

2023 Annual Report Dinaburg Distributing, Inc. Site Rochester, New York NYSDEC Site Number 828103

Prepared for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12207

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology Washington Station 333 West Washington Station, Suite 300 Syracuse, New York 13202 315-431-4610

> November 2024 Version: FINAL EA Project No. 1602534.18

This page intentionally left blank

2023Annual Report Dinaburg Distributing, Inc. Site Rochester, New York NYSDEC Site Number 828103

Prepared for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12207

Prepared by

EA Engineering, P.C. and Its Affiliate EA Science and Technology Washington Station 333 West Washington Station, Suite 300 Syracuse, New York 13202 315-431-4610

Donald Ca

Donald Conan, P.E., P.G., Program Manager EA Engineering, P.C.

John This

Joshua Oliver, Project Manager EA Science and Technology 4 November 2024 Date

4 November 2024 Date

November 2024 Version: FINAL EA Project No. 1602534.18 This page intentionally left blank

TABLE OF CONTENTS

Page

LIST (LIST (OF FIG OF APP	ILES
1.	BACK	GROUND
	1.1 1.2 1.3	SITE DESCRIPTION AND PHYSICAL SETING
2.	FIELD	ACTIVITIES
	2.1 2.2 2.3 2.4 2.5	SITE-WIDE INSPECTIONS2-1MONITORING WELL ASSESSMENT2-1GROUNDWATER GAUGING2-1GROUNDWATER SAMPLING2-2LABORATORY ANALYSIS2-2
3.	MONI	TORING RESULTS
	3.1 3.2	INSPECTION RESULTS
		3.2.1Volatile Organic Compound Results3-13.2.2Monitored Natural Attenuation Results and Evaluation3-73.2.3Microbial Sampling3-8
	3.3	GROUNDWATER RESULTS, EFFECTIVENESS, AND PROTECTIVENESS
4.	CONC	LUSIONS AND RECOMMENDATIONS
	4.1 4.2	CONCLUSIONS
		4.2.1Sub-Slab Depressurization System Inspection4-14.2.2Site-Wide Inspection4-14.2.3Groundwater Monitoring4-14.2.4Remedial System Optimization4-2
5.	REFEI	RENCES

LIST OF TABLES

Table 1-1.	Chronological L	ist of Investigations	and Record Documents

- Table 2-1.Monitoring Well Details
- Table 2-2.September 2023 Monitoring Well Maintenance
- Table 3-1.Concentrations of VOCs in Groundwater
- Table 3-2.
 Concentrations of MNA Parameters in Groundwater
- Table 3-3.Results for Microbial Sampling in Groundwater
- Table 3-4.Historical VOCs in Groundwater
- Table 3-5.Analytical Parameters and Weightings for Preliminary Screening for Anaerobic
Biodegradation Process

(September 2023)

LIST OF FIGURES

Figure 1-1.	Site Location
Figure 1-2.	Site Layout Map
Figure 2-1.	Overburden Groundwater Elevation Contours (September 2023)
Figure 2-2.	Overburden/Bedrock Interface and Bedrock Groundwater Elevation Contours (September 2023)
Figure 3-1.	VOC Exceedances in Overburden Groundwater Monitoring Wells (September 2023)
Figure 3-2.	VOC Exceedances in Bedrock and Interface Groundwater Monitoring Wells

LIST OF APPENDICES

- Appendix A. Daily Field Reports
- Appendix B. Inspection Forms
- Appendix C. Field Forms
- Appendix D. Laboratory Analysis Reports
- Appendix E. Data Usability Summary Report
- Appendix F. Mann Kendall Analysis

LIST OF ACRONYMS AND ABBREVIATIONS

°F	Degrees Fahrenheit
ug/L	Micrograms per liter
%	Percent
bgs	Below ground surface
cells/mL	Cells per milliliter
DCE	Dichloroethylene
DHC	Dehalococcoides
EA	EA Engineering, P.C. and its affiliate EA Science and Technology
EPA	U.S. Environmental Protection Agency
ERH	Electrical resistance heating
ft	Foot/feet
IRM	Interim Remedial Measure
MACTEC	MACTEC Engineering and Geology, P.C.
MNA	Monitored natural attenuation
MPE	Multi-phase extraction
No.	Number
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
OU	Operable unit
PCE	Tetrachloroethene
PDB	Passive diffusion bag
RAO	Remedial action objective
ROD	Record of Decision
SCO	Soil cleanup objective
Site	Dinaburg Distributing, Inc.
SMP	Site Management Plan
SSDS	Sub-slab depressurization system
TCE	Trichloroethene
URS	URS Corporation
VOC	Volatile organic compound

This page intentionally left blank

1. BACKGROUND

The New York State Department of Environmental Conservation (NYSDEC) tasked EA Engineering, P.C. and its affiliate EA Science and Technology (EA) under Work Assignment Number (No.) D009806-34 to perform site management activities, including annual groundwater sampling, at the Dinaburg Distributing Inc. Site (Site No. 828103). This Annual Report documents the field events from the year 2023. The groundwater monitoring activities were completed in accordance with the applicable guidelines and requirements of NYSDEC.

The Site is located at 1012 South Clinton Avenue in the city of Rochester, Monroe County, New York (**Figure 1-1**). The Site occupies approximately 0.25 acres on two parcels; one, a "T" shaped lot (Tax Map 121.74-5-68), was the former location of Dinaburg Distributing, and the second parcel (Tax Map 121.74-5-66) historically contained a residence (referred to as 350 Benton Street). The former site building located on the main parcel and a house located on the second parcel at 350 Benton Street were demolished in 2004 (MACTEC Engineering and Geology, P.C. [MACTEC] 2011). The boundaries of the Site are more fully described in the Site Management Plan (SMP) (EA 2023).

1.1 SITE DESCRIPTION AND PHYSICAL SETING

The Site is zoned mixed commercial/residential and is currently vacant and surfaced with a combination of pavement and grass. The Site is bounded by commercial properties to the northwest, residential properties to the northeast, South Clinton Avenue to the southwest, and Benton Street and commercial and residential properties to the southeast (**Figure 1-2**).

The Site, approximately 515 feet (ft) above mean sea level, is roughly 6,000 ft east of the Genesee River and approximately 1,000 ft north of the Pinnacle Hills, which are between 100 to 200 ft higher in elevation than the Site (**Figure 1-1**). The site topography is nearly flat with a slight slope down towards the streets to the southwest and southeast. Surface water run-off is collected by a storm water/sewer system underlying the adjacent streets (MACTEC 2023a).

The area climate is characterized by moderately warm summers and cold winters. Mean monthly temperatures range from 26.2 degrees Fahrenheit (°F) in January to 72.3°F in July. Average annual precipitation is 35 inches. Average annual snowfall is 102 inches (National Oceanic and Atmospheric Administration 2024). There are no nearby water bodies that receive direct runoff from the Site. Surface drainage from the site generally flows to storm sewer drains and then to the municipal wastewater treatment system.

The Site is underlain by approximately 20 to 25 ft of overburden consisting of man-made fill overlying glacial deposits including glaciolacustrine (lacustrine) sediments and lodgement till (till). The fill material consists of re-worked silty sand and contains gravel, bricks, concrete, and wood. The fill material ranges in thickness from 0 to approximately 8 ft in and immediately around the Site, and, where present, overlies glaciolacustrine sediments (MACTEC 2011).

Glacial deposits are generally continuous across the Site, with some lateral variability in grain size composition (MACTEC 2011). Glaciolacustrine sediments consist of stratified clayey silt, sandy

silt, and silty clay interbedded with thin sand layers ranging from a few inches to a few ft thick. Lacustrine deposits overlie till and do not appear to contact bedrock. Till consists of angular dolostone fragments with occasional boulders in a silty clay matrix. Till overlies gravelly weathered bedrock that becomes more competent with depth. Bedrock at the Site consists of a low relief Silurian age dolostone of the Lockport Group, described as medium gray, hard, fine to medium grained, mostly featureless or with some zones of wavy carbonaceous laminae.

The hydrology beneath the Site consists of a shallow water table which is fairly flat; regionally, bedrock groundwater in the Rochester area flows to Lake Ontario. Groundwater at the Site is present in both overburden and bedrock, with depth to water between 5 and 8 ft below ground surface (bgs) in overburden; between 8 and 9 ft bgs in the overburden/weathered bedrock interface zone; and greater than 10 ft bgs bedrock. The direction of local groundwater flow is interpreted to be from the east and northeast to the west, southwest, and southeast (as influenced by the local sewer system) in both the shallow glacial deposits and the deep overburden/bedrock interface units (URS Corporation [URS] 2001).

1.2 INVESTIGATION HISTORY

The Site property and buildings were reportedly used as an automobile repair shop from approximately 1950 through 1969. From 1971 to 1993, the Site was occupied by Dinaburg Distributing, which operated a dry-cleaning supply company selling chemical solvents to various dry cleaners in the area (Sear-Brown Group, Inc. 1995). Trichloroethene (TCE) and tetrachloroethene (PCE) were stored in aboveground storage tanks located inside the north section of the Site building (URS 2001). As a result of Site operations, chlorinated solvents were released through spills and leaks to the ground surface both inside and outside the former building in the vicinity of the former Benton Street driveway. In addition, discharges of PCE, fuel oil/diesel, and Varsal (mineral spirits) had occurred at the Site (Empire Soils Investigations, Inc. 1994). Several field investigations at the Site identified high concentrations of chlorinated compounds representative of dry-cleaning solvents, specifically PCE, TCE, and their breakdown products, in Site soil and groundwater. The investigations are listed in **Table 1-1**.

The identified contaminants in soil at the Site are chlorinated compounds representative of drycleaning solvents, specifically PCE and TCE, with PCE occurring at higher concentrations. The highest contaminant concentrations were detected in shallow soil beneath the tank storage room at the back (north) of the former Dinaburg building, beneath a building extension adjacent to the Benton Street driveway, and beneath the adjacent driveways at the 350 and 338 Benton Street properties. Concentrations in soil generally decreased with depth in the vadose zone. Contamination also appeared to have migrated laterally away from entry points. Concentrations of PCE, TCE, *cis*-1,2-dichloroethene (DCE), 1,1-dichloroethane, xylene, and 1,1,1-trichloroethane in soil exceeded NYSDEC Unrestricted Use soil cleanup objectives (SCOs) (MACTEC 2011).

The primary contaminants of concern in groundwater are PCE and TCE, which were detected in overburden groundwater at concentrations exceeding the NYSDEC Class GA groundwater criteria (URS 2001). Contaminated groundwater was determined to flow away from the source areas in directions ranging primarily from southeast to west, as controlled by the predominant groundwater flow directions. PCE, TCE, 1,2-dichloroethene (total), and vinyl chloride were also detected in

bedrock groundwater, with concentrations at bedrock monitoring well MW-03C that exceed Class GA groundwater criteria.

1.3 REMEDIAL HISTORY

The following Interim Remedial Measures (IRMs) have been conducted at the Site:

- In 1999, NYSDEC installed a soil vapor extraction system to address potential indoor air contamination associated with soil vapor intrusion at two adjacent properties. The operation of the system was discontinued as part of the second IRM.
- In 2005, NYSDEC conducted a limited soil removal of 370 cubic yards and installed a multi-phase extraction (MPE) system that operated from 2006 to 2011. The MPE system included 18 MPE wells installed to the top of the till layer (10 to 15 ft bgs) and 3 extraction wells installed at the overburden/bedrock interface. A sub-slab depressurization system (SSDS) was also installed at an adjacent residence to address potential indoor air contamination by volatile organic compounds (VOCs) associated with soil vapor.

In 2011, the Site was subsequently divided into two operable units (OUs) as presented below. An operable unit represents a portion of a remedial program for a site that for technical or administrative reasons can be addressed separately to investigate, eliminate, or mitigate a release, threat of release, or exposure pathway resulting from the site contamination. The operable unites of the Site include the following:

- OU1: on-site soil (i.e., the primary source area)
- OU2: groundwater and soil vapor plumes attributed to the soil source area.

An ROD for OU1 was issued in March 2011, and the selected remedy was the implementation of an electrical resistance heating (ERH) system to address on-site source area soil (NYSDEC 2011). The ERH system, installed to the top of bedrock, operated from May to December 2015. The ERH remedy successfully remediated site soils to Residential Use SCOs. In addition, the ROD required the following ICs/ECs be implemented at the Site:

- An Environmental Easement for the property that, a) requires a periodic certification of ICs/ECs, b) allows the use and development of the property for residential use, and c) requires compliance with the NYSDEC-approved SMP.
- An SMP that includes an IC/EC Plan, a Monitoring Plan, and an Operation and Maintenance Plan.

Upon completion of the OU1 soil remedy, additional groundwater monitoring wells were installed off-site to evaluate the extent of the chlorinated VOC groundwater plume. Several rounds of groundwater samples were collected as part of the OU2 (groundwater) remedial investigation (RI) conducted in 2018 and 2019 (MACTEC 2020).

The ROD for OU2 was issued in March 2021 (NYSDEC 2021). The OU2 ROD recommended No Further Action with the following ICs/ECs to be implemented at the Site:

- Modification of the OU1 IC to add an Environmental Easement for the property that restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH).
- Maintaining the existing off-site Sub-slab depressurization system.
- An SMP to be integrated into the OU1 SMP.

An SMP (EA 2023) was prepared to manage the remaining contamination, which included soil, groundwater, and soil vapor. The remaining contamination in soil does not exceed Residential Use SCOs. Contaminants are present in groundwater at and in the vicinity of the Site at concentrations above NYSDEC Class GA standards. Soil vapor intrusion testing was conducted in 2005 and 2009, and the VOCs present in soil vapor led to the installation of a sub-slab depressurization system at an adjacent property. Future buildings constructed at the Site will require operation of an SSDS due to remaining groundwater contamination.

Following the implementation of the SMP, groundwater sampling is conducted annually at the Site. The groundwater monitoring network consists of 37 wells that are tested for VOCs, and 7 of those wells are tested for MNA parameters. This report documents the annual sampling for the year 2023.

2. FIELD ACTIVITIES

Field activities included monitoring well assessments/inspections, groundwater gauging, and sampling of the existing monitoring well network (**Table 2-1**). Monitoring well locations are presented on **Figure 1-2**. Daily field reports are provided in **Appendix A**. The site inspection checklist from 30 March 2023 is included in **Appendix B**. Field forms from the inspection and sample collection events are provided in **Appendix C**. Groundwater monitoring was conducted according to the Site Management Plan (EA 2023).

A summary of the field activities for 2023 are provided below:

- 30 March 2023—Site-wide inspection with NYSDEC and monitoring well assessment
- 27 July 2023—Site inspection and attempted delivery of access agreements
- 31 August 2023—Site inspection with property owner/manager
- 11-14 September 2023—Well maintenance, repair, and redevelopment
- 25-27 September 2023—Groundwater sampling.

2.1 SITE-WIDE INSPECTIONS

An annual site-wide inspection was conducted on 30 March 2023 and included an assessment of monitoring wells for general conditions; specifically, well casings, collars, labels, locks, covers, caps, risers, and annular spaces were inspected. An additional visual inspection of on-site garbage and debris was performed on 27 July 2023 and included an attempted delivery of access agreements to property owners. A third inspection was performed on 31 August 2023 while meeting with the property owner/manager. There were no severe weather conditions or emergencies during the year 2023, and therefore additional inspections were not conducted. The off-site SSDS is monitored by individual property owners and is not included in this report.

2.2 MONITORING WELL ASSESSMENT

Several monitoring wells were in disrepair during the annual site-wide inspection (i.e., missing/stripped bolts, missing j-plugs, covers missing, surface completions broken/cracked beyond use). Subsequent well maintenance activities were conducted during the annual groundwater monitoring event in September 2023 as presented in **Table 2-2** and on daily inspection reports included in **Appendix A**. Locks, J- plugs, and bolts were added to select wells and eyelets rethreaded. Six monitoring wells were redeveloped including MW-08K, MW-09S, MW-18S, MW-19S, MW-22K and MW-24K during the week of 11 September 2023.

2.3 GROUNDWATER GAUGING

Groundwater gauging was conducted on 25 September 2023. Groundwater levels were measured with a Heron[®] water level meter to the nearest 0.01 ft from a reference point marked on the top of the inner casing. Water levels and groundwater elevations are provided in **Table 2-1**. Overburden groundwater elevations and interpreted groundwater contours are presented on **Figure 2-1** and overburden/bedrock interface groundwater elevations and interpreted groundwater elevations are presented on **Figure 2-2**. Groundwater elevations in overburden wells indicate overburden

groundwater primarily flowing north/northwest, but with some radial flow to the east and northeast. Groundwater elevations in overburden/bedrock interface wells indicate groundwater primarily flowing eastward toward the Site, with radial flow at the Site toward the south and west. Field forms are presented in **Appendix C**.

2.4 GROUNDWATER SAMPLING

Groundwater samples were collected from 33 of 37 monitoring wells using low-flow sampling procedures. Four of the monitoring wells were not sampled for various reasons: MW-01, MW-01A, and GWE-1 were paved over and inaccessible; and MW-11K was damaged at approximately 3.5 ft bgs. Water quality field parameters including temperature, pH, dissolved oxygen, conductivity, turbidity, and oxidation-reduction potential were monitored throughout purging and groundwater samples were collected when groundwater parameters had stabilized over three consecutive readings, indicating that formation water was being drawn. Quality assurance /quality control samples collected for groundwater samples included two matrix spike /matrix spike duplicates and two field duplicates. Each groundwater sample was collected for off-site laboratory analysis of VOCs by U.S. Environmental Protection Agency (EPA) Method 8260.

Seven wells (MW-03A, MW-03CA, MW-08K, MW-13K, MW-14KA, MW-19S, and MW-20S) representing the source area overburden/bedrock interface groundwater and shallow bedrock groundwater and downgradient overburden/interface groundwater, as well as the background well MW-8K, were sampled for monitored natural attenuation (MNA) parameters, including:

- Alkalinity by Standard Method 2320B
- Nitrate and Sulfate by Standard Method 300.0
- Chloride and Sulfide by Standard Method 4500S2 F
- Iron and manganese by EPA Method 6010D
- Ethene, ethane, methane, and Carbon Dioxide by EPA Method RSK-175
- Total organic carbon by Standard Method 5310B.

In addition to the SMP required sampling, microbial sampling was conducted at MW-13K, MW-03CA, and MW-20S with a standard bio-trap sampling method. The bio-traps were installed in September 2023 and collected in October 2023. The 3 samples were sent to Microbial Insights for analysis by the QuantArray®-Chlor method. The purpose of the analysis was to provide an evaluation of potential biodegradation of common chlorinated contaminants through anerobic and aerobic (co)metabolic pathways. Samples were collected from near source area wells MW-20S and MW-03CA and downgradient overburden/bedrock interface well MW-13K.

2.5 LABORATORY ANALYSIS

Samples were analyzed by SGS North America Inc. in Dayton, New Jersey. Laboratory results were validated by Environmental Data Services, LTD in accordance with NYSDEC DER-10 validation guidelines. Laboratory results are presented in **Appendix D**, and a Data Usability Summary Report is provided in **Appendix E**. Data was determined to be usable as qualified during data validation. No data was rejected, and analytical results for samples collected were considered valid and usable with qualifications as noted in the Data Usability Summary Report.

3. MONITORING RESULTS

Annual groundwater monitoring was conducted from 25 to 27 September 2023 and included measurement of water levels and collection and analysis of groundwater samples from 33 of 37 monitoring wells in accordance with the SMP (**Table 2-1**). Four monitoring wells were either inaccessible (MW-01, MW-01A, and GWE-1) or damaged (MW-11K). Monitoring well locations are presented on **Figure 1-2**. Daily field reports for groundwater monitoring are provided in **Appendix A**.

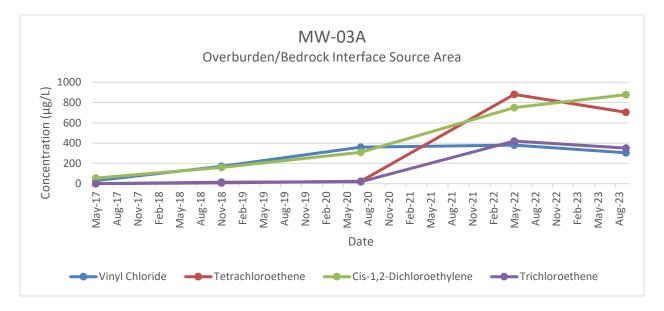
3.1 INSPECTION RESULTS

EA conducted multiple inspections to monitor the property owner's progress of cleaning up the Site. An excessive amount of on-site debris (recreational vehicles, piles of wood, garbage, and overground vegetation) was documented during the inspections of 30 March and 27 July 2023. By 31 August 2023, the inspection indicated that the property owner was cleaning up the property in preparation for the third quarter sampling. EA personnel met with the property owner on-site to locate the monitoring wells network and identify any monitoring well accessibility issues. No evidence of demolition or construction activities or disturbances to the Site was observed during the inspections. The usage of the property was in compliance with designated use as residential, restricted residential, or commercial.

3.2 GROUNDWATER RESULTS

Analytical results from the sampling event conducted during the reporting period (September 2023) are included in **Table 3-1** for VOCs, **Table 3-2** for MNA parameters, and **Table 3-3** for microbial population. Overburden groundwater chlorinated VOC concentrations from the September 2023 sampling event are depicted on **Figure 3-1** and overburden/bedrock interface chlorinated VOC concentrations are shown on **Figure 3-2**.

3.2.1 Volatile Organic Compound Results


VOCs were detected in 21 of the 33 monitoring wells sampled exceeding NYSDEC Class GA standards (6 New York Code of Rules and Regulations [NYCRR] Part 703.5 Water Quality Regulations, as presented in the Division of Water Technical and Operational Guidance Series 1.1.1, 1998, as amended). VOCs included 1,1-Dichloroethane, 1,1-Dichloroethene, *Cis*-1,2-DCE, PCE, *trans*-1,2-DCE, TCE, and/or vinyl chloride. The highest concentrations of the primary contaminants of concern (PCE and TCE and their degradation products *cis*-1,2-DCE and vinyl chloride) were as follows:

- PCE concentration of $37,100 \ \mu g/L$ detected at overburden well MW-20S, located in the southwestern corner of the Site near Benton Street.
- TCE concentration of $3,170 \ \mu g/L$ detected at overburden/bedrock interface well MW-14KA, located at the eastern edge of the Site near adjacent property.

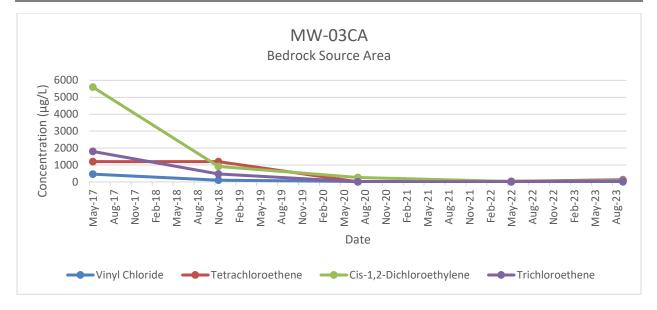
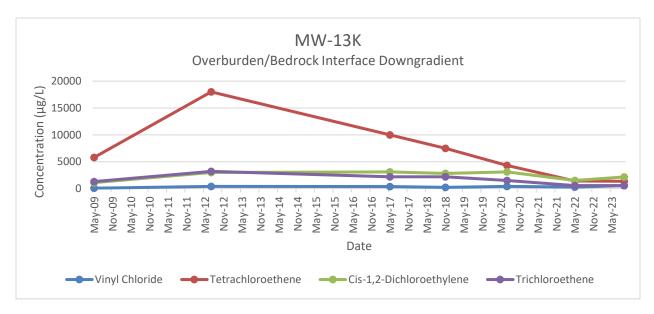
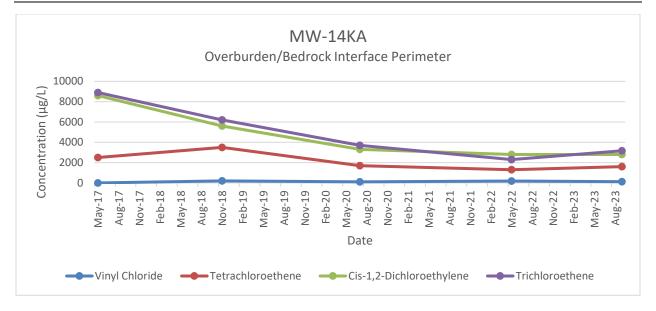
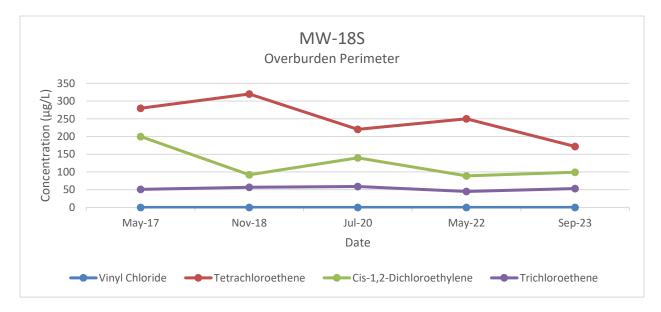
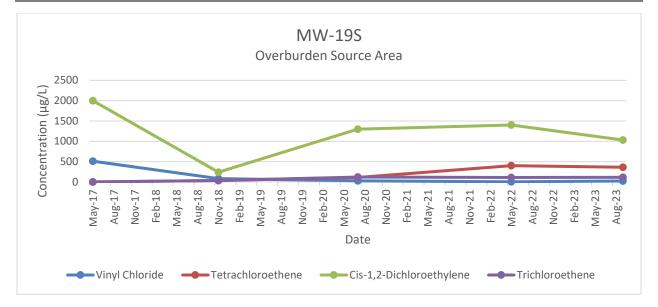

- *Cis*-1,2-DCE concentration of 2,800 µg/L detected at overburden/bedrock interface well MW-14KA, located at the eastern edge of the Site near adjacent property.
- Vinyl chloride concentration of 539 µg/L detected at overburden/bedrock interface well MW-13K, located north of the southern edge of the property near Benton Street.

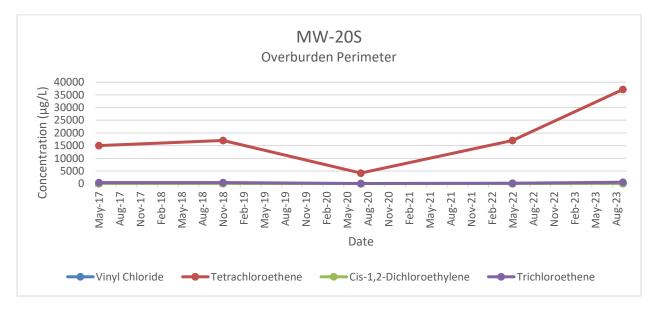
Table 3-4 presents PCE, TCE, *cis*-1,2-DCE, and vinyl chloride concentrations in groundwater over time from May 2009 through September 2023. The Mann-Kendall Toolkit was used to statistically evaluate trends in PCE, TCE, and *cis*-1,2-DCE concentrations over time. Mann-Kendall plots are provided in **Appendix F**. A summary of PCE, TCE, *cis*-1,2-DCE, and vinyl chloride concentrations detected in select representative wells from the monitoring well network is provided below. Trend graphs are presented for each well with the available data post-ERH remediation, from May 2017 to September 2023. Electronic data covering the years 2019 and 2021 were not available.

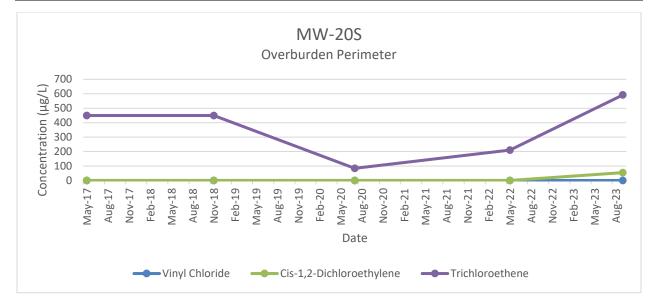

MW-03A: Overburden/bedrock interface monitoring well within the source area. Results from the Mann-Kendall Toolkit indicated concentration trends of no trend for PCE and TCE and an increasing trend for *cis*-1,2-DCE.


MW-03CA: Shallow bedrock monitoring well within the source area. Results from the Mann-Kendall Toolkit indicated no concentration trend for PCE, TCE, and *cis*-1,2-DCE.

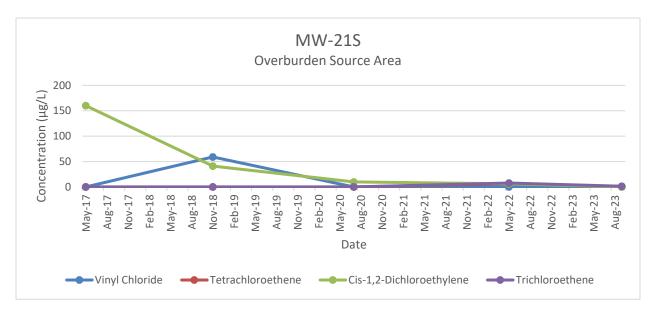

MW-13K: Overburden/bedrock interface monitoring well near the western/downgradient perimeter of the Site. Results from the Mann-Kendall Toolkit indicated concentration trends of probability decreasing for PCE and stable for TCE and *cis*-1,2-DCE.


MW-14KA: Overburden/bedrock interface monitoring well near the eastern perimeter of the Site. Results from the Mann-Kendall Toolkit indicated stable concentration trends for PCE, TCE, and *cis*-1,2-DCE.


MW-18S: Overburden monitoring well along the northern perimeter of the source area. Results from the Mann-Kendall Toolkit indicated stable concentration trends for PCE, TCE, and *cis*-1,2-DCE.



MW-19S: Overburden monitoring well in the source area. Results from the Mann-Kendall Toolkit indicated a stable concentration trend for *cis*-1,2-DCE. The Mann-Kendall evaluation did not include PCE and TCE because of lack of data (i.e., limit of detection).



MW-20S: Overburden monitoring well near the southeast perimeter of the source area. Multiple graphs are provided for MW-20S for clarity of the data that may be difficult to interpret from one graph alone. Results from the Mann-Kendall Toolkit indicated no concentration trends for PCE and TCE. The Mann-Kendall evaluation did not include *cis*-1,2-DCE because of lack of data (i.e., limit of detection).

MW-21S: Overburden monitoring well within the source area. Results from the Mann-Kendall Toolkit indicated a decreasing concentration trend for *cis*-1,2-DCE. Mann-Kendall evaluation was not conducted for PCE and TCE because of lack of data (i.e., limit of detection).

Concentrations of chlorinated VOCs in most of the overburden wells and in the overburden/bedrock interface wells have shown a steady decrease since the ERH remedy was completed in 2015. The primary exception is the vicinity of MW-20S, where chlorinated VOC (primarily PCE) concentrations have fluctuated post-remediation but remain high (PCE at a concentration of 37,100 μ g/L). Concentrations in the nearby overburden well and MW-19S and overburden/bedrock interface well MW-03A have also increased slightly over the last four years, although concentrations detected in MW-03A are a mixture of the four primary chlorinated compounds and concentrations in MW-19S are 68 percent *cis*-1,2-DCE. This is a possible indication that the PCE detected in MW-20S is migrating slowly to the north in overburden

groundwater but is also being broken down into degradation products through natural attenuation processes.

3.2.2 Monitored Natural Attenuation Results and Evaluation

As a secondary evaluation the EPA screening tool was used to complete preliminary screening for anaerobic degradation processes (**Table 3-5**). The screening tool uses field parameters and analytical data to determine the potential for biological reductive dechlorination at the site. EA utilized the screening assessment to further evaluate current site conditions. Following is the scoring rationale:

- 0–5 indicates *inadequate* evidence for anaerobic biodegradation
- 6–14 indicates *limited* evidence for anaerobic biodegradation
- 15–20 indicates *adequate* evidence for anaerobic biodegradation
- >20 indicates *strong* evidence for anaerobic biodegradation.

All wells sampled for natural attenuation parameters were used to determine the potential for reductive dechlorination at the Site. Scores range from 1 to 21 with 28% falling in the 0 to 5 bracket, 43% falling into 6 to 14 bracket, 14% falling into the 15 to 20 bracket, and 14 % falling in the greater than 20 scoring bracket. Based on the EPA screening tool, the evidence of anaerobic biodegradation ranges from the *inadequate* category up to the *strong* category, at the select wells. Inadequate evidence is seen at the background well and MW-20S, the well with the greatest concentration of PCE.

Approximately 70% of the select wells show limited evidence of anerobic biodegradation, and a closer inspection of the geochemistry data will provide the limiting factors of the biodegradation process. Degradation of organic contaminants in groundwater is accomplished by biochemical oxidation reactions where one compound (i.e., electron donor) loses electrons and is oxidized and the other compound (i.e., electron acceptor) receives electrons and is reduces. The compound that is reduces (i.e., receives or gains electrons) is termed as a terminal electron acceptor. Oxygen, nitrate, ferric iron, and sulfate minerals in the aquifer can serve as the terminal electron acceptors, and the presence of these terminal electron acceptors provides a better understanding of the limiting factors of biodegradation. Dissolved oxygen is the most preferred terminal electron acceptor relative to others used by microorganisms for the biodegradation of the contaminants. Since dissolved oxygen is greater than 0.5 milligram per liter (mg/L) for 6 of the 7 wells, the predominant microbial process is aerobic biodegradation. Nitrate is the next most preferred terminal electron acceptor after dissolved oxygen. The presence of nitrate less than 1 mg/L in 5 of the 7 wells indicates denitrification is occurring. Ferric iron is used as a terminal electron acceptor during anerobic biodegradation of organic carbon. The presence of Iron II greater than 1 mg/L in 4 of the 7 wells indicates Iron III reduction is occurring. Sulfate can be used as a terminal electron acceptor for anerobic degradation of organic contaminants. The presence of sulfate greater than 20 mg/L for all 7 wells indicates that the conditions are not reducing. In summary, the aquifer of the site exhibits signs of aerobic respiration, denitrification, and iron reduction. The limiting factor for the aquifer is dissolved oxygen that is preventing anaerobic biodegradation, which would lead to sulfate reduction. Sulfate reduction is expected to occur after the dissolved oxygen, nitrate, and ferric ion have been depleted.

Concentration trends indicate that chlorinated VOCs are continuing to decrease along the perimeter of the Site in groundwater in both the overburden and the overburden/bedrock interface. This indicates that natural attenuation processes are successfully lowering concentrations towards meeting the remedial goals of restoring the aquifer to pre-release conditions, to the extent practicable. However, with the continued high concentrations of VOCs in groundwater in the south/central portion of the Site, the time necessary to reach these goals remains indefinite.

3.2.3 Microbial Sampling

Results quantify *Dehalococcoides* (DHC), the only known bacterial group capable of complete reductive dechlorination of PCE and trichloroethylene (TCE) to ethene. The QuantArray-Chlor results shows that naturally occurring conditions for anaerobic dechlorination of PCE exist, in order of most favorable to least favorable, at MW-13K, MW-03CA, and MW-20S. Naturally occurring cell concentrations witnessed in sampling results for DHC at MW-13K, MW-03CA, and MW-20S are 7.64 x 10^3 cells per milliliter (cells/mL), 2.52 x 10^3 cells/mL, and < 2.50 x 10^1 cells/mL, respectively. However, DHC concentrations were less than the concentration of 1 x 10^4 cells/mL screening criterion used to identify sites where biological reductive dechlorination is predicted to proceed. A summary of microbial sample results are provided in **Table 3-3**.

3.3 GROUNDWATER RESULTS, EFFECTIVENESS, AND PROTECTIVENESS

Concentrations of chlorinated VOCs in September 2023 continued to be detected in overburden and overburden/bedrock interface wells at concentrations above NYSDEC Class GA standards. Data from the groundwater sampling event completed during the reporting period exhibit mostly decreasing or stable trends in PCE and degradation product concentrations in overburden and bedrock groundwater, with the exception of results at and in the vicinity of MW-20S. PCE concentrations at overburden monitoring well MW-20S, which nearly coincides with a boundary line of the ERH area, have increased from 17,000 μ g/L in 2018 and 2022 to 37,100 μ g/L in 2023. The PCE concentration at this location is orders of magnitude greater than the ambient water quality standard of 5 μ g/L for PCE (NYSDEC 1998). PCE at nearby overburden wells MW-17S and 19S and overburden/bedrock interface well MW-15K also increased in September 2023 as follows:

- PCE and TCE increasing at MW-17S by an order of magnitude from 33 μ g/L PCE and 18 μ g/L TCE in May 2022 to 114 μ g/L PCE and 118 μ g/LTCE in September 2023. However, the 2023 concentrations were similar to that detected in May 2017 (130 μ g/L PCE and 110 μ g/L TCE).
- PCE and TCE increasing at MW-19S from 34 μ g/L PCE and 35 μ g/L TCE in November 2018 to 360 μ g/L PCE and 112 μ g/L TCE in September 2023. However, the 2023 concentrations are similar to that detected in May 2022 (400 μ g/L PCE and 110 μ g/L TCE).
- PCE increasing at MW-15K from an estimated 220 μ g/L in May 2022 to 404 μ g/L in September 2023; however, concentrations were less than the May 2017 and November 2018 concentrations (estimated 900 and 990 μ g/L).

The conditions of the aquifer indicate that approximately 70% of the selected wells have inadequate to limited evidence of anerobic biodegradation. As mentioned previously, the presence of dissolved oxygen is preventing anaerobic biodegradation and strong reducing conditions. The presence of PCE and TCE degradation products indicates that some biodegradation is likely occurring. Microbial sampling for select wells in October 2023 indicated presence of DHC at concentrations less than the screening criterion used to identify sites where biological reductive dechlorination is predicted to proceed. As expected, the monitoring wells (MW-13 and MW-03A) with a greater population of DHC also have stronger evidence for anerobic biodegradation – these wells show signs of denitrification and ferric iron reduction. Likewise, the monitoring well with the least population of DHC (MW-20S) also has inadequate evidence for anerobic biodegradation. Monitoring well MW-20S exhibited the greatest VOC concentration, and only denitrification was identified.

4. CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

The goal of the ROD (NYSDEC 2021) is to establish a remedial approach for the Site that protects human health and the environment. Therefore, groundwater quality must meet and satisfy the ambient water quality standard guidance for Class GA groundwater as defined by NYSDEC Technical and Operational Guidance Series 1.1.1 (NYSDEC 1998). Although the remedy continues to remain protective of human health, the remedy is not effective in reducing VOC concentrations to below NYSDEC Class GA standards in certain areas. Based on the continued high concentrations in groundwater in the south/central portion of the Site and current aquifer conditions, the time necessary to reach the remedial goals remains indefinite.

The remaining contaminants of concern are those that show concentrations above groundwater screening levels. The 2023 inspection confirmed compliance with all ICs and all aspects of ECs to be in good condition.

4.2 **RECOMMENDATIONS**

Based on site observations and groundwater analytical results, the following changes to site management activities are recommended. Recommendations will be incorporated into the SMP pending NYSDEC approval.

4.2.1 Sub-Slab Depressurization System Inspection

It is recommended that off-site SSDS inspections continue to be conducted by individual property owners to verify it is operating properly.

4.2.2 Site-Wide Inspection

It is recommended that the Site-wide inspection continue to be performed annually and conducted in conjunction with the annual groundwater monitoring event.

4.2.3 Groundwater Monitoring

It is recommended that groundwater sampling continue to be performed annually for the parameters identified in the 2023 SMP. Concentrations of chlorinated VOCs continue to be greater than NYSDEC Class GA standards. Although concentrations in most wells at the Site exhibit mostly decreasing or stable trends, PCE concentrations have increased in the vicinity of overburden monitoring well MW-20S, with a significant increase noted at MW-20S. Groundwater quality data generated in 2024 should also be reviewed to determine if concentrations diminish in the vicinity of MW-20S, or if additional remedial measures should be considered for this area of the Site.

4.2.4 Remedial System Optimization

According to the ROD for OU2 (NYSDEC 2021), additional remediation is expected if it appears that natural processes alone will not address the contamination. There is evidence of some biodegradation is occurring at the Site, but the rate of degradation cannot compete with the rate of rebound of PCE and TCE. The ROD of OU2 states that the contingency remedial action will dependent on the information collected, but it was anticipated that enhanced bioremediation would be the expected contingency remedial action (NYSDEC 2021). The rebound at monitoring well MW-20S suggests a remaining source in the soil. It is recommended that additional soil and groundwater data be collected and analyzed from the installation of new source area borings bedrock monitoring wells. This new data will be evaluated to provide options that would be effective in aiding remedial efforts. A remedial system optimization plan is forthcoming.

5. REFERENCES

- EA Engineering, P.C. and Its Affiliate EA Science and Technology (EA). 2023. Draft Site Management Plan, Dinaburg Distributing, Inc., NYSDEC Site No. 828103, Monroe County, Rochester, New York. December.
- Empire Soils Investigations, Inc., 1994. *Phase I Environmental Site Assessment Addendum prepared for Dinaburg Distributing*. March.
- MACTEC Engineering and Geology, P.C. 2011. Final Remedial Investigation/Feasibility Study Report, Dinaburg Distributing, Inc., Prepared for the NYSDEC. February.

 - ——. 2017b. Dinaburg Distributing, Inc. (NYSDEC Site 828103), May 2017 Groundwater Sampling Report. November.

——. 2020. Remedial Investigation/Feasibility Study Report, Dinaburg Distributing, Inc., Operable Unit 2, Site # 828103. February.

- ———. 2023a. Site Management Plan, Dinaburg Distributing, Inc., Monroe County, Rochester, New York. March.
- ——. 2023b. Periodic Review Annual Report No. 1 (November 1, 2021 October 31, 2022), Dinaburg Distributing Site, NYSDEC Site No. 828103. April.
- National Oceanic and Atmospheric Administration. 2024. *NOWData NOAA Online Weather Data*. Date accessed 4 June 2024. https://www.weather.gov/wrh/Climate?wfo=buf
- New York State Department of Environmental Conservation (NYSDEC). 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June (April 2000 addendum).
 - ———. 2011. Record of Decision, Dinaburg Distributing, Inc., Operable Unit Number: 01, City of Rochester, Monroe County, New York, Site Number 828103. March.
 - _____. 2021. Record of Decision; Dinaburg Distributing, Inc. Operable Unit #2. March.

URS Corporation (URS). 2001. Final Remedial Investigation Report, Former Dinaburg Distributing, Inc., Site # 828103, Rochester, New York. May.

Tables

Report Title	Year
Phase I Environmental Site Assessment, Empire Soils Investigations, Inc	1994
Phase I Environmental Site Assessment Addendum, Empire Soils	1994
Investigations, Inc.	
Soil Vapor Survey Report, Marcor of New York, Inc.	1994
Basement Survey and Air Monitoring Report, Sear Brown Group, Inc.	1995
Environmental Site Characterization Report, Sear Brown Group, Inc	1995
Progress Report, Voluntary Investigation, Sear Brown Group, Inc.	1997
Voluntary Investigation Report, Sear Brown Group, Inc	1998
Soil Gas Survey Report, Galson Consulting	1999
Geoprobe Survey, Zebra Environmental Corp.	1999
EMFLUX® Passive, Non-Invasive Soil-Gas Survey, BEACON Environmental	2000
Services, Inc.	
Final Remedial Investigation Report, URS	2001
Pre-Design Investigation, URS	2004
Supplemental Soil Gas Sampling Letter Report, URS	2004
Site CAD Drawing, Site Plan Survey Information, URS	2006
Daily Field Activity Report, URS	2006
Final Remediation Report, URS	2007
Evaluation of Remedial System Performance – Soil Sampling Assessment	2008
Report, URS	
Data Assessment Summary, URS	2010
Evaluation of Remedial System Performance Memorandum, URS	2006 to 2010
Remedial Investigation/Feasibility Study Report, MACTEC	2011
Record of Decision, Operable Unit 1, NYSDEC	2011
Remedial Design Baseline Groundwater Sampling Letter Report, MACTEC	2012
Final Construction Completion Report OU1 Remedial Action, MACTEC	2017
Groundwater Sampling Report, MACTEC	2017
Remedial Investigation/Feasibility Report - Operable Unit 2, MACTEC	2020
Groundwater Sampling Report, MACTEC	2020
Record of Decision, Operable Unit 2, NYSDEC	2021
Site Management Plan, EA	2023
lotes:	
A = EA Engineering, P.C. and its affiliate EA Science and Technology	
ALLEL \equiv VIALLEL ENGINEERING AND GEOLOGY PL	

Table 1-1. Chronological List of Investigations and Record Documents

MACTEC = MACTEC Engineering and Geology, P.C UPR = URS Corporation

					Tabl	e 2-1. Monitori	ng Well Detai	ils					
Location	Northing	Easting	Riser Elevation	Casing Elevation	Ground Elevation	Bedrock Elevation	Well Material	DTB (ft bgs)	Screen Length (ft)	Depth of Bedrock Encountered (ft)	Screened Zone	DTW ¹ (ft BTOR)	GW Elevation (ft amsl)
MW-01	1145163.2	1412088.1	512.06	512.36	512.43	491.73	PVC	20.4	5	20.7	interface	NA	NA
MW-01A	1145167.7	1412095.5	512.05	512.43	512.52	NA	PVC	8.0	5	NA	overburden	NA	NA
MW-03A	1145186.92	1412206.46	512.12	512.47	512.47	490.67	SS	24.5	5	21.8	interface	9.63	502.49
MW-03CA	1145190.51	1412204.76	511.78	512.38	512.38	489.48	SS	30.5	5	22.9	bedrock	11.99	499.79
MW-03D	1145187.694	1412200.493	511.84	512.54	512.53	490.53	PVC	51.65	10	22.0	bedrock	18.37	493.47
MW-04	1145082.5	1412145.9	512.01	512.38	512.3	489.2	PVC	24.1	15	23.1	overburden/interface	9.76	502.25
MW-05	1145059.9	1412071.4	512.49	512.78	512.72	489.12	PVC	24.6	15	23.6	overburden/interface	9.85	502.64
MW-06	1145321.2	1412126.4	510.54	511.01	511.01	491.11	PVC	20.6	15	19.9	overburden/interface	8.03	502.51
MW-8K	1145200.5	1412282.8	511.24	511.61	511.57	493.77	PVC	19.2	10	17.8	interface	8.35	502.89
MW-8S	1145202.9	1412286.3	512.00*	511.54	511.52	NA	PVC	16.0	10	NA	overburden	7.56	502.71
MW-9K	1145215.1	1412036.0	512.01	512.26	512.27	488.97	PVC	22.7	10	23.3	interface	9.48	502.53
MW-9S	1145222.5	1412032.2	511.32*	512.24	512.22	NA	PVC	16.0	10	NA	overburden	8.8	501.07
MW-10K	1145250.0	1412155.1	511.49	511.9	511.84	489.84	PVC	21.8	10	22.0	interface	8.59	502.90
MW-10S	1145262.1	1412157	511.58*	511.74	511.7	NA	PVC	16.0	10	NA	overburden	8.1	502.15
MW-11K	1145145.6	1412256.6	511.12	511.61	511.6	494.1	PVC	18.2	10	17.50	interface	NA	NA
MW-11S	1145152.0	1412267.5	511.36	511.58	511.6	NA	PVC	14.0	10	NA	overburden	8.26	503.10
MW-12K	1145115.8	1412213.0	511.67	512.09	512.09	492.79	PVC	19.5	5	19.3	interface	8.9	502.77
MW-12S	1145111.0	1412204.1	511.53	512.01	512.01	NA	PVC	14.0	5	NA	overburden	8.25	503.28
MW-13K	1145154.4	1412083.7	512.13	512.41	512.41	493.21	PVC	21.5	5	19.2	interface	9.34	502.79
MW-14KA	1145231.02	1412219.57	511.78	512.11	512.11	491.11	SS	24.4	5	21.0	interface	9.3	502.48
MW-15K	1145175.74	1412133	512.74	512.85	512.85	489.35	SS	25.3	5	23.5	interface	10.19	502.55
MW-15S	1145179.92	1412130.36	512.52	513.04	513.04	NA	SS	15.0	10	NA	overburden	7.77	504.75
MW-16K	1145216.5	1412228.09	511.83	512.26	512.26	489.06	SS	25.5	5	23.2	interface	9.26	502.57
MW-16S	1145252.27	1412212.19	512.48	512.69	512.69	NA	SS	15.5	10	NA	overburden	9.55	502.93
MW-17S	1145220.51	1412226.64	511.59	512.2	512.2	NA	SS	15.5	10	NA	overburden	8.11	503.48
MW-18S	1145233.7	1412171.5	512.74	513.02	513.02	NA	SS	15.0	10	NA	overburden	8.79	503.95
MW-19S	1145201.46	1412191.41	512.54	512.78	512.78	NA	SS	14.8	10	NA	overburden	8.63	503.91
MW-20S	1145162.95	1412199.08	512.67	512.93	512.93	NA	SS	15.4	10	NA	overburden	9.38	503.29
MW-21S	1145203.8	1412157.97	512.44	512.87	512.87	NA	SS	15.0	10	NA	overburden	8.44	504.00
PZ-22S	1145257.935	1412260.71	511.47	511.85	511.85	NA	PVC	12.3	10	NA	overburden	7.83	503.64
MW-22K	1145257.935	1412260.71	511.48	511.85	511.85	494.35	PVC	28.6	10	17.5	interface	8.98	502.50
MW-23K	1145137.253	1412014.991	511.69	512.41	512.41	490.91	PVC	31.0	10	21.5	interface	8.98	502.71
PZ-24S	1145137.6	1411903.275	512.06	512.46	512.44	NA	PVC	14.3	10	NA	overburden	8.35	503.71
MW-24K	1145137.6	1411903.275	512.06	512.46	512.44	494.44	PVC	28.3	10	18.0	interface	8.33	503.73
GWE-1	1145169.4	1412098.4	511.98	512.43	512.43	491.73	PVC	20.7	3	20.7	interface	NA	NA
GWE-2	1145152	1412176.3	511.94	512.35	512.35	489.35	PVC	23.0	3	23.0	interface	9.21	502.73
MPE-17	1145160.2	1412170.8	511.97	512.47	512.47	NA	PVC	13.5	7.5	NA	overburden	7.15	504.82

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Notes:

Table 2-1. Monitoring Well Details

 DTW was measured during the September 2023 sampling event.
 *Elevation estimated due to riser being shortened during site maintenance amsl = Above mean sea level
 bgs = Below ground surface
 BTOR = Below top of riser
 DTB = Depth to bottom as installed
 DTW = Depth to water
 ft = Feet(foot)
 NA = Not available
 PVC = Polyvinyl Chloride
 SS = Stainless Steel Table 2-1, Page 2 of 2 November 2024

2023 Annual Report

Table 2-2. September 2023 Monitoring Well Maintenance

	Located	Accessible	Riser Pipe	DTB	23 Wollitoring Weil Walltena	
Well ID	(Y/N)	(Y/N)	Elevation (ft amsl)	(ft bgs)	Maintenance Notes	Corrective Measures
MW-01	Ν	Ν	512.06	NA	Paved over, could not locate	Marked possible location, did not dig
MW-01A	Ν	Ν	512.05	NA	Paved over, could not locate	Marked possible location, did not dig
MW-03A	Y	Y	512.12	21.4	Missing bolts	Replaced bolts
MW-03CA	Y	Y	511.78	33.1	Missing bolts	Replaced bolts
MW-03D	Y	Y	511.84	52.1	Missing lock	Added lock
MW-04	Y	Y	512.01	24.4	Missing lock	Replaced bolts and j-plug; requires lock
MW-05	Y	Y	512.49	24.8	Missing lock	Replaced bolts
MW-06	Y	Y	510.54	21.2	Missing well cap and lock	Replaced bolts and j-plug
MW-08K	Y	Y	511.24	24.4	High turbidity	Redeveloped well, replaced bolts
MW-08S	Y	Ŷ	511.27	16.3	Broken well cap, missing lock	Shortened riser by approximately 1 inch (Needs
	1	1	511.27	10.5	bloken wen eup, missing loek	to be resurveyed), replaced bolts and j-plug
MW-09K	Y	Y	512.01	23	Missing lock	Rethreaded 3 bolt seats; lock required
MW-09S	Y	N	511.87	NM	Could not open well cover	Shortened riser by approximately 2 inches
					1	(Needs to be resurveyed), replaced j-plug,
						redeveloped well
MW-10K	Y	Y	511.49	22.2	No casing cover, missing j-plug/cap	Well cover installed, sealed concrete pad
MW-10S	Y	Y	511.25	16.5	Hole in well cap	Shortened riser by approximately 1 inch (Needs
						to be resurveyed), replaced j-plug
MW-11K	Y	Y	511.12	NM	PVC broken ~3.5' down	Replaced bolts
MW-11S	Y	Y	511.36	14.2	Missing j-plug/cap and lock	Replaced bolts; lock required
MW-12K	Y	Y	511.67	19.9	Missing lock and bolts	Replaced bolts and j-plug
MW-12S	Y	Y	511.53	14.5	Missing lock	Lock required
MW-13K	Y	Y	512.13	21.8	Missing lock and j-plug	Replaced j-plug
MW-14KA	Y	Y	511.78	25.4	Missing lock	Added lock
MW-15K	Y	Y	512.74	25.3	Missing lock and j-plug	Added lock, replaced j-plug
MW-15S	Y	Y	512.52	15.2	Missing lock	Added lock
MW-16K	Y	Y	511.83	25.3	Missing lock	Added lock
MW-16S	Y	Y	512.48	15.3	Missing lock	Added lock
MW-17S	Y	Y	511.59	15.2	Missing lock	Added lock
MW-18S	Y	Y	512.74	15.2	Missing lock	Added lock, replaced j-plug, redeveloped well
MW-19S	Y	Y	512.54	15.2	Missing lock	Added lock, replaced bolts and j-plug, redeveloped well
MW-20S	Y	Y	512.67	15.2	Missing bolts	Replaced bolts
MW-21S	Y	Y	512.44	15.1	Missing lock	Added lock
PZ-22S	Y	Ν	511.47	NA	Car parked over well, missing lock	Lock required
MW-22K	Y	N	511.48	NA	Car parked over well, missing lock	Redeveloped well; lock required
MW-23K	Y	Y	511.69	31	Good condition	None
PZ-24S	N	N	512.06	12.7	Could not locate	Located
MW-24K	Y	Y	512.06	28.3	Could not locate	Located and redeveloped well
GWE-1	N	N	511.98	NA	Paved over, could not locate	Marked possible location, did not dig
GWE-2	Y	Y	511.94	22.5	Good condition	None
MPE-17	Y	Y	511.97	13.8	Good condition	None
Notes:	ĩ	L	511.77	15.0	Cood condition	

Notes:

Monitoring well maintenance was performed during the September 2023 sampling event.

amsl = above mean sea level

bgs = below ground surface

DTB = Depth to bottom

ft = feet(foot)

ID = Identification

N = No

NA = Not available

NM = Not measured

Y = Yes

Dinaburg Distributing, Inc. (828103) Rochester, New York 2023 Annual Report

Table 3-1. Concentrations of VOCs in Groundwater

	Lo	cation ID	GWE-2	MPE-17	MW-03A	MW-03CA	MW-03D	MW-04	MW-04	MW-05	MW-06
		ple Name	828103-GWE-2-09262023	828103-MPE-17-09262023	828103-MW-03A-09252023	828103-MW-03CA-09252023	828103-MW-03D-09272023	828103-MW-04-09262023	828103-DUP-02-09262023	828103-MW-05-09262023	828103-MW-06-09262023
	Parent Sample I			020100 1112 11 07202020	020103 1110 0011 09202020				828103-MW-04-09262023		
	San	nple Date	9/26/2023	9/26/2023	9/25/2023	9/25/2023	9/27/2023	9/26/2023	9/26/2023	9/26/2023	9/26/2023
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result
VOCs (SW8260)											
1,1-Dichloroethane	5	μg/L	5.8	< 0.57 U	1	< 0.57 U	< 0.57 U	< 0.57 U	< 0.57 U	< 0.57 U	< 0.57 U
1,1-Dichloroethene	5	μg/L	1.3	< 0.59 U	4	0.6 J	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U
1,2,3-Trichlorobenzene	5	μg/L	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
1,2,4-Trichlorobenzene	5	μg/L	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
1,2-Dibromo-3-Chloropropane	0.04	µg/L	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U
1,2-Dibromoethane (Ethylene Dibromide)	NSL	μg/L	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U
1,2-Dichlorobenzene	3	μg/L	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U
1,2-Dichloroethane	0.6	µg/L	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U
1,2-Dichloropropane	1	µg/L	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U
1,3-Dichlorobenzene	3	µg/L	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U
1,4-Dichlorobenzene	3	μg/L	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U
2-Hexanone	50	μg/L	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U
Acetone	50	μg/L	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U
Benzene	1	µg/L	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U
Bromochloromethane	5	μg/L	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U
Bromodichloromethane	50	µg/L	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U
Bromoform	50	μg/L	< 0.63 U	< 0.63 U	< 0.63 U	< 0.63 U	< 0.63 U	< 0.63 U	< 0.63 U	< 0.63 U	< 0.63 U
Bromomethane	5	μg/L	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U
Carbon Disulfide	60	µg/L	< 1.8 U	< 1.8 U	< 1.8 U	< 1.8 U	< 1.8 U	< 1.8 U	< 1.8 U	< 1.8 U	< 1.8 U
Carbon Tetrachloride	5	µg/L	< 0.55 U	< 0.55 U	< 0.55 U	< 0.55 U	< 0.55 U	< 0.55 U	< 0.55 U	< 0.55 U	< 0.55 U
Chlorobenzene	5	μg/L	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U
Chloroethane	5	μg/L	< 0.73 U	< 0.73 U	< 0.73 U	< 0.73 U	< 0.73 U	< 0.73 U	< 0.73 U	< 0.73 U	< 0.73 U
Chloroform	7	µg/L	< 0.5 U	< 0.5 U	< 0.5 U	$< 0.5 { m U}$	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Chloromethane (Methyl Chloride)	NSL	μg/L	< 0.76 U	< 0.76 U	< 0.76 U	< 0.76 U	< 0.76 U	< 0.76 U	< 0.76 U	< 0.76 U	< 0.76 U
Cis-1,2-Dichloroethylene	5	µg/L	96.9	< 0.51 U	877	89.4	3.8	< 0.51 U	< 0.51 U	< 0.51 U	7.2
Cis-1,3-Dichloropropene	0.4	μg/L	< 0.47 U	< 0.47 U	< 0.47 U	< 0.47 U	< 0.47 U	< 0.47 U	< 0.47 U	< 0.47 U	< 0.47 U
Cyclohexane	NSL	µg/L	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U
Dibromochloromethane	50	µg/L	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U
Dichlorodifluoromethane	5	µg/L	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U
Ethylbenzene	5	µg/L	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U
Isopropylbenzene (Cumene)	5	µg/L	< 0.65 U	< 0.65 U	< 0.65 U	< 0.65 U	< 0.65 U	< 0.65 U	< 0.65 U	< 0.65 U	< 0.65 U
M,P-Xylene (Sum Of Isomers)	NSL	µg/L	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U
Methyl Acetate	NSL	μg/L	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 2.7 U	< 2.7 U	< 2.7 U	< 2.7 U	< 2.7 U	< 2.7 U	< 2.7 U	< 2.7 U	< 2.7 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NSL	μg/L	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U
Methylcyclohexane	NSL	μg/L	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U
Methylene Chloride	5	μg/L	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U
Styrene	5	μg/L	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U
Tert-Butyl Methyl Ether	10	µg/L	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U
Tetrachloroethylene (PCE)	5	μg/L	74.8	15.8	704	130	1.4	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U
Toluene	5	μg/L	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U
Trans-1,2-Dichloroethene	5	µg/L	6.4	< 0.54 U	5.3	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U
Trans-1,3-Dichloropropene	0.4	μg/L	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U
Trichloroethylene (TCE)	5	µg/L	50.7	0.7 J	350	57.9	6.2	< 0.53 U	< 0.53 U	< 0.53 U	3.8
Trichlorofluoromethane	5	μg/L	< 0.4 U	< 0.4 U	< 0.4 U	< 0.4 U	< 0.4 U	< 0.4 U	< 0.4 U	< 0.4 U	< 0.4 U
Vinyl Chloride	2	µg/L	0.55 J	< 0.52 U	305	6.9	< 0.52 U	< 0.52 U	< 0.52 U	< 0.52 U	< 0.52 U
Xylenes	5	µg/L	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U

(1) NYSDEC Ambient Water Quality Standard (AWQS) Class GA (Standard/guidance values) (Technical and Operational Guidance Series [TOGS] 1.1.1).

 $\mu g/L = Microgram(s)$ per liter.

J = Concentration is estimated.

NSL = No screening level available.

NYSDEC = New York State Department of Environmental Conservation

TOC = Total organic carbon

U = Analyte not detected. VOC = Volatile organic compound Concentrations exceeding the screening level are shaded gray.

Table 3-1. Concentrations of VOCs in Groundwater

			MUV OOK	MUV 000	MUV OOK	MIN OOG	MW 10K	MW 100	MW 110	MW 10V	MW 120
		cation ID	MW-08K	MW-08S	MW-09K	MW-09S	MW-10K	MW-10S	MW-11S	MW-12K	MW-12S
		ple Name	828103-MW-08K-09252023	828103-MW-08S-09262023	828103-MW-09K-09262023	828103-MW-09S-09262023	828103-MW-10K-09262023	828103-MW-10S-09262023	828103-MW-11S-09262023	828103-MW-12K-09262023	828103-MW-12S-09262023
	Parent Sample ID Sample Date		9/25/2023	9/26/2023	9/26/2023	9/26/2023	9/26/2023	9/26/2023	9/26/2023	9/26/2023	9/26/2023
Analyte	NYSDEC AWOS ¹	Unit	Result								
VOCs (SW8260)			result	Rebuilt	reserve	100010	nosar	nosar	rtoduv	Result	reserv
1,1-Dichloroethane	5	µg/L	< 0.57 U	< 0.57 U	< 0.57 U	< 0.57 U	1.7	< 0.57 U	< 0.57 U	< 0.57 U	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	1.9	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U
1,2,3-Trichlorobenzene	5	μg/L	< 0.5 U								
1,2,4-Trichlorobenzene	5	μg/L	< 0.5 U								
1,2-Dibromo-3-Chloropropane	0.04	μg/L	< 0.53 U								
1,2-Dibromoethane (Ethylene Dibromide)	NSL	μg/L	< 0.48 U								
1,2-Dichlorobenzene	3	μg/L	< 0.53 U								
1.2-Dichloroethane	0.6	μg/L	< 0.6 U								
1,2-Dichloropropane	1	µg/L	< 0.51 U								
1,3-Dichlorobenzene	3	μg/L	< 0.54 U								
1.4-Dichlorobenzene	3	ug/L	< 0.51 U								
2-Hexanone	50	μg/L μg/L	< 4.8 U								
Acetone	50	μg/L μg/L	< 3.1 U								
Benzene	1	μg/L	< 0.43 U								
Bromochloromethane	5	μg/L μg/L	< 0.48 U	< 0.43 U	< 0.48 U						
Bromodichloromethane	50	μg/L μg/L	< 0.45 U								
Bromoform	50	μg/L μg/L	< 0.63 U								
Bromomethane	5	μg/L μg/L	< 1.6 U								
Carbon Disulfide	60	μg/L μg/L	< 1.8 U								
Carbon Tetrachloride	5	μg/L μg/L	< 0.55 U								
Chlorobenzene	5	μg/L μg/L	< 0.55 U								
Chloroethane	5	μg/L μg/L	< 0.30 U	< 0.30 U	< 0.38 U	< 0.30 U	< 0.30 U	< 0.30 U < 0.73 U	< 0.36 U < 0.73 U	< 0.30 U	< 0.30 U
Chloroform	7	μg/L μg/L	< 0.75 U	< 0.75 U	< 0.75 U	< 0.73 U	< 0.73 U	< 0.73 U	< 0.75 U	< 0.75 U	< 0.73 U
Chloromethane (Methyl Chloride)	/ NSL	μg/L μg/L	< 0.3 U < 0.76 U								
Cis-1,2-Dichloroethylene	5	μg/L μg/L	< 0.70 U	< 0.70 U	91.4	< 0.70 U	163	10.4	< 0.76 U < 0.51 U	< 0.70 U	< 0.70 U
Cis-1,2-Dichloropropene	0.4	μg/L μg/L	< 0.31 U < 0.47 U	< 0.31 U < 0.47 U	< 0.47 U	< 0.31 U < 0.47 U	< 0.47 U	< 0.47 U	< 0.31 U < 0.47 U	< 0.31 U < 0.47 U	< 0.31 U < 0.47 U
Cvclohexane	NSL	μg/L μg/L	< 0.47 U < 0.78 U								
Dibromochloromethane	50	μg/L μg/L	< 0.78 U < 0.56 U								
Dichlorodifluoromethane	5	μg/L μg/L	< 0.56 U								
Ethylbenzene	5	μg/L μg/L	< 0.56 U	< 0.56 U	< 0.56 U	< 0.58 U < 0.6 U	< 0.58 U < 0.6 U	< 0.58 U < 0.6 U	< 0.56 U	< 0.56 U	< 0.58 U < 0.6 U
Isopropylbenzene (Cumene)	5	μg/L μg/L	< 0.65 U	< 0.6 U	< 0.65 U	< 0.65 U	< 0.65 U				
	NSL	10	< 0.83 U < 0.78 U	< 0.65 U < 0.78 U	< 0.83 U < 0.78 U	< 0.85 U < 0.78 U	< 0.83 U < 0.78 U	< 0.83 U < 0.78 U			
M,P-Xylene (Sum Of Isomers) Methyl Acetate	NSL	μg/L μg/L	< 0.78 U < 0.8 U	< 0.78 U < 0.8 U	< 0.8 U	< 0.78 U < 0.8 U	< 0.78 U < 0.8 U	< 0.78 U < 0.8 U	< 0.78 U < 0.8 U	< 0.78 U < 0.8 U	< 0.78 U < 0.8 U
Methyl Acetate Methyl Ethyl Ketone (2-Butanone)	50 NSL	10	< 0.8 U < 2.7 U	< 0.8 U < 2.7 U		< 0.8 U < 2.7 U					
		µg/L	< 2.7 U < 4.9 U								
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) Methylcyclohexane	NSL NSL	μg/L μg/L	< 4.9 U < 0.6 U								
Methylcyclohexane Methylene Chloride		10	< 0.6 U < 1 U		< 0.6 U < 1 U						
	5	µg/L		< 1 U							
O-Xylene (1,2-Dimethylbenzene)	5	µg/L	< 0.59 U < 0.49 U	< 0.59 U	< 0.59 U						
Styrene	5	µg/L		< 0.49 U < 0.51 U		< 0.49 U < 0.51 U	< 0.49 U	< 0.49 U			
Tert-Butyl Methyl Ether	10	µg/L	< 0.51 U		< 0.51 U					< 0.51 U	< 0.51 U
Tetrachloroethylene (PCE)	5	µg/L	< 0.56 U	< 0.56 U	27	< 0.56 U	< 0.56 U	3	< 0.56 U	< 0.56 U	< 0.56 U
Toluene	5	µg/L	< 0.49 U								
Trans-1,2-Dichloroethene	5	µg/L	< 0.54 U	< 0.54 U	0.88 J	< 0.54 U	2	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U
Trans-1,3-Dichloropropene	0.4	μg/L	< 0.43 U	< 0.43 U	< 0.43 U 21.8	< 0.43 U < 0.53 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U
	~				710	<0.52 U	496	12.5	< 0.53 U	5.1	< 0.53 U
Trichloroethylene (TCE)	5	µg/L	< 0.53 U	< 0.53 U							
Trichlorofluoromethane	5	µg/L	< 0.4 U								
	5	10									

(1) NYSDEC Ambient Water Quality Standard (AWQS) Class GA (Standard/guidance values) (Technical and Operational Guidance Series [TOGS] 1.1.1).

 $\mu g/L = Microgram(s)$ per liter.

J = Concentration is estimated.

NSL = No screening level available.

NYSDEC = New York State Department of Environmental Conservation

TOC = Total organic carbon

U = Analyte not detected. VOC = Volatile organic compound

Concentrations exceeding the screening level are shaded gray.

Table 3-1. Concentrations of VOCs in Groundwater

	T	Location ID	MW 12K	MW 12K	NAXY 1 417 A	MIN 1517	MW-15S	MW 1CV	MW 160	MW 170	MW 100
		nple Name	MW-13K 828103-MW-13K-09252023	MW-13K 828103-DUP-01-09252023	MW-14KA 828103-MW-14KA-09252023	MW-15K 828103-MW-15K-09252023	MW-155 828103-MW-15S-09252023	MW-16K 828103-MW-16K-09272023	MW-16S 828103-MW-16S-09272023	MW-17S 828103-MW-17S-09272023	MW-18S 828103-MW-18S-09272023
		Sample ID	828103-WW-13K-09232023	828103-MW-13K-09252023	828103-WW-14KA-09232023	828105-WW-15K-09252025	828103-WW-138-09232023	828103-WW-10K-09272023	828103-WW-103-09272023	828103-WW-178-09272025	828103-WW-183-09272023
		ample Date	9/25/2023	9/25/2023	9/25/2023	9/25/2023	9/25/2023	9/27/2023	9/27/2023	9/27/2023	9/27/2023
Analyte	NYSDEC AWOS		Result	Result	Result	Result	Result	Result	Result	Result	Result
VOCs (SW8260)											
1,1-Dichloroethane	5	µg/L	4.2 J	3.5 J	< 5.7 U	8.7	< 0.57 U				
1,1-Dichloroethene	5	µg/L	6.9	5	8.9 J	11.9	< 0.59 U	1	< 0.59 U	< 0.59 U	< 0.59 U
1,2,3-Trichlorobenzene	5	μg/L	< 2.5 U	< 2.5 U	< 5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
1,2,4-Trichlorobenzene	5	µg/L	< 2.5 U	< 2.5 U	< 5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
1,2-Dibromo-3-Chloropropane	0.04	µg/L	< 2.6 U	< 2.6 U	< 5.3 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U
1,2-Dibromoethane (Ethylene Dibromide)	NSL	µg/L	< 2.4 U	< 2.4 U	< 4.8 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U
1,2-Dichlorobenzene	3	µg/L	< 2.7 U	< 2.7 U	< 5.3 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U
1,2-Dichloroethane	0.6	µg/L	< 3 U	< 3 U	< 6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U
1,2-Dichloropropane	1	µg/L	< 2.5 U	< 2.5 U	< 5.1 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U
1,3-Dichlorobenzene	3	μg/L	< 2.7 U	< 2.7 U	< 5.4 U	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U
1,4-Dichlorobenzene	3	µg/L	< 2.5 U	< 2.5 U	< 5.1 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U
2-Hexanone	50	μg/L	< 24 U	< 24 U	< 48 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U
Acetone	50	μg/L	< 15 U	< 15 U	< 31 U	< 3.1 U	3.9 J	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U
Benzene	1	μg/L	< 2.1 U	< 2.1 U	< 4.3 U	0.59	< 0.43 U				
Bromochloromethane	5	μg/L	< 2.4 U	< 2.4 U	< 4.8 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U
Bromodichloromethane	50	µg/L	< 2.3 U	< 2.3 U	< 4.5 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U
Bromoform	50	µg/L	< 3.2 U	< 3.2 U	< 6.3 U	< 0.63 U	< 0.63 U	< 0.63 U	< 0.63 U	< 0.63 U	< 0.63 U
Bromomethane	5	μg/L	< 8.2 U	< 8.2 U	< 16 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U
Carbon Disulfide	60	μg/L	< 9 U	< 9 U	< 18 U	< 1.8 U	< 1.8 U	< 1.8 U	< 1.8 U	< 1.8 U	< 1.8 U
Carbon Tetrachloride	5	µg/L	< 2.8 U	< 2.8 U	< 5.5 U	< 0.55 U	< 0.55 U	< 0.55 U	< 0.55 U	< 0.55 U	< 0.55 U
Chlorobenzene	5	μg/L	< 2.8 U	< 2.8 U	< 5.6 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U
Chloroethane	5	μg/L	< 3.6 U	< 3.6 U	< 7.3 U	< 0.73 U	< 0.73 U	< 0.73 U	< 0.73 U	< 0.73 U	< 0.73 U
Chloroform	7	µg/L	< 2.5 U	< 2.5 U	< 5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Chloromethane (Methyl Chloride)	NSL	μg/L	< 3.8 U	< 3.8 U	< 7.6 U	< 0.76 U	< 0.76 U	< 0.76 U	< 0.76 U	< 0.76 U	< 0.76 U
Cis-1,2-Dichloroethylene	5	μg/L	2170	1730	2800	231	2.5	320	26.8	1.9	99.3
Cis-1,3-Dichloropropene	0.4	µg/L	< 2.4 U	< 2.4 U	< 4.7 U	< 0.47 U	< 0.47 U	< 0.47 U	< 0.47 U	< 0.47 U	< 0.47 U
Cyclohexane	NSL	μg/L	< 3.9 U	< 3.9 U	< 7.8 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U
Dibromochloromethane	50	μg/L	< 2.8 U	< 2.8 U	< 5.6 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U
Dichlorodifluoromethane	5	μg/L	< 2.8 U	< 2.8 U	< 5.6 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U
Ethylbenzene	5	μg/L	< 3 U	< 3 U	< 6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U
Isopropylbenzene (Cumene)	5	μg/L	< 3.2 U	< 3.2 U	< 6.5 U	< 0.65 U	< 0.65 U	< 0.65 U	< 0.65 U	< 0.65 U	< 0.65 U
M,P-Xylene (Sum Of Isomers)	NSL	µg/L	< 3.9 U	< 3.9 U	< 7.8 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U
Methyl Acetate	NSL	µg/L	< 4 U	< 4 U	< 8 U	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U	< 0.8 U
Methyl Ethyl Ketone (2-Butanone)	50	µg/L	< 14 U	< 14 U	< 27 U	< 2.7 U	< 2.7 U	< 2.7 U	< 2.7 U	< 2.7 U	< 2.7 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NSL	μg/L	< 24 U	< 24 U	< 49 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U	< 4.9 U
Methylcyclohexane	NSL	µg/L	< 3 U	< 3 U	< 6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U
Methylene Chloride	5	μg/L	< 5 U	< 5 U	< 10 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U	< 1 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 3 U	< 3 U	< 5.9 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U
Styrene	5	µg/L	< 2.4 U	< 2.4 U	< 4.9 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U
Tert-Butyl Methyl Ether	10	μg/L	< 2.5 U	< 2.5 U	< 5.1 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U
Tetrachloroethylene (PCE)	5	μg/L	1350	1290	1600	404	150	189	24.5	114	172
Toluene	5	μg/L	< 2.5 U	< 2.5 U	< 4.9 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U
Trans-1,2-Dichloroethene	5	µg/L	14.9	11.7	13.5	1.6	< 0.54 U	2.9	< 0.54 U	< 0.54 U	0.74 J
Trans-1,3-Dichloropropene	0.4	µg/L	< 2.2 U	< 2.2 U	< 4.3 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U
Trichloroethylene (TCE)	5	μg/L	556	451	3170	255	83.3	236	199	118	53.2
Trichlorofluoromethane	5	μg/L	< 2 U	< 2 U	< 4 U	< 0.4 U	< 0.4 U	< 0.4 U	< 0.4 U	< 0.4 U	< 0.4 U
Vinyl Chloride	2	μg/L	539	356	130	12.9	< 0.52 U	8.8	< 0.52 U	< 0.52 U	< 0.52 U
Xylenes	5	μg/L	< 3 U	< 3 U	< 5.9 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U
(1) NVSDEC Ambient Water Quality Standard (AWG		1 10 -									

(1) NYSDEC Ambient Water Quality Standard (AWQS) Class GA (Standard/guidance values) (Technical and Operational Guidance Series [TOGS] 1.1.1).

 $\mu g/L = Microgram(s)$ per liter.

J = Concentration is estimated.

NSL = No screening level available.

NYSDEC = New York State Department of Environmental Conservation

TOC = Total organic carbon

U = Analyte not detected. VOC = Volatile organic compound

Concentrations exceeding the screening level are shaded gray.

