

Phase II Environmental Site Assessment Preliminary Site Characterization

Location:

Carriage Cleaners 2101 Monroe Avenue Town of Brighton Monroe County, New York

Prepared for:

Carriage Cleaners 2101 Monroe Avenue Rochester, New York 14895

LaBella Project No. 204129

July 2004

1800 Chase Square Rochester, New York 14604

Telephone: (585) 258-2800 Facsimile: (585) 258-2821 www.underberg-kessler.com

Writer's Direct Number:

(585) 258-2838

ronhull@underberg-kessler.com

1900 Main Place Tower Buffalo, New York 14202

Telephone: (716) 848-9000 Facsimile: (716) 847-6004

> Reply to Rochester Office

July 22, 2004

Todd Caffoe, P.E. NYS Department of Environmental Conservation Division of Environmental Remediation Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519

> Re: Carriage Cleaners Our Reference No.: 992749.2

Dear Mr. Caffoe:

Enclosed is a copy of the Phase II Environmental Site Assessment Preliminary Site Characterization concerning Carriage Cleaners located at 2101 Monroe Avenue, Town of Brighton, Monroe County.

Sincerely,

Ronald G. Hull

RGH: aqr Enclosure

Phase II Environmental Site Assessment Preliminary Site Characterization

Location:

Carriage Cleaners 2101 Monroe Avenue Town of Brighton Monroe County, New York

Prepared for:

Carriage Cleaners 2101 Monroe Avenue Rochester, New York 14895

LaBella Project No. 204129

July 2004

Table of Contents

I. Backgrou	nd	1
II. Summary	of Findings	2
III. Summar	y of Geologic and Hydrogeologic Conditions	3
IV. Investiga	tion Methodology	4
V. Fieldwork	and Findings	4
VI. Conclusio	on	11
Figures Appendix 1 Appendix 2 Appendix 3 Appendix 4	H&A Groundwater Monitoring Well Location Map and A NYSDEC Air Sample Results and Sample Location Mappi Boring Logs Analytical Data	

(Carlos and Carlos and Carlo

Ĩ

Page

I. Background

In September 2003, Newcomb Oil Company (Newcomb Oil) notified the New York State Department of Environmental Conservation (NYSDEC) of a possible leak in a 10,000-gallon gasoline underground storage tank at their Monroe Avenue facility located adjacent to the west from the Carriage Cleaners facility located at 2101 Monroe Avenue. Both facilities are located in the Town of Brighton, Monroe County, New York. As a result of this potential leak, the underground storage tank was pumped out and taken out of service by Newcomb Oil.

Subsequent to Newcomb Oil notifying the NYSDEC of the suspected release, the NYSDEC performed a Petroleum Bulk Storage Inspection of the Newcomb Oil facility which revealed errors in procedures used for inventory monitoring and reconciliation of records.

By October 2003 subsurface characterization activities had been completed at the Newcomb Oil parcel as well as initiated off-site to assist in the characterization of potentially impacted properties located downgradient of the Newcomb Oil facility. In November 2003 remedial actions were implemented at the Newcomb Oil parcel which included the removal of two (2) known and five (5) unknown underground storage tanks from the facility.

Tetrachloroethene (Perk) was first identified during sample analysis completed in November through December 2003. The cumulative analytical results from groundwater sampling conducted in late 2003 are summarized in the table below. The table lists the analytical results for Tetrachloroethene only. The analytical results are compared to the NYSDEC Part 703 Groundwater Standard.

The groundwater monitoring wells sampled during this phase of the Newcomb Oil Investigation are located throughout the neighborhoods in the vicinity of the Newcomb Oil parcel. Groundwater monitoring well locations are depicted on a neighborhood site plan created by Haley and Aldrich of New York (H&A), Newcomb Oil's environmental engineers. Analytical data generated by H&A and the associated figure depicting the location of the groundwater monitoring wells are included in Appendix 1.

Groundwater Analytical Results Newcomb Oil Data Points Tetrachloroethene only

Groundwater Monitoring Date Well No. Sampled		Location	Analytical Result (Perc)	NYSDEC Part 703 Groundwater Standard	
HA-102	12/11/03	Northeast Corner of Newcomb parcel	ND<50	5	
HA-104	11/24/03	East Property Line of 103 Brooklawn	248	5	
**	12/11/03	"	220	5	
HA-111	10/22/03	North Portion of 2111 Monroe Ave.	781	5	
"	11/24/03	"	668	5	
HA-113	12/11/03	West Portion of CVS parcel	ND<15J	5	
HA-114	11/24/03	South Property Line of 159 Hampshire Dr.	436	5	
"'	12/11/03	.	260	5	
HA-119	12/11/03	159 Irving Road	ND<5.0	5	

All sample results and guidance values in ug/L = ppb

ND denotes Not Detected above Method Detection Limits

Bold denotes constituents above NYSDEC Groundwater Standard

J denotes an estimated value

Based on this analytical data, it appears that there is somewhat widespread, but low level Tetrachloroethene impairment in the overburden groundwater. At the locations where Tetrachloroethene was detected above Method Detection Limits, the levels in each instance were above NYSDEC Part 703 Groundwater Standards.

In January 2004 indoor air sampling was conducted by the NYSDEC on potentially impacted residences located in the vicinity of the area suspected as being the source of the Tetrachloroethene release (i.e. 2101 Monroe Avenue). The analytical results from the 13 soil gas samples submitted for analysis by the NYSDEC are summarized in the table below. Only the level of Tetrachloroethene is reflected in the table below. A copy of the full analytical results is included in Appendix 2. Sample locations are depicted on mapping provided by the NYSDEC which is included in Appendix 2.

Sample No.	Sample Type	Location	Analytical Result (Perk)
40-1	Sub-slab	40 Brooklawn Drive	ND
40-2	Indoor Air	40 Brooklawn Drive	ND
2111-1DL	Sub-slab	2111 Monroe Avenue	140,000
2111-2DL	Indoor Air	2111 Monroe Avenue	500D
A-1	Outdoor	East CVS Property Line	ND
2113-1	Sub-slab	2113 Monroe Avenue	14
2113-2	Indoor Air	2113 Monroe Avenue	41
2124-U-1DL	Sub-slab	2124 Monroe Ave. (Apartment Complex)	43,000D
2124-U-2	Indoor Air	2124 Monroe Ave. (Apartment Complex)	26
2128-U-1DL	Sub-slab	2128 Monroe Ave. (Apartment Complex)	2,000
2128-U-2	Indoor Air	2128 Monroe Ave. (Apartment Complex)	7.4
2130-2-1DL	Sub-slab	2130 Monroe Ave. (Apartment Complex)	4,200
2130-2-2	Indoor Air	2130 Monroe Ave. (Apartment Complex)	ND

Indoor Air & Sub-Slab Analytical Results NYSDEC Data Points Tetrachloroethene only

All sample results and guidance values in micrograms per cubic meter (ug/m3) ND denotes Not Detected above Method Detection Limits DL denotes a dilution factor was required

The analytical results from the NYSDEC sub-slab and indoor air sampling study revealed that the highest concentration of tetrachloroethene was identified in both the sub-slab soil gas and indoor air samples collected from 2111 Monroe Avenue. 2111 Monroe Avenue, a residential structure owned by Carriage Cleaners, is located adjacent to the east of the Carriage Cleaners facility.

II. Summary of Findings

Overburden Summary of Findings

Site characterization activities have been conducted at the Carriage Cleaners facility located at 2101 Monroe Avenue in the Town of Brighton, Monroe County, New York hereinafter referred to as "the Site" including:

- The advancement, logging and select sampling of 27 geoprobe soil borings
- The installation and sampling of 5 overburden groundwater monitoring wells

Analytical data generated from the laboratory analysis of soil and groundwater samples from these borings and groundwater monitoring wells indicate that shallow overburden groundwater has been impacted with Tetrachloroethene. These levels of Tetrachloroethene exceed NYSDEC Part 703 Groundwater Standards.

In addition, limited areas of impaired soil exist at the Site that contains levels of Tetrachloroethene above NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality.

This area of impaired soil is generally located in the vicinity of the sanitary and storm sewer corridor. The area of groundwater impaired with low levels Tetrachloroethene appears to be generally widespread across the Site.

III. Summary of Geologic and Hydrogeologic Conditions

Site geologic features are based primarily on information obtained from the advancement of 27 geoprobe advanced borings at the Site.

Based on field observations overburden appears to be approximately six feet (SB-7) to fourteen feet (SB-12) thick. Based on field observations and surveyed groundwater elevations, groundwater flow appears to flow radially to the north, northeast and southeast from a high point near the southwestern corner of the Site.

- The bedrock in the area is Lockport Dolomite.
- The native soils at the Site consist of compact sandy Silts above a Sand and Gravel deposit.
- The horizontal gradient in the overburden aquifer appears to range from approximately 0.0008 to 0.0016.

The velocity of groundwater flow in the overburden aquifer can be estimated using Darcy's Law:

V=KI/e

Where V equals the velocity of groundwater flow, K equals the hydraulic conductivity (permeability), I equals hydraulic gradient, and e equals the effective porosity. The effective porosity is the volume of pore space through which groundwater flow actually occurs. The lower the value of effective porosity, the higher the resulting groundwater velocity. The median range of effective porosity and permeability for similar aquifers typically is reported to be in the range of 25% to 40%. The hydraulic conductivity is estimated to be about 10^{-3} cm/sec, based on published values for similar aquifers.

The rate of groundwater movement in the overburden aquifer is estimated to be in the range of less than 0.045 to 0.09 ft/day calculated assuming an effective porosity of 32.5% and a hydraulic conductivity of 10^{-3} cm/sec. Actual localized rates of groundwater movement will vary in response to local hydrogeologic conditions and man made preferential flow zones created by utility corridors.

A groundwater contour map for the Site is included as Figure 2.

IV. Investigation Methodology

Overburden Soil Borings and Monitoring Wells

Soil borings at the Site were advanced with a geoprobe direct push, sampling system. The use of direct push technology allows for rapid sampling, observation, and characterization of relatively shallow overburden soils. The geoprobe utilizes a four-foot macro-core sampler, with disposable polyethylene sleeves. Soil cores are retrieved in four-foot sections, and can be easily cut from the polyethylene sleeves for observation and sampling. The macro-core sampler was decontaminated between samples and borings using an alconox and water solution.

All soil cores were screened for evidence of impairment by a LaBella Associates Environmental Geologist. Field air monitoring readings of soil samples were conducted with a Photovac 2020 Photoionization detector calibrated to a response factor of 1.00.

Soil samples were collected and placed directly into laboratory supplied, glass samples jars with a Teflon sealed lid. All samples were placed in coolers with chemical ice packs and transported under Chain of Custody procedures to Paradigm Laboratories, Inc, of Rochester, New York for analysis.

Monitoring wells were installed at five (5) of the boring locations at the Site. All monitoring wells utilized 1 inch well screen. The monitoring wells were set at depths varying from 10 feet to 12 feet below the ground surface, each with 5 feet of .010 inch slotted PVC screen intersecting the water table, connected to an appropriate length of PVC riser to complete the well installation. All wells were sand packed to 2 to 3 feet above the well screen, bentonite sealed to 1 foot below the ground surface, and grouted to the ground surface. Each well was finished either with a locking cap and flush mount cover or stand-up locking casing.

Each well received a dedicated PVC bailer. Prior to sampling each monitoring well was developed and purged by bailing at least 3 well volumes.

The five (5) groundwater monitoring wells advanced at the Site were elevated and compared to an onsite specific elevation. In addition, one groundwater monitoring well (HA-111) advanced by H&A on the adjacent residential parcel (2111 Monroe Avenue) was surveyed to establish its relative elevation.

Boring logs and monitoring well construction diagrams are attached as Appendix 3.

V. Fieldwork and Findings

Introduction

Initial Site Investigation Activities were conducted at the Site on March 10, 2004 and April 12, 2004. During this time frame, a total of twenty seven (27) geoprobe borings and five shallow groundwater monitoring wells were advanced at the Site to preliminarily characterize subsurface conditions at the Site.

Scope of Work

The workplan that was developed was designed to provide initial coverage of the Site in the areas most likely to have contributed to, or be affected by, a potential chemical release at the Site. The Scope of Work is based on LaBella's discussions with Mr. James Reitze, Underberg & Kessler LLP, and on information regarding current and suspected historical Site activities. The initial work plan that was implemented at the Site is as follows:

- 1. LaBella Associates worked with Carriage Cleaners to determine the areas of potential concern/migration pathways at the Site as they relate to Site objectives and issues. Part of this task also involved LaBella Associates conducting limited Phase I ESA related research for the facility to better understand site history and utility services associated with the Site.
- 2. An Underground Facilities Protection Organization (UFPO) stakeout was conducted at the Site, to locate any subsurface utilities in the areas where the subsurface assessment and delineation took place.
- 3. LaBella Associates retained the services of a specialized contractor to implement a direct push "geoprobe" soil boring and sampling program at the Site. A total of two days of borings were conducted at the Site.
- 4. LaBella reviewed available information and the information provided by the utility stakeout to determine the appropriate locations for soil borings. A total of twenty seven borings were implemented at the following locations:
 - In the area of the former Tetrachloroethene aboveground storage tank.
 - In the area near the reported former filter storage/drying area.
 - In the area of the Site along the south property line closest to the former Tetrachloroethene still located on the interior of the building.
 - In the area of the Site adjacent to the utility corridors servicing the Site.
 - In the areas of the Site adjacent to previously identified with an elevated level of Tetrachloroethene in shallow groundwater (i.e. HA-111).
- 5. Five 1-inch diameter monitoring wells were installed, based on evidence of impairment observed in the soil borings, these include the following locations:
 - One well in the vicinity of the former Tetrachloroethene above ground storage tank (MW#1);
 - One well along the south property line closest to the former Tetrachloroethene Still located on the interior of the building (MW#2);
 - One well adjacent to the sanitary and storm sewer lines identified with the highest level of Tetrachloroethene is soils at the Site (MW#3);
 - One well north of the Carriage Cleaners structure (MW#4);
 - One well at the southwest corner of the Carriage Cleaners parcel (MW#5);

Field Activities

Twenty seven borings were advanced at the Site. All of the borings were advanced to total depths ranging from 3.8 feet to 14 feet below grade. Based on field observations, groundwater monitoring wells were installed at the soil boring #1 near the former Perk aboveground storage tank (MW #1), soil boring #8 near the south property line (MW #2), soil boring #16 in adjacent to the sanitary and storm sewer utility corridors (MW #3), soil boring #20 near the southwest property line (MW #4) and soil boring #24 north of the Carriage Cleaners structure (MW#5).

All soil cores were continuously assessed by a LaBella Associates Environmental Geologist for soil type and evidence of impairment.

The objective of this Phase of the investigation involved the preliminary characterization of the Site to determine potential source areas of Tetrachloroethene in either soil or shallow overburden groundwater at the Site. To complete this investigation, borings were advanced to equipment rejection. PID readings from these borings are presented in the table below.

Soil	Depth Interval								Analytical Mathed
Boring	0'-2'	2'-4'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	Analyzed	Analytical Method
B-1	0.3	0.3	1.9	6.5	34.5			8.0'-10.5'	8260B TCL STARS
B-2	0.0	0.0	0.4	NR	1.9	9.5		N.A.	N.A.
B-3	0.0	0.0	0.0	0.2	6.5			N.A.	N.A.
B-4	0.0	0.0	0.0	0.0	0.0	0.0		8.0'-11.0'	8260B TCL STARS
B-5	0.0	0.0	0.0	0.0	0.0			N.A.	N.A.
B-6	0.0	0.0	0.0	0.0				N.A.	N.A.
B-7	0.0	0.0	0.0	NR				N.A.	N.A.
B-8	0.0	0.0	0.0	0.0	0.0			8.0'-10.5'	8260B TCL STARS
B-9	0.0	0.0	0.0	0.0	0.0			N.A.	N.A.
B-10	0.0	NR	0.8	4.1	7.7			N.A.	N.A.
B-11	0.0	0.0	641	NR	2,000			8.0'-9.0'	8260B TCL STARS
B-12	0.9	6.7	0.0	67.4	110	641	71.4	N.A.	N.A.
B-13	0.3	NR	0.0	0.0				N.A.	N.A.
B-14	0.0	NR	0.0	NR				N.A.	N.A.
B-15	0.0	NR	11.4	13.1	132			8.0'-11.5'	8260B TCL STARS
B-16	0.0	0.0	10.0	NR	132	NR		N.A.	N.A.
B-17	0.0	287	2,000	NR	2,000			8.0'-9.7'	8260B TCL STARS
B-18	0.0	0.0	0.0	0.0	2,000	NR		8.0'-11.8'	8260B TCL STARS
B-19	0.0	0.0	0.0	0.0	900			N.A.	N.A.
B-20	0.0	0.0	0.0	0.0	237			N.A.	N.A.
B-21	0.0	0.0	0.0	NR	2,000			8.0'-11.4'	8260B TCL STARS
B-22	0.0	0.0	0.0					N.A.	N.A.
B-23	0.0	0.0						N.A.	N.A.
B-24	0.0	0.0	0.0	NR	247	NR		N.A.	N.A.
B-25	0.0	0.0	0.0	NR				N.A.	N.A.
B-26	0.0	0.0	0.0	0.0	0.0			N.A.	N.A.
B-27	0.0	0.0	0.0	0.0	0.0			N.A.	N.A.

Soil PID Readings Direct-Push Soil Sampling Study

All PID readings were collected utilizing a Photovac 2020 Photoionization detector and are representative of ppm VOC 8260 TCL STARS denotes analysis utilized USEPA Method 8260B TCL plus NYSDEC STARS Compounds

--- denotes boring rejection prior to depth interval

NR denote no sample recovery

N.A. denotes Not Applicable

The native soils at the Site beneath the asphalt (if present) generally consist of a silty glacial till deposit of Clayey SILT with little to some fine-grained Sand and trace to little Gravel. At locations SB-2, SB-5, SB-8, SB-9, SB-10, SB-11, SB-12, SB-13, SB-15, SB-17, SB-19, and SB-21 through SB-27, the Silty Till deposits were overlain by 0.9 to 6.0 feet of fill material generally consisting of coarse to fine grained GRAVEL with some to little coarse to fine grained Sand. The fill material encountered in borings SB-5 and SB-8 also contained varying amounts of fly ash, coal fragments and cinders. At most locations, the silty glacial till deposits were underlain by a sandy glacial till consisting of coarse to fine-grained SAND with trace to and coarse to fine-grained Gravel and trace to some Silt. The depth to bedrock at the Site varies and is estimated to be between 6 and 14 feet below surface grade.

The boring locations at the Site are illustrated in Figure 1. Copies of the boring logs are included in Appendix 3.

Subsurface Analytical Results - Soils

Soil samples were sent under Chain of Custody procedures to Paradigm Laboratories, Inc. of Rochester, New York for petroleum and solvent related VOC analysis by USEPA Method 8260B TCL plus NYSDEC STARS compounds.

The analytical results from the soil samples for solvent and petroleum hydrocarbon related Volatile Organic Compound analysis by USEPA Method 8260B plus NYSDEC STARS Compounds are summarized in the table below. The individual constituents are compared to the NYSDEC TAGM 4046 Soil Cleanup Objectives to Protect Groundwater Quality.

tethyl tert butyl ether (MTBE)	\$7.75 ND<7.25	6L [.] 9>AN	1.11>UN	986>QN	ND<2,600	06E'I	128	087'L>QN	130
aphthalene	1.81>UN	0.71>UN	L'.LZ>QN	ND<2,470	005'51	£'9L>QN	7.82>UN	56,100	000'£1
rt-Butylbenzene	52.75dN	6L'9>QN	1.11>QN	986>QN	ND<2,600	S.05>UN	£.11>UN	087'L>QN	∀/N
c-Butylbenzene	S2.7>UN	6L'9>AN	1.11>UN	986>QN	ND<2,600	S.05>UN	£.11>UN	087 ⁴ 2/01	54'610
Butylbenzene	S2.7>UN	6L'9>QN	I.II>UN	986>QN	ND<2,600	S.0E>UN	£.11>UN	08†'L>ON	11,620
3,5-Trimethylbenzene	57.7>UD	6L'9>QN	1.11>UN	986>QN	001'LE	ND<30.5	33.2	000'E9	055,5
2,4-Trimethylbenzene	\$7.75 ND<7.25	6L'9>AN	I.II>UN	986>QN	000'611	S.05>UN	£.11>UN	212,000	13,000
-Cymene	\$7.75 ND<7.25	6L'9>QN	ND<11.1	986>QN	009'7>0N	S.05>UN	£.11>dN	08†'L>ON	∀/N
Propylbenzene	\$7:75aN	6L'9>AN	1.11>UN	986>QN	096'S	S.0E>QN	£.11>dN	006'57	14,000
obtopylbenzene	S2.75	6L'9>QN	I.II>UN	986>QN	5,700	S.0E>UN	£.11>dN	087'L>ON	072'7
otal Xylene	\$7.7>dN	6L'9>QN	I.II>UN	07/'I	155'600	S.05>UN	Z.74	000'888	1 [,] 200
inyl chloride	\$7.75dN	6L'9>QN	I'II>dn	986>QN	009'7>0N	S.05>UN	£.11>QN	087'L>UN	120
inyl acetate	1.81>UN	0.71>QN	L'L7>ON	ND<2,470	ND<6,500	£'9L>QN	Z.82_28.2	00L'81>QN	∀/N
richloroethene (TCE)	\$7.75 ND<7.25	6L'9>QN	I.II>UN	986>QN	ND<2,600	S.05>UN	£.11>dN	08†'L>UN	002
l,2-Trichloroethane	\$7.75dN	6L'9>QN	I.II>UN	986>QN	ND<2,600	S.0E>UN	£.11>dN	08†'L>ON	V/N
I, I-Trichloroethane (TCA)	\$7.75dN	6L'9>QN	1.11>QN	986>QN	009'7>QN	S.0E>QN	£.11>QN	08t'L>DN	092
əuənjo	\$7.7>dN	62 [.] 9>(IN	1.11>QN	015,210	0EE'L	S.0E>UN	£.11>UN	005'EI	005'1
etrachloroethene (PCE or Perc)	8 <i>5L</i>	Lts	533	00S'tE	ND<2,600	S.0E>UN	20.7	08†'L>DN	1,400
1,2,2-Tetrachloroethane	S2.7>UN	6L'9>DN	I.II>dN	986>QN	ND<7'600	S.0E>UN	£.11>DN	08†'L>AN	009
λιευς	\$7.7>UN	6L [.] 9>DN	I.II>dN	986>QN	ND<2,600	S.0E>UN	£.11>QN	087'L>QN	¥/N
Methyl-2-pentanone	1.81>UN	0.71>UN	L'.L7>QN	0Lt'7>AN	005'9>QN	£'9L>AN	7.82>UN	00/'81>0N	000'I
ethylene chloride	1.81>UN	0.71>QN	L'LZ>QN	0Lt'7>ON	ND<6,500	£'9L>AN	Z.82_UN	00L'81>QN	1000
Hexanone	1.81>UN	0.71>UN	L'L7>AN	0Lt'7>AN	ND<6,500	£'9L>AN	Z'87>0N	002'81>QN	V/N
pylbenzene	\$2.75dN	6L'9>QN	1.11>UN	986>DN	081,5	S.05>UN	£.11>DN	007'17	005'5
-1-3-Dichloropropene	\$7.75dN	6L'9>QN	I'II>dn	986> D N	ND<2,600	S.0E>UN	£.11>dN	08#'L>AN	V/N
s-1,3-Dichloropropene	\$7.75dN	6L'9>AN	I.II>dn	986>QN	009'7>(IN	S.05>UN	£.11>UN	087'L>AN	V/N
2-Dichloroprane	\$7.75dN	61.9>QN	1.11>dN	986>QN	009'7>(IN	S.05>UN	£.11>dN	087 ⁽ L>DN	V/N
2-Dichloroethene (Total)	SZ.75	6L'9>QN	I'II>dn	986>QN	ND<2,600	S.05>UN	£.11>DN	087'L>DN	V/N
I-Dichloroethene	57.75dN	6L'9>QN	1.11>QN	986> U N	009'7>0N	S.05>UN	£.11>dN	087'L>QN	400
2-Dichloroethane	\$7.75dN	6L'9>QN	I'II>dn	986>AN	009'7>0N	\$.0£>UN	£.11>dN	087'L>DN	001
l-Dichloroethane	\$2.75dN	6L'9>QN	I.I.I>dN	986>QN	009'Z>ON	S.0E>UN	£.11>dN	087'L>AN	500
promochloromethane	\$7.75 ND<72	6L'9>QN	I'II>DN	986>AN	ND<2,600	S.05>UN	£.11>DN	087'L>DN	¥/N
Joromethane	S2.7>DN	6L'9>QN	I.II>dN	986>AN	ND<2,600	S.05>UN	£.11>DN	087'L>QN	¥/N
ារា០រ០របា	\$7 [.] L>AN	6L'9>QN	I.II>UN	986> U N	ND<2,600	S.05>UN	£.11>DN	087'L>UN	00€
Joroethane	\$7.75 ND<7.25	6L'9>AN	I'II>dn	986>AN	ND<2,600	S.05>UN	£.11>DN	087'L>QN	006'1
norobenzene	\$7.75 ND<7.25	6L'9>AN	I'II>dn	986>QN	ND<2,600	S.05>UN	E.11>UN	087'L>QN	000'1
ubon Tetrachloride	\$7.75 ND<7.25	6L'9>QN	I.I.I>DN	986>QN	ND<2,600	S.05>UN	E'11>QN	087 ⁽ /2) (10)	009
abriluzid nodu	1.81>QN	0.71>UN	L'LZ>QN	ND<2,470	005'9>DN	£'9L>QN	Z'82'5	002'81>DN	002'2
Butanone	1.81>QN	0 [°] L1>QN	L'LZ>QN	ND<2,470	005'9 QIN	£'9L>QN	ND<28.2	002'81>QN	002 002
omomethane	\$7.75 ND<7.25	6L'9>QN	I'II>DN	986>QN	ND<7'600	S.05>UN 20.5	£.11>QN	087'L>QN	∀/N
ന്നാറാണാ	S2.75dN	6L'9>QN	1'11>QN	986>QN	ND<2,600	S.065 dW		087'L>CIN	 ∀/N
omodichloromethane	SZ.75	6L'9>QN		986>QN	ND<2,600	<u>S.05-dH</u>		087'L>QN	 ∀/N
əuəzu	SZ.75dN	6L'9>QN		986>QN	ND<2 600	ND<30.5	E'11>dN	087'L>QN	
etone	£'9£>dN	ND<34.0	<u>S'\$\$\$</u>	ND<4,930	000'EI>ON	ES1>DN	9:95>dN	007'LE>QN	09
									Groundwater Quality
bnuoqmoD	1 AS 1.01-0.8 10.5 ft.	4 88 8.0 - 11 ft.	8 8 8 8 8 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8	11 88 .A 0.9.0 ft.	SB 15 8.0-11.5 ft.	71-88 19 7.6-0.8	81-88 31 8.11-0.8	12-88 8.0-11-4 ft	VYSDEC TAGM 4046 Soil Clean Up Objective to Protect

Bold denotes constituents above NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Mails site listed in ppb MA denotes Not Applicable

The analytical results from the soil samples indicate that VOC impacted soil above NYSDEC Part 703 Groundwater Quality Standards is present at the Site. Tetrachloroethene was detected above NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality at the location of SB-11. Tetrachloroethene was detected above method detection limits but below NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality at the location of SB-1, SB-4, SB-8 and SB-18. Tetrachloroethene was not detected above Method Detection Limits in the soil collected from SB-15, SB-17 and SB-21.

Petroleum hydrocarbon related volatile organic compounds were detected above NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality at the location of SB-11, SB-15, SB-17, SB-18 and SB-21. The analytical data from LaBella monitoring wells SB-1, SB-4 and SB-8 do not indicate the presence of any petroleum hydrocarbon related constituents above NYSDEC TAGM 4046 Soil Cleanup Objective to Protect Groundwater Quality at this portion of the Site.

Subsurface Analytical Results - Overburden Groundwater:

Five groundwater-monitoring wells were advanced at the Site to evaluate the potential impacts to groundwater from the release of chlorinated solvents at the Site. Groundwater monitoring wells were advanced at the following locations;

- MW-1 was installed at the location of soil boring #1 advanced near the former Tetrachloroethene aboveground storage tank;
- MW-2 was installed at the location of soil boring #8 advanced near the south property line, adjacent to the interior location of the Tetrachloroethene Still;
- MW-3 was installed at the location of soil boring #16 advanced adjacent to the sanitary and storm sewer utility corridors;
- MW-4 was installed at the location of soil boring #20 advanced near the southwest property line;
- MW-5 was installed at the location of soil boring #24 advanced north of the Carriage Cleaners structure.

All monitoring well locations are shown on Figure 1.

the Sampres?

Groundwater-monitoring wells MW-1 and MW-2 were developed, purged and sampled on March 11, 2004. Groundwater-monitoring wells MW-3, MW-4 and MW-5 were developed, purged and sampled on April 13, 2004.

Groundwater samples were sent under Chain of Custody Procedures to Paradigm Laboratories, Inc. of Rochester, New York. The analytical results for those compounds detected above method detection limits from the groundwater samples for VOC analysis by USEPA Method 8260 Target Compound List Volatiles plus NYSDEC STARS Compounds are summarized in the table below. The individual constituents are compared to the NYSDEC Part 703 Groundwater Standards.

Compound	MW-1	MW-2	MW-3	MW-4	MW-5	NYSDEC Part 703 Groundwater Standards
Acetone	ND<500	ND<20	ND<2,000	ND<10	ND<1,000	50*
Benzene	ND<35	ND<1.4	3,840	ND<0.700	985	1
Bromodichloromethane	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	50*
Bromoform	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	50*
Bromomethane	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
2-Butanone	ND<250	ND<10	ND<1,000	ND<5.0	ND<500	N/A
Carbon Disulfide	ND<250	ND<10	ND<1,000	ND<5.0	ND<500	10
Carbon Tetrachloride	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
Chlorobenzene	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
Chloroethane	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	50
Chloroform	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	7
Chloromethane	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	N/A
Dibromochloromethane	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	50*
1,1-Dichloroethane	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
1,2-Dichloroethane	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
1.1-Dichloroethene	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
1,2-Dichloroethene (Total)	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
1,2-Dichloropropane	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
cis-1,3-Dichloropropene	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
trans-1,3-Dichloropropene	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
Ethylbenzene	ND<100	ND<4.0	5,310	ND<2.0	2,350	5
2-Hexanone	ND<250	ND<10	ND<1,000	ND<5.0	ND<500	N/A
Methylene chloride	ND<250	ND<10	ND<1,000	ND<5.0	ND<500	5
4-Methyl-2-pentanone	ND<250	ND<10	ND<1,000	ND<5.0	ND<500	N/A
Styrene	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	50
1,1,2,2-Tetrachloroethane	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
Tetrachloroethene (PCE or Perk)	4,380	324	ND<400	ND<2.0	ND<200	5
Toluene	ND<100	ND<4.0	30,000	ND<2.0	9,820	5
1.1.1-Trichloroethane (TCA)	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
1,1,2-Trichloroethane	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
Trichloroethene (TCE)	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
Vinyl acetate	ND<250	ND<10	ND<1,000	ND<5.0	ND<500	N/A
Vinyl chloride	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	2
Total Xylene	ND<100	ND<4.0	26,330	ND<2.0	20,190	5
Isopropylbenzene	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
n-Propylbenzene	ND<100	ND<4.0	2,420	ND<2.0	270	5
p-Cymene	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	N/A
1,2,4-Trimethylbenzene	ND<100	ND<4.0	27,600	ND<2.0	3,410	5
1,3,5-Trimethylbenzene	ND<100	ND<4.0	7,100	ND<2.0	896	5
n-Butylbenzene	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
sec-Butylbenzene	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
tert-Butylbenzene	ND<100	ND<4.0	ND<400	ND<2.0	ND<200	5
Naphthalene	ND<250	ND<10	6,930	ND<5.0	ND<500	10
Methyl tert butyl ether (MTBE)	ND<100	ND<4.0	2,220	ND<2.0	1,420	5

Groundwater Sample Results (USEPA 8260)

All sample results are listed in ppb ND denotes None Detected above Method Detection Limit NA denotes Not Applicable * denotes Guidance Value

LABELLA

The analytical results from the groundwater samples indicate that VOC impacted shallow overburden groundwater above NYSDEC Part 703 Groundwater Quality Standards is present at the Site. Tetrachloroethene was detected above NYSDEC Part 703 Groundwater Quality Standards at the location of MW-1 and MW-2. Tetrachloroethene was not detected above Method Detection Limits in the overburden groundwater collected from MW-3, MW-4 and MW-5. Petroleum hydrocarbon related volatile organic compounds were detected above NYSDEC Part 703 Groundwater Quality Standards at the location of MW-3 and MW-5. The analytical data from LaBella monitoring wells MW-4 do not indicate the presence of any constituents above NYSDEC Part 703 Groundwater Quality Standards at this portion of the Site.

Sewer Survey:

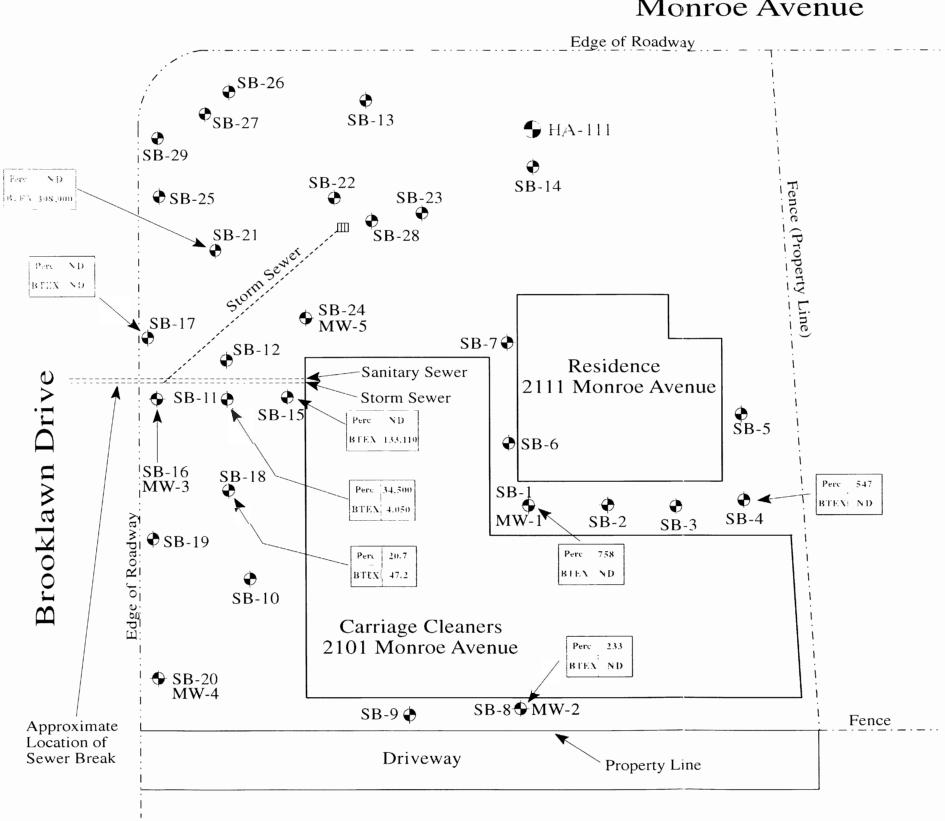
On April 1, 2004, Roto-Rooter Plumbing & Drain Service was on Site to clean the storm and sanitary sewers at the Site and to attempt to verify the connection of the floor drain piping to the municipal sewers. The sewers were augered and flushed of debris. Through the use of a "through pipe camera system" Roto-Rooter's technicians traced the discharge of the storm sewer line from a cleanout to a section of damaged storm sewer piping located near the east edge of Brooklawn Drive. The damage was identified as a "Shift, break or large impassible obstruction." The Site's sanitary sewer system was also traced from a bathroom toilet to an "impassible point, believed to be a shift" at about the same distance from the building as the damage in the storm sewer. The Roto-Rooter technicians were not able to provide further details regarding this damage as in each case, the camera went under water prior to reaching the obstruction. While on-site, the technicians were able to verify that floor drains within the bathrooms and eastern laundry room were connected to the sanitary sewer system.

VI. Conclusion

Preliminary Site Characterization activities have been conducted at the Site. The analytical data discussed above support the observations made at the time of the fieldwork. The analytical data indicate that there appear to have been releases of Tetrachloroethene which have impacted shallow soil and overburden groundwater at the Site.

In addition, it appears that the petroleum release from the Newcomb Oil facility is negatively impacting the Site.

Based on observations made during the soil boring and sampling program and the comparison of the analytical data to the NYSDEC Guidance Values the soil in a localized area in the vicinity of the sanitary and storm sewer utility corridor is impaired with both Tetrachloroethene and petroleum hydrocarbon related compounds above the NYSDEC TAGM 4046 Recommended Levels for the Protection of Groundwater Quality.


The most likely source of the localized Tetrachloroethene soil impairment is a potential failure of the sanitary and/or storm sewer lines exiting the Site and the most likely source of the petroleum impairment is the Newcomb Oil facility.

