FINAL REMEDIAL INVESTIGATION/ FEASIBILITY STUDY FORMER SPEEDY'S CLEANERS SITE #828128

WORK ASSIGNMENT NO. D004434-3

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering & Consulting, P.C. Portland, Maine

Project Number: 3612082109

MARCH 2010

FINAL REMEDIAL INVESTIGATION/ FEASIBILITY STUDY FORMER SPEEDY'S CLEANERS SITE #828128

WORK ASSIGNMENT NO. D004434-3

Prepared for:

New York State Department of Environmental Conservation Albany, New York

Prepared by:

MACTEC Engineering & Consulting, P.C. Portland, Maine

Project Number: 3612082109

MARCH 2010

Submitted by:

Approved by:

Charles R. Staples

Site Manager

Mark J. Stelmack, P.E.

Principal Professional

TABLE OF CONTENTS

LIST OF FIGURESi	iv
LIST OF TABLES	.v
GLOSSARY OF ACRONYMS AND ABBREVIATIONS	vi
1.0 INTRODUCTION 1- 1.1 REPORT ORGANIZATION 1- 1.2 PURPOSE OF REPORT 1- 1.3 SITE BACKGROUND 1- 1.3.1 Site Description 1- 1.3.2 Site History 1- 1.3.3 Previous Field Investigations 1-	-2 -3 -3 -3
2.0 SCOPE OF WORK	-1
3.0 SITE PHYSICAL SETTING	-1 -1 -1 -2 -2
4.0 NATURE AND DISTRIBUTION OF CONTAMINATION. 4- 4.1 SOIL SAMPLING. 4- 4.1.1 Background Soil Analytical Results. 4- 4.1.2 Site Soils Analytical Results. 4- 4.2 SOURCE AREAS 4- 4.3 GROUNDWATER ANALYTICAL RESULTS 4-	-1 -1 -1 -2
5.0 CONTAMINANT FATE AND TRANSPORT	-1 -1
6.0 QUALITATIVE EXPOSURE ASSESSMENT 6- 6.1 PUBLIC HEALTH EVALUATION 6-	
7.0 RI SUMMARY AND CONCLUSIONS	-1

TABLE OF CONTENTS (CONTINUED)

8.0	Γ	EVELO	PMENT OF REMEDIAL ACTION OBJECTIVES, GENERAL RESPON	ISE
	Α	CTION	S, AND CONTAMINATION REQUIRING REMEDIATION	8-1
	8.1	IDEN'	ΓΙΓΙCATION OF REMEDIAL ACTION OBJECTIVES	8-1
		8.1.1	Remedial Action Objectives for Soil	8-1
		8.1.2	Remedial Action Objectives for Groundwater	8-2
		8.1.3	Remedial Action Objectives for Indoor Air	8-2
	8.2		ΓΙFICATION OF GENERAL RESPONSE ACTIONS AND EXTENT OF	
		CONT	AMINATION REQUIRING REMEDIAL ACTION	8-3
		8.2.1	General Response Actions for Soil	8-3
		8.2.2	General Response Actions for Groundwater	8-4
		8.2.3	Contamination Requiring Remedial Action	8-4
9.0			ICATION AND SCREENING OF TECHNOLOGIES	
	9.1		NOLOGY IDENTIFICATION	
	9.2	TECH	NOLOGY SCREENING	9-1
10.0			PMENT AND PRELIMINARY SCREENING OF ALTERNATIVES	
	10.1		RNATIVE IDENTIFICATION	
		10.1.1	Alternative 1: No Further Action	
		10.1.2	Alternative 2: No Further Action with Site Management	
		10.1.3	Alternative 3: Soil Vapor Extraction and Air Sparging	
		10.1.4	Alternative 4: In-Situ Enhanced Biodegradation	
		10.1.5	Alternative 5: On-Site Excavation and In-Situ Enhanced Biodegradation	10-4
		10.1.6	Alternative 6: Source Area Excavation, On-Site and Off-Site In-Situ	
			Enhanced Biodegradation, and Soil Vapor Extraction	10-5
11.0			ED ANALYSIS OF ALTERNATIVES	
	11.1		ANALYSIS PROCEDURES	
	11.2		RAL ASSUMPTIONS	
	11.3		RNATIVE 1: NO FURTHER ACTION	
	11.4		RNATIVE 2: NO FURTHER ACTION WITH SITE MANAGEMENT	
		11.4.1	Betailed Braidation of Phiermatric 2	
			RNATIVE 3: SOIL VAPOR EXTRACTION AND AIR SPARGING	
			Detailed Evaluation of Alternative 3	
			RNATIVE 4: IN-SITU ENHANCE BIODEGRADATION	
		11.6.1	Detailed Evaluation of Alternative 4	11-17
	11.7		RNATIVE 5: ON-SITE EXCAVATION AND IN-SITU ENHANCED	44.40
			EGRADATION	
		11.7.1	Detailed Evaluation of Alternative 5	
	11.8		RNATIVE 6: SOURCE AREA EXCAVATION, ON-SITE AND OFF-SIT	ΓE
			TU ENHANCED BIODEGRADATION, AND SOIL VAPOR	
			ACTION	
		11.8.1	Detailed Evaluation of Alternative 6	11-26
12.0			RATIVE ANALYSIS OF ALTERNATIVES	
	12.1	COMF	PARATIVE ANALYSIS OF REMEDIAL ALTERNATIVES	12-1
13.0) R	EFERE	NCES	13-1

TABLE OF CONTENTS (CONTINUED)

FIGURES

TABLES

APPENDICES

Appendix A: Select O'Brien & Gere RI Data

Appendix B: Field Data Records

Appendix B.1: Soil Boring Logs

Appendix B.2: Monitoring Well Data Logs

Appendix B.3: Low Flow Groundwater Sampling Records

Appendix C: Hydraulic Conductivity Data

Appendix D: Survey Data

Appendix E: Data Usability Summary Reports

Appendix F: Calculations

Appendix G: NYSDEC Laboratory Form I's

Appendix H: Natural Attenuation Screening Protocol Forms

Appendix I: Cost Backup

LIST OF FIGURES

Figure

1.1	Site Location
1.2	Site Features
1.3	O'Brien and Gere Soil Investigation Locations
1.4	Groundwater Monitoring Well Locations
2.1	Geoprobe Soil Sampling Locations
2.2	Former Speedy's RI Monitoring Well and Surface Soil Sample Locations
3.1	Interpreted Top of Bedrock Elevations
3.2	Interpreted Groundwater Contours – January 2009
4.1	PCE Concentrations in Soil
4.2	PCE and TCE Concentrations in Groundwater

LIST OF TABLES

Table

3.1	Groundwater Elevation Data
3.2	Groundwater Hydraulic Data
4.1	Summary of Pesticides, PCBs, SVOCs, and Metals Concentrations in Soil
4.2	Summary of VOC Concentrations in Soil
4.3	Summary of VOC Concentrations in Groundwater
4.4	Metals, SVOCs, and Pesticides/PCBs in Groundwater
4.5	Groundwater Chemistry Results
4.6	Groundwater VOC Results – July 2009
5.1	Conceptual Site Model
8.1	Remediation Goals
9.1	Identification and Screening of Potential Remedial Technologies and Process Options
10.1	Preliminary Screening of Remedial Alternatives
11.1	Cost Summary for Alternative 2 - No Further Action with Site Management
11.2	Cost Summary for Alternative 3 - Soil Vapor Extraction and Air Sparging
11.3	Cost Summary for Alternative 4 - In-Situ Enhanced Biodegradation
11.4	Cost Summary for Alternative 5 - On-Site Excavation and In-Situ Enhanced Biodegradation
11.5	Cost Summary for Alternative 6 - Source Area Excavation, On-Site and Off-Site In-Situ Enhanced Biodegradation, and Soil Vapor Extraction
12.1	Summary of Remedial Alternative Costs
12.2	Comparative Analysis of Remedial Alternatives for Groundwater

GLOSSARY OF ACRONYMS AND ABBREVIATIONS

3DMeTM 3-D MicroemulsionTM

ASP Analytical Services Protocols

bgs below ground surface

cis-1,2-DCE cis-1,2-dichloroethene

CERCLA Comprehensive Environmental Response, Compensation, and Liability

Act

COC contaminant of concern

DNAPL dense nonaqueous phase liquid

DO dissolved oxygen

DUSR Data Usability Summary Report

°F degrees Fahrenheit FS Feasibility Study

ft feet/foot

GAC granular activated carbon

HRCTM Hydrogen Release CompoundTM

ID inside diameter

K hydraulic conductivity

Labella Associates, P.C.

MACTEC Engineering and Consulting

mg/Kg milligram(s) per kilogram

msl mean sea level

MNA monitored natural attenuation

NPW net present worth

NYCRR New York Codes, Rules, and Regulations

NYS New York State

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

OBG O'Brien and Gere Engineers, Inc.

OM&M Operation, Maintenance and Monitoring

OMB Office of Management and Budget

PCBs polychlorinated biphenyls

PCE tetrachloroethene

PID photoionization detector

ppm parts per million

PRAP Post Remedial Action Plan

PVC polyvinyl chloride

QA quality assurance QC quality control

QEA Qualitative Exposure Assessment

RAOs Remedial Action Objectives

Report RI/FS Report

RG remediation goal

RI Remedial Investigation

SCGs standards, criteria and guidance values

SCO Soil Cleanup Objectives

GLOSSARY OF ACRONYMS AND ABBREVIATIONS (CONTINUED)

Site the Former Speedy's Cleaners site
SSDS sub-slab depressurization system

SVE soil vapor extraction

SVOC semi-volatile organic compound

TAL target analyte list
TCE trichloroethene

 $\mu g/kg$ microgram(s) per kilogram

 μ g/L microgram(s) per liter

μg/m³ microgram(s) per cubic meter

USEPA United States Environmental Protection Agency

VOC volatile organic compound

WA Work Assignment

1.0 INTRODUCTION

This Remedial Investigation/Feasibility Study (RI/FS) was conducted by MACTEC Engineering and Consulting, P.C. (MACTEC) in response to Work Assignment (WA) No. D004434-3 from the New York State Department of Environmental Conservation (NYSDEC) for the Former Speedy's Cleaners site (Site) in the Town of Brighton, Monroe County, New York (Figure 1.1). The Site is listed as a Class 2 Inactive hazardous waste disposal site (Site No. 8-28-128) in the Registry of Inactive Hazardous Waste Disposal Sites in New York State (NYS). This study was conducted in accordance with the NYSDEC requirements in WA No. D004434-3 dated July 15, 2008, and with the July 2005 Remedial Investigation/Remedial Design Superfund Standby Contract between MACTEC and the NYSDEC.

The RI/FS for the Site has been conducted in accordance with the WA, as well as with applicable portions of the following documents:

- NYSDEC Draft DER-10 "Technical Guidance for Site Investigation and Remediation" (NYSDEC, 2002)
- 6 New York Codes, Rules and Regulations (NYCRR) Part 375 "Environmental Remediation Programs"
- United States Environmental Protection Agency (USEPA) "Guidance for Conducting Remedial Investigations and Feasibility Studies under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)" (USEPA, 1988)

Previous investigations conducted at and in the vicinity of the Site identified the presence of tetrachloroethene (PCE) and its breakdown products (e.g., trichloroethene [TCE], cis-1,2-dichloroethene [cis-1,2-DCE], vinyl chloride) in groundwater at concentrations above the NYS groundwater standards. PCE and TCE are listed hazardous wastes under 6 NYCRR Part 371 (NYS, 1999). Based on existing data, the NYSDEC concluded that the Site constitutes a potential significant threat to public health and the environment as defined in 6 NYCRR 375 (NYSDEC, 2006). Existing data reviewed was not sufficient to determine the nature and extent of contamination, if the Site is the source of the chlorinated solvent groundwater contamination, or if the detected groundwater contamination is originating from the Carriage Cleaners Site (Site No. 828120) located approximately 300 feet west of the Site; therefore the RI field program was performed.

The objectives of the RI field program were to identify a source area, if possible, and to determine the nature and distribution of contamination associated with the Site, as well as to determine if contaminants detected in site media originated from the Site or are associated with the release of PCE at the Carriage Cleaners property. The investigation was conducted to delineate the distribution of potential groundwater and soil contamination and to assess the threat to human health and the environment from the Site. The FS developed remedial objectives and evaluated potential remedial alternatives from an engineering, environmental, public health, and economic perspective.

1.1 REPORT ORGANIZATION

The RI/FS report (Report) is structured in general in accordance with the NYSDEC Technical and Administrative Guidance Memorandum 4025 (NYSDEC, 1989) and the USEPA RI guidance (USEPA, 1988). The RI/FS includes Sections 1.0 to 13.0, and associated appendices. The RI portions of the Report consist of Sections 1.0 to 7.0, outlined below.

- Section 1.0: Presents the purpose of the RI/FS Report and summarizes the site history and previous site investigations.
- Section 2.0: Presents the specific scope of work for the remedial investigation.
- Section 3.0: Summarizes the physical characteristics of the site and surrounding area, including results of physical characteristics as determined during the RI field program.
- Section 4.0: Presents results of the analytical data and the nature and distribution of contamination.
- Section 5.0: Presents a discussion of the fate and transport of site contaminants.
- Section 6.0: Presents the Qualitative Exposure Assessment (QEA).
- Section 7.0: Presents the RI Summary and Conclusions.

The FS portions of the Report consist of Sections 8.0 to 13.0, outlined below.

- Section 8.0: Presents the development of Remedial Action Objectives (RAOs), the general response actions, and the extent of contamination requiring remediation.
- Section 9.0:
- Presents the identification and screening of applicable remedial technologies.
- Section 10.0: Combines the retained remedial technologies into remedial alternatives for the site.

Section 11.0: Presents a detailed analysis of each of the remedial alternatives. The detailed analysis is intended to provide decision-makers with the relevant information with which to aid in selection of a site remedy.

Section 12.0: Evaluates the relative performance of each alternative using the same criteria by which the detailed analysis of each alternative was conducted. The purpose of the comparative analysis is to identify the advantages and disadvantages of each alternative relative to one another to aid in selecting a remedy for the Site.

Section 13.0 References.

Field data sheets and supporting information are included in the appendices attached to this Report.

1.2 PURPOSE OF REPORT

The purpose of this Report is to present findings of the RI field program, and develop and evaluate RAOs and remedial alternatives which address the RAOs.

1.3 SITE BACKGROUND

On August 13, 2008, MACTEC personnel visited the Site and surrounding area with representatives of the NYSDEC, New York State Department of Health (NYSDOH), Monroe County Department of Health, and the site owner. Information pertaining to the history of site operations and past releases of contamination were reviewed to help prepare the Work Plan for the RI field investigation, as well as to help prepare this RI/FS report. Observations noted during the site reconnaissance, information collected, and other information provided in the WA are summarized below.

1.3.1 Site Description

The Site is located at 2150 Monroe Avenue in a mixed residential/commercial area in the Town of Brighton, Monroe County (Figure 1.1). It is identified in the Town of Brighton as Parcel ID Number 137.14-2-9. The site property is 0.15 acre upon which is located an approximately 3,000 square foot, two story brick and block construction building with a partial basement, and a paved parking lot.

The site building currently houses a beauty salon on the first floor and a photography studio on the second floor. The property is bordered immediately to the northwest by a multi-tenant residential building; to the northeast by a parking lot and residential community; to the southeast by Hampshire Drive; and to the southwest by Monroe Avenue. Multi-unit and single residences are also located west across Monroe Avenue. The Site and surrounding community is serviced by public drinking water and sewer.

1.3.2 Site History

The Site was reportedly first developed in the 1940's (Labella Associates, P.C. [Labella], 1999). The review of the R.L. Polk & Co. Rochester Suburban City Directories indicated that the Site was used as: George and Bill's Super Grocery from 1950 to 1952 (City Directories prior to 1950 were not reviewed); Speedy's Cleaners from 1953 to 1981; and Lasser's Home Products Starting in 1982. An inspection of the Former Speedy's Cleaners completed on June 29, 1977 by the Monroe County Health Department documented the use of approximately 550 gallons of PCE per year (NYSDEC, 2008). A Phase I Investigation conducted in 1999 for the Site by Labella indicated that the first floor of the Site building was still being used as Lasser's Home Products, and that the second floor was used as a photography studio and office (Labella, 1999). According to Monroe County property deeds, the current owner purchased the property in 1999.

1.3.3 Previous Field Investigations

As provided in the NYSDEC Work Authorization letter to MACTEC (NYSDEC, 2008) and other input from the NYSDEC, several investigative activities have been conducted at and in the vicinity of the Site. The Former Speedy's Cleaners site was identified during the petroleum spill activities at the nearby Newcomb Oil/Former CITGO Gasoline Station site (Spill # 0306131) and the RI activities at the Carriage Cleaners site (Site # 828120), located approximately 450 feet and 350 feet west-northwest of the Site, respectively (Figure 1.2). The investigation at the Former CITGO Gasoline Station was completed because of petroleum contamination in groundwater and the investigation at the Carriage Cleaners site was completed because of PCE contamination detected in groundwater.

According to documentation in the O'Brien and Gere Engineers, Inc. (OBG) Carriage Cleaners RI Report (OBG, 2007), three investigations have been conducted to date in the vicinity of the Site, including:

- 1. Haley and Aldrich investigation of the Former CITGO station Haley and Aldrich was contracted by Newcomb Oil to investigate and address potential impacted environmental media associated with the Newcomb Oil/Former CITGO Station located at 2087 Monroe Avenue. As part of the investigation, Haley and Aldrich installed monitoring wells HA-101 to HA-123 and extraction wells HA-124 to HA-126.
- 2. Labella Labella completed a Phase II Environmental Site Assessment of the Carriage Cleaners site in 2004; including the completion of 27 Geoprobe® soil borings and the installation of five direct push monitoring wells (MW-1 to MW-5).
- 3. OBG OBG completed RI and FS activities at the Carriage Cleaners Site in 2007. Investigations included the installation of 10 monitoring wells; MW-203S to MW-209S screened at the first encountered water, and MW-104I, MW-111I, and MW-202I, screened in intermediate bedrock. A total of 29 monitoring wells were sampled, and hydraulic conductivity (K) testing was conducted at 19 wells. In addition, thirty direct push soil borings were completed, fifteen of which were located on the Former Speedy's Cleaners property. Soil vapor and indoor air/sub-slab vapor sampling were also conducted.

In addition, Empire Geo-Services, under contract with the NYSDEC, installed groundwater monitoring wells MW-201 and MW-202 near the Former Speedy's Cleaners site, and collected groundwater samples from these wells in July 2004 (Empire Geo-Services, 2004).

During these investigations PCE was detected in soil vapor, groundwater, and soil samples collected directly adjacent to the Former Speedy's Cleaners property. The investigation activities showed that groundwater flow beneath the Site was to the north/northeast. The Site is located down- and cross-gradient to the Carriage Cleaners site (OBG, 2007). The Carriage Cleaners RI report summarized that although the Former Speedy's Cleaners site is near the Carriage Cleaners site, the groundwater flow direction and the presence and distribution of PCE suggests that the Former Speedy's Cleaners site is a separate source for PCE contamination and is contributing to off-site groundwater and soil vapor contamination (OBG, 2007).

Investigation activities completed during the Carriage Cleaners RI on the Former Speedy's Cleaners property included the advancement of 15 shallow soil borings, collection of vapor intrusion samples, and installation of one (1) groundwater monitoring well. Additionally, monitoring wells were installed downgradient of the Former Speedy's Cleaners site. Twelve (12) soil samples were collected from the vadose zone at the Site during the shallow soil boring

March 2010

Final

program. PCE was detected in each of the soil samples at concentrations ranging from a lab estimate of 0.64 micrograms per kilogram (µg/Kg) along the front (west) of the property to 4,800 µg/Kg near the back (east) of the property. Historic groundwater quality data along with the groundwater flow data suggest that a source for PCE exists at the Former Speedy's Cleaners Site (OBG, 2007). Locations of the shallow soil borings are included on Figure 1.3 and locations of the monitoring wells are included on Figure 1.4. In addition, select figures from the OBG Carriage Cleaners RI Report showing: 1) Site soil sampling locations and PCE concentrations, 2) well locations and PCE and its breakdown product concentrations in groundwater samples, and 3) groundwater elevations, as well as 4) summary text, tables and figures presenting the soil vapor intrusion data are included in Appendix A. Additionally, vapor intrusion sampling results at the site building detected PCE at 250 and 280 micrograms per cubic meter (µg/m³) in two sub-slab soil vapor samples and PCE at 340 and 150 µg/m³ in basement and first floor indoor air samples, respectively (NYSDEC Environmental Site Remediation Database). Based on the VI sampling results the NYSDOH recommended that a sub-slab depressurization system (SSDS) be installed at the Site based on PCE concentrations detected in the site sub-slab samples and indoor air samples. The property owner installed this SSDS system in March 2007.

Based on the results of groundwater, soil, and vapor intrusion sampling, the Former Speedy's Cleaners site was listed as a Class 2 site in the NYS Registry for Inactive hazardous Waste Disposal Sites in July 2007.

2.0 SCOPE OF WORK

To evaluate the threat to human health and the environment, and to collect data for future evaluation of remedial alternatives for the Site, the RI field program was conducted. These activities were conducted to support the evaluation of soil and groundwater conditions at and in the vicinity of the Site. Specifically, data was collected to:

- characterize the distribution of soil contamination present at the Site
- characterize the vertical and areal distribution of groundwater contamination
- evaluate whether potential contamination present at the Site is contributing to the known off-site PCE groundwater plume
- evaluate migration pathways, and actual or potential receptors
- evaluate potential remedial alternatives for the Site

2.1 TASK 2 – REMEDIAL INVESTIGATION

The following subsections describe the RI fieldwork. The RI fieldwork was conducted in accordance with the specifications presented in the Quality Assurance Program Plan (MACTEC, 2007) and the Site specific Quality Assurance Project Plan. Off-site laboratory analyses was performed by Columbia Analytical Services, a NYSDOH approved laboratory. Off-site laboratory analysis complied with the NYSDEC Analytical Services Protocols (ASP) (NYSDEC, 2000).

2.1.1 Field Program Sampling Activities

The field program included the following sampling activities:

- seven borings completed through the basement floor and soil samples collected from below the basement concrete slab for volatile organic compound (VOC) analysis
- 18 Geoprobe® borings completed outside the building, with a soil sample collected from 16 of the borings for VOC analysis; two (total) water samples collected for VOC analysis
- a soil sample collected from three of the Geoprobe® borings for semivolatile organic compound (SVOC), Target Analyte List (TAL) metals (plus cyanide), pesticides, and polychlorinated biphenyls (PCB) analyses

- four overburden/bedrock interface wells (MW-206 and MW-210 through MW-212) installed; MW-206 is paired with existing overburden well MW-206S
- groundwater samples collected from three of the Former Speedy's Cleaners RI wells for VOC, SVOC, TAL metal, pesticide and PCB analyses
- groundwater samples collected from 21 existing wells for VOC analyses
- groundwater samples collected from 10 Former Speedy's Cleaners RI and existing wells for monitored natural attenuation (MNA) parameters
- three background soil samples collected for TAL metals analysis

In addition, the NYSDEC collected a second round of groundwater samples from 12 wells (Former Speedy's Cleaners RI and existing wells) in July 2009.

Geoprobe® Soil Sampling

Field investigation activities included the completion of Geoprobe® borings, and the collection and analysis of soil samples. The purpose of the Geoprobe® activities was to provide soil data for comparison to Soil Cleanup Objectives and to assist the NYSDEC in evaluating significant threat to public health and the environment as defined by 6 NYCRR Part 375 (NYSDEC, 2006). Soil sample analyses were used to assess whether hazardous waste constituents were present in site soils, and, if possible, confirm additional sources of chlorinated solvents. Geoprobe® sampling field data records are included in Appendix B. Pertinent data records documenting site explorations related to the Carriage Cleaners site are also included in Appendix B.

The Geoprobe® operates by pushing and/or hammering rods and probe tips into the subsurface for sample collection. Samples were collected continuously from the ground surface until refusal (presumed bedrock) using two or four foot long, 1 ½ -inch diameter hollow acrylic sleeves. Samples sleeves were then brought to the surface for soil characterization and possible laboratory analysis. Four soil borings (DP-1 to DP-4) were advanced beneath the building's basement slab, and eighteen soil borings (DP-5 to DP-22) were completed outside of the Former Speedy's Cleaners building. Based on review of analytical results of the soil samples, an additional three borings (DP-23 to DP-25) were completed beneath the main floor of the Site building. Boring locations are shown on Figure 2.1. The exterior borings were completed using a subcontracted Geoprobe® while the interior samples were completed by coring a three-inch diameter hole through the buildings concrete slab and then using a core sampling slide hammer to collect soil

samples down to the water table (approximately eight feet below ground surface [bgs]). Continuous sampling of each boring was done to identify the geology of the subsurface. Photoionization detector (PID) headspace readings were used to screen soil samples for the presence of VOCs as each soil sample was removed from the split-spoon.

One sample each (plus quality control samples) was collected from 19 of the 22 soil borings for analysis by an Environmental Laboratory Accreditation Program certified laboratory. The sample depth for laboratory analysis was based on field screening data (e.g., the highest PID reading per boring). The soil samples were analyzed for VOCs via USEPA Method 8260. In addition three samples were collected from the same interval as the VOC sample (based on field observations) from borings DP-4, DP-5, and DP-7, and analyzed for metals via USEPA method 6010B, SVOCs via USEPA method 8270, pesticides via USEPA method 8081 and PCBs via USEPA 8082.

In addition to soil sampling, one groundwater sample each was collected from borings DP-12 and DP-17.

In addition to the Geoprobe® soil samples, three surface soil samples (SS-001 to SS-003) were collected for background metals analysis via USEPA method 6010B. Locations are shown on Figure 2.2.

MACTEC worked closely with the NYSDEC, the site owner, and utility companies to obtain access to the soil boring locations. Locations were based on field conditions and additional observations of the site building. Locations were chosen to further characterize soil in the vicinity of potential source areas, as well as characterize general site conditions at specific locations below the site building.

Groundwater Monitoring Well Installation

To determine groundwater flow characteristics and the quality of groundwater upgradient and downgradient of the Site, as well as at the Site, and to better define the extent of groundwater contamination, four overburden/bedrock groundwater monitoring wells, MW-206, MW-210, MW-211, and MW-212, were installed. Groundwater analytical data and permanent data monitoring points assist in determining the distribution of potential chlorinated solvent contamination in the

MACTEC Engineering and Consulting, P.C., Project No. 3612082109

vicinity of the Site, and to allow for long-term monitoring. Hydraulic testing of the wells was conducted to calculate the groundwater hydraulic conductivity (K) values for the

overburden/shallow bedrock.

The groundwater monitoring wells were installed approximately 10-feet into bedrock, with two of the wells installed using tri-cone drilling techniques and two of the wells installed in the vicinity of the Site building using HQ coring techniques. The Former Speedy's Cleaners RI monitoring well locations are shown on Figures 1.4 and 2.2. The wells consist of a two-inch inside diameter (ID) Schedule 40 Polyvinyl Chloride (PVC) casing and a ten foot long two-inch ID PVC well screen, with the screen extending across the overburden/bedrock interface. Well screens have 0.010-inch wide machine slots with #0 sand pack to 2 feet above the screen, a two foot bentonite seal above the sand pack, and a bentonite grout backfill to the ground surface. The wells were completed with a locking cap and a six-inch flush mount cover. Well logs are provided in Appendix B.

Following installation, the newly installed monitoring wells were developed using pump and surge techniques. Well development records are provided in Appendix B.

Groundwater Sampling

One round of groundwater samples was collected from 36 Former Speedy's Cleaners RI and existing monitoring wells. This included samples from two wells (OW-1 and EW-1) installed at Carriage Cleaners by MACTEC in December 2008. Groundwater analytical data was used to assess the distribution of potential contamination in the vicinity of the Site, and to allow monitoring of that contamination. Thirty four of the groundwater samples were collected during the week of January 19th, 2009. Two wells could not be located because of large snow banks and thus were sampled on February 2, 2009 (MW-201) and March 12, 2009 (MW-3). Water levels were recorded prior to commencing groundwater sampling. A second round of water levels was collected on March 11, 2009. Monitoring wells were sampled using low-flow sampling procedures. Field measurements were recorded on field data records included in Appendix B.

Groundwater samples were analyzed for VOCs by USEPA Method 8260. Samples collected from three of the Former Speedy's Cleaners RI monitoring wells (MW-202, MW-206, and MW-212) were analyzed for total TAL metals by USEPA Methods 6010B/7470, SVOCs by USEPA Method

2-4

8270, and pesticides and PCBs by USEPA Methods 8081/8082. In addition, nine wells (HA-114, HA-119, MW-201, MW-201I, MW-203S, MW-205S, MW-206, MW-211, and MW-212) were sampled for MNA parameters, including, total organic carbon by USEPA Method 415.1, nitrate by NYSDEC ASP Method 352.1, nitrite by NYSDEC ASP Method 354.1, sulfate by NYSDEC ASP Method 375.4, sulfide by NYSDEC ASP Method 376.2, methane/ethane/ethene by American Society for Testing and Materials Method D-1945, carbon dioxide by Hach Method, alkalinity by USEPA Method 310.1, chloride by USEPA Method 325.3, and iron and manganese by USEPA Method 6010B (the laboratory mistakenly ran total metals for the MNA samples, with the exception of MW-201 and MW-211).

Upon completion of the groundwater sampling, hydraulic conductivity tests were performed on the four Former Speedy's Cleaners RI monitoring wells to characterize shallow overburden and bedrock hydraulic characteristics. The hydraulic conductivity tests consisted of slug tests, using a solid mass of PVC (the slug) and a data logger. For the well with the screens installed across the water table (MW-212), two rising head tests were conducted. For wells with screens installed below the water table (MW-206, MW-210, and MW-211), two rising and two falling head tests were conducted at each well. Hydraulic conductivity test data were analyzed by the methods of Hvorslev (1951) and Bouwer and Rice (1976). Hydraulic conductivity data is included in Appendix C.

In addition to the sampling by MACTEC, the NYSDEC collected a second set of groundwater samples from 12 wells (DEC-Well, EW-1, HA-114, MW-1, MW-6, MW-201, MW-202, MW-206, MW-206S, MW-210, MW-211, MW-212) in July 2009. Samples were analyzed for VOCs by USEPA Method 8260.

Site Survey and Base Map

MACTEC's survey subcontractor completed a survey of the Former Speedy's Cleaners RI wells, as well as the exterior Geoprobe® sampling locations. Horizontal locations were tied to the NYS Plane Coordinate System using North American Datum of 1983.

Vertical elevations of groundwater monitoring wells were tied to mean sea level (msl), using North American Vertical Datum of 1988, and measured to an accuracy of 0.01 foot. Horizontal well

measurements were to an accuracy of 0.1 foot. A table of surveyed points is included in Appendix D. Pertinent survey data records documenting site explorations related to the Carriage Cleaners site are included in Appendix D.

The physical characteristics of the site study area are discussed in this section. Information collected during both Task 1 preparation of the RI Work Plan and Task 2 RI Field Investigation are summarized below.

3.1 TOPOGRAPHY

The Site is located approximately 485 feet above msl and the topography is fairly level. The land surface slopes slightly downward to the east for approximately one mile, before dropping steeply downward toward Allen Creek, which flows northeast towards the Irondequoit Creek (elevation of approximately 250 feet above msl three miles northeast of the Site). A small line of southwest-northeast trending hills with an elevation of approximately 650-700 feet above msl are located approximately 1.1 miles northwest of the Site. Irondequoit Bay is located approximately four miles from the Site, and Lake Ontario is approximately 8 miles north of the Site. Figure 1.1 shows the general topography of the surrounding area.

3.2 CLIMATE

The climate of the area is characterized by moderately warm summers and cold winters. Mean monthly temperatures range from 24 degrees Fahrenheit (°F) in January to 70°F in July. Average annual precipitation is 32 inches. Average annual snowfall is 90 inches per year (National Climatic Data Center, 1999).

3.3 GEOLOGY

Overburden in the vicinity of the Site consists of brown, loose, silt and fine sand overlying glacial till, which consists of loose to dense, fine and medium sand with some silt and gravel (OBG, 2007). Based on OBG and MACTEC boring logs, depth to rock at the Site varies from approximately nine to 15 feet bgs. Bedrock encountered by OBG consisted of a medium dark gray dolomite of the Lockport Dolomite group. OBG indicated that the shale present in the rock cores may indicate that the bedrock below the Site is part of the transition zone between the Lockport Dolomite and

3-1

underlying Rochester Shale. The OBG RI report also indicated, based on well drilling logs, that there was an apparent five foot deep trough in the bedrock surface just north of the Site that potentially continued below the northeastern portion of the Site. Based on borings completed at the Site for MW-211 and MW-212, this trough was determined not to extend below the Site building. The bedrock surface elevation contours completed by OBG were modified based on additional information collected during this investigation and interpreted bedrock contours are plotted on Figure 3.1.

3.4 SURFACE WATER HYDROLOGY

The Site consists primarily of impermeable surfaces (asphalt pavement or building), and surface water at the Site is expected to flow to local storm sewers. Water that does not flow into the sewers may infiltrate into unpaved areas in the vicinity of the Site, or it may flow toward Allen Creek, located approximately 800 feet north/northeast of the Site. Allen Creek eventually flows into Irondequoit Bay and then Lake Ontario.

3.5 GROUNDWATER HYDROLOGY

Groundwater at the Site was measured as being between approximately five to eight feet bgs. Groundwater elevations across the Site varied between approximately 478 to 481 feet above msl during two different groundwater level measurement events. Groundwater elevation data is presented on Table 3.1. The groundwater table in the vicinity of the Site is present in either overburden or weathered/fractured bedrock, depending on the water level and the bedrock elevation. Shallow groundwater flow is interpreted to flow east-northeast towards the Irondequoit Creek drainage basin. Interpreted groundwater surface elevation contours for the overburden/bedrock interface zone are presented on Figure 3.2. OBG interpreted groundwater elevations measured in HA-115 as signifying a potential groundwater high with divergent flows. Due to this location also being an apparent bedrock high MACTEC has continued to portray it as a groundwater high, although it is possible that there are few interconnected fractures at this location, and if so, this feature may be more of a groundwater mound than is currently presented on Figure 3.2. The OBG groundwater elevation contour figure for July 2005 is presented in Appendix A. As shown on Figure 3.2, shallow groundwater flow at the Carriage Cleaners site is also to the northeast. Based on the local groundwater flow patterns, the Former Speedy's Cleaners site is not directly hydraulically downgradient of the Carriage Cleaner's site. Deeper groundwater flow may follow other local or regional flow patterns, or be influenced by bedrock fracture patterns.

The majority of the existing groundwater monitoring wells at and in the vicinity of the Site are constructed with screens straddling the overburden (till) and upper shallow weathered (highly fractured) bedrock. Hydraulic conductivity testing of this zone as measured by OBG yielded K values ranging from 2 feet per day (ft/day) to 230 ft/day, with a geometric mean of approximately 8.86 ft/day (OBG, 2007). The K values in the four wells installed by MACTEC ranged from 5.5 to 21.4 ft/day. These K values are considered bulk averages because they average conductivities across both the fractured rock and the deep overburden. Two wells (MW-202I and MW-104I), referred to as intermediate wells by OBG, are also constructed within the more competent deeper bedrock (a third deeper bedrock well [MW-111I] appears to be hydraulically connected to the shallow fractured bedrock zone and exhibits similar K values to this shallow zone). Hydraulic conductivity estimates by OBG in the two intermediate wells were 28.3 ft/day and 12.8 ft/day.

The hydraulic gradient calculated by MACTEC from March 2009 data was 0.008 ft/ft, which is consistent with OBG calculated gradients. Based on the gradient, the geometric mean K value of 8.86 ft/day and an effective porosity of 0.05, OBG estimated the horizontal groundwater seepage velocity in the overburden/bedrock interface zone to be approximately 1.4 ft/day, or 511 ft/year. Because well screens are set across the overburden/bedrock interface and due to the uncertainty of whether the majority of the flow is occurring in the overburden or bedrock, the actual porosity of the most conductive zone could vary from an effective porosity of 0.05 (bedrock fractures) to 0.2 (medium- to fine-grained soils). Based on the geometric mean of the K values for the four wells installed in the vicinity of the Site by MACTEC (10.3 ft/day), the hydraulic gradient of 0.008 ft/ft, and the range of potential effective porosities from 0.05 to 0.2, the horizontal groundwater seepage velocity is estimated to range from approximately 0.4 ft/day to 1.7 ft/day, or approximately 150 ft/year to 600 ft/year. Groundwater hydraulic data is presented on Table 3.2.

3.6 GROUNDWATER USE

The Former Speedy's Cleaners site and the surrounding residential and commercial properties rely on public water supplied by Monroe County Water Authority. There are no known drinking water Remedial Investigation/Feasibility Study Report – Former Speedy's Cleaners NYSDEC – Site No. 828128 MACTEC Engineering and Consulting, P.C., Project No. 3612082109 March 2010 Final

wells located within the area potentially affected by the groundwater contaminant plume attributed to the Site.

4.0 NATURE AND DISTRIBUTION OF CONTAMINATION

This section presents the results of the field investigation. The subsections below describe the results of laboratory analyses for soil and groundwater samples collected during RI field activities. To determine whether the laboratory data met the project specific criteria for data quality and data use, a Data Usability Summary Report (DUSR) was prepared in accordance with the "Guidance for the Development of Data Usability Reports" (NYSDEC, 1997). The DUSR is included as Appendix E. Complete analytical data is also presented in Appendix E. The data presented in this Report meets the data quality objectives.

4.1 SOIL SAMPLING

Background and site soil sample results are presented in the following subsections.

4.1.1 Background Soil Analytical Results

Surface soil samples were collected from locations in the general site area considered to be representative of background conditions. The surface soil sample locations (SS-001 through SS-003) are shown on Figure 2.2. Background surface soil samples were collected from approximately 0.5 feet to one foot bgs. Analytical results from these soil samples were used to establish site background values for metals concentrations in soils. Analytical results for the background soil samples are presented on Table 4.1.

4.1.2 Site Soils Analytical Results

Soil samples were collected and analyzed from Geoprobe® borings completed during field activities. VOC analytical results are presented in Table 4.2 and boring locations and PCE results are presented on Figure 4.1. SVOC, pesticide, PCB, and metals analytical results are presented in Table 4.1.

In total, 26 subsurface soil samples (plus duplicates) from 22 borings were submitted to the laboratory for VOC analysis. PCE was detected in soil samples collected from each boring

location, with concentrations ranging from 0.0015 milligrams per kilogram (mg/Kg) to 830 mg/Kg. Most of the soil samples were collected below or near the water table and the majority of the relatively low PCE detections may be the result of groundwater contamination, not an indication of source material that has migrated down from the surface. PCE was detected at concentrations greater than the Soil Cleanup Objective (SCO) for unrestricted use (1.3 mg/Kg) in soil samples collected from seven of the borings. The two highest detections were collected at or below the water table near the site building and are discussed in Section 4.2 below.

Low concentrations of TCE (likely the result of the degradation of PCE) and fuel related VOCs were detected in soil samples at concentrations below the SCOs for unrestricted use (see Table 4.2 for complete results).

Zinc was the only metal detected above its SCO, but the concentration was below concentrations detected in two of the three background samples.

Three pesticides were detected in the sample from boring DP-5, which was located on the adjacent property to the north of the Site. Dieldrin, with a detection of 0.016 mg/Kg was the only pesticide detected above its SCO for unrestricted use of 0.005 mg/Kg.

PCBs and SVOCs were not detected in the soil samples.

4.2 SOURCE AREAS

The location of the source areas (areas around DP-17 and DP-13) and the presence of PCE in soil at other locations of the site, suggest that disposal may have occurred where the site building was expanded and where an exterior storage shed was historically located.

The highest concentration of PCE detected in soil was 830 mg/Kg, collected from approximately nine feet bgs adjacent to the southeast side of the Site building at boring DP-17 (same location as MW-212; See Figure 4.1). This sample was collected below the groundwater table (water table measured between 6.5 and 7.9 feet bgs). PID readings at DP-17 were below detection limits between zero and six feet bgs, with a detection of 3.9 parts per million (ppm) at six feet bgs, and a maximum of 1900 ppm detected at nine feet bgs. Based on the PID readings occurring below, or

near the water table, it is inferred that the contamination detected at DP-17 likely migrated in groundwater from below or immediately adjacent to the site building. The PCE source area is assumed to be from leakage to the ground below the Site building or potentially adjacent to or below the former storage shed, or possible disposal outside the back door. Based on a 1968 building permit (Town of Brighton, 1968a), this storage shed was reportedly located over the southeastern section of the basement and removed in 1968 for the first of two building additions (Town of Brighton, 1968b) (approximate location of shed shown on Figure 1.3).

The second highest PCE detection in soil, 35 mg/Kg, was from a sample collected from approximately six feet bgs in boring DP-13, located adjacent to the northeast side of the Site building. This sample location is likely above the water table, but may be within the capillary fringe zone. The source of PCE at this location could be the result of contaminants migrating through the overburden from surface spills, although PID readings above background were not noted in overlying soils at this sample location. In addition, although contamination may have migrated to this location in groundwater, groundwater was noted in a nearby well to be present at approximately 6.8 feet bgs which is potentially below this detection. It is possible that this contamination represents the edge of a source area that historically existed below the northeast portion of the Site building. This contaminated soil source area may have been excavated for the completion of the addition which includes a full basement to approximately seven feet below grade (date of the addition is not known; although one 1968 building permit was identified, it is possible that two separate additions were completed at the site). Although this is a possibility, PCE detections in the two soil samples collected below the full basement (1.5 D mg/Kg and 0.018 mg/Kg) were lower than the PCE detection in DP-13 (35 mk/kg).

Although concentrations of PCE detected below the Site building were only slightly above the SCOs for the protection of groundwater, a number of the detections were in samples collected above the water table. In addition, PID readings were noted above background at several locations above the water table. The PID readings and PCE detections are likely the result of PCE that migrated through soils from surface leaks. The bulk of the PCE contamination may have continued to migrate to groundwater, or been volatilized from soil over time. Based on analytical results and PID readings from this RI investigation, as well as from the OBG investigation at the Site, the volume of soil with the potential to contain chlorinated solvents at concentrations above the SCO for the protection of groundwater is estimated to be 790 cubic yards. This estimate assumed that

soil contamination was approximately 10 feet thick (ground surface to bedrock) in areas with PID readings above background recorded above the water table, and approximately three feet thick in areas where soil contamination was noted below the water table, but PID readings were not noted above background above the water table. Contaminated soil volume calculations are included in Appendix F.

4.3 GROUNDWATER ANALYTICAL RESULTS

During the RI, groundwater samples were collected from 36 monitoring wells during a January/March 2009 sampling event and from 12 wells during a July 2009 sampling event. Analytical results for VOCs are presented on Table 4.3, and PCE and total chlorinated VOC results are shown on Figure 4.2. Analytical Results for SVOCs, pesticides, PCBs, and metals are presented in Table 4.4. Analytical results are compared to the Technical and Operational Guidance Series 1.1.1 - Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (NYSDEC, 1998). Natural attenuation parameters are presented in Table 4.5.

January/March 2009. PCE was detected in groundwater samples collected from 23 of the 36 wells, exceeding the NYS Class GA standard for PCE of 5 micrograms per liter (μg/L) in samples collected from 19 of the 23 wells where it was detected. Groundwater samples from ten of the wells where PCE was detected at concentrations above its standard, including the highest detection of PCE of 13,000 D μg/L (MW-6), were from wells upgradient of the Site and likely the result of activities at the Carriage Cleaners site. The second highest detection of PCE in the samples collected from the monitoring wells, 7,600 µg/L, was collected from MW-212, located adjacent to the Former Speedy's Cleaners building. Concentrations of PCE decrease from the high of 13,000 μg/L detected in the groundwater sample from MW-6 at the Carriage Cleaners Site to 230 μg/L in the groundwater sample collected from MW-210, located approximately 180 feet up and slightly cross-gradient from MW-212 and to 18 µg/L detected in the groundwater sample from MW-206, located approximately 100 feet upgradient of MW-212. Concentrations of PCE in groundwater decrease downgradient of MW-212 to 31 µg/L in the groundwater sample collected from MW-204S, located approximately 750 feet east of MW-212. The downgradient PCE plume appears to be fairly narrow, with concentrations of PCE below the detection limit of 1 µg/L in groundwater samples from MW-205S and HA-119, located approximately 400 feet and 450 feet downgradient of MW-212, respectively, and on either side of the anticipated groundwater flow path from MW-212 to MW-204S.

TCE, a degradation product of PCE, was detected in groundwater samples from 20 of the 36 wells, exceeding the Class GA standard of 5 μ g/L in groundwater samples from 12 of the 20 wells where it was detected. Eight of these exceedances, including the highest TCE detection of 350 μ g/L, were from groundwater samples collected from wells upgradient of the Site and likely the result of contamination originating from the Carriage Cleaners site. The second highest detected concentration of TCE, 170 μ g/L, was in a groundwater sample from MW-212, located adjacent to the Former Speedy's Cleaners building. Concentrations of TCE detected in groundwater also decrease between Carriage Cleaners and the former Speedy's Cleaners (81 μ g/L in the sample from MW-210 and 4.5 μ g/L in the sample from MW-206).

Other chlorinated solvents, including the breakdown products of PCE and TCE of cis-1,2-DCE and vinyl chloride are also present in groundwater at concentrations above their respective Class GA standard. As shown on Figure 4.2, seven (7) off-site monitoring wells (MW-201, MW-202, MW-203S, MW-204S, MW-205S, HA-118, and HA-119) were sampled and results indicate that the chlorinated solvent groundwater contamination of PCE and its breakdown products extends off-site in an east-northeast direction approximately 1,000 feet. Cis-1,2-DCE and vinyl chloride were detected in groundwater samples collected from downgradient monitoring wells at concentrations above the PCE groundwater concentrations suggesting breakdown of the PCE contamination. Specifically, cis-1,2-DCE was detected at a maximum downgradient concentration of 190 ppb in groundwater from MW-203S and vinyl chloride was detected at a maximum downgradient concentration of 56 ppb in groundwater from HA-119.

July 2009. Results for the 12 groundwater samples (plus one duplicate) collected by the NYSDEC in July 2009 are presented in Table 4.6. Concentrations of PCE detected in groundwater were similar to those detected in January (generally within an order of magnitude), with the exception of MW-6 on the Carriage Cleaners property (29,000 μ g/L) and MW-212 on the Former Speedy's Cleaners property (22,000 μ g/L), which were both higher in July. Laboratory provided Form I's are included in Appendix G.

5.0 CONTAMINANT FATE AND TRANSPORT

This section presents an assessment of contaminant movement and disposition within the environment.

5.1 CONCEPTUAL SITE MODEL

The Conceptual Site Model takes into consideration sources of contamination, migration pathways, exposure pathways, and potential receptors. Contaminated media associated with the Site include soil, groundwater, soil gas, and indoor air. The conceptual model for the Site is presented in Table 5.1.

Soil contamination at the Site is present beneath the floor of the building and below the paved parking lot southeast and northeast of the Site building. Therefore, people who may access the property would not be exposed to contaminants in soil by incidentally ingesting the soil or by dermal contact with the soil. However, workers who excavate soil for underground utility repair or maintenance or for construction activities could contact the soil by these exposure pathways as well as by dust and vapor inhalation pathways.

Workers within the Former Speedy's Cleaners building, as well as the surrounding residential and commercial properties located within the groundwater plume path, use public water. Therefore, there is no direct exposure to groundwater associated with the Site through domestic or other uses.

The soil vapor intrusion pathway from contaminated soil and/or groundwater has previously been evaluated. At locations where it was determined that there was a potential for direct exposure to contaminated indoor air resulting from contaminated subslab soil vapor, SSDSs have been installed. Therefore there is no anticipated direct exposure to contaminated indoor air.

5.2 CONTAMINANT PERSISTANCE

VOC contaminants of concern detected at concentrations greater than their associated NYS groundwater and soil standards, criteria and guidance values (SCGs) values include PCE, TCE, cis-

1,2-DCE and vinyl chloride. These contaminants, classified as halogenated hydrocarbons, are present in groundwater and soils on Site. The processes that likely control the fate of VOCs at the Site include volatilization, dissolution, and biodegradation. These processes are briefly discussed below.

Volatilization. The fate of VOCs in surface soils and shallow groundwater is likely volatilization, as VOCs partition rapidly to the atmosphere, and neither biodegradation nor hydrolysis (a photolytic decomposition due to exposure to sunlight) occurs at a rapid rate. (Agency for Toxic Substances and Disease Registry, 1997)

Dissolution. Dissolution of VOCs from site sources to groundwater is a significant transport mechanism for VOCs at the Site. Factors affecting dissolution of VOCs are likely: (1) water table elevation in comparison to source areas; (2) flow rate (residence time) of the groundwater in the contaminated material; (3) solubility of the compound; (4) amount of recharge through VOCs in the unsaturated zone; and (5) the degree of partitioning to soils and sediments.

Biodegradation. Biodegradation reactions can reduce the total mass of VOCs in groundwater. Naturally occurring bacteria in soil are capable of degrading VOCs. The microorganisms require oxygen to aerobically biodegrade VOCs and the concentration of dissolved oxygen is an indicator of the potential for aerobic biologic activity in groundwater. Aerobic biodegradation is particularly effective for aromatic hydrocarbons, such as benzene and toluene, and may be effective in mineralizing chlorinated solvent daughter products such as 1,2-DCE and vinyl chloride.

Under aerobic conditions, parent compounds PCE and TCE (may be a parent compound or a daughter product of PCE) are relatively stable and persistent in the environment. Under suitable anaerobic conditions, however, PCE and TCE may undergo biologic transformation as the dominant fate process. It has been shown that biodegradation of PCE and TCE in groundwater increases with the organic content of the soil.

The complete anaerobic biologic transformation pathway for PCE is:

PCE→TCE→1, 2-DCE→vinyl chloride→ethane→carbon dioxide and water.

Degradation pathways may not be complete, however, depending on the presence of suitable conditions to complete the process.

Persistence of VOCs in Site Media

Chlorinated solvents, the primary contaminants of concern at the Site, are fairly persistent in the environment. Because the Site was no longer used for dry cleaning after approximately 1981, it is anticipated that spills of PCE to the environment occurred prior to this time.

Although it is likely that the primary source of contamination, PCE used in the dry cleaning process, was released to the environment over 28 years ago, concentrations were detected in soil during the RI investigation as high as 830 mg/Kg. Based on the solubility (150 milligrams per liter), Henry's Constant (0.754) and organic carbon partition coefficient (364 milligrams per gram) of PCE and the detected concentrations in soil and groundwater, the presence of PCE as a dense non-aqueous phase liquid (DNAPL) is possible at the site (calculations included in Appendix F). The highest concentration of PCE detected was from a soil sample collected from 8 to 10 ft. bgs, below the water table. Soils at the Site exhibit a high silt content and the majority of the remaining mass of PCE may have diffused into the soil silt matrix. As stated above, the primary mechanisms of concentration reduction of VOCs are typically through volatilization into soil gas (for unsaturated soil or water table surface concentrations), and dispersion and diffusion in groundwater, as well as through biological degradation. If the mass of PCE is bound up within the soil matrix (i.e., adsorbed to the soils), then dispersion through advection will be less of a factor in concentration reduction.

To assess contaminant persistence in groundwater, groundwater samples have been collected during four sampling events between 2005 and 2009. Although contaminant concentrations were lower in the samples collected in 2009 than those collected in 2005, this may be a result of many factors including low flow sampling versus bailer sampling, and groundwater levels (winter versus summer months). The data does consistently show that groundwater concentrations decrease rapidly with distance downgradient from the Site.

Evaluation of Biological Degradation/Natural Attenuation of VOCs at the Site

Natural attenuation refers to naturally occurring processes, including physical, chemical, and biological processes that reduce contaminant concentrations. Specific to biological processes, the presence of certain microorganisms are capable of degrading chlorinated solvents. Anaerobic conditions occur under reducing conditions and with little to no dissolved oxygen (DO). Aerobic conditions occur under oxygenated conditions or with high levels of DO.

Natural Attenuation Screening Protocol questionnaires were filled out for nine of the groundwater monitoring wells. Groundwater from each monitoring well location received a score based on concentrations of certain analytes detected and field parameters (i.e., determining if breakdown of chlorinated solvents are occurring and if groundwater chemistry is favorable to biodegradation) measured. Scores of 0-5 indicate that there is inadequate evidence for anaerobic biodegradation of chlorinated organic compounds. Scores of 6-14 indicate that there is limited evidence for anaerobic biodegradation of chlorinated organic compounds. Scores of 15-20 indicate that there is adequate evidence for anaerobic biodegradation of chlorinated organic compounds, and scores over 20 indicate that there is strong evidence for anaerobic biodegradation of chlorinated organic compounds. Natural Attenuation Screening Protocol forms are presented in Appendix H; groundwater chemistry and a summary of the natural attenuation scores are presented in Table 4.5.

The scores for the groundwater samples reviewed ranged from 8 to 14, indicating that there is limited evidence for anaerobic biodegradation of chlorinated organic compounds at these well locations. Although the breakdown products of PCE are present in groundwater, it cannot be said with certainty that anaerobic biodegradation is the cause of this breakdown. Although groundwater parameters measured at several of the wells appeared to be beneficial for anaerobic biodegradation, other locations had high dissolved oxygen, high reduction-oxidation, and/or relatively little benzene, toluene, ethylbenzene, xylene (used as a carbon source), indicating less favorable conditions for biological degradation.

5.3 CONTAMINANT MIGRATION

Contaminants assumed to have been spilled at the Site likely migrated down through the soils to groundwater through gravity. Although VOCs can readily leach from soil with infiltration of

precipitation and migrate to groundwater, the Site is primarily covered with buildings and asphalt, so infiltration of precipitation is currently anticipated to be minimal. Historically, contaminant leaching may have been more of a factor assuming the smaller size of the site building and the possibility that the parking area was gravel and not paved. In addition, if underground wastewater lines had leaks, this could enable leaching of contaminants (as well as acting as a potential original source of contamination).

Once dissolved in groundwater, solvents can migrate with groundwater flow. Groundwater at and in the vicinity of the Site is located at approximately six to eight feet bgs. Localized groundwater flow from the Site property is interpreted to be to the east/northeast. Although chlorinated solvents are present in groundwater upgradient of the Site, the result of spills at the Carriage Cleaners site (based on data collected during the RI), a source of chlorinated solvents (PCE and its degradation products TCE, cis-1,2-DCE, and vinyl chloride) is also present at the Former Speedy's Cleaners site and migrates in an easterly direction. PCE concentrations appear to diminish from a high of 7,600 μ g/L and 22,000 μ g/L at MW-212 to 31 μ g/L at MW-204S. Although chlorinated solvents were also detected in groundwater samples collected north of the Site, these are considered to be related to PCE releases at the Carriage Cleaners site.

Although shallow groundwater can discharge to surface water, there are no nearby surface water bodies. In addition, concentrations of PCE in groundwater decrease from a high of 7,600 μ g/L and 22,000 μ g/L at the Site at MW-212 to 31 μ g/L approximately 750 feet downgradient of the Site at MW-204S. Due to the distance to the nearest downgradient surface water (approximately 0.9 miles) and the known rate of attenuation of solvent contamination with distance from the site, migration of groundwater contamination to surface water is not anticipated to be a complete migration pathway.

Chlorinated solvents detected in soil and groundwater can partition from both soil and groundwater to soil vapor and then migrate through the soil column. Detections of VOCs in soil vapor samples collected previously indicate that VOCs are partitioning from soil and/or groundwater to soil vapor at the Site. Soil vapor can be drawn into buildings through seams and cracks in foundations and floor slabs, as well as through utility penetrations. Based on data collected, an SSDS was installed at the Site property to mitigate the potential for vapor intrusion. Soil vapor and indoor air samples collected previously by the NYSDEC did not indicate the potential for soil vapor intrusion of

chlorinated solvents to indoor air at residential locations down gradient of the Site at concentrations of concern. Other mitigation systems have been installed at residential locations north and west of the Site as a result of the chlorinated solvent spill at the Carriage Cleaners site and the fuel spill at the Newcomb Oil/Former CITGO Gasoline Station site.

6.0 QUALITATIVE EXPOSURE ASSESSMENT

This section presents a qualitative assessment of the risks posed to human health and the environment.