Table 3-1. Concentrations of VOCs in Groundwater

	Lo	ocation ID	MW-19S	MW-20S	MW-21S	MW-22K	MW-23K	MW-24K	PZ-22S	PZ-24S
		ple Name	828103-MW-19S-09252023	828103-MW-20S-09252023	828103-MW-21S-09272023	828103-MW-22K-09262023	828103-MW-23K-09262023	828103-MW-24K-09262023	828103-PZ-22S-09262023	828103-PZ-24S-09262023
		ample ID	010100 1111 175 07202025	020100 1111 200 07202020		020103 1111 2211 07202020	020105 1111 2511 07202025	020100 1111 2111 07202020	020100 12 225 0,202020	02010012121000202020
		nple Date	9/25/2023	9/25/2023	9/27/2023	9/26/2023	9/26/2023	9/26/2023	9/26/2023	9/26/2023
Analyte	NYSDEC AWOS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result
VOCs (SW8260)										
1,1-Dichloroethane	5	µg/L	< 0.57 U	< 57 U	< 0.57 U	< 0.57 U	< 0.57 U	< 0.57 U	< 0.57 U	< 0.57 U
1,1-Dichloroethene	5	µg/L	< 0.59 U	< 59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U
1,2,3-Trichlorobenzene	5	µg/L	< 0.5 U	< 50 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
1,2,4-Trichlorobenzene	5	µg/L	< 0.5 U	< 50 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
1,2-Dibromo-3-Chloropropane	0.04	µg/L	< 0.53 U	< 53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U
1,2-Dibromoethane (Ethylene Dibromide)	NSL	μg/L	< 0.48 U	< 48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U
1,2-Dichlorobenzene	3	µg/L	< 0.53 U	< 53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U	< 0.53 U
1,2-Dichloroethane	0.6	µg/L	< 0.6 U	< 60 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U	< 0.6 U
1,2-Dichloropropane	1	µg/L	< 0.51 U	< 51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U
1,3-Dichlorobenzene	3	µg/L	< 0.54 U	< 54 U	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U
1,4-Dichlorobenzene	3	μg/L	< 0.51 U	< 51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U
2-Hexanone	50	μg/L	< 4.8 U	< 480 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U	< 4.8 U
Acetone	50	μg/L	< 3.1 U	< 310 U	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U
Benzene	1	μg/L	< 0.43 U	< 43 U	0.52	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U
Bromochloromethane	5	μg/L	< 0.48 U	< 48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U
Bromodichloromethane	50	μg/L	< 0.45 U	< 45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U
Bromoform	50	μg/L	< 0.63 U	< 63 U	< 0.63 U	< 0.63 U	< 0.63 U	< 0.63 U	< 0.63 U	< 0.63 U
Bromomethane	5	μg/L	< 1.6 U	< 160 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U
Carbon Disulfide	60	μg/L	< 1.8 U	< 180 U	< 1.8 U	< 1.8 U	< 1.8 U	< 1.8 U	< 1.8 U	< 1.8 U
Carbon Tetrachloride	5	μg/L	< 0.55 U	< 55 U	< 0.55 U	< 0.55 U	< 0.55 U	< 0.55 U	< 0.55 U	< 0.55 U
Chlorobenzene	5	μg/L	< 0.56 U	< 56 U	< 0.56 U	< 0.55 U	< 0.55 U	< 0.55 U	< 0.55 U	< 0.55 U
Chloroethane	5	μg/L	< 0.73 U	< 73 U	< 0.73 U	< 0.73 U	< 0.73 U	< 0.73 U	< 0.73 U	< 0.73 U
Chloroform	7	μg/L μg/L	< 0.5 U	< 50 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U	< 0.5 U
Chloromethane (Methyl Chloride)	NSL	μg/L	< 0.76 U	< 76 U	< 0.76 U	< 0.76 U	< 0.76 U	< 0.76 U	< 0.76 U	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L μg/L	1030	54.2 J	< 0.51 U	18.6	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U
Cis-1,3-Dichloropropene	0.4	μg/L μg/L	< 0.47 U	< 47 U	< 0.47 U	< 0.47 U	< 0.47 U	< 0.47 U	< 0.47 U	< 0.47 U
Cyclohexane	NSL	μg/L μg/L	< 0.78 U	< 78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U
Dibromochloromethane	50	μg/L μg/L	< 0.56 U	< 56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.76 U	< 0.76 U
Dichlorodifluoromethane	5	μg/L μg/L	< 0.56 U	< 56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U	< 0.56 U
Ethylbenzene	5	μg/L μg/L	< 0.6 U	< 60 U	0.67 J	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Isopropylbenzene (Cumene)	5	μg/L μg/L	< 0.65 U	< 65 U	< 0.65 U	< 0.65 U	< 0.65 U	< 0.65 U	< 0.65 U	< 0.65 U
M.P-Xylene (Sum Of Isomers)	NSL	μg/L μg/L	< 0.05 U < 0.78 U	< 78 U	1	< 0.05 U	< 0.78 U	< 0.78 U	< 0.05 U	< 0.05 U
Methyl Acetate	NSL	μg/L μg/L	< 0.8 U	< 80 U	< 0.8 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.8 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L μg/L	< 0.8 U < 2.7 U	< 30 U < 270 U	< 0.8 U < 2.7 U	< 0.8 U < 2.7 U	< 0.8 U < 2.7 U	< 0.8 U < 2.7 U	< 0.8 U < 2.7 U	< 0.8 U < 2.7 U
Methyl Isobutyl Ketone (2-Butanone)	NSL	μg/L μg/L	< 4.9 U	< 270 U	< 4.9 U	< 2.7 U < 4.9 U	< 2.7 U < 4.9 U	< 2.7 U < 4.9 U	< 2.7 U < 4.9 U	< 2.7 U
Methyl rsobutyl Retone (4-Methyl-2-Pentanone)	NSL	μg/L μg/L	< 4.9 U < 0.6 U	< 490 U	< 4.9 U	< 0.6 U	< 4.9 U < 0.6 U	< 4.9 U < 0.6 U	< 4.9 U < 0.6 U	< 4.9 U < 0.6 U
Methylene Chloride	5	μg/L μg/L	< 0.0 C	< 100 U	< 0.0 U <1 U	< 0.0 U < 1 U	< 0.0 U < 1 U	< 0.0 U < 1 U	< 0.0 U < 1 U	< 0.0 U < 1 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L μg/L	< 0.59 U	< 100 U < 59 U	< 1 U < 0.59 U	< 0.59 U	< 1 U < 0.59 U	< 1 U < 0.59 U	< 1 U < 0.59 U	< 1 U < 0.59 U
Styrene	5	μg/L μg/L	< 0.39 U < 0.49 U	< 39 U < 49 U	< 0.39 U < 0.49 U	< 0.59 U < 0.49 U	< 0.39 U < 0.49 U	< 0.59 U < 0.49 U	< 0.39 U < 0.49 U	< 0.39 U < 0.49 U
~	10	μg/L μg/L	< 0.49 U < 0.51 U	< 49 U < 51 U	< 0.49 U < 0.51 U	< 0.49 U < 0.51 U	< 0.49 U < 0.51 U	< 0.49 U < 0.51 U	< 0.49 U < 0.51 U	< 0.49 U < 0.51 U
Tert-Butyl Methyl Ether	5	10	< 0.51 U 360	< 51 0				< 0.51 U < 0.56 U	< 0.51 U < 0.56 U	
Tetrachloroethylene (PCE)	5	μg/L ug/I	360 < 0.49 U	37100 < 49 U	0.95 J < 0.49 U	2.4 < 0.49 U	< 0.56 U < 0.49 U	< 0.56 U < 0.49 U	< 0.56 U < 0.49 U	< 0.56 U < 0.49 U
Toluene Trans-1,2-Dichloroethene	5	μg/L μg/L	< 0.49 U	< 49 U < 54 U	< 0.49 0	< 0.49 U < 0.54 U	< 0.49 U < 0.54 U	< 0.49 U < 0.54 U	< 0.49 U < 0.54 U	< 0.49 U < 0.54 U
	0.4	10	14.8 < 0.43 U	< 54 U < 43 U	<0.43 U	< 0.54 U < 0.43 U	< 0.54 U < 0.43 U	< 0.54 U < 0.43 U	< 0.54 U < 0.43 U	< 0.54 U < 0.43 U
Trans-1,3-Dichloropropene Trichloroethylene (TCE)	5	µg/L	< 0.43 U	< 43 0	< 0.43 U	< 0.43 U 3.8	< 0.43 U < 0.53 U	< 0.43 U < 0.53 U	< 0.43 U < 0.53 U	< 0.43 U < 0.53 U
	÷.	μg/L					< 0.53 U < 0.4 U		< 0.53 U < 0.4 U	
Trichlorofluoromethane	5	µg/L	< 0.4 U	< 40 U	< 0.4 U	< 0.4 U		< 0.4 U		< 0.4 U
Vinyl Chloride	2	μg/L	23.3	< 52 U	< 0.52 U	0.77 J	< 0.52 U	< 0.52 U	< 0.52 U	< 0.52 U
Xylenes (1) NYSDEC Ambient Water Ouality Standard (AW)	5	µg/L	< 0.59 U	< 59 U	1	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U

(1) NYSDEC Ambient Water Quality Standard (AWQS) Class GA (Standard/guidance values) (Technical and Operational Guidance Series [TOGS] 1.1.1).

 $\mu g/L = Microgram(s)$ per liter.

J = Concentration is estimated.

NSL = No screening level available.

NYSDEC = New York State Department of Environmental Conservation

TOC = Total organic carbon

U = Analyte not detected. VOC = Volatile organic compound Concentrations exceeding the screening level are shaded gray.

Table 3-2. Concentrations of MNA Parameters in Groundwater

	Lo	cation ID	MW-03A	MW-03CA	MW-08K	MW-13K	MW-13K
	Sam	ple Name	828103-MW-03A-09252023	828103-MW-03CA-09252023	828103-MW-08K-09252023	828103-MW-13K-09252023	828103-DUP-01-09252023
	Parent S	ample ID					828103-MW-13K-09252023
	San	nple Date	9/25/2023	9/25/2023	9/25/2023	9/25/2023	9/25/2023
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result
Anions (SM4500S-F/SW9056)							
Sulfide (SM4500S-F)	0.05	mg/L	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U	< 0.48 U
Chloride (As Cl) (SW9056)	250	mg/L	128	180	102	232	204
Sulfate (As SO4) (SW9056)	250	mg/L	81.7	117	41.3	88.6	104
Nitrogen							
Nitrogen, Nitrite (SM4500B)	1	mg/L	< 0.003 U	< 0.003 U	0.02	< 0.003 U	< 0.003 U
Nitrogen, Nitrate-Nitrite (EPA 353.2)	NSL	mg/L	< 0.09 U	< 0.09 U	14.7	< 0.09 U	< 0.09 U
Nitrogen, Nitrate (As N) (Calculated)	10	mg/L	< 0.093 U	< 0.093 U	14.7	< 0.093 U	< 0.093 U
Total Metals (SW6010D)							
Iron	300	µg/L	1540	1090	636	1160	1170
Manganese	300	µg/L	41.8	38.2	428	89.2	85.5
Dissolved Gases (RSK-175)							
Carbon Dioxide	NSL	µg/L	5770	5500	6330	7010	9560
Ethane	NSL	µg/L	1.6	< 0.14 U	< 0.14 U	10.4	7.53
Ethene	NSL	µg/L	34.3	0.53	< 0.16 U	34.5	25
Methane	NSL	µg/L	56.4	4.49	0.19	267	173
Alkalinity (SM2320B)							
Alkalinity, Total (As CaCO ₃)	NSL	mg/L	341	322	319	372	379
TOC (SM5310B)							
Total Organic Carbon	NSL	mg/L	4.7	1.5	1.3	2.5	1.9

(1) NYSDEC Ambient Water Quality Standard (AWQS) Class GA (Standard/guidance

values) (Technical and Operational Guidance Series [TOGS] 1.1.1).

 $\mu g/L = Microgram(s)$ per liter.

mg/L = Miligram(s) per liter.

J = Concentration is estimated.

MNA = Monitored natural attenuation

NSL = No screening level available.

NYSDEC = New York State Department of Environmental Conservation

TOC = Total organic carbon

U = Analyte not detected.

Concentrations exceeding the screening level are shaded gray.

	Lo	cation ID	MW-14KA	MW-19S	MW-20S
	Sam	ple Name	828103-MW-14KA-09252023	828103-MW-19S-09252023	828103-MW-20S-09252023
		ample ID			
	San	nple Date	9/25/2023	9/25/2023	9/25/2023
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result
Anions (SM4500S-F/SW9056)					
Sulfide (SM4500S-F)	0.05	mg/L	< 0.48 U	< 0.48 U	< 0.48 U
Chloride (As Cl) (SW9056)	250	mg/L	131	8.2	117
Sulfate (As SO4) (SW9056)	250	mg/L	94.4	47.9	84.3
Nitrogen					
Nitrogen, Nitrite (SM4500B)	1	mg/L	< 0.003 U	0.13	0.02
Nitrogen, Nitrate-Nitrite (EPA 353.2)	NSL	mg/L	< 0.09 U	5.5	0.65
Nitrogen, Nitrate (As N) (Calculated)	10	mg/L	< 0.093 U	5.4	0.62
Total Metals (SW6010D)					
Iron	300	μg/L	967	1080	32.1
Manganese	300	μg/L	39.6	69.6	61.8
Dissolved Gases (RSK-175)					
Carbon Dioxide	NSL	μg/L	7200	14400	7450
Ethane	NSL	μg/L	1.3	0.14 J	< 0.14 U
Ethene	NSL	μg/L	9.84	1.5	< 0.16 U
Methane	NSL	µg/L	48.5	0.94	0.46
Alkalinity (SM2320B)					
Alkalinity, Total (As CaCO ₃)	NSL	mg/L	326	413	426
TOC (SM5310B)					
Total Organic Carbon	NSL	mg/L	3	5.8	4.8

Table 3-2. Concentrations of MNA Parameters in Groundwater

(1) NYSDEC Ambient Water Quality Standard (AWQS) Class GA (Standard/guidance

values) (Technical and Operational Guidance Series [TOGS] 1.1.1).

 $\mu g/L = Microgram(s)$ per liter.

mg/L = Miligram(s) per liter.

J = Concentration is estimated.

MNA = Monitored natural attenuation

NSL = No screening level available.

NYSDEC = New York State Department of Environmental Conservation

TOC = Total organic carbon

U = Analyte not detected.

Concentrations exceeding the screening level are shaded gray.

Tables 3-2, Page 2 of 2 November 2024

Table 3-3. Results for Microbical Sampling in Groundwater

Location ID	MW-13K	MW-03CA	MW-20S
Sample Name	828103-MW-13K-10262023	828103-MW-03CA-10262023	828103-MW-20S-10262023
Parent Sample ID			
Sample Date	10/26/2023	10/26/2023	10/26/2023
Analyte	Result	Result	Result
Reducive Dechlorination			
Dehalococcoides (DHC)	7.64E+03	2.51E+03	<2.50E+01
tceA Reductase (TCE)	4.98E+02	4.43E+01	<2.50E+01
BAV1 Vinyl Chloride Reductase (BVC)	1.19E+02	5.84E+01	<2.50E+01
Vinyl Chloride Reductase (VCR)	8.92E+01	6.79E+02	<2.50E+01
Dehalobacter spp. (DHBt)	8.61E+04	3.52E+04	<2.50E+02
Dehalobacter DCM (DCM)	<2.5E+02	<2.5E+02	<2.50E+02
Dehalogenimona s spp. (DHG)	1.57E+03	1.88E+04	<2.50E+02
cer A Reductase (CER)	<2.50E+02	<2.50E+02	<2.50E+02
trans -1,2-DCE Reductase (TDR)	<2.50E+02	<2.50E+02	<2.50E+02
Desulfitobacterium spp. (DSB)	1.64E+04	3.82E+04	<2.50E+02
Dehalobium chlorocoercia (DECO)	2.56E+04	8.16E+03	2.00E+03
Desulfuromonas spp. (DSM)	<2.50E+02	<2.50E+02	6.88E+01 (J)
PCE Reductase (PCE-1)	<2.50E+02	<2.50E+02	<2.50E+02
PCE Reductase (PCE-2)	4.01E+04	5.39E+03	<2.50E+02
Chloroform Reductase (CFR)	<2.50E+02	<2.50E+02	<2.50E+02
1,1 DCA Reductase (DCA)	<2.50E+02	<2.50E+02	<2.50E+02
1,2 DCA Reducatase (DCAR)	<2.50E+02	<2.50E+02	<2.50E+02
Aerobic (Co)Metabolic			
Soluble Methane Monooxygenase (SMMO)	<2.50E+02	<2.50E+02	<2.50E+02
Toluene Dioxygenase (TOD)	<2.50E+02	<2.50E+02	<2.50E+02
Phenol Hydroxylase (PHE)	1.48E+05	2.85E+04	1.27E+05
Trichlorobnzene Dioxygenase (TCBO)	<2.50E+02	<2.50E+02	<2.50E+02
Toluene Monooxygenase 2 (RDEG)	1.44E+05	2.93E+04	1.55E+05
Toluene Monooxygenase (RMO)	<2.50E+02	1.35E+03	<2.50E+02
Ethene Monooxygenase (EtnC)	3.50E+03	2.47E+03	<2.50E+02
Epoxalkane Transferasc (EtnE)	5.44E+03	<2.50E+02	1.23E+04

EA Engineering, P.C. and Its Affiliate EA Science and Technology

Table 3-3. Results for Microbical Sampling in Groundwater

Location ID	MW-13K	MW-03CA	MW-20S
Sample Name	828103-MW-13K-10262023	828103-MW-03CA-10262023	828103-MW-20S-10262023
Parent Sample ID			
Sample Date	10/26/2023	10/26/2023	10/26/2023
Analyte	Result	Result	Result
Dichloromethane Dehalogenase (DCMA)	<2.50E+02	<2.50E+02	<2.50E+02

Table 3-3. Results for Microbical Sampling in Groundwater

Location ID	MW-13K	MW-03CA	MW-20S
Sample Name	828103-MW-13K-10262023	828103-MW-03CA-10262023	828103-MW-20S-10262023
Parent Sample ID			
Sample Date	10/26/2023	10/26/2023	10/26/2023
Analyte	Result	Result	Result
Other			
Total Eubacteria (EBAC)	4.55E+08	4.85E+06	3.43E+07
Sulfate Reducing Bacteria (APS)	2.99E+05	4.09E+05	1.52E+05
Methanogens (MGN)	1.21E+02 (J)	3.84E+03	1.28E+01 (J)

Notes:

< = Results Not Detected

J = Estimated gene copies Bblow project quantity limit but above laboraory quantity limit

Bold values indiate a value greater than method detection limits.

	Sa	mple Depth	Overburden						
]	Location ID			MPE-17				
	Sample Name				828103-MPE17012	828103-MPE17012	828103-MPE-17- 09262023		
	Par	ent Sample							
		Sample Date	7/11/2012	2/14/2019	7/16/2020	5/26/2022	9/26/2023		
Analyte	NYSDEC AWQS ¹	Unit		l I	VOC Method SW826	50			
1,1,1-Trichloroethane (TCA)	5	μg/L	1.3	< 0.82 U	< 0.82 U	NA	< 0.54 U		
1,1-Dichloroethane	5	μg/L	1	< 0.38 U	< 0.38 U	< 1 UJ	< 0.57 U		
1,1-Dichloroethene	5	μg/L	0.78 J	< 0.29 U	< 0.29 U	< 1 UJ	< 0.59 U		
Acetone	50	μg/L	< 0.98 U	3.1 J	< 3.0 U	NA	< 3.1 U		
Benzene	1	μg/L	< 0.21 U	< 0.41 U	< 0.41 U	NA	< 0.43 U		
Bromodichloromethane	50	μg/L	< 0.2 U	< 0.39 U	< 0.39 U	< 1 UJ	< 0.45 U		
Carbon Disulfide	60	μg/L	< 0.2 U	< 0.19 U	< 0.19 U	< 1 UJ	< 1.8 U		
Chloroform	7	μg/L	0.28 J	< 0.34 U	< 0.34 U	< 1 UJ	< 0.5 U		
Cis-1,2-Dichloroethylene	5	μg/L	1.4	< 0.81 U	< 0.81 U	< 1 UJ	< 0.51 U		
Ethylbenzene	5	μg/L	< 0.2 U	< 0.74 U	< 0.74 U	NA	< 0.6 U		
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 0.51 U	< 1.3 U	< 1.3 U	NA	< 2.7 U		
Tetrachloroethylene (PCE)	5	μg/L	9	7.9	10	7.2 J	15.8		
Trans-1,2-Dichloroethene	5	μg/L	< 0.2 U	< 0.9 U	< 0.90 U	< 1 UJ	< 0.54 U		
Trichloroethylene (TCE)	5	μg/L	3.9	0.49 J	0.6 J	0.28 J	0.7 J		
Vinyl Chloride	2	μg/L	< 0.23 U	< 0.9 U	< 0.90 U	< 1 UJ	< 0.52 U		

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 1 or 30 November 2024

	Sa	mple Depth			Overburden		
		Location ID			MW-08S		
	Sa	828103- MW08S1117	828103-MW08S011	828103-MW08S011	828103-MW08S011	828103-MW-08S- 09262023	
	ent Sample Sample Date	5/24/2017	11/27/2018	7/15/2020	5/26/2022	9/26/2023	
Analyte	NYSDEC AWQS ¹	Unit		•	VOC Method SW826	50	
1,1,1-Trichloroethane (TCA)	5	μg/L	< 0.82 U	< 0.82 U	< 0.82 U	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 0.38 U	< 0.38 U	< 0.38 U	< 1 UJ	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 0.29 U	< 0.29 U	< 0.29 U	< 1 UJ	< 0.59 U
Acetone	50	μg/L	< 3 U	< 3 U	< 3.0 U	NA	< 3.1 U
Benzene	1	μg/L	< 0.41 U	< 0.41 U	< 0.41 U	NA	< 0.43 U
Bromodichloromethane	50	μg/L	< 0.39 U	< 0.39 U	< 0.39 U	< 1 UJ	< 0.45 U
Carbon Disulfide	60	μg/L	< 0.19 U	< 0.19 U	< 0.19 U	< 1 UJ	< 1.8 U
Chloroform	7	μg/L	< 0.34 U	< 0.34 U	< 0.34 U	< 1 UJ	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	< 0.81 U	< 0.81 U	< 0.81 U	< 1 UJ	< 0.51 U
Ethylbenzene	5	μg/L	< 0.74 U	< 0.74 U	< 0.74 U	NA	< 0.6 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.3 U	< 1.3 U	< 1.3 U	NA	< 2.7 U
Tetrachloroethylene (PCE)	5	μg/L	< 0.36 U	< 0.36 U	< 0.36 U	< 1 UJ	< 0.56 U
Trans-1,2-Dichloroethene	5	μg/L	< 0.9 U	< 0.9 U	< 0.90 U	< 1 UJ	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	< 0.46 U	< 0.46 U	< 0.46 U	< 1 UJ	< 0.53 U
Vinyl Chloride	2	μg/L	< 0.9 U	< 0.9 U	< 0.90 U	< 1 UJ	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 2 or 30 November 2024

	Sa	mple Depth	h Overburden						
		Location ID		MW	/-098				
	Sa	ample Name	828103- MW09S1177	828103-MW9S5012	828103-MW09S012	828103-MW-09S- 09262023			
		ent Sample Sample Date	5/24/2017	11/28/2018	7/15/2020	9/26/2023			
Analyte	NYSDEC AWQS ¹	Unit		VOC Meth	od SW8260				
1,1,1-Trichloroethane (TCA)	5	μg/L	< 0.82 U	< 0.82 U	< 0.82 U	< 0.54 U			
1,1-Dichloroethane	5	μg/L	< 0.38 U	< 0.38 U	< 0.38 U	< 0.57 U			
1,1-Dichloroethene	5	μg/L	< 0.29 U	< 0.29 U	< 0.29 U	< 0.59 U			
Acetone	50	μg/L	< 3 U	< 3 U	< 3.0 U	< 3.1 U			
Benzene	1	μg/L	< 0.41 U	< 0.41 U	< 0.41 U	< 0.43 U			
Bromodichloromethane	50	μg/L	< 0.39 U	< 0.39 U	< 0.39 U	< 0.45 U			
Carbon Disulfide	60	μg/L	< 0.19 U	< 0.19 U	< 0.19 U	< 1.8 U			
Chloroform	7	μg/L	< 0.34 U	< 0.34 U	< 0.34 U	< 0.5 U			
Cis-1,2-Dichloroethylene	5	μg/L	< 0.81 U	< 0.81 U	< 0.81 U	< 0.51 U			
Ethylbenzene	5	μg/L	< 0.74 U	< 0.74 U	< 0.74 U	< 0.6 U			
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.3 U	< 1.3 U	< 1.3 U	< 2.7 U			
Tetrachloroethylene (PCE)	5	μg/L	< 0.36 U	< 0.36 U	< 0.36 U	< 0.56 U			
Trans-1,2-Dichloroethene	5	μg/L	< 0.9 U	< 0.9 U	< 0.90 U	< 0.54 U			
Trichloroethylene (TCE)	5	μg/L	< 0.46 U	< 0.46 U	< 0.46 U	< 0.53 U			
Vinyl Chloride	2	μg/L	< 0.9 U	< 0.9 U	< 0.90 U	< 0.52 U			

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 3 or 30 November 2024

	Sa	mple Depth			Overburden		
]	Location ID			MW-10S		
	Sa	imple Name	828103- MW10S1117	828103-MW10S012	828103-MW10S012	828103-MW10S012	828103-MW-10S- 09262023
	ent Sample ample Date	5/25/2017	11/28/2018	7/14/2020	5/25/2022	9/26/2023	
Analyte	NYSDEC AWQS ¹	Unit			VOC Method SW826	50	
1,1,1-Trichloroethane (TCA)	5	μg/L	< 0.82 U	< 0.82 U	< 0.82 U	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 0.38 U	< 0.38 U	< 0.38 U	< 1 U	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 0.29 U	< 0.29 U	< 0.29 U	< 1 U	< 0.59 U
Acetone	50	μg/L	< 3 U	< 3 U	< 3.0 U	NA	< 3.1 U
Benzene	1	μg/L	< 0.41 U	< 0.41 U	< 0.41 U	NA	< 0.43 U
Bromodichloromethane	50	μg/L	< 0.39 U	< 0.39 U	< 0.39 U	< 1 U	< 0.45 U
Carbon Disulfide	60	μg/L	< 0.19 U	< 0.19 U	< 0.19 U	< 1 U	< 1.8 U
Chloroform	7	μg/L	< 0.34 U	< 0.34 U	< 0.34 U	< 1 U	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	5.6	1.3	2.7	1.1	10.4
Ethylbenzene	5	μg/L	< 0.74 U	< 0.74 U	< 0.74 U	NA	< 0.6 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.3 U	< 1.3 U	< 1.3 U	NA	< 2.7 U
Tetrachloroethylene (PCE)	5	μg/L	50	24	16	8.8	3
Trans-1,2-Dichloroethene	5	μg/L	< 0.9 U	< 0.9 U	< 0.90 U	< 1 U	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	49	19	19	13	12.5
Vinyl Chloride	2	μg/L	< 0.9 U	< 0.9 U	< 0.90 U	< 1 U	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 4 or 30 November 2024

	Sa	mple Depth			Over	burden		
		Location ID			MW	V-11S		
	Sa	ample Name	828103- MW11S01209	828103- MW11S0917	828103-MW11S010	828103-MW11S010	828103-MW11S010	828103-MW-11S- 09262023
		ent Sample Sample Date	5/26/2009	5/23/2017	11/27/2018	7/14/2020	5/26/2022	9/26/2023
Analyte	NYSDEC AWQS ¹	Unit			VOC Meth	10d SW8260		
1,1,1-Trichloroethane (TCA)	5	μg/L	< 0.4 U	< 0.82 U	< 0.82 U	< 0.82 U	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 0.36 U	< 0.38 U	< 0.38 U	< 0.38 U	< 1 UJ	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 0.47 U	< 0.29 U	< 0.29 U	< 0.29 U	< 1 UJ	< 0.59 U
Acetone	50	μg/L	< 2.8 U	< 3 U	< 3 U	< 3.0 U	NA	< 3.1 U
Benzene	1	μg/L	< 0.32 U	< 0.41 U	< 0.41 U	< 0.41 U	NA	< 0.43 U
Bromodichloromethane	50	μg/L	< 0.36 U	< 0.39 U	< 0.39 U	< 0.39 U	< 1 UJ	< 0.45 U
Carbon Disulfide	60	μg/L	< 0.54 U	< 0.19 U	< 0.19 U	< 0.19 U	< 1 UJ	< 1.8 U
Chloroform	7	μg/L	< 0.34 U	< 0.34 U	< 0.34 U	< 0.34 U	< 1 UJ	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	< 0.35 U	< 0.81 U	< 0.81 U	< 0.81 U	< 1 UJ	< 0.51 U
Ethylbenzene	5	μg/L	< 0.53 U	< 0.74 U	< 0.74 U	< 0.74 U	NA	< 0.6 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.3 U	< 1.3 U	< 1.3 U	< 1.3 U	NA	< 2.7 U
Tetrachloroethylene (PCE)	5	μg/L	< 0.27 UJ	< 0.36 U	< 0.36 U	< 0.36 U	< 1 UJ	< 0.56 U
Trans-1,2-Dichloroethene	5	μg/L	< 0.41 U	< 0.9 U	< 0.9 U	< 0.90 U	< 1 UJ	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	< 0.28 U	< 0.46 U	< 0.46 U	< 0.46 U	< 1 UJ	< 0.53 U
Vinyl Chloride	2	μg/L	< 0.34 U	< 0.9 U	< 0.9 U	< 0.90 U	< 1 UJ	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 5 or 30 November 2024

	Sa	mple Depth				Overburden			
]	Location ID				MW-12S			
	Sa	imple Name	828103- MW12S01009	828103- MW12S1117	828103-MW12S010	828103-MW12S010	828103- MW12S010D	828103-MW12S010	828103-MW-12S- 09262023
	Par	ent Sample					828103- MW12S010_07_15 _2020		
		ample Date	5/25/2009	5/23/2017	11/27/2018	7/15/2020	7/15/2020	5/26/2022	9/26/2023
Analyte	NYSDEC AWQS ¹	Unit			N	VOC Method SW826			
1,1,1-Trichloroethane (TCA)	5	μg/L	< 0.4 U	< 0.82 U	< 0.82 U	< 0.82 U	< 0.82 U	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 0.36 U	< 0.38 U	< 0.38 U	< 0.38 U	< 0.38 U	< 1 UJ	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 0.47 U	< 0.29 U	< 0.29 U	< 0.29 U	< 0.29 U	< 1 UJ	< 0.59 U
Acetone	50	μg/L	< 2.8 U	< 3 U	< 3 U	< 3.0 U	< 3.0 U	NA	< 3.1 U
Benzene	1	μg/L	< 0.32 U	< 0.41 U	< 0.41 U	< 0.41 U	< 0.41 U	NA	< 0.43 U
Bromodichloromethane	50	μg/L	< 0.36 U	< 0.39 U	< 0.39 U	< 0.39 U	< 0.39 U	< 1 UJ	< 0.45 U
Carbon Disulfide	60	μg/L	< 0.54 U	< 0.19 U	< 0.19 U	< 0.19 U	< 0.19 U	< 1 UJ	< 1.8 U
Chloroform	7	μg/L	< 0.34 U	< 0.34 U	< 0.34 U	< 0.34 U	< 0.34 U	< 1 UJ	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	< 0.35 U	< 0.81 U	< 0.81 U	< 0.81 U	< 0.81 U	< 1 UJ	< 0.51 U
Ethylbenzene	5	μg/L	< 0.53 U	< 0.74 U	< 0.74 U	< 0.74 U	< 0.74 U	NA	< 0.6 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.3 U	< 1.3 U	< 1.3 U	< 1.3 U	< 1.3 U	NA	< 2.7 U
Tetrachloroethylene (PCE)	5	μg/L	< 0.27 UJ	< 0.36 U	< 0.36 U	< 0.36 U	< 0.36 U	< 1 UJ	< 0.56 U
Trans-1,2-Dichloroethene	5	μg/L	< 0.41 U	< 0.9 U	< 0.9 U	< 0.90 U	< 0.90 U	< 1 UJ	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	< 0.28 U	< 0.46 U	< 0.46 U	< 0.46 U	< 0.46 U	< 1 UJ	< 0.53 U
Vinyl Chloride	2	μg/L	< 0.34 U	< 0.9 U	< 0.9 U	< 0.90 U	< 0.90 U	< 1 UJ	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6

NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

	Sa	mple Depth			Overburden		
]	Location ID			MW-15S		
	Sa	ample Name	828103- MW15S1017	828103-MW15S010	828103-MW15S010	828103-MW15S010	828103-MW-15S- 09252023
		ent Sample Sample Date	5/22/2017	11/28/2018	7/15/2020	5/24/2022	9/25/2023
Analyte	NYSDEC AWQS ¹	Unit		Ţ	VOC Method SW826	50	
1,1,1-Trichloroethane (TCA)	5	μg/L	< 8.2 U	< 1.6 U	< 1.6 U	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 3.8 U	< 0.76 U	< 0.76 U	< 1 UJ	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 2.9 U	< 0.58 U	< 0.58 U	< 1 UJ	< 0.59 U
Acetone	50	μg/L	< 30 U	< 6 U	< 6.0 U	NA	3.9 J
Benzene	1	μg/L	< 4.1 U	< 0.82 U	< 0.82 U	NA	< 0.43 U
Bromodichloromethane	50	μg/L	< 3.9 U	< 0.78 U	< 0.78 U	< 1 UJ	< 0.45 U
Carbon Disulfide	60	μg/L	< 1.9 U	< 0.38 U	< 0.38 U	< 1 UJ	< 1.8 U
Chloroform	7	μg/L	< 3.4 U	< 0.68 U	< 0.68 U	< 1 UJ	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	13	19	3.3	2.5 J	2.5
Ethylbenzene	5	μg/L	< 7.4 U	< 1.5 U	< 1.5 U	NA	< 0.6 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 13 U	< 2.6 U	< 2.6 U	NA	< 2.7 U
Tetrachloroethylene (PCE)	5	μg/L	240	100	150	100 J	150
Trans-1,2-Dichloroethene	5	µg/L	< 9 U	< 1.8 U	< 1.8 U	< 1 UJ	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	100	52	82	45 J	83.3
Vinyl Chloride	2	μg/L	< 9 U	< 1.8 U	< 1.8 U	< 1 UJ	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 7 or 30 November 2024

	Sa	mple Depth			Overburden		
]	Location ID			MW-16S		
	Sa	imple Name	828103- MW16S1017	828103-MW16S010	828103-MW16S010	828103-MW16S010	828103-MW-16S- 09272023
		ent Sample ample Date	5/22/2017	11/29/2018	7/17/2020	5/24/2022	9/27/2023
Analyte	NYSDEC AWQS ¹	Unit		v	VOC Method SW826	50	
1,1,1-Trichloroethane (TCA)	5	μg/L	< 0.82 U	< 6.6 U	< 6.6 U	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 0.38 U	< 3 U	< 3.0 U	< 1 UJ	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 0.29 U	< 2.3 U	< 2.3 U	< 1 UJ	< 0.59 U
Acetone	50	μg/L	< 3 U	< 24 U	< 24 U	NA	< 3.1 U
Benzene	1	μg/L	< 0.41 U	< 3.3 U	< 3.3 U	NA	< 0.43 U
Bromodichloromethane	50	μg/L	< 0.39 U	< 3.1 U	< 3.1 U	< 1 UJ	< 0.45 U
Carbon Disulfide	60	μg/L	0.44 J	< 1.5 U	< 1.5 U	< 1 UJ	< 1.8 U
Chloroform	7	μg/L	< 0.34 U	< 2.7 U	< 2.7 U	< 1 UJ	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	1.6	10	< 6.5 U	4 J	26.8
Ethylbenzene	5	μg/L	< 0.74 U	< 5.9 U	< 5.9 U	NA	< 0.6 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.3 U	< 11 U	< 11 U	NA	< 2.7 U
Tetrachloroethylene (PCE)	5	μg/L	6.7	34	23	19 J	24.5
Trans-1,2-Dichloroethene	5	μg/L	< 0.9 U	< 7.2 U	< 7.2 U	< 1 UJ	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	33	350	220	160 J	199
Vinyl Chloride	2	μg/L	< 0.9 U	< 7.2 U	< 7.2 U	< 1 UJ	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 8 or 30 November 2024

	Sa	mple Depth	Overburden							
]	Location ID			MW-178					
	Sa	8281 Sample Name MW17			828103-MW17S010	828103-MW17S010	828103-MW-178- 09272023			
		ent Sample Sample Date	5/23/2017	11/29/2018	7/17/2020	5/25/2022	9/27/2023			
Analyte	NYSDEC AWQS ¹	Unit		,	VOC Method SW826	50				
1,1,1-Trichloroethane (TCA)	5	µg/L	< 3.3 U	< 0.82 U	< 0.82 U	NA	< 0.54 U			
1,1-Dichloroethane	5	µg/L	< 1.5 U	< 0.38 U	< 0.38 U	< 1 U	< 0.57 U			
1,1-Dichloroethene	5	μg/L	< 1.2 U	< 0.29 U	< 0.29 U	< 1 U	< 0.59 U			
Acetone	50	μg/L	< 12 U	< 3 U	< 3.0 U	NA	< 3.1 U			
Benzene	1	μg/L	< 1.6 U	< 0.41 U	< 0.41 U	NA	< 0.43 U			
Bromodichloromethane	50	μg/L	< 1.6 U	< 0.39 U	< 0.39 U	< 1 U	< 0.45 U			
Carbon Disulfide	60	μg/L	< 0.76 U	< 0.19 U	< 0.19 U	< 1 U	< 1.8 U			
Chloroform	7	μg/L	< 1.4 U	< 0.34 U	< 0.34 U	< 1 U	< 0.5 U			
Cis-1,2-Dichloroethylene	5	μg/L	< 3.2 U	< 0.81 U	< 0.81 U	< 1 U	1.9			
Ethylbenzene	5	μg/L	< 3 U	< 0.74 U	< 0.74 U	NA	< 0.6 U			
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 5.3 U	< 1.3 U	< 1.3 U	NA	< 2.7 U			
Tetrachloroethylene (PCE)	5	μg/L	130	32	25	33	114			
Trans-1,2-Dichloroethene	5	μg/L	< 3.6 U	< 0.9 U	< 0.90 U	< 1 U	< 0.54 U			
Trichloroethylene (TCE)	5	μg/L	110	18	12	13	118			
Vinyl Chloride	2	μg/L	< 3.6 U	< 0.9 U	< 0.90 U	< 1 U	< 0.52 U			

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 9 or 30 November 2024

	Sa	mple Depth	th Overburden						
		Location ID		MW	/-18S				
	Sa	imple Name	828103- MW18S1017	828103-MW18S010	828103-MW18S010	828103-MW18S010			
		ent Sample Sample Date	5/22/2017	11/29/2018	7/16/2020	5/25/2022			
Analyte	NYSDEC AWQS ¹	Unit			VOC Method SW826	50			
1,1,1-Trichloroethane (TCA)	5	μg/L	< 8.2 U	< 4.1 U	< 4.1 U	NA			
1,1-Dichloroethane	5	μg/L	< 3.8 U	< 1.9 U	< 1.9 U	< 2.5 UJ			
1,1-Dichloroethene	5	μg/L	< 2.9 U	< 1.5 U	< 1.5 U	< 2.5 UJ			
Acetone	50	μg/L	< 30 U	< 15 U	< 15 U	NA			
Benzene	1	μg/L	< 4.1 U	< 2.1 U	< 2.1 U	NA			
Bromodichloromethane	50	μg/L	< 3.9 U	< 2 U	< 2.0 U	< 2.5 UJ			
Carbon Disulfide	60	μg/L	< 1.9 U	< 0.95 U	< 0.95 U	< 2.5 UJ			
Chloroform	7	μg/L	< 3.4 U	< 1.7 U	< 1.7 U	< 2.5 UJ			
Cis-1,2-Dichloroethylene	5	μg/L	200	92	140	89 J			
Ethylbenzene	5	μg/L	< 7.4 U	< 3.7 U	< 3.7 U	NA			
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 13 U	< 6.6 U	< 6.6 U	NA			
Tetrachloroethylene (PCE)	5	μg/L	280	320 J	220	250 J			
Trans-1,2-Dichloroethene	5	μg/L	< 9 U	< 4.5 U	< 4.5 U	0.71 J			
Trichloroethylene (TCE)	5	μg/L	51	57	59	45 J			
Vinyl Chloride	2	μg/L	< 9 U	< 4.5 U	< 4.5 U	< 2.5 UJ			

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 10 or 30 November 2024

2023 Annual Report

	Sa	mple Depth			Overburden		
		Location ID			MW-19S		
	Sa	ample Name	828103- MW19S1017	828103-MW19S010	828103-MW19S010	828103-MW19S010	828103-MW-198- 09252023
		ent Sample Sample Date	5/23/2017	11/30/2018	7/17/2020	5/24/2022	9/25/2023
Analyte	NYSDEC AWQS ¹	Unit		v	VOC Method SW826	50	
1,1,1-Trichloroethane (TCA)	5	μg/L	< 41 U	< 3.3 U	< 3.3 U	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 19 U	< 1.5 U	< 1.5 U	< 10 UJ	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 15 U	< 1.2 U	< 1.2 U	< 10 UJ	< 0.59 U
Acetone	50	μg/L	< 150 U	< 12 U	< 12 U	NA	< 3.1 U
Benzene	1	μg/L	< 21 U	< 1.6 U	< 1.6 U	NA	< 0.43 U
Bromodichloromethane	50	μg/L	< 20 U	< 1.6 U	< 1.6 U	< 10 UJ	< 0.45 U
Carbon Disulfide	60	μg/L	< 9.5 U	< 0.76 U	< 0.76 U	< 10 UJ	< 1.8 U
Chloroform	7	μg/L	< 17 U	< 1.4 U	< 1.4 U	< 10 UJ	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	2000	240	1300	1400 J	1030
Ethylbenzene	5	μg/L	< 37 U	< 3 U	< 3.0 U	NA	< 0.6 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 66 U	< 5.3 U	< 5.3 U	NA	< 2.7 U
Tetrachloroethylene (PCE)	5	μg/L	< 18 U	34	110	400 J	360
Trans-1,2-Dichloroethene	5	μg/L	< 45 U	< 3.6 U	8.9	13 J	14.8
Trichloroethylene (TCE)	5	μg/L	< 23 U	35	120	110 J	112
Vinyl Chloride	2	μg/L	510	81	28	3.5 J	23.3

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 11 or 30 November 2024

	Sa	mple Depth			Overburden		
		Location ID			MW-20S		
	Sa	ample Name	828103- MW2081017	828103-MW20S010	828103-MW20S010	828103-MW20S010	828103-MW-20S- 09252023
		ent Sample Sample Date	5/25/2017	11/29/2018	7/17/2020	5/24/2022	9/25/2023
Analyte	NYSDEC AWQS ¹	Unit		,	VOC Method SW826	50	
1,1,1-Trichloroethane (TCA)	5	μg/L	< 410 U	< 330 U	< 66 U	NA	< 54 U
1,1-Dichloroethane	5	μg/L	< 190 U	< 150 U	< 30 U	< 100 UJ	< 57 U
1,1-Dichloroethene	5	μg/L	<150 U	< 120 U	< 23 U	< 100 UJ	< 59 U
Acetone	50	μg/L	<1500 U	< 1200 U	< 240 U	NA	< 310 U
Benzene	1	μg/L	< 210 U	< 160 U	< 33 U	NA	< 43 U
Bromodichloromethane	50	μg/L	< 200 U	< 160 U	< 31 U	33 J	< 45 U
Carbon Disulfide	60	μg/L	< 95 U	< 76 U	< 15 U	< 100 UJ	< 180 U
Chloroform	7	μg/L	< 170 U	< 140 U	< 27 U	90 J	< 50 U
Cis-1,2-Dichloroethylene	5	μg/L	< 410 U	< 320 U	< 65 U	< 100 UJ	54.2 J
Ethylbenzene	5	μg/L	< 370 U	< 300 U	< 59 U	NA	< 60 U
Methyl Ethyl Ketone (2-Butanone)	50	µg/L	< 660 U	< 530 U	< 110 U	NA	< 270 U
Tetrachloroethylene (PCE)	5	μg/L	15000	17000	4200	17000 J	37100
Trans-1,2-Dichloroethene	5	µg/L	<450 U	< 360 U	< 72 U	< 100 UJ	< 54 U
Trichloroethylene (TCE)	5	μg/L	450 J	450	84	210 J	592
Vinyl Chloride	2	µg/L	<450 U	< 360 U	< 72 U	< 100 UJ	< 52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 12 or 30 November 2024

	Sa	mple Depth			Overburden		
		Location ID			MW-21S		
	Sa	ample Name	828103- MW21S1017	828103-MW21S010	828103-MW21S010	828103-MW21S010	828103-MW-21S- 09272023
		ent Sample Sample Date	5/23/2017	11/29/2018	7/16/2020	5/24/2022	9/27/2023
Analyte	NYSDEC AWQS ¹	Unit		•	VOC Method SW826	50	
1,1,1-Trichloroethane (TCA)	5	μg/L	< 16 U	< 16 U	< 6.6 U	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 7.6 U	< 7.6 U	< 3.0 U	< 10 UJ	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 5.8 U	< 5.8 U	< 2.3 U	< 10 UJ	< 0.59 U
Acetone	50	μg/L	< 60 U	< 60 U	< 24 U	NA	< 3.1 U
Benzene	1	μg/L	< 8.2 U	< 8.2 U	< 3.3 U	NA	0.52
Bromodichloromethane	50	μg/L	< 7.8 U	< 7.8 U	< 3.1 U	< 10 UJ	< 0.45 U
Carbon Disulfide	60	μg/L	< 3.8 U	< 3.8 U	< 1.5 U	< 10 UJ	< 1.8 U
Chloroform	7	μg/L	< 6.8 U	< 6.8 U	< 2.7 U	< 10 UJ	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	160	41	10	6.1 J	< 0.51 U
Ethylbenzene	5	μg/L	< 15 U	< 15 U	< 5.9 U	NA	0.67 J
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 26 U	< 26 U	< 11 U	NA	< 2.7 U
Tetrachloroethylene (PCE)	5	µg/L	< 7.2 U	< 7.2 U	< 2.9 U	6.2 J	0.95 J
Trans-1,2-Dichloroethene	5	μg/L	< 18 U	< 18 U	< 7.2 U	3 J	2.4
Trichloroethylene (TCE)	5	μg/L	< 9.2 U	< 9.2 U	< 3.7 U	7.7 J	1.2
Vinyl Chloride	2	μg/L	< 18 U	59	< 7.2 U	< 10 UJ	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 13 or 30 November 2024

	Sa	mple Depth				Overburden			
]	Location ID		PZ-228			PZ	-24S	
	Sa	imple Name	828103-PZ22S010	828103-PZ22S010	828103-PZ-228- 09262023	828103-PZ24S010	828103-PZ24S010	828103-PZ-24S010	828103-PZ-24S- 09262023
		ent Sample Sample Date	11/30/2018	7/15/2020	9/26/2023	11/30/2018	7/14/2020	5/25/2022	9/26/2023
Analyte	NYSDEC AWQS ¹	Unit	v	OC Method SW826	0		VOC Meth	od SW8260	
1,1,1-Trichloroethane (TCA)	5	μg/L	< 0.82 U	< 0.82 U	< 0.54 U	< 3.3 U	< 0.82 U	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 0.38 U	< 0.38 U	< 0.57 U	< 1.5 U	< 0.38 U	< 1 UJ	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 0.29 U	< 0.29 U	< 0.59 U	< 1.2 U	< 0.29 U	< 1 UJ	< 0.59 U
Acetone	50	μg/L	< 3 U	< 3.0 U	< 3.1 U	20 J	< 3.0 U	NA	< 3.1 U
Benzene	1	μg/L	< 0.41 U	< 0.41 U	< 0.43 U	< 1.6 U	< 0.41 U	NA	< 0.43 U
Bromodichloromethane	50	μg/L	< 0.39 U	< 0.39 U	< 0.45 U	< 1.6 U	< 0.39 U	< 1 UJ	< 0.45 U
Carbon Disulfide	60	μg/L	< 0.19 U	< 0.19 U	< 1.8 U	< 0.76 U	< 0.19 U	< 1 UJ	< 1.8 U
Chloroform	7	μg/L	1.9	< 0.34 U	< 0.5 U	< 1.4 U	< 0.34 U	< 1 UJ	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	< 0.81 U	< 0.81 U	< 0.51 U	< 3.2 U	< 0.81 U	< 1 UJ	< 0.51 U
Ethylbenzene	5	μg/L	< 0.74 U	< 0.74 U	< 0.6 U	< 3 U	< 0.74 U	NA	< 0.6 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.3 U	< 1.3 U	< 2.7 U	< 5.3 U	< 1.3 U	NA	< 2.7 U
Tetrachloroethylene (PCE)	5	μg/L	< 0.36 U	< 0.36 U	< 0.56 U	< 1.4 U	< 0.36 U	< 1 UJ	< 0.56 U
Trans-1,2-Dichloroethene	5	μg/L	< 0.9 U	< 0.90 U	< 0.54 U	< 3.6 U	< 0.90 U	< 1 UJ	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	< 0.46 U	< 0.46 U	< 0.53 U	< 1.8 U	< 0.46 U	< 1 UJ	< 0.53 U
Vinyl Chloride	2	μg/L	< 0.9 U	< 0.90 U	< 0.52 U	< 3.6 U	< 0.90 U	< 1 UJ	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6

NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

		Sample Depth			Over	·burden/Bedrock Into	erface		
		Location ID				MW-04			
		Sample Name Parent Sample	828103- MW0401809			828103-MW040020	828103-MW04020 5/26/2022	828103-MW-04- 09262023 9/26/2023	828103-DUP-02- 09262023 828103-MW- 04_20230926 9/26/2023
Analyte	NYSDEC AWQS ¹	Sample Date Unit	5/25/2009	5/23/2017	11/27/2018	7/15/2020	5/20/2022	9/20/2023	9/20/2023
1,1,1-Trichloroethane (TCA)	5	μg/L	< 0.4 U	< 0.82 U	< 0.82 U	< 0.82 U	NA	< 0.54 U	< 0.54 U
1,1-Dichloroethane	5	µg/L	< 0.36 U	< 0.38 U	< 0.38 U	< 0.38 U	< 1 UJ	< 0.57 U	< 0.57 U
Acetone	50	μg/L	< 2.8 U	< 3 U	< 3 U	< 3.0 U	NA	< 3.1 U	< 3.1 U
Benzene	1	μg/L	< 0.32 U	< 0.41 U	< 0.41 U	< 0.41 U	NA	< 0.43 U	< 0.43 U
Cis-1,2-Dichloroethylene	5	µg/L	< 0.35 U	< 0.81 U	< 0.81 U	< 0.81 U	< 1 UJ	< 0.51 U	< 0.51 U
Methyl Ethyl Ketone (2-Butanone)	50	µg/L	< 1.3 U	< 1.3 U	< 1.3 U	< 1.3 U	NA	< 2.7 U	< 2.7 U
Methylene Chloride	5	μg/L	0.52 J	< 0.44 U	< 0.44 U	< 0.44 U	NA	< 1 U	< 1 U
Tert-Butyl Methyl Ether	10	μg/L	1.3	0.35 J	0.39 J	0.22 J	0.22 J	< 0.51 U	< 0.51 U
Tetrachloroethylene (PCE)	5	μg/L	< 0.27 U	< 0.36 U	< 0.36 U	< 0.36 U	< 1 UJ	< 0.56 U	< 0.56 U
Trans-1,2-Dichloroethene	5	µg/L	< 0.41 U	< 0.9 U	< 0.9 U	< 0.90 U	< 1 UJ	< 0.54 U	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	< 0.28 U	< 0.46 U	< 0.46 U	< 0.46 U	< 1 UJ	< 0.53 U	< 0.53 U
Vinyl Chloride	2	μg/L	< 0.34 U	< 0.9 U	< 0.9 U	< 0.90 U	< 1 UJ	< 0.52 U	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

		Sample Depth			Overburden/Be	edrock Interface		
		Location ID			MV	V-05		
		Sample Name	828103- MW0501809	828103-MW051717	828103-MW05020	828103-MW050020	828103-MW05020	828103-MW-05- 09262023
		Parent Sample						
		Sample Date	5/25/2009	5/24/2017	11/28/2018	7/14/2020	5/26/2022	9/26/2023
Analyte	NYSDEC AWQS ¹	Unit						
1,1,1-Trichloroethane (TCA)	5	μg/L	< 0.4 U	< 0.82 U	< 0.82 U	< 0.82 U	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 0.36 U	< 0.38 U	< 0.38 U	< 0.38 U	< 1 UJ	< 0.57 U
Acetone	50	μg/L	< 2.8 U	< 3 U	< 3 U	< 3.0 U	NA	< 3.1 U
Benzene	1	μg/L	< 0.32 U	< 0.41 U	< 0.41 U	< 0.41 U	NA	< 0.43 U
Cis-1,2-Dichloroethylene	5	μg/L	< 0.35 U	< 0.81 U	< 0.81 U	< 0.81 U	< 1 UJ	< 0.51 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.3 U	< 1.3 U	< 1.3 U	< 1.3 U	NA	< 2.7 U
Methylene Chloride	5	µg/L	< 0.41 U	< 0.44 U	< 0.44 U	< 0.44 U	NA	< 1 U
Tert-Butyl Methyl Ether	10	µg/L	< 0.35 U	< 0.16 U	< 0.16 U	< 0.16 U	< 1 UJ	< 0.51 U
Tetrachloroethylene (PCE)	5	µg/L	< 0.27 UJ	0.4 J	< 0.36 U	< 0.36 U	< 1 UJ	< 0.56 U
Trans-1,2-Dichloroethene	5	µg/L	< 0.41 U	< 0.9 U	< 0.9 U	< 0.90 U	< 1 UJ	< 0.54 U
Trichloroethylene (TCE)	5	µg/L	4.6	< 0.46 U	< 0.46 U	< 0.46 U	< 1 UJ	< 0.53 U
Vinyl Chloride	2	µg/L	< 0.34 U	< 0.9 U	< 0.9 U	< 0.90 U	< 1 UJ	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and

6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 16 or 30 November 2024

		Sample Depth			Over	burden/Bedrock Inte	erface		
		Location ID				MW-06			
		Sample Name	828103- MW0601609	828103-MW06016	828103-MW061317	828103-MW06018	828103-MW06018	828103-MW06018	828103-MW-06- 09262023
		Parent Sample Sample Date	5/25/2009	7/10/2012	5/24/2017	11/28/2018	7/14/2020	5/25/2022	9/26/2023
Analyte	NYSDEC AWQS ¹	Unit							
1,1,1-Trichloroethane (TCA)	5	µg/L	< 0.4 U	0.47 J	< 0.82 U	< 0.82 U	< 0.82 U	NA	< 0.54 U
1,1-Dichloroethane	5	µg/L	< 0.36 U	1	< 0.38 U	< 0.38 U	< 0.38 U	<1 U	< 0.57 U
Acetone	50	μg/L	< 2.8 U	< 0.98 UJ	< 3 U	< 3 U	< 3.0 U	NA	< 3.1 U
Benzene	1	µg/L	< 0.32 U	0.69 J	< 0.41 U	< 0.41 U	< 0.41 U	NA	< 0.43 U
Cis-1,2-Dichloroethylene	5	µg/L	13	38	2.5	2.7	12	0.76 J	7.2
Methyl Ethyl Ketone (2-Butanone)	50	µg/L	< 1.3 U	< 0.51 UJ	< 1.3 U	< 1.3 U	< 1.3 U	NA	< 2.7 U
Methylene Chloride	5	$\mu g/L$	< 0.41 U	< 0.22 U	< 0.44 U	< 0.44 U	< 0.44 U	NA	< 1 U
Tert-Butyl Methyl Ether	10	μg/L	< 0.35 U	< 0.2 U	< 0.16 U	< 0.16 U	< 0.16 U	< 1 U	< 0.51 U
Tetrachloroethylene (PCE)	5	μg/L	< 0.27 U	11	1.3	2.4	2.5	< 1 U	< 0.56 U
Trans-1,2-Dichloroethene	5	μg/L	< 0.41 U	0.86 J	< 0.9 U	< 0.9 U	< 0.90 U	< 1 U	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	4.6	15	1.3	1.6	5.1	0.57 J	3.8
Vinyl Chloride	2	μg/L	0.59 J	4	< 0.9 U	< 0.9 U	0.95 J	< 1 U	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

	S	ample Depth			Bedrock	Interface		
		Location ID	GWE-1			GWE-2		
	\$	Sample Name	828103-GWE01019	828103-GWE02022	828103-GWE2021	828103-GWE2021	828103-GWE2021	828103-GWE-2- 09262023
		arent Sample Sample Date		7/10/2012	2/13/2019	7/16/2020	5/26/2022	9/26/2023
Analyte	NYSDEC AWQS ¹	Unit						
1,1,1-Trichloroethane (TCA)	5	μg/L	4.3 J	< 0.23 U	< 3.3 U	< 3.3 U	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	20	2	4.8	4.8	5.3 J	5.8
1,1-Dichloroethene	5	μg/L	14	1.2	< 1.2 U	2 J	0.94 J	1.3
Acetone	50	μg/L	< 9.8 U	2.5 J	< 12 U	< 12 U	NA	< 3.1 U
Benzene	1	μg/L	< 2.1 U	< 0.21 U	< 1.6 U	< 1.6 U	NA	< 0.43 U
Chloroethane	5	μg/L	< 3.1 U	< 0.31 U	< 1.3 U	< 1.3 U	NA	< 0.73 U
Chloroform	7	μg/L	< 2.2 U	< 0.22 U	< 1.4 U	< 1.4 U	< 1 UJ	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	1300	100	130	97	84 J	96.9
Dichlorodifluoromethane	5	μg/L	< 5.7 U	< 0.56 U	< 2.7 U	< 2.7 U	NA	< 0.56 U
Ethylbenzene	5	μg/L	< 2 U	< 0.2 U	< 3 U	< 3.0 U	NA	< 0.6 U
Isopropylbenzene (Cumene)	5	μg/L	< 2 U	< 0.2 U	< 3.2 U	< 3.2 U	NA	< 0.65 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 5.1 U	< 0.51 UJ	< 5.3 U	< 5.3 U	NA	< 2.7 U
Methylene Chloride	5	μg/L	< 2.2 U	< 0.22 U	< 1.8 U	< 1.8 U	NA	< 1 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 2 U	< 0.2 U	NA	NA	NA	< 0.59 U
Tert-Butyl Methyl Ether	10	μg/L	< 2 U	0.2 J	< 0.64 U	< 0.64 U	< 1 UJ	< 0.51 U
Tetrachloroethylene (PCE)	5	μg/L	1900	160	91	110	45 J	74.8
Toluene	5	μg/L	< 2 U	< 0.2 U	< 2 U	< 2.0 U	NA	< 0.49 U
Trans-1,2-Dichloroethene	5	μg/L	8.8 J	0.97 J	< 3.6 U	< 3.6 U	1.1 J	6.4
Trichloroethylene (TCE)	5	μg/L	970	83	52	60	29 J	50.7
Vinyl Chloride	2	μg/L	110	6.1	< 3.6 U	< 3.6 U	< 1 UJ	0.55 J

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6

NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 18 or 30 November 2024

	S	Sample Depth			Bedrock	Interface		
		Location ID	MW-01A			MW-03A		
	\$	Sample Name	828103- MW01A00709	828103- MW03A2217	828103- MW03A015	828103- MW03A015	828103- MW03A015	828103-MW-03A- 09252023
	Р	arent Sample Sample Date	5/26/2009	5/25/2017	11/29/2018	7/16/2020	5/25/2022	9/25/2023
Analyte	NYSDEC AWQS ¹	Unit						
1,1,1-Trichloroethane (TCA)	5	μg/L	< 0.4 UJ	< 1.6 U	< 3.3 U	< 3.3 U	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 0.36 U	< 0.76 U	< 1.5 U	< 1.5 U	< 5 U	1
1,1-Dichloroethene	5	μg/L	< 0.47 U	< 0.58 U	< 1.2 U	< 1.2 U	3.8 J	4
Acetone	50	μg/L	< 2.8 U	< 6 U	< 12 U	< 12 U	NA	< 3.1 U
Benzene	1	μg/L	< 0.32 U	< 0.82 U	< 1.6 U	< 1.6 U	NA	< 0.43 U
Chloroethane	5	μg/L	< 0.66 U	< 0.64 U	< 1.3 U	< 1.3 U	NA	< 0.73 U
Chloroform	7	μg/L	< 0.34 U	< 0.68 U	< 1.4 U	< 1.4 U	< 5 U	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	310 D	55	160	310	750	877
Dichlorodifluoromethane	5	μg/L	< 0.55 U	< 1.4 U	< 2.7 U	< 2.7 U	NA	< 0.56 U
Ethylbenzene	5	μg/L	< 0.53 U	< 1.5 U	< 3 U	< 3.0 U	NA	< 0.6 U
Isopropylbenzene (Cumene)	5	μg/L	< 0.45 U	< 1.6 U	< 3.2 U	< 3.2 U	NA	< 0.65 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.3 U	< 2.6 U	< 5.3 U	< 5.3 U	NA	< 2.7 U
Methylene Chloride	5	μg/L	< 0.41 U	< 0.88 U	< 1.8 U	< 1.8 U	NA	< 1 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 0.43 U	NA	NA	NA	NA	< 0.59 U
Tert-Butyl Methyl Ether	10	μg/L	< 0.35 U	< 0.32 U	< 0.64 U	< 0.64 U	< 5 U	< 0.51 U
Tetrachloroethylene (PCE)	5	μg/L	44 D	< 0.72 U	8.4	24	880	704 J
Toluene	5	μg/L	< 0.37 U	< 1 U	< 2 U	< 2.0 U	NA	< 0.49 U
Trans-1,2-Dichloroethene	5	μg/L	2.3	< 1.8 U	< 3.6 U	< 3.6 U	6.3	5.3
Trichloroethylene (TCE)	5	μg/L	67 D	< 0.92 U	15	19	420	350
Vinyl Chloride	2	μg/L	5.4 J	30	170	360	380	305

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6

NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 19 or 30 November 2024

	S	ample Depth			Bedrock	Interface		
		Location ID			MW	-08K		
	S	Sample Name	828103- MW08K01709	828103- MW08K1417	828103- MW08K017	828103-MW08K	828103- MW08K017	828103-MW-08K- 09252023
		arent Sample Sample Date	5/26/2009	5/24/2017	11/27/2018	7/15/2020	5/26/2022	9/25/2023
Analyte	NYSDEC AWQS ¹	Unit						
1,1,1-Trichloroethane (TCA)	5	μg/L	< 0.4 U	< 0.82 U	< 0.82 U	< 0.82 U	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 0.36 U	< 0.38 U	< 0.38 U	< 0.38 U	< 1 UJ	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 0.47 U	< 0.29 U	< 0.29 U	< 0.29 U	< 1 UJ	< 0.59 U
Acetone	50	μg/L	< 2.8 U	< 3 U	< 3 U	< 3.0 U	NA	< 3.1 U
Benzene	1	μg/L	< 0.32 U	< 0.41 U	< 0.41 U	< 0.41 U	NA	< 0.43 U
Chloroethane	5	µg/L	< 0.66 U	< 0.32 U	< 0.32 U	< 0.32 U	NA	< 0.73 U
Chloroform	7	μg/L	< 0.34 U	< 0.34 U	< 0.34 U	< 0.34 U	< 1 UJ	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	< 0.35 U	< 0.81 U	< 0.81 U	< 0.81 U	< 1 UJ	< 0.51 U
Dichlorodifluoromethane	5	μg/L	< 0.55 U	< 0.68 UJ	< 0.68 UJ	< 0.68 U	NA	< 0.56 U
Ethylbenzene	5	μg/L	< 0.53 U	< 0.74 U	< 0.74 U	< 0.74 U	NA	< 0.6 U
Isopropylbenzene (Cumene)	5	μg/L	< 0.45 U	< 0.79 U	< 0.79 U	< 0.79 U	NA	< 0.65 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.3 U	< 1.3 U	< 1.3 U	< 1.3 U	NA	< 2.7 U
Methylene Chloride	5	μg/L	< 0.41 U	< 0.44 U	< 0.44 U	< 0.44 U	NA	< 1 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 0.43 U	NA	NA	NA	NA	< 0.59 U
Tert-Butyl Methyl Ether	10	μg/L	< 0.35 U	< 0.16 U	< 0.16 U	< 0.16 U	< 1 UJ	< 0.51 U
Tetrachloroethylene (PCE)	5	μg/L	< 0.27 U	< 0.36 U	< 0.36 U	< 0.36 U	0.22 J	< 0.56 UJ
Toluene	5	μg/L	< 0.37 U	< 0.51 U	< 0.51 U	< 0.51 U	NA	< 0.49 U
Trans-1,2-Dichloroethene	5	μg/L	< 0.41 U	< 0.9 U	< 0.9 U	< 0.90 U	< 1 UJ	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	< 0.28 U	< 0.46 U	< 0.46 U	< 0.46 U	< 1 UJ	< 0.53 U
Vinyl Chloride	2	μg/L	< 0.34 U	< 0.9 U	< 0.9 U	< 0.90 U	< 1 UJ	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6

NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 20 or 30 November 2024

	S	ample Depth				Bedrock 1	Interface			
		Location ID				MW-	09K			
	S	Sample Name	828103- MW09K01809	828103- MW09K1817	828103- MW09K018	828103- MW09K018D	828103- MW09K018	828103- MW09K018	828103- MW09K018D	828103-MW-09K- 09262023
	р	arent Sample				828103- MW09K018_11_28 _2018			828103- MW09K018_20220 526	
		Sample Date	5/25/2009	5/24/2017	11/28/2018	11/28/2018	7/15/2020	5/26/2022	5/26/2022	9/26/2023
Analyte	NYSDEC AWQS ¹	Unit	0.20.2003	0/2 1/2011	11/20/2010	11/20/2010		0/20/2022		,, <u>_</u> ,,
1,1,1-Trichloroethane (TCA)	5	μg/L	< 0.4 U	< 0.82 U	< 0.82 U	< 0.82 U	< 0.82 U	NA	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 0.36 U	0.81 J	< 0.38 U	< 0.38 U	< 0.38 U	1.6 J	1.4 J	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 0.47 U	0.33 J	< 0.29 U	< 0.29 U	< 0.29 U	0.52 J	0.58 J	< 0.59 U
Acetone	50	μg/L	< 2.8 U	< 3 U	< 3 U	< 3 U	< 3.0 U	NA	NA	< 3.1 U
Benzene	1	μg/L	< 0.32 U	< 0.41 U	< 0.41 U	< 0.41 U	< 0.41 U	NA	NA	< 0.43 U
Chloroethane	5	μg/L	< 0.66 U	< 0.32 U	< 0.32 U	< 0.32 U	< 0.32 U	NA	NA	< 0.73 U
Chloroform	7	μg/L	< 0.34 U	< 0.34 U	< 0.34 U	< 0.34 U	< 0.34 U	< 2 UJ	< 2 UJ	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	< 0.35 U	80	24	25	44	260 J	270 J	91.4
Dichlorodifluoromethane	5	μg/L	< 0.55 U	< 0.68 UJ	< 0.68 UJ	< 0.68 UJ	< 0.68 U	NA	NA	< 0.56 U
Ethylbenzene	5	μg/L	< 0.53 U	< 0.74 U	< 0.74 U	< 0.74 U	< 0.74 U	NA	NA	< 0.6 U
Isopropylbenzene (Cumene)	5	μg/L	< 0.45 U	< 0.79 U	< 0.79 U	< 0.79 U	< 0.79 U	NA	NA	< 0.65 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.3 U	< 1.3 U	< 1.3 U	< 1.3 U	< 1.3 U	NA	NA	< 2.7 U
Methylene Chloride	5	μg/L	< 0.41 U	< 0.44 U	< 0.44 U	< 0.44 U	< 0.44 U	NA	NA	< 1 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 0.43 U	NA	NA	NA	NA	NA	NA	< 0.59 U
Tert-Butyl Methyl Ether	10	μg/L	< 0.35 U	0.23 J	< 0.16 U	< 0.16 U	< 0.16 U	< 2 UJ	< 2 UJ	< 0.51 U
Tetrachloroethylene (PCE)	5	μg/L	< 0.27 UJ	26	10	11	14	69 J	69 J	27
Toluene	5	μg/L	< 0.37 U	< 0.51 U	< 0.51 U	< 0.51 U	< 0.51 U	NA	NA	< 0.49 U
Trans-1,2-Dichloroethene	5	μg/L	< 0.41 U	< 0.9 U	< 0.9 U	< 0.9 U	< 0.90 U	3.2 J	1.9 J	0.88 J
Trichloroethylene (TCE)	5	μg/L	1.9	22	11	11	15	56 J	57 J	21.8
Vinyl Chloride	2	μg/L	< 0.34 U	12	1.4	1.5	4.1	46 J	46 J	10.3

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6

NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

	S	ample Depth				Bedrock Interface			
		Location ID				MW-10K			
	S	Sample Name	828103- MW10K01809	828103- MW10K018	828103- MW10K1717	828103- MW10K018	828103- MW10K018	828103- MW10K018	828103-MW-10K- 09262023
		arent Sample Sample Date	5/26/2009	7/11/2012	5/24/2017	11/28/2018	7/15/2020	5/25/2022	9/26/2023
Analyte	NYSDEC AWQS ¹	Unit							
1,1,1-Trichloroethane (TCA)	5	μg/L	< 0.4 U	< 1.2 U	< 16 U	< 8.2 U	< 8.2 U	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	3.9	4.1 J	< 7.6 U	< 3.8 U	5.8 J	2.2 J	1.7
1,1-Dichloroethene	5	μg/L	< 0.47 U	2 J	< 5.8 U	4.2 J	< 2.9 U	< 5 U	1.9
Acetone	50	μg/L	< 2.8 U	< 4.9 UJ	< 60 U	< 30 U	< 30 U	NA	< 3.1 U
Benzene	1	μg/L	0.61 J	< 1.1 U	< 8.2 U	< 4.1 U	< 4.1 U	NA	< 0.43 U
Chloroethane	5	μg/L	< 0.66 U	< 1.6 U	< 6.4 U	< 3.2 U	< 3.2 U	NA	< 0.73 UJ
Chloroform	7	μg/L	< 0.34 U	< 1.1 U	< 6.8 U	< 3.4 U	< 3.4 U	< 5 U	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	100 D	190	150	740	260	100	163
Dichlorodifluoromethane	5	μg/L	< 0.55 U	< 2.9 U	< 14 UJ	< 6.8 UJ	< 6.8 U	NA	< 0.56 U
Ethylbenzene	5	μg/L	< 0.53 U	< 1 U	< 15 U	< 7.4 U	< 7.4 U	NA	< 0.6 U
Isopropylbenzene (Cumene)	5	μg/L	< 0.45 U	< 1 U	< 16 U	< 7.9 U	< 7.9 U	NA	< 0.65 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.3 U	< 2.6 UJ	< 26 U	< 13 U	< 13 U	NA	< 2.7 U
Methylene Chloride	5	μg/L	< 0.41 U	< 1.1 U	< 8.8 U	< 4.4 U	< 4.4 U	NA	< 1 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 0.43 U	< 1 U	NA	NA	NA	NA	< 0.59 U
Tert-Butyl Methyl Ether	10	μg/L	< 0.35 U	< 1 U	< 3.2 U	< 1.6 U	< 1.6 U	< 5 U	< 0.51 U
Tetrachloroethylene (PCE)	5	μg/L	39	77	< 7.2 U	4.5 J	67	4.5 J	< 0.56 U
Toluene	5	μg/L	< 0.37 U	< 1 U	< 10 U	< 5.1 U	< 5.1 U	NA	< 0.49 U
Trans-1,2-Dichloroethene	5	µg/L	1.6	2 J	< 18 U	< 9 U	< 9.0 U	< 5 U	2
Trichloroethylene (TCE)	5	μg/L	410 D	490	920	270	490	580	496
Vinyl Chloride	2	μg/L	5.8	4.8 J	< 18 U	< 9 U	< 9.0 U	< 5 U	0.64 J

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6

NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

	S	ample Depth				Bedrock	Interface			
		Location ID				MW	-12K			
	S	ample Name	828103- MW12K01609	828103- MW12K01609D	828103- MW12K1717	828103- MW12K018	828103- MW12K018	828103- MW12K018	828103-MW-12K- 09262023	828103-MW-12K- 20240924
		arent Sample Sample Date	5/26/2009	828103- MW12K01609_ 05_26_2009 5/26/2009	5/23/2017	11/27/2018	7/14/2020	5/26/2022	9/26/2023	9/24/2024
Analyte	NYSDEC AWQS ¹	Unit	5/20/2009	5/20/2009	3/23/2017	11/2//2010	//14/2020	5/20/2022	9/20/2025	7/24/2024
1,1,1-Trichloroethane (TCA)	NISDEC AWQS	υm μg/L	< 0.4 U	< 0.4 U	< 0.82 U	< 0.82 U	< 0.82 U	NA	< 0.54 U	< 0.54 U
1,1-Dichloroethane	5	μg/L μg/L	< 0.4 U < 0.36 U	< 0.4 U < 0.36 U	< 0.32 U < 0.38 U	< 0.32 U < 0.38 U	< 0.32 U < 0.38 U	< 1 UJ	< 0.57 U	< 0.54 U
1,1-Dichloroethene	5	μg/L μg/L	< 0.30 U < 0.47 U	< 0.30 U	< 0.38 U < 0.29 U	< 0.38 U < 0.29 U	< 0.38 U < 0.29 U	< 1 UJ	< 0.59 U	< 0.59 U
Acetone	50	μg/L μg/L	< 0.47 U	< 0.47 U	< 3 U	< 3 U	< 0.29 U	NA	< 0.59 U < 3.1 U	139
Benzene	1	μg/L μg/L	< 0.32 U	< 0.32 U	< 0.41 U	< 0.41 U	< 0.41 U	NA	< 0.43 U	< 0.43 U
Chloroethane	5	μg/L μg/L	< 0.66 U	< 0.66 U	< 0.32 U	< 0.32 U	< 0.32 U	NA	< 0.73 U	< 0.73 U
Chloroform	7	μg/L	< 0.34 U	< 0.34 U	< 0.34 U	< 0.34 U	< 0.34 U	< 1 UJ	< 0.5 U	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	< 0.35 U	< 0.35 U	< 0.81 U	< 0.81 U	< 0.81 U	< 1 UJ	< 0.51 U	< 0.51 U
Dichlorodifluoromethane	5	μg/L	< 0.55 U	< 0.55 U	< 0.68 UJ	< 0.68 UJ	< 0.68 U	NA	< 0.56 U	< 0.56 U
Ethylbenzene	5	μg/L	< 0.53 U	< 0.53 U	< 0.74 U	< 0.74 U	< 0.74 U	NA	< 0.6 U	< 0.6 U
Isopropylbenzene (Cumene)	5	μg/L	< 0.45 U	< 0.45 U	< 0.79 U	< 0.79 U	< 0.79 U	NA	< 0.65 U	< 0.65 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.3 U	< 1.3 U	< 1.3 U	< 1.3 U	< 1.3 U	NA	< 2.7 U	3.6 J
Methylene Chloride	5	μg/L	< 0.41 U	< 0.41 U	< 0.44 U	< 0.44 U	< 0.44 U	NA	< 1 U	< 1 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 0.43 U	< 0.43 U	NA	NA	NA	NA	< 0.59 U	< 0.59 U
Tert-Butyl Methyl Ether	10	μg/L	< 0.35 U	< 0.35 U	< 0.16 U	< 0.16 U	< 0.16 U	< 1 UJ	< 0.51 U	< 0.51 U
Tetrachloroethylene (PCE)	5	μg/L	< 0.27 UJ	< 0.27 UJ	< 0.36 U	< 0.36 U	< 0.36 U	< 1 UJ	< 0.56 U	< 0.56 U
Toluene	5	μg/L	< 0.37 U	< 0.37 U	< 0.51 U	< 0.51 U	< 0.51 U	NA	< 0.49 U	< 0.49 U
Trans-1,2-Dichloroethene	5	μg/L	< 0.41 U	< 0.41 U	< 0.9 U	< 0.9 U	< 0.90 U	< 1 UJ	< 0.54 U	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	8.2	6.9	5.5	5.5	4.2	3.6 J	5.1	6.3
Vinyl Chloride	2	μg/L	< 0.34 U	< 0.34 U	< 0.9 U	< 0.9 U	< 0.90 U	< 1 UJ	< 0.52 U	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6

NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

	S	Sample Depth					Bedrock Interface				
		Location ID					MW-13K				
	:	Sample Name	828103- MW13K01609	828103- MW13K016	828103- MW13K1917	828103- MW13K1917D	828103- MW13K018	828103- MW13K018	828103- MW13K018	828103-MW-13K- 09252023	828103-DUP-01- 09252023
		arent Sample Sample Date	5/26/2009	7/9/2012	5/25/2017	828103- MW13K1917_05_2 5_2017 5/25/2017	11/28/2018	7/14/2020	5/24/2022	9/25/2023	828103-MW-13K- 20230925 9/25/2023
Analyte	NYSDEC AWQS ¹	Unit									
1,1,1-Trichloroethane (TCA)	5	μg/L	59 J	71 J	< 330 U	< 330 U	< 100 U	< 100 U	NA	< 2.7 U	< 2.7 U
1,1-Dichloroethane	5	μg/L	47 J	34 J	< 150 U	< 150 U	< 48 U	< 48 U	< 10 UJ	4.2 J	3.5 J
1,1-Dichloroethene	5	μg/L	38 J	< 29 U	< 120 U	< 120 U	< 36 U	< 36 U	3 J	6.9	5
Acetone	50	μg/L	< 2.8 U	< 98 U	< 1200 U	< 1200 U	< 380 U	< 380 U	NA	< 15 U	< 15 U
Benzene	1	μg/L	< 0.32 U	< 21 U	< 160 U	< 160 U	< 51 U	< 51 U	NA	< 2.1 U	< 2.1 U
Chloroethane	5	μg/L	< 0.66 U	< 31 U	< 130 U	< 130 U	< 40 U	< 40 U	NA	< 3.6 U	< 3.6 U
Chloroform	7	μg/L	< 0.34 U	63 J	< 140 U	< 140 U	< 43 U	< 43 U	< 10 UJ	< 2.5 U	< 2.5 U
Cis-1,2-Dichloroethylene	5	μg/L	1100 D	3000	3100	3300	2800	3100	1500 J	2170	1730
Dichlorodifluoromethane	5	μg/L	2.6 J	< 57 U	< 270 UJ	< 270 UJ	< 85 UJ	< 85 U	NA	< 2.8 U	< 2.8 U
Ethylbenzene	5	μg/L	7 J	< 20 U	< 300 U	< 300 U	< 93 U	< 93 U	NA	< 3 U	< 3 U
Isopropylbenzene (Cumene)	5	μg/L	4 J	< 20 U	< 320 U	< 320 U	< 99 U	< 99 U	NA	< 3.2 U	< 3.2 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.3 U	< 51 U	< 530 U	< 530 U	< 170 U	< 170 U	NA	< 14 U	< 14 U
Methylene Chloride	5	μg/L	< 0.41 U	< 22 U	< 180 U	< 180 U	< 55 U	< 55 U	NA	< 5 U	< 5 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	13 J	< 20 U	NA	NA	NA	NA	NA	< 3 U	< 3 U
Tert-Butyl Methyl Ether	10	μg/L	< 0.35 U	< 20 U	< 64 U	< 64 U	< 20 U	< 20 U	< 10 UJ	< 2.5 U	< 2.5 U
Tetrachloroethylene (PCE)	5	μg/L	5800 D	18000	10000	12000	7500	4300	1400 J	1350	1290 J
Toluene	5	μg/L	2 J	< 20 U	< 200 U	< 200 U	< 64 U	< 64 U	NA	< 2.5 U	< 2.5 U
Trans-1,2-Dichloroethene	5	μg/L	25 J	< 20 U	< 360 U	< 360 U	< 110 U	< 110 U	11 J	14.9	11.7
Trichloroethylene (TCE)	5	μg/L	1300 D	3200	2200	2400	2200	1500	560 J	556	451
Vinyl Chloride	2	μg/L	69 D	390	360 J	< 360 U	230	410	290 J	539	356

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6

NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

	S	ample Depth				Bedrock	Interface			
		Location ID				MW	-14KA			
	S	ample Name	828103- MW14KA2217	828103- MW14KA022	828103- MW14KA022D 828103-	828103- MW14KA022	828103- MW14KA022D 828103-	828103- MW14KA022	828103- MW14KA022D 828103-	828103-MW-14KA- 09252023
	P	arent Sample			MW14KA022_11_ 29_2018		MW14KA022_07_ 17 2020		MW14KA022_202 20525	
		Sample Date	5/23/2017	11/29/2018	11/29/2018	7/17/2020	7/17/2020	5/25/2022	5/25/2022	9/25/2023
Analyte	NYSDEC AWQS ¹	Unit								
1,1,1-Trichloroethane (TCA)	5	μg/L	< 330 U	< 100 U	< 100 U	< 100 U	< 100 U	NA	NA	< 5.4 U
1,1-Dichloroethane	5	μg/L	< 150 U	< 48 U	< 48 U	<48 U	< 48 U	< 25 U	< 25 U	< 5.7 U
1,1-Dichloroethene	5	μg/L	< 120 U	< 36 U	< 36 U	< 36 U	< 36 U	< 25 U	< 25 U	8.9 J
Acetone	50	μg/L	< 1200 U	< 380 U	< 380 U	< 380 U	< 380 U	NA	NA	< 31 U
Benzene	1	μg/L	< 160 U	< 51 U	< 51 U	< 51 U	< 51 U	NA	NA	< 4.3 U
Chloroethane	5	μg/L	< 130 U	< 40 U	< 40 U	< 40 U	< 40 U	NA	NA	< 7.3 U
Chloroform	7	μg/L	< 140 U	< 43 U	< 43 U	< 43 U	< 43 U	< 25 U	8 J	< 5 U
Cis-1,2-Dichloroethylene	5	μg/L	8600	5600	5400	3300	3200	2800	3400	2800
Dichlorodifluoromethane	5	μg/L	< 270 UJ	< 85 U	< 85 U	< 85 U	< 85 U	NA	NA	< 5.6 U
Ethylbenzene	5	μg/L	< 300 U	< 93 U	< 93 U	< 93 U	< 93 U	NA	NA	< 6 U
Isopropylbenzene (Cumene)	5	μg/L	< 320 U	< 99 U	< 99 U	< 99 U	< 99 U	NA	NA	< 6.5 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 530 U	< 170 U	< 170 U	< 170 U	<170 U	NA	NA	< 27 U
Methylene Chloride	5	μg/L	< 180 U	< 55 U	< 55 U	< 55 U	< 55 U	NA	NA	< 10 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	NA	NA	NA	NA	NA	NA	NA	< 5.9 U
Tert-Butyl Methyl Ether	10	μg/L	< 64 U	< 20 U	< 20 U	< 20 U	< 20 U	< 25 U	< 25 U	< 5.1 U
Tetrachloroethylene (PCE)	5	μg/L	2500	3500	3400	1700	1600	1300	1600	1600 J
Toluene	5	µg/L	< 200 U	< 64 U	< 64 U	< 64 U	< 64 U	NA	NA	< 4.9 U
Trans-1,2-Dichloroethene	5	μg/L	< 360 U	< 110 U	< 110 U	<110 U	< 110 U	18 J	20 J	13.5
Trichloroethylene (TCE)	5	μg/L	8900	6200	5800	3700	3900	2300	3300	3170
Vinyl Chloride	2	μg/L	< 360 U	200	190	110 J	110 J	180	200	130

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6

NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

	S	ample Depth			Bedrock Interface		
		Location ID			MW-15K		
	S	ample Name	828103- MW15K2317	828103- MW15K022	828103- MW15K022	828103- MW15K022	828103-MW-15K- 09252023
		arent Sample Sample Date	5/22/2017	11/28/2018	7/15/2020	5/24/2022	9/25/2023
Analyte	NYSDEC AWQS ¹	Unit					
1,1,1-Trichloroethane (TCA)	5	μg/L	< 16 U	< 16 U	< 16 U	NA	< 0.54 U
1,1-Dichloroethane	5	μg/L	13 J	11 J	12 J	5.6 J	8.7
1,1-Dichloroethene	5	μg/L	13 J	11 J	11 J	6 J	11.9
Acetone	50	μg/L	< 60 U	< 60 UJ	< 60 U	NA	< 3.1 U
Benzene	1	μg/L	< 8.2 U	< 8.2 U	< 8.2 U	NA	0.59
Chloroethane	5	μg/L	< 6.4 U	< 6.4 U	< 6.4 U	NA	< 0.73 UJ
Chloroform	7	μg/L	< 6.8 U	< 6.8 U	< 6.8 U	< 2.5 UJ	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	390	270	280	190 J	231
Dichlorodifluoromethane	5	μg/L	< 14 UJ	< 14 U	< 14 U	NA	< 0.56 U
Ethylbenzene	5	μg/L	< 15 U	< 15 U	< 15 U	NA	< 0.6 U
Isopropylbenzene (Cumene)	5	μg/L	< 16 U	< 16 U	< 16 U	NA	< 0.65 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 26 U	< 26 U	< 26 U	NA	< 2.7 U
Methylene Chloride	5	μg/L	< 8.8 U	< 8.8 U	< 8.8 U	NA	< 1 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	NA	NA	NA	NA	< 0.59 U
Tert-Butyl Methyl Ether	10	μg/L	< 3.2 U	< 3.2 U	< 3.2 U	< 2.5 UJ	< 0.51 U
Tetrachloroethylene (PCE)	5	μg/L	900 J	990 J	930	220 J	404
Toluene	5	μg/L	< 10 U	< 10 U	< 10 U	NA	< 0.49 U
Trans-1,2-Dichloroethene	5	μg/L	< 18 U	< 18 U	< 18 U	1.6 J	1.6
Trichloroethylene (TCE)	5	μg/L	280	390	420	130 J	255
Vinyl Chloride	2	μg/L	85	21	19 J	17 J	12.9

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6

NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 26 or 30 November 2024

	S	ample Depth				Bedrocl	x Interface			
		Location ID			MW-16K				MW-22K	
	S	Sample Name	828103- MW16K2317	828103- MW16K022	828103- MW16K022	828103- MW16K022	828103-MW-16K- 09272023	828103- MW22K028	828103- MW22K028	828103-MW-22K- 09262023
		arent Sample Sample Date	5/23/2017	11/29/2018	7/16/2020	5/24/2022	9/27/2023	11/30/2018	7/15/2020	9/26/2023
Analyte	NYSDEC AWQS ¹	Unit								
1,1,1-Trichloroethane (TCA)	5	μg/L	< 16 U	< 16 U	< 16 U	NA	< 0.54 U	< 0.82 U	< 0.82 U	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 7.6 U	< 7.6 U	< 7.6 U	< 2.5 UJ	< 0.57 U	< 0.38 U	< 0.38 U	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 5.8 U	< 5.8 U	< 5.8 U	0.6 J	1	< 0.29 U	0.3 J	< 0.59 U
Acetone	50	μg/L	< 60 U	< 60 U	< 60 U	NA	< 3.1 U	< 3 U	< 3.0 U	< 3.1 U
Benzene	1	μg/L	< 8.2 U	< 8.2 U	< 8.2 U	NA	< 0.43 U	< 0.41 U	< 0.41 U	< 0.43 U
Chloroethane	5	μg/L	< 6.4 U	< 6.4 U	< 6.4 U	NA	< 0.73 U	< 0.32 U	< 0.32 U	< 0.73 U
Chloroform	7	μg/L	< 6.8 U	< 6.8 U	< 6.8 U	< 2.5 UJ	< 0.5 U	< 0.34 U	< 0.34 U	< 0.5 U
Cis-1,2-Dichloroethylene	5	μg/L	890	710	420	310 J	320	27	97	18.6
Dichlorodifluoromethane	5	μg/L	< 14 U	< 14 U	< 14 U	NA	< 0.56 U	< 0.68 U	< 0.68 U	< 0.56 U
Ethylbenzene	5	μg/L	< 15 U	< 15 U	< 15 U	NA	< 0.6 U	< 0.74 U	< 0.74 U	< 0.6 U
Isopropylbenzene (Cumene)	5	μg/L	< 16 U	<16 U	< 16 U	NA	< 0.65 U	< 0.79 U	< 0.79 U	< 0.65 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 26 U	< 26 U	< 26 U	NA	< 2.7 U	< 1.3 U	< 1.3 U	< 2.7 U
Methylene Chloride	5	μg/L	14 J	< 8.8 U	< 8.8 U	NA	< 1 U	< 0.44 U	< 0.44 U	< 1 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	NA	NA	NA	NA	< 0.59 U	NA	NA	< 0.59 U
Tert-Butyl Methyl Ether	10	μg/L	< 3.2 U	< 3.2 U	< 3.2 U	< 2.5 UJ	< 0.51 U	< 0.16 U	< 0.16 U	< 0.51 U
Tetrachloroethylene (PCE)	5	μg/L	120	330	300	140 J	189	3.8	13	2.4
Toluene	5	μg/L	< 10 U	< 10 U	< 10 U	NA	< 0.49 U	< 0.51 U	< 0.51 U	< 0.49 U
Trans-1,2-Dichloroethene	5	μg/L	< 18 U	< 18 U	< 18 U	1.8 J	2.9	< 0.9 U	< 0.90 U	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	380	660	380	170 J	236	8.3	21	3.8
Vinyl Chloride	2	μg/L	58	33	< 18 U	12 J	8.8	2.3	5.4	0.77 J

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6

NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

	S	ample Depth	n Bedrock Interface								
		Location ID		MW	-23K			MW	/-24K		
	S	Sample Name	828103- MW23K025	828103- MW23K025	828103- MW23K025	828103-MW-23K- 09262023	828103- MW24K025	828103- MW24K025	828103- MW24K025	828103-MW-24K- 09262023	
		arent Sample Sample Date	11/30/2018	7/14/2020	5/25/2022	9/26/2023	11/30/2018	7/14/2020	5/25/2022	9/26/2023	
Analyte	NYSDEC AWQS ¹	Unit									
1,1,1-Trichloroethane (TCA)	5	μg/L	< 0.82 U	< 0.82 U	NA	< 0.54 U	< 1.6 U	< 0.82 U	NA	< 0.54 U	
1,1-Dichloroethane	5	μg/L	< 0.38 U	< 0.38 U	< 1 U	< 0.57 U	< 0.76 U	< 0.38 U	< 1 UJ	< 0.57 U	
1,1-Dichloroethene	5	μg/L	< 0.29 U	< 0.29 U	< 1 U	< 0.59 U	< 0.58 U	< 0.29 U	< 1 UJ	< 0.59 U	
Acetone	50	μg/L	< 3 U	< 3.0 U	NA	< 3.1 U	42	< 3.0 U	NA	< 3.1 U	
Benzene	1	μg/L	< 0.41 U	< 0.41 U	NA	< 0.43 U	< 0.82 U	< 0.41 U	NA	< 0.43 U	
Chloroethane	5	μg/L	< 0.32 U	< 0.32 U	NA	< 0.73 U	< 0.64 U	< 0.32 U	NA	< 0.73 U	
Chloroform	7	μg/L	< 0.34 U	< 0.34 U	< 1 U	< 0.5 U	< 0.68 U	< 0.34 U	0.27 J	< 0.5 U	
Cis-1,2-Dichloroethylene	5	μg/L	< 0.81 U	< 0.81 U	< 1 U	< 0.51 U	< 1.6 U	< 0.81 U	< 1 UJ	< 0.51 U	
Dichlorodifluoromethane	5	μg/L	< 0.68 U	< 0.68 U	NA	< 0.56 U	< 1.4 U	< 0.68 U	NA	< 0.56 U	
Ethylbenzene	5	μg/L	< 0.74 U	< 0.74 U	NA	< 0.6 U	< 1.5 U	< 0.74 U	NA	< 0.6 U	
Isopropylbenzene (Cumene)	5	μg/L	< 0.79 U	< 0.79 U	NA	< 0.65 U	< 1.6 U	< 0.79 U	NA	< 0.65 U	
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1.3 U	< 1.3 U	NA	< 2.7 U	3.8 J	< 1.3 U	NA	< 2.7 U	
Methylene Chloride	5	μg/L	< 0.44 U	< 0.44 U	NA	< 1 U	1.2 J	< 0.44 U	NA	< 1 U	
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	NA	NA	NA	< 0.59 U	NA	NA	NA	< 0.59 U	
Tert-Butyl Methyl Ether	10	μg/L	< 0.16 U	< 0.16 U	0.26 J	< 0.51 U	< 0.32 U	< 0.16 U	< 1 UJ	< 0.51 U	
Tetrachloroethylene (PCE)	5	μg/L	< 0.36 U	< 0.36 U	< 1 U	< 0.56 U	< 0.72 U	< 0.36 U	< 1 UJ	< 0.56 U	
Toluene	5	μg/L	< 0.51 U	< 0.51 U	NA	< 0.49 U	< 1 U	< 0.51 U	NA	< 0.49 U	
Trans-1,2-Dichloroethene	5	μg/L	< 0.9 U	< 0.90 U	< 1 U	< 0.54 U	< 1.8 U	< 0.90 U	< 1 UJ	< 0.54 U	
Trichloroethylene (TCE)	5	μg/L	< 0.46 U	< 0.46 U	< 1 U	< 0.53 U	< 0.92 U	< 0.46 U	< 1 UJ	< 0.53 U	
Vinyl Chloride	2	μg/L	< 0.9 U	< 0.90 U	< 1 U	< 0.52 U	< 1.8 U	< 0.90 U	< 1 UJ	< 0.52 U	

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6

NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

		Sample Depth			Bedrock		
		Location ID			MW-03CA		
			828103-	828103-	828103-	828103-	828103-MW-03CA-
		Sample Name	MW03CA2817	MW03CA030	MW03CA030	MW03CA030	09252023
		Parent Sample					
		Sample Date	5/25/2017	11/29/2018	7/16/2020	5/25/2022	9/25/2023
Analyte	NYSDEC AWQS ¹	Unit		,	VOC Method SW826	60	
1,4-Dioxane (P-Dioxane)	0.35	μg/L	0.21 J	NA	NA	NA	NA
1,1-Dichloroethane	5	μg/L	< 38 U	< 7.6 U	< 1.9 U	< 1 UJ	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 29 U	< 5.8 U	< 1.5 U	< 1 UJ	0.6 J
2-Hexanone	50	μg/L	< 120 U	< 25 U	< 6.2 U	NA	< 3.1 U
Cis-1,2-Dichloroethylene	5	μg/L	5600	920 J	260	28 J	< 0.47 U
Tetrachloroethylene (PCE)	5	μg/L	1200	1200 J	8.2	34 J	130
Trichloroethylene (TCE)	5	μg/L	1800	470	11	19 J	57.9
Vinyl Chloride	2	μg/L	460	100	30	2.6 J	6.9

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part

703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 29 or 30 November 2024

Table 3-4. Historical VOCs in Groundwater

		Sample Depth	1 Bedrock					
		Location ID		MW	-03D			
					828103-	828103-MW-03D-		
		-	828103-MW03D50	828103-MW03D50	MW03D050	09272023		
		Parent Sample						
		Sample Date	11/29/2018	7/16/2020	5/25/2022	9/27/2023		
Analyte	NYSDEC AWQS ¹	Unit		VOC Metho	od SW8260			
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA	NA	NA	NA		
1,1-Dichloroethane	5	μg/L	< 1.9 U	< 0.38 U	< 10 UJ	< 0.57 U		
1,1-Dichloroethene	5	μg/L	< 1.5 U	< 0.29 U	< 10 UJ	< 0.59 U		
2-Hexanone	50	μg/L	< 6.2 U	< 1.2 U	NA	< 3.1 U		
Cis-1,2-Dichloroethylene	5	μg/L	320	12	6 J	< 0.47 U		
Tetrachloroethylene (PCE)	5	μg/L	93	6.5	4.5 J	1.4		
Trichloroethylene (TCE)	5	μg/L	73	14	7.2 J	6.2		
Vinyl Chloride	2	µg/L	20	4.4	< 10 UJ	< 0.52 U		

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part

703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Version: DRAFT FINAL Page 30 or 30 November 2024

Table 3-5. Analytical Parameters and Weightings for Preliminary Screening for Anaerobic Biodegradation Processes

Analysis	Concentration in Most Contaminated Zone	Interpretation	Value	MW-03A	MW-03CA	MW-08K	MW-13K	MW-14KA	MW-198	MW-20S
Oxygen	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	3	0	0	0	3	0	0	0
Oxygen	> 5 mg/L	Not tolerated; however VC may be oxidized aerobically	-3	0	0	0	0	0	0	0
Nitrate	<1 mg/L	At higher concentrations may compete with reductive pathways	2	2	2	0	2	2	0	2
Iron II	> 1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)- reducing conditions	3	3	3	0	3	0	3	0
Sulfate	< 20 mg/L	At higher concentrations may compete with reductive pathway	2	0	0	0	0	0	0	0
Sulfide	> 1 mg/L	Reductive pathway possible	3	0	0	0	0	0	0	0
	<0.5 mg/L	VC oxidizes	0	0	0	0	0	0	0	0
Methane	> 0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	3	0	0	0	0	0	0	0
Oxidation Reduction Potential (ORP) againsts	< 50 millivolts (mV)	Reductive pathway possible	1	1	1	1	1	1	1	1
Ag/ AgCl	<-100 mV	Reductive pathway likely	2	2	2	0	2	2	0	0
pH*	5 < pH < 9	Optimal range for reductive pathway	0	0	0	0	0	0	0	0
pm	5 > pH > 9	Outside optimal range for reductive pathway	-2	0	0	0	0	0	0	0
ТОС	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	2	0	0	0	0	0	0	0
Temperature	> 20 C	At T >20°C biochemical process is accelerated	1	0	0	0	0	0	0	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	1	0	0	0	0	0	1	0
Alkalnity	>2x background	Results from interaction between CO2 and aquifer minerals	1	0	0	0	0	0	0	0
Chloride	>2x background	Daughter product of organic chlorine	2	0	0	0	2	0	0	0
Hydrogen	> 1 nM	Reductive pathway possible, VC may accumulate	3	NA	NA	NA	NA	NA	NA	NA
Hydrogen	< 1 nM	VC oxidized	0	NA	NA	NA	NA	NA	NA	NA
Volatile Fatty Acids	> 0.1 mg/L	Intermediates resulting from biodegradation of more complex compounds; carbon and energy source	2	NA	NA	NA	NA	NA	NA	NA
BTEX	> 0.1 mg/L	Carbon and energy source; drives dechlorination	2	0	0	0	0	0	0	0
Tetrachloroethene		Material released	0	0	0	0	0	0	0	0
Trichloroethene		Material released	0	0	0	0	0	0	0	0
		Daughter products of PCE	2	0	0	0	0	0	0	0
		Material released	0	0	0	0	0	0	0	0
DCE		Daughter products of TCE if cis is > 80% of total DCE it is likely a daughter product of 1,1-DCE can be chemical reaction product of TCE	2	2	2	0	2	2	2	2
VC		Material released	0	0	0	0	0	0	0	0
		Daughter products of DCE	2	2	2	0	2	2	2	0
1,1,1-Trichloroethane		Material released	0	0	0	0	0	0	0	0
DCA		Daughter product of TCE under reducing conditions	2	2	0	0	2	2	0	0
Carbon Tetrachloride		Material released	0	0	0	0	0	0	0	0
Chloroethane*		Daughter product of DCA or VC under reducing conditions	2	0	0	0	0	0	0	0
Ethene	>0.01 mg/L	Daughter product of VC	2	2	0	0	2	0	0	0
Ethane	>0.1 mg/L	Daughter product of ethene	3	0	0	0	0	0	0	0
Chloroform		Material released	0	0	0	0	0	0	0	0
		Daughter product of Carbon Tetrachloride	2	0	0	0	0	0	0	0
Dichloromethane		Material released	0	0	0	0	0	0	0	0
		Daughter product of Chloroform	2	0	0	0	0	0	0	0

Table 3-5, Page 1 of 2 November 2024

Table 3-5. Analytical Parameters and Weightings for Preliminary Screening for Anaerobic Biodegradation Processes

Analysis	Concentration in Most Contaminated Zone	Interpretation	Value	MW-03A	MW-03CA	MW-08K	MW-13K	MW-14KA	MW-19S	MW-20S
		Т	otal Score	16	12	1	21	11	9	5
		Inadequate evidence for anaerobic biodegrade	ation (0-5)			Х				X
	Limited evidence for anaerobic biodegradation (6-14)				Х			Х	Х	
Adequate evidence for anaerobic biodegradation (15-20)		Х								
		Strong evidence for anaerobic biodegrada	tion (>20)				Х			

Notes:

--- = Not applicable

°C = Degrees Celsius

BTEX = Benzene, toluene, ethylbenzene, and xylenes

DCA = Dichloroethane

DCE = Dichloroethene

mg/L = Milligram(s) per liter

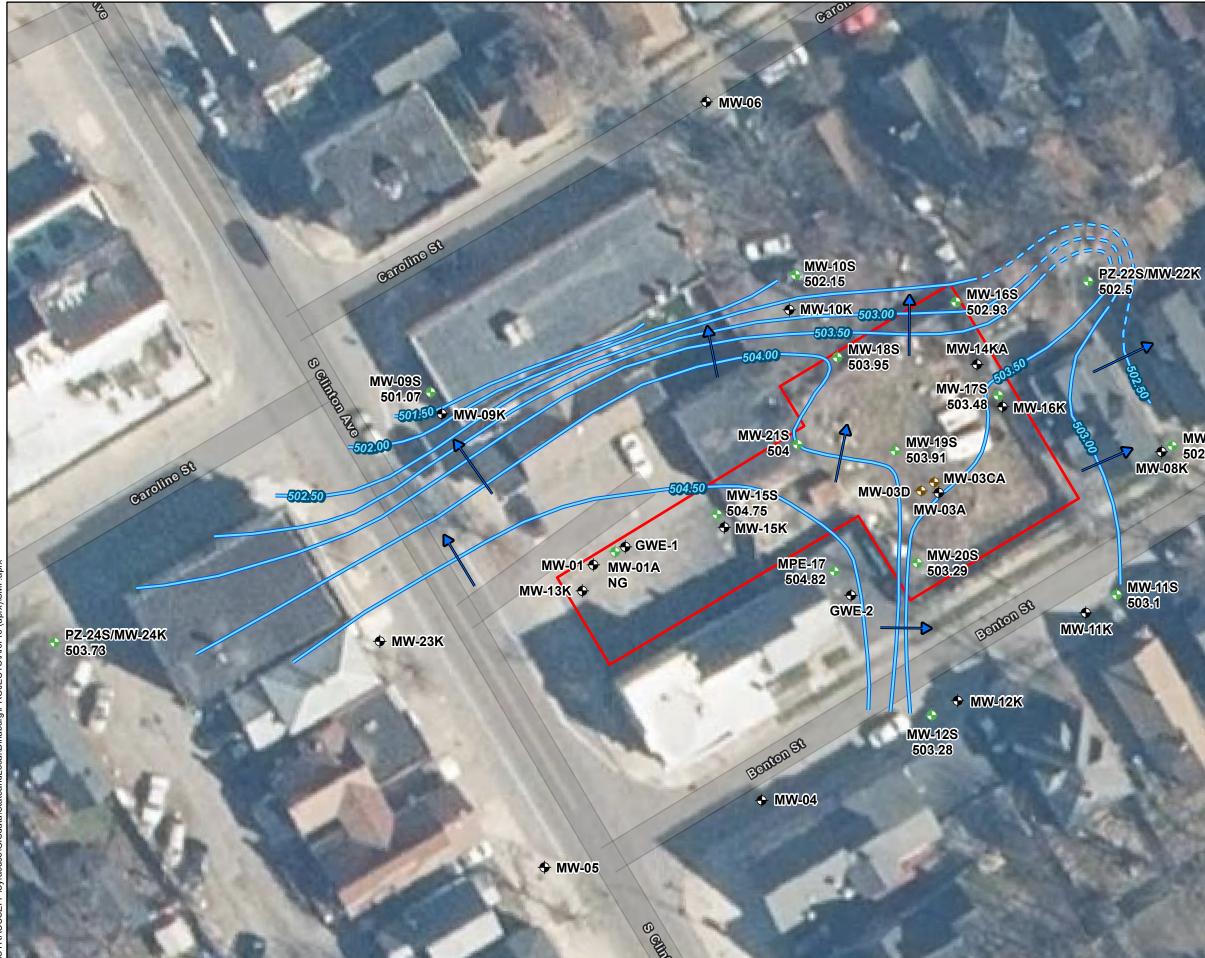
mV = Millivolt(s)

nM = Nanomolar

PCE = Tetrachloroethene

TCE = Trichloroethene

TOC = Total organic carbon


VC = Vinyl chloride

Figures

Rochester, New York

Legend

- Site Boundary
- Sroundwater Potentiometric Contour
- (Dashed where Inferred)
- --> Groundwater Flow Direction
- Overburden Monitoring Well
- Overburden/Bedrock Interface Monitoring Well Ð
- Bedrock Monitoring Well

Notes:

 NG = Well Not Gauged
 Interpreted groundwater contours based on data collection 25-27 September 2023. 3. Groundwater elevations are shown in feet above mean sea level (ft. amsl).

Map Date: 10/10/2024 Projection: NAD 1983 State Plane New York West FIPS 3103 (US Feet)

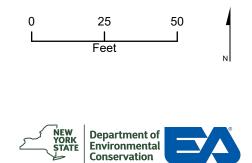
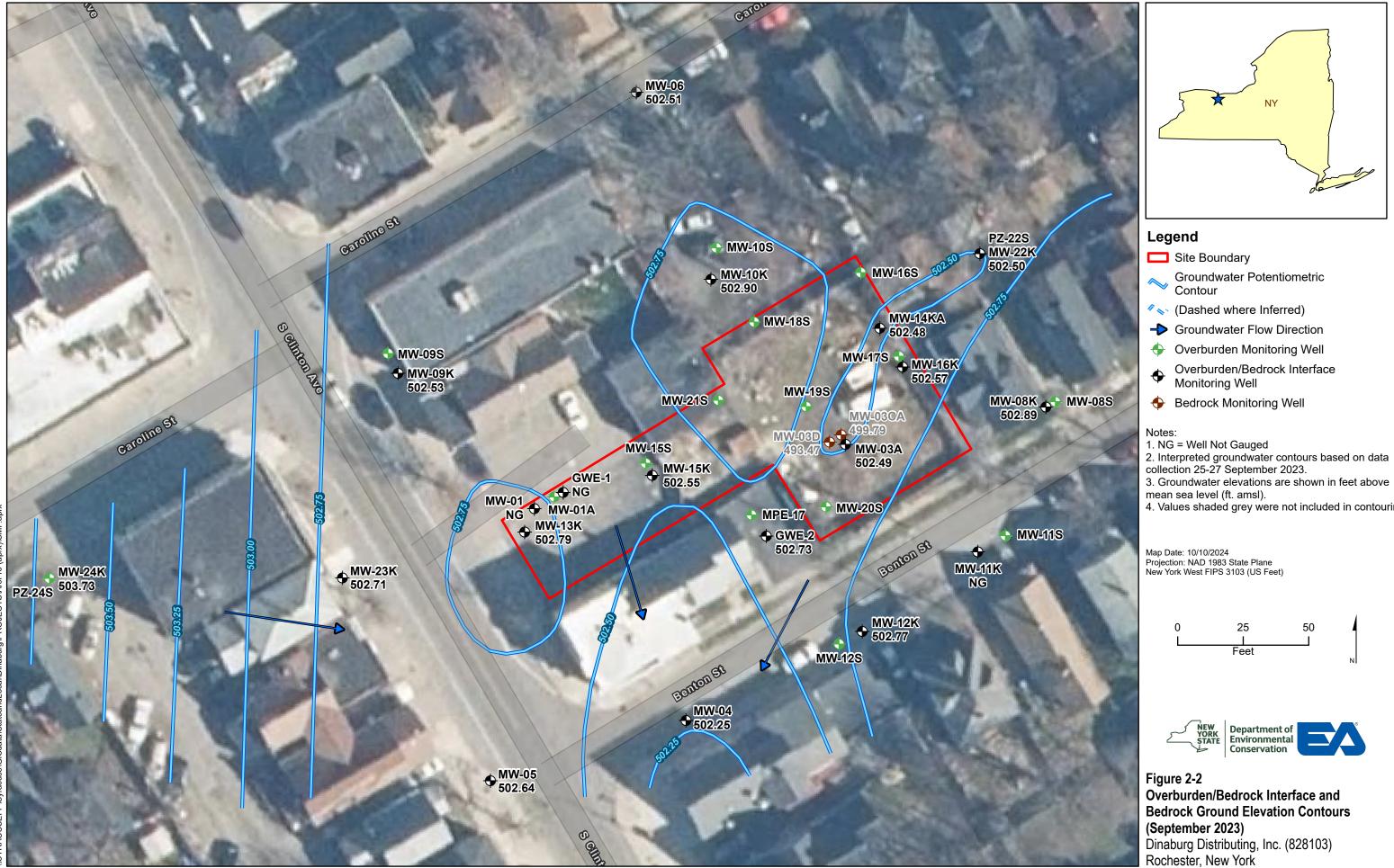



Figure 2-1 Overburden Groundwater Elevation Contours (September 2023) Dinaburg Distributing, Inc. (828103) Rochester, New York

MW-08S ◆ 502.71 MW-08K

3. Groundwater elevations are shown in feet above

4. Values shaded grey were not included in contouring.

Analyte NYSDEC AWQS 1,1-DCA 5 1,1-DCE 5 5 Cis-1,2-DCE 5 6 PCE 5 5 Trans-1,2-DCE 5 7 TCE 5 5 Vinyl Chloride 2 2	Altron taxos	MW-10S 9/26/2023 1,1-DCA ND 1,1-DCE ND Cis-1,2-DCE 10.4 PCE 3 Trans-1,2-DCE ND TCE 12.5 Vinyl Chloride ND MW-21S 9/27/2023 1,1-DCA ND	MW-18S 9/27 9/27/2023 1,1-DCA 1,1-DCE ND 1,1-DCE ND Cis-1,2-DCE 99.3 PCE 172 Trans-1,2-DCE 0.74 J TCE 53.2 Vinyl Chloride ND	199 MW-17S 9 ND 9/27/2023 1,1-DCA 1,1-DCE Cis-1,2-DCE PCE PCE Trans-1,2-DCE	ND ND 1.9 114 ND 118 ND
	MW-15S 9/26/2023 1,1-DCA ND 1,1-DCE ND 1,1-DCE ND Cis-1,2-DCE 2.5 PCE 150 Trans-1,2-DCE ND TCE 83.3 Vinyl Chloride ND 9/25/2023 1,1-DCA 1,1-DCE ND Cis-1,2-DCE ND Cis-1,2-DCE ND PCE ND PCE ND Trans-1,2-DCE ND Trans-1,2-DCE ND	Cis-1,2-DCE ND PCE 0.95 J Trans-1,2-DCE 2.4 TCE 1.2 Vinyl Chloride ND MW-10k	MW-14KA ↔ ↔ MW-16 MW-03CA ↔ MW-03A	MW-22K PCE Trar TCE Viny K MW-08K	ns-1,2-DCE ND
PZ-24 9/26/20 1,1-DCA 1,1-DCE Cis-1,2-DCE PCE Trans-1,2-DCE	TCE ND Vinyl Chloride ND Vinyl Chloride ND MW-24K		GWE-2 Bhuton St MW-12K	V-111K V-111K 1,1-I Cis-1 1,1-E Viny 1,1-I 1,1-E 1	DCE ND 1,2-DCE ND is-1,2-DCE ND is-1,2-DCE ND Chloride ND MW-11S 9/26/2023 DCA ND DCE ND 1,2-DCE ND s-1,2-DCE ND
ISYRACUSEFP(Syracuse)(G)Sdata(Stataa) Vinyl Chloride Vinyl Chloride	ND ND Vinyl Chloride	ND MW-05 Calina I,1-DCA 1,2-A 1,2-	ND TCE ND DCE 1030 TCE ND 360 Vinyl Chloride ND 2-DCE 14.8 112 Indice type of the second seco	MW-20S 9/25/2023 1,1-DCA ND 1,1-DCE ND Cis-1,2-DCE 54.2 J PCE 37100 Trans-1,2-DCE ND TCE 592	Beautorite

Legend

- Site Boundary
- Overburden Monitoring Well
- Overburden/Bedrock Interface
 Monitoring Well
- Bedrock Monitoring Well

Notes:

AWQS = Ambient Water Quality Standards DCA = Dichloroethane DCE = Dichloroethene/Dichloroethylene J= Concentration is estimated. ND = Not detected NS = Not Sampled NYSDEC = New York State Department of Environmental Conservation PCE = Tetrachloroethylene TCE = Trichloroethylene VOC(s) = Volatile Organic Compound(s) Concentrations are reported in µg/L (micrograms per liter). Shaded values are above NYSDEC AWQS.

Map Date: 10/10/2024 Projection: NAD 1983 State Plane New York West FIPS 3103 (US Feet)

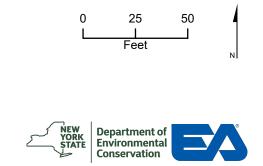


Figure 3-1 VOC Analytical Results in Overburden Groundwater (September 2023) Dinaburg Distributing, Inc. (828103) Rochester, New York

ND Cis-1,2-DCE 3.8 Cis-1,2-DCE 2800 1,1-DCA Vinyl Chloride ND Trans-1,2-DCE ND Trans-1,2-DCE 13.5 T.1-DCA MW-09K MW-09K Vinyl Chloride ND Vinyl Chloride 130 PCE 130	ND DCE 18.6 2.4
MW-15K 1,1-DCA ND 1,1-DCA ND 9/25/2023 1,1-DCE ND 1,1-DCA ND TCE 1,1-DCA ND 1,1-DCA ND 1,1-DCA ND TCE 9/25/2023 1,1-DCA 8.7 1,1-DCE 1,1-DCE 1.9 1.1 1.7	3.8 oride 0.77 J MW-16K 9/27/2023 1-DCA ND 1-DCE 1 is-1,2-DCE 320 CE 189 rans-1,2-DCE 2.9 CE 236 inyl Chloride 8.8
MW-13K 9/25/2023 1.1-DCA 4.2 J 1.1-DCE 6.9 Cis-1.2-DCE 2170 PCE 1350 Trans-1,2-DCE 1350 Trans-1,2-D	DCA = DichloroethaneDCA = DichloroethaneMW-08K9/25/20231,1-DCA1,1-DCEND1,1-DCENDCis-1,2-DCENDTrans-1,2-DCENDTCENDVinyl ChlorideND
MW-24K 9/26/2023 1,1-DCA ND 1,1-DCE ND Vinyl Chloride ND Vinyl Chloride ND Vinyl Chloride ND Vinyl Chloride ND	MW-03CA Map Date: 10/10/2024 9/25/2023 Projection: NAD 1983 State Plane 1-DCA ND 1-DCE 0.6 J is-1,2-DCE 89.4 CE 130 orans-1,2-DCE ND CE 57.9 inyl Chloride 6.9 MW-03A Projection: 1 1
9/26/2023 9/26/2023 9/26/2023 9/26/2023 9/26/2023 9/26/2023 1,1-DCA ND 1,1-DCA ND 1,1-DCA ND 1,1-DCA ND 1,1-DCA ND 1,1-DCA ND 1,1-DCA ND 1,1-DCA ND 1,1-DCA S8 1,1-DCA ND 1,1-DCE ND ND 1,1-DCE ND ND ND	OCE 877 704 2-DCE 350 Figure 3-2

Appendix A

Daily Field Reports

Wind N/A AM PM Health & Safety If any box below is checked "Yes", provide explanation under "Health & Safety Comments". Were there any changes to the Health & Safety Plan? *Yes No NA Were there any caceedances of the perimeter air monitoring reported on this date? *Yes No NA Were there any nuisance issues reported/observed on this date? *Yes No NA Health & Safety Comments Site is gated with combo lock #8103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots o sitps, fing, fall hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. 300PM Summary of Work Performed Arrived at site: 3PM Departed Site: 330PM Joshua Oliver, Nicole Peck, and Noah Robinson, (EA), onsite at (3PM) met up with Jasmine Stefansky and Payson Long (NYSDEC) met onsite at Site 828103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots of slips, trips, fall hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. Summary of Work Performed Arrived at site: 3PM Departed Site: 330PM Joshua Oliver, Site Agetand botential puncture hazards (ne	NYSDEC Division of Environme Site Location: 1012 S			ster 14620	Departme Environme Conservat	ental	Contract No. D009806 DEC PM – J.Stefansky Engineer PM – J.Oliver			
Generature Partly Cloudy AM PM Temperature 36F AM PM Wind N/A AM PM Health & Safety Intervention PM If any box below is checked "Yes", provide explanation under "Health & Safety Comments". NA NA Were there any exceedances of the perimeter air monitoring reported on this date? Yes No NA X Wate there any nuisance issues reported/observed on this date? Yes No NA X Wate there any nuisance issues reported/observed on this date? Yes No NA X Wate there any nuisance issues reported/observed on this date? Yes No NA X Matin to ombol cok #8103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots o silps, ting. fail hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. Summary of Work Performed Arrived at site: 3PM Departed Site: 33OPM Joshua Oliver, Nicole Peck, and Noah Robinson, (EA), onsite at (3PM) met up with Jasmine Stefansky and Payson Long (NYSDEC) met onsite at Site 828103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots of silps, ting. fail hazards and potential puncture hazards (needles, share glass). Would recomment de		Weather	r Condition	IS			Engin	eer Insp.	– N.Peck	(
Temperature 36F AM PM Wind N/A AM PM Wind N/A AM PM Hang box below is checked "Yes", provide explanation under "Health & Safety Comments". Were there any changes to the Health & Safety Plan? Yes No X NA Were there any exceedances of the perimeter air monitoring reported on this date? 'Yes No X NA Were there any exceedances of the perimeter air monitoring reported on this date? 'Yes No X NA Health & Safety Comments Site is glade with combo lock #8103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots of slips, trips, fall hazards and potential puncture hazards (needles, sharg glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. EA and NVSDEC found all applicable Summary of Work Performed Arrived at site: 3PM Departed Site: 330PM Joshua Oliver, Nicole Peck, and Noah Robinson, (EA), onsite at (3PM) med usite. EA and NVSDEC found all applicable monitoring wells. Many wells were in disrepair and will need to be repaired during the next groundwater gauging event (missing/stripped bots, missing, surface completions broken/cracked beyond use). Unable to get plastic cap off of MW-09 and will need to fully be replaced with functional surface completions broken/cracked beyond use). Unable to get plastic cap off of MW-09 and will need to fully be replaced w	General Description			.•		PM				
Health & Safety If any box below is checked "Yes", provide explanation under "Health & Safety Comments". Were there any changes to the Health & Safety Plan? Yes No NAX Were there any exceedances of the perimeter air monitoring reported on this date? 'Yes No NAX Were there any nuisance issues reported/observed on this date? 'Yes No NAX Health & Safety Comments Site is gated with combo lock #8103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots o gips, trips, fall hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. 30PM Joshua Oliver, Nicole Peck, and Noah Robinson, (EA), onsite at (3PM) met up with Jasmine Stefansky and Payson Long (NYSDEC) met onsite a Site S2013. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots of slips, trips, fall hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. EA and NYSDEC cound all applicable monitoring wells for the Site including offsite monitoring wells. Many wells were in disrepair and will need to be repaired during the next groundwater gauging event (missing/stripped bolts, missing i-pluga, covers missing, surface completion surface completion. NYSDEC Unable to get plastic cap off of MW-09 and will need to fully be replaced with functional surface completion. NYSDEC	Temperature		-			PM				
If any box below is checked "Yes", provide explanation under "Health & Safety Comments". Were there any changes to the Health & Safety Plan? Yes No NA Were there any exceedances of the perimeter air monitoring reported on this date? Yes No NA X Were there any nuisance issues reported/observed on this date? Yes No X NA Health & Safety Comments Site is gated with combo lock #6103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots o sites, trips, fail hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. 300PM Joshua Oliver, Nicole Peck, and Noah Robinson, (EA), onsite at (3FM) met up with Jasmine Stefansky and Payson Long (NYSDEC) met onsite at Site 828103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots of slips, trips, fall hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. EA and NYSDEC to und all applicable monitoring wells. Many wells. Were in discrepair and will need to be repaired during the next groundwater gauging event (missing/stripped bolts, missing i-plugs, covers missing, surface completion borker/carked beyond use). Unable to get plastic cap off of MW-09 and will need to fully be replaced with functional surface completion. NYSDEC and EA left Site around 330PM Equipment/Material Tracking Yes No NA X	Wind	N/A	AM			PM				
Were there any changes to the Health & Safety Plan? *Yes No NA Were there any exceedances of the perimeter air monitoring reported on this date? *Yes No NA X Were there any nuisance issues reported/observed on this date? *Yes No NA X Health & Safety Comments Site is gated with combo lock #8103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots o slips, fing, fall hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. Summary of Work Performed Arrived at site: 3PM Departed Site: 330PM Joshua Oliver, Nicole Peck, and Noah Robinson, (EA), onsite at (3PM) met up with Jasmine Stefansky and Payson Long (NYSDEC) met onsite at Site 828103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots of slips, trips, fall hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. No NA X Were there any vehicles which die not display proper D.O.T numbers and placards? *Yes No NA X WySDEC and EA left Site around 330PM *Yes No NA X Equipment/Material Tracking frank up on tarbed? *Yes No NA X Were there any vehicles whi		checked "Yes	s". provide	explanatio	on under "H	lealth 8	Safet	v Comn	nents".	
Were there any nuisance issues reported/observed on this date? *Yes No NA Health & Safety Comments Site is gated with combo lock #8103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots o sites, trips, fail hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. Summary of Work Performed Arrived at site: 3PM Departed Site: 330PM Joshua Oliver, Nicole Peck, and Noah Robinson, (EA), onsite at (3PM) met up with Jasmine Stefansky and Payson Long (NYSDEC) met onsite at Site 828103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots of silps, trips, fail hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. EA and NYSDEC found all applicable monitoring wells for the Site including offsite monitoring wells. Many wells were in disrepair and will need to be repaired during the next groundwater gauging event (missing/stripped bolts, missing l-plugs, covers missing, surface completions broken/cracked beyond use). Unable to get plastic cap off of MW-09 and will need to fully be replaced with functional surface completion. NYSDEC and EA left Site around 330PM Equipment/Material Tracking Yes No NA X Were there any vehicles which did not display proper D.O.T numbers and placards? Yes No NA X Personnel and Equipment Company <t< td=""><td></td><td></td><td>•</td><td>-</td><td></td><td></td><td>T</td><td>-</td><td></td><td>NA</td></t<>			•	-			T	-		NA
Health & Safety Comments Site is gated with combo lock #4103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots o slips, trips, fall hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. Summary of Work Performed Arrived at site: 3PM Departed Site: 330PM Joshua Oliver, Nicole Peck, and Noah Robinson, (EA), onsite at (3PM) met up with Jasmine Stefansky and Payson Long (NYSDEC) met onsite at Site 828103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots of slips, trips, fall hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. EA and NYSDEC found all applicable monitoring wells for the Stei including offsite monitoring wells. Many wells were in disrepair and will need to be repaired during the next groundwater gauging event (missing/stripped bolis, missing Jolugs, covers missing, surface completions broken/cracked beyond use). Unable to get plastic cap off of MW-09 and will need to fully be replaced with functional surface completion. NYSDEC and EA left Site around 330PM Equipment/Material Tracking If any box below is checked "Yes", provide explanation under "Material Tracking Comments". Were there any vehicles which did not display proper D.O. T numbers and placards? "Yes No NAX Were there any vehicles which were not darped? Yes No NAX Personnel and Equipment EA Scienti	Were there any exceeda	ances of the peri	imeter air mo	onitoring repo	orted on this	date?	*Ye	s	No	NA X
Site is gated with combo lock #8103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots o slips, trips, fall hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. Summary of Work Performed Arrived at site: 3PM Departed Site: 330PM Joshua Oliver, Nicole Peck, and Noah Robinson, (EA), onsite at (3PM) met up with Jasmine Stefansky and Payson Long of (NYSDEC) met onsite at Site 828103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots of slips, trips, fall hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. EA and NYSDEC found all applicable monitoring wells for the Site including offsite monitoring wells. Many wells were in disrepair and will need to be repaired during the next groundwater gauging event (missing/stripped bolts, missing j-plugs, covers missing, surface completions broken/cracked beyond use). Unable to get plastic cap off of MW-09 and will need to fully be replaced with functional surface completion. NYSDEC and EA left Site around 330PM Equipment/Material Tracking If any box below is checked "Yes", provide explanation under "Material Tracking Comments". Were there any vehicles which were not tarped? * Yes No NA X Personnel and Equipment Individual Company Trade Total Hours Noah Robinson EA	Were there any nuisance	e issues reporte	ed/observed	on this date?)		*Ye	s	No X	NA
slips, frips, fall hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. Summary of Work Performed Arrived at site: 3PM Departed Site: 330PM Joshua Oliver, Nicole Peck, and Noah Robinson, (EA), onsite at (3PM) met up with Jasmine Stefansky and Payson Long (NYSDEC) met onsite at Site 828103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots of slips, firs, fall hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. EA and NYSDEC found all applicable monitoring wells. Many wells were in disrepair and will need to be repaired during the next groundwater gauging event (missing/stripped bolts, missing j-plugs, covers missing, surface completions broken/cracked beyond use). Unable to get plastic cap off of MW-09 and will need to fully be replaced with functional surface completion. NYSDEC and EA left Site around 330PM Equipment/Material Tracking If any box below is checked "Yes", provide explanation under "Material Tracking Comments". Were there any vehicles which did not display proper D.O.T numbers and placards? *Yes No NA X Were there any vehicles which were not tarped? *Yes No NA X Were there any vehicles which were not tarped? *Yes No NA X Personnel and Equipment Company Trade Total Hours Moter there any	Health & Safety Corr	nments					•			
Joshua Oliver, Nicole Peck, and Noah Robinson, (EA), onsite at (3PM) met up with Jasmine Stefansky and Payson Long (NYSDEC) met onsite at Site 828103. Onsite property covered in abandoned trailers, vehicles, garbage, and debris. Lots of slips, trips, fall hazards and potential puncture hazards (needles, sharp glass). Would recommend cleaning up property with roll off and towing onsite equipment before EA performs any work onsite. EA and NYSDEC found all applicable monitoring wells for the Site including offsite monitoring wells. Many wells were in disrepair and will need to be repaired during the next groundwater gauging event (missing/stripped bolts, missing i-plugs, covers missing, surface completions broken/cracked beyond use). Unable to get plastic cap off of MW-09 and will need to fully be replaced with functional surface completion. NYSDEC and EA left Site around 330PM Equipment/Material Tracking If any box below is checked "Yes", provide explanation under "Material Tracking Comments". Were there any vehicles which did not display proper D.O.T numbers and placards? *Yes No NA X Were there any vehicles which were not tarped? *Yes No NA X Personnel and Equipment Company Trade Total Hours Joshua Oliver EA Project Manager 0.5 Noah Robinson EA EA Scientist 0.5 Payson Long NYSDEC Project Manager 0.5 Scientist 0.5 If any box below is checked EA <t< th=""><th>with roll off and towing o</th><th>nsite equipment</th><th>t before EA p</th><th>performs any</th><th>work onsite.</th><th></th><th></th><th></th><th></th><th></th></t<>	with roll off and towing o	nsite equipment	t before EA p	performs any	work onsite.					
Were there any vehicles which were not tarped? * Yes No NA X Were there any vehicles which were not decontaminated prior to exiting the work site? * Yes No NA X Personnel and Equipment Individual Company Trade Total Hours Joshua Oliver EA Project Manager 0.5 Noah Robinson EA Scientist 0.5 Nicole Peck EA Engineer 0.5 Jasmine Stefansky NYSDEC Project Manager 0.5 Payson Long NYSDEC Project Manager 0.5 Equipment Description Contractor/Vendor Quantity Used Material Description Exported off Site Waste Profile (If Applicable) Source or Disposal Facility (If Applicable) Daily Loads Daily Weigh (tons) *On-Site scale for off-site shipment, delivery ticket for material received				11 Y WOID. 110				10 W/III ne4		nairen
Were there any vehicles which were not decontaminated prior to exiting the work site? * Yes No NA X Personnel and Equipment Individual Company Trade Total Hours Joshua Oliver EA Project Manager 0.5 Noah Robinson EA Scientist 0.5 Nicole Peck EA Engineer 0.5 Jasmine Stefansky NYSDEC Project Manager 0.5 Payson Long NYSDEC Project Manager 0.5 Equipment Description Contractor/Vendor Quantity Used Material Description Imported/ Delivered to Site Exported off Site Waste Profile (If Applicable) Source or Disposal Facility (If Applicable) Daily Loads Daily Weigh (tons) *On-Site scale for off-site shipment, delivery ticket for material received	broken/cracked beyond surface completion. NYSDEC and EA left Sit Equipment/Material If any box below is c	use). Unable to te around 330Pf Tracking thecked "Yes"	get plastic c M ", provide (/stripped bol ap off of MW explanatio	ts, missing j- /-09 and will i n under "M	plugs, co need to fi	vers mi ully be	issing, su replaced	rface com with functi	pletions
Personnel and Equipment Company Trade Total Hours Joshua Oliver EA Project Manager 0.5 Noah Robinson EA Scientist 0.5 Nicole Peck EA Engineer 0.5 Jasmine Stefansky NYSDEC Project Manager 0.5 Payson Long NYSDEC Project Manager 0.5 Equipment Description Contractor/Vendor Quantity Used Material Description Exported off Site Waste Profile (If Applicable) Source or Disposal Loads Daily Loads Daily Weigh (tons) *On-Site scale for off-site shipment, delivery ticket for material received	broken/cracked beyond surface completion. NYSDEC and EA left Sit Equipment/Material If any box below is c Were there any vehicles	use). Unable to te around 330Pf Tracking :hecked "Yes' which did not d	get plastic c M ", provide display prope	/stripped bol ap off of MW explanatio	ts, missing j- /-09 and will i n under "M	plugs, co need to fi	Tracki	issing, su replaced ng Com	rface com with functi ments".	pletions ional
Individual Company Trade Total Hours Joshua Oliver EA Project Manager 0.5 Noah Robinson EA Scientist 0.5 Nicole Peck EA Engineer 0.5 Jasmine Stefansky NYSDEC Project Manager 0.5 Payson Long NYSDEC Project Manager 0.5 Equipment Description Contractor/Vendor Quantity Used Material Description Exported to Site Waste Profile off Site Source or Disposal (If Applicable) Daily Loads Daily Weigh (tons) *On-Site scale for off-site shipment, delivery ticket for material received Vaste Profile Vaste Profile Vaste Profile	broken/cracked beyond surface completion. NYSDEC and EA left Sit Equipment/Material If any box below is c Were there any vehicles Were there any vehicles	use). Unable to te around 330Pf Tracking :hecked "Yes' which did not d which were not	get plastic c M ", provide (display prope t tarped?	/stripped bol ap off of MW explanatio r D.O.T num	ts, missing j- /-09 and will i n under "M bers and pla	plugs, co need to fi laterial ⁻ cards?	Tracki	issing, su replaced ng Com s ss	rface com with functi ments". No	NA X NA X
Joshua Oliver EA Project Manager 0.5 Noah Robinson EA Scientist 0.5 Nicole Peck EA Engineer 0.5 Jasmine Stefansky NYSDEC Project Manager 0.5 Payson Long NYSDEC Project Manager 0.5 Equipment Description Contractor/Vendor Quantity Used Material Description Exported to Site Waste Profile (If Applicable) Source or Disposal Facility (If Applicable) Daily Used *On-Site scale for off-site shipment, delivery ticket for material received Vaste Profile Vaste Profile Vaste Profile	broken/cracked beyond surface completion. NYSDEC and EA left Sit Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles	use). Unable to te around 330Pf Tracking thecked "Yes" which did not d which were not which were not	get plastic c M ", provide (display prope t tarped?	/stripped bol ap off of MW explanatio r D.O.T num	ts, missing j- /-09 and will i n under "M bers and pla	plugs, co need to fi laterial ⁻ cards?	Tracki	issing, su replaced ng Com s ss	rface com with functi ments". No No	NA X NA X
Noah Robinson EA Scientist 0.5 Nicole Peck EA Engineer 0.5 Jasmine Stefansky NYSDEC Project Manager 0.5 Payson Long NYSDEC Project Manager 0.5 Equipment Description Contractor/Vendor Quantity Used Material Description Exported to Site Waste Profile (If Applicable) Source or Disposal Facility (If Applicable) Daily Loads Daily Weigh (tons) *On-Site scale for off-site shipment, delivery ticket for material received Vertical received Vertical received	broken/cracked beyond surface completion. NYSDEC and EA left Sit Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles	use). Unable to te around 330Pf Tracking thecked "Yes" which did not d which were not which were not	get plastic c M ", provide (display prope t tarped?	/stripped bol ap off of MW explanatio r D.O.T num	ts, missing j- /-09 and will i n under "M bers and pla	plugs, co need to fi laterial ⁻ cards?	Tracki	issing, su replaced ng Com s ss	rface com with functi ments". No No	NA X NA X
Nicole Peck EA Engineer 0.5 Jasmine Stefansky NYSDEC Project Manager 0.5 Payson Long NYSDEC Project Manager 0.5 Equipment Description Contractor/Vendor Quantity Used Material Description Exported to Site Waste Profile (If Applicable) Source or Disposal Facility (If Applicable) Daily Loads Daily Weigh (tons) *On-Site scale for off-site shipment, delivery ticket for material received Vertical received Vertical received	broken/cracked beyond surface completion. NYSDEC and EA left Sit Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip	use). Unable to te around 330Pf Tracking thecked "Yes" which did not d which were not which were not	get plastic c M ", provide (display prope t tarped? t decontamin	/stripped bol ap off of MW explanatio r D.O.T num ated prior to	ts, missing j- /-09 and will i n under "M bers and pla	plugs, co need to fi laterial ⁻ cards? rork site?	vers mi ully be Tracki *Ye *Ye *Ye *Ye	issing, su replaced ng Com s ss	rface com with functi ments". No No No	NA X NA X NA X NA X
Jasmine Stefansky NYSDEC Project Manager 0.5 Payson Long NYSDEC Project Manager 0.5 Equipment Description Contractor/Vendor Quantity Used Material Description Exported to Site Waste Profile (If Applicable) Source or Disposal Facility (If Applicable) Daily Loads Daily Weigh (tons) *On-Site scale for off-site shipment, delivery ticket for material received	broken/cracked beyond surface completion. NYSDEC and EA left Sit Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Joshua Oliver	use). Unable to te around 330Pf Tracking thecked "Yes" which did not d which were not which were not oment	get plastic c M ", provide (display prope t tarped? t decontamin	/stripped bol ap off of MW explanatio r D.O.T num ated prior to ompany EA	ts, missing j- /-09 and will i n under "M bers and pla	plugs, co need to fi laterial ⁻ cards? rork site? Tr Project	vers mi ully be Tracki *Ye *Ye *Ye ade Manage	issing, su replaced ng Com s es	rface com with functi ments". No No No Total 0.5	NA X NA X NA X NA X
Payson Long NYSDEC Project Manager 0.5 Equipment Description Contractor/Vendor Quantity Used Equipment Description Exported off Site Waste Profile (If Applicable) Source or Disposal Facility (If Applicable) Daily Loads Daily Weigh (tons) *On-Site scale for off-site shipment, delivery ticket for material received Source or Disposal (tons) Daily (tons)	broken/cracked beyond surface completion. NYSDEC and EA left Sit Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Joshua Oliver Noah Robinso	use). Unable to te around 330Pf Tracking thecked "Yes" which did not d which were not which were not oment	get plastic c M ", provide (display prope t tarped? t decontamin	/stripped bol ap off of MW explanation r D.O.T num ated prior to ompany EA EA	ts, missing j- /-09 and will i n under "M bers and pla	laterial aterial cards? vork site? Tr Project Scie	Vers mi ully be Tracki *Ye *Ye *Ye ade Manage entist	issing, su replaced ng Com s es	rface com with functi ments". No No No Total 0.5 0.5	NA X NA X NA X NA X
Material Description Imported/ Delivered to Site Exported off Site Waste Profile (If Applicable) Source or Disposal Facility (If Applicable) Daily Loads Daily Weigh (tons) *On-Site scale for off-site shipment, delivery ticket for material received Daily Daily Daily Daily	broken/cracked beyond surface completion. NYSDEC and EA left Sit Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Joshua Oliver Noah Robinso Nicole Peck	use). Unable to te around 330Pf Tracking thecked "Yes" which did not d which were not which were not which were not oment	get plastic c M ", provide display prope t tarped? t decontamin Co	/stripped bol ap off of MW explanatio r D.O.T num ated prior to mpany EA EA EA EA	ts, missing j- /-09 and will i n under "M bers and pla	laterial aterial cards? vork site?	vers mi ully be Tracki *Ye *Ye *Ye ade Manage entist jineer	issing, su replaced s es es er	rface com with functi ments". No No No Tota 0.5 0.5 0.5	NA X NA X NA X NA X
Material Description Delivered to Site Exported off Site Waste Frome (If Applicable) Source or Disposal Facility (If Applicable) Daily Loads Weigh (tons) *On-Site scale for off-site shipment, delivery ticket for material received Image: Construction of the state shipment, delivery ticket for material received Image: Construction of the state shipment, delivery ticket for material received Image: Construction of the state shipment, delivery ticket for material received	broken/cracked beyond surface completion. NYSDEC and EA left Sit Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Joshua Oliver Noah Robinso Nicole Peck	use). Unable to te around 330Pf Tracking thecked "Yes" which did not d which were not which were not which were not oment	get plastic c M ", provide display prope t tarped? t decontamin Co	/stripped bol ap off of MW explanatio r D.O.T num ated prior to mpany EA EA EA YSDEC	ts, missing j- /-09 and will i n under "M bers and pla	laterial aterial cards? /ork site? /ork site?	vers mi ully be Tracki *Ye * Ye * Ye ade Manage entist jineer Manage	issing, su replaced s s s es er er	rface com with function ments". No No No O.5 0.5 0.5 0.5	NA X NA X NA X NA X
	broken/cracked beyond surface completion. NYSDEC and EA left Sit Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Joshua Olive Noah Robinso Nicole Peck Jasmine Stefans Payson Long	use). Unable to te around 330Pf Tracking thecked "Yes" which did not d which were not which were not which were not toment	get plastic c M ", provide display prope t tarped? t decontamin Co	/stripped bol ap off of MW explanation r D.O.T num ated prior to mpany EA EA YSDEC YSDEC	ts, missing j- /-09 and will i bers and pla exiting the w	laterial aterial cards? /ork site? /ork site?	vers mi ully be Tracki *Ye *Ye *Ye *Ye ade Manage Manage Manage	issing, su replaced s s es es er er er	rface com with functi ments". No No No Total 0.5 0.5 0.5 0.5 0.5	NA X NA X NA X NA X
	broken/cracked beyond surface completion. NYSDEC and EA left Sit Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Joshua Oliver Noah Robinso Nicole Peck Jasmine Stefans Payson Long	use). Unable to te around 330Pf Tracking thecked "Yes" which did not d which were not which were not which were not which were not toment	get plastic c M ", provide o display prope t tarped? t decontamin Co NY NY	/stripped bol ap off of MW explanation r D.O.T num ated prior to mpany EA EA EA YSDEC YSDEC Contracto Waste	n under "M bers and platers an	laterial cards? vork site? Project Project Project Sciu Eng Project	Vers mi ully be Tracki *Ye *Ye *Ye *Ye *Ye *Ye *Ye *Ye *Ye *Ye	issing, su replaced	rface com with function No No No Total 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	I Hours
	broken/cracked beyond surface completion. NYSDEC and EA left Sit Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Joshua Olive Noah Robinso Nicole Peck Jasmine Stefans Payson Long Equipment Descr	use). Unable to te around 330Pf Tracking thecked "Yes" which did not d which were not which were not which were not which were not to which were not ment m n sky iption Imported/ Delivered to Site	get plastic c M ", provide of lisplay prope t tarped? t decontamin Co N N N N	/stripped bol ap off of MW explanation r D.O.T num ated prior to mpany EA EA YSDEC YSDEC Contracto Waste (If App	ts, missing j- /-09 and will i bers and platers and platers exiting the way exiting the way exiting the way exiting the way exiting the way exiting the way exiting the way exiting the way exiting the way exiting the way exiting the way ex	laterial cards? vork site? Project Project Project Sciu Eng Project	Vers mi ully be Tracki *Ye *Ye *Ye *Ye *Ye *Ye *Ye *Ye *Ye *Ye	issing, su replaced	rface com with function No No No Total 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	I Hours
	broken/cracked beyond surface completion. NYSDEC and EA left Sit Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Joshua Oliver Noah Robinso Nicole Peck Jasmine Stefans Payson Long Equipment Descr Material Description *On-Site scale for off-	use). Unable to te around 330Pf Tracking thecked "Yes" which did not d which were not which were not oment which were not oment is which were not omen	get plastic c M ", provide of tisplay prope t tarped? t decontamin Co Exported off Site delivery tic	/stripped bol ap off of MW explanation r D.O.T num ated prior to mpany EA EA YSDEC YSDEC Contracto Waste (If App	ts, missing j- /-09 and will i bers and platers and platers exiting the way exiting the way exiting the way exiting the way exiting the way exiting the way exiting the way exiting the way exiting the way exiting the way exiting the way ex	laterial cards? vork site? Project Project Project Sciu Eng Project	Vers mi ully be Tracki *Ye *Ye *Ye *Ye *Ye *Ye *Ye *Ye *Ye *Ye	issing, su replaced	rface com with function No No No Total 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	I Hours

Name	Rep	resenting	Entered Exclusion/CRZ Zo		
None			Yes	No	
			Yes	Νο	
Site Representatives					
Name		Representing			
No property owners onsite					
Project Schedule Comments					
None.					
la succe Danding					
Issues Pending					
 Lots of hazards onsite. Will ne 	eed to address pr	ior to next sampli	na event.		
	p .				
Interaction with Public, Property Ov	wners, Media, et	с.			
None.					
None.					

Include (insert) figures with markups showing location of work and job progress

NEW YORK STATE

Department of Environmental Conservation

NEW YORK STATE Conservation

Photo 23: MW-10S

WELL MONITORING TABLE:							
Well ID	DTW	DTB	Notes				
Site Inspector(s): Jo	osh Oliver, Nicole Peck, an	d Noah Robinson	Date: 3/30/23				

Videos of discreet operations have been provided to the DEC Project Manager to facilitate
understanding of the ongoing work?Yes \Box No \Box N/A X

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes 🗆	No 🖂
2.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes 🗆	No 🖂
3.	Were personal protective gloves, masks, and eye protection being used?	Yes 🗆	No 🖂
4.	Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No 🗆
5.	If Yes to 1 or 2, follow the latest NYSDOH COVID-19 guidance: https://coronavirus.health.ny.gov/home	Yes □	No 🗆
Comm N/A	<u>ents:</u>		

ON-SITE WASTE STORAGE

Drums, roll offs and piles are staged in secure areas?	Yes 🗆	No 🗆	N/A⊠
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes 🗆	No 🗆	N/A⊠
Containers are in good condition or properly overpacked?	Yes 🗆	No 🗆	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes 🗆	No 🗆	N/A⊠
Complying with RCRA 90 day storage limitation for hazardous waste?	Yes 🗆	No 🗆	N/A⊠
Piles are securely covered when not in use?	Yes 🗆	No 🗆	N/A⊠
Containers are closed when not in use?	Yes 🗆	No 🗆	N/A⊠
Staging areas should be inspected periodically and any issues addressed immediately?	Yes 🗆	No 🗆	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes □	No 🗆	N/A⊠
If any issues noted, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
Comments:			

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes 🗆	No 🖂	N/A□
Were there any odors detected on this date?	Yes 🗆	No 🖂	N/A□
Was noise outside specification and/or above background on this date?	Yes 🗆	No 🖂	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes 🗆	No 🗆	N/A⊠
Was turbidity checked at the outfall(s)?	AM 🗆	PM 🗆	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes 🗆	No 🗆	N/A⊠

Was the temporary fabric structure closed at the end of the day?	Yes □	No 🗆	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No 🗆	N/A⊠
If yes, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
<u>Comments:</u> N/A			

RESILIENCE/GREEN REMEDIATION CHECKLIST

Yes □	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
	·	
	Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes No Yes No

* BART – Best Available Retrofit Technology

NYSDEC Division of Environmental Remediation						ntal	Contract No. D009806 DEC PM – J.Stefansky Engineer PM – J.Oliver			06	
Site Location: 1012 S	South Clinton A	Ave, Roches	ster 1462	20			Engi		- J.Oliver		
	Weather	r Condition	S								
General Description	Rain	AM				PM					
Temperature	70F	AM				PM					
Wind	N/A	AM				PM	-				
Health & Safety If any box below is o	checked "Yes	s", provide	explana	tion und	der "He	ealth 8	k Safe	ty Comr	nents".		
Were there any changes	to the Health 8	& Safety Plan	?				*Ye	es	No X	NA	
Were there any exceeda	inces of the peri	imeter air mo	onitoring re	eported o	n this da	ate?	*Ye	es	No	NA X	
Were there any nuisance	e issues reporte	d/observed o	on this dat	e?			*Ye	es	No X	NA	
Health & Safety Com	ments										
in abandoned trailers, ve (needles, sharp glass). V performs any work onsite	Vould recomme										
Summary of Work Pe	erformed	Arrived at	site:	1030AN	/	De	eparte	ed Site:	1100AN	1	
performs any work onsite event (missing/stripped b get plastic cap off of MW EA knocked on doors for event. EA left Site around 1100 Equipment/Material	oolts, missing j- /-09 and will nee r offsite monitor DAM Tracking	plugs, covers ed to fully be ing wells, but	s missing, replaced t no answe	surface of with func er on all a	completi tional su attempts	ons bro urface o . Will n	oken/ci comple nail hai	racked be	yond use). o POs prior	Unable to	
Were there any vehicles		•	-				*Ye		No	NA X	
Were there any vehicles		1 7 1 1	. 5.0.1 III				* Y		No	NAX	
Were there any vehicles			ated prior	to exiting	the wo	rk site?			No	NAX	
					,		<u> </u>	-			
Personnel and Equip		-				_					
Individual Joshua Oliver		Co	mpany				rade			Total Hours	
Philomena Coles-Car			EA EA			Project Sci	entist	er	0.5		
Equipment Descri	ption		Contra	ctor/Vend	lor			Quantity	Us	ed	
Material Description Delivered off Site (If Applicable) Eacility (If Applicable) Loads Weigh							Daily Weight (tons)*				
*On-Site scale for off-s	site shipment,	delivery ticl	ket for ma	aterial re	eceived						
	*On-Site scale for off-site shipment, delivery ticket for material received Equipment/Material Tracking Comments:										

٦

Visitors to Site				
Name	Repr	esenting	Entered E	xclusion/CRZ Zone
None			Yes	No
			Yes	No
Site Representatives				
Name		Representing		
No property owners onsite				
Project Schedule Comments				
None.				
Issues Pending				
• Lots of hazards onsite. Will no	eed to address pri	or to next sampling	event	
		er te next earriphing		
Interaction with Public, Property O	wners, Media, etc			
None.				

Include (insert) figures with markups showing location of work and job progress

WELL MONITORING TABLE:					
Well ID	DTW	DTB	Notes		
Site Inspector(s):Josh Oliver, Philomena Coles-CarruthersDate: 7/27/23					

Videos of discreet operations have been provided to the DEC Project Manager to facilitate
understanding of the ongoing work?Yes \Box No \Box N/A X

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes 🗆	No 🖂
2.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes 🗆	No 🖂
3.	Were personal protective gloves, masks, and eye protection being used?	Yes 🗆	No 🖂
4.	Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No 🗆
5.	If Yes to 1 or 2, follow the latest NYSDOH COVID-19 guidance: https://coronavirus.health.ny.gov/home	Yes □	No 🗆
Comm N/A	ents:		

ON-SITE WASTE STORAGE

Drums, roll offs and piles are staged in secure areas?	Yes □	No 🗆	N/A⊠
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes 🗆	No 🗆	N/A⊠
Containers are in good condition or properly overpacked?	Yes 🗆	No 🗆	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes 🗆	No 🗆	N/A⊠
Complying with RCRA 90 day storage limitation for hazardous waste?	Yes 🗆	No 🗆	N/A⊠
Piles are securely covered when not in use?	Yes 🗆	No 🗆	N/A⊠
Containers are closed when not in use?	Yes 🗆	No 🗆	N/A⊠
Staging areas should be inspected periodically and any issues addressed immediately?	Yes 🗆	No 🗆	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes 🗆	No 🗆	N/A⊠
If any issues noted, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
Comments:			

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes 🗆	No 🖂	N/A□
Were there any odors detected on this date?	Yes □	No 🖂	N/A□
Was noise outside specification and/or above background on this date?	Yes 🗆	No 🖂	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes 🗆	No 🗆	N/A⊠
Was turbidity checked at the outfall(s)?	AM 🗆	PM 🗆	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes 🗆	No 🗆	N/A⊠

Was the temporary fabric structure closed at the end of the day?	Yes □	No 🗆	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No 🗆	N/A⊠
If yes, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
<u>Comments:</u> N/A			

RESILIENCE/GREEN REMEDIATION CHECKLIST

Is site power procured from renewable energy sources (e.g., solar, wind, geothermal, biomass and biogas)?	Yes □	No 🗆	N/A⊠
Is the Contractor employing 2007 or newer or retrofitted (BART*) diesel on-road trucks and non-road equipment?	Yes □	No 🗆	N/A⊠
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes 🗆	No 🗆	N/A⊠
Have equipment operators been trained in the idling requirements of 6NYCRR Part 217-3?	Yes □	No 🗆	N/A⊠
Is BART-equipped equipment properly maintained and working?	Yes 🗆	No 🗆	N/A⊠
Is work being sequenced to avoid double handling?	Yes 🗆	No 🗆	N/A⊠
Is there an onsite recycling program for CONTRACTOR-generated wastes and is it complied with?	Yes □	No 🗆	N/A⊠
Are office trailer heating and cooling systems maintained at efficient set points, have programable thermostats been installed?	Yes □	No 🗆	N/A⊠
Are products and materials used in performance of the work appropriately certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative®, etc.)?	Yes □	No 🗆	N/A⊠
Are resiliency features included in the design, or completed remedy properly installed and/or maintained (flood control, storm water controls, erosion measures, etc.)?	Yes 🗆	No 🗆	N/A⊠
Are green remediation elements included in the design, or completed remedy properly installed and/or maintained (e.g., porous pavement, geothermal, variable speed drives, native plantings, natural stream bank restoration, etc.)?	Yes □	No 🗆	N/A⊠
Has Contractor been notified of any deficiencies?	Yes 🗆	No 🗆	N/A⊠
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes □	No 🗆	N/A⊠
<u>Comments:</u> N/A		·	

* BART – Best Available Retrofit Technology

NYSDEC Division of Environmen Site Location: 1012 S			NEW YORK STATE	Departmer Environme Conservati	ental ion	Contract No. D009806 DEC PM – J.Stefansky Engineer PM – J.Oliver		
Site Location: 1012 S		•						
		Condition	S					
General Description	Sunny 75F	AM AM			PM PM			
Temperature Wind	Calm	AM			PM			
Health & Safety If any box below is o	hecked "Yes	o", provide	-	n under "H	<u>+</u>		ments".	I
Were there any changes	to the Health &	Safety Plan	?			*Yes	No X	NA
Were there any exceeda	nces of the peri	imeter air mo	onitoring repo	orted on this o	date?	*Yes	No	NA X
Were there any nuisance	e issues reporte	d/observed o	on this date?			*Yes	No X	NA
Health & Safety Com	•							
Onsite property has debu hazards (needles, sharp	is and dumpste	er for taking a	away debris.	Some slips, t	rips, fall I	hazards and p	otential pun	cture
Summary of Work Pe	erformed	Arrived at	site: 07	745	De	parted Site:	0945	
Equipment/Material T If any box below is c Were there any vehicles Were there any vehicles	hecked "Yes' which did not d	isplay proper	•			Fracking Cor	nments". No	NA X NA X
Were there any vehicles			ated prior to	exiting the w	ork site?	* Yes	No	NA X
Personnel and Equip		dooontainin		externing the tre		100	110	10.17
		<u> </u>	mpany		Tra	ade	Total	Hours
Cody Badman		00	EA		-	entist	Total	2
Lincoln Backman-L			EA			entist		2
Equipment Descri	ption		Contracto	or/Vendor		Quantity	U	sed
Material Description	Imported/ Delivered to Site	ed off Site (If Applicable) Eacility			ce or Disposal y (If Applicable) Daily Loads	Daily Weight (tons)*	
*On-Site scale for off-s	site shipment	deliverv ticl	ket for mate	erial received	d		I	
Equipment/Material Tracking Comments:								
Visitors to Site								
Name			Repres	entina		Entered Ex	clusion/C	RZ Zone
				a		Yes		
None		+					No	
						Yes	No	

Site Representatives					
Name	Representing				
Property owner onsite					
Project Schedule Comments					
Well maintenance, repair and redevelopment set for th	e week of September 11 th .				
A groundwater sampling event is due to take place the	week of September 25 th .				
Issues Pending					
None					
None					
Interaction with Public, Property Owners, Media, et	с.				
Property owner onsite, shown well locations of onsite wells					
Property owner onsite, shown well locations of onsite wells.					

