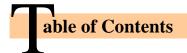
000699_NY08_03_01-B0900


Report for the Preliminary Site Assessment at the Abandoned Chemical Sales Facility Site, Rochester, New York

Site Number: 8-28-105

March 2002

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 625 Broadway Albany, New York 12233

Section			Page
	Exe	ecutive Summary	1
1	Site	e Assessment Summary	. 1-1
	1.1	Introduction	
	1.2	Purpose	1-1
	1.3	Site Description	1-1
	1.4	Site History	1-2
	1.5	Summary of PSA Work Scope	1-4
	1.6	NYSDEC and EPA Site Forms	1-4
2	PS/	A Task Discussion	. 2-1
_	2.1	Introduction	
	2.2	Pre-Field Investigation Activities	
		2.2.1 Site Visit	
		2.2.2 Background Data Search	2-2
		2.2.3 Project Work Plan Preparation	
	2.3	PSA Field Investigation	2-3
		2.3.1 Geoprobe Boreholes	2-4
		2.3.2 Groundwater Monitoring Wells	2-4
		2.3.2.1 Installation	2-4
		2.3.2.2 Well Development	2-5
		2.3.2.3 Groundwater Level Readings	2-6
		2.3.4 Sampling Activities	2-6
		2.3.4.1 Surface Soil	2-6
		2.3.4.2 Surface Water and Sediment Sampling	2-7
		2.3.4.3 Subsurface Soil Sampling	2-7
		2.3.4.4 Groundwater Sampling	2-7
		2.3.4.5 Indoor Air Sampling	2-8
	2.4		
	2.5	Site Survey	2-8
3	Ana	alytical Results	. 3-1
	3.1	Surface Soil Samples	
	3.2	Surface Water/Sediment Samples	

Table of Contents (cont.)

Section

Page

	3.2.2 Sediment Sample	
3.3	Subsurface Soil Samples	
3.4	Groundwater Samples	
3.5	QA/QC Samples	
3.6	Data Review, Validation, and Verification	
Inv	estigation Findings	4-1
Ref	ferences	

Appendix

4

5

Α	Forms: PSA Site Inspection Information and EPA Site Inspection Questionnaire
В	PhotologB-1
С	Geoprobe and Monitoring Well Subsurface Boring Logs C-1
D	Well Development RecordsD-1
E	Data Usability Summary Report and Summary of Tentatively Identified Compounds E-1

ist of Tables

Table

Page

2-1	Current Property Ownership in the Area of the Abandoned Chemical Sales Facility Site
2-2	Selected Property Ownership History in the Area of the Abandoned Chemical Sales Facility Site
2-3	Geoprobe and Subsurface Soil Sample Summary, Abandoned Chemical Sales Facility Site
2-4	Groundwater Monitoring Well Drilling Summary, Abandoned Chemical Sales Facility Site
2-5	Groundwater Monitoring Well Construction Summary, Abandoned Chemical Sales Facility Site
2-6	Groundwater Elevations, Abandoned Chemical Sales Facility Site2-17
2-7	Surface Soil Sample Summary, Abandoned chemical Sales Facility Site2-18
2-8	Surface Water and Sediment Sample Summary, Abandoned Chemical Sales Facility Site
2-9	Groundwater Field Chemistry Measurements From Monitoring Well Samples, Abandoned Chemical Sales Facility Site2-20
2-10	Groundwater Sampling Summary, Abandoned Chemical Sales Facility Site2-21
2-11	Investigation-derived Waste Drum Inventory, Abandoned Chemical Sales Facility Site
3-1	Summary of Positive Analytical Results for Surface Soil Samples, Abandoned Chemical Sales Facility Site
3-2	Summary of Positive Analytical Results for Surface Water Samples, Abandoned Chemical Sales Facility Site
3-3	Summary of Positive Analytical Results for Sediment Samples, Abandoned Chemical Sales Facility Site

List of Tables (cont.)

Table		Page
3-4A	Summary of Positive Volatile Analytical Results for Subsurface Soil Samples, Abandoned Chemical Sales Facility Site	3-23
3-4B	Summary of Positive Analytical Results for Subsurface Soil Samples, Abandoned Chemical Sales Facility Site	3-28
3-4C	Summary of Positive Volatile Analytical Results for Subsurface Soil Samples, Abandoned Chemical Sales Facility Site	3-31
3-5	Summary of Positive Analytical Results for Groundwater Samples, Abandoned Chemical Sales Facility Site	3-32

ist of Figures

Figure

Page

1-1	Site Location Map, Abandoned Chemical Sales PSA Site, Rochester, New York	1-5
1-2	Abandoned Chemical Sales Facility PSA Site Map Rochester, New York	1-7
2-1	Sample Location Map, Abandoned Chemical Sales Facility PSA, Rochester, NY2-	-23
2-2	Shallow Bedrock Groundwater Elevation Map, Abandoned Chemical Sales Facility PSA, Rochester, NY2-	-25

ist of Abbreviations and Acronyms

ACSF	Abandoned Chemical Sales Facility
ASC	Analytical Services Center
ASP	Analytical Services Protocol
AST	aboveground storage tank
BGS	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylene
cis-1,2-DCE	cis-1,2-dichloroethene
CLP	Contract Library Program
COC	chain-of-custody
CRDL	contract required detection limit
1,1-DCA	1,1-dichloroethane
1,1-DCE	1,1-dichloroethene
DPT	direct-push technology
DUSR	data usability summary reports
E & E	Ecology and Environment Engineering, P.C.
EDD	electronic data deliverable
EPA	United States Environmental Protection Agency
GC/MS	gas chromatography/mass spectrometry
HASP	Health and Safety Plan
ID	inside diameter
IDW	investigation-derived waste
LCS	laboratory control sample
LIMS	laboratory information management system
LNAPL	light non-aqueous phase liquids

List of Abbreviations and Acronyms (cont.)

Lu Engineers	Joseph C. Lu Engineers
MS/MSD	matrix spike/matrix spike duplicate
µg/kg	microgram per kilogram
µg/L	microgram per liter
NTU	nephelometric turbidity unit
NYSDEC	New York State Department of Environmental Conservation
OVA	organic vapor analyzer
РАН	polyaromatic hydrocarbons
PCB	polychlorinated biphenyl
PCE	tetrachloroethene
ppm	parts per million
PQL	practical quantitation limit
PSA	Preliminary Site Assessment
PVC	polyvinyl chloride
QA	quality assurance
QAPP	Quality Assurance Project Plan
QC	quality control
ROW	right-of-way
SD	sediment
SVOC	semivolatile organic compounds
SW	surface water
TAGM	Technical and Administrative Guidance Memorandum
TAL	Target Analyte List
1,1,1-TCA	1,1,1-trichloroethane
TCE	trichloroethene
TCL	Target Compound List
TIC	tentatively identified compound
TOC	total organic compound
TOGS	Technical Operational Guidance Series
VOC	volatile organic compounds

Executive Summary

Ecology and Environment Engineering, P.C. (E & E), under contract to the New York State Department of Environmental Conservation (NYSDEC) (Work Assignment No. D003493-29) performed a Preliminary Site Assessment (PSA) between April and November 2001 at the Abandoned Chemical Sales Facility (ACSF) site (NYSDEC Site No. 8-28-105) in Rochester, New York. The purpose of this investigation was to determine whether contamination is present at or beneath the site, to provide a preliminary definition of the nature and extent of contamination at the site, and to determine any potential threat to human health and the environment.

The ACSF site consists of two properties (1600 Jay Street and 105 Dodge Street), is relatively flat lying, and is covered by buildings, grassed and gravel areas, and parking lots. It is located in a mixed residential and business area. Investigation was prompted at the ACSF site by the Record of Decision (ROD) for the nearby Lee Road Chemical Sales Facility, which reported that the operators of the Lee Road facility also once worked at Jay and Dodge Streets. Significant levels of contaminants discovered in the surface soil, subsurface soil, and groundwater were volatile organic compounds (VOCs), with chlorinated VOCs usually occurring at the highest concentrations, followed by aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylene, etc.), and then ketones.

A review of property ownership records conducted by E & E indicated that Chemical Sales Corp. obtained 1600 Jay Street and 105 Dodge Street from the City of Rochester on April 25, 1952. Chemical Sales Corp. deeded 1600 Jay Street to Chemreal Corporation on November 13, 1952. Chemical Sales Corp. (a.k.a. Chemcore, Inc.) retained 105 Dodge Street until August 1, 1972. Chemical Sales Corp. went bankrupt on September 13, 1994. The next day, on September 14, 1994, Chemreal Corp. sold 1600 Jay Street to MA Ferrauilo Plumbing.

PSA Field Activities

In April 2001, E & E and NYSDEC performed an initial site reconnaissance. A work plan was developed by E & E and approved by NYSDEC in August 2001. The PSA fieldwork was conducted in November 2001. The PSA activities included the following tasks:

N

- Site reconnaissance;
- Conducting a background review of available site-specific information, including property ownership records;
- Collecting surface water, sediment, surface soil, and subsurface soil sampling;
- Installing, developing, sampling, and collecting water levels from four shallow-bedrock monitoring wells;
- Developing a site base map; and
- Completing a report summarizing all activities performed and analytical results generated during this study.

Nature and Extent of Contamination

Results of analyses from the various media sampled during this PSA indicate that there was no significant VOC contamination of the surface soil samples. However, the presence of low concentrations of tetrachloroethene (PCE) in two on-site soil samples suggests a previous spill of chlorinated solvents. Semivolatile organic compounds (SVOCs), primarily consisting of polynuclear aromatic hydrocarbons (PAHs), as well as pesticides and metals were detected above NYSDEC cleanup objectives in on-site surface and subsurface soil samples. However, similar or higher concentrations of these compounds were detected in background (off site) surface soil samples. Fifteen VOCs were detected in the subsurface soil samples with none exceeding cleanup objectives. In general, compounds detected in the highest concentrations consisted of chlorinated ethenes, aromatic hydrocarbons, and acetone. The highest concentration of total VOCs (approximately 6,200 micrograms per kilogram $[\mu g/kg]$) was detected in the west central portion of the site (1600 Jay Street). The location with the highest concentrations of SVOCs, glycols, and pesticides was near the former location of the aboveground storage tank (AST), south of the Ferrauilo Plumbing building, indicating that the former tank location is a potential source.

One surface water and one sediment sample were collected from a ditch on the northwest border of the site along a railroad right-of-way (ROW). The surface water sample contained one polychlorinated biphenyl (PCB), four pesticides, and three metals above their NYSDEC standards as well as glycol. The sediment sample had two SVOCs, four pesticides, and six metals above their standards. The concentrations of all compounds except for glycol were similar to those detected in background soil samples suggesting that the site is not the source or sole source of these compounds. Glycols, however, were historically known to be used on site.

No groundwater was encountered in the overburden. Shallow bedrock groundwater flow on-site is toward the south, apparently toward a Jay Street combined storm and sanitary sewer drain. Twenty-five VOCs were detected in shallow bedrock groundwater samples, with 18 of these detected above their standards in at least one well. The majority of the compounds detected were chlorinated ethenes and ethanes as well as aromatic hydrocarbons. No VOCs were detected in upgradient well MW-4 at 105 Dodge Street. In the remaining three wells, seven VOCs were detected above their standards in all three wells: cis-1,2-dichloroethene (which was the VOC with the highest level in each well), 1,1,1-trichloroethane, 1,1-dichloroethane, acetone, toluene, vinyl chloride, and total xylenes.

Monitoring well MW-3, which is just east of the MA Ferrauilo Plumbing building and adjacent to the residential property at 1558 Jay Street, had the highest total VOC concentration of the wells sampled (approximately 129,000 micrograms per liter [μ g/L]). The presence of relatively low concentrations of tetrachloroethene and trichloroethene in several media and the relatively high concentrations of cis-1,2-dichloroethene in the groundwater suggests that a spill or spills of chlorinated solvents occurred and that anaerobic degradation of the chlorinated ethenes is occurring.

VOCs detected in on-site groundwater were consistent with those found to the west and northwest at Valeo Electrical Systems, Inc., where groundwater flow near the ACSF site is reportedly toward the south and then to the east along the Jay Street sewer line.

The main area of contamination appears to be on the 1600 Jay Street property, with lesser amounts of contamination found on the 105 and 107 Dodge Street properties. Soil and water contamination were found throughout the gravel and grassed area on the northern side of the Jay Street property, as well as near the southern end of the building. However, the presence of SVOCs, pesticides, and metals in background samples at similar or higher concentrations than on site suggests that many of these compounds are not site related. The lack of VOCs in upgradient groundwater and the presence of these compounds at significant concentrations downgradient suggest that the 1600 Jay Street property is a source of this contamination. In addition, the presence of glycols in several media and its known historical use at the site suggests that 1600 Jay Street is also a source of glycol contamination.

1

Site Assessment Summary

1.1 Introduction

Ecology and Environment Engineering, P.C. (E & E) was tasked by the New York State Department of Environmental Conservation (NYSDEC), Division of Environmental Remediation, to conduct a Preliminary Site Assessment (PSA) at the Abandoned Chemical Sales Facility (ACSF) site; (No. 8-28-105), located in the City of Rochester, Monroe County, New York.

1.2 Purpose

As described in NYSDEC's Draft PSA Guidance, the general purpose of a PSA is to "...determine whether waste has been disposed on site and, if so, whether this disposal has impacted or threatens to impact human health and/or the environment." The site-specific project objectives are to:

- Determine whether contamination is present at or beneath the site from previous operators of the site; and
- To provide a preliminary definition of the nature and extent of contamination at the site.

The investigation described herein was designed in accordance with NYSDEC's Draft PSA Guidance (undated) and NYSDEC's Draft Technical Guidance for Site Investigation and Remediation (NYSDEC 2000) in order to accomplish the project objectives.

1.3 Site Description

The ACSF site consists of two land parcels: 1600 Jay Street and 105 Dodge Street. It is bordered on the east by Dodge Street, on the southeast by private residences, on the south by Jay Street, on the west by a rail road right-of-way (ROW), and on the north by Buell Specialty Steel. The ACSF site is relatively flat lying and is covered by buildings, grassed and gravel areas, and parking lots.

A low narrow berm is present in the grassed area of the 1600 Jay Street property that is parallel to Dodge Street. A small ditch is found on the western side of the site extending behind 105 and 107 Dodge Street. It has no inlet or outlet and is

fed primarily by runoff from precipitation. There are no true surface water bodies on the site and the nearest surface water is the Erie Canal, located approximately 0.5 mile to the west (see Figure 1-1).

Three residences (1540, 1548, and 1558 Jay Street) exist on the northwest corner of Jay and Dodge streets (see Figure 1-2). The 1600 Jay Street property lies adjacent to the north and west sides of these residences and is currently occupied by MA Ferrauilo Plumbing. A building and an asphalt parking lot are located in the southwestern corner of the 1600 Jay Street property, with gravel and grassed areas to the north and east.

The Monroe Extinguisher Company property, located at 105 Dodge Street, is north of 1600 Jay Street. A parking lot occupies most of the southern half of the parcel, with the Monroe Extinguisher Company building on the north side. Buell Specialty Steel is located at 107 Dodge Street, abutting the northern side of the Monroe Extinguisher Company (see Figure 1-2).

The site is located in a mixed residential and business area. In addition to the three residences discussed above, residences are located on the east side of Dodge Street, while businesses line the west side. Most of Jay Street's south side and all of its north side east of the Dodge Street intersection are residential. Figure 1-1 depicts the site location, while Figure 1-2 presents the property boundaries and physical site features.

1.4 Site History

The Record of Decision for the nearby Lee Road Chemical Sales Facility reported that an additional site was once operated by the same owners at Jay and Dodge Street (NYSDEC 2000). A review of property ownership records conducted by E & E indicated that Chemical Sales Corp. obtained 1600 Jay Street and 105 Dodge Street in Rochester, New York from the City of Rochester on April 25, 1952. Chemical Sales Corp. deeded 1600 Jay Street to Chemreal Corp. on November 13, 1952. Chemical Sales Corp. (a.k.a. Chemcore, Inc.) retained 105 Dodge Street until August 1, 1972. Chemical Sales Corp. filed for bankruptcy on September 13, 1994. The next day, on September 14, 1994, Chemreal Corp. sold 1600 Jay Street to MA Ferrauilo Plumbing.

Based on a review of historical aerial photographs and Sanborn fire insurance maps, E & E determined that there have been two structures on the 1600 Jay Street property. One structure is where the current MA Ferrauilo Plumbing building is located in the southwest portion of the property. This building was apparently constructed between 1950 and 1958. To the northeast of this building, close to Dodge Street, there was an unidentified structure present in historical maps and photos from 1951 through 1994. No buildings were constructed at 105 Dodge Street until sometime between 1971 and 1980, probably after Chemical Sales Corp. sold the property. The portions of both properties that were not historically built on appear to have been vegetated, with the exception of a cleared area that extends from the existing building at 1600 Jay Street to approximately where the current Monroe Extinguisher Company building is now located.

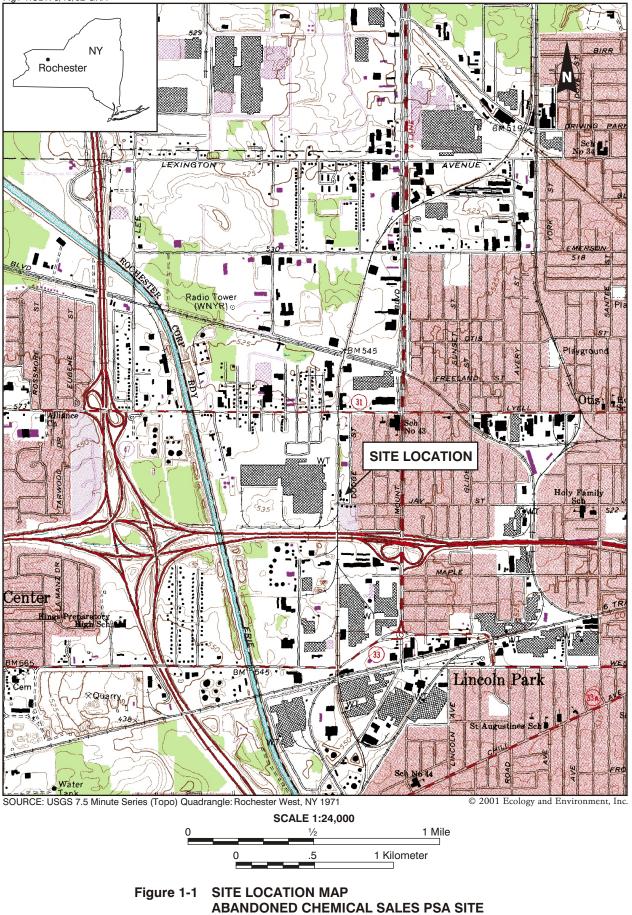
As reported by Michael Ferrauilo, Sr., according to Robert H. Paterson (president of Chemreal Corp. in 1994, at the time of the sale of 1600 Jay Street to MA Ferrauilo), Chemical Sales Corp. was a tenant on the 1600 Jay Street property from 1952 until the mid-1980s. Subsequent to the mid-1980s, Ontario Company also used the site, possibly for the sale of antifreeze. Chemreal Corp. sold windshield washer fluid from the site, apparently just prior to the 1994 sale of the property. Mr. Ferrauilo stated that aboveground storage tanks (ASTs) had been located near the southwestern corner of the 1600 Jay Street building and to the northeast of the building in the current grassed area near Dodge Street (Ferrauilo 2001).

At the time the property was transferred from Chemreal, an investigation was conducted by and for MA Ferrauilo Plumbing, which did not recommend further study. Methanol was detected at up to 82 parts per million (ppm) in the soil near the location of an aboveground storage tank, which was removed from the front of the Jay Street side of the building (D. J. Parone & Associates 1994a, b).

During the remedial investigation conducted at the Lee Road Chemical Sales Facility in Rochester (1 mile northeast of the 1600 Jay and 105 Dodge streets site), the prime contaminants discovered in the surface soil, subsurface soil, and groundwater were volatile organic compounds (VOCs), with chlorinated VOCs usually occurring at the highest concentrations, followed by benzene, toluene, ethylbenzene, xylene (BTEX), and then ketones. In the subsurface soils, chlorinated VOCs were detected at concentrations up to 1,047,530 micrograms per kilogram (μ g/kg) and BTEX compounds up to 1,880,000 μ g/kg. Chlorinated VOCs in the groundwater were found at up to 364,490 micrograms per liter (μ g/L) and BTEX compounds up to 93,900 μ g/L. Semivolatile organic compounds (SVOCs), pesticides and metals were also detected (URS 2000).

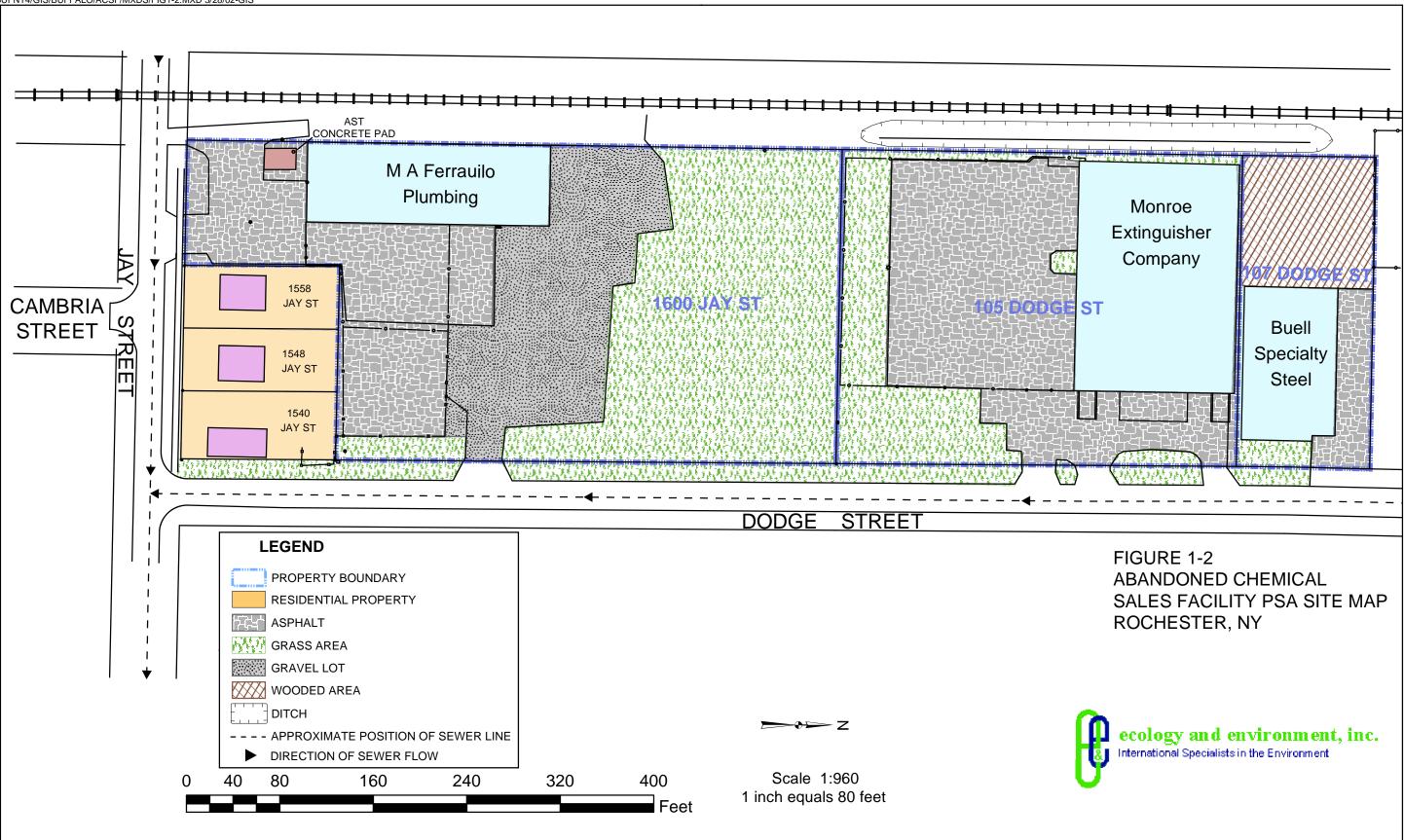
Environmental investigations were also conducted at Valeo Electrical Systems, the former Delco Chassis Facility, which is just west of 1600 Jay Street. Studies revealed the presence of light non-aqueous phase liquids (LNAPL) in the overburden and shallow bedrock groundwater. The predominant groundwater flow direction in the area is toward the New York State Barge Canal, which is to the west of both the Jay/Dodge streets site and Valeo Electrical. However, the studies conducted at Valeo Electrical determined that local groundwater flow is south-ward, toward the Jay Street sewer line, which subsequently flows to the east (H & A 2000a, b, 1996). The local sewer map shows the Jay Street sewer line is set into rock at a gradient of approximately 0.4% to 1%, dipping to the east, along the segment of Jay Street closest to the site (City of Rochester 1966). The flow continues east for at least 3,000 feet. The Dodge Street sewer system is comprised of two segments. The northern segment measures 510 feet and flows north, connecting to the Route 31 sewer line. The southern segment measures 1,269 feet long and flows south, connecting to the Jay Street sewer line (City of Rochester 1966). Figure 1-2 shows the approximate sewer line locations on both Jay and Dodge Streets in the vicinity of the ACSF site.

1.5 Summary of PSA Work Scope


E & E implemented several investigative tools to provide the data necessary to meet project objectives. The ACSF PSA project work scope consisted of the following tasks:

- Conducting a site visit;
- Conducting a background review of available site-specific information, including property ownership records;
- Collecting one surface water (SW) and one sediment (SD) sample;
- Collecting continuous soil core samples from 25 locations using direct-push technology (DPT), and submitting one soil sample from each location for chemical analysis;
- Collecting eight on-site surface soil samples and three off-site background surface soil samples;
- Installing, developing, and sampling four shallow-bedrock monitoring wells;
- Collecting water-level measurements from each new groundwater monitoring well to determine the groundwater flow direction;
- Hiring a surveyor to survey the site and generate a site base map showing relevant site features as well as sample locations and elevations;
- Managing all wastes and hiring a subcontractor to dispose of all hazardous materials generated during the investigation (if necessary); and
- Completing a report summarizing all activities performed and analytical results generated during this study.

1.6 NYSDEC and EPA Site Forms


As required by NYSDEC's PSA guidance, E & E has completed a Site Investigation Information form for this site (see Appendix A). As per the NYSDEC project manager's request, E & E has also completed the optional United States Environmental Protection Agency (EPA) Site Inspection Questionnaire, presented in Appendix A.

02:000699_NY08_03_01-B0900 Fig1-1.CDR-3/19/02-GRA

ROCHESTER, NEW YORK

02:0069_NY08_03_01-B0001 BUFNT4/GIS/BUFFALO/ACSF/MXDS/FIG1-2.MXD 3/28/02-GIS

2

PSA Task Discussion

2.1 Introduction

The PSA investigation at the ACSF site consisted of several activities conducted to investigate various physical and chemical site characteristics. These activities included a site reconnaissance, records search, and groundwater well installation; and surface soil, subsurface soil, groundwater, surface water, and sediment sampling and analysis. Subsequent to completion of sample collection, a surveyor was subcontracted to survey the horizontal and vertical positions of the sampling points and wells, and to generate a site base map showing the site's physical features.

PSA activities were conducted during three efforts. The site reconnaissance was conducted on April 4, 2001. A records search was conducted between April 24 and May 14, 2001. Data from these two efforts were used to prepare the project Work Plan (E & E 2001a). Following NYSDEC's approval of the Work Plan, a field investigation was conducted from November 12 through 30, 2001 by a team consisting of an E & E geologist serving as field team leader and a subcontracted assistant geologist from Joseph C. Lu Engineers (Lu Engineers) of Penfield, New York. A Lu Engineers survey team subsequently conducted site surveying.

All field efforts were conducted in accordance with the Work Plan (E & E 2001a), which includes a Health and Safety Plan (HASP) and site-specific Quality Assurance Project Plan (QAPP). In accordance with the HASP, health and safety officer responsibilities were assigned to one of the team members throughout the field program to ensure that the personnel were protected from both physical and chemical health hazards. Appropriate protective clothing was worn by site workers while performing all intrusive activities for protection against contamination and to prevent cross-contamination between sample locations and matrices.

A Foxboro Model 128 organic vapor analyzer (OVA) was used to monitor the concentration of organic vapors in the workers' breathing zone, in boreholes during drilling and direct-push sampling, and in soil core samples. Organic vapor concentrations exceeding background concentrations were screened for methane using a carbon filter (methane passes through the carbon while most other VOCs are adsorbed). When elevated non-methane OVA readings occurred, vinyl chlo-

ride monitoring was conducted using a vinyl chloride-sensitive Sensodyne Tube. In addition to these instruments, a Gastech oxygen/explosive-gas meter were also used during intrusive activities to monitor for potentially explosive conditions. As a result of this monitoring, no impacts on worker health and safety were identified and all work was performed in "Level D" personal protective equipment (i.e., no respiratory protection was required). Screening of soil core samples with the OVA also aided in selection of samples to be submitted for chemical analysis.

The approach and specific goals of each of the aforementioned activities are described below.

2.2 Pre-Field Investigation Activities 2.2.1 Site Visit

A two-person field team from E & E conducted the site visit at the ACSF property on April 4, 2001. At that time, the site's street address was unknown. Thus, the field team started their site review by walking through Dodge and Jay Streets attempting to identify the probable location of the ACSF site. An area due south of the Monroe Extinguisher Company was identified as one possible location due to a distinctly flat area adjacent to a very low berm. The team walked this area to identify:

- Areas of visible contamination or contamination indicators, if any existed;
- Fill area locations;
- Drill rig access constraints; and
- Conditions and activities on neighboring properties.

No areas of obvious fill or contamination were observed. Photographs of the site acquired during the site visit are provided in Appendix B.

2.2.2 Background Data Search

The background data search was conducted to identify the properties and time period during which Chemical Sales Corporation utilized the site at Jay and Dodge streets. In the process, property ownership records were obtained including the current site ownership (see Tables 2-1 and 2-2). Pertinent findings are discussed in Sections 1.3 and 1.4. Methods used for obtaining this data included:

 Utilizing the Monroe County Clerk's on-line database to determine the recent ownership (database includes property records dating back to the mid-1980s) of properties along Dodge Street and nearby properties on Jay Street and Lyell Avenue in Rochester, New York.

- Searching on-line databases and corporate references such as the PACER Service Center, the Thomas Register, and Dun and Bradstreet's America's Corporate Families;
- Conducting a professional chain-of-title search on 1600 Jay Street (conducted by Ticor Title Insurance Company). This search delineated the exact ownership dates of 1600 Jay Street and 105 Dodge Street (which was formerly a portion of the 1600 Jay Street property) by Chemical Sales Corp. and Chemreal. Four further chain-of-title searches dating back to 1950 were performed on properties adjoining 1600 Jay and 105 Dodge Streets by Ticor Title to confirm that Chemical Sales Corp. and/or Chemreal did not own any of these properties; and
- Obtaining and analyzing historical aerial photographs and Sanborn Fire Insurance maps of the site.

2.2.3 Project Work Plan Preparation

Following completion of the records search, E & E prepared a project-specific Work Plan. The Work Plan was predicated on Work Assignment No. D004393-29 issued by NYSDEC on March 19, 2001, and subsequent scoping discussions with the NYSDEC project manager.

E & E submitted a draft Work Plan for NYSDEC's review and approval in June 2001. NYSDEC's comments were received and addressed and a final Work Plan was submitted in August 2001.

2.3 PSA Field Investigation

The ACSF PSA field investigation included installing DPT boreholes, drilling monitoring wells, well development, water level measurement, investigationderived waste (IDW) management, and sampling of surface soil, sediment, surface water, subsurface soil, and groundwater. Sample locations are shown on Figure 2-1. All field activities were conducted as per the Work Plan (E & E 2001a) unless otherwise noted.

Target Compound List (TCL) VOC, SVOC, pesticide, and polychlorinated biphenyl (PCB), as well as glycol and Target Analyte List (TAL) metals analyses were conducted on samples collected at the site. E & E's Analytical Services Center (ASC) conducted all analyses with the exception of TAL metals analysis of subsurface soil from DPT boreholes GP-1, GP-4, GP-8, and GP-21, and all surface water and groundwater samples, which were performed by STL of Pittsburgh, Pennsylvania. In addition, Friend Laboratory, Inc. of Waverly, New York performed the glycol analyses. An E & E chemist reviewed the sample results. The data were reviewed for completeness; significant laboratory control problems were assessed; field and laboratory quality control (QC) samples were evaluated; and data qualifiers were assigned.

2.3.1 Geoprobe Boreholes

E & E collected subsurface soil cores at 25 locations (GP-1 through GP-25) using DPT (Geoprobe rig) (see Table 2-3). Each Geoprobe borehole was advanced to the top of bedrock, which was encountered between approximately 1.7 to 7.4 feet below ground surface (BGS). A continuous soil core was generated at each location to document the overburden lithology and determine the presence or absence of contamination or organic vapor readings. Each soil core sample was screened for organic vapors using an OVA to help select appropriate sample intervals for chemical analysis at the laboratory. Results of the headspace screening are presented in Table 2-3 and borehole logs are provided in Appendix C.

As shown in Figure 2-1, Geoprobe boreholes were installed at least every 200 feet along the eastern and western boundaries of 1600 Jay Street and 105 Dodge Street properties. Several Geoprobe boreholes were also installed along four approximately east-west transects in the interior of the properties. One transect was located near the northern extent of the property formerly owned by Chemical Sales (GP-23 through GP-25). A second transect was positioned near the 1600 Jay Street/105 Dodge Street property line (GP-15 though GP-19). A third was in the cleared area observed in historical aerial photos (GP-8, GP-13, and GP-14). The second and third transect lines were chosen because dumping may have occurred in this area. A forth transect is positioned near the unidentified structure shown on some aerial photographs (GP-3 through GP-7). Additional Geoprobe boreholes were installed in the central portion of the site: three on the 105 Dodge Street property (GP-20 through GP-22); two just north of the Jay Street residences (GP-3 and GP-11); one near the small berm that parallels Dodge Street (GP-12); two near the former AST concrete pad and the Ferrauilo Plumbing building (GP-1 and GP-2); and one in the paved area between the Ferrauilo building and Jay Street (GP-9).

The collection of subsurface soil samples for chemical analysis from the Geoprobe boreholes is discussed below in Section 2.3.4.3.

2.3.2 Groundwater Monitoring Wells 2.3.2.1 Installation

Four bedrock groundwater monitoring wells (MW-1 through MW-4) were installed at the site (see Figure 2-1). Well positions for MW-1, MW-3, and MW-4 were chosen based on relatively high OVA readings obtained down-hole and from soil cores during Geoprobe borehole installation. The location of MW-2 was selected to be upgradient, for contouring purposes (based on groundwater flow direction data from previous reports on the area [H & A 2000a, b, 1996]), and within the cleared area seen on historical aerial photos.

Monitoring wells were installed using a telescoping casing design to prevent cross-contamination between the overburden and shallow bedrock. The wells were drilled using a conventional rotary drill rig and 6-1/4-inch hollow-stem augers to advance through the overburden. Since the wells were installed adjacent to

Geoprobe boreholes from which continuous soil cores were collected, split-spoon samples of the overburden were not collected during drilling. A 5 ⁷/₈-inch roller bit was then be used to drill a 2-foot deep rock socket into the upper portion of the bedrock. A 6-inch inside diameter (ID) steel casing was then inserted into each borehole and grouted in place. Following a minimum period of 24 hours, each borehole was cored from the depth of the cement plug inside the 6–inch casing to the desired total depth using an HQ (nominal 4-inch diameter) core bit. All rock cores were described by an E & E geologist (see Appendix C). Table 2-4 summarizes the groundwater well drilling data.

All bedrock wells were constructed using 8 to 10 feet of 2-inch-ID, polyvinyl chloride (PVC), 0.010-inch-machine-slotted screen at the bottom of the corehole. Two-inch ID Schedule 40 PVC casing was installed above the screen either to grade (MW-3 and MW-4) or to approximately 2 feet above ground surface (MW-1 and MW-2). A sand filter pack consisting of Morie No. 0 sand was placed around each well screen from the bottom of the borehole to approximately 2 feet above the top of the screen. A 2-foot thick bentonite chip seal was placed on top of the sand. Following hydration of the bentonite, grout consisting of portland cement with 5% bentonite was placed from the top of the bentonite seal to the ground surface. Table 2-5 summarizes the groundwater well construction details.

2.3.2.2 Well Development

Monitoring well development was conducted no sooner than 24 hours following well construction. Development was completed using a combination of dedicated polyethylene bailers with new polypropylene rope and a Grundfos submersible pump equipped with disposable tubing. Temperature, pH, conductivity, and turbidity readings were recorded to monitor the progress of the development. Temperature, pH, and conductivity stabilized in all wells. Turbidity decreased to readings of less than 50 nephelometric turbidity units (NTUs) (the preferred quality for groundwater sampling) in all wells except MW-4. After more than 3 hours of development, the turbidity had decreased from greater than 1,000 NTUs to 198 NTUs. Since significant progress had been made as specified in the Work Plan (E & E 2001a) and development continued for more than the required time, development was considered complete. See Appendix D for the well development records.

Drilling water was lost down hole during drilling of MW-1 through MW-3. Three times the volume lost was removed for MW-1 and MW-3. As per the approval of the NYSDEC representative, only 390 gallons of the desired 750 gallons (three times the volume lost during drilling) were removed during the development of MW-2. This was permitted as pumping of the well was only possible at a very low rate (less than 1 gallon per minute), the development was performed nearly one week subsequent to drilling, and more than half of the desired volume was removed. In addition, this well was the last well sampled.

All development water was discharged to the ground near the wells because no organic vapors other than methane were detected during development.

2.3.2.3 Groundwater Level Readings

The depth to groundwater was measured in all four wells prior to sampling and several weeks after sampling. The water levels taken several weeks after sampling were utilized for the purposes of determining groundwater flow direction. Groundwater elevation data are provided in Table 2-6 and are contoured on Figure 2-2. The shallow bedrock gradient in the area of the three northernmost wells (MW-1, MW-2, and MW-4) is very flat compared to the higher gradient between MW-1 and MW-3. The groundwater elevation at MW-3 is more than 2 feet lower than that at the other wells. Therefore, in general, groundwater flow at the site is to the south toward Jay Street. In other investigations in the area (H & A 2000a, b), a combined storm and sanitary sewer drain along Jay Street has been observed to locally control shallow-bedrock groundwater flow. The sewer lines or the trenches and bedding material in which the sewers are installed may act as zones of overburden and shallow bedrock groundwater discharge, as the sewer lines are set into the top of bedrock (City of Rochester 1966). Any groundwater flowing in the sewer line or in the gravel surrounding the Jay Street sewer line flows east along Jay Street for at least 3,000 feet, according to the local sewer map (City of Rochester 1966).

2.3.4 Sampling Activities 2.3.4.1 Surface Soil

Surface soil samples were collected using the approach described in the Work Plan on November 14, 2001 (E & E 2001a). Eleven field samples (numbered ACS-SS01-O through ACS-SS11-O) were collected and submitted for full TCL/TAL analysis including: VOCs, SVOCs, pesticides, PCBs, metals, and cyanide. Samples were also analyzed for glycols and percent solids (to report results on a dry-weight basis).

E & E collected eight surface soil samples on the 1600 Jay Street property. One surface soil sample was collected approximately every 100 feet along a north-south line located in the grassed area of 1600 Jay Street (SS-5 through SS-8). A second line of samples (SS-1 through SS-5) was collected perpendicular to the initial line with a sample spacing of approximately 50 feet. These sample locations were on the interior of the property in the formerly cleared area observed on historical aerial photos. Two samples were collected in the area of the berm paralleling Dodge Street (SS-7 and SS-8). In addition to the eight on-site samples, three background surface soil samples were also collected from easements on the east side of Dodge Street (SS-9 and SS-10), and south side of Jay Street (SS-11). A summary of the collected surface soil samples is provided in Table 2-7 and the locations are shown on Figure 2-2.

In addition to the field samples, QC samples consisting of one duplicate sample (ACS-SS02-D) and matrix spike/matrix spike duplicate (MS/MSD) sample vol-

umes were also collected. Analytical results for all samples collected are discussed in Section 3.1.

2.3.4.2 Surface Water and Sediment Sampling

One surface water sample (ACS-SW01-O) and one sediment sample (ACS-SD01-O), along with duplicate samples ACS-SW01-D and ACS-SD01-D and MS/MSD sample volumes, were collected from the north-central section of the ditch traversing the western side of the site (105 Dodge Street property). The sediment sample was collected on November 14, 2001 and the surface water sample was collected on November 30, 2001. All samples were submitted for full TCL/TAL and glycol analyses (see Table 2-8). In addition, surface water samples were submitted for hardness analysis (to calculate some ambient water quality standards) and the percent solids and total organic carbon (TOC) of the sediment was measured (to report results on a dry-weight basis and calculate some sediment criteria, respectively). Readings of temperature, pH, conductivity, and turbidity measurements were recorded from the surface water sample (see Table 2-8). Analytical results for all samples collected are discussed in Section 3.2.

2.3.4.3 Subsurface Soil Sampling

One subsurface soil sample was collected for analysis from each of the 25 Geoprobe boreholes on November 12 through 14, 2001. Soil from the most contaminated interval (based on OVA readings, color, and odor) was selected for analysis. If no contaminant indicators were identified, the soil sample was collected from just above the top of bedrock.

All 25 subsurface soil samples collected from the Geoprobe boreholes were submitted for TCL VOC analysis. In addition, five samples were submitted for full TCL/TAL, glycol, and percent solids analyses (see Table 2-3). Selection of samples to be submitted for the more extensive analytical suite was based on presence of visible contamination and/or high OVA readings relative to the other samples. Selection of glycol sampling locations was based on proximity to the location of the former ASTs. Analytical results for all samples collected are discussed in Section 3.3.

2.3.4.4 Groundwater Sampling

No groundwater was encountered in the overburden during Geoprobe borehole installation; therefore, no overburden-groundwater samples were collected. Groundwater samples were collected from the four shallow-bedrock monitoring wells on November 29 and 30, 2001. Static water levels were measured in each monitoring well prior to well sampling. Table 2-6 lists the water level readings recorded. The standing water volume in each well was then calculated, and at least three standing water volumes were removed using dedicated polyethylene bailers and polypropylene rope or a submersible pump with dedicated tubing. Temperature, pH, and conductivity became stable during purging, and turbidity measurements were below 50 NTUs at the time of sampling. Table 2-9 lists the final field chemistry measurements prior to sampling. Sampling was conducted using dedicated polyethylene bailers and polypropylene rope or a submersible pump with dedicated tubing. All sampling for VOC and SVOC analyses was conducted using the dedicated bailer only.

All groundwater samples were analyzed for TCL VOCs, SVOCs, pesticides, and PCBs; TAL metals and cyanide; and glycol. In addition to the field samples, QC samples consisting of one duplicate sample (ACS-MW1-GW-D) and MS/MSD sample volume were also collected. Table 2-10 summarizes the groundwater samples collected. Purge water was discharged to the ground near the wells because no OVA readings were detected during purging. Analytical results for all samples collected are discussed in Section 3.4.

2.3.4.5 Indoor Air Sampling

With the concurrence of the NYSDEC project manager, indoor air sampling was not conducted at this stage of investigation.

2.4 Investigation-Derived Waste Management

All soil cuttings, groundwater, and decontamination water generated during this investigation were screened for obvious signs of contamination in the field visually and by screening for organic vapors with an OVA. If no contamination was detected, or readings of 5 ppm or less were detected, the IDW was spread on site. If contamination was detected above 5 ppm with the OVA, the IDW was containerized in 55-gallon drums and stored on site. Drums of potentially contaminated material were moved to an on-site staging location north of the MA Ferraulo Plumbing building (see Table 2-11). E & E will coordinate waste transportation and disposal following evaluation of the sample analyses associated with the drummed waste.

2.5 Site Survey

Lu Engineers performed a pre- and post-investigation survey. Pre-investigation surveys included marking the property boundaries of 1600 Jay Street, 105 Dodge Street, and 107 Dodge Street. Post-investigation surveys included establishing horizontal and vertical positions of the inner well casings at each of the four well locations, one surface water/sediment sample point, 11 surface soil samples, 25 Geoprobe borehole locations, and relevant blacktop areas.

The surveyor created a site base map based on the survey and tax map data (City of Rochester 1980a, b). This map was used to create the maps that are incorporated into this report.

Current Occupar					
Tax Map No.	Street Address	Owner's Name	Owner's Address	Phone No.	
105.61 – 1 – 65	1464 Lyell Ave.	Edward Koresko	1460 Lyell Ave.	Abandoned Steel Plant	
105.61 – 1 – 66	1460 Lyell Ave.	Harrold Samloft and Lawrence Glazer	1 S. Washington St Rochester, NY 14614		
105.61 – 1 – 67.1	1451 Lyell Ave.	Michael Russo	62 Castle Rd. Rochester, NY 14623	Former Russo's Restaurant	
105.61 - 1 - 68.1	1433 Lyell Ave.	Chiarino and Maria Direnzo	1433 Lyell Ave.		
105.61 – 1 – 69	1431 Lyell Ave.	Mary Hehn	7419 Chili Riga Center Rd., Churchville, NY 14428		
105.61 - 1 - 78	204 Dodge St.	Edward Hathaway	208 Dodge St.	Vacant Lot	
105.61 - 1 - 79	208 Dodge St.	Edward Hathaway	208 Dodge St.	Residence	
105.61 - 1 - 80	214 Dodge St.	Rochester HSG Authority	140 West Ave. Rochester, NY 14611	Residence	
105.61 - 1 - 81	220 Dodge St.	Maryann Reimann	220 Dodge St.	Residence	
105.61 - 1 - 82	226 Dodge St.	Claude Williams	224 Dodge St.	Residence	
105.61 - 1 - 83	230 Dodge St.	Patrick Louis	230 Dodge St.	Residence	
105.61 - 1 - 84	237 Dodge St.	Robert Russo	237 Dodge St.	Residence	
105.61 - 1 - 85	231 Dodge St.	Joseph Benvenuto	163 Pebble View Dr. Rochester, NY 14612	Dee Enterprises/ LCR Performance 716-254-5540	
105.61 - 1 - 86	223 Dodge St.	Joseph Benvenuto	163 Pebble View Dr. Rochester, NY 14612		
105.61 - 1 - 87	217 Dodge St.	Joseph Benvenuto	163 Pebble View Dr. Rochester, NY 14612	Residence	
105.61 - 1 - 88	213 Dodge St.	Samuel and Ciprain Ognibene	207 Dodge St.	Residence	
105.61 - 1 - 89	207 Dodge St.	Samuel and Ciprain Ognibene	207 Dodge St.	Residence	
105.61 – 1 – 90	203 Dodge St.	Lewis Nagle	34 Parkway Dr. North Chili, NY 14514	Vacant Lot	

Table 2-1 Current Property Ownership in the Area of the Abandoned Chemical Sales Facility Site Facility Site

Table 2-1	Current Property Ownership in the Area of the Abandoned Chemical Sales
	Facility Site

Facilit	y Site			Commonst Opposing and I
Tox Mon No	Street Address	Owner's Nome	Owner's Address	Current Occupant/
Tax Map No.	Street Address	Owner's Name	Owner's Address	Phone No.
105.61 - 1 - 91	1479 Lyell Ave.	Sellitto Inc.	1479 Lyell Ave.	Matella'a
				Restaurant
105.61 - 1 - 92	1485 Lyell Ave.	Mamie Nagle	1485 Lyell Ave.	Vacant Lot
105.69 - 1 - 1	193 Dodge St.	Lewis Nagle	34 Parkway Dr.	Residence
			North Chili, NY	
			14514	
105.69 - 1 - 10	155 Dodge St.	Shield Properties	175 Dodge St.	
105.69 - 1 - 11	175 Dodge St.	Shield Properties	175 Dodge St.	Rochester-Davis
				Fetch Corp.
105.69 - 1 - 2	190 Dodge St.	Executive Board of	190 Dodge St.	Teamsters Local
		Record et al as tr		398
105.69 - 1 - 3.1	110 Dodge St.	Dodge St. LLC.	1000 Hylan Dr.	Cambridge Court
	0	0	Rochester, NY	Apartments
			14623	F
105.69 - 1 - 7	105 Dodge St.	Thomas Curtin	P.O. Box 60980	Monroe
	100 Douge Su		Rochester, NY	Extinguisher Co.,
			14606	Inc. and Mood
			11000	Music Co.
105.69 - 1 - 8	107 Dodge St.	Buell Specialty	P.O. Box 1059	Buell Specialty
105.07 - 1 - 0	107 Douge St.	Steel Co. Inc.	Newark, NY 07101	Steel Co.
105.69 - 1 - 9	135 Dodge St.	Joseph Bergstrom	170 W. Lake Rd.	Sturdell Industries,
103.09 - 1 - 9	155 Douge St.	Joseph Bergstrom	Penn Yan, NY	Inc. and Blanchard
			14527	Grinding 716-464-
105 77 1 1	1.00 I 0.	TZ' 1 1 1		0800
105.77 - 1 - 1	1600 Jay St.	Kimberly and	Whitney Group	MA Ferrauilo
		Michael Ferrauilo		Plumbing 716-328-
				8910
105.77 - 1 - 20	1558 Jay St.	Kimberly and	Whitney Group	Residence
		Michael Ferrauilo		
105.77 - 1 - 21	1548 Jay St.	Ernest and	1548 Jay St.	Residence
		Benjamin Smith		
105.77 - 1 - 22	1540 Jay St.	Kimberly and	Whitney Group	Residence
		Michael Ferrauilo		
105.77 - 1 - 23.1	1538 Jay St.	Harold and Jean	455 Manitou Beach	Residence
		Ellis	Rd. Hilton, NY	
			14468	
105.77 - 1 - 24	1534 Jay St.	Jose and Rose	1534 Jay St.	Residence
		Batista		
·	•	·	*	

		Current Owner's	Previous Owner's	Date of	Other Previous Owner's
Tax Map No.	Street Address	Name	Name	Transfer	Names and Date of Transfer
105.61 - 1 - 78	204 Dodge St.	Edward Hathaway	Helen Hemwerich	1/21/97	NA
105.61 - 1 - 79	208 Dodge St.	Edward Hathaway	Helen Hemwerich	1/21/97	NA
105.61 - 1 - 80	214 Dodge St.	Rochester HSG Authority	USA / HUD	6/14/94	
105.61 - 1 - 81	220 Dodge St.	Maryann Reimann	Eric T. Paris	4/4/00	Brenda L. Dufoe (9/7/94); Cecelia Hemmerich (7/31/91)
105.61 - 1 - 82	226 Dodge St.	Claude Williams	Keybank National	12/9/99	
105.61 - 1 - 83	230 Dodge St.	Patrick Louis	Robert and Mary Campbell	7/28/95	
105.61 - 1 - 84	237 Dodge St.	Robert Russo	Albert Neu	4/23/93	NA
105.61 - 1 - 85	231 Dodge St.	Joseph Benvenuto	City of Rochester	10/2/87	
105.61 - 1 - 86	223 Dodge St.	Joseph Benvenuto	Mamie E. Nagle	8/14/90	Gerald O'Neill (9/18/86)
105.61 - 1 - 87	217 Dodge St.	Joseph Benvenuto	Mamie E. Nagle	8/14/90	Gerald O'Neill (9/18/86); Rose J. Schramel (1/4/82)
105.61 - 1 - 88	213 Dodge St.	Samuel and Ciprain Ognibene	NA	NA	NA
105.61 - 1 - 89	207 Dodge St.	Samuel and Ciprain Ognibene	NA	NA	NA
105.61 - 1 - 90	203 Dodge St.	Lewis Nagle	NA	NA	NA
105.69 - 1 - 1	193 Dodge St.	Lewis Nagle	NA	NA	NA
105.69 - 1 - 10	155 Dodge St.	Shield Properties	RDF Associates	6/24/97	Lenhardt and Tucker Inc. (10/17/91)
105.69 – 1 – 11	175 Dodge St.	Shield Properties	RDF Associates	6/24/97	Lenhardt and Tucker Inc. (10/17/91); Carr Metals Inc. (4/5/85); Century Brass Products Inc.(1/20/81) – street number unspecified
105.69 - 1 - 2	190 Dodge St.	Executive Board of Record et al.	NA	NA	
105.69 - 1 - 3.1	110 Dodge St.	Dodge St. LLC	Charles Livecchi	12/17/98	

Table 2-2 Selected Property Ownership History in the Area of the Abandoned Chemical Sales Facility Site

			Previous Owner's		Other Previous Owner's
Tax Map No.	Street Address	Name	Name	Transfer	Names and Date of Transfer
105.69 - 1 - 7	105 Dodge St.	Thomas Curtin	Paul Vangellow	6/4/86	NA
105.69 - 1 - 8	107 Dodge St.	Buell Specialty Steel Co. Inc.	NA	NA	
105.69 – 1 – 9	135 Dodge St.	Joseph Bergstrom	Becker Movers, Inc.	8/10/89	Cottrone Development Co.Inc.(3/14/86)
105.77 – 1 – 1	1600 Jay St.	Kimberly A., Joseph D., Michael A. (Jr. and Sr.) Ferrauilo, and Whitney Group	Michael Anthony, Joe and Kim Ferrauilo	6/14/99	Chemreal Corp.(9/14/94)
105.77 – 1 – 20	1558 Jay St. (and1560-not necessarily part of tax map no.)	Kimberly A., Joseph D., Michael A. (Jr. and Sr.) Ferrauilo, and Whitney Group	Kimberly A. Ferrauilo and Whitney Group	6/14/99	Eleanore J. Clohessy (12/30/98); Dean N. Powley (10/4/88); Carol A. Hartle (10/4/88)
105.77 – 1 – 21	1548 Jay St.	Ernest and Benjamin Smith			
105.77 – 1 – 22	1540 Jay St.	Kimberly A., Joseph D., Michael A. (Jr. and Sr.) Ferrauilo, and Whitney Group	Kimberly A. Ferrauilo (and/or Kimberly A. Poudrier) and Whitney Group	6/14/99	Salvatore P. Sparviero (3/6/95); Kathleen A. Loewke (5/29/90)
105.77 – 1 – 23.1	1538 Jay St.	Harold and Jean Ellis			
105.77 – 1 – 24	1534 Jay St.	Jose and Rose Batista			
105.61 - 1 - 91	1479 Lyell Ave.	Sellitto Inc.	1479 Lyell Ave.	Matella'a Restaurant	
105.61 - 1 - 65	1464 Lyell Ave.	Edward Koresko	1460 Lyell Ave.	Abandoned Steel Plant	

Table 2-2 Selected Property Ownership History in the Area of the Abandoned Chemical Sales Facility Site

			Previous Owner's		Other Previous Owner's
Tax Map No.	Street Address	Name	Name	Transfer	Names and Date of Transfer
105.61 - 1 - 66	1460 Lyell Ave.	Harrold Samloft and	1 S. Washington St		
		Lawrence Glazer	Rochester, NY		
			14614		
105.61 - 1 - 67.1	1451 Lyell Ave.	Michael Russo	62 Castle Rd.	Former Russo's	
	-		Rochester, NY	Restaurant	
			14623		
105.61 - 1 - 68.1	1433 Lyell Ave.	Chiarino and Maria	1433 Lyell Ave.		
	-	Direnzo			
105.61 - 1 - 69	1431 Lyell Ave.	Mary Hehn	7419 Chili Riga		
	-		Center Rd.,		
			Churchville, NY		
			14428		

Table 2-2 Selected Property Ownership History in the Area of the Abandoned Chemical Sales Facility Site

Table 2-3 Geoprobe and Subsurface Soil Sample Summary Abandoned Chemical Sales Facility Site

		Total	Maximum Downhole	Maximum OVA			
	Orenatio						
• · · · ·	Geoprobe	Depth	OVA	Reading		0	
Sampling	Borehole	(feet	Reading	from Soil		Sample Interval	
Date	Location ID	BGS)	(ppm)	Core (ppm)	Sample Number	(feet BGS)	Analyses
							TCL VOCs, TCL SVOCs, TCL
							Pesticides, TCL PCBs, TAL Metals,
11/12/01	GP-1	5	2.5	0	ACS-GP01-SB-3-5-O	3 - 5	Cyanide, Glycols, Percent Solids
11/12/01	01 1	5	2.5	Ũ			TCL VOCs, TCL SVOCs, TCL
					ACS-GP01-SB-3-5-D		Pesticides, TCL PCBs, TAL Metals,
					(Duplicate)	3 - 5	Cyanide, Glycols, Percent Solids
11/12/01	GP-2	5.2	> 100	20	ACS-GP02-SB-4-5-O	4 - 5	TCL VOCs, Glycols
11/12/01	GP-3	3.3	2	1	ACS-GP03-SB-2.3-3.3-O	2.3 - 3.3	TCL VOCs
							TCL VOCs, TCL SVOCs, TCL
							Pesticides, TCL PCBs, TAL Metals,
11/12/01	GP-4	6.1	> 100	70	ACS-GP04-SB-5-5.5-O	5 - 5.5	Cyanide, Percent Solids
11/12/01	GP-5	6.4	> 100	100	ACS-GP05-SB-5-5.5-O	5 - 5.5	TCL VOCs, Glycols (MS/MSD glycols)
11/12/01	GP-6	4.5	5	5	ACS-GP06-SB-4-4.5-O	4 - 4.5	TCL VOCs, Glycols
11/12/01	GP-7	4.7	1	0	ACS-GP07-SB-4-4.7-O	4 - 4.7	TCL VOCs
							TCL VOCs, TCL SVOCs, TCL
							Pesticides, TCL PCBs, TAL Metals,
11/12/01	GP-8	4.9	19	1	ACS-GP08-SB-4-4.9-O	4 - 4.9	Cyanide, Percent Solids
11/12/01	GP-9	3.4	20	7	ACS-GP09-SB-3-3.4-O	3 - 3.4	TCL VOCs, Glycols
11/13/01	GP-10	3.4	>100	50	ACS-GP10-SB-2.6 - 2.9-O	2.6 - 2.9	TCL VOCs
11/13/01	GP-11	1.7	0	0	ACS-GP11-SB-1.3-1.7-O	1.3 - 1.7	TCL VOCs
11/13/01	GP-12	3.5	0	0	ACS-GP12-SB-2.3-2.9-O	2.3 - 2.9	TCL VOCs
11/13/01	GP-13	2.9	0	0	ACS-GP13-SB-1.5-2.0-O	1.5 - 2.0	TCL VOCs
11/13/01	GP-14	6.8	0	0	ACS-GP14-SB-4-6.8-O	4 - 6.8	TCL VOCs (MS/MSD)
					ACS-GP15-SB-5.3-6.2-O	5.3 - 6.2	TCL VOCs
11/13/01	GP-15	7.4	5	2	ACS-GP15-SB-5.3-6.2-D		
					(Duplicate)	5.3 - 6.2	TCL VOCs
11/13/01	GP-16	7.1	13	0	ACS-GP16-SB-6.1-7.1-O	6.1 - 7.1	TCL VOCs
11/13/01	GP-17	5.8	0.5	0	ACS-GP17-SB-4.0-5.8-O	4.0 - 5.8	TCL VOCs (MS/MSD)
11/13/01	GP-18	4.6	0	0	ACS-GP18-SB-4-4.6-O	4 - 4.6	TCL VOCs
11/13/01	GP-19	4.5	14	0	ACS-GP19-SB-4-4.5-O	4 - 4.5	TCL VOCs
11/13/01	GP-20	4.1	3	0.5	ACS-GP20-SB-3.5-4.1-O	3.5 - 4.1	TCL VOCs
							TCL VOCs, TCL SVOCs, TCL
							Pesticides, TCL PCBs, TAL Metals,
11/13/01	GP-21	4.1	>1000	70	ACS-GP21-SB-2.8-3.5-O	2.8 - 3.5	Cyanide, Percent Solids
							TCL VOCs, TCL SVOCs, TCL
							Pesticides, TCL PCBs, TAL Metals,
							Cyanide, Percent Solids (MS/MSD all
11/14/01	GP-22	4.5	>1000	120	ACS-GP22-SB-2.2-4.5-O	2.2 - 4.5	parameters except VOCs)
11/14/01	GP-23	4.7	1	1.5	ACS-GP23-SB-4-4.7-O	4 - 4.7	TCL VOCs
11/14/01	GP-24	6	12	8	ACS-GP24-SB-4.9-5.4-O	4.9 - 5.4	TCL VOCs
11/14/01	GP-25	3.3	22	0	ACS-GP25-SB-2-3.3-O	2 - 3.3	TCL VOCs

Key:

BGS = Below ground surface.

 BGS =
 Below ground surface.

 OVA =
 Organic vapor analyzer.

 PCB =
 Polychlorinated biphenyl.

 ppm =
 Parts per million.

 SVOC =
 Semivolatile organic compound.

 TAL =
 Target analyte list.

TCL = Target compound list. VOC = Volatile organic compound.

Table 2-4 Groundwater Monitoring Well Drilling Summary, Abandoned Chemical Sales Facility Site

Monitoring Well ID	Date Started	Date Completed	Drilling Method	Total Depth (feet BGS)	Depth to Bedrock (feet BGS)	Maximum OVA Soil Reading (ppm)
MW-1	11/19/01	11/28/01	HSA and Coring	17	6.5	0
MW-2	11/19/01	11/21/01	HSA and Coring	18	6.5	0
MW-3	11/20/01	11/26/01	HSA and Coring	20.5	4	>10
MW-4	11/21/01	11/27/01	HSA and Coring	16.7	5	>100

Key:

BGS = Below ground surface.

HAS = Hollow-stem augering.

OVA = Organic vapor analyzer.

ppm = Parts per million.

Well	TOIC Elevation	Ground Elevation	Total Depth Drilled	Depth of 6 inches Steel Surface Casing	Well Casing Diameter	PVC Casing Length	PVC Screen Interval	Sand Pack Interval	Bentonite Seal Interval
Number	(ft AMSL)	(ft AMSL)	(feet BGS)	(feet BGS)	(inches)	(feet)	(feet BGS)	(feet BGS)	(feet BGS)
MW-1	537.34	535.21	17	8.5	2	10.5	8.3 - 16.3	5.5 - 17	3.5 - 5.5
MW-2	537.56	535.38	18	8.5	2	9.2	7 - 17	5 - 17	3 - 5
MW-3	534.15	534.5	20.5	5.5	2	9.4	9.7 - 19.7	7.1 - 20.5	5.1 - 7.1
MW-4	533.32	533.54	16.7	6.75	2	5.8	6 - 16	3.7 - 16.7	1.7 - 3.7

Table 2-5 Groundwater Monitoring Well Construction Summary, Abandoned Chemical Sales Facility Site

Key:

AMSL = Above mean sea level.

BGS = Below ground surface.

PVC = Polyvinyl chloride.

TOIC = Top of inner casing.

Table 2-6 Groundwater Elevations, Abandoned Chemical Sales Facility Site

Well Number	TOIC Elevation (ft AMSL)	Ground Elevation (ft AMSL)	11/29-11/30/01 Water Level (ft below TOIC)	11/29-11/30/01 Groundwater Elevation (ft AMSL)	2/1/02 Water Level (ft below TOIC)	2/1/02 Groundwater Elevation (ft AMSL)
MW-1	537.34	535.21	9.8	527.54	8.15	529.19
MW-2	537.56	535.38	10.37	527.19	8.22	529.34
MW-3	534.15	534.5	8.78	525.37	7.17	526.98
MW-4	533.32	533.54	5.44	527.88	3.77	529.55

Key:

AMSL = Above mean sea level.

BGS = Below ground surface.

ft = Feet.

TOIC = Top of inner casing.

 Table 2-7 Surface Soil Sample Summary

 Abandoned Chemical Sales Facility Site

Abandoned Che Sample	Sample		
Number	Date	Analyses	Location Description
		TCL VOCs, TCL SVOCs, TCL	
ACS-SS01-O		Pesticides, TCL PCBs, TAL	
(MS/MSD)	11/14/01		Western end of the east-west transect in formerly cleared
(110,1102)		percent solids	area on the 1600 Jay Street property.
		TCL VOCs, TCL SVOCs, TCL	
		Pesticides, TCL PCBs, TAL	Along east-west transect in formerly cleared area on the
ACS-SS02-O	11/14/01		1600 Jay Street property; approximatley 45 feet east of
		percent solids	western property line.
		TCL VOCs, TCL SVOCs, TCL	
ACS-SS02-D		Pesticides, TCL PCBs, TAL	Along east-west transect in formerly cleared area on the
(Duplicate)	11/14/01		1600 Jay Street property; approximatley 45 feet east of
		percent solids	western property line.
		TCL VOCs, TCL SVOCs, TCL	
		Pesticides, TCL PCBs, TAL	Along east-west transect in formerly cleared area on the
ACS-SS03-O	11/14/01		1600 Jay Street property; approximatley 100 feet east of
		percent solids	western side of property.
		TCL VOCs, TCL SVOCs, TCL	
		Pesticides, TCL PCBs, TAL	Along east-west transect in formerly cleared area on the
ACS-SS04-O	11/14/01		
		percent solids	western side of property.
		TCL VOCs, TCL SVOCs, TCL	
	11/14/01	Pesticides, TCL PCBs, TAL	Eastern end of east-west transect in the formerly cleared
ACS-SS05-O			area in the 1600 Jay Street property. Also a point in the
		percent solids	north-south line of samples.
		TCL VOCs, TCL SVOCs, TCL	
		Pesticides, TCL PCBs, TAL	
ASC-SS06-O	11/14/01		Northeast corner of grassy area, northernmost point in
		percent solids	north-south line of samples near Dodge Street.
		TCL VOCs, TCL SVOCs, TCL	
	11/14/01	Pesticides, TCL PCBs, TAL	East side of approximate location of former structure
ACS-SS07-O	11/14/01	Metals, TAL Cyanide, Glycols,	(probably AST), along north-south lineof samples near
		percent solids	Dodge Street, near berm paralleling Dodge Street.
		TCL VOCs, TCL SVOCs, TCL	
		Pesticides, TCL PCBs, TAL	
ACS-SS08-O	11/14/01	Metals, TAL Cyanide, Glycols,	Southernmost point along north-south line of samples
		percent solids	near Dodge Street, near berm paralleling Dodge Street.
		TCL VOCs, TCL SVOCs, TCL	
		Pesticides, TCL PCBs, TAL	
ACS-SS09-O	11/14/01	Metals, TAL Cyanide, Glycols,	Background sample in easement on east side of Dodge
		percent solids	Street, across from 107 Dodge Street property
		TCL VOCs, TCL SVOCs, TCL	
	11/1/01	Pesticides, TCL PCBs, TAL	
ACS-SS10-O	11/14/01		Background sample in easement on east side of Dodge
		percent solids	Street, across from 1600 Jay Street property.
		TCL VOCs, TCL SVOCs, TCL	
	11/1/01	Pesticides, TCL PCBs, TAL	
ACS-SS11-O	11/14/01		Background sample in easement on south side of Jay
		percent solids	Street, across from 1600 Jay Street property.
		14	

Key

MS/MSD = Matrix spike/matrix spike duplicate.

PCBs = Semivolitile organic compounds.

SVOCs = Semivolitile organic compounds.

TAL = Target analyte list.

TCL = Target compound list.

VOCs = Volatile organic compounds.

Sample Number	Matrix	Date Sampled	Analyses	рН (s.u.)	Temperature (°C)	Conductivity (μS/cm)	Turbidity (NTU)
ACS-SW01-O (MS/MSD)	Surface Water	11/30/01	TCL VOCs, TCL SVOCs, TCL Pesticides, TCL PCBs, TAL Metals, TAL Cyanide, Hardness, Glycols	7.19	9	85.8	11.5
ACS-SW01-D (Duplicate)	Surface Water	11/30/01	TCL VOCs, TCL SVOCs, TCL Pesticides, TCL PCBs, TAL Metals, TAL Cyanide, Hardness, Glycols	7.19	9	85.8	11.5
ACS-SD02-O (MS/MSD)	Sediment	11/30/01	TCL VOCs, TCL SVOCs, TCL Pesticides, TCL PCBs, TAL Metals, TAL Cyanide, TOC, Percent Solids, Glycols	NA	NA	NA	NA
ACS-SD01-D (Duplicate)	Sediment	11/30/01	TCL VOCs, TCL SVOCs, TCL Pesticides, TCL PCBs, TAL Metals, TAL Cyanide, TOC, Percent Solids, Glycols	NA	NA	NA	NA

Table 2-8 Surface Water and Sediment Sample Summary, Abandoned Chemical Sales Facility Site

Key:

- °C = Degrees Celcius.
- NA = Not applicable.
- NTU = Nephelometric turbidity units.
- MS/MSD = Matrix spike/matrix spike duplicate.
 - PCBs = Semivolitile organic compounds.
 - SVOCs = Semivolitile organic compounds.
 - s.u. = Standard units.
 - TAL = Target analyte list.
 - TCL = Target compound list.
 - TOC = Total Organic Carbon.
 - VOCs = Volitile organic compounds.
 - mS/cm = MicoSiemens per centimeter.

Well	Well Date		Temperature	Conductivity	Turbidity
Number	Sampled	(s.u.)	(°C)	(mS/cm)	(NTU)
MW-1	11/30/01	6.52	13.2	1498	4.39
MW-2	11/30/01	6.75	12.6	1242	6.86
MW-3	11/29/01	6.57	14.2	1867	23.8
MW-4	11/29/01	5.1	14.8	1028	15.3

Table 2-9 Groundwater Field Chemistry Measurements FromMonitoring Well Samples, Abandoned Chemical Sales Facility Site

Key:

°C = Degrees Celcius.

NTU = Nephelometric turbidity units.

s.u. = Standard units.

