RECEIVED

AUG 0 1 2008

DER/HAZ. WASTE REMED

July 31, 2008

Mr. Dennis P. Maguire Maguire Family Properties, Inc. 770 Rock Beach Road Rochester, NY 14617 VIA FEDERAL EXPRESS

Re: Additional Vapor Intrusion Sampling

Results - March 28, 2008

Dear Mr. Maguire:

As you are aware, additional vapor intrusion sampling was conducted at your facility, the Former Alliance Metal Stamping & Fabrication facility located at 12 Pixley Industrial Parkway, Town of Gates, New York. The sampling was conducted on March 28, 2008. The sampling was conducted by O'Brien & Gere on behalf of ITT Corporation (ITT) with oversight by New York State Department of Environmental Conservation (NYSDEC) and New York State Department of Health (NYSDOH). This letter provides you with validated results of the sampling that was conducted at your facility in accordance with the current access agreement between you and ITT.

The sampling of air from under the building's concrete slab (sub-slab), from within the building (indoor air), and from outside and upwind of the building (ambient air) was conducted simultaneously. Approximate sample locations are presented in Figure 1. The samples were analyzed by a laboratory certified by the New York State Department of Health (NYSDOH) and went through a validation process which was completed on July 3, 2008. Unvalidated sampling results were previously provided to your consultant (Jeff Danzinger from Day Environmental), NYSDEC, and NYSDOH. All validated sampling results also have been submitted to the NYSDEC and NYSDOH.

Table 1, attached to this letter, presents a summary of the chemical compounds detected in the samples. All compounds included in the analysis, whether they were detected or not, are listed in the attached laboratory report. It is our understanding that you will inform the tenants at this property of the sampling results.

If you wish to discuss your results, please contact any of the people listed below:

Frank L. Sowers, P.E., NYSDEC Project Manager 585-226-5357 Deborah McNaughton, NYSDOH Project Manager 585-423-8069 Jeffrey M. Kosmala, P.E, Monroe County Department of Health 585-753-5470

I:\DIV71\Projects\3356\35273\2 corres\VI\AMSF\Result Letter July 2008\AMSF Results Letter 073108 FTNAL.doc

Mr. Dennis P. Maguire July 31, 2008 Page 2

Thank you for your cooperation during vapor intrusion sampling at your facility.

Very truly yours,

O'BRIEN & GERE ENGINEERS, INC.

ITT CORPORATION

Mark A. Distler Vice President Teresa P. Olmsted

Director, Environmental Programs

Jan Colast.

Attachments:

Figure 1 - Sample Locations

Table 1 - Summary of Vapor Intrusion Sampling Results

Attachment 1 - Laboratory Report

cc:

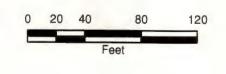
Frank Sowers, P.E. - NYSDEC

Deborah McNaughton - NYSDOH

Jeffrey Kosmala - MCDOH

Jeff Danzinger - Day Environmental

FIGURE 1


LEGEND

- SUB-SLAB/INDOOR
 AIR SAMPLE PAIR
- **AMBIENT AIR SAMPLE**

NOTE: SUB-SLAB SAMPLE LOCATIONS, INDOOR AIR SAMPLE LOCATIONS, AMBIENT AIR SAMPLE LOCATION, AND TENANT BUILDING SPACES ARE APPROXIMATE

FORMER ITT ROCHESTER FORM MACHINE FACILITY TOWN OF GATES, NEW YORK SITE #8-28-112

SAMPLE LOCATIONS MARCH 2008

JULY 2008 3356/35273

Table 1 AMSF Vapor Intrusion Sample Results Volatile Organic Compounds Former ITT Rochester Form Machine Facility Site Site #8-28-112 Town of Gates, New York

			LZ 1V	lovers				Drigiil navei	n Gymnastics			Time vvis	e Cleaning	Downey	Goodlein
Sample Type:	Ambient Air	Sub Slab	Indoor Air	Sub Slab	Indoor Air	Sub Slab	Indoor Air	Sub Slab	Indoor Air	Sub Slab	Indoor Air	Sub Slab	Indoor Air	Sub Slab	Indoor Air
Location ID:	AMSF-AA	AMSF-04	AMSF-04	AMSF-05	AMSF-05	AMSF-06	AMSF-06	AMSF-07	AMSF-07	AMSF-08	AMSF-08	AMSF-09	AMSF-09	AMSF-10	AMSF-10
ound Sample Date/End Time:	3/28/2008 17:56	3/28/2008 17:43	3/28/2008 17:43	3/28/2008 17:50	3/28/2008 17:49	3/28/2008 16:50	3/28/2008 16:50	3/28/2008 16:37	3/28/2008 16:37	3/28/2008 16:43	3/28/2008 16:43	3/28/2008 17:18	3/28/2008 17:18	3/28/2008 17:08	3/28/2008 17:08
1,1,1-Trichloroethane	0.45	8200	6.5	55000	6.5	3900	2.0	1300	1.5	1100	2.1	930 J	2.2	19	8.2
1,1,2,2-Tetrachloroethane	0.27 U	69 U	0.27 U	410 U	0.27 U	36 U	0.27 U	8.2 U	0.27 U	150 U	0.27 U	6.9 UJ	0.27 U	1.1 U	0.27 U
1,1,2-Trichloroethane	0.22 U	55 U	0.22 U	320 U	0.22 U	28 U	0.22 U	6.5 U	0.22 U	200	0.22 U	5.5 UJ	0.22 U	0.87 U	0.22 U
1,1-Dichloroethane	0.16 U	45	0.16 U	310	0.16 U	21 U	0.16 U	370	0.16 U	1100	0.16 U	69 J	0.16 U	0.65 U	0.40
1,1-Dichloroethene	0.16 U	79	0.16 U	790	0.16 U	21 U	0.31	670	0.37	13000	0.19	100 J	0.30	0.63 U	0.16 U
1,2-Dichloroethane	0.32 U	40 U	0.85	240 U	0.81	21 U	0.32 U	4.9 U	0.32 U	89 U	0.32 U	4.0 UJ	0.32 U	0.65 U	0.32 U
1,2-Dichloroethene (total)	0.16 U	40 U	0.16 U	230 U	0.16 U	21 U	0.16 U	4.8 U	0.16 U	190	0.16 U	4.0 UJ	0.16 U	0.63 U	0.16 U
1,2-Dichloropropane	0.37 U	46 U	0.37 U	270 U	0.37 U	24 U	0.37 U	5.5 U	0.37 U	100 U	0.37 U	4.6 UJ	0.37 U	0.74 U	0.37 U
1,2-Dichlorotetrafluoroethane;Fluorocarbon 114	0.28 U	70 U	0.28 U	410 U	0.28 U	36 U	0.28 U	8.4 U	0.28 U	150 U	0.28 U	7.0 UJ	0.28 U	1.1 U	0.28 U
1,2-Xylene	0.17 U	43 U	2.5	260 U	2.6	39	0.83	6.5	1.0	96 U	0.65	4.3 UJ	0.26	6.1	1.8
1,3,5-Trimethylbenzene	0.39 U	49 U	1.3	290 U	1.3	36	0.43	5.9 U	1.1	110 U	0.49	4.9 UJ	0.39 U	4.9	2.3
1,3-Butadiene	0.18 U	58 U	0.18 U	330 U	0.18 U	29 U	0.18 U	6.6 U	0.18 U	120 U	0.18 U	5.5 UJ	0.18 U	1.8	0.31
2,2,4-Trimethylpentane	0.19 U	47 U	0.98	280 U	0.65	24 U	0.23	5.6 U	0.19 U	100 U	0.29	4.7 UJ	0.19 U	0.75 U	0.29
4-Ethyltoluene	0.20 U	49 U	3.4	290 U	3.4	49	0.79	5.9 U	1,4	110 U	0.98	4.9 UJ	0.28	5.9	3.0
Allyl chloride	0.25 U	81 U	0.25 U	470 U	0.25 U	41 U	0.25 U	9.4 U	0.25 U	180 U	0.25 U	7.8 UJ	0.25 U	1.3 U	0.25 U
Benzene	0.45	32 U	1.7	190 U	1.2	24	0.67	12	0.64	70 U	0.67	3.5 J	0.51	3.0	0.86
Bromodichloromethane	0.27 U	67 U	0.27 U	400 U	0.27 U	35 U	0.27 U	8.0 U	0.27 U	150 U	0.27 U	6.7 UJ	0.27 U	1.1 U	0.27 U
Bromoform	0.41 U	100 U	0.41 U	610 U	0.41 U	54 U	0.41 U	12 U	0.41 U	230 U	0.41 U	10 UJ	0.41 U	1.7 U	0.41 U
Bromomethane	0.31 U	39 U	0.31 U	230 U	0.31 U	20 U	0.31 U	4.7 U	0.31 U	85 U	0.31 U	3.9 UJ	0.31 U	0.62 U	0.31 U
Carbon Tetrachloride	0.35	63 U	0.41	370 U	0.55	33 U	0.39	7.5 U	0.42	140 U	0.40	6.3 UJ	0.33	1.0 U	0.43
Chloroethane	0.21 U	68 U	0.21 U	390 U	0.21 U	34 U	0.21 U	7.9 U	0.21 U	150 U	0.21 U	6.6 UJ	0.21 U	1.1 U	0.21 U
Chloroform	0.20 U	49 U	0.20 U	290 U	0.20 U	25 U	0.20 U	8.8	0.20 U	110 U	0.20 U	4.9 UJ	0.20 U	1.9	0.20 U
cis-1,2-Dichloroethene	0.16 U	40 U	0.16 U	230 U	0.16 U	21 U	0.16 U	4.8 U	0.16 U	190	0.16 U	4.0 UJ	0.16 U	0.63 U	0.16 U
cis-1,3-Dichloropropene	0.18 U	45 U	0.18 U	270 U	0.18 U	24 U	0.18 U	5.4 U	0.18 U	100 U	0.18 U	4.5 UJ	0.18 U	0.73 U	0.18 U
Cyclohexane	0.14 U	310	1.4	1300	1.8	380	1.7	45	0.96	320	1.9	3.4 UJ	0.32	5.2	14
Dibromochloromethane	0.34 U	85 U	0.34 U	500 U	0.34 U	44 U	0.34 U	10 U	0.34 U	190 U	0.34 U	8.5 UJ	0.34 U	1.4 U	0.34 U
Dichlorodifluoromethane	1.7 0.17 U	130 U	2.4	740 U	2.6	· 64 U	1.7 0.52	15 U	1.9	280 U	1.8	12 UJ	1.7	2.6	2.1
Ethylbenzene	0.17 U	43 U 77 U	2.0 0.31 U	260 U 450 U	2.0 0.31 U	23 U 40 U	0.52 0.31 U	5.2 U 9.2 U	0.43 0.31 U	96 U 170 U	0.48 0.31 U	4.3 UJ 7.7 UJ	0.18	3.5	1.3
Ethylene dibromide	0.31 U	110 U	6.9	650 U	6.9	120	2.1	19	2.4	240 U			0.31 U	1.2 U	0.31 U
m,p-Xylene (sum of isomers)	0.35 U	94 U	0.14 U	540 U	0.14 U	47 U	0.14 U	11 U	0.14 U	240 U	1.7 0.14 U	11 UJ 9.0 UJ	0.69 0.14 U	15 1.4 U	4.8 0.14 U
Methyl tert-butyl ether Methylene chloride	2.8 U	90 U	690 J	520 U	870 J	45 U	2900 J	10 U	940 J	190 U	3200 J	10 J	97 J	2.9	
n-Heptane	0.45	190	2.2	340	2.2	660	2900 3	53	1.4	410	3200 3	14 J	0.41	2.9	9.0
n-Hexane	0.45	190	23	530 U	30	. 530	7.4	53	3.9	490	7.4	8.8 UJ	0.41	15	9.0
	0.70 0.27 U	570	1.0	3000	0.88	620	1.3	620	0.95	7500	1.4	11 J	0.56 0.27 U	4.9	1.1
Tetrachloroethene Toluene	0.27 0	49	190 J	220 U	200 J	68	25	28	16	100	32	8.7 J	2.4	11	6.4
trans-1,2-Dichloroethene	0.94 0.16 U	49 U	0.16 U	230 U	0.16 U	21 U	0.16 U	4.8 U	0.16 U	87 U	0.16 U	4.0 UJ	0.16 U	0.63 U	0.16 U
trans-1,3-Dichloropropene	0.18 U	45 U	0.18 U	270 U	0.18 U	24 U	0.18 U	5.4 U	0.18 U	100 U	0.18 U	4.5 UJ	0.18 U	0.63 U	0.18 U
Trichloroethene	0.16 U	64	0.16 U	320 U	0.16 U	28 U	0.16 U	7.5	0.18 U	590	0.16 U	5.4 UJ	0.18 U	0.73 U	0.18 U
Trichlorofluoromethane	0.79	56 U	11	330 U	13	90	6.2	8.4	4.2	120 U	6.7	5.6 UJ	1.2	5.3	4.8
Vinyl Chloride	0.20 U	26 U	0.20 U	150 U	0.20 U	13 U	0.20 U	3.1 U	0.20 U	56 U	0.20 U	2.6 UJ	0.20 U	0.41 U	0.20 U
Vinyl Chloride Vinylbromide (Bromoethene)	0.20 U	44 U	0.35 U	260 U	0.20 U	23 U	0.25 U	5.2 U	0.35 U	96 U	0.20 U	4.4 UJ	0.35 U	0.70 U	0.20 U
Xylenes, Total	0.33 U	43 U	9.6	260 U	10	160	3.0	25	3.5	96 U	2.5	4.4 UJ	1.0	21	6.9

Notes:
Results have been validated.
Results are reported in units of micrograms per cubic meter (ug/m³)
U - Compound analyzed but not detected at a concentration above the reporting limit.
UJ - Analyte was not detected and the quantitation limit may be inaccurate or imprecise.
J - Estimated value

ATTACHMENT 1

Laboratory Report

TestAmerica South Burlington, VT

Sample Data Summary Package

SDG: NY124793

May 7, 2008

Mr. Mark Distler O'Brien & Gere Laboratories 5000 Brittonfield Parkway PO Box 4942 Syracuse, NY 13221

Re: Laboratory Project No. 28000 Case: 28000; SDG: NY124793 Revised

Dear Mr. Distler:

Enclosed are the analytical results for the samples that were received by TestAmerica Burlington on April 2nd, 2008. Laboratory identification numbers were assigned, and designated as follows:

TestAmerica Laboratories, Inc.

Lab ID	Client Sample ID	Sample Date	Sample Matrix
	Received: 04/02/08 ETR	R No: 124793	
746474	AMSF-04-SS-032808	03/28/08	AIR
746475	AMSF-05-SS-032808	03/28/08	AIR
746476	AMSF-06-SS-032808	03/28/08	AIR
746477	AMSF-07-SS-032808	03/28/08	AIR
746478	AMSF-08-SS-032808	03/28/08	AIR
746479	AMSF-09-SS-032808	03/28/08	AIR
746480	AMSF-10-SS-032808	03/28/08	AIR
746481	AMSF-04-IA-032808	03/28/08	AIR
746482	AMSF-05-IA-032808	03/28/08	AIR
746483	AMSF-06-IA-032808	03/28/08	AIR
746484	AMSF-07-IA-032808	03/28/08	AIR
746485	AMSF-08-IA-032808	03/28/08	AIR
746486	AMSF-09-IA-032808	03/28/08	AIR
746487	AMSF-10-IA-032808	03/28/08	AIR
746488	AMSF-AA-032808	03/28/08	AIR

Documentation of the condition of the samples at the time of their receipt and any exception to the laboratory's Sample Acceptance Policy is documented in the Sample Handling section of this submittal.

The enclosed submittal has been revised to reflect the reporting of Methylene Chloride at the client's request. Please note that in several of the samples referenced above the concentrations of Methylene Chloride did exceed the range of calibrated instrument response.\

EPA MethodTO-15 - Volatile Organics:

The samples, AMSF-04-SS-032808, AMSF-05-SS-032808, AMSF-06-SS-032808, AMSF-07-SS-032808, AMSF-08-SS-032808, AMSF-09-SS-032808 and AMSF-10-SS-032808 were accomplished at a dilution in order to get the response of the analyte with the highest concentration within the initial calibration range. Only the results for the dilution analyses were provided.

Manual integration of quantitation peaks was performed where necessary. Documentation of each manual integration was provided in the supportive documentation. Secondary review was performed by the laboratory on all of the manual integrations within this submittal.

EPA Method TO15 - Low Concentration Volatile Organics:

Due to inherent software limitations, the sample identifications for AMSF-04-IA-032808, AMSF-05-IA-032808, AMSF-06-IA-032808, AMSF-07-IA-032808, AMSF-08-IA-032808, AMSF-09-IA-032808, AMSF-10-IA-032808 and AMSF-AA-032808 were truncated.

The samples, AMSF-04-IA-032808, AMSF-05-IA-032808, AMSF-06-IA-032808, AMSF-07-IA-032808, AMSF-08-IA-032808 and AMSF-10-IA-032808 were accomplished at a dilution in order to get the response of the analyte with the highest concentration within the initial calibration range. The results for both the original analyses and the dilution analyses were provided.

The field sample AMSF-05-IA-032808 was accomplished at a fifty fold dilution and an "E" qualifier was applied for the target compound Toluene The laboratory notes that at a fifty fold dilution, this sample was analyzed as dilute as possible for the low concentration analysis.

Manual integration of quantitation peaks was performed where necessary. Documentation of each manual integration was provided in the supportive documentation. Secondary review was performed by the laboratory on all of the manual integrations within this submittal.

Any reference within this report to Severn Trent Laboratories, Inc. or STL, should be understood to refer to TestAmerica Laboratories, Inc. (formerly known as Severn Trent Laboratories, Inc.) The analytical results associated with the samples presented in this test report were generated under a quality system that adheres to requirements specified in the NELAC standard. Release of the data in this test report and any associated electronic deliverables is authorized by the Laboratory Director's designee as verified by the following signature.

If there are any questions regarding this submittal, please contact me at 802 660-1990.

Sincerely,

Don Dawicki Project Manager

Enclosure

CLIENT SAMPLE NO.

AMSF-04-IA-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

Sample Matrix: AIR

Lab Sample No.: 746481

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
	75-71-8	0.48		0.040	2.4		0.20
Dichlorodifluoromethane	76-14-2	0.040	U	0.040	0.28	U	0.28
,2-Dichlorotetrafluoroethane	75-01-4	0.080	U	0.080	0.20	U	0.20
/inyl Chloride	106-99-0	0.080	U	0.080	0.18	U	0.18
I,3-Butadiene	74-83-9	0.080	U	0.080	0.31	U	0.31
Bromomethane	75-00-3	0.080	U	0.080	0.21	U	0.21
Chloroethane		0.080	U	0.080	0.35	U	0.35
Bromoethene	593-60-2	2.0		0.040	11		0.22
Trichlorofluoromethane	75-69-4	0.040	U	0.040	0.16	U	0.16
1,1-Dichloroethene	75-35-4	0.080	U	0.080	0.25	υ	0.25
3-Chloropropene	107-05-1	140	E	0.80	490	E	2,8
Methylene Chloride	75-09-2		U	0.040	0.14	U	0.14
Methyl tert-Butyl Ether	1634-04-4	0.040	υ	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	E	0.080	16	E	0.28
n-Hexane	110-54-3	4.4	U	0.040	0.16	U	0.16
1,1-Dichloroethane	75-34-3	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040		0.040	0.16	U	0,16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.20	U	0.20
Chloroform	67-66-3	0.040	U	0.040	6.5		0.22
1,1,1-Trichloroethane	71-55-6	1.2		0.040	1.4		0.14
Cyclohexane	110-82-7	0.42			0.41		0.25
Carbon Tetrachloride	56-23-5	0.065	and animal and	0.040	0.98		0.19
2,2,4-Trimethylpentane	540-84-1	0.21		0.040	1.7		0.13
Benzene	71-43-2	0.54		0.040	0.85		0.32
1,2-Dichloroethane	107-06-2	0.21		0.080	2.2		0.16
n-Heptane	142-82-5	0.54		0.040	0.21	U	0.21
Trichloroethene	79-01-6	0.040	U	0.040	0.21	U	0.37
1,2-Dichloropropane	78-87-5	0.080	U	0.080	0.27	U	0.27
Bromodichloromethane	75-27-4	0.040	U	0.040	0.18	U	0.18
cis-1,3-Dichloropropene	10061-01-5	0.040	U	0.040	170	E	0.15
Toluene	108-88-3	44	E	0.040		U	0.18
trans-1,3-Dichloropropene	10061-02-6	0.040	U	0.040	0.18	U	0.22
1,1,2-Trichloroethane	79-00-5	0.040	U	0.040	0.22		

CLIENT SAMPLE NO.

AMSF-04-IA-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

Sample Matrix: AIR

Lab Sample No.: 746481

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.15		0.040	1.0		0.27
Dibromochloromethane	124-48-1	0.040	U	0.040	0.34	U	0.34
1,2-Dibromoethane	106-93-4	0.040	U	0.040	0.31	U	0.31
Ethylbenzene	100-41-4	0.45		0.040	2.0		0.17
Xylene (m,p)	1330-20-7	1.6		0.080	6.9		0.35
Xylene (o)	95-47-6	0.57		0.040	2.5		0.17
Xylene (total)	1330-20-7	2.2		0.040	9.6		0.17
Bromoform	75-25-2	0.040	U	0.040	0.41	U	0.41
1,1,2,2-Tetrachloroethane	79-34-5	0.040	U	0.040	0.27	U	0.27
4-Ethyltoluene	622-96-8	0.69		0.040	3.4		0.20
1,3,5-Trimethylbenzene	108-67-8	0.27		0.080	1.3		0.39

Lab Name: TAL Burlington

SDG Number: NY124793

Dilution Factor: 50.00

Sample Matrix: AIR

CLIENT SAMPLE NO.

AMSF-04-IA-032808DL

Lab Sample No.: 746481D1

Date Analyzed: 04/10/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
		0.97	D	0.50	4.3	D	2.5
ichlorodifluoromethane	75-71-8	0.87	U	0.50	3.5	U	3.5
2-Dichlorotetrafluoroethane	76-14-2	0.50	U	1.0	2.6	U	2.6
inyl Chloride	75-01-4	1.0	U	1.0	2.2	U	2.2
,3-Butadiene	106-99-0	1.0		1.0	3.9	U	3.9
romomethane	74-83-9	1.0	U	1.0	2.6	U	2.6
hloroethane	75-00-3	1.0	U	1.0	4.4	U	4.4
Bromoethene	593-60-2	1.0	U	***************************************	21	D	2.8
Frichlorofluoromethane	75-69-4	3.8	D	0.50	2.0	U	2.0
1,1-Dichloroethene	75-35-4	0.50	U	0.50	3.1	U	3.1
3-Chloropropene	107-05-1	1.0	U	1.0	690	DE	35
Methylene Chloride	75-09-2	200	DE	10	1.8	U	1.8
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	2.0	U	2.0
trans-1,2-Dichloroethene	156-60-5	0.50	U	0.50	23	D	3.5
n-Hexane	110-54-3	6.6	D	1.0		U	2.0
1,1-Dichloroethane	75-34-3	0.50	U	0.50	2.0	U	2.0
1,2-Dichloroethene (total)	540-59-0	0.50	U	0.50	2.0	U	2.0
cis-1,2-Dichloroethene	156-59-2	0.50	U	0.50	2.0	U	2.4
Chloroform	67-66-3	0.50	U	0.50	2.4	D	2.7
1,1,1-Trichloroethane	71-55-6	1.5	D	0.50	8.2	D	1.7
Cyclohexane	110-82-7	0.80	D .	0.50	2.8	U	3.1
Carbon Tetrachloride	56-23-5	0.50	U	0.50	3.1	- u	2.3
2,2,4-Trimethylpentane	540-84-1	0.50	U	0.50	2.3	D	1.6
*** **	71-43-2	0.67	D	0.50	2.1	U	4.0
1,2-Dichloroethane	107-06-2	1.0	U	1.0		U	2.0
*** ** ** ** ****** ****** *****	142-82-5	0.50	U	0.50	2.0	U	27
n-Heptane	79-01-6	0.50	U	0.50	2.7		4.6
Trichloroethene	78-87-5	1.0	U	1.0	4.6		3.4
1,2-Dichloropropane	75-27-4	0.50	U	0.50	3.4		2.3
Bromodichloromethane	10061-01-5	0.50	U	0.50	2.3	U	1.9
cis-1,3-Dichloropropene	108-88-3	51	DE	0.50	190	DE	2.3
Toluene	10061-02-6	0.50	U	0.50	2.3	U	2.7
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	79-00-5	0.50	U	0.50	2.7	U	

CLIENT SAMPLE NO.

AMSF-04-IA-032808DL

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 50.00

Sample Matrix: AIR

Lab Sample No.: 746481D1

Date Analyzed: 04/10/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results In ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.50	U	0.50	3.4	U	3.4
Dibromochloromethane	124-48-1	0.50	U	0.50	4.3	U	4.3
1,2-Dibromoethane	106-93-4	0.50	U	0.50	3.8	U	3.8
Ethylbenzene	100-41-4	0.58	D	0.50	2.5	D	2.2
Xylene (m,p)	1330-20-7	2.0	D	1.0	8.7	D	4.3
Xylene (o)	95-47-6	0,88	D	0.50	3.8	D	2.2
Xylene (total)	1330-20-7	3.0	D	0.50	13	D	2.2
Bromoform	75-25-2	0.50	U	0.50	5.2	U	5.2
1,1,2,2-Tetrachloroethane	79-34-5	0.50	U	0.50	3.4	U	3.4
4-Ethyltoluene	622-96-8	0.94	D	0.50	4.6	D	2.5
1,3,5-Trimethylbenzene	108-67-8	1.0	U	1.0	4.9	U	4.9

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

Sample Matrix: AIR

CLIENT SAMPLE NO.

AMSF-05-IA-032808

Lab Sample No.: 746482

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL In ppbv	Results in ug/m3	Q	RL in ug/m3
		0.50		0,040	2.6		0.20
Dichlorodifluoromethane	75-71-8	0.53	U	0.040	0.28	U	0.28
,2-Dichlorotetrafluoroethane	76-14-2	0.040	U	0.080	0.20	U	0.20
/inyl Chloride	75-01-4	0.080		0.080	0.18	U	0.18
1.3-Butadiene	106-99-0	0.080	U	0,080	0.31	U	0.31
Bromomethane	74-83-9	0.080	U	0.080	0.21	U	0.21
Chloroethane	75-00-3	0.080	U	0.080	0.35	U	0.35
Bromoethene	593-60-2	0.080	U	0.040	13		0.22
Trichlorofluoromethane	75-69-4	2.3		*******************	0.16	U	0.16
1,1-Dichloroethene	75-35-4	0.040	U	0.040	0.10	U	0.25
3-Chloropropene	107-05-1	0.080	U	0.080	660	E	2.8
Methylene Chloride	75-09-2	190	E	0.80	0.14	U	0.14
Methyl tert-Butyl Ether	1634-04-4	0.040	U	0.040	0.14	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	20	E	0.28
n-Hexane	110-54-3	5.6	E	0.080	0.16	U	0.16
1,1-Dichloroethane	75-34-3	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16		0.16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.20	Ü	0.20
Chloroform	67-66-3	0.040	U	0.040	6.5	-	0.22
1,1,1-Trichloroethane	71-55-6	1.2		0.040	1.8		0.14
Cyclohexane	110-82-7	0.53		0.040	0,55		0.25
Carbon Tetrachloride	56-23-5	0.088		0.040	0.65	1	0.19
2,2,4-Trimethylpentane	540-84-1	0.14			1.2	*** ****	0.13
Benzene	71-43-2	0.36		0.040	0.81		0.32
1,2-Dichloroethane	107-06-2	0.20		0.080	2.2		0.16
n-Heptane	142-82-5	0.54		0.040	0.21	U	0.21
Trichloroethene	79-01-6	0.040	U	0.040	0.37	U	0.37
1,2-Dichloropropane	78-87-5	0.080	U	0.080	0.37	U	0.27
Bromodichloromethane	75-27-4	0.040	U	0.040	0.18	U	0,18
cis-1,3-Dichloropropene	10061-01-5	~~~~	U	0.040	170	E	0.15
Toluene	108-88-3	45	E	0.040		U	0.18
trans-1,3-Dichloropropene	10061-02-6	0.040	U	0.040	0.18	U	0.22
1,1,2-Trichloroethane	79-00-5	0.040	U	0.040	0.22		

CLIENT SAMPLE NO.

AMSF-05-IA-032808

Lab Name: TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

Sample Matrix: AIR

Lab Sample No.: 746482

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.13		0.040	0.88		0.27
Dibromochloromethane	124-48-1	0.040	U	0.040	0.34	U	0.34
1,2-Dibromoethane	106-93-4	0.040	U	0.040	0.31	U	0.31
Ethylbenzene	100-41-4	0.45		0.040	2.0		0.17
Xylene (m,p)	1330-20-7	1.6		0.080	6.9		0.35
Xylene (o)	95-47-6	0.59	200.000	0.040	2.6		0.17
Xylene (total)	1330-20-7	2.3		0.040	10		0.17
Bromoform	75-25-2	0.040	U	0.040	0.41	U	0.41
1,1,2,2-Tetrachloroethane	79-34-5	0.040	U	0.040	0.27	U	0.27
4-Ethyltoluene	622-96-8	0.69	No offer a of	0.040	3.4		0.20
1,3,5-Trimethylbenzene	108-67-8	0.27		0.080	1.3		0.39

TAL Burlington

SDG Number: NY124793

Dilution Factor: 50.00

Lab Name:

Sample Matrix: AIR

CLIENT SAMPLE NO.

AMSF-05-IA-032808DL

Lab Sample No.: 746482D1

Date Analyzed: 04/10/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.88	D	0.50	4.4	D	2.5
1,2-Dichlorotetrafluoroethane	76-14-2	0.50	U	0.50	3.5	U	3.5
Vinyl Chloride	75-01-4	1.0	U	1.0	2.6	U	2.6
1,3-Butadiene	106-99-0	1.0	U	1.0	2.2	U	2.2
Bromomethane	74-83-9	1.0	U	1.0	3.9	U	3.9
Chloroethane	75-00-3	1.0	U	1.0	2.6	U	2.6
Bromoethene	593-60-2	1.0	U	1.0	4.4	U	4.4
Trichlorofluoromethane	75-69-4	3.6	D	0.50	20	D	2.8
1,1-Dichloroethene	75-35-4	0.50	U	0.50	2.0	U	2.0
3-Chloropropene	107-05-1	1.0	U	1.0	3,1	U	3.1
Methylene Chloride	75-09-2	250	DE	10	870	DE	35
Methyl tert-Butyl Ether	1634-04-4	0.50	U	0.50	1.8	U	1.8
trans-1,2-Dichloroethene	156-60-5	0.50	U	0.50	2.0	U	2.0
n-Hexane	110-54-3	8.6	D	1.0	30	D	3.5
1,1-Dichloroethane	75-34-3	0.50	U	0.50	2.0	U	2.0
1,2-Dichloroethene (total)	540-59-0	0.50	U	0.50	2.0	U	2.0
cis-1,2-Dichloroethene	156-59-2	0.50	U	0,50	2.0	U	2.0
Chloroform	67-66-3	0.50	U	0.50	2.4	U	2.4
1,1,1-Trichloroethane	71-55-6	1.6	D	0.50	8.7	D	2.7
Cyclohexane	110-82-7	0.94	D	0.50	3.2	D	1.7
Carbon Tetrachloride	56-23-5	0.50	U	0.50	3.1	U	3.1
2,2,4-Trimethylpentane	540-84-1	0.50	U	0.50	2.3	U	2.3
Benzene	71-43-2	0.56	D	0.50	1.8	D	1.6
1,2-Dichloroethane	107-06-2	1.0	U	1.0	4.0	U	4.0
n-Heptane	142-82-5	0.87	D	0.50	3.6	D	2.0
Trichloroethene	79-01-6	0.50	U	0.50	2.7	U	2.7
1,2-Dichloropropane	78-87-5	1.0	U	1.0	4.6	U	4.6
Bromodichloromethane	75-27-4	0.50	U	0.50	3.4	U	3.4
cis-1,3-Dichloropropene	10061-01-5	0.50	U	0.50	2.3	U	2.3
Toluene	108-88-3	54	DE	0.50	200	DE	1.9
trans-1,3-Dichloropropene	10061-02-6	0.50	U	0.50	2.3	U	2.3
1,1,2-Trichloroethane	79-00-5	0.50	U	0.50	2.7	U	2.7

CLIENT SAMPLE NO.

AMSF-05-IA-032808DL

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 50.00

Sample Matrix: AIR

Lab Sample No.: 746482D1

Date Analyzed: 04/10/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.50	U	0.50	3.4	U	3.4
Dibromochloromethane	124-48-1	0.50	U	0.50	4.3	U	4.3
1,2-Dibromoethane	106-93-4	0.50	U	0.50	3.8	U	3.8
Ethylbenzene	100-41-4	0.68	D	0.50	3.0	D	2.2
Xylene (m,p)	1330-20-7	2.0	D	1.0	8.7	D	4.3
Xylene (o)	95-47-6	0.72	D	0.50	3.1	D	2.2
Xylene (total)	1330-20-7	2.8	D	0.50	12	D	2.2
Bromoform	75-25-2	0.50	U	0.50	5.2	U	5.2
1,1,2,2-Tetrachloroethane	79-34-5	0.50	U	0.50	3.4	U	3.4
4-Ethyltoluene	622-96-8	0.72	D	0.50	3.5	D	2.5
1,3,5-Trimethylbenzene	108-67-8	1.0	U	1.0	4.9	U	4.9

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

Sample Matrix: AIR

CLIENT SAMPLE NO.

AMSF-06-IA-032808

Lab Sample No.: 746483

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.34	-	0.040	1.7		
1,2-Dichlorotetrafluoroethane	76-14-2	0.040	U	0.040	0.28		0.20
Vinyl Chloride	75-01-4	0.080	U	0.080		U	0.28
1,3-Butadiene	106-99-0	0.080	U	0.080	0.20	U	0.20
Bromomethane	74-83-9	0.080	U		0.18	U	0.18
Chloroethane	75-00-3	0.080	U	0.080	0.31	_ u	0.31
Bromoethene	593-60-2	0.080		0.080	0.21	U	0.21
Trichlorofluoromethane	75-69-4	1.1	U	0.080	0.35	U	0.35
1,1-Dichloroethene	75-35-4	0.077		0.040	6.2		0.22
3-Chloropropene	107-05-1	0.077	U	0.040	0.31		0.16
Methylene Chloride	75-09-2	*************************		0.080	0.25	U	0.25
Methyl tert-Butyl Ether	1634-04-4	620	E	0.80	2200	Е	2.8
rans-1,2-Dichloroethene	*******************************	0.040	U	0.040	0.14	U	0.14
n-Hexane	156-60-5	0.040	U	0.040	0.16	Û	0.16
,1-Dichloroethane	110-54-3	2.1		0.080	7.4		0.28
,2-Dichloroethene (total)	75-34-3	0.040	U	0.040	0.16	U	0.16
ris-1,2-Dichloroethene	540-59-0	0.040		0.040	0.16	U	0.16
Chloroform	156-59-2	0.040	U	0.040	0.16	U	0.16
,1,1-Trichloroethane	67-66-3	0.040	U	0.040	0.20	U	0.20
yclohexane	71-55-6	0.36	**************	0.040	2.0		0.22
arbon Tetrachloride	110-82-7	0.50	******	0.040	1.7		0.14
,2,4-Trimethylpentane	56-23-5	0.062		0.040	0.39		0.25
enzene	540-84-1	0.050		0.040	0.23		0.19
,2-Dichloroethane	71-43-2	0.21	**************	0.040	0.67		0.13
-Heptane	107-06-2	0.080	U	0.080	0.32	U	0.32
richloroethene	142-82-5	0.67	na halo solotoko kataloni anangogogo	0.040	2.7		0.16
2-Dichloropropane	79-01-6	0.040	U	0.040	0.21	U	0.21
romodichloromethane	78-87-5	0.080	U	0.080	0.37	U	0.37
s-1,3-Dichloropropene	75-27-4	0.040	U	0.040	0.27	U	0.27
oluene	10061-01-5	0.040	U	0.040	0.18	U	0.18
***************************************	108-88-3	8.5	E	0.040	32	E	0.15
ans-1,3-Dichloropropene	10061-02-6	0.040	U	0.040	0.18	U	0.18
1,2-Trichloroethane	79-00-5	0.040	U	0.040	0.22	U	0.22

CLIENT SAMPLE NO.