6.1 PUBLIC HEALTH EVALUATION

This section provides a QEA for the Former Speedy's Cleaners Site. The QEA is performed in accordance with NYSDEC Technical Guidance (NYSDEC, 2002), which indicates that the QEA should evaluate the populations of humans that may potentially be present at and in the vicinity of the Site, the mechanisms or exposure pathways by which the population may be potentially exposed to contamination associated with the Site, and the significance of exposure that may occur through the potential exposure pathways. This process involves three steps:

- 1. characterization of the exposure setting in terms of physical characteristics, current and future uses of the Site, and the populations that may be potentially exposed to Site-related contamination under the current and future land uses
- 2. identification of potential exposure pathways and exposure points to which the populations may be exposed
- 3. screening of potentially complete exposure pathways to identify the pathways and Site-related constituents of greatest concern from a health risk perspective

Exposure Pathway Evaluation and Qualitative Risk Analysis. Potentially complete exposure pathways were identified for direct contact with soil (for construction or utility workers), and inhalation of vapors that may migrate from groundwater to air within commercial or residential buildings. The significance of exposure pathways associated with these media is evaluated in this subsection through comparison of analytical data with standard and guidance concentrations published by the NYS and NYSDOH and/or background concentrations.

Soil

A comparison of analytical soil data to NYSDEC guideline values and background values indicates that PCE was detected in several soil samples on the site property at concentrations greater than SCOs. Concentrations in excess of SCOs were detected generally in subsurface soil. Only

construction or utility workers would potentially be exposed to subsurface soil if excavation activities were to occur, and under those circumstances exposures would be of a short duration (e.g., 1 week to 1 month). The principal exposure pathways to the VOCs detected in soil would be via incidental soil ingestion, dermal contact, and inhalation of vapor. There are no planned construction or excavation activities at this time.

Groundwater

There are no direct exposures to groundwater associated with the Site under current or foreseeable land uses. However, a comparison of groundwater analytical data to NYS drinking water standards provides information concerning constituents that would be of concern from a health risk perspective if the groundwater was used as potable water under existing conditions. A review of the analytical data indicates that chlorinated solvents (e.g., PCE and breakdown products), as well as fuel related VOCs were detected at concentrations that exceed drinking water standards. The fuel related VOCs, as well as the chlorinated solvents detected in groundwater west and north of the Site are associated with sources other than the Former Speedy's Cleaners site (i.e., Carriage Cleaners and the Former CITGO Station). Chlorinated solvents detected in groundwater at, and east of the Site, are related primarily to the Former Speedy's Cleaners site.

As discussed previously, groundwater that has been affected by releases from the Site is not being used as a source of water due to the availability of public water supply and, consequently, there are no direct contact exposures to Site contaminants in groundwater. Therefore, although contaminant concentrations in groundwater exceed drinking water standards, the drinking water/direct groundwater contact pathway is not an exposure pathway of concern from a health risk perspective under the existing and foreseeable land use conditions.

Soil Vapor/Indoor Air

As discussed previously, chlorinated VOCs present in soil and groundwater have the potential to partition to soil vapor. Due to the potential lower pressure inside buildings during the heating season, chlorinated VOCs present in soil vapor have the potential to migrate to indoor air via gaps in building foundation (e.g., floor drains, cracks, sumps, etc.). Although not evaluated during this

RI, soil vapor to indoor air pathway was previously evaluated by the NYSDEC during the 2005/2006 heating season.

Based on this evaluation, an SSDS was installed at the Site as part of an Interim Remedial Measure in March 2007. Although it was determined that chlorinated VOCs were present at low concentrations in soil vapor east of the Site, none of the residences evaluated were recommended for mitigation systems. This indicates that the potential migration pathway from soil vapor to indoor air east of the Site is not a complete exposure pathway. Therefore, the soil vapor to indoor air pathway is not an exposure pathway of concern from a health risk perspective under the existing and foreseeable land use conditions.

7.0 RI SUMMARY AND CONCLUSIONS

This Section presents a summary of and conclusions from the RI.

7.1 RI SUMMARY

The Site is located at 2150 Monroe Avenue in a mixed residential/commercial area in the Town of Brighton, Monroe County. The site property is 0.15 acres in size and contains an approximately 3,000 square foot, two story brick and block construction building with a partial basement, and a paved parking lot. The site building currently houses a salon and photography studio. The property is surrounded primarily by multi-unit and single unit residential property. The Carriage Cleaners site, an active dry cleaner, and the Newcomb Oil/Former CITGO Gasoline Station site are located approximately 350 feet and 450 feet west-northwest of the Site, respectively.

The Site was reportedly first developed in the 1940's, and operated as a dry cleaning business (Speedy's Cleaners) from approximately 1953 to 1981. An inspection of the Former Speedy's Cleaners completed on June 29, 1977 by the Monroe County Health Department documented the use of approximately 550 gallons of PCE per year (NYSDEC, 2008). The Site came to the attention of the NYSDEC during the investigation of the Carriage Cleaners and Former CITGO gasoline station, when high concentrations of chlorinated solvents were detected in groundwater in the vicinity of the Former Speedy's Cleaners site.

Historic and RI soil samples collected at the Site indicate the presence of PCE at concentrations above the SCOs for unrestricted use. The maximum concentration detected (830 mg/Kg compared to the SCO for unrestricted use for PCE of 1.3 mg/Kg) indicates that PCE may be present as a DNAPL in site soils. The majority of the PCE detections in exceedance of SCOs, and the highest concentrations, were detected at, or below the water table (located between six and eight feet bgs at the Site). Contamination may have migrated slightly on-site to its present location in groundwater, and may not be the result of surface spills at that specific location. Although a release mechanism and entry point of the PCE was not identified (e.g. surface spill location or leaking pipe), the release is assumed to have occurred into soil below the Site building or immediately adjacent to the Site building. Residual contamination in the vadose zone below the building at concentrations of

one to two mg/Kg indicate that these samples may be in the vicinity of the entry point, and it is possible that vadose zone contamination may have diminished through volatilization and downward transport through surface recharge over the anticipated 30 plus years since the original leak/spill occurred.

As stated above, chlorinated solvents (primarily PCE) have migrated from soil to groundwater. Groundwater at the Site is present in the overburden/weathered bedrock interface. Groundwater at the Site is interpreted to flow primarily to the east/northeast. Based on the geometric mean of the K values for the four wells installed in the vicinity of the Site by MACTEC (10.3 ft/day), the hydraulic gradient of 0.008 ft/ft, and the range of potential effective porosities from 0.05 to 0.2, the horizontal groundwater seepage velocity was estimated to range from approximately 0.4 ft/day to 1.7 ft/day, or approximately 150 ft/year to 600 ft/year.

PCE and its breakdown products TCE and cis-1,2-DCE were detected at concentrations of 7,600 μ g/L, 170 μ g/L, and 130 μ g/L, respectively, in groundwater samples from monitoring well MW-212, located adjacent to the Site building. Although the Carriage Cleaners site is a known source of these same chlorinated solvents in groundwater which may be contributing to Site groundwater contamination, the Former Speedy's Cleaners site is interpreted to be a separate source of PCE. This is based on 1) the lower concentrations of PCE in groundwater samples immediately upgradient of the Site than in the groundwater sample from MW-212, 2) the anticipated primary flow path of groundwater from Carriage Cleaners Site slightly north of the Former Speedy's Cleaners building, and 3) the detection of PCE at concentrations above the SCO for the protection of groundwater at several locations at the Site.

PCE concentrations appear to diminish from a high of 7,600 μ g/L at MW-212 to 31 μ g/L at MW-204S, located approximately 750 feet east of MW-212, based on data from January 2009. Although the breakdown products of PCE are present in groundwater and concentrations of chlorinated solvents decrease with distance from the Site, evaluation of groundwater parameters does not suggest with any certainty that anaerobic biodegradation is the cause of this breakdown.

7.2 RI CONCLUSIONS

Data collected to date at and in the vicinity of the Site indicate that chlorinated solvents were released to the Site soils and that this contamination has migrated to groundwater. Contaminated groundwater is migrating off-site to the east-northeast at concentrations above groundwater standards protective of public health.

Potential receptors include Site workers that might come in contact with contaminated subsurface soils or groundwater. Although an SSDS was installed at the Site building to mitigate potential exposure to contaminated soil vapor at the Site, the vapor intrusion to indoor air path was determined during previous investigations not to be a complete receptor pathway of concern for the off-site residences over the downgradient portion of the groundwater plume.

Although soil and groundwater data indicate that chlorinated solvents (primarily PCE) were spilled/disposed of at the Site, the precise timing, release mechanism, and entry point of contamination was not identified during this investigation. It is likely that this entry point was below or immediately adjacent to the site building. In addition, although PCE was detected in one of the furthest downgradient wells, MW-204S, at a concentration above its standard (detection of $31~\mu g/L$ compared to a standard of $5~\mu g/L$), the downgradient plume has been fairly well defined down to the groundwater standard and additional monitoring points are not deemed necessary. Because the groundwater is not used for drinking water downgradient of the Site and the soil vapor intrusion pathway was determined not to be complete, downgradient groundwater contamination is not deemed a human health risk.

8.0 DEVELOPMENT OF REMEDIAL ACTION OBJECTIVES, GENERAL RESPONSE ACTIONS, AND CONTAMINATION REQUIRING REMEDIATION

RAOs form the basis for identifying remedial technologies and developing remedial alternatives. This section identifies RAOs for the contaminated site media, general response actions to address these RAOs, and the extent of contamination requiring remedial action.

Site-specific remedial objectives for the impacted media were developed with consideration for the frequency of contaminant detection; background concentrations; the chemical and toxicological properties of the contaminant of concern (COC); existing or potential exposure pathways; and the present or projected site use.

8.1 IDENTIFICATION OF REMEDIAL ACTION OBJECTIVES

RAOs consist of medium-specific or operable unit-specific goals for protecting human health and the environment (USEPA, 1988). RAOs specify the COCs, exposure pathway(s) and receptor(s), and acceptable contaminant levels or range of levels for each exposure route. Site-specific COCs were determined by comparison of contaminant levels to Chemical-Specific SCG values, but did not consider site-specific exposure pathways.

RAOs presented in the following subsections were developed for the specific media and receptors identified in the QEA. Acceptable contaminant levels or range of levels for each media are referred to as remediation goals (RGs). The RGs developed for the Site consider both the identified COCs and the potential exposure pathways and receptors. The Chemical-Specific SCGs generally provide both exposure pathway- and receptor-specific criteria, and were used in the development of site-specific RGs in Subsection 8.2.3 below.

8.1.1 Remedial Action Objectives for Soil

The QEA concluded that site subsurface soil represents a potential direct exposure pathway for construction or utility workers conducting excavation activities beneath or near the site building. The RI identified residual soil contamination in soils in the vicinity of and beneath the site building

8-1

which may also contribute to continued groundwater or soil vapor contamination. Therefore, the following RAOs were identified for site soil:

- protect future on-site workers from unacceptable risk resulting from exposure to VOCs in site soils beneath and adjacent to the building
- prevent VOC contaminants in excess of SCOs for Protection of Groundwater Quality from leaching to groundwater from site soil
- address VOC contaminants in excess of Recommended SCOs to increase protection of onsite and off-site receptors from exposure to soil vapor contamination exceeding NYSDOH Guidance values

8.1.2 Remedial Action Objectives for Groundwater

The QEA concluded that site groundwater represents a potential exposure pathway for human use as potable water, but as discussed previously, groundwater in the vicinity of the Site is not currently used for drinking water and therefore groundwater is not considered to be a direct exposure pathway under existing and foreseeable land use conditions. Groundwater contamination at the Site may contribute to soil vapor and indoor air contamination at the Site. Therefore, the following RAOs were identified for site groundwater:

- prevent future use of site groundwater with VOC contaminant concentrations in excess of the NYS drinking water standards
- address VOC contamination in excess of NYS drinking water standards to increase protection of on-site receptors from exposure to soil vapor contamination that could migrate into the building

8.1.3 Remedial Action Objectives for Indoor Air

As discussed in the QEA, an SSDS was installed at the Site to mitigate potential indoor air issues resulting from soil and groundwater contamination. It is assumed that this system will continue to operate during implementation of the chosen remedial alternative(s) and that no other mitigation systems will be required to address indoor air issues. Also, as previously discussed, there is no indication that any downgradient receptors have site-related indoor air impacts. Therefore, there are no RAOs directly related to indoor air or soil vapor at the site. However, it is likely that the chosen remedial alternatives for soil and groundwater at the site will decrease the potential for soil vapor intrusion of VOCs.

8.2 IDENTIFICATION OF GENERAL RESPONSE ACTIONS AND EXTENT OF CONTAMINATION REQUIRING REMEDIAL ACTION

General response actions describe those actions that will satisfy the RAOs (USEPA, 1988). General response actions may include treatment, containment, excavation, disposal, institutional actions, or a combination of these. Like RAOs, general response actions are medium-specific. The general response actions presented in the following subsections include those media identified as potential threats to human health and the environment from the Site and include:

- 1. VOC soil contamination (primarily PCE) beneath and adjacent to the Site building
- 2. Site-related VOC groundwater contamination (primarily PCE) on-site and off-site

Based upon the current understanding and characterization of the Site, no additional potential threats related to the Site than those listed above exist at the Site or in the near vicinity.

Site-specific RAOs were developed in Subsection 8.1 to address the contamination requiring remedial action for subsurface soil and groundwater. The following paragraphs present a discussion of general response actions for each of these media.

8.2.1 General Response Actions for Soil

The following general response actions would address the RAOs identified for soil:

- no action
- access restriction
- containment
- in-situ treatment
- removal/disposal off-site or on-site
- ex-situ treatment

These general response actions are appropriate for site-specific soil contamination requiring remediation. The applicability of each and description of various technologies are further discussed and screened in Section 9.0.

8.2.2 General Response Actions for Groundwater

The following general response actions would address the RAOs identified for groundwater:

- no action
- institutional controls
- containment
- collection
- in-situ treatment
- on-site ex-situ treatment
- off-site treatment and/or disposal

These general response actions are appropriate for site-specific groundwater contamination requiring remediation. The applicability of each and description of various technologies are further discussed and screened in Section 9.0.

8.2.3 Contamination Requiring Remedial Action

This subsection identifies the extent of contaminated media (soil and groundwater) to which the RAOs and general response actions identified above, and the remedial alternatives to be developed in Section 9.0, will apply. Table 8.1 presents the sample locations, depth, maximum concentrations, and remediation goals for the Site contaminants detected above SCGs. The primary contaminants above SCGs are chlorinated VOCs.

Pursuant to 6 NYCRR Subpart 375-4.8(d)(2)(i), this FS Report evaluates a remedial alternative which would achieve the Unrestricted Use SCOs and provide unrestricted future use of the Site.

Figure 4.1 identifies soil samples on site that exceed Unrestricted Use SCOs. In addition, Figure F-1 presents the estimated area of soil contamination requiring remediation at the site. Figure 4.2 shows the approximate VOC plume in groundwater that is associated with the Former Speedy's Cleaners site. This plume includes both on-site and off-site groundwater contamination exceeding Class GA groundwater standards.

The remedial alternatives developed in Section 9.0 consider the distribution of the contaminants, both horizontally and vertically, and the distribution of contaminants by media.

9.0 IDENTIFICATION AND SCREENING OF TECHNOLOGIES

This section identifies and screens potential remedial technologies. Technologies are identified for

the purpose of attaining the RAOs established in Subsection 8.1. Identified technologies

correspond to the categories of general response actions described in Subsection 8.2.

Following identification, candidate technologies are screened based on their applicability to site-

and contaminant-limiting characteristics. The purpose of the screening is to produce an inventory

of suitable technologies that can be assembled into remedial alternatives capable of mitigating

actual or potential risks at the Site. Potential technologies representing a range of general response

actions (i.e., no further action, no further action with site management, containment, removal,

treatment, and disposal) are considered. The result of technology screening is a list of potential

remedial technologies that may be developed into candidate remedial alternatives.

9.1 TECHNOLOGY IDENTIFICATION

Remedial technologies and specific process options applicable to hazardous waste sites are

identified in USEPA's Guidance for Conducting RI/FS (USEPA, 1988). This guidance was used

to generate the list of applicable remedial technologies and associated process options identified for

each general response action presented in Table 9.1. General response actions were developed for

soil and for groundwater.

9.2 TECHNOLOGY SCREENING

The technology screening process reduces the number of potentially applicable technologies and

process options by evaluating factors that may influence process-option effectiveness and

implementability. This overall screening is consistent with guidance for conducting an FS under

CERCLA (USEPA, 1988). Effectiveness and implementability are incorporated into two screening

criteria: waste- and site-limiting characteristics. Waste-limiting characteristics consider the

suitability of a technology based on contaminant types, individual compound properties (e.g.,

volatility, solubility, specific gravity, adsorption potential, and biodegradability), and interactions

that may occur between mixtures of compounds. Site-limiting characteristics consider the effect of

9-1

site-specific physical features on the implementability of a technology, such as site topography and geology, the location of buildings and underground utilities, available space, and proximity to sensitive operations. Technology screening serves a two-fold purpose of screening out technologies whose applicability is limited by site-specific waste or site considerations, while retaining as many potentially applicable technologies as possible.

Table 9.1 presents the technology-screening process. Technologies and process options judged ineffective or not implementable were eliminated from further consideration. The technologies retained following screening represent an inventory of technologies considered most suitable for remediation of soil and/or groundwater at the Site. Field and/or bench-scale treatability studies may be required prior to final technology selection to confirm the effectiveness of a given technology.

10.0 DEVELOPMENT AND PRELIMINARY SCREENING OF ALTERNATIVES

The retained technologies compiled into remedial alternatives in Table 10.1 are considered technically feasible and applicable to the waste types and physical conditions at the Site. These medium-specific technologies are assembled into potential remedial alternatives capable of achieving the RAOs for each of the contaminated media requiring remediation. Because soil and groundwater contamination are generally comingled at the site, and because the retained technologies may apply to both media, site-specific rather than medium-specific remedial alternatives were developed. Each of the Site-specific remedial alternatives developed in the following paragraphs incorporate technologies which address the two media requiring remediation at the Site. Due to the limited number of alternatives developed, and the similarity in their components, the screening of remedial alternatives was not performed; instead, all of the alternatives developed in this Section are retained for detailed analysis in Section 11.0.

10.1 ALTERNATIVE IDENTIFICATION

10.1.1 Alternative 1: No Further Action

Alternative 1 was developed as a baseline against which to compare other remedial alternatives. This alternative involves no further actions to protect human health or the environment and does not meet the RAOs because it lacks remedial measures that would reduce contamination at the Site. Although this alternative includes the continued operation of the SSDS installed as part of the IRM, no environmental monitoring would be conducted as part of this alternative.

10.1.2 Alternative 2: No Further Action with Site Management

Alternative 2 includes institutional controls in accordance with NYCRR Part 375 Restricted-Commercial Use to prevent exposure to contamination left in-place, but no further actions to reduce toxicity, mobility, or volume of contamination at the Site. Institutional controls would be implemented to restrict future use of the Site as part of an environmental easement. Implementation of the environmental easement would include the development of a Site Management Plan which would set forth the institutional controls necessary to manage exposure to

contamination remaining at a Site. Institutional controls would likely include implementation of land-use restrictions restricting subsurface activity, prohibiting installation of drinking water wells in the area of contamination, and restricting changes in zoning of the Site (e.g., change from commercial to residential use). Land-use restrictions would be implemented through legal instruments such as deeds and/or water well permitting processes.

In addition to institutional controls, long-term monitoring including groundwater monitoring would be completed to evaluate VOC concentrations over time and to assess continued effectiveness and protectiveness of this alternative.

The existing site building SSDS would continue to operate; however, associated costs are not captured herein since this would be conducted regardless of any future remedial alternative.

10.1.3 Alternative 3: Soil Vapor Extraction and Air Sparging

Alternative 3 includes the installation and operation of soil vapor extraction (SVE) wells to remove VOC contaminants from the soil vadose zone. In addition, the use of air sparge wells would effectively add air/oxygen to the contaminated saturated zones which would enhance volatilization of VOCs from the saturated zone to the vadose zone where the vapors would be collected by the SVE wells, treated and discharged to the atmosphere.

Implementation of this technology is assumed to be located downgradient of the on-site building since implementation of SVE and air sparging beneath the building would require access throughout a commercial area for installation, which is not feasible. Although the SVE wells are expected to have some influence beneath the building, the remedy would rely on the continued operation of the SSDS to ensure the safety of the workers inside the building. The SSDS would be inspected to ensure that it continues to operate appropriately given the changes in sub-surface pressures that would occur once the SVE and air sparging system is in place.

The alternative would require pre-design investigations to address data gaps regarding the distribution of contaminants in soil, groundwater and in soil vapor. A pilot test would then be conducted to identify the zone of influence of SVE wells and whether air sparge wells would result in groundwater mounding. Data gathered during pre-design investigations and the pilot test would be used to determine the final spacing for the SVE and air sparge wells as well as equipment needs.

Conveyance piping to and from the wells would be placed in trenches under the full scale implementation so as to minimize disturbance of the area for parking purposes. It is assumed that the treatment equipment would be housed in a separate building behind the on-site building.

This alternative would also include institutional controls, as described under Alternative 2, to prevent exposure to contamination that remains at the site until the remediation goals are achieved.

10.1.4 Alternative 4: In-Situ Enhanced Biodegradation

Alternative 4 includes in-situ enhanced biodegradation of VOC-contaminated soil and groundwater on-site. In-situ enhanced biodegradation is a technology used to enhance or support biological degradation of organic contaminants (including chlorinated VOCs) in soil and groundwater. The process involves the application of a biological amendment to the subsurface via injection wells, open excavations, or infiltration galleries. Bio-augmentation (addition of soil microbes) may also be required if the necessary soil microbes are not currently present on site, or if they do not have sufficient population. The method of injection and depth of injection is determined by location of the contamination and site-specific conditions, including groundwater flow characteristics and soil types. The amendment is either a compound that breaks down when in contact with groundwater, resulting in nutrients that can be utilized by soil microbes to breakdown organic contaminants (e.g., in groundwater, vegetable oil breaks down releasing hydrogen), or the nutrients themselves (e.g., injection or infusion of oxygen into the groundwater). Numerous patented amendments are commercially available; additionally, there are many commercially available commodity products with similar characteristics which may also be effective given the appropriate site conditions.

Implementation of this technology would include a pre-design investigation to evaluate the appropriate amendments and methods for enhanced biodegradation of site-related VOC contamination, and would include identifying whether soil microbes capable of biodegrading the COCs are present in the contaminated aquifer, or whether bio-augmentation would be necessary. Pre-design activities would include both field and laboratory studies and analysis.

Based on site conditions including the location of the site building and the velocity of groundwater flow at the site, it is assumed for the purpose of this FS that amendments would be injected upgradient of the site building (southwest side of building) and would migrate with groundwater beneath the building and to the other side to treat impacted groundwater and saturated soil in the area.

This alternative would also include institutional controls, as described under Alternative 2, to prevent exposure to contamination that remains at the site until the remediation goals are achieved.

10.1.5 Alternative 5: On-Site Excavation and In-Situ Enhanced Biodegradation

Full-scale implementation of Alternative 5 includes excavation and off-site disposal of PCE contaminated soil located in the two source areas adjacent to the northeast and southeast sides of the site building (DP-13 and DP-17 areas respectively), along with in-situ enhanced biodegradation and long-term groundwater monitoring. The soil from the source areas that would be excavated currently has the potential of being a continuing long-term source of on-site and off-site groundwater contamination. The soil from the localized area around DP-13 had high PCE concentration in vadose zone soil which biodegradation would not address. Under this alternative, the most highly impacted soil onsite, both above and below the water table (some of which currently exceeds restricted cleanup objectives for commercial properties) would be excavated and transported off-site for disposal or treatment and subsequent beneficial reuse (e.g., landfill daily cover). Pre-investigation activities would determine the actual size and depth of the excavation areas and whether any vadose zone soil in these areas could be stockpiled separately and re-used as backfill. Due to the proximity to the building, the excavations would require the use of trench boxes or other suitable excavation support. Dewatering would likely be required during excavating operations and the excavations would extend to the depth of bedrock. Clean fill (crushed stone) and asphalt would then be brought in to replace the excavated soil and re-establish the existing grades at the site. The estimated horizontal extent of the source excavation areas is shown in Appendix I.

In addition to the soil excavations, in-situ enhanced biodegradation would be implemented as a means to increase natural biodegradation of VOCs in soil and groundwater outside of the excavation area. The open excavations would be used as a delivery location of the enhanced

biodegradation amendments, and monitoring would occur surrounding the excavation areas. In addition, injections of amendments would be occur upgradient of the site building as discussed in Alternative 4 to treat the impacted areas beneath the site building and the areas not impacted by the addition of amendments in the excavation. Long term on-site and off-site groundwater monitoring would also be implemented to evaluate the effectiveness and protectiveness of this alternative.

This alternative would also include institutional controls, as described under Alternative 2, to prevent exposure to contamination that remains at the site until the remediation goals are achieved.

10.1.6 Alternative 6: Source Area Excavation, On-Site and Off-Site In-Situ Enhanced Biodegradation, and Soil Vapor Extraction

Alternative 6 is being presented as the alternative that is most likely to result in pre-disposal or unrestricted use conditions. Alternative 6 includes most portions of alternative 5 (two source area excavations as well as on-site in-situ enhanced biodegradation), which is the most likely alternative to meet the remediation goals for saturated soil and groundwater on-site. Alternative 6 would also include SVE both beneath and downgradient (south/southeast) of the on-site building to treat the on-site vadose zone soils. Additionally, enhanced biodegradation injections would also occur downgradient of the site to address residual contaminant concentrations in off-site groundwater.

Similar to Alternative 3, the SVE system would require operation and maintenance and a long term on-site and off-site groundwater monitoring would be implemented to evaluate the effectiveness and protectiveness of the alternative.

11.0 DETAILED ANALYSIS OF ALTERNATIVES

This section presents the detailed analyses of remedial action alternatives for the Site. The detailed analysis is intended to provide decision-makers with the relevant information with which to aid in selection of a final site remedy. The detailed description of technologies or processes used for each alternative includes, where appropriate, a discussion of limitations, assumptions, and uncertainties for each component. The descriptions provide a conceptual design of each alternative and are intended to support alternatives-comparison and cost-estimation.

The detailed analysis of each alternative includes evaluation using the eight evaluation criteria identified in the following paragraphs.

Compliance with NYS SCGs. How the alternative would comply with applicable or relevant and appropriate federal regulations and NYS SCGs. Chemical-specific and Location-specific SCGs were previously identified in this report. Additional Action-specific SCGs are identified in this section.

Overall Protection of Human Health and the Environment. How each alternative protects human health and the environment. This evaluation is based on a composite of factors assessed under other evaluation criteria, especially long- and short-term effectiveness and compliance with SCGs.

Short-term Impacts and Effectiveness. Impacts on the community, workers, and environment during the construction phase of each alternative until RAOs are met. Includes the time required to complete the remedial action.

Long-term Effectiveness and Permanence. Effectiveness of alternatives in protecting human health and the environment after RAOs are met. Includes an evaluation of the permanence of the alternative, the magnitude of residual risk, and the adequacy and reliability of controls required to manage wastes or residuals remaining at the Site.

Reduction of Toxicity, Mobility, and Volume. Reduction in toxicity, mobility, or volume of hazardous material through treatment. The irreversibility of the treatment process and the type and quantity of residuals remaining after treatment are also evaluated.

Implementability. Technical and administrative feasibility of implementing the alternative and the availability of required services and materials.

Cost-Effectiveness. Capital and Site Management costs, including Operation, Maintenance and Monitoring costs, will be estimated for the remedy and presented on a present worth (PW) basis.

Land Use. Evaluation of the current, intended and reasonably anticipated future use of the site and its surroundings, as it relates to an alternative or remedy, when unrestricted levels would not be achieved. The current and reasonably anticipated future land use of the Site is for commercial purposes.

11.1 COST ANALYSIS PROCEDURES

Estimated costs presented in this Report are intended to be within the target accuracy range of minus 30 to plus 50 percent of actual cost (USEPA, 1988). Costs are presented as a present worth and as a total cost for up to a 30-year period.

A summary of the costs for each alternative identifying capital and net present worth (NPW) costs are included in each alternative's cost description. Each cost estimate includes a present worth analysis to evaluate expenditures that occur over different time periods. The analysis discounts future costs to a NPW and allows the cost of remedial alternatives to be compared on an equal basis. NPW represents the amount of money that, if invested now and disbursed as needed, would be sufficient to cover costs associated with the remedial action over its planned life. A discount rate of 5 percent was used to prepare the cost estimates to be consistent with NYDEC's internal policies for Proposed Remedial Action Plans (PRAP).

Consistent with USEPA FS cost estimating guidance (USEPA, 2000), the remedial alternative cost estimates include costs for project management, remedial design, construction management, technical support, and scope contingency.

Project management includes planning and reporting, community relations support during construction or O&M, bid or contract administration, permitting (not already provided by the construction or O&M contractor), and legal services outside of institutional controls.

Remedial design applies to capital cost and includes services to design the remedial action. Activities that are part of remedial design include pre-design collection and analysis of field data, engineering survey for design, treatability study/pilot-scale testing, and the various design components such as design analysis, plans, specifications, cost estimate, and schedule.

Construction management applies to capital cost and includes services to manage construction or installation of the remedial action, except similar services provided as part of regular construction activities. Activities include review of submittals, design modifications, construction observation or oversight, engineering survey for construction, preparation of Operation and Maintenance (O&M) manual, documentation of quality control (QC)/quality assurance (QA), and record drawings.

Technical support during O&M includes services to monitor, evaluate, and report progress of remedial action. This includes oversight of O&M activities, update of O&M manual, and progress reporting and is generally between 10 percent and 20 percent of total annual O&M costs depending on complexity of the remedial action (USEPA, 2000).

Scope contingency represents project risks associated with the feasibility-level of design presented in this report. This type of contingency represents costs, unforeseeable at the time of estimate preparation, which are likely to become known as the remedial design proceeds. Scope contingency ranges from 10 to 25 percent, with higher values appropriate for alternatives with greater levels of cost growth potential (USEPA, 2000).

Project management, remedial design, and construction management costs presented in this Report are based upon the following matrix presented in the USEPA FS cost estimating guidance (USEPA, 2000).

Professional and Technical Costs as Percentage of Direct Costs					
Indirect Cost	<\$100K (%)	\$100K-\$500K (%)	\$500K-\$2M (%)	\$2M-\$10M (%)	>\$10M (%)
Project	10	8	6	5	5
Management					
Remedial	20	15	12	8	6
Design					
Construction	15	10	8	6	6
Management					

11.2 GENERAL ASSUMPTIONS

Details and assumptions pertaining to the cost estimates are included in each alternative's cost description. In addition to the alternative-specific assumptions, the following cost assumptions were applied, as applicable:

- Each remedial alternative presented herein assumes that the existing SSDS in the site building will continue to operate indefinitely. No operation or maintenance costs were included for the system.
- Long-term activities would be completed for no more than 30 years.
- Ten (10) percent of samples collected for long term monitoring would be collected in duplicate, or for QA/QC purposes, and analyzed off-site.
- Long term sampling would be conducted quarterly following the implementation of the chosen remedial alternative for years one and two, semi-annually for years three and four and every fifth quarter thereafter for no more than 30 years.

All remedial alternatives developed in Section 10.0 were retained for detailed analysis. The remedial alternatives include:

- Alternative 1: No Further Action
- Alternative 2: No Further Action with Site Management: Institutional Controls On-Site with Groundwater Monitoring On-Site and Downgradient
- Alternative 3: SVE and Air Sparging
- Alternative 4: In-Situ Enhance Biodegradation
- Alternative 5: On-site Excavation and In-Situ Enhanced Biodegradation
- Alternative 6: Source Area Excavation, On-Site and Off-Site In-Situ Enhanced Biodegradation, and Soil Vapor Extraction

The following subsections present a conceptual design and cost estimate for each of the alternatives and a discussion of each alternative relative to the first eight evaluation criteria from DER-10 (NYSDEC, 2002).

11.3 ALTERNATIVE 1: NO FURTHER ACTION

No further actions would be conducted as part of this alternative (alternative would include continued operation of the SSDS installed as part of the IRM). Alternative 1 was developed as a baseline against which to compare other remedial alternatives.

The following paragraphs present an assessment of Alternative 1 based upon the eight criteria identified above.

Compliance with New York State SCGs. Alternative 1 would not comply with NYS SCGs.

Overall Protection of Human Health and the Environment. Site-specific RAOs for protection of human health and the environment were developed for soil and groundwater. Alternative 1 would not provide additional protection of human health and the environment compared to present conditions.

Short-term Impacts and Effectiveness. No construction activities would be implemented for Alternative 1; therefore, no short-term impacts or effects on the community, workers, or the environment would occur.

Long-term Effectiveness and Permanence. The RAOs would not be met if Alternative 1 were implemented at the Site. This alternative would not provide long-term effectiveness.

Reduction of Toxicity, Mobility, and Volume. Because no processes would be used to treat waste or contaminated media at the Site, no reduction of toxicity, mobility, or volume of site contaminants would be achieved through treatment. Natural attenuation processes would be expected to result in the reduction of the toxicity, mobility, and volume of site contaminants over time.

Implementability. Although, no services or materials would be required to implement the No-Further Action Alternative, obtaining approval for Alternative 1 at the Site would be difficult.

Cost-Effectiveness. Because there are no actions under this alternative, there are no costs for implementing this Alternative. No remedial actions, institutional controls, or environmental monitoring would be conducted.

Land Use. The current and reasonably anticipated future land use of the Site is for commercial purposes. Because no actions would be taken as part of this alternative and there would be no restrictions to future use, this alternative would not be protective of potential commercial workers conducting subsurface work at the Site.

11.4 ALTERNATIVE 2: NO FURTHER ACTION WITH SITE MANAGEMENT

Alternative 2 for the Site consists of:

- institutional controls
- long-term groundwater monitoring
- annual institutional control inspections and reporting

Institutional Controls. Institutional controls would be implemented to restrict future use of the Site as part of an environmental easement. Implementation of the environmental easement would include the development of a Site Management Plan which would set forth the institutional controls necessary to manage exposure to contamination remaining at the site. Institutional controls would likely include implementation of land-use restrictions prohibiting subsurface activity and installation of drinking water wells in the area of contamination, and would prohibit changes in zoning of the Site (e.g., change from commercial to residential use). Land-use restrictions would be implemented through legal instruments such as deeds and/or water well permitting processes. Further, fencing could be installed to encompass the entire property to prevent unauthorized access.

Long-term Monitoring. A long-term monitoring program would be implemented for the Site in accordance with a remedial action work plan. Long-term monitoring would include quarterly sampling and analysis of eight groundwater locations for, VOCs for the first two years. Following

the first two years, monitoring would be decreased to semi-annually for years three and four, then every fifth quarter thereafter. Results of long-term monitoring would be incorporated into annual reports for the Site.

Annual Institutional Control Inspections and Reporting. Annual inspections would be conducted to ensure deed and land-use restrictions are being enforced. An annual report would be prepared documenting the inspection and the conditions observed.

11.4.1 Detailed Evaluation of Alternative 2

The following paragraphs present an assessment of Alternative 2 based upon the eight criteria identified above.

Compliance with New York State SCGs. This alternative would not meet Chemical-specific SCGs because it would not address soil contamination in excess of the 6 NYCRR Part 375 Remedial Program SCOs (NYSDEC, 2006) or groundwater in excess of Class GA groundwater standards. This alternative would not trigger any Location- or Action-specific SCGs.

Overall Protection of Human Health and the Environment. This remedial alternative would not protect public health and the environment through eliminating, reducing, or controlling existing or potential exposure pathways through removal, treatment, or engineering controls. This alternative would control potential human exposure pathways through implementation of institutional controls. This remedial alternative would not achieve the RAOs for soil and groundwater.

Short-term Impacts and Effectiveness. Implementation of land-use restrictions would not result in short-term impacts to human health or the environment.

Long-term Effectiveness and Permanence. This alternative would not include actions to address contaminated soils and groundwater at and in the vicinity of the Site. This remedy does not currently meet RAOs for soil and groundwater and, due to the Site-specific conditions (e.g., existing potential continuous source area), would not be expected to meet RAOs in the future.

Reduction of Toxicity, Mobility, and Volume. This alternative would not include actions to reduce the toxicity, mobility, or volume of hazardous material through treatment.

Implementability. No innovative technologies would be used as part of this alternative. Required services or materials required to implement this alternative are readily available. Coordination with state and local agencies would be required; however, implementation of land-use restrictions would not likely be difficult.

Cost-Effectiveness. The capital cost of this Alternative is \$19,000. The NPW of this Alternative is \$261,000. A summary of the costs associated with this alternative is presented in Table 11.1. Detailed cost analysis backup is provided in Appendix I.

Land Use. The current and reasonably anticipated future land use of the Site is for commercial purposes. Although this alternative would include institutional controls to prevent contact with contaminated soils, chlorinated solvent concentrations remaining at the site would not meet the SCOs for commercial use, and therefore this alternative would not be protective of potential commercial workers conducting subsurface work at the Site.

11.5 ALTERNATIVE 3: SOIL VAPOR EXTRACTION AND AIR SPARGING

Alternative 3 for the Site consists of:

- pre-design investigations
- SVE and Air Sparging pilot test
- construction of SVE and air sparging system;
- operation, maintenance, and monitoring of the treatment systems;
- long-term environmental monitoring;
- preparation of Annual Reports;

Pre-design investigation. It is assumed that if this alternative would be implemented, it would be implemented downgradient of the on-site building, thus relying on the existing SSDS to continue to extract VOCs from beneath the building foundation. A pre-design investigation of indoor air samples would be conducted to confirm that the existing SSDS is functioning appropriately; this would be conducted by collecting an indoor air sample with the SSDS in operation, and another

sample after turning the SSDS off for several days. In addition, pre-design investigations will be conducted downgradient of the on-site building to fill data gaps in site-specific data for the final design of remedial actions. This investigation would include drilling up to five soil borings to a depth of 15 feet and sampling soil at up to two intervals. A groundwater sample would also be collected from each borehole as well as a soil vapor sample from the vadose zone. All samples would be tested for VOCs. The data collected from the pre-design investigation would be combined with existing data to delineate the areal and vertical extent of contamination. A pre-design investigation also would include a utility survey for existing below grade utilities. For FS costing purposes the treatment area includes locations downgradient of the on-site building where soil contamination in the vadose and saturated zones have been observed. This area is depicted in Appendix I.

Pilot Scale Test. Implementation of SVE and Air Sparging typically employs a pilot test to determine the site-specific radius of influence of the injection and extraction rates. For purposes of cost estimation and alternative evaluation, it has been assumed that the pilot-scale system will consist of two vertical SVE wells, two vertical air sparge wells, and two vapor/vacuum monitoring wells. The conveyance piping for the SVE wells will run aboveground through a knock-out tank designed to remove liquids from the vapor stream and connect to the blower. Vapor from the blower will be piped to a vapor treatment system prior to discharge to the atmosphere. Liquid from the knock-out tank will be discharged to a liquid treatment system and eventually to the ground surface. Polyethylene tubing placed inside the SVE and vapor/vacuum monitoring wells will be used as a sample port for the collection of field readings (e.g., subsurface vacuum and PID readings). The system will also be monitored using sample ports located at the junctions of the header pipe with the vapor extraction wells. The two air sparge wells will be installed deeper than the SVE wells and will be connected to a separate blower or air compressor. Air will be injected into the air sparge wells and the SVE wells and vacuum monitoring wells will be monitored to measure the air sparge well's zone of influence. After testing the SVE and air sparge wells independently of each other, all four (4) will be operated simultaneously to measure the overall radius of influence of the combined system by collecting additional vacuum readings, and additional PID readings and vapor samples for VOC analysis will be collected to determine off-gas treatment needs for full scale operation. Monitoring groundwater elevations in the SVE wells and other surrounding groundwater monitoring wells will also be conducted while the air sparge well is in operation to determine if the addition of air to the air sparge well causes mounding of the

groundwater table. Mounding could cause flooding in the on-site building's basement due to the already high groundwater table and could cause significant water to be pulled through the SVE system. This pilot test shall provide enough information to design the final spacing of the SVE wells and air sparge wells as well as their respective depths and associated treatment components.

Full Scale Implementation. SVE along with air sparging would be implemented to address soil and groundwater contamination downgradient of the on-site building. SVE involves the application of a vacuum to the soil to remove volatile contaminants from the soil vadose zone. Air sparging involves the addition of air into the saturated zone to increase volatilization of the contaminants whereby the vapors are then removed from the ground using the SVE wells. The addition of air into the groundwater also increases the potential for biodegradation of contaminants that are not volatilized. Typically, the volatilized contaminants are captured for treatment prior to discharge to the atmosphere. Depending on local and state air discharge regulations, treatment and/or permitting of the air effluent may be required. SVE and air sparging can be implemented using vertical or horizontal wells. Horizontal extraction wells can be installed either in trenches or using horizontal (directionally drilled) borings, depending on contaminant zone geometry, drill rig access, and other site-specific factors.

Site soils primarily consist of sand, silt and gravel, which results in a very heterogenous material. For purposes of FS costing, it is assumed that vertical extraction wells would be used; the final decision to employ vertical or horizontal extraction wells will be made during remedial design. Due to the high groundwater table and the possible mounding effects from the air sparge wells, it may be determined during the design phase that shallow, horizontal wells are more appropriate for SVE at the site. For FS costing purposes spacing between wells was assumed to be 20 feet, and a total of up to 12 wells would be installed, including the two installed as part of the pilot test (five close to the on-site building, and up to seven towards the edge of the impacted area). In addition, it is assumed that up to five air sparge wells would be installed between the two rows of SVE wells, including the one installed as part of the pilot test. Air sparge wells provide a mechanism to add air/oxygen into the subsurface (preferably below the contaminated zone), allowing the air to move up through the contaminated zone increasing vaporization of the contaminants as well as increasing aerobic biodegradation capabilities of the soil.

Costing and design of the SVE and air sparge components of this alternative is based upon the following assumptions, some assumptions were based on the USEPA's Guide for Corrective Action Plan Reviewers (USEPA, 1994):

- The radius of influence for the SVE and air sparge wells is assumed to be 10 feet.
- Based upon the assumed radius of influence, an estimated twelve (12) extraction wells would be required (two of which will have been installed during the pilot test);
- Ten air sparge wells are assumed to be sufficient to move contaminants from the saturated zone to the vadose zone (one of which will have been installed during the pilot test) without causing additional indoor air issues or soil vapor issues downgradient of the Site.
- The average vertical thickness of the treatment area is about 10 feet (5 feet of vadose zone soil, and 5 feet of saturated soil and impacted groundwater);
- Ten vapor/vacuum monitoring points would be installed between the SVE and air sparge wells to monitor radius of influence.
- The design well head vacuum is assumed to be 25 inches of water, based upon the shallow vadose zone, the design extraction flow rate of 35 to 55 cubic feet per minute per well.
- Based upon assumed flow and vacuum requirements, a vapor recovery system capable of extracting up to 1,000 SCFM is assumed;
- Extraction wells will be constructed using 4-inch diameter PVC with 40-slot PVC well screens
- Extraction wells will be constructed with sand pack extending to 1-foot above the screened interval, above which would be 1-foot of bentonite followed by a 1-foot cement-bentonite seal to ground surface. Based upon this assumption, there would be, on average, a five foot screened interval per well.
- Air sparge wells would be installed to a depth of 20 feet with a five foot screened interval between 15 and 20 feet deep (generally below the contaminated zone). Sand pack will extend 1-foot above the screened interval, above which would be 1-foot of bentonite followed by cement grout to the surface.
- Air would be introduced to the air sparge wells at a rate of approximately 10 cubic feet per minute each.
- Conveyance piping for both the SVE and air sparge wells would be installed within trenches, so as not to prevent future use of the site parking area. The estimated total length of piping is 335 linear feet.
- Trenches will be backfilled with gravel or pea stone around the conveyance piping, and then with clean excavated site-soil which will be compacted; asphalt will be placed at the surface.

The SVE wells would be manifolded prior to the blower. The piping will be sloped to the extraction wells to allow condensate from the system to flow into the extraction wells and drain through the perforations. Flow control valves, pressure indicators and sample ports will be located prior to the manifold and at each individual well.

After the manifold, flow would pass through a knockout tank designed to remove liquids from the incoming vapor stream prior to the blower. From the blower, the vapor stream would be piped to a vapor treatment system consisting of two vapor-phase granular activated carbon (GAC) units. Treated vapors would be discharged to the atmosphere. Influent, mid-point and effluent sample ports would be located along the vapor collection and treatment system to evaluate treatment and ensure that vapors discharged to the atmosphere are within permit limits.

Liquids in the knockout tank would periodically be pumped through the liquid treatment system, which would simply consist of two small (drum-size) liquid-phase GAC units. Water would then be sampled at the effluent end of the GAC unit and discharged to ground surface. Discharge to a storm drain may need to be evaluated based upon results of the pilot test.

The air sparge wells would be manifolded together to a single blower. Flow control valves and pressure indicators will be located at the manifold and at each individual well.

In addition, this alternative would also include institutional controls, as described under Alternative 2, to prevent exposure to contamination that remains at the site until the remediation goals are achieved.

Operation, Maintenance and Monitoring (OM&M). OM&M of the treatment systems would include weekly site visits. Weekly site visits would include routine and preventative maintenance, system measurements, and vapor sampling and analysis of system influent and effluent. Arrangements would also be made during the site visits to change out carbon as needed. It is assumed for the purpose of this FS that the remedial system will operate for 10 years. If there is a rebound in vapor or groundwater concentrations observed during continued monitoring following shut down of the system, the system operations will resume.

Long-term Monitoring. Long-term monitoring would be conducted to evaluate the effectiveness of the SVE and air sparging remedy. Monitoring would include groundwater sampling to evaluate the effectiveness of the on-site remediation. Results of the long-term monitoring and overall performance of the remedial alternative will be summarized in an annual report. Monitoring will be conducted on an approximate quarterly basis for years one and two following the start-up of the

MACTEC Engineering and Consulting, P.C., Project No. 3612082109

SVE/air sparging system, on a semi-annual basis for years three and four, and every fifth quarter thereafter through year 30.

11.5.1 Detailed Evaluation of Alternative 3

Compliance with New York State SCGs. Alternative 3 would comply with Chemical-specific SCGs by use of SVE to reduce contaminant concentrations within the vadose and saturated zones located downgradient of the on-site building, thereby reducing the time necessary to meet SCGs. This alternative does not directly impact contaminants located under the building, however, the existing SSDS will continue to operate throughout the duration of the remedy.

Overall Protection of Human Health and the Environment. This alternative would protect public health and the environment by providing in-situ extraction of contaminated soil vapors and vapors from contaminated groundwater at the Former Speedy's Cleaners site to reduce levels of total VOCs. This alternative, however, does not directly impact contaminants located under the building, however, the SSDS will continue to operate throughout the duration of the remedy, to ensure the safety of building occupants/workers.

Short-term Impacts and Effectiveness. This alternative includes the installation of several SVE and air sparge wells in addition to trenching activities for the treatment system; therefore, there would be potential short-term adverse impacts and risks of the remedy upon site occupants. These risks would be addressed through coordination and communication with the property owner(s) and preparation and implementation of a construction health and safety plan. This alternative would decrease the level of contamination in the soil and groundwater on-site and would therefore reduce the continued migration of impacted groundwater off-site.

Long-term Effectiveness and Permanence. This alternative includes the removal of VOCs in soil and groundwater via SVE. Long-term effectiveness of this alternative would rely upon the radius of influence of the SVE wells and preferential pathways of soil vapors, raising uncertainties regarding the potential magnitude of mass reduction that could be achieved. Based on available soil data, there is one location on-site where VOC concentrations in soil are high enough to suggest a possible source of continuous groundwater contamination. This alternative may not be effective at reducing VOC concentrations of this magnitude in a timely manner, and rebound in the general

Final

area would likely occur once the treatment system has been turned off. Additionally, the influence that this system would have under the on-site building would be minimal and difficult to monitor, therefore, the impacted area beneath the building would rely on treatment via the existing SSDS, which may be required to run beyond the assumed duration of the treatment system and long-term monitoring.

Reduction of Toxicity, Mobility, and Volume. This alternative reduces the toxicity, mobility and volume of soil and groundwater contamination through vapor extraction, treatment and discharge to the atmosphere.

Implementability. The technologies used for implementation of a combined SVE and air sparging system are well developed and would not be difficult to implement. Special considerations would be employed to consider the proximity of the building with respect to the SVE wells as well as locations of underground utilities. A comprehensive utility survey would be conducted prior to the installation of injections wells, and wells that are within or near a suspected utility area would be pre-cleared either by hand or with vacuum excavation prior to well installation. Additionally, since the site is used regularly for commercial purposes, conveyance piping will be installed in trenches so as not to preclude use of the site for parking. Also, the property owner will be required to provide space for treatment equipment at the site. Services or materials required to implement this alternative are readily available.

Cost-Effectiveness. The capital cost of this Alternative is \$559,000. The NPW of this Alternative is \$1,640,000. A summary of the costs associated with this alternative is presented in Table 11.2. Detailed cost analysis backup is provided in Appendix I.

Land Use. The current and reasonably anticipated future land use of the Site is for commercial purposes. Because it is not clear whether SVE and air sparging will reduce the concentration of PCE at DP-17 to below the commercial use SCO, this alternative may not be protective of potential commercial workers conducting subsurface work at the Site.

11.6 ALTERNATIVE 4: IN-SITU ENHANCE BIODEGRADATION

Alternative 4 consists of the following components:

- pre-design investigations
- full-scale implementation of in-situ enhanced biodegradation
- long-term monitoring in the treatment areas and downgradient areas, and associated reporting
- periodic O&M activities, if needed

Pre-design Investigations. Pre-design investigations would be conducted to determine if dehalococcoides (the only known microorganisms capable of complete dechlorination of chloroethenes to non-toxic ethene) exist in groundwater, and would include a gene track analysis to determine if the dehalococcoides that are present contain the vinyl chloride reductase gene that is necessary to completely degrade chloroethenes through vinyl chloride. Pre-design investigations would also include injection testing to evaluate the ability to inject amendments into the subsurface. Up to 500 gallons of water will be injected, and observations will be made to record required time to inject and whether water short-circuits up the sides of the injection rods or to the surrounding ground surface. The injection test will help determine whether temporary injection points via Geoprobe® or permanent injection points via well installation are required.

As previously described there are several available organic substrates for enhanced biodegradation include, but are not limited to:

- sodium lactate
- propionate/butyrate
- methanol
- ethanol
- emulsified vegetable oil
- chitin
- Regenesis products: Hydrogen Release CompoundTM (HRCTM); and 3-D MicroemulsionTM (3DMe)TM
- molasses

The unit costs for these materials vary widely; however, the required quantities and delivery methods for implementation also vary widely and are best determined through site-specific

laboratory and/or field studies. For purposes of the FS conceptual design; it has been assumed that in-situ enhanced biodegradation would be conducted using the Regenesis product 3DMeTM. 3DMeTM was chosen because it is less viscous than some of the other amendments, and therefore would travel best with groundwater flow, which is required since the injections will be conducted upgradient from the treatment area. The lower viscosity will also allow ease in injecting larger amounts of amendments at a time to increase overall distribution.

Full-scale Implementation. Full-scale implementation of in-situ enhanced biodegradation would consist of injecting the chosen amendment (assumed 3DMeTM) into the groundwater upgradient of the existing site building. For the purpose of this FS it is assumed that this would be conducted via temporary injection points. It is assumed that given the groundwater direction and velocity that one row of injection points at an approximate 10-foot spacing (up to 10 points), located upgradient of the site building would be sufficient to distribute the amendments under the building and to other on-site impacted areas. This area has been chosen since it is not feasible to conduct injections beneath the building. Also, given the velocity of the groundwater and the size of the on-site footprint of impacted soil and groundwater on-site, injection downgradient of the building may not prove to be valuable since the amendments may travel too quickly off-site in order to be effective. Given that injections will not be conducted throughout the impacted area, and since the recommended amount of amendments is quite high, it is anticipated that the total dose of amendments would be split up into two injection events approximately 6 months apart. Injections during the second round will be staggered a few feet from the original injections for better overall distribution of the amendments.

Regenesis was contacted to provide conceptual costs and quantities required for this site-specific use (refer to Appendix I). Based on Regenesis' calculations, it is estimated that approximately 9,240 pounds of 3DMeTM and 210 pounds of HRCTM Primer would be required (approximately 475 pounds of amendment per injection point per event), to treat groundwater and saturated soil over an approximate 5-foot interval.

Additionally, two monitoring wells would be installed. These monitoring wells as well as other monitoring wells on site will be used to monitor the effectiveness of the injections. In addition, monitoring wells located down gradient from the site will be monitored for groundwater quality.

In addition, this alternative would also include institutional controls, as described under Alternative 2, to prevent exposure to contamination that remains at the site until the remediation goals are achieved.

Long-term Monitoring. Long-term monitoring would be conducted to evaluate the effectiveness of the enhanced biodegradation remedy as well as the effects of natural attenuation in the off-stie, downgradient areas. The evaluation of repeat injections would be based upon long-term monitoring results. Results of the long-term monitoring and overall performance of the remedial alternative will be summarized in an annual report. Monitoring will be conducted on an approximate quarterly basis for years one and two, on a semi-annual basis for years three and four, and every fifth quarter thereafter through year 30.

Periodic O&M Activities. Subsequent to full-scale implementation, monitoring of groundwater conditions would be conducted to determine the effectiveness of the implementation of in-situ enhanced biodegradation, as discussed in the previous section, and whether or not additional injections are warranted. For FS costing purposes, it has been assumed that the injections will take place over two events, separated by six months and that the need for additional injections beyond this will be evaluated during the 5-year review of the site.

11.6.1 Detailed Evaluation of Alternative 4

The following paragraphs present an assessment of Alternative 4 based upon the eight criteria identified above.

Compliance with New York State SCGs. Alternative 4 would comply with Chemical-specific SCGs by use of in-situ treatment to reduce contaminant concentrations within the plume, thereby reducing the time necessary to meet SCGs. Location- and Action-specific SCGs associated with this alternative includes 40 CFR Part 144 – Underground Injection Control Program.

Overall Protection of Public Health and the Environment. This alternative would protect public health and the environment by providing in-situ treatment of contaminated groundwater and soil at the Former Speedy's Cleaners site to reduce levels of total VOCs.

Short-term Impacts and Effectiveness. This alternative includes the addition of amendments using direct push technology at the Former Speedy's Cleaners site, as well as installation of additional monitoring wells; therefore, there would be potential short-term adverse impacts and risks of the remedy upon site occupants. These risks would be addressed through coordination and communication with the property owner(s) and preparation and implementation of a construction health and safety plan. This alternative would decrease the level of contamination in the soil and groundwater on-site and would therefore reduce the continued migration of impacted groundwater further off-site.

Long-term Effectiveness and Permanence. This alternative includes in-situ treatment of VOCs in soil and groundwater. Long-term effectiveness of this alternative would rely upon the effectiveness of the in-situ treatment, raising uncertainties regarding the potential magnitude of mass reduction that could be achieved. Based on available soil data, there is one location on-site where VOC concentrations in soil are high enough to suggest a possible source of continuous contamination (DP-17 area on Figure 4.1). This alternative may not be fully effective at reducing VOC concentrations of this magnitude.

Reduction of Toxicity, Mobility, or Volume with Treatment. This alternative reduces the toxicity, mobility and volume of groundwater contamination through in-situ treatment.

Implementability. The technologies used for implementation of enhanced biodegradation are well developed and would not be difficult to implement. Special considerations would need to be employed to consider the proximity of the building with respect to the injection points as well as locations of underground utilities. In general, the amendments used for in-situ enhanced biodegradation are long-lasting and migrate with groundwater flow, and therefore are expected to reach the impacted area located beneath and downgradient of the site building. A comprehensive utility survey would be conducted prior to the installation of injections wells, and injection points that are within or near a suspected utility area would be pre-cleared either by hand or with vacuum excavation prior to installation. Services or materials required to implement this alternative are readily available.

MACTEC Engineering and Consulting, P.C., Project No. 3612082109

Cost-Effectiveness. The capital cost of this Alternative is \$105,000. The NPW of this Alternative is \$517,000. A summary of the costs associated with this alternative is presented in Table 11.3. Detailed cost analysis backup is provided in Appendix I.

Land Use. The current and reasonably anticipated future land use of the Site is for commercial purposes. Because it is not clear whether enhanced biodegradation will reduce the concentration of PCE at DP-17 to below the commercial use SCO, this alternative may not be protective of potential commercial workers conducting subsurface work at the Site.

