PERIODIC REVIEW ANNUAL REPORT No. 11 (JULY 1, 2022 – JUNE 30, 2023) CARRIAGE CLEANERS-BRIGHTON NYSDEC SITE NO. 828120

WORK ASSIGNMENT NO. D009809-15

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

Earth Environment Engineering and Geology, P.C. Portland, Maine

EEEG Project No.: US-EI-3616206118

MAY 2025

MAY 2025

CERTIFICATION STATEMENT

I Kevin McKeever certify that I am currently a Qualified Environmental Professional as in defined in 6 NYCRR Part 375 and that this Periodic Review Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Den, mic QEP

05/30/2025 DATE

PERIODIC REVIEW REPORT No. 11 (JULY 1, 2022 – JUNE 30, 2023) CARRIAGE CLEANERS-BRIGHTON NYSDEC SITE NO. 828120

WORK ASSIGNMENT NO. D009809-15

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

Earth Environment Engineering and Geology, P.C. Portland, Maine

EEEG Project No.: US-EI-3616206118

MAY 2025

Submitted by:

Approved by:

Jean Firth, PG

Program Manager

Kevin J. McKeever

Project Manager

TABLE OF CONTENTS

LIST (OF TAB	BLES	II	
LIST (OF FIG	URES	III	
		PENDICES		
		OF ACRONYMS AND ABBREVIATIONS		
EXEC	CUTIVE	SUMMARY		
1.0		SITE OVERVIEW	1-1	
	1.1	INTRODUCTION		
	1.2	SITE HISTORY AND DESCRIPTION		
	1.3	PHYSICAL SETTING		
	1.4	REMEDIAL PROGRESS AND CLEANUP GOALS		
		1.4.1 Description of Selected Remedy and Associated Cleanup Goals	1-4	
		1.4.2 Remedial Progress		
2.0		EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS	AND	
PROTECTIVENESS2-				
	2.1	SITE MANAGEMENT STATUS		
	2.2	INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS		
		2.2.1 Institutional Controls		
		2.2.2 Engineering Controls		
	2.2.2.1	Asphalt and Concrete Cover System	2-2	
	2.2.2.2	Soil Vapor Extraction System	2-3	
	2.2.2.3	Groundwater Extraction and Treatment System	2-4	
	2.2.2.4	Groundwater Monitoring Well Gauging and Sampling	2-4	
3.0		CONCLUSIONS AND RECOMMENDATIONS	3-1	
	3.1	INSTITUIONAL CONTROLS		
	3.2	ENGINEERING CONTROLS		
	3.3	RECOMMENDATIONS	3-1	
4.0		REFERENCES	4-1	

LIST OF TABLES

Tables

- 2.1 PCE Concentrations in Subsurface Soil
- 2.2 Monitoring Well Water Level Measurements
- 2.3 Groundwater Monitoring Well PCE Concentrations

LIST OF FIGURES

Figures

1.1	Site Location
1.2	SSDS Locations
2.1	Vapor and Soil Sampling Locations
2.2	SVE Influent and Effluent VOC Concentrations
2.3	Groundwater Monitoring Well Locations
2.4	Groundwater Contours October 2022
2.5	Groundwater Contours April 2023
2.6	Extent of PCE in Groundwater October 2022
2.7	Extent of PCE in Groundwater April 2023

May 2025

LIST OF APPENDICES

Appendices

Appendix A	Monroe County Sewer Use Permit
Appendix B	Sewer Line Disconnection Summary Letter
Appendix C	Laboratory Validation Reports
Appendix D	Low Flow Groundwater Data Records

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

ACM asbestos containing materials

ACSM American Congress on Surveying and Mapping

ALTA American Land Title Association/

EC(s) engineering controls

EEEG Earth Environment Engineering and Geology, P.C.

FS Feasibility Study

GES Groundwater and Environmental Services, Inc.
GWETS groundwater extraction and treatment system

IC(s) institutional controls

lbs/hr pounds per hour

MACTEC Engineering and Consulting, P.C. (prior to 2020) or MACTEC

Engineering and Geology, P.C. (from 2020 to 2024)

MCDES Monroe County Department of Environmental Services

μg/L microgram(s) per liter

mg/kg milligram(s) per kilogram

NYSDEC New York State Department of Environmental Conservation

O&M operation and maintenance
OBG O'Brien and Gere Engineers

PCE tetrachloroethene

ppbv part(s) per billion by volume

ppm part(s) per million

GLOSSARY OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

PRR periodic review report

RA Remedial Action

RI Remedial Investigation

ROD Record of Decision

RSO remedial system optimization

SCO(s) soil cleanup objective(s)

Site Carriage Cleaners site

SM site management

SMP Site Management Plan

SSDS sub-slab depressurization system

SVE soil vapor extraction SVI soil vapor intrusion

USEPA United Stated Environmental Protection Agency

VOC(s) volatile organic compounds

EXECUTIVE SUMMARY

The Carriage Cleaners site (Site No. 828120; hereinafter referred to as the Site) is a commercially zoned parcel approximately 0.35 acres in size located at the intersection of Brooklawn Drive and Monroe Avenue, in Brighton, New York (Figure 1.1). Dry cleaning operations have occurred at the Site for at least 30 years; a Town of Brighton Sewer inspection suggests that dry cleaning operations may have occurred at the Site as early as 1959. Carriage Cleaners utilized tetrachloroethene (PCE) during dry-cleaning operations until October 10, 2018, when operations switched to a naphthalene-based product. The current operations at the Carriage Cleaners building consist of laundry pickup and drop off activities only.

The remedy for the Site was selected and a Record of Decision (ROD) issued in March 2008 (New York State Department of Environmental Conservation [NYSDEC], 2008). Contaminants of concern at the Site are volatile organic compounds (VOCs), specifically PCE and its breakdown components. RA activities have included:

- 1. Contaminated soil was excavated to bedrock (approximately sixteen feet below ground surface) at a suspected contaminant source area adjacent to the active dry cleaner building in 2011. Excavated material was transported and disposed at an off-site facility. The excavation was backfilled with clean soil. In addition, in 2011, a PCE aboveground storage tank (AST) stored between the Carriage Cleaners building and the adjacent residence was also removed, and floor drains located within the Carriage Cleaners building were abandoned to prevent possible discharge of contaminants to storm sewers. ¹
- 2. A soil vapor extraction (SVE) system was installed in 2011. Contaminated air from the extraction wells is treated by granular activated carbon to remove contaminants before being discharged to the atmosphere. The SVE system was shut down from December 20, 2017, to November 21, 2018, during execution of a rebound study and was restarted after witnessing rebound in the soil vapor due to continued groundwater impacts.
- 3. A groundwater extraction treatment system (GWETS) was in operation from October 2011 to September 2020. The GWETS consisted of one extraction well which collected groundwater on site to prevent continued off-site migration of contaminants. Contaminated water from the extraction well was treated to remove contaminants before being discharged to the sanitary sewer in accordance with an approved permit (Appendix A). The GWETS was shut down in September 2020, at the request of the NYSDEC, following the submittal of the January 2020 Remedial System Optimization (RSO) Report.
- 4. The GWETS discharge to the sanitary sewer was permanently disconnected on October 17, 2022, by NYSDEC standby contractor GES. The Monroe County Department of

Periodic Review Report No. 10 (July 14, 2021 – July 1, 2022) [Mactec, 2022b] incorrectly stated that excavations were completed in 2013 and 2017, and that AST removal and floor drain abandonments were completed in 2017.

- Environmental Services (MCDES) inspected and verified the disconnection on November 17, 2022. The sewer line disconnection summary is provided in Appendix B.
- 5. A RSO work plan to implement the recommended action to convert the existing SVE system to a sub-slab depressurization system (SSDS) was submitted and approved by the NYSDEC on January 14, 2022.
- 6. A RSO Installation Performance Criteria Letter proposing the conversion of the existing SVE system was prepared by MACTEC Engineering and Geology, P.C. (MACTEC), now Earth Environment Engineering and Geology, P.C. (EEEG), and submitted to the NYSDEC on May 2, 2023; the letter was approved by the NYSDEC on May 18, 2023. A RSO Conversion proposal is anticipated from standby Contractor GES in September 2023. Implementation of this RSO is planned to begin within the third or fourth quarter of 2023.

A Site Management (SM) Plan (MACTEC, 2022a) outlines the controls established to meet the ROD requirements. Because remaining contaminated groundwater exists beneath the Site, engineering controls (ECs)/institutional controls (ICs) are required to protect human health and the environment. Previously contaminated soil onsite has been remediated.

EC systems at the Site include:

- 1. A cover system consisting of asphalt pavement, concrete sidewalks, and concrete building slabs.
- 2. Site fencing to keep the public from approaching the Site treatment trailer.
- 3. A SVE system to treat soil contamination on-site.
- 4. SSDS at seventeen structures are in place to mitigate soil vapor in the neighboring community. The SSDSs are being monitored and maintained by the NYSDEC under a separate contract and are not a focus of the annual Periodic Review Report (PRR), however they are still active and their locations in relation to the Site are shown in Figure 1.2.

IC systems at the Site in the form of an environmental easement include:

- 1. Limiting use and development of the property to commercial and industrial activities
- 2. Land use restrictions which require proper worker protections during construction or excavation activities that would potentially cause a worker to contact contaminated soil, groundwater, or soil vapor
- 3. Compliance with the approved Site Management Plan (SMP)
- 4. Groundwater use restrictions which preclude the use of groundwater at the Site without prior notification and approval from NYSDEC
- 5. Restrictions implemented on the site property related to soil, groundwater, and soil vapor
- 6. A periodic certification of ICs/ECs.

This is the eleventh annual PRR for the Site. The PRR summarizes the SM activities completed at the Site from July 1, 2022, through June 30, 2023, and evaluates the effectiveness of the RA

conducted. During the reporting period, SM requirements were met. Based on this review, the combined remedy continues to be protective of the public health and the environment; several of the remedial action objectives in the ROD have been achieved, and ongoing SM activities could be optimized while continuing to be protective of public health and the environment.

1.0 SITE OVERVIEW

1.1 INTRODUCTION

This Periodic Review Report (PRR), which covers the period of performance from July 1, 2022, to June 30, 2023 (hereinafter referred to as the "reporting period"), is the eleventh annual PRR for the Carriage Cleaners site (Site) and includes:

- Required institutional control/engineering control (IC/EC) certification by the site owner and the project engineer (Earth Environment Engineering and Geology [EEEG])
- Summary and documentation of site-related data to support IC/EC certification
- Discharge monitoring data for the certification period
- A description of the on-line treatment system(s) performance
- Groundwater sampling results and findings.

The remedy for the Site was selected and a Record of Decision (ROD) issued in March 2008 (New York State Department of Environmental Conservation [NYSDEC], 2008). Initial Remedial Action (RA) work commenced in 2011 with the installation of a groundwater extraction and treatment system (GWETS) and a soil vapor extraction (SVE) system, followed by source removal activities in 2011 (MACTEC Engineering and Consulting, P.C. [MACTEC], 2012). ²

Site Management (SM) has historically included operation of a GWETS to contain the groundwater contaminant plume in bedrock fractures, and a SVE system to treat contaminated vadose zone soil beneath the Site building.

Full-time combined SVE and GWETS operations and corresponding SM activities were initiated in January 2012. The GWETS was shut down in September 2020 at the request of the NYSDEC, and the GWETS sewer connection was permanently disconnected and verified by Monroe County Department of Environmental Services (MCDES) in November 2022. During the reporting period, the SVE system was operated, monitored, and maintained by Groundwater and Environmental

Periodic Review Report No. 10 (July 14, 2021 – July 1, 2022) [Mactec, 2022b] incorrectly stated that source removal activities were completed in 2013 and 2017.

Services, Inc. (GES) under a standby contract (No. C100607) to the NYSDEC and under direction by EEEG, formerly MACTEC (named changed in May 2024).

1.2 SITE HISTORY AND DESCRIPTION

The Site is located at 2101 Monroe Avenue, Town of Brighton, Monroe County, New York (Figure 1.1). The Site is a commercially zoned parcel approximately 0.35 acres in size located at the intersection of Brooklawn Drive and Monroe Avenue. The area is a densely populated, mixed commercial and residential area. The Site is currently occupied by a one-story cement block laundry facility, a two-story wood house, and a paved parking lot.

Dry cleaning operations have occurred at the Site for at least 30 years; a Town of Brighton Sewer inspection suggests that dry cleaning operations may have occurred at the Site as early as 1959. Until October 10, 2018, Carriage Cleaners utilized tetrachloroethene (PCE) during dry-cleaning operations. After that date, naphthalene, a petroleum-based solvent, was used until 2022. The current operations at the Carriage Cleaners building consist of laundry pickup and drop off activities only.

In 2003, a petroleum spill (Spill Number 0306131, closed on March 27, 2013) occurred adjacent to the Site at a former Newcomb Oil/Citgo Gasoline Station located at 2087 Monroe Avenue. PCE was discovered within groundwater downgradient of the Site during a series of investigations related to the petroleum spill. Due to the proximity of the Site and the history of PCE used during dry cleaning operations at the Site, the Carriage Cleaners Property was determined to be a potential source of the PCE detected within the groundwater (NYSDEC, 2008).

Because of the PCE detections, a Phase II Environmental Site Assessment was completed by the site owner in 2004. This investigation did not identify an onsite source for the PCE; however, the assessment suggested that potential ruptures within the sanitary and storm sewer line could be a source for the PCE detected within groundwater. The NYSDEC completed an offsite vapor intrusion study at four nearby residential properties. The results from this study led to the installation of one basement ventilation system and four sub-slab depressurization systems (SSDS) as part of an interim remedial measure (NYSDEC, 2008).

As a result of these investigations, the NYSDEC listed the Site as a Class 2 Site in the Registry of Inactive Hazardous Waste Disposal Sites in New York in June of 2004. The NYSDEC ordered a Remedial Investigation (RI) and Feasibility Study (FS) to be completed (NYSDEC, 2008).

1.3 PHYSICAL SETTING

The geology beneath and near the Site directly influences the distribution and ability for contaminants to migrate from the Site. Site geology consists of a sandy glacial till (overburden beneath the Site) comprised of loose to dense, fine, and medium sand with some silt and gravel overlying a medium dark gray dolomite (bedrock beneath the Site) of the Lockport Group. The thickness of the overburden ranges from approximately 3 feet to 15 feet. Based on data collected as part of the RI, O'Brien and Gere Engineers (OBG) reported that three zones can be distinguished within the bedrock unit. These include a weathered bedrock zone immediately below the till deposit ranging from 1 to 3 feet in thickness, a shallow fractured bedrock zone with a thickness of approximately 6 to 15 feet, and a more competent intermediate bedrock zone where fracture frequency decreases with depth. The data suggest that there is a hydraulic connection/communication between the overburden zone and the shallow bedrock groundwater zone (OBG, 2007).

1.4 REMEDIAL PROGRESS AND CLEANUP GOALS

Based on the OBG RI/FS, EEEG (operating as MACTEC at the time) performed an additional investigation in 2013, including the installation of bedrock monitoring well 6B (MW-6B), which indicated the presence of PCE diffused into the bedrock matrix, resulting in PCE detected at high concentrations. Methanol Extraction of rock chips testing of the rock core from MW-6B indicated PCE concentrations as high as 48 milligrams per kilogram (mg/kg) were present in the matrix of the shallow bedrock. Matrix diffusion will occur if there is a concentration gradient between the PCE-contaminated matrix and the groundwater-filled fracture.

Therefore, in 2014 potassium permanganate (RemOx® SR) cylinders were installed to passively treat groundwater and bedrock in the vicinity of MW-6/6B. Since the removal of the cylinders in late 2018, groundwater contaminant concentrations reported in the bedrock at MW-6B have varied with the seasonal fluctuation of the groundwater table with detections of 5.3 micrograms per liter (μ g/L), 1,500 μ g/L, 410 μ g/L, 3.2 μ g/L, 990 μ g/L, and 160 μ g/L during the March 2020, November 2020, March 2021, April 2022, October 2022, and April 2023 sampling events, respectively.

Lingering contamination is evident in MW-6, an overburden well located near the northeast corner of the building in the narrow alleyway where PCE was temporarily stored and presumably spilled.

In MW-6, PCE concentrations have remained elevated over the last six sampling events ranging from 32,000 μ g/L (March 2020) to 2,000 μ g/L (October 2022). PCE detections indicate contamination could be desorbing into the groundwater from the overburden soils and bedrock under the building adjacent to MW-6. ³

1.4.1 Description of Selected Remedy and Associated Cleanup Goals

Based on the results of the RI/FS and the criteria identified for evaluation of alternatives, the NYSDEC selected excavation (to the extent practical) to remove from the Site contaminated soil exhibiting concentrations of PCE greater than the soil cleanup objective (SCO) for unrestricted use (1.3 parts per million [ppm]). The selected remedy also included operation of an on-site SVE system to treat residual contaminated soil (i.e., beneath the building) and operation of a GWETS to contain contaminated shallow bedrock groundwater, along with the continued operation of the existing offsite SSDS and periodic soil vapor intrusion (SVI) monitoring at nearby residences.

As part of the remedy, ICs in the form of an environmental easement are being used to impose land use restrictions and groundwater use restrictions at the Site. Specifically, the environmental easement includes:

- limiting use and development of the property to commercial and industrial activities
- land use restrictions which require proper worker protections during construction or excavation activities that would potentially cause a worker to contact contaminated soil, groundwater, or soil vapor
- compliance with the approved Site Management Plan (SMP)
- groundwater use restrictions which preclude the use of groundwater at the Site without prior notification and approval from NYSDEC
- restrictions implemented on the site property related to soil, groundwater, and soil vapor
- a periodic certification of ICs/ECs.

The cleanup goals for the site continue to follow the SMP wherein groundwater sampling results are compared to the New York State Class GA Groundwater Standards and New York State Guidance Values.

³ Periodic Review Report No. 10 (July 14, 2021 – July 1, 2022) [MACTEC, 2022b] incorrectly stated that overburden soils in the vicinity of MW-6 were excavated to bedrock and replaced with clean fill in 2017.

1.4.2 Remedial Progress

In March 2017, results of soil samples collected from beneath the building indicated that the SCO had been achieved. Therefore, the SVE system was taken offline on December 20, 2017, to conduct a rebound study to evaluate the need for its continued operation. The SVE system was turned back on to support SVI mitigation in the Site building on November 21, 2018. Following the submittal of the January 2020 Remedial System Optimization (RSO) Report, the GWETS was shut down (September 2020) at the request of the NYSDEC. The GWETS sewer connection was permanently disconnected and verified by MCDES in November 2022.

The A RSO work plan to implement the recommended action to convert the existing SVE system to a SSDS was approved by the NYSDEC on January 14, 2022. A RSO Installation Performance Criteria Letter proposing conversion of the existing SVE system was prepared by MACTEC and submitted to the NYSDEC on May 2, 2023; the letter was approved by the NYSDEC on May 18, 2023. The RSO Installation Performance Criteria was submitted to On-Call contractor GES on May 19, 2023, and a response to comments email was prepared by MACTEC and submitted to GES on June 2, 2023, to clarify and answer GES questions. GES conducted a site visit on June 21, 2023, to evaluate existing SVE and SSDS equipment for reuse as part of the RSO conversion. A RSO Conversion proposal is anticipated from GES in September 2023.

Implementation of this RSO is planned to begin during the third or fourth quarter of 2023 and will follow the procedures and criteria discussed in the RSO Work Plan (MACTEC, 2021e) and the RSO Installation Performance Criteria, and will include asbestos containing materials (ACM) abatement, if necessary, for floor tiles and mastic.

In accordance with the ROD, operation of the remedy components will continue until the remedial objectives have been achieved, or until the NYSDEC determines that continued operation is technically impracticable or not feasible.

2.0 EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

Ongoing SM activities required by the SMP include ICs/ECs, the monitoring program, and the implementation of the site Operation and Maintenance (O&M) Plan described in the SMP (MACTEC, 2022a).

2.1 SITE MANAGEMENT STATUS

During this reporting period EEEG (operating as MACTEC at the time) performed O&M oversight of the on-site standby remedial contractor GES and prepared quarterly and monthly O&M monitoring reports. As requested by the NYSDEC, submission of Monthly Progress Reports began in October 2021 and quarterly reports were no longer required. GES provided EEEG with transmittals of field data tables and a summary of site activities included in the PRR. Since the previous PRR (MACTEC, 2022b), MACTEC prepared and submitted Revision No. 3 of the SMP for the site (MACTEC, 2022a).

EEEG performed two semi-annual groundwater sampling events during this reporting period. This PRR was completed using site specific documentation including the Site's ROD (NYSDEC, 2008), periodic site inspections conducted by GES, the quarterly and monthly O&M monitoring reports, and the SMP. This review was conducted to confirm that established controls required in the SMP are operational and effective, that the SMP is being implemented and conducted accordingly, and that the remedy remains protective of the environment and/or public health. A summary of SM activities completed during the reporting period and an evaluation of the performance, protectiveness, and effectiveness of the remedy is provided below.

2.2 INSTITUTIONAL CONTROLS/ENGINEERING CONTROLS

Residual contamination is present at this Site above the SCO for unrestricted use (1.3 ppm for PCE), and in groundwater above GA standards, therefore, ICs and ECs have been implemented to protect public health and the environment. The IC/ECs are designed to prevent:

- ingestion/direct contact with contaminated soil
- inhalation of or exposure to contaminants volatilizing from contaminated soil
- ingestion of groundwater with contaminant levels that exceed drinking water standards

• contact with or inhalation of volatiles from contaminated groundwater.

2.2.1 Institutional Controls

A series of ICs were put in place to provide site restrictions and implement, maintain, and monitor the ECs. Currently, ICs in the form of an environmental easement are being used to impose land use restrictions and groundwater use restrictions at the Site. Based on current site conditions and inspections conducted throughout the reporting period, there has not been a change in property use, site activities are compliant with the ICs and the environmental easement, and no change in ICs are required.

2.2.2 Engineering Controls

In accordance with the ROD, the following ECs have been put in place:

- use of the existing asphalt pavement, concrete sidewalks, and concrete building slabs as a cover system to minimize direct contact to impacted subsurface soil
- an SVE system to treat soil contamination on-site
- groundwater monitoring wells and a GWETS to prevent and monitor off-site migration of contaminants through groundwater
- site fencing to keep the public from approaching the treatment trailer.

2.2.2.1 Asphalt and Concrete Cover System

The cover system, comprised of asphalt pavement and concrete sidewalks and building slabs, documented in the American Land Title Association/American Congress on Surveying and Mapping (ALTA/ACSM) Land Title Survey included in Appendix A of the SMP (MACTEC, 2022a) is a permanent control to prevent direct contact to impacted subsurface soil. The cover system was observed during the reporting period to be intact and continuing to provide an effective barrier to site soils. However, as described in subsequent sections, the SCO for the site has been achieved and therefore the cover system may no longer be required. This EC should be considered for revision in the next SMP update.

2.2.2.2 Soil Vapor Extraction System

The purpose of the SVE system was to treat residual contamination in overburden vadose zone soil. The general configuration of the SVE system's extraction wells and vapor monitoring points is presented in Figure 2.1.

PCE concentrations in soil samples indicate that the SCO has been reached in subsurface soil and that the SVE system has treated subsurface soil to the extent practicable as described in the ROD. Table 2.1 shows that 2017 PCE concentrations are below the SCO of 1.3 ppm and reduced compared to 2013 results.

As a result of the March 2017 soil investigation, a rebound study involving shutdown of the SVE system from December 2017 until November 2018 was conducted. Elevated VOC soil vapor concentrations due to continued groundwater impacts in the fourth quarter 2018 were observed and the SVE system was restarted. Concentrations thereafter returned to normal range as shown on Figure 2.2. A trend line showing a slight decrease in influent VOC concentration since the beginning of SVE system operation and the cumulative total mass of VOCs removed from the system are also depicted on Figure 2.2.

During the current PRR reporting period, the average total VOC concentration per quarter in the combined influent soil vapor samples utilizing the United States Environmental Protection Agency (USEPA) TO-15 analysis was:

- 2022 third quarter 250 parts per billion by volume (ppbv)
- 2022 fourth quarter 310 ppbv
- 2023 first quarter 57 ppbv
- 2023 second quarter 64 ppbv.

Through June 17, 2023, the aggregate mass of total VOCs extracted by the SVE system is estimated to be 351.88 pounds.

During the PRR reporting period monthly effluent samples were collected from July 2022 through June 2023 to evaluate compliance with the air discharge criteria for the Site defined in the DAR-1 Guidelines for the Control of Toxic Ambient Air Contaminants and Title 6 of the New York Codes, Rules, and Regulations Part 212. The average monthly combined stack discharge for the period did

not exceed the discharge objective of 0.1 pounds per hour (lbs/hr) of high toxicity contaminants, with the maximum monthly average combined stack discharge occurring in the month of July 2022 at 0.0054 lbs/hr.

Overall, the SVE system has generally performed as expected over its ten years of operation and has achieved its goal of reducing soil concentrations to below the SCO. Although there are still measurable PCE concentrations in soil vapor at the SVE influent, the reported detections are likely attributable to off gassing of groundwater, overburden soils, and/or bedrock from the subsurface. This impacted soil vapor could impact indoor air concentrations at the dry cleaner building over time. At this point in time, a SSDS would be better suited for vapor intrusion mitigation than the ongoing operation of the SVE system. A RSO work plan to implement the recommended action to convert the existing SVE system to a SSDS was approved by the NYSDEC on January 14, 2022, and implementation of this RSO is planned to begin in Fall and Winter of 2023.

2.2.2.3 Groundwater Extraction and Treatment System

As noted in the Third Quarter 2020 OM&M Report, the GWETS was shut down on September 9, 2020, upon the request of the NYSDEC. The GWETS discharge to the sanitary sewer was permanently disconnected on October 17, 2022 by NYSDEC call-out contractor GES. The Monroe County Department of Environmental Services (MCDES) inspected and verified the disconnection on November 17, 2022. The sewer line disconnection summary is provided in Appendix B.

2.2.2.4 Groundwater Monitoring Well Gauging and Sampling

Monitoring wells MW-111I, HA-114, MW-210, MW-8B, MW-9, MW-9B, MW-6, and MW-6B, shown in Figure 2.3, were gauged and sampled in the weeks of October 24, 2022 and April 10, 2023 as part of a combined comprehensive groundwater sampling event including wells from nearby Former Speedy's Cleaners. Table 2.2 presents the groundwater elevation summary for the October 2022 and April 2023 gauging events. Figure 2.4 and figure 2.5 present the groundwater contours for the October 2022 and April 2023 gauging events, respectively. Table 2.3 summarizes groundwater PCE concentrations in monitoring wells onsite and adjacent to the Site. The extent of PCE in groundwater in in October 2022 and April 2023 are presented in Figure 2.6 and Figure 2.7, respectively. Appendix C contains the Laboratory Validation Reports for the sampling periods discussed below. The Low Flow Groundwater Data Records are presented in Appendix D.

3.0 CONCLUSIONS AND RECOMMENDATIONS

The site remedy continues to be protective of the public health and the environment and is compliant with the decision document. However, portions of the remedy could be omitted or optimized while continuing to be protective.

3.1 INSTITUIONAL CONTROLS

The current ICs are adequate to achieve the objectives for protection of human health and the environment based on current site use.

3.2 ENGINEERING CONTROLS

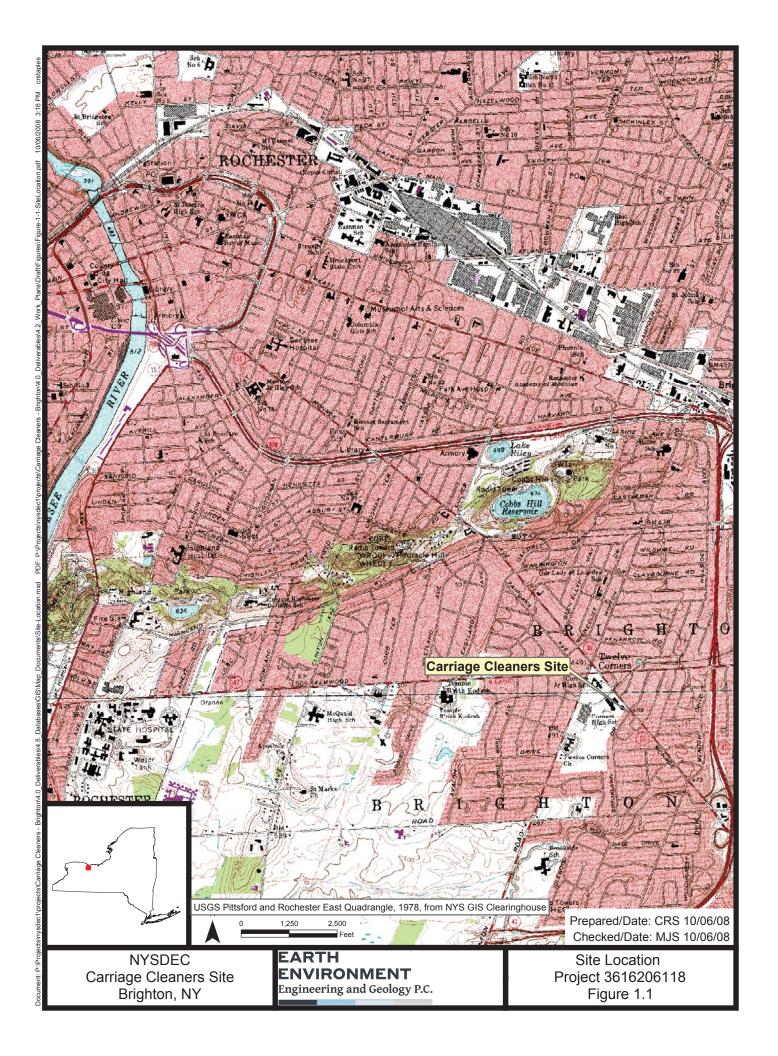
The current ECs are adequate to achieve the objectives for protection of human health and the environment based on current Site use. The SCO has been achieved, indicating that the SVE system and cover system may no longer be necessary for the purpose of soil remediation. Although the degree of groundwater containment cannot be clearly demonstrated, observed influent groundwater concentrations and surrounding groundwater concentrations generally exhibit a decreasing trend.

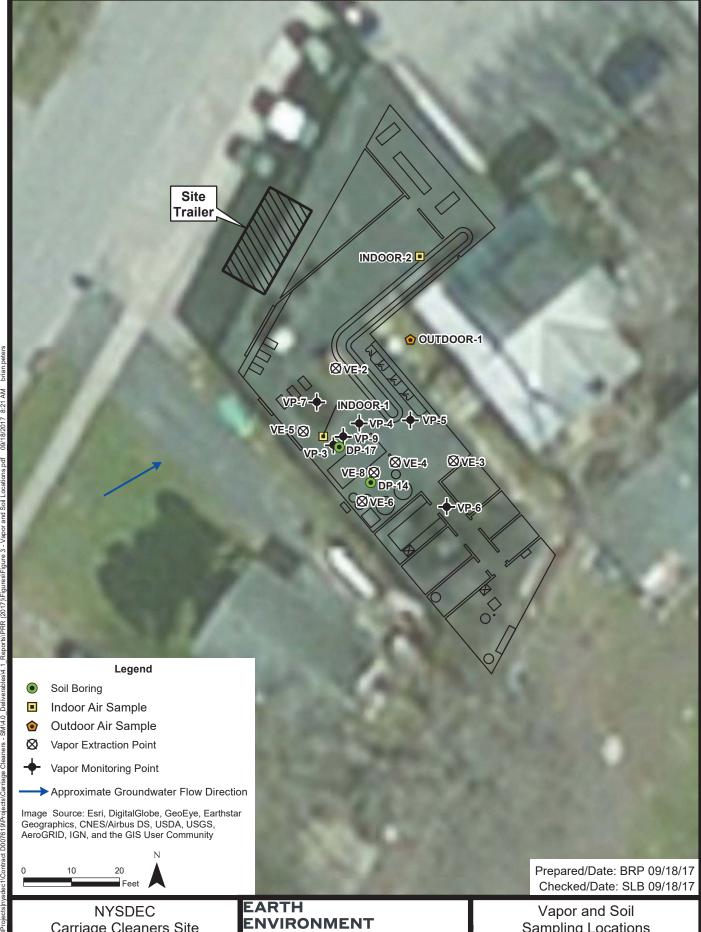
3.3 RECOMMENDATIONS

Based on the information presented in this PRR, the following is proposed:

- Continue with the conversion of the SVE system to an SSDS: the SCO has been achieved, and conversion of the existing SVE system to an SSDS will mitigate potential SVI issues while reducing O&M costs.
- Evaluate a viable method to reduce the concentration of the onsite groundwater VOC plume.
- Continue to further define/delineate the groundwater plume off-Site and evaluate the potential for a comingled plume with Former Speedy's Dry Cleaners.
- Evaluate the Green Remediation status for converting the SVE system to the SSDS.
- Update the SMP once SVE to SSDS conversion is completed. Permanent EC of asphalt cover may potentially be modified in the SMP.

4.0 REFERENCES

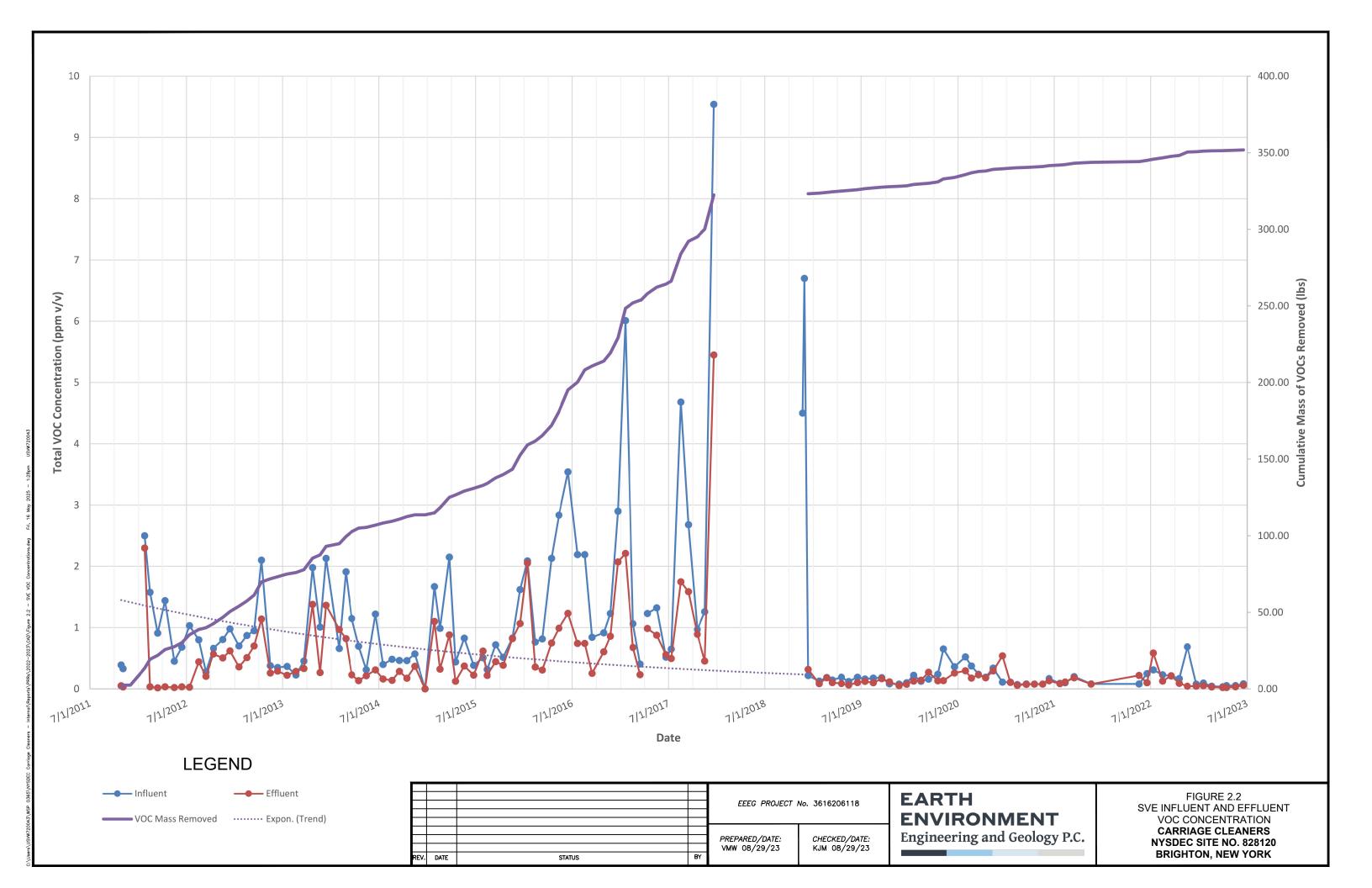

- O'Brien and Gere Engineers, Inc. (OBG), 2007. Remedial Investigation Report Remedial Investigation/Feasibility Study Carriage Cleaners Site No. 8-28-120. Town of Brighton, NY. January 31, 2007.
- New York State Department of Environmental Conservation, 2008. Record of Decision, Carriage Cleaners Brighton Site. Town of Brighton, Monroe County, New York. Site Number 8-28-120. March 2008.
- MACTEC Engineering and Consulting, P.C. (MACTEC), 2012. Final Engineering Report Carriage Cleaners Remedial Action Site No. 828120. Prepared for the New York State Department of Environmental Conservation. June 2012.
- MACTEC, 2013. *Site Management Plan Carriage Cleaners Site Site #828120*. Prepared for the New York State Department of Environmental Conservation. September 2013.
- MACTEC, 2016. Remedial System Optimization Report Carriage Cleaners Site Site #828120. Prepared for the New York State Department of Environmental Conservation. October 2016.
- MACTEC, 2017b. Soil Vapor Extraction Rebound Study Work Plan Carriage Cleaners Site Site #828120. Prepared for the New York State Department of Environmental Conservation. November 2017.
- MACTEC, 2018a. Periodic Review Report No. 6 (July 1, 2017 June 30, 2018) Carriage Cleaners-Brighton NYSDEC Site No. 828120. Prepared for the New York State Department of Environmental Conservation. November 2018.
- MACTEC, 2018b. Bedrock Remediation Evaluation Pilot Test Work Plan Carriage Cleaners Site #828120. Prepared for the New York State Department of Environmental Conservation. December 2018.
- MACTEC, 2019a. Operations, Maintenance and Monitoring Progress Report (Final) Third Quarter 2019 Carriage Cleaners Site Site #828120. Prepared for the New York State Department of Environmental Conservation. December 2019.
- MACTEC, 2019b. Periodic Review Report No. 7 (July 1, 2018 June 30, 2019) Carriage Cleaners-Brighton NYSDEC Site No. 828120. Prepared for the New York State Department of Environmental Conservation. December 2019.

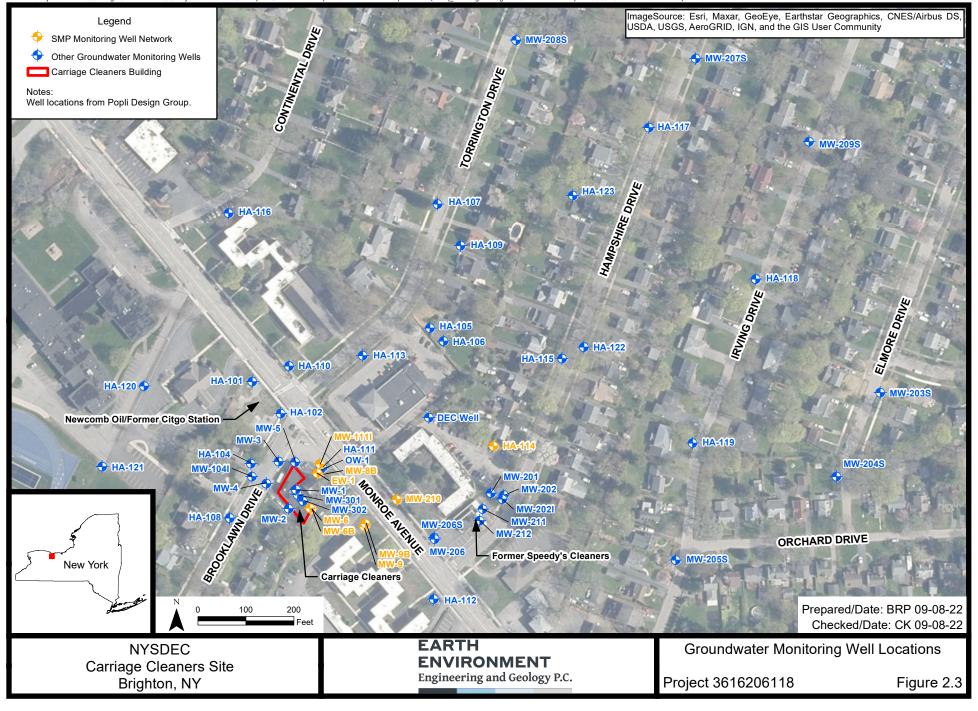

- MACTEC Engineering and Geology, P.C. (MACTEC), 2020a. *Operations, Maintenance and Monitoring Progress Report Fourth Quarter 2019 Carriage Cleaners Site Site #828120*. Prepared for the New York State Department of Environmental Conservation. July 2020.
- MACTEC, 2020b. Remedial System Optimization Evaluation Report Carriage Cleaners Site Site #828120. Prepared for the New York State Department of Environmental Conservation. July 2020.
- MACTEC, 2020c. Operations, Maintenance and Monitoring Progress Report First Quarter 2020 Carriage Cleaners Site Site #828120. Prepared for the New York State Department of Environmental Conservation. August 2020.
- MACTEC, 2020d Operations, Maintenance and Monitoring Progress Report Second Quarter 2020 Carriage Cleaners Site Site #828120. Prepared for the New York State Department of Environmental Conservation. August 2020.
- MACTEC, 2021a. Remedial System Optimization Evaluation Report Carriage Cleaners Site Site #828120. Prepared for the New York State Department of Environmental Conservation. January 2021.
- MACTEC, 2021b. Operation, Maintenance and Monitoring Report Third Quarter 2020 Carriage Cleaners Site Site #828120. Prepared for the New York State Department of Environmental Conservation. March 2021.
- MACTEC, 2021c. Operation, Maintenance and Monitoring Report Fourth Quarter 2020 and First Quarter 2021 Carriage Cleaners Site Site #828120. Prepared for the New York State Department of Environmental Conservation. June 2021.
- MACTEC, 2021d. Operation, Maintenance and Monitoring Report Second Quarter 2021 Carriage Cleaners Site Site #828120. Prepared for the New York State Department of Environmental Conservation. August 2021.
- MACTEC, 2022. Remedial System Optimization Work Plan Carriage Cleaners-Brighton NYSDEC Site No. 828120. Prepared for the New York State Department of Environmental Conservation. January 2022.

- MACTEC, 2022a. Site Management Plan Revision 3 Carriage Cleaners-Brighton NYSDEC Site No. 828120. Prepared for the New York State Department of Environmental Conservation. April 2022.
- MACTEC, 2022b. Periodic Review Report No. 10 (July 14, 2021 July 1, 2022) Carriage Cleaners-Brighton NYSDEC Site No. 828120. Prepared for the New York State Department of Environmental Conservation. September 2022.
- MACTEC, 2023. RSO Installation Performance Criteria Letter Carriage Cleaners-Brighton NYSDEC Site No. 828120. Prepared for the New York State Department of Environmental Conservation. May 2023.

May 2025

FIGURES





Carriage Cleaners Site Brighton, NY

Engineering and Geology P.C.

Sampling Locations Project 3616206118 Figure 2.1

May 2025

TABLES

Table 2.1: PCE Concentrations in Subsurface Soil

	Decem	ber 1, 2008	Septen	nber 1, 2013	March 1, 2017		
Boring Location	Depth Interval (ft bgs)	PCE Concentration (ppm)	Depth Interval (ft bgs)	PCE Concentration (ppm)	Depth Interval (ft bgs)	PCE Concentration (ppm)	
			4 – 6	140.01	4 – 6	0.0061	
DP-14	6	290	6 – 8	39.01	6 – 8	0.019	
			10 - 11.5	0.85	10 - 11.5	Not Sampled	

Notes:

Results in **bold** exceed the SCO of 1.3 ppm.

ft bgs = feet below ground surface

ppm = parts per million

PCE = tetrachloroethene

Prepared by: KJM 08/21/2023 Checked by: VMW 08/25/2023

Table 2.2: Monitoring Well Water Level Measurements

			TOCK	Octol	per 2022	Apr			
Well IDs	Northing	Easting	TOC Elevation (ft)	DTW Level (ft)	Water Level Elevation (ft amsl)	DTW Level (ft)	Water Level Elevation (ft amsl)	Site	
EW-1	1139726.244	1421079.581	489.21	10.50	478.71	5.21	484.00	Carriage	
HA-114	1139782.288	1421447.223	485.02	8.95	476.07	7.80	477.22	Carriage	
HA-119	1139788.0	1421862.9	481.97	7.61	474.36	7.45	474.52	Former Speedy's	
MW-111I	1139745.197	1421085.641	489.17	11.04	478.13	8.18	480.99	Carriage	
MW-6	1139652.675	1421066.565	488.26	9.10	479.16	7.18	481.08	Carriage	
MW-6B	1139653.369	1421065.272	488.26	9.35	478.91	7.06	481.20	Carriage	
MW-8B	1139726.966	1421085.226	487.66	9.79	477.87	7.91	479.75	Carriage	
MW-9	1139614.688	1421177.678	486.11	8.51	477.60	6.14	479.97	Carriage	
MW-9B	1139620.959	1421180.713	485.65	7.91	477.74	5.31	480.34	Carriage	
MW-202	1139675.55	1421474.94	484.89	7.92	476.97	7.09	477.80	Former Speedy's	
MW-203S	1139893.9	1422253.7	478.51	9.42	469.09	9.07	469.44	Former Speedy's	
MW-204S	1139719.2	1422162.6	478.86	7.55	471.31	7.05	471.81	Former Speedy's	
MW-205S	1139544.9	1421827.3	482.05	7.45	474.60	7.18	474.87	Former Speedy's	
MW-206	1139588.95	1421327.16	486.74	8.24	478.50	6.21	480.53	Former Speedy's	
MW-210	1139671.22	1421245.63	486.78	7.95	478.83	6.08	480.70	Carriage	
MW-211	1139653.59	1421434.22	485.96	8.21	477.75	7.44	478.52	Former Speedy's	
MW-212	1139621.36	1421428.00	485.44	7.62	477.82	6.97	478.47	Former Speedy's	

Notes:

Northern/Eastern/Elevation Reference: Horizontal Coordinates reference to the New York State Plane Coordinate System, West Zone NAD 83/96. Vertical Datum is NAVD88.

ft = feet

ft amsl = feet above mean sea level

DTW = depth to water

TOC = top of casing

Table 2.3: Groundwater Monitoring Well PCE Concentrations

	Monitoring Wells											
Sample Date	MW-111I	HA-114	MW-210	MW-8B	MW-9	MW-9B	MW-6B	MW-6				
1/1/2009	240	-	230	-	-	-	-					
12/1/2012	-	31	-	-	-	-	-					
2/14/2013	-	-	4.3		-	-	-	-				
10/10/2013	-	-	5.1	-	-	-	-	-				
4/4/2014	-	-	2.6	-	-	-	-	-				
12/17/2014	83	13	3.5	-	-	-	-	-				
5/26/2015	96	55	1.8	620	-	ND	-	-				
8/25/2015	150	76	2.8	810	5.5	ND	-	-				
4/25/2016	200	6.3	1.1	450	1.9	ND	-	-				
11/9/2016	290	19	160	380	3.9	46	-	-				
5/10/2017	190	2.3	7.5	140	1.7	0.73	-	-				
11/1/2017 a	92	10	5.6	490	5.1	ND	-	-				
5/2/2018 ^b	170	42	2.6	480	0.94	ND	-	-				
11/14/2018	44	60	3.7	380	ND	6.5	-	-				
1/23/2019	-	-	-	-	-	-	335	-				
2/6/2019	-	-	-	-	-	-	1400	-				
2/20/2019	-	-	-	-	-	-	130	-				
3/14/2019	-	-	-	-	-	-	78.5	-				
3/21/2019	-	-	-	-	-	-	26	-				
4/3/2019	-	-	-	-	-	-	19.5	-				
4/17/2019	-	-	-	-	-	-	12	-				
5/1/2019	49	30	1.2	290	2.2	-	5.8	31000				
5/15/2019	-	-	-	200	•	-	-	-				
6/12/2019	-	-	-	300	-	-	-	-				
6/25/2019	-	-	-	290	-	-	-	-				
7/1/2019	-	-	-	380 F1	-	-	-	-				
10/16/2019	130 E	140 E	8	620 E	1.2	ND	1000 E	5500				
3/30/2020 °	88	30	1.7	380	2.3	ND	5.3	32000				
11/11/2020	5.7	130	8.7	540	3.2	ND	1500	-				
3/20/2021 ^d	2.6	41	16	320	5.7	ND	410	27000				
/12/22 and 4/13/22	58	11	14	220	1.9	ND	3.2	19000				
10/24/2022 ^d	140	170	50	380	4.6	ND	990	2000				
04/10/2023 ^d	110	29	36	200	1.1	ND	160	25000				

Notes:

RemOx® SR permanganate cylinders were installed in MW-6 and MW-6B during second quarter of 2014 and removed December 2018 and were not sampled during this period Groundwater extraction pilot testing conducted at MW-6B and MW-8B from December 2018 to July 1019

- not sampled
- ND = non-detect
- (a) Sample for well HA-114 was collected on 11/2/2017
- (b) Samples for wells HA-114 and MW-210 were collected on 5/3/2018
- (c) Samples for wells MW-9, MW-9B, MW-210, and HA-114 were collected on $3/3\,l/2020$
- (d) Samples were taken throughout the week of the date indicated.
- F1 = MS and/or MSD Recovery is outside acceptance limits
- E = Result exceeded calibration range
- $\boldsymbol{H} = \boldsymbol{Sample}$ was prepped or analyzed beyond the specified holding time
- PCE = tetrachloroethene

Prepared by: KJM 08/21/2023 Checked by: VMW 08/25/2023

APPENDIX A MONROE COUNTY SEWER USE PERMIT

COUNTY OF MONROE SEWER USE PERMIT RENEWAL

Permit Number:

Fee:

IWC-951 \$75.00

Expires: October 31, 2022 7/11/2020 Mailing Addr: 625 Broadway, 12th Floor W/C Expire: District No: Albany, NY 12233-7017 Business Type: Pretreatment Has there been any revision to the plant sewer system or any change in industrial wastes discharged to the public sewer in the past twelve months Approx. monthly treated Yes: _ No: Yes. please explain in a separate letter. Average monthly consumption for the past twelve (12) months: 8/18 -> 8/19 - 29,000 galles /math In consideration of the granting of this renewal permit the undersigned agrees to comply with all the requirements in the Initial Permit as listed under 11. Name of person to be contacted for inspection & sampling purposes: Palmer (665) Phone No: (716) 866 3590 YOUR PERMIT MUST BE SIGNED AS FOLLOWS: 1 For a corporation, by a responsible corporate officer. A corporate officer means (a) A president, secretary, treasurer or vice - president of the curporation in charge of a principal business function, or any other person who performs similar policy - or decision - making functions for the corporation or (b) The manager of one or more manufacturing, production, or operation facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25 million (in second - quarter 1980 dollars), if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures 2. For a partnership or sole proprietorship by a general partner or the proprietor, respectively, or 3 By a duly authorized representative of the individual designated in items (1) or (2) above if (a) The authorization is made in writing by the individual described in items (1) or (2). (b) The authorization specifies either an individual or a position having responsibility for the overall operation of the facility from which the Industrial Discharge originates such as the position of plant manager, superintendent, position of equivalent responsibility. or an individual or position having overall responsibility for environmental matters for the company; (A duly authorized representative may thus be either a named individual or any individual occupying named position), and (c) The written authorization is submitted to this Department Signature Renewal Approved by:

Director of Environmental Services-PureWaters

Monroe County

Firm Name: NYS DEC - Carriage Cleaners

2101 Monroe Avenue

COUNTY OF MONROE SEWER USE PERMIT ENCLOSURE

NYS DEC- Carriage Cleaners

625 Broadway, 12th Floor Albany, NY 12233-7017 PERMIT NUMBER: DISTRICT NUMBER:

951 8574

TYPE OF BUSINESS: Groundwater Remediation

LOCATION: 2101 Monroe Ave Brighton, NY

SAMPLE POINT:

IWC-951.1 – Sample Port on Treatment System

REQUIRED MONITORING & EFFLUENT LIMITS

SAMPLE POINT:

IWC-951.1 – Sample Port on Treatment System

SELF-MONITORING FREQUENCY: MONTHLY

SAMPLING PROTOCOL: Sampling and analysis shall be performed in accordance with the techniques prescribed in 40CFR part 136 and amendments thereto. A grab sample, collected from the above noted sample point shall be analyzed for the following:

<u>Parameter</u>	Sewer Use Limit	Action Level
Purgeable Aromatics		2.13 mg/L*
Purgeable Halocarbons		2.13 mg/L*
Methyl tert-butyl ether	(monitor only)	

^{*}The summation of the purgeable aromatics and purgeable halocarbons with detection levels greater than $10\mu g/l$ shall not exceed 2.13 mg/l.