A copy of all information collected during this assessment, including photographs, maps, notes, analytical data and other material will be kept on file at the offices of LaBella Associates, P.C. This information is available at your request. N:Carriage Cleaners/204/129/Clerical/Word/Rpt/R4G19DP1.DOC

i and

Monroe Avenue

NORTH

LEGEND

€ В-1	LaBella Soil Boring Location & ID Number
∲ SB-1 / MW-1	LaBella Monitoring Well Location & ID Number
Ф НА-111	H&A Monitoring Well Location & ID Number
Perc	Denotes Tetrachloroethene
BTEX	Denotes Benzene, Toluene, Ethylbenzene & Xylene
ND	Denotes Compound Not Detected Above Method Detection Limits
500	Denotes Level of Perc/BTEX detected in Parts Per Billion

PROJECT TITLE:

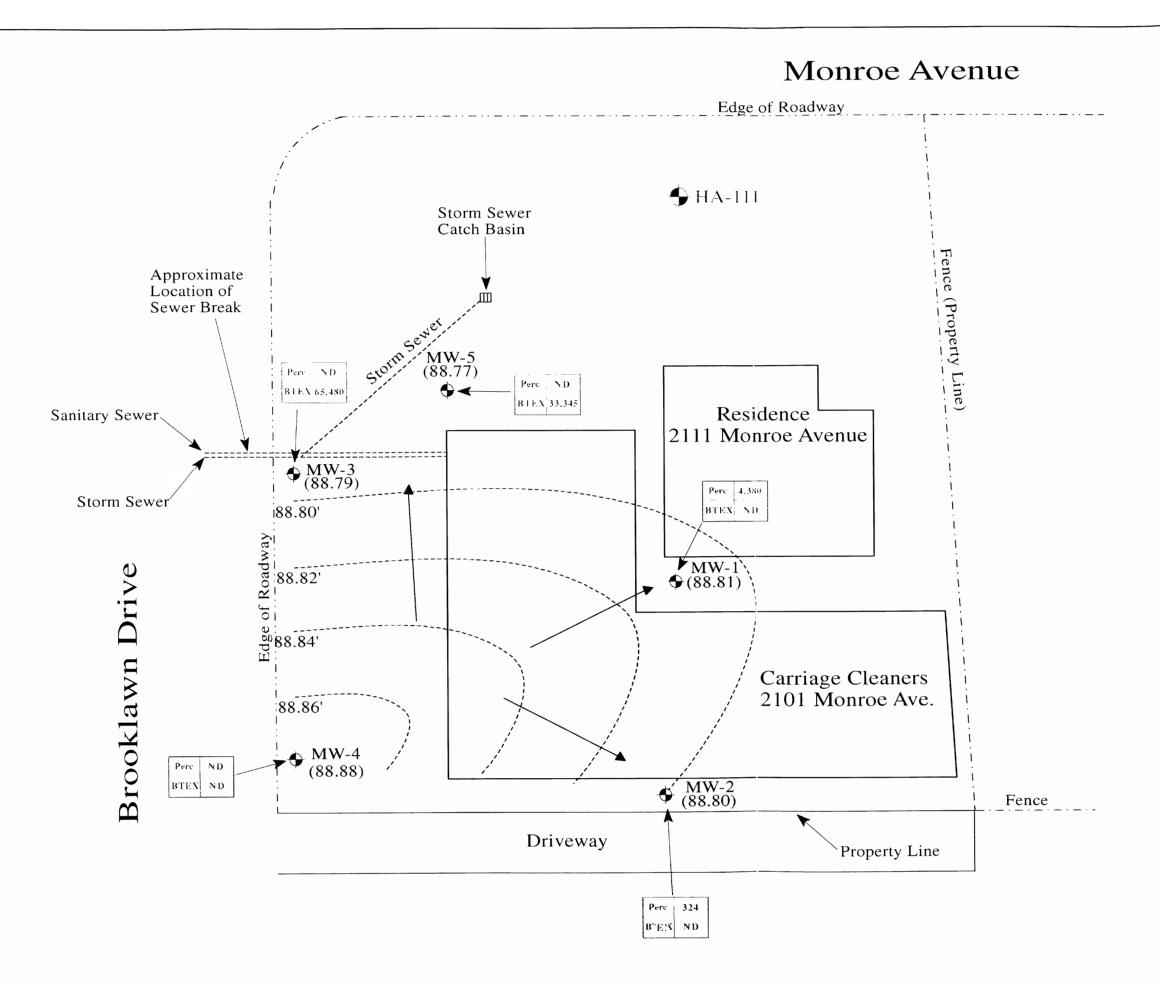

Phase II Environmental Site Assessment 2101 & 2111 Monroe Avenue Brighton, New York

FIGURE TITLE:

FIGURE 1 Soil Boring Locations & Analytical Results

DATE: April 2004

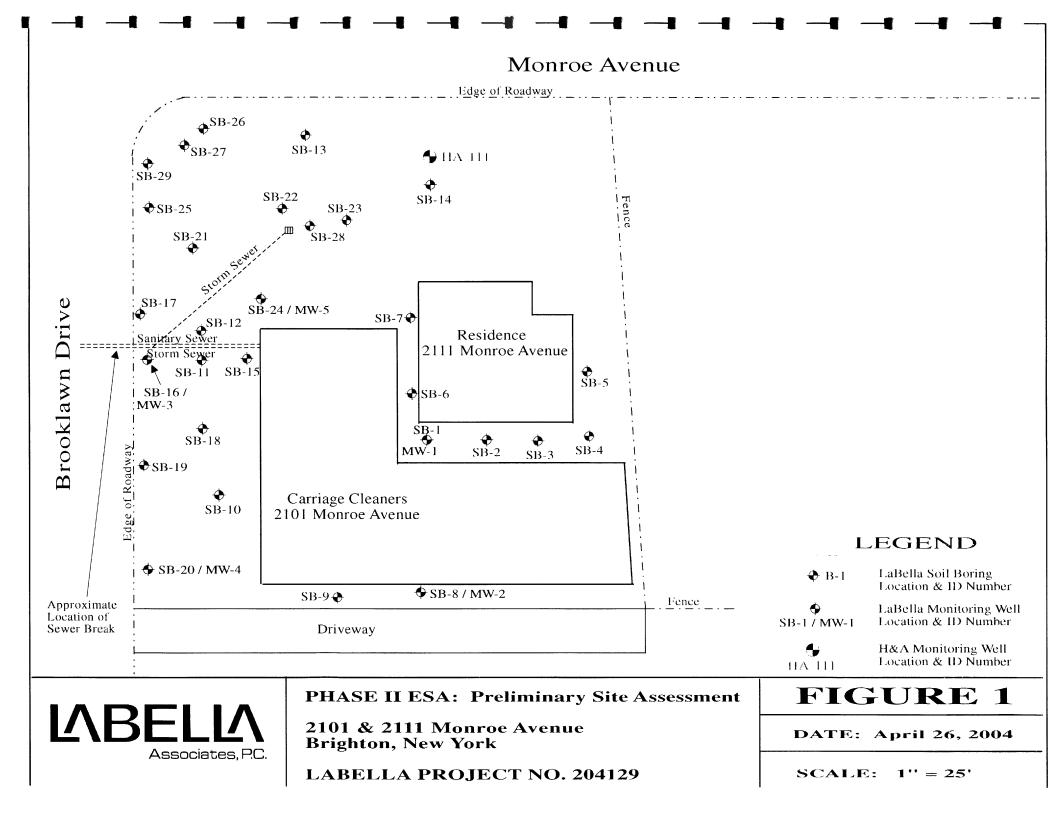
NOT TO SCALE

LEGEND

NORTH

↔ MW-1 (88.80)	LaBella Monitoring Well Location & Groundwater Elevation
9 НА-111	H&A Monitoring Well Location & ID Number
Perc	Denotes Tetrachloroethene
BTEX	Denotes Benzene, Toluene, Ethylbenzene & Xylene
ND	Denotes Compound Not Detected Above Method Detection Limits
500	Denotes Level of Perc/BTEX detected in Parts Per Billion
) 88.88'	Groundwater Isocountour with Groundwater Elevation
-	General Direction Of Groundwater Flow

PROJECT TITLE:


Phase II Environmental Site Assessment 2101 & 2111 Monroe Avenue Brighton, New York

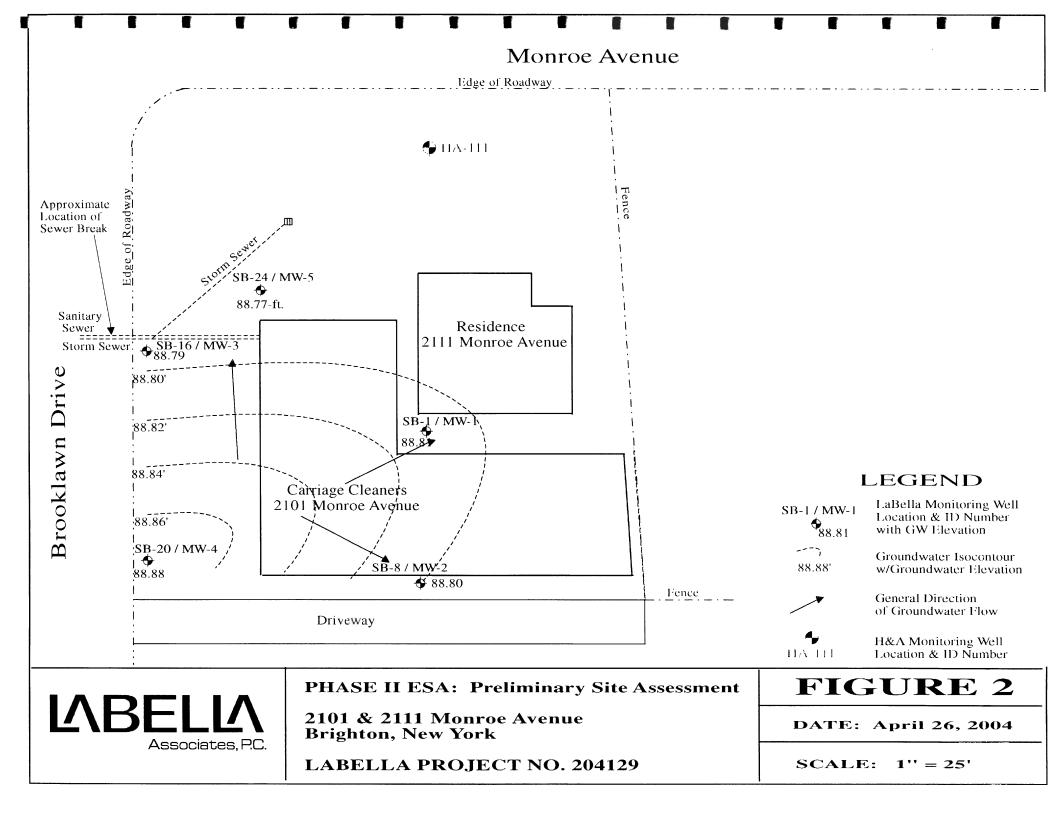
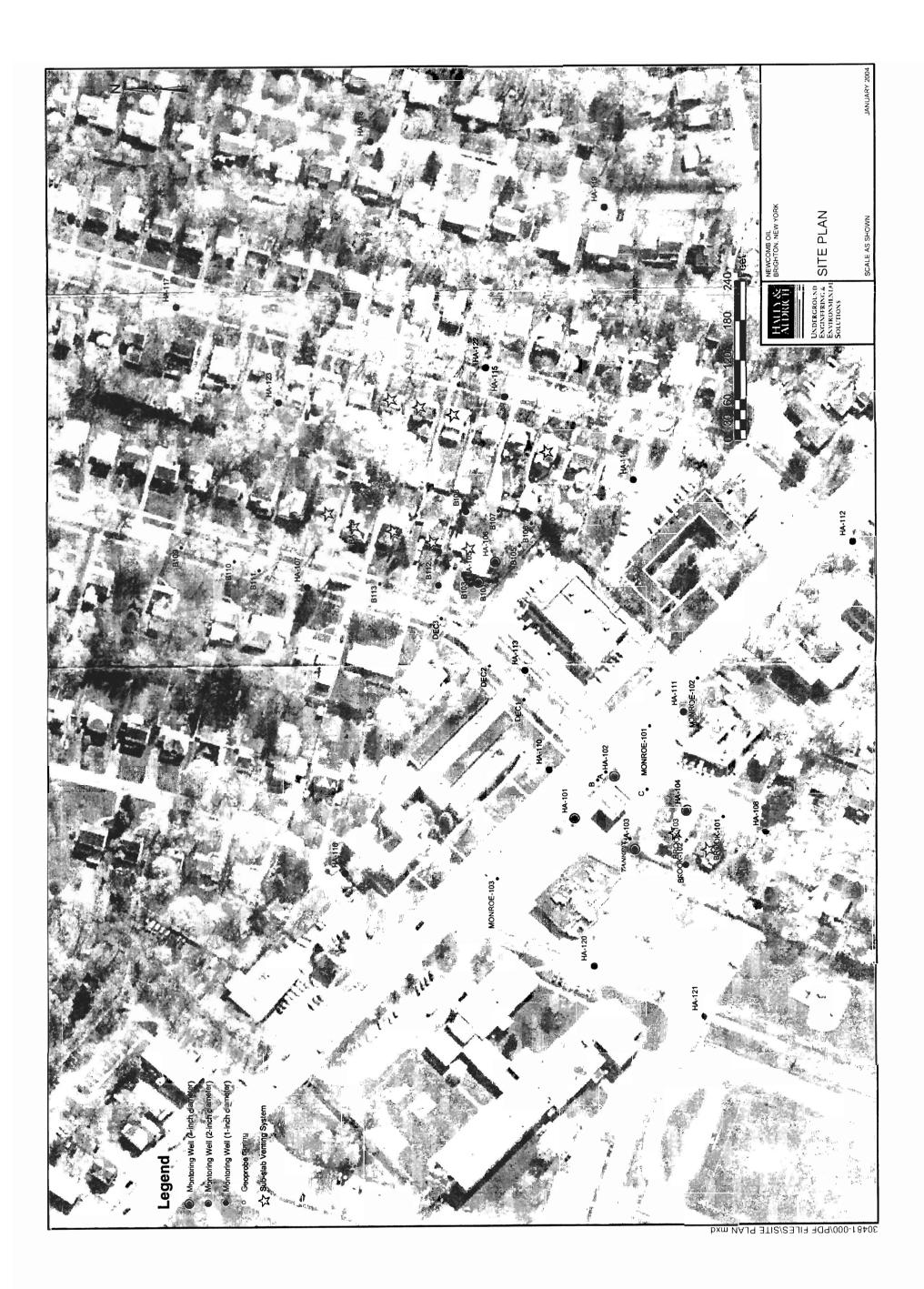

FIGURE TITLE:

FIGURE 2 Groundwater Monitoring Well Locations & Analytical Results

DATE: April 2004


NOT TO SCALE

Appendix 1

H&A Groundwater Monitoring Well Location Map and Analytical Data

VOCs in Selected Wells Brighton Citgo/Carriage Cleaners Site

.

Ì

1

â

1

Analyte	HA-102	HA-102(DL)	HA-104	HA-113	HA-113(DL)	HA-114	HA-119
acetone	400	2000 U	50 U	200 U	2000 U	100 U	20 U
benzene	10000 E	12000	13 U	7400 E	7700	200	5 U
n-butylbenzene	13 J	500 U	13 U	17 J	500 U	25 U	5 U
cis-1,2-DCE	50 U	500 U	20	91	500 U	13 J	2.8 J
МТВЕ	61000 X	150000 E	13 U	14000 E	15000	550	35
ethylbenzene	2500 E	2300	13 U	2100 E	2100	25 U	5 U
isopropylbenzene	64	500 U	13 U	66	500 U	25 U	5 U
napthalene	290	320 J	13 U	210	240 J	5 J	5 U
n-propylbenzene	180	160 J	2.7 J	210	200 J	25 U	10 U
tetrachloroethene	50 U	500 U	220	15 J	500 U	260	5 U
toluene	16000 X	28000 E	13 U	13000 X	18000 E	130	5 U
trichloroethene	50 U	500 U	13 U	50 U	500 U	21 J	5 U
1,3,5-trimethylbenzene	460	410 J	6.3 J	440	390 J	14 J	5 U
1,2,4-trimethylbenzene	1800 E	1600	21	1600 E	1500	50	5 U
vinyl chloride	50 U	500 U	13 U	38 J	500 U	25 U	5 U
o-xylene	3900 E	3800	13 U	2800 E	2700	150	5 U
m+p-xylene	8000 E	8200	16	6200 E	6500	180	5 U
Sample Date 12/11/2003 Analyzed by Columbia Analytical Services (CAS) using method 8260B Units ug/L (ppb) U - analyte not detected J - Estimated value E - Exceeds calibration range X - see case narrative from CAS							

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, New York 14414-9519	H&A OF NY	
Phone: (585) 226-5353 • FAX: (585) 226-8696 Website: www.dec.state.ny.us	FEB - 4 2004	
	REGEIVED	Erin M. Crotty Commissione

February 3, 2004

Mr. Joseph Albert
 111 Westfall Road
 P.O. Box 92832
 Rochester, New York 14692-8932

RE: Brighton Citgo/Carriage Cleaners Site Monroe Avenue, Brighton(T), Monroe(C)

Dear Mr. Albert:

Attached for you information is the final lab report and summary for groundwater sampling at selected wells at the referenced site. Please let me know if you have any questions.

Sincerely,

and M.

Todd M. Caffoe, P.E. Division of Environmental Remediation Email: <u>tmcaffoe@gw.dec.state.ny.us</u>

attachment

cc: w/attach

M. Forcucci - NYSDOH G. White - Haley and Aldrich

Analyte	HA-102	HA-102(DL)	HA-104	HA-113	HA-113(DL)	HA-114	HA-119
acetone	400	2000 U	50 U	200 U	2000 U	100 U	20 U
benzene	10000 E	12000	13 U	7400 E	7700	200	5 U
n-butylbenzene	13 J	500 U	13 U	17 J	500 U	25 U	5 U
cis-1,2-DCE	50 U	500 U	20	91	500 U	13 J	2.8 J
MTBE	61000 X	150000 E	13 U	14000 E	15000	550	35
ethylbenzene	2500 E	2300	13 U	2100 E	2100	25 U	5 U
isopropylbenzene	64	500 U	13 U	66	500 U	25 U	5 U
napthalene	290	320 J	13 U	210	240 J	5 J	5 U
n-propylbenzene	180	160 J	2.7 J	210	200 J	25 U	10 U
tetrachloroethene	50 U	500 U	220	15 J	500 U	260	5 U
toluene	16000 X	28000 E	13 U	13000 X	18000 E	130	5 U
trichloroethene	50 U	500 U	13 U	50 U	500 U	21 J	5 U
1,3,5-trimethylbenzene	460	410 J	6.3 J	440	390 J	14 J	5 U
1,2,4-trimethylbenzene	1800 E	1600	21	1600 E	1500	50	5 U
vinyl chloride	50 U	500 U	13 U	38 J	500 U	25 U	5 U
o-xylene	3900 E	3800	13 U	2800 E	2700	150	5 U
m+p-xylene	8000 E	8200	16	6200 E	6500	180	5 U
m+p-xylene 8000 E 8200 16 6200 E 6500 180 5 0 Sample Date 12/11/2003 Analyzed by Columbia Analytical Services (CAS) using method 8260B Units ug/L (ppb) U - analyte not detected							

.

J - Estimated value

- E Exceeds calibration range
- X see case narrative from CAS

January 15, 2004

Mr. Todd Caffoe NYSDEC - Region 8 6274 East Avon-Lima Road Avon, NY 14414

RECEIVED

JAN 2 0 2004

DER/HAZ, WASTE REMED REGION 8

PROJECT: NYSDEC CASE #: SH803 SDG #: 12211 SAMPLE #'S: H104, H119, H113, H114, H102, TRIP BLANK Submission#: R2319511

Dear Mr. Caffoe:

Enclosed are the analytical results of the analyses requested. The analytical results were provided to you via facsimile transmittal on 12/30/03. All data has been reviewed prior to report submission. Should you have any questions please contact me at (585) 288-5380.

Thank you for letting us provide this service.

Sincerely, COLUMBIA ANALYTICAL SERVICES

Michael Perry Laboratory Director

Enc.

cc: Mr. Larry Bailey NYSDEC 625 Broadway - 4th Floor Albany, NY 12233-3502

1 Mustard ST. Suite 250 Rochester, NY 14609 (585) 288-5380

THIS IS AN ANALYTICAL TEST REPORT FOR:

	Client :	NYS DEC - Region 8
	Project Reference:	NYSDEC
-	Lab Submission # :	R2319511
-	Project Manager :	Michael Perry
	Reported :	01/15/04

Report Contains a total of <u>36</u> pages

The results reported herein relate only to the samples received by the laboratory. This report may not be reproduced except in full, without the approval of Columbia Analytical Services.

This package has been reviewed by Columbia Analytical Services' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal.

CASE NARRATIVE

COMPANY: NYSDEC – Region 8 PROJECT: NYSDEC SUBMISSION #: R2319511 SDG#: 12211 CASE NO.: RH803

NYS DEC samples were collected on 12/11/03 and received at CAS on 12/11/03 at a cooler temperature of 5 °C. See CAS CLP Batching sheets for a cross-reference between Client ID and CAS Job # and analyses requested. An ASP-A report has been prepared.

VOLATILE ORGANIC ANALYSIS

Five water samples and a Trip Blank were analyzed for the Target Compound List (TCL) of volatile organics plus any additional stars list compounds by SW-846 method 8260B. At the client's request, all samples were analyzed at the lowest possible dilution to try and see any halogenated compounds.

All Tuning criteria for BFB were within limits.

ţ

The initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All sample surrogate recoveries were within QC limits for recovery.

The Blank Spike recoveries were all within QC limits. The Matrix Spike/Matrix Spike duplicate recoveries and RPD from sample H114 were all within QC limits.

Samples H113 and H102 were initially analyzed at a 1/10 dilution. At this dilution several compounds were severely over the acceptance range of the calibration curve and hampered the ability of the instrument to work properly. As stated above, this was done to try to see any halogenated compounds that may be present in these samples. These compounds were flagged with a "X". The samples were reanalyzed at 1/100 dilutions and several compounds were still over the calibration range of the method and have been flagged with an "E". Further dilution work was not done since the halogenated compounds were of primary concern.

All Laboratory Blanks were free from contamination.

No other analytical or QC problems were encountered during the analysis of this SDG.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package, has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Michael K. Perry

Laboratory Manager

SDG #:12211	CASE No.:SH803	BATCH CO	MPLETE: yes		DATE REVI	SED:						
SUBMISSION R2319511 DIS CLIENT: NYS DEC - Region 8 DAT			REQUESTED: Y_X_ N	DATE DUE: 1/10/04								
		DATE: 12		PROTOCOL:SW846/ ASP-B SHIPPING No.:								
		CUSTODY	SEAL: ABSENT:									
PROJECT:	NYSDEC	CHAIN OF	CHAIN OF CUSTODY: PRESENT		SUMMARY PKG: YN							
CAS JOB #	CLIENT/EPA ID	MATRIX	REQUESTED PARAMETERS	DATE	DATE	-		REMA				
					RECEIVED		SOLIDS	SAMPLE C	ONDITIC			
695470	H104	WATER	8260	the second se	12/11/03		<u> </u>					
695471	H119	WATER	8260		12/11/03							
695472	H113	WATER	8260		12/11/03		L					
695473	H114	WATER	8260	the second se	12/11/03							
695474	H102	WATER	8260		12/11/03							
695475	TRIP BLANK	WATER	8260	12/11/03	12/11/03							
<u>.</u>												
						·						
			······					·				
<u></u>								······································				
				_				· · · · · · · · · · · · · · · · · · ·				
			······									
	· · · · · · · · · · · · · · · · · · ·	<u> </u>										
				+								
			·					.				
				- 				· ·				
				<u>+</u> +		1						
			· · · · · · · · · · · · · · · · · · ·	11			f	-				
				1 1				·				
	· · · · · · · · · · · · · · · · · · ·		······································	1								
				1		1						
	· · · · · · · · · · · · · · · · · · ·			1								

CA ...SP/CL. BATC....G FOU, / LOLL SHE

- İ

Ĩ

ORGANIC QUALIFIERS

- U Indicates compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search.
- P This flag is used for a pesticide/Aroclor target analyte when there is a greater than 25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form I and flagged with a "P".
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor. If a sample or extract is re-analyzed at a higher dilution factor, as in the "E" flag above, the "DL" suffix is appended to the sample number on the Form I for the diluted sample, and ALL concentration values reported on that Form I are flagged with the "D" flag.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- X As specified in Case Narrative.
- This flag identifies compounds associated with a quality control parameter which exceeds laboratory limits.

CAS/Rochester Lab ID # for State Certifications

Army Corp of Engineers Validated Delaware Accredited Connecticut ID # PH0556 Florida ID # E87674 Massachusetts ID # M-NY032 Navy Facilities Engineering Service Center Approved Nebraska Accredited NELAP Accredited New York ID # 10145 New Jersey ID # NY004 New Hampshire ID # 294100 A/B Pennsylvania Registration 68-786 Rhode Island ID # 158 South Carolina ID #91012 West Virginia ID # 292

H:\GROUP\FORMS\QUALIF_O.DOC

Columbia Analytical Services K.	AIN OF CUS	ΙΟυγ/Ι		410	нү /	ANA	LYS	15	KE	UU	IES		UH	M		SR	#			
Employee - Owned Company One Mustard St., www.oaslab.com		14609-0859 •	585) 288-5380 •	800-69	5-7222 x1	1 • FAX (5	85) 288	-8475	PA	GE _			OF _	1		CAS	S Con	tact		
NYSDEC	NISDEC				ANALYSIS REQUESTED (Include Method Number and Container Preservative)															
Hect Manager Todd Cathoe Report CC				PRI	ESERVAT	VE HC	4													
ompany/Address 6274 East Avon-Lima Road						1	/ /		/ /	/ /	f	7	/ /	 	<u>}</u>	/ /	· /	+	11	Preservative Ke D. NONE
Avon, NY 14414				NERS			/			/							/			1. HCL 2. HNO3 3. H2SO4 4. NBOH
				CONTAINERS	/	Construction Device Best Device Best Device Best Device Best				<u>s</u> / .		5/	/	/	/	/	/	/		5. Zn. Acetate
(585) 226-5350	[585] 22	6-869	lp					5				' /	/ /	/	/ /	/ /	/			6. MeÖH 7. NaHSO ₄ 3. Other
prier's Signature	0		the second s	NUMBER OF	10				000		5 E/ 3 8/								,	
CLIENT SAMPLE ID	R OFFICE USE ONLY	SAMPLING		7					\$/ <u></u>	ETA I	i i j	/	/	/	/	/	/	/	RE	EMARKS/
180312211 - HIOH	AND CARLENAL MANAGEMENT AND LA		ID Ground we	_	<u> </u>		<u>7~0</u>	7-0	<u> </u>		1-1			l	(\vdash	l <u>.</u>	/ AL	TEPINAT	E DESCRIPTION
4 - H119	CHILD STORE STANDARD AND THE REAL	11103 13		3													•			· · · · · · · · · · · · · · · · · · ·
" - HIB	and the second second	и н;	20 "	3																
<u>·' ~ H114</u>		" 13		3																
- H102		" 14	<u> </u>	3		·					┠───┤									
Trip Bhak	Charles and the second			3																
	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			<u>†</u> ──┤									+			-+				
	lecie Gr	· · · · · · · · · · · · · · · · · · ·		L		TURNAR	DUND F	REQUIF	REMEN	TS	T	REPO	AT REC	JUIRE	MENTS	L		INVC	ICE INF	ORMATION
	107 212414	1 1	.1				(SURCH				۱ <u> </u>	. Result	s Only							
Halgenated VULS	100 detec	tion lin	nits		-		44 Darid	ihr _	5 d	ley			B + QC S JP, MS/N		ries required)		POI			
Stal INSTRUCTIONS/COMMENTS Ar Halgenated VOCs Samples have high	humle of R	TEVI	NTRE		RE	QUESTED I		I				l. Resul	ts + QC	and Cal	libration		BILL TO:			
amples the high												ummeri								
especially r	10244113				RE	QUESTED F	EPORT (DATE	•						t with Ra					
															RZ318511					
MPLE RECEIPT: CONDITION/COOLER TEMP:C CUSTODY SEALS:					N			•			Edata Yes No				SUBMISSION #:					
RELINQUISHERTRY	RECEIVED BY	_	RELINQUISHED I	IΥ			RECEIV	ed by				RE	LINQUI	SHED	BY				RECEIVI	ED BY
Todd M Care	Jan Collon	Signature			Sigr	ature					Signature				Signat	470				
Name NWCAFC	, CAB	Printed Nam	•		Prin	ed Name					Printed Name				Printed	Name				
12/11/03 Frm/2/	4/03 153	Firm			Firm			A		1	Firm						Firm			• • • • • • • • • • • • • • • • • • • •
Time Date/Time	7	Date/Time		Date/Time				Date/Time				Date/Time								

-

	Cooler R	eceipt A	And Pı	reservation Check	Form	· .
Project/Client	DEL		S	ubmission Number	1951	<u> </u>
Cooler received or	12/11/03 by					CD&L CLIENT
 Were custo Did all bot Did any Vo Were Ice o Where did 	bdy seals on outside ody papers properly tles arrive in good c OA vials have signi or Ice packs present the bottles originate are of cooler(s) upon	filled o conditio ificant a t? e?	out (ink on (unb uir bubł	roken)?	YES YES YES CAS/RO	NO NO NO NO NO NA -NO CLIENT
Is the temp	perature within 0° - (6° C?:	Ć	Yes Yes	Yes	Yes Yes
If No, Exp	lain Below		1	No No	No	No No
Date/Time	Temperatures Take	m:	12/	11/03		15:40
Thermome	eter ID: 161 or (ו ער	Reading From: Te	mp Blank or	r Sample Bottle
xplain any discre	es: Cassettes / Tub pancies:					Bags Inflated
		YES	NO	Sample I.D.	Reagent	Vol. Added
рН	Reagent		 			
12	NaOH		<u> </u>]		
2	HNO,]		
2 Residual Chlorine (+/	H ₂ SO ₄					
5-9**	P/PCBs (608 only)	-	1	†		
YES = All samples OK	K NO = San			ved at lab as listed	PC OK to adjus	t pH
	equired, use NaOH and/o			<u> </u>		
	VOC Vial pH Verification (Tested after Analysis) Following Samples Exhibited pH > 2					
J	, , , , , , , , , , , , , , , , , , , ,					

Other Comments:

,i

6

• - - . -

SEND THIS SHEET WITH SAMPLE TO CONTACT LAB

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CONTRACT LAB SAMPLE INFORMATION SHEET

Print Legibly

Part 3

: An

materials(s)	is believed to contain significant co	ncentrations of hazardou	s and/or toxic
CHECK THE E	BOX PRECEDING THE REQUESTE	ED ANALYSIS	
PRIORITY POLLUTANTS (Water Part 13)	6)—SPDES	· .	
2. 13PP Metals	3. Volatiles-(USEPA 624 GC/MS)	□ 6. Pesticides/PCBs (USE	PA 608-GC)
4. Acids Base/Neutrals (USEPA 624 GC/MS)	🗖 5. Cyanide	🖾 9. BOD	
7. Halogenated Volatiles (USEPA 601 GC)	8. Aromatic Volatiles USEPA 602 GC)	🗆 12. TSS	* *.* *
🖸 10. pH 🕤	🗆 11. COD	🖾 15. Ammonia	
13. Settleable Solids	🗆 14. TKN	18. Reactive Phosphorus	S
16. Nitrate/Nitrite	17. Total Phosphorus	21. Total Phenois	
🗖 19. Oil/Grease)	□ 20. TOC	60. PCBs congener met	hod (ASP 91-11)
□ 22. Other	□ 59. PCBs at 0.065 ug/l	64. Total Solids	
·· · ·	□ 62. CBOD	C 65. Volatiles (USEPA 52	4.2 GC/MS)
CONTRACT LABORATORY PROTOCOL	S		
23 (ALL)—Water—Includes 24-28	🗆 29. (ALL)—Soil/Sedime	ents-Includes 30-34	
24 Base/Neutral/Acid (B/N/A)WaterGC/MS		nentsGC/MS (ASP #95-2)	
X 25 Volatile Organic Analysis VOA—Water—GC/M	AS (ASP #95-1) 🛛 31. VOASoil/Sedimer	ts-GC/MS (ASP #95-1)	
□ 26 Pesticides/PCBs—Water—GC/MS (ASP #95	-3) 🖸 32. Pesticides/PCBs5	Soil/Sediments-GC (ASP #95-3)) .
27 Metals—23 in Water	□ 33. Metals—23 in Soil/	Sediments)	
28 Cyanide—Water	34. Cyanide—Soil/Sedi	•	
G 66 Dioxin-Water (ASP #91-7)	G 67. Dioxin-Soil/Sedimer	nts (ASP #91-7)	
□ 35 Other		-	
HAZARDOUS WASTES/RCRA ANALYSI			
□ 36. EP Toxicity	37. EP Toxicity (Metals Only)	🗆 38. Ignitability	
39. Corrosivity	□ 40. VOA-(USEPA 8260 GC/MS)	□ 41. BNA(USEPA 827	-
42. Pesticides/PCBs (USEPA 8081)	🗆 43. TCLP	44. TCLP (Metals Only)	
45. Reactivity	46. Dioxin (USEPA 8280)	47. Appendix IX	-
1 48. Other	_ G3 Percent Solids	C 68. Metals—17 Hazard	lous
MUNICIPAL SLUDGE			
□ 56. RS-01 □ 57. RS-02 □ 58.			
COLLECTED BX: ACe	TELEPHONE NUMB		REGION NO
	585-224		
CONTRACT LABORATORY:			
Columbia	Monroe	2/11/03	1410
SAMPLE MATRIX:			
Air Soil/Sediment Geroundwat			
CASE NO. SDG NO. SAMPL		TYPE OF SAMPLE	• • · · · · · · ·
	AINOH D This sample	Grab Composite	
Check if there will be more samples with this SI		port via Category B, unless check	
SAMPLING POINT:	1	ck if field duplicate Outfall Nu	
		ck if sampling is part of inspectio	
		W: GPD DES NUMBER/REGISTR'	_MGD

SEND THIS SHEET WITH SAMPLE TO CONTACT LAB

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CONTRACT LAB SAMPLE INFORMATION SHEET

Print Legibly

Part 3

CAUTION (check if applicable)							
Lab personnel are expected to use when handling this sample since it materials(s)							
	BOX PRECEDING THE REQUES	TED ANALYSIS					
PRIORITY POLLUTANTS (Water Part 13)	6)—SPDES						
2. 13PP Metals	3. Volatiles—(USEPA 624 GC/MS)	□ 6. Pesticides/PCBs (USEPA 608-GC)					
4. Acids Base/Neutrals (USEPA 624 GC/MS)	-	🗆 9. BOD					
7. Halogenated Volatiles (USEPA 601 GC)	-	□ 12. TSS					
□ 10. pH	□ 11. COD	🗆 15. Ammonia					
13. Settleable Solids	□ 14. TKN	18. Reactive Phosph	iorus				
16. Nitrate/Nitrite	17. Total Phosphorus	21. Total Phenols	21. Total Phenois				
🗆 19. Oil/Grease)	□ 20. TOC	60. PCBs congener method (ASP 91-11)					
□ 22. Other		General Solids					
	□ 62. CBOD	65. Volatiles (USEPA	524.2 GC/MS)				
CONTRACT LABORATORY PROTOCOL	.S						
23 (ALL)—Water—Includes 24-28	29. (ALL)Soil/Sedi	imentsIncludes 30-34	1999 - 1 ⁹				
24 Base/Neutral/Acid (B/N/A)WaterGC/MS	(ASP #95-2) 🛛 30. (B/N/A)Soil/Se	edimentsGC/MS (ASP #95-2)					
25 Volatile Organic Analysis VOA-Water-GC/M		nentsGC/MS (ASP #95-1)					
□ 26 Pesticides/PCBs—Water—GC/MS (ASP #95	-3)	Soil/SedimentsGC (ASP #9	95-3)				
27 Metals-23 in Water	□ 33. Metals23 in So	oil/Sediments)					
28 Cyanide—Water	ediments)						
□ 66 Dioxin-Water (ASP #91-7)	🖾 67. Dioxin-Soil/Sedin	ediments (ASP #91-7)					
□ 35 Other							
HAZARDOUS WASTES/RCRA ANALYSI	S SW-846						
C 36. EP Toxicity	37. EP Toxicity (Metals Only)	🗆 38. Ignitability					
39. Corrosivity	40. VOA(USEPA 8260 GC/MS)	🗆 41. BNA(USEPA	8270 GC/MS)				
42. Pesticides/PCBs (USEPA 8081)	🗆 43. TCLP	44. TCLP (Metals C)nły).				
45. Reactivity	46. Dioxin (USEPA 8280)						
48. Other	□ 63 Percent Solids	68. Metals—17 Ha	zardous				
MUNICIPAL SLUDGE							
□ 56. RS-01 □ 57. RS-02 □ 58.	Other						
COLLECTED BY:	TELEPHONE NUM	MBER:	REGION NO.				
1 (the		26 - 5350	8				
CONTRACT LABORATORY:		AMPLING DATE:	MILITARY TIME:				
(Jumbia	Monioe	12/11/03	1345				
SAMPLE MATRIX:							
Air Soil/Sediment Scroundwat							
CASE NO. SDG NO. SAMPLI							
	III II FI □ This sample	Grab 🗆 Composite					
Check if there will be more samples with this SE	1	Report via Category B, unless cl					
SAMPLING POINT:	(Check if field duplicate 🛛 Outfa	ll Number				
		Check if sampling is part of insp	ection 🗆				
		FLOW: GPD	MGD				
	Ę	SPDES NUMBER/REGIS	TRY NUMBER				

74-15-1 (9/97)---q

SEND THIS SHEET WITH SAMPLE TO CONTACT LAB

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CONTRACT LAB SAMPLE INFORMATION SHEET

Print Legibly

Part 3

CAUTION (check if applicable) Lab personnel are expected to use	caution when handling DEC sample	les, however, please use special caution					
		oncentrations of hazardous and/or toxic					
	BOX PRECEDING THE REQUEST						
PRIORITY POLLUTANTS (Water Part 13	•						
2. 13PP Metals	3. Volatiles—(USEPA 624 GC/MS)	•					
□ 4. Acids Base/Neutrals (USEPA 624 GC/MS)	•	□ 9. BOD					
□ 7. Halogenated Volatiles (USEPA 601 GC)							
10. pH 10. Comparison Contractor	□ 11. COD	15. Ammonia					
13. Settleable Solids	14. TKN	18. Reactive Phosphorus					
16. Nitrate/Nitrite	 17. Total Phosphorus 20. TOC 	21. Total Phenois Co. DOB: concernent without (ASP 01.11)					
□ 19. 0il/Grease)		60. PCBs congener method (ASP 91-11)					
□ 22. Other	-	□ 64. Total Solids					
CONTRACT LABORATORY PROTOCOL	C 62. CBOD	G5. Volatiles (USEPA 524.2 GC/MS)					
	_S	nents Includes 20.24					
 23 (ALL)—Water—Includes 24-28 24 Base/Neutral/Acid (B/N/A)—Water—GC/MS 							
25 Volatile Organic Analysis VOA—Water—GC/I		liments—GC/MS (ASP #95-2)					
□ 26 Pesticides/PCBsWaterGC/MS (ASP #95		-Soil/Sediments-GC (ASP #95-3)					
□ 27 Metals-23 in Water		· ·					
27 Metals23 in Water 33. Metals23 in Soil/Sediments) 28 CyanideWater 34. CyanideSoil/Sediments)							
□ 66 Dioxin-Water (ASP #91-7)							
□ 35 Other							
HAZARDOUS WASTES/RCRA ANALYS	IS SW-846						
C 36. EP Toxicity	□ 37. EP Toxicity (Metals Only)	38. Ignitability					
39. Corrosivity	□ 40. VOA(USEPA 8260 GC/MS)	□ 41. BNA(USEPA 8270 GC/MS)					
□ 42. Pesticides/PCBs (USEPA 8081)	□ 43. TCLP	44. TCLP (Metals Only)					
45. Reactivity	🗆 46. Dioxin (USEPA 8280)	🗇 47. Appendix IX					
□ 48. Other	□ 63 Percent Solids	68. Metals—17 Hazardous					
MUNICIPAL SLUDGE							
□ 56. RS-01 □ 57. RS-02 □ 58	. Other						
COLLECTED BY:	TELEPHONE NUME						
Todd latte	585 2	126 5350 8					
CONTRACT LABORATORY:		MPLING DATE: MILITARY TIME					
Columbia	Monroe	12/11/03 14/20					
SAMPLE MATRIX:							
Air Disoil/Sediment Groundwa							
CASE NO. SDG NO. SAMPL		TYPE OF SAMPLE					
HBQ3 HBBII H		Grab Composite Term hou					
Check if there will be more samples with this S	1	eport via Category B, unless checked					
SAMPLING POINT:		heck if field duplicate Outfall Number					
		heck if sampling is part of inspection					
		LOW: GPD MGD					
	SI	PDES NUMBER/REGISTRY NUMBER					

SEND THIS SHEET WITH SAMPLE TO CONTACT LAB

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

CONTRACT LAB SAMPLE INFORMATION SHEET

Print Legibly

Part 3

materials(s)	is believed to contain significal	nt concentrations of hazardou	us and/or toxic			
	BOX PRECEDING THE REQU	ESTED ANALYSIS				
PRIORITY POLLUTANTS (Water Part 13)	6)—SPDES					
2. 13PP Metals	3. Volatiles(USEPA 624 GC/MS)) 🛛 6. Pesticides/PCBs (USI	EPA 608-GC)			
4. Acids Base/Neutrals (USEPA 624 GC/MS)	🗖 5. Cyanide	🗆 9. BOD				
7. Halogenated Volatiles (USEPA 601 GC)	🖾 8. Aromatic Volatiles USEPA 602 (GC) 🗇 12. TSS				
🗅 10. pH	🗆 11. COD	15. Ammonia				
13. Settleable Solids	🗖 14. TKN	18. Reactive Phosphore	zt			
16. Nitrate/Nitrite	17. Total Phosphorus	1 21. Total Phenols				
🗆 19. Oil/Grease)	20. TOC	🖾 60. PCBs congener me	thod (ASP 91-11)			
🗆 22. Other	_ 🖸 59. PCBs at 0.065 ug/l	64. Total Solids				
	🗆 62. CBOD	65. Volatiles (USEPA 52)	24.2 GC/MS)			
CONTRACT LABORATORY PROTOCOL	_S					
23 (ALL)—Water—Includes 24-28	🖾 29. (ALL)—Soil/S	Sediments-Includes 30-34				
24 Base/Neutral/Acid (B/N/A)—Water—GC/MS (/SedimentsGC/MS (ASP #95-2)				
25 Volatile Organic Analysis VOAWaterGC/A	• •	· · ·				
26 Pesticides/PCBs—Water—GC/MS (ASP #95)	•	BsSoil/SedimentsGC (ASP #95-3	3)			
27 Metals—23 in Water	33. Metals-23 ir	•				
28 CyanideWater	34. Cyanide—Soi	,				
66 Dioxin-Water (ASP #91-7)	🖾 67. Dioxin-Soil/Se	ediments (ASP #91-7)				
□ 35 Other						
HAZARDOUS WASTES/RCRA ANALYSI						
36. EP Toxicity	C 37. EP Toxicity (Metals Only)	38. Ignitability				
39. Corrosivity	□ 40. VOA(USEPA 8260 GC/MS)		•			
□ 42. Pesticides/PCBs (USEPA 8081)	11 St. 1	44. TCLP (Metals Only	/)			
45. Reactivity	□ 46. Dioxin (USEPA 8280)					
□ 48. Other	G3 Percent Solids	68. Metals—17 Hazar	dous			
MUNICIPAL SLUDGE	0					
□ 56. RS-01 □ 57. RS-02 □ 58.			REGION NO.			
COLLECTED BY:	TELEPHONE NI	226 5340	REGION NO.			
CONTRACT LABORATORY:			MILITARY TIME			
Columba	Monroe	12/11/03	1310			
SAMPLE MATRIX:		12111103				
□ Air □ Soil/Sediment ⊠Groundwat	ter 🗆 Surface Water 🖾 Wa	stewater 🗆 Other				
CASE NO, SDG NO. SAMPLI						
		GL/Grab □ Composite □	Term hou			
		Report Via Category B, unless chec				
	•					
Check if there will be more samples with this SE	4					
	4	Check if field duplicate COutfall N				
Check if there will be more samples with this SE	<i>ı</i>	Check if sampling is part of inspecti	ion 🗀			
Check if there will be more samples with this SE	1	Check if sampling is part of inspecti FLOW: GPD	ion [] MGD			
Check if there will be more samples with this SE		Check if sampling is part of inspecti	ion [] MGD			

• 74-15-1 (9/97)---q

.

