO-15	Hexane	ug/m3	2.4	2.8	38	5.5	120
TO-15	Methyl Tertbutyl Ether	ug/m3	0.36 U	0.36 U	0.36 U	0.36 U	0.36 U
TO-15	Methylene chloride	ug/m3	4.5 U	5.4 U	5.2 U	6 U	4.5 U
TO-15	Propylene	ug/m3	0.18 UJ	0.18 UJ	0.18 UJ	0.18 UJ	0.18 UJ
TO-15 TO-15	Styrene Tetrachloroethene	ug/m3 ug/m3	0.42 U 5.5 J	0.42 U 3 J	0.42 U 0.68 U	0.42 U 240	0.54 5500
TO-15	Tetrahydrofuran	ug/m3	0.3 U	0.3 U	0.8 U	0.3 U	0.3 U
TO-15	Toluene	ug/m3	2.4	3.6	5.6	9.7	45
TO-15	trans-1,2-Dichloroethene	ug/m3	0.4 U	0.4 U	0.4 U	0.63	0.4 U
TO-15	trans-1,3-Dichloropropene	ug/m3	0.44 U	0.44 U	0.44 U	0.44 U	0.44 U
TO-15	Trichloroethene	ug/m3	0.9	0.54 U	0.54 U	130	3500
TO-15 TO-15	Trichlorofluoromethane Vinyl acetate	ug/m3 ug/m3	1.5 0.36 U	1.3 0.36 U	1.3 0.36 U	1.2 0.36 U	1.5 0.36 U
TO-15	Vinyl chloride	ug/m3 ug/m3	0.36 U	0.36 U 0.26 U	0.36 U	0.36 U	0.36 U 0.26 U
TO-15	Xylene, m/p	ug/m3	1.5	2.3	2.3	4.5	43
TO-15	Xylene, o	ug/m3	0.57	0.95	0.76	1.5	14
Notes:							
	3 = micrograms per cubic meter	5'7					
Quantier: U	J= non-detect, J= estimated, D= result from o	dilution analysis					1

DATA USABILITY SUMMARY REPORT IN SUPPORT OF THE REMEDIAL INVESTIGATION DINABURG DISTRIBUTING SITE ROCHESTER, NEW YORK

1.0 INTRODUCTION

Groundwater samples were collected on December 9 and December 10, 2009 at the Dinaburg Distributing Site (Site) in Rochester, New York. Groundwater samples were submitted to Chemtech Laboratories in Mountainside, NJ for analysis. Results were reported in Sample Delivery Group (SDG) A5518. A listing of samples included in this Data Usability Summary Report is presented in Table 1. A summary of the analytical results is presented in Table 2. Samples were analyzed for Volatile Organic Compounds (VOCs) by USEAP Method 8260B.

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2002). Laboratory QC limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification.

The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit

J = concentration is estimated

UJ = target analyte is not detected at the reported detection limit and is estimated

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

2.0 VOLATILE ORGANIC COMPOUNDS (VOCS) by Method 8260B

VOC - Initial and Continuing Calibration Standards

SDG A5518

Acetone, in the initial calibration analyzed on December 18, 2009, had a percent relative standard deviation (%RSD) calculated on the response factors (RF) of 25.8, above the Region II control limit of 20 percent. The laboratory attempted to use an alternative method of calibrating acetone (i.e. linear regression), but failed to meet calibration criteria of 0.99. The average relative response factor was used to quantitate QC samples and field samples. Out of the six Dinaburg field samples quantitated using the initial calibration from December 18, 2009, only one sample (828103-GW081009) had a detection or acetone (at 12 µg/L). Acetone was subsequently

MACTEC Engineering and Consulting, P.C., Project No. 3612082107

qualified estimated (J/UJ) in the following samples due to the %RSD exceedance: 828103-GW071509, 828103-GW081009, 828103-GW082009, 828103-GW091509, 828103-GW101909, and 828103-GW111809.

The following compounds in the initial calibration analyzed on December 19, 2009 had %RSDs that were above 20 percent: dichlorodifluoromethane (21), methylene chloride (20.6), and 1,2,4-trichlorobenzene (31). These compounds were not detected in associated samples (828103-GW111109 and 828103-GW100809) and reporting limits were qualified estimated (UJ) in the final data set.

VOC – Lab Control Samples

SDG A5518

In the aqueous lab control sample (BSI1219W3) analyzed on December 19, 2009 at 17:52, 1,2,4-trichlorobenzene had percent recovery of 67 percent that was above the lower lab control limit of 61 percent, but below the Region II lower limit of 70 percent. Professional judgment was used to qualify the non-detect results for 1,2,4-trichlorobenzene estimated (UJ) in the following associated samples: 828103-GW100809 and 828103-GW111109.

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2002. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; Draft DER-10; Division of Environmental Remediation; December 2002.

USEPA Region II Hazardous Waste Support Branch, 2006. "Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B; SOP # HW-24, Revision #2; October 2006.

Data Validator: Tige Cunningham

Date: 3/3/2010

Reviewed by Chris Ricardi, NRCC-EAC

Quality Assurance Officer

Date: 3/10/2010

Table 1 – Sample Listing

SDG	Media	Location	Sample ID	Sample Date	Qc Code	VOCs by 8260B
A5518	GW	GW-7	828103-GW071509	12/9/2009	FS	X
A5518	GW	GW-8	828103-GW081009	12/10/2009	FS	X
A5518	GW	GW-8	828103-GW082009	12/9/2009	FS	X
A5518	GW	GW-9	828103-GW091509	12/9/2009	FS	X
A5518	GW	GW-10	828103-GW100809	12/9/2009	FS	X
A5518	GW	GW-10	828103-GW101909	12/9/2009	FS	X
A5518	GW	GW-11	828103-GW111109	12/9/2009	FS	X
A5518	GW	GW-11	828103-GW111809	12/9/2009	FS	X
A5518	BW	QC	TRIP BLANK	12/3/2009	TB .	X

TABLE 2 - SDG A5518 DATA USABILITY SUMMARY REPORT IN SUPPORT OF THE REMEDIAL INVESTIGATION DINABURG DISTRIBUTING SITE ROCHESTER, NEW YORK

SW8260 Trichloroether SW8260 Trichlorofluon SW8260 Vinyl chloride SW8260 Xylene, m/p SW8260 Xylene, o								SW8260 Toluene	SW8260 Tetrach		SW8260 Methyle	SW8260 Methyl Tertbutyl Ether	SW8260 Methyl	_	-							SW8260 Chloroethane					SW8260 Bromoform				SW/8260 4-Mem			SW8260 1,4-Dict	_	_	_		SW/8260 1.2-DID		<u>;</u>	1,1	SW8260 1,1,2-Ti			Analysis Parameter					
	0	m/p	loride	Trichlorofluoromethane	richloroethene	trans-1,3-Dichloropropene	,2-Dichloroethene		Tetrachloroethene		Methylene chloride	Tertbutyl Ether	cyclohexane	lsopropylbenzene	enzene	Dichlorodifluoromethane	exane	cis-1 3-Dichloropropene	Cis-1.2-Dichloroethene	Chloromethane	orm	Chlomethane	Chlorodibramanthan	tetrachloride	Carbon disulfide	Bromomethane	orm	Bromodichloromethane	IB .	Acetone	Acetic acid methyl actor	none	one	,4-Dichlorobenzene	,3-Dichlorobenzene	2-Dichloropropane	1.2-Dichloroethane	2-Dichlorobenzene	2-Discompathana	4-Trichlorobenzene	1,1-Dichloroethene	,1-Dichloroethane	,2-Trichloroethane	,2-Trichloro-1,2,2-Trifluoroethane	-Tetrachloroethane	1 1-Trichlomethane			Ş	Location	Sample Deli
	ug/l	ug/l	ug/l	ug/i	l/gu	l/gu	l/gu	l/gu	ug/l	ug/l	ug/l	ug/l	ng/l	ug/i	ug/l	ng/i	ug/l	ug/l	ug/l	ug/l	ug/l		ug/i	ug/l	ug/l	ug/l	ng/i	ug/l	ng/l	ug/	ug/i	ug/l	ug/I	ug/l	ug/l	ug/l	ug/l	[0/s	ug/i	ug/l	ug/l	ug/I	٦	T	ug/l	Units	Qc Code	Sample ID	ample Date	Location	very Group
	110	2	10	1 Ü	1 U	1 U	1 0	1 U	ı U	1 U	1 U	1 U	10	10	10	10	10	10	10	10	10		1	1	1	10	1 U	1 U	1 U	5 -	100			1 U	<u>1</u> U	10	1	<u>.</u>	-	, _		1 U	10	10))	Result Qualifier	ျပ္ပဲ	828103-GW101909	12/9/2009	GW-10	A5518
	0.5 J	1.6 J	10	1 U	1 U	1 U	. 1 U	1.4	1 C	1 U	1 UJ	1 U	10	1	10	1 Juj	1.2	1	1U	10	10	1	-	1		1	1 U	1 _U	U 0.9	32	100			1 U	1 <u>U</u>	10	10	1	<u> </u>	10	10	1 U	1 C	1	1 0	ner Kesult Qualifier	FS	82810	12/9/2009	GW-10	A5518
	1 0	20	10	1 U	1 U	1 U	1 U	1 U	1 C	1 U	. 1 U	1 U	10	10	10	1	10	2	10	10	10	1	-	1	1	1	10	1 U	10	5 UJ	100	50	50	1 Ü	1	1 U	10	1	1 -	1 0	1	10	10	1	1) -	mer Result Qualifier	FS	8281	12/9/2009	GW-11	A5518
	110	20	10	1 U	1 U	1 0	1 0	0.5 J	1 U	1 U	1 UJ	10	10	10	10	1 1	10	101	1	1 U	10	<u> </u>	-		U.86.J		1 U	1 U	0.72 J	59	4.0	- 5 U		1	1 U	10	1			1 5		1 0	1 0		1 -	er Result Qualifier	FS	8281	12/9/2009	GW-11	A5518
	110	20	10	1 0	1 U	10	10	1 U	1 0	1 <u> </u> U	, 1,U	1 U	1	10	1	10	10	1	10	10	1			1	2	10	10	1 U	10	5 L		5			1 U	10	<u>.</u>		, -	10		10	10	1	100	r Result Qualifier	FS	8281		GW-8	A5518
	110	2 U	10	1 Ü	1 U	1 0	1 U	1 U	1 U	1 U	1 U	1 U	10	10	1 0	1 U	1 U	10	1	10	10	<u> </u>	1 0	1	-	1	1 0	10	10		100	5 0	5 U	1 U	1 U	10	1		1			1 0	1	1	1 -	Result Qualitier	FS	828103-GW071509	12/9/2009	GW-7	A5518
	10	20	10	1 ∪	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10	10	ĵ U	1	1	10	1	10	10	= 0	-	10	100	10	1 U	10			3 0		5 U		10	1	10	1-			1	1 0	<u>1</u>	1	1 -	r Kesult Qualifier	FS	82810	12/9/2009	GW-9	A5518
	10	2 U	10	1 U	1 U	1 U	1 0	10	1	10	1	10	10	1	-3			10		1	10				1	1 U	1 0	10	10	12 J	100	5 5	5 U	1	10		10	1-	- - C	 	10	1 0	1 U	10	1	er Result Qualifie	FS	8281	12/10/2009	GW-8	A5518

sis Parameter 60 1,1,1-Trichloroethane 60 1,1,1,2-Trichloroethane 60 1,1,1,2-Trichloroethane 60 1,1,1-Trichloroethane 60 1,1-Dichloroethane 60 1,2-Dichloroethane 60 1,2-Dichloroethane 60 1,2-Dichloroethane 60 1,2-Dichloroethane 60 1,3-Dichloroethane 60 1,3-Dichloroethane 60 2-Revanone 60 2-Revanone 60 1,4-Dichloroethane 60 1,4-D				Notes:
Cocation Cocation Cocation Cocation Cocation Cocation Cample Date Cample Date Cample Date TRIPBL, Cocote TRIPBL, Cocote TRIPBL, Cocote TRIPBL, Cocote TRIPBL, Cocote TRIPBL, Cocote TRIPBL, Cocote TRIPBL, Cocote Cocote TRIPBL, Cocote Cocote TRIPBL, Cocote			ug/l	60 Xylene
Cocation Cocation Cocation Cocation Cocation Cocation Cample Date Cample Date Cample Date TRIPBLI, 1,1,1-Trichlorochtane Ug/I Units Result 1,1,2-Trichlorochtane Ug/I 1,1-Dichlorochtane Ug/I	C.	2	ug/l	
Location Cample Date 1/3/27 Sample Date 1/3/27 I	U	1	ug/l	
Location QC Sample Date 12/32 Location QC Sample Date 12/32 Telrachloroethane Units Result 1,1,1-Trichloroethane Ug/l 1,1,2-Trichloroethane Ug/l 1,1,2-Trichloroethane Ug/l 1,1,1-Trichloroethane Ug/l 1,1,2-Trichloroethane Ug/l 1,1,2-Trichloroethane Ug/l 1,1,2-Trichloroethane Ug/l 1,1,2-Dichloroethane Ug/l 1,1,2-Dichloroethane Ug/l 1,1,2-Dichloroethane Ug/l 1,1,2-Dichloroethane Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichlorobenzene Ug/l 1,2-Dichloroethane Ug/l 1,2-Dichloroethane Ug/l 1,3-Dichloroethane Ug/l 1,3-Dichlo	Ü	1	ug/l	
Location Cample Date 12/3/20 Sample Date 12/3/20 Sample Date 12/3/20 TRIPBL I.1,1-Trichhoroethane ug/l 1,1,2-Trichhoroethane ug/l 1,1-Dichhoroethane > </u>		ug/l		
Location QC Sample Date 17/3/20 Sample Date 17/3/20 TRIPBL/ QC Code TR Code TR Code TR Code TR Code TR Code TR Code Code TR Code		_	ug/l	
Location Carpole Date 12/32 14			uo/	
Location Carpole Date Carpole Date Carpole Date Carpole Date Carpole Date Carpole Date Carpole Date Carpole Date Carpole Date Carpole Date Carpole Date Carpole Date Carpole Car	_ c			
Location QC Sample Date 1/2/2-Texthoroethane Ug/I 1/1.2-Trichloroethane Ug/I 1/1.2-Trichloroethane Ug/I 1/1.2-Trichloroethane Ug/I 1/1.2-Trichloroethane Ug/I 1/1.1-Dichloroethane Ug/I 1/1.2-Dibromo-3-chloropropane Ug/I 1/1.2-Dibromo-3-chloropropane Ug/I 1/1.2-Dichlorobenzene Ug/I 1/1.2-Dichloromethane Ug/I 1/1.2-Dichloromethane Ug/I 1/1.2-Dichloromethane Ug/I 1/1.2-Dichlorodenzene Ug/I 1/1.2-Dichlorode			ug/l	
Location 12/3/25 12/		_	ug/l	
Location 10,000		-	ug/I	
Location QC Code TRIPBL Carbon Carbo	_	1	ug/l	
Location QC Sample Date 17/3/20 Sample Date 17/3/20 TRIPBL/ QC Code TR TR TR TR TR TR TR T		_	ug/l	
Location Carolina		1	ug/l	_
Location 10,000	_		ug/l	_
Location QC Sample Date 12/32 Tell Parameter Units QC Code TB Parameter Units Result 1,1,1-Trichloroethane Ug/l 1,1,2-Trichloroethane Ug/l 1,1,1-Trichloroethane Ug/l 1,1,1-Trichlo			ug/l	
Location 12/3/20 12/			10/	
Location 12/3/20 Sample Date 12/3/20 Sample Date 12/3/20 Sample Date 12/3/20 Sample ID TRIPBL/ Trichloroethane Ug/l 1 1/1,2-Trichloroethane Ug/l 1 1/1,2-Dibromoethane Ug/l 1 1/2-Dibromoethane Ug/l 1 1/2-Dibromoethane Ug/l 1 1/2-Dibromoethane Ug/l 1 1/2-Dichlorobenzene Ug/l 1 1/2-Dichloromethane Ug/l 1 1/2-Dichloromet			ug/	
Location QC		-	ug/	-
Location QC Sample Date 1/2/3- 1/2 1			ug/l	+
Location QC		_	ug/l	+
Location 12/3/26 Sample Date 12/3/26 Sample Date 12/3/26 Sample Date 12/3/26 Sample ID TRI/PBL/		1	ug/l	_
Location QC		_	ug/l	_
Location QC			ug/l	8260 Carbon disulfide
Location 12/3/20 Sample Date 12/3/20 Sample Date 12/3/20 Sample Date 12/3/20 Sample ID TRIPBL/		_	ug/l	8260 Bromomethane
Location 12/3/20 Sample Date 12/3/20 Sample Date 12/3/20 Sample Date 12/3/20 Sample ID TRIPBL/ TRIPBL/ TRIPBL/ Trichloroethane Ug/l 1 1 1/2-2-Trichloroethane Ug/l 1 1 1/2-Dibhoroethane Ug/l 1 1 1/2-Dichlorobenzene Ug/l 5 1 1 1 1 1 1 1 1 1		<u>.</u>	10/1 10/1	
Location QC Sample Date 1/2/3/20 Sample Date 1/2/3/20 Sample Date 1/2/3/20 Sample ID TRIPBLI TRIPBLI Qc Code TB TB TB TB TB TB TB T		_	(g)	
Location QC Sample Date 1/2/3/20 Sample Date 1/2/3/20 Sample Date 1/2/3/20 Sample Date 1/2/3/20 TRIPBL/ Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB TB TB TB TB TB TB T		٥	19/	ozou Acetone
Location 10/3/20 10/		_	Je j	Acetic acid,
Location 10,000			ug/l	4-Methyl-2-
Location QC			ug/l	8260 2-Hexanone
Location QC			ug/l	8260 2-Butanone
Location 12/3/20 Sample Date 12/3/20 Sample Date 12/3/20 Sample ID TRIPBL/	C	_	ug/l	
Location QC		_	ug/	
Location QC Sample Date 1/2/3/25 Sample Date 1/2/3/25 Sample Date 1/2/3/25 Sample Date 1/2/3/25 TRIPBLI TRIPBLI Qc Code TB Qc Code TB TRIPBLI	C 1	١.	ua/i	<u>-T</u> :
Location COCC Comple Date 1/2/202 Comple Date 1/2/202 Code TRIPBLI T	= 0	<u>.</u>	1/0/1	_
Location QCC Sample Date 1/2/20 Sample Date 1/2/20 Sample Date 1/2/20 Sample Date 1/2/20 TRIPBL/ Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB Qc Code TB TB TB TB TB TB TB T			ug/i	
Location QC	= 0	<u> </u>	ug/i	
Location QC			ug/l	
Location QC			ug/l	1,1-Di
Location QC	_		ug/l	1.1
Location QC	Ç	1	ug/l	-1
Location QC	C	<u>.</u>	ug/l	
Location QC		_\	1/0/1	_
Location QC	Cualilei	Kesuit	Units	1 2
		18	C Code	
	ANK	TRIPBL	Sample ID	
	009	12/3/2	nple Date	Sar
		20	FOORTON	

TABLE 2 - SDG A5518
DATA USABILITY SUMMARY REPORT
IN SUPPORT OF THE REMEDIAL INVESTIGATION
DINABURG DISTRIBUTING SITE
ROCHESTER, NEW YORK

APPENDIX F

CALCULATIONS

		Contamination	PCE	PCE	PCE	TCE	TCE	TCE	Contamination
	Contamination	Thickness	Concentrations -	Concentrations -	Concentrations -	Concentrations -	Concentrations -	Concentrations -	Thickness to Rock
Location	Depth	Measured	1st Depth	2nd Depth	3rd Depth	1st Depth	2nd Depth	3rd Depth	(assumed)
GS-1	9 - 16+	7 +	52	3.7		9	27		11
GS-2	7 - 16+	9 +	1700	15		3.7	29		13
GS-3	8 - 16+	8 +	5.6	0.64		8.1	7		12
GS-4	8 - 16+	8 +	21	84		3	35		12
GS-5*	9 - 16+	7 +	990	340		630	370		11
GS-6*	8 - 16+	8 +	1200	670		150	490		12
GS-7*	7 - 16+	9 +	110	1200		160	1400		13
GS-8	7 - 16+	9 +	51	64		12	26		13
GS-9	7 - 16+	9 +	93	43		110	160		13
GS-10	9 - 16+	7 +	12	15		15	15		11
GS-11	0	0							
GS-12	10 - 16+	6 +	7.2	30		1.1	3		10
GS-13	10-21 (rock)	11	30	9.5	1.1	3.3	26	16	11
GS-14	10 - 16+	6 +	0	0		5.8	5.7		10

Notes:

