

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION

Site Classification Report

DATE: 8/30/2021

Site Code: 828113 Site Name: Luster-Coate

City:ChurchvilleTown:RigaRegion:8County:Monroe

Current Classification: N Proposed Classification: 02

Estimated Size (acres): 3 20 Disposal Area: Structure

Significant Threat: - Site Type:

Priority ranking Score: 415 Project Manager: Frank Sowers

Summary of Approvals

Originator/Supervisor: David Pratt

05/13/2021

RHWRE: David Pratt: 05/17/2021

BEEI of NYSDOH: 06/17/2021

CO Bureau Director: Michael Cruden, Director, Region 8: 06/17/2021

Division Director: Mike Ryan, P.E.: 07/27/2021

Basis for Classification Change

The site was being addressed under the BCP, but the BCP project was terminated. Investigation results completed to date detected PCBs in soil at concentrations up to 637 ppm. PCBs in soils at concentrations over 50 ppm are defined as a hazardous waste. PCBs exceeding 50 ppm were found in two areas. One area is along the driveway into the site adjacent to residential properties. The other area the west side of the site including along the bank adjacent to Black Creek. PCBs up to 22 ppm were detected in Black Creek sediment adjacent to the site. The vertical extent of PCBs has not been defined, but extend from the surface to at least 5 feet below the surface.

Site Description - Last Review: 10/31/2013

Location: The Luster-Coate Metalizing Corporation Inactive Hazardous Waste Disposal site is an approximately 3.2-acre site located in a suburban area on East Buffalo Street along the east bank of Black Creek in the Village Churchville, Town of Riga, Monroe County.

Site Features: The site is relatively flat but slopes down to Black Creek on the west. The site is vacant. All buildings have been demolished, but the building slabs remain in place. The site is primarily covered by the former building slabs and pavement. Exposed surface soil is primarily limited to the site perimeter.

DATE: 8/30/2021

Site Code: 828113 Site Name: Luster-Coate

Current Zoning and Land Use: The site is currently vacant and is zoned for a planned residential development. Black Creek forms the western site boundary. Other adjacent properties are residential.

Past Use of the Site: Luster-Coate Metalizing Corp. applied metal film and paint coatings to plastic materials manufactured elsewhere. Prior to this activity, the site was reportedly used for a variety of industrial purposes including condiment bottle processing, canary propagation, and wooden toy manufacturing with industrial purposes dating to at least 1929.

In 2001, an environmental investigation identified elevated levels of chlorinated compounds in groundwater samples collected from an on-site cooling water supply well. The source of the chlorinated compounds was not identified, but records indicate that a vapor degreaser which used chlorinated compounds was present at the site. Other potential sources include a waste storage area and chemical storage area.

Luster-Coate abandoned the site and in 2004 the U.S. Environmental Protection Agency removed abandoned drums, pails, and vats of chemicals from the site. Additional investigations completed by NYSDEC between 2004 and 2006 detected PCBs in surface soils. In 2006, NYSDEC removed PCB contaminated soils from adjacent residential properties as an Interim Remedial Measure.

The current owner obtained the property from bankruptcy and entered the Brownfield Cleanup Program (BCP) in 2006. Environmental investigations conducted by the owner under the BCP detected PCBs in soils on the western portion of the site adjacent to Black Creek and along the main driveway into the property. In 2020, the extent of the PCB soil contamination was still not defined and the owner determined that it was not financially viable to continue. In 2020, the owner conducted additional investigations in the 0.85 acre southern portion of the property which was historically used as a parking lot. In May 2021, the owner exited from the BCP and submitted the results for the southern portion of the property. The results were not indicative of hazardous waste disposal and the southern portion of the property is not part in the Registry site.

Site Geology and Hydrogeology: Site soils are primarily sand and silt to depths of up to 30 feet below ground surface (bgs). Groundwater is typically encountered at depths ranging from 3 to 14 feet bgs and flows west and towards Black Creek.

Contaminants of Concern (Including Materials Disposed)

Quantity Disposed

OU 01

polychlorinated biphenyls (PCB) trichloroethene (TCE)

0.00

Analytical Data Available for: Groundwater, Soil, Sediment, Soil Vapor

Applicable Standards, Criteria or Guidance exceeded for:

Groundwater, Soil, Sediment

DATE: 8/30/2021

Site Code: 828113 Site Name: Luster-Coate

Site Environmental Assessment- Last Review: 10/31/2013

Nature and Extent of Contamination:

Based upon investigations conducted to date, the primary contaminants of concern include polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trichloroethene (TCE).

Soil – PCBs are found in soil mainly on the western portion of the site between the former buildings and Black Creek and adjacent to the driveway into the site. PAHs are found in shallow soil at several locations across the site with the highest concentrations found at the outlet of a culvert in the northern portion of the site.

PCB concentrations on site, up to 637 parts per million (ppm), significantly exceed the soil cleanup objective (SCO) for unrestricted use (0.1 ppm) and restricted residential use (1 ppm). PCBs in soils at concentrations over 50 ppm are defined as a hazardous waste. PCBs exceeding 50 ppm are found along the bank adjacent to Black Creek indicating the potential for PCB migration into the creek. PCBs exceeding 50 ppm are also found along the driveway into the site adjacent to residential properties. The vertical extent of PCBs has not been defined, but extend to at least 5 feet below the surface in some areas.

Concentrations of the PAHs benzo(a)anthracene (up to 51 ppm), benzo(a)pyrene (up to 52 ppm), and benzo(b)fluoranthene (up to 76 ppm) significantly exceed the SCO for both unrestricted use and restricted residential use (1 ppm).

Sediment- PCBs are found off-site in Black Creek sediments at concentrations ranging from non-detect to 22,000 parts per billion (ppb) which exceeds the Class C guidance value of 1,000 ppb. The highest PCB concentrations were detected in sediments closest to the site.

Groundwater – TCE is found in groundwater in the western portion of the site, exceeding groundwater standards (5 ppb), with a maximum concentration of 13 ppb. Groundwater impacts are limited to a localized area under the former manufacturing building.

Site Health Assessment - Last Update: 06/03/2021

People who enter the site may contact contaminants in the soil by walking on it, digging or otherwise disturbing the soil. People are not drinking the contaminated groundwater because the area is served by a public water supply that is not affected by this contamination. Volatile organic compounds in the groundwater and soil may move into the soil vapor (air spaces within the soil), which in turn may move into overlying buildings and affect the indoor air quality. This process, which is similar to the movement of radon gas from the subsurface into the indoor air of buildings is referred to as soil vapor intrusion. Because the site is vacant, the inhalation of site-related contaminants due to soil vapor intrusion does not represent a current concern. Furthermore, environmental sampling indicates soil vapor intrusion is not a concern for off-site buildings.

	Start		End	
OU 01 OGC Docket - Order or SSF Referral	8/17/21	ACT	3/31/22	PLN

DATE: 8/30/2021

Site Code:	828113	Site Name: Luster-Co	ate		
Reclass Pkg.		5/13/21	ACT	9/30/21	PLN
Remedial Inv	estigation	3/31/06	TRM	3/31/06	TRM
Remedial Inv	estigation	6/30/22	PLN	3/31/25	PLN
Site Characte	rization	10/8/04	ACT	10/25/05	ACT
OU 01A Remedial Act	tion	9/11/03	ACT	11/8/04	ACT
OU 01B Remedial Act	tion	8/19/05	ACT	3/31/08	ACT

Remedy Description and Cost

Remedy Description for Operable Unit 01

Total Cost

DATE: 8/30/2021

Site Code: 828113 Site Name: Luster-Coate

Remedy Description for Operable Unit 01A

An inspection by Region 8 DER and DSHM staff, and Monroe County DOH on 8/20/2003 discove abandoned material in drums, containers, and process equipment on-site. On 9/11/2003, DER requested USEPA perform a removal under their CERCLA Emergency Response Program. EPA inspected the site, reviewed site history, and determined a removal was warranted via an Action Memorandum on 5/27/2004. A cleanup contractor mobilized to the site on 7/6/2004, packaged the material, and further secured the site. Removal of packaged waste material began on 10/18/2004 a was completed on 10/25/2004. An EPA inspection on 11/8/2004 closed out the EPA action for the

Total Cost

DATE: 8/30/2021

Site Code: 828113 Site Name: Luster-Coate

Remedy Description for Operable Unit 01B

Remove PCB contaminated soil near facility entrance and on neighboring lawns.

Total Cost

OU Site Management Plan Approval: Status:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Form 8/30/2021

SITE DESCRIPTION

SITE NO. 828113

SITE NAMELuster-Coate

SITE ADDRESS: 32 East Buffalo Street ZIP CODE: 14428

CITY/TOWN: Churchville

COUNTY: Monroe

ALLOWABLE USE: Residential, Restricted-Residential, Commercial, and Industrial

SITE MANAGEMENT DESCRIPTION

SITE MANAGEMENT PLAN INCLUDES:

IC/EC Certification Plan NO

Monitoring Plan

Operation and Maintenance (O&M) Plan

Periodic Review Frequency:

Periodic Review Report Submittal Date:

DATE: 8/30/2021

Site Code:	828113	Site Name: Luster-Coate	
		Description of Institutional Control	
	0		
Not App	licable/No IC's		
		Description of Engineering Control	
Not Applic	able/No EC's		

PUBLIC NOTICE

State Superfund Program

Sign up to receive site updates by email: www.dec.ny.gov/chemical/61092.html

Site Name: Luster-Coate August 2021

Site No. 828113 Tax Map No. 143.10-1-37

Site Location: 32 East Buffalo Street, Churchville, NY 14428

State Superfund Site Classification Notice

The Inactive Hazardous Waste Disposal Site Program (the State Superfund Program) is the State's program for identifying, investigating, and cleaning up sites where the disposal of hazardous waste may present a threat to public health and/or the environment. The New York State Department of Environmental Conservation (DEC) maintains a list of these sites in the Registry of Inactive Hazardous Waste Disposal Sites (Registry). The site identified above, and located on a map on the reverse side of this page, has been added to the Registry as a Class 2 site that presents a significant threat to public health and/or the environment for the following reason(s):

- The site was being addressed under the Brownfield Cleanup Program (BCP) until it was terminated by the Applicant in May 2021.
- Investigation results to date detected polychlorinated biphenyls (PCBs) in on-site soil and in off-site sediment.
- People who enter the site may contact contaminants in the soil by walking on it, digging or otherwise disturbing the soil.
- Additional actions are needed to define the nature and extent of contamination at the site and to evaluate and address the potential for human exposures.

People are not drinking the contaminated groundwater because the area is served by a public water supply that is not affected by this contamination. Because the site is vacant, the inhalation of site-related contaminants from soil vapor intrusion does not represent a current concern.

DEC will keep you informed throughout the investigation and cleanup of the site.

If you own property adjacent to this site and are renting or leasing your property to someone else, please share this information with them. If you no longer wish to be on the contact list for this site or otherwise need to correct our records, please contact DEC's Project Manager listed below.

FOR MORE SITE INFORMATION

Additional information about this site can be found using DEC's "Environmental Site Remediation Database Search" engine which is located on the internet at:

www.dec.ny.gov/cfmx/extapps/derexternal/index.cfm?pageid=3

Site specific documents may be found online through the DECinfo Locator at:

https://www.dec.ny.gov/data/DecDocs/828113/ and https://www.dec.ny.gov/data/DecDocs/C828113/

Comments and questions are always welcome and should be directed as follows:

Project Related Questions
Frank Sowers, Project Manager
NYS Department of Environmental Conservation
6274 East Avon-Lima Rd.
Avon, NY 14414-9519
frank.sowers@dec.ny.gov
585-226-5357

Site Related Health Questions
Melissa Doroski, Project Manager
NYS Department of Health
Bureau of Environmental Exposure Investigation
Corning Tower, Room 1787
Albany, NY 12237
melissa.doroski@health.ny.gov

DEC is sending you this notice in accordance with Environmental Conservation Law Article 27, Title 13 and its companion regulation (6 NYCRR 375-2.7(b)(6)(ii)) which requires DEC to notify all parties on the contact list for this site of this recent action.

Approximate Site Location

Site Name Luster-Coate
Site ID 828113
32 East Buffalo Street, Churchville, NY 14428

Stay Informed With DEC Delivers

Sign up to receive site updates by email: www.dec.ny.gov/chemical/61092.html

As a listserv member, you will periodically receive site-related information/announcements for all contaminated sites in the county(ies) you select.

Note: Please disregard if you received this notice by way of a county email listserv.