SPECIAL CONDITIONS:

- 1. All groundwater must be treated regardless of the influent concentrations.
- 2. Monthly flow summaries shall be submitted for billing purposes.
- 3. If there is no discharge for a given month, then a letter must be submitted stating so.

TERMS AND CONDITIONS

GENERAL REQUIRMENTS:

- A. The permittee agrees to accept and abide by all provisions of the Sewer Use Law of Monroe County (MCSUL) and of all pertinent rules or regulations now in force or shall be adopted in the future.
- **B.** In addition to the parameters/limits outlined, the total facility discharge shall meet all other concentration values listed within the MCSUL and as described in Article III, Section 3.3(d) of the Law.
- C. Included in Article II, Section 2.1 of the MCSUL, is the definition of "Normal Sewage". "Normal Sewage" may be discharged to the sewer system in excess of the concentrations outlined in the definition, however, the facility will be subject to the imposition of a sewer surcharge and possible self-monitoring requirements as a result. Surcharging procedures are outlined in Article X of the MCSUL.
- **D.** Regulatory sampling for analytes not specified under "required monitoring" shall be conducted by Monroe County at a minimum frequency of once every three (3) years.
- **E.** This permit is not assignable or transferable. The permit is issued to a specific user and location.
- F. Per Article IX, section 9.9 of the MCSUL, a violation by the permittee of the permit conditions may be cause for revocation or suspension of the permit after a Hearing by the Administrative Board, or if the violation is found to be within the emergency powers of the Director under Section 9.6. The revocation is immediate upon receipt of notice to the Industrial User. If the revocation or suspension is issued under Section 9.6, a Hearing shall be held as soon as possible.
- G. As provided under Article VI, Section 6.1 of the MCSUL, the Director and/or his duly authorized representatives shall gain entry on to private lands by permission or duly issued warrant for the purpose of inspection, observation, measurement sampling and testing in accordance with the provisions of this law and its implementing Rules and Regulations. The Director or his representatives shall not have authority to inquire into any processes used in any industrial operation beyond that information having a direct bearing on the kind and source of discharge to the sewers or the on-site facilities for waste treatment. While performing the necessary work on private lands, referred to above, the Director or his duly authorized representative shall observe all safety rules applicable to the premises as established by the owner and/or occupant.
- **H.** All required monitoring shall be analyzed by a New York State Department of Health certified laboratory. All sampling and analysis must be performed in accordance with Title 40 Code of Federal Regulations Part 136.
- I. The pH range for this permit is 5.0 12.0 su. This range is specifically permitted by the Director as allowed under Article III, Section 3.3(b) of the MCSUL. pH must be analyzed within 15 minutes of the time of collection as specified in 40 CFR, part 136.
- J. Discharges of wax, fats, oil or grease shall not exceed 100 mg/l as imposed by the Director under Article III, Section 3.3 of the MCSUL.

SURCHARGE CONCENTRATIONS:

Concentration and/or characteristics of normal sewage:

"Normal Sewage" shall mean sewage, industrial wastes or other wastes, which when analyzed, show concentration values with the following characteristics based on daily maximum limits:

a. B. O. D.	300 mg/l
b. Total Suspended Solids	300 mg/l
c. Total Phosphorus, as P	10 mg/l

Annual average concentrations above normal sewage are subject to surcharge as defined in Article X, section 10.7 of the MCSUL.

DISCHARGE LIMITATIONS (SEWER USE LIMITS)

Permissible concentrations of toxic substances and/or substances the Department wishes to control:

The concentration in sewage of any of the following toxic substances and/or substances the Department wishes to control shall not exceed the concentration limits specified when discharged into the County Sewer System; metal pollutants are expressed as <u>total</u> metals in mg/l (ppm): the following pollutant limits are based on daily maximum values:

a.	Antimony (Sb)	1.0 mg/l
b.	Arsenic (As)	0.5 mg/l
C.	Barium (Ba)	2.0 mg/l
d.	Beryllium (Be)	5.0 mg/l
e.	Cadmium (Cd)	1.0 mg/l
f.	Chromium (Cr)	3.0 mg/l
g.	Copper (Cu)	3.0 mg/l
h.	Cyanide (CN)	1.0 mg/l
i.	Iron (Fe)	5.0 mg/l
j.	Lead (Pb)	1.0 mg/l
k.	Manganese (Mn)	5.0 mg/l
1.	Mercury (Hg)	0.05 mg/l
m.	Nickel (Ni)	3.0 mg/l
n.	Selenium (Se)	2.0 mg/l
o.	Silver (Ag)	2.0 mg/l
p.	Thallium (Tl)	1.0 mg/l
q.	Zinc (Zn)	5.0 mg/l

REPORTING REQUIREMENTS:

- A. Per the requirements of 40 CFR, Part 403.12, Significant Industrial Users must submit Periodic Reports on Continued Compliance to the Control Authority on a biannual (2/yr) basis. Deadline dates of submission for these reports will be August 15 and February 15, respectively.
- **B.** Discharge monitoring reports shall be submitted to the Control Authority upon receipt from the permittee's testing laboratory. Reports submitted from industrial users identified as Significant Industrial Users (SIU) must be accompanied by a certification statement as required by 40 CFR part 403 and the MCSUL, Article VI, section 6.12.
- C. Any Industrial User subject to the reporting requirements of the General Pretreatment Regulations shall maintain records of all information resulting from any monitoring activities required by 40 CFR, part 403.12 for a minimum of three (3) years. These records shall be available for inspection and copying by the Control Authority. This period of retention shall be extended during the course

- of any unresolved litigation regarding the discharge of pollutants by the Industrial User or the operation of the POTW Pretreatment Program or when requested by the Director or the Regional Administrator.
- Pursuant to Article VI, Section 6.10 (4) of the MCSUL and the reporting requirements of the Code of Federal Regulations 40 CFR part 403.12, if a permitted user elects to perform monitoring at compliance monitoring locations more often than required and uses approved laboratory procedures, the results of all such additional monitoring and any additional flow measurements shall be reported to the Director on a timely basis and shall be included in reports as outlined in the MCSUL section 6.10(1)-(4).

NOTIFICATION REQUIREMENTS:

- A. Pursuant to Article VI, Section 6.10(5), the permittee shall notify the Department within 24 hours of becoming aware that discharge monitoring is in violation of any permit limit. This notification shall be directed to the Industrial Waste Section at 585-753-7600 Option 4. The User shall also repeat sampling and analysis for the analyte in non-compliance and submit the results of the repeat analysis to Monroe County within 30 days after becoming aware of the violation.
- **B.** Notify the Director in writing when considering a revision to the plant sewer system or any change in industrial waste discharges to the public sewers. The later encompasses either an increase or decrease in average daily volume or strength of waste or new wastes.
- C. Notify the Director immediately of any accident, negligence, breakdown of pretreatment equipment or other occurrence that occasions discharge to the public sewer of any waste or process waters not covered by this permit.

SLUG CONTROL

An Industrial User shall be required to report any/all slug discharges to the Monroe County sewer system by calling 585-753-7600 option 4. For the purpose of this permit enclosure, a slug discharge shall be identified as any discharge of a non-routine, episodic nature, including but not limited to an accidental spill or a non-customary batch discharge. Following a review process, the Control Authority (Monroe County) shall determine the applicability of a facility slug control plan. If the Control Authority decides that a Slug Discharge Control Plan (SDCP) is needed, the plan shall contain, at a minimum, the following elements:

- 1. Description of discharge practices, including non-routine batch discharges.
- Description of stored chemicals.
- 3. Procedures for immediately notifying the Control Authority of slug discharges, including any discharge that would violate a prohibition under 40 CFR 403.5 (b), with procedures for follow up written notification within five (5) days.
- 4. If necessary, procedures to prevent adverse impact from accidental spills, including, but not limited to, inspection and maintenance of storage areas, handling and transfer of materials, loading and unloading operations, control of plant site run-off, worker training, building of containment structures or equipment, measures for containing toxic organic pollutants (including solvents) and/or measures and equipment for emergency purposes.

SNC DEFINITION:

In accordance with 40 CFR 403.8 (f) (vii), an Industrial User is in significant noncompliance (SNC) if its violations meet one or more of the following criteria:

- A. Chronic violations of wastewater discharge limits defined as those which 66% or more of all the measurements taken during a six-month period exceed (by any magnitude) the daily maximum limit or the average limit for the same pollutant parameter (ref. Article IX, section 9.19 MCSUL). This criteria does NOT apply to the following Monroe County surchargeable parameters: Biochemical Oxygen Demand, Total Suspended Solids, Chlorine Demand and Total Phosphorus.
- B. Technical review criteria (TRC) violations defined as those in which 33% or more of all the measurements for each pollutant parameter taken during a six month period equal or exceed the product of the daily maximum limit or the average limit times the applicable TRC (ref. Article IX, section 9.19 MCSUL). This criteria does NOT apply to the following Monroe County surchargeable parameters: Biochemical Oxygen Demand, Total Suspended Solids, Chlorine Demand and Total Phosphorus.
- C. Any other violation of a pretreatment effluent limit (daily maximum or longer-term average) that the Control Authority determines has caused, alone or in combination with other discharges, interference or pass-through (including endangering the health or POTW personnel or the general public).
- **D.** Any discharge of a pollutant that has caused imminent endangerment to human health, welfare or the environment or has resulted in the POTW's exercise of its emergency authority under paragraph (t)(1)(vi)(8) of 40 CFR part 403 to prevent such a discharge.
- E. Failure to meet, within 90 days after the scheduled date, a compliance schedule milestone contained in a local control mechanism or enforcement order, for starting construction, completing construction or attaining final compliance.
- **F.** Failure to provide, within 30 days after the due date, required reports such as BMRs, 90 day compliance reports, periodic reports on continued compliance.
- **G.** Failure to accurately report noncompliance.
- **H.** Any other violation or group of violations that the Control Authority determines will adversely affect the operation and implementation of the local Pretreatment Program.

PENALTIES

Should the facility be considered in Significant Non-Compliance (SNC), based on the above mentioned criteria, the minimum enforcement response by Monroe County will be the publication of the company name in the Gannett Rochester newspaper. The company will be published as an Industrial User in Significant Non-Compliance (SNC). Fines and criminal penalties may follow this publication (ref. Article IX – MCSUL).

Nothing in this permit shall be construed to relieve the permittees from civil/criminal penalties for noncompliance under Article IX, Section 9.7(a)(5) MCSUL. Article IX provides that any person who violates a permit condition is subject to a civil penalty not to exceed \$25,000 for any one case and an additional penalty not to exceed \$25,000 for each day of continued violation.

CERTIFICATE OF LIABILITY INSURANCE

DATE (MM/DD/YYYY) 09/12/2019

THIS CERTIFICATE IS ISSUED AS A MATTER OF INFORMATION ONLY AND CONFERS NO RIGHTS UPON THE CERTIFICATE HOLDER. THIS CERTIFICATE DOES NOT AFFIRMATIVELY OR NEGATIVELY AMEND, EXTEND OR ALTER THE COVERAGE AFFORDED BY THE POLICIES BELOW. THIS CERTIFICATE OF INSURANCE DOES NOT CONSTITUTE A CONTRACT BETWEEN THE ISSUING INSURER(S), AUTHORIZED REPRESENTATIVE OR PRODUCER, AND THE CERTIFICATE HOLDER.

If s	SUBRO	IT: If the certificate holder is a GATION IS WAIVED, subject to cate does not confer rights to	the t	erms	and conditions of the pol	icy, ce	rtain policies				
	UCER	oute dood not donner rights to				CONTAC		een			
		utions & Services, Inc.				PHONE (732) 738-6080 FAX (A/C, No): (732) 738-6081					
619	Amboy A	venue			į	E-MAIL ADDRES	ss: jbegreen@	dissi-nj.com			
									RDING COVERAGE		NAIC#
Edis					NJ 08837	INSURE	RA: Great Div	ride Insurance	Company		25224
INSUF	RED	Odurates & Casis				INSURE					
		Groundwater & Environmental S 415 Lawrence Bell Blvd, Suite	ervice	es, inc		INSURE					
		413 Lawrence Dell Bivd, Suite				INSURE					
		Williamsville			NY 14221	INSURE		- 1			
COV	ERAGE	S CERT	TIFIC	ATE	NUMBER: CL196180074		NV.	•	REVISION NUMBER:		
TH INI CE EX	IS IS TO O	CERTIFY THAT THE POLICIES OF II NOTWITHSTANDING ANY REQUIF E MAY BE ISSUED OR MAY PERTA IS AND CONDITIONS OF SUCH PO	REME IN, TI LICIE	NT, TE	ERM OR CONDITION OF ANY (SURANCE AFFORDED BY THE	CONTRA	ACT OR OTHER ES DESCRIBEI ED BY PAID CL	DOCUMENT V HEREIN IS SI AIMS.	WITH RESPECT TO WHICH T	HIS	
INSR LTR		TYPE OF INSURANCE		WVD	POLICY NUMBER		POLICY EFF (MM/DD/YYYY)	PÖLICY EXP (MM/DD/YYYY)	LIMIT	5	
	COM	MERCIAL GENERAL LIABILITY							EACH OCCURRENCE DAMAGE TO RENTED	\$	
	\perp	CLAIMS-MADE OCCUR							PREMISES (Ea occurrence)	\$	
						1			MED EXP (Any one person)	\$	
1									PERSONAL & ADV INJURY	\$	
		GREGATE LIMIT APPLIES PER:							GENERAL AGGREGATE	\$	
	POLI								PRODUCTS - COMP/OP AGG Employee Benefits	\$	
		BILE LIABILITY		-		_	-		COMBINED SINGLE LIMIT (Ea accident)	\$	-
	ANY	AUTO							BODILY INJURY (Per person)	\$	
	OWN	SCHEDULED SCHEDULED AUTOS		ĺ					BODILY INJURY (Per accident)	\$	
Í	HIRE								PROPERTY DAMAGE (Per accident)	\$	
		ACTOS CITE			and the second s				Medical payments	\$	
	UMB	RELLA LIAB OCCUR				-			EACH OCCURRENCE	S	-
[EXC	CLAIMS-MADE]]					AGGREGATE	\$	
	DED									\$	
		COMPENSATION OYERS' LIABILITY Y/N							➤ PER OTH- STATUTE ER		
		RIETOR/PARTNER/EXECUTIVE N	N/A	ĺĺ	WCA2022992		07/01/2019	07/01/2020	E.L. EACH ACCIDENT	\$ 1,00	
	(Mandator)	(in NH)							E.L. DISEASE - EA EMPLOYEE	4	0,000
	DÉSCRIPT	ION OF OPERATIONS below							E.L. DISEASE - POLICY LIMIT	\$ 1,00	0,000
							ļ	0			
DESC	RIPTION O	F OPERATIONS / LOCATIONS / VEHICLE	S (AC	ORD 1	01, Additional Remarks Schedule,	may be a	tached if more sp	ace is required)			
CER	TIFICAT	E HOLDER				CANC	ELLATION			1000	
Monroe County Department of Environmental Services 145 Paul Road, Building 1					SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS.						
		,				AUTHOR	RIZED REPRESEN	ITATIVE			
		Rochester			NY 14624			Liky	4/2 2.		

STATE OF NEW YORK WORKERS' COMPENSATION BOARD

CERTIFICATE OF NYS WORKERS' COMPENSATION INSURANCE COVERAGE

1a. Legal Name & Address of Insured (Use street address only) Groundwater & Environmental Services, Inc. 5 Technology Place Suite 4 East Syracuse, NY 13057 NYC TRACKING CODE 601456 Work Location of Insured (Only required if coverage is specifically limited to certain locations in New York State, i.e., a Wrap-Up Policy)	1b. Business Telephone Number of Insured 800-220-3068 1c. NYS Unemployment Insurance Employer Registration Number of Insured 83-51399 1d. Federal Employer Identification Number of Insured or Social Security Number 23-2335424
2. Name and Address of the Entity Requesting Proof of Coverage (Entity Being Listed as the Certificate Holder) Monroe County Department of Environmental Services Industrial Waste Section 145 Paul Road, Bldg.1 Rochester, NY 14624	 3a. Name of Insurance Carrier Great Divide Insurance Company 3b. Policy Number of entity listed in box "1a" WCA202299212 3c. Policy effective period 7/1/2019 to 7/1/2020 3d. The Proprietor, Partners or Executive Officers are
This certifies that the insurance carrier indicated above in box "3" is compensation under the New York State Workers' Compensation Law	

3A on the INFORMATION PAGE of the workers' compensation insurance policy). The Insurance Carrier or its licensed agent will send this Certificate of Insurance to the entity listed above as the certificate holder in box "2".

The Insurance Carrier will also notify the above certificate holder within 10 days IF a policy is canceled due to nonpayment of premiums or within 30 days IF there are reasons other than nonpayment of premiums that cancel the policy or eliminate the insured from the coverage indicated on this Certificate. (These notices may be sent by regular mail.) Otherwise, this Certificate is valid for one year after this form is approved by the insurance carrier or its licensed agent, or until the policy expiration date listed in box "3c", whichever is earlier.

Please Note: Upon the cancellation of the workers' compensation policy indicated on this form, if the business continues to be named on a permit, license or contract issued by a certificate holder, the business must provide that certificate holder with a new Certificate of Workers' Compensation Coverage or other authorized proof that the business is complying with the mandatory coverage requirements of the New York State Workers' Compensation Law.

Under penalty of perjury, I certify that I am an authorized representative or licensed agent of the insurance carrier referenced above and that the named insured has the coverage as depicted on this form.

Approved by:	Insurance Solutions & Services, Inc.						
	(Print name of authorized representative or licensed agent of insurance carrier)						
Approved by:	Ful Speck						
	THEN	9/12/2019					
	(Signature)	(Datc)					
Title:	Frank G. Jacobs, President						
Telephone Number of au	thorized representative or licensed agent of insurance carrier:	(732) 738-6080					

Please Note: Only insurance carriers and their licensed agents are authorized to issue Form C-105.2. Insurance brokers are NOT authorized to issue it.

C-105.2 (9-07) www.wcb.state.ny.us

CERTIFICATE OF INSURANCE COVERAGE

DISABILITY AND PAID FAMILY LEAVE BENEFITS LAW

PART 1. To be completed by Disability and Paid Family Leave Ber	nefits Carrier or Licensed Insurance Agent of that Carrier							
1a. Legal Name & Address of Insured (use street address only)	1b. Business Telephone Number of Insured							
GROUNDWATER & ENVIRONMENTAL SERVICES INC. 5 TECHNOLOGY PLACE SUITE 4 EAST SYRACUSE, NY 13057 Work Location of Insured (Only required if coverage is specifically limited to certain locations in New York State, i.e., Wrap-Up Policy)	800-220-3068 1c. Federal Employer Identification Number of Insured or Social Security Number 232335424							
2. Name and Address of Entity Requesting Proof of	3a Name of Insurance Carrier							
Coverage (Entity Being Listed as the Certificate Holder) Monroe County Department of Environmental Services Industrial Waste Section 145 Paul Road, Bldg.1 Rochester, NY 14624	HARTFORD LIFE AND ACCIDENT 3b Policy Number of Entity Listed in Box "1a" LNY324265 3c Policy effective period 01-01-2019 to 12-31-2019							
4. Policy provides the following benefits: A. Both disability and paid family leave benefits. B. Disability benefits only. C. Paid family leave benefits only. 5. Policy covers: A. All of the employer's employees eligible under the NYS Disability and Paid Family Leave Benefits Law. B. Only the following class or classes of employer's employees:								
insured has NYS Disability and/or Paid Family Leave Benefits insurance of								
Date Signed	beth Tello							
(Signature of Insurance	carrier's authorized representative or NYS Licensed Insurance Agent of that Insurance carrier)							
Telephone Number (212) 553-8074 Name and Title: Eliz	zabeth Tello Assistant Director, Statutory Services							
Licensed Insurance Agent of that carrier, this cer	signed by the insurance carrier's authorized representative or NYS tificate is COMPLETE. Mail it directly to the certificate holder. NOT COMPLETE for purposes of Section 220, Subd. 8 of the NYS timust be mailed for completion to the Workers' Compensation aghamton, NY 13902-5200.							
PART 2. To be completed by the NYS Workers' Compensa	tion Board (Only if Box 4C or 5B of Part 1 has been checked)							
State of New York Workers' Compensation Board According to information maintained by the NYS Workers' Compensation Board, the above-named employer has complied with the NYS Disability and Paid Family Leave Benefits Law with respect to all of his/her employees. Date Signed By								
	(Signature of Authorized NYS Workers' Compensation Board Employee)							
Telephone Number Name and Title								

Please Note: Only insurance carriers licensed to write NYS disability and paid family leave benefits insurance policies and NYS licensed insurance agents of those insurance carriers are authorized to issue Form DB-120.1. Insurance brokers are NOT authorized to issue this form.

APPENDIX B

SEWER LINE DISCONNECTION SUMMARY LETTER

Groundwater & Environmental Services, Inc.

495 Aero Drive, Suite 3 Cheektowaga, NY 14225

T. 800.287.7857

November 21, 2022

Charles Gregory
New York State Department of Environmental Conservation
Division of Environmental Remediation
625 Broadway - 12th Floor
Albany, New York 12233-7017

Re: Sewer Line Disconnection Summary
Carriage Cleaners
2101 Monroe Avenue
Brighton, New York 14618
NYSDEC Site #828120
Offsite Property: 2113 Monroe Avenue, Brighton, New York

Dear Mr. Gregory:

Please find herein the summary of the sewer disconnection activities, with regard to Monroe County Sewer Use Permit #951 (the permit), conducted by Groundwater & Environmental Services, Inc. (GES). The work was completed on behalf of the New York State Department of Environmental Conservation (NYSDEC) at the above referenced property (hereto referenced as "the Site") in Brighton, New York.

On October 5, 2022, NYSDEC determined that the permit associated with the groundwater extraction treatment (GWET) system at the Site would not be renewed due to the GWET system being inactive. As such, it was required by Monroe County that the discharge line to the sewer be disconnected. On October 7, 2022, following a meeting with NYSDEC and the engineers at Wood, PLC (Wood), GES communicated the disconnection plans with a Monroe County Department of Environmental Services (MCDES) representative to propose the disconnection of the sewer discharge line by removing the plumbing from the air stripper to the furnco where the connection was made to the sewer pipe. Following plumbing and furnco removal, it was proposed to glue a PVC cap to close the tie in to the sewer. The MCDES representative agreed to this plan on October 11, 2022. On October 17, 2022, GES personnel performed the sewer disconnect activities in accordance with the activities as proposed above, and MCDES was notified that the disconnection activities were complete.

The permit expired on October 31, 2022. An MCDES representative met GES at the Site to inspect and verify the disconnection from the sewer on November 17, 2022. MCDES personnel had no concerns regarding the disconnection during this meeting.

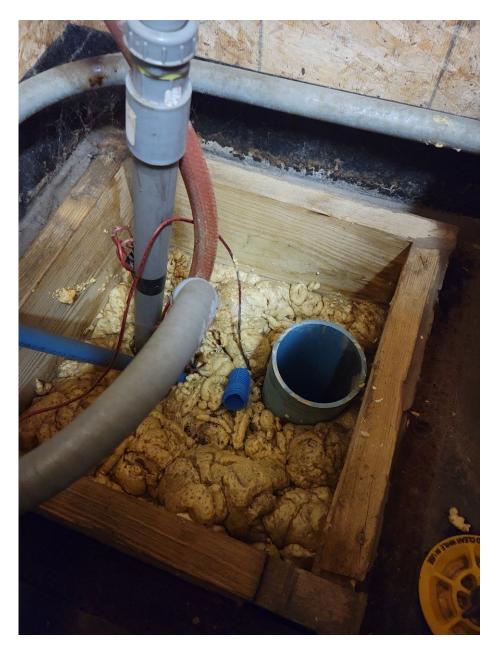
Photographs of the line before and after the disconnection as well as the MCDES Permit Closure letter, dated November 18, 2022, are attached.

Sewer Line Disconnection Summary Carriage Cleaners Brighton, New York NYSDEC Site #828120 November 2022

If you have any questions or concerns, please contact GES at 1-800-287-7857.

Sincerely,

GROUNDWATER & ENVIRONMENTAL SERVICES, INC.


Nicole Lindner Case Manager Thomas Palmer Sr. Project Manager

Attachments

Sewer Line Disconnection Summary Photograph Documentation MCDES Permit Closeout for IWC-951

Sewer Line Disconnection Summary Carriage Cleaners Brighton, New York NYSDEC Site #828120 November 2022

Attachments

View of sewer line following disconnect of furnco from system and sewer piping.

Sewer Line Disconnection Summary Photograph Documentation Carriage Cleaners 2101 Monroe Avenue Brighton, New York NYSDEC Site #828120

View of capped sewer line.

Sewer Line Disconnection Summary Photograph Documentation Carriage Cleaners 2101 Monroe Avenue Brighton, New York NYSDEC Site #828120

Department of Environmental Services

Monroe County, New York

Adam J. Bello
County Executive

Michael J. Garland, P.E. Director

11/18/2022

Charles Gregory NYS DEC 625 Broadway, 12th Floor Albany, NY 12233-7017

Re: Permit Closeout for permit IWC-951

Dear Mr. Gregory:

The groundwater remediation system located at 2101 Monroe Avenue, Rochester, NY 14618 (Carriage Cleaners) discharged treated groundwater to the sanitary sewer under Monroe County Sewer Use Permit #951, which expired on October 31, 2022.

The Monroe County Office of Industrial Waste was notified by GES Inc. in 2020 that the groundwater treatment system was taken offline. There has been no discharge from the system since September of 2020.

Monroe County's Office of Industrial Waste performed a close-out inspection of the site on November 17, 2022. During the inspection it was verified the groundwater treatment system has been disconnected from the sanitary sewer. The treatment system is still present, but it has been disconnected from the discharge point by removing a length of pipe and gluing a PVC cap on the discharge pipe.

If the system is going to be restarted a new sewer use permit will be required prior to re-connecting the system to the sanitary sewer. Please contact this office a minimum of 30 days prior to reconnecting to allow time to process the permit.

Sewer use permit IWC-951 was not renewed and it expired on October 31, 2022. No further action is required regarding the closure of this permit. Please notify this office if the groundwater treatment system is removed from the site.

If you have any questions or concerns, please call me at (585) 753-5441.

Sincerely,

Donald Wolf

Industrial Waste Engineer

Cc: Nicole Lindner, GES Inc.

xc: file

APPENDIX C LABORATORY VALDATION REPORTS

CATEGORY A REVIEW OCTOBER 2022 GROUNDWATER SAMPLING CARRIAGE CLEANERS BRIGHTON, NEW YORK

1.0 INTRODUCTION

Groundwater samples were collected in October 2022 at Carriage Cleaners in Brighton, New York, and shipped to Con-test Analytical Laboratory located in East Longmeadow, Massachusetts, for analysis. Samples included in this review were analyzed by the following United States Environmental Protection Agency (USEPA) method:

Volatile Organic Compounds (VOCs) by Method 8260D

Results were reported in the following sample delivery groups (SDGs):

- 22J3631
- 22J3896
- 22J4221

Sample event information included in this chemistry review is presented in the following Tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions.

A summary of table notes applicable to Tables 1, 2, and 3 is presented just before Table 1.

Laboratory deliverables included:

 Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

The Category A review included the following evaluations. Data review checklists are provided as Attachment A.

- Lab Report Narrative Review
- Data Package Completeness and COC records (Table 1 verification)
- Sample Preservation and Holding Times
- QC Blanks
- Laboratory Control Samples (LCS)
- Matrix Spike and Matrix Spike Duplicate (MS/MSD) (as applicable)
- Field Duplicates (as applicable)
- Surrogates (as applicable)
- Reporting Limits
- Electronic Data Qualification and Verification

CATEGORY A REVIEW APRIL 2023 GROUNDWATER SAMPLING CARRIAGE CLEANERS BRIGHTON, NEW YORK

1.0 INTRODUCTION

Groundwater samples were collected in April 2023 at Carriage Cleaners in Brighton, New York, and shipped to Con-test Analytical Laboratory located in East Longmeadow, Massachusetts, for analysis. Samples included in this review were analyzed by the following United States Environmental Protection Agency (USEPA) method:

Volatile Organic Compounds (VOCs) by Method 8260D

Results were reported in the following sample delivery group (SDG):

• 23D1781

Sample event information included in this chemistry review is presented in the following Tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions.

A summary of table notes applicable to Tables 1, 2, and 3 is presented just before Table 1.

Laboratory deliverables included:

 Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005).

The Category A review included the following evaluations. Data review checklists are provided as Attachment A.

- Lab Report Narrative Review
- Data Package Completeness and COC records (Table 1 verification)
- Sample Preservation and Holding Times
- QC Blanks
- Laboratory Control Samples (LCS)
- Matrix Spike and Matrix Spike Duplicate (MS/MSD) (as applicable)
- Field Duplicates (as applicable)
- Surrogates (as applicable)
- Reporting Limits
- Electronic Data Qualification and Verification

The following laboratory data qualifiers or data review qualifiers are used in the final data presentation:

U = target analyte is not detected at or above the reporting limit

Project No. 3616206118.04

J = concentration is estimated UJ = target analyte is not detected, value is estimated J- = concentration is estimated, potentially biased low

Results are interpreted to be usable as reported by the laboratory or as qualified in the following section.

2.0 POTENTIAL DATA LIMITATIONS

Based on the Category A Review the data meet the data quality objectives; however, the following potential limitations were identified:

VOCs by 8260D

Detections of methylene chloride in samples 828120MW210015, DUP 828120, and 828120MW09008 were qualified non-detect (U) at the reporting limit based on contamination in the associated trip blank. Qualified results are included in Table 3 with reason code BL2.

Reporting limits for naphthalene in all field samples were qualified estimated (UJ) based on low recovery in the associated LCS/LCSD. Qualified results are included in Table 3 with reason code LCSL.

Results for a subset of parameters in sample 828120MW210015 and associated field duplicate DUP 828120 were qualified estimated (UJ) or estimated with potential low bias (J-) based on low recoveries in the associated MS/MSD. The MS/MSD RPDs for naphthalene and acrylonitrile exceeded project limits. Qualified results are included in Table 3 with reason codes MSL and MSRPD.

Reporting limits for a subset of parameters in sample 828120MW9B017 and associated field duplicate DUP 828420 were qualified estimated (UJ) based on low recoveries in the associated MS/MSD. The MS/MSD RPDs for 1,2-dibromo-3-chloropropane and t-butyl alcohol exceeded project limits. Qualified results are included in Table 3 with reason codes MSL and MSRPD.

3.0 ADDITIONAL QC EXCEEDANCES AND OBSERVATIONS

Reporting limits in a subset of samples are elevated due to dilutions as indicated in Table 2.

Reference:

NYSDEC, 2005. "Analytical Services Protocols"; July 2005.

NYSDEC, 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA, 2014. "Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B and 8260C"; HW-24, Revision 4; USEPA Region II Hazardous Waste Support Section; September 2014.

Data Validator: Amber Jones

amin fonts
Date: May 15, 2023

Reviewed by: Julie Ricardi

Date: May 22, 2023

Standard Table Notes:

ng/L – nanograms per liter

μg/L – micrograms per liter

Sample Type (QC Code) Qualification Reason Codes

FS – field sample BL1 – method blank qualifier

FD – field duplicate BL2 – field or trip blank qualifier

TB – trip blank CCV – continuing calibration verification recovery outside limits

EB – equipment blank CCV%D – continuing calibration verification percent difference exceeds goal

FB – field blank CCVRRF – continuing calibration relative response factor low

CI – chromatographic interference present

Matrix DCPD – dual column percent difference exceeds limit

GW – ground water E – result exceeds calibration range

BW – blank water FD – field duplicate precision goal exceeded

TW – tap water FP – false positive interference

SV – soil vapor HT – holding time for prep or analysis exceeded

SED - sediment HTG – holding time for prep or analysis grossly exceeded

ICV – initial calibration verification recovery outside limit

<u>Units</u> ICVRRF – initial calibration verification relative response factor low

mg/L – milligrams per liter ICVRSD – initial calibration verification % relative standard deviation exceeds

goal

ISH – internal standard response greater than limit

ISL – internal standard response less than limit

mg/kg – milligrams per kilogram

LCSH – laboratory control sample recovery high

µg/kg – micrograms per kilogram

LCSL – laboratory control sample recovery low μg/m³ – micrograms per cubic meter

LCSRPD – laboratory control sample/duplicate relative % difference precision

goal exceeded

Qualifiers LD – lab duplicate precision goal exceeded

U – not detected above quantitation limit MSH – matrix spike and/or MS duplicate recovery high

J – estimated quantity

MSL – matrix spike and/or MS duplicate recovery low

J+ - estimated quantity, biased high

MSRPD – matrix spike/duplicate relative % difference precision goal exceeded

J- - estimated quantity, biased low N – analyte identification is not certain

R – data unusable PEM – performance evaluation mixture exceeds limit

PM – sample percent moisture exceeds EPA guideline

<u>Fraction</u> SD – serial dilution result exceeds percent difference limit

T – total SP – sample preservation/collection does not meet method requirement

D – dissolved SSH – surrogate recovery high

N – normal SSL – surrogate recovery low

TD – dissolved concentration exceeds total

TABLE 1 - SUMMARY OF SAMPLES AND ANALYTICAL METHODS CATEGORY A REVIEW APRIL 2023 GROUNDWATER SAMPLING CARRIAGE CLEANERS

BRIGHTON, NEW YORK

				Analysi	s Method	SW8260	SW6010	SW6010	E300	RSK 175	E310.1	SM4500S-F	A5310B
				Met	hod Class	VOCs	Metals	Metals	Anions	Diss Gases	Alkalinity	Sulfide	TOC
					Fraction	N	D	Т	N	N	N	N	N
SDG	Location	Field Sample ID	Media	Sample Date	Qc Code	Count	Count	Count	Count	Count	Count	Count	Count
23D1781	EW-1	828120EW01010	GW	4/12/2023	FS	78	1	2	3	3	1	1	1
23D1781	HA-114	828120HA114013	GW	4/13/2023	FS	78	1	2	3	3	1	1	1
23D1781	MW-111I	828120MW111I013	GW	4/11/2023	FS	78	1	2	3	3	1	1	1
23D1781	MW-210	828120MW210015	GW	4/13/2023	FS	78	1	2	3	3	1	1	1
23D1781	MW-210	DUP 828120	GW	4/13/2023	FD	78							
23D1781	MW-6	828120MW06009	GW	4/12/2023	FS	78							
23D1781	MW-6B	828120MW06B027	GW	4/12/2023	FS	78							
23D1781	MW-8B	828120MW08B027	GW	4/12/2023	FS	78							
23D1781	MW-9	828120MW09008	GW	4/11/2023	FS	78	1	2	3	3	1	1	1
23D1781	MW-9B	828120MW9B017	GW	4/11/2023	FS	78							
23D1781	MW-9B	DUP 828420	GW	4/11/2023	FD	78							
23D1781	QC	828120 TB	BW	4/13/2023	TB	78							

Location			EW-1	HA-114	MW-111I	MW-210	
	Lab Sample Deliver	y Group	23D1781	23D1781	23D1781	23D1781	
	Field Samp	ole Date	4/12/2023	4/13/2023	4/11/2023	4/13/2023	
	Field Sa	mple ID	828120EW01010	828120HA114013	828120MW111I013	828120MW210015	
	(Qc Code	FS	FS	FS	FS	
Method	Parameter Units		Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260	1,1,1,2-Tetrachloroethane	UG/L	1 U	1 U	2 U	1 U	
SW8260	1,1,1-Trichloroethane	UG/L	1 U	1 U	2 U	1 U	
SW8260	1,1,2,2-Tetrachloroethane	UG/L	0.5 U	0.5 U	1 U	0.5 U	
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	1 U	1 U	2 U	1 U	
SW8260	1,1,2-Trichloroethane	UG/L	1 U	1 U	2 U	1 U	
SW8260	1,1-Dichloroethane	UG/L	1 U	1 U	2 U	1 U	
SW8260	1,1-Dichloroethene	UG/L	1 U	1 U	2 U	1 U	
SW8260	1,1-Dichloropropene	UG/L	2 U	2 U	4 U	2 U	
SW8260	1,2,3-Trichlorobenzene	UG/L	5 U	5 U	10 U	5 UJ	
SW8260	1,2,3-Trichloropropane	UG/L	2 U	2 U	4 U	2 U	
SW8260	1,2,4-Trichlorobenzene	UG/L	1 U	1 U	2 U	1 UJ	
SW8260	1,2,4-Trimethylbenzene	UG/L	1 U	1 U	2 U	1 U	
SW8260	1,2-Dibromo-3-chloropropane	UG/L	5 U	5 U	10 U	5 U	
SW8260	1,2-Dibromoethane	UG/L	0.5 U	0.5 U	1 U	0.5 U	
SW8260	1,2-Dichlorobenzene	UG/L	1 U	1 U	2 U	1 U	
SW8260	1,2-Dichloroethane	UG/L	1 U	1 U	2 U	1 U	
SW8260	1,2-Dichloropropane	UG/L	1 U	1 U	2 U	1 U	
SW8260	1,3,5-Trichlorobenzene	UG/L	1 U	1 U	2 U	1 U	
SW8260	1,3,5-Trimethylbenzene	UG/L	1 U	1 U	2 U	1 U	
SW8260	1,3-Dichlorobenzene	UG/L	1 U	1 U	2 U	1 U	
SW8260	1,3-Dichloropropane	UG/L	0.5 U	0.5 U	1 U	0.5 U	
SW8260	1,4-Dichlorobenzene	UG/L	1 U	1 U	2 U	1 U	
SW8260	1,4-Dioxane	UG/L	50 U	50 U	100 U	50 U	
SW8260	2,2-Dichloropropane	UG/L	1 U	1 U	2 U	1 UJ	
SW8260	2-Butanone	UG/L	20 U	20 U	40 U	20 U	

		Location	EW-1	HA-114	MW-111I	MW-210	
		Lab Sample Delivery Group	23D1781	23D1781	23D1781	23D1781	
		Field Sample Date	4/12/2023	4/13/2023	4/11/2023	4/13/2023	
		Field Sample ID	828120EW01010	828120HA114013	828120MW111I013	828120MW210015	
		Qc Code	FS	FS FS		FS	
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260	2-Chlorotoluene	UG/L	1 U	1 U	1 U 2 U		
SW8260	2-Hexanone	UG/L	10 U	10 U	20 U	10 U	
SW8260	4-Chlorotoluene	UG/L	1 U	1 U	2 U	1 U	
SW8260	4-iso-Propyltoluene	UG/L	1 U	1 U	2 U	1 U	
SW8260	4-Methyl-2-pentanone	UG/L	10 U	10 U	20 U	10 U	
SW8260	Acetic acid, methyl ester	UG/L	1 U	1 U	2 U	1 UJ	
SW8260	Acetone	UG/L	50 U	50 U	100 U	50 U	
SW8260	Acrylonitrile	UG/L	5 U	5 U	10 U	5 UJ	
SW8260	Benzene	UG/L	1 U	1 U	2 U	1 U	
SW8260	Bromobenzene	UG/L	1 U	1 U	2 U	1 U	
SW8260	Bromochloromethane	UG/L	1 U	1 U	2 U	1 U	
SW8260	Bromodichloromethane	UG/L	0.5 U	0.5 U	1 U	0.5 U	
SW8260	Bromoform	UG/L	1 U	1 U	2 U	1 UJ	
SW8260	Bromomethane	UG/L	2 U	2 U	4 U	2 U	
SW8260	Butane, 2-methoxy-2-methyl-	UG/L	0.5 U	0.5 U	1 U	0.5 U	
SW8260	Carbon disulfide	UG/L	5 U	5 U	10 U	5 U	
SW8260	Carbon tetrachloride	UG/L	5 U	5 U	10 U	5 U	
SW8260	Chlorobenzene	UG/L	1 U	1 U	2 U	1 U	
SW8260	Chloroethane	UG/L	2 U	2 U	4 U	2 U	
SW8260	Chloroform	UG/L	2 U	2 U	4 U	2 U	
SW8260	Chloromethane	UG/L	2 U	2 U	4 U	2 U	
SW8260	cis-1,2-Dichloroethene	UG/L	10	2.5	15	6.2 0.5 U	
SW8260	cis-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	0.5 U 1 U		
SW8260	Dibromochloromethane	UG/L	0.5 U	0.5 U	1 U	0.5 U	
SW8260	Dibromomethane	UG/L	1 U	1 U 2 U		1 U	

		Location	EW-1	HA-114	MW-111I	MW-210	
		Lab Sample Delivery Group	23D1781	23D1781	23D1781	23D1781	
		Field Sample Date	4/12/2023	4/13/2023	4/11/2023	4/13/2023	
		Field Sample ID	828120EW01010	828120HA114013	828120MW111I013	828120MW210015	
		Qc Code	FS	FS	FS	FS	
Method	Parameter	Units	Result Qualifier	Result Qualifier Result Qualifier		Result Qualifier	
SW8260	Dichlorodifluoromethane	UG/L	2 U	2 U	4 U	2 U	
SW8260	Diethyl ether	UG/L	2 U	2 U	4 U	2 U	
SW8260	Ethyl-t-Butyl Ether	UG/L	0.5 U	0.5 U	1 U	0.5 U	
SW8260	Ethylbenzene	UG/L	1 U	1 U	2 U	1 U	
SW8260	Hexachlorobutadiene	UG/L	0.6 U	0.6 U	1.2 U	0.6 U	
SW8260	Isopropyl ether	UG/L	0.5 U	0.5 U	1 U	0.5 U	
SW8260	Isopropylbenzene	UG/L	1 U	1 U	1 U 2 U		
SW8260	Methyl cyclohexane	UG/L	1 U	1 U	2 U	1 U	
SW8260	Methyl Tertbutyl Ether	UG/L	1 U	1 U	1 U 2 U		
SW8260	Methylene chloride	UG/L	5 U	5 U 10 U		5 U	
SW8260	n-Butylbenzene	UG/L	1 U	1 U	2 U	1 U	
SW8260	Naphthalene	UG/L	2 UJ	2 UJ	4 UJ	2 UJ	
SW8260	Propylbenzene	UG/L	1 U	1 U	2 U	1 U	
SW8260	sec-Butylbenzene	UG/L	1 U	1 U	2 U	1 U	
SW8260	Styrene	UG/L	1 U	1 U	2 U	1 U	
SW8260	t-Butyl alcohol	UG/L	20 U	20 U	40 U	20 U	
SW8260	tert-Butylbenzene	UG/L	1 U	1 U	2 U	1 U	
SW8260	Tetrachloroethene	UG/L	61	29	110	36 J-	
SW8260	Tetrahydrofuran	UG/L	10 U	10 U	20 U	10 U	
SW8260	Toluene	UG/L	1 U	1 U	1 U 2 U		
SW8260	trans-1,2-Dichloroethene	UG/L	0.22 J	1 U	2 U	1 U	
SW8260	trans-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	1 U	0.5 U	
SW8260	trans-1,4-Dichloro-2-butene	UG/L	2 U	2 U	4 U	2 UJ	
SW8260	Trichloroethene	UG/L	6.8	2.5	21	3.9	
SW8260	Trichlorofluoromethane	UG/L	2 U	2 U	4 U	2 U	

		Location	EV	V-1	HA-114		MW-111I		MW-210	
		Lab Sample Delivery Group	23D	1781	23D1781		23D1781		23D1781	
		Field Sample Date	4/12	/2023	4/13/2023		4/11/2023		4/13/2023	
		Field Sample ID	828120E	W01010	828120HA114013		828120MW111I013		828120MW210015	
		Qc Code	F	FS		FS		FS		FS
Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	Vinyl chloride	UG/L	2 U		2 U		3.2 J		1.3 J	
SW8260	Xylene, o	UG/L	1 U		1 U		2 U		1	U
SW8260	Xylenes (m&p)	UG/L	2 U		2 U		4 U		2	U

		MW-210	MW-6	MW-6B	MW-8B		
Lab Sample Delivery Group		23D1781	23D1781	23D1781	23D1781		
Field Sample Date		4/13/2023	4/12/2023	4/12/2023	4/12/2023		
	Field Sa	mple ID	DUP 828120	828120MW06009	828120MW06B027	828120MW08B027	
		Qc Code	FD	FS	FS	FS	
Method	d Parameter Units		Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260	1,1,1,2-Tetrachloroethane	UG/L	1 U	400 U	2 U	4 U	
SW8260	1,1,1-Trichloroethane	UG/L	1 U	400 U	2 U	4 U	
SW8260	1,1,2,2-Tetrachloroethane	UG/L	0.5 U	200 U	1 U	2 U	
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	1 U	400 U	2 U	4 U	
SW8260	1,1,2-Trichloroethane	UG/L	1 U	400 U	2 U	4 U	
SW8260	1,1-Dichloroethane	UG/L	1 U	400 U	2 U	4 U	
SW8260	1,1-Dichloroethene	UG/L	1 U	400 U	2 U	4 U	
SW8260	1,1-Dichloropropene	UG/L	2 U	800 U	4 U	8 U	
SW8260	1,2,3-Trichlorobenzene	UG/L	5 UJ	2,000 U	10 U	20 U	
SW8260	1,2,3-Trichloropropane	UG/L	2 U	800 U	4 U	8 U	
SW8260	1,2,4-Trichlorobenzene	UG/L	1 UJ	400 U	2 U	4 U	
SW8260	1,2,4-Trimethylbenzene	UG/L	1 U	400 U	2 U	4 U	
SW8260	1,2-Dibromo-3-chloropropane	UG/L	5 U	2,000 U	10 U	20 U	
SW8260	1,2-Dibromoethane	UG/L	0.5 U	200 U	1 U	2 U	
SW8260	1,2-Dichlorobenzene	UG/L	1 U	400 U	2 U	4 U	
SW8260	1,2-Dichloroethane	UG/L	1 U	400 U	2 U	4 U	
SW8260	1,2-Dichloropropane	UG/L	1 U	400 U	2 U	4 U	
SW8260	1,3,5-Trichlorobenzene	UG/L	1 U	400 U	2 U	4 U	
SW8260	1,3,5-Trimethylbenzene	UG/L	1 U	400 U	2 U	4 U	
SW8260	1,3-Dichlorobenzene	UG/L	1 U	400 U	2 U	4 U	
SW8260	1,3-Dichloropropane	UG/L	0.5 U	200 U	1 U	2 U	
SW8260	1,4-Dichlorobenzene	UG/L	1 U	400 U	2 U	4 U	
SW8260	1,4-Dioxane	UG/L	50 U	20,000 U	100 U	200 U	
SW8260	2,2-Dichloropropane	UG/L	1 UJ	400 U	2 U	4 U	
SW8260	2-Butanone	UG/L	20 U	8,000 U	40 U	28 J	