 $mS/cm=\ MicoSiemens\ per\ centimeter.$

			Date	
Well	Well Type	Sample Number	Collected	Chemical Analyses Performed
				TCL VOCs, TCL SVOCs, TCL PCBs,
	Bedrock	ACSF-MW01-O	11/30/01	TCL Pesticides, TAL Metals, Cyanide,
MW-1				and Glycols
101 00 - 1		ACSF-MW01-D		TCL VOCs, TCL SVOCs, TCL PCBs,
	Bedrock		11/30/01	TCL Pesticides, TAL Metals, Cyanide,
		(Duplicate)		and Glycols
				TCL VOCs, TCL SVOCs, TCL PCBs,
MW-2	Bedrock	ACSF-MW02-O	11/30/01	TCL Pesticides, TAL Metals, Cyanide,
				and Glycols
				TCL VOCs, TCL SVOCs, TCL PCBs,
MW-3	Bedrock	ACSF-MW03-O	11/29/01	TCL Pesticides, TAL Metals, Cyanide,
				and Glycols
		ACSF-MW04-O		TCL VOCs, TCL SVOCs, TCL PCBs,
MW-4	Bedrock		11/29/01	TCL Pesticides, TAL Metals, Cyanide,
		(MS/MSD)		and Glycols

Table 2-10 Groundwater Sampling Summary, Abandoned Chemical Sales Facility Site

Key:

PCBs = Polychloinated biphenyls.

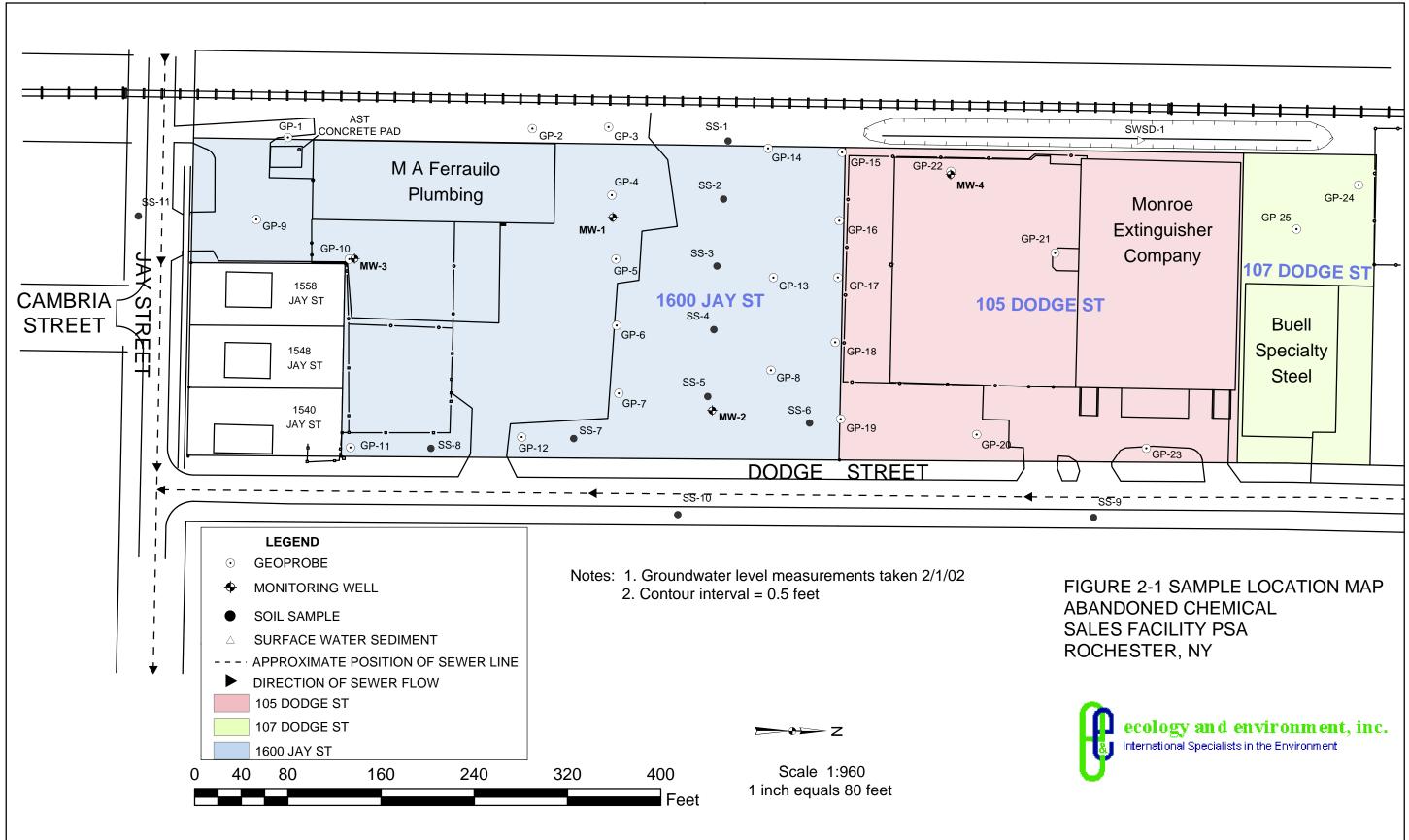
TAL = Target Analyte List.

TCL = Target Compound List.

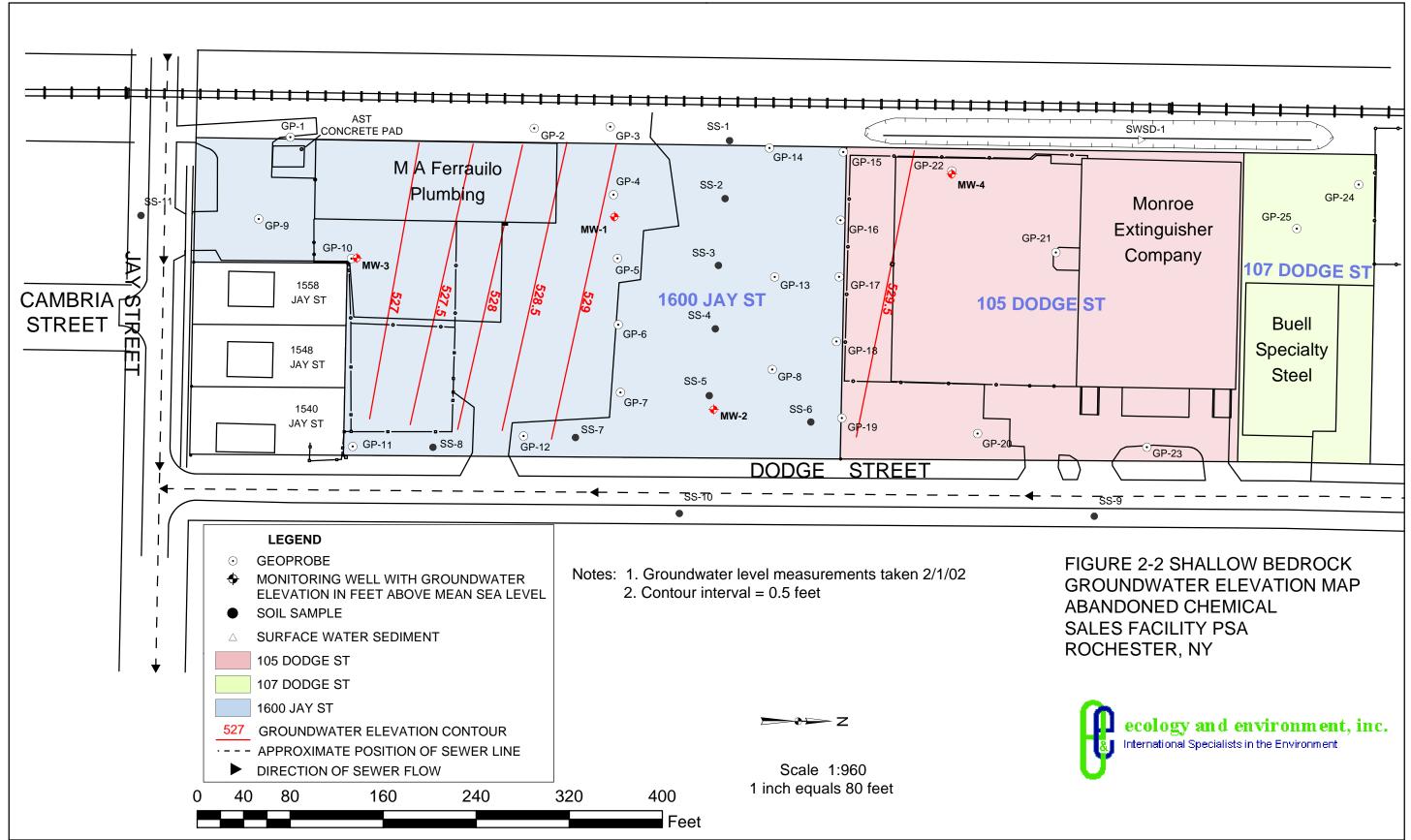
VOCs = Volatile organic compounds.

SVOCs = Semivolitile organic compounds.

Drum/				
Container ID				Approximate
Number/ Site	Date Generated	Waste Source	Contents	Volume
ACSF- DM01	11/12-11/26/01	GP-2, GP-4, GP-5, GP-10, GP-21,	Soil cuttings from Geoprobe	55 gallons
		GP-22, GP-24, and MW-3	borings and monitoring well	
			installation	
ACSF- DM02	11/21-11/27/01	MW-4	Soil cuttings from monitoring	55 gallons
			well installation	


Table 2-11 Investigation-derived Waste Drum Inventory, Abandoned Chemical Sales Facility Site

Key:


GP = Geoprobe.

MW = Monitoring well.

Analytical Results

Solid and aqueous samples were analyzed for TCL VOCs, SVOCs, pesticides/ PCBs; TAL metals; cyanide; glycols; hardness (surface water samples only); TOC (sediment samples only); and percent solids (soil and sediment samples only). Analytical methods followed the version of the EPA Contract Laboratory Program (CLP) Statement of Work. In addition, the laboratory followed the quality assurance (QA)/QC, holding time, and reporting requirements for CLP as defined in the NYSDEC Analytical Services Protocol (ASP) of June 2000. All analyses were performed by E & E's Analytical Services Center (ASC), with the exception of glycol analyses (performed by Friend Laboratory, Inc. of Waverly, New York) and metals analyses of subsurface soil, surface water, and groundwater samples discussed in Section 2 (performed by Severn Trent Laboratories of Pittsburgh, Pennsylvania). All laboratory analytical data are reported using Category B deliverables and the standard ASC laboratory electronic data deliverable (EDD). An E & E chemist reviewed all sample analytical results used for site characterization. Analytical data were reviewed for completeness; field and laboratory QC sample results were evaluated; significant laboratory control problems were assessed; and data qualifiers were assigned. Data usability summary reports (DUSRs) are presented in Appendix E. In the following discussions, the higher of the individual compound results was used when original and duplicate sample analyses were performed.

All sample collection, shipping, handling, and analytical procedures were performed in accordance with the Work Plan (E & E 2001a).

During VOC and SVOC analyses, tentatively identified compounds (TICs) were identified. TICs are chromatographic peaks in gas chromatography/mass spectrometry (GC/MS) analyses for volatile and semivolatile organics that are not target compounds, system monitoring compounds, or internal standards. TICs were qualitatively identified through a mass spectral library search, and a qualified data reviewer estimated the identifications. No standard response factor is used in the quantitation of TIC compounds; therefore, all TIC concentrations are estimated values. This process is used to identify and estimate concentrations of any potential unknown contaminants at the site. A summary of TICs is provided at the end of Appendix E. There are significant uncertainties in identification and quantitation of TICs as well as a lack of specific toxicological information for many TIC compounds.

3.1 Surface Soil Samples

Eight on-site surface soil samples (SS01 through SS08), one duplicate (SS02-D), and three background surface soil samples (SS09 through SS11) were collected in November 2001 and were submitted for laboratory analyses. Summaries of the analytical results for these samples and a comparison with NYSDEC Technical and Administrative Guidance Memorandum (TAGM) 4046 soil cleanup objectives (NYSDEC 1994) are presented in Table 3-1.

Volatile Organics

Two VOCs were detected in surface soil samples, with none above cleanup objectives. In the central portion of the site, PCE was detected at low levels at SS03 and SS04. Methylene chloride was also detected at low levels at SS04 as well as at SS07, which is on the east central portion of the site near Dodge Street. However, laboratories commonly use methylene chloride during sample preparation and its presence in the samples is considered suspect. No VOCs were detected at other surface soil locations.

Semivolatile Organics

There were 27 SVOCs detected in surface soil samples including a phenol, four phthalates, and numerous polyaromatic hydrocarbons (PAHs). SVOCs exceeding cleanup objectives included several PAHs and 4-methylphenol. Benz(a)anthracene and benzo(a)pyrene were detected above their standards in all samples, including the background locations. Also including the background locations, chrysene and dibenz(a,h)anthracene were found above their standards in all but one sample (SS01). Two additional PAHs were detected above their standards, in at least five samples (including all background locations): benzo(b)fluoranthene and benzo(k)fluoranthene. 4-methylphenol was found above its standard in SS02 and SS03. In general, the concentrations of SVOCs detected on site were similar to those detected in the background sample locations. The two on-site locations with the highest total SVOC concentrations are SS02 (approximately 18,500 µg/kg total SVOCs) and SS03 (approximately 74,400 μ g/kg total SVOCs). These locations are both in the central area of the site. The maximum total SVOC concentration detected in the three background samples was approximately $61,200 \mu g/kg$.

PCBs

The only PCB detected in the surface soil samples was Aroclor 1254, detected below its cleanup objective in background sample SS10. No PCBs were detected in on-site surface soil samples.

Pesticides

Seventeen pesticides were detected in surface soil samples. Dieldrin and heptachlor epoxide were detected above their cleanup objectives on site in sample SS03. Heptachlor epoxide was also found above its cleanup objective on site at SS02 as well as in background samples SS09 and SS11. As with the SVOCs, the concentration of total pesticides detected in the background samples was similar to or higher than the on-site locations (maximum background concentration approximately 113 μ g/kg). Also like the SVOCs, the on-site surface soil locations with the highest total pesticide concentrations are SS02 (138 μ g/kg) and SS03 (343 μ g/kg).

Glycols

No glycols were detected in the surface soil samples.

TICs

No VOC TICs were detected in surface soil samples. Ninety-seven SVOC TICs were found (see Table E-1 in Appendix E). These include PAHs, organic acids, and hydrocarbons. Estimated concentrations range up to approximately 61,200 μ g/L. The highest concentrations of TICs were found at SS03.

Inorganics

There were 22 metals detected in surface soil samples. Zinc and iron were found above their cleanup objectives in all on-site background samples. In addition, chromium, copper, and mercury exceeded their standards in at least three samples. For all metals exceeding cleanup objectives on site, these same metals also exceeded cleanup objectives in at least two of the three background locations. Concentrations of these metals were higher in the background samples than on site.

Cyanide was detected in all samples, except SS06, at low levels, with the maximum concentration detected in the background locations.

3.2 Surface Water/Sediment Samples

One sediment and one surface water sample were collected in November 2001 and were submitted for laboratory analyses. Additionally, duplicate samples SD01-D and SW01-D were collected. Summaries of the analytical results for the surface water and sediment samples and a comparison with the appropriate state standards, criteria, and guidance values are presented in Tables 3-2 and 3-3, respectively. The results for the surface water sample were compared to the NYSDEC Technical Operational Guidance Series (TOGS) 1.1.1 ambient water quality standards for Class D surface water (NYSDEC 1998). The analytical results for the sediment samples were compared to the NYSDEC sediment screening criteria (NYSDEC 1999). The sediment criteria for organic compounds are calculated based on TOC. The NYSDEC guidance specifies four categories of sediment criteria, including human health bioaccumulation (tends to be the most stringent when available), wildlife bioaccumulation, and benthic life chronic and acute toxicity. Although all categories may not be available for each compound, the most stringent criterion available was selected for each parameter.

3.2.1 Surface Water Sample

Volatile Organics

No VOCs were detected in the surface water sample.

Semivolatile Organics

No SVOCs were detected in the surface water sample.

PCBs

The only PCB detected in the surface water sample was Aroclor 1254 at 1.3 μ g/L, which is above the total PCB standard of 10⁻⁶ μ g/L.

Pesticides

Four pesticides were detected above their standards in the surface water sample: aldrin, dieldrin, gamma-chlordane, and heptachlor epoxide.

Glycols

Glycol was detected below the guidance value for ethylene glycol in the surface water sample at 310 μ g/L. The sample results were compared to the guidance value for ethylene glycol because the reported total glycol result was quantified as ethylene glycol (though other related glycol compounds also may be present).

TICs

No VOC TICs were detected in the surface water sample. Seven SVOC TICs were found in the surface water sample ranging in estimated concentrations from 2 to 63 μ g/L and were mostly hydrocarbons (see Table E-2 in Appendix E).

Inorganics

Twenty metals were detected in the surface water sample, including copper, iron, and mercury above their respective standards. Cyanide was detected below its standard in the surface water at 1.5 mg/L.

3.2.2 Sediment Sample

Volatile Organics

No VOCs were detected in the sediment sample.

Semivolatile Organics

Seventeen SVOCs (primarily PAHs) were detected in the sediment sample, including benz(a)anthracene and benzo(a)pyrene, which were detected above their respective criteria. The concentration of total PAHs detected in the sediment sample was approximately 7,410 μ g/kg.

PCBs

No PCBs were detected in the sediment sample.

Pesticides

Thirteen pesticides were detected in the sediment sample. 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, and heptachlor epoxide were detected above the NYSDEC sediment criteria. The total concentration of pesticides detected in the sediment sample was $31 \mu g/kg$.

Glycols

No glycols were detected in the sediment sample.

TICs

No VOC TICS were found in the sediment sample. There were 32 SVOC TICs detected (see Table E-3 in Appendix E) including PAHs and hydrocarbons.

Inorganics

There were 21 metals detected in the sediment sample. Of these 21, six were found above their NYSDEC standards including: antimony, arsenic, cadmium, copper, lead, and mercury. Cyanide was also detected in the sediment sample.

3.3 Subsurface Soil Samples

During Geoprobe borehole installation, 25 subsurface soil samples were collected in November 2001. Each sample was submitted for VOC analysis, and five were also submitted for TCL SVOC, TCL pesticide, TCL PCB, TAL metals, and glycols analyses (see Table 2-3). Two duplicate samples (GP01-D and GP15-D) were collected for VOC analysis and one duplicate sample (GP01-D) was collected for the remaining analyses. Summaries of the analytical results for these samples and a comparison with NYSDEC TAGM 4046 soil cleanup levels (NYSDEC 1994) are presented in Tables 3-4A, B, and C.

Volatile Organics

No VOCs were detected in nine of 25 subsurface soil samples: GP03, GP07, GP11, GP12, GP15, GP19, GP20, GP23, and GP24 (see Table 3-4A). These locations are all near the boundaries of the site. In the remaining locations, 15 VOCs were detected with no concentrations exceeding their cleanup objectives. Overall, compounds detected in the highest concentrations include chlorinated ethenes as well as aromatic and other fuel-related compounds. Chlorinated ethanes and ketones were also detected, but at lower concentrations. By far, the highest total VOC concentration in the subsurface soil samples was at GP04. GP04 is located in the west central portion of the site, just west of MW01. The total VOC concentration at this location was approximately 6,200 μ g/kg, of which 5,100 μ g/kg was isopropylbenzene. Methylcyclohexane, total xylenes, and ethylbenzene were also detected at over 100 μ g/kg each at this location. Other significant detections in the central portion of the site included 41 μ g/kg total VOCs at GP02 (with the largest fraction of this being cis-1,2-dichloroethene [cis-1,2-DCE]); 59 μ g/kg 1,1-dichloroethane (1,1-DCA) and 19 μ g/kg acetone at GP05;

200 µg/kg trichloroethene (TCE) at GP06; 24µg/kg PCE at GP08; 190 µg/kg PCE at GP13; 17µg/kg PCE at GP14; and 21 µg/kg acetone at GP16.

On the southern side of the site, GP01 is located near the former location of the aboveground storage tank. 1,1,1-trichloroethane (1,1,1-TCA) and TCE were both detected here at approximately 15 μ g/kg. East of this location, acetone was detected in both GP09 and GP10, with 2-butanone also found in GP10.

Acetone, at approximately 77 μ g/kg, was detected on the northern side of the site at GP21 and GP22. 2-Butanone was also found at GP22 at 23 μ g/kg.

Semivolatile Organics

Five of the 25 subsurface soil samples were analyzed for SVOCs (see Table 3-4B). Twenty-one SVOCs were detected, mostly PAHs. Cleanup objectives were exceeded at GP01 (located near the former AST and railroad ROW) for benz(a)anthracene, benzo(a)pyrene, chrysene, and dibenz(a,h)anthracene. These compounds were also present at concentrations exceeding cleanup objectives at surface soil locations across the site. GP01 has the highest total SVOC concentration (approximately 11,300 μ g/kg) and the highest number of SVOCs of all the subsurface soil samples analyzed for SVOCs.

GP04 contained the second highest SVOC concentration and number of SVOCs, with only benzo(a)pyrene exceeding its cleanup objective. No SVOCs were detected at GP08. Eight SVOCs were detected at GP22, with fluoranthene and phenanthrene detected at the highest levels in this sample (both 130 μ g/kg). Finally, only one phthalate was detected in GP21 at 230 μ g/kg.

PCBs

Five of the 25 subsurface soil samples were analyzed for PCBs. No PCBs were detected in these samples.

Pesticides

Five of the 25 subsurface soil samples were analyzed for pesticides. Twelve pesticides were detected below cleanup objectives in subsurface soil samples (see Table 3-4B). All 12 were found in GP01. No more than two pesticides were detected in each of GP08, GP21, and GP22. No pesticides were found in GP04.

Glycols

Five of the 25 subsurface soil samples were analyzed for glycols. GP01 was the only sample with glycols detected at 4,700 μ g/kg (see Table 3-4C). There is no NYSDEC cleanup objective for glycol.

TICs

Twenty-eight VOC TICs were detected in the subsurface soil samples (Table E-4 in Appendix E). All of these, except one, were found only in GP04. The majority

of the VOC TICs were aromatic hydrocarbon compounds. No VOC TICs were identified in GP01, GP08, or GP21. Only one unknown TIC was found in GP22.

There were 47 SVOC TICs detected in the subsurface soil samples. Most of these were either in GP01 or GP04. Several PAHs were detected in GP01 and several aromatic hydrocarbon compounds were found in GP04.

Inorganics

Five of the 25 subsurface soil samples were analyzed for inorganics. Twenty metals were detected in these five subsurface soil samples (see Table 3-4B). Iron and zinc exceeded their respective cleanup objectives at each location. Arsenic, chromium, copper, nickel, and mercury also exceeded their NYSDEC soil cleanup objectives at least one location each.

Cyanide was detected at low levels in three of the five subsurface soil sample locations.

3.4 Groundwater Samples

Four groundwater samples and one duplicate (MW01-D) were collected in November 2001 and were submitted for laboratory analyses. Summaries of the analytical results for these samples and a comparison with NYSDEC Class GA ambient water standards for groundwater (NYSDEC 1998) are presented in Table 3-5.

Volatile Organics

Twenty-five VOCs were detected in groundwater samples, with 18 of these detected above standards or guidance values in at least one well. The majority of the compounds detected were chlorinated ethenes and ethanes, as well as BTEX and related compounds. No VOCs were detected in upgradient well MW-4 on the 105 Dodge Street property. In the remaining three wells, seven VOCs were detected above standards in all three wells: cis-1,2-DCE (which was the VOC with the highest concentration in each well), 1,1,1-TCA, 1,1-DCA, acetone, toluene, vinyl chloride, and total xylenes.

At approximately 129,100 μ g/L, monitoring well MW-3, which is just east of the MA Ferrauilo Plumbing building and adjacent to the residential property at 1558 Jay Street, had the highest total VOC concentration of all four wells sampled. Eight VOCs were detected above their standards. Listed in decreasing order of concentration, they were: cis-1,2-DCE, vinyl chloride, 1,1-DCA, toluene, acetone, 1,1,1-TCA, total xylenes, and 1,1-dichloroethene (1,1-DCE). It is possible that other VOCs were also present, but were masked by the elevated detection limits caused by the high dilutions needed to analyze this relatively high concentration sample.

The well with the next highest VOC concentration was MW-1, which is on the west-central portion of the 1600 Jay Street property. This well had 37,600 μ g/L of total VOCs. With 25 VOCs detected (18 above standards), this well had the high-

est number of individual compounds detected. Relatively low levels of several VOCs were detected in the duplicate sample that were not detected in the original sample. This difference is seen because the original sample was analyzed at a much higher dilution than the duplicate. There were seven individual VOCs detected at or above 1,000 μ g/L (and above their respective standards). These were the same VOCs detected above their standards in MW-1, MW-2, and MW-3.

Monitoring well MW-2, located on the east central portion of the 1600 Jay Street property, had 5,770 μ g/L of total VOCs. Nineteen VOCs were detected with 14 above their standards. The three highest VOC concentrations were cis-1,2-DCE, total xylenes, and toluene.

Semivolatile Organics

Eight SVOCs, including primarily four phenols with lower concentrations of 1,1'biphenyl, naphthalene, benzylaldehyde, and bis(2-ethylhexyl)phthalate, were detected in groundwater, with at least one SVOC detected in each well (see Table 3-5). The SVOCs detected above their standards were phenols in MW-1 though MW-3 and bis(2-ethylhexyl)phthalate in MW-4. The highest individual SVOC detected was 350 µg/L of 4-methylphenol in MW-1.

PCBs

One PCB was detected in the groundwater samples. Aroclor 1254 was detected above its standard in MW-4. No PCBs were detected in the other wells.

Pesticides

Four pesticides were detected in groundwater samples: gamma-BHC in MW-1, alpha-BHC (above its standard) and gamma-chlordane in MW-3, and aldrin (above its standard) in MW-4. No pesticides were detected in MW-2.

Glycols

Glycol was detected above the guidance value (for ethylene glycol) in all four wells and ranged from 400 to 980 μ g/L. The sample results were compared to the guidance value for ethylene glycol because the reported glycol result was quantified as ethylene glycol (though other related glycol compounds also may be present). The highest level was detected at MW-1 (980 μ g/L). Concentrations at MW-2 and MW-3 were similar (approximately 600 μ g/L). The lowest concentration was detected at MW-4.

TICs

Nineteen VOC TICs were detected in the sample from MW-1 and 17 were found in MW-2 (see Table E-5 in Appendix E). The majority of these TICs in both samples were aromatic hydrocarbon compounds. Estimated concentrations ranged from 5 to 10,700 μ g/L. No VOC TICs were identified in samples from MW-3 or MW-4.

Fifty-seven SVOC TICs were detected in the groundwater samples. With 42 SVOC TICs, MW-1 had the highest number of TICs. Only one SVOC TIC, a straight-chain alkane, was identified at low levels in MW-4. Overall, the SVOC groundwater TICs included primarily aromatic hydrocarbons and estimated concentrations ranged from 4 to over 43,000 μ g/L.

Inorganics

Nineteen metals were detected in groundwater samples. Iron, magnesium, and sodium were detected above their standards in all wells; manganese and thallium were detected above standards in all but one well; and antimony was detected above its standard in MW-1 only.

Cyanide was detected below its standard in all groundwater samples at levels ranging from 1.1 to 1.4 μ g/L.

3.5 QA/QC Samples

This section summarizes the QA/QC procedures used and the results for the samples collected. Field QC samples include field duplicates, trip blanks, and rinsate blanks. Laboratory QC samples include method blanks, laboratory control samples, and MS/MSD sets. All sampling and analytical procedures were consistent with the Work Plan (E & E 2001a) and the master NYSDEC QAPP (E & E 2001b). The master QAPP was developed in accordance with the NYSDEC QA/QC requirements. Site-specific QA/QC requirements are reflected in the sitespecific QAPP that was included as Appendix B of the Work Plan.

Data collection, data reduction, and data handling procedures are presented in the QAPP. Sample collection data were indicated on the field chain-of-custody (COC) and entered by the laboratory into the laboratory management information system (LIMS). The laboratory analytical reports were received in both electronic and hard copy formats and the data were reviewed for usability concerns. DUSR checklists were completed to document the data evaluation (see Appendix E). The DUSR checklists summarize results of field and laboratory QC samples that are outside QC limits. QA/QC concerns that may affect data usability are presented below, along with appropriate data qualifiers and a discussion of potential impacts.

Trip Blanks

Trip blanks check for the possible introduction of VOCs from the time the samples are collected to the time they are analyzed. Trip blanks were prepared at the ASC laboratory by filling 40-milliliter glass vials with organic-free deionized water. They were handled like field samples; however, they were not opened in the field. One trip blank was taken to the sample locations and returned in the cooler to be shipped to the laboratory. All sample portions for VOCs collected on a single day were transported in the same cooler. There were no positive hits detected in either of the trip blanks.

Duplicate Samples

Consistency in both sample collection and sample analysis is checked through analysis of duplicate samples. Duplicate samples consist of aliquots of sample media placed in separate sample containers and labeled as separate samples. Duplicate samples were collected at a rate of approximately one per 20 field samples per matrix analyzed. Table 7 of the DUSRs (Appendix E) lists the duplicate samples and the original samples that they duplicated. Duplicate sample analytical data are presented in the data summary tables (Tables 3-1 through 3-5). The duplicate precision is summarized in Table 7 of the DUSRs. Overall the precision was good except for those noted in Table 7 of the DUSRs. Results are flagged "J" as estimated in cases of poor precision.

Rinsate Samples

Rinsate samples are collected from any non-dedicated or non-disposal sampling equipment to check on the effectiveness of the decontamination process on sampling equipment. Since no non-dedicated sampling equipment was utilized, no rinsate samples were needed.

Method Blanks

Quality checks on the laboratory instrumentation and methods are conducted by analysis of method blanks. Method blanks consist of organic-free deionized water subjected to every step of the analytical process to determine possible points of organic laboratory contaminant introduction. Method blanks were analyzed one per 20 samples and the only contamination of the blanks found was TICs or target compounds below the practical quantitation limit (PQL). As a result, some sample results were qualified "U" for method blank contamination as indicated on Table 2A of the DUSRs (see Appendix E).

Surrogate Standards

All samples, including the laboratory method blanks and standards, are spiked with a set of specific surrogate standards to monitor the accuracy of the analytical determination. Surrogate spikes are added at the start of the laboratory preparation process. Surrogate compounds are not typically found in environmental samples. QC criteria for surrogate recoveries are method- and matrix-specific. Most surrogate recoveries were acceptable indicating good overall accuracy. Some surrogates were high, however, no sample qualification was required.

Matrix Spike/Matrix Spike Duplicate

Spike samples simulate the background effect and interferences found in the actual samples, and the calculated percent recovery of the spike is used as a measure of the accuracy of the total analytical method. If matrix spike samples indicated a potential matrix effect, matrix spike blanks were evaluated to verify the problems were not due to an analytical concern. MS/MSD samples were collected at a rate of one per 20 field samples or batch MS/MSD samples were analyzed at a rate of one per day per matrix. MS/MSD data were evaluated as part of the data review process and specific sample results that may have been affected by matrix are flagged "J" as estimated or "R" as rejected, as reported on Table 4 of the DUSRs (see Appendix E). The rejected samples are limited to the selenium results for the surface soil samples. These were rejected due to low matrix spike recoveries. See the DUSR for lab work order 0111178 for more details

Laboratory Control Samples

The laboratory control sample (LCS) is spiked with the analytes of interest near the midpoint of the calibration range as defined by the NYSDEC ASP approved method. The LCS is processed by the same sample preparation, standard addition, and analysis as project samples. LCSs are analyzed at the frequency of one per batch of every 20 samples or fewer. The recovery of target analytes in the LCS is an estimation of method accuracy. All LCS recoveries, except for one pesticide, were within acceptable limits for ACSF site samples. Results for one pesticide was slightly high; however, all the impacted results were already flagged "J" as estimated.

3.6 Data Review, Validation, and Verification

Analytical data reports generated by E & E's ASC were reviewed by the laboratory and were checked to verify that the data reported is consistent with the laboratory QA Manual and standard operating procedures. The laboratory review is summarized in the case narrative provided with the analytical data report.

In addition to the laboratory review, an E & E chemist processed the electronic data and performed an evaluation of the QC outliers for potential impacts on data usability. Results for the original field samples, field duplicates, and trip blanks in the laboratory electronic data were matched to data on the field COC and in the Work Plan. Results for surrogate parameters for all samples were included for applicable tests. Data review qualifiers were added to the sample results in the database and the data were sorted to generate data summary tables. The tables were checked against the hard copy data package. Laboratory QC results, including MS/MSDs and laboratory blanks are reported and reviewed electronically, but the QC results are not stored in the project database. Field QC results are summarized in the DUSRs and discussed in Section 3.5. Glycol data was not available in the proper electronic format to be incorporated into the DUSR; however it was fully reviewed in hardcopy by an E & E chemist. No QA/QC problems were found in the glycol data.

Any deviations from acceptable QC specifications were summarized in the DUSRs in Appendix E. The E & E chemist added appropriate qualifiers to the data to indicate potential concerns with data usability. These qualifiers were transferred to the data presented on summary tables in Sections 3.1 through 3.4. The following qualifiers were added:

J - This qualifier indicates an estimated value because the associated QC data indicated a potential laboratory or matrix problem. In addition, J flags indicate the results are below the contract required detection limit (CRDL),

but above the instrument detection limit or method detection limit. For inorganic data, a B flag on the laboratory report in Appendix E indicates these results. The J flag also may indicate potential interference. For inorganic data, an E flag on the laboratory report in Appendix E indicates these results.

- R The data are rejected. The spike recoveries are low, indicating a matrix effect. This qualifier was applied only to surface soil selenium data.
- U The result is considered non-detect at the CRDL. The result also may be flagged "U" due to blank contamination. If the result is above the CRDL, the CRDL is considered elevated due to blank contamination.

Analyte	NYSDEC TAGM 4046 Soil Cleanup Objectives ¹	Sample ID: Date:	SS01 11/14/01	SS02 11/14/01	SS02-D 11/14/01	SS03 11/14/01	SS04 11/14/01	SS05 11/14/01
VOCs by Method OLM04.2 (µg/K	(g)							
Methylene chloride	100		11 U	13 U	12 U	13 U	1 J	13 U
Tetrachloroethene	1400		11 U	13 U	12 U	5 J	7 J	13 U
Semivolatile Organics by Metho	d OLM04.2 (µa/Ka)							
1,1´-Biphenyl	NA		730 U	420 U	2400 U	110 J	420 U	440 U
2-Methylnaphthalene	36400		730 U	70 J	2400 U	550	420 U	440 U
4-Methylphenol	0.9		730 U	76 J	2400 U	47 J	420 U	440 U
Acenaphthene	50000		730 U	64 J	2400 U	1600	420 U	440 U
Acenaphthylene	41000		150 J	2200	1500 J	710	900	300 J
Acetophenone	NA		730 U	93 J	2400 U	64 J	45 J	45 J
Anthracene	50000		79 J	630	710 J	3600 J	380 J	150 J
Benz(a)anthracene	224		260 J	1200	1300 J	4500 J	510	840
Benzaldehyde	NA		730 U	420 U	2400 U	400 U	420 U	48 J
Benzo(a)pyrene	61		370 J	2000	1700 J	4300 J	830	1100
Benzo(b)fluoranthene	1100		460 J	960 J	1300 J	8200 J	1000	320 J
Benzo(g,h,i)perylene	50000		120 J	350 J	2200 J	380 J	200 J	310 J
Benzo(k)fluoranthene	1100		450 J	2300	1300 J	3900 J	790	970
Bis(2-ethylhexyl)phthalate	50000		190 J	420 U	2400 U	400 U	420 U	440 U
Butyl benzyl phthalate	50000		730 U	420 U	2400 U	400 U	420 U	440 U
Carbazole	NA		730 U	150 J	2400 U	3900 J	87 J	68 J
Chrysene	400		400 J	1600	1400 J	4000 J	650	1200
Dibenz(a,h)anthracene	14		730 U	210 J	880 J	330 J	110 J	210 J
Dibenzofuran	6200		730 U	55 J	2400 U	1600	420 U	440 U
Di-n-butyl phthalate	8100		730 U	420 U	2400 U	400 U	420 U	440 U
Di-n-octyl phthalate	50000		730 U	420 U	2400 U	400 U	420 U	440 U
Fluoranthene	50000		610 J	3300	1700 J	14000 J	1100	1100
Fluorene	50000		730 U	420 U	2400 U	2800	420 U	440 U
Indeno(1,2,3-cd)pyrene	3200		130 J	510	2300 J	680	280 J	450

Analyte	NYSDEC TAGM 4046 Soil Cleanup Objectives ¹	Sample ID: Date:	SS01 11/14/01	SS02 11/14/01	SS02-D 11/14/01	SS03 11/14/01	SS04 11/14/01	SS05 11/14/01
Naphthalene	13000	Date.	730 U	98 J	2400 U	490	420 U	440 U
Phenanthrene	50000		240 J	680	590 J	13000 J	420 U 310 J	310 J
Pyrene	50000		680 J	1900	1600 J	5600 J	430	310 J 390 J
Glycols by Method NYSDEC A			000 3	1700	1000 3	5000 3		570 5
Glycols were not detected in su								
Pesticide/PCB by Method OLM	M04.2 (µg/Kg)							
4,4´-DDD	2900		1.6 J	2.7 J	2.4 J	3.7 U	1.9 U	1.2 J
4,4'-DDE	2100		3.5 U	4.1 U	4.0 U	3.9 J	4.2 U	4.1 U
4,4´-DDT	2100		4.5	8.6 J	9.3 J	8.0	2.3 J	3.1 J
Aldrin	41		0.44 J	2.1 U	1.4 J	1.5 J	0.52 J	0.51 J
alpha-Chlordane	540		8.6 J	1.6 J	2.4 J	100 J	1.2 J	1.5 J
Aroclor 1254	1000		35 U	41 U	40 U	37 U	42 U	41 U
delta-BHC	300		0.37 J	0.54 U	0.83 U	1.9 U	2.1 U	2.1 U
Dieldrin	44		3.5 J	1.7 U	2.1 U	140 J	0.79 U	0.65 J
Endosulfan I	900		1.8 U	0.99 J	1.7 J	1.9 U	0.44 J	0.64 J
Endosulfan II	900		2.7 U	4.1 U	4.0 U	3.7 U	4.2 U	1.8 U
Endosulfan sulfate	1000		3.5 U	7.9	8.5 J	3.7 U	2.1 J	0.86 J
Endrin	100		0.89 U	4.1 U	4.0 U	0.81 J	1.4 J	0.77 U
Endrin aldehyde	NA		0.47 J	5.0 J	6.2 J	3.7 U	0.87 J	0.91 J
Endrin ketone	NA		5.1 J	6.5 J	15 J	3.9 J	4.4 J	1.3 J
gamma-Chlordane	540		5.1	1.0 J	0.94 J	47 J	0.20 J	2.1 U
Heptachlor	100		0.54 U	0.41 U	0.44 U	0.96 J	0.21 U	0.22 U
Heptachlor epoxide	20		11	18 J	28 J	22 J	10 J	6.5
Methoxychlor	NA		18 J	43	62 J	15 J	24	14 J
TAL Metals by Method ILM04.								
Aluminum	NA		3950	3520	5040	5210	4520	4320
Antimony	NA		2.3 J	2.2 J	2.6 J	3.9 J	2.5 J	3.3 J
Arsenic	7.5		5.8	5.0	4.6	5.4	3.0	5.1

Analyte	NYSDEC TAGM 4046 Soil Cleanup Objectives ¹	Sample ID: Date:	SS01 11/14/01	SS02 11/14/01	SS02-D 11/14/01	SS03 11/14/01	SS04 11/14/01	SS05 11/14/01
Barium	300		33.1 J	32.5 J	40.9 J	40.0 J	38.4 J	36.5 J
Beryllium	NA		0.23 U	0.27 U	0.34 U	0.35 J	0.26 U	0.28 U
Cadmium	1		0.37 J	0.35 J	0.50 J	0.45 J	0.38 J	0.40 J
Calcium	NA		95100	19400	23300	20700	25900	25200
Chromium	10		7.3	6.4	8.8	9.0	7.7	7.1
Cobalt	30		3.0 J	3.6 J	4.6 J	4.9 J	4.3 J	3.7 J
Copper	25		10.5	16.7	22.6	22.3	18.6	17.9
Iron	2000		6170	7270	10000	10800	9700	8470
Lead	NA		71.5	42.9	49.4	44.7	38.3	43.8
Magnesium	NA		12900	8870	9390	8910	11000	10500
Manganese	NA		232 J	308 J	402 J	435 J	289 J	276 J
Nickel	13		5.0 J	6.5 J	9.0 J	9.0 J	8.5	6.8 J
Potassium	NA		348 J	415 J	757 J	830 J	648 J	597 J
Selenium	2		3.7 R	3.6 R	1.1 UR	1.3 R	3.2 R	1.1 R
Silver	NA		1.1 J	0.67 J	0.68 J	0.84 J	0.68 J	0.58 J
Sodium	NA		187 J	187 J	262 J	96.8 J	108 J	84.1 J
Vanadium	150		6.9 J	7.8 J	11.3 J	11.4 J	9.1 J	8.5 J
Zinc	20		37.6 J	62.5 J	76.3 J	68.9 J	57.1 J	56.5 J
Mercury	0.1		0.096 J	0.075 J	0.093 J	0.30 J	0.27 J	0.40 J
Total Cyanide by ILM04.0 (m								
Cyanide	NA		0.087 J	0.16 J	0.15 J	0.14 J	0.17 J	0.17 J

Analyte	NYSDEC TAGM 4046 Soil Cleanup Objectives ¹	Sample ID: Date:	SS06 11/14/01	SS07 11/14/01	SS08 11/14/01	SS09 11/14/01	SS10 11/14/01	SS11 11/14/01
VOCs by Method OLM04.2 (µg/	/Kg)							
Methylene chloride	100		13 U	3 J	13 U	12 U	11 U	12 U
Tetrachloroethene	1400		13 U	12 U	13 U	12 U	11 U	12 U
Semivolatile Organics by Meth	od OLM04.2 (µa/Ka)							
1,1´-Biphenyl	NA		440 U	410 U	440 U	400 U	380 U	390 U
2-Methylnaphthalene	36400		440 U	410 U	440 U	400 U	380 U	63 J
4-Methylphenol	0.9		440 U	410 U	440 U	400 U	380 U	390 U
Acenaphthene	50000		440 U	410 U	440 U	260 J	380 U	110 J
Acenaphthylene	41000		67 J	420	410 J	180 J	81 J	350 J
Acetophenone	NA		440 U	44 J	48 J	51 J	380 U	390 U
Anthracene	50000		55 J	250 J	210 J	990	140 J	420
Benz(a)anthracene	224		630	590	550	4500 J	820	1900
Benzaldehyde	NA		440 U	410 U	440 U	400 U	380 U	43 J
Benzo(a)pyrene	61		860	700	770	5800 J	1100	2600
Benzo(b)fluoranthene	1100		1400	880	1200	13000 J	1700	4900 J
Benzo(g,h,i)perylene	50000		240 J	130 J	140 J	1000	240 J	890
Benzo(k)fluoranthene	1100		890	860	970	4900 J	1300	2800
Bis(2-ethylhexyl)phthalate	50000		440 U	55 J	150 J	520	110 J	210 J
Butyl benzyl phthalate	50000		440 U	410 U	440 U	870	44 J	130 J
Carbazole	NA		45 J	99 J	81 J	1000	160 J	440
Chrysene	400		930	720	750	4200 J	1200	3100
Dibenz(a,h)anthracene	14		150 J	88 J	81 J	540	140 J	410
Dibenzofuran	6200		440 U	410 U	440 U	150 J	380 U	78 J
Di-n-butyl phthalate	8100		440 U	410 U	440 U	64 J	380 U	390 U
Di-n-octyl phthalate	50000		440 U	410 U	440 U	140 J	380 U	390 U
Fluoranthene	50000		810	1600	1600	9300 J	2900	7200 J
Fluorene	50000		440 U	46 J	440 U	370 J	39 J	130 J
Indeno(1,2,3-cd)pyrene	3200		320 J	210 J	200 J	1500	360 J	1200

Anclute	NYSDEC TAGM 4046 Soil Cleanup	Sample ID:	SS06	SS07	SS08	SS09	SS10	SS11 11/14/01
Analyte	Objectives ¹	Date:	11/14/01	11/14/01	11/14/01	11/14/01	11/14/01	
Naphthalene	13000		440 U	410 U	440 U	400 U	380 U	55 J
Phenanthrene	50000		200 J	500	320 J	5200 J	740	2200
Pyrene	50000		280 J	490	610	6700 J	790	4300 J
Glycols by Method NYSDEC A								
Glycols were not detected in su	rface soil samples.							
Pesticide/PCB by Method OLI	M04.2 (µg/Kg)							
4,4´-DDD	2900		1.4 U	1.8 J	2.8 J	2.7 J	0.93 U	1.3 J
4,4´-DDE	2100		1.8 U	4.0 J	8.7 J	4.5 J	3.5 U	3.6 J
4,4´-DDT	2100		2.4 U	5.8 J	5.1 J	9.0 J	2.5 J	4.1 J
Aldrin	41		0.51 J	0.49 J	2.4 J	1.7 J	1.9 J	0.93 J
alpha-Chlordane	540		2.3 U	2.8 J	4.4 J	1.6 J	0.96 J	1.4 J
Aroclor 1254	1000		44 U	35 U	43 U	38 U	140	34 U
delta-BHC	300		2.3 U	2.2 J	2.2 U	0.61 U	1.8 U	0.64 U
Dieldrin	44		4.4 U	3.1 J	21	1.8 U	1.6 J	1.5 J
Endosulfan I	900		0.72 U	1.7 J	1.3 J	1.4 J	2.2	0.42 J
Endosulfan II	900		0.71 J	3.2 U	1.9 U	3.8 U	2.8 U	3.4 U
Endosulfan sulfate	1000		1.9 U	1.1 J	4.3 U	8.0	2.3 J	3.8 J
Endrin	100		0.69 J	3.3 U	2.9 U	3.8 U	3.5 U	2.9 U
Endrin aldehyde	NA		0.63 J	1.5 J	1.1 J	3.1 J	1.2 J	1.1 J
Endrin ketone	NA		3.6 J	2.2 J	3.2 J	15	2.6 J	9.1 J
gamma-Chlordane	540		2.3 U	0.99 J	3.2 J	1.8 J	1.6 J	0.49 J
Heptachlor	100		0.20 U	1.8 U	1.6 J	0.30 U	0.22 U	0.30 U
Heptachlor epoxide	20		6.2 J	9.5	14 J	37 J	14 J	26 J
Methoxychlor	NA		13 J	14 J	9.2 J	35 J	14 J	26 J
TAL Metals by Method ILM04.	.0 (mg/Kg)							
Aluminum	NA		5810	4320	5050	4950	5390	5860
Antimony	NA		2.8 J	2.4 J	3.3 J	4.2 J	2.4 J	4.3 J
Arsenic	7.5		5.1	4.9	5.9	1.6 J	2.9	5.0

Analyte	NYSDEC TAGM 4046 Soil Cleanup Objectives ¹	Sample ID: Date:	SS06 11/14/01	SS07 11/14/01	SS08 11/14/01	SS09 11/14/01	SS10 11/14/01	SS11 11/14/01
Barium	300		48.5	43.3	41.5 J	42.2 J	38.6	44.8
Beryllium	NA		0.33 U	0.28 U	0.34 U	0.27 U	0.29 U	0.37 J
Cadmium	1		0.43 J	0.50 J	0.69 J	0.92 J	0.58 J	0.80 J
Calcium	NA		58000	22200	32900	34600	12700	21900
Chromium	10		9.3	7.6	10.1	19.0	9.7	15.1
Cobalt	30		4.1 J	3.8 J	3.4 J	4.2 J	3.8 J	4.3 J
Copper	25		16.3	20.8	32.5	54.8	40.8	165
Iron	2000		10100	8190	9260	14500	8880	13300
Lead	NA		42.8	67.1	92.5	111	73.5	120
Magnesium	NA		13700	8690	16800	11900	5680	9850
Manganese	NA		300 J	301 J	249 J	332 J	251 J	317 J
Nickel	13		7.8 J	7.0 J	6.2 J	10.4	7.3	9.5
Potassium	NA		723 J	672 J	750 J	343 J	302 J	498 J
Selenium	2		1.7 R	2.0 R	1.0 UR	1.4 R	1.6 R	3.0 R
Silver	NA		1.0 J	0.60 J	1.2 J	0.98 J	0.48 J	0.70 J
Sodium	NA		111 J	71.7 J	74.8 J	123 J	104 J	164 J
Vanadium	150		10.6 J	8.4 J	10.2 J	9.3 J	10	13.0
Zinc	20		49.8 J	65.1 J	108 J	149 J	106 J	136 J
Mercury	0.1		0.13 J	0.21 J	0.88 J	0.45 J	0.37 J	0.15 J
Total Cyanide by ILM04.0 (mg/Kg)								
Cyanide	NA		0.066 U	0.21 J	0.25 J	0.29 J	0.21 J	0.76

Key:

D = Duplicate sample.

ft = Feet.

J = Estimated value.

U = Non detected.

R = The data are rejected.

mg/L = Milligrams per liter.

 $\mu g/L = Micrograms$ per liter.

Notes: Shaded cells exceed the screening value.

Bolded values represent positive detections.

(1) New York State Department of Environmental Conservation,

Technical and Administrative Guidance Memorandum #4046: Determination of Soil Cleanup Objectives and Cleanup Levels, 1994.

Abandoned Chemical Sales Facility Site

	NYSDEC Class D Surface Water	Sample	014/04	
America		ID:	SW01	SW01-D
Analyte	Criteria ¹	Date:	11/30/01	11/30/01
VOCs by Method OLM04.2 (µg	/L)			
No VOCs were detected in surface v	water samples.			
Semivolatile Organics by Meth	nod OLM04.2 (μg/L)			
No SVOCs were detected in surface	e water samples.			
Glycols by Method NYSDEC A	SP 89-9 (μg/L)			
Glycol	1,000,000 ^{2,3}		310	250
Pesticide/PCB by Method OLM	/04.2 (ug/l.)			
Aldrin	0.001 sum of dieldrin and aldrin		0.022 J	0.050 U
Aroclor 1254	0.000001(sum of PCBs)		1.3	1.0 U
Dieldrin	0.000006		0.015 J	0.0060 U
	0.00002 (standard for chlordane)		0.0090 J	
gamma-Chlordane	0.0002 (standard for chlordane) 0.0003			0.0055 U
Heptachlor epoxide	0.000		0.017 J	0.050 U
TAL Metals by Method ILM04.0			1500	2010
Aluminum	NA		1590	2010
Arsenic	340		2.5 J	2.5 J
Barium	NA		17.6 J	21.6 J
Beryllium	NA		0.78 J	5 U
Calcium	NA		11500	12300
Chromium	362		3.3 J	3.8 J
Cobalt	1102		1.9 J	2.1 J
Copper	8		7.6 J	10.4 J
Iron	300		2450 J	3260 J
Lead	53		6.6	9.1
Magnesium	NA		3740 J	4060 J
Manganese	NA 0.0007		54.1	68.7
Mercury	0.0007		0.10 U	0.12 J
Nickel	293		3.1 J	4.4 J
Potassium	NA		3650 J	3830 J
Silver	2		10 U	0.39 J
Sodium	NA		2630 J	2680 J
Thallium	20		3.1 J	10 U
Vanadium	<u> </u>		3.9 J 54.2	4.7 J 69.2
Zinc			34.2	09.2
Total Cyanide by ILM04.0 (µg/l			101	
Cyanide	22		1.0 J	1.5 J
Total Hardness by Method EP			== 0	
Hardness (As CaCO3)	NA		75.2	57.4

Key:

D = Duplicate sample.

J = Estimated value.

NA = Standard not available.

U = Non detected.

mg/L = Milligrams per liter.

 $\mu g/L = Micrograms$ per liter.

Notes: Shaded cells exceed the screening value.

Bolded values represent positive detections.

⁽¹⁾New York State Department of Environmental Conservation, Technical and Operational Guidance #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998.

(2) Guidance Value.

⁽³⁾ The listed glycol standard is a guidance value for ethylene glycol. The reported glycol result has been quantitated as ethylene glycol but other related glycol compounds also may be presented.

Table 3-3Summary of Positive Analytical Results for Sediment Samples

Abandoned Chemical Sales Fac	NYSDEC			
	Sediment	Sample		
	Screening	ID:	SD01	SD01-D
Analyte	Criteria ¹	Date:	11/14/01	11/14/01
Semivolatile Organics by Method 0	DLM04.2 (µg/K	(a)		
Acenaphthylene	NA	-37	83 J	84 J
Acetophenone	NA		53 J	490 U
Anthracene	5232		100 J	96 J
Benz(a)anthracene	587		600	570
Benzo(a)pyrene	64		730	710
Benzo(b)fluoranthene	NA		850	830
Benzo(g,h,i)perylene	NA		490	530
Benzo(k)fluoranthene	NA		610	540
Bis(2-ethylhexyl)phthalate	9756		470 U	56 J
Carbazole	NA		91 J	85 J
Chrysene	NA		920	860
Dibenz(a,h)anthracene	NA		270 J	290 J
Fluoranthene	49878		940	890
Indeno(1,2,3-cd)pyrene	NA		620	650
Pentachlorophenol	5868		1200 U	200 J
Phenanthrene	5868		330 J	320 J
Pyrene	46993		630	630
Glycols by Method NYSDEC ASP 8	89-9 (µq/Kq)			•
Glycol	NA		370 U	340 U
Pesticide/PCB by Method OLM04.2	2 (µg/Kg)			
4,4´-DDD	0.489		0.59 J	0.83 J
4,4´-DDE	0.489		1.7 J	4.2 U
4,4´-DDT	0.489		1.4 J	1.4 U
Aldrin	4.89		0.45 J	0.51 J
alpha-Chlordane	NA		1.2 J	1.3 J
Dieldrin	4.89		0.24 J	0.88 U
Endosulfan I	1.5		0.38 J	0.89 U
Endrin	39		0.44 J	1.1 J
Endrin aldehyde	NA		0.74 J	1.0 U
Endrin ketone	NA		4.1 J	4.9 J
gamma-Chlordane	NA		0.53 J	0.68 U
Heptachlor epoxide	0.039		1.6 J	3.1 J
Methoxychlor	29		13 J	15 J
TAL Metals by Method ILM04.0 (mg	g/Kg)			
Aluminum	NA		6750	6470
Antimony	2		3.6 J	3.3 J
Arsenic	6		6.7	4.0
Barium	NA		50.7 J	47.3 J
Beryllium	NA		0.44 J	0.39 J
Cadmium	0.6		0.68 J	0.66 J
Calcium	NA		10600	8640
Chromium	26		11.0	10.8

Table 3-3Summary of Positive Analytical Results for Sediment Samples

Analyte	NYSDEC Sediment Screening	Sample ID: Date:	SD01 11/14/01	SD01-D 11/14/01					
	Criteria ¹	Dale.							
Cobalt	NA		4.1 J	3.8 J					
Copper	16		22.6	20.3					
Iron	20000		10800	11100					
Lead	31		43.8	40.8					
Magnesium	NA		4890	3660					
Manganese	460		212 J	182 J					
Nickel	16		7.6 J	7.3 J					
Potassium	NA		344 J	350 J					
Silver	1		0.25 J	0.20 U					
Sodium	NA		103 J	74.5 J					
Vanadium	NA		12.8 J	12.8 J					
Zinc	120		111 J	119 J					
Mercury	0.15		0.18 J	0.12 J					
Total Cyanide by ILM04.0 (mg/	Kg)								
Cyanide	NA		0.17 J	0.22 J					
Total Organic Carbon by Method Lloyd Kahn (mg/Kg)									
Total Organic Carbon	NA		48900	70600					

Key:

D = Duplicate sample.

J = Estimated value.

NA = Standard not available.

U = Non detected.

mg/Kg = Milligrams per kilogram.

 $\mu g/kg = Micrograms$ per kilogram.

Notes: Shaded cells exceed the screening value.

Bolded values represent positive detections.

¹New York State Department of Environmental Conservation, Guidance for Screening Contaminated Sediments, 1999. The criteria for organic compounds are calculated based on the average TOC of 48900 mg/kg. The lowest value from the available criteria was used (lowest effect level for the metals, and the lowest of human health bioaccumulation, wildlife bioaccumulation, benthic life chronic and acute toxicity).

Abandoned Chemical Sales Facility Site

Analyte	NYSDEC TAGM 4046 Soil Cleanup Objectives ¹	Sample ID: Depth (ft): Date:	GP01 3 - 5 11/12/01	GP01-D 3 - 5 11/12/01	GP02 4 - 5 11/12/01	GP03 2.3 - 3.3 11/12/01	GP04 5 - 5.5 11/12/01	GP05 5 - 5.5 11/12/01
VOCs by Method OLM04.2 (µg/Kg)	1							
1,1,1-Trichloroethane	800		15	24	4 J	12 U	65 U	12 U
1,1-Dichloroethane	200		11 U	11 U	8 J	12 U	65 U	59
2-Butanone	300		11 U	11 U	11 U	12 U	65 U	12 U
Acetone	200		11 U	11 U	11 U	12 U	65 U	19
Chloroethane	1900		11 U	11 U	11 U	12 U	65 U	5 J
cis-1,2-Dichloroethene	NA		11 U	2 J	13	12 U	65 U	12 U
Cyclohexane	NA		11 U	11 U	11 U	12 U	50 J	12 U
Ethylbenzene	5500		11 U	11 U	11 U	12 U	120	1 J
Isopropylbenzene	NA		11 U	11 U	11 U	12 U	5100 J	1 J
Methylcyclohexane	NA		11 U	11 U	11 U	12 U	530	12 U
Tetrachloroethene	1400		2 J	3 J	6 J	12 U	7 J	12 U
Toluene	1500		11 U	11 U	1 J	12 U	20 J	4 J
Trichloroethene	700		14	34	9 J	12 U	65 U	12 U
Vinyl chloride	200		11 U	11 U	11 U	12 U	65 U	8 J
Xylenes, Total	1200		11 U	11 U	11 U	12 U	330	12 U

Key:

D = Duplicate sample.

ft = Feet.

J = Estimated value.

U = Non detected.

mg/L = Milligrams per liter.

 $\mu g/L = Micrograms$ per liter.

Notes: Shaded cells exceed the screening value.

Bolded values represent positive detections.

Abandoned Chemical Sales Facility Site

Analyte	NYSDEC TAGM 4046 Soil Cleanup Objectives ¹	Sample ID: Depth (ft): Date:		GP07 4 - 4.7 11/12/01	GP08 4 - 4.9 11/12/01	GP09 3 - 3.4 11/13/01	GP10 2.6 - 2.9 11/13/01
VOCs by Method OLM04.2 (µg/Kg)							
1,1,1-Trichloroethane	800		11 U	11 U	13 U	11 U	13 U
1,1-Dichloroethane	200		11 U	11 U	13 U	11 U	13 U
2-Butanone	300		11 U	11 U	13 U	11 U	19
Acetone	200		11 U	11 U	13 U	25	67
Chloroethane	1900		11 U	11 U	13 U	11 U	13 U
cis-1,2-Dichloroethene	NA		2 J	11 U	13 U	11 U	13 U
Cyclohexane	NA		11 U	11 U	13 U	11 U	13 U
Ethylbenzene	5500		11 U	11 U	13 U	11 U	13 U
Isopropylbenzene	NA		11 U	11 U	13 U	11 U	13 U
Methylcyclohexane	NA		11 U	11 U	13 U	11 U	13 U
Tetrachloroethene	1400		11 U	11 U	24	11 U	13 U
Toluene	1500		11 U	11 U	1 J	11 U	13 U
Trichloroethene	700		200	11 U	13 U	11 U	13 U
Vinyl chloride	200		11 U	11 U	13 U	11 U	13 U
Xylenes, Total	1200		11 U	11 U	13 U	11 U	13 U

Key:

D = Duplicate sample.

ft = Feet.

J = Estimated value.

U = Non detected.

mg/L = Milligrams per liter.

 $\mu g/L = Micrograms$ per liter.

Notes: Shaded cells exceed the screening value.

Bolded values represent positive detections.

Abandoned Chemical Sales Facility Site

Analyte	NYSDEC TAGM 4046 Soil Cleanup Objectives ¹	Sample ID: Depth (ft): Date:	1.3 - 1.7				GP15 5.3 - 6.2 11/13/01	
VOCs by Method OLM04.2 (µg/Kg)								
1,1,1-Trichloroethane	800		11 U	10 U	11 U	12 U	15 U	13 U
1,1-Dichloroethane	200		11 U	10 U	11 U	12 U	15 U	13 U
2-Butanone	300		11 U	10 U	11 U	12 U	15 U	13 U
Acetone	200		11 U	10 U	11 U	12 U	15 U	13 U
Chloroethane	1900		11 U	10 U	11 U	12 U	15 U	13 U
cis-1,2-Dichloroethene	NA		11 U	10 U	11 U	12 U	15 U	13 U
Cyclohexane	NA		11 U	10 U	11 U	12 U	15 U	13 U
Ethylbenzene	5500		11 U	10 U	11 U	12 U	15 U	13 U
Isopropylbenzene	NA		11 U	10 U	11 U	12 U	15 U	13 U
Methylcyclohexane	NA		11 U	10 U	11 U	12 U	15 U	13 U
Tetrachloroethene	1400		11 U	10 U	190	17	15 U	13 U
Toluene	1500		11 U	10 U	11 U	12 U	15 U	13 U
Trichloroethene	700		11 U	10 U	14	2 J	15 U	13 U
Vinyl chloride	200		11 U	10 U	11 U	12 U	15 U	13 U
Xylenes, Total	1200		11 U	10 U	11 U	12 U	15 U	13 U

Key:

D = Duplicate sample.

ft = Feet.

J = Estimated value.

U = Non detected.

mg/L = Milligrams per liter.

 $\mu g/L = Micrograms$ per liter.

Notes: Shaded cells exceed the screening value.

Bolded values represent positive detections.

Abandoned Chemical Sales Facility Site

Analyte	NYSDEC TAGM 4046 Soil Cleanup Objectives ¹	Sample ID: Depth (ft): Date:	6.1 - 7.1	GP17 4.0 - 5.8 11/13/01			
VOCs by Method OLM04.2 (µg/Kg)						
1,1,1-Trichloroethane	800		11 U	11 U	11 U	11 U	11 U
1,1-Dichloroethane	200		11 U	11 U	11 U	11 U	11 U
2-Butanone	300		11 U	11 U	11 U	11 U	11 U
Acetone	200		21	11 U	11 U	11 U	11 U
Chloroethane	1900		11 U	11 U	11 U	11 U	11 U
cis-1,2-Dichloroethene	NA		11 U	11 U	11 U	11 U	11 U
Cyclohexane	NA		11 U	11 U	11 U	11 U	11 U
Ethylbenzene	5500		11 U	11 U	11 U	11 U	11 U
Isopropylbenzene	NA		11 U	11 U	11 U	11 U	11 U
Methylcyclohexane	NA		11 U	11 U	11 U	11 U	11 U
Tetrachloroethene	1400		11 U	5 J	5 J	11 U	11 U
Toluene	1500		11 U	11 U	11 U	11 U	11 U
Trichloroethene	700		11 U	11 U	11 U	11 U	11 U
Vinyl chloride	200		11 U	11 U	11 U	11 U	11 U
Xylenes, Total	1200		11 U	11 U	11 U	11 U	11 U

Key:

D = Duplicate sample.

ft = Feet.

J = Estimated value.

U = Non detected.

mg/L = Milligrams per liter.

 $\mu g/L = Micrograms$ per liter.

Notes: Shaded cells exceed the screening value.

Bolded values represent positive detections.

Abandoned Chemical Sales Facility Site

Analyte	NYSDEC TAGM 4046 Soil Cleanup Objectives ¹	Sample ID: Depth (ft): Date:				GP24 4.9 - 5.4 11/14/01	GP25 2 - 3.3 11/14/01
VOCs by Method OLM04.2 (µg/K	(g)						
1,1,1-Trichloroethane	800		12 U	11 U	12 U	11 U	11 U
1,1-Dichloroethane	200		12 U	11 U	12 U	11 U	11 U
2-Butanone	300		12 U	23	12 U	11 U	11 U
Acetone	200		75	79	12 U	11 U	11 U
Chloroethane	1900		12 U	11 U	12 U	11 U	11 U
cis-1,2-Dichloroethene	NA		12 U	11 U	12 U	11 U	11 U
Cyclohexane	NA		12 U	11 U	12 U	11 U	11 U
Ethylbenzene	5500		12 U	11 U	12 U	11 U	11 U
Isopropylbenzene	NA		12 U	11 U	12 U	11 U	11 U
Methylcyclohexane	NA		12 U	11 U	12 U	11 U	11 U
Tetrachloroethene	1400		12 U	11 U	12 U	11 U	2 J
Toluene	1500		12 U	11 U	12 U	11 U	11 U
Trichloroethene	700		12 U	11 U	12 U	11 U	11 U
Vinyl chloride	200		12 U	11 U	12 U	11 U	11 U
Xylenes, Total	1200		12 U	11 U	12 U	11 U	11 U

Key:

D = Duplicate sample.

ft = Feet.

J = Estimated value.

U = Non detected.

mg/L = Milligrams per liter.

 $\mu g/L = Micrograms$ per liter.

Notes: Shaded cells exceed the screening value.

Bolded values represent positive detections.

Analyte	NYSDEC TAGM 4046 Soil Cleanup Objectives ¹	Sample ID: Depth (ft): Date:	GP01 3 - 5 11/12/01	GP01-D 3 - 5 11/12/01	GP04 5 - 5.5 11/12/01	GP08 4 - 4.9 11/12/01	GP21 2.8 - 3.5 11/12/01	GP22 2.2 - 4.5 11/12/01
Semivolatile Organics by Me	ethod OLM04.2 (µg/Kg)							
2-Methylnaphthalene	36400		360 U	51 J	420 U	410 U	420 U	380 U
Acenaphthene	50000		96 J	180 J	420 U	410 U	420 U	380 U
Acenaphthylene	41000		55 J	39 J	68 J	410 U	420 U	380 U
Acetophenone	NA		47 J	40 J	420 U	410 U	420 U	380 U
Anthracene	50000		260 J	450	420 U	410 U	420 U	380 U
Benz(a)anthracene	224		550	860	75 J	410 U	420 U	45 J
Benzo(a)pyrene	61		580	860	66 J	410 U	420 U	39 J
Benzo(b)fluoranthene	1100		320 J	740	50 J	410 U	420 U	39 J
Benzo(g,h,i)perylene	50000		91 J	260 J	43 J	410 U	420 U	380 U
Benzo(k)fluoranthene	1100		570	660	59 J	410 U	420 U	380 U
Bis(2-ethylhexyl)phthalate	50000		360 U	380	63 J	410 U	230 J	46 J
Carbazole	NA		76 J	140 J	420 U	410 U	420 U	380 U
Chrysene	400		530	870	73 J	410 U	420 U	50 J
Dibenz(a,h)anthracene	14		51 J	140 J	420 U	410 U	420 U	380 U
Dibenzofuran	6200		46 J	120 J	420 U	410 U	420 U	380 U
Fluoranthene	50000		2300	2300	110 J	410 U	420 U	130 J
Fluorene	50000		79 J	190 J	420 U	410 U	420 U	380 U
Indeno(1,2,3-cd)pyrene	3200		140 J	350 J	46 J	410 U	420 U	380 U
Naphthalene	13000		360 U	76 J	420 U	410 U	420 U	380 U
Phenanthrene	50000		900	1600	100 J	410 U	420 U	130 J
Pyrene	50000		770	1000	100 J	410 U	420 U	93 J
Pesticide/PCB by Method OL	_M04.2 (µg/Kg)							
4,4´-DDD	2900		1.0 J	1.1 U	0.38 U	0.46 U	0.51 U	0.32 J
4,4´-DDT	2100		2.6 J	0.82 U	0.46 U	1.1 U	0.58 U	0.57 U
Aldrin	41		0.52 J	0.90 J	0.12 U	2.0 U	0.19 U	0.60 U
alpha-Chlordane	540		0.96 J	0.64 J	2.0 U	0.42 U	2.0 U	0.64 U

	NYSDEC TAGM 4046	Sample ID:	GP01	GP01-D	GP04	GP08	GP21	GP22
	Soil Cleanup	Depth (ft):	3 - 5	3 - 5	5 - 5.5	4 - 4.9	2.8 - 3.5	2.2 - 4.5
Analyte	Objectives ¹	Date:	11/12/01	11/12/01	11/12/01	11/12/01	11/12/01	11/12/01
Endosulfan I	900		1.8 U	0.48 J	2.0 U	0.13 U	2.0 U	1.9 U
Endosulfan II	900		0.54 J	3.3 U	0.21 U	0.25 U	3.8 U	3.6 U
Endosulfan sulfate	1000		0.67 J	1.8 U	3.9 U	3.8 U	3.8 U	3.6 U
Endrin aldehyde	NA		0.50 J	1.7 U	0.22 U	0.23 U	0.26 U	0.22 U
Endrin ketone	NA		2.4 J	7.7	2.6 U	3.8 U	3.8 U	3.6 U
gamma-Chlordane	540		1.3 U	0.32 J	2.0 U	0.37 U	0.23 U	0.12 U
Heptachlor epoxide	20		0.69 U	0.77 J	1.3 U	0.30 J	0.27 J	0.61 J
Methoxychlor	NA		7.4 J	17	1.2 U	20 U	2.4 U	2.8 U
TAL Metals by Method IL	M04.0 (mg/Kg)			-	-	-	-	-
Aluminum	NA NA	I	3800	2340	6090	4610	2660	5680
Antimony	NA		0.95 J	0.62 J	15.7 U	0.70 J	0.74 J	3.5 J
Arsenic	7.5		4.8	3.5	3.4	4.9	9.7	4.2
Barium	300		34.4 J	25.3 J	60.2	55.6	44.4 J	37.8 J
Cadmium	1		0.67 J	0.52 J	0.54 J	0.79 J	0.90 J	0.31 J
Calcium	NA		70800	83200	9120	90000	32500	40100
Chromium	10		8.2	6.7	13.3	11.8	11.7	7.8
Cobalt	30		5.0 J	3.9 J	4.7 J	6.4 J	7.0 J	4.0 J
Copper	25		27.3	25.3	14.7	23.1	9.5	6.8
Iron	2000		12900	10300	14800	17500	23400	10200
Lead	NA		22.3	20.4	8.1	8.7	24.5	12.4
Magnesium	NA		25200 J	31900 J	3310 J	20700 J	18400 J	16600
Manganese	NA		481	378	149	556	253	319 J
Nickel	13		11.8	9.4	11.3	13.5	12.8	5.8 J
Potassium	NA		1300 J	961 J	349 J	1040 J	1480 J	451 J
Silver	NA		0.099 J	2.3 U	2.6 U	2.5 U	2.6 U	0.15 J
Sodium	NA		299 J	381 J	86.3 J	159 J	183 J	151 J
Vanadium	150		12.9	9.0 J	25.3	19.5	16.6	11.1 J
Zinc	20		62.3	48.7	31.3	43.6	36.0	30.8 J
Mercury	0.1		0.22	0.23	0.056 J	0.087 J	0.082 J	0.082 J

Abandoned Chemical Sales Facility Site

Analyte	NYSDEC TAGM 4046 Soil Cleanup Objectives ¹	Sample ID: Depth (ft): Date:	GP01 3 - 5 11/12/01	GP01-D 3 - 5 11/12/01	GP04 5 - 5.5 11/12/01	GP08 4 - 4.9 11/12/01	GP21 2.8 - 3.5 11/12/01	GP22 2.2 - 4.5 11/12/01
Total Cyanide by ILM04.0 (m	ig/Kg)							
Cyanide	NA		0.055 U	0.062 J	0.071 J	0.064 U	0.063 U	0.058 J
D = Duplicate sample. ft = Feet. J = Estimated value. U = Non detected. mg/L = Milligrams per liter. μg/L = Micrograms per liter.								
Notes: Shaded cells exceed the scre Bolded values represent posi (1) New York State Department of E	tive detections.	nical and						

Administrative Guidance Memorandum #4046: Determination of Soil Cleanup Objectives and Cleanup Levels, 1994.