Concentrations in mg/Kg

* = high source area borings

	Average Conc.	Geometric	Mean Conc.
PCE Source Area	751.67	573.88	
TCE Source Area	533.33	395.68	
PCE/TCE Source Area	1285.00	1039.88	(geometric mean of sum of PCE/TCE at each sample location)
PCE Outside Source	117.78	19.94	
TCE Outside Source	24.80	11.73	
PCE/TCE Source Area	142.57	37.95	(geometric mean of sum of PCE/TCE at each sample location)
Average Thickness Source=	12	* 400 sq ft	177.78 Cubic Yards
Average Thickness Other=	11.6	* 5900 sq ft	2534.81 Cubic Yards

Mass PCE/TCE = volume * concentration of contamination

Mass PCE/TCE Source = 178 cubic Yards *3000 lbs/cubic yard*1040E-6 = 555.36 lbs Created by: CRS 11/1/2010

Mass PCE/TCE Other = 2530 cubic Yards *3000 lbs/cubic yard*38E-6 = 288.42 lbs Checked by: NRL 11/4/2010

(3000 pounds per cubic yard based on assumed soil porosity of 0.32 = 2.65 gram/cubic cm [density of soil partical]*(1-0.32)*62.4 pounds per cubic foot * 27 feet per cubic yard = 3036 lbs/cubic yard)

APPENDIX G

MNA SCREENING FORMS

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20

MW-01 **Score: 16**

Scroll to End of Table

significance.		Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	of Table
Analysis	Concentration in Most Contam. Zone	* reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	0	•	0
	>5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	•	0	3
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Sulfide*	>1 mg/L	Reductive pathway possible	0	•	0
Methane*	<0.5 mg/L	VC oxidizes	•	0	0
	>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	0	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	•	0	1
Potential* (ORP)	<-100mV	Reductive pathway likely	•	0	2
pH*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
	5 > pH >9	Outside optimal range for reductive pathway	0	•	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be	0	•	0
Temperature*	>20°C	natural or anthropogenic At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer	0	•	0
Chloride*	>2x background	minerals Daughter product of organic chlorine	0	•	0
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	0
	<1 nM	VC oxidized	0	0	0
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic	0	0	0
BTEX*	>0.1 mg/L	compounds; carbon and energy source Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	•	0	0
TCE*		Material released	•	0	0
		Daughter product of PCE a/	•	0	2
DCE*		Material released		•	0
		Daughter product of TCE.	0		
		If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{a/} ; 1,1-DCE can be a chem. reaction product of TCA	•	0	2
VC*		Material released	0	0	0
		Daughter product of DCE ^{a/}	•	0	2
1,1,1- Trichloroethane*		Material released	0	•	0
DCA		Daughter product of TCA under reducing conditions	•	0	2
Carbon Tetrachloride		Material released	0	0	0
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	0	0
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0
	>0.1 mg/L	Daughter product of VC/ethene	0	•	
Chloroform		Material released	0	•	0
		Daughter product of Carbon Tetrachloride	0	0	0
Dichloromethane		Material released	0	0	0
		Daughter product of Chloroform	0	0	0

SCORE

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20

MW-01A Score: 16

		Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to Elia	UI Table
Analysis	Concentration in Most Contam. Zone	* reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	0	•	0
	>5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	•	0	3
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Sulfide*	>1 mg/L	Reductive pathway possible	0	•	0
Methane*	<0.5 mg/L	VC oxidizes	•	0	0
	>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	0	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	•	0	1
Potential* (ORP)	<-100mV	Reductive pathway likely	•	0	2
pH*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
	5 > pH >9	Outside optimal range for reductive pathway	0	•	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride*	>2x background	Daughter product of organic chlorine	0	•	0
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	0
	<1 nM	VC oxidized	0	0	0
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic	0	0	0
BTEX*	>0.1 mg/L	compounds; carbon and energy source Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	•	0	0
TCE*		Material released	•	0	0
		Daughter product of PCE a/	•	0	2
DCE*		Material released	0	•	0
		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{2/} ; 1,1-DCE can be a chem. reaction product of TCA	•	0	2
VC*		Material released	0	0	0
		Daughter product of DCE ^{a/}	•	0	2
1,1,1- Trichloroethane*		Material released	0	•	0
DCA		Daughter product of TCA under reducing conditions	0	•	0
Carbon Tetrachloride		Material released	0	•	0
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	0	0
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0
	>0.1 mg/L	Daughter product of VC/ethene	0	•	
Chloroform		Material released	0	•	0
		Daughter product of Carbon Tetrachloride	0	0	0
Dichloromethane		Material released	0	0	0
		Daughter product of Chloroform	0	0	0

SCORE

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significancy.

Interpretation	Score		
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5	MW-03	
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14	Score:	6
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20		
Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End of	Table

The results of this scoring processignificance.	ss have no regulatory	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	of Table
Analysis	Concentration in Most Contam. Zone	* reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	0	•	0
	>5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	0	•	0
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Sulfide*	>1 mg/L	Reductive pathway possible	0	•	0
Methane*	<0.5 mg/L	VC oxidizes	•	0	0
	>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	0	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	0	•	0
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	0
pH*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
	5 > pH >9	Outside optimal range for reductive pathway	0	•	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride*	>2x background	Daughter product of organic chlorine	0	•	0
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	0
	<1 nM	VC oxidized	0	0	0
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	0
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	•	0	0
TCE*		Material released	•	0	0
		Daughter product of PCE a/	•	0	2
DCE*		Material released	0	•	0
		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE [®] ; 1,1-DCE can be a chem. reaction product of TCA	•	0	2
VC*		Material released	0	0	0
		Daughter product of DCE ^{a/}	0	•	0
1,1,1- Trichloroethane*		Material released	•	0	0
DCA		Daughter product of TCA under reducing conditions	•	0	2
Carbon Tetrachloride		Material released	0	•	0
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	0	0
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0
	>0.1 mg/L	Daughter product of VC/ethene	0	•	
Chloroform		Material released	0	•	0
		Daughter product of Carbon Tetrachloride	0	0	0
Dichloromethane		Material released	0	0	0
		Daughter product of Chloroform	0	0	0
* required analysis.		1			

SCORE

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score	
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5	MW-03C
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14	Score: 19
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20	
Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End of Table

The following is taken from the The results of this scoring proc	USEPA protocol (USEPA, 1998). less have no regulatory	Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20		
significance.	,	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	of Table
Analysis	Concentration in Most Contam. Zone	*reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	•	0	3
	>5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	•	0	3
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Sulfide*	>1 mg/L	Reductive pathway possible	0	•	0
Methane*	<0.5 mg/L	VC oxidizes	•	0	0
Ovidation	>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	0	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	•	0	0
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	
pH*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
T00	5 > pH >9	Outside optimal range for reductive pathway	0	•	0
тос	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride*	>2x background	Daughter product of organic chlorine	•	0	2
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	0
	<1 nM	VC oxidized	0	0	0
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	0
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	•	0	0
TCE*		Material released	•	0	0
		Daughter product of PCE a/	•	0	2
DCE*		Material released	0	•	0
		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{a′} ; 1,1-DCE can be a chem. reaction product of TCA	•	0	2
VC*		Material released	0	0	0
		Daughter product of DCE ^{a/}	•	0	2
1,1,1- Trichloroethane*		Material released	•	0	0
DCA		Daughter product of TCA under reducing conditions	•	0	2
Carbon Tetrachloride		Material released	0	•	0
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	0	0
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0
	>0.1 mg/L	Daughter product of VC/ethene	0	•	
Chloroform		Material released	0	•	0
		Daughter product of Carbon Tetrachloride	0	0	0
Dichloromethane		Material released	0	0	0

SCORE

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score	
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5	MW-04
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14	Score: 6
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20	
Strong ovidence for encarehic his degradation* of ablarinated expenses	>20	Scroll to End of Tabl

			>20		of Table
	tration in ntam. Zone	*reductive dechlorination	Yes	No	Points Awarded
Oxygen* <0.5	mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	•	0	3
>5r	mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
Nitrate* <1	mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Iron II* >1	mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	0	•	0
Sulfate* <20	mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Sulfide* >1	mg/L	Reductive pathway possible	0	•	0
Methane* <0.5	mg/L	VC oxidizes	•	0	0
>0.5	mg/L	Ultimate reductive daughter product, VC Accumulates	0	•	0
Oxidation <50 milling Reduction	volts (mV)	Reductive pathway possible	•	0	1
	00mV	Reductive pathway likely	0	•	0
pH* 5 < p	H < 9	Optimal range for reductive pathway	•	0	0
5 > 1	oH >9	Outside optimal range for reductive pathway	0	•	0
TOC >20	mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature* >2	0°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide >2x bac	ckground	Ultimate oxidative daughter product	0	•	0
Alkalinity >2x bac	ckground	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride* >2x bac	ckground	Daughter product of organic chlorine	0	•	0
Hydrogen >1	nM	Reductive pathway possible, VC may accumulate	0	0	0
<1	nM	VC oxidized	0	0	0
Volatile Fatty Acids >0.1	mg/L	Intermediates resulting from biodegradation of aromatic	0	0	0
BTEX* >0.1	mg/L	compounds; carbon and energy source Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	0	•	0
TCE*		Material released	0	•	0
		Daughter product of PCE a/	0	•	0
DCE*		Material released	0	•	0
		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{at} ; 1,1-DCE can be a chem. reaction product of TCA	0	•	0
VC*		Material released	0	0	0
		Daughter product of DCE ^{a/}	0	•	0
1,1,1- Trichloroethane*		Material released	0	•	0
DCA DCA		Daughter product of TCA under reducing conditions	0	•	0
Carbon Tetrachloride		Material released	0	•	0
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	0	0
Ethene/Ethane >0.01	1 mg/L	Daughter product of VC/ethene	0	•	0
>0.1	mg/L	Daughter product of VC/ethene	0	•	
Chloroform		Material released	0	•	0
		Daughter product of Carbon Tetrachloride	0	0	0
Dichloromethane		Material released	0	0	0
		Daughter product of Chloroform	0	0	0

SCORE

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significancy.

Interpretation	Score	
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5	MW-06
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14	Score: 4
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20	
Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End of Table

significance.	s have no regulatory	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	of Table
Analysis	Concentration in Most Contam. Zone	*reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	0	•	0
	>5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	0	•	0
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Sulfide*	>1 mg/L	Reductive pathway possible	0	•	0
Methane*	<0.5 mg/L		•	0	0
	>0.5 mg/L		0	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	0	•	0
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	0
pH*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
	5 > pH >9	Outside optimal range for reductive pathway	0	•	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride*	>2x background	Daughter product of organic chlorine	•	0	2
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	0
	<1 nM	VC oxidized	0	0	0
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic	0	0	0
BTEX*	>0.1 mg/L	compounds; carbon and energy source Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	0	•	0
TCE*		Material released	•	0	0
		Daughter product of PCE a/	0	•	0
DCE*		Material released	0	•	0
		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{3/} ; 1,1-DCE can be a chem. reaction product of TCA	0	•	0
VC*		Material released	0	0	0
		Daughter product of DCE ^{a/}	0	•	0
1,1,1- Trichloroethane*		Material released	0	•	0
DCA		Daughter product of TCA under reducing conditions	0	•	0
Carbon Tetrachloride		Material released	0	•	0
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	0	0
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0
	>0.1 mg/L	Daughter product of VC/ethene	0	•	
Chloroform		Material released	0	•	0
		Daughter product of Carbon Tetrachloride	0	0	0
				_	
Dichloromethane		Material released	0	0	0

SCORE

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score	
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5	MW-09K
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14	Score:
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20	
Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End of Ta

significance.	ss have no regulatory	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	of Table
Analysis	Concentration in Most Contam. Zone	reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	•	0	3
	>5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	0	•	0
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Sulfide*	>1 mg/L	Reductive pathway possible	0	•	0
Methane*	<0.5 mg/L		•	0	0
	>0.5 mg/L		0	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	•	0	1
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	0
pH*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
	5 > pH >9	Outside optimal range for reductive pathway	0	•	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride*	>2x background	Daughter product of organic chlorine	•	0	2
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	0
	<1 nM	VC oxidized	0	0	0
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic	0	0	0
BTEX*	>0.1 mg/L	compounds; carbon and energy source Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	0	•	0
TCE*		Material released	0	•	0
		Daughter product of PCE a/	0	•	0
DCE*		Material released	0	•	0
		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{3/2} ; 1,1-DCE can be a chem. reaction product of TCA	0	•	0
VC*		Material released	0	0	0
		Daughter product of DCE ^{a/}	0	•	0
1,1,1- Trichloroethane*		Material released	0	•	0
DCA		Daughter product of TCA under reducing conditions	0	•	0
Carbon Tetrachloride		Material released	0	•	0
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	0	0
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0
	>0.1 mg/L	Daughter product of VC/ethene	0	•	
Chloroform		Material released	0	•	0
		Daughter product of Carbon Tetrachloride	0	0	0
Dichloromethane		Material released	0	0	0
					0

SCORE

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score		
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5	MW-10K	
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14	Score:	19
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20		
Characteristics of the control of th	- 20	Scroll to End of	Table

significance.	ss have no regulatory	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	of Table
Analysis	Concentration in Most Contam. Zone	*reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	•	0	3
	>5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	•	0	3
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Sulfide*	>1 mg/L	Reductive pathway possible	•	0	3
Methane*	<0.5 mg/L		•	0	0
	>0.5 mg/L		0	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	•	0	1
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	0
pH*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
	5 > pH >9	Outside optimal range for reductive pathway	0	•	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	•	0	1
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride*	>2x background	Daughter product of organic chlorine	0	•	0
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	0
	<1 nM	VC oxidized	0	0	0
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	0
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	•	0	0
TCE*		Material released	•	0	0
		Daughter product of PCE a/	•	0	2
DCE*		Material released	0	•	0
		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{a/} ; 1,1-DCE can be a chem. reaction product of TCA	•	0	2
VC*		Material released	0	0	0
		Daughter product of DCE ^{a/}	•	0	2
1,1,1- Trichloroethane*		Material released	0	•	0
DCA		Daughter product of TCA under reducing conditions	0	•	0
Carbon Tetrachloride		Material released	0	•	0
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	0	0
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0
	>0.1 mg/L	Daughter product of VC/ethene	0	•	
Chloroform		Material released	0	•	0
		Daughter product of Carbon Tetrachloride	0	0	0
Dichloromethane		Material released	0	0	0
		Daughter product of Chloroform	0	0	0

SCORE

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score	
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5	MW-11S
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14	Score: 9
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20	
Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End of Table

significance.	ss nave no regulatory	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	of Table
Analysis	Concentration in Most Contam. Zone	* reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	0	•	0
	>5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	0	•	0
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Sulfide*	>1 mg/L	Reductive pathway possible	0	•	0
Methane*	<0.5 mg/L		•	0	0
	>0.5 mg/L		0	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	0	•	0
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	0
pH*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
	5 > pH >9	Outside optimal range for reductive pathway	0	•	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	•	0	1
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride*	>2x background	Daughter product of organic chlorine	0	•	0
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	0
	<1 nM	VC oxidized	0	0	0
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	0
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	•	0	0
TCE*		Material released	•	0	0
		Daughter product of PCE a/	•	0	2
DCE*		Material released	0	•	0
		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{3/} ; 1,1-DCE can be a chem. reaction product of TCA	•	0	2
VC*		Material released	0	0	0
		Daughter product of DCE ^{a/}	•	0	2
1,1,1- Trichloroethane*		Material released	0	•	0
DCA		Daughter product of TCA under reducing conditions	0	•	0
Carbon Tetrachloride		Material released	0	•	0
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	0	0
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0
	>0.1 mg/L	Daughter product of VC/ethene	0	•	
Chloroform		Material released	0	•	0
					0
		Daughter product of Carbon Tetrachloride	0	0	U
Dichloromethane		Daughter product of Carbon Tetrachloride Material released	0	0	0

SCORE

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score	
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5	MW-12K
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14	Score:
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20	
Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End o

The results of this scoring proce	USEPA protocol (USEPA, 1998).	Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20		
significance.	,	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	of Table
Analysis	Concentration in Most Contam. Zone	* reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	0	•	0
	>5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	0	•	0
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Sulfide*	>1 mg/L	Reductive pathway possible	•	0	3
Methane*	<0.5 mg/L		•	0	0
	>0.5 mg/L		0	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	0	•	0
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	0
pH*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
	5 > pH >9	Outside optimal range for reductive pathway	0	•	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride*	>2x background	Daughter product of organic chlorine	0	•	0
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	0
	<1 nM	VC oxidized	0	0	0
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	0
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	0	•	0
TCE*		Material released	•	0	0
		Daughter product of PCE a/	0	•	0
DCE*		Material released	0	•	0
		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^a ; 1,1-DCE can be a chem. reaction product of TCA	0	•	0
VC*		Material released	0	0	0
		Daughter product of DCE ^{a/}	0	•	0
1,1,1- Trichloroethane*		Material released	0	•	0
DCA		Daughter product of TCA under reducing conditions	0	•	0
Carbon Tetrachloride		Material released	0	•	0
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	0	0
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0
	>0.1 mg/L	Daughter product of VC/ethene	0	•	
Chloroform		Material released	0	•	0
		Daughter product of Carbon Tetrachloride	0	0	0
Dichloromethane		Material released	0	0	0
		Daughter product of Chloroform	0	0	0
* ' 1 1 '					

SCORE

Reset

5

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

owing is taken from the USEPA protocol (USEPA, 1998). sults of this scoring process have no regulatory

Interpretation	Score		
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5	MW-12S	
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14	Score:	2
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20		
Strong avidance for anaerabic hiedegradation* of chlorinated organics	>20	Scroll to End of	Tak

significance.	ss have no regulatory	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	of Table
Analysis	Concentration in Most Contam. Zone	*reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	0	•	0
	>5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	0	•	0
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Sulfide*	>1 mg/L	Reductive pathway possible	0	•	0
Methane*	<0.5 mg/L		•	0	0
	>0.5 mg/L		0	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	0	•	0
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	0
pH*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
	5 > pH >9	Outside optimal range for reductive pathway	0	•	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride*	>2x background	Daughter product of organic chlorine	0	•	0
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	0
	<1 nM	VC oxidized	0	0	0
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	0
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	0	•	0
TCE*		Material released	0	•	0
		Daughter product of PCE a/	0	•	0
DCE*		Material released	0	•	0
		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{3/} ; 1,1-DCE can be a chem. reaction product of TCA	0	•	0
VC*		Material released	0	0	0
		Daughter product of DCE ^{a/}	0	•	0
1,1,1- Trichloroethane*		Material released	0	•	0
DCA		Daughter product of TCA under reducing conditions	0	•	0
Carbon Tetrachloride		Material released	0	•	0
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	0	0
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0
	>0.1 mg/L	Daughter product of VC/ethene	0	•	
Chloroform		Material released	0	•	0
		Daughter product of Carbon Tetrachloride	0	0	0
Dichloromethane		Material released	0	0	0
		Daughter product of Chloroform			0

SCORE

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score	
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5	MW-13K
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14	Score: 1
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20	
0	. 20	Carallita Find of To

significance.		Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	of Table
Analysis	Concentration in Most Contam. Zone	*reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	•	0	3
	>5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	0	•	0
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Sulfide*	>1 mg/L	Reductive pathway possible	•	0	3
Methane*	<0.5 mg/L		•	0	0
	>0.5 mg/L		0	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	•	0	1
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	0
pH*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
	5 > pH >9	Outside optimal range for reductive pathway	0	•	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride*	>2x background	Daughter product of organic chlorine	•	0	2
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	0
	<1 nM	VC oxidized	0	0	0
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	0
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	•	0	0
TCE*		Material released	•	0	0
		Daughter product of PCE a/	•	0	2
DCE*		Material released	•	0	0
		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{3/} ; 1,1-DCE can be a chem. reaction product of TCA	•	0	2
VC*		Material released	0	0	0
		Daughter product of DCE ^{a/}	•	0	2
1,1,1- Trichloroethane*		Material released	•	0	0
DCA		Daughter product of TCA under reducing conditions	•	0	2
Carbon Tetrachloride		Material released	0	•	0
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	0	0
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0
	>0.1 mg/L	Daughter product of VC/ethene	0	•	
Chloroform		Material released	0	•	0
		Daughter product of Carbon Tetrachloride	0	0	0
Dichloromethane		Material released	0	0	0
		Daughter product of Chloroform	0	0	0