SEND THIS SHEET WITH SAMPLE TO CONTACT LAB

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

.

CONTRACT LAB SAMPLE INFORMATION SHEET

Print Legibly

Part 3

۰.

	caution when handling DEC sampling believed to contain significant co	oncentrations of hazardous and/or toxic
materials(s)	to bondrod to opinant significant of	
	BOX PRECEDING THE REQUEST	ED ANALYSIS
PRIORITY POLLUTANTS (Water Part 13	6)—SPDES	
□ 2. 13PP Metals	3. Volatiles(USEPA 624 GC/MS)	
4. Acids Base/Neutrals (USEPA 624 GC/MS)	🗆 5. Cyanide	□ 9. BOD
7. Halogenated Volatiles (USEPA 601 GC)	-	□ 12. T\$\$
🗖 10. pH	□ 11. COD	🗅 15. Ammonia
13. Settleable Solids	□ 14. TKN	18. Reactive Phosphorus
16. Nitrate/Nitrite	17. Total Phosphorus	21. Total Phenois
🗆 19. Oil/Grease)	20. TOC	□ 60. PCBs congener method (ASP 91-11)
□ 22. Other		64. Total Solids
	□ 62. CBOD	G5. Volatiles (USEPA 524.2 GC/MS)
CONTRACT LABORATORY PROTOCO		
23 (ALL)—Water—Includes 24-28	🗆 29. (ALL)—Soil/Sedim	entsIncludes 30-34
24 Base/Neutral/Acid (B/N/A)WaterGC/MS		iments—GC/MS (ASP #95-2)
25 Volatile Organic Analysis VOAWaterGC/		
26 Pesticides/PCBs—Water—GC/MS (ASP #9		-Soil/SedimentsGC (ASP #95-3)
27 Metals—23 in Water	33. Metals—23 in Soil	
28 Cyanide—Water	🗆 34. Cyanide—Soil/Sed	-
□ 66 Dioxin-Water (ASP #91-7)	😳 67. Dioxin-Soil/Sedime	ents (ASP #91-7)
□ 35 Other		
HAZARDOUS WASTES/RCRA ANALYS		
36. EP Toxicity	37. EP Toxicity (Metals Only)	
39. Corrosivity	□ 40. VOA(USEPA 8260 GC/MS)	
□ 42. Pesticides/PCBs (USEPA 8081)	1 43. TCLP	44. TCLP (Metals Only)
45. Reactivity	46. Dioxin (USEPA 8280)	Appendix IX
□ 48. Other	G3 Percent Solids	D 68. Metals—17 Hazardous
MUNICIPAL SLUDGE		
). Other	
COLLECTED BY:	TELEPHONE NUME	
(36.5350 8
CONTRACT LABORATORY:		MPLING DATE: MILITARY TIM
<u>Lolumbia</u>	Monrue	12/11/03 1400
SAMPLE MATRIX:		
C Air Soil/Sediment GGroundwa		
CASE NO. SDG NO. SAMPL		TYPE OF SAMPLE
and the second data and the second	111 b D D This sample	Grab Composite Term
Check if there will be more samples with this S		eport via Category B, unless checked
SAMPLING POINT:	1	neck if field duplicate D Outfall Number
		eck if sampling is part of inspection
		OW: GPD MGD
	SI	PDES NUMBER/REGISTRY NUMBER
1		

	METHOD	LE ORGANICS 8260B TCL/TANK ed: 01/15/04						
NYS DEC - Region 8 Project Reference: NYSDEC Client Sample ID : H104								
Date Sampled : 12/11/03 14:10 Order Date Received: 12/11/03 Submission		Sample Matrix: Analytical Run						
ANALYTE	PQL	RESULT	UNITS					
DATE ANALYZED : 12/23/03 ANALYTICAL DILUTION: 2.50								
ACETONE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) SEC-BUTYLBENZENE N-BUTYLBENZENE N-BUTYLBENZENE TERT-BUTYLBENZENE CARBON DISULFIDE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHENE CIS-1, 2-DICHLOROETHENE TRANS-1, 2-DICHLOROETHENE TRANS-1, 2-DICHLOROETHENE TRANS-1, 2-DICHLOROPROPENE TRANS-1, 3-DICHLOROPROPENE TRANS-1, 3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE STYRENE 1, 1, 2, 2-TETRACHLOROETHANE TETRACHLOROETHENE 1, 1, 2-TRICHLOROETHANE 1, 1, 2-TRICHLOROETHANE 1, 2, 4-TRIMETHYLBENZENE 1, 2, 4-TRIMETHYLBENZENE	20 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L					

COLUMBIA ANALYTICAL	VOLATILE ORGANICS METHOD 8260B TCL/TANK Reported: 01/15/04				
NYS DEC - Region 8 Project Reference: N Client Sample ID : H					
Date Sampled : 12/11/01 Date Received: 12/11/01			Sample Matrix: Analytical Run		
ANALYTE		PQL	RESULT	UNITS	
DATE ANALYZED : : ANALYTICAL DILUTION:					
M+P-XYLENE		5.0	16	UG/L	
SURROGATE RECOVERIES	QC LIN	NITS			
4-BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(88 -	118 %) 124 %) 115 %)	100 107 93	ato ato ato	

	VOLATILE ORGANICS METHOD 8260B TCL/TANK Reported: 01/15/04						
NYS DEC - Region 8 Project Reference: NYSDEC Client Sample ID : H119							
Date Sampled : 12/11/03 13:45 Order : Date Received: 12/11/03 Submission :		Sample Matrix: Analytical Run					
ANALYTE	PQL	RESULT	UNITS				
DATE ANALYZED : 12/23/03 ANALYTICAL DILUTION: 1.00							
ACETONE BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) SEC-BUTYLBENZENE N-BUTYLBENZENE TERT-BUTYLBENZENE CARBON DISULFIDE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM	$\begin{array}{c} 20\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 10\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 5.$	$\begin{array}{c} 20 \ U \\ 5.0 \ U \\ 5.0 \ U \\ 5.0 \ U \\ 5.0 \ U \\ 10 \ U \\ 5.0 \ U \ 5$	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L				
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE 1,3,5-TRIMETHYLBENZENE 1,2,4-TRIMETHYLBENZENE VINYL CHLORIDE O-XYLENE	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U	UG/L UG/L UG/L UG/L UG/L UG/L				

COLUMBIA ANALYTICAL	VOLATILE ORGANICS METHOD 8260B TCL/TANK Reported: 01/15/04				
NYS DEC – Region 8 Project Reference: 1 Client Sample ID : H					
Date Sampled : 12/11/0 Date Received: 12/11/0			Sample Matrix: Analytical Run		
ANALYTE		PQL	RESULT	UNITS	
DATE ANALYZED : ANALYTICAL DILUTION:					
M+P-XYLENE		5.0	5.0 U	UG/L	
SURROGATE RECOVERIES	QC I	JIMITS			
4-BROMOFLUOROBENZENE	(83 (88		97 105	olo olo	

	METHOD	LE ORGANICS 8260B TCL/TANK ed: 01/15/04					
NYS DEC - Region 8 Project Reference: NYSDEC Client Sample ID : H113							
Date Sampled : 12/11/03 14:20 Order Date Received: 12/11/03 Submission		Sample Matrix: Analytical Run					
ANALYTE	PQL	RESULT	UNITS				
DATE ANALYZED : 12/24/03 ANALYTICAL DILUTION: 100.00							
ACETONE	20	2000 U	UG/L				
BENZENE	5.0	7700	UG/L				
BROMODICHLOROMETHANE	5.0	500 U	UG/L				
BROMOFORM	5.0	500 U	UG/L				
BROMOMETHANE	5.0	500 U	UG/L				
2-BUTANONE (MEK)	10	1000 U	UG/L				
SEC-BUTYLBENZENE	5.0	500 U	UG/L				
N-BUTYLBENZENE	5.0	500 U	UG/L				
TERT-BUTYLBENZENE	5.0	500 U	UG/L				
CARBON DISULFIDE	10	1000 U	UG/L				
CARBON TETRACHLORIDE	5.0	500 U	UG/L				
CHLOROBENZENE	5.0	500 U	UG/L				
CHLOROETHANE	5.0	500 U	UG/L				
CHLOROFORM	5.0	500 U	UG/L				
CHLOROMETHANE	5.0	500 U	UG/L				
DIBROMOCHLOROMETHANE	5.0	500 U	UG/L				
1,1-DICHLOROETHANE	5.0	500 U	UG/L				
1, 2 - DICHLOROETHANE	5.0	500 U	UG/L				
1, 1 - DICHLOROETHENE	5.0	500 U 500 U	UG/L UG/L				
CIS-1,2-DICHLOROETHENE	5.0 5.0	500 U	UG/L UG/L				
TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE	5.0	500 U	UG/L				
CIS-1,3-DICHLOROPROPANE	5.0	500 U	UG/L				
TRANS-1, 3-DICHLOROPROPENE	5.0	500 U	UG/L				
METHYL-TERT-BUTYL-ETHER	5.0	15000	UG/L				
ETHYLBENZENE	5.0	2100	UG/L				
2-HEXANONE	10	1000 U	UG/L				
ISOPROPYL BENZENE	5.0	500 U	UG/L				
P-ISOPROPYLTOLUENE	5.0	500 U	UG/L				
METHYLENE CHLORIDE	5.0	500 U	UG/L				
NAPHTHALENE	5.0	240 J	UG/L				
4-METHYL-2-PENTANONE (MIBK)	10	1000 U	UG/L				
N-PROPYLBENZENE	5.0	200 J	UG/L				
STYRENE	5.0	500 U	UG/L				
1, 1, 2, 2-TETRACHLOROETHANE	5.0	500 U	UG/L				
TETRACHLOROETHENE	5.0	500 U	UG/L				
TOLUENE	5.0	18000 E	UG/L				
1, 1, 1-TRICHLOROETHANE	5.0	500 U	UG/L				
1, 1, 2-TRICHLOROETHANE	5.0	500 U	UG/L				
TRICHLOROETHENE	5.0	500 U	UG/L				
1, 3, 5-TRIMETHYLBENZENE	5.0	390 J	UG/L				
1,2,4-TRIMETHYLBENZENE	5.0	1500	UG/L				
VINYL CHLORIDE	5.0	500 U	UG/L				

<u>COLUMBIA ANALYTICAL S</u>	L <u>SERVICES</u> VOLATILE ORGANICS METHOD 8260B TCL/TANK Reported: 01/15/04				
NYS DEC – Region 8 Project Reference: NY Client Sample ID : HI					
Date Sampled : 12/11/03 Date Received: 12/11/03			Sample Matrix: Analytical Run		
ANALYTE		PQL	RESULT	UNITS	
DATE ANALYZED : : ANALYTICAL DILUTION:					
M+P-XYLENE		5.0	6500	UG/L	
SURROGATE RECOVERIES	QC I	LIMITS			
4-BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE -	(88	- 118 %) - 124 %) 115 <u>%</u>)	98 107 93	ato ato ato	

	VOLATILE ORGANICS METHOD 8260B TCL/TANK Reported: 01/15/04							
NYS DEC - Region 8 Project Reference: NYSDEC Client Sample ID : H113								
Date Sampled : 12/11/03 14:20 Order #: Date Received: 12/11/03 Submission #:		Sample Matrix: Analytical Run						
ANALYTE	PQL	RESULT	UNITS					
DATE ANALYZED : 12/24/03 ANALYTICAL DILUTION: 10.00								
ACETONE	20	200 U	UG/L					
BENZENE	5.0	7400 E	UG/L					
BROMODICHLOROMETHANE	5.0	50 U	UG/L					
BROMOFORM	5.0	50 U	UG/L					
BROMOMETHANE	5.0	50 U	UG/L					
2-BUTANONE (MEK)	10	100 U	UG/L					
SEC-BUTYLBENZENE	5.0	50 U	UG/L					
N-BUTYLBENZENE	5.0	17 J	UG/L					
TERT-BUTYLBENZENE	5.0	50 U	UG/L					
CARBON DISULFIDE	10	100 U	UG/L					
CARBON TETRACHLORIDE	5.0	50 U	UG/L					
CHLOROBENZENE	5.0	50 U	UG/L					
CHLOROETHANE	5.0	50 U	UG/L					
CHLOROFORM	5.0	50 U	UG/L					
CHLOROMETHANE	5.0	50 U	UG/L					
DIBROMOCHLOROMETHANE	5.0 5.0	50 U	UG/L					
1,1-DICHLOROETHANE 1,2-DICHLOROETHANE	5.0	50 U 50 U	UG/L UG/L					
1, 1-DICHLOROETHANE	5.0	50 U	UG/L					
CIS-1, 2-DICHLOROETHENE	5.0	91	UG/L					
TRANS-1, 2-DICHLOROETHENE	5.0	50 U	UG/L					
1,2-DICHLOROPROPANE	5.0	50 U	UG/L					
CIS-1, 3-DICHLOROPROPENE	5.0	50 U	UG/L					
TRANS-1, 3-DICHLOROPROPENE	5.0	50 U	UG/L					
METHYL-TERT-BUTYL-ETHER	5.0	14000 E	UG/L					
ETHYLBENZENE	5.0	2100 E	UG/L					
2-HEXANONE	10	100 U	UG/L					
ISOPROPYL BENZENE	5.0	66	UG/L					
P-ISOPROPYLTOLUENE	5.0	50 U	UG/L					
METHYLENE CHLORIDE	5.0	50 U	UG/L					
NAPHTHALENE	5.0	210	UG/L					
4-METHYL-2-PENTANONE (MIBK)	10	100 U	UG/L					
N-PROPYLBENZENE	5.0	210	UG/L					
STYRENE	5.0 5.0	50 U 50 U	UG/L UG/L					
1, 1, 2, 2-TETRACHLOROETHANE TETRACHLOROETHENE	5.0	50 U	UG/L UG/L					
TOLUENE	5.0	15 J 13000 X	UG/L UG/L					
1,1,1-TRICHLOROETHANE	5.0	13000 X 50 U	UG/L UG/L					
1, 1, 2-TRICHLOROETHANE	5.0	50 U	UG/L UG/L					
TRICHLOROETHENE	5.0	50 U	UG/L					
1,3,5-TRIMETHYLBENZENE	5.0	440	UG/L					
1, 2, 4 - TRIMETHYLBENZENE	5.0	1600 E	UG/T_1					
VINYL CHLORIDE	5.0	1000 H 38 J						
O-XYLENE	5.0	2800 E						

COLUMBIA ANALYTICAL SERVICES	SERVICES VOLATILE ORGANICS METHOD 8260B TCL/TANK Reported: 01/15/04					
NYS DEC - Region 8 Project Reference: NYSDEC Client Sample ID : H113						
Date Sampled : 12/11/03 14:20 Orde Date Received: 12/11/03 Submission			Sample Matrix: Analytical Run			
ANALYTE		PQL	RESULT	UNITS		
DATE ANALYZED : 12/24/03 ANALYTICAL DILUTION: 10.00		<u></u>				
M+P-XYLENE		5.0	6200 E	UG/L		
SURROGATE RECOVERIES Q	C LIM	ITS				
,	8 –	118 %) 124 %) 115 %)	93 99 97	alo alo alo		

	VOLATILE ORGANICS METHOD 8260B TCL/TANK Reported: 01/15/04						
NYS DEC - Region 8 Project Reference: NYSDEC Client Sample ID : H114							
Date Sampled : 12/11/03 13:10 Order # Date Received: 12/11/03 Submission #		Sample Matrix: Analytical Run					
ANALYTE	PQL	RESULT	UNITS				
DATE ANALYZED : 12/23/03 ANALYTICAL DILUTION: 5.00							
ACETONE	20	100 U	UG/L				
BENZENE	5.0	200	UG/L				
BROMODICHLOROMETHANE	5.0	25 U	UG/L				
BROMOFORM	5.0	25 U	UG/L				
BROMOMETHANE	5.0	25 U	UG/L				
2-BUTANONE (MEK)	10	50 U	UG/L				
SEC-BUTYLBENZENE	5.0	25 U	UG/L				
N-BUTYLBENZENE	5.0	25 U	UG/L				
TERT-BUTYLBENZENE	5.0	25 U	UG/L				
CARBON DISULFIDE	10	20 U	UG/L				
CARBON TETRACHLORIDE	5.0	25 U	UG/L				
	5.0	25 U	UG/L				
CHLOROBENZENE	5.0	25 U 25 U	UG/L UG/L				
CHLOROETHANE							
CHLOROFORM	5.0	5.1 J	UG/L				
CHLOROMETHANE	5.0	25 U	UG/L				
DIBROMOCHLOROMETHANE	5.0	25 U	UG/L				
1, 1-DICHLOROETHANE	5.0	25 U	UG/L				
1,2-DICHLOROETHANE	5.0	25 U	UG/L				
1, 1-DICHLOROETHENE	5.0	25 U	UG/L				
CIS-1,2-DICHLOROETHENE	5.0	13 J	UG/L				
TRANS-1,2-DICHLOROETHENE	5.0	25 U	UG/L				
1,2-DICHLOROPROPANE	5.0	25 U	UG/L				
CIS-1,3-DICHLOROPROPENE	5.0	25 U	UG/L				
TRANS-1,3-DICHLOROPROPENE	5.0	25 U	UG/L				
METHYL-TERT-BUTYL-ETHER	5.0	550	UG/L				
ETHYLBENZENE	5.0	25 U	UG/L				
2 - HEXANONE	10	50 U	UG/L				
ISOPROPYL BENZENE	5.0	25 U	UG/L				
P-ISOPROPYLTOLUENE	5.0	25 U	UG/L				
METHYLENE CHLORIDE	5.0	25 U	UG/L				
NAPHTHALENE	5.0	5.0 J	UG/L				
4-METHYL-2-PENTANONE (MIBK)	10	50 U	UG/L				
N-PROPYLBENZENE	5.0	25 U	UG/L				
STYRENE	5.0	25 U	UG/L				
1, 1, 2, 2-TETRACHLOROETHANE	5.0	25 U	UG/L				
TETRACHLOROETHENE	5.0	260	UG/L				
TOLUENE	5.0	130	UG/L				
1,1,1-TRICHLOROETHANE	5.0	25 U	ŬG/L				
1, 1, 2-TRICHLOROETHANE	5.0	25 U	UG/L				
TRICHLOROETHENE	5.0	23 J 21 J	UG/L				
1, 3, 5-TRIMETHYLBENZENE	5.0	14 J	UG/L				
1, 2, 4 - TRIMETHYLBENZENE	5.0	50	UG/L				
VINYL CHLORIDE	5.0	25 U					
O-XYLENE	5.0	150	$\frac{UG}{UG}$				
	5.0	100					

<u>COLUMB</u> I	<u>A ANAI</u>	LYTICAL S	ERVICES	ME	ETHOD	LE ORGANICS 8260B TCL/TANK ed: 01/15/04	
	: Refei	gion 8 rence: NY: e ID : H1					
			13:10 Order Submission			Sample Matrix: Analytical Run	
ANALYTE				P	ΩL	RESULT	UNITS
DATE ANA ANALYTIC			2/23/03 5.00				in
M+P-XYLE1	1E			!	5.0	180	UG/L
SURROGAT	re rec	OVERIES	QC :	LIMITS			
4-BROMOFI TOLUENE-I		ENZENE		- 118 %) - 124 %)		99 105	alo ala

	VOLATILE ORGANICS METHOD 8260B TCL/TANK Reported: 01/15/04							
NYS DEC - Region 8 Project Reference: NYSDEC Client Sample ID : H102								
Date Sampled : 12/11/03 14:00 Order # Date Received: 12/11/03 Submission #		Sample Matrix: Analytical Run						
ANALYTE	PQL	RESULT	UNITS					
DATE ANALYZED : 12/24/03 ANALYTICAL DILUTION: 100.00								
ACETONE	20	2000 U	UG/L					
BENZENE	5.0	12000	UG/L					
BROMODICHLOROMETHANE	5.0	500 U	UG/L					
BROMOFORM	5.0	500 U	UG/L					
BROMOMETHANE	5.0	500 U	UG/L					
2-BUTANONE (MEK)	10	1000 U	UG/L					
SEC-BUTYLBENZENE	5.0	500 U	UG/L					
N-BUTYLBENZENE	5.0	500 U	UG/L					
TERT-BUTYLBENZENE	5.0	500 U	UG/L					
CARBON DISULFIDE	10	1000 U	UG/L					
CARBON TETRACHLORIDE	5.0	500 U	UG/L					
CHLOROBENZENE	5.0	500 U	UG/L					
CHLOROETHANE	5.0	500 U	UG/L					
CHLOROFORM	5.0	500 U	UG/L					
CHLOROMETHANE	5.0	500 U	UG/L					
DIBROMOCHLOROMETHANE	5.0	500 U	UG/L					
1, 1-DICHLOROETHANE	5.0	500 U	UG/L					
1,2-DICHLOROETHANE	5.0	500 U	UG/L UG/L					
1, 1-DICHLOROETHENE	5.0 5.0	500 U 500 U	UG/L UG/L					
CIS-1,2-DICHLOROETHENE	5.0	500 U	UG/L					
TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE	5.0	500 U	UG/L					
CIS-1, 3-DICHLOROPROPANE	5.0	500 U	UG/L					
TRANS-1, 3-DICHLOROPROPENE	5.0	500 U	UG/L					
METHYL-TERT-BUTYL-ETHER	5.0	150000 E	UG/L					
ETHYLBENZENE	5.0	2300	UG/L					
2-HEXANONE	10	1000 U	UG/L					
ISOPROPYL BENZENE	5.0	500 U	UG/L					
P-ISOPROPYLTOLUENE	5.0	500 U	UG/L					
METHYLENE CHLORIDE	5.0	500 U	UG/L					
NAPHTHALENE	5.0	320 J	UG/L					
4-METHYL-2-PENTANONE (MIBK)	10	1000 U	UG/L					
N-PROPYLBENZENE	5.0	160 J	UG/L					
STYRENE	5.0	500 U	UG/L					
1, 1, 2, 2-TETRACHLOROETHANE	5.0	500 U	UG/L					
TETRACHLOROETHENE	5.0	500 U	UG/L					
TOLUENE	5.0	28000 E	UG/L					
1,1,1-TRICHLOROETHANE	5.0	500 U	UG/L					
1, 1, 2-TRICHLOROETHANE	5.0	500 U	UG/L					
TRICHLOROETHENE	5.0	500 U	UG/L					
1,3,5-TRIMETHYLBENZENE	5.0	410 J	UG/L					
1,2,4-TRIMETHYLBENZENE	5.0	1600	UG/L					
VINYL CHLORIDE	5.0	500 U	UG/L					
O-XYLENE	5.0	3800	UG/ 2 2					

<u>COLUMBIA ANALYTICAL SERVICES</u>

	VOLATILE ORGANICS METHOD 8260B TCL/TANK Reported: 01/15/04			
NYS DEC – Region 8 Project Reference: NYS Client Sample ID : H10				
Date Sampled : 12/11/03 Date Received: 12/11/03			Sample Matrix: Analytical Run	
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 12 ANALYTICAL DILUTION:	/24/03 100.00			
M+P-XYLENE		5.0	8200	UG/L
SURROGATE RECOVERIES	QC LIM	ITS		
	(83 -		98	90

	VOLATILE ORGANICS METHOD 8260B TCL/TANK Reported: 01/15/04				
NYS DEC - Region 8 Project Reference: NYSDEC Client Sample ID : H102					
Date Sampled : 12/11/03 14:00 Order #: Date Received: 12/11/03 Submission #:		Sample Matrix: Analytical Run			
ANALYTE	PQL	RESULT	UNITS		
DATE ANALYZED : 12/24/03 ANALYTICAL DILUTION: 10.00					
ACETONE	20	400	UG/L		
BENZENE	5.0	10000 E	UG/L		
BROMODICHLOROMETHANE	5.0	50 U	UG/L		
BROMOFORM	5.0	50 U	UG/L		
BROMOMETHANE	5.0	50 U	UG/L		
2-BUTANONE (MEK)	10	100 U	UG/L		
SEC-BUTYLBENZENE	5.0	50 U	UG/L		
N-BUTYLBENZENE	5.0	13 J	UG/L		
TERT-BUTYLBENZENE	5.0	50 U	UG/L		
CARBON DISULFIDE	10	100 U	UG/L		
CARBON TETRACHLORIDE	5.0	50 U	UG/L		
CHLOROBENZENE	5.0	50 U	UG/L		
CHLOROETHANE	5.0	50 U	UG/L		
CHLOROFORM	5.0	14 J	UG/L		
CHLOROMETHANE	5.0	50 U	UG/L		
DIBROMOCHLOROMETHANE	5.0	50 U	UG/L		
1,1-DICHLOROETHANE	5.0	50 U	UG/L		
1,2-DICHLOROETHANE	5.0	50 U	UG/L		
1,1-DICHLOROETHENE	5.0	50 U	UG/L		
CIS-1,2-DICHLOROETHENE	5.0	50 U	UG/L		
TRANS-1,2-DICHLOROETHENE	5.0	50 U	UG/L		
1,2-DICHLOROPROPANE	5.0	50 U	UG/L		
CIS-1, 3-DICHLOROPROPENE	5.0	50 U	UG/L		
TRANS-1, 3-DICHLOROPROPENE	5.0	50 U	UG/L		
METHYL-TERT-BUTYL-ETHER ETHYLBENZENE	5.0 5.0	61000 X 2500 E	UG/L UG/L		
2-HEXANONE	10	100 U	UG/L		
ISOPROPYL BENZENE	5.0	64	UG/L		
P-ISOPROPYLTOLUENE	5.0	50 U	UG/L		
METHYLENE CHLORIDE	5.0	50 U	UG/L		
NAPHTHALENE	5.0	290	UG/L		
4-METHYL-2-PENTANONE (MIBK)	10	40 J	UG/L		
N-PROPYLBENZENE	5.0	180	UG/L		
STYRENE	5.0	50 U	UG/L		
1, 1, 2, 2-TETRACHLOROETHANE	5.0	50 U	UG/L		
TETRACHLOROETHENE	5.0	50 U	UG/L		
TOLUENE	5.0	16000 X	UG/L		
1,1,1-TRICHLOROETHANE	5.0	50 U	UG/L		
1, 1, 2-TRICHLOROETHANE	5.0	50 U	UG/L		
TRICHLOROETHENE	5.0	50 U	UG/L		
1,3,5-TRIMETHYLBENZENE	5.0	460	UG/L		
1,2,4-TRIMETHYLBENZENE	5.0	1800 E	UG/L		
VINYL CHLORIDE	5.0	50 U	UGALA		
	2.0				

COLUMBIA ANALYTICAL SERVICE	VOLAT METHO	ILE ORGANICS D 8260B TCL/TANK ted: 01/15/04	
NYS DEC - Region 8 Project Reference: NYSDEC Client Sample ID : H102			
Date Sampled : 12/11/03 14:00 Date Received: 12/11/03 Subm		Sample Matrix: Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 12/24/0 ANALYTICAL DILUTION: 10	3.00		
M+P-XYLENE	5.0	8000 E	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(83 - 118 %) (88 - 124 %) (87 - 115 %)	98 102 95	alo ale alo

COLUMBIA ANALYTICAL SERVICES	METHOD	LE ORGANICS 8260B TCL/TANK ed: 01/15/04						
NYS DEC - Region 8 Project Reference: NYSDEC Client Sample ID : TRIP BLANK Date Sampled : 12/11/03 : Order #: 695475 Sample Matrix: WATER								
Date Sampled : 12/11/03 : Order Date Received: 12/11/03 Submission		Sample Matrix: Analytical Run						
ANALYTE	PQL	RESULT	UNITS					
DATE ANALYZED : 12/23/03 ANALYTICAL DILUTION: 1.00								
ACETONE	20	20 U	UG/L					
BENZENE	5.0	5.0 U	UG/L					
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L					
BROMOFORM	5.0	5.0 U	UG/L					
BROMOMETHANE	5.0	5.0 U	UG/L					
2-BUTANONE (MEK)	10	10 U	UG/L					
SEC-BUTYLBENZENE	5.0	5.0 U	UG/L					
N-BUTYLBENZENE	5.0	5.0 U	UG/L					
TERT-BUTYLBENZENE	5.0	5.0 U	UG/L					
CARBON DISULFIDE	10	10 U	UG/L					
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L					
CHLOROBENZENE	5.0	5.0 U	UG/L					
CHLOROETHANE	5.0	5.0 U	UG/L					
CHLOROFORM	5.0	5.0 U	UG/L					
CHLOROMETHANE	5.0	5.0 U	UG/L					
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L					
1,1-DICHLOROETHANE	5.0	5.0 U	UG/L					
1,2-DICHLOROETHANE	5.0	5.0 U	UG/L					
1,1-DICHLOROETHENE	5.0	5.0 U	UG/L					
CIS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L					
TRANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG/L					
1,2-DICHLOROPROPANE	5.0	5.0 U	UG/L					
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L					
TRANS-1, 3-DICHLOROPROPENE	5.0	5.0 U	UG/L					
METHYL-TERT-BUTYL-ETHER	5.0	5.0 U	UG/L					
ETHYLBENZENE	5.0	5.0 U	UG/L					
2 - HEXANONE	10	10 U	UG/L					
ISOPROPYL BENZENE	5.0	5.0 U	UG/L					
P-ISOPROPYLTOLUENE	5.0	5.0 U	UG/L					
METHYLENE CHLORIDE	5.0	5.0 U	UG/L					
NAPHTHALENE	5.0	5.0 U	UG/L					
4-METHYL-2-PENTANONE (MIBK)	10	10 U	UG/L					
N-PROPYLBENZENE	5.0	5.0 U	UG/L					
STYRENE	5.0	5.0 U	UG/L					
1, 1, 2, 2-TETRACHLOROETHANE	5.0	5.0 U	UG/L					
TETRACHLOROETHENE	5.0	5.0 U	UG/L					
TOLUENE	5.0	5.0 U	UG/L					
1,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L					
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L					
TRICHLOROETHENE	5.0	5.0 U	UG/L					
1,3,5-TRIMETHYLBENZENE	5.0	5.0 U	UG/L					
1,2,4-TRIMETHYLBENZENE	5.0	5.0 U	UG/L					
VINYL CHLORIDE	5.0	5.0 U	UG/26 UG/L6					
O-XYLENE	5.0	5.0 U						

	VOLATILE ORGANICS METHOD 8260B TCL/TANK Reported: 01/15/04				
NYS DEC - Region 8 Project Reference: NYS Client Sample ID : TRI					
Date Sampled : 12/11/03 Date Received: 12/11/03					
ANALYTE		PQL	RESULT	UNITS	
DATE ANALYZED : 12 ANALYTICAL DILUTION:	2/23/03 1.00				
M+P-XYLENE		5.0	5.0 U	UG/L	
SURROGATE RECOVERIES	QC LIM	ITS			
4-BROMOFLUOROBENZENE TOLUENE-D8 DIBROMOFLUOROMETHANE	(88 -	118 %) 124 %) 115 %)	100 106 98	ato ato ato	

VOLATILE ORGANICS

METHOD 8260B TCL/TANK Reported: 01/15/04

Date Sampled : Date Received:	Order Submission	#: 699199 #:	Sample Matrix: Analytical Run	
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED	: 12/23/03			
ANALYTICAL DILUTION	: 1.00			
ACETONE		20	20 U	UG/L
BENZENE		5.0	5.0 U	UG/L
BROMODICHLOROMETHANE		5.0	5.0 U	UG/L
BROMOFORM		5.0	5.0 U	UG/L
BROMOMETHANE		5.0	5.0 U	UG/L
2-BUTANONE (MEK)		10	10 U	UG/L
SEC-BUTYLBENZENE		5.0	5.0 U	UG/L
N-BUTYLBENZENE		5.0	5.0 U	UG/L
TERT-BUTYLBENZENE		5.0	5.0 U	UG/L
CARBON DISULFIDE		10	10 U	UG/L
CARBON TETRACHLORIDE		5.0	5.0 U	UG/L
CHLOROBENZENE		5.0	5.0 U	UG/L
CHLOROETHANE		. 5.0	5.0 U	UG/L
CHLOROFORM		5.0	5.0 U	UG/L
CHLOROMETHANE		5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHANE		5.0	5.0 U	UG/L
1,2-DICHLOROETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHENE		5.0	5.0 U	UG/L
CIS-1, 2-DICHLOROETHE	NE	5.0	5.0 U	UG/L
TRANS-1, 2-DICHLOROET		5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE	ليد 7 هنده ه	5.0	5.0 U	UG/L
CIS-1, 3-DICHLOROPROP	ENE	5.0	5.0 U	UG/L
TRANS-1, 3-DICHLOROPR		5.0	5.0 U	UG/L
METHYL-TERT-BUTYL-EI		5.0	5.0 U	UG/L
ETHYLBENZENE		5.0	5.0 U	UG/L
2-HEXANONE		10	10 U	UG/L
ISOPROPYL BENZENE		5.0	5.0 U	UG/L
P-ISOPROPYLTOLUENE		5.0	5.0 U	UG/L
METHYLENE CHLORIDE		5.0	5.0 U	UG/L
NAPHTHALENE		5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE	(MTBK)	10	10 U	UG/L
N-PROPYLBENZENE	د \د. ۲۰۰۱ م	5.0	5.0 U	UG/L
STYRENE		5.0	5.0 U	UG/L
1,1,2,2-TETRACHLOROE	דיאאא ד י	5.0	5.0 U	UG/L
TETRACHLOROETHENE	9 T T T T T T T T T T T T T T T T T T T	5.0	5.0 U	UG/L
TOLUENE				UG/L
	קדו	5.0	5.0 U	•
1,1,1-TRICHLOROETHAN		5.0	5.0 U	UG/L
1, 1, 2-TRICHLOROETHAN	NE.	5.0	5.0 U	UG/L
TRICHLOROETHENE		5.0	5.0 U	UG/L
1,3,5-TRIMETHYLBENZI		5.0	5.0 U	UG/L
1,2,4-TRIMETHYLBENZI	ENE	5.0	5.0 U	UG/L
VINYL CHLORIDE		5.0	5.0 U	UG/L
O-XYLENE		5.0	5.0 U	UG/IQ