Abandoned Chemical Sales Facility Site

Analyte	NYSDEC TAGM 4046 Soil Cleanup Objectives ¹	Sample ID: Depth (ft): Date:	GP01 3 - 5 11/12/01	GP01-D 3 - 5 11/12/01	GP02 4 - 5 11/12/01	GP05 5 - 5.5 11/12/01	GP06 4.4 - 5 11/12/01	GP09 3 - 3.4 11/13/01		
Glycols by Method NYSDEC ASP 89-9 (μg/Kg)										
Glycol	NA		4700	290 U	270 U	280 U	320 U	280 U		

Key:

D = Duplicate sample.

ft = Feet.

J = Estimated value.

NA = Standard not available.

U = Non detected.

mg/L = Milligrams per liter.

 $\mu g/L = Micrograms$ per liter.

Notes: Shaded cells exceed the screening value.

Bolded values represent positive detections.

Table 3-5Summary of Positive Analytical Results for Groundwater SamplesAbandoned Chemical Sales Facility Site

Sample **MW04** NYSDEC Class GA ID: **MW01 MW01-D MW02 MW03** Analyte 11/30/01 11/30/01 11/30/01 11/29/01 Groundwater Criteria¹ Date: 11/29/01 VOCs by Method OLM04.2 (µg/L) 1,1,1-Trichloroethane 5 720 1000 J 11 1900 J 10 U 500 U 5 J 10 U 2000 U 10 U 1.1.2-Trichloroethane 1 5 1.1-Dichloroethane 3300 2700 J 630 J 22000 10 U 1.1-Dichloroethene 5 500 U 94 10 U 290 J 10 U 3 J 10 U 1,2-Dichlorobenzene 3 500 U 2000 U 10 U 1,2-Dichloroethane 0.6 500 U **8 J** 10 U 2000 U 10 U 50 g 10 U 500 U 380 J 250 J 2000 U 2-Butanone NA 4-Methyl-2-pentanone 100 J 120 81 2000 U 10 U 50 g Acetone 1100 1100 J 620 J 2600 10 U 2000 U 10 U Benzene 1 500 U 12 4 J 720 J Chloroethane 5 570 100 2000 U 10 U 7 2000 U 10 U Chloroform 500 U 1 J 10 U cis-1.2-Dichloroethene 5 18000 7700 J 900 J 68000 J 10 U Cyclohexane NA 2000 U 10 U 10 3 J 500 U Ethylbenzene 5 420 J 250 J 2000 U 10 U 360 J Isopropylbenzene NA 35 2000 U 500 U 110 10 U NA 10 U Methyl acetate 500 U 160 10 U 2000 U Methylcyclohexane NA 500 U 11 3 J 2000 U 10 U 40 2 J 2000 U 10 U Methylene chloride 5 500 U 5 14 630 J 2000 U 10 U Tetrachloroethene 500 U 5 **3000 J** 750 J 10 U Toluene 7300 11000 trans-1,2-Dichloroethene 5 33 500 U 42 2000 U 10 U Trichloroethene 5 370 J 460 J 210 J 2000 U 10 U Vinyl chloride 2 10 U 1900 2400 J 490 J 23000 Xylenes, Total 770 J 10 U 5 1900 1500 J 300 J Semivolatile Organics by Method OLM04.2 (µg/L) 1,1'-Biphenyl 36 34 4 J NA 10 U 10 U 10 U 2,4-Dimethylphenol 10 U 10 U 6 J 10 U 1 s

Table 3-5Summary of Positive Analytical Results for Groundwater SamplesAbandoned Chemical Sales Facility Site

Sample **MW04** NYSDEC Class GA ID: **MW01 MW01-D MW02 MW03** Analyte 11/30/01 11/30/01 11/30/01 11/29/01 11/29/01 Groundwater Criteria¹ Date: 2-Methylphenol 10 U 10 U 10 U 14 10 U 1 s 4-Methylphenol **310 J** 46 10 U 350 J 100 J 1 s Benzaldehyde NA 10 U 10 U 10 U **3 J** 10 U Bis(2-ethylhexyl)phthalate 10 U 5 10 U 10 U 10 U 7 J Naphthalene 10 g 4 J 3 J 10 U 10 U 10 U 10 U 10 U 10 U 13 Phenol 1 s 10 U Glycols by Method NYSDEC ASP 89-9 (µg/L) 50^{2} Glycol 890 980 600 610 400 Pesticide/PCB by Method OLM04.2 (µg/L) Aldrin ND 0.0015 U 0.050 U 0.050 U 0.050 U 0.0029 J alpha-BHC 0.01 0.050 U 0.050 U 0.050 U 0.033 J 0.0026 U Aroclor 1254 0.09 s 1.0 U 1.0 U 1.0 U 1.0 U **0.41 J** gamma-BHC 0.05 0.0034 U 0.050 U 0.0033 J 0.050 U 0.050 U gamma-Chlordane 0.05 (standard for chlordane) 0.050 U 0.050 U 0.050 U 0.0068 J 0.0029 U TAL Metals by Method ILM04.0 (µg/L) Aluminum NA 50.0 J 50.5 J 74.8 J 354 64.1 J 5.3 J Antimony 3 60 U 60 U 60 U 60 U 25 10.2 9.9 J 2.9 J 14.6 4.8 J Arsenic 1000 81.9 J 78.8 J 94.1 J 339 153 J Barium 5 0.87 J 0.88 J 5 U 1.2 J 5 U Cadmium Calcium NA 237000 228000 210000 265000 141000 50 0.74 J 1.5 J 10 U Chromium 1.1 J 1.4 J Cobalt NA 1.2 J 1.2 J 0.72 J 1.4 J 1.8 J 200 1.8 J 7.3 J 0.84 J 2.0 J 1.2 J Copper 300 25300 J 4250 J 3820 J 3220 J 24300 J Iron Lead 25 3 U 2.2 J 3 U 3 U 3 U 35,000 g 56400 54200 42600 77100 53000 Magnesium

Table 3-5 Summary of Positive Analytical Results for Groundwater Samples

Abandoned Chemical Sales Facility Site

	NYSDEC Class GA	Sample ID:	MW01	MW01-D	MW02	MW03	MW04
Analyte	Groundwater Criteria ¹	Date:	11/30/01	11/30/01	11/30/01	11/29/01	11/29/01
Manganese	300		1080	1040	545	222	374
Nickel	100		11.1 J	10.9 J	5.6 J	18.2 J	2.4 J
Potassium	NA		1370 J	1320 J	1690 J	4290 J	2480 J
Sodium	20000		46600	44900	30700	58900	36500
Thallium	0.5		10 U	2.9 J	2.7 J	5.9 J	3.3 J
Vanadium	NA		3.7 J	3.8 J	2.2 J	2.1 J	50 U
Zinc	2,000 g		4.7 J	23.6	27.5	23.7	3.5 J
Total Cyanide by ILM04.0 (µg/L)							
Cyanide	200		1.2 J	1.1 J	1.4 J	1.2 J	1.4 J

Key:

D = Duplicate sample.

J = Estimated value.

NA = Standard not available.

s = Standard applies to sum of related compounds (i.e. total aroclors or phenols).

U = Non detected.

mg/L = Milligrams per liter.

 $\mu g/L = Micrograms$ per liter.

Notes: Shaded cells exceed the screening value.

Bolded values represent positive detections.

⁽¹⁾New York State Department of Environmental Conservation, Technical and Operational Guidance #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, 1998.

⁽²⁾The listed glycol standard is a guidance value for ethylene glycol. The reported glycol result has been quantitated as ethylene glycol but other related glycol compounds also may be presented.

4

Investigation Findings

Contamination is present at the ACSF site in all matrices tested, including: surface soil, surface water, sediment, subsurface soil, and groundwater. The highest concentrations of contaminants were detected in the shallow-bedrock groundwater. Due to the presence and concentrations of contaminants present in several matrices, the environment has been impacted and potential threats to human health may exist.

There was no significant VOC contamination of the surface soil samples. However, the presence of PCE in surface soil from the central portion of the site (1600 Jay Street) indicates that a chlorinated solvent spill occurred in that area and that all of the material has not had the time to volatilize or degrade from the surface. SVOCs (especially PAHs) and pesticides were detected throughout the site in the surface soil, and were highest in the west central portion of the site. Some metals were also detected above screening criteria in surface soil throughout the site. However, the background concentrations of SVOCs, pesticides, and metals were generally higher than those detected on site, suggesting that this contamination is not directly site related, but present throughout the area due to its industrial nature.

One surface water and one sediment sample were taken from a ditch on the northwest border of the site. The surface water sample contained one PCB, four pesticides, and three metals above their respective NYSDEC standards. The sediment sample had two SVOCs, four pesticides, and six metals above their criteria. The ditch that was sampled is adjacent to a railroad ROW and similar levels of these contaminants were also detected in background surface soil samples, suggesting that the presence of these contaminants is not directly site related. However, glycols were also present in the surface water and there is historical evidence to suggest that the presence of these compounds is site related.

Fifteen VOCs were detected in the subsurface soil samples with none exceeding the applied screening criteria. In general, compounds detected in the highest concentrations consisted of chlorinated ethenes, aromatic hydrocarbons, and acetone. The highest concentration of total VOCs (approximately 6,200 μ g/kg) was detected at GP04 in the west-central portion of the site. The presence of PCE and TCE in subsurface soil in the same area that PCE was detected in surface soil samples suggests that the open area in the central portion of the site was the loca-

4. Investigation Findings

tion of a spill or spills. VOCs detected in subsurface soil in other portions of the site, especially near the former AST at the southwest corner of the Ferrauilo Plumbing building, may also represent spills or may be residual from fluctuating groundwater levels where groundwater is contaminated with these compounds. Similar to the surface soil samples, the SVOCs that exceeded cleanup objectives most frequently in the subsurface soil were PAHs. The highest concentration of SVOCs in the subsurface soil (11,300 μ g/kg) was found at GP01, near the former location of the AST, south of the Ferrauilo Plumbing building. Each pesticides detected in subsurface soil was found at GP01, below the screening criteria. The only glycols found in subsurface soil were also found at GP01. Seven metals were found above their standards in subsurface soils throughout the site. The types of SVOCs and pesticides detected in the subsurface soil samples were generally similar to those detected in surface soil samples and concentrations were lower in subsurface soils compared to surface soil, including background samples.

No groundwater was encountered in the overburden. Shallow bedrock groundwater flow on-site is toward the south, apparently toward a Jay Street combined sanitary/storm sewer drain. Twenty-five VOCs were detected in shallow bedrock groundwater samples, with 18 of these detected above standards in at least one well. The majority of the compounds detected were chlorinated ethenes and ethanes, as well as BTEX and related compounds. No VOCs were detected in upgradient well MW-4 near Monroe Extinguisher Company. In the remaining three wells, seven VOCs were detected above their standards in all three wells: cis-1,2-DCE (which was the VOC with the highest level in each well), 1,1,1-TCA, 1,1-DCA, acetone, toluene, vinyl chloride, and total xylenes.

Monitoring well MW-3, which is just east of the MA Ferrauilo Plumbing building and adjacent to the residential property at 1558 Jay Street, had the highest total VOC concentration of all four wells sampled (approximately 129,000 μ g/L). The well with the next highest VOC concentration was MW-1, which is on the west-central portion of the 1600 Jay Street property. This well contained over 37,600 μ g/L of total VOCs. Monitoring well MW-2, located in the east central portion of the 1600 Jay Street property, contained approximately 5,770 μ g/L of total VOCs.

At all three wells in which VOCs were detected in the groundwater, it appears that the anaerobic degradation of chlorinated ethenes occurs. The general process of reductive dechlorination of ethenes is for PCE to break down into TCE, then cis-1,2-DCE, and finally vinyl chloride. Eventually vinyl chloride will degrade into ethene or carbon dioxide. At the ACSF site, PCE is only present in significant quantities at MW-2. TCE levels are relatively low in general. In each well with positive detections, cis-1,2-DCE is the VOC present at the highest concentration. Significant levels of vinyl chloride are also present, especially in MW-3 where the vinyl chloride concentration was 23,000 μ g/L. Thus, it appears that the source of PCE and/or TCE is not recent and that reductive dechlorination has progressed to the stage where PCE and TCE have been largely degraded into its daughter products.

Groundwater VOC contaminants are consistent with those found just across the railroad tracks to the west and northwest at Valeo Electrical Systems, Inc., where groundwater flow near the Abandoned Chemical Sales Facility site is reportedly toward the south and then to the east along the Jay Street sewer line.

In addition to the VOCs discussed above, six SVOCs, one PCB, two pesticides, and six metals were detected above their standards in the groundwater samples.

The main area of contamination appears to be on the 1600 Jay Street property, with lesser amounts of contamination found on the 105 and 107 Dodge Street properties. Soil and water contamination were found throughout the gravel and grassed area on the northern side of the Jay Street property, as well as near the southern end of the building. However, as previously discussed, the presence of SVOCs, pesticides, and metals in background samples at similar or higher concentrations than on site suggests that many of these compounds are not site related. The lack of VOCs in upgradient groundwater and the presence of these compounds at significant concentrations downgradient suggest that the 1600 Jay Street property is a source of this contamination. In addition, the presence of glycols in several media and its known historical use at the site suggests that 1600 Jay Street is also a source of glycol contamination.

Environmental impacts associated with impairment of soil and water exist due to the concentrations of various contaminants detected in these media. Potential threats to human health exist including direct contact with surface soils, sediment, and surface water by site workers and local residents (site is not entirely fenced and no other institutional controls have been implemented). Although groundwater is not used as a potable source, off-gassing of volatile compounds from the groundwater in enclosed spaces (such as residential basements) is a concern. In addition, contaminated groundwater is flowing off site, likely through the bedding material surrounding a combined sanitary/storm sewer drain set in the top of rock along Jay and Dodge Streets. Flow in the Dodge Street sewer line adjacent to the site flows south, connecting to the Jay Street line. The Jay Street line flows to the east. Therefore, if contaminants are migrating along these lines, they would ultimately be flowing to the east as they leave the site area.

References

- City of Rochester, October 3, 1980, Tax Map 105.69 for the City of Rochester, Monroe County, New York.
- City of Rochester, October 3, 1980, Tax Map 105.77 for the City of Rochester, Monroe County, New York.
- City of Rochester Department of Public Works, Division of Engineering, 1966, Revised 1971, *Sewer Design Section 92*, Rochester, New York
- Ecology and Environment, Inc., 2001a, Work Plan for Preliminary Site Assessment at the Abandoned Chemical Sales Facility Site, Rochester, New York, Lancaster, New York.

_____, 2001b, Quality Assurance Project Plan (QAPP) for New York State Department of Environmental Conservation Superfund Projects, Lancaster, New York.

Ferrauilo, Sr., Michael, 2001, Personal Conservation with Stephanie Reynolds Smith of Ecology and Environment Engineering, P.C., November 12, 2001.

Haley & Aldrich of New York (H & A), 2000a, Supplement to the *Baseline Study Report, Former GM - Delco Chassis Facility, Rochester, New York*, prepared for General Motors Corporation, Detroit, Michigan.

_____, 2000b, *RI/FS Work Plan Valeo Former GM - Delco Chassis Facility Site, Rochester, New York*, prepared for General Motors Corporation, Detroit, Michigan.

_____, 1996, Baseline Study Report, Former Delco Chassis Facility, Rochester, New York, prepared for General Motors Corporation, Detroit, Michigan. New York State Department of Environmental Conservation Division of Environmental Remediation, 2000, *Record of Decision, Chemical Sales Site, Operable Unit No. 1 (On-Site), Town of Gates, Monroe County, Site Number 8-28-086.*

_____, undated, *Draft Preliminary Site Assessment (PSA) Guidance*, issued by Division of Environmental Remediation Eastern Investigation Section.

_____, 1999, Guidance for Screening Contaminated Sediments.

______, 1998, Division of Water Technical and Operational Guidance Series (1.1.1): *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations*, Division of Water, Albany, New York.

_____, 1994, Technical and Administrative Guidance Memorandum (TAGM) No. 4046, Determination of Soil Cleanup Objectives and Soil Cleanup Levels, prepared by M.J. O'Toole, Jr. Division of Hazardous Waste Remediation, NYSDEC, Albany, New York.

- D.J. Parone & Associates, June 24, 1994a, Letter to Mr. Robert Patterson (President of Chemreal Corporation).
- D.J. Parone & Associates, September 6, 1994b, Letter to Mr. Robert Patterson (President of Chemreal Corporation).
- URS Greiner Consultants, Inc. (URS), 2000, *Remedial Investigation Data Summary Report, Chem Sales Site, Town of Gates*, Prepared for the NYSDEC Division of Environmental Remediation.
- United States Geological Survey (USGS), 1971 (with 1978 photorevision), 7.5 Minute Topographic Map, Rochester West, New York Quadrangle.

A Forms: PSA Site Inspection Information and EPA Site Inspection Questionnaire

SITE INVESTIGATION INFORMATION

1. SITE NAME	2. SITE NUMBER	3.	TOWN/CITY/VILLAGE	4. COUN	ITY	
Abandoned Chemical Sales Facility	8-28-105	R	lochester, NY	Monro	be	
5. REGION 6. CLASSIFICATION						
8		PROPO	SED [] MODIFICA			
7. LOCATION OF SITE (Attach U.S.G.S. Topographic Map a. Quadrangle Rochester West		ido 1	20.00'25" N. Sita I	ongitude 77° 39' 50"W	1	
5				8		
c. Tax Map Number(s) 105.69-1-8 (107 D				105.77-1-1 (1600 Ja	y Street)	
d. Site Street Address: 1600 Jay Street; 10 8. BRIEFLY DESCRIBE THE SITE (Attach site map showin	o Douge Street, T	UT DUC	ige Street			
The ACSF site consists of an "L"-shaped, r			nsisting of two land p	arcels in Rochester N	JY · 1600	
Jay Street and 105 Dodge Street. It is bord						
the south by Jay Street, on the west by a ra						
Corporation and/or Chemreal Corporation of						
1952 until 1972. Reported site activities inc						
exits on each site with MA Ferrauilo Plumbi						
See Figure 2-1 of the PSA report.	0 17 0			Ū	0	
a. Area: Approx. 5.4 acres b. Comple	ted: () Env. Prop	erty As	ssessment (X) PSA	() SI () ESI () IRM	()RI/FS	
() Construction () O&M ()Other						
9. HAZARDOUS WASTE DISPOSED (Include EPA Hazardo	ous Waste Numbers)					
Unknown.						
10. ANALYTICAL DATA AVAILABLE						
a. ()Air (x)Groundwater (x)Surface Wate		(x)So	oil ()Waste ()L	eachate ()EPTox	()TCLP	
b. Contravention of Standards or Guidance		f	a aailu DALla in ayda	unfono onllumontinidon	in ourfood	
Polynuclear aromatic hydrocarbons (PAHs)						
water; PAHs and pesticides in sediment; vo	name organic con	ipouna	is (voos), prienoi, p	esticide, PCD, metals	In	
groundwater.	DCA report for d	staila				
See Section 3, Table 3-1 through 3-5 of the	PSA report for de	etalis.				
Contamination is present at the ACSF Site	in all matrices tes	ted ind	cluding: surface soil	surface water sedim	ent	
subsurface soil, and groundwater. The high					iont,	
groundwater. Total VOCs in groundwater r					s detected	
in groundwater include chlorinated alkanes						
associated with impairment of soil and wate						
surface soils, sediment, and surface water						
groundwater is not used as a potable source						
spaces (such as residential basements) is						
a sewer drain along Jay Street. The destin				9	-, -, -,	
a. Institutional Controls (IC) Required?						
c. Are these ICs in place and verified?						
12. SITE IMPACT DATA	() ()					
a. Nearest Surface Water: Distance 2640 ft	<u></u> Direction: <u>W</u>	est	Class: <u>C</u>	-		
b. Groundwater: Depth: <u>5 – 10 ft. below</u>	Flow Direction	n: <u>Sou</u>		urce ()Primary		
ground surface				gh-Yield Aquifer		
c. Water Supply: Distance: 7.5 mi.	Direction: N	orth	Active: (Yes (x)No		
d. Nearest Building: Distance: 0 ft.	Direction:		Use:			
e. Documented fish or wildlife mortality?	()Y	(X)N	h. Exposed hazard	ous ()Y	(X)N	
			waste?			
f. Impact on special status fish or wildlife	()Y	(X)N	i. If proposed Clas			
resource?			is 2, Priority?	()3		
g. Controlled Site Access?	()Y	(X)N	j. EPA ID#	HRS		
				Score		
13. SITE OWNER'S NAME	14. ADDRESS			15. TELEPHONE NUMBER		
1600 Jay Street: Ferrauilo: Michael A,		Jay St	reet, Rochester,	Ferrauilo: 585-328-8		
Joe, and Kim NY 14611				Curtin: 585-235-331	0	
			0980 Rochester, NY 14606			
16. PREPARER Ecology and Environment Engineering PC		17. APP	KUVED			
Ecology and Environment Engineering, P.C Signature Date		Signatur	'e	Date		
3/15		Signatur	~	Date		
Name, Title, Organization		Name, T	itle, Organization			

SITE SUMMARY

Provide a brief description of the site and its operational history. State the site name, owner, operator, type of facility and operations, size of property, active or inactive status, and years of waste generation. Summarize waste treatment, storage, or disposal activities that have or may have occurred at the site; note whether these activities are documented or alleged. Identify all source types and prior spills, floods, or fires. Summarize highlights of the PA and other investigations if available. Follow the outline on the next page:

SITE CONDITIONS AND BACKGROUND

PHYSICAL LOCATION (Address, Lat-Long, Map Ref.)
 1600 Jay Street, Rochester, NY 14611
 105 Dodge Street, Rochester, NY 14606

Site Latitude 43° 09' 45"N Site Longitude 77° 39' 20"W

See Figures 1-1 and 1-2 in Ref. 1 for site maps

2. SITE CHARACTERISTICS (include a description of the buildings or structures on site and their physical condition). The Abandoned Chemical Sales Facility (ACSF) site consists of two land parcels: 1600 Jay Street, and 105 Dodge Street. A small ditch is found on the western side of the site extending behind the 105 and 107 Dodge Street properties. There are no true surface water bodies on the site and the nearest surface water is the Erie Canal, located approximately 0.5 miles to the west.

MA Ferrauilo Plumbing currently occupies 1600 Jay Street, which straddles the corner of Jay and Dodge Streets in Rochester, New York. A building is found on the southwestern side of the site with gravel and grassed areas to the north. The building was constructed in the 1950s. A concrete pad for a removed (in 1994) above ground storage tank is located just south of the building.

The Monroe Extinguisher Company property, located at 105 Dodge Street, is north of 1600 Jay Street. A parking lot occupies the southern half of the parcel, with the Monroe Extinguisher Company building on the northern side. This building was constructed in the 1970s. Ref. No. 2

3. RELEASE OR THREATENED RELEASE INTO THE ENVIRONMENT OF A HAZARDOUS SUBSTANCE, OR POLLUTANT OR CONTAMINANT (be certain to indicate whether this is a release from a facility as defined in 40 CFR 300.5)

Based on analytical results, it appears that a release of contaminants occurred at this site. Ref. No. 1

4. SITE ASSESSMENT ACTIVITIES / OBSERVATIONS

This site was investigated in November 2001 as part of a New York State Department of Environmental Conservation Preliminary Site Assessment. Sampling performed includes subsurface soil, surface soil, surface water, sediment, and groundwater. Groundwater samples were collected from four shallow bedrock wells installed during the investigation. All samples were analyzed for TCL volatile organic compounds and selected samples were analyzed for TCL semivolatile organic compounds, TCL pesticides, TCL polychlorinated biphenols (PCBs), TAL metals, cyanide, and glycols.

No signs of visual contamination were noted during the investigation. Several of the subsurface soil samples were collected from intervals in which elevated (> 5 ppm) flame-ionization detector (FID) readings were observed. Ref. No. 1

5. CERCLA STATUS None.

6. OTHER ACTIONS TO DATE (e.g., Federal removal, Federal remedial or preremedial actions, State actions, other legal violations) A Phase I Environmental Site Assessment, dated May 4, 1994, was conducted by D.J. Parrone & Associates, P.C. of Penfield, NY at the time that 1600 Jay Street passed from Chemreal Corporation to the current owner. It concluded site was not contaminated with hazardous substances or petroleum products that would require remediation or removal. Ref No. 3 7. STATE AND LOCAL AUTHORITIES ROLE (Intervention) The NYSDEC is overseeing the preliminary site assessment. The NYSDOH will review all documents. Ref No. 1 POSSIBLE THREAT TO PUBLIC HEALTH OR WELFARE OR THE ENVIRONMENT, AND STATUTORY AND REGULATORY AUTHORITIES (permits - local, state, and federal) 1. POSSIBLE THREATS TO THE PUBLIC HEALTH AND WELFARE There are possible threats to public health and welfare if the public comes in direct contact with contaminated soils and surface water on-site. However, the site is private property and not subject to public usage. Off-gassing of volatile organic compounds from groundwater into residential basements is a concern; however, the threat from direct usage of groundwater is limited because groundwater is not known to be used as a potable source in the area. Refs. 1, 4-6 2. POSSIBLE THREATS TO THE ENVIRONMENT There are no new threats to the environment. Existing threats are from contaminants in soils, sediment, surface water, and groundwater. Ref. No. 1 EXPECTED CHANGE IN THE ENVIRONMENTAL CONDITIONS SHOULD ACTION BE DELAYED OR NOT TAKEN AS CONSISTENT WITH REPORT INFORMATION AND RECOMMENDATION None. If existing contamination is a result of Chemical Sales/Chemreal activities, contamination has already existed for several years. Therefore, no significant changes are expected as a result of delay or no action at the site. Ref. No. 1 ENFORCEMENT HISTORY OF THE SITE 1. Is there an organization taking appropriate, timely action? The New York State Department of Environmental Conservation is overseeing the Preliminary Site Assessment. Ref. No. 1 CONCLUSIONS * Contamination is present at the ACSF Site in all matrices tested, including: surface soil, surface water, sediment, subsurface soil, and groundwater. The highest levels of contaminants were detected in the shallow-bedrock groundwater. Total VOCs in groundwater near the 1600 Jay Street building ranged up to 129,000 μ g/L. VOCs detected in groundwater include chlorinated alkanes and alkenes, aromatic hydrocarbons, and ketones. Environmental impacts associated with impairment of soil and water exist. Potential human health impacts exist including direct contact with surface soils, sediment, and surface water by site workers and local residents (site is not entirely fenced). Although groundwater is not used as a potable source, off-gassing of volatile compounds from the groundwater in enclosed spaces (such as residential basements) is a concern. In addition, contaminated groundwater is flowing off site, likely via a sewer drain along Jay Street. The destination of this off-site migration is unknown. 02:000699 NY08 03 01-B0900

ACSF EPA form.doc-03/29/02

RECOMMENDATIONS * Based on contaminants observed during this site assessment, further investigation is warranted at this site.

1= Short term or emergency action
2= Long term cleanup action
*= Confidential

CITE REFERENCES

1. Ecology & Environment, Inc., 2002, Preliminary Site Assessment Report for the Abandoned Chemical Sales Facility in Rochester, New York.

2. Ecology & Environment, Inc., 5 April 2001, Site visit observations.

3. Harter, Secrest & Emery, 25 May 1994, letter to Michael A. Ferrauilo, Re: Environmental Site Assessment of Chemreal Site.

4. Marling, Greg, City of Rochester Water Works, Engineer,31 January 2002, Personal conversation with Stephanie Reynolds Smith of Ecology & Environment, Inc.

5. Monroe County Water Authority web site, 30 January 2002, http://www.mcwa.com/srvceara.htm

6. Pienting, Susan, Monroe County Department of Health, 31 January 2002, Personal conversation with Stephanie Reynolds Smith of Ecology & Environment, Inc.

SITE SKETCH

Provide a sketch of the site with available information. Indicate all pertinent features of the site and nearby environments including: delineation of site boundary, land cover/trees and other vegetation, utilities (water, electrical, gas, sewage, storm drains), sources of wastes, areas of visible and buried wastes, buildings, residences, access roads, parking areas, fences or other barriers restricting access to the site, fields, drainage channel or pathways, water bodies, wells, sensitive environments and other features such as hills and valleys. Be certain to indicate a north arrow.

See Figures 1-1, 1-2, and 2-1 in Ref. No. 1

1. Site Name/Alias: Abandoned Chemical Sales Facility (ACSF) Street Address: 1. 1600 Jay Street 2. 105 Dodge Street City: Rochester State: NY Zip Code: 1. 14611 2. 14606 Describe Site Boundaries (North, South, East, West): North: property line of 107 Dodge St and 105 Dodge St. Buell Specialty Steels to the north at 107 Dodge St. South: Jay Street. On the southeast corner of the site there are three residential properties. Additional residences across Jay Street. East: Dodge Street with residences across the street. West: Railroad right-of-way and industrial facilities. Cong. Dist.: 28th 2. County: Monroe County Code* Federal information processing standard (FIPS) code: 36055 3.CERCLIS ID No. Region 4. Block No.: Section 29 105.69-Lot No.: 1-1 and 1-7 5. Latitude: 43°09'35"N Longitude: 77°39'50"W USGS Quads.: Rochester West 6. Approximate size of site: 5.4 acres 7. Owners: Telephone Numbers: 1. 1600 Jay Street: Micheal A, Joe, & Kim 1. 585-328-8910 Ferrauilo 2. 105 Dodge Street: Thomas Curtin 2. 585-235-3310 1. 1600 Jay Street Street: 2. P.O. Box 60980 City: Rochester State: New York Zip Code 1. 14611 2. 14606 8. Operators: Telephone Number 1. 585-328-8910 1. 1600 Jay Street: Micheal A, Joe, & Kim Ferrauilo 2. 105 Dodge Street: Thomas Curtin 2. 585-235-3310 1. 1600 Jay Street Street: 2. P.O. Box 60980 City: Rochester State: New York Zip Code 1. 14611 2. 14606 9. Type of Ownership Federal() State() County() Municipal () Private(x) Unknown() Other() 10. Owner/Operator Notification on File

RCRA 3001 Date	CERCLA 103 Date	3c	
Other (Specify, Date)	None	Unknown	
11. Permit Information			
Permit	Permit No.	Date Issued	Expiration Date
Comments:			
12. Site Status Active()	Inactive(x)	Unknown

 13. Years of Operation:
 1952 to 1994
 (1600 Jay Street)

 1952 to 1972
 (105 Dodge Street)

Years of operation based on dates property was owned by Chemical Sales Corporation or Chemreal Corporation, as given by property deeds. Ref. Nos. 2-5 /Pg. Nos. for all refs. 1-2

- 14. Identify the types of waste sources (e.g., landfill, surface impoundment, piles, stained soil, above- or below-ground tanks or containers, land treatment, etc.) on site. Initiate as many waste unit numbers as needed to identify all waste sources on site.
 - (a) Waste Sources: All possible waste sources not known at this time.

Waste Unit No.	Waste Source Type	Facility Name for Unit
1.	Above-ground tanks	ASTs
2.	Possible dumping	

(b) Other Areas of Concern: All possible areas of concern not known at this time.

Identify any miscellaneous spills, dumping, etc. on site; describe the materials and identify their locations on site.

Only known reported spill was on May 24, 1994. The spill was reported (by an anonymous caller) to occur as trucks were pumping out 3,000 to 4,000 gallon aboveground storage tanks located just south of 1600 Jay Street building. When a NYSDEC representative visited the site on June 15, 1994, there was no evidence of a spill (NYSDEC 1994). Ref. Nos. 6 /Pg. Nos. 1

15. Describe the regulatory history of the site, including the scope and objectives of any previous response actions, investigations and litigation by State, Local and Federal agencies (indicate type, affiliation, date of investigations).

Only known response action at 1600 Jay Street was a NYSDEC visit to the site after a reported spill on May 24, 1994. The spill was reported to occur as trucks were pumping out 3,000 to 4,000 gallon aboveground storage tanks

located on the south side of building. When a NYSDEC representative visited the site on June 15, 1994, there was no evidence of a spill. Ref. Nos. 6 /Pg. Nos. 1

A Phase I Environmental Site Assessment, dated May 4, 1994, was conducted by D.J. Parrone & Associates, P.C. of Penfield, NY at the time that 1600 Jay Street passed from Chemreal Corporation to the current owner. The assessment reportedly concluded that the site was not contaminated with hazardous substances or petroleum products that would require remediation or removal. Ref. Nos. 7 /Pg. Nos. 1

a) Is the site or any waste source subject to Petroleum Exclusion?
 Identify petroleum products and by products that justify this decision.
 No.

Ref. Nos./Pg. Nos.

b) Are pesticides produced and stored on site? No. Does the facility apply pesticides (FIFRA or Federal Insecticide, Fungicide, and Rodenticide Act) to any part of the property?
 Unlikely.
 Ref. Nos./Pg. Nos.

c) Is the site or any waste source subject to RCRA Subtitle C (briefly explain)? No.

Ref. Nos. /Pg. Nos.

d) Is the site or any waste source maintained under the authority of the Nuclear Regulatory Commission (NRC)?No.Ref. Nos. Pg. Nos.

16. Information available from:

Contact: Joseph White Agency: NYSDEC Telephone Number: (518) 402-9564

Preparer: Ecology and Environment Agency/Company: Same Engineering, P.C.

Date: January 29, 2002

Telephone Number: 716-684-8060

PART II: WASTE SOURCE INFORMATION

For each of the waste units (sources) identified in Part I, complete the following items.

Waste Unit (#) 1 - Above-ground tanks (removed from site in 1994)

Source Type

- ___ Constituent ___ Wastestream
- ___ Landfill ___ Contaminated Soil
- ____ Surface Impoundment ___ Pile(Specify type: chemical, junk, (buried/backfilled) trash, tailings, etc.)
- __ Drums __ Land Treatment
- _x_ Tanks/Containers ___ Other (Specify)

Description:

 Describe the types of containers, impoundments or other storage systems (i.e. concrete lined surface impoundment) and any labels that may be present.

The above ground storage tanks (ASTs) are not currently present on site. They were reportedly removed in 1994. One AST was on the south side of the building at 1600 Jay Street. This tank was reported to be 3,000 to 4,000 gallons. Three additional ASTs were located closer to Dodge Street on the 1600 Jay Street property. Ref. Nos. 6 & 8 /Pg Nos. 1

2. Describe the physical condition of the containers or storage systems (i.e. rusted and/or bulging metal drums).

Condition at time of removal unknown. An inspector from the City Of Rochester Fire Department observed the removal of the tanks and observed no spills or soil contamination. Ref. Nos. 9 /Pg Nos. 1

3. Describe any secondary containment that may be present (e.g. drums on concrete pad in building or above ground tank surrounded by berm).

The AST near the 1600 Jay Street building was reported to be within concrete secondary confinement. Ref. Nos. 8 /Pg Nos. 1

The ASTs closer to Dodge Street on the 1600 Jay Street property were reported to be within secondary earthen berm containment. Ref. Nos. 8 /Pg Nos. 1

Hazardous Waste Quantity - for each source, evaluate waste quantity by as many tiers (a-d) as you have information to support. Unknown. Hazardous Substances/Physical State See Section 3 of Ref. 1 for all known contaminants at the site./Physical State unknown.

Waste Unit (#) 2 - Possible dumping

Source Type

- ___ Constituent ___ Wastestream
- ___ Landfill ___ Contaminated Soil
- __ Drums __ Land Treatment
- ____ Tanks/Containers _____ Other (Specify) (unknown)

Description:

 Describe the types of containers, impoundments or other storage systems (i.e. concrete lined surface impoundment) and any labels that may be present.

Not applicable.

- Describe the physical condition of the containers or storage systems (i.e. rusted and/or bulging metal drums).
 Not applicable.
- Describe any secondary containment that may be present (e.g. drums on concrete pad in building or above ground tank surrounded by berm).
 Not applicable.
 Ref. Nos./Pg Nos.
- Hazardous Waste Quantity for each source, evaluate waste quantity by as many tiers (a-d) as you have information to support. Unknown.

Hazardous Substances/Physical State See Section 3 of Ref. 1 for all known contaminants at the site./Physical State unknown

PART III: SAMPLING RESULTS

EXISTING ANALYTICAL DATA

Review and summarize any previously existing groundwater, soil, sediment, surface water, air, or waste sample analyses. Discuss the precision, accuracy, representativeness and completeness of previous sampling efforts. Describe the concentrations of chemicals of concern based on available data and media impacted. These parameters should be evaluated by examining the results of routine quality control procedures. Any suspected problems with this data should be identified. This is especially if the data cannot be used for HRS purposes. Any problems should receive the immediate attention of the work assignment manager. Identify data gaps. Prior to the NYSDEC Preliminary Site Assessment, the only known sample analyses were of glycols in near surface soil. Several samples were taken in the areas of the ASTs just prior to the transfer of 1600 Jay Street from Chemreal Corp. to the Ferrauilos in September 1994. No cohesive report exists summarizing this data, results were given in letters between the involved parties, sometimes with lab data sheets attached. Quality control procedures are not reported in any of the correspondence. Results of the soil testing indicate methanol in the soil at concentrations of 1 to 82 ppm in the area of the ASTs at 1600 Jay Street. Ethylene glycol was also detected in this area at 60 to 69 ppm. Just after the tanks were removed and the soil was mixed to a depth of two feet, no methanol was detected in the soil. Ref. Nos. 10-11 /Pg. Nos. 2

SITE INSPECTION RESULTS

As appropriate to the particular site collect samples from air, drainage ditches, soil (surface and subsurface), standing pools of liquids, storage containers, stream and pond surface water, sediments (upgradient, at suspected source and downgradient) and ground water (upgradient, beneath site and downgradient). Samples are to be used for NPL listing purposes or to support an EE/CA (Engineering Evaluation/Cost Analysis) (as opposed to sampling used to determine immediate fire, explosion or direct contact hazards), and should go through CLP for full TAL and TCL analysis. Background samples are always necessary to document an observed release. Those samples that are considered background samples should be clearly identified.

Contaminants contravening standards include polynuclear aromatic hydrocarbons (PAHs) and pesticides in surface soil; PAHs in subsurface soil; pesticides in surface water; PAHs and pesticides in sediment; volatile organic compounds (VOCs), phenol, pesticide, PCB, metals in groundwater. Groundwater contained VOCs to a maximum concentration of 129,000 μ g/L. Analytical results from the current preliminary site assessment are extensive and contained in Ref. No. 1 /Section. No. 3

PART IV: HAZARD ASSESSMENT

GROUNDWATER ROUTE

 Describe the likelihood of a release of contaminant(s) to groundwater as follows: observed release, suspected release, or none. Identify contaminants detected or suspected and provide a rationale for attributing them to the site. For observed release, define the supporting analytical evidence and relationship to background.

Release of contaminants to groundwater is documented based on analytical results. See section 3 of reference 1 for further details. Ref. No. 1/Section. No. 3

 Describe the aquifer of concern; include information such as stratigraphy, depth, thickness, geologic composition, areas of karst terrain, permeability, overlying strata, confining layers, interconnections, discontinuities, depth to water table, groundwater flow direction. Attach a sketch of stratigraphic column.

The overburden at the ACSF site was dry across the site. It ranged in thickness from 1.7 to 7.4 feet. Water was encountered in the shallow bedrock at 5.7 to 9.1 feet below ground surface.

The shallow bedrock aquifer is the middle Silurian Lockport Dolostone. It is fractured and at the site and consists of only the lowermost member, the

Penfield Dolostone. The Penfield Dolostone is characterized as medium-gray, hard, and thin- to medium-bedded. It's thickness was not penetrated at the site, but in general it ranges from 29 to 39 feet. The DeCew Dolostone of the Clinton Group underlies the Penfield Dolostone. It is a hard, dark gray to olive gray, variably bedded, argillaceous to sandy, fine-grained dolostone. The DeCew was not reached in drilling at the ACSF site, but is 11 to 15 feet thick at a site less than 1.5 miles to the northwest. At another nearby site, a former Delco-GM Site (less than 1,000 feet away), the hydraulic conductivity of the overburden, and shallow and intermediate bedrock, consisting of the Penfield and the DeCew, was reported to range from 1 x 10-2 centimeters per second (cm/sec) to 1 x 10-5 cm/sec. The Gates Dolostone and Rochester Shale of the Rochester Formation underlie the DeCew. To a depth of 100 feet at the Delco site, the Rochester Formation generally exhibited low permeability, with some higher permeability zones. Rochester Shale hydraulic conductivity was generally less than 1 x 10-6 cm/sec.

Local groundwater flow is generally toward the Barge Canal, which is to the west. However, on-site flow is southward apparently toward a sewer line along Jay Street. See Attachment 1 to this form for a stratigraphic column. Ref. No. 12/Pg. Nos. 3-4 to 3-10; Ref. No. 13/Pg. Nos. 8-9; Ref No. 14/ Pg No. 44

3. What is the depth from the lowest point of waste disposal/storage to the highest seasonal level of the saturated zone of the aquifer(s) of concern?

The lowest point of waste disposal/storage is not known at this time. Contaminants were detected in wells that were as deep as 20.5 feet below ground surface. At the time of groundwater sampling (November 2001), the maximum water column in a well with contaminated water was 11.5 feet. It is possible that contamination resulting from former waste disposal is found deeper in the aquifer and that the water table is higher during other seasons of the year. From what is known of the site, wastes were not stored underground, but spills or dumping may have occurred. Ref. Nos. 1

4. What is the permeability value of the least permeable continuous intervening stratum between the ground surface and the top of the aquifer of concern?

The aquifer of concern at this time is the shallow bedrock aquifer, which is in direct hydraulic contact with the overburden, and therefore with the ground surface. The overburden and the shallow bedrock in the area have been observed to act as a single hydrologic unit. Ref. No. 13/Pg. Nos. 9

5. What is the net precipitation at the site (inches)?

The average annual precipitation at the Rochester International Airport (approximately 2 miles south of site) is 31.96 inches. In 2001, there were 29.17 inches of precipitation. Ref. Nos. 15 /Pg. Nos.(see references)

6. What is the distance to and depth of the nearest well that is currently used for drinking purposes? There are no known wells currently within 4 miles of the site that are used for drinking purposes. Water is supplied to these areas by the City of Rochester or the Monroe County Water Authority. There are Monroe County DOH records of bacteria tests on some wells within four miles, however, the most recent two tests were performed in 1992. It is not known whether these wells still exist. However, since water is currently supplied to the area, it is assumed that these wells are not operational. Ref. Nos. 16-18 / Pg. Nos. 1

7. If a release to groundwater is observed or suspected, determine the number of people that obtain drinking water from wells that are documented or suspected to be actually contaminated by hazardous substance(s) attributed to an observed release from the site.

None.

Ref. Nos. 16-18 / Pg. Nos. 1

8. Identify the population served by wells (private + municipal) located within 4 miles of the site that draw from the aquifer(s) of concern.

		Population	
Distance	Aquifer A	Aquifer B	Aquifer C
0 - 1/4 mi	0	0	0
>1/4 - 1/2 mi	0	0	0
>1/2 - 1 mi	0	0	0
>1 - 2 mi	0	0	0
>2 - 3 mi	0	0	0
>3 - 4 mi	0	0	0

Ref. Nos. 16-18 / Pg. Nos. 1

State whether groundwater is blended with surface water, groundwater, or both before distribution.

Not applicable. Ref. Nos. /Pg. Nos.

Is a designated wellhead protection area within 4 miles of the site? No, since there is no municipal or private drinking water supply from the groundwater, there should not be a wellhead protection area. Ref. Nos. 16-18 / Pg. Nos. 1

Does a waste source overlie a designated or proposed wellhead protection area? If a release to groundwater is observed or suspected. Does a designated or proposed wellhead protection area lie within the contaminant boundary of the release?

No. Ref. Nos. 16-18 / Pg. Nos. 1

9. Identify one of the following resource uses of groundwater within 4 miles of the site (i.e., commercial livestock watering, ingredient in commercial food preparation, supply for commercial aquaculture, supply for major, or designated water recreation area, excluding drinking water use, irrigation (5-acre minimum) of commercial food or commercial forage crops, unusable).

There are no known uses of groundwater for the above listed uses within 4 miles of the site. Agriculture in this primarily urban and suburban area is unlikely. The only open land seen on a recent map of Rochester with the possibility of agricultural use is a box with Straub Rd on the north, Elmgrove Rd on the west, Long Pond Rd on the east, and to the south extending about 1/3 mile south of the Erie Canal. Ref. Nos. 19/Pg. Nos.

SURFACE WATER ROUTE

10. Describe the likelihood of a release of contaminant(s) to surface water

as follows: release, suspected release, or none. Identify contaminants detected or suspected and provide a rationale for attributing them to the site. For observed release, define the supporting analytical evidence and relationship to background.

The likelihood of a release of contaminants to surface water is very low. The only surface water on site is a small north-south ditch on the western side of 105 and 107 Dodge Street. This surface water does not discharge to or from any other surface water body. See section 3 of reference 1 for more details. Ref. Nos. 1/Sect. Nos. 2 and 3

11. Identify the nearest down slope surface water. Include a description of possible surface drainage patterns from the site.

The New York State Barge Canal/Erie Canal. The topography in between the site and the canal is very flat. The surface drainage pattern would generally be from the site west to the canal. The sizable Valeo Electrical Systems building just to the west of the site would be an obstacle to surface water flow.

Ref. Nos. 20/Pg. Nos. 1

12. What is the distance to the nearest down slope surface water? Measure the distance along a course that runoff can be expected to follow.

The New York State Barge Canal/Erie Canal is approximately 3,000 feet to the west of the site. Ref. Nos. 17/Pg. Nos. 1

13. Identify all surface water body types within 15 downstream miles.

Name	Water Body Type	Flow	Saline/Fresh/Brackish
Erie Canal	Canal	South-South East	Fresh
Genesee River	River	North	Fresh
Lake Ontario	Lake	Generally east	Fresh

Ref. Nos. 19/Pg. Nos.

14. Determine the 2 yr, 24 hr rainfall (inches) for the site? For Rochester, in any given 2 year period, the maximum possible rainfall over 2 days is 2.5 inches. Ref. Nos. 21/Pg. Nos. 1

15. Determine size of drainage area (Acres) for the sources at the site? The sources at the site are unknown at this stage of investigation. Therefore, the size of the drainage area for the source is also unknown. Ref. Nos./Pg. Nos.

16. Describe the predominant soil group in the drainage area? The majority of the land in the area of the site is given as "Urban land" in the Monroe County Soil Survey. Land in the area not labeled as urban or "Made land" is silty loam or loam. Ref. Nos. 22/Sheet. Nos. 38, 39, 47, and 48

17. Determine the floodplain (1 yr., 10 yr., 100 yr., 500 yr., none) that the site is within. None. Ref. Nos. 23/Pg. Nos. 1

18. Identify drinking water intakes in surface waters within 15 miles downstream of the point of surface water entry. For each intake identify: the name of the surface water body in which the intake is located, the distance in miles from the point of surface water entry, population served, and stream flow at the intake location.

	WB	Distance		
Intake	Type	From PPE	Pop. Served	Flow (cfs)
Lake Ontario	Lake	Approx. 14.5 mi*	650,000	No aplicable

(* More precise distance not available because the exact location of intake is not currently a piece of information that is usually supplied to the general public.)

Ref. Nos. 16 & 19/Pg. Nos.

19. Identify fisheries that exist within 15 miles downstream of the point of surface water entry. For each fishery specify the following information:

Fishery	WB	Distance	Flow (cfs)	Saline/Fresh/Brackish
		From PPE		

The New York State Natural Heritage Program (NYSNHP) and the U.S. Fish and Wildlife Service were contacted in regards to this question. See Attachment 2 to this form for the information obtained from the NYSNHP, and Attachment 3 for U.S. Fish and Wildlife Service data. Ref. Nos./Pg. Nos.

20. Identify surface water sensitive environments that exist within 15 miles of the point of surface water entry.

Environment	WB Туре	Distance	Flow (cfs)	Wetland	
		from PPE		Frontage	(miles)

The New York State Natural Heritage Program (NYSNHP) and the U.S. Fish and Wildlife Service were contacted in regards to this question. Information is pending from the U.S. Fish and Wildlife Service. Please see Attachment 2 to this form for the information obtained from the NYSNHP. Ref. Nos./Pg Nos.

21. If a release to surface water is observed or suspected, identify any intakes, fisheries, and sensitive environments from question Nos. 18-20 that are or may be actually contaminated by hazardous substance(s) attributed to an observed release from the site.

Release to surface water not suspected. Intake:

Fishery:

Sensitive Environment:

Ref. Nos./Pg. Nos.

22. Identify whether the surface water is used for any of the following purposes, such as: irrigation (5 acre minimum) of commercial food or commercial forage crops, watering of commercial livestock, commercial food preparation, recreation, potential drinking water supply? Release to surface water not suspected.

Ref. Nos./Pg. Nos.

SOIL EXPOSURE PATHWAY

23. Determine the number of people that occupy residences or attend school or day care on or within 200 feet of an area of observed contamination.

An estimated 200 people live within 200 feet of 1600 Jay Street and 105 Dodge Street. This is an approximation based on calculations from population density of census blocks. Ref. Nos. 24/Pg. Nos.

24. Determine the number of people that regularly work on or within 200 feet of an area of observed or suspected contamination.
The area of possible contamination is considered to be 1600 Jay Street and 105 Dodge Street. Workplaces on or within 200 feet of this is MA Ferrauilo Plumbing, Monroe Extinguisher Company, Buell Specialty Steel, Sturdell Industries, and an apartment complex on the east side of Dodge Street.
Estimates of number of workers, based on observations made during the PSA field investigation, are as follows:
MA Ferrauilo Plumbing 12

Monroe Extinguisher Company	20
Buell Specialty Steel	20
Sturdell Industries	20
Apartment Complex	5
ESTIMATATED TOTAL	77
Ref. No. 25	

25. Identify terrestrial sensitive environments on or within 200 feet of an area of observed or suspected contamination.

The New York State Natural Heritage Program (NYSNHP) and the U.S. Fish and Wildlife Service were contacted in regards to this question. No terrestrial sensitive environments were identified by the NYSNHP (see Attachment 2 to this form). Also, no federally listed or proposed endangered or threatened species under the jurisdiction of the U.S. Fish and Wildlife Service are known to exist in the project impact area (see Attachment 3 of this form). Ref. Nos./Pg. Nos.

26. Identify whether there are any of the following resource uses, such as commercial agriculture, silviculture, livestock production or grazing within an observed or suspected contamination boundary? None of these activities occur on site. Ref. Nos. 25

AIR ROUTE

27. Describe the likelihood of release of contaminants to air as follows: observed release, suspected release, or none. Identify contaminants detected or suspected and provide a rationale for attributing them to the site. For observed release define the supporting analytical evidence and relationship to background.

Release to air is considered unlikely. During the November 2001 PSA, air monitoring was performed using an explosimeter and an Organic Vapor Analyzer (OVA). No explosive gases were detected and no volatile organics were detected above background levels in ambient air. However, off-gassing of volatile organic compounds from groundwater into enclosed spaces such as residential basements is a possibility.

Ref. Nos.1 /Sect. Nos. 2

28. Determine populations that reside within 4 miles of the site.

Distance	Population
0 (on-site)	0
0 - 1/4 mi	1,049
>1/4 - 1/2 mi	1,820
>1/2 - 1 mi	7,923
>1 - 2 mi	52,167
>2 - 3 mi	65,446
>3 - 4 mi	93,135

The population is an approximation based on calculations from population density of census blocks. Ref. No. 24

29. Identify sensitive environments and wetlands acreage (wetland acreage only for wetlands sensitive environment) within 4 miles of the site.

The New York State Natural Heritage Program (NYSNHP) and the U.S. Fish and Wildlife Service were contacted to identify sensitive environments. See Attachment 2 to this form for the information obtained from the NYSNHP, and Attachment 3 for U.S. Fish and Wildlife Service threatened or endangered species.

Ref. Nos./Pg. Nos.

	Type of Sensitive	Actual Distance	Wetland
Distance	Environment	from site (miles)	Acreage
0 (on-site)	NWI Wetland		0
0-1/4 mi.	NWI Wetland		0
>1/4-1/2 mi.	NWI Wetland		1.1
>1/2-1 mi.	NWI Wetland		50.4
>1-2 mi.	NWI Wetland		147.2
>2-3 mi.	NWI Wetland		497.8
>3-4 mi.	NWI Wetland		738.6

NWI=National Wetland Inventory

Ref. Nos. 26 /Pg. Nos.

Distance	Type of Sensitive Environment	Actual Distance from site (miles)	Wetland <u>Acreage</u>
0 (on-site)	DEC Wetland		0
0-1/4 mi.	DEC Wetland		0
>1/4-1/2 mi.	DEC Wetland		0
>1/2-1 mi.	DEC Wetland		15.5
>1-2 mi.	DEC Wetland		58.7
>2-3 mi.	DEC Wetland		194.8
>3-4 mi.	DEC Wetland		382.2

DEC=New York State Department of Environmental Conservation Ref. Nos. 27 /Pg. Nos.

30. If a release to air is observed or suspected, determine the number of people that reside or are suspected to reside within the area of air

contamination (might be actual contamination) from the release. No release suspected. Ref. Nos. /Pg. Nos.

31. If a release to air is observed or suspected, identify any sensitive environments, listed in question No. 46, that are or may be located within the area of air contamination from the release.
No release suspected.

Ref. Nos./Pg. Nos.

REFERENCES

1. Ecology & Environment, Inc., 2002, Preliminary Site Assessment Report for the Abandoned Chemical Sales Facility in Rochester, New York.

2. Monroe County Clerk, 25 April 1952, Property deed for 1600 Jay Street and 105 Dodge Street (Lots 1, 2, K, L, M, and N in Section 29) passing from the City of Rochester to Chemical Sales Corporation.

3. Monroe County Clerk, 13 November 1952, Property deed for 1600 Jay Street (Lots 1, 2, M, and N in Section 29) passing from Chemical Sales Corporation to Chemreal Corporation.

4. Monroe County Clerk, 1 August 1972, Property deed for 105 Dodge Street (Lots K and L in Section 29) passing from Chemical Sales Corporation to Paul S. Vangellow.

5. Monroe County Clerk, 14 September 1994, Property deed for 1600 Jay Street (Lots 1, 2, M, and N in Section 29) passing from Chemreal Corporation to Michael Anthony, Joe, and Kim Ferrauilo.

6. New York State Department of Environmental Conservation, 1994, NYS DEC Region 8 Oil & Hazardous Material Spill - Fact Sheet.

7. Harter, Secrest & Emery, 25 May 1994, letter to Michael A. Ferrauilo, Re: Environmental Site Assessment of Chemreal Site.

8. D.J. Parone & Associates, 13 June 1994, Letter to Mr. Robert Patterson (President of Chemreal Corporation).

9. City of Rochester, 24 June 1994, Letter to Whom it May Concern, written by Stephen Trenton, Battalion Chief and Acting Fire Marshal.

10. D.J. Parone & Associates, 24 June 1994, Letter to Mr. Robert Patterson (President of Chemreal Corporation).

11. D.J. Parone & Associates, 6 September 1994, Letter to Mr. Robert Patterson (President of Chemreal Corporation).

12. URS Greiner Consultants, Inc., 2000, Remedial Investigation Data Summary Report, Chem Sales Site, Town of Gates, Prepared for the NYSDEC Division of Environmental Remediation.

13. Haley & Aldrich of New York, 2000, RI/FS Work Plan Valeo Former GM - Delco Chassis Facility Site, Rochester, New York, prepared for General Motors Corporation, Detroit, Michigan.

14. Brett, C.E., et al., 1995, Revised Stratigraphy and Correlation of the Niagaran Provincial Series (Medina, Clinton, and Lockport Groups) in the Type Area of Western New York, U.S. Geological Survey Bulletin 2086

15. National Weather Service web site, 29 January 2002, including the following pages:

http://tgsv5.nws.noaa.gov/er/buf/ROCpcpn.htm
http://tgsv5.nws.noaa.gov/er/buf/climate/rocpreclill01.htm
http://tgsv5.nws.noaa.gov/er/buf/climate/rocpreclil201.htm

16. Marling, Greg, City of Rochester Water Works, Engineer, 31 January 2002, Personal conversation with Stephanie Reynolds Smith of Ecology & Environment, Inc.

17. Monroe County Water Authority web site, 30 January 2002, http://www.mcwa.com/srvceara.htm

18. Pienting, Susan, Monroe County Department of Health, 31 January 2002, Personal conversation with Stephanie Reynolds Smith of Ecology & Environment, Inc.

19. American Automobile Association, 1999, Map of Buffalo/Rochester/Niagara Falls, New York, Downtown and Vicinity.

20. United States Geological Survey, 1971 (with 1978 photorevision), Rochester West Quadrangle Map.

21. O'Hara, Patrick, National Weather Service, Buffalo, 30 January 2002, Personal conversation with Stephanie Reynolds Smith of Ecology & Environment, Inc.

22. United States Department of Agriculture Soil Conservation Service (in cooperation with Cornell University Agricultural Experiment Station), 1973, Soil Survey Monroe County, New York.

23. Wegman, Dan, United States Department of Agriculture - Monroe County Soil Conservation Service, 1 February 2002, Personal conversation with Stephanie Reynolds Smith of Ecology & Environment, Inc.

24. U.S. Census Bureau Survey, 2000.

25. Ecology & Environment, Inc., 12-30 November 2001, Preliminary site investigation field investigation observations.

26. U.S. Fish and Wildlife Service, 21 February 2002, National Wetland Inventory, GeoCommunity website (http://data.geocomm.com/catalog/US/61061/3051/index.html).

27. New York State Department of Environmental Conservation, 1996, Habitat Inventory Unit, Latham, New York.

Attachment 1: Stratigraphic Column

Stratigraphic Column In the Area of the Abandoned Chemicals Facility Site

Penfield Dolostone	Lockport Formation	Lockport Group
DeCew Dolostone		
Gates Dolostone	Formation	on Group
Rochester Shale	Rochester	Clinton

Attachment 2: Correspondence from the New York State Natural Heritage Program

New York State Department of Environmental Conservation Division of Fish, Wildlife & Marine Resources

New York Natural Heritage Program 625 Broadway, Albany, New York 12233-4757 Phone: (518) 402-8935 • FAX: (518) 402-8925 Website: www.dec.state.ny.us

February 19, 2002

Sara Allen Ecology and Environment Inc Buffalo Corporate Center 368 Pleasant View Drive Lancaster, NY 14086

Dear Ms. Allen:

In response to your recent request, we have reviewed the New York Natural Heritage Program databases with respect to the proposed Preliminary Site Assessment for an abandoned chemical sales facility, corner of Jay and Dodge Streets, site as indicated on the map you provided, located in the City of Rochester, Monroe County.

Enclosed is a report of rare or state-listed animals and plants, significant natural communities, and other significant habitats, which our databases indicate occur, or may occur, on your site or in the immediate vicinity of your site. The information contained in this report is considered <u>sensitive</u> and may not be released to the public without permission from the New York Natural Heritage Program.

Your project location is within, or adjacent to, a designated Significant Coastal Fish and Wildlife Habitat. This habitat is part of New York State's Coastal Management Program (CMP), which is administered by the NYS Department of State (DOS). Projects which may impact the habitat are reviewed by DOS for consistency with the CMP. For more information regarding this designated habitat and applicable consistency review requirements, please contact:

Greg Capobianco or Steven C. Resler - (518) 474-6000 NYS Department of State Division of Coastal Resources and Waterfront Revitalization 41 State Street, Albany, NY 12231

The presence of rare species may result in your project requiring additional permits, permit conditions, or review. For further guidance, and for information regarding other permits that may be required under state law for regulated areas or activities (e.g., regulated wetlands), please contact the appropriate NYS DEC Regional Office, Division of Environmental Permits, at the enclosed address.

For most sites, comprehensive field surveys have not been conducted; the enclosed report only includes records from our databases. We cannot provide a definitive statement on the presence or absence of all rare or state-listed species or significant natural communities. This information should NOT be substituted for on-site surveys that may be required for environmental impact assessment.

Our databases are continually growing as records are added and updated. If this proposed project is still under development one year from now, we recommend that you contact us again so that we may update this response with the most current information.

Sincerely,

Terisa Mackey Teresa Mackey

Information Services NY Natural Heritage Program

Encs.

Reg. 5, Wildlife Mgr. cc: Reg. 5, Fisheries Mgr. Reg. 5, Bureau of Habitat Peter Nye, Endangered Species Unit, 518-402-8859

DIVISION OF ENVIRONMENTAL PERMITS

June 2001

REGION	COUNTIES	REGIONAL PERMIT ADMINISTRATORS
1	Nassau & Suffolk	John Pavacic
		NYS-DEC
		BLDG. 40
	Telephone: (631) 444-0365	SUNY at Stony Brook
		Stony Brook, NY 11790-2356
2	New York City (Boroughs of Manhattan, Brooklyn, Bronx,	John Cryan
	Queens, & Staten Island	NYS-DEC
		One Hunters Point Plaza
		47-40 21st Street
	Telephone: (718) 482-4997	Long Island City, NY 11101-5407
3	Dutchess, Orange, Putnam, Rockland, Sullivan, Ulster &	Margaret Duke (Peg)
	Westchester	NYS-DEC
		21 South Putt Corners Road
	Telephone: (845) 256-3054	
		New Paltz, NY 12561-1696
4	Albany, Columbia, Greene, Montgomery, Rensselaer &	William Clarke
	Schenectady	NYS-DEC
		1150 North Wescott Road
	Telephone: (518) 357-2069	Schenectady, NY 12306-2014
4	Delaware, Otsego & Schoharie	
(sub-office)	Denamat, Olsego & Schollane	John Feltman
(546 611100)		NYS-DEC
		Route 10
	Telephone: (607) (62 774)	HCR#1, Box 3A
	Telephone: (607) 652-7741	Stamford, NY 12167-9503
5	Clinton, Essex, Franklin & Hamilton	Richard Wild
		NYS-DEC
		Route 86, PO Box 296
	Telephone: (518) 897-1234	Ray Brook, NY 12977-0296
5	Fulton, Saratoga, Warren & Washington	Thomas Hall*
(sub-office)		
(, , , , , , , , , , , , ,		NYS-DEC
		County Route 40
	Telephone: (518) 623-3671	PO Box 220
<u> </u>		Warrensburg, NY 12885-0220
6	Jefferson, Lewis & St. Lawrence	Brian Fenlon
		NYS-DEC
		State Office Building
		317 Washington Street
	Telephone: (315) 785-2245	Watertown, NY 13601-3787
6 (sub-office)	Herkimer & Oneida	J. Joseph Homburger*
		NYS-DEC
		State Office Building
	Telephone: (315) 793-2555	207 Genesee Street
		Utica, NY 13501-2885

USERS GUIDE TO NY NATURAL HERITAGE DATA

New York Natural Heritage Program, 700 Troy-Schenectady Road, Latham NY 12110-2400 phone: (518) 783-3932

NATURAL HERITAGE PROGRAM: The Natural Heritage Program is an ongoing, systematic, scientific inventory whose goal is to compile and maintain data on the rare plants and animals native to New York State, and significant ecological communities. The data provided in the report facilitate sound planning, conservation, and natural resource management and help to conserve the plants, animals and ecological communities that represent New York's natural heritage.

DATA SENSITIVITY: The data provided in the report are ecologically sensitive and should be treated in a sensitive manner. The report is for your inhouse use and should not be released, distributed or incorporated in a public document without prior permission from the Natural Heritage Program.

NATURAL HERITAGE REPORTS (may contain any of the following types of data):

COUNTY NAME: County where the occurrence of a rare species or significant ecological community is located. TOWN NAME: Town where the occurrence of a rare species or significant ecological community is located. USGS 7 1/2' TOPOGRAPHIC MAP: Name of 7.5 minute US Geological Survey (USGS) quadrangle map (scale 1:24,000).

SIZE (acres): Approximate acres occupied by the rare species or significant ecological community at this location. A blank indicates unknown size. SCIENTIFIC NAME: Scientific name of the occurrence of a rare species or significant ecological community. COMMON NAME: Common name of the occurrence of a rare species or significant ecological community. ELEMENT TYPE: Type of element (i.e. plant, animal, significant ecological community, other, etc.)

LAST SEEN: Year rare species or significant ecological community last observed extant at this location.

EO RANK: Comparative evaluation summarizing the quality, condition, viability and defensibility of this occurrence. Use with LAST SEEN.

- A-E = Extant: A=excellent, B=good, C=marginal, D=poor, E=extant but with insufficient data to assign a rank of A D.
- F = Failed to find. Did not locate species, but habitat is still there and further field work is justified.
- H = Historical. Historical occurrence without any recent field information.
- X = Extirpated. Field/other data indicates element/habitat is destroyed and the element no longer exists at this location.

? = Unknown. Blank = Not assigned.

NEW YORK STATE STATUS (animals): Categories of Endangered and Threatened species are defined in New York State Environmental Conservation Law section 11-0535. Endangered, Threatened, and Special Concern species are listed in regulation 6NYCRR 182.5.

- E = Endangered Species: any species which meet one of the following criteria:
- 1) Any native species in imminent danger of extirpation or extinction in New York.

2) Any species listed as endangered by the United States Department of the Interior, as enumerated in the Code of Federal Regulations 50 CFR 17.11.

- T = Threatened Species: any species which meet one of the following criteria:
 - 1) Any native species likely to become an endangered species within the foreseeable future in NY.
- 2) Any species listed as threatened by the U.S. Department of the Interior, as enumerated in the Code of the Federal Regulations 50 CFR 17.11.
- SC = Special Concern Species: those species which are not yet recognized as endangered or threatened, but for which documented concern exists for their continued welfare in New York. Unlike the first two categories, species of special concern receive no additional legal protection under Environmental Conservation Law section 11-0535 (Endangered and Threatened Species).
- P = Protected Wildlife (defined in Environmental Conservation Law section 11-0103): wild game, protected wild birds, and endangered species of wildlife.
- U = Unprotected (defined in Environmental Conservation Law section 11-0103): the species may be taken at any time without limit; however a license to take may be required.
- G = Game (defined in Environmental Conservation Law section 11-0103): any of a variety of big game or small game species as stated in the Environmental Conservation Law; many normally have an open season for at least part of the year, and are protected at other times.

NEW YORK STATE STATUS (plants): The following categories are defined in regulation 6NYCRR part 193.3 and apply to NYS Environmental Conservation Law section 9-1503.

E = Endangered Species: listed species are those with:

- 1) 5 or fewer extant sites, or
- 2) fewer than 1,000 individuals, or
- 3) restricted to fewer than 4 U.S.G.S. 7 1/2 minute topographical maps, or
- 4) species listed as endangered by U.S. Department of Interior, as enumerated in Code of Federal Regulations 50 CFR 17.11. T = Threatened: listed species are those with:

 - 1) 6 to fewer than 20 extant sites, or
 - 2) 1,000 to fewer than 3,000 individuals, or
 - 3) restricted to not less than 4 or more than 7 U.S.G.S. 7 and ½ minute topographical maps, or
- 4) listed as threatened by U.S. Department of Interior, as enumerated in Code of Federal Regulations 50 CFR 17.11.
- R = Rare: listed species have:
 - 1) 20 to 35 extant sites, or
 - 2) 3,000 to 5,000 individuals statewide.

continued on next page

Prepared 14 February 2002 by NY Natural Heritage Program, NYS DEC, Albany, New York

Within 4 miles of

project site.