AMSF-06-IA-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

Sample Matrix: AIR

Lab Sample No.: 746483

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL In ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.19		0.040	1.3		0.27
Dibromochloromethane	124-48-1	0.040	U	0.040	0.34	U	0.34
1,2-Dibromoethane	106-93-4	0.040	U	0.040	0.31	U	0.31
Ethylbenzene	100-41-4	0.12		0.040	0.52		0.17
Xylene (m,p)	1330-20-7	0.48		0.080	2.1		0.35
Xylene (o)	95-47-6	0.19	N. Artistanti, pris	0.040	0.83		0.17
Xylene (total)	1330-20-7	0.70		0.040	3.0		0.17
Bromoform	75-25-2	0.040	U	0.040	0.41	U	0.41
1,1,2,2-Tetrachloroethane	79-34-5	0.040	U	0.040	0.27	U	0.27
4-Ethyltoluene	622-96-8	0.16		0.040	0.79		0.20
1,3,5-Trimethylbenzene	108-67-8	0.088		0.080	0.43		0.39

TAL Burlington Lab Name:

SDG Number: NY124793

Dilution Factor: 10.00

Sample Matrix: AIR

CLIENT SAMPLE NO.

AMSF-06-IA-032808DL

Lab Sample No.: 746483D1

04/10/2008 Date Analyzed:

04/02/2008 Date Received:

Target Compound	CAS Number	Results in ppbv	a	Ri li pp	1	Results in ug/m3	Q	RL in ug/m3
			-	-	.10	1.9	D	0.49
	75-71-8	0.39	D			0.70	U	0.70
ichlorodifluoromethane	76-14-2	0.10	U).10	0.51	U	0.51
,2-Dichlorotetrafluoroethane	75-01-4	0.20	U).20	0.44	U	0.44
/inyl Chloride	106-99-0	0.20	U		0.20	0.78	U	0.78
I,3-Butadiene	74-83-9	0.20	U	~ 1	0.20	0.73	U	0.53
Bromomethane	75-00-3	0.20	U		0.20	****************	U	0.87
Chloroethane	593-60-2	0.20	U		0.20	0.87	D	0.56
Bromoethene	75-69-4	1.3	D		0.10	7.3	U	0.40
Trichlorofluoromethane	75-35-4	0.10	U		0.10	0.40	U	0.63
1,1-Dichloroethene		0.20	U		0.20	0.63		6.9
3-Chloropropene	107-05-1	840	DE		2.0	2900	DE	0.36
Methylene Chloride	75-09-2		U		0.10	0.36	U	0.40
Methyl tert-Butyl Ether	1634-04-4	0.10	U		0.10	0.40	U	0.70
trans-1,2-Dichloroethene	156-60-5	2.2	D		0.20	7.8	D	
	110-54-3	0.10	U		0.10	0.40	U	0.40
n-Hexane	75-34-3				0.10	0.40	U	0.40
1,1-Dichloroethane	540-59-0			-	0.10	0.40	U	0.40
1,2-Dichloroethene (total)	156-59-2		~ ~~ ~		0.10	0.49	U	0.49
cis-1,2-Dichloroethene	67-66-3				0.10	2.0	D	0.55
Chloroform	71-55-6	******		D	0.10	1.9	D	0.34
1,1,1-Trichloroethane	110-82-			U	0,10	0.63	U	
Cyclohexane	56-23-5	- 1.00		andra de	0.10	0.47	U	10110
Carbon Tetrachloride	540-84-	44044		U	0.10	0.61		0.32
2,2,4-Trimethylpentane	71-43-			D	0.20	0.81	1	0.81
Benzene	107-06	-2 0.2	20	U	0.10	2.6		0.41
1,2-Dichloroethane	142-82	2-5 0.0	54	D	0.10	0.54	1	0.54
n-Heptane	79-01	-6 0.	10	U	0.10	0.92	1	U 0.92
Trichloroethene	78-87	-5 0.	20	U		0.67		U 0.67
1,2-Dichloropropane	75-27	4 0	.10	. U	0.10	0.45	1	U 0.45
Bromodichloromethane	10061-	01-5 0	.10	U	0.10	25	2000	D 0.38
cis-1,3-Dichloropropene	108-8		6.6	D	0.10	0.45		U 0.45
Toluene	10061-	-02-6).10	U	0.10	0.5		U 0.55
trans-1,3-Dichloropropene	79-0		0.10	U	0.10		1	

CLIENT SAMPLE NO.

AMSF-06-IA-032808DL

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 10.00

Sample Matrix: AIR

Lab Sample No.: 746483D1

Date Analyzed: 04/10/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.21	D	0.10	1,4	D	0.68
Dibromochloromethane	124-48-1	0.10	U	0.10	0.85	U	0.85
1,2-Dibromoethane	106-93-4	0.10	U	0.10	0.77	U	0.77
Ethylbenzene	100-41-4	0.12	D	0.10	0.52	D	0.43
Xylene (m,p)	1330-20-7	0.41	D	0.20	1.8	D	0.87
Xylene (o)	95-47-6	0.18	D	0.10	0.78	D	0.43
Xylene (total)	1330-20-7	0.62	D	0.10	2.7	D	0.43
Bromoform	75-25-2	0.10	U	0.10	1.0	U	1.0
1,1,2,2-Tetrachloroethane	79-34-5	0.10	U	0.10	0.69	U	0.69
4-Ethyltoluene	622-96-8	0.15	D	0.10	0.74	D	0.49
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98

CLIENT SAMPLE NO.

AMSF-07-IA-032808

Lab Name: TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

Sample Matrix: AIR

Lab Sample No.: 746484

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.39		0.040	1.9		0.20
1,2-Dichlorotetrafluoroethane	76-14-2	0.040	U	0.040	0.28	U	0.28
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,3-Butadiene	106-99-0	0.080	U	0.080	0.18	U	0.18
Bromomethane	74-83-9	0.080	U	0.080	0.31	U	0.31
Chloroethane	75-00-3	0.080	U	0.080	0.21	U	0.21
Bromoethene	593-60-2	0.080	U	0.080	0.35	U	0.35
Trichlorofluoromethane	75-69-4	0.75	***************************************	0.040	4.2		0.22
1,1-Dichloroethene	75-35-4	0.094		0.040	0.37		0.16
3-Chloropropene	107-05-1	0.080	U	0.080	0.25	U	0.25
Methylene Chioride	75-09-2	300	E	0.80	1000	E	2.8
Methyl tert-Butyl Ether	1634-04-4	0.040	U	0.040	0.14	U	0.14
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0.16	U	0.16
rı-Hexane	110-54-3	1,1		0.080	3.9		0.28
1,1-Dichloroethane	75-34-3	0.040	U	0.040	0.16	Ü	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.16	U	0.16
Chloroform	67-66-3	0.040	U	0.040	0.20	U	0.20
1,1,1-Trichloroethane	71-55-6	0.27	**********	0.040	1.5		0.22
Cyclohexane	110-82-7	0.28		0.040	0.96		0.14
Carbon Tetrachloride	56-23-5	0.067		0.040	0.42	1	0.25
2,2,4-Trimethylpentane	540-84-1	0.040	U	0.040	0.19	U	0.19
Benzene	71-43-2	0.20		0.040	0.64		0.13
1,2-Dichloroethane	107-06-2	0.080	U	0.080	0.32	U	0.32
n-Heptane	142-82-5	0.35		0.040	1.4	"	0.16
Trichloroethene	79-01-6	0.040	U	0.040	0.21	Ü	0.21
1,2-Dichloropropane	78-87-5	0.080	U	0.080	0.37	U	0.37
Bromodichloromethane	75-27-4	0.040	U	0,040	0.27	U	0.27
cis-1,3-Dichloropropene	10061-01-5	0.040	U	0.040	0.18	U	0.18
Toluene	108-88-3	5.2	E	0.040	20	E	0.15
trans-1,3-Dichloropropene	10061-02-6	0.040	U	0.040	0.18	U	0.18
1,1,2-Trichloroethane	79-00-5	0.040	U	0.040	0.22	U	0.22

CLIENT SAMPLE NO.

AMSF-07-IA-032808

Lab Name: TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

Sample Matrix: AIR

Lab Sample No.: 746484

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.14		0.040	0.95		0.27
Dibromochloromethane	124-48-1	0.040	U	0.040	0.34	U	0.34
1,2-Dibromoethane	106-93-4	0.040	U	0.040	0.31	U	0.31
Ethylbenzene	100-41-4	0.10		0.040	0.43		0.17
Xylene (m,p)	1330-20-7	0.55		0.080	2.4		0.35
Xylene (o)	95-47-6	0.23		0.040	1.0		0.17
Xylene (total)	1330-20-7	0.81		0.040	3.5		0.17
Bromoform	75-25-2	0.040	U	0.040	0.41	U	0.41
1,1,2,2-Tetrachloroethane	79-34-5	0.040	U	0.040	0.27	U	0.27
4-Ethyltoluene	622-96-8	0.29		0.040	1.4		0.20
1,3,5-Trimethylbenzene	108-67-8	0.22		0.080	1.1		0.39

CLIENT SAMPLE NO.

AMSF-07-IA-032808DL

Lab Name: TAL Burlington

SDG Number: NY124793

Dilution Factor: 7.00

Sample Matrix: AIR

Lab Sample No.: 746484D1

Date Analyzed: 04/10/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
			D	0.070	1.9	D	0.35
ichlorodifluoromethane	75-71-8	0.38		0.070	0.49	U	0.49
2-Dichlorotetrafluoroethane	76-14-2	0.070	U	0.14	0.36	U	0.36
***************************************	75-01-4	0.14	U	***************************************	0.31	U	0.31
inyl Chloride	106-99-0	0.14	U	0.14	0.54	U	0.54
,3-Butadiene	74-83-9	0.14	U	0.14	0.37	Ü	0.37
Bromomethane	75-00-3	0.14	U	0.14	0.61	U	0.61
Chloroethane	593-60-2	0.14	U	0.14		D	0.39
Bromoethene	75-69-4	0.71	D	0.070	4.0	U	0.28
richlorofluoromethane	75-35-4	0.070	U	0.070	0.28	U	0.44
1,1-Dichloroethene	107-05-1	0.14	U	0.14	0.44	DE	4.9
3-Chloropropene	75-09-2	270	DE	1.4	940		0.25
Methylene Chloride	1634-04-4	0.070	U	0.070	0.25	U	0.28
Methyl tert-Butyl Ether	156-60-5	0.070	U	0.070	0.28	U	0.49
trans-1,2-Dichloroethene	110-54-3	1.1	D	0.14	3.9	_D	*********
n-Hexane	75-34-3	0.070	U	0.070	0.28	U	0.28
1,1-Dichloroethane		0.070	U	0.070	0.28	U	0.28
1,2-Dichloroethene (total)	540-59-0	0.070	U	0.070	0.28	U	0.28
cis-1,2-Dichloroethene	156-59-2	0.070	U	0.070	0.34	J U	0.34
Chloroform	67-66-3	0.23	D	0.070	1.3	D	0.38
1,1,1-Trichloroethane	71-55-6	0.26	D	0.070	0.89	D	0.24
Cyclohexane	110-82-7		U	0.070	0.44	U	0.44
Carbon Tetrachloride	56-23-5	0.070	U	0.070	0.33	U	0.33
2,2,4-Trimethylpentane	540-84-1	0.070	D	0.070	0.61	D	0.22
Benzene	71-43-2	0.19	U	0.14	0.57	U	0.57
1,2-Dichloroethane	107-06-2	0.14	D	0.070	1.2	D	0.29
n-Heptane	142-82-5	0.29	U	0.070	0.38	U	0.38
Triphlaroethene	79-01-6	0.070	U		0.65	U	0.65
** ** *******	78-87-5	0.14		0.070	0.47	U	0.47
1,2-Dichloropropane Bromodichloromethane	75-27-4	0.070	U	0.070	0.32	U	0.32
cis-1,3-Dichloropropene	10061-01-5	40	. U	0.070		D	0.26
^	108-88-3	4.3	D			U	0.32
Toluene	10061-02-	6 0.070	U	0.070	********	U	0.38
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	79-00-5	0.070	U	0.070		*******	1

CLIENT SAMPLE NO.

AMSF-07-IA-032808DL

Lab Name: TAL Burlington

SDG Number: NY124793

Dilution Factor: 7.00

Sample Matrix: AIR

Lab Sample No.: 746484D1

Date Analyzed: 04/10/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.13	D	0.070	0.88	D	0.47
Dibromochloromethane	124-48-1	0.070	U	0.070	0.60	U	0.60
1,2-Dibromoethane	106-93-4	0.070	U	0.070	0.54	U	0.54
Ethylbenzene	100-41-4	0.083	D	0.070	0.36	D	0.30
Xylene (m,p)	1330-20-7	0.42	D	0.14	1.8	D	0.61
Xylene (o)	95-47-6	0.18	D	0.070	0.78	D	0.30
Xylene (total)	1330-20-7	0.63	D	0.070	2.7	D	0.30
Bromoform	75-25-2	0.070	U	0.070	0.72	U	0.30
1,1,2,2-Tetrachloroethane	79-34-5	0.070	U	0.070	0.48	u u	0.72
1-Ethyltoluene	622-96-8	0.23	D	0.070	1.1	0	0.46
1,3,5-Trimethylbenzene	108-67-8	0.20	D	0.14	0.98	D	0.34

Lab Name: TA

TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

CLIENT SAMPLE NO.

AMSF-08-IA-032808

Lab Sample No.: 746485

Date Analyzed: 04/09/2008

CAS Number	Results in ppbv	Q		in	Results in ug/m3	Q	RL in ug/m3
					18		0.20
75-71-8	0.37		m Low- 11			U	0.28
	0.040	U		0.040			0.20
	0.080	U		0.080			0.18
	0.080	U		0.080			0.31
	0.080	U		0.080	4444		0.21
Control of the Contro	0.080	U		0.080			0.35
	****************	U		0.080	****************		0.22
	1.2			0.040			0.16
				0.040	Married Co.		0.25
and the second second second second		U		0.080			2.8
		E		0.80	2300	.,	0.14
		i		0.040	0.14	***************************************	0.16
			j	0.040	0.16	U	0.18
MAS AN				0.080	7.4		0.16
				0.040	0.16		
			U	0.040	0.16	U	0.16
540-59-0				0.040	0.16	U	0.16
156-59-2		100000000000000000000000000000000000000	-	0.040	0.20	U	0.20
*** ************				0.040	2.1		0.22
				0.040	1.9		0.14
110-82-7	**	******		0.040	0.40		0.25
56-23-5	1	1 ~		0.040	0.29		0.19
540-84-1			111		0.67		0.13
		*********		0.080	0.32	U	0.32
107-06-2					3.1		0.16
142-82-		44444			0.21	U	
79-01-6					0.37	U	
78-87-					0.27	U	****
75-27-					0.18	U	0.18
10061-0		ww	4,0,000		20	E	
		.8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				0.40
	2-6 0.0					1	0.22
	75-71-8 76-14-2 75-01-4 106-99-0 74-83-9 75-00-3 593-60-2 75-69-4 75-35-4 107-05-1 75-09-2 1634-04-4 156-60-5 110-54-3 75-34-3 540-59-0 156-59-2 67-66-3 71-55-6 110-82-7 56-23-5 540-84-1 71-43-2 107-06- 142-82- 79-01-6 78-87- 75-27- 10061-0 108-88	CAS in ppbv	CAS Number in ppbv Q ppbv 75-71-8 0.37 76-14-2 0.040 U 75-01-4 0.080 U U 106-99-0 0.080 U 75-00-3 0.080 U U 75-00-3 0.080 U 75-00-3 0.080 U U 75-00-3 0.080 U 75-00-3 0.080 U U 75-00-3 0.080 U 75-35-4 0.049 U 0.049 U 0.049 U 0.080 U 0.080 U 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040	CAS Number Ppbv P P P P P P P P P	CAS Number Results in ppbv Q in ppbv 75-71-8 0.37 0.040 76-14-2 0.040 U 0.080 75-01-4 0.080 U 0.080 106-99-0 0.080 U 0.080 75-00-3 0.080 U 0.080 75-00-3 0.080 U 0.080 593-60-2 0.080 U 0.080 75-35-4 0.049 0.040 107-05-1 0.080 U 0.080 75-09-2 650 E 0.80 110-54-3 2.1 0.040 110-54-3 2.1 0.080 75-34-3 0.040 U 0.040 156-59-2 0.040 U 0.040 156-59-2 0.040 U 0.040 156-59-2 0.040 U 0.040 10-82-7 0.54 0.040 56-23-5 0.064 0.040 71-43-2 0.21 0.040 107-06-2 0.080 U 0.040 142-82-5 0.75 0.040 1	CAS Number Results in ppbv Q lin ppbv lin ppbv lin ug/m3 75-71-8 0.37 0.040 1.8 76-14-2 0.040 U 0.040 0.28 75-01-4 0.080 U 0.080 0.20 75-01-4 0.080 U 0.080 0.18 106-99-0 0.080 U 0.080 0.31 74-83-9 0.080 U 0.080 0.21 75-00-3 0.080 U 0.080 0.21 75-09-2 0.080 U 0.080 0.35 75-69-4 1.2 0.040 0.19 75-35-4 0.049 0.040 0.19 75-99-2 650 E 0.80 2300 75-09-2 650 E 0.80 2300 75-34-3 0.040 U 0.040 0.16 156-60-5 0.040 U 0.040 0.16 156-59-2 0.040 U 0.040 0.	CAS Number Results in ppbv Q in ppbv lin ug/m3 Q in ug/m3 75-71-8 0.37 0.040 1.8 0.28 U 76-14-2 0.040 U 0.040 0.28 U 75-01-4 0.080 U 0.080 0.20 U 106-99-0 0.080 U 0.080 0.31 U 75-00-3 0.080 U 0.080 0.21 U 75-00-3 0.080 U 0.080 0.21 U 75-90-3 0.080 U 0.080 0.21 U 75-90-3 0.080 U 0.080 0.21 U 75-94-3 1.2 0.040 0.79 0.79 0.75 75-69-4 1.2 0.040 0.090 0.25 U 107-05-1 0.080 U 0.080 0.25 U 107-05-2 650 E 0.80 2300 E 1054-04-4 0.040 U

CLIENT SAMPLE NO.

AMSF-08-IA-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

Sample Matrix: AIR

Lab Sample No.: 746485

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL In ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.20		0.040	1,4		0.27
Dibromochloromethane	124-48-1	0.040	U	0.040	0.34	U	0.34
1,2-Dibromoethane	106-93-4	0.040	U	0.040	0.31	U	0.31
Ethylbenzene	100-41-4	0.11		0.040	0.48		0.17
Xylene (m,p)	1330-20-7	0.39		0.080	1.7		0.35
Xylene (o)	95-47-6	0.15		0.040	0.65		0.17
Xylene (total)	1330-20-7	0.57		0.040	2.5		0.17
Bromoform	75-25-2	0.040	U	0.040	0.41	U	0.41
1,1,2,2-Tetrachloroethane	79-34-5	0.040	U	0.040	0.27	U	0.27
4-Ethyltoluene	622-96-8	0.20		0.040	0.98		0.20
1,3,5-Trimethylbenzene	108-67-8	0.10		0.080	0.49		0.39

CLIENT SAMPLE NO.

AMSF-08-IA-032808DL

Lab Name: TAL Burlington

SDG Number: NY124793

Dilution Factor: 10.00

Sample Matrix: AIR

Lab Sample No.: 746485D1

Date Analyzed: 04/10/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.45	D	0.10	2.2	D	0.49
1,2-Dichlorotetrafluoroethane	76-14-2	0.10	U	0.10	0.70	U	0.70
Vinyl Chloride	75-01-4	0.20	U	0.20	0.51	U	0.51
1,3-Butadiene	106-99-0	0.20	U	0.20	0.44	U	0.44
Bromomethane	74-83-9	0.20	U	0.20	0.78	U	0.78
Chloroethane	75-00-3	0.20	U	0.20	0.53	U	0.53
Bromoethene	593-60-2	0.20	U	0.20	0.87	U	0.87
Trichlorofluoromethane	75-69-4	1.4	D	0.10	7.9	D	0.56
1,1-Dichloroethene	75-35-4	0.10	U	0.10	0.40	U	0.40
3-Chloropropene	107-05-1	0.20	U	0.20	0.63	U	0.63
Methylene Chloride	75-09-2	920	DE	2.0	3200	DE	6.9
Methyl tert-Butyl Ether	1634-04-4	0.10	U	0,10	0.36	U	0.36
trans-1,2-Dichloroethene	156-60-5	0.10	U	0.10	0.40	U	0.40
n-Hexane	110-54-3	2.5	D	0.20	8.8	D	0.70
1,1-Dichloroethane	75-34-3	0.10	U	0.10	0.40	U	0.40
1,2-Dichloroethene (total)	540-59-0	0.10	U	0.10	0.40	U	0.40
cis-1,2-Dichloroethene	156-59-2	0.10	Ü	0.10	0.40	U	0.40
Chloroform	67-66-3	0.10	U	0.10	0.49	U	0.49
1,1,1-Trichloroethane	71-55-6	0.37	D	0.10	2.0	D	0.55
Cyclohexane	110-82-7	0.67	D	0.10	2.3	D	0.34
Carbon Tetrachloride	56-23-5	0.10	U	0.10	0.63	U	0.63
2,2,4-Trimethylpentane	540-84-1	0.10	U	0.10	0.47	U	0.47
Benzene	71-43-2	0.19	D	0.10	0.61	D	0.32
1,2-Dichloroethane	107-06-2	0.20	U	0.20	0.81	U	0.81
n-Heptane	142-82-5	0.68	D	0.10	2.8	_ D _	0.41
Trichloroethene	79-01-6	0.10	U.	0.10	0.54	U	0.54
1,2-Dichloropropane	78-87-5	0.20	U	0.20	0.92	U	0.92
Bromodichloromethane	75-27-4	0.10	U	0.10	0.67	U	0.67
cis-1,3-Dichloropropene	10061-01-5	0.10	U	0.10	0.45	U	0.45
Toluene	108-88-3	8.4	D	0.10	32	D	0.38
trans-1,3-Dichloropropene	10061-02-6	0.10	U	0.10	0.45	U	0.45
1,1,2-Trichloroethane	79-00-5	0.10	U	0.10	0.55	U	0.55

CLIENT SAMPLE NO.

AMSF-08-IA-032808DL

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 10.00

Sample Matrix: AIR

Lab Sample No.: 746485D1

Date Analyzed: 04/10/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.23	D	0.10	1.6	D	0.68
Dibromochloromethane	124-48-1	0.10	U	0.10	0.85	U	0.85
1,2-Dibromoethane	106-93-4	0.10	U	0.10	0.77	U	0.77
Ethylbenzene	100-41-4	0.14	D	0.10	0.61	D	0.43
Xylene (m,p)	1330-20-7	0.43	D	0.20	1.9	D	0.87
Xylene (m,p) Xylene (o)	95-47-6	0.15	D	0.10	0.65	D	0.43
Xylene (total)	1330-20-7	0.61	D	0.10	2.6	D	0.43
Bromoform	75-25-2	0.10	U	0.10	1.0	U	1.0
1,1,2,2-Tetrachloroethane	79-34-5	0.10	U	0.10	0.69	U	0.69
4-Ethyltoluene	622-96-8	0.24	D	0.10	1.2	D	0.49
1,3,5-Trimethylbenzene	108-67-8	0.20	U	0.20	0.98	U	0.98

CLIENT SAMPLE NO.

AMSF-09-IA-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

Sample Matrix: AIR

Lab Sample No.: 746486

Date Analyzed:

04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.34		0.040	1,7	Acces 100 - 100 - 100 - 100	0.20
,2-Dichlorotetrafluoroethane	76-14-2	0.040	U	0.040	0.28	U	0.28
/inyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
	106-99-0	0.080	U	0.080	0.18	U	0.18
,3-Butadiene	74-83-9	0.080	U	0.080	0.31	U	0.31
Bromomethane	75-00-3	0.080	U	0.080	0.21	U	0.21
Chloroethane	593-60-2	0.080	U	0.080	0.35	U	0.35
Bromoethene	75-69-4	0.21	****************	0.040	1.2		0.22
Trichlorofluoromethane	75-35-4	0.075		0.040	0.30		0.16
1,1-Dichloroethene	107-05-1	0.080	U	0.080	0.25	U	0.25
3-Chloropropene	75-09-2	28	E	0.80	97	E	2.8
Methylene Chloride		0.040	U	0.040	0.14	U	0.14
Methyl tert-Butyl Ether	1634-04-4	0.040	U	0.040	0.16	U	0.16
trans-1,2-Dichloroethene	156-60-5	0.16		0.080	0.56		0.28
n-Hexane	110-54-3	**** ***	U	0.040	0.16	U	0.16
1,1-Dichloroethane	75-34-3	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.16	U	0.16
cis-1,2-Dichloroethene	156-59-2	0.040		0.040	0.20	U	0.20
Chloroform	67-66-3	0.040	U	0.040	2.2	-	0.22
1,1,1-Trichloroethane	71-55-6	0.41		0.040	0.32		0.14
Cyclohexane	110-82-7	0.094		0.040	0.33	****	0.25
Carbon Tetrachloride	56-23-5	0.052			0.19	- U	0.19
2,2,4-Trimethylpentane	540-84-1	0.040	U	0.040	0.19		0.13
Benzene	71-43-2	0.16		0.040	0.32	U	0.32
1,2-Dichloroethane	107-06-2	0.080	. U	0.080	0.41		0.16
n-Heptane	142-82-5	0.10	posses	0.040	0.21	- U	0.21
Trichloroethene	79-01-6	0.040	U	0.040	0.21	- "U	0.37
1,2-Dichloropropane	78-87-5	0.080	U	0.080	0.27	U	0.27
Bromodichloromethane	75-27-4	0.040	U	0.040		U	0.18
cis-1,3-Dichloropropene	10061-01-5	0.040	- U	0.040	0.18		0.15
Toluene	108-88-3	0.64		0.040	2.4		0.13
trans-1,3-Dichloropropene	10061-02-6	0.040	U	0.040	0.18	U	
1,1,2-Trichloroethane	79-00-5	0.040	U	0.040	0.22	U	0.22

CLIENT SAMPLE NO.

AMSF-09-IA-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

Sample Matrix: AIR

Lab Sample No.: 746486

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.040	U	0.040	0.27	U	0.27
Dibromochloromethane	124-48-1	0.040	U	0.040	0.34	U	0.34
1,2-Dibromoethane	106-93-4	0.040	U	0.040	0.31	U	0.31
Ethylbenzene	100-41-4	0.042		0.040	0.18		0.17
Xylene (m,p)	1330-20-7	0.16	, photo , photo	0.080	0.69		0.35
Xylene (o)	95-47-6	0.060	244	0.040	0.26		0.17
Xylene (total)	1330-20-7	0.23		0.040	1.0		0.17
Bromoform	75-25-2	0.040	U	0.040	0.41	U	0.41
1,1,2,2-Tetrachloroethane	79-34-5	0.040	U	0.040	0.27	U	0.27
4-Ethyltoluene	622-96-8	0.057		0.040	0.28		0.20
1,3,5-Trimethylbenzene	108-67-8	0.080	U	0.080	0.39	U	0.39

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

Sample Matrix: AIR

CLIENT SAMPLE NO.

AMSF-10-IA-032808

Lab Sample No.: 746487

Date Analyzed:

04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL In ug/m3
Dichlorodifluoromethane	75-71-8	0.42		0.040	2.1		0.20
1,2-Dichlorotetrafluoroethane	76-14-2	0.040	U	0.040	0.28	U	0.28
Vinyl Chloride	75-01-4	0.080	U	0.080	0.20	U	0.20
1,3-Butadiene	106-99-0	0.14		0.080	0.31		0.18
Bromomethane	74-83-9	0.080	U	0.080	0.31	U	0.18
Chloroethane	75-00-3	0.080	U	0.080	0.21	U	0.31
Bromoethene	593-60-2	0.080	U	0.080	0.35	U	0.21
Trichlorofluoromethane	75-69-4	0.85		0.040	4.8		0.35
1,1-Dichloroethene	75-35-4	0,040	U	0.040	0.16	U	0.22
3-Chloropropene	107-05-1	0.080	U	0.080	0.25	U	************
Methylene Chloride	75-09-2	5,5		0.80	19		0.25
Methyl tert-Butyl Ether	1634-04-4	0.040	U	0.040	0.14	U	2.8
trans-1,2-Dichloroethene	156-60-5	0.040	U	0.040	0.16	U	0.14
n-Hexane	110-54-3	3.0	Uf4941	0.080	11		0.16
1,1-Dichloroethane	75-34-3	0.10		0.040	0.40		0.28
1,2-Dichloroethene (total)	540-59-0	0.040	U	0.040	0.40		0.16
cis-1,2-Dichloroethene	156-59-2	0.040	U	0.040	0.16	 U	0.16 0.16
Chloroform	67-66-3	0.040	U	0.040	0.20	U	0.20
1,1,1-Trichloroethane	71-55-6	1,5		0.040	8.2		0.20
Cyclohexane	110-82-7	5.2	Ε	0.040	18	Е	************
Carbon Tetrachloride	56-23-5	0.068		0.040	0.43		0.14
2,2,4-Trimethylpentane	540-84-1	0.063	~ .	0.040	0.29		0.25
Benzene	71-43-2	0.27	*****	0.040	0.86		0.19
,2-Dichloroethane	107-06-2	0.080	U	0.080	0.32	U	
n-Heptane	142-82-5	2.2		0.040	9.0		0.32
richloroethene	79-01-6	0.040	U	0.040	0.21	U	0.16
,2-Dichloropropane	78-87-5	0.080	U	0.080	0.37	U	0.21
Promodichloromethane	75-27-4	0.040	U	0.040	0.27	U	**************
is-1,3-Dichloropropene	10061-01-5	0.040	U	0.040	0.18		0.27
oluene	108-88-3	1.7		0.040	6.4	U	0.18
rans-1,3-Dichloropropene	10061-02-6	0.040	U	0.040	0.18		0.15
,1,2-Trichloroethane	79-00-5	0,040	U	0.040	0.18	U	0.18

CLIENT SAMPLE NO.

AMSF-10-IA-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

Sample Matrix: AIR

Lab Sample No. 746487

Date Analyzed:

04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.16		0.040	1.1		0.27
Dibromochloromethane	124-48-1	0.040	U	0.040	0.34	U	0.34
1,2-Dibromoethane	106-93-4	0.040	U	0.040	0.31	U	0.31
Ethylbenzene	100-41-4	0.30		0.040	1.3		0.17
Xylene (m,p)	1330-20-7	1.1		0.080	4.8		0.35
Xylene (o)	95-47-6	0.42		0.040	1.8		0.17
Xylene (total)	1330-20-7	1.6		0.040	6.9		0.17
Bromoform	75-25-2	0.040	U	0.040	0.41	U	0.41
1,1,2,2-Tetrachloroethane	79-34-5	0.040	U	0.040	0.27	U	0.27
4-Ethyltoluene	622-96-8	0.61		0.040	3.0		0.20
1,3,5-Trimethylbenzene	108-67-8	0.47		0.080	2.3		0.39

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 7.00

CLIENT SAMPLE NO.

AMSF-10-IA-032808DL

Lab Sample No.: 746487D1

04/10/2008 Date Analyzed:

Target Compound	CAS Number	1111		RL in ppbv	Results in ug/m3	a	RL in ug/m3	
				0.070	2.1	D	0.35	
	75-71-8	0.42	D	0.070	0.49	U	0.49	
chlorodifluoromethane	76-14-2	0.070	U		0.36	U	0.36	
2-Dichlorotetrafluoroethane	75-01-4	0.14	U	0.14	0.31	U	0.31	
inyl Chloride	106-99-0	0.14	U	0.14	0.54	U	0.54	
3-Butadiene	74-83-9	0.14	U	0.14	0.37	U	0.37	
romomethane	75-00-3	0.14	U	0.14	0.61	U	0.61	
hioroethane	593-60-2	0.14	U	0.14		D	0.39	
Bromoethene	75-69-4	0.71	D	0,070	4.0	U	0.28	
Frichlorofluoromethane	75-35-4	0.070	U	0.070	0.28	U	0.44	
1,1-Dichloroethene	107-05-1	0.14	U	0.14	0.44		4.9	
3-Chloropropene	75-09-2	4.7	D	1.4	16	D	0.25	
Methylene Chloride		0.070	U	0.070	0.25	U	0.28	
Methyl tert-Butyl Ether	1634-04-4	0.070		0.070	0.28	U	0.49	
trans-1,2-Dichloroethene	156-60-5	2.4	D	0.14	8.5	D	*** *****	
- Uovana	110-54-3	0.091	D	0.070	0.37	D	0.28	
1,1-Dichloroethane	75-34-3		U	0.070	0.28	U	0.28	
1,2-Dichloroethene (total)	540-59-0	0.070	U	0.070	0.28	U	0.28	
cis-1,2-Dichloroethene	156-59-2	0.070	U	0.070	0.34	U	0.34	
"managed" of particular to the same of the	67-66-3	0.070	D	0.070	6.0	D	0.38	
Chloroform	71-55-6	1.1	D	0.070	14	D	0.24	
1,1,1-Trichloroethane	110-82-7	4.0		0.070	0.44	U	0.44	
Cyclohexane	56-23-5	0.070	U	0.070	0.33	U	0.33	
Carbon Tetrachloride	540-84-1	0.070		0.070	0.70	D	0.22	
2,2,4-Trimethylpentane	71-43-2	0.22	D	******	0.57	U	0.57	
Benzene	107-06-2	0.14	U	0.14		D	0.29	
1,2-Dichloroethane	142-82-5	1.8	D		0.20	U	0.38	
n-Heptane	79-01-6	0.070	U		0.65	Ü	0.65	
Trichloroethene	78-87-5	0.14	U	*******		U	0.47	
1,2-Dichloropropane	75-27-4	0.070	L				0.32	
Bromodichloromethane	10061-01-	5 0.070		punner.		- D	- 0.26	
cis-1,3-Dichloropropene	108-88-3	1.3	1	0.07		********		
Toluene	10061-02			0.07			0.39	
trans-1,3-Dichloropropene	79-00-5	0.070		U 0.07		3	.1	

CLIENT SAMPLE NO.

AMSF-10-IA-032808DL

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 7.00

Sample Matrix: AIR

Lab Sample No.: 746487D1

Date Analyzed: 04/10/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results In ug/m3	Q	RL in ug/m3
Tetrachioroethene	127-18-4	0.13	D	0.070	0.88	D	0.47
Dibromochloromethane	124-48-1	0.070	U	0.070	0.60	U	0.60
1,2-Dibromoethane	106-93-4	0.070	U	0.070	0.54	U	0.54
Ethylbenzene	100-41-4	0.22	D	0,070	0.96	D	0.30
Xylene (m,p)	1330-20-7	0.79	D	0.14	3.4	D	0.61
Xylene (o)	95-47-6	0.29	D	0.070	1.3	D	0.30
Xylene (total)	1330-20-7	1.1	D	0.070	4,8	D	0.30
Bromoform	75-25-2	0.070	U	0.070	0.72	U	0.72
1,1,2,2-Tetrachloroethane	79-34-5	0.070	U	0.070	0.48	U	0.48
4-Ethyltoluene	622-96-8	0.38	D	0.070	1.9	D	0.34
1,3,5-Trimethylbenzene	108-67-8	0.28	D	0.14	1.4	D	0.69

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

CLIENT SAMPLE NO.

AMSF-AA-032808

Lab Sample No.: 746488

04/09/2008 Date Analyzed:

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
				0.040	1.7	-	0.20
	75-71-8	0.34		0.040	0.28	U	0.28
chlorodifluoromethane	76-14-2	0.040	U	0.040	0.20	U	0.20
2-Dichlorotetrafluoroethane	75-01-4	0.080	U	0.080	0.18	U	0.18
inyl Chloride	106-99-0	0.080	U	0.080	0,31	U	0.31
,3-Butadiene	74-83-9	0.080	U	0.080	0.21	U	0.21
Bromomethane	75-00-3	0.080	U	0.080	0.35	U	0.35
Chloroethane	593-60-2	0.080	U	0.080	0.79	******************	0.22
Bromoethene	75-69-4	0.14		0.040	0.16	U	0.16
Trichlorofluoromethane	75-35-4	0.040	U	0.040	Making assessment	U	0.25
1,1-Dichloroethene	107-05-1	0.080	U	0.080	0.25	U	2.8
3-Chloropropene	75-09-2	0.80	U	0.80	2.8	U	0.14
Methylene Chloride	1634-04-4	0.040	U	0.040	0.14	U	0.16
Methyl tert-Butyl Ether	156-60-5	0.040	U	0.040	0.16	-	0.28
trans-1,2-Dichloroethene	110-54-3	0.20		0.080	0.70	Ü	0.16
n-Hexane	75-34-3	0.040	U	0.040	0.16	U	0.16
1,1-Dichloroethane	540-59-0	0.040	U	0.040	0.16	U	0.16
1,2-Dichloroethene (total)	156-59-2	0.040	U	0.040	0.16	1 0	0.20
cis-1,2-Dichloroethene	67-66-3	0.040	U	0.040	0.20	1	0.22
Chloroform	71-55-6	0.082		0.040	0.45	U	0.14
1,1,1-Trichloroethane	110-82-7	0.040	U	0.040	0.14		0.25
Cyclohexane	56-23-5	0.056		0.040	0.35	U	0,19
Carbon Tetrachloride	540-84-1	0.040	U	0.040	0.19	0	0.13
2,2,4-Trimethylpentane	71-43-2	0.14	"	0.040	0.45		0.32
Benzene	107-06-2	0.080	U	0.080	0.32		
1,2-Dichloroethane		0.11	-	0.040	0.45	1	0.21
n-Heptane	142-82-5	0.040	U	0.040	0.21	U	0.27
Trichloroethene	79-01-6	0.080	U	0.080	0.37	U	0.07
***************************************	78-87-5	0.040	Ü	0.040	0.27	U	0.49
Bromodichloromethane	75-27-4	0.040	L	0.040	0.18	. 0	0.15
cis-1,3-Dichloropropene	10061-01-	0.25		0.040			
	108-88-3	0.040		0.04	0.18		0.22
trans-1,3-Dichloropropene	10061-02- 79-00-5			0.04	0.22		

CLIENT SAMPLE NO.