11.7 ALTERNATIVE 5: ON-SITE EXCAVATION AND IN-SITU ENHANCED BIODEGRADATION

Alternative 5 consists of the following components:

- pre-design investigation
- mobilization and temporary facilities and controls
- full-scale excavation and in-situ enhanced biodegradation
- site restoration
- long-term monitoring in the treatment areas and downgradient areas, and associated reporting

Pre-design Investigations. Pre-design investigations would be conducted to determine the horizontal and vertical extents of the source area excavation in the vicinity of monitoring well MW-212 (and soil sample location DP-17), as well as the horizontal and vertical extents of the localized excavation in the vicinity of DP-13. This would include advancing up to twelve Geoprobe® borings (six at each excavation area) and collecting soil samples at various depths from each boring based on field screening. In addition, composite samples from within the known limits of excavations (the most impacted Geoprobe® location based on PID readings) will be collected and submitted for disposal pre-characterization purposes, so that direct loading of PCE contaminated soil can be performed. Sampling of site groundwater would also be conducted to determine the applicability of enhanced bioremediation as described in Subsection 11.4 and injection testing would also be conducted.

Full-scale Implementation. Full-scale implementation of this remedial alternative includes excavation of the soil source areas (areas around DP-17 and DP-13- Shown in Appendix I) and in-

situ enhanced biodegradation. Since the excavation activities will include the removal of monitoring well MW-212, two replacement monitoring wells will be installed immediately downgradient of the source area excavation (one northeast and one southeast of the excavation area) prior to excavating and an initial groundwater sample from each will be collected and analyzed for VOCs. The excavation of soil around DP-13 is not expected to damage nearby monitoring wells, and no additional wells are proposed to be installed around the excavation since there are several existing wells that can be monitored.

Following installation of the groundwater monitoring wells, excavation activities will begin and will require the removal of asphalt and the use of trench boxes or other means of shoring to stabilize the excavation areas. Excavated soil would be segregated depending upon results from the pre-design investigations as well as total VOC readings collected in the field with a PID, whereas material deemed for disposal will be directly loaded for off-site disposal and material deemed re-usable will be stockpiled on-site. Dewatering of the excavation may be required. If necessary, dewatering effluent would be pumped to a temporary tank to allow for settling of solids, treated using activated carbon, sampled and discharged to a storm sewer. No confirmatory samples will be collected since the sides of the excavations will not be accessible and the bottom of the excavations will be weathered bedrock, the limits of the excavations will be predetermined based on pre-design investigations. Prior to backfilling the excavation areas, dewatering will be discontinued and the excavations will be allowed to fill with groundwater. Once groundwater enters the excavations the chosen amendment (HRCTM) will be added to the open excavations.

The excavations will then be backfilled using primarily crushed stone to ensure that sufficient compaction is achieved. The segregated/re-usable soil will be used as backfill (above the static groundwater table) and will be compacted in six inch lifts. The extent of the excavation will be finished to meet existing conditions. Additionally a six-inch diameter stainless steel well, screened from approximately 7-12 feet deep, will be placed in the center of each excavation to facilitate future injections. Stainless steel will be used in lieu of PVC, to ensure that it is not damage by heavy equipment during the backfilling process.

Regenesis (the manufacturer of HRCTM) was contacted to provide conceptual costs and quantities required for this site-specific use (refer to Appendix I) of the biodegradation amendment. Based on Regenesis' calculations and recommendations, it is estimated that approximately 210 pounds of

HRCTM and 90 pounds of HRCTM Primer would be required to be added to each of the open excavations. It is assumed, for conservative purposes, that this dose would be re-applied by use of the stainless steel wells, six months following the excavation activities.

In addition to the soil excavations and addition of biological amendments to the open excavations, enhanced biodegradation via injection would be completed upgradient of the on-site building as described in Alternative 4 for the purpose of treating the areas under the on-site building and the areas not impacted by the addition of amendment within the excavation areas.

In addition, this alternative would also include institutional controls, as described under Alternative 2, to prevent exposure to contamination that remains at the site until the remediation goals are achieved.

Long-term Monitoring. Long-term groundwater quality monitoring would be conducted both onsite and downgradient from the site to evaluate the effectiveness of having removed the heavily contaminated soil from the source areas, impacted vadose zone soil, and the implementation of the biodegradation remedy on-site. The need for repeat injections beyond those described under fullscale remediation, would be evaluated based upon long-term monitoring results. Results of the long-term monitoring and overall performance of the remedial alternative will be summarized in an annual report. Monitoring will be conducted on an approximate quarterly basis for years one and two, on a semi-annual basis for years three and four, and every fifth^h quarter thereafter through year 30.

Periodic O&M Activities. Subsequent to full-scale implementation, monitoring of groundwater conditions would be conducted to determine the effectiveness of the initial implementation of the soil excavations and the in-situ enhanced biodegradation, as discussed in the previous section, and whether or not additional injections are warranted. For FS costing purposes, it has been assumed that the injections will take place over two events, separated by six months and that the need for additional injections beyond this will be evaluated during the 5-year review of the site.

11.7.1 Detailed Evaluation of Alternative 5

The following paragraphs present an assessment of Alternative 5 based upon the eight criteria identified above.

Compliance with New York State SCGs. Alternative 5 would comply with Chemical-specific SCGs by use of excavation and in-situ treatment to reduce contaminant concentrations within the vadose and saturated soil and within the groundwater plume, thereby reducing the time necessary to meet SCGs. Location- and Action-specific SCGs associated with this alternative includes 40 CFR Part 144 – Underground Injection Control Program.

Overall Protection of Public Health and the Environment. This alternative would protect public health and the environment by the excavation and removal of soil contamination in excess of commercial use criteria in the saturated zone, by excavating the most highly impacted soil within the vadose zone and by providing in-situ treatment of contaminated groundwater and soil at the Former Speedy's Cleaners site to reduce levels of total VOCs.

Short-term Impacts and Effectiveness. This alternative includes the excavation of contaminated soil; the addition of amendments using direct push technology; as well as installation of additional monitoring wells; therefore, there would be potential short-term adverse impacts upon site occupants. These risks would be addressed through coordination and communication with the property owner(s) and preparation and implementation of a construction health and safety plan. This alternative would be effective in the short term since it will immediately remove soil contamination in the most highly impacted areas of the site, thus reducing contaminant migration.

Long-term Effectiveness and Permanence. This alternative includes excavation of impacted soil and in-situ treatment of VOCs in soil and groundwater. Long-term effectiveness will be realized because the most highly contaminated areas of the site will have been removed. Additional long-term effectiveness would depend upon the effectiveness of the in-situ treatment, raising uncertainties regarding the potential magnitude of mass reduction that could ultimately be achieved.

Reduction of Toxicity, Mobility, or Volume with Treatment. This alternative reduces the toxicity, mobility and volume of groundwater contamination through in-situ treatment. Additionally, it reduces the mobility and volume of contaminants by excavation and off-site disposal of soil.

Implementability. The technologies used for implementation of soil excavation and enhanced biodegradation are well developed and would not be difficult to implement. Special consideration is required to consider the proximity of the building and underground utilities with respect to the injection points and the excavation areas. In general, the amendments used for in-situ enhanced biodegradation are long-lasting and migrate with groundwater flow, and therefore are expected to reach the contaminated soil located beneath and downgradient of the site building. A comprehensive utility survey would be conducted prior to the installation of injections wells, and wells that are within or near a suspected utility area would be pre-cleared either by hand or with vacuum excavation prior to well installation. Services or materials required to implement this alternative are readily available.

Cost-Effectiveness. The capital cost of this Alternative is \$311,000. The NPW of this Alternative is \$745,000. A summary of the costs associated with this alternative is presented in Table 11.4. Detailed cost analysis backup is provided in Appendix I.

Land Use. The current and reasonably anticipated future land use of the Site is for commercial purposes. This alternative will reduce the concentrations of contaminants at the site to below the commercial use SCOs, as well as the protection of groundwater SCOs, and will therefore meet the land use requirements for the Site.

11.8 ALTERNATIVE 6: SOURCE AREA EXCAVATION, ON-SITE AND OFF-SITE IN-SITU ENHANCED BIODEGRADATION, AND SOIL VAPOR EXTRACTION

Alternative 6 consists of the following components:

- pre-design investigation
- bench scale testing
- pilot test
- mobilization and temporary facilities and controls

- full-scale excavation, in-situ enhanced biodegradation and SVE installation
- site restoration

 long-term operation and maintenance, monitoring both on-site and downgradient and associated reporting

Alternative 6 is being presented as the most likely alternative to restore the site to pre-disposal conditions. This alternative includes a combination of several alternatives that have already been presented in this FS and also includes additional remedial activities such as vapor extraction beneath the existing building and enhanced biodegradation of groundwater in downgradient off-site areas. Although this alternative would provide remediation to the levels of pre-disposal site conditions, the additional benefits are minimal in comparison to some of the other alternatives and therefore the additional work, time and costs are not fully justified.

Pre-design Investigations. Pre-design investigations would be conducted to determine the horizontal and vertical extents of the source area excavations in the vicinity of monitoring well MW-212, similar to Alternative 5. In addition, sampling of on-site and off-site groundwater would be conducted to determine the applicability of enhanced bioremediation and injection testing.

A pre-design investigation similar to that of Alternative 3 would also be conducted including indoor air sampling, and the collection of soil and vapor samples both beneath and outside of the on-site building to fill data gaps for the SVE portion of the remedial alternative. For FS costing purposes the treatment area includes locations both downgradient of the on-site building and beneath the building where soil contamination in the vadose zone has been observed.

Pilot Scale Test. Similarly to Alternative 3, a pilot scale test would be implemented to determine the specific radius of influence of the SVE wells. This alternative does not include air sparging since it relies on enhanced bioremediation to treat the saturated zone, so the pilot test would only include SVE wells. However, since the square area of the overall SVE system would be bigger than that of Alternative 3 (includes portions under the building), the pilot test would include a few additional SVE wells.

Full-scale Implementation. Full-scale implementation of this remedial alternative includes excavation of the two source areas, in-situ enhanced biodegradation, and installation and operation of an SVE system. This will be conducted by following the procedures described in Alternative 5

for excavation in the source areas and in-situ enhanced biodegradation. SVE wells, similar to those installed in Alternative 3, would be installed both beneath and downgradient of the on-site building to treat the vadose zone soil. Conveyance piping would be installed between all of the SVE wells

and a treatment system would be placed on-site.

In addition to the components of this alternative that are similar to those of Alternative 3 and 5, Alternative 6 would also include in-situ enhanced biodegradation off- site. It has been assumed that this would include approximately 10 times the effort and amendments as what is proposed for the temporary injections in Alternative 5 based primarily of the overall surface area (and therefore impacted volume) of the downgradient plume. Injections in the downgradient area, as with the onsite area would occur twice, approximately six months apart.

Operation, Maintenance and Monitoring (OM&M). OM&M of the SVE treatment system would include weekly site visits. Weekly site visits would include routine and preventative maintenance, system measurements, and vapor sampling and analysis of system influent and effluent. Arrangements would also be made during the site visits to change out carbon as needed. It is assumed for the purpose of this FS that the remedial system will operate for 10 years. If there is a rebound in vapor or groundwater concentrations observed during continued monitoring following shut down of the system, the system operations will resume.

Long-term Monitoring. Long-term monitoring would be conducted both on-site and off-site to evaluate the effectiveness of the alternative. The need for repeat injections beyond those described under full-scale remediation, would be evaluated based on long-term groundwater quality monitoring results. Results of the long-term monitoring and overall performance of the remedial alternative will be summarized in an annual report. Monitoring will be conducted on an approximate quarterly basis for years one and two, on a semi-annual basis for years three and four, and every fifth quarter thereafter through year 30.

Periodic O&M Activities. Subsequent to full-scale implementation, monitoring of groundwater conditions would be conducted to determine the effectiveness of the initial implementation of the soil excavation and the in-situ enhanced biodegradation, as discussed in the previous section, and whether or not additional injections are warranted. For FS costing purposes, it has been assumed

that the injections will take place over two events, separated by six months and that the need for additional injections beyond this will be evaluated during the 5-year review of the site.

11.8.1 Detailed Evaluation of Alternative 6

The following paragraphs present an assessment of Alternative 6 based upon the eight criteria identified above.

Compliance with New York State SCGs. Alternative 6 would comply with Chemical-specific SCGs by use of in-situ treatment to reduce contaminant concentrations within the plume, and SVE to reduce contaminant concentrations in the vadose zone, thereby reducing the time necessary to meet SCGs. Location- and Action-specific SCGs associated with this alternative includes 40 CFR Part 144 – Underground Injection Control Program. Additionally, this alternative will immediately eliminate soil concentrations in excess of the commercial use criteria by means of excavation and off-site disposal.

Overall Protection of Public Health and the Environment. This alternative would protect public health and the environment by the excavation and removal of soil contamination in excess of commercial use criteria, by providing in-situ treatment of contaminated groundwater and saturated soil both on-site and downgradient of the site, and by providing soil vapor extraction to treat vadose zone soil on-site.

Short-term Impacts and Effectiveness. This alternative includes the excavation of contaminated soil; the addition of amendments using direct push technology; installation of an SVE system (including SVE wells beneath the building); as well as installation of additional monitoring wells; therefore, there would be potential short-term adverse impacts upon site occupants. These risks would be addressed through coordination and communication with the property owner(s) and preparation and implementation of a construction health and safety plan, however it could likely cause significant disruption in day-to-day commercial activities at the site. This alternative would be effective in the short term since it will immediately remove soil contamination in the most highly impacted areas of the site, thus reducing migration.

Long-term Effectiveness and Permanence. This alternative includes excavation of impacted soil, in-situ treatment of VOCs in soil and groundwater, and ex-situ treatment of VOCs via SVE. Long-term effectiveness will be realized because the most highly impacted areas of the site will have been removed. Additional long-term effectiveness would rely upon the effectiveness of the in-situ treatment and the SVE system, raising uncertainties regarding the potential magnitude of mass reduction that could ultimately be achieved.

Reduction of Toxicity, Mobility, or Volume with Treatment. This alternative reduces the toxicity, mobility and volume of groundwater contamination through in-situ treatment. Additionally, it reduces the mobility and volume of contaminants by excavation and off-site disposal of soil and by implementation of an SVE system.

Implementability. The technologies used for implementation of soil excavation, in-situ enhanced biodegradation and SVE are well developed and would not be difficult to implement. Special consideration would need to be employed to consider the proximity of the building and location of underground utilities with respect to the injection points, the excavation area, and the location of SVE wells and conveyance piping. Installation of SVE wells and conveyance piping under the building could cause challenges with respect to available room and interference with day to day activities at the site building. A comprehensive utility survey would be conducted prior to any subsurface activities and good communications with the property owner(s) and/or business managers would be required. Services or materials required to implement this alternative are readily available.

Cost-Effectiveness. The capital cost of this Alternative is estimated at \$1,783,000. The NPW of this Alternative is \$3,052,000. A summary of the costs associated with this alternative is presented in Table 11.5. Detailed cost analysis backup is provided in Appendix I.

Land Use. The current and reasonably anticipated future land use of the Site is for commercial purposes. This alternative will reduce the concentrations of contaminants at the site to below the commercial use SCOs, as well as the protection of groundwater SCOs, and will therefore meet the land use requirements for the Site.

12.0 COMPARATIVE ANALYSIS OF ALTERNATIVES

The comparative analysis evaluates the relative performance of each alternative using the same criteria by which the detailed analysis of each alternative was conducted. The purpose of the comparative analysis is to identify the advantages and disadvantages of each alternative relative to one another to aid in selecting an overall remedy for the Former Speedy's Cleaners site.

The comparative analysis includes a narrative discussion of the strengths and weaknesses of the alternatives relative to one another with respect to each criterion, and how reasonable variations of key uncertainties could change the expectations of their relative performance, as applicable. The comparative analysis presented in this document uses a qualitative approach to comparison, with the exceptions of comparing alternative costs and the required time to implement each alternative.

A comparison of the capital and long-term costs associated with the remedial alternatives is presented in Table 12.1. Table 12.2 provides a summary of the comparative analysis of the groundwater remedial alternatives, respectively, to the first six evaluation criteria. Detailed cost analysis backup is provided in Appendix I.

12.1 COMPARATIVE ANALYSIS OF REMEDIAL ALTERNATIVES

The following paragraphs present a comparison of the remedial alternatives evaluated in detail in Section 11.0, relative to the first eight evaluation criteria.

Compliance with New York State SCGs. Alternatives 1 and 2 would not comply with Chemical-specific SCGs, and would not decrease on-site contaminant concentrations or off-site contaminant migration. Alternative 3 provides SVE and treatment to reduce contaminant concentrations, but does not address the impacted area located beneath the site building. Alternatives 4, 5 and 6 would provide in-situ treatment while complying with 40 CFR Part 144 – Underground Injection Control Program and the Effluent Limitations. Alternative 5 would provide immediate removal of the most highly contaminated soil on Site (both in the saturated and vadose zones). Alternative 6, being a combination of several of the alternatives, would comply with chemical-specific SCGs in the on-site vadose zone (including under the building), and in the saturated zone both on-site and off-site.

Relative to overall compliance with SCGs, Alternative 6 rates highest at meeting this evaluation criterion because it includes a combination of alternatives to address soil and groundwater contamination on-site and enhanced biodegradation to address site contaminants in off-site groundwater.

Overall Protection of Public Health and the Environment. Alternative 1 does not provide protection of public health and the environment because no further actions would be conducted to reduce or control groundwater and soil contamination. Alternative 2 would provide institutional controls to protect public health but does not provide active means of remediation. Alternative 3 is protective of public health and the environment because it reduces contamination by means of vapor extraction. Alternatives 4 and 5 are protective of public health and the environment due to contaminant reduction by means of in-situ treatment. Alternative 5 would remove the most highly contaminated soils from the site that potentially represent a continuous source of groundwater contamination. Alternative 6, actively addresses vadose zone contamination under the building and groundwater contamination downgradient of the site, however the vapors under the site building are currently being addressed by the on-site SSDS, and groundwater downgradient of the site is not used for drinking, nor have downgradient SVI sampling results indicated that SVI is pathway of concern.

Alternative 6 rates highest at meeting the evaluation criterion for overall protection of the environment. However, Alternatives 5 and 6 rate equally high at meeting the evaluation criterion for overall protection of public health.

Short-term Impacts and Effectiveness. Alternatives 1 and 2 would not include any construction activities; therefore, there would be no potential for short-term adverse impacts of the remedy upon the community, the workers, and the environment during the construction. Alternatives 1 and 2 would not, however, reduce contaminant concentrations or the potential for off-site migration. Alternative 3 requires time to install SVE and air sparge wells, associated conveyance piping and the treatment system, there are potential short-term adverse impacts upon the community, workers and the environment. Alternative 3 also requires long-term operation, maintenance, and monitoring to achieve contaminant reduction. Alternatives 4, 5 and 6 would require the use of temporary injection points for amendment application, which could be completed relatively

quickly. Alternative 5 would require excavation of two small areas presenting potential short-term adverse impacts upon the community, workers and the environment, however the excavation activities would be completed fairly quickly. Alternative 6 would require excavation in two areas and would also include drilling and trenching both indoors and outdoors to install the SVE system. Alternative 6 would take the most time to implement, and would rely upon long-term operation, maintenance, and monitoring to achieve contaminant reduction.

Alternative 5 would best meet the short-term impact and effectiveness evaluation criterion, as it could be implemented in a relatively short period of time and would provide immediate results.

Long-term Effectiveness and Permanence. Alternative 1 would not meet RAOs because no remedial actions would be implemented at the Site. This alternative would not provide long-term effectiveness. Alternative 2 is not likely to meet RAOs because no active remedial actions would take place other than protecting human health through the use of institutional controls. Alternative 3 would provide long-term effectiveness, but would take a significant amount of time to meet RAOs, requires ongoing operation, monitoring and maintenance of the treatment system, and has the potential for contaminant concentration rebound after the system is turned off. Alternatives 4 and 5 will both provide long-term effectiveness at reducing VOC concentrations in soil and groundwater, however, Alternative 4 may not be successful at reducing the high contaminant concentrations in the source areas, and therefore permanence of the remedial alternative may not be realized. Alternatives 5 and 6 would provide excavation of the source areas in addition to in-situ treatment and would therefore remove the potential, continuous source thereby providing permanence with regards to the remediation. Alternative 5 relies on the continued operation of the SSDS to remove soil vapors from under the building, whereas Alternative 6 would more aggressively treat this area via SVE. Alternative 6 actively treats residual groundwater contamination downgradient of the Site; other alternatives do not directly address this off-site area.

Relative to long-term effectiveness and permanence, Alternative 6 would best meet this evaluation criterion, followed closely by Alternative 5 because they both remove the source areas and provide treatment of residual soil and groundwater contamination.

Reduction of Toxicity, Mobility, or Volume with Treatment. Alternatives 1 and 2 would not reduce the toxicity, volume, and mobility of groundwater and soil contamination. Alternatives 3

and 6 would reduce the toxicity and volume of contamination in the ground by soil vapor extraction, and may also reduce the mobility of contamination by evaporation and capturing of VOC concentrations from the groundwater. However it would not meet the requirement of reduction in toxicity and volume unless treatment, rather than disposal, of spent carbon is included. Alternatives 4, 5 and 6 include in-situ treatment to reduce the toxicity, mobility, and volume of contamination. Alternatives 5 and 6 include the removal and disposal of contaminated soil which would reduce mobility of contamination at the site, however, the removal of this soil is not considered reduction of toxicity and volume since it would simply be relocated elsewhere for disposal rather than being treated.

Alternative 4 would best meet this evaluation criterion, followed by Alternative 5.

Implementability. Alternative 1 does not require any activities to be implemented; however, it would be difficult to obtain regulatory approval of this alternative. Alternative 2 is a widely accepted alternative; however, it too would be difficult to obtain regulatory approval since it does not include any active remediation.

The SVE technologies used for implementation of Alternatives 3 and 6 are widely used and accepted, and would not be difficult to implement. These alternatives would, however, require heavy equipment, space, and a significant amount of time and effort to implement which may interfere with day to day business activities at the site, and would require access agreements and coordination with the property owner(s). Alternative 6 would have an even greater impact since it requires SVE well and trench installation beneath the building.

The use of in-situ enhanced biodegradation in Alternatives 4, 5 and 6 are generally becoming more widely used and accepted, and would not be significantly difficult to implement. Services and materials required to implement these alternatives are readily available. A primary obstacle to successful implementation of these remedies is the location of the on-site building over a large portion of the treatment area. However, the amendments used for in-situ enhanced biodegradation are long-lasting and migrate with groundwater flow. In-situ enhanced biodegradation, however, may not be effective at treating highly contaminated areas (e.g. DP-17 area); therefore Alternative 5 and 6 also include excavation of the source areas. Excavation is also a widely used and accepted

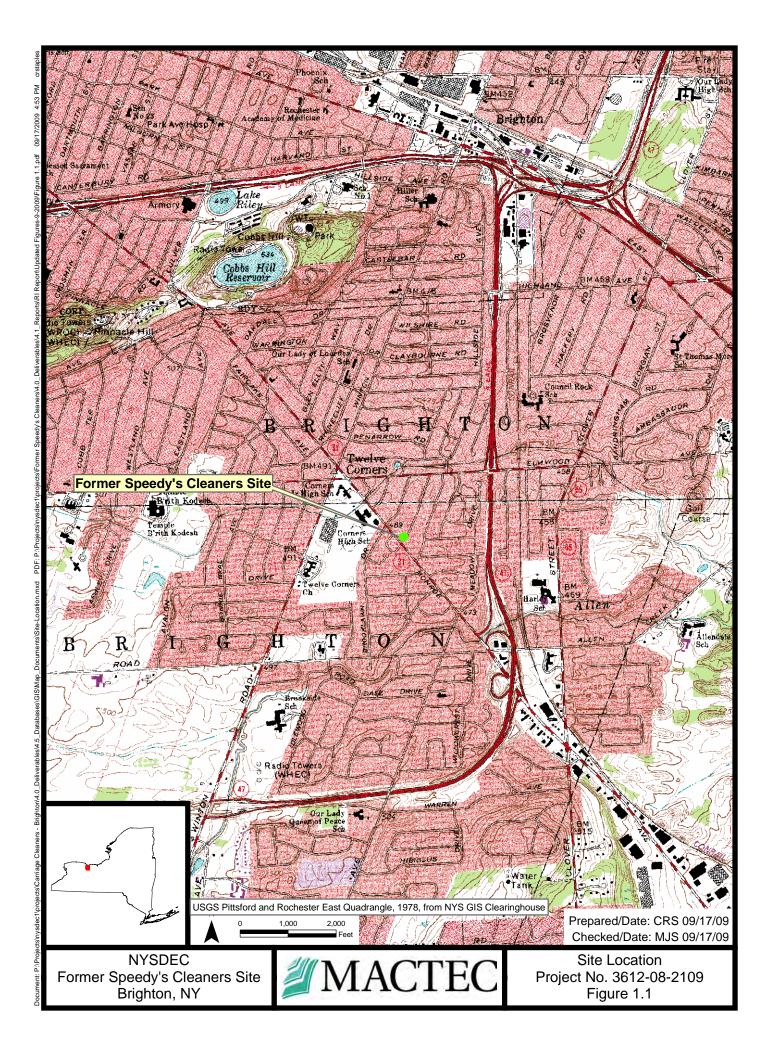
remedial technology and is easy to implement, however, it will cause some interference with day to day work activities at the site and will require good communications with the property owner.

Alternative 4 would best meet this evaluation criterion, followed by Alternative 5.

Cost-Effectiveness. A comparison of the capital and long-term costs associated with the remedial alternatives is presented in Table 12.1. The costs for Alternative 1 is \$0 per year, with no costs for capital improvements, however, the alternative does not provide any remediation of existing conditions. The following is a summary of the capital costs and NPW for the various alternatives.

,
,
,
,

Land Use. The current and reasonably anticipated future land use of the Site is for commercial purposes. Alternatives 1 and 2 will not reduce the concentrations of contaminants at the site to below the commercial use SCOs. Alternatives 3 and 4 may also not be effective in reducing the contaminants of concern to below the commercial use SCOs. Alternatives 5 and 6 reduce the concentrations of contaminants at the site to below the commercial use SCOs, as well as the protection of groundwater SCOs, and will therefore meet the land use requirements for the Site.


Alternatives 5 and 6 would best meet the current and anticipated future land use of the site.

13.0 REFERENCES

- Agency for Toxic Substances and Disease Registry (ATSDR, 1997). Toxicological profile for Tetrachloroethene. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
- Bouwer, H. and R.C. Rice, 1976. Slug Test Method for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells"; Water Resources Research; Vol. 12, No. 3; pp. 432-428.
- Empire Geo-Services, 2004. Letter to Mr. Todd Caffoe, NYSDEC Region 8, Re: Former Speedy's Dry Cleaner site. August 12, 2004.
- Hvorslev, M.J., 1951. "Time Lag and Soil Permeability in Groundwater Investigations"; U.S. Army Corps of Engineers Waterway Experiments Station; Bulletin 36; Vicksburg, MS.
- LaBella Associates, P.C. (LaBella), 1999. *Phase I Environmental Site Assessment*, 2150 Monroe Avenue, Town of Brighton, Monroe County, New York. October 1999.
- MACTEC Engineering and Consulting, P.C., 2007. Program Quality Assurance Program Plan. Prepared for the New York State Department of Environmental Conservation, Albany, New York. October 2007.
- National Climactic Data Center (NCDC), 1999. Comparative Climactic Data for the United States through 1998. June 22, 1999.
- New York State (NYS), 1999. New York Codes, Rules, and Regulations, Title 6, Part 371 Identification and Listing of Hazardous Wastes. Amended November 1999.
- New York State Department of Environmental Conservation (NYSDEC), 2008. Work Assignment Issuance/Conflict of Interest Letter for Former Speedy's Cleaners; dated July 15, 2008.
- New York State Department of Environmental Conservation (NYSDEC), 2006. New York Codes, Rules, and Regulations, Title 6, Part 375 Inactive Hazardous Waste Disposal Sites Remedial Program. Amended November 2006.
- New York State Department of Environmental Conservation (NYSDEC), 2002. Draft DER-10, Technical Guidance for Site Investigation and Remediation. December 2002.

- New York State Department of Environmental Conservation (NYSDEC), 2000. "Analytical Services Protocols"; 6/00 Edition; June 2000.
- New York State Department of Environmental Conservation (NYSDEC), 1998. Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. October 1998 (revised).
- New York State Department of Environmental Conservation (NYSDEC), 1997. "Guidance for the Development of Data Usability Reports"; Division of Environmental Remediation; September 1997.
- New York State Department of Environmental Conservation (NYSDEC), 1989. Technical and Administrative Guidance Memorandum HWR 89-4025: Guidelines for Remedial Investigations / Feasibility Studies. March 1989.
- O'Brien & Gere Engineers, Inc. 2007. Remedial Investigation Report Carriage Cleaners Site No. 8-28-120. Town of Brighton, NY. January 31, 2007.
- Town of Brighton, 1968a. Application for Permit # 11018 to the Planning Board and Zoning and Building Commission, Town of Brighton, Monroe County, New York. Dated April 27, 1968.
- Town of Brighton, 1968b. Application for Permit # 11120 to the Planning Board and Zoning and Building Commission, Town of Brighton, Monroe County, New York. Dated June 18, 1968.
- United States Environmental Protection Agency (USEPA), 2000. "A Guide for Developing and Documenting Cost Estimates During the Feasibility Study"; EPA 540-R-00-002, OSWER 9355.0-75; U.S. Environmental Protection Agency; Washington, D.C., July 2000.
- United States Environmental Protection Agency (USEPA), 1994. How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites: A Guide for Corrective Action Plan Reviewers. (EPA 510-B-94-003; EPA 510-B-95-007; and EPA 510-R-04-002).
- United States Environmental Protection Agency (USEPA), 1988. "Guidance for Conducting Remedial Investigations and Feasibility Studies under CERCLA" (Interim Final); EPA/540/G-89/004; October 1988.

FIGURES

Project 3612-08-2109

Figure 1.3

Brighton, NY

Project 3612-08-2109

Figure 3.1

Former Speedy's Cleaners Site Brighton, NY

Former Speedy's Cleaners Site Brighton, NY

Concentrations in Groundwater

Figure 4.2

Project 3612-08-2109

TABLES

Table 3.1: Groundwater Elevation Data

Monitoring Well ID	Ground Elevation (ft MSL)	Casing Elevation (ft MSL)	Top of PVC Elevation (ft MSL)	TOC-TOR	Well Depth (ft BTOC)	Top Of Bedrock Elevation (ft MSL)	Depth to Water (BTOR) (01/20/2009)	Groundwater Elevation (01/20/2009)	Depth to Water (BTOR) (03/11/2009)	Groundwater Elevation (03/11/2009)
MW-1	488.66	490.06	490.06	0.00	11.8	NA	9.05	481.01	8.50	481.56
MW-2	488.33	489.53	489.53	0.00	10.0	NA	8.68	480.85	7.70	481.83
MW-3	488.24	488.24	488.10	0.14	11.0	NA	NM	NM	6.53	481.57
MW-4	487.92	487.92	487.74	0.18	10.5	NA	6.76	480.98	5.80	481.94
MW-5	489.29	489.29	489.17	0.12	12.0	NA	8.24	480.93	7.84	481.33
MW-6	488.66	488.66	488.26	0.30	10.2	NA	7.33	480.93	6.34	481.92
HA-101	490.52	490.52	490.76	-0.24	17.0	480.5	NM	NM	NM	NM
HA-102	490.40	490.40	490.71	-0.31	20.2	476.4	NM	NM	NM	NM
HA-104	488.35	488.35	487.97	0.38	18.8	477.2	6.75	481.22	6.10	481.87
MW-104I	488.10	488.10	487.73	0.37	39.8	476.9	NM	NM	25.11	462.62
HA-105	486.42	486.42	486.09	0.33	15.8	473.4	8.70	477.39	NM	NM
HA-106	486.73	486.73	486.41	0.32	15.6	473	9.10	477.31	NM	NM
HA-107	482.97	482.97	482.57	0.40	14.9	477	NM	NM	NM	NM
HA-108	487.20	487.20	486.97	0.23	14.7	473.7	5.81	481.16	4.51	482.46
HA-109	485.56	485.56	485.32	0.24	15.2	475.7	NM	NM	NM	NM
HA-110	489.70	489.70	489.39	0.31	18.4	475.9	NM	NM	NM	NM
HA-111	489.27	489.27	489.12	0.15	16.2	478.3	8.27	480.85	NM	NM
MW-111I	489.56	489.56	489.17	0.39	29.3	479.6	10.28	478.89	8.86	480.31
HA-112	486.67	486.67	486.55	0.12	15.8	474.1	7.15	479.40	4.52	482.03
HA-113	487.98	487.98	487.67	0.31	15.9	475.5	NM	NM	NM	NM
HA-114	485.29	485.29	485.02	0.27	14.8	476.3	8.26	476.76	6.82	478.20
HA-115	484.42	484.42	484.14	0.28	16.2	481.2	6.80	477.34	5.95	478.19
HA-116	488.59	488.59	488.44	0.15	14.9	478.6	NM	NM	NM	NM
HA-117	480.39	480.39	480.08	0.31	14.9	470.4	8.58	471.50	7.12	472.96
HA-118	480.40	480.40	479.96	0.44	15.3	475.4	7.64	472.32	6.72	473.24
HA-119	482.26	482.26	481.97	0.29	14.8	478.1	7.26	474.71	5.91	476.06
HA-120	491.53	491.53	490.89	0.64	15.3	481.7	NM	NM	NM	NM
HA-121	488.69	488.69	488.37	0.32	15.2	474.7	NM	NM	NM	NM
HA-122	483.30	483.30	482.90	0.40	15.3	479.4	7.14	475.76	6.38	476.52
HA-123	484.89	484.89	484.72	0.17	15.2	474.1	9.68	475.04	7.81	476.91
DEC-Well	487.59	487.59	487.28	0.31	16.0	NA	9.18	478.10	8.25	479.03

Table 3.1: Groundwater Elevation Data

Monitoring Well ID	Ground Elevation (ft MSL)	Casing Elevation (ft MSL)	Top of PVC Elevation (ft MSL)	TOC-TOR	Well Depth (ft BTOC)	Top Of Bedrock Elevation (ft MSL)	Depth to Water (BTOR) (01/20/2009)	Groundwater Elevation (01/20/2009)	Depth to Water (BTOR) (03/11/2009)	Groundwater Elevation (03/11/2009)
MW-201	485.34	485.34	485.14	0.20	20.0	470	7.75	477.39	6.23	478.91
MW-202	485.76	485.76	484.81	0.95	15.7	475	7.32	477.49	6.15	478.66
MW-202I	485.68	485.68	485.28	0.40	49.6	475.9	37.12	448.16	35.75	449.53
MW-203S	478.80	478.80	478.51	0.29	14.8	471.5	8.03	470.48	7.42	471.09
MW-204S	479.24	479.24	478.86	0.38	15.9	473.7	7.01	471.85	6.11	472.75
MW-205S	482.38	482.38	482.05	0.33	14.8	475.1	7.11	474.94	5.70	476.35
MW-206	486.83	486.83	486.49	0.35	19.5	476.0	7.04	479.45	5.22	481.27
MW-206S	486.87	486.87	486.55	0.32	12.0	474.9	7.18	479.37	5.38	481.17
MW-207S	479.65	479.65	479.46	0.19	15.6	470.5	10.03	469.43	7.63	471.83
MW-208S	481.08	481.08	480.65	0.43	15.6	475.6	NM	NM	NM	NM
MW-209S	479.80	479.80	479.66	0.14	15.5	468.9	10.56	469.10	7.66	472.00
MW-210	487.03	487.03	486.70	0.2	18.0	479.0	6.92	479.78	5.32	481.38
MW-211	486.54	486.54	486.25	0.3	18.5	477.3	7.87	478.38	6.56	479.69
MW-212	486.75	486.75	486.40	0.3	15.5	476.8	7.85	478.55	6.48	479.92
EW-1	489.46	489.46	489.21	0.2	28.2	479.0	8.60	480.61	7.73	481.48
OW-1	489.53	489.53	489.23	0.3	28.0	478.5	8.58	480.65	7.86	481.37

Notes:

Northing, Easting and Elevation data from:

Historic data- Popli Engineers - dated 8/3/2006 New wells- Popli Design Group - dated 3/30/2009 Horizontal Datum: NAD 83/96 - NYSPCS WEST ZONE

Vertical Datum: NAVD88

ft MSL - Feet Above Mean Sea Level

ft BTOC - Feet Below Top Of Casing

TOC - Top of Casing

TOR - Top of Riser

NA - Not Available

NM - Not Measured

Table 3.2: Groundwater Hydraulic Data

Summary of Hydraulic Conductivity (Slug) Tests

January 2008

Well	Well	Hvorslev	Hvorslev	Bouwer-Rice	Bouwer-Rice		
Identification	Type	(cm/sec)	(cm/sec)	(cm/sec)	(cm/sec)	Geometric mean	K values
	• •	FHT	RHT	FHT	RHT	(cm/sec)	(ft/day)
MW-206	OB/BR	0.008	0.011	0.005	0.008	0.008	21.4
MW-210	OB/BR	0.003	0.004	0.003	0.002	0.0027	7.7
MW-211	OB/BR	0.004	0.006	0.004	0.004	0.0044	12.6
MW-212	OB/BR		0.003		0.002	0.0020	5.5

Well	V = Ki/n			
Identification	(ft/day)		Geometric	
	(n=0.05)	V (ft/year)	mean	
MW-206	3.4	1250	604	=V (ft/year)
MW 210				
MW-210	1.2	448		
MW-210 MW-211	2.0	734		

Well Identification	V = Ki/n (ft/day) (n=0.20)	V (ft/year)	Geometric mean	
MW-206	0.9	312	151	=V (ft/year)
MW-210	0.3	112		•
MW-211	0.5	184		
MW-212	0.2	81		

Notes

FHT = Falling Head Slug Test

RHT = Rising Head Slug Test

cm/sec = centimeters per second

ft/day = feet per day

ft/year = feet per year

K = hydraulic conductivity

V = velocity (in either ft/day or ft/year)

i = hydraulic gradient (feet per foot); hydraulic gradient calculated at .008

n = porosity, assumed porosity of 0.05 for the bedrock wells, and 0.25 for the overburden wells.

Because well screens cross the overburden/bedrock interface, porosity of both 0.05 and 0.2 maybe present within the screened interval; therefore velocities using porosity values of both 0.05 and 0.2 are presented above.

Former Speedy's Cleaners Site, Brighton, NY Hydraulic Gradient Calculations

(Change in Head)

i = (Shortest distance between observed or interpreted heads)

Hydraulic Gradient (i) calculations from 3/2009 contour data.

Interface Zone

MW-206 to HA-119

5.2 = difference in head

550 = distance between locations (feet)

i = 0.009455

HA-104 to HA-122

5.4 = difference in head

750 = distance between wells (feet)

i = 0.0072

0.008327 = Arithmetic mean Interface Zone hydraulic gradient.
0.008 feet/foot

Created by: CRS 4/10/09 Checked by: RAL 4/15/09

Table 4.1: Summary of Pesticides, PCBs, SVOCs, and Metals Concentrations in Soil

	Location	BKSS-001	BKSS-002	BKSS-003	DP-004	DP-004	DP-005	DP-007	
	Sample Date	12/15/2008	12/15/2008	12/15/2008	12/18/2008	12/18/2008	12/15/2008	12/15/2008	
	Sample ID	828128BKSS001001	828128BKSS002001	828128BKSS003001	828128DP004009	828128DP004009DUP	828128DP005012	828128DP007008	
	Media	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
	Qc Code	FS	FS	FS	FS	FD	FS	FS	
Parameter	Criteria	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
Pesticides/PCBs									
Alpha-Chlordane	0.094				0.0019 U	0.0019 U	0.0058 J	0.0019 U	
Dieldrin	0.005				0.0036 U	0.0037 U	0.016	0.0037 U	
Gamma-Chlordan	NA				0.0019 U	0.0019 U	0.0048	0.0019 U	
SVOCs					ND	ND	ND	ND	
Metals									
Aluminum	NA	10,300	12,700	10,900	3,570 Ј	2,460 Ј	9,750	5,160	
Arsenic	13	3	2.4	4.8	7.2 J	10.1 J	3.5	1.1 U	
Barium	350	59.9	70.1	64.5	20.4	16	43.1	23.7	
Calcium	NA	18,400	7,380	8,940	141,000	168,000	57,700	59,000	
Chromium	30	22.4	17.8	16.6	6.5	5.5	13.5	7.5	
Cobalt	NA	6.3 U	7	6.3 U	5.5 U	5.6 U	5.7 U	5.5 U	
Copper	50	22.4	17.7	15.5	6.8	7.3	12.5	8.8	
Iron	NA	15,800	17,500	16,400	9,890 J	9,730 Ј	14,700	10,100	
Lead	63	100	75.6	65.2	16.4	17.1	15.1	14.7	
Magnesium	NA	10,800	4,490	6,000	72,000	90,000	30,900	30,400	
Manganese	1600	460	560	486	479	521	458	377	
Mercury	0.18	0.41	0.09	0.07	0.04 U	0.03 U	0.04 U	0.04 U	
Nickel	30	11.6	13.9	12.3	5.4	4.5 U	11.7	7.1	
Potassium	NA	1,270	1,340	1,420	934	731	1,510	955	
Selenium	3.9	1.5	2.1	2.1	1.1 U 1.1 U 1		1.2	1.1 U	
Sodium	NA	268	135 U	142	292	292 319		177	
Vanadium	NA	22.7	25.9	24.2	9.4	9.4 7.2		13	
Zinc	109	122	107	200	40.7	30.4	80.9	157	

Notes:

Results in milligrams per kilogram (mg/Kg)

Only detected compounds shown.

Samples analyzed for Metals by EPA Method 6010B,

for SVOCs by EPA Method 8270, and Pesticides/PCBs

by EPA Methods 8081/8082.

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

Criteria = Values from 6 NYCRR Part 375

Soil Cleanup Objectives for Unrestrictive

use.

NA = No criteria available

Detections are indicated in BOLD

Highlighted results exceed criteria

ND = Not detected above reporting limit

	Location	DP-001	DP-002	DP-003	DP-004	DP-004
Sample Date		12/17/2008	12/18/2008	12/18/2008	12/18/2008	12/18/2008
	Sample ID		828128DP002009	828128DP003009	828128DP004009	828128DP004009DUP
Sample Depth (ft bgs)		9	9	9	9	9
Qc Code		FS	FS	FS	FS	FD
Parameter	Criteria	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
Acetic acid, methyl ester	NL	0.011 U	0.012 U	0.011 U	0.011 U	0.011 U
Benzene	0.06	0.0053 U	0.0061 U 0.00041 J		0.0057 U	0.0055 U
Carbon disulfide	NL	0.011 U	0.012 U	0.011 U	0.011 U	0.011 U
Cis-1,2-Dichloroethene	0.25	0.0014 J	0.019	0.00061 J 0.0057 U		0.0055 U
Cyclohexane	NL	0.0053 U	0.0061 U	0.0057 U	0.0057 U	0.0055 U
Ethyl benzene	1	0.0053 U	0.0061 U	0.0057 U	0.0057 U	0.0055 U
Methyl cyclohexane	NL	0.0053 U	0.0061 U	0.0014 J	0.00057 J	0.00052 J
Tetrachloroethene	1.3	0.018	1.5 D	0.042	0.027 J	0.041 J
Toluene	0.7	0.0006 J	0.0013 J	0.0031 J	0.00064 J	0.00082 J
Trichloroethene	0.47	0.0048 J	0.016	0.00097 J	0.00097 J 0.0057 U	
Xylene, m/p	0.26	0.0053 U	0.0017 J	0.0034 J	0.0034 J 0.0057 U	
Xylene, o	0.26	0.0053 U	0.0053 U 0.0061 U		0.001 J 0.0057 U	
Percent Solids		87.3	82.5	88.3	91.7	89.2

Notes:

Results in milligrams per kilogram (mg/Kg)

Depth in feet below outside ground surface

Only detected compounds shown

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample

FD = Field Duplicate

Oualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from dilution run

Criteria - 6 NYCRR 375 Soil Cleanup Objectives

for unrestricted use.

Detections are indicated in BOLD

Highlighted results exceed criteria

NL = Not Listed

NA = Not Applicable

MACTEC Engineering and Consulting 3612082109

Location		DP-	005	DP-(005	DP	-006	DP-	007	DP-	007	DP-	-008
Sample Date		12/15/2008		12/15/2008		12/15/2008		12/15/2008		12/15/2008		12/15/2008	
	Sample ID	828128D	P005008	828128DP005012		828128DP006008		828128DP007006		828128DP007008		828128DP00800	
Sample Depth (ft bgs)		8	}	12		8		6		8		8	
Qc Code		F	S	FS	S	I	FS	F	S	F	S	F	FS
Parameter	Criteria	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Acetic acid, methyl ester	NL	0.012	U	0.011	U	0.01	2 U	0.013 U		0.011	U	0.012 U	
Benzene	0.06	0.0059	U	0.0054	U	0.00	6 U	0.0065 U		0.0057	7 U	U 0.0059	
Carbon disulfide	NL	0.012	U	0.00039 Ј		0.01	2 U	0.013 U		0.011 U		0.012 U	
Cis-1,2-Dichloroethene	0.25	0.0059	U	0.0054	U	0.00	6 U	0.0065	5 U	0.0057 U		0.0059 U	
Cyclohexane	NL	0.0059	U	0.00042 Ј		0.00	6 U	0.0065 U		0.0057	7 U	0.005	9 U
Ethyl benzene	1	0.0059	U	0.0054	U	0.006 U		0.00056 J		0.0057 U		0.0059 U	
Methyl cyclohexane	NL	0.0059	U	0.0011	J	0.00	6 U	0.0065	5 U	0.0057	7 U	0.005	9 U
Tetrachloroethene	1.3	0.0059	U	0.0016	J	0.01	2	0.0092	2	0.002	2 J	0.02	5
Toluene	0.7	0.00058	J	0.0022	J	0.00	1 J	0.003	7 J	0.00052 J		0.001	8 J
Trichloroethene	0.47	0.0059	U	0.0054	U	0.00	6 U	0.0065 U		0.0057	7 U	0.005	9 U
Xylene, m/p	0.26	0.0059	U	0.003 J		0.00	5 U 0.0017 J		0.0057	7 U	0.005	9 U	
Xylene, o	0.26	0.0059	U	0.00082 J		0.00	6 U 0.0065 U		0.0057	7 U	0.005	9 U	
Percent Solids		84.6	i	87.5		84.	7	84.0	5	88.4	1	88.	2

Notes:

Results in milligrams per kilogram (mg/Kg)

Depth in feet below outside ground surface

Only detected compounds shown

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample

FD = Field Duplicate

Oualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from dilution run

Criteria - 6 NYCRR 375 Soil Cleanup Objectives

for unrestricted use.

Detections are indicated in BOLD

Highlighted results exceed criteria

NL = Not Listed

NA = Not Applicable

March 2010

Final

	Location	DP-009	DP-010	DP-011	DP-011	DP-012	DP-012
	Sample Date	12/15/2008	12/15/2008	12/15/2008	12/15/2008	12/15/2008	12/15/2008
	Sample ID	828128DP009010	828128DP010008	828128DP011008	828128DP011008DUP	828128DP012008	828128DP012009
Samp	le Depth (ft bgs)	10	8	8	8	8	9
	Qc Code	FS	FS	FS	FD	FS	FS
Parameter	Criteria	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
Acetic acid, methyl ester	NL	0.0014 J	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U
Benzene	0.06	0.00046 J	0.0059 U	0.0057 U	0.006 U	0.0055 U	0.0058 U
Carbon disulfide	NL	0.011 U	0.012 U	0.011 U	0.012 U	0.011 U	0.012 U
Cis-1,2-Dichloroethene	0.25	0.0055 U	0.0059 U	0.0057 U	0.006 U	0.0055 U	0.0058 U
Cyclohexane	NL	0.00058 J	0.0059 U	0.0057 U	0.006 U	0.0055 U	0.0058 U
Ethyl benzene	1	0.0055 U	0.0059 U	0.0057 U	0.006 U	0.0055 U	0.0058 U
Methyl cyclohexane	NL	0.0011 J	0.00064 J	0.0057 U	0.006 U	0.0055 U	0.00085 J
Tetrachloroethene	1.3	0.046	0.0014 J	0.0094	0.0057 J	0.0093	0.07
Toluene	0.7	0.0018 J	0.0012 J	0.00056 J	0.006 U	0.00056 Ј	0.0018 J
Trichloroethene	0.47	0.0055 U	0.0059 U	0.0057 U	0.006 U	0.0055 U	0.0006 J
Xylene, m/p	0.26	0.0021 J	0.002 J	0.0057 U	0.006 U	0.0055 U	0.003 J
Xylene, o	0.26	0.00068 J	0.0059 U	0.0057 U	0.006 U	0.0055 U	0.00058 J
Percent Solids		87.4	85	86.2	84.3	90.6	85.5

Notes:

Results in milligrams per kilogram (mg/Kg)

Depth in feet below outside ground surface

Only detected compounds shown

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from dilution run

Criteria - 6 NYCRR 375 Soil Cleanup Objectives

for unrestricted use.

Detections are indicated in BOLD

Highlighted results exceed criteria

NL = Not Listed

NA = Not Applicable

	Location	DP-013	DP-014	DP-015	DP-016	DP-016	DP-017
	Sample Date	12/15/2008	12/15/2008	12/16/2008	12/16/2008	12/16/2008	12/16/2008
	Sample ID	828128DP013006	828128DP014010	828128DP015008	828128DP016008	828128DP016009	828128DP017010
Samp	le Depth (ft bgs)	6	10	8	8	9	10
	Qc Code	FS	FS	FS	FS	FS	FS
Parameter	Criteria	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
Acetic acid, methyl ester	NL	1.3 U	0.011 U	0.011 U	0.011 U	1.2 U	54 U
Benzene	0.06	0.63 U	0.0056 U	0.0056 U 0.0056 U		0.58 U	27 U
Carbon disulfide	NL	1.3 U	0.011 U	0.011 U	0.011 U	1.2 U	54 U
Cis-1,2-Dichloroethene	0.25	0.63 U	0.0056 U	0.0056 U	0.0056 U	0.58 U	27 U
Cyclohexane	NL	0.63 U	0.0056 U	0.0056 U	0.0056 U	0.58 U	27 U
Ethyl benzene	1	0.63 U	0.0056 U	0.0056 U	0.0056 U	0.58 U	27 U
Methyl cyclohexane	NL	0.63 U	0.0056 U	0.00042 J	0.0056 U	0.58 U	27 U
Tetrachloroethene	1.3	35 D	0.0096	0.036	0.0077	2.8	830
Toluene	0.7	0.63 U	0.0011 J	0.0014 J	0.00041 J	0.58 U	27 U
Trichloroethene	0.47	0.63 U	0.0056 U	0.0056 U	0.0056 U	0.58 U	27 U
Xylene, m/p	0.26	0.63 U	0.00089 J	0.0016 J	0.0056 U	0.58 U	27 U
Xylene, o	0.26	0.63 U	0.0056 U	0.0056 U	0.0056 U	0.58 U	27 U
Percent Solids		83.4	89.2	86.2	89.9	88.9	90

Notes:

Results in milligrams per kilogram (mg/Kg)

Depth in feet below outside ground surface

Only detected compounds shown

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from dilution run

Criteria - 6 NYCRR 375 Soil Cleanup Objectives

for unrestricted use.

Detections are indicated in BOLD

Highlighted results exceed criteria

NL = Not Listed

NA = Not Applicable

	Location	DP-018	DP-019	DP-023	DP-024	DP-025	DP-025
	Sample Date	12/16/2008	12/16/2008	5/4/2009	5/4/2009	5/4/2009	5/4/2009
	Sample ID	828128DP018009	828128DP019011	828128DP023010	828128DP024005	828128DP025004	828128DP025009
Samp	le Depth (ft bgs)	9	11	10	5	4	9
	Qc Code	FS	FS	FS	FS	FS	FS
Parameter	Criteria	Result Qualifier					
Acetic acid, methyl ester	NL	1.2 U	0.011 U	0.49 UJ	0.71 UJ	0.68 UJ	0.48 UJ
Benzene	0.06	0.6 U	0.0057 U	0.25 U	0.36 U	0.34 U	0.24 U
Carbon disulfide	NL	1.2 U	0.011 U	0.49 U	0.71 U	0.68 U	0.48 U
Cis-1,2-Dichloroethene	0.25	0.6 U	0.00049 J	0.25 U	0.36 U	0.34 U	0.24 U
Cyclohexane	NL	0.6 U	0.0057 U	0.49 U	0.71 U	0.68 U	0.48 U
Ethyl benzene	1	0.6 U	0.0057 U	0.25 U	0.36 U	0.34 U	0.24 U
Methyl cyclohexane	NL	0.6 U	0.00061 J	0.49 U	0.71 U	0.68 U	0.48 U
Tetrachloroethene	1.3	2.8	0.0015 J	0.47	1.6	1.9	3.3
Toluene	0.7	0.6 U	0.001 J	0.25 U	0.36 U	0.34 U	0.24 U
Trichloroethene	0.47	0.6 U	0.0057 U	0.25 U	0.36 U	0.34 U	0.24 U
Xylene, m/p	0.26	0.6 U	0.0014 J	0.25 U	0.36 U	0.34 U	0.24 U
Xylene, o	0.26	0.6 U	0.0057 U	0.25 U	0.36 U	0.34 U	0.24 U
Percent Solids		88.3	87.9	91.3	83.8	82.1	92

Notes:

Results in milligrams per kilogram (mg/Kg)

Depth in feet below outside ground surface

Only detected compounds shown

Samples analyzed for VOCs by EPA Method 8260B

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from dilution run

Criteria - 6 NYCRR 375 Soil Cleanup Objectives

for unrestricted use.

Detections are indicated in BOLD

Highlighted results exceed criteria

NL = Not Listed

NA = Not Applicable

	Location	DEC-WELL	EW-1	EW-1	HA-104	HA-105	HA-106	HA-108
	Sample Date	1/21/2009	1/19/2009	1/19/2009	1/21/2009	1/21/2009	1/21/2009	1/19/2009
	Sample ID	828128-DEC-WELL014R1	828120-EW-001025	828120-EW-001025D	828120-HA-104015	828128-HA-105012R1	828128-HA-106014R1	828120-HA-108009
	Qc Code	FS	FS	FD	FS	FS	FS	FS
Parameter	Criteria	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1-Dichloroethene	5	5 U	10 U	10 U	1 U	1 U	2 U	1 U
1,2-Dichloroethane	0.6	7.5	10 U	10 U	1 U	1 U	2 U	1 U
2-Butanone	50*	25 U	50 U	50 U	5 U	5 U	10 U	5 U
Benzene	1	210	10 U	10 U	1 U	6.5	18	1 U
Bromodichloromethane	50*	5 U	10 U	10 U	1 U	1 U	2 U	1 U
Carbon disulfide	60	5 U	10 U	10 U	1 U	1 U	2 U	1 U
Chloroform	7	5 U	10 U	10 U	1 U	1 U	2 U	1 U
Cis-1,2-Dichloroethene	5	5 U	1100	1000	1 U	1 U	2 U	1 U
Cyclohexane	NA	190 J	46	34	1 U	1 U	150 J	1 U
Ethyl benzene	5	590	27	25	9.1	17	320	1 U
Isopropylbenzene	5*	40	3.8 J	3.4 J	3.7	6	24	1 U
Methyl cyclohexane	NA	75	22	19	1 U	1.1	87	1 U
Methyl Tertbutyl Ether	10*	5 U	10 U	10 U	1 U	1 U	2 U	1 U
Methylene chloride	5	5 U	5 J	5.3 J	1 U	1 U	2 U	1 U
Tetrachloroethene	5	5 U	1300	1200	1 U	1 U	2 U	1 U
Toluene	5	900	3.8 J	3.5 J	1 U	1 U	69	1 U
trans-1,2-Dichloroethene	5	5 U	8.5 J	7.4 J	1 U	1 U	2 U	1 U
Trichloroethene	5	5 U	350	320	1 U	1 U	2 U	1 U
Vinyl chloride	2	5 U	92	84	1 U	1 U	2 U	1 U
Xylene, m/p	5	1400	2.5 J	20 U	2 U	2 U	500	2 U
Xylene, o	5	570	10 U	10 U	1 U	1 U	140	1 U

Notes:

Results in microgram per liter (µg/L) Only detected compounds shown. Samples analyzed for VOCs by EPA Method 8260B QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Number shown is standard unless *.