This report contains SENSITIVE information that should be treated in a sensitive manner -- Please see cover letter. Refer to the Users' Guide for explanations of codes, ranks, and fields. We do not always provide maps for locations of species most vulnerable to disturbance, nor of some records whose locations and/or extents are not precisely known or are too large to display.

County Town				Page 1
Scientifc Name, COMMON NAME, & Group Name	NY Legal Status, Heritage Ranks, & Federal Status	EO Rank & Last Seen	Location	Office Use
* MONROE				USC
** CITY OF ROCHESTER				
Houstonia purpurea var purpurea PURPLE BLUETS Vascular Plant	ENDANGERED G5T5 SH	H 1905-09-03	GENESEE FALLS	4307726 M
Pinguicula vulgaris BUTTERWORT Vascular Plant	THREATENED G5 S2	H 1841	GENESEE FALLS	4307726 M
Buchnera americana BLUE-HEARTS Vascular Plant	ENDANGERED G5? SH	H NO DATE	GENESEE RIVER GREECE	4307726 M
Falco peregrinus PEREGRINE FALCON Bird	ENDANGERED G4 S3B,SZN (PS:LE)	E 1998	ROCHESTER	4307725 S . ESU

Prepared 14 February 2002 by NY Natural Heritage Program, NYS DEC, Albany, New York

Within 4 miles of project site.

This report contains SENSITIVE information that should be treated in a sensitive manner -- Please see cover letter. Refer to the Users' Guide for explanations of codes, ranks, and fields. We do not always provide maps for locations of species most vulnerable to disturbance, nor of some records whose locations and/or extents are not precisely known or are too large to display.

County Town				Page 2
Scientifc Name, COMMON NAME, & Group Name	NY Legal Status, Heritage Ranks, & Federal Status	EO Rank & Last Seen	Location	Office Use
* MONROE				
** CITY OF ROCHESTER				
Carex formos a HANDSOME SEDGE Vascular Plant	THREATENED G4 S2S3	H 1921-05-23	SENECA PARK	4307725 M
** GATES				
<i>Aster borealis</i> RUSH ASTER Vascular Plant	THREATENED G5 S2	H 1867-09-08	FISKS WOODS	4307726 M
Physalis virginian a VIRGINIA GROUND-CHERR Y Vascular Plant	ENDANGERED G5 SH	H NO DATE	GATES	4307726 M
** GREECE, CITY OF ROCHESTER				
<i>Juniperus horizontalis</i> PROSTRATE JUNIPER Vascular Plant	ENDANGERED G5 S1	H NO DATE	GENESEE RIVER GREECE	4307725 M

8 Records Processed

Prepared 14 February 2002 by NY Natural Heritage Program, NYS DEC, Albany, New York

Surface water features, wetland environments, and a quatic biota within 15 miles of project site

This report contains SENSITIVE information that should be treated in a sensitive manner -- Please see cover letter. Refer to the Users' Guide for explanations of codes, ranks, and fields. We do not always provide maps for locations of species most vulnerable to disturbance, nor of some records whose locations and/or extents are not precisely known or are too large to display.

County Town				Page 1
Scientifc Name, COMMON NAME, & Group Name	NY Legal Status, Heritage Ranks, & Federal Status	EO Rank & Last Seen	Location	Office Use
* LIVINGSTON				
** CALEDONIA				
Juniperus horizontalis PROSTRATE JUNIPER Vascular Plant	ENDANGERED G5 S1	H 1882	CALEDONIA	4207787 M
MARL POND SHORE Community	UNPROTECTED G3G4 S1	BC 1986-11-26	CALEDONIA SWAMP	4207787 S
Triglochin palustris MARSH ARROW-GRASS Vascular Plant	THREATENED G5 S2	AB 1986-11-26	CALEDONIA SWAMP	4207787 S
BACKWATER SLOUGH Community	UNPROTECTED G4 S2S3	AB 1998-07-29	LOG POND FLATS	4207786 S
<i>Carya laciniosa</i> BIG SHELLBARK HICKORY Vascular Plant	THREATENED G5 S2	A 1998-07-29	LOG POND FLATS	4207786 S
FLOODPLAIN FOREST Community	UNPROTECTED G3G4 S2S3	A 1998-07-29	LOG POND FLATS	4207786 S
Hydrastis canadensis GOLDEN-SEAL Vascular Plant	THREATENED G4 S2	BC 1998-07-29	LOG POND FLATS	4207786 S
SHRUB SWAMP Community	UNPROTECTED G5 S5	B 1998-07-29	LOG POND FLATS	4207786 S

Prepared 14 February 2002 by NY Natural Heritage Program, NYS DEC, Albany, New York

Surface water features, wetland environments, and aquatic biota within 15 miles of project site

This report contains SENSITIVE information that should be treated in a sensitive manner -- Please see cover letter. Refer to the Users' Guide for explanations of codes, ranks, and fields. We do not always provide maps for locations of species most vulnerable to disturbance, nor of some records whose locations and/or extents are not precisely known or are too large to display.

	County Town				Page 2
	Scientifc Name, COMMON NAME, & Group Name	NY Legal Status, Heritage Ranks, & Federal Status	EO Rank & Last Seen	Location	Office Use
* I	IVINGSTON, MONROE				
	CALEDONIA, WHEATLAND				
	WATERFOWL CONCENTRATION AREA Oth er	UNPROTECTED S3S4	E 1985-PRE	CALEDONIA LOWLANDS AND CHRISTIE CREEK	4207787 S
* N	MONROE				
** C	HILI				
	Carex lupuliformis FALSE HOP SEDGE Vascular Plant	RARE G4 S2S3	CD 1988-08-30	BLACK CREEK SWAMP CHILI	4307716 S
	<i>Carya laciniosa</i> BIG SHELLBARK HICKORY Vascular Plant	THREATENED G5 S2	BC 1992-09-02	BLACK CREEK SWAMP CHILI	4307716 S
	SILVER MAPLE-ASH SWAMP Community	UNPROTECTED G3G4 S2S3	AB 1992-09-02	BLACK CREEK SWAMP CHILI	4307716 S
** C	HILI, HENRIETTA				
** C	Cacalia suawolens SWEET-SCENTED INDIAN-PLANTAIN Vascular Plant ITY OF ROCHESTER	ENDANGERED G3 S1	F 1896-PRE	GENESEE RIVER AT BLACK CREEK	4307716 M
	Pinguicula vulgaris BUTTERWORT Vascular Plant	THREATENED G5 S2	H 1841	GENESEE FALLS	4307726 M

** GATES

Prepared 14 February 2002 by NY Natural Heritage Program, NYS DEC, Albany, New York

Surface water features, wetland environments, and aquatic biota within 15 miles of project site

This report contains SENSITIVE information that should be treated in a sensitive manner -- Please see cover letter. Refer to the Users' Guide for explanations of codes, ranks, and fields. We do not always provide maps for locations of species most vulnerable to disturbance, nor of some records whose locations and/or extents are not precisely known or are too large to display.

	County Town				Page 3
	Scientifc Name, COMMON NAME, & Group Name	NY Legal Status, Heritage Ranks, & Federal Status	EO Rank & Last Seen	Location	Office Use
	MONROE FATES				
	Physalis virginiana VIRGINIA GROUND-CHERRY Vascular Plant BREECE	ENDANGERED G5 SH	H NO DATE	GATES	4307726 M
	GREAT LAKES AQUATIC BED Community	UNPROTECTED G4 S3	B 1994-08-09	BRADDOCK BAY	4307736 S
	Chlidonias niger BLACK TERN Bird	ENDANGERED G4 S2B	C 1995-07-03	BUCK POND	4307736 S ESU
	GREAT LAKES AQUATIC BED Community	UNPROTECTED G4 S3	B 1994-08-05	BUCK POND	4307736 S
	Asimina triloba PAWPAW Vascular Plant	THREATENED G5 S2	E 1991-09	LARKIN CREEK GREECE	4307726 M
** G	REECE, PARMA				
	Chlidonias niger BLACK TERN Bird	ENDANGERED G4 S2B	C 1995-07-30	BRADDOCK BAY COMPLEX	4307736 S
	Aphredoderus sayanus PIRATE PERCH Fish	UNPROTECTED G5 S1	E 1995-05-22	BUTTONWOOD CREEK	ESU 4307736 S

Prepared 14 February 2002 by NY Natural Heritage Program, NYS DEC, Albany, New York

Surface water features, wetland environments, and aquatic biota within 15 miles of project site

This report contains SENSITIVE information that should be treated in a sensitive manner -- Please see cover letter. Refer to the Users' Guide for explanations of codes, ranks, and fields. We do not always provide maps for locations of species most vulnerable to disturbance, nor of some records whose locations and/or extents are not precisely known or are too large to display.

County Town				Page 4
Scientifc Name, COMMON NAME, & Group Name	NY Legal Status, Heritage Ranks, & Federal Status	EO Rank & Last Seen	Location	Office Use
* MONROE				
** IRONDEQUOIT, CITY OF ROCHESTER				
Pterospora andromedea GIANT PINE-DROPS	ENDANGERED	Н	IRONDEQUOIT BAY	4307725
Vascular Plant	G5 S1	1973-11-08		4307725
** IRONDEQUOIT, PENFIELD, CITY OF ROCHESTER				
Triphora trianthophora NODDING POGONIA	ENDANGERED	Н	IRONDEQUOIT WETLANDS	4307725
NODDING POGONIA Vascular Plant	G3G4 S1S2	1945-08-19		4307725
** IRONDEQUOIT, PENFIELD, CITY OF ROCHESTER, BRIGHTON				
Cistothorus platens is SEDGE WREN	THREATENED	Н	IRONDEQUOIT BAY	4307725
Bird	G5 S3B,SAN	1980		4307723 M
** MENDON				ESU
Pedicularis lanceolata SWAMP LOUSEWORT	THREATENED G5 S2	C	HUNDRED ACRE POND	4307715
Vascular Plant		1994-06-09		
Carex decomposita CYPRESS-KNEE SEDGE Vascular Plant	ENDANGERED G3 SH	H 1922-08-05	MENDON PONDS	4307715 M
Aster borealis RUSH ASTER Vascular Plant	THREATENED G5 S2	C 1992-08-17	QUAKER POND FEN	4307715

Prepared 14 February 2002 by NY Natural Heritage Program, NYS DEC, Albany, New York

Surface water features, wetland environments, and aquatic biota within 15 miles of project site

This report contains SENSITIVE information that should be treated in a sensitive manner -- Please see cover letter. Refer to the Users' Guide for explanations of codes, ranks, and fields. We do not always provide maps for locations of species most vulnerable to disturbance, nor of some records whose locations and/or extents are not precisely known or are too large to display.

County Town			Page 5	
Scientifc Name, COMMON NAME, & Group Name	NY Legal Status, Heritage Ranks, & Federal Status	EO Rank & Last Seen	Location	Office Use
* MONROE				Use
** MENDON				
Carex buxbaumii BROWN BOG SEDGE Vascular Plant	THREATENED G5 S2	AB 2000-07-11	QUAKER POND FEN	4307715
Carex sartwellii SARTWELL'S SEDGE Vascular Plant	THREATENED G4G5 S1S2	A 2000-06-07	QUAKER POND FEN	4307715
MARL FEN Community	UNPROTECTED G2G3 S1	F 1943	QUAKER POND FEN	4307715
Pedicularis lanceolata SWAMP LOUSEWORT Vascular Plant	THREATENED G5 S2	C 1992-08-17	QUAKER POND FEN	4307715
RICH GRAMINOID FEN Community	UNPROTECTED G3 S1S2	AB 2000-07-11	QUAKER POND FEN	4307715
RICH SHRUB FEN Community	UNPROTECTED G3G4 S1S2	AB 1998-06-26	QUAKER POND FEN	4307715
Scleria verticillata LOW NUTRUSH Vascular Plant	ENDANGERED G5 S1	A 1992-08-17	QUAKER POND FEN	4307715
Scorpidium scorpioides SCORPIDIUM Non-vascular Plant	UNPROTECTED G4G5 S1S2	E 2000-07-11	QUAKER POND FEN	4307715

Prepared 14 February 2002 by NY Natural Heritage Program, NYS DEC, Albany, New York

Surface water features, wetland environments, and aquatic biota within 15 miles of project site

This report contains SENSITIVE information that should be treated in a sensitive manner -- Please see cover letter. Refer to the Users' Guide for explanations of codes, ranks, and fields. We do not always provide maps for locations of species most vulnerable to disturbance, nor of some records whose locations and/or extents are not precisely known or are too large to display.

County Town				Page 6
Scientifc Name, COMMON NAME, & Group Name	NY Legal Status, Heritage Ranks, & Federal Status	EO Rank & Last Seen	Location	Office Use
* MONROE				
** MENDON				
Solidago ohioensis OHIO GOLDENROD Vascular Plant	THREATENED G4 S2	AB 1992-08-17	QUAKER POND FEN	4307715
Triglochin palustris MARSH ARROW-GRASS Vascular Plant	THREATENED G5 S2	C 2000-07-11	QUAKER POND FEN	4307715
Valeriana uliginosa MARSH VALERIAN Vascular Plant	ENDANGERED G4Q S1S2	B 2000-06-07	QUAKER POND FEN	4307715 S
** MENDON, PITTSFORD				
Aster borealis RUSH ASTER Vascular Plant	THREATENED G5 S2	H 1918-08-17	MENDON PONDS	4307715
** PARMA				
Aphredoderus sayanus PIRATE PERCH Fish	UNPROTECTED G5 S1	E 1994-05-19	BUTTONWOOD CREEK BURRITT ROAD	4307737 S
Aphredoderus sayanus PIRATE PERCH Fi s h	UNPROTECTED G5 S1	H 1948-09-07	NORTH CREEK AT BENNETT ROAD	4307737 M
<i>Erimyzon sucetta</i> LAKE CHUBSUCKER Fish	THREATENED G5 SH	H 1937-03-07	WEST CREEK	4307737 M BOF

Prepared 14 February 2002 by NY Natural Heritage Program, NYS DEC, Albany, New York

Surface water features, wetland environments, and aquatic biota within 15 miles of project site

This report contains SENSITIVE information that should be treated in a sensitive manner -- Please see cover letter. Refer to the Users' Guide for explanations of codes, ranks, and fields. We do not always provide maps for locations of species most vulnerable to disturbance, nor of some records whose locations and/or extents are not precisely known or are too large to display.

		·		
County Town				Page 7
Scientifc Name, COMMON NAME, & Group Name	NY Legal Status, Heritage Ranks, & Federal Status	EO Rank & Last Seen	Location	Office
* MONROE				Use
** PENFIELD				
Poa sylvestris WOODLAND BLUEGRASS Vascular Plant	ENDANGERED G5 S1	H 1948-06-08	PENFIELD	4307724 M
Ardea hero dias GREAT BLUE HERON Bird	PROTECTED G5 S5	B 1994	THOUSAND ACRE SWAMP	4307724 S
Cistothorus platens is SEDGE WREN Bird	THREATENED G5 S3B,SAN	E 1984	THOUSAND ACRE SWAMP	4307724 M
<i>Cuscuta polygonorum</i> SMART WEED DODDER Vascular Plan t	ENDANGERED G5 S1	H NO DATE	THOUSAND ACRE SWAMP	ESU 4307724 M
Equisetum palustre MARSH HORSETAIL Vascular Plant	THREATENED G5 S2	H NO DATE	THOUSAND ACRE SWAMP	4307724 M
Geum virginianum ROUGH AVENS Vascular Plant	ENDANGERED G5 S2	D 1986-07-01	THOUSAND ACRE SWAMP	4307724 S
** PERINTON				
Pedicularis lanceolata SWAMP LOUSEWORT Vascular Plant	THREATENED G5 S2	A 1990-09-06	POWDER MILLS KETTLE AND KAME	4307714 S

Prepared 14 February 2002 by NY Natural Heritage Program, NYS DEC, Albany, New York

Surface water features, wetland environments, and aquatic biota within 15 miles of project site

This report contains SENSITIVE information that should be treated in a sensitive manner -- Please see cover letter. Refer to the Users' Guide for explanations of codes, ranks, and fields. We do not always provide maps for locations of species most vulnerable to disturbance, nor of some records whose locations and/or extents are not precisely known or are too large to display.

County Town				Page 8
Scientifc Name, COMMON NAME, & Group Name	NY Legal Status, Heritage Ranks, & Federal Status	EO Rank & Last Seen	Location	Office Use
* MONROE				Use
** PERINTON				
RED MAPLE-TAMARACK PE SWAMP Community	AT UNPROTECTED G3G4 S2S3	B 1990-09-06	POWDER MILLS KETTLE AND KAME	4307714 S
RICH GRAMINOID FEN Community	UNPROTECTED G3 S1S2	В 1990-09-06	POWDER MILLS KETTLE AND KAME	4307714 S
** PERINTON, PITTSFORD				
Buchnera americana BLUE-HEARTS Vascular Plant	ENDANGERED G5? SH	H 1907-10-10	POWDER MILL PARK	4307714 M
** PITTSFORD				
Erigenia bulbosa HARBINGER-OF-SPRING Vascular Plant	ENDANGERED G5 S1	C 2000-04-20	IRONDEQUOIT CREEK WOODS	4307714 S
Trillium sessile TOAD-SHADE Vascular Plant	ENDANGERED G4G5 S1	C 2000-0 4- 20	IRONDEQUOIT CREEK WOODS	4307714 S
** PITTSFORD, MENDON				
Carya laciniosa BIG SHELLBARK HICKORY Vascular Plant	THREATENED G5 S2	H 1926-08-29	MENDON PONDS	4307715 M

** RIGA

Prepared 14 February 2002 by NY Natural Heritage Program, NYS DEC, Albany, New York

Surface water features, wetland environments, and a quatic biota within 15 miles of project site

This report contains SENSITIVE information that should be treated in a sensitive manner -- Please see cover letter. Refer to the Users' Guide for explanations of codes, ranks, and fields. We do not always provide maps for locations of species most vulnerable to disturbance, nor of some records whose locations and/or extents are not precisely known or are too large to display.

County Town				Page 9
Scientifc Name, COMMON NAME, & Group Name	NY Legal Status, Heritage Ranks, & Federal Status	EO Rank & Last Seen	Location	Office Use
* MONROE				
** RIGA				
NORTHERN WHITE CEDAR SWAMP Community	UNPROTECTED G3G4 S2S3	BC 1991-07-27	BETTERIDGE ROAD WETLAND	4307717 S
SILVER MAPLE-ASH SWAMP Community	UNPROTECTED G3G4 S2S3	AB 1990-07-08	HOTEL CREEK WETLANDS	4307718 S
NORTHERN WHITE CEDAR SWAMP Community	UNPROTECTED G3G4 S2S3	B 1991-07-27	RIGA CENTER WETLAND	4307717 S
Dryopteris celsa LOG FERN Vascular Plant	ENDANGERED G4 S1	H 1945-09-14	RIGA SWAMP	4307718 M
** RUSH				
<i>Trillium flexipes</i> NODDING TRILLIUM Vascular Plant	ENDANGERED G5 S1	H 1918	GOLAH	4207786 M
<i>Villosa iris</i> RAINBOW Bivalve Mollusc	UNPROTECTED G5 S2S3	C 1988-09-16	HONEOYE CREEK RUSH	4207786 S
Carya laciniosa BIG SHELLBARK HICKORY Vascular Plant	THREATENED G5 S2	F 1899-08-28	NORTH RUSH	4307716 M

Prepared 14 February 2002 by NY Natural Heritage Program, NYS DEC, Albany, New York

Surface water features, wetland environments, and aquatic biota within 15 miles of project site

This report contains SENSITIVE information that should be treated in a sensitive manner -- Please see cover letter. Refer to the Users' Guide for explanations of codes, ranks, and fields. We do not always provide maps for locations of species most vulnerable to disturbance, nor of some records whose locations and/or extents are not precisely known or are too large to display.

County Town				Page 10
Scientifc Name, COMMON NAME, & Group Name	NY Legal Status, He ritage Ranks, & Federal Status	EO Rank & Last Seen		Office
* MONROE			Location	Use
** RUSH				
Carex formosa HANDSOME SEDGE Vascular Plant	THREATENED G4 S2S3	H 1920-06-15	RUSH	4207786 M
VERNAL POOL Community	UNPROTECTED G4 S3S4	E 1991-02-27	RUSH OAK OPENING	4207786 S
Carex formosa HANDSOME SEDGE Vascular Plant	THREATENED G4 S2S3	H 1920-06-15	WEST RUSH	4207786 M
** SWEDEN				
Asimina trilo ba PAWPAW Vascular Plant	THREATENED G5 S2	E 1989-09-23	OTIS CREEK	4307728 S
** WEBSTER, CITY OF ROCHESTER, IRONDEQUOIT, PENFIELD				
WARM WATER FISH CONCENTRATION AREA Oth er	UNPROTECTED S4	E 1985-PRE	IRONDEQUOIT BAY	4307725 S
** WHEATLAND				
Pedicularis lanceolata SWAMP LOUSEWORT Vascular Plant	THREATENED G5 S2	AB 1991-09-03	WINSLOW ROAD WETLAND	4307717 S

Prepared 14 February 2002 by NY Natural Heritage Program, NYS DEC, Albany, New York

Surface water features, wetland environments, and a quatic biota within 15 miles of project site

This report contains SENSITIVE information that should be treated in a sensitive manner -- Please see cover letter. Refer to the Users' Guide for explanations of codes, ranks, and fields. We do not always provide maps for locations of species most vulnerable to disturbance, nor of some records whose locations and/or extents are not precisely known or are too large to display.

County Town				Page 11
Scientifc Name, COMMON NAME, & Group Name	NY Legal Status, Heritage Ranks, & Federal Status	EO Rank & Last Seen		Office
* MONROE			Location	Use
** WHEATLAND				
RICH GRAMINOID FEN Community	UNPROTECTED G3 S1S2	B 1991-09-03	WINSLOW ROAD WETLAND	4307717 S
Triglochin palustris MARSH ARROW-GRASS Vascular Plant	THREATENED G5 S2	AB 1991-09-03	WINSLOW ROAD WETLAND	4307717 S
 MONROE, NY STATE WATERS ** GREECE, NY STATE WATERS Chlidonias niger BLACK TERN Bird * ONTARIO 	ENDANGERED G4 S2B	F 1989-07-10	ROUND POND	4307736 S ESU
** VICTOR				
Geum vernum SPRING AVENS Vascular Plant	ENDANGERED G5 S1S2	E? 1977	BENTLEY WOODS	4307714 M
Pedicularis lanceolata SWAMP LOUSEWORT Vascular Plant	THREATENED G5 S2	BC 1991-09-02	BENTLEY WOODS	4307714 S
RICH SHRUB FEN Community	UNPROTECTED G3G4 S1S2	B 1991-09-02	BENTLEY WOODS	4307714 S

Prepared 14 February 2002 by NY Natural Heritage Program, NYS DEC, Albany, New York

Surface water features, wetland environments, and a quatic biota within 15 miles of project site

This report contains SENSITIVE information that should be treated in a sensitive manner -- Please see cover letter. Refer to the Users' Guide for explanations of codes, ranks, and fields. We do not always provide maps for locations of species most vulnerable to disturbance, nor of some records whose locations and/or extents are not precisely known or are too large to display.

Scientifc Name, COMMON NAME, & Group Name	NY Legal Status, Heritage Ranks, & Federal Status	EO Rank & Last Seen	Location	Office Use
ONTARIO				
VICTOR				
Valeriana uliginosa MARSH VALERIAN Vascular Plant	ENDANGERED G4Q S1S2	H 1916-05-23	VICTOR	4207784

Attachment 3: Correspondence From the U.S. Fish and Wildlife Service

United States Department of the Interior

FISH AND WILDLIFE SERVICE 3817 Luker Road Cortland, NY 13045

March 14, 2002

Ms. Sara Allen Environmental Scientist Ecology & Environment, Inc. Buffalo Corporate Center 368 Pleasant View Drive Lancaster, NY 14086

Dear Ms. Allen:

This responds to your letter of February 1, 2002, requesting information on the presence of Federally listed or proposed endangered or threatened species in the vicinity of the abandoned chemical sales facility at Jay and Dodge Streets in the City of Rochester, Monroe County, New York.

Except for occasional transient individuals, no Federally listed or proposed endangered or threatened species under our jurisdiction are known to exist in the project impact area. In addition, no habitat in the project impact area is currently designated or proposed "critical habitat" in accordance with provisions of the Endangered Species Act (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq.). Therefore, no Biological Assessment or further Section 7 consultation under the Endangered Species Act is required with the U.S. Fish and Wildlife Service (Service). Should project plans change, or if additional information on listed or proposed species or critical habitat becomes available, this determination may be reconsidered.

The above comments pertaining to endangered species under our jurisdiction are provided pursuant to the Endangered Species Act. This response does not preclude additional Service comments under other legislation.

The handsome sedge (*Carex formosa*) is a species of concern reported from the vicinity of the proposed work. The handsome sedge is considered a species of concern (formerly known as a Category 2 Candidate species) by the Service and its status is being monitored throughout much of its range. Species of concern do not receive substantive or procedural protection under the Endangered Species Act; however, the Service does encourage Federal agencies and other appropriate parties to consider this species in the project planning process.

The New York State Department of Environmental Conservation (State) requests that you be advised that the peregrine falcon (*Falco peregrinus*), listed as endangered by the State of New York, is known to occur in the vicinity of the project area. The project should, therefore, be coordinated with the State. The State contact for the peregrine falcon is Mr. Peter Nye, Endangered Species Unit, 625 Broadway, Albany, NY 12233 (telephone: [518] 402-8859).

The handsome sedge is also of concern to the State of New York. The State contact for this species is Mr. David VanLeuven, New York State Department of Environmental Conservation, New York Natural Heritage Program Information Services, 625 Broadway, Albany, NY 12233 (telephone: [518] 402-8984).

For additional information on fish and wildlife resources or State-listed species, we suggest you contact the appropriate New York State Department of Environmental Conservation regional office(s) as shown on the enclosed map, and:

New York State Department of Environmental Conservation New York Natural Heritage Program Information Services 625 Broadway Albany, NY 12233 (518) 402-8935

Since wetlands may be present, you are advised that National Wetlands Inventory (NWI) maps may or may not be available for the project area. However, while the NWI maps are reasonably accurate, they should not be used in lieu of field surveys for determining the presence of wetlands or delineating wetland boundaries for Federal regulatory purposes. Copies of specific NWI maps can be obtained from:

> Cornell Institute for Resource Information Systems 302 Rice Hall Cornell University Ithaca, NY 14853 (607) 255-4864

Work in certain waters and wetlands of the United States may require a permit from the U.S. Army Corps of Engineers (Corps). If a permit is required, in reviewing the application pursuant to the Fish and Wildlife Coordination Act, the Service may concur, with or without stipulations, or recommend denial of the permit depending upon the potential adverse impacts on fish and wildlife resources associated with project implementation. The need for a Corps permit may be determined by contacting the appropriate Corps office(s) as shown on the enclosed map.

If you require additional information please contact Michael Stoll at (607) 753-9334.

Sincerely,

Mark W. Cloyd Acting For

David A. Stilwell Field Supervisor

Enclosure

cc: NYSDEC, Avon, NY (Environmental Permits) NYSDEC, Albany, NY (Natural Heritage Program, Attn: D. VanLeuven) NYSDEC, Albany, NY (Endangered Species Unit, Attn: P. Nye) COE, Buffalo, NY

B. Photolog

Photographic Log Abandoned Chemical Sales Facility Site

Camera: Olympus D-600L Zoom Photographers: J. Nickerson, G. Florentino Date: April 4, 2001

Photo B-1 MA Ferrauilo Plumbing building at 1600 Jay Street. This building was constructed in the 1950s.

Photo B-2 Looking north, with MA Ferrauilo Plumbing to the right, and railroad tracks and Valeo Electrical Systems to the left.

Photo B-3 Open field north of MA Ferrauilo Plumbing building at 1600 Jay Street.

Photo B-4 Northern portion of the open field at 1600 Jay Street, and Monroe Extinguisher Company building at 105 Dodge Street.

Photo B-5 Looking north on Dodge Street with Monroe Extinguisher, 105 Dodge Street, (foreground) and Buell Specialty Steel, 107 Dodge Street, (background) shown.

B. Photolog

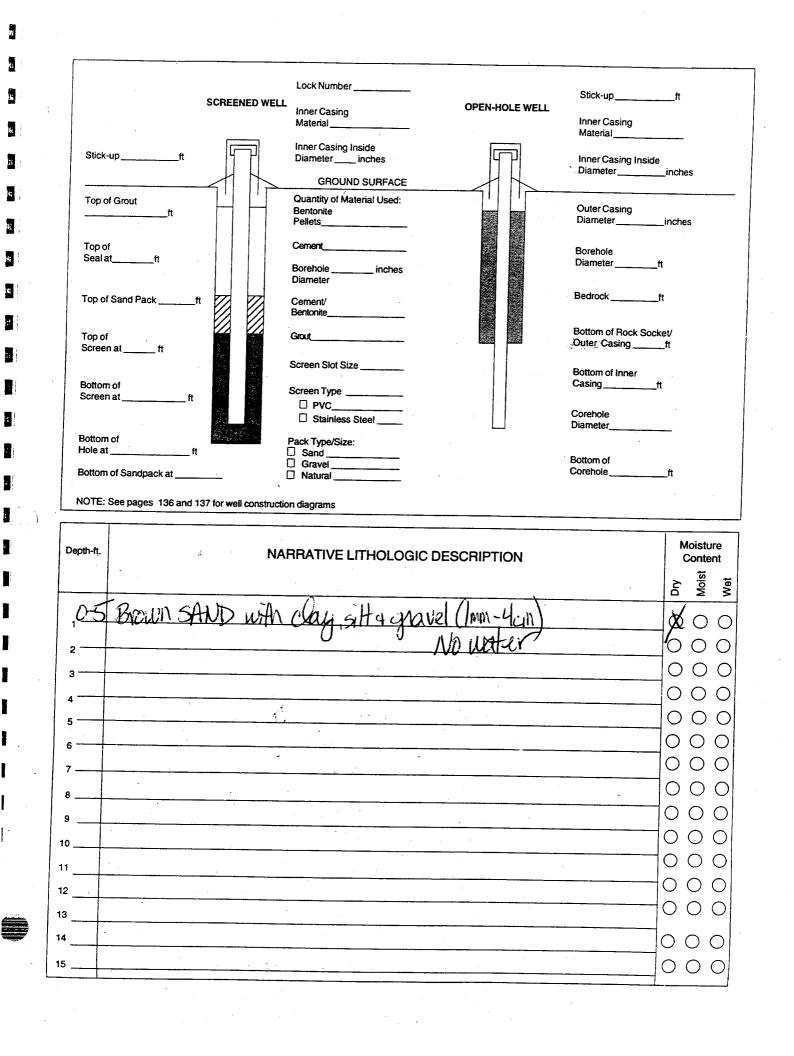

Photo B-6 Buell Specialty Steel (107 Dodge Street).

Photo B-7 Looking north on the east side of Dodge Street with residential apartments to the right. Background surface soil samples were taken on easements between sidewalk and road.

C Geoprobe and Monitoring Well Subsurface Boring Logs

Geoprobe Boring Logs

DRILLING LOG FOR <u>GP-Z</u> ACSF Project Name Water Level (TOIC) Level(Feet) Date Time Rochester M Site Location 11/2/ Date Started/Finished **Drilling Company** innuleusa Matt Matthies Driller's Name _____ Well Location Sketch Reynolds Smith A Geologist's Name __ Geologist's Signature Geoprobe Rig Type (s) _ ÐØ 00 (Sel Drilling Method (s) Auger Size (s) Bit Size (s) _ 5.2 Auger/Split Spoon Refusal î. 2.2 Total Depth of Borehole Is .Total Depth of Corehole Is_ Soil Penetration Core Fracture HNu/OVA Run Sample Blows on ROD Comments Components Depth(Feet) Recovery Sketch (ppm) Times Number Number Sampler **Rock Profile** ĥt CL SL S GR romounhole 452 3 4 1.2 ÷, 2 1457 6 101 g 10 11 12 13 14 15

	SCREENED WELL	Lock Number	OPEN-HOLE WELL	Stick-up	ft
		Material		Inner Casing Material	
Stick-upft		Inner Casing Inside Diameter inches	(T)	Inner Casing Inside	
		GROUND SURFACE			_inches
Top of Grout		Quantity of Material Used: Bentonite		Outer Casing	
ft		Pellets		Diameter	_inches
Top of		Cement		Borehole	
Sealatft		Borehole inches		Diameter	ft
Top of Sand Pack		Diameter Cement/		Bedrock	ft
		Cement/ Bentonite			
Top of		Grout		Bottom of Rock Soc	
Screen at ft		Screen Slot Size		,	
Bottom of		•		Bottom of Inner Casing	
Screen atf		Screen Type		Corehole	
		Stainless Steel		Diameter	
Bottom of Hole at	ft [Pack Type/Size:			
Bottom of Sandpack at	L	Gravel		Bottom of Corehcle	ft
,					
NOTE: Soo poppa 126 and	1074				
NOTE: See pages 136 and	137 for well constructio	n diagrams			
		······································			Moisture
NOTE: See pages 136 and Depth-ft.		n diagrams RRATIVE LITHOLOGIC	DESCRIPTION		Moisture Content
		······································	DESCRIPTION		Content
					Content
	NAF Fill - bla		sand uf grav	1.	Content
				e Hace	
Depth-ft. $1 - 0 - 0.75^{\circ}$ $0.75 - 1.5^{\circ}$	NAF Fill - bla	ARATIVE LITHOLOGIC	sand uf grav	1.	Content
Depth-ft. $1 - 0 - 0.75^{\circ}$ $0.75 - 1.5^{\circ}$	NAF Fill - bla		Sandulgav Figme SiH,	1.	
Depth-ft. $1 - 0 - 0.75^{\circ}$ $0.75 - 1.5^{\circ}$	NAF Fill - bla	ARATIVE LITHOLOGIC	sand uf grav	1.	
Depth-ft. 1 $0-0.75^{\circ}$ 2 $0.75-1.5^{\circ}$ 3 $1.5-2^{\circ}$ 4 $7-3^{\circ}$	NAF Fill - bla	ARATIVE LITHOLOGIC	Sandulgav Figme SiH,	1.	
Depth-ft. 1 $0-0.75^{\circ}$ 2 $0.75-1.5^{\circ}$ 3 $1.5-2^{\circ}$ 4 $7-3^{\circ}$	NAF Fill - bla Brown Avel Black St Black St Black St Black St Black St Black St Black St Black St Black St	A brown free fore sand uf= and of analyst me sand of sand me sand of some	Sandulgav Figme SiH,	1.	
Depth-ft. 1 $0-0.75^{\circ}$ 2 $0.75-1.5^{\circ}$ 3 $1.5-2^{\circ}$ 4 $7-3^{\circ}$	NAF Fill - bla Brown Avel Black St Black St Black St Black St Black St Black St Black St Black St Black St	ARATIVE LITHOLOGIC	Sandulgav Figme SiH,	1.	
Depth-ft. 1 $0-0.75^{\circ}$ 2 $0.75-1.5^{\circ}$ 3 $1.5-2^{\circ}$ 4 $7-3^{\circ}$	NAF Fill - bla Brown Avel Black St Black St Black St Black St Black St Black St Black St Black St Black St	A brown free fore sand uf= and of analyst me sand of sand me sand of some	Sandulgav Figme SiH,	1.	
Depth-ft. 1 $0-0.75^{\circ}$ 2 $0.75-1.5^{\circ}$ 3 $1.5-2^{\circ}$ 4 $7-3^{\circ}$	NAF Fill - bla Brown Avel Black St Black St Black St Black St Black St Black St Black St Black St Black St	A brown free fore sand uf= and of analyst me sand of sand me sand of some	Sandulgav Figme SiH,	1.	
Depth-ft. 1 $0-0.75^{\circ}$ 2 $0.75-1.5^{\circ}$ 3 $1.5-2.7^{\circ}$ 4 $1.5-2.7^{\circ}$ 5 $2-3.5^{\circ}$ 6 $3-4.3$ Br 7 $4.3-5.7^{\circ}$ 8 -3.5° 9 -3.5°	NAF Fill - bla Brown Avel Black St Black St Black St Black St Black St Black St Black St Black St Black St	A brown free fore sand uf= and of analyst me sand of sand me sand of some	Sandulgav Figme SiH,	1.	
Depth-ft. $1 - 0 - 0.75^{\circ}$ $2 - 0.75^{\circ}$ $2 - 0.75^{\circ}$ $3 - 1.5 - 2.9^{\circ}$ $4 - 1.5 - 2.9^{\circ}$ $4 - 2 - 3.5^{\circ}$ 5 - 3 - 4.3 By 6 - 4.3 By 7 - 4.3 By 7 - 4.3 By 8 - 9 9 - 9 $10 - 10^{\circ}$	NAF Fill - bla Brown Avel Black St Black St Black St Black St Black St Black St Black St Black St Black St	A brown free fore sand uf= and of analyst me sand of sand me sand of some	Sandulgav Figme SiH,	1.	
Depth-ft. 1 $0-0.75^{\circ}$ 2 $0.75-1.5^{\circ}$ 3 $1.5-2^{\circ}$ 4 $7-3^{\circ}$	NAF Fill - bla Brown Avel Black St Black St Black St Black St Black St Black St Black St Black St Black St	A brown free fore sand uf= and of analyst me sand of sand me sand of some	Sandulgav Figme SiH,	1.	
Depth-ft. 1 $0-0.75^{\circ}$ 2 $0.75-1.5^{\circ}$ 3 $1.5-2.7^{\circ}$ 4 $2-3.7^{\circ}$ 6 $3-4.3$ B 7 $4.3-5.7^{\circ}$ 8 9 10 11	NAF Fill - bla Brown Avel Black St Black St Black St Black St Black St Black St Black St Black St Black St	A brown free fore sand uf= and of analyst me sand of sand me sand of some	Sandulgav Figme SiH,	1.	
Depth-ft. 1 $0-0.75^{\circ}$ 2 $0.75-1.5^{\circ}$ 3 $1.5-2^{\circ}$ 4 $1.5-2^{\circ}$ 5 $2-3^{\circ}$ 6 $3-43^{\circ}B^{\circ}$ 7 $4.3-5.2^{\circ}$ 8 -9° 10 -11°	NAF Fill - bla Brown Avel Black St Black St Black St Black St Black St Black St Black St Black St Black St	A brown free fore sand uf= and of analyst me sand of sand me sand of some	Sandulgav Figme SiH,	1.	

Proje	ect Name	Acs	F					Wat	er Level (T(DIC)		· · · · · · · · · · · · · · · · · · ·	
Site	Location _	Ra	roster,i	VY		Date		Tin	ne		Level(Fee	t)	
Date	Started/F	inished	12/01										-
	ng Compa	01	<u> </u>						·		· · · · · · ·		-
			Minnule	Vot Ma	thathi	Well Loca	tion Sk	etch					ī
		me <u>57</u>	2 . 1	Sint	L								
		gnature	Verannel	2dis Sh	nith								
		Geor				·		• *					
		1 (s) <u>6e</u>		· (1,5")					•			•	
			Auger Size	(s)									
			3.3										
Total	Depth of	Borehole Is	3.3										
						•••						:	
			- <u></u>		— [
	1		······································		<u> </u>		1		1]`
(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times		Core ecovery		racture Sketch	HNu/OV (ppm)	A	Comr	nents	
(Feet)			Components Rock Profile						(ppm)	n untro	-	nents	
(Feet)			Components Rock Profile						(ppm)	inter	e 2 3-	2356	emp
Feet)			Components Rock Profile						(ppm)	inter	e 2 3-	2356	imp
(Feet)			Components Rock Profile						(ppm)	inter	e 2 3-	2356	imp ;(S
(Feet)			Components Rock Profile						(ppm)	inter	e 2 3-	2356	imp ;cs
(Feet)			Components Rock Profile CL SL S GR						(ppm)	inter	e 2 3-		imp is
(Feet)			Components Rock Profile CL SL S GR						(ppm)	inter	e 2 3-	2356	imp ;(5
(Feet)			Components Rock Profile CL SL S GR						(ppm)	inter	e 2 3-	2356	imp ;(5
(Feet)			Components Rock Profile CL SL S GR						(ppm)	inter	e 2 3-	2356	imp is
(Feet)			Components Rock Profile CL SL S GR						(ppm)	inter	e 2 3-	2356	imp is
(Feet)			Components Rock Profile CL SL S GR						(ppm)	inter	e 2 3-	2356	imp is
(Feet)			Components Rock Profile CL SL S GR						(ppm)	inter	e 2 3-	2356	imp is
(Feet)			Components Rock Profile CL SL S GR						(ppm)	inter	e 2 3-	2356	imp is
h(Feet)			Components Rock Profile CL SL S GR						(ppm)	inter	e 2 3-	2356	imp ics

, , g BJ 1 P ₹ B ₹E Â.

1

٩

				Lock Number		Stick-up	ft
ł			SCREENED WELL	Inner Casing	OPEN-HOLE WELL		**
				Material		Inner Casing Material	·
	Stick	:-upft		Inner Casing Inside Diameter inches		Inner Casing Inside	
				GROUND SURFACE		Diameter	_inches
	Top	of Grout		Quantity of Material Used:			
		ft		Bentonite Pellets		Outer Casing Diameter	inches
	-						
	Top o Seal a	or atft		Cement		Borehole Diameterfi	t
				Borehole inches Diameter			-
	Top of	of Sand Packft		Cement/		Bedrockf	t
				Bentonite			
	Top of Scree	f en at ft		Grout		Bottom of Rock Sock Outer Casing	et/ _ft
				Screen Slot Size		Bottom of low	
	Botton			Screen Type		Bottom of Inner Casingft	
	Screer	natft		PVC			
				Stainless Steel		Corehole Diameter	
	Bottom	n of .tft	<u>F</u>	Pack Type/Size:			
			C	Sand Gravel		Bottom of	
	Bottom	n of Sandpack at	[Natural		Corehole	_ft
	NOTE:	See pages 136 and 1	37 for well construction	n diagrams			· · · ·
		1		· · · · · · · · · · · · · · · · · · ·			
	epth-ft.						Moisture
	epth-ft.		NAF	RATIVE LITHOLOGI			Content
	epth-ft.				C DESCRIPTION		ſ
	epth-ft.	0-3.3			C DESCRIPTION		Content
	1	0-3.3		Sand My gav	C DESCRIPTION		Content
	1	0-3.3			C DESCRIPTION		Content
	1	D-3.3			C DESCRIPTION		Content
	1	D-3.3			C DESCRIPTION		Content
	1 2	D-3.3			C DESCRIPTION		Content
	1 2	0-3.3			C DESCRIPTION		Content
	1 2	0-3.3			C DESCRIPTION		Content
	1 2	0-3.3			C DESCRIPTION		
	1 2	0-3.3			C DESCRIPTION		
	1 2	0-3.3			C DESCRIPTION		
		D-3.3			C DESCRIPTION		
5 6 7 8 9		0-3.3			C DESCRIPTION		
5 6 7 8 9 10		D-3.3			C DESCRIPTION		
E E F F F F F F F F F F F F F F F F F F		0-3.3			C DESCRIPTION		
10 11 12 13		D-3.3			C DESCRIPTION		
E E F F F F F F F F F F F F F F F F F F		0-3.3			C DESCRIPTION		
10 11 12 13		D-3.3			C DESCRIPTION		

DRILLING LOG FOR . 6P Ĉ Project Name Water Level (TOIC) Date Level(Feet) Time NOT ΠA Site Location Date Started/Finished Drilling Company 7 M. 4 Matt M. 7 Driller's Name Well Location Sketch Geologist's Name SRUM Geologist's Signature GLORNO Rig Type (s) ____ Drilling Method (s) Bit Size (s) Auger Size (s) _ ln Auger/Split Spoon Refusal 6.1 Total Depth of Borehole Is _ .Total Depth of Corehole Is_ Soil Penetration HNu/OVA Sample Blows on Run Core Fracture Components ROD Depth(Feet) Comments Number Times Recovery Sketch Sampler Number (ppm) **Rock Profile** CL SL S GR H >100 Doluthole DBZ (Breathing zme) ٠. 3.5 1526 L 1501 2 з NOVC 4 50241 7065 ×. 1531 full 2 5 10 11 12

14

15

E Г Ũ L. 11 12 E E ΠĽ. 115 Ξŝ H. 11 T.

.

	SCREENED WELL	Lock Number Inner Casing Material	OPEN-HOLE WELL	Stick-up Inner Casing Material	
Stick-upft		Inner Casing Inside Diameter inches GROUND SURFACE		Inner Casing Inside	
Top of Grout		Quantity of Material Used: Bentonite Pellets		Outer Casing Diameter	_inches
Top of Seal atft		Cement Borehole inches Diameter		Borehole Diameterf	'n
Fop of Sand Packft		Cement/ Bentonite		Bedrock	
Fop of Screen at ft		Grout		Bottom of Rock Sock Outer Casing	ket/ _ft
Bottom of Screen at ft		Screen Type		Bottom of Inner Casingf Corehole	t .
ottom of lole atft	[Stainless Steel Pack Type/Size: Sand Sand		Diameter	
ottom of Sandpack at	L	Gravel		Corehcle	ft
OTE: See pages 136 and 13	7 for well constructio	n diagrams			
	NAF	RATIVE LITHOLOGIC [DESCRIPTION		Moisture Content
	NAF	RATIVE LITHOLOGIC I			
0-1 Bla 1-4 B	uk sam	dy stavelly fill e sand up for	dry note conpose of	uve/	
	uk sam	dy stavelly fill e sand up for	dry	uvi/ 4	
	uk sam	dy stavelly fill e sand up for	dry note conpose of	ravé/ y	
	uk sam	dy stavelly fill e sand up for	dry note conpose of	rave/ y	
	uk sam	dy stavelly fill e sand up for ne sand, trace	dry note conpose of	uve/ y	
	uk san nown fin Shown fi	dy stavelly fill e sand up for ne sand, trace	dry note conpose of	ravé/ y	
	uk san nown fin Shown fi	dy stavelly fill e sand up for ne sand, trace	dry note conpose of	ravé/ y	
	uk san nown fin Shown fi	dy stavelly fill e sand up for ne sand, trace	dry note conpose of	vavil/ y	
	uk san nown fin Shown fi	dy stavelly fill e sand up for ne sand, trace	dry note conpose of	<u>vavil</u> y	
	uk san nown fin Shown fi	dy stavelly fill e sand up for ne sand, trace	dry note conpose of	vivi/ y	
	uk san nown fin Shown fi	dy stavelly fill e sand up for ne sand, trace	dry note conpose of	vive/ y	
	uk san nown fin Shown fi	dy stavelly fill e sand up for ne sand, trace	dry note conpose of	vave/ y	

Proje	ct Name	ACS	F					Wat	ter Level (TOIC	 C)	
•	_ocation _		107ton N	}		Da	ate	· · · · · · · · · · · · · · · · · · ·	me	Level(Feet))
Sile L	_ocauon _	491									
		;	Julala		<u> </u>						
Date	Started/Fi	inished <u> </u>	11401	<u></u>							
Drillin	ig Compa	· · ·	JB 1	A G M Y	<u> </u>					·····	
	r's Name ;		Minnales M	Vatt Mat	thies	Well L	ocation	Sketch			
Geolo	ogist's Na	ne <u>5, k</u>	ernolds :	5min	~ ~~~						
		nature 🛫	IN ADU	homi	p						
		Seoper	r 11 ·	~	_			• *			
		(s)	. 1								
			V	(-)							
			Auger Size	(S)							
Auge	r/Split Spo	on Refusa									
l'otal .	Depth of I	Borehole is	6.4								
Fotai	Depth of	Corehole Is	5 <u>`</u>		·				·		
·						L					J
			Soil				II		1	1	
					1 1		1 1				
(Feet)	Sample Number	Blows on Sampler	Components	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Comm	nents
(Feet)				1	1		RQD		(ppm)		n ents
(Feet)			Components Rock Profile	Times	1		RQD		(ppm)	Comm	nents
Feet)			Components Rock Profile	Times	Number	Recovery	RQD		(ppm)		nents
(Feet)			Components Rock Profile	Times	1	Recovery	RQD		(ppm)		nents
			Components Rock Profile	Times	Number	Recovery	RQD		(ppm)	nhete	nents
			Components Rock Profile CL SL S GR	Times	Number	Recovery	RQD		(ppm)	nhete	nents
			Components Rock Profile	Times	Number	Recovery 3ff	RQD		(ppm) 7100 chin 2000 pp	nhole	
			Components Rock Profile CL SL S GR	Times	Number	Recovery	RQD		(ppm) 7100 chin 2000 pp	nhole	
			Components Rock Profile CL SL S GR	Times	Number	Recovery 3ff	RQD		(ppm) 7100 chin 2000 pp	nhole	
			Components Rock Profile CL SL S GR	Times	Number	Recovery 3ff	RQD		(ppm) 7100 chin 2000 pp	nhole	
			Components Rock Profile CL SL S GR	Times	Number	Recovery 3ff	RQD		(ppm) 7100 chin 2000 pp	nhole	
			Components Rock Profile CL SL S GR	Times	Number	Recovery 3ff	RQD		(ppm) 7100 chin 2000 pp	Ticoppme Scrivple	55.7 5-5.5 441
(Feet)			Components Rock Profile CL SL S GR	Times	Number	Recovery 3ff	RQD		(ppm) 7100 chin 2000 pp	Ticoppme Scrivple	55.7 5-5.5 441
(Feet)			Components Rock Profile CL SL S GR	Times	Number	Recovery 3ff	RQD		(ppm) 7100 chin 2000 pp	Ticoppme Scrivple	5-5.5 441
			Components Rock Profile CL SL S GR	Times	Number	Recovery 3ff	RQD		(ppm) 7100 chin 2000 pp	Ticoppme Scrivple	55.7 5-5.5 441
			Components Rock Profile CL SL S GR	Times	Number	Recovery 3ff	RQD		(ppm) 7100 chin 2000 pp	Ticoppme Scrivple	55.7 5-5.5 441

i

HE.

		Lock Number		Stick-upft
1	SCREENE	D WELL Inner Casing Material	OPEN-HOLE WELL	Inner Casing
		Inner Casing Inside	[]	Material
Stick	upft	Diameter inches		Inner Casing Inside Diameterinches
		GROUND SURFACE		
	f Groutft	Quantity of Material Used: Bentonite Pellets		Outer Casing Diameterinches
Top o	e	Cement		
	tft	Borehole inches		Borehole Diameterft
Top of	Sand Packft	Diameter Cement/		Bedrockft
		Bentonite		
Top of Scree	natft	Grout		Bottom of Rock Socket/ Outer, Casingft
		Screen Slot Size		Bottom of Inner
Botton Screer	nof natft	Screen Type		Casingft
		PVC Stainless Steel		Corehole Diameter
Bottom Hole at	rofft	Pack Type/Size:		· · · ·
Bottom	of Sandpack at	Gravel		Bottom of Coreholeft
NOTE:	See pages 136 and 137 for well c	v		
	I			
Depth-ft.		NARRATIVE LITHOLOGIC		Moisture Content
Depth-ft.		NARRATIVE LITHOLOGIC		Content
Depth-ft.	0-3 For ha		DESCRIPTION	Content Solution Content
Depth-ft.	0-3 Fine Av			Content Solution Content
1	34 Fine p		DESCRIPTION	Content La terms La term
1	34 Fine pr Meist	oun sand, gome in	DESCRIPTION 42-COASE 921 2 Clay, trace	Content Solution Content
1	34 Fine pr Meist	oun sand, gome in	DESCRIPTION	Content A TO A TO
1	34 Fine pr Meist	oun sand, gome in	DESCRIPTION 42-COASE 921 2 Clay, trace	Content La terms La term
1	34 Fine pr Meist	oun sand, gome in	DESCRIPTION 42-COASE 921 2 Clay, trace	Content A TO A TO
1	34 Fine pr Meist	oun sand, gome in	DESCRIPTION 42-COASE 921 2 Clay, trace	Content A 200 A 200
1	34 Fine pr Meist	oun sand, gome in	DESCRIPTION 42-COASE 921 2 Clay, trace	Content A 200 A 200
1	34 Fine pr Meist	oun sand, gome in	DESCRIPTION 42-COASE 921 2 Clay, trace	Content A 30 0 A 400 0 A 40
1	34 Fine pr Meist	oun sand, gome in	DESCRIPTION 42-COASE 921 2 Clay, trace	Content <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u> <u>is</u>
1 2 3 4 5 6 7 8 9 10	34 Fine pr Meist	oun sand, gome in	DESCRIPTION 42-COASE 921 2 Clay, trace	Content A A A A A A A A A A
1 2 3 4 5 6 7 8 9 10 11	34 Fine pr Meist	oun sand, gome in	DESCRIPTION 42-COASE 921 2 Clay, trace	Content A A A A A A A A A A
1 2 3 4 5 6 7 8 9 10 11 12	34 Fine pr Meist	oun sand, gome in	DESCRIPTION 42-COASE 921 2 Clay, trace	Content A A A A A A A A A A

DRILLING LOG FOR __ <u>67-6</u> Project Name Water Level (TOIC) exporter N Date Time Level(Feet) Site Location 12/0 11 Date Started/Finished Drilling Company toMuleus Driller's Name Well Location Sketch 働 J iN ß Geologist's Name Geologist's Signature (glowi Rig Type (s) _ OP Drilling Method (s) Auger Size (s) Bit Size (s) 4.5 Auger/Split Spoon Refusal Total Depth of Borehole Is Total Depth of Corehole Is. Soil Sample Blows on Penetration Run Core Fracture HNu/OVA ROD Depth(Feet) Components Comments Times Number Sampler Number Recovery Sketch (ppm) **Rock Profile** CL SL S GR 1 mille -i) (03 1 MA 2 з Z 1425 6.5 Ø 5 6 7 8 9 10 11 12 13 14 15

Æ

£

山銀

5 E

17

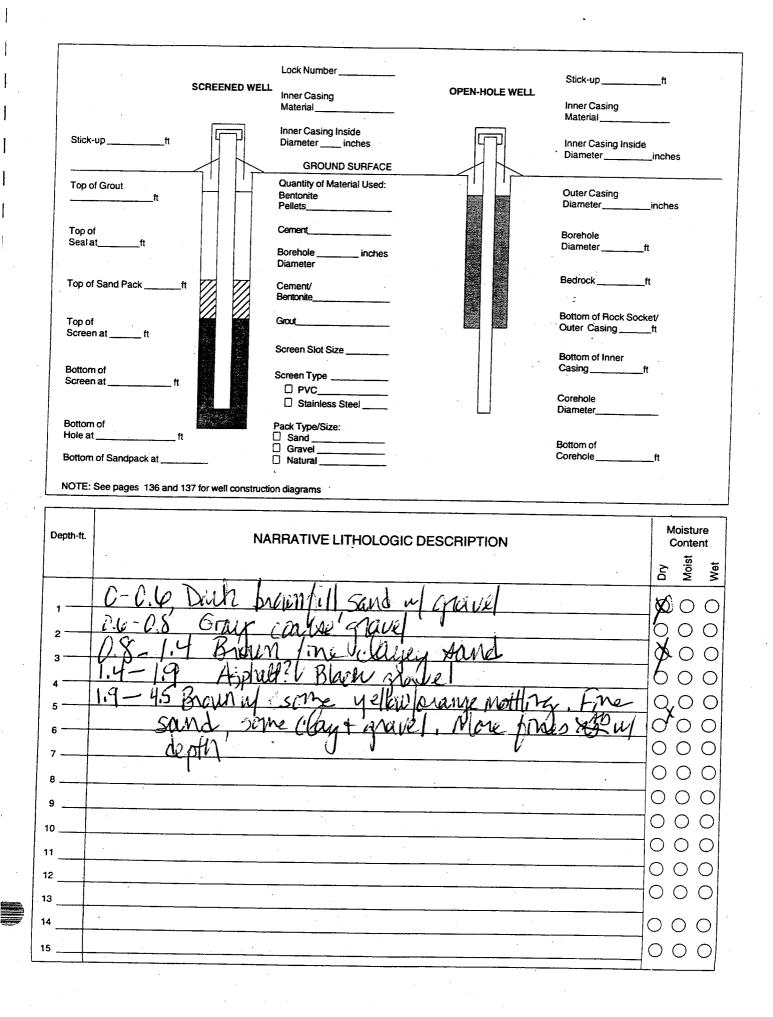
11

1

23

- R 5

R Y


8 S

T.

10

Ċ.

11

Project Name Water Level (TOIC) Date Time Level(Feet) Site Location Date Started/Finished 1 **Drilling Company** mulas M.M.M. ès. Driller's Name Well Location Sketch tra Geologist's Name Geologist's Signature Rig Type (s) CCPTO De Drilling Method (s) DEOR Bit Size (s) Auger Size (s) ί í Auger/Split Spoon Refusal l L Total Depth of Borehole Is .Total Depth of Corehole is Soil Sample Blows on Penetration Run Core HNu/OVA Fracture Depth(Feet) RQD Components Comments Numbe Sampler Times Skatak

Ľ

E

E

1

12

E

I B

Ţ

I E I

¥.

¥1

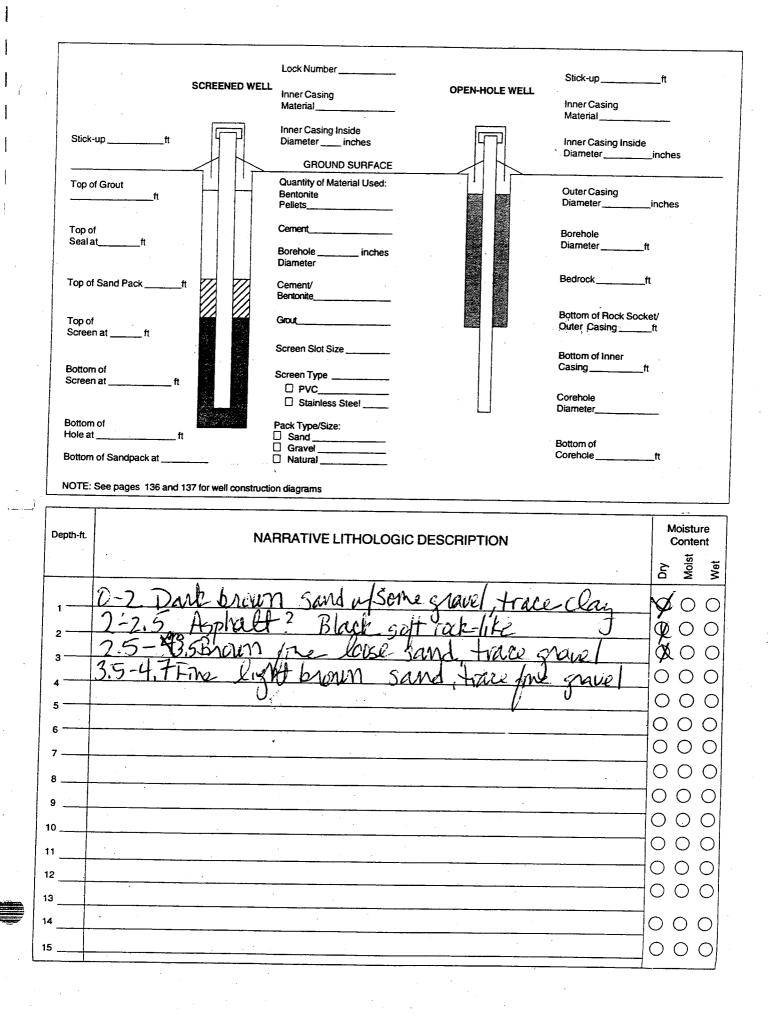
T

X E

87

ВE

. 181. -


ВĊ

1.1

11

Ц.

		Number	Sample	Rock Profile CL SL S GR	Times	Number	Recovery		Sketch	(ppm)	
1										ippindo	unlule-
2	2			-	1630	_	3.3	-		$\left[\phi \right] $	_
3	,							_			
4		2		**	1443		0.7			$\top p^-$	- 1 - 2
5	-	1					—			<u> </u>	nowoser
6		-		······································		<u></u>	_	-			Swimp J.J.F
7								_			NOWESTER SWMPELTER SWMPELTER J-4.7 VULS (16:47)
8		+						· _		<u> </u>	- (16:41)
9				-					·		
10						_		_			- -
11						·	<u>. </u>				
12	<u> </u>	+ ·				_	-	-		<u> </u>	-
13						_	-	-		-	
14				-		-+	I		<u> </u>	├	
15	· <u> </u>							- +			<u> </u>

DRILLING LOG FOR <u>6PS</u> Project Name Water Level (TOIC) Date Time Level(Feet) Site Location 11/12 Date Started/Finished Drilling Company millers M. Matthies Driller's Name Well Location Sketch Ŷ Geologist's Name Geologist's Signature Rig Type (s) Drilling Method (s) Bit Size (s) Auger Size (s) a Auger/Split Spoon Refusal 4 .q Total Depth of Borehole is .Total Depth of Corehole Is_ Soil Blows on Sample Penetration Run Core Fracture HNu/OVA ROD Depth(Feet) Components Comments Number Sampler Times Number Recovery Sketch (ppm) **Rock Profile** ft CL SL S GR 19 1 (Ð\$ 105 2 -3 107 з 4 OA Ø 1° . . 6 Deffe 7 8 9 10 11 12 13 14 15

. E 1 66 18 111 Ţ 188 : E Ş £ is E E 12 4 8.5 5.8 8 62 **7** E

1

E

	SCREENED WEL	Lock Number L Inner Casing	OPEN-HOLE WELL	Stick-up	ft
		Material		Inner Casing Material	
Stick-upft		Inner Casing Inside Diameter inches		Inner Casing Insid	e inches
Top of Grout		GROUND SURFACE Quantity of Material Used:			
ft		Bentonite Pellets		Outer Casing Diameter	_inches
Top of		Cement		Borehole	
Sealatft		Borehole inches Diameter		Diameter	_ft
Top of Sand Packft		Cement/		Bedrock	_ft
Top of		Bentonite		Bottom of Rock Soc	*et/
Top of Screen at ft		· ·		Outer Casing	ft
Bottom of		Screen Slot Size		Bottom of Inner Casing	ft
Screen at ft		Screen Type		Corehole	
Bottom of		Stainless Steel Pack Type/Size:		Diameter	
Hole atft		Sand Gravel		Bottom of	
Bottom of Sandpack at		Natural		Corehcie	ft
NOTE: See pages 136 and 13	37 for well construct	ion diagrams			
Depth-ft.	NZ	ARRATIVE LITHOLOGIC			Moisture
			DESCRIPTION		
0-0-2 -		Al)	Dry Moist Wet
1 0-0.7	Tupsail I		sanizrich, cl	ayey sand	$0 \propto 0$
2 25-28	Brown Tac	fine sand of	coalse grave		QOO
3 <u>4-49</u>	I relit he	DIGUN TO CLOUK,	brown san	d	
4	right p	oun que sur	d		800
5		<u>.</u>			
7	u	A.		· · · · · · · · · · · · · · · · · · ·	000
8	· · · ·			· · · · · · · · · · · · · · · · · · ·	000
9			· ·		000
0					000
1				······································	000
2			······································		000
·		· · ·			
					000
				• •	000

ſ		LING LÓ		Pq				. <u></u>	· · · ·		<u> </u>	
Proje	ect Name	ALSF						Wat	ter Level (TOI	C)		
Site	Location _	Kane	ster, N	·····			ate	Tir	ne	Leve	I(Feet)	
					<u> </u>							
	Started/F	Ć	11/12/01									
	ng Compa er's Name	1	nk Ation	Neus	· · · · ·	Well I	ocation	n Sketch				
	ogist's Na	51	eunoda	SIAM			oution	I OKEICH				
	-	gnature	RE NO	A.S	ith	+					·	
		Geor	Tokel		<u>→</u> +\							
		1 (s) <u>Cell</u>		(1.5"	Kieks)							
Bit Si	ze (s)		Auger Size	(s)								
		oon Refusa	~ . li									
		Borehole Is										
Total	Depth of	Corehole is	S	·								
					[]	- ··· .			1	1		· · · ·
Depth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)		Comments	:
						<u>V</u>			20 Don	hole	de	-3-4
ı'				m18		-2,4'	-		502	- Saw	vele VUC	adr i
2						1	-	<u> </u>	763-3,	トーレー	fyci	J
3											15	
5					 	-	_	· _	<u> </u>	Cottin	ala	
,						_	_		+	Alta	on dri	mine
				• •	-		_		+	LOIN	and the	
3						_		`				
,					· .]	_			<u> </u>			
·					-+	-						
2					-+	-	-		╄ -			
з —					-+	-			<u> </u>	-		
·					-+			<u> </u>	+	_		
s ·	. 1	1 1										

1

i f

I.

12

RE

U T

Ţ

Depth-t.NARRATIVE LITHOLOGIC DESCRIPTIONMoisture Content $B = \frac{3}{2} = \frac{3}{2}$ 100020003Molecclays Moisture M deptin00400050006000700080009000100020003000400050006000700080009000100020003000	Hole at ft	Inner Casing Material Inner Casing Inside Diameterinches GROUND SURFACE Quantity of Material Used: Bentonite Pellets Cement Boreholeinches Diameter Cement/ Bentonite Grout Screen Slot Size Screen Type PVC Stainless Steel Pack Type/Size: Sand Natural	OPEN-HOLE WELL	Stick-up Inner Casing Material Inner Casing Inside Diameter Outer Casing Diameter Borehole Diameter Bothom of Rock Sock Outer Casing Bottom of Rock Sock Outer Casing Bottom of Inner Casing Corehole Diameter Bottom of Corehole	_inches _inches t t t t t t t
	1 0-0.8F,1] Brave 2 0.8-3.4 Brow 3 More Clayst Me 4 5 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9	n the sand n the sand pistice of de	<u>^</u>	+gravet	

ł

DRILLING LOG FOR _6PID Project Name Water Level (TOIC) Date Time Level(Feet) Site Location 1 Date Started/Finished Drilling Company Driller's Name Well Location Sketch 6 .Ke Geologist's Name Geologist's Signature Rig Type (s) Drilling Method (s) Auger Size (s) Bit Size (s) 3.35' Auger/Split Spoon Refusal _ Total Depth of Borehole Is 3.35 .Total Depth of Corehole Is_ Soil Blows on Penetration Run Sample Core Fracture HNu/OVA RQD Depth(Feet) Components Comments Sampler Times Recovery Number Sketch Number (ppm) **Rock Profile** ħ CL SL S GR >100 idunto 29 1 0820 335 . 1 2 50(~2.9 Sar з 4 ÷ 5 6 7 8 9 10 11 12 13 14 15

I

i

E

Г

E.

1

:6

H.

11

₽1

¥8

1

ĉБ

I E

1

Ē.