	Location		MW-210	MW-6	MW-6B	MW-8B	
	Lab Sample Delivery Grou		23D1781	23D1781	23D1781	23D1781	
		Field Sample Date	4/13/2023	4/12/2023	4/12/2023	4/12/2023	
		Field Sample ID	DUP 828120	828120MW06009	828120MW06B027	828120MW08B027	
		Qc Code	FD	FS	FS	FS	
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260	2-Chlorotoluene	UG/L	1 U	400 U	2 U	4 U	
SW8260	2-Hexanone	UG/L	10 U	4,000 U	20 U	40 U	
SW8260	4-Chlorotoluene	UG/L	1 U	400 U	2 U	4 U	
SW8260	4-iso-Propyltoluene	UG/L	1 U	400 U	2 U	4 U	
SW8260	4-Methyl-2-pentanone	UG/L	10 U	4,000 U	20 U	40 U	
SW8260	Acetic acid, methyl ester	UG/L	1 UJ	400 U	2 U	4 U	
SW8260	Acetone	UG/L	50 U	20,000 U	100 U	200 U	
SW8260	Acrylonitrile	UG/L	5 UJ	2,000 U	10 U	20 U	
SW8260	Benzene	UG/L	1 U	400 U	2 U	4 U	
SW8260	Bromobenzene	UG/L	1 U	400 U	2 U	4 U	
SW8260	Bromochloromethane	UG/L	1 U	400 U	2 U	4 U	
SW8260	Bromodichloromethane	UG/L	0.5 U	200 U	1 U	2 U	
SW8260	Bromoform	UG/L	1 UJ	400 U	2 U	4 U	
SW8260	Bromomethane	UG/L	2 U	800 U	4 U	8 U	
SW8260	Butane, 2-methoxy-2-methyl-	UG/L	0.5 U	200 U	1 U	2 U	
SW8260	Carbon disulfide	UG/L	5 U	2,000 U	10 U	20 U	
SW8260	Carbon tetrachloride	UG/L	5 U	2,000 U	10 U	20 U	
SW8260	Chlorobenzene	UG/L	1 U	400 U	2 U	4 U	
SW8260	Chloroethane	UG/L	2 U	800 U	4 U	8 U	
SW8260	Chloroform	UG/L	2 U	800 U	4 U	8 U	
SW8260	Chloromethane	UG/L	2 U	800 U	4 U	8 U	
SW8260	cis-1,2-Dichloroethene	UG/L	5.7	400 U	0.4 J	9.5	
SW8260	cis-1,3-Dichloropropene	UG/L	0.5 U	200 U 1 U		2 U	
SW8260	Dibromochloromethane	UG/L	0.5 U	200 U	1 U	2 U	
SW8260	Dibromomethane	UG/L	1 U	400 U	2 U	4 U	

		Location	MW-210	MW-6 MW-6B		MW-8B	
		Lab Sample Delivery Group	23D1781	23D1781	23D1781	23D1781	
		Field Sample Date	4/13/2023	4/12/2023	4/12/2023	4/12/2023	
		Field Sample ID	DUP 828120	828120MW06009 828120MW06B027		828120MW08B027	
		Qc Code	FD	FS	FS	FS	
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260	Dichlorodifluoromethane	UG/L	2 U	800 U	4 U	8 U	
SW8260	Diethyl ether	UG/L	2 U	800 U	4 U	8 U	
SW8260	Ethyl-t-Butyl Ether	UG/L	0.5 U	200 U	1 U	2 U	
SW8260	Ethylbenzene	UG/L	1 U	400 U	2 U	4 U	
SW8260	Hexachlorobutadiene	UG/L	0.6 U	240 U	1.2 U	2.4 U	
SW8260	Isopropyl ether	UG/L	0.5 U	200 U	1 U	2 U	
SW8260	Isopropylbenzene	UG/L	1 U	400 U 2 U		4 U	
SW8260	Methyl cyclohexane	UG/L	1 U	400 U	2 U	4 U	
SW8260	Methyl Tertbutyl Ether	UG/L	1 U	400 U	2 U	4 U	
SW8260	Methylene chloride	UG/L	5 U	2,000 U	10 U	20 U	
SW8260	n-Butylbenzene	UG/L	1 U	400 U	2 U	4 U	
SW8260	Naphthalene	UG/L	2 UJ	800 UJ	4 UJ	8 UJ	
SW8260	Propylbenzene	UG/L	1 U	400 U	2 U	4 U	
SW8260	sec-Butylbenzene	UG/L	1 U	400 U	2 U	4 U	
SW8260	Styrene	UG/L	1 U	400 U	2 U	4 U	
SW8260	t-Butyl alcohol	UG/L	20 U	8,000 U	40 U	80 U	
SW8260	tert-Butylbenzene	UG/L	1 U	400 U	2 U	4 U	
SW8260	Tetrachloroethene	UG/L	36 J-	25,000	160	200	
SW8260	Tetrahydrofuran	UG/L	10 U	4,000 U	20 U	40 U	
SW8260	Toluene	UG/L	1 U	400 U	2 U	4 U	
SW8260	trans-1,2-Dichloroethene	UG/L	1 U	400 U	2 U	4 U	
SW8260	trans-1,3-Dichloropropene	UG/L	0.5 U	200 U	1 U	2 U	
SW8260	trans-1,4-Dichloro-2-butene	UG/L	2 UJ	800 U	4 U	8 U	
SW8260	Trichloroethene	UG/L	3.3	400 U	0.44 J	10	
SW8260	Trichlorofluoromethane	UG/L	2 U	800 U	4 U	8 U	

		Location	MW	/-210	MW-6		MW-6B		MW-8B	
		Lab Sample Delivery Group	23D	1781	23D1781		23D1781		23D1781	
		Field Sample Date	4/13	/2023	4/12/2023		4/12/2023		4/12/2023	
		Field Sample ID	DUP 828120		828120MW06009		828120MW06B027		B027 828120MW08B0	
		Qc Code	FD		FS		FS		FS	
Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	Vinyl chloride	UG/L	1.4 J		800 U		4 U		8 U	
SW8260	Xylene, o	UG/L	1 U		400 U		2 U		4	· U
SW8260	Xylenes (m&p)	UG/L	2	2 U		800 U		4 U		U

	L	ocation	MW-9	MW-9B	MW-9B	QC	
Lab Sample Delivery Group			23D1781	23D1781	23D1781	23D1781	
Field Sample Date		4/11/2023	4/11/2023	4/11/2023	4/13/2023		
Field Sample ID			828120MW09008	DUP 828420	828120MW9B017	828120 TB	
		Qc Code	FS	FD	FS	ТВ	
Method			Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260	1,1,1,2-Tetrachloroethane	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,1,1-Trichloroethane	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,1,2,2-Tetrachloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,1,2-Trichloroethane	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,1-Dichloroethane	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,1-Dichloroethene	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,1-Dichloropropene	UG/L	2 U	2 U	2 U	2 U	
SW8260	1,2,3-Trichlorobenzene	UG/L	5 U	5 UJ	5 UJ	5 U	
SW8260	1,2,3-Trichloropropane	UG/L	2 U	2 U	2 U	2 U	
SW8260	1,2,4-Trichlorobenzene	UG/L	1 U	1 UJ	1 UJ	1 U	
SW8260	1,2,4-Trimethylbenzene	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,2-Dibromo-3-chloropropane	UG/L	5 U	5 UJ	5 UJ	5 U	
SW8260	1,2-Dibromoethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	
SW8260	1,2-Dichlorobenzene	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,2-Dichloroethane	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,2-Dichloropropane	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,3,5-Trichlorobenzene	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,3,5-Trimethylbenzene	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,3-Dichlorobenzene	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,3-Dichloropropane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U	
SW8260	1,4-Dichlorobenzene	UG/L	1 U	1 U	1 U	1 U	
SW8260	1,4-Dioxane	UG/L	50 U	50 U	50 U	50 U	
SW8260	2,2-Dichloropropane	UG/L	1 U	1 UJ	1 UJ	1 U	
SW8260	2-Butanone	UG/L	20 U	20 U	20 U	20 U	

		Location	MW-9	MW-9B	MW-9B	QC
		Lab Sample Delivery Group	23D1781	23D1781	23D1781	23D1781
		Field Sample Date	4/11/2023	4/11/2023	4/11/2023	4/13/2023
		Field Sample ID	828120MW09008	DUP 828420	828120MW9B017	828120 TB
		Qc Code	FS	FD	FS	ТВ
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	2-Chlorotoluene	UG/L	1 U	1 U	1 U	1 U
SW8260	2-Hexanone	UG/L	10 U	10 U	10 U	10 U
SW8260	4-Chlorotoluene	UG/L	1 U	1 U	1 U	1 U
SW8260	4-iso-Propyltoluene	UG/L	1 U	1 U	1 U	1 U
SW8260	4-Methyl-2-pentanone	UG/L	10 U	10 U	10 U	10 U
SW8260	Acetic acid, methyl ester	UG/L	1 U	1 UJ	1 UJ	1 U
SW8260	Acetone	UG/L	50 U	50 U	50 U	50 U
SW8260	Acrylonitrile	UG/L	5 U	5 U	5 U	5 U
SW8260	Benzene	UG/L	1 U	1 U 1 U		1 U
SW8260	Bromobenzene	UG/L	1 U	1 U 1 U		1 U
SW8260	Bromochloromethane	UG/L	1 U	1 U	1 U 1 U	
SW8260	Bromodichloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	Bromoform	UG/L	1 U	1 UJ	1 UJ	1 U
SW8260	Bromomethane	UG/L	2 U	2 U	2 U	2 U
SW8260	Butane, 2-methoxy-2-methyl-	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	Carbon disulfide	UG/L	5 U	5 U	5 U	5 U
SW8260	Carbon tetrachloride	UG/L	5 U	5 U	5 U	5 U
SW8260	Chlorobenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	Chloroethane	UG/L	2 U	2 U	2 U	2 U
SW8260	Chloroform	UG/L	2 U	2 U	2 U	2 U
SW8260	Chloromethane	UG/L	2 U	2 U	2 U	2 U
SW8260	cis-1,2-Dichloroethene	UG/L	1 U	1 U	1 U	1 U
SW8260	cis-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	Dibromochloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	Dibromomethane	UG/L	1 U	1 U	1 U	1 U

Created by: KLD 5/16/2023 Checked by: ALJ 5/16/2023

		Location	MW-9	MW-9B	MW-9B	QC
		Lab Sample Delivery Group	23D1781	23D1781	23D1781	23D1781
		Field Sample Date	4/11/2023	4/11/2023	4/11/2023	4/13/2023
		Field Sample ID	828120MW09008	DUP 828420	828120MW9B017	828120 TB
		Qc Code	FS	FD	FS	TB
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	Dichlorodifluoromethane	UG/L	2 U	2 U	2 U	2 U
SW8260	Diethyl ether	UG/L	2 U	2 U	2 U	2 U
SW8260	Ethyl-t-Butyl Ether	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	Ethylbenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	Hexachlorobutadiene	UG/L	0.6 U	0.6 U	0.6 U	0.6 U
SW8260	Isopropyl ether	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	Isopropylbenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	Methyl cyclohexane	UG/L	1 U	1 U	1 U	1 U
SW8260	Methyl Tertbutyl Ether	UG/L	1 U	1 U	1 U 1 U	
SW8260	Methylene chloride	UG/L	5 U	5 U 5 U		0.24 J
SW8260	n-Butylbenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	Naphthalene	UG/L	2 UJ	2 UJ	2 UJ	2 U
SW8260	Propylbenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	sec-Butylbenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	Styrene	UG/L	1 U	1 U	1 U	1 U
SW8260	t-Butyl alcohol	UG/L	20 U	20 UJ	20 UJ	20 U
SW8260	tert-Butylbenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	Tetrachloroethene	UG/L	1.1	1 U	1 U	1 U
SW8260	Tetrahydrofuran	UG/L	10 U	10 U	10 U	10 U
SW8260	Toluene	UG/L	1 U	1 U	1 U	1 U
SW8260	trans-1,2-Dichloroethene	UG/L	1 U	1 U	1 U	1 U
SW8260	trans-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	trans-1,4-Dichloro-2-butene	UG/L	2 U	2 UJ	2 UJ	2 U
SW8260	Trichloroethene	UG/L	1 U	1 U	1 U	1 U
SW8260	Trichlorofluoromethane	UG/L	2 U	2 U	2 U	2 U

Created by: KLD 5/16/2023 Checked by: ALJ 5/16/2023

		Location	M	N-9	MV	V-9B	MV	V-9B	C	QC .
		Lab Sample Delivery Group	23D	1781	23D	1781	23D	1781	23D	1781
		Field Sample Date	4/11	/2023	4/11	/2023	4/11	/2023	4/13	/2023
		Field Sample ID	828120N	/W09008	DUP 8	328420	828120N	/IW9B017	8281	.20 TB
		Qc Code	F	<u>-</u> S	F	D	F	-S	7	ГВ
Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	Vinyl chloride	UG/L	2	U	2	U	2	U	2	U
SW8260	Xylene, o	UG/L	1	U	1	U	1	U	1	U
SW8260	Xylenes (m&p)	UG/L	2	U	2	U	2	U	2	U

		L	ocation	EV	V-1	НА	-114	MW	′-111I	MW	/-210	M'	W-9				
	Lab Samp	le Delivery	Group	23D	1781	230	1781	23D	1781	23D	1781	23D	1781				
	F	Field Samp	le Date	4/12	/2023	4/13	3/2023	4/11	/2023	4/13/2023		4/11	/2023				
		Field Sa	mple ID	8281201	EW01010	828120HA114013		828120M	IW111I013	828120MW210015		828120N	√W09008				
		C	Qc Code	1	FS		FS	FS		ſ	=S	1	-S				
Method	Parameter	Fraction	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier				
SW6010	Iron	T	MG/L	0.095		0.55	<u>;</u>	0.05	U	1.2		0.76					
SW6010	Iron	D	MG/L	0.049	J	0.064	ļ	0.05	U	0.54		0.49					
SW6010	Manganese	Т	MG/L	0.15		0.044	ļ	0.043 0.12		0.12		0.15					
E300	Nitrate as N	N	MG/L	0.1	U	0.9)	0.1 U 0.1 U		0.1 U							
E300	Sulfate	N	MG/L	33		50)	110 67		59							
E300	Chloride	N	MG/L	140		670)	240)	130		400					
RSK 175	Ethane	N	MG/L	0.014	· U	0.014	ł U	0.014	· U	0.014	U	0.014	U				
RSK 175	Ethene	N	MG/L	0.017	U	0.017	7 U	0.017	U	0.017	U	0.017	U				
RSK 175	Methane	N	MG/L	0.007	U	0.007	7 U	0.0018	J	0.0026	J	0.007	U				
E310.1	Alkalinity	N	MG/L	350	1	350)	350)	400		500					
SM4500S-F	Sulfide	N	MG/L	2.4		3.8	3	2.8		2.8		2.8		2.8		4	
A5310B	Total Organic Carbon	N	MG/L	1.6		2	<u>)</u>	1.6		2		6.7					

TABLE 3 - SUMMARY OF QUALIFICATION ACTIONS CATEGORY A REVIEW APRIL 2023 GROUNDWATER SAMPLING CARRIAGE CLEANERS BRIGHTON, NEW YORK

		1				Lab	Final	Final		
Lab SDG	Method	Lab Sample ID	Field Sample ID	Parameter	Lab Result		Result	Qualifier	Val Reason Code	Units
23D1781	SW8260	23D1781-03	828120MW9B017	1,2-Dibromo-3-chloropropane	5	U	5	UJ	MSL, MSRPD	UG/L
23D1781	SW8260	23D1781-04	DUP 828420	1,2-Dibromo-3-chloropropane	5	U	5	UJ	MSL, MSRPD	UG/L
23D1781	SW8260	23D1781-01	828120MW210015	1,2,3-Trichlorobenzene	5	U	5	UJ	MSL	UG/L
23D1781	SW8260	23D1781-01	828120MW210015	Methylene chloride	0.23	J	5	U	BL2	UG/L
23D1781	SW8260	23D1781-02	DUP 828120	1,2,3-Trichlorobenzene	5	U	5	UJ	MSL	UG/L
23D1781	SW8260	23D1781-01	828120MW210015	1,2,4-Trichlorobenzene	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-03	828120MW9B017	t-Butyl alcohol	20	U	20	UJ	MSL, MSRPD	UG/L
23D1781	SW8260	23D1781-02	DUP 828120	1,2,4-Trichlorobenzene	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-01	828120MW210015	2,2-Dichloropropane	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-02	DUP 828120	2,2-Dichloropropane	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-01	828120MW210015	Acetic acid, methyl ester	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-02	DUP 828120	Acetic acid, methyl ester	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-01	828120MW210015	Acrylonitrile	5	U	5	UJ	MSL, MSRPD	UG/L
23D1781	SW8260	23D1781-02	DUP 828120	Acrylonitrile	5	U	5	UJ	MSL, MSRPD	UG/L
23D1781	SW8260	23D1781-01	828120MW210015	Bromoform	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-02	DUP 828120	Methylene chloride	0.18	J	5	U	BL2	UG/L
23D1781	SW8260	23D1781-02	DUP 828120	Bromoform	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-01	828120MW210015	Naphthalene	2	U	2	UJ	LCSL, MSL, MSRPD	UG/L
23D1781	SW8260	23D1781-02	DUP 828120	Naphthalene	2	U	2	UJ	LCSL, MSL, MSRPD	UG/L
23D1781	SW8260	23D1781-01	828120MW210015	Tetrachloroethene	36		36	J-	MSL	UG/L
23D1781	SW8260	23D1781-02	DUP 828120	Tetrachloroethene	36		36	J-	MSL	UG/L
23D1781	SW8260	23D1781-01	828120MW210015	trans-1,4-Dichloro-2-butene	2	U	2	UJ	MSL	UG/L
23D1781	SW8260	23D1781-03	828120MW9B017	1,2,4-Trichlorobenzene	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-03	828120MW9B017	trans-1,4-Dichloro-2-butene	2	U	2	UJ	MSL	UG/L
23D1781	SW8260	23D1781-03	828120MW9B017	Acetic acid, methyl ester	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-03	828120MW9B017	Bromoform	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-03	828120MW9B017	2,2-Dichloropropane	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-03	828120MW9B017	1,2,3-Trichlorobenzene	5	U	5	UJ	MSL	UG/L
23D1781	SW8260	23D1781-04	DUP 828420	1,2,3-Trichlorobenzene	5	U	5	UJ	MSL	UG/L

Created by: KLD 5/16/2023 Checked by: ALJ 5/16/2023

TABLE 3 - SUMMARY OF QUALIFICATION ACTIONS CATEGORY A REVIEW APRIL 2023 GROUNDWATER SAMPLING CARRIAGE CLEANERS BRIGHTON, NEW YORK

						Lab	Final	Final		
Lab SDG	Method	Lab Sample ID	Field Sample ID	Parameter	Lab Result	Qualifier	Result	Qualifier	Val Reason Code	Units
23D1781	SW8260	23D1781-04	DUP 828420	Acetic acid, methyl ester	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-04	DUP 828420	Bromoform	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-04	DUP 828420	2,2-Dichloropropane	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-04	DUP 828420	1,2,4-Trichlorobenzene	1	U	1	UJ	MSL	UG/L
23D1781	SW8260	23D1781-04	DUP 828420	trans-1,4-Dichloro-2-butene	2	U	2	UJ	MSL	UG/L
23D1781	SW8260	23D1781-04	DUP 828420	t-Butyl alcohol	20	U	20	UJ	MSL, MSRPD	UG/L
23D1781	SW8260	23D1781-02	DUP 828120	trans-1,4-Dichloro-2-butene	2	U	2	UJ	MSL	UG/L
23D1781	SW8260	23D1781-03	828120MW9B017	Naphthalene	2	U	2	UJ	LCSL, MSL	UG/L
23D1781	SW8260	23D1781-04	DUP 828420	Naphthalene	2	U	2	UJ	LCSL, MSL	UG/L
23D1781	SW8260	23D1781-05	828120MW06B027	Naphthalene	4	U	4	UJ	LCSL	UG/L
23D1781	SW8260	23D1781-06	828120MW06009	Naphthalene	800	U	800	UJ	LCSL	UG/L
23D1781	SW8260	23D1781-07	828120MW08B027	Naphthalene	8	U	8	UJ	LCSL	UG/L
23D1781	SW8260	23D1781-08	828120HA114013	Naphthalene	2	U	2	UJ	LCSL	UG/L
23D1781	SW8260	23D1781-09	828120MW111I013	Naphthalene	4	U	4	UJ	LCSL	UG/L
23D1781	SW8260	23D1781-10	828120MW09008	Naphthalene	2	U	2	UJ	LCSL	UG/L
23D1781	SW8260	23D1781-10	828120MW09008	Methylene chloride	0.19	J	5	U	BL2	UG/L
23D1781	SW8260	23D1781-11	828120EW01010	Naphthalene	2	U	2	UJ	LCSL	UG/L

Created by: KLD 5/16/2023 Checked by: ALJ 5/16/2023

Project No. 3616206118.04

CATEGORY A REVIEW APRIL 2023 GROUNDWATER SAMPLING CARRIAGE CLEANERS BRIGHTON, NEW YORK

ATTACHMENT A

Page 1 of 1

VOCs

SDG(s): 23D1781

PROJECT CATEGORY A REVIEW RECORD

Project: Carriage Cleaners April 2023

Table 4 (TICs)

Did lab report TICs?

Method: SW-846 8260C Laboratory: Pace Con-test

Date: 5/15/2023 Reviewer: Amber Lones Daview Level X CATEGORY A **COMMENTS** Were problems noted? yes, see atatched MNA parameters completeness check Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) only Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) 2. **☑** ☐ Holding time and Sample Collection All samples were analyzed within the 14 day holding time. YES NO (circle one) 3. ☑□ QC Blanks Are method blanks free of contamination? YES NO (circle one) see attached - methylene chloride - U @, RL, BL2 Are Trip blanks free of contamination? YES NO (circle one) Are Rinse blanks free of contamination? YES NO NA (circle one) 4. ☑□ Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35) Were MS/MSDs submitted/analyzed? YES NO see attached - subset UJ/J-, MSL/MSRPD Were all results within the Region II limits? YES NO NA (circle one) **∠ Laboratory Control Sample Results** - Region II (Water and soil 70-130%) see attached - naphthalene - UJ, LCSL Were all results were within Region II control limits? YES NO (circle one) Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%) Were all results within Region II limits? YES NO (circle one) 7. **☑**□ **Field Duplicates** - Region II Limits (water RPD 50, soil RPD 100) Were Field Duplicates submitted/analyzed? YES NO see attached for RPD calculations Were all results within Region II Limits? YES NO NA (circle one) 8. M Reporting Limits: Were samples analyzed at a dilution? YES NO (circle one) 828120MW06009 - 400x; 828120MW08B027 - 4x; 828120MW06B027 and 828120MW111I013 - 2x - elevated RLs for ND 9. **☑**□ Electronic Data Review and Edits Does the EDD match the Form Is? YES NO (circle one) 10. **☑** □ **Table Review** Table 1 (Samples and Analytical Methods) Table 2 (Analytical Results) Table 3 (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one)

YES NO (circle one)

EPA 300.0

Qualifications:

H-01

Recommended sample holding time was exceeded, but analysis was performed before 2X the allowable holding time.

Analyte & Samples(s) Qualified:

Nitrate as N

23D1781-11[828120EW01010]

H-03

Sample received after recommended holding time was exceeded.

Analyte & Samples(s) Qualified:

Nitrate as N

23D1781-09[828120MW111I013], 23D1781-10[828120MW09008]

Matrix spike recovery outside of control limits. Possibility of sample matrix effects that lead to a high bias for reported result or non-homogeneous sample aliquots cannot be eliminated. Analyte & Samples(s) Qualified:

23D1781-01[828120MW210015], B338376-MS1, B338376-MSD1

Sulfate

23D1781-01[828120MW210015], B338377-MS1, B338377-MSD1

SM 21-23 5310B

Qualifications:

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Analyte & Samples(s) Qualified:

Total Organic Carbon

B338487-BS1

SW-846 8260D

Qualifications:

MS-09

Matrix spike recovery and/or matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low see attached for MS/MSD review bias for reported result or non-homogeneous sample aliquots cannot be eliminated. Analyte & Samples(s) Qualified:

1,2,3-Trichlorobenzene

B337731-MS1, B337731-MSD1

2,2-Dichloropropane

B337731-MS1, B337731-MS2, B337731-MSD1, B337731-MSD2

Methyl Acetate

B337731-MS1, B337731-MS2, B337731-MSD1, B337731-MSD2

Naphthalene

B337731-MS1, B337731-MS2, B337731-MSD1, B337731-MSD2

trans-1,4-Dichloro-2-butene

B337731-MS2, B337731-MSD2

MS-19

Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or see attached for MS/MSD review

meaningful recoveries cannot be calculated.

Analyte & Samples(s) Qualified:

Tetrachloroethylene

B337731-MSD1

MS-23

Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is see attached for MS/MSD review outside of the method specified criteria. Reduced precision anticipated for any reported result for this compound. Analyte & Samples(s) Qualified:

1,2-Dibromo-3-chloropropane (DB)

B337731-MS2, B337731-MSD2

Acrylonitrile

B337731-MSD1

MS-24

Either matrix spike or matrix spike duplicate is outside of control limits, but the other is within limits. Analysis is in control based on see attached for MS/MSD review

laboratory fortified blank recovery.

Analyte & Samples(s) Qualified:

1,2,3-Trichlorobenzene

B337731-MS2

1,2,4-Trichlorobenzene

B337731-MS1, B337731-MS2

Bromoform

B337731-MS1, B337731-MS2

tert-Butyl Alcohol (TBA)

B337731-MS2

trans-1,4-Dichloro-2-butene

B337731-MS1

RL-11

Elevated reporting limit due to high concentration of target compounds. okay - elevated RLs for ND

Analyte & Samples(s) Qualified:

23D1781-05[828120MW06B027], 23D1781-06[828120MW06009], 23D1781-07[828120MW08B027], 23D1781-09[828120MW111I013], 23D1781-09[828120MW08B027], 23D1781-09[828120MW0808], 23D1781-09[828120MW0808], 23D1781-09[828120MW0808], 23D1781-09[828120MW0808], 23D1781-

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

outside scope of Cat A review - no quals

Naphthalene

23D1781-02[DUP 828120], 23D1781-03[828120MW9B017], 23D1781-04[DUP 828420], 23D1781-05[828120MW06B027], 23D1781-06[828120MW06B097], $23D1781-07[828120MW08B027], 23D1781-08[828120HA\,114013], 23D1781-09[828120MW1111013], 23D1781-10[828120MW09008], 23D1781-11[828120EW01010], 23D1781-11[828$ 23D1781-12[828120 TB], B337731-BLK1, B337731-BS1, B337731-BSD1, S086276-CCV1

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

outside scope of Cat A review - no quals

2-Butanone (MEK)

23D1781-07[828120MW08B027], B337731-BS1, B337731-BSD1, S086276-CCV1

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

outside scope of Cat A review - no quals

Dichlorodifluoromethane (Freon 12

B337731-BS1, B337731-BSD1, S086276-CCV1

Tetrahydrofuran

B337731-BS1, B337731-BSD1, S086276-CCV1

Sample Description:

Work Order: 23D1781

Project Location: Brighton, NY
Date Received: 4/14/2023
Field Sample #: 828120 TB

Sampled: 4/13/2023 00:00

Sample ID: 23D1781-12 Sample Matrix: Trip Blank Water

Volatile Organic Compounds by GC/	MS
-----------------------------------	----

Analyte	Results	RL	DL	Units	DF	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	0.20	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
1,4-Dioxane	ND	50	18	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
Ethylbenzene	ND	1.0	0.22	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
Hexachlorobutadiene	ND	0.60	0.47	$\mu g/L$	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
2-Hexanone (MBK)	ND	10	1.2	$\mu g/L$	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
Isopropylbenzene (Cumene)	ND	1.0	0.15	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	0.13	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
Methyl Acetate	ND	1.0	0.61	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	0.17	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
Methyl Cyclohexane	ND	1.0	0.16	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
Methylene Chloride subset U @ RL,	0.24	5.0	0.18	μg/L	1	J	SW-846 8260D	4/20/23	4/21/23 1:42	EEH
4-Methyl-2-pentanone (MIBK) ²	ND	10	1.3	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
Naphthalene	ND	2.0	0.38	μg/L	1	V-05	SW-846 8260D	4/20/23	4/21/23 1:42	EEH
n-Propylbenzene	ND	1.0	0.12	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
Styrene	ND	1.0	0.15	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
1,1,1,2-Tetrachloroethane	ND	1.0	0.16	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	0.14	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
Tetrachloroethylene	ND	1.0	0.17	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
Tetrahydrofuran	ND	10	0.49	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
Toluene	ND	1.0	0.22	$\mu g/L$	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
1,2,3-Trichlorobenzene	ND	5.0	0.34	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
1,2,4-Trichlorobenzene	ND	1.0	0.30	$\mu g/L$	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
1,3,5-Trichlorobenzene	ND	1.0	0.21	$\mu g/L$	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
1,1,1-Trichloroethane	ND	1.0	0.15	$\mu g/L$	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
1,1,2-Trichloroethane	ND	1.0	0.19	$\mu g/L$	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
Trichloroethylene	ND	1.0	0.17	$\mu g/L$	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	0.15	$\mu g/L$	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
1,2,3-Trichloropropane	ND	2.0	0.28	$\mu g/L$	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	0.21	$\mu g/L$	1		SW-846 8260D	4/20/23	4/21/23 1:42	ЕЕН
1,2,4-Trimethylbenzene	ND	1.0	0.20	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
1,3,5-Trimethylbenzene	ND	1.0	0.15	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
Vinyl Chloride	ND	2.0	0.24	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
m+p Xylene	ND	2.0	0.49	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH
o-Xylene	ND	1.0	0.24	μg/L	1		SW-846 8260D	4/20/23	4/21/23 1:42	EEH

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	115	70-130		4/21/23 1:42
Toluene-d8	101	70-130		4/21/23 1:42
4-Bromofluorobenzene	90.3	70-130		4/21/23 1:42

1,2,4-Trichlorobenzene

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	DL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B337731 - SW-846 5030B					70	0-130						
LCS (B337731-BS1)					Prepared & A	Analyzed: 04	/20/23					
Carbon Tetrachloride	10.5	5.0	0.16	μg/L	10.0		105	70-130				
Chlorobenzene	9.23	1.0	0.12	$\mu g/L$	10.0		92.3	70-130				
Chlorodibromomethane	8.96	0.50	0.20	μg/L	10.0		89.6	70-130				
Chloroethane	9.36	2.0	0.34	$\mu g/L$	10.0		93.6	70-130				
Chloroform	10.6	2.0	0.14	μg/L	10.0		106	70-130				
Chloromethane	10.2	2.0	0.50	μg/L	10.0		102	40-160				
2-Chlorotoluene	9.56	1.0	0.15	μg/L	10.0		95.6	70-130				
4-Chlorotoluene	9.51	1.0	0.15	μg/L	10.0		95.1	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	8.94	5.0	0.85	μg/L	10.0		89.4	70-130				
1,2-Dibromoethane (EDB)	10.0	0.50	0.16	μg/L	10.0		100	70-130				
Dibromomethane	9.98	1.0	0.32	μg/L	10.0		99.8	70-130				
1,2-Dichlorobenzene	9.67	1.0	0.13	μg/L	10.0		96.7	70-130				
1,3-Dichlorobenzene	9.52	1.0	0.14	μg/L	10.0		95.2	70-130				
1,4-Dichlorobenzene	9.04	1.0	0.13	μg/L	10.0		90.4	70-130				
trans-1,4-Dichloro-2-butene	8.87	2.0	1.5	μg/L	10.0		88.7	70-130				
Dichlorodifluoromethane (Freon 12)	11.8	2.0	0.16	μg/L	10.0		118	40-160			V-20	
1,1-Dichloroethane	10.4	1.0	0.14	μg/L	10.0		104	70-130				
1,2-Dichloroethane	10.3	1.0	0.30	μg/L	10.0		103	70-130				
1,1-Dichloroethylene	10.2	1.0	0.14	μg/L	10.0		102	70-130				
cis-1,2-Dichloroethylene	10.2	1.0	0.14	μg/L	10.0		106	70-130				
trans-1,2-Dichloroethylene	9.77	1.0	0.17	μg/L	10.0		97.7	70-130				
1,2-Dichloropropane	10.6	1.0	0.19	μg/L	10.0		106	70-130				
1,3-Dichloropropane	10.3	0.50	0.12	μg/L	10.0		103	70-130				
2,2-Dichloropropane	9.04	1.0	0.35	μg/L	10.0		90.4	40-130				
1,1-Dichloropropene	10.2	2.0	0.15	μg/L	10.0		102	70-130				
cis-1,3-Dichloropropene	9.41	0.50	0.16	μg/L	10.0		94.1	70-130				
trans-1,3-Dichloropropene	9.59	0.50	0.14	μg/L	10.0		95.9	70-130				
Diethyl Ether	10.6	2.0	0.14	μg/L	10.0		106	70-130				
Diisopropyl Ether (DIPE)	11.2	0.50	0.20	μg/L	10.0		112	70-130				
1,4-Dioxane	87.7	50	18	μg/L	100		87.7	40-130				÷
Ethylbenzene	9.73	1.0	0.22	μg/L	10.0		97.3	70-130				
Hexachlorobutadiene	10.2	0.60	0.47	μg/L	10.0		102	70-130				
2-Hexanone (MBK)	99.1	10	1.2	μg/L	10.0		99.1	70-150				4
Isopropylbenzene (Cumene)	99.1	1.0	0.15	μg/L	10.0		92.1	70-100				
p-Isopropyltoluene (p-Cymene)	9.21	1.0	0.13	μg/L	10.0		96.2	70-130				
Methyl Acetate	9.62 8.90	1.0	0.61	μg/L μg/L	10.0		89.0	70-130				
Methyl tert-Butyl Ether (MTBE)		1.0	0.17	μg/L μg/L	10.0		103	70-130				
Methyl Cyclohexane	10.3	1.0	0.17	μg/L μg/L	10.0		103	70-130				
Methylene Chloride	10.4	5.0	0.18	μg/L μg/L	10.0		104	70-130				
4-Methyl-2-pentanone (MIBK)	10.0	10	1.3	μg/L μg/L	10.0		100	70-130				
Naphthalene UJ, LCSL	100	2.0	0.38	μg/L μg/L				40-130			V-05	
n-Propylbenzene	5.95	1.0	0.38	μg/L μg/L	10.0		59.5	70-130			v-U3	
Styrene	9.27	1.0			10.0		92.7					
1,1,1,2-Tetrachloroethane	9.46	1.0	0.15 0.16	μg/L ug/I	10.0		94.6	70-130				
	9.79			μg/L μα/Ι	10.0		97.9	70-130				
1,1,2,2-Tetrachloroethane	8.37	0.50	0.14	μg/L ug/I	10.0		83.7	70-130				
Tetrachloroethylene	9.83	1.0	0.17	μg/L	10.0		98.3	70-130			17.00	
Tetrahydrofuran	11.1	10	0.49	μg/L	10.0		111	70-130			V-20	
Toluene	9.93	1.0	0.22	μg/L	10.0		99.3	70-130				
1,2,3-Trichlorobenzene	7.91	5.0	0.34	μg/L	10.0		79.1	70-130				

1.0 0.30

8.05

μg/L

10.0

70-130

80.5

QUALITY CONTROL

		Reporting			Spike	Source		%REC		RPD		
Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	\Box
Batch B337731 - SW-846 5030B					-	70-130						
LCS Dup (B337731-BSD1)					Prepared & A	Analyzed: 04	/20/23					
1,1-Dichloroethane	10.0	1.0	0.14	μg/L	10.0		100	70-130	3.43	25		
1,2-Dichloroethane	10.9	1.0	0.30	$\mu g/L$	10.0		109	70-130	5.00	25		
1,1-Dichloroethylene	9.72	1.0	0.14	$\mu g/L$	10.0		97.2	70-130	4.62	25		
eis-1,2-Dichloroethylene	9.83	1.0	0.14	$\mu g/L$	10.0		98.3	70-130	7.07	25		
trans-1,2-Dichloroethylene	9.21	1.0	0.17	$\mu g/L$	10.0		92.1	70-130	5.90	25		
1,2-Dichloropropane	11.2	1.0	0.19	$\mu g/L$	10.0		112	70-130	5.53	25		
1,3-Dichloropropane	10.5	0.50	0.12	$\mu g/L$	10.0		105	70-130	2.41	25		
2,2-Dichloropropane	8.82	1.0	0.35	$\mu g/L$	10.0		88.2	40-130	2.46	25		1
1,1-Dichloropropene	10.0	2.0	0.15	$\mu g/L$	10.0		100	70-130	1.88	25		
eis-1,3-Dichloropropene	9.85	0.50	0.16	$\mu g/L$	10.0		98.5	70-130	4.57	25		
trans-1,3-Dichloropropene	9.56	0.50	0.14	$\mu g/L$	10.0		95.6	70-130	0.313	25		
Diethyl Ether	10.6	2.0	0.14	μg/L	10.0		106	70-130	0.377	25		
Diisopropyl Ether (DIPE)	10.9	0.50	0.20	$\mu g/L$	10.0		109	70-130	1.99	25		
,4-Dioxane	102	50	18	μg/L	100		102	40-130	15.4	50		1
Ethylbenzene	9.39	1.0	0.22	μg/L	10.0		93.9	70-130	3.56	25		
Hexachlorobutadiene	9.95	0.60	0.47	$\mu g/L$	10.0		99.5	70-130	2.29	25		
2-Hexanone (MBK)	95.0	10	1.2	μg/L	100		95.0	70-160	4.25	25		1
(Sopropylbenzene (Cumene)	9.06	1.0	0.15	μg/L	10.0		90.6	70-130	1.64	25		
p-Isopropyltoluene (p-Cymene)	9.25	1.0	0.13	μg/L	10.0		92.5	70-130	3.92	25		
Methyl Acetate	8.39	1.0	0.61	μg/L	10.0		83.9	70-130	5.90	25		
Methyl tert-Butyl Ether (MTBE)	10.1	1.0	0.17	μg/L	10.0		101	70-130	1.87	25		
Methyl Cyclohexane	10.6	1.0	0.16	μg/L	10.0		106	70-130	2.19	25		
Methylene Chloride	9.60	5.0	0.18	μg/L	10.0		96.0	70-130	4.38	25		
4-Methyl-2-pentanone (MIBK)	99.1	10	1.3	μg/L	100		99.1	70-160	1.22	25		i
Naphthalene UJ, LCSL	6.15	2.0	0.38	μg/L	10.0		61.5	40-130	3.31	25	V-05	4
n-Propylbenzene	9.25	1.0	0.12	μg/L	10.0		92.5	70-130	0.216	25		
Styrene	9.19	1.0	0.15	μg/L	10.0		91.9	70-130	2.90	25		
1,1,1,2-Tetrachloroethane	9.32	1.0	0.16	μg/L	10.0		93.2	70-130	4.92	25		
1,1,2,2-Tetrachloroethane	8.70	0.50	0.14	μg/L	10.0		87.0	70-130	3.87	25		
Tetrachloroethylene	9.52	1.0	0.17	μg/L	10.0		95.2	70-130	3.20	25		
Tetrahydrofuran	11.0	10	0.49	μg/L	10.0		110	70-130	0.362	25	V-20	
Toluene	9.93	1.0	0.22	μg/L	10.0		99.3	70-130	0.00	25		
1,2,3-Trichlorobenzene	7.85	5.0	0.34	μg/L	10.0		78.5	70-130	0.761	25		
1,2,4-Trichlorobenzene	7.81	1.0	0.30	μg/L	10.0		78.1	70-130	3.03	25		
1,3,5-Trichlorobenzene	9.92	1.0	0.21	μg/L	10.0		99.2	70-130	0.803	25		
1,1,1-Trichloroethane	10.3	1.0	0.15	μg/L	10.0		103	70-130	3.15	25		
1,1,2-Trichloroethane	10.4	1.0	0.19	μg/L	10.0		104	70-130	4.72	25		
Γrichloroethylene	10.2	1.0	0.17	μg/L	10.0		102	70-130	3.85	25		
Frichlorofluoromethane (Freon 11)	10.2	2.0	0.15	μg/L	10.0		102	70-130	6.57	25		
,2,3-Trichloropropane	11.1	2.0	0.28	μg/L	10.0		111	70-130	4.49	25		
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)	9.31	1.0	0.21	μg/L	10.0		93.1	70-130	11.3	25		
,2,4-Trimethylbenzene	9.49	1.0	0.20	μg/L	10.0		94.9	70-130	2.35	25		
1,3,5-Trimethylbenzene	9.03	1.0	0.15	μg/L	10.0		90.3	70-130	1.87	25		
Vinyl Chloride	10.8	2.0	0.24	μg/L	10.0		108	40-160	7.30	25		4
n+p Xylene	18.5	2.0	0.49	μg/L	20.0		92.5	70-130	2.88	25		
o-Xylene	9.00	1.0	0.24	μg/L	10.0		90.0	70-130	4.67	25		
Surrogate: 1,2-Dichloroethane-d4	27.7				25.0		111	70-130				—
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8	27.7 25.6			μg/L μg/L	25.0 25.0		102	70-130				
Surrogate: 4-Bromofluorobenzene	23.5			μg/L μg/L	25.0		94.1	70-130				

Page 62 of 82

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

	-	Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	DI.	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (B337731-MS1)	Sou	rce: 23D1	781-01]	Prepared: 04/20	0/23 Analyz	zed: 04/	21/23	3	
Acetone	89.5	50	2.0	μg/L	100	ND	89.5		70-130	
Acrylonitrile	8.92	5.0	0.47	μg/L	10.0	ND	89.2		70-130	
tert-Amyl Methyl Ether (TAME)	9.10	0.50	0.13	$\mu g/L$	10.0	ND	91.0		70-130	
Benzene	9.20	1.0	0.18	μg/L	10.0	ND	92.0		70-130	
Bromobenzene	8.17	1.0	0.15	μg/L	10.0	ND	81.7		70-130	
Bromochloromethane	9.88	1.0	0.28	μg/L	10.0	ND	98.8		70-130	
Bromodichloromethane	9.23	0.50	0.16	μg/L	10.0	ND	92.3		70-130	
Bromoform UJ, MSL	6.65	1.0	0.41	μg/L	10.0	ND	66.5	*	70-130	MS-24
Bromomethane	9.15	2.0	1.3	μg/L	10.0	ND	91.5		70-130	
2-Butanone (MEK)	92.2	20	1.7	μg/L	100	ND	92.2		70-130	
tert-Butyl Alcohol (TBA)	71.9	20	4.3	μg/L	100	ND	71.9		70-130	
n-Butylbenzene	7.85	1.0	0.15	μg/L	10.0	ND	78.5		70-130	
sec-Butylbenzene	8.28	1.0	0.13	μg/L	10.0	ND	82.8		70-130	
tert-Butylbenzene	8.14	1.0	0.14	μg/L	10.0	ND	81.4		70-130	
tert-Butyl Ethyl Ether (TBEE)	9.43	0.50	0.15	μg/L	10.0	ND	94.3		70-130	
Carbon Disulfide	83.0	5.0	1.6	μg/L	100	ND	83.0		70-130	
Carbon Tetrachloride	9.46	5.0	0.16	$\mu g/L$	10.0	ND	94.6		70-130	
Chlorobenzene	8.15	1.0	0.12	$\mu g/L$	10.0	ND	81.5		70-130	
Chlorodibromomethane	8.15	0.50	0.20	$\mu g/L$	10.0	ND	81.5		70-130	
Chloroethane	8.71	2.0	0.34	$\mu g/L$	10.0	ND	87.1		70-130	
Chloroform	9.14	2.0	0.14	$\mu g/L$	10.0	ND	91.4		70-130	
Chloromethane	8.50	2.0	0.50	$\mu g/L$	10.0	ND	85.0		70-130	
2-Chlorotoluene	7.67	1.0	0.15	$\mu g/L$	10.0	ND	76.7		70-130	
4-Chlorotoluene	7.99	1.0	0.15	$\mu g/L$	10.0	ND	79.9		70-130	
1,2-Dibromo-3-chloropropane (DBCP)	7.48	5.0	0.85	$\mu g/L$	10.0	ND	74.8		70-130	
1,2-Dibromoethane (EDB)	8.76	0.50	0.16	$\mu g/L$	10.0	ND	87.6		70-130	
Dibromomethane	8.63	1.0	0.32	$\mu g/L$	10.0	ND	86.3		70-130	
1,2-Dichlorobenzene	8.17	1.0	0.13	$\mu g/L$	10.0	ND	81.7		70-130	
1,3-Dichlorobenzene	8.01	1.0	0.14	$\mu g/L$	10.0	ND	80.1		70-130	
1,4-Dichlorobenzene	7.89	1.0	0.13	$\mu g/L$	10.0	ND	78.9		70-130	
trans-1,4-Dichloro-2-butene UJ, MSL	6.56	2.0	1.5	$\mu g/L$	10.0	ND	65.6	*	70-130	MS-24
Dichlorodifluoromethane (Freon 12)	11.7	2.0	0.16	$\mu g/L$	10.0	ND	117		70-130	
1,1-Dichloroethane	9.20	1.0	0.14	$\mu g/L$	10.0	ND	92.0		70-130	
1,2-Dichloroethane	9.59	1.0	0.30	$\mu g/L$	10.0	ND	95.9		70-130	
1,1-Dichloroethylene	9.16	1.0	0.14	$\mu g/L$	10.0	ND	91.6		70-130	
cis-1,2-Dichloroethylene	14.5	1.0	0.14	$\mu g/L$	10.0	6.24	82.8		70-130	
trans-1,2-Dichloroethylene	8.65	1.0	0.17	$\mu g/L$	10.0	ND	86.5		70-130	
1,2-Dichloropropane	9.04	1.0	0.19	$\mu g/L$	10.0	ND	90.4		70-130	
1,3-Dichloropropane	9.26	0.50	0.12	$\mu g/L$	10.0	ND	92.6		70-130	
2,2-Dichloropropane UJ, MSL	6.19	1.0	0.35	$\mu g/L$	10.0	ND	61.9	*	70-130	MS-09
1,1-Dichloropropene	9.56	2.0	0.15	$\mu g/L$	10.0	ND	95.6		70-130	
cis-1,3-Dichloropropene	7.98	0.50	0.16	$\mu g/L$	10.0	ND	79.8		70-130	
trans-1,3-Dichloropropene	7.90	0.50	0.14	$\mu g/L$	10.0	ND	79.0		70-130	
Diethyl Ether	9.33	2.0	0.14	$\mu g/L$	10.0	ND	93.3		70-130	
Diisopropyl Ether (DIPE)	9.80	0.50	0.20	$\mu g/L$	10.0	ND	98.0		70-130	
1,4-Dioxane	76.9	50	18	$\mu g/L$	100	ND	76.9		70-130	
Ethylbenzene	8.16	1.0	0.22	$\mu g/L$	10.0	ND	81.6		70-130	
Hexachlorobutadiene	8.22	0.60	0.47	$\mu g/L$	10.0	ND	82.2		70-130	
2-Hexanone (MBK)	79.8	10	1.2	$\mu g/L$	100	ND	79.8		70-130	
Isopropylbenzene (Cumene)	7.96	1.0	0.15	μg/L	10.0	ND	79.6		70-130	