SCORE

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score		
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5	MW-14K	
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14	Score:	1:
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20		
Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End o	f Tab

significance.		Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	of Table
Analysis	Concentration in Most Contam. Zone	* reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	•	0	3
	>5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	0	•	0
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Sulfide*	>1 mg/L	Reductive pathway possible	•	0	3
Methane*	<0.5 mg/L		•	0	0
	>0.5 mg/L		0	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	•	0	1
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	0
pH*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
	5 > pH >9	Outside optimal range for reductive pathway	0	•	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride*	>2x background	Daughter product of organic chlorine	•	0	2
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	0
	<1 nM	VC oxidized	0	0	0
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	0
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	•	0	0
TCE*		Material released	•	0	0
		Daughter product of PCE a/	•	0	2
DCE*		Material released	•	0	0
		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{3/} ; 1,1-DCE can be a chem. reaction product of TCA	•	0	2
VC*		Material released	0	0	0
		Daughter product of DCE ^{a/}	0	•	0
1,1,1- Trichloroethane*		Material released	0	•	0
DCA		Daughter product of TCA under reducing conditions	0	•	0
Carbon Tetrachloride		Material released	0	•	0
Chloroethane*		Daughter product of DCA or VC under reducing conditions	0	0	0
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene	0	•	0
	>0.1 mg/L	Daughter product of VC/ethene	0	•	
Chloroform		Material released	0	•	0
					1
		Daughter product of Carbon Tetrachloride	0	0	0
Dichloromethane		Daughter product of Carbon Tetrachloride Material released	0	0	0

SCORE

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

APPENDIX H

DETAILED COST ANALYSIS BACKUP

RI/FS Report - Dinaburg Distributing NYSDEC - Site No. 8-28-103

MACTEC Engineering and Consulting, P.C., 3612082107

Alternative 2 - No Further Action: Continued Multiphase Extraction

Subtask Assembly (1) CAPITAL COSTS Institutional Courtols Engineer's Estimate Owner Engineer's Estimate Engineer's Estimate Engineer's Estimate Engineer's Estimate Engineer's Estimate Owner Engineer's Estimate Engineer's Estimate Engineer's Estimate Owner Engineer's Estimate Engineer's Estimate Engineer's Estimate Owner Engineer's Estimate En	Task	Description	Quantity	Unit of Measure	IVIA	terial Unit Cost	L	abor Unit Cost	Equipment Unit Cost		Extended Cost	Comments/ Assumptions
### Stitutional Controls												
Engineer Estimate Project Manager 20 HR S S 115.10 S S 2,200.00												
Engineer's Estimate Project Engineer 12 EA \$ \$ \$ \$ \$ \$ \$ \$ \$	APITAL COSTS											
Engineer Seitmite Poiçer Chamager 20 HR S S 13.18 S S S S S S S S S	etitutional Controle											
Engineer's Estimate Engineer 20 HR S		Overnight Delivery 8 oz Letter	12	EΔ	\$	13.18	\$	_	\$	\$	158 16	
Engineer's Estimate Project Engineer 60 HR \$								115 00	_			
Engineer's Estimate Part Control Facility Fac						_			_			
Engineer's Estimate QA/QC Officer 15 HR \$ - \$ \$ 90.00 \$ - \$ \$ 1.250.00						_			_			
Engineer's Estimate Draftsmanc (ADD 30 HR \$ - \$ 5500 \$ - \$ \$ 1,650.00					\$	-			-			
Engineer's Estimate Computer Data Entry 30 HR \$ - \$ \$ 5.500 \$ - \$ \$ 1,650.00	Engineer's Estimate	Word Processing/Clerical	60	HR	\$	-	\$	55.00	\$ =	\$	3,300.00	
Engineer's Estimate	Engineer's Estimate	Draftsman/CADD	30	HR	\$	-	\$	55.00	\$ -	\$	1,650.00	
Estate	Engineer's Estimate	Computer Data Entry	30	HR	\$	-	\$	55.00	\$ -	\$	1,650.00	
Engineer's Estimate	Engineer's Estimate	Attorney, Senior Associate, Real	14	HR	\$	-	\$	175.00	\$ -	\$	2,450.00	
Engineer's Estimate												
Engineer's Estimate								100.00	-			
S on Accuracy S S Accuracy S Accuracy S Accuracy S Accuracy S Accuracy S Accuracy S Accuracy S Accuracy S Accuracy S Accuracy S Accuracy S Accuracy S Accuracy S Accuracy S Accuracy S Accuracy S Accuracy S Accuracy Accuracy S Accuracy Accuracy S Accuracy								-	=-			
Engineer's Estimate	Engineer's Estimate		1	MO	\$	689.22	\$	-	\$ -		689.22	
Task Subtotal \$ 26,548.54												
Assume 10 years until asymptotic mass rem	Engineer's Estimate	Local Fees	2	LS	\$	200.00	\$	-	\$ -	\$	400.00	
Assume 10 years until asymptotic mass rem			Tack Subtotal							\$	26 548 54	
OM&M of MPE System Labor, Indirect Costs, and Fees 1 LS \$ 65,268.40 \$ 65,268.40 Contractor labor, actual Expenses - Total Actual, Breakdown Estimated Analytical, Aqueous, VOCs 144 EA \$ 100.00 \$ 14,400.00 36 per quarterly event, estimated rate Analytical, Vapor, VOCs 80 EA \$ 250.00 \$ 20,000.00 20 per quarterly event, estimated rate Electrical 12 MO \$ 300.00 \$ 3,600.00 estimated Telephone 12 MO \$ 150.00 \$ 1,800.00 estimated Miscellaneous, Shipping Costs 12 MO \$ 100.00 \$ 1,200.00 \$ 1,200.00 estimated Chemicals 12 MO \$ 140.00 \$ 1,200.00 \$ 1,680.00 estimated estimated Telephone 11 LS \$ 15,000.00 \$ 5,000.00 \$ 20,000.00 estimated Experiodic Institutional Control Inspections and Reporting (Years 1-30) Refer to Alternative 5	I TEDNIATIVE ANNHIAL	AND DEDIADIC COSTS										
Labor, Indirect Costs, and Fees 1 LS \$ 65,268.40 \$ 65,268.40 Contractor labor, actual Expenses - Total Actual, Breakdown Estimated Analytical, Aqueous, VOCs 144 EA \$ 100.00 \$ 14,000.00 36 per quarterly event, estimated rate Analytical, Vapor, VOCs 80 EA \$ 250.00 \$ 20,000.00 20 per quarterly event, estimated rate Electrical 12 MO \$ 300.00 \$ 3,600.00 \$ 3,600.00 \$ estimated Telephone 12 MO \$ 150.00 \$ 1,800.00 \$ estimated Miscellaneous, Shipping Costs 12 MO \$ 100.00 \$ 1,200.00 \$ estimated Chemicals 12 MO \$ 140.00 \$ 1,680.00 \$ estimated Electrical Sepairs 1 LS \$ 15,000.00 \$ 5,000.00 \$ 20,000.00 \$ estimated Chemicals 1 LS \$ 15,000.00 \$ 1,000.00 \$	LTERNATIVE ANNUAL A	AND PERIODIC COSTS										
Labor, Indirect Costs, and Fees 1 LS \$ 65,268.40 \$ 65,268.40 Contractor labor, actual Expenses - Total Actual, Breakdown Estimated Analytical, Aqueous, VOCs 144 EA \$ 100.00 \$ 14,000.00 36 per quarterly event, estimated rate Analytical, Vapor, VOCs 80 EA \$ 250.00 \$ 20,000.00 20 per quarterly event, estimated rate Electrical 12 MO \$ 300.00 \$ 3,600.00 \$ 3,600.00 \$ estimated Telephone 12 MO \$ 150.00 \$ 1,800.00 \$ estimated Miscellaneous, Shipping Costs 12 MO \$ 100.00 \$ 1,200.00 \$ estimated Chemicals 12 MO \$ 140.00 \$ 1,680.00 \$ estimated Electrical Sepairs 1 LS \$ 15,000.00 \$ 5,000.00 \$ 20,000.00 \$ estimated Chemicals 1 LS \$ 15,000.00 \$ 1,000.00 \$		AND PERIODIC COSTS										Assume 10 years until asymptotic mass removal rate
Analytical, Aqueous, VOCs 144 EA \$ 100.00 \$ 14,400.00 36 per quarterly event, estimated rate Analytical, Vapor, VOCs 80 EA \$ 250.00 \$ 20,000.00 20 per quarterly event, estimated rate Electrical 12 MO \$ 300.00 \$ 3,600.00 estimated Tate Electrical 12 MO \$ 150.00 \$ 1,800.00 estimated Electrical Miscellaneous, Shipping Costs 12 MO \$ 100.00 \$ 1,200.00 estimated Electrical Miscellaneous, Shipping Costs 12 MO \$ 140.00 \$ 1,680.00 estimated Electrical Electrical Miscellaneous, Shipping Costs 12 MO \$ 140.00 \$ 1,500.00 \$ 1,500.00 estimated Electrical Electrical Electrical Electrical Electrical Miscellaneous, Shipping Costs 12 MO \$ 140.00 \$ 1,200.00 estimated Electrical Elec	nnual OM&M: Years 1-10	AND PERIODIC COSTS										Assume 10 years until asymptotic mass removal rat
Analytical, Aqueous, VOCs 144 EA \$ 100.00 \$ 14,400.00 36 per quarterly event, estimated rate Analytical, Vapor, VOCs 80 EA \$ 250.00 \$ 20,000.00 20 per quarterly event, estimated rate Electrical 12 MO \$ 300.00 \$ 3,600.00 estimated rate Telephone 12 MO \$ 150.00 \$ 1,800.00 estimated Electrical Miscellaneous, Shipping Costs 12 MO \$ 100.00 \$ 1,200.00 estimated Electrical Miscellaneous, Shipping Costs 12 MO \$ 140.00 \$ 1,800.00 estimated Electrical Miscellaneous, Shipping Costs 12 MO \$ 140.00 \$ 1,800.00 estimated Electrical Electrical Miscellaneous, Shipping Costs 12 MO \$ 140.00 \$ 1,200.00 estimated Electrical Electrical Electrical Miscellaneous, Shipping Costs 12 MO \$ 140.00 \$ 1,200.00 estimated Electrical Elect	nnual OM&M: Years 1-10		1	LS			\$	65,268.40		\$	65.268.40	
Electrical 12 MO \$ 300.00 \$ 3,600.00 estimated	nnual OM&M: Years 1-10	Labor, Indirect Costs, and Fees		LS			\$	65,268.40		\$	65,268.40	
Telephone	nnual OM&M: Years 1-10	Labor, Indirect Costs, and Fees Expenses - Total Actual, Breakdown E	stimated		\$	100.00	\$	65,268.40				Contractor labor, actual
Miscellaneous, Shipping Costs 12 MO \$ 100.00 \$ 1,200.00 estimated Chemicals 12 MO \$ 140.00 \$ 1,680.00 estimated Repairs 1 LS \$ 15,000.00 \$ 5,000.00 \$ 20,000.00 estimated Stimated Repairs 1 LS \$ 15,000.00 \$ 5,000.00 \$ 127,948.40 estimated Stimated	nnual OM&M: Years 1-10	Labor, Indirect Costs, and Fees Expenses - Total Actual, Breakdown E Analytical, Aqueous, VOCs	stimated 144	EA			\$	65,268.40		\$	14,400.00	Contractor labor, actual 36 per quarterly event, estimated rate
Chemicals 12 MO \$ 140.00 \$ 1,680.00 estimated	nnual OM&M: Years 1-10	Labor, Indirect Costs, and Fees Expenses - Total Actual, Breakdown E Analytical, Aqueous, VOCs Analytical, Vapor, VOCs	stimated 144 80	EA EA	\$	250.00	\$	65,268.40		\$ \$ \$	14,400.00 20,000.00 3,600.00	Contractor labor, actual 36 per quarterly event, estimated rate 20 per quarterly event, estimated rate estimated
Repairs 1 LS \$ 15,000.00 \$ 5,000.00 \$ 20,000.00 estimated Task Subtotal \$ 127,948.40 eriodic Institutional Control Inspections and Reporting (Years 1-30) Refer to Alternative 5	nnual OM&M: Years 1-10	Labor, Indirect Costs, and Fees Expenses - Total Actual, Breakdown E Analytical, Aqueous, VOCs Analytical, Vapor, VOCs Electrical Telephone	144 80 12 12	EA EA MO MO	\$ \$ \$	250.00 300.00 150.00	\$	65,268.40		\$ \$ \$ \$	14,400.00 20,000.00 3,600.00 1,800.00	Contractor labor, actual 36 per quarterly event, estimated rate 20 per quarterly event, estimated rate estimated estimated
Task Subtotal \$ 127,948.40 eriodic Institutional Control Inspections and Reporting (Years 1-30) Refer to Alternative 5	nnual OM&M: Years 1-10	Labor, Indirect Costs, and Fees Expenses - Total Actual, Breakdown E Analytical, Aqueous, VOCs Analytical, Vapor, VOCs Electrical Telephone Miscellaneous, Shipping Costs	stimated 144 80 12 12 12	EA EA MO MO MO	\$ \$ \$ \$	250.00 300.00 150.00 100.00	\$	65,268.40		\$ \$ \$ \$	14,400.00 20,000.00 3,600.00 1,800.00 1,200.00	Contractor labor, actual 36 per quarterly event, estimated rate 20 per quarterly event, estimated rate estimated estimated estimated
eriodic Institutional Control Inspections and Reporting (Years 1-30) Refer to Alternative 5	nnual OM&M: Years 1-10	Labor, Indirect Costs, and Fees Expenses - Total Actual, Breakdown E Analytical, Aqueous, VOCs Analytical, Vapor, VOCs Electrical Telephone Miscellaneous, Shipping Costs Chemicals	stimated 144 80 12 12 12 12	EA EA MO MO MO MO	\$ \$ \$ \$ \$	250.00 300.00 150.00 100.00 140.00	\$	65,268.40		\$ \$ \$ \$ \$	14,400.00 20,000.00 3,600.00 1,800.00 1,200.00 1,680.00	Contractor labor, actual 36 per quarterly event, estimated rate 20 per quarterly event, estimated rate estimated estimated estimated estimated
Refer to Alternative 5	nnual OM&M: Years 1-10	Labor, Indirect Costs, and Fees Expenses - Total Actual, Breakdown E Analytical, Aqueous, VOCs Analytical, Vapor, VOCs Electrical Telephone Miscellaneous, Shipping Costs Chemicals	stimated 144 80 12 12 12 12	EA EA MO MO MO MO	\$ \$ \$ \$ \$	250.00 300.00 150.00 100.00 140.00	\$	65,268.40	\$ 5,000.00	\$ \$ \$ \$ \$	14,400.00 20,000.00 3,600.00 1,800.00 1,200.00 1,680.00	Contractor labor, actual 36 per quarterly event, estimated rate 20 per quarterly event, estimated rate estimated estimated estimated estimated
	nnual OM&M: Years 1-10	Labor, Indirect Costs, and Fees Expenses - Total Actual, Breakdown E Analytical, Aqueous, VOCs Analytical, Vapor, VOCs Electrical Telephone Miscellaneous, Shipping Costs Chemicals	144 80 12 12 12 12 12	EA EA MO MO MO MO	\$ \$ \$ \$ \$	250.00 300.00 150.00 100.00 140.00	\$	65,268.40	\$ 5,000.00	\$ \$ \$ \$ \$ \$ \$ \$	14,400.00 20,000.00 3,600.00 1,800.00 1,200.00 1,680.00 20,000.00	Contractor labor, actual 36 per quarterly event, estimated rate 20 per quarterly event, estimated rate estimated estimated estimated estimated
Task Subtotal \$ 3,460,24	nnual OM&M: Years 1-10 OM&M of MPE System	Labor, Indirect Costs, and Fees Expenses - Total Actual, Breakdown E Analytical, Aqueous, VOCs Analytical, Vapor, VOCs Electrical Telephone Miscellaneous, Shipping Costs Chemicals Repairs	144 80 12 12 12 12 11 Task Subtotal	EA EA MO MO MO MO	\$ \$ \$ \$ \$	250.00 300.00 150.00 100.00 140.00	\$	65,268.40	\$ 5,000.00	\$ \$ \$ \$ \$ \$ \$ \$	14,400.00 20,000.00 3,600.00 1,800.00 1,200.00 1,680.00 20,000.00	Contractor labor, actual 36 per quarterly event, estimated rate 20 per quarterly event, estimated rate estimated estimated estimated estimated
	nnual OM&M: Years 1-10 OM&M of MPE System	Labor, Indirect Costs, and Fees Expenses - Total Actual, Breakdown E Analytical, Aqueous, VOCs Analytical, Vapor, VOCs Electrical Telephone Miscellaneous, Shipping Costs Chemicals Repairs	144 80 12 12 12 12 11 Task Subtotal	EA EA MO MO MO MO	\$ \$ \$ \$ \$	250.00 300.00 150.00 100.00 140.00	\$	65,268.40	\$ 5,000.00	\$ \$ \$ \$ \$ \$ \$ \$	14,400.00 20,000.00 3,600.00 1,800.00 1,200.00 1,680.00 20,000.00	Contractor labor, actual 36 per quarterly event, estimated rate 20 per quarterly event, estimated rate estimated estimated estimated estimated
ong-Term Monitoring (Years 11-30)	nnual OM&M: Years 1-10 OM&M of MPE System	Labor, Indirect Costs, and Fees Expenses - Total Actual, Breakdown E Analytical, Aqueous, VOCs Analytical, Vapor, VOCs Electrical Telephone Miscellaneous, Shipping Costs Chemicals Repairs	144 80 12 12 12 12 12 12 10 Task Subtotal	EA EA MO MO MO MO	\$ \$ \$ \$ \$	250.00 300.00 150.00 100.00 140.00	\$	65,268.40	\$ 5,000.00	\$ \$ \$ \$ \$ \$ \$ \$	14,400.00 20,000.00 3,600.00 1,800.00 1,200.00 1,680.00 20,000.00	Contractor labor, actual 36 per quarterly event, estimated rate 20 per quarterly event, estimated rate estimated estimated estimated estimated
Refer to Alternative 5	onnual OM&M: Years 1-10 OM&M of MPE System Priodic Institutional Control Refer to Alternative 5	Labor, Indirect Costs, and Fees Expenses - Total Actual, Breakdown E Analytical, Aqueous, VOCs Analytical, Vapor, VOCs Electrical Telephone Miscellaneous, Shipping Costs Chemicals Repairs I Inspections and Reporting (Years 1-36) Task Subte	144 80 12 12 12 12 12 12 10 Task Subtotal	EA EA MO MO MO MO	\$ \$ \$ \$ \$	250.00 300.00 150.00 100.00 140.00	\$	65,268.40	\$ 5,000.00	\$ \$ \$ \$ \$ \$ \$ \$ \$	14,400.00 20,000.00 3,600.00 1,800.00 1,200.00 1,680.00 20,000.00	Contractor labor, actual 36 per quarterly event, estimated rate 20 per quarterly event, estimated rate estimated estimated estimated estimated
Task Subtotal \$ 30,993.85 Quarterly monitoring costs	onnual OM&M: Years 1-10 OM&M of MPE System Priodic Institutional Control Refer to Alternative 5	Labor, Indirect Costs, and Fees Expenses - Total Actual, Breakdown E Analytical, Aqueous, VOCs Analytical, Vapor, VOCs Electrical Telephone Miscellaneous, Shipping Costs Chemicals Repairs I Inspections and Reporting (Years 1-36) Task Subte	144 80 12 12 12 12 12 10 Task Subtotal	EA EA MO MO MO MO	\$ \$ \$ \$ \$	250.00 300.00 150.00 100.00 140.00	\$	65,268.40	\$ 5,000.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	14,400.00 20,000.00 3,600.00 1,800.00 1,200.00 1,680.00 20,000.00	36 per quarterly event, estimated rate 20 per quarterly event, estimated rate estimated estimated estimated estimated

¹⁾ Assembly numbers presented indicate RACER/RS MEANS assembly code

PRESENT VALUE OF ANNUAL AND PERIODIC COSTS FOR ALTERNATIVE 2 (No Further Action: Continued Multiphase Extraction)

		Number of Annual	Annual Discount	Number of 5-Year	5-Year Discount	Number of 10-Year	10-Year Discount	Total Non- Discounted	Present Value
Year	Cost*	Periods	Rate	Periods	Rate	Periods	Rate	Cost	Cost
Capital (Year 0)	\$ 37,000	1	0	NA	NA	NA	NA	\$ 37,000.00	\$ 37,000.00
Annual SSV OM&M (1-10)	\$ 173,000	10	0.05	NA	NA	NA	NA	\$ 1,730,000.00	\$ 1,335,860.14
Periodic Inspections and Reporting (Years 1-30)	\$ 3,460	30	0.05	NA	NA	NA	NA	\$ 103,807.20	\$ 53,192.37
Quarterly Monitoring (Years 11-12)	\$ 30,994	2	0.05	NA	NA	NA	NA	\$ 61,987.70	\$ 57,630.29
Semi-Annual Monitoring (Years 13-14)	\$ 15,497	2	0.05	NA	NA	NA	NA	\$ 30,993.85	\$ 28,815.14
Annual Monitoring (Years 15-30)	\$ 7,748	16	0.05	NA	NA	NA	NA	\$ 123,975.40	\$ 83,976.05
Totals								\$ 2,087,764.15	\$ 1,596,474.00

^{*}Annual and periodic costs include 10% for technical support and 25% contingency for unforeseen project complexities, including insurance, taxes, and licensing costs. Capital costs include 25% contingency, as well as and project management, remedial design, and construction management costs per DER-10 guidance.