DECinfo Locator

Interactive map to access DEC documents and public data about the environmental quality of specific sites: http://www.dec.ny.gov/pubs/109457.html

Electronic copies:

- M. Ryan, Director, Division of Environmental Remediation
- K. Lewandowski, Chief, Site Control Section
- M. Cruden, Director, Remedial Bureau E
- D. Pratt, RHWRE, Region 8
- T. Haley, Regional Permit Administrator, Region 8
- M. Wren
- C. Vooris, NYSDOH
- J. Deming, NYSDOH Regional Chief
- M. Doroski, NYSDOH Project Manager
- J. DeMarco, DER, Bureau of Program Management
- F. Sowers, Project Manager
- L. Zinoman, Site Control Section

WROC-TV 8/WUHF FOX 31 201 HUMBOLDT ST ROCHESTER, NY 14610 SPECTRUM NEWS 71 MT HOPE AVE ROCHESTER, NY 14620 WXXI 280 STATE ST ROCHESTER, NY 14614

DEMOCRAT & CHRONICLE MEDIA GROUP 245 E. MAIN ST ROCHESTER, NY 14604

191 EAST AVE ROCHESTER, NY 14604

WHEC-TV 10

4225 WEST HENRIETTA RD ROCHESTER, NY 14623

WHAM-13

THE DAILY RECORD 16 W MAIN ST ROCHESTER, NY 14614 MESSENGER POST MEDIA 73 BUFFALO ST CANANDAIGUA, NY 14424 Honorable Kirsten E. Gillibrand Kenneth B. Keating Federal Building 100 State St., Room 4195 Rochester, NY 14614

Honorable Charles Schumer Kenneth B. Keating Federal Building 100 State St., Room 3040 Rochester, NY 14614 THE HONORABLE EDWARD A. RATH III 1961 WEHRLE DRIVE, SUITE 9 WILLIAMSVILLE, NY 14221 THE HONORABLE STEPHEN HAWLEY 121 N. MAIN ST, SUITE 100 ALBION, NY 14411

THE HONORABLE JOSEPH MORELLE KENNETH B. KEATING FEDERAL BUILDING 100 STATE ST, ROOM 3120 GREECE, NY 14614 MONROE COUNTY LEGISLATURE 407 COUNTY OFFICE BLDG 39 W MAIN ST ROCHESTER, NY 14614-1476 MONROE COUNTY CLERK 101 COUNTY OFFICE BLDG 39 W MAIN ST ROCHESTER, NY 14614-1476

MONROE COUNTY EXECUTIVE 110 COUNTY OFFICE BLDG 39 W MAIN ST ROCHESTER, NY 14614-1476 MONROE COUNTY HEALTH DEPT MIRZA BEGOVIC 111 WESTFALL RD, ROOM 910 ROCHESTER, NY 14620 MONROE COUNTY PLANNING 1150 CITY PL 50 W MAIN ST ROCHESTER, NY 14614

MONORE COUNTY EMC 111 WESTFALL RD, ROOM 916 ROCHESTER, NY 14620

MONROE COUNTY IDA IMAGINE MONROE 50 W MAIN ST ROCHESTER, NY 14614 MONROE COUNTY SWCD 145 PAUL ROAD, BUILDING 5 ROCHESTER, NY 14624

MONROE COUNTY WQCC 111 WESTFALL RD ROCHESTER, NY 14620 MONROE COUNTY WATER AUTHORITY EXECUTIVE DIRECTOR 475 NORRIS DRIVE ROCHESTER, NY 14610-0999 MONROE COUNTY SHERIFF 130 S PLYMOUTH AVE ROCHESTER, NY 14614

VILLAGE OF CHURCHVILLE MAYOR 23 EAST BUFFALO ST CHURCHVILLE, NY 14428 VILLAGE OF CHURCHVILLE PLANNING BOARD CHAIRPERSON 23 EAST BUFFALO ST CHURCHVILLE, NY 14428 VILLAGE OF CHURCHVILLE ZONING BOARD CHAIRPERSON 23 EAST BUFFALO ST CHURCHVILLE, NY 14428

TOWN OF RIGA TOWN SUPERVISOR 6460 BUFFALO ROAD CHURCHVILLE, NY 14428 TOWN OF RIGA PLANNING BOARD CHAIRPERSON 6460 BUFFALO ROAD CHURCHVILLE, NY 14428 TOWN OF RIGA ZONING BOARD CHAIRPERSON 6460 BUFFALO ROAD CHURCHVILLE, NY 14428 NEWMAN RIGA LIBRARY 1 SOUTH MAIN ST

CHURCHVILLE, NY 14428

CHURCHVILLE-CHILI CENTRAL SCHOOL DISTRICT

SUPERINTENDENT 139 FAIRBANKS ROAD CHURCHVILLE, NY 14428 BLACK CREEK WATERSHED COALITION

P.O. BOX 13

BYRON, NY 14422-0013

LOTUS-GREEN DEVELOPMENT, LLC

S. RAM SHRIVASTAVA 700 WEST METRO PARK ROCHESTER, NY 14623 ALAN J. KNAUF

1400 CROSSROADS BLDG 2 STATE STREET ROCHESTER, NY 14614 ATLANTIC FUNDING AND REAL ESTATE

AL SPAZIANO P.O. BOX 26350

ROCHESTER, NY 14626

PHILLIPS LYTLE LLP
PATRICK T. FITZGERALD
125 MAIN STREET
BUFFALO, NY 14203-2887

PIP PROPERTIES 140 STOTTLE ROAD CHURCHVILLE, NY 14428 **OCCUPANT**

33 E BUFFALO STREET CHURCHVILLE, NY 14428

OCCUPANT

40 E BUFFALO STREET CHURCHVILLE, NY 14428 **OCCUPANT**

44 E BUFFALO STREET CHURCHVILLE, NY 14428 OCCUPANT

34 E BUFFALO STREET CHURCHVILLE, NY 14428

OCCUPANT

43 E BUFFALO STREET CHURCHVILLE, NY 14428 OCCUPANT

46 E BUFFALO STREET CHURCHVILLE, NY 14428

OCCUPANT

36 E BUFFALO STREET CHURCHVILLE, NY 14428

OCCUPANT

41 E BUFFALO STREET CHURCHVILLE, NY 14428 OCCUPANT

47 E BUFFALO STREET CHURCHVILLE, NY 14428 OCCUPANT

50 E BUFFALO STREET CHURCHVILLE, NY 14428

OCCUPANT

51 E BUFFALO STREET CHURCHVILLE, NY 14428 OCCUPANT

25 E BUFFALO STREET CHURCHVILLE, NY 14428 OCCUPANT

27 E BUFFALO STREET CHURCHVILLE, NY 14428

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Bureau of Technical Support 625 Broadway, 11th Floor, Albany, NY 12233-7020 P: (518) 402-9543 | F: (518) 402-9547 www.dec.ny.gov

August 5, 2021

<u>CERTIFIED MAIL</u> RETURN RECEIPT REQUESTED

Lotus-Green Development, LLC Attn: S. Ram Shrivastava, P.E. 700 West Metro Park Rochester, NY 14623

Dear S. Ram Shrivastava, P.E.:

As mandated by Section 27-1305 of the Environmental Conservation Law (ECL), the New York State Department of Environmental Conservation (DEC) must maintain a registry of all inactive disposal sites suspected or known to contain hazardous wastes. The ECL also mandates that DEC notify, by certified mail, the owner of all or any part of each site or area included in the Registry of Inactive Hazardous Waste Disposal Sites.

Our records indicate that you are the owner or part owner of the site listed below. Therefore, this letter constitutes notification of the inclusion of such site in the Registry of Inactive Hazardous Waste Disposal Sites in New York State (Registry). Once listed in the Registry, the site becomes subject to certain restrictions prescribed by provisions of 6 NYCRR Part 375.

DEC Site No.: 828113 Site Name: Luster-Coate

Site Address: 32 East Buffalo Street, Churchville, NY 14428

Site Classification: 2

Enclosed is a copy of DEC's Inactive Hazardous Waste Disposal Site Report form as it appears in the Registry. An explanation of the site classification is available at http://www.dec.ny.gov/chemical/8663.html.

For additional information, please contact Frank Sowers, the Project Manager, at frank.sowers@dec.ny.gov or 585-226-5357.

Sincerely,

Fenand Monon for Kelly A. Lewandowski, P.E. Chief, Site Control Section

Enclosures

ec: F. Sowers, Project Manager

Do not include the following ec list with the owner letter.

ec: M. Ryan

W. Ottaway

K. Lewandowski

L. Anzalone

L. Zinoman, Site Control Section

C. Vooris, NYSDOH

J. Deming, NYSDOH Regional Chief

M. Cruden, Director, Remedial Bureau E

D. Loew, Project Attorney

D. Pratt, RHWRE, Region 8

T. Haley, Regional Permit Administrator, Region 8

W. Ottaway, DER GIS Coordinator

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

DIVISION OF ENVIRONMENTAL REMEDIATION Inactive Hazardous Waste Disposal Report

Site Code 828113

Site Name Luster-Coate Address 32 East Buffalo Street

Classification2CityChurchvilleZip14428Region8CountyMonroeTown Riga

Latitude 43 degrees, 6 minutes, 19.76 seconds Estimated Size 3.2000

Longitude -77 degrees, 52 minutes, 52.90 seconds

Site Type Structure

Site Description

Location: The Luster-Coate Metalizing Corporation Inactive Hazardous Waste Disposal site is an approximately 3.2-acre site located in a suburban area on East Buffalo Street along the east bank of Black Creek in the Village Churchville, Town of Riga, Monroe County.

Site Features: The site is relatively flat but slopes down to Black Creek on the west. The site is vacant. All buildings have been demolished, but the building slabs remain in place. The site is primarily covered by the former building slabs and pavement. Exposed surface soil is primarily limited to the site perimeter.

Current Zoning and Land Use: The site is currently vacant and is zoned for a planned residential development. Black Creek forms the western site boundary. Other adjacent properties are residential.

Past Use of the Site: Luster-Coate Metalizing Corp. applied metal film and paint coatings to plastic materials manufactured elsewhere. Prior to this activity, the site was reportedly used for a variety of industrial purposes including condiment bottle processing, canary propagation, and wooden toy manufacturing with industrial purposes dating to at least 1929.

In 2001, an environmental investigation identified elevated levels of chlorinated compounds in groundwater samples collected from an on-site cooling water supply well. The source of the chlorinated compounds was not identified, but records indicate that a vapor degreaser which used chlorinated compounds was present at the site. Other potential sources include a waste storage area and chemical storage area.

Luster-Coate abandoned the site and in 2004 the U.S. Environmental Protection Agency removed abandoned drums, pails, and vats of chemicals from the site. Additional investigations completed by NYSDEC between 2004 and 2006 detected PCBs in surface soils. In 2006, NYSDEC removed PCB contaminated soils from adjacent residential properties as an Interim Remedial Measure.

The current owner obtained the property from bankruptcy and entered the Brownfield Cleanup Program (BCP) in 2006. Environmental investigations conducted by the owner under the BCP detected PCBs in soils on the western portion of the site adjacent to Black Creek and along the main driveway into the property. In 2020, the extent of the PCB soil contamination was still not defined and the owner determined that it was not financially viable to continue. In 2020, the owner conducted additional investigations in the 0.85 acre southern portion of the property which was historically used as a parking lot. In May 2021, the owner exited from the BCP and submitted the results for the southern portion of the property. The results were not indicative of hazardous waste disposal and the southern portion of the property is not part in the Registry site.

Site Geology and Hydrogeology: Site soils are primarily sand and silt to depths of up to 30 feet below ground surface (bgs). Groundwater is typically encountered at depths ranging from 3 to 14 feet bgs and flows west and towards Black Creek.

OU 01

polychlorinated biphenyls (PCB) trichloroethene (TCE)

UNKNOWN UNKNOWN

Analytical Data Available 1 Groundwater, Soil, Sediment, Soil Vapor

Applicable Standards, Criteria or Guidance exceeded for:

Groundwater, Soil, Sediment

Assessment of Environmental Problems

Nature and Extent of Contamination:

Based upon investigations conducted to date, the primary contaminants of concern include polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trichloroethene (TCE).

Soil – PCBs are found in soil mainly on the western portion of the site between the former buildings and Black Creek and adjacent to the driveway into the site. PAHs are found in shallow soil at several locations across the site with the highest concentrations found at the outlet of a culvert in the northern portion of the site.

PCB concentrations on site, up to 637 parts per million (ppm), significantly exceed the soil cleanup objective (SCO) for unrestricted use (0.1 ppm) and restricted residential use (1 ppm). PCBs in soils at concentrations over 50 ppm are defined as a hazardous waste. PCBs exceeding 50 ppm are found along the bank adjacent to Black Creek indicating the potential for PCB migration into the creek. PCBs exceeding 50 ppm are also found along the driveway into the site adjacent to residential properties. The vertical extent of PCBs has not been defined, but extend to at least 5 feet below the surface in some areas.