* Criteria is NYSDEC Guidance Value

Detections are indicated in BOLD

Highlighted results exceed criteria

	Location	HA-111	HA-112	HA-114	HA-115	HA-117	HA-118	HA-119
	Sample Date	1/21/2009	1/21/2009	1/21/2009	1/21/2009	1/21/2009	1/20/2009	1/21/2009
	Sample ID	828120-HA-111014	828128-HA-112015R1	828128-HA-114012R1	828128-HA-115155R1	828128-HA-117014R1	828128-HA-118012R1	828128-HA-119013R1
	Qc Code	FS	FS	FS	FS	FS	FS	FS
Parameter	Criteria	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1-Dichloroethene	5	1 U	1 U	0.83 Ј	2 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6	1 U	1 U	1 U	2 U	1 U	1 U	1 U
2-Butanone	50*	5 U	5 U	5 U	10 U	5 U	5 U	5 U
Benzene	1	1 U	1 U	2.1	16	1 U	1 U	0.74 J
Bromodichloromethane	50*	1 U	1 U	1 U	2 U	1 U	1 U	1 U
Carbon disulfide	60	1 U	1 U	1 U	2 U	1 U	1 U	0.45 J
Chloroform	7	1 U	1 U	1 U	2 U	1 U	1 U	1 U
Cis-1,2-Dichloroethene	5	31	1 U	540 D	2 U	1 U	1.3	180 D
Cyclohexane	NA	43 J	1 U	23 Ј	150 J	1 U	1 U	1 U
Ethyl benzene	5	24	1 U	27	360	1 U	1 U	0.29 J
Isopropylbenzene	5*	7.4	1 U	3.7	36	1 U	1 U	1 U
Methyl cyclohexane	NA	33	1 U	5.9	75	1 U	1 U	1 U
Methyl Tertbutyl Ether	10*	1 U	1 U	1 U	2 U	3.7	4.6	2.4
Methylene chloride	5	1 U	1 U	1 U	2 U	1 U	1 U	1 U
Tetrachloroethene	5	11	1 U	11	2 U	6.7	0.8 J	1 U
Toluene	5	1.8	1 U	6.9	74	1 U	1 U	0.56 J
trans-1,2-Dichloroethene	5	1 U	1 U	9.3	2 U	1 U	1 U	2
Trichloroethene	5	4.2	1 U	6.8	2 U	1 U	1 U	0.95 J
Vinyl chloride	2	38	1 U	160	2 U	1 U	1 U	56
Xylene, m/p	5	5.8	2 U	1.7 J	360	2 U	2 U	2 U
Xylene, o	5	2	1 U	1 U	220	1 U	1 U	1 U

Notes:

Results in microgram per liter (µg/L) Only detected compounds shown. Samples analyzed for VOCs by EPA Method 8260B QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 199

Number shown is standard unless *.

* Criteria is NYSDEC Guidance Value

Detections are indicated in BOLD

Highlighted results exceed criteria

	Location	HA-119	HA-122	HA-123	MW-1	MW-2	MW-3	MW-3
	Sample Date	1/21/2009	1/21/2009	1/21/2009	1/19/2009	1/19/2009	3/12/2009	3/12/2009
	Sample ID	828128-HA-119013R1D	828128-HA-122012R1	828128-HA-123155R1	828120-MW-001009	828120-MW-002009	828120-MW-003011	828120-MW-003011D
	Qc Code	FD	FS	FS	FS	FS	FS	FD
Parameter	Criteria	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone	50*	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	1	0.78 J	30	1 U	0.44 J	0.42 J	1	1 U
Bromodichloromethane	50*	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60	0.44 Ј	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cis-1,2-Dichloroethene	5	190 D	43	2	8.1	14	150	140
Cyclohexane	NA	1 U	30 J	1 U	6.2	1 U	100 J	97 J
Ethyl benzene	5	0.27 J	66	1 U	1 U	1 U	73	69
Isopropylbenzene	5*	1 U	6.6	1 U	1	1 U	14	14
Methyl cyclohexane	NA	1 U	14	1 U	4	1 U	110	85
Methyl Tertbutyl Ether	10*	2.4	1 U	1 U	1 U	1 U	1 U	1 U
Methylene chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5	1 U	1 U	15	97	45	63	60
Toluene	5	0.59 J	10	1 U	1 U	1 U	3.8	3.7
trans-1,2-Dichloroethene	5	2.2	1.1	1 U	1 U	1 U	1.2	1.1
Trichloroethene	5	0.96 Ј	1 U	1.7	11	7	18	17
Vinyl chloride	2	55	69	1 U	2.5	0.84 Ј	41	37
Xylene, m/p	5	2 U	49	2 U	2 U	2 U 2 U		38
Xylene, o	5	1 U	35	1 U	1 U	1 U	4.7	4.8

Notes:

Results in microgram per liter (µg/L) Only detected compounds shown. Samples analyzed for VOCs by EPA Method 8260B QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 199

Number shown is standard unless *.

* Criteria is NYSDEC Guidance Value

Detections are indicated in BOLD

Highlighted results exceed criteria
NA = No criteria available

	Location	MW-4	MW-5	MW-6	MW-111I	MW-201	MW-202	MW-202
	Sample Date	1/21/2009	1/19/2009	1/19/2009	1/19/2009	2/2/2009	1/22/2009	1/22/2009
	Sample ID	828120-MW004009	828120-MW-005009	828120-MW-006009	828120-MW-111I025	828128-MW-201017R1	828128-MW-202012R1	828128-MW-202012R1D
	Qc Code	FS	FS	FS	FS	FS	FS	FD
Parameter	Criteria	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1-Dichloroethene	5	1 U	1 U	100 U	5 U	1 U	2.5 U	2.5 U
1,2-Dichloroethane	0.6	1 U	1 U	100 U	5 U	1 U	2.5 U	2.5 U
2-Butanone	50*	5 U	5 U	500 U	25 U	5 U	13 U	13 U
Benzene	1	1 U	1 U	100 U	2.4 J	0.63 J	2.5 U	2.5 U
Bromodichloromethane	50*	1 U	1.4	100 U	5 U	1 U	2.5 U	2.5 U
Carbon disulfide	60	1 U	1 U	100 U	5 U	1 U	2.5 U	2.5 U
Chloroform	7	1 U	23	100 U	5 U	1 U	2.5 U	2.5 U
Cis-1,2-Dichloroethene	5	1 U	3.7	240	920	240 D	120	120
Cyclohexane	NA	1 U	1 U	100 U	38	3.6	2.5 U	2.5 U
Ethyl benzene	5	1 U	0.63 J	100 U	50	4.6	2.5 U	2.5 U
Isopropylbenzene	5*	1 U	1 U	100 U	4.8 J	0.4 J	2.5 U	2.5 U
Methyl cyclohexane	NA	1 U	1.7	100 U	24	0.51 J	2.5 U	2.5 U
Methyl Tertbutyl Ether	10*	1 U	1 U	100 U	4.5 J	1 U	0.95 J	2.5 U
Methylene chloride	5	1 U	0.74 J	100 U	5 U	1 U	2.5 U	2.5 U
Tetrachloroethene	5	1 U	1.6	13000 D	240	1 U	420	410
Toluene	5	1 U	1 U	100 U	7.6	0.37 J	2.5 U	2.5 U
trans-1,2-Dichloroethene	5	1 U	1 U	100 U	7	3.7	2 J	2.2 J
Trichloroethene	5	1 U	0.52 J	140	140	0.93 J	24	24
Vinyl chloride	2	1 U	1.9	100 U	110	19	13	13
Xylene, m/p	5	2 U	2 U	200 U	3 J	0.43 J	5 U	5 U
Xylene, o	5	1 U	1 U	100 U	1.6 J	1 U	2.5 U	2.5 U

Notes:

Results in microgram per liter (µg/L) Only detected compounds shown. Samples analyzed for VOCs by EPA Method 8260B QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 199

Number shown is standard unless *.

* Criteria is NYSDEC Guidance Value

Detections are indicated in **BOLD**

Highlighted results exceed criteria

	Location	MW-202I	MW-203S	MW-204S	MW-205S	MW-206	MW-206S	MW-207S
	Sample Date	1/21/2009	1/20/2009	1/21/2009	1/20/2009	1/20/2009	1/20/2009	1/21/2009
	Sample ID	828128-MW-2021045R1	828128-MW-203S012R1	828128-MW-204S012R1	828128-MW-205S012R1	828128-MW-206017R1	828128-MW-206S010R1	828128-MW-207S012R1
	Qc Code	FS	FS	FS	FS	FS	FS	FS
Parameter	Criteria	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1-Dichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2-Dichloroethane	0.6	1 U	1 U	1 U	1 U	1 U	1 U	1 U
2-Butanone	50*	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Benzene	1	1 U	1 U	1 U	1 U	0.95 J	1 U	1 U
Bromodichloromethane	50*	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon disulfide	60	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	7	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Cis-1,2-Dichloroethene	5	1 U	190 D	32	0.84 J	100	59	1 U
Cyclohexane	NA	1 U	1 U	1 U	1 U	15	4.8	1 U
Ethyl benzene	5	1 U	1 U	1 U	1 U	22	1.2	1 U
Isopropylbenzene	5*	1 U	1 U	1 U	1 U	0.86 J	1 U	1 U
Methyl cyclohexane	NA	1 U	1 U	1 U	1 U	2.3	1 U	1 U
Methyl Tertbutyl Ether	10*	6.4	66	1 U	1 U	1 U	1 U	1 U
Methylene chloride	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Tetrachloroethene	5	1 U	1	31	1.1	18	9.7	11
Toluene	5	1 U	1 U	1 U	1 U	3	1 U	1 U
trans-1,2-Dichloroethene	5	1 U	0.97 J	1 U	1 U	0.97 J	1 U	1 U
Trichloroethene	5	1 U	1 U	2	1 U	4.5	3.1	1 U
Vinyl chloride	2	1 U	34	1 U	1 U	6.9	2.9	1 U
Xylene, m/p	5	2 U	2 U	2 U	2 U	0.57 J	2 U	2 U
Xylene, o	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes:

Results in microgram per liter (µg/L) Only detected compounds shown. Samples analyzed for VOCs by EPA Method 8260B QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 199

Number shown is standard unless *.

* Criteria is NYSDEC Guidance Value

Detections are indicated in BOLD

Highlighted results exceed criteria

	Location	MW-209S	MW-210	MW-211	MW-212	OW-1
	Sample Date	1/21/2009	1/19/2009	1/20/2009	1/21/2009	1/19/2009
	Sample ID	828128-MW-209S014R1	828128-MW-210015R1	828128-MW-211015R1	828128-MW-212010R1	828120-OW-001025
	Qc Code	FS	FS	FS	FS	FS
Parameter	Criteria	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
1,1-Dichloroethene	5	1 U	2.5 U	1 U	50 U	1 U
1,2-Dichloroethane	0.6	1 U	2.5 U	1 U	50 U	1 U
2-Butanone	50*	5 U	13 U	5 U	250 U	5.6
Benzene	1	1 U	1.1 J	0.97 J	50 U	4.8
Bromodichloromethane	50*	1 U	2.5 U	1 U	50 U	1 U
Carbon disulfide	60	1 U	2.5 U	1 U	50 U	1 U
Chloroform	7	1 U	2.5 U	1 U	50 U	1 U
Cis-1,2-Dichloroethene	5	1 U	380	170	130	120
Cyclohexane	NA	1 U	19	8	50 U	27
Ethyl benzene	5	1 U	14	8.4	50 U	3.4
Isopropylbenzene	5*	1 U	2.1 J	0.43 J	50 U	2.8
Methyl cyclohexane	NA	1 U	7.9	1.4	50 U	19
Methyl Tertbutyl Ether	10*	1 U	1.3 J	0.75 J	50 U	17
Methylene chloride	5	1 U	2.5 U	1 U	50 U	1 U
Tetrachloroethene	5	1 U	230	18	7600	200 D
Toluene	5	1 U	2.9	1 U	50 U	3.6
trans-1,2-Dichloroethene	5	1 U	3.1	1.1	50 U	1.2
Trichloroethene	5	1 U	81	13	170	65
Vinyl chloride	2	1 U	41	12	50 U	20
Xylene, m/p	5	2 U	0.8 J	0.36 J	100 U	2.4
Xylene, o	5	1 U	2.5 U	1 U	50 U	1 U

Notes:

Results in microgram per liter (µg/L) Only detected compounds shown. Samples analyzed for VOCs by EPA Method 8260B QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

D = Result from diluted run

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 199

Number shown is standard unless *.

* Criteria is NYSDEC Guidance Value

Detections are indicated in BOLD

Highlighted results exceed criteria

	Location	HA	-114	HA-	-119	HA-	-119	MW	-202I	MW	-202	MW	⁷ -202
	Sample Date	1/21/	/2009	1/21/2009		1/21/2009		1/21/2009		1/22/2009		1/22/	/2009
	Sample ID	828128-HA-114012R1		328128-HA-119013R1		28128-HA-	-119013R11	28128-MV	V-202I045R	28128-MW-202012R		28128-MW	-202012R1
	Qc Code	F	² S	F	S	F	D	I	FS	F	S	F	Ď
Parameter	Criteria		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Metals													
Aluminum	NA	100) U	100	U	100) U	100) UJ	100) U	100	U
Barium	1000	80.9)	111	111		111		97.8		89.2)
Calcium	NA	68,800	68,800		96,300)	178,000)	99,600)	97,000	,
Iron	300	913	3	100 U		100 U		100 U		100	U (100	U
Magnesium	35,000	19,000)	28,400)	28,500)	48,900)	27,200)	26,600	,
Manganese	300	138	3	45.4		45.4		29.9)	64		62.4	į
Potassium	NA	2,000	U (2,000	U	2,000	U (3,250)	2,000	U (2,000	U
Sodium	20,000	70,100)	37,600		37,100		147,000)	62,200		57,600	,
Zinc	2000	24.5	5	20	U	65.2	2	20) UJ	20) U	20	U
SVOCs/Pesticides/PCBs		NS	5	NS		NS	5	N.	S	NE)	ND)

Notes:

Results in microgram per liter $(\mu g/L)$

Only detected compounds shown.

Samples analyzed for Metals by EPA Method 8260B,

SVOCs by EPA Method 8270, and Pesticides/PCBs

by EPA Methods 8081/8082

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

NA = No criteria available

Detections are indicated in **BOLD**

Highlighted results exceed criteria

ND = Not detected above reporting limit

NS = Not sampled

	Location	MW-	203S	MW-	-205S	MW	-206	MW	-212
	Sample Date	1/20/	2009	1/20/2009		1/20/2009		1/21/	/2009
	Sample ID2			28128-MW-205S012R		28128-MW-206017R		28128-MV	V-212010R
	Qc Code			F	S ³	F	S	F	S
Parameter	rameter Criteria		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Metals									
Aluminum	NA	311	J	100) UJ	100) UJ	129)
Barium	1000	64.8	}	78.7	7	153	3	109)
Calcium	NA	81,200)	137,000)	106,000)	124,000)
Iron	300	281	-	100	U (1,300)	155	5
Magnesium	35,000	27,200)	44,100)	28,800)	31,900)
Manganese	300	29.9)	10) U	105	5	45.4	ļ.
Potassium	NA	2,000	U	2,000	U (2,000	U	2,000) U
Sodium	20,000	46,100		140,000		30,900		124,000	
Zinc	2000	20	UJ	245	5 J	20) UJ	49.2	2
SVOCs/Pesticides/PCBs		NS		NS	S	ND)	NE)

Notes:

Results in microgram per liter (µg/L)

Only detected compounds shown.

Samples analyzed for Metals by EPA Method 8260B,

SVOCs by EPA Method 8270, and Pesticides/PCBs

by EPA Methods 8081/8082

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

NA = No criteria available

Detections are indicated in **BOLD**

Highlighted results exceed criteria

ND = Not detected above reporting limit

NS = Not sampled

	Location	HA-	114	HA-	-119	H	A-119	MW	-201	MV	V-202I
Field Sa	mple Date	1/21/	2009	1/21/	2009	1/2	1/2009	2/2/2	2009	1/2	1/2009
Field	Sample ID	828128-HA	-114012R1	828128-HA	-119013R1	828128-H	A-119013R1D	828128-MW	/-201017R1	828128-M	W-202I045R1
	QC Code	F	S	FS		FD		FS		FS	
Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Laboratory Results											
Ethane	ug/l	3.6		1	U	1		1.1		1	U
Ethene	ug/l	12		2.5		2.5		2.6		1	U
Methane	ug/l	33		9.3		9.4		17		47	
Carbon Dioxide	mg/l	220		309		312		264		340	
Chloride	mg/l	131		58.7		58		86.5		254	
Nitrate as N	mg/l	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
pН	ph units	7.31		7.22		7.2		7.48		7.02	
Sulfate	mg/l	12.9		63.2		62.7		39.3		290.0	
Alkalinity, Bicarbonate	mg/l	225		309		310		281		310	
Total Alkalinity, as CaCO3	mg/l	225		309		310		281		310	
Total Organic Carbon	mg/l	2.8		1.7		1.7		2		2.1	
Iron	ug/l	913		100	U	100	U	1420		100	U
Manganese	ug/l	138		45.4		45.4		82.5		29.9	
Field Measurements											
pН	NA	7.3		7.1		7.1		7.8		6.9	
Temperature	Deg. C	10		10		10		10		11	
Specific Conductance	mS/cm	0.615		0.608		0.608		0.821		1.95	
Dissolved Oxygen	mg/L	8.9		< 0.1		< 0.1		6.3		< 0.1	
Redox Potential	mV	-150		-270		-270		-50		-310	
Natural Attenuation Score		1	4	1	4		14	Ģ)		10

Notes

Only detected compounds shown (Nitrite was not detected above 0.01 mg/L and sulfide was not detected above 1 mg/L). Detected laboratory results shown in **BOLD**

NA = Not Analyzed

Monitoring Natural Attenuation Parameters = TOC by USEPA Method 415.1, Nitrate by NYSDEC ASP Method 352.1, Sulfate by NYSDEC ASP Method 375.4, Sulfate by NYSDEC ASP Method 376.2, Methane/Ethane/Ethane/Ethane

Method D-1945, Carbon Dioxide by Hach Method, Nitrite by NYSDEC ASP Method 354.1, Alkalinity by USEPA Method 310.1, Chloride by USEPA Method 325.3, and Iron and Manganese by USEPA Method 6010B.

Dissolved oxyen, specific conductance and reduction/oxydation potential measured during well stabilization.

Field measurements recorded using a Horiba U-22 during purging activities.

Field parameters determined to be stable using USEPA low-flow guidance values.

Daily calibration of field instruments within acceptable ranges.

Natural Attenuation Score from 'Bichlor' program following the "Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater", USEPA 1998.

- 0 to 5 = Inadequate evidence for anaerobic biodegradation (reductive dechlorination) of chlorinated organics
- 6 to 14 = Limited evidence for anaerobic biodegradation (reductive dechlorination) of chlorinated organics
- 15 to 20 = Adequate evidence for an aerobic biodegradation (reductive dechlorination) of chlorinated organics
 - >20 = Strong evidence for anaerobic biodegradation (reductive dechlorination) of chlorinated organics

	Location	MW	-203S	MW	-205S	MW	-206	MW	'-211	MW	-212
Field Sa	mple Date	1/20/2009		1/20	/2009	1/20/	/2009	1/20/	/2009	1/21/	2009
Field	Sample ID	828128-MW-203S012R1		828128-MW-205S012R1		828128-MW-206017R1		828128-MV	V-211015R1	828128-MW	7-212010R1
	QC Code	I	FS]	FS	FS		FS		FS	
Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Laboratory Results											
Ethane	ug/l	1	U	1	U	1	U	1	U	1	U
Ethene	ug/l	6.7			U		U	1	U	1	U
Methane	ug/l	9.2		4.5		2	U	6		6.7	
Carbon Dioxide	mg/l	270		385		333		312		352	
Chloride	mg/l	73.8		283		43.7		70.1		254	
Nitrate as N	mg/l	0.56		1.53		0.5	U	0.5	U	0.8	
рН	ph units	7.38		7.17		7.31		7.34		7.2	
Sulfate	mg/l	34.3		70.0		71.6		57.3		58.7	
Alkalinity, Bicarbonate	mg/l	282		379		340		321		350	
Total Alkalinity, as CaCO3	mg/l	282		379		340		321		350	
Total Organic Carbon	mg/l	1.4		1.9		2.1		2		1.4	
Iron	ug/l	281		100		1300		NA		155	
Manganese	ug/l	29.9		10	U	105		NA		45.4	
Field Measurements											
pН	NA	8.6		7.0		7.1		7.1		8	
Temperature	Deg. C	7		9		12		14		11	
Specific Conductance	mS/cm	0.999		1.89		0.99		1.00		1.52	
Dissolved Oxygen	mg/L	4.3		4.8		1.4		2.4		< 0.1	
Redox Potential	mV	-100		-110		-60		-70		180	
Natural Attenuation Score			9		9		8	9	9	1	1

Notes

Only detected compounds shown (Nitrite was not detected above 0.01~mg/L and sulfide was not detected above 1~mg/L). Detected laboratory results shown in **BOLD**

NA = Not Analyzed

Monitoring Natural Attenuation Parameters = TOC by USEPA Method 415.1, Nitrate by NYSDEC ASP Method 352.1, Sulfate by NYSDEC ASP Method 375.4, Sulfate by NYSDEC ASP Method 376.2, Methane/Etha

Dissolved oxyen, specific conductance and reduction/oxydation potential measured during well stabilization

Field measurements recorded using a Horiba U-22 during purging activities.

Field parameters determined to be stable using USEPA low-flow guidance values.

Daily calibration of field instruments within acceptable ranges.

Natural Attenuation Score from 'Bichlor' program following the "Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater", USEPA 1998.

0 to 5 = Inadequate evidence for anaerobic biodegradation (reductive dechlorination) of chlorinated organics

6 to 14 = Limited evidence for anaerobic biodegradation (reductive dechlorination) of chlorinated organics

15 to 20 = Adequate evidence for anaerobic biodegradation (reductive dechlorination) of chlorinated organics

>20 = Strong evidence for anaerobic biodegradation (reductive dechlorination) of chlorinated organics

RI/FS-Former Speedy's Cleaners NYSDEC-Site 828128

MACTEC Engineering and Consulting 3612082109

	Location	DEC-WELL	EW-1	HA-114	MW-1	MW-6	MW-201	MW-202
	Sample Date	7/15/2009	7/15/2009	7/15/2009	7/15/2009	7/15/2009	7/15/2009	7/15/2009
	Sample ID	DEC-WELL	EW-1	HA-114	MW-1	MW-6	MW-201	MW-202
	QC Code	FS						
Parameter	Criteria	Result Qualifier						
Benzene	1	27	10 U					
Cis-1,2-Dichloroethene	5	2 J	1200 D	510 D	1 J	110	18	68
Ethyl benzene	5	6 J	14	10 U				
Styrene	5	7 J	10 U					
Tetrachloroethene	5	4 J	2100 D	16	48	29000 D	10 U	1100 EBD
Toluene	5	110	1 J	10 U				
trans-1,2-Dichloroethene	5	10 U	2 J	1 J	10 U	10 U	10 U	10 U
Trichloroethene	5	1 U	170	7 J	1 J	47	10 U	12
Vinyl chloride	2	10 U	77	22	10 U	10 U	7 J	4
Xylene, m/p	5	640 D	10 U					
Xylene, o	5	400 D	10 U					

Notes:

Results in microgram per liter $(\mu g/L)$

Only detected compounds shown.

Samples analyzed for VOCs by EPA Method 624/8260B

QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration

greater than the reporting limit

J = Estimated value

E= Value exceeds calibration range

D = Result from diluted run

B = Analyte detected in blank

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water

Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 1998).

Number shown is standard.

Detections are indicated in BOLD

Highlighted results exceed criteria

March 2010 Final

	Location	MW	7-202	MV	V-206	MW	-206S	MV	V-210	MW	7-211	MV	V-212
	Sample Date	7/15	/2009	7/15	5/2009	7/15	/2009	7/15	5/2009	7/15	/2009	7/15	5/2009
	Sample ID	X	K-1	MV	V-206	MW	-206S	MV	V-210	MW	7-211	MV	V-212
	QC Code	F	D.]	FS	I	FS]	FS	F	₹S	1	FS
Parameter	Criteria	Result	Qualifier										
Benzene	1	10	U										
Cis-1,2-Dichloroethene	5	65		12		9	J	48		32		110	
Ethyl benzene	5	10	U										
Styrene	5	10	U										
Tetrachloroethene	5	1000	EBD	4	J	2	J	64	В	3 .	J	22000	ED
Toluene	5	10	U										
trans-1,2-Dichloroethene	5	10	U										
Trichloroethene	5	12		1	J	10	U	18		2 .	J	180	
Vinyl chloride	2	4		3	J	10	U	10	U	10	U	2	J
Xylene, m/p	5	10	U										
Xylene, o	5	10	U										

Notes:

Results in microgram per liter (μ g/L) Only detected compounds shown. Samples analyzed for VOCs by EPA Method 624/826(QC Code:

FS = Field Sample

FD = Field Duplicate

Qualifiers:

U = Not detected at a concentration greater than the reporting limit

J = Estimated value

E= Value exceeds calibration range

D = Result from diluted run

B = Analyte detected in blank

Criteria = Values from Technical and Operational

Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance values and

Groundwater Effluent Limitations (NYSDEC, 19

Number shown is standard.

Detections are indicated in BOLD

Highlighted results exceed criteria

Table 5.1: Conceptual Site Model

Media	Known or Suspected Source of Contamination	Type of Contaminatio n (General)	COPCs (Specific)	Primary or Secondary Source Release mechanism	Migration Pathways	Potential Receptors
Soil	Former dry cleaning operations. Spills or disposal of solvents which are assumed to be under/adjacent to the site building.	Solvents	PCE; TCE; 1,2 DCE; vinyl choride	Leaks and or Spills	Infiltration / percolation	Human: direct contact if excavation occurs in contaminated area (s)
Groundwater	Contaminated soil and potentially bedrock (secondary source).	Solvents	PCE; TCE; 1,2 DCE; vinyl choride	Infiltration / percolation from contaminated soil and bedrock	Groundwater flow	The community surrounding the Site is serviced by public water. Human or ecological receptors are not expected to be exposed, although it is possible that construction workers could come in contact with groundwater in deep excavations.
Air /Soil Vapor	Contaminated soil and bedrock at the Site and contaminated groundwater downgradient from the Site.	Solvents	PCE; TCE; 1,2 DCE; vinyl choride	Volatilization of contaminants from soil, bedrock, and groundwater	Soil Vapor Intrusion	Human: sub-slab depressurization systems have been installed at potential receptor residences.

Notes:

COPCs = contaminants of potential concern

PCE = Tetrachloroethene TCE = Trichloroethene DCE = Dichloroethene Prepared by: CRS 7/21/09 Checked by: MJS 7/21/09

Table 8.1: Remediation Goals

Soil				Cher	Chemical-Specific SCGs (mg/kg)				
	Maximum Detection			Part 375 Unrestricted	Part 375 Commercial	Part 375 Protection of	Remediation		
Chemical Name	(mg/kg)	Location	Depth	Use SCOs	Use SCOs	Groundwater SCOs	Goal (mg/kg)		
Cis-1,2-Dichloroethene	0.019	DP-002	9	0.25	500	0.25	0.25		
Tetrachloroethene	830	DP-017	10	1.3	150	1.3	1.3		
Trichloroethene	0.016	DP-002	9	0.47	200	0.47	0.47		

Groundwater Chemical Name	Maximum Detection (μg/L)	Location	Date	Chemical Specific SCGs (µg/L) NTS Class GA GW Standard/Guidance	Remediation Goal (µg/L)
Cis-1,2-Dichloroethene	240	MW-201	2/2/2009	5	5
Methyl Tertbutyl Ether	66	MW-203s	1/20/2009	10^{2}	10^{2}
Tetrachloroethene	22,000	MW-212	7/15/2009	5	5
trans-1,2-Dichloroethene	3.7	MW-201	2/2/2009	5	5
Trichloroethene	180	MW-212	7/15/2009	5	5
Vinyl chloride	56	HA-119	1/21/2009	2	2

Notes:

- 1. Entry in **Bold** indicates a standard(s) exceedance.
- 2. NYSDEC Guidance Value

Checked by: JDW 1/5/10

Created by: KAW 12/4/09

Table 9.1 Identification and Screening of Potential Remedial Technologies and Process Options

Environmental Media	General Response Action	Remedial Technology	Process Option	Applica	ability to	Screening Status	Comments
	•	O.		Site-Limiting Characteristics	Waste-Limiting Characteristics		
Soil	No Action			Not Applicable	Not Applicable	Retained.	Retained to be carried through detailed analysis of alternatives.
	Access Restrictions	Land Use Restrictions		None.	Would not reduce toxicity, mobility, or volume of site related contaminants.		Viable as a component of remedial actions which do not involve remediation of all contamination above RGs to protect workers during subsurface work related to potential construction or utility work.
		Fencing		Would not reduce human exposure because there's no shallow contamination and impacted area is already beneath pavement or beneath a building.	Would not reduce toxicity, mobility, or volume of VOC contaminants.	Eliminated.	
	Containment	Capping	Soil Cover	Would not reduce human exposure because there's no shallow contamination and impacted area is already beneath pavement or beneath a building.	There is no surface contamination, so this would not reduce toxicity, mobility, or volume of VOC contaminants.	Eliminated.	
			System	Contamination is located beneath a parking area and building which are already low permeability.	Would not reduce toxicity, mobility, or volume of VOC contaminants.	Eliminated	
		Vertical Barriers	Slurry wall, sheet piling	Contamination in soil is generally located in the saturated zone just above bedrock and is only a couple of feet thick. Vertical barrier would not prevent migration of groundwater through impacted soil and then beneath the barrier via fractured bedrock.	Would reduce mobility of groundwater flowing through impacted soil, but would not reduce toxicity or volume of VOC contamination unless combined with another treatment area.	Eliminated.	
		Surface Controls	Diversion/collection, grading, soil stabilization	Site is small and paved. No benefit would be realized by this alternative.	There is no surface contamination, so this would not reduce toxicity, mobility, or volume of VOC contaminants.	Eliminated.	
	In-Situ Treatment	Biological Treatment	Enhanced Biodegradation	The technology would not address relatively low contaminant concentrations in the soils within the vadose zone.	None.	Retained.	Viable as a component of treatment of the overburden saturated soils, would also address groundwater.
		Physical Treatment	Solidification/ Stabilization	Shallow fractured bedrock is not likely to solidify or stabilize easily.	Solidification/ stabilization has limited ability to effectively treat VOC contamination in soil, it may, however, reduce mobility.	Eliminated.	
		Vapor Extraction		Could be useful for the vadose zone outside of the building footprint, and under portions of the building that does not have a basement.	None.	Retained.	Would possibly require off-gas controls.
		Thermal Treatment	Electrical Resistance Heating	Difficult to install electrical resistance probes beneath the building where a basement exists. ERH is typically less cost-effective than other alternatives for shallow contamination with small footprints.	Removes VOC contaminants from the soil in the vadose and saturated zone. Would require capture and treatment of off-gases, which is typically a component of an ERH design.	Eliminated	

Table 9.1 Identification and Screening of Potential Remedial Technologies and Process Options

Environmental	General	Remedial	Process Option			Screening	
Media	Response Action	Technology	•		bility to	Status	Comments
0.117	D 1	n	0.11.1	Site-Limiting Characteristics	Waste-Limiting Characteristics	D	
Soil (continued)	Kemoval	Excavation	Solids Excavation	Excavation would be appropriate in the area located outside of the building footprint, however it would require screening/staging of non-impacted shallow soil prior to accessing the impacted soil. Dewatering would likely be required. Excavation next to the building would require excavation support to prevent structural damage to the building.	None.	Retained.	The source of contamination is unknown, but there is only one small area where soil contaminant concentrations are significantly higher than other areas. Retain excavation of this smaller area for detailed analysis.
		Disposal On-site		Disposal On-site is inappropriate due to the small size of the Site.	None.	Eliminated.	
		Disposal Off-site		None.	None.	Retained.	
	Ex-situ Treatment	Thermal Treatment	On-site Incineration	Small site in residential area is not suitable for ex-situ treatment.	None.	Retained	Retained as off-site treatment option.
			On-site Thermal Desorption	Small site in residential area is suitable for ex- situ treatment.	None.	Retained	Retained as off-site treatment option.
		Chemical Treatment	Oxidation/ Reduction	None.	None.	Retained	Retained as off-site treatment option.
			Solidification/ Stabilization	None.	Not useful for VOCs.	Retained	Retained as off-site treatment option.
		Physical Treatment	Soil Washing	None.	None.	Retained	Retained as off-site treatment option.
Groundwater	No Action			Not Applicable	Not Applicable	Retained.	Retained to be carried through detailed analysis of alternatives.
	Access Restrictions	Land Use Restrictions		None.	Would not reduce toxicity, mobility, or volume of VOC contaminants.	Retained.	Viable as a component of remedial actions which do not involve remediation of all contamination above RGs.
	Containment	Capping	Low Permeability Cover System	Contamination is located beneath a parking area and building which are already impermeable.	Would not reduce toxicity, mobility, or volume of VOC contaminants.	Eliminated	
		Vertical Barriers	Slurry wall, sheet piling	Shallow bedrock would cause implementability issues.	Would reduce mobility of impacted groundwater, but would not reduce toxicity or volume of VOC contamination unless combined with another treatment area.	Eliminated	
		Surface Controls	Diversion/collection, grading, soil stabilization	Site is small and paved. No benefit would be realized by this alternative.	There is no surface contamination adding to impacted groundwater, so this would not reduce toxicity, mobility, or volume of VOC contaminant.	Eliminated.	
		Collection	Extraction Wells/ Monitoring Wells	This technology could be limited by the shallow bedrock depth pending on amount and location of fractures. The site is quite small and there may not be sufficient space for exsitu treatment equipment.	None.	Eliminated	

Table 9.1 Identification and Screening of Potential Remedial Technologies and Process Options

Environmental Media	General Response Action	Remedial Technology	Process Option	Applica	bility to	Screening Status	Comments
1120111	reoponise rection	recimiology		Site-Limiting Characteristics	Waste-Limiting Characteristics		
Groundwater (continued)	Containment (continued)	Collection (continued)	Collection Trench	This technology would be limited by the shallow depth to bedrock. The site is quite small and there may not be sufficient space for ex-situ treatment equipment.	None.	Eliminated.	
	In-Situ Treatment	Biological Treatment	Enhanced Biodegradation	Shallow fractured bedrock may make injections of amendments difficult or unpredictable.	None.	Retained.	Would also address soil contamination in the saturated zone.
		Chemical Oxidation	Chemical Oxidation	Oxidants may not be persistent enough to flow to all areas under the on-site building via migration with groundwater. May require penetration through the floor slab in order to get contact with all contaminated areas.	None.	Eliminated.	
		Physical Treatment	Permeable Reactive Barrier	This technology would be limited by the shallow depth to bedrock, which could be difficult to excavate and could potential allow seepage of contaminated groundwater beneath the reactive barrier.	None.	Eliminated.	
			Air Sparging	Difficult to implement under the building footprint.	None.	Retained.	Retained for evaluation in conjunction with SVE and off-gas controls. Otherwise not a viable option alone.
			Electrical Resistance Heating	Difficult to install electrical resistance probes beneath the building where a basement exists. ERH is typically less cost-effective than other alternatives for shallow contamination with small footprints.	Removes VOC contaminants from the soil in the vadose and saturated zone. Would require capture and treatment of off-gases, which is typically a component of an ERH design.	Eliminated.	
	Ex-Situ Treatment	Onsite Collection & Treatment	Granular Activated Carbon	Requires space within parking area for treatment system. Subject to fouling pending the presence of manganese, magnesium, iron and calcium, which would have to be tested to determine if they would be an issue.	None.	Eliminated.	Would otherwise be viable as a component of remedial actions including groundwater extraction which has been eliminated.
			Air Stripping	Requires space within parking area for treatment system.	Removes VOCs from extracted groundwater but may require off-gas controls.	Eliminated.	Would otherwise be viable as a component of remedial actions including groundwater extraction which has been eliminated.
		Offsite treatment and Disposal	Discharge to POTW after treatment	Discharge permit would be required.	None.	Eliminated.	Would otherwise be viable as a component of remedial actions including groundwater extraction which has been eliminated.
			Discharge to surface water after treatment	No local surface water body.	None.	Eliminated.	
			Reinjection after treatment	Site is too small; reinjection would mobilize groundwater contaminants.	None.	Eliminated.	

Table 10.1: Preliminary Screening of Remedial Alternatives

Remedial Alternative	Effectiveness	Implementability	Cost	Comments
Alternative 1: No Action	Not effective because it does not include any actions to	Not likely to be accepted by the regulatory agency.	There are no costs associated with this	Retained as baseline for
	reduce toxicity and volume of contamination.		alternative.	comparison.
Alternative 2: Limited Action. On-Site Institutional Controls with Groundwater Monitoring	Not effective at reducing toxicity and volume of contamination in the short term. Site groundwater is not being used for drinking, and future institutional controls would ensure that groundwater is not used for drinking purposes in the future. Institutional controls would be put in place to restrict site usage (no residential use) and to protect future construction/utility workers from sub-surface soil by means of placing requirements for a health and safety and soil management plan. Groundwater at the site would be monitored to determine if concentrations are reduced over time.		Costs associated with this alternative are estimated to be low compared to other alternatives.	
Alternative 3: SVE and Air Sparging On-Site with Groundwater Monitoring	Effective at reducing toxicity and volume of contamination from soil and groundwater, however this alternative takes time and continued operation and maintenance.	Would likely only be implemented to the northeast and east of the site building since implementation beneath the building would not be feasible given the continued use of the building.	Costs associated with this alternative are high due to long term operation, maintenance and monitoring of the system.	Retained.
Alternative 4: In-Situ Enhanced Biodegradation On-Site with Groundwater Monitoring	This alternative would enhance biological degradation of VOCs in groundwater and in saturated soil. May not be effective in highl contaminant impact areas.	In-situ enhanced biodegradation is generally a widely accepted technology and can be implemented using readily available technologies. However, the ability to meet RAOs using this technology can be unpredictable and generally occurs in the long-term. This would hold true given that the injections would be conducted upgradient of the on-site building and would require time for the amendments to reach the treatment area.	Costs associated with this alternative are estimated to be low for the nature and extent of contamination.	Retained.
Alternative 5: On-Site Excavation and Enhanced Biodegradation On-Site with Groundwater Monitoring	This alternative would reduce the volume of contamination in both dry and saturated soil within the excavation area, and would enhance biological degradation of VOCs in groundwater and in saturated soil.	Excavation, enhanced biodegradation and monitoring are widely accepted groundwater technologies. Implementing them together would remove the most highly impacted area, which would be difficult to treat by other methods. And biological enhancements would be used to treat other on-site areas.	for the nature and extent of contamination given the location of the	Retained.
Alternative 6: Source Area Excavation, SVE Beneath and Downgradient of Building, Enhanced Biodegradation On-Site and Downgradient and Groundwater Monitoring	This alternative would reduce the volume of contamination in both dry and saturated soil within the excavation area, would reduce the volume on contamination in the vadose zone by use of SVE, and would reduce the volume of contamination in groundwater and saturated soil both onsite and downgradient by use of enhanced biodegradation.	Excavation, enhanced biodegradation, SVE and monitoring are widely accepted groundwater technologies and typically easy to implement. However, this alternative includes conducting in-situ enhanced biodegradation along the entire length of the plume which could require multiple access agreements, various permits and would be quite expensive. Additionally, the implementation of the SVE system under the on-site building could cause temporary business closures, and could be difficult to conduct depending upon the available room for construction.	Costs associated with this alternative are high due to long term operation and maintenance and implementation of the SVE system beneath the building, as well as the large downgradient area of groundwater to be treated using enhanced biodegradation.	Retained as the pre-disposal or unrestricted alternative.

Table 11.1: Cost Summary for Alternative 2 - No Further Action with Site Management

ITEM	COST
DIRECT CAPITAL COSTS	
Institutional Controls	\$ 10,000
Contingency (@ 15 Percent)	\$ 2,000
Direct Cost Subtotal	\$ 12,000
INDIRECT CAPITAL COSTS	
Project Management (@ 10 Percent)	\$ 2,000
Remedial Design (@ 20 Percent)	\$ 3,000
Construction Management (@ 15 Percent)	\$ 2,000
Indirect Cost Subtotal	\$ 7,000
TOTAL CAPITAL COSTS	\$ 19,000
ANNUAL OPERATION AND MAINTENANCE COSTS*	
Annual Institutional Control Inspections and Reporting (years 1-30)	\$ 2,000
Quarterly Monitoring (years 1-2)	\$ 23,000
Semi-annual Monitoring (years 3-4)	\$ 12,000
Periodic Monitoring (years 5-30)	\$ 6,000
Annual Performance Reporting (years 1-30)	\$ 5,000
PRESENT WORTH OF ANNUAL AND PERIODIC COSTS (30 yrs)	\$ 242,000
TOTAL PRESENT WORTH OF ALTERNATIVE 2 (30 yrs)	\$ 261,000
TOTAL NON-DISCOUNTED COST OF ALTERNATIVE 2 (30 yrs)	\$ 455,000

NOTES:

^{*}Costs include additional 10 percent for bid contingency and 15 percent for scope contingency unforeseen project complexities, including insurance, taxes, and licensing costs (USEPA 2000). Costs have been rounded to the nearest thousand.

Table 11.2: Cost Summary for Alternative 3 - Soil Vapor Extraction and Air Sparging

ITEM	COST
DIRECT CAPITAL COSTS	
Pre-Design Investigation	\$ 23,000
Pilot Test	\$ 58,000
Full Scale SVE & Air Sparge Construction	\$ 269,000
Contingency (@ 20 Percent)	\$ 70,000
Direct Cost Subtotal	\$ 420,000
INDIRECT CAPITAL COSTS	
Project Management (@ 8 Percent)	\$ 34,000
Remedial Design (@ 15 Percent)	\$ 63,000
Construction Management (@ 10 Percent)	\$ 42,000
Indirect Cost Subtotal	\$ 139,000
TOTAL CAPITAL COSTS	\$ 559,000
ANNUAL OPERATION AND MAINTENANCE COSTS*	
Annual OM&M (years 1-10)	\$ 82,000
Quarterly Monitoring (years 1-2)	\$ 31,000
Semi-annual Monitoring (years 3-4)	\$ 16,000
Periodic Monitoring (years 5-30)	\$ 8,000
Annual Performance Reporting (years 1-30)	\$ 15,000
PERIODIC COSTS	
Assume upgrades at year 7 (20% of Capital Costs)	\$ 54,000
PRESENT WORTH OF ANNUAL AND PERIODIC COSTS (30 yrs)	\$ 1,081,000
TOTAL PRESENT WORTH OF ALTERNATIVE 3 (30 yrs)	\$ 1,640,000
TOTAL NON-DISCOUNTED COST OF ALTERNATIVE 3 (30 yrs)	\$ 2,185,000

^{*}Costs include additional 10 percent for bid contingency and 15 percent for scope contingency unforeseen project complexities, including insurance, taxes, and licensing costs (USEPA 2000). Costs have been rounded to the nearest thousand.

Table 11.3: Cost Summary for Alternative 4 - In-Situ Enhanced Biodegradation

ITEM		COST
DIRECT CAPITAL COSTS		
Pre-Design Investigation	\$	7,000
Bench Scale	\$	2,000
Full Scale In-situ Enhance Biodegradation	\$	53,000
Contingency (@ 25 Percent)	\$	16,000
Direct Cost Subtotal	\$	78,000
INDIRECT CAPITAL COSTS		
Project Management (@ 10 Percent)	\$	7,000
Remedial Design (@ 20 Percent)	\$	12,000
Construction Management (@ 15 Percent)	\$	8,000
Indirect Cost Subtotal	\$	27,000
TOTAL CAPITAL COSTS	\$	105,000
ANNUAL OPERATION AND MAINTENANCE COSTS*		
Quarterly Monitoring (years 1-2)	\$	32,000
Semi-annual Monitoring (years 3-4)	\$	16,000
Periodic Monitoring (years 5-30)	\$	8,000
Annual Performance Reporting (years 1-30)	\$	15,000
PRESENT WORTH OF ANNUAL AND PERIODIC COSTS (30 yrs)	\$	412,000
TOTAL PRESENT WORTH OF ALTERNATIVE 4 (30 yrs)	\$	517,000
	,	,
TOTAL NON-DISCOUNTED COST OF ALTERNATIVE 4 (30 yrs)	\$	859,000

^{*}Costs include additional 10 percent for bid contingency and 15 percent for scope contingency unforeseen project complexities, including insurance, taxes, and licensing costs (USEPA 2000). Costs have been rounded to the nearest thousand.

Table 11.4: Cost Summary for Alternative 5 – On-Site Excavation and In-Situ Enhanced Biodegradation

ITEM		COST
DIRECT CAPITAL COSTS		
Pre-Design Investigation	\$	21,000
Bench Scale	\$	2,000
Full Scale Source Excavation and Biodegradation	\$	163,000
Contingency (@ 25 Percent)	\$	47,000
Direct Cost Subtotal	\$	233,000
INDIRECT CAPITAL COSTS		
Project Management (@ 8 Percent)	\$	19,000
Remedial Design (@ 15 Percent)	\$	35,000
Construction Management (@ 10 Percent)	\$	24,000
Indirect Cost Subtotal	\$	78,000
TOTAL CAPITAL COSTS	\$	311,000
ANNUAL OPERATION AND MAINTENANCE COSTS*		
Quarterly Monitoring (years 1-2)	\$	36,000
Semi-annual Monitoring (years 3-4)	\$	18,000
Periodic Monitoring (years 5-30)	\$	9,000
Annual Performance Reporting (years 1-30)	\$	15,000
PRESENT WORTH OF ANNUAL AND PERIODIC COSTS (30 yrs)	\$	434,000
TOTAL PRESENT WORTH OF ALTERNATIVE 5 (30 yrs)	\$	745,000
TOTAL NON-DISCOUNTED COST OF ALTERNATIVE 5 (30 yrs)	\$	1,103,000
NOTES:	•	1,105,000

^{*}Costs include additional 10 percent for bid contingency and 15 percent for scope contingency unforeseen project complexities, including insurance, taxes, and licensing costs (USEPA 2000). Costs have been rounded to the nearest thousand.

Table 11.5: Cost Summary for Alternative 6 – Source Area Excavation, On-Site and Off-Site In-Situ Enhanced Biodegradation, and Soil Vapor Extraction

ITEM		COST
DIRECT CAPITAL COSTS		0051
Pre-Design Investigation	\$	53,000
Bench Scale	\$	8,000
Pilot Test	\$	58,000
Full Scale Source Excavation and Biodegradation	\$	1,012,000
Contingency (@ 25 Percent)	\$	283,000
Direct Cost Subtotal	\$	1,414,000
INDIRECT CAPITAL COSTS		
Project Management (@ 6 Percent)	\$	85,000
Remedial Design (@ 12 Percent)	\$	170,000
Construction Management (@ 8 Percent)	\$	114,000
Indirect Cost Subtotal	\$	369,000
TOTAL CAPITAL COSTS	\$	1,783,000
AND WALL ORED ATTON AND MAINTENANCE COCTO		
ANNUAL OPERATION AND MAINTENANCE COSTS*	Φ.	02.000
Annual OM&M (years 1-10)	\$	82,000
Quarterly Monitoring (years 1-2)	\$	71,000
Semi-annual Monitoring (years 3-4)	\$ \$	36,000
Periodic Monitoring (years 5-30) Annual Performance Reporting (years 1-30)	\$ \$	18,000 15,000
Amuai Performance Reporting (years 1-50)	ф	13,000
PERIODIC COSTS		
Assume upgrades at year 7 (20% of Capital Costs)	\$	51,000
PRESENT WORTH OF ANNUAL AND PERIODIC COSTS (30 yrs)	\$	1,306,000
		, ,
PRESENT WORTH OF ANNUAL AND PERIODIC COSTS (30 yrs) TOTAL PRESENT WORTH OF ALTERNATIVE 5 (30 yrs) TOTAL NON-DISCOUNTED COST OF ALTERNATIVE 5 (30 yrs)	\$ \$	1,306,000 3,052,000

Prepared By/Date: JDW 2/3/2010 Checked By/Date: RTB 2/4/2010

^{*}Costs include additional 10 percent for bid contingency and 15 percent for scope contingency unforeseen project complexities, including insurance, taxes, and licensing costs (USEPA 2000). Costs have been rounded to the nearest thousand.

Table 12.1: Summary of Remedial Alternative Costs

		Alternative	A	lternative	A	Alternative	A	lternative	A	Alternative	A	Alternative
Item	Description	1		2		3		4		5		6
1	Capital Costs	\$ -	\$	19,000	\$	559,000	\$	105,000	\$	311,000	\$	1,783,000
2	Present Worth of Annual and Periodic Costs	\$ -	\$	242,000	\$	1,081,000	\$	412,000	\$	434,000	\$	1,306,000
3	Total Present Worth (Item 1 plus 2)	\$ -	\$	261,000	\$	1,640,000	\$	517,000	\$	745,000	\$	3,052,000
4	Annual Costs Years 1 and 2	\$ -	\$	30,000	\$	128,000	\$	47,000	\$	51,000	\$	168,000
5	Annual Costs Years 3 and 4	\$ -	\$	19,000	\$	113,000	\$	31,000	\$	33,000	\$	133,000
6	Annual Costs Years 5 through 15	\$ -	\$	13,000	\$	105,000	\$	23,000	\$	24,000	\$	115,000
7	Annual Costs Years 16 through 30	\$ -	\$	13,000	\$	23,000	\$	23,000	\$	24,000	\$	33,000
8	Periodic Costs (see Note 1)	\$ -	\$	-	\$	54,000	\$	-	\$	-	\$	51,000
9	Remedial Timeframe (yrs) (Note 3)	>30		30		30		30		30		30

Notes:

- 1. Periodic Costs for Alternative 3 and 6 would be incurred in Year 7.
- 2. Present Worth costs shown above are based upon the assumed Remedial Timeframe.
- 3. Annual and Periodic Costs (Item 4 7) presented are non-discounted (future) costs.
- 4. Estimated costs presented in this table are intended to be within the target accuracy range of minus 30 to plus 50 percent of actual cost.

Alternative Descriptions:

- 1 =No Further Action
- 2 = No Further Action with Site Management
- 3 = Soil Vapor Extraction and Air Sparging
- 4 = In-Situ Enhanced Biodegradation
- 5 = On-Site Excavation and In-Situ Enhanced Biodegradation
- 6 = Source Area Excavation, On-Site and Off-Site In-Situ Enhanced Biodegradation, and Soil Vapor Extraction

Revised By/Date: RTB 3/5/2010 Checked By/Date: CRS 3/5/2010

RI/FS Report – Former Speedy's Cleaners NYSDEC – Site No. 828128 MACTEC Engineering and Consulting, P.C., Project No. 3612082109

Table 12.2: Comparative Analysis of Remedial Alternatives for Groundwater

Remedial Alternative	Alternative 1: No Action	Alternative 2: Limited Action - Institutional Controls On Site with Downgradient Monitoring	- Alternative 3: SVE and Air Sparging On-Site with Downgradient Monitoring	Alternative 4: In-Situ Enhanced Biodegradation On-Site with Downgradient Monitoring	Alternative 5: On-Site Excavation and Enhanced Biodegradation On-site with Groundwater Monitoring	Alternative 6: Source Area Excavation, SVE Beneath and Downgradient of Building, Enhanced Biodegradation On- Site and Downgradient and Groundwater Monitoring
Compliance with New York State SCGs	Alternative 1 would not comply with Chemical-specific SCGs.	Alternative 2 would not comply with Chemical-specific SCGs.	Alternative 3 is likely to comply with Chemical-specific SCGs over time by implementing vapor extraction, however, Alternative 3 would not directly address the impacted area under the on-site building.	Alternative 4 would comply with Chemical-specific SCGs by implementing in-situ treatment to reduce contaminant concentrations within the plume, thereby reducing the time necessary to meet SCGs. Location- and Action-specific SCGs would include 40 CFR Part 144 – Underground Injection Control Program. May be difficult to meet the Chemical-specific SCGs in the source area.	Alternative 5 would comply with Chemical-specific SCGs by implementing in-situ treatment to reduce contaminant concentrations within the plume, thereby reducing the time necessary to meet SCGs. Location- and Action-specific SCGs would include 40 CFR Part 144 – Underground Injection Control Program. SCGs would be met immediately within the two excavation areas.	Alternative 6 would comply with Chemical-specific SCGs over time in the vadose zone by implementing vapor extraction and by implementing in-situ treatment to reduce contaminant concentrations within the plume. Locationand Action-specific SCGs would include 40 CFR Part 144 – Underground Injection Control Program. SCGs would be met immediately in the source areas via excavation of soil.
Overall Protection of Human Health and the Environment	Alternative 1 would not provide any additional protection of human health and the environment compared to present conditions.	Alternative 2 would protect human health by means of institutional controls, but would not provide any additional protection for the environment.	Alternative 3 would protect public health and the environment by providing vapor extraction to reduce contaminant levels in soil and groundwater.	Alternative 4 would protect public health and the environment by providing in-situ treatment of contaminated soil and groundwater at the site.	Alternative 5 would protect public health and the environment by providing in-situ treatment of contaminated soil and groundwater at the site as well as by removing the potentially continuous source of contamination.	Alternative 6 would protect public health and the environment by providing in-situ treatment of contaminated soil and groundwater both on-site and downgradient, as well as by removing the potentially continuous source of contamination and by the implementation of SVE in the
Short-term Impacts and Effectiveness	Alternative 1 does not include construction activities, therefore, there would be no potential short-term adverse impacts upon the community and the environment.	Alternative 2 does not include construction activities, therefore, there would be no potential short-term adverse impacts upon the community and the environment.	Alternative 3 includes the installation of wells, trenches and a treatment system which could be time consuming and would therefore contribute to potential short-term adverse impacts and risks upon site occupants. These risks would be addressed through coordination and communication with the property owner(s) and preparation and implementation of a construction health and safety plan. This alternative would decrease the level of contamination on-site over time, but would not have notable short-term effectiveness.	3	Alternative 5 includes the injection of a biological amendment via direct push methods upgradient of the Site building, as well as installation of additional monitoring wells and excavation of the source area; therefore, there would be potential short-term adverse impacts upon site occupants. Implementation would take longer than Alternative 4 but shorter than Alternative 3 and 6. These impacts would be addressed through coordination and communication with the property owner(s) and preparation and implementation of a construction health and safety plan. This alternative would have notable short-term effectiveness within the source zone.	vadose zone. Alternative 6 includes the injection of a biological amendment via direct push methods upgradient of the Site building and downgradient from the site, as well as installation of an SVE system, additional monitoring wells and excavation activities; therefore, there would be potential short-term adverse impacts upon site occupants. Implementation of this alternative would take longer than any other alternative. These impacts would be addressed through coordination and communication with the property owner(s) and preparation and implementation of a construction health and safety plan. This alternative would have notable short-term effectiveness within the source zone.
Long-term Effectiveness and Permanence	Alternative 1 would not meet the RAOs for the Site. This alternative would not provide long-term effectiveness.	Alternative 2 would not meet the RAOs for the Site. This alternative would not provide long-term effectiveness.	Alternative 3 includes soil vapor extraction and air sparging to remove VOCs from soil and groundwater. Long-term effectiveness of the alternative would rely upon the radius of influence of the SVE wells. This remedy would require long-term operation and maintenance, and may not provide permanence since the potential source area may not successfully be treated, causing potential rebound in contaminant concentrations.	groundwater plume. Long-term effectiveness of this alternative would rely upon the effectiveness of the in-situ treatment, which contains uncertainties regarding the potential magnitude of mass reduction that could be achieved	Biological amendments are slow acting but are persistent and	Alternative 6 includes in-situ treatment of the VOC groundwater plume, and SVE of the on-site vadose zone soils. Long-term effectiveness of this alternative would rely upon the effectiveness of the in-situ treatment, which contains uncertainties regarding the potential magnitude of mass reduction that could be achieved. The contaminant source areas would be removed via excavation which would provide permanence of the remedy.
Reduction of Toxicity, Mobility, and Volume	Alternative 1 would not result in reduction of toxicity, mobility, or volume of site contaminants at the site because no treatment is taking place.	Alternative 2 would not result in reduction of toxicity, mobility, or volume of site contaminants at the site because no treatment is taking place.	Alternative 3 includes soil vapor extraction to reduce the volume of contamination in the on-site groundwater and soil. However, toxicity and volume would not be reduced unless the granulated activated carbon is treated rather than disposed.	Alternative 4 includes treatment to reduce the toxicity, mobility, and volume of groundwater and soil contamination. Enhanced biodegradation involves the enhancement of natural processes to destroy the target contaminants.	Alternative 5 includes treatment to reduce the toxicity, mobility, and volume of groundwater and soil contamination. Enhanced biodegradation involves the enhancement of natural processes to destroy the target contaminants. Soil contamination would be reduced from the site via excavation, however, this soil would likely be transported for disposal and therefore toxicity would not be reduced.	Alternative 6 includes treatment to reduce the toxicity, mobility, and volume of groundwater and soil contamination. Enhanced biodegradation involves the enhancement of natural processes to destroy the target contaminants. Soil contamination would be reduced from the site via excavation, however, this soil would likely be transported for disposal and therefore toxicity would not be reduced. Additionally SVE would reduce the volume of contamination in the on-site vadose zone, however, toxicity would not be reduced unless the granulated activated carbon is treated rather than disposed.