Discount rate of 5% (for 30-years) percent based on NYSDEC PRAP Outline / Instructions.

MACTEC Engineering and Consulting, P.C., 3612082107

Alternative 3 - Restoration to Pre-Disposal Conditions

ALTERNATIVE CAPITAL COSTS Pre-Design Investigation	
Pre-Design Investigation	
Sampling Crew	
33010104 Sample collection, vehicle 500 MI \$ 0.49 \$ - \$ - \$ 245.00 mileage charge, car or van	
33220108 Project Scientist 150 HR \$ - \$ 70.87 \$ - \$ 10,630.50	
Engineer's Estimate Field Technician 75 HR \$ - \$ 75.00 \$ - \$ 5.625.00	
33010202 Per Diem 5.00 DAY \$ 89.40 \$ - \$ - \$ 447.00	
3301222 Tel Dielli 3.00 Dil	
Subsurface Soil Sampling (ten locations with five sample intervals and ten locations with one interval)	
\$ 8,814.00	
33021720 Testing, purgeable organics 60 EA \$ 146.90 \$ - \$ -	
(624, 8260)	
Drilling	
33010101 Mobilize/DeMobilize Drilling Rig 1 LS \$ 1,500.00 \$ - \$ - \$ 1,500.00	
& Crew	
Engineer's Estimate Geoprobe 5 DAY \$ 1,000.00 \$ - \$ - \$ 5,000.00 20 borings to 20' 33231813 Portland Cement Grout 400 LF \$ 9.78 \$ - \$ - \$ 3,912.00	
Surveying 33029903 Ground penetrating radar 1 DAY \$ 1,327.28 \$ - \$ - \$ 1,327.28	
99041201 Surveying - 2-man Crew 2 DAY \$ - \$ 1,004.76 \$ 240.97 \$ 2,491.46	
77041201 Surveying - 2-mail etem 2 DA1 \$ - \$ 1,004.70 \$ 240.77 \$ 2,471.40	
Bench Testing - Reagent 1 LS \$ 20,000.00 \$ 20,000.00 Engineer's estimate	
GW monitoring well installation Assume 4 additional monitoring wells will be installed as part of pre-design invest	estigation activities.
Eng. Est Driller mobilization 1 LS \$ 1,000.00 \$ - \$ - \$ 1,000.00	
Eng. Est Drill - Day rate 2 EA \$ - \$ - \$ 2,500.00 \$ 5,000.00 Eng. Est 4"-solid pine PVC sch40 80 LF \$ 4.83 \$ - \$ - \$ 386.08 Assume 20 feet deep	
Eng. Est 4"-solid pipe PVC sch40 80 LF \$ 4.83 \$ - \$ - \$ 386.08 Assume 20 feet deep 33-21-13.10-8130 4" stainless steel well screen 40 LF \$ 157.00 \$ - \$ - \$ 6,280.00 Assume 10 foot screens	
53-21-13.10-8130 4 stainless steel well screen 40 LF \$ 137.00 \$ - \$ - \$ 6,280.00 Assume 10 foot screens Eng. Est Sand pack 80 LF \$ 12.00 \$ - \$ - \$ 960.00	
Eng. Est Bentonite chips 40 LF \$ 5.00 \$ - \$ - \$ 200.00	
Eng. Est Wellhead/vault 4 LS \$ 1,000.00 \$ - \$ - \$ 200.00	
2.1g. 2.5. (C	
Task Subtotal \$ 77,818.32	
Mobilization and Temporary Facilities and Controls	
Temporary Utilities	
Eng. Est Site Superintendent 240 HR \$ - \$ 100.00 \$ - \$ 24,000.00	
Eng. Est Site Foreman 240 HR \$ - \$ 75.00 \$ - \$ 18,000.00	
99040101 Temporary Office 20' x 8' 1 MO \$ 206.42 \$ - \$ - \$ 270.41 RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation	
99140201 Temporary Storage Trailer 16' x 8' 1 MO \$ 80.72 \$ - \$ 105.74 RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation	
99040501 Portable Toilets 1 MO \$ 82.65 \$ - \$ - \$ 108.27 RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation	
01520.550.0140 Telephone utility fee 1 MO \$ 210.00 \$ - \$ - \$ 245.49 RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for	or escalation
MACTEC Electrical utility fee 1 MO \$ 200.00 \$ - \$ - \$ 200.00	
01520.550.0100 Field office expenses, office equipment 1 MO \$ 145.00 \$ - \$ - \$ 169.51 RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for	or escalation
rental, average	

MACTEC Engineering and Consulting, P.C., 3612082107

Alternative 3 - Restoration to Pre-Disposal Conditions

Alternative 3 – Restoration to l Task	Description	Quantity	Unit of Measure	Ma	terial Unit Cost		or Unit ost		Equipment Unit Cost]	Extended Cost	Comments/ Assumptions
Dewatering/Wastewater	Treatment System											Assumes 20,000 gallon FRAC EQ tank could be used to store water and existing MPE treatment tailer could be used for
Eng. Est	. Frac EQ Tank	30		\$	30.00		-	\$	-	\$		treatment.
02240.500.1000	Pumping 8 hr., attended 2 hrs. per day,	30	DAY	\$	-	\$	405.00	\$	83.00	\$	17,114.16	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	including 20 LF of suction hose and 100 LF of discharge hose, w/ 4"											
	diaphragm pumped used 8 hrs.											
Temporary Discharge	e Monitoring											
	. Aqueous Sampling, Metals	30		\$	130.00					\$		24-hr turn around expedited at additional 100% of cost
Eng. Est	. Aqueous Sampling, VOCs	30	EA	\$	140.00					\$	4,200.00	24-hr turn around expedited at additional 100% of cost
Decontamination Facility												
3329040	25 gpm, 1-1/2" discharge, cast iron sump pu	1	EA	\$	-	\$	-	\$	2,317.00	\$	3,035.27	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	4 50' Flexible, Product Discharge Hose	1		\$		\$	-	\$	175.00			RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
02060.150.0300) 3/4" crushed stone borrow, spread w/ 200 HP dozer, no compaction, 2 mi rt haul	56	CY	\$	27.50	\$	1.43	\$	3.12	\$	2,081.47	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation, assume 30 ft by 50 ft by one foot thick
02315.310.5100	Compaction, General, riding vibrating	56	ECY	\$	-	\$	0.16	\$	0.16	\$	20.78	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	roller, 12" lifts, 4 passes			_								
3308544	4 60-mil Polymeric Liner, Very Low Density I	167	SY	\$	1.97	\$	-			\$ \$		RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation, assume 30 ft by 50 ft
33080534	1 16 oz/sy nonwoven geotextile	167	SY	\$	2.39	\$	-					RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
33170814	1,800 psi pressure washer, 6HP,	1	EA	\$	-	\$	-	\$	1,635.00	\$	2,141.85	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
19040603	4.8 gpm 5 2,000 gal steel sump, aboveground w/	1	EA	\$	2,233.00	\$	853.69	\$	123.26	\$	4,205.03	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	supports and fittings			_								
33170823	3 Operation of pressure washer, including water, soap, electricity, and labor	40	HR	\$	-	\$	-	\$	41.69	\$	2,184.56	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation, assume 4 hours per day
3341010	Pump and motor maintenance/repair	1	EA	\$	-	\$	-	\$	431.15	\$	564.81	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
Erosion and Sediment Co	ntrol Measures											
18050200	6 Filter Barrier, Silt Fences, Vinyl, 3' High	500	LF	\$	0.70	\$	1.41	\$	-	\$	1,382.05	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation, around work area
	with 7.5' Posts											
Demolition and MPE Tra		500	CV	\$		s	2.22	¢.	1.63	¢.	2.015.49	DCM are 2000 House Contracting Cost Data Alicated by 1.047 models in framework in
) Bituminous Driveways) Concrete to 6" thick	500 100	SY SY	\$	-	\$	2.22 5.55		4.10			RSMeans 2009 Heavy Construction Cost Data adjusted by 1.047 multiplier for escalation RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
V=	C&D Debris Transportation and Disposal	114	TON	\$		\$	85.00		-	\$		Engineer's estimate
	Trailer Demobilization	1	EA	\$	-	\$	-		\$10,000			Engineer's estimate
	Monitoring and Extraction Well Removal	256	LF	\$	-	\$	-		\$20	\$	5,056.00	Engineer's estimate
1006 S. Clinton Ave. Buil												
024116.17.2040	Single story concrete building - walls	1560	SF	\$	-	\$	2.31			\$		RSMeans 2009 Heavy Construction Cost Data
024116.17.0400	Slab	1056		\$		\$	5.85		-	\$		RSMeans 2009 Heavy Construction Cost Data
024116.17.1000	Footings C&D Debris Transportation and Disposal	130 114	LF TON	\$ \$		\$ \$	14.30 85.00		-	\$ \$		RSMeans 2009 Heavy Construction Cost Data Engineer's estimate
	Utility capping	114	LS	\$	-		.000.00		-	\$. ,	Engineer's estimate Engineer's estimate
	Permitting	1	LS	\$	-	\$ 1	500.00		-	\$,	Engineer's estimate Engineer's estimate
	5											

RI/FS Report - Dinaburg Distributing NYSDEC - Site No. 8-28-103

MACTEC Engineering and Consulting, P.C., 3612082107

Alternative 3 - Restoration to Pre-Disposal Conditions

Alternative 5 – Restoration to 11	C-Disposai Conditions	1	Unit of	Ma	terial Unit	Labor Un	: 4	Equipm	ont			
Task	Description	Quantity	Measure	IVIA	Cost	Cost	II .	Unit Co		Exter	ided Cost	Comments/ Assumptions
Survey of Work/Stockpile A												
	Surveying - 2-man Crew	1	DAY	\$	1,500.00	\$ -		\$	-	\$	1,500.00	Engineer's estimate
	т	ask Subtotal								\$	138,355.14	
	1	ask Subtotal								Ψ .	130,333.14	
Excavation and Off-site Disposal	l of Site Soil											
	Sheet Piling	12900	SF	\$	35.00	\$ -		\$	-			Excavation perimeter for 20' excavation. Piling driven, extracted and salvaged.
	Sheet Pile bracing and anchoring	1	LS	\$	-			\$				Assume that excavation bracing will be 100% of sheet piling cost
	Excavation, soil, loading for stockpile	5,453	BCY	\$	9.21			\$	-			Refer to Excavation Rate Calculations
	Absorbent	53,352	LB	\$	2.25		,		-	\$		Refer to Alternative 3 Calculations; assumes 25 lb/cy-soil
_	Absorbent application	120	HR	\$	65.70	\$ -		\$	-	\$	8,254.55	RSMeans Heavy Construction Cost Data 2009., assume labor crew B6.
Clean Stockpile												
	Hauling, excavated material, 12 CY dump truck, 1/4 mile RT	2399	LCY	\$	-	\$ 0.	79 5	\$	1.66	\$	6,872.19	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	Stockpile construction and management	1	LS	\$	5,000.00	\$ -		\$	-	\$	5,000.00	Assumed cost for construction of stockpiles and erosion controls
	Stockpile loadout and management	2399	CY	\$	-	\$ 0.	20 5	\$	0.47	\$		Assumed cost for management of stockpiles.
Contaminated Stockpil												
	Hauling, excavated material, 12 CY dump truck, 1/4 mile RT	3599	LCY	\$	-	\$ 0.	79 5	\$	1.66	\$	10,308.29	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
Eng. Est.	Stockpile construction and management	1	LS	\$	5,000.00	\$ -		\$	-	\$	5,000.00	Assumed cost for construction of stockpiles and erosion controls
	Stockpile loadout and management	3599	CY	\$	-	\$ 0.	20 5	\$	0.47	\$	2,411.46	Assumed cost for management of stockpiles.
	Testing, purgeable organics (624, 8260)	9	EA	\$	146.90	\$ -		\$	-	\$	1,322.10	Confirmation Sampling per NYSDEC DER-10. 1 sample per 900 sf bottom; no sidewall sampling due to sheet pile
Transportation and I												1 sample per 700 st bottom, no salewan sampling due to sneet pile
	Transportation and Disposal, VOCs	4490	TON	\$	115.88	\$ -		\$	_	\$ 5	520.282.08	Refer to Disposal Cost Calculations
	less than 60 ppm			-		-		_			,	
Vendor	Transportation and Disposal, VOCs between 60 and 180 ppm	717	TON	\$	210.06	\$ -		\$	-	\$	150,576.78	Refer to Disposal Cost Calculations
	Transportation and Disposal, VOCs	315	TON	\$	1,328.40	•		¢		\$ 4	119 426 04	Refer to Disposal Cost Calculations
	greater than 180 ppm	313	TON	ф	1,320.40	J		Φ	-	J -	+10,430.04	Refer to Disposar Cost Calculations
	9											
	Т	ask Subtotal								\$ 2,2	245,793.95	
In-Situ Chemical Oxidation												
Contractor Costs												
Eng. Est	Mobilization	1	LS	\$	-	\$ -		\$ 20,00	00.00	\$	20,000.00	
Eng. Est	Work Plan	1	LS	\$	-	\$ -			00.00	\$	10,000.00	
Eng. Est	Field Technician	20		\$	-		00 5			\$	1,400.00	
Eng. Est	Equipment	1	LS	\$	-	\$ -		\$ 2,50	00.00		2,500.00	
Vendor		72,916		\$	2.53						184,476.98	Based on Carus product information
Eng. Est	Demobilization	1	LS	\$	-	\$ -		\$ 15,00	00.00		15,000.00	
	T	ask Subtotal								\$ 2	233,376.98	

RI/FS Report - Dinaburg Distributing NYSDEC - Site No. 8-28-103

MACTEC Engineering and Consulting, P.C., 3612082107

Alternative 3 - Restoration to Pre-Disposal Conditions

Task	Description	Quantity	Unit of Measure	Materi Co		Labor Unit	:	Equipment Unit Cost	Extended Co	st Comments/ Assumptions
Site Restoration					,		_			
Backfill excavation										
02315.490.0310	Hauling, clean excavated material, 12 CY du	2399	LCY	\$	-	\$ 0.7	9 \$	1.66	\$ 6,872	19 RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	truck, 1/4 mile RT									
02315.210.4060	Borrow, Loading, commmon earth,	3,959	LCY	\$	8.25	\$ 0.4	2 \$	0.25	\$ 41,283	64 RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	1-1/2 CY bucket									
	Hauling, excavated or borrow, loose CY,	3959	LCY	\$	-	\$ 5.8	0 \$	12.20	\$ 83,307	80 RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation, assume 10% fluff
	12 CY dump truck, 20 mile round trip, 0.4									
	loads per hour									
02315.120.3220	Backfill, Structural, dozer or FE Loader,	6359	LCY	\$	-	\$ 0.6	6 \$	0.76	\$ 10,555	13 RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	from existing stockpile, no compaction,									
	105 HP, 150' haul, common earth			_						
	Compaction, Walk behind, vibrating plate 18" wide, 6" lifts, 2 passes	6359	ECY	\$	-	\$ 1.1	0 \$	0.13	\$ 9,142	82 RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation, assume 10% consolidation
321216.14.0020	Asphaltic Base Course	6350	SF	\$	2.07	\$ 0.1	9 \$	0.24	\$ 16,621	13 RSMeans Heavy Construction Cost Data 2009. Assume 9" thick. Assume repaved 1018 S. Clinton driveway. Adjusted by 1.047 multiplier for escalation.
	Ta	sk Subtotal							\$ 167,782	· · ·

ALTERNATIVE ANNUAL AND PERIODIC COSTS

NONE

PRESENT VALUE OF ANNUAL AND PERIODIC COSTS FOR ALTERNATIVE 3 – Restoration to Pre-Disposal Conditions

		Number	Annual	Number	2-Year	Number	4-Year	Total Non-	Present
		of Annual	Discount	of 2-Year	Discount	of 4-Year	Discount	Discounted	Value
Year	Cost*	Periods	Rate	Periods	Rate	Periods	Rate	Cost	Cost
Capital (Year 0)	\$4,125,000	1	0	NA	NA	NA	NA	\$ 4,125,000.00	\$ 4,125,000.00
Quarterly Monitoring (Years 1-2)	\$ -	2	0.05	NA	NA	NA	NA	\$ -	\$ -
Semi-Annual Monitoring (Years 3-4)	\$ -	2	0.05	1	0.1025	NA	NA	\$ -	\$ -
Annual Monitoring (Years 5-30)	\$ -	26	0.05	NA	NA	1	0.215506	\$ -	\$ -
Annual Performance Reporting (Years 1-30)	\$ -	30	0.05	NA	NA	NA	NA	\$ -	\$ -
Totals								\$ 4,125,000.00	\$ 4,125,000.00

^{*}Annual and periodic costs include 10% for technical support and 15% contingency for unforeseen project complexities, including insurance, taxes, and licensing costs. Capital costs include 25% contingency, as well as project management, remedial design, and construction management costs per DER-10 guidance. Discount rate of 5% (for 30-years) percent based on NYSDEC PRAP Outline / Instructions.

 ${\it RI/FS~Report~- Dinaburg~Distributing}$

NYSDEC - Site No. 8-28-103

MACTEC Engineering and Consulting, P.C., Project No. 3612082107

Alternative 4 - Enhanced Multiphase Extraction

Task	Description	Quantity	Unit of Measure	Materia Co		L	abor Unit Cost	Equipment Unit Cost	Ex	xtended Cost	Comments/ Assumptions
Subtask Assembly (1) CAPITAL COSTS											
Pre-Design Investig	ration										
8	Mobilization/Demobilization	1	LS	\$ 1,	,500.00				\$	1,500.00	Engineer's estimate
	Geoprobe	2	DAY	\$ 1,	,500.00				\$	3,000.00	Engineer's Estimate
	Small-Diameter Vacuum Monitoring Pts.	6	EA	\$	100.00				\$	600.00	Engineer's estimate
	Oversight	2	DAY			\$	1,000.00	\$ 50.00	\$		Engineer's Estimate
								Subtotal	\$	7,200.00	
Installation of new	extraction points (6 points total)										
	Hollow stem auger	7	DAY	\$ 2,	,000.00	\$	-	\$ 250.00	\$	15,750.00	GeoSearch quote for track mounted drill rig (3 wells per day)
	Mobilization/Demobilization	1	LS	\$ 1,	,500.00	\$	-		\$		Engineer's estimate
	Trenching (Extractor and Crew)	5	DAY			\$	266.15	\$ 2,500.00	\$		Engineer's estimate
	Pneumatic Pumps (1 per extraction well)	20	LS	\$	338.00	\$	250.00	\$ -	\$	11,760.00	Engineer's estimate (14.2 gpm pump) and labor unit costs
	Valves, gauges, flexible tubing	20	LS	\$	75.00	\$	120.00	\$ -	\$	3,900.00	Engineer's estimate of valves, gauges and flex tubbing per pump
	Air line (3/4" LLDPE)	600	LF	\$	0.74	\$	-	\$ -	\$	444.00	
	2" HDPE Piping	600	LF	\$	2.70	\$	-	\$ -	\$	1,620.00	Engineer's estimate (30' of piping per extraction point)
	2" tee and 2" elbow	20	LS	\$	37.00	\$	-	\$ -	\$	740.00	One per extraction well
	4-inch diameter PVC well screen	150	LF	\$	26.50	\$	-	\$ -	\$	3,975.00	Average 7.5 ft per well
	4-inch diameter PVC well riser	80	LF	\$	31.50	\$	-	\$ -	\$	2,520.00	Average 4 ft per well
	Decontamination	20	EA	\$	-	\$	160.00	\$ -	\$	3,200.00	per installation
	Flushmount Well Cover	20	EA	\$	160.00	\$	-	\$ -	\$	3,200.00	per installation
	Labor of water line, pump, and air										
	line installation	8	DAY	\$	-	\$	600.00	\$ -	\$	4,800.00	3-laborer crew
	Connection, startup and proveout	2	DAY	\$	-	\$	1,200.00	\$ -	\$	2,400.00	2 field technicians for 2 days
								Subtotal	\$	69,639.75	

February 2011 Final

MACTEC Engineering and Consulting, P.C., Project No. 3612082107

Institutional Controls

Task Subtotal \$ 26,548.54

ALTERNATIVE ANNUAL AND PERIODIC COSTS

Annual OM&M (Years 1-5)
Assume 5 years until asymptotic mass removal rates.