1

1						
		SCREENED WELL	Lock Number	OPEN-HOLE WELL	Stick-up	ft
	:		Inner Casing Material		Inner Casing Material	
s	tick-upft		Inner Casing Inside Diameter inches		Inner Casing Inside Diameter	
-	· · · ·		GROUND SURFACE			
	op of Groutft		Quantity of Material Used: Bentonite Pellets		Outer Casing Diameter	_inches
	opof ealatft		Cement		Borehole	
			Borehole inches Diameter		Diameterf	ſ
То	p of Sand Pack		Cement/ Bentonite		Bedrockf	
	p of reen at ft		Grout		Bottom of Rock Sock Outer Casing	et/ _ft
			Screen Slot Size		Bottom of Inner	
	ttom of reen at ft		Screen Type		Casingft	1
			Stainless Steel		Corehole Diameter	
Bot Ho	Itom offt	t [Pack Type/Size:		Bottom of	
Bot	tom of Sandpack at	[Gravel Natural		Corehole	ft
NO	TE: See pages 136 and	137 for well constructio	n diagrams			· · ·
						Moisture
Depth	-ft.	NAF	RRATIVE LITHOLOGIC	DESCRIPTION		Content
[1 0
		<u> </u>			-	Dry Moist
1	0-0.9 F	Il Black	sandy gravel			
1-2-	0-0.9f	4 Brow	Swind - Cure	1 u/some gra	VR]	
1	$\begin{array}{c} 0 - 0.9 \ \tilde{F} \\ 0.9 - 2 \\ 2.4 - 3.4 \\ 3.4 \end{array}$	-11 Black 4 Brow F Clayey	Swind - Cure	Julsome gia damp	ve]	000
1 2 3 4	$\begin{array}{r} 0 - 0.9 \ \overrightarrow{F} \\ 0.9 - 2 \\ 2.4 - 3.4 \\ 2.$	4 Brow F Clayey 1-2.6 Bro	n clayey sand	lu/some gia damp		000
1 2 3 4 5	$\begin{array}{r} 0 - 0.9 \ F \\ 0.9 - 2 \\ 2.4 - 3.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.4 \\ 2.1 \\ 2.1 \\ 2.1 \\ 2.1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	4 Brow F Clayey 1-2.6 Bro	Swind - Cure	damp damp	vi2]	000
	$ \begin{array}{r} 0 - 0.9 \\ \hline 0.9 \\ - 2.4 \\ - 3.4 \\ \hline 2.4 \\ - 3.4 \\ \hline 3.1 \\ \end{array} $	4 Brow F Clayey 1-2.6 Bro	n clayey sand	lu/some gia damp 1 Mittling		000
1 2 3 4 5 6 7 8	$ \begin{array}{r} 0-0.9 \\ \hline 0.9 \\ -2.4 \\ -3.4 \\ -2.4 \\ -3.1 \\ \hline 3.1 \\ \end{array} $	4 Brow F Clayey 1-2.6 Bro	n clayey sand	lu/some gra damp r motting		000
1 2 3 4 5 6 7 8 9	$ \begin{array}{r} 0 - 0.9 \\ \hline 0.9 \\ - 2.4 \\ - 3.4 \\ \hline 2.4 \\ - 3.4 \\ \hline 2.4 \\ \hline 3.1 \\ \hline 3.1 \\ \hline \end{array} $	4 Brow F Clayey 1-2.6 Bro	n clayey sand	lu/some gra damp NMAHIng		000
1 2 3 4 5 6 7 8 9 10	$ \begin{array}{c} 0 - 0.9 \\ \hline 0.9 \\ - 2.4 \\ - 3.$	4 Brow F Clayey 1-2.6 Bro	n clayey sand	lu/some gra damp NMAHIng		000
9	$ \begin{array}{c} 0 - 0.9 \\ \hline 0.9 \\ - 2.4 \\ - 3.$	4 Brow F Clayey 1-2.6 Bro	n clayey sand	lu/some gra damp NMAHIng		000
9	0 - 0.9 F 0.9 - 2 2.4 - 3.4 2.4	4 Brow F Clayey 1-2.6 Bro	n clayey sand	lu/some gra damp NMAHIng		000
9 10 11	$0 - 0.9 \tilde{F}$ 2.9 - 2 2.4 - 3.4 2.4 2.4 3.1 3.1	4 Brow F Clayey 1-2.6 Bro	n clayey sand	lu/some gra damp r mottling		000
9 10 11 12	$0 - 0.9 \tilde{F}$ 2.9 - 2 2.4 - 3.4 2.4 2.4 3.1 3.1	4 Brow F Clayey 1-2.6 Bro	n clayey sand	lu/some gra damp r mottling		000

Site Location Date Started/Finished Date Started/Finished 11/13/81 Date Started/Finished Drilling Company SIB Differs Name Fracture Ceologist's Name Supply Signature Supply Pilig Type (s) CCIPY Differs Name Supply Differs Name Supply Pilig Type (s) CCIPY Differs Name Super Size (s) Auger/Split Spoon Returns Image Size (s) Auger/Split Spoon Returns Ponetration Ponetration Puncture Recovery ROD Practure HNumber Recovery ROD Sample Blows on Cost motion Cost Total Depth of Corehole is Image Differed Sample Sample Blows on Cost motion Cost Total Core Total Cost Total Ponetration Cost Total Ponetration Cost Total Ponetration Cost Total Cost Total	Ртој€	ect Name	ACST						Wat	er Level (TO	IC)]
Drilling Company SB Driller's Name SRAK N i NIVEL'S Geologist's Name SRAW MdS SMAT Geologist's Signature C A MdS SMAT Rig Type (s) C D C A (1.5' 120 S) Drilling Method (s) Aleo PO D C Bit Size (s) Auger Size (s) Auger/Split Spoon Refusal 1.7 ' B CS Total Depth of Borehole Is Total Depth of Corehole Is Total Depth of Corehole Is Biovs on Sampler Rock Profile CL SL S GR Penetration Run Core Rock Profile CL SL S GR PENEtral A (1.5' 120 S) Comments (05':57) Statch (05':57) Statch (1.5' 120 S) (1.16 SMW PLEC	Site	Location _	Factor	TO M			Da	ate	Tir	ne	Le	vel(Feet)		
Drilling Company SB Drillier's Name Frank Driller's Name Frank Geologist's Name SRUH Bit Size (s) Auger Size (s) Auger/Split Spoon Refusal 1.7 Total Depth of Borehole Is Total Depth of Corehole Is				·										
Drilling Company SB Drillier's Name Frank Driller's Name Frank Geologist's Name SRUH Bit Size (s) Auger Size (s) Auger/Split Spoon Refusal 1.7 Total Depth of Borehole Is Total Depth of Corehole Is	Date	Started/F	inished	111301		·					·			
Geologist's Name S. R.U.J. Wild's S. W.H. Geologist's Signature H.O.Y. Wild's S. W.H. Rig Type (s) C.U.P.K. (1.5" 12d 5) Drilling Method (s) Allor P.O.Dec Bit Size (s)			C f	B						· · · · · ·			·	
Geologist's Signature High Shift Rig Type (s) CUPP A (1.5 ¹) Rd S Drilling Method (s) Hill PO Be	Drille	r's Name	Frank		nuleus		Well Lo	ocation S	Sketch				. 1	
Rig Type (s) CUPY A: (1.5' 120 5) Drilling Method (s) Auger Size (s) Bit Size (s)	Geol	ogist's Na	me <u>S.R</u>	ey rolds.	Swith									
Drilling Method (s) Allo PObe Bit Size (s)			. 1	VAL + L	1511P	11-								
Drilling Method (s) Allo PObe Bit Size (s)	Rig T	ype (s)	XIPI	ke U (1	.5" va	15			۰. ۲					
Bit Size (s) Auger Size (s) Auger/Split Spoon Refusal I.7 'BCS Total Depth of Borehole Is Total Depth of Corehole Is Total Depth of Corehole Is Total Depth of Corehole Is pth(Feet) Sample Blows on Soil Components Rock Profile CL SL S GR Penetration Run Core Recovery HQD Fracture Sketch HNu/OVA Comments Rock Profile CL SL S GR Ø&H5 1.5	Drillir	ng Method	(s) 1	opoto	د									
Auger/Split Spoon Refusal 1.7 'BCS				1										
Total Depth of Borehole Is														
Total Depth of Corehole Is														
pth(Feet) Sample Blows on Soil Components Rock Profile CL SL S GR Penetration Times Number Recovery H RQD Fracture Sketch (ppm) Comments Sketch (ppm) Comments Sketch (ppm) Comments CL SL S GR CK Profile CL SL S GR CK Pro										·				
pth(Feet) Sampler Sampler Sampler Components Rock Profile CL SL S GR Penetration Times Number Recovery H RQD Fracture Sketch (ppm) Comments Comments							L]	
Penetration Run Corre RQD Fracture HNu/OVA (ppm) Comments Sampler Sampler CL SL S GR Profile CL SL S GR PK45 (1.5		1				· · ·				1				
	epth(Feet)			Components				RQD				Commer	nts	
		1		CL SL S GR			H	İ	CACION	(ppm)		•		
				CL SL S GR	- CIVE		H.				Car	noll	J.O	
		: :		CL SL S GR	0845	1	H 1.5		-	- \$\$ -	Sar	Nple 3-1.7	Jon 115	-
				CL SL S GR	0845	(H 1.5			- ¢ -	_ Sav	Npl 1 3-1.7	TON 165 571	-
				CL SL S GR	0845	1	# 1.5			(1,1,1) - Ø - 	San	Nole 3-1.7 108:	102 165 57)	-
					0845	1	# 1.5 -		-	(1,1,1) - Ø - 	San 1. - (11	108: 3-1.7 108: 08:	for 15 15 Note	- La)
					0845				-		San I.	108: 3-1.7 (08: 08:	102 15 57) Ngli	- la)
					0845		# 1.5 -		-		_ San	108: 3-1.7 (08: a san	102 15 15 15 15	ed)
					0845						San I.	108: 2-1.7 108: 08:	102 155 157) 1966	22)
					0845				-		_ San	1092 3-1.7 108: a Savi	102 155 151) 196	ed)
					0845				-		San	1092 3-1.7 108: 008:	102 15 15 19	id)
					0845				-			1092 3-1.7 108: 08: 08:	102 15 15 196	ed)
					0845				-			12-1.7 2-1.7 108: a Savi	102 15 15 196	ed)
					0845							108: 3-1.7 108: a savi	102 15 15 19	ed)

				;;;,,		
			Lock Number		Stick-up	#
		SCREENED WELL	Inner Casing Material	OPEN-HOLE WELL	Inner Casing Material	
	Stick-upft		Inner Casing Inside Diameter inches GROUND SURFACE		Inner Casing Inside	9
	Top of Grout		Quantity of Material Used: Bentonite Pellets		Outer Casing Diameter	_inches
	Top of Seal atft		Cement Borehole inches Diameter		Borehole Diameter	ft
	Top of Sand Packft		Cement/ Bentonite		Bedrock	•
	Top of Screen at ft		Grout Screen Slot Size		Bottom of Rock Soc Outer Casing	ket/ ft
	Bottom of Screen at ft		Screen Type		Bottom of Inner Casing	ft
	Bottom of Hole atft	[Stainless Steel Pack Type/Size: Sand		Diameter	
	Bottom of Sandpack at	L	Gravel Natural		Corehcie	ft
	NOTE: See pages 136 and 13	37 for well constructio	n diagrams			
D	epth-ft.	NAF	RRATIVE LITHOLOGIC	DESCRIPTION		Moisture Content
┝	0-012	Raum	00		<u>)</u>	Dry Moist Wet
	-0 RI1	AMAR N	Clayey 3an		Lower	
	D-	0.4	ioning , org -a	amp organi	c ricka	
4			CP		<u>^</u>	000
5	- 1º0Ve ove	r a fell	doct 116 -	1.5 to jetus	al	000
6		<u> </u>	ACOVIL SAM	e Walfrid		
7					<u></u>	
8 9					·	000
10						000
11		· · · · · · · · · · · · · · · · · · ·				000
12		· · · · · · · · · · · · · · · · · · ·				
13						
14						1 1 1 1 1 1 1

Ľ	DRILI												
Proje	ect Name	AC	SF			[14/	ater Level				-
		Palu	ter IN			D	ate		Time		Level(Feet)		
Site	Location _	Frill											
					· <u> </u>								
Date	Started/F	inished	11/13/0									· · · · · · · · · · · · · · · · · · ·	
Drilli	ng Compa	anv (SIR							-			
		From	R Min	Noley	5			Sketch		1			
		· ~	$\overline{}$		<u> </u>	aven L	ocation	Sketch					
Geol	logist's Na	ime	Keyible	SDAIL	<u>II</u> Ja							W	
Geol	logist's Si	gnature	speeppe	1 m	1 T								
Rig 1	Гуре (s)	XKOD	Ne	[].5"[Eds)			÷ ·					
		- 1.	eopoke	ン)								
			1										
			Auger Size	(s)									
Auge	er/Split Sp	oon Refusa	3.5										
		Borehole is										1	
Total	Danth of					1							
		Corehole le	•										
	Depth of	Corehole Is	; <u>.</u>		-		•						
		Corehole Is	·		-		•						
epth(Feet)	Sample Number	Blows on	Soil Components Rock Profile	Penetration Times		Core Recovery	RQD	Fracture Sketch	HNu/C (ppr		Comm	ents	
	Sample	Blows on	Soil	Penetration	Run		RQD		(ppr	n)	Comm	ents	
	Sample	Blows on	Soil Components Rock Profile	Penetration	Run		RQD		(ppr		Comm	ents	
	Sample	Blows on	Soil Components Rock Profile	Penetration	Run		RQD		(ppr	n) nauritude - Gal	mple	for	
	Sample	Blows on	Soil Components Rock Profile	Penetration	Run	Recovery H	RQD		(ppr	n)	mple	for	D D
	Sample	Blows on	Soil Components Rock Profile	Penetration	Run	Recovery H	RQD		(ppr	$\frac{1}{2}$	mple 3 JN	ton 5 (Cq:	V
· · · · · · · · · · · · · · · · ·	Sample	Blows on	Soil Components Rock Profile	Penetration	Run	Recovery H	RQD		(ppr	$\frac{1}{2}$	mple 3 JN	ton 5 (Cq:	D)
	Sample	Blows on	Soil Components Rock Profile CL SL S GR	Penetration	Run	Recovery H	RQD		(ppr	$\frac{1}{2}$	mple	ton 5 (Cq:	U)
	Sample	Blows on	Soil Components Rock Profile CL SL S GR	Penetration	Run	Recovery H	RQD		(ppr	$\frac{1}{2}$	mple 3 JN	ton 5 (Cq:	U)
	Sample	Blows on	Soil Components Rock Profile CL SL S GR	Penetration	Run	Recovery H	RQD		(ppr	$\frac{1}{2}$	mple 3 JN	ton 5 (Cq:	U)
	Sample	Blows on	Soil Components Rock Profile CL SL S GR	Penetration	Run	Recovery H	RQD		(ppr	$\frac{1}{2}$	mple 3 JN	ton 5 (Cq:	20)
	Sample	Blows on	Soil Components Rock Profile CL SL S GR	Penetration	Run	Recovery H	RQD		(ppr	$\frac{1}{2}$	mple 3 JN	ton 5 (Cq:	U)
· · · · · · · · · · · · · · · · ·	Sample	Blows on	Soil Components Rock Profile CL SL S GR	Penetration	Run	Recovery H			(ppr	$\frac{1}{2}$	mple 3 JN	ton 5 (Cq:	20)
	Sample	Blows on	Soil Components Rock Profile CL SL S GR	Penetration	Run	Recovery H	RQD		(ppr	$\frac{1}{2}$	mple 3 JN	ton 5 (Cq:	D)
	Sample	Blows on	Soil Components Rock Profile CL SL S GR	Penetration	Run	Recovery H	RQD		(ppr	$\frac{1}{2}$	mple 3 JN	ton 5 (Cq:	20)
	Sample	Blows on	Soil Components Rock Profile CL SL S GR	Penetration	Run	Recovery H	RQD		(ppr	$\frac{1}{2}$	mple 3 JN	ton 5 (Cq:	D)
	Sample	Blows on	Soil Components Rock Profile CL SL S GR	Penetration	Run	Recovery H			(ppr	$\frac{1}{2}$	mple 3 JN	ton 5 (Cq:	20)
	Sample	Blows on	Soil Components Rock Profile CL SL S GR	Penetration	Run	Recovery H	RQD		(ppr	$\frac{1}{2}$	mple 3 JN	ton 5 (Cq:	D V

i ٦ 11 : 6 1 i Bi Ш 1 18 6 BE E B ä R ΗE Ð 8 L) 8 L) Ľ ÷ ES.

i

	SCREENED WELL	Lock Number		Stick-up	ft
		Inner Casing Material	OPEN-HOLE WELL	Inner Casing Material	
Stick-upft		Inner Casing Inside Diameter inches		Inner Casing Insid	e
Fop of Grout		GROUND SURFACE Quantity of Material Used: Bentonite		Outer Casing	
ft		Pellets		Diameter	inches
op of Seal atft		Cement Borehole inches Diameter		Borehole Diameter	_ft
op of Sand Packf		Cement/ Bentonite		Bedrock	_ft
op of creen at ft		Grout		Bottom of Rock Soc Outer Casing	sket/ft
ottom of		Screen Slot Size		Bottom of Inner Casing	_ft
creen at ft		Screen Type PVC Stainless Steel		Corehole Diameter	
ottom of ole at ft		Pack Type/Size:		Bottom of	
ottom of Sandpack at		Gravel		Corehole	ft
DTE: See pages 136 and 1	37 for well construction	on diagrams			
			DESCRIPTION		Moisture
ì-ft.		RRATIVE LITHOLOGIC	DESCRIPTION		Content
ı-ft.		RRATIVE LITHOLOGIC		M. C. Online	Content
1.4r. 0-0.7	NA	RRATIVE LITHOLOGIC	DESCRIPTION ENGAMIZ NG	h, clayey	Content
1.4r. 0-0.7	NA TUP SUL	RRATIVE LITHOLOGIC	ergeniz ria	1- 01	Content
1.4r. 0-0.7	NA TUPEDIL, Mayono	RRATIVE LITHOLOGIC Jark brain Lark brain coarse gio e brewn 5a	erganiz nia zy- and dry	1- 01	Content \overrightarrow{L}_{0} \overrightarrow{V}_{0} \overrightarrow
1.4r. 0-0.7	NA TUPEDIL, Mayono	RRATIVE LITHOLOGIC Jark brain Lark brain coarse gio e brewn 5a	ergeniz ria	1- 01	Content \overrightarrow{L}_{0} \overrightarrow{V}_{0} \overrightarrow
1.4r. 0-0.7	NA TUPEDIL, Mayono	RRATIVE LITHOLOGIC Jark brain Lark brain coarse gio e brewn 5a	erganiz nia zy- and dry	1- 01	
1.4r. 0-0.7	NA TUPEDIL, Mayono	RRATIVE LITHOLOGIC Jark brain Lark brain coarse gio e brewn 5a	erganiz nia zy- and dry	1- 01	
1.4r. 0-0.7	NA TUPEDIL, Mayono	RRATIVE LITHOLOGIC Jark brain Lark brain coarse gio e brewn 5a	erganiz nia zy- and dry	1- 01	
1.4r. 0-0.7	NA TUPEDIL, Mayono	RRATIVE LITHOLOGIC Jark brain Lark brain coarse gio e brewn 5a	erganiz nia zy- and dry	1- 01	
n-tr. 0-0.7	NA TUPEDIL, Mayono	RRATIVE LITHOLOGIC Jark brain Lark brain coarse gio e brewn 5a	erganiz nia zy- and dry	1- 01	
n-tr. 0-0.7	NA TUPEDIL, Mayono	RRATIVE LITHOLOGIC Jark brain Lark brain coarse gio e brewn 5a	erganiz nia zy- and dry	1- 01	
	NA TUPEDIL, Mayono	RRATIVE LITHOLOGIC Jark brain Lark brain coarse gio e brewn 5a	erganiz nia zy- and dry	1- 01	

ł

I

DRILLING LOG FOR 6P13 5 Project Name Water Level (TOIC) Time Date Level(Feet) Ne N Site Location Date Started/Finished Drilling Company 14 Driller's Name 1 Well Location Sketch Geologist's Name Geologist's Signature Rig Type (s) 'Eeot Drilling Method (s) ____ Bit Size (s) Auger Size (s) 2.9+ Auger/Split Spoon Refusal 91 Total Depth of Borehole Is .Total Depth of Corehole Is, Soil Sample Blows on Penetration Run Core Fracture HNu/OVA Depth(Feet) Components ROD Comments Number Sampler Times Number Recovery Sketch (ppm) **Rock Profile** CL SL S GR dt. o pourha 0942 1 D 20 2 З 4 5 6 7 8 9 10 11 12 13 14 15

ſ

Г

Ľ.

ł

1

11

E

T

12

11

яĽ

5 E

\$ E

분명

H

Η.

55

81

 \mathbf{a}_{i}

ET.

TT.

1						
	•	SCREENED WELL	Lock Number		Stick-up	ft
		JUNEENED WELL	Inner Casing Material	OPEN-HOLE WELL	Inner Casing	
			Inner Casing Inside		Material	<u> </u>
Stick-	upft		Diameter inches		Inner Casing Inside	
			GROUND SURFACE Quantity of Material Used:			
	Groutft		Bentonite Pellets		Outer Casing Diameter	inches
Top of			Cement			
Seala	tft		Borehole inches		Borehole Diameter	ft
Top of	Cond Deels		Diameter		Bedrock	ft
ropor	Sand Pack	π	Cement/ Bentonite			
Top of	atft		Grout		Bottom of Rock Soc Outer Casing	ket/ ft
OCIEEI	ia(i(Screen Slot Size		Bottom of Inner	
Bottom	of atft		Screen Type		Casing	ft
			PVC Stainless Steel		Corehole	•
	-	12. 1. 1. 1. 1.			Diameter	
Bottom	of		Pack Type/Size:			
Hole at	f		Sand Gravel		Bottom of Corehcie	ft
Hole at Bottom	of Sandpack at		Sand Gravel Natural		Bottom of Corehole	ft
Hole at Bottom	of Sandpack at		Sand Gravel Natural			ft
Hole at Bottom NOTE: 5	of Sandpack at	137 for well construction	Sand Gravel Natural On diagrams			Moisture
Hole at Bottom	of Sandpack atf	137 for well construction	Sand Gravel Natural	DESCRIPTION		Moisture
Hole at Bottom NOTE: 5	of Sandpack atf	137 for well constructi	Sand Gravel Natural on diagrams		Corehole	Moisture
Hole at Bottom NOTE: 5	of Sandpack atf	137 for well construction	Sand Gravel Natural on diagrams	DESCRIPTION trace grave	Corehole	Moisture
Hole at Bottom NOTE: : Depth-ft.	0 = 0.9	137 for well construction NA	Sand Gravel Natural on diagrams		Corehole	Moisture
Hole at Bottom NOTE: : Depth-ft.	of Sandpack atf	137 for well construction NA	Sand Gravel Natural on diagrams RRATIVE LITHOLOGIC I		Corehole	Moisture
Hole at Bottom NOTE: : Depth-ft.	0 = 0.9	137 for well construction NA	Sand Gravel Natural on diagrams RRATIVE LITHOLOGIC I		Corehole	Moisture
Hole at Bottom NOTE: : Depth-ft.	0 = 0.9	137 for well construction NA	Sand Gravel Natural on diagrams RRATIVE LITHOLOGIC I		Corehole	Moisture
Hole at Bottom NOTE: : Depth-ft.	0 = 0.9	137 for well construction NA	Sand Gravel Natural on diagrams RRATIVE LITHOLOGIC I		Corehole	Moisture
Hole at Bottom NOTE: : Depth-ft.	0 = 0.9	137 for well construction NA	Sand Gravel Natural on diagrams RRATIVE LITHOLOGIC I		Corehole	Moisture
Hole at Bottom NOTE: : Depth-ft.	0 = 0.9	137 for well construction NA	Sand Gravel Natural on diagrams RRATIVE LITHOLOGIC I		Corehole	
Hole at Bottom NOTE: : Depth-ft.	0 = 0.9	137 for well construction NA	Sand Gravel Natural on diagrams RRATIVE LITHOLOGIC I		Corehole	
Hole at Bottom NOTE: : Depth-ft.	0 = 0.9	137 for well construction NA	Sand Gravel Natural on diagrams RRATIVE LITHOLOGIC I		Corehole	
Hole at Bottom NOTE: Depth-ft. 1 2 3 4 5 6 7 8 9	0 = 0.9	137 for well construction NA	Sand Gravel Natural on diagrams RRATIVE LITHOLOGIC I		Corehole	
Hole at Bottom NOTE: Depth-ft. 1 2 3 4 5 6 7 8 9 10	0 = 0.9	137 for well construction NA	Sand Gravel Natural on diagrams RRATIVE LITHOLOGIC I		Corehole	
Hole at Bottom NOTE: 1 Depth-ft. 1 2 3 4 5 6 7 8 9 10 11	0 = 0.9	137 for well construction NA	Sand Gravel Natural on diagrams RRATIVE LITHOLOGIC I		Corehole	
Hole at Bottom NOTE: 1 Depth-ft. 1 2 3 4 5 6 7 8 9 10 11 12	0 = 0.9	137 for well construction NA	Sand Gravel Natural on diagrams RRATIVE LITHOLOGIC I		Corehole	

I

Project Name TCT Site Location Control Date Started/Finished Date Started/Finished Diffing Company StB Diffing Method (s) Cologist's Signature Fig Type (s) Cologist's Cologist's Signature Auger/Split Spoon Refusal 1:35 Total Depth of Borehole is 1:35 Total Depth of Corehole is Penetration Number Sample Blows on Components Pack Forling Penetration Number Sample Blows on Components Rock Forling Penetration Number Stetch HNUCVA Commenta 1 ICO5 1 ICO5 2	
Date Started/Finished 11 13 11 Drilling Company SUB Superstandard Started/Finished 11 Drilling Company SUB Superstandard Started/Finished Superstandard Started/Finished Driller's Name Facture Facture Started/Finished Geologist's Name Started/Finished Superstandard Started/Finished Weil Location Sketch Geologist's Signature Coop POBL Weil Location Sketch Bit Size (s) Auger/Split Spoon Refusal 1.35 Total Depth of Corehole Is 1.35 Total Depth of Corehole Is Number Rock Profile Singler Components Penetration Rock Profile Sistech HNumber Sample Blows on Components Cost S GR Core Rock Profile Sistech HNumber Sample Blows on Cost S GR Cli S S GR 1005 1 1005 2 4 3 4 4 4 5 4 6 4 7 4 8 4	
Drilling Company	
Drilling Company	
Driller's Name FRAME Min Min EUS Geologist's Name S REUME Shift Well Location Sketch Geologist's Signature Signature Shift Well Location Sketch Rig Type (s) Geologist's Signature Geologist's Signature Signature Signature Differs Mager Size (s) Auger Size (s) Auger/Split Spoon Refusal 1:35 Total Depth of Borehole Is 1:35 Total Depth of Corehole Is Solid Penetration Total Depth of Corehole Is Components Penetration Runder Recovery ROD Fracture HNuOVA Comments Depth(Feet) Sample Blows on Rock Profile Components Penetration Number Recovery ROD Fracture HNuOVA Comments 1 Image: Image:	
Geologist's Name 5. P. EU NU BS, Shift M. Geologist's Signature COP OF MAC Rig Type (s) COP OF MAC Drilling Method (s) Colo PO De Bit Size (s) Auger Size (s) Auger/Split Spoon Refusal 1.35 Total Depth of Borehole Is 1.35 Total Depth of Corehole Is 1.35 1 Image: Sample Blows on Sampler Rock Profile Core Recovery Rich 1 Image: Size (s) Image: Size (s) 1 Image: Size (s) Image: Size (s) 2 Image: Size (s) Image: Size (s) 3 Image: Size (s) Image: Size (s) 4 Image: Size (s) Image: Size (s) 3 Image: Size (s) Image: Size (s) 4 Image: Size (s) Image: Size (s) 3 Image: Size (s) Image: Size (s) 4 Image: Size (s) Image: Size (s)	
Geologist's Signature_ILLINIAL IN MATHING Rig Type (s) Geopore (15 frads) Drilling Method (s) Geopore (15 frads) Dirilling Method (s) Geopore (15 frads) Bit Size (s) Auger Size (s) Auger/Split Spoon Refusal 1.35 Total Depth of Borehole Is 1.35 Total Depth of Corehole Is In 35 Total Depth of Corehole Is Components Recovery RCD Fracture HNu/OVA Comments Rock Profile Clist S GR 1 1005 1.3 2 4 4 3 4 4 4 4 4 5 4 4 6 4 4 7 4 4	
Geologist's Signature_ILLINIAL IN MATHING Rig Type (s) Geopore (15 frads) Drilling Method (s) Geopore (15 frads) Dirilling Method (s) Geopore (15 frads) Bit Size (s) Auger Size (s) Auger/Split Spoon Refusal 1.35 Total Depth of Borehole Is 1.35 Total Depth of Corehole Is In 35 Total Depth of Corehole Is Components Recovery RCD Fracture HNu/OVA Comments Rock Profile Clist S GR 1 1005 1.3 2 4 4 3 4 4 4 4 4 5 4 4 6 4 4 7 4 4	
Rig Type (s) CERPTON (15*rds) Drilling Method (s) CERPTON Bit Size (s) Auger Size (s) Auger/Split Spoon Refusal 1.35 Total Depth of Borehole Is 1.35 Total Depth of Corehole Is 1.35 Total Depth of Corehole Is 0 Depth(Feet) Sampler Sample Blows on Rock Profile CL SL S GR 1005 1 1005 2 1 3 1 4 1 5 1 6 1 7 1 8 1	
Drilling Method (s)	
Bit Size (s)Auger Size (s)	
Auger/Split Spoon Refusal 1.35 Total Depth of Borehole Is 1.35 .Total Depth of Corehole Is	
Total Depth of Borehole Is	
Total Depth of Borehole Is	
Total Depth of Corehole Is	
Depth(Feet) Sampler Blows on Sampler Components Rock Profile CL SL S GR Penetration Times Run Number Core Recovery RQD Fracture Sketch HNWOVA (ppm) Comments 1	
Depth(Feet) Sampler Blows on Sampler Components Rock Profile CL SL S GR Penetration Times Run Number Core Recovery RQD Fracture Sketch HNWOVA (ppm) Comments 1	J
Depth(Feet) Sampler Blows on Sampler Components Rock Profile CL SL S GR Penetration Times Run Number Core Recovery RQD Fracture Sketch HNWOVA (ppm) Comments 1	
1 - 1005 - 1.3	3
1	de
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	-
8	
	1

7 iB 12 IE 22 E Ì

٢	···· <u>·</u>						
				Lock Number		Stick-up	ft
			SCREENED WELL	Inner Casing Material	OPEN-HOLE WELL	Inner Casing Material	
	Stick-u	۱¢tt		Inner Casing Inside Diameter inches		Inner Casing Inside	
	 Tan el			GROUND SURFACE Quantity of Material Used:			
		Groutft		Bentonite Pellets		Outer Casing Diameter	_inches
	Top of			Cement		Borehole	
	Sealat	ft		Borehole inches Diameter		Diameter	ft
	Top of S	Sand Packf		Cement/ Bentonite		Bedrock	ft
	Top of			Grout		Bottom of Rock Soci	ket/
	Screen	atft		Screen Slot Size		Outer Casing	ft
	Bottom			Screen Type		Bottom of Inner Casingf	t
	Screen	at ft		PVC Stainless Steel		Corehole	
		of		Pack Type/Size:		Diameter	
	Bottom		and the second	rack type/Size:			
	Hole at_	ft	L ſ	Sand Gravel		Bottom of Corebole	ft
	Hole at _ Bottom o	of Sandpack at	[Sand Gravel Natural		Bottom of Corehcie	ft
	Hole at _ Bottom o	of Sandpack at	L ſ	Sand Gravel Natural		Bottom of Corehcle	ft
	Hole at _ Bottom o	of Sandpack at	37 for well constructio	Sand Gravel Gravel Natural Natural	DESCRIPTION	Bottom of Corehole	Moisture
-	Hole at _ Bottom of NOTE: S	of Sandpack at	37 for well constructio	Sand Gravel Natural	DESCRIPTION	Bottom of Corehole	Moisture Content
	Hole at _ Bottom of NOTE: S	ft ft ft ft	37 for well constructio	Sand Gravel Gravel Natural Natural RRATIVE LITHOLOGIC		Corehcle	Moisture Content
	Hole at _ Bottom of NOTE: S	the pages 136 and 1	37 for well constructio NAF	Sand Gravel Natural No diagrams RRATIVE LITHOLOGIC [MI W Frare Clay		Bottom of Corehole	Moisture Content
-	Hole at _ Bottom of NOTE: S	ft ft ft ft	37 for well constructio	Sand Gravel Natural No diagrams RRATIVE LITHOLOGIC [MI W Frare Clay		Corehcle	Moisture Content ≧Ω ¥
De	Hole at _ Bottom of NOTE: S	the pages 136 and 1	37 for well construction NAP	Sand Gravel Natural No diagrams RRATIVE LITHOLOGIC [MI W Frare Clay		Corehcle	Moisture Content
De	Hole at _ Bottom of NOTE: S	the pages 136 and 1	37 for well construction NAP	Sand Gravel Natural No diagrams RRATIVE LITHOLOGIC [MI W Frare Clay		Corehcle	Moisture Content ≧Ω ¥
De	Hole at _ Bottom of NOTE: S	the pages 136 and 1	37 for well construction NAP	Sand Gravel Natural No diagrams RRATIVE LITHOLOGIC [MI W Frare Clay		Corehcle	Moisture Content ≧Ω ¥
De	Hole at _ Bottom of NOTE: S	the pages 136 and 1	37 for well construction NAP	Sand Gravel Natural No diagrams RRATIVE LITHOLOGIC [MI W Frare Clay		Corehcle	Moisture Content ≧Ω ¥
De	Hole at _ Bottom of NOTE: S	the pages 136 and 1	37 for well construction NAP	Sand Gravel Natural No diagrams RRATIVE LITHOLOGIC [MI W Frare Clay		Corehcle	Moisture Content
De	Hole at _ Bottom of NOTE: S	the pages 136 and 1	37 for well construction NAP	Sand Gravel Natural No diagrams RRATIVE LITHOLOGIC [MI W Frare Clay		Corehcle	
De	Hole at _ Bottom of NOTE: S	the pages 136 and 1	37 for well construction NAP	Sand Gravel Natural No diagrams RRATIVE LITHOLOGIC [MI W Frare Clay		Corehcle	Moisture Content
De 1 2 3 4 5 6 7 8 9 10 11	Hole at _ Bottom of NOTE: S	the pages 136 and 1	37 for well construction NAP	Sand Gravel Natural No diagrams RRATIVE LITHOLOGIC [MI W Frare Clay		Corehcle	
De 1 2 3 4 5 6 7 8 9 10 11 12 12	Hole at _ Bottom of NOTE: S	the pages 136 and 1	37 for well construction NAP	Sand Gravel Natural No diagrams RRATIVE LITHOLOGIC [MI W Frare Clay		Corehcle	
De 1 2 3 4 5 6 7 8 9 10 11	Hole at _ Bottom of NOTE: S	the pages 136 and 1	37 for well construction NAP	Sand Gravel Natural No diagrams RRATIVE LITHOLOGIC [MI W Frare Clay		Corehcle	
De 1 2 3 4 5 6 7 8 9 10 11 12 12	Hole at _ Bottom of NOTE: S	the pages 136 and 1	37 for well construction NAP	Sand Gravel Natural No diagrams RRATIVE LITHOLOGIC [MI W Frare Clay		Corehcle	

Proje	ect Name	_AC	5F,	- (Wa	iter Level (TC	DIC)	
	Location _	Part	tester;	Ŵ		D	ate		ime		I(Feet)
Data	Startad/E	inichod	11301								
	ng Compa	6.15	2								
	er's Name	1-	ank M			Well L	ocation	Sketch		i	
	ogist's Na	\sim	Reynold	55ML	11						
Geol	ogist's Si	gnature	Spino	dogi	in						
Rig T	Гуре (s)		<u> </u>					• *			
Drillir	ng Method	(s) <u>(</u>)	pitte	/							
Bit Si	ize (s)		Auger Size	(s)							
		oon Refusa	2								
			6.8	,							
Total	Depth of	Corehole I:	5	- 	·····						
	1	1		1	1						
epth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OV/ (ppm)	A .	Comments
•						C					······
	1.1			1015		-94'	+ 		τ π		
2				10.0			$ \downarrow$		$\mp \Psi_{1}$		
			1								CAMPL
			3.4	1028		2		_ ·			1-6.860
	2	· · · ·	٤.,		1 1		1 1				
	2		۶.								
	2		·,								(XS= 15/M5D)
	2										
	2										
	2										
	2										
	2										

Lock Number_ Stick-up____ _ft SCREENED WELL **OPEN-HOLE WELL** Inner Casing Inner Casing Material_ Material_ Inner Casing Inside Stick-up_ ft Diameter _____ inches Inner Casing Inside Diameter__ _inches GROUND SURFACE Quantity of Material Used: Top of Grout Outer Casing Bentonite ft Diameter inches Pellets_ Top of Cement Borehole Sealat fl Diameter_ _ft Borehole inches Diameter Bedrock ____ _ft Top of Sand Pack Cement/ ft Bentonite Bottom of Rock Socket/ Grout_ Top of Outer Casing ____ ___ft Screen at ft Screen Slot Size_ Bottom of Inner Casing_ Bottom of _ft Screen Type _ Screen at D PVC_ Corehole Stainless Steel Diameter Bottom of Pack Type/Size: Hole at_ Sand ft Bottom of ō Gravel Bottom of Sandpack at Corehcle. ft Natural NOTE: See pages 136 and 137 for well construction diagrams Moisture Depth-ft. NARRATIVE LITHOLOGIC DESCRIPTION Content Moist Wet Š 0.0 0 1 \bigcirc \bigcirc 2 О 0 \bigcirc С 3 WO 00VENOUS О О OO5 DOAN О. O O6 O O0 7 $\bigcirc \bigcirc \bigcirc$ 8 5 \bigcirc \bigcirc ()9 Ο \odot \circ 10 O O O11 \cap ()12 \odot 13 14 \odot \bigcirc 15 O OC

ſ		ING LO	GFOR _	P15	· · · · · · · · · · · · · · · · · · ·								
Proje	ect Name	AC	SF hester, i	ν¥	·····		ate	Wat Tir	er Level (TOI ne		vel(Feet)		
	Started/F	~	11/13/01 B								· · · · · · · · · · · · · · · · · · ·		
Drille Geol	er's Name	Fv0 me <u>5</u> ,	nk Mi Reyrold Seven	nnulei Sm Sm	JS TH	Well L	ocation	Sketch					
Drillir Bit Si Auge Total	ize (s) r/Split Spo Depth of I	(s) <u>b</u> oon Refusa Borehole Is	Auger Size 	(s)	5_10d) 		-						
Depth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)		Commen		
1	1			1235		3.1'			φ-	SR	ownhol	e 	
3	2			1256				57507	-2 pp ff	50	mplo 3-6	2.2 X \$	
8 9 0 1						-					Du	3:05	
2						-	+						Q

.1

NOTE: See pages 136 and 137 for well construction diagramsDepth-ft.NARRATIVE LITHOLOGIC DESCRIPTIONMoisture Content 1^{NO} 3^{NO} 3^{NO} 3^{NO} 3^{NO} 2 3^{NO} 3^{NO} 3^{NO} 3^{NO} 3^{NO} 2 3^{NO} 3^{NO} 3^{NO} 3^{NO} 3^{NO} 3 $2,3-2,45$ 5^{NO} 3^{NO} 3^{NO} 4 $5,3-6,2$ Fine. Clark brown Sand. Bed orange 0^{O} 5 $NOHHING$ 5^{NO} 0^{O} 6 $6,2-6,8$ $Claren sand. brown0^{O}66,2-6,8Claren sand. brown0^{O}76,8-7,4Fine. brown sand. damp0^{O}80^{O}0^{O}0^{O}90^{O}0^{O}0^{O}100^{O}0^{O}0^{O}110^{O}0^{O}0^{O}120^{O}0^{O}0^{O}140^{O}0^{O}0^{O}$	Seal atft Top of Sand Packft Top of Screen atft Bottom of Screen atft Bottom of Hole atft	Lock Number Inner Casing Material Inner Casing Inside Diameterinches GROUND SURFACE Quantity of Material Used: Bentonite Pellets Cement Boreholeinches Diameter Cement / Bentonite Grout Grout Screen Slot Size Screen Type Screen Type / PVC PvC Pack Type/Size: Gravel	OPEN-HOLE WELL	Stick-up Inner Casing Material Inner Casing Inside Diameter Outer Casing Diameter Borehole Diameterf Bedrockf Bedrock Sock Outer Casingf Bottom of Rock Sock Outer Casingf Corehole Diameter Bottom of Inner Casingf	_inches _inches t t t _t _t
Depth-ft. NARRATIVE LITHOLOGIC DESCRIPTION Content 1 0 3 0 3 3 0	NOTE: See pages 136 and 137 for well construction	n diagrams			
1 0-453Brown fine sand, fine chy, trace gavel, some vellow mothing 000 2 some vellow mothing 000 3 2.3-2.45 Gray gavel 000 4 5.3-6.2 Fine dark brown sand. Red orange 000 5	Depth-ft. NAI	RRATIVE LITHOLOG	IC DESCRIPTION		Content
	$\begin{array}{c} 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 7 \\ 6 \\ 6 \\ 7 \\ 7$	V nothing may gravel dark brown some gravel ugey sand,)	Ø 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

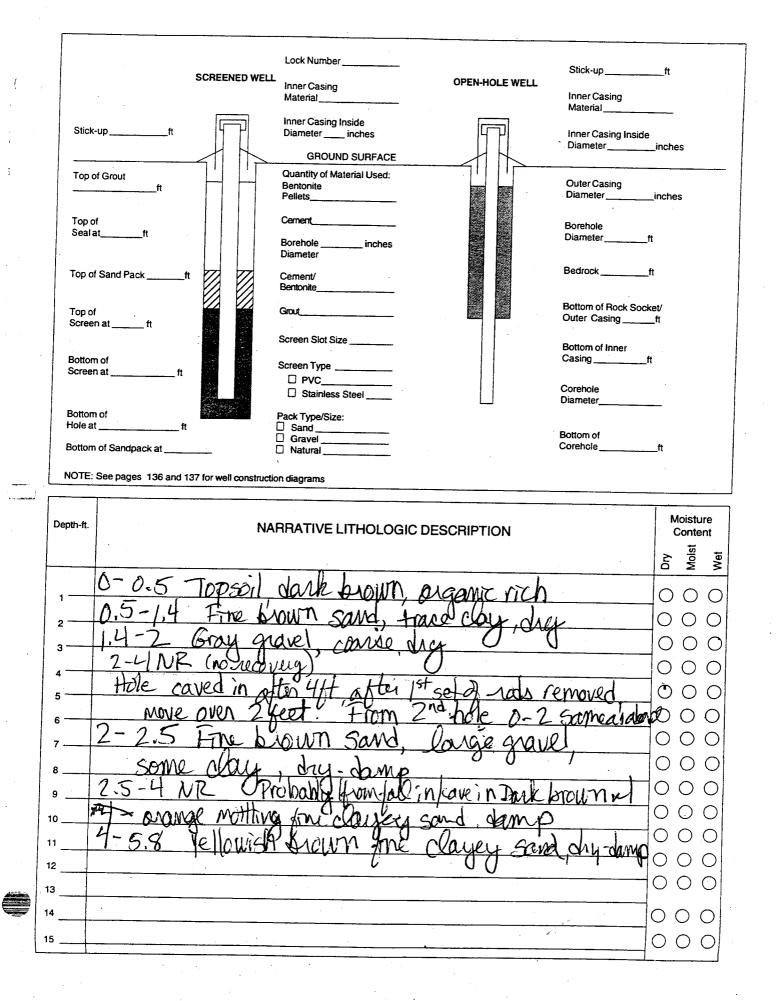
l

¢

B DRILLING LOG FOR ______ OP-16 Project Name Water Level (TOIC) N1 Date Time Level(Feet) Site Location Date Started/Finished **Drilling Company** E. PUS Driller's Name Well Location Sketch Geologist's Name E Geologist's Signature Rig Type (s) 00010 1Ľ Geoprobe Drilling Method (s) ____ Bit Size (s) _ Auger Size (s) _ <u>'7</u>,/' Auger/Split Spoon Refusal _ Total Depth of Borehole Is Б .Total Depth of Corehole Is Е Soil в. Penetration Core Sample Blows on Run Fracture HNu/OVA RQD Comments Depth(Feet) Components Times Recovery Number Sampler Number Sketch (ppm) Rock Profile 12 CL SL S GR IT. 13ppmdownhate 1 Ď II. 1311 -31**'** ۱ 2 183 3 - 4ppm downhole Sample 6.7-7.1 £ 5 4 31 Ø 5 ۱ 1326 <u>*</u>3,1 25 ᡗ 6 Ц. Ê 9 10 11 12 13 14 E. 15

ż

		ock Number		Stick-up	ft
1	SCREENED WELL Inr Ma	ner Casing aterial	OPEN-HOLE WELL	Inner Casing	
-		ner Casing Inside ameter inches GROUND SURFACE		Material Inner Casing Inside Diameter	
	ft Bei	antity of Material Used: ntonite llets		Outer Casing Diameter	_inches
	Top of Cer	mentinches		Borehole Diameter	ï
	Top of Sand Packft Cer	meter ment/		Bedrock	ft
		ntonite		Bottom of Rock Sock	.et/ _ft
		een Slot Size		Bottom of Inner Casingf	t
		PVC Stainless Stee!		Corehole Diameter	
+	ole atft	k Type/Size: Sand Gravel Natural	· · · · · · · · · · · · · · · · · · ·	Bottom of Corehcle	ft
	OTE: See pages 136 and 137 for well construction dia				
Dep	h-ft. NARR	ATIVE LITHOLOGIC			Moisture Content
				·	Dry Moist Wet
1.	0-0.4 102501 0 D.4-453B10401 ATIV		ellouis Logas	damp	$\alpha \circ \circ$
3-	Nothing some	- gray fine	- coarse gra	vel trace	x 00
4 -	5.3- 5.90 To	psal dark	brown org	amic	000
6 -	rich		U		000
7 -	S.Y-I.I Light A	IOWYI CLAUS	ey sand, da	mp	
8_ 9					000
10_					000
11_					
12					000
. 13 14					
15					000


ł

| | |

I

1

1105	ect Name	AC	5F	.				Wa	ater Level (TOI	C)		
Site	Location _	Roc	rester N	ł			ate		ime		el(Feet)	
		-	· · ·				· · · ·					
Date	Started/F	inished	11/13/01									
Drilli	ng Compa	ny <u>SJ</u>	<u>B</u>									
Drille	er's Name	Fran	& My	nulei	152	Well L	ocation	Sketch	· · · · · · · · · · · · · · · · · · ·			
Geol	ogist's Na	me <u>5</u>	Reynol	es St	nyn							♠
Geol	ogist's Sig	gnature	AREM	Kas X	myn	 .						
Rig 7	Гуре (s)	<u>(5eģ</u>	proba	(1.5)	1005)			¥ *				
Drilli	ng Method	(s)	KOPRK	6	-							
			Auger Size	(s)								
Auge	er/Split Spo	on Refusa	<u>5.8'</u>									
Total	Depth of I	Borehole Is	5.8'									
Total	Depth of (Corehole I	S				•			• · · ·		
	Sample	Blows on	Soil	Penetration	Run	Core		Fracture	HNu/OVA			
epth(Feet)	Number	Sampler	Components Rock Profile CL SL S GR	Times		Recovery	RQD	Sketch	(ppm)		Comment	S
						·····	+ - +					
							1 1			0		
				a		-21		_		0		
- 				1359		2'		- -	 Ø -	0		
2 3				1359		-2'		-	\$ \$ \$	0		
 2 3				1359		-2'		- - -			20 mm	ste -
				1359		-2'		 			Down fr	ste
				1359		-2'					Downth	3, 1
				1359		-(.8)				0.5	Downh	ote MS/MSD
				1359		-2'				0.5 4.0-1 5ain	5.8 vplot X.s.(on msp
				1359		-(.8)				0.5 4.0-1 5ain	5.8 vplot X.s.(on msp
				1359		-2'				0.5 4.0-1 5ain	2.8 1 2.30	on msp
				1359		-2'				0.5 4.0-1 5ain	5.8 vplot X.s.(on msp
				1359		-2'				0.5 4.0-1 5ain	5.8 vplot X.s.(on msp
				1359		-2'				0.5 4.0-1 5ain	5.8 vplot X.s.(on msp

ſ		ING LO		P-1	8					
Proje	ect Name	AC	SF.					Wate	er Level (TOK	2)
Site	- Location	Roch	ostor N	\downarrow		D	ate	Tim		Level(Feet)
One	200211011	1000	<u> </u>	-1						
Date	Started/F	inished	11 13 01	·····						
Drillin	ng Compa	ny_5);	<u>B'</u>		<u> </u>					
	r's Name			Weve	<u>)</u>	Well L	ocatio	n Sketch	·····	1
Geol	ogist's Na	me <u> </u>	Keynon	MIT						
Geolo	ogist's Si	gnature 🖌	FEIMIK	al m	m					
Rig T	ype (s)	Geor	mbe	[[.5"	vods)			ъ.		
Drillin	ng Method	(s) <u>O</u>	potohe		······		•			
Bit Si	ze (s)		Auger Size	(s)				· ·		
Aure	r/Split Sp	oon Refusa	4.6							
			<u> </u>							
Total	Depth of	Corehole Is	\$							
<u> </u>	<u> </u>									
		1	0-1							
)epth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Comments
						· · · ·		<u>.</u>		
1 —					·					
2				1437	· 	-2.6-			$\downarrow \mathcal{Y} =$	

1 2 3)		1437		_ -2.le-				- -
4		r v		1445		0.6			- Ø	1
5 6 7									<u> </u>	4.0-4.6fer WDCs
8		-			ŕ _		·		<u> </u>	
9					-	 -		· ·		Bove Jole
10		ľ								Darting
11				н. 4		-				- po dir
12	·	•			_		4			-
13					-		-			_
14						— .	}			-
15					_		+		+	_

-I. 1 1 1 Ie : B E RE ₹. ŦR R R

1		Look Numb			
	SCREENED WELL	Lock Number	OPEN-HOLE WELL	Stick-up	ft
		Inner Casing Material	C. LIVINGLE WELL	Inner Casing Material	
Stick-upft		Inner Casing Inside Diameter inches GROUND SURFACE		Inner Casing Inside Diameter	 }
Top of Grout		Quantity of Material Used: Bentonite Pellets		Outer Casing Diameter	_inches
Top of Seal atft		Cementinches		Borehole Diameter	ft
Top of Sand Pack	_ft	Diameter Cement/ Bentonite		Bedrock	ft
Top of Screen at ft		Grout		Bottom of Rock Soci Outer Casing	
Bottom of Screen at ft		Screen Type		Bottom of Inner Casingf	ft
Bottom of Hole at	ft [Stainless Steel Pack Type/Size: Sand		Diameter	
Bottom of Sandpack at	l l	Gravel		Bottom of Corehcle	ft
Depth-ft.	NA	RRATIVE LITHOLOGIC			Moisture
					Content
					Moist Wet
0-0.3	Topsoil, de	ukbrown, or		avousand	
0.3-0.6	Topsoil, de 1. Gray	shavel n/ s	gamic rich , cl me fine bo	ayeysand Jin Sand	Dry Moist Wet
0.2-0.6	Topsoil, de 1 Gray 14 Aspr		gamiz rich, ci		
0.2-0.6	Topsoil, d 1 Gray 14 Asph 2.6Broum-		gamiz rich, ci		
0.3-0.6	Topsoil, J 1 Gray 14 Asph 2.6Broum- eme for		gamiz rich, ci		
0.3-0.6	Topsoil, d 1 Gray 14 Asph 2.6Broun- ome for ner n/ 0		gamiz rich, ci		
$ \begin{array}{c} 0-0.3 \\ 2 \\ 0.3 \\ 0.9 \\ 1.4 \\ 4 \\ 5 \\ 6 \\ 0.9 \\ 1.4 \\ 0.9 $	1 Gray 4 Aspr 16Brown- ome in ner n/ 0 2.3	snavel n/ so belt bedonk prom c snavel lepth dry	gamiz rich, ci		
0.3-0.6	Topsoil, d 1 Gray 14 Aspir 14 Aspir 16Byourn- 010e 200 010e 200 010e 200 02.3' NR (no	snavel n/ so belt b donk prom c snavel lepth dru recovery	gamiz rich, ci		
0.3-0.6	1 Gray 4 Aspr 16Brown- ome in ner n/ 0 2.3	snavel n/ so belt bedonk prom c snavel lepth dry	gamiz rich, ci		
$ \begin{array}{c} 0.3-0.0 \\ 0.9-1 \\ 1.4-4 \\ 1.4-4 \\ 0.9 \\ 1.4-4 \\ 1.4-4 \\ 0.9 \\ 1.4-4 \\ 0.9 \\ 1.4-4 \\ 0.9 \\ 1.4-4 \\ 0.9 \\ 1.4-4 \\ 0.9 \\ 0.9-1 \\ 1.4-4 \\ 0.9 \\ 0.9-1 \\ 1.4-4 \\ 0.9 \\ 0.9-1 \\ 0.9-1 \\ 0.9 \\ 0.9-1 \\ 0.9 \\ 0.9-1 \\ 0.9 \\ 0.9-1 \\ 0.9 \\ 0.9-1 \\ 0.9 \\ $	1 Gray 4 Aspr 16Brown- ome in ner n/ 0 2.3	snavel n/ so belt b donk prom c snavel lepth dru recovery	gamiz rich, ci	un sand 1 sand 1.7 + 2.2 Jampat	
$ \begin{array}{c} 2 \\ 0.3 \\ 0.9 \\ - 1.4 \\ - 4 $	1 Gray 4 Aspr 16Brown- ome in ner n/ 0 2.3	snavel n/ so belt b donk prom c snavel lepth dru recovery	gamiz rich, ci	un sand 1 sand 1.7 + 2.2 Jampat	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 Gray 4 Aspr 16Brown- ome in ner n/ 0 2.3	snavel n/ so belt b donk prom c snavel lepth dru recovery	gamiz rich, ci	un sand 1 sand 1.7 + 2.2 Jampat	
$ \begin{array}{c} 2 \\ 0.3 \\ 0.9 \\ - 1.4 \\ - 4 \\ - 4 \\ - 4 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 5 \\ - 6 $	1 Gray 4 Aspr 16Brown- ome in ner n/ 0 2.3	snavel n/ So belt b donk prom c snavel lepth dru recovery	gamiz rich, ci	un sand 1 sand 1.7 + 2.2 Jampat	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 Gray 4 Aspr 16Brown- ome in ner n/ 0 2.3	snavel n/ So belt b donk prom c snavel lepth dru recovery	gamiz rich, ci	un sand 1 sand 1.7 + 2.2 Jampat	

		110	7						2	· · · · · ·		· · · · · ·	-
	roject Name	/ · .			<u>. </u>				ter Level (T	· · · · ·			
Si	ite Location	For	iester, NY	ł		Da	ite	Tir	me		Level(Feet))	-
			·										
Da	ate Started/F	-inished	11 130								··		
	rilling Compa	5	B										
	riller's Name	- 1	Minnul	eus		Well Lo			· 1				\exists
0	niers name	5	Reynold		<u>)</u>	wen Lu	Callon	Skeich					
					ella.							ж	
			pogna		<u>v TVC</u>			۰ . .					
	ig Type (s) _	· · · ·	1	5" rod))								
Dr	rilling Method	d (s)	<u>copribe</u>				•						
Bit	t Size (s)		Auger Size										
Au	uger/Split Sp	oon Refusa	<u> </u>	51									
	tal Depth of		LIC	<u>,</u> (•								
													1 1
. To	tal Death of	Carabala k											
.То	tal Depth of	Corehole Is	S										
		Blows on	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number f	Core Recovery	RQD	Fracture Sketch	HNu/OV (ppm)		Comm	- <u>\</u> -,	
	et) Sample	Blows on	Soil Components Rock Profile	Penetration		Recovery H	RQD				Comm f do W	- <u>\</u> -,	
	et) Sample	Blows on	Soil Components Rock Profile	Penetration Times			RQD		(ppm)			- <u>\</u> -,	
Pepth(Fei	et) Sample	Blows on	Soil Components Rock Profile	Penetration		Recovery H	RQD					- <u>\</u> -,	
epth(Fee 1	et) Sample	Blows on	Soil Components Rock Profile	Penetration Times		Recovery H	RQD		(ppm)			- <u>\</u> -,	
1	et) Sample	Blows on	Soil Components Rock Profile	Penetration Times		Recovery			(ppm)	· . j	f dow	nholz	
1	et) Sample	Blows on	Soil Components Rock Profile	Penetration Times		Recovery H			(ppm)	· . j	f dow	nholz	
1	et) Sample	Blows on	Soil Components Rock Profile	Penetration Times		Recovery			(ppm)	· . j	f dow	nholz	
1	et) Sample	Blows on	Soil Components Rock Profile	Penetration Times		Recovery			(ppm)	· . j	f dow	nholz	
Depth(Fer 1	et) Sample	Blows on	Soil Components Rock Profile	Penetration Times		Recovery			(ppm)	· . j	f dow	nholz	
1	et) Sample	Blows on	Soil Components Rock Profile	Penetration Times		Recovery			(ppm)	· . j		nholz	
Depth(Fed 1	et) Sample	Blows on	Soil Components Rock Profile	Penetration Times		Recovery			(ppm)	· . j	f dow	nholz	
1	et) Sample	Blows on	Soil Components Rock Profile	Penetration Times		Recovery			(ppm)	· . j	f dow	nholz	
epth(Fer	et) Sample	Blows on	Soil Components Rock Profile	Penetration Times		Recovery			(ppm)	· . j	f dow	nholz	
.To Depth(Fed 1	et) Sample	Blows on	Soil Components Rock Profile	Penetration Times		Recovery			(ppm)	· . j	f dow	nholz	
2	et) Sample	Blows on	Soil Components Rock Profile	Penetration Times		Recovery			(ppm)	· . j	f dow	nholz	

ΗE

SCREENED WEL	Lock Number	Stick-up	ft
	Inner Casing OPEN-H Material	OLE WELL Inner Casing Material	
Stick-upft	Inner Casing Inside Diameter inches GROUND SURFACE	Inner Casing Inside Diameter	2
Top of Groutft	Quantity of Material Used: Bentonite Pellets	Outer Casing Diameter	inches
Top of Seal atft	Cement Borehole inches	Borehole Diameter	ft
Top of Sand Packft	Diameter Cement/	Bedrock	
Top of	Bentonite	Bottom of Rock Soci Outer Casing	
Screen at ft	Screen Slot Size	Bottom of Inner	
Bottom of Screen at ft	Screen Type PVC Stainless Steel	Casing	
Bottom of tt	Pack Type/Size:	Diameter	—
Bottom of Sandpack at	Gravel Natural	Bottom of Corehcie	ft
NOTE: See pages 136 and 137 for well construct	tion diagrams		
Depth-ft. N/	ARRATIVE LITHOLOGIC DESCRIPT	ION	Moisture Content
	·		Dry Moist Wet
, O-D. 46 Park of	brown organiz rich topso	1, sand	000
2 0.6-2 Five C	fellowisk brown sand	, some prieto	000
3 - COALLE SIC	avel		
4 21-11 Vallan	brown fine Clayeys	ma	
5	151 Drow The Uso	no, damp	
6 7 9. (C 11/1 C C/	DUDVE WITH WEATH	ered bedrack	
7 at 4. 3-4.6 bgs		·	
8		•	
9			
10			
11	· · · · · · · · · · · · · · · · · · ·	· · ·	
12			
· · · · · · · · · · · · · · · · · · ·			$ \cap \cap \cap $
13			000
13 14			000

·····

•

Proin	ct Name	AG	F					14/~ 4		C)	
		· Da	hester.	NN		Da	ate	Wat Tin	er Level (TOI	C) Level(Fee	t)
Site I	Location _	<u>– –u</u>						1			
<u>.</u>		,	1. 1.4					-		<u> </u>	
Date	Started/F	inished	11/13/01	<u>,</u> .							
Drillir	ng Compa	ny <u>6</u> 5	JB	i	<u></u>			+		·····	
Drille	r's Name	Fran	UK Mi	Mulei	<u>B</u>	Well Lo	ocation s	Sketch			1
Geok	ogist's Na	me S	: Reimal	USW	in						
	ogist's Sig		Haan	adal	mit	M					
	ype (s)	r!	prahle	/				• *			
			2000NO	De	•						
			1								
			Auger Size	(S)							
		oon Refusa	14 11								
Total	Depth of I	Borehole Is									
Total	Depth of	Corehole I:	\$ <u></u>								
			· · · · · · · · · · · · · · · · · · ·					·····			
	S r	Blan -	Soil	Bossteries	8	0.000		P			
(Feet)	Sample Number	Blows on Sampler	Components Rock Profile CL SL S GR	Penetration Times	Run Number F	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Com	ments
						r				20000	down hale
,									1	1 200000	Jun nuc
	(+		
	1			1539	-	3.3	+	 		+ - 1 (·	·
	-1			1583		3.3		· · · ·	6.5		·
	-1			1530		3.3			6.5		
	2		1 			3.3			6.5		
	2					3.3			6.5 		
	2					3.3			6.5 		
	2					3.3			6.5 		
	1					3.3			b.5	50mpl 3.5 VC	
	1					3.3			<i>b</i> 15		
	2					3.3			6.5 		
	2					3.3			b 5		
	1					3.3			<i>b</i> 15		
	2					3.3			6.5 		

i

	CODEFNER WELL	Lock Number		Stick-up	ft
	SCREENED WELL	Inner Casing Material	OPEN-HOLE WELL	Inner Casing Material	
Stick-upft		Inner Casing Inside Diameter inches	F	Inner Casing Inside	
		GROUND SURFACE			
Top of Groutft		Quantity of Material Used: Bentonite		Outer Casing Diameter	•. •
-		Pellets		Diameter	_inches
Fop of Seal atft		Cementinches		Borehole Diameter	ft
		Diameter		Deduct	_
op of Sand Packft		Cement/ Bentonite		Bedrock	ft
op of		Grout		Bottom of Rock Soci Outer Casing	ket/
creen at ft		Screen Slot Size			
ottom offt		Screen Type		Bottom of Inner Casing	t
		PVC Stainless Steel		Corehole	
ottom of		Pack Type/Size		Diameter	
ottom of Sandpack atft	1	Sand Gravel		Bottom of Corehcle	
Montor Sandpack at	l	Natural			-" ¹
		·			
DTE: See pages 136 and 13	7 for well constructio	on diagrams	•		
					Moisture
		RRATIVE LITHOLOGIC [DESCRIPTION		Content
h-ft.	NAI	RRATIVE LITHOLOGIC I			
	NAI	RRATIVE LITHOLOGIC I	crich sand u		Content
h-ft.	NAI	RRATIVE LITHOLOGIC I		1 clay	Content tsi D W X
)-ft.	NAI	BUTUN argani 1 grading to 1 Arom Arne	crich sand u	J clay_ Now	Content tsi D W X
)-ft.	NAI	RRATIVE LITHOLOGIC I	crith sand u gellowish b	J clay_ Now	Content tsi D W X
r-ft.	NAI	BUTUN argani 1 grading to 1 Arom Arne	crith sand u gellowish b	J clay_ Now	Content tsi D W X
)-ft.	NAI	BUTUN argani 1 grading to 1 Arom Arne	crith sand u gellowish b	J clay_ Now	Content tsi D W X
)-ft.	NAI	BUTUN argani 1 grading to 1 Arom Arne	crith sand u gellowish b	J clay_ Now	Content tsi D W X
)-ft.	NAI	BUTUN argani 1 grading to 1 Arom Arne	crith sand u gellowish b	J clay_ Now	Content tsi D W X
)-ft.	NAI	BUTUN argani 1 grading to 1 Arom Arne	crith sand u gellowish b	J clay_ Now	Content tsi D W X
h-ft.	NAI	BUTUN argani 1 grading to 1 Arom Arne	crith sand u gellowish b	J clay_ Now	Content tsi D W X
h-ft.	NAI	BUTUN argani 1 grading to 1 Arom Arne	crith sand u gellowish b	J clay_ Now	Content tsi D W X
)-ft.	NAI	BUTUN argani 1 grading to 1 Arom Arne	crith sand u gellowish b	J clay_ Now	Content tsi D W X
DTE: See pages 136 and 13 n-ft. 0-1 Topso 1-41 Dark Also clay Bld rock	NAI	BUTUN argani 1 grading to 1 Arom Arne	crith sand u gellowish b	J clay_ Now	Content tsi D W X

~-

f		LING LÓ	G FOR	P21						
Proje	ct Name	AL	SF hester,	NY			ate	Wate Tim	er Level (TOIC) Level(Feet)
		Cit	11/13/01	•						
Drille	ng Compa r's Name ogist's Na	Frank	K Minau Reynolds.	leus Smith		Well L	ocation	Sketch		
Rig T	ogist's Si ype (s) g Method	<u> </u>		\$1.5" a	ds)		. .			
Bit Siz Auger	ze (s) /Split Spo	oon Refusa	L Auger Size	.]					·	
			\$ \$							
Depth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Comments
1 2 3	1	· · ·		1407	· · ·	-3.5 -		70 @3:5		- - >1000 Downhole - PBreathingzoin NOVC
4 5 — 6 —			, X 3, 4							- Sample - 2.8-3.5 for
7 8 9					-	- 				- 50005, 100- - 2.8-3.5 for - VOCS - - 5VOCS, 100- - 5VOCS, 100- - 00- - 10-27
0										- 1/22 -
3										-

4

í.

11

11

II

R I

KE

3 R

5.62

N 25

1						
		000000000000000000000000000000000000000	Lock Number		Stick-up	ft
		SCREENED WELL	Inner Casing Material	OPEN-HOLE WELL	Inner Casing	
Stick-	upft		Inner Casing Inside Diameter inches GROUND SURFACE		Material Inner Casing Inside Diameter	
	f Groutft		Quantity of Material Used: Bentonite Pellets		Outer Casing Diameter	inches
Top of Seal a	tft		Cementinches		Borehole Diameterft	
Top of	Sand Packft		Diameter Cement/ Bentonite		Bedrockf	t
Top of Screer	atft		Grout		Bottom of Rock Socke Outer Casing	et/ _ft
Bottom Screen			Screen Slot Size		Bottom of Inner Casingft	
Bottom	of		PVC Stainless Steel Pack Type/Size:		Corehole Diameter	
1	of Sandpack at	Ĺ	Sand Gravel Natural		Bottom of Corehcle	_ft
]						
NOTE:	See pages 136 and 1	37 for well constructio	х х			
,	See pages 136 and 10	· · · · · · · · · · · · · · · · · · ·	n diagrams			Moisture
NOTE:	See pages 136 and 13	· · · · · · · · · · · · · · · · · · ·	ι,			Content
,	See pages 136 and 13	NAF	RRATIVE LITHOLOGIC	DESCRIPTION		Content Drv Moist Mo
Depth-ft.	See pages 136 and 12 0 - 0.4 0.4 - 0.9	NAF			<u> </u>	Content
	0-0,4-	NAF Tepseil d	ARATIVE LITHOLOGIC ARK GOWN WITH (JING-CONNO)	DESCRIPTION red stainitz prownish f	ay, some	Content Drv Moist Mo
Depth-ft.	0-0,4-	NAF Topsoil d Gravel	ARATIVE LITHOLOGIC ARK GOWN WITH (JING-CONNO)	DESCRIPTION	<u> </u>	Content La tion M M M M M M M M M M M M M M
Depth-ft.	0-0,4-	NAF Topsoil d Gravel	ATIVE LITHOLOGIC ATR GROWN WITH (ATR - CONNO) SANA	DESCRIPTION red stainitz prownish f	<u> </u>	Content La tion M M M M M M M M M M M M M M
Depth-ft.	0-0,4-	NAF Topsoil d Gravel	ATIVE LITHOLOGIC ATR GROWN WITH (ATR - CONNO) SANA	DESCRIPTION red stainitz prownish f	<u> </u>	Content La tion M M M M M M M M M M M M M M
Depth-ft.	0-0,4-	NAF Topsoil d Gravel	ATIVE LITHOLOGIC ATR GROWN WITH (ATR - CONNO) SANA	DESCRIPTION red stainitz prownish f	<u> </u>	Content La tion M M M M M M M M M M M M M M
Depth-ft.	0-0,4-	NAF Topsoil d Gravel	ATIVE LITHOLOGIC ATR GROWN WITH (ATR - CONNO) SANA	DESCRIPTION red stainitz prownish f	<u> </u>	Content La tion M M M M M M M M M M M M M M
Depth-ft.	0-0,4-	NAF Topsoil d Gravel	ATIVE LITHOLOGIC ATR GROWN WITH (ATR - CONNO) SANA	DESCRIPTION red stainitz brownish ge for 2nd hole: Cobble & 1.5 M, domp yey Sand	ay some	Content La tion M M M M M M M M M M M M M M
Depth-ft.	0-0,4-	NAF Tepsoil d Gravel(- medium Move c ame a Same a Same a Samy - Coarse Broury I Brown	ATIVE LITHOLOGIC ATR GROWN WITH (ATR - CONNO) SANA	DESCRIPTION red stainitz prownish f	ay some	Content La tion M M M M M M M M M M M M M M
Depth-ft.	0-0,4-	NAF Tepsoil d Gravel(- medium Move c ame a Same a Samy Coarse Brown I Brown - storning	ATIVE LITHOLOGIC ATR GROWN WITH (ATR - CONNO) SANA	DESCRIPTION red stainitz brownish ge for 2nd hole: Cobble & 1.5 M, domp yey Sand	ay some	Content La tion M M M M M M M M M M M M M M
Depth-ft.	0-0.4 0.4-0.9 /me Pefusal 0-0.9 0.9-1.5 1.5-2 2.5-2.7 2.3-2.7 2.7-4 Black	NAF Tepseil d Gravel(- medium Move o hove o hov	ATIVE LITHOLOGIC ATR GROWN WITH (ATR - CONNO) SANA	DESCRIPTION red stainitz brownish ge for 2nd hole: Cobble & 1.5 M, domp yey Sand	ay some	Content La tion M M M M M M M M M M M M M M
Depth-ft.	0-0.4 0.4-0.9 /me Pefusal 0-0.9 0.9-1.5 1.5-2 2.5-2.7 2.3-2.7 2.7-4 Black	NAF Tepseil d Gravel(- medium Move o hove o hov	ATIVE LITHOLOGIC ATR GROWN WITH (ATR - CONNO) SANA	DESCRIPTION red stainitz brownish ge for 2nd hole: Cobble & 1.5 M, domp yey Sand	ay some	Content La tion M M M M M M M M M M M M M M

DRILLING LOG FOR <u>GPZZ</u> ALS Project Name Water Level (TOIC) Date Time Level(Feet) A Site Location Date Started/Finished Drilling Company HEU3 170 M TANI Driller's Name Well Location Sketch Geologist's Name Geologist's Signature Rig Type (s) _ Drilling Method (s) Bit Size (s) Auger Size (s) 4.5' Auger/Split Spoon Refusal 4.5 Total Depth of Borehole is .Total Depth of Corehole Is_ Soil 1 Sample Blows on Penetration Run Core Fracture HNu/OVA Depth(Feet) Components ROD Comments Number Sampler Times Number Recovery Sketch (ppm) **Rock Profile** CL SL S GR > 1000Downhole 81 0802 1 $B2 = \phi$ 34 .] Н. 4202.2' 2 з 22 10003 3' 4 2 08 3 μ_{E} >1000 Downhole 0.2' 5 1 6 115 8 ΪĒ 9 10 11 12 13 14 15

I.