RI/FS Report – Former Speedy's Cleaners NYSDEC – Site No. 828128 MACTEC Engineering and Consulting, P.C., Project No. 3612082109

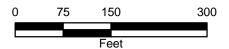
Table 12.2: Comparative Analysis of Remedial Alternatives for Groundwater

Remedial Alternative	Alternative 1: No Action	Alternative 2: Limited Action - Institutional Controls On Site with Downgradient Monitoring	- Alternative 3: SVE and Air Sparging On-Site with Downgradient Monitoring	Alternative 4: In-Situ Enhanced Biodegradation On-Site with Downgradient Monitoring	Alternative 5: On-Site Excavation and Enhanced Biodegradation On-site with Groundwater Monitoring	Alternative 6: Source Area Excavation, SVE Beneath and Downgradient of Building, Enhanced Biodegradation On- Site and Downgradient and Groundwater Monitoring
Implementability	Although no services or materials would be required to	Alternative 2 is a widely accepted procedure for protection of	The technologies used for implementation of Alternative 3	The technologies used for implementation of Alternative 4	The technologies used in Alternative 5 are well developed	The technologies used in Alternative 6 are well developed
	implement Alternative 1, obtaining regulatory approval of	human health, however, since no active remediation would be	are well developed and would not be difficult to implement.	are well developed and would not be difficult to implement.	and would not be difficult to implement. Some difficulties in	and are generally easy to implement. The SVE and
	Alternative 1 would be difficult.	conducted, obtaining regulatory approval for Alternative 2	However, the remedy would require use of heavy equipment	Some difficulties in implementation of in-situ treatment	the implementation of in-situ treatment would occur due to	excavation portions of the alternative would require use of
		would be difficult.	and would require full access of the parking area for a		the location of the site building. However, the amendment	heavy equipment, full access of the parking area, and access
			significant amount of time which would likely impede day to	However, the amendment used for in-situ enhanced	used for in-situ enhanced biodegradation is long-lasting and	inside the building for a significant amount of time which
			day business activities. It would also require a designated	biodegradation is long-lasting and typically migrates with	typically migrates with groundwater flow, which is relatively	would likely impede day to day business activities. The SVE
			area for treatment equipment for approximately 15 years.	groundwater flow, which is relatively fast-moving at the site,	fast-moving at the site, therefore injecting upgradient of the	system would also require a designated area for treatment
			These requirements may be difficult to resolve with the	therefore injecting upgradient of the building would be	building would be applicable. Pre-design investigations	equipment. These requirements may be difficult to resolve
			property owner(s).	applicable. Pre-design investigations would need to be	would need to be conducted to determine if site conditions	with the property owner(s). Difficulties in the
				conducted to determine if site conditions are favorable for	are favorable for this alternative (i.e., that the required micro-	implementation of in-situ treatment would occur due to the
				this alternative (i.e., that the required micro-organisms exist).	organisms exist). The technologies used for excavation of	location of the site building. However, the amendment used
					the source area are also well developed and would not be	for in-situ enhanced biodegradation is long-lasting and
					difficult to implement. Good communications with the	typically migrates with groundwater flow, which is relatively
					property owner will be required because the excavation will	fast-moving at the site, therefore injecting upgradient of the
					require use of a portion of the vehicle parking area for a	building would be applicable. Pre-design investigations
					limited amount of time.	would need to be conducted to determine if site conditions
						are favorable for this alternative (i.e., that the required micro-
						organisms exist).

Page 2 of 2 4.1 Table 12.2 -Alternative Comparison Rev Mar 2010.xls

APPENDIX A

SELECT O'BRIEN & GERE RI DATA


LEGEND

- MONITORING WELL
- GROUND WATER ELEVATION CONTOUR
- HYDRAULIC FLOW POTENTIAL

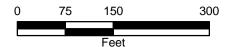
476.71 GROUND WATER ELEVATION

NYSDEC CARRIAGE CLEANERS TOWN OF BRIGHTON, NY

GROUND WATER ELEVATIONS JULY 2005

PLOT DATE:

FIGURE 9

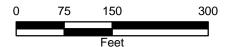

LEGEND

- ♦ MONITORING WELL
- GROUND WATER ELEVATION CONTOUR
- ■■ HYDRAULIC FLOW POTENTIAL

472.45 GROUND WATER ELEVATION

NYSDEC CARRIAGE CLEANERS TOWN OF BRIGHTON, NY

GROUND WATER ELEVATIONS DECEMBER 2005

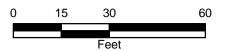

LEGEND

- ♦ MONITORING WELL
- GROUND WATER ELEVATION CONTOUR
- ■■ HYDRAULIC FLOW POTENTIAL

472.52 GROUND WATER ELEVATION

NYSDEC CARRIAGE CLEANERS TOWN OF BRIGHTON, NY

GROUND WATER ELEVATIONS APRIL 2006


LEGEND

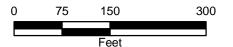
▲ SOIL BORING

CARRIAGE CLEANERS NYSDEC

SOIL DATA - PCE

FORMER SPEEDY'S CLEANERS 2150 MONROE AVENUE

LEGEND

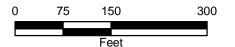

- <all other values>
- OVERBURDEN
- ◆ SHALLOW BEDROCK INTERFACE
- INTERMEDIATE BEDROCK

HA-123 WELL ID

- 120 PCE CONCENTRATION (UG/L)
 24 TOTAL TCE, CIS-1,2-DCE,
 TRANS-1,2-DCE, AND VINYL
 CHLORIDE CONCENTRATIONS
 (UG/L)
- NS NOT SAMPLED

NYSDEC CARRIAGE CLEANERS TOWN OF BRIGHTON, NY

COC CONCENTRATIONS IN GROUND WATER JULY 2005


LEGEND

- ♦ OVERBURDEN
- SHALLOW BEDROCK INTERFACE
- ♦ INTERMEDIATE BEDROCK

HA-123 WELL ID
72 PCE CONCENTRATION (UG/L)
11.2 TOTAL TCE, CIS-1,2-DCE,
TRANS-1,2-DCE, AND VINYL
CHLORIDE CONCENTRATIONS
(UG/L)

NYSDEC CARRIAGE CLEANERS TOWN OF BRIGHTON, NY

COC CONCENTRATIONS IN GROUND WATER DECEMBER 2005

5.1.2 Other VOCs

VOCs, other than COCs, detected in the soil vapor samples mainly include petroleum and refrigerant compounds, many of which were detected in each of the soil vapor samples. NYSDOH has not established air guidance values for these compounds.

5.2 Sub-slab/Indoor Air

Two separate sub-slab/indoor air sampling events were completed as part of the Carriage Cleaners RI. The first sampling event occurred in April 2005 during which samples were collected from 22 properties. The second sampling event was completed between January 2006 and April 2006 during which samples were collected from 28 properties. Five of these properties were previously sampled during the first sampling event (April 2005) as shown on Figure 3. Indoor air sampling locations are shown on Figure 3. A summary of the VOCs detected in sub-slab vapor, basement air, and first floor air samples collected during the first sampling event (April 2005) is provided on Table 5. A summary of the VOCs detected in sub-slab vapor, basement air, and first floor air in samples collected during the second sampling event (January 2006 to April 2006) is provided on Tables 6. Table 7 provides an overall summary of the indoor air data as it relates to the number of samples analyzed, the number of detected concentrations, the number of guidance exceedances, and the range of detected concentrations for each COC and 1,1,1-trichloroethane (1,1,1-TCA) and carbon tetrachloride.

5.2.1 Evaluation of Soil Vapor Intrusion

Soil vapor intrusion is a process where VOCs migrate from a subsurface source into the indoor air of buildings. The vapors can migrate into indoor air due to interior and exterior pressure differentials through cracks, perforations in slabs or basement floors and/or walls, or openings around sumps or where pipes and/or electrical wires penetrate through the foundation. Heating, ventilation, and air conditioning systems, when operating, may cause negative pressure within the building that can draw soil vapor into the structure. Many chemicals are contained in household products, building materials, fuels, etc. and as such, chemicals are often found in air samples collected within structures even when a subsurface contaminant source is not present. Also, the subsurface source of soil vapor does not necessarily need to lie directly beneath a structure to adversely impact the vapor beneath the foundation.

From an indoor air monitoring perspective, the focus of this RI was to evaluate the concentrations of sub-slab vapor and indoor air and whether these concentrations are indicative of vapor intrusion. At locations where vapor intrusion was suspected, then appropriate actions to mitigate the vapor migration pathway and/or the exposure of building occupants to those vapors would be identified. In order to evaluate vapor intrusion, the sub-slab and indoor air sample results were reviewed and compared to the NYSDOH Soil Vapor/Indoor Air matrices described in *Guidance for Evaluating Soil Vapor Intrusion in the State of New York, Final* (NYSDOH, October 2006). Depending on the relationship between sub-slab and indoor air concentrations, vapor intrusion may or may not be suspected. The following provides discussion of the sub-slab and indoor air data in terms of the potential for vapor intrusion according to the NYSDOH air matrices.

To date, NYSDOH has developed matrices for the following VOCs: 1,1,1-TCA, PCE, TCE, and carbon tetrachloride. TCE and carbon tetrachloride are assigned to Soil Vapor/Indoor Air Matrix 1. 1,1,1-TCA and PCE are assigned to Soil Vapor/Indoor Air Matrix 2.

The sub-slab and indoor air analytical data for 1,1,1-TCA, PCE, TCE, and carbon tetrachloride from the April 2005 and January through April 2006 sampling events were evaluated against the NYSDOH decision matrices. Table 8 provides summaries of these data, NYSDOH matrix decision outcomes, and the corresponding actions considered appropriate by NYSDEC. Five potential decision matrix outcomes are described by NYSDOH as follows:

1. No further action:

Given that the compound was not detected in the indoor air sample and that the concentration detected in the sub-slab vapor sample is not expected to significantly affect indoor air quality, no additional actions are needed to address human exposures.

2. Take steps to identify source(s) and reduce exposures:

The concentration detected in the indoor air sample is likely due to indoor and/or outdoor sources rather than soil vapor intrusion given the concentration detected in the sub-slab vapor sample. Therefore, steps should be taken to identify potential source(s) and to reduce exposures accordingly.

3. Monitor:

Monitoring, including sub-slab vapor, basement air, lowest occupied living space air, and outdoor air sampling, is needed to evaluate whether concentrations in the indoor air or sub-slab vapor have changed. The type and frequency of monitoring is determined on a site-specific basis, taking into account applicable environmental data and building operating conditions. Monitoring is an interim measure required to evaluate exposures related to soil vapor intrusion until contaminated environmental media are remediated.

4. Mitigate:

Mitigation is needed to minimize current or potential exposures associated with soil vapor intrusion. Mitigation is considered a temporary measure implemented to address exposures related to soil vapor intrusion until contaminated environmental media are remediated.

5. Monitor/Mitigate:

Monitoring or mitigation may be recommended after considering the magnitude of sub-slab vapor and indoor air concentrations along with building and site-specific conditions.

PCE, TCE, 1,1,1-TCA, and/or carbon tetrachloride were detected in select samples (i.e. sub-slab, basement, and/or first floor air) at concentrations above NYSDOH Soil Vapor/Indoor Air matrix values at various sample locations. Samples were collected from 45 locations (42 residential properties and three commercial properties). The following summarizes the actions considered as appropriate by NYSDEC in consideration of the NYSDOH matrices:

- No action is considered appropriate at 35 residential properties and two commercial properties. At these locations, detected COC concentrations are considered to be attributable to indoor and/or outdoor sources rather than vapor intrusion given the concentration detected in the subslab samples. At these locations, property owners should take measures to reduce exposure to indoor and/or outdoor-related sources. NYSDOH can provide guidance as to reasonable and practical actions that property owners and/or tenants can implement to reduce these exposures
- Additional monitoring is needed at seven residential properties to evaluate whether concentrations change over time and if mitigation is necessary at these locations. Implementation of this monitoring falls under the responsibility of the NYSDEC, with NYSDOH input as necessary.

• Mitigation is necessary at one commercial property due to the presence of PCE and TCE at elevated concentrations in air samples. Implementation of this action should be coordinated between NYSDOH and the property owner.

COCs associated with this RI, as well as other VOCs, were detected in indoor air samples. At most locations, the presence of these constituents in indoor air, are considered to be attributable to indoor and/or outdoor sources rather than vapor intrusion. At the small number of locations where vapor intrusion may be occurring, additional monitoring should be conducted to compare with previous results and evaluate if mitigation systems are warranted.

5.2.2 Other VOCs

Other VOCs detected mainly include petroleum and refrigerant compounds, many of which were detected in each of the sub-slab, basement air, and first floor air samples. NYSDOH has not established air guidance values for these compounds. However, 11 mitigation systems were installed by NYDSEC to address petroleum odors caused by the petroleum spill that occurred on the Newcomb Oil/Former Citgo Station property.

5.3 Subsurface Soil

A total of 27 subsurface soil samples were analyzed for VOCs as part of the RI, 13 of which were collected on the Carriage Cleaners property, and 14 collected on the former Speedy's Cleaners property (two samples were associated with the underground sewer evaluation described in Section 3.7). The objective of the soil boring program at the Carriage Cleaners property was to characterize the quality of soil in two separate areas. One area included the location of the underground storm and sanitary sewer lines servicing the facility and located along the west side of the building. The second area included narrow open areas/alleyways that separate the Carriage Cleaners building from a residential structure (2111 Monroe Avenue) that exists on the Carriage Cleaners property. Within this narrow open area/alleyway is an above ground storage tank that was formerly used to store PCE, as well as various 30 and 55-gallon drums. In addition, a backdoor to the facility is accessible via this area.

The soil borings were advanced at the former Speedy's Cleaners property to determine if PCE contamination exists in the shallow overburden that may be contributing to known off-site PCE groundwater contamination. The locations from which subsurface soil samples were collected are shown on Figures 5 and 6. A summary of the detected VOCs is provided on Table 9. The distribution of detected PCE concentrations in soil samples collected on the Carriage Cleaners and former Speedy's Cleaners properties is shown on Figures 13 and 14, respectively.

5.3.1 Constituents of concern

The following COCs were detected in the subsurface soil samples: PCE, TCE, cis-1,2-DCE, and vinyl chloride. As shown on Table 9, PCE was the only COC detected at concentrations exceeding TAGM 4046 RSCOs. Each of the 13 soil samples collected on the Carriage Cleaners property contained detectable concentrations of COCs. Each of the 12 soil samples collected at the former Speedy's Cleaners property contained detectable concentrations of COCs.

PCE

Two soil samples collected during the repair of the sewer utility, one just above the sewer (CC-STORM 2.5') and the other just below the sewer (CC-STORM 5.5'), contained PCE concentrations

Carriage Cleaners RI/FS NYSDEC Site #8-28-120

NYSDOH Decision Matrix Outcomes - Indoor Air

					111	Trichloroetl	mane - Matrix 2	RIX 2		Tota	achloroethe	ene - Matrix 2
	Sample I.D.	Sample Period	Subslab	Basement			Matrix Decision Outcome	Subslab	Basement			Matrix Decision Outcome
1	01A	Apr-05	< 0.83	<0.83	<0.83	<0.83	No Further Action	2.8 J	1.6 J	2.4 J	1.2 J	No Further Action
2	01B	Apr-05	2.7	5.9	3.5	<0.83	Take reasonable and practical actions to identify source(s) and reduce exposures	2.5 J	2.2 J	3.2 J	6 J	No Further Action
3	02A	Apr-05	<0.83	0.78 J	0.61 J	<0.83	No Further Action	2.7 J	1 J	<1.0	1.2 J	No Further Action
4	03A	Apr-05	<0.83	<0.83	<0.83	<0.83	No Further Action	3.7 J	2.8 J	2.3 J	1.2 J / <1	No Further Action
5	04A	Apr-05	1.2 J	3.8	2.9	<0.83	Take reasonable and practical actions to identify source(s) and reduce exposures	868.7 J	7.9 J	3.2 J	<1	Monitor / Mitigate
	012406-1	Jan-06	0.78 J	NA	NA	< 0.832	No Further Action	230	4.2	3.2	2.69	Monitor / Mitigate
6	05A-1	Apr-05	<0.83	<0.83	NS	<0.83	No Further Action	2.3 J	1.2 J	NS	<1	No Further Action
_	05A-2 06A	Apr-05	<0.83	<0.83	NS <0.83	<0.83	No Further Action No Further Action	2.3 J 1.9 J	0.69 J	NS 2.5 J	<1 <1	No Further Action No Further Action
		Apr-05	<0.83			<0.83			2.6 J			
8	07A	Apr-05	<0.83	<0.83	<0.83	<0.83	No Further Action	2.2 J	1.6 J	2.2 J	6 / 1.2 J	No Further Action Take reasonable and practical actions to
9	08A	Apr-05	<0.83	<0.83	0.55 J	<0.83	No Further Action	3.1 J	5.9 J	3.6 J	6 J	identify source(s) and reduce exposures
10	09A	Apr-05	<0.83	0.44	0.39 J	<0.83	No Further Action	12 J	<1	0.90 J	6 J	No Further Action Take reasonable and practical actions to
11	10A	Apr-05	<0.83	<0.83	<0.83	<0.83	No Further Action	0.69 J	3.4 J	0.83 J	<1	identify source(s) and reduce exposures Take reasonable and practical actions to
12 13	11A 12A	Apr-05 Apr-05	<0.83	0.89 <0.83	<0.83	<0.83	No Further Action No Further Action	2.5 J 5	0.83 J 1.4 J	3.9	1.5	identify source(s) and reduce exposures No Further Action
14	13A	Apr-05	<0.83	<0.83	<0.83	<0.83	No Further Action	6.9	2.8	1	1.5	No Further Action
15	14A	Apr-05	<0.83	0.72	1.1	<0.83	No Further Action	83 J	3.2	3.1	1.5	Take reasonable and practical actions to identify source(s) and reduce exposures
15	012306-1	Jan-06	<0.83	NA	NA	<0.832	No Further Action	49	2.2	2.4	2.9	No Further Action
16	15A	Apr-05	< 0.83	<0.83	<0.83	<0.83	No Further Action	5.1 J	0.97 J	1.4	1.5	No Further Action
17	16A	Apr-05	<0.83	<0.83	<0.83	<0.83	No Further Action	5.7 J	0.76 J	0.69 J	1.5	No Further Action
18	17A	Apr-05	<0.83	<0.83	<0.83	<0.83	No Further Action	130 J	360	3.8	1.5	Mitigate
	030206-4	Mar-06	<28	NA	NA	<0.832	Incomplete data for decision making	280	3.5	2.3	0.689	Monitor
19	18A	Apr-05	<0.83	<0.83	<0.83	<0.83	No Further Action	1.7	0.83 J	2.5 J	1.5	No Further Action
20	19A	Apr-05	5.5	6.2	6.6	<0.83	Take reasonable and practical actions to identify source(s) and reduce exposures	67	30	27	1.2 J	Take reasonable and practical actions to identify source(s) and reduce exposures
	012406-2	Jan-06	1.2	NA	NA	< 0.832	No Further Action	110	7	6.3	2.69	Monitor
21	20A	Apr-05	0.67 J	<0.83	<0.83	<0.83	No Further Action	270	2	5.4	1.2 J	Monitor
	013106-1 C1-1	Jan-06 Aug-05	NS 2.4	<0.832	NA	<0.832	No Further Action	NS 250	1.31 J	3.6	0.483	Take reasonable and practical actions to identify source(s) and reduce exposures
22	C1-2	Aug-05	3.9	<0.83	<0.83	NS	No Further Action	280	340	150	NS	Mitigate Take reasonable and practical actions to
23 24	012306-2 012306-3	Jan-06 Jan-06	2.2 <0.83	NA NA	NA NA	<0.832 <0.832	No Further Action No Further Action	23 3.1 J	5.5 <1.5	2.1 <1.5	2.9	identify source(s) and reduce exposures No Further Action
25	012306-3 012306-4R	Jan-06	<0.83	NA NA	NA NA	<0.832	No Further Action	34	<1.5	<1.5	2.9	No Further Action
26	012306-5	Jan-06	<0.83	NA NA	NA NA	<0.832	No Further Action	11 J	4.7	3.7	2.9	Take reasonable and practical actions to identify source(s) and reduce exposures
27	012406-3	Jan-06	<0.83	NA	NA	< 0.832	No Further Action	2.5 J	<1.4	<1.4	2.69	No Further Action
28	012506-1	Jan-06	0.33 J	NA	NA	< 0.832	No Further Action	100	13	7.1	<1.03	Monitor / Mitigate
29	012506-2	Jan-06	< 0.83	NA	NA	< 0.832	No Further Action	370 J	1.9	<1.4	<1.03	Monitor
30	012506-3	Jan-06	<0.83	NA	NA	<0.832	No Further Action	8.5 J	2.3	1.2	<1.03	No Further Action
31	012506-4	Jan-06	NS	NA	NA	<0.832	Incomplete data for decision making	NS	<1.4	<1.4	<1.03	No Further Action
32 33	012506-5 012606-1	Jan-06 Jan-06	0.22 J <0.83	NA NA	NA NA	<0.832 <0.832	No Further Action No Further Action	2.1 J 16	<1.5 <1.4	<1.5 1.4	<1.03 <1.03	No Further Action No Further Action
33	013006-1	Jan-06 Jan-06	0.44 J	27.2	NA NA	<0.832	Take reasonable and practical actions to identify source(s) and reduce exposures	2.8 J	1.17	1.9	0.827	No Further Action
35	013006-2	Jan-06	0.61 J	NA	NA	<0.832	No Further Action	72 J	2.2	2.2	0.827	No Further Action
36	013006-3	Jan-06	0.61 J	1.05	NA	<0.832	No Further Action	440 J	3.38 J	2.1	0.827	Monitor / Mitigate
37	013006-4	Jan-06	NS	<0.832	NA	<0.832	No Further Action	NS	25.5	15	0.827	Incomplete data for decision making
38	013006-5	Jan-06	<0.83	<0.832	NA NA	<0.832	No Further Action	45 J	1.17 J	1.7	0.827	No Further Action
39 40	013106-2 013106-3	Jan-06	<0.83	NA NA	NA NA	<0.832 <0.832	No Further Action No Further Action	1.1 J 13 J	2.7	1.9 NS	0.483	No Further Action No Further Action
41	013106-3	Jan-06 Jan-06	<0.83 0.28 J	<0.832	NA NA	<0.832	No Further Action	13 J 50 J	0.896 J	1.4	0.483	No Further Action
42	030206-1	Mar-06	NS	NA	NA	<0.832	Incomplete data for decision making	NS	<1.4	<1.4	0.689	No Further Action
	030206-2	Mar-06	<280	NA	NA	<0.832	Incomplete data for decision making	47000	NS	1.9	22 / 12	Mitigate
43	030206-3	Mar-06	<550	NA	NA	<0.832	Incomplete data for decision making	13000	NS	1.9	22 / 12	Mitigate
44	041006-1A	Apr-06	<0.83	NA	NA	< 0.832	No Further Action	<1	2	2	1.59	No Further Action
	041006-1B								2	2.5	1.59	No Further Action
45	041106-1	Apr-06	0.67 J	NA	NA	NS	No Further Action	0.97 J	2.3	2	NS	No Further Action

Notes: NA - Not Analyzed
NS - Not Sampled
J - Estiated Concentration
OSHA PELs - Occupational Safety and Health Administration Permissible Exposure Limits

Carriage Cleaners RI/FS NYSDEC Site #8-28-120

NYSDOH Decision Matrix Outcomes - Indoor Air

							MA	TRIX 1				
				1		chloroether					on Tetrachlor	
	Sample I.D.	Sample Period	Subslab	Basement		Ambient	Matrix Decision Outcome	Subslab	Basement		Ambient	Matrix Decision Outcome
2	01A 01B	Apr-05 Apr-05	<0.82	<0.82	<0.82	<0.82	No Further Action No Further Action	<0.96	<0.96 0.83 J	<0.96 0.58 J	1.1 0.51 J	No Further Action Take reasonable and practical actions to identify source(s) and reduce exposures
3	02A	Apr-05	<0.82	<0.82	<0.82	<0.82	No Further Action	1.2	1	1	1.1	Take reasonable and practical actions to identify source(s) and reduce exposures
4	03A	Apr-05	<0.82	<0.82	<0.82	<0.82	No Further Action	<0.96	1.1	3	1.1 / 0.9 J	Take reasonable and practical actions to identify source(s) and reduce exposures
5	04A	Apr-05	20	<0.82	4	<0.82	Monitor	0.64 J	1	0.9 J	0.9 J	Take reasonable and practical actions to identify source(s) and reduce exposures
	012406-1	Jan-06	14 J	NA	NA	0.874 J	Monitor	0.58 J	NA	NA	0.64 J	No Further Action
6	05A-1 05A-2	Apr-05 Apr-05	<0.82	<0.82	NS NS	<0.82 <0.82	No Further Action No Further Action	0.64 J 0.77 J	<0.96 <0.96	NS NS	0.9 J 0.9 J	No Further Action No Further Action
7	06A	Apr-05	<0.82	<0.82	<0.82	<0.82	No Further Action	<0.96	<0.96	< 0.96	0.9 J	No Further Action
8	07A	Apr-05	<0.82	<0.82	<0.82	<0.82	No Further Action	<0.96	0.45 J	<0.96	0.51 J / 0.96	Take reasonable and practical actions to
9	08A	Apr-05	<0.82	<0.82	36	<0.82	Take reasonable and practical actions to identify source(s) and reduce exposures	<0.96	0.45 J	0.64 J	0.51 J	identify source(s) and reduce exposures Take reasonable and practical actions to identify source(s) and reduce exposures
10	09A	Apr-05	0.55 J	<0.82	<0.82	<0.82	No Further Action	<0.96	0.45 J	0.38 J	0.51 J	Take reasonable and practical actions to identify source(s) and reduce exposures
11	10A	Apr-05	<0.82	<0.82	<0.82	<0.82	No Further Action	0.64 J	<0.96	0.64 J	0.64 J	Take reasonable and practical actions to identify source(s) and reduce exposures
12	11A	Apr-05	<0.82	5.3	2.2	<0.82	Take reasonable and practical actions to identify source(s) and reduce exposures	0.58 J	0.64 J	<0.96	0.7 J	Take reasonable and practical actions to identify source(s) and reduce exposures
13	12A	Apr-05	8.4	<0.82	<0.82	<0.82	No Further Action	<0.96	<0.96	<0.96	0.7 J	No Further Action Take reasonable and practical actions to
14	13A	Apr-05	5.7	<0.82	<0.82	<0.82	No Further Action	<0.96	12.3 0.64 J	0.64 J <0.96	0.7 J	identify source(s) and reduce exposures Take reasonable and practical actions to
15	14A 012306-1	Apr-05 Jan-06	7 2.2.J	<0.62 NA	<0.62 NA	1.15 J	No Further Action Take reasonable and practical actions to	0.45 J	0.64 J	<0.96 NA	0.7 J	identify source(s) and reduce exposures No Further Action
16	15A	Apr-05	<0.82	<0.82	<0.82	<0.82	identify source(s) and reduce exposures No Further Action	<0.96	0.83 J	0.77 J	0.7 J	No Further Action
17	16A	Apr-05	<0.82	<0.82	<0.82	<0.82	No Further Action	<0.96	0.7 J	0.64 J	0.7 J	No Further Action
18	17A	Apr-05	23	<0.82	<0.82	<0.82	Take reasonable and practical actions to identify source(s) and reduce exposures	<0.96	<0.96	0.64 J	0.7 J	No Further Action
	030206-4	Mar-06	30	NA	NA	<0.218	Incomplete data for decision making Take reasonable and practical actions to	<32	NA	NA	0.767 J	Incomplete data for decision making Take reasonable and practical actions to
19	18A	Apr-05	<0.82	6.9	<0.82	<0.82	identify source(s) and reduce exposures Take reasonable and practical actions to	<0.96	0.64 J	<0.96	0.7 J	identify source(s) and reduce exposures Take reasonable and practical actions to
20	19A	Apr-05	4.6	3	2.7	<0.82	identify source(s) and reduce exposures	<0.96	<0.96	0.64 J	0.96	identify source(s) and reduce exposures
	012406-2	Jan-06	0.38 J	NA	NA	0.874	No Further Action	0.38 J	NA	NA	0.64 J	No Further Action Take reasonable and practical actions to
21	20A	Apr-05	16	<0.82	<0.82	<0.82	No Further Action	<0.96	0.64 J	<0.96	0.96	identify source(s) and reduce exposures Take reasonable and practical actions to
22	013106-1 C1-1	Jan-06 Aug-05	NS 190	<0.218	NA 0.0	<0.218	No Further Action	NS <0.96	0.703 J	NA 0.00	0.576 J	identify source(s) and reduce exposures Take reasonable and practical actions to
	C1-2	Aug-05	270	2.8	2.2	NS	Mitigate	<0.96	0.64 J	<0.96	NS	identify source(s) and reduce exposures
23	012306-2	Jan-06	3.2 J	NA	NA	1.15 J	No Further Action	0.58 J	NA	NA	0.576 J	No Further Action
24	012306-3	Jan-06	0.22 J	NA	NA	1.15 J	No Further Action	0.58 J	NA	NA	0.576 J	No Further Action
25 26	012306-4R 012306-5	Jan-06 Jan-06	0.55 J <0.82	NA NA	NA NA	1.15 J 1.15 J	No Further Action No Further Action	0.45 J 0.77 J	NA NA	NA NA	0.576 J 0.576 J	No Further Action No Further Action
27	012406-3	Jan-06	0.44 J	NA NA	NA NA	0.874 J		0.7 J	NA NA	NA.	0.64 J	No Further Action
28	012406-3	Jan-06 Jan-06	9.3 J	NA NA	NA NA	<0.218	No Further Action Incomplete data for decision making	0.7 J	NA NA	NA NA	0.64 J 0.576 J	No Further Action No Further Action
29	012506-2	Jan-06	6.9 J	NA	NA NA	<0.218	Incomplete data for decision making	0.32 J	NA	NA	0.576 J	No Further Action
30	012506-3	Jan-06	0.33 J	NA	NA	<0.218	No Further Action	0.83 J	NA	NA	0.576 J	No Further Action
31	012506-4	Jan-06	NS	NA	NA	<0.218	Incomplete data for decision making	NS	NA	NA	0.576 J	Incomplete data for decision making
32	012506-5	Jan-06	0.27 J	NA	NA	<0.218	No Further Action	0.64 J	NA	NA	0.576 J	No Further Action
33	012606-1	Jan-06	0.82	NA	NA	0.328 J	No Further Action	0.51 J	NA	NA	0.576 J	No Further Action Take reasonable and practical actions to
34 35	013006-1 013006-2	Jan-06 Jan-06	0.22 J 9 J	2.2 NA	NA NA	<0.218	No Further Action Incomplete data for decision making	0.51 J 0.26 J	0.767 J NA	NA NA	0.767 J 0.767 J	identify source(s) and reduce exposures No Further Action
36	013006-3	Jan-06	39 J	0.328 J	NA	<0.218	Monitor	0.51 J	0.831 J	NA	0.767 J	Take reasonable and practical actions to identify source(s) and reduce exposures
37	013006-4	Jan-06	NS	1.37 J	NA	<0.218	Incomplete data for decision making	NS	1.92	NA	0.767 J	Take reasonable and practical actions to identify source(s) and reduce exposures
38	013006-5	Jan-06	1.5 J	<0.218	NA	<0.218	No Further Action	0.38 J	0.64 J	NA NA	0.767 J	Take reasonable and practical actions to identify source(s) and reduce exposures
39 40	013106-2	Jan-06	<0.82	NA NA	NA NA	<0.218	No Further Action	0.58 J 0.58 J	NA NA	NA NS	0.576 J	No Further Action
41	013106-3 013106-4	Jan-06 Jan-06	1 J <0.82	NA <0.218	NA NA	<0.218	No Further Action No Further Action	0.58 J 0.32 J	NA 0.767 J	NS NA	0.576 J 0.576 J	No Further Action Take reasonable and practical actions to identify source(s) and reduce exposures
42	030206-1	Mar-06	NS	NA	NA	<0.218	Incomplete data for decision making	NS	NA	NA	0.767 J	Incomplete data for decision making
43	030206-2	Mar-06	2100	NA	NA	<0.218	Mitigate	<320	NS	NA	0.767 J	Incomplete data for decision making
	030206-3	Mar-06	1300	NA	NA	<0.218	Mitigate	<640	NS	NA	0.767 J	Incomplete data for decision making
.0							No Further Action					
44	041006-1A 041006-1B	Apr-06	<0.82	NA	NA	<0.218	No Further Action	<0.96	NA	NA	<0.959	No Further Action No Further Action

Notes: NA - Not Analyzed
NS - Not Sampled
J - Estiated Concentration
OSHA PELs - Occupational Safety and Health Administration Permissible Exposure Limits

Carriage Cleaners RI/FS NYSDEC Site #8-28-120

NYSDOH Decision Matrix Outcomes - Indoor Air

	Sample I.D.	Sample Period	NYSDEC Action
1	01A	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
2	01B	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
3	02A	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
4	03A	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
5	04A	Apr-05	Additional monitoring to evaluate needed for mitigation
6	012406-1 05A-1	Jan-06 Apr-05	M. A. C. M. L.
	05A-2	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
7	06A	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
8	07A	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
9	08A	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
10	09A	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
11	10A	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
12	11A	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
13	12A	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
14	13A	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
15	14A	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
15	012306-1	Jan-06	No Action Needed; concentrations not attributed to vapor intrusion
16	15A	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
17	16A	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
18	17A	Apr-05	Additional monitoring to evaluate needed for mitigation
	030206-4	Mar-06	
19	18A	Apr-05	No Action Needed; concentrations not attributed to vapor intrusion
20	19A	Apr-05	Additional monitoring to evaluate needed for mitigation
	012406-2	Jan-06	
21	20A	Apr-05	Additional monitoring to evaluate needed for mitigation
	013106-1 C1-1	Jan-06 Aug-05	
22	C1-2	Aug-05	Mitigate due to presence of PCE and TCE
23	012306-2	Jan-06	No Action Needed; concentrations not attributed to vapor intrusion
24	012306-3 012306-4R	Jan-06 Jan-06	No Action Needed; concentrations not attributed to vapor intrusion
25			No Action Needed; concentrations not attributed to vapor intrusion
26	012306-5	Jan-06	No Action Needed; concentrations not attributed to vapor intrusion
27 28	012406-3 012506-1	Jan-06 Jan-06	No Action Needed; concentrations not attributed to vapor intrusion
29	012506-1	Jan-06 Jan-06	Additional monitoring to evaluate needed for mitigation Additional monitoring to evaluate needed for mitigation
30	012506-3	Jan-06	No Action Needed; concentrations not attributed to vapor intrusion
31	012506-4	Jan-06	No Action Needed; concentrations not attributed to vapor intrusion
32	012506-5	Jan-06	No Action Needed; concentrations not attributed to vapor intrusion
33	012606-1	Jan-06	No Action Needed; concentrations not attributed to vapor intrusion
34	013006-1	Jan-06 Jan-06	No Action Needed; concentrations not attributed to vapor intrusion No Action Needed; concentrations not attributed to vapor intrusion
36	013006-3	Jan-06	Additional monitoring to evaluate needed for mitigation
37	013006-4	Jan-06	No Action Needed; vapor mitigation system in-place
38	013006-5	Jan-06	No Action Needed; concentrations not attributed to vapor intrusion
39	013106-2	Jan-06	No Action Needed; concentrations not attributed to vapor intrusion
40	013106-3	Jan-06	No Action Needed; concentrations not attributed to vapor intrusion
41 42	013106-4 030206-1	Jan-06 Mar-06	No Action Needed; concentrations not attributed to vapor intrusion No Action Needed; concentrations not attributed to vapor intrusion
	030206-1	Mar-06	No Action Needed (OSHA PELs apply to active dry cleaner); house on property has vapor
43	030206-2	Mar-06	mitigation system in-place
44	041006-1A 041006-1B	Apr-06	No Action Needed; concentrations not attributed to vapor intrusion
45	041006-1B 041106-1	Apr-06	No Action Needed; concentrations not attributed to vapor intrusion
40	U+11U0-1	Λþι-00	TWO ACTION Needed, concentrations not attributed to vapor intrusion

Notes: NA - Not Analyzed
NS - Not Sampled
J - Estiated Concentration
OSHA PELs - Occupational Safety and Health Administration Permissible Exposure Limits

FIGURE 3

LEGEND

PHASE I/II INDOOR AIR SAMPLE

PHASE I INDOOR AIR SAMPLE

PHASE II INDOOR AIR SAMPLE

SOIL VAPOR SAMPLE

EXISTING SUB-SLAB SYSTEMS

- INSTALLED DUE TO PRESENCE OF PCE
 - INSTALLED DUE TO PRESENCE OF PETROLEUM
- INSTALLED DUE TO PRESENCE OF RADON

NYSDEC CARRIAGE CLEANERS TOWN OF BRIGHTON, NY

AIR SAMPLE LOCATIONS

FEBRUARY 2007 10653/35749

APPENDIX B

FIELD DATA RECORDS

APPENDIX B.1

SOIL BORING LOGS

	SOIL BOI	RING LOG				
Project Former Speedy's Cleaners		Boring/Well	1	Project N	o. 3612082109	9
Client NYSDEC	Site Former Speedy's		Sheet No.		of ('
Logged By C. Lyman	Ground Elevation でチ 4のフ	Start Date	J =:	sh Date	-	
Drilling Contractor Nothnagle	Driller's Name	man	Big Type	Geoprobe	utoes	
Drilling Method Direct Push	Protection Level	P.I.D. (eV)	Casing Size		Auger Size	
Soil Drilled	Total Depth	Depth to Groundwater,	/Date	72 Piez	Well Borin	8
	H 8.81	unknown		\Box	Monitoring	
No. & ation/ (Feet ws/6" YRqd.		and the second of the second			(ppm)	ts e
Sample No. & Penetration/ • Recovery (Feet) SPT Blows/6" or Or Core Rec./Rqd. % SPT-N (Blows/Ft.)	Sampl	e Description	•	USCS Group Symbol	sr san rr pace	Lab Tests ID Sample
Se S	5	•	· .	Gro	PI Meter Freid Scan PI Meter Head Space	으면
19, 1.0	2-89 Moist	AND, TRACE GRAVES,	Mep-Danse	1911 5	WA-	10-18-
NA NA (Bottom of boning 21	* SampleD juster	891RC		MX	*
		V . •				.
	+Supper Colles	etcd below	basen	17		
	Slub;	3x		1		
	Slabw:	2 ~ 7.2 6	95			
		•	′			
			·			
		`	-			
		7	-			
0		,	· -			
1			- -			
2—			<i>₽</i> > −			
2						
20/1/09	PP-001					19 3 3
MACTEGALIT						
511 Congress Steet 7 1, 7 Portland, ME 04101	NYS	DEC QUALITY ASSU	SO JRANCE P	I BORIN	JRE4-4 IGLOG	

	SOIL BORING L	OG	
Project Former Speedy's Cleaners S		Boring/Well No.	Project No. 3612082109
Client NYSDEC	Site Former Speedy's Cleaners	Sheet No.	of
Logged By C. Lyman	Ground Elevation Start D	ate 2)18 (09	ish Date 1218 De
Drilling Contractor Nothnagle	Driller's Name	Pig Type	Geoprobe HAND
Drilling Method Direct Push		I.D. (eV) Casing Siz	Auger Size
Soil Drilled , Rock Drilled	Total Depth Depth to	Groundwater/Date	Piez Well Boring
Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" Core Rec./Rqd. % SPT-N SPT-N SPT-N	Sample Descri	49	No NOTE
1.8' 1.8'	7.8 to 9.6 BROWN, SILLY SAND, PG, TRAKE GRAVES FINE SANDY SILL LENSE	(1)	₹_ 8 3- \
8 —	*Supre collected? Stats; Frank Stats was -7.	2' bys	
10—			
MACTEC 511 Congress Steet Portland, ME 04101	7002 7.2' -9.6' NYSDEC Q	D-001 D-002 UALITY ASSURANCE	FIGURE 4-4 SOIL BORING LOG E PROGRAM PLAN

				SOIL BOI	RING	LOG					
Project Former	Speedy's C	leaners :	Boring/Well		Project I		82109				
Client NYSDE	c		Site	Former Speedy's	Cleaner	s	Sheet No.	1	_ of		
Logged By C. L	yman		Grou	nd Elevation St. 481.7	Start	Date 12/18/0	& Fin	ish Date	sloe	.	
Drilling Contract	tor Nothnag	gle		Driller's Name	رز		Rig Type	Geoprobe	Ho	المل ال	S
Drilling Method	Direct Pu	sh		Protection Level		P.I.D. (eV) 0.0 580 B	Casing Siz	2/12	Auge	r Size	
Soil Drilled	1.6' NA 9,5" ~8.5" 1418/08										
Depth(Feet) Sample No. & Penetration/ Recovery (Feet)	USCS Group Symbol	PI Meter do Weller Field Scan do	0	Lab Tests ID Sample							
9.2 1.1 1.06	7.) MA MA DIVE BROWN, MED-COSE takine Somysilt PG Stiphtly, Plastic Estupated BRICKERAGS, FTRACE GRAVE Sompled 9-95' DP-203089 PP PM @ Shoe (9.4'.9.5' BGS) [WHEN table 2 8'BGS)										*
5 — 6 — 7 —			¥5	inplu colle	ted	beneat		-		**************************************	
9 — 10— 11— 12—			Ł	assenent	Olen	5 n 7.2					
MAC 511 Congres Portland, MI	TEC ss Steet	1,2'	1	Shewest floor DR	Pau?	QUALITY AS		SOIL BO		LOG	

Moted from fulled sourching

7.9

				SOIL BOR	ING L						ė, s
Project Former	Speedy's C	leaners	Site			Boring/Well カアーの		Project N		82109	
Client NYSDE	c ·		Site	Former Speedy's (Sheet No.		of	4.	_ ·
Logged By C. L	.yman			nd Elevation est. 481, 7	Start D	Date 418108	Fin	ish Date เวไเ	g(૦ <u>૯</u>	>	
Drilling Contract	or Nothnag	jle		Driller's Name	(man))	Rig Type	Geoprobe	Late	200 C	en
Drilling Method	Direct Pu	sh		Protection Level D		.I.D. (eV) .0 580 B	Casing Siz	e2/82	Auger	Size	
Soil Drilled	/ 1	Drilled		Total Depth		Groundwater	/Date	Piez	Well	Boring	7
Sample No. & Penetration/	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)	of the	Sample now, fire kers son e N., Saway sulf		•	no Pas	USCS Group Symbol	Pl Meter Field Scan		Lab Tests ID Sample
7.1.0	M	WA	Plou	IN., SANDY SIH	,_Mon	st, mod P	lostalty		2671		
1.6/			·	sarded ohis 1100 uple Gilcette Stabj Stab ws	d be	nenth b	oasewin				*
8 — 9 — 10— 11— 12—			potel	Voa, svoc, pest	fecb,	netok &	Dup.				
MAC 511 Congre Portland, M		NAC)	مالوطور تمری د	d second NYS	7.7	Puok Ruality as	SURANCE	F SOIL BO E PROGE	IGURI RING RAM P	E 4-4 LOG PLAN	

to get more Value.

Pro	ojec	t Former	Speedy's	Cleaners	Site	SOIL BOR		Boring/We	No. 05		Project		82109	
Clie	ent	NYSDE	C .		Site	Former Speedy's C	leaners		Sheet N	· · · · · ·	1	of	/	
Log	gge	^{d By} C. L	.yman/ ß	Shar	Grou	nd Elevation 487.8	Start [Date 2 - 15	-08		h Date	12-1	5-0	<u> </u>
		Contract				Driller's Name Jet	50	hveito	Rig Ty	pe G	eoprobe		600	7
Dri	lling	Method	Direct Pu	ısh		Protection Level D	P	.I.D. (eV) ,0 580 B	Casing	Size	2:18	Auge	r Size	/
Soi	il Dı	rilled) .	- Rock	c Drilled	4	Total Depth 115	epth to	Groundwat	ter/Date	5	Piez	Well	Boring	
Feet)	,	No. & ation/ / (Feet)	ws/6" /Rqd. %	-N ;/Ft.)		and the second second	80				:S ymbol	Moni (pp	T	ssts
Depth(Feet)		Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd.	SPT-N (Blows/Ft.)		Sample	Desc	ription	€ د ا	>	USCS Group Symbol	Pi Meter Field Scan	PI Meter Head Space	Lab Tests ID Sample
	-		NA	NA	0-0.8	DKBrown silt 5 et Blown loive	lloan, Run E	Mbense, P	C, dop, S	md.	Fil1	200	NA	
2 -		2.4			3.5-4	coarsesond, PG, S t L+olve brann si arm, WE, SP, M	f, Bri tv sene	cks @ 3.1	damp tou	ret				. •
_ 3 ;- 4		40									Bricks	•		-
5 -		3.2			\$6,55 45	o olive Brown fine me brits, M, M 5.2 Ltolve/Lti	Stiff;	Fine Country	ut Do	·40	in'll Book	<8./		4"
7 -		40			Denge	le, Donsyshift, 6.3 reddish grown, 1stift, 1.5 reddish Bran					1	nicks	8	-28 i
. 8 -	-	-			7-5-8	olive Boom Silly a	carse	sand, PG. a	7.1° 124.5D		GW/	1		3,
9 -		2-6			10-5-11.	5 it Reddish brown by wet to Sutward of the Brown 5/14	1 WE,	MStiff I fires to	arse s ady fine gava	Sifts Sifts	SWSP.	<0.1) * 8,
7 10-		3.5				&, rdy,	N,				Sin		ક	181U
12-						Ses=Bottom &	floo	ارتتين .						<u>11.5</u>
	110	9									***************************************	· l		
		MAC 511 Congres Portland, MB		e.	يم ^ي	NVQ	DEC O	UALITY A	SSURAN	SCE I	IL BO	IGURE RING	LOG	

	Projec	et Former	Speedy's	Cleaners	Site	SOIL BO	anver.	Boring/Well	No. 006	· F	Project		082109	
	Client	NYSDE	c		Si	te Former Speedy's	Cleaners	;	Sheet N	lo		of	1	
	Logge	ed By C. L	.yman	3. Than	/ Gr	ound Elevation	Start I	Date 12-5-			h Date	2-15	-08	
	Drillin	g Contract	or Nothna	agle		Driller's Name	wei	ter	Rig Typ	oe G	eoprobe			
	Drillin	g Method	Direct P	ush		Protection Level		P.I.D. (eV) NO 580 B	Casing	Size	21/8	Auge	r Size	
	Soil D	rilled 5	Roc	k Drilled N	A	Total Depth	Depth to	Groundwater	/Date	``	Piez	Well	Borin	9*
	eet)	Vo. & tion/ (Feet)	vs/6" Rad. %	Tt.)							s mbol	Moni (pp		sts
	Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rad.	SPT-N (Blows/Ft.)			le Desc	•			USCS Group Symbol	Pl Meter Field Scan	PI Meter Head Space	Lab Tests ID Sample
			MA	MA	0.5-	5 Lt Brownfelve Brown 3.1-Ltoline Brown to	smdy in yellowish	nm, sup , 76	insk, i	P t,	FIL	ا، وك	-	
5	1 — 2 — 3 —	3.3			W/5	one coarse study." 4 PK oline fine Sa	PG, wet	SPIMP, NST	FP.	-				
	4 =	3.8			MP, 51-	5.1 DK olive fine MStatt 7.2 it pellowish soud sit, mp, dm -8, sult soud, f p, MP to SP, red.	Brom 7	o utreddikh B	inn fo	, ,	Fill Acker	Co.1	6	88
	8	2.2	- 1 <u>-</u> 1- 1		8- Li-Re	10.5 Acouse to co edebih Brom + DI +, WC,	ark s	Sulysolf Co	bble f	<u> </u>	8/3 8/35	40.[8	
-	11	<u>— " </u>			Bo	ition of bony =	10.5'	BGS		- - -		<u>l</u>		
	In s	MAC 511 Congress	TEC		<u> </u>					so	FI IL BOI	GURE	4-4 LOG	

			SOIL BO	RING L	.OG					
Project Former Sp	eedy's Cleaners	Site			Boring/Well		Project	No. 36120	82109	
Client NYSDEC		Site	Former Speedy's	Cleaners		Sheet No.	\	of_		
ogged By C. Lym	nan	Grour	nd Elevation	Start C)ate 15(08		inish Date	1215		
Orilling Contractor			Driller's Name			Rig Type		· v	op D	 Г
Orilling Method	irect Push		Dretaction Lavel	Р	I.D. (eV)	Casing S	Size /a	Auger		
Soil Drilled 9.0	Rock Drilled	JA	Total Depth	Depth to	Groundwate	r/Date	Piez	Well	Boring	g
	%) 14	9.0	~8	1865 12	112/08		Monit	torina	
set) o. & lon/ Feet)	%/o						loqu			ව <u>ම</u>
Sample No. & Penetration/ Recovery (Feet)	SPT Blows/o or Core Rec./Rqd. 9 SPT-N (Blows/Ft.)		Samp	le Desc	ription		USCS Group Symbol	an	ace	Lab Tests D Sample
Sam Per Reco	Ore F						Grou	PI Meter Field Scan	PI Meter Head Space	<u>a</u> c
					> 0 > 10	24 .				
	NA MA	0.0-6	013 DICEROUN.	fresm	noewse,	ry Samp		20.1	MA	M
2.2			1.2 Holive Br				rvel			
40		(11.	coarse	•			1			
- 1						que	и <u> </u>			
-					···	B(r)	UKS	y		
		0.0-1	.8— Monst, Blan 25 - Monst, Blan 3.4 - World Brow	~ 0 ;	. S	nglet 4-le	31	20.1		
3.4		1.8-2	25 - Monst, Blow	N SILLY SA	ק סט	310				
- Â10	·	2:5 -	3.4 - West Brow	مر جرالهاجه مر جرالهاجه	ue MD	·				
-						Should 6-8	-		·	!
		<u>Ja</u>			sampled	क्षण्टर्जात	1345	1 101		
0.5		0.8-1	\$2000, Eilty	, shart	, wer			201		
		Botton	mod bority2	9.0 BG	s e pat	isal				
)]		•	. 3		- (√°D,	-			i
<u> </u>			7		/ps-00	9	4			
2			-4	<u>X</u>	4	-X	_			
=			e spe	,	d Di	7-007	\$ s. **			<u>. </u>
R 5/1/09		,				4	DP-0092			
Maa		學之	t.				10		,	**
MACT 511 Congress S	EC					Ι,	SOIL BO	IGURE		
Portland, ME 04			NY	SDEC Q	UALITY AS	SURANC				

5,

52

53 1315

		Herberton.				SOIL BOR	RINGI						
	Projec	Former	Speedy	's Cleaners	Site	-		Boring/Wel	Bras	Project I	Vo. 36120	82109	
	Client	NYSDE	C ,	· ·	Site	Former Speedy's	Cleaners		Sheet No.		_ of		ij.
	Logge	ed By C. L	yman	Blood	Grou	nd Elevation ,	Start [Date 12-15-	os Fir	nish Date	-15-	-08	
	Drillin	g Contract	or Noth	nagle		Driller's Name	45h	wieter	1	Geoprobe			-
	Drillin	g Method	Direct	Push		Protection Level	11 (P.I.D. (eV) 50 580 B	Casing Siz	ze 2/8"	Augei		
	Soil D	rilled 10	R	ock Drilled N	A	Total Depth 16	Depth to	Groundwate	er/Date	Piez	Well	Boring	
	Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or	Core Rec./Rqd. % SPT-N (Blows/Ft.)			le Desc	·	. ,	USCS Group Symbol	Pl Meter G W		Lab Tests ID Sample
5, 2 1140	23	19 to	∧ ∧	- MA-	Hers	LIBRAR five VOJE 0.5, FV =4 DK dive Ba e 8, PG, deap-				_fill - _	4.1	NA	MA
1150	5 — 6 —	3.4			4-8	The Sundy St Five grows !, Fil	it, w/s	ame coars	se sud	#tl	Constitution of the second		
33 (°) 1200	9 —	19 2.0				omod boron					401		
1100	11—						,	• • • • • • • • • • • • • • • • • • •		-			
	82 #	MAC 511 Congre Portland, M		7	, · 	N	SDEC (A YTIJAUÇ		SOIL BO		LOG	`

				d vijes, lives		SOIL BOR	RING	LOG						l
	Proje	ct Former	Speedy's	Cleaners	Site			Boring/Wel	I No	Project		82109)	
	Client	NYSDE	C,		Site	Former Speedy's	Cleaner	s	Sheet No.	ſ	_ of	/		
,	Logge	ed By C. L	yman 2	Show	Grou	nd Elevation , 486.3	Start	Date 2-15-	o Fi	nish Date	/ / 	.08		
		g Contract	1 12			Driller's Name	PF Sc	hwiletzer	Rig Type	Geoprobe		2101	NT	
	Drillin	g Method	Direct Pu	ısh		Protection Level		P.I.D. (eV)	Casing Si	ize 21/8"	Auge	r Size	<u>//</u>	
A.	Soil D	rilled 0		c Drilled	IA	Total Depth		o Groundwate		Piez	ــــــــــــــــــــــــــــــــــــــ	Borin		
			%			<u> </u>	~ 0	1365 1	2/13/03		Moni	toring		
	-eet)	No. & ation/ (Feet		수 (.j.	,			•		SS	(pr	т	ssts nple	
	Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd.	SPT-N (Blows/Ft.)		Samp	le Des	cription		USCS Group Symbol	scan	Pl Meter Head Space	Lab Tests ID Sample	
·		S. H. B.	SI							Ď	Pl Meter Field Scan	Pl Meter Head Sp	-	
	- - -		M	NA	0-05	: Olive Silty load	n, out	s ellarish Bra	m stift	ne Fill	Lo.			
Si	1 —	26			Study 3	10 live sity load 12 Lt olive Brow 11 to 16, weth Si MPISP, MST-FF 14 Lt Readish Bi	lagi Bio	ack) (2 2 1	.7-2.1,	7.0]. [
C1250	2 —	40			3-2-	MPISP, MF-FF- 4 Lt Reddish Bi	to STAT	TH Sund, 1	Snes to	Metal S	lage			
	3 —				Coars	egmul, 10,8, [m, NP,	wc-		- \\ \				
	4				4-5	.4 Lfolive Beam	n fin	e Soudy 5.7	ty some cl	2V +	Co-1	<u> </u>	+	
52	5		3.7		dup.	, welth, AGS St	ff Brown	silty som	l. Fine s to	- 39				
A	6 —	-			Coars	well, DG, Sto 8 it yellowsh 8 soud, little f 3 - 7-4, MD	ive gr	wel spitel	Sp, demp +	· ¬¬				
1302	7 —		40		uer (~ ~ / · T, /// G	1020 10	, , , , , , , , , , , , , , , , , , , ,		4				
· •	8				6 - 6	THE PLAN CH	1.0	C CNIAN	nel t l		1			
Sa	9	0/10			8-9 Sijlit	Ctolive Brown ST oder, wet to	mossit:	MC! Allwh!	WSALT?	8M	40.1	828	728	1)P04914
(1312	10				13°#	romof borry	29.0	B65						
						<u> </u>								
	11—									-				
	12-									1				
	JR.	511109	1								<u> </u>	<u> </u>	<u></u>	-
		ú												
		MAC 511 Congre	TEC							F SOIL BO	IGURI RING			
		Portland, M				NY	SDEC	QUALITY A						

		SOIL BOR	ING LOG					
Project Former Speedy's Clea	aners Site		Boring/W	ell No.	Project I		82109	
Client NYSDEC	Site	Former Speedy's	Cleaners	Sheet No.		_ of	1	
Logged By C. Lyman	Grou	nd Elevation 485.6	Start Date	Fin	ish Date	2115/	ા	
Orilling Contractor Nothnagle)	Driller's Name	f Schweitze	Rig Type	Geoprobe	640	DT	
Orilling Method Direct Push		Protection Level D P.I.D. (eV) Casing Si				Auge	r Size	
Soil Drilled 9.0 Rock Dr	rilled NA	Total Depth	Depth to Groundwa $\approx 8' \beta 65$	ater/Date 12 15 08	Piez	Well	Boring	1
Depth(Feet) Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)	•	e Description		. USCS Group Symbol	PI Meter Field Scan do uo	Φ.	Lab Tests ID Sample
	MA- 00.	BUK TOPSOUL	, full,			20.1	MA	
2.5	05.0	9 Brown, Silty Strap 4 Grayist brown, 5 frighte Loose	po wet, Fuable	, s r (P.		Lo.1		
4.0	••		Collected sample			20,1		*
10			ĸ.			V		
11—1	Both	om ofborin)=4.0 BGS		-			
MACTEC 511 Congress Steet Portland, ME 04101	4.7	NY:	DP-D SDEC GUALITY	NO S	SOIL BO	FIGURI RING RAM P	LOG	L