Labor, Indirect Costs, and Fees	1	LS		\$ 81,585.50		\$ 81,585.50 C	Contractor labor, assumed 25% increase
Expenses - Total Actual, Breakdown Esti-	mated						
Analytical, Aqueous, VOCs	144	EA	\$ 100.00			\$ 14,400.00 30	6 per quarterly event, estimated rate
Analytical, Vapor, VOCs	160	EA	\$ 250.00			\$ 40,000.00 40	0 per quarterly event, estimated rate
Electrical	12	MO	\$ 330.00			\$ 3,960.00 es	stimated, asume 10% increase
Telephone	12	MO	\$ 150.00			\$ 1,800.00 es	stimated
Miscellaneous, Shipping Costs	12	MO	\$ 125.00			\$ 1,500.00 es	stimated, assume 25% increase
Chemicals	12	MO	\$ 175.00			\$ 2,100.00 es	stimated, assume 25% increase
Repairs	1	LS	\$ 18,750.00	\$	6,250.00	\$ 25,000.00 es	stimated, assume 25% increase
	Task Subtotal					\$ 170,345.50	

Periodic Institutional Control Inspections and Reporting (Years 1-30)

Refer to Alternative 5

Task Subtotal \$ 3,460.24

Long-Term Monitoring (Years 6-30)

Refer to Alternative 5

Task Subtotal \$ 30,993.85 Quarterly monitoring costs

Notes:

1) Assembly numbers presented indicate RACER/RS MEANS assembly code

Prepared by: BPN 12/09/10 Checked by: NRL 12/14/10 Revised by: BPN 1/13/11 Checked by: RES 1/14/11 PRESENT VALUE OF ANNUAL AND PERIODIC COSTS FOR ALTERNATIVE 4 (Enhanced Multiphase Extraction)

Year	Cost*	Number of Annual Periods	Annual Discount Rate	Number of 5-Year Periods	5-Year Discount Rate	Number of 10-Year Periods	10-Year Discount Rate	Total Non- Discounted Cost	Present Value Cost		
Capital (Year 0)	\$ 177,000	1	0	NA	NA	NA	NA	\$ 177,000.00	\$	177,000.00	
Annual SSV OM&M (1-5)	\$ 230,000	5	0.05	NA	NA	NA	NA	\$ 1,150,000.00	\$	995,779.63	
Periodic Inspections and Reporting (Years 1-30)	\$ 3,460	30	0.05	NA	NA	NA	NA	\$ 103,807.20	\$	53,192.37	
Quarterly Monitoring (Years 6-7)	\$ 30,994	2	0.05	NA	NA	NA	NA	\$ 61,987.70	\$	57,630.29	
Semi-Annual Monitoring (Years 8-9)	\$ 15,497	2	0.05	NA	NA	NA	NA	\$ 30,993.85	\$	28,815.14	
Annual Monitoring (Years 10-30)	\$ 7,748	21	0.05	NA	NA	NA	NA	\$ 162,717.71	\$	99,344.22	
Totals								\$ 1,686,506.46	\$	1,411,761.66	

^{*}Annual and periodic costs include 10% for technical support and 25% contingency for unforeseen project complexities, including insurance, taxes, and licensing costs. Capital costs include 25% contingency, as well as and project management, remedial design, and construction management costs per DER-10 guidance.

Discount rate of 5% (for 30-years) percent based on NYSDEC PRAP Outline / Instructions.

MACTEC Engineering and Consulting, P.C., Project No. 3612082107

Task Subtotal

Alternative 5 - In-Situ Source Treatment - Chemical Oxidation with Soil Mixing

Task	Description	Quantity	Unit of Measure	Materia Unit Cos		Labor Unit Cost	Equipment Unit Cost	Ex	tended Cost	Comments/ Assumptions
Subtask										
Assembly (1)										
ALTERNATIVE CA	PITAL COSTS									
Pre-Design Investigat Refer to Alternative										
Refer to Afternative	3									
		Task Subtotal						\$	77,818.32	
		Tusk Sustour						Ψ	77,010.52	
Institutional Controls										
Refer to Alternative	2									
		Task Subtotal						\$	26,548.54	
	porary Facilities and Controls									
Refer to Alternative	3									Assume similar except for dewatering/wastewater treatment system, which is excluded.
		T. 1 C 1 1						•	112 240 00	
		Task Subtotal						\$	112,240.98	
In-Situ Soil Mixing										
Contractor Costs										
Constitution Costs	Mobilization	1	LS	\$ -	\$	s -	\$ 30,000.00	\$	30,000.00	Engineer's estimate
	Work Plan	1	LS	\$ -	\$	-	\$ 20,000.00	\$	20,000.00	Engineer's estimate
MACTEC	Excavation, soil, loading for stockpile	1,484	CY	\$ -	\$	-	\$ 12.00	\$	17,807.05	Refer to Excavation Rate Calculations. Assume top 5' must be removed to allow for mixing to bedrock.
Clean Stockpile										·
02315.490.0310	Hauling, excavated material, 12 CY dum	p 1633	LCY	\$ -	\$	0.79	\$ 1.66	\$	4,676.53	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	truck, 1/4 mile RT									
	. Sheet Piling system	1175			00 \$		\$ -	\$		Shoring for building at 1006 South Clinton Ave.
Eng. Es	. Sheet Pile bracing and anchoring	1	LS	\$ -	-	-	\$ -	\$		Assume that bracing and anchoring will be 100% of sheet piling cost
	Reagent	81,439	LB	\$ 2.			20.00		206,040.78	
	Soil Mixing	3,784	CY	\$ -	-		\$ 28.00			Engineer's estimate
	Demobilization	1	LS	\$ -	\$	-	\$ 25,000.00	\$	25,000.00	Engineer's estimate

\$ 503,488.81

RI/FS Report - Dinaburg Distributing NYSDEC - Site No. 8-28-103

MACTEC Engineering and Consulting, P.C., Project No. 3612082107

Alternative 5 - In-Situ Source Treatment - Chemical Oxidation with Soil Mixing

Task	Description	Quantity	Unit of		Material		r Unit	Equip		Exten	nded Cost	Comments/ Assumptions
Subtask	•		Measure	U	nit Cost	C	ost	Unit C	ost			The state of the s
Assembly (1)												
Site Restoration												
02315.120.3220	0 Backfill, Structural, dozer or FE Loader,	1633	LCY	\$	-	\$	0.66	\$	0.76	\$	2,710.48	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation. Assumes fill from 5 'to 0.75' bgs
	from existing stockpile, no compaction,											
	105 HP, 150' haul, common earth											
02315.310.7000	Compaction, Walk behind, vibrating plate	1633	ECY	\$	-	\$	1.10	\$	0.13	\$	2,347.81	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation.
221216 14 0020	18" wide, 6" lifts, 2 passes Asphaltic Base Course	6812	SF	\$	2.07	¢	0.19	e.	0.24	¢ 1	7 920 41	RSMeans Heavy Construction Cost Data 2009. Assume 9" thick. Adjusted by 1.047 multiplier for escalation.
321210.14.0020	Asphanic Base Course	0012	31	Ą	2.07	Ą	0.19	Φ	0.24	ф 1	7,030.41	RSMeans freavy Construction Cost Data 2007. Assume 9 times. Adjusted by 1.047 multiplier for escalation.
	т	ask Subtotal								\$ 2	22,888.70	
	I	ask Subtotat								3 2	22,000.70	
ALTERNATIVE AN	NUAL AND PERIODIC COSTS											
Periodic Institutional	Control Inspections and Reporting											
MACTEC	Inspection	4	HR			\$	90.00	\$	25.00	\$	537.74	RACER 2006 adjusted by 1.169 multiplier for escalation
MACTEC	Report	1	LS	\$	-	\$ 2,	500.00	\$	-	\$	2,922.50	RACER 2006 adjusted by 1.169 multiplier for escalation
	Task Subtotal									\$	3,460.24	
											,	
Long-Term Monitoria Groundwater Monit	ng (Example Annual costs for Quarterly Sa	mpling)										
	toring 1 Disposable Materials per	96	EA	\$	8.08	¢		\$	_	\$	775.68	
3302040	Sample	90	LA	ф	6.06	Φ	-	φ	-	Ф	775.06	
3302040	2 Decontamination Materials per	96	EA	\$	6.82	\$	-	\$	-	\$	654.72	
	Sample											
Eng. Est	t. Monitor well sampling	3	WK	\$	500.00	\$	-	\$	-	\$	1,500.00	Assume 3 days per event> approximately 3 weeks
	equipment, rental, water quality testing parameter device rental											
3302161	8 Volatile Organic Analysis (EPA 8260)	96	EA	\$	100.00	\$	_	\$		\$	9 600 00	Assumes 24 wells sampled quarterly for VOCs.
	0 Testing, TAL metals	0	EA	\$	314.88		_	\$		\$	-	Assumes 24 wens sampled quarterly for vocs.
	(6010/7000s)	_		-		-		-		*		
3323118	6 Well Development Equipment	3	WK	\$	116.99	\$	64.76	\$	-	\$	545.25	
	Rental (weekly)											
33231189	9 DOT steel drums, 55 gal., open,	5	EA	\$	456.14	\$	-	\$	-	\$	2,280.70	Assumes pickup, transport and disposal costs included
Eng Eg	17C t. Field Technician	180	HR	\$	_	\$	75.00	¢		\$ 1	2 500 00	1 tech; assume 3 days per sampling event
	2 Per Diem	22.5	DAY	\$ \$	95.00		-	\$			2,137.50	1 teen, assume 3 days per sampning event
3331020.		22.3	2	Ψ	22.00	Ψ		7		*	_,,,,,,,,,	
	Т	ask Subtotal								\$ 3	80,993.85	

MACTEC Engineering and Consulting, P.C., Project No. 3612082107

PRESENT VALUE OF ANNUAL AND PERIODIC COSTS FOR ALTERNATIVE 5 (In-Situ Source Treatment - Chemical Oxidation with Soil Mixing)

		Number of Annual		Number of 5-Year	5-Year Discount	Number of 10-Year	10-Year Discount		Present Value
Year	Cost*	Periods	Rate	Periods	Rate	Periods	Rate	Cost	Cost
Capital (Year 0)	\$ 1,122,000	1	0	NA	NA	NA	NA	\$ 1,122,000.00	\$ 1,122,000.00
Periodic Inspections and Reporting (Years 1-30)	\$ 3,460	30	0.05	NA	NA	NA	NA	\$ 103,807.20	\$ 53,192.37
Quarterly Monitoring (Years 1-2)	\$ 30,994	2	0.05	NA	NA	NA	NA	\$ 61,987.70	\$ 57,630.29
Semi-Annual Monitoring (Years 3-4)	\$ 15,497	2	0.05	NA	NA	NA	NA	\$ 30,993.85	\$ 28,815.14
Annual Monitoring (Years 5-30)	\$ 7,748	26	0.05	NA	NA	NA	NA	\$ 201,460.03	\$ 111,385.58
Totals								\$ 1,520,248.78	\$ 1,373,023.39

^{*}Annual and periodic costs include 10% for technical support and 25% contingency for unforeseen project complexities, including insurance, taxes, and licensing costs. Capital costs include 25% contingency, as well as and project management, remedial design, and construction management costs per DER-10 guidance.

Discount rate of 5% (for 30-years) percent based on NYSDEC PRAP Outline / Instructions.

MACTEC Engineering and Consulting, P.C., 3612082107

Alternative 6 - Discrete Soil Source Excavation and Off-Site Disposal and in-Situ Enhanced Biodegradation with Groundwater Monitoring

Task	Description	Quantity	Unit of Measure	Ma	terial Unit Cost	Labor Cos			uipment nit Cost	E	Extended Cost	Comments/ Assumptions
ALTERNATIVE CAPITAL	COSTS	<u></u>		•		203		, J.				
Pre-Design Investigation												
Refer to Alternative 3												
		Task Subtotal								\$	77,818.32	Assume bench testing for bioremediation amendment includes
												bench-scale study, soil/groundwater sampling and analysis, and pilot-scale injection
Institutional Controls												
Refer to Alternative 2												
		Task Subtotal								\$	26,548.54	
Mobilization and Temporary	Facilities and Controls											
Temporary Utilities												
	Site Superintendent	120	HR	\$	-	\$	100.00	\$	-	\$	12,000.00	
Eng. Est S	Site Foreman	120	HR	\$		\$	75.00			\$	9,000.00	
	Temporary Office 20' x 8'	0.5	MO	\$	206.42		-			\$		RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	Temporary Storage Trailer 16' x 8'	0.5	MO	\$	80.72			\$		\$		RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	Portable Toilets	0.5	MO MO	\$	82.65 210.00			\$ \$		\$ \$		RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	Celephone utility fee Electrical utility fee	0.5 0.5	MO MO	\$ \$	200.00			\$		\$	100.00	Fig. 8 RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
01520.550.0100 F	Field office expenses, office equipment ental, average	0.5	MO	\$	145.00			\$		\$		RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
Dewatering/Wastewate	r Treatment System											
Eng. Est. F	Frac EQ Tank	15	DAY	\$	30.00	\$	-	\$	-	\$	450.00	Assumes 20,000 gallon FRAC EQ tank could be used to store water and existing MPE treatment tailer could be used for treatment.
	Pumping 8 hr., attended 2 hrs. per day,	15		\$	-		105.00		83.00			RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	ncluding 20 LF of suction hose and											
	.00 LF of discharge hose, w/ 4" liaphragm pumped used 8 hrs.											
Temporary Discha	rge Monitoring											
	Aqueous Sampling, Metals	1	EA	\$	130.00					\$	130.00	24-hr turn around expedited at additional 100% of cost
	Aqueous Sampling, VOCs	1	EA	\$	140.00					\$		24-hr turn around expedited at additional 100% of cost
Decontamination Facili	tv											
	25 gpm, 1-1/2" discharge, cast iron sump p	oum 1	EA	\$	_	\$	_	\$	2,317.00	\$	3,035.27	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	50' Flexible, Product Discharge Hose	1		\$	-	\$		\$	175.00			Significant South ECHOS adjusted by 1.31 multiplier for escalation
	8/4" crushed stone borrow, spread w/	56	CY	\$	27.50		1.43		3.12			RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation,
	200 HP dozer, no compaction, 2 mi rt haul	1										assume 30 ft by 50 ft by one foot thick
	Compaction, General, riding vibrating oller, 12" lifts, 4 passes	56	ECY	\$	-	\$	0.16	\$	0.16	\$	20.78	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	60-mil Polymeric Liner, Very Low Density	Po 167	SY	\$	1.97	\$	-			\$ \$	430.12 521.82	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation, assume 30 ft by 50 ft
33080534 1	6 oz/sy nonwoven geotextile	167	SY	\$	2.39	\$	-					RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	,800 psi pressure washer, 6HP,	1	EA	\$	-	\$	-	\$	1,635.00	\$	2,141.85	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	l.8 gpm											
	2,000 gal steel sump, aboveground w/ supports and fittings	1	EA	\$	2,233.00	\$ 8	353.69	\$	123.26	\$	4,205.03	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	Operation of pressure washer, including water, soap, electricity, and labor	40	HR	\$	-	\$	-	\$	41.69	\$	2,184.56	s RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation, assume 4 hours per day

MACTEC Engineering and Consulting, P.C., 3612082107

Alternative 6 - Discrete Soil Source Excavation and Off-Site Disposal and in-Situ Enhanced Biodegradation with Groundwater Monitoring

Task	Description	Quantity	Unit of	Ma	terial Unit	Labor U	nit	Eq	uipment	E	Extended Cost	Comments/ Assumptions
		Quantity	Measure		Cost	Cost		Ur	nit Cost			-
33410	101 Pump and motor maintenance/repair	1	EA	\$	-	\$	-	\$	431.15	\$	564.81	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
Erosion and Sedi	ment Control Measures											
	206 Filter Barrier, Silt Fences, Vinyl, 3' High	500	LF	\$	0.70	\$	1.41	\$	-	\$	1.382.05	RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation, around work area
	with 7.5' Posts										,	
	IPE Trailer Demobilization											
	100 Bituminous Driveways	178	SY	\$	-		2.22		1.63			RSMeans 2009 Heavy Construction Cost Data adjusted by 1.047 multiplier for escalation
024113.17.5	200 Concrete to 6" thick	28	SY	\$	-		5.55		4.10			RSMeans 2004 ECHOS adjusted by 1.31 multiplier for escalation
	C&D Debris Transportation and Disposal Trailer Demobilization	38 1	TON EA	\$ \$	-	\$ 8 \$	5.00	\$				Engineer's estimate
	Monitoring and Extraction Well Removal	56.5	LF	\$ \$	-	\$	-		\$10,000			Engineer's estimate Engineer's estimate
	Monitoring and Extraction Wen Removal	30.3	Li	Ψ		Ψ			Ψ20	Ψ	1,115.00	Engineer's commune
Survey of Work/S												
	Surveying - 2-man Crew	1	DAY	\$	1,500.00	\$	-	\$	-	\$	1,500.00	Engineer's estimate
	Т	ask Subtotal								\$	64,542.75	Assume similar mobilization, facilities and controls as Alternative 3.
Evenuation and Off all	e Disposal of Source Area Soil											
	Est. Sheet Piling	6000	SF	\$	35.00	\$	_	\$	_	\$	219.870.00	Excavation perimeter for excavation depth of 20 ft bgs
	Est. Sheet Pile bracing and anchoring	1	LS	\$	-		_	\$	_	\$		Assume that excavation bracing will be 100% of sheet piling cost
	Est. Excavation, soil, loading for stockpile	1,463	BCY	\$	6.90		-	\$	-	\$		Refer to Excavation Rate Calculations
	Est. Absorbent	14,815	LB	\$	2.25	\$	-	\$	-	\$	33,333.33	Refer to Alternative 6 Calculations; assumes 25 lb/cy-soil
Eng.	Est. Absorbent application	120	HR	\$	65.70	\$	-	\$	-	\$	7,884.00	RSMeans Heavy Construction Cost Data 2009., assume labor crew B6.
Clean Stock	pile											
02315.490.0	310 Hauling, excavated material, 12 CY dump truck, 1/4 mile RT	644	LCY	\$	-	\$	0.79	\$	1.66	\$	1,843.60	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	Est. Stockpile construction and management	1	LS	\$	2,000.00			\$	-	\$		Assumed cost for construction of stockpiles and erosion controls
	020 Stockpile loadout and management	644	CY	\$	-	\$	0.20	\$	0.47	\$	431.28	Assumed cost for management of stockpiles.
Contaminate		066	LCV	\$		\$	0.79	¢	1.66	¢	2.765.40	DSM ages Site World & Londonna Cont Date 2006 adjusted by 1.160 multiplier for appointing
	310 Hauling, excavated material, 12 CY dump truck, 1/4 mile RT	966	LCY		-							RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	Est. Stockpile construction and management	1	LS	\$	2,000.00		-		- 0.47	\$		Assumed cost for construction of stockpiles and erosion controls
	020 Stockpile loadout and management	966 3	CY EA	\$ \$	146.90		0.20	\$	0.47	\$		Assumed cost for management of stockpiles. Confirmation Sampling per NYSDEC DER-10
33021	720 Testing, purgeable organics (624, 8260)	3	EA	Ф	140.90	J.	-	Ф	-	Э	440.70	Commination Sampling per N13DEC DER-10
Transportat	ion and Disposal											
Vendor	Transportation and Disposal, VOCs	484	TON	\$	115.88	\$	-	\$	_	\$	56,047.33	Refer to Disposal Cost Calculations
	less than 60 ppm											•
Vendor	Transportation and Disposal, VOCs between 60 and 180 ppm	694	TON	\$	210.06	\$	-	\$	-	\$	145,848.07	Refer to Disposal Cost Calculations
Vendor	Transportation and Disposal, VOCs greater than 180 ppm	303	TON	\$	1,328.40	\$	-	\$	-	\$	402,881.80	Refer to Disposal Cost Calculations
		ask Subtotal								\$	1,105,951.04	
										-	,,	
In-Situ Enhanced Biod Injection Well In												Total of 6 injection wells. Assume 3/day.
•	Est. Field Technician	16	HR	\$		\$ 7	5.00	•	_	\$	1 200 00	Days includes per diem
	102 Van Rental	2	DAY	\$	38.48	\$ /		\$	-	\$	76.96	Days includes per dreiff
	101 Mobilize/Demobilize Drilling Rig	1	LS	\$	30.40		5.00		969.76			Assume level D protection.
55010	& Crew	1	Lij	Ψ		y 2,00	2.00	Ψ	707.70	Ψ	3,024.70	Assume to to proceedings
33231	178 Move Rig/Equipment Around Site	6	EA	\$	58.00	\$ 10	08.00	\$	139.40	\$	1,789.20	
33020	303 Organic Vapor Analyzer Rental,	2	DAY	\$	115.88	\$	-	\$	-	\$	231.75	
33170	per Day 808 Decontaminate Rig, Augers,	6	DAY	\$	-	\$ 10	8.60	\$	-	\$	651.60	

RI/FS Report - Dinaburg Distributing NYSDEC - Site No. 8-28-103

MACTEC Engineering and Consulting, P.C., 3612082107

Alternative 6 - Discrete Soil Source Excavation and Off-Site Disposal and in-Situ Enhanced Biodegradation with Groundwater Monitoring