Project Reference: Client Sample ID : METHOD BLANK

VOLATILE ORGANICS METHOD 8260B TCL/TANK Reported: 01/15/04

Date Sampled : Date Received:	Order Submission		699199	Sample Matrix: Analytical Run	
ANALYTE			PQL	RESULT	UNI
DATE ANALYZED : ANALYTICAL DILUTION:	12/23/03 1.00		<u> </u>		
SURROGATE RECOVERIES	QC	LIMI'	TS		

4-BROMOFLUOROBENZENE	(83	- 118	ዩ)	96	¥
TOLUENE-D8	(88)	- 124	€)	103	8
DIBROMOFLUOROMETHANE	(87	- 115	옿)	100	Ŷ

29

UNITS

VOLATILE ORGANICS METHOD 8260B TCL/TANK Reported: 01/15/04

Date Sampled : Date Received:	Order Submission	#: 69920 6 #:	Sample Matrix: Analytical Run	
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : ANALYTICAL DILUTION:	12/24/03 1.00			<u></u>
ACETONE		20	20 U	UG/L
BENZENE		5.0	5.0 U	UG/L
BROMODICHLOROMETHANE		5.0	5.0 U	UG/L
BROMOFORM		5.0	5.0 U	UG/L
BROMOMETHANE		5.0	5.0 U	UG/L
2-BUTANONE (MEK)		10	10 U	UG/L
SEC-BUTYLBENZENE		5.0	5.0 U	UG/L
N-BUTYLBENZENE		5.0	5.0 U	UG/L
TERT-BUTYLBENZENE		5.0	5.0 U	UG/L
CARBON DISULFIDE		10	10 U	UG/L
CARBON TETRACHLORIDE		5.0	5.0 U	UG/L
CHLOROBENZENE		5.0	5.0 U	UG/L
CHLOROETHANE		5.0	5.0 U	UG/L
CHLOROFORM		5.0	5.0 U	UG/L
CHLOROMETHANE		5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHANE		5.0	5.0 U	UG/L
1,2-DICHLOROETHANE		5.0	5.0 U	UG/L
1,1-DICHLOROETHENE		5.0	5.0 U	UG/L
CIS-1,2-DICHLOROETHEN	Ξ	5.0	5.0 U	UG/L
TRANS-1, 2-DICHLOROETH		5.0	5.0 U	UG/L
1,2-DICHLOROPROPANE		5.0	5.0 U	UG/L
CIS-1, 3-DICHLOROPROPE	NE	5.0	5.0 U	UG/L
TRANS-1, 3-DICHLOROPRO		5.0	5.0 U	UG/L
METHYL-TERT-BUTYL-ETH		5.0	5.0 U	UG/L
ETHYLBENZENE		5.0	5.0 U	UG/L
2-HEXANONE		10	10 U	UG/L
ISOPROPYL BENZENE		5.0	5.0 U	UG/L
P-ISOPROPYLTOLUENE		5.0	5.0 U	UG/L
METHYLENE CHLORIDE		5.0	5.0 Ŭ	UG/L
NAPHTHALENE		5.0	5.0 U	UG/L
4-METHYL-2-PENTANONE	(MIBK)	10		UG/L
N-PROPYLBENZENE		5.0	5.0 U	UG/L
STYRENE		5.0	5.0 U	UG/L
1, 1, 2, 2-TETRACHLOROET	HANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE		5.0	5.0 U	UG/L
TOLUENE		5.0		UG/L
1, 1, 1-TRICHLOROETHANE		5.0		UG/L
1, 1, 2-TRICHLOROETHANE		5.0		UG/L
TRICHLOROETHENE		5.0		UG/L
1, 3, 5-TRIMETHYLBENZEN	Έ	5.0		UG/L
1,2,4-TRIMETHYLBENZEN		5.0		UG/L
VINYL CHLORIDE		5.0		UG/L
O-XYLENE		5.0		UG ZLO

COLUMBIA ANALYTICAL Project Reference: Client Sample ID : M	VOLATILE ORGANICS METHOD 8260B TCL/TANK Reported: 01/15/04			
Date Sampled : Date Received:		#: 699206 #:	Sample Matrix: Analytical Run	
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : ANALYTICAL DILUTION:	12/24/03 1.00	641744968666666666666666666666666		
SURROGATE RECOVERIES	QC	LIMITS		
4-BROMOFLUOROBENZENE FOLUENE-D8 DIBROMOFLUOROMETHANE	(83 (88 (87	- 118 %) - 124 %) - 115 %)	95 103 91	olo ole ale

́ і

QUALITY CONTROL SUMMARY MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY WATER

MATI

Spiked Order No. : 695473 NYS DEC - Region 8

Client ID: H114

Test: 8260B TCL/TANK

Analytical Units: UG/L

Run Number : 99201

SPIKE MATRIX SPIKE MATRIX SPIKE DUP. OC LIMITS I L 1 ADDED CONCENT. -1 REC. A REC. RPD RPD ANALYTE SAMPLE FOUND REC. FOUND ł ſ BENZENE 250 200 460 | 104 | 460 | 104 |0 62 - 122 111 | 1 1 | CHLOROBENZENE 250 0 250 | 100 | 250 | 100 |0 70 - 130 113 - 1 1 1,1-DICHLOROETHENE 250 0 250 | 100 | 250 | 100 |0 68 - 114 14 1 I TOLUENE 250 130 390 | 104 | 380 | 100 |3 70 - 130 13 I í TRICHLOROETHENE 250 21.0 260 96 260 96 0 114 | 68 - 114 L 1

```
MS/MSD-1
```

· · ·

VOLATILE ORGANICS METHOD: 8260B TCL/TANK

LABORATORY CONTROL SAMPLE SUMMARY

ANALYTE TRU ATE ANALYZED : 12/23/2003 NALYTICAL DILUTION : 1.0 ACETONE BENZENE BROMODICHLOROMETHANE BROMODICHLOROMETHANE BROMOMETHANE 2 - BUTANONE (MEK) SEC - BUTYLBENZENE N-BUTYLBENZENE N-BUTYLBENZENE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	E VALUE 20.0	<pre>% RECOVERY</pre>	QC LIMITS 50 - 150 70 - 130 70 - 130 70 - 130 70 - 130 50 - 150 50 - 150 50 - 150 70 - 130 70 - 130
NALYTICAL DILUTION: 1.0 ACETONE BENZENE BROMODICHLOROMETHANE BROMOMETHANE 2-BUTANONE (MEK) SEC-BUTYLBENZENE 2-BUTYLBENZENE CARBON DISULFIDE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0	102 105 111 92 100 101 108 95 95 107 91 93 100 103 95 103 97 102 91	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
BENZENE BROMODICHLOROMETHANE BROMOMETHANE 2-BUTANONE (MEK) SEC-BUTYLBENZENE N-BUTYLBENZENE N-BUTYLBENZENE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0	102 105 111 92 100 101 108 95 95 107 91 93 100 103 95 103 97 102 91	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) SEC-BUTYLBENZENE N-BUTYLBENZENE TERT-BUTYLBENZENE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHENE 1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	$\begin{array}{c} 20.0\\$	102 105 111 92 100 101 108 95 95 107 91 93 100 103 95 103 97 102 91	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) SEC-BUTYLBENZENE N-BUTYLBENZENE TERT-BUTYLBENZENE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	$\begin{array}{c} 20.0\\$	105 111 92 100 101 108 95 95 107 91 93 100 103 95 103 97 102 91	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
BROMOMETHANE 2-BUTANONE (MEK) SEC-BUTYLBENZENE N-BUTYLBENZENE TERT-BUTYLBENZENE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROFTHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0	111 92 100 101 - 108 95 95 107 91 93 100 103 95 103 97 102 91	50 - 150 50 - 150 70 - 130 70 - 130
2-BUTANONE (MEK) SEC-BUTYLBENZENE N-BUTYLBENZENE TERT-BUTYLBENZENE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	$\begin{array}{c} 20.0\\$	92 100 101 - 108 95 95 107 91 93 100 103 95 103 97 102 91	50 - 150 70 - 130 70 - 130
SEC-BUTYLBENZENE N-BUTYLBENZENE TERT-BUTYLBENZENE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	$\begin{array}{c} 20.0\\$	100 101 - 108 95 95 107 91 93 100 103 95 103 97 102 91	70 - 130 70 - 130
N-BUTYLBENZENE TERT-BUTYLBENZENE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	101 - 108 95 95 107 91 93 100 103 95 103 97 102 91	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
TERT-BUTYLBENZENE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	- 108 95 95 107 91 93 100 103 95 103 97 102 91	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	95 95 107 91 93 100 103 95 103 97 102 91	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
CARBON TETRACHLORIDE CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	95 107 91 93 100 103 95 103 97 102 91	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
CHLOROBENZENE CHLOROFORM CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	107 91 93 100 103 95 103 97 102 91	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
CHLOROETHANE CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	91 93 100 103 95 103 97 102 91	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE CIS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	93 100 103 95 103 97 102 91	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
CHLOROMETHANE DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE CIS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0 20.0 20.0 20.0 20.0 20.0	100 103 95 103 97 102 91	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0 20.0 20.0 20.0 20.0	103 95 103 97 102 91	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130
1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0 20.0 20.0 20.0	95 103 97 102 91	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130
1,2-DICHLOROETHANE 1,1-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0 20.0 20.0	103 97 102 91	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130
1,1-DICHLOROETHENE CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0 20.0	97 102 91	70 - 130 70 - 130 70 - 130
CIS-1,2-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0 20.0	102 91	70 - 130 70 - 130
TRANS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0	91	70 - 130
1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE			
CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20 0		70 100
TRANS-1, 3-DICHLOROPROPENE METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE		102	70 - 130
METHYL-TERT-BUTYL-ETHER ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0	101	70 - 130
ETHYLBENZENE 2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0	106	70 - 130
2-HEXANONE ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0	97	50 - 150
ISOPROPYL BENZENE P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0	108	70 - 130
P-ISOPROPYLTOLUENE METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0	97	70 - 130
METHYLENE CHLORIDE NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0	104	70 - 130
NAPHTHALENE 4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0	106	70 - 130
4-METHYL-2-PENTANONE (MIBK) N-PROPYLBENZENE	20.0	103	70 - 130
N-PROPYLBENZENE	20.0	104	50 - 150
	20.0	97	70 - 130
STYRENE	20.0	108	70 - 130
	20.0	100	70 - 130
1,1,2,2-TETRACHLOROETHANE	20.0	98	70 - 130
TETRACHLOROETHENE	20.0	103	70 - 130
TOLUENE	20.0	110	70 - 130
1,1,1-TRICHLOROETHANE		92	70 - 130
1,1,2-TRICHLOROETHANE	20.0		70 - 130
TRICHLOROETHENE	20.0 20.0	102	
1,3,5-TRIMETHYLBENZENE	20.0		70 - 130 70 - 130

. .

VOLATILE ORGANICS METHOD: 8260B TCL/TANK

LABORATORY CONTROL SAMPLE SUMMARY ANALYTICAL RUN # : 99201 REFERENCE ORDER #: 699200 ANALYTE TRUE VALUE % RECOVERY QC LIMITS DATE ANALYZED : 12/23/2003 ANALYTICAL DILUTION: 1.0 1,2,4-TRIMETHYLBENZENE 111 20.0 70 - 130 70 - 130 VINYL CHLORIDE 20.0 99 70 - 130 O-XYLENE 20.0 101 70 - 130 M+P-XYLENE 40.0 109

REFERENCE-2

• • •

-

VOLATILE ORGANICS METHOD: 8260B TCL/TANK

LABORATORY CONTROL SAMPLE SUMMARY

REFERENCE ORDER #: 699207	ANALYTI	CAL RUN # :	99201	
ANALYTE	TRUE VALUE	% RECOVERY	QC LIMITS	
DATE ANALYZED : 12/24/2003				
ANALYTICAL DILUTION: 1.0				
ACETONE	20.0	108	50 - 150	
BENZENE	20.0	99	70 - 130	
BROMODICHLOROMETHANE	20.0	100	70 - 130	
BROMOFORM	20.0	97	70 - 130	
BROMOTETHANE	20.0	109	50 - 150	
2-BUTANONE (MEK)	20.0	87	50 - 150	
SEC-BUTYLBENZENE	20.0	104	70 - 130	
N-BUTYLBENZENE	20.0	99	70 - 130	
TERT-BUTYLBENZENE	20.0	109	70 - 130	
CARBON DISULFIDE	20.0	93	70 - 130	
CARBON TETRACHLORIDE	20.0	90	70 - 130	
CHLOROBENZENE	20.0	105	70 - 130	
CHLOROETHANE	20.0	88	70 - 130	
CHLOROFORM	20.0	94	70 - 130	
CHLOROMETHANE	20.0	97	70 - 130	
DIBROMOCHLOROMETHANE	20.0	101	70 - 130	
1,1-DICHLOROETHANE	20.0	95	70 - 130	
1,2-DICHLOROETHANE	20.0	89	70 - 130	
1,1-DICHLOROETHENE	20.0	97	70 - 130	
CIS-1,2-DICHLOROETHENE	20.0	98	70 - 130	
TRANS-1,2-DICHLOROETHENE	20.0	95	70 - 130	
1,2-DICHLOROPROPANE	20.0	99	70 - 130	
CIS-1, 3-DICHLOROPROPENE	20.0	94	70 - 130	
TRANS-1, 3-DICHLOROPROPENE	20.0	104	70 - 130	
METHYL-TERT-BUTYL-ETHER	20.0	95	50 - 150	
ETHYLBENZENE	20.0	105	70 - 130	
2-HEXANONE	20.0	89	70 - 130	
ISOPROPYL BENZENE	20.0	102	70 - 130	
P-I-SOPROPYLTOLUENE	20.0	109	70 - 130	
METHYLENE CHLORIDE	20.0	100	70 - 130	
NAPHTHALENE	20.0	97	50 - 150	
4-METHYL-2-PENTANONE (MIBK)	20.0	90	70 - 130	
N-PROPYLBENZENE	20.0	110	70 - 130	
STYRENE	20.0	102	70 - 130	
1,1,2,2-TETRACHLOROETHANE	20.0	98	70 - 130	
TETRACHLOROETHENE	20.0	101	70 - 130	
TOLUENE	20.0	106	70 - 130	
1,1,1-TRICHLOROETHANE	20.0	93	70 - 130	
1,1,2-TRICHLOROETHANE	20.0	100	70 - 130	
TRICHLOROETHENE	20.0	100	70 - 130	
1,3,5-TRIMETHYLBENZENE	20.0	110	70 - 130	

VOLATILE ORGANICS METHOD: 8260B TCL/TANK

LABORATORY CONTROL SAMPLE SUMMARY			
REFERENCE ORDER #: 699207	ANALYTI	CAL RUN # :	99201
ANALYTE	TRUE VALUE	% RECOVERY	QC LIMITS
DATE ANALYZED : 12/24/2003 ANALYTICAL DILUTION: 1.0			

36=

Volatile Analysis Report for Non-potable Water

Client: Haley & Aldrich

PARADIGM

Client Job Site:	Citgo Brighton, NY 30481-000	Lab Project Number: Lab Sample Number:	03-3208 10527
Client Job Number: Field Location:	30481-000 HA-104	Date Sampled:	11/24/2003
Field ID Number:	N/A	Date Received:	11/24/2003
Sample Type:	Water	Date Analyzed:	11/25/2003

Halocarbons	Results in ug / L	Aromatics	Results in ug / L
Bromodichloromethane	ND< 20.0	Benzene	220
Bromomethane	ND< 20.0	Chlorobenzene	ND< 20.0
Bromoform	ND< 20.0	Ethylbenzene	324
Carbon Tetrachloride	ND< 20.0	Toluene	1,360
Chloroethane	ND< 20.0	m,p-Xylene	1,320
Chloromethane	ND< 20.0	o-Xylene	452
2-Chloroethyl vinyl Ether	ND< 20.0	Styrene	ND< 20.0
Chloroform	ND< 20.0	1,2-Dichlorobenzene	ND< 20.0
Dibromochloromethane	ND< 20.0	1,3-Dichlorobenzene	ND< 20.0
1,1-Dichloroethane	ND< 20.0	1,4-Dichlorobenzene	ND< 20.0
1.2-Dichloroethane	ND< 20.0		
1,1-Dichloroethene	ND< 20.0	Ketones	Results in ug / l
cis-1,2-Dichloroethene	21.9	Acetone	ND< 100
trans-1,2-Dichloroethene	ND< 20.0	2-Butanone	ND< 50.0
1,2-Dichloropropane	ND< 20.0	2-Hexanone	ND< 50.0
cis-1,3-Dichloropropene	ND< 20.0	4-Methyl-2-pentanone	· ND< 50 0
trans-1,3-Dichloropropene	ND< 20.0		
Methylene chloride	ND< 50.0	Miscellaneous	Results in ug / l
1,1,2,2-Tetrachloroethane	ND< 20.0	Carbon disulfide	ND< 50.0
Tetrachloroethene	248	Vinyl acetate	ND< 50.0
1,1,1-Trichloroethane	ND< 20.0		
1,1,2-Trichloroethane	ND< 20.0		
Trichloroethene	ND< 20.0		
Trichlorofluoromethane	ND< 20.0		
Vinyl chloride	ND< 20.0		
ELAP Number 10958	Method	EPA 8260B	Data File: 17746.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

2

Signature:

Bruce Hoogesteger: Technical Director

ENVIRONMENTAL SERVICES. INC.

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Haley & Aldrich

Client Job Site:	Citgo Brighton, NY	Lab Project Number: Lab Sample Number:	
Client Job Number:	30481-000		
Field Location:	HA-104	Date Sampled:	11/24/2003
Field ID Number:	N/A	Date Received:	11/24/2003
Sample Type:	Water	Date Analyzed:	11/25/2003

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Bulylbenzene	ND< 20.0	1,2,4-Trimethylbenzene	400
sec-Butylbenzene	ND< 20.0	1,3,5-Trimethylbenzene	119
tert-Butylbenzene	ND< 20.0		
n-Propylbenzene	60.7	Miscellaneous	
Isopropylbenzene	ND< 20.0	Methyl tert-butyl Ether	1,110
p-isopropyltoluene	ND< 20.0		
Naphthalene	ND< 50.0		
ELAP Number 10958	Method:	EPA 8260B	Data File: 17746.D

Comments'

Signature;

ND denotes Non Detect ug / L = microgram per Liter

Bruce Hoogesteger. Technical Director

Volatile Analysis Report for Non-potable Water

Client: Haley & Aldrich

PARADIGM ENVIRONMENTAL SERVICES, INC.

Client Job Site:	Citgo Brighton, NY	Lab Project Number: Lab Sample Number:	03-3208 10528
。Client Job Number:	30481-000		
Field Location:	HA-114	Date Sampled:	11/24/2003
Field ID Number:	N/A	Date Received:	11/24/2003
Sample Type:	Water	Date Analyzed:	11/25/2003

Halocarbons	Results in ug / L	Aromatics	Results in ug / L
Bromodichloromethane	ND< 20.0	Benzene	169
Bromomethane	ND< 20.0	Chlorobenzene	ND< 20 0
Bromoform	ND< 20.0	Ethylbenzene	ND< 20.0
Carbon Tetrachloride	ND< 20.0	Toluene	207
Chloroethane	ND< 20.0	m,p-Xylene	213
Chloromethane	ND< 20.0	o-Xylene	136
2-Chloroethyl vinyl Ether	ND< 20.0	Styrene	ND< 20.0
Chloroform	ND< 20.0	1,2-Dichlorobenzene	ND< 20.0
Dibromochloromethane	ND< 20.0	1,3-Dichlorobenzene	ND< 20.0
1,1-Dichloroethane	ND< 20.0	1,4-Dichlorobenzene	ND< 20.0
1,2-Dichloroethane	ND< 20.0		
1,1-Dichloroethene	ND< 20.0	Ketones	Results in ug / L
cis-1,2-Dichloroethene	20.2	Acetone	ND< 100
trans-1,2-Dichloroethene	ND< 20.0	2-Butanone	ND< 50.0
1,2-Dichloropropane	ND< 20.0	2-Hexanone	ND< 50.0
cis-1,3-Dichloropropene	ND< 20.0	4-Methyl-2-pentanone	ND< 50.0
trans-1,3-Dichloropropene	ND< 20.0		
Methylene chloride	ND< 50.0	Miscellaneous	Results in ug / L
1,1,2,2-Tetrachloroethane	ND< 20 0	Carbon disulfide	ND< 50 0
Tetrachloroethene	436	Vinyl acetate	ND< 50.0
1,1,1-Trichloroethane	ND< 20.0		
1,1,2-Trichloroethane	ND< 20.0		
Trichloroethene	33.8		
Trichlorofluoromethane	ND< 20.0		
Vinyl chloride	ND< 20.0		
ELAP Number 10958	Method	: EPA 8260B	Data File: 17747.D

ELAP Number 10958

Method: EPA 8260B

Data File: 17747.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature;

<u>I HAUNOU C</u> Bruce Hoogesteger: Technical Director

ENVIR ONMENTAL SERVICES. INC.

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Haley & Aldrich

Client Job Site:	Citgo	Lab Project Number:	03-3208
	Brighton, NY	Lab Sample Number:	10528
Client Job Number:	30481-000		
Field Location:	HA-114	Date Sampled:	11/24/2003
Field ID Number:	N/A	Date Received:	11/24/2003
Sample Type:	Water	Date Analyzed:	11/25/2003

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 20.0	1,2,4-Trimethylbenzene	27.2
sec-Butylbenzene	ND< 20.0	1,3,5-Trimethylbenzene	ND< 20.0
tert-Butylbenzene	ND< 20.0		
n-Propylbenzene	. ND< 20.0	Miscellaneous	
Isopropylbenzene	ND< 20.0	Methyl tert-butyl Ether	131
p-Isopropyltoluene	ND< 20.0		
Naphthalene	ND< 50.0		
ELAP Number 10958	Method:	EPA 8260B	Data File: 17747.D

Comments

ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

Volatile Analysis Report for Non-potable Water

Client: Haley & Aldrich

PARADIGM ENVIRONMENTAL SERVICES. INC.

Client Job Site:	Citgo Brighton, NY	Lab Project Number: Lab Sample Number:	
Client Job Number:	30481-000		
Field Location:	HA-111	Date Sampled:	11/24/2003
Field ID Number:	N/A	Date Received:	11/24/2003
Sample Type:	Water	Date Analyzed:	11/25/2003

Halocarbons	Results in ug / L	Aromatics	Results in ug / L
Bromodichloromethane	ND< 50.0	Benzene	254
Bromomethane	ND< 50.0	Chlorobenzene	ND< 50.0
Bromoform	ND< 50.0	Ethylbenzene	1,360
Carbon Tetrachloride	ND< 50.0	Toluene	6,390
Chloroethane	ND< 50.0	m,p-Xylene	6,180
Chloromethane	ND< 50.0	o-Xylene	2,240
2-Chloroethyl vinyl Ether	ND< 50.0	Styrene	ND< 50.0
Chloroform	ND< 50.0	1,2-Dichlorobenzene	ND< 50 0
Dibromochloromethane	ND< 50.0	1,3-Dichlorobenzene	ND< 50.0
1,1-Dichloroethane	ND< 50.0	1,4-Dichlorobenzene	ND< 50.0
1,2-Dichloroethane	ND< 50.0	L	
1,1-Dichloroethene	ND< 50.0	Ketones	Results in ug / L
cis-1,2-Dichloroethene	ND< 50.0	Acetone	ND< 250
trans-1,2-Dichloroethene	ND< 50.0	2-Butanone	ND< 125
1,2-Dichloropropane	ND< 50.0	2-Hexanone	ND< 125
cis-1,3-Dichloropropene	ND< 50.0	4-Methyl-2-pentanone	ND< 125
Irans-1,3-Dichloropropene	ND< 50.0		
Methylene chloride	ND< 125	Miscellaneous	Results in ug / L
1,1,2,2-Tetrachloroethane	ND< 500	Carbon disulfide	ND< 125
Tetrachloroethene	668	Vinyl acetate	ND< 125
1,1,1-Trichloroethane	ND< 50.0		
1,1.2-Trichloroethane	ND< 50.0		
Trichloroethene	ND< 50 0		
Trichlorofluoromethane	ND< 50.0		
Vinyl chloride	ND< 50.0		
ELAP Number 10958	Method	: EPA 8260B	Data File: 17752.D

ELAP Number 10958

Method: EPA 8260B

Comments

ND denotes Non Detect ug / L = microgram per Liter

Signature:

KAMPE . Bruce Hoogesteger: Rechnical Director

ENVIRONMENTAL SERVICES. INC.

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Haley & Aldrich

Client Job Site:	Citgo Brighton, NY	Lab Project Number: Lab Sample Number:	03-3208 10533
Client Job Number:	30481-000	•	
Field Location:	HA-111	Date Sampled:	11/24/2003
Field ID Number:	N/A	Date Received:	11/24/2003
Sample Type:	Water	Date Analyzed:	11/25/2003

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 50.0	1,2,4-Trimethylbenzene	1,610
sec-Butylbenzene	ND< 50.0	1,3,5-Trimethylbenzene	472
lert-Butylbenzene	ND< 50.0		
n-Propylbenzene	263	Miscellaneous	
Isopropylbenzene	78.3	Methyl tert-butyl Ether	ND< 50.0
p-Isopropyltoluene	ND< 50.0		
Naphthalene	212		
ELAP Number 10958	Method: EPA 8260B		Data File: 17752.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Bruce Hoogesteger: Technical Director

Signature:

Volatile Analysis Report for Non-potable Water

Client: Haley & Aldrich

PARADIGM

Client Job Site:	Newcomb Oil	Lab Project Number: Lab Sample Number:	
Client Job Number:	30481-000		
Field Location:	HA-111	Date Sampled:	10/22/2003
Field ID Number:	N/A	Date Received:	10/22/2003
Sample Type:	Water	Date Analyzed:	10/23/2003

Halocarbons	Results in ug / L	Aromatics	Results in ug / L
Bromodichloromethane	ND< 100	Benzene	603
Bromomethane	ND< 100	Chlorobenzene	ND< 100
Bromoform	ND< 100	Ethylbenzene	172
Carbon Tetrachloride	ND< 100	Toluene	2,350
Chloroethane	ND< 100	m,p-Xylene	804
Chloromethane	ND< 100	o-Xylene	338
2-Chloroethyl vinyl Ether	ND< 100	Styrene	ND< 100
Chloroform	ND< 100	1,2-Dichlorobenzene	ND< 100
Dibromochloromethane	ND< 100	1,3-Dichlorobenzene	ND< 100
1,1-Dichloroethane	ND< 100	1,4-Dichlorobenzene	ND< 100
1,2-Dichloroethane	ND< 100		
1,1-Dichloroethene	ND< 100	Ketones	Results in ug / L
cis-1,2-Dichloroethene	ND< 100	Acetone	ND< 500
trans-1,2-Dichloroethene	ND< 100	2-Butanone	ND< 250
1,2-Dichloropropane	ND< 100	2-Hexanone	ND< 250
cis-1,3-Dichloropropene	ND< 100	4-Methyl-2-pentanone	ND< 250
trans-1,3-Dichloropropene	ND< 100		
Methylene chloride	ND< 250	Miscellaneous	Results in ug / L
1,1,2.2-Tetrachloroethane	ND< 100	Carbon disulfide	ND< 250
Tetrachloroethene	781	Vinyl acetate	ND< 250
1,1,1-Trichloroethane	ND< 100		
1,1,2-Trichloroethane	ND< 100		
Trichloroethene	ND< 100		
Trichlorofluoromethane	ND< 100		
Vinyl chloride	ND< 100		
ELAP Number 10958	Method:	EPA 8260B	Data File: 16825.0

ELAP Number 10958

Method: EPA 8260B

Data File: 16825.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:

WALKO

Bruce Hoogestege/ Technical Director

•

ENVIRONMENTAL SERVICES. INC.

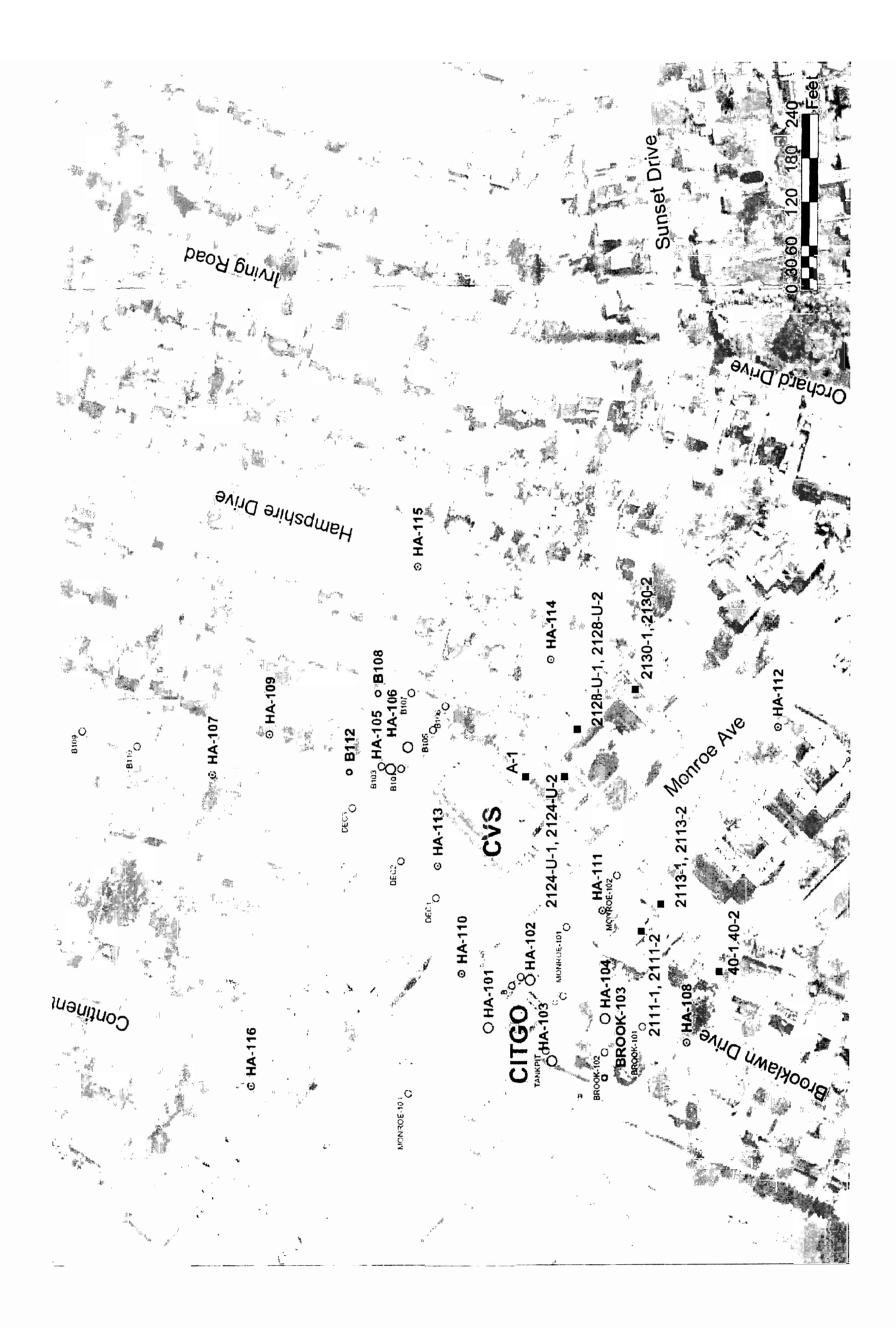
Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: Haley & Aldrich

Client Job Site:	Newcomb Oil	Lab Project Number: Lab Sample Number:	03-2870 9455
Client Job Number:	30481-000		
Field Location:	HA-111	Date Sampled:	10/22/2003
Field ID Number:	N/A	Date Received:	10/22/2003
Sample Type:	Water	Date Analyzed:	10/23/2003

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 100	1,2,4-Trimethylbenzene	242
sec-Butylbenzene	ND< 100	1,3,5-Trimethylbenzene	ND< 100
tert-Butylbenzene	ND< 100		
n-Propylbenzene	ND< 100	Miscellaneous	
Isopropylbenzene	ND< 100	Methyl tert-butyl Ether	4,990
p-Isopropyltoluene	ND< 100		
Naphthalene	ND< 250		
ELAP Number 10958	Method: EPA 8260B		Data File: 16825.D

Comments:


ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

Appendix 2

NYSDEC Air Sample Results and Sample Location Map

Indoor Air Sample Results Brighton Citgo/Carriage Cleaners Monroe Avenue, Brighton, NY

		2130	-2-1		2130-	2-1DL		2130)-2-2		2128	-U-1		2128-	U-1DL		2128	U-2
Compound	ppbv		ug/m3	p	pbv	ug/m3	pp	bν	ug/m3	p	opbv	ug/m3	þ	opbv	ug/m3	pp	bv	ug/m3
	5 U			25 U				0.59	3	2 U			5 U				0 57	2.9
chloromethane	5 U			25 U				0.64	13	2 U			5 U				0 73	1.6
trichlorofluoromethane		5.8	33	25 U			0.5 U			2 U			5 U			0.5 U		
methylene chloride	5 U			25 U			0 5 U			2 U			5 U			0 5 U		
chloroform	5 U			25 U			0 5 U				2.2	11	5 U			0.5 U		
benzene		13	41	25 U				0 51	1.6	2 U			5 U			0.5 U		
trichloroethene	5 U			25 U			0.5 U				7.9			9 D		0.5 U		
toluene		41	150		30 D	110 D		1.3	4.8		2.9		5 U			0.00	0.55	2
tetrachloroethene	98	30 E	33000 E		620 D	4200 D	0.5 U				290 E	1900 E		300 D	2000 D		1 1	7 /
ethylbenzene		5.2	23	25 U		_	0.5 U			2 U			5 U	0000		0 5 U	1	, ,
xylene (m,p)		18	78	25 U				0.5		2 U			5 U			0.5 U		
o-xylene		5.9		25 U			0.5 U			20			5 U	1		0.5 U		
acetone		52		250 U			5 U			20 U			50 U			5 U		
cyclohexane		35	121			150 D	0.5 U			200	5.3	18	50 0	9.6 D	33 D			
2,2,4-trimethylpentane	5 U	2	24 U			1500 DX	0.5 U				12	56		13 D		0.5 U		
n-hexane		43	152			140 D	0.5 U				8.6	30		11 D		0.5 U		
n-heptane		39	160			350 D	0.5 U				6.8		5 U			0.5 U		
	5 U			25 U	010		0.5 U			2 U	0.0		5 U			05U 05U		
xylene (total)		25		25 U			000	0.51	2.2				5 U			0.5 U		

Indoor Air Sample Results Brighton Citgo/Carriage Cleaners Monroe Avenue, Brighton, NY

	2124	1-U-1	2124-U	J-1DL	2124	-U-2	A-	1	2110	პ- 1]	211	3.2
Compound	ppbv	ug/m3	ppbv	ug/m3	ppbv	ug/m3	ppbv	ug/m3	ppbv	ug/m3	ppbv	ug/m3
dichlorodifluoromethane	50 U		620 U		0.64	3 2	0 62	3 1	0.59	2.9	0.59	2.9
chloromethane	50 U		620 U		0.5 U		0.5 U		1.2	2.5	0.5 U	-
vinyl chloride	190	490	620 U		0.5 U		0.5 U		().5 U		0.5 U	
trichlorofluoromethane	50 U		620 U		0.5 U		0.5 U		().5 U		0.5 U	
methylene chloride	50 U		620 U		1	3.5	0.5 U		().5 U		0 5 U	
chloroform	50 U		620 U		0.5 U		0.5 U		().5 U		0.5 U	
cis-1,2-dichloroethene	150	610	620 U		0.5 U		0.5 U		().5 U		0 5 U	
1,1,1-trichloroethane	200	1100	620 U		0.5 U		05U		().5 U		0.5 U	
benzene	4800 E	15300 E	6600 D	21000 D	1.5	4.8	0.5 U		().5 U		0 5 U	
trichloroethene	1000	5400	1700 D	9100 D	0.5 U		0.5 U		().5 U		0.66	3.5
toluene	2100	7800	3500 D	13000 D	1.4	5.3	0.5 U		0.88	33	1.4	5.3
tetrachloroethene	4900 E	33000 E	6400 D	43000 D	3.8	26	0.5 U		2	14	6	41
ethylbenzene	50 U		620 U		0.5 U		0.5 U		050		0.5 U	
xylene (m,p)	50	220	620 U		0.5 U		05U		().5 U		0.5 U	
o-xylene	50 U		620 U		0.5 U		0.5 U		().5 U		0.5 U	
acetone	500 U		6200 U		5	12	5 U		5 U		5 U	
cyclohexane	18000 E	62000 E	46000 D	160000 D	10	34	0.5 U		0.89	3.1	0 5 U	
2,2,4-trimethylpentane	8500 E	40000 E	14000 D	65000 D	3.2	15	0.5 U		1.1	5 1	19	8 3
n-hexane	21000 E	74000 E	45000 D	160000 D	9.9	35	0.5 U		0.81	2.9	0.5 U	
n-heptane	1800	7400	2100 D	8600 D	0.6	2.5	0.5 U		().5 U		0.5 U	
1,2-dichloroethene (total)	160	630	620 U		0.5 U		05U		0.5 U		0.5 U	
xylene (total)	51	220	620 U		0.5 U		050		0.5 U		0.5 U	