	SOIL BORING L	.og		
Project Former Speedy's Cleaners S	ite	Boring/Well No.	Project No. 3612082109	
Client NYSDEC	Site Former Speedy's Cleaners	Sheet No.	of	
Logged By C. Lyman	Ground Elevation , Start D	Pate Fin	ish Date	
Drilling Contractor Nothnagle	Driller's Name Jeff Schweitz	Rig Type	Geoprobe 466 DT	
Drilling Method Direct Push	Protection Level P.	I.D. (eV) Casing Siz	e Auger Size	
Soil Drilled Q.o' Rock Drilled		Groundwater/Date	Piez Well Boring	7
Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Or Core Rec./Rqd. % SPT-N (Blows/Ft.)	Sample Desci	ription	Group Symbol PI Meter Field Scan PI Meter Head Space 60 60 60 60 Lab Tests	ID Sample
AN AN	0-0.6 Dev Brown, Long	, fruible,	ZOI NA M	NA-
2 — 4,0 3 — 4	0.6-2.0 Blawn, Silly har sond Damp, 1.0-2.7 Lt-Brown, Sill, Those Loose, Damp	e gravel, frable,	-	
6 — 4.0 7 —)-310' Tronch Brown, Silly for SHIF, Damp, three G		- 20.1	
] 1.2/ (C	- 0.05 Redish Brown, Silty for		20.1	
	# #			
MACTEC 511 Congress Steet Portland, ME 04101	NYSDEC QU	S UALITY ASSURANCE	FIGURE 4-4 OIL BORING LOG PROGRAM PLAN	

		SOIL BOF	RING	LOG								
Project Former Speedy's Cleaner	s Site			Boring/Well		Project I		82109				
Client NYSDEC	Site	Former Speedy's	Cleaner	s	Sheet No.	1	_ of	1				
Logged By C. Lyman	Grou	Ind Elevation,	Start	Date 12/15/06	Fin	ish Date	12/1	sloe	.			
Drilling Contractor Nothnagle		Driller's Name	schwa	istzen		Geoprobe	(GC D					
Drilling Method Direct Push		Protection Level		P.I.D. (eV) ∂, ∂ 580 B	Casing Siz	21/8	Auger	Size	,			
Soil Drilled 4 Rock Drilled	MB	Total Depth Q!	Depth to	Groundwater		Piez	Well	Boring	9			
Sample No. & Penetration/ Recovery (Feet) Recovery (Feet) SPT Blows/6" Or Or Core Rec./Rqd. % SPT-N SPT-N SPT-N (Blows/Ft.)	0=0	Sample Sa	· · · · · · · · · · · · · · · · · · ·	cription		Group Symbol	Pl Meter Go Field Scan GO	ф	Lab Tests ID Sample			
3 - 4							\ \ \ \					
5 — 2.6 6 — A'		Brown silty Moist. 216 Gray, her ? 216) fue-ned loss Gray		orp, fizm.			cio;i		*			
8 1.5	0-10	Marce Brick	, sulty f	ine Sano, Tr	me Ganel	-	20.1 L		-ak			
9	Both	om of boring:	9'865	Fampled 6		_			***			
MACTEC 511 Congress Steet Portland, ME 04101		NY	SDEC (QUALITY AS		SOIL BO		LOG				

MACTEC Engineering and Consulting, Inc. / PAGE OF
GROUNDWATER GRAB SAMPLE FIELD RECORD
PROJECT FORMER SPEEDY'S CLEANERS JOB NUMBER 3612082109 DATE 12/15/08
FIELD SAMPLE NUMBER 8281280 PO12009 ACTIVITY TIME START 1630 END (700 BOTTLE
QC SAMPLES COLLECTED: TIME 1450
SAMPLE TYPE: GEOPROBE GRAB MICROWELL MONITORING WELL PORE WATER
WATER LEVEL / WELL DATA
MEASURED 9 FT (TOR) WELL DEPTH FT (TOR) (FROM GROUND) NA FT DIFFERENCE UM FT
DEPTH TO SCREEN WELL SWELL WELL WELL
WATER 6 FT (TOR) LENGTH 7 FT DIAMETER IN MATERIAL CVC
HEIGHT OF 0.06 GAL/FT (1 IN) WATER COLUMN 2 FT x 0.16 GAL/FT (2 IN) GAL/VOL TOTAL VOLUME PURGED 1 (1.10) GAL/VOL
0.65 GAL/FT (4 IN)
1.5 GAL T (6 IN) ANNULUS
PURGE DATA
TIME
PURGE RATE (mLs) SAMPLE OBSERVATIONS:
TEMPERATURE (degrees C)
pH (units)COLORED
TURBIDITY (ntu)
SPEC. COND. (uhmos/cm)
REDOX-POTENTIAL (mV) OTHER (see notes)
EQUIPMENT DOCUMENTATION
PURGING SAMPLING DECON FLUIDS USED WATER LEVEL EQUIPMENT USED PERISTALTIC PUMP LIQUINOX LIQUINOX LIQUINOX
SUBMERSIBLE PUMP POTABLE WATER FLOAT ACTIVATED BLADDER PUMP DEIONIZED WATER TOPE
PVC/SILICON TUBING PVC/SILICON TUBING
WATTERA NUMBER OF FILTERS USED
TYPE OF FILTER USED
ANALYTICAL PARAMETERS
METHOD PRESERVATION VOLUME SAMPLE SAMPLE BOTTLE PARAMETER NUMBER FILTERED METHOD REQUIRED COLLECTED ID NUMBERS
VOLATILE ORGANIC COMPOUNDS ORGANIC COMPOUNDS HCL 40 mL Degrees C 1000 mL
INORGANICS HNO3 500 MI
NOTES 11 A (L.A.C.)
NOTES Simple addeded from BP-012. B. Shaw / C. hyman
· .
82 5/1 US
FIGURE 440
MACTEC GROUNDWATER GRAB SAMPLE FIELD RECORD
NYSDEC QUALITY ASSURANCE PROJECT PLAN 511 Congress Street, Portland, ME 04101

	SOIL BORING	LOG			
Project Former Speedy's Cleaners	Site	Boring/Well No.	Project N	No. 3612082109	
Client NYSDEC	Site Former Speedy's Clean	ers Sheet No.	(of	
Logged By C. Lyman	Ground Elevation Sta	rt Date Fi	nish Date	5(09	
Drilling Contractor Nothnagle	Driller's Name عمل خ المال		Geoprobe	660 DT	-
Drilling Method Direct Push	Protection Level D	P.I.D. (eV) Casing Si	ze 21/8	Auger Size	
Soil Drilled No.	Total Depth , Depth	to Groundwater/Date	Piez	Well Borin	9/
Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Core Rec./Rqd. % SPT-N (Blows/Ft.)	Sample De	scription	USCS Group Symbol	Pi Meter Held Scan (additional Meter Head Space Head Sp	Lab Tests ID Sample
1 - 2.4 2 - 40 3 -	0-1.4 Brown Ersvely Son Gravel, Brick Deb, 1.4-2.4 Brown, sity fines	o, for Abre trace vis. 175/PS onp, from, moist, Rg/	US -	20.1 NA	M
7 —	0-21' Brown, Silty fue Si 211-3.3' BROW, Silty fue S Moree grovel	ond, frem, moist (0-0.6)	2.4	
10	0-0.8 FROWN, Silty forces 0.5-1.7 Grayish brown, fine Bottomof boring = 10.0 B	- SAMO, Dry ture grown	Bilian (Vas	20.1	
MACTEC 511 Congress Steet Portland ME 04101	NVCDE	; QUALITY ASSURANC	SOIL BOI	IGURE 4-4 RING LOG	

Rig Type Casing Si vater/Date	Geoprobe	36120 of	Size Boring	
Rig Type Casing Si vater/Date	Geoprobe	Nonit	Size	
Rig Type Casing Si vater/Date	Geoprobe	Auger Well Monit	Size	
Casing Si	Piez	Auger Well D	Size Boring	
vater/Date	Piez	Well Monit	Boring	7
vater/Date	Piez	Monit		1
	JSCS p Symbol			
	Grou	Pl Meter Field Scan	$\overline{}$	Lab Tests ID Sample
silt, monest.		20.1	MA	
	- - - -	20,1		
0 0 0		6001		*
/Retusal	'-			
· ·	Soria fran	song fram,	Sorty fram, Could Prefusal FIGURISOIL BORING	Sorty fram Coul

Project Former	Speedy's C	leaners	Site	Boring/We	ell No. - 015	Project	No. 36120	82109	
Client NYSDE	EC .		Site Former Speedy's C	Cleaners	Sheet No.		_ of	1	 .
Logged By C. I	Lyman		Ground Elevation	ound Elevation Start Date Finish Date					
Orilling Contrac	tor Nothnag	le	Driller's Name	chweitzer		Geoprobe	 	olo D	<u>-</u> -
Orilling Method	Direct Pus	sh	Protection Level D	DID (a)()	Casing Siz	9!/2.	Auger	Size	
Soil Drilled	Rock	Drilled NA	Total Depth	Depth to Groundwa			Well	Borin	1
Depth(Feet) Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)	Sample	e Description		USCS Group Symbol	PI Meter G W	PI Meter and Space	Lab Tests ID Sample
2.15	NA	NA	0-1.0' GRAYKI B200 Canowil, Fr	will, sity sand. ziable, losse ilt, Firm, a hare	ny== , bry nast		20.1	M	
5 - 213			0-0.4 BOWWN, Soft 0,4-0.5= gon 0.4-1,6 Buw.u; sow trace gare 1.6-2.3 Bowwish	by silt, arm, a	rinct		C Maria Maria Maria		
8 - 100	4		1.6.2.3 Brownsh of Denis - Burnis. 14 sand, 05-1 Gibyist Brown. Bottom of borng =	Sample Drogs from most Manually sono	6008 *				*
10— 11—	105xl		DOMONIA POPULOS	A		-			

Client	NYSDE			Site	Former Speedy's			Sheet I		1	_ of	1	<u> </u>
Logge	ed By C. L	yman		Grou	Ind Elevation L 485.7		t Date 12-16	-88	Finist	n Date	2-16	-68	/
Drillin	g Contract	or Nothna	gle		Driller's Name 5	eff	Savent	Rig Ty	'pe G	eoprobe	• (6101	21
Drillin	g Method	Direct Pu	sh		Protection Level	D	P.I.D. (eV) 580 B	Casin	g Size	18"	Auge	r Size	_
Soil D	rilled q	Rock	Drilled	JA V	Total Depth 9		to Groundwa フェッ			Piez	Well	Borin	9
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)		Samp		scription			USCS Group Symbol		0	Lab Tests
2 —	3.1	MS	-	NDer 1-2- PG, SV 3-4	Acher 1) Kolve finety 2 Perse 2 Dense Lt Brown Sawly Me;	sif w	Some brik	s, Pé,	•	13 ricks	40.1	M	
5	41				Brann Soudy 5.7 MF/HP, wet to it-Brown coo [54 to vated, De				_	Fr/l Bnac SM	201	7-8	3/
9-	1.3/1.0			DKO1	ive lock, dry s uvel, NP, Shigh Homof born	HShar	and, we, A	res to 8.2-9	The .865	Sm	0.9 1.2 3.9		8
10				Bo	Homot born	y = 9	0.0'865		-				

	SOIL BORING	LOG								
Project Former Speedy's Cleaners	Site	Boring/Well でそれ		Project I		82109				
Client NYSDEC	Site Former Speedy's Cleane	Site Former Speedy's Cleaners Sheet No of								
Logged By C. Lyman	Ground Elevation Start Date Finish Date 12 16 108									
Drilling Contractor Nothnagle	Driller's Name	Geoprobe 6610 DT								
Drilling Method Direct Push	Protection Level D	Protection Level D P.I.D. (eV) Casing Size					·			
Soil Drilled Rock Drilled	Total Depth Depth	to Groundwater		Piez	Well	Boring	9			
Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Core Rec./Rqd. % SPT-N (Blows/Ft.)	Sample De			. USCS Group Symbol	PI Meter Field Scan 3	0	Lab Tests ID Sample			
1 — 2.1 2 — 4.0	1.0-2,2' Redust Blown soft, D 1.0-2,2' Redust Blown, S. Shift to still 176	(Horse on)	, sned.		20.1	M				
5 — 13 6 — 13 7 — 1	0.0-0.9 feory Brown, site of Provide And Strong Color Off -2.3 Repost Brown, shift, moist and Samplest of	thorefue some film or st. silt tourshape	corp, ins		3.9					
9 1 20	0-201 Blowid schoys. H Trace growed		nst, Oloo		1900	(MAX)	*			
11— (RUN LANGS OF SENS)	Bottomod boring = 10.0									
5/1/09 R MACTEC 511 Congress Steet Portland, ME 04101	NYSDEC	QUALITY AS		OIL BO		LOG				

MACTEC Engineering and Consulting, Inc. PAGE 1 OF 1
GROUNDWATER GRAB SAMPLE FIELD RECORD
PROJECT Former Speedy's Cleaners JOB NUMBER 361208 2110 DATE 12/16/08
FIELD SAMPLE NUMBER 828 1280 0170 ACTIVITY TIME START 0945 END 1005 BOTTLE
QC SAMPLES COLLECTED:
SAMPLE TYPE: GEOPROBE GRAB MICROWELL MONITORING WELL PORE WATER
WATER LEVEL / WELL DATA PROTECTIVE PROTECTIVE
MEASURED WELL DEPTH HISTORICAL CASING STICKUP CASING / WELL DEPTH WELL DEPTH FT (TOR) (FROM GROUND) NA FT DIFFERENCE FT
DEPTH TO WELL NATIONAL SCREEN 5' FT WELL DIAMETER 1" IN MATERIAL PVC
HEIGHT OF 0.06 GAL/FT (1 IN) WATER COLUMN AT FT x 0.16 GAL/FT (2 IN) GAL/VOL TOTAL VOLUME PURGED LETER SAL
0.65 GAL/FT (410) =
15 GAL/FT (6 IN) + ANNULUS
PURGE DATA
TIME
PURGE RATE (mLs) SAMPLE OBSERVATIONS:
TEMPERATURE (degrees C)
pH (units)COLORED
TURBIDITY (ntu)
SPEC. COND. (uhmps/cm)
DISSOLVED OXYGEN (mg/L) ODOR
REGEX POTENTIAL (mV) OTHER (see notes)
EQUIPMENT DOCUMENTATION
PURGING SAMPLING DECON FLUIDS USED WATER LEVEL EQUIPMENT USED LIQUINOX ELECTRIC COND. PROBE
SUBMERSIBLE PUMP POTABLE WATER BLADDER PUMP DEIONIZED WATER FLOAT ACTIVATED DEIONIZED WATER
PVC/SILICON TUBING TEFLON/SILICON TUBING
WATTERA GEOPROBE SCREEN NUMBER OF FILTERS USED
TYPE OF FILTER USED
ANALYTIÇAL PARAMETERS
METHOD PRESERVATION VOLUME SAMPLE SAMPLE BOTTLE PARAMETER NUMBER FILTERED METHOD REQUIRED COLLECTED ID NUMBERS
VOLATILE ORGANIC COMPOUNDS HCL 40 mL 4 Degrees C 1000 mL
INORGANICS HNO3 500 MI
NOTES GRAD Sample from 87-017 B, Shaw/C.hymau
huge water had tell /ch lambated som
huge water had fiel /ch lambeted octor - Pib readspace a water in contains - 280 ppm
82 stilus
FIGURE 4-10 GROUNDWATER GRAB SAMPLE FIELD RECORD NYCOLOG ONALTY ASSURANCE PROJECT PLANS
NYSDEC QUALITY ASSURANCE PROJECT PLAN 511 Congress Street, Portland, ME 04101

Project _	ormer Spe	oody's C	loonors	Sito	SOIL BOH		Boring/We	ell.No. , 🗲	Pro	ject l	No.		
	ormer Spe		Jeaners		***		l l)P-10				82109	
	IYSDEC			Site	Former Speedy's			Sheet No	o	<u>t</u>	_ of		_
_ogged B	^y C. Lym	an		Grou	nd Elevation 486.6	Start	Date 12-11	b A	Finish [Date	12/16	(0g	
Drilling Co	ontractor	Nothnag	gle		Driller's Name Ter		hweitzer	l	e Geo	probe	6	610	
Drilling Me	Di	rect Pus	sh		Protection Level		P.I.D. (eV) 10:0 580 B	Casing	Size 2	18"	Auge	r Size	/
Soil Drille	^d 10.5	Rock	Drilled	ЙF	Total Depth	Depth 1	o Groundwat	er/Date		Piez	Well	Borin	9/
	Penetration/ Recovery (Feet)	or Core Rec./Rqd. %	SPT-N (Blows/Ft.)		Sampl	e Des	cription		Q Q	USCS Group Symbol	(pp	1	Lab Tests
De	Hecc	Core	(B							Gro	PI Meter Field Scan	PI Meter Head Space	פ בי
		MA	MA	0-0.5	asplust - 7h						20 · T	NA	
2	9			2-7.y 3,	. DK vlive Silly - Black Souly - Glive Bram	sona, sort, s sand	sit, MP,	vay Wef-, PG		F/(
7	. o 1.0			4-4.7 4.8-	F Some G33.5 8 Lt Red all h C, Stiff to So -Slight ador	-4 3run - ft, W	ho plive bea	m 3an4	silt-	FIII	50 70 30		
8	45			8-9 9-9:) 9:5-1 sad,	some as 4.8. T Black small De Brann So wet, MP/SF, s am of bortug=	-8 30:1 ndy 5:1 7:7f	y slag t, de, Ar tisett, s	es to ce	era ten s	-3/1 	30 10 50 280 150 70 90	Z25)	0 4 129
11—				Both	em of boring =	10.5	'B65						
	R [ACT]	EC		1>0 TV	mov ouring=	10.5	1665			F	IGURI RING		

	SOIL	BORING L	.OG					
Project Former Speedy's Cleaners	Site		Boring/Well Dシ ーの		Project I	Vo. 36120	82109	
Client NYSDEC	Site Former Spe	edy's Cleaners		Sheet No		_ of	1	_
Logged By C. Lyman	Ground Elevation 487.6	Start D	ate - 16 0B	Finis	h Date 12 ()	(0B		
Drilling Contractor Nothnagle	Driller's Name	eff School	eitzez		eoprobe	66	10 Dt	-
Drilling Method Direct Push	Protection Le		.l.D. (eV)).0 580 B	Casing Size	2/2	Auger	Size	
Soil Drilled Rock Drilled	Total Depth	Depth to	Groundwater	/Date	Piez	Well	Boring	1
Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Core Rec./Rqd. % SPT-N (Blows/Ft.)	Sa	ample Desc	ription		USCS Group Symbol	Pl Meter Field Scan do io	m)	Lab Tests ID Sample
1 — 2 — 2 — 4 — 3 — — — — — — — — — — — — — — — —	0-0.6 Porwert 0.6-1.1 Bilick 1.1-2.1 Bilick truste	Debuis	f, fruable,	Mai) - Jewy 2	RV	20:1	M	
4 = 3,3 6 = 3,3 7 = -	0-2.1 Present. The 9 21-3.3 Blown Most.	stroy Silt, moved 210- stroy Silt, Strong Silt, France game	Emple ne 2-1 Dily Inoble r 1 Horispolit	no deserved	5P/6P	SO:		
9 - 2.7 10 - 3.5	015-213 BEOWN +21/212	(Delphis 0.3- Sampy silt, e grand p	5.5) Film mon g. g.	et Danse	5M - 5P	20.1	SAMY BIS OPON	14 -2.3 1011 140)
12 11.5 Curing	DP-49		f					
MACTEC 511 Congress Steet Portland, ME 04101		NYSDEC Q	UALITY AS	S(SURANCE I	DIL BO		LOG	

				· gravitina		SOIL BO	RING	LOG					
	Projec	t Former	Speedy's (Cleaners	Site			Boring/We	P-20	Project N	No. 36120	82109	
	Client	NYSDE	С		Site	Former Speedy's	Cleane	rs	Sheet No		of	1	
	Logge	ed By C. L	yman B	haw	Grou	nd Elevation ,	Start	Date	188 F	inish Date	2/16	JOS/	,
* 3	Drillin	g Contract	or Nothna	gle		Driller's Name Je	H Sa	ch weitzen	Rig Type	Geoprobe	ble	WIST	-
	Drillin	g Method	Direct Pu	sh	,	Protection Level	1	P.I.D. (eV) 10.0 580 B	Casing S	Size 21/8"	Auger	Size	
	Soil D	rilled 10	Rock	Drilled	NA	Total Depth 10	Depth	to Groundwate	er/Date	Piez	Well	Boring	1
	Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)	:153	· · · · · · · · · · · · · · · · · · ·	le Des	scription		USCS Group Symbol	Pl Meter Field Scan do giu		Lab Tests ID Sample
gg West			AM	MA	0-0:5	Aphalt	52.00° ° 80°	rindad vi			- L ρ	ew.	ACA
21	1 —	1.7			25-	-2.5 Olive Brown 4 Olive Brown	sily:	sad+ quare	I, day, Vo	/ - + 1/	İ	MA-	NA
C	2	140			f6,	moist, mp,	iru je	ncy corrs	, , , , , , , , , , , , , , , , , , ,		0.7	-	
1015	3 —	7.0			٠	, , , ,					3.4		
*Projections	4 —				4-0	it Rream to oliv	Paran	to calls	Rum	- V 	1.2		and the same of th
32	5 —	7 2			sand	If Brown to olin If silf, fines to to moist to	fire g	varial, PG	MPHP		1.7		
	6 —	24			ove	10 100134-76	500 F7172	rees)			41		
1023	7 —	4.0					•		·	V	46		
	8 ==	~~~			*-	8 8 Val 65	4-8				4.7		
S3	9 —	18			8.8	8-8 Some 45 -9-8 Sitts 1 WG, 148, 10 POK Chi	and t	gravel, s	truje 50	vent Sw Gu	35070		
(1127	10	2.0			9.8-	1 WG, 1008, Ch	65	Schent ad	a, dk gr	y -	16 24		
	11				Bot	tom of boni	ty	10'865	•	-			
	12-				<u></u>					-			
	1 1	1 1					****						
	M	5/1/09											
	1	MAC	TEC								IGURE		
		511 Congre Portland, Mi				NY	SDEC	QUALITY A	SSURANO	SOIL BO E PROGF			

					SOIL BOR	ING	LOG					
Proje	ct ton	ner '	Jour	dys	Cleaners	•	Boring/We	11 No.	Project I	%82	1109	1
Clien	. % .	DEC.	<u> </u>	Site	Rochester, N.Y.			Sheet No)	_ of	<u> </u>	
	ed By 🍾	4	Shaw)	Groui	nd Elevation 485.2	Start	Date 12-16-	OF Fini	sh Date	- 16 -	-08	_
Drillir	ig Contract	or Woth	Nucle	·.	Driller's Name Jef		hwietze		610]	T		
Drillir	ig Method	Diver	- Puél		Protection Level	4	P.I.D. (eV)	Casing Size	711	Auge	Size	
Soil [Orilled 0.5	Rock	Drilled	7	Total Depth 185	Depth t	o Groundwate	er/Date	Piez	Well	Boring	3
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)		Sample	e Des	cription		USCS Group Symbol	Pl Meter Field Scan d io	PI Meter 3 op Head Space 6	Lab Tests
	-	MA	NA	١, ٢- ١	Asolut		· · · · · · · · · · · · · · · · · · ·		<i>E</i> 3.	⟨Q!⟩ □ II	NA	M
5- 2- 3-	2.1			r.5 – Coarse	t Lt Brown to 61 in c) sit, 861 ws, an	e brom mpto i	m Soudy net; Myng	ífine to K	- Hnu			
Ψ-				4-8	Lt Reddish Brun	Sardy	1 5/h		7/11	۷۵.(-
5-	3.7			Sleg	r (blackf e	-6'	196 1970 - 1970 1970 -		Mag	1		
() —	4.0								#ill	3,0		
-0/-							·			1.9	•	
9- 10-	2.5			8-1	os siltsud rips a 10.	4, 9v	avel mix surge, dr	, rock 1. to vet	Sw	0.3 Z.1		
11-				Botto	mot borring =	103	5'B65		_	0.2		-
_	-				.		*4,*	1	_			
8R	5/1109 MAC							c	FOIL BO	IGURI	E 4-4	
	511 Congre Portland, M				NYS	SDEC	QUALITY A	SSURANCE				

						SOIL	.BOR	ING	LOG															
Proje	ot Farm	<i>-</i> 12-	&P.4	woys	رعاب	rue/ls			Boring/We	II No.		Project I	۷o. 208	210°	ל									
Client	NYS	ďZ			Site	Former S	Sleegy	s cla	me's	Sheet	No	(_ of	1										
Logge				Show	Grou	nd Elevation			Date 12/16/04		Finis	sh Date ပို (ပ(်င်	ર્											
Drillin	σ Contract	or	refle		CSI	Driller's Na	nh o	river	tren	Rig T		660												
Drillin	g Method), %	yα Je ρ.	ısla		Protection I	<u>· · · · · · · · · · · · · · · · · · · </u>		P.I.D. (eV)	Casir	ng Size			r Size										
Soil D		5 [`]	Rock	Drilled		Total Depth		Depth 1	to Groundwat	er/Date			T Well □	Borin	g									
			%	1-15-		1 17				3			Moni	toring										
eet)	No. & ation/ ' (Feel	9/s/w	/Rqd.	Ä.)					·			S	(pp		ssts nple									
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6"	or Core Rec./Rqd. 9	SPT-N (Blows/Ft.)		Ç	Sample	e Des	cription			USCS Group Symbol	ter Scan	ter Space	Lab Tests ID Sample									
	S. P.	ळ	Core									Q.	PI Meter Field Scan	PI Meter Head Space										
-		Ň	A	NA								4	20.1	110	NA									
<u>-</u>												+11	١											
-						r						1			· -									
					٠.							-												
4						•	` /	٦.	1 oth	۵.		-												
-					S	ween	Sol	1	ul PÍB purp	191		-												
						delin	entr	-io~	but	いひと														
					•																			
2, -																								
3																								
	-				· ·	f. i.	·		· 0 · 0				<u> </u>											
	$\mathcal{L}_{a,i}$	N-2/3	.(Both	omot bo	riw=	9.5	865			-												
	,	7	`			•						-												
-		!																						
60	5/1/09							* ** ***					1	<u> </u>										
714	>)((U)																							
	MAC	TE	EC								^		IGURI											
				8			NYS	SDEC	QUALITY A	SSURA					511 Congress Steet Portland, ME 04101 SOIL BORING LOG NYSDEC QUALITY ASSURANCE PROGRAM PLAN									

						SO	IL BOF	SING	LOG							
F	Projed	t Form	ner S	peec	tvs (Clean	ers		Boring/V	Vell N	No.	5	Project	No.82	109	>
	Client	MIZDI	EC		Site	Roch	ester	ו אי	(Sheet N		1	_ of		
- 1		D	Show	• .		nd Elevati		(Stai	t Date 05-0	04-	69 5	Finis	h Date	05	64.	-09
	Drillin	g Contrac	tor	EC.		Driller's I		Sha	. 17			pe /2-1	copr	ر ا ملا	I and	fool
5	Drillin	g Method	Direct	- Du		Protectio		7)	P.I.D. (eV)	/	Casing	Size	1/2	Auge	r Size	
	Soil D	rilled		Drilled		Total De	pth C	Depth	to Groundw	1				Well		9
-		513215	W %	137		13:0.	13 6					·		Moni	<u>ات</u> itoring	<u> </u>
	Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. 9	SPT-N (Blows/Ft.)			Sampl	e De	scription				USCS Group Symbol	Pi Meter Field Scan	PI Meter Head Space	Lab Tests ID Sample
_ - ئــا		. 1	W	MA	y-0.7	2 Blac	Fgran			·		ادر		401		
	۱ — ا	120			02- don p	INP,	the from	ldist 1.	Bram	- '\$ ∌	ih gi	aves -	1			
	, , , , , , , , , , , , , , , , , , ,	18,			7-4	2	io red	100	beams	<u>~</u>	siltr(ine.		0.4	-	-
	ر -	120			Sand	, Dry	to day	Pici	HP P	3	•	-		45		
- 4	1	79							shight a				1	09		
į t	5	20						,	•				1	13		
-	e —								ATHY the	54	nd,		1	201		
- c	7	12-0			7.2-5	+ ve	well.	Sondy	graph we	et 1	up, wo	- مسو		0-3		
	8 :	¥ .	***		Bran	and c	Silka	jane	1, uet	<u>ς</u> \$Φ)	WG,	>		2011	Coll	red
	1	1/2.0			rı —		MAR	od o	- Quq.	Z-i	ne de de la companya	_	1888	2.9.	1	79.
_/	6-	09			Sine	as ab	2000							Co.1		
_ i	(-	20										-	- ·			
_ /	2-	65/, 2			Swe	65 SG	but	Sad	noted					201		
~ 	B	3/17			<u> </u>									V		
	1	511 Congre		*82	812	8 DPO 2050 VOC	2301). .m	O.	QUALITY		,	sc	F OIL BO	IGURI RING	E 4-4 LOG	
L		Portland, M 007022w.ma		· · · · · · · · · · · · · · · · · · ·		70 M	UNY!	SUEC	QUALITY	ASS	UHAN	NCE F	ROGI	KAM P	LAN	

Checkel CRT 6/1/09

				and the second second	IL BO	RING	LOG								1
Project	or Spe	ed(5	clen	rers			Boring	Well P-2	No.	F 3	roject l	No. 720	9 7 3		,
Client NVSDE	Z ,		Site	Rock	ester	-, N	(,		Sheet i	No	1_	_ of	2		
Logged By	Shaw		Groun	d Elevat	ion 5	Star	t Date 05	-05	-47	Finish	Date	05	-05	<u>-9</u>	
Orilling Contrac	tor M M 1	W.		Driller's	Name B	Sha	1		Rig Ty	pe	nbe	Цан	do	İs	i İ
Drilling Method		Pust	,		on Level	y y	P.I.D. (e	V)~		g Size		Auger			
Soil Drilled	,	Drillod	NA	Total De	epth X	Depth	to Groun	dwate	r/Date	•	Piez	Well	Boring		
	%				<u> </u>	<u> </u>						Moni	toring		•
Depth(Feet) Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	Ä. (j.)									S	(pp		sts nple	
Depth(Feet) Sample No. 8 Penetration/	SPT Blows/6" or ore Rec./Rqd.	SPT-N (Blows/Ft.)			Samp	e De	scriptio	า			USCS Group Symbol	ter Scan	ter Space	Lab Tests ID Sample	
Sa	SF										5	Pl Meter Field Scan	PI Meter Head Space	_ =	
	MA	MA	0.0.2	Asgh	alt of	· •		12	(C			اً.ن		-	
			0.2-		Rell's	hbr	2M~ >	717) we	۸, _					
			1-2-	2	20ck f	ngu	nts			-	1	0.01	•		
_ /2.0						J				_					į
<u>_</u>				- A			f. i					1-1			
			2-4	9110 Ani).	re to	eva -) uh	u Tin Stitt	e Su - Su	nd(solt,		63.1		,	
3-11/			d	oif-	المشتاعين والمازية ويواني المستعددة المستعددة المستعددة والمازية والمستعدد والمستعدد والم			j /				6.6			
/2.0			· •	i				•	•	_		1.0			
												0-6	1.3		
£	<u> </u>		4.6	Redd	inh	row-	- Sond	15	it, d	n	Fil	1.3			
			PS, S	fiff	fryat	de-		·		•	2-4-	1.5	(X)	× ××	Ä
5-11.9/			- Anna	Ĩ	•				•	-	1	,4	1/2	32-	
/2.0										-		06	Su	de	
6											1	0.8		5	7
								····							
					—						828	1281) 120	PEZ	400	5
Maria							•				C 2	120	 /		19
511 Congr					<u>-</u>	/05==	· • • • • • • • • • • • • • • • • • • •	- \/ ~ ~			IL BO	IGURI RING	LOG	W	151
Portland, N	/IE 04101				N,	YSDEC	QUALIT	Y AS	SURA	NCE F	ROG	RAM P	LAN		1

5,

PORT2007022w.mac Checkeel Ces 6/1/09

	SOIL BORING LOG
Former Speedy,	Gearners Boring Well No. Project No. 3612072073
Client NYDEC	Site Robester, NY Sheet No. 2 of 2
ogged By BShaw	Ground Elevation Start Date 95-05-09 Finish Date 95-05-09
Orilling Contractor MACTEL	Driller's Name BShaw Rig Type Geographe Handhols
Drilling Method Dreet Push	Protection Level D P.I.D. (eV) Casing Size Auger Size
Deals Dallard	Total Depti Depth to Groundwater/Date Piez Well Boring
Sample No. & Penetration/ Recovery (Feet) SPT Blows/6" or Core Rec./Rqd. % SPT-N (Blows/Ft.)	USCS Group Symbol PI Meter Field Scan PI Meter Head Space Lab Tests ID Sample Sample Sample Sample Sample PI Sample ID Sample PI Sample ID Sample
6- -09/ 7-/20	Soudy gravel, wet, Asolf, PNG 1.6 *Drilling got v. Hard (2-7.5'
8	1.4
7-205	
MACTEC 511 Congress Steet	FIGURE 4-4 SOIL BORING LOG NYSDEC QUALITY ASSUBANCE PROGRAM PLAN

Logg	ON YSDE		1	Grou	Kochester,	Star	t Date	Sheet N		h Date			<u>=</u>
	ng Contract		N		Driller's Name		t Date 05-05	Rig Ty		65	<u>-05</u>	-09	
		NA	UEC	/ 	Protection Level	55ho	~~~~~		60	Probe	1	nd h	ols
ווווווט	ng Method	rect			,	$\overline{\mathfrak{D}}$	P.I.D. (eV)	Casing	Size	1. <u>K</u>	Auge	r Size	_
Soil	Orilled 8	Q Ro	ck Drilled	NA	Total Depth 8,6	Depth	to Groundwat	er/Date		Piez	Well	Borin	
, .	% % %	9,,	8							0		toring m)	
(Feet	e No. ration ry (Fe	3lows// or	7./nq T-N /s/Ft.)		Samn	lo Do	cariation			USCS up Symb		_	Fests
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or	SPT-N (Blows/Ft.)	-	Θ ατηρ		scription			USCS Group Symbol	PI Meter Field Scan	eter Spa	Lab Tests
	S	S	3							Ü	PI Meter Field Sca	PI Meter Head Space	•
		NA	MA	0.0.	z Aphalt		<u> </u>				21	MA	
			1.0	ac .	daup (mp)	m	Hutsandy	15/14		1	0.8		į
-	6.1/	•		43,	and (M)	stif.	F-	1	-	N.	3.7		
	/2.0										4-1	idl	
9	-										都.		<i>y</i> .
	<i>a</i>			2/2	-2.8 sine 9	S 0.	2-2	(2.6		(
-	0.8/			dry	OS NO	v- 5	and gran	el qu		-	3.1		
3-	66			34	(1707 111)					-	1.5		
	20										1-3		
1_						1 6				-	0.8		
7				4-6	Ohre to L	t be	an tog	rel,			3.1		
·. —	0.4/			17W	olive to Lesalt, at tred for	dup	to wet	MP/SP		1 .	4.2		
5	62 n			211	at that we	ll a	van ned j		٠.	_	2.6		
_	-2.0				•			a.		_	4.3		
b-					-					_	3-9		
		T :			•								
	cekel cp	.11	 	1						_!		1	

Client		EU_	7	Site	Rocheste		Sheet N		of		
Logge		Show		Grou	nd Elevation +0.5	Start Date 05	-05-09	Finish D	5-05	5-09	
	g Contract	NIT	JEC		Driller's Name B	Shew	Rig Ty	(Sep)	obe i	Hand	fel
	g Method		f An	81	Protection Level	P.I.D. (e)	Casing	Size/ /	2 1 Aug	ger Size	
Soil D	rilled %	Rock	Drilled	NA	Total Depth 86	Depth to Ground	lwater/Date	F	Piez We	ell Borin	9
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or Core Rec./Rqd. %	SPT-N (Blows/Ft.)			le Descriptior		w.C.w.	ig (Pield Scan PI Meter Head Space	Lab Tests ID Sample
(e	1.2/2.0			uef	range/bran	, sily san Thus to t	ly grave inc grave	e(, .i	2-4-2-3.	3 9 7	
8-8-8	0.5/6			icf dr	Brown Sind	y gravel	, w/ Sanz	Five_	0.3	7 *	cert
				•	* refusal	086; v.	Hard			62	60
	٠									-	100 100 100
				-							
che	led ce,	(hlas				 					

APPENDIX B.2

MONITORING WELL DATA LOGS

						SUIL BU	HING	LUG						
	Projec	t Carriage	Cleaners (3ito Fh	Mln	r speedy's C	leaner	Boring/Wel	1 No. F	Project		09 182140	j	
	Client	NYSDE	С	\	Site	Productions Cleane	rs		Sheet No.	1	_00120	2		
	Logge	d By C. L	yman\BS	har	+	ound Elevation Start Date 12-17-08 Finish Date 12-17-08								
	<u> </u>	g Contract				Driller's Name	Bree		Pig Type	eoprobe	· CME	<u>্</u> - স		
	Drillin	g Method				Protection Level	Casing Size							
	Soil D	 	''	Drilled	· (1	Total Depth	Depth	10.0 580 B to Groundwate		Piez	₩ 2/*3 Well	Boring		
			%	•	\ 	19.5 AS	<u> </u>	AAKWWW	1.13 (100) 1.19 [58	1	Monit	toring		
	-eet)	Sample No. & Penetration/ Recovery (Feet)		7 f.						S	(pp		sts	
	Depth(Feet)	ample enetra sovery	SPT Blows/6" or Core Rec./Rqd.	SPT-N (Blows/Ft.)		Samp	ole De	scription		USCS Group Symbo	ter Scan	Space	Lab Tests ID Sample	
		Se Pec	SF							ğ	Pl Meter Field Scan	PI Meter Head Space		
	-		MA	j	Auger	ed 51 int	~ 5×	il and be	pan	till			JA.	
	1 —				to	Single un	H	efist	•					
	2 —					sagle un	soil a	ittings ?	(o.lppm					
	3 —				•					-			. \	
	4 —								. •	$\frac{1}{2}$				
<u> </u>	5 —			9-5	reddis	h Brann Sauly	fine to	corre) Sitt,	vei, Ap	Fol 1	ļ	Zoi	\dashv	
01315	6	0-1		1-7	w/ 50	ove black sta - Pushed	17. WE	^ !	•	1.				
	7 -	2.0		4-4	7-70	Bluck slapso.	- C251	- Jyruver		 		Zeil	4	
52	8	1.8		9-11			lish Brown	r Sively solt,	WE, MP, METH					
C 1320	9 —	2.0		22-21	8.1.28	Cobbic gravely DK give siltys	sand t	varel, distod	lays, v Denik,	Fill	Brick	Barg		
53	10—	17		25.33	コンピコ	nive Sandy Saft	: P/2 C	st ancluia		1215.00	- -	20.1		
(~133n	-	1.8	,	4 50	9.6 ~ 10 12.5 -	6 Black Sandy 5 Sand as 8.1 10.9 fragment 10086; veck	-9:0	betweet, ck chips an	d sandy sill	- Feet	- '?	1	_	
9.30	11				R. W.	floor, rock	IS DK	gref.	<u> </u>	+				
	12—				Topo	mofbory= ofrech=10;	81B6	S						
	902	5/1/19	<u> </u>	1						1	1			
	MAZ	- ·(* '												
		MAC 511 Congres	TEC							OIL BO		LOG		
		Portland, ME				N	YSDEC	QUALITY AS	SSURANCE I	PROGR	RAMP	LAN		

								ROC	K CC	PRINC	G LOG			
	Project	÷)	.10	Cier	rnei	_	Site:	11.00	V.0	lont	Salor	Exploration/W		Project No.: 3612082109
	Client:	speedy	i		· ·		Drille	r's Nam	ne· Í	_		Logged by:	Checked by:	Ground Elev.:
	Drilling	Nγς	DEC or:			•	Prote	oction L	auai.	Bre	<u>cas</u>	Rig Type:	Start Date:	486.83 Finish Date:
	(Seolo	5972	M						9		CMES	12/11/08	12-18-01
	Drilling I	Method:	fs4-	1 1	la	Cont	e.		• .			P.Y.D. (eV):	Casing Size:	Auger Size:
	Bit type	e/size:		3718	11 Bit	Use:	Core Interval (to/from					from)(ft):	to 19.	5
	ن			Natura Bre	l Core		Ro	ck Qua	lity	- 0				
	feet) 3RD Sort.	Sample No. & Penetration/ Recovery (feet)	; Log	dį	on (ared on	_	(9)	uality	Rate			ock Description a	•
Ø	Depth (feet) Below GRD (Sample Penetra Recove	Graphic Log	Type/Dip	Surface Condition	Weathered Condition	Total 4" Core	RQD (%)	Rock Quality Description	Drilling Rate min/ft	Color			
10.8		16	\Re	tona new f	ngle late	Highly	neati	revent				start fixst 29	fi vàn 15	20 RmH
		1.9	<u> </u>	Higha	rie-	neci	manic	al bri	aciks,	highly	med	& Hot w	· @ 153	,7
12-	- Guple	20		neir Biac	fiat Este	incd	fract	rre(odov			Start first 29 Or Stop vov DK gravifin	e grained	
127	_						mphy					start lun	, 1551	- 0 # 2
14-	-	,		ren	rier()				,		DKgray	Sty run	1607	Run to
سسسدن		44	念	7 High	ly fra	chre	of his h	lyne	ture	12me	1+969			
15-		<u>-</u> 50	=								DK4 m	1		
(b -	·	ار ک) hi	shly f	racti	ed, 5	une			it grey			·.
17			=?	h.zu	lyfre	utur	d, we	tes atun	d,			tuned rockt	rajs-	
17.8										18.1		Stryt Run	. 0836	Run#3
	South	بارا	=	Mai	y war	fat				Law.		Stop Runs		7000
19-		17		1 Sta	hed f	vactu	resp			45		Justrong .	odor; black	stanky
		1. ,		7~	ear	raf	,			14.3		9.4	odar, black on frac	rock rves_
195						6	obo	mo	f bo	my =	19.	s'BCS		:
W"									,			•		
													•	·
	m:	5/1/09											B. Shaw	
	2		CTE	_								R	FIGU OCK CORING	RE 4-5 G LOG
		511 Congr Portland, N					·	NY	'SDE	C QU	ALITY	ASSURANCE		PLAN ACTEC

Bedrock Well Constructi	on Diagram		Well No.: MW-206
Project No.: 3612082109	Project Name:	Firmer Societies	Cleaners—
	Project Area:	Lochester, NY	
Contractor: Geology ZN Driller: Sa	ioth Breeds		: Drive Casuly (4"); Ha core
Logged By: Brandon Shaw		Date Started: 12-17-0	Completed: 12-18-07
	e: 91/07/28	Well Development Date:	12-19-2008
Not To Scale			
Lock Identification:		S Elevation of top of	_
Surface Casing Type:		Surface Casing:	486,83
Plushmount steel	•	Elevation of top of Riser Pipe:	486.49
Ground Surface Elevation:		•	•
486,83		Type of Surface B	COCKTOP MATCH Concent
Surface Casing		70c-Tor: 0.35	/
Diameter: WK			21d 1 2 24 11 1
Inside Diameter of Surface Casing:	→ 	— Borehole Diameter: <u></u>	+ 10 3 18 6
		Inside Diameter of	N/K (4")
GU=7.13 TOR 12/19/08		Borehole Casing:	NI/S. (*)
Donth/Elevation of		Type of Backfill:	Soil cuttings
Depth/Elevation of Top of Well Seal:		• •	<u> </u>
1.3 BGY 413.3		Type of Riser:	Sih to fre.
Depth/Elevation of Top of Sand:		Riser Inside Diameter:	2
7'8651479.8		Type of Seal:	Sentonife Chips
Depth/Elevation of	FOR COMPANY AND ADDRESS OF THE PARTY OF THE	Bedrock	
Top of Screen: /		Elevation/Depth:	1 10-8
9.0864/477.8	-	——Type of Sand Pack: 🚄	+ 6 Industrial alunt2
Diameter of Corehole: 3 7/8"			
Ha		Type of Screen: \int	ih to RVC;
		Slot Size x Length:	0.010" x 101
		Inside Diameter	Ω"
Depth/Elevation of		of Screen:	
Bottom of Screen:			
Depth/Elevation of		Depth of Sediment Sump with Plug:	19.5% (0.48')
Bottom of Corehole: 19.5 865/ 467.3		outing with lugi	
(11.) 1)6)1 10110			
∦ MACTEC →	EDBOOK MON	TODING WELL COVE	FIGURE 4-8
Portland, ME 04101		ITORING WELL CONST EC QUALITY ASSURAI	
82 5/1/09		·	

	WELL DI	EVELOPMENT RECO	ORD		
	Project: Firmer Speedy's Cheaness	Weil Installation Date: Deed	enber 1	8,2008	Project No. 3612080409
•	Client: NYSDEC	Well Development Date: 12 - 19 - 2008		Logged by:	Checked by:
	Well/Site I.D.:	Weather: 21 F, Shun	ing	Start Date: 12/19/08	Finish Date:
1	Well Construction Record Data: Bottom of Screen	Well Diameter	2 i	Start Time:	Finish Time:
	17.0 ft	om Ground Surface 🔽 From	Top of Riser		
	Screen Length 19.5 ft. 9.9 ft.	Fluids Lost during Drilling	~450 g	al.	
	Protective Casing Stick-up 0.0 ft. Protective	ve Casing/Well Diff. 0.35	ft. PID F	Readings: Ambient Ambi	. Val ppm
	Well Levels: Sedir	ment:			
•	Initial 7.13 ft. We	Il Depth before Development	18.20	ft. (from top of PV	C)
	Tild of Dottolograment	il Depth after Development	18.95	ft.	
	24 Hours after Development NA ft. Se	diment Depth Removed	~0.7	ft.	
٠	HT of Water Column II 8 ft. × 12	.687 gal./tt. =	~9	gal./vol. + 500 *for 4" HSA In	nd pack. stalled Wells
٠	N Surge Block + Whate Dump	oximate Recharge Rage Gallons Removed	20	pm gal.	Yes No
	Well Development Criteria Met: Notes: Plump on (2) MW 206 (2)	10507	Sediment thic	ear to unaided eye kness remaining in of screen length	
	- purje water has petroleum od	····	Total water re	emoved = a minimur ed well volume plus	
	End of Weil Development Sample (1 pint) Collected?	Yes No	Turbidity < 51		
	Water Parameter Measurements			· ·	-
HHH	Record at start, twice during and at the end of development of the end of the end	12.9 6.6 12.9 6.5 14.1	Conductance 1-05 0-99	Turbidity	Pumping Rate
H H	1209 ~ 7 ~ 70 1210 Pump off (2 mw-2	6.5 14.6 al	0.86	<u>3</u>	
	Weil Developer's Signature				· · ·
	MACTEC B. Shaw			VELOPMENT	
	511 Congress Steet Portland, ME 04101 92 51109	NYSDEC QUALITY	Y ASSURA	ANCE PROGRA	AW PLAN

		10 E	aluense senservas		SOIL	. BOF	RING L	_OG						14,17.1
Projec		her_	Speed	è C	leaner	SiL	(Boring/We	II No. 10		roject l 了6/2		109	
Client	MYSD	EC		Site	Sper	ر کو کے ا	Cle	ern er)	Sheet N		1	_ of	i	
Logge		Wine	hact	Grou	nd Elevation 49 Z o っ		Start D		a :		Date	100	. ,	
Drillin	g Contract		NY		Driller's Na	me		<u> </u>	Rig Typ	е	= 5		· ·	
Drillin	g Method		eit.		Protection		Р	.l.D. (eV)	Casing 4	Size		Auge	r Size	
Soil D	rilled 8		ock Drilled		Total Depth),		Groundwate			Piez	Well	Borin	g
				· · · · · · · · · · · · · · · · · · ·	10,5	l	0	<i>i /</i>	17 240,				toring	
(Feet)	No. 8 ation/ y (Fee	ows/6	./Rqd. N s/Ft.)								ss ymbo	(pp		ests nple
Depth(Feet)	Sample No. & Penetration/ Recovery (Feet)	SPT Blows/6" or	Sore Rec./Rqd. % SPT-N (Blows/Ft.)		;	Sampl	e Desc	ription	٠		USCS Group Symbol	Pl Meter Field Scan	PI Meter Head Space	Lab Tests ID Sample
	S I Re	. O	Ö								G	PI Me Field	PI Me Head	-
1.1		NA		Aug.	ered to	8 ft	-bgs	- no sar	pling					
				b li.	- L:L ::	nac k	Lan	8, 618	5 b 9 5	-				
	e.				Roller bit rock from 8' to 18,5 bg 5. No cover collected.									
				-	setwe	a r	ا اص ا اص	w/se	TUN	=				
					from	8 +	०१६ ।	05 S`,		_	٠			
						•								
1111								,		-				
										-				
										-				
										-				
-										_				
A ()	- 6	1 (5	1 1										<u></u>	
			2/9/09	7										
1	MAC	TEC	· ·									IGURE		
	511 Congre Portland, MI				4	NYS	SDEC Q	UALITY A	SSURAN		IL BOI ROGE			·

Bedrock Well Construct	ion Diagram		Well No.: MW-2/0
Project No.: 3612082109, 02.01	Project Name:	RMER SPEEDY'S CLEANERS	
NVSDEC NVSDEC		lochester, N.Y.	
Contractor: GEOLOGIC Driller: [Method: 3.5" ROLLER	
OCO-VC		Date Started: 12-23-08	Completed: 12-23-08
Checked By: C. Stoples Da	te: <u>12/9/09</u>	Well Development Date: /2-	23-08
Not To Scale			
Lock Identification:	≟ :====>;	Elevation of top of Surface Casing:	7.03
Surface Casing Type:	fo. 33	Surface Casing.	
FLUSH MOUNTED STEEL	→ • • • • • • • • • 	Riser Pipe:	16.70
Ground Surface Elevation: 487.03		Type of Surface CE	MENT
		7/4	
Surface Casing			•
Diameter: (1		Develop Diometer (6)	
Inside Diameter of Surface Casing: 🊜 🗸		— Borehole Diameter: 6	
Surface Gasing. 76		Inside Diameter of Borehole Casing:	Vone
		DOTEROIS CASING.	
		—— Type of Backfill: Br	NTONITE
Depth/Elevation of Top of Well Seal:			
4 FT-B65 / 483,0		Type of Riser: θ^{u}	
Depth/Elevation of		Riser Inside Diameter: 2	2
Top of Sand: (481.0)			
<u> </u>		Type of Seal: BE	
Depth/Elevation of Top of Screen:	→	Bedrock @ Elevation/Depth:	FT-36S 1
8 FT- 365 / 479.0		Type of Sand Pack: 非C) QUARTZ
7,11		• •	
Diameter of Corehole: 3 7/8"		Time of Saroan: A"	SLOTTED PVC SOH 40
			ľ
		Slot Size x Length: O. Inside Diameter	
		of Screen:3	_2 .
Depth/Elevation of Bottom of Screen:			
18 FT BGS 1 469.0		Depth of Sediment	· · · · · · ·
Depth/Elevation of		Sump with Plug:	0.5
Bottom of Corehole: _/8.5 F 865/ 468.5			
		,	FIGURE 4-8
MACIEU	BEDROCK MO	NITORING WELL CONSTR	RUCTION DIAGRAM
511 Congress Street Portland, ME 04101	NYS	DEC QUALITY ASSURANCE	CE PROJECT PLAN

WELL D	EVELOPMENT RECOR	D		
Project:	Well Installation Date:			Project No.
Former Speedy's Cleaners	Vell Development Date:	· · ·	Logged by u	36/2 082/09 Checked by:
Client: NYSDEC	12/23/08		Logged by:	-
Well/Site I.D.:	Weather:		Start Date:	Finish Date:
MW-210	Cloud, 20° F		12/23/08	12/23/08
Well Construction Record Data:	Well Diameter	2 " in.	Start Time:	Finish Time:
Bottom of Screen	,	2 in.	1500	1600
Sediment Sump/Plug	om Ground Surface 🎾 From Top	p of Riser 🗅		
Screen Length				
10.0 ft.	Fluids Lost during Drilling	A gal.		
Protective Casing Stick-up Flash ft. Protecti	ve Casing/Well Diff. 0.33 ft	PID Read	dings: Ambient A	∧∧ ppm
Well Levels: Sedir	ment:			
Initial ft. We	Il Depth before Development		(from top of PVC)
1/1	II-Depth after Development			
11.	· · ·	ft.		
24 Hours after Development ft. Sec	diment Depth Removed	Ø ft.		
I MI OT Water Column I (.68* gal./ft. =	1,76	gal./vol. *for 4" HSA Ins	talled Wells
Surge Block	Gallons Removed Well Sedin Well Total of 5x 5x dr Yes No	ment thicknessis <1.0% of solution of solu	red = a minimum rell volume plus t	Yes No Şal — □ Şal = □
Water Parameter Measurements	ant (minimum).			
Record at start, twice during and at the end of developments Time Volume Total Gallons		ductance	Turbidity P	umping Rate
	, compr			
			· · · · · · · · · · · · · · · · · · ·	
				
				Marie :
Well Developed Cl				,
Well Developer's Signature	, hosk by CR\$ 2/9/	, 5 S		
- copied from Lo				JRE 4-9
511 Congress Steet Portland, ME 04101	WE! NYSDEC QUALITY AS		OPMENT R E PROGRAI	

								ROC	K CC	DRING	i LOC	S 中国人民人员会会					
	Project	Form	west "	Soci	edy	(lew	Site:	Roll	reste	w,!	77	Exploration/W		Project No.: 36/2082/0			
	Client:	NS		,			D	61		Bree		Logged by:	Checked by:	Ground Elev.:			
	Drilling	Contracto	\r'		ريآت	NY		ction L		D		Rig Type:	Start Date: 12-18-08	Finish Date: 12-18-0			
	Drilling	Method:			,		rico	sne .	P	<u> </u>		P.I.D. (eV):	Casing Size:	Auger Size:			
	Bit type	e/size: 3	<u>G</u> 4	<u> </u>			phhe				erval (to	o/from)(ft): NA	<u> - </u>				
			ļ <i>o</i>	1	al Core			ck Qua	<u>, </u>								
	Depth (feet) Below GRD Sort.	Sample No. & Penetration/ Recovery (feet)	Graphic Log	Type/Dip	Surface symmetric Surface Condition	Weathered Condition	Total 4" Core	RQD (%)	Rock Quality Description	Drilling Rate min/ft	Color		Rock Description and Comments on Drilling				
.2	Be	20 20 20	Ō	1	တ် ပိ	≥ŏ	μŏ	<u> </u>	Ĕ Ğ	ΔĒ	Ö	ale de mar	710	Galunos			
,												Start Trizi Stop/timshed	_	-			
			(%)									wash was	chips: DK gray, fine grained, water: Lt Brawn, Strang petrologian odor;				
5-													tenned in	2 dnus			
												· ·					
	82	stilog MA(R(Y ASSURANCE	OCK CORING				

Bedrock Well Constructi	on Diagram	Well No.: MW_21
Project No.: 3612682169	Project Name:	Former Sæedy:s Chaners
NYSDEC.	Project Area:	Rochester, New York
	off Breeds	Method: 1) Me twash, Reilerbit
Logged By: Brindon Show		Date Started: 12-18-08 Completed: 12-18-08
Checked By: Date	=: 01 07 09	Well Development Date: 12/23/08
Not To Scale		
Lock Identification:	Q6	>
Surface Casing Type: Plush Munt		Elevation of top of Surface Casing: 486,54
Steel Road Box.		Elevation of top of
Ground Surface Elevation:		Riser Pipe: 486,25
486,5		Type of Surface Grove - rement
Surface Casing Diameter:		TOC-TOR; _ 0.21 (82)
Inside Diameter of		— Borehole Diameter:
Surface Casing: W/R		Inside Diameter of Borehole Casing:
Depth/Elevation of		Type of Backfill: NA - Sand;
Top of Well Seal:		Type of Riser: Sun 40 PVZ
Depth/Elevation of Top of Sand		Riser Inside Diameter:
6.0 1480,5	4	Type of Seal: Benfowle Chips
Depth/Elevation of Top of Screen:		Bedrock ~ 9.2 /
8-1 bgs 478.4		Type of Sand Pack: # 0 /vd /stv14/ Guw12
Diameter of Corehole: 37/8		
		Type of Screen: Och 40 WG, 516Hca
		——Slot Size x Length:0,010 " √10 "
•		Inside Diameter 2 1/4 of Screen:
Depth/Elevation of Bottom of Screen:		of corcert
18.0 69 1468,5		~ -1. ~
Depth/Elevation of		Depth of Sediment 18,5 hs (1.48)
Bottom of Corphole:		
# MACTEC →		FIGURE 4-8
Portland, ME 04101		ITORING WELL CONSTRUCTION DIAGRAM EC QUALITY ASSURANCE PROJECT PLAN
In 5/1/09		