Alternative 0 - Discrete 50	il Source Excavation and Off-Site Disposa	ai anu in-situ en										
Task	Description	Quantity	Unit of	Ma	terial Unit	La	abor Unit		uipment	Extended	Cost	Comments/ Assumptions
	_		Measure		Cost	<u> </u>	Cost	Ur	nit Cost			<u> </u>
W B C	Screen (Rental Equipment)											
	on - Injection Grid	120	LF	\$		e.	11.62	¢.	22.12	e 5.	70.00	William 20 for the
33231103	Hollow Stem Auger, 11" Dia	120	LF	3	-	\$	11.02	3	33.13	\$ 5,5	70.00	Wells to 20 feet bgs
22220122	Borehole, Depth <=100 ft 2 4" Stainless Steel, Well Casing	12	LF	\$	28.96	¢.	3.51	¢	10.00	•	:00 60	2 feet to top of well correct
	2 4 Stainless Steel, Well Casing	60	LF LF	\$	28.96		3.51		10.00			2 feet to top of well screen 10-foot screens
	2 4" Screen, Filter Pack	60	LF LF	\$	5.50		3.51		10.00		40.70	10-100t screens
	2 4" Well, Grout	12	LF LF	\$	5.09		19.98		57.00		84.79	
	2 4" Well, Bentonite Seal	6	EA	\$	23.16		19.72		56.26		94.84	
	DOT steel drums, 55 gal., open,	18	EA	\$	81.00		19.72					three drums per well
	Load soil into 55 gal drums	18	EA	\$		\$	29.33				27.94	unee druns per wen
	C	18	EA EA	\$	255.77		29.33	\$			03.86	
	Transport/Dispose (non-haz)	16	EA	э	233.11	Ф	-	Ф	-	\$ 4,0	003.60	
Injection Program	IIDCM-resid (editionales)	540	LBS	•	0.53	e.		e		\$ 2	105.66	To shade 160/ feature and shine in
HRC Backup	HRC Material (grid injections)	540 58.748		\$	0.55		-	\$ \$				Includes 15% for tax and shipping
	HRC Material (excavations)	/	LBS	\$	0.46		1 000 00					Includes 15% for tax and shipping
	Injection	2	DAYS			\$	1,000.00	\$	1,000.00	\$ 4,0	00.00	Assumes 5 pts per day
		To de Colored								6 500	22.27	
		Task Subtotal								\$ 56,8	322.27	
Gr. B												
Site Restoration												
Backfill excavat							0.40					
02315.210.4060	Borrow, Loading, commmon earth,	966	LCY	\$	8.25	\$	0.42	\$	0.25	\$ 10,0	068.31	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	1-1/2 CY bucket					_						
02315.490.0560	Hauling, excavated or borrow, loose CY,	966	LCY	\$	-	\$	5.80	\$	12.20	\$ 20,3	17.22	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation, assume 10% fluff
	12 CY dump truck, 20 mile round trip, 0.4											
	loads per hour											
02315.120.3220	Backfill, Structural, dozer or FE Loader,	1609	LCY	\$	-	\$	0.66	\$	0.76	\$ 2,0	71.34	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation
	from existing stockpile, no compaction,											
	105 HP, 150' haul, common earth											
02315.310.7000	Compaction, Walk behind, vibrating plate	1609	ECY	\$	-	\$	1.10	\$	0.13	\$ 2,3	13.91	RSMeans Site Work & Landscape Cost Data 2006 adjusted by 1.169 multiplier for escalation, assume 10% consolidation
	18" wide, 6" lifts, 2 passes											
321216.14.0020	Asphaltic Base Course	6812	SF	\$	2.07	\$	0.19	\$	0.24	\$ 17,8	30.41	RSMeans Heavy Construction Cost Data 2009 adjusted by 1.047 multiplier for escalation. Assume 9" thick.
		Task Subtotal								\$ 53,2	201.19	
ALTERNATIVE ANNUAL	L AND PERIODIC COSTS											
Follow-up Bioremediation	Injection											
Injection Program												
HRC Backup	Mobilization	1	LS	\$	-	\$	-	\$	5,000.00	\$ 5,0	00.00	
•	HRC Material (grid injections)	540	LBS	\$	0.53	\$	-	\$	-	\$ 2	85.66	Includes 15% for tax and shipping
	Injection	2	DAYS			\$	1,000.00	\$	1,000.00			Assumes 5 pts per day
	Oversight	2	DAYS									
		Task Subtotal								\$ 9.2	85.66	
Periodic Institutional Cont	rol Inspections and Reporting									,-		
Refer to Alternative 5												
	Task Subtot	tal								\$ 3.4	60.24	
	2 dok 5 dotot									- 5,		
Long-Term Monitoring (Y	ears 1 through 30)											
Refer to Alternative 5	sugn 00)											
Tieses to rinemative y		Task Subtotal								\$ 30.9	93.85	Quarterly monitoring costs
		Duotottii								- 50,	. 5.05	£

PRESENT VALUE OF ANNUAL AND PERIODIC COSTS FOR ALTERNATIVE 6 (Discrete Soil Source Excavation and Off-Site Disposal and in-Situ Enhanced Biodegradation with Groundwater Monitoring)

		Number	Annual	Number	2-Year	Number		Total Non-	Present
		of Annual							Value
Year	Cost*	Periods	Rate	Periods	Rate	Periods	Rate	Cost	Cost
Capital (Year 0)	\$ 2,100,000	1	0	NA	NA	NA	NA	\$ 2,100,000.00	\$ 2,100,000.00
Follow-up Amendment Injection (Year 1 or 2)	\$ 9,286	1	0.05	NA	NA	NA	NA	\$ 9,285.66	\$ 8,843.49
Quarterly Monitoring (Years 1-2)	\$ 30,994	2	0.05	NA	NA	NA	NA	\$ 61,987.70	\$ 57,630.29
Semi-Annual Monitoring (Years 3-4)	\$ 15,497	2	0.05	NA	NA	NA	NA	\$ 30,993.85	\$ 28,815.14
Annual Monitoring (Years 5-30)	\$ 7,748	26	0.05	NA	NA	NA	NA	\$ 201,460.03	\$ 111,385.58
Annual Performance Reporting (Years 1-30)	\$ 3,460	30	0.05	NA	NA	NA	NA	\$ 103,807.20	\$ 53,192.37
Totals								\$ 2,507,534.44	\$ 2,359,866.87

^{*}Annual and periodic costs include 10% for technical support and 15% contingency for unforeseen project complexities, including insurance, taxes, and licensing costs. Capital costs include 25% contingency, as well as project management, remedial design, and construction management costs per DER-10 guidance. Discount rate of 5% (for 30-years) percent based on NYSDEC PRAP Outline / Instructions.

MACTEC Engineering and Consulting, P.C., Project No. 3612082107

Alternative 7 – In-Situ Electrical Resistance Heating

Task Description Quantity Unit of Material Unit Labor Unit Gequipment Unit Measure Cost Cost Extended Cost Extended Cost Cost Cost	
--	--

Subtask

Assembly (1)

ALTERNATIVE CAPITAL COSTS

Electrical Resistance Heating

Based upon estimate provided by Thermal Remediation Services

TRS services	1 LS	\$ 747,000.00 \$ 747,000.00 Includes mobilization/demobilization, design, work plans, permits, drilling, soil disposal, electrode c	onnection and
Subcontracted services	1 LS	\$ 476,000.00 \$ 476,000.00 usage, electricity, vapor recovery and treatment, operations, confirmatory sampling and well abandon	nment. See
Guaranteed remediation	1 LS	\$ 122,300.00 \$ 122,300.00 vendor backup for further detail.	

Task Subtotal \$ 1,345,300.00

ALTERNATIVE ANNUAL AND PERIODIC COSTS

Long-Term Monitoring (Years 1 through 30)

Refer to Alternative 5

Task Subtotal 30,993.85

> Prepared by: BPN 12/09/10 Checked by: NRL 12/14/10 Revised by: BPN 1/13/11 Checked by: RES 1/14/11

Page 18 of 36 4.1 Dinaburg - Cost Table_2011-01-14.xlsx

RI/FS Report - Dinaburg Distributing NYSDEC - Site No. 8-28-103 MACTEC Engineering and Consulting, P.C., Project No. 3612082107

PRESENT VALUE OF ANNUAL AND PERIODIC COSTS FOR ALTERNATIVE 7 (In-Situ Electrical Resistance Heating)

		Number	Annual	Number	5-Year	Number	10-Year	Total Non-	Present
		of Annual	Discount	of 5-Year	Discount	of 10-Year	Discount	Discounted	Value
Year	Cost*	Periods	Rate	Periods	Rate	Periods	Rate	Cost	Cost
Capital (Year 0)	\$ 1,900,000	1	0	NA	NA	NA	NA	\$ 1,900,000.00	\$ 1,900,000.00
Quarterly Monitoring (Years 1-2)	\$ 30,994	2	0.05	NA	NA	NA	NA	\$ 61,987.70	\$ 57,630.29
Semi-Annual Monitoring (Years 3-4)	\$ 15,497	2	0.05	NA	NA	NA	NA	\$ 30,993.85	\$ 28,815.14
Annual Monitoring (Years 5-10)	\$ 7,748	5	0.05	NA	NA	NA	NA	\$ 38,742.31	\$ 33,546.79
Totals								\$ 2,031,723.86	\$ 2,019,992.22

^{*}Annual and periodic costs include 10% for technical support and 25% contingency for unforeseen project complexities, including insurance, taxes, and licensing costs. Capital costs include 25% contingency, as well as and project management, remedial design, and construction management costs per DER-10 guidance. Discount rate of 5% (for 30-years) percent based on NYSDEC PRAP Outline / Instructions.

Demolition and Disposal

	Pavement		Concrete units
Length		75	30 ft
Width		60	30 ft
Area		500	100 yd ²
Thickness		0.25	0.50 ft
Volume		1125	450 ft ³
Weight		82	33 tons

Assume density = 145 lb/cf Weight

Building - 1006 S. Clinton

Length 32 ft Width 33 ft Height 12 ft

Wall Area 1560 ft² Assume 6" thick concrete block walls Assume 6" thick concrete slab on grade 1056 ft² Floor area Assume concrete footing, 1' thick, 2 ' wide Footing length 130 ft

1568 ft³ Volume Weight 113.68 tons

Excavation Volume

	Section A	Section B	Section C	Section A: Eastern property blocks of 1012 Clinton and 250 Benton
Length		86 35	10 ft	Section B: Western property block adjacent to 1006 Clinton building
Width		67 40	20 ft	including portion of 1006 Clinton property
Area	5	762 1400	200 ft ²	Section C: Small extent of 491-493 Caroline street property north of Site.
Depth		20 20	20 ft	
Volume	115	240 28000	4000 ft ³	
Volume	4	268 1037	148 yd ³	
Total		5453	yd ³	
Tonnage	7203	1750	250 tons	Assume density = 125 lb/cf

Absorbent Quantity

Waste Lock 770= 53352 lbs 25 lb/cy Assume absorbent ratio =

Sheet Piling

516 ft Perimeter Depth 25 ft

Assume depth into weathered bedrock of 25' 12900 ft² Area

Dipsosal Characaterization Clean soil

59 yd³ 1707 415 Tonnage 2881 700 100 tons > 180 ppm 140 46 0 yd^3 0 tons Tonnage 237 78 0 yd^3 180 ppm > x > 60 ppm 336 89 0 tons Tonnage 567 150 < 60 ppm 2085 487 89 yd³ Tonnage 3518 822 150 tons

Assume top 8 feet of soil is clean

3375 lb/cy Assume density =

RI/FS Report - Dinaburg Distributing NYSDEC - Site No. 8-28-103 MACTEC Engineering and Consulting, P.C., 3612082107

Estimated Bedrock Contamination (including downgradient)

	10ppm	5	ppm		
Area		2874	8223 ft ²		
GW Depth		10	10 ft		
GW Volume		7184	20557 ft ³	Assume porosity =	0.2
Contaminant Conc		10	10 ppm		
Contaminant Mass		4	13 lb		

Assume porosity =

0.43

Estimated Saturated Contamination Downgradient

10ppm

8223 ft² Area GW Depth 10 ft GW Volume 35359 ft³

Contaminant Conc 10 ppm Contaminant Mass 22 lb

MPE Wells

256 ft demolished

18.9 ft grouted and abandoned

Site Restoration - 1018 S. Clinton Ave. Driveway Area 950 ft²

Excavation Unit Cost Calculation Based on Crew and Equipment Production Rates, Source Soils

	Produc	ction		
Excavated volume of	soil 5,453	bcy		
2. Excavator	Typ. Hyd.			
3. Bucket Size	2.5	су		
Bucket Fill Factor	90%		Note 1	
5. CY/bucket	2.3	су		
Operator/Site Efficien	cy 25%		Note 2	
7. Cycles/minute	1.5		Note 3	
8. Actual cycles/minute	0.375	cycles/min		
9. LCY/minute	0.8	lcy/min		
10. Productive minutes/ho	our 49	min/hr	Note 4	
11. LCY/hour	41.3			
12. Hours/day	8	hrs/day		
13. LCY/day	330.75	lcy/day		
14. BCY/day	298	bcy/day	Note 5	
15. Days to complete	19.3			
16. Crew Hours	160.0		Note 6	
	Labor and Equi	pment Costs		
Unit	Quantity	Rate	Hours	Cost
1. Laborer	1	\$31.60	160.0	\$5,056.00
2. Operator	1	\$41.35	160.0	\$6,616.00
3. Excavator	1	\$202.38	160.0	\$32,380.00
	Diesel (N	lote 7)	·	
Machine	HP	\$/gallon	Gallons/hr	Cost
Typ. Hyd.	222	\$3.05	12.68	\$6,188.15

Bucket Fill Fac	tors
Moist Loam Sandy Soil	100-110%
Sand & Gravel	95-110%
Hard Tough Clay	80-90%
Rock - Well Blasted	60-75%
Rock - Poorly Blasted	40-50%

	Total Excavation Costs (Note 8)	
Lump Sum		\$50,240.15
Cost/BCY		\$9.21

Notes:

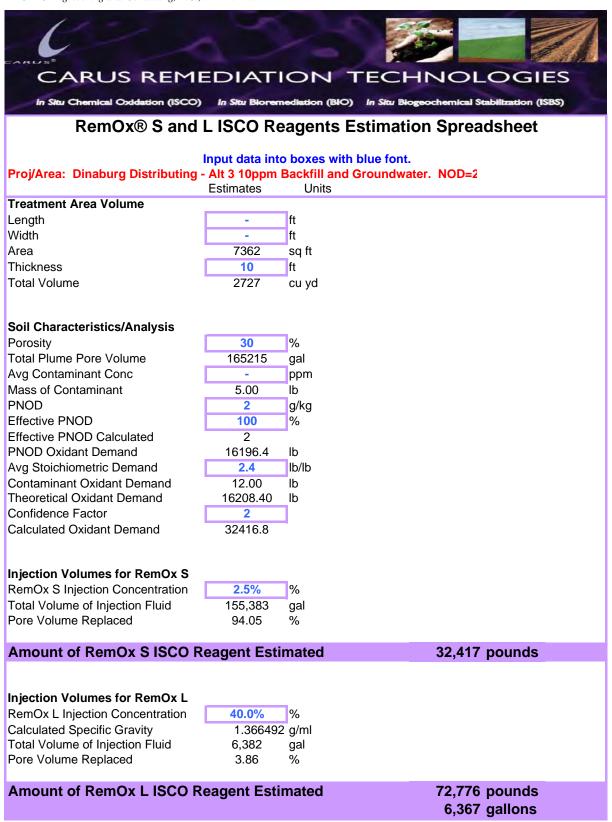
- 1. See "Bucket Fill Factors Table".
- 2. All inefficiencies are carried in the "Operator/Site Efficiency" line item.
- 3. "Cycles/minute" line item assumes 100% efficiency.
- 4. "Productive minutes/hour" accounts for time lost to:safety talk, nonproductive time before/after breaks, early breakdown.

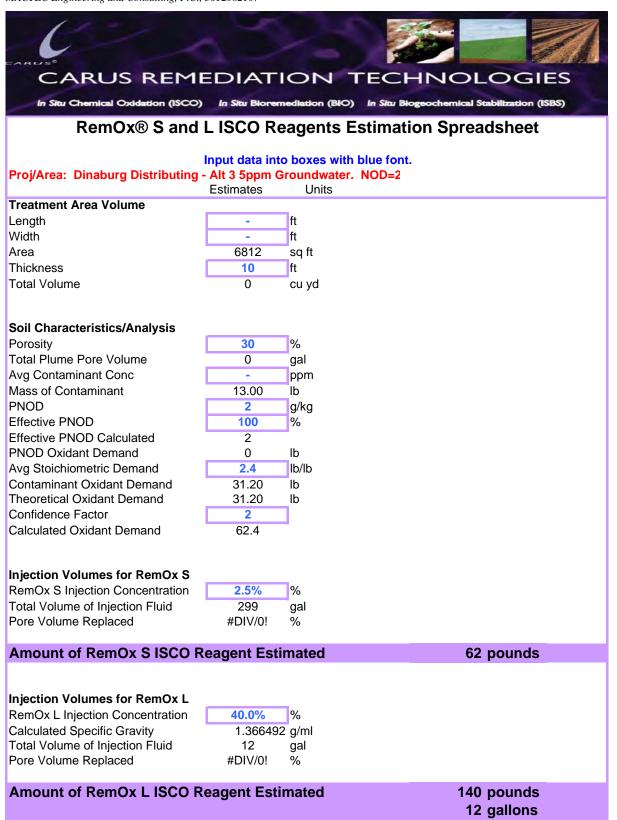
calculation: 8 hr work day

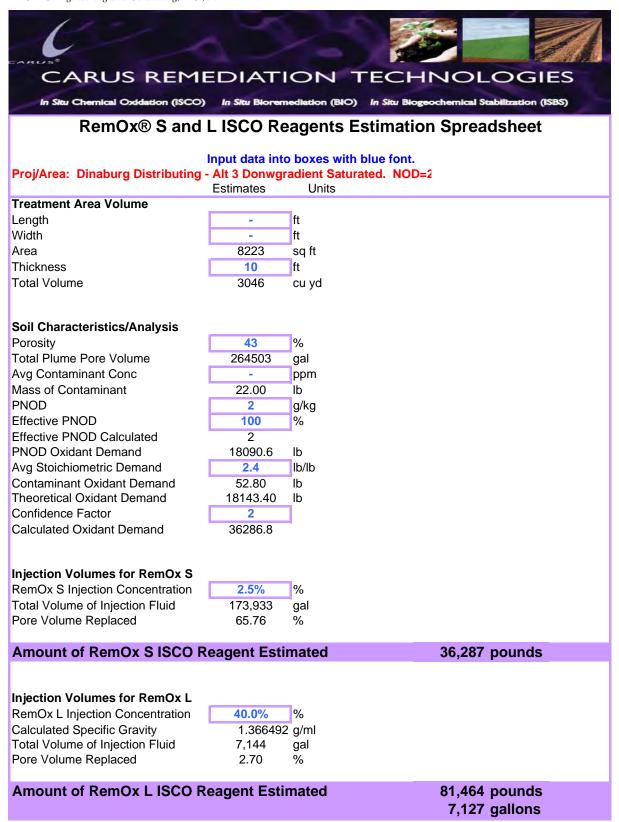
15 minute safety talk

15 minutes post talk prior to productive work

10 minutes nonproductive time before and after coffee break (20 min total)


10 minutes nonproductive time before and after lunch break (20 min total)


15 minutes nonproductive time at end of day


85 nonproductive minutes/day 11 nonproductive minutes/hour

49 productive minutes/hour

- 5. Assume 10% shrink/swell conversion between bank cubic yards (bcy) and loose cubic yards (lcy).
- 6. Assume hours are rounded up to the nearest whole day.
- 7. Diesel unit price based on data reported by Energy Information Administration (EIA), Official Energy Statistics of the U.S. government, reported for 12/15/10, http://tonto.eia.doe.gov/oog/info/gdu/gasdiesel.asp
- 8. Total excavation cost estimate does not include mobilization/demobilization or transportation.