Include (insert) figures with markups showing location of work and job progress

Site Photographs (Descriptions Below)

NEW YORK STATE Conservation

WELL MONITORING TABLE:					
Well ID	DTW	DTB	Notes		
Site Inspector(s): Cody Badman, Lincoln Backman-Lowe Date: 08/31/2023					

Videos of discreet operations have been provided to the DEC Project Manager to facilitate
understanding of the ongoing work?Yes \Box No \Box N/A X

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes 🗆	No 🖂
2.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes 🗆	No 🖂
3.	Were personal protective gloves, masks, and eye protection being used?	Yes 🗆	No 🖂
4.	Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No 🗆
5.	If Yes to 1 or 2, follow the latest NYSDOH COVID-19 guidance: https://coronavirus.health.ny.gov/home	Yes □	No 🗆
Comm N/A	ents:		

ON-SITE WASTE STORAGE

Drums, roll offs and piles are staged in secure areas?	Yes 🗆	No 🗆	N/A⊠
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes 🗆	No 🗆	N/A⊠
Containers are in good condition or properly overpacked?	Yes 🗆	No 🗆	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes 🗆	No 🗆	N/A⊠
Complying with RCRA 90 day storage limitation for hazardous waste?	Yes 🗆	No 🗆	N/A⊠
Piles are securely covered when not in use?	Yes 🗆	No 🗆	N/A⊠
Containers are closed when not in use?	Yes 🗆	No 🗆	N/A⊠
Staging areas should be inspected periodically and any issues addressed immediately?	Yes 🗆	No 🗆	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes 🗆	No 🗆	N/A⊠
If any issues noted, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
Comments:			

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes 🗆	No 🖂	N/A□
Were there any odors detected on this date?	Yes 🗆	No 🖂	N/A□
Was noise outside specification and/or above background on this date?	Yes 🗆	No 🖂	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes □	No 🗆	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes 🗆	No 🗆	N/A⊠
Was turbidity checked at the outfall(s)?	AM 🗆	PM 🗆	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes 🗆	No 🗆	N/A⊠

Was the temporary fabric structure closed at the end of the day?	Yes 🗆	No 🗆	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No 🗆	N/A⊠
If yes, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
<u>Comments:</u> N/A			

RESILIENCE/GREEN REMEDIATION CHECKLIST

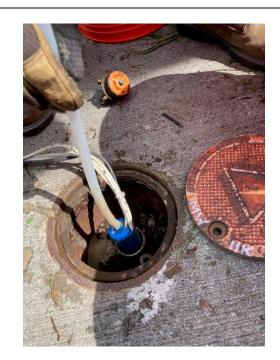
Is site power procured from renewable energy sources (e.g., solar, wind, geothermal, biomass and biogas)?	Yes □	No 🗆	N/A⊠
Is the Contractor employing 2007 or newer or retrofitted (BART*) diesel on-road trucks and non-road equipment?	Yes □	No 🗆	N/A⊠
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes 🗆	No 🗆	N/A⊠
Have equipment operators been trained in the idling requirements of 6NYCRR Part 217-3?	Yes □	No 🗆	N/A⊠
Is BART-equipped equipment properly maintained and working?	Yes 🗆	No 🗆	N/A⊠
Is work being sequenced to avoid double handling?	Yes 🗆	No 🗆	N/A⊠
Is there an onsite recycling program for CONTRACTOR-generated wastes and is it complied with?	Yes □	No 🗆	N/A⊠
Are office trailer heating and cooling systems maintained at efficient set points, have programable thermostats been installed?	Yes □	No 🗆	N/A⊠
Are products and materials used in performance of the work appropriately certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative®, etc.)?	Yes □	No 🗆	N/A⊠
Are resiliency features included in the design, or completed remedy properly installed and/or maintained (flood control, storm water controls, erosion measures, etc.)?	Yes □	No 🗆	N/A⊠
Are green remediation elements included in the design, or completed remedy properly installed and/or maintained (e.g., porous pavement, geothermal, variable speed drives, native plantings, natural stream bank restoration, etc.)?	Yes □	No 🗆	N/A⊠
Has Contractor been notified of any deficiencies?	Yes □	No 🗆	N/A⊠
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes □	No 🗆	N/A⊠
<u>Comments:</u> N/A			

* BART – Best Available Retrofit Technology

Division of Environme Site Location: 1012			ester 14620	Conservatio		DEC PM – J.Stefansky Engineer PM – J.Oliver			
	Weathe	er Condition	IS						
General Description	Sunny	AM		unny	PM				
Temperature	62F	AM		70F	PM				
Wind	Calm	AM	С	alm	PM				
Health & Safety If any box below is	checked "Ye	s" provide	explanatio	on under "H	ealth &	Safety Co	mments"		
Nere there any change						*Yes	No X	NA	
Nere there any exceeda		-		orted on this d	late?	*Yes	No	NA X	
Vere there any nuisanc	· · ·		• •			*Yes	No X	NA	
Health & Safety Con	•			·			110 /1		
Some slips, trips, fall ha	azards and pote	ntial puncture	e hazards (ne	eedles, sharp (<u> </u>				
Summary of Work P 0745) EA onsite (C. Ba		Arrived a		745		eparted Site			
obtained. (0835) Replac			ls lock and w	vill replace whe	en additi		e obtained.	(0840)	
MW-09K needs lock, wi ock. (0855) Replaced J emoving old well cap o MW-05. (0915) Replaced olug and bolts on MW-1 and J-plug, MW-8K nee 1000) Return to MW-10 EA) to discuss well rep MW-19S, well dry after burging ~4 gallons. (11 Start purge on MW-8K a stopped after purging ~2 1205) Purge stopped a Purge restarted at MW-3 and purge restarted at MW-3 and purge restarted at MW-3 and purge restarted at MW-4 after purging ~1 gallon. Se 1310) Start purge at M after purging ~1 gallon. Durging ~1 gallon (5 gal emoved. (1500) EA page	ill replace when J-plug on MW-10 of MW-10K. (090 ed J-plug on MV 12K, needs lock eds bolts. (0940) 0K to continue t bair needs, plan purging ~ 1 gall 10) Spoke with again, water cle 26 gallons. Wate after purging an 22K. (1225) Pu 238) Purge rest et up on MW-11 W-18S. (1312) (1350) Purge re llons total). (143 cking up. (1515)	additional loc 0S, flush J-pl 05) Searched V-4, needs lo . (0930) MW-) MW-22K, P. to replace we for redevelop lon. (1100) St homeowner r ear after purgi ter to be dum additional ~3 rge stopped a arted at MW- K, sediment Purge stoppe estarted, well 30) Start purg	Is lock and w cks are obtai ug is too tall for MW-24k ck and large 11K and MW Z-22 needs I Il cap. (1020 oment. (1045 tart purge at egarding pre ng ~7 total g ped in drums 2 gallons. W after purging 22K. (1245) encountered ed, well dry a dry after purging	vill replace whe ined. (0845) Ad to keep well or (, could not loc r bolts. (0920) V-11S need bo ocks, will repla) Well cap inst i) Begin develo MW-8K. (1105 esence onsite, jallons. (1130) s and purge replater to be dur an additional Stopped purge at ~2 feet of co fter purging ~2 rging ~1 gallor	en additi dded J-p overing s ate. (09 MW-128 olts and I ace when alled on opment of 5) Stopp location Started. mped in of ~32 gallo e on MW depth. Pu 2 gallons n. (1410)	ional locks ar blug and bolts sealed, need 10) Need larg S needs lock. locks. (0935) n additional lo MW-10K. (10 on MW-10K. (10 on MW-22K urge at MW-22 (1150) Purge drums and pu ons. Water to <i>I</i> -22K, water ump unable to s. (1320) Purge	e obtained. s to MW-06, s lock. (090 ger gauged . (0925) Rej MW-8S net ocks are ob 030) Called (1050) Stop MW-8K, wel in driveway 2K. (1140) e restarted a urge restarted o be dumper clear after p o be placed ge restarted rted, well dr	(0840) needs 0) Begin bolts for placed J- eds bolts tained. M. Wrigh purge on I dry after . (1125) Purge at MW-22ł ed. (1212) d in drums purging I down we I, well dry y after	
blained. (0835) Replace MW-09K needs lock, wi ock. (0855) Replaced J emoving old well cap o MW-05. (0915) Replace olug and bolts on MW-1 and J-plug, MW-8K nee 1000) Return to MW-10 EA) to discuss well rep MW-19S, well dry after purging ~4 gallons. (117 Start purge on MW-8K a stopped after purging ~2 1205) Purge stopped a Purge restarted at MW- and purge restarted at MW- and purge restarted at MW- and purge restarted at MW- after purging ~1 gallon. (120 (1310) Start purge at M after purging ~1 gallon (5 gal removed. (1500) EA par Equipment/Material f any box below is o	ill replace when J-plug on MW-10 of MW-10K. (090 ed J-plug on MV 12K, needs lock eds bolts. (0940) 0K to continue to purging ~ 1 gall 10) Spoke with again, water cle 26 gallons. Wate 26 gallons. Wate fiter purging an 22K. (1225) Pu 238) Purge rest et up on MW-11 W-18S. (1312) (1350) Purge rest ching up. (1515) Tracking	additional loc 0S, flush J-pl 05) Searched V-4, needs lo . (0930) MW-) MW-22K, P. o replace we for redevelop lon. (1100) St homeowner r homeowner r homeowner r ear after purgi ter to be dum additional ~3 rge stopped a arted at MW- K, sediment of Purge stopped estarted, well 30) Start purg D EA offsite.	Is lock and w cks are obtain ug is too tall for MW-24k ck and large 11K and MW Z-22 needs I Il cap. (1020) oment. (1045) tart purge at egarding pred art purge at egarding pred ped in drums 2 gallons. W after purging 22K. (1245) encountered ad, well dry a dry after pun e on MW-19	vill replace whe ined. (0845) Ad to keep well or K, could not loc r bolts. (0920) V-11S need bo ocks, will repla) Well cap insta b) Begin develo MW-8K. (1105 esence onsite, jallons. (1130) s and purge re- /ater to be dur an additional Stopped purge at ~2 feet of o fiter purging ~2 rging ~1 gallor S. (1450) Stop	en additi dded J-p overing s ate. (09 MW-128 olts and I ace when alled on opment o 5) Stopp location Start pu started. ~32 gallo e on MW depth. Pu 2 gallons n. (1410) oped pur	ional locks ar blug and bolts sealed, need 10) Need larg S needs lock locks. (0935) n additional lo MW-10K. (10 on MW-10K. (10 on MW-10K. (10 on MW-12K urge at MW-2 (1150) Purge drums and pu ons. Water to J-22K, water ump unable to s. (1320) Purge Purge resta rge on MW-19	e obtained. s to MW-06, s lock. (090 ger gauged . (0925) Rep MW-8S new ocks are ob 030) Called (1050) Stop MW-8K, wel in driveway 2K. (1140) b e restarted a urge restarted b be dumper clear after p o be placed ge restarted rted, well dr 9S, ~3 gallo	(0840) needs 0) Begin bolts for placed J- eds bolts tained. M. Wrigh purge on I dry after . (1125) Purge at MW-22F ed. (1212) d in drums burging I down we I, well dry y after ons	
AW-09K needs lock, wi bock. (0855) Replaced J emoving old well cap o AW-05. (0915) Replaced blug and bolts on MW-1 and J-plug, MW-8K nee 1000) Return to MW-10 EA) to discuss well rep AW-19S, well dry after burging ~4 gallons. (117 Start purge on MW-8K a topped after purging ~1 205) Purge stopped a Purge restarted at MW-1 1205) Purge stopped a Purge restarted at MW-1 1310) Start purge at M fter purging ~1 gallon. (5 gal emoved. (1500) EA page Equipment/Material f any box below is o	ill replace when J-plug on MW-10 of MW-10K. (090 ed J-plug on MV 12K, needs lock eds bolts. (0940) 0K to continue t vair needs, plan purging ~ 1 gall 10) Spoke with again, water cle 26 gallons. Wat after purging an 22K. (1225) Pu 238) Purge rest at up on MW-11 W-18S. (1312) (1350) Purge re llons total). (143 cking up. (1515 Tracking checked "Yes	additional loo 0S, flush J-pl 05) Searched V-4, needs lo . (0930) MW-) MW-22K, P. o replace we for redevelop lon. (1100) Si homeowner r ar after purgi ter to be dum additional ~3 rge stopped a arted at MW- K, sediment P Purge stopped estarted, well 30) Start purg) EA offsite.	Is lock and w cks are obtai ug is too tall for MW-24k ck and large 11K and MV Z-22 needs I Il cap. (1020) oment. (1045) tart purge at egarding pre ng ~7 total g ped in drums 2 gallons. W after purging 22K. (1245) encountered dry after pur e on MW-19 explanatio	vill replace whe ined. (0845) Ad to keep well or (, could not loc r bolts. (0920) V-11S need bo ocks, will repla) Well cap inst i) Begin develo MW-8K. (1105 esence onsite, jallons. (1130) s and purge re- vater to be dum an additional Stopped purge at ~2 feet of o fiter purging ~2 rging ~1 gallor S. (1450) Stop	en additi dded J-p overing s ate. (09 MW-125 olts and I ace when alled on opment of 5) Stopp location Start pu started. nped in of ~32 gallons a. (1410) oped pur	ional locks ar blug and bolts sealed, need 10) Need larg S needs lock locks. (0935) n additional lo MW-10K. (10 on MW-10K. (10 on MW-10K. (10 on MW-12K urge at MW-2 (1150) Purge drums and pu ons. Water to J-22K, water ump unable to s. (1320) Purge Purge resta rge on MW-19	e obtained. s to MW-06, s lock. (090 ger gauged . (0925) Rep MW-8S new ocks are ob 030) Called (1050) Stop MW-8K, wel in driveway 2K. (1140) b e restarted a urge restarted b be dumper clear after p o be placed ge restarted rted, well dr 9S, ~3 gallo	(0840) needs 0) Begin bolts for placed J- eds bolts tained. M. Wrigh purge on I dry after . (1125) Purge at MW-22F ed. (1212) d in drums burging I down we I, well dry y after ons	
W-09K needs lock, wi bock. (0855) Replaced J emoving old well cap o MW-05. (0915) Replaced lug and bolts on MW-1 nd J-plug, MW-8K nee 1000) Return to MW-10 EA) to discuss well rep W-19S, well dry after urging ~4 gallons. (11 Start purge on MW-8K a topped after purging ~1 205) Purge stopped a Purge restarted at MW- nd purge restarted at MW- nd purge restarted at MW- nd purge restarted at MW- nd purge restarted at MW- fter purging ~1 gallon. urging ~1 gallon (5 gal emoved. (1500) EA part Equipment/Material f any box below is o Vere there any vehicles	ill replace when J-plug on MW-10 of MW-10K. (090 ed J-plug on MV 12K, needs lock eds bolts. (0940) 0K to continue t pair needs, plan purging ~ 1 gall 10) Spoke with again, water cle 26 gallons. Wat after purging an 22K. (1225) Pu 238) Purge rest et up on MW-11 W-18S. (1312) (1350) Purge re llons total). (143 cking up. (1515) Tracking checked "Yes s which did not s which were no	additional loc 0S, flush J-pl 05) Searched V-4, needs lo . (0930) MW-) MW-22K, Pl to replace we for redevelop lon. (1100) St homeowner r ear after purgi ter to be dum additional ~3 rge stopped a arted at MW- K, sediment of Purge stopped estarted, well 30) Start purg b) EA offsite.	Is lock and w cks are obtai ug is too tall for MW-24k ck and large 11K and MV Z-22 needs I Il cap. (1020 oment. (1045 tart purge at regarding pre- ing ~7 total g ped in drums 2 gallons. W after purging 22K. (1245) encountered ed, well dry a dry after purging e on MW-19 explanatio	vill replace whe ined. (0845) Ad to keep well or (, could not loc r bolts. (0920) V-11S need bo ocks, will repla) Well cap inst i) Begin develo MW-8K. (1105 esence onsite, jallons. (1130) is and purge re- vater to be dur an additional Stopped purge at ~2 feet of co fifter purging ~2 rging ~1 gallor S. (1450) Stop	en additi dded J-p overing s ate. (09 MW-125 olts and I ace when alled on opment of 5) Stopp location Start pu started. ~32 gallons ace on MW depth. Pu 2 gallons n. (1410) oped pur	ional locks ar blug and bolts sealed, need 10) Need larg S needs lock. locks. (0935) n additional lo MW-10K. (10 on MW-19S. ed purge at M of MW-22K urge at MW-2 (1150) Purge drums and pu ons. Water to /-22K, water ump unable to s. (1320) Purge resta rge on MW-19 Purge resta rge on MW-19 Purge resta rge on MW-19	e obtained. s to MW-06, s lock. (090 ger gauged . (0925) Rej MW-8S ner ocks are ob 030) Called (1050) Stop MW-8K, wel in driveway 2K. (1140) I e restarted a urge restarted b be dumper clear after p o be placed ge restarted rted, well dr 9S, ~3 gallo	(0840) needs (0) Begin bolts for placed J- eds bolts tained. M. Wrigh purge on I dry after (1125) Purge at MW-224 ed. (1212) d in drums purging I down we I, well dry y after ons NA X NA X	
W-09K needs lock, wi bock. (0855) Replaced J emoving old well cap o MW-05. (0915) Replaced lug and bolts on MW-1 nd J-plug, MW-8K nee 1000) Return to MW-10 EA) to discuss well rep W-19S, well dry after urging ~4 gallons. (11 Start purge on MW-8K a topped after purging ~1 205) Purge stopped a Purge restarted at MW- nd purge restarted at MW- nd purge restarted at MW- nd purge restarted at MW- nd purge restarted at MW- fter purging ~1 gallon. urging ~1 gallon (5 gal emoved. (1500) EA part Equipment/Material f any box below is o Vere there any vehicles	ill replace when J-plug on MW-10 of MW-10K. (090 ed J-plug on MV 12K, needs lock eds bolts. (0940) 0K to continue t pair needs, plan purging ~ 1 gall 10) Spoke with again, water cle 26 gallons. Wat after purging an 22K. (1225) Pu 238) Purge rest et up on MW-11 W-18S. (1312) (1350) Purge re llons total). (143 cking up. (1515) Tracking checked "Yes s which did not s which were no	additional loc 0S, flush J-pl 05) Searched V-4, needs lo . (0930) MW-) MW-22K, Pl to replace we for redevelop lon. (1100) St homeowner r ear after purgi ter to be dum additional ~3 rge stopped a arted at MW- K, sediment of Purge stopped estarted, well 30) Start purg b) EA offsite.	Is lock and w cks are obtai ug is too tall for MW-24k ck and large 11K and MV Z-22 needs I Il cap. (1020 oment. (1045 tart purge at regarding pre- ing ~7 total g ped in drums 2 gallons. W after purging 22K. (1245) encountered ed, well dry a dry after purging e on MW-19 explanatio	vill replace whe ined. (0845) Ad to keep well or (, could not loc r bolts. (0920) V-11S need bo ocks, will repla) Well cap inst i) Begin develo MW-8K. (1105 esence onsite, jallons. (1130) is and purge re- vater to be dur an additional Stopped purge at ~2 feet of co fifter purging ~2 rging ~1 gallor S. (1450) Stop	en additi dded J-p overing s ate. (09 MW-125 olts and I ace when alled on opment of 5) Stopp location Start pu started. ~32 gallons ace on MW depth. Pu 2 gallons n. (1410) oped pur	ional locks ar blug and bolts sealed, need 10) Need larg S needs lock. locks. (0935) n additional lo MW-10K. (10 on MW-19S. ed purge at M of MW-22K urge at MW-2 (1150) Purge drums and pu ons. Water to /-22K, water ump unable to s. (1320) Purge ge on MW-19 Purge resta rge on MW-19 Tracking C	e obtained. s to MW-06, s lock. (090 ger gauged . (0925) Rej MW-8S ner ocks are ob 030) Called (1050) Stop MW-8K, wel in driveway 2K. (1140) I e restarted a urge restarted to be dumper clear after p o be placed ge restarted rted, well dr 9S, ~3 gallo	(0840) needs 0) Begin bolts for placed J- eds bolts tained. M. Wrigh purge on I dry after (1125) Purge at MW-22ł ed. (1212) d in drums purging I down we I, well dry y after ons	
AW-09K needs lock, wi bock. (0855) Replaced J emoving old well cap o AW-05. (0915) Replaced blug and bolts on MW-1 and J-plug, MW-8K nee 1000) Return to MW-10 EA) to discuss well rep AW-19S, well dry after burging ~4 gallons. (117 Start purge on MW-8K a topped after purging ~2 1205) Purge stopped a Purge restarted at MW- and purge restarted. (12 103 gallons. (1300) Se 1310) Start purge at M fuer purging ~1 gallon. (5 gal emoved. (1500) EA pace Equipment/Material f any box below is o Vere there any vehicles Vere there any vehicles	ill replace when J-plug on MW-10 of MW-10K. (090 ed J-plug on MV 12K, needs lock eds bolts. (0940) 0K to continue to vair needs, plan purging ~ 1 gall 10) Spoke with again, water cle 26 gallons. Water 26 gallons. Water 26 gallons. Water 26 gallons. Water 238) Purge rest et up on MW-11 W-18S. (1312) (1350) Purge rest cking up. (1515 Tracking checked "Yes s which did not s which were no	additional loc 0S, flush J-pl 05) Searched V-4, needs lo . (0930) MW-) MW-22K, Pl to replace we for redevelop lon. (1100) St homeowner r ear after purgi ter to be dum additional ~3 rge stopped a arted at MW- K, sediment of Purge stopped estarted, well 30) Start purg b) EA offsite.	Is lock and w cks are obtai ug is too tall for MW-24k ck and large 11K and MV Z-22 needs I Il cap. (1020 oment. (1045 tart purge at regarding pre- ing ~7 total g ped in drums 2 gallons. W after purging 22K. (1245) encountered ed, well dry a dry after purging e on MW-19 explanatio	vill replace whe ined. (0845) Ad to keep well or (, could not loc r bolts. (0920) V-11S need bo ocks, will repla) Well cap inst i) Begin develo MW-8K. (1105 esence onsite, jallons. (1130) is and purge re- vater to be dur an additional Stopped purge at ~2 feet of co fifter purging ~2 rging ~1 gallor S. (1450) Stop	en additi dded J-p overing s ate. (09 MW-125 olts and I ace when alled on opment of 5) Stopp location Start pu started. ~32 gallons ace on MW depth. Pu 2 gallons n. (1410) oped pur	ional locks ar blug and bolts sealed, need 10) Need larg S needs lock. locks. (0935) n additional lo MW-10K. (10 on MW-19S. ed purge at M of MW-22K urge at MW-2 (1150) Purge drums and pu ons. Water to /-22K, water ump unable to s. (1320) Purge resta rge on MW-19 Purge resta rge on MW-19 Purge resta rge on MW-19	e obtained. s to MW-06, s lock. (090 ger gauged . (0925) Rej MW-8S ner ocks are ob 030) Called (1050) Stop MW-8K, wel in driveway 2K. (1140) e restarted a urge restarted b e dumper clear after p o be placed ge restarted rted, well dr 9S, ~3 gallo	(0840) needs (0) Begin bolts for placed J- eds bolts tained. M. Wrigh purge on I dry after (1125) Purge at MW-224 ed. (1212) d in drums purging I down we I, well dry y after ons NA X NA X	
AW-09K needs lock, wi bock. (0855) Replaced J emoving old well cap o AW-05. (0915) Replaced blug and bolts on MW-1 and J-plug, MW-8K nee 1000) Return to MW-10 EA) to discuss well rep AW-19S, well dry after burging ~4 gallons. (117 Start purge on MW-8K a topped after purging ~2 1205) Purge stopped a Purge restarted at MW- and purge restarted. (12 103 gallons. (1300) Se 1310) Start purge at M fuer purging ~1 gallon. (5 gal emoved. (1500) EA pace Equipment/Material f any box below is o Vere there any vehicles Vere there any vehicles	ill replace when J-plug on MW-10 of MW-10K. (090 ed J-plug on MV 12K, needs lock eds bolts. (0940) 0K to continue to vair needs, plan purging ~ 1 gall 10) Spoke with again, water cle 26 gallons. Water 26 gallons. Water 26 gallons. Water 26 gallons. Water 238) Purge rest et up on MW-11 W-18S. (1312) (1350) Purge rest cking up. (1515 Tracking checked "Yes s which did not s which were no	additional loc 0S, flush J-pl 05) Searched V-4, needs lo . (0930) MW-) MW-22K, P. to replace we for redevelop lon. (1100) St homeowner r ear after purgi ter to be dum additional ~3 rge stopped a arted at MW- K, sediment of Purge stopped estarted, well 30) Start purg) EA offsite. 5", provide display prope of tarped?	Is lock and w cks are obtai ug is too tall for MW-24k ck and large 11K and MV Z-22 needs I Il cap. (1020 oment. (1045 tart purge at regarding pre- ing ~7 total g ped in drums 2 gallons. W after purging 22K. (1245) encountered ed, well dry a dry after purging e on MW-19 explanatio	vill replace whe ined. (0845) Ad to keep well or (, could not loc r bolts. (0920) V-11S need bo ocks, will repla) Well cap inst i) Begin develo MW-8K. (1105 esence onsite, jallons. (1130) is and purge re- vater to be dur an additional Stopped purge at ~2 feet of co fifter purging ~2 rging ~1 gallor S. (1450) Stop	en additi dded J-p overing s ate. (09 MW-125 olts and I ace when alled on opment of 5) Stopp location Start pu started. ~32 gallons ace on MW depth. Pu 2 gallons n. (1410) oped pur ards?	ional locks ar blug and bolts sealed, need 10) Need larg S needs lock. locks. (0935) n additional lo MW-10K. (10 on MW-19S. ed purge at M of MW-22K urge at MW-2 (1150) Purge drums and pu ons. Water to /-22K, water ump unable to s. (1320) Purge resta rge on MW-19 Purge resta rge on MW-19 Purge resta rge on MW-19	e obtained. s to MW-06, s lock. (090 ger gauged . (0925) Rej MW-8S new ocks are ob 030) Called (1050) Stop MW-8K, well in driveway 2K. (1140) e restarted a urge restarted ted, well dr 9S, ~3 gallo omments' No No	(0840) needs (0) Begin bolts for placed J- eds bolts tained. M. Wrigh purge on I dry after (1125) Purge at MW-224 ed. (1212) d in drums purging I down we I, well dry y after ons NA X NA X	
W-09K needs lock, wi bock. (0855) Replaced J emoving old well cap o AW-05. (0915) Replaced blug and bolts on MW-1 and J-plug, MW-8K nee 1000) Return to MW-10 EA) to discuss well rep AW-19S, well dry after burging ~4 gallons. (117 Start purge on MW-8K a stopped after purging ~1 205) Purge stopped a Purge restarted at MW- and purge restarted at MW- and purge restarted. (12 103 gallons. (1300) Se 1310) Start purge at MM after purging ~1 gallon. burging ~1 gallon (5 gal emoved. (1500) EA pac Equipment/Material f any box below is o Vere there any vehicles Vere there any vehicles Personnel and Equi Individual Cody Badma	ill replace when J-plug on MW-10 of MW-10K. (090 ed J-plug on MV 12K, needs lock eds bolts. (0940) 0K to continue t pair needs, plan purging ~ 1 gall 10) Spoke with again, water cle 26 gallons. Wate after purging an 22K. (1225) Pu 238) Purge rest et up on MW-11 W-18S. (1312) (1350) Purge rest et up on MW-1	additional loc 0S, flush J-pl 05) Searched V-4, needs lo . (0930) MW-) MW-22K, P. to replace we for redevelop lon. (1100) St homeowner r ear after purgi ter to be dum additional ~3 rge stopped a arted at MW- K, sediment of Purge stopped estarted, well 30) Start purg) EA offsite. 5", provide display prope of tarped?	Is lock and w cks are obtai ug is too tall for MW-24k ck and large 11K and MW Z-22 needs I Il cap. (1020 oment. (1045 tart purge at egarding pre- ng ~7 total g ped in drums 2 gallons. W after purging 22K. (1245) encountered ed, well dry a dry after purg- e on MW-19 explanatio	vill replace whe ined. (0845) Ad to keep well or (, could not loc r bolts. (0920) V-11S need bo ocks, will repla) Well cap inst i) Begin develo MW-8K. (1105 esence onsite, jallons. (1130) is and purge re- vater to be dur an additional Stopped purge at ~2 feet of co fifter purging ~2 rging ~1 gallor S. (1450) Stop	en additi dded J-p overing s ate. (09 MW-125 olts and I ace when alled on opment of 5) Stopp location Start pu started. ~32 gallons ace on MW depth. Pu 2 gallons on (1410) oped pur ards? 	ional locks ar blug and bolts sealed, need 10) Need larg S needs lock. locks. (0935) n additional lo MW-10K. (10 on MW-19S. ed purge at M of MW-22K urge at MW-2 (1150) Purge drums and pu ons. Water to /-22K, water ump unable t s. (1320) Purge resta rge on MW-19 Purge resta rge on MW-19 	e obtained. s to MW-06, s lock. (090 ger gauged . (0925) Rej MW-8S new ocks are ob 030) Called (1050) Stop MW-8K, well in driveway 2K. (1140) e restarted a urge restarted ted, well dr 9S, ~3 gallo omments' No No	(0840) needs (0) Begin bolts for placed J- eds bolts tained. M. Wrigh purge on I dry after (1125) Purge at MW-22H ed. (1212) d in drums purging I down we I, well dry y after ons NA X NA X	
W-09K needs lock, wi bock. (0855) Replaced J emoving old well cap o AW-05. (0915) Replaced blug and bolts on MW-1 and J-plug, MW-8K nee 1000) Return to MW-10 EA) to discuss well rep AW-19S, well dry after burging ~4 gallons. (117 Start purge on MW-8K a topped after purging ~2 1205) Purge stopped a Purge restarted at MW- and purge restarted at MW- and purge restarted. (12 -103 gallons. (1300) Se 1310) Start purge at MM after purging ~1 gallon. burging ~1 gallon (5 gal emoved. (1500) EA pac Equipment/Material f any box below is o Vere there any vehicles Vere there any vehicles Personnel and Equi Individual	ill replace when J-plug on MW-10 of MW-10K. (090 ed J-plug on MV 12K, needs lock eds bolts. (0940) 0K to continue t pair needs, plan purging ~ 1 gall 10) Spoke with again, water cle 26 gallons. Wate after purging an 22K. (1225) Pu 238) Purge rest et up on MW-11 W-18S. (1312) (1350) Purge rest et up on MW-1	additional loc 0S, flush J-pl 05) Searched V-4, needs lo . (0930) MW-) MW-22K, P. to replace we for redevelop lon. (1100) St homeowner r ear after purgi ter to be dum additional ~3 rge stopped a arted at MW- K, sediment of Purge stopped estarted, well 30) Start purg) EA offsite. 5", provide display prope of tarped?	ds lock and w cks are obtai ug is too tall for MW-24k ck and large 11K and MV Z-22 needs I Il cap. (1020 oment. (1045 tart purge at regarding pre- ng ~7 total g ped in drums 2 gallons. W after purging 22K. (1245) encountered ad, well dry a dry after purg- e on MW-19 explanatio er D.O.T num- nated prior to ompany	vill replace whe ined. (0845) Ad to keep well or (, could not loc r bolts. (0920) V-11S need bo ocks, will repla) Well cap inst i) Begin develo MW-8K. (1105 esence onsite, jallons. (1130) is and purge re- vater to be dur an additional Stopped purge at ~2 feet of co fifter purging ~2 rging ~1 gallor S. (1450) Stop	en additi dded J-p overing s ate. (09 MW-125 olts and I ace when alled on opment of 5) Stopp location Start pu started. ~32 gallons ace on MW depth. Pu 2 gallons on (1410) oped pur ards? 	ional locks ar blug and bolts sealed, need 10) Need larg S needs lock. locks. (0935) n additional lo MW-10K. (10 on MW-19S. ed purge at M of MW-22K urge at MW-2 (1150) Purge drums and pu ons. Water to /-22K, water ump unable to s. (1320) Purge resta rge on MW-19 Purge resta rge on MW-19 MW-22K * Yes * Yes * Yes	e obtained. s to MW-06, s lock. (090 ger gauged . (0925) Rej MW-8S new ocks are ob 030) Called (1050) Stop MW-8K, well in driveway 2K. (1140) e restarted a urge restarted ted, well dr 9S, ~3 gallo omments' No No	(0840) needs 0) Begin bolts for placed J- eds bolts tained. M. Wrigh purge on I dry after . (1125) Purge at MW-22ł ed. (1212) d in drums purging I down we I, well dry y after ons NA X NA X NA X NA X	

Equipment Description	n	Contractor/Vendor				Quantity Used		sed	
Whale Pump		EA				1 Yes		′es	
Material Description Imported/ Delivered to Site		Exported off Site				rce or Disposal y (If Applicable)		Daily Loads	Daily Weight (tons)*
*On-Site scale for off-site	shinment	delivery ticket for material received							
Equipment/Material Tra					<u>u</u>				
		incinto.							
Visitors to Site									
Name			Rep	resenting		En	Entered Exclusion/CRZ Zone		
None				_		Ye	s	No	
						Ye	s	No	
Site Representatives		·							
Name				Representing	J				
Project Schedule Comn	nents								
,,, _,, _									
Well maintenance, repair	, and redev	elopment to	o contir	ue the week of	Septem	ber	11 th .		
A groundwater sampling	ovont is du	o to tako nl	aca tha	wook of Sonto	mbor 25t	h			
A groundwater sampling				week of Septer		•			
Issues Pending									
1330c3 F chung									
None									
Interaction with Public, Property Owners, Media, etc.									
Spoke with homeowner regarding presence onsite, location of MW-22K in driveway.									

Include (insert) figures with markups showing location of work and job progress



Department of Environmental Conservation

MW-11K showing depth at which Whale Pump could not descend further.

WELL MONITORING TABLE

Picture of MW-11K showing sediment obstruction at ~2 feet.

Well ID	DTW	DTB	Notes
a Inspector(s):	Cody Badman, Alex Stoogen	ko	Date: 09/11/2023

 $\label{eq:Videos} Videos \ of \ discreet \ operations \ have \ been \ provided \ to \ the \ DEC \ Project \ Manager \ to \ facilitate \ understanding \ of \ the \ ongoing \ work? \qquad Yes \ \square \ No \ \square \ N/A \ X$

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes □	No 🖂
2.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes 🗆	No 🖂
3.	Were personal protective gloves, masks, and eye protection being used?	Yes 🗆	No 🖂
4.	Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No 🗆
5.	If Yes to 1 or 2, follow the latest NYSDOH COVID-19 guidance: https://coronavirus.health.ny.gov/home	Yes □	No 🗆
Comm	ents:		
N/A			

ON-SITE WASTE STORAGE

Drums, roll offs and piles are staged in secure areas?	Yes □	No 🗆	N/A⊠
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes □	No 🗆	N/A⊠
Containers are in good condition or properly overpacked?	Yes 🗆	No 🗆	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes □	No 🗆	N/A⊠
Complying with RCRA 90 day storage limitation for hazardous waste?	Yes □	No 🗆	N/A⊠
Piles are securely covered when not in use?	Yes □	No 🗆	N/A⊠
Containers are closed when not in use?	Yes □	No 🗆	N/A⊠
Staging areas should be inspected periodically and any issues addressed immediately?	Yes □	No 🗆	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes □	No 🗆	N/A⊠
If any issues noted, has Contractor been notified?	Yes □	No 🗆	N/A⊠
Comments:			

NUISANCE CHECKLIST

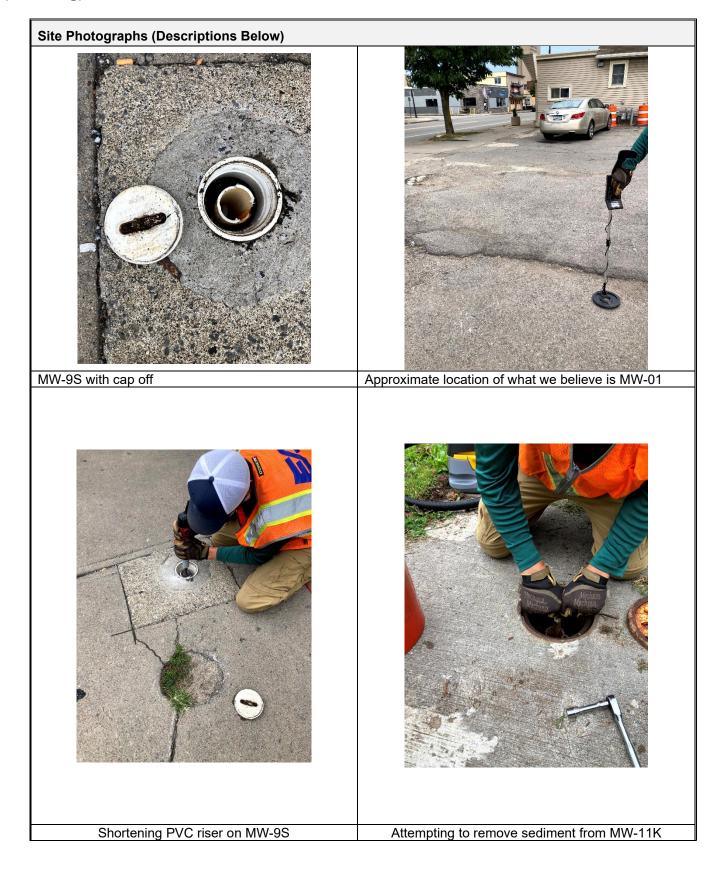
Were there any community complaints related to work on this date?	Yes □	No 🖂	N/A□
Were there any odors detected on this date?	Yes □	No 🖂	N/A□
Was noise outside specification and/or above background on this date?	Yes □	No 🖂	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes □	No 🗆	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes □	No 🗆	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes □	No 🗆	N/A⊠
Was turbidity checked at the outfall(s)?	AM 🗆	PM 🗆	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No 🗆	N/A⊠

Was the temporary fabric structure closed at the end of the day?	Yes □	No 🗆	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No 🗆	N/A⊠
If yes, has Contractor been notified?	Yes □	No 🗆	N/A⊠
<u>Comments:</u> N/A			

RESILIENCE/GREEN REMEDIATION CHECKLIST

Is site power procured from renewable energy sources (e.g., solar, wind, geothermal, biomass and biogas)?	Yes 🗆	No 🗆	N/A⊠
Is the Contractor employing 2007 or newer or retrofitted (BART*) diesel on-road trucks and non-road equipment?	Yes 🗆	No 🗆	N/A⊠
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes 🗆	No 🗆	N/A⊠
Have equipment operators been trained in the idling requirements of 6NYCRR Part 217-3?	Yes 🗆	No 🗆	N/A⊠
Is BART-equipped equipment properly maintained and working?	Yes 🗆	No 🗆	N/A⊠
Is work being sequenced to avoid double handling?	Yes 🗆	No 🗆	N/A⊠
Is there an onsite recycling program for CONTRACTOR-generated wastes and is it complied with?	Yes 🗆	No 🗆	N/A⊠
Are office trailer heating and cooling systems maintained at efficient set points, have programable thermostats been installed?	Yes □	No 🗆	N/A⊠
Are products and materials used in performance of the work appropriately certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative®, etc.)?	Yes 🗆	No 🗆	N/A⊠
Are resiliency features included in the design, or completed remedy properly installed and/or maintained (flood control, storm water controls, erosion measures, etc.)?	Yes 🗆	No 🗆	N/A⊠
Are green remediation elements included in the design, or completed remedy properly installed and/or maintained (e.g., porous pavement, geothermal, variable speed drives, native plantings, natural stream bank restoration, etc.)?	Yes □	No 🗆	N/A⊠
Has Contractor been notified of any deficiencies?	Yes 🗆	No 🗆	N/A⊠
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes 🗆	No 🗆	N/A⊠
<u>Comments:</u> N/A			

* BART – Best Available Retrofit Technology



NYSDEC Division of Environme Site Location: 1012 S		NEW STATEDepartment of Environmental ConservationContract No. D009806 DEC PM – J.Stefansky Engineer PM – J.Oliver			6					
	Weather	Condition				-				
General Description	Overcast	AM		unny	PM					
Temperature	61F	AM		70F	PM					
Wind	Calm	AM	C	alm	PM					
Health & Safety If any box below is o	checked "Yes	", provide	explanatio	on under "	Health	& Sa	afety Com	ments	s".	
Were there any changes	s to the Health &	Safety Plan	<u>י</u> ו?				*Yes	No X	<	NA
Were there any exceeda	ances of the peri	meter air mo	onitoring rep	orted on this	date?		*Yes	No		NA X
Were there any nuisance	•		• •				*Yes	No X	<	NA
Health & Safety Com	•			·			100	110 /		
Some slips, trips, traffic,							·			
Summary of Work Pe (0830) C. Badman and A		Arrived at		830		•	rted Site:	124		
location of MW-01. (0929 9S. (0935) EA finishes c attempts to clear the sec	utting PVC on M	1W-09S and	installs a J-	plug. (0945)	EA cuts	s PVC	on MW-089	S. (100	00) EA	
MW-11S. (1105) EA cuts returns to MW-11K to rel riser. (1230) EA replaces Equipment/Material If any box below is c	s PVC on MW-10 move more sedi s bolts on the fol Tracking	0S. (1140) E ment. (1210 llowing wells	EA finishes o)) EA discove s: MW-04, M	cutting PVC o ers MW-11K W-03A, MW	on MW- PVC is -03CA,	10S, l colla MW-0	bolts are add psed ~3.5 fe 05, MW-20S	ded. (1 eet fron . (1245	150) E n the t 5) EA (EA op of the
MW-11S. (1105) EA cuts returns to MW-11K to ret riser. (1230) EA replaces Equipment/Material If any box below is c	s PVC on MW-10 move more sedi <u>s bolts on the fol</u> Tracking :hecked "Yes"	0S. (1140) E ment. (1210 llowing wells ', provide	EA finishes c) EA discove s: MW-04, M explanatio	cutting PVC of ers MW-11K W-03A, MW	on MW- (PVC is (-03CA, Vateria	10S, l colla MW-(bolts are add psed ~3.5 fe 05, MW-20S	ded. (1 eet fron . (1245	150) E n the t 5) EA (EA op of the
MW-11S. (1105) EA cuts returns to MW-11K to ret riser. (1230) EA replaces Equipment/Material	s PVC on MW-10 move more sedi s bolts on the fol Tracking hecked "Yes" which did not di	0S. (1140) E ment. (1210 llowing wells ', provide isplay prope	EA finishes c) EA discove s: MW-04, M explanatio	cutting PVC of ers MW-11K W-03A, MW	on MW- (PVC is (-03CA, Vateria	10S, I colla MW-0	bolts are add psed ~3.5 fe 05, MW-20S	ded. (1 eet fron . (1245 nmen	150) E n the t 5) EA (EA cop of the offsite.
MW-11S. (1105) EA cuts returns to MW-11K to ret riser. (1230) EA replaces Equipment/Material If any box below is c Were there any vehicles	s PVC on MW-10 move more sedi s bolts on the fol Tracking hecked "Yes" which did not di which were not	0S. (1140) E ment. (1210 llowing wells ', provide isplay prope tarped?	EA finishes o)) EA discovo <u>s: MW-04, M</u> explanatio r D.O.T num	cutting PVC of ers MW-11K W-03A, MW on under "I nbers and pla	on MW- PVC is -03CA, Vateria acards?	10S, I colla <u>MW-0</u>	bolts are add psed ~3.5 fe 05, MW-20S Icking Con *Yes	ded. (1 eet fron . (1245 nmen t	150) E n the t 5) EA (EA cop of the offsite. NA X
MW-11S. (1105) EA cuts returns to MW-11K to ret riser. (1230) EA replaces Equipment/Material If any box below is c Were there any vehicles Were there any vehicles	s PVC on MW-10 move more sedi s bolts on the fol Tracking hecked "Yes" which did not di which were not which were not	0S. (1140) E ment. (1210 llowing wells ', provide isplay prope tarped?	EA finishes o)) EA discovo <u>s: MW-04, M</u> explanatio r D.O.T num	cutting PVC of ers MW-11K W-03A, MW on under "I nbers and pla	on MW- PVC is -03CA, Vateria acards?	10S, I colla <u>MW-0</u>	bolts are add psed ~3.5 fe 05, MW-20S acking Con *Yes * Yes	ded. (1 eet fron . (1245 nmen No No	150) E n the t 5) EA (EA op of the offsite. NA X NA X
MW-11S. (1105) EA cuts returns to MW-11K to ret riser. (1230) EA replaces Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles	s PVC on MW-10 move more sedi s bolts on the fol Tracking hecked "Yes" which did not di which were not which were not	0S. (1140) E ment. (1210 llowing wells ', provide isplay prope tarped? decontamin	EA finishes of EA discove MW-04, M explanation r D.O.T num nated prior to	cutting PVC of ers MW-11K W-03A, MW on under "I nbers and pla	on MW- PVC is -03CA, Materia acards? work site	10S, I colla <u>MW-0</u>	bolts are add psed ~3.5 fe 05, MW-20S acking Con *Yes * Yes * Yes	ded. (1 eet fron . (1245 nmen No No No	150) E n the t 5) EA (EA cop of the offsite. NA X NA X NA X
MW-11S. (1105) EA cuts returns to MW-11K to ret riser. (1230) EA replaces Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar	s PVC on MW-10 move more sedi s bolts on the fol Tracking hecked "Yes" which did not di which were not which were not oment	0S. (1140) E ment. (1210 llowing wells ', provide isplay prope tarped? decontamin	EA finishes of EA discove MW-04, M explanatio r D.O.T num nated prior to pmpany EA	cutting PVC of ers MW-11K W-03A, MW on under "I nbers and pla	on MW- PVC is -03CA, Materia acards? work site	10S, I colla MW-0 Il Tra e? Trade	bolts are add psed ~3.5 fe 05, MW-20S *Yes *Yes *Yes *Yes	ded. (1 eet fron . (1245 nmen No No No	150) F n the t 5) EA (ts".	EA cop of the offsite. NA X NA X NA X NA X Hours 25
MW-11S. (1105) EA cuts returns to MW-11K to ret riser. (1230) EA replaces Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual	s PVC on MW-10 move more sedi s bolts on the fol Tracking hecked "Yes" which did not di which were not which were not oment	0S. (1140) E ment. (1210 llowing wells ', provide isplay prope tarped? decontamin	EA finishes of EA discove MW-04, M explanation or D.O.T num nated prior to company	cutting PVC of ers MW-11K W-03A, MW on under "I nbers and pla	on MW- PVC is -03CA, Materia acards? work site	10S, I colla MW-(II Tra e?	bolts are add psed ~3.5 fe 05, MW-20S *Yes *Yes *Yes *Yes	ded. (1 eet fron . (1245 nmen No No No	150) E n the t 5) EA ts".	EA cop of the offsite. NA X NA X NA X NA X Hours 25
MW-11S. (1105) EA cuts returns to MW-11K to ret riser. (1230) EA replaces Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar	s PVC on MW-10 move more sedi s bolts on the fol Tracking hecked "Yes" which did not di which were not which were not oment	0S. (1140) E ment. (1210 llowing wells ', provide isplay prope tarped? decontamin	EA finishes of EA discover MW-04, M explanation r D.O.T num nated prior to pmpany EA EA EA	cutting PVC of ers MW-11K W-03A, MW on under "I nbers and pla	on MW- PVC is -03CA, Materia acards? work site	10S, I colla MW-0 Il Tra e? Trade	bolts are add psed ~3.5 fe 05, MW-20S *Yes *Yes *Yes *Yes	ded. (1 eet fron . (1245 nmen No No No	150) F n the t 5) EA (ts".	EA cop of the offsite. NA X NA X NA X NA X Hours 25 25
MW-11S. (1105) EA cuts returns to MW-11K to ret riser. (1230) EA replaces Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk Equipment Descri	s PVC on MW-10 move more sedi s bolts on the fol Tracking hecked "Yes" which did not di which were not which were not oment	0S. (1140) E ment. (1210 llowing wells ', provide isplay prope tarped? decontamin	EA finishes of EA discover MW-04, M explanation r D.O.T num mated prior to pompany EA EA EA EA Contract	cutting PVC of ers MW-11K W-03A, MW on under "I bers and pla bers and pla o exiting the v exiting the v or/Vendor EA	on MW- PVC is -03CA, Materia acards? work site	10S, I colla MW-0 Il Tra e? Trade	bolts are add psed ~3.5 fe 05, MW-20S acking Con *Yes * Yes * Yes * Yes	ded. (1 eet fron . (1245 nmen No No No	150) E n the t 5) EA (ts". Total I 4.2 4.2 Use Ye	EA cop of the offsite. NA X NA X NA X Hours 25 25 25 ed ed
MW-11S. (1105) EA cuts returns to MW-11K to ret riser. (1230) EA replaces Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk	s PVC on MW-10 move more sedi s bolts on the fol Tracking hecked "Yes" which did not di which were not which were not oment	0S. (1140) E ment. (1210 llowing wells ', provide of isplay prope tarped? decontamin	EA finishes of EA discover MW-04, M explanation r D.O.T num mated prior to pompany EA EA EA EA Contract	cutting PVC of ers MW-11K W-03A, MW on under "I hbers and pla of exiting the v or/Vendor	on MW- PVC is -03CA, Materia acards? work site	10S, I colla MW-0 Il Tra e? Trade	bolts are add psed ~3.5 fe 05, MW-20S *Yes *Yes *Yes *Yes st st g g g g g g g g g g g g g g g g	ded. (1 eet fron . (1245 nmen No No No	150) E n the t 5) EA (ts". Total H 4.2 4.2	EA cop of the offsite. NA X NA X NA X Hours 25 25 25 ed ed
MW-11S. (1105) EA cuts returns to MW-11K to ret riser. (1230) EA replaces Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk Equipment Descri	s PVC on MW-10 move more sedi s bolts on the fol Tracking hecked "Yes" which did not di which were not which were not oment	0S. (1140) E ment. (1210 llowing wells ', provide of isplay prope tarped? decontamin	EA finishes of EA discover EXPlanation The D.O.T num The discover EA EA Contract EA EA EA EA EA EA EA EA EA EA EA EA EA	cutting PVC of ers MW-11K W-03A, MW on under "I bers and pla bers and pla o exiting the v exiting the v or/Vendor EA	on MW- PVC is '-03CA, Materia acards? work site ss ss ss ss	10S, I colla MW-0 al Tra e? Trade Scientis Scientis	bolts are add psed ~3.5 fe 05, MW-20S *Yes *Yes *Yes *Yes st st g g g g g g g g g g g g g g g g	ded. (1 eet fron . (1245 No No No	150) E n the t 5) EA (ts". Total I 4.2 4.2 Use Ye	EA cop of the offsite. NA X NA X NA X Hours 25 25 25 ed ed
MW-11S. (1105) EA cuts returns to MW-11K to returns to MW-11K to ret riser. (1230) EA replaces Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk Equipment Descri Whale Pump Various hand to Material Description	s PVC on MW-10 move more sedi s bolts on the fol Tracking hecked "Yes" which did not di which were not which were not oment	0S. (1140) E ment. (1210 llowing wells ', provide d isplay prope tarped? decontamin Co Exported off Site	EA finishes of EA discover EA discover EXPlanation T D.O.T num EA EA EA Contract EA EA EA	cutting PVC of ers MW-11K W-03A, MW on under "I bers and plate o exiting the v o exiting the v or/Vendor EA EA e Profile plicable)	on MW- PVC is -03CA, Materia acards? work site ss ss ss	10S, I colla MW-0 al Tra e? Trade Scientis Scientis	bolts are add psed ~3.5 fe D5, MW-20S *Yes * Yes * Yes * Yes est st st st or Disposal	ded. (1 eet fron . (1245 No No No	150) E n the t 5) EA 0 ts". Total H 4.2 4.2 4.2 4.2 Uso Ye Ye Daily	EA cop of the offsite. NA X NA X NA X NA X Hours 25 25 25 25 25 25 25 25 25 25 25 25 25
MW-11S. (1105) EA cuts returns to MW-11K to ret riser. (1230) EA replaces Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk Equipment Descri Whale Pump Various hand to	s PVC on MW-10 move more sedi s bolts on the fol Tracking hecked "Yes" which did not di which were not which were not oment iption iption le iption le iptivered to Site	0S. (1140) E ment. (1210 llowing wells ', provide of isplay prope tarped? decontamin Co Exported off Site delivery tic	EA finishes of EA discover EA discover EXPlanation T D.O.T num EA EA EA Contract EA EA EA	cutting PVC of ers MW-11K W-03A, MW on under "I bers and plate o exiting the v o exiting the v or/Vendor EA EA e Profile plicable)	on MW- PVC is -03CA, Materia acards? work site ss ss ss	10S, I colla MW-0 al Tra e? Trade Scientis Scientis	bolts are add psed ~3.5 fe D5, MW-20S *Yes * Yes * Yes * Yes est st st st or Disposal	ded. (1 eet fron . (1245 No No No	150) E n the t 5) EA 0 ts". Total H 4.2 4.2 4.2 4.2 Uso Ye Ye Daily	EA cop of the offsite. NA X NA X NA X NA X Hours 25 25 25 25 25 25 25 25 25 25 25 25 25
MW-11S. (1105) EA cuts returns to MW-11K to returns to MW-11K to ret riser. (1230) EA replaces Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk Equipment Descri Whale Pump Various hand to Material Description *On-Site scale for off-s	s PVC on MW-10 move more sedi s bolts on the fol Tracking hecked "Yes" which did not di which were not which were not oment iption iption le iption le iptivered to Site	0S. (1140) E ment. (1210 llowing wells ', provide of isplay prope tarped? decontamin Co Exported off Site delivery tic	EA finishes of EA discover EA discover EXPlanation T D.O.T num EA EA EA Contract EA EA EA	cutting PVC of ers MW-11K W-03A, MW on under "I bers and plate o exiting the v o exiting the v or/Vendor EA EA e Profile plicable)	on MW- PVC is -03CA, Materia acards? work site ss ss ss	10S, I colla MW-0 al Tra e? Trade Scientis Scientis	bolts are add psed ~3.5 fe D5, MW-20S *Yes * Yes * Yes * Yes est st st st or Disposal	ded. (1 eet fron . (1245 No No No	150) E n the t 5) EA 0 ts". Total H 4.2 4.2 4.2 4.2 Uso Ye Ye Daily	EA cop of the offsite. NA X NA X NA X NA X Hours 25 25 25 25 25 25 25 25 25 25 25 25 25
MW-11S. (1105) EA cuts returns to MW-11K to ret riser. (1230) EA replaces Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk Equipment Descri Whale Pump Various hand to Material Description *On-Site scale for off-s	s PVC on MW-10 move more sedi s bolts on the fol Tracking hecked "Yes" which did not di which were not which were not oment iption iption le iption le iptivered to Site	0S. (1140) E ment. (1210 llowing wells ', provide of isplay prope tarped? decontamin Co Exported off Site delivery tic	EA finishes of EA discover EA discover EXPlanation T D.O.T num EA EA EA Contract EA EA Ket for mat	erial receiv	on MW- PVC is -03CA, Materia acards? work site ss ss ss	10S, I colla MW-(I Trade scientis scientis	bolts are add psed ~3.5 fe 05, MW-20S *Yes *Yes *Yes *Yes a st st g st st st or Disposal or Disposal f Applicable)	ded. (1 eet from . (1245 No No No	150) E n the t 5) EA o ts". Total H 4.2 4.2 Uso Ye Ye Daily oads	EA cop of the offsite. NA X NA X NA X Hours 25 25 25 25 25 25 25 25 25 25 25 25 25
MW-11S. (1105) EA cuts returns to MW-11K to returns to MW-11K to returns to MW-11K to retriser. (1230) EA replaces Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk Equipment Description Material Description *On-Site scale for off-s Equipment/Material	s PVC on MW-10 move more sedi s bolts on the fol Tracking hecked "Yes" which did not di which were not which were not oment iption iption le iption le iptivered to Site	0S. (1140) E ment. (1210 llowing wells ', provide of isplay prope tarped? decontamin Co Exported off Site delivery tic	EA finishes of EA discover EA discover EXPlanation T D.O.T num EA EA EA Contract EA EA EA	erial receiv	on MW- PVC is -03CA, Materia acards? work site ss ss ss	10S, I colla MW-(al Tra e? Trade Scientis Scientis Scientis Scientis	bolts are add psed ~3.5 fe D5, MW-20S *Yes * Yes * Yes * Yes est st st st or Disposal	ded. (1 eet from . (1245 No No No No Clusic	150) E n the t 5) EA o ts". Total H 4.2 4.2 Uso Ye Ye Daily oads	EA cop of the offsite. NA X NA X NA X Hours 25 25 25 25 25 25 25 25 25 25 25 25 25

Site Representatives				
Name	Representing			
Project Schedule Comments				
Well maintenance, repair, and redevelopment to contir	ue the week of September 11 th .			
A groundwater sampling event is due to take place the	week of September 25 th .			
Issues Pending				
None				
Interaction with Public, Property Owners, Media, etc.				
C. Badman conversed with property owner about the gate lo	ck.			

Down-hole view of MW-sediment revealing bro	11K after removing ken PVC at ~3.5 ft	J-plug installed on M	W-10S after shortening PVC
WELL MONITORING TABL	Ē		
Well ID	DTW	DTB	Notes
Site Inspector(s): Cody Ba	dman, Alex Stoogenke		Date: 09/12/2023

 $\label{eq:Videos} Videos \ of \ discreet \ operations \ have \ been \ provided \ to \ the \ DEC \ Project \ Manager \ to \ facilitate \ understanding \ of \ the \ ongoing \ work? \qquad Yes \ \square \ No \ \square \ N/A \ X$

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes 🗆	No 🖂
2.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes 🗆	No 🖂
3.	Were personal protective gloves, masks, and eye protection being used?	Yes 🗆	No 🖂
4.	Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No 🗆
5.	If Yes to 1 or 2, follow the latest NYSDOH COVID-19 guidance: https://coronavirus.health.ny.gov/home	Yes □	No 🗆
Comm N/A	ents:		
איי. איי			

ON-SITE WASTE STORAGE

Drums, roll offs and piles are staged in secure areas?	Yes □	No 🗆	N/A⊠
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes 🗆	No 🗆	N/A⊠
Containers are in good condition or properly overpacked?	Yes 🗆	No 🗆	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes 🗆	No 🗆	N/A⊠
Complying with RCRA 90 day storage limitation for hazardous waste?	Yes 🗆	No 🗆	N/A⊠
Piles are securely covered when not in use?	Yes 🗆	No 🗆	N/A⊠
Containers are closed when not in use?	Yes 🗆	No 🗆	N/A⊠
Staging areas should be inspected periodically and any issues addressed immediately?	Yes 🗆	No 🗆	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes 🗆	No 🗆	N/A⊠
If any issues noted, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
Comments:		<u>.</u>	

NUISANCE CHECKLIST

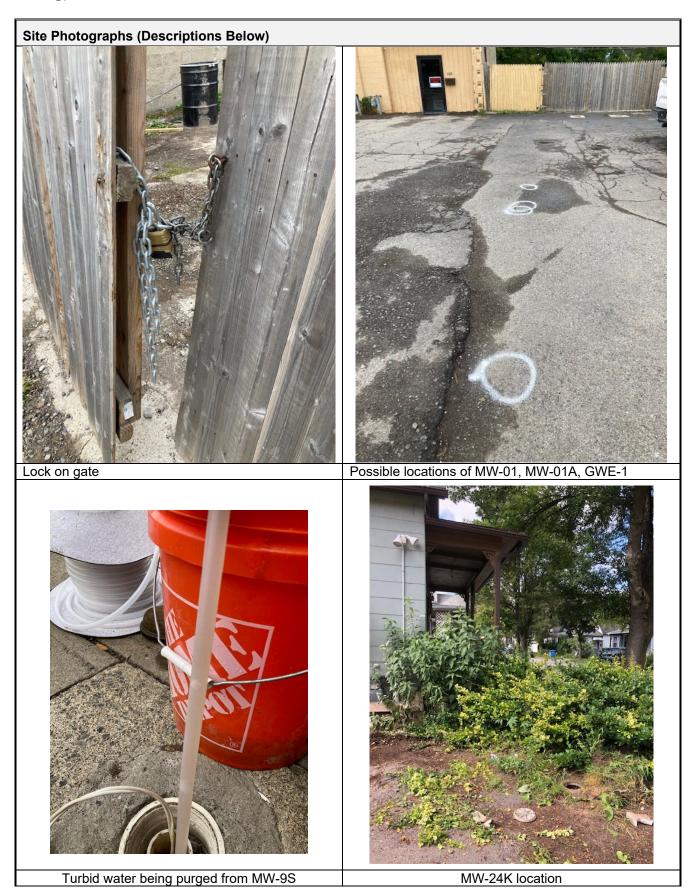
Were there any community complaints related to work on this date?	Yes 🗆	No 🖂	N/A□
Were there any odors detected on this date?	Yes 🗆	No 🖂	N/A□
Was noise outside specification and/or above background on this date?	Yes 🗆	No 🖂	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes 🗆	No 🗆	N/A⊠
Was turbidity checked at the outfall(s)?	AM 🗆	PM 🗆	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No 🗆	N/A⊠

Was the temporary fabric structure closed at the end of the day?	Yes □	No 🗆	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No 🗆	N/A⊠
If yes, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
<u>Comments:</u> N/A			

RESILIENCE/GREEN REMEDIATION CHECKLIST

Yes □	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
	<u>.</u>	
	Yes Yes Yes Yes Yes Yes Yes Yes	Yes No Yes No

* BART – Best Available Retrofit Technology



NYSDEC Division of Environme Site Location: 1012 S			ster 14620	Departme Environme Conservat	ental	Contract No. D009806 DEC PM – J.Stefansky Engineer PM – J.Oliver			06
Weather Conditions									
General Description	Overcast	AM		ercast	PM				
Temperature	60F	AM		0F	PM				
Wind	Calm	AM		alm	PM				
Health & Safety If any box below is checked "Yes", provide explanation under "Health & Safety Comments".									
Were there any changes to the Health & Safety Plan? *Yes No X I						NA			
Were there any exceeda	ances of the perir	meter air mo	onitoring rep	orted on this	date?	*Yes	N	0	NA X
Were there any nuisance	•		• •			*Yes	N	οХ	NA
Health & Safety Com	•								
Some slips, trips, fall ha		•	``	· •				4000	
Summary of Work Po (0800) EA onsite (C.Bad		Arrived a		800		eparted Site:		1230	
pumping ~8 gallons total. (1050) J. Oliver (EA) onsite. (1100) Site owner onsite, shown lock on gate and given code. (1105) Site owner offsite. (1115) Search for MW-24K. (1120) Located MW-24K and PZ-24S (nested wells). (1135) NYSDEC (J. Stefansky) onsite. (1200) NYSDEC offsite, EA obtains access agreement from property on 358 Benton Street. (1210) J. Oliver (EA) offsite. (1215) Start redevelopment of MW-24K, water is dark brown. (1220) Purge stopped after purging ~8 gallons, water is clear. (1230) Dumping IDW into drums. EA offsite. Equipment/Material Tracking									
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material	onsite. (1200) N EA) offsite. (121) water is clear. (Tracking	YSDEC offs 5) Start rede 1230) Dump	site, EA obta evelopment o bing IDW into	ins access ag of MW-24K, v o drums. EA o	greemen water is c offsite.	t from propert lark brown. (1	y on 3 220)	358 Bent Purge st	on
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c	onsite. (1200) N EA) offsite. (1211 water is clear. (Tracking hecked "Yes"	YSDEC offs 5) Start redo 1230) Dump 7, provide	site, EA obta evelopment o bing IDW into explanatio	ins access ag of MW-24K, v o drums. EA o n under "N	greemen water is c offsite. laterial	t from propert lark brown. (1 Tracking Co	y on 3 220)	358 Bent Purge st	on opped
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles	onsite. (1200) N EA) offsite. (1211 water is clear. (Tracking hecked "Yes" which did not dia	YSDEC offs 5) Start redo 1230) Dump / , provide splay prope	site, EA obta evelopment o bing IDW into explanatio	ins access ag of MW-24K, v o drums. EA o n under "N	greemen water is c offsite. laterial	t from propert lark brown. (1 Tracking Co *Yes	y on 3 220) omm	358 Bent Purge st ents".	on opped NA X
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles Were there any vehicles	onsite. (1200) N EA) offsite. (1213 water is clear. (1 Tracking hecked "Yes" which did not dia which were not	YSDEC offs 5) Start red 1230) Dump 7, provide splay prope tarped?	site, EA obta evelopment o bing IDW into explanatio r D.O.T num	ins access ag of MW-24K, w o drums. EA o n under "N bers and pla	greemen water is c offsite. laterial cards?	t from propert lark brown. (1 Tracking Co *Yes * Yes	y on 3 220) omm	358 Bent Purge st nents". o	opped NA X NA X
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles	onsite. (1200) N EA) offsite. (1211 water is clear. (1 Tracking hecked "Yes" which did not dia which were not which were not	YSDEC offs 5) Start red 1230) Dump 7, provide splay prope tarped?	site, EA obta evelopment o bing IDW into explanatio r D.O.T num	ins access ag of MW-24K, w o drums. EA o n under "N bers and pla	greemen water is c offsite. laterial cards?	t from propert lark brown. (1 Tracking Co *Yes * Yes	y on 3 220) omm	358 Bent Purge st nents". o	on opped NA X
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip	onsite. (1200) N EA) offsite. (1211 water is clear. (1 Tracking hecked "Yes" which did not dia which were not which were not	YSDEC offs 5) Start redo 1230) Dump 7, provide splay prope tarped? decontamin	site, EA obta evelopment o bing IDW into explanatio r D.O.T num pated prior to	ins access ag of MW-24K, w o drums. EA o n under "N bers and pla	greemen water is c offsite. laterial cards? vork site?	t from propert lark brown. (1 Tracking Co *Yes * Yes * Yes	y on 3 220) omm	358 Beni Purge st eents". o o o	NA X NA X NA X NA X
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual	onsite. (1200) N EA) offsite. (1213 water is clear. (1 Tracking hecked "Yes" which did not dia which were not which were not oment	YSDEC offs 5) Start redo 1230) Dump 7, provide splay prope tarped? decontamin	site, EA obta evelopment o bing IDW into explanatio r D.O.T num lated prior to	ins access ag of MW-24K, w o drums. EA o n under "N bers and pla	greemen water is c offsite. laterial cards? vork site? Tr	t from propert lark brown. (1 Tracking Co *Yes * Yes * Yes ade	y on 3 220) omm	358 Bent Purge st eents". o o o Total	NA X NA X NA X NA X Hours
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar	onsite. (1200) N EA) offsite. (1213 water is clear. (1 Tracking hecked "Yes" which did not dia which were not which were not oment	YSDEC offs 5) Start redo 1230) Dump 7, provide splay prope tarped? decontamin	site, EA obta evelopment o bing IDW into explanatio r D.O.T num pated prior to	ins access ag of MW-24K, w o drums. EA o n under "N bers and pla	greemen water is c offsite. laterial cards? vork site? Tr Sci	t from propert lark brown. (1 Tracking Co *Yes * Yes * Yes ade entist	y on 3 220) omm	358 Beni Purge st eents". o o o Total 4	NA X NA X NA X NA X
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual	onsite. (1200) N EA) offsite. (1213 water is clear. (1 Tracking hecked "Yes" which did not dia which were not which were not oment	YSDEC offs 5) Start redo 1230) Dump 7, provide splay prope tarped? decontamin	site, EA obta evelopment o bing IDW into explanatio r D.O.T num lated prior to ompany EA	ins access ag of MW-24K, w o drums. EA o n under "N bers and pla	greemen water is c offsite. laterial cards? vork site? Tr Sci	t from propert lark brown. (1 Tracking Co *Yes * Yes * Yes ade	y on 3 220) omm	358 Beni Purge st eents". o o o Total 4	NA X NA X NA X NA X NA X Hours
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar	onsite. (1200) N EA) offsite. (1213 water is clear. (1213 hecked "Yes" which did not dia which were not which were not oment	YSDEC offs 5) Start redo 1230) Dump 7, provide splay prope tarped? decontamin	site, EA obta evelopment o bing IDW into explanatio r D.O.T num nated prior to ompany EA EA	ins access ag of MW-24K, w o drums. EA n under "N bers and pla	greemen water is c offsite. laterial cards? vork site? Tr Sci	t from propert lark brown. (1 Tracking Co *Yes * Yes * Yes ade entist	y on 3 220)	358 Beni Purge st eents". o o o Total 4 4	NA X NA X NA X NA X NA X Hours
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk	onsite. (1200) N EA) offsite. (1213 water is clear. (1213 hecked "Yes" which did not dia which were not which were not oment	YSDEC offs 5) Start redo 1230) Dump 7, provide splay prope tarped? decontamin	site, EA obta evelopment o bing IDW into explanatio r D.O.T num ated prior to ompany EA EA EA EA	ins access ag of MW-24K, w o drums. EA of hers and pla exiting the w exiting the w or/Vendor	greemen water is c offsite. laterial cards? vork site? Tr Sci	t from propert lark brown. (1 Tracking Co *Yes * Yes * Yes ade entist entist	y on 3 220)	358 Beni Purge st eents". o o o Total 4 4 4 4 Vs	NA X NA X NA X NA X NA X Hours .5 .5 .5
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk	onsite. (1200) N EA) offsite. (1213 water is clear. (1213 hecked "Yes" which did not dia which were not which were not oment	YSDEC offs 5) Start redo 1230) Dump 7, provide splay prope tarped? decontamin	site, EA obta evelopment o bing IDW into explanatio r D.O.T num nated prior to ompany EA EA EA EA	ins access a of MW-24K, w o drums. EA bers and pla exiting the w	greemen water is c offsite. laterial cards? vork site? Tr Sci	t from propert lark brown. (1 Tracking Co *Yes * Yes • * Yes ade entist entist entist Quanti	y on 3 220)	358 Beni Purge st eents". o o o Total 4 4 4 4 Vs	NA X NA X NA X NA X NA X Hours .5 .5
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk	onsite. (1200) N EA) offsite. (1213 water is clear. (1213 hecked "Yes" which did not dia which were not which were not oment	YSDEC offs 5) Start redo 1230) Dump 7, provide splay prope tarped? decontamin	explanatio r D.O.T num ated prior to mpany EA EA Contracte E Waste	ins access ag of MW-24K, w o drums. EA of hers and pla exiting the w exiting the w or/Vendor	greemen water is c offsite. laterial cards? vork site? Tr Sci Sci Sci	t from propert lark brown. (1 Tracking Co *Yes * Yes • * Yes ade entist entist entist Quanti	y on 3 220)	358 Beni Purge st eents". o o o Total 4 4 4 4 Vs	NA X NA X NA X NA X NA X Hours .5 .5 .5
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk Equipment Description	onsite. (1200) N EA) offsite. (1213 water is clear. (1 Tracking hecked "Yes" which did not dia which were not which were not oment	YSDEC offs 5) Start redo 1230) Dump 7, provide splay prope tarped? decontamin Cco Cco Exported off Site	site, EA obta evelopment o bing IDW into explanatio r D.O.T num nated prior to ompany EA EA EA Contracto E E Waste (If App	ins access ag of MW-24K, w o drums. EA of here and plane exiting the w exiting the w cor/Vendor A A Profile plicable)	greemen water is c offsite. Iaterial cards? vork site? Vork site? Tr Sci Sci	t from propert lark brown. (1 Tracking Co *Yes * Yes ade entist entist entist Quanti 1 - rce or Disposa	y on 3 220)	358 Bent Purge st nents". 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NA X NA X NA X NA X Hours .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk Equipment Descri Whale Pump Various Hand To	onsite. (1200) N EA) offsite. (1213 water is clear. (1213 water is clear. (1213 water is clear. (1213 which did not dia which did not dia which were not which were not oment oment ne iption ne iption ne iption ne iption ne iption site shipment, or interval	YSDEC offs 5) Start redo 1230) Dump 7, provide splay prope tarped? decontamin Cc Exported off Site	site, EA obta evelopment o bing IDW into explanatio r D.O.T num nated prior to ompany EA EA EA Contracto E E Waste (If App	ins access ag of MW-24K, w o drums. EA of here and plane exiting the w exiting the w cor/Vendor A A Profile plicable)	greemen water is c offsite. Iaterial cards? vork site? Vork site? Tr Sci Sci	t from propert lark brown. (1 Tracking Co *Yes * Yes ade entist entist entist Quanti 1 - rce or Disposa	y on 3 220)	358 Bent Purge st nents". 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NA X NA X NA X NA X Hours .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk Equipment Descri Whale Pump Various Hand To Material Description *On-Site scale for off-	onsite. (1200) N EA) offsite. (1213 water is clear. (1213 water is clear. (1213 water is clear. (1213 which did not dia which did not dia which were not which were not oment oment ne iption ne iption ne iption ne iption ne iption site shipment, or interval	YSDEC offs 5) Start redo 1230) Dump 7, provide splay prope tarped? decontamin Cc Exported off Site	site, EA obta evelopment o bing IDW into explanatio r D.O.T num nated prior to ompany EA EA EA Contracto E E Waste (If App	ins access ag of MW-24K, w o drums. EA of here and plane exiting the w exiting the w cor/Vendor A A Profile plicable)	greemen water is c offsite. Iaterial cards? vork site? Vork site? Tr Sci Sci	t from propert lark brown. (1 Tracking Co *Yes * Yes ade entist entist entist Quanti 1 - rce or Disposa	y on 3 220)	358 Bent Purge st nents". 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NA X NA X NA X NA X Hours .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk Equipment Descri Whale Pump Various Hand To Material Description *On-Site scale for off- Equipment/Material	onsite. (1200) N EA) offsite. (1213 water is clear. (1213 water is clear. (1213 water is clear. (1213 which did not dia which did not dia which were not which were not oment oment ne iption ne iption ne iption ne iption ne iption site shipment, or interval	YSDEC offs 5) Start redo 1230) Dump 7, provide splay prope tarped? decontamin Cc Exported off Site	site, EA obta evelopment o bing IDW into explanatio r D.O.T num nated prior to ompany EA EA EA Contracto E E Waste (If App	ins access ac of MW-24K, w o drums. EA of bers and pla exiting the w exiting the w cor/Vendor cA cA e Profile blicable) erial receive	greemen water is c offsite. Iaterial cards? vork site? Vork site? Tr Sci Sci	t from propert lark brown. (1 Tracking Co *Yes * Yes ade entist entist entist Quanti 1 - rce or Disposa	y on 3 220) omm N N N N N V V	358 Bent Purge st Purge st 0 0 0 Total 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9	NA X NA X NA X NA X NA X Hours .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5
Street. (1210) J. Oliver (after purging ~8 gallons, Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Personnel and Equip Individual Cody Badmar Alex Stoogenk Equipment Description *On-Site scale for off- Equipment/Material Visitors to Site	onsite. (1200) N EA) offsite. (1213 water is clear. (1 Tracking hecked "Yes" which did not dia which were not which were not oment n e iption pols Imported/ Delivered to Site site shipment, of Tracking Com	YSDEC offs 5) Start redo 1230) Dump 7, provide splay prope tarped? decontamin Cc Exported off Site	site, EA obta evelopment o bing IDW into explanatio r D.O.T num ated prior to ompany EA EA Contracto E Waste (If App ket for mate	ins access ac of MW-24K, w o drums. EA of bers and pla exiting the w exiting the w exiting the w cor/Vendor A A Profile plicable) erial received enting	greemen water is c offsite. Iaterial cards? vork site? Vork site? Tr Sci Sci	t from propert lark brown. (1 Tracking Co *Yes * Yes ade entist entist Quanti 1 - rce or Disposa ty (If Applicab	y on 3 220) omm N N N N N V V	358 Bent Purge st Purge st 0 0 0 Total 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9	NA X NA X NA X NA X NA X Hours .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5

Site Representatives	
Name	Representing
Site Owner	
Project Schedule Comments	
Well maintenance, repair, and redevelopment to contin	ue the week of September 11 th .
A groundwater sampling event is due to take place the	week of September 25 th .
Issues Pending	
None	
None	
Interaction with Public, Property Owners, Media, et	с.
Spoke with property owner, showed property owner lock and	
Spoke with homeowner of 358 Benton Street regarding acce	ss agreement.