WELL D	EVELOPMENT REC	ORD		
Project: Former Speedy's Cleaners	Well Installation Date:			Project No. 36/১৩৪১/৩৭
Client: MYS DEC	Well Development Date:	·	Logged by:	Checked by:
Well/Site I.D.: MW- 2 I)	Weather: 20°F overca	<i>ا</i> ر	Start Date: 12/2/3/08	Finish Date: 12/23/08
Well Construction Record Data:	Well Diameter		Start Time:	Finish Time:
Sediment Sump/Plug 18.0 ft. Fr	om Ground Surface 🦫 Fron	n Top of Riser 🗅	·	-
Screen Length / O ft.	Fluids Lost during Drilling	∕∕ A gal.		
Protective Casing Stick-up Fluit ft. Protective	ve Casing/Well Diff. 0,30	o ft. PID Read	dings: Ambient A	ppm h
Well Levels: Sedin	nent:			
17.	Il Depth before Development	ft.	(from top of PVC	>)
7.4.	II-Depth after Development	ft.		
24 Hours after Development ft. Sec	diment Depth Removed	Ø ft.	•	
	.68* gal./ft. 2./6_	1.6	gal./vol. *for 4" HSA Ins	talled Wells
Surge Block	oximate Recharge Rage Gallons Removed	N gpm		
Well Development Criteria Met: Notes: Sirked ding development water clear to eye	# ·	Well water clear to Sediment thickness well is <1.0% of so Total water remove of 5x calculated w	ss remaining in creen length red = a minimum	Yes No
End of Well Development Sample (1 pint) Collected?	Yes No	5x drilling fluid los Turbidity < 5NTUs 10% change in fie	6	<u> </u>
Water Parameter Measurements				
Record at start, twice during and at the end of development	ent (minimum):			
Time Volume Total Gallons	pH Temp.	Conductance	Turbidity P	umping Rate
NA NA				<u> </u>
	<u> </u>		_	
Well Developer's Signature				
MACTEC Checked by CRS 511 Congress Steet Portland, ME 04101	マ/१/01 NYSDEC QUALITY	ŴELL DEVEL ASSURANC	OPMENT R	

,											G LOC			
	Project	Forme		Societ	40 (Teame	Site:	Rock	uste,	~ N	/	Exploration/We	ell No.: MW-212	Project No.: 3412682169
e e	Client:	NVSDE	Z	,			Dinie	Sist	FBr.	ceds		Logged by:	Checked by:	Ground Elev.;
	Drilling	Contracto	or: Seo	loge	الايت	(Prote	ection L	evel: ፲	> .		Rig Type:	Start Date: 12-19-08	Finish Date: 19-08.
	HSA			4		Core						P.I.D. (eV):	Casing Size:	Auger Size:
7	Bit type/size: HQ; 378 OV Bit Use:					ire		(Core Int	erval (to	/from)(ft):	om)(ft): V.D to 15.0		
	Ţ.			1	al Core aks		Ro	ck Qua	lity					
	Depth (feet) Below GRD Sort.	Sample No. & Penetration/ Recovery (feet)	Graphic Log	Type/Dip	Surface Condition	Weathered Condition	Total 4" Core	RQD (%)	Rock Quality Description	Drilling Rate min/ft	Color		ck Description ar mments on Drilli	
DD.	**	ujereo	to	5 bg)vov.	 	sing(p of	reck (2 10.0)		
reading								···			dun	Start Run	MU#1 100	5
300 -	•	F167	=		·						grad	Starf Run Stap Run * Water	@12-341/116	2.
170 -	_	0.91										* Water	composition c	agner
- 1 . 1		1.0									,	Start Rur Start Rur	"Jain!	1052
216 i] - 42.1				<u> </u>								Abym!	11/1/4	41#2
1851 -			:									-Strang	ids on 1	nt
12 -	•.											core	ider on 1	
160	_		- CO CO CO CO CO CO CO CO CO CO CO CO CO	3										•
-	<u> </u>						<u>.</u>							
13		13.11					:					. ·		
40.4		40					•					·		
) -	-											'		
32.6/2.	<u> </u>		3											
31.7														
melle.		Ļ		-		<u> </u>						n c	la c	
176/15	20	MAC	TTF	я С										RE 4-5
		511 Congr Portland, N	ess Stee	ot gr	5/110	9		NY	SDE	C QU	ALITY	RC ASSURANCE		

roject No.: 36/2682109	Project Name:	Former Speedy's Meaners
NYSOCC	Project Area:	Rochester, NY
ontractor: Ceologiz M Driller: S		Method: HSA, Drive + Wash, HQ core
ogged By: Brandon Shaw	Je (1 Brecas	Date Started: 12 -19-08 Completed: 12 - 19
	te: 5/1/09	
Not To Scale	6.07.707	Well Development Date: /2/23/08
	0-	
Lock Identification:		Elevation of top of 486,75
Surface Casing Type:		Carrace Sasing.
Stell Road Box	→	Elevation of top of Riser Pipe: 486,46
Ground Surface Elevation:		
		Seal:
Surface Casing		
Diameter: UNK	41 PK	٠ « ا
Inside Diameter of		— Borehole Diameter:
Surface Casing:		Inside Diameter of
		Borehole Casing:
•		
Depth/Elevation of		Type of Backfill: Swnd
Top of Well Seal: /485.3		Type of Riser: Sch 40 PVC
Depth/Elevation of		2 11
Top of Sand; 483,3		Riser Inside Diameter:
2.5 // 413.5		Type of Seal: Benforite Chips
Depth/Elevation of	>===	Redrock / /
Top of Screen: 5.5 July 1481.3		Elevation/Depth: // /
3) # / 10 1 =		Type of Sand Pack: 土の Industrial Quw
Diameter of Corehole: 37/81		
		—— Type of Screen: Stotled Sch 40 Are
		Slot Size x Length: 0-010' X 10'
		Inside Diameter
Depth/Elevation of Bottom of Screen: 470.1		of Screen:
Bottom of Screen:		
Depth/Elevation of		Depth of Sediment
Bottom of Corehole: / 4 70.6 _	4	Sump with Plug: 13.0 bg 9 (0.98)
0 15.0 Mgs/ 4742		v .
#MACTEC	-	FIGURE 4-8
511 Congress Street	BEDDOCK MON	IITORING WELL CONSTRUCTION DIAGRAM

WELL D	EVELOPMENT RE	CORD		
Project:	Well Installation Date:			Project No.
Former Spudy's Cleaners	12/19/08			3(12082/09
Client: NYS DEC	Well Development Date:		Logged by:	Checked by:
Well/Site I.D.:	12/23/08 Weather:		W. June Lark Start Date:	- CRェ Finish Date:
MW-212	20°F over	. .	12/23/08	12/23/08
Well Construction Record Data:	Well Diamet		Start Time:	Finish Time:
		1 '7'	1100	1300
Sadiment Summ/Dive	rom Ground Surface 🌭 🛭 Fr	rom Top of Riser 🗀		
Sediment Sump/Plug 15.0 ft.				
Screen Length	Fluids Lost during Drilling	0.0		
/O ft.	· · · · · · · · · · · · · · · · · · ·	N A gal.		
Protective Casing Stick-up	ve Casing/Well Diff. 0,2	FI PID Rea	dings: Ambient	Air
1107 11	012	22 II.	Well Mou	<u> </u>
			NA	ppm
Well Levels: Sedir	ment:			
Initial ft. We	ll Depth before Developme	nt ft.	(from top of PV	C)
End of Development	Il Depth after Development			
		ft.		
24 Hours after Development ft. Sec	diment Depth Removed	ft.		
	.68* gal./ft.		gal./vol.	
HT of Water Column 7.1 ft. X 52	<u>0,/6</u>	1,1	*for 4" HSA Ins	stalled Wells
© Surge Block		Well water clear t Sediment thickne well is <1.0% of s Total water remov of 5x calculated w 5x drilling fluid los Turbidity < 5NTU	ss remaining in creen length /ed = a minimum /ell volume plus t	
End of Well Development Sample (1 pint) Collected?	Yes No	■ 10% change in fie		
Water Parameter Measurements	· · · · · · · · · · · · · · · · · · ·			
Record at start, twice during and at the end of development	ent (minimum):			
· Time Volume Total Gallons	pH Temp.	Conductance	Turbidity F	umping Rate
			<u> </u>	
1/1/				
				
Well Developer's Signature				
Noter from W. Swinehar	4			
MACTEC checked by CRS	2/9/09	WELL DEVE		JRE 4-9
511 Congress Steet Portland, ME 04101	NYSDEC QUALIT			

APPENDIX B.3

LOW FLOW GROUNDWATER SAMPLING RECORDS

LOW FLOW GROUNDWATER SAMPLING RECORD							
PROJECT CHYNNY CHANNY SAMPLE I.D. N							
EXPLORATION ID: HA-10H	SITE NYSDEC DATE 6/121/69						
TIME START 10) S END 710 JOB N	NUMBER 3612682169 FILE TYPE DEC						
WATER LEVEL / PUMP SETTINGS MFASUREMENT POINT TOP OF WELL RISER	PROTECTIVE PROTECTIVE						
TOP OF PROTECTIVE CASO OTHER INITIAL DEPTH TO WATER WELL DEPTH TO WATER	SING CASING STICKUP O O FT CASING / WELL U 35 FT PID WELL						
FINAL DEPTH TO WATER V. 75 FT SCREEN WANDOW	FT AMBIENT AIR PPM DIAMETER IN PID WELL YES NO N/A						
DRAWDOWN VOLUME GAL RATIO OF DRAWDOWN VOLU							
(initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) TOTAL VOLUME PURGE	ED TO PUMP PSI COLLAR V REFILL DISCHARGE						
TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter)	TIMER SECONDS TIMER SECONDS SETTING						
PURGE DATA SPECIFIC	PUMP						
DEPTH TO PURGE TEMP. CONDUCTANCE WATER (ft) RATE (ml/m) (deg. c) (ms/cm)	pH DISS, O2 TURBIDITY REDOX INTAKE (units) (mg/L) (ntu) (mv) DEPTH (ft) COMMENTS						
11426 61M on 1 0.564 6	5.4 8 37,1 40 1 Durge water has						
132 6.75 350 73 0.570	5.4 3.8 56.3 -100 Var tock in						
1637 6.75 350 7.5/ 8.573	8.4 (6.1 40.2 -100)						
11017 6.75 350 7.6 0.5 17	84 4 364 - 110						
	94 84 248 17						
1697 675 390 74 0573	84 93 250 -120						
1700 Single time of HA-104	Suple time						
1709 pmp rtt 7 0.577	6,4 8,3 25,6-120						
1 0 3 1 2 1	017 015 23.4 12						
EQUIPMENT DOCUMENTATION							
TYPE OF PUMP TYPE OF TUBING	TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL						
MARSCHALK BLADDER SILASTIC	POLYVINYL CHLORIDE TEFLON STAINLESS STEEL THER JONE						
SIMCO BLADDER HIGH DENSITY POLYETHYLENE GEOPUMP OTHER	NOTHER NONE						
ANALYTICAL PARAMETERS	OME						
To Be Collected METHOD NUMBER	PRESERVATION VOLUME SAMPLE METHOD REQUIRED COLLECTED HCL / 4 DEG. C 3 X 40 mL						
	4 DEG. C 2 X 1 L AG SVOC						
PEST / PCBs CLP TAL INORGANICS CLP	4 DEG. C 2 X 1 L AG PEST / PCBs HNO3 to pH <2 1 x 1 L P TAL INORGANICS						
Other							
PURGE OBSERVATIONS	NOTES/LOCATION SKETCH						
PURGE WATER CONTAINERIZED YES NO GENERATED	AW 3 MW 5						
A D							
Signature:	Carriage Carriage						
MACTEG	MW-4 MW-2 FIGURE 4-16						
106	LOW FLOW GROUNDWATER DATA RECORD NESDEC QUALITY ASSURANCE PROGRAM PLAN						
511 Congress Street, Portland, Maine 04101	N45DEC QUALITY ASSURANCE PROGRAM PLAN						

LOW FLOW GROUNDWATER SAME	LING RECORD	LOW FLOW GROUNDWATER SAMPLING RECORD							
PROJECT Carrage Cleniners EXPLORATION ID: 124-105	SAMPLE I.D. NUMBER	828 DO 1 4 0501 3	SAMPLE TIME 1600						
TIME START 1525 END 1615	JOB NUMBER	3617082110	FILE TYPE DEC						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MENT POINT								
TOP O TOP O OTHER	OF WELL RISER OF PROTECTIVE CASING	PROTECTIVE CASING STICKUP (FROM GROUND) 0, 5	PROTECTIVE CASING / WELL DIFFERENCE PROTECTIVE O, FT						
INITIAL DEPTH TO WATER S 70 FT WELL DEPTH (TOR)	TH 15,5 FT	PID AMBIENT AIR PPM	WELL DIAMETER 12? 4?N						
FINAL DEPTH TO WATER FT SCREEN LENGTH	VW UOWN FT	PID WELL MOUTH PPM	WELL YES NO N/A						
	F DRAWDOWN VOLUME TAL VOLUME PURGED	PRESSURE TO PUMP PS	CASING LOCKED COLLAR COLLAR						
TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.0	00026 gal/milliliter)	REFILL TIMER SETTING SECONDS	DISCHARGE TIMER SETTING SECONDS						
PURGE DATA	SPECIFIC		PUMP						
TIME WATER (ft) RATE-(ml/m) (deg. c)	CONDUCTANCE pH (ms/cm) (units)	DISS. O2 TURBIDITY REDOX (mg/L) (ntu) (mv)	INTAKE DEPTH (ft) COMMENTS						
139, 8-75 300 9.2	0 433 89	10 5817 -70	Strong petr. idr						
	0.435 9.6	7.1 328 -120	3						
1539 8,79 300 10.6 1	0.436 91	7.0 10.5 -140							
1549 879 300 67	0.429	6,2 7.3 -160							
	0,427 91	61 62 -160	0						
177	5		Sample timp						
, Col Dung off									
	2110 61 - 2 - 3								
	0.427 9.1	6.1 6.2 -160	1						
			·						
EQUIPMENT DOCUMENTATION									
TYPE OF PUMP TYPE OF TUBING	. <u>TX</u>	PE OF PUMP MATERIAL	TYPE OF BLADDER MATERIAL						
MARSCHALK BLADDER SILASTIC	Y POLYETHYLENE	POLYVINYL CHLORIDE STAINLESS STEEL	TEFLON TOTHER NOVE						
Minco Bladder Might density Geopump OTHER		OTHER 1000	- Onler						
ANALYTICAL PARAMETERS									
To Be Collected METH NUMI		RESERVATION VOLUME METHOD REQUIRED	SAMPLE COLLECTED						
Voc 8260B	•	HCL / 4 DEG. C 3 X 40 mL 4 DEG. C 2 X 1 L AG	rvoc □svoc						
PEST / PCBs CLP		4 DEG. C 2 X 1 L AG	PEST / PCBs						
TAL INORGANICS . CLP		HNO3 to pH <2 1 x 1 L P	TAL INORGANICS						
Other		NOTES! SCATISHED TO!							
PURGE OBSERVATIONS PURGE WATER NUMBER OF GALL	ons and	NOTES/LOCATION SKETCH	√ 2√ · · · · ↑						
CONTAINERIZED YES (NO) GENERATED	1.7.6	XINIS	/ `&`` '.						
Signature		×14A-10%	Impire N						
MAIN	\	\%\`\	• • • • • • • • • • • • • • • • • • •						
MACTEC		LE OVS	FIGURE 4-16						
/myn 1/23	104	NYSDEC OI	LOW GROUNDWATER DATA RECORD JALITY ASSURANCE PROGRAM PLAN						
511 Congress Street Portland Maine 04101									

LOW F	LOW GR	ROUNDW	ATER SAI	MPLING RE	CORD						
PROJECT	Carr	174-15	ton the	D. NUMBER	9,28	198-HA	-111019	PI SAM	IPLE TIME	1655	
EXPLORATI	ON ID:	HA-10	2	Carrica	SITE		NA2050	د		DATE	1/2/09
TIME	START 107	n) EN	D 1700		B NUMBER	36	10083	L110		FILE TYPE	DEC
WATER LE	VEL / PUMP S	ETTINGS		PREMENT POINT		PROTECTIV	Æ		PPOTECT		**
·			TC	OP OF PROTECTIVE	CASING	CASING ST	TICKUP	FT	PROTECT CASING / DIFFEREN	WELL	FT
INITIAL DEI		7-10	FT WELL	DEPTH 14.6	3	PID WELL					
FINAL DEI TO WA		1-12	(TOR) FT SCREE LENGT	FT FT	PID WELL MOUTH		PPM	WELL		YES NO N/A	
DRAWDO VOLU	ME	ch) or x 0.65 (4-in	GAL RATIO	O OF DRAWDOWN V	OLUME	PRESSURE TO PUMP		PPM	INTEGRIT	CASING LOCKED	$\overline{Z} = \Xi$
TOTAL V		<i>^</i> .		TOTAL VOLUME FOR	- I	REFILL	<i>,</i>	PSI	I DISCHARO	COLLAR GE	<u> </u>
PURG (purge ra			GAL uration (minutes)	x 0.00026 gal/milliliter)	TIMER SETTING		SECONDS	TIMER SETTING		SECONDS
PURGE DA	TA DEPTH TO	PURGE	l TEMP	SPECIFIC L CONDUCTANOS	1	L pigg [†] og	LIBBIDITY	l penov	PUMP		
TIME	WATER (ft)	RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (ms/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	INTAKE DEPTH (ft)	СОММ	ENTS
1620	9 12	350	111	0-425	1.5	10.47	180	- 1/20	14	Section 100 and 100 an	
1630	9.12	350	11-1	11.437	45	(0-41	41.7	-141	. 17		
1635	9-12	350	11-1	0.4/30	46	20-1	30.9	-150			
1640	4-12	350	11-1	0-453	7-6	20-1	19-9	-165			
1645	9-12	3.70	11-1	0.461	15	10.1	10-1	-173			
1650	9-12	350	11-0	0473	7-6	20-1	9-66	-175	٢		
1652	9.12	350	ll-1	0.481	7.6	201	8,79	-119			
			11	0.481	76	6.1	88	-180	V	·	
					, <u>, , , , , , , , , , , , , , , , , , </u>	(070	- 10 -			· · · · · · · · · · · · · · · · · · ·
1											
	1									 	
	X				· · · · · · · · · · · · · · · · · · ·						<u> </u>
	Cf				:						
EQUIPMEN TYPE OF	T DOCUMENT	ATION	TYPE OF TUBIN	ie .	TVI	DE DE DUMB	MATERIAL		T/DE OF DI AD		
	<u>- POWE</u> RSCHALK BLADI	DER	V SILASTIC	10	1.11	PE OF PUMP POLYVINYL		ī	TYPE OF BLAD	DER MATERI	AL
	CO BLADDER		_/	SITY POLYETHYLENE		MAINLESS		· .	TEFLON		_
	DPUMP		OTHER_			OTHER		_ '			
	AL PARAMETE	RS		TUOD							
To Be Collected			. <u>N</u> l	ETHOD JMBER	Pi	RESERVATIO METHOD	REQUIR	RED 9	SAMPLE COLLECTED		
Svo	C ·		826 CLF			HCL / 4 DEG 4 DEG. C	i.C 3 X 40 n 2 X 1 L z		woc svoc		·
	T / PCBs INORGANICS	٠	CLF CLF			4 DEG. C HNO3 to pH	2 X 1 L / <2 1 x 1 L F		PEST /	PCBs ORGANICS	
Othe			- -				IXILF			URGANICS	
PURGE OB	SERVATIONS				$\overline{}$	NOTES/LO	CATION SKET	CH		M*************************************	1
PURGE WAT			NUMBER OF GA GENERATED	LLONS ZO		HA-	Houst	1			
Signaty	fe: M					ios X		Hu-			N
		ĮĄC'	ŢĘ¢		1000		A KI				· FIGURE 4-16
		A) U	126/	2009	120		CNYS	DEC OU	OW GROU! ALITY ASSI	NDWATER URANCE	R DATA RECORD PROGRAM PLAN
511 C	ongress Stre	et, Portland,			N.	_	1020		7000		OKAM I LAN

LOW F	LOW GR	OUNDWA	TER SAN	IPLING REC	CORD							
PROJECT	Gpace-	+5/Car	ruse)	SAMPLE I.D	. NUMBER	F=B1	20-HA-1	09009	SAMI	PLE TIME	124/	2
EXPLORATION	ION ID:	1-108			SITE		MAZDE	7		DATE	1/20	109
TIME	START \\L	JD END	, 1240	JOE	NUMBER	36	20821	10		FILE TYPE	DE	<u>Z</u>
ļ	VEL / PUMP SI	1 -		REMENT POINT								
2		•	TOF	OF WELL RISER OF PROTECTIVE (CASING	PROTECTIV CASING STI (FROM GRO	CKUP	FT	PROTECT CASING / ' DIFFEREN	WELL		FT
INITIAL DEF		.91	FT WELL DI		FT	PID AMBIENT AI		PPM	WELL		2	IN
FINAL DEF	PTH TER S	, 7:a	FT SCREEN LENGTH	whikher	₩\ FT	PID WELL MOUTH		PPM	WELL .		YES N	
DRAWDO VOLU		128 (GAL RATIO	OF DRAWDOWN VO	DLUME	PRESSURE TO PUMP		PSI]	CASING LOCKED . COLLAR	고 고 -	
TOTAL V	/OL.	1.62	GAL	0,007		REFILL TIMER	Restreams, re-	SECONDS	DISCHARG	GE	SECO	ONDS
(purge r	rate (milliliters per	minute) x time du	ration (minutes) x	0.00026 gal/milliliter)		SETTING			SETTING			
PURGE DA	DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	pH (units)	DISS. O2	TURBIDITY	REDOX (mv)	PUMP INTAKE DEPTH (ft)	CUM	MENTS	
12.50	WATER (ft)	Purese	(deg. c)	(ms/cm)	(units)	(mg/L)	(ntu)	(1110)	JEF ITI (III)	COIVIN		
1205	7. 7	200	6.50	1-7-4	8.30	7.48	70.3	100	9			
1210	5.90	200	7.08	1.70	12.25	5.57	36.9	36				
1215	5-90	200	7.01	1-1010	8-24	1.00	21.9	30	 			
1220	5.29	200	4.01	1-60	6.29	6-52 6-27	12-9	42				
1225 1230	5.59 5.99	200	6.94	1-65	8,24	10.12	13-1	109				
1235	5.00	200	6:33	1-61	3,24	6.20	12-5	67	V			
	3.61			. / .	0 1	1	17	~ A				
<u> </u>	<u> </u>		7	1.61	0.5	(Q, ,)	12.5	70				
$\vdash \rightarrow$	\	1				 						
	\			·		:						
	1											
		2							1			
	\ `	<u> </u>			ļ	<u> </u>						
	 	 \ 							 			
FOLIDME	NT DOCUMENT	I	<u> </u>	<u> </u>		<u> </u>	1		.l			
	OF PUMP		TYPE OF TUBIN	<u>IG</u>	<u>TY</u>	PE OF PUMF		٠	TYPE OF BLA	<i>F</i> .	RIAL	
	ARSCHALK BLAI	DDER	SILASTIC	•	_	_ N 🗇	L CHLORIDE		TIPALON OTHER			
	IMCO BLADDER			SITY POLYETHYLEN		ŚŢAĬNLES: _/OTHER	S STEEL		LA OTHER_			
	EOPUMP	EDE	OTHER			a omen_		<u> </u>				
To Be Collecte	CAL PARAMETI			ETHOD UMBER	I	PRESERVATI METHOD	ON VOLU REQUI		SAMPLE COLLECTED			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	oc voc		826 CL	60B		HCL / 4 DE 4 DEG. C		mL	Voc Svoc	3		
⊟PE	EST / PCBs	•	CL	P		4 DEG. C	2 X 1 L	AG	PEST	r / PCBs NORGANICS	:	
	AL INORGANICS ther		CL	-		HNO3 to ph	1<2 1x1L	r. ———		HOROANICE	•	
PURGE 0	BSERVATIONS	3				NOTES/LO	DCATION SKET	ГСН		*****		
PURGE WA		s (ÑO)	NUMBER OF G	ALLONS		1			14/1	ρΥ)	<u>L</u> :	ByW
CONTAINE	TRIZED YE	<u> </u>	GENERATED		=	Ŋ			WATER		17,50	100
Signa	ature:	A PARTY MANAGEMENT AND ADDRESS OF THE PARTY MANAGEMENT AND ADDRESS					TO A PARTY OF A PARTY	***************************************	والمتاهية والمتاهية والمتاهية والمتاهية والمتاهية والمتاهية والمتاهية والمتاهية والمتاهية والمتاهية والمتاهية			f
	$\mathbb{Z}_{\mathbf{N}}$	1AC	TEC] i sila				I OW F	LOW GRO	UNDWAT		GURE 4-1
\	gress St	√ BA reet, Portland	-S 01) d, Maine 0410			•	NY	SDEC Q	JALITY AS:	SURANC	E PROGI	RAM PLAI

revised 1/14/2009

LOW F	LOW GR	OUNDW	ATER SAI	MPLING RE	CORD						-
PROJECT	boardie) (car	<u> </u>	SAMPLE I.E	D. NUMBER	RDB	170-110	-111014	s	AMPLE TIME	1255
EXPLORATIO	ON ID:	1 HA-1	11		SITE		MADO	(C		DATE	1/21/09
TIME S	START 171	5 EN	10 1800	Jo	B NUMBER	3	61708	2109		FILE TYPE	DEC
WATER LEV	VEL / PUMP S	ETTINGS	TO TO	JREMENT POINT DP OF WELL RISER DP OF PROTECTIVE	CASING	PROTECTIVE CASING ST	ICKUP		PROTE	ECTIVE G/WELL	
INITIAL DEP		27	FT WELLI	THER		(FROM GRO	OUND) L	FI	DIFFE		FT
FINAL DEP	TH Z	2.22	(TOR)	15-8	FT	AMBIENT A	JR	PPM	WELL DIAME	TER	7 IN
TO WATI			FT SCREE		FT.	PID WELL MOUTH		PPM	WELL	RITY: CAP	YES NO N/A
VOLUM (initial - fir	nal x 0.16 {2-inc	ch) or x 0.65 (4-in		O OF DRAWDOWN VI		PRESSURE TO PUMP		PS		CASING LOCKED COLLAR	2 = =
TOTAL VC PURGI (purge rat	ED	minute) x time d	GAL uration (minutes)	c 0.00026 gal/milliliter)		REFILL TIMER SETTING		SECONDS	DISCHA TIMER SETTIN		SECONDS
PURGE DAT	ГА			SPECIFIC			, ,,		PUMP		
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP, (deg. c)	CONDUCTANCE (ms/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	INTAKE DEPTH (ft)	COMM	MENTS
1425	hasia Mara	(7,1632)	4.0	2 12 611	2-5	1		-b. ().	ulc		
1335	10.21	250	82	0.445	45	20-1	929	-1144 -1121	-149-	514 - 14	
1240	Rook	250	4.0	0.426	7-10	60-1	6.61	-172	14	19	<u> </u>
1745	W 27	250	9.0	1.421p	240	601	5,60	-176	<u> </u>		
1750	3.27	250	9.1	0,416	26	60-1	5.21	-180	V		
1			<u> </u>	1.416	7.6	4 0.1	5	-180			r
				6 4.0	7.0	2011		-100			
			,								
$\vdash \downarrow \downarrow$											
										,	
- √,											
X											
	\mathcal{O}	··· ·									
	1										
EOUIDMENT	DOCUMENTA	ATION							. <u></u>		<u></u>
TYPE OF		ATION	TYPE OF TUBIN	<u>G</u>	TYP	E OF PUMP		•	TYPE OF BL	ADDER MATER	NAL .
	SCHALK BLADI	DER	SILASTIC	,		POLYVINYL	CHLORIDE		TEFLOI	N N	
	O BLADDER PUMP		HIGH DENS OTHER	ITY POLYETHYLENE		STAINLESS	STEEL ,		OTHER		
	_ PARAMETEI	26	OTHER		<u> </u>	OTHER					
To Be Collected	- : /4(/4)(2.12.1			THOD IMBER	PF	RESERVATIO METHOD	N VOLUM REQUIF		SAMPLE	•••	
✓voc svoc	;		8260 CLP)B		HCL / 4 DEG 4 DEG. C		ıL	ZÍVOC I svc	;	,
_	/ PCBs NORGANICS	•	CLP CLP			4 DEG. C	2 X 1 L A	\G	PES	T / PCBs	
Other_		·				HNO3 to pH	<2 1x1LP			INORGANICS	
PURGE OBS	ERVATIONS					NOTES/LO	CATION SKET	CH			
PURGE WATE			NUMBER OF GAI GENERATED	LLONS			1200c 1	1	Larviax	/	
Signature						L	jh-	li,	^	 -1	
Jighature	Tai				—		Ö		Perlan	`	
	M	AC'	TEC			Class !	NIVO				FIGURE 4-16 R DATA RECORD
511 Cor	ngress Stre	et, Portland.	Maine 04101			1200	NTS	DEC MOY	ALIIT AS	SUKANCE	PROGRAM PLAN

LOW FLOW GROUNDWA	ATER SAMPLING RECO	ORD 828128-	
PROJECT CARRIAGE CLEAR	was Deel S SAMPLE I.D. N	UMBER HA-112.150 D	SAMPLE TIME (1230)
EXPLORATION ID: HA-11.		SITE CHERIATE / Spe	ed DATE 1-21-09
TIME START 1/50 EN	JOB N	UMBER 36120821	109 FILE TYPE DEC
WATER LEVEL / PUMP SETTINGS	MEASUREMENT POINT		
	TOP OF WELL RISER TOP OF PROTECTIVE CAS	PROTECTIVE CASING STICKUP (FROM GROUND)	PROTECTIVE CASING / WELL FT DIFFERENCE FT
INITIAL DEPTH 7.15	FT WELL DEPTH //	PID PID	WELL
	(TOR) /5/5	FT AMBIENT AIR	PPM DIAMETER IN
FINAL DEPTH 7.21	FT SCREEN UN KNOWN	1 PID WELL MOUTH	WELL YES NO N/A PPM INTEGRITY: CAP
DRAWDOWN VOLUME (initial - final x 0.16 (2-inch) or x 0.65 (4-in	GAL RATIO OF DRAWDOWN VOLUCITY TO TOTAL VOLUME PURGE		CASING LOCKED COLLAR
TOTAL VOL.	- Lo.01	REFILL	DISCHARGE
PURGED (purge rate (milliliters per minute) x time d	GAL uration (minutes) x 0.00026 gal/milliliter)	TIMER SEC SETTING	ONDS TIMER SECONDS SETTING
PURGE DATA	SPECIFIC	pH DISS. O2 TURBIDITY RE	PUMP DOX INTAKE
DEPTH TO PURGE TIME WATER (ft) RATE (ml/m)	TEMP. CONDUCTANCE (deg. c) (ms/cm)	(units) (mg/L) (ntu) (r	nv) DEPTH (ft) COMMENTS
1200 7.21 150			26 15 75 15
1205 7.21 150 1210 7.21 150			75 15
1915 7.21 150	6.4 0.000		75 15
1920 7.31 150	6.6 0.000		75 15
1925 7.31 150	6.000	3.28 6.73 21,9	75 /5
1230	7 0000 X	3.12 67 21.4 2	ZO @ 1230 PR VOCS
		1	C 1200 · JC VCC
	The arpwas	madrertanelly	
	eft on	4.22 unit.	
	- V (-#*1.6.2)		, talthe
1550 7.37 150	6.6 2.78	C- 00 - 1 - 1 C- 1 - 1 - 1 - 1	27
7.27		13/15 2/12/16) reasons
1555 \7.37 150	6.7 2.78	74 4.7 66 21	(7)
1600 7.87 150	C.8 288	11 11 11	13 102/03/
1605 737 100	FIL Diobe not to	inchining Cirrects	63
EQUIPMENT DOCUMENTATION X	TIL probe not th	TYPE OF PUMP MATERIAL	TYPE OF BLADDER MATERIAL
MARSCHALK BLADDER	SILASTIC	POLYVINYL CHLORIDE	TEFLON
SIMCO BLADDER	HIGH DENSITY POLYETHYLENE	STAINLESS STEEL	DOTHER
GEOPUMP + VOO	ding were recorded		ork mallgorie - Bts-
ANALYTICAL PARAMETERS + VCA	METHOD NUMBER	PRESERVATION VOLUME METHOD REQUIRED	SAMPLE COLLECTED
voc Svoc	8260B) CLP	HCL/4 DEG & 3X40 mL 4 DEG. C 2X1 L AG	□ √yoc □ svoc
PEST / PCBs	CLP	4 DEG. C 2 X 1 L AG	PEST / PCBs TAL INORGANICS
TAL INORGANICS Other	CLP	HNO3 to pH <2 1 x 1 L P	_ 🗆 /
PURGE OBSERVATIONS	í	NOTES/LOCATION SKETCH	
PURGE WATER	NUMBER OF GALLONS		
CONTAINERIZED YES (NO)	Selver		
Signature:	1 2621		and the second
SI SI SI	!/_		
MAC	TEC	- 18 K	FIGURE 4-16 OW FLOW GROUNDWATER DATA RECORD
VBIS	01/26/2009	AYSDE	C QUALITY ASSURANCE PROGRAM PLAN
511 Congress Street Portlan	d Maine 04101		

LOW F	LOW GR	OUNDWA	ATER SAI	VIPLING RE	CORD						
PROJECT [Former	Speedy C	leoners sil	SAMPLE I.I	D. NUMBER		~~	•	SAI	MPLE TIME	
EXPLORATION	ION ID: H	A-112			SITE				<u></u>	DATE 2-	-3-04
TIME.	START /5 !C	US EN	1010S	Jo	B NUMBER	3	6 12083	7109		FILE TYPE	
WATER LE	EVEL / PUMP SE	ETTINGS	TO	IREMENT POINT OP OF WELL RISER OP OF PROTECTIVE THER	CASING	PROTECTIVE CASING STIC (FROM GROU	CKUP .	FT	PROTEC CASING DIFFERE	/WELL .	FT
INITIAL DEF TO WAT	TER		FT WELL D		FT	PID AMBIENT AIR		PPM	WELL		!N
FINAL DEF TO WAT			FT SCREE		FT	PID WELL MOUTH	` .	PPM	WELL INTEGRI		NO N/A
DRAWDO' VOLUI (initial - f	JME ·	ch) or x 0.65 (4-inc		O OF DRAWDOWN V TOTAL VOLUME PUI		PRESSURE TO PUMP		PSI		CASING LOCKED COLLAR	
TOTAL V PURG (purge ra	GED		GAL Juration (minutes) x	x 0.00026 gal/millillter	г)	REFILL TIMER SETTING		SECONDS	DISCHAI TIMER SETTING		SECONDS
PURGE DA	ATA DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP.	SPECIFIC CONDUCTANCE (ms/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	PUMP INTAKE DEPTH (ft)	COMMENTS	
15:50	7.37	150	G.Sa	2.72	7.42	1	2415	217			
15', S.5	7.37	150	C-6 ¢	2.78	7.41	4.65	60 3)	214			
16:00 (6:05	7.37	150	6.87	2.90	7.43	4.3/	30	203			
	(.,,				/						
		ļ	<u> </u>	ļ.·		_		 	-		
			\ .		 	-		-	-		
			 		+	1		+			
									·		
	ļ	 	1					+	-		
<u> </u>			 		+	1.					
	 	1	+		-	1 .		 	 		
			•								
				<u> </u>			,	 			· · · · · · · · · · · · · · · · · · ·
	<u> </u>			<u> </u>	<u> </u>				<u> </u>	<u> </u>	
	NT DOCUMENT	FATION	TYPE OF TUBI	NG	D	YPE OF PUMP	MATERIAL		TYPE OF BI	LADDER MATERIAL	
	IARSCHALK BLAD	DDER	SILASTIC		·		L CHLORIDE	•	TEFLO		
	IMCO BLADDER.	•		ISITY POLYETHYLE		STAINLESS			OTHER	· none	<u>-</u>
✓ GE	EOPUMP		OTHER_		<u> </u>	OTHER	nere		•		
ANALYTIC To Be Collecte	CAL PARAMETE	_		METHOD		PRESERVATIO			SAMPLE	<u>.</u>	
□ vo	oc .	NF	82	NUMBER 260B		METHOD HCL / 4 DEG		mL	COLLECTED	c	
	VOC EST / PCBs		CL	and the second s		4 DEG. C 4 DEG. C	2 X 1 L 2 X 1 L			ST / PCBs	
1 —	AL INORGANIES		CL	P		HNO3 to pH	<2 1x1L	.P	[]TAL	L INORGANICS	
		= ,				NOTERIC	OCATION SKE	TOU		·	
PURGE OF		05	NUMBER OF G			NUTESILO	KATION SIL	ICH	· :		
33,		1 1/2									
Signa	ature: <u>//k</u>	1/1/1/2	MA	<u>m</u>							
		ΛΔ (TE								FIGURE 4-16
			1 1 1 1 V	3/200-9	1					DUNDWATER D	ATA RECORD
511	Congress St	K/(Portlan	d Maine 041	•			NY	SDEC QU	JALIIY AS	SSURANCE PRO	JGRAW PLAN

LOW	FLOW GF	ROUNDW	ATER SAI	MPLING RE	CORD						
PROJECT	Sperd	13 / (61	15155 E	SAMPLE I.I	D. NUMBER	120	8128-121	A-1141	ZM SAI	MPLE TIME	1535
EXPLORAT	· ` ·	1-A-1			SITE		MSDEC	۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰۰		DATE	1/21/09
TIME	START 14	40 EN	10 1545	Jo	B NUMBER		36170	8269]: :].	FILE TYPE	NEC
WATER LE	EVEL / PUMP S	SETTINGS		JREMENT POINT				<u> </u>			
			TC	OP OF WELL RISER OP OF PROTECTIVE THER	CASING	CASING ST	ICKUP		PROTEC	/ WELL	
INITIAL DE TO WA		7.26	FT WELL			(FROM GRO		FI	WELL		FT
FINAL DE TO WA		9/181	(TOR)		2 FT	AMBIENT A		PPM] DIAMETI] WELL		YES NO N/A
DRAWDO	OWN 0	,214	GAL RATIO	OF DRAWDOWN V	FT	MOUTH		PPM	I INTEGRI	CASING	
	final x 0.16 {2-in	ch) or x 0.65 {4-in	ch}) TO	TOTAL VOLUME PUI		PRESSURE TO PUMP		PSI		LOCKED COLLAR	$ \overline{\underline{z}} = \underline{\underline{z}} $
TOTAL V	GED \	138	GAL	0,190		REFILL TIMER		SECONDS	DISCHAF TIMER	RGE	SECONDS
		r minute) x time d	uration (minutes)	k 0.00026 gal/milliliter)	SETTING			SETTING	3	CESONDO
PURGE DA	DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	рН	DISS. O2	TURBIDITY	REDOX	PUMP INTAKE		
1450	WATER (ft)	RATE (ml/m)	(deg. c)	(ms/cm)	(units)	(mg/L)	(ntu)	(mv)	DEPTH (ft)	COMME	NTS
1455	9.45	125	47	0.589	7.3	10.03	31-3	-132	12		
1500	9-53	125	4.5	0.599	4.3	10.68	19.7	-139	1		
1505	4.59	125	47	0-590	7.3	10.22	15-8	-144			
1510	9-61	125	10.0	0.592	4.3	9.81	4.82	-149			
1520	9-61	125	9.9	1100	7-3	8,93		-150			
1525	9101	125	9-9	0.615	7.	837	9.99	-157			
	,		1		7.7		72 1		P		
			10	01:15	7.3	8,9	10	-150			
-											
		·									
/											
7	100										
	17										
	6										
EQUIPMEN TYPE OF	T DOCUMENT	ATION	7.05 05 71.00	_							
	<u>- POIMP</u> RSCHALK BLAD	DER	TYPE OF TUBIN	<u>G</u>	IYE	POLYVINYL		F		DDER MATERIA	<u>_</u>
=	CO BLADDER			ITY POLYETHYLENE		STAINLESS		L T	TEFLOAL OTHER		
GEO	DPUMP	. [OTHER	·		OTHER		. L			
	L PARAMETE	RS								*****	
To Be Collected			<u>NU</u>	THOD MBER	PF	RESERVATION METHOD	N VOLUM <u>REQUIF</u>		SAMPLE COLLECTED		
✓voc svo	С		8260 CLP			HCL / 4 DEG. 4 DEG. C	C 3 X 40 m 2 X 1 L A		□⊒voc ⊡svoc	2	
	T/PCBs INORGANICS		CLP CLP			4 DEG. C HNO3 to pH <	2X1L <i>A</i> 2X1LP .		PEST	/ PCBs NORGANICS	
Othe	mux (uneters	<u>ya</u>	Mrs.		Van)					anters!
PURGE OB:	SERVATIONS		······································	···········		NOTES/LOC	ATION SKETO	———— ЭН		1	1
PURGE WAT CONTAINERI			NUMBER OF GAI GENERATED	LLONS [//]		. 1	: /	<i>የ</i> ንነ ኔ	<u>-</u> 51		N
Signatu	re:				A. You	7		114		1	1
511 Cc	M Dongress Stre	[AC'		Sood	Haro	7	NYS	LOW FLO	DW GROU	NDWATER URANCE PI	FIGURE 4-16 DATA RECORD ROGRAM PLAN

LOW FLOW GROUNDWATER SAMPLI	ING RECORD	0.4
PROJECT CARRIAGE CLEANERS	SAMPLE I.D. NUMBER	828138 - HA - 11515:5 K SAMPLETIME 1000
EXPLORATION ID: HA: 115	SITE	CARRIAGE DATE 1-21-09
TIME START 0920 END /000	JOB NUMBER	3612082109 FILE TYPE DEC
WATER LEVEL / PUMP SETTINGS MEASUREMEN		PROTECTIVE PROTECTIVE
	ROTECTIVE CASING C	PROTECTIVE CASING STICKUP FROM GROUND) FT PROTECTIVE CASING / WELL DIFFERENCE FT
INITIAL DEPTH (3. SO FT WELL DEPTH (TOR)		PID WELL AMBIENT AIR PPM DIAMETER IN
FINAL DEPTH G. 80 FT SCREEN LENGTH	1/1 A m (1/1)	PID WELL WELL YES NO N/A MOUTH PPM INTEGRITY: CAP 2/4
		PRESSURE LOCKED X
TOTAL VOL.	7	REFILL DISCHARGE SECONDS TIMER SECONDS SETTING
(purge rate (milliliters per minute) x time duration (minutes) x 0.000	SPECIFIC	J2 ³ PUMP
DEPTH TO PURGE TEMP. CON	NDUCTANCE pH (units)	DISS. O2 TURBIDITY REPOX INTAKE (mg/L) (ntu) (mv) DEPTH (ft) COMMENTS
TIME WATER (ft) RATE (ml/m) (deg. c) 0.	1	664 699 382 455
0935 6.82 150. 0.8 2.		6.30 7.86 376 15.5
0/10 00 130		5.57 4.61 263 15.5 6.54 4.20 256 15.5
0713 0100 730	000 4:23	6.54 4.20 256 15.5 5.53 4.25 258 15.5
0950 6.83 150 7.0	1000 4.26	5.55 4.21 261 15.5
0422 0.09 100	1000	SAMPLE COLLECTES Q
1000		1000 FOR VOC
1 1 1 1 1	000 * 43	
The Co	ver cras i	advertadly left on
The u	1-22; veadir	as are not indicative
Ot-	Subsirtace	toudtous.
	5010	1127/2017 Summy
1673 7.96 400 8.8 1	1.440 8.2	13.1 1/6.3 -129
	0.428 8.1	0.5 6.3 -138
7630 170 400	<u> </u>	uactiming correctly
TYPE OF PUMP TYPE OF TUBING		PE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL
MARSCHALK BLADDER SILASTIC		POLYVINYL CHLORIDE TEFLON
SIMCO BLADDER HIGH DENSITY	POLYETHYLENE	STAINLESS STEEL OTHER
GEOPUMP OTHER		OTHER
ANALYTICAL PARAMETERS To Be Collected METH	00	PRESERVATION VOLUME SAMPLE METHOD REQUIRED COLLECTED
NUMB EXIVOC 8260B	<u>ER</u>	HCL/4 DEG.C 8X 40 mL
svoc		4 DEG. C 2 X 1 L AG PEST / PCBs
PEST / PCBs CLP TAL INORGANICS CLP		HNO3 to pH <2 1 x 1 L P TAL INORGANICS
Other		
PURGE OBSERVATIONS		NOTES/LOCATION SKETCH
PURGE WATER CONTAINERIZED YES NO SENERATED	ons <u>1.4</u>	MISUS 15 / TO
OCH PRINCES TO THE PR	6	Christian This
Signature: May - M Signature:		Charles in The Contract of the
ANN FACTOR	ر ا	FIGURE 4-1
MACIEC	,	
1 RAS 01/26/20	·49	LOW FLOW GROUNDWATER DATA RECOR
511 Congress Street, Portland, Maine 04101		ž V/

LOW F	LOW GR	OUNDWA	ATER SAI	MPLING RE	CORD						
PROJECT	Former	Speedy C	lecurers Sil	e SAMPLE I.I	D. NUMBER			-	SAMPLE TIME		
EXPLORATI	EXPLORATION ID: HA - 115			<u> </u>	JOB NUMBER 3612082109			DATE 213/09			
TIME	START /6:3	O ENI	16:30		B NUMBER	361	208710	, 5		FILE TYPE	
WATER LE	VEL / PUMP SE	ETTINGS		REMENT POINT		PROTECTIV	F .		PROTEC	TIVE	
			ТС	P OF PROTECTIVE HER	CASING	CASING STI	CKUP	FT	CASING DIFFERE	/WELL	
INITIAL DEI TO WA			FT WELL (DEPTH	FI	PID AMBIENT AI	R	PPM	WELL DIAMETE	ER IN	
FINAL DE			FT SCREE			PID WELL	,		WELL	YES NO N/A	
DRAWDO VOLU	ME .			OF DRAWDOWN V		MOUTH PRESSURE		PPM	INTEGRI	CASING	
(initial - TOTAL V	final x 0.16 {2-incl	n) or x 0.65 (4-ind	:h}) <u>TO </u>	TOTAL VOLUME PU	RGED	TO PUMP	<u></u>	PSI	DISCHAF	COLLAR	
PURC	GED		GAL L GAL Iration (minutes) >	t 0.00026 gal/milliliter		TIMER SETTING		SECONDS	TIMER SETTING	SECONDS	
PURGE DA	ATA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	1 -11	DISS. 02	TURBIDITY	REDOX	PUMP INTAKE		
TIME	WATER (ft)	RATE (ml/m)	(deg. c)	(ms/cm)	pH (units)	(mg/L)	(ntu)	(mv)	DEPTH (ft)	COMMENTS	
16.25 16.26	7.9	400 400	8.75 4.16	0.478	8.14	3.19	6:29	-129 -138	-		
, 0.2-		100	1.02	U . (28	0	0.27	0.2 /				
					<u> </u>						
· 			<u>\$</u>		ļ	·				· · · · · · · · · · · · · · · · · · ·	
<u> </u>					<u> </u>						
			· ·		ļ.					: 	
							•.				
1	NT DOCUMENT	ATION	TYPE OF TUBIN	IC.	TV	PE OF PUMP	ΜΑΤΕΡΙΔΙ		TYPE OF BLA	ADDER MATERIAL	
I —	ARSCHALK BLAD	DER	SILASTIC	<u></u>			. CHLORIDE		TEFLON		
	MCO BLADDER	-	HIGH DEN	SITY POLYETHYLEN	Æ . 🗀	STAINLESS	STEEL	ļ	OTHER		
_ j√GE	OPUMP		OTHER_			OTHER	· · · · · · · · · · · · · · · · · · ·		· · · · · ·		
ANALYTIC To Be Collected	AL PARAMETE	ŔS		ETHOD	· P	RESERVATION			SAMPLE		
□ vo				UMBER SOB		METHOD HCL74 DEG		mL.	COLLECTED	•	
L ===	ST / PCBs		Gle			4 DEG. C 4 DEG. C	2 X 1 L 2 X 1 L	AG	- =	T / PCBs	
TAI	LINORGANICS		CLI	Ρ	•	HNO3 to pH	<2 1x1L	P 	TAL	INORGANICS	
	BSERVATIONS	•		-	T.	NOTES/LO	CATION SKET	СН			
PURGE WA		(NO)	NUMBER OF GA	ALLONS Z1	_						
C:	MI	<u> </u>	MAM								
Signat	ure: <u> </u>	-VUM	Z V)V \				/				
		IAC 345	TEC]3 po 9			NYS			FIGURE 4-16 UNDWATER DATA RECORD SURANCE PROGRAM PLAN	

LOW FLOW GROUNDWATER SAMPLING RECORD	878128
PROJECT CARRIAGE CLEANINGS SAMPLE I.D. NUMBE	R 117014 SAMPLE TIME 1130
	THE CARRIAGE DATE 1-21.09
TIME START /0/5 END 3/145 JOB NUMBE	R 3612082109 FILETYPE DEC
WATER LEVEL / PUMP SETTINGS MEASUREMENT POINT	PROTECTIVE PROTECTIVE
TOP OF WELL RISER TOP OF PROTECTIVE CASING OTHER	CASING STICKUP (FROM GROUND) O FT CASING / WELL DIFFERENCE FT
INITIAL DEPTH TO WATER FT WELL DEPTH (TOR)	PID WELL Q IN DIAMETER IN
FINAL DEPTH TO WATER STATE SCREEN LENGTH WINK WON'T FT	PID WELL YES NO N/A INTEGRITY: CAP 1/2 — CASING × — —
DRAWDOWN VOLUME (initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) RATIO OF DRAWDOWN VOLUME TO TOTAL VOLUME PURGED	PRESSURE TO PUMP. PSI COLLAR Y
TOTAL VOL. O. O. O.	REFILL DISCHARGE SECONDS TIMER SECONDS
PURGED GAL (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter)	SETTING SETTING
PURGE DATA SPECIFIC PURGE TEMP. CONDUCTANCE PH	OLP PUMP DISS. 02 TURBIDITY REDOX INTAKE COMMENTS
TIME WATER (ft) RATE (ml/m) (deg. c) (ms/cm) (unit	ts) (mg/L) (ntu) (mv) DEPTH (tt) COMMENTO
7033 8.00 734	17 7.71 14.9 277 14 RECORDED WILL HORIBA
1100 8.72 150 7.5 0.000 3.4 1105 8.75 150 7.5 0.000 3.4	12 7.10 18.9 277 14 0-22.
11/0 8.77 150 7.6 0.800 3.4	
1115 8.77 150 7.9 0000 3.4	7 0 11
1120 8 // 130	14 775 02.7 275 14
1152 9.1. 120 1019	SAMPLE COLLECTED @
1/30	4 73 227 270 1130 FOR VOC
320	
The cover wa	
ceading 3 are	
5116 Surface	enditing
12 13	AP
	15 0/12.7/20d
2 400	3 13 47.4 000 7 000 10104
1648 C40 300 1.40871 7.5440 +	47. 0.4 168 88 / Timber
EQUIPMENT DOCUMENTATION TEL Value is wet.	wer Find
TYPE OF PUMP	TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL TYPE OF BLADDER MATERIAL TEFLON
MARSCHALK BLADDER SILASTIC	POLYVINYL CHLORIDE TEFLON STAINLESS STEEL OTHER
SIMCO BLADDER HIGH DENSITY POLYETHYLENE	☐ STAIRLESS STEEL
X/GEOFOWIF	21/2/5
ANALYTICAL PARAMETERS To Be Collected NUMBER	PRESERVATION VOLUME SAMPLE METHOD REQUIRED COLLECTED
8280B	ADEC C 3X 40 mL DVVVC
PEST / PCBs CLP	4 DEG. C 2 X 1 L AG PEST / PCBs HNO3 to pH <2 1 x 1 L P TAL INORGANICS
TAL INORGANICS CLP	HINOS to pit 12
Other	A NOTES/LOCATION SKETCH
PURGE OBSERVATIONS PURGE WATER NUMBER OF GALLONS W	1 AR
CONTAINERIZED YES NO OF NERATED	
Signature: May Augus e	I want
alded	FIGURE 4-10
MACTEC	LOW ELOW GROUNDWATER DATA RECORD
1 BAS 01 12612009	NYSDEC QUALITY ASSURANCE PROGRAM PLAI
511 Congress Street, Portland, Maine 04101	3, //

LOW F	LOW GR	OUNDWA	ATER SAN	IPLING RE	CORD						
PROJECT	Former	Speedys	Cleaners S.	SAMPLE I.	D. NUMBER				SAME	LE TIME	
EXPLORATI	ION ID:	+A-11	7		SITE	Fo	Mes o	puds		DATE	2/3/09
TIME	START /6'	38 EN	D 16:45		B NUMBER	36	12082	१०५	:	FILE TYPE	
WATER LE	VEL / PUMP S	ETTINGS		REMENT POINT P OF WELL RISER		PROTECTIV	Æ		PROTECT!	VΕ	
	. '	,	ТО	OF PROTECTIVE	CASING	CASING STI (FROM GRO	CKUP	FT	CASING / V DIFFEREN	VELL	FT
INITIAL DEI TO WA		:4	FT WELL D	EPTH 16.5	FT	PID AMBIENT AI	R	PPM	WELL DIAMETER		IN
FINAL DEI TO WA			FT SCREEN		FT	PID WELL MOUTH		PPM	WELL INTEGRITY		YES NO N/A
DRAWDO VOLU (initial -	JME	ch} or x 0.65 {4-inc		OF DRAWDOWN V		PRESSURE TO PUMP		PSI		CASING LOCKED COLLAR	
TOTAL V	/OL.		GAL			REFILL TIMER		SECONDS	DISCHARG		SECONDS
·		minute) x time du	uration (minutes) x	0.00026 gal/milliliter)	SETTING	· .		SETTING		
PURGE DA	DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	pH	DISS. O2	TURBIDITY	REDOX	PUMP INTAKE		
16:35	8.4	RATE (ml/m)	(deg. c)	(ms/cm)	7.4S	(mg/L)	(ntu) LIZ,CI	/00	DEPTH (ft)	COMME	NTS
16:43	8.4	300	7.93	1.402	7.43	0.32	162	88			·
, -									·		
				•							
				/				•			
										 	
`			5								
<u> </u>											
/											
EQUIPME	NT DOCUMENT	[ATION	<u> </u>	· · · · · · · · · · · · · · · · · · ·			<u>.</u>	<u> </u>			
L	OF PUMP		TYPE OF TUBIN	<u>G</u>	IY	PE OF PUMP	MATERIAL		TYPE OF BLAD	DER MATERI	AL .
	ARSCHALK BLAD MCO BLADDER.	DDER .	SILASTIC	SITY POLYETHYLEN		_ POLYVINYL STAINLESS	CHLORIDE		TEFLON OTHER		
	EOPUMP		OTHER_			OTHER			· OIIIER		
	AL PARAMETI	ERS		š		· · · · · · · · · · · · · · · · · · ·		خـــ	· · · · · · · · · · · · · · · · · · ·		
To Be Collected		M		THOD JMBER		RESERVATION METHOD HCL / 4 DEG	REQUI	RED .	SAMPLE COLLECTED VOC		
⊟sv			CLF CLF			4 DEG. C 4 DEG. C	2X1L 2X1L	AG	SVOC	DCB ₀	
ТА	L INORGANICS		CLF			HNO3 to pH			- ==	ORGANICS	·
Oti											
PURGE WA	BSERVATIONS ATER		NUMBER OF GA	LLONS 1 1		NOTES/LO	CATION SKET	CH	•		
CONTAINE		s (NO)	GENERATED								
	M	101.	MAn			• 1 5 7					
Signal	ture: <u>///</u>	- Mayfred	J*V**/* \		—				. *		
		IAC	TEC								FIGURE 4-16
F11 (Sanaraga Str	B18	- 03 /0	3/2000	,		NYS				R DATA RECORD PROGRAM PLAN