QUALITY CONTROL

		Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spiles (D227721 MS1)		225-1-	701 01		Dropored. 04/	00/22 41	rod. 04/	21/22	2	
Matrix Spike (B337731-MS1)		rce: 23D17			Prepared: 04/2			21/2:		
p-Isopropyltoluene (p-Cymene) Wethyl Acetate UJ, MSL	7.98	1.0 1.0	0.13	μg/L	10.0	ND	79.8		70-130	MC 00
	5.75		0.01	μg/L	10.0	ND	57.5	*	70-130	MS-09
Methyl tert-Butyl Ether (MTBE)	9.18	1.0		μg/L	10.0	ND	91.8		70-130	
Methyl Cyclohexane	9.43	1.0	0.16	μg/L	10.0	ND	94.3		70-130	
Methylene Chloride	8.86	5.0	0.18	μg/L	10.0	0.230	86.3		70-130	
-Methyl-2-pentanone (MIBK)	79.1	10	1.3	μg/L	100	ND	79.1		70-130	
Naphthalene UJ, MSL	4.70	2.0	0.38	μg/L	10.0	ND	47.0	*	70-130	MS-09
n-Propylbenzene	7.92	1.0	0.12	μg/L	10.0	ND	79.2		70-130	
Styrene	7.61	1.0	0.15	μg/L	10.0	ND	76.1		70-130	
,1,1,2-Tetrachloroethane	8.46	1.0	0.16	μg/L	10.0	ND	84.6		70-130	
,1,2,2-Tetrachloroethane	7.49	0.50	0.14	μg/L	10.0	ND	74.9		70-130	
Tetrachloroethylene	45.7	1.0	0.17	μg/L	10.0	35.9	98.7		70-130	
Tetrahydrofuran	9.88	10	0.49	μg/L	10.0	ND	98.8		70-130	J
Coluene	8.60	1.0	0.22	$\mu g/L$	10.0	ND	86.0		70-130	
,2,3-Trichlorobenzene UJ, MSL	5.86	5.0	0.34	$\mu g\!/L$	10.0	ND	58.6	*	70-130	MS-09
,2,4-Trichlorobenzene UJ, MSL	6.35	1.0	0.30	$\mu g\!/L$	10.0	ND	63.5	*	70-130	MS-24
,3,5-Trichlorobenzene	8.39	1.0	0.21	$\mu g/L$	10.0	ND	83.9		70-130	
,1,1-Trichloroethane	9.83	1.0	0.15	μg/L	10.0	ND	98.3		70-130	
,1,2-Trichloroethane	8.97	1.0	0.19	μg/L	10.0	ND	89.7		70-130	
Trichloroethylene	12.8	1.0	0.17	μg/L	10.0	3.88	89.5		70-130	
Crichlorofluoromethane (Freon 11)	9.97	2.0	0.15	μg/L	10.0	ND	99.7		70-130	
,2,3-Trichloropropane	9.28	2.0	0.28	μg/L	10.0	ND	92.8		70-130	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)	9.19	1.0	0.21	μg/L	10.0	ND	91.9		70-130	
,2,4-Trimethylbenzene	7.89	1.0	0.20	$\mu g/L$	10.0	ND	78.9		70-130	
,3,5-Trimethylbenzene	7.88	1.0	0.15	μg/L	10.0	ND	78.8		70-130	
Vinyl Chloride	11.9	2.0	0.24	μg/L	10.0	1.33	106		70-130	
n+p Xylene	16.0	2.0	0.49	μg/L	20.0	ND	80.1		70-130	
o-Xylene	7.91	1.0	0.24	μg/L	10.0	ND	79.1		70-130	
Surrogate: 1,2-Dichloroethane-d4	27.6			μg/L	25.0		111		70-130	
Surrogate: Toluene-d8	24.8			μg/L μg/L	25.0		99.1		70-130	
Surrogate: 4-Bromofluorobenzene	22.6			μg/L μg/L	25.0		90.6		70-130	
ourrogate. 4-Bromondoroccizene	22.0			μg/L	23.0		70.0		70-150	
Matrix Spike (B337731-MS2)	Sou	rce: 23D17			Prepared: 04/2	20/23 Analyz	zed: 04/	21/23	3	
Acetone	81.5	50	2.0	$\mu g/L$	100	ND	81.5		70-130	
Acrylonitrile	8.38	5.0	0.47	μg/L	10.0	ND	83.8		70-130	
ert-Amyl Methyl Ether (TAME)	8.79	0.50	0.13	$\mu g/L$	10.0	ND	87.9		70-130	
Benzene	9.13	1.0	0.18	$\mu g/L$	10.0	ND	91.3		70-130	
Bromobenzene	8.51	1.0	0.15	$\mu g/L$	10.0	ND	85.1		70-130	
Bromochloromethane	9.67	1.0	0.28	$\mu g/L$	10.0	ND	96.7		70-130	
Bromodichloromethane	9.24	0.50	0.16	$\mu g/L$	10.0	ND	92.4		70-130	
Bromoform UJ, MSL	6.77	1.0	0.41	$\mu g/L$	10.0	ND	67.7	*	70-130	MS-24
Bromomethane	8.12	2.0	1.3	$\mu g/L$	10.0	ND	81.2		70-130	
-Butanone (MEK)	84.8	20	1.7	$\mu g/L$	100	ND	84.8		70-130	
ert-Butyl Alcohol (TBA) UJ, MSL	62.2	20	4.3	μg/L	100	ND		*	70-130	MS-24
-Butylbenzene	8.44	1.0	0.15	μg/L	10.0	ND	84.4		70-130	
ec-Butylbenzene	8.84	1.0	0.13	μg/L	10.0	ND	88.4		70-130	
ert-Butylbenzene	8.60	1.0	0.14	μg/L	10.0	ND	86.0		70-130	
ert-Butyl Ethyl Ether (TBEE)	9.43	0.50	0.15	μg/L	10.0	ND	94.3		70-130	
Carbon Disulfide	86.3	5.0	1.6	μg/L μg/L	100	ND ND	86.3		70-130	

1,2,3-Trichlorobenzene UJ, MSL

1,2,4-Trichlorobenzene UJ, MSL

Toluene

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	DL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Amayee	Result	Lillint	DL	Omto		Result	70KEC	Limits	КГБ	Limit	110103
Batch B337731 - SW-846 5030B					70-130						
Matrix Spike (B337731-MS2)	Sou	rce: 23D1	781-03		Prepared: 04/	/20/23 Analy:	zed: 04/21/2	23			
Carbon Tetrachloride	10.2	5.0	0.16	μg/L	10.0	ND	102	70-130			
Chlorobenzene	8.60	1.0	0.12	$\mu g/L$	10.0	ND	86.0	70-130			
Chlorodibromomethane	8.46	0.50	0.20	$\mu g/L$	10.0	ND	84.6	70-130			
Chloroethane	10.1	2.0	0.34	μg/L	10.0	ND	101	70-130			
Chloroform	9.23	2.0	0.14	μg/L	10.0	ND	92.3	70-130			
Chloromethane	8.79	2.0	0.50	μg/L	10.0	ND	87.9	70-130			
-Chlorotoluene	8.82	1.0	0.15	μg/L	10.0	ND	88.2	70-130			
-Chlorotoluene	8.52	1.0	0.15	μg/L	10.0	ND	85.2	70-130			
2-Dibromo-3-chloropropane (DBCP) UJ, MSL	3.50	5.0	0.85	μg/L	10.0	ND	35.0 *	70-130			MS-23, .
2-Dibromoethane (EDB)	9.02	0.50	0.16	μg/L	10.0	ND	90.2	70-130			,
ibromomethane	8.05	1.0	0.32	μg/L	10.0	ND	80.5	70-130			
2-Dichlorobenzene	8.81	1.0	0.13	μg/L	10.0	ND	88.1	70-130			
,3-Dichlorobenzene	8.68	1.0	0.14	μg/L	10.0	ND	86.8	70-130			
4-Dichlorobenzene	8.09	1.0	0.13	μg/L	10.0	ND	80.9	70-130			
rans-1,4-Dichloro-2-butene UJ, MSL	4.80	2.0	1.5	μg/L	10.0	ND	48.0 *	70-130			MS-09
ichlorodifluoromethane (Freon 12)	12.1	2.0	0.16	μg/L	10.0	ND	121	70-130			
,1-Dichloroethane	9.22	1.0	0.14	μg/L	10.0	ND	92.2	70-130			
2-Dichloroethane	10.2	1.0	0.30	μg/L	10.0	ND	102	70-130			
1-Dichloroethylene	9.47	1.0	0.14	μg/L	10.0	ND	94.7	70-130			
s-1,2-Dichloroethylene		1.0	0.14	μg/L μg/L	10.0		92.3	70-130			
ans-1,2-Dichloroethylene	9.23	1.0	0.17	μg/L μg/L	10.0	ND	90.1	70-130			
2-Dichloropropane	9.01	1.0	0.17	μg/L μg/L		ND					
3-Dichloropropane	9.48	0.50	0.19	μg/L μg/L	10.0	ND	94.8	70-130			
* *	9.68	1.0	0.35		10.0	ND	96.8	70-130			MC 00
2-Dichloropropane UJ, MSL	6.02	2.0	0.33	μg/L	10.0	ND	60.2 *	70-130			MS-09
1-Dichloropropene	9.45			μg/L	10.0	ND	94.5	70-130			
s-1,3-Dichloropropene	8.20	0.50	0.16	μg/L	10.0	ND	82.0	70-130			
ans-1,3-Dichloropropene	7.75	0.50	0.14	μg/L	10.0	ND	77.5	70-130			
iethyl Ether	9.36	2.0	0.14	μg/L	10.0	ND	93.6	70-130			
iisopropyl Ether (DIPE)	9.76	0.50	0.20	μg/L	10.0	ND	97.6	70-130			
4-Dioxane	72.4	50	18	μg/L	100	ND	72.4	70-130			
thylbenzene	8.87	1.0	0.22	μg/L	10.0	ND	88.7	70-130			
exachlorobutadiene	8.70	0.60	0.47	μg/L	10.0	ND	87.0	70-130			
-Hexanone (MBK)	71.1	10	1.2	μg/L	100	ND	71.1	70-130			
opropylbenzene (Cumene)	8.50	1.0	0.15	μg/L	10.0	ND	85.0	70-130			
-Isopropyltoluene (p-Cymene) UJ, MSL	8.51	1.0	0.13	μg/L	10.0	ND	85.1	70-130			
icinyi Acciaic	5.20	1.0	0.61	μg/L	10.0	ND	52.0 *	70-130			MS-09
Methyl tert-Butyl Ether (MTBE)	8.89	1.0	0.17	μg/L	10.0	ND	88.9	70-130			
lethyl Cyclohexane	10.2	1.0	0.16	μg/L	10.0	ND	102	70-130			
lethylene Chloride	9.11	5.0	0.18	μg/L	10.0	ND	91.1	70-130			
Methyl-2-pentanone (MIBK)	80.2	10	1.3	μg/L	100	ND	80.2	70-130			
aphthalene UJ, MSL	5.04	2.0	0.38	$\mu g/L$	10.0	ND	50.4 *	70-130			MS-09
Propylbenzene	8.73	1.0	0.12	$\mu g/L$	10.0	ND	87.3	70-130			
tyrene	8.04	1.0	0.15	$\mu g/L$	10.0	ND	80.4	70-130			
1,1,2-Tetrachloroethane	8.98	1.0	0.16	$\mu g/L$	10.0	ND	89.8	70-130			
1,2,2-Tetrachloroethane	7.49	0.50	0.14	$\mu g/L$	10.0	ND	74.9	70-130			
etrachloroethylene	9.58	1.0	0.17	$\mu g/L$	10.0	ND	95.8	70-130			
etrahydrofuran	8.62	10	0.49	$\mu g/L$	10.0	ND	86.2	70-130			J
Toluene		1.0	0.22	ua/I	10.0	ND	04.0	70.120			

1.0

5.0

1.0

0.22

0.34

0.30

 $\mu g/L$

 $\mu g \! / L$

 $\mu g/L$

9.48

6.57

6.85

10.0

10.0

10.0

70-130

70-130

70-130

ND 94.8

ND **65.7** *

ND **68.5** *

MS-24 Page 64 of 82

MS-24

QUALITY CONTROL

		Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (B337731-MS2)	Sou	rce: 23D1	781-03		Prepared: 04/2	0/23 Analyz	zed: 04/21	/23			
,3,5-Trichlorobenzene	8.71	1.0	0.21	μg/L	10.0	ND	87.1	70-130			
,1,1-Trichloroethane	10.1	1.0	0.15	μg/L	10.0	ND	101	70-130			
,1,2-Trichloroethane	8.99	1.0	0.19	μg/L	10.0	ND	89.9	70-130			
richloroethylene	9.36	1.0	0.17	μg/L	10.0	ND	93.6	70-130			
richlorofluoromethane (Freon 11)	9.73	2.0	0.15	μg/L	10.0	ND	97.3	70-130			
,2,3-Trichloropropane	8.83	2.0	0.28	μg/L	10.0	ND	88.3	70-130			
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)	9.26	1.0	0.21	μg/L	10.0	ND	92.6	70-130			
2,4-Trimethylbenzene	8.39	1.0	0.20	$\mu g/L$	10.0	ND	83.9	70-130			
3,5-Trimethylbenzene	8.54	1.0	0.15	$\mu g/L$	10.0	ND	85.4	70-130			
inyl Chloride	10.9	2.0	0.24	$\mu g/L$	10.0	ND	109	70-130			
n+p Xylene	17.3	2.0	0.49	$\mu g/L$	20.0	ND	86.6	70-130			
Xylene	8.43	1.0	0.24	$\mu g/L$	10.0	ND	84.3	70-130			
urrogate: 1,2-Dichloroethane-d4	27.9			μg/L	25.0		111	70-130			
urrogate: Toluene-d8	25.7			μg/L	25.0		103	70-130			
urrogate: 4-Bromofluorobenzene	23.7			μg/L	25.0		95.0	70-130			
Iatrix Spike Dup (B337731-MSD1)	Sou	rce: 23D1	781-01		Prepared: 04/2	0/23 Analyz	zed: 04/21	/23	RPD = 2	0	
cetone LIL MCL MCDDD	102	50	2.0	$\mu g/L$	100	ND	102	70-130	12.7	30	
crylonitrile UJ, MSL, MSRPD	4.66	5.0	0.47	$\mu g/L$	10.0	ND	46.6	* 70-130	62.7	30	MS-23,
rt-Amyl Methyl Ether (TAME)	9.56	0.50	0.13	$\mu g/L$	10.0	ND	95.6	70-130	4.93	30	
enzene	9.22	1.0	0.18	$\mu g/L$	10.0	ND	92.2	70-130	0.217	30	
romobenzene	8.25	1.0	0.15	$\mu g/L$	10.0	ND	82.5	70-130	0.974	30	
romochloromethane	10.3	1.0	0.28	$\mu g/L$	10.0	ND	103	70-130	4.07	30	
romodichloromethane	9.08	0.50	0.16	$\mu g/L$	10.0	ND	90.8	70-130	1.64	30	
romoform	7.08	1.0	0.41	$\mu g/L$	10.0	ND	70.8	70-130	6.26	30	
romomethane	9.15	2.0	1.3	$\mu g/L$	10.0	ND	91.5	70-130	0.00	30	
Butanone (MEK)	107	20	1.7	$\mu g/L$	100	ND	107	70-130	14.5	30	
rt-Butyl Alcohol (TBA)	85.1	20	4.3	$\mu g/L$	100	ND	85.1	70-130	16.8	30	
-Butylbenzene	8.54	1.0	0.15	$\mu g/L$	10.0	ND	85.4	70-130	8.42	30	
ec-Butylbenzene	8.72	1.0	0.13	$\mu g/L$	10.0	ND	87.2	70-130	5.18	30	
rt-Butylbenzene	8.58	1.0	0.14	$\mu g/L$	10.0	ND	85.8	70-130	5.26	30	
rt-Butyl Ethyl Ether (TBEE)	9.78	0.50	0.15	$\mu g/L$	10.0	ND	97.8	70-130	3.64	30	
arbon Disulfide	86.7	5.0	1.6	$\mu g/L$	100	ND	86.7	70-130	4.35	30	
arbon Tetrachloride	9.56	5.0	0.16	$\mu g/L$	10.0	ND	95.6	70-130	1.05	30	
hlorobenzene	8.04	1.0	0.12	$\mu g/L$	10.0	ND	80.4	70-130	1.36	30	
hlorodibromomethane	8.45	0.50	0.20	$\mu g/L$	10.0	ND	84.5	70-130	3.61	30	
hloroethane	9.12	2.0	0.34	$\mu g/L$	10.0	ND	91.2	70-130	4.60	30	
hloroform	9.27	2.0	0.14	$\mu g/L$	10.0	ND	92.7	70-130	1.41	30	
hloromethane	9.10	2.0	0.50	$\mu g/L$	10.0	ND	91.0	70-130	6.82	30	
-Chlorotoluene	8.19	1.0	0.15	$\mu g/L$	10.0	ND	81.9	70-130	6.56	30	
Chlorotoluene	8.29	1.0	0.15	$\mu g/L$	10.0	ND	82.9	70-130	3.69	30	
2-Dibromo-3-chloropropane (DBCP)	8.79	5.0	0.85	$\mu g/L$	10.0	ND	87.9	70-130	16.1	30	
2-Dibromoethane (EDB)	9.07	0.50	0.16	$\mu g/L$	10.0	ND	90.7	70-130	3.48	30	
ibromomethane	9.08	1.0	0.32	$\mu g/L$	10.0	ND	90.8	70-130	5.08	30	
2-Dichlorobenzene	8.68	1.0	0.13	$\mu g/L$	10.0	ND	86.8	70-130	6.05	30	
3-Dichlorobenzene	8.58	1.0	0.14	$\mu g/L$	10.0	ND	85.8	70-130	6.87	30	
4-Dichlorobenzene	7.92	1.0	0.13	$\mu g/L$	10.0	ND	79.2	70-130	0.380	30	
ans-1,4-Dichloro-2-butene	7.31	2.0	1.5	μg/L	10.0	ND	73.1	70-130	10.8	30	
Dichlorodifluoromethane (Freon 12)	12.0	2.0	0.16	μg/L	10.0	ND	120	70-130	2.28	30	

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	KPD	Limit	Notes
Batch B337731 - SW-846 5030B			70)-130							
Matrix Spike Dup (B337731-MSD1)	C ~	ırce: 23D17	781.01		Prenared: 04	4/20/23 Analyz	red: 04/2	1/23	RPD =	20	
1,1-Dichloroethane	9.55	1.0	0.14	μg/L	10.0	+/20/23 Allaly2 ND	95.5	70-130	3.73	30	
1,2-Dichloroethane	9.55 9.68	1.0	0.14	μg/L μg/L	10.0	ND ND	95.5 96.8	70-130	0.934	30	
1,1-Dichloroethylene	9.68 9.66	1.0	0.30	μg/L μg/L	10.0	ND ND	96.8 96.6	70-130	5.31	30	
cis-1,2-Dichloroethylene		1.0	0.14	μg/L μg/L	10.0		96.6 78.2	70-130 70-130	3.22	30	
trans-1,2-Dichloroethylene	14.1	1.0	0.14	μg/L μg/L	10.0	6.24 ND	78.2 91.1		5.18	30 30	
•	9.11	1.0	0.17			ND ND		70-130 70-130			
1,2-Dichloropropane 1,3-Dichloropropane	9.40	0.50	0.19	μg/L μg/L	10.0	ND ND	94.0 96.3	70-130 70-130	3.90	30 30	
2.2 Di-H	9.63	1.0	0.12	μg/L μg/L	10.0	ND ND	96.3	70-130 * 70-130	3.92 0.644	30 30	Mc 00
2,2-Dichloropropane UJ, MSL 1,1-Dichloropropene	6.23	2.0	0.35		10.0	ND ND		* 70-130 70-130	0.644	30 30	MS-09
	9.57			μg/L μg/I	10.0	ND	95.7	70-130	0.105	30	
cis-1,3-Dichloropropene	8.14	0.50	0.16	μg/L ug/I	10.0	ND	81.4	70-130	1.99	30	
trans-1,3-Dichloropropene	7.92	0.50	0.14	μg/L	10.0	ND	79.2	70-130	0.253	30	
Diethyl Ether	9.64	2.0	0.14	μg/L	10.0	ND	96.4	70-130	3.27	30	
Diisopropyl Ether (DIPE)	9.98	0.50	0.20	μg/L	10.0	ND	99.8	70-130	1.82	30	
1,4-Dioxane	89.6	50	18	μg/L	100	ND	89.6	70-130	15.2	30	
Ethylbenzene	8.55	1.0	0.22	μg/L	10.0	ND	85.5	70-130	4.67	30	
Hexachlorobutadiene	8.62	0.60	0.47	μg/L	10.0	ND	86.2	70-130	4.75	30	
2-Hexanone (MBK)	98.3	10	1.2	μg/L	100	ND	98.3	70-130	20.8	30	
(Sopropylbenzene (Cumene)	8.18	1.0	0.15	μg/L	10.0	ND	81.8	70-130	2.73	30	
p-Isopropyltoluene (p-Cymene)	8.39	1.0	0.13	$\mu g/L$	10.0	ND	83.9	70-130	5.01	30	
Methyl Acetate UJ, MSL	6.17	1.0	0.61	$\mu g/L$	10.0	ND	61.7	* 70-130	7.05	30	MS-09
Methyl tert-Butyl Ether (MTBE)	9.52	1.0	0.17	$\mu g/L$	10.0	ND	95.2	70-130	3.64	30	
Methyl Cyclohexane	9.91	1.0	0.16	$\mu g/L$	10.0	ND	99.1	70-130	4.96	30	
Methylene Chloride	9.23	5.0	0.18	$\mu g/L$	10.0	0.230	90.0	70-130	4.09	30	
4-Methyl-2-pentanone (MIBK)	93.1	10	1.3	$\mu g/L$	100	ND	93.1	70-130	16.3	30	
Naphthalene III MSI	5.84	2.0	0.38	$\mu g/L$	10.0	ND	58.4	* 70-130	21.6	30	MS-09
UJ, MSL	8.37	1.0	0.12	$\mu g/L$	10.0	ND	83.7	70-130	5.52	30	
Styrene	7.74	1.0	0.15	$\mu g/L$	10.0	ND	77.4	70-130	1.69	30	
1,1,1,2-Tetrachloroethane	8.50	1.0	0.16	μg/L	10.0	ND	85.0	70-130	0.472	30	
1,1,2,2-Tetrachloroethane	8.22	0.50	0.14	μg/L	10.0	ND	82.2	70-130	9.29	30	
Tetrachloroethylene J-, MSL	40.7	1.0	0.17	μg/L	10.0	35.9		* 70-130	11.7	30	MS-19
J-, MSL Tetrahydrofuran	10.2	10	0.49	μg/L	10.0	ND	102	70-130	3.68	30	
Toluene	8.98	1.0	0.22	μg/L	10.0	ND	89.8	70-130	4.32	30	
1,2,3-Trichlorobenzene UJ, MSL	6.92	5.0	0.34	μg/L	10.0	ND		* 70-130	16.6	30	MS-09
1,2,4-Trichlorobenzene	7.34	1.0	0.30	μg/L	10.0	ND	73.4	70-130	14.5	30	- 07
1,3,5-Trichlorobenzene	8.80	1.0	0.21	μg/L	10.0	ND	88.0	70-130	4.77	30	
1,1,1-Trichloroethane	9.89	1.0	0.15	μg/L μg/L	10.0	ND ND	98.9	70-130	0.609	30	
1,1,2-Trichloroethane	9.89 9.11	1.0	0.19	μg/L μg/L	10.0	ND ND	91.1	70-130	1.55	30	
Frichloroethylene	9.11 11.9	1.0	0.17	μg/L μg/L	10.0	3.88	80.2	70-130	7.52	30	
Trichlorofluoromethane (Freon 11)	11.9	2.0	0.17	μg/L μg/L	10.0	3.88 ND	102	70-130	2.67	30	
1,2,3-Trichloropropane	10.2	2.0	0.13	μg/L μg/L	10.0	ND ND	102	70-130	10.2	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon		1.0	0.28	μg/L μg/L	10.0		94.4	70-130 70-130	2.68	30	
11,1,2-1 richioro-1,2,2-trifiuoroethane (Freon 113)	9.44	1.0	0.21	μв⁄ ∟	10.0	ND	<i>7</i> +. 4	/0-130	2.08	30	
1,2,4-Trimethylbenzene	8.10	1.0	0.20	$\mu g/L$	10.0	ND	81.0	70-130	2.63	30	
1,3,5-Trimethylbenzene	7.94	1.0	0.15	μg/L	10.0	ND	79.4	70-130	0.759	30	
Vinyl Chloride	12.4	2.0	0.24	μg/L	10.0	1.33	110	70-130	3.88	30	
m+p Xylene	16.8	2.0	0.49	μg/L	20.0	ND	83.8	70-130	4.51	20	
o-Xylene	8.14	1.0	0.24	μg/L	10.0	ND	81.4	70-130	2.87	30	
Surrogate: 1,2-Dichloroethane-d4	28.3			μg/L	25.0		113	70-130			
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8	28.3 24.5			μg/L μg/L	25.0 25.0		98.2	70-130 70-130			
Samogane, Totalene-uo	24.3			μg/L	۵۵.0		JU.∠	70-130			

 $\mu g \! / L$

25.0

23.2

Surrogate: 4-Bromofluorobenzene

92.6

70-130

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

	Re	eporting			Spike	Source		%REC		RPD		ĺ
Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	ĺ

Anaryte	Result	Liiiii	DL UIII	S Level	Result	/0KEV	C Lillius	KFD	Lillit	Notes
eatch B337731 - SW-846 5030B			70-130							
Matrix Spike Dup (B337731-MSD2)	So.	rce: 23D178	21_03	Prepared: 0	4/20/23 Analyz	zed: 04/	21/23	rpd =	= 20	
acetone (B337/31-M3D2)	96.8		2.0 μg/	•	4/20/23 Allary2	96.8	70-130	17.2	30	
crylonitrile	9.03		0.47 μg/		ND ND	90.3	70-130	7.47	30	
ert-Amyl Methyl Ether (TAME)	9.03		0.17 μg/ 0.13 μg/		ND ND	94.1	70-130	6.81	30	
Senzene	9.41		5.15 μg/ 0.18 μg/		ND ND	92.1	70-130	0.872	30	
romobenzene	8.51		0.15 μg/ 0.15		ND ND	85.1	70-130	0.00	30	
Fromochloromethane	10.5		0.19 μg/ 0.28 μg/		ND ND	105	70-130	8.04	30	
romodichloromethane			0.26 μg/ 0.16 μg/		ND ND	94.9	70-130	2.67	30	
romoform	9.49		0.41 μg/			73.4	70-130	8.08	30	
romomethane	7.34		5.41 μg/ 1.3 μg/		ND	71.7	70-130	12.4	30	
-Butanone (MEK)	7.17				ND	98.6	70-130	15.1	30	
	98.6				ND					
ert-Butyl Alcohol (TBA) J, MSL, MSRPD	79.1				ND	79.1	70-130	23.9	30	
-Butylbenzene	8.57		0.15 μg/		ND	85.7	70-130	1.53	30	
ec-Butylbenzene	8.86		0.13 μg/		ND	88.6	70-130	0.226	30	
ert-Butylbenzene	8.65		0.14 μg/		ND	86.5	70-130	0.580	30	
ert-Butyl Ethyl Ether (TBEE)	9.75		0.15 μg/		ND	97.5	70-130	3.34	30	
arbon Disulfide	88.4		l.6 μg/		ND	88.4	70-130	2.34	30	
arbon Tetrachloride	10.1		0.16 μg/		ND	101	70-130	1.28	30	
Chlorobenzene	8.31		0.12 μg/		ND	83.1	70-130	3.43	30	
Chlorodibromomethane	8.61		0.20 μg/		ND	86.1	70-130	1.76	30	
Chloroethane	9.59		0.34 μg/		ND	95.9	70-130	5.38	30	
Chloroform	9.54	2.0	0.14 μg/	L 10.0	ND	95.4	70-130	3.30	30	
Chloromethane	8.08	2.0	0.50 μg/	L 10.0	ND	80.8	70-130	8.42	30	
-Chlorotoluene	8.57	1.0	0.15 μg/	L 10.0	ND	85.7	70-130	2.88	30	
-Chlorotoluene	8.51	1.0	D.15 μg/	L 10.0	ND	85.1	70-130	0.117	30	
,2-Dibromo-3-chloropropane (DBCP) UJ, MSRPD	8.16	5.0	D.85 μg/	L 10.0	ND	81.6	70-130	79.9	* 30	MS-23
,2-Dibromoethane (EDB)	9.14	0.50).16 μg/	L 10.0	ND	91.4	70-130	1.32	30	
Pibromomethane	8.97	1.0	0.32 μg/	L 10.0	ND	89.7	70-130	10.8	30	
,2-Dichlorobenzene	8.72	1.0	D.13 μg/	L 10.0	ND	87.2	70-130	1.03	30	
,3-Dichlorobenzene	8.63	1.0).14 μg/	L 10.0	ND	86.3	70-130	0.578	30	
,4-Dichlorobenzene	8.19	1.0	0.13 μg/	L 10.0	ND	81.9	70-130	1.23	30	
rans-1,4-Dichloro-2-butene UJ, MSL	4.08	2.0	1.5 μg/	L 10.0	ND	40.8	* 70-130	16.2	30	MS-09
Pichlorodifluoromethane (Freon 12)	12.1	2.0	D.16 μg/	L 10.0	ND	121	70-130	0.496	30	
,1-Dichloroethane	9.50	1.0	0.14 μg/	L 10.0	ND	95.0	70-130	2.99	30	
,2-Dichloroethane	9.94	1.0	0.30 μg/	L 10.0	ND	99.4	70-130	2.19	30	
,1-Dichloroethylene	9.79	1.0	D.14 μg/		ND	97.9	70-130	3.32	30	
is-1,2-Dichloroethylene	9.30		D.14 μg/		ND	93.0	70-130	0.756	30	
ans-1,2-Dichloroethylene	9.08		. σ 0.17 μg/		ND	90.8	70-130	0.774	30	
,2-Dichloropropane	9.14		D.19 μg/		ND	91.4	70-130	3.65	30	
,3-Dichloropropane	9.53		D.12 μg/		ND	95.3	70-130	1.56	30	
,2-Dichloropropane UJ, MSL	6.46		D.35 μg/		ND	64.6	* 70-130	7.05	30	MS-09
,1-Dichloropropene	9.54		0.15 μg/		ND ND	95.4	70-130	0.948	30	
is-1,3-Dichloropropene	8.28).16 μg/		ND ND	82.8	70-130	0.971	30	
rans-1,3-Dichloropropene	8.27		0.14 μg/		ND ND	82.7	70-130	6.49	30	
Diethyl Ether	9.34		0.14 μg/ 0.14 μg/		ND ND	93.4	70-130	0.49	30	
Disopropyl Ether (DIPE)			0.14 μg/ 0.20 μg/			101	70-130	3.32	30	
,4-Dioxane	10.1		5.20 μg/ 18 μg/		ND	79.9		3.32 9.94	30	
thylbenzene	79.9		16 μg/ D.22 μg/		ND		70-130			
UI Y I D C II Z C II C	8.87				ND	88.7	70-130	0.00	30	
•	0.70	0.40								
lexachlorobutadiene -Hexanone (MBK) sample ND, %R ok - no qua	9.73 S 91.2		0.47 μg/ 1.2 μg/		ND ND	97.3 91.2	70-130 70-130	11.2 24.8	30 30	

Page 67 of 82

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

												ı
		Reporting			Spike	Source		%REC		RPD		ı
Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	l

70-130

Matrix Spike Dup (B337731-MSD2)	Sou	rce: 23D1	781-03		Prepared: 04/20	0/23 Analyz	zed: 04/2	21/23				
p-Isopropyltoluene (p-Cymene)	8.61	1.0	0.13	$\mu g/L$	10.0	ND	86.1		70-130	1.17	30	
Methyl Acetate UJ, MSL	5.89	1.0	0.61	$\mu g \! / L$	10.0	ND	58.9	*	70-130	12.4	30	MS-09
Methyl tert-Butyl Ether (MTBE)	9.38	1.0	0.17	$\mu g/L$	10.0	ND	93.8		70-130	5.36	30	
Methyl Cyclohexane	9.69	1.0	0.16	$\mu g/L$	10.0	ND	96.9		70-130	4.74	30	
Methylene Chloride	9.68	5.0	0.18	$\mu g/L$	10.0	ND	96.8		70-130	6.07	30	
4-Methyl-2-pentanone (MIBK)	92.4	10	1.3	$\mu g/L$	100	ND	92.4		70-130	14.1	30	
Naphthalene UJ, MSL	5.49	2.0	0.38	$\mu g/L$	10.0	ND	54.9	*	70-130	8.55	30	MS-09
n-Propylbenzene	8.53	1.0	0.12	$\mu g/L$	10.0	ND	85.3		70-130	2.32	30	
Styrene	7.97	1.0	0.15	$\mu g/L$	10.0	ND	79.7		70-130	0.874	30	
1,1,1,2-Tetrachloroethane	8.89	1.0	0.16	$\mu g/L$	10.0	ND	88.9		70-130	1.01	30	
1,1,2,2-Tetrachloroethane	8.20	0.50	0.14	$\mu g/L$	10.0	ND	82.0		70-130	9.05	30	
Tetrachloroethylene	9.96	1.0	0.17	$\mu g/L$	10.0	ND	99.6		70-130	3.89	30	
Tetrahydrofuran	9.66	10	0.49	$\mu g/L$	10.0	ND	96.6		70-130	11.4	30	J
Toluene	9.43	1.0	0.22	$\mu g/L$	10.0	ND	94.3		70-130	0.529	30	
,2,3-Trichlorobenzene	7.04	5.0	0.34	$\mu g/L$	10.0	ND	70.4		70-130	6.91	30	
,2,4-Trichlorobenzene	7.42	1.0	0.30	$\mu g/L$	10.0	ND	74.2		70-130	7.99	30	
,3,5-Trichlorobenzene	9.05	1.0	0.21	$\mu g/L$	10.0	ND	90.5		70-130	3.83	30	
,1,1-Trichloroethane	9.94	1.0	0.15	$\mu g/L$	10.0	ND	99.4		70-130	1.70	30	
,1,2-Trichloroethane	9.41	1.0	0.19	$\mu g/L$	10.0	ND	94.1		70-130	4.57	30	
richloroethylene	9.08	1.0	0.17	$\mu g/L$	10.0	ND	90.8		70-130	3.04	30	
Frichlorofluoromethane (Freon 11)	10.4	2.0	0.15	$\mu g/L$	10.0	ND	104		70-130	6.56	30	
,2,3-Trichloropropane	9.38	2.0	0.28	$\mu g/L$	10.0	ND	93.8		70-130	6.04	30	
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	9.77	1.0	0.21	$\mu g/L$	10.0	ND	97.7		70-130	5.36	30	
13) ,2,4-Trimethylbenzene	8.72	1.0	0.20	μg/L	10.0	ND	87.2		70-130	3.86	30	
1,3,5-Trimethylbenzene		1.0	0.20	μg/L μg/L	10.0	ND ND	83.6		70-130	2.13	30	
/inyl Chloride	8.36	2.0	0.13	μg/L μg/L	10.0	ND ND	83.6 110		70-130	1.64	30	
n+p Xylene	11.0	2.0	0.49	μg/L μg/L	20.0		87.8		70-130		20	
n-p Aylene o-Xylene	17.6	1.0	0.49	μg/L μg/L	10.0	ND	87.8 82.7		70-130	1.43 1.92	30	
<u> </u>	8.27	1.0	0.24			ND				1.92	30	
Surrogate: 1,2-Dichloroethane-d4	28.5			μg/L	25.0		114		70-130			
Surrogate: Toluene-d8	25.7			μg/L	25.0		103		70-130			
Surrogate: 4-Bromofluorobenzene	23.4			μg/L	25.0		93.7		70-130			

	LabQual RPD	8.403361	0	16.66667	7.407407
8120					<u> </u>
DUP 82	Dup	5.7	36	3.3	1.4
828120MW210015/DUP 828120	Result LabQual Dup				_
828120N	Result	6.2	36	3.9	1.3
Sample ID:	Compund	cis-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl chloride

The following laboratory data qualifiers or data review qualifiers are used in the final data presentation:

U = target analyte is not detected at or above the reporting limit

J = concentration is estimated

UJ = target analyte is not detected, value is estimated

J+ = concentration is estimated, potentially biased high

J- = concentration is estimated, potentially biased low

Results are interpreted to be usable as reported by the laboratory or as qualified in the following section.

2.0 POTENTIAL DATA LIMITATIONS

Based on the Category A Review the data meet the data quality objectives; however, the following potential limitations were identified:

VOCs by 8260D

Reporting limits for bromomethane in sample 828120HA114012 and its associated field duplicate, 828120DUP, were qualified estimated (UJ) based on low recovery in the associated MS/MSD. The qualified results are included in Table 3 with reason code MSL.

Reporting limits for 1,2,3-trichlorobenzene, chloromethane, dichlorodifluoromethane (Freon 12), 1,1-dichloroethene, and 2,2-dichloropropane in sample 828120MW210012 and its associated field duplicate, 828120DUP2, were qualified estimated (UJ) based on low recovery in the associated MS/MSD. The qualified results are included in Table 3 with reason code MSL.

Results for vinyl chloride in sample 828120MW210012 and its associated field duplicate, 828120DUP2, were qualified estimated (J+) with potential high bias based on high recoveries in the associated MS/MSD and LCS/LCSD. Qualified results are included in Table 3 with reason code MSH.

Results for cis-1,2-dichloroethene in sample 828120MW210012 and its associated field duplicate, 828120DUP2, were qualified estimated (J-) with potential low bias based on low recovery in the associated MS/MSD. Qualified results are included in Table 3 with reason code MSL.

3.0 ADDITIONAL QC EXCEEDANCES AND OBSERVATIONS

Reporting limits in samples 828120MW06B018, 828120MW08B019, and 828120MW06009 are elevated due to dilutions as indicated in Table 2.

Reference:

NYSDEC, 2005. "Analytical Services Protocols"; July 2005.

Data Validator: Kassidy Patoine

Date: 12/2/2022

Reviewed by: Casey Cormier

Date: 1/23/2023

Reviewed by: Julie Ricardi

Julie Rimoi

Date: 2/9/2023

Standard Table Notes:

ng/L – nanograms per liter

μg/L – micrograms per liter

Sample Type (QC Code) Qualification Reason Codes

FS – field sample BL1 – method blank qualifier

FD – field duplicate BL2 – field or trip blank qualifier

TB – trip blank CCV – continuing calibration verification recovery outside limits

EB – equipment blank CCV%D – continuing calibration verification percent difference exceeds goal

FB – field blank CCVRRF – continuing calibration relative response factor low

CI – chromatographic interference present

Matrix DCPD – dual column percent difference exceeds limit

GW – ground water E – result exceeds calibration range

BW – blank water FD – field duplicate precision goal exceeded

TW – tap water FP – false positive interference

SV – soil vapor HT – holding time for prep or analysis exceeded

SED - sediment HTG – holding time for prep or analysis grossly exceeded

ICV – initial calibration verification recovery outside limit

<u>Units</u> ICVRRF – initial calibration verification relative response factor low

mg/L – milligrams per liter ICVRSD – initial calibration verification % relative standard deviation exceeds

goal

ISH – internal standard response greater than limit

ISL – internal standard response less than limit

mg/kg – milligrams per kilogram

LCSH – laboratory control sample recovery high

µg/kg – micrograms per kilogram

LCSL – laboratory control sample recovery low μg/m³ – micrograms per cubic meter

LCSRPD – laboratory control sample/duplicate relative % difference precision

goal exceeded

Qualifiers LD – lab duplicate precision goal exceeded

U – not detected above quantitation limit MSH – matrix spike and/or MS duplicate recovery high

J – estimated quantity

MSL – matrix spike and/or MS duplicate recovery low

J+ - estimated quantity, biased high

MSRPD – matrix spike/duplicate relative % difference precision goal exceeded

J- - estimated quantity, biased low N – analyte identification is not certain

R – data unusable PEM – performance evaluation mixture exceeds limit

PM – sample percent moisture exceeds EPA guideline

<u>Fraction</u> SD – serial dilution result exceeds percent difference limit

T – total SP – sample preservation/collection does not meet method requirement

D – dissolved SSH – surrogate recovery high

N – normal SSL – surrogate recovery low

TD – dissolved concentration exceeds total

				Analy	sis Method	SW8260	SW6010	SW6010	RSK175	E300.0	SM2320B
				M	ethod Class	VOCs	Metals	Metals	Diss Gases	Anions	Alkalinity
					Fraction	N	D	Т	N	N	N
SDG	Location	Field Sample ID	Media	Sample Date	Qc Code	Count	Count	Count	Count	Count	Count
22J3631	HA-114	828120DUP	GW	10/25/2022	FD	78					
22J3631	HA-114	828120HA114012	GW	10/25/2022	FS	78	1	2	3	3	1
22J3631	MW-6B	828120MW06B018	GW	10/25/2022	FS	78					
22J3631	MW-8B	828120MW08B019	GW	10/25/2022	FS	78					
22J3631	QC	828120FB	BW	10/25/2022	FB	78					
22J3631	QC	828120TB	BW	10/25/2022	ТВ	78					
22J3896	MW-111I	828120MW111I020	GW	10/26/2022	FS	78	1	2	3	3	1
22J3896	MW-210	828120DUP2	GW	10/26/2022	FD	78					
22J3896	MW-210	828120MW210012	GW	10/26/2022	FS	78	1	2	3	3	1
22J3896	MW-6	828120MW06009	GW	10/26/2022	FS	78					
22J3896	MW-9B	828120MW09B018	GW	10/26/2022	FS	78					
22J3896	QC	828120FB2	BW	10/26/2022	FB	78					
22J4221	EW-1	828120EW01026	GW	10/27/2022	FS	78	1	2	3	2	1
22J4221	MW-9	828120MW09008	GW	10/27/2022	FS	78	1	2	3	2	1
22J4221	QC	828120FB3	BW	10/27/2022	FB	78					

				Analy	sis Method	SM4500 CL B	SM4500-S2-F	SM5310B
				M	ethod Class	Chloride	Sulfide	TOC
					Fraction	N	N	N
SDG	Location	Field Sample ID	Media	Sample Date	Qc Code	Count	Count	Count
22J3631	HA-114	828120DUP	GW	10/25/2022	FD			
22J3631	HA-114	828120HA114012	GW	10/25/2022	FS		1	1
22J3631	MW-6B	828120MW06B018	GW	10/25/2022	FS			
22J3631	MW-8B	828120MW08B019	GW	10/25/2022	FS			
22J3631	QC	828120FB	BW	10/25/2022	FB			
22J3631	QC	828120TB	BW	10/25/2022	TB			
22J3896	MW-111I	828120MW111I020	GW	10/26/2022	FS		1	1
22J3896	MW-210	828120DUP2	GW	10/26/2022	FD			
22J3896	MW-210	828120MW210012	GW	10/26/2022	FS		1	1
22J3896	MW-6	828120MW06009	GW	10/26/2022	FS			
22J3896	MW-9B	828120MW09B018	GW	10/26/2022	FS			
22J3896	QC	828120FB2	BW	10/26/2022	FB			
22J4221	EW-1	828120EW01026	GW	10/27/2022	FS	1	1	1
22J4221	MW-9	828120MW09008	GW	10/27/2022	FS	1	1	1
22J4221	QC	828120FB3	BW	10/27/2022	FB			

		Location	EW-1	HA-114	HA-114	MW-111I
		Lab SDG	22J4221	22J3631	22J3631	22J3896
	Field S	Sample Date	10/27/2022	10/25/2022	10/25/2022	10/26/2022
		d Sample ID	828120EW01026	828120DUP	828120HA114012	828120MW111I020
		QC Code	FS	FD	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	1,1,1,2-Tetrachloroethane	UG/L	1 U	1 U	1 U	1 U
SW8260	1,1,1-Trichloroethane	UG/L	1 U	1 U	1 U	1 U
SW8260	1,1,2,2-Tetrachloroethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	2 U	1 U	1 U	2 U
SW8260	1,1,2-Trichloroethane	UG/L	1 U	1 U	1 U	1 U
SW8260	1,1-Dichloroethane	UG/L	1 U	1 U	1 U	1 U
SW8260	1,1-Dichloroethene	UG/L	1 U	1 U	1 U	0.22 J
SW8260	1,1-Dichloropropene	UG/L	2 U	2 U	2 U	2 U
SW8260	1,2,3-Trichlorobenzene	UG/L	5 U	5 U	5 U	5 U
SW8260	1,2,3-Trichloropropane	UG/L	2 U	2 U	2 U	2 U
SW8260	1,2,4-Trichlorobenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	1,2,4-Trimethylbenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	1,2-Dibromo-3-chloropropane	UG/L	5 U	5 U	5 U	5 U
SW8260	1,2-Dibromoethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	1,2-Dichlorobenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	1,2-Dichloroethane	UG/L	1 U	1 U	1 U	1 U
SW8260	1,2-Dichloropropane	UG/L	1 U	1 U	1 U	1 U
SW8260	1,3,5-Trichlorobenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	1,3,5-Trimethylbenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	1,3-Dichlorobenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	1,3-Dichloropropane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	1,4-Dichlorobenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	1,4-Dioxane	UG/L	50 U	50 U	50 U	50 U
SW8260	2,2-Dichloropropane	UG/L	1 U	1 U	1 U	1 U
SW8260	2-Butanone	UG/L	20 U	20 U	20 U	20 U

		1 1	F)A/ 4	110 111	110 111	NAVA/ 1111
		Location	EW-1	HA-114	HA-114	MW-111I
		Lab SDG	22J4221	22J3631	22J3631	22J3896
		Field Sample Date	10/27/2022	10/25/2022	10/25/2022	10/26/2022
		Field Sample ID	828120EW01026	828120DUP	828120HA114012	828120MW111I020
		QC Code	FS	FD	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	2-Chlorotoluene	UG/L	1 U	1 U	1 U	1 U
SW8260	2-Hexanone	UG/L	10 U	10 U	10 U	10 U
SW8260	4-Chlorotoluene	UG/L	1 U	1 U	1 U	1 U
SW8260	4-iso-Propyltoluene	UG/L	1 U	1 U	1 U	1 U
SW8260	4-Methyl-2-pentanone	UG/L	10 U	10 U	10 U	10 U
SW8260	Acetic acid, methyl ester	UG/L	1 U	1 U	1 U	1 U
SW8260	Acetone	UG/L	50 U	50 U	50 U	50 U
SW8260	Acrylonitrile	UG/L	5 U	5 U	5 U	5 U
SW8260	Benzene	UG/L	1 U	1 U	1 U	1 U
SW8260	Bromobenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	Bromochloromethane	UG/L	1 U	1 U	1 U	1 U
SW8260	Bromodichloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	Bromoform	UG/L	2 U	1 U	1 U	2 U
SW8260	Bromomethane	UG/L	2 U	2 UJ	2 UJ	2 U
SW8260	Butane, 2-methoxy-2-methyl-	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	Carbon disulfide	UG/L	5 U	5 U	5 U	5 U
SW8260	Carbon tetrachloride	UG/L	5 U	5 U	5 U	5 U
SW8260	Chlorobenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	Chloroethane	UG/L	2 U	2 U	2 U	2 U
SW8260	Chloroform	UG/L	2 U	2 U	2 U	2 U
SW8260	Chloromethane	UG/L	2 U	2 U	2 U	2 U
SW8260	cis-1,2-Dichloroethene	UG/L	0.68 J	31	31	110
SW8260	cis-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	Dibromochloromethane	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	Dibromomethane	UG/L	1 U	1 U	1 U	1 U

		Location	EW-1	HA-114	HA-114	MW-111I
		Lab SDG	22J4221	22J3631	22J3631	22J3896
		Field Sample Date	10/27/2022	10/25/2022	10/25/2022	10/26/2022
		Field Sample ID	828120EW01026	828120DUP	828120HA114012	828120MW111I020
		QC Code	FS	FD	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	Dichlorodifluoromethane	UG/L	2 U	2 U	2 U	2 U
SW8260	Diethyl ether	UG/L	2 U	2 U	2 U	2 U
SW8260	Ethyl-t-Butyl Ether	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	Ethylbenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	Hexachlorobutadiene	UG/L	0.6 U	0.6 U	0.6 U	0.6 U
SW8260	Isopropyl ether	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	Isopropylbenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	Methyl cyclohexane	UG/L	1 U	1 U	1 U	0.26 J
SW8260	Methyl Tertbutyl Ether	UG/L	1 U	1 U	1 U	1 U
SW8260	Methylene chloride	UG/L	5 U	5 U	5 U	5 U
SW8260	n-Butylbenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	Naphthalene	UG/L	2 U	2 U	2 U	2 U
SW8260	Propylbenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	sec-Butylbenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	Styrene	UG/L	1 U	1 U	1 U	1 U
SW8260	t-Butyl alcohol	UG/L	20 U	20 U	20 U	20 U
SW8260	tert-Butylbenzene	UG/L	1 U	1 U	1 U	1 U
SW8260	Tetrachloroethene	UG/L	45	170	170	140
SW8260	Tetrahydrofuran	UG/L	10 U	10 U	10 U	10 U
SW8260	Toluene	UG/L	1 U	1 U	1 U	1 U
SW8260	trans-1,2-Dichloroethene	UG/L	1 U	0.39 J	0.45 J	1 U
SW8260	trans-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	0.5 U	0.5 U
SW8260	trans-1,4-Dichloro-2-butene	UG/L	2 U	2 U	2 U	2 U
SW8260	Trichloroethene	UG/L	1.4	30	31	40
SW8260	Trichlorofluoromethane	UG/L	2 U	2 U	2 U	2 U

		Location	EW-1	HA-114	HA-114	MW-111I
		Lab SDG	22J4221	22J3631	22J3631	22J3896
		Field Sample Date	10/27/2022	10/25/2022	10/25/2022	10/26/2022
		Field Sample ID	828120EW01026	828120DUP	828120HA114012	828120MW111I020
		QC Code	FS	FD	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	Vinyl chloride	UG/L	2 U	1.3 J	1.4 J	14
SW8260	Xylene, o	UG/L	1 U	1 U	1 U	1 U
SW8260	Xylenes (m&p)	UG/L	2 U	2 U	2 U	2 U