Department of Environmental Conservation

WELL MONITORING TABLE					
Well ID	DTW	DTB	Notes		
Site Inspector(s): Co	ody Badman, Alex Stooger	ike	Date: 09/13/2023		

Videos of discreet operations have been provided to the DEC Project Manager to facilitate
understanding of the ongoing work?Yes \Box No \Box N/A X

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes □	No 🖂
2.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes 🗆	No 🖂
3.	Were personal protective gloves, masks, and eye protection being used?	Yes 🗆	No 🖂
4.	Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No 🗆
5.	If Yes to 1 or 2, follow the latest NYSDOH COVID-19 guidance: https://coronavirus.health.ny.gov/home	Yes □	No 🗆
Comm N/A	<u>ents:</u>		

ON-SITE WASTE STORAGE

Drums, roll offs and piles are staged in secure areas?	Yes □	No 🗆	N/A⊠
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes 🗆	No 🗆	N/A⊠
Containers are in good condition or properly overpacked?	Yes 🗆	No 🗆	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes □	No 🗆	N/A⊠
Complying with RCRA 90 day storage limitation for hazardous waste?	Yes 🗆	No 🗆	N/A⊠
Piles are securely covered when not in use?	Yes 🗆	No 🗆	N/A⊠
Containers are closed when not in use?	Yes 🗆	No 🗆	N/A⊠
Staging areas should be inspected periodically and any issues addressed immediately?	Yes 🗆	No 🗆	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes 🗆	No 🗆	N/A⊠
If any issues noted, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
Comments:	<u>.</u>	<u>.</u>	

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes 🗆	No 🖂	N/A□
Were there any odors detected on this date?	Yes 🗆	No 🖂	N/A□
Was noise outside specification and/or above background on this date?	Yes 🗆	No 🖂	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes 🗆	No 🗆	N/A⊠
Was turbidity checked at the outfall(s)?	AM 🗆	PM 🗆	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes 🗆	No 🗆	N/A⊠

Was the temporary fabric structure closed at the end of the day?	Yes □	No 🗆	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No 🗆	N/A⊠
If yes, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
<u>Comments:</u> N/A			

RESILIENCE/GREEN REMEDIATION CHECKLIST

Is site power procured from renewable energy sources (e.g., solar, wind, geothermal, biomass and biogas)?	Yes □	No 🗆	N/A⊠
Is the Contractor employing 2007 or newer or retrofitted (BART*) diesel on-road trucks and non-road equipment?	Yes 🗆	No 🗆	N/A⊠
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes □	No 🗆	N/A⊠
Have equipment operators been trained in the idling requirements of 6NYCRR Part 217-3?	Yes 🗆	No 🗆	N/A⊠
Is BART-equipped equipment properly maintained and working?	Yes □	No 🗆	N/A⊠
Is work being sequenced to avoid double handling?	Yes □	No 🗆	N/A⊠
Is there an onsite recycling program for CONTRACTOR-generated wastes and is it complied with?	Yes 🗆	No 🗆	N/A⊠
Are office trailer heating and cooling systems maintained at efficient set points, have programable thermostats been installed?	Yes □	No 🗆	N/A⊠
Are products and materials used in performance of the work appropriately certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative®, etc.)?	Yes 🗆	No 🗆	N/A⊠
Are resiliency features included in the design, or completed remedy properly installed and/or maintained (flood control, storm water controls, erosion measures, etc.)?	Yes 🗆	No 🗆	N/A⊠
Are green remediation elements included in the design, or completed remedy properly installed and/or maintained (e.g., porous pavement, geothermal, variable speed drives, native plantings, natural stream bank restoration, etc.)?	Yes □	No 🗆	N/A⊠
Has Contractor been notified of any deficiencies?	Yes □	No 🗆	N/A⊠
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes 🗆	No 🗆	N/A⊠
<u>Comments:</u> N/A	<u>.</u>		

* BART – Best Available Retrofit Technology

NYSDEC Division of Environmen	tal Remediati	ion 2	NEW YORK STATE	Departmen Environmer Conservatio	ntal on C	Contract No. D009806 DEC PM – J.Stefansky Engineer PM – J.Oliver		06	
Site Location: 1012 South Clinton Ave, Rochester 14620									
Weather Conditions									
General Description	Partly cloudy	y AM	-	-	PM	7			
Temperature	56 F	AM	-	-	PM				
Wind	Calm	AM	-	-	PM				
Health & Safety If any box below is checked "Yes", provide explanation under "Health & Safety Comments".									
Were there any changes t	o the Health &	Safety Plan	?			*Yes	No X	NA	
Were there any exceedan	ces of the peri	imeter air mo	nitoring repo	orted on this da	ate?	*Yes	No	NA X	
Were there any nuisance	issues reporte	d/observed c	on this date?			*Yes	No X	NA	
Health & Safety Comn	•	4,0000.004							
Some slips, trips, fall haza		itial puncture	hazards (ne	edles, sharp g	glass).				
Summary of Work Per	formed	Arrived at	site: 08	800	Dep	arted Site:	0915		
rethreading well seats tha has 2 and MW-15S has 1. (0830) EA rethreads 1 bol rethreads 2 bolt seats on 1 bolt seat on MW-11K. 1 bo MW-8K. (0905) EA rethreat Equipment/Material Tu	(0815) EA ret t seat on MW- MW-05, finds 1 olt seat is rethr ads 1 bolt seat racking	threads 2 bol .06 and finds 1 broken. (08 readed on M' t on MW-8S,	It seats on M 1 broken. (0 350) EA rethr W-11S and 1 1 bolt seat is	W-13K. (0820 835) EA rethri eads one bolt bolt seat is b broken. (091)) EA reth eads 1 bo seat on N oroken. (0 5) EA offs	reads 3 bolt so blt seat on MW MW-04. (0855 900) EA rethre site.	eats on MW /-10S. (084) EA finds 1 eads 2 bolt	/-9K. 0) EA broken	
If any box below is ch			-						
Were there any vehicles were there any vehicles w			r D.O.T num	pers and place	ards?	*Yes * Yes	No No	NA X NA X	
Were there any vehicles w			ated prior to	eviting the wo	rk site?	* Yes	No	NA X	
Personnel and Equipr			<u></u>	<u></u>					
Individual		Co	mpany		Trad	le	Total		
Cody Badman			EA				Total	Hours	
Alex Stoogenke		EA Scientist		Scien	-	1.	25		
			EA			tist	1.		
			EA			tist	1.	25	
			EA			tist	1.	25	
Equipment Descrip	ion		Contracto			tist tist Quantity	1. 1. 1.	25 25 25	
Whale Pump			Contracto E/	4		tist tist	1. 1. 1. Us	25 25 sed	
	Imported/ Delivered	Exported	Contracto E/ E/ Waste	A A Profile	Scien	tist tist Quantity 1 - e or Disposal	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	25 25 25 eed lo es Daily Weight	
Whale Pump Various Hand Too	ls Imported/	Exported off Site	Contracto E/ E/ Waste	A	Scien	tist tist Quantity 1 -	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	25 25 25 eed lo es Daily	
Whale Pump Various Hand Too	Is Imported/ Delivered to Site	off Site	Contracto E/ E/ Waste (If App	4 A Profile licable)	Scien Sourc Facility	tist tist Quantity 1 - e or Disposal	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	25 25 25 eed lo es Daily Weight	
Whale Pump Various Hand Too Material Description	Is Imported/ Delivered to Site te shipment,	off Site delivery tick	Contracto E/ E/ Waste (If App	4 A Profile licable)	Scien Sourc Facility	tist tist Quantity 1 - e or Disposal	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	25 25 25 eed lo es Daily Weight	
Whale Pump Various Hand Too Material Description *On-Site scale for off-si	Is Imported/ Delivered to Site te shipment,	off Site delivery tick	Contracto E/ E/ Waste (If App	4 A Profile licable)	Scien Sourc Facility	tist tist Quantity 1 - e or Disposal	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	25 25 25 eed lo es Daily Weight	
Whale Pump Various Hand Too Material Description *On-Site scale for off-si Equipment/Material Tr	Is Imported/ Delivered to Site te shipment,	off Site delivery tick	Contracto E/ E/ Waste (If App	A Profile licable) rial received	Scien Sourc Facility	tist tist Quantity 1 - e or Disposal	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	25 25 25 bed bo es Daily Weight (tons)*	
Whale Pump Various Hand Too Material Description *On-Site scale for off-si Equipment/Material To Visitors to Site	is Imported/ Delivered to Site te shipment, racking Com	off Site delivery tick	Contracto E/ Waste (If Appl ket for mate	A Profile licable) rial received	Scien Sourc Facility	tist tist Quantity 1 - e or Disposal (If Applicable)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	25 25 25 bed bo es Daily Weight (tons)*	

Site Representatives	
Name	Representing
Site Owner	
Project Schedule Comments	
A groundwater sampling event is due to take place the rolled into the GW sampling event.	week of September 25 th . Remaining repairs will be
Issues Pending	
None	
Interaction with Public, Property Owners, Media, et	с.
None	

Site Photographs (Do	escriptions Below)				
	rethread a broken bolt seat	MVV	-10S: Successfully re	thread	ed bolt seat.
WELL MONITORING	TABLE				
Well ID	DTW		DTB		Notes
Site Inspector(s): Co	ody Badman, Alex Stoogenke			Date:	09/14/2023

Videos of discreet operations have been provided to the DEC Project Manager to facilitate understanding of the ongoing work? Yes \Box No \Box N/A X

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes 🗆	No 🖂
2.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes 🗆	No 🖂
3.	Were personal protective gloves, masks, and eye protection being used?	Yes 🗆	No 🖂
4.	Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No 🗆
5.	If Yes to 1 or 2, follow the latest NYSDOH COVID-19 guidance: https://coronavirus.health.ny.gov/home	Yes □	No 🗆
Comm N/A	ents:		

ON-SITE WASTE STORAGE

Drums, roll offs and piles are staged in secure areas?	Yes 🗆	No 🗆	N/A⊠
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes □	No 🗆	N/A⊠
Containers are in good condition or properly overpacked?	Yes 🗆	No 🗆	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes □	No 🗆	N/A⊠
Complying with RCRA 90 day storage limitation for hazardous waste?	Yes 🗆	No 🗆	N/A⊠
Piles are securely covered when not in use?	Yes 🗆	No 🗆	N/A⊠
Containers are closed when not in use?	Yes 🗆	No 🗆	N/A⊠
Staging areas should be inspected periodically and any issues addressed immediately?	Yes □	No 🗆	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes 🗆	No 🗆	N/A⊠
If any issues noted, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
Comments:			

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes 🗆	No 🖂	N/A□
Were there any odors detected on this date?	Yes 🗆	No 🖂	N/A□
Was noise outside specification and/or above background on this date?	Yes 🗆	No 🖂	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes 🗆	No 🗆	N/A⊠
Was turbidity checked at the outfall(s)?	AM 🗆	PM 🗆	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No 🗆	N/A⊠

Was the temporary fabric structure closed at the end of the day?	Yes □	No 🗆	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No 🗆	N/A⊠
If yes, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
<u>Comments:</u> N/A			

RESILIENCE/GREEN REMEDIATION CHECKLIST

Is site power procured from renewable energy sources (e.g., solar, wind, geothermal, biomass and biogas)?	Yes □	No 🗆	N/A⊠
Is the Contractor employing 2007 or newer or retrofitted (BART*) diesel on-road trucks and non-road equipment?	Yes 🗆	No 🗆	N/A⊠
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes □	No 🗆	N/A⊠
Have equipment operators been trained in the idling requirements of 6NYCRR Part 217-3?	Yes 🗆	No 🗆	N/A⊠
Is BART-equipped equipment properly maintained and working?	Yes □	No 🗆	N/A⊠
Is work being sequenced to avoid double handling?	Yes 🗆	No 🗆	N/A⊠
Is there an onsite recycling program for CONTRACTOR-generated wastes and is it complied with?	Yes 🗆	No 🗆	N/A⊠
Are office trailer heating and cooling systems maintained at efficient set points, have programable thermostats been installed?	Yes 🗆	No 🗆	N/A⊠
Are products and materials used in performance of the work appropriately certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative®, etc.)?	Yes 🗆	No 🗆	N/A⊠
Are resiliency features included in the design, or completed remedy properly installed and/or maintained (flood control, storm water controls, erosion measures, etc.)?	Yes 🗆	No 🗆	N/A⊠
Are green remediation elements included in the design, or completed remedy properly installed and/or maintained (e.g., porous pavement, geothermal, variable speed drives, native plantings, natural stream bank restoration, etc.)?	Yes 🗆	No 🗆	N/A⊠
Has Contractor been notified of any deficiencies?	Yes 🗆	No 🗆	N/A⊠
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes 🗆	No 🗆	N/A⊠
<u>Comments:</u> N/A			

* BART – Best Available Retrofit Technology

NYSDEC Division of Environme Site Location: 1012 \$			stor 1462	E Envi	artmer ironme servati	ntal	Contract No. D009806 DEC PM – J.Stefansky Engineer PM – J.Oliver			6	
				0							
<u> </u>		Condition					-				
General Description	Sunny	AM				PM	-				
Temperature Wind	60F Calm	AM AM		69F Calm		PM PM	-				
Health & Safety	Call	Alvi		Jaim		FIVI	<u> </u>				
If any box below is	checked "Yes	s", provide	explanat	ion un	der "H	ealth	& Saf	ety Com	ments'	' .	
Were there any changes	s to the Health &	Safety Plan	?				*Y	es	No X		NA
Were there any exceed	ances of the peri	imeter air mo	nitoring re	ported o	on this c	late?	*Y	es	No		NA X
Were there any nuisanc	e issues reporte	d/observed o	on this date	e?			*Y	es	No X		NA
Health & Safety Con	nments										
Onsite property has deb	oris. Some slips,	trips, fall haz	ards and p	ootential	l punctu	re haza	ards (r	needles, s	harp gla	ss).	
Summary of Work P	erformed	Arrived at	site: 0)755		D	eparte	ed Site:	1655	5	
(1250) Deployed Bio-Tra	ap in MW-03CA.	imeters. (123 . (1300) Depl	6) Start pu oyed Bio-T	irge MN Frap in N	/-19S. (//W-13k	1240) I (. (130	Deploy 3) San	ved Bio-Ťr nple 8281	03-MW-′	V-20 19S-	S.
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252	ap in MW-03CA. MNA paramete 2023 for VOCs M. Wright offsi 023 for VOCs. (meters. (123 . (1300) Depl ers. (1307) St and MNA pa ite. (1550) St	6) Start pu oyed Bio-T tart purge N rameters. (art purge N	Irge MW Γrap in № MW-8K. (1445) \$ ⁄IW-15S	/-19S. (/IW-13k (1342) Sample S. (1612	1240) I (. (130) Start p 82810;) Start	Deploy 3) Sam ourge N 3-MW- purge	ved Bio-Tr nple 8281 MW-14KA 08K-0925 MW-15K.	ap in MV 03-MW-1 . (1418) 52023 foi (1617) \$	V-20 19S- Sam VO Samp	S. ple Cs and
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252 Equipment/Material If any box below is c	ap in MW-03CA. MNA paramete 22023 for VOCs M. Wright offsi 2023 for VOCs. (Tracking checked "Yes'	meters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St 1639) Sampl ", provide	6) Start pu oyed Bio-T tart purge N rameters. (art purge N le 828103- explanati	Irge MW Frap in M MW-8K. (1445) \$ MW-158 MW-158 MW-151	/-19S. (MW-13k (1342) Sample 5. (1612 K-09252 der "Ma	1240) I 5. (1303 Start p 828103) Start 2023 fo aterial	Deploy 3) Sam ourge M 3-MW- purge or VOC	ved Bio-Tr nple 8281 /W-14KA 08K-0925 MW-15K. ss. (1655)	ap in MV 03-MW- (1418) 52023 for (1617) \$ EA offsit	V-20 19S- Sam VO Samp te.	S. ple Cs and
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252 Equipment/Material If any box below is c Were there any vehicles	ap in MW-03CA. d MNA paramete 52023 for VOCs i) M. Wright offsi 2023 for VOCs. (Tracking checked "Yes' which did not d	meters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St (1639) Samp ", provide (lisplay prope	6) Start pu oyed Bio-T tart purge N rameters. (art purge N le 828103- explanati	Irge MW Frap in M MW-8K. (1445) \$ MW-158 MW-158 MW-151	/-19S. (MW-13k (1342) Sample 5. (1612 K-09252 der "Ma	1240) I 5. (1303 Start p 828103) Start 2023 fo aterial	Deploy 3) Sam burge M 3-MW- purge or VOC	red Bio-Tr nple 8281 MW-14KA 08K-0925 MW-15K. cs. (1655) king Co es	ap in MV 03-MW- (1418) 52023 for (1617) \$ EA offsit	V-20 19S- Sam VO Samp te.	S. ple Cs and
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252 Equipment/Material If any box below is o Were there any vehicles Were there any vehicles	ap in MW-03CA. MNA paramete 2023 for VOCs M. Wright offsi 2023 for VOCs. (Tracking checked "Yes' which did not d which were not	meters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St 1639) Samp ", provide lisplay propert t tarped?	6) Start pu oyed Bio-T tart purge N rameters. art purge N le 828103- explanati r D.O.T nu	Irge MW Trap in N MW-8K. (1445) \$ MW-158 MW-159 MW-159 on unc mbers a	/-19S. (MW-13k (1342) Sample S. (1612 K-09252 der "Ma and plac	1240) I (. (1303 Start p 828103) Start 2023 fo aterial ards?	Deploy 3) Sam burge M 3-MW- purge or VOC	ved Bio-Tr nple 8281 MW-14KA 08K-0925 MW-15K. s. (1655) king Co	ap in MV 03-MW- (1418) 52023 for (1617) \$ EA offsit	V-20 19S- Sam VO Samp te.	S. ple Cs and ble
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252 Equipment/Material If any box below is o Were there any vehicles Were there any vehicles Were there any vehicles	ap in MW-03CA. MNA paramete 2023 for VOCs M. Wright offsi 2023 for VOCs. (Tracking checked "Yes' which did not d which were not	meters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St 1639) Samp ", provide lisplay propert t tarped?	6) Start pu oyed Bio-T tart purge N rameters. art purge N le 828103- explanati r D.O.T nu	Irge MW Trap in N MW-8K. (1445) \$ MW-158 MW-159 MW-159 on unc mbers a	/-19S. (MW-13k (1342) Sample S. (1612 K-09252 der "Ma and plac	1240) I (. (1303 Start p 828103) Start 2023 fo aterial ards?	Deploy 3) Sam burge N 3-MW- purge or VOC	red Bio-Tr nple 8281 MW-14KA 08K-0925 MW-15K. cs. (1655) king Co es	ap in MV 03-MW . (1418) 52023 for (1617) \$ EA offsit mments	V-20 19S- Sam VO Samp te. s".	S. ple Cs and ble NA X
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252 Equipment/Material If any box below is of Were there any vehicles Were there any vehicles Were there any vehicles site?	ap in MW-03CA. MNA paramete 2023 for VOCs M. Wright offsi 2023 for VOCs. (Tracking checked "Yes' which did not d which were not which were not	meters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St 1639) Samp ", provide lisplay propert t tarped?	6) Start pu oyed Bio-T tart purge N rameters. art purge N le 828103- explanati r D.O.T nu	Irge MW Trap in N MW-8K. (1445) \$ MW-158 MW-159 MW-159 on unc mbers a	/-19S. (MW-13k (1342) Sample S. (1612 K-09252 der "Ma and plac	1240) I (. (1303 Start p 828103) Start 2023 fo aterial ards?	Deploy 3) Sam burge N 3-MW- purge or VOC	red Bio-Tr nple 8281 MW-14KA 08K-0925 MW-15K. s. (1655) king Co es (es	rap in MV 03-MW- . (1418) 52023 for (1617) \$ EA offsit mments No No	V-20 19S- Sam VO Samp te. s".	S. ple Cs and ble NA X NA X
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252 Equipment/Material If any box below is of Were there any vehicles Were there any vehicles Were there any vehicles site?	ap in MW-03CA. MNA paramete 2023 for VOCs M. Wright offsi 2023 for VOCs. (Tracking checked "Yes' which did not d which were not which were not	imeters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St 1639) Samp ", provide (lisplay proper t tarped? t decontamin	6) Start pu oyed Bio-T tart purge N rameters. art purge N le 828103- explanati r D.O.T nu	Irge MW Trap in N MW-8K. (1445) \$ MW-158 MW-159 MW-159 on unc mbers a	/-19S. (MW-13k (1342) Sample S. (1612 K-09252 der "Ma and plac	1240) I (. (1303 Start p 828103) Start 2023 fo aterial ards?	Deploy 3) Sam burge N 3-MW- purge or VOC	red Bio-Tr nple 8281 MW-14KA 08K-0925 MW-15K. s. (1655) king Co es (es	ap in MV 03-MW . (1418) 52023 for (1617) \$ EA offsit Mo No No	V-20 19S- Sam r VO Sam te. s".	S. ple Cs and ble NA X NA X
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252 Equipment/Material If any box below is of Were there any vehicles Were there any vehicles Were there any vehicles site? Personnel and Equip Individual Cody Badmar	ap in MW-03CA. MNA paramete 2023 for VOCs M. Wright offsi 2023 for VOCs. (Tracking checked "Yes' which did not d which were not which were not pment	imeters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St 1639) Samp ", provide (lisplay proper t tarped? t decontamin	6) Start pu oyed Bio-T tart purge N rameters. (art purge N le 828103- explanation r D.O.T nu ated prior t mpany EA	Irge MW Trap in N MW-8K. (1445) \$ MW-158 MW-159 MW-159 on unc mbers a	/-19S. (MW-13k (1342) Sample S. (1612 K-09252 der "Ma and plac	1240) I (. (1303 Start p 828103) Start 2023 fo ards? ork T Scork	Deploy 3) Sam burge M 3-MW- purge r VOC I Trac *Y * Y * Y	red Bio-Tr nple 8281 MW-14KA 08K-0925 MW-15K. s. (1655) king Co es (es	ap in MV 03-MW . (1418) 52023 for (1617) \$ EA offsit Mo No No	V-20 19S- Sam r VO Sam te. s".	S. ple Cs and ble NA X NA X NA X NA X
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252 Equipment/Material If any box below is o Were there any vehicles Were there any vehicles Were there any vehicles site? Personnel and Equip Individual Cody Badmar Alex Stoogenk	ap in MW-03CA. MNA parameter 2023 for VOCs M. Wright offsi 2023 for VOCs. (Tracking checked "Yes' which did not d which were not which were not pment n ae	imeters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St 1639) Samp ", provide (lisplay proper t tarped? t decontamin	6) Start pu oyed Bio-T tart purge N rameters. (art purge N le 828103- explanati r D.O.T nu ated prior t mpany EA EA	Irge MW Trap in N MW-8K. (1445) \$ MW-158 MW-159 MW-159 on unc mbers a	/-19S. (MW-13k (1342) Sample S. (1612 K-09252 der "Ma and plac	1240) I (. (1303 Start p 828103) Start 2023 fo ards? ork T Sc Sc	Deploy 3) Sam burge M 3-MW- purge r VOC I Trac *Y * Y * Y	red Bio-Tr nple 8281 MW-14KA 08K-0925 MW-15K. cs. (1655) king Co es (es (es	ap in MV 03-MW . (1418) 52023 for (1617) \$ EA offsit Mo No No	V-20 19S- Sam VO Sam te. s".	S. ple Cs and ble NA X NA X NA X NA X
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252 Equipment/Material If any box below is of Were there any vehicles Were there any vehicles Were there any vehicles site? Personnel and Equip Individual Cody Badmar	ap in MW-03CA. MNA parameter 2023 for VOCs M. Wright offsi 2023 for VOCs. (Tracking checked "Yes' which did not d which were not which were not pment n ae	imeters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St 1639) Samp ", provide (lisplay proper t tarped? t decontamin	6) Start pu oyed Bio-T tart purge N rameters. (art purge N le 828103- explanation r D.O.T nu ated prior t mpany EA	Irge MW Trap in N MW-8K. (1445) \$ MW-158 MW-159 MW-159 on unc mbers a	/-19S. (MW-13k (1342) Sample S. (1612 K-09252 der "Ma and plac	1240) I (. (1303 Start p 828103) Start 2023 fo ards? ork T Sc Sc	Deploy 3) Sam burge M 3-MW- purge r VOC I Trac *Y * Y * Y	red Bio-Tr nple 8281 MW-14KA 08K-0925 MW-15K. cs. (1655) king Co es (es (es	ap in MV 03-MW . (1418) 52023 for (1617) \$ EA offsit Mo No No	V-20 19S- Sam r VO Sam te. s".	S. ple Cs and ble NA X NA X NA X NA X
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252 Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles site? Personnel and Equip Individual Cody Badmar Alex Stoogenk Mike Wright	ap in MW-03CA. MNA parameter 2023 for VOCs M. Wright offsi 2023 for VOCs. (Tracking checked "Yes' which did not d which were not which were not pment	imeters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St 1639) Samp ", provide (lisplay proper t tarped? t decontamin	i6) Start pu oyed Bio-T tart purge N rameters. (art purge N le 828103- explanati r D.O.T nu ated prior t EA EA EA	Irge MW Frap in M MW-8K. (1445) \$ MW-15S MW-15S MW-15S MW-15S MW-15S MW-15S MW-15S	/-19S. (/W-13k (1342) Sample S. (1612 K-09252 der "Ma nd plac g the wo	1240) I (. (1303 Start p 828103) Start 2023 fo ards? ork T Sc Sc	Deploy 3) Sam burge M 3-MW- purge r VOC I Trac *Y * Y * Y	red Bio-Tr nple 8281 AW-14KA 08K-0925 MW-15K. 5s. (1655) king Co es (es (es	rap in MV 03-MW . (1418) 52023 for (1617) \$ EA offsit No No No T	V-20 19S- Samr VO Samr te. s". otal I <u>9</u> <u>9</u> 7.	S. ple Cs and ble NA X NA X NA X Hours
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252 Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles ite? Personnel and Equip Individual Cody Badmar Alex Stoogenk Mike Wright	ap in MW-03CA. MNA parameter 2023 for VOCs M. Wright offsi 2023 for VOCs. (Tracking checked "Yes' which did not d which were not which were not makee make makeee makee makee mak	imeters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St 1639) Samp ", provide (lisplay proper t tarped? t decontamin	6) Start pu oyed Bio-T tart purge N rameters. (art purge N le 828103- explanation r D.O.T num ated prior t EA EA EA EA EA EA	Irge MW Frap in N MW-8K. (1445) \$ MW-158 MW-158 MW-158 MW-158 mbers a co exiting tor/Vend	/-19S. (/W-13k (1342) Sample S. (1612 K-09252 der "Ma nd plac g the wo	1240) I (. (1303 Start p 828103) Start 2023 fo ards? ork T Sc Sc	Deploy 3) Sam burge M 3-MW- purge r VOC I Trac *Y * Y * Y	Ved Bio-Tr hple 8281 AW-14KA 08K-0925 MW-15K. cs. (1655) king Co es (es (es (es (es (es (es (es	rap in MV 03-MW . (1418) 52023 for (1617) \$ EA offsit No No No T	V-20 19S- Sam VO Sam te. s". otal I <u>9</u> <u>9</u> 7. Us	S. ple Cs and ble NA X NA X NA X Hours 5 5
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252 Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Were there any vehicles Were there any vehicles iste? Personnel and Equip Individual Cody Badmar Alex Stoogenk Mike Wright Equipment Descr Heron Water Level	ap in MW-03CA. MNA parameter 2023 for VOCs M. Wright offsi 2023 for VOCs. (Tracking checked "Yes' which did not d which were not which were not makee make makeee makee makee mak	imeters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St 1639) Samp ", provide (lisplay proper t tarped? t decontamin	6) Start pu oyed Bio-T tart purge N rameters. (art purge N le 828103- explanati r D.O.T nu ated prior t EA EA EA EA EA EA EA	Irge MW Frap in M MW-8K. (1445) \$ MW-158	/-19S. (/W-13k (1342) Sample S. (1612 K-09252 der "Ma nd plac g the wo	1240) I (. (1303 Start p 828103) Start 2023 fo ards? ork T Sc Sc	Deploy 3) Sam burge M 3-MW- purge r VOC I Trac *Y * Y * Y	Ved Bio-Tr hple 8281 AW-14KA 08K-0925 MW-15K. cs. (1655) king Co es (es (es (es (es (uantity 2	rap in MV 03-MW . (1418) 52023 for (1617) \$ EA offsit No No No T	V-20 19S- Samp te. 5 ". 6 6 7 6 7 6 7 6 7 6 7	S. ple Cs and ble NA X NA X NA X Hours 5 5 ed
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252 Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles Were there any vehicles iste? Personnel and Equip Individual Cody Badmar Alex Stoogenk Mike Wright Equipment Descr Heron Water Level Horiba U-52 PID	ap in MW-03CA. MNA parameter 2023 for VOCs M. Wright offsi 2023 for VOCs. (Tracking checked "Yes' which did not d which were not which were not pment h te iption Meter	imeters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St 1639) Samp ", provide (lisplay proper t tarped? t decontamin	i6) Start pu oyed Bio-T tart purge N rameters. i art purge N le 828103- explanati r D.O.T nu ated prior t EA EA EA EA EA EA EA EA EA EA	Irge MW Trap in M MW-8K. (1445) \$ MW-15S MW-15S MW-15S MW-15S MW-15S MW-15S on unc on on unc on on unc tor/vence vironmen vironmen	/-19S. (/WV-13k (1342) Sample S. (1612 K-09252 der "Ma nd plac g the wo g the wo g the wo g the wo dor	1240) I (. (1303 Start p 828103) Start 2023 fo ards? ork T Sc Sc	Deploy 3) Sam burge M 3-MW- purge r VOC I Trac *Y * Y * Y	red Bio-Tri nple 8281 AW-14KA 08K-0925 MW-15K. cs. (1655) king Co es (es (es (es) (es) (es) (es) (es) (es	rap in MV 03-MW . (1418) 52023 for (1617) \$ EA offsit No No No T	V-20 19S- Sam VO Sam te. s". otal I <u>9</u> <u>9</u> 7. Us	S. ple Cs and ble NA X NA X NA X Hours 5 5 ed ed 28
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252 Equipment/Material If any box below is c Were there any vehicles Were there any vehicles	ap in MW-03CA. MNA parameter 2023 for VOCs M. Wright offsi 2023 for VOCs. (Tracking checked "Yes' which did not d which were not which were not pment h te iption Meter	imeters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St 1639) Samp ", provide (lisplay proper t tarped? t decontamin	6) Start pu oyed Bio-T tart purge N rameters. (art purge N le 828103- explanati r D.O.T nu ated prior t EA EA EA EA EA EA EA EA EA	Irge MW Trap in M MW-8K. (1445) \$ MW-15S MW-15S MW-15S MW-15S MW-15S MW-15S on unc on on unc on on unc tor/vence vironmen vironmen	/-19S. (/WV-13k (1342) Sample S. (1612 K-09252 der "Ma nd plac g the wo g the wo g the wo g the wo dor	1240) I (. (1303 Start p 828103) Start 2023 fo ards? ork T Sc Sc	Deploy 3) Sam burge M 3-MW- purge r VOC I Trac *Y * Y * Y	Ved Bio-Tr hple 8281 AW-14KA 08K-0925 MW-15K. cs. (1655) king Co es (es (es (es (es (es (es (es	rap in MV 03-MW . (1418) 52023 for (1617) \$ EA offsit No No No T	V-20 19S- Samp te. s". otal I g g 7. Us Ye Ye	S. ple Cs and ble NA X NA X NA X Hours 5 5 5 6 6 6 6 8 8 8 8 8 8 8 8 8
Cody Badmar Alex Stoogenk Mike Wright Equipment Descr Heron Water Level Horiba U-52 PID	ap in MW-03CA. MNA parameter 2023 for VOCs M. Wright offsi 2023 for VOCs. (Tracking checked "Yes' which did not d which were not which were not pment h te iption Meter	imeters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St 1639) Samp ", provide (lisplay proper t tarped? t decontamin	6) Start pu oyed Bio-T tart purge N rameters. (art purge N le 828103- explanation r D.O.T nut ated prior t mpany EA EA EA EA EA EA EA EA EA EA EA EA EA	Irge MW Trap in M MW-8K. (1445) \$ MW-15S MW-15S MW-15S MW-15S MW-15S MW-15S on unc on on unc on on unc tor/vence vironmen vironmen	/-19S. (/W-13k (1342) Sample S. (1612 K-09252 der "Ma contention of the second g the work g the wo	1240) I (. (130: Start p 82810:) Start 2023 fo aterial ards? ork T Soc Ge Soc	Deploy 3) Sam burge M 3-MW- purge r VOC I Trac *Y *Y *Y *Y	red Bio-Tri nple 8281 AW-14KA 08K-0925 MW-15K. cs. (1655) king Co es (es (es (es) (es) (es) (es) (es) (es	rap in MV 03-MW . (1418) 52023 for (1617) \$ EA offsit No No No T	V-20 19S- Sam VO Sam te. 5". otal I <u>9</u> <u>9</u> <u>9</u> <u>9</u> <u>9</u> <u>7.</u> Us Ye Ye Ye	S. ple Cs and ble NA X NA X NA X Hours 5 5 5 6 6 6 6 8 8 8 8 8 8 8 8 8
(1250) Deployed Bio-Tra 09252023 for VOCs and 828103-MW-14KA-0925 MNA parameters. (1515 828103-MW-15S-09252 Equipment/Material If any box below is c Were there any vehicles Were there any vehicles Were there any vehicles iste? Personnel and Equip Individual Cody Badmar Alex Stoogenk Mike Wright Equipment Descr Heron Water Level Horiba U-52 PID Peristaltic Pum	ap in MW-03CA. d MNA paramete 52023 for VOCs i) M. Wright offsi 2023 for VOCs. (Tracking checked "Yes' a which did not d b which were not b which were not b which were not b which were not checked "Yes' a which were not b which were not checked "Yes' a which were not b which were not checked "Yes' a which wer	imeters. (123 . (1300) Depl ers. (1307) Si and MNA pa ite. (1550) St 1639) Sampl ", provide (lisplay proper tarped? t decontamin Co Co Exported off Site	i6) Start pu oyed Bio-T tart purge N rameters. i art purge N le 828103- explanati r D.O.T nui ated prior t mpany EA EA EA EA EA EA EA EA EA EA EA EA EA	Irge MW Frap in N WW-8K. (1445) \$ WW-158 MW-158 MW-159 MW-159 con unc mbers a co exiting to exiting to r/Venc vironmen vironmen te Profile oplicable	/-19S. (/W-13k (1342) Sample S. (1612 K-09252 der "Ma and plac g the wo g the wo g the wo g the wo lor ntal ttal ttal ttal	1240) I (. (1303 Start p 828103) Start 2023 fo aterial ards? ork T Soc Ge Ge Soc Facil	Deploy 3) Sam burge M 3-MW- purge r VOC I Trac *Y *Y *Y *Y	Ved Bio-Tr hple 8281 AW-14KA 08K-0925 MW-15K. cs. (1655) king Co es (es (es (es (es (es 2 2 2 2 2 2 2 5 Disposal	rap in MV 03-MW . (1418) 52023 for (1617) \$ EA offsit No No No T	V-20 19S- Sam VO Sam te. 5". otal I <u>9</u> <u>9</u> <u>9</u> <u>9</u> <u>9</u> <u>7.</u> Us Ye Ye Ye	S. ple Cs and ple NA X NA X NA X NA X Hours 5 5 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1

Visitors to Site				
Name	Repre	Representing		Exclusion/CRZ Zone
None			Yes	No
			Yes	No
Site Representatives				
Name		Representing		
Project Schedule Comments				
	continue the week of Se	eptember 25 .		
		eptember 23 .		
Issues Pending		eptember 23 .		
Issues Pending				
Issues Pending None				

	<u>STABLE:</u>		
Well ID	DTW	DTB	Notes
Site Inspector(s): C	Cody Badman		Date: 09/25/2023

Videos of discreet operations have been provided to the DEC Project Manager to facilitate understanding of the ongoing work? Yes \Box No \Box N/A X

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes □	No 🖂
2.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes 🗆	No 🖂
3.	Were personal protective gloves, masks, and eye protection being used?	Yes 🗆	No 🖂
4.	Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No 🗆
5.	If Yes to 1 or 2, follow the latest NYSDOH COVID-19 guidance: https://coronavirus.health.ny.gov/home	Yes □	No 🗆
Comm N/A	<u>ents:</u>		

ON-SITE WASTE STORAGE

Drums, roll offs and piles are staged in secure areas?	Yes 🗆	No 🗆	N/A⊠
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes 🗆	No 🗆	N/A⊠
Containers are in good condition or properly overpacked?	Yes 🗆	No 🗆	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes □	No 🗆	N/A⊠
Complying with RCRA 90 day storage limitation for hazardous waste?	Yes 🗆	No 🗆	N/A⊠
Piles are securely covered when not in use?	Yes 🗆	No 🗆	N/A⊠
Containers are closed when not in use?	Yes 🗆	No 🗆	N/A⊠
Staging areas should be inspected periodically and any issues addressed immediately?	Yes 🗆	No 🗆	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes 🗆	No 🗆	N/A⊠
If any issues noted, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
Comments:	<u>.</u>		

NUISANCE CHECKLIST

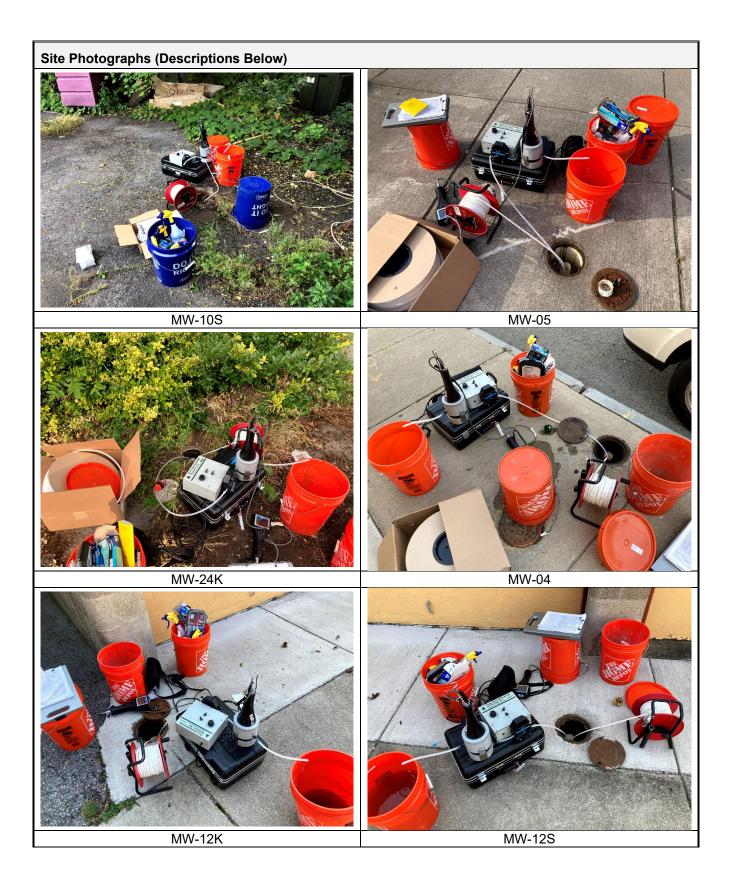
Were there any community complaints related to work on this date?	Yes 🗆	No 🖂	N/A□
Were there any odors detected on this date?	Yes 🗆	No 🖂	N/A□
Was noise outside specification and/or above background on this date?	Yes 🗆	No 🖂	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes 🗆	No 🗆	N/A⊠
Was turbidity checked at the outfall(s)?	AM 🗆	PM 🗆	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes 🗆	No 🗆	N/A⊠

Was the temporary fabric structure closed at the end of the day?	Yes 🗆	No 🗆	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No 🗆	N/A⊠
If yes, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
<u>Comments:</u> N/A			

RESILIENCE/GREEN REMEDIATION CHECKLIST

Yes □	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
Yes 🗆	No 🗆	N/A⊠
Yes □	No 🗆	N/A⊠
	Yes Yes Yes Yes Yes Yes Yes Yes	Yes No Yes No

* BART – Best Available Retrofit Technology



NYSDEC Division of Environme Site Location: 1012 S			ster 14620	Departme Environm Conservat	ental	Contract No. D009806 DEC PM – J.Stefansky Engineer PM – J.Oliver			06
	Weathe	r Condition	s						
General Description	Cloudy	AM	Partial	cloud	PM				
Temperature	60F	AM	70		PM				
Wind	Calm	AM	Ca	lm	PM				
Health & Safety If any box below is o	checked "Ye	s", provide	explanatio	n under "H	lealth	& Sat	fety Com	ments".	
Were there any changes	to the Health	& Safety Plan	l?			*Y	′es	No X	NA
Were there any exceeda	inces of the pe	rimeter air mo	onitoring repo	orted on this	date?	*Y	′es	No	NA X
Were there any nuisance	e issues report	ed/observed	on this date?			*Y	′es	No X	NA
Health & Safety Com	iments								
Onsite property has deb								1	
Summary of Work Pe (0700) EA on site (C. Ba		Arrived at		00		•	ed Site:	1630	
VOCs. (1122) Start purg (1200) Sample 828103-F VOCs. (1222) Start purg VOCs. (1257) Sample 82 GWE-2. (1341) Sample 82 for VOCs. (1400) Start p VOCs. (1444) Sample 82 and is left to recharge. (1 Equipment/Material If any box below is c	PZ-24S-09262(e MW-11S. (12 28103-MWMW 828103-MW-08 ourge MPE-17. 28103-MW-22H 1606) Sample 8 Tracking	023 is taken f 225) Start pur /-11S-092620 8S-09262023 (1405) Start p K-09262023 is 828103-PZ-22	or VOCs. (12 ge MW-12K. 23 is taken for is taken for V ourge MW-22 s taken for V 2S-09262023	11) Sample (1252) Sam or VOCs. (13 /OCs. (1347 K. (1427) Sa OCs. (1458) is taken for	828103 ple 828 (14) Sta Stamp Sample 8 Start pu VOCs.	-MW- 103-M It purg le 828 28103 28103 urge P (1630	12S-09262 IW-12K-09 ge MW-088 3103-GWE- 3-MPE-17-0 2-22S. (15) EA offsite	023 is tak 262023 is 5. (1317) \$ -2-092620 09262023 32) PZ-22 5.	en for taken for Start purge 23 is take is taken fo S is dry
Were there any vehicles			•				/es	No	NA X
Were there any vehicles			1 D.O.1 Hum		ouruo.		Yes	No	NAX
Were there any vehicles site?			ated prior to	exiting the w	vork	* `	Yes	No	NA X
Personnel and Equip	oment								
Individual		Co	mpany			rade		Tota	I Hours
Cody Badman Alex Stoogenko			EA EA			cientist cientist		+	9.5 9.5
	<u> </u>								
Equipment Descri	-		Contracto				Quantity	l	Jsed
Heron Water Level Horiba U-52	Meter			Heron Water Level MeterPine Environmental2Horiba U-52Pine Environmental2			2	+	Yes
Peristaltic Pum		Pine Er	nvironmental/ E				2		Vec
	ір 			onmental	lutions				Yes Yes

*On-Site scale for off-site shipment, delivery ticket for material received							
Equipment/Material Tracking Comments:							
Visitors to Site							
Name	Rep	resenting		Exclusion/CRZ Zone			
None			Yes	No			
			Yes	No			
Site Representatives		1					
Name		Representing					
Project Schedule Comments							
Groundwater sampling event to contin	nue the week of S	September 25 th .					
Issues Pending							
None							
None							
Interaction with Public, Property O	wners, Media, et	с.					
None							

Department of Environmental Conservation

WELL MONITORING	TABLE:		
Well ID	DTW	DTB	Notes
Site Inspector(s): Ale	ex Stoogenke		Date: 09/26/2023

Videos of discreet operations have been provided to the DEC Project Manager to facilitate
understanding of the ongoing work?Yes \Box No \Box N/A X

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes □	No 🖂
2.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes 🗆	No 🖂
3.	Were personal protective gloves, masks, and eye protection being used?	Yes 🗆	No 🖂
4.	Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No 🗆
5.	If Yes to 1 or 2, follow the latest NYSDOH COVID-19 guidance: https://coronavirus.health.ny.gov/home	Yes □	No 🗆
Comm	ents:		
N/A			

ON-SITE WASTE STORAGE

Drums, roll offs and piles are staged in secure areas?	Yes 🗆	No 🗆	N/A⊠
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes 🗆	No 🗆	N/A⊠
Containers are in good condition or properly overpacked?	Yes 🗆	No 🗆	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes □	No 🗆	N/A⊠
Complying with RCRA 90 day storage limitation for hazardous waste?	Yes 🗆	No 🗆	N/A⊠
Piles are securely covered when not in use?	Yes 🗆	No 🗆	N/A⊠
Containers are closed when not in use?	Yes 🗆	No 🗆	N/A⊠
Staging areas should be inspected periodically and any issues addressed immediately?	Yes 🗆	No 🗆	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes 🗆	No 🗆	N/A⊠
If any issues noted, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
Comments:	<u>.</u>		

NUISANCE CHECKLIST

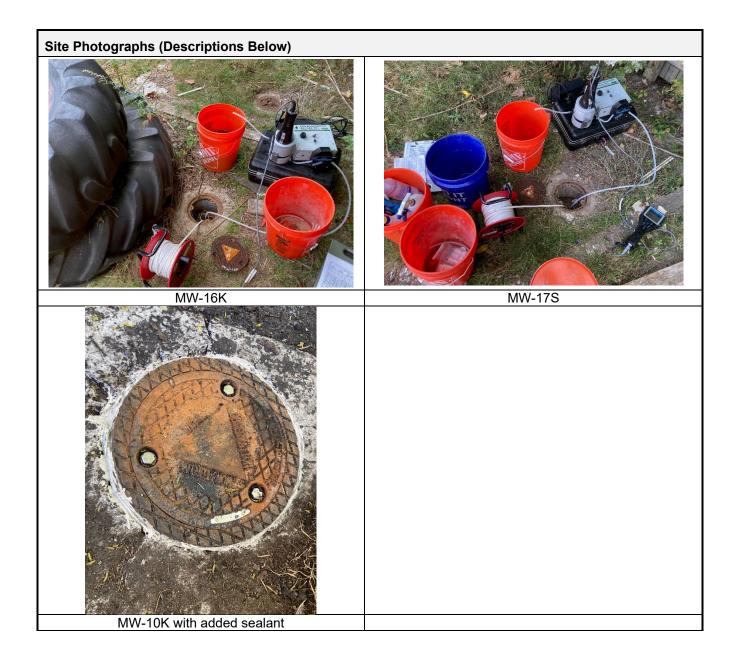
Were there any community complaints related to work on this date?	Yes 🗆	No 🖂	N/A□
Were there any odors detected on this date?	Yes 🗆	No 🖂	N/A□
Was noise outside specification and/or above background on this date?	Yes 🗆	No 🖂	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes 🗆	No 🗆	N/A⊠
Was turbidity checked at the outfall(s)?	AM 🗆	PM 🗆	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes 🗆	No 🗆	N/A⊠

Was the temporary fabric structure closed at the end of the day?	Yes 🗆	No 🗆	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No 🗆	N/A⊠
If yes, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
<u>Comments:</u> N/A			

RESILIENCE/GREEN REMEDIATION CHECKLIST

Is site power procured from renewable energy sources (e.g., solar, wind, geothermal, biomass and biogas)?	Yes □	No 🗆	N/A⊠
Is the Contractor employing 2007 or newer or retrofitted (BART*) diesel on-road trucks and non-road equipment?	Yes □	No 🗆	N/A⊠
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes □	No 🗆	N/A⊠
Have equipment operators been trained in the idling requirements of 6NYCRR Part 217-3?	Yes 🗆	No 🗆	N/A⊠
Is BART-equipped equipment properly maintained and working?	Yes 🗆	No 🗆	N/A⊠
Is work being sequenced to avoid double handling?	Yes □	No 🗆	N/A⊠
Is there an onsite recycling program for CONTRACTOR-generated wastes and is it complied with?	Yes 🗆	No 🗆	N/A⊠
Are office trailer heating and cooling systems maintained at efficient set points, have programable thermostats been installed?	Yes □	No 🗆	N/A⊠
Are products and materials used in performance of the work appropriately certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative®, etc.)?	Yes 🗆	No 🗆	N/A⊠
Are resiliency features included in the design, or completed remedy properly installed and/or maintained (flood control, storm water controls, erosion measures, etc.)?	Yes 🗆	No 🗆	N/A⊠
Are green remediation elements included in the design, or completed remedy properly installed and/or maintained (e.g., porous pavement, geothermal, variable speed drives, native plantings, natural stream bank restoration, etc.)?	Yes □	No 🗆	N/A⊠
Has Contractor been notified of any deficiencies?	Yes □	No 🗆	N/A⊠
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes 🗆	No 🗆	N/A⊠
<u>Comments:</u> N/A			

* BART – Best Available Retrofit Technology



NYSDEC Division of Environment Site Location: 1012 Sc			ester 1462	re Envir Conse	rtment onmen ervatio	ıtal	Contract No. D009806 DEC PM – J.Stefansky Engineer PM – J.Oliver			06
	Weather	[•] Conditior	IS							
General Description	Cloudy	AM		tial cloud	1	PM				
Temperature	53F	AM		60F		PM				
Wind	Calm	AM		Calm		PM				
Health & Safety If any box below is ch	necked "Yes	s", provide	explanat	tion und	er "He	alth	& Sat	fety Com	ments".	
Were there any changes t			•				1	′es	No X	NA
Were there any exceedan		•		eported or	n this da	ate?	*Y	′es	No	NA X
Were there any nuisance i			•	•				′es	No X	NA
	· ·			0:			!	03	NO X	
Health & Safety Comn	ients									
Onsite property has debris	s. Some slips,	trips, fall ha	zards and	potential p	ounctur	e haz	ards (ı	needles, sl	harp glass)	
Summary of Work Per	formed	Arrived a	t site:	0655		D	epart	ed Site:	1035	
purge MW-17S. (0850) St			Sample 8	28103-MV	M 170 I	0020	ハウス fi	$r V \cap C c $ (000E) Add.	
in MW-10K concrete pad v Equipment/Material Tr	with concrete s	sealant. (103	23 for VOC 35) EA offs	s. (1000) ite.	Deconr	ning e	quipm	ent. (1015) Attempt to	o fix crack
MW-17S. (0944) Sample 8 in MW-10K concrete pad v Equipment/Material Tr If any box below is ch	with concrete s racking ecked "Yes	sealant. (103 ", provide	23 for VOC 35) EA offs explanat	s. (1000) iite. ion unde	Deconr er "Ma	ning e teria	quipm I Trac	ent. (1015) Attempt to mments".	o fix crack
in MW-10K concrete pad v Equipment/Material Tr If any box below is ch Were there any vehicles w	with concrete s racking ecked "Yes ^s /hich did not d	sealant. (103 ", provide lisplay prope	23 for VOC 35) EA offs explanat	s. (1000) iite. ion unde	Deconr er "Ma	ning e teria	quipm I Trac	ent. (1015 :king Cor ′es) Attempt to mments". No	o fix crack
in MW-10K concrete pad w Equipment/Material Tr If any box below is ch Were there any vehicles w Were there any vehicles w	with concrete s racking ecked "Yes" /hich did not d /hich were not	sealant. (103 ", provide lisplay prope	23 for VOC 35) EA offs explanat er D.O.T nu	s. (1000) l ite. ion unde imbers an	Deconr er " Ma nd placa	teria teria	quipm	ent. (1015 :king Co i ′es Ƴes) Attempt to mments". No No	NA X NA X
in MW-10K concrete pad w Equipment/Material Tr If any box below is ch Were there any vehicles w Were there any vehicles w Were there any vehicles w	with concrete s racking ecked "Yes" /hich did not d /hich were not	sealant. (103 ", provide lisplay prope	23 for VOC 35) EA offs explanat er D.O.T nu	s. (1000) l ite. ion unde imbers an	Deconr er " Ma nd placa	teria teria	quipm	ent. (1015 :king Cor ′es) Attempt to mments". No	o fix crack
in MW-10K concrete pad w Equipment/Material Tr If any box below is ch Were there any vehicles w Were there any vehicles w Were there any vehicles w site?	with concrete s cacking ecked "Yes which did not d which were not which were not	sealant. (103 ", provide lisplay prope	23 for VOC 35) EA offs explanat er D.O.T nu	s. (1000) l ite. ion unde imbers an	Deconr er " Ma nd placa	teria teria	quipm	ent. (1015 :king Co i ′es Ƴes) Attempt to mments". No No	NA X NA X
in MW-10K concrete pad w Equipment/Material Tr If any box below is ch Were there any vehicles w Were there any vehicles w Were there any vehicles w site?	with concrete s cacking ecked "Yes which did not d which were not which were not	sealant. (103 ", provide lisplay prope t tarped? t decontamir	23 for VOC 35) EA offs explanation of D.O.T nut nated prior	s. (1000) l ite. ion unde imbers an	Deconr er " Ma nd placa	teria Irds?	quipm	ent. (1015 :king Co i ′es Ƴes) Attempt to mments". No No	NA X NA X
in MW-10K concrete pad w Equipment/Material Tr If any box below is ch Were there any vehicles w Were there any vehicles w Were there any vehicles w site? Personnel and Equipm	with concrete s cacking ecked "Yes which did not d which were not which were not	sealant. (103 ", provide lisplay prope t tarped? t decontamir	23 for VOC 35) EA offs explanat er D.O.T nu	s. (1000) l ite. ion unde imbers an	Deconr er " Ma nd placa	teria Irds? rk	quipm I Trac	ent. (1015 King Cor Yes Yes) Attempt to mments". No No Tota	NA X NA X NA X NA X
in MW-10K concrete pad w Equipment/Material Tr If any box below is ch Were there any vehicles w Were there any vehicles w Were there any vehicles w site? Personnel and Equipm Individual	with concrete s cacking ecked "Yes which did not d which were not which were not	sealant. (103 ", provide lisplay prope t tarped? t decontamir	23 for VOC 35) EA offs explanation of D.O.T nut nated prior	s. (1000) l ite. ion unde imbers an	Deconr er " Ma nd placa	teria ards? rk	quipm	ent. (1015 King Cor Yes Yes) Attempt to mments". No No Tota	NA X NA X NA X NA X
in MW-10K concrete pad w Equipment/Material Tr If any box below is ch Were there any vehicles w Were there any vehicles w Were there any vehicles w site? Personnel and Equipm Individual Cody Badman	with concrete s cacking ecked "Yes which did not d which were not which were not	sealant. (103 ", provide lisplay prope t tarped? t decontamir	23 for VOC 35) EA offs explanation of D.O.T nut nated prior pompany EA	s. (1000) l ite. ion unde imbers an	Deconr er " Ma nd placa	teria ards? rk	quipm	ent. (1015 King Cor Yes Yes) Attempt to mments". No No Tota	NA X NA X NA X NA X I Hours 3.75
in MW-10K concrete pad w Equipment/Material Tr If any box below is ch Were there any vehicles w Were there any vehicles w Were there any vehicles w site? Personnel and Equipm Individual Cody Badman	with concrete s cacking ecked "Yes which did not d which were not which were not	sealant. (103 ", provide lisplay prope t tarped? t decontamir	23 for VOC 35) EA offs explanation of D.O.T nut nated prior pompany EA	s. (1000) l ite. ion unde imbers an	Deconr er " Ma nd placa	teria ards? rk	quipm	ent. (1015 King Cor Yes Yes) Attempt to mments". No No Tota	NA X NA X NA X NA X I Hours 3.75
in MW-10K concrete pad v Equipment/Material Tr If any box below is ch Were there any vehicles w Were there any vehicles w Were there any vehicles w site? Personnel and Equipm Individual Cody Badman Alex Stoogenke	with concrete s racking ecked "Yes /hich did not d /hich were not /hich were not nent	sealant. (103 ", provide lisplay prope t tarped? t decontamir	23 for VOC 35) EA offs explanation er D.O.T number nated prior pompany EA EA	s. (1000) I ite. ion unde imbers an to exiting	Deconr er "Ma Id placa the wor	teria ards? rk	quipm	ent. (1015 King Con Yes Yes) Attempt to mments". No No Tota	NA X NA X NA X NA X I Hours 3.75 3.75
in MW-10K concrete pad v Equipment/Material Tr If any box below is ch Were there any vehicles w Were there any vehicles w Were there any vehicles w Site? Personnel and Equipm Individual Cody Badman Alex Stoogenke Equipment Descript	with concrete s cacking ecked "Yes /hich did not d /hich were not /hich were not nent	sealant. (103 ", provide lisplay prope t tarped? t decontamir	23 for VOC: 35) EA offs explanation of D.O.T number of D.O.T n	s. (1000) I iite. ion unde imbers an to exiting	Deconr er "Ma Id placa the wor	teria ards? rk	quipm	ent. (1015 king Cor /es Yes Yes Yes) Attempt to mments". No No Tota	NA X NA X NA X NA X I Hours 3.75 3.75
in MW-10K concrete pad w Equipment/Material Tr If any box below is ch Were there any vehicles w Were there any vehicles w Here there any vehicles w He	with concrete s cacking ecked "Yes /hich did not d /hich were not /hich were not nent	sealant. (103 ", provide lisplay prope tarped? t decontamin Co	23 for VOC: 35) EA offs explanation er D.O.T number nated prior bompany EA EA EA EA Contrace Pine En Pine En	s. (1000) I ite. ion under imbers an to exiting to exiting ctor/Vendo invironmenta	Deconr er "Ma Id placa the wor the wor	teria ards? rk 1 Sc	quipm	ent. (1015 King Con Yes Yes) Attempt to mments". No No Tota	NA X NA X NA X NA X I Hours 3.75 3.75
in MW-10K concrete pad v Equipment/Material Tr If any box below is ch Were there any vehicles w Were there any vehicles w Were there any vehicles w were there any vehicles w ite? Personnel and Equipm Individual Cody Badman Alex Stoogenke Equipment Descript Heron Water Level M	with concrete s cacking ecked "Yes /hich did not d /hich were not /hich were not nent	sealant. (103 ", provide lisplay prope tarped? t decontamin Co	23 for VOC: 35) EA offs explanation er D.O.T number nated prior pompany EA EA EA EA Contrace Pine En	s. (1000) I ite. ion under imbers an to exiting to exiting ctor/Vendo invironmenta	Deconr er "Ma Id placa the wor the wor	teria ards? rk 1 Sc	quipm	ent. (1015 King Cou Yes Yes Yes Quantity 2) Attempt to mments". No No Tota	NA X NA X NA X NA X I Hours 3.75 3.75 3.75
in MW-10K concrete pad v Equipment/Material Tr If any box below is ch Were there any vehicles w Were there any vehicles w Were there any vehicles w Were there any vehicles w ite? Personnel and Equipm Individual Cody Badman Alex Stoogenke Equipment Descript Heron Water Level M Horiba U-52	with concrete s cacking ecked "Yes /hich did not d /hich were not /hich were not nent	sealant. (103 ", provide lisplay prope tarped? t decontamin Co	23 for VOC: 35) EA offs explanation or D.O.T number nated prior ompany EA EA Contrace Pine En Pine En Pine En Was	s. (1000) I ite. ion under imbers an to exiting to exiting ctor/Vendo invironmenta	Deconr er "Ma Id placa the wor the wor	teria urds? rk 1 So so	quipm	ent. (1015 King Cor Yes Yes Yes Quantity 2 2) Attempt to mments". No No Tota	NA X NA X NA X NA X I Hours 3.75 3.75 3.75 3.75
in MW-10K concrete pad v Equipment/Material Tr If any box below is ch Were there any vehicles w Were there any vehicles w Heronous the there any vehicles w Heron Water Level M Horiba U-52 Peristaltic Pump Material Description	with concrete s racking ecked "Yes /hich did not d /hich were not	sealant. (103 ", provide lisplay prope tarped? t decontamin Co Pine E Pine E Exported off Site	23 for VOC: 35) EA offs explanation or D.O.T number in D.O.T number i	s. (1000) I ite. ion unde umbers an to exiting to exiting ctor/Vendo vironmenta ivironmenta l/ Eco Ren	Deconr er "Ma d placa the wor the wor or al al tal Solut	teria ards? rk 1 So So Faci	quipm	ent. (1015 king Cor (es Yes Yes Yes Quantity 2 2 2 2 7 Disposal) Attempt to mments". No No Tota	NA X NA X NA X NA X I Hours 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75
in MW-10K concrete pad w Equipment/Material Tr If any box below is ch Were there any vehicles w Were there any vehicles w Horibual U-52 Peristaltic Pump	with concrete s racking ecked "Yes /hich did not d /hich were not /hich were not /hich were not inent	sealant. (103 ", provide lisplay prope tarped? decontamin Co Pine E Pine E Co Site delivery tic	23 for VOC: 35) EA offs explanation or D.O.T number in D.O.T number i	s. (1000) I ite. ion unde umbers an to exiting to exiting ctor/Vendo vironmenta ivironmenta l/ Eco Ren	Deconr er "Ma d placa the wor the wor or al al tal Solut	teria ards? rk 1 So So Faci	quipm	ent. (1015 king Cor (es Yes Yes Yes Quantity 2 2 2 2 7 Disposal) Attempt to mments". No No Tota	NA X NA X NA X NA X I Hours 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75

Visitors to Site								
Name	Repi	Exclusion/CRZ Zone						
None			Yes	No				
			Yes	Νο				
Site Representatives								
Name		Representing						
Project Schedule Comments								
Bio-Traps to be picked up near the er	nd of October.							
· <u> </u>								
Issues Pending								
None								
Interaction with Public, Property O	wners, Media, et	С.						
None								

DAILY INSPECTION REPORT (Dinaburg), Site No. 828103

WELL MONITORING TABLE:				
Well ID	DTW	DTB	Notes	
Site Inspector(s): Cody Badman Date: 09/27/2023			Date: 09/27/2023	

Videos of discreet operations have been provided to the DEC Project Manager to facilitate
understanding of the ongoing work?Yes \square No \square N/A X

DAILY INSPECTION REPORT (Dinaburg), Site No. 828103

REMEDIAL ACTIVITIES AT PROPERTIES

1.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes □	No 🖂
2.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes 🗆	No 🖂
3.	Were personal protective gloves, masks, and eye protection being used?	Yes 🗆	No 🖂
4.	Does the Department and its contractors have your permission to enter the property at this time?	Yes □	No 🗆
5.	If Yes to 1 or 2, follow the latest NYSDOH COVID-19 guidance: https://coronavirus.health.ny.gov/home	Yes □	No 🗆
Comm N/A	<u>ents:</u>		

ON-SITE WASTE STORAGE

Drums, roll offs and piles are staged in secure areas?	Yes 🗆	No 🗆	N/A⊠
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes 🗆	No 🗆	N/A⊠
Containers are in good condition or properly overpacked?	Yes 🗆	No 🗆	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes □	No 🗆	N/A⊠
Complying with RCRA 90 day storage limitation for hazardous waste?	Yes 🗆	No 🗆	N/A⊠
Piles are securely covered when not in use?	Yes 🗆	No 🗆	N/A⊠
Containers are closed when not in use?	Yes 🗆	No 🗆	N/A⊠
Staging areas should be inspected periodically and any issues addressed immediately?	Yes 🗆	No 🗆	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes 🗆	No 🗆	N/A⊠
If any issues noted, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
Comments:	<u>.</u>		

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes 🗆	No 🖂	N/A□
Were there any odors detected on this date?	Yes 🗆	No 🖂	N/A□
Was noise outside specification and/or above background on this date?	Yes 🗆	No 🖂	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes 🗆	No 🗆	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes 🗆	No 🗆	N/A⊠
Was turbidity checked at the outfall(s)?	AM 🗆	PM 🗆	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No 🗆	N/A⊠

DAILY INSPECTION REPORT (Dinaburg), Site No. 828103

Was the temporary fabric structure closed at the end of the day?	Yes □	No 🗆	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No 🗆	N/A⊠
If yes, has Contractor been notified?	Yes 🗆	No 🗆	N/A⊠
<u>Comments:</u> N/A			

RESILIENCE/GREEN REMEDIATION CHECKLIST

Is site power procured from renewable energy sources (e.g., solar, wind, geothermal, biomass and biogas)?	Yes □	No 🗆	N/A⊠
Is the Contractor employing 2007 or newer or retrofitted (BART*) diesel on-road trucks and non-road equipment?	Yes □	No 🗆	N/A⊠
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes □	No 🗆	N/A⊠
Have equipment operators been trained in the idling requirements of 6NYCRR Part 217-3?	Yes 🗆	No 🗆	N/A⊠
Is BART-equipped equipment properly maintained and working?	Yes 🗆	No 🗆	N/A⊠
Is work being sequenced to avoid double handling?	Yes 🗆	No 🗆	N/A⊠
Is there an onsite recycling program for CONTRACTOR-generated wastes and is it complied with?	Yes 🗆	No 🗆	N/A⊠
Are office trailer heating and cooling systems maintained at efficient set points, have programable thermostats been installed?	Yes □	No 🗆	N/A⊠
Are products and materials used in performance of the work appropriately certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative®, etc.)?	Yes 🗆	No 🗆	N/A⊠
Are resiliency features included in the design, or completed remedy properly installed and/or maintained (flood control, storm water controls, erosion measures, etc.)?	Yes 🗆	No 🗆	N/A⊠
Are green remediation elements included in the design, or completed remedy properly installed and/or maintained (e.g., porous pavement, geothermal, variable speed drives, native plantings, natural stream bank restoration, etc.)?	Yes □	No 🗆	N/A⊠
Has Contractor been notified of any deficiencies?	Yes □	No 🗆	N/A⊠
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes 🗆	No 🗆	N/A⊠
<u>Comments:</u> N/A			

* BART – Best Available Retrofit Technology

Appendix B

Inspection Forms

Site Inspection Check	list		al 1
Site Name (Number):	Dinaburg (828103)		Date/Time: 3/30/2
	1010 0 1	CII I I I I I I I	>TX 14/20
Site Address (nearest cross st	reet): 1012 South	Clinton Ave. Roch	
			Jashe
Weather: 367 Purty (lo	ich	Personnel:	NR NP JO
Site property description (.e			
Building(s): Sensed	Stories: 1-2	In Use/Active:	Active
Bldg material:		Area Use (R/C/	
Fenced (Y/N) (material): V	1902	Gate(s):	Lock(s): Ves 8/03
Nearest adjacent buildings (an	· · · · · · · · · · · · · · · · · · ·		
RISI	entité commerciail	Convirge A.	
			~0
Site Surface Hydrology			
Surface water drainage/Impou	indments: MA		Creeks/Streams: #A
Ponds/Water front	· · ·		
Site Features			
Asphalt/Concrete (%) : l_{4}	Condition:	Acceptore	
Slope/Direction (steep/flat,hil		•••••••	
Vegetation (grassy/trees/shrul		Agne;	
Overhead Utilities (electric/da			11 m 1 m
Subsurface Utilities and Loca		<u>ــــــــــــــــــــــــــــــــــــ</u>	
Monitoring Wells (see attache			
	A checkist).	·····	
Notes/Other Observations:			
Sincel	wells in right of	here on Site	ahalk
		19 01 010	
			5 1.
			-
			ŝ
Site Sketch			
•			
Site Sketch See attach	et map		
	et map		
•	et map		
•	et map		
•	et mnp		
•	ed mpp		
•	et mnp		

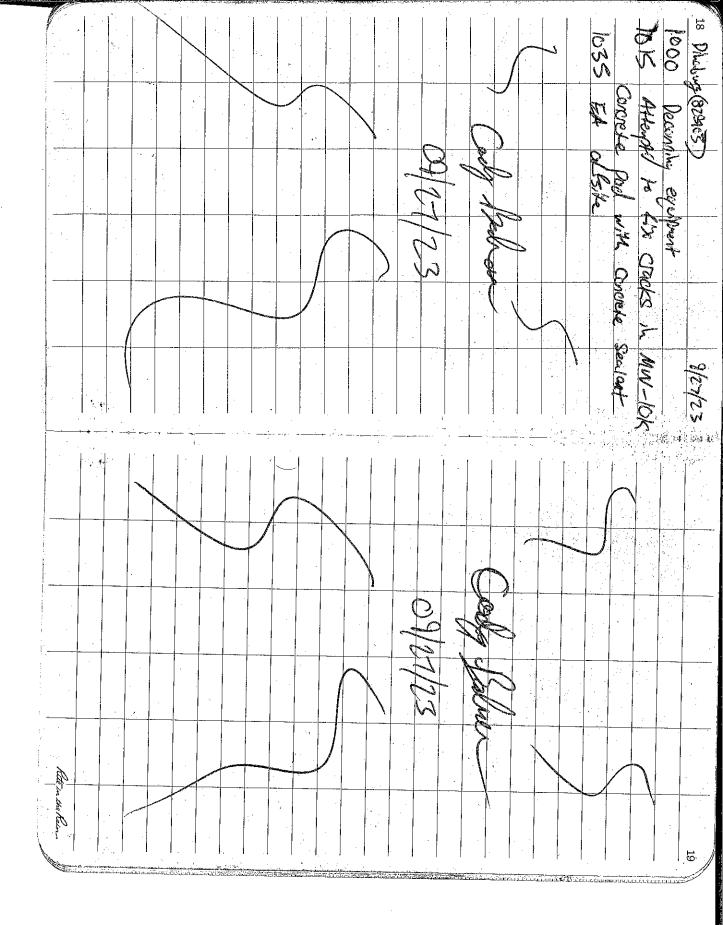
Appendix C

Field Forms

08/31/2023 Phaburg 878/03 nerburg (828103) Weather: 75°F, SUMY Weather: 62" = Sunny Personnel : C. Bodman, L. Backman-Love C. Bachnen A. Storgete Reservel: Objective: Site inspection well report / mail terre ? Objection : Well tedevelopment EA consite Tailgate H+ S meetly coverty 074S EA onsite trackie slips, trips + falls, hydrafter 4+ S meetly topics include OBG Tailgete Begut search for wells conduct Slips trips + falls, sharps site inspection Bogh well repair + mailtenice 0799 added to MW-155 ansite GSec Leck Property ame / manager 0805 Lock added shown well locations asked to Mn-15K ĒA added to MW-215, MW-1000 0810 to remove concrete blocks Lacks Lock + J-plug poplaced on MW-185 EA affsite. 0815 0820 Lock + J- pkg + bolts replaced on Mad-195 Locis added to MU-14AA MW-175 needs lock, will replace dury saply 0825 2023 MW-BD 31 : 11 MW-16K !! · 11, MW - OBCA needs lock, Vepticed 2 Welts 0830 MW - ZOS needs lock, replaced i walt MW - O3A newls lack, boits allel MW-13K repaced J-plug, needs com 0835 Ziell Sents + Lock : Mw-09K, reaks lack 0840 MW-CC added J-plug, results last, added 0845 bolits, reals one sent * 意 reflaces 0855 MW-105, needs lock, and the

09/11/23 (Dihaburg 828103) 09/11/23 643 (878703) 1100 Start puze at MW-8K, when duty ter fall to keep well Flush Juping Stop puze at Mr - SK, velldry 1105 Cap Flisk after purgly ~ 4 gellens MN-105 begin remainly oil we'l cardy Spoke with noneowner regarding 1110 ad coper Sporchal Fer MW-24 Could not locate Rapport boits on MW-05 (bigger gauge Presence cosite. 1125 Stort purge on Mu- St agosh, well clear after puzzily Replaced J-plug MW-04, news ist, 7 total gallons bigger bolts (DB) MW-125 appeal aller needs lock at MW- ZZK, 10 1130 Start PUZE Water turbid MW-12K replaced & - MUg - needs lock 1140 Purjed Stopped above purgety 226 gallens Mplaced bolts Water to be durped in drunts and MW-11K - Neaks lock + bolt 2 Puge nisterted MW-115 - needs bolts + lock. 1150 Puge restarted at MW-ZZKS MW-83 - Meds botts needs new Cap, sent 2 1203 Puzzed stepped after puzzy addition MW-BR - Needs Goits 32 gallais. Vater tobe changed MW-ZYK - Needs lects 3 Purge restarted at Mu-ZZK Return to MW-10K to leep tryby to replace well control Cap 1212 1225 Puge Stopped after pugily additional Well Cup installed on MW-90K Ô Concrete may need to be researed 32 gallers. Water to be domped to Called M. Wight (EA) discussed doens and purge restorted 0 Purge restarted at MW-22K well repair needs plan for redundopment Begoh development on MW-195 1245 Stop puge on MW-22K, writer 5 Clear after pugly ~ 103 gallens - Very toril Stop puge on MW-195, well dry MW- 11K, Sectiment 1300 01 Jet up encountered at 2 2Ft. Pumper upolity to after purgly ~ 1 gallon

9/12/23 7 Dihabury (828103) 09/11/23 aburg (\$28103) Weather: GICF, overcast Start purge at MN-185, water turbid Personnel: C. Budmin, A. Stoczenke Purge Stopped, weildy deter pugiling Objective: Search for- wells, well repet ~ Z gallons EA antite 0830 well dry after Puze restanted, Tailgate It + S Meeting 0835 topics addition 1 gallante included Slipstops + falls traff Puze restanted well dry alte Puncture hazards ng gallan Attempt to open MW-95 0840 restanged, well dry after Purge MW- 95 successfully opened; pumply a 5 gallers total (1 addition) 0845 PVC well is loke on top, no J-plug Start puge on MW- 195 no lock Stopped Ruge on Min - 195 0 . 0850 - Begth Dearchilly for Misshig - Wells. packily up 2500 - Called property ount regulity EA lockly gate alste EA PUC on MW-95 Beink Kutth 0930 inish Cutting/PUC, installed J- Plug 0935 needs lock 0945 G MW-85 Cut PVC 1000 Attempt to dear obstruction MW-115 005 boits to MW-85, MW-955 Added MW-11K, MW-11S 1105 PUC of MW-105 Cot Cutting PVC on MW-10S, Flash 1140 added 60145 1150 Return to MW-11K to try and free sublit


Phaburg (828103) 9/13/2023 Well I MW-11K discovered to be Weather: 60°F, overant Persennel: C. Badnan, A. Stagese Collapsed n 3.5 feet boits to MW-4, MW-03A Objective : Locarte vells vell redevelopment Added 0 0000 MW-03CA, MW-05, MW-205 onsite ĒĄ H+S reatly covery topks Tailgake 0805 Ŝ EA offste of tracking slips trips + fails Search for MW-24K osis Search for MW- 01, MW- 01A, GVE-0830 Martial locations where veris are believed 0835 2023 to be present. Noted that all seats are boken on Mir. 0845 Boych redevelopment at MW-95, 9K 0855 Stopped puge on Mill-ofter pugly n 6 callons Restorted puge on Manwell dry on MW-95 6910 0915 puze on Ma-95 5490 Stepped pumpling puge after N8 gallins fotal Vasta loso J. Bliber (EA) onsite Search for MW- Z418 Located MW- Z4K, PZ- Z4S 1115 1120 NYSDEC 1135 Jagmilie, Jehr onsite NYSDEC Affine delivered access agreement 1200 J. Oliver (EA) 648-110 to \$58 1210 redevelopment of MW-2415 izis Start St. water very duty Rite in the Rain.