AMSF-AA-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 4.00

Sample Matrix: AIR

Lab Sample No.: 746488

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.040	U	0.040	0.27	U	0.27
Dibromochloromethane	124-48-1	0.040	U	0.040	0.34	U	0.34
1,2-Dibromoethane	106-93-4	0.040	U	0.040	0.31	U	0.31
Ethylbenzene	100-41-4	0.040	U	0.040	0.17	U	0.17
Xylene (m,p)	1330-20-7	0.080	U	0.080	0.35	U	0.35
Xylene (o)	95-47-6	0.040	U	0.040	0.17	U	0.17
Xylene (total)	1330-20-7	0.040	U	0.040	0.17	U	0.17
Bromoform	75-25-2	0.040	U	0.040	0.41	U	0.41
1,1,2,2-Tetrachloroethane	79-34-5	0.040	U	0.040	0.27	U	0.27
4-Ethyltoluene	622-96-8	0.040	U	0.040	0.20	U	0.20
1,3,5-Trimethylbenzene	108-67-8	0.080	U	0.080	0.39	U	0.39

TAL Burlington Lab Name:

SDG Number: NY124793

Dilution Factor: 1.00

CLIENT SAMPLE NO.

EA040908LCS

Lab Sample No.: EA040908

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	1	RL in y/m3
					0.99		0	.049
	75-71-8	0.20	and the second second	0.010	1.4	407	0	0.070
ichlorodifluoromethane	76-14-2	0.20		0.010	0.49		(0.051
2-Dichlorotetrafluoroethane	75-01-4	0.19		0.020	0.43		(0.044
'inyl Chloride	106-99-0	0.19		0.020				0.078
,3-Butadiene	74-83-9	0.18		0.020	0.70	1		0.053
Bromomethane	75-00-3	0.18		0.020	0.47			0.087
Chloroethane	593-60-2	0.20		0.020	0.87			0.056
Bromoethene	75-69-4	0.20		0.010	1,1			0.040
Trichlorofluoromethane		0.20		0.010	0.79			0.063
1,1-Dichloroethene	75-35-4	0.19		0.020	0.59			0.69
3-Chloropropene	107-05-1	0.22		0.20	0.76			0.036
Methylene Chloride	75-09-2	0.18		0.010	0.65			0.040
Methyl tert-Butyl Ether	1634-04-4	0.20		0.010	0.79			0.070
trans-1,2-Dichloroethene	156-60-5	0.20	Ĭ	0.020	0.70			0.040
	110-54-3	0.19		0.010	0.77			0.040
n-Hexane 1,1-Dichloroethane	75-34-3			0.010	1.5			0.040
1,2-Dichloroethene (total)	540-59-0	0.39	-	0.010	0.75			0.049
cis-1,2-Dichloroethene	156-59-2	200000		0.010	0.98	+	1	0.055
	67-66-3	0.20		0.010	1.1			0.034
Chloroform	71-55-6	0.20		0.010	0.62			0.063
1,1,1-Trichloroethane	110-82-7			0.010	1.2			0.047
Cyclohexane	56-23-5	0.19	14/1/20	0.010	0.93			0.032
Carbon Tetrachloride	540-84-1			0.010	0.5	4		
2,2,4-Trimethylpentane	71-43-2	0.00		0.02	0.8	1		0.081
Benzene	107-06-2			0.01	0 0.7	4		0.054
1,2-0,0,110,0	142-82-5	a comment		0.01	0 1.	0	**	40 000000
n-Heptane	79-01-6	******		0.02	0.7	79		0.092
Trichloroethene	78-87-5			0.0	11 4			0.067
1,2-Dichloropropane	75-27-4			0.0		86		0.045
Bromodichloromethane	10061-0			0.0	**************************************	68		0.038
cis-1,3-Dichloropropene	108-88	-3 0.18				.86	************	0.045
Toluene	10061-0	2-6 0.1		0.0	10	1.0	**	0.055
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	79-00-	-5 0.1	9		***************** ****			

CLIENT SAMPLE NO.

EA040908LCS

Lab Name: TAL Burlington

SDG Number: NY124793

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: EA040908

Date Analyzed: 04/09/2008

Date Received:

11

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.19		0.010	1.3		0.068
Dibromochloromethane	124-48-1	0.21		0.010	1.8		0.085
1,2-Dibromoethane	106-93-4	0.20		0.010	1.5		0.077
Ethylbenz ene	100-41-4	0.19		0.010	0.83		0.043
Xylene (m,p)	1330-20-7	0.38	12 1100 1000	0.020	1,7		0.087
Xylene (o)	95-47-6	0.20	07100	0.010	0.87		0.043
Xylene (total)	1330-20-7	0.60		0.010	2.6		0.043
Bromoform	75-25-2	0.21		0.010	2.2		0.10
1,1,2,2-Tetrachloroethane	79-34-5	0.18		0.010	1.2		0.069
4-Ethyltoluene	622-96-8	0.19		0.010	0,93		0.049
1,3,5-Trimethylbenzene	108-67-8	0,18		0.020	0.88		0.098

TAL Burlington Lab Name:

SDG Number: NY124793

Dilution Factor: 1.00

CLIENT SAMPLE NO.

EA040908LCSD

Lab Sample No.: EA040908

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	a	RL in ug/m3
				0.040	0.94		0.049
	75-71-8	0.19		0.010	1.3		0.070
chlorodifluoromethane	76-14-2	0.19		0.010	0.49		0.051
2-Dichlorotetrafluoroethane	75-01-4	0.19		0.020	0.42		0.044
inyl Chloride	106-99-0	0.19		0.020	0.70		0.078
,3-Butadiene	74-83-9	0.18		0.020	0.50	.,	0.053
Bromomethane	75-00-3	0.19		0.020			0.087
Chloroethane	593-60-2	0.20		0.020	0.87		0.056
Bromoethene	75-69-4	0.19		0.010			0.040
Trichlorofluoromethane	75-35-4	0.20		0.010	0.79	Language	0.063
1,1-Dichloroethene	107-05-1	0.18		0.020	0.56		0.69
3-Chloropropene	75-09-2	0.23		0.20	0.80		0.036
Methylene Chloride	1634-04-4	0.19		0.010	0.69		0.040
Methyl tert-Butyl Ether	156-60-5	0,18	****	0,010	0.71		0.070
trans-1,2-Dichloroethene	110-54-3	0.19	1	0.020	0.67		0.040
n-Hexane	75-34-3	0.19		0.010	0.77		0.040
1,1-Dichloroethane	75-34-3 540-59-0	0.37		0.010	1.5		0.040
1,2-Dichloroethene (total)	4000 200 00 0001	0.40	-	0.010	and the same	1 -	0.049
cis-1,2-Dichloroethene	156-59-2	0.19	connect.	0.010	*** ***		***********
Chloroform	67-66-3	0.19	*****	0.010	*********		0.034
1,1,1-Trichloroethane	71-55-6	0.40		0.010			0.063
Cyclohexane	110-82-7	0.40		0.010	1.2		0.047
Carbon Tetrachloride	56-23-5	- 00	~ \ "	0.01			0.032
2,2,4-Trimethylpentane	540-84-1			0.01	0 0.58		0.081
Benzene	71-43-2			0.02	40 4444 4444	**********	0.041
1,2-Dichloroethane	107-06-			0.01	0.74		0.054
n-Heptane	142-82-	0.46		0.01			0.092
Tiplemethene	79-01-	0.4		0.0	20 0.8		0.067
1,2-Dichloropropane	78-87-			0.0	10 1.	3	0.045
Bromodichloromethane	75-27-			0.0	11 "	100000000	0.038
cis-1,3-Dichloropropene	10061-0		hereton en en en en en en	0.0			0.045
Toluene	108-88			0.0	0.10	32	0.045
trans-1,3-Dichloropropene	10061-0		***************************************	0.0	10 1	.0	0.055

CLIENT SAMPLE NO.

EA040908LCSD

Lab Name: TAL Burlington

SDG Number: NY124793

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: EA040908

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.19		0.010	1.3		0.068
Dibromochloromethane	124-48-1	0.20		0.010	1.7		0.085
1,2-Dibromoethane	106-93-4	0.19		0.010	1.5		0.077
Ethylbenzene	100-41-4	0.19		0.010	0.83		0.043
Xviene (m.p)	1330-20-7	0.38		0.020	1.7		0.087
Xylene (o)	95-47-6	0.20		0.010	0.87		0.043
Xylene (total)	1330-20-7	0.60		0.010	2.6		0.043
Bromoform	75-25-2	0.20		0.010	2.1		0.10
1,1,2,2-Tetrachloroethane	79-34-5	0.15		0.010	1.0		0.069
4-Ethyltoluene	622-96-8	0.18		0.010	0.88		0.049
1,3,5-Trimethylbenzene	108-67-8	0.18		0.020	0.88		0.098

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 1.00

Sample Matrix: AIR

CLIENT SAMPLE NO.

EA041008LCS

Lab Sample No.: EA041008

Date Analyzed: 04/10/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL In ug/m3
Dichlorodifluoromethane	75-71-8	0.20		0.010	0.99		0.049
1,2-Dichlorotetrafluoroethane	76-14-2	0.20	******************************	0.010	1,4	a principal de pri	0.070
Vinyl Chloride	75-01-4	0.19		0.020	0.49	******************	0.051
1,3-Butadiene	106-99-0	0.19	*************	0.020	0.42	• • • • • • • • • • • • • • • • • • • •	0.044
Bromomethane	74-83-9	0.18	***************************************	0.020	0.70	***************	0.078
Chloroethane	75-00-3	0.18	in I level	0.020	0.47	THE PARTY	0.053
Bromoethene	593-60-2	0.20		0.020	0.87		0.087
Trichlorofluoromethane	75-69-4	0.20		0.010	1.1		0.056
1,1-Dichloroethene	75-35-4	0.20	****	0.010	0.79		0.040
3-Chloropropene	107-05-1	0.16	** *************	0.020	0.50		0.063
Methylene Chloride	75-09-2	0.22		0.20	0.76		0.69
Methyl tert-Butyl Ether	1634-04-4	0.19		0.010	0.69	***************************************	0.036
trans-1,2-Dichloroethene	156-60-5	0.19		0.010	0.75		0.040
n-Hexane	110-54-3	0.19		0.020	0.67		0.070
1,1-Dichloroethane	75-34-3	0.19	******	0.010	0.77		0.040
1,2-Dichloroethene (total)	540-59-0	0.37		0.010	1.5		0.040
cis-1,2-Dichloroethene	156-59-2	0.18		0.010	0.71		0.040
Chloroform	67-66-3	0.19		0.010	0.93	04/0	0.040
I,1,1-Trichloroethane	71-55-6	0.20		0,010	1.1		0.055
Cyclohexane	110-82-7	0.20	*************	0.010	0.69		0.034
Carbon Tetrachloride	56-23-5	0.20		0.010	1.3		0.063
2,2,4-Trimethylpentane	540-84-1	0.20	844	0.010	0.93		0.047
Benzene	71-43-2	0.17	************	0.010	0.54		0.032
,2-Dichloroethane	107-06-2	0,20		0.020	0.81		0.032
-Heptane	142-82-5	0.18		0.010	0.74		0.041
richloroethene	79-01-6	0.19		0.010	1.0		0.054
,2-Dichloropropane	78-87-5	0.19		0.020	0.88		0.092
romodichloromethane	75-27-4	0.20		0.010	1,3	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.092
ls-1,3-Dichloropropene	10061-01-5	0.19		0.010	0.86		****
oluene	108-88-3	0.18		0.010	0.68		0.045
rans-1,3-Dichloropropene	10061-02-6	0.18		0.010			0.038
,1,2-Trichloroethane	79-00-5	0.19	*******************	0.010	1,0		0.045

CLIENT SAMPLE NO.

EA041008LCS

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: EA041008

Date Analyzed: 04/10/2008

Date Received:

11

Target Compound	CAS Number	Results In ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.19		0.010	1.3		0.068
Dibromochloromethane	124-48-1	0.21		0.010	1.8		0.085
1,2-Dibromoethane	106-93-4	0.20	-	0.010	1.5		0.077
Ethylbenzene	100-41-4	0.20		0.010	0.87		0.043
Xylene (m,p)	1330-20-7	0.38		0.020	1.7		0.087
Xylene (o)	95-47-6	0.20		0.010	0.87		0.043
Xylene (total)	1330-20-7	0.60		0.010	2.6		0.043
Bromoform	75-25-2	0.21		0.010	2.2		0.10
1,1,2,2-Tetrachloroethane	79-34-5	0.19		0.010	1.3		0.069
4-Ethyltoluene	622-96-8	0.19		0.010	0.93		0.049
1,3,5-Trimethylbenzene	108-67-8	0.18		0.020	0.88		0.098

CLIENT SAMPLE NO.

EA041008LCSD

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: EA041008

Date Analyzed: 04/10/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.19		0.010	0.94		0.049
,2-Dichlorotetrafluoroethane	76-14-2	0.19		0.010	1.3		0.070
/inyl Chloride	75-01-4	0.19		0.020	0.49		0.051
l,3-Butadiene	106-99-0	0.18		0.020	0.40		0.044
Bromomethane	74-83-9	0.18		0.020	0.70		0.078
Chloroethane	75-00-3	0.17		0.020	0.45		0.053
3romoethene	593-60-2	0.20		0.020	0.87		0.087
Frichlorofluoromethane	75-69-4	0.19		0.010	1.1		0.056
1,1-Dichloroethene	75-35-4	0.20		0.010	0.79		0.040
3-Chloropropene	107-05-1	0.16		0.020	0.50		0.063
Methylene Chloride	75-09-2	0.22		0.20	0.76		0.69
Methyl tert-Butyl Ether	1634-04-4	0.19		0.010	0.69		0.036
rans-1,2-Dichloroethene	156-60-5	0.19		0.010	0.75		0.040
n-Hexane	110-54-3	0.18		0.020	0.63		0.070
1,1-Dichloroethane	75-34-3	0.18		0.010	0.73		0.040
1,2-Dichloroethene (total)	540-59-0	0.38		0.010	1.5		0.040
cis-1,2-Dichloroethene	156-59-2	0.19		0,010	0.75		0.040
Chloroform	67-66-3	0.19		0.010	0.93		0.049
1,1,1-Trichloroethane	71-55-6	0.19	-	0.010	1.0		0.055
Cyclohexane	110-82-7	0.19		0.010	0.65		0.034
Carbon Tetrachloride	56-23-5	0.19		0.010	1.2	1	0.063
2,2,4-Trimethylpentane	540-84-1	0.20		0.010	0.93		0.047
Benzene	71-43-2	0.18		0.010	0.58		0.032
1,2-Dichloroethane	107-06-2	0.19		0.020	0.77		0.081
n-Heptane	142-82-5	0.19		0.010	0.78		0.041
Trichloroethene	79-01-6	0.18		0.010	0.97		0.054
1,2-Dichloropropane	78-87-5	0.17		0.020	0.79		0.092
Bromodichloromethane	75-27-4	0.21		0.010	1.4		0.067
cis-1,3-Dichloropropene	10061-01-5	0.20		0.010	0.91	100	0.045
Toluene	108-88-3	0.18		0.010	0.68		0.038
trans-1,3-Dichloropropene	10061-02-6	0.18		0.010	0.82		0.045
1,1,2-Trichloroethane	79-00-5	0.19		0.010	1.0		0.055

CLIENT SAMPLE NO.

EA041008LCSD

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: EA041008

Date Analyzed: 04/10/2008

Date Received:

//

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.19		0.010	1.3		0.068
Dibromochloromethane	124-48-1	0.20		0.010	1.7		0.085
1,2-Dibromoethane	106-93-4	0.19		0.010	1.5		0.077
Ethylbenzene	100-41-4	0.19		0.010	0.83		0.043
Xylene (m,p)	1330-20-7	0.39		0.020	1.7		0.087
Xylene (o)	95-47-6	0.20		0.010	0.87		0.043
Xylene (total)	1330-20-7	0.61		0.010	2.6		0.043
Bromoform	75-25-2	0.21		0.010	2.2		0.10
1,1,2,2-Tetrachloroethane	79-34-5	0.19		0.010	1.3		0.069
4-Ethyltoluene	622-96-8	0.19		0.010	0,93		0.049
1,3,5-Trimethylbenzene	108-67-8	0.19		0.020	0.93		0.098

Lab Name: TAL Burlington

SDG Number: NY124793

Dilution Factor: 1.00

Sample Matrix: AIR

CLIENT SAMPLE NO.

MBLK040908EA

Lab Sample No.: MBLK0409

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.010	U	0.010	0.049	U	0.049
1,2-Dichlorotetrafluoroethane	76-14-2	0.010	U	0.010	0.070	U	0.070
Vinyl Chloride	75-01-4	0.020	U	0.020	0.051	U	0.051
1,3-Butadiene	106-99-0	0.020	U	0.020	0.044	U	0.044
Bromomethane	74-83-9	0.020	U	0.020	0.078	U	0.078
Chloroethane	75-00-3	0.020	U	0.020	0.053	Ü	0.053
Bromoethene	593-60-2	0.020	U	0.020	0.087	U	0.087
Trichlorofluoromethane	75-69-4	0.010	U	0.010	0.056	U	0.056
1,1-Dichloroethene	75-35-4	0.010	U	0.010	0.040	U	0.040
3-Chloropropene	107-05-1	0.020	U	0.020	0.063	U	0.063
Methylene Chloride	75-09-2	0.20	U	0,20	0.69	U	0.69
Methyl tert-Butyl Ether	1634-04-4	0.010	U	0.010	0.036	U	0.036
trans-1,2-Dichloroethene	156-60-5	0.010	U	0.010	0.040	U	0.040
n-Hexane	110-54-3	0.020	U	0.020	0.070	U	0.070
1,1-Dichloroethane	75-34-3	0.010	U	0.010	0.040	Ü	0.040
1,2-Dichloroethene (total)	540-59-0	0.010	U	0.010	0.040	U	0.040
cis-1,2-Dichloroethene	156-59-2	0.010	U	0,010	0.040	U	0.040
Chloroform	67-66-3	0.010	U	0.010	0.049	U	0.049
1,1,1-Trichloroethane	71-55-6	0.010	U	0.010	0.055	Ü	0.055
Cyclohexane	110-82-7	0.010	U	0.010	0.034	U	0.034
Carbon Tetrachloride	56-23-5	0.010	U	0.010	0.063	U	0.063
2,2,4-Trimethylpentane	540-84-1	0.010	U	0.010	0.047	Ü	0.047
Benzene	71-43-2	0.010	U	0.010	0.032	U	0.032
1,2-Dichloroethane	107-06-2	0.020	U	0.020	0.081	U	0.081
n-Heptane	142-82-5	0.010	U	0.010	0.041	U	0.041
Trichloroethene	79-01-6	0.010	U	0.010	0.054	U	0.054
1,2-Dichloropropane	78-87-5	0.020	U	0.020	0.092	Ü	0.092
Bromodichloromethane	75-27-4	0.010	U	0.010	0.067	U	0.067
cis-1,3-Dichloropropene	10061-01-5	0.010	U	0.010	0.045	U	0.045
Toluene	108-88-3	0.010	U	0.010	0.038	Ü	0.038
rans-1,3-Dichloropropene	10061-02-6	0.010	U	0.010	0.045	U	0.045
1,1,2-Trichloroethane	79-00-5	0.010	U	0.010	0.055	U	0.055

CLIENT SAMPLE NO.

MBLK040908EA

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: MBLK0409

Date Analyzed: 04/09/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	q	RL in ug/m3
Tetrachloroethene	127-18-4	0.010	U	0.010	0.068	U	0,068
Dibromochloromethane	124-48-1	0.010	U	0.010	0.085	U	0.085
1,2-Dibromoethane	106-93-4	0.010	U	0.010	0.077	U	0.077
Ethylbenzene	100-41-4	0.010	U	0.010	0.043	U	0.043
Xylene (m,p)	1330-20-7	0.020	U	0.020	0.087	U	0.087
Xylene (o)	95-47-6	0.010	U	0.010	0.043	U	0.043
Xylene (total)	1330-20-7	0.010	U	0.010	0.043	U	0.043
Bromoform	75-25-2	0.010	U	0.010	0.10	U	0.10
1,1,2,2-Tetrachloroethane	79-34-5	0.010	U	0.010	0.069	U	0.069
4-Ethyltoluene	622-96-8	0.010	U	0.010	0.049	U	0.049
1,3,5-Trimethylbenzene	108-67-8	0.020	U	0.020	0.098	U	0.098

CLIENT SAMPLE NO.

MBLK041008EA

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: MBLK0410

Date Analyzed: 04/10/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL In ug/m3
			-	0.040	0.049	U	0.049
	75-71-8	0.010	U	0.010	0.070	U	0.070
Dichlorodifluoromethane	76-14-2	0.010	U	0.010	0.051	U	0.051
,2-Dichlorotetrafluoroethane	75-01-4	0.020	U	0.020	0.044	U	0.044
/inyl Chloride	106-99-0	0.020	U	0.020	0.078	U	0.078
,3-Butadiene	74-83-9	0.020	_ U	0.020	the the telephone	U	0.053
Bromomethane	75-00-3	0.020	U	0.020	0.053	U	0.087
Chloroethane	593-60-2	0.020	U	0.020	0.087	U	0.056
Bromoethene	75-69-4	0.010	U	0.010	0.056	U	0.040
Trichlorofluoromethane	75-35-4	0.010	U	0.010	0.040		0.063
1,1-Dichloroethene	107-05-1	0.020	U	0.020	0.063	U	0.69
3-Chloropropene	75-09-2	0.20	U	0.20	0.69	U	0.036
Methylene Chloride		0.010	U	0.010	0.036	U	0.040
Methyl tert-Butyl Ether	1634-04-4	0.010	U	0.010	0.040	U	0.040
trans-1,2-Dichloroethene	156-60-5	0.020	~υ	0.020	0.070		40 000
n-Hexane	110-54-3	0.010	U	0.010	0.040	U	0.040
1,1-Dichloroethane	75-34-3	***************************************	U	0.010	0.040	U	0.040
1,2-Dichloroethene (total)	540-59-0	0.010	U.U	0.010	0.040	U	0.040
cis-1,2-Dichloroethene	156-59-2	0.010	Ü	0,010	0.049	U	0.049
Chloroform	67-66-3	0.010	U	0.010	0.055	U	0.055
	71-55-6	0.010	U U	0.010	0.034	U	0.034
1,1,1-Trichloroethane	110-82-7	0.010		0.010	0.063	U	0.063
Cyclohexane	56-23-5	0.010	U	0.010	0.047	U	0.047
Carbon Tetrachloride	540-84-1	0.010		0.010	0.032	U	0.032
2,2,4-Trimethylpentane	71-43-2	0.010	U	0.020	0.081	U	0.081
Benzene	107-06-2	0.020	U	0.020	0.041	U	0.041
1,2-Dichloroethane	142-82-5	0.010	_ U	0.040	0.054	U	0.054
n-Heptane	79-01-6	0.010	U		0.092	" U	0.092
Trichloroethene	78-87-5	0.020	U		0.052	U	0.067
1,2-Dichloropropane	75-27-4	0.010			0.045	U	0.045
Bromodichloromethane	10061-01-5	0.010	1	,,,,,,,	0.000	U	0.038
cis-1,3-Dichloropropene	108-88-3	0.010			2 245	******* ****	0.045
I Oldollo	10061-02-6	0.010	1	0.010	0.055		0.055
trans-1,3-Dichloropropene	79-00-5	0.010	1	0.010	0.055	1	

CLIENT SAMPLE NO.

MBLK041008EA

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: MBLK0410

Date Analyzed: 04/10/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.010	U	0.010	0.068	U	0.068
Dibromochloromethane	124-48-1	0.010	U	0.010	0.085	U	0.085
1,2-Dibromoethane	106-93-4	0.010	U	0.010	0.077	U	0.077
Ethylbenzene	100-41-4	0.010	U	0.010	0.043	U	0.043
Xylene (m,p)	1330-20-7	0.020	U	0.020	0.087	U	0.087
Xylene (o)	95-47-6	0.010	U	0.010	0.043	U	0.043
Xylene (total)	1330-20-7	0.010	U	0.010	0.043	U	0.043
Bromoform	75-25-2	0.010	U	0.010	0.10	U	0.10
1,1,2,2-Tetrachloroethane	79-34-5	0.010	U	0.010	0.069	U	0.069
4-Ethyltoluene	622-96-8	0.010	U	0.010	0.049	U	0.049
1,3,5-Trimethylbenzene	108-67-8	0.020	U	0.020	0.098	U	0.098

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 52.40 Sample Matrix: AIR CLIENT SAMPLE NO.

AMSF-04-SS-032808

Lab Sample No.: 746474

Date Analyzed: 04/18/2008

1,2-Dichlorotetrafluoroethane 76-14-2 10 U Vinyl Chloride 75-01-4 10 U 1,3-Butadiene 106-99-0 26 U U 1,3-Butadiene 106-99-0 26 U U U U U U U U U	in i	sults in c g/m3	RL in ug/m3
1,2-Dichlorotetrafluoroethane 76-14-2 10 U Vinyl Chloride 75-01-4 10 U 1,3-Butadiene 106-99-0 26 U U 1,3-Butadiene 106-99-0 26 U U U U U U U U U	26	130 L	100
Vinyl Chloride 75-01-4 10 U 1,3-Butadiene 106-99-0 26 U Bromomethane 74-83-9 10 U Chloroethane 75-00-3 10 U Bromoethene 593-60-2 10 U Trichlorofluoromethane 75-69-4 10 U 1,1-Dichloroethene 75-35-4 20 3-Chloropropene 107-05-1 26 U 2 3-Chloropropene 107-05-1 26 U 2 4 U 2 3-Chloropropene 107-05-1 26 U 2 U 2 U 2 3-Chloropropene 107-05-1 26 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 U 2 </td <td>*****</td> <td>the short property was a second</td> <td>****</td>	*****	the short property was a second	****
1,3-Butadiene 106-99-0 26 U Bromomethane 74-83-9 10 U Chloroethane 75-0-3 10 U Bromoethene 593-60-2 10 U Trichlorofluoromethane 75-69-4 10 U 1,1-Dichloroethene 75-35-4 20 3-Chloropropene 107-05-1 26 U 2 Methylene Chloride 75-09-2 26 U 2 Methylene Chloride 75-09-2 26 U 2 Methylene Chloride 156-60-5 10 U 1 Trichloroethene 110-82-7 90 1 Trichloroethene 110-82-7 90 1 Trichloroethene 110-82-7 10 U 1 Trichloroethene 110-82-5 10 U 1 Trichloroethene 110-82-5 10 U 1 Trichloroethene 110-80-5 10 U 1 Trichloroethene 110			
Bromomethane			
Chloroethane 75-00-3 10 U Bromoethene 593-60-2 10 U Trichlorofluoromethane 75-69-4 10 U 1,1-Dichloroethene 75-35-4 20 3-3-Chloropropene Methylene Chloride 75-09-2 26 U Methyl tert-Butyl Ether 1634-04-4 26 U trans-1,2-Dichloroethene 156-60-5 10 U n-Hexane 110-54-3 46 2 1,1-Dichloroethane 75-34-3 11 1 1,2-Dichloroethene (total) 540-59-0 10 U 1 cis-1,2-Dichloroethene 156-59-2 10 U 1 Chloroform 67-66-3 10 U 1 1,1,1-Trichloroethane 71-55-6 1500 1 Cyclohexane 110-82-7 90 1 Carbon Tetrachloride 56-23-5 10 U 1 3enzene 71-43-2 10 U 1 2-Dichloroethan	***************************************		
Bromoethene	~ - ~	39 U	in the second
Trichlorofluoromethane 75-69-4 10 U 1,1-Dichloroethene 75-35-4 20 3-Chloropropene 107-05-1 26 U Methylene Chloride 75-09-2 26 U Methyl tert-Butyl Ether 1634-04-4 26 U trans-1,2-Dichloroethene 156-60-5 10 U n-Hexane 110-54-3 46 2 1,1-Dichloroethane 75-34-3 11 1 1,2-Dichloroethene (total) 540-59-0 10 U 1 cis-1,2-Dichloroethene 156-59-2 10 U 1 Chloroform 67-66-3 10 U 1 Chloroform 67-66-3 10 U 1 1,1,1-Trichloroethane 71-55-6 1500 U 1 Cyclohexane 110-32-7 90 1 1 Cyclohexane 110-32-7 90 1 1 Cyclohexane 71-43-2 10 U 1		26 U	
1,1-Dichloroethene 75-35-4 20 3-Chloropropene 107-05-1 26 U Methylene Chloride 75-09-2 26 U Methyl tert-Butyl Ether 1634-04-4 26 U Trans-1,2-Dichloroethene 156-60-5 10 U n-Hexane 110-54-3 46 2 1,1-Dichloroethane 75-34-3 11 1 1,2-Dichloroethene (total) 540-59-0 10 U 1 cis-1,2-Dichloroethene 156-63 10 U 1 Chloroform 67-66-3 10 U 1 1,1,1-Trichloroethane 71-55-6 1500 U 1 1,1,1-Trichloroethane 71-55-6 1500 U 1 2,2,4-Trimethylpentane 540-84-1 10 U 1 2,2-Dichloroethane 107-06-2 10 U 1 3-Dichloroethane 107-06-2 10 U 10-05-05-05-05-05-05-05-05-05-05-05-05-05		44 U	
3-Chloropropene 107-05-1 26 U 2 2 2 2 2 2 2 2 2		56 U	
Methylene Chloride 75-09-2 26 U Methyl tert-Butyl Ether 1634-04-4 26 U trans-1,2-Dichloroethene 156-60-5 10 U n-Hexane 110-54-3 46 2 1,1-Dichloroethane 75-34-3 11 1 1,2-Dichloroethene (total) 540-59-0 10 U 1 1,2-Dichloroethene 156-59-2 10 U 1 Cise-1,2-Dichloroethene 71-55-6 1500 1 Chloroform 67-66-3 10 U 1 1,1,1-Trichloroethane 71-55-6 1500 1 2-yclohexane 110-82-7 90 1 Carbon Tetrachloride 56-23-5 10 U 1 2,2,4-Trimethylpentane 540-84-1 10 U 1 3enzene 71-43-2 10 U 1 4-Petane 142-82-5 47 1 7-chloroethene 79-01-6 12 1 7-chloro		79	40
Methyl tert-Butyl Ether 1634-04-4 26 U trans-1,2-Dichloroethene 156-60-5 10 U n-Hexane 110-54-3 46 2 1,1-Dichloroethane 75-34-3 11 1 1,2-Dichloroethene (total) 540-59-0 10 U 1 chloroform 67-66-3 10 U 1 chloroform 67-66-3 10 U 1 1,1,1-Trichloroethane 71-55-6 1500 1 Cyclohexane 110-82-7 90 1 Carbon Tetrachloride 56-23-5 10 U 1 denzene 71-43-2 10 U 1 denzene	***************************************	81 U	
trans-1,2-Dichloroethene 156-60-5 10 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		90 U	
110-54-3 46 2 1.1-Dichloroethane 75-34-3 11 1 1 1 1 1 1 1 1		94 U	
1,1-Dichloroethane 75-34-3 11 1 1,2-Dichloroethene (total) 540-59-0 10 U 1 cis-1,2-Dichloroethene 156-59-2 10 U 1 Chloroform 67-66-3 10 U 1 1,1,1-Trichloroethane 71-55-6 1500 1 Cyclohexane 110-82-7 90 1 Carbon Tetrachloride 56-23-5 10 U 1 2,2,4-Trimethylpentane 540-84-1 10 U 1 3enzene 71-43-2 10 U 1 2-Dichloroethane 107-06-2 10 U 1 -Heptane 142-82-5 47 1 1 Trichloroethene 79-01-6 12 10 U 1 72-Dichloropropane 78-87-5 10 U 10 8-1,3-Dichloropropane 75-27-4 10 U 10	- 1	40 U	40
1,2-Dichloroethene (total) 540-59-0 10 U 1 cis-1,2-Dichloroethene 156-59-2 10 U 1 Chloroform 67-66-3 10 U 1 1,1,1-Trichloroethane 71-55-6 1500 1 Cyclohexane 110-82-7 90 1 Carbon Tetrachloride 56-23-5 10 U 1 2,2,4-Trimethylpentane 540-84-1 10 U 1 3,2-Dichloroethane 107-06-2 10 U 1 4-Peptane 142-82-5 47 10 1 7,2-Dichloroethene 79-01-6 12 10 1 7,2-Dichloropropane 78-87-5 10 U 10 8-1,3-Dichloropropane 75-27-4 10 U 10		60	92
156-59-2 10		45	40
Chiloroform		40 U	
1,1,1-Trichloroethane	49.2.69.9.9.9	‡0 U	40
Carbon Tetrachloride	*******	19 U	49
Carbon Tetrachloride 56-23-5 10 U 1 2.2,4-Trimethylpentane 540-84-1 10 U 1 3enzene 71-43-2 10 U 1 .2-Dichloroethane 107-06-2 10 U 1 -Heptane 142-82-5 47 1 Trichloroethene 79-01-6 12 1 .2-Dichloropropane 78-87-5 10 U 10 tromodichloromethane 75-27-4 10 U 10 is-1.3-Dichloropropane 4000-24-4 10 U 10		200	55
2.2,4-Trimethylpentane 540-84-1 10 U 1 Benzene 71-43-2 10 U 1 2-Dichloroethane 107-06-2 10 U 11 -Heptane 142-82-5 47 11 Trichloroethene 79-01-6 12 10 2-Dichloropropane 78-87-5 10 U 10 romodichloromethane 75-27-4 10 U 10 s-1,3-Dichloropropane		10	34
Senzene 71-43-2 10 U 10 10 10 10 10 10	~ 10	53 U	63
,2-Dichloroethane 107-06-2 10 U 10 Heptane 142-82-5 47 10		7 U	47
Heptane		2 U	32
79-01-6 12 10 72-Dichloropropane 78-87-5 10 U 10 romodichloromethane 75-27-4 10 U 10 s-1,3-Dichloropropane 40004-64-8			40
,2-Dichloropropane 78-87-5 10 U 10 romodichloromethane 75-27-4 10 U 10 is-1,3-Dichloropropane 4000000000000000000000000000000000000	The second second	90	41
			54
s-1.3-Dichloropropene		************	46
1 10001-01-5 1 10 1 11 4			67
oluene	0 45	5 U	45
ans-1,3-Dichloropropene	*********	** ********	38
1,2-Trichloroethane 79-00-5 10 U 10	0 45	5 U	45

CLIENT SAMPLE NO.

AMSF-04-SS-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 52.40

Sample Matrix: AIR

Lab Sample No.: 746474

Date Analyzed: 04/18/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	84		10	570		- 68
Dibromochloromethane	124-48-1	10	U	10	85	U	85
1,2-Dibromoethane	106-93-4	10	U	10	77	U	77
Ethylbenzene	100-41-4	10	U	10	43	U	43
Xylene (m,p)	1330-20-7	26	U	26	110	U	110
Xylene (o)	95-47-6	10	U	10	43	U	43
Xylene (total)	1330-20-7	10	U	10	43	U	43
Bromoform	75-25-2	10	U	10	100	U	100
1,1,2,2-Tetrachloroethane	79-34-5	10	U	10	69	U	69
4-Ethyltoluene	622-96-8	10	U	10	49	U	49
1,3,5-Trimethylbenzene	108-67-8	10	U	10	49	U	49

CLIENT SAMPLE NO.