Indoor Air Sample Results Brighton Citgo/Carriage Cleaners Monroe Avenue, Brighton, NY

	40)-1	40	-2	211	1-1	2111-	1DL	21	11-2	2111	-2DL
Compound	ppbv	ug/m3	ppbv	ug/m3	ppbv	ug/m3	ppbv	ug/m3	ppbv	ug/m3	ppbv	ug/m3
dichlorodifluoromethane	1.1	5.4	1.3	64	250 U		5000 U		2 U		5 U	
chloromethane	0.5 U		0.74	1.5	250 U		5000 U		2 U		5 U	
vinyl chloride	0.5 U		0.5 U		250 U		5000 U		2 U		5 U	
trichlorofluoromethane	0.5 U		0.62	35	250 U		5000 U		2 U		5 U	
methylene chloride	0.5 U		0.5 U		250 U		5000 U		2 U		5 U	
chloroform	0.5 U		0.5 U		250 U		5000 U		2 U		5 U	
cis-1,2-dichloroethene	0.5 U		0.5 U		250 U		5000 U		2 U		5 U	
1,1,1-trichloroethane	0.5 U		0.5 U		250 U		5000 U		2 U		5 U	
benzene	0.5 U		0.5 U		250 U		5000 U		2 U		5 U	
trichloroethene	0.5 U		0.5 U		520	2800	5000 U		3.5	19	5 U	
toluene	0.5 U		0.88	3.3	400	1500	5000 U		2 U		5 U	
tetrachloroethene	0.5 U		0.5 U		22000 E	150000 E	21000 D	140000 D	72	490	74 D	500 D
ethylbenzene	0.5 U		0.5 U		250 U		5000 U		2 U		5 U	
xylene (m,p)	0.5 U		0.5 U		250 U		5000 U		2 U		5 U	
o-xylene	0.5 U		0.5 U		250 U		5000 U		2 U		5 U	
acetone	5 U		5 U		2500 U		50000 U		20 U		50 U	
cyclohexane	0.5 U		0.5 U		14000	48000	18000 D	62000 D	100	340	95 D	330 D
2,2,4-trimethylpentane	0.5 U		0 5 U		140000 E	650000 E	210000 D	980000 D	220 E	1000 E	230 D	1100 D
n-hexane	0.5 U		0.5 U		2800	9900	5000 U		62	220	61 D	210 D
n-heptane	0.5 U		0.5 U		250 U		7600 D	31000 D	11	45	11 D	45 D
1,2-dichloroethene (total)	0.5 U		0.5 U		250 U		5000 U		2 U		5 U	
xylene (total)	0.5 U		0.5 U		250 U		5000 U		2 U		5 U	

Appendix 3

1

1

L

Boring Logs

	ΛE	B	ELI	Δ			ROJECT					ING # SB-	1
			sociate			Phase II Enviro			ment			E 1 OF 1	
			OCHESTER, I GINEERING C		TS		riage Cleane		4610		JOB		129
201			Nothnagle	Drilling	 Co	2101 Monroe A BORING LOCA				anor Bida		D. BY	<u> </u>
			chweitzer	, Drinning ,		GROUND SUR			torul of Diy Ok	DAT			
			SENTATI	VE	C. A. Stiles	START DATE			TE 10-Mar-0		0.01		
									LEVEL DATA				
ΓYΡ	E OF D	RILL	RIG	PowerF	Probe Model MT-50 (T	racked/ Truck-mount)	DATE	TIME	WATER	CASING		REMARKS	
400	ER SIZ	E AN	D TYPE	2" (1.8"	ID) by 4' MacroCore								
OVE	RBUR	DEN S	AMPLING	METHO	Direct Push Metho	ds							
D									EQUIPM		D		
E			SAMPL	.E	SAI	MPLE DESCRIPTION			INSTALLATI	_	E	MOISTURE	
P			I		-						P T	CONTENT	PID
т	DEPTH	NO.	RECOVERY								н.		
H	(FT.) 0 - 4	S-1	(INCHES) 38	0.0'		-) f Sand, organic material		hne and					0.0
1	<u> </u>			0.0	humus), damp, no odors		(10013, 1001 114)	ces and			1	damp	0.0
·				0.5'		ilt, little f Sand, trace m sut	prounded Grave	el, damp.			'	Gump	0.3
2					no odors. GLACIAL	, , , , , , , , , , , , , , , , , , , ,					2	damp	
													0.2
3											3		
					-								0.3
4											4		
_	4 - 8	S-2	32	4.0'	As above				153453			damp	1.9
5					- One diana Ta				気変		5		
6					Grading To						6		6.5
U					Brown mf ⁽⁺⁾ SAND and	Clayey SILT, little cmf subro	ounded Gravel	. wet. no				wet	0.5
7					odors.			,,	125		7		
8									and the second s		8		
	8 - 12	S-3	22	8.0'	Brown mf ⁽⁺⁾ SAND and	Clayey SILT, trace(+) f sub	rounded Grave	l, wet, no		题		wet	34.5
9				ļ	odors.						9		
				8.9'	- • •	D and cmf angular to subro						saturated	
10					Clayey Slit, saturated, s	light petroleum odor. WE	ATHERED BE	DRUCK	1	- 11- S.	10		
11					-				1.111	and the	11		
• •				<u> </u>	1						' '		
12					1	REFUSAL @ 10.5-ft.					12		
13					-						13		
					-								
14					-						14		
15					-						15		
.5					1								
16			1		1						16		
		•	LEGEND		NOTES:				****				
	S - SP	LIT SI	POON SOI	L SAMPL	.E	Well CCMW-1 complet	ed within this	borehol	e with 5-ft. sc	reen & ~6	6.5-ft	riser set to 10	.5-ft.
	U - UN	DIST	JRBED SC	DIL SAMF	PLE	Sandpack to 4.5-ft belo	-		-	ts to grou	Ind su	urface.	
			ORE SAM	PLE	l	Locking J-Plug without	protective ca	ising inst	alled.	• • • • • • • • • • • • • • • • • • •			
3EI	NERAL							-					
		•											
		2) W	ATERLEV			DE AT TIMES AND UNDEF							
LBA	1			IVIA I			ET NEOENT P	·· · · i i i ⊑ · i i				BORING #	SB-1
-07	`											120111101	

	٨F	3F		$\overline{\Lambda}$			ROJECT	••••••••••••••••••••••••••••••••••••••			BÓR	ING # SB-	2
			ssociate			Phase II Enviro			ment	Į		1 OF 1	
			OCHESTER, M		rs.		riage Cleane				JOB		129
			Nothnagle			2101 Monroe A						D. BY	
			chweitzer	5 Drinning (BORING LOCA GROUND SURI			75-IL NORD OF L	DAT	-	Inside Corner.	
			SENTATI	/F	C. A. Stiles	START DATE			TE 10-Mar-0		UIVI		
			GERTATI	•	0. 7. 0003		10-1110-04		LEVEL DATA	T			
ΥP	E OF D	RILL I	RIG	PowerP	Probe Model MT-50 (T	racked/ Truck-mount)	DATE	TIME	WATER	CASING		REMARKS	
٩UG	ER SIZ	E ANI	O TYPE		ID) by 4' MacroCore	,			<u> </u>				
DVE	RBUR	DEN S			Direct Push Metho	ds							
D									EQUIPM		D		
E			SAMPL	.E	SA	MPLE DESCRIPTION			INSTALLATI	ON LOG	Ε	MOISTURE	
P					4						P	CONTENT	PID
	DEPTH	NO.	RECOVERY	STRATA							Т Н		
브	(FT.)		(INCHES)		· · · · · · · · · · · · · · · · · · ·								
	0 - 4	S-1	34	0.0'	4 • • •	Ittle(+) f Sand, trace(-) f G		material				damp	0.0
1			-	0.51	1	umus), damp, no odors.					1		
2				0.5'	Brown Clayey SIL1, little	e(+) f Sand, trace(-) f Grave	a, uamp, no od	urs.			2	elightly maint	
2				2.0'	1	L and c SAND, slightly mois	t no odore				2	slightly moist damp	0.0
з				2.1'	1 -	of SAND, little(-) mf subrou		amn			3	uamp	0.0
Ĭ					no odors. GLACIAL			ump,			U		
4											4		
Ì	4-8	S-2	18	4.0'	Brown mf ⁽⁺⁾ SAND, som	e(+) Clayey Silt, little(+) mf	angular to sub	rounded				wet	0.4
5					Gravel, wet, no odors.						5		
]								
6											6		0.4
					-								
7											7		
					-								ļ
8	8 - 12	S-3	25	8.0'	Brown Clover SILT and	f SAND, little mf subangula		d Grouol			8	wet	1.9
9	0 - 12	00	20	0.0	iwet, no odors.	T SAND, Ittle III Subangua		a Glavei,			9	wei	1.9
				9.3'	1 '	D some Clayey SILT, some	mf angular to :	sub-			Ŭ	saturated	
10					4 -	ed, petroleum odor WEA	-				10		9.5
Ī					1								
11]						11		
					4								1
12						REFUSAL @ 10.5-ft.					12		-
				<u> </u>									ļ
13					-						13		
14			<u>-</u>	<u> </u>	1						14		
'			L	<u> </u>	1						14		
15			L		1						15		
				1]								
16									<u> </u>		16	L	
	U - UN	DISTU	LEGEND POON SON	DIL SAMP									
			DRE SAM	-LE									
зEN	IERALI		-						TRANSITIONS			1141	
						OXIMATE BOUNDARY BE DE AT TIMES AND UNDEF							
		2) VV				R FACTORS THAN THOS							

L	Ā	31	ΞLI	Δ		PI Phase II Enviro		Accore	mont			ING # SB-	3
300 1	STATE ST		Associate ROCHESTER, I				riage Cleane				JOB	E1 OF 1 # 204	120
			GINEERING C		TS	2101 Monroe A	-		4618			# 204 D. BY	123
cor	TRAC	TOR	Nothnagle	e Drilling (Co.	BORING LOCA				leaner Bld			
			Schweitzer			GROUND SUR				DAT	-		
AB	ELLA P	REPRI	SENTATI	VE	C. A. Stiles	START DATE	10-Mar-04	END DA	TE 10-Mar-0	4			
								WATER	LEVEL DATA				
TYP	e of C	RILL	RIG	PowerF	Probe Model MT-50 (T	racked/ Truck-mount)	DATE	TIME	WATER	CASING		REMARKS	
AUC	ER SI	ZE AN	D ΤΥΡΕ	2" (1.8"	ID) by 4' MacroCore								
	RBUR	DEN S	SAMPLING	METHO	Direct Push Method	ds							
D									EQUIPM INSTALLATI		D		
E			SAMPL	.E	SAI	MPLE DESCRIPTION				ONLOG	E	MOISTURE	
P		· · · · ·	L	<u> </u>	4						P T	CONTENT	PID
Ť	DEPTH	NO.	RECOVERY	1							Н		
н	(FT.) 0 · 4	S-1	(INCHES) 42	1	1					<u>.</u> .			
	0.4	3-1	42	0.0'	1	I SILT, little(-) f subrounded umus), moist to damp, no o			1			moist	0.0
1				0.5'	-1` ·						1	damp	
2			-	0.5	GLACIAL TILL	Ittle(+) f Sand, trace f Gr	avei, damp, no	odors.				damp	
۷				<u> </u>							2		
з					4						3		0.0
3		ł		3.0'	Brown f SAND and SILT	, trace f Gravel, no odors,	damn					damo	
4		<u> </u>	+			, and a chavel, no ocors,	uump.				4	damp	
Ŧ	4 - 8	S-2	32	4.0'	Brown mf ⁽⁺⁾ SAND, som	e(+) Clayey Silt, little(+) mf	angular to sub	rounded				damp	0.0
5					Gravel, wet, no odors.						5	damp	
Ū		İ		<u> </u>							ľ		
6					-						6		0.2
-				6.0'	 Brown mf(+) SAND, little	e(+) cmf subangular to sub	rounded Grave	I. little(-)				damp	0.2
7		<u> </u>		····	Clayey Silt, damp, no od	•		.,			7	Bang	
8											8		
	8 - 12	S-3	25	8.0'	As above, wet								0.2
9		-			1						9		
10				9.5'	Gravish-brown cmf ang	ular to subrounded GRAVE	L, some cmf S	and,			10		6.5
					trace Clayey Silt, satura	ted, slight petroleum odor.							
11					WEATHERED BEDRO	CK					11		
					-								
12			<u> </u>	ļ		REFUSAL @ 10.5-ft.					12		
4.5		-			4								
13					4						13		
				<u> </u>	4								
14					-						14		
15		 		<u> </u>	-						15		
10			<u> </u>	+	4						13		
16			1		1						16		
	L	I		I	NOTES:				L		1.0	L	I
	S - SP	UT SI	POON SOI										
			URBED SC										
			ORE SAM										
GEN	VERAL												
					NES REPRESENT APPR	OXIMATE BOUNDARY B	ETWEEN SOIL	TYPES,	TRANSITIONS	MAY BE (GRAD	UAL.	
		'				DE AT TIMES AND UNDER							
		,				R FACTORS THAN THOS							
LBA	ι											BORING #	SB-3
	-												

	ΛΓ	21	=	Λ		PF	ROJECT				BOR	ING # SB-	4
Ľ		וכ	Associate	4		Phase II Enviro			ment		SHE	1 OF 1	
			ROCHESTER, I GINEERING C		re		riage Cleane				JOB		129
						2101 Monroe A						D. BY	
			Nothnagle Schweitzer	Drilling	- 0.	BORING LOCA GROUND SURI			It North of Dry	DAT		ACK NE Corner.	
			ESENTATI	٧E	C. A. Stiles	START DATE			TE 10-Mar-0				
									LEVEL DATA				
ΓYΡ		RILL	RIG	PowerP	Probe Model MT-50 (T	racked/ Truck-mount)	DATE	TIME	WATER	CASING		REMARKS	
AUG	ER SIZ	ZE AN	D TYPE	2" (1.8"	ID) by 4' MacroCore								
OVE	RBUR	DEN S	SAMPLING	METHO	Direct Push Method	ds							
D									EQUIPN INSTALLATI		D		
E			SAMPL	.E	SAI	MPLE DESCRIPTION			INSTALLATI	UNLOG	E P	MOISTURE	 PID
P T	DEDTU		DECOVERY	OTDATA	-						T	CONTENT	
н	DEPTH (FT.)	NO.	RECOVERY (INCHES)								H		
-	0 - 4	S-1	24		Dark brown SILT, some	f Sand, little(-) f subrounde	d Gravel, orga	nic	·			moist	0.0
1					1 .	es and humus), moist, no c	•				1	damp	
				0.6'	Dark brown Clayey SIL	F, little(+) f Sand, trace f Gr	avel, damp, no	odors.					
2					GLACIAL TILL						2		
					4								0.0
3					-						3		
					-								
4	4 - 8	S-2	39	4.0'	As above.						4	damp	0.0
5	4-0	0-2			4	e mf subangular to subroun	ded Gravel. litt	le cmf ⁽⁺⁾			5	damp	0.0
-					Sand, damp, no odors.								
6											6		0.0
7				6.6'	1	ne cmf Sand, little subangu	lar to subround	ded Grave	et I		7	wet	
					no odors, wet.								0.0
8	8 - 12	S-3	34	8.0'	Brown cmf ⁽⁺⁾ SAND littl	e Clayey Silt, trace f Grave	wet				8	wet	0.0
9	0 12			0.0		e elayoy ella lado i alave	,				9	WOL	0.0
-		1			Grading To							saturated	
10]						10		
					Brown cmf ⁽⁺⁾ SAND, sor	me cmf angular to subround	ded Gravel, littl	e(-) Silt,					0.0
11					saturated, no odors.						11		
					-						10		
12						REFUSAL @ 11.0-ft.			-		12		1
13					1						13		
]								
14]						14		
					-								
15					-						15		
10					-						16		
16	L	1	LEGEND		NOTES:				1		1.10	I	1
	S - SP	LIT S	POON SOI										
			URBED SC										
	C - R(оск с	ORE SAM	PLE									
GEN	NERAL												
		2) V	VATER LE			DE AT TIMES AND UNDER							
				MAY	OCCUR DUE TO OTHE	R FACTORS THAN THOS	E PRESENT A	THE	ME MEASURE	INEN IS W	CHE	BORING #	SB-4
LBA	1											120111101#	

	λI	21	-11	Λ	<u> </u>	Pl	ROJECT				BOR	ING # SB-	5
				is, P.C.		Phase II Enviro	onmental Site	Assess	ment		SHE	1 OF 1	
			OCHESTER, I			Car	riage Cleane	rs			JOB	# 204	129
IVN	RONMEN	TAL EN	GINEERING C	ONSULTAN	rs	2101 Monroe A	venue, Brigh	ton, NY 1	4618		СНК	D. BY	
0	TRAC	TOR	Nothnagle	Drilling (Co.	BORING LOCA	TION 10-ft V	Vest & 24	ft. North of Dry	Cleaner E	Bidg. E	ack NE Corner.	
DRI	LLER	Jeff S	Schweitzer			GROUND SUR	FACE ELEVAT	ION		DAT	UМ		
AB	ELLA P	REPRE	SENTATI	VE	C. A. Stiles	START DATE	10-Mar-04	END DA	TE 10-Mar-0	4			
								WATER	LEVEL DATA				
ſYP	EOF	RILL	RIG	PowerF	Probe Model MT-50 (T	racked/ Truck-mount)	DATE	TIME	WATER	CASING		REMARKS	
AUG	ER SI	ZE AN	D TYPE	2" (1.8"	ID) by 4' MacroCore								
OVE	RBUR	DEN S	AMPLING	METHO	Direct Push Method	ds							-
D									EQUIPM		D		
Е			SAMPL	.E	SAI	MPLE DESCRIPTION			INSTALLATI	ON LOG	E	MOISTURE	
Р		г	T	1	4						P	CONTENT	PID
т	DEPTH	NO.	RECOVERY	STRATA							Т Н		
Н	(FT.)		(INCHES)	h	······				····-				<u> </u>
	0-4	S-1	26	0.0'		r, some cmf Sand, trace f s					ĺ	damp	0.0
1						root traces and humus), da	• •				1	damp	
				0.4'	4 • • •	e(+) cmf ⁽⁺⁾ Sand, little mt su	ibangular Grav	el, damp,				damp	
2					no odors. FILL MAT						2		
			ł	1,1'		COAL FRAGMENTS, damp							0.0
3				1.3'	1	ne(-) cmf ⁽⁺⁾ Sand, little(+) m	nf subangular C	aravel,			3		
		 			damp, no odors. GLA								
4											4	<u>-</u>	
_	4-8	S-2	42	4.0'	As above.				I			damp	0.0
5			 	5 41				0			5		
_				5.4'	· · ·	+) cmf subangular Gravel, t	trace(+) Clayey	/ Silt,				damp	
6		 		<u> </u>	damp to wet, no odors.						6		0.0
-					Grading To			0.114			_	wet	
7			}			e cmf subangular Gravel, tr	ace(+) Clayey	Siit, wet			7		
8					to saturated @ 7.2-ft.						8	saturated	0.0
0	8 - 12	S-3	3	8.0'	As above.	·····					ľ	saturated	0.0
9			<u> </u>	0.0							9	Saturated	
U		<u> </u>			1						ľ		
10											10		
11											11		
12		1				REFUSAL @ 8.3-ft.					12		
13											13		
14											14		
			ļ	<u> </u>									
15			l		ļ						15		
	ļ		I	<u> </u>	4								
16	<u> </u>			I	l				L		16	I	<u> </u>
	U - U	DIST	LEGEND POON SOI URBED SO ORE SAM	L SAMPL DIL SAMP	1								
GEI	VERAL					· · · · · · · · · · · · · · · · · · ·			· · · -				
اتات					NES REPRESENT APPR	IOXIMATE BOUNDARY BI	ETWEEN SOIL	TYPES.	TRANSITIONS	MAY BE	GRAD	UAL.	
		'				DE AT TIMES AND UNDER							
		c) VV				R FACTORS THAN THOS							
LB/				111/71								BORING #	SB-5
												1	•

	ΛĒ	3	ELI	Δ		PF Phase II Enviro	ROJECT	Assess	ment			ING # SB-	6
		REET, R	OCHESTER, I	NEW YORK			riage Cleane				JOB		12
			GINEERING C			2101 Monroe Av						D. BY	
			Nothnagle) Drilling	Co.	BORING LOCA GROUND SURI			. North of Dry	Cleaner Blo DAT	-	er Corner.	
			Schweitzer ESENTATI	VE	C. A. Stiles	START DATE			TE 10-Mar-(UM		
									LEVEL DATA				
	E OF D					racked/ Truck-mount)	DATE	TIME	WATER	CASING		REMARKS	
					ID) by 4' MacroCore	-							
D	HBUR	DENS	SAMPLING	METHO	Direct Push Metho	us			EQUIPN		<u> </u>		Г
E			SAMPL	.E	SA	MPLE DESCRIPTION			INSTALLAT		DE	MOIOTUDE	
Ρ											P	MOISTURE CONTENT	
	DEPTH	NO.	RECOVERY								Т Н		
н	(FT.) 0 - 4	S-1	(INCHES) 37		Brown Clayev SII T and	mf ⁽⁺⁾ SAND, trace mf angu	lar to subang	ılar Gravel	L				
1					1	al (roots, root traces and hu			ĺ		1	damp	
					TOPSOIL	·							
2				0.3'	1	mf ⁽⁺⁾ SAND, trace mf angu	lar to subangu	ılar Gravel	, I		2	damp	
3					damp, no odors. <u>GL/</u>	CIAL TILL					3	damp	
3												damp	
4											4		
	4 - 8	S-2	23	4.0'	As above.							damp	
5				4.5'	4	e(-) cmf angular to subrour	ided Gravel, li	ttle(+)			5	dama	
6					Silt, damp, no odors.						6	damp	
0													
7]						7		
8					-	REFUSAL @ 7.0-ft.					8		
0											ľ		
9]						9		
					-						10		
10					-						10		
11											11		
					-						10		
12									1		12		
13					1						13		
					-								
14					-						14		
15					-						15		
					-								
16											16		
	U - U	DIST	LEGEND POON SOI URBED SO ORE SAM	IL SAMPL DIL SAMF									
GEN	NERAL	NOTE	S:										
				EL REAL	DINGS HAVE BEEN MA	ROXIMATE BOUNDARY BI		IS STATE	D, FLUCTUAT	IONS OF C	ROU	NDWATER	
				MAY	OCCUR DUE TO OTHE	R FACTORS THAN THOS	E PRESENT	AT THE T	ME MEASUR	EMENTS W	/ERE		
LBA	4											BORING #	S

-

4	ΩĿ	ЗF		A s, P.C.		Phase II Enviro	ROJECT	Assess	ment			ING # SB- 1 OF 1	1
			OCHESTER, N	NEW YORK		Car	riage Cleane	ors			JOB	# 204	12
ENVI	RONMEN	TAL ENG	INEERING C	DNSULTANT	S	2101 Monroe A	venue, Brigh	ton, NY 1	4618	l	CHK	D. BY	
			Nothnagle	Drilling (Co.	BORING LOCA			North of Dry Cl			nt NE Corner.	
			chweitzer			GROUND SUR				DAT	UM		
LAB	ELLA F	REPRE	SENTATI	/E	C. A. Stiles	START DATE	10-Mar-04		TE 10-Mar-0	4			
rvo				PowerP	Probe Model MT-50 (1	racked/ Truck-mount)	DATE	TIME	UEVEL DATA	CASING		REMARKS	
• • •					ID) by 4' MacroCore	naokeu/ maok mounty			MAILO	CASING		nLMANKO	
					Direct Push Metho	ds							
D									EQUIPN	ENT	D		
Е			SAMPL	.E	SA	MPLE DESCRIPTION			INSTALLATI	ON LOG	E	MOISTURE	
Ρ											P	CONTENT	
т	DEPTH	NO.	RECOVERY	STRATA							T H		
н	(FT.)		(INCHES)										L
	0-4	S-1	22	0.0'	1 ⁻	little(+) f Sand, trace f Grave	-	erial (root	s, I				
1				0.6'	· · · · · · · · · · · · · · · · · · ·	, damp, no odors. <u>TOPS</u> me mf ⁽⁺⁾ Sand, little(-) mf Su		vol no			1	damp	
2				0.0	odors, damp. GLAC		abrounded Gra	vei, 110			2		
2						er som de Unite					1		
3											3		
4											4		
	4 - 8	S-2	18	4.0'	Brown cmf(+) SAND, so	ome(-) Silt, some(-) mf angu	ılar Gravel, mo	oist, very				moist	
5					slight odor (petroleum o	or petroleum plus solvent?).					5		
6											6		
7											7		
'											'		
8						REFUSAL @ 6.0-ft.					8		
													1
9											9		
					-								
10	ļ										10		
					-						11		
11											''		
12											12		
_													
13					-						13		
					4								
14					-						14		
15					-						15		
10					1								
16					1						16		
		•	LEGEND		NOTES								
	S - SP	LIT SP	POON SOI	L SAMPL	E								
	U - UN	DIST	JRBED SC	DIL SAMP	LE								
			ORE SAM	PLE									
GEI	NERAL							TYPES	TDANSITION				
		•				ROXIMATE BOUNDARY B							
		2) W	AIER LE			ER FACTORS THAN THOS							
				100								BORING #	S

L	$\overline{\Lambda}$	3	ELI	Δ			ROJECT					ING # SB-	8
			Associate			Phase II Envir			ment			E 1 OF 1	
			Rochester, I Gineering C		rs	2101 Monroe A	rriage Cleane		1/610		JOB	# 204 D. BY	129
CON	TRAC	TOR	Nothnagle) Drilling (Co.	BORING LOCA				L Cleaner Bl	_		
			Schweitzer			GROUND SUR				DAT		e comer.	
LAB	ELLA F	REPRI	ESENTATI	VE	C. A. Stiles	START DATE	10-Mar-04	END DA	TE 10-Mar-0	4			
								WATER	LEVEL DATA				
	E OF D					0 (Tracked/ Truck-mount)	DATE	TIME	WATER	CASING	-	REMARKS	;
				•	ID) by 4' MacroC								
D	REUR	DEN	SAMPLING	METHOL	Direct Push M	einous			EQUIPM				1
E			SAMPL	.E		SAMPLE DESCRIPTION			INSTALLATI		DE		
P									TOC	1	P	MOISTURE	P
т	DEPTH	NO.	RECOVERY	STRATA							т	CONTENT	
н	(FT.)	NO.	(INCHES)	CHANGE							н		
	0 - 4	S-1	31	0.0'	Dark brown SILT, s	ome(+) f Sand, trace f subroun	ded Gravel, or	ganic			0.0'	damp	C
1						t traces and humus), damp, no					1.0'	damp	0
				0.4'	1	(+) SAND, little(-) mf angular to		ravel,					
2				0.01	-	nents, damp, no odors. FILL					2.0'	damp	0
3				2.0'	Gray FLY ASH and no odors.	I mf CINDERS and COAL FRAC	MENTS, dam	p,			2.5	damp	0
3				2.1'		, some cmf ⁽⁺⁾ Sand, trace(+) mf	subangular to	sub-					
4						mp, no odors. GLACIAL TIL	•	545					
	4 - 8	S-2	35	4.0'		, some cmf ⁽⁺⁾ Sand, little mf sut		orounded			4.0'	damp	
5					Gravel, damp, no c	dors.							
				5.2'	Brown Clayey SIL1	, some(+) cmf ⁽⁺⁾ angular to sub	rounded Grave	el, some]	5.0'	damp	0
6					cmf Sand, damp to	wet, no odors.							
											6.0'	damp to wet	0
7													
8													
Ů	8 - 12	S-3	22	8.0'	Brown cmf ⁽⁺⁾ SANE	, trace Silt, trace f Gravel, satur	ated, no odors				8.0'	saturated	0
9						,,					0.0		
Ī										1	9.0'	saturated	0
10]			
11													
12													
12						REFUSAL @ 10.5-ft.							
13													
14													
15													
16					NO.						1		I
	S - SPI	LIT SF	POON SOI			Well CCMW-2 complet	ed within this	borehol	e with 5-ft. sc	reen & ~f	5.5-ft	riser set to 10	.0-ft
			JRBED SC			Sandpack to 3.5-ft belo							
	C - RO	ск с	ORE SAME	PLE		Locking J-Plug without	-		-				
GEN	ERAL	NOTE	S:										
						PPROXIMATE BOUNDARY BI							
		2) W	ATER LEV			MADE AT TIMES AND UNDER							
				MAY	OCCUR DUE TO C	THER FACTORS THAN THOS	E PRESENT A	AT THE TI	ME MEASURE	MENTSW	ERE		
LBA												BORING #	SB-

	ΛF	3	=	Λ			ROJECT					ING # SB-	9
			ssociate			Phase II Enviro			ment			E 1 OF 1	
			OCHESTER, N		'S		riage Cleane		4610		JOB		1:
			Nothnagle			2101 Monroe Av BORING LOCA				l Cleaner Bl		D. BY	
			chweitzer	brinning (GROUND SURI			. South of Dry (DAT	•	V Comer.	
-			SENTATI	√E	C. A. Stiles	START DATE			TE 10-Mar-0		•		
								WATER	LEVEL DATA				
түр	'E OF D	RILL	RIG	PowerF	robe Model MT-50 (T	racked/ Truck-mount)	DATE	TIME	WATER	CASING		REMARKS	
				•	ID) by 4' MacroCore			ļ			ļ		
	RBUR	DEN S	AMPLING	METHO	Direct Push Metho	ds							r-
D				_					EQUIPM INSTALLAT		D		
E P			SAMPL	.E	SA SA	MPLE DESCRIPTION					E P	MOISTURE	
	DEPTH		RECOVERY	STRATA							Τ	CONTENT	
н	(FT.)	NO.	(INCHES)								н		
<u> </u>	0-4	S-1	24	0.0'	Dark brown SILT and f	SAND, trace(+) f angular to	subrounded	·			0.0'	damp	f
1						agments, organic material (es			0.8'	damp	
					and humus), damp, no	odors. TOPSOIL							
2				0.8'	Gray c angular GRAVE	L, damp, no odors. FILL	MATERIAL				2.0'	damp	
				1.0'	Brown f SAND, some S	ilt, little mf angular to subro	unded Gravel,	moisṫ,					
3					no odors,								
4	4 - 8	S-2	34	4.0'	As above, moist to dam	n no odors					4.0'	moist to damp	
5		102		4.0	As above, moist to dan	p, no odors.					4.0	inoist to damp	
Ŭ											5.0'	damp	
6				5.7'	Brownish-gray cm angu	lar GRAVEL, some(-) cmf S	Sand, moist. no	odors.					
				6.0'	Brown Clayey SILT, so	me f Sand, trace(+) mf subr	ounded Grave	, damp			6.0'	damp to wet	
7					to wet, no odors. GL	ACIAL TILL							
					-						6.8'	wet	
8					D (t) CAND I'm	(+) Silt, Little(-) mf angular			4				
•	8 - 12	S-3	22	8.0'	1		lo subrounded				8.0'	saturated	
9		+			Gravel, saturated, no o	JOIS.					9.0'	saturated	
10		<u> </u>			-							Januarda	
					1								
11													
12						REFUSAL @ 10.0-ft.			-				
					4								
13					-								1
14					4								
1-1					-								
15													
					-								
16													
	S . SS		LEGEND POON SOI		F NOTES								
			URBED SC										
			ORE SAM										
GEI	NERAL												
		'				ROXIMATE BOUNDARY B							
		2) W	ATER LE			DE AT TIMES AND UNDER							
				MAY	OCCUR DUE TO OTHE	R FACTORS THAN THOS	E PRESENT A	T THE T	IME MEASURE	EMENTS V	VERE		
LB/	A											BORING #	1

....

	ΛF	R	=	Λ			Pi	ROJECT				BOR	ING # SB-1	0
			Associate	ев, Р.С.	•		Phase II Enviro			ment		SHE	1 OF 1	
			OCHESTER, I SINEERING C		e			riage Cleane				JOB	# 204	129
							2101 Monroe A				l		D. BY	
			Nothnagle	a Drilling (Co.		BORING LOCA			-ft. North of Dry		•	SW Corner.	
			Chweitzer				GROUND SUR	-		TE 40 Mar 0	DAT	UM		
_AD		EPRE	SENTATI	VE	C. A. Stiles		START DATE	10-Mar-04		TE 10-Mar-0 LEVEL DATA	4			
түр		RILL	RIG	PowerP	robe Model I	MT-50 (T	racked/ Truck-mount)	DATE	TIME	WATER	CASING		REMARKS	
					ID) by 4' Ma		,				0/10/10			
				•	Direct Pus		ds		1				· · · · · · · · · · · · · · · · · · ·	
D								•	•	EQUIPM	ENT	D		
Е			SAMPL	E		SAI	MPLE DESCRIPTION			INSTALLATI	ON LOG	Е	MOISTURE	
Р												Р	CONTENT	PID
Т	DEPTH	NO.	RECOVERY	STRATA								Т Н	0011211	
н	(FT.)		(INCHES)						·					
	0 - 4	S-1	22		Asphalt - Not	•						0.3'	dry	0.0
1				0.3'	1 .		angular GRAVEL (Limesto	ne &/or dolosto	ine),					
				1.1'	dry, no odors.							1.5'	moist	0.0
2	_			1.1	DIOWIT SANL	J, Some Si	ilt, moist, no odors. GLA							
3														
Ŭ														
4					1									
	4 - 8	S-2	32	4.0'	As above, sat	lurated, no	odors.					4.0'	saturated	0.0
5				4.5'	Dark brownisi	h=gray to d	dark gray SILT, trace(-) cmi	Sand, trace(-)	f sub-					
					rounded Grav	vel, damp t	o wet, slight petroleum odo	r.				5.0'	damp	0.8
6														
												6.0'	damp to wet	4.1
7														
					1									
8	8 - 12	S-3	26	8.0'	Brown Clavey		e(+) cmf Sand, little mf sub	angular to sub	ound			8.0'	saturated	5.2
9							t petroleum odor(Gasoline)	-	ound			0.0	Jaioraleu	J.2
							· · · · · · · · · · · · · · · · · · ·					9.0'	saturated	7.7
10					1									
11					-									
					-									
12	12 - 16	64	0	12.0'	N/2								<u> </u>	
13	12-10	3-4		12.0	No recovery									
10				<u> </u>	1]
14				<u> </u>	1									
]									
15														
				ļ										[
16	L	l	L				REFUSAL @ 12.2-ft.							l
			LEGEND		_	NOTES:		0		. O				
			POON SOI				 Boring completed 5-ft Boring completed 12- 							
			JRBED SO ORE SAMI				bonny completed 12-	n Easi Ul ma	ikings io	i electrical ma			JOWAIK.	
-						L								
acr.				ATION LIN	NES REPRESE	ENT APPF	OXIMATE BOUNDARY B		TYPES.	TRANSITIONS	MAY BE	GRAD	UAL.	
							DE AT TIMES AND UNDER							
							R FACTORS THAN THOS							
LBA													BORING #	SB-10

L	$\overline{\Lambda}$	3	ELI	Δ			ROJECT	A				ING # SB-1	1
			ABBOCIETE ROCHESTER, N			Phase II Enviro	nmental Site riage Cleane		ment			1 OF 1	100
			GINEERING C		'S	2101 Monroe A	-		1/619		JOB	# 204 D. ВҮ	129
CON	TRAC	TOR	Nothnagle	Dritling (Co.	BORING LOCA				L Drv Clean			
			Schweitzer			GROUND SURI				DAT	-		
			ESENTATIN	/E	C. A. Stiles	START DATE	10-Mar-04	END DA	TE 10-Mar-0				
					- <u></u>	. <u></u>		WATER	LEVEL DATA				
ΓYΡ	EOFD	RILL	RIG	PowerF	robe Model MT-50 (T	racked/ Truck-mount)	DATE	TIME	WATER	CASING		REMARKS	
AUG	ER SIZ	ZE AN	D TYPE	2" (1.8"	ID) by 4' MacroCore						I		
	RBUA	DEN	SAMPLING	METHO	Direct Push Metho	ds		<u> </u>			<u> </u>	· · · · · · · ·	r
D				_		· · · · - · · · · · · · · · · ·			EQUIPM INSTALLATI		D		
E P			SAMPL	.E.	SAI	MPLE DESCRIPTION					E P	MOISTURE	PID
	DEPTH	1	RECOVERY	STRATA							I T	CONTENT	
н	(FT.)	NO.	(INCHES)								ļĤ.		
<u></u>	0-4	S-1	29	0.0'	Asphalt - Not sampled.	· · · · ·					0.3'	moist	0.0
1				0.3'	· ·	EL (Limestone &/or dolosto	ne), some cmf	Sand,					0.0
					moist, no odors. FILL	MATERIAL					1.0'	moist	0.0
2				1.3'	Brown mf ⁽⁺⁾ SAND, som	e(-) Silt, moist to wet, no or	tors.						
					GLACIAL TILL						2.0	moist to wet	0.0
3													
			ļ										
4													
_	4 - 8	S-2	19	4.0'	1	ilt, trace(+) mf ⁽⁺⁾ angular to		ravel,			4.0'	damp	47.0
5					damp to wet, moderate	to strong perchloroethylene	e odor.				5.00		
6											5.0	damp to wet	641
6													
7			<u>+</u>										
			<u> </u>		1								
8			1										
	8 - 12	S-3	10	8.0'	Brown cmf SAND and c	mf angular to subrounded (GRAVEL, trace	+(-)			8.0'	saturated	2000-
9					Silt, saturated, strong or	dor of perchloroethylene an	d gasoline.						
	 		ļ										
10			<u> </u>										
11					1								
12					1	REFUSAL @ 9.0-ft.							
		<u> </u>							1				
13]								
]]				
14	L				-								
	Ļ	L	 		4								
15			 	<u> </u>	4						1		
4.0					-								
16	L	I		l	NOTES:	<u> </u>			I		1	L	L
	S . SP		POON SOI			* Boring completed 5-ft	South of ma	rkinas to	r Carriade Cl	eaners st	orm s	ewer service	
			URBED SC			and ~6.5-ft. South of							
			ORE SAM			Boring completed 5-ft	+	-		•			
	IERAL					······							
		1) S	TRATIFICA		NES REPRESENT APPF	ROXIMATE BOUNDARY BE	ETWEEN SOIL	TYPES,	TRANSITIONS	MAY BE	GRAD	UAL.	
		2) W	ATER LEV	EL READ	DINGS HAVE BEEN MAI	DE AT TIMES AND UNDEF	R CONDITIONS	S STATE	D, FLUCTUATI	ONS OF C	BROUL	NDWATER	
				MAY	OCCUR DUE TO OTHE	R FACTORS THAN THOS	E PRESENT A	T THE TI	ME MEASURE	MENTS W	/ERE		
LBA	<u>ــــــــــــــــــــــــــــــــــــ</u>				10007 I I						· · · · · · ·	BORING #	SB-11

-

300 5			ABBOCIALE OCHESTER, I		, <u></u>		Phase II Enviro	ROJECT onmental Site riage Cleane		ment			ING # SB-1 1 OF 1 # 204	
			SINEERING C				2101 Monroe Av	venue, Bright	on, NY 1				D. BY	
			Nothnagle	Drilling (Co.		BORING LOCA			y Cleaner Bidg				
			Chweitzer		C. A. Stiles		GROUND SURF START DATE			TE 10-Mar-0	DAT 4	UM		
AD			SENTATI		C. A. 5085			10-1011-04		LEVEL DATA	<u></u>			
ſΥΡ		RILL	aig	PowerF	Probe Model MT-5	0 (Tra	acked/ Truck-mount)	DATE	TIME	WATER	CASING		REMARKS	
					ID) by 4' MacroCo		,				1			
OVE	RBUR	DEN S	AMPLING	METHO	Direct Push Me	thod	S							
D										EQUIPM		D		
E			SAMPL	.Е		SAM	PLE DESCRIPTION			INSTALLAT	ON LOG	E	MOISTURE	
Р				, <u> </u>								P	CONTENT	PID
Т	DEPTH	NO.	RECOVERY	STRATA) Т Н		
н	(FT.)		(INCHES)											
	0 - 4	S-1	32	0.0'	Asphalt - Not samp		(Limentene 9 /ex delector					0.2	slightly moist	0.3
1				0.2'	-		_ (Limestone &/or dolosto dors. <u>FILL MATERIAL</u>	ne), some c° m	11			1.0	molet	
2				1.1'	1		moist to wet, no odors.					1.0	moist	0.9
2				2.6	i		yey Silt, trace(-) f subang					2.0'	damp	6.7
3					Gravel, damp no oc							2.6	damp	3.1
Ŭ			• • • •		Grading To									
4							and, damp, no odors.							
	4 - 8	S-2	34	4.0'	Brown SILT and mf	f ⁽⁺⁾ SA	ND, trace(-) f subrounded	Gravel, wet, no	o odors.			4.0'	wet	0.0
5		_]									
												5.0'	wet	0.0
6				ļ	_									
				6.0'	Gray cmf angular to	o subr	ounded GRAVEL, little Sil	t, little(-) cmf S	and,			6.0'	moist to damp	67.4
7				_	moist to damp, no o	odors.								
					4									
8	8 - 12	S-3	22	8.0'	Brown mf ⁽⁺⁾ SAND	little/	 to some mf subangular 	to subrounded	·•.	-		8.0	wet	75.0
9	0-12			0.0	-		moderate petroleum odor:					0.0		/0.0
3			<u> </u>	<u> </u>		.,,						9.0'	wet	110
10			1	9.6'	Gravish-brown mf s	SAND	, some(+) mf angular to su	ubrounded Gra	vel,					
					saturated, strong g	asolin	e odors.					9.8'	saturated	641
11				9.8'	Dark gray stained f	SAN	D, little Silt, saturated, stro	ng gasoline od	ors.				ĺ	
					-									
12							(1)						 	{
	12 - 16	S-4	15	12.0'	4 ' '	Gravel	, some(+) c ⁽⁺⁾ m Sand, trac	e Silt, moderal	e			12.0	saturated	71.4
13					petroleum odor.									
14					4									
14					4									
15				<u> </u>	-									
	[]							[
16					<u> </u>		REFUSAL @ 14.0-ft.		_		•		<u> </u>	1
	U - U	DIST	LEGEND POON SOI URBED SO ORE SAM	IL SAMPL DIL SAMF	.E	TES:	* Boring completed 5-ft	t North of ma	rkings fo	r Carriage Cl	eaners sa	anitar	y sewer servic	e.
GEN	VERAL			·										
GEI	NEMAL				NES REPRESENT	APPR	OXIMATE BOUNDARY B	ETWEEN SOIL	TYPES.	TRANSITION	S MAY BE	GRAE	JUAL.	
							E AT TIMES AND UNDER							
		<i>⇒,</i> ,,,					R FACTORS THAN THOS							
LB/	۱.												BORING #	SB-12

-

100

.