Concentrations of the PAHs benzo(a)anthracene (up to 51 ppm), benzo(a)pyrene (up to 52 ppm), and benzo(b)fluoranthene (up to 76 ppm) significantly exceed the SCO for both unrestricted use and restricted residential use (1 ppm).

Sediment- PCBs are found off-site in Black Creek sediments at concentrations ranging from non-detect to 22,000 parts per billion (ppb) which exceeds the Class C guidance value of 1,000 ppb. The highest PCB concentrations were detected in sediments closest to the site.

Groundwater– TCE is found in groundwater in the western portion of the site, exceeding groundwater standards (5 ppb), with a maximum concentration of 13 ppb. Groundwater impacts are limited to a localized area under the former manufacturing building.

Assessment of Health Problems

People who enter the site may contact contaminants in the soil by walking on it, digging or otherwise disturbing the soil. People are not drinking the contaminated groundwater because the area is served by a public water supply that is not affected by this contamination. Volatile organic compounds in the groundwater and soil may move into the soil vapor (air spaces within the soil), which in turn may move into overlying buildings and affect the indoor air quality. This process, which is similar to the movement of radon gas from the subsurface into the indoor air of buildings is referred to as soil vapor intrusion. Because the site is vacant, the inhalation of site-related contaminants due to soil vapor intrusion does not represent a current concern. Furthermore, environmental sampling indicates soil vapor intrusion is not a concern for off-site buildings.

Owners

Current Owner(s)

Mr. S. Ram Shrivastava, PE

Lotus-Green Development, LLC

700 West Metro Park

Rochester NY 14623

Previous Owner(s)

LUSTER COAT METALLIZING CORP.

32 EAST BUFFALO STREET

CHURCHVILLE NY 14428

Disposal Owner(s)

LUSTER-COAT METALLIZING CORP.

NY

Operators

Previous Operator(s)

LUSTER-COAT METALLIZING CORP.

32 EAST BUFFALO STREET

CHURCHVILLE NY 14428

ANDREW M. CUOMO Governor **HOWARD A. ZUCKER, M.D., J.D.**Commissioner

LISA J. PINO, M.A., J.D.Executive Deputy Commissioner

June 17, 2021

Michael Ryan, Director Division of Environmental Remediation NYS Dept. of Environmental Conservation 625 Broadway Albany, NY 12233

Re: Site Listing - Class 2

Luster Coate Site #828113 Churchville, Monroe County

Dear Michael. Ryan,

At your Department's request, we have reviewed the New York State Department of Environmental Conservation's (NYSDEC's) proposal to list the above referenced site as a Class 2 site on the NYSDEC's Registry of Inactive Hazardous Waste Disposal Sites. Based on that review, I understand the site was being addressed under the Brownfield Cleanup Program (BCP) until it was terminated in May 2021. Investigation results completed to date detected polychlorinated biphenyls (PCBs) in on-site soil at concentrations up to 637 parts per million and in off-site sediment up to 22,000 parts per billion. In addition, polycyclic aromatic hydrocarbons are present in soil and trichloroethene is present in groundwater, both above applicable standards, criteria, and guidance values.

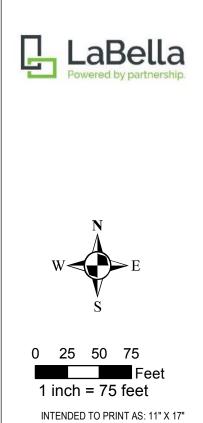
People who enter the site may contact contaminants in the soil by walking on it, digging or otherwise disturbing the soil. People are not drinking the contaminated groundwater because the area is served by a public water supply that is not affected by this contamination. Because the site is vacant, the inhalation of site-related contaminants due to soil vapor intrusion does not represent a current concern. However, additional actions are needed to define the nature and extent of contamination at the site and to evaluate and address the potential for human exposures.

Based on this information, I believe the site represents a significant threat to human health and concur with your Department's proposal to list the site on the Registry. If you have any questions, please contact Mr. Justin Deming at (518) 402-7860.

Sincerely,


Christine N. Vooris, P.E., Director

Bureau of Environmental Exposure Investigation

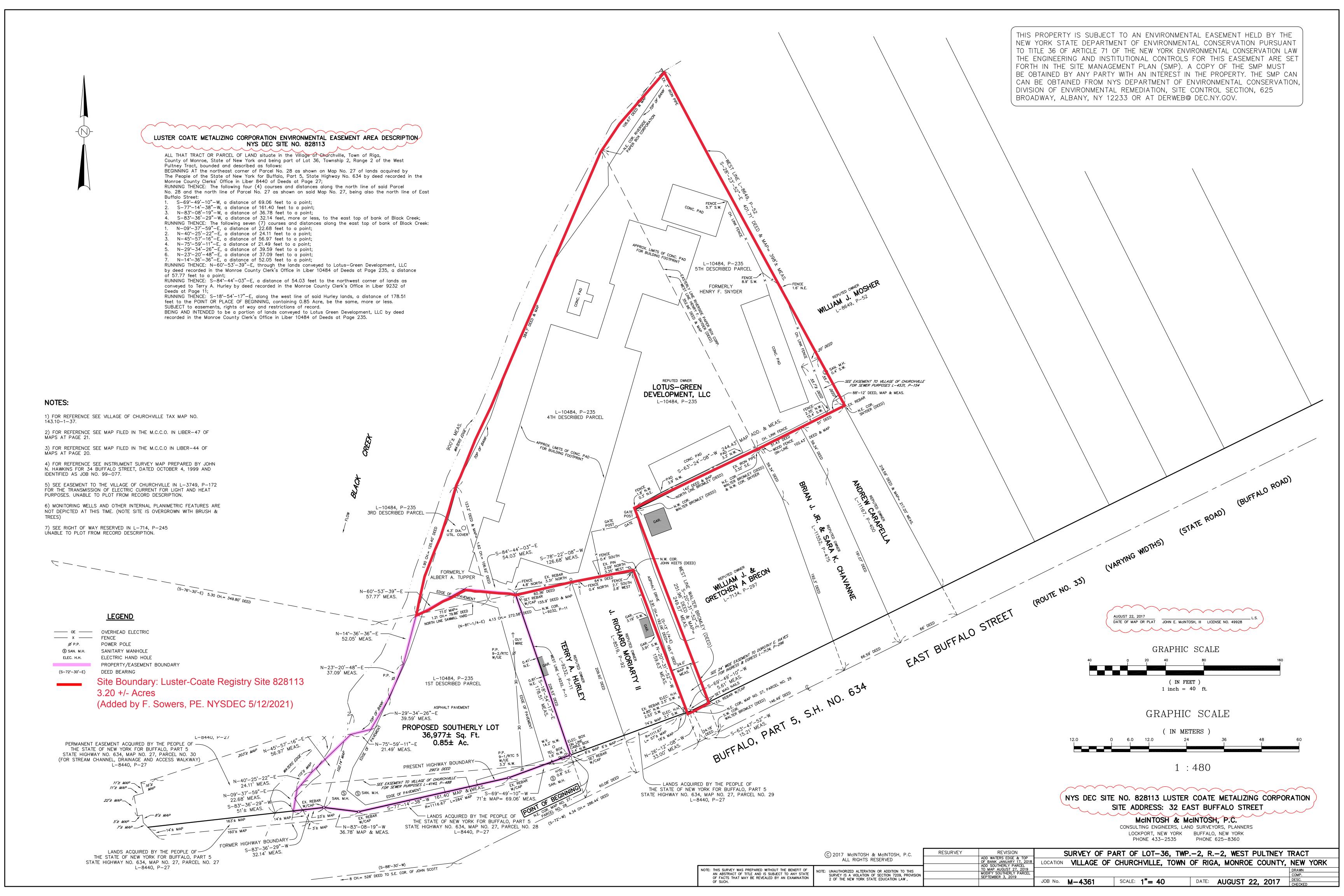

E. Lewis-Michl / K. Malone / J. Deming / M. Doroski / e-File A. Bonamici / C. Nicastro – NYSDOH WRO ec:

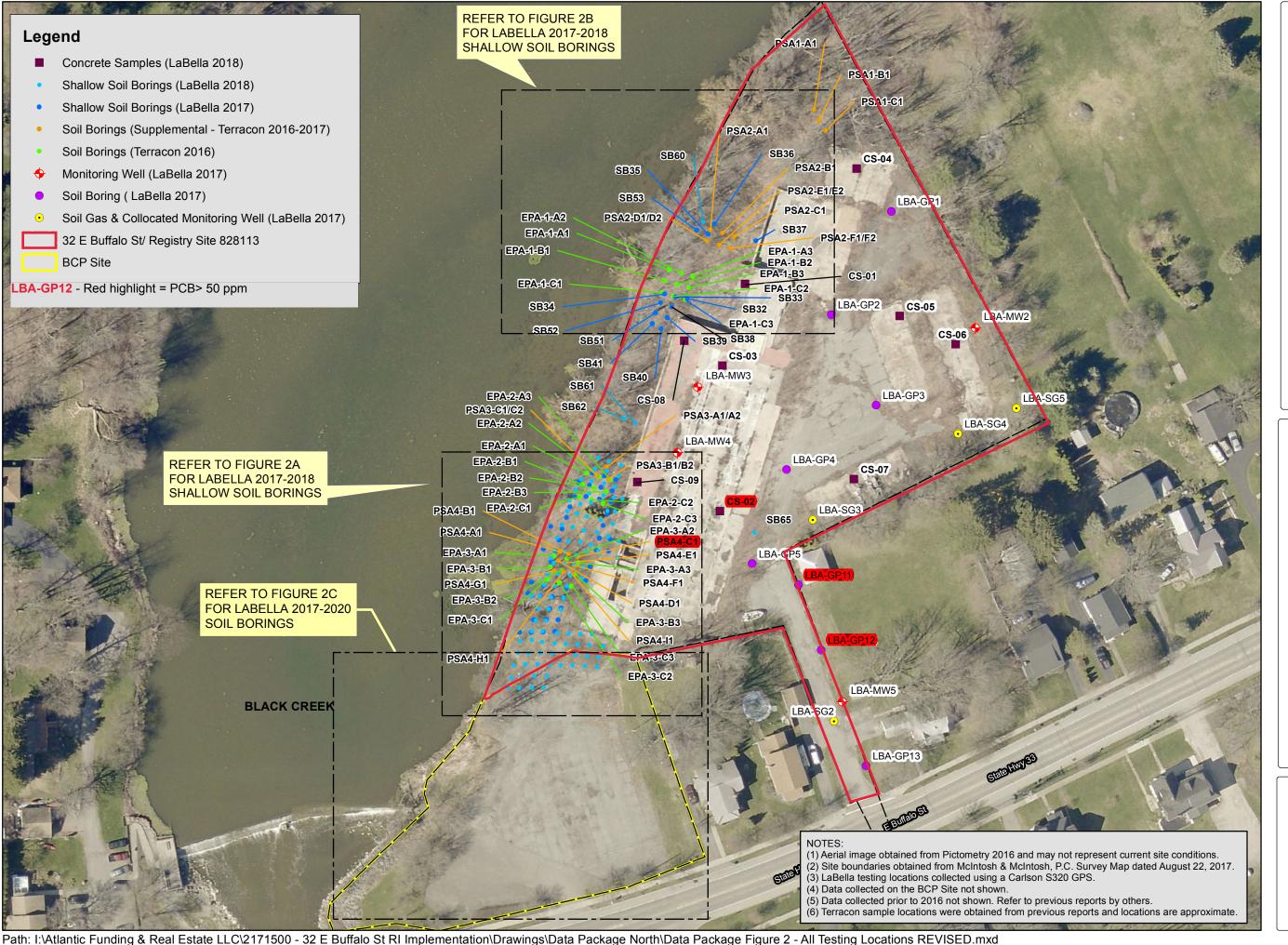
F. Golisano / M. Bergovic – MCDPH
G. Heitzman / M. Cruden – NYSDEC Central Office
D. Pratt / F. Sowers – NYSDEC Region 8

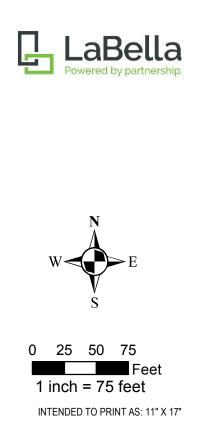
Figure 1. Project Location Map

Former Luster-Coate 32 East Buffalo St. Churchville, NY BCP Site C828133

DRAWING:


SITE FEATURES


PROJECT/DRAWING NUMBER:

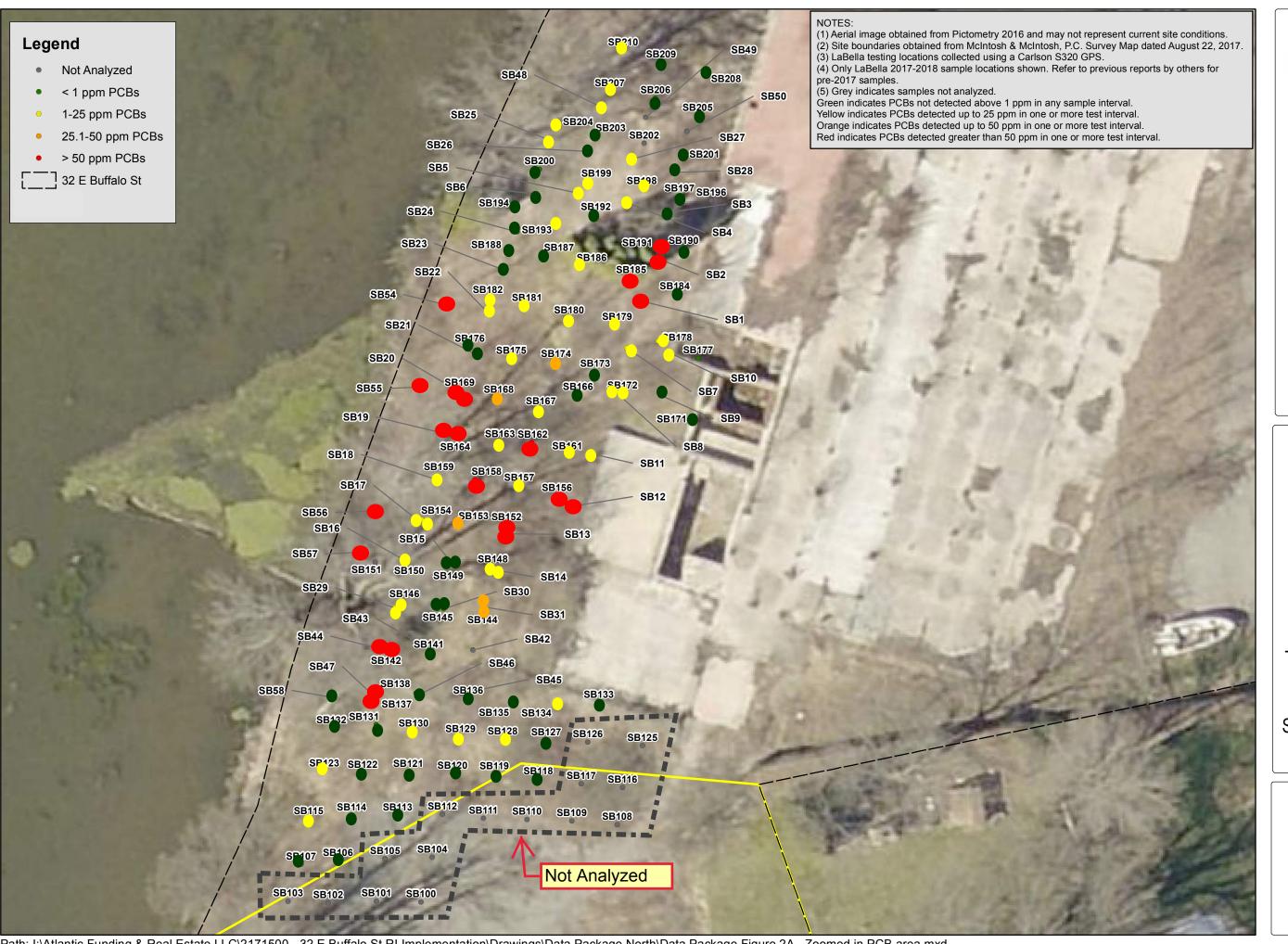

FIGURE 1

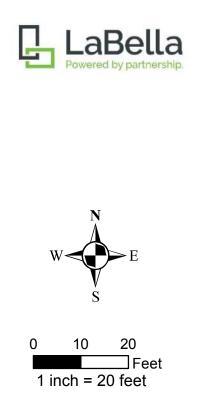
4/16/2019

Path: I:\Atlantic Funding & Real Estate LLC\2171500 - 32 E Buffalo St RI Implementation\Drawings\Data Package North\Data Package Figure 2 - Site Features.mxd

Former Luster-Coate 32 East Buffalo St. Churchville, NY BCP Site C828133

DRAWING:


TESTING LOCATIONS


PROJECT/DRAWING NUMBER:

2171500

FIGURE 2

6/5/2019

INTENDED TO PRINT AS: 11" X 17"

Former Luster-Coate 32 East Buffalo St. Churchville, NY BCP Site C828133

DRAWING:

TESTING LOCATIONS SHALLOW SOIL **BORINGS SOUTHERN PORTION** OF SITE

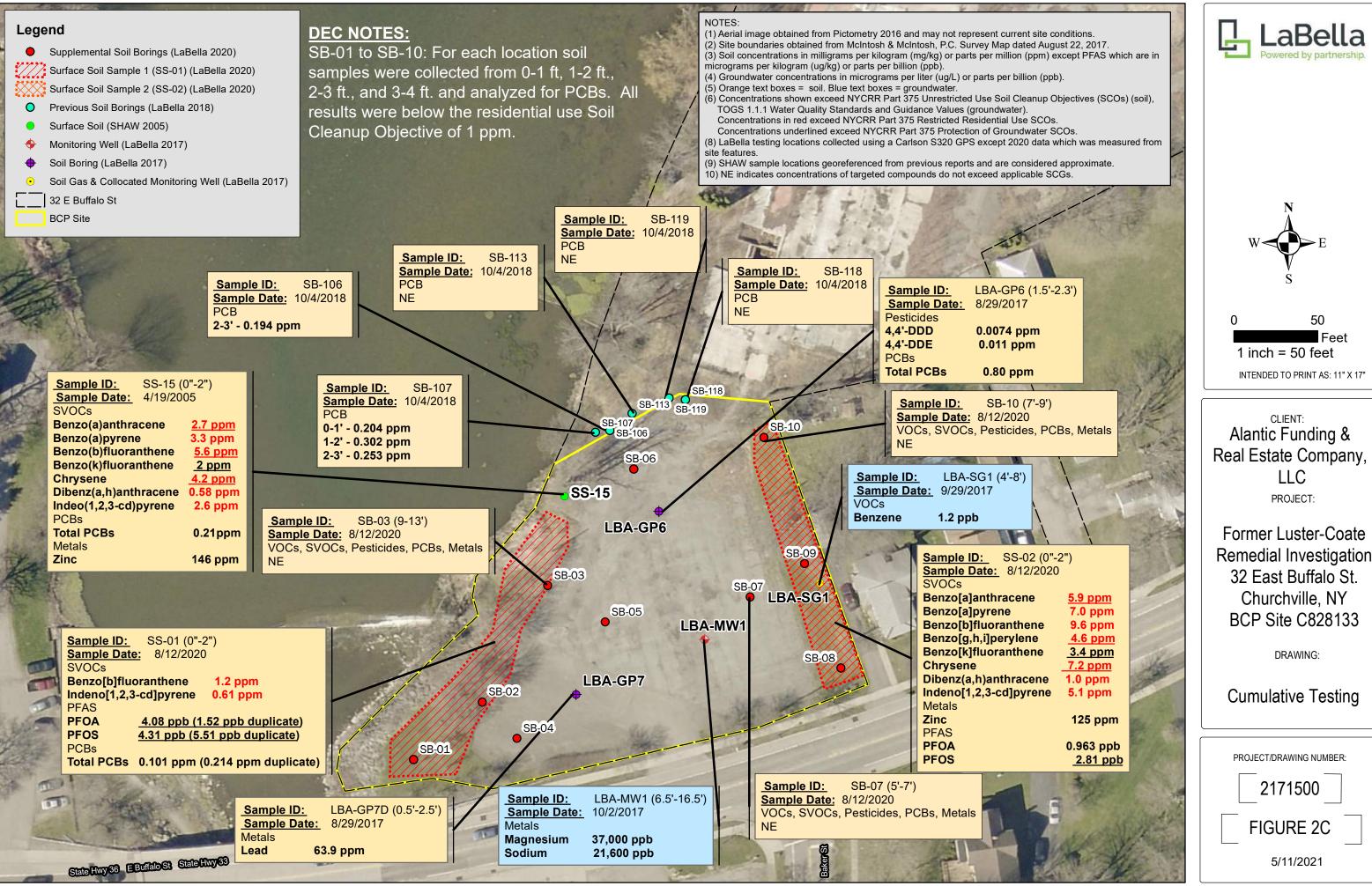
PROJECT/DRAWING NUMBER: 2171500 FIGURE 2A

4/19/2019

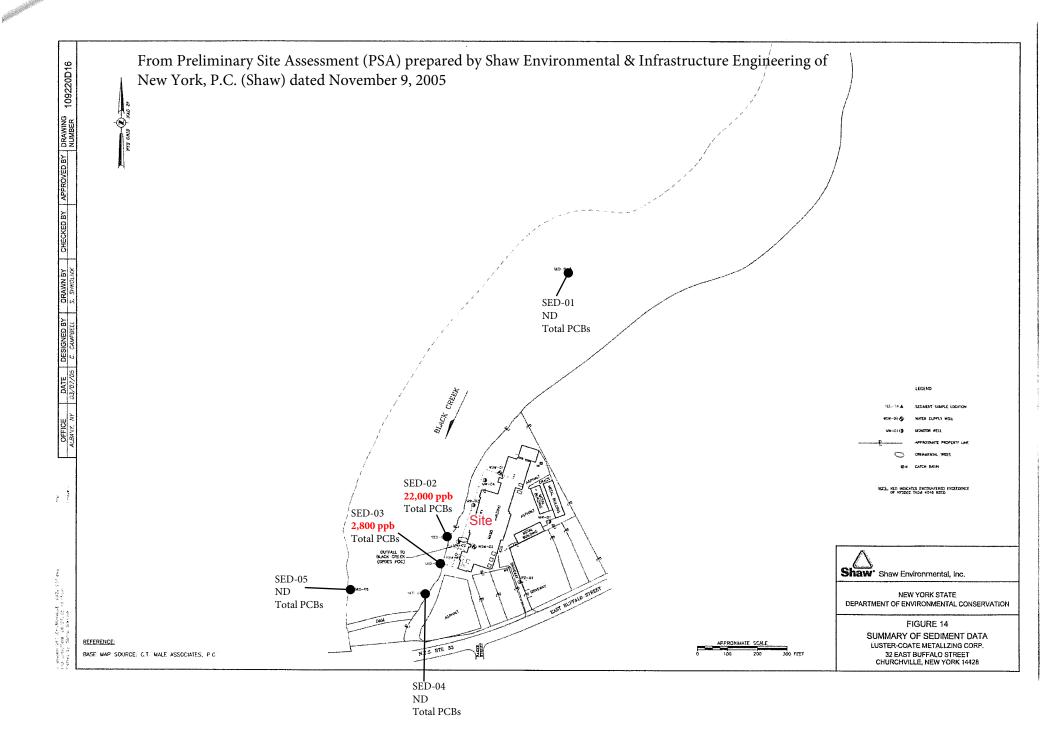
INTENDED TO PRINT AS: 11" X 17"

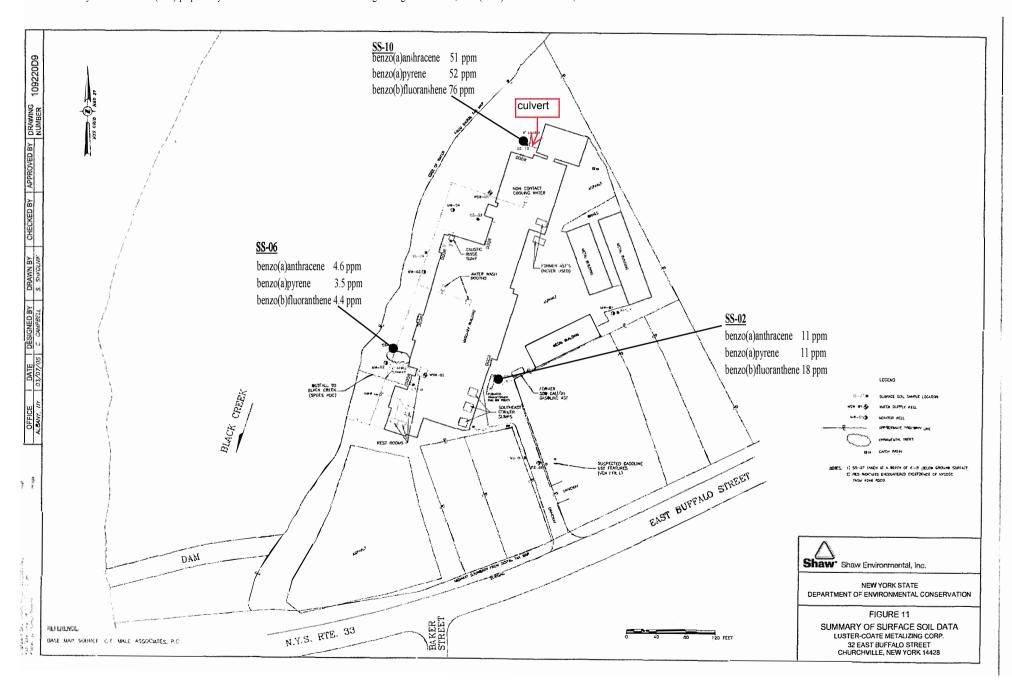
1 inch = 20 feet

Feet


Former Luster-Coate 32 East Buffalo St. Churchville, NY BCP Site C828133

DRAWING:


TESTING LOCATIONS SHALLOW SOIL **BORINGS** NORTHERN PORTION OF SITE


PROJECT/DRAWING NUMBER: 2171500 FIGURE 2B

4/19/2019

Path: I:\Alantic Funding & Real Estate LLC\2171500 - 32 E Buffalo St RI Implementation\Drawings\Figure 1 - Supplemental Testing-AAB.mxd

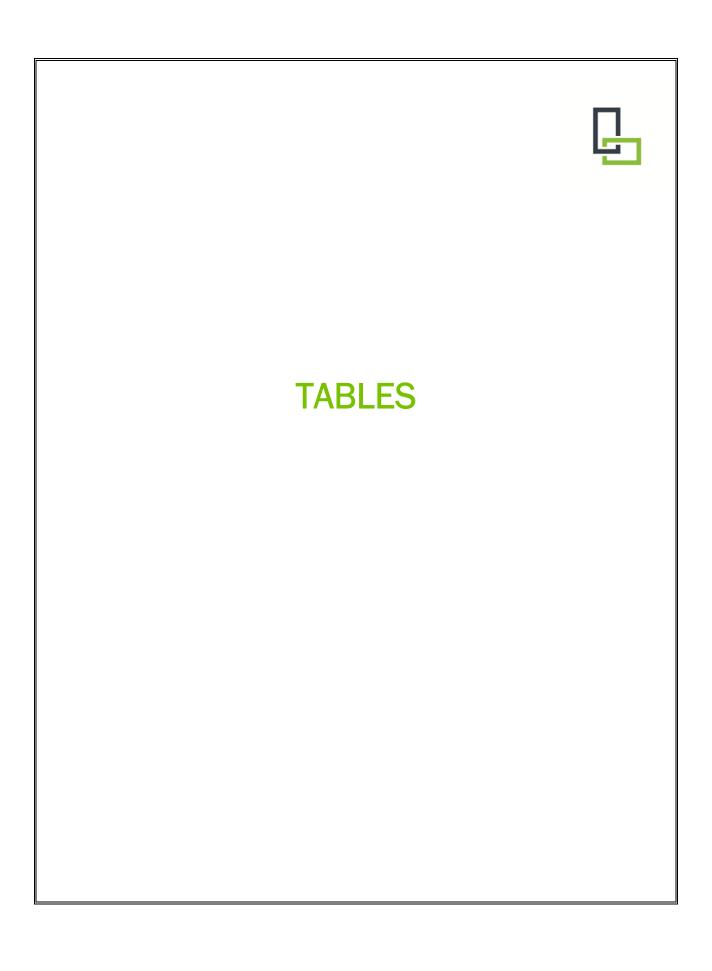


Table 5 - Polychlorinated Biphenyls (PCBs) in Soil

Sample ID Sample Depth Sample Date	6NYCRR Part 375 Unrestricted Use SCOs	6NYCRR Part 375 Restricted Residential Use SCOs	6NYCRR Part 375 Protection of Groundwater SCOs	LBA-GP1 1.5'-2.0' 8/28/2017	7	LBA-GP2 0.5'-2.5' 8/28/2017	LBA-GP3 1.25'-2.5' 8/28/201	1.0'-1.7	5' 1'	- GP5 -2' /2017	0-2" 8/28/201		LBA-GP11 2"-12" 8/28/2017	0-2" 8/28/201	2"-12"	LBA-GP13 0-2" 8/28/2017	LBA-GP13 2"-12" 8/28/2017	LBA-MW2 5'-9' 8/30/2017	LBA-MW3 10'-11' 8/28/2017	LBA-MW3 15' 9/6/2017	LBA-MW4 8.5'-10.5' 9/7/2017	LBA-MW4D 8.0'-11.0' 9/7/2017	LBA-MW5 12'-13' 9/5/2017
PCB-1016				ND .	J N	D J	ND .	ND	J ND	J	ND	J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J
PCB-1221				ND .	J N	D J	ND .	ND	J ND	J	ND	J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J
PCB-1232				ND .	J N	D J	ND .	ND	J ND	J	ND	J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J
PCB-1242	NL	NL	NL	ND .	J N	D J	ND .	ND	J ND	J	ND	J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J
PCB-1248				0.47	J N	D J	ND .	ND	J ND	J	51	J	ND J	77 J	140 J	14 J	1.4 J	ND J	ND J	ND J	ND J	ND J	ND J
PCB-1254				ND .	J N	D J	ND .	ND	J ND	J	ND	J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J
PCB-1260				ND .	J N	D J	ND .	ND	J ND	J	ND	J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J	ND J
Total PCBs	0.1	1.0	3.2	0.47	J N	D J	ND .	ND	J ND	J	<u>51</u>	J	ND J	77	140	14	1.4	ND J	ND J	ND J	ND J	ND J	ND J

Concentrations in milligrams per kilogram (mg/kg) or parts per million (ppm)

Bold denotes exceedance of 6NYCRR 375 Unrestricted Use Soil Cleanup Objectives

Highlighted denotes exceedance of 6NYCRR 375 Restricted Residential Soil Cleanup Objectives

Underlined denotes exceedance of 6NYCRR 375 Protection of Groundwater Soil Cleanup Objectives

NL = Not Listed

ND = Non-detect above laboratory method detection limits

Analysis by USEPA Method 8082
Red font indicates a change made in the DUSR

Table 17 - Polychlorinated Biphenyls (PCBs) in Shallow Soils
Collected by LaBella 2017-2018
Concentrations in milligrams per kilogram (mg/kg) or parts per million (ppm)

Concentrations in milligrams per	kilogram (mg/k	g) or parts per i	million (ppm)	Donth			٦
Location	units			Depth			
Location	uiilo	0-1	1-2	2-3	3-4	4-5	Supplemental Location
LBA-GP1	mg/Kg	0.47					
LBA-GP11	mg/Kg	51.0	ND	ND	ND	ND	
LBA-GP12	mg/Kg	140.0	0.0992	0.254	0.0226	0.0203	
LBA-GP13	mg/Kg	14.0					
LBA-GP2	mg/Kg	ND					
LBA-GP3	mg/Kg		ND				
LBA-GP4	mg/Kg	-	ND				
LBA-GP5	mg/Kg	-	ND				
LBA-GP6	mg/Kg		0.8				
LBA-GP7	mg/Kg	ND 2.50		4.55			
LBA-SB11 LBA-SB27	mg/Kg mg/Kg	<u>3.56</u> <u>5.43</u>		<u>4.55</u>			
LBA-SB32 (Preliminary)	mg/Kg	<u> </u>	10.0				
LBA-SB33 (Preliminary)	mg/Kg	2.61	7.8				
LBA-SB34 (Preliminary)	mg/Kg	0.056					
LBA-SB35 (Preliminary)	mg/Kg	<u>1.64</u>					
LBA-SB36 (Preliminary)	mg/Kg	0.22					
LBA-SB37	mg/Kg	0.406					
LBA-SB38	mg/Kg	<u>5.01</u>	<u>27.0</u>	<u>1.43</u>	<u>11.3</u>	<u>12.4</u>	
LBA-SB39	mg/Kg	0.51					
LBA-SB40	mg/Kg	0.497					
LBA-SB41	mg/Kg	0.036	40.4				
LBA-SB51	mg/Kg	<u>1.2</u>	<u>10.4</u>				-
LBA-SB52	mg/Kg	2.6	4.6				
LBA-SB53 LBA-SB54	mg/Kg mg/Kg	<u>13.0</u> 9.3	0.35 <u>56.0</u>				+
LBA-SB55	mg/Kg	<u>9.3</u> <u>42.0</u>	<u>150.0</u>	120.0			
LBA-SB56	mg/Kg	110.0	<u>19.0</u>	120.0			
LBA-SB57	mg/kg	66.0	33.0				†
LBA-SB58	mg/kg	0.17	22.0				
LBA-SB59	mg/kg		Sam	ple ID Not Uti	lized		
SB-60	mg/kg	<u>1.34</u>	<u>10.6</u>	<u>5.72</u>	0.104	0.0705	
SB-61	mg/kg	0.241	0.23	0.199	0.0339	0.0372	
SB-62	mg/kg	0.461	0.22	0.34	0.034	0.00588	
SB-63	mg/kg	0.779	0.148	0.142	0.0342	0.0392	
SB-64	mg/kg	<u>8.61</u>	0.861	<u>35.3</u>	<u>8.82</u>	0.14	
SB-65	mg/kg	<u>3.69</u>	0.286	0.034	0.0348	0.0339	
SB-114 SB-115	mg/kg	0.109	ND 0.0538	0.453			
SB-113	mg/kg mg/kg	0.109	0.0536	<u>1.8</u>			
SB-121	mg/kg	0.106	ND	0.167	0.0334		
SB-122	mg/kg	0.0355	0.0342	0.220	0.0354		
SB-123	mg/kg	0.0100	0.0012	1.130	3.080		
SB-127	mg/kg	0.068	ND	ND			
SB-128	mg/kg	0.531	0.0672	0.0101			
SB-128 Duplicate 6	mg/kg			0.0534			
SB-129	mg/kg	<u>1.25</u>	0.0753	0.00627	ND		
SB-130	mg/kg	<u>1.86</u>	0.824	<u>9.47</u>	<u>1.05</u>	0.0120	
SB-131	mg/kg	0.0863	0.176	0.0409	0.0326	0.0326	
SB-132	mg/kg	0.318	0.1310	<u>1.13</u>	0.0352		
SB-133	mg/kg	0.079	ND	0.00596			
SB-134 Duplicate SB-134	mg/Kg mg/Kg	1.86	4.0	0.053 1.66	0.0271		-
SB-134 SB-135	mg/Kg	0.0584	0.209	0.0391	0.0211		
SB-135	mg/Kg	0.0004	0.203	0.0391			
SB-137	mg/Kg	0.95	ND	0.355	0.142	0.268	LBA-SB46
SB-138	mg/Kg	0.41	0.0830	4.64	<u>83.4</u>	2.930	LBA-SB47
SB-139				- sharp strea	m bank angle		
SB-140				cessible - hill g			
SB-141	mg/Kg	0.78	0.49	0.0757	0.0221	ND	LBA-SB43
SB-142	mg/Kg	0.53	0.47	0.787	<u>64.5</u>	<u>1.37</u>	LBA-SB44
SB-144	mg/Kg	<u>7.97</u>	<u>16.7</u>	<u>8.72</u>	<u>43.400</u>	<u>1.07</u>	LBA-SB31 (Preliminary)
SB-145	mg/Kg	0.344		0.0229		ND	LBA-SB30 (Preliminary)
SB-145 Duplicate 9 SB-146	mg/Kg	7.94		0.017 2.19	0.03060	ND	LBA-SB29 (Preliminary)
SB-146 SB-147	mg/Kg	<u>1.94</u>	Inaccessible	- sharp strea		טא	LDA-SDZ9 (FIEIIMINATY)
SB-147 SB-148	mg/Kg	19.0		8.4	Jann angle	0.122	LBA-SB14 (Preliminary)
SB-149	mg/Kg	0.395		0.513		0.00742	LBA-SB15 (Preliminary)
SB-150	mg/Kg	3.25		2.69			LBA-SB16 (Preliminary)
SB-150 Duplicate 10	mg/Kg		1	0.973			(
SB-151			Inaccessible	- sharp strea	m bank angle		
SB-152		<u>165.0</u>	<u>31.7</u>	0.132	0.0449	0.0078	LBA-SB13 (Preliminary)
SB-153	mg/Kg			<u>45.1</u>	0.132		
SB-154	mg/Kg	<u>1.47</u>	<u> </u>	<u>5.76</u>	0.102		LBA-SB17 (Preliminary)
SB-155		0.1.0	Inaccessible	- sharp stream	m bank angle		184.0546
SB-156	mg/Kg	<u>94.3</u>		0.21	0.455		LBA-SB12
SB-157	mg/Kg			<u>1.9</u>	0.155 0.0916		
SB-158 SB-159	mg/Kg mg/Kg	2.47		71.2 15.8	0.0916 1.090	0.0482	LBA-SB18 (Preliminary)
SB-159 SB-160	IIIg/ r\g	<u> </u>	Inaccessible		m bank angle	0.0402	FDV-ODTO (LIGHIHIMIAIA)
SB-161	mg/Kg			4.55	0.0397		
OD 101	6/ 1/6		<u> </u>	<u> </u>	3.0001		<u> </u>