		Location	MW-210	MW-210	MW-6	MW-6B
		Lab SDG	22J3896	22J3896	22J3896	22J3631
	Field S	Sample Date	10/26/2022	10/26/2022	10/26/2022	10/25/2022
	Field Sample ID		828120DUP2	828120MW210012	828120MW06009	828120MW06B018
		QC Code	FD	FS	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	1,1,1,2-Tetrachloroethane	UG/L	1 U	1 U	50 U	10 U
SW8260	1,1,1-Trichloroethane	UG/L	1 U	1 U	50 U	10 U
SW8260	1,1,2,2-Tetrachloroethane	UG/L	0.5 U	0.5 U	25 U	5 U
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	2 U	2 U	50 U	10 U
SW8260	1,1,2-Trichloroethane	UG/L	1 U	1 U	50 U	10 U
SW8260	1,1-Dichloroethane	UG/L	1 U	1 U	50 U	10 U
SW8260	1,1-Dichloroethene	UG/L	1 UJ	1 UJ	50 U	10 U
SW8260	1,1-Dichloropropene	UG/L	2 U	2 U	100 U	20 U
SW8260	1,2,3-Trichlorobenzene	UG/L	5 UJ	5 UJ	250 U	50 U
SW8260	1,2,3-Trichloropropane	UG/L	2 U	2 U	100 U	20 U
SW8260	1,2,4-Trichlorobenzene	UG/L	1 U	1 U	50 U	10 U
SW8260	1,2,4-Trimethylbenzene	UG/L	1 U	1 U	50 U	10 U
SW8260	1,2-Dibromo-3-chloropropane	UG/L	5 U	5 U	250 U	50 U
SW8260	1,2-Dibromoethane	UG/L	0.5 U	0.5 U	25 U	5 U
SW8260	1,2-Dichlorobenzene	UG/L	1 U	1 U	50 U	10 U
SW8260	1,2-Dichloroethane	UG/L	1 U	1 U	50 U	10 U
SW8260	1,2-Dichloropropane	UG/L	1 U	1 U	50 U	10 U
SW8260	1,3,5-Trichlorobenzene	UG/L	1 U	1 U	50 U	10 U
SW8260	1,3,5-Trimethylbenzene	UG/L	1 U	1 U	50 U	10 U
SW8260	1,3-Dichlorobenzene	UG/L	1 U	1 U	50 U	10 U
SW8260	1,3-Dichloropropane	UG/L	0.5 U	0.5 U	25 U	5 U
SW8260	1,4-Dichlorobenzene	UG/L	1 U	1 U	50 U	10 U
SW8260	1,4-Dioxane	UG/L	50 U	50 U	2500 U	500 U
SW8260	2,2-Dichloropropane	UG/L	1 UJ	1 UJ	50 U	10 U
SW8260	2-Butanone	UG/L	20 U	20 U	1000 U	200 U

		Location	MW-210	MW-210	MW-6	MW-6B
		Lab SDG	22J3896	22J3896	22J3896	22J3631
		Field Sample Date	10/26/2022	10/26/2022	10/26/2022	10/25/2022
		Field Sample ID	828120DUP2	828120MW210012	828120MW06009	828120MW06B018
		QC Code	628120D0F2 FD	FS	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	2-Chlorotoluene	UG/L	1 U	1 U	50 U	10 U
SW8260	2-Hexanone	UG/L	10 U	10 U	500 U	100 U
SW8260	4-Chlorotoluene	UG/L	10 U	1 U	50 U	10 U
SW8260	4-iso-Propyltoluene	UG/L	1 U	1 U	50 U	10 U
SW8260	4-Methyl-2-pentanone	UG/L	10 U	10 U	500 U	100 U
SW8260	Acetic acid, methyl ester	UG/L	10 U	10 U	50 U	10 U
SW8260	Acetone	UG/L	50 U	50 U	2500 U	31 J
SW8260	Acrylonitrile	UG/L	5 U	5 U	250 U	50 U
SW8260	Benzene	UG/L	1 U	1 U	50 U	10 U
SW8260	Bromobenzene	UG/L	1 U	1 U	50 U	10 U
SW8260	Bromochloromethane	UG/L	1 U	1 U	50 U	10 U
SW8260	Bromodichloromethane	UG/L	0.5 U	0.5 U	25 U	5 U
SW8260	Bromoform	UG/L	2 U	2 U	50 U	10 U
SW8260	Bromomethane	UG/L	2 U	2 U	100 U	20 U
SW8260	Butane, 2-methoxy-2-methyl-	UG/L	0.5 U	0.5 U	25 U	5 U
SW8260	Carbon disulfide	UG/L	5 U	5 U	250 U	50 U
SW8260	Carbon tetrachloride	UG/L	5 U	5 U	250 U	50 U
SW8260	Chlorobenzene	UG/L	1 U	1 U	50 U	10 U
SW8260	Chloroethane	UG/L	2 U	2 U	100 U	10 J
SW8260	Chloroform	UG/L	2 U	2 U	100 U	20 U
SW8260	Chloromethane	UG/L	2 UJ	2 UJ	100 U	20 U
SW8260	cis-1,2-Dichloroethene	UG/L	15 J-	16 J-	150	50
SW8260	cis-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	25 U	5 U
SW8260	Dibromochloromethane	UG/L	0.5 U	0.5 U	25 U	5 U
SW8260	Dibromomethane	UG/L	1 U	1 U	50 U	10 U

		Location	MW-210	MW-210	MW-6	MW-6B
		Lab SDG	22J3896	22J3896	22J3896	22J3631
		Field Sample Date	10/26/2022	10/26/2022	10/26/2022	10/25/2022
		Field Sample ID	828120DUP2	828120MW210012	828120MW06009	828120MW06B018
		QC Code	FD	FS	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	Dichlorodifluoromethane	UG/L	2 UJ	2 UJ	100 U	20 U
SW8260	Diethyl ether	UG/L	2 U	2 U	100 U	20 U
SW8260	Ethyl-t-Butyl Ether	UG/L	0.5 U	0.5 U	25 U	5 U
SW8260	Ethylbenzene	UG/L	1 U	1 U	50 U	10 U
SW8260	Hexachlorobutadiene	UG/L	0.6 U	0.6 U	30 U	6 U
SW8260	Isopropyl ether	UG/L	0.5 U	0.5 U	25 U	5 U
SW8260	Isopropylbenzene	UG/L	1 U	1 U	50 U	10 U
SW8260	Methyl cyclohexane	UG/L	1 U	1 U	50 U	10 U
SW8260	Methyl Tertbutyl Ether	UG/L	1 U	1 U	50 U	10 U
SW8260	Methylene chloride	UG/L	5 U	5 U	250 U	50 U
SW8260	n-Butylbenzene	UG/L	1 U	1 U	50 U	10 U
SW8260	Naphthalene	UG/L	2 U	2 U	100 U	20 U
SW8260	Propylbenzene	UG/L	1 U	1 U	50 U	10 U
SW8260	sec-Butylbenzene	UG/L	1 U	1 U	50 U	10 U
SW8260	Styrene	UG/L	1 U	1 U	50 U	10 U
SW8260	t-Butyl alcohol	UG/L	20 U	20 U	1000 U	200 U
SW8260	tert-Butylbenzene	UG/L	1 U	1 U	50 U	10 U
SW8260	Tetrachloroethene	UG/L	49	50	2000	990
SW8260	Tetrahydrofuran	UG/L	10 U	10 U	500 U	100 U
SW8260	Toluene	UG/L	1 U	1 U	50 U	10 U
SW8260	trans-1,2-Dichloroethene	UG/L	1 U	1 U	50 U	10 U
SW8260	trans-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	25 U	5 U
SW8260	trans-1,4-Dichloro-2-butene	UG/L	2 U	2 U	100 U	20 U
SW8260	Trichloroethene	UG/L	9.8	9.8	240	63
SW8260	Trichlorofluoromethane	UG/L	2 U	2 U	100 U	20 U

		Location	MW-210	MW-210	MW-6	MW-6B
		Lab SDG	22J3896	22J3896	22J3896	22J3631
		Field Sample Date	10/26/2022	10/26/2022	10/26/2022	10/25/2022
		Field Sample ID	828120DUP2	828120MW210012	828120MW06009	828120MW06B018
		QC Code	FD	FS	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	Vinyl chloride	UG/L	3.4 J+	3.8 J+	26 J	3.7 J
SW8260	Xylene, o	UG/L	1 U	1 U	50 U	10 U
SW8260	Xylenes (m&p)	UG/L	2 U	2 U	100 U	20 U

Created by: KLD 1/17/23

		Location	MW-8B	MW-9	MW-9B	QC
		Lab SDG	22J3631	22J4221	22J3896	22J3631
	Field S	Sample Date	10/25/2022	10/27/2022	10/26/2022	10/25/2022
	Field Sample ID		828120MW08B019	828120MW09008	828120MW09B018	828120TB
		QC Code	FS	FS	FS	ТВ
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	1,1,1,2-Tetrachloroethane	UG/L	5 U	1 U	1 U	1 U
SW8260	1,1,1-Trichloroethane	UG/L	5 U	1 U	1 U	1 U
SW8260	1,1,2,2-Tetrachloroethane	UG/L	2.5 U	0.5 U	0.5 U	0.5 U
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	5 U	2 U	1 U	1 U
SW8260	1,1,2-Trichloroethane	UG/L	5 U	1 U	1 U	1 U
SW8260	1,1-Dichloroethane	UG/L	5 U	1 U	1 U	1 U
SW8260	1,1-Dichloroethene	UG/L	5 U	1 U	1 U	1 U
SW8260	1,1-Dichloropropene	UG/L	10 U	2 U	2 U	2 U
SW8260	1,2,3-Trichlorobenzene	UG/L	25 U	5 U	5 U	5 U
SW8260	1,2,3-Trichloropropane	UG/L	10 U	2 U	2 U	2 U
SW8260	1,2,4-Trichlorobenzene	UG/L	5 U	1 U	1 U	1 U
SW8260	1,2,4-Trimethylbenzene	UG/L	5 U	1 U	1 U	1 U
SW8260	1,2-Dibromo-3-chloropropane	UG/L	25 U	5 U	5 U	5 U
SW8260	1,2-Dibromoethane	UG/L	2.5 U	0.5 U	0.5 U	0.5 U
SW8260	1,2-Dichlorobenzene	UG/L	5 U	1 U	1 U	1 U
SW8260	1,2-Dichloroethane	UG/L	5 U	1 U	1 U	1 U
SW8260	1,2-Dichloropropane	UG/L	5 U	1 U	1 U	1 U
SW8260	1,3,5-Trichlorobenzene	UG/L	5 U	1 U	1 U	1 U
SW8260	1,3,5-Trimethylbenzene	UG/L	5 U	1 U	1 U	1 U
SW8260	1,3-Dichlorobenzene	UG/L	5 U	1 U	1 U	1 U
SW8260	1,3-Dichloropropane	UG/L	2.5 U	0.5 U	0.5 U	0.5 U
SW8260	1,4-Dichlorobenzene	UG/L	5 U	1 U	1 U	1 U
SW8260	1,4-Dioxane	UG/L	250 U	50 U	50 U	50 U
SW8260	2,2-Dichloropropane	UG/L	5 U	1 U	1 U	1 U
SW8260	2-Butanone	UG/L	18 J	20 U	20 U	20 U

		Location	MW-8B	MW-9	MW-9B	QC
		Lab SDG	22J3631	22J4221	22J3896	22J3631
		Field Sample Date	10/25/2022	10/27/2022	10/26/2022	10/25/2022
		Field Sample ID	828120MW08B019	828120MW09008	828120MW09B018	828120TB
		QC Code	FS	FS	FS	ТВ
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	2-Chlorotoluene	UG/L	5 U	1 U	1 U	1 U
SW8260	2-Hexanone	UG/L	50 U	10 U	10 U	10 U
SW8260	4-Chlorotoluene	UG/L	5 U	1 U	1 U	1 U
SW8260	4-iso-Propyltoluene	UG/L	5 U	1 U	1 U	1 U
SW8260	4-Methyl-2-pentanone	UG/L	50 U	10 U	10 U	10 U
SW8260	Acetic acid, methyl ester	UG/L	5 U	1 U	1 U	1 U
SW8260	Acetone	UG/L	14 J	50 U	50 U	50 U
SW8260	Acrylonitrile	UG/L	25 U	5 U	5 U	5 U
SW8260	Benzene	UG/L	5 U	1 U	1 U	1 U
SW8260	Bromobenzene	UG/L	5 U	1 U	1 U	1 U
SW8260	Bromochloromethane	UG/L	5 U	1 U	1 U	1 U
SW8260	Bromodichloromethane	UG/L	2.5 U	0.5 U	0.5 U	0.5 U
SW8260	Bromoform	UG/L	5 U	2 U	1 U	1 U
SW8260	Bromomethane	UG/L	10 U	2 U	2 U	2 U
SW8260	Butane, 2-methoxy-2-methyl-	UG/L	2.5 U	0.5 U	0.5 U	0.5 U
SW8260	Carbon disulfide	UG/L	25 U	5 U	5 U	5 U
SW8260	Carbon tetrachloride	UG/L	25 U	5 U	5 U	5 U
SW8260	Chlorobenzene	UG/L	5 U	1 U	1 U	1 U
SW8260	Chloroethane	UG/L	10 U	2 U	2 U	2 U
SW8260	Chloroform	UG/L	10 U	2 U	2 U	2 U
SW8260	Chloromethane	UG/L	10 U	2 U	2 U	2 U
SW8260	cis-1,2-Dichloroethene	UG/L	14	1 U	0.32 J	1 U
SW8260	cis-1,3-Dichloropropene	UG/L	2.5 U	0.5 U	0.5 U	0.5 U
SW8260	Dibromochloromethane	UG/L	2.5 U	0.5 U	0.5 U	0.5 U
SW8260	Dibromomethane	UG/L	5 U	1 U	1 U	1 U

		Location	MW-8B	MW-9	MW-9B	QC
		Lab SDG	22J3631	22J4221	22J3896	22J3631
		Field Sample Date	10/25/2022	10/27/2022	10/26/2022	10/25/2022
		Field Sample ID	828120MW08B019	828120MW09008	828120MW09B018	828120TB
		QC Code	FS	FS	FS	ТВ
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	Dichlorodifluoromethane	UG/L	10 U	2 U	2 U	2 U
SW8260	Diethyl ether	UG/L	10 U	2 U	2 U	2 U
SW8260	Ethyl-t-Butyl Ether	UG/L	2.5 U	0.5 U	0.5 U	0.5 U
SW8260	Ethylbenzene	UG/L	5 U	1 U	1 U	1 U
SW8260	Hexachlorobutadiene	UG/L	3 U	0.6 U	0.6 U	0.6 U
SW8260	Isopropyl ether	UG/L	2.5 U	0.5 U	0.5 U	0.5 U
SW8260	Isopropylbenzene	UG/L	5 U	1 U	1 U	1 U
SW8260	Methyl cyclohexane	UG/L	5 U	1 U	1 U	1 U
SW8260	Methyl Tertbutyl Ether	UG/L	5 U	1 U	1 U	1 U
SW8260	Methylene chloride	UG/L	25 U	5 U	5 U	5 U
SW8260	n-Butylbenzene	UG/L	5 U	5 U 1 U		1 U
SW8260	Naphthalene	UG/L	10 U	2 U	2 U	2 U
SW8260	Propylbenzene	UG/L	5 U	1 U	1 U	1 U
SW8260	sec-Butylbenzene	UG/L	5 U	1 U	1 U	1 U
SW8260	Styrene	UG/L	5 U	1 U	1 U	1 U
SW8260	t-Butyl alcohol	UG/L	100 U	20 U	20 U	20 U
SW8260	tert-Butylbenzene	UG/L	5 U	1 U	1 U	1 U
SW8260	Tetrachloroethene	UG/L	380	4.6	1 U	1 U
SW8260	Tetrahydrofuran	UG/L	50 U	10 U	10 U	10 U
SW8260	Toluene	UG/L	5 U	1 U	1 U	1 U
SW8260	trans-1,2-Dichloroethene	UG/L	5 U	1 U	1 U	1 U
SW8260	trans-1,3-Dichloropropene	UG/L	2.5 U	0.5 U	0.5 U	0.5 U
SW8260	trans-1,4-Dichloro-2-butene	UG/L	10 U	2 U	2 U	2 U
SW8260	Trichloroethene	UG/L	16	0.51 J	1 U	1 U
SW8260	Trichlorofluoromethane	UG/L	10 U	2 U	2 U	2 U

Created by: KLD 1/17/23 Checked by: KRP 1/17/23

		Location	MW-8B	MW-9	MW-9B	QC
		Lab SDG	22J3631	22J4221	22J3896	22J3631
		Field Sample Date	10/25/2022	10/27/2022	10/26/2022	10/25/2022
		Field Sample ID	828120MW08B019	828120MW09008	828120MW09B018	828120TB
		QC Code	FS FS		FS	ТВ
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	Vinyl chloride	UG/L	10 U	2 U	2 U	2 U
SW8260	Xylene, o	UG/L	5 U	1 U	1 U	1 U
SW8260	Xylenes (m&p)	UG/L	10 U	2 U	2 U	2 U

				26				\ <u>`</u>
		Location		QC		QC)C
		Lab SDG		3631		3896		4221
		Sample Date	-	5/2022	-	5/2022	-	//2022
	Fie	ld Sample ID		120FB		20FB2		20FB3
		QC Code		FB		В		В
Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260	1,1,1,2-Tetrachloroethane	UG/L		LU		U		U
SW8260	1,1,1-Trichloroethane	UG/L		LU		U		U
SW8260	1,1,2,2-Tetrachloroethane	UG/L	0.5	5 U	0.5	U	0.5	U
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane (Freon 113)	UG/L	1	LU	2	U	2	U
SW8260	1,1,2-Trichloroethane	UG/L	1	LU	1	U	1	U
SW8260	1,1-Dichloroethane	UG/L	1	LU	1	U	1	U
SW8260	1,1-Dichloroethene	UG/L	1	LU	1	U	1	U
SW8260	1,1-Dichloropropene	UG/L	2	<u>2</u> U	2	U	2	U
SW8260	1,2,3-Trichlorobenzene	UG/L	5	5 U	5	U	5	U
SW8260	1,2,3-Trichloropropane	UG/L	2	<u>2</u> U	2	U	2	U
SW8260	1,2,4-Trichlorobenzene	UG/L	1	LU	1	U	1	U
SW8260	1,2,4-Trimethylbenzene	UG/L	1	LU	1	U	1	U
SW8260	1,2-Dibromo-3-chloropropane	UG/L	5	5 U	5	U	5	U
SW8260	1,2-Dibromoethane	UG/L	0.5	5 U	0.5	U	0.5	U
SW8260	1,2-Dichlorobenzene	UG/L	1	LU	1	U	1	U
SW8260	1,2-Dichloroethane	UG/L	1	LU	1	U	1	U
SW8260	1,2-Dichloropropane	UG/L	1	LU	1	U	1	U
SW8260	1,3,5-Trichlorobenzene	UG/L	1	LU	1	U	1	U
SW8260	1,3,5-Trimethylbenzene	UG/L	1	LU	1	U	1	U
SW8260	1,3-Dichlorobenzene	UG/L	1	LU	1	U	1	U
SW8260	1,3-Dichloropropane	UG/L	0.5	5 U	0.5	U	0.5	U
SW8260	1,4-Dichlorobenzene	UG/L	1	LU	1	U	1	U
SW8260	1,4-Dioxane	UG/L	50) U	50	U	50	U
SW8260	2,2-Dichloropropane	UG/L	1	LU	1	U	1	U
SW8260	2-Butanone	UG/L	20	U	20	U	20	U

		Location	QC	QC	QC
		Lab SDG	22J3631	22J3896	22J4221
		Field Sample Date	10/25/2022	10/26/2022	10/27/2022
		Field Sample ID	828120FB	828120FB2	828120FB3
		QC Code	FB	FB	FB
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	2-Chlorotoluene	UG/L	1 U	1 U	1 U
SW8260	2-Hexanone	UG/L	10 U	10 U	10 U
SW8260	4-Chlorotoluene	UG/L	1 U	1 U	1 U
SW8260	4-iso-Propyltoluene	UG/L	1 U	1 U	1 U
SW8260	4-Methyl-2-pentanone	UG/L	10 U	10 U	10 U
SW8260	Acetic acid, methyl ester	UG/L	1 U	1 U	1 U
SW8260	Acetone	UG/L	50 U	50 U	50 U
SW8260	Acrylonitrile	UG/L	5 U	5 U	5 U
SW8260	Benzene	UG/L	1 U	1 U	1 U
SW8260	Bromobenzene	UG/L	1 U	1 U	1 U
SW8260	Bromochloromethane	UG/L	1 U	1 U	1 U
SW8260	Bromodichloromethane	UG/L	0.5 U	0.44 J	0.5 U
SW8260	Bromoform	UG/L	1 U	2 U	2 U
SW8260	Bromomethane	UG/L	2 U	2 U	2 U
SW8260	Butane, 2-methoxy-2-methyl-	UG/L	0.5 U	0.5 U	0.5 U
SW8260	Carbon disulfide	UG/L	5 U	5 U	5 U
SW8260	Carbon tetrachloride	UG/L	5 U	5 U	5 U
SW8260	Chlorobenzene	UG/L	1 U	1 U	1 U
SW8260	Chloroethane	UG/L	2 U	2 U	2 U
SW8260	Chloroform	UG/L	18	23	18
SW8260	Chloromethane	UG/L	2 U	2 U	2 U
SW8260	cis-1,2-Dichloroethene	UG/L	1 U	1 U	1 U
SW8260	cis-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	0.5 U
SW8260	Dibromochloromethane	UG/L	0.5 U	0.5 U	0.5 U
SW8260	Dibromomethane	UG/L	1 U	1 U	1 U

Created by: KLD 1/17/23 Checked by: KRP 1/17/23

		Location	QC	QC	QC
		Lab SDG	22J3631	22J3896	22J4221
		Field Sample Date	10/25/2022	10/26/2022	10/27/2022
		Field Sample ID	828120FB	828120FB2	828120FB3
		QC Code	FB	FB	FB
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	Dichlorodifluoromethane	UG/L	2 U	2 U	2 U
SW8260	Diethyl ether	UG/L	2 U	2 U	2 U
SW8260	Ethyl-t-Butyl Ether	UG/L	0.5 U 0.5 U		0.5 U
SW8260	Ethylbenzene	UG/L	1 U	1 U	1 U
SW8260	Hexachlorobutadiene	UG/L	0.6 U	0.6 U	0.6 U
SW8260	Isopropyl ether	UG/L	0.5 U 0.5 U		0.5 U
SW8260	Isopropylbenzene	UG/L	1 U 1 U		1 U
SW8260	Methyl cyclohexane	UG/L	1 U 1 U		1 U
SW8260	Methyl Tertbutyl Ether	UG/L	1 U	1 U	1 U
SW8260	Methylene chloride	UG/L	5 U 5 U		5 U
SW8260	n-Butylbenzene	UG/L	1 U	1 U	1 U
SW8260	Naphthalene	UG/L	2 U	2 U	2 U
SW8260	Propylbenzene	UG/L	1 U	1 U	1 U
SW8260	sec-Butylbenzene	UG/L	1 U	1 U	1 U
SW8260	Styrene	UG/L	1 U	1 U	1 U
SW8260	t-Butyl alcohol	UG/L	20 U	20 U	20 U
SW8260	tert-Butylbenzene	UG/L	1 U	1 U	1 U
SW8260	Tetrachloroethene	UG/L	1 U	1 U	1 U
SW8260	Tetrahydrofuran	UG/L	10 U	10 U	10 U
SW8260	Toluene	UG/L	1 U	1 U	1 U
SW8260	trans-1,2-Dichloroethene	UG/L	1 U	1 U	1 U
SW8260	trans-1,3-Dichloropropene	UG/L	0.5 U	0.5 U	0.5 U
SW8260	trans-1,4-Dichloro-2-butene	UG/L	2 U	2 U	2 U
SW8260	Trichloroethene	UG/L	1 U	1 U	1 U
SW8260	Trichlorofluoromethane	UG/L	2 U 2 U		2 U

Created by: KLD 1/17/23 Checked by: KRP 1/17/23

		Location	C	ίC	(QC	(QC .	
		Lab SDG	22J	3631	22J	3896	22J	4221	
		Field Sample Date	10/25	5/2022	10/2	6/2022	10/27	7/2022	
		Field Sample ID	828120FB		828120FB2		8281	20FB3	
		QC Code	F	FB		FB FB		F	−B
Method	Parameter	Units	Result	Qualifier	Result Qualifier		Result	Qualifier	
SW8260	Vinyl chloride	UG/L	2	U	2	2 U	2	U	
SW8260	Xylene, o	UG/L	1 U		1 U 1 U		1 U		
SW8260	Xylenes (m&p)	UG/L	2 U		2	2 U	2 U		

			Location	E۱	N-1	HA	·-114	MW	-1111	MW	'-210	MW-9	
			Lab SDG	22J	4221	22J	3631	22J	3896	22J3	3896	22J	4221
		Field S	Sample Date	10/2	7/2022	10/2	5/2022	10/26	5/2022	10/26/2022		10/27	7/2022
		Fiel	d Sample ID	828120	EW01026	828120HA114012		828120MW111I020		828120MW210012		828120N	MW09008
			QC Code	1	FS		FS	FS		FS		ı	FS
Method	Parameter	Fraction	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
RSK175	Ethane	N	MG/L	0.014 U		0.014	ł U	0.014	U	0.014	U	0.014	· U
RSK175	Ethene	N	MG/L	0.017	' U	0.017	7 U	0.017	U	0.017	U	0.017	U
RSK175	Methane	N	MG/L	0.007	' U	0.0082	<u>)</u>	0.0051	J	0.0041	J	0.007 U	
E300	Chloride	N	MG/L			480		170		210			
E300	Nitrate as N	N	MG/L	1.2		0.53	3	0.63		0.65		1.1	
E300	Sulfate	N	MG/L	25		55	<u>, </u>	69		54		110	1
SM2320B	Total Alkalinity, as CaCO3	N	MG/L	270)	400)	350		370		400	
SM4500 C	L Chloride	N	MG/L	95								610	
SM4500-S	2 Sulfide	N	MG/L	2		2	2 U	2	U	2	U	1.2	. J
SM5310B	Total Organic Carbon	N	MG/L	3		22	<u>)</u>	6.3		10		33	,
SW6010	Iron	D	MG/L	0.04	J	0.034	l J	0.046	J	0.29		0.049	J
SW6010	Iron	T	MG/L	1.4		0.57	7	0.21		1.3		0.77	
SW6010	Manganese	T	MG/L	0.027	•	0.057	7	0.14		0.096		0.26	i

Created by: KLD 1/17/23 Checked by: KRP 1/17/23

TABLE 3 - SUMMARY OF QUALIFICATION ACTIONS CATEGORY A REVIEW OCTOBER 2022 GROUNDWATER SAMPLING CARRIAGE CLEANERS BRIGHTON, NEW YORK

						Lab	Final	Final	Val Reason	
Lab SDG	Method	Lab Sample ID	Field Sample ID	Param Name	Lab Result	Qualifier	Result	Qualifier	Code	Units
22J3631	SW8260	22J3631-03	828120HA114012	Bromomethane	2	U	2	UJ	MSL	UG/L
22J3631	SW8260	22J3631-04	828120DUP	Bromomethane	2	U	2	UJ	MSL	UG/L
22J3896	SW8260	22J3896-04	828120MW210012	1,1-Dichloroethene	1	U	1	UJ	MSL	UG/L
22J3896	SW8260	22J3896-04	828120MW210012	1,2,3-Trichlorobenzene	5	U	5	UJ	MSL	UG/L
22J3896	SW8260	22J3896-04	828120MW210012	2,2-Dichloropropane	1	U	1	UJ	MSL	UG/L
22J3896	SW8260	22J3896-04	828120MW210012	Chloromethane	2	U	2	UJ	MSL	UG/L
22J3896	SW8260	22J3896-04	828120MW210012	cis-1,2-Dichloroethene	16		16	J-	MSL	UG/L
22J3896	SW8260	22J3896-04	828120MW210012	Dichlorodifluoromethane	2	U	2	UJ	MSL	UG/L
22J3896	SW8260	22J3896-04	828120MW210012	Vinyl chloride	3.8		3.8	J+	MSH, LCSH	UG/L
22J3896	SW8260	22J3896-05	828120DUP2	1,1-Dichloroethene	1	U	1	UJ	MSL	UG/L
22J3896	SW8260	22J3896-05	828120DUP2	1,2,3-Trichlorobenzene	5	U	5	UJ	MSL	UG/L
22J3896	SW8260	22J3896-05	828120DUP2	2,2-Dichloropropane	1	U	1	UJ	MSL	UG/L
22J3896	SW8260	22J3896-05	828120DUP2	Chloromethane	2	U	2	UJ	MSL	UG/L
22J3896	SW8260	22J3896-05	828120DUP2	cis-1,2-Dichloroethene	15		15	J-	MSL	UG/L
22J3896	SW8260	22J3896-05	828120DUP2	Dichlorodifluoromethane	2	U	2	UJ	MSL	UG/L
22J3896	SW8260	22J3896-05	828120DUP2	Vinyl chloride	3.4		3.4	J+	MSH, LCSH	UG/L

Created by: KLD 1/17/23 Checked by: KRP 1/17/23

Project No. 3616206118.05

CATEGORY A REVIEW OCTOBER 2022 GROUNDWATER SAMPLING CARRIAGE CLEANERS BRIGHTON, NEW YORK

ATTACHMENT A

Page 1 of 1

VOCs

PROJECT CATEGORY A REVIEW RECORD **Project: Carriage Cleaners Oct 2022 GW** Method: SW-846 8260C **Laboratory: Con-test** SDG(s): 22J3631, 22J3896, & 22J4221 Date: 12/2/2022 **Reviewer: Kassidy Patoine** X CATEGORY A **Review Level COMMENTS** X Case Narrative Review and COC/Data Package Completeness Were problems noted? Yes Were all the samples on the COC analyzed for the requested analyses? YES NO (circle one) Are Field Sample IDs and Locations assigned correctly? YES NO (circle one) X Holding time and Sample Collection All samples were analyzed within the 14 day holding time. YES NO (circle one) 3. X QC Blanks Are method blanks free of contamination? YES NO (circle one) Are Trip blanks free of contamination? YES NO (circle one) Are Rinse blanks free of contamination? YES NO NA (circle one) 22J3631-06 - chloroform detection U, BL2 22J3896-06 – chloroform detection U, BL2 22J4221-03 - chloroform detection U, BL2 Matrix Spike - Region II limits (water and soil 70-130%, water RPD 20, soil RPD 35) Were MS/MSDs submitted/analyzed? YES NO Were all results within the Region II limits? YES NO NA (circle one) 22J3631-03 Bromomethane, UJ, MSL 22J3896 – see attached UJ, MSL, J-, MSL, J+, MSH X Laboratory Control Sample Results - Region II (Water and soil 70-130%) Were all results within Region II control limits? YES NO (circle one) 22J3896 – see attached J+, LCSH 22J4221 – see attached, no quals X Surrogate Recovery - Region II limits (water 80-120%, soil 70-130%) Were all results within Region II limits? YES NO (circle one) X Field Duplicates - Region II Limits (water RPD 50, soil RPD 100) Were Field Duplicates submitted/analyzed? YES NO Were all results within Region II Limits? YES NO NA (circle one) **Reporting Limits:** Were samples analyzed at a dilution? YES NO (circle one) 22J3631-01 was run at a 10x dilution, 22J3631-02 was run at a 5x dilution, 22J3896-01 was run at a 50x dilution **Electronic Data Review and Edits** Does the EDD match the Form Is? YES NO (circle one) 10. X Table Review **Table 1** (Samples and Analytical Methods) Table 2 (Analytical Results) Table 3 (Qualification Actions) Were all tables produced and reviewed? YES NO (circle one) YES NO (circle one) **Table 4** (TICs) Did lab report TICs?

EPA 300.0

Qualifications:

E

Reported result is estimated. Value reported over verified calibration range.

Analyte & Samples(s) Qualified:

Chloride

B321543-MS1, B321543-MSD1

MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.

Analyte & Samples(s) Qualified:

Chloride

22J3631-03[828120HA114012], B321543-MS1, B321543-MSD1

SM 21-23 5310B

Qualifications:

MS-07A

Matrix spike and spike duplicate recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of matrix effects that lead to low bias or non-homogeneous sample aliquot cannot be eliminated. **Analyte & Samples(s) Qualified:**

Total Organic Carbon

22J3631-03[828120HA114012], B322110-MS1, B322110-MSD1

SM21-23 2320B

Oualifications:

PR-18

Headspace present in sample container.

Analyte & Samples(s) Qualified:

Alkalinity

22J3631-03[828120HA114012], B322011-MS1, B322011-MSD1

SW-846 8260D

Qualifications:

MS-07A

Matrix spike and spike duplicate recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of matrix effects that lead to low bias or non-homogeneous sample aliquot cannot be eliminated.

Analyte & Samples(s) Qualified:

Bromomethane

22J3631-03[828120HA114012], B321309-MS1, B321309-MSD1

Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or

meaningful recoveries cannot be calculated. Analyte & Samples(s) Qualified:

Tetrachloroethylene

22J3631-03[828120HA114012], B321309-MS1, B321309-MSD1

RL-11

Elevated reporting limit due to high concentration of target compounds.

Analyte & Samples(s) Qualified:

22J3631-01[828120MW06B018], 22J3631-02[828120MW08B019]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

outside of scope

1,2-Dibromo-3-chloropropane (DB)

 $22J3631-01[828120MW06B018], 22J3631-02[828120MW08B019], 22J3631-03[828120HA\ 114012], 22J3631-04[828120DUP], 22J3631-05[828120TB], 22J65[828120TB], 22J65[8281$ 22J3631-06[828120FB], B321309-BLK1, B321309-BS1, B321309-BSD1, B321309-MS1, B321309-MSD1, S078583-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

outside of scope

Chloroethane

B321309-BS1, B321309-BSD1, B321309-MS1, B321309-MSD1, S078583-CCV1

Dichlorodifluoromethane (Freon 12

B321309-BS1, B321309-BSD1, B321309-MS1, B321309-MSD1, S078583-CCV1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing. I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Meghan E. Kelley Reporting Specialist

Meghan S. Kelley

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

	F	Reporting			Spike Source					RPD	
Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B322011 - SM21-23 2320B											
Blank (B322011-BLK1)					Prepared &	Analyzed: 11	/03/22				
Alkalinity	ND	1.0	0.65	mg/L							
LCS (B322011-BS1)					Prepared &	Analyzed: 11	/03/22				
Alkalinity	58	1.0	0.65	mg/L	61.2		95.6	85.8-110			
LCS Dup (B322011-BSD1)					Prepared &	Analyzed: 11	/03/22				
Alkalinity	58	1.0	0.65	mg/L	61.2		94.0	85.8-110	1.72	6.91	
MRL Check (B322011-MRL1)					Prepared &	Analyzed: 11	/03/22				
Alkalinity	1.00	1.0	0.65	mg/L	1.00		100	0-200			
MRL Check (B322011-MRL2)					Prepared &	Analyzed: 11	/03/22				
Alkalinity	1.00	1.0	0.65	mg/L	1.00		100	0-200			
Matrix Spike (B322011-MS1)	Sour	rce: 22J3	631-03		Prepared &	Analyzed: 11	/03/22				
Alkalinity	450	1.0	0.65	mg/L	50.0	400	98.0	81.4-115			PR-18
Matrix Spike Dup (B322011-MSD1)	Sour	rce: 22J3	631-03		Prepared &	Analyzed: 11	/03/22				
Alkalinity	460	1.0	0.65	mg/L	50.0	400	108	81.4-115	1.10	20	PR-18
Batch B322110 - SM 21-23 5310B											
Blank (B322110-BLK1)					Prepared &	Analyzed: 11	/07/22				
Total Organic Carbon	ND	1.0	0.54	mg/L							
LCS (B322110-BS1)					Prepared &	Analyzed: 11	/07/22				
Total Organic Carbon	10.1	1.0	0.54	mg/L	10.0		101	88.2-114			
LCS Dup (B322110-BSD1)					Prepared &	Analyzed: 11	/07/22				
Total Organic Carbon	10.3	1.0	0.54	mg/L	10.0		103	88.2-114	1.82	11.1	
Matrix Spike (B322110-MS1)	Sour	rce: 22J3	631-03		Prepared &	Analyzed: 11	/07/22				
Total Organic Carbon	21.4	1.0	0.54	mg/L	9.99	21.8	3 -3.70 *	10-164			MS-07A
Matrix Spike Dup (B322110-MSD1)	Sour	rce: 22J3	631-03		Prepared &	Analyzed: 11	/07/22				
Total Organic Carbon	22.6	1.0	0.54	mg/L	9.99	21.8	8.13 *	10-164	5.37	20	MS-07A

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

		Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B321242 - EPA 300.0											
					Dramarad &	Analyzadi 10/2	26/22				
Blank (B321242-BLK1) Nitrate as N	MD	0.10	0.042	mg/L	riepaieu &	Analyzed: 10/2	20/22				
Mitate as IV	ND	0.10	0.042	mg/L							
LCS (B321242-BS1)					Prepared &	Analyzed: 10/2	26/22				
Nitrate as N	0.94	0.10	0.042	mg/L	1.00		94.4	90-110			
LCS Dup (B321242-BSD1)					Prepared &	Analyzed: 10/2	26/22				
Nitrate as N	0.94	0.10	0.042	mg/L	1.00		94.4	90-110	0.0106	20	
Matrix Spike (B321242-MS1)	Sou	rce: 22J3	631-03		Prepared &	Analyzed: 10/2	26/22				
Nitrate as N	1.5	0.10	0.042	mg/L	1.00	0.53	96.2	80-120			
Matrix Spike Dup (B321242-MSD1)	Sou	rce: 22J3	631-03		Prepared &	Analyzed: 10/2	26/22				
Nitrate as N	1.6	0.10	0.042	mg/L	1.00	0.53	103	80-120	4.19	20	
Batch B321420 - SM21-23 4500S-F											
Blank (B321420-BLK1)					Prepared &	Analyzed: 10/2	28/22				
Sulfide	ND	2.0	1.1	mg/L							
LCS (B321420-BS1)					Prepared &	Analyzed: 10/2	28/22				
Sulfide	8.8	2.0	1.1	mg/L	10.0		88.0	81-117			_
Batch B321543 - EPA 300.0											
Blank (B321543-BLK1)					Prepared &	Analyzed: 10/2	29/22				
Chloride	ND	1.0	0.56	mg/L							
Sulfate	ND	1.0	0.55	mg/L							
LCS (B321543-BS1)					Prepared &	Analyzed: 10/2	29/22				
Chloride	10	1.0	0.56	mg/L	10.0		104	90-110			
Sulfate	10	1.0	0.55	mg/L	10.0		103	90-110			
LCS Dup (B321543-BSD1)					Prepared &	Analyzed: 10/2	29/22				
Chloride	10	1.0	0.56	mg/L	10.0		105	90-110	0.209	20	
Sulfate	10	1.0	0.55	mg/L	10.0		103	90-110	0.445	20	
Matrix Spike (B321543-MS1)	Sou	rce: 22J3	631-03		Prepared &	Analyzed: 10/2	29/22				
Chloride	520	10	5.6	mg/L	100	480	42.9 *	80-120	Parent samp	le concentrat	E, MS-07 ion is'4x greater than sp
Sulfate	150	10	5.5	mg/L	100	55	98.2	80-120			
Matrix Spike Dup (B321543-MSD1)	Sou	rce: 22J3	631-03		Prepared &	Analyzed: 10/2	29/22		concentration	n, no quais	
Chloride	520	10	5.6	mg/L	100	480	41.8 *	80-120	0.206	20	E, MS-07
Sulfate	150	10	5.5	mg/L	100	55	98.0	80-120	0.109	20	

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

	R	eporting			Spike	Source		%REC		RPD		
Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch B321309 - SW-846 5030B

Matrix Spike Dup (B321309-MSD1)	Sour	ce: 22J3	631-03		Prepared & Ar	alyzed: 10/2	27/22					
Tetrachloroethylene	174	1.0	0.19	μg/L	10.0	168	61.9	*	70-130	1.09	30	MS-19
Tetrahydrofuran	10.1	10	0.49	$\mu g/L$	10.0	ND	101		70-130	11.4	30	parent sample concentration is greater than 4x the spike
Toluene	10.7	1.0	0.22	$\mu g/L$	10.0	ND	107		70-130	1.02	30	concentration, no quals
1,2,3-Trichlorobenzene	8.74	5.0	0.30	$\mu g/L$	10.0	ND	87.4		70-130	1.96	30	
1,2,4-Trichlorobenzene	8.93	1.0	0.25	$\mu g/L$	10.0	ND	89.3		70-130	1.81	30	
1,3,5-Trichlorobenzene	8.95	1.0	0.21	$\mu g/L$	10.0	ND	89.5		70-130	1.22	30	
1,1,1-Trichloroethane	10.7	1.0	0.17	$\mu g/L$	10.0	ND	107		70-130	0.742	30	
1,1,2-Trichloroethane	10.1	1.0	0.18	$\mu g/L$	10.0	ND	101		70-130	2.09	30	
Trichloroethylene	40.6	1.0	0.19	$\mu g/L$	10.0	30.6	100		70-130	1.66	30	
Trichlorofluoromethane (Freon 11)	11.7	2.0	0.18	$\mu g/L$	10.0	ND	117		70-130	1.12	30	
1,2,3-Trichloropropane	9.98	2.0	0.28	$\mu g/L$	10.0	ND	99.8		70-130	2.57	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	11.5	1.0	0.23	$\mu g/L$	10.0	ND	115		70-130	2.91	30	
113) 1,2,4-Trimethylbenzene	9.25	1.0	0.20	μg/L	10.0	ND	92.5		70-130	2.35	30	
1,3,5-Trimethylbenzene	10.3	1.0	0.11	μg/L	10.0	ND	103		70-130	0.675	30	
Vinyl Chloride	13.1	2.0	0.21	$\mu g/L$	10.0	1.35	117		70-130	1.85	30	
m+p Xylene	21.2	2.0	0.46	$\mu g/L$	20.0	ND	106		70-130	0.940	20	
o-Xylene	10.4	1.0	0.23	$\mu g/L$	10.0	ND	104		70-130	0.289	30	
Surrogate: 1,2-Dichloroethane-d4	24.0			μg/L	25.0		96.2		70-130			
Surrogate: Toluene-d8	25.0			$\mu g/L$	25.0		100		70-130			
Surrogate: 4-Bromofluorobenzene	25.3			$\mu \text{g/L}$	25.0		101		70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	DL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B321309 - SW-846 5030B											
Matrix Spike (B321309-MS1)	S	ource: 22J3	631-03		Prepared &	Analyzed: 10/2	27/22				
4-Dioxane	78.4	50	21	μg/L	100	ND	78.4	70-130			
thylbenzene	10.7	1.0	0.21	$\mu g/L$	10.0	ND	107	70-130			
exachlorobutadiene	9.31	0.60	0.46	$\mu g/L$	10.0	ND	93.1	70-130			
Hexanone (MBK)	103	10	1.1	$\mu g/L$	100	ND	103	70-130			
opropylbenzene (Cumene)	10.4	1.0	0.11	$\mu g/L$	10.0	ND	104	70-130			
Isopropyltoluene (p-Cymene)	9.88	1.0	0.097	$\mu g/L$	10.0	ND	98.8	70-130			
ethyl Acetate	9.22	1.0	0.45	$\mu g/L$	10.0	ND	92.2	70-130			
ethyl tert-Butyl Ether (MTBE)	9.28	1.0	0.17	$\mu g/L$	10.0	ND	92.8	70-130			
ethyl Cyclohexane	10.0	1.0	0.24	$\mu g/L$	10.0	ND	100	70-130			
ethylene Chloride	11.1	5.0	0.23	$\mu g/L$	10.0	ND	111	70-130			
Methyl-2-pentanone (MIBK)	105	10	1.3	$\mu g/L$	100	ND	105	70-130			
aphthalene	8.10	2.0	0.24	$\mu g/L$	10.0	ND	81.0	70-130			
Propylbenzene	10.5	1.0	0.086	$\mu g/L$	10.0	ND	105	70-130			
yrene	10.3	1.0	0.11	$\mu g/L$	10.0	ND	103	70-130			
1,1,2-Tetrachloroethane	10.1	1.0	0.18	$\mu g/L$	10.0	ND	101	70-130			
1,2,2-Tetrachloroethane	9.40	0.50	0.13	$\mu g/L$	10.0	ND	94.0	70-130			concentration is grea
etrachloroethylene	172	1.0	0.19	μg/L	10.0	168	43.1	* 70-130	than 4x	spike co	onc, no guals
trahydrofuran	9.00	10	0.49	$\mu g/L$	10.0	ND	90.0	70-130			J
luene	10.8	1.0	0.22	$\mu g/L$	10.0	ND	108	70-130			
2,3-Trichlorobenzene	8.57	5.0	0.30	$\mu g/L$	10.0	ND	85.7	70-130			
2,4-Trichlorobenzene	8.77	1.0	0.25	μg/L	10.0	ND	87.7	70-130			
3,5-Trichlorobenzene	9.06	1.0	0.21	μg/L	10.0	ND	90.6	70-130			
1,1-Trichloroethane	10.8	1.0	0.17	μg/L	10.0	ND	108	70-130			
1,2-Trichloroethane	9.93	1.0	0.18	μg/L	10.0	ND	99.3	70-130			
ichloroethylene	40.0	1.0	0.19	μg/L	10.0	30.6	93.6	70-130			
ichlorofluoromethane (Freon 11)	11.6	2.0	0.18	μg/L	10.0	ND	116	70-130			
2,3-Trichloropropane	10.2	2.0	0.28	μg/L	10.0	ND	102	70-130			
1,2-Trichloro-1,2,2-trifluoroethane (Freon 3)	11.2	1.0	0.23	$\mu g/L$	10.0	ND	112	70-130			
2,4-Trimethylbenzene	9.47	1.0	0.20	$\mu g/L$	10.0	ND	94.7	70-130			
3,5-Trimethylbenzene	10.4	1.0	0.11	$\mu g/L$	10.0	ND	104	70-130			
nyl Chloride	12.8	2.0	0.21	$\mu g/L$	10.0	1.35	115	70-130			
+p Xylene	21.4	2.0	0.46	$\mu g/L$	20.0	ND	107	70-130			
Xylene	10.4	1.0	0.23	$\mu g/L$	10.0	ND	104	70-130			
ırrogate: 1,2-Dichloroethane-d4	24.2			μg/L	25.0		96.6	70-130			
rrogate: Toluene-d8	25.2			$\mu g/L$	25.0		101	70-130			
urrogate: 4-Bromofluorobenzene	25.1			$\mu \text{g}/L$	25.0		100	70-130			
atrix Spike Dup (B321309-MSD1)	S	ource: 22J3			Prepared &	Analyzed: 10/2	27/22				
cetone	107	50	2.0	μg/L	100	ND	107	70-130	0.755	30	
erylonitrile	10.3	5.0	0.55	$\mu g/L$	10.0	ND	103	70-130	7.22	30	
t-Amyl Methyl Ether (TAME)	9.19	0.50	0.14	$\mu g/L$	10.0	ND	91.9	70-130	1.65	30	
enzene	10.4	1.0	0.20	$\mu g/L$	10.0	ND	104	70-130	0.962	30	
omobenzene	9.80	1.0	0.15	$\mu g/L$	10.0	ND	98.0	70-130	0.102	30	
omochloromethane	11.2	1.0	0.31	$\mu g/L$	10.0	ND	112	70-130	2.72	30	
omodichloromethane	9.52	0.50	0.18	$\mu g/L$	10.0	ND	95.2	70-130	3.10	30	
omoform	8.69	1.0	0.38	$\mu g/L$	10.0	ND	86.9	70-130	2.09	30	UJ, MSL
romomethane	6.79	2.0	1.5	$\mu g/L$	10.0	ND	67.9	* 70-130	28.8	30	MS-07A
Butanone (MEK)	109	20	1.6	$\mu g/L$	100	ND	109	70-130	3.37	30	
art Dutyl Alachal (TDA)		20	4 7	/1	100						

91.2

20 4.7 $\mu \text{g}/L$

100

tert-Butyl Alcohol (TBA)