9/14/2311 Dihaburg (828703) 9/13/23 87810 purgly ~ 8 gallons Weather 53°F, Porthy Chily Purge Stopped after Reservel: C. Bachman, A. Stagerte Water clea Objectio: Rethread wells Dump IDW the drings EA ONSITE, Tailgale 14+5 Meetils 0800 EA LASTE Beghn rethreadly wills that eyelets are 0805 broken. net MW-195 1 broken except, MW-03A 0810 exclets, MW-KK Z'broken exciets Z broken MW-158 16RKen eyelet 2 eyelets on MW-135 0815 Retbead eyelets on MV-9K 0820 fethead 3 exelet 2 boken on MW-06 0830 Rethread 1 eyelet on Mr-108 Rethread 1 0835 explats on MW-05 Rethread Z 0840 exelet an Mur-04 0850 Rethread 2 0855 MW-11K 1 broken explot, Rethreaded 1 exclet on MW-115, 16okn exclet 0900 expelets on MN-85 Rethenel Z eyelet on Mr. 83 0905 Rethrend 2 2 exect broken. 0915 allsite EA Rite in

P 0936 5180 12 () in 1 R CORRECT OF 0755 950 04 0080 Shin 3211 042j <u>ss</u> 2521 17 83 1300 878103 Sample 9 Sample 9-7-7-09252623 Novel 1 Ster MNA 4 たみ Ł allinete いても XXMD/Le ster (24818) 121 st D S A. Var, \$\$ ↑ 873103 - MW - 13K - 09752025 anshe 2222 2 MUDIKS Vas 823103-200 Perze 1 Der 1 | f: - 425.0-414- 52628 01 204 m 200 88865-MV+203 + 0925223 1trailes CUND. DOD + 02 Synaphic エイシ <u>Mut - 00</u> 000-MNA ANDUS 05CA MNA Populars (C. Buchan ANNA US/MSD Mu-205 MW-03A MW-ANN M K -Tor fler MV-034-09752223 Mh Mert 5 - 09757025 403CA ED' Pranafers Sbil RUS 502 - MW 135 MW-0307 A. Starke marsters Cover MW - 130 100 × + Silver 18 tepze đ Mer L 4617 D/10/2 (\$ 20105) 2081 1039 550 1445 & 1342 22.25 23 SIL 1307 Sample Suple R J. Jert Serie Ð 50 1 Ster Sergle 828103 - 114- 195 -Start Soon locs 8 82865-MW-195-098282 828/03-S S purge <u> 378/03-</u> Stales - MW-14KA - OALSLOS + MUR praviles C C C 22m 2 June We - Br ANN 5202 MNA MW-15K-09252023 100-NW-08K-09252023 Mar-MW-1SX pane & Percentes SS 14KA Rite in the 1 07252623 gleste 23

14 Dhickeys (0700 0740 23 0730 Salo 6460 2180 0916 SHO 386 20%0 O2003 , Scuple 2520 035 1 2 2 3 03:50 1000 29 1030 Sample <u>8</u> Sample Semple Sanak t als Sample 828105 - MW-24K-Stort Ster イダン SF-4 for vocs Ş Stat 7 Stera Tailste Health + Safet <u>1</u> 1 allate (878703) ी ह t S to ler Soc. Street. 1000 Jac, Jog 2 puse Dare \$26103 - MW-05-09262623 3 828105 - MV + 08 - 09262028 828105 - MW-23K-0826 2023 525105 - NW-10K- 09282023 0 mm Veres Sam Pelage 529163 - MU- 201 - 0920223 Jurge 122 Srv S 1ext Sil 6 20 122-1 C. Scol new MWrecheza, then 501 - MW <u>20-05</u> 17-MW-235 MD-DM 272 S 242 meth. A Stroker S 560 1 SI 3 Mu-Q Sabe 09262023 PZ-24S ent for the 9/20/23 Dhabuz (82\$103) 22 1257 tshst 152 1225 222 2 Э Л 82 22 1400 Start puzze MPE-17 <u>LISI</u> PISIA Ę S S Sample Sample 828103 - MW + O4 - 0922625 d) I Sample P e 1 Stort Son Ne Ster + Sample 328:03-MW-1095-69262623 d d Mung ger? Scaple Sandre Stort -09202023 S Ste anna la E र्ण ह ŝ 8 ilos, 8 100 j 200 828103 - MIN-115 - 072023 82963-NW-085-09662023 828103-GUE-2-09262025 \$ 878103 - WW - C4S - OPCCO 828105-MW-09K-09262023 Puze MW-OK 32\$103-MV-12K-09262022 Bend 223260-521-7W-50 828 Purch Perso B Puzz Mur-20m ¢ MS + MSD total MW-113 MW-C-AMB-2 580 - MW MOC, 20-10 -59828 22 821 Pute in the Pain 4/20/2315

16 Ohally 12 12 12 1427 140S 630 1458 1606 552 Start Sanple Sample Barare 9 29262022 दै San ale 822103 - MV-225-09262023 Nor T (Soi BB) , Voc allette 828/03 - MPE-17 - 09262023 \mathcal{R} purse MW-ZZK Ka 522-201-201828 5 5202 522-22 Sandle 8 S 64 09/26/23 sł. Michary (80000) 2440 8480 Cars 0880 0832 8% 0 0700 8400 0830 080 80 0800 0755 0741 SSS 214 000 070 0721 all we Sample 204 474S 191 425 E Sample Scuple R tat Sat Tailgole Sample hozards Cal ndd. Sample 5000 2 Added 1800 P Stort - <u>مالیکی</u> Ś Halle Voc, Vacs ß 200 52022260-541-MM-201878 Puise, 5005-M-- 103-0917 20153 Juze R ating puzz_ He (Cerduan A. H+ S meeting ĝ, 803105-MW-16K-09272023 52222260-581-MN-501828 Dash 828103 - MW-030-09272023 8 leck to 14-030 828103-MV-21S 22mg Nerribes N.S. đ MW-165 MW-165 MW đ 581-M NW- RK NW-215 1 miles MW-03D MUL-IGK MV-) A Stagerta Corend $\widehat{}$ Rite in the hain 9/27/23 17 - 0927223 uncture いた

CALIBRATION			
DATE: 09/25/2023			
TIME: 0800			
METER ID: 46003			

pH CALIBRATION

pH STANDARD	INITIAL READING	FINAL READING
4.0	4.93	3.98

CONDUCTIVITY CALIBARATION

CONDUCTIVITY STANDARD	STANDARD READING	FINAL READING
4.49	5.31	4.51

TURBIDITY CALIBRATION

STANDARD	INITIAL READING	FINAL READING
0 NTU	0.0	0.1

COMMENTS

SIGNATURE

Caly Sah

٠,

CALIBRATION	
DATE: Oglas/2023	
TIME: 0800	
METER ID: 21078	

pH CALIBRATION

pH STANDARD	INITIAL READING	FINAL READING
4.0	\$.10	3.96

CONDUCTIVITY CALIBARATION

CONDUCTIVITY STANDARD	STANDARD READING	FINAL READING
4.49	4.86	4.58

TURBIDITY CALIBRATION

STANDARD	INITIAL READING	FINAL READING
0 NTU	0	\mathcal{O}

COMMENTS

An ÂW

CALIBRATION DATE: 0926/2023 TIME: 0700 METER ID: 21078

pH CALIBRATION

pH STANDARD	INITIAL	FINAL
	READING	READING
4.0	5.2.8	3.99

CONDUCTIVITY CALIBARATION

CONDUCTIVITY STANDARD	STANDARD READING	FINAL READING
4.49	4.93	4.54

TURBIDITY CALIBRATION

STANDARD	INITIAL READING	FINAL READING
0 NTU	ð	0.3

COMMENTS

All Struften

CALIBRATION	
DATE: 09/26/2023	
TIME: 0702	
METER ID: YGOOS	

pH CALIBRATION

pH STANDARD	INITIAL READING	FINAL READING
4.0	4.95	3.95

CONDUCTIVITY CALIBARATION

CONDUCTIVITY STANDARD	STANDARD READING	FINAL READING
4.49	4.80	4.55

TURBIDITY CALIBRATION

STANDARD	INITIAL READING	FINAL READING
0 NTU	5.5	0.0

COMMENTS

Culy the

CALIBRATION

DATE: 09/77/2023

TIME: 0700

METER ID: 21078

pH CALIBRATION

pH STANDARD	INITIAL	FINAL
	READING	READING
4.0	6.00	3.96

CONDUCTIVITY CALIBARATION

CONDUCTIVITY STANDARD	STANDARD READING	FINAL READING
4.49	5.19	4.56

TURBIDITY CALIBRATION

STANDARD	INITIAL READING	FINAL READING
0 NTU	14	0.6

COMMENTS

SIGNATURE Cody Balm

(CALIBRATION
DATE: 9/21/23	
TIME: 0700	
METER ID: 4600	3

pH CALIBRATION

pH STANDARD	INITIAL READING	FINAL READING
4.0	4.49	3.94

CONDUCTIVITY CALIBARATION

CONDUCTIVITY STANDARD	STANDARD READING	FINAL READING
4.49	5,16	4.58

TURBIDITY CALIBRATION

STANDARD	INITIAL READING	FINAL READING
0 NTU	18.3	0.0

COMMENTS

Cul Bh

FIELD CALIBRATION FORM

	Dihaburg	42089)
INSTRUMENT: REIGX-6000	INSTRUMENT ID No:	Settor aze	LAD
	WEATHER: SUMY	58°1=	-444
OPERATOR: CDB SPANGAS TYPE: WOMM ISobutyley	DATE: 09/25/20	23	
CALIBRATION NOTES:	· /		
Zero: 0,0 ppm			
<u>Zero: 0,0 ppm</u> Span: 99,8 ppm			
\$ V f			
COMMENTS: 1/one-	<u> </u>		
		. <u> </u>	
		· .	
SIGNATURE: Confermen D	ATE: 09/15/202	3	

FIELD CALIBRATION FORM

Site Name:	Dihabury
INSTRUMENT: REJ 6X-6000	INSTRUMENT ID No: リンフィア
OPERATOR: A. Stongenkl SPAN GAS TYPE: Fobulylene 190ppm	WEATHER: Suny, 65°F
SPAN GAS TYPE: Kobarylene 100ppm	WEATHER: Suny, 65°F DATE: Oa/28/7023
CALIBRATION NOTES:	
2.250= 0.0 ppm	
5Pay=98.7 ppm	
• · · · · · · · · · · · · · · · · · · ·	
COMMENTS: NONe	
//////////////////////////////////////	
· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·
A	
SIGNATURE:	DATE: 09 125/2023
	()

ł

MONITORING WELL GAUGING LOG Inspector(s): C. Bauman, A. Stoggarke Weather Conditions: SUNNY 60°F

Site Name: Dihalunz Date/Time: 09/25/23 0815

r					_						_											
	Well Condition / Notes																					
	DTB (ft. below TOC)	19,32	12.81	5212	LL'h!	36'22	92'02	06'h1	00'52	ایرمی	96'hl	15.25	0172	68h1	10'52	15,00	21, 68	921h2	86°h1	14,22	L812	20117
	DTW (ft. below TOC)	8.03	01'8	8.59	8.80	816	45.9	66.6	10, 19	hh'8	64'8	9,55	02%	11'8	926	9.38	18.37	59.6	છ,ઉડ	8,35	8,83	8638
	PID Reading (ppm)	0,0	Õ,Õ	4,8	0°O	1, 8	0.6	8, O	22,55	1,5	2,3	0,5	5.4	ତ,ଓ	10.2	12,9	1.4	0,6	CS.4	1.6	0,5	2,8
	Well ID	MW-OC	MW-105	MW-10K	MW- 095	MW-09K	MW-13K	NW- ISS	MW-15K	512-MW	581 -mW	NW-16S	MW-14KA	SLI-MW	MU-ICK	MW-20S	MW-03D	MW-034	261 - MW	82-248	MW-24K	MW-23K

MONITORING WELL GAUGING LOG Inspector(s): C, Bood Med, A. Stogente Weather Conditions: SUMM, 60°F

Site Name: Dihaburg

	0812
0	125/2022
lime:	50

	Well Condition / Notes																	
	DTB (ft. below TOC)	23.22	22.37	52'21	18.65	15.SO	66 38	18.73	8h'SI	05'82	12112	61 22	56.82					
	DTW (ft. below TOC)	9.85	9.76	8:2S	8.90	32'8	7.56	8,25	2.82	86'8	7.15	12'6	11, 99					
JUMY, 60 1	PID Reading (ppm)	1,5	1.7	1,5	1,5	1,5	1.2	21	0'0	0.5	0'2	9'h	0, 6					-
	Well ID	MW-05	ho-mb/	MW-125	NW- ICK	SII-MW	MW-08S	14W-08K	222-20	MW-22K	MPE-17	レーヨー	MW- OSCA					

EA Engine EA Science	ering, P.C. and Technology	<u></u>		NEW YC STATE OF OPPORTUN		tment of primental rvation
	GROUNDWATER SAM	PLING PUR	GE FORM		1	
Vell I.D.: MW-03A	EA Personnel: A . Stooger	ılce	Client: NYSDEC (828103	>	
ocation: Dinabusa	Well Condition:		Weather:	State Stat	30°Z	
ounding Method:	Gauge Date: 69/75/20	7 Z	Measureme		9C	
tick Up/Down (ft): FUSh	Gauge Time	67	Well Diame	those (im).		
	0900			<u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	/	
urge Date: 09 125 207 3		Purge Time	1145			
ungo Mothoda		Field Techn		; ;		
low How Per'	pump		<u>A .S</u>	Hoogenhe		
Well Death (6).	Well Vol	ume				
	D. Well Volume (ft): O. 1 (53		ht of Top of I	A	
Depth to Water (ft): 9.63	E. Well Volume (gal) C*D):	7.40	Pump Type:	Perstal	$1 \sim 0$	
. Liquid Depth (ft) (A-B): 14.73	F. Three Well Volumes (gal	L(E3):	Pump Intak	e Depth: Mill-	<u>HC pu</u>	mp
	·	ICL_	<u> </u>	<u></u>	Screen	
Time Temperature nH	Water Quality				· · · · · · · · · · · · · · · · · · ·	
(hrs) (oC) (pH units)	ORP Conductivity (mV) (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
145 14.97 7.77	163 0 820	296	1.07	9.77	1 (Lpin) 1 (), T	(inters)
148 14.79 7.75	-173 0.630	250	0.88	9.72	0.7	U.G
18 14.50 7.77	-186 0.64	254	0.52	9.75	5.0	12
157 14,18 7,15	-198 0.685 -173 0.852	228	0.55	9.25	0.7	1.8
200 14.04 7.13	-172 0.342	175	1.25	9.75	0.7	2.4 3.8
203 13.99 7.02	-17 0.898	154	0.61	9.72	0.2	3,6
106 14.02 7.06 209 14.17 7.07	-176 0.931	120	0.45	9.72	0.2	4.2
209 14.17 7.07	-178 0.957 -180 0.980	98.8	0.40	9.72	0.2	4.8
215 14.41 7.09	-182 1.05	32.7	0.52	9.72	0.2	COC SI4
218 14.08 7.10	-182 1.04	84.9	0.56	9.72	0.2	6,6
221 13.96 7.10	-182 1.07	33-6	0.52	9.72	0. I	702
			<u> </u>			
tal Quantity of Water Removed (gai): M nplers:	y no Ii	10	Sampling Tir Split Sample	ne: 14/366.	122	Σ
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	13		Sample Type		brab	
MMENTS AND OBSERVATIONS:				_		
	·····					

EA Engine EA Science	ering, P.C. e and Technology		۰ ع	NEW YO STATE OF OPPORTUNI	RK Depart TY Environ Conser	ment of Imental Vation
Well I.D.	GROUNDWATER SAMP	LING PUR			1	
Well I. MW -03CA	CB.A.	S	Client: NYSDEC	(823)	03)	
Location: On Site	Well Condition:	<u> </u>	747 41	Surry (<u> </u>
Sounding Method: HERN WLM	Gauge Date: 09/25/20		Measureme	nt Ref.	<u>507-</u>	·
Stick Up/Down (ft):	Gauge Time:	25	Well Diame	ter (in):	<u>IC</u>	. <u></u>
1703	0930			2	·	
Purge Date: DO 06 1.1.	7	Purge Time	:	an at		······
09 25/202 Purge Method:	<u>/5</u>	Field Techn	<u>O</u>	136 Brdr		
Low Flow P	en' pump		\mathcal{C}	Broke	an	
	Well Vol	ume				
A. Well Depth (ft): 29.75	D. Well Volume (ft): 6, 1	17	Depth/Heig	ht of Top of P	VC:	
B. Depth to Water (ft): 11 00	E. Well Volume (gal) C*D):	· · ·	Pump Type	~	<u>++.</u>	
Liquid Donth (4) (A. R)	(0· /), 7	.89	4	estall	VZ PL	MD
17.76	F. Three Well Volumes (gal)	(E3): <u>6,</u> 67	Pump Intak	e Depth: Mice - SCA	en.	/
			"			
Time Temperature pH	Water Quality I ORP Conductivity		DO	DTW	Rate	X7.1
(hrs) (oC) (pH units)	(mV) (S/m)	(ntu)	(mg/L)	(ft btoc)	(Lpm)	Volume (liters)
0956 18:05 6.17	-232 0.402	183	334	12.75	0.2	
0939 17,19 6.63	-264 0,451	125	1.63	12.95	0.2	0,6
0942 17.54 6.74	-202 0.555	107	1.28	12.95	0.2	1.2
0945 18.15 6.79	-247 0.230	97.5	1.04	12.95	0.2	1.8
0948 17.24 6.83	-240 1.14	91.0	1.25	12.95	0.2	2.4 3.0
0951 6.72 6.84	-235 1.25	79.1	1.67	1295	0.2	3.0
0954 16.70 6.87	-232 1.28	74.2	0.90	1295	0.2	3,6
0957 16.66 6.88	-730 1.30	61.0	0.87	12.95	0.2	4.2
000 16.67 6.88	-779 1.30	48.7	0.85	1295	0.2	Y.8
1003 16:77 6.88	-226 1.31	47.1	0.84	12.95	0.2.	5.4
1006 16.74 6-88	-223 1.32	46.9	0.83	12.95	0.2	6.0
					·	
	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·
otal Quantity of Water Removed (gal):	1.00		Sampling Tir		16.7	
amplers:	AS 1.584		Sampling Tu Split Sample		1000 MS/	, hsz
ampling Date:	25/2023		Sample Type		Eral	>
OMMENTS AND OBSERVATIONS:	•					
		·				

with.

の一般の時代の中国である。

,

f

		EA Engin EA Scienc	eering, P.C ce and Tecł	: inology		2	NEW YC STATE OF OPPORTUN	DRK Depa	rtment of onmental ervation
A. D.	4		GROUND	WATER SAM	PLING PUR	GE FORM		I	
N	1w-031	D	EA Person	CR AS		Client: NYSDEC	(828103	<u> </u>	
Location:	Onsite	•	Well Cond			Weather:	$\overline{\mathbb{C}}$	/	
Sounding	Herry ML		Gauge Dat	<u> </u>	· · · · · · · · · · · · · · · · · · ·	Measurem	SUARY	499F	
Stick Up/D	own (ft):		Gauge Tim	09/25/2	5		TOT	<u>c</u>	
- 17 -	Flush		Gauge III	<u> </u>		Well Diam	eter (in): 7		
Purge Date:	001		7		Purge Time		·		
Purge Meth	P90	17/2027					0721		
	Low	flow p	ler pur	10	Field Techr	uician:	Bacho	<u>и</u>	
				1					
A. Well Dep	oth (ft):	51.68	D. Well Vol	Well Vo lume (ft):		Depth/Heid	tht of Top of I	WC.	
B. Depth to	Water (ft)	· · · · · · · · · · · · · · · · · · ·	1	0	163	1		-0-201	
		3.37	г. түсш үог	ume (gal) C*D);	5.43	Pump Type	· ferstal H	- pung	>
C. Liquid D	epth (ft) (A-B);	33.31	F. Three We	ell Volumes (gal) (E3) 79	Pump Intak	e Depth:		
							Mill-R	<u>ren</u>	
Time	Temperature	pH		Vater Quality Conductivity					
(hrs)	(oC)	(pH units)	(mV)	(S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
072	10,49	5,86	-81	3.06	0.0	4.76	1935	0.2	
0724	10.54 10.64	6.35	-352	5.13	0.0	7.70	19.89	0.2	0.6
0730	10,86	6.38	-378	5,44 5,59	0.0	10.00	20.30	0.2	1.2
0733	10.87	6.40	-414	5.63	0.0	10.70	20,63	0.2	1.8
0736	11.14	6.43	-418	5.54	0.0	11.39	20.98	0.2	2.4
0739	10.91	6.45	-413	5.49	0.0	11.49	21.49	0.2	3.6 3.6
0742	11.02	6.48	-427	5,41	0.0	11.29	21.85	0.2	4.2
0748	10.98	6.50	-430	5,40	0.0	11.17	22.15	on	4.8
0/40	10.851	6.56	-433	5.43	0.0	11.10	22.31	0.2	5.4
									
	<u> </u>								
otal Quantit	y of Water Rem	loved (gal);		1.4256		Sampling Ti			100
amplers:	e: –	09/2	CB AS- 7/2023			Split Sample		N/	48

		EA Engine EA Science		nology		2	NEW YO STATE OF OPPORTUNI	RK Depart Enviroi Conser	ment of Imental vation		
Well LDr.			GROUND	WATER SAMP	LING PUR	GE FORM Client;					
Well I.D.: Ml	V-04			CB. AS		NYSDEC 825103					
Location:	alk on Bo	aten St.	Well Condi	Gocal		Weather:	Cloud	7, 61	F		
Sounding M	lethod: Ear WLP		Gauge Date	09/25/201	U3	Measureme	nt Ref:	DFC			
Stick Up/De	own (ft): Hush		Gauge Tim	0840		Well Diame		2	<u> </u>		
Program Data			·····								
Purge Date:	017	16/2023			Purge Time	1	051				
Purge Meth	od:	ow fl	on fi	es' fump	Field Techn	ician:	Badm	er l			
				Well Vol	ume						
A. Well Dep	• •	22.87	D. Well Vol	ume (ft): Ø.	163	Depth/Heigl	nt of Top of P	VC: 0.25 Hz.			
B. Depth to	Y Y	-76	E. Well Volt	ıme (gal) C*D): Z	137	Pump Type	6 Rtoll	r Pu	no		
C. Liquid D	epth (ft) (A-B):	13.11	F. Three We	ll Volumes (gal)	(E3):	Pump Type Perstallic pupp Pump Intake Depth: Mil-Screen					
		<u> </u>	v	Vater Quality I	arameters						
Time (hrs)	Temperature (oC)	pH (pH units)	ORP	Conductivity	Turbidity	DO	DTW	Rate	Volume		
1051	15,14	7.06	(mV) 60	(S/m)	(ntu)	(mg/L)	(ft btoc) 10.13	(Lpm) 0.2	(liters)		
1054	14.91	6.97	53	1.06	105	0.58	10.19	0.2	O.C		
1057	14,82	6.96	43	1.06	123	0.39 10.25 0.2 1.2					
1100	14.69	6.96	32	1.06	127	0.41	10.35	0.2	1.8		
110 3	14.63	7.00	14	1.06	121	0.34	10.42	0.2	2.4		
HOG	14.58	6.97	-7.9	1.06	98,3	0,31	10.50	0.2	3.0		
1109	14.59	6.95	-55	1.06	74,4 48.4	0.32	10.57	Oil	3.6		
1115	14.55	6.96	- 75	1,0G	35,9	C.30	10.61	0.2	4.2		
1118	14,55	6.95		1.00	38.7	0.27	<u>10.61</u>	0.2	4.8		
1121	14.52	6.95	-77	1.00	<u>- 32.0</u> 33.8		10.61 10.61	0.2	<u>5,7</u> 6.6		
					<u> </u>	UBLAS	10 2 1	<u> </u>	<u>6.0</u>		
									- ·		
latal Orrenti	ter of Michael										
amplers:	ty of Water Ren	novea (gar):	CR AQ	1.584		Sampling Tir Split Sample			21		
Sampling Da	ite:	6	1/26/2	023		Sample Type		6.0	1 ¹²		
OMMENT	5 AND OBSERV	VATIONE	/ /			- VI	-				
								·			

.

Ŧ

the second descent of the second seco

		EA Engine EA Science				2	NEW YO		ment of amental			
			GROUND	WATER SAME	LING PUR	GE FORM	Y	Consei				
Well I.D.:	MI / A	C	EA Personr	nel:CE,AS		Client:						
Location:	<u>MW-0</u>		Well Condi	$\frac{OS}{H}$		NYSDEC Weather:	87810					
Sounding N	ult accoss	. sheet		Cool	Cloubles L'OFF							
	eran WL	M	Gauge Date	" 09/25/20		Measurement Ref: TOLC						
	Flush	·	Gauge Time	083	5	Well Diame	ter (in):	-				
Purge Date:	09/7/	11 27			Purge Time	:	10.00		······			
Purge Meth	<u>09/76</u>	12023 Hon	0.20	·	Field Techn	ician:	1600 Bachno)	<u> </u>			
	len	flor	per pi	imp		<u> </u>	' BackMC	<u>~</u>				
				Well Vol	ume							
A. Well Dep	oth (ft):	22.62	D. Well Vol	ume (ft):	163	Depth/Heigl	nt of Top of P	VC:	 ?			
B. Depth to	Water (ft):	9.85	E. Well Volt	me (gal) C*D)	1,08	Pump Type:	0.5.1.14	0.25 F	.			
C. Liquid D	epth (ft) (A-B):	12.77	F. Three We	ll Volumes (gal)	(E3): 6,24	Pump Intake	Depth: Mrel-					
						-						
Time	Temperature	pH	ORP V	Vater Quality I Conductivity		DO	TATENAT					
(hrs)	(oC)	(pH units)	(mV)	<u>(S/m)</u>	(ntu)		DTW (ft btoc)	Rate (Lpm)	Volume (liters)			
1000	14.28	7.18	-59	1.72	38.4	1.82	9.95	0.2				
1003	14.39	7.13	-59	1.68	35,4 Z9,8	1.34	9.95	0.2	0.6			
1009	14.67	7.13	- 38	1.54	11.9	1.10	9.95	0.2	1.8			
1012	14,74	7.14	-14	1147	4,6	1.16	9.95	0.2.	7.4			
1015	14.59	7.00	-14	1.46	0.7	1.04	895	0.2	5.0			
1018	14,46	7.04	-21	1.41	\underline{OO}	0.53	9.95	0.2	36			
1024	14.45	7.04	-26	1.36	0.0	0.41	9.95 9.95	0.2	<u>4.2</u>			
1027	14.44	7.04	-25	1.35	0.0	0.37	9.95	0.2	48 5.4			
1030	14.45	7.04	-25	1.34	0.0	0.36	9.95	0.2	6.0			
			:									
								<u> </u>				
Total Quantii	y of Water Ren	noved (gal):		1.081		Sampling Tin						
Samplers: Sampling Da			SAS-	<u> </u>		Split Sample	With: -	10 N/	<u>zo</u> 4			
	- AND OBSERV	/ATIONS:	20/ 20 L			Sample Type:		<u> </u>	[.			
			<u> </u>	····	-							
		<u> </u>					·····					
				1. 								
				- -								
				•								
					1	4						
					<u>к</u>							

:

.

		EA Engine EA Science				2	NEW YO STATE OF OPPORTUNI		tment of onmental rvation	
			GROUND	WATER SAMI	PLING PUR	GE FORM		•		
Well I.D.:	MW-06		EA Personi	rel: A. Stora	in the	Client: NYSDEC	828103	>		1
Location:	7 maber of		Well Condi	1-), Storg ition: 600d		Weather:	O'F, clo		.	
Sounding N	Aethod: / J	112 14	Gauge Date	e: 09/25/	17075	Measureme	mt Dafe			_
Stick Up/Do	own (ft)	on Win	Gauge Tim	04/07/		Well Diame	TO	<u> </u>		
	F-1	ush		e: 0820			<u>λer (iii):</u> <u>λ</u>			
Purge Date:	aniaci	- 117			Purge Time					1
Purge Meth		2023			-	0916				
i uige meni	oa: Low f	CON			Field Tech	11 A, S	toogenk			
				Well Vo	lumo		· · · ·		1244	
A. Well Dep	oth (ft):	18.32	D. Well Vol	time (ff).		Depth/Heig	ht of Top of F	VC:	- <u></u>	-
B. Depth to	Water (ft):		F Well Vol	ume (gal) C*D);	0.163	Pump Type	-O,	2SFF		1
-	.,	8103					112150	INC P	ump	~ *
C. Liquid D	epth (ft) (A-B):	11,29	F. Three We	ell Volumes (gal) (E3):	Pump Intak	e Depth: Mill-	Schen -		1
							<u></u>	<u> </u>		-
Time	Temperature	pH	ORP	Vater Quality Conductivity		DO	DTW			<u>ן</u>
(hrs)	(oC)	(pH units)	<u>(m</u> V)	(S/m)	(ntu)	(mg/L)	(ft btoc)	Rate (Lpm)	Volume (liters)	
0918	16,49	5.67	-135	1.09	39.6	5.33	8,61	0.7	<u>/</u>	1
0921	16.54	6.64	-142	1.10	16.1	1.73	8.61	0.2	0.6	
0927	15.67	5.63	-155	1.09	12.1	1.24	8.61	0.7	1.2	
0931	16.63	6.67 6.67	-185 -204	1.10	15.0	1.06	8.61	0.2	1.8	4
0934	16,66	6,62	-204	1.12	9.5	0,88	8.61	0.2	2.4	1
0937	16.68	6.62	-212	1.12	6.5	0.82	8.61	0.2 0.2	3.0	-
6940	16.71	6.62	-213	1.12	3.3	0.80		0.2	3.6	-
59 43	15.76	6,63	-215	1.13	2.8	0.75	8.61	0.2	4.2	
0946	15.78	6.63	-215	1.13	2.7	0.74	8.61	0.2	4.8 5.4	ł
०वप्रव	16.79	6.63	-215	1.13	2.7	0.74	8.61	0.2	6.0	1
									-0.0	
									<u> </u>	
										1
				· · · · · · · · · · · · · · · · · · ·						
										1
'otal Ouanti	ty of Water Rei	moyed (gat): (C	,	SCAL		Romatin - 771		A at 16		Į
amplers:		A Stood	nke	<u></u>	6.0	Sampling Tin Split Sample		0949	———]	
ampling Da	ite:	09 26	2023			Sample Type		6046		
COMMENTS	5 AND OBSER	VATIONS:					_			
		• • • •		······································						
N.L.										ł

		EA Engine EA Science	e and Tech	nology		2	NEW YO STATE OF OPPORTUNI	TY Enviro	ment of nmental vation
Well I.D.: M	(1) - 085		GROUND	WATER SAMP nel: A. Stoerpe		Client	328103		
Location: \mathcal{D}	inaburg	·····	Well Condi	ition: 600d		Weather: 6	S°F, po	stial d	ov d
Sounding Me Stick Up/Dow	tferø: vn (ft):	n Wim	Gauge Date Gauge Tim	09/25/2	023	Measureme Well Diame	ter (in):	10	
	Flv	<i>с</i> И		" 085s			<u> 1</u>		
Purge Date: Purge Method	09(261				Purge Time Field Techn	1514			
	low flo	N	···			A. 8	toogenke		
A. Well Depth	1 (ft):	9,99	D. Well Vol	Well Vol ume (ft): Oc	_{ume} 163	Depth/Heig	ht of Top of P - O. L		
B. Depth to W C. Liquid Dep		1.5C		ume (gal) C*D); (0.396	Pump Type:	Perista	· · · · ·	mp
		2.43	r. Inree vye	ell Volumes (gal)	(-1 98	Pump Intako	$M_1 \mathcal{U} - S$	breen	
Time	Temperature	рН	ORP	Vater Quality I Conductivity					
(hrs)	(oC)	p11 (pH units)	(mV)	(S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
	21.03	6,76	5	1.77	31.8	2.55	6.7.83		-
	21.07	6.66	7	1.22	15.1	1.94	7.85	0.7	0,-5
	<u>21.15</u>	6,63	: 7 9	1.22	15,7	1.96	7.88	0.2	1.2
· · · · · · · · · · · · · · · · · · ·	21.25	6.52		1.72	14.9	1.80	7.94	0.2	1.8
	21.34	6.62	9	1.77	14.0	1.44	7.97	0.2	2.4
· · · · · · · · · · · · · · · · · · ·	21.47	6.63	10	1.74	12.6	1.18	8.00	0.2	3.0
	21.54	6.63	10	1.74	11.9	1.10	8.04	0.2	3.6
	21.58	5.63	10	1.25	10.7	1.16	8.09	0.2	4:2
	21.62	5.63	<u>il</u>	1.25	10.1	1.05	8,11	O.Z	4.8
1341	21.67	6.64	12	1.25	10,0	1.07	8.13	0.7	5.4
			···						
Total Quantity Samplers: Sampling Date		ioved (gal); (<u>A.Stoca</u> (H126 H	onke	5.4		Sampling Tir Split Sample Sample Type	With:	1341 6rab	
COMMENTS A	<u></u>	ATIONS:	, , , , , , , , , , , , , , , , , , ,						
					·	·····			

			EA Engine EA Science				2	STATE OF OPPORTUNI	TY Enviro	tment of nmental rvation	
	Well I.D.:	·		GROUND EA Person	WATER SAMP	LING PUR					
	N	<u>1W-08K</u>	•		A. Stoog	enke	Client: NYSDEC 8728103				
	Location:	Dinaburg		Well Cond	Fair		Weather:	SOF. O	rescast		
	Sounding N	Tethod: Hero	nwin	Gauge Dat	" 091/25/2	:023	Measureme	$\frac{\nabla F}{\nabla F}$, or ent Ref: T	OL		
	Stick Up/Do	wn (ft):	rfh	Gauge Tin	¹⁰ 0 8 5 9		Well Diame	eter (in):			
	Purge Date:			- 1		Purge Time	·	· · · · · · · · · · · · · · · ·		······································	
	Purge Meth	09/25/2	073		\	-	1207				
	i inge wieth	low PL	ow			Field Techr	<u> </u>	toogentee	¢ /		
		······································			Well Vol	ume		a			
	A. Well Dep	· · · · · · · · · · · · · · · · · · ·	.73	D. Well Vo	lume (ft):	163	Depth/Heig	ht of Top of F	VC: 3.5 F4-	<u> </u>	
:	B. Depth to	Water (ft):	35	E. Well Vol	lume (gal) C*D):	1-69	Pump Type	Persta	Itiz pu	an()	
	C. Liquid D	epth (ft) (A-B):	0.38	F. Three W	ell Volumes (gal)) (E3): 5:07	Pump Intak	e Depth: Mill - S	Icrean	<u></u>	
			· · · · · · · · · · · · · · · · · · ·		Water Quality I			<u> </u>			
	Time	Temperature		ORP	Conductivity	Turbidity	DO	DTW	Rate	Volume	
	(hrs) 1307	(oC)	(pH units)	(mV) 2	(S/m)	(ntu) 173	(mg/L)	(ft btoc)	(Lpm) 0.7	(liters)	
	1310	17.34	6.90	-2	1.12	142	1.00	9,89	0. l	Car 0. C	
	1313	17.36	6.91	- 8	1.17	123	0.80	10.08	6.2	1.2	
	1316	17.36	6.91	-10	1.12	117	0.74	10.15	0.2	1.8	
,	1322	1731	6.90	-10	1.13	109	0.79	10.25	0.2	2.4	
	1325	17.73	6.87	-9	1.15	104	0.67	10.40	0.2	3.6	
	1378	17.04	6.92	- i)	1.13	102	0.76	10.34	0.2	4,7	
	1331	16.92	6.88	-9	1.13	96.4	0.70	10.48	0.2	4,8 5M	
	1334	16.92	6.88	8 9	1.13	93.4	0.61	10.51	0.2		
a AS	1337	16.97	6.87	-9	1.14	93.3	1.29	10.53	0.7	600	
Stop -	1343-	16.77								·	
to ilean	+346-										
- Charles	1-349-	*			· · · · · · · · · · · · · · · · · · ·					<u> </u>	
	1351	16.74	6.85	- 31	1.17	221	0.95	10.34	0.2	(A.) C	
			0	~ 47	1.14	207	0.74	10.53	0.2	916	
	Total Quanti	ity of Water Rei	noved (gal):		4.59	<u>NU 1</u>	Sampling Ti		144		
	Samplers:		CB.	45			Split Sample	e With:	N	ÍA –	
	Sampling Da	ite:		1/25/23			Sample Type	e:	6'a'	•	
	COMMENT	S AND OBSER	VATIONS:				·				
										···· <u> </u>	

ş

	X [®]	EA Engine EA Science				٤	NEW YO STATE OF OPPORTUNI	RK Depart Enviro Consei	nment	
				WATER SAMP	'LING PUR					
Well I.D.:	1w-081	5 contol	EA Personr	1el;		Client: NYSDEC				
Location:			Well Condi	tion:		Weather:				
Course dimens B	المزام مرباء		C D-(·····					
Sounding N	iethoa:		Gauge Date	9:		Measureme	nt Ref:			
Stick Up/Do	own (ft):		Gauge Tim	e:		Well Diame	ter (in);			
Purge Date:					Purge Time	:	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Purge Meth	od:				Field Techr	iician:				
				Well Vol	ume					
A. Well Dep	oth (ft):		D. Well Vo			Depth/Heig	ht of Top of I	VC:	<u></u> .	
B. Depth to	Water (ft):		E. Well Vol	ume (gal) C*D):		Pump Type:	1	<u>.</u>		
C. Liquid D	epth (ft) (A-B):		F. Three We	ell Volumes (gal) (E3):	Pump Intak	e Depth:			
				Water Quality I	Parameters					
. Time	Temperature	pH (mII units)	ORP	Conductivity	Turbidity	DO	DTW	Rate	Vol	
(hrs) 1357	(oC)	(pH units)	(mV) 40	(S/m)	(ntu) 201	(mg/L)	(ft btoc)	(Lpm)	lit	
1400	10.33 16.71	7.09	-12	1.15	192	0.97	11.05	0.2	7.	
1403	6.65	7.09	-34	1.15	183	1.00	11.13	0.2	91	
1405	16.51	7.03	- 29	1.15	150	2.05		0.2	9.1	
1409	16.6)	7.08	-16	1.16	139	0.73	11.15	0.2	10;	
1412	16.63	7.03	-10	1.16	140	0.51	11.13	0.2	l@	
1415	16.68	7.02	-19	1.16	136	0.55	1412	0.2	11.1	
1418	16.57	7.03	-18	1.16	105	0.54	11.13	0.2	120	
1421	16,63	7.04	1-17	1.16	117	0.52	11.15	0.2	12	
1424	16.56	7.05	-17	1.16	106	0.55	11.13	0.2		
1427	16.68	7.02	-14	1,14	96.4	0.50	11.13	0.2	13	
1430	16.93	6.88	-5	1.16	46.3	0.55	11.13	0.2	iğ	
1433	16.34	6,98	- 9	1.15	56.7	0.55	11.13	0.2	15	
1436	16.32	7.05	-12	1.15	73.5	0.56	11.15	0.2	13	
1439	16.34	7.07	-14	1.15	69.9	1:05	N.13	0.2	18	
inge	16.33	1.07	-13	1.15	69.2	1.02	11.15	0.2	12	
THU S	16.33	7.07	-13	1.15	69.7	0.98	11.03	0.7	16	
	ity of Water Rei				· · · · · · · · · · · · · · · · · · ·	Sampling Ti		ार्यम् व	12	
Samplers:	-				•	Split Sample		12/07)	
Sampling D	ate:					Sample Typ				
COMMENT	S AND OBSER	VATION5:		Sample	taken	@ > 9	turb.	dity		
								<i>*</i>		

see foge

		EA Engine EA Science	ering, P.C. e and Tech	nology		2	NEW YC STATE OF OPPORTUN	Enviro	tment of nmental rvation
Location:	09/267	n WLM Ivsh 2 02-3 Flow	GROUND EA Personr Well Condi Gauge Date Gauge Tim	<u>4. Stoog</u> ^{ition:} 600d ° 09 12512	inke	Client: NYSDEC Weather: Measureme Well Diame	T) vd.y o C	
A. Well Dep B. Depth to		14.77 3.80	D. Well Vol E. Well Vol	<u>)</u> 1 me (gal) (*D):	163		ht of Top of I	pvc: 5 f4	
C. Liquid D	epth (ft) (A-B);	5,97		ll Volumes (gal)),973 (E3): 2,919	Pump Intak	rensta	 	M
Time (hrs) 1036 1036 1037 1045 1045 1045 1048 1051 1051 1054 1057	Temperature (oC) 14,41 19,47 19,53 19,64 19,79 19,98 20,17 70,18 20,17 20,35	pH (pH units) 6:97 7.08 7.13 7.13 7.13 7.13 7.19 7.19 7.10 7.71 7.71 7.71 7.71	V ORP (mV) -52 -45 -46 -34 -34 -34 -30 -14 -16 -15	Vater Quality I Conductivity (S/m) 3.16 3.17 3.70 3.70 3.71 3.71 3.71 3.71 3.71 3.09 3.01 3.00 3.00		DO (mg/L) 4.14 3.47 3.75 3.05 3.04 3.00 2.95 2.80 2.77 2.65	DTW (ft btoc) 9.07 9.07 9.09 9.17 9.76 9.28 9.28 9.28 9.28 9.28 9.28 9.28 9.28	Rate (Lpm) O_1 O_2 O_1 O_1 O_2 O_1 O_2 O_1 O_2 O_1	Volun (liters 0,6 1,7 1,8 2,4 3,0 3,6 4,7 4,8 5,4
amplers: ampling Da	ty of Water Rem te: 5 AND OBSERV	A: Stangen 09/75/12	.) ke ø73	<u><u> </u></u>		Sampling Tir Split Sample Sample Type	With:	1100 M SIMS 6720	17

EA Engine EA Science				2	NEW YO STATE OF OPPORTUNE	a suprove a	ment of nmental vation
		WATER SAMI	PLING PUR	GE FORM			
Well I.D.: MW-OQK	EA Personr	A. Storge	whet	Client:	328103	<u> </u>	
	Well Condi	tion:		Manuthan			
Sounding Method:	Gauge Date	6000		e	5.F.	Daufral i	cloud
Heron WCM	_	ーロルロクモレ	2023	Measureme	nt Ref: TO	L	
Stick Up/Down (ft):	Gauge Tim	<u> </u>		Well Diame	ton (in).	1	·
Flush		0077					
Purge Date: AQ1761. 27			Purge Time	1100			
Purge Date: 09/26/2023 Purge Method:			Field Techn	1122		·	
Low Flow			rietu Tecui	lician: β, S	torgente	e	
				······	<u> </u>		
A. Well Depth (ft):	D. Well Vol	Well Vo	-	Donth/Hat-	ht of Ton - CT	WC	
25,16]		0,163	Depuyrieig.	ht of Top of I	isH.	
B. Depth to Water (ft): 9.48	E. Well Vol	ume (gal) C*D):	278				1000
C. Liquid Depth (ft) (A-B): (3.98	F. Three We	ll Volumes (gal) (E3):	Pump Intak	e Depth:	uttic fo creen	<u>NYI</u>
(3.10			<u>6.834</u>		Mid-S	creen_	
	V	Vater Quality	Parameters				
Time Temperature pH	ORP	Conductivity		DO	DTW	Rate	Volume
(hrs) (oC) (pH units)	(mV)	(S/m)	(ntu)	(mg/L)	(ft btoc)	(Lpm)	(liters)
122 19.39 6.93	-214	2.15	810 +	2.58	9.59	0.2	,
175 19.33 6.81	- 209	2.12	337	1122	9.53	017	0,5
1128 19.33 6.85	-186	2.10	138	2.68	9.55	0.7	1.2
1134 19.85 6.70	-193	2.09	121	1.23	9,55	0.2	1.8
1137 20.04 6.68	-197	2.05	63.7	0.92	9.5 <i>6</i> 9.56	0,2	2.4
1140 20.27 6.67	-197	2.03	\$3.6	0.72	9.56	0,2	3.6
1143 20.51 6.66	- 99	1.99	52.3	0.69	9.55	0.2	4.0
1146 20.71 6.66	-197	1.96	43.5	0.65	9.56	0,2	4.8
1149 20.86 6.65	-196	1,93	41.4	0.62	9.55	0. Z	\$.4
1152 20.91 6.65	-197	1.90	43.5	0.61	9.56	0.2	6.0
1155 21.04 6.64	-195	1.88	40,9	0.01	9.56	0.2	6.6
					·		
			<u> </u>				
Total Quantity of Water Removed (grl): (6	6.6	<u> </u>	 Sampling Tir	ne:	1155	
Samplers: <u>A Sta</u> Sampling Date: Ad 1778	oginke			Split Sample	With:		
	1701-7			Sample Type	: .	Glab	
COMMENTS AND OBSERVATIONS:	-						
				·			

		EA Engin	eering, P.C e and Tecl	nnology	 1	2	NEW Y	Enviro	tment of onmental rvation	
		······	GROUND	WATER SAM	PLING PUR	GE FORM	_	1		
Well I.D.;	MW-105		ÉA Person	^{nel:} A. S <i>hovgr</i>	nke	Client: NYSDEC	82810	3		
Location:	Dihabura		Well Cond	lition:	,	Weather:			······	
Sounding	Method:		Gauge Dat	0000/	·	7 Measureme	O'F; clo	rdy		
Stick Up/D	Hero	IN WIM		09/25/	2023		į	06		
Suck OP/D	Fly	13h	Gauge Tin	^{ne:} 0825		Well Diam	eter (in): 7	<u></u>	- <u></u>	
Purge Date										
	09/25/	2023			Purge Time	* 0830				
Purge Meth	nod: Leiv				Field Technician: A. Stor gun 12-7					
				Well Vo	lume					
A. Well De		18.21	D. Well Vo	lume (ft): C	0.163	Depth/Heig	ht of Top of - O-2S	PYC:		
B. Depth to	Water (ft): Pepth (ft) (A-B):	3-10		ume (gal) C*D);	1,648	Pump Type	PAREL	120 Au	np	
C. Erquiu D	ери (н) (А-в):	<u>lo,11</u>	F. Three We	ell Volumes (gal) (E3): U ,944	Pump Intake Depth: Mill-Screen				
				Water Quality	Parameters					
Time (hrs)	Temperature (oC)	4 4	ORP	Conductivity	Turbidity	DO	DTW	Rate	Volume	
0830	16.59	(pH units) 6,70	(mV)	(S/m)	(ntu)	(mg/L)	(ft btoc)	(Lpm)	(liters)	
0833	6.6	6.47	-189 -192	0.851	56.8	2.52	8:33	0.2		
0836	16.56	6.41	-194	0.811	17.5	1.31	8,47	0.1	0,5	
0839	16.58	6.39	-196	0.806	17.9	0,90	8.50	0.2	1.7	
0842	16,60	6.37	-199	0.798	14.5	0.82	8.62	0.2	1.8	
0845	16.64	6.36	-)99	0.792	14.0	0.81	8.70	0.2	2.4	
0848	16.70	6.35	-197	0.787	13.7	8,83	8.15	0.2	3.0	
0851	16,76	6.35	-196	0.787	9.7	0,82	8.85	0.2	3.6 4.2	
0854	16.82	6.35	-195	0.787	9.3	0.81	8.90	0.2	4.8	
0857	16.85	6.35	-)95	0,788	9.2	0.81	8,91	0.2	5.4	
							·······			
				· · · · · · · · · · · · · · · · · · ·						
'otal Quanti	ty of Water Ren	noved (gal): / ;	<u></u>	5,4		Sampling Tir	<u></u>	1 57 1 1		
amplers: ampling Da		<u> Stoo</u>	renke			Split Sample	With:	0857	·	
	-	09/26/	wvs	, <u></u>	:	Sample Type	:	6006		
OMMENTS	5 AND OBSERV	VATIONS:	-	······						
								· · · · · · · · · · · · · · · · · · ·		

i. Li

	EA Engineering, P.C. EA Science and Technology										
		BA SCIENCE	and rechi	notogy		Б	- OFFORTONI		vation		
			GROUND	VATER SAMP	LING PUR	GE FORM					
Well I.D.: N	W-lok	· · · · · · · · · · · · ·	EA Personn	A Stoospall	A	Client: NYSDEC	828103	$\overline{)}$	····.		
	inabuse		Well Condi	tion: Fait		Weather:	And the second s	ively	·····		
Sounding M	Were	n WLM	Gauge Date	09/25/2	023	Measureme					
Stick Up/Do	wn (tt):	ish	Gauge Time	082-	1	Well Diam	eter (in): · L	<u></u>			
· December Dates					·				······		
Purge Date:	01/26/	2027			Purge Time	0730					
Purge Method: Low Flow Flow Field Technician: A. Storgulle											
				Well Vol	ume		4				
A. Well Dep	1 1	21.45	D. Well Vol	ume (ff):	0.163		tht of Top of P C,US	ld-			
B. Depth to V	Nater (ft):	8.59	E. Well Volu	ume (gal) C*D);	7,096	Pump Type	Perstal-4	r Rimp			
C. Liquid De	epth (ft) (A-B):	12.86	F. Three We	ll Volumes (gal)	crees						
					6.288						
Time	Water Quality Parameters										
(hrs)	Temperature (oC)	pH (pH units)	ORP (mV)	Conductivity (S/m) '	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)		
0732	16.03	5.87	-133	1.46	81.8	1.81	10.26	0.7			
0735	15.23	6.06	-138	1.42	77.1	1.10	10.76	0.2	0.6		
0738	16.23	6.63	-137	1.42	79.0	1.04	10.76	0.7	1.2		
0741	16.16	6.04	~138		82.5	0.96	10.76	0.7	1.8		
0744	16.33	6.08	<u>-142</u>	1.41	73.3	0.88	11.2.4	OIZ	2.4		
╶╳──┼─┼──┼	16.31	6.16	-143	1.41	67.0	0.83	11.7.6	0,7	3.0		
0750 0753	16.36	6.16	-136	1.41	68.5	1.48	12.19	0.2	3.6		
0756	16,41	6.15	-136	1.40	<u>66.9</u> 56.3	1.48	12.41	0,7	4,2		
0759	16.39	6.16	-136	1.37	46.3	0.90		0.2	4.8		
0802	6.38	6.7	-135	1.36	39.4	0.79	17.49	0,2	P		
0805	16.38	6.18	-132	1.35	35.1	0.76	12.90	0,2	6.0		
0808	16.41	6.19	-131	1.34	34,8	0.80	12.90	0,2	7.2		
0811	16.41	6.19	-130	1.34	33.5	0.80	17.90	0,2	7.8		
				-							
	4										
Fotal Quantit Samplers:	y of Water Rer			7.8		Sampling Ti Split Sampl		0811			
Sampling Da	te:	A. Storg	12023			Split Sample		brab			
COMMENTS	AND OBSER		, ·			1 J F		- Dreed			
			•	······································							

ŕ

•

.

		EA Engine EA Science				2	NEW YO STATE OF OPPORTUNI	RK Depart TY Enviro Conser	ment of nmental vation		
				WATER SAMP	LING PUR						
Well I.D.:	MM-115	•	EA Personi	A. Stoage	nke	Client: NYSDEC	828103))			
Location:	Dinaburg		Well Cond	ition: Fais		Weather:	S*1F, Pat	tial clau	10		
Sounding N	Andrea to a state	in WLM	Gauge Dat	e• / :	07	Measureme	int Koti		<u>, , , , , , , , , , , , , , , , , , , </u>		
Stick Up/De	(6)		Gauge Tim		1023	Well Diameter (in):					
	own (tt): Flu	Sh		0852				<u>l</u>			
Purge Date:	00101				Purge Time						
Purge Meth	09/26/1	1073			U U	1022					
i urge ivietn	low F	low			Field Techn	4.S	toogente	e			
				Well Vol					······		
A. Well Dep	oth (ft):	100	D. Well Vo	tume (ft).		Depth/Heig	ht of Top of P	VC:			
B. Depth to	Water (ff):	13.50	E Well Vol	ر) ume (gal) C*D):	0.163	Pump Type	-0.25	<i>H</i>			
8.LC	take &	WU D		C	0.854		Venst	altic Po	imO		
C. Liquid D	epth (ft) (A-B): 5,24	Er dele	F. Three We	ell Volumes (gal)	(E3): 2.56	Pump Intak	e Depth: Mrd-S	Crea	7		
							7 10 3				
Time	Temperature	pH	ORP	Parameters Turbidity	DO	DTW	Rate	Volume			
(hrs)	(oC)	(pH units)	(mV)	Conductivity (S/m)	(ntu)	(mg/L)	(ft btoc)	(Lpm)	(liters)		
1024	21.15	6.72	- 59	1.32	151	2.40	8.82	0,7			
1227	2136	6.51	<u>- 59</u> -#3	1.31	62.4	1.33	8.92	0.2	0.5		
1233	20.86	6,45 6,44	<u>~47</u> -30	1.32	3011	1.15	9.17	0.7	1.2		
1236	20.41	6.43	-18	132	25,7	1.14	9.15	0.7	1.8		
1239	20.78	6.42	-10	1.33	22.3	1.15	9.40	0.2	3.0		
1242	20.18	6.42	- 3	1.33	25,1	1.18	9.48	0.2	3.6		
1245	20,14	6.42		1.33	23.5	1.18	9.54	0.2	4.2		
1248	20.11	6.41	5	1.33	20.5	1.25	9.62	0.2	4.8		
1251	20.09	6.41 6.40	7 8	1.33	18.0	1.42	9.71	0.7	5.4		
1257	19.87	6.40	<u> </u>	1.34	18.5	1.29	9.78	0.2	6.0		
					1015			010			
		·····									
	ity of Water Rer		[1]	6.6		Sampling Ti		125-			
Samplers: Sampling Da	ate:	A. Stock	nke 1023			Split Sample Sample Typ	e With:				
			<u>~~</u>)			Campie 13b	с .	6126			
COMMENT	S AND OBSER	VATIONS:		<u></u>		· · · · · · · · · · · · · · · · · · ·	<u> </u>				

		EA Engine EA Science				2	NEW YO STATE OF OPPORTUNE	RK Depart Enviro Conser	ment of nmental vation
				WATER SAMI	PLING PUR	GE FORM		1	
Well I.D.:	1W-125	>	EA Personr	1157 1167		Client: NYSDEC	82810	2	
Location (ueson patro	Sidewellk	Well Condi	tion: Good		Weather:	Clouch	0.0	=
Sounding M	lethod: Pron W		Gauge Date	" 09/25/2	a.7 3	Measureme	nt Ref: 🖊	,	
Stick Up/Do	wn (ft):		Gauge Tim		~	Well Diame	<u>+767</u> eter (in):	<u> </u>	
	Flush	\		084	5		7	·	
ourge Date:	09	126/201	12		Purge Time	:	1144		
urge Meth					Field Techn	ician:	<u> </u>		
		N FION	far' fi	mp			Bady	1an	
M. 11 D	a (a)			Well Vol	ume				
A. Well Dep	. ,	13.25	D. Well Vol	ume (ft): Ø	1,163	Depth/Heig	ht of Top of P	VC:	
. Depth to	Water (ft):	3.15	E. Well Volt	tmo (ml) C*D)	0,815	Pump Type:	<u>^</u>		
. Liquid De	epth (ft) (A-B):	5.00	F. Three We	ll Volumes (gal) (E3);	Pump Intak	Pensital e Depth;		<i>p</i>
	<u> </u>	5.00		·······	2.445		Mid-9	ren	
				Vater Quality I	Parameters		·····		
Time (hrs)	Temperature (oC)	pH (pH units)	ORP (mV)	Conductivity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate	Volume
1144	15.74	7:09	37	1.01	67.0	1.25	(11 Dide) 8.85	(Lpm)	(liters)
1147	15186	6.95	22	1.01	43.8	1.77	8.93	0.2	0.6
1150	15.95	<u> </u>	18	_101	34.9	6,93	9.04	0.2	1.2
1156	16.19	7.00	15	1.07	37.7	0,59	9.39	0.2	1.8
1197	16.23	7,00	17	1.03	11.5	1/61	9.61	0.L 0.L	3.0
1202	16.27	6,99	16	1.04	9.9	6,83	9.80	0.2	Ī.C
1205	16.28	6.22	14	1,03	0.0	0.75	9.91	0.2	YR
12/1	16.20	6.99	13	1.02	0,0 0,0	0.74	9.94 9.98	0.2	4.8
	- 103 - 1	<u> </u>			0		<u></u>	0.2	5.4
									<u> </u>
									·
							<u>}</u>		
mplers:	y of Water Ren	noved (gal);	AS -	142SG		Sampling Tir Split Sample	ne: With	121	/
mpling Dat	te: _		20/ 202	5		Sample Type			6
OMMENTS	AND OBSERV	VATIONS:							
							·····		

		EA Engine EA Science	e and Tech	nology VATER SAMP			NEW YOI STATE OF OPPORTUNIT	Y Enviro	tment of nmental rvation
Well I.D.:	AN-12K		EA Personn	el:	LING PUK	Client:	Ong ins		<u></u>
Location: Sidawa		enter st.	Well Condi		····	NYSDEC Weather:	82810	<u>></u> 1000	
Sounding ₁ N	lethod:		Gauge Date	6000		Measureme	Clouchy nt Ref:	. 651	
HC Stick Up/Do	ven VLM		Gauge Tim	<u>09/25/20</u>	^	Well Diame	TOIL	2	
	Flush			084	6		<u> </u>		
Purge Date:		091.	16/202	2.,	Purge Time	:	1225	·····	
Purge Meth	od: 10iv	1.	per pe		Field Techn	ician:	Badma	 , <u></u>	
	Ou	TION	per re	imp			·Badma	<u></u>	
A. Well Dep	41- <i>16</i> 0.			Well Vol	ume				
_		8.65	D. Well Vol	e e	.163	-	ht of Top of P	vc: <u>5.514</u>	
B. Depth to		8.90	E. Well Volt	ume (gal) C*D):	1.589	Pump Type:	Persta	1 Arc P	UMO
C. Liquid De	epth (ft) (A-B):	9:15	F. Three We	ll Volumes (gal)	(E3): U 1(-7	Pump Intak	e Depth: ለስ	1- Stree	
Time	Temperature	pH	V ORP	Vater Quality F Conductivity	arameters Turbidity	DO	DTW	Rate	Volume
(hrs) ILLS	(0C) 16.56	(pH units)	(mV)	(S/m)	(ntu)	(mg/L)	(ft btoc)	(Lpm)	(liters)
1228	16.37	6,99	82	0.922	97.9 87.0	1.30	10.05	0.2	0.6
1231	16.26	6.91	7	0.917	76.6		10.69	0,2	1.2
1234	16.20	- 6.91	68	0.912	71.2	0.44	10.87	0.2	1.8
1237	16.15	6.91	62	0.909	<u> </u>	0.39	10.98	<u>0-2</u> 0-2	2.4
1243	16.13	6.91	55	0.903	62,0	0.27	11/13	0.2	3.0
1246	16.13	6.91	53	0.905	35PB	0.26	1113	0.2	42
1249	16.12	6.91	51	0.907 0.909	34.2	0.26	11.13	0.2	4-8 5.4
				/		0.63	11.15	O.C	
				·					
Fotal Quanti Samplers: Sampling Da	y of Water Ren te:	noved (gal): CB, C	A3 9/ 26/2e	14256		Sampling Tir Split Sample Sample Type	With:	12 N/k Gra(. 572 4
COMMENTS	AND OBSERV	VATIONS:	-						
						s.,	· · · · · · · · · · · · · · · · · · ·		
			·						

.

		EA Engine EA Science		nology		٤	NEW YO STATE OF OPPORTUNI	RK Depart Enviroi Conser	ment of nmental	
			GROUND	WATER SAMP	LING PUR	GE FORM	8.J.M.	conder	FARIAL	
Well I.D.:	MW-13K		EA Personn	the second s		Client:	828103	*	·	
Tanatians	Dinabura		Well Condi	tion:	IRX	NYSDEC Weather:	$\frac{S^{o}F}{S^{o}F}, Su}{S^{o}F}$	<u>></u>	<u></u>	
↓ Sounding M	<u>}</u>		Gauge Date	Forde		Measureme	SF SU	Mhy_		
-	16501	nwin	Charge Dan		075	mensurenie	Te	00:		
Stick Up/Do	own (tt): Flu	sh	Gauge Tim	^e 0-810		Well Diame	eter (in): 🦯	2		
Purge Date:	09/28/	フィフ て			Purge Time	0450	,			
Purge Meth	od:			· · · · · · · · · · · · · · · · · · ·	Field Techn	aician:				
<u></u>	low Fl	ow				<u> </u>	toogen N-e	/		
				Well Vol	ume	700000	¥			
A. Well Dep		20.26	D. Well Vol	0.1	63	Depth/Heig	ht of Top of I	evc: USAL		
B. Depth to	Water (ft):	1.34		ume (gal) C*D):	78	Pump Type	· Peristai	The pum	>	
C. Liquid D	epth (ft) (A-B):	10.92	F. Three We	ell Volumes (gal)	(E3): 34	Pump Intak	e Depth: Mil-9	veen		
			T	Matan Oscalita I						
Time	Temperature	pH	ORP	Vater Quality I Conductivity	Turbidity	DO	DTW	Rate	Volume	
(hrs)	(oC)	(pH units)	(mV)	(S/m)	(ntu)	(mg/L)	(ft btoc)	(Lpm)	(liters)	
<u>8950</u>	17.22	6.31	-18	0.734	107	1.19	9.80	02		
0953	17.79	6.56	-83	0.300	80.4	0.81	9.80	0.2	006	
0956 0959	17.19	6.99	-123	0.439	67.3	0.67	9.84	0.7	1.2	
1002	11.07	6.99	- 179	0.959	<u>67.7</u> 93.2	0.69	9.80	0.2	1,8	
1005	16.87	7.03	-189	1.14	69.2	0.66	9.80	0.2	3.8	
1008	16.82	7.02	-192	1.22	72.9	0,67	9.80	0.2	3.6	
1011	16.77	6.96	-178	1.44	73.2	0.94	9.80	0.2	4.2	
1014	16.65	6.96	-180	1.45	40.7	0.84	9.80	0.2	4.8	
1017	16.64	6.97	-183	1.50	66.4	0.66	9.80	0.2	945.4	
1020	16,61	6.96	-183	1.52	64.7	0.53	9.80	0.2	Q.0	
1073	16.60	6.96	-183	1.54	62.5	0.53	9.80	0.2	6.6	
1025	16,58	7.00	-185	1.56	61.5	0.49	9.80	0.2	7.2	
1029	16.57	6.99	-184	1.55	59.7	0.47	9.80	0.2	7.8	
1032	16.56	6.99	-184	1.57	58.0	0.47	9.80	0.2	814	
10:35	16.56	6.99	-184	1.56	57.9	0.116	9.80	0.2	9.8	
1038	16.56	6.98	-183	1.56	56.8	0.50	9.80	0.2	96	
Samplers:	ity of Water Rei	movea (gal):				Sampling Ti Split Sampl	ime: e With:	1041		
Sampling Da	ate:					Sample Typ				
COMMENT	S AND OBSER	VATIONS:								
		·····	· · · · · · · · · · · · · · · · · · ·							

ì

	من ح ال 1 ، د م	. 1	EA Personn	WATER SAMP nel:		Client:			
Location:	<u>4W-13K</u>	conta.	Well Condi	tion:		NYSDEC Weather:			
Sounding I	vlethod:		Gauge Date	2:		Measureme	nt Ref:		
Stick Up/D	own (ft):		Gauge Tim			Well Diame			
	ing Method: Jp/Down (ft): Date: Method: Il Depth (ft): with to Water (ft): uid Depth (ft) (A-B): ne Temperature pH (pH unit						···· (···).		
Purge Date	:			·····	Purge Time	:			
Purge Meth	ıod:	· · · · · · · · · · · · · · · · · · ·			Field Techn	ician:	,	·······	
	······					·····			
A. Well De	pth (ft):		D. Well Vol	Well Vol lume (ft):	ume	Depth/Heig	ht of Top of P	VC:	
B. Depth to	Water (ft):		E. Well Vol	ume (gal) C*D):		Pump Type:		• *	
C. Liquid I	Depth (ft) (A-B):		F. Three We	ell Volumes (gal)	(E3):	Pump Intak	e Depth:		
[—
Time	Temperature	рН	ORP	Water Quality I Conductivity		DO	DTW	Rate	Т
(hrs)	(oC)	(pH units)	(mV)	(S/m)	(ntu)	(mg/L)	(ft btoc)	(Lpm)	
1041	16.54	6.99	-183	1.56	55,7	0.44	9.80	0.2	1
··· .						e			_
									+
				· · · · · · · · · · · · · · · · · · ·				· · · · ·	
									╀
									┢
								······	
									┢
									┢
Total Onan	tity of Water Ret	noved (gally	241	2,69		Sampling Ti		1041	

ł

								· •	
		EA Engine EA Science		nology			STATE OF OPPORTUNIT	RK Depart FY Enviror Conser	ment of Imental vation
44-11 L D -				VATER SAMP	LING PUR			•	
	W-14K1	4	EA Personn	US, M	3	Client: NYSDEC	28103	\mathcal{T}	
C	nsite		Well Condi	tion: 6000	e	Weather:	toudy.	690;=	
ounding M	Son W	M	Gauge Date	· al l	2023	Measuremen		0	
tick Up/Do	wn (ft):	·	Gauge Time			Well Diamet		<u> </u>	
	10.34			0065	·	L		<u>~</u>	· · · · ·
'urge Date:	09/2	5/2023			Purge Time	· [7	542		
urge Metho	od: Lew	flow a	er pump)	Field Techn	data an in	Zadma	0	<u></u>
								<u></u>	
. Well Dep	th (ft):	14 La	D. Well Vol	Well Vol ume (ft):	<u> </u>	Depth/Heigh	t of Top of P	VC:	
- 8. Depth to 1		24.10		ume (gal) C*D);	163		<u> </u>	0.25F	<u>t-,</u>
-	epth (ft) (A-B):	7.30				Pump Type:	terstal	the pu	mρ
. Liquid De	epth (ft) (A-B):	14.80	F. Three We	ll Volumes (gal)	(E3): 7.23	Pump Intake	Denth: Mill	Screen	
			V	Vater Quality I					
Time	Temperature	pH	ORP	Conductivity	Turbidity	DO	DTW	Rate	Volume
(hrs) 1347_	(OC) 21.つく	(pH units) 7.24	(mV) -205	(S/m) 	(ntu) 13,5	(mg/L)	(ft btoc) 9.85	(Lpm)	(liters)
1345	20.59	7.47	-235	0,537	5.5	7.29	9.85	0.2. 0.2	0.0
1348	19.8C	7.50	-250	0.544	0.0	0.79	1.85	0.2	1.2
1351	19,50	7,48	-255	0.552	0.0	0.76	1.85	0.2	1.8
1354	18:32	7.37	<u>-238</u> -230	0.614 0.698	<u>0,0</u> 0,0	0.70	9.85	0.2	2.4 3.0
1400	18.00	7.17	-720	0.788	0.0	0,65	9.85 9.85	0,2	3.6
1403	17.65	7,08	-211	0.922	0,0	0,66	9.85	0.2	4.2
1406	17.70	7.65	-207	0,981	0,0	0.64	9.85	0.2	4.8
1409	17.91	7.6	-203	1.02	0.0	0.66	9.85	0.2	5,4
1415	17.91	7.00	- <u>20</u> 2 -201	1.06	0,0	0,65	<u>9,85</u> 9,85	0.2	6.6
1418	17.84	6.98	-201	1.07	6.0	0.64	9.85	0.2	7.2
otal Quantii	y of Water Ren	noved (gal);	· 10 -	1.90		Sampling Tim		14,	8
implers: unpling Da	te:	091		23		Split Sample V Sample Type:	With:	N/I	
OMMENTS	AND OBSERV	VATIONS:				× 71.	-	<u> </u>	-v
			-			· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·				· · · ·			·····	

٠

.

Well I.D.:	111-155			_ A A		Client:	01210	7	
Location:	- (Well Cond	ition:					
11W = 153CB ASNYSDEC 878103 Location: $D.Wabwq$ Well Condition: $6000d$ Weather: $65% F$, $RuimingSounding Method:Heron WimGauge Date:09 75/2023Measurement Ref:TOCStick Up/Down (ft):FlushGauge Time:0850Well Diameter (in):TOCPurge Date:09 25/2023Purge Time:1550Purge Method:Iow FlowField Technician:A. Stos genKclA. Well Depth (ft):14.90D. Well Volume (ft):0.1673Depth/Height of Top of PVC:-0.2564B. Depth to Water (ft):7.77E. Well Volume (gal) C*D):1.16Pump Type:6054a142C. Liquid Depth (ft) (A-B):7.13F. Three Well Volumes (gal) (E3):3.48Pump Intake Depth:Mid - ScreenWater Quality Parameters$									
IA Engineering, P.C. EA Science and Technologyfee Science and TechnologyGenerative of the technologyGenerative of technologyGenerative of technologyGenerative of technologyClient: NotableOUNDWATER SAMPLING PURCE FORMWell Condition: Gouge Date: Out Conduction: Out Out Of technologyClient: NotableStick Up/Down (ft): FlushClient: Gauge Time: OSSOPurge Date: Out I 2 5 1202 5Purge Date: Out I 2 5 1202 5Purge Method: (ow FlowWell Volume OBSOWell Volume OBSOWell Volume OBSOWell Volume OBSOWell Volume OBSOWell Volume OBSOWell Volume OBSOWell Volume (ft):Well Volume (ft):Well Volume (ft):OBSOWell Volume (ft):Well Volume (ft):OBSOWell Volume (ft):Well Volume (ft):Well Volume (ft):OBSOWell Volume (ft):Well Volume (ft):OBSOWell Volume (ft):OBSOWell Volume (ft):									
Stick Up/Do	Fl_{1}	лh	Gauge Tim	^{1e:} 0830)	Well Diame	ter (in):	~	
Purge Date:	na lo r la				Purge Time	i 677			
Purge Meth	odu				-	15 50			
- uige mem	low Fl	ow				A . S	toogenk	-l	
				Well Vol	iime		0		
A, Well Dep	th (ft):	11.90	D. Well Vo	lume (ft):		Depth/Heig	ht of Top of P	VC:	<u> </u>
EA Engineering, P.C. EA Science and TechnologyInterviewDepartment of ConservationGROUNDWATER SAMPLING PURCE FORMWell ID:::::::::::::::::::::::::::::::::::									
EA Engineering, P.C. EA Science and Technology									
	epth (ft) (A-B):	7.13	F. Three W	ell Volumes (gal)	(E3): 48	Pump Intak	e Depth: Mid – Scr	een'''	
Time	Temperature	pH				DO	DTW	Rate	Volume
LA Engineering, P.C. EA Science and TechnologyDepartment of ENVORMENT Department of ENVORMENT Department of ConservationGROUNDWATER SAMPLING PURCE FORMWell Lo: 			(mV) (S/m) (ntu) (mg/L) (ft btoc)						
EA Engineering, P.C.									
IA Engineering P.C.Image Neuron ConservationGROUNDWATER SAMPLING PURCE FORMWell LD: $M W = 155$ CROUNDWATER SAMPLING PURCE FORMWell LD: $M W = 155$ CROUNDWATER SAMPLING PURCE FORMWell ContiderCROUNDWATER SAMPLING PURCE FORMWell ContiderClient:Distribution of the contiderOn diright with Contider of the contiderClient:Distribution of the contiderSounding Method:With Contider of the contiderClient:Distribution of the contiderSounding Method:Contige NeuronClient:Distribution of the contiderSounding Method:Method:Contige NeuronWater Contider of the contiderFor the Well VolumeA. Well Volume (ft):Distribution of the contiderA well Volume (gal) CD):I / CWater Contider of The contiderMater Contider of The contiderMater Contider of The contider of The contiderMater Contider of The contid									
			59				0.00		
	2.01		51	0.982					
			45						
1608	19.05		44	0,980	10.5		8.56		
		7.04				0.58		0. L	4.2
		7.04			9.8	0.67		0.7	4.8
1617	19.17	7.03	36	0.979	9.7	0.64	8.90	0.2	5.4
					· · · · · - ·				
									1
			ļ						
									<u> </u>
									<u> </u>
Fotal Quanti	ity of Water Rer	noved (gal):	660	68244 1.	13			1677	<u>l</u>
Samplers:		A-Stoone	nke			Split Sample	With:		

		EA Engine EA Science	e and Tech			2	NEW YOI STATE OF OPPORTUNIT	M Enviro	ment of nmental vation
Well I.D.:	A. 1		GROUNDV EA Personn	VATER SAMP	LING PUR	Clearly 1	<u> </u>		
Location;	nw-Isk	, 		CB,AS	······	NYSDEC	328103))	
ports.	let by	xute	Well Condi	Good		Weather:	Cloudy	G9°F	
Sounding M	iethod: M WL	М	Gauge Date	H15/2013	5	Measureme			<u> </u>
Stick Up/Do	own (ft):	·	Gauge Time	<u> </u>		Well Diame	tor (in)	· · · · · · · · · · · · · · · · · · ·	
<u> </u>	quish		I	0835		L		2	
Purge Date:	09/25	12.27			Purge Time	;	1011		
Purge Meth		/			Field Techn	ician:	1612		
-	Low	flow	per p	UMP		C	Badm	an	
				Well Vol	ume				
A. Well Dep	th (ft):	7 e 0 0	D. Well Vol	uma (ft):		Depth/Heig	ht of Top of P	VC:	<u></u>
B. Depth to '		<u>15,00</u>	E. Well Voli	0, 1me (gal) C*D): 2	163	Pump Type	g	0.75 6	7
		0.19		2	<u>2,414</u>	i ump i ype.	Peristal.	the pi	mp
C. Liquid D	epth (ft) (A-B):	14.81	F. Three We	ll Volumes (gal)	(E3): -97	Pump Intak	e Depth:	creen	
						· · · · ·	<u>/-//iot</u>	<u>ser</u>	
Time	Temperature	pН	V ORP	Vater Quality I Conductivity			1317744		
(hrs)	(oC)	(pH units)	(mV)	(S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
1612	19.86	7,99	<u>0</u> %	0.923	78.5	3.55	10.50	0.2	
1615	18,59	7.62	150	0.965	69.1	1.89	10.50	0.2	O.C
1618	18:75	7.29	-139	@21,19	<u> </u>	1.25	1050	0.2	1.2
1621 1624	18:72	7.08	-155	1.20	56,5	1.04	10.50	0.2	1.8
1627	18.72	6.95	-176	1.27	<u>35,1</u> 15,9	1.00	10,50	0.2	24
1630	18:44	6.94	-179	1.30	15.7	0.74	10,50	0.2	3.0 3.6
1633	18.30	6.92	-183	1.33	0,0	0.71	10,50	0.2	4.2
1636	18.26	6.91	-184	1.33	0.0	0.67	10.50	0.2	4.8
1639	18.31	6.91	-185	1.33	0.0	0.09	10,50	0.2	5.4
								<u>E</u>	C.
								<u>.</u>	
				1					
									<u> </u>
Total Quanti Samplers:	ty of Water Rei	noved (gal):	3.43	1.426		Sampling Ti		- 16	
Samplers: Sampling Da	.te:	09	25/23			Split Sample Sample Type		N	
COMMENT	AND OBSER			- <u> </u>		JP*	-		<u>v </u>
	AND ODSEK	VALIONS:					····		
				· · · · · · · · · · · · · · · · · · ·					

•

		EA Engine EA Science		nology		٤	NEW YOR STATE OF OPPORTUNIT	K Departs	imental		
			GROUNDV	VATER SAMP	LING PUR	GE FORM	-	1			
Well I.D.:	MW-16:	G	EA Personn	^{el:} A. Stoone	: 11-2	Client: NYSDEC	828103	· ·			
Location:	-	2	Well Condi	tion: 🔬 🐧	VINC	Weather		2 1 1	1		
V Sounding M	inativy		Gauge Date	boed	18.4	ර Measuremen	0°F, Part		ť		
Stick Up/Do	Wn (ff):	WW	Gauge Time	09 25 20	175	Well Diame)(
	Flv-	sh	Gauge Third	0910		Wen Diante	1. er (III).	1			
Purge Date:	801.01	1.21	·		Purge Time:	60 C a	· · · · · · · · ·				
Purge Method:											
	low fl	ow				A.St	osgenke	·			
			·	Well Vol	ume						
A. Well Dep		15.25	D. Well Vol	ame (ft): 0	2163	Depth/Heigl	nt of Top of P				
B. Depth to	Water (ft):	1.35		ume (gal) C*D):	0-9291	Pump Type:			in		
C. Liquid Do	epth (ft) (A-B):	5.1	F. Three We	ll Volumes (gal)	(E3): 7 787	Pump Intake	Penst- e Depth: Mal -	-poren	-/		
						I					
- Time	Temperature	Water Quality Parameters									
(hrs)	(oC)	pH (pH units)	ORP (mV)	Conductivity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)		
OBSO	15.89	6.55	-12	0,910	14.3	1.85	10.21	0.2	-		
0853	15.91	6.43	4 8	0,910	$\frac{10.3}{7.6}$	1.07	10:77	0.7 0.7	0:6		
0859	15.88	6.39	8	0,912	<u>+6</u> 8,4	0.80	10.99	<u>0,7</u> 0,7	1.8		
0902	15.87	6.39	8	0.913	8.0	0.78	11.41	0:7	24		
0905	15.84	6.38	7	0.413	6.0	0.77	11.63	0.1	3.0		
6968 0911	15.83	6.38	4	0.913	<u>4.4</u> 4.3	0.78	11.88	017	3.6		
0910	15.80	6.37	- S	0.913	3.7	0.77	12.05	0.7	4,2		
0917	15.78	6.38	-26	0.913	3.0	0.77	12.58	0.2	5.4		
0920	15.17	6.39	-45	0.913	0.0	0.77	12,79	0.2	6.0		
0923	15.76	6.38	-78 -87	0.913	<u> </u>	0.76	13.00	0.2	6.6		
<u>0925</u> 0929	15.75	6,38	- 87	0,912	 0	0.84	13.54	0.2	7.7 7.8		
0932	15, 75	6.38	- 43	0.912	Ô	0.82	13.91	0:7	8.4		
0935	15.74	6.38	-82	0,911	Ü	0:86	14.15	0.2	9.0		
0938 Total Quanti	15.76 ty of Water Ren	638	-78	0.911	0	0,92 Sampling Ti	14:36	O.L Oqyy	9,6		
Samplers:	-	AStop	c) pulle			Split Sample	With:	d1996.			
Sampling Da	-	09 27	1023			Sample Type		biab			
COMMENT	S AND OBSERV	VATIONS:									
		······································	-		· ····						
				· - · · · ·							

.

ę.