Table 17 - Polychlorinated Biphenyls (PCBs) in Shallow Soils

Collected by LaBella 2017-2018

centrations in milligrams per				Depth			
Location	units	0-1	1-2	2-3	3-4	4-5	Supplemental Location
SB-162	mg/Kg			220.0	33.60	<u>68.4</u>	
SB-163	mg/Kg			1.53	0.0471		
SB-164	mg/Kg	3.22		6.02	<u>129</u>	0.132	LBA-SB19 (Preliminary
SB-165			Inaccessible	- sharp strear	n bank angle		·
SB-166	mg/Kg			0.752			
SB-167	mg/Kg			17.9	16.2	10.600	
SB-168	mg/Kg			27.2	25.8	24.700	
SB-169	mg/Kg	<u> 19.5</u>		21.2	104	64.400	LBA-SB20 (Preliminary
SB-170			Inaccessible	e - sharp strear			,
SB-171	mg/Kg	0.975		ND			LBA-SB09
SB-172	mg/Kg	2.34		0.295			LBA-SB08
SB-173	mg/Kg			0.7850			
SB-173 Duplicate 13	mg/Kg			0.408			
SB-174	mg/Kg			27.3	12	9.180	
SB-175	mg/Kg			7.08	0.0392		
SB-176	mg/Kg	0.478		0.0296			LBA-SB21
SB-177	mg/Kg			ND			
SB-178	mg/Kg	0.16		2.42	ND		LBA-SB10
SB-179	mg/Kg	0.0787		20.6	14.600	6.190	LBA-SB07
SB-180	mg/Kg	0.0101		4.74	23.500	10.100	LDA ODO1
SB-180 Duplicate 14	mg/Kg				<u>14.100</u>	10.100	
SB-181	mg/Kg			2.01	0.0648		
SB-182	mg/Kg	1.27	0.401	0.197	0.0040		LBA-SB22
SB-182	mg/ ng	<u> </u>		- sharp strear	l m hank angle		LDA-ODZZ
SB-184	mg/Kg		macocssibio	ND	0.00517		
SB-185	mg/Kg	0.296		3.13	53.80	0.066	LBA-SB01
SB-185 Duplicate 16		0.290		3.13	33.10	0.000	LDA-SBOI
	mg/Kg			0.06		0.000	
SB-186	mg/Kg			<u>2.26</u>	<u>10.60</u>	<u>2.980</u>	
SB-187	mg/Kg	0.504		ND			1 D4 0D00
SB-188	mg/Kg	0.524	1	0.0157			LBA-SB23
SB-189			inaccessible	- sharp stream		Т	
SB-190	mg/Kg			0.0246	0.0362		
SB-191	mg/Kg	0.0866		<u>19.9</u>	<u>637</u>	0.0516	LBA-SB02
SB-192	mg/Kg			0.0139			
SB-193	mg/Kg			0.229			
SB-193 Duplicate 15	mg/Kg			<u>1.2</u>			
SB-194	mg/Kg	0.095		0.109			LBA-SB24
SB-195				e - sharp strear			
SB-196			Refus	al on concrete			
SB-197	mg/Kg	0.293		0.00953	0.0215		LBA-SB03
SB-198	mg/Kg	<u>3.51</u>		<u>12.8</u>	<u>5.52</u>	<u>1.380</u>	LBA-SB04
SB-199	mg/Kg	<u>1.44</u>		<u>1.81</u>	ND		LBA-SB05
SB-200	mg/Kg	0.064		0.0396			LBA-SB06
SB-201	mg/Kg	ND		0.0852	0.023		LBA-SB28 (Preliminary
SB-202			Inaccessil	ole - ground ho	rnets' nest		
SB-203	mg/Kg	0.03		0.111			LBA-SB26
SB-204	mg/Kg	0.109		8.29	<u>18.3</u>	0.323	LBA-SB25
SB-205	mg/Kg			0.663			
SB-206	mg/Kg		0.294	0.0997			
SB-207	mg/Kg	0.86	1.4	<u>1.56</u>	0.0329		LBA-SB48
SB-208	mg/Kg	2.25	ND	0.0112			
SB-209	mg/Kg		0.0994	0.0572			
SB-210	mg/Kg	0.0241	2.2700	0.0012	ļ	ļ	+

Bold Denotes Concentration Exceeds the NYSDEC Part 375-6 Unrestricted Use Soil Cleanup Objectives (SCOs) (0.1 ppm).

<u>Underline Denotes Concentration Exceeds the NYSDEC Part 375-6 Restricted Residential SCOs (1 ppm).</u>

Orange Highlight Denotes Concentration Exceeds 40 CFR 761.61(a)(4)(B)(2) for Low-Occupancy Area Signage (25 ppm).

Red Highlight Denotes Concentration Exceeds the NYSDEC Characteristic Hazardous Waste Criteria (50 ppm).

Former Luster-Coate
32 E Buffalo Street, Churchville NY
LaBella Project #2171500
Table 17 - Polychlorinated Biphenyls (PCBs) in Shallow Soils
Collected by LaBella 2017-2018
Concentrations in milligrams per kilogram (mg/kg) or parts per million (ppm)

Depth 0-2" Location units CS-01 mg/Kg 0.102 U CS-02 mg/Kg 432 mg/Kg CS-03 0.191 CS-04 mg/Kg 0.0491 CS-05 mg/Kg 0.0156 CS-06 mg/Kg 0.0158

mg/Kg

mg/Kg

mg/Kg

Notes:

U - Denotes not detected above the reported laboratory detection limit shown.

J - Denotes concentrations is estimated.

CS-07

CS-08

CS-09

Bold Denotes Concentration Exceeds the NYSDEC Part 375-6 Unrestricted Use Soil Cleanup Objectives (SCOs)

J

Underline Denotes Concentration Exceeds the NYSDEC Part 375-6 Restricted Residential SCOs.

0.0111

<u>4.17</u>

0.873

Yellow Highlight Denotes Concentration Exceeds the NYSDEC Characteristic Hazardous Waste Criteria

34 E. Buffalo Street, Churchville, New York

Results in Milligrams per Kilogram (mg/Kg) or Parts per Million (ppm)

Data provided by Terracon Consultants (12/14/2016)

	•	Remedial Program Soil Cleanup	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.				
Parameter / Sample ID	Ok	jectives:	EPA-1-A1	EPA-1-A2	EPA-1-A3	EPA-1-B1	EPA-1-B2	EPA-1-B3	EPA-1-C1	EPA-1-C2	EPA-1-C3
	Unrestricted Use	Protection of Public Health - Restricted Residential				Northw	estern Portion	of the Site			
PCB-1016 (Aroclor 1016)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221 (Aroclor 1221)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232 (Aroclor 1232)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242 (Aroclor 1242)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248 (Aroclor 1248)	Totals only, see below	Totals only, see below	0.333 J	2.57	1.58	ND	0.712	14.7	ND	15.4	7.11
PCB-1254 (Aroclor 1254)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260 (Aroclor 1260)	1		ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1262 (Aroclor 1262)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1268 (Aroclor 1268)			ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Concentration by Depth	0.10	1.00	<u>0.333</u>	2.57	1.58	ND	0.712	14.7	ND	<u>15.4</u>	<u>7.11</u>

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

BD = Blind Duplicate

NS = Not Sampled

ND = Non Detect

<u>Underline</u> exceed NYSDEC Part 375-6 Unrestricted Residential Soil Cleanup Objectives

Bold exceed Restricted Residential

34 E. Buffalo Street, Churchville, New York

Results in Milligrams per Kilogram (mg/Kg) or Parts per Million (ppm)

Data provided by Terracon Consultants (12/14/2016)

	•	Remedial Program Soil Cleanup	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.
Parameter / Sample ID	Ob	ojectives:	EPA-2-A1	EPA-2-A2	EPA-2-A3	EPA-2-B1	EPA-2-B2	EPA-2-B3	EPA-2-C1	EPA-2-C2	EPA-2-C3
	Unrestricted Use	Protection of Public Health - Restricted Residential				Western	Central Portion	of the Site			
PCB-1016 (Aroclor 1016)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221 (Aroclor 1221)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232 (Aroclor 1232)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242 (Aroclor 1242)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248 (Aroclor 1248)	Totals only, see below	Totals only, see below	ND	8.63	ND	1.69	7.74	ND	1.63	14.8	ND
PCB-1254 (Aroclor 1254)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260 (Aroclor 1260)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1262 (Aroclor 1262)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1268 (Aroclor 1268)			ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Concentration by Depth	0.10	1.00	ND	<u>8.63</u>	ND	<u>1.69</u>	<u>7.74</u>	ND	<u>1.63</u>	<u>14.8</u>	ND

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

BD = Blind Duplicate

NS = Not Sampled

ND = Non Detect

<u>Underline</u> exceed NYSDEC Part 375-6 Unrestricted Residential Soil Cleanup Objectives

Bold exceed Restricted Residential

34 E. Buffalo Street, Churchville, New York

Results in Milligrams per Kilogram (mg/Kg) or Parts per Million (ppm)

Data provided by Terracon Consultants (12/14/2016)

	•	Remedial Program Soil Cleanup	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.
Parameter / Sample ID	Ob	ojectives:	EPA-3-A1	EPA-3-A2	EPA-3-A3	EPA-3-B1	EPA-3-B2	EPA-3-B3	EPA-3-C1	EPA-3-C2	EPA-3-C3
	Unrestricted Use	Protection of Public Health - Restricted Residential				Southwe	stern Portion of	the Site			
PCB-1016 (Aroclor 1016)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221 (Aroclor 1221)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232 (Aroclor 1232)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242 (Aroclor 1242)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248 (Aroclor 1248)	Totals only, see below	Totals only, see below	0.768	7.25	9.5	0.733	7.42	28	1.78	1.34	13.5
PCB-1254 (Aroclor 1254)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260 (Aroclor 1260)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1262 (Aroclor 1262)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1268 (Aroclor 1268)			ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Concentration by Depth	0.10	1.00	<u>0.768</u>	7.25	<u>9.5</u>	<u>0.733</u>	7.42	<u>28</u>	1.78	<u>1.34</u>	<u>13.5</u>

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

BD = Blind Duplicate

NS = Not Sampled

ND = Non Detect

<u>Underline</u> exceed NYSDEC Part 375-6 Unrestricted Residential Soil Cleanup Objectives

Bold exceed Restricted Residential

34 E. Buffalo Street, Churchville, New York

Results in Milligrams per Kilogram (mg/Kg) or Parts per Million (ppm)

Data provided by Terracon Consultants (12/28/2016)

	' ·	Remedial Program Soil	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.
Parameter / Sample ID	Cleanup C	Objectives:	PSA1-A1	PSA1-B1	PSA1-C1	PSA2-A1	PSA2-B1	PSA2-C1	PSA2-D1	PSA2-E1	PSA2-F1
			North	ern Portion of t	ne Site		N	lorthwestern Po	rtion of the Site		
	Unrestricted Use	Protection of Public	0"-2"	0"-2"	0"-2"	0"-2"	0"-2"	0"-2"	0"-2"	0"-2"	0"-2"
PCB-1016 (Aroclor 1016)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221 (Aroclor 1221)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232 (Aroclor 1232)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242 (Aroclor 1242)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248 (Aroclor 1248)	Totals only, see below	Totals only, see below	ND	ND	ND	0.433	ND	ND	2.19	3.37	2.55
PCB-1254 (Aroclor 1254)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260 (Aroclor 1260)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1262 (Aroclor 1262)			ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1268 (Aroclor 1268)			ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Concentration by Depth	0.10	1.00	ND	ND	ND	<u>0.433</u>	ND	ND	2.19	3.37	2.55

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

BD = Blind Duplicate

NS = Not Sampled

ND = Non Detect

<u>Underline</u> exceed NYSDEC Part 375-6 Unrestricted Residential Soil Cleanup Objectives

Bold exceed Restricted Residential

34 E. Buffalo Street, Churchville, New York

Results in Milligrams per Kilogram (mg/Kg) or Parts per Million (ppm)