Demolition and Disposal

	Pavement	Concrete	units		
Length	40	25	ft		
Width	40	10	ft		
Area	178	28	yd^2		
Thickness	0.25	0.50	ft		
Volume	400	125	ft^3		
Weight	29	9	tons	Assume density =	145 lb/cf

Excavation Volume

	Section A Sec	ction B	Section A: Area including	g eastern block of contamination >= 100ppm
Length	40	25 ft	Section B: Area including	g western block of contamination >= 100ppm
Width	40	15 ft		
Area	1600	375 ft ²		
Depth	20	20 ft		
Volume	32000	7500 ft ³		
Volume	1185	278 yd ³		
Total	1463	yd ³		
Tonnage	2000	469 tons	Assume desnity =	125 lb/cf

Sheet Piling

Perimeter 240 ft Depth 25 ft Area 6000 ft^2

Assume depth of 25' driven into fractured bedrock

Absorbent Quantity

Waste Lock 770= 14815 lbs Assume absorbent r 25 lb/cy

Dipsosal Characaterization

Clean soil	474	111 yd ³
Tonnage	800	188 tons
> 180 ppm	140	39 yd³
Tonnage	237	66 tons
180 ppm > x > 60 ppm	336	76 yd ³
Tonnage	567	128 tons
< 60 ppm	235	52 yd³
Tonnage	396	87 tons

Assume top 8 feet of soil is clean

Assume density = 3375 lb/cy

Treatment Area

	Source C	Outside Source	
Length	20	77 ft	
Width	20	77 ft	
Area	400	5900 ft ²	
Depth	15	15 ft	
GW Depth	10	10 ft	
GW Volume	1720	0 ft ³	Assur
Soil Volume	3420	88500 ft ³	

Assume porosity = 0.43

MPE Wells

56.5 ft demolished

Prepared by: BPN 12/09/10 Checked by: NRL 12/14/10 Revised by: BPN 1/13/11 Checked by: RES 1/14/11

Enhanced Biodegradation Injections

6 number of wells

5 points per day for injection program

3 wells installed per day

Assume excavation areas (40ftx40ft and 25ftx10ft) backfilled with reagent and have influence within those areas plus 15' out from perimiter. 70ftx70ft and 55ftx40ft areas would allow for 22 fewer injection points assuming 15' spacing in the grid.

Excavation Unit Cost Calculation Based on Crew and Equipment Production Rates, Source Soils

	Product	ion		
1. Excavated volu	1,463	bcy		
2. Excavator	Typ. Hyd.			
3. Bucket Size	2.5	су		
4. Bucket Fill Fact	90%		Note 1	
5. CY/bucket	2.3	су		
6. Operator/Site E	25%		Note 2	
7. Cycles/minute	1.5		Note 3	
8. Actual cycles/m	0.375	cycles/min		
9. LCY/minute	1.5	lcy/min		
10. Productive min	49	min/hr	Note 4	
11. LCY/hour	73.5			
12. Hours/day	8	hrs/day		
13. LCY/day	588	lcy/day		
14. BCY/day	529	bcy/day	Note 5	
15. Days to comple	3.8			
16. Crew Hours	32.0		Note 6	
Labo	r and Equip	ment Costs		
Unit	Quantity	Rate	Hours	Cost
1. Laborer	1	\$31.60	32.0	\$1,011.20
2. Operator	1	\$41.35	32.0	\$1,323.20
3. Excavator	1	\$202.38	32.0	\$6,476.00
	Diesel (No	ote 7)		
Machine	HP	\$/gallon	Gallons/hr	Cost
Typ. Hyd.	222	\$3.15	12.68	\$1,278.21

Bucket Fill Factors	
Moist Loam Sandy Soil	100-110%
Sand & Gravel	95-110%
Hard Tough Clay	80-90%
Rock - Well Blasted	60-75%
Rock - Poorly Blasted	40-50%

Total Excavation Costs (Note 8)				
Lump Sum	\$10,088.61			
Cost/BCY	\$6.90			

Notes:

- 1. See "Bucket Fill Factors Table".
- 2. All inefficiencies are carried in the "Operator/Site Efficiency" line item.
- 3. "Cycles/minute" line item assumes 100% efficiency.
- 4. "Productive minutes/hour" accounts for time lost to:safety talk, nonproductive time before/after breaks, early breakdown.

calculation:

- 8 hr work day
- 15 minute safety talk
- 15 minutes post talk prior to productive work
- 10 minutes nonproductive time before and after coffee break (20 min total)
- 10 minutes nonproductive time before and after lunch break (20 min total)
- 15 minutes nonproductive time at end of day
- 85 nonproductive minutes/day
- 11 nonproductive minutes/hour
- 49 productive minutes/hour
- 5. Assume 10% shrink/swell conversion between bank cubic yards (bcy) and loose cubic yards (lcy).
- 6. Assume hours are rounded up to the nearest whole day.
- Diesel unit price based on data reported by Energy Information Administration (EIA), Official Energy Statistics of the U.S. government, reported for 12/15/10, https://tonto.eia.doe.gov/oog/info/gdu/gasdiesel.asp
- 8. Total excavation cost estimate does not include mobilization/demobilization or transportation.

Prepared by: BPN 12/09/10 Checked by: NRL 12/14/10 Revised by: BPN 1/13/11 Checked by: RES 1/14/11

Date

3DMe Design Software for Grid Treatment

Regenesis Technical Support: USA (949) 366-8000

www.regenesis.com

Gallons

11.9

119

3.7%

10:1 V/V Emulsion App. Rate per Foot

10:1 V/V Emulsion App. Rate per Point

Est.% of Effective Pore Vol. Displaced by 3DMe Emulsion

Site Name: Dinaburg Distributing Location: Rochester, NY Consultant: MACTEC

3DMe capacity to supply hydrogen	14.0 lbs. 3DMe/lb H ₂	Minimum Contribute) 2DM- FOC (I/I) 3I	DMa Dagwinad (lba)
Density of 3DMe Density of 3DMe	1.00 g/cm ³ 8.345 lb/gal	Conc. (mg/L) Re	equired TOC to Contrib. (k 318.4	(g) 3DMe FOC (kg/kg) 3I 0.61	521.9386868
Density of 3DMe	30.0 lb per bucket	1000.0	310.4	3DMe FOC (mg/kg)	321.9300000
Hydrogen Required (lbs)	co.o is por sucrect	3DMe Requirements		610000	
Dissolved Phase CAHs	0.13 lb	Dissolved Phase		2 lb	
Adsorbed Phase CAHs	0.49 lb	Adsorbed Phase		7 lb	3DMe mg/L
CEAs	2.83 lb	CEAs		40 lb	697.36
Competing Microbial Processes Total	1.84 lb 5.29 lb	Competing Microb Total wo/ continge		26 lb 74 lb	L Acid (mg/L)
i otal	3.29 10	Total 3DMe		22 lb>	1,861.96
Standard Microemulsion Production				<u> </u>	,
Water to Concentrate Volume Ratio (gal/gal)	10		rate Mass Ratio (lbs/lbs)	10	
Emulsion to Concentrate Volume Ratio (gal/gal)	11	Emulsion to Concentr	ate Mass Ratio (lbs/lbs)	11	
Site Conceptual Model/Extent of Plume Requiring	Remediation				
Width of plume (intersecting gw flow direction)		85 ft			
Length of plume (parallel to gw flow direction)		15 ft		= 1,275	ft ²
Depth to contaminated zone		10 ft		10750	2
Thickness of contaminated saturated zone Nominal aquifer soil (gravel, sand, silty sand, silt, clay, etc.)		10 ft silty sand		= 12750	ft ³
Total porosity		0.4	Effective porosi	ty: 0.2	
Hydraulic conductivity		10 ft/d		= 3.5E-03	cm/sec
Hydraulic gradient		0.013 ft/ft			
Seepage velocity Treatment Zone Pore Volume		237.4 ft/y 5,100 ft ³	r	= <u>0.650</u> 38,151	ft/day
Freathert Zone Fole volume				30,101	gallons
Dissolved Phase Electron Donor Demand		Contaminant	Contaminant	Stoichiometry	H ₂ Req.
Tetraphlementh and (DOT)		Conc (mg/L)	Mass (lb)	cont/H ₂ (wt/wt)	(lb)
Tetrachloroethene (PCE) Trichloroethene (TCE)		4.58 3.51	1.5 1.1	20.7	0.07 0.05
cis-1,2-dichloroethene (DCE)		0.26	0.1	24.2	0.00
Vinyl Chloride (VC)		0.03	0.0	31.2	0.00
1,1,1-Trichloroethane (TCA)		0.00	0.0	22.2	0.00
1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down)		0.00	0.0	24.7 0.0	0.00
User added, also add stoich, demand and Koc (see pull-down)		0.00	0.0	0.0	0.00
,					
Sorbed Phase (SP) Electron Donor Demand:			3	405	u w3
Soil bulk density		g/c	m ³ =	125	lb/ft ³
Fraction of organic carbon (foc)		0.003 ran	ge: 0.0001 to 0.01		
Traction of organic carbon (100)		0.000	gc. 0.0001 to 0.01		
(Values are estimated using SP = foc*Koc*Cgw)					
	Koc	Contaminant	Contaminant	Stoichiometry	H ₂ Req.
(Adjust Koc as necessary to provide realistic estimates)	(L/kg)	Conc (mg/kg)	Mass (lb)	cont/H ₂ (wt/wt)	(lb)
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE)	(L/kg) 371	Conc (mg/kg) 5.10	Mass (lb) 8.1	cont/H ₂ (wt/wt) 20.7	(lb) 0.39
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE)	(L/kg)	Conc (mg/kg)	Mass (lb)	cont/H ₂ (wt/wt)	(lb)
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC)	(L/kg) 371 122 80 2.5	Conc (mg/kg) 5.10 1.29 0.06 0.00	Mass (Ib) 8.1 2.0 0.1 0.0	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2	(lb) 0.39 0.09 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA)	(L/kg) 371 122 80 2.5 304	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00	Mass (Ib) 8.1 2.0 0.1 0.0 0.0	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2	(lb) 0.39 0.09 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichloroethloroethane (DCA)	(L/kg) 371 122 80 2.5 304	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00	Mass (Ib) 8.1 2.0 0.1 0.0 0.0 0.0	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7	(lb) 0.39 0.09 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA)	(L/kg) 371 122 80 2.5 304	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00	Mass (Ib) 8.1 2.0 0.1 0.0 0.0	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2	(lb) 0.39 0.09 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down)	(L/kg) 371 122 80 2.5 304 33 0	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00	Mass (Ib) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichloroethloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down)	(L/kg) 371 122 80 2.5 304 33 0	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 0.00	Mass (lb) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 0	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down)	(L/kg) 371 122 80 2.5 304 33 0	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00	Mass (Ib) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt)	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand	(L/kg) 371 122 80 2.5 304 33 0	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 CEA Conc (mg/L)	Mass (lb) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (lb) 0.6	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 H ₂ Req. (lb)
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand	(L/kg) 371 122 80 2.5 304 33 0	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85	Mass (Ib) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (Ib) 0.6 0.9	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 H ₂ Req. (lb) 0.07 0.07
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand	(L/kg) 371 122 80 2.5 304 33 0	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07	Mass (Ib) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (Ib) 0.6 0.9 0.0	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4 27.5	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 H ₂ Req. (lb) 0.07 0.07 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand	(L/kg) 371 122 80 2.5 304 33 0	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85	Mass (Ib) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (Ib) 0.6 0.9	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 H ₂ Req. (lb) 0.07 0.07
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand	(L/kg) 371 122 80 2.5 304 33 0 0	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94 101.00	Mass (Ib) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (Ib) 0.6 0.9 0.0 0.3	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4 27.5 55.9	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand	(L/kg) 371 122 80 2.5 304 33 0	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94	Mass (Ib) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (Ib) 0.6 0.9 0.0 0.3	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4 27.5 55.9	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand Microbial Demand Factor	(L/kg) 371 122 80 2.5 304 33 0 0	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94 101.00 Recommend 1-4x	Mass (Ib) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (Ib) 0.6 0.9 0.0 0.3	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4 27.5 55.9	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand Microbial Demand Factor Safety Factor 3DMe Weight and Volume Estimations	(L/kg) 371 122 80 2.5 304 33 0 0	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94 101.00 Recommend 1-4x	Mass (Ib) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (Ib) 0.6 0.9 0.0 0.3	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4 27.5 55.9	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand Microbial Demand Factor Safety Factor	(L/kg) 371 122 80 2.5 304 33 0 0	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94 101.00 Recommend 1-4x	Mass (Ib) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (Ib) 0.6 0.9 0.0 0.3	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4 27.5 55.9 12.0	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand Microbial Demand Factor Safety Factor 3DMe Weight and Volume Estimations Project 3DMe Concentrate Material Requirements: Amoung of 3DMe Concentrate Required	(L/kg) 371 122 80 2.5 304 33 0 0 Mass (lbs) 540	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94 101.00 Recommend 1-4x Recommend 1-4x	Mass (lb) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 0	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4 27.5 55.9 12.0 Volume (gals) 65	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand Microbial Demand Factor Safety Factor 3DMe Weight and Volume Estimations Project 3DMe Concentrate Material Requirements:	(L/kg) 371 122 80 2.5 304 33 0 0 Mass (lbs) 540	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94 101.00 Recommend 1-4x Recommend 1-4x	Mass (Ib) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (Ib) 0.6 0.9 0.0 0.3	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4 27.5 55.9 12.0 Volume (gals) 65	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand Microbial Demand Factor Safety Factor 3DMe Weight and Volume Estimations Project 3DMe Concentrate Material Requirements: Amoung of 3DMe Concentrate Required	(L/kg) 371 122 80 2.5 304 33 0 0 \$\text{0}\$ Mass (lbs) \$\text{540}\$ * Minimum Dose	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94 101.00 Recommend 1-4x Recommend 1-4x	Mass (lb) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 0	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4 27.5 55.9 12.0 Volume (gals) 65	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand Microbial Demand Factor Safety Factor 3DMe Weight and Volume Estimations Project 3DMe Concentrate Material Requirements: Amoung of 3DMe Concentrate Required Minimum Contributed TOC 1000.0 (mg/L) Standard 10:1 Vol (H ₂ O):Vol (3DMe) Emulsion Production I	(L/kg) 371 122 80 2.5 304 33 0 0 0 Mass (lbs) 540 * Minimum Dose Requirements: Lbs.	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94 101.00 Recommend 1-4x Recommend 1-4x Recommend 1-4x	Mass (lb) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (lb) 0.6 0.9 0.0 0.3 32.2	Cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4 27.5 55.9 12.0 Volume (gals) 65 irrement. Gallons	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand Microbial Demand Factor Safety Factor 3DMe Weight and Volume Estimations Project 3DMe Concentrate Material Requirements: Amoung of 3DMe Concentrate Required Minimum Contributed TOC 1000.0 (mg/L)	(L/kg) 371 122 80 2.5 304 33 0 0 \$\text{0}\$ Mass (lbs) \$\text{540}\$ * Minimum Dose	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94 101.00 Recommend 1-4x Recommend 1-4x Recommend 1-4x	Mass (lb) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 0	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4 27.5 55.9 12.0 Volume (gals) 65	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand Microbial Demand Factor Safety Factor 3DMe Weight and Volume Estimations Project 3DMe Concentrate Material Requirements: Amoung of 3DMe Concentrate Required Minimum Contributed TOC 1000.0 (mg/L) Standard 10:1 Vol (H ₂ O):Vol (3DMe) Emulsion Production II	(L/kg) 371 122 80 2.5 304 33 0 0 0 Mass (lbs) 540 * Minimum Dose Requirements: Lbs. 540	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94 101.00 Recommend 1-4x Recommend 1-4x Recommend 1-4x	Mass (lb) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (lb) 0.6 0.9 0.0 0.3 32.2	Cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichloroethoroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand Microbial Demand Factor Safety Factor 3DMe Weight and Volume Estimations Project 3DMe Concentrate Material Requirements: Amoung of 3DMe Concentrate Required Minimum Contributed TOC 1000.0 (mg/L) Standard 10:1 Vol (H ₂ O):Vol (3DMe) Emulsion Production II 3DMe Concentrate Water	(L/kg) 371 122 80 2.5 304 33 0 0 0 * Minimum Dose Requirements: Lbs. 540 5,400	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94 101.00 Recommend 1-4x Recommend 1-4x Recommend 1-4x	Mass (lb) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (lb) 0.6 0.9 0.0 0.3 32.2	Cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand Microbial Demand Factor Safety Factor 3DMe Weight and Volume Estimations Project 3DMe Concentrate Material Requirements: Amoung of 3DMe Concentrate Required Minimum Contributed TOC 1000.0 (mg/L) Standard 10:1 Vol (H ₂ O):Vol (3DMe) Emulsion Production in 3DMe Concentrate Water	(L/kg) 371 122 80 2.5 304 33 0 0 0 Mass (lbs) 540 * Minimum Dose Requirements: Lbs. 540 5,400 Total 5,940	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94 101.00 Recommend 1-4x Recommend 1-4x Recommend 1-4x	Mass (lb) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 0	cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4 27.5 55.9 12.0 Volume (gals) 65 iirement. Gallons 65 647 712	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand Microbial Demand Factor Safety Factor 3DMe Weight and Volume Estimations Project 3DMe Concentrate Material Requirements: Amoung of 3DMe Concentrate Required Minimum Contributed TOC 1000.0 (mg/L) Standard 10:1 Vol (H ₂ O):Vol (3DMe) Emulsion Production II 3DMe Concentrate Water	(L/kg) 371 122 80 2.5 304 33 0 0 0 * Minimum Dose Requirements: Lbs. 540 5,400 Total 5,940	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94 101.00 Recommend 1-4x Recommend 1-4x Recommend 1-4x	Mass (lb) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (lb) 0.6 0.9 0.0 0.3 32.2 Me Concentrate atter To	Cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4 27.5 55.9 12.0 Volume (gals) 65 irrement. Gallons 65 647 712	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand Microbial Demand Factor Safety Factor 3DMe Weight and Volume Estimations Project 3DMe Concentrate Material Requirements: Amoung of 3DMe Concentrate Required Minimum Contributed TOC 1000.0 (mg/L) Standard 10:1 Vol (H ₂ O):Vol (3DMe) Emulsion Production in 3DMe Concentrate Water	(L/kg) 371 122 80 2.5 304 33 0 0 0 * Minimum Dose Requirements: Lbs. 540 5,400 Total 15.0 15.0	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94 101.00 Recommend 1-4x Recommend 1-4x Recommend 1-4x	Mass (lb) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (lb) 0.6 0.9 0.0 0.3 32.2 Me Concentrate titer To # points per row # of row	Cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4 27.5 55.9 12.0 Volume (gals) 65 irrement. Gallons 65 647 712 w: 6 s: 1	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(Adjust Koc as necessary to provide realistic estimates) Tetrachloroethene (PCE) Trichloroethene (TCE) cis-1,2-dichloroethene (DCE) Vinyl Chloride (VC) 1,1,1-Trichloroethane (TCA) 1,1-Dichlorochloroethane (DCA) User added, also add stoich. demand and Koc (see pull-down) User added, also add stoich. demand and Koc (see pull-down) Competing Electron Acceptors: Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand Microbial Demand Factor Safety Factor 3DMe Weight and Volume Estimations Project 3DMe Concentrate Material Requirements: Amoung of 3DMe Concentrate Required Minimum Contributed TOC 1000.0 (mg/L) Standard 10:1 Vol (H ₂ O):Vol (3DMe) Emulsion Production II 3DMe Concentrate Water	(L/kg) 371 122 80 2.5 304 33 0 0 0 * Minimum Dose Requirements: Lbs. 540 5,400 Total 5,940	Conc (mg/kg) 5.10 1.29 0.06 0.00 0.00 0.00 0.00 0.00 CEA Conc (mg/L) 1.80 2.85 0.07 0.94 101.00 Recommend 1-4x Recommend 1-4x Recommend 1-4x Recommend 1-4x	Mass (lb) 8.1 2.0 0.1 0.0 0.0 0.0 0.0 0.0 CEA Mass (lb) 0.6 0.9 0.0 0.3 32.2 Me Concentrate atter To	Cont/H ₂ (wt/wt) 20.7 21.9 24.2 31.2 22.2 24.7 0.0 0.0 Stoich. (wt/wt) e acceptor/H ₂ 8.0 12.4 27.5 55.9 12.0 Volume (gals) 65 irrement. Gallons 65 647 712 w: 6 s: 1 s: 6	(lb) 0.39 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lbs.