Well I.D.:		······	EA Person	WATER SAMF	LING PUK	GE FORM			
J Location:	D: $M W - 165$ (ord)d. on: ling Method: Jp/Down (ft): Date: Method: I Depth (ft): Ith to Water (ft): aid Depth (ft) (A-B): I I S, 76 G, 37 M U S, 78 G, 35 I I I S, 76 G, 37 M U S, 78 G, 35 I I I S, 76 G, 37 M U S, 78 G, 35 I I I S, 76 G, 37 M U S, 78 I I S, 76 G, 37 M U S, 78 I I I S, 76 G, 37 M U S, 78 I I I S, 76 G, 37 M U S, 78 I I I S, 76 G, 37 M U S, 78 I I I S, 76 G, 37 M U S, 78 I I I S, 76 G, 37 I I I S, 76 G, 37 M U S, 78 I I I S, 76 G, 37 M U S, 78 I I I S, 76 G, 37 M U S, 78 I I I S, 76 G, 37 M U S, 78 I I I I S, 76 G, 37 I I I I I I S, 76 G, 37 I I I I I I I S, 76 G, 37 I I I I I I I I I I I I I I I I I I I					NYSDEC			
	EA Enginee EA Science Date: Date: Date: Date: I Depth (ft): I Depth (ft): I Depth (ft): I Depth (ft) (A-B): I 1 S, 76 G, 37 G U 1 S, 78 G, 35 I 2 G, 35 I 2 G, 37 I 2 G, 35 I 3 G, 35 I 3 G, 35 I 3 G, 35 I 4 G, 78 G, 35 I 4 G, 78 G, 35 I 5 G, 37 I 4 G, 78 G, 35 I 6 G, 37 I 6 G, 37 I 6 G, 37 I 6 G, 37 I 7 G, 35 I 1 1 5, 76 G, 37 I 6 G, 37 I 7 G, 35 I 7 G, 37 I 7 G, 35 I 7 G, 37 I 7 G, 35 I 7		Well Cond			Weather:			
			Gauge Dat	e:		Measureme	ent Ref;		
Stick Up/D	own (ft):		Gauge Tim	ie:		Well Diame	eter (in):	***. * ***	
Purge Date	EA Engine EA Science II.D.: $M \cup -165$ (with ation: nding Method: k Up/Down (ft): ge Date: ge Method: //ell Depth (ft): epth to Water (ft): iquid Depth (ft) (A-B): Time Temperature pH (oC) (pH units) 141 15.76 6.37 44 15.78 6.35 I 44 15.78 6.35				Purge Time				
Purge Metl	10d:				Field Techr	nician:			
/									
				Well Vol	ume	······································			
A. Well De	pth (ft):		D. Well Vo	lume (ft):		Depth/Heig	ht of Top of P	VC:	
B. Depth to	Water (ft):		E. Well Vol	ume (gal) C*D):		Pump Type	:	~	
C. Liquid I	Pepth (ft) (A-B):	<u> </u>	F. Three W	ell Volumes (gal)) (E3):	Pump Intak	e Depth:		
Time	Temperature	PH	ORP	Water Quality I Conductivity	Parameters Turbidity	DO	DTW	Rate	
(hrs)	(oC)	(pH units)	(mV)	(S/m)	(nta)	(mg/L)	(ft btoc)	(Lpm)	
0941			-75	0.911	0	1.01	14.44	0.2	
0944	13:78	6.37	-81	0.911	0	1.01	14.63	0.1	╋
					<u> </u>	· ·			╋
									┢
				· · · ·					
-					 				4
							· · ·		+-
			l						+
							1.53		┿
									╈
									┮
									1
	ity of Water Rer.	noved (gal):			-	Sampling Ti Split Sample		0944	
Samplers:	-					эрит зашрю			

		EA Engine EA Science	ering, P.C. e and Techn	ology		2	NEW YOR STATE OF OFPORTUNIT	K Departi Environ Conserv	ımen
		· · · · · · · · · · · · · · · · · · ·		ATER SAMP	LING PUR				
Well I.D.: M	w-161	5	EA Personne	CBAS		Client: NYSDEC (2	378103)		
Location	Sile		Well Condit			Weather:	SURAY	50°F	
Sounding Me	thod:	1.4	Gauge Date:	Good		Measuremer	10/1		
		LM	Gauge Time	<u>09/15/10</u>	23	Well Diamet		-C	
	Flush	<u>``</u>		0910)		<u> </u>	7	
Purge Date:	<u></u>	a la .			Purge Time:		0.0		
Purge Method		7/2023			Ť	$_$ C	1805		
- 1155 14154100	<u> </u>	en flor	~ per'	pump	Field Techn	<u> </u>	., Bordmar)	
				I / Well Vol	(ime				
A. Well Deptl	h (ft):	1(a)	D. Well Volu	ime (ft):		Depth/Heigh	t of Top of P	VC:	
B. Depth to W	/ater (ft):	25.01	E. Well Volu	(gal) C*D):	163	Pump Type:	-0,	511-	
-		9.26			2.57		Perste	AHZ P	ump
C. Liquid De _l	oth (ft) (A-B):	15.75	F. Three Wel	l Volumes (gal)	(E3): 7.71	Pump Intake	Depth:	- Streen	,
							2 114	00 01	
Time	Temperature	pН	ORP V	ater Quality I Conductivity	arameters Turbidity	DO	DTW	Rate	Vo
(hrs)	<u>(oC)</u>	(pH units)	(mV)	(S/m)	(ntu)	(mg/L)	(ft btoc)	(Lpm)	(1i
0805	12.05	7.53	-318	1.22	47.0	13.98	9.30	0.2	
0808	12.11	7.07 6,15	-325	1.43	31.1	Y.98	9.35	0.2	<u>_</u>
<u>0811</u> 0814	11.84	690	-333 -343	1.52	17.7	4 <i>53</i> 3.82	9.35	0 N N N	- -
0817	11.78	6.89	-349	1.63	9,5	3.61	1.35	0.2	Z
0820	11.72	6.96	-352	1.66	7.8	3,51	9,35	0.2	3
0823	11.6.7	6.89	-355	1.66	5.5	3.39	9.35	0.2	3
0826	11-68	6.88	-356	1.67	0.0	3.37	9.35	0.2	Y
0823	11.77	688	<u>-357</u> -357	1.67	0.0 0.0	3.27 3.25	9.35 9.35	0.2	γ. 5.
0012		6.00	- 221	1.00	0.0		9.33	0.2	. د
			ļļ	• · · ···					
<u>+</u>									
	y of Water Rei	noved (gal):	~~~ l_ ~	1.4256		Sampling Tin		08	32
Samplers: Sampling Dat	e:	0	127/2017	2		Split Sample Sample Type		Grad	4 <u>/</u> A
	-		7 - 1	- •		I - JFC	-		<i>!'</i>
COMMENTS	AND OBSER	VATIONS:	-		·				/'

.

•••

Ø

•

A.			EA Engine EA Science		nology		٢	NEW YOR STATE OF OPPORTUNIT	K Departr Environ Conserv	nent of mental /ation
	Wall D .			GROUNDV	VATER SAMP	LING PUR			·	
	Well I.D.: /	<u> 4W - 17</u>	S		CIS H	\$		828103))	
	Location;	Onsile		Well Condi	tion: bocch		Weather: SUNAY 53°F			
	Sounding N	Tethod:	WLM	Gauge Date	09/25/	1013	Measuremen	nt Ref: TOLC		
	Stick Up/Do	own (ft): Flug		Gauge Time	0912		Well Diame	ter (in):	<u> </u>	
:								2		
	Purge Date:	09/2-	1/2023			Purge Time	* (7848		
	Purge Meth	od: Uer		per pun)	Field Techn	^{tician:} C	Balman		
		<u>+</u>			Well Vol	ume				
	A. Well Dep		14.97	D. Well Vol	ume (ft):).163	Depth/Heigh	nt of Top of P	vc. O.S.H.	
	B. Depth to		8.11		ume (gal) C*D):	1.118	Pump Type:	Parsta		P
	C. Liquid D	epth (ft) (A-B):	6.86	F. Three We	ll Volumes (gal)	(E3): 3.354	Pump Intake	Depth: Mič	1 - Stree	1
				v	Vater Quality I	arameters				
~	Time (hrs)	Temperature (oC)	pH (pH units)	ORP (mV)	Conductivity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
Ì	0848	12.46	7.23	-296	0,971	177	10.27	8.49	0.2	(inters)
	0851	12.61	1.00	-296	0.962	135	8.59	8.68	0.2	0.6
	0854	13.11	6.90	-299	0.943	48.7	7.10	9.02	0.2	1.2
	<u>0857</u> 0960	13.20	6.89	-300	C-939 C-939	22.1 11.6	<u>6.38</u> 6.15	9.29 9.39	0.2	1.8
	0903	13.30	6.98	-307	0.151	Y-1	5,38	9.68	0.2	<u>2.4</u> 3.0
	0906	13.31	6.88	-309	0,937	0.0	4.81	9.87	0.2	3.6
	0909	13.36	6.88	-310	0.935	0.0	4.39	10.10	0.2	4.2
l	0912	13.41	6.88	-313	0.935	0.0	4.19	10.30	on	4.8
	0915	13.42	6.90	-313	6.938	0.0	4.28	10.41	0.2	5.Y
ł			· · · ·							
			· · ·							
╞										
┢									·	
		ty of Water Rei	noved (gal):	ا	1.4256		Sampling Tir	ne:		75
	Samplers: Sampling Da			CZ/AS			Split Sample	With:	N	4
			09/1	11 Certs			Sample Type		<u>Bra</u>	6
	COMMENT	S AND OBSER	VATIONS:	-		<u> </u>				-
ŀ	··· · · ·		·····							
L										

•

「「「「「」」

•

EA Engineering, P.C. EA Science and Technology										
Well I D	GROUNDWATER SAMI	PLING PUR	Terr							
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	EA Personnel: 14. Stoor	wuke	Client: NYSDEC (	828103	>					
Location: Dinaburg	Well Condition:	]	Weather:	S°F. p.	tial .	in de				
Sounding Method:	Cange Date:		Measureme	nt Ref:		(0 00)				
Heron Wim Stick Up/Down (ft):	Gauge Time:	207)	Mail Diama		16	<u></u>				
Fluth	Dange Time. Dalos		Well Diame	eter (in):	ł					
Purge Date: 0.0 1 0 1		Purge Time	· ~ // · ·							
Purge Method: 1 1/2023		_	0000							
Low Flow		Field Techn	ician:	toogenle						
				<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>						
A. Well Depth (ft):	Well Vol D. Well Volume (ft):		Depth/Heig	ht of Top of P	VC.					
19.96		0.163		-0-1	25H					
0.11	E. Well Volume (gal) C*D):	1.00	Pump Type	Lens.	Halthe	PUND				
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal	) (E3):	Pump Intak	e Depth: Mil-	<u>~~~~ (   "~~ )</u>	<u> </u>				
		<u> 3.00</u>			XPer					
	Water Quality	· · · · · · · · · · · · · · · · · · ·								
TimeTemperaturepH(hrs)(oC)(pH units)	ORP Conductivity (mV) (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)				
0800 15.34 6.53	-54 0.946	22.1	$\lambda, 79$	9,53	C.Z	(liters)				
0803 15.40 6.39	-40 0.946	15,3	2,16	9.54	0.2	0,6				
0806 16 39 6.32	-24 0.946	13.6	1.97	9,97	0. C	1.2				
0809 15.51 6.30	-11 0.943	10.5	2.70	9,94	0.2	1.8				
0812 15,57 6,32 0815 15,61 6,33	0.941	6.3	1.69	10,11	0.7	2.4				
0818 15.57 6.32	<u>5</u> 0.9(1) 10 0.9(1)	4.6	1.60	10,20	<u> </u>	3.0				
0821 15.72 6.32	13 0.942	2.2	1.70	10.43	0.7	3.6				
0824 5.80 6.32	17 0.940	0	1.76	10,56	5.0	4,8				
0827 15.89 6.31	20 0.939	ð	1.80	10.68	0:2	5.4				
0330 15.93 6.32	22 0.939	0	1.80	10.72	0.2	6.0				
				·						
						<u> </u>				
						· · · · · ·				
				· · · · · · · · · · · · · · · · · · ·						
Fotal Quantity of Water Removed (gal): (L Gamplers:	) <u>6.0</u>		Sampling Ti Split Sample	me: With	0830					
	2013		Sample Type		Graf					
COMMENTS AND OBSERVATIONS:				-						
						_				

- ----

	<b>A</b> ®	EA Engine EA Science	and Tech	0,		2	STATE OF OPPORTUNIT	KK Depart Find Conser	ment of Imental Vation
Well I.D.:			EA Personn		LING PUR	Client	6		
Location:	11/- 19	2	Well Condi	<u> 28, 49</u>	<u></u>	NYSDEC Weather:	828103		
	ste			Geod			Clarchy,	68°F	
Sounding M	Iethod: N W(M		Gauge Date	01/25/2	023	Measureme	nt Ref:	tc	·
Stick Up/Do	wn (ft):		Gauge Time	0845	<u> </u>	Well Diame	tor (in)	l I	
	10 32			0010					
Purge Date:	091.	15/201	5		Purge Time	: 17	25		
Purge Meth	od:	<u>25/202</u> How	0. 1 0.	)a.c)	Field Techn	ician:	<u>C.Bach</u>		
	ممانعها	Plen	per pi	np			C. Berch	Men	
				Well Vol	ume				
A. Well Dep	th (ft): 「丫	ીજ	D. Well Vol	ume (ft): O/C	द		nt of Top of P	6° 0° 4° 10' 8	
B. Depth to V		212	E. Well Volu	ıme (gal) C*D): ,		Pump Type:	2 st 1 11.	0.0311	<u>د</u>
C. Liquid De	epth (ft) (A-B):	6,35	F. Three We	ll Volumes (gal)	(E3):	Pump Intak	Perstal H	<u>e pw</u>	P
		6:57		3	.165		Mid	-Serea	ろ
			V	Vater Quality I	arameters				
Time (hrs)	Temperature (oC)	pH (pH units)	ORP	Conductivity	Turbidity	DO	DTW	Rate	Volume
1236	18.90	<u>()11 ()11()</u>	(mV) -3 <b>(</b>	(S/m) 0.971	(ntu)	(mg/L) Z·71	(ft btoc) 9,18	(Lpm) じ・し	(liters)
1239	18.81	6.69	-46	0.976	170	1.54	9.45	0,2	0.6
1242	18.92	665	-38	0.970	152	1.36	9.75	0.2	1.2
1245	18,80	<u>CC4</u>	-34	0.972	126_	1.27	10,05	0.7	1-8
1248	19.33	6.64	-29 -24	0.958 0.959	108	120	10.25	0.2	2.4
1254	18.86	6.64	-22	0.968	76,1 52.6		10.55 10.90	0.2	5.0
1259	1228	6.64		0.954	47.1	1.14	11.10	0.2	4.2
1300	19.21	6.64	-16	6.988	46.8	1,09	11.55	0.2	4.8
1303	19.2C	6.64	-17	0.956	4SAI	1,08	11.80	0.2	Siy
							<del>.</del>		
		•	·			· · · · · ·			
	The section								
Total Quantit	ty of Water Rer	noved (gal):		1.426		Sampling Tir	me	130	
Samplers:	-		B.AS	<u></u>		Split Sample	With:		Ϊ <u>Λ</u>
Sampling Da	-	04	25/2023	5		Sample Type	". –	Gra	<u>(</u>
COMMENTS	AND OBSER	VATIONS:							

`

	A	EA Engine EA Science	and Tech	nology		2	NEW YO STATE OF OPPORTUNE	RK Depart Enviroi Conser	ment of nmental vation
Well I D 's			GROUND	WATER SAMP	LING PUR				
Well I.D.:	<u>w - 20</u>	<u>S</u>		_06. A	5	Client: NYSDEC	18281	33)	
	Insile		Well Condi	tion: Good		Weather:	SUMAY .	(SPF	
Sounding M	ethod:	<u> </u>	Gauge Date		1 117	Measureme	nt Ref: /	001	
Here Stick Up/Do			Gauge Tim		1073	IN-IL DI	<u></u>	JIC_	
Stick Opp Do	Flush		Gauge 1111	084-	7	Well Diame	ter(in):	2	
Purge Date:									
_	092	5/2013			Purge Time	:	1126		
Purge Metho	od: Lou	~ ~	er pur	ιP	Field Techn	ician:	CBod	Мал	
				1			<u> </u>		
A. Well Dep	th (ft):		D. Well Vol	Well Vol		Donth /Hai-	ht of Top of P	VC	
	l.	5.00		0.1	63		e	VC: October	-0.25 fr
B. Depth to	Ч.	38	E. Well Vol	ume (gal) C*D): C	2916	Pump Type:	Perstal	He Pi	UMD
C. Liquid De	pth (ft) (A-B):	5.62	F. Three We	ll Volumes (gal)	(E3);	Pump Intak	e Depth: Mid-S	<u> </u>	<u></u>
		2164			-110	l	Miles	<u>ren</u>	
				Vater Quality I	arameters	<u> </u>			
Time (hrs)	Temperature (oC)	pH (pH units)	ORP (mV)	Conductivity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW	Rate	Volume
1176	18169	6,95	-13	[.7]		//53	(ft btoc) 9,77	(Lpm)	(liters)
1129	18,44	6.90	-1<	1.27	0.0	1.07	10.02	0,2	0.6
1137	18,61	6.88	-18	1.7.1	G.C	1.07	16,19	0.2	1.2
1125	18,74	Č.87	18	121	6.0	1.00	10.28	0.2	1.8
1395	18,92	6.87	-17	1.20	O/O	28.0	10.58	0.2	2.4
1141	18,71	6.86	-16	1.21	0,0	1.01	10.46	0.2	3.0
1144	18,76	<u> </u>	<u>-15</u> -15	1.20	<u> </u>	0,99	10.60	0,7,	3.6
	18,77 18,76	6.85 6.85	-15	1.18	0.0	0.92	10.60	0,2	YZ.
1150	18.75	6.85	-15	1 10	010	0.12	10.60	012	7.8 5.4
	10173	<u> </u>	13	1.17	0/0	0/11	10/60	0.2	217
ļļ									
						· ·			
Total Quanti	y of Water Ren	noved (gal):	<u> </u>	L.47.1		Sampling Ti	me:	110	
Samplers:	-	, U, /:	CB AS			Split Sample	With:		À -
Sampling Da	re; -	09j	<u>  75/ 7</u>	225		Sample Type	e: .	Gra	/
COMMENTS	AND OBSERV	VATIONS:			· · · · · · · · · · · · · · · · · · ·		·	<u> </u>	
							······································		

		EA Engine EA Science		nology		٤	NEW YOI STATE OF OFFORTUNIT	K Depart Enviror Conser	ment of mental vation
Well ID.				VATER SAMP	LING PUR				
Well I.D.:	MW-215		EA Personn	A. Story	nlor	Client: NYSDEC	378103)		
Location:	inature		Well Condi	tion: Good		1 7 4 7 4 7 1	S'F. Pa	Mul el	62.1 6
Sounding N	lethod: J		Gauge Date			Measureme	nt Ref	· · · · · · · · · · · · · · · · · · ·	
Stick Up/Do	11007 wn (ft):	1 WLM	Gauge Time	09 25/-	1025	Well Diame	ter (in):		
	<u> </u>	5h		0968			2	·	
Purge Date:	dal i	······			Purge Time	:			
Purge Meth		623			Field Techn	0714			
r uige nieth	Low F	low			riela Techn	A,5	toogenur	,	
	· · · · · · · · · · · · · · · · · · ·			Well Vol	11000		J		
A. Well Dep	th (ft):	15.00	D. Well Vol			Depth/Heig	ht of Top of P	VC:	
B. Depth to	Water (ft):			ime (gal) C*D);	0.163	Pump Type:			
-	• •	8.44		1.	<u>07</u>		120 A C	he pu	inp
C. Liquid D	epth (ft) (A-B):	6.56	F. Three We	ll Volumes (gal)	(E3): <b>3.2.1</b>	Pump Intak	e Depth: Mill~	-screen	¥
Time	Temperature	pН	V ORP	Vater Quality I Conductivity	arameters Turbidity	DO	DTW	Rate	Volume
(hrs)	(oC)	(pH units)	(mV)	(S/m)	(ntu)	(mg/L)	(ft btoc)	(Lpm)	(liters)
0714	13.54	5.27	-58	1.02	29.2	2.49	9.87	0.2	-
0770	14.15	5.85	-105	0.982	26.7	1.49	8.98	0.2	0,6
0723	14.46	5.87	-171	0.457	8.0	1.08	9.75	0, Z 0, Z	1.8
0726	15.05	5.90	-137	0.967	5.8	0.97	9.44	0.2	2.4
0929	15.14	5.93	-179	0.969	1.6	0.93	9,47	0.2	3.0
0732	15.20	5.95	-195	6.968	0.3	0.90	q.68	0.2	3.6
0735	5.26	5.98	-205	0.969	0	0.36	9.83	0.2	4.2
0741	15.32	5.96	-210	0.968	0	0.87	9.95	0.2	4.8
		1 (2 , 5 ⁽² , 5 ⁽² )	<u></u>	0.909			10:09	V: L	5,4
	-								
			· · ·						
÷									
	ty of Water Rer			5.4		Sampling Ti		0.741	
Samplers: Sampling Da	ite:	A. Story	1025			Split Sample Sample Type	-	65 ale	
	-		<u> </u>			·	-	A	
COMMENT	S AND OBSER	VATIONS:							
		·····							

•

	EA Enginee EA Science	and Tech	0.		2	NEW YOU STATE OF OPPORTUNI	RK Depart Enviroi Conser	ment of Imental Vation	
Well I.D.: Q.Q. O.D.C.		GROUNDV EA Personn	VATER SAMP	LING PUR					
			A. Stoage	mle	Client: NYSDEC (	878103	$\geq$		
Location: Dinabura		Well Condi	tion: Good		Monthow		n y		
Sounding Method:		Gauge Date	09/25/	7073	Measureme			,	
Stick Up/Down (ft):	nwen	Gauge Time	<u> </u>	10 0 1	Well Diameter (in):				
Flu	54		0905			ter (in):	: 1		
Purge Date:				Purge Time					
Purge Method:	2023			-	VIUL	1458			
low fl	ow			Field Techn	A, S	oo gent.	e		
	·		<b></b>			J	<u> </u>		
A. Well Depth (ft):	1	D. Well Vol	Well Vol ume (ft):		Depth/Heig	nt of Top of P	VC:	<u> </u>	
	15.40		C	2,041	ene	-0,75 f	<u> </u>		
B. Depth to Water (ft):	1.0 2		ıme (gal) C*D): Ø	.232	Pump ['] Type:	Perstal	HIC RU	ηρ	
C. Liquid Depth (ft) (A-B):	5,65	F. Three We	ll Volumes (gal)	(E3):	Pump Intak	Depth:		4	
				0.676		Mild-Sc	Nee		
			Vater Quality I					<u></u>	
Time Temperature (hrs) (oC)	pH (pH units)	ORP (mV)	Conductivity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)	
1507 18.88	6.74	13	1.17	528	1.9.3		0,2	(inters)	
1505 18.73	6,48	9	1.19	419	1.18	in	6.2	0,6	
1508 19.01	6.43	10	1.19	259	0.86	ł	0.2	1.2	
15/1 19.03	6.43	12	1.19	201	0.83		6.7	1.8	
1514 19.05	6.42	23	1.19	221	0.91		0.2	2.4	
1520 18,13	6.58	26	1.14	190 X00+	6.85	4.,	0.2	3.0 3.6	
1823 17.41	6.43	28	1.16	300 A	1.83	~	0.2	4.2	
1526 18:17	6.42	31	1.14	\$00 f	1.22	-	0.2	4.8	
1529 18.14	6.41	31	1.14	800+	1.04		0.2	5.4	
-1532 18.28	6.41	32	1,15	800+	0.83		0.7	6.0.	
v - (355)								,	
<i>f</i>							<u>.</u>	<u> </u>	
							·		
Total Quantity of Water Rer	noved (c20. 1)				Remark		10.07		
Samplers:		reinke	6.0		Sampling Ti Split Sample		1806		
Sampling Date:	09/26/	2075			Sample Type		boab		
COMMENTS AND OBSER	VATIONS	1800-	(t						
Dry CO 1533	Sulast Or mpled	>1555-	went di	y unn	ne dia tel	Y, let	Recharge	2	
	1					-			

	EA Engineering, P.C. EA Science and Technology											
147.11.7.15				WATER SAMI	PLING PUR							
N N N	1w-22K		EA Personr	A. Stor	entre	Client: NYSDEC	878103)					
Location:	Dinaburg	······	Well Condi	tion: 🖌 👔		Weather:	<u> </u>					
Sounding N	Aethod:		Gauge Date	Good		,. Measureme		nny				
	1250	n WLM	ounge Duit	09/25/1	1023		10	10				
Stick Up/D	own (ft): Flv	sh	Gauge Tim	" 090 g		Well Diame	eter (in):	2				
Purge Date:					Purge Time		· · · · ·					
	09/25/	2023				1905						
Purge Meth	low F	low			Field Tech	ucian: A , S	tosgent	e	······			
Well Volume												
A. Well Depth (ft): D. Well Volume (ft): Depth/Height of Top of PVC:												
B. Depth to	Water (ft).		F. 147-11 37-1	01	63		- 0	0.25 PA				
	2	398		ume (gal) C*D);	3.149	Ритр Туре	Peristaltin	c Pump				
C. Liquid D	epth (ft) (A-B):	19.32	F. Three We	ll Volumes (gal	) (E3):	Pump Intak	e Depth:					
1		11.50			1/17 /	<u> </u>	uid-scre	21				
				Vater Quality	Parameters							
Time (hrs)	Temperature (oC)	pH (pH units)	ORP (mV)	Conductivity (S/m)	Turbidity (ntu)	DO (mg/l)	DTW	Rate	Volume			
1405	21,59	2.00	-4	0.882	24.0	(mg/L) 2,66	(ft btoc)	(Lpm)	(liters)			
1408	21.17	6.86	-31	0.871	21.1	0.88	9.08	0.2	0,5			
1411	20.86	6.82	-7	0.874	20.6	0,72	9.10	0.2	1.2			
1414	20.49	6.79	-121	0.875	21.2	0.55	9.10	0. Z	1.8			
1417	20,79	6.76	-131	0.875	22.3	0.61	911	8.2	2.4			
1420	2002	6.74	-152	0.875	23.3	0.58	9.10	0.2	3.0			
1423	19.89	6.72	-61	0.876	333	0.55	9.10	0.2	3.6			
1129	19.75	6.71	-164	0.878	21.7	0.55	9.10	0.7	4.0			
1432	19.69	6.71	-165	0.881	20.5	0.55	9.10	0.7	4.6			
1439	19.49	6,69	-165	0.884	16.3	0.53	9.10	0.7	SZ			
1438	19,42	6.68	-155	0.885	15.8	0.54	9.10 9.10	0.2	5.8			
1441	19.40	6.58	-165	0.886	15.9	0.53	91.10	0.2	7.0			
1444	19.37	6.68	-165	0.887	16.0	0.53	9,10	0.2	7.6			
					<b>t</b>				7.8			
Fotal Owner!	ty of Water Ren		<u>}</u>									
Samplers:	iy of water Ken		gentic	°7.6		Sampling Ti Split Sample		<u><u> </u></u>				
Sampling Da	ite: -		23			Sample Type		6inb	i			
COMMENTS	S AND OBSERV	VATIONS:						<b></b>				
			-									
·												

.

	EA Engineering, P.C. EA Science and Technology GROUNDWATER SAMPLING PURGE FORM												
Well I.D.:	44-23		GROUNDV EA Personn	el:		GE FORM	<u> </u>						
Location;	nw - cs	5	Well Condit	CB, AS	) 	NYSDEC (	828103	)	···				
Silenal	k across	street		Good		Weather:	Jouch	, 57°F	7 7				
Sounding M	lethod: 2n MM		Gauge Date:	09/25/202	3	Measureme		<u> </u>					
Stick Up/Do	wn (ft): ,	· · · ·	Gauge Time			Well Diame	ter (in):						
	Flush			083	5		- He	2					
Purge Date:	allan	10			Purge Time	:	DOIS	×					
Purge Meth	<u>09/26</u>	2023			Field Techr	viciant	0918						
· · · · · · · · · · · · · · · · · · ·	Low	How p	ed pur	mp		<u> </u>	Li Bachia	1					
	Well Volume												
A. Well Dep	A. Well Depth (ft): D. Well Volume (ft): Depth/Height of Top of PVC;												
B. Depth to	Water (ft)		F Well Volu		65		- 1	- 44					
_	• •	8.98			3.45	Pump Type:	Persta 14	c perm	ρ				
C. Liquid De	epth (ft) (A-B):	71,19	F. Three Wel	l Volumes (gal)	(E3): 10:35	Pump Intake	e Depth: Mill - S	ren					
					10. 2.2		<u> </u>						
Time	Tomoreta			ater Quality I									
(hrs)	Temperature (oC)	pH (pH units)	ORP (mV)	Conductivity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)				
0913	13.28	7.00	13	1.30	782	2.08	9.05	0.2	(11(0/0)				
0921	13.41	6.91	-111	1.29	224	1.21	9.05	0.2	O,C				
0924	13-51	6,91	-127	1.28	133	1.21	9.05	0.2	1.2				
0927	13.57	6.89	-137	1.28	71.7	0.18	8.05	0.2	1.8				
0930	13.65	6.90	-135 -135	1.28	9:0	0.62	405	0.2	24				
CASC	13.60	6.93	-138	1.28	8.4	0,59	9.05	0.2	5.C				
0959	13.69	6.92	-138	1.28	1.0	0.47	9.05	0.2	3.6 4.2				
0942	13.74	6.92	-140	1.28	0.0	0.46	9.05	0.2	4.8				
0945	13.76	6.92	-140	127	0.0	0.47	9.05	0.2	5.4				
	<b>~</b>												
		••••••••••••••••••••••••••••••••••••••											
							·						
Total Quanti Samplers:	ty of Water Rei	noved (gal):	CB, AS	न. पर हु	ı — — — — — — — — — — — — — — — — — — —	Sampling Ti			<u>75</u>				
Samplers: Sampling Da	te;	04/	26/202	5		Split Sample Sample Type		N/ Gse					
COMMENT	AND OBSER	VATIONS.				× 94	-	<u></u>					
		VATIOND:	-	···									
	· · · · · · · · · · · · · · · · · · ·												

•

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			EA Engine EA Science			· · · · · · · · · · · · · · · · · · ·		NEW YOI STATE OF OPPORTUNIT	Enviro	iment o
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				GROUND	WATER SAMI	LING PUR	GE FORM		Consei	vation
Vertice of the term of the term of the term of ter	Well I.D.:	MW-2	4K	EA Personr	IB AS			82810	<u>)</u> \$)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Location: Across	streat in	perkla let	Well Condi	tion: A					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sounding M	lethod:				a2	Measureme	nt Rofe		
Pros       C         arge Date:       09/26/2073       Parge Time:       0 83'3         arge Method:       Low flow feen flow p       Field Technician:       C 1824/Mag         Well Depth (ft):       C 1824/Mag         Well Volume (ft):       O.16'S       Depth/fieight of Top of PVC:         Depth to Water (ft):       S. 27       E Well Volume (gal) (CD):       Top if Addition in the part of the	Stick Up/Do	wn (ft):		Gauge Tim			Well Diame	tor (in)		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>}</u>	1034	· · · · ·		0825	<u>&gt;</u>	· · · · ·	Z		
Field Technician: C · Sad Man         Well Volume         Well Volume         Well Depth (ff): $[7.37]$ D. Well Volume (ff):       D. 16'S       Depth/fielght of Top of PVC: $-0.25447$ Depth to Water (ff): $9.375$ E. Well Volume (gal) (CD): $7.16'S$ Pump Type: $perth/fielght of Top of PVC:       -0.25447         Liquid Depth (ft) (A-B):       9.375       E. Well Volume (gal) (CD):       7.16'S       Pump Intake Depth:       9.454/34 pump         Water Quality Parameters         Time (pH units) (mV (S/m) (atcu) (mg/L) (ft bloc) (Lpm) (fter         (hm)       C (pH units)       0RV       Conductivity       Turbidity       DO       DTW (Rate (D, P)) (fter         Volution (acc)       (pH units)       (mV) (S/m) (acc) PHO O.2 O.2         Value       (mV) (S/m) Cacc (acd) Mig/- Soda A         Water Quality Parameters         Time (pH units)       (mV) (S/m) (acc) DO DTW Rate       Volution (fter         V3.02        V.40 $	Purge Date:	09/26	1707.3		,	Purge Time	* (	1833	·······	
Well Volume           Well Depth (ft): $27.87$ D. Well Volume (ft): $0.167$ Depth/Height of Top of PVC: -0.2544           Depth to Water (ft): $8.35$ E. Well Volume (gal) (°D): $7.185$ Pump Type: $e0.2544$ Liquid Depth (ft) (A-B): $9.54$ F. Three Well Volumes (gal) (°D): $7.185$ Pump Intake Depth: $-0.2544$ Time $0.55$ $0.55$ Pump Intake Depth: $0.2544$ (hr) $0.54$ $0.535$ Pump Intake Depth: $Mid - 50-aa$ Time         (noc)         (pH units)         (mV)         Conductivity         Turbidity         DO         DTW         Rate         Volu           (hr)         (oc)         (pH units)         (mV)         Conductivity         Turbidity         DO         DTW         Rate         Volu           (hr)         (b.02 $0.72$ $-23$ $1.24$ $114$ $1.865$ $9.40$ $0.2$ $0.2$ $73.65$ $13.02$ $0.85$ $-226$ $1.24$ $90.2$ $1.59$ $9.40$ $0.2$ $1.25$ $73.65$	Purge Meth			A 1 0.		Field Techr	nician:	21		
Well Depth (ft): $77.87$ D. Well Volume (ft): $0.1673$ Depth/Height of Top of PVC: $-0.25447$ Depth to Water (ft): $9.35$ E. Well Volume (gal) (CD): $3.1855$ Pump Type: $pa/54a/kL$ $pump$ Liquid Depth (ft) (A-B): $9.54$ F. Three Well Volumes (gal) (ED): $7.1855$ Pump Intake Depth: $-0.25447$ Time $9.54$ F. Three Well Volumes (gal) (ED): $7.1855$ Pump Intake Depth: $-0.25447$ Water Quality Parameters         Time (nt: $0.575$ $0.071$ $0.77$ $0.77$ $0.77$ $0.772$ $0.272$ $0.723$ Water Quality Parameters         Time (nt: $0.077$ $0.977$ $0.977$ $0.977$ $0.977$ $0.977$ $0.977$ $0.977$ $0.977$ $0.977$ $0.977$ $0.972$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ $0.272$ <td></td> <td>Low</td> <td>How</td> <td>per pi</td> <td>Imp</td> <td><u> </u></td> <td>C</td> <td>· ISQL M</td> <td>an</td> <td></td>		Low	How	per pi	Imp	<u> </u>	C	· ISQL M	an	
$L7.87$ $O.16^{CS}$ $O.16^{CS}$ $O.16^{CS}$ $O.16^{CS}$ $O.2564$ Depth to Water (ft): $9.35$ E. Well Volumes (gal) (CD): $7.18^{CS}$ Pump Type: $Parts - Atter Pump^{2}$ Liquid Depth (ft) (A-B):       19.54       F. Three Well Volumes (gal) (E3):       Pump Intake Depth: $Mid - SO-aaA$ Water Quality Parameters         Time Temperature pH (ft) (A-B):         (ac)       (pH unit)       (mV)       (smin)       (mg/L) $Mid - SO-aaA$ Water Quality Parameters         Time Temperature pH (ft) (A-B):         (ac)       (pH unit)       (mV)       (smin)       (ft) Unoc)       (Lpm)       (ft) Unoc) $2835$ 13.07       C.97 $-23$ $1.74$ $114$ $1.86$ $9.40$ $O.2$ $-26$ $2935$ 13.02       G.88 $-31$ $1.24$ $90.2$ $1.59$ $9.40$ $O.2$ $1.72$ $2945$ $13.02$ G.85 $-23$ $1.24$ $90.7$ $1.48$ $9.40$ $O.2$ $3.6$ $2945$ $13.02$ G.86 $-16$ $1.24$						ume				
Depth to Water (it): $\mathfrak{F}$ <t< td=""><td>_</td><td>Ľ</td><td>7.87</td><td></td><td></td><td><u>1</u>3</td><td>Depth/Heigl</td><td>it of Top of P</td><td>VC: 0.25 ft</td><td>=</td></t<>	_	Ľ	7.87			<u>1</u> 3	Depth/Heigl	it of Top of P	VC: 0.25 ft	=
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Water (ft):		E. Well Volu	1me (gal) C*D):	3,185	Pump Type:	-	· · · · · · · · · · · · · · · · · · ·	
Water Quality Parameters         Time (aC) (pH units) (mV) (S/m) (attu) (mg/L) (ft bloc) (Lpm) (ft bloc)         (aC)       (pH units) (mV)       (S/m)       (attu) (mg/L) (ft bloc)       Rate (Lpm) (ft bloc)       Volu (ft bloc)         V335       13.07       C.97 $-23$ $1.74$ IIU $1.86$ $9.40$ $O.2$ $-2$ V355       13.04       C.81 $-53$ $1.74$ $9.40$ $O.2$ $-2$ V354       13.02       G.85 $-31$ $1.24$ $90.2$ $1.59$ $9.40$ $O.2$ $1.23$ V364       13.01 $G.85$ $-2C$ $1.24$ $70.0$ $1.48$ $9.40$ $0.72$ $1.83$ V384       13.02       G.86 $-19$ $1.24$ $61.8$ $1.47$ $9.40$ $0.72$ $3.73$ $0.851$ $1.3.02$ $G.86$ $-19$ $1.24$ $G1.8$ $1.47$ $9.40$ $0.72$ $3.73$ $0.851$ $1.502$ $G.87$ $-16$ $1.24$ $57.4$ $1.45$ $9.40$ $0.72$ $4.74$ $9.40$ $0.72$ </td <td>C. Liquid De</td> <td>epth (ft) (A-B):</td> <td>19.54</td> <td>F. Three We</td> <td>ll Volumes (gal) 9.</td> <td>(E3): SSS</td> <td>Pump Intake</td> <td>: Depth:</td> <td>•</td> <td>7</td>	C. Liquid De	epth (ft) (A-B):	19.54	F. Three We	ll Volumes (gal) 9.	(E3): SSS	Pump Intake	: Depth:	•	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Vator Orality					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			pН				DO	DTW	Rate	Volu
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>					<b>_</b>		(ft btoc)	<u>(L</u> pm)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			6.8						0.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
0848 $13.02$ $G.86$ $-19$ $1.24$ $GI,8$ $1.45$ $9.40$ $O.2$ $3.04$ $0851$ $13.04$ $G.87$ $-16$ $1.24$ $S7.4$ $I.35$ $9.40$ $O.2$ $3.04$ $0854$ $13.04$ $G.89$ $-16$ $1.25$ $S3.2$ $1.25$ $9.40$ $O.2$ $3.04$ $0857$ $13.04$ $G.89$ $-10$ $1.25$ $49.1$ $1.25$ $9.40$ $O.72$ $3.04$ $0966$ $13.03$ $G.89$ $-10$ $1.25$ $49.1$ $1.25$ $9.40$ $O.72$ $5.4$ $0966$ $13.03$ $G.89$ $-10$ $1.25$ $48.8$ $1.26$ $9.40$ $O.72$ $5.4$ $0903$ $13.00$ $G.90$ $-C$ $1.25$ $48.8$ $1.25$ $9.40$ $O.72$ $6.6$ $0903$ $13.00$ $G.90$ $-C$ $1.25$ $48.1$ $1.725$ $9.40$ $O.72$ $6.6$ $0903$ $13.00$ $G.90$ $-2$ $1.584$			- 6103 7 0C							1.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1.48			2.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
0.357 $13.00$ $0.39$ $-10$ $1.25$ $49.1$ $1.24$ $9.40$ $0.72$ $9.40$ $0.900$ $13.03$ $6.37$ $-8$ $1.25$ $48.8$ $1.76$ $9.40$ $0.72$ $9.40$ $0.900$ $13.03$ $6.37$ $-8$ $1.25$ $48.8$ $1.76$ $9.40$ $0.72$ $5.4$ $0.905$ $13.00$ $6.90$ $-6$ $1.25$ $48.8$ $1.76$ $9.40$ $0.72$ $5.4$ $0.905$ $13.00$ $6.90$ $-6$ $1.25$ $48.8$ $1.725$ $9.40$ $0.72$ $6.6$ $0.905$ $13.90$ $6.90$ $-6$ $1.25$ $48.1$ $1.725$ $9.40$ $0.72$ $6.6$ $0.905$ $1.524$ $9.40$ $0.72$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ $6.6$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td>								0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								44		
0903       13.10       6.90       -6       1.25       9.40       0.2       6.0         al Quantity of Water Removed (gal):       1.584       5ampling Time:       090.3         al Quantity of Water Removed (gal):       1.584       5ampling Time:       090.3         al Quantity of Water Removed (gal):       1.584       5ampling Time:       090.3         al Quantity of Water Removed (gal):       1.584       5ampling Time:       090.3         al Quantity of Water Removed (gal):       1.584       5ampling Time:       090.3         al Quantity of Water Removed (gal):       1.584       5ampling Time:       090.3         anpling Date:       09.126/1.01.3       5ampling Time:       090.3										<u> </u>
al Quantity of Water Removed (gal): plers: plers: pling Date: 01/26/2023 CE, AS 01/26/2023 CE, CE, AS CE, AS CE, AS CE, AS CE, AS CE, AS CE, AS CE, CE, CE Split Sample With: Sample Type: CE, CE Sample Type: CE, CE Sample Type: CE, CE Sample Type: CE Sample T		13.00	6.90			<u> 1818</u>	1.6			5.9
nplers: <u>CB, AS</u> Split Sample With: <u>M/A</u> npling Date: <u>09/26/2023</u> Sample Type: <u>673, 6</u>		12.10		6	1.25	701	1165	<u>4.40</u>	0.2	<u>_6 (</u>
nplers: <u>CB, AS</u> Split Sample With: <u>M/A</u> npling Date: <u>09/26/2023</u> Sample Type: <u>673, 6</u>										
nplers: <u>CB, AS</u> Split Sample With: <u>M/A</u> npling Date: <u>01/26/2023</u> Sample Type: <u>Crac</u> 6							<u>├──</u>	·		
nplers: <u>CB, AS</u> Split Sample With: <u>M/A</u> npling Date: <u>01/26/2023</u> Sample Type: <u>Crac</u> 6							<u> </u>			
nplers: <u>CB, AS</u> Split Sample With: <u>M/A</u> npling Date: <u>09/26/2023</u> Sample Type: <u>Crc. 6</u>		·								
nplers: <u>CB, AS</u> Split Sample With: <u>M/A</u> npling Date: <u>09/26/2023</u> Sample Type: <u>Crc. 6</u>								<u> </u>		
nplers: <u>CB, AS</u> Split Sample With: <u>M/A</u> npling Date: <u>09/26/2023</u> Sample Type: <u>Crc. 6</u>	'otal Quantit	y of Water Ren	noved (gal):		1000	<u>.</u>	Someline T!			3, 0.799
apling Date: 01/26/2023 Sample Type: 6/20	amplers:		Ç	B.AS-	-1.2%Y					
MMENTS AND OBSERVATIONS:	ampling Dat	te:	01/1	6/2023						- <u>;</u>
	OMMENTS	AND OBSERV	ATIONS	,				-		
				-						
	·····	·····								

· --

	EA Engineering, P.C. EA Science and Technology GROUNDWATER SAMPLING PURGE FORM										
Well I.D	1-245	······································	EA Personn		7	Client:	(878103	$\overline{}$			
Location;	Skreet ih	and to be	Well Condi		0	NYSDEC Weather:	- A	58°F			
Sounding M	lethod:		Gauge Date	•		Measureme	nt Ref*				
Stick Up/Do	wn (ft):	· · ·	Gauge Time	09/25/	2025	Well Diame		IC			
	Flush			0824							
Purge Date:		0.08	• • • • • • • •		Purge Time	:	0806				
Purge Meth	adu i f	2023	¥		Field Techn						
	Low	flow f	<u>res' pun</u>	p		(	C. Bad	Man			
	· · · · · · · · · · · · · · · · · · ·			Well Vol	ume						
A. Well Dep	oth (ft): 14.	22	D. Well Vol	ume (ft): O/G	)41		nt of Top of P ーンパ	~ 18	···		
B. Depth to	Water (ft): 📀	OK	E. Well Volu	ime (gal) C*D):	1	Pump Type:	Perstalt	D Quan	0		
C. Liquid D	0 epth (ft) (A-B):	and and	F. Three We	O / Il Volumes (gal)	(E3):	Pump Intak			/		
<u></u>	<u> </u>	2101		(	5.12		Mill-S	Rren_			
				Vater Quality I	arameters						
Time (hrs)	Temperature (oC)	pH (pH units)	ORP (mV)	Conductivity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)		
0806	12.39	5.74	97	1.33	353	3.63	(11 5100)	0.2	(IIIers)		
0809	12.52	6.07	-24	1.31	435	2.50		OIL	0.6		
0812	12.75	6.54	-80	1.33	476	2.22		0.2	1.2		
0815	12.91	6.72	46	1.33	252	2111		0.2	1.8		
0818	12,94	6.81	-97	1.33	134	2.09		0.2	24		
0821	12.97	6.83	-100	1.34	94.5	2.07		0.2	3.0		
0824	12,95	6.84	-102	1.34	49.1	2.05	and the second second	0.2	3.G		
0827	12.96	6.85	-103	1.34	46.3	2.01		0.2	4.2		
0830	12.96	6.85	-103	1.34	45,9	1.96	Value of States Weiner-	0.2	48		
$\sim$	- Well	Dry			المراجع المراجع بين المراجع ال مراجع المراجع ا	Constant of the other states of the other stat					
	ity of Water Ren	noved (gal):	2010	1,267		Sampling Ti		1200			
Samplers: Sampling Da	ate:	09/26/2	-15 AS Lo23			Split Sample Sample Type		N/A Grada			
COMMENT	S AND OBSER	VATIONS:	A	WLM to	to large	to to	the DT		surenet		
V	hile_pw	July m	ell dry	Q 08	30. 60	11 pech	age and	Sample			
	<u> </u>		/				<i>(</i> *	,			

i.

If $VG / 2G / 2G / 2S$ If $VG / 2G / 2S$ Field Technician:       C Hod C         Well Volume         Well Volume         Well Volume         A. Well Depth (ft):       (3:17)       D. Well Volume (ft):       O.6553       Depth/Height of Top of PVC:         B. Depth to Water (ft):       O.6553       Depth/Height of Top of PVC:         C. Liquid Depth (ft) (A-B):       C. Liquid Depth (ft) (A-B):       C. Liquid Depth (ft) (A-B):       Well Volume (gal) (E3):         Water Quality Parameters         Time       Time Temperature (pH)       OR Conductivity Turbidity (mt)       Druh (ft) toto)       Pump Type:       Astative:       Volume (iters)         Water Quality Parameters         Time Temperature (pH)       OR Conductivity Turbidity (mt)       Druh (mt)       OC Colspan="2">C Colspan="2">C Colspan="2">C Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"Colspan="2"	EA Engineering, P.C. EA Science and Technology												
$\begin{array}{c cccl} \hline \begin{tabular}{ cccc } \hline \begin{tabular}{ ccccc } \hline \begin{tabular}{ cccc } \hline \begin{tabular}{ cccc } \hline \begin{tabular}{ cccc } \hline \begin{tabular}{ ccccc } \hline \begin{tabular}{ cccc } \hline \begin{tabular}{ ccccc } \hline \hline \begin{tabular}{ ccccc } \hline \hline \bellembel{tabular}{ ccccc } \hline \hline \$	Well I D		AMPLING PUR										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ME-T	I US AS		NYSDEC	(82816	3)							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Location: Doveness off of Bester		¢	Weather:	Suns	G-JOF							
Purge Date: $PIQSL$ OPIZ       Purge Time: $1400$ Purge Method: $\int gwrge Time:$ $1400$ Field Technician: $C. Badaray         A. Well Depth (#):       \int y/T D. Well Volume (II):       O.653       Depth/Height of Top of PVC.         B. Depth to Water (II):       1.65       E. Well Volume (gal) CD):       g.93       Purge Type:       feld Net Type:         C. Liquid Depth (#):       1.65       E. Well Volume (gal) CD):       g.93       Purge Type:       feld Net Type:         C. Liquid Depth (#):       1.65       E. Well Volume (gal) CD):       g.93       Purge Time:       Mid - Screartice Net Type:         Time:       Temperature       pH       ORP       Conductivity Turbidity       DO       DTW       Rate       Volume         (Ho.0):       f.7.61 7.07       YI       O.638 food P f.75 f.60 f.75 f.60 f.75 f.760 O.72 G.73         Y400       f7.08 f.97 50 O.602 f.75 f.80 O.72 G.73         Y405       f7.09 G.97 50 O.602 f.53 J.51 S.0$	Sounding Method:	Gauge Date:		Measureme	nt Ref:	<u> </u>							
Proge Date: $09/26/2a23$ Purge Time: $1400$ Purge Date: $09/26/2a23$ Purge Time: $1400$ Purge Method:       Low How Period       purge       Field Technician: $C.Badrace         A. Well Depth (ft):       1.5       E. Well Volume (ft):       0.653       Depth/Height of Top of PV: A         B. Depth to Water (ft):       1.5       E. Well Volume (gal) (°D):       5.93       Pump Type:       parstal A^{+} Purge         C. Liquid Depth (ft) (A-B):       6.02       F. Three Well Volumes (gal) (°D):       7.93       Pump Trace Depth:       Madr       Succes         Time:       Temperature       pH       ORP       Conductivity Turbidity       DO       DTW       Rate       Madr       Succes         Time:       Temperature       pH       ORP       Conductivity Turbidity       DO       DTW       Rate       Madr       Succes         If 000 17.03 412 0.623 1000x 1.51 7.60 0.2 0.672 1.51         If 000 17.04 412 0.633 1.623 1.52 0.72 1.56 1.52 0.72 1.52 $	Stick Up/Down (ft):			Well Diame	<u>70</u> , ter (in): <b>4</b>	<u>JC</u>							
Of 126 126.5       1400         Purge Method:       1400         Purge Method:       1400         Well Volume         Well Volume (fil)       0.653       Depth/Height of Top of PVC -0.544         New Purge Method:       Of 126 128.7         Well Volume (gal) CD): 5.93       Pump Type: 6.834.14:2       OUMP         B. Depth f(fil) (A-B):       C. Liquid Depth f(fil) (A-B):       C. D. E. Three Well Volumes (gal) (E1): 7       Pump Intake Depth; 14: 7       Output Mide Stream         Water Quality Parameters         Time       Temperature (pH       ORP (mV)       OBTW       Rate Volume (gal) (E2): 7         Water Quality Parameters         Time       Three Well Volumes (gal) (E2): 7       O. C.	Flush		913										
Well Volume         Well Volume (ft):       0.653       Depth/Height of Top of PVC         B. Depth to Water (ft):       1.15       E. Well Volume (gal) C*D):       5.93       Pump Type:       C.SE4         C. Liquid Depth (ft) (A-B):       G. OZ       F. Three Well Volumes (gal) (E3):       Pump Type:       C.SE4         Water Quality Parameters         Time       Temperature       pH       ORL Conductivity Turbidity       Dot Mittle School         (b) OT       Conductivity       Turbidity DO       DTW       Rate Volume         Time       Temperature       pH       ORL Conductivity Turbidity       Dot Mittle School         (b) OT       7.01       V42       OC 32       P. Three Well Volume (gal) (E3):         (b) OT       Rate Well Colspan="2">Mater Quality Parameters         Time (pH mits)       (PH of Conductivity       Turbidity       Dot Mittle (mg/1)       Dittle for Conductivity         14005       1.75 <th c<="" td=""><td>Purge Date: Of a lagar</td><td></td><td>Purge Time</td><td>: 4:</td><td>100:</td><td></td><td></td></th>	<td>Purge Date: Of a lagar</td> <td></td> <td>Purge Time</td> <td>: 4:</td> <td>100:</td> <td></td> <td></td>	Purge Date: Of a lagar		Purge Time	: 4:	100:							
Well Volume         Well Volume (ft):       0.653       Depth/Height of Top of PVC         B. Depth to Water (ft):       1.15       E. Well Volume (gal) C*D):       5.93       Pump Type:       C.SE4         C. Liquid Depth (ft) (A-B):       G. OZ       F. Three Well Volumes (gal) (E3):       Pump Type:       C.SE4         Water Quality Parameters         Time       Temperature       pH       ORL Conductivity Turbidity       Dot Mittle School         (b) OT       Conductivity       Turbidity DO       DTW       Rate Volume         Time       Temperature       pH       ORL Conductivity Turbidity       Dot Mittle School         (b) OT       7.01       V42       OC 32       P. Three Well Volume (gal) (E3):         (b) OT       Rate Well Colspan="2">Mater Quality Parameters         Time (pH mits)       (PH of Conductivity       Turbidity       Dot Mittle (mg/1)       Dittle for Conductivity         14005       1.75 <th c<="" td=""><td></td><td></td><td>-</td><td>10</td><td>100</td><td></td><td></td></th>	<td></td> <td></td> <td>-</td> <td>10</td> <td>100</td> <td></td> <td></td>			-	10	100							
A. Well Depth (ft): $(3,1'1)$ D. Well Volume (ft): $0.653$ Depth/Height of Top of PVC $-0.5$ (A-B. Depth to Water (ft): $1.15$ E. Well Volume (gal) (CD): $5.93$ Pump Type: $p2.754.142$ $p2.92$ C. Liquid Depth (ft) (A-B): $G.07$ E. Three Well Volumes (gal) (E3): $n175$ $p2.92$ $mid - SU220$ Water Quality ParametersTime Temperature (pH units) $00P$ $00P$ $00dettvity$ $1.75$ $7.56$ $0.72$ Water Quality ParametersTime Temperature (pH units) $00P$ $0.6538$ $1022$ $1.75$ $7.56$ $0.72$ Water Quality ParametersTime Temperature (pH units) $00P$ $0.6538$ $1022$ $1.75$ $7.56$ $0.72$ HQC 17.61 $7.07$ $41$ $0.6538$ $1022$ $1.75$ $7.56$ $0.72$ $-122$ HQC 17.61 $7.07$ $41$ $0.6538$ $1022$ $1.75$ $7.60$ $0.72$ $-122$ HQC 17.71 $7.07$ $41$ $0.6538$ $1022$ $1.75$ $7.60$ $0.72$ $-122$ HQC 17.71 $7.07$ $41$ $0.6538$ $1022$ $1.55$ $7.38$ $0.72$ $1.22$ HQC 17.61 $6.97$ $50$ $0.6072$ $1555$ $1.51$ $8.053$ $0.72$ $1.22$ HQC 17.71 $6.97$ $50$ $0.5978$ $56.71$ $1.419$ $8.55$ $0.72$ $2.6$ <td c<="" td=""><td>www. How</td><td>per pump</td><td></td><td>$\frac{1}{C}$</td><td>Bodon</td><td>n</td><td></td></td>	<td>www. How</td> <td>per pump</td> <td></td> <td>$\frac{1}{C}$</td> <td>Bodon</td> <td>n</td> <td></td>	www. How	per pump		$\frac{1}{C}$	Bodon	n						
A. Well Depth (ft): $(3,1'1)$ D. Well Volume (ft): $0.653$ Depth/Height of Top of PVC $-0.5$ (A-B. Depth to Water (ft): $1.15$ E. Well Volume (gal) (CD): $5.93$ Pump Type: $p2.754.142$ $p2.92$ C. Liquid Depth (ft) (A-B): $G.07$ E. Three Well Volumes (gal) (E3): $n175$ $p2.92$ $mid - SU220$ Water Quality ParametersTime Temperature (pH units) $00P$ $00P$ $00dettvity$ $1.75$ $7.56$ $0.72$ Water Quality ParametersTime Temperature (pH units) $00P$ $0.6538$ $1022$ $1.75$ $7.56$ $0.72$ Water Quality ParametersTime Temperature (pH units) $00P$ $0.6538$ $1022$ $1.75$ $7.56$ $0.72$ HQC 17.61 $7.07$ $41$ $0.6538$ $1022$ $1.75$ $7.56$ $0.72$ $-122$ HQC 17.61 $7.07$ $41$ $0.6538$ $1022$ $1.75$ $7.60$ $0.72$ $-122$ HQC 17.71 $7.07$ $41$ $0.6538$ $1022$ $1.75$ $7.60$ $0.72$ $-122$ HQC 17.71 $7.07$ $41$ $0.6538$ $1022$ $1.55$ $7.38$ $0.72$ $1.22$ HQC 17.61 $6.97$ $50$ $0.6072$ $1555$ $1.51$ $8.053$ $0.72$ $1.22$ HQC 17.71 $6.97$ $50$ $0.5978$ $56.71$ $1.419$ $8.55$ $0.72$ $2.6$ <td c<="" td=""><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td>Volume</td><td>· ···</td><td></td><td></td><td></td></td>	<td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>Volume</td> <td>· ···</td> <td></td> <td></td> <td></td>		· · · · · · · · · · · · · · · · · · ·	Volume	· ···								
B. Depth to Water (ft):       1.5       E. Well Volume (gal) CD):       3.9.3       Pump Type: $period Act + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $	A. Well Depth (ft):			Depth/Heig	ht of Top of P	IS:04							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		E Well Volume (gal) C		Pump Type									
Water Quality Parameters           Time (hrs)         Temperature (oC)         pH (pH units)         ORP (mV)         Conductivity (s/m)         Turbidity (ntt)         DO (ntt)         DTW (ngt)         Rate (t btoc)         Volume (lters)           140.0         17.01         7.07         41         0.658 $l \cos i$ 1.75         7.50         0.2            140.5         17.08         6.99         42.         0.634 $l \cos i$ 1.51         7.60         0.2         6.6           140.5         17.08         6.99         42.         0.634 $l \cos i$ 1.51         7.60         0.2         6.6           140.5         17.09         6.97         50         0.602 $l 55$ $l .51$ $8.035$ $0.72$ $l \cdot 2$ 142.1         17.10         6.94         52 $0.598$ $56.1$ $l \cdot 49$ $0.72$ $3.0$ 142.1         17.30         6.94         6.954 $0.595$ $19.11$ $l \cdot 61$ $8.59$ $0.72$ $3.0$ 142.4         17.30         6.92         68 $0.595$ $14.77$ $l \cdot 62$ <	<1.12	2. Weil Volume (gul) C	5.93		1ersta		unp						
Water Quality Parameters           Time (hrs)         Temperature (oC)         pH (pH units)         ORP (mV)         Conductivity (s/m)         Turbidity (ntt)         DO (ntt)         DTW (ngt)         Rate (t btoc)         Volume (lters)           140.0         17.01         7.07         41         0.658 $l \cos i$ 1.75         7.50         0.2            140.5         17.08         6.99         42.         0.634 $l \cos i$ 1.51         7.60         0.2         6.6           140.5         17.08         6.99         42.         0.634 $l \cos i$ 1.51         7.60         0.2         6.6           140.5         17.09         6.97         50         0.602 $l 55$ $l .51$ $8.035$ $0.72$ $l \cdot 2$ 142.1         17.10         6.94         52 $0.598$ $56.1$ $l \cdot 49$ $0.72$ $3.0$ 142.1         17.30         6.94         6.954 $0.595$ $19.11$ $l \cdot 61$ $8.59$ $0.72$ $3.0$ 142.4         17.30         6.92         68 $0.595$ $14.77$ $l \cdot 62$ <		F. Three Well Volumes	(gal) (E3):	Pump Intak	e Depth: Mill-	- Scree	$^{\cdot}$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				·····									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Time Temperature pH			T DO		Rato	Volumo						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(hrs) (oC) (pH units)	(mV) (S/m)	(ntu)	(mg/L)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			the second se		· · · · · · · · · · · · · · · · · · ·	_							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
IY47       17: II $\widehat{C}, 9 \subseteq$ 53 $O, 598$ $5G, 1$ $I,49$ $6I,55$ $O,7$ $7,4$ IY18       17.10 $G,9G$ $5G$ $O,595$ $7G,7$ $I,51$ $8.50$ $O,7$ $7.0$ IY18 $17.17$ $G,9G$ $5G$ $O,595$ $7G,7$ $I,51$ $8.50$ $O,7$ $7.0$ IY18 $17.77$ $G,9G$ $G,0$ $0.595$ $19.1$ $I,67$ $8.45$ $O,7$ $7.6$ IY18 $17.72$ $G,9G$ $G,0$ $0.595$ $19.1$ $I,67$ $8.45$ $O,7$ $7.6$ IY18 $17.72$ $G.975$ $G8$ $0.595$ $19.1$ $I,67$ $8.55$ $O.7$ $4.7$ IY24 $17.59$ $G.975$ $G8$ $0.595$ $14.7$ $I.67$ $8.56$ $O.7$ $9.54$ IY477 $17.39$ $G.975$ $19.7$ $I.675$ $8.64$ $O.7$ $5.4$ IY477 $I.739$ $G.975$ $I.4756$ $8.676$ $0.75$ $9.674$ $0.75$ <													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					8,15								
1Y18       17.12       C.95       GO       0.593       19.1       1.67       6.45       0.2       3.6         1421       17.30       G.94       C4       0.592       15.5       1.60       8.55       0.2       4.2         1424       17.30       G.93       68       0.593       14.9       1.61       8.59       0.2       4.2         1424       17.34       G.93       68       0.593       14.9       1.61       8.59       0.2       4.8         1427       17.39       G.92       70       0.595       14.7       1.62       8.64       0.2       5.4         1477       17.39       G.92       70       0.595       14.7       1.62       8.64       0.2       5.4         1477       17.39       G.92       70       0.595       14.7       1.62       8.64       0.2       5.4         1477       1.62       8.64       0.2       5.4       0.2       5.4       0.2       5.4         1477       1.62       8.64       0.2       1.42       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6       1.6	1415 17.16 6.96	56 0.50		· · · · ·									
1474       17.34       6.93       68       0.593       14.9       1.61       8.59       0.1       4.8         1477       17.39       6.92       70       0.595       14.7       1.62       8.64       0.1       5.4         1477       17.39       6.92       70       0.595       14.7       1.62       8.64       0.1       5.4         1477       17.39       6.92       70       0.595       14.7       1.62       8.64       0.1       5.4         1477       1.62       8.64       0.1       5.4       1.4       1.61       8.59       0.1       5.4         1477       1.62       8.64       0.1       5.4       1.4       1.4       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       1.61       <		60 0.59		1.67	8.45	0.2							
142-7       1.37       6.92       70       0.595       14.7       1.67       8.64       0.2       5.4							4.2						
Image: Sampling Date:     Image: Sampling Date: <td< td=""><td></td><td>68 0S</td><td><u>45 14,4</u></td><td></td><td>8.59</td><td></td><td></td></td<>		68 0S	<u>45 14,4</u>		8.59								
Samplers:     CB     Split Sample With:       Sampling Date:     09/26/2023     Sample Type:	1101 1.51 6.16	10 0.5	<u>&gt; 19,7</u>	1.62	8167	0.2							
Samplers:     CB     Split Sample With:       Sampling Date:     09/26/2023     Sample Type:													
Samplers:     CB     Split Sample With:       Sampling Date:     09/26/2023     Sample Type:													
Samplers:     CB     Split Sample With:       Sampling Date:     09/26/2023     Sample Type:													
Samplers:     CB     Split Sample With:       Sampling Date:     09/26/2023     Sample Type:													
Samplers:     CB     Split Sample With:       Sampling Date:     09/26/2023     Sample Type:		<u> </u>		1									
Sampling Date: <u>()9/26/2023</u> Sample Type: <u>6.72(6</u>	Total Quantity of Water Removed (gal):	1.425	6				4.7						
	Samplers:	126/2023				N 6 m	1/4 5						
	<u> </u>	, , , , , , , , , , , , , , , , , , , ,		I ) F	-	0(	<u> </u>						
	COMMENTS AND ODSERVATIONS;												

		1 ma	NEW YORK STATE OF OPPORTUNITY OPPORTUNITY Conservation						
Well I.D.:				VATER SAMPI	ING PURC	GE FORM			
	GWE = L $CS, AS$					NYSDEC	828103		
Docation: Downay all at Berten Str Well Condition: Good						Weather: S	Znny 6	STOF	
Sounding M	ethod:		Gauge Date:	04/25/20	23	Measuremen	t Ref	2	
HC Stick Up/Do	wn (ft):	<u> </u>	Gauge Time			Well Diamet	er (in): Y		
Purge Date:	09/1	16/2023			Purge Time:		517		
Purge Metho	od: Low	Hen	peri p	Jump	Field Techni	ician:	2. Bach	<u>an</u>	
			1	Well Volu	ıme 7				
A, Well Dept	^{th (ft):} 23	2.19	D. Well Vol	ama (ft)	653	Depth/Heigh	t of Top of PV	is fa	
B. Depth to V		21	E. Well Volt	ume (gal) C*D):		Pump Type:			INO
C. Liquid De	epth (ft) (A-B):	12.98	F. Three We	ll Volumes (gal)	(E3): 25.428	Pump Intake	Revisital Depth: Mid - S	trees	1
		<b></b>	v	Vater Quality F					
Time	Temperature	pН	ORP	Conductivity	Turbidity	DO	DTW	Rate	Volume
(hrs)	(oC)	_(pH units)	(mV)	(S/m)	(ntu)	(mg/L)	(ft btoc)	(Lpm)	(liters)
1317	16.34	7.15	95	1.64	141 125	3.34	9.45	0.2 0.2	00
1523	16.24	7.10	95			2.83	9.83	0.2	06
1326	16.22	7.13	89 85	1.65	104	Z.10 Z.11	10.01	0.2	1.8
1529	16.24 16.24	7.13	82	1.65	86.6	2.24	10,14	0.2	24
1352	16.29	7.11	50	115	B.C	2.15	16.33	0.2	3.0
1535	16.18	7.07	- 27	1	76.3	2.04	10.51	0.2	3.6
1338	16.10	7.10	12	105	61.0	2.10	10.55	0.2	4.2
1341	16.14	7.10	00	1.66	48.2	Ca 1.9		On	4.8
1344	16.11	7.07	- 69 - 68	1.66	47.4	1,89	10,58	0.7	5.4
1347		7.86	17	1.66	46.8	1,87	16.58	0.2	6.0
1241			- 6 /	140	10.0	1/0/	-10.20		
			l						
					<u> </u>		·		
					· · · ·		· · ·		·
Total Quanti	ity of Water Rei	noved (gal):	<u>_</u>	1,584		Sampling Ti	me;	13	47
Samplers:	-	<u>```</u> (	BAS			Split Sample	With:	/ئ	VIA
Sampling Da	ate:	<u>0470</u>	2/2023			Sample Type		Gre	<u>il</u>
COMMENT	S AND OBSER	VATIONS:							

, ş

Appendix D

Laboratory Analysis Report



### Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

# Technical Report for

**EA Engineering** 

NYSDEC SMP-D Site- Dinaburg, Rochester, NY

SGS Job Number: JD77326X



Sampling Date: 10/26/23

**Report to:** 

EA Engineering 269 West Jefferson Street Syracuse, NY 13202 nrobinson@eaest.com; joliver@eaest.com; kcassidy@eaest.com; kkatzer@eaest.com ATTN: Noah Robinson

Total number of pages in report: 23



David Chastain General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable unless noted in the narrative, comments or footnotes.

Client Service contact: Kelly Ramos 732-329-0200 Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA(68-00408), RI, SC, TX, UT, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 •

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com



1 of 23

11/20/23

Automated Report

e-Hardcopy 2.0

1 2

ယ

# **Table of Contents**

Section 1: Sample Summary	3	
Section 2: Subcontract Lab Data	4	
Section 3: Misc. Forms	22	
3.1: Chain of Custody	23	

# Sample Summary

### EA Engineering

**Job No:** JD77326X

NYSDEC SMP-D Site- Dinaburg, Rochester, NY

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
JD77326-1	10/26/23	10:10	10/27/23	AQ	Ground Water	828103-MW-13K-10262023
JD77326-2	10/26/23	10:30	10/27/23	AQ	Ground Water	828103-MW-03CA-10262023
JD77326-3	10/26/23	10:40	10/27/23	AQ	Ground Water	828103-MW-20S-10262023





Section 2

Subcontract Lab Data

Report of Analysis









# SITE LOGIC Report

QuantArray[®]-Chlor Study

Contact:	Kelly Rar	nos	Ph	one:	732-329-0200
Address:		Highway 130 ids Corporate Village		nail:	kelly.ramos@sgs.com
MI Iden	tifier:	$086\mathrm{UJ}$		Report Date	: 11/07/2023

Project: Comments: NYSDEC SMP-D Site-Dihaburg, Rochester, NY, EAENYES97277

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.



SHS



## The QuantArray®-Chlor Approach

Quantification *Dehalococcoides*, the only known bacterial group capable of complete reductive dechlorination of PCE and TCE to ethene, has become an indispensable component of assessment, remedy selection, and performance monitoring at sites impacted by chlorinated solvents. While undeniably a key group of halorespiring bacteria, *Dehalococcoides* are not the only bacteria of interest in the subsurface because reductive dechlorination is not the only potential biodegradation pathway operative at contaminated sites, and chlorinated ethenes are not always the primary contaminants of concern. The QuantArray[®]-Chlor not only includes a variety of halorespiring bacteria (*Dehalococcoides*, *Dehalobacter*, *Dehalogenimonas*, etc.) to assess the potential for reductive dechlorination of chloroethenes, chloroethanes, chlorobenzenes, chlorophenols, and chloroform, but also provides quantification of functional genes involved in aerobic (co)metabolic pathways for biodegradation of chlorinated solvents and even competing biological processes. Thus, the QuantArray[®]-Chlor will give site managers the ability to simultaneously yet economically evaluate the potential for biodegradation of a spectrum of common chlorinated contaminants through a multitude of anaerobic and aerobic (co)metabolic pathways to give a much more clear and comprehensive view of contaminant biodegradation.

The QuantArray[®]-Chlor is used to quantify specific microorganisms and functional genes to evaluate the following:

Anaerobic Reductive Dechlorination	Quantification of important halorespiring bacteria (e.g. <i>Dehalococcoides</i> , <i>Dehalobacter</i> , <i>Dehalogenimonas</i> , <i>Desulfitobacterium</i> spp.) and key functional genes (e.g. vinyl chloride reductases, TCE reductase, chloroform reductase) responsible for reductive dechlorination of a broad spectrum of chlorinated solvents.
Aerobic Cometabolism	Several different types of bacteria including methanotrophs and some toluene/phenol utilizing bacteria can co-oxidize TCE, DCE, and vinyl chloride. The QuantArray [®] -Chlor quantifies functional genes like soluble methane monooxygenase encoding enzymes capable of co-oxidation of chlorinated ethenes.
Aerobic (Co)metabolism of Vinyl Chloride	Ethene oxidizing bacteria are capable of cometabolism of vinyl chloride. In some cases, ethenotrophs can also utilize vinyl chloride as a growth supporting substrate. The QuantArray [®] -Chlor targets key functional genes in ethene metabolism.

#### How do QuantArrays work?

The QuantArray[®]-Chlor in many respects is a hybrid technology combining the highly parallel detection of microarrays with the accurate and precise quantification provided by qPCR into a single platform. The key to highly parallel qPCR reactions is the nanoliter fluidics platform for low volume, solution phase qPCR reactions.

10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133 Web: www.microbe.com





#### How are QuantArray[®] results reported?

One of the primary advantages of the QuantArray[®]-Chlor is the simultaneous quantification of a broad spectrum of different microorganisms and key functional genes involved in a variety of pathways for hydrocarbon biodegradation. However, highly parallel quantification combined with various metabolic and cometabolic capabilities of different target organisms can complicate data presentation. Therefore, in addition to Summary Tables, QuantArray®-Chlor results will be presented as Microbial Population Summary and Comparison Figures to aid in the data interpretation and subsequent evaluation of site management activities.

#### Types of Tables and Figures:

Microbial Population Summary	Figure presenting the concentrations of QuantArray [®] -Chlor target populations (e.g. <i>Dehalococcoides</i> ) and functional genes (e.g. vinyl chloride reductase) relative to typically observed values.
Summary Tables	Tables of target population concentrations grouped by biodegradation pathway and contaminant type.
Comparison Figures	Depending on the project, sample results can be presented to compare changes over time or examine differences in microbial populations along a transect of the dissolved plume.

 $10515\ \mathrm{Research}\ \mathrm{Drive}$ Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133 Web: www.microbe.com



7 of 23

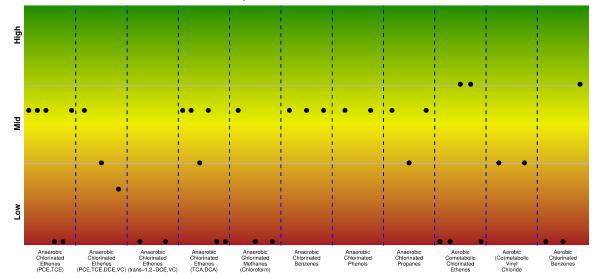


## Results

Table 1: Summary of the QuantArray®-Chlor results obtained for samples 828103-MW-13K-102623, 828103-MW-03CA-102623, and 828103-MW-20S-102623

Sample Name	828103-MW-13K-102623	828103-MW-03CA-102623	828103-MW-20S-102623
Sample Date	2023-10-26	2023-10-26	2023-10-26
Reductive Dechlorination	cells/bead	cells/bead	cells/bead
Dehalococcoides (DHC)	7.64E + 03	2.51E + 03	< 2.50 E + 01
tceA Reductase (TCE)	4.98E + 02	4.43E + 01	< 2.50 E + 01
BAV1 Vinyl Chloride Reductase (BVC)	1.19E + 02	5.84E + 01	< 2.50 E + 01
Vinyl Chloride Reductase (VCR)	8.92E + 01	6.79E + 02	$< 2.50 \pm +01$
Dehalobacter spp. (DHBt)	8.61E + 04	3.52E + 04	$< 2.50 \pm +02$
Dehalobacter DCM (DCM)	< 2.50 E + 02	<2.50E+02	< 2.50 E + 02
Dehalogenimonas spp. (DHG)	1.57E + 03	1.88E + 04	$< 2.50 \pm +02$
cerA Reductase (CER)	< 2.50 E + 02	<2.50E+02	$< 2.50 \pm +02$
trans-1,2-DCE Reductase (TDR)	<2.50E+02	<2.50E+02	$< 2.50 \pm +02$
Desulfitobacterium spp. (DSB)	1.64E + 04	3.82E + 04	<2.50E+02
Dehalobium chlorocoercia (DECO)	2.56E + 04	$8.16E \pm 03$	2.00E + 03
Desulfuromonas spp. (DSM)	$< 2.50 \pm +02$	$<\!\!2.50\mathrm{E}\!+\!02$	6.88E + 01 (J)
PCE Reductase (PCE-1)	<2.50E+02	<2.50E+02	<2.50E+02
PCE Reductase (PCE-2)	4.01E + 04	5.39E + 03	< 2.50 E + 02
Chloroform Reductase (CFR)	$< 2.50 \pm +02$	$<\!2.50\mathrm{E}\!+\!02$	$< 2.50 \pm +02$
1,1 DCA Reductase (DCA)	<2.50E+02	<2.50E+02	<2.50E+02
1,2 DCA Reductase (DCAR)	<2.50E+02	< 2.50 E + 02	$< 2.50 \pm +02$
Aerobic (Co)Metabolic			
Soluble Methane Monooxygenase (SMMO)	<2.50E+02	<2.50E+02	$< 2.50 \pm +02$
Toluene Dioxygenase (TOD)	$<\!2.50\mathrm{E}\!+\!02$	$< 2.50 \pm +02$	< 2.50 E + 02
Phenol Hydroxylase (PHE)	$1.48\mathrm{E}{+05}$	2.85 E + 04	1.27E + 05
Trichlorobenzene Dioxygenase (TCBO)	<2.50E+02	<2.50E+02	< 2.50 E + 02
Toluene Monooxygenase 2 (RDEG)	1.44E + 05	2.93E + 04	$1.55 \mathrm{E}{+05}$
Toluene Monooxygenase (RMO)	< 2.50 E + 02	1.35E + 03	$< 2.50 \pm +02$
Ethene Monooxygenase (EtnC)	3.50E + 03	2.47 E + 03	< 2.50 E + 02
Epoxyalkane Transferase (EtnE)	5.44E + 03	<2.50E+02	1.23E + 04
Dichloromethane Dehalogenase (DCMA)	< 2.50 E + 02	$< 2.50 \pm +02$	< 2.50 E + 02
Other			
Total Eubacteria (EBAC)	4.55E + 08	4.85E + 06	3.43E + 07
Sulfate Reducing Bacteria (APS)	2.99E + 05	4.09E + 05	$1.52\mathrm{E}{+05}$
Methanogens (MGN)	1.21E + 02 (J)	3.84E + 03	1.28E + 01 (J)

#### Legend:


- NA = Not AnalyzedI = Inhibited

 $\mathbf{J} = \mathbf{E}\mathbf{s}\mathbf{t}$ imated Gene Copies Below PQL but Above LQL

10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133 Web: www.microbe.com





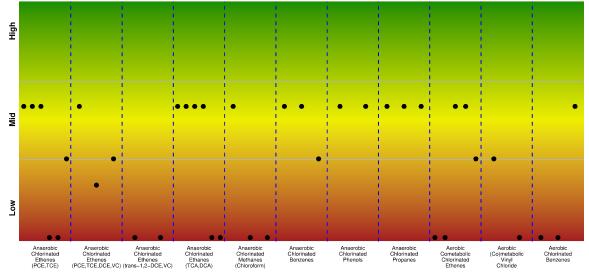


#### Microbial Populations 828103–MW–13K–102623

Figure 1: Microbial population summary to aid in evaluating potential pathways and biodegradation of specific contaminants.

Anaerobic - Reductive	Dechlorination or Dichloroelimination	Aerobic - (Co	o)metabolism
Chlorinated Ethenes (PCE, TCE)	DHC, DHBt, DSB, DSM, PCE-1, PCE-2	Chlorinated Ethenes (TCE,DCE,VC)	sMMO, TOD, PHE, RDEG, RMO
Chlorinated Ethenes (PCE, TCE, DCE, VC)	DHC, BVC, VCR	(Co)metabolic Vinyl Chlo- ride	etnC, etnE
Chlorinated Ethenes (trans- 1,2-DCE, VC)	TDR, CER	Chlorinated Benzenes	TOD, TCBO, PHE
Chlorinated Ethanes (TCA and 1,2-DCA)	DHC, DHBt, DHG, $DSB^1$ , DCA, DCAR		
Chlorinated Methanes (Chlo- roform)	DHBt, DCM, CFR		
Chlorinated Benzenes Chlorinated Phenols Chlorinated Propanes	DHC, DHBt ² , DECO DHC, DSB DHC, DHG, DSB ¹		

¹Desulfitobacterium dichloroeliminans DCA1. ²Implicated in reductive dechlorination of dichlorobenzene and potentially chlorobenzene.


10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133 Web: www.microbe.com



9 of 23

JD77326X





Microbial Populations 828103-MW-03CA-102623

----~ 3.5. 1 • 1 1 ... · 1 · . . . . . . .  $\cdot c$ 1 1 .

Figure 2:	Microbial	population	summary	to a	nd in	evaluating	potential	pathways	and	biodegradation	of specific	con-
taminants.												

Anaerobic - Reductive	Dechlorination or Dichloroelimination	Aerobic - (Co	p)metabolism
Chlorinated Ethenes (PCE,	DHC, DHBt, DSB, DSM,	Chlorinated Ethenes	sMMO, TOD, PHE, RDEG,
TCE)	PCE-1, PCE-2	(TCE, DCE, VC)	RMO
Chlorinated Ethenes (PCE, TCE, DCE, VC)	DHC, BVC, VCR	(Co)metabolic Vinyl Chlo- ride	etnC, etnE
Chlorinated Ethenes (trans- 1,2-DCE, VC)	TDR, CER	Chlorinated Benzenes	TOD, TCBO, PHE
Chlorinated Ethanes (TCA	DHC, DHBt, DHG, $DSB^1$ ,		
and 1,2-DCA)	DCA, DCAR		
Chlorinated Methanes (Chlo- roform)	DHBt, DCM, CFR		
Chlorinated Benzenes	DHC, DHBt ² , DECO		
Chlorinated Phenols	DHC, DSB		
Chlorinated Propanes	DHC, DHG, $DSB^1$		

¹Desulfitobacterium dichloroeliminans DCA1. ²Implicated in reductive dechlorination of dichlorobenzene and potentially chlorobenzene.