Data provided by Terracon Consultants (12/28/2016)

	· ·	6 Remedial Program Soil	Sample ID No.	Sample ID No	. Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.
Parameter / Sample ID	Cleanup C	Objectives:	PSA3-A1	PSA3-B1	PSA3-C1	PSA4-A1	PSA4-B1	PSA4-C1	PSA4-D1	PSA4-E1	PSA4-F1	PSA4-G1	PSA4-H1	PSA4-I1
			Western	Central Portion	of the Site				Southwe	stern Portion of	the Site			
	Unrestricted Use	Protection of Public	0"-2"	0"-2"	0"-2"	0"-2"	0"-2"	0"-2"	0"-2"	0"-2"	0"-2"	0"-2"	0"-2"	0"-2"
PCB-1016 (Aroclor 1016)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221 (Aroclor 1221)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232 (Aroclor 1232)]		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242 (Aroclor 1242)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248 (Aroclor 1248)	Totals only, see below	Totals only, see below	1.3	1.63	0.787	16.1	20.7	98.9	6.04	5.3	11.6	1.59	2	1.73
PCB-1254 (Aroclor 1254)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260 (Aroclor 1260)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1262 (Aroclor 1262)]		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1268 (Aroclor 1268)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Concentration by Depth	0.10	1.00	<u>1.3</u>	1.63	0.787	<u>16.1</u>	<u>20.7</u>	98.9	6.04	<u>5.3</u>	<u>11.6</u>	1.59	<u>2</u>	1.73

J = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

BD = Blind Duplicate

NS = Not Sampled

ND = Non Detect

<u>Underline</u> exceed NYSDEC Part 375-6 Unrestricted Residential Soil Cleanup Objectives

Bold exceed Restricted Residential

34 E. Buffalo Street, Churchville, New York

Results in Milligrams per Kilogram (mg/Kg) or Parts per Million (ppm)

Data provided by Terracon Consultants (1/19/2017)

	6 NYCRR Subpart		Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.	Sample ID No.						
	Program Soil Clea	anup Objectives:	PSA2-D2	PSA2-E2	PSA2-F2	PSA3-A2	PSA3-B2	PSA3-C2	PSA4-D2	PSA4-E2	PSA4-F2	PSA4-G2	PSA4-H2	PSA4-I2	
Parameter / Sample ID			Northwest	ern Portion of	the Site	Western C	entral Portio	n of the Site		S	outhwestern Po	ortion of the Si	te		
r arameter y Sample ID	Unrestricted Use	Protection of Public Health - Restricted Residential	2"-12"	2"-12"	2"-12"	2"-12"	2"-12"	2"-12"	2"-12"	2"-12"	2"-12"	2"-12"	2"-12"	2"-12"	
PCB-1016 (Aroclor 1016)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
PCB-1221 (Aroclor 1221)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
PCB-1232 (Aroclor 1232)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
PCB-1242 (Aroclor 1242)	Totals only, see	Totals only, see	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
PCB-1248 (Aroclor 1248)	11	below	1.07	3.09	2.79	0.865	0.783	0.477	1.35	2.94	6.91	1.15	2.06	1.77	
PCB-1254 (Aroclor 1254)	below	below	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
PCB-1260 (Aroclor 1260)				ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1262 (Aroclor 1262)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
PCB-1268 (Aroclor 1268)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Total Concentration by Depth	0.10	1.00	<u>1.07</u>	3.09	2.79	0.865	0.783	<u>0.477</u>	1.35	2.94	6.91	1.15	2.06	<u>1.77</u>	

J = Result is less than the Reporting Limit but greater than or equal to the

Method Detection Limit and the concentration is an approximate value.

BD = Blind Duplicate

NS = Not Sampled

ND = Non Detect

<u>Underline</u> exceed NYSDEC Part 375-6 Unrestricted Residential Soil Cleanup

Objectives

Bold exceed Restricted Residential

Table 1F
Former Luster-Coate
32 E Buffalo Street, Churchville NY
LaBella Project #2171500
Polychlorinated Biphenyls (PCBs) in Shallow Soils - Supplemental Testing 2020
Collected by LaBella July 2020
Concentrations in milligrams per kilogram (mg/kg) or parts per million (ppm)

Location	unito	Depth														
	units	0-1		1-2		2-3		3-4		5-7	7-9	9-13'				
SB-01	mg/Kg	0.00954		0.00652		0.00792		0.01080								
SB-02	mg/Kg	0.00503		0.01450		<0.00314		<0.00329								
SB-03	mg/Kg	0.02010		0.00960	J	0.02860	J	0.789	J			0.00993				
SB-04	mg/Kg	0.00982	J	<0.003		<0.00326		<0.0034								
SB-05	mg/Kg	<0.00303		0.07180	J	<0.00359		<0.00323								
SB-06	mg/Kg	<0.003		<0.00298		<0.003		0.05120	J			-				
SB-07	mg/Kg	0.01310	J	<0.00319		<0.00326		<0.00315		<0.00314						
SB-08	mg/Kg	<0.00297		<0.00308		<0.00308		<0.00314								
SB-09	mg/Kg	0.01480	J	0.02780		<0.00315		<0.0032				-				
SB-10	mg/Kg	0.03720		0.04400		0.01350		0.00718			0.00727					
SS-01*		0.101														
(Duplicate - QA/QC-1)	mg/Kg	(0.214)														
SS-02*	mg/Kg	0.05350														

Bold Denotes Concentration Exceeds the NYSDEC Part 375-6 Unrestricted Use Soil Cleanup Objectives (SCOs) (0.1 ppm).

Underline Denotes Concentration Exceeds the NYSDEC Part 375-6 Restricted Residential SCOs (1 ppm).

Orange Highlight Denotes Concentration Exceeds 40 CFR 761.61(a)(4)(B)(2) for Low-Occupancy Area Signage (25 ppm).

Red Highlight Denotes Concentration Exceeds the NYSDEC Characteristic Hazardous Waste Criteria (50 ppm).

- *Denotes Surface Soil Sample
- Denotes sample not collected from this depth at this location.
- < indicates the concentration was not detected above the laboratory MDL