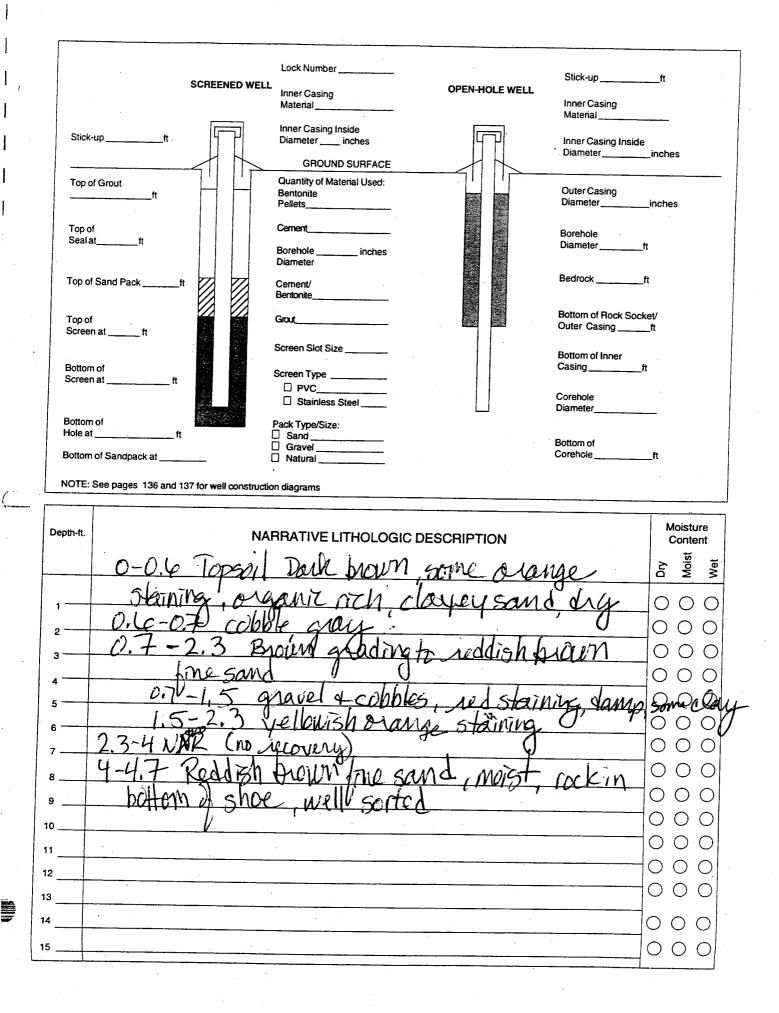
ŧĽ.

12

12

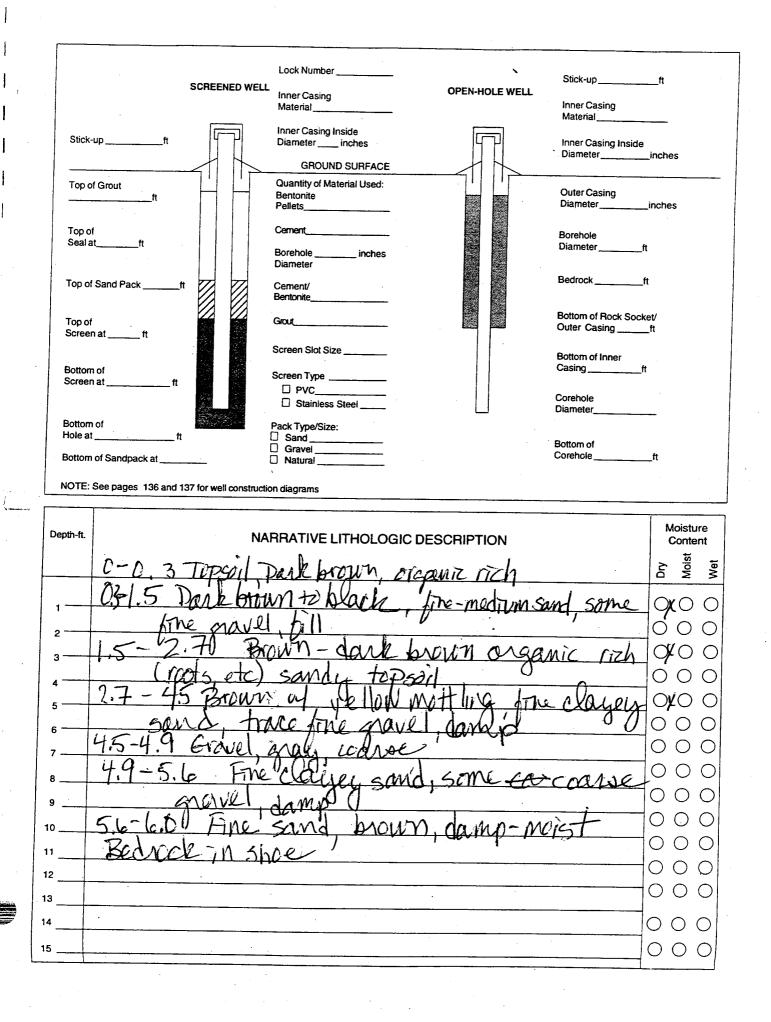
Top of Seal a Top of Top of Screen Bottom Screen Hole at Bottom	tft Sand Packft n atft n offt		Lock Number Inner Casing Material Inner Casing Inside Diameter inches GROUND SURFACE Quantity of Material Used: Bentonite Pellets Cement Borehole inches Diameter Cement / Bentonite Grout Grout Screen Slot Size Screen Type PVC PVC Pack Type/Size: Sand Gravel Natural n diagrams	OPEN-HOLE WELL	Stick-up Inner Casing Material Inner Casing Inside Diameter Outer Casing Diameter Borehole Diameterf Bedrockf Bedrock Sock Outer Casingf Bottom of Rock Sock Outer Casingf Corehole Diameter	_inches _inches t t t _t _t
Depth-ft.		NAF	RATIVE LITHOLOG	IC DESCRIPTION		Moisture Content
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0-1.1 A 1.1-2.6 2.1-4.3 1 50Me 43-4.5	Bedrock	fill(graveli rown fine de re sand trace finé-	na fore provinse ayey sand da red torange n med gravel day	nd natrix) np some 9	\$00

-70

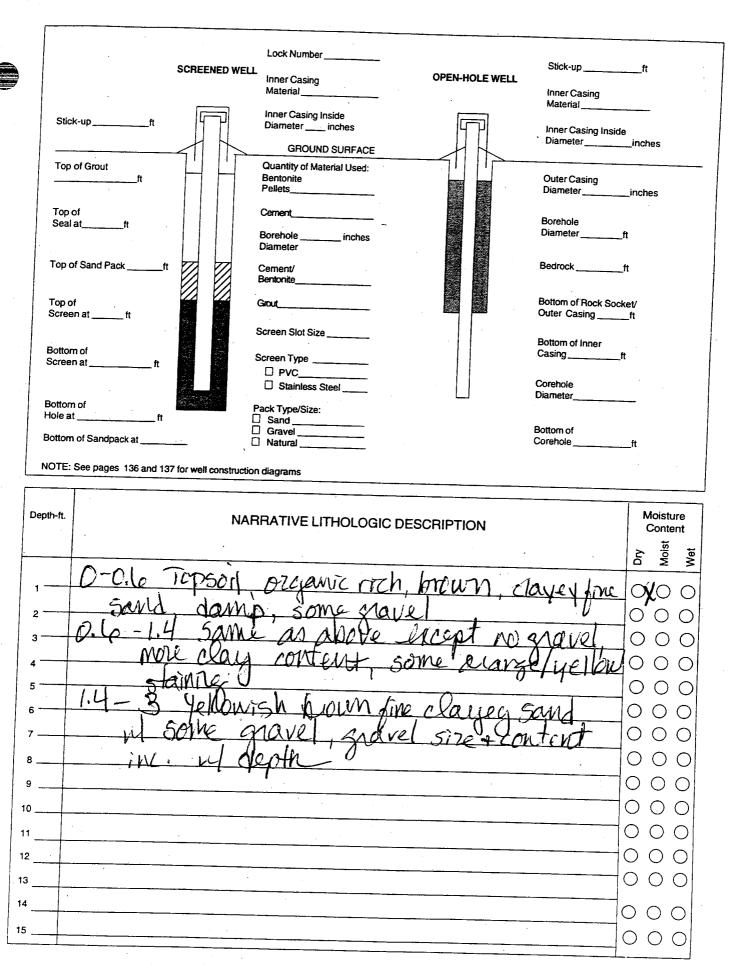

				072_	3						
	ect Name	1	5F	Dali	Local	Date	e		ter Level (TOI	C) Level(Feet	<u>}</u>
Site	Location _	11/10		Rolle	stel in						
Date	Started/F	inished	1114/1				<u> </u>				
Drillin	ng Compa	iny <u>5)</u>	B		[· · · · ·	
Drille	er's Name	FI	1: Mile	5		Well Loc	ation S	ketch			
		me <u> </u>	Keyrod	SOM	ha						¥ ₩
	ogist's Si	gnature Geok	NOD -	15"	mal 1			N 7			
		(s) Dec	- 01-	<u>_!`\</u> _# ~							
			Auger Size	(s)							
		oon Refusa	ri 7								
Total	Depth of	Borehole is	<u> </u>								
.Totai	Depth of	Corehole I	S						•		
······	1			<u>.</u>						T	
oth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times		Core lecovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Comr	nents
										ØDour	hole
			-	084	3	321		-	Ι eh _	+ 4 +000 1	
					•		-	-	+ (/) -		
						40	+	-	$\downarrow \varphi$ -		-
				0848	2			-	- \$ - 	- IppM	doumlide
				0 848	2				<u> </u> ۴	Ippm Sampl	doumlise
				જ્ફાપજ	2				<u> </u> ۴	ippm sampl y-y.	doumliste
				જ્રમજ	2			- 	<u> </u> ۴	sampl y-y.	dournlie 162- 5959)
				જ્ફાપજ	2			- 	<u> </u> ۴	Ippm Sampl y-y. VDC	douriliele 162 5859)
			×1	જ્રિપજ	2			- 	<u> </u> ۴	Ippm Sampe y y. VDC	downlie 162 5859) Note
				જ્રિપજ				- 	<u> </u> ۴	sampl Sampl UDC Bore	dournliele 162- 5859) Nole
				જ્રિપજ	2			- - - - - - - - - - - - - - - - - - -	<u> </u> ۴	Ippm Sampl J.J. VDC Bove	dourilise 5959) Nole
				જ્રિપજ				- - - - - - - - - - - - - - - - - - -	<u> </u> ۴	Ippm Sampl JUC DOL	douriliele 5859) Nole

C E _____ Ĵ, 915 EE . DE

.i


i

¥.



DRILLING LOG FOR ______ 5 Project Name Water Level (TOIC) Date Time Level(Feet) Site Location 11 D Date Started/Finished Drilling Company He it ahl Driller's Name Well Location Sketch Geologist's Name 5 SMHA Geologist's Signature Rig Type (s) ____ (-COP) ΕĒ Drilling Method (s) ne 1 Auger Size (s) Bit Size (s) 600 11 Auger/Split Spoon Refusal 6.D' Total Depth of Borehole Is П .Total Depth of Corehole Is_ 11 Soil 14. Sample Blows on Penetration Run Core Fracture HNu/OVA ROD Depth(Feet) Components Comments Number Sampler Times Number Recovery Sketch (ppm) Rock Profile CL SL S GR ₽. 12 Dande, dissapptes 2 S 1 C932 3.10 2 112 3 ā Ş ň., 2' 8 1950 5 17 6 Samp 5 F 7 4.9-5,4 for VOL (04:53) 8 ЪČ 9 10 Brutate 11 12 13 14 19 15 1877.-

Г

Project Name Site Location		with, A	<i>;</i> }		Di	ate		ter Level (me		Level(Feet)
Date Started/F		11 14 01		· · · · · · · · · · · · · · · · · · ·							
Drilling Compa Driller's Name	Frank		deus Caith		Well Lo	ocation S	iketch	<u> </u>			
Geologist's Na Geologist's Si			dian	An) #(
Rig Type (s) _ Drilling Method			·5 ·	1215		l. J.					
Bit Size (s)		י Auger Size ג כ ג כ									
Auger/Split Sp Total Depth of	oon Refusa Borehole Is										
.Total Depth of	Corehole is										
		Soil							<u>-</u>		· · · · · · ·
th(Feet) Sample Number		Components Rock Profile CL SL S GR	Penetration Times		Core Recovery	RQD	Fracture Sketch	HNu/O (ppm		Comn	nents
		Components Rock Profile				ROD)	Comn 22DQU i	. <u></u>
		Components Rock Profile				RQD)	z.pour	hóle
		Components Rock Profile				RQD)	zpaur (zamy VX	hole plefon
		Components Rock Profile CL SL S GR				RQD)	z pour (zamy VCC Z	hde plefon 5 - 3.3
		Components Rock Profile CL SL S GR				RQD)	zpaur (zamy VX	hde plefon 5 - 3.3
		Components Rock Profile CL SL S GR				RQD)	z pour (zamy VCC Z	hde plefon 5 - 3.3
		Components Rock Profile CL SL S GR				RQD)	z pour (zamy VCC Z	hde plefon 5 - 3.3

44 sleeves

·

í,

1

DRILLING LOG FOR __ <u>6P-1</u> 2 Project Name Water Level (TOIC) Date Time Level(Feet) Site Location 11/12/01 Date Started/Finished Drilling Company TAM V + Wat Driller's Name Well Location Sketch Geologist's Name ДÌ MHAR Geologist's Signature Georope Rig Type (s) Drilling Method (s) Auger Size (s) Bit Size (s) Auger/Split Spoon Refusal Total Depth of Borehole is .Total Depth of Corehole is Soil Sample Blows on Penetration Core Run Fracture HNu/OVA ROD Depth(Feet) Components Comments Number Sampler Times Number Recovery Sketch (ppm) Rock Profile Ħ CL SL S GR Setil etione 1 33 1421 ۱ 2 3 Е ፞፞፞፞፞፞፞፞ 2 1422 2 Drav BZA Т Z 4 ŧ -5 Sampre. 6 7 8 SB-S--D + -D VOCS, Motosle 9 Ľ 10 4 11 12 13 14 (14 15

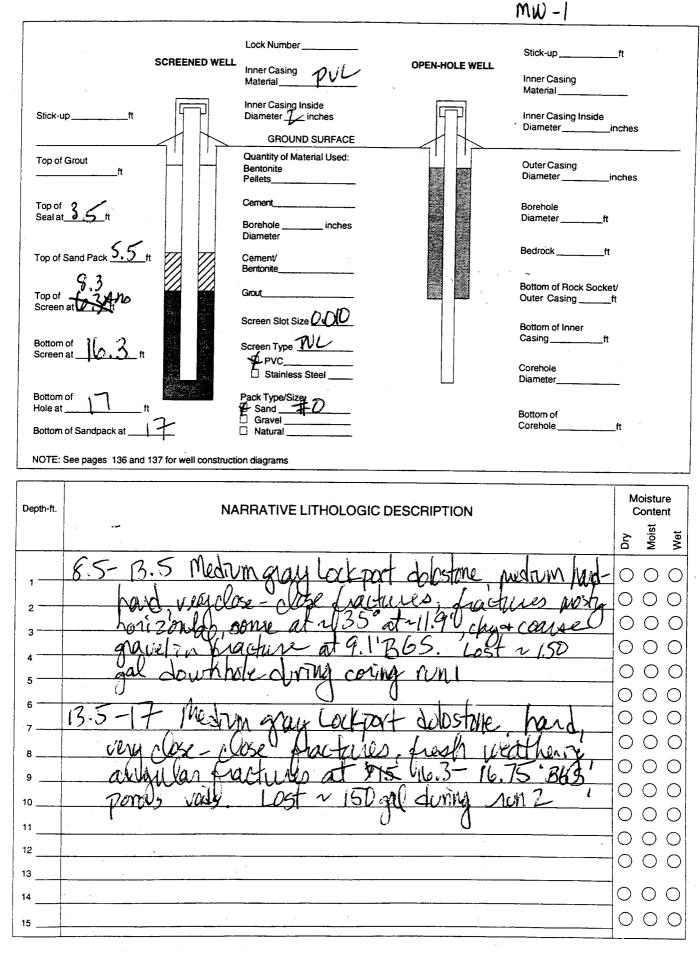
п

Monitoring Well Boring Logs

MW-Project Name Water Level (TOIC) Time Level(Feet) Date Site Location Date Started/Finished 78 0 Drilling Company Driller's Name Mike K, Koleca Well Location Sketch NP Geologist's Name Geologist's Signature Rig Type (s) OFPH OMU-1 \$6P-5 Drilling Method (s) n Auger Size (s) Bit Size (s) _ Ma Terrill Auger/Split Spoon Refusal plumbing Total Depth of Borehole Is build 1 Total Depth of Corehole Is Soil Penetration HNu/OVA Run Core Fracture Sample Blows on RQD Comments Depth(Feet) Components Times Recovery Sketch (ppm) Number Sampler Number Rock Profile CL SL S GR No OVA hits from cuttingsor downhale 1 11 ÷ 2 Þ з 1145 5 TOP of rack No Atsidownhole 6.5 -M Ε. 4" steel caring 0 8.5 8.5 i i 1247 1540 11 10 8 11 12 1610 13 C an 3.6 36° 11/2 -100 15

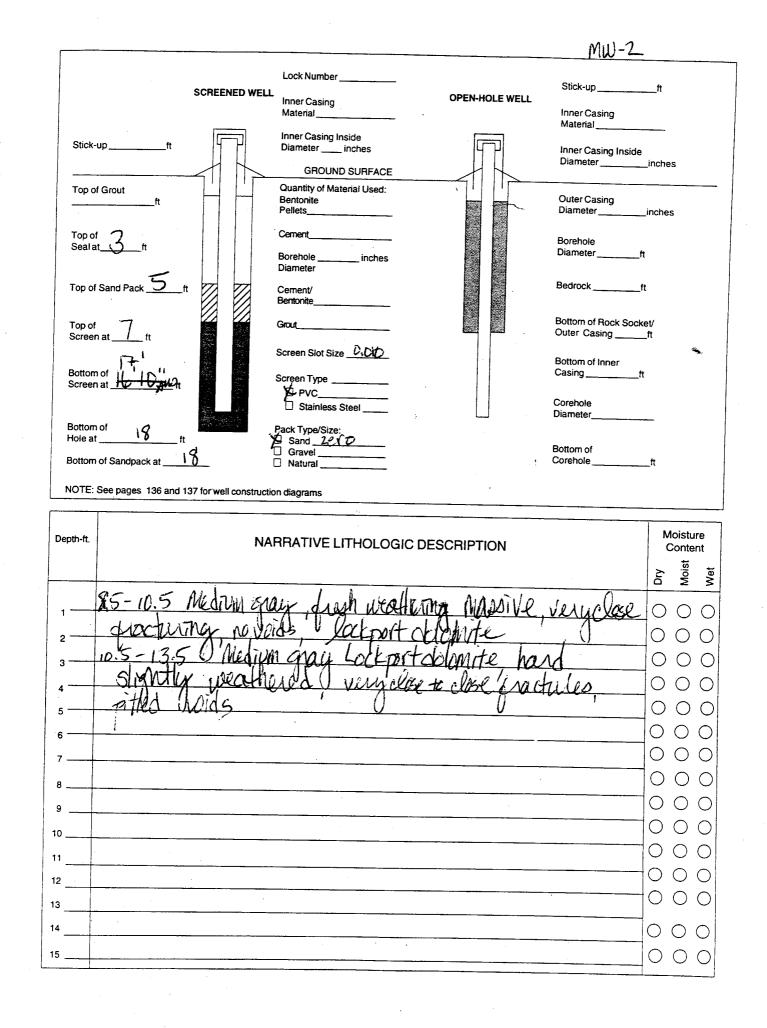
. 1

1


3

Ĩ

I


1

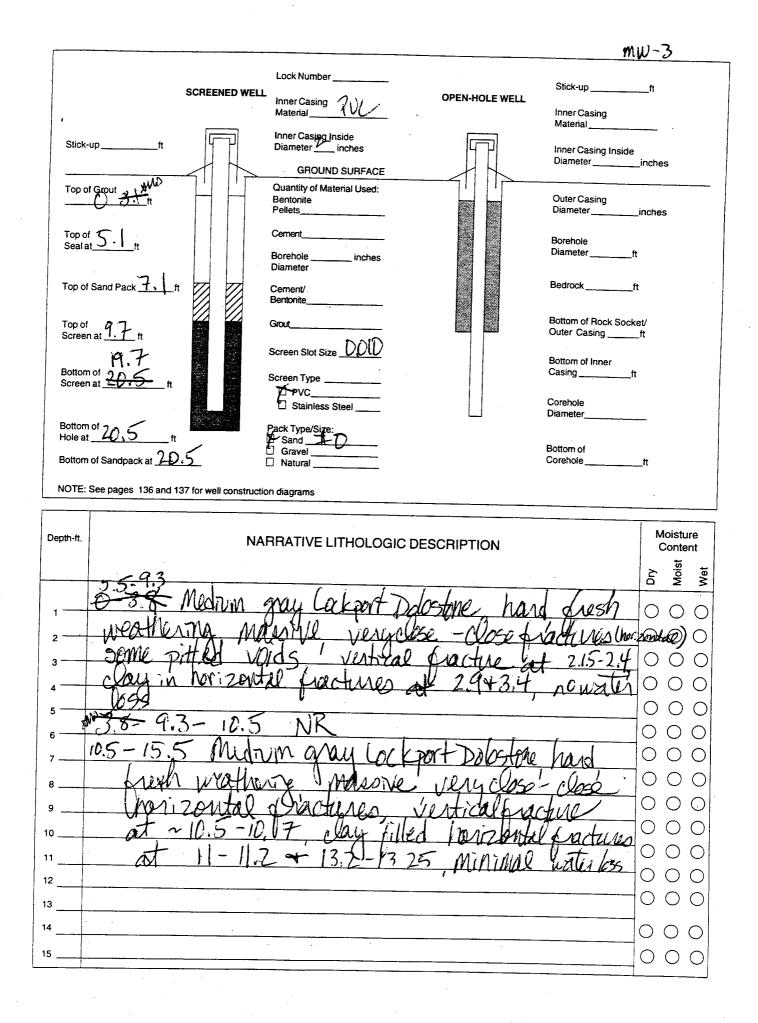
E.

DRILLING LOG FOR _MU-2 5 Project Name Water Level (TOIC) Date Time Level(Feet) Site Location Date Started/Finished _____ D Drilling Company_ Driller's Name Well Location Sketch \sim Geologist's Name Geologist's Signature Rig Type (s) مأثلاق Drilling Method (s) Auger Size (s) Bit Size (s) 6.5' B 65 Auger/Split Spoon Refusal 0555 Total Depth of Borehole Is Ferrautio 18' Total Depth of Corehole Is_ Jary St.

	Depth(Feet)	Sample Number	Blows on Sampler	Soil Components Rock Profile CL SL S GR	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Comments	
	1	-				· . 				Ø		
	3											
Λ	5 6 7			-	152P						-Auger-refusal@ib	5
11 19/01	9				8.5 1348		2-75	0		ϕ	<u>4''caxingo 8.5'</u>	
	11 <u>11</u> 12 <u></u>				1433	2-	1.95	0.33		-¢-	- LOUSING Water in 10.50-13.5 interv	Ŷ
	13 <u> </u>				13,5	3-				9 Dai	inite.	

				T	1						,	MW-2
	Depth(feet)	Sample Number	Biows on Sampler	Soil Components CL SL S GR	Rock Profile	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Comments
						-					·	
	16						3	6			-	
	17						<u> </u>	-6	32%			
	18								_			
, i	19					1500						
	20					· · ·	-					
	21						_	-				_
	22					ţ		-	\rightarrow			. .
	23						_	-	_			_
						2						
	24							-				_
	25						·	-	+		_ · _	_
	26 —						_	·	-+			
	27						_	_			_	_
	28						-+	-	-+		+	_
	29 —							-	-+			
	30						_					-
	31											-
	32							-	+			-
	33						_	-	-+			-
	34 ——						_	_				-
	35							-	+		- +	-
	36 ——				-			-	+		- +	-
	37							_	4			_
	38									_		
									-		T	
	39							-	+			-
	40 —								4			_
	41 —							_	_			_
						-						
	42 —							— ,	+			<u> </u>
	43						-	_	+			-
	44							_	-	<u> </u>		_

ЗĒ. T ' 💶 Ŧ Ţ


MW - 2Moisture Depth(feet). NARRATIVE LITHOLOGIC DESCRIPTION Content Moist Wet Š MÛ 13.54 $\bigcirc \bigcirc$ \bigcirc ARS ist. OAN r RI iva Ο $\circ \circ$ $\circ \circ \circ$ $\circ \circ \circ$ $\circ \circ \circ$ $\circ \circ \circ$ \bigcirc Ο $\circ \circ$ \bigcirc $\circ \circ \circ$ $\circ \circ \circ$ \bigcirc $\circ \circ$ O Ο \bigcirc 0 0 0 $\circ \circ \circ$

PQ.

Ş.

Т

P DRILLING LOG FOR MW-3(SE Project Name Water Level (TOIC) Level(Feet) Date Time N Site Location _ 21 Date Started/Finished **Drilling Company** Kirkoleid 0 Driller's Name Well Location Sketch SM Geologist's Name Geologist's Signature -85 -MF Rig Type (s) Ferravit HSA Drilling Method (s) -thu 3 n Auger Size (s) _ Bit Size (s) (D) 6710 4'B65 (558 Auger/Split Spoon Refusal Total Depth of Borehole is 20.5 Total Depth of Corehole Is_ Jan S. Soil Penetration Blows on Core Sample Run Fracture HNu/OVA RQD Depth(Feet) Components Comments Number Sampler Times Number Recovery Sketch (ppm) **Rock Profile** CL SL S GR DWMim **≁**¥` וקסודי uttings £ ne = 2 CV 2 I З 1320 1403 5.53 09.30 Č 3.8 ϕ I (55-9 10.51 10 000 100% 11 ۳ 12 ə.l 17 13 15.5 14 15 1030

		,				7						<u>mw-3</u>
Depth(feet)	Sample Number	Blow Sarr	ns on Npler	Soil Components CL SL S GR	Rock Profile	Penetration Times	Run Number	Core Recovery	RQD	Fracture Sketch	HNu/OVA (ppm)	Comments
16						1046						
10												_
17							_		$+$		+ $/-$	- !
18							3-	_5	400		$\lfloor \varphi \rfloor$	_
									10/2	>	1	
19												-
20						1115						-
21								_				
22								-				-
23 ——		·							-+			-
24												_
25							-	-	+		— · -	-
26												-
27 —								_		-		-
28 .							-		-+		+	-
29								_				_
30	t t						-+	_	+		- +	-
31							· 		· _			-
32												
												-
33		•					-		-+-		- +	-
34 —							_	-				_
35												
35								-	1	- 1	- +	-
36									+		- +	
37							-	_				_
									•			
38 —	-						-	-	-+		- +	-
39	-						4	-	-			-
10						-						
40 —		1				-		-	1		- +	- [
41								-	-+-	+		-
42									_			_
		•										4
43	·							-	+			-
44							-	- -	+			-
45								_				_
				1								

Ľ LL LL L I 812 IJ

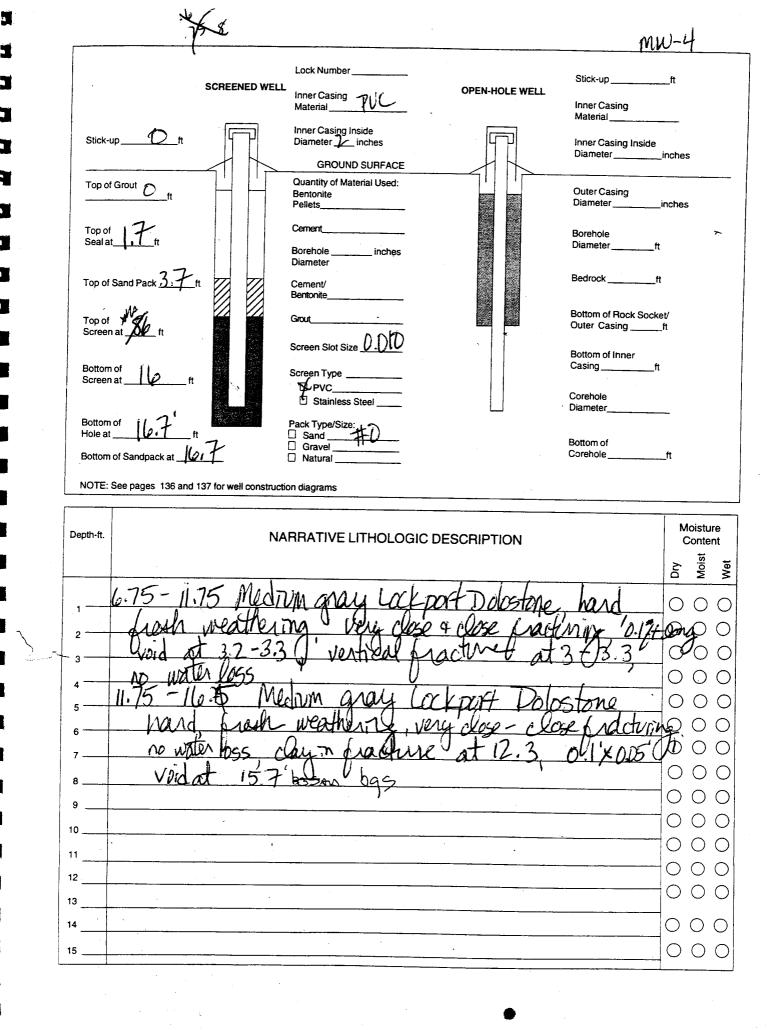
MW-3 Moisture NARRATIVE LITHOLOGIC DESCRIPTION Depth(feet). Content Moist Wet Š $\bigcirc \bigcirc$ 12 U Ο \mathcal{O} О Ζ $\circ \circ \circ$ O O Ο Ο Ο 0 0 00 0 0

J

]

I

I


-

ŝ.

Z

DRILLING LOG FOR ______ 51 Project Name Water Level (TOIC) her Date Time Level(Feet) tor Site Location _ Date Started/Finished Drilling Company Well Location Sketch Build Driller's Name GP22 Q+MU-4 1 Geologist's Name Monroe Geologist's Signature ENt. (ME Parting Rig Type (s) HSP Drilling Method (s) force 5ł Auger Size (s) Bit Size (s) 5'B6S Auger/Split Spoon Refusal Ferrouilo Total Depth of Borehole Is Phylling Total Depth of Corehole Is_ 5 10.1 JAU St JA Soil Sample Blows on Penetration Run Core Fracture HNu/OVA Depth(Feet) Components RQD Comments Number Sampler Times Recovery Number Sketch Rock Profile (ppm) CL SL S GR h >100 uttings -> D in AK in ACS-DMO2 2 З 1076 φ :052 1009 4.8 9 10 11 1030 12 1044-13 IID 14 15 16

11/27

1	
7	

ĩ

3

ĩ

D Well Development Records

WELL DEVELOPMENT RECORD SITE ACSF LOCATION Recluster, NY WELL NO. MW -1

MEASUREMENT OF WATER LEVEL AND WELL VOLUME

- Prior to sampling, the static water level and total depth of the well will be measured with a calibrated weighted line. Care will be taken to decontaminate equipment between each use to avoid cross contamination of wells.
- The number of linear feet of static water (difference between static water level and total depth of well) will be calculated.
- The static volume will be calculated using the formula:

 $V = Tr^2 (0.163)$

Where:

V =Static volume of well in gallons; T = Depth of water in the well, measured in feet;

r = Inside radius of well casing in inches; and 0.163 = A constant conversion factor which compensates for r²h factor for the conversion of the casing radius from inches to feet, the conversion of cubic feet to gallons, and (pi). 1 well volume (v) = 1.4 gallons.

Volume of Water in Casing or Hole Diameter of Gallons per Foot of Depth Cubic Feet Liter per Meter **Cubic Meters** Casing or Hole (in) per Foot of Depth per Meter of Depth of Depth 0.041 0.0055 0.509 0.509 x10-3 11/20.092 0.163 0.0123 0.0218 1.142 1.142 x103 2 21/2 2.024 3.167 2.024 x10⁻³ 3.167 x10⁻³ 0.255 0.0341 0.0491 0.0668 3 0.367 4.558 4.558 x10⁻³ 31/2 0.500 6.209 x10⁻³ 8.110 x10⁻³ 6.209 0.653 0.0873 8.110 8.110 10.260 12.670 15.330 18.240 24.840 41/2 0.1104 0.826 10.260 x10-3 1.020 12.670 x10⁻³ 15.330 x10⁻³ 51/2 1.234 0.1650 6 0.1963 0.2673 18.240 x10-3 24.840 x10⁻³ 32.430 x10⁻³ 41.040 x10⁻³ 78 2.000 2.611 3.305 4.080 0.3491 32.430 õ 0.4418 0.5454 41.040 50.670 10 50.670 x103 11 12 4.937 0.6600 61.310 61.310 x103 5.875 0.7854 1.0690 72.960 99.350 72.960 x10⁻³ 99.350 x10⁻³ 14 8.000 16 18 10.440 13.220 1.3960 129.650 x103 129.650 1.7670 2.1820 164.180 202.680 164.180 x10³ 202.680 x10³ 16.320 20 22 24 26 28 30 32 19.750 2.6400 245.280 245.280 x10-3 23.500 27.580 3.1420 3.6870 291.850 291.850 x10-3 342.520 x10⁻³ 397.410 x10⁻³ 342.520 4.2760 4.9090 5.5850 6.3050 32.000 397.410 36.720 41.780 456.020 456.020 x10⁻³ 518.870 x 10⁻³ 585.680 x10⁻³ 518.870 34 36 47.160 585.680 52.880 7.0690 656.720 656.720 x10-3 1 Gallon = 3.785 liters 1 Meter = 3.281 feet 1 Gallon water weighs 8.33 lbs. = 3.779 kilograms 1 Liter water weighs 1 kilogram = 2.205 pounds

s

磷

-15

3

25

2

Ci.

12

E.

Ċ

1 Gallon per foot of depth = 12.419 liters per foot of depth

1 Gallon per meter of depth = 12.419 x 10⁻³ cubic meters per meter of depth

WATER LEVEL (TOIC) 10.30 WELL DEPTH (TD) 18.64 COLOR	INITIAL DEVELOPMENT WATER	
COLOR		
ODORCLARITY		
CLARITY	COLOR _ apay	
FINAL DEVELOPMENT WATER WATER LEVEL (TOIC)	ODOR	
WATER LEVEL (TOIC)	CLARITY	
WATER LEVEL (TOIC)		
WELL DEPTH (TD) COLOR ODOR CLARITY	FINAL DEVELOPMENT WATER	
WELL DEPTH (TD) COLOR ODOR CLARITY	WATER LEVEL (TOIC)	
COLOR ODOR CLARITY		
CLARITY	COLOR	
	ODOR	
DESCRIPTION OF DEVELOPMENT FERMINENT SULAR IN 6 AUGUST DUALING IN	CLARITY	·
GUNTOS	DESCRIPTION OF DEVELOPMENT TECHNIQUE Sugen	bailer, pumpal

┝								
					· · · · · ·			· · · · · · · · · · · · · · · · · · ·
	1028	900	643	6.45	1556	12.6	6.54	
	010	850		6,40	1559	12,9	8,62	
- Г	0955	800		6.40	1589	12.9	6.04	
1 F	0940	750	· · · · · · · · · · · · · · · · · · ·	6.47	1599	12,4	9-11	OVA - 80 per perk, 15-20 per sus
<u> </u>	0924	700		6.39	1638	12.6	13.6	
- F	0908	650		6.33	1710	12.5	5.91	
. Г	0852	600	<u>. </u>	6,51	1713	12.1	15.9	······································
	0837	550		6.22	1765	12.0	5,42	
	0824	500		6,28	1733	1213	8.59	
	16.26	400		6,45	1550	12.5	98.7	
ł	1636	400		6.61	1369	12.9	99.7	
$\left \right $	1608	300 350		6.36	1590	12.4	28.6	
ł	556	250		6.39	1463	12.6	39,7	· · · · · · · · · · · · · · · · · · ·
╞	1544	200		6.36	1468	12.5	44.6	
	1529	150		6.39	1503	12.8	42.8	
	1514	100		6.40	1547	12.7	47.5	
	1459	50		6.46	1655	12.5	69.5	1 (0)
	1445	6		6.26	1670	11.8	18.1	Start pumping suff
8	1423	1.5	1	4.28	251629	12,3	252	Sulfuridor Oppm
2	1416	0	0	6.37	1593	11.7	70.6	Sulfirator O. boom
	TIME	GALS.	BORE VOL.	рН	COND. (µmhos/cm)	TEMP. (°C/°F)	TURB. (NTU)	COMMENTS
			L VOL. DRAWN		00115	TEMP	TUDD	
- 1						¥		MW-1

WELL DEVELOPMENT RECORD

mw-

SITE .

LOCATION

MEASUREMENT OF WATER LEVEL AND WELL VOLUME

- · Prior to sampling, the static water level and total depth of the well will be measured with a calibrated weighted line. Care will be taken to decontaminate equipment between each use to avoid cross contamination of wells.
- The number of linear feet of static water (difference between static water level and total depth of well) will be calculated.
- The static volume will be calculated using the formula:

$$V = Tr^{2}(0.163)$$

Where:

V = Static volume of well in gallons;

T = Depth of water in the well, measured infeet;

r = Inside radius of well casing in inches; and 0.163 = A constant conversion factor which compensates for r²h factor for the conversion of the casing radius from inches to feet, the conversion of cubic feet to gallons, and (pi). 1 well volume (v) = $\frac{1}{1}$ gallons.

1

INITIAL DEVELOPMENT WATER				
WATER LEVEL (TOIC) 10.81				
WELL DEPTH (TD)9.40				
COLOR AND				
ODORAUNIN				
CLARITY				
FINAL DEVELOPMENT WATER	1997 - A.			
WATER LEVEL (TOIC)				
WELL DEPTH (TD)				
COLOR	-			
ODOR	······································			
CLARITY	<u></u>			
	6	1 bailon+		. 1
DESCRIPTION OF DEVELOPMENT TECHNIQUE	E <u>Ourge</u> n	1 BULLE	+44)	Щ
bruntors pump	C/		<u> </u>	
1				

Volume of Water in Casing or Hole

DATE 1126

WELL NO. MI

Diameter of Casing or Hole (in)	Gallons per Foot of Depth	Cubic Feet per Foot of Depth	Liter per Meter of Depth	Cubic Meters per Meter of Depth
1	0.041	0.0055	0.509	0.509 x10 ⁻³
11/2	0.092	0.0123	1.142	1.142 x10 ⁻³
2	0.163	0.0218	2.024	2.024 x10 ⁻³
21/2	0.255	0.0341	3.167	3.167 x10 ⁻³
3	0.367	0.0491	4.558	4.558 x10 ⁻³
31/2	0.500	0.0668	6.209	6.209 x10-3
4	0.653	0.0873	8,110	8.110 x10 ⁻³
41/2	0.826	0.1104	10.260	10.260 x10 ⁻³
5	1.020	0.1364	12.670	12.670 x10 ⁻³
51/2	1.234	0.1650	15.330	15.330 x10 ⁻³
6	1.469	0.1963	18.240	18.240 x10 ⁻³
6 7 8	2.000	0.2673	24.840	24.840 x10 ⁻³
8	2.611	0.3491	32.430	32.430 x10-3
9	3.305	0.4418	41.040	41.040 x10 ⁻³
10	4.080	0.5454	50.670	50.670 x10 ⁻³
11	4.937	0.6600	61.310	61.310 x10 ⁻³
12	5.875	0.7854	72.960	72.960 x10-3
14	8.000	1.0690	99.350	99.350 x10 ⁻³
16	10.440	1.3960	129.650	129.650 x103
18	13.220	1.7670	164.180	164.180 x10 ⁻³
20	16.320	2.1820	202.680	202.680 x103
22	19.750	2.6400	245.280	245.280 x10 ⁻³
24	23.500	3.1420	291.850	291.850 x103
26	27.580	3.6870	342.520	342.520 x103
28	32.000	4.2760	397.410	397.410 x103
30	36.720	4.9090	456.020	456.020 x103
32	41.780	5.5850	518.870	518.870 x 10 ⁻³
34	47.160	6.3050	585.680	585.680 x10-3
36	52.880	7.0690	656.720	656.720 x103

Meter = 3.281 teet

1 Gallon water weighs 8.33 lbs. = 3.779 kilograms

1 Liter water weighs 1 kilogram = 2.205 pounds

1 Gallon per foot of depth = 12.419 liters per foot of depth

1 Gallon per meter of depth = 12.419 x 10⁻³ cubic meters per meter of depth

	WEI			NT - PAR	AMETER MEA	SUREMEN	rs	MW-2
: 24	TIME 7		L VOL. DRAWN BORE VOL.	pН	COND. (µ mbo s/cm)	TEMP. (°C/°F)	TURB. (NTU)	COMMENTS
k	1645	0		6.89	1407	12.7	34	Sulfur-like ador; 2-\$10ppm methy
27	0728	10		6.59	1292	12.5	~1000	" 2 ppm gray olor
	0748	50		6.77	1301	12.1	186	Suffur-like adar
	0813	100		6.62	1298	11.8	4.94	ja te
	0821	150		6.80	1294	17.8	14.4	64 8+
	DA32	200	-	6.75	1285	12.1	4.15	tv - u
	1027	250		6.70	1274	12.4	1.87	, iv A
	1126	300		6.76	1267	12.6	1.14	tt ti
	1219	350		6.109	1265	12.8	1.93	i i i i i i i i i i i i i i i i i i i
	1300	390	279	66	1256	13.4	1.69	n 24
						······································		
F								
	lap	rould	by t	e Whr	woved, how 250gallost red volume, te) tweiler	ever, dus duringdrilli well deve	2 to lo m) lopment	W flow rate a semonal tonordered complete DATE 11/27/01

.

ä

WELL DEVELOPMENT RECORD

SITE . LOCATION ROCHESTER

DATE __1/27/01 WELL NO. __MW-3

C

Z

E

ģ

MEASUREMENT OF WATER LEVEL AND WELL VOLUME

- Prior to sampling, the static water level and total depth of the well will be measured with a calibrated weighted line. Care will be taken to decontaminate equipment between each use to avoid cross contamination of wells.
- The number of linear feet of static water (difference between static water level and total depth of well) will be calculated.
- The static volume will be calculated using the formula:

 $V = Tr^{2}(0.163)$

Where:

V =Static volume of well in gallons; T = Depth of water in the well, measured in feet;

r = Inside radius of well casing in inches; and 0.163 = A constant conversion factor which compensates for r²h factor for the conversion of the casing radius from inches to feet, the conversion of cubic feet to gallons, and (pi). 1 well volume (v) = 1.8 gallons.

Diameter of Casing or Hole (in)	Gallons per Foot of Depth	Cubic Feet per Foot of Depth	Liter per Meter of Depth	Cubic Meters per Meter of Depth
1 11/2 2 3 31/2 4 41/2 5 51/2 6 7 8 9 10 11 12 14 16 18 20 22 24 26 28 30 32 34 36	0.041 0.092 0.163 0.255 0.367 0.500 0.653 0.826 1.020 1.234 1.469 2.000 2.611 3.305 4.080 4.937 5.875 8.000 10.440 13.220 16.320 19.750 23.500 27.580 32.000 36.720 36.720 41.780 47.160 52.880	0.0055 0.0123 0.0218 0.0341 0.0491 0.0668 0.0873 0.1104 0.1364 0.1650 0.1963 0.2673 0.3491 0.4418 0.5454 0.6600 0.7854 1.0690 1.3960 1.3960 1.3960 1.3960 1.3960 1.3960 1.3960 1.3960 1.3960 1.3960 1.3960 1.3960 1.3960 1.3960 1.3960 1.3960 1.3960 1.5850 6.3050 7.0690	0.509 1.142 2.024 3.167 4.558 6.209 8.110 10.260 12.670 15.330 18.240 24.840 32.430 41.040 50.670 61.310 72.960 99.350 129.650 164.180 202.680 201.680 2	0.509 x10 ³ 1.142 x10 ³ 2.024 x10 ³ 3.167 x10 ³ 4.558 x10 ³ 6.209 x10 ³ 8.110 x10 ³ 10.260 x10 ³ 12.670 x10 ³ 15.330 x10 ³ 18.240 x10 ³ 32.430 x10 ³ 32.430 x10 ³ 32.430 x10 ³ 41.040 x10 ³ 50.670 x10 ³ 99.350 x10 ³ 129.650 x10 ³ 129.650 x10 ³ 245.280 x10 ³ 291.850 x10 ³ 397.410 x10 ³ 585.680 x10 ³ 585.680 x10 ³

1 Gallon water weighs 8.33 lbs. = 3.779 kilograms

1 Liter water weighs 1 kilogram = 2.205 pounds

1 Gallon per foot of depth = 12.419 liters per foot of depth

1 Gallon per meter of depth = 12.419 x 10⁻³ cubic meters per meter of depth

INITIAL DEVELOPMENT WATER		
WATER LEVEL (TOIC) 8.62		
WELL DEPTH (TD)9.88		
COLOR NOW		· · · · · · · · · · · · · · · · · · ·
ODORSULTUR-LIKE		· · · · · · · · · · · · · · · · · · ·
CLARITY NOT VENIX		
FINAL DEVELOPMENT WATER		
WATER LEVEL (TOIC)	·	N.
WELL DEPTH (TD)	· · · ·	
COLOR		
ODOR		
CLARITY		
DESCRIPTION OF DEVELOPMENT TECHNIQUE	Surge w/ bailer +	pumpul

Г

	TIME		L VOL. DRAWN BORE	- pH	COND. (µmhos/cm)	TEMP. (°C/°F)	TURB. (NTU)	cc	MMENTS
ſ	Ø1320	0	VOL.	6.67	1697	14.1	71000	100 ppm 1	malhana iC
	1330	2	#21	6.68	1780	14.0	> 1000	Gray color	sulfurodor
Ц	1334	<u> </u>	2	6.67	M24	14.2	7/000	14	,
	1344	_6_	3	6.63	1865	14.3	71000	л	* 6
	1358		4	6.57	1916	16.D	460	h	i(
	1415	10	5	6.56	1906	17.3	697	~	48
	1432	17_	6	10.56	1960	16.1	166	1 g	11
┝	1436	14	7	6.62	1990	16.8	987	1	
H	yys Sc	18 kg	8	6.64	2021	_14.2_	>1000		
ť	Kn 1	12/018		6.67	$\frac{2026}{2100}$	1410	63.2		· · · · · · · · · · · · · · · · · · ·
ľ	520	1220 2322 2322	10	6.100	- 100	13.6	58.5		
H	540			6.69	2134	13.7	8.22		
	555	- 33 24	11.5	6.57	2165	13.6	89.0		·
ť	un l	- ØI	12	0.05	2154	13.8	14.0	\	
								· .	
						· · · · · · · · · · · · · · · · · · ·			
				_ · · · ·				······································	
									<u> </u>
						·			
							·		
									······································
								······································	
									· · · · · · · · · · · · · · · · · · ·
		-		<i>.</i>		I .	1	· · · · · · · · · · · · · · · · · · ·	
					eller			DATE 11 27	

WELL DEVELOPMENT RECORD

SITE _ LOCATION Kee 10 M

MEASUREMENT OF WATER LEVEL AND WELL VOLUME

- Prior to sampling, the static water level and total depth of the well will be measured with a calibrated weighted line. Care will be taken to decontaminate equipment between each use to avoid cross contamination of wells.
- The number of linear feet of static water (difference between static water level and total depth of well) will be calculated.
- The static volume will be calculated using the formula:

 $V = Tr^2(0.163)$

Where:

V = Static volume of well in gallons; T = Depth of water in the well, measured infeet;

r = Inside radius of well casing in inches; and 0.163 = A constant conversion factor

which compensates for r ² h factor for the conversion of the casing radius from inches	34 36	41.780 47.160 52.880	5.5850 6.3050 7.0690	518.870 585.680 656.720	518.870 x 10 ⁻³ 585.680 x10 ⁻³ 656.720 x10 ⁻³		
to feet, the conversion of cubic feet to gallons, and (pi). 1 well volume (v) = $\cancel{12}$ gallons.	1 Gallon = 3.785 liters 1 Meter = 3.281 feet 1 Gallon water weighs 8.33 lbs. = 3.779 kilograms 1 Liter water weighs 1 kilogram = 2.205 pounds 1 Gallon per foot of depth = 12.419 liters per foot of depth 1 Gallon per meter of depth = 12.419 x 10 ⁻³ cubic meters per meter of depth						
INITIAL DEVELOPMENT WATER							
WATER LEVEL (TOIC) 5,83							
WELL DEDTIL (TD) IF 00		<u> </u>					
					· · · · · · · · · · · · · · · · · · ·		
ODORSheht							
CLARITY Uskay					······································		
. 0							
FINAL DEVELOPMENT WATER							
WATER LEVEL (TOIC)				·	· · · · · · · · · · · · · · · · · · ·		
WELL DEPTH (TD)							
COLOR							
ODOR							
CLARITY			<u> </u>	•			
DESCRIPTION OF DEVELOPMENT TECHNIQUE	Sur	gen/b	arler,	POIND	n/		

	Volume of	Water in Ca	asing or Hole	Э			
Diameter of Casing or Hole (in)	Gallons per Foot of Depth	Cubic Feet per Foot of Depth	Liter per Meter of Depth	Cubic Meters per Meter of Depth			
1 11/2 2 21/2 3 31/2 4 41/2 5 51/2 6 7 8 9 10 11 12 14 16 18 20 22 24 26 28 30 32 34 36	0.041 0.092 0.163 0.255 0.367 0.500 0.653 0.826 1.020 1.234 1.469 2.000 2.611 3.305 4.080 4.937 5.875 8.000 10.440 13.220 16.320 19.750 23.500 27.580 32.000 36.720 41.780 47.160 52.880	0.0055 0.0123 0.0218 0.0341 0.0668 0.0873 0.1104 0.1364 0.1650 0.1963 0.2673 0.3491 0.4418 0.5454 1.0690 1.3960 1.7670 2.1820 2.6400 3.1420 3.6870 4.2760 4.9090 5.5850 6.3050 7.0690	0.509 1.142 2.024 3.167 4.558 6.209 8.110 10.260 12.670 15.330 18.240 24.840 24.840 32.430 41.040 50.670 61.310 72.960 99.350 129.650 164.180 202.680 245.280 245.280 291.850 342.520 397.410 456.020 518.870 585.680 656.720	$\begin{array}{c} 0.509 \times 10^3 \\ 1.142 \times 10^3 \\ 2.024 \times 10^3 \\ 3.167 \times 10^3 \\ 4.558 \times 10^3 \\ 6.209 \times 10^3 \\ 10.260 \times 10^3 \\ 10.260 \times 10^3 \\ 12.670 \times 10^3 \\ 12.670 \times 10^3 \\ 12.670 \times 10^3 \\ 24.840 \times 10^3 \\ 24.840 \times 10^3 \\ 32.430 \times 10^3 \\ 32.430 \times 10^3 \\ 41.040 \times 10^3 \\ 50.670 \times 10^3 \\ 61.310 \times 10^3 \\ 72.960 \times 10^3 \\ 99.350 \times 10^3 \\ 129.650 \times 10^3 \\ 129.650 \times 10^3 \\ 202.680 \times 10^3 \\ 202.680 \times 10^3 \\ 245.280 \times 10^3 \\ 245.280 \times 10^3 \\ 397.410 \times 10^3 \\ 342.520 \times 10^3 \\ 397.410 \times 10^3 \\ 518.870 \times 10^3 \\ 556.600 \times 10^3 \\ 556.720 \times 10^3 \end{array}$			
1 Gallon = 3.78	1 Gallon = 3.785 liters						

DATE

WELL NO.

E

E

Ľ

ľ

E

Z

8

4

WELL DEVELOPMENT - PARAMETER MEASUREMENTS

ľ

MW-4

TIME		AL VOL. DRAWN BORE VOL.	- pH	COND. (µmhos/cm)	TEMP. (°C/°F)	TURB. (NTU)	COMMENTS
0737	0	0	7.06	1001	12,9	137	Oppin gray color
0749	2	1	7.07	972.1	13.1	71000	oppin gray color
0752	4	2	Part P	978,5	13.7	71000	/1
OUL_	6	3	7.18	971.7	13.5	71000	<i>IT</i>
0805	8	4	6.99	1007	13.9	879	1(
0007	10	5	700	1012	14.8	>100	
USI /	12-	Q	7.00	1017	14.7	~1000	
80	14	7	6.93	1031	14.7	1079	
2813	It	8.5	695	1049	14.6	202	
180	21	10.5	7.07	1064.	14.2	344	- 140 - 140
823	26	13	6.94	1076	14.2	59,5	
0845	30	.15	6.93	<u>pui</u>	12.7	71000	
<u>a 00</u>	34	17	7.05		12.6	21000	
910	38	19	7.07	1122	12.3	.709	
925	42	21	697	1124	12.4	670	
935	46		6.89	1122	12.9	611	· · · · · · · · · · · · · · · · · · ·
<u>950</u> 003	50 54		6.97	1129	12.6	608	
214	58		6.91	1137	12.9	265	-
28	62	<u> </u>	6.90	1141,00	13.1	430	
739	66	33		11481	13.1		
51	10		7.01	1148	13.1	202	
		32	<u>10-010</u>		12.9	198	
<u> </u>							
$\overline{1}$	· [:]			1 1 1		<u> </u>	
Turbidity not < 50 NTU, but, as per work plan, "significant progress" was made over the course of development (and development was greater than the two hours specified in the workplan).							
	OPED BY:			Defweiler			

E Data Usability Summary Report and Summary of Tentatively Identified Compounds

Data Usability Summary Report	Project: NYSDEC PSA		
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway		

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per NYSDEC Division of Environmental Remediation Guidance for the Development of DUSRs (June 1999). Specific criteria for QC limits were obtained from the project QAPP. Compliance with the project QA program is indicated on the in the checklist and tables. Any major or minor concerns affected data usability are summarized listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project	Lab Work Order
Abandoned Chemical Sales	0111178

Sample ID	Sample Date	Matrix	Lab ID	Lab QC	MS MS	I III (Orroctions
GP22-SB-2.2-4.5-0	11/14/2001	Soil	0111178-01	MS/MSD	*	GP22-2.2-4.5
GP23-SB-4-4.7-0	11/14/2001	Soil	0111178-02			GP23-4-4.7
GP24-SB-4.9-5.4-0	11/14/2001	Soil	0111178-03			GP24-4.9-5.4
GP25-SB-2-3.3-0	11/14/2001	Soil	0111178-04			GP25-2-3.3
SD01-0	11/14/2001	Soil	0111178-04			SD01
SD01-0	11/14/2001	Soil	0111178-05	MS/MSD	*	SD01
SD01-D	11/14/2001	Soil	0111178-06			SD01-D
SS01-0	11/14/2001	Soil	0111178-07	MS/MSD	*	SS01
SS02-0	11/14/2001	Soil	0111178-08			SS02
SS02-D	11/14/2001	Soil	0111178-09			SS02-D
SS03-0	11/14/2001	Soil	0111178-10			SS03
SS04-0	11/14/2001	Soil	0111178-11			SS04
SS05-0	11/14/2001	Soil	0111178-12			SS05
SS06-0	11/14/2001	Soil	0111178-13			SS06
SS07-0	11/14/2001	Soil	0111178-14			SS07
SS08-0	11/14/2001	Soil	0111178-15			SS08
SS09-0	11/14/2001	Soil	0111178-16			SS09
SS10-0	11/14/2001	Soil	0111178-17			SS10
SS11-0	11/14/2001	Soil	0111178-18			SS11
STORAGE BLANK	11/14/2001	Water	0111178-19			None

Table 1 Sample Summary Tables from Electronic Data Deliverable

Work Orders, Tests and Number of Samples included in this DUSR

Work Orders	Matrix	Test Method	Number of Samples
0111178	Soil	ASTM_D2216	18
0111178	Soil	ILM04.0_CN	15
0111178	Soil	ILM04.0_HG	15
0111178	Soil	ILM04.0_MET	15
0111178	Soil	Lloyd Kahn	2
0111178	Soil	OLM04.2_PPCB	30
0111178	Soil	OLM04.2_SVOA	2

Data Usability Summary Report	Project: NYSDEC PSA		
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway		

Work Orders, Tests and Number of Samples included in this DUSR

Work Orders	Matrix	Test Method	Number of Samples
0111178	Soil	OLM04.2_VOA	18
0111178	Soil	SW9045C	12
0111178	Water	OLM04.2_VOA	1

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ set of samples per day?	Yes
All ASP Forms complete?	Yes
Case narrative present and complete?	Yes
Any holding time violations (See table below)?	No - All samples were prepared and analyzed within holding times.

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria.

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Volatile Organics and Semi-volatile Organics by GCMS							
Description	Notes and Qualifiers						
Any compounds present in method, trip, or field blanks (see Table 2)?	No target compounds are present. Two TICs are listed.						
For samples, if results are <5 times the blank or < 10 times blank for common laboratory contaminants then "U" flag data. Qualification also applies to TICs.	Samples are flagged U as noted on Table 2a for method blanks.						
Surrogate for method blanks and LCS within limits?	Yes						
Surrogate for samples and MS/MSD within limits? (See Table 3). All samples should be re-analyzed for VOCs? Samples should re-analyzed if >1 BN and/or > AP for BNAs is out. Matrix effects should be established.	Yes						
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes						
MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then J flag positive data in original sample due to matrix?	Yes						

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

Volatile Organics and Semi-volatile Organics by GCMS						
Description	Notes and Qualifiers					
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes					
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Not reviewed.					
Is initial calibration for target compounds <15 %RSD or curve fit?	Yes, as noted in the case narrative.					
Is continuing calibration for target compounds < 20.5%D.	Yes, as noted in the case narrative.					
Were any samples re-analyzed or diluted (see Table 6)? For any sample re-analysis and dilutions is only one reportable result by flagged?	Yes					
For TICs are there any system related compounds that should not be reported?	No					
Do field duplicate results show good precision for all compounds except TICs (see Table 7)?	Yes					

Pesticide and PCBs by GC/ECD						
Description	Notes and Qualifiers					
Any compounds present in method and field blanks as noted on Table 2?	No.					
For samples, if results are <5 times the blank then "U" flag data.	Not applicable.					
Surrogate for method blanks and LCS within limits?	Yes					
Surrogate for samples and MS/MSD within limits? (See Table 3). Matrix effects should be established.	No. One surrogate was high showing a positive interference. No sample qualification is required for one surrogate out.					
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes					
MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then J flag positive data in original sample due to matrix?	No, a few compounds had slightly low recovery. No data qualification is required because no matrix effects are indicated.					
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes, Endrin has a slightly high recovery but all the impacted results are already J flagged.					
Is initial calibration for target compounds <15 %RSD or curve fit?	Yes, as noted in the case narrative.					
Is continuing calibration for target compounds < 15.5%D.	Yes, as noted in the case narrative.					
Were any samples re-analyzed or diluted (see Table 6)? For any sample re-analysis and dilutions is only one reportable result by flagged?	Yes, several samples were analyzed at a dilution.					
Spot check retention time windows and second column confirmations as complete.	Not reviewed.					
Do field duplicate results show good precision for all compounds (see Table 7)?	Yes					

Data Usability Summary Report	Project: NYSDEC PSA				
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway				

Metals by ICP and Mercury by CVAA						
Description	Notes and Qualifiers					
Any compounds present in method and field blanks as noted on Table 2?	Yes, all compounds were below the PQL.					
For samples, if results are <5 times the blank then "U" flag data.	Samples are flagged U as noted on Table 2a for method blanks.					
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes					
MS/MSD within QC criteria (see Table 4)? QC limits are not applicable to sample results greater than 4 times spike amount. All N flagged data for MS are flagged J as estimated.	No					
Were elements recovered \leq 30%? If so, "R" flag associated NDs on Form 1's.	Yes, Selenium results for the soil sample had 0% recovery indicating a severe matrix effect.					
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes					
Is there one serial dilution per 20 samples? Flag all data reported with an "E" as "J".	Yes					
Spot check ICS recoveries 80-120%. Contact lab.	Acceptable, as noted in the case narrative.					
Spot check ICV 95-105%. Contact lab.	Acceptable, as noted in the case narrative.					
Spot check CCV 90-110% or 80-120% for Hg. Contact lab.	Acceptable, as noted in the case narrative.					
Do field duplicate results show good precision for all compounds (see Table 7)?	Yes					

General Analytical Methods						
Description	Notes and Qualifiers					
Any compounds present in method and field blanks as noted on Table 2?	No.					
For samples, if results are <5 times the blank then "U" flag data.	Not applicable.					
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes					
MS/MSD within QC criteria (see Table 4)? QC limits are not applicable to sample results greater than 4 times spike amount.	Yes					
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes					
Do field duplicate results show good precision for all compounds (see Table 7)?	Yes					

Summary of Potential Impacts on Data Usability Major Concerns

Selenium results for surface soils are rejected due to low matrix spike recoveries. The LCS was acceptable indicating a matrix effect. The ND values are biased low and the actual reporting limits are much higher. The screening value for selenium is 2 mg/Kg and therefore, the results are not useful for comparison to this criterion. The impacts on the overall usability is minor because some of the other metals and PAHs were much higher than their applicable criterion, and further investigation is warranted.