 $10515\ \mathrm{Research}\ \mathrm{Drive}$ Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133 Web: www.microbe.com



10 of 23 JD77326X



#### Microbial Populations 828103–MW–20S–102623

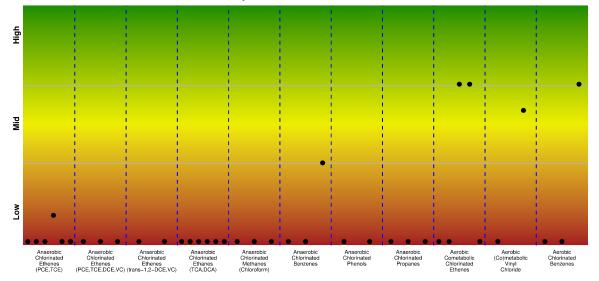



Figure 3: Microbial population summary to aid in evaluating potential pathways and biodegradation of specific contaminants.

Anaerobic - Reductive	Dechlorination or Dichloroelimination	Aerobic - (Co	o)metabolism
Chlorinated Ethenes (PCE, TCE)	DHC, DHBt, DSB, DSM, PCE-1, PCE-2	Chlorinated Ethenes (TCE,DCE,VC)	sMMO, TOD, PHE, RDEG, RMO
Chlorinated Ethenes (PCE, TCE, DCE, VC)	DHC, BVC, VCR	(Co)metabolic Vinyl Chlo- ride	etnC, etnE
Chlorinated Ethenes (trans- 1,2-DCE, VC)	TDR, CER	Chlorinated Benzenes	TOD, TCBO, PHE
Chlorinated Ethanes (TCA and 1,2-DCA)	DHC, DHBt, DHG, $DSB^1$ , DCA, DCAR		
Chlorinated Methanes (Chlo- roform)	DHBt, DCM, CFR		
Chlorinated Benzenes	DHC, DHBt ² , DECO		
Chlorinated Phenols	DHC, DSB		
Chlorinated Propanes	DHC, DHG, $DSB^1$		

¹Desulfitobacterium dichloroeliminans DCA1. ²Implicated in reductive dechlorination of dichlorobenzene and potentially chlorobenzene.

10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133 Web: www.microbe.com



11 of 23 JD77326X



Table 2: Summary of the QuantArray®-Chlor results for reductive dechlorination for samples 828103-MW-13K-102623, 828103-MW-03CA-102623, and 828103-MW-20S-102623

Sample Name Sample Date	828103-MW-13K-102623 2023-10-26	828103-MW-03CA-102623 2023-10-26	828103-MW-20S-102623 2023-10-26
Reductive Dechlorination	cells/bead	cells/bead	cells/bead
Dehalococcoides (DHC)	7.64E + 03	$2.51\mathrm{E}{+03}$	$<\!\!2.50\mathrm{E}\!+\!01$
tceA Reductase (TCE)	$4.98E{+}02$	4.43E + 01	$<\!\!2.50E + 01$
BAV1 Vinyl Chloride Reductase (BVC)	$1.19E{+}02$	5.84E + 01	$<\!\!2.50E + 01$
Vinyl Chloride Reductase (VCR)	$8.92E{+}01$	$6.79  ext{E} + 02$	$<\!\!2.50\mathrm{E}{+}01$
Dehalobacter spp. (DHBt)	8.61E + 04	$3.52\mathrm{E}{+04}$	$<\!\!2.50\mathrm{E}{+}02$
$Dehalobacter \ \tilde{DCM} (DCM)$	$<\!\!2.50\mathrm{E}{+}02$	$<\!\!2.50\mathrm{E}\!+\!02$	$<\!\!2.50\mathrm{E}{+}02$
Dehalogenimonas spp. (DHG)	1.57E + 03	1.88E + 04	$<\!\!2.50\mathrm{E}{+}02$
Desulfitobacterium spp. (DSB)	1.64E + 04	3.82E + 04	$<\!\!2.50\mathrm{E}{+}02$
Dehalobium chlorocoercia (DECO)	2.56E + 04	8.16E + 03	2.00E + 03
Desulfuromonas  spp.  (DSM)	$<\!\!2.50\mathrm{E}\!+\!02$	$<\!\!2.50\mathrm{E}\!+\!02$	6.88E + 01 (J)

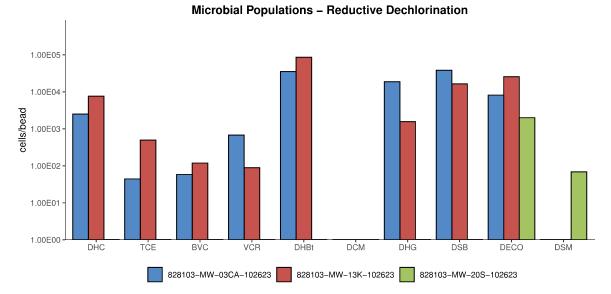



Figure 4: Comparison - microbial populations involved in reductive dechlorination

 $10515\ \mathrm{Research}\ \mathrm{Drive}$ Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133 Web: www.microbe.com



JD77326X

7



Table 3: Summary of the QuantArray®-Chlor results for reductive dechlorination for samples 828103-MW-13K-102623,828103-MW-03CA-102623, and 828103-MW-20S-102623

Sample Name Sample Date	828103-MW-13K-102623 2023-10-26	828103-MW-03CA-102623 2023-10-26	828103-MW-20S-102623 2023-10-26
Reductive Dechlorination	cells/bead	cells/bead	cells/bead
cerA Reductase (CER)	$<\!\!2.50\mathrm{E}\!+\!02$	$<\!\!2.50\mathrm{E}{+}02$	$<\!\!2.50\mathrm{E}\!+\!02$
<i>trans</i> -1,2-DCE Reductase (TDR)	$<\!\!2.50\mathrm{E}\!+\!02$	$<\!\!2.50\mathrm{E}{+}02$	$<\!\!2.50\mathrm{E}{+}02$
PCE Reductase (PCE-1)	$<\!\!2.50\mathrm{E}\!+\!02$	$<\!\!2.50\mathrm{E}{+}02$	$<\!\!2.50\mathrm{E}{+}02$
PCE Reductase (PCE-2)	4.01E + 04	$5.39\mathrm{E}{+03}$	$<\!\!2.50\mathrm{E}{+}02$
Chloroform Reductase (CFR)	$<\!\!2.50\mathrm{E}\!+\!02$	$<\!\!2.50\mathrm{E}\!+\!02$	$<\!\!2.50\mathrm{E}{+}02$
1,1 DCA Reductase (DCA)	$<\!\!2.50\mathrm{E}\!+\!02$	$<\!\!2.50\mathrm{E}{+}02$	$<\!\!2.50\mathrm{E}{+}02$
1,2 DCA Reductase (DCAR)	$<\!\!2.50\mathrm{E}\!+\!02$	$<\!\!2.50\mathrm{E}{+}02$	$<\!\!2.50\mathrm{E}{+}02$

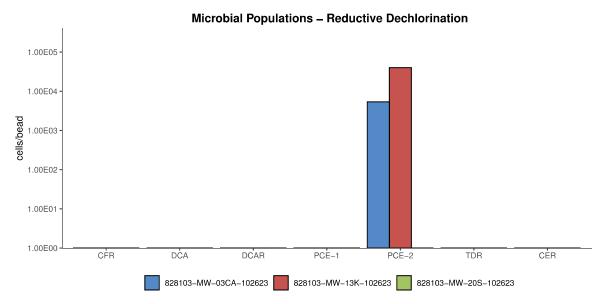



Figure 5: Comparison - microbial populations involved in reductive dechlorination

10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133 Web: www.microbe.com



13 of 23 JD77326X



Table 4: Summary of the QuantArray[®]-Chlor results for microorganisms responsible for aerobic (co)metabolism for samples 828103-MW-13K-102623, 828103-MW-03CA-102623, and 828103-MW-20S-102623

Sample Name Sample Date	828103-MW-13K-102623 2023-10-26	828103-MW-03CA-102623 2023-10-26	$\begin{array}{r} 828103\text{-}\text{MW-}20\text{S-}102623\\ 2023\text{-}10\text{-}26\end{array}$
Aerobic (Co)Metabolic	cells/bead	cells/bead	cells/bead
Soluble Methane Monooxygenase (SMMO)	<2.50E+02	$<\!\!2.50\mathrm{E}\!+\!02$	<2.50E+02
Toluene Dioxygenase (TOD)	< 2.50 E + 02	< 2.50 E + 02	$<\!\!2.50\mathrm{E}\!+\!02$
Phenol Hydroxylase (PHE)	1.48E + 05	$2.85E{+}04$	1.27E + 05
Trichlorobenzene Dioxygenase (TCBO)	< 2.50 E + 02	$<\!\!2.50\mathrm{E}\!+\!02$	$<\!\!2.50\mathrm{E}\!+\!02$
Toluene Monooxygenase 2 (RDEG)	1.44E + 05	$2.93E{+}04$	1.55E+05
Toluene Monooxygenase (RMO)	$<\!\!2.50\mathrm{E}\!+\!02$	$1.35E{+}03$	$<\!\!2.50\mathrm{E}\!+\!02$
Ethene Monooxygenase (EtnC)	$3.50E{+}03$	2.47E + 03	$<\!\!2.50\mathrm{E}\!+\!02$
Epoxyalkane Transferase (EtnÉ)	5.44E + 03	$<\!\!2.50\mathrm{E}\!+\!02$	1.23E + 04
Dichloromethane Dehalogenase (DCMA)	$<\!\!2.50\mathrm{E}\!+\!02$	$<\!\!2.50\mathrm{E}\!+\!02$	$<\!\!2.50\mathrm{E}\!+\!02$

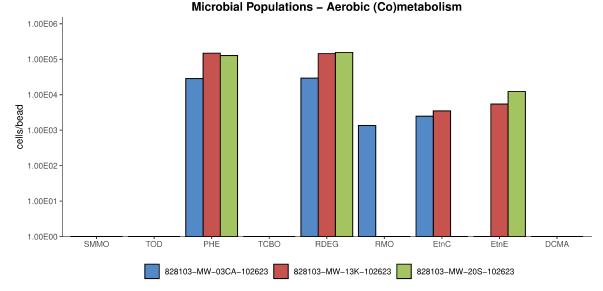
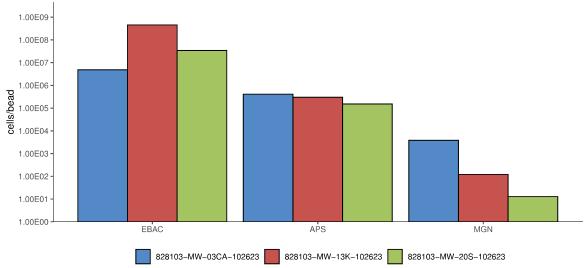



Figure 6: Comparison - microbial populations invloved in aerobic (co)metabolism.

10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133 Web: www.microbe.com




14 of 23 JD77326X



Table 5: Summary of the QuantArray®-Chlor results for total bacteria and other populations for samples 828103-MW-13K-102623, 828103-MW-03CA-102623, and 828103-MW-20S-102623

Sample Name Sample Date	828103-MW-13K-102623 2023-10-26	828103-MW-03CA-102623 2023-10-26	828103-MW-20S-102623 2023-10-26
Other	cells/bead	cells/bead	cells/bead
Total Eubacteria (EBAC)	4.55E + 08	4.85E + 06	3.43E + 07
Sulfate Reducing Bacteria (APS)	$\mathbf{2.99E}{+05}$	$4.09E{+}05$	$1.52\mathrm{E}{+05}$
Methanogens (MGN)	1.21E + 02 (J)	$3.84\mathrm{E}{+03}$	1.28E + 01 (J)



**Microbial Populations – Total Bacteria and Other Populations** 

Figure 7: Comparison - microbial populations.





## Interpretation

The overall purpose of the QuantArray[®]-Chlor is to give site managers the ability to simultaneously yet economically evaluate the potential for biodegradation of a spectrum of common chlorinated contaminants through a multitude of anaerobic and aerobic (co)metabolic pathways in order to provide a clearer and more comprehensive view of contaminant biodegradation. The following discussion describes the interpretation of results in general terms and is meant to serve as a guide.

**Reductive Dechlorination - Chlorinated Ethenes:** While a number of bacterial cultures including *Dehalococcoides*, *Dehalobacter*, *Desulfitobacterium*, *Desulfuromonas* spp. capable, of utilizing PCE and TCE as growth-supporting electron acceptors have been isolated [1–5], *Dehalococcoides* may be the most important because they are the only bacterial group that has been isolated to date which is capable of complete reductive dechlorination of PCE to ethene [6]. In fact, the presence of *Dehalococcoides* has been associated with complete reductive dechlorination to ethene at sites across North America and Europe Hendrickson and Lu have proposed using a *Dehalococcoides* concentration of 1 x  $10^4$  cells/mL as a screening criterion to identify sites where biological reductive dechlorination is predicted to proceed at "generally useful" rates [7,8].

At chlorinated ethene sites, any "stall" leading to the accumulation of daughter products, especially vinyl chloride, would be a substantial concern. While *Dehalococcoides* concentrations greater than  $1 \ge 10^4$  cells/mL correspond to ethene production and useful rates of dechlorination, the range of chlorinated ethenes degraded varies by strain within the *Dehalococcoides* genus [6,9] and the presence of co-contaminants and competitors can have complex impacts on the halorespiring microbial community [10–15]. Therefore, QuantArray[®]-Chlor also provides quantification of a suite of reductive dehalogenase genes (PCE, TCE, BVC, VCR, CER, and TDR) to more definitively confirm the potential for reductive dechlorination of all chlorinated ethene compounds including vinyl chloride.

Perhaps most importantly, QuantArray[®]-Chlor quantifies TCE reductase (TCE) and both known vinyl chloride reductase genes (BVC, VCR) from *Dehalococcoides* to conclusively evaluate the potential for complete reductive dechlorination of chlorinated ethenes to non-toxic ethene [16–18]. In addition, the analysis also includes quantification of reductive dehalogenase genes from *Dehalogenimonas* spp. capable of reductive dechlorination of chlorinated ethenes. More specifically, these are the trans-1,2-DCE dehalogenase gene (TDR) from strain WBC-2 [19] and the vinyl chloride reductase gene (CER) from GP, the only known organisms other than *Dehalococcoides* capable of vinyl chloride reduction [20]. Finally, PCE reductase genes responsible for sequential reductive dechlorination of PCE to *cis*-DCE by *Sulfurospirillum* and *Geobacter* spp. are also quantified. In mixed cultures, evidence increasingly suggests that partial dechlorinators like *Sulfurospirillum*} and *Geobacter* may be responsible for the majority of reductive dechlorination of PCE to TCE and *cis*-DCE while *Dehalococcoides* functions more as *cis*-DCE and vinyl chloride reducing specialists [10,21].

**Reductive Dechlorination - Chlorinated Ethanes:** Under anaerobic conditions, chlorinated ethanes are susceptible to reductive dechlorination by several groups of halorespiring bacteria including *Dehalobacter*, *Dehalogenimonas*, and *Dehalococcoides*. While the reported range of chlorinated ethanes utilized varies by genus, species, and sometimes at the strain level, several general observations can be made regarding biodegradation pathways and daughter product formation. *Dehalobacter* spp. have been isolated that are capable of sequential reductive dechlorination of 1,1,1-TCA through 1,1-DCA to chloroethane [13]. Biodegradation of 1,1,2-TCA by several halorespiring bacteria including *Dehalobacter* and *Dehalobacter*, *Dehalogenimonas*, and *Dehalococcoides* occurs via dichloroelimination producing ethene. While not utilized by many *Desulfitobacterium* isolates, at least one strain, *Desulfitobacterium dichloroeliminans* strain DCA1, is also capable of dichloroelimination of 1,2-DCA [25]. The 1,2-dichloroethane reductive dehalogenase gene (DCAR) from members of *Desulfitobacterium* and *Dehalobacter* is known to dechlorinate 1,2-DCA to ethene, while the 1,1-dichloroethane reductive dehalogenase (DCA) targets the gene responsible for 1,1-DCA dechlorination in some strains of *Dehalobacter*. In addition to chloroform, chloroform reductase (CFR) has also been shown to be responsible for reductive dechlorination of 1,1,1-TCA [26].

**Reductive Dechlorination - Chlorinated Methanes:** Chloroform is a common co-contaminant at chlorinated solvent sites and can inhibit reductive dechlorination of chloroform to group et al. demonstrated that a *Dehalobacter* population was capable of reductive dechlorination of chloroform to produce dichloromethane [27]. The *cfrA* gene encodes the reductase which catalyzes this initial step in chloroform biodegradation [26]. Justicia-Leon et al. have since shown that dichloromethane can support growth of a distinct group of *Dehalobacter* strains via fermentation [28]. The *Dehalobacter* DCM assay targets the 16S rRNA gene of these strains.





**Reductive Dechlorination - Chlorinated Benzenes:** Chlorinated benzenes are an important class of industrial solvents and chemical intermediates in the production of drugs, dyes, herbicides, and insecticides. The physical-chemical properties of chlorinated benzenes as well as susceptibility to biodegradation are functions of their degree of chlorination and the positions of chlorine substituents. Under anaerobic conditions, reductive dechlorination of higher chlorinated benzenes including hexachlorobenzene (HCB), pentachlorobenzene (PeCB), tetrachlorobenzene (TeCB) isomers, and trichlorobenzene (TCB) isomers has been well documented [29], although biodegradation of individual compounds and isomers varies between isolates. For example, *Dehalococcoides* strain CBDB1 reductively dechlorinats HCB, PeCB, all three TeCB isomers, 1,2,3-TCB, and 1,2,4-TCB [9]. *Dehalobium chlorocoercia* DF-1 has been shown to be capable of reductive dechlorination of HCB, PeCB, and 1,2,3,5-TeCB [31]. The dichlorobenzene (DCB) isomers and chlorobenzene (CB) were considered relatively recalcitrant under anaerobic conditions. However, new evidence has demonstrated reductive dechlorination of DCBs to CB and CB to benzene [32] with corresponding increases in concentrations of *Dehalobacter* spp. [33].

**Reductive Dechlorination - Chlorinated Phenols:** Pentachlorophenol (PCP) was one of the most widely used biocides in the U.S. and despite residential use restrictions, is still extensively used industrially as a wood preservative. Along with PCP, the tetrachlorophenol and trichlorophenol isomers were also used as fungicides in wood preserving formulations. 2,4-Dichlorophenol and 2,4,5-TCP were used as chemical intermediates in herbicide production (e.g. 2,4-D) and chlorophenols are known byproducts of chlorine bleaching in the pulp and paper industry. While the range of compounds utilized varies by strain, some *Dehalococcoides* isolates are capable of reductive dechlorination of PCP and other chlorinated phenols. For example, *Dehalococcoides* strain CBDB1 is capable of utilizing PCP, all three tetrach lorophenol (TeCP) congeners, all six trichlorophenol (TCP) congeners, and 2,3-dichlorophenol (2,3-DCP). PCP dechlorination by strain CBDB1 produces a mixture of 3,5-DCP, 3,4-DCP, 2,4-DCP, 3-CP, and 4-CP [34]. In the same study, however, *Dehalococcoides* strain 195 dechlorinated a more narrow spectrum of chlorophenols which included 2,3-DCP, 2,3,4-TCP, and 2,3,6-TCP, but no other TCPs or PCP. Similar to *Dehaloc occoides*, some species and strains of *Desulfitobacterium* are capable of utilizing PCP and other chlorinated phenols. *Desulfitobacterium hafniense* PCP-1 is capable of reductive dechlorination of PCP to 3-CP [35]. However, the ability to biodegrade PCP is not universal among *Desulfitobacterium* isolates. *Desulf itobacterium* sp. strain PCE1 and *D. chlororespirans* strain Co23, for example, can utilize some TCP and DCP isomers, but not PCP for growth [2,36].

**Reductive Dechlorination - Chlorinated Propanes:** *Dehalogenimonas* is a recently described bacterial genus of the phylum Chloroflexi which also includes the well-known chloroethene-respiring *Dehalococcoides* [23]. The *Dehalogenimonas* isolates characterized to date are also halorespiring bacteria, but utilize a rather unique range of chlorinated compounds as electron acceptors including chlorinated propanes (1,2,3-TCP and 1,2-DCP) and a variety of other vicinally chlorinated alkanes including 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane, and 1,2-dichloroethane [23]

Aerobic - Chlorinated Ethene Cometabolism: Under aerobic conditions, several different types of bacteria including methane-oxidizing bacteria (methanotrophs), and many benzene, toluene, ethylbenzene, xylene, and (BTEX)-utilizing bacteria can cometabolize or co-oxidize TCE, DCE, and vinyl chloride [37]. In general, cometabolism of chlorinated ethenes is mediated by monooxygenase enzymes with "relaxed' specificity that oxidize a primary (growth supporting) substrate (e.g. methane) and co-oxidize the chlorinated compound (e.g. TCE). QuantArray[®]-Chlor provides quantification of a suite of genes encoding oxygenase enzymes capable of co-oxidation of chlorinated ethenes including soluble methane monooxygenase (sMMO). Soluble methane monooxygenases co-oxidize a broad range of chlorinated compounds [38–41] including TCE, *cis*-DCE, and vinyl chloride. Furthermore, soluble methane monooxygenases are generally believed to support greater rates of aerobic cometabolism [40]. QuantArray[®]-Chlor also quantifies aromatic oxygenase genes encoding ring hydroxylating toluene monooxygenase genes (RMO, RDEG), toluene dioxygenase (TOD) and phenol hydroxylases (PHE) capable of TCE co-oxidation [42-46]. TCE or a degradation product has been shown to induce expression of toluene monooxygenases in some laboratory studies [43,47] raising the possibility of TCE cometabolism with an alternative (non-aromatic) growth substrate. Moreover, while a number of additional factors must be considered, recent research under ESTCP Project 201584 has shown positive correlations between concentrations of monooxygenase genes (soluble methane monooxygenase, ring hydroxylating monooxygenases, and phenol hydroxylase) and the rate of TCE degradation [48].

Aerobic - Chlorinated Ethane Cometabolism: While less widely studied than cometabolism of chlorinated ethenes, some chlorinated ethanes are also susceptible to co-oxidation. As mentioned previously, soluble methane monooxygenases (sMMO) exhibit very relaxed specificity. In laboratory studies, sMMO has been shown to co-oxidize a number of chlorinated ethanes including 1,1,1-TCA and 1,2-DCA [38,40].

Aerobic - Vinyl Chloride Cometabolism: Beginning in the early 1990s, numerous microcosm studies demonstrated



aerobic oxidation of vinyl chloride under MNA conditions without the addition of exogenous primary substrates. Since then, strains of *Mycobacterium*, *Nocardioides*, *Pseudomonas*, *Ochrobactrum*, and *Ralstonia* species have been isolated which are capable of aerobic growth on both ethene and vinyl chloride (see Mattes et al. [49] for a review). The initial steps in the pathway are the monooxygenase (*etn*ABCD) catalyzed conversion of ethene and vinyl chloride to their respective epoxyalkanes (epoxyethane and chlorooxirane), followed by epoxyalkane:CoM transferase (*etn*E) mediated conjugation and breaking of the epoxide [50].

Aerobic - Chlorinated Benzenes: In general, chlorobenzenes with four or less chlorine groups are susceptible to aerobic biodegradation and can serve as growth-supporting substrates. Toluene dioxygenase (TOD) has a relatively relaxed substrate specificity and mediates the incorporation of both atoms of oxygen into the aromatic ring of benzene and substituted benzenes (toluene and chlorobenzene). Comparison of TOD levels in background and source zone samples from a CB-impacted site suggested that CBs promoted growth of TOD-containing bacteria [51]. In addition, aerobic biodegradation of some trichlorobenzene and even tetrachlorobenzene isomers is initiated by a group of related trichlorobenzene dioxygenase genes (TCBO). Finally, phenol hydroxylases catalyze the continued oxidation and in some cases, the initial oxidation of a variety of monoaromatic compounds. In an independent study, significant increases in numbers of bacteria containing PHE genes corresponded to increases in biodegradation of DCB isomers [51].

Aerobic - Chlorinated Methanes: Many aerobic methylotrophic bacteria, belonging to diverse genera (*Hyphomicrobium, Methylobacterium, Methylophilus, Pseudomonas, Paracoccus*, and *Alibacter*) have been isolated which are capable of utilizing dichloromethane (DCM) as a growth substrate. The DCM metabolic pathway in methylotrophic bacteria is initiated by a dichloromethane dehalogenase (DCMA) gene. DCMA is responsible for aerobic biodegradation of dichloromethane by methylotrophs by first producing formaldehyde which is then further oxidized [52].

As discussed in previous sections, soluble methane monooxygenase (sMMO) exhibits relaxed specificity and co-oxidizes a broad spectrum of chlorinated hydrocarbons. In addition to chlorinated ethenes, sMMO has been shown to co-oxidize chloroform in laboratory studies [38,41].





## References

1. Gerritse J, Drzyzga O, Kloetstra G, Keijmel M, Wiersum LP, Hutson R, et al. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by *desulfitobacterium frappieri* tce1. Applied and Environmental Microbiology. 1999;65:5212–21.

2. Gerritse J, Renard V, Gomes TP, Lawson PA, Collins MD, Gottschal JC. *Desulfitobacterium* sp. Strain pce1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Archives of Microbiology. 1996;165:132–40.

3. Holliger C, Schraa G, Stams A, Zehnder A. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Applied and Environmental Microbiology. 1993;59:2991–7.

4. Krumholz LR, Sharp R, Fishbain SS. A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Applied and Environmental Microbiology. 1996;62:4108–13.

5. Loffler FE, Sanford RA, Tiedje JM. Initial characterization of a reductive dehalogenase from *desulfitobacterium* chlororespirans co23. Applied and Environmental Microbiology. 1996;62:3809–13.

6. Maymó-Gatell X, Anguish T, Zinder SH. Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by "dehalococcoides ethenogenes" 195. Applied and Environmental Microbiology. 1999;65:3108–13.

7. Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, et al. Molecular analysis of *dehalo-coccoides* 16S ribosomal dna from chloroethene-contaminated sites throughout north america and europe. Applied and Environmental Microbiology. 2002;68:485–95.

8. Lu X, Wilson JT, Kampbell DH. Relationship between *dehalococcoides* dna in ground water and rates of reductive dechlorination at field scale. Water Research. 2006;40:3131–40.

9. Adrian L, Szewzyk U, Wecke J, Görisch H. Bacterial dehalorespiration with chlorinated benzenes. Nature. 2000;408:580–3.

10. Amos BK, Suchomel EJ, Pennell KD, Löffler FE. Spatial and temporal distributions of geobacter lovleyi and dehalococcoides spp. During bioenhanced pce-napl dissolution. Environmental Science & Technology. 2009;43:1977–85.

11. Duhamel M, Edwards EA. Growth and yields of dechlorinators, acetogens, and methanogens during reductive dechlorination of chlorinated ethenes and dihaloelimination of 1, 2-dichloroethane. Environmental Science & Technology. 2007;41:2303–10.

12. Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad D, Dworatzek S, et al. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, /textitcis-dichloroethene and vinyl chloride. Water Research. 2002;36:4193–202.

13. Grostern A, Edwards EA. A 1, 1, 1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Applied and Environmental Microbiology. 2006;72:7849–56.

14. Huang D, Becker JG. Determination of intrinsic monod kinetic parameters for two heterotrophic tetrachloroethene (pce)-respiring strains and insight into their application. Biotechnology and Bioengineering. 2009;104:301–11.

15. Mayer-Blackwell K, Fincker M, Molenda O, Callahan B, Sewell H, Holmes S, et al. 1, 2-dichloroethane exposure alters the population structure, metabolism, and kinetics of a trichloroethene-dechlorinating dehalococcoides mccartyi consortium. Environmental Science & Technology. 2016;50:12187–96.

16. Krajmalnik-Brown R, Hölscher T, Thomson IN, Saunders FM, Ritalahti KM, Löffler FE. Genetic identification of a putative vinyl chloride reductase in dehalococcoides sp. Strain bav1. Applied and Environmental Microbiology. 2004;70:6347–51.

17. Müller JA, Rosner BM, Von Abendroth G, Meshulam-Simon G, McCarty PL, Spormann AM. Molecular identification of the catabolic vinyl chloride reductase from *dehalococcoides* sp. Strain vs and its environmental distribution. Applied and Environmental Microbiology. 2004;70:4880–8.

18. Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE. Quantitative pcr targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple *dehalococcoides* strains. Applied and Environmental Microbiology. 2006;72:2765–74.





19. Molenda O, Quaile AT, Edwards EA. Dehalogenimonas sp. Strain wbc-2 genome and identification of its transdichloroethene reductive dehalogenase, tdra. Applied and Environmental Microbiology. 2016;82:40–50.

20. Yang Y, Higgins SA, Yan J, Şimşir B, Chourey K, Iyer R, et al. Grape pomace compost harbors organohalide-respiring dehalogenimonas species with novel reductive dehalogenase genes. The ISME Journal. 2017;11:2767.

21. Maillard J, Charnay M-P, Regeard C, Rohrbach-Brandt E, Rouzeau-Szynalski K, Rossi P, et al. Reductive dechlorination of tetrachloroethene by a stepwise catalysis of different organohalide respiring bacteria and reductive dehalogenases. Biodegradation. 2011;22:949–60.

22. Grostern A, Edwards EA. Growth of dehalobacter and dehalococcoides spp. During degradation of chlorinated ethanes. Applied and Environmental Microbiology. 2006;72:428–36.

23. Moe WM, Yan J, Nobre MF, Costa MS da, Rainey FA. *Dehalogenimonas lykanthroporepellens* gen. Nov., sp. Nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. International Journal of Systematic and Evolutionary Microbiology. 2009;59:2692–7.

24. Yan J, Rash B, Rainey F, Moe W. Isolation of novel bacteria within the chloroflexi capable of reductive dechlorination of 1, 2, 3-trichloropropane. Environmental Microbiology. 2009;11:833–43.

25. De Wildeman S, Diekert G, Van Langenhove H, Verstraete W. Stereoselective microbial dehalorespiration with vicinal dichlorinated alkanes. Applied and Environmental Microbiology. 2003;69:5643–7.

26. Tang S, Edwards EA. Identification of *dehalobacter* reductive dehalogenases that catalyse dechlorination of chloroform, 1,1,1-trichloroethane and 1,1-dichloroethane. Phil Trans R Soc B. 2013;368:20120318.

27. Grostern A, Duhamel M, Dworatzek S, Edwards EA. Chloroform respiration to dichloromethane by a *dehalobacter* population. Environmental Microbiology. 2010;12:1053–60.

28. Justicia-Leon SD, Ritalahti KM, Mack EE, Löffler FE. Dichloromethane fermentation by a *dehalobacter* sp. In an enrichment culture derived from pristine river sediment. Applied and Environmental Microbiology. 2012;78:1288–91.

29. Field JA, Sierra-Alvarez R. Microbial degradation of chlorinated benzenes. Biodegradation. 2008;19:463-80.

30. Jayachandran G, Görisch H, Adrian L. Dehalorespiration with hexachlorobenzene and pentachlorobenzene by *dehalococcoides* sp. Strain cbdb1. Archives of Microbiology. 2003;180:411–6.

31. Wu Q, Milliken CE, Meier GP, Watts JE, Sowers KR, May HD. Dechlorination of chlorobenzenes by a culture containing bacterium df-1, a pcb dechlorinating microorganism. Environmental Science & Technology. 2002;36:3290–4.

32. Fung JM, Weisenstein BP, Mack EE, Vidumsky JE, Ei TA, Zinder SH. Reductive dehalogenation of dichlorobenzenes and monochlorobenzene to benzene in microcosms. Environmental Science & Technology. 2009;43:2302–7.

33. Nelson JL, Fung JM, Cadillo-Quiroz H, Cheng X, Zinder SH. A role for *dehalobacter* spp. In the reductive dehalogenation of dichlorobenzenes and monochlorobenzene. Environmental Science & Technology. 2011;45:6806–13.

34. Adrian L, Hansen SK, Fung JM, Görisch H, Zinder SH. Growth of *dehalococcoides* strains with chlorophenols as electron acceptors. Environmental Science & Technology. 2007;41:2318–23.

35. Bouchard B, Beaudet R, Villemur R, McSween G, Lepine F, Bisaillon J-G. Isolation and characterization of *desulfitobacterium frappieri* sp. Nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. International Journal of Systematic and Evolutionary Microbiology. 1996;46:1010–5.

36. Sanford RA, Cole JR, Löffler F, Tiedje JM. Characterization of *desulfitobacterium chlororespirans* sp. Nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Applied and Environmental Microbiology. 1996;62:3800–8.

37. Field J, Sierra-Alvarez R. Biodegradability of chlorinated solvents and related chlorinated aliphatic compounds. Reviews in Environmental Science and Biotechnology. 2004;3:185–254.

38. Chang H-L, Alvarez-Cohen L. Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures. Applied and Environmental Microbiology. 1996;62:3371–7.

39. Colby J, Stirling DI, Dalton H. The soluble methane mono-oxygenase of methylococcus capsulatus (bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochemical Journal. 1977;165:395–402.

10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133 Web: www.microbe.com

15



40. Oldenhuis R, Oedzes JY, Van der Waarde J, Janssen DB. Kinetics of chlorinated hydrocarbon degradation by methylosinus trichosporium ob3b and toxicity of trichloroethylene. Applied and Environmental Microbiology. 1991;57:7–14.

41. Hylckama VJ van, De Koning W, Janssen DB. Transformation kinetics of chlorinated ethenes by methylosinus trichosporium ob3b and detection of unstable epoxides by on-line gas chromatography. Applied and Environmental Microbiology. 1996;62:3304–12.

42. Futamata H, Harayama S, Watanabe K. Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Applied and Environmental Microbiology. 2001;67:4671–7.

43. McClay K, Streger SH, Steffan RJ. Induction of toluene oxidation activity in pseudomonas mendocina kr1 and pseudomonas sp. Strain envpc5 by chlorinated solvents and alkanes. Applied and Environmental Microbiology. 1995;61:3479–81.

44. Newman LM, Wackett LP. Trichloroethylene oxidation by purified toluene 2-monooxygenase: Products, kinetics, and turnover-dependent inactivation. Journal of Bacteriology. 1997;179:90–6.

45. Byrne AM, Olsen RH. Cascade regulation of the toluene-3-monooxygenase operon (tbuA1UBVA2C) of *burkholderia pickettii* pko1: Role of the tbuA1 promoter (ptbua1) in the expression of its cognate activator, tbut. Journal of Bacteriology. 1996;178:6327–37.

46. Wackett LP, Gibson DT. Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with pseudomonas putida fl. Applied and Environmental Microbiology. 1988;54:1703–8.

47. Leahy JG, Byrne AM, Olsen RH. Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria. Applied and Environmental Microbiology. 1996;62:825–33.

48. Wiedemeier TH, Wilson JT, Freedman DL, Lee B. Providing additional support for mna by including quantitative lines of evidence for abiotic degradation and co-metabolic oxidation of chlorinated ethylenes. TH Wiedemeier; Associates, Inc. Sedalia United States; 2017.

49. Mattes TE, Alexander AK, Coleman NV. Aerobic biodegradation of the chloroethenes: Pathways, enzymes, ecology, and evolution. FEMS Microbiology Reviews. 2010;34:445–75.

50. Coleman NV, Spain JC. Epoxyalkane: Coenzyme m transferase in the ethene and vinyl chloride biodegradation pathways of *mycobacterium* strain js60. Journal of Bacteriology. 2003;185:5536–45.

51. Dominguez RF, Silva ML da, McGuire TM, Adamson D, Newell CJ, Alvarez PJ. Aerobic bioremediation of chlorobenzene source-zone soil in flow-through columns: Performance assessment using quantitative pcr. Biodegradation. 2008;19:545–53.

52. La Roche SD, Leisinger T. Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione s-transferase supergene family. Journal of Bacteriology. 1990;172:164–71.





ယ Section 3

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody



JD77326

<u>ω</u>

ω

REPORT TO: Name: Company: Address:	Kelly Ramos 50-5 1235 US-13 08810	30 10	ytan, A	Ţ			Nam	e: pany:		K	elly 234	X.	am	35				tive th				e provi	ded)			esearc		ia	lin	sig	h	ts	
email: Phone: Fax:	Cally. Renos ( 609-664-	9 5G 8G13	S. Cer	1	-		email Phon Fax:			K.	elly 09		ane Gy.		6		\$.(	'ar	2			-		865	573	e, TN 3 -8188 crobe.c							
Project Manager: Project Name: Project No.: Report Type: EDD type:	Kelly Ram MYSPEC SMP FA ENY ES 9 X Standard (default) X Microbial Insights St	D Si 7277	mial Insights Le	0	data(1	M7 5% surc		ontrac ote N	ct No. lo. Microl	Q20			el IV (2						Con	npre	hens	- - ive In	terpr		Moi No	Addit	mples ional	Sam	ples	Interp	pretiv	ve (3	35%)
••	ith any questions about the anal Sample Infor	yses or filling		at (865) 5	73-818	88 (9:00	am to analy	5:00 p	m ES	T, M	-F). A		ours e	mail	-	omer	-		-		-	e	di capi		201				1-20	6.91			
MI ID (Laboratory Use Only)	Sample Name	Date Sampled	Time Sampled	Matrix	otal Number of Containers	PLFA	NGS	QuantArray Chlor	QuantArray Petro	HC (Dehalococcoides)	DHC Functional genes ave. tee. ver)	DHBt (Dehalobacter)	HG (Dehalogenimonas)	DSM (Desulfuromonas)	DSB (Desulfitobacterrum)	EBAC (Total)	SRB sulfate Reducing Bacteria-APS)	MGN (Methanogens)	MOB (Methanotrophs)	SMMO	ONF (Dentrifiers-nirS and nirK)	AMO ammonia oxidizing bacteria)	PM1 (MTBE aerobic)	MO (Toluene Monooxygenase)	(DEG (Toluene Monooxygenase)	HE (Phenol Hydroxylase)	VAH (Napthalene-serobic)	SSA siunne(Xviene-Anaerobic)	add. qPCR	RNA Expression Option)*		ther	her:
084415 1 2 3	803103 - MW - 13K - 10 8005 - MW - 030A - 1026202 80363 - MW - 2005 - 108362	10/21/23	12 1010	BioTrop				X X X	α 	ā		D	đ	D	ä	Ξ	0.0	W	×	S.	D	Al	id.	AA I	AC	łd	2	88	Se .	<u>क</u>	đ	Dit la contraction de la contr	5
		5																			_												
Relinquished by:	de Balmen		Date 10/20	S/2023 It is vital			0	ceive			MA ectiv 8	that		h	Date	(	2/	2	77	22	5												

Failure to provide sufficient and/or correct information regarding reporting, invoicing & analyses requested information may result in delays for which MI will not be liable.

JD77326X: Chain of Custody Page 1 of 1



Appendix E

**Data Usability Summary Report** 



## DATA VALIDATION REPORT

# **NYSDEC** Dinaburg

## SDGs: JD73479 and JD73837

Chemical Analyses Performed by:

SGS Dayton, NJ

Prepared by

## ENVIRONMENTAL DATA SERVICES, LTD.

Prepared for

EA Engineering, Science and Technology, Inc.

January 5, 2024

5 Brilliant Avenue, Pittsburgh, PA 15215 412.408.3288 I www.eds-pa.com



### DATA USABILITY SUMMARY REPORT FOR VOLATILES

**PROJECT:** NYSDEC SMP-D Dinaburg

**CLIENT:** EA Engineering, Science, and Technology, Inc.

LABORATORY: SGS Dayton, NJ

#### SAMPLE DELIVERY GROUPS: JD73479

#### SAMPLE DATES: 09/25/2023

The above sample delivery group (SDG) consist of the following samples:

Client Sample ID	Laboratory Sample ID
828103-MW-03CA-20230925	JD73479-1
828103-MW-13K-20230925	JD73479-2
828103-DUP-01-20230925	JD73479-3
828103-MW-20S-20230925	JD73479-4
828103-MW-03A-20230925	JD73479-5
828103-MW-19S-20230925	JD73479-6
828103-MW-14KA-20230925	JD73479-7
828103-MW-08K-20230925	JD73479-8
TB_	JD73479-9

The samples described above were analyzed via USEPA SW-846 8260D to determine the concentrations of low/medium volatile organic analytes (VOAs).

Project specific quality assurance (QA) objectives, as well as the USEPA Region II SOP, Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B & 8260C, SOP NO. HW-24 Revision 4, September 2014 have been considered during validation of this data and its usability.

Table 1 provides a summary of major and minor data quality issues identified for this data set. All data are acceptable except those results which have been qualified with "R," rejected. Data validation qualifiers along with associated descriptions are provided in Table 2. All data qualification related to this group of samples is detailed on the attached sheets.

Per USEPA Region 2 Validation Guidance, "All data users should note two facts. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables even as a last resort. The second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error."

#### 1. HOLDING TIME/SAMPLE HANDLING

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Proper sample handling and preservation also play a role in the chemical stability of analytes in the sample matrix. If samples are not collected and stored using proper containers and/or preservatives, data may not be valid.

The samples in this sample delivery group (SDG) were received by the laboratory within the proper temperature range as specified in the validation guidance.

The samples in this SDG were prepared and analyzed within the holding time specified in the validation guidelines.

#### 2. BLANK CONTAMINATION

Quality assurance blanks include method, storage, trip, field, or rinse blanks. Blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation and analysis or field activity. Method and storage blanks measure laboratory contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contamination during field operations.

#### **Method Blanks**

Method blanks were prepared and analyzed in association with the samples in these SDGs at the specified frequency. Upon examination of method blank data, no analyte was positively identified at a concentration equal to or above the method detection limit (MDL) in any associated method blank.

#### Storage Blanks

No storage blanks were submitted in association with this SDG.

#### Trip Blanks

Sample TB was submitted as a trip blank in association with this SDG. No problems were found for this criterion.

#### **Field Blanks**

No sample was submitted as a field blank in association with this SDG.

#### 3. MASS SPECTROMETER TUNING

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances.

The tuning standard for volatiles is bromofluorobenzene (BFB).

All tunes associated with this SDG were fully compliant.

#### 4. CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration curve demonstrates that the instrument is capable of giving acceptable performance at the beginning of an analytical sequence. The continuing calibration verifies that the instrument is continuing to provide satisfactory daily performance. Additionally, a continuing calibration is analyzed at the end of each 12-hour analytical sequence, denoted as a "closing" calibration verification, and ascertains acceptable performance at the conclusion of the analytical sequence.

#### **Response Factor**

The relative response factor (RRF) measures the instruments responses to specific chemical compounds. The RRFs for the VOA target compound list (TCL) compounds must be greater than the RRFs listed in Region II validation guidelines. A value less than the respective criteria indicates serious detection and quantitation problems. If the mean RRF of the initial calibration or the continuing calibration RRF is below the specified limit for any analyte, those analytes detected in environmental samples will be qualified as estimated. All non-detects for those analytes will be rejected.

The RRF values in all initial and continuing calibrations were found to be acceptable in all cases.

Percent Relative Standard Deviation and Percent Deviation

Percent relative standard deviation (%RSD) is calculated from the initial calibration and is used to indicate stability of a specific compound over the calibration range. Percent deviation (%D) compares the response factor of the continuing calibration with the mean response factor of the initial calibration. Therefore, %D is a measure of the instrument's daily performance.

The following QC criteria have been applied for this project:

The %RSD of initial calibration must be ≤20%.

A %RSD value outside initial calibration limit indicates the potential for quantitation errors. For this reason, all positive results are qualified as estimated and non-detect results are qualified using professional judgement.

The %D for opening continuing calibration must be ≤30%

A value outside these limits indicates the potential for detection and quantitation errors. For these reasons, all positive results are qualified as "J," estimated, and non-detects are qualified with "UJ."

All initial calibration and continuing calibration %RSD and %D values were within defined QC criteria with the following exceptions.

The observed %D for tetrachloroethylene in the ICV associated with the samples listed below was outside of the acceptance criteria. The results reported for the impacted analyte in the associated samples have been qualified "J" or "UJ" as appropriate on this basis.

828103-DUP-01-20230925	828103-MW-08K-20230925
828103-MW-03A-20230925	828103-MW-14KA-20230925

The observed %D for bromomethane in one CCV associated with samples 828103-MW-03CA-20230925, 828103-MW-19S-20230925, and TB was outside of the acceptance criteria. The results reported for the impacted analyte in the associated samples have been qualified "UJ" on this basis.

Please note, the laboratory did not perform closing continuing calibration verifications. Therefore, those criteria were not evaluated during validation. No qualification was applied on this basis.

#### 5. INTERNAL STANDARDS PERFORMANCE

Internal standard performance criteria are meant to ensure that the gas chromatography/mass spectrometry (GC/MS) sensitivity and response are stable during every experimental run.

The internal standard area count must not vary by more than a factor of two from the associated continuing calibration standard. The retention time of the internal standard must not vary by more than +/- 30 seconds from the associated continuing calibration standard. The area count must be within -50% to +200% range of the associated standard. If area count is >200%, non-detected results are not qualified while positive results associated with the non-compliant internal standard are qualified "J," estimated. However, when an observed area count is <50%, positive results associated with the non-compliant are qualified "J," estimated, while non-detected results are rejected.

Internal standard area counts are within acceptance criteria for all samples.

#### 6. SURROGATES

All samples are spiked with surrogate compounds prior to sample preparation and analyses to evaluate overall laboratory performance and efficiency of the analytical technique. The observed recovery must be within laboratory limits as outlined in the project specific validation guidance.

The reported sample analyses had observed surrogate recoveries within the established acceptance limits in all cases.

### 7. COMPOUND IDENTIFICATION

#### Volatile

The project target analyte compounds are identified on the GC/MS by using the analytes relative retention time (RRT) and ion spectra. For the results to be a positive hit, the sample peak must be within  $\pm 0.06$  RRT units of the standard compound and have ion spectra which has a ratio of the primary and secondary ion intensities within 20% of that in the standard compound. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications.

All samples were evaluated, and all identification criteria were met. Therefore, no analytes were qualified for compound identification.

Volatile Tentatively Identified Compounds

Tentatively Identified Compounds (TICs) were reported by the laboratory and reviewed for quality assurance. For all TIC results where there is presumptive evidence of a match, being greater than or equal to 85% match, the results are qualified "NJ," tentatively identified. If the non-target compound is reported as an unknown, the result is qualified "J," estimated. Likewise, if it is determined that the identification of a TIC is unacceptable, the tentative identification of the compound is changed to "unknown" and the result is qualified "J," estimated.

Volatile TICs were not reported.

#### 8. MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The matrix spike and matrix spike duplicate (MS/MSD) are generated to determine the precision and accuracy of the analytical procedure in a given sample matrix.

Sample 828103-MW-03CA-20230925 was submitted for MS/MSD pair evaluation in association with this SDG. Upon evaluation all precision and accuracy indicators were acceptable.

#### 9. LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE

The Laboratory Control Sample (LCS) is spiked with the same analytes at the same concentrations as the matrix spike. The LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

LCS/LCS duplicate (LCSD) evaluations were processed at the proper frequency. Upon evaluation all accuracy and precision criteria were acceptable.

#### 10. REPORTING

No dilutions, re-extractions, or other re-analyses were performed other than those necessary to bring positive instrument signals within the linear range.

#### 11. OTHER QUALITY CONTROL DATA OUT OF SPECIFICATION

None.

#### **12. FIELD DUPLICATE**

Field duplicates are two (or more) field samples collected at the same time in the same location. Each of the samples represents the same population and is carried through all steps of the sampling and analytical procedures in an identical manner. Field duplicate results are used to assess precision of the total method, including sampling, analysis, and site heterogeneity.

Samples 828103-DUP-01-09252023 and 828103-MW-13K-20230925 were analyzed as a field duplicate pair in association with these SDGs. Adequate field precision was demonstrated.

## 13. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

Overall, the laboratory data generated met the project goals and quality control criteria, with the exceptions identified in this report and as summarized in Table 1.

### Table 1 **Review Elements Summary**

	Were acc	ceptance crite	eria met?
	Yes	N	0
Volatiles		Major	Minor
Holding Time	х		
Method Blanks	х		
Storage Blanks	NA		
Trip Blanks	х		
Field Blanks	NA		
Mass Spectrometer Tuning	х		
Calibration Response Factor	х		
Calibration Percent Relative Standard Deviation and Percent Difference	х		
Internal Standards	х		
Surrogates	х		
Compound Identification - Volatile	х		
Tentatively Identified Compounds - Volatile	NA		
Matrix Spike/Matrix Spike Duplicate	х		
Laboratory Control Sample/Laboratory Control Sample Duplicate	х		
Other Quality Control Data out of Specification	х		
Field Duplicate	х		

Major= Major data quality issue identified resulting in rejection of data. Minor= Minor data quality issue identified resulting in the qualification of data. Data qualification should be used to inform the data users of data limitations. NA = Not applicable

Data Qualifier	Definition
U	The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
J	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.

Table 2Data Validation Qualifiers



### DATA USABILITY SUMMARY REPORT FOR VOLATILES

**PROJECT:** NYSDEC SMP-D Dinaburg

CLIENT: EA Engineering, Science, and Technology, Inc.

LABORATORY: SGS Dayton, NJ

SAMPLE DELIVERY GROUPS: JD73837

#### SAMPLE DATES: 09/26/2023 - 9/27/2023

The above sample delivery group (SDG) consist of the following samples:

Client Sample ID	Laboratory Sample ID
828103-MW-15S-20230925	JD73837-1
828103-MW-15K-20230925	JD73837-2
828103-MW-10K-20230926	JD73837-3
828103-MW-10S-20230926	JD73837-4
828103-MW-24K-20230926	JD73837-5
828103-MW-23K-20230926	JD73837-6
828103-MW-06-20230926	JD73837-7
828103-MW-05-20230926	JD73837-8
828103-MW-09S-20230926	JD73837-9
828103-MW-04-20230926	JD73837-10
828103-DUP-02-20230926	JD73837-11
828103-MW-09K-20230926	JD73837-12
828103-PZ-24S-20230926	JD73837-13
828103-MW-12S-20230926	JD73837-14
828103-MW-12K-20230926	JD73837-15
828103-MW-11S-20230926	JD73837-16
828103-MW-08S-20230926	JD73837-17
828103-GWE-2-20230926	JD73837-18
828103-MPE-17-20230926	JD73837-19
828103-MW-22K-20230926	JD73837-20
828103-PZ-22S-20230926	JD73837-21
828103-MW-21S-20230927	JD73837-22
828103-MW-03D-20230927	JD73837-23
828103-MW-18S-20230927	JD73837-24
828103-MW-16K-20230927	JD73837-25
828103-MW-17S-20230927	JD73837-26
828103-MW-16S-20230927	JD73837-27
TB_	JD73837-28

The samples described above were analyzed via USEPA SW-846 8260D to determine the concentrations of low/medium volatile organic analytes (VOAs).

Project specific quality assurance (QA) objectives, as well as the USEPA Region II SOP, Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B & 8260C, SOP NO. HW-24 Revision 4, September 2014 have been considered during validation of this data and its usability.

## 5 Brilliant Avenue, Pittsburgh, PA 15215 412.408.3288 I www.eds-pa.com

Table 1 provides a summary of major and minor data quality issues identified for this data set. All data are acceptable except those results which have been qualified with "R," rejected. Data validation qualifiers along with associated descriptions are provided in Table 2. All data qualification related to this group of samples is detailed on the attached sheets.

Per USEPA Region 2 Validation Guidance, "All data users should note two facts. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables even as a last resort. The second, no analyte concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error."

#### 1. HOLDING TIME/SAMPLE HANDLING

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Proper sample handling and preservation also play a role in the chemical stability of analytes in the sample matrix. If samples are not collected and stored using proper containers and/or preservatives, data may not be valid.

The samples in this sample delivery group (SDG) were received by the laboratory within the proper temperature range as specified in the validation guidance.

The samples in this SDG were prepared and analyzed within the holding time specified in the validation guidelines.

#### 2. BLANK CONTAMINATION

Quality assurance blanks include method, storage, trip, field, or rinse blanks. Blanks are prepared to identify any contamination, which may have been introduced into the samples during preparation and analysis or field activity. Method and storage blanks measure laboratory contamination. Trip blanks measure cross contamination during shipment. Field and rinse blanks measure cross contamination during field operations.

#### **Method Blanks**

Method blanks were prepared and analyzed in association with the samples in these SDGs at the specified frequency. Upon examination of method blank data, no analyte was positively identified at a concentration equal to or above the method detection limit (MDL) in any associated method blank.

#### Storage Blanks

No storage blanks were submitted in association with this SDG.

#### Trip Blanks

Sample TB was submitted as a trip blank in association with this SDG. No problems were found for this criterion.

#### **Field Blanks**

No sample was submitted as a field blank in association with this SDG.

#### 3. MASS SPECTROMETER TUNING

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances.

The tuning standard for volatiles is bromofluorobenzene (BFB).

All tunes associated with this SDG were fully compliant.

#### 4. CALIBRATION

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative results. The initial calibration curve demonstrates that the instrument is capable of giving acceptable performance at the beginning of an analytical sequence. The continuing calibration verifies that the instrument is continuing to provide satisfactory daily performance. Additionally, a continuing calibration is analyzed at the end of each 12-hour analytical sequence, denoted as a "closing" calibration verification, and ascertains acceptable performance at the conclusion of the analytical sequence.

#### **Response Factor**

The relative response factor (RRF) measures the instruments responses to specific chemical compounds. The RRFs for the VOA target compound list (TCL) compounds must be greater than the RRFs listed in Region II validation guidelines. A value less than the respective criteria indicates serious detection and quantitation problems. If the mean RRF of the initial calibration or the continuing calibration RRF is below the specified limit for any analyte, those analytes detected in environmental samples will be qualified as estimated. All non-detects for those analytes will be rejected.

The RRF values in all initial and continuing calibrations were found to be acceptable in all cases.

Percent Relative Standard Deviation and Percent Deviation

Percent relative standard deviation (%RSD) is calculated from the initial calibration and is used to indicate stability of a specific compound over the calibration range. Percent deviation (%D) compares the response factor of the continuing calibration with the mean response factor of the initial calibration. Therefore, %D is a measure of the instrument's daily performance.

The following QC criteria have been applied for this project:

The %RSD of initial calibration must be ≤20%.

A %RSD value outside initial calibration limit indicates the potential for quantitation errors. For this reason, all positive results are qualified as estimated and non-detect results are qualified using professional judgement.

The %D for opening continuing calibration must be ≤30%

A value outside these limits indicates the potential for detection and quantitation errors. For these reasons, all positive results are qualified as "J," estimated, and non-detects are qualified with "UJ."

All initial calibration and continuing calibration %RSD and %D values were within defined QC criteria with the following exceptions.

The observed %Ds for chloromethane in the ICVs associated with the samples listed below were outside of the acceptance criteria. The results reported for the impacted analyte in the associated samples have been qualified "UJ" on this basis.

828103-GWE-2-20230926	828103-MW-21S-20230927
828103-MW-17S-20230927	828103-MW-03D-20230927
828103-MW-16K-20230927	

The observed %D for chloroethane in a CCV associated with samples 828103-MW-15S-20230925, 828103-MW-15K-20230925, and 828103-MW-10K-20230926 was outside of the acceptance criteria. The results reported for the impacted analyte in the associated samples have been qualified "UJ" on this basis.

Please note, the laboratory did not perform closing continuing calibration verifications. Therefore, those criteria were not evaluated during validation. No qualification was applied on this basis.

#### 5. INTERNAL STANDARDS PERFORMANCE

Internal standard performance criteria are meant to ensure that the gas chromatography/mass spectrometry (GC/MS) sensitivity and response are stable during every experimental run.

The internal standard area count must not vary by more than a factor of two from the associated continuing calibration standard. The retention time of the internal standard must not vary by more than  $\pm$  30 seconds from the associated continuing calibration standard. The area count must be within -50% to  $\pm$ 200% range of the associated standard. If area count is >200%, non-detected results are not qualified while positive results associated with the non-compliant internal standard are qualified "J," estimated. However, when an observed area count is <50%, positive results associated with the non-compliant are qualified "J," estimated, while non-detected results are rejected.

Internal standard area counts are within acceptance criteria for all samples.

#### 6. SURROGATES

All samples are spiked with surrogate compounds prior to sample preparation and analyses to evaluate overall laboratory performance and efficiency of the analytical technique. The observed recovery must be within laboratory limits as outlined in the project specific validation guidance.

The reported sample analyses had observed surrogate recoveries within the established acceptance limits in all cases.

### 7. COMPOUND IDENTIFICATION

#### Volatile

The project target analyte compounds are identified on the GC/MS by using the analytes relative retention time (RRT) and ion spectra. For the results to be a positive hit, the sample peak must be within  $\pm 0.06$  RRT units of the standard compound and have ion spectra which has a ratio of the primary and secondary ion intensities within 20% of that in the standard compound. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications.

All samples were evaluated, and all identification criteria were met. Therefore, no analytes were qualified for compound identification.

Volatile Tentatively Identified Compounds

Tentatively Identified Compounds (TICs) were reported by the laboratory and reviewed for quality assurance. For all TIC results where there is presumptive evidence of a match, being greater than or equal to 85% match, the results are qualified "NJ," tentatively identified. If the non-target compound is reported as an unknown, the result is qualified "J," estimated. Likewise, if it is determined that the identification of a TIC is unacceptable, the tentative identification of the compound is changed to "unknown" and the result is qualified "J," estimated.

Volatile TICs were not reported.

#### 8. MATRIX SPIKE/MATRIX SPIKE DUPLICATE

The matrix spike and matrix spike duplicate (MS/MSD) are generated to determine the precision and accuracy of the analytical procedure in a given sample matrix.

Sample 828103-MW-09S-20230926 was submitted for MS/MSD pair evaluation in association with this SDG. Upon evaluation precision and accuracy indicators were acceptable or did not result in a need to qualify sample results.

Sample 828103-MW-15K-20230925 was submitted for MS/MSD pair evaluation in association with this SDG. Upon evaluation precision and accuracy indicators were acceptable.

#### 9. LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE

The Laboratory Control Sample (LCS) is spiked with the same analytes at the same concentrations as the matrix spike. The LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

LCS/LCS duplicate (LCSD) evaluations were processed at the proper frequency. Upon evaluation all accuracy and precision criteria were acceptable or did not result in a need to qualify sample results.

#### 10. REPORTING

No dilutions, re-extractions, or other re-analyses were performed other than those necessary to bring positive instrument signals within the linear range.

#### 11. OTHER QUALITY CONTROL DATA OUT OF SPECIFICATION

None.

#### 12. FIELD DUPLICATE

Field duplicates are two (or more) field samples collected at the same time in the same location. Each of the samples represents the same population and is carried through all steps of the sampling and analytical procedures in an identical manner. Field duplicate results are used to assess precision of the total method, including sampling, analysis, and site heterogeneity.

Samples 828103-MW-04-20230926 and 828103-DUP-02-20230926 were analyzed as a field duplicate pair in association with these SDGs. Adequate field precision was demonstrated.

### 13. SYSTEM PERFORMANCE AND OVERALL ASSESSMENT

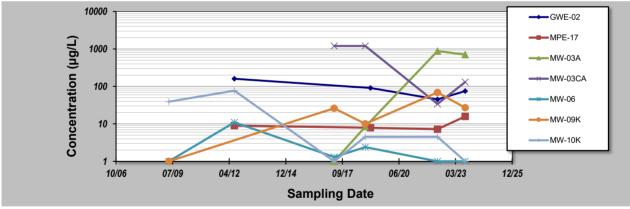
Overall, the laboratory data generated met the project goals and quality control criteria, with the exceptions identified in this report and as summarized in Table 1.

### Table 1 **Review Elements Summary**

	Were acc	ceptance crite	eria met?
	Yes	N	0
Volatiles		Major	Minor
Holding Time	х		
Method Blanks	х		
Storage Blanks	NA		
Trip Blanks	х		
Field Blanks	NA		
Mass Spectrometer Tuning	х		
Calibration Response Factor	х		
Calibration Percent Relative Standard Deviation and Percent Difference			х
Internal Standards	х		
Surrogates	х		
Compound Identification - Volatile	х		
Tentatively Identified Compounds - Volatile	NA		
Matrix Spike/Matrix Spike Duplicate	х		
Laboratory Control Sample/Laboratory Control Sample Duplicate	х		
Other Quality Control Data out of Specification	х		
Field Duplicate	х		


Major= Major data quality issue identified resulting in rejection of data. Minor= Minor data quality issue identified resulting in the qualification of data. Data qualification should be used to inform the data users of data limitations. NA = Not applicable

Data Qualifier	Definition
U	The analyte was analyzed for but was not detected above the level of the reported sample quantitation limit.
J	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.


Table 2Data Validation Qualifiers

Appendix F

Mann Kendall Analysis

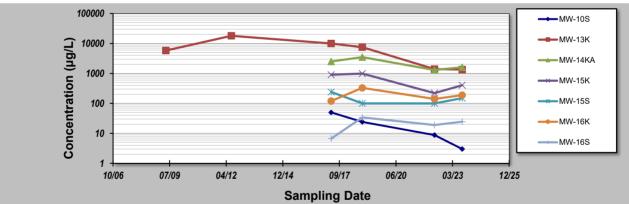


**GSI MANN-KENDALL TOOLKIT** 



#### Notes:

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.


2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.

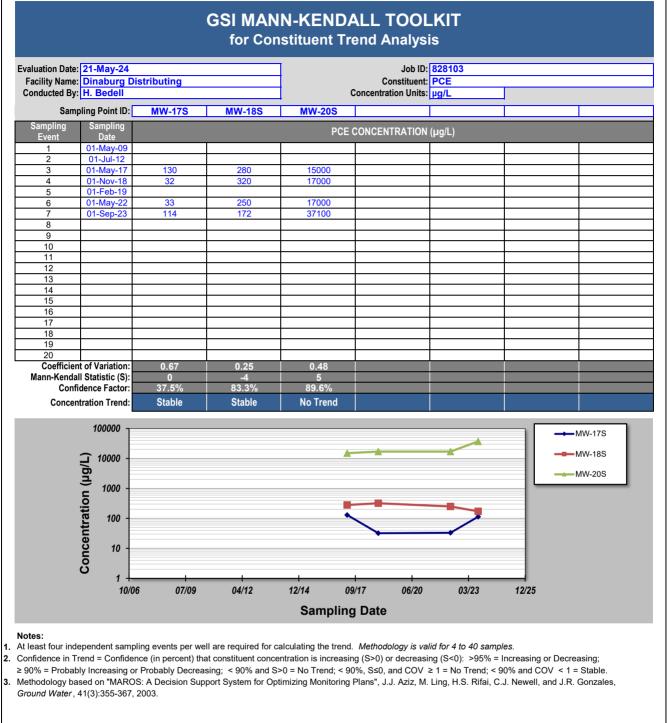
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., GSI Environmental Inc., www.gsi-net.com

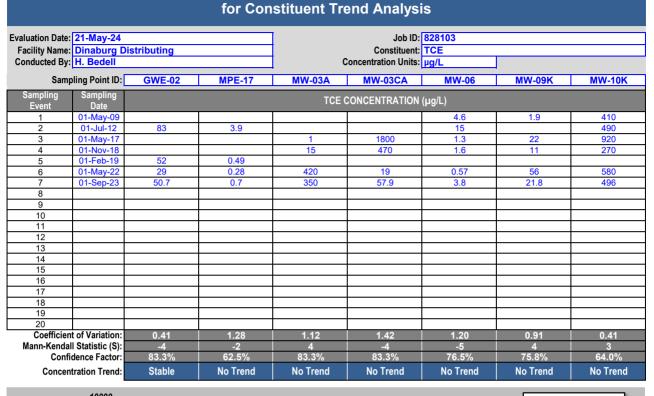
	21-May-24 Dinaburg Di H. Bedell	stributing		с	Job ID: Constituent: oncentration Units:	PCE		
Sam	pling Point ID:	MW-10S	MW-13K	MW-14KA	MW-15K	MW-15S	MW-16K	MW-16S
Sampling Event	Sampling Date			PCE C	ONCENTRATION (	µg/L)		
1	01-May-09		5800					
2	01-Jul-12		18000					l
3	01-May-17	50	10000	2500	900	240	120	6.7
4	01-Nov-18	24	7500	3500	990	100	330	34
5	01-Feb-19							
6	01-May-22	8.8	1400	1300	220	100	140	19
7	01-Sep-23	3	1350	1600	404	150	189	24.5
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
	nt of Variation:	0.98	0.85	0.45	0.60	0.45	0.49	0.54
	II Statistic (S):	-6	-9	-2	-2	-1	2	2
Conf	idence Factor:	95.8%	93.2% Prob. Decreasing	62.5%	62.5%	50.0%	62.5%	62.5%



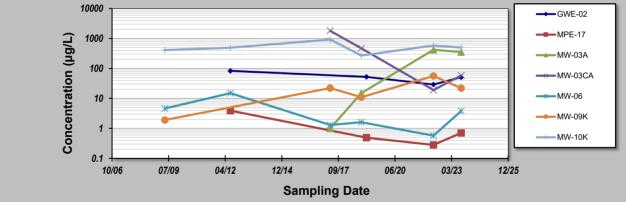



#### Notes:

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.


2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;

≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.</li>
 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.


DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com



DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., GSI Environmental Inc., www.gsi-net.com

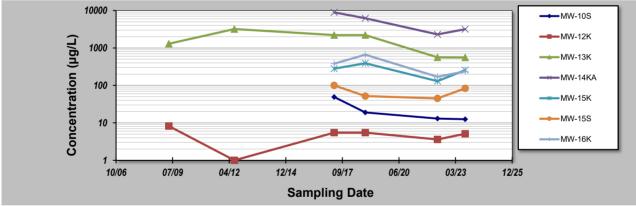


**GSI MANN-KENDALL TOOLKIT** 



#### Notes:

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.


Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.</li>
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., GSI Environmental Inc., www.gsi-net.com

valuation Date:	21-May-24			Į	Job ID: 1			
Facility Name: Conducted By:	Dinaburg Di H. Bedell	istributing		c	Constituent: oncentration Units:			
Samp	ling Point ID:	MW-10S	MW-12K	MW-13K	MW-14KA	MW-15K	MW-15S	MW-16K
Sampling Event	Sampling Date			TCE CONCENTRATION (μg/L)				
1	01-May-09		8.2	1300				
2	01-Jul-12		1	3200				
3	01-May-17	49	5.5	2200	8900	280	100	380
4	01-Nov-18	19	5.5	2200	6200	390	52	660
5	01-Feb-19							
6	01-May-22	13	3.6	560	2300	130	45	170
7	01-Sep-23	12.5	5.1	556	3170	255	83.3	236
8								
9								
10								
11								
12								
13								
14 15								
15								
17								
18								
19								
20								
	of Variation:	0.74	0.50	0.63	0.59	0.40	0.37	0.60
Mann-Kendall		-6	-4	-8	-4	-2	-2	-2
	lence Factor:	95.8%	70.3%	89.8%	83.3%	62.5%	62.5%	62.5%
	ration Trend:	Decreasing	Stable	Stable	Stable	Stable	Stable	Stable

# GSI MANN-KENDALL TOOLKIT

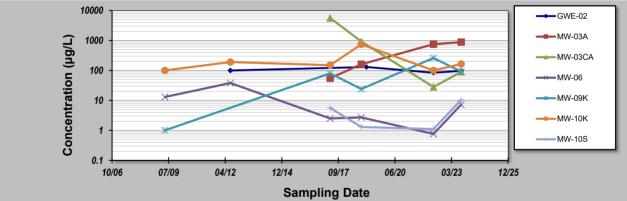


#### Notes:

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.</li>
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales,

Ground Water, 41(3):355-367, 2003.


DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

	/: H. Bedell			[	oncentration Units:	μg/L		
	pling Point ID:	MW-16S	MW-17S	MW-18S	MW-20S			
				TCE (	ONCENTRATION	(µg/L)		
1	01-May-09							
	· · · · · · · · · · · · · · · · · · ·							
		300	18	57	450			
Event         Date         ICE CONCENTRATION (µg/L)           1         01-May-09 <td< td=""><td></td></td<>								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								
Event         Date         ICL CONCENTRATION (Lgr.)           1         01-May-09 <td< td=""></td<>								
	+ +							
	+							
20								
	nt of Variation:	0.70	0.88	0.10	0.37			
Inn-Kenda	all Statistic (S):	2	0	0	1			
Con	fidence Factor:	62.5%	37.5%	37.5%	50.0%			
Conce	ntration Trend:	No Trend	Stable	Stable	No Trend			
		•						
	1000 -							→ MW-16S
				×				
	<b></b>					<b>.</b>		
	Concentration (µg/L)			_				MW-18S
	<u>n</u> 100 -							
	5						-	MW-20S
	tic			•			_	
	tra (							
	10 -							
	ŭ –							
	0							
	0 1	1						
	10/06	07/09	04/12	12/14 09	/17 06/20	03/23	12/25	
	10/00	01/00	04/12			00/20	12/20	
				Sampling	Date			
	donondont compli	•		alculating the trend.	•••		•	
st four ind				ntration is increasin	n (S>0) or decreasi	ng (S<0) >95%	= Increasing or [	)ecreasing
	Trend = Confidence	ce (in percent) that	constituent conce	indation is increasin	g (0: 0) of accidaci	ng (0.0). + 0070	inereacing or a	Jeereasing,
	donondont compli	•		•	•••		•	Decreasing:

limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

valuation Date: Facility Name:	21-May-24 Dinaburg Dis	stributing			Job ID: Constituent:	828103 DCE		
Conducted By:	H. Bedell			Co	oncentration Units:			
Samp	ling Point ID:	GWE-02	MW-03A	MW-03CA	MW-06	MW-09K	MW-10K	MW-10S
Sampling Event	Sampling Date			DCE CONCENTRATION (µg/L)				
1	01-May-09		1		13	1	100	
2	01-Jul-12	100			38		190	
3	01-May-17		55	5600	2.5	80	150	5.6
4	01-Nov-18		160	920	2.7	24	740	1.3
5	01-Feb-19	130						
6	01-May-22	84	750	28	0.76	260	100	1.1
7	01-Sep-23	96.9	877	89.4	7.2	91.4	163	10.4
8								
9								
10								
11								
12								
13								
14 15								
15								
17			+					
18								
19								
20			1					
Coefficient	of Variation:	0.19	0.90	1.60	1.32	1.11	1.03	0.95
Mann-Kendall	Statistic (S):	-2	6	-4	-5	6	2	0
	dence Factor:	62.5%	95.8%	83.3%	76.5%	88.3%	57.0%	37.5%
Concent	ration Trend:	Stable	Increasing	No Trend	No Trend	No Trend	No Trend	Stable

# GSI MANN-KENDALL TOOLKIT



#### Notes:

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;</li>
 < 90% and COV < 1 = Stable.</li>

 2 90% = Probably increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.</li>
 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

valuation Date: 21-May-24 Facility Name: Dinaburg Di Conducted By: H. Bedell Sampling Point ID:		stributing		Job ID: 828103 Constituent: DCE Concentration Units: μg/L				
Sam	pling Point ID:	MW-13K	MW-14KA	MW-15K	MW-15S	MW-16K	MW-16S	MW-18S
Sampling Event	Sampling Date			DCE C	ONCENTRATION	(µg/L)		
1	01-May-09	1100						
2	01-Jul-12         3000         13         890         1.6           01-May-17         3100         8600         390         13         890         1.6           01-Nov-18         2800         5600         270         19         710         10           01-Feb-19                         10							
3					-		-	200
4		2800	5600	270	19	710	10	92
5		4500	2000	100	2.5	210	4	00
6 7	01-May-22	1500 2170	2800 2800	190 231	2.5 2.5	310 320	4 26.8	89 99.3
8	01-Sep-23	2170	2000	201	2.0	320	20.0	99.5
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
	nt of Variation:	0.37	0.56	0.32	0.88	0.52	1.07	0.45
	all Statistic (S):	-1 50.0%	-5 89.6%	-4 83.3%	-3 72.9%	-4 83.3%	4 83.3%	-2 62.5%
Conce	ntration Trend:	Stable	Stable	Stable	Stable	Stable	No Trend	Stable

# GSI MANN-KENDALL TOOLKIT

#### MW-14KA Concentration (µg/L) 1000 MW-15K -MW-15S 100 -MW-16K MW-16S 10 -MW-18S 1 07/09 04/12 12/14 09/17 06/20 10/06 03/23 12/25 **Sampling Date**

#### Notes:

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.</li>
 Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, *Ground Water*, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., www.gsi-net.com

Sampling Point ID:         MW-19S         MW-21S           Sampling Event         Date         DCE CONCENTRATION (µg/L)           1         01-May-09	
Event         Date         DCE CONCENTRATION (LIG/L)           1         01-May-09	
Lite         Jate           1         01-May-09           2         01-Jul-12           3         01-May-17           2000         160           4         01-Nov-18           240         41           5         01-Feb-19           6         01-May-22           1000         6.1           7         01-Sep-23           1030         1           9            11            12            13            14            15            16            17            18            20            Confidence Factor:         62.5%           62.5%         95.8%           Confidence Factor:         Stable           020            20            20            21            22            30         1.43	
2       01-Jul-12	
3       01-May-17       2000       160         4       01-Nov-18       240       41         5       01-Feb-19	
4       01-Nov-18       240       41	
6       01-May-22       1400       6.1         7       01-Sep-23       1030       1         8            9            10            11            12            13            14            15            16            17            18            20            Coefficient of Variation:       0.63       1.43         Vann-Kendall Statistic (S):       -2       -6         Confidence Factor:       62.5%       95.8%         Concentration Trend:       Stable       Decreasing	
7       01-Sep-23       1030       1	
8	
9	
10     11     11       12     13     14       13     14     15       16     16     16       17     16     16       19     16     16       20     16     16       Coefficient of Variation:     0.63     1.43       Mann-Kendall Statistic (S):     -2     -6       Confidence Factor:     62.5%     95.8%       Concentration Trend:     Stable     Decreasing	
11       12       13       14       14       14       15         15       16       16       16       16       16       17       16       17       18       19       19       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       1000       10000       1000       10000       1000       10000       10000       10000       10000       10000       10000       10000       10000       10000       10000       10000       10000       10000       10000       10000       10000       10000       10000       10000       10000       10000	
12     13     14       13     14     15       15     16       16     17       18     16       19     10       20     10       Coefficient of Variation:     0.63       1.43     1.43       Mann-Kendall Statistic (S):     -2       Confidence Factor:     62.5%       95.8%     10000	
13     14       14     15       15     16       16     1       17     1       18     1       19     1       20     1       Coefficient of Variation:     0.63       1.4.3       Wann-Kendall Statistic (S):       -2     -6       Confidence Factor:     62.5%       95.8%       Concentration Trend:       Stable       Decreasing	
15       16       17         17       18       17         18       18       18         19       18       10         20       1000       1.43         Coefficient of Variation:       0.63       1.43         Vann-Kendall Statistic (S):       -2       -6         Confidence Factor:       62.5%       95.8%         Concentration Trend:       Stable       Decreasing	
16       17       18       19         18       19       19       10         20       0       10       10         Coefficient of Variation: Aann-Kendall Statistic (S): Confidence Factor:       0.63       1.43         62.5%       95.8%       95.8%       10000         10000       10000       10000       10000	
17       18       19       19         20       20       10000       1.43         Coefficient of Variation:       0.63       1.43         Jann-Kendall Statistic (S):       -2       -6         Confidence Factor:       62.5%       95.8%         Concentration Trend:       Stable       Decreasing	
18     19       20     0.63       Coefficient of Variation:     0.63       Mann-Kendall Statistic (S):     -2       -2     -6       Confidence Factor:     62.5%       95.8%     0       Concentration Trend:     Stable       10000     10000	
19       20         Coefficient of Variation:       0.63         Mann-Kendall Statistic (S):       -2         -6       -2         Confidence Factor:       62.5%         95.8%       -2         Concentration Trend:       Stable         10000       -2	
20       0.63       1.43         Coefficient of Variation:       0.63       1.43         Mann-Kendall Statistic (S):       -2       -6         Confidence Factor:       62.5%       95.8%         Concentration Trend:       Stable       Decreasing         10000	
Coefficient of Variation:       0.63       1.43         Mann-Kendall Statistic (S):       -2       -6         Confidence Factor:       62.5%       95.8%         Concentration Trend:       Stable       Decreasing         10000	
Mann-Kendall Statistic (S):     -2     -6       Confidence Factor:     62.5%     95.8%       Concentration Trend:     Stable     Decreasing	
Confidence Factor:       62.5%       95.8%         Concentration Trend:       Stable       Decreasing         10000	
10000	
	→ MW-19S
Concentration (light)	
.9 100 -	
at	
<b>59</b> 10 -	
10/06 07/09 04/12 12/14 09/17 06/20 03/23 12/25	
	5
Sampling Date	5
	5

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein. GSI Environmental Inc., GSI Environmental Inc., www.gsi-net.com