	ΛF	3	=	Λ			ROJECT				BOR	ING # SB-1	3
			Associate OCHESTER, I			Phase II Enviro	onmental Site riage Cleane		ment		SHE	E 1 OF 1 # 204	100
			GINEERING C		rs	2101 Monroe Av			14618			# 204 D.BY	129
	TRAC	TOR	Nothnagle	Drilling (Co.	BORING LOCA				Cleaner B			•
RI	LLER	Jeff S	Schweitzer			GROUND SURI	FACE ELEVAT	TION		DAT	UΜ		
AB	ELLA F	REPRI	SENTATI	VE	C. A. Stiles	START DATE	10-Mar-04		TE 10-Mar-C	94	-		
ΥP	E OF D	BILI	RIG	PowerF	Probe Model MT-50 (T	racked/ Truck-mount)	DATE		LEVEL DATA WATER	CASING	1	REMARKS	
					ID) by 4' MacroCore		DATE		WATER	CASING		HEMANKS	
OVE	RBUR	DEN S	AMPLING	METHO	Direct Push Metho	ds							
D									EQUIPM		D		
E			SAMPL	.E	SA	MPLE DESCRIPTION			INSTALLAT	ON LOG	E	MOISTURE	
P T	DEPTH		RECOVERY	STRATA	-						T	CONTENT	PID
4	(FT.)	NO.	(INCHES)								н		
	0 - 4	S-1	19	0.0'	Asphalt - Not sampled.								
1				0.2'		EL, some cm Sand, slightly	moist, no odo	rs.			1	damp	0.0
					FILL MATERIAL								
2				1.4'	1	ne(-) f Sand, trace f subang	ular to subrou	nded			2	damp	0.3
3					Gravel, damp, no odors						3		
3					-								
4					- 						4		
	4 - 8	S-2	34	4.0'	Brown Clayey SILT, sor	ne(-) f Sand, little mf angula	ar to subround	ed	1			damp to wet	0.0
5					Gravel, damp to wet, no	odors.					5		
				O'		e and a barrier day to your de		. 0.14					
6				5.9'	wet, no odors.	e cmf subangular to rounde	o Gravel, trac	e 511,			6	wet	0.0
7					wei, no odors.						7	wet	0.0
8						REFUSAL @ 7.0-ft.					8		
					-								
9					-						9		
10					-						10		
]								
11											11		
					-								
12									-		12		
13					-						13		
]								
14					-						14		
					-						45		
15					-						15		
16					-						16		
	•	•	LEGEND		NOTES:						•		•
	S - SP	LIT SI	POON SOI	L SAMPL	E								
			JRBED SC		LE								
			ORE SAM	PLE									
a CIV	NERAL				NES REPRESENT APPF	OXIMATE BOUNDARY BE	ETWEEN SOIL	. TYPES.	TRANSITIONS	MAY BE	GRAD	UAL.	
						DE AT TIMES AND UNDEF							
				MAY	OCCUR DUE TO OTHE	R FACTORS THAN THOS	E PRESENT A	AT THE TI	ME MEASURE	MENTS W	/ERE	MADE	
LBA												BORING #	SB-13

	<u>N</u> E	31	ELI	Δ		Pf Phase II Enviro	ROJECT	Asease	ment			ING # SB-1	4
300.5	TATE ST		Associate NOCHESTER, M				riage Cleane				JOB		129
			GINEERING C		rs	2101 Monroe A	-		14618			" 201 D. BY	. 20
CON	TRAC	TOR	Nothnagle	Drilling (Co.	BORING LOCA				Cleaner E			
RIL	LER	Jeff S	Schweitzer			GROUND SUR	FACE ELEVAT	TION		DAT	UМ		
ABE	ELLA F	EPRE	ESENTATI	VE	C. A. Stiles	START DATE	10-Mar-04		TE 10-Mar-0	4			-
		 .		De				T	LEVEL DATA		1		
			-		Probe Model MT-50 (T	racked/ +ruck-mount)	DATE	TIME	WATER	CASING		REMARKS	
					ID) by 4' MacroCore Direct Push Method	ds							·
D							L		EQUIPN		D		
ε			SAMPL	.E	SA	MPLE DESCRIPTION			INSTALLATI	ON LOG	E	MOISTUDE	
Рļ											P	MOISTURE CONTENT	Pl
- 1	DEPTH	NO.	RECOVERY								T H		
<u>н</u>	(FT.)	0.1	(INCHES)			<u> </u>					<u></u>		
₊⊦	0 - 4	S-1	24	0.0'	1	Sand, trace f subrounded (ses and humus), moist, no c					1	maint	
1				0.6'		e(+) mf ⁽⁺⁾ Sand, trace mf su					'	moist	0.0
2					Gravel, moist, no odors		J				2	moist	0.0
ľ]								
3											3		
ļ					4							1	
4	4 5			4.01	Draw 011 T	Denal Avenal,) and a discussion			-		4		
F	4 • 8	S-2	24	4.0'	1	Sand, trace(+) mf subangu	nar to subroun	ueo			5	damp to wet	0.0
5			+		Gravel, damp to wet, no						0		
6					1						6	wet	0.0
ľ]								
7											7		
$\left \right $			ļ		4								
8			 	<u> </u>		REFUSAL @ 6.5-ft.			-		8		
9					1						9		
1					1								
10					1						10		
Ī]								
11					4						11		
<u> </u>			<u> </u>	 	4						10		
12											12		
13					1						13		
Ì]								
14		ļ			4						14		
		<u> </u>	<u> </u>		4								
15		<u> </u>		<u> </u>	4						15		
16		-	1		4						16	1	
101		L	LEGEND	l	NOTES:				I			-I	١
	U - UN	DIST	POON SOI URBED SC	L SAMPL DIL SAMP		 Boring completed 7-ft 	. South of H	&A monit	oring well.				
			ORE SAM	PLE					····				
3EN	IERAL					ROXIMATE BOUNDARY B		TYPES	TRANCITIONS		GBYL		
						DE AT TIMES AND UNDER							
		2, N				R FACTORS THAN THOS							
LBA												BORING #	SB-1

1	ΛE	31	ELI	Δ		Pf Phase II Enviro	ROJECT	Assoss	mont			ING # SB-1	5
300 S	TATE ST		Associate IOCHESTER, M				riage Cleane				JOB		129
			GINEERING C		rs	2101 Monroe Av	-		14618			* 204 D. BY	123
CON	ITRAC	FOR	Nothnagle	Drilling (Co.	BORING LOCA				ry Cleane			-
			schweitzer			GROUND SUR				DAT	•		
LAB	ELLA R	EPRE	SENTATI	VE	C. A. Stiles	START DATE	10-Mar-04	END DA	TE 10-Mar-0	4			
								WATER	LEVEL DATA				
TYPI	E OF D	RILL	RIG	PowerP	robe Model MT-50 (T	racked/ Truck-mount)	DATE	TIME	WATER	CASING	I	REMARKS	
				•	ID) by 4' MacroCore						ļ		
<u> </u>	RBURI	DEN S	SAMPLING	METHO	Direct Push Metho	ds	1			L	<u> </u>	· · · · · ·	r—
D E			SAMPL	~		MPLE DESCRIPTION			EQUIPN INSTALLATI				
P			SAWIFL	-C	SA SA						E P	MOISTURE	P
F	DEPTH		RECOVERY	STRATA	ļ						Τ	CONTENT	'
н	(FT.)	NO.	(INCHES)	1							н		
	0 - 4	S-1	21		Asphalt - Not sampled.						0.2'	slightly moist	0.
1				0.2'	Gray mf angular GRAV	EL (Limestone &/or dolosto	ne), some(-) cr	n					
						odors. FILL MATERIAL					1.1	wet	0.
2			ļ	1.1'		(+) Silt, trace(-) f Gravel, we	et, no odors.				1		
ŀ					GLACIAL TILL								
3													
4	4 - 8	S-2	29	4.0'	Brown cmf ⁽⁺⁾ SAND sou	me(-) Silt, little(+) cmf subar	noular to subro	unded	1		4.0'	damp	0.
5	<u> </u>				Gravel, damp to wet, sli							Jamp	0.
Ť						Perersoni odon					5.0'	damp to wet	11
6													
ľ											6.0'	wet	13
7													
ļ									[
8		6 -							4			<u> </u>	
ŀ	8 - 12	S-3	18	8.0'	As above with strong ga	asoline odor, saturated @ 8	.8-ft.				8.0	wet	13
9											9.0'	saturated	11
10											9.0	Saluraleu	
` `									5				
11													
t											Ì		
12			ļ			REFUSAL @ 11.5-ft.		<u></u> .	4		1		ĺ
					-								
13				╞───੶	{								
14					{								
' *		<u></u>			1								
15			1		1						1		
Ī]								
16					<u> </u>	-							
			LEGEND		NOTES:								
			OON SOI			• Attempted to set well	in borehole, I	but sub-l	base gravel k	ept cavin	g in a	nd blocking	
			JRBED SC			borehole.							
			ORE SAMI	PLE		<u></u>	• • • -						
JEN	ERAL					ROXIMATE BOUNDARY B		TYPES	TRANSITIONS		GBAL	ο 1 Δ 1	
						DE AT TIMES AND UNDER							
		2; VV				ER FACTORS THAN THOS							
LBA												BORING #	SB-

4	Δ	В	EL	Ľ			ROJECT					ING # SB-1	6
			Associa			Phase II Enviro			ment			1 OF 1	
			OCHESTER, I GINEERING C		TS		riage Cleane				JOB		12
						2101 Monroe Av				l		D. BY	
				ronmenta	I Services	BORING LOCA			-tt West of Dry		-	NW Corner.	
						GROUND SUR			TE 40 4	DAT	UM		
	ELLA	TEPRE	ESENTATI	VE	M. Pelychaty	START DATE	12-Apr-04		TE 12-Apr-0 LEVEL DATA	4			
тур	E OF D		BIG	Geopro	be 54 LT - Track Mou	inted	DATE	TIME	WATER	CASING	r	REMARKS	
				•	ID) by 4' MacroCore	inea	DAIL			CASING	-	newiAnno	•
				•	Direct Push Metho	ds							
D									EQUIPN	ENT	D		Γ
E			SAMPL	E	SAM	IPLE DESCRIPTION			INSTALLAT	ON LOG	E		
Р											Р	CONTENT	
т	DEPTH	NO.	RECOVERY	STRATA							Т		
н	(FT.)	1.0.	(INCHES)	CHANGE							н		
	0 - 4	S-1	34	0.0'	Asphalt - Not sampled.						0.2'		
1				0.6'	Brown mf SAND, some	silt, trace gravel							
												Moist	
2													
3													
4	4 - 8	S-2	23	4.0'		ne silt, trace angular grave					1.01	14/-4	
5	4-0		23	4.0	BIOWITCHII) SAND, SOI	ne sili, trace angular grave					4.0'	Wet	
8													
6													
Ĭ													
7													
8													
	8-11.1	S-3	23	8 .0'	Brown mt SAND, some	silt, trace gravel					8.0'	Saturated]
9													
10													
11													
12						REFUSAL @ 11.1-ft.							
12						NEFUSAL W TI. HIL							
13													
-													
14													
													1
15													
16					<u> </u>								
			LEGEND		NOTES:								
			POON SOI										
			JRBED SC		νLE								
			ORE SAM	PLE									
GEN	IERAL								TRANSITICS	0.000			
		,				ROXIMATE BOUNDARY B							
		2) W	ATERLEV		ONGS HAVE BEEN MA	DE AT TIMES AND UNDE							

4	<u></u>	В	EL			Phase II Enviro	NOJECT	e Assess	ment			ING # SB-1	17
300 S	TATE ST	REET, F	ABBOC	iates, F NEW YORK	20.		riage Cleane				JOB		12
			GINEERING C		TS	2101 Monroe Av	•		14618				
CON	ITRAC	TOR	SLC Envi	ronmenta	I Services	BORING LOCA	The second second second second second second second second second second second second second second second s			Cleaner E			
DRIL	LER.	Rich	Rose			GROUND SUR	FACE ELEVA	TION	-	DAT	UM		
LAB	ELLA F	REPRI	ESENTATI	VE	M. Pelychaty	START DATE	12-Apr-04	END DA	TE 12-Apr-0	4			
								WATER	LEVEL DATA				
TYP	E OF D	RILL	RIG	Geopro	be 54 LT - Track Mo	unted	DATE	TIME	WATER	CASING		REMARKS	
AUG	ER SIZ	ZE AN	D TYPE	2" (1.8"	ID) by 4' MacroCore	•							
	RBUR	DENS	SAMPLING	METHO	Direct Push Metho	ods		I					_
D				_					EQUIPN INSTALLAT		D		
E			SAMPL	.E	SA SA	MPLE DESCRIPTION			INSTALLAT	ONLOG	E	MOISTURE	
P											P	CONTENT	
	DEPTH	NO.	RECOVERY								Т		
н	(FT.) 0 - 4	S-1	(INCHES) 32	0.0							н		-
1				0.5'	Asphalt - Not sampled Limestone GRAVEL, s							Dry	
'				1.0'	Brown mf SAND, some							Moist	
2												WOISt	
-													1
3					1								
1					1								
4					1								
ľ	4 - 8	S-2	23	4.0'	As above						4.0'	Moist	1
5				4.4'	Brown cm SAND, som	e angular gravel, little silt, cl	nemical odor					to	
Ī					1							Wet	
6]								
													2
7													
ļ													
8													
H	8 - 9.7	S-3	20	8.0'	1	e silt, chemical and petroleu	m odor				8.0'	Saturated	2
9				9.0	Brown CMF SAND, so	me angular gravel, little silt							
					-								2
10					-								
11					-								
''					1								
12					-	REFUSAL @ 9.7-ft.							
													1
13					1								
]								
14													
15					4								
					-								
16					l								1
			LEGEND		NOTES	:							
			POON SOI										
			URBED SC		'LE								
			ORE SAM	PLE									
GEN	IERAL								TRANSITION		- 6 -		
		,				PROXIMATE BOUNDARY B							
		0) 14	ATEDIEN	EL DEAL	DINICS HAVE DEEN 14			NC CTATE			GPO		
		2) W	ATER LE			ADE AT TIMES AND UNDE ER FACTORS THAN THOS							

			ASSC OCHESTER, I GINEERING C			Phase II Enviro	riage Cleane	rs					
CON1	FRACT	TOR	SLC Envir	ronmenta	I Services	BORING LOCA	TION 26-ft.	South & 1	5-ft West of D	y Cleaner	Bldg.	NW Comer.	
RILL	_ER	Rich I	Rose			GROUND SURI				DAT	UΜ		
ABE	LLA R	EPRE	SENTATI	VE	M. Pelychaty	START DATE	12-Apr-04		TE 12-Apr-0	4			
								T-	LEVEL DATA	0.4.011/0	<u> </u>	DEMARKO	
					be 54 LT - Track Mou ID) by 4' MacroCore	Inted	DATE	TIME	WATER	CASING		REMARKS	
					Direct Push Metho	de							
	10011							L	EQUIPM	ENT	D		
E			SAMPL	E	SAI	MPLE DESCRIPTION			INSTALLATI		Е		
P				-							Р	MOISTURE CONTENT	PI
-	DEPTH		RECOVERY	STRATA	1						т	CONTENT	
	(FT.)	NÖ.	(INCHES)								н		
	0-4	S-1	36	0.0'	Asphalt - Not sampled.	· · · · · · · · · · · · · · · · · · ·							
1				0.7'	Brown mf SAND, little s							Moist	0.0
T													
2					1								0.0
Γ											l		l
3												Wet	0.0
L					-								
4													
	4 - 8	S-2	28	4.0'	As above						4.0'	Moist	0.0
5				4.5'	Dark gray mf SAND, litt						1	Moist	
Ļ				4.7'	Dark gray SILT, little f s								
6				5.3'	Brown SILT, some c ⁽⁺⁾ n	nf sand						Moist	0.0
F					-							to	
7			Į	<u> </u>	4							Wet	ļ
٦-			ł	<u> </u>	-								
8	- 11.8	S-3	18	8.0'	Brown cm SAND little	angular gravel and silt, peti	oleum odor				8.0'	Wet	145
9 โ		<u> </u>				angola gratol and only pos							
Ť			†										200
10					1								
			1		-								
11													
12						REFUSAL @ 11.8-ft.			4				ł
F			ļ		4								
13	<u></u>		ļ		4								
_		<u> </u>		<u> </u>	4								
14				<u> </u>	4								ļ
_ ŀ			+	+	4								
15		┣──			4								
16					1						1		
		i			NOTES				· • · · · · · · · · · · · · · · · · · ·			******	· · · · · ·
			POON SO	IL SAMP									
	C - RC		ORE SAM	IPLE							•		
GEN	ERAL					_							
		01 14	ATEDIE		DINCE DAVE DEEN M	ADE AT TIMES AND UNDE	B CONDITIO	NS STAT	ED FLUCTUA	TIONS OF	E GBC		
		2) V				ER FACTORS THAN THO							

.

L	$\overline{\Lambda}$	E	3Ē			PF Phase II Enviro	ROJECT	Assess	ment			ING # SB-1	9
			OCHESTER,	NEW YORK	es, P.C.	Car	riage Cleane	rs			JOB	# 204	129
ENVIR	ONMEN	TAL EN	GINEERING C	ONSULTAN	TS	2101 Monroe Av	venue, Brigh	ton, NY	14618		снк	D. BY	
CON	TRAC	TQR	SLC Envi	ronmenta	Services	BORING LOCA	TION 35.5-	t. South &	30-ft West of	Dry Clean	er Bld	lg. NW Corner.	
DRIL	LER.	Rich	Rose			GROUND SUR	FACE ELEVA	FION		DAT	UМ		
ABE	ELLA F	EPR	SENTATI	VE	M. Pelychaty	START DATE	12-Apr-04	END DA	TE 12-Apr-0	4			
								WATER	LEVEL DATA	_·····	·····		
	E OF D				be 54 LT - Track Mou	inted	DATE	TIME	WATER	CASING		REMARKS	
					ID) by 4' MacroCore			ļ					
	RBURI	DENS	SAMPLING	6 METHO	Direct Push Metho	ds		L		L		r	r
				-		NDI E DECODIOTION			EQUIPM INSTALLATI		D E		
E			SAMPL	.E	SAI	MPLE DESCRIPTION				011200	P	MOISTURE	PI
F	DEDTU										Р Т	CONTENT	11
т II H	DEPTH	NO.	RECOVERY								н		
	(FT.) 0 - 4	S-1	(INCHES) 35	0.0	Asphatt - Not sampled.						- 11		
1	<u> </u>	0-1		0.5	Brown cm SAND and G							Dry	0.0
' -			<u> </u>	1.3	Brown mf SAND, trace							Dry Dry	0.0
2													0.0
					1								0.0
3	-				-								0.0
Ť													0.0
4													
	4 - B	S-2	30	4.0'	Dark gray Clayey SILT,	little f sand						Moist	0.0
5				5.0'	Brown SILT, little mf sa							Moist	
													0.0
6													
ľ					1								0.0
7					1							Wet	
Γ													
8													J
8	3 - 10.5	S-3	18	8.0'	As Above								
9				8.1'	GRAVEL, some cmf sa	nd, petroleum odor						Moist	36
				8.7'	Brown Clayey SILT, littl	ie cm sand and angular gra	vel, petroleum	odor				Wet	90
10													
11													
┝					-								
12				 		REFUSAL @ 10.5-ft.			4				1
.		<u> </u>			{				1				
13			<u> </u>		1								
14		<u> </u>			1								
' "					1								
15					1								
·					-								
16			1	1	1								
<u> </u>			LEGEND		NOTES:				<u> </u>		•	•	•
	S - SP	LIT SI	POON SO		E								
			URBED SO										
			ORE SAM										
	ERAL									_			
				ATION LI	NES REPRESENT APP	ROXIMATE BOUNDARY B	ETWEEN SO	IL TYPES	, TRANSITION	IS MAY BI	E GR/	ADUAL.	
		2) W		/EL REA	DINGS HAVE BEEN MA	DE AT TIMES AND UNDE	R CONDITION	NS STATI	ED, FLUCTUA	TIONS OF	GRO	UNDWATER	
				MAY	OCCUR DUE TO OTHE	ER FACTORS THAN THOS	SE PRESENT	AT THE	TIME MEASUR	EMENTS	WER	EMADE	
LBA												BORING #	SB-

-

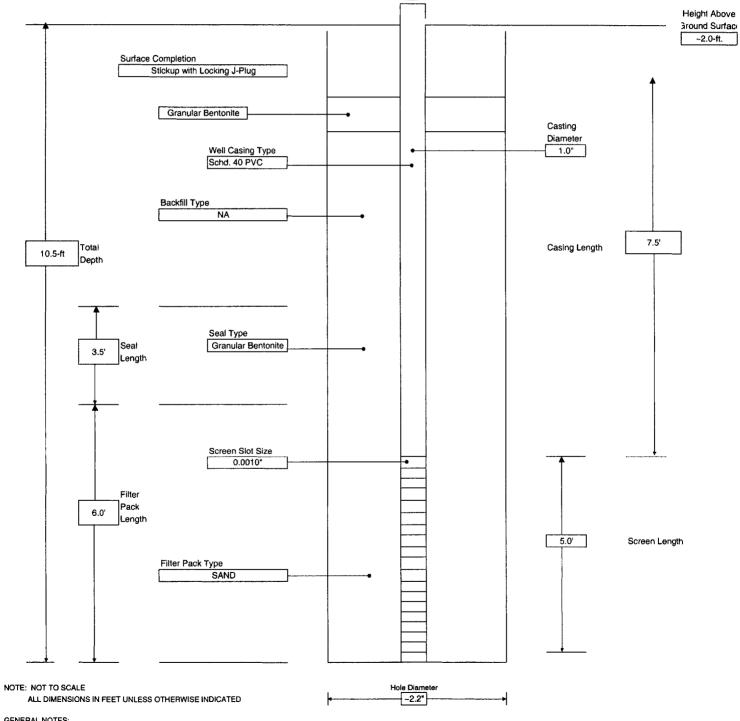
	Δ	E	3E		LA ates, P.C.	Phase II Enviro			ment			ING # SB-2	20
			ROCHESTER, I GINEERING C		re .		riage Cleane				JOB	# 204	129
						2101 Monroe Av					-	D. BY	
			SLC Envi	ronmenta	I Services	BORING LOCA			I-ft West of Dry		-	SW Comer.	
						GROUND SUR				DAT	UM		
AB	ELLA F	EPHI	ESENTATI	VE	M. Pelychaty	START DATE	12-Apr-04		TE 12-Apr-0	1		·	
ΓYΡ	E OF D	RILL	RIG	Geopro	be 54 LT - Track Mo	unted	DATE		LEVEL DATA WATER	CASING	[REMARKS	
400	ER SIZ	ZE AN	ID TYPE	2" (1.8"	ID) by 4' MacroCore								
OVE	RBUR	DENS	SAMPLING	METHO	Direct Push Metho	ods	***						
D									EQUIPM	ENT	D		
Е			SAMPL	.E	SA	MPLE DESCRIPTION			INSTALLATI	ON LOG	Е	MOIOTUDE	
P											Р	MOISTURE CONTENT	PI
т	DEPTH	NO.	RECOVERY	STRATA							т	CONTEN	
н	(FT.)		(INCHES)	CHANGE							н		
	0 · 4	S-1	38	0.0'	Asphalt - Not sampled.								
1				0.2'	Brown mf SAND, little	silt						Moist	0.0
2													0.0
			ļ										
3			ļ										0.
4													
	4 - 6	S-2	46		As Above								0.
5													
_			 	5.7'	Gray CLAY, trace cm s	and and gravel						Moist	0.0
6	6-8	S-3											
-												14/-1	
7												Wet	0.0
8													
	8 - 10.5	S-4	18	8.0'	Brown Silty CLAY, little	cm sand and gravel						Saturated	21
9						om ound and grator							
Ĩ													23
10													
11													
12						REFUSAL @ 10.5-ft.							
13													
			<u> </u>										
14				 									
											ł		
15				<u> </u>									
16													
10	L	l	LEGEND	L	NOTES						I	L	1
	S.SP	UTS	POON SOI										
			URBED SC										
			ORE SAM										
				<u>, Lu</u>	· · · · · · · · · · · · · · · · · · ·								
				ATION LI	NES REPRESENT APP	ROXIMATE BOUNDARY B	ETWEEN SOI	L TYPES	, TRANSITION	IS MAY BI	E GR/	ADUAL.	
						ADE AT TIMES AND UNDE							
		_,				ER FACTORS THAN THOS							

			3		ciates, P.C.	Phase II Enviro	NOJECT	Assess	ment			ING # SB-2	
			OCHESTER, I	NEW YORK		Car	riage Cleane	rs			JOB	# 204	129
			GINEERING C			2101 Monroe Av						D. BY	
			SLC Envi	ronmenta	I Services	BORING LOCA			7.5-ft West of	-		g. NW Corner.	
			Hose ESENTATI	VE	M. Pelychaty	GROUND SUR			TE 12-Apr-0	DAT 4	UM		
					W. Folyonaty		12740104		LEVEL DATA				
түр	EOFD	RILL	RIG	Geopro	be 54 LT - Track Mo	ounted	DATE	TIME	WATER	CASING		REMARKS	
				,	ID) by 4' MacroCor								
	RBUR	DEN S	SAMPLING	METHO	Direct Push Meth	nods						[r
D E			SAMPL	-		AMPLE DESCRIPTION			EQUIPN INSTALLAT		DE		
P			SAMPL			AMPLE DESCRIPTION					P	MOISTURE	F
	DEPTH		RECOVERY	STRATA							т	CONTENT	
н	(FT.)	NO.	(INCHES)	CHANGE							н		
	0 - 4	S-1	36	0.0'	Asphalt - Not sampled	d.							
1				0.6	Limestone GRAVEL,							Dry	
				1.0'	Brown mf SAND, little	e silt						Moist	
2													
3					1								
Ĩ					1								
4													
	4 - 8	S-2	24	4.0'	Brown SILT, some mi	f sand, trace gravel, chemica	lodor					Moist	
5		_			4								
6		-			-								
7					-								
					1								
8													
1	8 - 10.5	S-4	16		As Above							Saturated	1
9				8.2'	Brown cmf SAND, so	me angular gravel, little silt, s	strong petrole	ım odor					
10					4								2
					1								
11					1								
12						REFUSAL @ 11.4-ft.							
13					-								
13					-								
14					1								
15					-								
					4								
16	1	I	LEGEND	L	NOTE	S:			1		L	I	1
	S - SP	LIT S	POON SO			-							
			URBED SO										
	C - R(оск с	ORE SAM	PLE									
GEN	NERAL												
		2) V	ATER LE			ADE AT TIMES AND UNDE							
				MAT	OCCOR DUE TO OT								

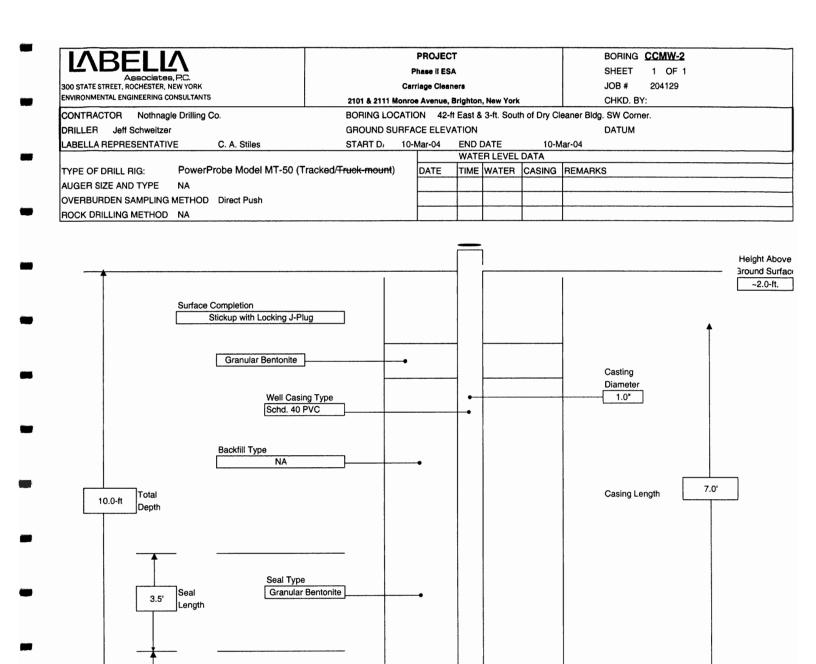
			B			Λ		ROJECT					ING # SB-2	22
_		-			ociate	эв , Р.С.	Phase II Enviro			ment			1 OF 1	
			ROCHESTER, I GINEERING C		rs			riage Cleane				JOB		129
		~		····			2101 Monroe A					_	D. BY	
			SLC Envir	ronmenta	I Services		BORING LOCA			7.5-ft west of I			g. NW Corner.	
			ESENTATI		M. Pelychaty		GROUND SUR START DATE			TE 10 Amr.0	DAT	UM		
			SENTAN	v <u> </u>	W. Felychaty		START DATE	12-Api-04		TE 12-Apr-0	+			
YP	EOFD	BUI	RIG	Geopro	he 54 T - T	rack Mounte	d	DATE	TIME	WATER	CASING		REMARKS	
				•	ID) by 4' Ma		4		TIVIE	MAIEN	CASING		NENIARNO	
				•	Direct Pu									
D							1		1	EQUIPM	ENT	D		
E			SAMPL	.E		SAMPL	E DESCRIPTION			INSTALLATI		E		
Р												Р	CONTENT	Р
т	DEPTH	NO.	RECOVERY	STRATA	1							т	CONTENT	
H	(FT.)	NO.	(INCHES)	CHANGE								н		
	0 - 4	S-1	36	0.0'	Asphalt - Not	sampled.								
1				0.8'	Limestone G	RAVEL, some	cm sand						Dry	0
				1.2'	Brown SILT,	cmf sand							Dry	
2														0
I				2.4'	Brown cmf S	AND, some sill	and angular gravel						Moist	
3														0
4														
_	4 - 6.9	S-2	12	4.0'	Brown mf sar	ndy SILT, some	e angular gravel, slight	chemical odor					Moist	0
5														
_														0
6														
7														
1														
8							REFUSAL @ 6.9-ft.							
-														1
9					1									
					1									
0														ļ
														}
1														
2														
												l		
3														
			ļ											1
4														
5												ĺ		
Ĩ														
6			1		1									
	•		LEGEND		•	NOTES:				L		•		•
	S - SP	LIT SF	POON SOI	L SAMPL	.E									
	U - UN	DIST	URBED SC		LE									
_	<u>C - RC</u>	скс	ORE SAM	PLE										
E	FRAL	NOTE	S:											
		1) ST	TRATIFICA	TION LI	NES REPRES	SENT APPROX	IMATE BOUNDARY B	ETWEEN SO	L TYPES	, TRANSITION	S MAY BE	GR/	ADUAL.	
		2) W	ATER LEV				AT TIMES AND UNDE							
				MAY	OCCUR DUE	TO OTHER F	ACTORS THAN THOS	E PRESENT	AT THE 1	IME MEASUR	EMENTS	WER		
BA	1									<u></u>			BORING #	SB-

			OCHESTER, I	NEW YORK	ELLA	Phase II Enviro Cari	riage Cleane	rs			SHEI JOB		
CON	TRAC	TOR	SLC Envi		l Services	2101 Monroe Av BORING LOCA	TION 28-ft.	North & 1		y Cleaner	Bldg.	D. BY NE Corner.	
	LER					GROUND SUR				DAT	UM		
LABE	ELLA P	EPRE	ESENTATI	VE	M. Pelychaty	START DATE	12-Apr-04		TE 12-Apr-0	4			
				• ••••	be CALT. Treat Merunian			T	LEVEL DATA				
	EOFD			•	be 54 LT - Track Mounted		DATE	TIME	WATER	CASING		REMARKS	
				•	ID) by 4' MacroCore								
	RBURI	DENS	SAMPLING	METHO	Direct Push Methods			<u> </u>					
D				_				1	EQUIPN INSTALLATI		D		
E			SAMPL	.E	SAMPLE	ESCRIPTION				011 200	E	MOISTURE	
P	·7		r	r							Р -	CONTENT	PI
	DEPTH	NO.	RECOVERY								Т		
н	(FT.)		(INCHES)					_			н		
μ	0 - 3.9	S-1	36		Asphalt - Not sampled.								
1				0.5	Black cm SAND and GRAVEL							Dry	0.
F				1.3'	Brown c ⁽⁺⁾ mf SAND, some ang	ular gravel, little silt						Dry	
2												to	0.
ŀ					4							Moist	
3					4								0.
H					4								
4					RE	FUSAL @ 3.9-ft.			-				
┝					4								
5													
Ļ					1						ł		
6			 		4						1		
ŀ					4								
7					4						ļ		
ŀ					-								
8					4								
ŀ					4				-				
9					4								
			<u> </u>		4								
10				 	1								
					4								
11					-								
				 								-	
12			 		-								
					-								
13		<u> </u>	<u> </u>		1								
14			<u> </u>	<u> </u>	4						1		
'*					-						1		
15					1							1	
·~ ŀ					1								
16			1		1								
<u></u> 1		l	LEGEND	·	NOTES:					_	<u> </u>	• ••••	
	4U - U	IDIST	POON SO URBED SO	IL SAMP DIL SAM	LE								
			ORE SAM	IPLE									
GEN	IERAL								TRANSITION				
		2) W	ATER LE		DINGS HAVE BEEN MADE AT								