Data Usability Summary Report	Project: NYSDEC PSA				
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway				

Summary of Potential Impacts on Data Usability
Minor Concerns
None

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Samp Type	Analyte	Result	Qual	Anal Type	Units	MDL	PQL
ILM04.0_MET	MB-200103190	MBLK	Aluminum	12.513	В	A	mg/Kg	2.2	40.0
ILM04.0_MET	MB-200103190	MBLK	Barium	0.098	В	A	mg/Kg	0.080	40.0
ILM04.0_MET	MB-200103190	MBLK	Beryllium	0.069	В	A	mg/Kg	0.020	1.0
ILM04.0_MET	MB-200103190	MBLK	Cadmium	0.045	В	A	mg/Kg	0.040	1.0
ILM04.0_MET	MB-200103190	MBLK	Calcium	62.438	В	A	mg/Kg	5.6	1000
ILM04.0_MET	MB-200103190	MBLK	Chromium	0.321	В	A	mg/Kg	0.080	2.0
ILM04.0_MET	MB-200103190	MBLK	Iron	3.888	В	A	mg/Kg	3.1	20.0
ILM04.0_MET	MB-200103190	MBLK	Magnesium	4.650	В	A	mg/Kg	3.1	1000
ILM04.0_MET	MB-200103190	MBLK	Manganese	0.213	В	A	mg/Kg	0.040	3.0
ILM04.0_MET	MB-200103190	MBLK	Zinc	2.318	В	A	mg/Kg	0.10	4.0
OLM04.2_SVOA	MB-200103040	MBLK	1,3-Dioxolane, 2-(methoxymethyl)-2-pheny	150	NJ	Т	µg/Kg		
OLM04.2_SVOA	MB-200103040	MBLK	Unknown	200	J	Т	µg/Kg		

Table 2A - List of Samples Qualified for Method Blank Contamination

Method	Lab Blank	Matrix	Analyte	Blank Result	Result	Lab Qual	PQL	Affected Samples	Sample Flag
ILM04.0_MET	MB-200103190	Soil	Aluminum	12.513	3950	В	44.2	SS01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Aluminum	12.513	5040	В	47.8	SS02-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Aluminum	12.513	4950	В	45.2	SS09-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Aluminum	12.513	6750	В	56.3	SD01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Aluminum	12.513	3520	В	46.7	SS02-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Aluminum	12.513	5210	В	48.8	SS03-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Aluminum	12.513	4520	В	38.7	SS04-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Aluminum	12.513	5680	В	45.6	GP22-SB-2.2-4.5-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Aluminum	12.513	6470	В	60.2	SD01-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Aluminum	12.513	4320	В	36.3	SS07-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Aluminum	12.513	4320	В	45.5	SS05-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Aluminum	12.513	5860	В	41.6	SS11-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Aluminum	12.513	5390	В	35.5	SS10-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Aluminum	12.513	5050	В	47.7	SS08-0	Not Qualified

Data Usability Summary Report	Project: NYSDEC PSA					
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway					

Method	Lab Blank	Matrix	Analyte	Blank Result Resu	ult Lab Qual	PQL	Affected Samples	Sample Flag
ILM04.0_MET	MB-200103190	Soil	Aluminum	12.513 5810	В	46.6	SS06-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Barium	0.098 36.5	В	45.5	SS05-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Barium	0.098 44.8	В	41.6	SS11-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Barium	0.098 37.8	В	45.6	GP22-SB-2.2-4.5-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Barium	0.098 47.3	В	60.2	SD01-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Barium	0.098 33.1	В	44.2	SS01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Barium	0.098 32.5	В	46.7	SS02-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Barium	0.098 40.0	В	48.8	SS03-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Barium	0.098 40.9	В	47.8	SS02-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Barium	0.098 48.5	В	46.6	SS06-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Barium	0.098 43.3	В	36.3	SS07-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Barium	0.098 41.5	В	47.7	SS08-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Barium	0.098 38.6	В	35.5	SS10-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Barium	0.098 50.7	В	56.3	SD01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Barium	0.098 38.4	В	38.7	SS04-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Barium	0.098 42.2	В	45.2	SS09-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Beryllium	0.069 0.28	В	1.1	SS05-0	U Flag
ILM04.0_MET	MB-200103190	Soil	Beryllium	0.069 0.33	В	1.2	SS06-0	U Flag
ILM04.0_MET	MB-200103190	Soil	Beryllium	0.069 0.44	В	1.4	SD01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Beryllium	0.069 0.33	В	1.1	GP22-SB-2.2-4.5-0	U Flag
ILM04.0_MET	MB-200103190	Soil	Beryllium	0.069 0.29	В	0.89	SS10-0	U Flag
ILM04.0_MET	MB-200103190	Soil	Beryllium	0.069 0.27	В	1.1	SS09-0	U Flag
ILM04.0_MET	MB-200103190	Soil	Beryllium	0.069 0.28	В	0.91	SS07-0	U Flag
ILM04.0_MET	MB-200103190	Soil	Beryllium	0.069 0.37	В	1.0	SS11-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Beryllium	0.069 0.35	В	1.2	SS03-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Beryllium	0.069 0.34	В	1.2	SS02-D	U Flag
ILM04.0_MET	MB-200103190	Soil	Beryllium	0.069 0.27	В	1.2	SS02-0	U Flag
ILM04.0_MET	MB-200103190	Soil	Beryllium	0.069 0.23	В	1.1	SS01-0	U Flag
ILM04.0_MET	MB-200103190	Soil	Beryllium	0.069 0.39	В	1.5	SD01-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Beryllium	0.069 0.34	В	1.2	SS08-0	U Flag

Data Usability Summary Report	Project: NYSDEC PSA				
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway				

Method	Lab Blank	Matrix	Analyte	Blank Result	Result	Lab Qual	PQL	Affected Samples	Sample Flag
ILM04.0_MET	MB-200103190	Soil	Beryllium	0.069	0.26	В	0.97	SS04-0	U Flag
ILM04.0_MET	MB-200103190	Soil	Cadmium	0.045	0.35	В	1.2	SS02-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Cadmium	0.045	0.50	В	0.91	SS07-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Cadmium	0.045	0.37	В	1.1	SS01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Cadmium	0.045	0.50	В	1.2	SS02-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Cadmium	0.045	0.45	В	1.2	SS03-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Cadmium	0.045	0.38	В	0.97	SS04-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Cadmium	0.045	0.68	В	1.4	SD01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Cadmium	0.045	0.31	В	1.1	GP22-SB-2.2-4.5-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Cadmium	0.045	0.69	В	1.2	SS08-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Cadmium	0.045	0.92	В	1.1	SS09-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Cadmium	0.045	0.58	В	0.89	SS10-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Cadmium	0.045	0.80	В	1.0	SS11-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Cadmium	0.045	0.40	В	1.1	SS05-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Cadmium	0.045	0.66	В	1.5	SD01-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Cadmium	0.045	0.43	В	1.2	SS06-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Calcium	62.438	12700	В	888	SS10-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Calcium	62.438	23300	В	1200	SS02-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Calcium	62.438	19400	В	1170	SS02-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Calcium	62.438	95100	В	1110	SS01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Calcium	62.438	25900	В	967	SS04-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Calcium	62.438	10600	В	1410	SD01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Calcium	62.438	34600	В	1130	SS09-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Calcium	62.438	8640	В	1510	SD01-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Calcium	62.438	20700	В	1220	SS03-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Calcium	62.438	22200	В	907	SS07-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Calcium	62.438	21900	В	1040	SS11-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Calcium	62.438	40100	В	1140	GP22-SB-2.2-4.5-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Calcium	62.438	32900	В	1190	SS08-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Calcium	62.438	25200	В	1140	SS05-0	Not Qualified

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

Method	Lab Blank	Matrix	Analyte	Blank Result	Result	Lab Qual	PQL	Affected Samples	Sample Flag
ILM04.0_MET	MB-200103190	Soil	Calcium	62.438	58000	В	1160	SS06-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Chromium	0.321	15.1	В	2.1	SS11-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Chromium	0.321	7.3	В	2.2	SS01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Chromium	0.321	9.7	В	1.8	SS10-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Chromium	0.321	11.0	В	2.8	SD01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Chromium	0.321	7.1	В	2.3	SS05-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Chromium	0.321	7.8	В	2.3	GP22-SB-2.2-4.5-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Chromium	0.321	10.8	В	3.0	SD01-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Chromium	0.321	6.4	В	2.3	SS02-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Chromium	0.321	9.0	В	2.4	SS03-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Chromium	0.321	7.7	В	1.9	SS04-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Chromium	0.321	9.3	В	2.3	SS06-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Chromium	0.321	7.6	В	1.8	SS07-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Chromium	0.321	10.1	В	2.4	SS08-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Chromium	0.321	19.0	В	2.3	SS09-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Chromium	0.321	8.8	В	2.4	SS02-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Iron	3.888	9260	В	23.8	SS08-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Iron	3.888	10800	В	24.4	SS03-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Iron	3.888	9700	В	19.3	SS04-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Iron	3.888	11100	В	30.1	SD01-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Iron	3.888	10800	В	28.2	SD01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Iron	3.888	6170	В	22.1	SS01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Iron	3.888	7270	В	23.3	SS02-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Iron	3.888	10000	В	23.9	SS02-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Iron	3.888	8470	В	22.8	SS05-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Iron	3.888	8190	В	18.1	SS07-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Iron	3.888	14500	В	22.6	SS09-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Iron	3.888	13300	В	20.8	SS11-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Iron	3.888	8880	В	17.8	SS10-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Iron	3.888	10200	В	22.8	GP22-SB-2.2-4.5-0	Not Qualified

Data Usability Summary Report	Project: NYSDEC PSA						
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway						

Method	Lab Blank	Matrix	Analyte	Blank Result	Result	Lab Qual	PQL	Affected Samples	Sample Flag
ILM04.0_MET	MB-200103190	Soil	Iron	3.888	10100	В	23.3	SS06-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Magnesium	4.65	10500	В	1140	SS05-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Magnesium	4.65	8870	В	1170	SS02-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Magnesium	4.65	16600	В	1140	GP22-SB-2.2-4.5-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Magnesium	4.65	12900	В	1110	SS01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Magnesium	4.65	9390	В	1200	SS02-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Magnesium	4.65	8910	В	1220	SS03-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Magnesium	4.65	11000	В	967	SS04-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Magnesium	4.65	16800	В	1190	SS08-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Magnesium	4.65	11900	В	1130	SS09-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Magnesium	4.65	5680	В	888	SS10-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Magnesium	4.65	3660	В	1510	SD01-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Magnesium	4.65	9850	В	1040	SS11-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Magnesium	4.65	4890	В	1410	SD01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Magnesium	4.65	8690	В	907	SS07-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Magnesium	4.65	13700	В	1160	SS06-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Manganese	0.213	276	В	3.4	SS05-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Manganese	0.213	251	В	2.7	SS10-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Manganese	0.213	319	В	3.4	GP22-SB-2.2-4.5-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Manganese	0.213	212	В	4.2	SD01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Manganese	0.213	182	В	4.5	SD01-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Manganese	0.213	232	В	3.3	SS01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Manganese	0.213	308	В	3.5	SS02-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Manganese	0.213	435	В	3.7	SS03-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Manganese	0.213	249	В	3.6	SS08-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Manganese	0.213	300	В	3.5	SS06-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Manganese	0.213	289	В	2.9	SS04-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Manganese	0.213	402	В	3.6	SS02-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Manganese	0.213	332	В	3.4	SS09-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Manganese	0.213	301	В	2.7	SS07-0	Not Qualified

	IYSDEC PSA
Date Completed: March 13, 2002 Completed	d by: Marcia Meredith Galloway

Method	Lab Blank	Matrix	Analyte	Blank Result	Result	Lab Qual	PQL	Affected Samples	Sample Flag
ILM04.0_MET	MB-200103190	Soil	Manganese	0.213	317	В	3.1	SS11-0	Not Qualified
OLM04.2_SVOA	MB-200103040	Soil	Unknown	200	730	J		SS07-0	U Flag
OLM04.2_SVOA	MB-200103040	Soil	Unknown	200	270	J		SS06-0	U Flag
OLM04.2_SVOA	MB-200103040	Soil	Unknown	200	340	J		SS01-0	U Flag
OLM04.2_SVOA	MB-200103040	Soil	Unknown	200	300	J		SS10-0	U Flag
OLM04.2_SVOA	MB-200103040	Soil	Unknown	200	200	J		GP22-SB-2.2-4.5-0	U Flag
OLM04.2_SVOA	MB-200103040	Soil	Unknown	200	1700	J		SS03-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Zinc	2.318	57.1	В	3.9	SS04-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Zinc	2.318	30.8	В	4.6	GP22-SB-2.2-4.5-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Zinc	2.318	136	В	4.2	SS11-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Zinc	2.318	111	В	5.6	SD01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Zinc	2.318	37.6	В	4.4	SS01-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Zinc	2.318	76.3	В	4.8	SS02-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Zinc	2.318	68.9	В	4.9	SS03-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Zinc	2.318	56.5	В	4.6	SS05-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Zinc	2.318	49.8	В	4.7	SS06-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Zinc	2.318	65.1	В	3.6	SS07-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Zinc	2.318	108	В	4.8	SS08-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Zinc	2.318	149	В	4.5	SS09-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Zinc	2.318	119	В	6.0	SD01-D	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Zinc	2.318	62.5	В	4.7	SS02-0	Not Qualified
ILM04.0_MET	MB-200103190	Soil	Zinc	2.318	106	В	3.6	SS10-0	Not Qualified

 Table 2B - List of Samples Qualified for Field Blank Contamination

 None

Data Usability Summary Report	Project: NYSDEC PSA						
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway						

Method	Sample ID	Sample Type	Analyte	Rec.	Low Limit	High Limit	Dil Fac	Sample Qual.
OLM04.2_PPCB	SD01-0	SAMP	Decachlorobiphenyl	206	30	150	1	J Flag
OLM04.2_PPCB	SD01-0	MS	Decachlorobiphenyl	154	30	150	1	None
OLM04.2_PPCB	SD01-D	SAMP	Decachlorobiphenyl	183	30	150	1	None
OLM04.2_PPCB	SS01-0	SAMP	Decachlorobiphenyl	235	30	150	1	None
OLM04.2_PPCB	SS01-0	MS	Decachlorobiphenyl	160	30	150	1	None
OLM04.2_PPCB	SS02-0	SAMP	Decachlorobiphenyl	186	30	150	1	None
OLM04.2_PPCB	SS02-0	SAMP	Decachlorobiphenyl	345	30	150	1	None
OLM04.2_PPCB	SS02-D	SAMP	Decachlorobiphenyl	223	30	150	1	None
OLM04.2_PPCB	SS02-D	SAMP	Decachlorobiphenyl	408	30	150	1	None
OLM04.2_PPCB	SS03-0	SAMP	Decachlorobiphenyl	166	30	150	1	None
OLM04.2_PPCB	SS03-0	DL	Decachlorobiphenyl	225	30	150	3	Diluted Out
OLM04.2_PPCB	SS04-0	SAMP	Decachlorobiphenyl	219	30	150	1	None
OLM04.2_PPCB	SS05-0	SAMP	Decachlorobiphenyl	174	30	150	1	None
OLM04.2_PPCB	SS06-0	SAMP	Decachlorobiphenyl	174	30	150	1	None
OLM04.2_PPCB	SS07-0	SAMP	Decachlorobiphenyl	172	30	150	1	None
OLM04.2_PPCB	SS09-0	SAMP	Decachlorobiphenyl	415	30	150	1	None
OLM04.2_PPCB	SS09-0	DL	Decachlorobiphenyl	443	30	150	5	Diluted Out
OLM04.2_PPCB	SS10-0	SAMP	Decachlorobiphenyl	238	30	150	1	None
OLM04.2_PPCB	SS11-0	SAMP	Decachlorobiphenyl	405	30	150	1	None
OLM04.2_PPCB	SS11-0	DL	Decachlorobiphenyl	485	30	150	3	Diluted Out

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil Fac	Low Limit	High Limit	Sample Qual.
OLM04.2_PPCB	GP22-SB-2.2-4.5-0	MS	gamma-BHC	<1.8	17.3	44	1	46	127	None
OLM04.2_PPCB	GP22-SB-2.2-4.5-0	MS	gamma-BHC	<1.8	17.3	44	1	46	127	None
OLM04.2_PPCB	GP22-SB-2.2-4.5-0	MSD	gamma-BHC	<1.9	18.2	45	1	46	127	None
OLM04.2_PPCB	GP22-SB-2.2-4.5-0	MSD	gamma-BHC	<1.9	18.2	45	1	46	127	None
OLM04.2_PPCB	SD01-0	MS	gamma-BHC	<2.2	21.6	42	1	46	127	None

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway
	•

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil Fac	Low Limit	High Limit	Sample Qual.
OLM04.2_PPCB	SD01-0	MS	gamma-BHC	<2.2	21.6	42	1	46	127	None
OLM04.2_PPCB	SD01-0	MSD	gamma-BHC	<2.1	20.9	39	1	46	127	None
OLM04.2_PPCB	SD01-0	MSD	gamma-BHC	<2.1	20.9	39	1	46	127	None
OLM04.2_PPCB	SS01-0	MS	gamma-BHC	<1.8	17.7	38	1	46	127	None
OLM04.2_PPCB	SS01-0	MS	gamma-BHC	<1.8	17.7	38	1	46	127	None
OLM04.2_PPCB	SS01-0	MSD	gamma-BHC	<1.7	16.4	35	1	46	127	None
OLM04.2_PPCB	SS01-0	MSD	gamma-BHC	<1.7	16.4	35	1	46	127	None
ILM04.0_MET	GP22-SB-2.2-4.5-0	MS	Antimony	3.5	113.9	52.7	1.00	75	125	J Flag
ILM04.0_MET	GP22-SB-2.2-4.5-0	MS	Manganese	319	113.9	72.7	1.00	75	125	J Flag
ILM04.0_MET	GP22-SB-2.2-4.5-0	MS	Selenium		2.28	202.2	1.00	75	125	J Flag
ILM04.0_MET	SD01-0	MS	Antimony	3.6	140.85	54.4	1.00	75	125	J Flag
ILM04.0_MET	SD01-0	MS	Lead	43.8	5.63	32.8	1.00	75	125	4X
ILM04.0_MET	SD01-0	MS	Selenium		2.82	131.1	1.00	75	125	J Flag
ILM04.0_MET	SS01-0	MS	Antimony	2.3	110.58	62.3	1.00	75	125	J Flag
ILM04.0_MET	SS01-0	MS	Lead	71.5	4.42	-180	1.00	75	125	4X
ILM04.0_MET	SS01-0	MS	Manganese	232	110.58	263.5	1.00	75	125	J Flag
ILM04.0_MET	SS01-0	MS	Selenium	3.7	2.21	-24.4	1.00	75	125	R Flag NDs
ILM04.0_MET	SS01-0	MS	Thallium		11.06	58	1.00	75	125	J Flag
ILM04.0_MET	SS01-0	MS	Zinc	37.6	110.58	126.8	1.00	75	125	J Flag
ILM04.0_HG	GP22-SB-2.2-4.5-0	MS	Mercury	0.082	0.57	57.7	1.00	75	125	J Flag

Method	Sample ID	Sample Type	Analyte	RPD	RPD Limit	Sample Qual.
ILM04.0_MET	GP22-SB-2.2-4.5-0	DUP	Antimony	52.0	20	None
ILM04.0_MET	SD01-0	DUP	Antimony	38.1	20	None
ILM04.0_MET	GP22-SB-2.2-4.5-0	DUP	Arsenic	72.8	20	None
ILM04.0_MET	SS01-0	DUP	Arsenic	31.6	20	None
ILM04.0_MET	SD01-0	DUP	Barium	111.9	20	None
ILM04.0_MET	SS01-0	DUP	Beryllium	26.1	20	None
ILM04.0_MET	SD01-0	DUP	Cadmium	53.6	20	None

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

Method	Sample ID	Sample Type	Analyte	RPD	RPD Limit	Sample Qual.	
ILM04.0_MET	SS01-0	DUP	Calcium	86.0	20	None	
ILM04.0_MET	SD01-0	DUP	Cobalt	96.4	20	None	
ILM04.0_MET	SD01-0	DUP	Copper	21.7	20	None	
ILM04.0_MET	SS01-0	DUP	Copper	27.4	20	None	
ILM04.0_MET	SD01-0	DUP	Iron	46.7	20	None	
ILM04.0_MET	SD01-0	DUP	Lead	37.5	20	None	
ILM04.0_MET	SS01-0	DUP	Magnesium	20.1	20	None	
ILM04.0_MET	SD01-0	DUP	Manganese	150.3	20	None	
ILM04.0_MET	SS01-0	DUP	Manganese	25.6	20	None	
ILM04.0_MET	SS01-0	DUP	Nickel	25.5	20	None	
ILM04.0_MET	GP22-SB-2.2-4.5-0	DUP	Potassium	62.5	20	None	
ILM04.0_MET	SD01-0	DUP	Potassium	24.9	20	None	
ILM04.0_MET	SD01-0	DUP	Selenium	200.0	20	None	
ILM04.0_MET	SS01-0	DUP	Selenium	200.0	20	None	
ILM04.0_MET	GP22-SB-2.2-4.5-0	DUP	Silver	90.8	20	None	
ILM04.0_MET	SD01-0	DUP	Silver	200.0	20	None	
ILM04.0_MET	SS01-0	DUP	Silver	97.8	20	None	
ILM04.0_MET	GP22-SB-2.2-4.5-0	DUP	Sodium	23.4	20	None	
ILM04.0_MET	SD01-0	DUP	Sodium	28.7	20	None	
ILM04.0_MET	SS01-0	DUP	Vanadium	28.7	20	None	
ILM04.0_MET	SD01-0	DUP	Zinc	48.9	20	None	
ILM04.0_MET	SS01-0	DUP	Zinc	52.3	20	None	
OLM04.2_VOA	SS01-0	MSD	1,1-Dichloroethene	23	22	None	
OLM04.2_VOA	SS01-0	MSD	Benzene	25	21	None	
OLM04.2_VOA	SS01-0	MSD	Chlorobenzene	24	21	None	
OLM04.2_VOA	SS01-0	MSD	Toluene	23	21	None	

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

Table 5 - List LCS Recoveries outside Control Limits

Method	Sample ID	Analyte	Rec.	Low Limit	High Limit	Affected Samples	Samp Qual
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	GP22-SB-2.2-4.5-0	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	SD01-0	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	SD01-D	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	SS01-0	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	SS02-0	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	SS02-D	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	SS03-0	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	SS04-0	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	SS05-0	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	SS06-0	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	SS07-0	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	SS08-0	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	SS09-0	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	SS10-0	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	SS11-0	None

Table 6 –Samples that were Reanalyzed

Sample ID	Lab ID	Method	Sample Type	Action
SD01-D	0111178-06	OLM04.2_SVOA	SAMP	Report, add J and UJ flags
SD01-D	0111178-06	OLM04.2_SVOA	RA	Do Not Report
SS02-0	0111178-08	OLM04.2_SVOA	SAMP	Report, add J and UJ flags
SS02-0	0111178-08	OLM04.2_SVOA	RA	Do Not Report
SS03-0	0111178-10	OLM04.2_SVOA	SAMP	Report, add J and UJ flags
SS03-0	0111178-10	OLM04.2_SVOA	DL	Report for E flag data only
SS03-0	0111178-10	OLM04.2_PPCB	SAMP	Report, add J and UJ flags
SS03-0	0111178-10	OLM04.2_PPCB	DL	Report for E flag data only
SS04-0	0111178-11	OLM04.2_SVOA	SAMP	Report, add J and UJ flags
SS04-0	0111178-11	OLM04.2_SVOA	RA	Do Not Report
SS05-0	0111178-12	OLM04.2_SVOA	SAMP	Report, add J and UJ flags

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

Sample ID	Lab ID	Method	Sample Type	Action
SS05-0	0111178-12	OLM04.2_SVOA	RA	Do Not Report
SS06-0	0111178-13	OLM04.2_SVOA	SAMP	Report, add J and UJ flags
SS06-0	0111178-13	OLM04.2_SVOA	RA	Do Not Report
SS07-0	0111178-14	OLM04.2_SVOA	SAMP	Report, add J and UJ flags
SS07-0	0111178-14	OLM04.2_SVOA	RA	Do Not Report
SS08-0	0111178-15	OLM04.2_SVOA	SAMP	Report, add J and UJ flags
SS08-0	0111178-15	OLM04.2_SVOA	RA	Do Not Report
SS09-0	0111178-16	OLM04.2_SVOA	SAMP	Report, add J and UJ flags
SS09-0	0111178-16	OLM04.2_SVOA	DL	Report for E flag data only
SS09-0	0111178-16	OLM04.2_PPCB	SAMP	Report, add J and UJ flags
SS09-0	0111178-16	OLM04.2_PPCB	DL	Report for E flag data only
SS10-0	0111178-17	OLM04.2_SVOA	SAMP	Report, add J and UJ flags
SS10-0	0111178-17	OLM04.2_SVOA	RA	Do Not Report
SS11-0	0111178-18	OLM04.2_SVOA	SAMP	Report, add J and UJ flags
SS11-0	0111178-18	OLM04.2_SVOA	DL	Report for E flag data only
SS11-0	0111178-18	OLM04.2_PPCB	SAMP	Report, add J and UJ flags
SS11-0	0111178-18	OLM04.2_PPCB	DL	Report for E flag data only

Table 7 – Summary of Field Duplicate Results

				Anal	SS02-	SS02-		RPD	Samp	SD01-	SD01-		RPD	Samp
Method	Analyte	Unit	PQL	Туре	0	D	RPD	Rating	Qual	0	D	RPD	Rating	Qual
ASTM_D2216	Percent Moisture	wt%	0.100	Α	22.8	18.8	19.2%	Good	None	29	33.6	14.7%	Good	None
SW9045C	рН	S.U.	0.10	Α	7.7	7.8	1.3%	Good	None	NA	7.4	NC		
ILM04.0_CN	Cyanide	mg/Kg	0.74	Α	0.16	0.15	6.5%	Good	None	0.17	0.22	25.6%	Good	None
ILM04.0_HG	Mercury	mg/Kg	0.14	Α	0.075	0.093	21.4%	Good	None	0.18	0.12	40.0%	Good	None
ILM04.0_MET	Aluminum	mg/Kg	60.2	Α	3520	5040	35.5%	Good	None	6750	6470	4.2%	Good	None
ILM04.0_MET	Antimony	mg/Kg	18.1	Α	2.2	2.6	16.7%	Good	None	3.6	3.3	8.7%	Good	None
ILM04.0_MET	Arsenic	mg/Kg	3.0	Α	5	4.6	8.3%	Good	None	6.7	4	50.5%	Good	None
ILM04.0_MET	Barium	mg/Kg	60.2	Α	32.5	40.9	22.9%	Good	None	50.7	47.3	6.9%	Good	None
ILM04.0_MET	Beryllium	mg/Kg	1.5	Α	0.27	0.34	23.0%	Good	None	0.44	0.39	12.0%	Good	None
ILM04.0_MET	Cadmium	mg/Kg	1.5	А	0.35	0.5	35.3%	Good	None	0.68	0.66	3.0%	Good	None

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

				Anal	SS02-	SS02-		RPD	Samp	SD01-	SD01-		RPD	Samp
Method	Analyte	Unit	PQL			D		Rating		0	D		Rating	
ILM04.0_MET	Calcium	mg/Kg				23300	18.3%	Good	None	10600	8640	20.4%	Good	None
ILM04.0_MET	Chromium	mg/Kg	3.0	Α	6.4	8.8	31.6%	Good	None	11	10.8	1.8%	Good	None
ILM04.0_MET	Cobalt	mg/Kg	15.1	Α	3.6	4.6	24.4%	Good	None	4.1	3.8	7.6%	Good	None
ILM04.0_MET	Copper	mg/Kg	7.5	Α	16.7	22.6	30.0%	Good	None	22.6	20.3	10.7%	Good	None
	Iron	mg/Kg	30.1	Α	7270	10000	31.6%			10800	11100	2.7%	Good	None
ILM04.0_MET	Lead	mg/Kg	0.90	Α	42.9	49.4	14.1%	Good	None	43.8	40.8	7.1%	Good	None
ILM04.0_MET	Magnesium	mg/Kg	1510	Α	8870	9390	5.7%	Good	None	4890	3660	28.8%	Good	None
ILM04.0_MET	Manganese	mg/Kg	4.5	Α	308	402	26.5%	Good	None	212	182	15.2%	Good	None
ILM04.0_MET	Nickel	mg/Kg	9.6	Α	6.5	9	32.3%	Good	None	7.6	7.3	4.0%	Good	None
ILM04.0_MET	Potassium	mg/Kg	1510	Α	415	757	58.4%	Good	None	344	350	1.7%	Good	None
ILM04.0_MET	Selenium	mg/Kg	1.5	Α	3.6	ND	NC			ND	ND	NC		
ILM04.0_MET	Silver	mg/Kg	3.0	А	0.67	0.68	1.5%	Good	None	0.25	ND	NC		
ILM04.0_MET	Sodium	mg/Kg	1510	А	187	262	33.4%	Good	None	103	74.5	32.1%	Good	None
ILM04.0_MET	Vanadium	mg/Kg	15.1	А	7.8	11.3	36.6%	Good	None	12.8	12.8	0.0%	Good	None
ILM04.0_MET	Zinc	mg/Kg	6.0	Α	62.5	76.3	19.9%	Good	None	111	119	7.0%	Good	None
Lloyd Kahn	Total Organic Carbon	mg/Kg	6010	Α	NA	NA	NC			48900	70600	36.3%	Good	None
OLM04.2_PPCB	4,4´-DDD	µg/Kg	4.8	А	4.9	5.1	4.0%	Good	None	0.97	1.5	42.9%	Good	None
OLM04.2_PPCB	4,4´-DDE	µg/Kg	4.8	Α	ND	ND	NC			4.2	ND	NC		
OLM04.2_PPCB	4,4´-DDT	µg/Kg	4.8	Α	19	17	11.1%	Good	None	3.5	ND	NC		
OLM04.2_PPCB	Aldrin	µg/Kg	2.5	Α	ND	27	NC			12	13	8.0%	Good	None
OLM04.2_PPCB	alpha-Chlordane	µg/Kg	2.5	Α	23	32	32.7%	Good	None	6.5	7.1	8.8%	Good	None
OLM04.2_PPCB	Dieldrin	µg/Kg	4.8	Α	ND	ND	NC			1	ND	NC		
OLM04.2_PPCB	Endosulfan I	µg/Kg	2.5	Α	3.4	4.6	30.0%	Good	None	0.83	ND	NC		
OLM04.2_PPCB	Endosulfan sulfate	µg/Kg	4.8	Α	9.8	13	28.1%	Good	None	ND	ND	NC		
OLM04.2_PPCB	Endrin	µg/Kg	4.8	Α	ND	ND	NC			0.86	2.3	91.1%	Poor	J Flag
OLM04.2_PPCB	Endrin aldehyde	µg/Kg	4.8	Α	10	8.2	19.8%	Good	None	0.79	ND	NC		
OLM04.2_PPCB	Endrin ketone	µg/Kg	4.8	А	16	24	40.0%	Good	None	4.3	8.4	64.6%	Good	None
OLM04.2_PPCB	gamma-Chlordane	µg/Kg	2.5	А	1.9	2.8	38.3%	Good	None	0.73	ND	NC		
OLM04.2_PPCB	Heptachlor epoxide	µg/Kg	2.5	Α	30	39	26.1%	Good	None	14	15	6.9%	Good	None
OLM04.2_PPCB	Methoxychlor	µg/Kg	25	Α	52	82	44.8%	Good	None	16	20	22.2%	Good	None
OLM04.2_SVOA	2-Methylnaphthalene	µg/Kg	490	Α	70	ND	NC			ND	ND	NC		
OLM04.2_SVOA	4-Methylphenol	µg/Kg	490	А	76	ND	NC			ND	ND	NC		

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

				Anal	SS02-	SS02-		RPD	Samp	SD01-	SD01-		RPD	Samp
Method	Analyte	Unit	PQL			D	RPD	Rating		0	D	RPD	Rating	•
OLM04.2_SVOA	Acenaphthene	µg/Kg	490	Α	64	ND	NC			ND	ND	NC		
OLM04.2_SVOA	Acenaphthylene	µg/Kg	490	Α	2200	1500	37.8%	Good	None	83	84	1.2%	Good	None
OLM04.2_SVOA	Acetophenone	µg/Kg	490	Α	93	ND	NC			53	ND	NC		
OLM04.2_SVOA	Anthracene	µg/Kg	490	Α	860	710	19.1%	Good	None	100	96	4.1%	Good	None
OLM04.2_SVOA	Benz(a)anthracene	µg/Kg	490	Α	1500	1300	14.3%	Good	None	600	580	3.4%	Good	None
OLM04.2_SVOA	Benzo(a)pyrene	µg/Kg	490	Α	2000	1700	16.2%	Good	None	730	710	2.8%	Good	None
OLM04.2_SVOA	Benzo(b)fluoranthene	µg/Kg	490	Α	1000	1300	26.1%	Good	None	850	830	2.4%	Good	None
OLM04.2_SVOA	Benzo(g,h,i)perylene	µg/Kg	490	Α	2600	2200	16.7%	Good	None	490	600	20.2%	Good	None
OLM04.2_SVOA	Benzo(k)fluoranthene	µg/Kg	490	Α	2300	1300	55.6%	Good	None	610	580	5.0%	Good	None
OLM04.2_SVOA	Bis(2-ethylhexyl)phthalate	µg/Kg	490	Α	ND	ND	NC			ND	56	NC		
OLM04.2_SVOA		µg/Kg	490	Α	150	ND	NC			91	85	6.8%	Good	None
OLM04.2_SVOA	Chrysene	µg/Kg	490	Α	1600	1400	13.3%	Good	None	920	860	6.7%	Good	None
OLM04.2_SVOA	Dibenz(a,h)anthracene	µg/Kg	490	Α	1000	880	12.8%	Good	None	270	300	10.5%	Good	None
OLM04.2_SVOA	Dibenzofuran	µg/Kg	490	Α	55	ND	NC			ND	ND	NC		
OLM04.2_SVOA	Fluoranthene	µg/Kg	490	Α	3300	1700	64.0%	Good	None	940	890	5.5%	Good	None
OLM04.2_SVOA	Indeno(1,2,3-cd)pyrene	µg/Kg	490	Α	2600	2300	12.2%	Good	None	620	720	14.9%	Good	None
OLM04.2_SVOA	Naphthalene	µg/Kg	490	Α	98	ND	NC			ND	ND	NC		
OLM04.2_SVOA	Pentachlorophenol	µg/Kg	6400	Α	ND	ND	NC			ND	200	NC		
OLM04.2_SVOA	Phenanthrene	µg/Kg	490	Α	680	590	14.2%	Good	None	330	330	0.0%	Good	None
OLM04.2_SVOA	Pyrene	µg/Kg	490	Α	1900	1600	17.1%	Good	None	630	650	3.1%	Good	None
OLM04.2_SVOA	_gammaSitosterol	µg/Kg		Т	NA	NA	NC			1000	670	39.5%	Good	None
OLM04.2_SVOA	1,2:7,8-Dibenzophenanthrene	µg/Kg		Т	NA	NA	NC			NA	1100	NC		
OLM04.2_SVOA	1,2:7,8-Dibenzophenanthrene (30.377)	µg/Kg		Т	NA	520	NC			NA	NA	NC		
OLM04.2_SVOA	1,2:7,8-Dibenzophenanthrene (31.008)	µg/Kg		Т	NA	1100	NC			NA	NA	NC		
OLM04.2_SVOA	11H-Benzo(b)fluorene	µg/Kg		Т	590	520	12.6%	Good	None	NA	NA	NC		
OLM04.2_SVOA	11H-Benzo(b)fluorene (24.298)	µg/Kg		Т	2600	NA	NC			NA	NA	NC		
OLM04.2_SVOA	11H-Benzo(b)fluorene (24.412)	µg/Kg		Т	790	NA	NC			NA	NA	NC		
OLM04.2_SVOA	17-(1,5-Dimethylhexyl)-10,13-dimethyl-2,	µg/Kg		Т	NA	NA	NC			1000	470	72.1%	Poor	J Flag
OLM04.2_SVOA	2,6,10,14,18-Pentamethyl-2,6,10,14,18-ei	µg/Kg		Т	720	NA	NC			NA	NA	NC		
OLM04.2_SVOA	3,4-Dihydrocyclopenta(cd)pyrene (acepyre	µg/Kg		Т	910	NA	NC			NA	NA	NC		
OLM04.2_SVOA		µg/Kg		Т	NA	NA	NC			480	NA	NC		
OLM04.2_SVOA	4_alpha_,5_betaEpoxy-9_alpha	µg/Kg		Т	NA	NA	NC			NA	230	NC		

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

				Anal	SS02-	SS02-		RPD	Samp	SD01-	SD01-		RPD	Samp
Method	Analyte	Unit	PQL			D		Rating			D		Rating	
	hydroxyg							Ŭ						
OLM04.2_SVOA	5,12-Naphthacenedione	µg/Kg		Т	NA	NA	NC			350	520	39.1%	Good	None
OLM04.2_SVOA	7H-Benz(de)anthracen-7-one	µg/Kg		Т	520	600	14.3%	Good	None	260	180	36.4%	Good	None
OLM04.2_SVOA	7H-Benz(de)anthracen-7-one (25.23)	µg/Kg		Т	1600	NA	NC			NA	NA	NC		
OLM04.2_SVOA	7H-Benz(de)anthracen-7-one (25.571)	µg/Kg		Т	1000	NA	NC			NA	NA	NC		
OLM04.2_SVOA	7H-Benz(de)anthracen-7-one (26.058)	µg/Kg		Т	700	NA	NC			NA	NA	NC		
OLM04.2_SVOA	9,10-Anthracenedione	µg/Kg		Т	NA	NA	NC			NA	120	NC		
OLM04.2_SVOA	9-Hexadecenoic acid	µg/Kg		Т	NA	NA	NC			340	NA	NC		
OLM04.2_SVOA	9-Octadecenoic acid, (E)-	µg/Kg		Т	2100	NA	NC			770	NA	NC		
OLM04.2_SVOA	Adenine	µg/Kg		Т	NA	NA	NC			200	300	40.0%	Good	None
OLM04.2_SVOA	Androst-4-ene-3,17-dione, 15-hydroxy-, (µg/Kg		Т	NA	770	NC			NA	NA	NC		
OLM04.2_SVOA	Anthracene, 1-methyl-	µg/Kg		Т	550	NA	NC			NA	240	NC		
OLM04.2_SVOA	Anthracene, 2-methyl-	µg/Kg		Т	390	NA	NC			NA	NA	NC		
OLM04.2_SVOA	Benz(a)anthracene, 1-methyl-	µg/Kg		Т	NA	820	NC			NA	NA	NC		
OLM04.2_SVOA	Benz(e)acephenanthrylene	µg/Kg	330	Т	1000	NA	NC			NA	150	NC		
OLM04.2_SVOA	Benz(j)aceanthrylene, 3-methyl-	µg/Kg		Т	NA	650	NC			NA	NA	NC		
OLM04.2_SVOA	Benzeneacetic acid	µg/Kg		Т	NA	NA	NC			930	820	12.6%	Good	None
OLM04.2_SVOA	Benzo(a)naphthacene	µg/Kg		Т	670	NA	NC			NA	NA	NC		
OLM04.2_SVOA	Benzo(b)chrysene	µg/Kg		Т	1200	NA	NC			NA	200	NC		
OLM04.2_SVOA	Benzo(b)naphtho(2,1-d)thiophene	µg/Kg		Т	1400	NA	NC			820	NA	NC		
OLM04.2_SVOA	Benzo(b)triphenylene	µg/Kg		Т	1700	1100	42.9%	Good	None	NA	NA	NC		
OLM04.2_SVOA	Benzo(e)pyrene	µg/Kg		Т	2200	1400	44.4%	Good	None	NA	870	NC		
OLM04.2_SVOA	Benzo(e)pyrene (28.015)	µg/Kg		Т	1700	NA	NC			NA	NA	NC		
OLM04.2_SVOA	Benzo(e)pyrene (28.036)	µg/Kg		Т	NA	NA	NC			940	NA	NC		
OLM04.2_SVOA	Benzo(e)pyrene (28.273)	µg/Kg		Т	1200	NA	NC			NA	NA	NC		
OLM04.2_SVOA	Benzo(e)pyrene (28.295)	µg/Kg		Т	NA	NA	NC			140	NA	NC		
OLM04.2_SVOA	Cholesterol	µg/Kg		Т	NA	NA	NC			NA	370	NC		
OLM04.2_SVOA	Chrysene, 1-methyl-	µg/Kg		Т	1200	NA	NC			NA	NA	NC		
OLM04.2_SVOA	Chrysene, 5-methyl-	µg/Kg		Т	NA	NA	NC			NA	200	NC		
OLM04.2_SVOA	Chrysene, 6-methyl-	µg/Kg		Т	NA	590	NC			NA	NA	NC		
OLM04.2_SVOA	Dibenzo(def,mno)chrysene	µg/Kg		Т	NA	510	NC			NA	NA	NC		
OLM04.2_SVOA	Hexadecenoic acid, Z-11-	µg/Kg		Т	NA	NA	NC			640	NA	NC		

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

						SS02-				SD01-	SD01-			Samp
Method	Analyte	Unit	PQL	Туре	0	D	RPD	Rating	Qual	0	D	RPD	Rating	Qual
OLM04.2_SVOA	Indeno(1,2,3-cd)fluoranthene	µg/Kg		Т	2000	NA	NC			NA	NA	NC		
OLM04.2_SVOA	n-Hexadecanoic acid	µg/Kg		Т	850	NA	NC			680	460	38.6%	Good	None
OLM04.2_SVOA	Oxirane, heptadecyl-	µg/Kg		Т	NA	NA	NC			NA	1000	NC		
OLM04.2_SVOA	Perylene	µg/Kg		Т	700	980	33.3%	Good	None	180	NA	NC		
OLM04.2_SVOA	Pyrene, 1-methyl-	µg/Kg		Т	NA	NA	NC			140	140	0.0%	Good	None
OLM04.2_SVOA	Pyrene, 1-methyl- (24.091)	µg/Kg		Т	1000	NA	NC			NA	NA	NC		
OLM04.2_SVOA	Pyrene, 1-methyl- (24.495)	µg/Kg		Т	2100	NA	NC			NA	NA	NC		
OLM04.2_SVOA	Pyrene, 1-methyl- (24.712)	µg/Kg		Т	1300	NA	NC			NA	NA	NC		
OLM04.2_SVOA	Pyrene, 4-methyl-	µg/Kg		Т	1400	NA	NC			NA	NA	NC		
OLM04.2_SVOA	Stigmast-4-en-3-one	µg/Kg		Т	4000	NA	NC			500	1200	82.4%	Poor	J Flag
OLM04.2_SVOA	Testosterone	µg/Kg		Т	NA	3000	NC			NA	NA	NC		
OLM04.2_SVOA	Thymidine	µg/Kg		Т	NA	NA	NC			NA	430	NC		
OLM04.2_SVOA	Thymine	µg/Kg		Т	NA	NA	NC			820	NA	NC		
OLM04.2_SVOA	Triphenylene, 2-methyl-	µg/Kg		Т	2400	NA	NC			200	NA	NC		

Key:

A = Analyte

NC = Not Calculated

ND = Not Detected

PQL = Practical Quantitation Limit

RPD = Relative Percent Difference

T = Tentatively Identified Compound

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per NYSDEC Division of Environmental Remediation Guidance for the Development of DUSRs (June 1999). Specific criteria for QC limits were obtained from the project QAPP. Compliance with the project QA program is indicated on the in the checklist and tables. Any major or minor concerns affected data usability are summarized listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project	Lab Work Order
Abandoned Chemical Sales	C2A160244
Abandoned Chemical Sales	C2A170000
Abandoned Chemical Sales	C2A230000

Table 1 Sample Summary Tables from Electronic Data Deliverable

Sample ID	Sample Date	Matrix	Lab ID	Lab QC	M S M S	ClientSampIDCorrected
ACS-GP01-SB-3-5-0	11/12/2001	S	C2A1602440	MS/MSD		GP01-3-5
GP01-SB-3-5-D	11/12/2001	S	C2A1602440			GP01-3-5-D
GP01-SB-3-5-D	11/12/2001	S	C2A1602440			GP0-3-5-D
GP04-SB-5-5.5-0	11/12/2001	S	C2A1602440			GP04-5-5.5
GP08-SB-4-4.9-0	11/12/2001	S	C2A1602440			GP08-4-4.9
GP21-SB-2.8-3.5-0	11/13/2001	S	C2A1602440			GP21-2.8-3.5
MW03-GW-0	11/29/2001	W	C2A1602440			MW03
MW04-GW-0	11/29/2001	W	C2A1602440			MW04
MW1-GW-0	11/30/2001	W	C2A1602440			MW01
MW1-GW-D	11/30/2001	W	C2A1602440			MW01-D
MW2-GW-0	11/30/2001	W	C2A1602440			MW02
SW01-0	11/30/2001	W	C2A1602440			SW01
SW01-D	11/30/2001	W	C2A1602440			SW01-D

Work Orders, Tests and Number of Samples included in this DUSR

Work Orders	Matrix	Test Method	Number of Samples
C2A160244	S	WW 160.3 MOD	5
C2A160244	S	ICLP ILM04.0	5
C2A160244	W	ICLP ILM04.0	7

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes
Frequency of Field QC Samples Correct?	Yes

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

General Sample Information	
Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ set of samples per day?	
All ASP Forms complete?	Yes
Case narrative present and complete?	Yes
Any holding time violations (See table below)?	No - All samples were prepared and analyzed within holding times.

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria.

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Metals by ICP and Mercury by CVAA							
Description	Notes and Qualifiers						
Any compounds present in method and field blanks as noted on Table 2?	Yes. All metals are present below the PQL.						
For samples, if results are <5 times the blank then "U" flag data.	Samples are flagged U as noted on Table 2a for method blanks.						
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes						
MS/MSD within QC criteria (see Table 4)? QC limits are not applicable to sample results greater than 4 times spike amount. All N flagged data for MS are flagged J as estimated.	Yes (see Table 4).						
Were elements recovered \leq 30%? If so, "R" flag associated NDs on Form 1's.	No.						
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	No. The LCS range used for the solid LCS were based on manufacturer specifications.						
Is there one serial dilution per 20 samples? Flag all data reported with an "E" as "J".	Yes						
Spot check ICS recoveries 80-120%. Contact lab.	Yes, as noted in the case narrative.						
Spot check ICV 95-105%. Contact lab.	Yes, as noted in the case narrative.						
Spot check CCV 90-110% or 80-120% for Hg. Contact lab.	Yes, as noted in the case narrative.						
Do field duplicate results show good precision for all compounds (see Table 7)?	Yes						

Data Usability Summary Report	Project: NYSDEC PSA					
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway					

Summary of Potential Impacts on Data Usability
Major Concerns
None
Minor Concerns
None

Data Usability Summary Report	Project: NYSDEC PSA					
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway					

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Samp Type	Analyte	Result	Qual	Anal Type	Units	MDL	PQL
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Aluminum	46.8	В	A	µg/L	23.9	200
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Aluminum	35.6	В	A	mg/Kg	4.8	40
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Antimony	0.92	В	A	mg/Kg	0.38	12.0
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Beryllium	0.16	В	A	mg/Kg	0.12	1.0
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Calcium	9.7	В	A	mg/Kg	5.2	1000
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Calcium	49.2	В	A	µg/L	25.8	5000
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Chromium	0.49	В	A	mg/Kg	0.12	2.0
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Cobalt	0.79	В	A	µg/L	0.49	50
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Copper	0.90	В	A	mg/Kg	0.16	5.0
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Iron	5.1	В	A	mg/Kg	3.4	20
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Magnesium	40.5	В	A	µg/L	25.3	5000
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Magnesium	6.6	В	A	mg/Kg	5.1	1000
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Manganese	0.30	В	A	µg/L	0.23	15
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Manganese	0.10	В	A	mg/Kg	0.046	3.0
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Nickel	1.0	В	A	µg/L	0.59	40
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Nickel	0.31	В	A	mg/Kg	0.12	8.0
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Potassium	19.8	В	A	µg/L	8.3	5000
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Potassium	5.3	В	A	mg/Kg	1.7	1000
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Sodium	12.5	В	A	mg/Kg	11.9	1000
ICLP ILM04.0	INTRA-LAB BLANK	MBLK	Thallium	4.4	В	А	µg/L	2.4	10

Table 2A - List of Samples Qualified for Method Blank Contamination

Method	Lab Blank	Matrix	Analyte	Blank Result	Result	Lab Qual	PQL	Affected Samples	Sample Flag
ICLP ILM04.0	C2A170000134B	W	Aluminum	46.8	64.1	В	200	MW04	U Flag
ICLP ILM04.0	C2A170000134B	W	Aluminum	46.8	2010	В	200	SW01-D	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Aluminum	46.8	354	В	200	MW03	Not Qualified
ICLP ILM04.0	C2A230000117B	S	Aluminum	35.6	6090	В	52.2	GP04-5-5.5	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Aluminum	46.8	50.5	В	200	MW01-D	U Flag
ICLP ILM04.0	C2A170000134B	W	Aluminum	46.8	1590	В	200	SW01	Not Qualified

Data Usability Summary Report	Project: NYSDEC PSA						
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway						

Method	Lab Blank	Matrix	Analyte	Blank Result	Result	Lab Qual	PQL	Affected Samples	Sample Flag
ICLP ILM04.0	C2A170000134B	W	Aluminum	46.8	74.8	В	200	MW02	U Flag
ICLP ILM04.0	C2A230000117B	S	Aluminum	35.6	2340	В	45	GP0-3-5-D	Not Qualified
ICLP ILM04.0	C2A230000117B	S	Aluminum	35.6	3800	В	45.1	GP01-3-5	Not Qualified
ICLP ILM04.0	C2A230000117B	S	Aluminum	35.6	2660	В	51	GP21-2.8-3.5	Not Qualified
ICLP ILM04.0	C2A230000117B	S	Aluminum	35.6	4610	В	50.9	GP08-4-4.9	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Aluminum	46.8	50.0	В	200	MW01	U Flag
ICLP ILM04.0	C2A170000133B	S	Antimony	0.92	0.95	В	13.5	GP01-3-5	U Flag
ICLP ILM04.0	C2A170000133B	S	Antimony	0.92	0.62	В	13.5	GP0-3-5-D	U Flag
ICLP ILM04.0	C2A170000133B	S	Antimony	0.92	0.70	В	15.3	GP08-4-4.9	U Flag
ICLP ILM04.0	C2A170000133B	S	Antimony	0.92	0.74	В	15.3	GP21-2.8-3.5	U Flag
ICLP ILM04.0	C2A170000133B	S	Beryllium	0.16	0.67	В	1.1	GP01-3-5	U Flag
ICLP ILM04.0	C2A170000133B	S	Beryllium	0.16	0.63	В	1.1	GP0-3-5-D	U Flag
ICLP ILM04.0	C2A170000133B	S	Beryllium	0.16	1.3	В	1.3	GP21-2.8-3.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Beryllium	0.16	1.3	В	1.3	GP04-5-5.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Beryllium	0.16	0.90	В	1.3	GP08-4-4.9	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Calcium	9.7	70800	В	1130	GP01-3-5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Calcium	9.7	83200	В	1130	GP0-3-5-D	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Calcium	9.7	32500	В	1280	GP21-2.8-3.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Calcium	9.7	90000	В	1270	GP08-4-4.9	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Calcium	9.7	9120	В	1300	GP04-5-5.5	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Calcium	49.2	265000	В	5000	MW03	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Calcium	49.2	237000	В	5000	MW01	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Calcium	49.2	141000	В	5000	MW04	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Calcium	49.2	210000	В	5000	MW02	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Calcium	49.2	11500	В	5000	SW01	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Calcium	49.2	228000	В	5000	MW01-D	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Calcium	49.2	12300	В	5000	SW01-D	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Chromium	0.49	13.3	В	2.6	GP04-5-5.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Chromium	0.49	8.2	В	2.3	GP01-3-5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Chromium	0.49	11.8	В	2.5	GP08-4-4.9	Not Qualified

Data Usability Summary Report	Project: NYSDEC PSA					
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway					

Method	Lab Blank	Matrix	Analyte	Blank Result	Result	Lab Qual	PQL	Affected Samples	Sample Flag
ICLP ILM04.0	C2A170000133B	S	Chromium	0.49	11.7	В	2.6	GP21-2.8-3.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Chromium	0.49	6.7	В	2.3	GP0-3-5-D	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Cobalt	0.79	2.1	В	50	SW01-D	U Flag
ICLP ILM04.0	C2A170000134B	W	Cobalt	0.79	1.9	В	50	SW01	U Flag
ICLP ILM04.0	C2A170000134B	W	Cobalt	0.79	0.72	В	50	MW02	U Flag
ICLP ILM04.0	C2A170000134B	W	Cobalt	0.79	1.2	В	50	MW01-D	U Flag
ICLP ILM04.0	C2A170000134B	W	Cobalt	0.79	1.2	В	50	MW01	U Flag
ICLP ILM04.0	C2A170000134B	W	Cobalt	0.79	1.4	В	50	MW03	U Flag
ICLP ILM04.0	C2A170000134B	W	Cobalt	0.79	1.8	В	50	MW04	U Flag
ICLP ILM04.0	C2A170000133B	S	Copper	0.9	25.3	В	5.6	GP0-3-5-D	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Copper	0.9	27.3	В	5.6	GP01-3-5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Copper	0.9	23.1	В	6.4	GP08-4-4.9	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Copper	0.9	14.7	В	6.5	GP04-5-5.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Copper	0.9	9.5	В	6.4	GP21-2.8-3.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Iron	5.1	14800	В	26.1	GP04-5-5.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Iron	5.1	23400	В	25.5	GP21-2.8-3.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Iron	5.1	10300	В	22.5	GP0-3-5-D	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Iron	5.1	12900	В	22.6	GP01-3-5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Iron	5.1	17500	В	25.5	GP08-4-4.9	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Magnesium	6.6	31900	В	1130	GP0-3-5-D	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Magnesium	6.6	18400	В	1280	GP21-2.8-3.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Magnesium	6.6	3310	В	1300	GP04-5-5.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Magnesium	6.6	25200	В	1130	GP01-3-5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Magnesium	6.6	20700	В	1270	GP08-4-4.9	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Magnesium	40.5	42600	В	5000	MW02	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Magnesium	40.5	56400	В	5000	MW01	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Magnesium	40.5	54200	В	5000	MW01-D	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Magnesium	40.5	53000	В	5000	MW04	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Magnesium	40.5	77100	В	5000	MW03	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Magnesium	40.5	3740	В	5000	SW01	Not Qualified

Data Usability Summary Report	Project: NYSDEC PSA					
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway					

Method	Lab Blank	Matrix	Analyte	Blank Result	Result	Lab Qual	PQL	Affected Samples	Sample Flag
ICLP ILM04.0	C2A170000134B	W	Magnesium	40.5	4060	В	5000	SW01-D	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Manganese	0.3	1040	В	15	MW01-D	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Manganese	0.1	149	В	3.9	GP04-5-5.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Manganese	0.1	481	В	3.4	GP01-3-5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Manganese	0.1	378	В	3.4	GP0-3-5-D	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Manganese	0.1	253	В	3.8	GP21-2.8-3.5	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Manganese	0.3	68.7	В	15	SW01-D	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Manganese	0.3	222	В	15	MW03	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Manganese	0.3	54.1	В	15	SW01	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Manganese	0.3	374	В	15	MW04	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Manganese	0.3	1080	В	15	MW01	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Manganese	0.3	545	В	15	MW02	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Manganese	0.1	556	В	3.8	GP08-4-4.9	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Nickel	1	2.4	В	40	MW04	U Flag
ICLP ILM04.0	C2A170000133B	S	Nickel	0.31	9.4	В	9	GP0-3-5-D	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Nickel	0.31	13.5	В	10.2	GP08-4-4.9	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Nickel	0.31	12.8	В	10.2	GP21-2.8-3.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Nickel	0.31	11.3	В	10.4	GP04-5-5.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Nickel	0.31	11.8	В	9	GP01-3-5	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Nickel	1	18.2	В	40	MW03	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Nickel	1	10.9	В	40	MW01-D	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Nickel	1	3.1	В	40	SW01	U Flag
ICLP ILM04.0	C2A170000134B	W	Nickel	1		В	40	SW01-D	U Flag
ICLP ILM04.0	C2A170000134B	W	Nickel	1	5.6	В	40	MW02	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Nickel	1	11.1	В	40	MW01	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Potassium	19.8	3830	В	5000	SW01-D	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Potassium	19.8	3650	В	5000	SW01	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Potassium	5.3	1300	В	1130	GP01-3-5	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Potassium	19.8	2480	В	5000	MW04	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Potassium	19.8	1690	В	5000	MW02	Not Qualified

Data Usability Summary Report	Project: NYSDEC PSA					
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway					

Method	Lab Blank	Matrix	Analyte	Blank Result	Result	Lab Qual	PQL	Affected Samples	Sample Flag
ICLP ILM04.0	C2A170000134B	W	Potassium	19.8	1320	В	5000	MW01-D	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Potassium	19.8	1370	В	5000	MW01	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Potassium	19.8	4290	В	5000	MW03	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Potassium	5.3	349	В	1300	GP04-5-5.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Potassium	5.3	961	В	1130	GP0-3-5-D	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Potassium	5.3	1040	В	1270	GP08-4-4.9	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Potassium	5.3	1480	В	1280	GP21-2.8-3.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Sodium	12.5	299	В	1130	GP01-3-5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Sodium	12.5	381	В	1130	GP0-3-5-D	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Sodium	12.5	86.3	В	1300	GP04-5-5.5	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Sodium	12.5	159	В	1270	GP08-4-4.9	Not Qualified
ICLP ILM04.0	C2A170000133B	S	Sodium	12.5	183	В	1280	GP21-2.8-3.5	Not Qualified
ICLP ILM04.0	C2A170000134B	W	Thallium	4.4	3.1	В	10	SW01	U Flag
ICLP ILM04.0	C2A170000134B	W	Thallium	4.4	2.7	В	10	MW02	U Flag
ICLP ILM04.0	C2A170000134B	W	Thallium	4.4	5.9	В	10	MW03	U Flag
ICLP ILM04.0	C2A170000134B	W	Thallium	4.4	3.3	В	10	MW04	U Flag
ICLP ILM04.0	C2A170000134B	W	Thallium	4.4	2.9	В	10	MW01-D	U Flag

 Table 2B - List of Samples Qualified for Field Blank Contamination

 None

 Table 3 - List of Samples with Surrogates outside Control Limits

 None

Data Usability Summary Report	Project: NYSDEC PSA						
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway						

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil Fac	Low Limit	High Limit	Sample Qual.
ICLP ILM04.0	GP01-3-5	MS	Aluminum	<45.1	451	0	1	75	125	4X
ICLP ILM04.0	GP01-3-5	MS	Antimony	<13.5	22.6	37	1	75	125	J Flag
ICLP ILM04.0	GP01-3-5	MS	Calcium	<1130	11300	0	1	75	125	4X
ICLP ILM04.0	GP01-3-5	MS	Iron	<22.6	226	0	1	75	125	4X
ICLP ILM04.0	GP01-3-5	MS	Lead	<0.68	4.5	0	1	75	125	4X
ICLP ILM04.0	GP01-3-5	MS	Magnesium	<1130	11300	0	1	75	125	J FLag
ICLP ILM04.0	GP01-3-5	MS	Manganese	<3.4	113	0	1	75	125	4X

Table 4 - List MS/MSD Recoveries and RPDs outside Control Limits

Method	Sample ID	Sample Type	Analyte	RPD	RPD Limit	Sample Qual.
ICLP ILM04.0	GP01-3-5	DUP	Cadmium	37	25	None
ICLP ILM04.0	GP01-3-5	DUP	Magnesium	27	25	None
ICLP ILM04.0	GP01-3-5	DUP	Silver	32	25	None

 Table 5 - List LCS Recoveries outside Control Limits

 None

Table 6 –Samples that were Reanalyzed None

Table 7 – Summary of Field Duplicate Results

Method	Analyte	Unit	PQL	Anal Type	SW01	SW01-D	RPD	RPD Rating	Samp Qual	MW01	MW01-D	RPD	RPD Rating	Samp Qual
ICLP ILM04.0	Aluminum	µg/L	200	Α	1590	2010	23.3%	Good	None	50	50.5	1.0%	Good	None
ICLP ILM04.0	Antimony	µg/L	60	Α	ND	ND	NC			5.3	ND	NC		
ICLP ILM04.0	Arsenic	µg/L	10	Α	2.5	2.5	0.0%	Good	None	10.2	9.9	3.0%	Good	None
ICLP ILM04.0	Barium	µg/L	200	Α	17.6	21.6	20.4%	Good	None	81.9	78.8	3.9%	Good	None
ICLP ILM04.0	Beryllium	µg/L	5	Α	0.78	ND	NC			ND	ND	NC		

Data Usability Summary Report	Project: NYSDEC PSA						
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway						

				Anal				RPD	Samp				RPD	Samp
Method	Analyte	Unit	PQL	Туре	SW01	SW01-D	RPD	Rating	Qual	MW01	MW01-D	RPD	Rating	Qual
ICLP ILM04.0	Cadmium	µg/L	5	Α	ND	ND	NC			0.87	0.88	1.1%	Good	None
ICLP ILM04.0	Calcium	µg/L	5000	Α	11500	12300	6.7%	Good	None	237000	228000	3.9%	Good	None
ICLP ILM04.0	Chromium	µg/L	10	Α	3.3	3.8	14.1%	Good	None	1.1	0.74	39.1%	Good	None
ICLP ILM04.0	Cobalt	µg/L	50	Α	1.9	2.1	10.0%	Good	None	1.2	1.2	0.0%	Good	None
ICLP ILM04.0	Copper	µg/L	25	Α	7.6	10.4	31.1%	Good	None	1.8	7.3	######	Poor	J Flag
ICLP ILM04.0	Iron	µg/L	100	Α	2450	3260	28.4%	Good	None	25300	24300	4.0%	Good	None
ICLP ILM04.0	Lead	µg/L	3	Α	6.6	9.1	31.8%	Good	None	ND	2.2	NC		
ICLP ILM04.0	Magnesium	µg/L	5000	Α	3740	4060	8.2%	Good	None	56400	54200	4.0%	Good	None
ICLP ILM04.0	Manganese	µg/L	15	Α	54.1	68.7	23.8%	Good	None	1080	1040	3.8%	Good	None
ICLP ILM04.0	Nickel	µg/L	40	Α	3.1	4.4	34.7%	Good	None	11.1	10.9	1.8%	Good	None
ICLP ILM04.0	Potassium	µg/L	5000	Α	3650	3830	4.8%	Good	None	1370	1320	3.7%	Good	None
ICLP ILM04.0	Silver	µg/L	10	Α	ND	0.39	NC			ND	ND	NC		
ICLP ILM04.0	Sodium	µg/L	5000	Α	2630	2680	1.9%	Good	None	46600	44900	3.7%	Good	None
ICLP ILM04.0	Thallium	µg/L	10	Α	3.1	ND	NC			ND	2.9	NC		
ICLP ILM04.0	Vanadium	µg/L	50	Α	3.9	4.7	18.6%	Good	None	3.7	3.8	2.7%	Good	None
ICLP ILM04.0	Zinc	µg/L	20	А	54.2	69.2	24.3%	Good	None	4.7	23.6	######	Poor	J Flag

				Anal					
Method	Analyte	Unit	PQL	Туре	GP01-3-5	GP01-3-5-D	RPD	RPD Rating	Samp Qual
ICLP ILM04.0	Aluminum	mg/Kg	45.1	А	3800	2340	47.6%	Good	None
ICLP ILM04.0	Antimony	mg/Kg	13.5	А	0.95	0.62	42.0%	Good	None
ICLP ILM04.0	Arsenic	mg/Kg	2.3	А	4.8	3.5	31.3%	Good	None
ICLP ILM04.0	Barium	mg/Kg	45.1	А	34.4	25.3	30.5%	Good	None
ICLP ILM04.0	Beryllium	mg/Kg	1.1	А	0.67	0.63	6.2%	Good	None
ICLP ILM04.0	Cadmium	mg/Kg	1.1	А	0.67	0.52	25.2%	Good	None
ICLP ILM04.0	Calcium	mg/Kg	1130	А	70800	83200	16.1%	Good	None
ICLP ILM04.0	Chromium	mg/Kg	2.3	А	8.2	6.7	20.1%	Good	None
ICLP ILM04.0	Cobalt	mg/Kg	11.3	А	5	3.9	24.7%	Good	None
ICLP ILM04.0	Copper	mg/Kg	5.6	А	27.3	25.3	7.6%	Good	None
ICLP ILM04.0	Iron	mg/Kg	22.6	А	12900	10300	22.4%	Good	None
ICLP ILM04.0	Lead	mg/Kg	0.68	А	22.3	20.4	8.9%	Good	None

Data Usability Summary Report	Project: NYSDEC PSA					
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway					

Method	Analyte	Unit	PQL	Anal Type	GP01-3-5	GP01-3-5-D	RPD	RPD Rating	Samp Qual
ICLP ILM04.0	Magnesium	mg/Kg	1130	А	25200	31900	23.5%	Good	None
ICLP ILM04.0	Manganese	mg/Kg	3.4	А	481	378	24.0%	Good	None
ICLP ILM04.0	Nickel	mg/Kg	9	А	11.8	9.4	22.6%	Good	None
ICLP ILM04.0	Potassium	mg/Kg	1130	А	1300	961	30.0%	Good	None
ICLP ILM04.0	Silver	mg/Kg	2.3	А	0.099	ND	NC		
ICLP ILM04.0	Sodium	mg/Kg	1130	А	299	381	24.1%	Good	None
ICLP ILM04.0	Vanadium	mg/Kg	11.3	А	12.9	9	35.6%	Good	None
ICLP ILM04.0	Zinc	mg/Kg	4.5	А	62.3	48.7	24.5%	Good	None

Key:

A = Analyte

NC = Not Calculated

ND = Not Detected

PQL = Practical Quantitation Limit

RPD = Relative Percent Difference

T = Tentatively Identified Compound

Data Usability Summary Report	Project: NYSDEC PSA						
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway						

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness per NYSDEC Division of Environmental Remediation Guidance for the Development of DUSRs (June 1999). Specific criteria for QC limits were obtained from the project QAPP. Compliance with the project QA program is indicated on the in the checklist and tables. Any major or minor concerns affected data usability are summarized listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project	Lab Work Order
Abandoned Chemical Sales	0111174
Abandoned Chemical Sales	0111292
Abandoned Chemical Sales	0111306

Table 1 Sample Summary Tables from Electronic Data Deliverable

Sample ID	Sample Date	Matrix	Lab ID	Lab QC	MS MS	
GP09-SB-3-3.4-0	11/13/2001	Soil	0111174-01			GP09-3-3.4
GP10-SB-2.6-2.9-0	11/13/2001	Soil	0111174-02			GP10-2.6-2.9
GP11-SB-1.3-1.7-0	11/13/2001	Soil	0111174-03			GP11-1.3-1.7
GP12-SB-2.3-2.9-0	11/13/2001	Soil	0111174-04			GP12-2.3-2.9
GP13-SB-1.5-2.0-0	11/13/2001	Soil	0111174-05			GP13-1.5-2.0
GP14-SB-4-6.8-0	11/13/2001	Soil	0111174-06	MS/MSD	*	GP14-4-6.8
GP15-SB-5.3-6.2-0	11/13/2001	Soil	0111174-07			GP15-5.3-6.2
GP15-SB-5.3-6.2-0-DUP	11/13/2001	Soil	0111174-08			GP15-5.3-6.2-D
GP16-SB-6.1-7.1-0	11/13/2001	Soil	0111174-09			GP16-6.1-7.1
GP17-SB-4.0-5.8-0	11/13/2001	Soil	0111174-10	MS/MSD	*	GP17-4.0-5.8
GP18-SB-4-4.6-0	11/13/2001	Soil	0111174-11			GP18-4-4.6
GP19-SB-4-4.5-0	11/13/2001	Soil	0111174-12			GP19-4-4.5
GP20-SB-3.5-4.1-0	11/13/2001	Soil	0111174-13			GP20-3.5-4.1
GP21-SB-2.8-3.5-0	11/13/2001	Soil	0111174-14			GP21-2.8-3.5
ACS-GP01-SB-3-5-0	11/12/2001	Soil	0111174-15			GP01-3-5
GP01-SB-3-5-0	11/12/2001	Soil	0111174-15			GP01-3-5
GP01-SB-3-5-D	11/12/2001	Soil	0111174-16			GP01-3-5-D
GP01-SB-3-5-D	11/12/2001	Soil	0111174-16			GP01-3-5-D
GP02-SB-4-5-0	11/12/2001	Soil	0111174-17			GP02-4-5
GP03-SB-2.3-3.3-0	11/12/2001	Soil	0111174-18			GP03-2.3-3.3
GP04-SB-5-5.5-0	11/12/2001	Soil	0111174-19			GP04-5-5.5
GP05-SB-5-5.5-0	11/12/2001	Soil	0111174-20			GP05-5-5.5
GP06-SB-4.4-5-0	11/12/2001	Soil	0111174-21			GP06-4.4-5
GP07-SB-4-4.7-0	11/12/2001	Soil	0111174-22			GP07-4-4.7
GP08-SB-4-4.9-0	11/12/2001	Soil	0111174-23	MS/MSD		GP08-4-4.9
STORAGE BLANK	11/14/2001	Water	0111174-24			
MW03-GW-0	11/29/2001	Water	0111292-01			MW03
MW04-GW-0	11/29/2001	Water	0111292-02	MS/MSD	*	MW04
ACS-TB-112901	11/29/2001	Water	0111292-03			TB-112901
STORAGE BLANK	11/29/2001	Water	0111292-04			
TB2-113001	11/30/2001	Water	0111306-01			TB2-113001

02:000699_NY08_03_01-B0900 DUSR_AC_Organics.doc-03/29/02 Page 1 of 15

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

Sample ID	Sample Date	Matrix	Lab ID	Lab QC	MS MS	ClientSampIDCorrected
SW01-0	11/30/2001	Water	0111306-02	MS/MSD	*	SW01
SW01-D	11/30/2001	Water	0111306-03			SW01-D
MW1-GW-0	11/30/2001	Water	0111306-04			MW01
MW1-GW-D	11/30/2001	Water	0111306-05			MW01-D
MW2-GW-0	11/30/2001	Water	0111306-06			MW02
STORAGE BLANK	11/30/2001	Water	0111306-07			

Table 1 Sample Summary Tables from Electronic Data Deliverable

Work Orders, Tests and Number of Samples included in this DUSR

Work Orders	Matrix	Test Method	Number of Samples
0111174	Soil	ILM04.0_CN	5
0111174	Soil	ILM04.0_HG	5
0111174	Soil	OLM04.2_PPCB	5
0111174	Soil	OLM04.2_SVOA	5
0111174	Soil	SW9045C	5
0111174	Soil	OLM04.2_VOA	23
0111174	Soil	ASTM_D2216	23
0111174	Water	OLM04.2_VOA	1
0111292	Water	OLM04.2_PPCB	2
0111292	Water	ILM04.0_HG	2
0111292	Water	OLM04.2_SVOA	2
0111306	Water	EPA130.2	2
0111292	Water	ILM04.0_CN	2
0111292	Water	OLM04.2_VOA	4
0111306	Water	ILM04.0_CN	5
0111306	Water	ILM04.0_HG	5
0111306	Water	OLM04.2_PPCB	
0111306	Water	OLM04.2_SVOA	
0111306	Water	OLM04.2_VOA	7

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ set of samples per day?	Yes
All ASP Forms complete?	Yes
Case narrative present and complete?	Yes
Any holding time violations (See table below)?	No - All samples were prepared and analyzed within holding times.

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

The following tables are presented at the end of this DUSR and provided summaries of results outside QC criteria.

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Re-analysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Volatile Organics and Semi-volatile Organics by GCMS			
Description	Notes and Qualifiers		
Any compounds present in method, trip and field blanks (see Table 2)?	Yes, all compounds were TICs or below the PQL.		
For samples, if results are <5 times the blank or < 10 times blank for common laboratory contaminants then "U" flag data. Qualification also applies to TICs.	Samples are flagged U as noted on Table 2a for method blanks.		
Surrogate for method blanks and LCS within limits?	Yes		
Surrogate for samples and MS/MSD within limits? (See Table 3). All samples should be re-analyzed for VOCs? Samples should re-analyzed if >1 BN and/or > AP for BNAs is out. Matrix effects should be established.	No. One surrogate was out for the samples.		
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes		
MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then J flag positive data in original sample due to matrix?	No. The MS showed high recoveries but no sample qualification is required.		
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes		
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Not reviewed.		
Is initial calibration for target compounds <15 %RSD or curve fit?	Yes, as noted in the case narrative.		
Is continuing calibration for target compounds < 20.5%D.	Yes, as noted in the case narrative.		
Were any samples re-analyzed or diluted (see Table 6)? For any sample re-analysis and dilutions is only one reportable result by flagged?	Yes.		
For TICs are there any system related compounds that should not be reported?	No		
Do field duplicate results show good precision for all compounds except TICs (see Table 7)?	Yes except for some slightly high values for PAH in the subsurface soil samples. Most results are less than the PQL and no additional data qualification is required.		

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

Pesticide and PCBs by GC/ECD	
Description	Notes and Qualifiers
Any compounds present in method and field blanks as noted on Table 2?	No.
For samples, if results are <5 times the blank then "U" flag data.	Not applicable.
Surrogate for method blanks and LCS within limits?	Yes
Surrogate for samples and MS/MSD within limits? (See Table 3). Matrix effects should be established.	No. One surrogate was high showing a positive interference. No sample qualification is required for one surrogate out.
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes
MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then J flag positive data in original sample due to matrix?	No, a few compounds had slightly low recovery. No data qualification is required because no matrix effects are indicated.
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes, Endrin has a slightly high recovery but all the impacted results are already J flagged.
Is initial calibration for target compounds <15 %RSD or curve fit?	Yes, as noted in the case narrative.
Is continuing calibration for target compounds < 15.5%D.	Yes, as noted in the case narrative.
Were any samples re-analyzed or diluted (see Table 6)? For any sample re-analysis and dilutions is only one reportable result by flagged?	No
Spot check retention time windows and second column confirmations as complete.	Acceptable.
Do field duplicate results show good precision for all compounds (see Table 7)?	Yes

Mercury by CVAA	
Description	Notes and Qualifiers
Any compounds present in method and field blanks as noted on Table 2?	No.
For samples, if results are <5 times the blank then "U" flag data.	Not applicable.
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes
MS/MSD within QC criteria (see Table 4)? QC limits are not applicable to sample results greater than 4 times spike amount. All N flagged data for MS are flagged J as estimated.	No. All mercury results for waters are low.
Were elements recovered <30%? If so, "R" flag associated NDs on Form 1's.	Yes. 25 and 30% The samples results are all ND or below PQL. The recovery was sufficient to detect the compounds and the data are not rejected.
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes
Is there one serial dilution per 20 samples? Flag all data reported with an "E" as "J".	Yes
Spot check ICS recoveries 80-120%. Contact lab.	Yes, as noted in the case narrative.