99.0

990

10:1 V/V Emulsion App. Rate per Foot

10:1 V/V Emulsion App. Rate per Point

3DMe Application Evaluation:

MACTEC Engineering and Consulting, P.C., 3612082107

Approximate Solution Wei	ights and Volumes					
Water : 3DMe	3DMe	3DMe	Water	Water	3DMe + Water	Est. Eff. Pore Space
	Lbs.	Gallons	Lbs.	Gallons	Gallons	Used (%)
10:1	540	65	5,425	650	715	3.7%
20:1	540	65	10,849	1300	1,365	7.2%
30:1	540	65	16,274	1950	2,015	10.6%
40:1	540	65	21,698	2600	2,665	14.0%
50:1	540	65	27,123	3250	3,315	17.4%
100	540	65	54,245	6500	6,565	34.4%
Base Design			•			•

Additional 3DMe Dilution Calculations:

	Gallons
Effective Pore Space Used	8.0%
Add. Water Required to Mix with Standard Microemulsion	814
Total Vol. of Water Required	1,461
Total Vol. of Diluted Microemulsion	1,526
Vol. of Diluted 3DMe Emulsion applied per ft	25
Vol. of Diluted 3DMe Emulsion applied per pt	254

Application Evaluations:

Direct Push Method

Direct Push Application Point - Estimation
Injection Rate (gpm): 5 gpm
Dilution Volume (gals): 1,461 Water

Product Volume (gals): 65 3DMe Concentrate

Application Design

7 (P) (10 to 10 to						
Spacing	Spacing	Number of	Max. Estimated	Solution	Solution	Est. Pumping Time
within Rows	between Rows	Points	Gal./Ft.	Gal./Ft.	Theoretical ROI* (ft)	Mins./Pt.
5	5	51	20	3	0.8	6
7.5	7.5	24	20	6	1.2	13
10	10	18	20	8	1.3	17
12.5	12.5	14	20	11	1.5	22
15	15	6	20	25	2.3	51
20	20	5	20	31	2.5	61

^{*} Asssumes 100% effective pore vol. displacement

Aquif. Pull Down A:52

Injection Well Method

Injection Well Configuration - Evaluation

Injection Rate: 10 gpm
Dilution Volume (gals): 1,461 Water

Product Volume (gals): 65 3DMe Concentrate

Application Design

Spacing	Spacing	Number of	Max. Estimated	Solution	Solution	Est. Pumping Time
within Rows	between Rows	Points	Gal./Ft.	Gal./Ft.	Theoretical ROI* (ft)	Mins./Pt.
5	5	51	25	3	0.8	3
7.5	7.5	24	25	6	1.2	6
10	10	18	25	8	1.3	8
12.5	12.5	14	25	11	1.5	11
15	15	6	25	25	2.3	25
20	20	5	25	31	2.5	31

^{*} Asssumes 100% effective pore vol. displacement

Project Summary:

roject odnimary.						
Number of 3DMe delivery points (adjust as necessary for site)			6	Pricing Structure		
10:1 (by vol) 3DMe Emulsion application rate in Lbs/ft			99.0	10:1 Emulsion Mass Above (lb)	Price (\$/lb)	Warning
Mass of 10:1 (by vol) 3DMe Emulsion per point (lb)			990	0	0.46	
Number of 30 lb 3DMe concentrate buckets/application point			3.0	55000	0.40	
Total 30 lb 3DMe concentrate buckets			18	110000	0.38	
Total mass of 3DMe concentrate (lb)			540	220000	0.38	Regenesis for Bulk Pricir
Mass of 10:1 (by vol) 3DMe Emulsion (lb)		Total	5,940			-
3DMe unit cost (\$/lb of 10:1 (by vol) Emulsion)			\$ 0.46			Unit Price:
Material Cost 10:1 (by vol) 3DMe Emulsion		Total	\$ 2,732			0.46
Shipping and Tax Estimates in US Dollars						Output Warning:
Sales tax r	rate: 0.00%		\$ -			0
Total material cost			\$ 2,732			
Shipping of 3DMe (call for quote)			\$ -			
3DMe Emulsion Material Cost		Total	\$ 2,732			
Unit Costs				1		
Product Cost per yd3 treated			\$ 14			
Cost per gallon of aquifer treated			\$ 0.07			
Material Cost per lb of contmintant			\$ 4,448			

HYDROGEN RELEASE

3DMe Grid Treatment Summary Page - Consultant Output

Regenesis Technical Support: USA (949) 366-8000 <u>www.regenesis.com</u>

Site Name: Dinaburg Distributing Location: Rochester, NY Consultant: MACTEC

Aquifer Characteristics

Soil Type	silty sand	
Total Porosity	0.4	
Effective Porosity	0.2	
Hydraulic Conductivity	10	ft/day
Hydraulic Gradient	0.013	ft/ft
Seepage Velocity	237.4	ft/yr
Pore Volume	5,100	ft ³
Pore Volume	38,151	gals

Design Assumptions

Area of Application	1,275	ft ²
Thickness of Application	10	ft
Dissolved Contaminant Mass	2.67	lbs
Adsorbed Contaminant Mass	10.26	lbs
Mass of Competing Electron Acceptors	33.96	lbs

MACTEC Engineering and Consulting, P.C., 3612082107

3DMe Grid Treatment Summary Page - Consultant Output

Regenesis Technical Support: USA (949) 366-8000 www.regenesis.com

Site Name: Dinaburg Distributing Location: Rochester, NY Consultant: MACTEC

Direct Push Injection Application

3DMe-Related

Concentrate Mass Concentrate Volume

540	lbs
65	gals

Base 10:1 Emulsion Formulation

3DMe Concentrate Volume Water Volume **Emulsion Total Volume** Effective Pore Space Displaced

65	gals
647	gals
712	gals
3.7%	%

Recommended Emulsion Formulation

Additional Water Volume Total Water Volume (base+recommended) Total Mass of Recommended Emulsion Total Volume of Recommended Emulsion

814	gals
1,461	gals
12,733	lbs
1,526	gals

Application-Related

Number of Direct Push Injection Points Mass of 3DMe 10:1 Base Emulsion per Point Volume of 3DMe 10:1 Base Emulsion per Point Mass of 3DMe 10:1 Base Emulsion per Lineal Foot Volume of Recommended Emulsion per Point Volume of Recommended Emulsion per Foot **Estimated Application Rate** Estimated Application Time per Point

6	points
990	lbs/point
119	gals/point
99.0	lbs/ft
254	gals/point
25	gals/ft
5	gpm
6	min/point

Purchasing-Related Information

Number of Buckets of 3DMe Concentrate **Estimated Number of Pallets** Total Required Volume of Water Mass of 10:1 Base Emulsion Unit Price (\$/lb) of 10:1 Base Emulsion Material Cost at 10:1 Base Emulsion (total)

Material Cost at 1
Sales Tax
Shipping Estimate

	18		buckets
	1		pallets
	1,461		gals
	5,940		lbs
\$		0.46	
\$		2,732	
\$		-	
Ф			Call Pag

- Call Regenesis For Quote

3DMe Grid Treatment Summary Page - Consultant Output

Regenesis Technical Support: USA (949) 366-8000 <u>www.regenesis.com</u>

Site Name: Dinaburg Distributing Location: Rochester, NY Consultant: MACTEC

Fixed Well Application

3DMe-Related

Concentrate Mass 540
Concentrate Volume 65

Base 10:1 Emulsion Formulation

 3DMe Concentrate Volume
 65

 Water Volume
 647

 Emulsion Total Volume
 712

 Effective Pore Space Displaced
 3.7%

Recommended Emulsion Formulation

Additional Water Volume Total Water Volume (base+recommended) Total Mass of Recommended Emulsion Total Volume of Recommended Emulsion

814	gals
1,461	gals
12,733	lbs
1,526	gals

lbs

gals

gals

gals

gals

%

Application-Related

Number of Wells
Mass of 3DMe 10:1 Base Emulsion per Well
Volume of 3DMe 10:1 Base Emulsion per Well
Mass of 3DMe 10:1 Base Emulsion per Lineal Foot
Volume of Recommended Emulsion per Well
Volume of Recommended Emulsion per Foot
Estimated Application Rate

Estimated Application Time per Well

6	wells
990	lbs/well
119	gals/well
99.0	lbs/ft
254	gals/well
25	gals/ft
10	gpm
3	min/well

Purchasing-Related Information

Number of Buckets of 3DMe Concentrate Estimated Number of Pallets Total Required Volume of Water Mass of 10:1 Base Emulsion Unit Price (\$/lb) of 10:1 Base Emulsion Material Cost at 10:1 Base Emulsion (total) Sales Tax Shipping Estimate

18		buckets
1		pallets
1,461		gals
5,940		lbs
\$	0.46	
\$	2,732	
\$	-	
\$	-	Call Reg

Call Regenesis For Quote

MACTEC Engineering and Consulting, P.C., 3612082107

3DMe Grid Treatment Summary Page - Contractor Output

Regenesis Technical Support: USA (949) 366-8000 <u>www.regenesis.com</u>

Site Name: Dinaburg Distributing Location: Rochester, NY Consultant: MACTEC

Direct Push Application

Aquifer-Related	Information
-----------------	-------------

Soil Type	silty sand
Area of Application	1,275 ft
Application Dimensions	<u></u>
Length	15 ft
Width	85 ft
Thickness	10 ft

3DMe-Related Information

3DMe Concentrate Mass	540	lbs
Number of Buckets of 3DMe Concentrate	18	buckets
Estimated Number of Pallets	1	pallets
Base 10:1 Emulsion Water Requirement	647	gals
Additional Water Needed to Make Recom. Emulsion	814	gals
Total Volume of Water Required	1,461	gals

Application-Related Information

Spacing Within Rows	15	ft
Spacing Between Rows	15	ft
Number of Direct Push Injection Points	6	points
Volume of 3DMe As Applied, Emulsion per Point	254	gals/point
Volume of 3DMe As Applied, Emulsion per Foot	25	gals/ft
Estimated Application Rate	5	gals/minute
Estimated Application Time Per Point	6	mins/point

Purchasing-Related Information

Number of Buckets of 3DMe Concentrate Estimated Number of Pallets Total Required Volume of Water Mass of 10:1 Base Emulsion Unit Price (\$/lb) of 10:1 Base Emulsion Sales Tax Shipping Estimate

18		buckets
1		pallets
1,461		gals
5,940		lbs
\$	0.46	
\$ •	-	
\$ •	-	Call Regenesis For Quote

3DMe Grid Treatment Summary Page - Contractor Output

Regenesis Technical Support: USA (949) 366-8000 <u>www.regenesis.com</u>

Site Name: Dinaburg Distributing Location: Rochester, NY Consultant: MACTEC

Fixed Well Application

Aguifer-Related Ir	nformation
--------------------	------------

Soil Type	silty sand
Area of Application	1,275 ft ²
Application Dimensions	<u> </u>
Length	15 ft
Width	85 ft
Thickness	10 ft

3DMe-Related Information

3DMe Concentrate Mass	540	lbs
Number of Buckets of 3DMe Concentrate	18	buckets
Estimated Number of Pallets	1	pallets
Base 10:1 Emulsion Water Requirement	647	gals
Additional Water Needed to Make Recom. Emulsion	814	gals
Total Volume of Water Required	1,461	gals

Application-Related Information

Spacing Within Rows	15	ft
Spacing Between Rows	15	ft
Number of Injection Wells	6	points
Volume of 3DMe As Applied, Emulsion per Well	254	gals/point
Volume of 3DMe As Applied, Emulsion per Foot	25	gals/ft
Estimated Application Rate	10	gals/minute
Estimated Application Time Per Point	3	mins/point

Purchasing-Related Information

Number of Buckets of 3DMe Concentrate Estimated Number of Pallets Total Required Volume of Water Mass of 10:1 Base Emulsion Unit Price (\$/lb) of 10:1 Base Emulsion Sales Tax Shipping Estimate

18		buckets
1		pallets
1,461		gals
5,940	•	lbs
\$	0.46	
\$	-	
\$	-	Call Regenesis For Quote

HRC ADVANCED HYDROGEN RELEASE COMPOUND

3DMe Design Software for Excavation Applications

Regenesis Technical Support: USA (949) 366-8000

www.regenesis.com

Site Name: Location: Consultant:

Site Conceptual Model/Extent of Area Requiring Remediation

Planned Excavation:

Width of planned excavation 40 ft

Length of planned excavation 40 ft

Thickness of saturated zone to be excavated 10 ft

1,600 ft² 16,000 ft³ **Date**

GW Plume:

Thickness of saturated zone to be excavated

Width of plume area containing contaminant
Length of plume area containing contaminant
Thickness of contaminated saturated zone
Total porosity
Nominal aquifer soil (gravel, sand, silty sand, silt, clay)
Treatment Zone Pore Volume

10

ft

70

ft

Total porosity
0.4

Nominal aquifer soil (gravel, sand, silty sand, silt, clay)
Treatment Zone Pore Volume

19,600

ft

4,900 ft² 49,000 ft³

t³ 146,628 gallons

Dissolved Phase Electron Donor Demand	Contaminant	Contaminant	Stoichiometry
	Conc. (mg/L)	Mass (lb)	cont/H ₂ (wt/wt)
Tetrachloroethene (PCE)	4.58	5.6	20.7
Trichloroethene (TCE)	3.51	4.3	21.9
cis-1,2-dichloroethene (DCE)	0.26	0.3	24.2
Vinyl Chloride (VC)	0.03	0.0	31.2
1,1,1-Trichloroethane (TCA)	0.00	0.0	22.2
1,1-Dichlorochloroethane (DCA)	0.00	0.0	24.7
User added, also add stoich. demand and Koc (see pull-down)	0.00	0.0	0.0

Koc

Sorbed Phase (SP) Electron Donor Demand

User added, also add stoich. demand and Koc (see pull-down)

Soil bulk density

 $g/cm^3 =$

125 lb/cf

0.0

Stoichiometry

Fraction of organic carbon (foc)

0.003

Contaminant

0.00

range: 0.0001 to 0.01

Contaminant

0.0

(Values are estimated using SP = foc*Koc*Cgw)
(Adjust Koc as necessary to provide realistic estimates)
Tetrachloroethene (PCE)
Trichloroethene (TCE)
cis-1,2-dichloroethene (DCE)
Vinyl Chloride (VC)
1,1,1-Trichloroethane (TCA)
1,1-Dichlorochloroethane (DCA)
User added, also add stoich. demand and Koc (see pull-down)
User added, also add stoich. demand and Koc (see pull-down)

	(L/Kg)	Conc. (mg/kg)	Mass (ID)	convH ₂ (wvwt)
I	371	5.10	21.0	20.7
I	122	1.28	5.3	21.9
ĺ	80	0.06	0.3	24.2
I	2.5	0.00	0.0	31.2
I	304	0.00	0.0	22.2
I	33	0.00	0.0	24.7
I	0	0.00	0.0	0.0
ſ	0	0.00	0.0	0.0

Competing Electron Acceptors (CEAs):

Oxygen Demand Nitrate Demand Bioavailable Manganese Demand Bioavailable Iron Demand Sulfate Demand

CEA	CEA	Stoich. (wt/wt)
Conc (mg/L)	Mass (lb)	e acceptor/H ₂
1.80	2.2	8.0
2.85	3.5	12.4
0.07	0.1	27.5
0.94	1.1	55.9
101.00	123.5	12.0

Microbial Demand Factor Additional Demand Factor 3DMe polymer makeup

3	Recommend 1-4x
3	Recommend 1-4x
161%	Std matl is 50%

3DMe Weight and Volume Estimations

Project 3DMe Concentrate Material Requirements: Amount of 3DMe Concentrate Required (lbs) Water TOC (mg/L): 1000.0

3,630

Volume of 3DMe Concentrate Requ

435

Standard 10:1 Vol (H2O):Vol (3DMe) Emulsion Production Requirements:

3DMe Concentrate Water Lbs.
3,630
36,301

Total 39,931

| Gallons | 3DMe Concentrate | 435 | Water | 4,350 | Total | 4,785 |

Project Summary:

 Mass of 10:1 3DMe Emulsion Lbs.
 39,931

 3DMe Concentrate Lbs.
 3,630

 Number of 30 lb 3DMe concentrate buckets
 121

 3DMe unit cost (\$/lb of 10:1 Emulsion)
 \$ 0.46

Material Cost 10:1 (V:V) 3DMe Emulsion Total \$ 18,368 **Pricing** Mass Above (lb) Price (\$/lb) Shipping and Tax Estimates in US Dollars Sales tax rate: 0.00% 0.46 Total material cost \$ 18,368 55000 0.40 Shipping of 3DMe (call for quote) 110000 0.38 0.38 3DMe Emulsion Material Cost Total \$ 18,368 220000 **Unit Costs**

Product Cost per yd3 treated \$ 10
Cost per gallon of aquifer treated \$0.13

<u> </u>	-
\$	-
\$	-
\$	-
\$	-
\$	-
\$	-
\$	-
\$	-
\$	-
\$	-
	\$\$\$\$\$\$\$\$\$\$\$\$

3DMe Design Software for Excavation Applications

Regenesis Technical Support: USA (949) 366-8000

www.regenesis.com

Site Name: Location: Consultant:

Site Conceptual Model/Extent of Area Requiring Remediation

Planned Excavation:

Width of planned excavation

Length of planned excavation

25

ft

Length of planned excavation

20

ft

Length of planned excavation 20 ft 500 ft
Thickness of saturated zone to be excavated 10 ft 5,000 ft

0.00

Contaminant

GW Plume: Width of plume area containing contaminant 55

Length of plume area containing contaminant 40

Thickness of contaminated saturated zone 10 ft

Total porosity 0.4

Nominal aquifer soil (gravel, sand, silty sand, silt, clay) silty sand

Treatment Zone Pore Volume 8,800 ft³

 $\frac{2,200}{22,000}$ ft²

65,833

0.0

Stoichiometry

gallons

Date

Dissolved Phase Electron Donor Demand Contaminant Contaminant Stoichiometry Mass (lb) cont/H₂ (wt/wt) Conc. (mg/L) Tetrachloroethene (PCE) 4.58 2.5 20.7 Trichloroethene (TCE) 1.9 21.9 cis-1,2-dichloroethene (DCE) 0.26 0.1 24.2 Vinyl Chloride (VC) 0.03 0.0 31.2 1,1,1-Trichloroethane (TCA) 0.00 0.0 22.2 1,1-Dichlorochloroethane (DCA) 0.00 0.0 24.7 User added, also add stoich. demand and Koc (see pull-down) 0.00 0.0 0.0

Koc

Sorbed Phase (SP) Electron Donor Demand

User added, also add stoich. demand and Koc (see pull-down)

Soil bulk density

 $g/cm^3 = 125$ lb/cf

0.0

Contaminant

Fraction of organic carbon (foc) 0.003 range: 0.0001 to 0.01

(Values are estimated using SP = foc*Koc*Cgw)
(Adjust Koc as necessary to provide realistic estimates)
Tetrachloroethene (PCE)
Trichloroethene (TCE)
cis-1,2-dichloroethene (DCE)
Vinyl Chloride (VC)
1,1,1-Trichloroethane (TCA)
1,1-Dichlorochloroethane (DCA)
User added, also add stoich. demand and Koc (see pull-down)
User added, also add stoich. demand and Koc (see pull-down)

(L/Kg)	Conc. (mg/kg)	Mass (ID)	convH ₂ (wvwt)
371	5.10	10.8	20.7
122	1.28	2.7	21.9
80	0.06	0.1	24.2
2.5	0.00	0.0	31.2
304	0.00	0.0	22.2
33	0.00	0.0	24.7
0	0.00	0.0	0.0
0	0.00	0.0	0.0

CEA CEA Competing Electron Acceptors (CEAs): Stoich. (wt/wt) Mass (lb) Conc (mg/L) e acceptor/H₂ Oxygen Demand 1.0 8.0 1.80 Nitrate Demand 2.85 1.6 12.4 Bioavailable Manganese Demand 0.0 27.5 0.07 Bioavailable Iron Demand 0.94 0.5 55.9 **Sulfate Demand** 101.00 55.4 12.0

Microbial Demand Factor3Recommend 1-4xAdditional Demand Factor3Recommend 1-4x3DMe polymer makeup161%Std matl is 50%

3DMe Weight and Volume Estimations

Project 3DMe Concentrate Material Requirements: Amount of 3DMe Concentrate Required (lbs)

1,710 Volume of 3DMe Concentrate Requ

205

Standard 10:1 Vol (H2O):Vol (3DMe) Emulsion Production Requirements:

3DMe Concentrate 1,710
Water 17,107
Total 18,817

	Gallons
3DMe Concentrate	205
Water	2,050
Total	2,255

Project Summary:

Water TOC (mg/L):

 Mass of 10:1 3DMe Emulsion Lbs.
 18,817

 3DMe Concentrate Lbs.
 1,710

 Number of 30 lb 3DMe concentrate buckets
 57

 3DMe unit cost (\$/lb of 10:1 Emulsion)
 \$ 0.46

Material Cost 10:1 (V:V) 3DMe Emulsion	Total \$	8,656	Pricing	
Shipping and Tax Estimates in US Dollars			Mass Above (lb)	Price (\$/lb)
Sales tax rate: 0.00%	\$	-	0	0.46
Total material cost	\$	8,656	55000	0.40
Shipping of 3DMe (call for quote)	\$	-	110000	0.38
3DMe Emulsion Material Cost	Total \$	8,656	220000	0.38

Unit CostsProduct Cost per yd3 treated\$ 11Cost per gallon of aquifer treated\$0.13

Total Project Cost	\$ -
Other	\$ -
Other	\$ -
Other	\$ -
Other	\$ -
Other	\$ -
Groundwater monitoring	\$ -
Laboratory costs	\$ -
Construction management	\$ -
Excavation contractors	\$ -
Permitting and reporting	\$ -
Design	\$ -
Other Project Cost Estimates	