			3		ciates, P.C.	PF Phase II Enviro	NOJECT	e Assess	ment			ING# SB-2	4
			ROCHESTER, GINEERING (NEW YORK			riage Cleane				JOB		129
					I Services	2101 Monroe Av BORING LOCA						D. BY	
	LLER			ionnenta	I Services	GROUND SUR			Dry Cleaner D	DAT			
AB		REPR	ESENTAT	IVE	M. Pelychaty	START DATE	12-Apr-04	END DA	TE 12-Apr-0)4			
								WATER	LEVEL DATA	·	r		
					be 54 LT - Track Mou ID) by 4' MacroCore	inted	DATE	TIME	WATER	CASING		REMARKS	
				•	Direct Push Metho	ds		+					
D									EQUIPN	IENT	D		
E			SAMP	LE	SAI	MPLE DESCRIPTION			INSTALLAT	ION LOG	Е	MOISTURE	
P			1		-						P	CONTENT	Ρ
т н	DEPTH (FT.)	NO.	RECOVERY	CHANGE							т н		
	0-4	S-1	33	0.0'	Asphalt - Not sampled.								
1				0.4'	Limestone GRAVEL, so	ome cm sand						Dry	0
				1.1'	Brown mf SAND, some	silt, trace angular gravel						Moist	
2													0.
3													
-													
4													
	4 - 8	S-2	10		As Above, slight chemic	cal odor						Moist	0
5													
6													
7													
8	8 - 11.9	S-3	20	8.0'	Brown cm SAND and a	ngular GRAVEL, trace silt,	strong petrole	um odor				Saturated	1
9]								
													2
10					-								
11					-								
.,					1								
12						REFUSAL @ 11.9-ft.							
					-								
13					-								
14					1								
]								
15					-								
16					1								
	L	J	LEGEND	l	NOTES:						ł		I
	S - SP	LITS	POON SO	IL SAMPI	E								
			URBED S		PLE								
	C - RO		ORE SAM	IPLE									
GEN	TERAL			ATION LI	NES REPRESENT APP	ROXIMATE BOUNDARY B	ETWEEN SO	IL TYPES	, TRANSITIO	NS MAY BE	E GR/	ADUAL.	
						DE AT TIMES AND UNDE							
				MAY	OCCUR DUE TO OTHE	ER FACTORS THAN THOS	E PRESENT	AT THE	TIME MEASU	REMENTS	WER		
LBA	۱											BORING #	SB-

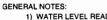

			B	E	=			ROJECT					ING # SB-2	5
					ssocia	tes, F	Phase II Enviro	nmental Site riage Cleane		ment			1 OF 1 # 204	120
			ROCHESTER, I GINEERING C		TS		2101 Monroe Av	-		14618		JOB CHK	# 204 D.BY	129
CON	TRAC	TOR	SLC Envi	ronmenta	Services	I	BORING LOCA				v Cleaner			
	LER						GROUND SUR				DAT	-		
AB	ELLA F	REPRI	ESENTATI	VE	M. Pelychaty		START DATE	12-Apr-04	END DA	TE 12-Apr-0	4			
									WATER	LEVEL DATA				
TYPE		RILL	RIG	Geopro	be 54 LT - T	rack Mou	nted	DATE	TIME	WATER	CASING		REMARKS	
					ID) by 4' Ma									
	RBUR	DENS	SAMPLING	METHO	Direct Pus	sh Methoo	ls					_		
				-						EQUIPM INSTALLATI		DE		
E P			SAMPL	.E		SAN	IPLE DESCRIPTION				011200	P	MOISTURE	PID
- H	DEPTH		RECOVERY	STRATA								Т	CONTENT	
н	(FT.)	NO.	(INCHES)									н		
<u> </u>	0-4	S-1	33	0.0'	Asphalt - Not	sampled.								
1				0.6'	Limestone G	•	d cm SAND						Dry	0.0
ľ				0.8'	Brown mf SA	ND, little ar	ngular gravel and silt						Moist	
2				1.5'	1		ne mf sand, trace gravel						Moist	0.0
													to	
з													Wet	0.0
4														
ŀ	4 - 7.7	S-2	17	4.0'	Brown Clayey	y SILT, son	ne mf SAND						Moist	0.0
5					{								to	
_					-								Saturated	
6					-									
7					{									
í ŀ					1									
8					1		REFUSAL @ 7.7-ft.							
										1				
9]									
10														
					-									
11					4									
.					-									
12					-									
13					-									
			1		1									
14]									
15					-									
					4									
16		L	1.525.5		1	NOTO				L				L
	0 00				-	NOTES:								
			POON SO URBED SO											
			ORE SAM											
	ERAL					I								
					NES REPRES		ROXIMATE BOUNDARY E	SETWEEN SO	IL TYPES	, TRANSITION	S MAY B	E GR	ADUAL.	
							DE AT TIMES AND UNDE							
							R FACTORS THAN THOS							
LBA													BORING #	SB-25

			В				PF Phase II Enviro	ROJECT	e Assess	ment			ING # SB-2	26
			ROCHESTER, I GINEERING C	NEW YORK				riage Cleane		1/619		JOB		129
cor	NTRAC	TOR	SLC Envi	ronmenta	I Services	I	2101 Monroe Av BORING LOCA						D. BY W Comer.	
DRI	LLER	Rich	Rose				GROUND SUR	FACE ELEVA	TION		DAT	UМ		
AB	ELLA	REPR	ESENTATI	VE	M. Pelychaty		START DATE	12-Apr-04		TE 12-Apr-C				
rve	e of t	וואמ	RIG	Geopro	be 54 LT - T	rack Mour	ted	DATE		LEVEL DATA	CASING		REMARKS	
				•	ID) by 4' Ma			DAIL			CASING		n ElviAnno	,
					Direct Pus		S							
D										EQUIPM		D		
Е			SAMPL	.E		SAM	PLE DESCRIPTION			INSTALLAT	ION LOG	E	MOISTURE	
Р		r	1									P	CONTENT	P
т н	DEPTH	NO.	RECOVERY (INCHES)									т н		
<u>n</u>	(FT.) 0 - 4	S-1	33	0.0	Asphalt - Not	sampled								
1				0.7'	Angular Grav	•	SAND						Dry	
				1.2'	1 -		ilt, trace gravel						Moist	
2														0
				2.2'	Brown Clayey	/ SILT, little	mf SAND						Moist	
3														
4														
4	4 - 8	S-2	27		As Above, slig	abt chemics	l odor							
5				4.7'	1	-	cmf SAND and angular g	ravel					Moist	`
-					,	,								
6]									0
		ļ												
7														
8					1									
0	8 - 8.4	S-3	5	8.0'	Brown clavev	silt. some	nf SAND, trace gravel						Saturated	
9						,							Culture	
]									
10														
11					4									
12					-		REFUSAL @ 8.4-ft.							
14														1
13					1									
14					-									
					-									
15			**************************************		1									
16		-			-									
		1	LEGEND			NOTES:								1
	S · SP	LITS	POON SOI	L SAMPL	.E									
	U - UN	DIST	URBED SC	DIL SAMF	PLE									
			ORE SAM	PLE										
GEN	NERAL			-						-				
		,					OXIMATE BOUNDARY B							
		2) V	ALEKLEV				E AT TIMES AND UNDE FACTORS THAN THOS							
					COUNDUE	. o omer							BORING #	SB


			B	F			ROJECT	_				ING # SB-2	27
		-			saociates				ment	ļ		1 OF 1	
			ROCHESTER, I GINEERING C		TS		riage Cleane				JOB		129
						2101 Monroe A						D. BY	
			SLC Envii	ronmenta	Services	BORING LOCA			0-fl West of Dr	-	-	NW Corner.	
					M. Dahishahi	GROUND SUR			TE 40 4 0	DAT	UM		
_AB	ELLAF	EPH	ESENTATI	VE	M. Pelychaty	START DATE	12-Apr-04		TE 12-Apr-0	4			
TVP				Geopro	be 54 LT - Track M	ounted	DATE	TIME	UEVEL DATA	CASING		DEMADICO	
					ID) by 4' MacroCor			/ 11415	WAIEN	CASING		REMARKS	
				•	Direct Push Meth								
D								L	EQUIPM	ENT	D		
Е			SAMPL	.E	s	AMPLE DESCRIPTION			INSTALLATI		E		
Р											Р	MOISTURE	PID
T	DEPTH	NO.	RECOVERY	STRATA	1						т	CONTENT	
Н	(FT.)	NO.	(INCHES)	CHANGE						ĺ	н		
	0 • 4	S-1	32	0.0'	Asphall - Not sample	d.							
1				0.6'	Angular GRAVEL and	d cmf SAND						Dry	0.0
				1.3'	Brown mf SAND, son	ne silt						Moist	
2													0.0
3													
4													
	4 - 8	S-2	26	4.0'	Brown clayey SILT, s	ome angular gravel, little cmf	sand					Moist	0.0
5												to	
	·····											Wet	
6													0.0
_													
.7													
8					1								
i	B - 10.1	S-3	12	8.0'	Brown of sandy SILT	, some gravel, slight petroleu	im odor					Moist	0.0
9						, come grater, engrit per ore						(indiat	0.0
-													
10													
11													
12						REFUSAL @ 10.1-ft.							
					4								
13					ł								
14					1								
15			i		1								
10					ł							1	
16					1								
			LEGEND	•	NOTE	S:			• <u> </u>	•	•	<u></u>	•
	S - SP	LITS	POON SOI	L SAMPL	.е								
	U - UN	DIST	URBED SC	DIL SAMF	ч.E								
	C - RC	ск с	ORE SAM	PLE									
GEN	IERAL	NOTE	S:										
		1) S	TRATIFICA	TION LI	NES REPRESENT AP	PROXIMATE BOUNDARY B	ETWEEN SOI	L TYPES	, TRANSITION	IS MAY BE	GR/	DUAL.	
		2) W	ATER LEV	EL REAL	DINGS HAVE BEEN N	ADE AT TIMES AND UNDE		IS STATE	D, FLUCTUA	TIONS OF	GRO	UNDWATER	
				MAY	OCCUR DUE TO OTI	HER FACTORS THAN THOS	E PRESENT	AT THE T	IME MEASUR	EMENTS	WER		
LBA	1											BORING #	SB-27

				3 E	EL				A				ING # SB-2	28
	TATE OF	-	OCHESTER, I		Associ	ates, P	· L.	nmental Site riage Cleane		ment			1 OF 1	100
			GINEERING C		TS		2101 Monroe Av			14618		JOB	# 204 D.BY	129
			SLC Envi	ronmenta	I Services	I	BORING LOCA	TION 27-ft.	North & 1		y Cleaner E	3ldg.		
			Rose ESENTATI		M. Pelychaty		GROUND SUR			TE 12-Apr-0	DAT	ОМ		
		LFR	-SENTAN	v	W. Pelychaty	·····	START DATE	12-Apr-04				•		
γP	E OF D	RILL	RIG	Geopro	be 54 LT - Tra	ick Mounted		DATE	TIME	WATER	CASING		REMARKS	 }
UG	ER SIZ	ZE AN	D TYPE	2* (1.8*	ID) by 4' Mac	roCore								
VE	RBUR	DEN S	SAMPLING	METHO	Direct Push	Methods								
5										EQUIPN		D		
Ξ			SAMPL	E		SAMPLE DE	ESCRIPTION			INSTALLAT	ION LOG	Е	MOISTURE	
2			1									P	CONTENT	F
	DEPTH	NO.	RECOVERY									Т		
4	(FT.) 0 - 4	S-1	(INCHES) 30	CHANGE 0.0'		ampled						н		
1				0.0	Asphalt - Not sa Limestone GB4	ampied. AVEL and cmf SA					I		Dry	
'				1.1'	1	AY, little cmf sand							Moist	`
2						, and only dalle							Moist	
			1		1									
3														
									-					
١														
ł	4 - 7.8	S-2	19		As Above									0
5				5.2'	Brown cmf SAN	ID and GRAVEL	trace silt						Moist	
														.
3					1									
7														
			~~											
8					1	REFL	JSAL @ 7.8-ft.							
														1
9														
0														
					1									
1					1									
2					1									
					1									
3]									
ŧ					-									
					{									
5					-									
					1									
	U - UN	LIT SI DISTI ICK C	LEGEND POON SOI JRBED SC ORE SAM	DIL SAMP	E	NOTES:								
					NES REPRESE		TE BOUNDARY B	ETWEEN SO	L TYPES	, TRANSITION	NS MAY BE	GR/	ADUAL.	
		•					IMES AND UNDE							
		-,					ORS THAN THOS							
BA													BORING #	SB

IVBELIV		PROJEC	Г			BORING CCMW-1		
LZ \LDLLLL\ Associates, RC.		Phase II ES	4			SHEET 1 OF 1		
300 STATE STREET, ROCHESTER, NEW YORK	Ca	rriage Clear	ers			JOB # 204129		
ENVIRONMENTAL ENGINEERING CONSULTANTS	2101 & 2111 Monro	e Avenue,	Brighton	, New York		CHKD. BY:		
CONTRACTOR Nothnagle Drilling Co.	BORING LOCAT	ON 8-ft	East & (6-ft North	of Dry Clea	aner Bidg. Inside Comer.		
DRILLER Jeff Schweitzer	GROUND SURF/	CE ELEV	ATION			DATUM		
LABELLA REPRESENTATIVE C. A. Stiles	START D/ 10	Mar-04	END [DATE	10-N	far-04		
			WATE	RLEVEL	DATA			
TYPE OF DRILL RIG: PowerProbe Model MT-50 (Tra	cked/ Truck-mount)	DATE	TIME	WATER	CASING	REMARKS		
AUGER SIZE AND TYPE NA								
OVERBURDEN SAMPLING METHOD Direct Push								
ROCK DRILLING METHOD NA							4	



GENERAL NOTES: 1) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

5.0'

Screen Length

NOTE: NOT TO SCALE

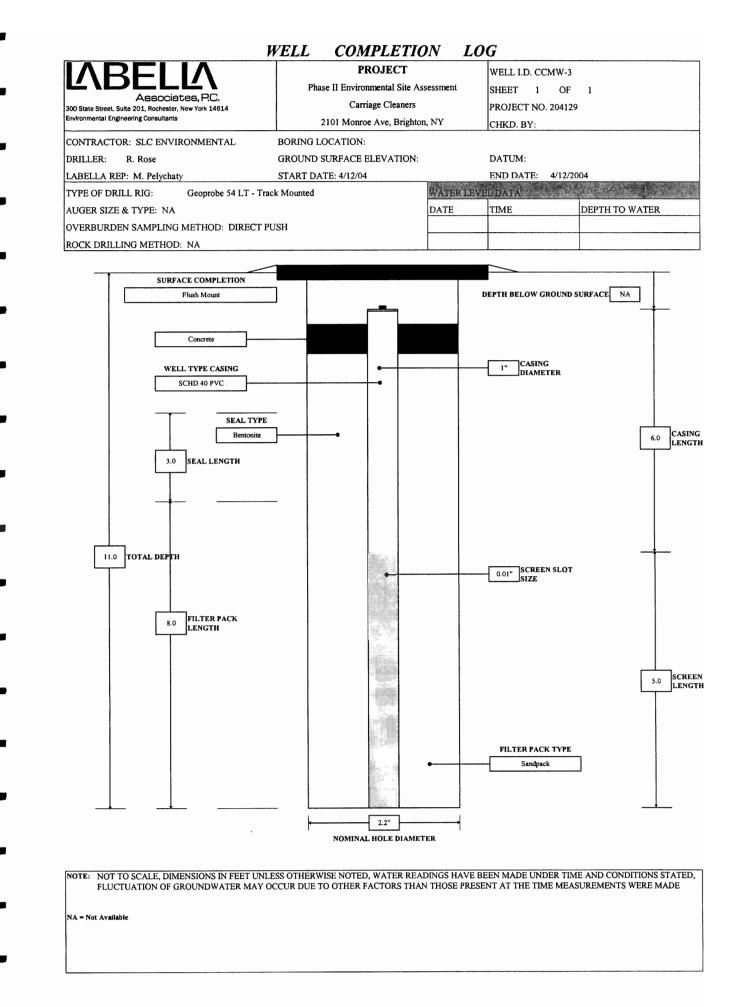
Filter Pack

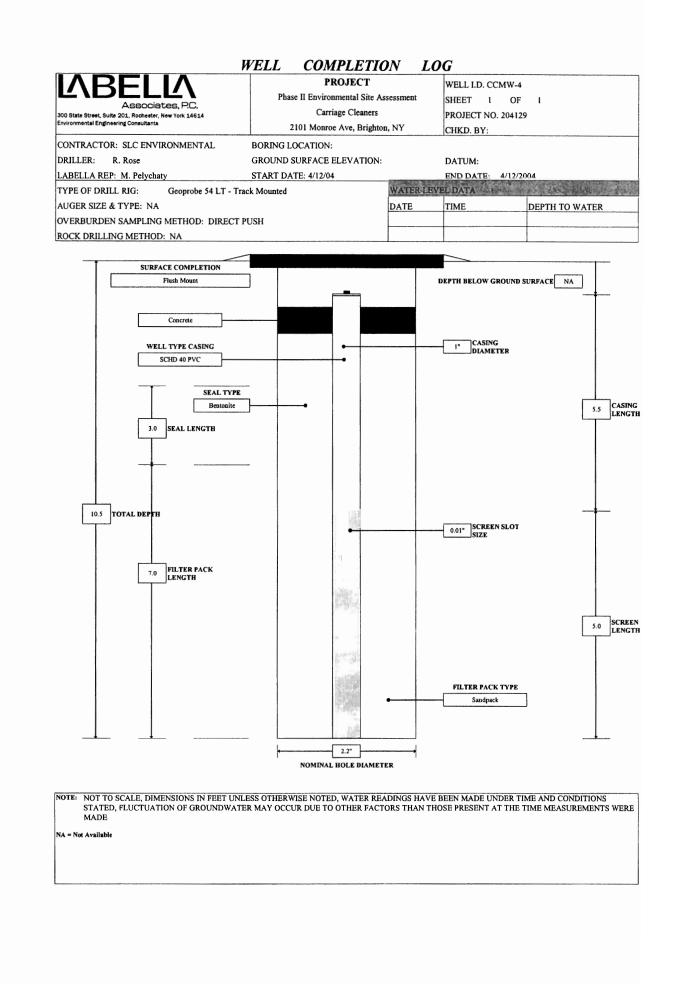
Length

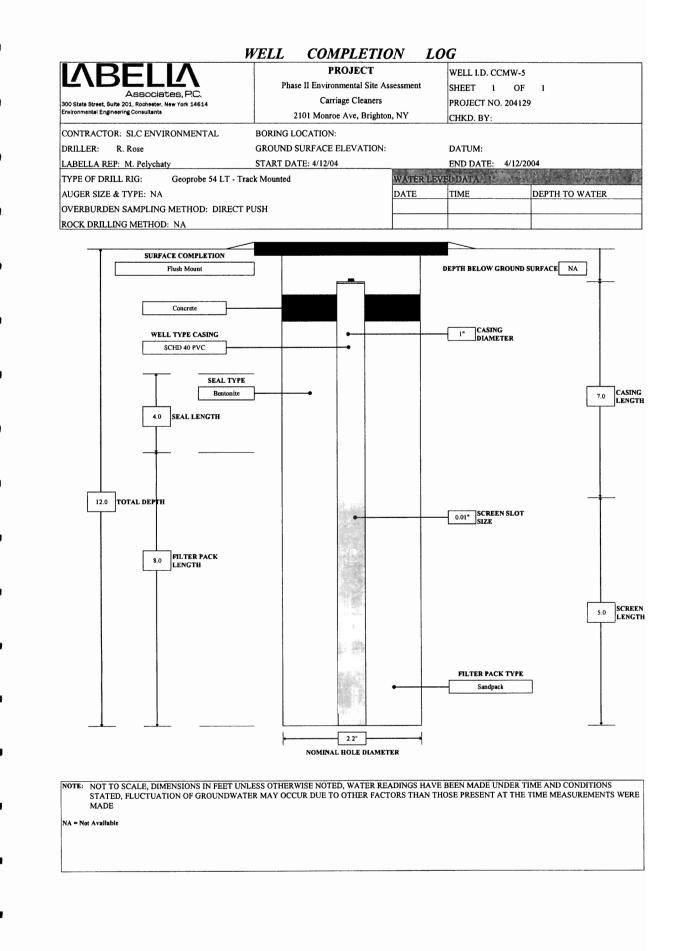
ALL DIMENSIONS IN FEET UNLESS OTHERWISE INDICATED

Filter Pack Type

SAND


6.5'


1) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.


Hole Diameter

~2.2"

Screen Slot Size 0.0010"

-

Appendix 4

Analytical Data

Volatile Analysis Report for Soils/Solids/Sludges

Client: LaBella Associates

PARADIGM

Client Job Site:	Carriage Cleaners Prelim Phase II ESA	Lab Project Number: Lab Sample Number:	04-0696 3002
Client Job Number:	204129		
Field Location:	SB-1(S-3)	Date Sampled:	03/10/2004
Field ID Number:	N/A	Date Received:	03/11/2004
Sample Type:	Soil	Date Analyzed:	03/16/2004

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / Kg
Bromodichloromethane	ND< 7.25	Benzene	ND< 7.25
Bromomethane	ND< 7.25	Chlorobenzene	ND< 7.25
Bromoform	ND< 7.25	Ethylbenzene	ND< 7.25
Carbon Tetrachloride	ND< 7.25	Toluene	ND< 7.25
Chloroethane	ND< 7.25	m,p-Xylene	ND< 7.25
Chloromethane	ND< 7.25	o-Xylene	ND< 7.25
2-Chloroethyl vinyl Ether	ND< 7.25	Styrene	ND< 7.25
Chloroform	ND< 7.25	1,2-Dichlorobenzene	ND< 7.25
Dibromochloromethane	ND< 7.25	1,3-Dichlorobenzene	ND< 7.25
1,1-Dichloroethane	ND< 7,25	1,4-Dichlorobenzene	ND< 7.25
1,2-Dichloroethane	ND< 7.25		
1,1-Dichloroethene	ND< 7.25	Ketones	Results in ug / Kg
cis-1,2-Dichloroethene	ND< 7.25	Acetone	ND< 36.3
trans-1,2-Dichloroethene	ND< 7.25	2-Butanone	ND< 18.1
1,2-Dichloropropane	ND< 7.25	2-Hexanone	ND< 18.1
cis-1,3-Dichloropropene	ND< 7.25	4-Methyl-2-pentanone	ND< 18.1
trans-1,3-Dichloropropene	ND< 7.25		
Methylene chloride	ND< 18.1	Miscellaneous	Results in ug / Kg
1,1,2,2-Tetrachloroethane	ND< 7.25	Carbon disulfide	ND< 18.1
Tetrachloroethene	758	Vinyl acetate	ND< 18.1
1,1,1-Trichloroethane	ND< 7.25		
1,1,2-Trichloroethane	ND< 7.25		
Trichloroethene	ND< 7.25		
Trichlorofluoromethane	ND< 7.25		
Vinyl chloride	ND< 7.25		
ELAP Number 10958	Method:	EPA 8260B	Data File: 19828.D

Comments:

ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

WMar Bruce Hoogesteger: Technical Director

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates

Carriage Cleaners	Lab Project Number: Lab Sample Number:	04-0696 3002
204129		
SB-1(S-3)	Date Sampled:	03/10/2004
N/A	Date Received:	03/11/2004
Soil	Date Analyzed:	03/16/2004
	204129 SB-1(S-3) N/A	Lab Sample Number:204129SB-1(S-3)N/ADate Received:

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 7.25	1,2,4-Trimethylbenzene	ND< 7.25
sec-Butylbenzene	ND< 7.25	1,3,5-Trimethylbenzene	ND< 7.25
tert-Butylbenzene	ND< 7.25		
n-Propylbenzene	ND< 7.25	Miscellaneous	
Isopropylbenzene	ND< 7.25	Methyl tert-butyl Ether	ND< 7.25
p-Isopropyltoluene	ND< 7.25		
Naphthalene	ND< 18.1		
ELAP Number 10958	Method: EPA 8260B		Data File: 19828.D

Comments:

ND denotes Non Detect ug / Kg = microgram per Kilogram

Bruce Hoogesteger: echnical Director

Volatile Analysis Report for Soils/Solids/Sludges

Client: LaBella Associates

Client Job Site:	Carriage Cleaners Prelim Phase II ESA	Lab Project Number: Lab Sample Number:	04-0696 3003
Client Job Number:	204129		
Field Location:	SB-4(S-3)	Date Sampled:	03/10/2004
Field ID Number:	N/A	Date Received:	03/11/2004
Sample Type:	Soil	Date Analyzed:	03/16/2004

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / Kg
Bromodichloromethane	ND< 6.79	Benzene	ND< 6.79
Bromomethane	ND< 6.79	Chlorobenzene	ND< 6.79
Bromoform	ND< 6.79	Ethylbenzene	ND< 6.79
Carbon Tetrachloride	ND< 6.79	Toluene	ND< 6.79
Chloroethane	ND< 6.79	m,p-Xylene	ND< 6.79
Chloromethane	ND< 6.79	o-Xylene	ND< 6.79
2-Chloroethyl vinyl Ether	ND< 6.79	Styrene	ND< 6.79
Chloroform	ND< 6.79	1,2-Dichlorobenzene	ND< 6.79
Dibromochloromethane	ND< 6.79	1,3-Dichlorobenzene	ND< 6.79
1,1-Dichloroethane	ND< 6.79	1,4-Dichlorobenzene	ND< 6.79
1,2-Dichloroethane	ND< 6.79		
1,1-Dichloroethene	ND< 6.79	Ketones	Results in ug / K
cis-1,2-Dichloroethene	ND< 6.79	Acetone	ND< 34.0
trans-1,2-Dichloroethene	ND< 6.79	2-Butanone	ND< 17.0
1,2-Dichloropropane	ND< 6.79	2-Hexanone	ND< 17.0
cis-1,3-Dichloropropene	ND< 6.79	4-Methyl-2-pentanone	ND< 17.0
trans-1,3-Dichloropropene	ND< 6.79		
Methylene chloride	ND< 17.0	Miscellaneous	Results in ug / K
1,1,2,2-Tetrachloroethane	ND< 6.79	Carbon disulfide	ND< 17.0
Tetrachloroethene	547	Vinyl acetate	ND< 17.0
1,1,1-Trichloroethane	ND< 6.79		
1,1,2-Trichloroethane	ND< 6.79		
Trichloroethene	ND< 6.79		
Trichlorofluoromethane	ND< 6.79		
Vinyl chloride	ND< 6.79		
ELAP Number 10958	Method	EPA 8260B	Data File: 19829.0

ELAP Number 10958

Method: EPA 8260B

Data File: 19829.D

Comments:

Signature:

ND denotes Non Detect ug / Kg = microgram per Kilogram

Bruce Hoogesteger: Technical Director

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates

Client Job Site:	Carriage Cleaners	•	04-0696 3003
Client Job Number:	204129		
Field Location:	SB-4(S-3)	Date Sampled:	03/10/2004
Field ID Number:	N/A	Date Received:	03/11/2004
Sample Type:	Soil	Date Analyzed:	03/16/2004

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 6.79	1,2,4-Trimethylbenzene	ND< 6.79
sec-Butylbenzene	ND< 6.79	1,3,5-Trimethylbenzene	ND< 6.79
tert-Butylbenzene	ND< 6.79		
n-Propylbenzene	ND< 6.79	Miscellaneous	
Isopropylbenzene	ND< 6.79	Methyl tert-butyl Ether	ND< 6.79
p-Isopropyltoluene	ND< 6.79		
Naphthalene	ND< 17.0		
ELAP Number 10958	Method: E	EPA 8260B	Data File: 19829.D

Comments:

ND denotes Non Detect ug / Kg = microgram per Kilogram

Bruce Hoogesteger: Technical Director

Chain of Custody provides additional sample information

Volatile Analysis Report for Soils/Solids/Sludges

Client: LaBella Associates

Cli	ent Job Site:	Carriage Cleaners Prelim Phase II ESA	Lab Project Number: Lab Sample Number:	04-0696 3004
Cli	ent Job Number:	204129		
Fie	Id Location:	SB-8(S-3)	Date Sampled:	03/10/2004
Fie	Id ID Number:	N/A	Date Received:	03/11/2004
Sar	nple Type:	Soil	Date Analyzed:	03/16/2004

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / Kg
Bromodichloromethane	ND< 11.1	Benzene	ND< 11.1
Bromomethane	ND< 11.1	Chlorobenzene	ND< 11.1
Bromoform	ND< 11.1	Ethylbenzene	ND< 11.1
Carbon Tetrachloride	ND< 11.1	Toluene	ND< 11.1
Chloroethane	ND< 11.1	m,p-Xylene	ND< 11.1
Chloromethane	ND< 11.1	o-Xylene	ND< 11.1
2-Chloroethyl vinyl Ether	ND< 11.1	Styrene	ND< 11.1
Chloroform	ND< 11.1	1,2-Dichlorobenzene	ND< 11.1
Dibromochloromethane	ND< 11.1	1,3-Dichlorobenzene	ND< 11.1
1,1-Dichloroethane	ND< 11.1	1,4-Dichlorobenzene	ND< 11.1
1,2-Dichloroethane	ND< 11.1		
1,1-Dichloroethene	ND< 11.1	Ketones	Results in ug / Kg
cis-1,2-Dichloroethene	ND< 11.1	Acetone	ND< 55.5
trans-1,2-Dichloroethene	ND< 11.1	2-Butanone	ND< 27.7
1,2-Dichloropropane	ND< 11.1	2-Hexanone	ND< 27.7
cis-1,3-Dichloropropene	ND< 11.1	4-Methyl-2-pentanone	ND< 27.7
trans-1,3-Dichloropropene	ND< 11.1		
Methylene chloride	ND< 27.7	Miscellaneous	Results in ug / Kg
1,1,2,2-Tetrachloroethane	ND< 11.1	Carbon disulfide	ND< 27.7
Tetrachloroethene	233	Vinyl acetate	ND< 27.7
1,1,1-Trichloroethane	ND< 11.1		
1,1,2-Trichloroethane	ND< 11.1		
Trichloroethene	ND< 11.1		
Trichlorofluoromethane	ND< 11.1		
Vinyl chloride	ND< 11.1		
ELAP Number 10958	Method:	EPA 8260B	Data File: 19832.D

AP Number 10958

hod: EPA

Data File: 19832.D

Comments:

ND denotes Non Detect ug / Kg = microgram per Kilogram

Bruce Hoogesteger: Fechnical Director

ENVIRONMENTAL SERVICES. INC.

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates

Client Job Site:	Carriage Cleaners	Lab Project Number: Lab Sample Number:	04-0696 3004
Client Job Number:	204129		
Field Location:	SB-8(S-3)	Date Sampled:	03/10/2004
Field ID Number:	N/A	Date Received:	03/11/2004
Sample Type:	Soil	Date Analyzed:	03/16/2004

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 11.1	1,2,4-Trimethylbenzene	ND< 11.1
sec-Butylbenzene	ND< 11.1	1,3,5-Trimethylbenzene	ND< 11.1
tert-Butylbenzene	ND< 11.1		
n-Propylbenzene	ND< 11.1	Miscellaneous	
Isopropylbenzene	ND< 11.1	Methyl tert-butyl Ether	ND< 11.1
p-Isopropyltoluene	ND< 11.1		
Naphthalene	ND< 27.7		
ELAP Number 10958	Method: E	EPA 8260B	Data File: 19832.D

Comments:

ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature;

Bruce Hoogesteger: Technical Director

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Soils/Solids/Sludges

Client: LaBella Associates

Client Job Site:	Carriage Cleaners Prelim Phase II ESA	Lab Project Number: Lab Sample Number:	
Client Job Number:	204129		
Field Location:	SB-11(S-3)	Date Sampled:	03/10/2004
Field ID Number:	N/A	Date Received:	03/11/2004
Sample Type:	Soil	Date Analyzed:	03/16/2004

Halocarbons	Results in ug / Kg
Bromodichloromethane	ND< 986
Bromomethane	ND< 986
Bromoform	ND< 986
Carbon Tetrachloride	ND< 986
Chloroethane	ND< 986
Chloromethane	ND< 986
2-Chloroethyl vinyl Ether	ND< 986
Chloroform	ND< 986
Dibromochloromethane	ND< 986
1,1-Dichloroethane	ND< 986
1,2-Dichloroethane	ND< 986
1,1-Dichloroethene	ND< 986
cis-1,2-Dichloroethene	ND< 986
trans-1,2-Dichloroethene	ND< 986
1,2-Dichloropropane	ND< 986
cis-1,3-Dichloropropene	ND< 986
trans-1,3-Dichloropropene	ND< 986
Methylene chloride	ND< 2,470
1,1,2,2-Tetrachloroethane	ND< 986
Tetrachloroethene	34,500
1,1,1-Trichloroethane	ND< 986
1,1,2-Trichloroethane	ND< 986
Trichloroethene	ND< 986
Trichlorofluoromethane	ND< 986
Vinyl chloride	ND< 986
ELAP Number 10958	Method

Aromatics	Results in ug / Kg
Benzene	ND< 986
Chlorobenzene	ND< 986
Ethylbenzene	ND< 986
Toluene	2,310
m,p-Xylene	1,740
o-Xylene	ND< 986
Styrene	ND< 986
1,2-Dichlorobenzene	ND< 986
1,3-Dichlorobenzene	ND< 986
1,4-Dichlorobenzene	ND< 986
Ketones	Results in ug / Kg
Acetone	ND< 4,930
2-Butanone	ND< 2,470
2-Hexanone	ND< 2,470
4-Methyl-2-pentanone	ND< 2,470
Miscellaneous	Results in ug / Kg
Carbon disulfide	ND< 2,470
Vinyl acetate	ND< 2,470

EPA 8260B

Data File: 19846.D

Comments:

ND denotes Non Detect ug / Kg = microgram per Kilogram

Bruce Hoogesteger: Technical Director

ENVIRONMENTAL SERVICES, INC.

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates

Client Job Site:	Carriage Cleaners	Lab Project Number: Lab Sample Number:	04-0696 3005
Client Job Number:	204129		
Field Location:	SB-11(S-3)	Date Sampled:	03/10/2004
Field ID Number:	N/A	Date Received:	03/11/2004
Sample Type:	Soil	Date Analyzed:	03/16/2004

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 986	1,2,4-Trimethylbenzene	ND< 986
sec-Butylbenzene	ND< 986	1,3,5-Trimethylbenzene	ND< 986
tert-Butylbenzene	ND< 986		
n-Propylbenzene	ND< 986	Miscellaneous	
Isopropylbenzene	ND< 986	Methyl tert-butyl Ether	ND< 986
p-Isopropyltoluene	ND< 986		
Naphthalene	ND< 2,470		
ELAP Number 10958	Method: E	EPA 8260B	Data File: 19846.D

Comments:

ND denotes Non Detect ug / Kg = microgram per Kilogram

Bruce Hoogesteger: Technical Director

Chain of Custody provides additional sample information

ENVIRONMENTAL SERVICES. INC.

Volatile Analysis Report for Soils/Solids/Sludges

Client: LaBella Associates

Client Job Site: Client Job Number:	Carriage Cleaners Prelim Phase II ESA 204129	Lab Project Number: Lab Sample Number:	04-0696 3006
Field Location:	SB-15(S-3)	Date Sampled:	03/10/2004
Field ID Number:	N/A	Date Received:	03/11/2004
Sample Type:	Soil	Date Analyzed:	03/16/2004

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / Kg
Bromodichloromethane	ND< 2,600	Benzene	ND< 2,600
Bromomethane	ND< 2,600	Chlorobenzene	ND< 2,600
Bromoform	ND< 2,600	Ethylbenzene	3,180
Carbon Tetrachloride	ND< 2,600	Toluene	7,330
Chloroethane	ND< 2,600	m,p-Xylene	89,300
Chloromethane	ND< 2,600	o-Xylene	33,300
2-Chloroethyl vinyl Ether	ND< 2,600	Styrene	ND< 2,600
Chloroform	ND< 2,600	1,2-Dichlorobenzene	ND< 2,600
Dibromochloromethane	ND< 2,600	1,3-Dichlorobenzene	ND< 2,600
1,1-Dichloroethane	ND< 2,600	1,4-Dichlorobenzene	ND< 2,600
1,2-Dichloroethane	ND< 2,600		
1,1-Dichloroethene	ND< 2,600	Ketones	Results in ug / Kg
cis-1,2-Dichloroethene	ND< 2,600	Acetone	ND< 13,000
trans-1,2-Dichloroethene	ND< 2,600	2-Butanone	ND< 6,500
1,2-Dichloropropane	ND< 2,600	2-Hexanone	ND< 6,500
cis-1,3-Dichloropropene	ND< 2,600	4-Methyl-2-pentanone	ND< 6,500
trans-1,3-Dichloropropene	ND< 2,600		
Methylene chloride	ND< 6,500	Miscellaneous	Results in ug / Kg
1,1,2,2-Tetrachloroethane	ND< 2,600	Carbon disulfide	ND< 6,500
Tetrachloroethene	ND< 2,600	Vinyl acetate	ND< 6,500
1,1,1-Trichloroethane	ND< 2,600		
1,1,2-Trichloroethane	ND< 2,600		
Trichloroethene	ND< 2,600		
Trichlorofluoromethane	ND< 2,600		
Vinyl chloride	ND< 2,600		
ELAP Number 10958	Method	: EPA 8260B	Data File: 19847.D

Comments:

Signature:

ND denotes Non Detect ug / Kg = microgram per Kilogram

Bruce Hoogesteger: Technical Director

Chain of Custody provides additional sample information

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates

Client Job Site:	Carriage Cleaners	Lab Project Number: Lab Sample Number:	04-0696 3006
Client Job Number:	204129		
Field Location:	SB-15(S-3)	Date Sampled:	03/10/2004
Field ID Number:	N/A	Date Received:	03/11/2004
Sample Type:	Soil	Date Analyzed:	03/16/2004

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 2,600	1,2,4-Trimethylbenzene	119,000
sec-Butylbenzene	ND< 2,600	1,3,5-Trimethylbenzene	37,100
tert-Butylbenzene	ND< 2,600		
n-Propylbenzene	5,960	Miscellaneous	
Isopropylbenzene	2,700	Methyl tert-butyl Ether	ND< 2,600
p-Isopropyltoluene	ND< 2,600		
Naphthalene	15,500		
ELAP Number 10958	Method: E	EPA 8260B	Data File: 19847.D

,

Comments:

ND denotes Non Detect ug / Kg = microgram per Kilogram

Bruce Hoogesteger: Technical Director

Chain of Custody provides additional sample information

Volatile Analysis Report for Non-potable Water

Client: LaBella Associates

Client Job Site:	Carriage Cleaners Prelim Phase II ESA	Lab Project Number: Lab Sample Number:	04-0696 3007
Client Job Number:	204129		
Field Location:	CCMW-1	Date Sampled:	03/11/2004
Field ID Number:	N/A	Date Received:	03/11/2004
Sample Type:	Water	Date Analyzed:	03/16/2004

Halocarbons	Results in ug / L
Bromodichloromethane	ND< 100
Bromomethane	ND< 100
Bromoform	ND< 100
Carbon Tetrachloride	ND< 100
Chloroethane	ND< 100
Chloromethane	ND< 100
2-Chloroethyl vinyl Ether	ND< 100
Chloroform	ND< 100
Dibromochloromethane	ND< 100
1,1-Dichloroethane	ND< 100
1,2-Dichloroethane	ND< 100
1,1-Dichloroethene	ND< 100
cis-1,2-Dichloroethene	ND< 100
trans-1,2-Dichloroethene	ND< 100
1,2-Dichloropropane	ND< 100
cis-1,3-Dichloropropene	ND< 100
trans-1,3-Dichloropropene	ND< 100
Methylene chloride	ND< 250
1,1,2,2-Tetrachloroethane	ND< 100
Tetrachloroethene	4,380
1,1,1-Trichloroethane	ND< 100
1,1,2-Trichloroethane	ND< 100
Trichloroethene	ND< 100
Trichlorofluoromethane	ND< 100
Vinyl chloride	ND< 100
ELAP Number 10958	Method

Aromatics	Results in ug / L
Benzene	ND< 35.0
Chlorobenzene	ND< 100
Ethylbenzene	ND< 100
Toluene	ND< 100
m,p-Xylene	ND< 100
o-Xylene	ND< 100
Styrene	ND< 100
1,2-Dichlorobenzene	ND< 100
1,3-Dichlorobenzene	ND< 100
1,4-Dichlorobenzene	ND< 100
Ketones	Results in ug / L
Acetone	ND< 500
2-Butanone	ND< 250
2-Hexanone	ND< 250
4-Methyl-2-pentanone	ND< 250
Miscellaneous	Results in ug / L
Carbon disulfide	ND< 250
Vinyl acetate	ND< 250

Method: EPA 8260B

Data File: 19856.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

ENVIRONMENTAL SERVICES. INC.