AMSF-05-SS-032808

Lab Name: TAL Burlington

SDG Number: NY124793

Dilution Factor: 293.00

Sample Matrix: AIR

Lab Sample No.: 746475

Date Analyzed: 04/18/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	150	U	150	740	U	740
1,2-Dichlorotetrafluoroethane	76-14-2	59	U	59	410	U	410
Vinyl Chloride	75-01-4	59	U	59	150	U	150
1,3-Butadiene	106-99-0	150	U	150	330	U	330
Bromomethane	74-83-9	59	U	59	230	U	230
Chloroethane	75-00-3	59	U	59	160	U	160
Bromoethene	593-60-2	59	U	59	260	U	260
Trichlorofluoromethane	75-69-4	59	U	59	330	U	330
1,1-Dichloroethene	75-35-4	200		59	790		230
3-Chloropropene	107-05-1	150	U	150	470	U	470
Methylene Chloride	75-09-2	150	U	150	520	U	520
Methyl tert-Butyl Ether	1634-04-4	150	U	150	540	U	540
rans-1,2-Dichloroethene	156-60-5	59	U	59	230	U	230
n-Hexane	110-54-3	150	Ü	150	530	U	530
1,1-Dichloroethane	75-34-3	77		59	310		240
1,2-Dichloroethene (total)	540-59-0	59	U	59	230	U	230
cis-1,2-Dichloroethene	156-59-2	59	U	59	230	Ü	230
Chloroform	67-66-3	59	U	59	290	U	290
,1,1-Trichloroethane	71-55-6	10000		59	55000		320
Cyclohexane	110-82-7	370		59	1300		200
Carbon Tetrachloride	56-23-5	59	U	59	370	U	370
2,2,4-Trimethylpentane	540-84-1	59	U	59	280	U	280
Benzene	71-43-2	59	U	59	190	U	190
,2-Dichloroethane	107-06-2	59	U	59	240	U	240
-Heptane	142-82-5	82		59	340		240
richloroethene	79-01-6	59	U	59	320	Ü	320
,2-Dichloropropane	78-87-5	59	U	59	270	U	270
romodichloromethane	75-27-4	59	U	59	400	U	400
is-1,3-Dichloropropene	10061-01-5	59	U	59	270	U	270
oluene	108-88-3	59	U	59	220	U	220
rans-1,3-Dichloropropene	10061-02-6	59	U	59	270	U	270
1,1,2-Trichloroethane	79-00-5	59	U	59	320	U	320

CLIENT SAMPLE NO.

AMSF-05-SS-032808

Lab Name: TAL Burlington

SDG Number: NY124793

Dilution Factor: 293.00

Sample Matrix: AIR

Lab Sample No.: 746475

Date Analyzed: 04/18/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	440		59	3000		400
Dibromochloromethane	124-48-1	59	U	59	500	U	500
1,2-Dibromoethane	106-93-4	59	υ	59	450	U	450
Ethylbenzene	100-41-4	59	U	59	260	U	260
Xylene (m,p)	1330-20-7	150	U	150	650	U	650
Xylene (o)	95-47-6	59	U	59	260	Ü	260
Xylene (total)	1330-20-7	59	U	59	260	U	260
Bromoform	75-25-2	59	U	59	610	U	610
1,1,2,2-Tetrachloroethane	79-34-5	59	U	59	410	U	410
4-Ethyltoluene	622-96-8	59	U	59	290	U	290
1,3,5-Trimethylbenzene	108-67-8	59	U	59	290	U	290

CLIENT SAMPLE NO.

AMSF-06-SS-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 26.00

Sample Matrix: AIR

Lab Sample No.: 746476

Date Analyzed: 04/18/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	13	U	13	64	U	64
1,2-Dichlorotetrafluoroethane	76-14-2	5.2	U	5.2	36	U	36
Vinyl Chloride	75-01-4	5.2	U	5.2	13	U	13
1,3-Butadiene	106-99-0	13	U	13	29	U	29
Bromomethane	74-83-9	5.2	U	5.2	20	U	20
Chloroethane	75-00-3	5.2	U	5.2	14	U	14
Bromoethene	593-60-2	5.2	U	5.2	23	U	23
Trichlorofluoromethane	75-69-4	16		5.2	90		29
1,1-Dichloroethene	75-35-4	5.2	U	5.2	21	U	21
3-Chloropropene	107-05-1	13	U	13	41	U	41
Methylene Chloride	75-09-2	13	U	13	45	U	45
Methyl tert-Butyl Ether	1634-04-4	13	U	13	47	U	47
trans-1,2-Dichloroethene	156-60-5	5.2	U	5.2	21	U	21
n-Hexane	110-54-3	150		13	530		46
1,1-Dichloroethane	75-34-3	5.2	U	5.2	21	U	21
1,2-Dichloroethene (total)	540-59-0	5.2	U	5.2	21	U	21
cis-1,2-Dichloroethene	156-59-2	5.2	U	5.2	21	U	21
Chloroform	67-66-3	5.2	Ü	5.2	25	U	25
1,1,1-Trichloroethane	71-55-6	720		5.2	3900		28
Cyclohexane	110-82-7	110		5.2	380		18
Carbon Tetrachloride	56-23-5	5.2	U	5.2	33	U	33
2,2,4-Trimethylpentane	540-84-1	5.2	U	5.2	24	U	24
Benzene	71-43-2	7.5		5.2	24		17
1,2-Dichloroethane	107-06-2	5.2	U	5.2	21	U	21
n-Heptane	142-82-5	160		5.2	660		21
Trichloroethene	79-01-6	5.2	U	5.2	28	U	28
1,2-Dichloropropane	78-87-5	5.2	U	5.2	24	U	24
Bromodichloromethane	75-27-4	5.2	U	5.2	35	U	35
cis-1,3-Dichloropropene	10061-01-5	5.2	U	5.2	24	U	24
Toluene	108-88-3	18		5.2	68		20
trans-1,3-Dichloropropene	10061-02-6	5.2	U	5.2	24	U	24
1,1,2-Trichloroethane	79-00-5	5.2	U	5.2	28	U	28

CLIENT SAMPLE NO.

AMSF-06-SS-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 26.00

Sample Matrix: AIR

Lab Sample No.: 746476

Date Analyzed: 04/18/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	91		5.2	620		35
Dibromochloromethane	124-48-1	5.2	U	5.2	44	U	44
1,2-Dibromoethane	106-93-4	5.2	U	5.2	40	U	40
Ethylbenzene	100-41-4	5.2	U	5.2	23	U	23
Xylene (m,p)	1330-20-7	27		13	120		56
Xylene (o)	95-47-6	9.0		5.2	39		23
Xylene (total)	1330-20-7	36		5.2	160		23
Bromoform	75-25-2	5.2	U	5.2	54	U	54
1,1,2,2-Tetrachloroethane	79-34-5	5.2	U	5.2	36	U	36
4-Ethyltoluene	622-96-8	10		5.2	49		26
1,3,5-Trimethylbenzene	108-67-8	7.4		5.2	36		26

CLIENT SAMPLE NO.

AMSF-07-SS-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 6.06

Sample Matrix: AIR

Lab Sample No.: 746477

Date Analyzed: 04/18/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
i bl. diff. comothere	75-71-8	3.0	U	3.0	15	U	15
ichlorodifluoromethane	76-14-2	1.2	U	1.2	8.4	U	8.4
2-Dichlorotetrafluoroethane	75-01-4	1.2	U	1.2	3.1	U	3.1
inyl Chloride	106-99-0	3.0	U	3.0	6.6	U	6.6
,3-Butadiene	74-83-9	1.2	U	1.2	4.7	U	4.7
Promomethane	75-00-3	1.2	U	1.2	3.2	U	3.2
Chloroethane	593-60-2	1.2	U	1.2	5.2	U	5.2
Bromoethene	75-69-4	1.5		1.2	8.4		6.7
richlorofluoromethane	75-35-4	170		1.2	670		4.8
1,1-Dichloroethene	107-05-1	3.0	U	3.0	9.4	U	9.4
3-Chloropropene	75-09-2	3.0	U	3.0	10	U	10
Methylene Chloride	1634-04-4	3.0	u	3.0	11	U	11
Methyl tert-Butyl Ether	156-60-5	1.2	U	1.2	4.8	U	4.8
trans-1,2-Dichloroethene	110-54-3	15		3.0	53	1	. 11
n-Hexane	75-34-3	91		1.2	370		4.9
1,1-Dichloroethane	540-59-0	1.2	U	1.2	4.8	U	4.8
1,2-Dichloroethene (total)		1.2	u	1.2	4,8	U	4.8
cis-1,2-Dichloroethene	156-59-2 67-66-3	1.8		1.2	8.8		5.9
Chloroform		230		1.2	1300		6.5
1,1,1-Trichloroethane	71-55-6	13	,	1.2	45		4.1
Cyclohexane	110-82-7	1.2	U	1.2	7.5	U	7.5
Carbon Tetrachloride	56-23-5	1.2	u	1.2	5.6	U	5.6
2,2,4-Trimethylpentane	540-84-1 71-43-2	3.8		1.2	12		3.8
Benzene		1.2	U	1.2	4.9	U	4.9
1,2-Dichloroethane	107-06-2	13		1.2	53		4.9
n-Heptane	142-82-5	1.4		1.2	7.5	~	6.4
Trichloroethene	79-01-6	1.2	U	1.2	5.5	U	5.5
1,2-Dichloropropane	78-87-5		U	1.2	8.0	U	8.0
Bromodichloromethane	75-27-4	1.2	<u>U</u>	1.2	5.4	U	5.4
cis-1,3-Dichloropropene	10061-01-5	1.2		1.2	28		4.5
Toluene	108-88-3	7.4		1.2	5.4	·	5.4
trans-1,3-Dichloropropene	10061-02-6	1.2	U	1.2	6.5	U	6.5

CLIENT SAMPLE NO.

AMSF-07-SS-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 6.06

Sample Matrix: AIR

Lab Sample No.: 746477

Date Analyzed: 04/18/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	91		1.2	620		8.1
Dibromochloromethane	124-48-1	1.2	U	1.2	10	U	10
1,2-Dibromoethane	106-93-4	1.2	U	1.2	9.2	U	9.2
Ethylbenzene	100-41-4	1.2	U	1.2	5.2	U	5.2
Xylene (m,p)	1330-20-7	4.3		3.0	19		13
Xylene (o)	95-47-6	1.5	nd attended attended and and analysis	1.2	6.5		5.2
Xylene (total)	1330-20-7	5.8		1.2	25		5.2
3romoform	75-25-2	1.2	U	1.2	12	U	12
1,1,2,2-Tetrachloroethane	79-34-5	1.2	U	1.2	8.2	U	8.2
i-Ethyltoluene	622-96-8	1.2	U	1.2	5.9	U	5.9
1,3,5-Trimethylbenzene	108-67-8	1.2	U	1.2	5.9	U	5.9

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 112.00

Sample Matrix: AIR

CLIENT SAMPLE NO.

AMSF-08-SS-032808

Lab Sample No.: 746478

Date Analyzed: 04/19/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
		EG	U	56	280	U	280
ichlorodifluoromethane	75-71-8	56	U	22	150	U	150
2-Dichlorotetrafluoroethane	76-14-2	22	U	22	56	U	56
inyl Chloride	75-01-4	22	U	56	120	U	120
,3-Butadiene	106-99-0	56	U	22	85	U	85
Promomethane	74-83-9	22		22	58	U	58
Chloroethane	75-00-3	22		22	96	U	96
3romoethene	593-60-2	22	U	22	120	U	120
Frichlorofluoromethane	75-69-4	22	U		13000		87
1,1-Dichloroethene	75-35-4	3400		22 56	180	U	180
3-Chloropropene	107-05-1	56	U	56	190	U	190
Methylene Chloride	75-09-2	56	U		200	U	200
Methyl tert-Butyl Ether	1634-04-4	56	U	56	87	U	87
trans-1,2-Dichloroethene	156-60-5	22	l .u	22	490		200
11	110-54-3	140		56	1100	****** **** *	89
1,1-Dichloroethane	75-34-3	270		22	190		87
4.2 Dichloroethene (total)	540-59-0	49		22	190	*****	87
cis-1,2-Dichloroethene	156-59-2	49		22	110	U	110
Chloroform	67-66-3	22	U	22	1100		120
1,1,1-Trichloroethane	71-55-6	210		22	320		76
***************************************	110-82-7	93		22	140	U	140
Cyclohexane Carbon Tetrachloride	56-23-5	22	U	22	100	U	100
2,2,4-Trimethylpentane	540-84-1	22	U	22	70	U U	70
Benzene	71-43-2	22	U	22	89	U	89
1,2-Dichloroethane	107-06-2	22	U	22	410		90
	142-82-5	100		22	590	400 0000	120
n-Heptane Trichloroethene	79-01-6	110			1		100
000000000000000000000000000000000000000	78-87-5	22	U	22		u	150
1,2-Dichloropropane Bromodichloromethane	75-27-4	22	U	22	150	U	100
cis-1,3-Dichloropropene	10061-01-5	22	U	22	100		83
	108-88-3	. 27		22	100	U	100
Toluene trans-1,3-Dichloropropene	10061-02-6	22	U	22	100		120
1,1,2-Trichloroethane	79-90-5	37		22	200		

CLIENT SAMPLE NO.

AMSF-08-SS-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 112.00

Sample Matrix: AIR

Lab Sample No.: 746478

Date Analyzed: 04/19/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	1100		22	7500		150
Dibromochloromethane	124-48-1	22	U	22	190	U	190
1,2-Dibromoethane	106-93-4	22	U	22	170	U	170
Ethylbenzene	100-41-4	22	U	22	96	U	96
Xylene (m,p)	1330-20-7	56	U	56	240	U	240
Xylene (o)	95-47-6	22	U	22	96	U	96
Xylene (total)	1330-20-7	22	U	22	96	U	96
Bromoform	75-25-2	22	U	22	230	U	230
1,1,2,2-Tetrachloroethane	79-34-5	22	U	22	150	U	150
4-Ethyltoluene	622-96-8	22	U	22	110	U	110
1,3,5-Trimethylbenzene	108-67-8	22	U	22	110	U	110

TAL Burlington Lab Name:

SDG Number: NY124793

Dilution Factor: 5.00

Sample Matrix: AIR

CLIENT SAMPLE NO.

AMSF-09-SS-032808

Lab Sample No.: 746479

Date Analyzed: 04/18/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
				0.5	12	U	12
	75-71-8	2.5	, U	2.5	7.0	U	7.0
ichlorodifluoromethane	76-14-2	1.0	U	1.0	2.6	U	2.6
2-Dichlorotetrafluoroethane	75-01-4	1.0	U	1.0	5.5	U	5.5
inyl Chloride	106-99-0	2.5	U	2.5	3.9	U	3.9
,3-Butadiene	74-83-9	1.0	U	1.0	TOWN THE MANY TO	Ü	2.6
romomethane	75-00-3	1.0	U	1.0	2.6	U	4.4
Chloroethane	593-60-2	1.0	U	1.0	4.4	U	5.6
Bromoethene	75-69-4	1.0	U	1.0	5,6		4.0
Trichlorofluoromethane	75-35-4	26		1.0	100	U	7,8
1,1-Dichloroethene	107-05-1	2.5	U	2.5	7.8		8.7
3-Chloropropene	75-09-2	3.0		2.5	10		9.0
Methylene Chloride	1634-04-4	2.5	U	2.5	9.0	U	4.0
Methyl tert-Butyl Ether	156-60-5	1.0	U	1.0	4.0	U ~	8.8
trans-1,2-Dichloroethene	110-54-3	2.5	U	2.5	8.8	U	4.0
n-Hexane		17		1.0	69		
1,1-Dichloroethane	75-34-3	1.0	U	1.0	4.0		4.0
1,2-Dichloroethene (total)	540-59-0	1.0	U	1.0	4.0	U	4.0
cis-1,2-Dichloroethene	156-59-2	1.0	U	1.0	4.9	U	4.9
Chloroform	67-66-3	170	-	1.0	930		5.5
1,1,1-Trichloroethane	71-55-6	1.0	U	1.0	3.4	J U	3.4
Cyclohexane	110-82-7	1.0	U	1.0	6.3	U	6.3
Carbon Tetrachloride	56-23-5	1.0	U	1.0	4.7	U	4.7
2,2,4-Trimethylpentane	540-84-1	1.1	****	1.0	3.5		3.2
Benzene	71-43-2	1.0	U	1.0	4.0	U	
1,2-Dichloroethane	107-06-2	3.4		1.0	14		4.1
n-Heptane	142-82-5	699		1.1	5.4	U	
Talablarenthone	79-01-6	1.0			4.6	L	
1,2-Dichloropropane	78-87-5	1.0		1.	0 6.7	U	6.7
Bromodichloromethane	75-27-4	1.0		1.	4.6	l	4.5
cis-1,3-Dichloropropene	10061-01-5		1	1	0 8.7		3.8
Toluene	108-88-3				0 4.5		J 4.5
trans-1,3-Dichloropropene	10061-02-				0 5.5		U 5.5
1,1,2-Trichloroethane	79-00-5	1.0			.0		

CLIENT SAMPLE NO.

AMSF-09-SS-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 5.00

Sample Matrix: AIR

Lab Sample No.: 746479

Date Analyzed: 04/18/2008

Target Compound	CAS Number	Results In ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	1.6		1.0	11		6.8
Dibromochloromethane	124-48-1	1.0	U	1.0	8.5	U	8.5
1,2-Dibromoethane	106-93-4	1.0	U	1.0	7.7	U	7.7
Ethylbenzene	100-41-4	1.0	U	1.0	4.3	U	4.3
Xylene (m,p)	1330-20-7	2.5	U	2.5	11	U	11
Xylene (o)	95-47-6	1.0	U	1.0	4.3	U	4.3
Xylene (total)	1330-20-7	1.0	U	1.0	4.3	U	4.3
Bromoform	75-25-2	1.0	U	1.0	10	U	10
1,1,2,2-Tetrachloroethane	79-34-5	1.0	U	1.0	6.9	U	6.9
4-Ethyltoluene	622-96-8	1.0	U	1.0	4.9	U	4.9
1,3,5-Trimethylbenzene	108-67-8	1.0	U	1.0	4.9	U	4.9

CLIENT SAMPLE NO.

AMSF-10-SS-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 0.80 Sample Matrix: AIR

Lab Sample No.: 746480

Date Analyzed:

04/18/2008

Date Received: 04/02/2008

Target Compound	CAS Number	Results in ppbv	Q	RL In ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.53		0.40	2.6		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.82		0.40	1.8		0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.16	U	0.16	0.42	U	0.42
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.95		0.16	5.3		0.90
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	Ü	1.3
Methylene Chloride	75-09-2	0.84		0.40	2.9		1.4
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	4.2	-	0.40	15		1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
1,2-Dichloroethene (total)	540-59-0	0.16	U	0,16	0.63	U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Chloroform	67-66-3	0.38		0.16	1.9		0.78
1,1,1-Trichloroethane	71-55-6	3.4		0.16	19		0.87
Cyclohexane	110-82-7	1.5		0.16	5.2		0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	0.16	U	0.16	0.75	U	0.75
Benzene	71-43-2	0.95		0.16	3.0		0.51
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	5.6		0.16	23		0.66
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	Ü	0.74
Bromodichloromethane	75-27-4	0,16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Toluene	108-88-3	2.8	Statistical tea	0.16	11		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
***************************************				0.40	0.07	1	0.07

79-00-5

U

0.16

0.16

0.87

1,1,2-Trichloroethane

0.87

U

CLIENT SAMPLE NO.

AMSF-10-SS-032808

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 746480

Date Analyzed: 04/18/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.72		0.16	4.9		1.1
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	υ	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	υ	1.2
Ethylbenzene	100-41-4	0.81		0.16	3.5		0.69
Xylene (m,p)	1330-20-7	3,4		0.40	15	1	1.7
Xylene (o)	95-47-6	1.4	n and and a constraint of the second	0.16	6.1	30000 or	0.69
Xylene (total)	1330-20-7	4.8		0.16	21		0.69
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	1.2		0.16	5.9	**********	0.79
1,3,5-Trimethylbenzene	108-67-8	1.0		0.16	4.9		0.79

CLIENT SAMPLE NO.

BA041808LCS

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: BA041808

Date Analyzed: 04/18/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	9.7		0.50	48		2.5
1,2-Dichlorotetrafluoroethane	76-14-2	8.5		0.20	59		1.4
Vinyl Chloride	75-01-4	7.9		0.20	20		0.51
1,3-Butadiene	106-99-0	8.9		0.50	20		1.1
Bromomethane	74-83-9	8.1	***************************************	0.20	31		0.78
Chloroethane	75-00-3	8.6		0.20	23	1	0.53
Bromoethene	593-60-2	8.9		0.20	39		0.87
Trichlorofluoromethane	75-69-4	9.3		0.20	52		1.1
1,1-Dichloroethene	75-35-4	10		0.20	40		0.79
3-Chloropropene	107-05-1	9.0		0.50	28		1.6
Methylene Chloride	75-09-2	9.2		0.50	32		1.7
Methyl tert-Butyl Ether	1634-04-4	9.6		0.50	35		1.8
trans-1,2-Dichloroethene	156-60-5	8.9	.,,	0.20	35	1	0.79
n-Hexane	110-54-3	9.3		0.50	33		1.8
1,1-Dichloroethane	75-34-3	8.5		0.20	34		0.81
1,2-Dichloroethene (total)	540-59-0	18		0.20	71		0.79
cis-1,2-Dichloroethene	156-59-2	9.4		0.20	37		0.79
Chloroform	67-66-3	8.7	,444,44	0.20	42	Ī	0.98
1,1,1-Trichloroethane	71-55-6	9.3		0.20	51		1.1
Cyclohexane	110-82-7	9.7		0.20	33		0.69
Carbon Tetrachloride	56-23-5	9.8		0.20	62		1.3
2,2,4-Trimethylpentane	540-84-1	8.9	55	0.20	42		0.93
Benzene	71-43-2	8.2	1	0.20	26		0.64
1,2-Dichloroethane	107-06-2	8.7		0.20	35		0.81
n-Heptane	142-82-5	8.7		0.20	36		0.82
Trichloroethene	79-01-6	8.8		0.20	47		1.1
1,2-Dichloropropane	78-87-5	8.2		0.20	38		0.92
Bromodichloromethane	75-27-4	9.1		0.20	61		1.3
cis-1,3-Dichloropropene	10061-01-5	9.1		0.20	41		0.91
Toluene	108-88-3	8.9	unintroducts.	0.20	34		0.75
trans-1,3-Dichloropropene	10061-02-6	9.2		0.20	42		0.91
1,1,2-Trichloroethane	79-00-5	8.2		0.20	45		1.1

CLIENT SAMPLE NO.

BA041808LCS

Lab Name: TAL Burlington

SDG Number: NY124793

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: BA041808

Date Analyzed: 04/18/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	9.0		0.20	61		1.4
Dibromochloromethane	124-48-1	9.9		0.20	84		1.7
1,2-Dibromoethane	106-93-4	8.8		0.20	68		1.5
Ethylbenzene	100-41-4	9.0		0.20	39		0.87
Xylene (m,p)	1330-20-7	18		0.50	78		2.2
Xylene (o)	95-47-6	9.3		0.20	40		0.87
Xylene (total)	1330-20-7	28		0.20	120		0.87
Bromoform	75-25-2	11		0.20	110		2.1
1,1,2,2-Tetrachloroethane	79-34-5	8.3		0.20	57		1.4
4-Ethyltoluene	622-96-8	10		0.20	49		0.98
1,3,5-Trimethylbenzene	108-67-8	9.3		0.20	46		0.98

Lab Name: TAL Burlington

SDG Number: NY124793

Dilution Factor: 1.00

Sample Matrix: AIR

CLIENT SAMPLE NO.

BA041808LCSD

Lab Sample No.: BA041808

Date Analyzed: 04/18/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
				0.50	47		2.5
ichlorodifluoromethane	75-71-8	9.6	en produktete		59		1.4
2-Dichlorotetrafluoroethane	76-14-2	8.5		0.20	20	***************************************	0.51
inyl Chloride	75-01-4	7.9		0.50	19	**************	1.1
***************************************	106-99-0	8.8	************		31		0.78
,3-Butadiene romomethane	74-83-9	8.0	000	0.20	22		0.53
Chloroethane	75-00-3	8.4		0.20	38	***************************************	0.87
Promoethene	593-60-2	8.8		0.20	51		1.1
	75-69-4	9.0		0.20	40		0.79
Frichlorofluoromethane	75-35-4	10		0.20			1.6
1,1-Dichloroethene	107-05-1	9.3		0.50	29		1.7
3-Chloropropene	75-09-2	9.2		0.50	32		1.8
Methylene Chloride	1634-04-4	9.6	Ţ	0.50	35		0.79
Methyl tert-Butyl Ether	156-60-5	9.0		0.20	36	1	1.8
trans-1,2-Dichloroethene	110-54-3	9.4		0.50	33		0.81
n-Hexane	75-34-3	8.7	1	0.20	35		0.79
1,1-Dichloroethane	540-59-0	18		0.20	71		0.79
1,2-Dichloroethene (total)	156-59-2	9.5		0.20	. 38		1,000
cis-1,2-Dichloroethene	67-66-3	8.7	- 1	0.20	42		0.98
Chloroform	71-55-6	9.2		0.20	50		1.1
1,1,1-Trichloroethane	***************************************	9.6		0.20	33		0.69
Cyclohexane	110-82-7 56-23-5	9.6		0.20	60		1.3
Carbon Tetrachloride	540-84-1	8.9	1	0.20	42		0.93
2,2,4-Trimethylpentane	71-43-2	8.2		0.20	26		0.64
Benzene		8.5		0.20	34		0.81
1,2-Dichloroethane	107-06-2	8.7		0.20	36		0.82
n-Heptane	142-82-5	8,8		0.20	47		1,1
Trichloroethene	79-01-6	8.2		0.20	38		0.92
1,2-Dichloropropane	78-87-5	8.9		0.20	60		1.3
Bromodichloromethane	75-27-4			0.20	41		0.91
cis-1,3-Dichloropropene	10061-01-5		~	0.20	32		0.75
Toluene	108-88-3	8.6		0.20	42		0.91
trans-1,3-Dichloropropene	10061-02-6 79-00- 5	6 9.2 8.0		0.20	44		1.1

CLIENT SAMPLE NO.

BA041808LCSD

Lab Name: TAL Burlington

SDG Number: NY124793

Dilution Factor: 1.00

Sample Matrix: AIR

Lab Sample No.: BA041808

Date Analyzed: 04/18/2008

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	8.7		0.20	59		1.4
Dibromochloromethane	124-48-1	9.5		0.20	81		1.7
1,2-Dibromoethane	106-93-4	8.6		0.20	66		1.5
Ethylbenzene	100-41-4	8.7		0.20	38		0.87
Xylene (m,p)	1330-20-7	18	2 - 10/20/20/20/2	0.50	78		2.2
Xylene (o)	95-47-6	9.0	1.33,53	0.20	39		0.87
Xylene (total)	1330-20-7	27		0.20	120		0.87
Bromoform	75-25-2	10		0.20	100		2.1
1,1,2,2-Tetrachloroethane	79-34-5	8.1		0.20	56		1.4
4-Ethyltoluene	622-96-8	9.8		0.20	48		0.98
1,3,5-Trimethylbenzene	108-67-8	8.9		0.20	44		0.98

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 0.80

Sample Matrix: AIR

CLIENT SAMPLE NO.

MBLK041808BA

Lab Sample No.: MBLK0418

Date Analyzed: 04/18/2008

// Date Received:

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
				0.40	2.0	U	2.0
to an about	75-71-8	0.40	U	0.16	1.1	U	1.1
ichlorodifluoromethane	76-14-2	0.16	U	0.16	0.41	U	0.41
,2-Dichlorotetrafluoroethane	75-01-4	0.16	U		0.88	U	0.88
inyl Chloride	106-99-0	0.40	U	0.40	0.62	U	0.62
,3-Butadiene	74-83-9	0.16	U	0.16	0.42	U	0.42
Bromomethane	75-00-3	0.16	U	0.16		U	0.70
Chloroethane	593-60-2	0.16	U	0.16	0.70	U	0.90
Bromoethene	75-69-4	0.16	U	0.16	0.90	U	0.63
Trichlorofluoromethane	75-35-4	0.16	U	0.16	0.63	U	1,3
1,1-Dichloroethene	107-05-1	0.40	U	0.40	1.3	U	1.4
3-Chloropropene	75-09-2	0.40	U	0.40	1.4	-	1,4
Methylene Chloride	1634-04-4	0.40	U	0.40	1.4		0.63
Methyl tert-Butyl Ether	156-60-5	0.16	U	0.16	0.63	U	1.4
trans-1,2-Dichloroethene	110-54-3	0.40	U	0.40	1.4		0.65
n-Hexane		0.16	U	0.16	0.65	U	
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	_ U	0.63
cis-1,2-Dichloroethene	156-59-2	0.16	" U	0.16	0.78	U	0.78
Chloreform	67-66-3		U	0.16	0.87	U	0.87
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.55	U	0.55
	110-82-7	0.16	U	0.16	1.0	U	1.0
Cyclohexane Carbon Tetrachloride	56-23-5	0.16	l ~u	0.16	0.75	U	0.75
2.2.4-Trimethylpentane	540-84-1	0.16	U	1	0.51	U	0.51
	71-43-2	0.16	U	0.46	0.65	U	0.65
Benzene	107-06-2				0.66	U	0.66
1,2-Dichloroethane	142-82-5	A	U		0.86	U	0.86
n-Heptane	79-01-6	0.16		0.46	0.74	U	0.74
Trichloroethene	78-87-5	0.16	U			U	1.1
1,2-Dichloropropane	75-27-4	0.16		0.46	0.72		0.73
Bromodichloromethane	10061-01-	5 0.16		0.16	www.test	U	0.60
cis-1,3-Dichloropropene	108-88-3			0.16			0.70
Toluene	10061-02	0.40		0.16	0.03	U	0.87
trans-1,3-Dichloropropene 1,1,2-Trichloroethane	79-00-5	0.48		U 0.10			1

CLIENT SAMPLE NO.

MBLK041808BA

Lab Name:

TAL Burlington

SDG Number: NY124793

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: MBLK0418

Date Analyzed: 04/18/2008

Target Compound	CAS Number	Results in ppbv	Q	RL In ppbv	Results in ug/m3	Q	RL in ug/m3
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Ethylbenzene	100-41-4	0.16	U	0.16	0.69	U	0.69
Xylene (m,p)	1330-20-7	0.40	U	0.40	1.7	U	1.7
Xylene (o)	95-47-6	0.16	Ü	0.16	0.69	U	0.69
Xylene (total)	1330-20-7	0.16	U	0.16	0.69	U	0.69
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	υ	0.16	1.1	U	1.1
4-Ethyltoluene	622-96-8	0.16	U	0.16	0.79	U	0.79
1,3,5-Trimethylbenzene	108-67-8	0.16	U	0.16	0.79	U	0.79

TestAmerica Burlington Data Qualifier Definitions

Organic

- U: Compound analyzed but not detected at a concentration above the reporting limit.
- J: Estimated value.
- N: Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds (TICs) where the identification of a compound is based on a mass spectral library search.
- P: SW-846: The relative percent difference for detected concentrations between two GC columns is greater than 40%. Unless otherwise specified the higher of the two values is reported on the Form I.
 - CLP SOW: Greater than 25% difference for detected concentrations between two GC columns. Unless otherwise specified the lower of the two values is reported on the Form I.
- C: Pesticide result whose identification has been confirmed by GC/MS.
- B: Analyte is found in the sample and the associated method blank. The flag is used for tentatively identified compounds as well as positively identified compounds.
- E: Compounds whose concentrations exceed the upper limit of the calibration range of the instrument for that specific analysis.
- D: Concentrations identified from analysis of the sample at a secondary dilution.
- A: Tentatively identified compound is a suspected aldol condensation product.
- X,Y,Z: Laboratory defined flags that may be used alone or combined, as needed. If used, the description of the flag is defined in the project narrative.

Inorganic/Metals

- E: Reported value is estimated due to the presence of interference.
- N: Matrix spike sample recovery is not within control limits.
- Duplicate sample analysis is not within control limits.
- B: The result reported is less than the reporting limit but greater than the instrument detection limit.
- U: Analyte was analyzed for but not detected above the reporting limit.