70-130

0.274

30

ND 91.2

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

	I	Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

CS Dup (B321309-BSD1)					Prepared & Ar	nalyzed: 10/2	7/22			
urrogate: 1,2-Dichloroethane-d4	24.8			μg/L	25.0		99.4	70	-130	
urrogate: Toluene-d8	25.2			$\mu g \! / \! L$	25.0		101	70	-130	
urrogate: 4-Bromofluorobenzene	24.8			$\mu g \! / \! L$	25.0		99.0	70	-130	
latrix Spike (B321309-MS1)	Sou	rce: 22J3	631-03		Prepared & Ar	nalyzed: 10/2	7/22			
cetone	108	50	2.0	μg/L	100	ND	108	70	-130	
crylonitrile	9.61	5.0	0.55	$\mu g/L$	10.0	ND	96.1	70	-130	
rt-Amyl Methyl Ether (TAME)	9.04	0.50	0.14	$\mu g/L$	10.0	ND	90.4	70	-130	
enzene	10.4	1.0	0.20	$\mu \text{g}/L$	10.0	ND	104	70	-130	
romobenzene	9.79	1.0	0.15	$\mu g/L$	10.0	ND	97.9	70	-130	
romochloromethane	11.5	1.0	0.31	$\mu g/L$	10.0	ND	115	70	-130	
romodichloromethane	9.82	0.50	0.18	$\mu g/L$	10.0	ND	98.2	70	-130	
romoform	8.51	1.0	0.38	$\mu g/L$	10.0	ND	85.1	70	-130	
romomethane	5.08	2.0	1.5	μg/L	10.0	ND	50.8	* 70	-130 UJ, MSL	MS-07A
Butanone (MEK)	106	20	1.6	$\mu g/L$	100	ND	106	70	-130	
rt-Butyl Alcohol (TBA)	91.0	20	4.7	$\mu g/L$	100	ND	91.0	70	-130	
Butylbenzene	9.62	1.0	0.15	$\mu g/L$	10.0	ND	96.2	70	-130	
c-Butylbenzene	9.72	1.0	0.11	$\mu g/L$	10.0	ND	97.2	70	-130	
rt-Butylbenzene	9.92	1.0	0.13	$\mu g/L$	10.0	ND	99.2	70	-130	
rt-Butyl Ethyl Ether (TBEE)	10.1	0.50	0.15	$\mu g/L$	10.0	ND	101	70	-130	
arbon Disulfide	111	5.0	1.4	$\mu g/L$	100	ND	111	70	-130	
arbon Tetrachloride	10.6	5.0	0.16	$\mu g/L$	10.0	ND	106	70	-130	
hlorobenzene	11.0	1.0	0.11	$\mu \text{g}/L$	10.0	ND	110	70	-130	
hlorodibromomethane	9.87	0.50	0.22	$\mu g/L$	10.0	ND	98.7	70	-130	
hloroethane	11.8	2.0	0.32	$\mu g/L$	10.0	ND	118	70	-130	V-20
hloroform	9.95	2.0	0.17	$\mu g/L$	10.0	ND	99.5	70	-130	
hloromethane	9.18	2.0	0.52	$\mu g/L$	10.0	ND	91.8	70	-130	
Chlorotoluene	10.2	1.0	0.11	$\mu g/L$	10.0	ND	102	70	-130	
Chlorotoluene	10.4	1.0	0.12	$\mu g/L$	10.0	ND	104	70	-130	
2-Dibromo-3-chloropropane (DBCP)	7.51	5.0	0.80	$\mu g/L$	10.0	ND	75.1	70	-130	V-05
2-Dibromoethane (EDB)	10.1	0.50	0.17	$\mu g/L$	10.0	ND	101	70	-130	
ibromomethane	10.8	1.0	0.35	μg/L	10.0	ND	108	70	-130	
2-Dichlorobenzene	9.73	1.0	0.12	$\mu g/L$	10.0	ND	97.3	70	-130	
3-Dichlorobenzene	9.52	1.0	0.12	μg/L	10.0	ND	95.2	70	-130	
4-Dichlorobenzene	9.85	1.0	0.13	μg/L	10.0	ND	98.5	70	-130	
ans-1,4-Dichloro-2-butene	7.06	2.0	1.6	μg/L	10.0	ND	70.6		-130	
ichlorodifluoromethane (Freon 12)	11.3	2.0	0.19	μg/L	10.0	ND	113		-130	V-20
1-Dichloroethane	10.8	1.0	0.14	μg/L	10.0	ND	108		-130	
2-Dichloroethane	10.7	1.0	0.31	μg/L	10.0	ND	107		-130	
1-Dichloroethylene	11.5	1.0	0.14	μg/L	10.0	ND	115		-130	
s-1,2-Dichloroethylene	39.5	1.0	0.15	μg/L	10.0	31.0	85.4		-130	
ans-1,2-Dichloroethylene	11.6	1.0	0.17	μg/L	10.0	0.450	112		-130	
2-Dichloropropane	10.4	1.0	0.18	μg/L	10.0	ND	104		-130	
3-Dichloropropane	10.2	0.50	0.13	μg/L	10.0	ND	102		-130	
2-Dichloropropane	8.23	1.0	0.33	μg/L	10.0	ND	82.3		-130	
1-Dichloropropene	10.7	2.0	0.15	μg/L	10.0	ND	107		-130	
s-1,3-Dichloropropene	9.00	0.50	0.16	μg/L	10.0	ND	90.0		-130	
ans-1,3-Dichloropropene	8.82	0.50	0.17	μg/L	10.0	ND	88.2	70	-130	
iethyl Ether		2.0	0.18	μg/L	10.0		105		-130	

Sample Description:

Work Order: 22J3631

Project Location: Brighton, NY
Date Received: 10/26/2022
Field Sample #: 828120FB

Sampled: 10/25/2022 16:00

Sample ID: 22J3631-06 Sample Matrix: Ground Water

V	olatile	Organic	Compounds	by	GC/MS
---	---------	---------	-----------	----	-------

			Volati	le Organic Compoun	us by GC	71415			D / //D!	
Analyte	Results	RL	DL	Units	DF	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	2.0	μg/L	1	r rag/Quar	SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Acrylonitrile	ND	5.0	0.55	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	0.14	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Benzene	ND	1.0	0.20	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Bromobenzene	ND	1.0	0.15	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Bromochloromethane	ND	1.0	0.31	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Bromodichloromethane	ND	0.50	0.18	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Bromoform	ND	1.0	0.38	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Bromomethane	ND	2.0	1.5	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
2-Butanone (MEK)	ND	20	1.6	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
tert-Butyl Alcohol (TBA)	ND	20	4.7	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
n-Butylbenzene	ND	1.0	0.15	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
sec-Butylbenzene	ND	1.0	0.11	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
tert-Butylbenzene	ND	1.0	0.13	μg/L μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	0.15	μg/L μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Carbon Disulfide	ND	5.0	1.4		1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Carbon Tetrachloride	ND	5.0	0.16	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
				μg/L						
Chlorobenzene	ND	1.0	0.11	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Chlorodibromomethane	ND	0.50	0.22	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Chloroethane	ND	2.0	0.32	μg/L	1	J, BL2	SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Chloroform	18	2.0	0.17	μg/L		J, DL2	SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Chloromethane	ND	2.0	0.52	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
2-Chlorotoluene	ND	1.0	0.11	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
4-Chlorotoluene	ND	1.0	0.12	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	0.80	μg/L	1	V-05	SW-846 8260D	10/27/22	10/27/22 13:16	MFF
1,2-Dibromoethane (EDB)	ND	0.50	0.17	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Dibromomethane	ND	1.0	0.35	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
1,2-Dichlorobenzene	ND	1.0	0.12	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
1,3-Dichlorobenzene	ND	1.0	0.12	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
1,4-Dichlorobenzene	ND	1.0	0.13	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
trans-1,4-Dichloro-2-butene	ND	2.0	1.6	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	0.19	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
1,1-Dichloroethane	ND	1.0	0.14	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
1,2-Dichloroethane	ND	1.0	0.31	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
1,1-Dichloroethylene	ND	1.0	0.14	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
cis-1,2-Dichloroethylene	ND	1.0	0.15	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
trans-1,2-Dichloroethylene	ND	1.0	0.17	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
1,2-Dichloropropane	ND	1.0	0.18	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
1,3-Dichloropropane	ND	0.50	0.13	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
2,2-Dichloropropane	ND	1.0	0.33	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
1,1-Dichloropropene	ND	2.0	0.15	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
cis-1,3-Dichloropropene	ND	0.50	0.16	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
trans-1,3-Dichloropropene	ND	0.50	0.17	$\mu g/L$	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF
Diethyl Ether	ND	2.0	0.18	μg/L	1		SW-846 8260D	10/27/22	10/27/22 13:16	MFF

Page 22 of 46

EPA 300.0

Qualifications:

MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated. Analyte & Samples(s) Qualified:

Chloride

22J3896-04[828120MW210012], B321546-MS1, B321546-MSD1

MS-09

Matrix spike recovery and/or matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated.

Analyte & Samples(s) Qualified:

Nitrate as N

B321392-MS1, B321392-MSD1

SM21-23 2320B

Qualifications:

MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated. Analyte & Samples(s) Qualified:

Alkalinity

22J3896-04[828120MW210012], B322302-MS2

PR-18

Headspace present in sample container.

Analyte & Samples(s) Qualified:

Alkalinity

22J3896-03[828120MW111I020], 22J3896-04[828120MW210012], B322302-MS2, B322302-MSD2

SW-846 8260D

Qualifications:

L-06

Laboratory fortified blank/laboratory control sample recovery and/or duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the high side. Analyte & Samples(s) Qualified:

Vinvl Chloride

22J3896-04[828120MW210012], 22J3896-05[828120DUP2], B321428-BS1, B321428-BSD1, B321428-MS1, B321428-MSD1

MS-12

Matrix spike recovery and matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a high bias for reported result or non-homogeneous sample aliquots cannot be eliminated.

Analyte & Samples(s) Qualified:

Vinyl Chloride

22J3896-04[828120MW210012], B321428-MS1, B321428-MSD1

MS-15

Matrix spike and matrix spike duplicate recoveries are outside of control limits. Data validation is not affected since results for this compound in this sample are "not detected", and recovery bias is on the high side.

Analyte & Samples(s) Qualified:

Naphthalene

B321428-MS1, B321428-MSD1

MS-23

Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for any reported result for this compound. Analyte & Samples(s) Qualified:

1,1-Dichloroethylene

B321428-MS1

Bromomethane

B321428-MSD1

Carbon Disulfide

B321428-MSD1

Chloromethane

B321428-MS1

Dichlorodifluoromethane (Freon 12

B321428-MS1

trans-1,2-Dichloroethylene

B321428-MSD1

MS-24

Either matrix spike or matrix spike duplicate is outside of control limits, but the other is within limits. Analysis is in control based on laboratory fortified blank recovery. Analyte & Samples(s) Qualified:

1,2,3-Trichlorobenzene

B321428-MS1

2,2-Dichloropropane

B321428-MS1

cis-1,2-Dichloroethylene

B321428-MS1

Tetrachloroethylene

B321428-MS1

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

	Re	porting			Spike	Source		%REC		RPD		
Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch B321428 - SW-846 5030B

Matrix Spike Dup (B321428-MSD1)	Sou	rce: 22J3	896-04		Prepared & An	alyzed: 10/2	28/22						
Carbon Disulfide	137	5.0	1.4	$\mu \text{g/L}$	100	ND	137	*	70-130	39.1	* is. san	30 nple N	MS-23, R-06, D, no qualty-20
Carbon Tetrachloride	10.5	5.0	0.16	μg/L	10.0	ND	105		70-130	29.5	-,	30	-, 4 20
Chlorobenzene	10.7	1.0	0.11	μg/L	10.0	ND	107		70-130	14.9		30	
Chlorodibromomethane	9.88	0.50	0.22	μg/L	10.0	ND	98.8		70-130	3.19		30	
Chloroethane	11.3	2.0	0.32	μg/L	10.0	ND	113		70-130	26.9		30	
Chloroform	9.98	2.0	0.17	μg/L	10.0	ND	99.8		70-130	17.4		30	
Chloromethane	9.47	2.0	0.52	μg/L	10.0	ND	94.7		70-130	45.2	*	30	sample ND, no quals
2-Chlorotoluene	10.3	1.0	0.11	μg/L	10.0	ND	103		70-130	25.9		30	sample ND, no quals
4-Chlorotoluene	10.6	1.0	0.12	μg/L	10.0	ND	106		70-130	18.4		30	
1,2-Dibromo-3-chloropropane (DBCP)	8.62	5.0	0.80	μg/L	10.0	ND	86.2		70-130	9.71		30	
1,2-Dibromoethane (EDB)	10.3	0.50	0.17	μg/L	10.0	ND	103		70-130	1.36		30	
Dibromomethane	10.2	1.0	0.35	μg/L	10.0	ND	102		70-130	2.05		30	
1,2-Dichlorobenzene	10.3	1.0	0.12	μg/L	10.0	ND	103		70-130	10.8		30	
1,3-Dichlorobenzene	10.5	1.0	0.12	μg/L	10.0	ND	105		70-130	18.5		30	
1,4-Dichlorobenzene	10.2	1.0	0.13	μg/L	10.0	ND	102		70-130	22.1		30	
trans-1,4-Dichloro-2-butene	8.77	2.0	1.6	μg/L	10.0	ND	87.7		70-130	20.7		30	
Dichlorodifluoromethane (Freon 12)	8.21	2.0	0.19	μg/L	10.0	ND	82.1		70-130	36.8	*	30	R-06
1,1-Dichloroethane	9.70	1.0	0.14	μg/L	10.0	ND	97.0		70-130	24.5		30	sample ND, no quals
1,2-Dichloroethane	9.67	1.0	0.31	μg/L	10.0	ND	96.7		70-130	3.36		30	
1,1-Dichloroethylene	9.63	1.0	0.14	μg/L	10.0	ND	96.3		70-130	33.3	*	30	sample ND, no quals
cis-1,2-Dichloroethylene	24.7	1.0	0.15	μg/L	10.0	15.6	91.2		70-130	9.82		30	sample ND, no quals
trans-1,2-Dichloroethylene	13.1	1.0	0.17	μg/L	10.0	ND	131	*	70-130	58.3	*	30	MS-23 R-06
1,2-Dichloropropane	10.3	1.0	0.18	μg/L	10.0	ND	103		70-130	15.3		30	MS-23, R-06 sample ND, no quals
1,3-Dichloropropane	10.4	0.50	0.13	μg/L	10.0	ND	104		70-130	1.94		30	
2,2-Dichloropropane	8.15	1.0	0.33	μg/L	10.0	ND	81.5		70-130	25.1		30	
1,1-Dichloropropene	10.5	2.0	0.15	μg/L	10.0	ND	105		70-130	29.0		30	
cis-1,3-Dichloropropene	9.32	0.50	0.16	μg/L	10.0	ND	93.2		70-130	9.56		30	
trans-1,3-Dichloropropene	9.07	0.50	0.17	μg/L	10.0	ND	90.7		70-130	0.553		30	
Diethyl Ether	9.73	2.0	0.18	μg/L	10.0	ND	97.3		70-130	5.38		30	
Diisopropyl Ether (DIPE)	9.96	0.50	0.13	μg/L	10.0	ND	99.6		70-130	8.81		30	
1,4-Dioxane	96.2	50	21	μg/L	100	ND	96.2		70-130	26.8		30	
Ethylbenzene	11.4	1.0	0.21	μg/L	10.0	ND	114		70-130	26.4		30	
Hexachlorobutadiene	9.98	0.60	0.46	μg/L	10.0	ND	99.8		70-130	22.6		30	
2-Hexanone (MBK)	98.9	10	1.1	μg/L	100	ND	98.9		70-130	18.6		30	
Isopropylbenzene (Cumene)	11.2	1.0	0.11	μg/L	10.0	ND	112		70-130	32.2	*	30	sample ND, no qual R-06
p-Isopropyltoluene (p-Cymene)	10.6	1.0	0.097	μg/L	10.0	ND	106		70-130	31.3	*	30	sample NO 000 quals
Methyl Acetate	12.2	1.0	0.45	μg/L	10.0	ND	122		70-130	3.39		30	Sample 148,940 quais
Methyl tert-Butyl Ether (MTBE)	10.2	1.0	0.17	μg/L	10.0	ND	102		70-130	3.45		30	V-06
Methyl Cyclohexane	11.4	1.0	0.24	μg/L	10.0	ND	114		70-130	38.3	*	30	
Methylene Chloride	9.63	5.0	0.23	μg/L	10.0	ND	96.3		70-130	19.4		30	sample ND, no quals
4-Methyl-2-pentanone (MIBK)	97.2	10	1.3	μg/L	100	ND	97.2		70-130	17.1		20	
Naphthalene	14.4	2.0	0.24	μg/L	10.0	ND	144	*	70-130	50.6	*	30	sample ND, no quals MS-15, R-06
n-Propylbenzene	10.8	1.0	0.086	μg/L	10.0	ND	108		70-130	32.0		30	sample ND, no qua
Styrene	10.8	1.0	0.11	μg/L	10.0	ND	111		70-130	19.1		30	sample ND, no qual
1,1,2-Tetrachloroethane	10.9	1.0	0.18	μg/L	10.0	ND	109		70-130	11.9		30	
1,1,2,2-Tetrachloroethane	10.9	0.50	0.13	μg/L	10.0	ND	106		70-130	4.42		30	
Tetrachloroethylene	59.5	1.0	0.19	μg/L	10.0	50.4	91.4		70-130	12.2		30	
Tetrahydrofuran	9.12	10	0.49	μg/L	10.0	ND	91.4		70-130	9.40		30	J
	9.12	10	0.17	r5 -	10.0	ND	11.4		10-150	2.40		50	J

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike (B321428-MS1)	Sou	rce: 22J3	896-04		Prepared &	Analyzed: 10/2	8/22						
p-Isopropyltoluene (p-Cymene)	7.77	1.0	0.097	μg/L	10.0	ND	77.7		70-130				R-06
Methyl Acetate	12.6	1.0	0.45	μg/L	10.0	ND	126		70-130				
Methyl tert-Butyl Ether (MTBE)	10.6	1.0	0.17	μg/L	10.0	ND	106		70-130				V-06
Methyl Cyclohexane	7.76	1.0	0.24	μg/L	10.0	ND	77.6		70-130				R-06
Methylene Chloride	7.93	5.0	0.23	μg/L	10.0	ND	79.3		70-130				
4-Methyl-2-pentanone (MIBK)	115	10	1.3	μg/L	100	ND	115		70-130				
Naphthalene	24.1	2.0	0.24	μg/L	10.0	ND	241	*	70-130	sample ND	no qu	uals	MS-15, R-06
n-Propylbenzene	7.82	1.0	0.086	μg/L	10.0	ND	78.2		70-130				R-06
Styrene	9.14	1.0	0.11	μg/L	10.0	ND	91.4		70-130				
,1,1,2-Tetrachloroethane	9.69	1.0	0.18	$\mu g/L$	10.0	ND	96.9		70-130				
,1,2,2-Tetrachloroethane	11.1	0.50	0.13	$\mu g/L$	10.0	ND	111		70-130				
<u>Cetrachloroethylene</u>	52.7	1.0	0.19	$\mu g/L$	10.0	50.4	23.1	*	70-130	parent samp concentration	ole cor on no	ncent	ration is greater than 4x s MS-24
Tetrahydrofuran	10.0	10	0.49	$\mu g/L$	10.0	ND	100		70-130	concentration	,, no	quuic	•
Coluene	8.01	1.0	0.22	$\mu g/L$	10.0	ND	80.1		70-130				
,2,3-Trichlorobenzene	6.85	5.0	0.30	$\mu g/L$	10.0	ND	68.5	*	70-130	UJ, MSL			MS-24
,2,4-Trichlorobenzene	7.15	1.0	0.25	$\mu g/L$	10.0	ND	71.5		70-130				
,3,5-Trichlorobenzene	7.81	1.0	0.21	$\mu g/L$	10.0	ND	78.1		70-130				
,1,1-Trichloroethane	8.00	1.0	0.17	$\mu g/L$	10.0	ND	80.0		70-130				
,1,2-Trichloroethane	10.9	1.0	0.18	$\mu g/L$	10.0	ND	109		70-130				
richloroethylene	17.5	1.0	0.19	$\mu g/L$	10.0	9.80	77.1		70-130				
Crichlorofluoromethane (Freon 11)	7.42	2.0	0.18	$\mu g/L$	10.0	ND	74.2		70-130				R-06
,2,3-Trichloropropane	11.3	2.0	0.28	$\mu g/L$	10.0	ND	113		70-130				
,1,2-Trichloro-1,2,2-trifluoroethane (Freon 13)	8.62	1.0	0.23	$\mu g/L$	10.0	ND	86.2		70-130				R-06
,2,4-Trimethylbenzene	8.16	1.0	0.20	$\mu g/L$	10.0	ND	81.6		70-130				
,3,5-Trimethylbenzene	8.34	1.0	0.11	$\mu g/L$	10.0	ND	83.4		70-130				
/inyl Chloride	20.1	2.0	0.21	$\mu g/L$	10.0	3.79	163	*	70-130	J+, MSH			L-06, MS-12, R-06, V-06
n+p Xylene	17.1	2.0	0.46	μg/L	20.0	ND	85.6		70-130				R-06
o-Xylene	8.91	1.0	0.23	μg/L	10.0	ND	89.1		70-130				
Surrogate: 1,2-Dichloroethane-d4	24.5			$\mu g \! / \! L$	25.0		97.9		70-130				
Surrogate: Toluene-d8	24.4			$\mu g\!/\!L$	25.0		97.4		70-130				
Surrogate: 4-Bromofluorobenzene	25.4			$\mu g/L$	25.0		102		70-130				
Matrix Spike Dup (B321428-MSD1)	Sou	rce: 22J3	896-04		Prepared &	Analyzed: 10/2	28/22						
Acetone	88.5	50	2.0	μg/L	100	ND	88.5		70-130	18.9		30	
Acrylonitrile	8.43	5.0	0.55	μg/L	10.0	ND	84.3		70-130	7.31		30	V-05
ert-Amyl Methyl Ether (TAME)	9.57	0.50	0.14	μg/L	10.0	ND	95.7		70-130	0.729		30	
Benzene	9.32	1.0	0.20	μg/L	10.0	ND	93.2		70-130	21.2		30	
Bromobenzene	10.9	1.0	0.15	μg/L	10.0	ND	109		70-130	10.2		30	
Bromochloromethane	9.50	1.0	0.31	μg/L	10.0	ND	95.0		70-130	4.96		30	
Bromodichloromethane	9.80	0.50	0.18	μg/L	10.0	ND	98.0		70-130	9.40		30	
Bromoform	9.62	1.0	0.38	μg/L	10.0	ND	96.2		70-130	5.16			sample result ND, no qua
Bromomethane	14.0	2.0	1.5	μg/L	10.0	ND	140	*	70-130	32.3	*	30	MS-23, R-06, V-20
-Butanone (MEK)	91.7	20	1.6	$\mu g/L$	100	ND	91.7		70-130	20.6		30	
ert-Butyl Alcohol (TBA)	84.7	20	4.7	$\mu g/L$	100	ND	84.7		70-130	20.0		30	
-Butylbenzene	10.5	1.0	0.15	$\mu g/L$	10.0	ND	105		70-130	35.2	*	30	sample NR, no quals
ec-Butylbenzene	10.4	1.0	0.11	$\mu g/L$	10.0	ND	104		70-130	31.5	*	30	sample ND, no quals
ert-Butylbenzene	10.9	1.0	0.13	$\mu g/L$	10.0	ND	109		70-130	29.1		30	•
ert-Butyl Ethyl Ether (TBEE)	10.2	0.50	0.15	$\mu g/L$	10.0	ND	102		70-130	4.21		30	

Page 37 of 57

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B321428 - SW-846 5030B Matrix Spike (B321428-MS1) Prepared & Analyzed: 10/28/22 Source: 22J3896-04 Acetone 50 2.0 μg/L 100 ND 107 70-130 107 Acrylonitrile 5.0 0.55 $\mu g/L$ V-05 9.07 10.0 ND 90.7 70-130 tert-Amyl Methyl Ether (TAME) 0.50 0.14 9.64 $\mu g/L$ 10.0 ND 96.4 70-130 Benzene 1.0 0.20 $\mu g/L$ 10.0 75.3 70-130 7.53 ND Bromobenzene 1.0 0.15 $\mu g/L$ 10.0 98.6 70-130 9.86 ND Bromochloromethane 1.0 0.31 μg/L 10.0 90.4 70-130 9.04 ND Bromodichloromethane 0.18 0.50 μg/L 10.0 ND 89.2 70-130 8.92 Bromoform 1.0 0.38 μg/L 10.0 ND 101 70-130 10.1 Bromomethane 2.0 1.5 10.0 μg/L 101 70-130 R-06, V-20 10.1 ND 2-Butanone (MEK) 20 1.6 μg/L 100 113 70-130 113 ND tert-Butyl Alcohol (TBA) 20 4.7 μg/L 100 103 70-130 ND 103 1.0 n-Butylbenzene 0.15 μg/L R-06 7.37 10.0 ND 73.7 70-130 $\mu g/L$ sec-Butylbenzene 1.0 0.11 10.0 R-06 7.54 ND 75.4 70-130 tert-Butylbenzene 1.0 0.13 10.0 μg/L 81.2 70-130 8.12 ND tert-Butyl Ethyl Ether (TBEE) 0.50 0.15 $\mu g/L$ 10.0 ND 97.7 70-130 9.77 Carbon Disulfide 5.0 1.4 μg/L 100 92.4 70-130 R-06, V-20 ND 92.4 Carbon Tetrachloride 5.0 0.16 μg/L 10.0 78.2 7.82 ND 70-130 Chlorobenzene 1.0 0.11 $\mu g/L$ 91.9 9.19 10.0 ND 70-130 $\mu g/L$ Chlorodibromomethane 0.50 0.22 10.0 95 7 70-130 9 57 ND Chloroethane 2.0 0.32 μg/L 10.0 ND 86.4 70-130 8.64 Chloroform 2.0 0.17 μg/L 10.0 83.8 70-130 ND 8 38 UJ, MSL Chloromethane 2.0 0.52 5.98 μg/L 10.0 ND 59.8 70-130 MS-23, R-06 2-Chlorotoluene 1.0 0.11 $\mu g/L$ 7.97 10.0 ND 79.7 70-130 4-Chlorotoluene 1.0 0.12 $\mu g/L$ 10.0 ND 88.2 70-130 8.82 1,2-Dibromo-3-chloropropane (DBCP) 5.0 0.80 μg/L 10.0 95.0 70-130 9.50 ND 1,2-Dibromoethane (EDB) 0.50 0.17 μg/L 10.0 104 70-130 10.4 ND Dibromomethane 1.0 0.35 10.4 μg/L 10.0 ND 104 70-130 1.0 1.2-Dichlorobenzene 9.26 0.12 μg/L 10.0 ND 92.6 70-130 1,3-Dichlorobenzene 1.0 0.12 μg/L 10.0 87.0 70-130 8.70 ND 1.0 0.13 1 4-Dichlorobenzene $\mu g/L$ 8.17 10.0 ND 81.7 70-130 trans-1,4-Dichloro-2-butene 2.0 1.6 μg/L 10.0 ND 108 70-130 10.8 UJ, MSL 2.0 0.19 $\mu g/L$ Dichlorodifluoromethane (Freon 12) 70-130 MS-23, R-06 10.0 5.66 ND 56.6 1,1-Dichloroethane 1.0 0.14 $\mu g/L$ 10.0 75.8 70-130 7.58 ND 1,2-Dichloroethane 1.0 0.31 μg/L 10.0 70-130 9.35 ND 93.5 UJ, MSL 1,1-Dichloroethylene 1.0 0.14 μg/L 10.0 ND 68.8 70-130 MS-23, R-06 6.88 J-, MSL cis-1,2-Dichloroethylene 22.4 1.0 0.15 μg/L 10.0 15.6 68.1 70-130 MS-24 trans-1,2-Dichloroethylene 1.0 0.17 $\mu g/L$ 10.0 71.8 70-130 R-06 7.18 ND 1,2-Dichloropropane 1.0 0.18 μg/L 10.0 88.2 70-130 8.82 ND 1,3-Dichloropropane 0.50 0.13 μg/L 10.0 ND 102 70-130 10.2 2,2-Dichloropropane 1.0 0.33 $\mu g/L$ UJ, MSL MS-24 6.33 10.0 ND 63.3 70-130 1,1-Dichloropropene 2.0 0.15 $\mu g/L$ 7.81 10.0 ND 78.1 70-130 cis-1,3-Dichloropropene 0.50 0.16 $\mu g/L$ 70-130 10.0 84.7 8.47 ND trans-1,3-Dichloropropene 0.50 0.17 $\mu g/L$ 10.0 90.2 70-130 9.02 ND Diethyl Ether 2.0 0.18 μg/L 10.0 92.2 70-130 9.22 ND Diisopropyl Ether (DIPE) 0.50 0.13 $\mu g/L$ 9.12 10.0 ND 91.2 70-130 1,4-Dioxane 126 50 21 μg/L 100 ND 126 70-130 $\mu g/L$ Ethylbenzene 1.0 0.21 10.0 ND 873 70-130 8.73 Hexachlorobutadiene 0.60 0.46 $\mu g/L$ 10.0 ND 79.5 70-130 7.95 2-Hexanone (MBK) 10 1.1 μg/L 100 119 70-130 119 ND Isopropylbenzene (Cumene) 1.0 0.11 R-06 $\mu g/L$ 8.11 10.0 ND 81.1 70-130

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	DL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B321428 - SW-846 5030B												_
LCS Dup (B321428-BSD1)					Prepared & A	Analyzed: 10	0/28/22					
1,1-Dichloroethane	11.0	1.0	0.14	μg/L	10.0		110	70-130	5.52	25		
1,2-Dichloroethane	9.42	1.0	0.31	$\mu g/L$	10.0		94.2	70-130	2.91	25		
1,1-Dichloroethylene	7.72	1.0	0.14	$\mu g/L$	10.0		77.2	70-130	1.04	25		
cis-1,2-Dichloroethylene	8.88	1.0	0.15	$\mu g/L$	10.0		88.8	70-130	6.27	25		
trans-1,2-Dichloroethylene	10.7	1.0	0.17	$\mu g/L$	10.0		107	70-130	5.06	25		
1,2-Dichloropropane	9.14	1.0	0.18	$\mu g/L$	10.0		91.4	70-130	0.659	25		
1,3-Dichloropropane	9.44	0.50	0.13	$\mu g/L$	10.0		94.4	70-130	3.34	25		
2,2-Dichloropropane	8.74	1.0	0.33	$\mu g/L$	10.0		87.4	40-130	1.96	25		†
1,1-Dichloropropene	8.84	2.0	0.15	$\mu g/L$	10.0		88.4	70-130	0.451	25		
cis-1,3-Dichloropropene	9.39	0.50	0.16	$\mu g/L$	10.0		93.9	70-130	7.17	25		
trans-1,3-Dichloropropene	9.08	0.50	0.17	$\mu g/L$	10.0		90.8	70-130	2.79	25		
Diethyl Ether	8.26	2.0	0.18	μg/L	10.0		82.6	70-130	0.121	25		
Diisopropyl Ether (DIPE)	9.15	0.50	0.13	μg/L	10.0		91.5	70-130	2.55	25		
1,4-Dioxane	83.1	50	21	μg/L	100		83.1	40-130	5.03	50		† ‡
Ethylbenzene	10.2	1.0	0.21	μg/L	10.0		102	70-130	2.68	25		
Hexachlorobutadiene	9.83	0.60	0.46	μg/L	10.0		98.3	70-130	5.92	25		
2-Hexanone (MBK)	96.7	10	1.1	μg/L	100		96.7	70-160	5.48	25		†
(Sopropylbenzene (Cumene)	10.0	1.0	0.11	μg/L	10.0		100	70-130	2.63	25		'
p-Isopropyltoluene (p-Cymene)	9.73	1.0	0.097	μg/L	10.0		97.3	70-130	1.12	25		
Methyl Acetate	12.4	1.0	0.45	μg/L	10.0		124	70-130	2.53	25		
Methyl tert-Butyl Ether (MTBE)	12.4	1.0	0.17	μg/L	10.0		125	70-130	3.75	25	V-06	
Methyl Cyclohexane		1.0	0.24	μg/L	10.0		102	70-130	2.89	25	V-00	
Methylene Chloride	10.2	5.0	0.23	μg/L μg/L	10.0		83.0	70-130	8.02	25		
4-Methyl-2-pentanone (MIBK)	8.30	10	1.3	μg/L μg/L	10.0		91.4	70-160	1.74	25		†
Naphthalene	91.4 9.49	2.0	0.24	μg/L	10.0		94.9	40-130	0.953	25		†
n-Propylbenzene	9.49	1.0	0.086	μg/L	10.0		98.2	70-130	1.13	25		1
Styrene	10.5	1.0	0.11	μg/L	10.0		105	70-130	2.13	25		
1,1,1,2-Tetrachloroethane	10.3	1.0	0.18	μg/L	10.0		103	70-130	2.04	25		
1,1,2,2-Tetrachloroethane	10.4	0.50	0.13	μg/L μg/L	10.0		100	70-130	5.31	25		
Tetrachloroethylene	9.75	1.0	0.19	μg/L μg/L	10.0		97.5	70-130	1.34	25		
Tetrahydrofuran		10	0.19	μg/L μg/L	10.0		93.3	70-130	9.19	25	J	
Toluene	9.33	1.0	0.22	μg/L μg/L			90.8			25	J	
1,2,3-Trichlorobenzene	9.08	5.0	0.22	μg/L μg/L	10.0		99.7	70-130	3.25	25		
1,2,4-Trichlorobenzene	9.97	1.0	0.25	μg/L μg/L	10.0 10.0		95.9	70-130 70-130	0.100 1.04	25		
1,3,5-Trichlorobenzene	9.59	1.0	0.23	μg/L μg/L								
1,1,1-Trichloroethane	9.96	1.0	0.21	μg/L μg/L	10.0		99.6	70-130	2.77	25		
	9.08				10.0		90.8	70-130	0.659	25		
1,1,2-Trichloroethane Trichloroethylene	9.89	1.0	0.18	μg/L	10.0		98.9	70-130	3.18	25		
*	9.94	1.0	0.19	μg/L	10.0		99.4	70-130	2.86	25		
Trichlorofluoromethane (Freon 11) 1,2,3-Trichloropropane	8.63	2.0	0.18 0.28	μg/L	10.0		86.3	70-130	0.931	25		
, , 1 1	9.94	2.0	0.28	μg/L	10.0		99.4	70-130	4.53	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.8	1.0	0.23	μg/L	10.0		108	70-130	0.465	25		
1,2,4-Trimethylbenzene	9.48	1.0	0.20	μg/L	10.0		94.8	70-130	2.50	25		
1,3,5-Trimethylbenzene	10.3	1.0	0.11	μg/L	10.0		103	70-130	1.37	25		
Vinyl Chloride	20.8	2.0	0.21	μg/L	10.0		208 *		1.24	25	L-06, V-06 J+, LCSH	†
n+p Xylene	20.3	2.0	0.46	μg/L	20.0		101	70-130	2.90	25	J+, LCSH	
o-Xylene	9.97	1.0	0.23	μg/L	10.0		99.7	70-130	0.503	25		
												_
Surrogate: 1,2-Dichloroethane-d4	24.1			μg/L	25.0		96.4	70-130				
Surrogate: Toluene-d8	24.2			μg/L	25.0		96.6	70-130				

 $\mu g/L$

25.0

26.0

Surrogate: 4-Bromofluorobenzene

104

70-130

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	DL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B321428 - SW-846 5030B					Drangrad &	Analyzed: 10	/28/22					_
LCS (B321428-BS1) 1,3,5-Trichlorobenzene	10.2	1.0	0.21	μg/L	10.0	Anaryzed. 10	102	70-130				—
1,1,1-Trichloroethane	9.14	1.0	0.17	μg/L	10.0		91.4	70-130				
1,1,2-Trichloroethane	9.58	1.0	0.18	μg/L	10.0		95.8	70-130				
Trichloroethylene	9.66	1.0	0.19	μg/L	10.0		96.6	70-130				
Trichlorofluoromethane (Freon 11)	8.55	2.0	0.18	μg/L	10.0		85.5	70-130				
1,2,3-Trichloropropane	9.50	2.0	0.28	μg/L	10.0		95.0	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.7	1.0	0.23	μg/L	10.0		107	70-130				
1,2,4-Trimethylbenzene	9.72	1.0	0.20	$\mu g/L$	10.0		97.2	70-130				
1,3,5-Trimethylbenzene	10.1	1.0	0.11	μg/L	10.0		101	70-130				
Vinyl Chloride	21.1	2.0	0.21	$\mu g/L$	10.0		211 *	40-160	J+, LCSH		L-06, V-06	
m+p Xylene	19.7	2.0	0.46	$\mu g/L$	20.0		98.6	70-130				
o-Xylene	9.92	1.0	0.23	μg/L	10.0		99.2	70-130				
Surrogate: 1,2-Dichloroethane-d4	23.6			μg/L	25.0		94.6	70-130				_
Surrogate: Toluene-d8	23.6			μg/L μg/L	25.0		94.4	70-130				
Surrogate: 4-Bromofluorobenzene	25.1			μg/L	25.0		100	70-130				
LCS Dup (B321428-BSD1)						Analyzed: 10	/28/22					
Acetone	85.2	50	2.0	μg/L	100		85.2	70-160	5.18	25		
Acrylonitrile	7.65	5.0	0.55	μg/L	10.0		76.5	70-130	2.65	25	V-05	
tert-Amyl Methyl Ether (TAME)	8.97	0.50	0.14	μg/L	10.0		89.7	70-130	1.80	25		
Benzene	8.25	1.0	0.20	μg/L	10.0		82.5	70-130	0.852	25		
Bromobenzene	10.6	1.0	0.15	μg/L	10.0		106	70-130	2.97	25		
Bromochloromethane	8.71	1.0	0.31	μg/L	10.0		87.1	70-130	3.27	25		
Bromodichloromethane	9.20	0.50	0.18	μg/L	10.0		92.0	70-130	0.866	25		
Bromoform	9.61	1.0	0.38	μg/L	10.0		96.1	70-130	4.36	25		
Bromomethane	12.8	2.0	1.5	μg/L	10.0		128	40-160	6.85	25	V-20	
2-Butanone (MEK)	90.5	20	1.6	μg/L	100		90.5	40-160	1.82	25		
tert-Butyl Alcohol (TBA)	84.0	20	4.7	μg/L	100		84.0	40-160	8.71	25		
n-Butylbenzene	9.64	1.0	0.15	$\mu g/L$	10.0		96.4	70-130	2.66	25		
sec-Butylbenzene	9.36	1.0	0.11	μg/L	10.0		93.6	70-130	4.90	25		
tert-Butylbenzene	9.83	1.0	0.13	$\mu g/L$	10.0		98.3	70-130	2.91	25		
tert-Butyl Ethyl Ether (TBEE)	9.52	0.50	0.15	$\mu g/L$	10.0		95.2	70-130	1.80	25		
Carbon Disulfide	117	5.0	1.4	$\mu g/L$	100		117	70-130	2.81	25	V-20	
Carbon Tetrachloride	9.16	5.0	0.16	$\mu g/L$	10.0		91.6	70-130	0.218	25		
Chlorobenzene	10.0	1.0	0.11	$\mu g/L$	10.0		100	70-130	1.81	25		
Chlorodibromomethane	9.72	0.50	0.22	$\mu g/L$	10.0		97.2	70-130	2.50	25		
Chloroethane	9.22	2.0	0.32	$\mu g/L$	10.0		92.2	70-130	1.75	25		
Chloroform	9.16	2.0	0.17	$\mu g/L$	10.0		91.6	70-130	2.32	25		
Chloromethane	10.1	2.0	0.52	$\mu g/L$	10.0		101	40-160	0.798	25		
2-Chlorotoluene	9.73	1.0	0.11	$\mu g/L$	10.0		97.3	70-130	5.06	25		
4-Chlorotoluene	9.83	1.0	0.12	$\mu g/L$	10.0		98.3	70-130	1.33	25		
1,2-Dibromo-3-chloropropane (DBCP)	9.62	5.0	0.80	$\mu g/L$	10.0		96.2	70-130	1.78	25		
1,2-Dibromoethane (EDB)	9.65	0.50	0.17	$\mu \text{g}/L$	10.0		96.5	70-130	2.94	25		
Dibromomethane	9.49	1.0	0.35	$\mu \text{g}/L$	10.0		94.9	70-130	1.88	25		
1,2-Dichlorobenzene	9.73	1.0	0.12	$\mu g/L$	10.0		97.3	70-130	3.04	25		
1,3-Dichlorobenzene	9.78	1.0	0.12	$\mu g/L$	10.0		97.8	70-130	2.62	25		
1,4-Dichlorobenzene	9.52	1.0	0.13	$\mu g/L$	10.0		95.2	70-130	0.527	25		
trans-1,4-Dichloro-2-butene	9.76	2.0	1.6	$\mu g/L$	10.0		97.6	70-130	1.76	25		
Dichlorodifluoromethane (Freon 12)	7.93	2.0	0.19	$\mu \text{g}/L$	10.0		79.3	40-160	0.887	25		1

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

		Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B321392 - EPA 300.0											
Blank (B321392-BLK1)					Prepared &	Analyzed: 10	/27/22				
Nitrate as N	ND	0.10	0.042	mg/L							
LCS (B321392-BS1)					Prepared &	Analyzed: 10	/27/22				
Nitrate as N	0.94	0.10	0.042	mg/L	1.00		93.5	90-110			
LCS Dup (B321392-BSD1)					Prepared &	Analyzed: 10	/27/22				
Nitrate as N	0.93	0.10	0.042	mg/L	1.00		93.0	90-110	0.525	20	
Matrix Spike (B321392-MS1)	Se	ource: 22J3	896-04		Prepared &	Analyzed: 10	/27/22				
Nitrate as N	0.90	0.10	0.042	mg/L	1.00	0.65	25.2 *	80-120	outside of	scope	MS-09
Matrix Spike Dup (B321392-MSD1)	Se	ource: 22J3	896-04		Prepared &	Analyzed: 10	/27/22				
Nitrate as N	0.97	0.10	0.042	mg/L	1.00	0.65	32.4 *	80-120	7.75	20	MS-09
Batch B321420 - SM21-23 4500S-F											
Blank (B321420-BLK1)					Prepared &	Analyzed: 10	/28/22				
Sulfide	ND	2.0	1.1	mg/L							
LCS (B321420-BS1)					Prepared &	Analyzed: 10	/28/22				
Sulfide	8.8	2.0	1.1	mg/L	10.0		88.0	81-117			
Batch B321546 - EPA 300.0											
Blank (B321546-BLK1)					Prepared &	Analyzed: 10	/29/22				
Chloride	ND	1.0	0.56	mg/L							
Sulfate	ND	1.0	0.55	mg/L							
LCS (B321546-BS1)					Prepared &	Analyzed: 10	/29/22				
Chloride	10	1.0	0.56	mg/L	10.0		104	90-110			
Sulfate	10	1.0	0.55	mg/L	10.0		102	90-110			
LCS Dup (B321546-BSD1)					Prepared &	Analyzed: 10	/30/22				
Chloride	10	1.0	0.56	mg/L	10.0		104	90-110	0.193	20	
Sulfate	10	1.0	0.55	mg/L	10.0		102	90-110	0.218	20	
Matrix Spike (B321546-MS1)	Se	ource: 22J3	896-04		Prepared &	Analyzed: 10	/30/22				
<u>Chloride</u>	290	10	5.6	mg/L	100	210	77.6 *	80-120	outside of s	cope	MS-07
Sulfate	150	10	5.5	mg/L	100	54	94.7	80-120			
Matrix Spike Dup (B321546-MSD1)	Se	ource: 22J3	896-04		Prepared &	Analyzed: 10	/30/22				
Chloride Chloride	290	10	5.6	mg/L	100	210			0.0188	20	MS-07
Sulfate	150	10	5.5	mg/L	100	54	95.2	80-120	0.302	20	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SM21-23 2320B

Qualifications:

PR-18

Headspace present in sample container.

Analyte & Samples(s) Qualified:

Alkalinity

22J4221-01[828120MW09008], 22J4221-02[828120EW01026]

SM21-23 4500S-F

Qualifications:

SM-01

Sample container does not satisfy method specifications.

Analyte & Samples(s) Qualified:

Sulfide

22J4221-01[828120MW09008], 22J4221-02[828120EW01026]

SW-846 8260D

Qualifications:

L-02

Laboratory fortified blank/laboratory control sample recovery and duplicate recoveries outside of control limits. Data validation is not affected since all results are "not detected" for associated samples in this batch and bias is on the high side.