Blue font represents a change made in the DUSR

R and strikethrough represents rejected data in the DUSR

Data has been validated

Table 2 - Semi-Volatile Organic Compounds (SVOCs) in Soil

Sample Depth Sample Date Sample Date Biphenyl bis (2-chloroisopropyl) ether 2,4,5-Trichlorophenol 2,4-G-Trichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloroaphthalene 2-Chloroaphthalene 2-Methylnaphthalene 2-Nitroaniline 2-Nitroaniline 3,3'-Dichlorobenzidine 3,3'-Dichlorobenzidine 3-Nitroaniline 4-Chloro-3-methylphenol 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chloroaniline 4-Chloroaniline 4-Chlorophenyl phenyl ether	Unrestricted Use SCOs	Restricted Residential	NL N	1.5'-2.0' 8/28/2017 ND	0.5'-2.5' 8/28/2017 ND	1.25'-2.5' 8/28/2017 ND	ND N	1'-2' 8/28/201 ND	0-2" R /28/2017 ND ND ND ND ND ND ND ND ND N	8/28/2017 ND ND ND ND ND ND ND ND ND ND	0-2" 8/28/2017 ND	ND ND ND ND ND ND ND ND	0-2" 8/28/2017 ND	ND ND ND	5'-9' 8/30/2017 ND	ND	15' 9/6/2017 ND	ND F2 ND F2 ND N	ND N	12-13' 9/5/2017 ND
Biphenyl bis (2-chloroisopropyl) ether 2.4.5-Trichlorophenol 2.4.5-Trichlorophenol 2.4-Dichlorophenol 2.4-Dichlorophenol 2.4-Dinitrophenol 2.4-Dinitrophenol 2.4-Dinitrophenol 2.4-Dinitrotoluene 2.6-Dinitrotoluene 2.6-Dinitrotoluene 2Chlorophenol 2Methylphenol 2Methylphenol 2Methylphenol 2Nitrophinol 3.3-Dichlorobenzidine 3.Nitrophinol 3.3-Dichlorobenzidine 3.Nitrophinol 4.6-Dinitro-2-methylphenol 4.6-Dinitro-3-methylphenol 4-Chloroaniline 4-Chloroaniline 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	NL NL NL NL NL NL NL NL	NL N	NL N	ND	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND	2 ND	ND N
bis (2-chloroisopropyl) ether 2,4,5-Trichlorophenol 2,4-Dirchlorophenol 2,4-Dirchlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Mitroaniline 2-Nitroaniline 3-Nitroaniline 4-6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chloroaniline 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Methylphenol 4-Nitroaniline	NL NL NL NL NL NL NL NL	NL N	NL N	ND N	ND N	ND N	ND N	ND N	ND N	ND N	ND	ND N	ND ND ND ND ND ND ND ND ND	ND	ND N	ND	ND N	ND F2 ND F2 ND N	ND N	ND N
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2-Chloronaphthalene 2-Chloronaphthalene 2-Wethylnaphthalene 2-Nitrophenol 2-Methylnaphthalene 2-Nitroaniline 2-Nitroaniline 3,3-Dichlorobenzidine 3-Nitroaniline 4-G-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	NL NL NL NL NL NL NL NL	NL N	NL N	ND N	ND N	ND N	ND N	ND N	ND N	ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND F2 ND	ND 2 ND	ND N
2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,6-Dinitrotoluene 2,7-Chlorophenol 2,7-Methylphenol 2,7-Methylphenol 2,7-Methylphenol 3,3-Dichlorobenzidine 3,7-Dichlorobenzidine 3,7-Dichlorobenzidine 4,6-Dinitro-2-methylphenol 4,6-Dinitro-3-methylphenol 4,6-Dinitro-3-methylphenol 4,6-Dinitro-1,0-Methylphenol 4,6-Dinitro-1,0-Methylphenol 4,6-Dinitro-1,0-Methylphenol 4,6-Dinitro-1,0-Methylphenol 4,6-Dinitro-1,0-Methylphenol 4,6-Dinitro-1,0-Methylphenol 4,0-Methylphenol 4-Methylphenol 4-Nitroaniline	NL N	NL N	NL N	ND N	ND N	ND N	ND N	ND N	ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND	ND ND ND ND ND	ND F2 ND N	ND	ND ND ND ND ND ND
2.4-Dichlorophenol 2.4-Dimethylphenol 2.4-Dimethylphenol 2.4-Dinitrophenol 2.4-Dinitrotoluene 2.6-Dinitrotoluene 2.6-Dinitrotoluene 2.6-Dinitrotoluene 2.6-Dinitrotoluene 2.6-Dinitrotoluene 2.6-Dinitrotoluene 2.6-Dinitrotoluene 2.6-Dinitrophenol 2.8-Methylphenol 2.8-Methylphenol 2.8-Nitrophenol 3.3-Dichlorobenzidine 3.8-Dichlorobenzidine 3.8-Dichlorobenzidine 4.6-Dinitro-2-methylphenol 4.8-Bromophenyl phenyl ether 4.Chloro-3-methylphenol 4.Chlorophenyl phenyl ether 4.Chlorophenyl phenyl ether 4.Methylphenol 4-Nitroaniline	NL NL NL NL NL NL NL NL	NL N	NL N	ND N	ND N	ND N	ND N	ND	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND
2,4-Dimethylphenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Methylphenol 2-Mitroaniline 2-Nitroaniline 3-Nitroaniline 3-Nitroaniline 4-G-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Methylphenol 4-Nitroaniline	NL NL NL NL NL NL NL NL	NL N	NL N	ND N	ND N	ND ND ND ND ND ND ND ND ND	ND	ND ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND
2.4-Dinitrotoluene 2.6-Dinitrotoluene 2.Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Methylphenol 2-Methylphenol 3-Mitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4.6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	NL N	NL N	NL N	ND N	ND N	ND ND ND ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND ND	ND ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND
2.6-Dinitrotoluene 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Methylnaphthalene 2-Nitroaniline 2-Nitroaniline 3-Nitroaniline 3-Nitroaniline 4-6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline 4-Nitroaniline	NL N	NL N	NL	ND N	ND ND ND ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND	ND								ND	ND	
2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Nitrophenol 3-Nitrophenol 3-Nitrophenol 3-Nitronailine 3-Nitronailine 4-Chloroaniline 4-Chloroaniline 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	NL N	NL N	NL	ND N	ND ND ND ND ND ND	ND ND ND ND ND	ND ND ND	ND ND	ND		ND	ND	ND	ND	ND	ND	ND			ND
2-Chlorophenol 2-Methylphenol 2-Methylphenol 2-Methylnaphthalene 2-Nitroaniline 2-Nitroaniline 3-Nitroaniline 3-Nitroaniline 4-6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	NL N	NL	NL NL NL NL NL NL	ND ND ND ND ND ND ND	ND ND ND ND	ND ND ND	ND ND	ND		ND									2 ND	
2-Methylphenol 2-Methylnaphthalene 2-Nitroaniline 2-Nitroaniline 3,3'-Dichlorobenzidine 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloroaniline 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	NL N	NL	NL NL NL NL NL	ND ND ND ND	ND ND ND	ND ND	ND				ND		ND		ND		ND			ND
2-Methylnaphthalene 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4.6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	NL N	NL NL NL NL NL NL NL NL NL	NL NL NL NL NL	ND ND ND ND	ND ND	ND				ND	ND		ND	ND	ND	ND	ND	ND		ND
2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	NL N	NL NL NL NL NL NL NL	NL NL NL NL	ND ND ND	ND			ND	ND	ND	ND		ND	ND	ND	ND	ND			ND
2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitroaniline 4-6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	NL	NL NL NL NL NL	NL NL NL	ND ND				ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND F2		ND ND
3,3'-Dichlorobenzidine 3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	NL NL NL NL NL NL NL NL	NL NL NL	NL NL	ND		ND		ND	ND ND	ND	ND		ND	ND	ND	ND	ND	ND F2		ND
3-Nitroaniline 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	NL NL NL NL NL	NL NL NL	NL		ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND
4.6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	NL NL NL NL	NL NL		ND	ND	ND		ND	ND	ND	ND		ND		ND		ND	ND		ND
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 4-Chloroaniiline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniiline	NL NL NL	NL	INL	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND		ND	ND		ND
4-Chloroaniline 4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	NL NL	NL	NL	ND	ND	ND		ND	ND	ND	ND		ND		ND		ND	ND		ND
4-Chlorophenyl phenyl ether 4-Methylphenol 4-Nitroaniline	NL		NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol 4-Nitroaniline		NL	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline	NL	NL	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		NL	NL	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND		ND	ND		ND
	NL	NL	NL	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND
4-Nitrophenol	NL	NL 100	NL	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND
Acenaphthene	20	100	98	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND
Acenaphthylene	100	100	107	ND	ND	ND		ND	ND	ND	ND		ND		ND	ND	ND	ND		ND
Acetophenone	NL 100	NL 100	NL 1000	ND 0.078 J	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND
Anthracene Atrazine	NL NL	NL NL	NL	ND J	ND	ND		ND	ND	ND	ND		ND		ND		ND *	ND *		ND
Benzaldehyde	NL NL	NL NL		ND	ND	ND		ND	ND	ND	ND		ND		ND		ND	ND J		ND
Benzo[a]anthracene	1	1	1	0.17 J	ND	ND		ND	3.4 J	0.047	0.047		ND	ND	ND		ND	ND		ND
Benzo[a]pyrene	1	1	22	0.18 J	0.32 J	ND		ND	4.1 J	0.047	0.047		ND	ND	ND		ND	ND		ND
Benzo[b]fluoranthene	1	1	1.7	0.23	0.3 J	ND	ND	ND	6.6	0.068	0.068	ND	ND	ND	ND	0.031 J	ND	ND	ND	ND
Benzo[g,h,i]perylene	100	100	1000	0.15 J	0.28 J	ND	ND	ND	4.5 J	0.039	0.039	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[k]fluoranthene	0.8	3.9	1.7	0.099 J	ND	ND		ND	2.7 J	0.026	0.026		ND	ND	ND	ND	ND	ND		ND
Bis(2-chloroethoxy)methane	NL	NL	NL	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND			ND
Bis(2-chloroethyl)ether	NL	NL	NL	ND	ND	ND	110	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND
Bis(2-ethylhexyl) phthalate	NL NI	NL NI	NL NI	0.58 J	ND	ND		ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND
Butyl benzyl phthalate	NL NL	NL NL	NL NL	0.16 J ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND		ND ND
Caprolactam Carbazole	NL	NL NL	NL NL	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND		ND	ND ND		ND
Chrysene	1	3.9		0.2	ND	ND		ND	5.5	0.064	0.064		ND		ND		ND	ND		ND
Dibenz(a,h)anthracene	0.33	0.33	1000	ND	ND	ND		ND	ND S	ND	ND		ND	ND	ND		ND	ND		ND
Di-n-butyl phthalate	NL	NL	NL	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND		ND	ND		ND
Di-n-octyl phthalate	NL	NL	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	7	59	210	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate	NL	NL	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethyl phthalate	NL	NL	NL	ND	ND	ND		ND	ND	ND	ND		ND	ND	ND		ND	ND		ND
Fluoranthene	100	100	1000	0.43	0.4 J	ND		ND	9.8	0.089	0.089		ND	ND	ND		ND	ND		ND
Fluorene	30	100	386	0.045 J	ND	ND	.,,,	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND		ND
Hexachlorobenzene	NL NI	NL NI	NL NI	ND	ND	ND ND		ND	ND	ND	ND ND		ND ND	ND	ND	ND	ND	ND		ND
Hexachlorobutadiene Hexachlorocyclopentadiene	NL NL	NL NL	NL NL	ND ND	ND ND	ND		ND ND	ND ND	ND ND	ND		ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND
Hexachloroethane	NL	NL NL		ND	ND	ND		ND	ND	ND	ND		ND		ND		ND	ND		ND
Indeno[1,2,3-cd]pyrene	0.5	0.5			0.27 J	ND		ND	3.6	0.037			ND				ND	ND		ND
Isophorone	NL	NL NL	NL	ND S	ND S	ND		ND	ND S	ND	ND		ND	ND	ND		ND	ND		ND
N-Nitrosodi-n-propylamine	NL NL	NL NL			ND	ND		ND	ND	ND			ND				ND	ND		ND
N-Nitrosodiphenylamine	NL	NL NL		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND		ND			ND
Naphthalene	12	100		ND	ND	ND		ND	ND	ND			ND	ND	ND	ND	ND	ND		ND
Nitrobenzene	NL	NL	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	0.8	6.7		ND	ND	ND		ND	ND	ND	ND		ND	ND	ND		ND	ND		ND
Phenanthrene	100	100	1000	0.35	ND	ND		ND	4.6 J	0.065	0.065		ND	ND	ND		ND	ND		ND
Phenol	0.33	100	0.33	ND	ND	ND		ND	ND	ND	ND 0.083		ND		ND ND		ND	ND		ND ND
Pyrene	100	100	1000	0.45	0.42 J	ND	ND	ND	7.9 J	0.083		1.1 J		ND		0.032 J	ND	ND	ND	

NL = Not Listed

ND = Non-detect above laboratory method detection limits
* = LCS or LCSD is outside acceptance limits.

vs = Reported analyte concentrations are below 200 ug/kg and may be biased low due to the sample not being collected according to 5035A-L low-level specifications.

F1 = MS and/or MSD Recovery is outside acceptance limits.
F2 = MS/MSD RPD exceeds control limits
B = Compound was found in the blank and sample.

Analysis by USEPA Method 8270 Red font indicates a change made in the DUSR

Table 7 - Volatile Organic Compounds (VOCs) in Groundwater

Sample ID	NYSDEC TOGS 1.1.1 Ambient Water Quality Standards and	LBA-N	/W2	LBA-M	W3	LBA-M	W4	LBA-M\	W5	LBA-SG	i2	LBA-SG3	LBA-	SG4	LBA-SG	i 5	Trip Bla	ank
Screened Interval		10-15		9-24		9-19	9	4-19		9-13		8-18	8-18		8-18		NA	
Sample Date	Guidance Values	10/3/	2017	10/3/2	017	10/3/2	017	10/2/2	017	9/29/20)17	9/29/2017	9/29/	2017	9/29/20)17	9/29/20	017
1,1,1-Trichloroethane	5	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND	J	ND	
1,1,2,2-Tetrachloroethane	5	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND	J	ND	
1,1,2-Trichloroethane	1	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND	J	ND	
1,1,2-Trichloro-1,2,2-trifluoroethane	5	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND	J	ND	
1,1-Dichloroethane	5	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND	J	ND	
1,1-Dichloroethene	5	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND	J	ND	1
1,2,4-Trichlorobenzene	5	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND	J	ND	1
1,2-Dibromo-3-Chloropropane	0.04	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND	J	ND	1
1,2-Dibromoethane	NL	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND	J	ND	1
1,2-Dichlorobenzene	3	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND	J	ND	
1,2-Dichloroethane	0.6	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND	J	ND	
1,2-Dichloropropane	1	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND	J	ND	
1,3-Dichlorobenzene	3	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND	J	ND	
1,4-Dichlorobenzene	3	ND	J	ND		ND	J	ND	J	ND	J	ND	ND	1	ND		ND	1
2-Hexanone	50**	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND		ND	1
2-Butanone (MEK)	50**	ND	J	ND		ND	J	ND	J	3.6	J	ND *	ND		ND		ND	+
4-Methyl-2-pentanone (MIBK)	NL NL	ND	Ī	ND		ND	1	ND	J	ND	J	ND	ND		ND		ND	+
Acetone	50**	4.3	J	3.8	ı	4.9	ı	13	J	17	J	ND	ND		ND		ND	+
Benzene	1	ND	ı	ND		ND	1	14	ı	1.1	ı	ND	ND	+	ND		ND	+
Bromodichloromethane	5	ND	ı	ND		ND	ı	ND	1	ND	ī	ND	ND		ND		ND	+
Bromoform	50**	ND	ı	ND		ND	ı	ND	1	ND	1	ND	ND		ND		ND	+
Bromomethane	5	ND	ı	ND		ND	1	ND	ı	ND	٦	ND	ND		ND		ND	+
Carbon disulfide	60**	ND	ı	ND		ND	ı	ND	1	ND	1	ND	ND		ND		ND	+
Carbon tetrachloride	5	ND	J	ND		ND	J	ND	ı	ND	J	ND	ND	+	ND		ND	+
Chlorobenzene	5	ND	ı	ND		ND	1	ND	ı	ND	1	ND	ND		ND		ND	+
Dibromochloromethane	50**	ND	J	ND		ND	J	ND	ı	ND	J	ND	ND		ND		ND	+
Chloroethane	5	ND	J	ND	+	ND	1	ND	J	ND	J	ND	ND	+	ND		ND	+
Chloroform	7	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		0.47		ND	+
Chloromethane	, NL	ND	J	ND		ND	J	ND	J	ND	7	ND	ND		ND		ND	+
cis-1,2-Dichloroethene	5	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND		ND	+
cis-1,3-Dichloropropene	0.4	ND	J	ND		ND	J	ND	J	ND	J	ND	ND	*	ND		ND	+
	NL	ND	J	ND		ND	J	13	J	0.54	J	ND	ND	^	ND		ND	
Cyclohexane			J				J		J		J			_				+
Dichlorodifluoromethane	5	ND	J	ND		ND	J	ND	J	ND	J	ND	ND	_	ND		ND	+
Ethylbenzene	5	ND	J	ND		ND	J	26 ND	J	ND	J	ND	ND		ND		ND	
Isopropylbenzene	5	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND		ND	
Methyl acetate	NL	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND		ND	
Methyl tert-butyl ether	10**	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND	J	ND	
Methylcyclohexane	NL	ND	J	ND		ND	J	6.3	J	0.68	J	ND	ND	*	ND	J	ND	
Methylene Chloride	5	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND		ND	
Styrene	5	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND		ND	
Tetrachloroethene	5	ND	J	ND		ND	J	ND	J	ND	J	ND *	ND		ND		ND	
Toluene	5	ND	J	ND		ND	J	12	J	1.7	J	ND	ND		ND		ND	
trans-1,2-Dichloroethene	5	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND		ND	
trans-1,3-Dichloropropene	0.4	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND		ND	
Trichloroethene	5	ND	J	4.4		13	J	ND	J	ND	J	ND	ND		ND		ND	
Trichlorofluoromethane	5	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND		ND	
Vinyl chloride	2	ND	J	ND		ND	J	ND	J	ND	J	ND	ND		ND		ND	
Xylenes, Total	5	ND	J	ND		ND	J	120	J	1.19	J	ND	ND		ND	J	ND	

Xylenes, Total

Concentrations in micrograms per liter (ug/L) or parts per billion (ppb)

Highlighted denotes exceedance of NYSDEC TOGS 1.1.1 Water Quality Standard or Guidance Value

NL = Not Listed

ND = Non-detect above laboratory method detection limits

* = LCS or LCSD is outside acceptance limits.

J = Approximate value

F1 = MS and/or MSD Recovery is outside acceptance limits.

Analysis by USEPA Method 8260

Red font indicates a change made in the DUSR