Method Codes:

P ICP-AES

MS ICP-MS

CV Cold Vapor AA

AS Semi-Automated Spectrophotometric

TestAmerica Burlington

30 Community Drive Suite 11

South Burlington, VT 05403

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

priorie 602-660-1990 fax 602-660-1919	T																					
Client Contact Information	Project Mar	nager: Mc	uk Di	stler		Samples Col	lected By:	C.M	Kev	sie	3 of 4 cocs											
Company: O'Brien & Gene	Phone: (3				Toron .									1 - 8 × 7 × 1								
Address: 5 000 Britton field Parkway	Email: C	Distle M	AROB	g. com									_	The state of					-			
Phone: (315) 437 - 6100	Site Contac	at:											section)						ction			
FAX: (315) 463-7554	STL Contac																		20.00			
Address: 5000 British field Parkway City/State/Zip Eart Syracuse, NY 13057 Phone: (315) 437-6100 FAX: (315) 463-7554 Project Name: Former AMSF site		Analysis	Turnarou	ind Time									note						note			
Oile.	S	tandard (S	pecify) 2	weeks									E.						ž.			
PO#		Rush (Spec											specif	υ					specif			
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister (D	TO-15	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please specify in notes	Sample Type	Indoor Air	Ambient Air	Soil Gas	Landfill Gas	Other (Please specify in notes section)			
AMSF-04-SS-032809	3/28/08	0943	1743	29.3"	-6.3"	2580	3422	V		M-1 8-1 879 M2-1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1					
AMSF-05-55-032808	3/28/08	0950	1750	-29.3"	-6.7"	37-13	3341	J									/					
AMSF-06-55-032808	3/28/08	0902	1650	-29.5"	-8.8"	4494	4830	1									1					
AMSF-07-55-032808	3/28/08	10901	1637	- 29.3	-8.1"	2803	3864	1									1					
AMSF-08-55-032808	3/28/08	0900	1643	-28.8	-6.8"	3119	4309	1									1					
AMSF-09-55-032808	3/28/08	0918	1718	-29.4	-13.5	3114/3447*	3508	1									1					
					e (Fahrenhei)				-												
		Interior		Ambient																		
	Start	67°F		60'F																		
	Stop	69ºF		61°F																		
				Pressure (in	ches of Hg)																	
		Interior		Ambient		1		1														
	Start	29.66		29.66																		
	Stop	29.69		29.69																		
Special Instructions/QC Requirements & Comme AMSF-09-55-032808: At 1310 Floring Vacuum	nts: ow controlle	#3114 searly 3	was nepl	aced with	h flow appling	controller#3	447. IN	thal	flow	Cov	ntaell	en o	Līd.	not	Show	NO	deci	reas	R			
Samples Shipped by:	Date/Time:	110	160		Samples	Received by: 4	1/3/08	1/3	0							_		_				
Samples Relinquished by:	Date/Time:	, 112.	13		Received	by:	190	113														
Relinquished by:	Date/Time:				Received	by:																
	AND THE STREET, CANADA	241277 TH TE.	a med Charlesto di	Note State State States	Silvertan allantin	MANAGER IN DO THE WAY A	Are a constant of	Contact When t	Secretary S	20029743	Salar to visitar	E-25/25/1-0	Trick activities	Coving attacky	ester traffe	CA STORY	erreno.	162.75 T	Sandar trans			

TestAmerica Burlington

30 Community Drive

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

Burlington, VT 05403 802-660-1990 fax 802-660-1919	TestAmerica And					Samples Collec					44 0000											
	Project Manag	ger: Man	K Dis-	Her		dinpi					-	-	18	1 1 mg	T		7					
t Contact Information	Dhann: (2.0	-11177-	6100									1	=				1	1	section)			
Dany: O'Brien & Gere	Email: Dis	HEMAR	2 0 pd.	com				1	1				ction	Pint Control	1				sect			
							1		1	1			50		1			-	notes			
State//in E	Site Contact:							1		1			ote		1	1			5			
e: (315) 437-6100 (315) 463-7554	STL Contact:											1	in		1	1	1	1	fy in			
(315)463-4884		Analysis 1	Turnarour	id Time									cify	11/1	1	1			specify			
ect Name: Former AIMSF site	Sta	andard (Sp	ecify) 2 1	veeks.									spe	9_		. 1	1	10	0			
	R	ush (Speci	fy)									946	336	2	-	Air		Ga	lea			
#										1.	U	5	Ple	9	Y	ent	Sas	=	r (P			
				Canister Vacuum In Field, "Hg	Canister Vacuum in Field, 'Hg	Flow Controller	Canister ID	TO-15	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please specify in notes section)	Sample Type	Indoor Air	Ambient Air	Soil Gas	Landfill Gas	Other (Please			
	Sample Date(s)	Time Start	Time Stop	(Start)	(Stop)			V	1								V	-	1-			
Sample Identification		20.22	1708	-29.4	-7.9	3756	3347	1	-	-	-			JA.								
MSF-10-55-032808	3/28/08	9337	1.100	-	1								-	- 7E	-	-	-	-	1			
M21-10-33-03800						-	1	1					1	110			_		1_			
						1		-	-	-	-	-	1	1					1			
			-		-			1	1	1				1.4		1_	-	-	+-			
				1				-		-	1	1										
		-		-				1			1_			1,000	-	-	-	-	-			
							-	-	1						N							
		-	-					1				_		1000								
						-(4)																
				Temperat	ure (Fahrenh	en)																
		Interior		Ambient																		
		67	E	60.	F			-														
	Start			61.	E																	
	Stop	64.	F			in l																
				Pressure	(inches of H	(8)																
		Interior		Ambient				-														
		-	11	29.	LL			-														
	Start			_																		
	Stop	29	.69	29,	61																	
Special Instructions/QC Requirements & Con	nments:																					
Special Instructions & Requirement																						
												-										
					Samr	es Received b	421/5/	20	11	130	7	- 1										
	Date/Til	me:	11:45	-	Same	les Received b	1/0/0	8	/!	_		-										
Samples Shipped by:			11.73		Rece	eived by:	1															
CKYC IN HEALTH	Date/Ti	me:			V																	
Samples Relinquished by:					Rec	eived by:									Winds and Street	77386	Path	FOR MEDI	eravia.			
that be	Date/T						A STREET TO STREET	ingle to mile	TATAL!	DN(2)		Altread A				19	学校					
Relinquished by: Lab Use Only. Shipper Name			TO SERVED AND THE BOOK	og TO Halliman de Co	THE PARTY AND ADDRESS OF THE PARTY.		oni					1		4.1		1		III TO THE REAL PROPERTY OF THE PARTY OF THE	The state of the s			

TestAmerica Burlington

30 Community Drive

Suite 11 South Burlington, VT 05403

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

	Project Manager: Mark Distler Phone: (315) 437-6100			Samples Coll	lected By: (W	A'Kenzie 3 of 4 cocs											
Email: DistleMA@ Obg.com									0				51,50.3					
nail: Dis	HRMA 6	2 obg.	ion										12. 14				- 0	
te Contact												ction	Art.					
			-				_					S Se						
	Analysis	Turnarou	nd Time				9					note						
St	andard (Sp	pecify) 2	weeks				0)					ify in	が大					
R	ush (Speci	ify)					1				-	spec	o o					
Sample Date(s)	Time Start	Time Stop	Fleld, "Hg	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller	Canister ID	TO-15 Lou	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please	Sample Typ	Indoor Air	Ambient Air	Soil Gas	Landfill Gas	
128/08	0943	1743	-29.3"	-3.0"	2827	4476	1							1				
28/08	0950	1749	- 29.3"	-5.0"	4519	3134	1							1				
28/08		1650	-29.5"				1							1				
128/08				-23"	3766	3474	V							1				
							1							V				
128/08	6918	1718			4511	3405	V						1976	1				
			Temperatur	e (Fahrenheit)													
	Interior		Ambient															
Start	690 F		61°F															
Stop	69°F		61.E															
			Pressure (in	ches of Hg)														
	Interior		Ambient															
Start	29.69		29.1	9														
Stop	29.69	l	29.6	9														
\$ 11:	Start Start	Contact: Analysis Standard (Sp. Rush (Spectary 28/08 0943 28/08 0902 28/08 0901 28/08 0901 28/08 0918 Interior Start 690 F Interior Start 29.69	Analysis Turnarou Standard (Specify) 2 Rush (Specify) Sample Date(s) Time Start Time Stop 28/08 0943 1749 28/08 0902 1650 /28/08 0900 1643 28/08 0900 1643 28/08 0900 1643 Interior Start 690 F Interior Start 29.69	Contact: Analysis Turnaround Time Standard (Specify) Weeks Rush (Specify) Weeks Rush (Specify) Canister Vacuum in Field, "High (Start) Fie	Contact: Analysis Turnaround Time Standard (Specify) 2 W ex K.5 Rush (Specify) Canister Vacuum in Field, "Hg (Start) (Star	Contact: Analysis Turnaround Time Standard (Specify)	Contact: Analysis Turnaround Time Standard (Specify)	Contact: Analysis Turnaround Time Standard (Specify) A weeks Rush (Specify) Canister Vacuum in Field, "Hg (Start) Flow Controller Canister Vacuum in Field, "Hg (Start) Canister Vacuum in Field, "Hg (Start) Canister Vacuum in Field, "Hg (Start) Canister Date(s) Time Start Time Stop (Start) Time Start Time Stop Taylor Taylor	Contact: Analysis Turnaround Time Standard (Specify) A weeks Rush (Specify) A weeks Rush (Specify) Canister Vacuum in Field, "Hg Field, "H	Contact: Analysis Turnaround Time Standard (Specify)	Contact: Analysis Turnaround Time Standard (Specify) 2 Weeks Rush (Specify)	Contact: Analysis Turnaround Time Standard (Specify) 2 2 2 2 2 2 2 2 2	Analysis Turnaround Time Standard (Specify) A weeks Rush (Specify) A weeks Rush (Specify) A weeks Rush (Specify) Rush (Specify) A weeks Rush (Specify) A weeks	28/08 0943 1743 - 29.3" - 3.0" 2827 4476 28/08 0950 1749 - 29.5" - 3.2" 3724 2701 28/08 0901 1637 - 29.4 - 23" 3766 3474 28/08 0900 1643 - 29.3" - 7.2" 3112 3391 28/08 0918 1718 - 29.3" - 5.6" 4511 3405 Temperature (Fahrenheit) Interior Ambient Start 690 F 61° F Pressure (Inches of Hg) Interior Ambient Start 29.69 29.69	28/08 0943 1743 -293" -3.0" 2827 4476 \\ 28/08 0950 1749 -293" -5.0" 4519 3136 \\ 28/08 0902 1650 -39,5" -3.2" 3724 2701 \\ 28/08 0901 1637 -29,4 -23" 3766 3474 \\ 28/08 0900 1643 -29.3" -7.2" 3112 3391 \\ 28/08 0918 1748 -29.3" -5.6" 4511 3405 \\ Temperature (Fahrenheit) Interior Start 690 F Stop 69° F Pressure (Inches of Hg) Interior Ambient Start 29.69 Ambient Start 29.69 Ambient Start 29.69 Ambient Start 29.69 Ambient	28/09 0943 1743 -293" -3.0" 2827 4476 28/09 0950 1749 -293" -5.0" 4519 3136 28/08 0902 1650 -39.5" -3.2" 3724 2701 28/08 0901 1637 -29.4 -23" 3766 3474 28/08 0900 1643 -29.3" -7.2" 3112 3391 28/08 0918 1718 -29.3" -5.6" 4511 3405 Temperature (Fahrenheit) Start 690F 610F Stop 690F 610F Pressure (Inches of Hg) Interior Ambient Start 29.69 29.49	28/09 0943 1743 -293" -3.0" 2827 4476 \\ 28/08 0950 1749 -293" -5.0" 4519 3136 \\ 28/08 0902 1650 -295" -3.2" 3724 2701 \\ 28/08 0901 1637 -29.4 -23" 3766 3474 \\ 28/08 0900 1643 -29.3" -7.2" 3112 3391 \\ 28/08 0918 1748 -29.3" -5.6" 4511 3405 \\ Temperature (Fahrenheit) Interior Ambient Start 690 F 610 F Stop 690 F 610 F Pressure (Inches of Hg) Interior Ambient Start 29.69 29.19	

TestAmerica Burlington

30 Community Drive Suite 11

South Burlington, VT 05403 phone 802-660-1990 fax 802-660-1919

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

Client Contact Information	Project Mar	nager: M	ank C	Distler		Samples Col	lected By:	C.M	Ken	20		4 of 4 cocs							
Company: O'Brien & GELR	Phone: (31	5/437-	4100					-	11001	310		-	OI.		COL	.5			
Address: 5 000 Barttenfield Parkway City/State/Zip East Syracuse, NY 13057 Phone: (315)437-6100	Email: D	SHEMA	10 Obe	, com										241					
Phone: (3,5)127 - 120 NY 13057				,			•			1			E						2
FAX: (315)463 - 7554	Site Contact STL Contact	ot:											ectio						ectio
Project Name: Former AMSE Site	OTE CONTA		_			-		-					60 60						SS
Site:	-		Turnarou					Level					not						note
PO#		tandard (S		weeks				100					fy in						Y.
		Rush (Spec	ify)					1					peci						Decil
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum In Fleid, "Hg (Start)	Canister Vacuum in Fleid, 'Hg (Stop)	Flow Controller	Canister ID	TO-15 Low	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please specify in notes section)	Sample Type	Indoor Air	Ambient Air	Soil Gas	Landfill Gas	Other (Please specify in notes section)
AMSF-10-IA-032808	3/28/08	0932	17-08	-24.2"	-10.9"	3767	4386	1							V				
AMSF-AA-032808	3/28/08	0957	1756	-29"	-8.9"	4107	3135	V								1			
										-				75					
				Temperature	(Fahrenheit)										-				-
		Interior		Ambient															
	Start	690F		61ºF															
	Stop	69°F		61°F															
				Pressure (in	ches of Hg)							_			_				
	Start	Interior		Ambient															
	Stop			29.69															
Special Instructions/QC Requirements & Commen				0. (. 0	,														
Samples Shipped by:	Date/Time:	10 . 1	10-		Samples	eceived by:	11/2/00	> 1	12	"									
Samples Relinquished by.	Date/Time:	N: 4	13		Received I	DV:	1/0/08	//	100		-								
Relinquished by:	Date/Time:				Received I														
						7.													
ab Use Only Shipper Name:	ATALL, I			Opened by		MARKET TREET	a Managarata	441	100	100 4 3	28 9 7 15	Maria Car	(S. 450.1)	A State	2.57 WY	\$24. USA	250 12		1 1 3

Sample Data Summary – TO-15 Low Volatile

OBRGER SAMPLE NO.

AMSF04IA032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab Sample ID: 746481 Matrix: (soil/water) AIR

Sample wt/vol: 125.0 (g/mL) ML Lab File ID: 746481

Date Received: 04/02/08 Level: (low/med) LOW

Date Analyzed: 04/09/08 % Moisture: not dec.

Dilution Factor: 4.0 GC Column: RTX-624 ID: 0.32 (mm)

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

CONCENTRATION UNITS: CAS NO. COMPOUND

(ug/L or ug/Kg) PPBV Q

75_71_8	Dichlorodifluoromethane	0.48	
75-11-0	1,2-Dichlorotetrafluoroethan	0.040	
75-01-4	Vinyl Chloride	0.080	
106 00 0	1,3-Butadiene	0.080	U
74 02 0	Bromomethane	0.080	U
75 00 3	Chloroethane	0.080	U
75-00-3	Bromoethene	0.080	U
35 60 4	Trichlorofluoromethane	2.0	
75-03-4	1,1-Dichloroethene	0.040	U
107 05 1	3-Chloropropene	0.080	
75 00-2	Methylene Chloride	140	E
1634 04-4	Methyl tert-Butyl Ether	0.040	U
1634-04-4	trans-1,2-Dichloroethene	0.040	U
110 54 3	n-Hexane	4.4	E
110-54-3	1,1-Dichloroethane	0.040	U
75-34-3	1,2-Dichloroethene (total)	0.040	U
540-59-0	cis-1,2-Dichloroethene	0.040	U
150-59-2	Chloroform	0.040	U
67-66-3	1,1,1-Trichloroethane	1.2	
71-55-6	Cyclohexane	0.42	
110-82-7	Carbon Tetrachloride	0.065	
56-23-5	2,2,4-Trimethylpentane	0.21	
71 42-2	Benzene	0.54	
107 06-2	1,2-Dichloroethane	0.21	
142-92-5	n-Heptane	0.54	
70 01 6	Trichloroethene	0.040	
79-01-6	1,2-Dichloropropane	0.080	U
76-67-3	Bromodichloromethane	0.040	
10061 01 5-	cis-1,3-Dichloropropene	0.040	U
10001-01-3-	Toluene	44	E
100-00-3	trans-1,3-Dichloropropene	0.040	U
10001-02-0-	1,1,2-Trichloroethane	0.040	U
19-00-5	Tetrachloroethene	0.15	

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

OBRGER SAMPLE NO.

AMSF04IA032808

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746481

Sample wt/vol: 125.0 (g/mL) ML Lab File ID: 746481

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. Date Analyzed: 04/09/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 4.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:
(ug/L or ug/Kg) PPBV Q

- 0.040 U 124-48-1-----Dibromochloromethane 106-93-4----1,2-Dibromoethane 0.040 U 100-41-4----Ethylbenzene 0.45 1.6 0.57 2.2 0.040 U 79-34-5----1,1,2,2-Tetrachloroethane____ 0.040 U 622-96-8-----4-Ethyltoluene 0.69 108-67-8-----1,3,5-Trimethylbenzene 0.27

OBRGER SAMPLE NO.

AMSF04IA 032808DL

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746481D1

Lab File ID: 746481D Sample wt/vol: 10.00 (g/mL) ML

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. Date Analyzed: 04/10/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 50.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV CAS NO. COMPOUND

0 0.87 D 75-71-8-----Dichlorodifluoromethane 76-14-2----1,2-Dichlorotetrafluoroethan 0.50 U 75-01-4-----Vinyl Chloride 1.0 U 106-99-0----1,3-Butadiene 1.0 U 1.0 U 74-83-9-----Bromomethane 1.0 U 75-00-3-----Chloroethane 1.0 U 593-60-2-----Bromoethene 75-69-4-----Trichlorofluoromethane 3.8 D 0.50 U 75-35-4-----1,1-Dichloroethene____ 1.0 U 200 DE 107-05-1----3-Chloropropene 75-09-2----Methylene Chloride 0.50 U 1634-04-4-----Methyl tert-Butyl Ether_____ 156-60-5-----trans-1,2-Dichloroethene____ 0.50 U 110-54-3----n-Hexane 6.6 D 0.50 U 75-34-3-----1,1-Dichloroethane 0.50 U 0.50 U 540-59-0----1,2-Dichloroethene (total) 156-59-2----cis-1,2-Dichloroethene 67-66-3-----Chloroform 0.50 U 1.5 D 0.80 D 71-55-6----1,1,1-Trichloroethane 110-82-7-----Cyclohexane 56-23-5-----Carbon Tetrachloride 0.50 U 540-84-1----2,2,4-Trimethylpentane____ 0.50 U 71-43-2----Benzene 0.67 D 107-06-2----1,2-Dichloroethane_____ 1.0 U 0.50 U 142-82-5----n-Heptane 0.50 U 79-01-6-----Trichloroethene 78-87-5----1,2-Dichloropropane____ 1.0 U 75-27-4-----Bromodichloromethane 0.50 U 10061-01-5----cis-1,3-Dichloropropene 0.50 U 108-88-3-----Toluene 10061-02-6----trans-1,3-Dichloropropene 51 DE 0.50 U 0.50 U 79-00-5----1,1,2-Trichloroethane 0.50 U 127-18-4----Tetrachloroethene

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

OBRGER SAMPLE NO.

AMSF04IA 032808DL

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746481D1

Sample wt/vol: 10.00 (g/mL) ML Lab File ID: 746481D

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. ____ Date Analyzed: 04/10/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 50.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ___(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV Q CAS NO. COMPOUND

0.50 U 0.50 U 124-48-1-----Dibromochloromethane 106-93-4----1,2-Dibromoethane 100-41-4-----Ethylbenzene 0.58 D 1330-20-7-----Xylene (m,p) 2.0 D 95-47-6-----Xylene (o) 0.88 D 1330-20-7-----Xylene (total)____ 3.0 D 75-25-2-----Bromoform 0.50 U 79-34-5-----1,1,2,2-Tetrachloroethane___ 0.50 U 622-96-8----4-Ethyltoluene 0.94 D 108-67-8-----1,3,5-Trimethylbenzene 1.0 U

VOLATILE ORGANICS ANALYSIS DATA SHEET OBRGER SAMPLE NO.

AMSF05IA032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab Sample ID: 746482 Matrix: (soil/water) AIR

Sample wt/vol: 125.0 (g/mL) ML Lab File ID: 746482

Date Received: 04/02/08 Level: (low/med) LOW

Date Analyzed: 04/09/08 % Moisture: not dec.

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 4.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO COMPOUND (UG/L or UG/KG) PPRV

CAS NO.	COMPOUND (ug/L or ug/Kg) PPBV	Q
75-71-8	Dichlorodifluoromethane	0.53	
76-14-2	1,2-Dichlorotetrafluoroethan	0.040	U
	Vinyl Chloride	0.080	U
	1,3-Butadiene	0.080	U
	Bromomethane	0.080	U
75-00-3	Chloroethane	0.080	U
	Bromoethene	0.080	U
	Trichlorofluoromethane	2.3	
	1,1-Dichloroethene	0.040	Ū
	3-Chloropropene	0.080	U
	Methylene Chloride	190	E
	Methyl tert-Butyl Ether	0.040	U
	trans-1,2-Dichloroethene	0.040	U
	n-Hexane	5.6	E
	1,1-Dichloroethane	0.040	U.
	1,2-Dichloroethene (total)	0.040	U
156-59-2	cis-1,2-Dichloroethene	0.040	U
	Chloroform	0.040	U
	1,1,1-Trichloroethane	1.2	
	Cyclohexane	0.53	
	Carbon Tetrachloride	0.088	
	2,2,4-Trimethylpentane	0.14	
71-43-2		0.36	
	1, 2-Dichloroethane	0.20	
	n-Heptane	0.54	
	Trichloroethene	0.040	U
	1,2-Dichloropropane	0.080	U
	Bromodichloromethane	0.040	U
	cis-1,3-Dichloropropene	0.040	U
108-88-3		45	E
	trans-1,3-Dichloropropene	0.040	U
	1,1,2-Trichloroethane	0.040	U
	Tetrachloroethene	0.13	

FORM 1 OBRGER SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

AMSF05IA032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746482

Sample wt/vol: 125.0 (g/mL) ML Lab File ID: 746482

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. ____ Date Analyzed: 04/09/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 4.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:
(ug/L or ug/Kg) PPBV Q

124-48-1Dibromochloromethane	0.040	U
06-93-41,2-Dibromoethane	0.040	U
.00-41-4Ethylbenzene	0.45	
.330-20-7Xylene (m,p)	1.6	
5-47-6Xylene (o)	0.59	
330-20-7Xylene (total)	2.3	
5-25-2Bromoform	0.040	U
9-34-51,1,2,2-Tetrachloroethane	0.040	U
22-96-84-Ethyltoluene	0.69	
08-67-81,3,5-Trimethylbenzene	0.27	

OBRGER SAMPLE NO.

AMSF05IA 032808DL

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746482D1

Sample wt/vol: 10.00 (g/mL) ML Lab File ID: 746482D

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. ____ Date Analyzed: 04/10/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 50.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV Q

75-71-8	Dichlorodifluoromethane	0.88 D	
76-14-2	1,2-Dichlorotetrafluoroethan	0.50 U	
	Vinyl Chloride	1.0 U	
106-99-0	1,3-Butadiene	1.0 U	
	Bromomethane	1.0 U	
	Chloroethane	1.0 U	i
593-60-2	Bromoethene	1.0 U	
	Trichlorofluoromethane	3.6 D	
	1,1-Dichloroethene	0.50 U	
107-05-1	3-Chloropropene	1.0 U	
	Methylene Chloride	250 D	
	Methyl tert-Butyl Ether	0.50 U	
	trans-1,2-Dichloroethene	0.50 U	
	n-Hexane	8.6 D	
	1,1-Dichloroethane	0.50 U	
	1,2-Dichloroethene (total)	0.50 U	
	cis-1,2-Dichloroethene	0.50 U	
	Chloroform_	0.50 U	
	1,1,1-Trichloroethane	1.6 D	
110-82-7	Cyclohexane	0.94 D	
	Carbon Tetrachloride	0.50 U	
	2,2,4-Trimethylpentane	0.50 U	
71-43-2		0.56 D	
	1,2-Dichloroethane	1.0 U	
	n-Heptane	0.87 D	
	Trichloroethene	0.50 U	
	1,2-Dichloropropane	1.0 U	
	Bromodichloromethane	0.50 U	
	cis-1,3-Dichloropropene	0.50 U	
108-88-3		54 D	
	trans-1,3-Dichloropropene	0.50 U	
	1,1,2-Trichloroethane	0.50 U	
127-18-4	Tetrachloroethene	0.50 U	

OBRGER SAMPLE NO.

1.0 U

AMSF05IA 032808DL

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746482D1

Sample wt/vol: 10.00 (g/mL) ML Lab File ID: 746482D

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. Date Analyzed: 04/10/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 50.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV Q

108-67-8-----1,3,5-Trimethylbenzene

OBRGER SAMPLE NO.

Dilution Factor: 4.0

AMSF06IA032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 SDG No.: NY124793

Lab Code: STLV Case No.: 28000 SAS No.:

Lab Sample ID: 746483 Matrix: (soil/water) AIR

Sample wt/vol: 125.0 (g/mL) ML Lab File ID: 746483

Date Received: 04/02/08 Level: (low/med) LOW

% Moisture: not dec. Date Analyzed: 04/09/08

GC Column: RTX-624 ID: 0.32 (mm)

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

	Dichlorodifluoromethane	0.34	
76-14-2	1,2-Dichlorotetrafluoroethan	0.040	U
75-01-4	Vinyl Chloride	0.080	U
	1,3-Butadiene	0.080	U
74-83-9	Bromomethane	0.080	U
	Chloroethane	0.080	
	Bromoethene	0.080	U
75-69-4	Trichlorofluoromethane	1.1	
	1,1-Dichloroethene	0.077	
107-05-1	3-Chloropropene	0.080	U
	Methylene Chloride	620	E
1634-04-4	Methyl tert-Butyl Ether	0.040	U
156-60-5	trans-1,2-Dichloroethene	0.040	U
110-54-3	n-Hexane	2.1	
75-34-3	1,1-Dichloroethane	0.040	U
540-59-0	1, 2-Dichloroethene (total)	0.040	
	cis-1,2-Dichloroethene	0.040	U
	Chloroform	0.040	U
71-55-6	1,1,1-Trichloroethane	0.36	
110-82-7	Cyclohexane	0.50	
56-23-5	Carbon Tetrachloride	0.062	
540-84-1	2,2,4-Trimethylpentane	0.050	
71-43-2	Benzene	0.21	
107-06-2	1,2-Dichloroethane	0.080	U
	n-Heptane	0.67	
	Trichloroethene	0.040	_
78-87-5	1,2-Dichloropropane	0.080	1
75-27-4	Bromodichloromethane	0.040	U
10061-01-5-	cis-1,3-Dichloropropene	0.040	U
	Toluene	8.5	-
	trans-1,3-Dichloropropene	0.040	
79-00-5	1,1,2-Trichloroethane	0.040	U
	Tetrachloroethene	0.19	

FORM 1 OBRGER SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET FORM 1

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 AMSF06IA032808

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746483

Sample wt/vol: 125.0 (g/mL) ML Lab File ID: 746483

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. _____ Date Analyzed: 04/09/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 4.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND CONCENTRATION UNITS:
(ug/L or ug/Kg) PPBV Q

124-48-1Dibromochloromethane	0.040	U
106-93-41,2-Dibromoethane	0.040	
.00-41-4Ethylbenzene	0.12	
.330-20-7Xylene (m,p)	0.48	_
5-47-6Xylene (o)	0.19	-
.330-20-7Xylene (total)	0.70	
5-25-2Bromoform	0.040	II
9-34-51,1,2,2-Tetrachloroethane	0.040	
22-96-84-Ethyltoluene	0.16	
.08-67-81,3,5-Trimethylbenzene	0.088	-

OBRGER SAMPLE NO.

AMSF06IA 032808DL

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

SDG No.: NY124793 Lab Code: STLV Case No.: 28000 SAS No.:

Lab Sample ID: 746483D1

Matrix: (soil/water) AIR Lab File ID: 746483D 50.00 (g/mL) ML

Sample wt/vol: Date Received: 04/02/08

Level: (low/med) LOW Date Analyzed: 04/10/08 % Moisture: not dec.

Dilution Factor: 10.0 GC Column: RTX-624 ID: 0.32 (mm)

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV

		20 D
106-99-0 74-83-9 75-00-3 75-69-4 75-35-4 107-05-1 156-60-5 110-54-3 156-59-2 156-59-2 10-82-7 56-23-5 10-82-7 10-92-6	COMPOUND (ug/L or ug/Kg) Dichlorodifluoromethane1,2-DichlorotetrafluoroethanVinyl Chloride1,3-ButadieneBromomethaneChloroethaneBromoetheneTrichlorofluoromethane1,1-Dichloroethene3-ChloropropeneMethyl tert-Butyl Ethertrans-1,2-Dichloroethene1,1-Dichloroethane1,1-Dichloroethane1,2-Dichloroethene (total)cis-1,2-Dichloroethenecls-1,2-Dichloroethane1,1,1-TrichloroethaneCyclohexaneCyclohexaneCyclohexane2,2,4-Trimethylpentane1,2-Dichloroethane1,2-Dichloroethane1,2-Dichloroethane1,2-Dichloroethane	0.39 D 0.10 U 0.20 U 0.20 U 0.20 U 0.20 U 1.3 D 0.10 U 0.20 U 840 DE 0.10 U 0.10 U

OBRGER SAMPLE NO.

AMSF06IA 032808DL

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab Sample ID: 746483D1 Matrix: (soil/water) AIR

Sample wt/vol: 50.00 (g/mL) ML Lab File ID: 746483D

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. Date Analyzed: 04/10/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 10.0

Soil Extract Volume:____(uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CONCENTRATION UNITS:
(ug/L or ug/Kg) PPBV Q CAS NO. COMPOUND

124-48-1Dibromochloromethane	0.10 U
106-93-41,2-Dibromoethane	0.10 U
100-41-4Ethylbenzene	0.12 D
1330-20-7Xylene (m,p)	0.41 D
95-47-6Xylene (o)	0.18 D
1330-20-7Xylene (total)	0.62 D
75-25-2Bromoform	0.10 U
79-34-51,1,2,2-Tetrachloroethane	0.10 U
622-96-84-Ethyltoluene	0.15 D
108-67-81,3,5-Trimethylbenzene	0.20 U

OBRGER SAMPLE NO.

AMSF07IA032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Case No.: 28000 SAS No.: Lab Code: STLV

SDG No.: NY124793

Matrix: (soil/water) AIR

Lab Sample ID: 746484

Sample wt/vol: 125.0 (g/mL) ML

Lab File ID: 746484

Level: (low/med) LOW

Date Received: 04/02/08

Date Analyzed: 04/09/08

% Moisture: not dec.

Dilution Factor: 4.0

GC Column: RTX-624 ID: 0.32 (mm) Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

OBRGER SAMPLE NO.

AMSF07IA032808

Matrix: (soil/water) AIR Lab Sample ID: 746484

Sample wt/vol: 125.0 (g/mL) ML Lab File ID: 746484

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. _____ Date Analyzed: 04/09/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 4.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV Q

0.040 U 124-48-1-----Dibromochloromethane 0.040 U 106-93-4----1,2-Dibromoethane 0.10 100-41-4-----Ethylbenzene 0.55 1330-20-7-----Xylene (m,p) _____ 95-47-6------Xylene (o) _____ 0.23 0.81 1330-20-7-----Xylene (total) 0.040 U 75-25-2-----Bromoform 79-34-5----1,1,2,2-Tetrachloroethane 0.040 U 0.29 622-96-8----4-Ethyltoluene 108-67-8-----1,3,5-Trimethylbenzene 0.22

OBRGER SAMPLE NO.

AMSF07IA 032808DL

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab Sample ID: 746484D1 Matrix: (soil/water) AIR

Sample wt/vol: 71.00 (g/mL) ML Lab File ID: 746484D

Date Received: 04/02/08 Level: (low/med) LOW

Date Analyzed: 04/10/08 % Moisture: not dec.

Dilution Factor: 7.0 GC Column: RTX-624 ID: 0.32 (mm)

Soil Aliquot Volume: ____(uL) Soil Extract Volume:____(uL)

CONCENTRATION UNITS:

AS NO.			
	Dichlorodifluoromethane	0.38	
5-71-8	1,2-Dichlorotetrafluoroethan	0.070	
6-14-2		0.14	
	Vinvi illibitue	0.14	
00 00	1 3-Butadiene	0.14	U
4-83-9	Bromomethane	0.14	
5-00-3	Chloroethane	0.14	U
93-60-2	Bromoethene	0.71	D
	Trich loror Horollechane	0.070	U
1		0.14	
1	-1-Ch lorobiobelle	270	
		0.070	
		0.070	
EC 60-5	trans-1,2-Dichloroethene	1.1	
	2-467306	0.070	
		0.070	
75-34-3	1,1-Dichloroethane (total)	0.070	
540-59-0	cis-1,2-Dichloroethene		
156-59-2	Chloroform	0.070	
57-66-3	Chloroform	0.23	
71-55-6	Cralohevane	0.26	
110-82-7	Cyclohexane	0.070	
56-23-5	2,2,4-Trimethylpentane	0.070	
540-84-1	2, 2, 4-11 Interny 1pos	0.19	
71-43-2	Benzene	0.14	
107-06-2	1, 2-Dichioroechane	0.29	
142-82-5	n-Heptane	0.070	
79-01-6	Trichloroethene_	0.14	
78-87-5	1,2-Dichloropropane	0.070	
		0.070	U
10061-01-5	cls-1,3-Dichioroprop	4.3	3 D
108-88-3	Toluene	0.07	UC
	twomen in Children of the	0.07	
F	1 1 2-Trichiofoethane	0.1	
127-19-4	Tetrachloroethene	0	

FORM 1 OBRGER SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

AMSF07IA 032808DL

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793 Matrix: (soil/water) AIR Lab Sample ID: 746484D1 Sample wt/vol: 71.00 (g/mL) ML Lab File ID: 746484D Level: (low/med) LOW Date Received: 04/02/08 % Moisture: not dec. ____ Date Analyzed: 04/10/08 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 7.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:
(ug/L or ug/Kg) PPBV Q CAS NO. COMPOUND

124-48-1Dibromochloromethane	0.070	U
106-93-41,2-Dibromoethane	0.070	U
100-41-4Ethylbenzene	0.083	D
1330-20-7Xylene (m,p)	0.42	D
95-47-6Xylene (o)	0.18	D
1330-20-7Xylene (total)	0.63	D
75-25-2Bromoform	0.070	U
79-34-51,1,2,2-Tetrachloroethane	0.070	U
622-96-84-Ethyltoluene	0.23	D
108-67-81,3,5-Trimethylbenzene	0.20	D

OBRGER SAMPLE NO.

AMSF08IA032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793 Lab Sample ID: 746485

Matrix: (soil/water) AIR Lab File ID: 746485

Sample wt/vol: 125.0 (g/mL) ML Date Received: 04/02/08

Level: (low/med) LOW Date Analyzed: 04/09/08

% Moisture: not dec. _____ Dilution Factor: 4.0

GC Column: RTX-624 ID: 0.32 (mm) Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

Q CAS NO. COMPOUND

	1:51 cromethane	0.37	
5-71-8	Dichlorodifluoromethane	0.040	
		0.080	
0-12 2	Vinyl Chloride	0.080	J
		0.080	J
		0.080	J
4-83-9	Chloroethane		Ū
5-00-3	Bromoethene	1.2	
393-60-2	BromoetheneTrichlorofluoromethane	0.049	
75-69-4	1,1-Dichloroethene		U
		650	-
			U
75-09-2	Methylene Chloride	0.024	-
1634-04-4	Methyl tert-Butyl Ether	0.010	U
CO E	Lidio -/-	2.1	-
110-54-3	n-Hexane	0.010	U
TIO-24 2	1,1-Dichloroethane	0.040	
75-34-3	1,1-Dichloroethane (total)	0.040	U
		0.040	U
156-59-2	Chloroform	0.39	
67-66-3	1 1 1-Trichloroethane	0.54	
71-55-6	Chloroform 1,1,1-Trichloroethane	0.064	-
110-82-7	Tetrachloride	0.062	
56-23-5	Carbon recent hylpentane	0.002	
540-84-1			
71-43-2	Benzene	0.080	1
107-06-2	Benzene	0.75	
		0.040	
		0.080	
70 07 5	1,2-Dichloropropane	0.040	
76-07-3	Bromodichloromethane	0.040	U
15-21-3	Bromodichiolomescis-1,3-Dichloropropene	7.8	E
T000T-01-2	Toluene	0.040	
108-88-3	trans-1,3-Dichloropropene	0.040	
		0.20	
79-00-5	Tetrachloroethene	0.2	-

OBRGER SAMPLE NO.

AMSF08IA032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab Sample ID: 746485 Matrix: (soil/water) AIR

Sample wt/vol: 125.0 (g/mL) ML Lab File ID: 746485

Date Received: 04/02/08 Level: (low/med) LOW

% Moisture: not dec. Date Analyzed: 04/09/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 4.0

Soil Extract Volume: (uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:
(ug/L or ug/Kg) PPBV Q CAS NO. COMPOUND

0.040 U 124-48-1-----Dibromochloromethane 106-93-4-----1,2-Dibromoethane 100-41-4-----Ethylbenzene 0.11 1330-20-7-----Xylene (m,p) 0.39 0.15 0.57 75-25-2-----Bromoform 0.040 U 79-34-5----1,1,2,2-Tetrachloroethane 0.040 U 622-96-8----4-Ethyltoluene 0.20 108-67-8-----1,3,5-Trimethylbenzene 0.10

OBRGER SAMPLE NO.

AMSF08IA 032808DL

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.:

SDG No.: NY124793

Matrix: (soil/water) AIR

Lab Sample ID: 746485D1

50.00 (g/mL) ML Sample wt/vol:

Lab File ID: 746485D

Level: (low/med) LOW

Date Received: 04/02/08

% Moisture: not dec. _____

Date Analyzed: 04/10/08

Dilution Factor: 10.0

GC Column: RTX-624 ID: 0.32 (mm) Soil Extract Volume: ____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

5-71-8		0.45	
2 17 0	Dichlorodiliuolomethan	0.10	U
C-11-2	Dichlorodifluoromethane	0.20	U
0-14 2	Vinyl Chloride	0.20	U
		0.20	
		0.20	
- 00 3	Chioroethane	0.20	U
5-00-3	Bromoethene	1.4	
		0.10	
		0.20	
		920	
107-05-1	Methylene Chloride	0.10	
75-09-2	Methylene ChiolideMethyl tert-Butyl Ether trans-1.2-Dichloroethene	0.10	
1634-04-4	Methyl tert-Butyl Benderal	2.5	
156-60-5	- Uovane	0.10	
110-54-3	1,1-Dichloroethane		
75-34-3	2 Dichloroethene (total)_	0.10	
540-59-0	1,1-Dichloroethane (total)	0.10	
156-59-2	C1S-1,2 D10	0.10	
67-66-3	Chloroform	0.37	
		0.6	
110-82-7	Cyclohexane Carbon Tetrachloride	0.10	
56-23-5	Carbon Tetrachioritane	0.10	
EAD 01-1	Z, Z, 4-111mcciij-F	0.19	
71-43-2	Benzene	0.2	
	7 7 11 611 101 10 10 10 10 10 10 10 10 10 10 10	0.6	
		0.1	
		0.2	
78-87-5	1,2-Dichloropropane	0.1	
			UO
			4 D
108-88-3	Toluene		.0 U
10061-02-6	trans-1,3-Dichioropropene		0 U
	Tans-1, 5 Chloroethane	0.2	23 D

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

OBRGER SAMPLE NO.

AMSF08IA 032808DL

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746485D1

Sample wt/vol: 50.00 (g/mL) ML Lab File ID: 746485D

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. _____ Date Analyzed: 04/10/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 10.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

OBRGER SAMPLE NO.

AMSF09IA032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab Sample ID: 746486 Matrix: (soil/water) AIR

Lab File ID: 746486 Sample wt/vol: 125.0 (g/mL) ML

Date Received: 04/02/08 Level: (low/med) LOW

Date Analyzed: 04/09/08 % Moisture: not dec. _____

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 4.0

Soil Aliquot Volume: ____(uL) Soil Extract Volume:____(uL)

CONCENTRATION UNITS:

		0.34
77 71 0	Dichlorodifluoromethane	0.040 U
me 44 0	N-DICHIOLOGECTAL	0.080 U
76-14-2	Vinyl Chloride	0.080 U
75-01-4	1,3-Butadiene	0.080 U
106-99-0	Bromomethane	
74-83-9	ghloroethane	0.080 U
	Chloroethane	0.080 U
593-60-2	BromoetheneTrichlorofluoromethane	0.21
75-69-4	n pichloroethene	0.075
75-35-4	1,1-Dichloroethene	0.080 U
107-05-1	3-Chloropropene Chloride	28 E
		0.040 U
		0.040 U
156-60-5	trans-1,2-bichitor	0.16
	n-Hexane	0.040 U
		0.040 U
		0.040 U
156 59-7	C1S-1, Z-D1C11102	0.040 U
		0.41
71 55-6		0.094
110-82-7	Cyclohexane Totrachloride	0.052
		0.040 U
540-84-1	2,2,4-Trimethylpentane	0.16
		0.080 U
107-06-2	1,2-Dichloroethane	0.10
4 40 00 E -	hebraile	0.040 U
	Trich loroethelle	0.080 U
	1 7-111 Ch (Or Ob) Obane	0.040 U
	DYOMOGICALDI UNICLIMATE	0.040 U
75-27-4	cis-1,3-Dichloropropene	
10061-01-5	Toluene	0.64
	Toluene	0.040 U
10061-02-6	1,1,2-Trichloroethane	0.040 U
79-00-5	Tetrachloroethene	0.040 U

FORM 1 OBRGER SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: TESTAMERICA BURLINGTON | Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793 Matrix: (soil/water) AIR Lab Sample ID: 746486 Sample wt/vol: 125.0 (g/mL) ML Lab File ID: 746486

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. _____ Date Analyzed: 04/09/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 4.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV Q

124-48-1Dibromochloromethane	0.040	U
106-93-41,2-Dibromoethane	0.040	U
100-41-4Ethylbenzene	0.042	
1330-20-7Xylene (m,p)	0.16	
95-47-6Xylene (o)	0.060	
1330-20-7Xylene (total)	0.23	
75-25-2Bromoform_	0.040	U
79-34-51,1,2,2-Tetrachloroethane	0.040	U
622-96-84-Ethyltoluene	0.057	
108-67-81,3,5-Trimethylbenzene	0.080	U

OBRGER SAMPLE NO.