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

Mercury by CVAA	
Description	Notes and Qualifiers
Spot check ICV 95-105%. Contact lab.	Yes, as noted in the case narrative.
Spot check CCV 90-110% or 80-120% for Hg. Contact lab.	Yes, as noted in the case narrative.
Do field duplicate results show good precision for all compounds (see Table 7)?	Yes

General Analytical Methods	
Description	Notes and Qualifiers
Any compounds present in method and field blanks as noted on Table 2?	No.
For samples, if results are <5 times the blank then "U" flag data.	Not applicable.
Laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes
MS/MSD within QC criteria (see Table 4)? QC limits are not applicable to sample results greater than 4 times spike amount.	Yes
LCS within QC criteria (see Table 5)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes
Do field duplicate results show good precision for all compounds (see Table 7)?	Yes

Summary of Potential Impacts on Data Usability
Major Concerns
None
Minor Concerns
None

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

Table 2 - List of Positive Results for Blank Samples

Method	Sample ID	Samp Type	Analyte	Result	Qual	Anal Type	Units	MDL	PQL
OLM04.2_SVOA	MB-200103040	MBLK	1,3-Dioxolane, 2-(methoxymethyl)-2-pheny	150	NJ	Т	µg/Kg		
OLM04.2_SVOA	MB-200103040	MBLK	Unknown	200	J	Т	µg/Kg		
OLM04.2_SVOA	MB-200103234	MBLK	1-Propene, 1,2,3-trichloro-, (Z)-	67	NJ	Т	µg/L		
OLM04.2_SVOA	MB-200103234	MBLK	Bis(2-ethylhexyl)phthalate	1	J	A	µg/L		10
OLM04.2_SVOA	MB-200103234	MBLK	Unknown	7	J	Т	µg/L		

Table 2A - List of Samples Qualified for Method Blank Contamination

Method	Lab Blank	Matrix	Analyte	Blank Result	Result	Lab Qual	PQL	Affected Samples	Sample Flag
OLM04.2_SVOA	MB-200103234	Water	Bis(2-ethylhexyl)phthalate	1	7	J	10	MW04-GW-0	Not Qualified
OLM04.2_SVOA	MB-200103234	Water	Bis(2-ethylhexyl)phthalate	1	2	J	10	SW01-0	U Flag
OLM04.2_SVOA	MB-200103234	Water	Bis(2-ethylhexyl)phthalate	1	3	J	10	MW2-GW-0	U Flag
OLM04.2_SVOA	MB-200103234	Water	Bis(2-ethylhexyl)phthalate	1	2	J	20	MW03-GW-0	U Flag
OLM04.2_SVOA	MB-200103234	Water	Bis(2-ethylhexyl)phthalate	1	2	J	10	MW03-GW-0	U Flag
OLM04.2_SVOA	MB-200103234	Water	Bis(2-ethylhexyl)phthalate	1	3	J	10	MW1-GW-0	U Flag
OLM04.2_SVOA	MB-200103234	Water	Unknown	7	8	J		MW2-GW-0	U Flag
OLM04.2_SVOA	MB-200103234	Water	Unknown	7	250	J		MW1-GW-D	Not Qualified
OLM04.2_SVOA	MB-200103234	Water	Unknown	7	14	J		MW1-GW-D	U Flag
OLM04.2_SVOA	MB-200103040	Soil	Unknown	200	110	J		GP04-SB-5-5.5-0	U Flag
OLM04.2_SVOA	MB-200103040	Soil	Unknown	200	250	J		GP08-SB-4-4.9-0	U Flag

Table 2B - List of Samples Qualified for Field Blank Contamination None

Table 3 - List of Samples with Surrogates outside Control Limits

Method	Sample ID	Sample Type	Analyte	Rec.	Low Limit	High Limit	Dil Fac	Sample Qual.
OLM04.2_SVOA	MW1-GW-0	SAMP	Phenol-d5	133	10	110	1	None
OLM04.2_SVOA	MW1-GW-D	SAMP	Phenol-d5	125	10	110	1	None
OLM04.2_PPCB	GP01-SB-3-5-D	SAMP	Decachlorobiphenyl	194	30	150	1	J Flag

Data Usability Summary Report	Project: NYSDEC PSA				
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway				

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	Rec.	Dil Fac	Low Limit	High Limit	Sample Qual.
OLM04.2_SVOA	MW04-GW-0	MS	4-Nitrophenol	<25	75	107	1	10	80	None
OLM04.2_SVOA	MW04-GW-0	MSD	4-Nitrophenol	<25	75	111	1	10	80	None
OLM04.2_SVOA	MW04-GW-0	MS	Pentachlorophenol	<25	75	109	1	9	103	None
OLM04.2_SVOA	MW04-GW-0	MSD	Pentachlorophenol	<25	75	111	1	9	103	None
OLM04.2_SVOA	SW01-0	MS	4-Chloro-3-methylphenol	<10	75	99	1	23	97	None
OLM04.2_SVOA	SW01-0	MS	4-Nitrophenol	<25	75	120	1	10	80	None
OLM04.2_SVOA	SW01-0	MSD	4-Nitrophenol	<25	75	92	1	10	80	None
OLM04.2_SVOA	SW01-0	MS	Pentachlorophenol	<25	75	133	1	9	103	None
OLM04.2_PPCB	MW04-GW-0	MS	Endrin	<0.10	1	133	1	56	121	None
OLM04.2_PPCB	MW04-GW-0	MS	Endrin	<0.10	1	133	1	56	121	None
OLM04.2_PPCB	MW04-GW-0	MSD	Endrin	<0.10	1	128	1	56	121	None
OLM04.2_PPCB	MW04-GW-0	MSD	Endrin	<0.10	1	128	1	56	121	None
ILM04.0_HG	MW04-GW-0	MS	Mercury		1	25.5	1.00	75	125	None
ILM04.0_HG	SW01-0	MS	Mercury		1	30.3	1.00	75	125	None

Method	Sample ID	Sample Type	Analyte	RPD	RPD Limit	Sample Qual.
ILM04.0_CN	MW04-GW-0	DUP	Cyanide	200.0	20	None
ILM04.0_CN	SW01-0	DUP	Cyanide	112.3	20	None
ILM04.0_HG	GP08-SB-4-4.9-0	DUP	Mercury	45.6	20	None
OLM04.2_PPCB	SW01-0	MSD	Aldrin	28	22	None
OLM04.2_PPCB	SW01-0	MSD	Aldrin	28	22	None
OLM04.2_PPCB	SW01-0	MSD	Dieldrin	26	18	None
OLM04.2_PPCB	SW01-0	MSD	Dieldrin	26	18	None
OLM04.2_PPCB	SW01-0	MSD	gamma-BHC	24	15	None
OLM04.2_PPCB	SW01-0	MSD	gamma-BHC	24	15	None
OLM04.2_PPCB	SW01-0	MSD	Heptachlor	24	20	None
OLM04.2_PPCB	SW01-0	MSD	Heptachlor	24	20	None

Data Usability Summary Report	Project: NYSDEC PSA				
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway				

Table 5 - List LCS Recoveries outside Control Limits

Method	Sample ID	Analyte	Rec.	Low Limit	High Limit	Affected Samples	Samp Qual
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	ACS-GP01-SB-3-5-0	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	GP01-SB-3-5-D	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	GP04-SB-5-5.5-0	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	GP08-SB-4-4.9-0	None
OLM04.2_PPCB	LCS-200103050	Endrin	143	42	139	GP21-SB-2.8-3.5-0	None
OLM04.2_PPCB	LCS-200103216	Endrin	140	56	121	MW03-GW-0	None
OLM04.2_PPCB	LCS-200103216	Endrin	140	56	121	MW04-GW-0	None
OLM04.2_PPCB	LCS-200103216	Endrin	140	56	121	MW1-GW-0	None
OLM04.2_PPCB	LCS-200103216	Endrin	140	56	121	MW1-GW-D	None
OLM04.2_PPCB	LCS-200103216	Endrin	140	56	121	MW2-GW-0	None
OLM04.2_PPCB	LCS-200103216	Endrin	140	56	121	SW01-0	None
OLM04.2_PPCB	LCS-200103216	Endrin	140	56	121	SW01-D	None
OLM04.2_PPCB	LCS-200103216	Endrin	142	56	121	MW03-GW-0	None
OLM04.2_PPCB	LCS-200103216	Endrin	142	56	121	MW04-GW-0	None
OLM04.2_PPCB	LCS-200103216	Endrin	142	56	121	MW1-GW-0	None
OLM04.2_PPCB	LCS-200103216	Endrin	142	56	121	MW1-GW-D	None
OLM04.2_PPCB	LCS-200103216	Endrin	142	56	121	MW2-GW-0	None
OLM04.2_PPCB	LCS-200103216	Endrin	142	56	121	SW01-0	None
OLM04.2_PPCB	LCS-200103216	Endrin	142	56	121	SW01-D	None

Table 6 – Samples that were Reanalyzed

Sample ID	Lab ID	Method	Sample Type	Action
GP01-SB-3-5-D	0111174-16	OLM04.2_SVOA	SAMP	Report, add J and UJ flags
GP01-SB-3-5-D	0111174-16	OLM04.2_SVOA	RA	Do Not Report
GP04-SB-5-5.5-0	0111174-19	OLM04.2_VOA	SAMP	Report, add J and UJ flags
GP04-SB-5-5.5-0	0111174-19	OLM04.2_VOA	DL	Report for E flag data only
MW03-GW-0	0111292-01	OLM04.2_VOA	SAMP	Report
MW03-GW-0	0111292-01	OLM04.2_VOA	DL	Report for E flag data only
MW03-GW-0	0111292-01	OLM04.2_SVOA	SAMP	Report

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

Sample ID	Lab ID	Method	Sample Type	Action
MW03-GW-0	0111292-01	OLM04.2_SVOA	DL	Report for E flag data only
MW1-GW-0	0111306-04	OLM04.2_VOA	SAMP	Report
MW1-GW-0	0111306-04	OLM04.2_VOA	DL	Report for E flag data only
MW1-GW-0	0111306-04	OLM04.2_SVOA	SAMP	Report
MW1-GW-0	0111306-04	OLM04.2_SVOA	DL	Report for E flag data only
MW1-GW-D	0111306-05	OLM04.2_VOA	SAMP	Report
MW1-GW-D	0111306-05	OLM04.2_VOA	DL	Report for E flag data only
MW1-GW-D	0111306-05	OLM04.2_SVOA	SAMP	Report
MW1-GW-D	0111306-05	OLM04.2_SVOA	DL	Report for E flag data only
MW2-GW-0	0111306-06	OLM04.2_VOA	SAMP	Report
MW2-GW-0	0111306-06	OLM04.2_VOA	DL	Report for E flag data only

Table 7 – Summary of Field Duplicate Results

				Anal		SW01-		RPD	Samp		MW01-		RPD	Samp
Method	Analyte	Unit	PQL	Туре	SW01	D	RPD	Rating	Qual	MW01	D	RPD	Rating	Qual
EPA130.2	Hardness (As CaCO3)	mg/L	1.00	А	75.2	57.4	26.8%	Good	None	NA	NA	NC		
ILM04.0_CN	Cyanide	µg/L	10.0	А	1	1.5	40.0%	Poor	J Flag	1.2	1.1	8.7%	Good	None
ILM04.0_HG	Mercury	µg/L	0.20	А	ND	0.12	NC			ND	ND	NC		
OLM04.2_PPCB	Aldrin	µg/L	0.050	А	0.24	ND	NC			ND	ND	NC		
OLM04.2_PPCB	Aroclor 1254	µg/L	1.0	А	1.4	ND	NC			ND	ND	NC		
OLM04.2_PPCB	Dieldrin	µg/L	0.10	А	0.037	ND	NC			ND	ND	NC		
OLM04.2_PPCB	gamma-BHC	µg/L	0.050	А	ND	ND	NC			0.0082	ND	NC		
OLM04.2_PPCB	gamma-Chlordane	µg/L	0.050	А	0.023	ND	NC			ND	ND	NC		
OLM04.2_PPCB	Heptachlor epoxide	µg/L	0.050	А	0.26	ND	NC			ND	ND	NC		
OLM04.2_SVOA	1,1´-Biphenyl	µg/L	50	А	ND	ND	NC			37	34	8.5%	Good	None
OLM04.2_SVOA	4-Methylphenol	µg/L	50	А	ND	ND	NC			350	310	12.1%	Good	None
OLM04.2_SVOA	Bis(2-ethylhexyl)phthalate	µg/L	50	А	2	ND	NC			3	ND	NC		
OLM04.2_SVOA	Naphthalene	µg/L	50	А	ND	ND	NC			4	3	28.6%	Good	None
OLM04.2_SVOA	1,8-Naphthalic anhydride	µg/L		Т	2	2	0.0%	Good	None	NA	NA	NC		
OLM04.2_SVOA	1H-Indole-1-carboxaldehyde, 2,3-dihydro-	µg/L		Т	NA	NA	NC			31	NA	NC		
OLM04.2_SVOA	2(3H)-Benzothiazolone	µg/L		Т	NA	NA	NC			39	31	22.9%	Good	None

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

				Anal		SW01-		RPD	Samp		MW01-		RPD	Samp
Method	Analyte	Unit	PQL	Туре	SW01	D	RPD	Rating			-		Rating	-
OLM04.2_SVOA	2-Propanol, 1-(2-ethoxypropoxy)-	µg/L		Т	NA	NA	NC			200	NA	NC		
OLM04.2_SVOA	2-Propanol, 1-(2-methoxy-1-methylethoxy)	µg/L		Т	NA	NA	NC			NA	120	NC		
OLM04.2_SVOA	2-Propanol, 1-(2-methoxypropoxy)-	µg/L		Т	NA	NA	NC			NA	70	NC		
OLM04.2_SVOA	9,10-Anthracenedione	µg/L		Т	NA	3	NC			NA	NA	NC		
OLM04.2_SVOA	Benzene, (1-methylpropyl)-	µg/L		Т	NA	NA	NC			NA	42	NC		
OLM04.2_SVOA	Benzene, 1,2,3-trimethyl-	µg/L		Т	NA	NA	NC			220	NA	NC		
OLM04.2_SVOA	Benzene, 1,2,3-trimethyl- (10.65)	µg/L		Т	NA	NA	NC			1100	NA	NC		
OLM04.2_SVOA	Benzene, 1,2,3-trimethyl- (10.66)	µg/L		Т	NA	NA	NC			NA	1200	NC		
OLM04.2_SVOA	Benzene, 1,2,3-trimethyl- (9.221)	µg/L		Т	NA	NA	NC			630	NA	NC		
OLM04.2_SVOA	Benzene, 1,2,3-trimethyl- (9.915)	µg/L		Т	NA	NA	NC			2700	NA	NC		
OLM04.2_SVOA	Benzene, 1,2,3-trimethyl- (9.936)	µg/L		Т	NA	NA	NC			NA	2900	NC		
OLM04.2_SVOA	Benzene, 1,2,4-trimethyl-	µg/L		Т	NA	NA	NC			NA	440	NC		
OLM04.2_SVOA	Benzene, 1,3,5-trimethyl-	µg/L		Т	NA	NA	NC			220	660	######	Poor	J Flag
OLM04.2_SVOA	Benzene, 1-ethyl-2,3-dimethyl-	µg/L		Т	NA	NA	NC			NA	27	NC		
OLM04.2_SVOA	Benzene, 1-ethyl-2-methyl-	µg/L		Т	NA	NA	NC			360	470	26.5%	Good	None
OLM04.2_SVOA	Benzene, 1-ethyl-2-methyl- (10.045)	µg/L		Т	NA	NA	NC			NA	140	NC		
OLM04.2_SVOA	Benzene, 1-ethyl-2-methyl- (10.048)	µg/L		Т	NA	NA	NC			68	NA	NC		
OLM04.2_SVOA	Benzene, 1-ethyl-2-methyl- (9.559)	µg/L		Т	NA	NA	NC			NA	360	NC		
OLM04.2_SVOA	Benzene, 1-ethyl-2-methyl- (9.572)	µg/L		Т	NA	NA	NC			380	NA	NC		
OLM04.2_SVOA	Benzene, 1-ethyl-3-methyl-	µg/L		Т	NA	NA	NC			1100	NA	NC		
OLM04.2_SVOA	Benzene, 1-ethyl-4-methyl-	µg/L		Т	NA	NA	NC			NA	1100	NC		
OLM04.2_SVOA	Benzene, 1-methyl-2-(1-methylethyl)-	µg/L		Т	NA	NA	NC			NA	160	NC		
OLM04.2_SVOA	Benzene, 1-methyl-3-propyl-	µg/L		Т	NA	NA	NC			36	220	######	Poor	J Flag
OLM04.2_SVOA	Benzene, 1-methyl-4-(1-methylethyl)-	µg/L		Т	NA	NA	NC			79	NA	NC		
OLM04.2_SVOA	Benzene, 2-ethyl-1,4-dimethyl-	µg/L		Т	NA	NA	NC			NA	37	NC		
OLM04.2_SVOA	Benzene, propyl-	µg/L		Т	NA	NA	NC			170	180	5.7%	Good	None
OLM04.2_SVOA	Benzeneacetic acid	µg/L		Т	NA	NA	NC			120	33	######	Poor	J Flag
OLM04.2_SVOA	Benzenepropanoic acid	µg/L		Т	NA	NA	NC			47	NA	NC		
OLM04.2_SVOA	Butanoic acid, 2-methyl-	µg/L		Т	NA	NA	NC			NA	45	NC		
OLM04.2_SVOA	Butanoic acid, 3-methyl-	µg/L		Т	NA	NA	NC			43	43	0.0%	Good	None
OLM04.2_SVOA	Cyclic octaatomic sulfur	µg/L		Т	NA	NA	NC			30	NA	NC		
OLM04.2_SVOA	Diphenyl ether	µg/L		Т	NA	NA	NC			100	80	22.2%	Good	None

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

			Anal		SW01-		RPD	Samp		MW01-		RPD	Samp
Method	Analyte	Unit		SW01			Rating					Rating	
OLM04.2_SVOA	Dodecanoic acid	µg/L	Т	NA	NA	NC			65	65	0.0%	Good	None
OLM04.2_SVOA	Ethanol, 2-(2-(2-butoxyethoxy)ethoxy)-	µg/L	Т	NA	NA	NC			40	NA	NC		
OLM04.2_SVOA	Ethanol, 2-(2-(2-methoxyethoxy)ethoxy)-	µg/L	Т	NA	NA	NC			63	NA	NC		
OLM04.2_SVOA	Heptanoic acid	µg/L	Т	NA	NA	NC			NA	100	NC		
OLM04.2_SVOA	Heptanoic acid (13.109)	µg/L	Т	NA	NA	NC			NA	130	NC		
OLM04.2_SVOA	Heptanoic acid (13.15)	µg/L	Т	NA	NA	NC			NA	59	NC		
OLM04.2_SVOA	Heptanoic acid (13.226)	µg/L	Т	NA	NA	NC			590	NA	NC		
OLM04.2_SVOA	Heptanoic acid (13.267)	µg/L	Т	NA	NA	NC			320	NA	NC		
OLM04.2_SVOA	Hexanoic acid	µg/L	Т	NA	NA	NC			6900	1500	######	Poor	J Flag
OLM04.2_SVOA	Hexanoic acid, 2-ethyl-	µg/L	Т	NA	NA	NC			160	38	######	Poor	J Flag
OLM04.2_SVOA	Hexanoic acid, 2-methyl-	µg/L	Т	NA	NA	NC			420	91	######	Poor	J Flag
OLM04.2_SVOA	Methane, diethoxy-	µg/L	Т	NA	NA	NC			23	NA	NC		
OLM04.2_SVOA	Nonanoic acid	µg/L	Т	NA	NA	NC			490	160	######	Poor	J Flag
OLM04.2_SVOA	Octanoic Acid	µg/L	Т	NA	NA	NC			2200	2900	27.5%	Good	None
OLM04.2_SVOA	Propanoic acid, 3-(methylthio)-	µg/L	Т	NA	NA	NC			50	NA	NC		
OLM04.2_SVOA	Propenylbenzene isomer	µg/L	Т	NA	NA	NC			NA	150	NC		
OLM04.2_SVOA	Propylbenzene isomer	µg/L	Т	NA	NA	NC			250	27	######	Poor	J Flag
OLM04.2_SVOA	Undecanoic acid	µg/L	Т	NA	NA	NC			54	33	48.3%	Poor	J Flag
OLM04.2_SVOA	Unknown	µg/L	Т	NA	NA	NC			NA	250	NC		
OLM04.2_SVOA	Unknown (12.212)	µg/L	Т	NA	NA	NC			32	NA	NC		
OLM04.2_SVOA	Unknown (18.309)	µg/L	Т	NA	NA	NC			41	NA	NC		
OLM04.2_SVOA	Unknown (19.35)	µg/L	Т	NA	2	NC			NA	NA	NC		

										GP15-	GP15-			
						GP01-		RPD					RPD	-
Method	Analyte	Unit	PQL	Туре	3-5	3-5-D	RPD	Rating	Qual	6_2	6_2-D	RPD	Rating	Qual
ILM04.0_CN	Cyanide	mg/Kg	0.56	Α	ND	0.062	NC			NA	NA	NC		
ILM04.0_HG	Mercury	mg/Kg	0.11	Α	0.22	0.23	4.4%	Good	None	NA	NA	NC		1
OLM04.2_PPCB	4,4´-DDD	µg/Kg	3.5	Α	1.8	ND	NC			NA	NA	NC		
OLM04.2_PPCB	4,4´-DDT	µg/Kg	3.5	А	5.5	ND	NC			NA	NA	NC		
OLM04.2_PPCB	Aldrin	µg/Kg	1.8	Α	6.2	20	105.3%	Poor	J Flag	NA	NA	NC		
OLM04.2_PPCB	alpha-Chlordane	µg/Kg	1.8	Α	3.8	13	109.5%	Poor	J Flag	NA	NA	NC		

Data Usability Summary Report	Project: NYSDEC PSA
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway

					0.004	0.004					GP15-			
Method	Analyte	Unit				GP01- 3-5-D		RPD Rating	Samp Qual		5_3- 6 2-D	RPD	RPD Rating	Samp Qual
OLM04.2_PPCB		µg/Kg		A	ND	2.8	NC	Rating	Quui	NA	NA	NC	Rating	Quui
OLM04.2_PPCB		µg/Kg		A	1.4	ND	NC			NA	NA	NC		
	Endosulfan sulfate	µg/Kg		A	2.4	ND	NC			NA	NA	NC		
OLM04.2 PPCB		µg/Kg		А	0.67	ND	NC			NA	NA	NC		
OLM04.2 PPCB		µg/Kg		А	9.7	7.8	21.7%	Good	None	NA	NA	NC		
OLM04.2_PPCB	gamma-Chlordane	µg/Kg		Α	ND	1.8	NC			NA	NA	NC		
OLM04.2_PPCB	Heptachlor epoxide	µg/Kg	1.8	А	ND	20	NC			NA	NA	NC		
OLM04.2_PPCB	Methoxychlor	µg/Kg	18	Α	8	21	89.7%	Poor	J Flag	NA	NA	NC		
OLM04.2_SVOA	2-Methylnaphthalene	µg/Kg	360	Α	ND	51	NC			NA	NA	NC		
OLM04.2_SVOA	Acenaphthene	µg/Kg	360	А	96	180	60.9%	Good	None	NA	NA	NC		
OLM04.2_SVOA	Acenaphthylene	µg/Kg	360	Α	55	39	34.0%	Good	None	NA	NA	NC		
OLM04.2_SVOA	Acetophenone	µg/Kg	360	Α	47	40	16.1%	Good	None	NA	NA	NC		
OLM04.2_SVOA	Anthracene	µg/Kg	360	Α	260	460	55.6%	Good	None	NA	NA	NC		
OLM04.2_SVOA	Benz(a)anthracene	µg/Kg	360	Α	550	880	46.2%	Good	None	NA	NA	NC		
OLM04.2_SVOA	Benzo(a)pyrene	µg/Kg	360	Α	580	870	40.0%	Good	None	NA	NA	NC		
OLM04.2_SVOA	Benzo(b)fluoranthene	µg/Kg	360	Α	320	740	79.2%	Poor	J Flag	NA	NA	NC		
OLM04.2_SVOA	Benzo(g,h,i)perylene	µg/Kg	360	Α	91	260	96.3%	Poor	J Flag	NA	NA	NC		
OLM04.2_SVOA	Benzo(k)fluoranthene	µg/Kg	360	Α	570	710	21.9%	Good	None	NA	NA	NC		
	Bis(2-ethylhexyl)phthalate	µg/Kg	360	Α	ND	380	NC			NA	NA	NC		
OLM04.2_SVOA		µg/Kg	360	Α	76	140	59.3%	Good	None	NA	NA	NC		
OLM04.2_SVOA	Chrysene	µg/Kg		Α	530	870	48.6%	Good	None	NA	NA	NC		
	Dibenz(a,h)anthracene	µg/Kg		Α	51	140	93.2%		J Flag		NA	NC		
OLM04.2_SVOA		µg/Kg		Α	46	120	89.2%		J Flag	NA	NA	NC		
OLM04.2_SVOA	Fluoranthene	µg/Kg		Α	2300	2300	0.0%			NA	NA	NC		
OLM04.2_SVOA	Fluorene	µg/Kg	360	Α	79	190	82.5%	Poor	J Flag	NA	NA	NC		
OLM04.2_SVOA	Indeno(1,2,3-cd)pyrene	µg/Kg	360	Α	140	350	85.7%	Poor	J Flag	NA	NA	NC		
OLM04.2_SVOA		µg/Kg		Α	ND	77	NC			NA	NA	NC		
OLM04.2_SVOA	Phenanthrene	µg/Kg	360	Α	900	1600	56.0%			NA	NA	NC		
OLM04.2_SVOA	Pyrene	µg/Kg	360	Α	770	1000	26.0%	Good	None	NA	NA	NC		
	(Z)14-Tricosenyl formate	µg/Kg		Т	NA	130	NC			NA	NA	NC		
	11H-Benzo(b)fluorene	µg/Kg		Т	130	74	54.9%	Good	None	NA	NA	NC		
OLM04.2_SVOA	11-Tricosene	µg/Kg		Т	260	NA	NC			NA	NA	NC		

Data Usability Summary Report	Project: NYSDEC PSA							
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway							

										GP15-			
Mathad	Ameluta	11			GP01-			Samp		5_3-			Samp
	Analyte	Unit	Type	<u>3-5</u> NA	3-5-D	RPD NC	Rating	Quai	6_2 NA	<u>6_2-D</u> NA	NC	Rating	Quai
	1H-Cyclopropa(I)phenanthrene,1a,9b-dihyd 2-Phenylnaphthalene	µg/Kg	T	NA	180 120	NC			NA	NA	NC		
	3,4-Dihydrocyclopenta(cd)pyrene (acepyre	µg/Kg µg/Kg	T	160	300	60.9%	Good	Nono	NA	NA	NC		
	4H-Cyclopenta(def)phenanthrene	µg/Kg	T	NA	400	NC	Guu	NONE	NA	NA	NC		
	7H-Benzo(c)carbazole	µg/Kg	T	NA	100	NC			NA	NA	NC		
	9,10-Anthracenedione	µg/Kg	T	140	140	0.0%	Good	Nono	NA	NA	NC		
	9,10-Dimethylanthracene	µg/Kg	T	NA	130	NC	Guu	NOTE	NA	NA	NC		
OLM04.2_SVOA		µg/Kg	T	NA	100	NC			NA	NA	NC		
	Anthracene, 1-methyl-	µg/Kg	T	NA	180	NC			NA	NA	NC		
	Anthracene, 2-methyl-	µg/Kg	T	190	NA	NC			NA	NA	NC		
	Anthracene, 2-methyl- (21.71)	µg/Kg	 T	NA	170	NC			NA	NA	NC		
	Anthracene, 2-methyl- (21.772)	µg/Kg	T	NA	230	NC			NA	NA	NC		
	Benz(a)anthracene, 12-methyl-	µg/Kg	 T	NA	170	NC			NA	NA	NC		
	Benz(e)acephenanthrylene	µg/Kg	 T	320	640	66.7%	Good	None	NA	NA	NC		
	Benzo(b)naphtho(2,1-d)thiophene	µg/Kg	T	82	100	19.8%			NA	NA	NC		
	Benzo(e)pyrene	µg/Kg	Ť	560	750	29.0%			NA	NA	NC		
	Benzonaphthothiophene isomer	µg/Kg	 T	NA	87	NC	0000	110110	NA	NA	NC		
	Chrysene, 5-methyl-	µg/Kg	 T	NA	220	NC			NA	NA	NC		
	Cyclopenta(def)phenanthrenone	µg/Kg	 Т	160	150	6.5%	Good	None	NA	NA	NC		
	Dibenzothiophene	µg/Kg	Т	NA	93	NC			NA	NA	NC		
	Fluoranthene, 2-methyl-	µg/Kg	 Т	NA	150	NC			NA	NA	NC		
	Fluoranthene, 2-methyl- (24.28)	µg/Kg	Т	NA	130	NC			NA	NA	NC		
	Fluoranthene, 2-methyl- (24.694)	µg/Kg	Т	NA	120	NC			NA	NA	NC		
	Naphthalene, 2-phenyl-	µg/Kg	Т	180	170	5.7%	Good	None	NA	NA	NC		
	n-Hexadecanoic acid	µg/Kg	Т	410	NA	NC			NA	NA	NC		
OLM04.2_SVOA	Octadecanal	µg/Kg	Т	NA	150	NC			NA	NA	NC		
OLM04.2_SVOA	Oxybenzone	µg/Kg	Т	310	NA	NC			NA	NA	NC		
OLM04.2_SVOA	Phenanthrene, 1-methyl-	µg/Kg	Т	150	270	57.1%	Good	None	NA	NA	NC		
	Phenanthrene, 2,5-dimethyl-	µg/Kg	Т	NA	110	NC			NA	NA	NC		
	Phenanthrene, 3,6-dimethyl-	µg/Kg	Т	NA	89	NC			NA	NA	NC		
	Phenanthrene, 3-methyl-	µg/Kg	Т	NA	230	NC			NA	NA	NC		
OLM04.2_SVOA	Phenanthrene, 4-methyl-	µg/Kg	Т	130	NA	NC			NA	NA	NC		

Data Usability Summary Report	Project: NYSDEC PSA						
Date Completed: March 13, 2002	Completed by: Marcia Meredith Galloway						

										GP15-	GP15-			
						GP01-			Samp					Samp
	Analyte	Unit	PQL	Туре	3-5	3-5-D	RPD	Rating	Qual	6_2	6_2-D	RPD	Rating	Qual
OLM04.2_SVOA	Pyrene, 1-methyl-	µg/Kg		Т	77	160	70.0%	Poor	J Flag	NA	NA	NC		
OLM04.2_SVOA	Pyrene, 2-methyl-	µg/Kg		Т	NA	140	NC			NA	NA	NC		
OLM04.2_SVOA	Unknown (10.201)	µg/Kg		Т	NA	250	NC			NA	NA	NC		
OLM04.2_SVOA	Unknown (9.756)	µg/Kg		Т	NA	200	NC			NA	NA	NC		
OLM04.2_SVOA	Unknown aromatic	µg/Kg		Т	NA	160	NC			NA	NA	NC		
OLM04.2_SVOA	Unknown oxygenated PAH	µg/Kg		Т	NA	120	NC			NA	NA	NC		
OLM04.2_SVOA	Unknown PAH (21.938)	µg/Kg		Т	320	NA	NC			NA	NA	NC		
OLM04.2_SVOA	Unknown PAH (21.948)	µg/Kg		Т	NA	390	NC			NA	NA	NC		
OLM04.2_SVOA	Unknown PAH (22.91)	µg/Kg		Т	130	NA	NC			NA	NA	NC		
OLM04.2_SVOA	Unknown PAH (25.44)	µg/Kg		Т	NA	150	NC			NA	NA	NC		
OLM04.2_SVOA	Unknown PAH (25.446)	µg/Kg		Т	96	NA	NC			NA	NA	NC		
OLM04.2_SVOA	Unknown PAH (25.457)	µg/Kg		Т	NA	120	NC			NA	NA	NC		
OLM04.2_SVOA	Unknown PAH (25.978)	µg/Kg		Т	NA	320	NC			NA	NA	NC		
OLM04.2_SVOA	Unknown PAH (26.63)	µg/Kg		Т	NA	140	NC			NA	NA	NC		
OLM04.2_SVOA	Unknown PAH (26.636)	µg/Kg		Т	230	NA	NC			NA	NA	NC		
OLM04.2_VOA	1,1,1-Trichloroethane	µg/Kg	15	Α	15	24	46.2%	Good	None	ND	ND	NC		
OLM04.2_VOA	cis-1,2-Dichloroethene	µg/Kg	15	Α	ND	2	NC			ND	ND	NC		
OLM04.2_VOA	Tetrachloroethene	µg/Kg	15	Α	2	3	40.0%	Good	None	ND	ND	NC		
OLM04.2_VOA	Trichloroethene	µg/Kg	15	А	14	34	83.3%	Poor	J Flag	ND	ND	NC		

Key:

A = Analyte

NC = Not Calculated

ND = Not Detected

PQL = Practical Quantitation Limit

RPD = Relative Percent Difference

T = Tentatively Identified Compound

	Sample ID:	SS01	SS02	SS02-D	SS03	SS04	SS05
Analyte	Date:	11/14/01	11/14/01	11/14/01	11/14/01	11/14/01	11/14/01
	Dator						
Semivolatile Organics by Method OLM0	4.2 (µg/Kg)						
Z-7-Tetradecenoic acid		NF	NF	NF	NF	990 NJ	NF
Unknown triterpene		NF	NF	NF	NF	NF	NF
Unknown terpane		18360 NJ	NF	NF	NF	NF	NF
Unknown PAH		NF	16620 NJ	7530 NJ	61200 NJ	6690 NJ	960 NJ
Unknown oxygenated PAH		NF	1350 NJ	1470 NJ	5100 NJ	NF	NF
Unknown oxygenated hydrocarbon		4410 NJ	NF	1500 NJ	8100 NJ	840 NJ	3810 NJ
Unknown hydrocarbon		NF	3600 NJ	NF	NF	1380 NJ	18060 NJ
Unknown carboxylic acid		NF	NF	NF	NF	NF	NF
Unknown aromatic		3990 NJ	NF	NF	19200 NJ	NF	NF
Unknown		1020 NJ	NF	7200 NJ	5100 NJ	4290 NJ	42960 NJ
Triphenylene, 2-methyl-		NF	7200 NJ	NF	7500 NJ	NF	NF
Tetradecanoic acid		1380 NJ	NF	NF	NF	NF	NF
Tetradecanal		NF	NF	NF	NF	NF	NF
Testosterone		NF	NF	9000 NJ	NF	NF	NF
Stigmast-4-en-3-one		NF	3300 NJ	NF	NF	NF	NF
Pyrene, 4-methyl-		NF	4200 NJ	NF	NF	930 NJ	NF
Pyrene, 2-methyl-		NF	NF	NF	18900 NJ	NF	NF
Pyrene, 1-methyl-		NF	13200 NJ	NF	8700 NJ	2160 NJ	NF
Phenanthrene, 4-methyl-		450 NJ	NF	NF	NF	NF	NF
Phenanthrene, 1-methyl-		NF	NF	NF	11100 NJ	NF	NF
Perylene		NF	2100 NJ	2940 NJ	5100 NJ	NF	1350 NJ
Oxirane, tetradecyl-		NF	NF	NF	NF	NF	NF
Oxirane, hexadecyl-		NF	NF	NF	NF	NF	NF
Oxirane, heptadecyl-		NF	NF	NF	NF	NF	NF
o-Terphenyl		NF	NF	NF	8400 NJ	NF	NF
Oleic Acid		NF	NF	NF	NF	NF	630 NJ
o-Hydroxybiphenyl		NF	NF	NF	NF	NF	NF

	Sample ID:	SS01	SS02	SS02-D	SS03	SS04	SS05
Analyte	Date:	11/14/01	11/14/01	11/14/01	11/14/01	11/14/01	11/14/01
Octadecanoic acid		NF	NF	NF	NF	NF	NF
Octadecanal		NF	NF	NF	NF	NF	NF
Octadec-9-enoic acid		NF	NF	NF	NF	NF	NF
n-Hexadecanoic acid		NF	2550 NJ	NF	NF	1470 NJ	2550 NJ
Naphtho(2,1,8,7-klmn)xanthene		NF	NF	NF	NF	NF	NF
Naphthalene, 2-phenyl-		NF	NF	NF	4500 NJ	NF	NF
Methylbenzaldehyde isomer		NF	NF	NF	NF	NF	NF
Hydroxybenzoic acid isomer		NF	NF	NF	NF	NF	NF
Hexadecenoic acid, Z-11-		NF	NF	NF	NF	780 NJ	1440 NJ
Hexadecanoic acid, 2-hydroxy-, methyl es		NF	NF	NF	6900 NJ	NF	NF
Fluoranthene, 2-methyl-		NF	NF	NF	NF	1410 NJ	NF
Ethanol, 2-(tetradecyloxy)-		NF	NF	NF	NF	NF	780 NJ
Dibenzo(def,mno)chrysene		NF	NF	1530 NJ	NF	NF	NF
Cyclopenta(def)phenanthrenone		NF	NF	NF	NF	390 NJ	NF
Chrysene, 6-methyl-		NF	NF	1770 NJ	15300 NJ	NF	NF
Chrysene, 5-methyl-		NF	NF	NF	NF	NF	570 NJ
Chrysene, 1-methyl-		NF	3600 NJ	NF	NF	2220 NJ	NF
Benzoic acid, 2-(((4-((acetylamino)sulfo		NF	NF	NF	NF	870 NJ	NF
Benzo(kl)xanthene		NF	NF	NF	NF	NF	NF
Benzo(j)fluoranthene		NF	NF	NF	NF	2820 NJ	NF
Benzo(h)quinoline		NF	NF	NF	NF	NF	NF
Benzo(e)pyrene		9900 NJ	6600 NJ	4200 NJ	13800 NJ	1350 NJ	4500 NJ
Benzo(c)phenanthrene		NF	NF	NF	20400 NJ	NF	NF
Benzo(b)triphenylene		NF	NF	3300 NJ	6600 NJ	NF	NF
Benzo(b)naphtho(2,3-d)furan		NF	NF	NF	NF	NF	NF
Benzo(b)naphtho(2,1-d)thiophene		NF	4200 NJ	NF	11700 NJ	NF	390 NJ
Benzo(b)naphtho(2,1-d)furan		NF	NF	NF	6300 NJ	NF	NF
Benzo(b)carbazole		NF	NF	NF	NF	NF	NF
Benzene, (2-isothiocyanatoethyl)-		NF	NF	NF	NF	NF	NF

Table E-1Summary of Tentatively Identified Compound Results for Surface Soil SamplesAbandoned Chemical Sales Facility Site

	Sample ID:	SS01	SS02	SS02-D	SS03	SS04	SS05
Analyte	Date:	11/14/01	11/14/01	11/14/01	11/14/01	11/14/01	11/14/01
Benz(j)aceanthrylene, 3-methyl-		NF	NF	1950 NJ	NF	NF	NF
Benz(e)acephenanthrylene		NF	2880 NJ	NF	NF	NF	960 NJ
Benz(a)anthracene, 3-methyl-		NF	NF	NF	5100 NJ	NF	NF
Benz(a)anthracene, 1-methyl-		NF	NF	2460 NJ	NF	NF	NF
Benz(a)anthracene, 12-methyl-		NF	NF	NF	NF	NF	NF
Anthrone		NF	NF	NF	NF	NF	NF
Anthracene, 2-methyl-		NF	1170 NJ	NF	12600 NJ	NF	NF
Anthracene, 1-methyl-		NF	1650 NJ	NF	10500 NJ	NF	NF
Androst-4-ene-3,17-dione, 15-hydroxy-, (NF	NF	2310 NJ	NF	NF	NF
Adenine		NF	NF	NF	NF	NF	480 NJ
Acenaphtho(1,2-B)pyridine		NF	NF	NF	5700 NJ	NF	NF
Straight-chain alkane		NF	11870 NJ	11150 NJ	15800 NJ	1550 NJ	8250 NJ
Branched alkane		NF	NF	NF	NF	3670 NJ	NF
Cycloalkane		NF	NF	NF	NF	NF	NF
9-Octadecenoic acid, (E)-		NF	6300 NJ	NF	NF	NF	NF
9H-Tribenzo(a,c,E)cycloheptene		NF	NF	NF	NF	NF	NF
9-Hexadecenoic acid		NF	NF	NF	NF	NF	NF
9,10-Anthracenedione		NF	NF	NF	10800 NJ	360 NJ	NF
7-Tetradecene		NF	NF	NF	NF	570 NJ	NF
7H-Benzo(c)fluorene		NF	NF	NF	14400 NJ	NF	NF
7H-Benzo(c)carbazole		NF	NF	NF	10200 NJ	NF	NF
7H-Benz(de)anthracen-7-one		NF	9900 NJ	1800 NJ	24900 NJ	2280 NJ	NF
5,12-Naphthacenedione		NF	NF	NF	9300 NJ	NF	NF
4-O-Methylphenylhydrazono-3-methyl-2-pyr		NF	NF	NF	NF	NF	NF
4H-Cyclopenta(def)phenanthrene		NF	NF	NF	NF	NF	NF
3-Tetradecene,-		NF	NF	NF	NF	NF	690 NJ
3,4-Dihydrocyclopenta(cd)pyrene (acepyre		NF	2730 NJ	NF	12000 NJ	1140 NJ	NF
2-Phenylnaphthalene		NF	NF	NF	NF	NF	NF
2,6,10,14,18-Pentamethyl-2,6,10,14,18-ei		NF	2160 NJ	NF	NF	NF	NF

Abandoned Chemical Sales Facility Site

	Sample ID:	SS01	SS02	SS02-D	SS03	SS04	SS05
Analyte	Date:	11/14/01	11/14/01	11/14/01	11/14/01	11/14/01	11/14/01
2,2´-Binaphthalene		NF	NF	NF	8700 NJ	NF	NF
1-Pyrene-carboxaldehyde		NF	NF	NF	NF	NF	285 NJ
1-Octadecene		NF	NF	NF	NF	NF	NF
1H-Purine, 6-methoxy-		NF	NF	NF	NF	NF	NF
1H-Phenalene		NF	NF	NF	NF	660 NJ	NF
1-Docosanol		NF	NF	NF	NF	NF	NF
14-Octadecenal		NF	NF	NF	NF	NF	NF
11H-Benzo(b)fluorene		NF	10170 NJ	1560 NJ	9900 NJ	NF	NF
11H-Benzo(a)fluorene		NF	NF	NF	24900 NJ	NF	NF
11H-Benzo(a)carbazole		NF	NF	NF	8100 NJ	NF	NF
1,3,5-Triazine-2,4-diamine, 6-phenyl-		NF	NF	NF	NF	450 NJ	NF
1,2:7,8-Dibenzophenanthrene		NF	NF	4860 NJ	6600 NJ	NF	NF

Note: Results are reported as total for similar TICs.

Key:

NF = Not found.

NJ = Identification not confirmed, estimated value.

	Sample ID:	SS06	SS07	SS08	SS09	SS10	SS11
Analyte	Date:	11/14/01	11/14/01	11/14/01	11/14/01	11/14/01	11/14/01
Semivolatile Organics by Method OLM0	1 2 (ua/Ka)						
Z-7-Tetradecenoic acid	+.2 (μg/Ng)	NF	NF	NF	NF	NF	NF
Unknown triterpene		17100 NJ	NF	NF	NF	NF	NF
Unknown terpane		NF	NF	NF	NF	NF	NF
Unknown PAH		480 NJ	3570 NJ	1737 NJ	30510 NJ	4317 NJ	9150 NJ
Unknown oxygenated PAH		NF	NF	NF	1140 NJ	630 NJ	450 NJ
Unknown oxygenated hydrocarbon		4320 NJ	1830 NJ	1110 NJ	NF	1290 NJ	4080 NJ
Unknown hydrocarbon		NF	2760 NJ	4320 NJ	NF	NF	1350 NJ
Unknown carboxylic acid		NF	NF	NF	4800 NJ	NF	NF
Unknown aromatic		NF	NF	NF	18000 NJ	NF	3810 NJ
Unknown		3600 NJ	4710 NJ	5430 NJ	24780 NJ	1530 NJ	9453 NJ
Triphenylene, 2-methyl-		NF	NF	NF	3300 NJ	NF	NF
Tetradecanoic acid		NF	NF	NF	5700 NJ	NF	NF
Tetradecanal		NF	NF	NF	6000 NJ	NF	NF
Testosterone		NF	NF	NF	NF	NF	NF
Stigmast-4-en-3-one		1620 NJ	NF	NF	NF	NF	NF
Pyrene, 4-methyl-		NF	810 NJ	690 NJ	NF	570 NJ	2010 NJ
Pyrene, 2-methyl-		NF	1410 NJ	1800 NJ	NF	NF	NF
Pyrene, 1-methyl-		NF	NF	1530 NJ	10800 NJ	1920 NJ	2610 NJ
Phenanthrene, 4-methyl-		NF	NF	NF	5700 NJ	NF	NF
Phenanthrene, 1-methyl-		NF	720 NJ	NF	5100 NJ	540 NJ	420 NJ
Perylene		NF	NF	NF	19200 NJ	4200 NJ	NF
Oxirane, tetradecyl-		NF	2310 NJ	NF	NF	NF	NF
Oxirane, hexadecyl-		NF	NF	NF	NF	NF	18600 NJ
Oxirane, heptadecyl-		NF	NF	NF	NF	NF	8400 NJ
o-Terphenyl		NF	NF	NF	NF	NF	NF
Oleic Acid		NF	NF	NF	NF	NF	NF
o-Hydroxybiphenyl		NF	NF	NF	2730 NJ	NF	1020 NJ

	Sample ID:	SS06	SS07	SS08	SS09	SS10	SS11
Analyte	Date:	11/14/01	11/14/01	11/14/01	11/14/01	11/14/01	11/14/01
Octadecanoic acid		NF	NF	300 NJ	NF	NF	840 NJ
Octadecanal		NF	NF	NF	8400 NJ	NF	NF
Octadec-9-enoic acid		NF	2670 NJ	NF	NF	NF	NF
n-Hexadecanoic acid		2100 NJ	1470 NJ	1530 NJ	NF	1050 NJ	2760 NJ
Naphtho(2,1,8,7-klmn)xanthene		NF	NF	NF	NF	840 NJ	NF
Naphthalene, 2-phenyl-		NF	NF	NF	NF	NF	NF
Methylbenzaldehyde isomer		NF	NF	NF	NF	NF	294 NJ
Hydroxybenzoic acid isomer		NF	NF	360 NJ	NF	NF	NF
Hexadecenoic acid, Z-11-		930 NJ	NF	NF	NF	NF	NF
Hexadecanoic acid, 2-hydroxy-, methyl es		NF	NF	NF	NF	NF	NF
Fluoranthene, 2-methyl-		NF	3000 NJ	NF	NF	NF	NF
Ethanol, 2-(tetradecyloxy)-		NF	NF	2130 NJ	NF	NF	NF
Dibenzo(def,mno)chrysene		NF	NF	NF	NF	NF	NF
Cyclopenta(def)phenanthrenone		NF	300 NJ	330 NJ	NF	360 NJ	630 NJ
Chrysene, 6-methyl-		420 NJ	NF	NF	NF	NF	NF
Chrysene, 5-methyl-		NF	NF	NF	NF	NF	NF
Chrysene, 1-methyl-		690 NJ	1740 NJ	NF	NF	NF	NF
Benzoic acid, 2-(((4-((acetylamino)sulfo		NF	NF	NF	NF	NF	NF
Benzo(kl)xanthene		NF	NF	390 NJ	NF	450 NJ	1500 NJ
Benzo(j)fluoranthene		NF	NF	NF	4200 NJ	NF	NF
Benzo(h)quinoline		NF	NF	NF	1680 NJ	300 NJ	NF
Benzo(e)pyrene		3300 NJ	2610 NJ	2070 NJ	19500 NJ	NF	6000 NJ
Benzo(c)phenanthrene		NF	NF	NF	NF	NF	NF
Benzo(b)triphenylene		NF	NF	NF	NF	NF	NF
Benzo(b)naphtho(2,3-d)furan		NF	720 NJ	NF	3000 NJ	NF	NF
Benzo(b)naphtho(2,1-d)thiophene		390 NJ	1350 NJ	NF	7380 NJ	2400 NJ	2070 NJ
Benzo(b)naphtho(2,1-d)furan		NF	NF	NF	NF	297 NJ	NF
Benzo(b)carbazole		NF	NF	NF	2550 NJ	NF	NF
Benzene, (2-isothiocyanatoethyl)-		NF	NF	570 NJ	NF	NF	NF

Table E-1Summary of Tentatively Identified Compound Results for Surface Soil SamplesAbandoned Chemical Sales Facility Site

Sample ID: **SS06 SS07 SS08 SS09 SS10 SS11** Analyte Date: 11/14/01 11/14/01 11/14/01 11/14/01 11/14/01 11/14/01 Benz(j)aceanthrylene, 3-methyl-NF NF NF NF NF NF Benz(e)acephenanthrylene NF NF NF NF NF NF NF NF Benz(a)anthracene, 3-methyl-NF NF NF NF Benz(a)anthracene, 1-methyl-NF NF NF NF NF NF Benz(a)anthracene, 12-methyl-NF NF NF NF 2310 NJ NF Anthrone NF NF NF NF NF 330 NJ Anthracene, 2-methyl-NF NF NF 6000 NJ NF 1530 NJ Anthracene, 1-methyl-NF NF NF NF 480 NJ NF Androst-4-ene-3,17-dione, 15-hydroxy-, (NF NF NF NF NF NF 600 NJ NF NF NF NF Adenine 420 NJ Acenaphtho(1,2-B)pyridine NF NF NF NF NF NF Straight-chain alkane 4300 NJ 690 NJ 5100 NJ 4900 NJ 3000 NJ 3260 NJ Branched alkane 1010 NJ 4400 NJ NF NF NF NF Cvcloalkane NF NF NF NF 450 NJ NF 9-Octadecenoic acid, (E)-294 NJ NF 2400 NJ NF NF NF 9H-Tribenzo(a,c,E)cycloheptene NF NF NF 3900 NJ NF NF 9-Hexadecenoic acid NF 1350 NJ NF NF NF NF 1740 NJ 9,10-Anthracenedione NF 420 NJ 450 NJ 12600 NJ 930 NJ 7-Tetradecene NF NF NF NF NF NF 7H-Benzo(c)fluorene NF NF NF 8400 NJ NF NF 7H-Benzo(c)carbazole NF NF NF 3900 NJ NF NF 7H-Benz(de)anthracen-7-one 297 NJ 1590 NJ 480 NJ 1920 NJ 480 NJ 7200 NJ NF 5,12-Naphthacenedione NF NF NF 3600 NJ NF 4-O-Methylphenylhydrazono-3-methyl-2-pyr NF NF NF NF NF 2610 NJ 4H-Cyclopenta(def)phenanthrene NF NF 600 NJ NF NF NF 3-Tetradecene,-NF NF NF NF NF NF 3,4-Dihydrocyclopenta(cd)pyrene (acepyre NF 990 NJ NF 6900 NJ 2250 NJ NF 2-Phenylnaphthalene NF NF NF 3600 NJ NF 480 NJ 2,6,10,14,18-Pentamethyl-2,6,10,14,18-ei NF NF NF NF NF NF

Abandoned Chemical Sales Facility Site

Analyte	Sample ID: Date:	SS06 11/14/01	SS07 11/14/01	SS08 11/14/01	SS09 11/14/01	SS10 11/14/01	SS11 11/14/01
2,2'-Binaphthalene	Date.	NF	NF	NF	NF	NF	NF
1-Pyrene-carboxaldehyde		NF	NF	NF	NF	NF	NF
1-Octadecene		NF	NF	NF	NF	NF	1470 NJ
1H-Purine, 6-methoxy-		297 NJ	NF	NF	NF	NF	NF
1H-Phenalene		NF	NF	NF	NF	NF	NF
1-Docosanol		390 NJ	NF	NF	NF	NF	NF
14-Octadecenal		2310 NJ	NF	NF	NF	NF	NF
11H-Benzo(b)fluorene		NF	NF	NF	2820 NJ	2220 NJ	4920 NJ
11H-Benzo(a)fluorene		NF	NF	NF	13200 NJ	1080 NJ	NF
11H-Benzo(a)carbazole		NF	NF	NF	NF	NF	NF
1,3,5-Triazine-2,4-diamine, 6-phenyl-		NF	NF	NF	NF	NF	NF
1,2:7,8-Dibenzophenanthrene		NF	NF	NF	NF	NF	NF

Note: Results are reported as total for similar TICs.

Key:

NF = Not found.

NJ = Identification not confirmed, estimated value.

Table E-2

Summary of Tentatively Identified Compound Results for Surface Water Samples

Abandoned Chemical Sales Facility Site

Analyte Semivolatile Organics by Method OLM04.2 (µ	Sample ID: Date: g/L)	SW01 11/30/01	SW01-D 11/30/01
Unknown oxygenated PAH		NF	3 NJ
Unknown oxygenated hydrocarbon		3 NJ	3 NJ
Unknown hydrocarbon		3 NJ	3 NJ
Unknown		13 NJ	14 NJ
Straight-chain alkane		63 NJ	35 NJ
9,10-Anthracenedione		NF	3 NJ
1,8-Naphthalic anhydride		2 NJ	2 NJ

Note: Results are reported as total for similar TICs.

Key:

NF = Not found.

NJ = Identification not confirmed, estimated value.

 $\mu g/L = Micrograms$ per liter.

	Sample ID:	SD01	SD01-D
Analyte	Date:	11/14/01	11/14/01
Semivolatile Organics by Method OLM04	2 (ug/Kg)		
Unknown PAH	.2 (µg/Ng)	1770 NJ	900 NJ
Unknown oxygenated PAH		NF	750 NJ
Unknown oxygenated hydrocarbon		7650 NJ	2580 NJ
Unknown hydrocarbon		450 NJ	1230 NJ
Unknown chlorinated hydrocarbon		600 NJ	570 NJ
Unknown		4140 NJ	4890 NJ
Triphenylene, 2-methyl-		600 NJ	NF
Thymine		2460 NJ	NF
Thymidine		NF	1290 NJ
Stigmast-4-en-3-one		1500 NJ	3600 NJ
Pyrene, 1-methyl-		420 NJ	360 NJ
Perylene		540 NJ	NF
Oxirane, heptadecyl-		NF	3000 NJ
n-Hexadecanoic acid		2040 NJ	1380 NJ
Hexadecenoic acid, Z-11-		1920 NJ	NF
Chrysene, 5-methyl-		NF	600 NJ
Benzo(e)pyrene		3240 NJ	2580 NJ
Benzo(b)naphtho(2,1-d)thiophene		2460 NJ	NF
Benzo(b)chrysene		NF	600 NJ
Benzeneacetic acid		2790 NJ	2460 NJ
Anthracene, 1-methyl-		NF	720 NJ
Adenine		600 NJ	900 NJ
Straight-chain alkane		3170 NJ	1960 NJ
Branched alkane		NF	1400 NJ
9-Octadecenoic acid, (E)-		2310 NJ	NF
9-Hexadecenoic acid		1020 NJ	NF
9,10-Anthracenedione		NF	360 NJ
7H-Benz(de)anthracen-7-one		780 NJ	NF
5,12-Naphthacenedione		1050 NJ	630 NJ

Abandoned Chemical Sales Facility Site

Analyte	Sample ID: Date:	SD01 11/14/01	SD01-D 11/14/01
4_alpha_,5_betaEpoxy-9_alphahydroxyg		NF	690 NJ
3-Eicosene,-		1440 NJ	NF
17-(1,5-Dimethylhexyl)-10,13-dimethyl-2,		3000 NJ	1410 NJ
1,2:7,8-Dibenzophenanthrene		NF	3300 NJ
_gammaSitosterol		3000 NJ	2010 NJ

Note: Results are reported as total for similar TICs.

Key:

NF = Not found.

NJ = Identification not confirmed, estimated value.

	Sample ID:	GP01-3-5	GP01-3-5-D	GP04-5-5.5	GP08-4-4.9	GP21-2.8-3.5	GP22-2.2-4.5
Analyte	Date:	11/12/01	11/12/01	11/12/01	11/12/01	11/13/01	11/14/01
VOCs by Method OLM04.2 (µg/Kg)							
Unknown oxygenated hydrocarbon		NF	NF	16800 NJ	NF	NF	NF
Unknown hydrocarbon		NF	NF	900 NJ	NF	NF	NF
Unknown		NF	NF	45300 NJ	NF	NF	39 NJ
Straight-chain alkane		NF	NF	10530 NJ	NF	NF	NF
Propylbenzene isomer		NF	NF	138000 NJ	NF	NF	NF
Methylbenzene Isomer		NF	NF	18600 NJ	NF	NF	NF
Cycloalkane		NF	NF	13290 NJ	NF	NF	NF
Butylbenzene Isomer		NF	NF	66600 NJ	NF	NF	NF
Branched alkane (Br)		NF	NF	26730 NJ	NF	NF	NF
Benzenepropanal		NF	NF	10500 NJ	NF	NF	NF
Benzeneacetaldehyde, _alphamethyl-		NF	NF	7200 NJ	NF	NF	NF
Benzeneacetaldehyde		NF	NF	17100 NJ	NF	NF	NF
Benzene, propyl-		NF	NF	10500 NJ	NF	NF	NF
Benzene, 4-ethyl-1,2-dimethyl-		NF	NF	20400 NJ	NF	NF	NF
Benzene, 2-ethyl-1,3-dimethyl-		NF	NF	2190 NJ	NF	NF	NF
Benzene, 1-methyl-4-(1-methylethyl)-		NF	NF	1200 NJ	NF	NF	NF
Benzene, 1-methyl-3-(1-methylethyl)-		NF	NF	17100 NJ	NF	NF	NF
Benzene, 1-methyl-2-(1-methylethyl)-		NF	NF	7110 NJ	NF	NF	NF
Benzene, 1-ethyl-4-methyl-		NF	NF	60000 NJ	NF	NF	NF
Benzene, 1-ethyl-2,4-dimethyl-		NF	NF	11340 NJ	NF	NF	NF
Benzene, 1-ethyl-2,3-dimethyl-		NF	NF	780 NJ	NF	NF	NF
Benzene, 1,3-diethyl-		NF	NF	540 NJ	NF	NF	NF
Benzene, 1,3,5-trimethyl-		NF	NF	42000 NJ	NF	NF	NF
Benzene, 1,2,4,5-tetramethyl-		NF	NF	300 NJ	NF	NF	NF
Benzene, 1,2,3-trimethyl-		NF	NF	22800 NJ	NF	NF	NF
Benzene, (1-methylpropyl)-		NF	NF	5400 NJ	NF	NF	NF
Benzene, (1-methylethyl)-		NF	NF	15300 NJ	NF	NF	NF
1,3-Cyclopentadiene, 1,2,3,4-tetramethyl		NF	NF	1080 NJ	NF	NF	NF

	Sample ID:	GP01-3-5	GP01-3-5-D	GP04-5-5.5	GP08-4-4.9	GP21-2.8-3.5	GP22-2.2-4.5
Analyte	Date:	11/12/01	11/12/01	11/12/01	11/12/01	11/13/01	11/14/01
Semivolatile Organics by Method OLM04.	2 (µg/Kg)						
Unknown PAH		2328 NJ	1530 NJ	NF	NF	NF	NF
Unknown oxygenated PAH		NF	360 NJ	NF	NF	NF	NF
Unknown oxygenated hydrocarbon		NF	NF	NF	NF	420 NJ	291 NJ
Unknown hydrocarbon		NF	NF	NF	NF	798 NJ	NF
Unknown aromatic		NF	480 NJ	NF	NF	NF	NF
Unknown		NF	1350 NJ	330 NJ	750 NJ	1260 NJ	600 NJ
Pyrene, 2-methyl-		NF	420 NJ	NF	NF	NF	NF
Pyrene, 1-methyl-		231 NJ	246 NJ	NF	NF	NF	NF
Phosphonic acid, dioctadecyl ester		NF	NF	570 NJ	NF	NF	NF
Phenanthrene, 4-methyl-		390 NJ	NF	NF	NF	NF	NF
Phenanthrene, 3,6-dimethyl-		NF	267 NJ	NF	NF	NF	NF
Phenanthrene, 2,5-dimethyl-		NF	330 NJ	NF	NF	NF	NF
Phenanthrene, 1-methyl-		450 NJ	660 NJ	NF	NF	NF	NF
Oxybenzone		930 NJ	NF	NF	NF	NF	NF
n-Hexadecanoic acid		1230 NJ	NF	NF	NF	NF	NF
Naphthalene, 2-phenyl-		540 NJ	NF	NF	NF	NF	NF
Indane		NF	NF	1110 NJ	NF	NF	NF
Fluoranthene, 2-methyl-		NF	450 NJ	NF	NF	NF	NF
Dibenzothiophene		NF	279 NJ	NF	NF	NF	NF
Cyclopenta(def)phenanthrenone		480 NJ	NF	NF	NF	NF	NF
Benzonaphthothiophene isomer		NF	261 NJ	NF	NF	NF	NF
Benzo(e)pyrene		1680 NJ	2250 NJ	NF	NF	NF	NF
Benzo(b)naphtho(2,1-d)thiophene		246 NJ	NF	NF	NF	NF	NF
Benzene, propyl-		NF	NF	2340 NJ	NF	NF	NF

Abandoned Chemical Sales Facility Site

	Sample ID:	GP01-3-5	GP01-3-5-D	GP04-5-5.5	GP08-4-4.9	GP21-2.8-3.5	GP22-2.2-4.5
Analyte	Date:	11/12/01	11/12/01	11/12/01	11/12/01	11/13/01	11/14/01
Benzene, butyl-		NF	NF	3000 NJ	NF	NF	NF
Benzene, 4-ethyl-1,2-dimethyl-		NF	NF	1140 NJ	NF	NF	NF
Benzene, 2-ethyl-1,4-dimethyl-		NF	NF	3600 NJ	NF	NF	NF
Benzene, 1-methyl-3-propyl-		NF	NF	6000 NJ	NF	NF	NF
Benzene, 1-methyl-3-(1-methylethyl)-		NF	NF	288 NJ	NF	NF	NF
Benzene, 1-methyl-2-(1-methylethyl)-		NF	NF	1110 NJ	NF	NF	NF
Benzene, 1-ethyl-2-methyl-		NF	NF	17700 NJ	NF	NF	NF
Benzene, 1-ethyl-2,4-dimethyl-		NF	NF	1140 NJ	NF	NF	NF
Benzene, 1,3,5-trimethyl-		NF	NF	9300 NJ	NF	NF	NF
Benzene, 1,2-diethyl-		NF	NF	291 NJ	NF	NF	NF
Benzene, 1,2,3-trimethyl-		NF	NF	48000 NJ	NF	NF	NF
Benzene, (2-methylpropyl)-		NF	NF	1020 NJ	NF	NF	NF
Benzene, (1-methylpropyl)-		NF	NF	1110 NJ	NF	NF	NF
Benz(e)acephenanthrylene		960 NJ	NF	NF	NF	NF	NF
Benz(a)anthracene, 12-methyl-		NF	510 NJ	NF	NF	NF	NF
Anthracene, 2-methyl-		570 NJ	1200 NJ	NF	NF	NF	NF
9H-Fluoren-9-ol		NF	300 NJ	NF	NF	NF	NF
9,10-Anthracenedione		420 NJ	330 NJ	NF	NF	NF	NF
3,4-Dihydrocyclopenta(cd)pyrene (acepyre		480 NJ	900 NJ	NF	NF	NF	NF
2-Phenylnaphthalene		NF	360 NJ	NF	NF	NF	NF
11-Tricosene		780 NJ	NF	NF	NF	NF	NF
11H-Benzo(b)fluorene		390 NJ	NF	NF	NF	NF	NF
(Z)14-Tricosenyl formate		NF	390 NJ	NF	NF	NF	NF

Note: Results are reported as total for similar TICs.

Key:

NF = Not found.

NJ = Identification not confirmed, estimated value.

Abandoned Chemical Sales Facility Site

	Sample ID:	MW01	MW01-D	MW02	MW03	MW04
Analyte	Date:	11/30/01	11/30/01	11/30/01	11/29/01	11/29/01
VOCs by Method OLM04.2 (µg/L)						
Unknown aromatic		NF	260 NJ	NF	NF	NF
Unknown alcohol		NF	210 NJ	NF	NF	NF
Unknown		400 NJ	53 NJ	16 NJ	NF	NF
Indane		NF	NF	75 NJ	NF	NF
Indan, 1-methyl-		NF	NF	5 NJ	NF	NF
Ethane, (methylthio)-		NF	NF	210 NJ	NF	NF
Dimethyl sulfide		2900 NJ	2900 NJ	250 NJ	NF	NF
Benzeneacetaldehyde, _alphamethyl-		NF	65 NJ	NF	NF	NF
Benzene, propyl-		NF	380 NJ	95 NJ	NF	NF
Benzene, 4-ethyl-1,2-dimethyl-		NF	56 NJ	NF	NF	NF
Benzene, 2-ethyl-1,4-dimethyl-		NF	NF	12 NJ	NF	NF
Benzene, 1-methyl-4-propyl-		NF	NF	10 NJ	NF	NF
Benzene, 1-methyl-4-(1-methylethyl)-		NF	285 NJ	32 NJ	NF	NF
Benzene, 1-methyl-3-propyl-		NF	180 NJ	47 NJ	NF	NF
Benzene, 1-methyl-3-(1-methylethyl)-		NF	38 NJ	NF	NF	NF
Benzene, 1-methyl-2-propyl-		NF	50 NJ	NF	NF	NF
Benzene, 1-methyl-2-(1-methylethyl)-		NF	64 NJ	24 NJ	NF	NF
Benzene, 1-ethyl-4-methyl-		520 NJ	1800 NJ	NF	NF	NF
Benzene, 1-ethyl-2-methyl-		NF	700 NJ	1320 NJ	NF	NF
Benzene, 1-ethyl-2,4-dimethyl-		NF	NF	10 NJ	NF	NF
Benzene, 1-ethyl-2,3-dimethyl-		NF	NF	7 NJ	NF	NF
Benzene, 1,3,5-trimethyl-		880 NJ	2060 NJ	280 NJ	NF	NF
Benzene, 1,2-difluoro-		NF	50 NJ	NF	NF	NF
Benzene, 1,2,4-trimethyl-		920 NJ	NF	NF	NF	NF
Benzene, 1,2,3-trimethyl-		10700 NJ	9900 NJ	3180 NJ	NF	NF
Benzene, (2-methylpropyl)-		NF	51 NJ	7 NJ	NF	NF
1H-Indene, 2,3-dihydro-2-methyl-		NF	27 NJ	NF	NF	NF

02:000699_NY08_03_01-B0900 R_Abandoned_Chemical.doc-03/18/02

Abandoned Chemical Sales Facility Site

	Sample ID:	MW01	MW01-D	MW02	MW03	MW04
Analyte	Date:	11/30/01	11/30/01	11/30/01	11/29/01	11/29/01
Semivolatile Organics by Method OLM04.2	(ua/L)					
Unknown oxygenated hydrocarbon	(µg/⊏)	211 NJ	NF	NF	108 NJ	NF
Unknown glycol		407 NJ	762 NJ	35 NJ	1108 NJ	NF
Unknown carboxylic acid		43017 NJ	5450 NJ	8 NJ	74 NJ	NF
Unknown aromatic		NF	NF	9 NJ	NF	NF
Unknown		73 NJ	250 NJ	8 NJ	314 NJ	NF
Undecanoic acid		54 NJ	33 NJ	NF	NF	NF
Propylbenzene isomer		250 NJ	27 NJ	NF	NF	NF
Propenylbenzene isomer		NF	150 NJ	NF	NF	NF
Propanoic acid, 3-(methylthio)-		50 NJ	NF		NF	NF
Phenol, 2,6-dimethyl-		NF	NF	NF	20 NJ	NF
Pentanoic acid, 4-methyl-		NF	NF	NF	36 NJ	NF
Octanoic Acid		2200 NJ	2900 NJ	NF	170 NJ	NF
Nonanoic acid		490 NJ	160 NJ	NF	4 NJ	NF
Methane, diethoxy-		23 NJ	NF	NF	NF	NF
Indane		NF	NF	27 NJ	NF	NF
Hexanoic acid, 2-methyl-		420 NJ	91 NJ	NF	NF	NF
Hexanoic acid, 2-ethyl-		160 NJ	38 NJ	NF	10 NJ	NF
Hexanoic acid		6900 NJ	1500 NJ	NF	95 NJ	NF
Heptanoic acid		910 NJ	289 NJ	NF	9 NJ	NF
Ethanol, 2-(2-(2-methoxyethoxy)ethoxy)-		63 NJ	NF	NF	NF	NF
Ethanol, 2-(2-(2-butoxyethoxy)ethoxy)-		40 NJ	NF	NF	NF	NF
Dodecanoic acid		60 NJ	35 NJ	NF	NF	NF
Diphenyl ether		100 NJ	62 NJ	14 NJ	NF	NF
Dimethyltetralin isomer		NF	NF	NF	20 NJ	NF
Dimethyl trisulfide		NF	NF	NF	34 NJ	NF
Dimethyl tetrasulphide		NF	NF	NF	17 NJ	NF
Diethyl trisulfide		NF	NF	NF	17 NJ	NF

02:000699_NY08_03_01-B0900 R_Abandoned_Chemical.doc-03/18/02

Abandoned Chemical Sales Facility Site

	Sample ID:	MW01	MW01-D	MW02	MW03	MW04
Analyte	Date:	11/30/01	11/30/01	11/30/01	11/29/01	11/29/01
Cyclic octaatomic sulfur		30 NJ	NF	NF	NF	NF
Butylbenzene isomer		NF	NF	10 NJ	NF	NF
Butanoic acid, 3-methyl-		43 NJ	43 NJ	NF	NF	NF
Butanoic acid, 2-methyl-		NF	45 NJ	NF	NF	NF
Benzenepropanoic acid		28 NJ	NF	NF	9 NJ	NF
Benzeneacetic acid		120 NJ	33 NJ	NF	56 NJ	NF
Benzene, propyl-		170 NJ	180 NJ	39 NJ	NF	NF
Benzene, 2-ethyl-1,4-dimethyl-		NF	37 NJ	NF	NF	NF
Benzene, 1-methyl-4-(1-methylethyl)-		79 NJ	NF	NF	NF	NF
Benzene, 1-methyl-3-propyl-		36 NJ	73 NJ	18 NJ	NF	NF
Benzene, 1-methyl-2-(1-methylethyl)-		NF	160 NJ	13 NJ	NF	NF
Benzene, 1-ethyl-4-methyl-		NF	1100 NJ	NF	NF	NF
Benzene, 1-ethyl-3-methyl-		1100 NJ	NF	NF	NF	NF
Benzene, 1-ethyl-2-methyl-		808 NJ	970 NJ	292 NJ	NF	NF
Benzene, 1-ethyl-2,4-dimethyl-		NF	NF	15 NJ	NF	NF
Benzene, 1-ethyl-2,3-dimethyl-		NF	27 NJ	NF	NF	NF
Benzene, 1,3,5-trimethyl-		220 NJ	230 NJ	130 NJ	NF	NF
Benzene, 1,2,4-trimethyl-		NF	440 NJ	NF	NF	NF
Benzene, 1,2,3-trimethyl-		4650 NJ	4100 NJ	810 NJ	NF	NF
Benzene, (2-methylpropyl)-		NF	NF	5 NJ	NF	NF
Benzene, (1-methylpropyl)-		NF	42 NJ	6 NJ	NF	NF
Straight-chain alkane		NF	NF	11 NJ	NF	6 NJ
2-Propanol, 1-(2-methoxypropoxy)-		NF	70 NJ	NF	NF	NF
2-Propanol, 1-(2-methoxy-1-methylethoxy)		NF	37 NJ	15 NJ	NF	NF
2-Propanol, 1-(2-ethoxypropoxy)-		200 NJ	NF	NF	NF	NF
2(3H)-Benzothiazolone		33 NJ	31 NJ	5 NJ	22 NJ	NF
2(1H)-Quinolinone		NF	NF	NF	9 NJ	NF
1H-Indole-2,3-dione		NF	NF	4 NJ	NF	NF
1H-Indole-1-carboxaldehyde, 2,3-dihydro-		31 NJ	NF	NF	30 NJ	NF

02:000699_NY08_03_01-B0900 R_Abandoned_Chemical.doc-03/18/02

Table E-5Summary of Tentatively Identified Compound Results for Groundwater Samples

Abandoned Chemical Sales Facility Site

Analyte	Sample ID:	MW01	MW01-D	MW02	MW03	MW04
	Date:	11/30/01	11/30/01	11/30/01	11/29/01	11/29/01
1H-Benzotriazole, 5-methyl-		NF	NF	5 NJ	138 NJ	NF

Note: Results are reported as total for similar TICs.

Key:

NF = Not found.

NJ = Identification not confirmed, estimated value.

 $\mu g/L = Micrograms$ per liter.