Analyte & Samples(s) Qualified:

Carbon Disulfide

B321735-BS1, B321735-BSD1, S078754-CCV1

Methyl Acetate

B321735-BS1, B321735-BSD1, S078754-CCV1

Vinyl Chloride

B321735-BS1, B321735-BSD1, S078754-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

outside of scope

1,1,2-Trichloro-1,2,2-trifluoroethan

B321735-BS1, B321735-BSD1, S078754-CCV1

Bromomethane

B321735-BS1, B321735-BSD1, S078754-CCV1

Carbon Disulfide

B321735-BS1, B321735-BSD1, S078754-CCV1

Methyl Acetate

B321735-BS1, B321735-BSD1, S078754-CCV1

trans-1,2-Dichloroethylene

B321735-BS1, B321735-BSD1, S078754-CCV1

Vinyl Chloride

B321735-BS1, B321735-BSD1, S078754-CCV1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	DL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B321735 - SW-846 5030B											
LCS Dup (B321735-BSD1)					Prepared: 11	/01/22 Analy	zed: 11/02/2	2			
,1-Dichloroethane	8.95	1.0	0.14	μg/L	10.0		89.5	70-130	6.17	25	
,2-Dichloroethane	9.42	1.0	0.31	μg/L	10.0		94.2	70-130	4.46	25	
,1-Dichloroethylene	9.24	1.0	0.14	μg/L	10.0		92.4	70-130	6.59	25	
is-1,2-Dichloroethylene	9.14	1.0	0.15	μg/L	10.0		91.4	70-130	5.12	25	
ans-1,2-Dichloroethylene	12.9	1.0	0.17	μg/L	10.0		129	70-130	1.96	25	V-20
2-Dichloropropane	9.08	1.0	0.18	μg/L	10.0		90.8	70-130	5.05	25	
3-Dichloropropane	9.56	0.50	0.13	μg/L	10.0		95.6	70-130	0.937	25	
2-Dichloropropane	7.73	1.0	0.33	μg/L	10.0		77.3	40-130	4.67	25	†
1-Dichloropropene	9.46	2.0	0.15	$\mu g/L$	10.0		94.6	70-130	3.33	25	
s-1,3-Dichloropropene	8.79	0.50	0.16	μg/L	10.0		87.9	70-130	3.79	25	
ans-1,3-Dichloropropene	8.99	0.50	0.17	μg/L	10.0		89.9	70-130	1.23	25	
iethyl Ether	9.71	2.0	0.18	μg/L	10.0		97.1	70-130	7.53	25	
iisopropyl Ether (DIPE)	9.59	0.50	0.13	μg/L	10.0		95.9	70-130	2.57	25	
4-Dioxane	78.8	50	21	μg/L	100		78.8	40-130	5.32	50	†
thylbenzene	9.95	1.0	0.21	μg/L	10.0		99.5	70-130	0.701	25	
exachlorobutadiene	9.27	0.60	0.46	μg/L	10.0		92.7	70-130	4.41	25	
-Hexanone (MBK)	99.6	10	1.1	μg/L	100		99.6	70-160	4.83	25	†
opropylbenzene (Cumene)	9.65	1.0	0.11	μg/L	10.0		96.5	70-130	3.86	25	
Isopropyltoluene (p-Cymene)	9.14	1.0	0.097	μg/L	10.0		91.4	70-130	0.549	25	sample results ND, no o
lethyl Acetate	15.2	1.0	0.45	μg/L	10.0		152 *	70-130	12.0	25	L-02, V-20
lethyl tert-Butyl Ether (MTBE)	10.6	1.0	0.17	μg/L	10.0		106	70-130	5.90	25	2 02, 1 20
1ethyl Cyclohexane	9.94	1.0	0.24	μg/L	10.0		99.4	70-130	0.502	25	
lethylene Chloride	9.72	5.0	0.23	μg/L	10.0		97.2	70-130	1.23	25	
-Methyl-2-pentanone (MIBK)	94.6	10	1.3	μg/L	100		94.6	70-160	0.625	25	†
aphthalene	9.16	2.0	0.24	μg/L	10.0		91.6	40-130	3.43	25	;
-Propylbenzene	9.51	1.0	0.086	μg/L	10.0		95.1	70-130	1.15	25	1
tyrene	9.86	1.0	0.11	μg/L	10.0		98.6	70-130	0.506	25	
1,1,2-Tetrachloroethane	10.1	1.0	0.18	μg/L	10.0		101	70-130	0.798	25	
1,2,2-Tetrachloroethane	9.04	0.50	0.13	μg/L	10.0		90.4	70-130	1.65	25	
etrachloroethylene	9.64	1.0	0.19	μg/L	10.0		96.4	70-130	4.16	25	
etrahydrofuran		10	0.49	μg/L μg/L	10.0		98.2	70-130	4.37	25	J
bluene	9.82 9.34	1.0	0.42	μg/L μg/L	10.0		93.4	70-130	1.17	25	J
,2,3-Trichlorobenzene		5.0	0.30	μg/L μg/L	10.0		92.2	70-130	4.21	25	
2,4-Trichlorobenzene	9.22	1.0	0.25	μg/L μg/L	10.0		85.8	70-130	2.72	25	
3,5-Trichlorobenzene	8.58	1.0	0.23	μg/L μg/L	10.0		88.2	70-130	1.80	25	
1,1-Trichloroethane	8.82	1.0	0.17	μg/L μg/L			98.3				
1,2-Trichloroethane	9.83				10.0			70-130	4.38	25	
richloroethylene	9.86	1.0	0.18	μg/L	10.0		98.6	70-130	1.02	25	
richlorofluoromethane (Freon 11)	10.4	1.0		μg/L	10.0		104	70-130	3.11	25	
2,3-Trichloropropane	10.3	2.0 2.0	0.18 0.28	μg/L	10.0		103	70-130	5.74	25	
1,2-Trichloro-1,2,2-trifluoroethane (Freon	9.28	1.0	0.28	μg/L μg/I	10.0		92.8	70-130	1.50	25	V 20
1,2-1richloro-1,2,2-triffuoroethane (Freon	12.4	1.0	0.23	μg/L	10.0		124	70-130	1.44	25	V-20
,2,4-Trimethylbenzene	9.27	1.0	0.20	μg/L	10.0		92.7	70-130	2.84	25	
3,5-Trimethylbenzene	9.86	1.0	0.11	μg/L	10.0		98.6	70-130	1.31	25	
inyl Chloride	22.6	2.0	0.21	μg/L	10.0		226 *	40-160	6.39	25	sample 92 sults ND †
+p Xylene	19.8	2.0	0.46	μg/L	20.0		99.0	70-130	1.60	25	no quals
-Xylene	9.87	1.0	0.23	μg/L	10.0		98.7	70-130	1.51	25	•
urrogate: 1,2-Dichloroethane-d4	25.7			μg/L	25.0		103	70-130			
urrogate: Toluene-d8	24.5 25.7			μg/L μg/I	25.0 25.0		97.8	70-130 70-130			

25.7

Surrogate: 4-Bromofluorobenzene

103

70-130

25.0

 $\mu g/L$

Dichlorodifluoromethane (Freon 12)

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	DL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Anaryce	Result	Eiiiit	DL	Onts	Level	Result	70ICLC	Limits	III D	Emit	140103	
Batch B321735 - SW-846 5030B												
LCS (B321735-BS1)					Prepared: 11	/01/22 Anal	yzed: 11/02/2	22				
1,3,5-Trichlorobenzene	8.98	1.0	0.21	$\mu g/L$	10.0		89.8	70-130				
1,1,1-Trichloroethane	10.3	1.0	0.17	$\mu g/L$	10.0		103	70-130				
1,1,2-Trichloroethane	9.76	1.0	0.18	$\mu g/L$	10.0		97.6	70-130				
Trichloroethylene	10.8	1.0	0.19	$\mu \text{g}/L$	10.0		108	70-130				
Trichlorofluoromethane (Freon 11)	10.9	2.0	0.18	$\mu \text{g}/L$	10.0		109	70-130				
1,2,3-Trichloropropane	9.42	2.0	0.28	$\mu \text{g}/L$	10.0		94.2	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	12.6	1.0	0.23	μg/L	10.0		126	70-130			V-20	
1,2,4-Trimethylbenzene	9.01	1.0	0.20	μg/L	10.0		90.1	70-130				
1,3,5-Trimethylbenzene	9.99	1.0	0.11	μg/L	10.0		99.9	70-130		: ND, no quals		
Vinyl Chloride	24.1	2.0	0.21	μg/L	10.0		241 *	40-160	sample result	. IND, 110 quais	L-02, V-20	†
m+p Xylene	20.1	2.0	0.46	$\mu g/L$	20.0		101	70-130				
o-Xylene	10.0	1.0	0.23	$\mu g/L$	10.0		100	70-130				
Surrogate: 1,2-Dichloroethane-d4	24.8			μg/L	25.0		99.0	70-130				_
Surrogate: Toluene-d8	24.4			$\mu g/L$	25.0		97.7	70-130				
Surrogate: 4-Bromofluorobenzene	25.8			$\mu g/L$	25.0		103	70-130				
LCS Dup (B321735-BSD1)					Prepared: 11	/01/22 Anal	yzed: 11/02/2	22				
Acetone	100	50	2.0	μg/L	100		100	70-160	1.57	25		†
Acrylonitrile	8.55	5.0	0.55	$\mu g/L$	10.0		85.5	70-130	4.01	25		
ert-Amyl Methyl Ether (TAME)	9.09	0.50	0.14	$\mu g/L$	10.0		90.9	70-130	0.985	25		
Benzene	8.96	1.0	0.20	$\mu g/L$	10.0		89.6	70-130	0.556	25		
Bromobenzene	9.93	1.0	0.15	$\mu \text{g}/L$	10.0		99.3	70-130	2.78	25		
Bromochloromethane	9.25	1.0	0.31	$\mu \text{g}/L$	10.0		92.5	70-130	5.16	25		
Bromodichloromethane	9.81	0.50	0.18	$\mu g/L$	10.0		98.1	70-130	2.22	25		
Bromoform	9.41	1.0	0.38	$\mu \text{g/L}$	10.0		94.1	70-130	0.318	25		
Bromomethane	13.8	2.0	1.5	$\mu g/L$	10.0		138	40-160	10.2	25	V-20	†
2-Butanone (MEK)	95.8	20	1.6	$\mu \text{g}/L$	100		95.8	40-160	1.06	25		†
ert-Butyl Alcohol (TBA)	88.6	20	4.7	$\mu g/L$	100		88.6	40-160	3.94	25		†
n-Butylbenzene	8.88	1.0	0.15	$\mu g/L$	10.0		88.8	70-130	0.225	25		
ec-Butylbenzene	9.01	1.0	0.11	$\mu g/L$	10.0		90.1	70-130	0.222	25		
ert-Butylbenzene	9.28	1.0	0.13	$\mu g/L$	10.0		92.8	70-130	0.430	25		
ert-Butyl Ethyl Ether (TBEE)	9.45	0.50	0.15	$\mu g/L$	10.0		94.5	70-130	2.20	25		
Carbon Disulfide	138	5.0	1.4	$\mu g/L$	100		138 *	70-130	7.64	25	L-02, V-20 ple results ND	
Carbon Tetrachloride	9.93	5.0	0.16	$\mu g/L$	10.0		99.3	70-130		sam 25	ple results ND	, no qu
Chlorobenzene	9.76	1.0	0.11	$\mu g/L$	10.0		97.6	70-130	0.307	25		
Chlorodibromomethane	9.27	0.50	0.22	$\mu g/L$	10.0		92.7	70-130	9.16	25		
Chloroethane	11.4	2.0	0.32	$\mu g/L$	10.0		114	70-130	2.52	25		
Chloroform	9.64	2.0	0.17	$\mu g/L$	10.0		96.4	70-130	5.15	25		
Chloromethane	11.8	2.0	0.52	$\mu g/L$	10.0		118	40-160	7.77	25		†
2-Chlorotoluene	8.87	1.0	0.11	$\mu g/L$	10.0		88.7	70-130	5.16	25		
4-Chlorotoluene	9.36	1.0	0.12	$\mu g/L$	10.0		93.6	70-130	5.41	25		
1,2-Dibromo-3-chloropropane (DBCP)	8.20	5.0	0.80	$\mu g/L$	10.0		82.0	70-130	1.23	25		
1,2-Dibromoethane (EDB)	9.71	0.50	0.17	$\mu g/L$	10.0		97.1	70-130	0.308	25		
Dibromomethane	9.74	1.0	0.35	$\mu g/L$	10.0		97.4	70-130	4.61	25		
,2-Dichlorobenzene	9.37	1.0	0.12	$\mu g/L$	10.0		93.7	70-130	0.965	25		
,3-Dichlorobenzene	9.15	1.0	0.12	$\mu g/L$	10.0		91.5	70-130	1.95	25		
,4-Dichlorobenzene	9.26	1.0	0.13	μg/L	10.0		92.6	70-130		25		
rans-1,4-Dichloro-2-butene	9.22	2.0	1.6	μg/L	10.0		92.2	70-130		25		
		_										

2.0 0.19

μg/L

10.0

94.2

40-160

2.69

25

9.42

1,2,4-Trichlorobenzene

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	DL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B321735 - SW-846 5030B												
LCS (B321735-BS1)					Prepared: 11	1/01/22 Analy	vzed: 11/02/2	22				_
Carbon Tetrachloride	10.4	5.0	0.16	μg/L	10.0		104	70-130				_
Chlorobenzene	9.79	1.0	0.11	μg/L	10.0		97.9	70-130				
Chlorodibromomethane	10.2	0.50	0.22	μg/L	10.0		102	70-130				
Chloroethane	11.7	2.0	0.32	μg/L	10.0		117	70-130				
Chloroform	10.2	2.0	0.17	μg/L	10.0		102	70-130				
Chloromethane	10.2	2.0	0.52	μg/L	10.0		109	40-160				
2-Chlorotoluene	9.34	1.0	0.11	μg/L	10.0		93.4	70-130				
4-Chlorotoluene	9.88	1.0	0.12	μg/L	10.0		98.8	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	8.10	5.0	0.80	μg/L	10.0		81.0	70-130				
1,2-Dibromoethane (EDB)	9.74	0.50	0.17	μg/L	10.0		97.4	70-130				
Dibromomethane	10.2	1.0	0.35	μg/L	10.0		102	70-130				
1,2-Dichlorobenzene	9.28	1.0	0.12	μg/L	10.0		92.8	70-130				
1.3-Dichlorobenzene	9.33	1.0	0.12	μg/L	10.0		93.3	70-130				
1,4-Dichlorobenzene	9.33 8.97	1.0	0.12	μg/L μg/L	10.0		89.7	70-130				
trans-1,4-Dichloro-2-butene	8.80	2.0	1.6	μg/L	10.0		88.0	70-130				
Dichlorodifluoromethane (Freon 12)	9.17	2.0	0.19	μg/L	10.0		91.7	40-160				
1,1-Dichloroethane		1.0	0.17	μg/L μg/L	10.0		95.2	70-130				
1,2-Dichloroethane	9.52	1.0	0.14	μg/L μg/L	10.0		98.5	70-130				
1,1-Dichloroethylene	9.85	1.0	0.14	μg/L μg/L	10.0		98.7	70-130				
cis-1,2-Dichloroethylene	9.87	1.0	0.14				96.2	70-130				
trans-1,2-Dichloroethylene	9.62	1.0	0.13	μg/L	10.0						1/ 20	
1,2-Dichloropropane	12.6	1.0	0.17	μg/L	10.0		126 95.5	70-130 70-130			V-20	
	9.55	0.50	0.13	μg/L	10.0		95.5 96.5	70-130				
1,3-Dichloropropane	9.65	1.0	0.13	μg/L μg/L	10.0							
2,2-Dichloropropane	8.10	2.0	0.33		10.0		81.0	40-130				
1,1-Dichloropropene	9.78			μg/L	10.0		97.8	70-130				
cis-1,3-Dichloropropene	9.13	0.50	0.16	μg/L	10.0		91.3	70-130				
trans-1,3-Dichloropropene	8.88	0.50	0.17	μg/L	10.0		88.8	70-130				
Diethyl Ether	10.5	2.0	0.18	μg/L	10.0		105	70-130				
Diisopropyl Ether (DIPE)	9.84	0.50	0.13	μg/L	10.0		98.4	70-130				
1,4-Dioxane	83.2	50	21	μg/L	100		83.2	40-130				
Ethylbenzene	10.0	1.0	0.21	μg/L	10.0		100	70-130				
Hexachlorobutadiene	8.87	0.60	0.46	μg/L	10.0		88.7	70-130				
2-Hexanone (MBK)	94.9	10	1.1	μg/L	100		94.9	70-160				
Isopropylbenzene (Cumene)	10.0	1.0	0.11	μg/L	10.0		100	70-130				
p-Isopropyltoluene (p-Cymene)	9.09	1.0	0.097	μg/L	10.0		90.9	70-130	sample resul	t ND, no qual:	S	
Methyl Acetate	17.2	1.0	0.45	μg/L	10.0		172 *			, ,	L-02, V-20	
Methyl tert-Butyl Ether (MTBE)	10.0	1.0	0.17	μg/L	10.0		100	70-130				
Methyl Cyclohexane	9.99	1.0	0.24	μg/L	10.0		99.9	70-130				
Methylene Chloride	9.84	5.0	0.23	μg/L	10.0		98.4	70-130				
4-Methyl-2-pentanone (MIBK)	94.0	10	1.3	μg/L	100		94.0	70-160				
Naphthalene	9.48	2.0	0.24	μg/L	10.0		94.8	40-130				
n-Propylbenzene	9.62	1.0	0.086	μg/L	10.0		96.2	70-130				
Styrene	9.91	1.0	0.11	μg/L	10.0		99.1	70-130				
1,1,1,2-Tetrachloroethane	9.98	1.0	0.18	μg/L	10.0		99.8	70-130				
1,1,2,2-Tetrachloroethane	9.19	0.50	0.13	μg/L	10.0		91.9	70-130				
Tetrachloroethylene	10.0	1.0	0.19	μg/L	10.0		100	70-130				
Tetrahydrofuran	9.40	10	0.49	μg/L	10.0		94.0	70-130			J	
Toluene	9.45	1.0	0.22	μg/L	10.0		94.5	70-130				
1,2,3-Trichlorobenzene	8.84	5.0	0.30	μg/L	10.0		88.4	70-130				
2.4 Triablarahangana	0.05	1.0	0.25	/T	100			70 120				

1.0 0.25

8.35

 $\mu g/L$

10.0

83.5

70-130

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	DL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B321735-BLK1)					Prepared: 11/01/	/22 Analyzed: 11/02	22		
p-Isopropyltoluene (p-Cymene)	ND	1.0	0.097	μg/L					_
Methyl Acetate	ND	1.0	0.45	$\mu g/L$					
Methyl tert-Butyl Ether (MTBE)	ND	1.0	0.17	$\mu g/L$					
Methyl Cyclohexane	ND	1.0	0.24	$\mu g/L$					
Methylene Chloride	ND	5.0	0.23	$\mu g/L$					
4-Methyl-2-pentanone (MIBK)	ND	10	1.3	$\mu g/L$					
Naphthalene	ND	2.0	0.24	$\mu g/L$					
n-Propylbenzene	ND	1.0	0.086	μg/L					
Styrene	ND	1.0	0.11	μg/L					
1,1,1,2-Tetrachloroethane	ND	1.0	0.18	μg/L					
1,1,2,2-Tetrachloroethane	ND	0.50	0.13	μg/L					
Tetrachloroethylene	ND	1.0	0.19	μg/L					
Tetrahydrofuran	ND	10	0.49	μg/L					
Toluene	ND	1.0	0.22	μg/L					
1,2,3-Trichlorobenzene	ND	5.0	0.30	μg/L					
1,2,4-Trichlorobenzene	ND	1.0	0.25	μg/L					
1,3,5-Trichlorobenzene	ND	1.0	0.21	μg/L					
1,1,1-Trichloroethane	ND	1.0	0.17	μg/L					
1,1,2-Trichloroethane	ND	1.0	0.18	μg/L					
Trichloroethylene	ND	1.0	0.19	μg/L					
Trichlorofluoromethane (Freon 11)	ND	2.0	0.18	μg/L					
1,2,3-Trichloropropane	ND	2.0	0.28	μg/L					
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	1.0	0.23	μg/L					
113)	ND								
1,2,4-Trimethylbenzene	ND	1.0	0.20	$\mu g/L$					
1,3,5-Trimethylbenzene	ND	1.0	0.11	$\mu g/L$					
Vinyl Chloride	ND	2.0	0.21	$\mu g/L$					
m+p Xylene	ND	2.0	0.46	$\mu g/L$					
o-Xylene	ND	1.0	0.23	$\mu g/L$					
Surrogate: 1,2-Dichloroethane-d4	26.0			μg/L	25.0	104	70-130		_
Surrogate: Toluene-d8	24.8			μg/L	25.0	99.1	70-130		
Surrogate: 4-Bromofluorobenzene	24.6			μg/L	25.0	98.6	70-130		
A CO (MANUFACE DOA)					D 1.11/01	/22 4 1 1 11/02	/22		
LCS (B321735-BS1)			• •			/22 Analyzed: 11/02			—.
Acetone	102	50	2.0	μg/L	100	102	70-160		Ť
Acrylonitrile	8.90	5.0	0.55	μg/L	10.0	89.0	70-130		
tert-Amyl Methyl Ether (TAME)	9.18	0.50	0.14	μg/L	10.0	91.8	70-130		
Benzene	9.01	1.0	0.20	μg/L	10.0	90.1	70-130		
Bromobenzene	10.2	1.0	0.15	μg/L	10.0	102	70-130		
Bromochloromethane	9.74	1.0	0.31	μg/L	10.0	97.4	70-130		
Bromodichloromethane	10.0	0.50	0.18	μg/L	10.0	100	70-130		
Bromoform	9.44	1.0	0.38	μg/L	10.0	94.4	70-130		
Bromomethane	15.3	2.0	1.5	μg/L	10.0	153	40-160	V-20	İ
2-Butanone (MEK)	96.8	20	1.6	μg/L	100	96.8	40-160		†
tert-Butyl Alcohol (TBA)	92.2	20	4.7	μg/L	100	92.2	40-160		1
n-Butylbenzene	8.90	1.0	0.15	μg/L	10.0	89.0	70-130		
sec-Butylbenzene	9.03	1.0	0.11	μg/L	10.0	90.3	70-130		
tert-Butylbenzene	9.32	1.0	0.13	μg/L	10.0	93.2	70-130		
tert-Butyl Ethyl Ether (TBEE)	9.66	0.50	0.15	μg/L	10.0	96.6	70-130		
Carbon Disulfide	149	5.0	1.4	$\mu g/L$	100	149	* 70-130	sample results ND, no quals $L-02$, $V-20$	

Sample Description:

Work Order: 22J4221

Project Location: Brighton, NY Date Received: 10/28/2022 Field Sample #: 828120FB3

Sampled: 10/27/2022 10:30

Sample ID: 22J4221-03 Sample Matrix: Water

Volatile Organic Compounds	by	y GC/MS	
-----------------------------------	----	---------	--

			Ve	olatile Organic Compou	ınds by GC	C/MS				
Analyte	Results	RL	DL	Units	DF	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	2.0	μg/L	1	r ing/ Quar	SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Acrylonitrile	ND	5.0	0.55	μg/L	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	0.14	μg/L	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Benzene	ND	1.0	0.20	μg/L	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Bromobenzene	ND	1.0	0.15	μg/L	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Bromochloromethane	ND	1.0	0.31	μg/L	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Bromodichloromethane	ND	0.50	0.18	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Bromoform	ND	2.0	0.38	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Bromomethane	ND	2.0	1.5	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
2-Butanone (MEK)	ND	20	1.6	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
tert-Butyl Alcohol (TBA)	ND	20	4.7	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
n-Butylbenzene	ND	1.0	0.15	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
sec-Butylbenzene	ND	1.0	0.11	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
tert-Butylbenzene	ND	1.0	0.13	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	0.15	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Carbon Disulfide	ND	5.0	1.4	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Carbon Tetrachloride	ND	5.0	0.16	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Chlorobenzene	ND	1.0	0.11	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Chlorodibromomethane	ND	0.50	0.22	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Chloroethane	ND	2.0	0.32	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Chloroform	18	2.0	0.17	$\mu g/L$	1	J, BL2	SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Chloromethane	ND	2.0	0.52	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
2-Chlorotoluene	ND	1.0	0.11	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
4-Chlorotoluene	ND	1.0	0.12	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	0.80	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
1,2-Dibromoethane (EDB)	ND	0.50	0.17	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Dibromomethane	ND	1.0	0.35	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
1,2-Dichlorobenzene	ND	1.0	0.12	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
1,3-Dichlorobenzene	ND	1.0	0.12	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
1,4-Dichlorobenzene	ND	1.0	0.13	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	1.6	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	0.19	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
1,1-Dichloroethane	ND	1.0	0.14	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
1,2-Dichloroethane	ND	1.0	0.31	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
1,1-Dichloroethylene	ND	1.0	0.14	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
cis-1,2-Dichloroethylene	ND	1.0	0.15	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
trans-1,2-Dichloroethylene	ND	1.0	0.17	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
1,2-Dichloropropane	ND	1.0	0.18	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
1,3-Dichloropropane	ND	0.50	0.13	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
2,2-Dichloropropane	ND	1.0	0.33	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
1,1-Dichloropropene	ND	2.0	0.15	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
cis-1,3-Dichloropropene	ND	0.50	0.16	μg/L	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
trans-1,3-Dichloropropene	ND	0.50	0.17	$\mu g/L$	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
Diethyl Ether	ND	2.0	0.18	μg/L	1		SW-846 8260D	11/1/22	11/2/22 2:45	EEH
								Г	Dogo 10	100

Page 19 of 39

Sample Description:

Work Order: 22J3896

Project Location: Brighton, NY
Date Received: 10/27/2022
Field Sample #: 828120FB2

Sampled: 10/26/2022 14:30

Sample ID: 22J3896-06
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			voiatile	Organic Compoun	ius by GC/	IVIS		_		
Analyte	Results	RL	DL	Units	DF	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	2.0	μg/L	1	Flag/Qual	SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Acrylonitrile	ND	5.0	0.55	μg/L	1	V-05	SW-846 8260D	10/28/22	10/28/22 14:02	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	0.14	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Benzene	ND	1.0	0.20	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Bromobenzene	ND	1.0	0.15	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Bromochloromethane	ND	1.0	0.31	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Bromodichloromethane	0.44	0.50	0.18	μg/L	1 sar	mple results ND, no q	uals SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Bromoform	ND	2.0	0.38	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Bromomethane	ND	2.0	1.5	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
2-Butanone (MEK)	ND	20	1.6	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
tert-Butyl Alcohol (TBA)	ND	20	4.7	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
n-Butylbenzene	ND	1.0	0.15	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
sec-Butylbenzene	ND	1.0	0.11	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
tert-Butylbenzene	ND	1.0	0.13	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	0.15	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Carbon Disulfide	ND	5.0	1.4	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Carbon Tetrachloride	ND	5.0	0.16	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Chlorobenzene	ND	1.0	0.11	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Chlorodibromomethane	ND	0.50	0.22	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Chloroethane	ND	2.0	0.32	μg/L μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Chloroform	23	2.0	0.17	μg/L	-	J, BL2	SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Chloromethane	ND	2.0	0.52	μg/L μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
2-Chlorotoluene	ND	1.0	0.11	μg/L μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
4-Chlorotoluene	ND	1.0	0.12	μg/L μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	0.80	μg/L μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
1,2-Dibromoethane (EDB)	ND	0.50	0.17	μg/L μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Dibromomethane	ND	1.0	0.35	μg/L μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
1,2-Dichlorobenzene	ND	1.0	0.12	μg/L μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
1,3-Dichlorobenzene	ND	1.0	0.12	μg/L μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
1,4-Dichlorobenzene	ND	1.0	0.12	μg/L μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	1.6		1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	0.19	μg/L μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
1,1-Dichloroethane	ND ND	1.0	0.19	μg/L μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
1,2-Dichloroethane	ND ND	1.0			1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
1,1-Dichloroethylene	ND ND	1.0	0.31 0.14	μg/L	1		SW-846 8260D SW-846 8260D	10/28/22	10/28/22 14:02	EEH
•	ND ND	1.0	0.14	μg/L	1		SW-846 8260D			EEH
cis-1,2-Dichloroethylene			0.13	μg/L	1			10/28/22	10/28/22 14:02	
trans-1,2-Dichloroethylene	ND	1.0		μg/L			SW-846 8260D	10/28/22	10/28/22 14:02	EEH
1,2-Dichloropropane	ND ND	1.0	0.18	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
1,3-Dichloropropane	ND	0.50	0.13	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
2,2-Dichloropropane	ND	1.0	0.33	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
1,1-Dichloropropene	ND	2.0	0.15	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
cis-1,3-Dichloropropene	ND	0.50	0.16	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
trans-1,3-Dichloropropene	ND	0.50	0.17	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02	EEH
Diethyl Ether	ND	2.0	0.18	μg/L	1		SW-846 8260D	10/28/22	10/28/22 14:02 Page 28	EEH

Page 28 of 57

APPENDIX D

LOW FLOW GROUNDWATER DATA RECORDS

			LOW	FLOW GROU	INDWATE	RSAMP	LING RI	ECORD		SSIDE IT TO BE
WELL DIAM TUBING ID (MEASUREM INITIAL D (BMP) WELL DET (BMP) WATER COLUMN CALCULA GALAVOL	(INCHES) HENT POINT (MP) OTM 9,3 PTH 25,	Treet I	PROJECT : PROJECT : SAMPLE II 8 Z 2 X 4 14 3x RISER (TOR) [FINAL DTW (BMP) SCREEN INTERVAL DRAWDOWN VOLUME (final DTW- initial DT TOTAL VOL. PURGED	(ACTION CASTING P.38	SECRO	SAMPLE TIL O 9 1 HER HER HER ASING P (AGS) TT AIR .L	ME	LOCATION ID MW - (START TIME O & 4 SITE NAME/INS A/YS D E.C. FT PPM PPM	O STALLATION	WELL INTEGRITY YES NO N/A W
FIELD PAR	DTW (FT)	PROGRAM STAB PURGE RATE (mL/min)		IA (AS LISTED IN TI SP. CONDUCTANCE (mS/cm) ±3%,	Territorial to	pH (units) ±0.1	REDOX (mv) ±10 ms	TURBIDITY (ntu) ±10% and <10 ntu or 3 values <5 ntu	PUMP INTAKE DEPTH (ft)	COMMENTS
0840	BEGIN PURG	ING	14.2	0.98	1.50	6.91	11.6	41.7	18'	
0850	9.38	175	14.6	0,99	0.71	6.95	-7.4	20,0	18'	
0855	9.38	175	14.2	0,99	1.51	6.96	-6.9	9.51	"	
	9,38	175	14,2	0,99	1.50	6.96	-9.0	8.06	**	
0900	9,38	175		0.99	1.52	6.97	-9.7	8,17		
0910	1.38	175	14.2	0.99	1.51	6.97	-8,9	8. oz		Color te ss + oto stes
		E64-3	ED FIELD PARAM	ETERS (rounded to	appropriate signi			8,02	TEMP, nearest de COND 3 significa- pH nearest tenth (s DO nearest tenth)	ex 3.51 (3.5) nearest tenth (6.19 (6.2) 101 (101)
PERIST	ERA R	Di Al Di PO Nr HE	CON FLUIDS USED CONOX EIONIZED WATER OTABLE WATER TRIC ACID EXAME ETHANOL THER	SILICON TUI HDPE TUBIN LDPE TUBIN OTHER OTHER	(G	S STEE PVC PU	L PUMP MATE MP MATERIAL OBE SCREEN		WL MET PID WQ MET TURB. M PUMP OTHER FILTERS	TER YSI LETER HACK
	RIZED	ER M	ETHOD NUMBER NUMBER OF GALLE GENERATED	analyte L	IST FIL	(o lo (PRESERVAT METHOL		samp	OC COLLECTED NO NO
Sampler Sign Checked By	nature Mil	h		man Morre 21/23	1930100000	IONS FROM	THE WORK	PLAN		REV 3.29.2019

			LOW	FLOW GRO	UNDWATE	R SAMP	LING RI	ECORD	T OM	
# 1	MAC SII Congress S		SAMPLE I	Carriage NUMBER 3414206	118	SAMPLE TI	ME	LOCATION ID MW- 9 START TIME 1060 SITE NAME/INS		DATE 10/25/2Z END TIME 1100 PAGE
ELL DIA	Suite 200 Portland, Maine METER (IN.)	04101	_ 4 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	2120MWc		1057		NAZDEC		
	(INCHES) MENT POINT (MP)	IN C] 1/4 3/8 RISER (TOR)	1/2 TOP OF CASING		HER			CAP CASING LOCKED COLLAR	
INITIAL ((BMP)	9.4	PT PT	FINAL DTW (BMP)	9,82	PROT. C STICKU		Flus	h гт	TOC/TOR DIFFERENCE	E FT
WELL DE (BMP) WATER	27.		SCREEN INTERVAL DRAWDOWN	UNK	FT AMBIEN		NA	РРМ	REFILL TIME SETTING DISCHARGE	NA SEC
COLUMN CALCUL/ GAL/VOL	[11./	'16 _{GAL}	VOLUME (final DTW- initial DT TOTAL VOL. PURGED	W X well diam squared	GAL MOUTH DRAWD GAL TOTAL		0,01	78 28	PRESSURE TO PUMP	
				RIA (AS LISTED IN T					_	
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP. ("C) ±3%	SP. CONDUCTANCE (mS/cm) ±3%	DISS. O ₂ (mg/L) ±10% or 3 values <0,5 mg/L	p H (units) ±0,1	REDOX (mv) ±10 mv	TURBIDITY (ntu) ±10% and <10 ntu or 3 values <5 ntu	PUMP INTAKE DEPTH (ft)	COMMENTS
025	BEGIN PURC	GING			1					
030	9.82	200	14.9	0.93	0.70	7.22		31.4	19'	(olorius + Odosiess
035	9.82	200	14.9	0.92	0.35	7.04	- Trans	20.1	19'	7
040	9,82	200	14.9	0,92	0.12	7102	1000 2000	15,2	19'	. 1
145	9,82	200	14,9	0,93	0,00	7,03	- Contract - Contract	10.9	19'	" "
o 50	9.82	200	15.0	0.93	0,00	7.05		11.0	19'	* "
									TEMP assessible	ercus 10 1 10
	F	INAL STABILIZ	ED FIELD PARAN	METERS (rounded to	appropriate signi	ficant figures				gree (ex. 10.1. 10) int figure max (ex. 1786 - 1797) ex. 5.53 - 5.51 ex. 3.54 - 3.51
1		A Real Property	15.0	6.93	0.00	7,05	Z. 8	11,0		nearest tenth (6/19 / 6/2, 101 / 101)
PERIS	ERA R	A A D D D D D D D D D D D D D D D D D D	ECON PLUIDS USED CONOX EIONIZED WATER DTABLE WATER TRIC ACID EXANE ETHANOL THER	SILICON TU HOPE TUBIN LOPE TUBIN OTHER OTHER	NG	S STEE	L PUMP MATE MP MATERIAL OBE SCREEN		WL MET PID WQ MET TURB. M	rectation I to a
NALVIIG	PARAMETERS PARAMETI	ER M	ETHOD NUMBER	ANALYTE L	JST FIL	TELD TERED	PRESERVA' METHOI	o volu	ME REQUIRED	₩ 0
PURGE WA ONTAINE NO-PURGE	RIZED 🔽		NUMBER OF GALL GENERATED	ons 1.6	NOTES	Sa			57,	coloriess, odori
/TILIZED	nature June	n_	1070	uac Motor	DEVIA	TIONS FROM	I THE WORK ルト	CPLAN		
hecked By	Vu	W	Date: 8/2	21/23						REV 3/29/2019

			LOV	FLOW GRO	UNDWATE	R SAMI	PLING R	ECORD		NEW YORK	WALK I
2101	1110	TEC	PROJEC		(1010			LOCATION II		10/25/Z	7
	MAC	TEC	PROJEC	T NUMBER OF	e cien	us		START TIME	2(=1	END TIME	
	511 Congress		SAMPLE	6162061	18	SAMPLE T	IME.	SITE NAME/I	STALLATION	311	
	Suite 20 Portland, Main		87	81ZOHA	114012	175	2	NYSDEC	#8781		Ť
VELL DIA	METER (IN.)		√ ; □ 4	_ ^ _	8 0	THER			CAP		N/A
UBING ID	(INCHES)		1/4 3/8	1/2	3.8 0.0	THER			CASING		=
MEASURE!	MENT POINT (MP	TOP O	FRISER (TOR)	TOP OF CASINO	этось 🔲 от	THER			COLLA	2 = 1	
INITIAL I (BMP)	8.	95 1	FINAL DTW (BMP)	9.85		CASING UP (AGS)	Flus	5h 11	TOC/TOR DIFFERENCE		FT
WELL DE	PTH 14.	68 17	SCREEN INTERVAL	unk	FT AMBIE	NT AIR	NA	РРМ	REFILL TIN SETTING	MER NA	SEC
WATER	5.	73 FT	DRAWDOWN VOLUME	0.1476	GAL MOUTE		NA	PPM	DISCHARGE TIMER SET		SEC
CALCUL	TED .	-		TW X well diam squaree			0.10		PRESSURE		3,12
GALVOL	0.	935 GAL	PURGED	1.365 al minutes X 0.00026 gal	GAL TOTAL	PURGED	0.10	81	TO PUMP	NA NA	PSI
				RIA (AS LISTED IN T							
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP. (°C) ±3%	SP. CONDUCTANCE (mS/cm) ±3%	DISS. O ₂ (mg/L) ±10% or 3 values <0.5 mg/L	pH (units)	REDOX (mv) ±10 mv	TURBIDITY (ntu) ±10% and <10 ntu or 3 values <5 ntu		COMME	NTS
715	BEGIN PUR	GING					-				
and the second	9.91	175	16.8	0,98	4.59	7.16	100.1	69.0	12'	L+ Brown	(010)
225	10.01	150	16.8	1.40	4.16	6.92	39.7	-	12'		" Turn
230	9.97	150	16.7	1.75	4.31			68.2	12'	**	" -10-
	9.95	150	16.7	1.95	3.11	6.95		22.5	12'	coloriess, a	300,622
	9.85	150	16.7	2.09	3.19	6.96		9.7	12.	•	',
	9.85	150	16.7	2,14	2.94	-	0.0	9.8	12'	*	"
	9.85	150	16.8	2.05	2.94		0.8		12'	••	"
200	1.00		10.0				7.000				
	F	NAL STABILIZ	ED FIELD PARAN	IETERS (rounded to	appropriate signi	ficant figures	i)		pH nearest tenth is	int figure max (ex. 1.686 - 1.60) ex. 3.53 - 3.5)	
		A Company							DO nearest tenth in TURB 3 NF max. i ORP 2 NF (44.1)	nearest tenth (6.19 - 6.2, 101 - 1	ión:
IPMENT	DOCUMENTATIO				TUBING/PUMP/B	LADDERMAT	EDIAL S	7		EQUIPMENT USED	
PERIST		AL	CON FLUIDS USED CONOX IONIZED WATER	SILICON TUE	BING [S. STEE	L PUMP MATEI MP MATERIAL			ER Solonist	
SUBME BLADD	ER	PO	TABLE WATER	LDPE TUBIN			OBE SCREEN		WQ MET	ETER Ann	
OTHER	RA .	HE	XANE THANOL	OTHER		OTHER OTHER			PUMP OTHER	Peris to 1+ic	
OTHER		70.00	HER						FILTERS	NO. 4 TYPE _	
NALYTICA	L PARAMETERS PARAMETE	R MI	ETHOD NUMBER	ANALYTE LI		ELD TERED	PRESERVAT METHOD		ME REQUIRED	&C COLLEC	TED
1	MNA		ultiple			0_	multipl			No	
V	VOL		260B			ــــــــــــــــــــــــــــــــــــــ	HU			Y - 5 - 1	we+my/
						_		-	41.50		
H										- williams	
										4-1	
LRGE OBS	ERVATIONS ER YES	NO 1	NUMBER OF GALLO	ns 1.365	NOTES	828	SIZOHI	4114012	3	1707+ 82	812000
ONTAINER	IZED 🔽	NO C	GENERATED			81	8120 H	411401Z 1411401Z 1411401Z	Mich	1434	e -
TILIZED		V									
		M	1000 personal		DEVIAT	IONS FROM	THE WORK	E163/3			
mpkii Signai	The free of	Mer	Print Name	nuc Motes							
cked By	V.	11/1	8/	21/23							

	LOW FLOW GRO	UNDWATER SAMPL	ING RECORD	COLUMN TO THE REAL PROPERTY.
MACTEO S11 Congress Street Stute 200	PROJECT NAME (ACTIONS COMPRESSION OF THE PROJECT NUMBER OF THE PROJECT NAME OF THE PROJEC	SAMPLE TIM	LOCATION ID START TIME O 9 7 5 SITE NAME/INSTAL DY SD 2 C 44	
WELL DIAMETER (IN.) TUBING ID (INCHES) MEASUREMENT POINT (MP) INITIAL DTW (BMP) Portland, Manne, 04101 TUBING ID (INCHES) A 1/8 TOP (INITIAL DTW (BMP) FT	2 4 6 12 14 14 3/8 1/2 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17	SX		WELL INTEGRITY YES NO N/A CAP CASING LOCKED COLLAR COTOR FERENCE FT
WELL DEPTH (BMP) 10,15 FT WATER COLUMN 1.05 FT CALCULATED GALAYOL GAL	(final DTW- initial DTW X well diam. squared TOTAL VOL.	PID AMBIENT AIR GAL PID WELL MOUTH (X 0.041) DRAWDOWN/ GAL TOTAL PURGED	NA PPM SE NA PPM TIM PRI	FILL TIMER FITING SEC SCHARGE MER SETTING NA SEC SESURE PUMP NA PSI
(water column X well diameter X 0 041) FIELD PARAMETERS WITH PROGRAM STA TIME DTW (FT) PURGE RATE (mL/min)	(ml. per minute X total minutes X 0.00026 gal/ BBILIZATION CRITERIA (AS LISTED IN TI E TEMP. (°C) ±3% SP. CONDUCTANCE (mS/cm) ±3%	HE QAPP) DISS. O ₂ (mg/L) ±10% or 3 values <0.5 mg/L 40.1	(mv) (ntu) I	PUMP NTAKE COMMENTS EPTH (ft)
0925 BEGIN PURGING	of 10/2	5/20	-7	Less turn 50 ML/min
we!	sample 19	0/26/60	20	
FINAL STABIL	ZED FIELD PARAMETERS (rounded to	appropriate significant figures)	CON	IP nearest degree (ex. 10 1 10) 3 significant figure max (ex. 1686 (1805) secret left) (ex. 5, 53, 5, 5)
			DO :	nearest tenth (ex. 3.5) - 3.5) B 3.8F max_nearest tenth (b. 19 - 6.2, in) - in [1 2.8F (44.1 - 44.19) - 190)
PERISTALTIC SUBMERSIBLE BLADDER WATTERA OTHER OTHER	DECON PLUIDS USED ALCONOX SILICON TUI DEIONIZED WATER HDPE TUBIN POTABLE WATER LDPE TUBIN NITRIC ACID OTHER METHANOL OTHER DTHER	NG PVC PUM	PUALS PUMP MATERIAL P MATERIAL E SCREEN	EQUIPMENT USED WU METER PID WO METER TURB METER PUMP OTHER EILTERS NO TYPE
ANALYTICAL PARAMETERS PARAMETER #2608 foc	METHOD NUMBER ANALYTE L	IST FIELD FILTERED	PRESERVATION WOLUME RISE	AL PRODUCTION TO THE PRODUCT OF THE
PLRGE OBSERVATIONS PURGE WATER CONTAINERIZED NO-PLRGE METHOD UTILIZED PLOOPLY TO SERVE THE SERV	NUMBER OF GALLONS GENERATED	- Co	almost immedia to tom of well, go	of the some of the some of the some of the some some some some some some some som
Sampler Signature free Mossing Checked By	Print Name: Usanc Mossic Date: 8/21/23	DEVIATIONS FROM	- we II	Dry 10135
	* See buch	of field	stue+ for	10/24 Sample

Date 10/20/22

Well: MW-6 -7 Dry 10/25, waited -24 hrr to good sample

DTW: 9.13

Sample ID: 828120 MW06 009

Sample Time: 0815

Sampled using peristritic Pump For vocs via RZGOB

				LOW	FLOW GROU	JNDWATE	R SAMP	LING RE	CORD	170.79	AND DESCRIPTION	ELECTION IN
	≝ N	ИAC	TEC	PROJECT PROJECT	arriage	Cleares	-5		LOCATION ID Au START TIME	93	DATE 10/26 END TIME	/z Z
					36162	06118			083	0	093	5
		511 Congress S Suite 200		SAMPLE I	28120M4	A ROAS	093		AJYSDEC		PAGE 1 OF	1
		Portland, Maine	04101			98018			Wispec	.,	WELL INTEGRITY	
	WELL DIAM			2 4] я от	14500470			CAP	YES NO	N/A
	TUBING ID			1/43/8	1/2	lanca —	HER			CASING LOCKED		=
	005500003908	IENT POINT (MP)			TOP OF CASING		recovered to			COLLAR	~_	
	(BMP)	1.	TT FT	FINAL DTW (BMP)	7.94	FT STICKL		Flusi	h FT	TOC/TOR DIFFERENC	1983	FT
	(BMP)	(9	1,48 FT	SCREEN INTERVAL	UNK	FT AMBIE		NA	PPM	REFILL TIM SETTING		SEC
	COLUMN	11.5	FT FT	DRAWDOWN VOLUME (final DTW- initial DT	W X well diam squared	X 0 041)		NA	РРМ	DISCHARGE TIMER SET		SEC
	GALCULA GALVOL (water colum	on X well diameter ²	S GAL	TOTAL VOL. PURGED (mL per minute X total	Z.445 al minutes X 0 00026 gal/		OWN/ PURGED	0.007		TO PUMP	NA NA	PSI
					RIA (AS LISTED IN T							
5 ₹₹	TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP. (°C)	SP. CONDUCTANCE (mS/cm) ±3%	DISS. O ₂ (mg/L) ±10% or 3 values <0.5 mg/L	p H (units) ±0,1	REDOX (mv) ±10 mx	TURBIDITY (ntu) ±10% and <10 ntu or 3 values <5 ntu	PUMP INTAKE DEPTH (ft)	СОММ	ENTS
•	0840	BEGIN PURC	GING	Ÿ.				4			T	
	0845	7.92	150	15.0	0.75	0.66	7.60	-39,1	293	18	داسای، حا	011633
	0850	7.92	150	15.1	0.74	0,31	7.02	-54.6	234	18	,,	"
	0 855	7.92	250	14,9	0,74	0,00	6.88	-63,4	224	18	"	/ 3
	0900	7.94	750	15,0	0.74	0.00	6.84	-66,0	175	18	**	"
	0905	7.94	250	15.1	0,74	0,00	6.83	-68,2	140	18	**	"
	0910	1,94	250	15.1	0.74	0.00	6.82	-69,8	119	18		••
	5915	7,64	250	15.0	0.74	0.00	6,80	-68.7	94.3	18	Colorless,	odolless
	0920	7.94	750	15,0	0.74	0,00	6.80	-69.9	95.0	18		••
	0925	7,94	750	15,0	0,74	0.00	6,79	-70.7	92.3	18	"	*
	0930		1 /						N.			
	2035	Samy	1,6									
	Aug.	F	INAL STABILIZ	ED FIELD PARAM	METERS (rounded to	appropriate sign	ficant figures	s)		TEMP nearest de COND: 3 signific pH nearest tenth i	egree (ex. 10.1 - 10) ant figure max (ex. 1.686 - 1. ex. 5.53 - 5.5)	4191
				15.0	0,34	0,00		-70.7	92.3	DO nearest tenth	(ex. 3.51 - 3.5) nearest tenth (6.19 - 6.2, 10)	1017
		DOCUMENTATIO	ON	1310	0,+4	01-5	617 1	- FOI F	10,-	ORP 2 SE (44.1		
	PERIST	TYPE OF PUMP TALTIC ERSIBLE DER		ECON FLUIDS USED LCONOX EIONIZED WATER DTABLE WATER ITRIC ACID	SILICON TU HDPE TUBIN OTHER OTHER	NG	S. STEE PVC PU	L PUMP MATE MP MATERIAL OBE SCREEN		PID	TER YST METER LINCH PECS THE	
	OTHE		<u> </u>	EXANE ETHANOL			OTHER			OTHER FILTER:	NOTYPE	
	ANALYTIC	PARAMETER:	s	THER	ANALYTE L	JST FII	TIELD TERED	PRESERVAT METHOD	, ,,,,,	ME REQUIRED	ος τοι ι	ECTED
		CERVATIONS				NOTE	12041	, plans	Tuchid	man	ast time	T
	PURGE OB PURGE WA CONTAINE NO-PURGE	RIZED	∑ NO S NO	NUMBER OF GALL GENERATED	ons 2.665	-	Luner	gett	ing 7061	100	7 16' +	Stirred
	UTILIZED					DEVIA	TIONS FROM	I THE WORK	PLAN			
	graves and		None	Print Name		100000000000000000000000000000000000000						
	Sampler Sign	harure (See)	my/		(0.0							
	Checked By	- /	(4) W	_{Date} 8/21	/23							

REV 3/29/2019

			LOW	FLOW GRO	UNDWATE	R SAMP	LING RI	CORD	A 1 1 1 1 1	THE REPORT OF	TO 18 100
# 1	MAC	TEC	3	arriage NUMBER J	Clear	necs		LOCATION ID MW-11 START TIME		IND TIME	200000000000000000000000000000000000000
	511 Congress 5 Suite 200 Portland, Maine	Programme :		10 8120MW		123	O	MYS DE C		AND DESCRIPTION OF THE PARTY OF	4
WELL DIAM	METER (IN.)	OASSESSES TO SEE STATE OF THE PERSON OF THE	№	6] s	HER			CAP CASING LOCKED COLLAR	YES NO	NA =
and the second	MENT POINT (MP)	(RISER (TOR)	TOP OF CASING		THER	FIUSI		TOC/TOR		FT
(BMP)	<u></u>	0Ч н	(BMP)	าเหล	FT STICKU	JP (AGS)		<u>1 FT</u>	REFILL TIM	-	
WELL DEI (BMP)	29.	.ZO FT	SCREEN INTERVAL	UNK	FT AMBIE		NA	РРМ	SETTING DISCHARGE		SEC
WATER COLUMN	14	14 1	DRAWDOWN VOLUME	W X well diam squared	GAL PID WE MOUTH		NA	PPM	TIMER SETT		SEC
CALCULA GAL/VOL (water colum	nn X well diameter ²)	X 0.041)	TOTAL VOL. PURGED (mL per minute X total	4.664 al minutes X 0.00026 gal	GAL TOTAL	OOWN/ PURGED	0,42	.6	PRESSURE TO PUMP	NA	PSI
FIELD PAR	AMETERS WITH I	PROGRAM STAB	ILIZATION CRITE	RIA (AS LISTED IN T		COURT STATE	REDOX	TURBIDITY	PUMP	82.07.000.00	a mass
TIME	DTW (FT)	PURGE RATE (mL/min)	TEMP. (°C) ±3%	SP. CONDUCTANCE (mS/cm) ±3%	±10% or 3 values <0.5 mg/L	pH (units) ±0,1	(mv) ±10 ms	(ntu) ±10% and <10 ntu or 3 values <5 ntu	INTAKE DEPTH (ft)	COMME	:NTS
1145	BEGIN PURC				167	/ 07	33,9	18.1	20	Colorless,	obortes
1150	11.38	160	15.9	1.59	0.00	6.67	1200	11.6	20	**	"
1155	11.44	160	15.9	1.62	0.00	6.63	T102-W580094X1	7.33	20	**	",
1200	11,45	160	16.0	1.60	0.00	6.65	The same of the later	7,19	20	**	••
1205	11,44	160	16.0	1,35	0,00	6.68	-0.7	3.25	20	**	
1210	11145	160	15.9		0,00	6.68	-4,7	2.80	20	**	"
1215	11.46	160	15.9	1.24	0.00	6.67	-7,0	1.67	20	"	"
1225	11.48	160	15,9	1, 75	0,00	6,67		1.73	20		"
1665		100									
				IETERS (rounded to	anorooriate sign	ificant figures	i)		COND Assentice	rgree (ex. 10 1 - 10) ant figure max (ex. 1 686 - 1 6	
	FI	INAL STABILIZ		1, 75	0.00	6.67	-7.5	1,73	pH nearest tenth (DO nearest tenth (TURB 3 SI max. ORP, 2 SI (44 I	nearest tenth (6.19 - 6.2, 101	(01)
ST IBMENT	DOCUMENTATIO	DN	15.9	11 63		200000000000000000000000000000000000000	200000			EOUIPMENT USED	
PERIST	N PE OF PUMP ALTIC RSIBLE ER ERA	Z DE PO	CON FLUIDS USED CONOX IONIZED WATER TABLE WATER TRIC ACID XANE THANOL HER	SILICON TU HDPE TUBIN LDPE TUBIN OTHER OTHER	NG .	S. STEE PVC PU	L PUMP MATE MP MATERIAL OBE SCREEN			TER YS I METER Mach Periamana	
ANALYTICA	AL PARAMETERS PARAMETE	R M	ETHOD NUMBER	ANALYTE L	IST FIL	FIELD TERED	PRESERVAT METHOD	, ,,,,,	ME REQUIRED	QC COLL	ECTED
1	NNA		ultiple			AD	Aw 1+4	te		No	
				19-00-19-00-							
PURGE OBS PURGE WAT CONTAINER NO-PURGE N UTILIZED	IZED 🔀		NUMBER OF GALLO GENERATED	ons 1.664	NOTES	mu-		247	vit.	spelled es	mw-111.
e i emen	7	m			20,000,000,000	TIONS FROM	THE WORK	PLAN			
Sampler Signa	nure fr	the		sauc Moso 1/21/23	Y						