AMSF10IA032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab Sample ID: 746487 Matrix: (soil/water) AIR

Lab File ID: 746487 Sample wt/vol: 125.0 (g/mL) ML

Date Received: 04/02/08 Level: (low/med) LOW

Date Analyzed: 04/09/08 % Moisture: not dec. _____

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 4.0

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV Q

	Dichlorodifluoromethane_	0.42	
75-71-8	Dichlorotetrafluoroethan	0.040 U	
76-14-2	1,2-Dichlorotetrafluoroethan	0.080 U	
75-01-4	Vinyl Chloride	0.14	
106-99-0	1,3-Butadiene	0.080 U	
71 03-9	Bromomethane	0.080 U	
75-00-3	Chloroethane	0.080 U	
593-60-2	Bromoethene	0.85	
	Trich orot Iudiolile chance	0.040 U	
DE 25 1	1.1-DICHIOLOGCING	0.080 U	
05 5	3-CH OLODIOPETE	5.5	
_	MOTERIAL PURE CONTRACTOR	0.040 U	
	Motori Teri-Ducy Ducy-	0.040 U	
156-60-5	trans-1,2-bichiozo	3.0	
	n-Hexane	0.10	
		0.040 U	
		0.040 U	
156-59-7	C1S-1, Z D1C11	0.040 U	
		1.5	
71 55-6	1,1,1-Trichioroechare	5.2 E	
110-92-7	Cyclohexane	0.068	
		0.063	
540 04-1	2,2,4-Trimethylpentane	0.27	
		0.080 U	
107 06-2	1,2-Dichloroethane	2.2	
	n-Hentalle	0.040 U	
	Tri chi orgeliene	0.080 U	
	-1 2-111 Ch 101 ODI ODALIC	0.040 U	
		0.040 U	
75-27-4	cis-1,3-Dichloropropene	0.0	
		1.7	
	Toluene	0.040 U	
10061-02-6-	1,1,2-Trichloroethane	0.010	
	Tetrachloroethene	0.16	

FORM 1 OBRGER SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

AMSF10IA032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746487

Sample wt/vol: 125.0 (g/mL) ML Lab File ID: 746487

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. _____ Date Analyzed: 04/09/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 4.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV Q

124-48-1Dibromochloromethane	0.040	U
106-93-41,2-Dibromoethane	0.040	U
100-41-4Ethylbenzene	0.30	
1330-20-7Xylene (m,p)	1.1	
95-47-6Xylene (o)	0.42	
1330-20-7Xylene (total)	1.6	
75-25-2Bromoform	0.040	U
79-34-51,1,2,2-Tetrachloroethane	0.040	U
622-96-84-Ethyltoluene	0.61	
108-67-81,3,5-Trimethylbenzene	0.47	

OBRGER SAMPLE NO.

AMSF10IA 032808DL

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

SDG No.: NY124793

Case No.: 28000 SAS No.: Lab Code: STLV Lab Sample ID: 746487D1

Matrix: (soil/water) AIR Lab File ID: 746487D 71.00 (g/mL) ML

Sample wt/vol: Date Received: 04/02/08

Level: (low/med) LOW Date Analyzed: 04/10/08

% Moisture: not dec. Dilution Factor: 7.0

GC Column: RTX-624 ID: 0.32 (mm) Soil Aliquot Volume: ____(uL) Soil Extract Volume:____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV

COMPOUND CAS NO. 0.42 D 75-71-8-----Dichlorodifluoromethane_ 0.070 U 76-14-2----1,2-Dichlorotetrafluoroethan 0.14 U 75-01-4-----Vinyl Chloride____ 0.14 U 106-99-0-----1,3-Butadiene____ 0.14 U 74-83-9-----Bromomethane 0.14 U 75-00-3-----Chloroethane 0.14 U 593-60-2-----Bromoethene 0.71 D 75-69-4-----Trichlorofluoromethane 0.070 U 75-35-4-----1,1-Dichloroethene 0.14 U 107-05-1----3-Chloropropene 4.7 D 75-09-2-----Methylene Chloride 0.070 U 1634-04-4-----Methyl tert-Butyl Ether 0.070 U 156-60-5-----trans-1,2-Dichloroethene___ 2.4 D 110-54-3----n-Hexane 0.091 D 75-34-3-----1,1-Dichloroethane 0.070 U 540-59-0-----1,2-Dichloroethene (total) 0.070 U 156-59-2----cis-1,2-Dichloroethene 0.070 U 67-66-3-----Chloroform 1.1 D 71-55-6----1,1,1-Trichloroethane 4.0 D 110-82-7-----Cyclohexane_ 0.070 U 56-23-5-----Carbon Tetrachloride 0.070 U 540-84-1----2,2,4-Trimethylpentane___ 0.22 D 71-43-2-----Benzene 0.14 U 107-06-2----1,2-Dichloroethane 1.8 D 142-82-5----n-Heptane_ 0.070 U 79-01-6-----Trichloroethene 0.14 U 78-87-5----1,2-Dichloropropane 0.070 U 75-27-4-----Bromodichloromethane 0.070 U 10061-01-5----cis-1,3-Dichloropropene____ 1.3 D 108-88-3-----Toluene 0.070 U 10061-02-6----trans-1,3-Dichloropropene___ 0.070 U 79-00-5-----1,1,2-Trichloroethane____ 0.13 D 127-18-4----Tetrachloroethene

FORM 1 OBRGER SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

AMSF10IA 032808DL

Lab Name: TESTAMERICA BURLINGTON | Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746487D1

Sample wt/vol: 71.00 (g/mL) ML Lab File ID: 746487D

Level: (low/med) LOW Date Received: 04/02/08

Date Analyzed: 04/10/08 % Moisture: not dec.

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 7.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV CAS NO. COMPOUND

124-48-1Dibromochloromethane	0.070	U
106-93-41,2-Dibromoethane	0.070	U
100-41-4Ethylbenzene	0.22	D
1330-20-7Xylene (m,p)	0.79	D
95-47-6Xylene (o)	0.29	D
1330-20-7Xylene (total)	1.1	D
75-25-2Bromoform	0.070	U
79-34-51,1,2,2-Tetrachloroethane	0.070	U
622-96-84-Ethyltoluene	0.38	D
108-67-81,3,5-Trimethylbenzene	0.28	D

OBRGER SAMPLE NO.

AMSFAA032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Case No.: 28000 SAS No.: Lab Code: STLV

SDG No.: NY124793

Lab Sample ID: 746488

Matrix: (soil/water) AIR

Lab File ID: 746488

Sample wt/vol: 125.0 (g/mL) ML

Date Received: 04/02/08

Level: (low/med) LOW

% Moisture: not dec. _____

Date Analyzed: 04/09/08

GC Column: RTX-624 ID: 0.32 (mm)

Dilution Factor: 4.0

Soil Extract Volume:____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV Q

CAS NO.	COMPOUND (ug/L or ug/Kg	
		0.34 U
75-71-8	Dichlorodifluoromethane 1,2-Dichlorotetrafluoroethan	0.020
1 0		0.080 U
75-01-4	Vinyl Chloride	0.080 U
	1 1-Bulauterre	0.080 U
		0.080 U
	Chioroethane	0.080 U
75-00-3	Bromoethene	0.14
593-60-2	Bromoethene	0.040 U
75-69-4	Trichlororitations1,1-Dichloroethene	0.080 U
		0.80 U
107-05-1	Methylene Chloride	0.040 U
75-09-2	Methyl tert-Butyl Ether	0.040 U
1634-04-4	Methyl tert-Butyl Ether	0.20
156 60-5	LIGHS I/-	0.20
110-54-3	n-Hexaire	0.040 U
75-34-3	1,1-Dichloroethane	0.040 U
540-59-0	1,2-Dichloroethene	0.040 U
		0.040 U
67-66-3	Chloroform	0.082
		0.040 U
110-02-7	Cyclohexane	0.056
110-02	CyclonexaneCarbon TetrachlorideCarbon Tetrachloride	0.040 U
56-23-3	Carbon letradada	0.14
71-43-2	Benzene	0.080 U
71-43-2	Benzene	0.11
		0.040 U
142-82-5	Trichloroethene	0.080 U
79-01-6	1,2-Dichloropropane	0.040 U
78-87-5	Bromodichloromethane	0.040 U
75-27-4	sig 1 3-Dichloropropene	0.25
1 10061-01-5	CIB-1/3 DI	0.040 U
108-88-3	Toluene 3 Dichloropropene	0.040 U
10061-02-6-	Toluene trans-1,3-Dichloropropene	0.010
		0.040 U
127-18-4	Tetrachloroethene	

OBRGER SAMPLE NO.

AMSFAA032808

Lab Name: TESTAMERICA BURLINGTON | Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746488

Sample wt/vol: 125.0 (g/mL) ML Lab File ID: 746488

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. _____ Date Analyzed: 04/09/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 4.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND CONCENTRATION UNITS:
(ug/L or ug/Kg) PPBV Q

0.040 U 124-48-1-----Dibromochloromethane 106-93-4----1,2-Dibromoethane 0.040 U 0.080 U 100-41-4-----Ethylbenzene 1330-20-7-----Xylene (m,p) 95-47-6-----Xylene (o) 0.080 U 0.040 U 0.040 U 1330-20-7-----Xylene (total)____ 75-25-2-----Bromoform 0.040 U 79-34-5----1,1,2,2-Tetrachloroethane___ 0.040 U 0.040 U 622-96-8----4-Ethyltoluene 0.080 U 108-67-8-----1,3,5-Trimethylbenzene

CLIENT SAMPLE NO.

MBLK040908EA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793 Lab Sample ID: MBLK040908EA

Matrix: (soil/water) AIR Lab File ID: ECYB01A

Sample wt/vol: 500.0 (g/mL) ML Date Received:

Level: (low/med) LOW Date Analyzed: 04/09/08

% Moisture: not dec. _____

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL) Soil Extract Volume:____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV Q CAS NO. COMPOUND

	1' fluoromethane	0.010 U
75-71-8	Dichlorodifluoromethane	0.010 U
76-14-2	Dichlorodilidolometras-	0.020 U
75-01-4	Vinyl Chloride	0.020 U
		0.020 U
	- bromomethanc	0.020 U
00 3	Chloroethane	0.020 U
F03-60-2	Bromoethene	0.010 U
75-60-4	Trichlorofluoromethane	0.010 U
		0.020 U
		0.20 U
TO 1-02-1	Methylene Chloride	0.010 U
75-09-2	Methyl tert-Butyl Ether	0.010 U
4 FC CO F	LIdIIS-1/2 D	0.020 U
156-60-3	n-Hexane	0.010 U
110-54-3	1,1-Dichloroethane	0.010 U
75-34-3	1,1-Dichloroethane	0.010 U
540-59-0-	is-1,2-Dichloroethene	0.010 U
156-53-2-	Chloroform	0.010 U
67-66-3	Chloroform 1,1,1-Trichloroethane	0.010 U
11-55-6-	CyclohexaneCarbon Tetrachloride	0.010 U
110-02-7	Carbon Tetrachloride	0.010 U
		0.010 U
540-64-1	Benzene	0.020 U
107-06-2	Benzene 1,2-Dichloroethane	0.010 U
142-92-5	n-Heptane	0.010 U
70 01-6	1,2-Dichloroethane	77 050 0
79-01-0	1,2-Dichloropropane	0.010 U
		0.010 U
10001-01-5	C15-1,3-D1011101-0F-1	0.010 U
10061-01 3	Toluene	0.010 U
		0.010 U
70 00-5	trans-1,3-Trichloroethane	0.010 U
19-00-3	Tetrachloroethene	

FORM 1 CLIENT SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

MBLK040908EA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793 Matrix: (soil/water) AIR Lab Sample ID: MBLK040908EA Sample wt/vol: 500.0 (g/mL) ML Lab File ID: ECYB01A Level: (low/med) LOW Date Received: % Moisture: not dec. ____ Date Analyzed: 04/09/08 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV

CAS NO.	COMPOUND (ug/L	or ug/kg) PPBV
124-48-1	Dibromochloromethane	0.010 U
	1,2-Dibromoethane	0.010 U
100-41-4	Ethylbenzene	0.010 U
1330-20-7	Xylene (m,p)	0.020 U
95-47-6	Xylene (o)	0.010 U
	Xylene (total)	0.010 U
	Bromoform	0.010 U
79-34-5	1,1,2,2-Tetrachloroetha	ne 0.010 U
	4-Ethyltoluene	0.010 U
108-67-8	1,3,5-Trimethylbenzene	0.020 U

VOLATILE ORGANICS ANALYSIS DATA SHEET CLIENT SAMPLE NO.

MBLK041008EA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: MBLK041008EA

Sample wt/vol: 500.0 (g/mL) ML Lab File ID: ECYB01B

Date Received: Level: (low/med) LOW

Date Analyzed: 04/10/08 % Moisture: not dec.

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

75-71-8	Dichlorodifluoromethane	0.010	
76-14-2	1,2-Dichlorotetrafluoroethan	0.010	U
75-01-4	Vinyl Chloride	0.020	U
106-99-0	1,3-Butadiene	0.020	U
	Bromomethane	0.020	
	Chloroethane	0.020	U
	Bromoethene	0.020	U
	Trichlorofluoromethane	0.010	U
	1,1-Dichloroethene	0.010	
	3-Chloropropene	0.020	
	Methylene Chloride	0.20	
	Methyl tert-Butyl Ether	0.010	
	trans-1,2-Dichloroethene	0.010	
	n-Hexane	0.020	
	1,1-Dichloroethane	0.010	
	1,2-Dichloroethene (total)	0.010	
	cis-1,2-Dichloroethene	0.010	_
	Chloroform	0.010	
	1,1,1-Trichloroethane	0.010	
	Cyclohexane	0.010	_
	Carbon Tetrachloride	0.010	_
	2,2,4-Trimethylpentane	0.010	
	Benzene	0.010	_
107-06-2	1,2-Dichloroethane	0.020	
	n-Heptane	0.010	
	Trichloroethene	0.010	1
	1,2-Dichloropropane	0.020	-
	Bromodichloromethane	0.010	
	cis-1,3-Dichloropropene	0.010	
	Toluene		U
	trans-1,3-Dichloropropene		U
	1,1,2-Trichloroethane	0.010	
127-18-4	Tetrachloroethene	0.010	U

CLIENT SAMPLE NO.

MBLK041008EA

Lab Name: TESTAMERIC	A BURLINGTON Co	ontract: 28000		_
Lab Code: STLV	Case No.: 28000	SAS No.:	SDG No.: NY124793	
Matrix: (soil/water)	AIR	Lab Sampl	e ID: MBLK041008EA	
Sample wt/vol:	500.0 (g/mL) ML	Lab File	ID: ECYB01B	
Level: (low/med)	LOW	Date Rece	eived:	
% Moisture: not dec.		Date Anal	yzed: 04/10/08	
GC Column: RTX-624	ID: 0.32 (mm)	Dilution	Factor: 1.0	
Soil Extract Volume:	(uL)	Soil Aliq	quot Volume:	(uL)
CAS NO.	COMPOUND	CONCENTRATION U (ug/L or ug/Kg)		

124-48-1Dibromochloromethane	0.010	U
106-93-41,2-Dibromoethane	0.010	U
100-41-4Ethylbenzene	0.010	U
1330-20-7Xylene (m,p)	0.020	U
95-47-6Xylene (o)	0.010	U
1330-20-7Xylene (total)	0.010	U
75-25-2Bromoform	0.010	U
79-34-51,1,2,2-Tetrachloroethane	0.010	U
622-96-84-Ethyltoluene	0.010	U
108-67-81,3,5-Trimethylbenzene	0.020	U

CLIENT SAMPLE NO.

EA040908LCS

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 SDG No.: NY124793

Case No.: 28000 SAS No.: Lab Code: STLV

Lab Sample ID: EA040908LCS Matrix: (soil/water) AIR

Lab File ID: ECY20AQ 500.0 (g/mL) ML Sample wt/vol:

Date Received: (low/med) LOW Level:

Date Analyzed: 04/09/08 % Moisture: not dec. _____

Dilution Factor: 1.0 GC Column: RTX-624 ID: 0.32 (mm)

Soil Aliquot Volume: ____(uL) Soil Extract Volume:____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV COMPOUND

CAS NO. 0.20 75-71-8-----Dichlorodifluoromethane 0.20 76-14-2----1,2-Dichlorotetrafluoroethan 0.19 75-01-4-----Vinyl Chloride 0.19 106-99-0-----1,3-Butadiene 0.18 74-83-9-----Bromomethane 0.18 75-00-3-----Chloroethane 0.20 593-60-2-----Bromoethene 75-69-4-----Trichlorofluoromethane 0.20 0.20 75-35-4-----1,1-Dichloroethene____ 0.19 107-05-1----3-Chloropropene 0.22 75-09-2-----Methylene Chloride_ 1634-04-4-----Methyl tert-Butyl Ether 0.18 0.20 156-60-5----trans-1,2-Dichloroethene___ 0.20 110-54-3----n-Hexane 75-34-3-----1,1-Dichloroethane
540-59-0-----1,2-Dichloroethene (total) 0.19 0.39 0.19 156-59-2----cis-1,2-Dichloroethene 0.20 67-66-3-----Chloroform 71-55-6-----1,1,1-Trichloroethane____ 0.20 0.18 110-82-7-----Cyclohexane_ 0.19 56-23-5-----Carbon Tetrachloride 0.20 540-84-1----2,2,4-Trimethylpentane 0.17 71-43-2----Benzene 0.20 107-06-2----1,2-Dichloroethane 0.18 142-82-5----n-Heptane 0.19 79-01-6-----Trichloroethene 0.17 78-87-5-----1,2-Dichloropropane 0.20 75-27-4-----Bromodichloromethane 0.19 10061-01-5----cis-1,3-Dichloropropene 0.18 108-88-3-----Toluene 0.19 10061-02-6----trans-1,3-Dichloropropene___ 0.19 79-00-5-----1,1,2-Trichloroethane 0.19 127-18-4----Tetrachloroethene

CLIENT SAMPLE NO.

EA040908LCS

Lab Name: TESTAMERICA BU	URLINGTON Contract	: 28000	EA040908LCS
Lab Code: STLV Case	e No.: 28000 SAS No.	: SDG	No.: NY124793
Matrix: (soil/water) AIR	2	Lab Sample ID:	EA040908LCS
Sample wt/vol: 500	0.0 (g/mL) ML	Lab File ID:	ECY20AQ
Level: (low/med) LOW	V	Date Received:	
% Moisture: not dec		Date Analyzed:	04/09/08
GC Column: RTX-624 ID:	: 0.32 (mm)	Dilution Facto	r: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot V	olume:(uL)
CAS NO.		NTRATION UNITS: or ug/Kg) PPBV	Q
106-93-41 100-41-4E 1330-20-7X 95-47-6X 1330-20-7X 75-25-2B 79-34-51 622-96-84	,1,2,2-Tetrachloroetha	nne	0.21 0.20 0.19 0.38 0.20 0.60 0.21 0.18 0.19 0.19

CLIENT SAMPLE NO.

EA040908LCSD

Contract: 28000 Lab Name: TESTAMERICA BURLINGTON Case No.: 28000 SAS No.:

SDG No.: NY124793

Lab Code: STLV Matrix: (soil/water) AIR

Lab Sample ID: EA040908LCSD

500.0 (g/mL) ML

Lab File ID: ECY20AQD

Sample wt/vol: LOW

Date Received:

Level: (low/med)

Date Analyzed: 04/09/08

% Moisture: not dec. _____

Soil Extract Volume:____(uL)

GC Column: RTX-624 ID: 0.32 (mm)

Dilution Factor: 1.0 Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

COMPOUND CAS NO.

0.19 75-71-8-----Dichlorodifluoromethane 76-14-2----1,2-Dichlorotetrafluoroethan 0.19 0.19 75-01-4-----Vinyl Chloride 0.19 106-99-0-----1,3-Butadiene 0.18

74-83-9------Bromomethane 0.19 75-00-3-----Chloroethane 0.20 593-60-2-----Bromoethene 0.19 75-69-4-----Trichlorofluoromethane 0.20 75-35-4-----1,1-Dichloroethene 0.18 107-05-1----3-Chloropropene_ 0.23 75-09-2-----Methylene Chloride 0.19 1634-04-4-----Methyl tert-Butyl Ether___ 0.18 156-60-5----trans-1,2-Dichloroethene 0.19 110-54-3----n-Hexane 0.19 75-34-3-----1,1-Dichloroethane_ 540-59-0-----1,2-Dichloroethene (total)_ 0.37 0.19 156-59-2----cis-1,2-Dichloroethene 0.19 67-66-3-----Chloroform 0.19 71-55-6----1,1,1-Trichloroethane 0.19 110-82-7-----Cyclohexane_ 0.19 56-23-5-----Carbon Tetrachloride 0.20 540-84-1----2,2,4-Trimethylpentane_ 0.18 71-43-2-----Benzene 0.20

107-06-2----1,2-Dichloroethane 0.18 142-82-5----n-Heptane_ 0.19 79-01-6-----Trichloroethene 0.19 78-87-5-----1,2-Dichloropropane 0.20 75-27-4-----Bromodichloromethane 0.19 10061-01-5----cis-1,3-Dichloropropene 0.19 108-88-3-----Toluene 10061-02-6----trans-1,3-Dichloropropene 0.18 0.19 79-00-5-----1,1,2-Trichloroethane____ 0.19 127-18-4-----Tetrachloroethene

CLIENT SAMPLE NO.

EA040908LCSD

Lab Name: TESTAMERIC	A BURLINGTON	Contract:	28000		
Lab Code: STLV	Case No.: 28000	SAS No.	SDG N	lo.: NY124793	
Matrix: (soil/water)	AIR		Lab Sample ID:	EA040908LCSD	
Sample wt/vol:	500.0 (g/mL) ML		Lab File ID:	ECY20AQD	
Level: (low/med)	LOW		Date Received:		
% Moisture: not dec.			Date Analyzed:	04/09/08	
GC Column: RTX-624	ID: 0.32 (mm)		Dilution Factor	: 1.0	
Soil Extract Volume:	(uL)		Soil Aliquot Vo	lume:	(uL)
CAS NO.	COMPOUND		OTRATION UNITS: or ug/Kg) PPBV	Q	
	Dibromochlorom			0.20	

CLIENT SAMPLE NO.

EA041008LCS

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.:

SDG No.: NY124793

Matrix: (soil/water) AIR

Lab Sample ID: EA041008LCS

Sample wt/vol: 500.0 (g/mL) ML

Lab File ID: ECY20BQ

Level: (low/med) LOW

Date Received:

% Moisture: not dec. _____

Date Analyzed: 04/10/08

GC Column: RTX-624 ID: 0.32 (mm)

Dilution Factor: 1.0

Soil Extract Volume:____(uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV Q

CAS NO.	COMPOUND (ug/L or ug/Kg)	
	1' fluoromethane	0.20
75-71-8	Dichlorodifluoromethane	0.20
75-14-2	1,2-Dichlorotetralia	0.19
75-01-4	1,2-Dichlorotectarran	0.19
		0.18
0	RTOIIIOIIE CIZATIO	0.18
		0.20
75-00-3-	Bromoethene	0.20
593-60-2	BromoetheneTrichlorofluoromethane	0.20
75-69-4	Trichlorofiluoromene	0.16
75-35-4	3-Chloropropene	0.22
107-05-1	Methylene Chloride	0.19
75-09-2	Methylene ChiorideMethyl tert-Butyl Ethertrans-1,2-Dichloroethene	0.19
1634-04-4	Methyl tert-Butyltrans-1,2-Dichloroethene	0.19
156-60-5	Hovane	0.19
710-54-3		0.37
75-34-3	1,1-Dichloroethane (total)	0.18
540-59-0	i,2-Dichloroethene	0.19
156-59-2	5	0.20
67-66-3	Chloroform	0.20
71-55-6	1,1,1	0.20
110-82-7	Totrachloride	0.20
56-23-5	Carbon Tetrathylpentane	0.17
540-84-1		0.20
71-43-2	Benzene	0.18
- 000		0.19
142-82-5	n-Heptane	0.19
79-01-6	Trichloroethene	
78-87-5	1,2-Dichloropropane	0.20
75-27-4	Bromodichloromethane	0.19
1 10061-01-5	CIS-1,5	0.18
108-88-3	Toluene trans-1,3-Dichloropropene	0.18
10061-02-6	trans-1,3-Dichioropiopens	0.19
70-00-5	trans-1,3-Dichiorophane	0.19
19-00-5	Tetrachloroethene	

CLIENT SAMPLE NO.

EA041008LCS

Lab Name: TESTAMERICA BURLINGTON	Contract: 28000
Lab Code: STLV Case No.: 28000	SAS No.: SDG No.: NY124793
Matrix: (soil/water) AIR	Lab Sample ID: EA041008LCS
Sample wt/vol: 500.0 (g/mL) ML	Lab File ID: ECY20BQ
Level: (low/med) LOW	Date Received:
% Moisture: not dec	Date Analyzed: 04/10/08
GC Column: RTX-624 ID: 0.32 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV Q
124-48-1Dibromochlorom 106-93-41,2-Dibromochl 100-41-4Ethylbenzene 1330-20-7Xylene (m,p) 95-47-6	0.20 0.20 0.38 0.20 0.60 0.21

CLIENT SAMPLE NO.

EA041008LCSD

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: EA041008LCSD

Sample wt/vol: 500.0 (g/mL) ML Lab File ID: ECY20BQD

Level: (low/med) LOW Date Received:

% Moisture: not dec. _____ Date Analyzed: 04/10/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV Q

75-71-8-----Dichlorodifluoromethane 0.19 0.19 76-14-2----1,2-Dichlorotetrafluoroethan 75-01-4-----Vinyl Chloride 0.18 106-99-0----1,3-Butadiene 0.18 74-83-9-----Bromomethane 75-00-3-----Chloroethane 0.17 0.20 593-60-2-----Bromoethene 75-69-4-----Trichlorofluoromethane 0.19 75-35-4-----1,1-Dichloroethene 0.20 107-05-1----3-Chloropropene 0.16 107-05-1----3-Chloropropene 75-09-2-----Methylene Chloride 0.22 1634-04-4-----Methyl tert-Butyl Ether 0.19 156-60-5-----trans-1,2-Dichloroethene 0.19 0.18 110-54-3----n-Hexane 0.18 75-34-3-----1,1-Dichloroethane 540-59-0-----1,2-Dichloroethene (total) 0.38 0.19 156-59-2----cis-1,2-Dichloroethene 0.19 67-66-3-----Chloroform 71-55-6----1,1,1-Trichloroethane 0.19 110-82-7-----Cyclohexane 0.19 56-23-5-----Carbon Tetrachloride 0.19 540-84-1----2,2,4-Trimethylpentane____ 0.20 71-43-2----Benzene 0.18 0.19 107-06-2----1,2-Dichloroethane 142-82-5---n-Heptane 79-01-6-----Trichloroethene 0.18 78-87-5-----1,2-Dichloropropane
75-27-4------Bromodichloromethane 0.17 0.21 10061-01-5----cis-1,3-Dichloropropene 0.20 108-88-3-----Toluene 0.18 10061-02-6----trans-1,3-Dichloropropene 0.18 79-00-5-----1,1,2-Trichloroethane 0.19 127-18-4----Tetrachloroethene 0.19

FORM 1 CLIENT SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

EA041008LCSD

Lab Name: TESTAMERICA BURLINGTON | Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793 Matrix: (soil/water) AIR Lab Sample ID: EA041008LCSD Sample wt/vol: 500.0 (g/mL) ML Lab File ID: ECY20BQD Level: (low/med) LOW Date Received: % Moisture: not dec. _____ Date Analyzed: 04/10/08 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0 Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

124-48-1Dibromochloromethane	0.20
106-93-41,2-Dibromoethane	0.19
100-41-4Ethylbenzene	0.19
1330-20-7Xylene (m,p)	0.39
95-47-6Xylene (o)	0.20
1330-20-7Xylene (total)	0.61
75-25-2Bromoform	0.21
79-34-51,1,2,2-Tetrachloroethane	0.19
522-96-84-Ethyltoluene	0.19
108-67-81,3,5-Trimethylbenzene	0.19

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix Spike - Sample No.: EA040908LCS

		SAMPLE	LCS	LCS	QC.
	SPIKE	CONCENTRATION		- 1	LIMITS
	ADDED	CONCENTRALION	(ppbv)	REC #	REC.
TO TO THE TOTAL OF	(ppbv)	(ug/L)	-==========	=====	======
COMPOUND	=======	=======================================	0.20	100	70-130
Dichlorodifluoromethane	0.20		0.20	100	70-130
Dichlorodiffuoromethano	0.20		0.19	95	70-130
1,2-Dichlorotetrafluoro	0.20		0.19	95	70-130
Vinyl Chloride	0.20		0.18	90	70-130
1,3-Butadiene	0.20		0.18	90	70-130
Bromomethane	0.20		0.20	100	70-130
Chloroethane	0.20		0.20	100	70-130
Bromoethene	0.20		0.20	100	70-130
Trichlorofluoromethane	0.20		0.19	95	70-130
1,1-Dichloroethene	0.20		0.22	110	70-130
3-Chloropropene	0.20		0.18	90	70-130
or the loride			0.20	100	70-130
Mather tarr-Butvi Built			0.20	100	70-130
trans-1,2-Dichloroethen	0.20		0.19	95	70-130
n_Heyane	0.20		0.39	98	70-130
a pichloroethane			0.19	95	70-130
a pichloroethene (Lou	0.20			100	70-130
cis-1,2-Dichloroethene	0.20		0.20	100	1
al-1 -xoform	0.20		0.20	90	
1,1,1-Trichloroethane	0.20	1	0.18	95	
alohovane	0.20		0.19	100	1
Carbon Tetrachioride			0.20	85	
2,2,4-Trimethylpentane			0.17	100	
Penzene			0.20	90	
1,2-Dichloroethane	0.20		0.18	95	
n-Heptane	0.20		0.19	85	
Trichloroethene	0.20		0.17	100	
1 2 Dichloropropane	0.20		0.20	100	, , , ,
Bromodichloromethane	0.2		lues with an a		

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS:	
COMMITTEE	

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix Spike - Sample No.: EA040908LCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	ક	LIMITS
COMPOUND	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
=======================================	=======	==========	=======================================	=====	
cis-1,3-Dichloropropene	0.20		0.19	95	70-130
Toluene	0.20		0.18	90	70-130
trans-1,3-Dichloroprope	0.20		0.19	95	70-130
1,1,2-Trichloroethane	0.20		0.19	95	70-130
Tetrachloroethene	0.20		0.19	95	70-130
Dibromochloromethane	0.20		0.21	105	70-130
1,2-Dibromoethane	0.20		0.20	100	70-130
Ethylbenzene	0.20		0.19	95	70-130
Xylene (m,p)	0.40		0.38	95	70-130
Xylene (o)	0.20		0.20	100	70-130
Bromoform	0.20		0.21	105	70-130
1,1,2,2-Tetrachloroetha	0.20		0.18	90	70-130
4-Ethyltoluene	0.20		0.19	95	70-130
1,3,5-Trimethylbenzene	0.20		0.18	90	70-130

COMMENTS:	

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: TESTAMERICA BURLINGTON . Contract: 28000

SDG No.: NY124793 Lab Code: STLV Case No.: 28000 SAS No.:

Matrix Spike - Sample No.: EA040908LCS

	SPIKE	LCSD	LCSD %	96	QC LI	MITS
	ADDED	CONCENTRATION	REC #	RPD #	RPD	REC.
	(ppbv)	(ppbv)	======	=====	=====	======
COMPOUND	-=======	=======================================	95	5	25	70-130
	0.20	0.19	95	5	25	70-130
richlorodifluoromethane	0.20	0.19	95	0	25	70-130
2-Dichlorotetraliuoio	0.20	0.19	95	0	25	70-130
invl Chloride	0.20	0.19	90	0	25	70-130
,3-Butadiene	0.20	0.18		5	25	70-130
Bromomethane	0.20	0.19	95	0	25	70-130
Chloroethane	0.20	0.20	100	5	25	70-130
thone	0.20	0.19	95	0	25	70-130
reighlorofluoromethane	0.20	0.20	100	5	25	70-130
1,1-Dichloroethene	0.20	0.18	90	4	25	70-130
a del aronropene	0.20	0.23	115	5	25	70-130
		0.19	95	10	25	70-130
	0.20	0.18	90	5	25	70-130
Methyl tert Basy trans-1,2-Dichloroethen	0.20	0.19	95	_	25	70-130
n-Hexane		0.19	95	0	25	70-130
- Llexoethane	0.20	0.37	92	6	25	70-130
- ni -bloroethene	0.40	0.19	95	0	25	70-130
cis-1,2-Dichloroethene		0 19	95	5	25	70-130
cis-1,2-Dichiol	0.20	0 10	95	5		70-130
Chloroform 1,1,1-Trichloroethane	0.20	0 10	95	5	25	1
1,1,1-Trichioroccide	0.20	0 10	95	0	-	
Cyclohexane	0.20	0 20	100	0		
Carbon Tetrachloride	0.20	0 10	90	6	25	
2,2,4-Trimethylpentane	0.20	0 20	100			
2	0.20	0 10	90		1	
1,2-Dichloroethane	0.20	0 10	95	1		
- Hentane	0.20	0 10	0.5	- 4	25	
maich loroethene	0.2		1 000	1	25	2 1.70-13
1,2-Dichloropropane Bromodichloromethane	0.2	0.20	1			

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS:	

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix Spike - Sample No.: EA040908LCS

	SPIKE	LCSD	LCSD			
Maria Sharan Maria	ADDED	CONCENTRATION	%	જ	QC L	IMITS
COMPOUND	(ppbv)	(ppbv)	REC #	RPD #	RPD	REC.
	=======	=========	=====	=====	=====	=====
cis-1,3-Dichloropropene	0.20	0.19	95	0	25	70-130
Toluene	0.20	0.19	95	5	25	70-130
trans-1,3-Dichloroprope	0.20	0.18	90	5	25	70-130
1,1,2-Trichloroethane	0.20	0.19	95	0	25	70-130
Tetrachloroethene	0.20	0.19	95	0	25	70-130
Dibromochloromethane	0.20	0.20	100	5	25	70-130
1,2-Dibromoethane	0.20	0.19	95	5	25	70-130
Ethylbenzene	0.20	0.19	95	0	25	70-130
Xylene (m,p)	0.40	0.38	95	0	25	70-130
Xylene (o)	0.20	0.20	100	0	25	70-130
Bromoform	0.20	0.20	100	5	25	70-130
1,1,2,2-Tetrachloroetha	0.20	0.15	75	18	25	70-130
4-Ethyltoluene	0.20	0.18	90	5	25	70-130
1,3,5-Trimethylbenzene	0.20	0.18	90	0	25	70-130

RPD: 0 out of 42 outside limits Spike Recovery: 0 out of 84 outside limits

COMMENTS:	

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.:

SDG No.: NY124793

Matrix Spike - Sample No.: EA041008LCS

rix Spike - Sample No.			LCS	LCS	QC.
	SPIKE	SAMPLE		%	LIMITS
	ADDED	CONCENTRATION	CONCENTION	REC #	REC.
	(ppbv)	(ug/L)	(ppbv)	======	=====
COMPOUND		=======================================		100	70-130
	0.20		0.20	100	70-130
Dichlorodifluoromethane			0.20	95	70-130
1,2-Dichlorotetrafluoro	0.20		0.19	95	70-130
Vinyl Chloride	0.20		0.19		70-130
Vinyi Chiorias	0.20		0.18	90	70-130
1,3-Butadiene	0.20		0.18	90	70-130
Bromomethane	0.20		0.20	100	70-130
Chloroethane	0.20		0.20	100	70-130
Bromoethene	0.20		0.20	100	70-130
Trichlorofluoromethane	0.20		0.16	80	70-130
1,1-Dichloroethene	0.20		0.22	110	70-130
3-Chloropropene	0.20		0.19	95	70-13
	0.20		0.19	95	70-13
			0.19	95	70-13
Methyl tert bath trans-1,2-Dichloroether	0.20		0.19	95	70-13
- Voyane	0.20		0.37	92	70-13
- night oroethane				90	70-13
ni abloroethene			0.18	95	
cis-1,2-Dichloroethene	0.20		0.19	100	
1 FORM			0.20	100	
1,1,1-Trichloroethane	0.20		0.20	100	
- 1-1-01/200	0.20		0.20	100	
Carbon Tetrachloride	0.20		0.20	8	
2,2,4-Trimethylpentane	0.20		0.17		
2,2,4-1111111111111111111111111111111111			0.20	10	3:
Benzene	0.20		0.18	9	
1,2-Dichloroethane	0.20		0.19	9	_
n-Heptane	0.2	0	0.19		
Trichloroethene	0.2		0.20	10	0 70-1
1,2-Dichloropropane	0.2	0			
Bromodichloromethane			lues with an a	sterisk	