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: LaBella Associates

Client Job Site:	Carriage Cleaners	Lab Project Number: Lab Sample Number:	04-0696 3007
Client Job Number:	204129		
Field Location:	CCMW-1	Date Sampled:	03/11/2004
Field ID Number:	N/A	Date Received:	03/11/2004
Sample Type:	Water	Date Analyzed:	03/16/2004

Aromatics	Results in ug / L	Aromatics	Results in ug / L	
n-Butylbenzene	ND< 100	1,2,4-Trimethylbenzene	ND< 100	
sec-Butylbenzene	ND< 100	1,3,5-Trimethylbenzene	ND< 100	
tert-Butylbenzene	ND< 100			
n-Propylbenzene	ND< 100	Miscellaneous		
Isopropylbenzene	ND< 100	Methyl tert-butyl Ether	ND< 100	
p-Isopropyltoluene	ND< 100			
Naphthalene	ND< 250			
ELAP Number 10958	Method:	Method: EPA 8260B		

Comments:

ND denotes Non Detect ug / L = microgram per Liter

lha) Bruce Hoogesteger: Technical Director

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Non-potable Water

Client: LaBella Associates

Client Job Site:	Carriage Cleaners Prelim Phase II ESA	Lab Project Number: Lab Sample Number:	04-0696 3008
Client Job Number:	204129		
Field Location:	CCMW-2	Date Sampled:	03/11/2004
Field ID Number:	N/A	Date Received:	03/11/2004
Sample Type:	Water	Date Analyzed:	03/16/2004

Halocarbons	Results in ug / L	A
Bromodichloromethane	ND< 4.00	Be
Bromomethane	ND< 4.00	
Bromoform	ND< 4.00	Et Et
Carbon Tetrachloride	ND< 4.00	To
Chloroethane	ND< 4.00	m
Chloromethane	ND< 4.00	0-
2-Chloroethyl vinyl Ether	ND< 4.00	St
Chloroform	ND< 4.00	1,
Dibromochloromethane	ND< 4.00	1,
1,1-Dichloroethane	ND< 4.00	1,
1,2-Dichloroethane	ND< 4.00	
1,1-Dichloroethene	ND< 4.00	K
cis-1,2-Dichloroethene	ND< 4.00	Ac
trans-1,2-Dichloroethene	ND< 4.00	2-
1,2-Dichloropropane	ND< 4.00	2-
cis-1,3-Dichloropropene	ND< 4.00	4-
trans-1,3-Dichloropropene	ND< 4.00	
Methylene chloride	ND< 10.0	Μ
1,1,2,2-Tetrachloroethane	ND< 4.00	Ca
Tetrachloroethene	324	Vi
1,1,1-Trichloroethane	ND< 4.00	
1,1,2-Trichloroethane	ND< 4.00	
Trichloroethene	ND< 4.00	
Trichlorofluoromethane	ND< 4.00	
Vinyl chloride	ND< 4.00	
ELAP Number 10958	Method	: EPA 82

Aromatics	Results in ug / L
Benzene	ND< 1.40
Chlorobenzene	ND< 4.00
Ethylbenzene	ND< 4.00
Toluene	ND< 4.00
m,p-Xylene	ND< 4.00
o-Xylene	ND< 4.00
Styrene	ND< 4.00
1,2-Dichlorobenzene	ND< 4.00
1,3-Dichlorobenzene	ND< 4.00
1,4-Dichlorobenzene	ND< 4.00
Ketones	Results in ug / L
Acetone	ND< 20.0
2-Butanone	ND< 10.0
2-Hexanone	ND< 10.0
4-Methyl-2-pentanone	ND< 10.0
4-Methyl-2-pentanone	
4-Methyl-2-pentanone Miscellaneous	ND< 10.0 Results in ug / L
Miscellaneous	Results in ug / L
Miscellaneous Carbon disulfide	Results in ug / L ND< 10.0

260B

Data File: 19857.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Technical Director

Bruce Hoogesteger:

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: LaBella Associates

Client Job Site:	Carriage Cleaners Prelim Phase II ESA	Lab Project Number: Lab Sample Number:	04-0696 3008
Client Job Number:	204129	-	
Field Location:	CCMW-2	Date Sampled:	03/11/2004
Field ID Number:	N/A	Date Received:	03/11/2004
Sample Type:	Water	Date Analyzed:	03/16/2004

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 4.00	1,2,4-Trimethylbenzene	ND< 4.00
sec-Butylbenzene	ND< 4.00	1,3,5-Trimethylbenzene	ND< 4.00
tert-Butylbenzene	ND< 4.00		
n-Propylbenzene	ND< 4.00	Miscellaneous	
Isopropylbenzene	ND< 4.00	Methyl tert-butyl Ether	ND< 4.00
p-Isopropyltoluene	ND< 4.00		
Naphthalene	ND< 10.0		
ELAP Number 10958	Method:	Data File: 19857.D	

Comments:

Signature:

ND denotes Non Detect ug / L = microgram per Liter

Bruce Hoogesteger: Technical Director

PARADIGM ENVIRONMENTAL SERVICES, INC. 179 Lake Avenue 179 Lake Avenue

SERVICE			COMPANY	LA			COMPANY:					LAB PROJECT #: CLIENT PROJECT #:										
179 Lake Avenu			ADDRESS		: ;	24	ADDRESS	S:								O4	Úb	16			4-7	
Bochester , NY 1	14608	997	CITY:	STAT			CITY:					ST	ATE:		ZIP:	TURNAR	OUND TI	ME: (WOR	RKING DA	(YS)		
(585) 647-2530 FAX: (585) 647-	3311	557	PHONE:	FAX:	, , , ,		PHONE:		í 	R.	1	FAX:						_	STE)	ç	OTHER
PROJECT NAME/SIT			ATTN:				ATTN:									1	2		$_{3}$ \times	5		
Cark M.			COMMEN																		_	
HIELN' I	1187.211							B	EQU	EST	ED A	NAL	YSIS	S	的行行者				the with	21		
. The second second second second	CTURE OF LEADING	c	1994年1月1日日				C									CHARGE (PL) IN THE	10.000				e staps	
DATE	TIME	O M P O S I T E	G R A B	SAMPLE LOCATION/F	IELD ID	M A T R I X	O N N U T M A B I E N R E R S									REMA	RKS			PARA		I LAB IMBER
1 .																				-5	.	
2																				1	۲. انت	1
3							1													3	6	() ±
ź	+		+							+			\top								Ċ	
4	+	+				<u>†</u>	•			+			+	\uparrow						\square		
5		+	+				<u></u>			+			+	+								
6						· · ·					+		+	+								
7				· · · · · · · · · · · · · · · · · · ·			<u>,</u>	╉╌┥		+	+		+-	+						╉┯┥	-	
8								+					-	+						+-		┢╾╂╾
9									$\left \right $	+												\vdash
10						1												<u></u>				
**LAB USE					<u></u>		.															
SAMPLE CON				CONTAINER TYPE:	PRESERVATIO	NS:	u-		ŀ	IOLDIN	g time	E:	L	-	TEN	IPERATURE:	L					
Sampled By:				Date/Time:	Relino	quished	By:								Date/Ti	ime:		Tot	al Cost	:		
CAT.	1																					
Relinquished	By:			Date/Time:	Receiv	ved By:									Date/T	ime:						
Feceived By:	Cardina MA			Date/Time:	/	ved @ L	ab By:	, ,							Date/T	ime:		P.I.	F.			
11.1	· · · · · · · · · · · · · · · · · · ·	Frank 2			i)	d	Tru	12.00						111	104	11						

PARADIGM

ENVIRONMENTAL BERVICES, INC.

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:	Carriage Cleaners	Lab Project Number: Lab Sample Number;	
Client Job Number:	204129	•	
Field Location:	B-21 / S-3 8'-11.4' BGS	Date Sampled:	04/12/2004
Field ID Number:	N/A	Date Received:	04/14/2004
Sample Type:	Soil	Date Analyzed:	04/21/2004

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Bulylbenzene	ND< 7,480	1,2,4-Trimethylbenzene	212,000
sec-Butylbenzene	ND< 7,480	1,3,5-Trimethylbenzene	63,000
tert-Butylbenzene	ND< 7,480		
n-Propylbenzene	25,900	Miscellaneous	
Isopropylbenzene	NÖ< 7,480	Methyl tert-bulyl Ether	ND< 7,480
p-Isopropyltoluene	ND< 7,480		
Naphlhalene	26,100		
ELAP Number 10958	Method: 6	Data File; 20602.D	

Comments:

ND denotes Non Detect ug / Kg = microgram per Kllogram

Signature;

Bruce Hoogesteger, Technical Director

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Soils/Solids/Sludges

Client: LaBella Associates. P.C.

Client Job Site:	Carriage Cleaners	Lab Project Number:	04-1017
	2101 Monroe Ave	Lab Sample Number:	3989
Client Job Number:	204129		
Field Location:	B-21 / S-3 8'-11,4' BGS	Date Sampled:	04/12/2004
Field ID Number:	N/A	Date Received:	04/14/2004
Sample Type:	Soil	Date Analyzed:	04/21/2004

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / Kg
Bromodichloromethane	ND< 7,480	Benzene	ND< 7,480
Bromomethane	ND< 7,480	Chlorobenzene	ND< 7,480
Bromoform	ND< 7,480	Ethylbenzene	47,400
Carbon Tetrachloride	ND< 7,480	Toluene	13,500
Chloroelhane	ND< 7,480	m,p-Xylene	250,000
Chloromethane	ND< 7,480	o-Xylene	88,000
2-Chloroethyl vinyl Ether	ND< 7,480	Styrene	ND< 7,480
Chloroform	ND< 7,480	1,2-Dichlorobenzena	ND< 7,480
Dibromochloromethane	ND< 7,480	1,3-Dichlorobenzene	ND< 7,480
1,1-Dichloroethane	ND< 7,480	1,4-Dichlorobenzene	ND< 7,480
1,2-Dichloroethane	ND< 7,480		
1,1-Dichloroethene	ND< 7,480	Ketones	Results in ug / Kg
cis-1,2-Dichloroethene	ND< 7,480	Acetone	ND< 37,400
trans-1,2-Dichloroethene	ND< 7,480	2-Butanone	ND< 18,700
1,2-Dichloropropane	ND< 7,480	2-Hexanone	ND< 18,700
cis-1,3-Dichloropropene	ND< 7,480	4-Methyl-2-pentanone	ND< 18,700
trans-1.3-Dichloropropene	ND< 7,480		
Methylene chloride	ND< 18,700	Miscellaneous	Results in ug / Kg
1,1,2,2-Tetrachloroethane	ND< 7,480	Carbon disulfide	ND< 18,700
Tetrachloroethene	ND< 7,480	Vinyl acetate	ND< 18,700
1,1,1-Trichloroethane	ND< 7,480		
1.1.2-Trichloroethane	ND< 7,480		
Trichloroethene	ND< 7,480		
Trichlorofluoromethane	ND< 7,480		
Vinyl chloride	ND< 7,480		
ELAP Number 10958	Method:	EPA 8260B	Data File: 20602.D

ELAP Number 10958

Method: EPA 8260B

Data File; 20602.D

Comments;

ND denotes Non Detect ug / Kg = microgram per Kilógram

Signature;

and Bruce Hoogesteger: A connical Director

PARADIGM ENVIRUMMENTAL SERVICES, MIC

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:	Carriage Cleaners	Lab Project Number: Lab Sample Number:	04-1017 3988
Client Job Number:	204129		
Field Location:	B-18 / S-3 8'-11.8' BGS	Date Sampled:	04/12/2004
Field ID Number:	N/A	Date Received:	04/14/2004
Sample Type:	Soil	Date Analyzed:	04/20/2004

Aromatics	Results in ug / Kg	Aromatics	Results in ug / Kg
n-Butylbenzene	ND< 11.3	1,2,4-Trimethylbenzene	ND< 11.3
sec-Bulylbenzene	ND< 11.3	1,3,5-Trimethylbenzene	33.2
tert-Butylbenzene	ND< 11.3		
n-Propyibenzene	ND< 11.3	Miscellaneous	
Isopropylbenzene	ND< 11,3	Methyl tert-butyl Ether	321
p-Isopropyltoluene	ND< 11.3		
Naphthalene	ND< 28.2		
ELAP Number 10958	Method: E	Data File; 20594,D	

Comments:

ND denotes Non Detect ug / Kg ≕ microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Solls/Solids/Sludges

Client: LaBella Associates, P.C.

Client Job Site:	Carriage Cleaners 2101 Monroe Ave	Lab Project Number: Lab Sample Number:	
Client Job Number:	204129	• • •	
Field Location:	B-18 / S-3 8'-11.8' BGS	Date Sampled:	04/12/2004
Field ID Number:	N/A	Date Received:	04/14/2004
Sample Type:	Soil	Date Analyzed:	04/20/2004

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / K
Bromodichloromethane	ND< 11.3	Benzene	ND< 11.3
Bromomethane	ND< 11.3	Chlorobenzene	ND< 11.3
Bromoform	ND< 11.3	Ethylbenzene	ND< 11.3
Carbon Tetrachloride	ND< 11.3	Toluene	ND< 11.3
Chloroethane	ND< 11.3	m,p-Xylene	ND< 11.3
Chloromethane	ND< 11.3	o-Xylene	47.2
2-Chloroethyl vinyl Ether	ND< 11.3	Styrene	ND< 11.3
Chloroform	ND< 11.3	1.2-Dichlorobenzene	ND< 11.3
Dibromochloramethane	ND< 11.3	1,3-Dichlorobenzene	ND< 11.3
1,1-Dichloroethane	ND< 11.3	1,4-Dichlorobenzene	ND< 11,3
1,2-Dichloroethane	ND< 11.3	L	
1,1-Dichloroethene	ND< 11,3	Ketones	Results in ug / Kg
cis-1,2-Dichloroethene	ND< 11.3	Acetone	ND< 56.5
trans-1,2-Dichloroethene	ND< 11.3	2-Butanone	ND< 28.2
1,2-Dichloropropane	ND< 11.3	2-Hexanone	ND< 28.2
cis-1,3-Dichloropropene	ND< 11.3	4-Methyl-2-pentanone	ND< 28.2
trans-1,3-Dichloropropene	ND< 11.3		
Methylene chloride	ND< 28.2	Miscellaneous	Results in ug / Ke
1,1,2,2-Tetrachloroethane	ND< 11.3	Carbon disulfide	ND< 28.2
Tetrachloroethene	20.7	Vinyl acetate	ND< 28,2
1,1,1-Trichloroethane	ND< 11.3		
1,1,2-Trichloroethane	ND< 11.3		
Trichloroethene	ND< 11.3		
Trichlorofluoromethane	ND< 11.3		
Vinyl chloride	ND< 11.3		
ELAP Number 10958	Method	EPA 8260B	Data File: 20594,D

ELAP Number 10958

Method: EPA 82608

Data File: 20594.D

Comments:

ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger. Technical Director Chain of Custody provides additional sample information

PARADIGM

ENVIRONMENTAL SERVICES, INC.

179 Lake Avenue Rochester, New York 14608 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Soils/Solids/Sludges (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Carriage Cleaners	Lab Project Number: Lab Sample Number:	04-1017 3987
204129	-	
B-17 / S-3 8'-9.7' BGS	Date Sampled:	04/12/2004
N/A	Date Received:	04/14/2004
Soil	Date Analyzed:	04/21/2004
	204129 B-17 / S-3 8'-9.7' BGS N/A	Lab Sample Number:204129B-17 / S-3 8'-9.7' BGSDate Sampled:N/ADate Received:

Aromatics	Res⊔lts in ug / Kg	Aromatics	Resulls in ug / Kg		
n-Butylbenzene	ND< 30.5	1,2,4-Trimethylbenzene	ND< 30.5		
sec-Butylbenzene	ND< 30,5	1,3,5-Trimethylbenzene	ND< 30.5		
lert-Butylbenzene	ND< 30.5				
n-Propylbenzene	ND< 30.5	Miscellaneous			
Isopropylbenzene	ND< 30,5	Methyl tert-butyl Ether	1,390		
p-Isopropyltoluene	ND< 30.5				
Naphlhalene	ND< 76.3				
ELAP Number 10958	Method: E	Method: EPA 8260B			

Comments;

ND denotes Non Detect ug / Kg = microgram per Kilogram

Signature;

Bruce Hoogesteger Technical Director

179 Lake Avenue Rochester, New York 14808 (585) 647 - 2530 FAX (585) 647 - 3311

Volatile Analysis Report for Solls/Solids/Sludges

Client: LaBella Associates. P.C.

Client Job Site:	Carriage Cleaners 2101 Monroe Ave	Lab Project Number: Lab Sample Number:	04-1017 3987
Client Job Number:	204129	-	
Fleid Location:	B-17 / S-3 8'-9,7' BGS	Date Sampled:	04/12/2004
Field ID Number:	N/A	Date Received:	04/14/2004
Sample Type:	Soil	Date Analyzed:	04/21/2004
		-	

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / Kg
Bromodichloromethane	ND< 30,5	Benzene	ND< 30.5
Bromomethane	ND< 30.5	Chlorobenzene	ND< 30.5
Bromoform	ND< 30,5	Ethylbenzene	ND< 30.5
Carbon Tetrachloride	ND< 30.5	Toluene	ND< 30.5
Chloroethane	ND< 30.5	m,p-Xylene	ND< 30.5
Chloromethane	ND< 30.5	о-Хујепе	ND< 30,5
2-Chloroethyl vinyl Ether	ND< 30.5	Styrene	ND< 30,5
Chlorofarm	ND< 30.5	1.2-Dichlorobenzene	ND< 30,5
Dibromochloromethane	ND< 30,5	1,3-Dichlorobenzene	ND< 30.5
1,1-Dichloroethane	ND< 30.5	1,4-Dichlorobenzene	ND< 30.5
1,2-Dichloroethane	ND< 30,5		
1,1-Dichloroethene	ND< 30.5	Ketones	Results in ug / Kg
cis-1,2-Dichloroethene	ND< 30.5	Acetone	ND< 153
trans-1,2-Dichloroethene	ND< 30.5	2-Butanone	ND< 76.3
1,2-Dichloropropane	ND< 30.5	2-Hexanone	ND< 76.3
cis-1,3-Dichloropropene	ND< 30.5	4-Methyl-2-pentanone	ND< 76.3
trans-1,3-Dichloropropene	ND< 30.5		
Methylene chloride	ND< 76.3	Miscellaneous	Results in ug / Kg
1,1,2,2-Tetrachloroethane	ND< 30.5	Carbon disulfide	ND< 76.3
Tetrachloroethene	ND< 30.5	Vinyl acetate	ND< 76.3
1,1,1-Trichloroethane	ND< 30.5		
1,1,2-Trichloroethane	ND< 30.5		
Trichloroethene	ND< 30.5		
Trichlorofluoromethane	ND< 30.5		
Vinyl chloride	ND< 30.5		
ELAP Number 10958	Method:	EPA 8260B	Data File: 20603.D

ELAP Number 10958

Method: EPA 8260B

Data File; 20603,D

Comments:

Signature;

ND denotes Non Detect ug / Kg = microgram per Kilogram

Bruce Hoogestegst, Technical Director Chain of Custody provides additional sample information

Received By:	Notinquished By	MIGHAEL 1	if acceptable or note deviation:	SAMPLE CONDITION: Check box	10	9	8	7	6	υ υ	4	34-12-04	2 4-12-04	1 4-12-04	DĄTE	Frishtay	210 I MAN MAL	(585) 647-2530 * (800) 724-1997 FAX: (585) 647-3311	179 Lake Avenue Rochester, NY 14	SERVICES, INC.	PARADIGM
-	\mathbf{J}	 • "	note deviatio	CONDITION: Chec											TIME	ANY.		(800) 724-19 311	B09	S, INC.	DIGI
-		Perrum	ň	t box				ļ				7	7	7	Π→-∞07Ξ00		<u> </u>				23
K X			s												a > ⊐ 0		COMMENT	SE	ADDRESS:	COMPANY	
DateTime: 14-07 12	Date/Time: 4/404	4-12-0-									-	8-21/2	8-18	8-17/	SAR		ATTRE DENKIS:	SBS-454-	141	La Bella	
Time:	Time;		 די	_								5-3	5-3	5-3	IPLELOC			7-6-	* 5	出記 Asue	
	12:20		PRESE									8 L 11. Y'OGJ	8-11.8'043	8-9.7'045	SAMPLE LOCATIONIFIELD ID		Porter	6110	مدر ليميما	La Bella Associates, C.L.	小学生のないで、「「「「」」
Receive	Received By:	Kelinquished By:	PRESERVATIORS															71917	Jank 201		5.00 19.00 10.00 1
- Lat	d By:	Ished B					_					ふし	2114	2016	2 4 M K - X						CH
A W			<u>کا</u>									-	-	-	タ アロド C と 9 ア ア マ ノ こ 0 ら		ATTN	PHONE:	ADDRE55:	COMPANY	CHAIN OF CUSTODY
ha												5	5	5	Dio Tel Puri Stine S	STEOU		5			OFC
-	1		HOLDING TIME:													(13)(5)(1)		PIZ			isn:
			IN IN															FAX		OIOMU	TOD
+1/14																WALVER.				00410-6	Y
lou																					
DateTime: $\frac{1}{3/0}$	Date/Time:	Date/Time:	TEMPERATURE												R						
P.I.F.		Ta													REMARKS		2	STD	C101-40	ROJECT II:	
™		Total Cost:	05														Ť	STD	No	d Marco	
-												3989	8865	3987	PARADICH LAB Sample Number			oTHER	204124	ROJECT #	

Volatile Analysis Report for Non-potable Water

Client: LaBella Associates, P.C.

PARADIGM

Carriage Cleaners 2101 Monroe Ave	Lab Project Number: Lab Sample Number:	
204129		
SB-16	Date Sampled:	04/13/2004
N/A	Date Received:	04/13/2004
Water	Date Analyzed:	04/15/2004
	2101 Monroe Ave 204129 SB-16 N/A	2101 Monroe AveLab Sample Number:204129Date Sampled:SB-16Date Sampled:N/ADate Received:

Halocarbons	Results in ug / L	Aromatics	Results in ug /
Bromodichloromethane	ND< 400	Benzene	3,840
Bromomethane	ND< 400	Chlorobenzene	ND< 400
Bromoform	ND< 400	Ethylbenzene	5,310
Carbon Tetrachloride	ND< 400	Toluene	30,00
Chloroethane	ND< 400	m,p-Xylene	18,50
Chloromethane	ND< 400	o-Xylene	7,830
2-Chloroethyl vinyl Ether	ND< 400	Styrene	ND< 400
Chloroform	ND< 400	1,2-Dichlorobenzene	ND< 400
Dibromochloromethane	ND< 400	1,3-Dichlorobenzene	ND< 400
1,1-Dichloroethane	ND< 400	1,4-Dichlorobenzene	ND< 400
1,2-Dichloroethane	ND< 400		
1,1-Dichloroethene	ND< 400	Ketones	Results in ug
cis-1,2-Dichloroethene	ND< 400	Acetone	ND< 2,000
trans-1,2-Dichloroethene	ND< 400	2-Butanone	ND< 1,000
1,2-Dichloropropane	ND< 400	2-Hexanone	ND< 1,000
cis-1,3-Dichloropropene	ND< 400	4-Methyl-2-pentanone	ND< 1,000
trans-1,3-Dichloropropene	ND< 400		
Methylene chloride	ND< 1,000	Miscellaneous	Results in ug /
1,1,2,2-Tetrachloroethane	ND< 400	Carbon disulfide	ND< 1,000
Tetrachloroethene	ND< 400	Vinyl acetate	ND< 1,000
1,1,1-Trichloroethane	ND< 400		
1,1,2-Trichloroethane	ND< 400		
Trichloroethene	ND< 400		
Trichlorofluoromethane	ND< 400		
Vinyl chloride	ND< 400		
ELAP Number 10958	Method	: EPA 8260B	Data File: 20482

Comments:

Signature:

ND denotes Non Detect ug / L = microgram per Liter

<u>UMALS</u>

Bruce Hoogesteger: Pechnical Director

ENVIRONMENTAL SERVICES, INC.

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Carriage Cleaners 2101 Monroe Ave	Lab Project Number: Lab Sample Number:	04-1004 3952
204129		
SB-16	Date Sampled:	04/13/2004
N/A	Date Received:	04/13/2004
Water	Date Analyzed:	04/15/2004
	2101 Monroe Ave 204129 SB-16 N/A	2101 Monroe AveLab Sample Number:204129Date Sampled:SB-16Date Sampled:N/ADate Received:

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 400	1,2,4-Trimethylbenzene	27,600
sec-Butylbenzene	ND< 400	1,3,5-Trimethylbenzene	7,100
tert-Butylbenzene	ND< 400		
n-Propylbenzene	2,420	Miscellaneous	
Isopropylbenzene	ND< 400	Methyl tert-butyl Ether	2,220
p-Isopropyltoluene	ND< 400		
Naphthalene	6,930		
ELAP Number 10958	Method:	EPA 8260B	Data File: 20482.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Bruce Hoogesteger: Technical Director

Signature:

Volatile Analysis Report for Non-potable Water

Client: LaBella Associates, P.C.

PARADIGM ENVIRONMENTAL SERVICES. INC.

Client Job Site:	Carriage Cleaners 2101 Monroe Ave	Lab Project Number: Lab Sample Number:	04-1004 3953
Client Job Number:	204129		
Field Location:	SB-20	Date Sampled:	04/13/2004
Field ID Number:	N/A	Date Received:	04/13/2004
Sample Type:	Water	Date Analyzed:	04/15/2004

Halocarbons	Results in ug / L	Aromatics	Results in ug /
Bromodichloromethane	ND< 2.00	Benzene	ND< 0.700
Bromomethane	ND< 2.00	Chlorobenzene	ND< 2.00
Bromoform	ND< 2.00	Ethylbenzene	ND< 2.00
Carbon Tetrachloride	ND< 2.00	Toluene	ND< 2.00
Chloroethane	ND< 2.00	m,p-Xylene	ND< 2.00
Chloromethane	ND< 2.00	o-Xylene	ND< 2.00
2-Chloroethyl vinyl Ether	ND< 2.00	Styrene	ND< 2.00
Chloroform	ND< 2.00	1,2-Dichlorobenzene	ND< 2.00
Dibromochloromethane	ND< 2.00	1,3-Dichlorobenzene	ND< 2.00
1,1-Dichloroethane	ND< 2.00	1,4-Dichlorobenzene	ND< 2.00
1,2-Dichloroethane	ND< 2.00	1,4 Dichlorobenzene	ND \$ 2.00
1,1-Dichloroethene	ND< 2.00	Ketones	Results in ug /
cis-1,2-Dichloroethene	ND< 2.00	Acetone	ND< 10.0
trans-1,2-Dichloroethene	ND< 2.00	2-Butanone	ND< 5.00
1,2-Dichloropropane	ND< 2.00	2-Hexanone	ND< 5.00
cis-1,3-Dichloropropene	ND< 2.00	4-Methyl-2-pentanone	ND< 5.00
trans-1,3-Dichloropropene	ND< 2.00	+ Methyr 2 periodione	110 - 0.00
Methylene chloride	ND< 5.00	Miscellaneous	Results in ug /
1,1,2,2-Tetrachloroethane	ND< 2.00	Carbon disulfide	ND< 5.00
Tetrachloroethene	ND< 2.00	Vinyl acetate	ND< 5.00
1,1,1-Trichloroethane	ND< 2.00		
1,1,2-Trichloroethane	ND< 2.00		
Trichloroethene	ND< 2.00		
Trichlorofluoromethane	ND< 2.00		
Vinyl chloride	ND< 2.00		
ELAP Number 10958	Method	: EPA 8260B	Data File: 20451.

Comments:

Signature:

ND denotes Non Detect

ug / L = microgram per Liter

<u>lill</u>i

Bruce Hoogesteger: Technical Director

ENVIRONMENTAL SERVICES. INC.

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:	Carriage Cleaners 2101 Monroe Ave	Lab Project Number: Lab Sample Number:	04-1004 3953
Client Job Number:	204129		
Field Location:	SB-20	Date Sampled:	04/13/2004
Field ID Number:	N/A	Date Received:	04/13/2004
Sample Type:	Water	Date Analyzed:	04/15/2004

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 2.00	1,2,4-Trimethylbenzene	ND< 2.00
sec-Butylbenzene	ND< 2.00	1,3,5-Trimethylbenzene	ND< 2.00
tert-Butylbenzene	ND< 2.00		
n-Propylbenzene	ND< 2.00	Miscellaneous	
Isopropylbenzene	ND< 2.00	Methyl tert-butyl Ether	ND< 2.00
p-Isopropyltoluene	ND< 2.00		
Naphthalene	ND< 5.00		
ELAP Number 10958	Method:	EPA 8260B	Data File: 20451.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Bruce Hoogesteger: Technical Director

Chain of Custody provides additional sample information

Volatile Analysis Report for Non-potable Water

Client: LaBella Associates, P.C.

PARADIGM ENVIRONMENTAL SERVICES, INC.

Client Job Site:	Carriage Cleaners 2101 Monroe Ave	Lab Project Number: Lab Sample Number:	
Client Job Number:	204129		
Field Location:	SB-24	Date Sampled:	04/13/2004
Field ID Number:	N/A	Date Received:	04/13/2004
Sample Type:	Water	Date Analyzed:	04/14/2004

Halocarbons	Results in ug / L	Aromatics
Bromodichloromethane	ND< 200	Benzene
Bromomethane	ND< 200	Chlorobenzene
Bromoform	ND< 200	Ethylbenzene
Carbon Tetrachloride	ND< 200	Toluene
Chloroethane	ND< 200	m,p-Xylene
Chioromethane	ND< 200	o-Xylene
2-Chloroethyl vinyl Ether	ND< 200	Styrene
Chloroform	ND< 200	1,2-Dichlorober
Dibromochloromethane	ND< 200	1,3-Dichlorober
1,1-Dichloroethane	ND< 200	1,4-Dichlorober
1,2-Dichloroethane	ND< 200	
1,1-Dichloroethene	ND< 200	Ketones
cis-1,2-Dichloroethene	ND< 200	Acetone
trans-1,2-Dichloroethene	ND< 200	2-Butanone
1,2-Dichloropropane	ND< 200	2-Hexanone
cis-1,3-Dichloropropene	ND< 200	4-Methyl-2-pent
trans-1,3-Dichloropropene	ND< 200	
Methylene chloride	ND< 500	Miscellaneous
1,1,2,2-Tetrachloroethane	ND< 200	Carbon disulfide
Tetrachloroethene	ND< 200	Vinyl acetate
1,1,1-Trichloroethane	ND< 200	
1,1,2-Trichloroethane	ND< 200	
Trichloroethene	ND< 200	
Trichlorofluoromethane	ND< 200	
Vinyl chloride	ND< 200	
ELAP Number 10958	Method	: EPA 8260B

Aromatics	Results in ug / L
Benzene	985
Chlorobenzene	ND< 200
Ethylbenzene	2,350
Toluene	9,820
m,p-Xylene	14,200
o-Xylene	5,990
Styrene	ND< 200
1,2-Dichlorobenzene	ND< 200
1,3-Dichlorobenzene	ND< 200
1,4-Dichlorobenzene	ND< 200
Ketones	Results in ug / L
Acetone	ND< 1,000
2-Butanone	ND< 500
2-Hexanone	ND< 500
4-Methyl-2-pentanone	ND< 500
Miscellaneous	Results in ug / L
Carbon disulfide	ND< 500
Vinyl acetate	ND< 500

Data File: 20452.D

Comments:

Signature:

ND denotes Non Detect

ug / L = microgram per Liter

U 1de

Bruce Hoogesteger: Technical Director

ENVIRONMENTAL SERVICES. INC.

Volatile Analysis Report for Non-potable Water (Additional STARS Compounds)

Client: LaBella Associates, P.C.

Client Job Site:	Carriage Cleaners 2101 Monroe Ave	Lab Project Number: Lab Sample Number:	04-1004 3954
Client Job Number:	204129		
Field Location:	SB-24	Date Sampled:	04/13/2004
Field ID Number:	N/A	Date Received:	04/13/2004
Sample Type:	Water	Date Analyzed:	04/14/2004

Aromatics	Results in ug / L	Aromatics	Results in ug / L
n-Butylbenzene	ND< 200	1,2,4-Trimethylbenzene	3,410
sec-Butylbenzene	ND< 200	1,3,5-Trimethylbenzene	896
tert-Butylbenzene	ND< 200		
n-Propylbenzene	270	Miscellaneous	
Isopropylbenzene	ND< 200	Methyl tert-butyl Ether	1,420
p-Isopropyltoluene	ND< 200		
Naphthalene	ND< 500		
ELAP Number 10958	Method:	EPA 8260B	Data File: 20452.D

Comments:

ND denotes Non Detect ug / L = microgram per Liter

Signature:

Bruce Hoogesteger: Technical Director

PARADIGM	DIG	•	-		-	HAIN	- U	CHAIN OF CUSTODY	••	-	-	-		_
ENVIRONMENTAL SERVICES, INC.	IMENT/ S, INC.		COMPANY:	I a lattor Association	<u>P</u> C	COMPANY:	:,	THE NUMBER TO:	ETO:		LAB PROJECT #:	CLIENT PROJECT #:	JECT #:	No.
179 Lake Avenue Rochester, NY 14608 (585) 647-2530 * (800) 724-1997 FAX: (585) 647-3311	1608 (800) 724-19 311		S V.	300 State Steet	14911	ADDRESS: CITY: PHONE:	<i>ö</i>	THE FAX	STATE: C	ZIP:	04./00-/ Z041. Turnaround time: (working days) STD	Z04129 NORKING DAYS)	129 N OTHER	Ë
PROJECT NAMESTE NAME: COLVIANE CLOANONS 2101 MCNINO DC TRINIDULI NIN	NAME: (Panors N.V.	<u>5 3</u>	ATTN: COMMENT	ATTN: COMMENTS: PLACE			REC	ATTN: FREQUESTED ANALYSIS	ALYSIS		11 2	3 X		
DATE	U H F	∪ O Σ τ O α − ⊢ ш	© K ≪ D	SAMPLE LOCATION/FIELD ID	2 < F & - ×	U O Z F 女 - Z 目 K S	TUKISSAIN 771 2098				REMARKS	SAI	PARADIGM LAB SAMPLE NUMBER	~ K
1 4-13-0rl				SB-16	whee	3							395	Ś
2 4-13-04				58-20	WARA	3	Ż						395	\mathcal{M}
31-13-04				SR-24	WARA	2	7						395	Ъ
4														
5														
9			T											
7														Τ
ως							_							
10														
LAB USE ONLY	ONLY**													[
SAMPLE CONDITION: Check box if acceptable or note deviation:	ITION: Cheo note deviati	ck box ion:		CONTAINER TYPE:	PRESERVATIONS:	1	L.	HOLDING TIME:		TEMPE	TEMPERATURE: 50			
Sampled By:				Date/Time:	Relinquished By:	By:				Date/Time:		Total Cost:		
MICHAEL E Relinguished By:		FLYCHATY	\ \	<u> リー)3 - 6 H</u> Date/Time:	Received By:					Date/Time:				
Marl	1 Mar	il all		4.15-01 14/00										
Received By:	12 h	R		Date/Time: イノノスノン イ	Received @ Lab By:	ab By:	Ĉ	Ralora		Date/Time	250	P.I.F.		
LK /							11]