			LOW	FLOW GROU	NDWATE	R SAMPI	ING RE	CORD	100	A DEVINE
≝ N	ИAC		36	Lage Clean	aners	SAMPLE TIM		LOCATION ID MW-21 START TIME 1330 SITE NAME/INS		DATE (O/ZG/ZT END TIME 1445
	511 Congress S Suite 200 Portland Maine		SAMPLE ID	Z \$120m			200-	NYSDEC		WELL INTEGRITY
WELL DIAM			2 4	1/2		MI OF THE			CAP CASING LOCKED	YES NO NA
MEASUREM	IENT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASING	(тос) от	HER			COLLAR	<u> </u>
INITIAL D (BMP)	TN ች ዓ		FINAL DTW (BMP)	8,17	PROT. C STICKU		FIUSZ	FT	TOC/TOR DIFFERENCE	200
WELL DEF (BMP)	17 /T.	6 9 FT	SCREEN INTERVAL	WK.	FT AMBIEN		NA .	PPM	REFILL TIME SETTING DISCHARGE	NA SEC
COLUMN	9.	+ FT		O.D 35	X 0.041)		NA .	PPM	TIMER SETT	ING SEC
GALCULA GALNOL (water colum	nn X well diameter?	5 % GAL		minutes X 0.00026 gal/	mL)	PURGED	0,02	2	TO PUMP	NA PSI
FIELD PAR	AMETERS WITH	PROGRAM STAB		IA (AS LISTED IN T	SERVICE OF SERVICE PROPERTY.		REDOX	TURBIDITY	PUMP	
TIME	DTW (FT)	PURGE RATE (m.L/min)	TEMP. (°C) ±3%	SP. CONDUCTANCE (mS/cm) ±3%	DISS. O ₂ (mg/L) ±10% or 3 values <0.5 mg/L	pH (units) ±0,1	(mv) ±10 m	(ntu) ±10% and <10 ntu or 3 values <5 ntu	INTAKE DEPTH (ft)	COMMENTS
1345	BEGIN PURG	GING	11 -			7.79	-A.5	47.7	12	Lt Brown, oforless
1350	8,17	200	16.5	1.20	0.00	6,57	-19.5	48.6	12	. "
1355	8,17	200	16.4	1.2 8	0.00	6.58	-24,4	8.7	12	Colo + 1085 mg
1400	8.17	700	16.2	1.33	0,00	6.59			12	Color less, odale
1405	8,17	200	16.2	1, 33	6,00	6.60	-29.5	8.5	12	5 9
1415	8.17	200	16.1	1.34	0.00	6.61	- 31.4	8,0	12	., "
		INAL STABILIZ	ED FIELD PARAN	1ETERS (rounded to	appropriate sign	ificant figure	s)		COND 3 signific pH nearest tenth	egree (ex. 10.1 - 10) and figure may (ex. 1680 - 166) (ex. 5.53 - 5.5)
WAR ST		TALL STABLES	16.1	1, 34	0.00	6.61	-314	8.0	DO nearest tenth TURB 3 St max	(es. 3.51 - 1.5) nearest tenth (6.19 - 6.2 (n) - 101) 44, 191 - (90)
Z PERIS	ERA P		ECON FLUIDS USED (1" NOX LINIZED WATER TEBLE WATER ACID NE MANOL THUR	SILICON TO HOPE TUBI COTHER OTHER	NG	S STEE	EL PUMP MATE UMP MATERIAL ROBE SCREEN R		WL ME	TER YSE METER HOLL ROSSENIES TOPE
ANALYTIC	PARAMETER PARAME YOC	TER	MU 1 ple	ANALYTE	LIST FI	FIELD LTERED レリ	PRESERVA METHO HCI MVIH		ME REQUIRED	YV, MS/MSD + DU
PURGE W	ERIZED D	ES NO ES NO	NUMBER OF GALL GENERATED	ons	NOTE					
					A 100 A 11	ATIONS FRO	M THE WORI	N PLAN		
Sampler Si	gnature James	Mary 1	Print Name	5406 Mos	u					

PROJECT NA	ME Cairrage (252	mer Speedy's	W	ENI CA	LIDKATIC	TASK NO		DATE. 10/26/ 32
PROJECT NUI	MBER: 36162	06118 / 3616	206120				MACTEC CREW	-	
PROJECT LOC	The state of the s		nroe Ave, Brig				SAMPLER NAM SAMPLER SIGN	- Mar. 1	MOSEC
	ONDITIONS (ANDITIONS (PM	77.71	SS°F, U	tenr			CHECKED BY	VMW	DATE 8/21/23
	AMETER WAT	3977	TY METER						
METER TYPE	75 -	<u></u>			CALIBRATIC)N	POS	CALIBRAT	TION CHECK
MODEL NO.	Pro Plus	_	Start T	ime 071		me 0740	Start Time		
UNIT ID NO.	30431		Standard	Me	ter .	Acceptance	Standard	Meter	*Acceptance
		Units	Value	Val	ue C	riteria (AM)	Value	Value	Criteria (PM)
	pH (4)	SU	4.0	4.), I pH Units		70	1,000,000,000,000
	pH (7)	SU	7.0 10.0			0.1 pH Units 0.1 pH Units	7.0		+/- 0 3 pH Units
	pH (10) Redox	+/- mV	240	24	<u> </u>	10 mV	240	240	+/- 10 mV
	Conductivity	mS/cm	1.413	1.4		0.5 % of standard	1.413	141	+/- 5% of standard
	OO (saturated)	%	100	94,4		2% of standard			
I	OO (saturated) m			-).2 mg/L			+/- 0.5 mg/L of standard
	DO (<0.1) Temperature	mg/L "C	<0.1	1-	< 0.:	5 mg/L			Standard
	Baro, Press.	mmHg		-13	1/2				
TURBIDITY				Tiele:	Standard	Meter	Standard	Meter	*Acceptance
METER TYPE	Hach			Units	Value	Value	Value	Value	Criteria (PM)
MODEL NO.	45317		Standard	NTU	< 0.1	10,0	19	10	+/- 0.3 NTU of stan.
CALLID NO.	45311		Standard	NTU	20	70.8	20	20	+/- 5% of standard
		100	Standard	NTU	100	100,0	100	100	+/- 5% of standard
			Standard	NTU	800	800.0	800	800	+/- 5% of standard
METER TYPE	ZATION DETE		ckground	ppmv	<0. i̇́	-	<0.1		within 5 ppmv of BG
MODEL NO. UNIT ID NO.		- 🔪	Span Gas	ppmv	100		100	_	+/- 10% of standard
O2-LEL 4 GA	S METER			- distance in the second					
METER TYPE		_ \	Methane	%	50		50		+/- 10% of standard
MODEL NO		_ \	O ₂	%	20.9 25		20.9	$\overline{}$	+/- 10% of standard +/- 10% of standard
UNIT ID NO.	-	- `	H₂ S CO	ppmv ppmv	50		50	1	+/- 10% of standard
OTHER MET	ER								
METER TYPE					<u> </u>				See Notes Below
MODEL NO.			+						for Additional
UNIT ID NO.	_		_					1	- Information
Equip	ment calibrated wit	hin the Accept	ance Criteria s	pecified for e	ach of the param	neters listed above.			7.
Equip	ment (not) calibrate	ed within the A	cceptance Crit	eria specified	for each of the	parameters listed abo	ove**.		
MATERIALS	RECORD					. pH (4)	Cal. Standard Lot	Number	Exp. Date
Deionized Wate	r Source:					pH (7)			
	Produced:					pH (10)			
Trip Blank Sou	rce:	Lab	oratory provide	ed		ORP Conductivity			
Sample Preserv		in-l	ine 0.45µm cel	lulose		<0.1 Turb. Stan.			
Disposable Filte Calibration Flu		ource:				20 Turb. Stan.			
- DO Calibra	tion Fluid (<0.1	mg/L)				100 Turb. Stan 800 Turb. Stan.			
- Other				-		PID Span Gas			
- Other - Other						O2-LEL Span Gas			
100 MON						Other			
Sampling (EQASOP-C	(WOOT) each dated 1 I not within acceptance	9/2010 Additona criteria clean-rep	lacceptance criter	ria obtained fro -calibrate, or us	m instrument specific se calibrated back-up	fic manufacturer recommon p meter if available. If p	endations	tate use of the man	t) and Low Stress Purging and tument, clearly document any fibraty dated 1/19/2010
MIM	ACTI								
141	SS Street, Portland Main						FIELD INSTR	MENT CA	LIBRATION RECORI

		FIE	LD INS	TRUM	ENT CA	LIBRATIC	ON RECORD		
PROJECT NAM	- Duninge	Cleaners / Form					TASK NO.		DATE 10/25/22
PROJECT NUM	MBER: 36162	06118 / 36162	06120				MACTEC CREW	IN	
PROJECT LOC		101 / 2150 Mo					SAMPLER NAME		10 sec
	ONDITIONS (A		5 F, C	clear			SAMPLER SIGNA CHECKED BY:	VMW 7	DATE 8/21/23
	ONDITIONS (PA						CHECKEDOT		D/VIE 0/21/23
	METER WAT	ER QUALI	TY METER						
METER TYPE MODEL NO.	Pro Plus	-		AM C	ALIBRATI				ION CHECK
UNIT ID NO	34431	-	Start Ti	me 073	O/End T	ime 0 800	nd Time <u>O & 1 &</u>		
10.1550.200000.150000	34 751		Standard	Mete	er	*Acceptance	Standard	Meter	*Acceptance
		Units	Value	Valu	ie (Criteria (AM)	Value	Value	Criteria (PM)
	pH (4)	SU	4.0	40	_	0.1 pH Units	200	7 03	0.3-0111-0
	pH (7)	SU	7.0	7.0		0.1 pH Units	7.0	7.03	+/-03 pH Units
	pH (10)	SU	10.0			0.1 pH Units 10 mV	240	241	+/- 10 mV
	Redox	+/- mV	240	24	_	0.5 % of standard	, market	1.413	+/- 5% of standard
	Conductivity	mS/cm	1.413	7.4		2% of standard	1,37.5	114.7	
	OO (saturated) OO (saturated) m			49.	_	0.2 mg/L			+/- 0.5 mg/L of
L			<0.1			.5 mg/L			standard
	DO (<0.1) Temperature	mg/L °C	~0.1	130	,	100		V	
	Baro, Press.	mmHg		74	18				
TURBIDITY N		5			Standard	Meter	Standard	Meter	*Acceptance
METER TYPE				Units	Value	Value	Value	Value	Criteria (PM)
MODEL NO.	2100	Z 10.0			10.0	100	-0.1		+/- 0.3 NTU of stan.
UNIT ID NO.	45319	0.1	Standard	NTU	-0.L	10.0	10.0-0.1-	10.0	+/- 5% of standard
			Standard	NTU	20	70.0	100	70.0	+/- 5% of standard
			Standard	NTU	100 800	800.0	800	800.0	+/- 5% of standard
	TION DETE		Standard	NTU	800	800.0	000	• 00·D	
PHOTOIONIZ METER TYPE	CATION DETE	CTOR	kgroune	ppmv	< 0.1		< 0.1		/ within 5 ppmv of BG
MODEL NO.		1789/000	-/	5,500.20		3	.0.0	/	1000 of standard
UNIT ID NO.		s	pan Gas	ppmv	100		100		+/- 10% of standard
O2-LEL 4 GAS	METER		/						100 - 6 1 1
METER TYPE			Methane	%	50		50	$\overline{}$	+/- 10% of standard +/- 10% of standard
MODEL NO.		_ /	O ₂	%	20.9		20.9	_	+/- 10% of standard
UNIT ID NO.		_ /	H ₂ S	ppmv	25 50		25 50		+/- 10% of standard
			со	ppmv	30		30		The Toront Standard
OTHER MET	ER		/					/	
METER TYPE								/	See Notes Below
MODEL NO.	_		/					/	for Additional
UNIT ID NO.		/							- Information
	10 1 1	hin the Accepts	nce Criteria sn	ecified for ea	ch of the para	meters listed above.			
Equipm	nent calibrated will	A within the Ac	centance Crite	ria specified	for each of the	parameters listed ab	oove**.		
		d within the A	cepianee eme				Cal. Standard Lot !	Number	Exp. Date
MATERIALS	KECOKD					pH (4)			
Deionized Water	Source:					pH (7)			
	Produced:					pH (10)			
Trip Blank Sour	ce:	Labo	ratory provide	d		ORP_			-
Sample Preserva	tives Source:	- 1.0	na 0 45 II	ulose		Conductivity _ <0.1 Turb. Stan.			
Disposable Filter	Type:		ne 0.45µm cell	uiose		20 Turb. Stan.			
Calibration Fluid	ds / Standard Se ion Fluid (<0.1 r	purce:				100 Turb. Stan.			
- DO Calibrati	ion Fidia (50.11	g.r.)							
- Other						PID Span Gas			
- Other						O2-LEL Span Gas			
46/86						Other			
NOTES:		U-TOO TO LET							
= Unless otherwise not	ed calibration procedi	ares and acceptant	e criteria are in g	eneral accordan	ce with USEPA	Region 1 SOPs for Field	Instrument Calibration (EQA	SOP-FieldCalibrat) and Low Stress Purging and
• = Unless otherwise not Sampling (EQASOP-GV	Cool), each dated 1/15	2010 Additional interia, elean repli	acceptance criteri ice probe and re-t	a obtained from calibrate, or use	calibrated back-	up meter if available. If	mendations project requirements necessit	ate use of the instru	ument, clearly document any

** = If meter reading is not within acceptance criteria, clean replace probe and re-cambrate, or use cambrated back-up meter it available. It project requirements increasing the Control of the Control

FIELD INSTRUMENT CALIBRATION RECORD

LOW FLOW GROUNDWATER SAMPLING RECORD											
ING TO	A A C		PROJECT	7. 1	Carers	,		LOCATION ID	٠ <u>.</u>	DATE (12 () 3	
	MAC	IEC	PROJECT	NUMBER 2 ()		110		START TIME	·····	END TIME TO LO	
	511 Congress S	treet	SAMPLE	<u> </u>	6706	SAMPLE TIN	Æ.	·08入	TALLATION	PAGE	
	Suite 200 Portland, Maine	04101	828	DO MM7	10015	090		NJDECT	4823140	5 \ OF \	
WELL DIAM	IETER (IN.)	□: 4 7	1 ² 🗀 4	<u> </u>	к от	Her				WELL INTEGRITY YES NO N/A	
TUBING ID	(INCHES)	1/K	1/4 3/8	I/2	5/K OTI	HER			CAP CASING LOCKED	\$	
MEASUREM	IENT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASING	(тос) 🔲 от	HER			COLLAR	* =	
INITIAL D (BMP)	6.0	8 _{FT}	FINAL DTW (BMP)	6.72	PROT. C FT STICKU		Flu	2/ FT	TOC/TOR DIFFERENCE	FT	
WELL DEF (BMP)	^{РТН} 17.	66 FT	SCREEN INTERVAL		PID FT AMBIEN	T AIR	NA	PPM	REFILL TIME SETTING	ER NA SEC	
WATER COLUMN	160	58 m	DRAWDOWN VOLUME		PID WEI		NA	PPM	DISCHARGE TIMER SETTI	ING NA SEC	
CALCULA GAL/VÔL	1.85	GAL	TOTAL VOL. PURGED		DRAWD GAL TOTAL	OWN/ PURGED	0.067	'	PRESSURE TO PUMP	NA PSI	
	nn X well diameter ² 2		<u> </u>	l minutes X 0.00026 gal/ RIA (AS LISTED IN TI						<u>. </u>	
TIME	DTW (FT)	PURGE RATE (mL/min)		SP. CONDUCTANCE (mS/cm) ±3%		pH (units) ±0,1	REDOX (mv) ±10 mv	TURBIDITY (ntu) ±10% and <10 atu or 3 values <5 ntu	PUMP INTAKE DEPTH (ft)	COMMENTS	
<i>68</i> 20	BEGIN PURC	ING		· · · · · · · · · · · · · · · · · · ·			·		 -	.·	
0825	6.65	150	11.60	1.00	0,0	6.89	-12.9	25.9	15		
6830	6.67	150	11.70	1.008	0.0	6.85	- 23	31.6	15		
0835	6.68	150	11.94	1,003	0.0	6.83	-287	14.4	15		
0840	6.69	150	12.05	1.005	0.0	6.89	-31-7	7.38	15		
0845	6.10	150	12.03	0.997	0:0	6.82	-33.1	6.97	15		
0850	6.70	150	12.07	0.996	6.0	682	-33.7	6.65	15		
0855	6.71	150	12.63	6.992	6-0	6.82	- 34,	5.32	15		
0900	Sar	Ple		ķ		is the				<u> </u>	
	-					1 4 6	9.3	55 A			
					₹,	* * ? `	1.3				
					i ben'i				TEMP, nearest des	nice fee 10.1 10)	
	.,	NAL STABILIZ	ED FIELD PARAN	IETERS (rounded to	appropriate signi	ficant figures	;)		COND: 3 significated pH, nearest tenth (c	nt figure may (ex. f 686 + 1,69) ex. 5,53 - 5,5)	
	and the Contraction						<u> </u> -		DO nearest tenth (e TURB: 3 SF max, n ORP: 2 SF (44.1	rearest lends (6.39 - 6.2, 101 - 101)	
1	DOCUMENTATION TYPE OF PUMP		CON FLUIDS USED		TUBING/PUMP/E	LADDER MAT	ERIALS		<i>,</i>	FOUIPMENT USED /	
PERIST		ام 🔀	CONOX HONIZED WATER	SILICON TUI HOPE TUBIN	BING	S. STÉE	I. PUMP MATE		WL METI PID	ER <u>5011197</u>	
BLADD	ER		TABLE WATER TRIC ACID	LDPE TUBIN	IG	GEOPRI OTHER	OBE SCREEN		WQ MET		
OTHER OTHER			EXANE ETHANOL	OTHER		OTHER OTHER			PUMP	Verintaltic	
ANALYTIC/	AL PARAMETERS		THER						FILTERS	NO. TYPE	
4	PARAMETE		ETHOD NUMBER	ANALYTE L		TELD TERED	PRESERVAT METHOI		ME REQUIRED	QC COLLECTED	
	VOCS 82		-l								
	GUI FICE.	ouic (a	15005-F								
	ALKalin	ity by	5m 230							•	
		<u>10</u>	al tinà	. 							
	11501	ta1/d19	9985						<u> </u>		
PURGE OBS	ERVATIONS	<u> </u>		1 60	NOTES						
PURGE WAT CONTAINER NO-PURGE	UZED		NUMBER OF GALL GENERATED	ons 1, 96	- B)	1817	0 Mh	ノみして	15 6	2 900	
UTILIZED	Mar	<u> </u>	'la	1.11 501	DEVIA	TIONS FROM	1 THE WORK	PLAN			
Sampler Signs	ature: <i>[</i>	W Fill	Print Name:	nak Fel							
Checked By:	Vu) W/		13/22			,-				
										REV, 3/29/2019	

LOW FLOW GROUNDWATER SAMPLING RECORD										
MACTEC 511 Congress Street Suite 200 Portland, Maine 04101	PROJECT NAME Carrage Cleaners PROJECT NUMBER 3616201 SAMPLE ID FABILLO TWO 1010		w-1 $9/12/23$							
WELL DIAMETER (IN.) 1 2 TUBING ID (INCHES) 1/4 1/4 MEASUREMENT POINT (MP) 1 TOP OF RISER	3/N	THERTHER	CAP YES NO N/A CASING X							
INITIAL DTVV 5.2 FT (BMP)		CASING FLUAN FT	TOC/TOR DIFFERENCE FT							
WELL DEPTH SCREI	· · · · · · · · · · · · · · · · · · ·	ENT AIR NA PPM	REFILL TIMER NA SEC							
COLUMN [1+4] FT VOLU			DISCHARGE NA SEC							
CALCULATED 1.186 GAL TOTA PURG (water column X well diameter X 0.041) (ml. pc	ED [' / Y GAL] TOTAI er minute X total minutes X 0.00026 gal/m1.)	DOWN/ L PURGED 0.032	PRESSURE NA PSI							
FIELD PARAMETERS WITH PROGRAM STABILIZAT	ļ .	DEDOY TURBIDIT	TY							
TIME DTW (FT) PURGE RATE TE	EMP. (°C) ±3% SP. CONDUCTANCE DISS. O ₂ (mg/L ±10% or 3 values 4.0.5 mg/L	PH (units) KEDOX (ntu)	INTAKE COMMENTS							
1146 BEGIN PURGING										
1996 5,49 150 13	5.07 0.567 B.D	7.16 0.4 3.4	910							
1156 5,50 150 12	184 0.569 0.0	7,15-15.5 0.5	7/10							
1200 5.52 150 13	210 0.50 00	7.15 -20.7 0.8	7/10							
12095.53 150 12	2.67 15.584 0.0	2.15 -208 0.50	110							
1210 5.63 150 13	3.14 0.685 0.0	7.14-267 0.5	3 10							
12-15 5.53 150 13	3.30 0.689 0.0	713 -239 013	3 10							
1270 5:64 150 13	3.10 0.592 0.0	7.13 -22.5 0.4	7 10							
1226 5.54 160	3,210,6920.0	7-12 -218 0.2	4 16							
1230 Smple	51 10 5/2 00	7/1/2 2/10/01/2	, , , ,							
1270 300116		<u> </u>								
			TEMP:: nearest degree (ex. 10.1 - 10)							
FINAL STABILIZED FII	ELD PARAMETERS (rounded to appropriate sig	nilicant ligures)	COND. 3 significant figure nav. (ev. 1.696 - 1.69) DH: nearest tenh (ev. 3.51 - 5) DO: nearest tenh (ev. 3.51 - 3.5) TURB: 3.81 max, nearest tenh (6.19 - 6.2, 101 - 101) ORP. 2.87 (4.1 - 4.1 + 101 - 100)							
PERISTALTIC ALCONOX	X SILICON TUBING ED WATER HOPE TUBING LOPE TUBING CID OTHER OTHER	PBLADDER MATERIALS S. STEEL PUMP MATERIAL PVC PUMP MATERIAL GEOPROBE SCREEN OTHER OTHER OTHER OTHER	WL METER FOLIATI WO METER HAMA TURB, METER PUMP OTHER FILTERS NO. TYPE							
ANALYTICAL PARAMETERS		FIELD PRESERVATION VO	DLUME REQUIRED QC COLLECTED							
Total organicical Aviated by 6m9 X Atkaunity by 5m X Multible I Ron total disol	(bun 5605-E 18320B									
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER	BER OF GALLONS 1.76	828120 EW	01010 @ 1230							
Sampler Signature: MM Sall My Pt	rint Name: MNK Felon 5	IATIONS FROM THE WORK PLAN								

LOW FLOW GROUNDWATER SAMPLING RECORD										
MACTEC CA PROJECT SAMPLE Suite 200	CT NAME 11:1290 Cleaners CT NUMBER 36 6 206 EID 0 MYOG 009 S	O 18 ST	OCATION ID 6 TART TIME 1320 ITE NAME INSTALLATION NJDEC #8872	END TIME 1351410						
WELL DIAMETER (IN.) 1 2 4	6 R OTHE 1/2 5/8 OTHE TOP OF CASING (TOC) OTHE	ER	CAP CASING LOCKED COLLAR	WELL INTEGRITY YES NO N/A						
INITIAL DTW 7.18 FT (BMP)	7.63 FT PROT. CAS		TOC/TOR DIFFERENCE							
WELL DEPTH (BMP) SCREEN INTERVAL WATER DRAWDOWN	FT AMBIENT		PPM SETTING	NA SEC						
COLUMN FT VOLUME (final DTV- initial CALCULATED GALIVOL. PURGED FT COLUMN FT	DTV X well diam, squared X 0.041) Total purples X 0.00026 gal/mL) TERIA (AS LISTED IN THE OAPP)	NA NVN/	PPM DISCHARGE TIMER SETT PRESSURE TO PUMP							
TIME DTW (FT) PURGE RATE (*C) ±3%	SP. CONDUCTANCE DISS. O. (me/L)	pH (units) (mv) ±0.1 ±10 ms	TURBIDITY (ntu) 10% and <10 mlu or 3 values <5 mlu PUMP INTAKE DEPTH (ft)	COMMENTS						
1320 BEGIN PURGING	1011011111	400 100	11 - 0							
1330 7.53 150 11.20	0.410 7.18	7.42 18.8 1.34 208	11.3 9							
1340 7.55 150 10.43	0.415 6.44	7.33 21.5 (071 9 0·32 9							
1345 7.59 150 11.09	0.429 6.61		0:15 9							
1350 7.60 150 11.07	0.437 6.43	- 1	0.2) 9							
1355 7.61 150 11.05	0.439 6.33		0.19 9							
1400 Gample										
	1									
<u> </u>										
			TEMP.: nearest de	egree (cs. 10 1 - 10)						
FINAL STABILIZED FIELD PAR	AMETERS (rounded to appropriate signific	cant figures)	COND.: 3 signific pH; nearest tenth (DO: nearest tenth)	ant figure mas (ex. 1.686 - 1.69) ex. 5.53 - 5.5) (ex. 3.51 - 3.5) nearest tenth (6.19 - 6.2, 101 - 101)						
EQUIPMENT DOCUMENTATION TYPE OF PUMP PERISTALTIC SUBMERSIBLE BLADDER WATTERA OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER OTHER	SILICON TUBING HDPE TUBING LDPE TUBING OTHER OTHER	ADDER MATERIALS S. STEEL PUMP MATERIAL PVC PUMP MATERIAL GEOPROBE SCREEN OTHER OTHER OTHER		EQUIPMENT USED TER 501109+ TER HOVING AETER LANGT E 1209+941C						
ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER METHOD NUMBER		ELD PRESERVATION METHOD	N VOLUME REQUIRED	QC COLLECTED						
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GAI CONTAINERIZED GENERATED NO-PURGE METHOD YES NO UTILIZED	1		w06009 (21400						
Sampler Signature: Print Name:	Markfelogs DEVIATE	IONS FROM THE WORK PL	AN							

LOW FLOW GROUNDWATER SAMPLING RECORD											
SHOT	/ A C	mrtra	PROJECT		leaners			LOCATION ID	- B	DATE 4/12 /23	
🌌 IV	IAC	TEC	PROJECT	NUMBER 2	16706	110		START TIME	<u>ev</u>	END TIME 6 1 0	
	511 Congress S	itreet	SAMPLE I	20	(0000	SAMPLE TIN		SITE NAME/INS	D TALLATION	1510	
	Suite 200 Ponland, Maine	04101	37	8120/11 WO	6130X7	150	9	NJDE	1750/8/M	-	
WELL DIAMET	TER (IN.)	i]2 💢 4	. □ 6 □] в 🔲 от	HER			CAP	WELL INTEGRITY YES NO N/A	
TUBING ID (IN	CHES)	⊠ 1/34 □	1/4 3/8	1/2	5/8OTI	HÉR			CASING LOCKED	* - =	
	NT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASING		-		<u>. </u>	COLLAR	<u> </u>	
INITIAL DTV (BMP)	7.0	76 FT	FINAL DTW (BMP)	1,42	PROT. C		FIVE)h m	TOC/TOR DIFFERENCE	FT.	
WELL DEPTI (BMP)	* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<i>.</i> 24 _{FT}	SCREEN INTERVAL		PID FT AMBIEN	NTAIR	NA	PPM	REFILL TIMES SETTING	R NA SEC	
WATER COLUMN	37	4 g FT	DRAWDOWN VOLUME	0.236 W X well diam, squared	GAL MOUTH		NA	PPM	DISCHARGE TIMER SETTI	NG NA SEC	
CALCULATE GAL/VOL	14.5	UAL	TOTAL VOL. PURGED	1.56	DRAWD GAL TOTAL	OWN/ PURGED	0.15	1	PRESSURE TO PUMP	NA PSI	
	X well diameter ² N IETERS WITH I			l minutes X 0.00026 gal							
TIME	DTW (FT)	PURGE RATE (mL/min)		SP. CONDUCTANCE (mS/cm) ±3%		pH (units) ±0,1	REDOX (mv) ±10 mv	TURBIDITY (ntu) ±10% and <10 ntu or 3 values <5 ntu	PUMP INTAKE DEPTH (ft)	COMMENTS	
1425	BEGIN PURC	GING		· · · · · · · · · · · · · · · · · · ·	l		1	1	1		
1930	7-41	150	13.27	0.736	0.0	7.01	-54.8	37.1	27		
1435 7	7.41	150	13.25	6,733	0.0	201	-57.8	26.5	27		
1940 7	7,41	150	13.19	0.732	0.0	7.01	-59.9	22.4	37		
1445 3	7,41	15,0	13,48	0.128	0-0	7.01	-62	24.0	27		
11/50	7.41	196	13,40	0.128	0.0	7.01	-66:	3/7.0	27	·	
1455	7.41	150	13.21	0.725	0.0	7.01	-66	3 4.5	27		
1500	7.91	150	13.30	0.723	0-0	7.6	-66	15-1	22		
1505	5 W	ple									
	· · · · ·										
								<u> </u>	TEMP.: nearest degr	rec (es. 10.1 - 10)	
	- FI	NAL STABILIZ	ED FIELD PARAN	IETERS (rounded to	appropriate signi	ificant figures) 	1		st figure max (ex. 1.686 - 1.69) x. 5.53 - 5.5)	
										earest tenth (6.19 - 6.2, 101 - 101)	
EQUIPMENT DO	DCUMENTATIO PE OF PUMP		ECON FLUIDS USED		TUBING/PUMP/E	BLADDER MAT	ERIALS		<u>E</u>	ER SOLIAST	
PERISTAL' SUBMERS	SIBLE	2	LCONOX EIONIZED WATER	SILICON TU HDPE TUBII	√G	PVC PU	L PUMP MATI MP MATERIA	L			
BLADDER WATTERA		— 🔲 ы	TABLE WATER TRIC ACID	LDPE TUBIN	łG	OTHER			WQ METE TURB, ME	ETER Lamatic	
OTHER_		_ 🗆 м	EXANE ETHANOL	OTHER		OTHER OTHER			PUMP _ OTHER _ FILTERS	NO. TYPE	
ANALYTICAL	PARAMETERS		THER	· · · · · · · · · · · · · · · · · · ·		EIELD.	PRESERVA	TION		NO TIFE	
571 1/	PARAMETE たべら で	ER AND R	ETHOD NUMBER	ANALYTE I		FIELD LTERED	METHO		ME REQUIRED	QC COLLECTED	
P V	00) 8	<u> </u>									
l H -					<u></u> -						
											
PURGE OBSER		NOV	NUMBER OF GALL	ons 1.56	NOTES	S ()		,) .	2016-6	
CONTAINERIZE NO-PURGE ME	ED	I (ZS).	GENERATED		— B	ア名门	LOM	W06E	0 4/	@1505	
UTILIZED				•		TIONS FROM					
		telm	/ Bring Manner A	rwk feld	107 """		-		-		
Sampler Signatur	ie.	1/1	— []	117 /2	2			•			
Checked By:	IW	000	Date: 4/	114/2	<u>- ノー</u>					REV. 3/29/2019	

LOW FLOW GROUNDWATER SAMPLING RECORD											
200 TA	T A C		PROJECT	NAME C/G	24.066	.		LOCATION ID	B	DATE 4/12/23	
l l	MAC	TEC	PROJECT	NUMBER 3/1	100 01	1107		START TIME	<u>v</u>	END TIME 120	
	511 Congress S	Street	SAMPLE I	<u>////</u>	0000	SAMPLE TIN	IE .	SITE NAME/INS	TALLATION	PAGE	
	Suite 200 Portland, Maine		325	3120MMC	08BO27		0	NJOECI	4828120	OF L	
WELL DIAM	ieter (IN.)	ı]2 🚄	6 □	я оп	HER				WELL INTEGRITY YES NO N/A	
TUBING 1D ((INCHES)	Z 1/8 _] 1/4 3/8	<u> </u>	5/R ΟΤΙ	HER			CAP CASING	≯ — —	
MEASUREM	IENT POINT (MP)	Порог	RISER (TOR)	TOP OF CASING	(тос) оп	HER			LOCKED C O LLAR	Z Z =	
INITIAL D' (8MP)	TW 7.0	FT	FINAL DTW (BMP)	8.15	PROT. C		Flu	$7h_{\scriptscriptstyle m FT}$	TOC/TOR DIFFERENCE	FT]	
WELL DEP (BMP)	тн Д9	, 24 _{FT}	SCREEN INTERVAL		PID FT AMBIEN	T AIR	NA	PPM	REFILL TIME SETTING	NA SEC	
WATER COLUMN	21.	<i>3</i> 3 ₁₁	DRAWDOWN VOLUME (final DTW- initial DT	0.157 c	PID WEI GAL MOUTH X 0,041)		NA	PPM	DISCHARGE TIMER SETT	ING NA SEC	
CALCULA GAL/VOL	nn X well diameter ² 2	GAL	TOTAL VOL. PURGED	: [7	DRAWD GAL TOTAL	OWN/ PURGED	0.135		PRESSURE TO PUMP	NA PSI	
			•	RIA (AS LISTED IN TH				<u> </u>			
TIME	DTAV (FT)	PURGE RATE (m L/min)	TEMP. (°C) ±3%	SP. CONDUCTANCE (mS/cm) ±3%	DISS. O ₂ (mg/L) ±10% or 3 values <0.5 mg/L	pH (units) ±0,1	REDOX (mv) ±10 mv	TURBIDITY (ntu) ±10% and <10 ntu or 3 values <5 ntu	PUMP INTAKE DEPTH (ft)	COMMENTS	
1030	BEGIN PURC	GING									
1035	8.19	150	13.09	0.805	0.13	6.98	-4	19.2	27		
1040	2.15	150	13.17	0.811	0.0	6.98	-10.3	18.6	27		
1045	8.15	150	13-00	0.814	00	6.98	-123	19.2	22		
1090	8:15	150	13.30	0.810	0,0	6,98	-13.2	15.9	27		
1099	8.15	150	13.46	0.812	0-0	6.98	-14.3	16.8	27		
1100	Sau	iPIC	,			-					
	·		:								
				· ·							
	F	INAL STABILIZ	ED FIELD PARAN	IETERS (rounded to	appropriate sign	ificant figures	s)		TEMP.: nearest degree (ev. 10.1 - 10) COND: 3 significant figure nov (ev. 1.686 - 1.69) pH: nearest tenth (ev. 5.53 - 5.5)		
(数数)			Mary and the state of the state						DO: nearest tenth (ex. 3.51 3.5) TURB: 3 SF max, nearest tenth (6.19 6.2, 101 101) ORP, 2 SF (44.1, 44, 101 19th)		
'	DOCUMENTATIO		ECOLUMINO MECO	,	TUBING/PUMP/	N + DDED 14+T	TDIAL C	•		EQUIPMENT USED	
PERIST.	TYPE OF PUMP ALTIC ERSIBLE	☆ ∧	ECON FLUIDS USED LCONOX EIONIZED WATER	SILICON TUE HDPE TUBIN	BING	S. STEE	<u>erials</u> El pump mate I MP mate rial		WL MET		
BLADD WATTE	DER	🗀 Р	OTABLE WATER ITRIC ACID	LDPE TUBIN OTHER			OBE SCREEN	•	WQ MET		
OTHER	·	Н	EXANE ETHANOL	OTHER_		OTHER OTHER			PUMP	Perist at the	
		<u> </u>	THER						FILTERS	NO. TYPE	
ANALYTICA	AL PARAMETERS PARAMET		ETHOD NUMBER	ANALYTE L		FIELD LTERED	PRESERVA'		ME REQUIRED	QC COLLECTED	
	VOC55	37/10/	3							· · <u></u>	
										·	
[.									
								7			
											
PURGE OBSERVATIONS PURGE WATER CONTAINEDUZED PURGE WATER YES NO NUMBER OF GALLONS (17 828120 MW088027 @ 1100											
PURGE WAT CONTAINER NO-PURGE N UTILIZED	TER YES] 🔯	NUMBER OF GALL GENERATED	ons <u>(, 7</u>		878	1201	16081	0007	@ 1100	
Sampler Signa	nture:	Self	Print Name:	nak Fu	ong DEVIA	TIONS FROM	I THE WORK	PLAN			
Checked By:	Tu	W	— Date: 4//	2/23						÷	

LOW FLOW GROUNDWATER SAMPLING RECORD										
MNIACTEC PROJECT NAME Car iage Cleane	LOCATION II									
MACTEC Carriage Cleane	START TIME	-1112 4/11/23 END TIME (20								
511 Congress Street SAMPLE ID	SAMPLE TIME SITE NAME I	PO (600)								
Suite 200 Portland, Maine 04101 82_8/2_0 MW/// I 0/3		EC#828170 OE [
_ \	OTHER .	WELL INTEGRITY YES NO N/A								
	THER	CAP CASING TO THE CASING TO TH								
	OTHER	CAP CASING COCKED COLLAR COLLAR								
1 10 10 1 10 20 1	CASING FUG NET	TOC/TOR DIFFERENCE FT								
WELL DEPTH 5.32 FT SCREEN PID AMBI	ENT AIR NA PPM	REFILL TIMER NA SEC								
WATER COLUMN 7, W FT DRAWDOWN 0.280 GAL MOUT		DISCHARGE NA SEC								
	/DOWN/ 0.180	PRESSURE NA J								
GALAYOL 1.17/1 GAL PURGED GAL TOTA (water column X well diameter X 0.041) (mL per minute X total minutes X 0.00026 gal/mL)	LPURGED U.100	TO PUMP PSI								
FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN THE QAPP)	TURBIDIT	V								
TIME DTW (FT) PURGE RATE (mL/min) TEMP. (°C) (mS/cm) ±3% SP. CONDUCTANCE DISS. O ₂ (mg/L ±10% or 3 value <0.5 mg/L	(ntu)	INTAKE COMMENTS								
3 1550 BEGIN PURGING	1 1	21								
1535 9.78 150 1911 1.002 1.09	7.03 -9.8 0.99	13								
1600 9.80 150 +9595 1.00 0.96	7.01 -9.2 0.02	13								
1605 9.80 190 13.76 1.001 0-93	7.01 -8.9 1.31	13								
1610 9.80 150 13.98 0.99 1.01	701 -7 2.0	1/3								
1615 9.80 150 13.41 0.99 0.90	7.01-63 0.49	/13								
1620 9.81 150 13.34 0.98 0.96	7,60-62 0,7	313								
1625 9.82 150 13.29 098 0.94	6-99 -65									
1630 Gample										
FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significantly)	nificant figures)	TEMP.* nearest degree (es. 10.1 10) COND.; 3 semificant figure mas (es. 1.686 1.69) pH; nearest tenth (es. 5.53 5.5)								
		DO: nearest tenth (ex. 3.51 = 3.5) TURB: 3 SI: max, nearest tenth (6.19 = 6.2, 101 = 101)								
EQUIPMENT DOCUMENTATION	1 1	ORP: 2 SF (44.1 - 44. 191 - 198)								
PERISTALTIC ALCONOX SILICON TUBING	P/BLADDER MATERIALS S. STEEL PUMP MATERIAL	WL METER JOL MOST								
SUBMERSIBLE DEIONIZED WATER HDPE TUBING LDPE TUBING LDPE TUBING	PVC PUMP MATERIAL GEOPROBE SCREEN	WO METER HAMA								
WATTERA NITRIC ACID OTHER OTHER OTHER OTHER	OTHER	TURB, METER 1 A MATTE								
OTHER METHANOL OTHER	OTHER	OTHER FILTERS NO. TYPE								
ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER ANALYTE LIST	FIELD PRESERVATION VOI	.UME REQUIRED QC COLLECTED								
V1 V0C58260B	FILTERED METHOD									
Total organic raibon										
Sulface by 5m45m5-F										
A A Kalinity by 411 A Jaop										
TRON fotal/ainol Ved										
X 11901/20 903923										
PURGE OBSERVATIONS PURGE WATER YES NO NUMBER OF GALLONS (56 NOT		1701/22								
CONTAINERIZED GENERATED NO-PURGE METHOD YES NO	28120 MW/	14(16)0								
UTILIZED \(\bigcap\)	IATIONS FROM THE WORK PLAN									
Sampler Signature: MMD SAMP Print Name: MWK Fe 6015										
Checked By Date: 4/1//33										

LOW FLOW GROUNDWATER SAMPLING RECORD										
	ACT	EC	1 2	11age NUMBER 6 620	clear 6 18) 45	4E	LOCATION ID HA-) START TIME LO 4 SITE NAME INS A/TDE	5	END TIME 1 0 5
Por WELL DIAMETER TUBING ID (INCHE MEASUREMENT P INITIAL DTW (BMP) WELL DEPTH (BMP) WATER COLUMN	rtland, Maine 04101	TOPOF	24	6] 5/8 ОТ	IP (AGS) NT AIR LL	FIU?		CAP CASING LOCKED COLLAR TOC/TOR DIFFERENCE REFILL TIME SETTING DISCHARGE TIMER SETT	WELL INTEGRITY YES NO N/A X
CALCULATED GAL/VOL (water column X we		GAL	(final DTW+ initial DT TOTAL VOL. PURGED (mL per minute X tota	W X well diam, squared	X 0.041) DRAWD GAL TOTAL (mL)		0.093	3	PRESSURE TO PUMP	NA PSI
1010		RGE RATE (m L/min)	TEMP. (°C) ±3%	SP. CONDUCTANCE (mS/cm) ±3%	±10% or 3 values <0,5 mg/L	pH (units) ±0,1	REDOX (mv) ±10 mv	TURBIDITY (ntu) ±10% and <10 mu or 3 values <5 mu	PUMP INTAKE DEPTH (ft)	COMMENTS
1020 9, 1025 9, 1030 8	38 7 09 1 17 1	50	13.05	1.888 2.276 2.513 2.918	1,57	6,90	13.6 0.4 -4 -3.2	55.5 19.3 6.02	13	O we red puse
1040 8.0		50	13.04	2.388 2.361 2.372	2.24	6.96 6.96	-0.4 0.1	6.30 6.37 6.11 6.26	13 13 13	
055	gan.	pie								
EQUIPMENT DOCU		. STABILIZE	ED FIELD PARAN	1ETERS (rounded to	appropriate sign	ificant figures	5)		PH: nearest tenth (c DO: nearest tenth (c	(ex. 3.51 - 3.5) nearest tenth (6.19 - 6.2, 101 - 101)
TYPE OI PERISTALTIC SUBMERSIBLE BLADDER WATTERA OTHER OTHER	F PUMP E	DE PO'NIT	CON FLUIDS USED CONOX IONIZED WATER TABLE WATER IRIC ACID XANE THANOL HER	SILICON TU HOPE TUBIN LOPE TUBIN OTHER OTHER	NG	S, STEE	L PUMP MATE IMP MATERIAL OBE SCREEN		WL MET PID WO MET	TER HANNA METER LANATTE PERISTALTIC
ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER ANALYTE LIST FIELD PRESERVATION METHOD VOLUME REQUIRED QC COLLECTED VOIS 8260B Cofai oigmic carbon Suifide by 5/145005-F ALKAlinity by 5/12320B Knuifible X I Roa folai disoluce Alsoluced anglis										
PURGE OBSERVA PURGE WATER CONTAINERIZED NO-PURGE METHO UTILIZED			NUMBER OF GALL GENERATED	1.24	T PEVI				0[3@	21099
Sampler Signature: /	1 1/1		Print Name: 4	10K Fel						

ř.

LOW FLOW GROUNDWATER SAMPLING RECORD										
MACTEC PROJECT NAME CANCES PROJECT NUMBER 3616206118 LACATION ID MW-9B PATE 4/11/23 STARTTIME 1320 END TIME 1405										
SAMPLE ID SAMPLE TIME SAMPLE TIME SAMPLE TIME SAMPLE TIME SAMPLE TIME SAMPLE TIME NY DEC #828120 OF (
WELL DIAMETER (IN.) 1 2 4 6 8 OTHER VER NO N/A										
TUBING ID (INCHES)										
INITIAL DTW 666 PROT. CASING FLUGIO TOCATOR										
WELL DEPTH (A 1/2) SCREEN PID DEFILITIMED										
(BMP) V. 5 FT INTERVAL FT AMBIENT AIR NA PPM SETTING NA SEC										
WATER COLUMN DRAWDOWN VOLUME (final DTW-x well dixm. squared X 0.041) DRAWDOWN VOLUME (final DTW-x well dixm. squared X 0.041) PID WELL MA PPM DISCHARGE TIMER SETTING NA SEC										
CALCULATED GAL/VOL 1.75 GAL DRAVYDOWN/ TOTAL PURGED 0.0934 PRESSURE TO PUMP NA PSI (water column X well diameter X 0.041) (mL per minute X total minutes X 0.00026 gal/mL)										
FIELD PARAMETERS WITH PROGRAM STABILIZATION CRITERIA (AS LISTED IN THE QAPP)										
TIME DTW (FT) PURGE RATE (mL/min) PURGE (mS/cm) biss. O ₂ (mg/L) biss. O ₃ (mg/L) biss. O ₄ (mg/cm) biss. O ₄ (mg/cm) biss. O ₅ (mg/L) biss. O ₄ (mg/cm) biss.										
1320 BEGIN PURGING 1325 5.8 150 14.88 .716 0.0 6.84 -20.3 57.6 17.6										
1330 3.51. 150 14.46 .708 6.0 6.80 -85.7 23.3 17.0										
1335 5.51 150 15.50 17.8 6.0 6.79 -91.7 18.3 17.0										
1340 9.92 150 15.29 .706 6.0 6.79 -914 17.2 12.0										
1345 6,52 150 15.02 ,701 0-0 6.80 -91.8 9.59 170										
1350 5.63 150 15.05 . 70 2 0-0 6.80 -93.0 8.35 17.0										
1355 5.53 150 14.56 , 69 4 6.0 6.81 -91.4 6.79 120										
14065.54 150 14.54 ,698 6.0 6.81 -92.56.92 17.0										
FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures) FINAL STABILIZED FIELD PARAMETERS (rounded to appropriate significant figures)										
DO: nearest tenth (x; 3.51 3.5) TURB; 3.5F nav. nearest tenth (6.19 6.2, 101 101) TURB; 3.5F nav. nearest tenth (6.19 6.2, 101 101) ORP 2.5F (4.4, 1 44, 191 190)										
TYPE OF PUMP PERISTALTIC SUBMERSTBLE BLADDER WATTERA WATTERA OTHER										
ANALYTICAL PARAMETERS PARAMETER METHOD NUMBER ANALYTE LIST FIELD PRESERVATION VOLUME REQUIRED QC COLLECTED METHOD VOCS 93608										
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED NO-PURGE METHOD UTILIZED PURGE OBSERVATIONS NUMBER OF GALLONS GENERATED NOTES 828 20 MW 98017 M 5 @ 1405 828 120 MW 98017 M 5 @ 1405 DUP @ 1405										
Sampler Signature: Mark Felons Print Name: Mark Felons Global Rus 4////23										

LOW FLOW GROUNDWATER SAMPLING RECORD										
MACTEO S11 Congress Street Suite 200 Portland, Maine 04101	PROJECT 36 SAMPLE 828	MINDER 16206	18	SAMPLE TIM	ME .	LOCATION ID MW- START TIME O SITE NAME INS NYSDEC		WELL INTEGRITY		
TUBING ID (INCHES)	2 4 1/4 3/8 OF RISER (TOR)	I/2 TOP OF CASING] 5/8 ΟΤΙ	HER			CAP CASING LOCKED COLLAR			
INITIAL DTW 6.14 FT FINAL DTW 8.46 FT STICKUP (AGS) FLUGN FT DIFFERENCE — FT										
WELL DEPTH 9.61 FT	SCREEN INTERVAL		PID FT AMBIEN	T AIR	NA	PPM	REFILL TIM SETTING	ER NA SEC		
WATER COLUMN 3,47 FT	DRAWDOWN VOLUME		PID WEI		NA	РРМ	DISCHARGE TIMER SETT			
CALCULATED O.569 GAL (water column X well diameter X 0.041) (mL per minute X total minutes X 0.00026 gal/mL) (mater column X well diameter X 0.041) (mL per minute X total minutes X 0.00026 gal/mL)								NA PSI		
TIME DTW (FT) PURGE RAT (mL/min)		SP. CONDUCTANCE (mS/cm) ±3%		pH (units) ±0,1	REDOX (mv) ±10 mv	TURBIDITY (ntu) ±10% and <10 nm or 3 values <5 nm	PUMP INTAKE DEPTH (ft)	COMMENTS		
1146 BEGIN PURGING	1		000	(/) =	100		6.0	η		
1145 678 1.50	10.56	1.92	0.05	6.40	13.3	2.04	8.0			
1150 688 150	10.56	2.03	0.0	1.88	-82	103	20			
1200 7.65 150	11.04	2.04	6.0	6.85	-101	12-96	70	[-		
1206 7.91 150	11.10	2.04	0.0	6.87	-102	0:36	8.0	Pump lowered . SFT		
1210 8.15 150	11.33	2.04	0.0	6.86	-104	0.75	8,5	1971 104920 13 1 1		
1215 Sample	1, , , , , , , , , , , , , , , , , ,				107	6	,,,,			
<u> </u>						,				
		METERS (rounded to	appropriate signi	ficant figures)		COND., 3 significately the pH: nearest tenth to			
					x *		DO: nearest tenth (TURB: 3 SF max. ORP: 2 SF (44.1	neures) tenth (6.19 - 6.2, 101 - 101)		
PERISTALTIC SUBMERSIBLE BLADDER WATTERA OTHER	DECON FLUIDS USED ALCONOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER // CW 1/	SILICON TU HDPE TUBIN LDPE TUBIN OTHER OTHER	BING NG	GPUMP/BLADDER MATERIALS S. STEEL, PUMP MATERIAL PVC PUMP MATERIAL GEOPROBE SCREEN DTHER OTHER OTHER OTHER				WL METER 50100161 WO METER 4000 TURB. METER 40016 PUMP PUMP 100 5016 OTHER FILTERS NO. TYPE		
PARAMETER METHOD NUMBER ANALYTE LIST FIELD PRESERVATION VOLUME REQUIRED QC COLLECTED X TOTAL OLYMPIC CALBON X SUIFIDE BY SMY5005-F X ALKALINITY BY SMADDOB X TRON TOTAL OLYMPIC ** X IRON TOTAL OLYMPIC ** X ISOLULA OA 6505										
PURGE OBSERVATIONS PURGE WATER YES NO CONTAINERIZED	NUMBER OF GALL GENERATED	oys 1.37		nple			wo90	008@1215		
Sampler Signature WWW July		Naik Fel	OA7	TIONS FROM	THE WORK	PLAN				