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS:	

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix Spike - Sample No.: EA041008LCS

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPOUND	(ppbv)	(ug/L)	(ppbv)	REC #	REC.
=======================================	========		=======================================	=====	=====
cis-1,3-Dichloropropene	0.20		0.19	95	70-130
Toluene	0.20		0.18	90	70-130
trans-1,3-Dichloroprope	0.20		0.18	90	70-130
1,1,2-Trichloroethane	0.20		0.19	95	70-130
Tetrachloroethene	0.20		0.19	95	70-130
Dibromochloromethane	0.20		0.21	105	70-130
1,2-Dibromoethane	0.20		0.20	100	70-130
Ethylbenzene	0.20		0.20	100	70-130
Xylene (m,p)	0.40		0.38	95	70-130
Xylene (o)	0.20		0.20	100	70-130
Bromoform	0.20		0.21	105	70-130
1,1,2,2-Tetrachloroetha	0.20		0.19	95	70-130
4-Ethyltoluene	0.20		0.19	95	70-130
1,3,5-Trimethylbenzene	0.20		0.18	90	70-130

COMMENTS:	

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix Spike - Sample No.: EA041008LCS

COMPOUND ===================================	(ppbv) ======= 0.20 0.20 0.20 0.20 0.20 0.20 0	0.19 0.19 0.19 0.20 0.18 0.19 0.19 0.18 0.17	95 95 95 90 90 85 100 80 110 95 95 90 95 95 95 95 95 95 95		25 25 25 25 25 25 25 25 25 25 25 25 25 2	REC. ====== 70-130
---	--	--	--	--	---	---

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS:	
COMMITTAL	

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix Spike - Sample No.: EA041008LCS

	SPIKE ADDED	LCSD CONCENTRATION	LCSD %	O _f	OC L	IMITS
COMPOUND	(ppbv)	(ppbv)	REC #	RPD #	RPD	REC.
=======================================	=======	=========	======	=====	=====	=====
cis-1,3-Dichloropropene	0.20	0.20	100	5	25	70-130
Toluene	0.20	0.18	90	0	25	70-130
trans-1,3-Dichloroprope	0.20	0.18	90	0	25	70-130
1,1,2-Trichloroethane	0.20	0.19	95	0	25	70-130
Tetrachloroethene	0.20	0.19	95	0	25	70-130
Dibromochloromethane	0.20	0.20	100	5	25	70-130
1,2-Dibromoethane	0.20	0.19	95	5	25	70-130
Ethylbenzene	0.20	0.19	95	5	25	70-130
Xylene (m,p)	0.40	0.39	98	3	25	70-130
Xylene (o)	0.20	0.20	100	0	25	70-130
Bromoform	0.20	0.21	105	0	25	70-130
1,1,2,2-Tetrachloroetha	0.20	0.19	95	0	25	70-130
4-Ethyltoluene	0.20	0.19	95	0	25	70-130
1,3,5-Trimethylbenzene	0.20	0.19	95	5	25	70-130

RPD: 0 out of 42 outside limits
Spike Recovery: 0 out of 84 outside limits

COMMENTS:

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

MBLK040908EA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab File ID: ECYB01A

Lab Sample ID: MBLK040908EA

Date Analyzed: 04/09/08

Time Analyzed: 1142

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

Instrument ID: E

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

1		LAB	LAB BILE ID	TIME
2 2 2 2	AMSFAA032808	SAMPLE ID ====================================	FILE ID ====================================	ANALYZED ====================================

and a substitute of	
COMMENTS:	

MBLK041008EA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab File ID: ECYB01B Lab Sample ID: MBLK041008EA

Date Analyzed: 04/10/08

Time Analyzed: 1215

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

Instrument ID: E

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

		LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=========	=======================================		=========
01	EA041008LCS	EA041008LCS	ECY20BQ	1037
02		EA041008LCSD	ECY20BQD	1126
03	AMSF04IA0328	746481D1	746481D	1525
04	AMSF05IA0328	746482D1	746482D	1613
05	AMSF06IA0328	746483D1	746483D	1701
06	AMSF07IA0328	746484D1	746484D	1749
07	AMSF08IA0328	746485D1	746485D	1836
08	AMSF10IA0328	746487D1	746487D	1924
09				
10				
11				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

(C	0	M	M	E.	N	T	S	
	-	-	-	-	_		_	_	-

FORM 5

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON | Contract: 28000

SDG No.: NY124793 Lab Code: STLV Case No.: 28000 SAS No.:

BFB Injection Date: 04/08/08

Lab File ID: ECY02PV BFB Injection Time: 0824

Instrument ID: E Heated Purge: (Y/N) N

GC Column: RTX-624 ID: 0.32 (mm)

C Column: RTX-624	% RELATIVE ABUNDANCE
m/e ====================================	23.1 62.0 100.0 7.2 0.3 (0.3)1 110.8 8.4 (7.5)1 106.8 (96.4)1 7.1 (6.6)2

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA	LAB	LAB FILE ID	DATE	TIME ANALYZED
SAMPLE NO. ====================================	SAMPLE ID ====================================	ECY10V ECY20V ECY50V ECY100V ECY200V ECY500V ECY1000V ECY1500V ECY1500V	04/08/08 04/08/08 04/08/08 04/08/08 04/08/08 04/08/08 04/08/08 04/08/08 04/08/08	1055 1143 1231 1319 1408 1456 1544 1633 1721 1809

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab File ID: ECY03PV BFB Injection Date: 04/09/08

Instrument ID: E BFB Injection Time: 0829

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		
50	8.0 - 40.0% of mass 95	23.2
75	30.0 - 66.0% of mass 95	62.3
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.9
173	Less than 2.0% of mass 174	0.0 (0.0)1
174	50.0 - 120.0% of mass 95	109.8
175	4.0 - 9.0% of mass 174	8.1 (7.4)1
176	93.0 - 101.0% of mass 174	107.1 (97.5)1
177	5.0 - 9.0% of mass 176	6.5 (6.1)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	==========			========	=========
01	ASTD0200	ASTD0200	ECY20AV	04/09/08	0917
02	EA040908LCS	EA040908LCS	ECY20AQ	04/09/08	1006
03	EA040908LCSD	EA040908LCSD	ECY20AQD	04/09/08	1054
04	MBLK040908EA	MBLK040908EA	ECYB01A	04/09/08	1142
05	AMSF04IA0328	746481	746481	04/09/08	1806
06	AMSF05IA0328	746482	746482	04/09/08	1854
07	AMSF06IA0328	746483	746483	04/09/08	1942
08	AMSF07IA0328	746484	746484	04/09/08	2030
09	AMSF08IA0328	746485	746485	04/09/08	2118
10	AMSF09IA0328	746486	746486	04/09/08	2206
11	AMSF10IA0328	746487	746487	04/09/08	2254
12	AMSFAA032808	746488	746488	04/09/08	2342
13					
14					
15					
16					
17					
18					
19					
20					
21					*
22					

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab File ID: ECY04PV BFB Injection Date: 04/10/08

Instrument ID: E BFB Injection Time: 0843

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

		% RELATIVE ABUNDANCE
-10	ION ABUNDANCE CRITERIA	=======================================
m/e		22.7
50	8.0 - 40.0% of mass 95	63.0
75	cc of mace 45	100.0
95	Base Peak, 100% relative abundance	7.3
96	5 0 - 9 0% of mass 95	0.0 (
173	Less than 2.0% of mass 174	109.3
174	50.0 - 120.0% of mass 95	8.0 (7.3)1
175	4.0 - 9.0% of mass 174 93.0 - 101.0% of mass 174	7.0 (6.6)2
176	93.0 - 101.0% Of mass 176	7.0 (0.07-
177	5.0 - 9.0% 01 11000	176
	1-Value is % mass 174 2-Value is % mass	110

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

ECK APPLIES TO	LAB	LAB	DATE	TIME
EPA SAMPLE NO. ====================================	SAMPLE ID ====================================	FILE ID ====================================	ANALYZED ======== 04/10/08 04/10/08 04/10/08 04/10/08 04/10/08 04/10/08 04/10/08 04/10/08 04/10/08	0948 1037 1126 1215 1525 1613 1701 1749 1836 1924

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Instrument ID: E Calibration Date(s): 04/08/08 04/08/08

Heated Purge: (Y/N) N Calibration Time(s): 1055 1809

	DDE	DDE	DDD				ક
COMPOUND	RRF 0.01	RRF 0.02	RRF 0.05	RRF0.1	RRF0.2	RRF	RSI
COMPOUND	0.01		0.05			RRF	RSL
Dichlorodifluoromethane	7.545	6.664					
1,2-Dichlorotetrafluoroethan		5.868					_
	0.001	1.643					
Vinyl Chloride 1,3-Butadiene		1.328					
		1.530					
Bromomethane		0.651			0.590		
Bromoethene		1.231					
Frichlorofluoromethane	6.152	5.402					
1,1-Dichloroethene	1.239	0.996			0.910		
3-Chloropropene	1.237	1.953	1.513		1.408		
Methylene Chloride		1.755	1.515	1.525	1.178		
Methyl tert-Butyl Ether	4.597	3.637	3.364	3.034	3.353		
trans-1,2-Dichloroethene	1.686	1.597					
n-Hexane	1.000	1.413					
	2.147	1.824			1.810		
1,2-Dichloroethene (total)	1.542	1.410			1.262		-
cis-1,2-Dichloroethene	1.398	1.223			1.018		
Thloroform	2.971	3.037			2.775		
1,1,1-Trichloroethane	0.795	0.750					
Cyclohexane	0.285	0.279					
Carbon Tetrachloride	0.886	0.922					
2,2,4-Trimethylpentane	0.736	0.783					
Benzene	0.806	0.679					-
1,2-Dichloroethane	0.000	0.502			0.498		
	0.363	0.340					
n-Heptane	0.395	0.318					
1,2-Dichloropropane		0.202			0.190		
Bromodichloromethane	0.493	0.575			0.618		
cis-1,3-Dichloropropene	0.311	0.301					
Toluene	0.642	0.445			0.499		
rans-1,3-Dichloropropene	0.384	0.479					
1,1,2-Trichloroethane	0.248	0.166					
Tetrachloroethene	0.691	0.694			0.702		
Dibromochloromethane	0.502	0.589					
1,2-Dibromoethane	0.349	0.424			0.452		
Ethylbenzene	1.039	1.191			1.207		
Xylene (m,p)	0.394	0.453	0.447		0.460		

^{*} Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

SDG No.: NY124793 Lab Code: STLV Case No.: 28000 SAS No.:

Calibration Date(s): 04/08/08 04/08/08 Instrument ID: E

Heated Purge: (Y/N) N Calibration Time(s): 1055 1809

TAR FILE ID: RRFO.	01=ECY100	V V	RRF0.	02=ECY20	OV	
Column: RTX-624 ID: 0.32 LAB FILE ID: RRF0. RRF0.05=ECY50V RRF0. COMPOUND Sylene (o) Kylene (total) Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene	RRF 0.01	RRF	RRF0. RRF 0.05 ===== 0.423 0.423 0.580 0.393 1.045	RRF0.1 ===== 0.406 0.406 0.554 0.407 0.994	RRF0.2	* RSD

* Compounds with required minimum RRF and maximim %RSD values.

All other compounds must meet a minimim RRF of 0.010.

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Instrument ID: E Calibration Date(s): 04/08/08 04/08/08

Heated Purge: (Y/N) N Calibration Time(s): 1055 1809

GC Column: RTX-624 ID: 0.32 (mm)

	5=ECY50			.75=ECY			
RRF1 =ECY1000V RRF1.	5=ECY15	VOO	RRF2	=ECY2	VOOV		
		RRF					%
COMPOUND	RRF0.5	0.75	RRF1	RRF1.5	RRF2	RRF	RSD
				======	======	=====	====
Dichlorodifluoromethane	6.941		5.499			6.504	10.
1,2-Dichlorotetrafluoroethan			5.175			5.765	6.
Vinyl Chloride	1.832		1.520			1.646	8.
1,3-Butadiene	1.276		1.028			1.203	
	1.432		1.206			1.318	
Bromomethane Chloroethane	0.655		0.540			0.601	
Bromoethene	1.368		1.169			1.229	6.
Trichlorofluoromethane	6.220		5.164			5.534	
1,1-Dichloroethene	1.045		0.909			0.990	
3-Chloropropene	1.606		1.384			1.532	
Mathylone Chloride	1.217	1.046	1.384	0.939	0.931	1.057	
Methylene Chloride Methyl tert-Butyl Ether	3.694	1.046	3.269	0.939	0.931	3.564	
trans-1,2-Dichloroethene	1.736		1.509			1.559	
n-Hexane	1.346		1.218			1.237	10.
1,1-Dichloroethane	* 1.964		1.740			1.841	
1,2-Dichloroethene (total)			1.259			1.331	
cis-1,2-Dichloroethene	1.139		1.009			1.104	
Chloroform	3.148		2.705			2.834	
1,1,1-Trichloroethane	0.876		0.766			0.782	
Cyclohexane	0.330		0.291			0.294	
Carbon Tetrachloride	1.037		0.890			0.914	
2,2,4-Trimethylpentane	0.910		0.804			0.781	
Benzene	0.641		0.577			0.635	
1,2-Dichloroethane	0.551		0.482			0.490	
n-Heptane	0.328		0.288			0.312	10.
Trichloroethene	0.388		0.333			0.346	10.
1,2-Dichloropropane	0.206		0.184			0.192	6.
Bromodichloromethane	0.716		0.628			0.594	11.
cis-1,3-Dichloropropene	0.410		0.366			0.346	
Toluene	0.552		0.486			0.507	
trans-1,3-Dichloropropene	0.492		0.440			0.427	
1,1,2-Trichloroethane	0.242		0.214			0.212	13.
Tetrachloroethene	0.786		0.668			0.696	
Dibromochloromethane	0.773		0.687			0.624	
1,2-Dibromoethane	0.531		0.475			0.438	13.
Ethylbenzene	1.345		1.202		-	1.164	
EthylbenzeneXylene (m,p)	0.510		0.460			0.444	9.

* Compounds with required minimum RRF and maximim %RSD values.
All other compounds must meet a minimim RRF of 0.010.

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

SDG No.: NY124793 Lab Code: STLV Case No.: 28000 SAS No.:

Instrument ID: E Calibration Date(s): 04/08/08 04/08/08

Heated Purge: (Y/N) N Calibration Time(s): 1055

GC Column: RTX-624 ID: 0.32 (mm)

Column: RTX-624 ID: 0. LAB FILE ID: RRI RRF1 =ECY1000V RRI	F0.5=ECY500' F1.5=ECY150	ov 0v	RRF2	75=ECY7 =ECY20	VOOV	-	96
COMPOUND ***********************************	RRF0.5 ==== 0.504 0.504 0.844	RRF 0.75 =====	RRF1 ===== 0.450 0.450 0.775 0.488 1.445 1.169		RRF2	RRF ===== 0.419 0.419 0.628 0.421 1.140 1.001	RSD ===== 13.7 13.7 22.6 20.2 24.1

* Compounds with required minimum RRF and maximim %RSD values.

All other compounds must meet a minimim RRF of 0.010.

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Instrument ID: E Calibration Date: 04/09/08 Time: 0917

Lab File ID: ECY20AV Init. Calib. Date(s): 04/08/08 04/08/08

Heated Purge: (Y/N) N Init. Calib. Times: 1055 1809

GOMPOININ	RRF	DDEO O	MIN RRF	%D	MAX %D
COMPOUND		RRF0.2			
Dichlorodifluoromethane	6.504	6.164			30.0
1,2-Dichlorotetrafluoroethan	5.765	5.453			30.0
Vincil Chloride	1.646	1.540			30.
Vinyl Chloride	1.203	1.026			
1,3-Butadiene	1.318	1.177			
Bromomethane	0.601	0.523			
Bromoethene	1.229	1.110			30.
Frichlorofluoromethane	5.534	5.387			30.
Trichioroffuoromethane	0.990				30.
1,1-Dichloroethene		0.930			30.
3-Chloropropene	1.532	1.384			
Methylene Chloride	1.057	1.174			
Methyl tert-Butyl Ether	3.564	3.274			30.
trans-1,2-Dichloroethene	1.559	1.458			
n-Hexane	1.237	1.206			30.
1,1-Dichloroethane	1.841	1.690			30.
1,2-Dichloroethene (total)	1.331	1.235			30.
cis-1,2-Dichloroethene	1.104	1.012			30.
Chloroform	2.834	2.789			30.
1,1,1-Trichloroethane	0.782	0.762			30.
Cyclohexane	0.294	0.300			30.
Carbon Tetrachloride	0.914	0.878			30.
2,2,4-Trimethylpentane	0.781	0.782			30.
Benzene	0.635	0.568			
1,2-Dichloroethane	0.490	0.484			30.
n-Heptane	0.312	0.279			
Trichloroethene	0.346	0.339			30.
1,2-Dichloropropane	0.192	0.172			
Bromodichloromethane	0.594	0.592			30.
cis-1,3-Dichloropropene	0.346	0.361			30.
Toluene	0.507	0.497			30.
trans-1,3-Dichloropropene	0.427	0.395			30.
1,1,2-Trichloroethane	0.212	0.216			30.
Tetrachloroethene	0.696	0.712			30.
Dibromochloromethane	0.624	0.606			30.
1,2-Dibromoethane	0.438	0.464			30.
Ethylbenzene	1.164	1.160	0.01		30.
Xylene (m,p)	0.444	0.450	0.01	1.4	30.

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Calibration Date: 04/09/08 Time: 0917 Instrument ID: E

Lab File ID: ECY20AV Init. Calib. Date(s): 04/08/08 04/08/08

Heated Purge: (Y/N) N Init. Calib. Times: 1055 1809

COMPOUND ===================================	9 0.449 8 0.641 1 0.430 0 1.106	0.01 0.01 0.01 0.01	7.2 2.1 2.1 3.0	30.0
---	--	------------------------------	--------------------------	------

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Instrument ID: E Calibration Date: 04/10/08 Time: 0948

Heated Purge: (Y/N) N Init. Calib. Times: 1055 1809

			MIN		MAX
COMPOUND	RRF	RRF0.2	RRF	%D	%D
	=======	=======		=====	
Dichlorodifluoromethane	6.504	6.068			
1,2-Dichlorotetrafluoroethan	5.765	5.367			
Vinyl Chloride	1.646	1.482	0.01	10.0	30.0
1,3-Butadiene	1.203	0.967	0.01	19.6	30.0
Bromomethane	1.318	1.163	0.01	11.8	30.0
Chloroethane	0.601	0.539	0.01	10.3	30.0
Bromoethene	1.229			7.4	30.0
Trichlorofluoromethane	5.534	5.178			30.0
1,1-Dichloroethene	0.990	0.817			
3-Chloropropene	1.532	1.270			
Methylene Chloride	1.057	1.070			30.0
Methyl tert-Butyl Ether	3.564	3.074			
trans-1,2-Dichloroethene	1.559				30.0
n-Hexane	1.237	1.090			
1,1-Dichloroethane	1.841	1.644			
1,2-Dichloroethene (total)	1.331	1.197			
cis-1,2-Dichloroethene	1.104	0.968			
Chloroform	2.834	2.594			30.0
1,1,1-Trichloroethane	0.782	0.732			30.0
Grand about the	0.782	0.269			
Carbon Tetrachloride	0.294		1		30.0
Carbon Tetrachioride	0.781	0.871			30.0
2,2,4-111methylpentane					
Benzene	0.635	0.532			
1,2-Dichloroethane	0.490	0.469			30.0
n-Heptane	0.312	0.260			
Trichloroethene	0.346	0.320			30.0
1,2-Dichloropropane	0.192	0.174			30.0
Bromodichloromethane	0.594	0.560			30.0
cis-1,3-Dichloropropene	0.346	0.325			
Toluene	0.507	0.438			
trans-1,3-Dichloropropene	0.427	0.374			
1,1,2-Trichloroethane	0.212	0.185			
Tetrachloroethene	0.696	0.639			30.0
Dibromochloromethane	0.624				30.0
1,2-Dibromoethane	0.438	0.413	0.01		30.0
Ethylbenzene	1.164	1.038	0.01	10.8	30.0
Xylene (m,p)	0.444	0.407	0.01	8.3	30.0

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

SDG No.: NY124793 Lab Code: STLV Case No.: 28000 SAS No.:

Calibration Date: 04/10/08 Time: 0948 Instrument ID: E

Lab File ID: ECY20BV Init. Calib. Date(s): 04/08/08 04/08/08

Heated Purge: (Y/N) N Init. Calib. Times: 1055 1809

COMPOUND ===================================	RRF ======= 0.419 0.419 0.628 0.421 1.140 1.001	1.001	0.01	6.7 15.2 12.2	30.0
---	--	-------	------	---------------------	------

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab File ID (Standard): ECY20AV Date Analyzed: 04/09/08

Instrument ID: E Time Analyzed: 0917

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=========	========	======	=========	======	========	======
	12 HOUR STD	507301	8.85	2479019	9.77	2323964	12.23
	UPPER LIMIT	710221	9.18	3470627	10.10	3253550	12.56
	LOWER LIMIT	304381	8.52	1487411	9.44	1394378	11.90
	=========		======	========	======	========	======
	CLIENT						
	SAMPLE NO.						
		=========	======	========	======	========	======
01	EA040908LCS	481270	8.85	2348582	9.78	2285159	12.23
02	EA040908LCSD	510776	8.85	2499838	9.77	2411042	12.23
03	MBLK040908EA	507650	8.85	2552687	9.78	2008350	12.23
04	AMSF04IA0328	501850	8.85	2323719	9.78	2354904	12.23
05	AMSF05IA0328	451713	8.86	2100558	9.78	2118465	12.23
06	AMSF06IA0328	553874	8.86	2618493	9.78	2526007	12.23
07	AMSF07IA0328	481527	8.85	2137299	9.78	2205166	12.23
08	AMSF08IA0328	513627	8.86	2235362	9.78	2274614	12.23
09	AMSF09IA0328	507715	8.85	2376237	9.77	2312661	12.23
10	AMSF10IA0328	493077	8.86	2242527	9.78	2230884	12.23
11	AMSFAA032808	524385	8.85	2558737	9.78	2444434	12.23
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
				-			

IS1 (BCM) = Bromochloromethane
IS2 (DFB) = 1,4-Difluorobenzene
IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = + 40% of internal standard area

AREA LOWER LIMIT = - 40% of internal standard area

RT UPPER LIMIT = + 0.33 minutes of internal standard RT

RT LOWER LIMIT = - 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Contract: 28000 Lab Name: TESTAMERICA BURLINGTON

SDG No.: NY124793 SAS No.: Case No.: 28000 Lab Code: STLV

Date Analyzed: 04/10/08 Lab File ID (Standard): ECY20BV

Time Analyzed: 0948

Instrument ID: E Heated Purge: (Y/N) N GC Column: RTX-624 ID: 0.32 (mm)

	IS1 (BCM) AREA #	RT #	IS2 (DFB) AREA #	RT #	IS3 (CBZ) AREA # ====================================	RT # ====== 12.23
12 HOUR STD UPPER LIMIT LOWER LIMIT	508298 711617 304979	8.85 9.18 8.52 ======	2449596 3429434 1469758 ========	9.78 10.11 9.45	3296635 1412843 ========	12.56 11.90 ======
CLIENT SAMPLE NO. ====================================	480376 521743 479070 448037	8.85 8.85 8.85 8.85 8.85 8.85 8.85 8.85	======= 2306786 2425294 2644213 2433561 2376517 2478582 2232008 2189770 2340689	9.77 9.77 9.77 9.77 9.77 9.78 9.78 9.77 9.77	2273729 2334762 1938254 2251555 2180109 2349647 2197497 2098845 2259085	12.23 12.23 12.23 12.23 12.23 12.23 12.23 12.23

IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene
IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = + 40% of internal standard area AREA LOWER LIMIT = - 40% of internal standard area RT UPPER LIMIT = + 0.33 minutes of internal standard RT RT LOWER LIMIT = - 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits.

Sample Data Summary – TO-15 Volatile

OBRGER SAMPLE NO.

AMSF04SS032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

SDG No.: NY124793 Lab Code: STLV Case No.: 28000 SAS No.:

Lab Sample ID: 746474 Matrix: (soil/water) AIR

Sample wt/vol: 18.00 (g/mL) ML Lab File ID: 746474D2

Date Received: 04/02/08 Level: (low/med) LOW

Date Analyzed: 04/18/08 % Moisture: not dec.

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 52.4

Soil Aliquot Volume: ____(uL) Soil Extract Volume: (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV Q CAS NO. COMPOUND

75 71 9	Dichlorodifluoromethane	26 10	U
75-71-0	Dichlorodifidoromethan		
76-14-2	Vinyl Chloride	10	
75-01-4	1,3-Butadiene	26	
106-99-0	Promomethane	10	
74-83-9	Bromomethane	10	
75-00-3	Chloroethane	10	
593-60-2	Bromoethene	10	
75-69-4	Trichlorofluoromethane	20	
75-35-4	1,1-Dichloroethene	26	
107-05-1	3-Chloropropene	26	U
== 00 0	Methylene Chiorius	26	U
	Mother FATE-BULVI DUICE		U
156-60-5	trans-1, 2-Dichtoloechene	46	
440 54 3	-n-Heyane	11	
	1 1 Dianioroei dale		U
			U
156-59-2	C1S-1, Z-DICHIOIOECHER		U
		1500	
71 55-6	1,1,1-Trichloroethane	90	
			Ū
			U
56-23-5	2,2,4-Trimethylpentane		
	Danzene		U
71-43-2	1,2-Dichloroethane		U
107-06-2	n Hentane	4	
142-82-5	n-Heptane	12	
79-01-6	1 2 Dichloropropage	10	
78-87-5	1,2-Dichloropropane	1	
75-27-4	Bromodichloromethane	1	
10061-01-5-	cis-1,3-Dichloropropene	1	
	Talijana	1	OU
	trang-1. 1-DICHIOLOPIOPCIA	1	OU
70 00-5	1,1,2-Trichioroethane	8	4
127-18-4	Tetrachloroethene		

OBRGER SAMPLE NO.

AMSF04SS032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793 Matrix: (soil/water) AIR Lab Sample ID: 746474 Sample wt/vol: 18.00 (g/mL) ML Lab File ID: 746474D2Date Received: 04/02/08 Level: (low/med) LOW % Moisture: not dec. ____ Date Analyzed: 04/18/08 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 52.4 Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV 124-48-1-----Dibromochloromethane 106-93-4----1,2-Dibromoethane 10 U 10 U 10 U 26 U 10 U

CONCENTRATION UNITS:

10 U 10 U 10 U 10 U 108-67-8-----1,3,5-Trimethylbenzene 10 U

OBRGER SAMPLE NO.

AMSF05SS032808

Contract: 28000 Lab Name: TESTAMERICA BURLINGTON

SDG No.: NY124793 Case No.: 28000 SAS No.: Lab Code: STLV

Lab Sample ID: 746475 Matrix: (soil/water) AIR Lab File ID: 746475D2

12.00 (g/mL) ML Sample wt/vol: Date Received: 04/02/08

(low/med) LOW Date Analyzed: 04/18/08 Level:

% Moisture: not dec. Dilution Factor: 293.0

GC Column: RTX-624 ID: 0.32 (mm) Soil Aliquot Volume: ____(uL) Soil Extract Volume: (uL)

CONCENTRATION UNITS: 0 (ug/L or ug/Kg) PPBV COMPOUND

CAS NO. 150 U 75-71-8-----Dichlorodifluoromethane 59 U 76-14-2----1,2-Dichlorotetrafluoroethan 59 U 75-01-4-----Vinyl Chloride 150 U 106-99-0-----1,3-Butadiene 59 U 74-83-9-----Bromomethane 59 U 75-00-3-----Chloroethane 59 U 593-60-2----Bromoethene 59 U 75-69-4-----Trichlorofluoromethane 200 75-35-4-----1,1-Dichloroethene____ 150 U 107-05-1----3-Chloropropene 150 U 75-09-2-----Methylene Chloride 150 U 1634-04-4-----Methyl tert-Butyl Ether_ 59 U 156-60-5-----trans-1,2-Dichloroethene_ 150 U 110-54-3----n-Hexane 77 75-34-3-----1,1-Dichloroethane 59 U 540-59-0----1,2-Dichloroethene (total) 59 U 156-59-2----cis-1,2-Dichloroethene 59 U 67-66-3-----Chloroform 10000 71-55-6-----1,1,1-Trichloroethane 370 59 T 110-82-7-----Cyclohexane 56-23-5-----Carbon Tetrachloride 59 U 540-84-1----2,2,4-Trimethylpentane_ 59 U 71-43-2-----Benzene 59 U 107-06-2----1,2-Dichloroethane 82 142-82-5----n-Heptane 59 U 79-01-6-----Trichloroethene 59 U 78-87-5-----1,2-Dichloropropane 59 U 75-27-4-----Bromodichloromethane 59 U 10061-01-5----cis-1,3-Dichloropropene 59 U 108-88-3-----Toluene 59 U 10061-02-6----trans-1,3-Dichloropropene_ 59 U 79-00-5-----1,1,2-Trichloroethane 440 127-18-4----Tetrachloroethene

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

622-96-8----4-Ethyltoluene

108-67-8-----1,3,5-Trimethylbenzene

OBRGER SAMPLE NO.

AMSF05SS032808

59 U

59 U

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746475

Sample wt/vol: 12.00 (g/mL) ML Lab File ID: 746475D2

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. ____ Date Analyzed: 04/18/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 293.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

OBRGER SAMPLE NO.

AMSF06SS032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

SDG No.: NY124793 Lab Code: STLV Case No.: 28000 SAS No.:

Lab Sample ID: 746476

Matrix: (soil/water) AIR Lab File ID: 746476D2

40.00 (g/mL) ML Sample wt/vol: Date Received: 04/02/08

Level: (low/med) LOW Date Analyzed: 04/18/08

% Moisture: not dec. ____ Dilution Factor: 26.0

GC Column: RTX-624 ID: 0.32 (mm) Soil Aliquot Volume: (uL) Soil Extract Volume:____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV

Q CAS NO. COMPOUND

CAS NO.		13 U
	Dichlorodifluoromethane	5.2 U
75-71-8	Dichlorodifiuoromethan1,2-DichlorotetrafluoroethanVinyl Chloride	5.2 U
76-14-2	Vinyl Chloride	13 U
75-01-4	1,3-Butadiene	5.2 U
106-99-0	Bromomethane	5.2 U
74-83-9	chloroethane	5.2 U
75-00-3	Chloroethane	16
593-60-2	Bronbechere	5.2 Ū
75-69-4	Trichloroffuctoned	13 U
75-35-4	1, I-Dichiologue	13 U
107-05-1	chloride	13 U
75-09-2	Mechy Lond Party Ether	5.2 U
1634-04-4	Methyl tert-Butyl Dethi- trans-1,2-Dichloroethene	150
		5.2 Ū
440 E1-3	- II IICZE	5.20
110-22 2	1,1-Dichloroethane 1,2-Dichloroethene (total)	5.2 U 5.2 U 5.2 U
13-34 3	1,2-Dichloroethere	5.2 0
540-59-0	1,2-Dichloroethene	5.20
156-53-4	Chloroform	720
		110
71-55-6	Cyclohexane	5.2 U
110-82-7-	Cyclohexane Carbon Tetrachloride 2.2.4-Trimethylpentane	5.2 U
		7.5
540-84-1	Benzene	5.2 U
71-43-2	Benzene 1,2-Dichloroethane 	160
107-06-2	-n-Heptane	5.2 U
142-82-5	This abloroethene	5.2 U
79-01-6	1,2-Dichloropropane	5.2 U
1 79-87-5	I,Z Ji blamomethane	5.2 U
75-27-4	Bromodichloroltechard	18
1 -0001 01-5-		5.2 U
108-88-3	night oropropene	5.2 U
10061-02-6-	trans-1,3-Dichiologue 1,1,2-Trichloroethane	91
79-00-5	1,1,2-111ch1oro	7-
127-18-4	Tetrachiotoecher	

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

OBRGER SAMPLE NO.

AMSF06SS032808

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746476

Sample wt/vol: 40.00 (g/mL) ML Lab File ID: 746476D2

Date Received: 04/02/08 Level: (low/med) LOW

Date Analyzed: 04/18/08 % Moisture: not dec.

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 26.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV Q CAS NO. COMPOUND

124-48-1-----Dibromochloromethane 5.2 U 106-93-4-----1,2-Dibromoethane 5.2 U 100-41-4-----Ethylbenzene 1330-20-7-----Xylene (m,p) 95-47-6------Xylene (o) 1330-20-7------Xylene (total) 75-25-2-------Bromoform 5.2 U 27 9.0 36 5.2 U 79-34-5----1,1,2,2-Tetrachloroethane 5.2 U 622-96-8----4-Ethyltoluene 10 108-67-8-----1,3,5-Trimethylbenzene 7.4

OBRGER SAMPLE NO.

AMSF07SS032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746477

Sample wt/vol: 33.00 (g/mL) ML Lab File ID: 746477D

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. Date Analyzed: 04/18/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 6.1

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV CAS NO. COMPOUND 75-71-8-----Dichlorodifluoromethane 3.0 U 1.2 U 76-14-2----1,2-Dichlorotetrafluoroethan 75-01-4-----Vinyl Chloride 1.2 U 106-99-0----1,3-Butadiene 3.0 U 74-83-9-----Bromomethane 1.2 U 75-00-3-----Chloroethane 1.2 U 593-60-2-----Bromoethene 1.2 U 75-69-4----Trichlorofluoromethane 1.5 75-35-4----1,1-Dichloroethene 170 3.0 U 107-05-1----3-Chloropropene 75-09-2-----Methylene Chloride 3.0 U 1634-04-4-----Methyl tert-Butyl Ether 3.0 U 156-60-5-----trans-1,2-Dichloroethene 1.2 U 110-54-3----n-Hexane 15 75-34-3-----1,1-Dichloroethane 91 540-59-0----1,2-Dichloroethene (total) 1.2 U 156-59-2----cis-1,2-Dichloroethene 1.2 U 67-66-3-----Chloroform 1.8 71-55-6-----1,1,1-Trichloroethane 230 110-82-7-----Cyclohexane 13 56-23-5-----Carbon Tetrachloride 1.2 U 540-84-1----2,2,4-Trimethylpentane___ 1.2 U 71-43-2-----Benzene 3.8 1.2 U 107-06-2----1,2-Dichloroethane 142-82-5----n-Heptane 13 79-01-6----Trichloroethene 1.4 1.2 U 78-87-5----1,2-Dichloropropane 75-27-4-----Bromodichloromethane 1.2 U 10061-01-5----cis-1,3-Dichloropropene 1.2 U 108-88-3----Toluene 7.4 1.2 U 10061-02-6----trans-1,3-Dichloropropene 79-00-5----1,1,2-Trichloroethane 1.2 U 127-18-4-----Tetrachloroethene 91

FORM 1 OBRGER SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

AMSF07SS032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746477

Sample wt/vol: 33.00 (g/mL) ML Lab File ID: 746477D

Date Received: 04/02/08 Level: (low/med) LOW

% Moisture: not dec. ____ Date Analyzed: 04/18/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 6.1

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

124-48-1Dibromochloromethane	1.2 U
106-93-41,2-Dibromoethane	1.2 U
100-41-4Ethylbenzene	1.2 U
1330-20-7Xylene (m,p)	4.3
95-47-6Xylene (o)	1.5
1330-20-7Xylene (total)	5.8
75-25-2Bromoform	1.2 U
79-34-51,1,2,2-Tetrachloroethane	1.2 U
522-96-84-Ethyltoluene	1.2 U
108-67-81,3,5-Trimethylbenzene	1.2 U

OBRGER SAMPLE NO.

AMSF08SS032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

SDG No.: NY124793

Case No.: 28000 SAS No.: Lab Code: STLV Lab Sample ID: 746478

Matrix: (soil/water) AIR Lab File ID: 746478D2 24.00 (g/mL) ML

Sample wt/vol: Date Received: 04/02/08

Level: (low/med) LOW Date Analyzed: 04/19/08

% Moisture: not dec. Dilution Factor: 112.0

GC Column: RTX-624 ID: 0.32 (mm) Soil Aliquot Volume: ____(uL) Soil Extract Volume:____(uL)

CONCENTRATION UNITS:
(ug/L or ug/Kg) PPBV Q

AS NO.	Ahono	56 U
- 71 0	Dichlorodifluoromethane	22 U
5-71-8	1.2-Dichlorotetralluoroethan	22 U
6-14-2	Vinyl Chloride	56 U
5-01-4	1,3-Butadiene	22 U
		22 U
14-83-9	Chloroethane	22 U
75-00-3	Bromoethene	22 U
593-60-2	BromoetheneTrichlorofluoromethane	3400
75-69-4	1 1-Dichloroethene	56 U
75-35-4	2 Chloropropene	56 U
107-05-1	Chloride	56 U
75-09-2	Putyl Ether	22 U
1634-04-4	Methylene Chrorita EtherMethyl tert-Butyl Ethertrans-1,2-Dichloroethene	140
156-60-5	Hereno	270
440 E1-3		49
75-34-3	total)	49
540-59-0	1,1-Dichloroethane1,2-Dichloroethene (total)cis-1,2-Dichloroethene	22 U
156-59-2		210
67-66-3	Chloroform1,1,1-Trichloroethane	93
		22 U
110-82-/	metrachloride	22 U
56-23-5	Carbon Tetrachio	22 U
54()-84-1		22 U
71-43-2	Benzene 1,2-Dichloroethane	100
05 3		110
142-82-5	n-Heptane	22 U
79-01-6	Trichloroethene	
79-87-5	1,2-Dichloropropane	22 U
75-27-4	Bromodichloromethane	22 U
10061-01-5		27
10001-01-5	Toluene	22 U
10061-02-6	Toluenetrans-1,3-Dichloropropene	37
10001-02-0	trans-1,3-Dichloropthane	1100
79-00-5	Tetrachloroethene	

FORM 1 OBRGER SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

AMSF08SS032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793 Matrix: (soil/water) AIR Lab Sample ID: 746478 Sample wt/vol: 24.00 (g/mL) ML Lab File ID: 746478D2 Date Received: 04/02/08 Level: (low/med) LOW % Moisture: not dec. ____ Date Analyzed: 04/19/08 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 112.0 Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL) CONCENTRATION UNITS:
(ug/L or ug/Kg) PPBV Q CAS NO. COMPOUND

.24-48-1Dibromochloromethane	22	U
.06-93-41,2-Dibromoethane	22	U
.00-41-4Ethylbenzene	22	U
.330-20-7Xylene (m,p)	56	U
05-47-6Xylene (o)	22	U
330-20-7Xylene (total)	22	U
5-25-2Bromoform	22	U
9-34-51,1,2,2-Tetrachloroethane	22	U
22-96-84-Ethyltoluene	22	U
.08-67-81,3,5-Trimethylbenzene	22	U

OBRGER SAMPLE NO.

AMSF09SS032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

SDG No.: NY124793 Lab Code: STLV Case No.: 28000 SAS No.:

Lab Sample ID: 746479

Matrix: (soil/water) AIR Lab File ID: 746479D 40.00 (g/mL) ML

Sample wt/vol: Date Received: 04/02/08

Level: (low/med) LOW Date Analyzed: 04/18/08

% Moisture: not dec. Dilution Factor: 5.0

GC Column: RTX-624 ID: 0.32 (mm) Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

CONCENTRATION UNITS:

		2.5 U
	Dichlorodifluoromethane	1.0 U
15-11-0	Dichlorodiffuoromethan1,2-DichlorotetrafluoroethanVinvl Chloride	1.0 U
76-14-2	Vinyl Chloride	2.5 U
75-01-4	1 3-Butadiene	1.0 U
106-99-0	Vinyl Chloride1,3-ButadieneBromomethane	1.0\U
74-83-9	chloroethane	1.0 U
75-00-3		1.0 U
593-60-2	Bromoethene Trichlorofluoromethane	26
75-69-4	Trichloroffuorothene	2.5 U
75-35-4	1,1-Dichloroethene	
107 05-1	3-Chloropropene Mothylene Chloride	3.0
101-02-1	Methylene ChlorideMethyl tert-Butyl Ether	2.5 U
75-09-2	Methyl tert-Butyl Ether	1.0 U
1634-04-4	Methylene ChiorianMethyl tert-Butyl Ethertrans-1,2-Dichloroethene	2.5 U
156-60-5		17
		1.0 U
75-34-3	(total)	1.0 U
540-59-0	1,1-Dichloroethane1,2-Dichloroethene (total)cis-1,2-DichloroetheneChloroform	1.0 U
156-59-2	5	170
67-66-3	Chloroform 1,1,1-Trichloroethane	1.0 U
71-55-6		1.00
110-82-7	Cyclohexane Carbon Tetrachloride 2.2.4-Trimethylpentane	1.0 U
110-02	Carbon Tetrachioriue	1.0 U
56-23-3	Carbon letrachitez	1.1
540-84-1	Benzene	1.0 U
71-43-2	1 2-Dichloroethane	3.4
107-06-2	Benzene 1,2-Dichloroethane	1.0 U
1 142-82-5	- i -blamoethene	1.0 U
79-01-6	Trichloroethene	1.0 U
1 79-87-5	at all amomethane	1.0 U
75-27-4	5Bromodichioromethats 5cis-1,3-Dichloropropene	2.3
1 10061-01-5	7	2.5
10001	Toluene 3-Dichloropropene	1.0 U
100-00-3	Gtrans-1,3-Dichloropropene	1.0 U
10061-02-0	6trans-1,3-Dichiorogethane 1,1,2-Trichloroethane	1.6
79-00-5	Tetrachloroethene	

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

OBRGER SAMPLE NO.

AMSF09SS032808

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab Sample ID: 746479 Matrix: (soil/water) AIR

Sample wt/vol: 40.00 (g/mL) ML Lab File ID: 746479D

Date Received: 04/02/08 Level: (low/med) LOW

% Moisture: not dec. _____ Date Analyzed: 04/18/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 5.0

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:
(ug/L or ug/Kg) PPBV Q CAS NO. COMPOUND

124-48-1Dibromochloromethane	1.0 U
106-93-41,2-Dibromoethane	1.0 U
.00-41-4Ethylbenzene	1.0 U
.330-20-7Xylene (m,p)	2.5 U
95-47-6Xylene (o)	1.0 U
.330-20-7Xylene (total)	1.0 U
5-25-2Bromoform	1.0 U
9-34-51,1,2,2-Tetrachloroethane	1.0 U
522-96-84-Ethyltoluene	1.0 U
.08-67-81,3,5-Trimethylbenzene	1.0 U

FORM 1 OBRGER SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

AMSF10SS032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746480

Sample wt/vol: 250.0 (g/mL) ML Lab File ID: 746480

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. Date Analyzed: 04/18/08

Dilution Factor: 0.8 GC Column: RTX-624 ID: 0.32 (mm)

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) PPBV

75-71-8	Dichlorodifluoromethane	0.53	
	1,2-Dichlorotetrafluoroethan	0.16	
	Vinyl Chloride	0.16	
	1,3-Butadiene	0.82	1
74-83-9	Bromomethane	0.16	
75-00-3	Chloroethane	0.16	
	Bromoethene	0.16	
75-69-4	Trichlorofluoromethane	0.95	
75-35-4	1,1-Dichloroethene	0.16	U
107-05-1	3-Chloropropene	0.40	
75-09-2	Methylene Chloride	0.84	
1634-04-4	Methyl tert-Butyl Ether	0.40	Ū
156-60-5	trans-1,2-Dichloroethene	0.16	U
110-54-3		4.2	
75-34-3	1,1-Dichloroethane	0.16	U
540-59-0	1,2-Dichloroethene (total)	0.16	U
156-59-2	cis-1,2-Dichloroethene	0.16	U
67-66-3	Chloroform	0.38	
71-55-6	1,1,1-Trichloroethane	3.4	
110-82-7	Cyclohexane	1.5	-
	Carbon Tetrachloride	0.16	U
540-84-1	2,2,4-Trimethylpentane	0.16	U
71-43-2	Benzene	0.95	
107-06-2	1,2-Dichloroethane	0.16	U
142-82-5	n-Heptane	5.6	
79-01-6	Trichloroethene	0.16	U
78-87-5	1,2-Dichloropropane	0.16	U
75-27-4	Bromodichloromethane	0.16	U
10061-01-5	cis-1,3-Dichloropropene	0.16	U
108-88-3	Toluene	2.8	
10061-02-6	trans-1,3-Dichloropropene	0.16	U
79-00-5	1,1,2-Trichloroethane	0.16	U
	Tetrachloroethene	0.72	

FORM 1 OBRGER SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET

AMSF10SS032808

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Matrix: (soil/water) AIR Lab Sample ID: 746480

Sample wt/vol: 250.0 (g/mL) ML Lab File ID: 746480

Level: (low/med) LOW Date Received: 04/02/08

% Moisture: not dec. ____ Date Analyzed: 04/18/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 0.8

Soil Extract Volume: (uL) Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

124-48-1	0.16 0.16 0.81 3.4 1.4 4.8 0.16 0.16 1.2	υ υ
----------	--	------------

CLIENT SAMPLE NO.

BA041808LCS

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 SDG No.: NY124793 Lab Code: STLV Case No.: 28000 SAS No.:

Lab Sample ID: BA041808LCS Matrix: (soil/water) AIR

Sample wt/vol: 200.0 (g/mL) ML Lab File ID: BHF10HQ

Date Received: Level: (low/med) LOW

Date Analyzed: 04/18/08 % Moisture: not dec. _____

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL) Soil Extract Volume:____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) PPBV Q CAS NO. COMPOUND

CAS NO.	COMPOUND (ug/L or ug/kg)	
35 71 0	Dichlorodifluoromethane	9.7
75-71-8	1,2-Dichlorotetrafluoroethan	8.5
76-14-2	Vinyl Chloride	7.9
75-01-4	1,3-Butadiene	8.9
106-99-0	Bromomethane	8.1
74-83-9	Chloroethane	8.6
75-00-3	Bromoethene	8.9
593-60-2	Trichlorofluoromethane	9.3
75-69-4	1,1-Dichloroethene	10
75-35-4	3-Chloropropene	9.0
107-05-1	Methylene Chloride	9.2
75-09-2	Methyl tert-Butyl Ether	9.6
1634-04-4	trans-1,2-Dichloroethene	8.9
156-60-5	trans-1,2-bichioroccino	9.3
110-54-3	n-Hexane	8.5
75-34-3	1,1-Dichloroethane	18
540-59-0	-i-1, 2-Dichloroethene	9.4
156-59-2	cis-1,2-Dichloroethene	8.7
67-66-3	Chloroform	9.3
71-55-6	1,1,1-Trichloroethane	9.7
110-82-7	Cyclohexane	9.8
56-23-5	Carbon Tetrachloride	8.9
540-84-1	2,2,4-Trimethylpentane	8.2
71-43-2	Benzene	8.7
107-06-2	1,2-Dichloroethane	8.7
142-82-5	n-Heptane	8.8
79-01-6	Trichloroethene	8.2
78-87-5	1,2-Dichloropropane	9.1
75-27-4	Bromodichloromethane	9.1
10061-01-5	Cis-1,3-Dichtotoptopene	8.9
	Tolliene	9.2
10061-02-6	trans-1,3-Dichloropropene	8.2
70 00 5		9.0
127-18-4	Tetrachloroethene	

622-96-8----4-Ethyltoluene

108-67-8-----1,3,5-Trimethylbenzene

CLIENT SAMPLE NO.

10

9.3

BA041808LCS

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793 Lab Sample ID: BA041808LCS Matrix: (soil/water) AIR Sample wt/vol: 200.0 (g/mL) ML Lab File ID: BHF10HQ Level: (low/med) LOW Date Received: % Moisture: not dec. ____ Date Analyzed: 04/18/08 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: ____(uL) Soil Extract Volume: (uL) CONCENTRATION UNITS: (ug/L or ug/Kg) PPBV CAS NO. COMPOUND 124-48-1-----Dibromochloromethane 9.9 106-93-4-----1,2-Dibromoethane 8.8 100-41-4----Ethylbenzene 9.0 18 9.3 28 11 79-34-5-----1,1,2,2-Tetrachloroethane_ 8.3

CLIENT SAMPLE NO.

BA041808LCSD

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab Sample ID: BA041808LCSD

Matrix: (soil/water) AIR Lab File ID: BHF10HQD Sample wt/vol: 200.0 (g/mL) ML

Date Received: Level: (low/med) LOW

Date Analyzed: 04/18/08 % Moisture: not dec.

Dilution Factor: 1.0 GC Column: RTX-624 ID: 0.32 (mm)

Soil Aliquot Volume: ____(uL) Soil Extract Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) PPBV Q

CAS NO.	COMPOUND (ug/L or ug/kg) PPBV	
76-14-2 75-01-4 75-01-4 74-83-9 75-00-3 75-69-4 75-35-4 75-09-2 1634-04-4 156-60-5 110-54-3 75-34-3 75-34-3 75-34-3 156-59-2 110-82-7 56-23-5 110-82-7 142-82-5 71-43-2 142-82-5 79-01-6 78-87-5 108-88-3 10061-01-5- 108-88-3 10061-02-6	Dichlorodifluoromethane1,2-DichlorotetrafluoroethanVinyl Chloride1,3-ButadieneBromomethaneChloroethaneBromoetheneTrichlorofluoromethane1,1-Dichloroethene3-ChloropropeneMethylene ChlorideMethyl tert-Butyl Ethertrans-1,2-Dichloroethene1,1-Dichloroethene1,2-Dichloroethene1,2-Dichloroethene1,1-Trichloroethene	5 9 8 .0 .4 .8 .0 .10 .3 .6

CLIENT SAMPLE NO.

BA041808LCSD

Lab Name: TESTAMERIC	A BURLINGTON	Contract: 28000		DAO-110-06DCDD	
Lab Code: STLV	Case No.: 28000	SAS No.:	SDG 1	No.: NY124793	
Matrix: (soil/water)	AIR	Lab Sam	ple ID:	BA041808LCSD	
Sample wt/vol:	200.0 (g/mL) ML	Lab Fil	e ID:	BHF10HQD	
Level: (low/med)	LOW	Date Re	ceived:		
% Moisture: not dec.		Date An	alyzed:	04/18/08	
GC Column: RTX-624	ID: 0.32 (mm)	Dilutio	n Factor	r: 1.0	
Soil Extract Volume:	(uL)	Soil Al	iquot Vo	olume:	(uL)
CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/K		Q	
106-93-4 100-41-4 1330-20-7 95-47-6 1330-20-7 75-25-2 79-34-5 622-96-8	Dibromochlorom1,2-DibromoethEthylbenzeneXylene (m,p)Xylene (o)Xylene (total)Bromoform1,1,2,2-Tetrac4-Ethyltoluene1,3,5-Trimethy	hloroethane_		9.5 8.6 8.7 18 9.0 27 10 8.1 9.8 8.9	

CLIENT SAMPLE NO.

MBLK041808BA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 SDG No.: NY124793

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NI124795

Matrix: (soil/water) AIR Lab Sample ID: MBLR041808B

Sample wt/vol: 250.0 (g/mL) ML Lab File ID: BHFB01H

Level: (low/med) LOW

Date Received: _____

% Moisture: not dec. _____ Date Analyzed: 04/18/08

GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 0.8

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:
(ug/L or ug/Kg) PPBV

CAS NO. COMPOUND 0.40 U 75-71-8-----Dichlorodifluoromethane 0.16 U 76-14-2----1,2-Dichlorotetrafluoroethan 0.16 U 75-01-4-----Vinyl Chloride____ 0.40 U 106-99-0-----1,3-Butadiene 0.16 U 74-83-9-----Bromomethane 0.16 U 75-00-3-----Chloroethane 0.16 U 593-60-2-----Bromoethene 0.16 U 75-69-4-----Trichlorofluoromethane 0.16 U 75-35-4----1,1-Dichloroethene 0.40 U 107-05-1----3-Chloropropene 0.40 U 75-09-2-----Methylene Chloride___ 0.40 U 1634-04-4-----Methyl tert-Butyl Ether 0.16 U 156-60-5----trans-1,2-Dichloroethene 0.40 U 110-54-3----n-Hexane 0.16 U 75-34-3-----1,1-Dichloroethane 0.16 U 540-59-0----1,2-Dichloroethene (total) 0.16 U 156-59-2----cis-1,2-Dichloroethene 0.16 U 67-66-3-----Chloroform 0.16 U 71-55-6-----1,1,1-Trichloroethane_ 0.16 U 110-82-7-----Cyclohexane 0.16 U 56-23-5-----Carbon Tetrachloride 0.16 U 540-84-1----2,2,4-Trimethylpentane_ 0.16 U 71-43-2-----Benzene 0.16 U 107-06-2----1,2-Dichloroethane 0.16 U 142-82-5----n-Heptane 0.16 U 79-01-6-----Trichloroethene 0.16 U 78-87-5----1,2-Dichloropropane 0.16 U 75-27-4-----Bromodichloromethane 0.16 U 10061-01-5----cis-1,3-Dichloropropene 0.16 U 108-88-3-----Toluene 0.16 U 10061-02-6----trans-1,3-Dichloropropene 0.16 U 79-00-5-----1,1,2-Trichloroethane 0.16 U 127-18-4----Tetrachloroethene

79-34-5-----1,1,2,2-Tetrachloroethane

622-96-8-----4-Ethyltoluene 108-67-8-----1,3,5-Trimethylbenzene CLIENT SAMPLE NO.

0.40 U 0.16 U 0.16 U 0.16 U

0.16 U

0.16 U 0.16 U

MBLK041808BA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000 Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793 Lab Sample ID: MBLK041808BA Matrix: (soil/water) AIR Sample wt/vol: 250.0 (g/mL) ML Lab File ID: BHFB01H Level: (low/med) LOW Date Received: % Moisture: not dec. ____ Date Analyzed: 04/18/08 GC Column: RTX-624 ID: 0.32 (mm) Dilution Factor: 0.8 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS:
(ug/L or ug/Kg) PPBV Q CAS NO. COMPOUND 124-48-1-----Dibromochloromethane 0.16 U 106-93-4-----1,2-Dibromoethane 0.16 U 100-41-4----Ethylbenzene 0.16 U

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

SDG No.: NY124793 Case No.: 28000 SAS No.: Lab Code: STLV

Matrix Spike - Sample No.: BA041808LCS

	SPIKE	SAMPLE	LCS	LCS %	QC. LIMITS
	ADDED (ppbv)	CONCENTRATION (ug/L)	(bppa)	REC #	REC.
COMPOUND	(ppbv/	=======================================	9.7	97	70-130
Dichlorodifluoromethane 1,2-Dichlorotetrafluoro Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Bromoethene Trichlorofluoromethane 1,1-Dichloroethene 3-Chloropropene Methylene Chloride Methyl tert-Butyl Ether trans-1,2-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene Cis-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane Cyclohexane Carbon Tetrachloride 2,2,4-Trimethylpentane Benzene 1,2-Dichloroethane n-Heptane Trichloroethene 1,2-Dichloropropane Bromodichloromethane	10 10 10 10 10 10 10 10 10 10 10 10 10 1		8.5 7.9 8.9 8.1 8.6 8.9 9.3 10 9.0 9.2 9.6 8.9 9.3 8.5 18 9.4 8.7 9.3 9.7 9.8 8.9 8.2 8.7 8.7 8.8 8.9	8 9	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130

[#] Column to be used to flag recovery and RPD values with an asterisk

COMMENTS:	
COLL	

^{*} Values outside of QC limits

Lab Name: TESTAMERICA BURLINGTON

Contract: 28000

Lab Code: STLV

Case No.: 28000 SAS No.:

SDG No.: NY124793

Matrix Spike - Sample No.: BA041808LCS

	SPIKE	SAMPLE	LCS	LCS	QC.
COMPOUND	ADDED (ppbv)	CONCENTRATION (ug/L)	CONCENTRATION (ppbv)	REC #	REC.
COMPOUND	(bbpa)	(49/1)	(PPDV)	ICEC #	REC.
			0.1		20 120
cis-1,3-Dichloropropene	10		9.1	91	70-130
Toluene	10		8.9	89	70-130
trans-1,3-Dichloroprope	10		9.2	92	70-130
1,1,2-Trichloroethane	10		8.2	82	70-130
Tetrachloroethene	10		9.0	90	70-130
Dibromochloromethane	10		9.9	99	70-130
1,2-Dibromoethane	10		8.8	88	70-130
Ethylbenzene	10		9.0	90	70-130
Xylene (m,p)	20		18	90	70-130
Xylene (o)	10		9.3	93	70-130
Xylene (total)	30		28	93	70-130
Bromoform	10		11	110	70-130
1,1,2,2-Tetrachloroetha	10		8.3	83	70-130
4-Ethyltoluene	10		10	100	70-130
1,3,5-Trimethylbenzene	10		9.3	93	70-130
1,3,5-111methylbenzene	10		9.3	93	70-130

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS:				

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

SDG No.: NY124793 Lab Code: STLV Case No.: 28000 SAS No.:

Matrix Spike - Sample No.: BA041808LCS

COMPONIATO	(ppbv)	LCSD CONCENTRATION (ppbv)	LCSD % REC #	% RPD # =====	QC LI RPD	MITS REC. ====== 70-130
Dichlorodifluoromethane 1,2-Dichlorotetrafluoro Vinyl Chloride 1,3-Butadiene Bromomethane Chloroethane Bromoethene Trichlorofluoromethane 1,1-Dichloroethene 3-Chloropropene Methylene Chloride Methyl tert-Butyl Ether trans-1,2-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene Cois-1,2-Dichloroethene Chloroform 1,1,1-Trichloroethane Cyclohexane Carbon Tetrachloride 2,2,4-Trimethylpentane Benzene 1,2-Dichloroethane n-Heptane Trichloroethene 1,2-Dichloropropane Bromodichloromethane	10 10 10 10 10 10 10 10 10 10 10 10 10 1	9.6 8.5 7.9 8.8 8.0 8.4 8.8 9.0 10 9.3 9.6 9.4 8.7 18 9.5 8.7 9.6 9.6 9.6 9.6 8.7 8.7 9.6 9.6 8.7 8.7 9.6 9.6 8.7 8.7 9.6 9.6 9.6 8.7 9.6 8.7 9.6 9.6 8.7 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6	96 85 79 88 80 84 88 90 100 93 92 96 90 94 87 90 95 87 92 96 96 96 89 82 85 88		25 25 25 25 25 25 25 25 25 25 25 25 25 2	70-130 70-130

[#] Column to be used to flag recovery and RPD values with an asterisk

COMMENTS:	

^{*} Values outside of QC limits

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Case No.: 28000 SAS No.: SDG No.: NY124793 Lab Code: STLV

Matrix Spike - Sample No.: BA041808LCS

	SPIKE ADDED	LCSD CONCENTRATION	LCSD %	%	OC 1.	IMITS
COMPOUND	(vdqq)	(vdqq)	REC #	RPD #	RPD	REC.
	========		=====	=====	======	
cis-1,3-Dichloropropene	10	9.1	91	0	25	70-130
Toluene	10	8.6	86	3	25	70-130
trans-1,3-Dichloroprope	10	9.2	92	0	25	70-130
1,1,2-Trichloroethane	10	8.0	80	2	25	70-130
Tetrachloroethene	10	8.7	87	3	25	70-130
Dibromochloromethane	10	9.5	95	4	25	70-130
1,2-Dibromoethane	10	8.6	86	2	25	70-130
Ethylbenzene	10	8.7	87	3	25	70-130
Xylene (m,p)	20	18	90	0	25	70-130
Xylene (o)	10	9.0	90	3	25	70-130
Xylene (total)	30	27	90	3	25	70-130
Bromoform	10	10	100	10	25	70-130
1,1,2,2-Tetrachloroetha	10	8.1	81	2	25	70-130
4-Ethyltoluene	10	9.8	98	2	25	70-130
1,3,5-Trimethylbenzene	10	8.9	89	4	25	70-130

RPD: 0 out of 43 outside limits Spike Recovery: 0 out of 86 outside limits

COMMENTS:	

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

FORM 4 VOLATILE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

MBLK041808BA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

SDG No.: NY124793

Lab Code: STLV

Case No.: 28000 SAS No.:

Lab File ID: BHFB01H

Lab Sample ID: MBLK041808BA

Time Analyzed: 1226

Date Analyzed: 04/18/08 GC Column: RTX-624 ID: 0.32 (mm)

Heated Purge: (Y/N) N

Instrument ID: B

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

SAMPLE NO. SAMPLE ID	LAB FILE ID	
SAMPLE NO. ===================================		1048 1137 1812 1950 2039 2218 2307 2357 0046

COMMENTS:	
COMMENTAL	

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab File ID: BHF01PV BFB Injection Date: 04/10/08

Instrument ID: B BFB Injection Time: 1341

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	8.0 - 40.0% of mass 95	20.0
75	30.0 - 66.0% of mass 95	49.7
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.8
173	Less than 2.0% of mass 174	0.6 (0.6)1
174	50.0 - 120.0% of mass 95	94.3
175	4.0 - 9.0% of mass 174	7.8 (8.3)1
176	93.0 - 101.0% of mass 174	92.0 (97.6)1
177	5.0 - 9.0% of mass 176	7.1 (7.8)2
	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01 ASTD002 02 ASTD05 03 ASTD015 04 ASTD020 05 ASTD040 06 ASTD005 07 ASTD010 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22	ASTD002 ASTD05 ASTD15 ASTD20 ASTD40 ASTD005 ASTD10	BHF002V BHF015V BHF015V BHF020V BHF040V BHF005V2 BHF010V2	04/10/08 04/10/08 04/10/08 04/10/08 04/10/08 04/10/08 04/11/08	1525 1705 1844 1933 2022 2250 0028

FORM 5 VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

SDG No.: NY124793 Lab Code: STLV Case No.: 28000 SAS No.:

BFB Injection Date: 04/18/08 Lab File ID: BHF09PV

BFB Injection Time: 0909 Instrument ID: B

Heated Purge: (Y/N) N GC Column: RTX-624 ID: 0.32 (mm)

m/e ===== 50 75 95 96 173	ION ABUNDANCE CRITERIA 8.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 95	% RELATIVE ABUNDANCE ====================================
173 174 175 176 177	Less than 2.0% of mass 95 50.0 - 120.0% of mass 95 4.0 - 9.0% of mass 174 93.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176 1-Value is % mass 174 2-Value is % mass 174	95.9 (99.1)1 7.2 (7.6)2 88 176
		ADADDC

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

ECK APPLIES TO	LAB	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
SAMPLE NO. ====================================	ASTD010 BA041808LCS BA041808LCSD MBLK041808BA 746477 746479 746479 746474 746475 746476	BHF010HV BHF10HQD BHF10HQD BHFB01H 746477D 746479D 746474D2 746475D2 746476D2 746478D2	04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 04/18/08 04/19/08	0958 1048 1137 1226 1812 1950 2039 2218 2307 2357 0046

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Instrument ID: B Calibration Date(s): 04/10/08 04/11/08

Heated Purge: (Y/N) N Calibration Time(s): 1525 0028

GC Column: RTX-624 ID: 0.32 (mm)

LAB FILE ID: RRF0.: RRF2 = RRF5	2=BHF002 =BHF05		.5=BHF0 0 =BHF0			
COMPOUND		RRF0.5	RRF5	RRF10	RRF	RSD
Dichlorodifluoromethane	=====	4.720	 3.688	3.612	======	====
1,2-Dichlorotetrafluoroethan	4.719		3.753			
Vinyl Chloride	1.809		 1.368			
1,3-Butadiene	1.000	1.220	 1.027			
Bromomethane	1.964		 1.424			
Chloroethane	1.504	1.097	 0.834			
Bromoethene	1.974		 1.501			
Frichlorofluoromethane	5.114		 3.973			
1,1-Dichloroethene	1.380		 1.140			
	1.300	2.072	 1.746			
3-Chloropropene		2.072	 1.530			
Methylene Chloride						
Methyl tert-Butyl Ether	0.500	3.453	 3.171			
trans-1,2-Dichloroethene	2.523		 2.052			
n-Hexane		2.445	 2.130			
	* 3.220		 2.453			
1,2-Dichloroethene (total)	2.002		 1.682			
cis-1,2-Dichloroethene	1.482		 1.312			
Chloroform	3.733		2.770			
1,1,1-Trichloroethane	0.899		0.689			
Cyclohexane	0.448		0.422			
Carbon Tetrachloride	0.910		0.736			
2,2,4-Trimethylpentane	1.566		1.378			
Benzene	1.205		0.831			
1,2-Dichloroethane	0.569		0.444			
n-Heptane	0.628		0.575			
Trichloroethene	0.478		0.381			
1,2-Dichloropropane	0.409	0.418	0.328			
Bromodichloromethane	0.823	0.843	0.658	0.664		
cis-1,3-Dichloropropene	0.443	0.474	0.437	0.451		
Toluene	0.701	0.731	0.594	0.553		
trans-1,3-Dichloropropene	0.400		0.424	0.453		
1,1,2-Trichloroethane	0.388	0.371	0.299	0.276		
Tetrachloroethene	0.665		0.532			
Dibromochloromethane	0.728		0.616			
1,2-Dibromoethane	0.550		0.466			
Ethylbenzene	1.471		1.264			
Xylene (m,p)	0.506		 0.495	0.473		
-, (, 6/	0.000	1	 			

VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

SDG No.: NY124793 Case No.: 28000 SAS No.: Lab Code: STLV

04/11/08 Calibration Date(s): 04/10/08 Instrument ID: B

0028 Calibration Time(s): 1525 Heated Purge: (Y/N) N

GC Column: RTX-624 ID: 0.32 (mm)

RRF2 = RRF3	=BHF05V		DDF2	RRF5	RRF10	RRF	RSD =====
COMPOUND Kylene (o) Kylene (total) Bromoform 1,1,2,2-Tetrachloroethane 4-Ethyltoluene 1,3,5-Trimethylbenzene	0.472	0.603 0.921 1.507		0.512 0.512	0.484 0.484 0.563 0.712 1.370		

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Instrument ID: B Calibration Date(s): 04/10/08 04/11/08

Heated Purge: (Y/N) N Calibration Time(s): 1525 0028

GC Column: RTX-624 ID: 0.32 (mm)

LAB FILE ID: RRF15 RRF40 =BHF040V	=BHF01	5V	RRF2	=BHF02	20V	
COMPOUND	RRF15	RRF20	RRF40		RRF	RSD
Dichlorodifluoromethane	=====	3.159	2.589	=====	3.554	22.1
1,2-Dichlorotetrafluoroethan			2.658		3.782	21.9
Vinyl Chloride		1.129			1.363	24.3
1,3-Butadiene		0.853			0.956	20.4
Bromomethane		1.283			1.499	23.1
Chloroethane		0.740			0.817	21.9
Bromoethene		1.373			1.572	20.6
Trichlorofluoromethane		3.465			4.086	21.6
1,1-Dichloroethene		1.135			1.192	12.7
3-Chloropropene		1.664			1.740	
Methylene Chloride	-	1.389			1.565	
Methyl tert-Butyl Ether		3.081			3.141	7.7
trans-1,2-Dichloroethene		1.933			2.128	16.8
n-Hexane	-	2.086			2.120	10.8
1,1-Dichloroethane	*	2.246			2.585	20.0
1,2-Dichloroethene (total)		1.619			1.749	14.5
cis-1,2-Dichloroethene		1.304			1.370	11.0
Chloroform		2.522			2.945	20.7
1,1,1-Trichloroethane		0.659			0.740	
Cyclohexane		0.448			0.437	
Carbon Tetrachloride	-	0.694			0.769	16.8
2,2,4-Trimethylpentane	_	1.397			1.429	
Benzene		0.832			0.934	21.1
1,2-Dichloroethane		0.415			0.472	19.5
n-Heptane		0.562			0.581	11.4
Trichloroethene		0.386			0.416	
1,2-Dichloropropane		0.322			0.348	15.5
Bromodichloromethane		0.641		-	0.699	
cis-1,3-Dichloropropene		0.466			0.450	4.0
Toluene		0.570			0.612	13.9
trans-1,3-Dichloropropene		0.463			0.435	
1,1,2-Trichloroethane		0.282			0.312	17.5
Tetrachloroethene		0.524			0.569	
Dibromochloromethane		0.524			0.632	12.4
1 2 Dibromoothane	-	0.592			0.490	10.8
1,2-Dibromoethane		1.218			1.284	11.1
Ethylbenzene Xylene (m,p)	-	0.498	0.463		0.499	6.7
xyrene (m,p)		0.498	0.463		0.499	0.7
Compounds with magnized min		7	2 1	DOD		

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Instrument ID: B Calibration Date(s): 04/10/08 04/11/08

Heated Purge: (Y/N) N Calibration Time(s): 1525 0028

GC Column: RTX-624 ID: 0.32 (mm)

COMPOUND	RRF15	RRF20	RRF40		RRF	RSD
Xylene (o)		0.506 0.506 0.591	0.471 0.570 0.649 1.258		0.500 0.500 0.583 0.774 1.348 1.225	6.: 6.: 2.: 13.: 8.: 7.:

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Instrument ID: B Calibration Date: 04/18/08 Time: 0958

Lab File ID: BHF010HV Init. Calib. Date(s): 04/10/08 04/11/08

Heated Purge: (Y/N) N Init. Calib. Times: 1525 0028

GC Column: RTX-624 ID: 0.32 (mm)

COMPOUND	RRF	RRF10	MIN RRF	%D	MAX %D
Dichlorodifluoromethane	3.554	3.304	0.01	7.0	
1,2-Dichlorotetrafluoroethan	3.782	3.051			
Vinyl Chloride	1.363	1.011			
1,3-Butadiene	0.956	0.755			
Bromomethane	1.499	1.185		20.9	
Chloroethane	0.817	0.669		18.1	
Bromoethene	1.572	1.324			
Trichlorofluoromethane	4.086	3.642			
1,1-Dichloroethene	1.192	1.087			30.0
3-Chloropropene	1.740	1.513			
Methylene Chloride	1.565	1.289			
Methyl tert-Butyl Ether	3.141	2.891			30.0
trans-1,2-Dichloroethene	2.128	1.828			30.0
n-Hexane	2.120	1.884			30.0
1,1-Dichloroethane	2.585	2.141			30.0
1,2-Dichloroethene (total)	1.749	1.519			
cis-1,2-Dichloroethene	1.370	1.211	0.01		30.0
Chloroform	2.945	2.467			
1,1,1-Trichloroethane	0.740	0.655			30.0
Cyclohexane	0.437	0.395			30.0
Carbon Tetrachloride	0.769	0.719			
2,2,4-Trimethylpentane	1.429	1.184			
Benzene	0.934	0.722			
1,2-Dichloroethane	0.472	0.385			
n-Heptane	0.581	0.472			
Trichloroethene	0.416	0.346			30.0
1,2-Dichloropropane	0.348	0.272			30.0
Bromodichloromethane	0.699	0.581			30.0
cis-1,3-Dichloropropene	0.450	0.388			
Toluene	0.612	0.520			
trans-1,3-Dichloropropene	0.435	0.384		11.7	
1,1,2-Trichloroethane	0.312	0.254			
Tetrachloroethene	0.569			12.6	
Dibromochloromethane	0.632	0.571			
1,2-Dibromoethane	0.490	0.415		15.3	
Ethylbenzene	1.284	1.104		14.0	
Xylene (m, p)	0.499	0.439		12.0	
VATETIE (III' D)	0.200	0.700	0.01	12.0	20.0

FORM 7 VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Instrument ID: B Calibration Date: 04/18/08 Time: 0958

Lab File ID: BHF010HV Init. Calib. Date(s): 04/10/08 04/11/08

Heated Purge: (Y/N) N Init. Calib. Times: 1525 0028

GC Column: RTX-624 ID: 0.32 (mm)

COMPOUND	RRF	RRF10	MIN RRF	%D	MAX %D
	=======	=======	=======	=====	====
Xylene (o)	0.500	0.457	0.01	8.6	30.0
Xylene (total)	0.500	0.457	0.01	8.6	30.0
Bromoform	0.583	0.561	0.01	3.8	30.0
1,1,2,2-Tetrachloroethane	0.774	0.631	0.01	18.5	30.0
4-Ethyltoluene	1.348	1.292	0.01	4.2	30.0
1,3,5-Trimethylbenzene	1.225	1.092	0.01	10.8	30.0

FORM 8 VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: TESTAMERICA BURLINGTON Contract: 28000

Lab Code: STLV Case No.: 28000 SAS No.: SDG No.: NY124793

Lab File ID (Standard): BHF010HV Date Analyzed: 04/18/08

Instrument ID: B Time Analyzed: 0958

GC Column: RTX-624 ID: 0.32 (mm) Heated Purge: (Y/N) N

AREA # RT # AREA # RT # AREA # RT # AREA # 12 HOUR STD 187086 8.74 831490 9.61 827734 UPPER LIMIT 261920 9.07 1164086 9.94 1158828	RT # ====== 12.02
UPPER LIMIT 261920 9.07 1164086 9.94 1158828	
LOWER LIMIT	12.35 11.69 ======= 12.02 12.02 12.02 12.02 12.02 12.02 12.02

IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = + 40% of internal standard area

AREA LOWER LIMIT = - 40% of internal standard area

RT UPPER LIMIT = + 0.33 minutes of internal standard RT

RT LOWER LIMIT = - 0.33 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.