LOW FLOW GROUNDWATER SAMPLING RECORD	Soc 28/11/8:1201				
PROJECT TUMEY Speedy's METHE & SAMPLE I.D. NUMBER	SAMPLE TIME 800				
EXPLORATION ID: SITE	NS)EC DATE W/130109				
TIME START 1 55 END SOB NUMBER	3612682119 FILE TYPE DEC				
	PROTECTIVE PROTECTIVE				
TOP OF PROTECTIVE CASING	CASING STICKUP CASING / WELL C. 4 FT DIFFERENCE				
	PID WELL AMBIENT AIR PPM DIAMETER IN				
FINAL DEPTH TO WATER TO WATER TO WATER TO WATER	PID WELL YES NO N/A MOUTH PPM INTEGRITY: CAP				
DRAWDOWN 0-06 GAL RATIO OF DRAWDOWN VOLUME	PRESSURE CASING LOCKED LOCKED				
(initial - final x 0.16 {2-inch} or x 0.65 {4-inch}) TO TOTAL VOLUME PURGED	TO PUMP PSI COLLAR				
DUDGED GAL	REFILL TIMER SECONDS TIMER SETTING SETTING				
(purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) PURGE DATA SPECIFIC	PUMP				
DEPTH TO	DISS. O2 TURBIDITY REDOX INTAKE (mg/L) (ntu) (mv) DEPTH (ft) COMMENTS				
1707 Pung M	89 8/8 90 1				
1718 7.86 200 5.4 0.589 15	7.1 46.3 96				
1720 7.98 200 6.8 0.602 7.3	6.5 21.7 160				
1725 8.02 200 7.0 0.614 9.2 1730 8.62 200 7.3 0.025 7.2	55 145 90				
1735 6.02 200 7-1 0.634 +2	6,2 18,5 93				
1746 803 200 7.2 0.638 7.2	67 13.7 90				
1750 8 03 200 7.2 0.638 7.3 1750 8 03 200 7.3 0.641 7.2	7.8 13/1 41				
1755 863 200 7 3 01644 7.2	69 134 96				
The smouth Charther					
1806 thus state of the state of					
7 0/644 12	6.9 13,4 90				
13					
EQUIPMENT DOCUMENTATION TYPE OF PLIMP TYPE OF TUBING	YPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL				
MARSCHALK BLADDER SILASTIC	POLYVINYL CHLORIDE TEFLON				
SIMCO BLADDER HIGH DENSITY POLYETHYLENE	STAINLESS STEEL OTHER TO STAINLESS STEEL				
ANALYTICAL PARAMETERS					
To Be Collected ME HOD NUMBER	PRESERVATION VOLUME SAMPLE METHOD REQUIRED COLLECTED HCL / 4 DEG. C 3 X 40 mL				
SVOC S260B CLP CLP CLP	4 DEG. C 2 X 1 L AG SVOC 4 DEG. C 2 X 1 L AG PEST / PCBs				
PEST / PCBs CLP TAL INORGANICS CLP	HNO3 to pH <2 1 x 1 L P TAL INORGANICS				
Other	INOTES/LOCATION SKETCH HIM!				
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED YES NOW OBSERVATIONS NUMBER OF GALLONS GENERATED	N Hardin				
Signature:					
MACTEC	LOW FLOW GROUNDWATER DATA RECORNYSDEC QUALITY ASSURANCE PROGRAM PLA				
511 Congress Street, Portland, Maine 04101	/ In Middle GOVERT HOSSINATE TO STATE				

LOW FLOW GROUNDWATER SAMPLING RECORD									01			
PROJECT		4000	2/s/Carvi	SAMPLE I.D.	NUMBER	228127-HA-119001314 SAMPLETIME (255						
EXPLORATIO	ON ID:	H	A-119		SITE		ISDEC		SXD	D	ATE 13	
TIME .	START 1190	END	1320	ЈОВ	NUMBER	36	120821	04		FILE	TYPE	DEC.
WATER LEV	/EL / PUMP SE	TTINGS		EMENT POINT		PROTECTIVE	:		PROTEC	CTIVE		, matte
				OF PROTECTIVE C	ASING	CASING STICKUP (FROM GROUND) FT DIFFERENCE FT						
INITIAL DEP TO WATI	TH 4	24	T WELL DE		FT	PID AMBIENT AIR		PPM	WELL DIAMET	ER	2	IN
FINAL DEP		-31	FT SCREEN	1	FT	PID WELL MOUTH		PPM	WELL INTEGR	ITY:	CAP YES	NO N/A
DRAWDOV VOLUN	AE P > U			OF DRAWDOWN VC	DLUME	PRESSURE TO PUMP		PSI		CAS LOC COL	KED Z	= =
) or x 0.65 {4-inch		OTAL VOLUME PUR	GEO	REFILL		primit in the second	DISCHA	RGE		
TOTAL VO	en l カィ	728 c	ALI L	0.00026 gal/milliliter)		TIMER SETTING		SECONDS	TIMER SETTIN	G	San Married and Salar Security	SECONDS
PURGE DA		minute) x time du	ation (minotos) x	SPECIFIC				,	PUMP	ı		
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (ms/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	INTAKE DEPTH (ft)		COMMENTS	
1200	Stande	p Dur						-207	13			
1205	7.29	280	7.7	3-617	7.2	2.25	2-12	-225	17			
1210	4.31	780	9-9	0.615	7-2	090	0.51	-241	1			
1215	7-71	280 2910	1000	0.011	2-2	0.70	0.44	-250				
1225	731	733	10.)	Note	7.1	0.87	0.31	-254				
1230	221	730	4,9	1.610	2-1	0,31	0.27	-262	1			
1235	7.31	23.0	લત્ર્ય	01010	7.1	20.1	252	~205	1			
1350	7.771	ాడ్టర	10,0	0.610	7-1	60.1	2.19	-202	1	-		
1295	7.71	280	4.3	8000	7.1	20-1	0.41	200	 	+		
<u> </u>			10	0.608	71	401	0.4	-2-10				
\vdash			10'	0,000								
1	100								ļ <u>-</u>	-		
	16		L		ļ	 		 	 			
	\square	ļ					<u> </u>	 	 			
				<u> </u>			<u> </u>		<u> </u>			
l.	NT DOCUMEN	TATION	TYPE OF TUBI	NG	1	YPE OF PUMP	MATERIAL		TYPE OF I	BLADDE	R MATÉRIAL	
	<u>OF PUMP</u> ARSCHALK BLAI	DDER	SILASTIC			POLYVINY	L CHLORIDE		□ TEFL	ON	•	
	IMCO BLADDER		HIGH DEN	ISITY POLYETHYLEI	NE [STAINLES	S STEEL		OTHE	ER		_
☐ G	EOPUMP		OTHER_			OTHER_						
	CAL PARAMET	ERS		METHOD		PRESERVAT	ION VOL		SAMPLE			
To Be Collecte		DUP	1	NUMBER 260B		METHOD HCL / 4 DE			COLLECTI V			
	voc	170	C	LP		4 DEG. C 4 DEG. C	2 X 1 2 X 1			VOC EST / P	CBs	
	PEST / PCBs CLP					HNO3 to p	H<2 1 x 1 J		F	AL INO	RGANICS	. Nevs
·	ther M	n pann.	excre	Mnus_			117018			WN	A poiron	7 21
PURGE C	OBSERVATION					NOTES/L	OCATION SKE	тсн	a		4	N.
PURGE W		s No	NUMBER OF (GENERATED	GALLONS 7.2	Ü		1 Lans	-)		How	.]	2
CONTAIN	<u>Λ</u>							$\int_{\mathbb{R}^{n}}$	L	V PARTIE MANAGEMENT	<i>J</i>	
Sign	ature:	And the same of th	and the same of th			. <1	12 mg	JA-119			American Land Company of the Company	
O.gri	I di di						¥ 6		الله مرف (-41	W MV	Y COURT 4 4
12		IAC	CTE	\mathbf{C}_{\perp}				I OW F	I OW GE	ROUN	DWATER I	FIGURE 4-10 DATA RECORI
	1	DAJ .	11261	2009			N	YSDEC Q	UALITY	ASSU	RANCE PE	ROGRAM PLAN
511 Congress Street, Portland, Maine 04101											<u> </u>	

LOW FLOW GROUNDWATER SAMI	PLING RECORD		
PROJECT FORMER Speedy'S	SAMPLE I.D. NUMBER	(828128HAD)	SAMPLE TIME 1245
EXPLORATION ID:	SITE	NAMES	DATE ON S
TIME START 1210 END 1255	JOB NUMBER	361208211	FILE TYPE 1)
TOP	MENT POINT OF WELL RISER	PROTECTIVE	PROTECTIVE
OTHE	OF PROTECTIVE CASING ER	(FROM GROUND)	CASING/WELL OF FT DIFFERENCE FT
INITIAL DEPTH TO WATER 7.14 FT WELL DEI (TOR)	TH 15.3 FT	PID AMBIENT AIR	PPM DIAMETER IN
FINAL DEPTH TO WATER 7.18 FT. SCREEN	UM WOWN ET	PID WELL MOUTH	WELL YES NO N/A PPM INTEGRITY: CAP
DRAWDOWN OLUME CO. (GAL RATIO C	OF DRAWDOWN VOLUME	PRESSURE	CASING LOCKED
(initial - final x 0.16 {2-inch} or x 0.65 {4-inch}) TO TO	TAL VOLUME PURGED	TO PUMP REFILL	PSI COLLAR
TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0	.00026 gal/milliliter)		ECONDS TIMER SECONDS SETTING
PURGE DATA	SPECIFIC	Lave es Laurrinia La	PUMP REDOX INTAKE
TIME (WATER (ft) RATE (cql/m) (deg. c)	CONDUCTANCE pH (ms/cm) (units)	DISS. O2 TURBIDITY F (mg/L) (ntu)	(mv) DEPTH (ft) COMMENTS
1)17 Phis or (hart of)	0.881 540	64 129 -	20 Sight oder
1224 7 18 325 98	0.895 8.6	5.0 1.7	-70 - petroleum
1224 7.18 325 9.9	0897 86	4.0, 0.9	100
1334 7.18 325 9.9	0.848 86	(3) (3) = (2) (4) (4) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	12
1344 7.18 375 9.5	U898 86	Levi (1) -	130
Dut Small time (HAI)	<u>بر</u>		Sample the
120 Omp of Co HA-13	ν <u> </u>		
10	0,898 8.6	10-1 1-1 -	-130
	0,010 8 =		
12			· ·
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF PUMP	g I	YPE OF PUMP MATERIAL	TYPE OF BLADDER MATERIAL
MADSCHALK BLADDER SLASTIC	. [POLYVINYL CHLORIDE	TEELON
	ITY POLYETHYLENE	STAINLESS STEEL	OTHER
GEOPUMP OTHER		OTHER	
	ETHOD JMBER	PRESERVATION VOLUME METHOD REQUIRE	D COLLEGITED
voc 826	OB .	HCL / 4 DEG. C 3 X 40 mL 4 DEG. C 2 X 1 L AC	SVOC
PEST / PCBs CLF		4 DEG. C 2 X 1 L AC HNO3 to pH <2 1 x 1 L P	PEST / PCBs TAL INORGANICS
TAL INORGANICS CLF			
PURGE OBSERVATIONS		NOTES/LOCATION SKETC	H Kingshir. N
PURGE WATER CONTAINERIZED YES NO NO NO NO NO NO NO NO NO NO NO NO NO	1LLONS 2-5	HAT Spuids	" \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		, I HAT	
Signature:			* * H 4. D2
MANACTEC		m V	FIGURE 4-
MACIE	2 1/59	Monte	LOW FLOW GROUNDWATER DATA RECOR
511 Congress Street Portland Maine 0410		A NYSI	DEC QUALITY ASSURANCE PROGRAM PLA

LOW F	LOW GR	OUNDWA		IPLING RE	CORD	(2)XI	18HA1)3	155RI			
PROJECT CARRIAGE CIGANERS SPECIAL SAMPLE I.D. NUMBE						HA-	193 15,5		SA	MPLE TIME	1330
EXPLORATION		LA12	13		SITE	CAR	RIAGE	Speedy	5	DATE	1-21-09
i .	START 1250	ENI	~ 13 U	JOE	NUMBER		12082			FILE TYPE	DEC
	VEL / PUMP SE			REMENT POINT							
	TOP OF WELL RISER PROTECTIVE PROTECTIVE TOP OF PROTECTIVE CASING STICKUP CASING / WELL										
INITIAL DEF	тн 🔼	, 0	□ তা	HER		(FROM GRO	UND)	FT	DIFFER	ENCE	FT
	NITIAL DEPTH TO WATER 9.68 FT WELL DEPTH (TOR) 15.6 FT AMBIENT AIR PPM DIAMETER IN										
	FINAL DEPTH TO WATER 9.71 FT SCREEN WKNOWN FT MOUTH PPM INTEGRITY: CAP										
DRAWDO' VOLUI) . (OF DRAWDOWN V		PRESSURE				CASING LOCKED	
(initial - f	final x 0.16 {2-incl	n} or x 0.65 {4-inc	h}) TO 1	OTAL VOLUME PUR	RGED	TO PUMP		PSI	5100114	COLLAR	
TOTAL V	SED /		GAL			REFILL TIMER		SECONDS	DISCHA TIMER SETTIN		SECONDS
		minute) x time du	ration (minutes) x	0.00026 gal/milliliter)		SETTING		OPP	PUMP	· · · · · · · · · · · · · · · · · · ·	·
PURGE DA	DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	pH	DISS. O2	TURBIDITY	-REDOX->	INTAKE	AMOO	MENTS
1300	9 71	RATE (ml/m) . / S20	(deg. c)	(ms/cm)	3.24	(mg/L) 7.08	(ntu) 31 ()	(mv) -2-3-3-	15.5		DITT MEASURG
1305	9.71	150	5.4	0.000	3.28	7.01	28:0	273	15.5		U-22.
1310	9.71	150	5.2	0.000	3.34	6.89	20.6	273	15.5		
1315	9.71	\W	5.2	0.000	3-33	6.65	19.8	273	12.2		
1320	9.71	150	6.2	0.000	3.32	6.63	19.1	273	15.5		
1325	9.71	/50	2	0,000	3.33	6.59	18.7	273	15.5	C4 4 . 5	Par = (2) 0
1330				K (7.000	2.1	66	159	250		T	COLLECTOR Q
\			7	0.000	1.7		1	2/0		1000 1	VIC. VIC.
 \ 		ļ	1100	rover	was	Mdo	Ve ratty	let	L		
			on	14 11-) u	1 7	read.	nas			·
	4		ank	not no	Cati	r of	subs	7	0		
	6		C	and from	ſ			, ,	<u> </u>		
					La-						
ļ	\				13/13	1	-7/1	de			
ļ <u></u>	 \ 				<u> </u>	11 J	115	7		<u> </u>	
ļ						 ·	1	<u> </u>			
FOURDMEN	NT DOCUMENT	TATION T	(C ova)	re was "	in the	14 Ctoba	ng Cirv	cety	!	1	
1	OF PUMP	ATION ~	TYPE OF TUBIL			PE OF PUMP		. 0	TYPE OF B	ADDER MATE	RIAL
MA	ARSCHALK BLAD	DER	SILASTIC			POLYVINY	L CHLORIDE		TEFLO		,
Sir	MCO BLADDER		HIGH DEN	SITY POLYETHYLEN		STAINLES			OTHER	e_none	
∑ GE	EOPUMP		OTHER_			DOTHER_	very				
ANALYTIC To Be Collected	AL PARAMETE	RS	M	ETHOD	ı	PRESERVATI	On Volu		SAMPLE		
ΓXΙνο				UMBER 60B		METHOD HCL74 DE	REQU G-0 \$X40		COLLECTE!	C	
□sv			CL CL			4 DEG. C	2 X 1 L 2 X 1 L		SV	OC ST / PCBs	
	L INORGANICS		CL			HNO3 to ph	I<2 1x1L	P	ТА	L INORGANICS	
Oth	ner										
PURGE WA		\sim	NUMBER OF G	ALLONS N.		i	CATION SKET	LCH A	44-11-	7	
CONTAINE	RIZED YES	S CNO	GENERATED			Kalun di	•				
Signa	ture:	20) /			/ 1 Xo 2		ung LOW FI			:
and the same of th		т л <u> </u>		•		ž/ /j		no Chr.			FIGURE 4.46
4	7/ JV	IAC	TE	<u>ا</u>		3/				DUNDWAT	FIGURE 4-16 ER DATA RECORD
511 (Congress Str	AS of) () () () () () () () () () (,a4 01		33	NY	SDEC QU	IALITY A	SSURANC	E PROGRAM PLAN

LOW F	LOW GR	OUNDWA	ATER SAM	IPLING REC	CORD						
PROJECT	PROJECT GDE DES CALCIONS SAMPLE I.D. NUMBER GRADIZE, TERCTURION SAMPLETIME 1335										
EXPLORATION ID: DEC. WELL					SITE	E NYIDEC				DATE 12	1 067
TIME	START 12	'식O EN	D 1740	JOE	NUMBER	36	17082	109	F	FILE TYPE D	EC .
WATER LE	VEL / PUMP SE	ETTINGS		REMENT POINT			_		PROTECTIV	./E	
1			<u></u> то	P OF WELL RISER P OF PROTECTIVE (HER	CASING	PROTECTIVE CASING STIC (FROM GROU	CKUP	FT	CASING / W	VELL	FT
INITIAL DEF	PTH 9	-18	FT WELL C			PID			WELL	7	
FINAL DEF		.24	(TOR)	L <i>IS-2</i>	<u></u>	AMBIENT AIF	`	РРМ	DIAMETER WELL	YES	NO N/A
DRAWDO	wn 🔽	096	LENGTI	4 LVVE	FT	MOUTH		PPM		CAP CASING LOCKED	
(initial - final x 0. 16 (2-inch) or x 0.65 (4-inch)) TO TOTAL VOLUME PURGED TO PUMP PSI COLLAR											
TOTAL V		-08	GAL	.0046		REFILL TIMER		SECONDS	DISCHARG TIMER		SECONDS
				0.00026 gal/milliliter)		SETTING			SETTING		
PURGE DA	TA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	рН	DISS. 02	TURBIDITY	REDOX	PUMP INTAKE		
TIME	WATER (ft)	RATE (ml/m)	(deg. c)	(ms/cm)	(units)	(mg/L)	(ntu)	(mv)	DEPTH (ft)	COMMENTS	-7-
1255	924	200	10.3	1.42	20	9.46	27-1	-213	14		
1300	9-24	200	10-2	1-21	1-0	9108	21.3	-207			
1305	924	200	10-3	1-07	7-1	9.85	16-5	-198			
1310	9.24	200	10.3	0.95	1.2	9-12	11.4	-197 -185			
1320	9 24	200	10.7	0.617	7-2	aid	10-91	-1207			
1325	9.24	7011	10-2	0.608	1.2	9.72	5,67	-148			
1330	9-24	200	10-0	0-592	4.3	994	481	-177	V		
			rD	0.592	7.3	9.9	4.8	-18Û			
			10	0.)[2	1.7	' - ' -		7100			
	4					-					
							•				
	\ <u> </u>		 			1					
	\\ <u></u>										
EQUIPME	NT DOCUMENT	TATION								DDER MATÉRIAL	
	<u>OF PUMP</u> ARSCHALK BLAD	DER	TYPE OF TUBIL	<u>VG</u>	. <u>11</u>	PE OF PUMP POLYMNYL			TEPLON	DER WATERIAL	•
	MCO BLADDER	DER		SITY POLYETHYLEN	e 🗀	POLYMNYL CHLORIDE STAINLESS STEEL			OTHER_		<u> </u>
GE	EOPUMP		OTHER_			OTHER_					
ANALYTIC	CAL PARAMETI	ERS	N	IETHOD .	F	PRESERVATIO			SAMPLE		
			. <u>N</u>	<u>IUMBER</u> 60B		METHOD HCL / 4 DEG	REQU 3 X 40		COLLECTED		
SVOC CLP PEST / PCBs CLP						4 DEG. C 4 DEG. C	2 X 1 L 2 X 1 L		SVOC	/ PCBs	
Ŭ □TA	L INORGÁNICS		CL	Р		HNO3 to pH	<2 1 x 1 L	Р	TAL IN	NORGANICS	
Oth					- 	NOTES!! O	CATION SKE	TCH			1.00
PURGE O	BSERVATIONS ATER	, /a.	NUMBER OF G	ALLONS, 1		NOTESILO	CALION SKE			((1003
CONTAINE		s (NO)	GENERATED			N	L	154	11dim	1/6	nes L
	, l		_			1					er.
Signa	ture:									ري ا	weil
		IAC	TEC	\mathbb{C}		4	Pa	nkn			FIGURE 4-16
	U VR	Aj n	1726/	2009			NV				ATA RECORD OGRAM PLAN
511 Congress Street Portland Maine 0/101								~~			

			} := \ \ \			
LOW FLOW GROUNDWATER SAMF	PLING RECORD	8381)0EMOQ	1050D	~ · —		
PROJECT CAMAGE Charmers	SAMPLE I.D. NUMBER	878126 Amil C	SAN SAN	SAMPLE TIME		
EXPLORATION ID: SW EW-1	SITE	NYSIDEC		DATE 1-19-09		
TIME START ()-68 END 1375	JOB NUMBER	136120X2	187	FILE TYPE DEC		
	MENT POINT OF WELL RISER	PROTECTIVE	PROTEC'	TIVE		
	F PROTECTIVE CASING	(FROM GROUND)	CASING /			
INITIAL DEPTH TO WATER TO WATER TO WELL DEP (TOR)	TH 28,2 FT	PID AMBIENT AIR	WELL PPM DIAMETE	ER 6 IN		
FINAL DEPTH TO WATER SCREEN	10/00	PID WELL	WELL	YES NO N/A		
DRAWDOWN LENGTH VOLUME LOGIC GAL RATIO OF	F DRAWDOWN VOLUME	MOUTH PRESSURE	PPM INTEGRI	TY: CAP CASING LOCKED		
(initial - final x 0.16 {2-inch} or x 0.65 {4-inch}) TO TOT	TAL VOLUME PURGED	то РИМР	PSI	COLLAR		
PURGED ~ 3/ 6 GAL		REFILL TIMER	DISCHAR SECONDS TIMER	SECONDS		
(purge rate (milliliters per minute) x time duration (minutes) x 0.0		SETTING	SETTING	i		
	SPECIFIC CONDUCTANCE pH	DISS. O2 TURBIDITY	PUMP REDOX INTAKE (mv) DEPTH (ft)	∧ COMMENTS		
TIME WATER (ft) RATE (ml/m) (deg. c)	(ms/cm) (units)	(mg/L) (ntu)	(mv) DEPTH (ft) ~ 20	PMy on		
1216 800 350 10.1	0.837 03	46 2-9.	-20			
121 8-66 750 11.6 0	1847 85	9.3 2.1	-70			
1216 866 350 12.1	7. 15 / 8.6	6 1 1 0	-120			
1221 10 30 12.6	0.863 68,8	4.1.1.7	-120			
1231 8,6 350 12,4	0,865 8,8	0.4 1.2	-110 V			
1236 8.66 350 124	0.864 88	401 0.7	110			
216 (2)	0.884 0.00	COA 0.6	-120	Small time		
1314 Pung of t				Jo Process		
12	0764 8,8	201 014	120			
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING	<u>TY</u>	PE OF PUMP MATERIAL	TYPE OF BLA	ADDER MATERIAL		
MARSCHALK BLADDER VILASTIC		POLYVINYL CHLORIDE	TEFLON			
	Y POLYETHYLENE	TAINLESS STEEL	OTHER	wore		
GEOPUMP OTHER	<u>V.</u>	OTHER VOV				
ANALYTICAL PARAMETERS To Be Colleged METI NUM		PRESERVATION VOLUM METHOD REQUIR				
8260B		HCL / 4 DEG. C 3 X 40 m 4 DEG. C 2 X 1 L A	L VOC			
PEST / PCBs · CLP		4 DEG. C 2 X 1 L A HNO3 to pH <2 1 x 1 L P	G PES	T / PCBs INORGANICS		
TAL INORGANICS CLP Other				INONOANIOO		
PURGE OBSERVATIONS		NOTES/LOCATION SKET	H MONTO	e Ave		
PURGE WATER CONTAINERIZED YES NO NUMBER OF GALL GENERATED	ons~3.6 1	Dup here	7.mm	xoun in		
		3	t	XBNV N		
Signature:		tunt 2	Puntu	ge		
JANA CEEC		1 2	2 Carrien	WS		
MACTEC	fre	E Knwy		FIGURE 4-16 UNDWATER DATA RECORD SURANCE PROGRAM PLAN		
511 Congress Street Portland Maine 04101	V	Branklayn Al Kwyt Nush	DEC QUALITY AS	SURANCE PROGRAM PLAN		

LOW FLOW GROUNDWA	TER SAMPLING RECO	ORD	o <u>é</u>)\$	``
PROJECT Furnispeady's Cle	eaners Sile / Caroniage C SAMPLE I.D. N	10MBER 8313	10-12W-001A	SAMPLE TIME	1450
EXPLORATION ID: [W-10]		SITE EW		DATE	2/3/09
TIME START 14" DAU END	~1570 JoB N	IUMBER Sol	12082110	FILE TYPE	
WATER LEVEL / PUMP SETTINGS	MEASUREMENT POINT TOP OF WELL RISER TOP OF PROTECTIVE CAS			PROTECTIVE CASING / WELL	FT
INITIAL DEPTH . TO WATER	TOR) OTHER WELL DEPTH (TOR)	(FROM GROU PID FT AMBIENT AIR	ND) FT	DIFFERENCE L WELL DIAMETER	E IN
FINAL DEPTH Y G	FT SCREEN ?	PID WELL FT MOUTH	PPM		YES NO N/A
DRAWDOWN VOLUME Cinitial - final x 0.16 (2-inch) or x 0.65 (4-inch			PSI	CASING LOCKED COLLAR	
TOTAL VOL. PURGED (purge rate (milliliters per minute) x time dura	ALL ation (minutes) x 0.00026 gal/milliliter)	REFILL TIMER SETTING	SECONDS	DISCHARGE TIMER SETTING	SECONDS
PURGE DATA DEPTH TO PURGE TIME WATER (ft) RATE (ml/m)	SPECIFIC TEMP. CONDUCTANCE (deg. c) (ms/cm)	pH DISS. O2 (units) (mg/L)	TURBIDITY REDOX (ntu) (mv)	PUMP INTAKE DEPTH (ft) COM	IMENTS
14.30 P.CO 300	10,28 0.735 8	3.12 107	9 -24	25.9	·
1438 1/66 300 1436 860 300		2.23 3.21 2.27 8.24	5 -329	6	
1436 860 300 1		2.37 0.34 2.30 0.35	4 -105		* 3
14,42 9 60 300	10,41 2 640 7	330 0.27	4 -112		
14145 x Co 301	10 38 0.640	5.31 0.21	4 -113	7	<u></u>
19:50 Sample hell					
	A STATE OF THE PROPERTY OF THE	and the same of th		COLUMN STATE OF STATE	The state of the s
				 	
	`			ļ	
MARSCHALK BLADDER	TYPE OF TUBING SILASTIC	TYPE OF PUMP A	CHLORIDE	TYPE OF BLADDER MAT	ERIAL.
SIMCO BLADDER GEOPUMP	HIGH DENSITY POLYETHYLENE OTHER	STAINLESS		OTHER	<u></u>
ANALYTICAL PARAMETERS To Be Collected VOC SVOC PEST / PCBs TAL INORGANICS VIOther	METHOD <u>NUMBER</u> 8260B CLP CLP CLP	PRESERVATION METHOD HCL / 4 DEG. 4 DEG. C 4 DEG. C HNO3 to ph	REQUIRED C 3 X 40 mL 2 X 1 L AG 2 X 1 L AG	SAMPLE COLLECTED VOC SVOC PEST / PCBs TALINORGANIC	à parmetts
PURGE OBSERVATIONS	<i>p</i>	NOTES/LOC	CATION SKETCH	ce for	121
PURGE WATER CONTAINERIZED YES NO Signature:	NUMBER OF GALLONS 16 GENERATED MAM		nv 5	X-W-1	E Residential
MAC BA 511 Congress Street, Portland	TEC	7		LOW GROUNDWA'	FIGI / TER DAT/ ,

revise

LOW FLOW GROUNDWATE	R SAMPLING REC	ORD						
PROJECT CHYGGE CLAW EXPLORATION ID: OW -\ TIME START 105 END	17)	NUMBER SITE	8781) 361)	LOXXIII	1125	SAMPLE TIME 17/2 DATE 1-19-09 FILE TYPE 1		
W. J	MEASUREMENT POINT	TONDER						
WATER LEVEL / PUMP SETTINGS	TOP OF WELL RISER TOP OF PROTECTIVE CA	SING	PROTECTIVE CASING STICK (FROM GROUN) FT	PROTECTIVE CASING / WE DIFFERENCE	ELL 15.3	
TO WATER 6 5	WELL DEPTH (TOR)		PID AMBIENT AIR		PPM	WELL J- IN		
FINAL DEPTH TO WATER 9, 16 FT	SCREEN LENGTH		PID WELL MOUTH		PPM	WELL YES NO N/A		
DRAWDOWN VOLUME (initial - final x 0.16 (2-inch) or x 0.65 (4-inch))	RATIO OF DRAWDOWN VOL		PRESSURE TO PUMP		PSI	Le C	OCKED COLLAR	
TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration	n (minutes) x 0.00026 gal/milliliter)		REFILL TIMER SETTING		SECONDS	DISCHARGE TIMER SETTING	SECONDS	
	SPECIFIC TEMP. CONDUCTANCE (deg. c) (ms/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	PUMP INTAKE DEPTH (ft)	COMMENTS	
1624 9 01 300 1	(6 (1))	12 G	43 6	38.6	-102	115 1	5000 F 776	
	0,9 0,94	147	40/1	17.8	-190	ì	·	
1634 9.22 250	1.6 0.94	44.2	<0.1	159	-27)0			
139 9.26 20 1	1.5 0.93	14.2	201	12	7.30			
1644 4. 26 150 1	1.4 0.897	140	<0.1 L	163	-240			
164 926 050	1.4 0 890	13.4	40.1	7.8	-257			
199 9.26 250 1	11.4 0.913	13.9	Lon	6.3,	-246			
704 926 250,	14 6.407	13.7	Loil	74	240		2 to take	
1710 Simple the			<u> </u>	-		ي	Sample 7mc	
(1) ping of	11 0-907	135	601	7,4	270			
	11 07 20 1	1 6		•				
			ļ					
			<u> </u>					
TOURNITHE DOCUMENTATION						ll	:	
	PE OF TUBING	IY	PE OF PUMP M			TYPE OF BLADE	DER MATERIAL	
MARSCHALK BLADDER SIMCO BLADDER	SILASTIC HIGH DENSITY POLYETHYLENE	<u> </u>	」POLYVINYL C TSTAINLESS S			OTHER	none	
GEOPUMP	OTHER	Į.		vone				
ANALYTICAL PARAMETERS To Be Collected	METHOD NUMBER	p	PRESERVATION METHOD	i VOLUI REQUIF		SAMPLE COLLECTED		
voc svoc	8260B CLP		HCL / 4 DEG. 0 4 DEG. C	C 3 X 40 n 2 X 1 L		r voc Svoc	•	
PEST / PCBs	CLP CLP		4 DEG. C HNO3 to pH <2	2 X 1 L i 2 X 1 L i		PEST /	PCBs DRGANICS	
TAL INORGANICS Other	<u> </u>							
PURGE OBSERVATIONS	^ /	1	NOTES/LOC	ATION SKET	СН			
PURGE WATER CONTAINERIZED YES NO SE	IMBER OF GALLONS 2.6		J,			. *	CENT	
1			4,7,		MAS	<i>y</i> .	(EN.	
Signature:			, E	*MMX	3 In	. Niega	N	
ABIAI			d d		. <i>I</i> c	1	/	
MACT	FC		Proklava 4.	the mind	LOW FI	OM GBUIN	FIGURE 4-16 NDWATER DATA RECORD	
511 Congress Street Portland M	(1241) 1 Jaine 04101		En	NYS	SDEC QU	ALITY ASSI	URANCE PROGRAM PLAN	

LOW FLOW GROUNDWATER SAMPLING RECOR	D											
PROJECT CAMAGE CRAWAS SAMPLE I.D. NUMBE	SAMPLE TIME 1310											
EXPLORATION ID: MW-	DATE DATE DISTRICT											
TIME START 1230 END 1775 JOB NUMBE	er 3612082110 FILE TYPE DEC											
WATER LEVEL / PUMP SETTINGS MEASUREMENT POINT TOP OF WELL RISER TOP OF PROTECTIVE CASING	TOP OF WELL RISER PROTECTIVE PROTECTIVE TOP OF PROTECTIVE CASING STICKUP CASING / WELL											
INITIAL DEPTH G, 05 FT WELL DEPTH WELL DEPTH	PID WELL											
FINAL DEPTH TO WATER 9.10 FT SCREEN LENGTH LENGTH	AMBIENT AIR PPM DIAMETER IN IN IN IN IN IN IN IN IN IN IN IN IN											
DRAWDOWN VOLUME (initial - final x 0.16 {2-inch}) or x 0.65 {4-inch}) RATIO OF DRAWDOWN VOLUME TO TOTAL VOLUME PURGED	PRESSURE LOCKED LOCKED COLLAR COLLAR											
TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter)	REFILL TIMER SECONDS SETTING DISCHARGE TIMER SECONDS SETTING											
PURGE DATA SPECIFIC	PUMP											
DEPTH TO PURGE TEMP. CONDUCTANCE PH WATER (ft) RATE (ml/m) (deg. c) (ms/cm) (units	s) (mg/L) (ntu) (mv) DEPTH ₄ (ft) COMMENTS											
1238 Jump on (m mm) 1246 d. o. g. 8 7.1	1 5.8 21.7 150 1 1 1000 57											
245 M.10 225 17.3 1.00 7.	1 4.6 /2.3 76											
125 9.16 227 71.1 1.01 7.												
7.1	0 (01 3.0 30											
1705 9.10 225 12.7 1.05 70	0 (0.1 2.1 30)											
1310 Sarde fine (~ MW+)	1 Jample Time											
1315 Plup of T 12 105 70	0 (0) 21 30											
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING	TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL											
MARSCHALK BLADDER SILASTIC	POLYVINYL CHLORIDE TEFLON											
SIMCO BLADDER HIGH DENSITY POLYETHYLENE	STAINLESS STEEL OTHER WOWL											
ANALYTICAL PARAMETERS	OTHER_WOLL											
To Be Colleged METHOD NUMBER	PRESERVATION VOLUME SAMPLE METHOD REQUIRED COLLECTED											
SZ60B SZ60B CLP	HCL / 4 DEG. C 3 X 40 mL											
PEST / PCBs CLP	4 DEG. C 2 X 1 L AG PEST / PCBs											
TAL INORGANICS CLP	HNO3 to pH <2 1 x 1 L PTAL INORGANICS											
PURGE OBSERVATIONS	NOTES/LOCATION SKETCH, A											
PURGE WATER CONTAINERIZED YES NO NUMBER OF GALLONS GENERATED	1 Brothand make											
Signature:	AND AND AND AND AND AND AND AND AND AND											
MACTEC	Chief That Howe FIGURE 4-16											
Voy i zalva	LOW LOW GROUNDWATER DATA RECORD NYSDEC QUALITY ASSURANCE PROGRAM PLAN											
511 Congress Street, Portland, Maine 04101												

OW FLOW GROUNDWATER SAMPLING RECORD											
ROJECT CAMAGA CALLEY SAMPLE I.D. NUMBER 828126 MW0020 SAMPLE TIME 400											
EXPLORATION ID: 10 DATE 01/19/04											
TIME START 1815 END (415) JOB NUMBER 3612082110 FILE TYPE DEC											
WATER LEVEL / PUMP SETTINGS MEASUREMENT POINT TOP OF WELL RISER PROTECTIVE PROTECTIVE											
TOP OF PROTECTIVE CASING CASING STICKUP (FROM GROUND) OTHER (FROM GROUND) TOP OF PROTECTIVE CASING CASING STICKUP (FROM GROUND) OTHER (FROM GROUND)											
INITIAL DEPTH TO WATER WELL DEPTH WELL DEPTH TO WATER TO											
FINAL DEPTH TO WATER TO W											
DRAWDOWN VOLUME PRESSURE CASING CASING COKED COKED											
TOTAL VOL. 2 3 3 DISCHARGE OFFICE OFF											
PURGED A 2 - 3 GAL TIMER SECONDS TIMER SECONDS (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) SETTING SETTING											
PURGE DATA SPECIFIC PUMP DEPTH TO PURGE TEMP. CONDUCTANCE pH DISS. O2 TURBIDITY REDOX INTAKE CONTENTS											
TIME WATER (ft) RATE (ml/m) (deg. c) (ms/cm) (units) (mg/L) (ntu) (mv) DEPTH (ft) COMMENTS											
182 874 22 81 0.94 86 53 193 100 ,											
18X 874 225 84 0.93 86 19 154 96											
1830 8.74 225 8.6, 0.92 85 61 12.3 160											
1825 8-74 22 56 0.91 84 601 16.0 160 840 871 221 87 0.90 8.4 601 6.8 90											
1840 8.74 225 8.7 0.90 8.4 50 9.8 90											
19th 8 14 22 8 6 0.91 8.4 (1) 2.1 (00											
1915 8.74 225 8.5 0.90 8.4 LM 1.8 90											
1900 Single the Sample time											
1905 amb of t											
9 0.50 94 201 18 90											
9 0-90 24 201 18 90											
EQUIPMENT DOCUMENTATION. TYPE OF PLIMP TYPE OF TUBING TYPE OF PLMP MATERIAL TYPE OF BLADDER MATERIAL											
TYPE OF PUMP TYPE OF PUMP MATERIAL TYPE OF											
SIMCO BLADDER HIGH DENSITY POLYETHYLENE STAINLESS STEEL STAINLESS STEEL											
GEOPUMP OTHER NOTHER NOTHER											
ANALYTICAL PARAMETERS METHOD PRESERVATION VOLUME SAMPLE,											
To Be Collected NUMBER METHOD REQUIRED COLLECTED NUMBER											
SVOC CLP 4 DEG. C 2 X 1 L AG SVOC											
☐ PEST / PCBs CLP 4 DEG. C 2 X 1 L AG ☐ PEST / PCBs ☐ TAL INORGANICS CLP HNO3 to pH <2											
Other											
PURGE OBSERVATIONS NOTES/LOCATION SKETCH											
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED YES NO GENERATED NUMBER OF GALLONS ~ 2-3 GENERATED NOTES/LEGGRICH SIGNATION WOTES/LEGGRICH SIGNATION NOTES/LEGGRICH SIGNATIO											
(carries)											
Aldrae 3											
MACTEC FIGURE 4-1											
NYSDEC QUALITY ASSURANCE PROGRAM PLA											
511 Congress Street, Portland, Maine 04101											

LOW FLOW GROUNDWATER SAMPLING RECORD											
PROJECT FORMS SOCIAL CARNAGE SAMPLE I.D. NUMBER BUSINESSON SAMPLE TIME 1400											
EXPLORATION ID: NW~"H SITE NS))EC DATE (12) 09											
TIME START 305 END 1415 JOB NUMBER 36170821(0 FILE TYPE DEC											
WATER LEVEL / PUMP SETTINGS MEKSUREMENT POINT TO TOP OF WELL RISER PROTECTIVE PROTECTIVE											
TOP OF PROTECTIVE CASING CASING STICKUP (FROM GROUND) OTHER (FROM GROUND) OTHER (FROM GROUND) OTHER (FROM GROUND)											
INITIAL DEPTH TO WATER WELL DEPTH (TOR) WELL PID AMBIENT AIR PPM DIAMETER IN											
FINAL DEPTH TO WATER FT SCREEN MANAGE PID WELL WELL YES NO NA											
DRAWDOWN VOLUME PRESSURE CASING CASING LOCKED											
(initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) TO TOTAL VOLUME PURGED TO PUMP PSI COLLAR POSIUROS											
PURGED GAL TIMER SECONDS TIMER SECONDS											
(purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) SETTING PURGE DATA SPECIFIC PUMP											
DEPTH TO PURGE TEMP. CONDUCTANCE pH DISS. O2 TURBIDITY REDOX INTAKE TIME (MY) RATE (ml/pg) (deg. c) (ms/cm) (units) (mg/L) (nlu) (mv) DEPTH (ft) COMMENTS											
141 June on Comment-											
315 87318 200 7.2 15.1 84 84 813 30											
1370 8.68 200 8.3 1.92 86 (13 29) 10 1 1225 8.56 206 8.6 1.06 8.6 1.3 133 @											
1330 8.56 200 8.8 1.47 8.6 8.6 81.2 8											
1375 851 201 88 1.49 8581 50.7 0											
1340 8.47 200 8.9 1.52 85 80 4/8 8											
1345 6.49 20 89 1.51 85 29 403 0											
1350 851 200 819 150 4.5 2-1 39 10											
1595 9:47 20 8.9 1.51 85 2.7 386 0 Sandy Flore											
1400 Simple time & mary Sample time											
1405 Pump 7 + 1 9 1-51 8-5 27 38:60											
TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL											
TYPE OF PUMP TYPE OF TUBING TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL MARSCHALK BLADDER VEILASTIC POLYVINYL CHLORIDE FEFLON											
MARSCHALK BLADDER JOILASTIC POLYETHYLENE STAINLESS STEEL OTHER WW.											
GEOPUMP OTHER OTHER OTHER											
ANALYTICAL PARAMETERS											
To Be Collected METHOD PRESERVATION VOLUME SAMPLE. NUMBER METHOD REQUIRED COLLECTED											
VOC 8260B HCL / 4 DEG. C 3 X 40 mL VOC SVOC SVOC CLP 4 DEG. C 2 X 1 L AG SVOC											
PEST / PCBs CLP 4 DEG. C 2 X 1 L AG PEST / PCBs											
TAL INORGANICS CLP HN03 to pH <2 1 x 1 L P TAL INORGANICS Other ———————————————————————————————————											
PURGE OBSERVATIONS PURGE WATER CONTAINERIZED YES GENERATED NUMBER OF GALLONS GENERATED NOTES/LOCATION SKETCH WEN was demayed by surv plant,											
ap 15 brikan, vo Iva, viser news											
Sigheture: Ni Puntaz Kanwas											
Sold & A COTTO											
LOW FLOW GROUNDWATER DATA RECORD											
NYSDEC QUALITY ASSURANCE PROGRAM PLAN											
MACTEC FIGURE 4-16 LOW FLOW GROUNDWATER DATA RECORD											

LOW FLOW GROUNDWATER SAMPLING RECORD												
PROJECT [(an	1491	clea	nart	SAMPLE I.D	. NUMBER	88	MW OCIB	00500	. SA	MPLE TIME	215
EXPLORATION	ON ID:	N	W-5	3		SITE	N	NOCC			DATE	9-19-08
TIME	START	12	() END	Q-30	JOE	NUMBER	<u> 36</u>	1208241	8		FILE TYPE	vec_
WATER LE	VEL / PUMI	P SETT	INGS	MEASUF TO	<u> </u>		PROTEC					
INITIAL DEF TO WAT		8.2	4		P OF PROTECTIVE C	CASING	CASING STIC (FROM GROUPID AMBIENT AIF	UND) C	O FT	CASING DIFFERI WELL DIAMET	ENCE	O / FT
FINAL DEF TO WAT		4	VS.	FT SCREEN	1 2.8 at 6 % 3.3 N2.4M 3		PID WELL		РРМ	WELL INTEGR	ITY: ÇAP	YES NO N/A
DRAWDO' VOLUI (Initial - f	ME	∠£ 2-inch} o	r x 0.65 {4-inc		OF DRAWDOWN VO	DLUME	MOUTH PRESSURE TO PUMP		PSI		CASING LOCKED COLLAR	V = =
PURG	TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) REFILL TIMER SECONDS TIMER SETTING SETTING											
PURGE DA	PURGE DATA SPECIFIC PUMP											
TIME	DEPTH T WATER (ft) R	PURGE ATE (ml/m)	TEMP. (deg. c)	(ms/cm)	(units)	(mg/L)	(ntu)	(mv)	DEPTH (ft)	OMN (C	MENTS
142	8.75		250	3.5	0 294	7.7	7.5	68.3	210			
1147	825	2	250	4.7	0207	7.7	64	26.4	166			· .
1125.	3.2	7	257	5.0	P.279	77	6-1	<u>५.।</u> ३।	16			
115	8/12	<u> </u>	250 250	7.1	5-1.74	7-6	37	20	40			
1335	8-25	}	257	55	0.268	7.5	56	2.8	40			
217	\$X		2,50	5.3	v.2leb	7.5	4.7	1.7	पट	V	,	
1215	Simo) k	Time	Pinn	1-5		J				SMO	ie times
1226	Pun	E 4	(2)	W-5								·
	\ '				0266	0.0		(,7-	40			
	$\vdash \vdash$	_	•	5	07204	7.5	57	()7				
		\bigvee	-									
	1	X										
		7										
		$\backslash \bot$										
		7							<u> </u>	<u></u>		· · · · · · · · · · · · · · · · · · ·
1	NT DOCUM DF <u>PUMP</u>	ENTAT	ION	TYPE OF TUBIN	IG	TY	PE OF PUMP	MATERIAL .		TYPE OF BI	ADDER MATE	RIAL
	ARSCHALK E	BLADDE	R	SILASTIC	_		POLYVINYL	. CHLORIDE		TEFLO	N	,
Sir	MCO BLADD	ER		HIGH DEN	SITY POLYETHYLEN	E 🗁	STAINLESS			OTHER	nene	
V GE	OPUMP			OTHER_		<u> </u>	OTHER	NUNC				
ANALYTIC	AL PARAM	ETERS	;	М	ETHOD	F	PRESERVATIO	ON VOLU		SAMPLE		
L1/10				<u>N</u> 826	<u>UMBER</u> 60B		METHOD HCL / 4 DEG	<u>REQUI</u> S. C 3 X 40		COLLECTE VO	c	
SV	OC ST / PCBs			CLI CLI			4 DEG. C 4 DEG. C	2 X 1 L 2 X 1 L		SVE	OC ST:/PCBs	
TAI	L INORGANI	cs		CLI			HNO3 to pH	<2 1 x 1 L	Р	ПТА	LINORGANICS	5
Ott	ner					·						
PURGE WA			\bigcirc	NUMBER OF G	allons ~ 2 .	3	NOTES/LO	CATION SKET	ICH ∧∕√√Y	we	AVC	·
CONTAINE	RIZED	YES	(NO)	GENERATED		-	T	·	y			
Signa	re:		<u>\</u>	\mathcal{L}			٥	. *	m45			
		\mathbf{M}_{i}	AC	TEC	[3 (3 9		238 F WA 4 W	1		LOW GRO	DUNDWAT	FIGURE 4-16 ER DATA RECORD E PROGRAM PLAN
511 (Congress	Stree	t, Portland	d, Maine 0410	01		10 K MV	/3 · I				

LOW FLOW GROUNDWATER SAMPLIN	G RECORD	<i>(</i> * -				_		
PROJECT CAYNIYE CLEAMYS S	AMPLE I.D. NUMBER	SAMPLETIME 1435						
EXPLORATION ID:	SITE	V	WIDEC	0		DATE \ \ C - OY		
TIME START 1340 END 1445	JOB NUMBER	36	, (2082	M		FILE TYPE DEC		
WATER LEVEL / PUMP SETTINGS MEMSUREMENT F T TOP OF WEL		PROTECTIVE			PROTE	CTIVE		
	TECTIVE CASING	CASING STICK (FROM GROU	KUP (A)) , _{FT}	CASING DIFFER	S/WELL 2		
INITIAL DEPTH TO WATER 733 FT WELL DEPTH	18:2 FT	PID AMBIENT AIR		PPM	WELL DIAMET	ER IN		
FINAL DEPTH TO WATER 7.60 FT SCREEN		PID WELL			WELL	YES / NO N/A		
DRAWDOWN 0,64	S FT	MOUTH		PPM	INTEGR	CASING		
(initial - final x 0.16 {2-inch} or x 0.65 {4-inch}) TO TOTAL VO	VDOWN VOLUME LUME PURGED	PRESSURE TO PUMP		PSI		COLLAR		
TOTAL VOL. PURGED 72-1 GAL	0 /-	REFILL TIMER		SECONDS	DISCHA TIMER	SECONDS		
(purge rate (milliliters per minute) x time duration (minutes) x 0.00026 g		SETTING			SETTIN	G ,		
DEPTH TO PURGE TEMP. CONDU	CIFIC CTANCE pH s/cm) (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	PUMP INTAKE DEPTH (ft)	COMMENTS		
1353 Yung on (2) My		11119/16/	N: 1500/		19	Juy v		
135 749, 212 7.5 1	16 7.1	3.6	257	1/0 110				
1405 7.58 200 89 1.1	5 7.1	1.4	37.2	110				
1410 766 20 91	14 7.1	1.4	30.1	120	.			
1415 7.60 200 9.4 1.	13 7.1	1.4	179	130 116				
1425 7.60 200 9 b 1.1	2 71	1.3	16.8	150	*			
1430 7.60 200 9.7 1.	11 7.1	1.3	16.0	150		Chann's whim.		
1437 Day of the	6					2 mp & time		
10 1-	11 21	1.3	16.0	150				
			.:					
		-						
EQUIPMENT DOCUMENTATION		J	 					
TYPE OF PUMP TYPE OF TUBING MARSCHALK BLADDER SHASTIC		PE OF PUMP M		:	TYPE OF B	LADDER MATERIAL		
SIMCO BLADDER HIGH DENSITY POLY	/ETHYLENE	STAINLESS		[OTHER			
GEOPUMP OTHER	v	OTHER	une		sist			
ANALYTICAL PARAMETERS To Be Collected METHOD	F	PRESERVATION	N VOLUM REQUIR		SAMPLE/			
NUMBER 8260B Svoc CLP		METHOD HCL / 4 DEG. 4 DEG. C		nL -	VVO	C		
PEST / PCBs CLP TAL INORGANICS CLP		4 DEG. C HNO3 to pH <	2 X 1 L A	AG	PE	ST / PCBs L INORGANICS		
Other		TINOS TO PIT -						
PURGE OBSERVATIONS	- M	NOTES/LOG	ATION SKET		1.			
PURGE WATER CONTAINERIZED YES NO NO NUMBER OF GALLONS GENERATED	-2-1 r	W	nak	/\	/m/	Home		
		2 Car	nage	X X				
Signature:		\ (/,				
MACTEC		λ		\		FIGURE 4-16		
MACTEC	1	C.W.	NYS	LOW FL	OWGRO	DUNDWATER DATA RECORD SSURANCE PROGRAM PLAN		
511 Congress Street, Portland, Maine 04101		, • · · ·	\			1-mu-6		
						revised 1/14/2009		

LOW FLOW GROUNDWATER SAMPLING RECORD										
PROJECT CARNAY CREATURY SAMPLE I.D. NUMB	SER \$28120,MWIIIT0251 SAMPLE TIME 1740									
EXPLORATION ID: MW-III	SITE NSDEC DATE 9-14-07									
TIME START 1015 END /800 JOB NUMB	BER 3612082116 FILE TYPE DEC									
WATER LEVEL / PUMP SETTINGS MEASUREMENT POINT TOP OF WELL RISER	PROTECTIVE PROTECTIVE									
TOP OF PROTECTIVE CASING OTHER	CASING STICKUP O. U FT CASING / WELL DIFFERENCE FT									
INITIAL DEPTH 10, 28 FT WELL DEPTH 29.2-FT (TOR)	PID WELL AMBIENT AIR PPM DIAMETER IN									
FINAL DEPTH TO WATER TO WATER FT SCREEN LENGTH FT	PID WELL YES NO N/A T MOUTH PPM INTEGRITY: CAP									
DRAWDOWN VOLUME (initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) RATIO OF DRAWDOWN VOLUME TO TOTAL VOLUME PURGED	PRESSURE LOCKED LOCKED COLLAR									
TOTAL VOL. 232 Co.ce	REFILL DISCHARGE TIMER SECONDS TIMER SECONDS									
PURGED GAL (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter)	TIMER SECONDS TIMER SECONDS SETTING SETTING									
PURGE DATA SPECIFIC SPECIFIC PH	PUMP - DISS. O2 TURBIDITY REDOX INTAKE									
TIME WATER (ft) RATE (ml/m) (deg. c) (ms/cm) (unit										
163 10-49 250 95 0 423 75	5 1.1 123 -90									
1658 10.53 250 10.1 0.430 7.4	1 61 971-100									
1703 16,58 250 16.0 04 21 7.4	f (0) 48,1-120									
1717, 1063 350 16.7 0,410 7.4	t (0.1 20.4 - 70)									
1711 10.63 250 10.9 19 469 7.1	4 401 10.7 -140 1									
1723/10/63 20 11.0 0.411 7.4	+ 3,1 10,1 -140									
1708 1013 290, 11.2 1.414 7,0	4 6.1 9.0 -140									
1733 10/63 250 11.5 6417 7	4 601 81 -146									
1738 10,63 250 11,2 0,46 7.1	4 401 7.0 -150 Ou 1. Line									
1740 10. 744 Sange Ine (1)	s mm-111 Dage (me									
179 Dup oft (2 mm -11)I										
11 0,410 7,0	4 601 70 -150									
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF TUBING	TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL									
MARSCHALK BLADDER USILASTIC	POLYVINYL CHLORIDE TEFLON									
SIMCO BLADDER HIGH DENSITY POLYETHYLENE	STAINLESS STEEL GOTHER Whe									
GEOPUMP OTHER	OTHER VP									
ANALYTICAL PARAMETERS To Be Collected, METHOD	PRESERVATION VOLUME SAMPLE									
To Be Collected METHOD NUMBER 8260B	METHOD REQUIRED COLLECTED HCL / 4 DEG. C 3 X 40 mL TVOC									
SVOC CLP	4 DEG. C 2 X 1 L AG SVOC									
PEST / PCBs CLP TAL INORGANICS CLP	4 DEG. C 2 X 1 L AG PEST / PCBs HN03 to pH <2 1 x 1 L P TAL INORGANICS									
Other										
PURGE OBSERVATIONS	NOTES/LOCATION SKETCH MUNTER ARE									
PURGE WATER CONTAINERIZED YES NO GENERATED O O O O O O O O O O O O O										
Signature										
Main	1 1 (avviii)									
MACTEC	FIGURE 4-16 LOW FLOW GROUNDWATER DATA RECORD									
Ingu chalog	LOW FLOW GROUNDWATER DATA RECORD NYSDEC QUALITY ASSURANCE PROGRAM PLAN									
511 Congress Street, Portland, Maine 04101	1 %									

LOW F	LOW GR	OUNDWA	ATER SAN	IPLING RE	CORD	85	8128-	mw-do	IOTRI		•	
PROJECT [Former 9	spædy's C	leaners ste	SAMPLE I.I	D. NUMBER		201		7	AMPLE TIME	17:30	
EXPLORATION	ON ID: MV	V-201			SITE	M	M -701].	DATE	02/03/09	
TIME	START 16	550 EN	D 17:55	Ot.	B NUMBER	361:	208210	9.02.1]	FILE TYPE		
WATER LE	VEL / PUMP SI	ETTINGS		REMENT POINT P OF WELL RISER		PROTECTIV	Æ	·	PROTE	CTIVE.		
				P OF PROTECTIVE HER	CASING	CASING STI (FROM GRO		3 FI	CASING	3/WELL ☐	M FT	
INITIAL DEF		75	FT WELL C	EPTH 101.17	O FT	PID WELL AMBIENT AIR PPM DIAMETER 2 1						
FINAL DEF TO WAT		90	FT SCREE		WWY FT	PID WELL MOUTH	W	PPM	WELL	RITY: CAP	YES NO N/A	
DRAWDO\ VOLUM	ME		GAL RATIO	OF DRAWDOWN V	OLUME	PRESSURE]	CASING LOCKED		
· '	inal x 0.16 {2-inc	h) or x 0.65 (4-ind	ch)) <u>TO 1</u>	OTAL VOLUME PUR	RGED	TO PUMP	^A		- ., 7	COLLAR		
TOTAL VO PURG (purge ra	ED		GAL Iration (minutes) x	0.00026 gal/milliliter) ·	REFILL TIMER SETTING	NA	SECONDS	DISCHA TIMER SETTIN		A SECONDS	
PURGE DATA SPECIFIC PUMP											<u> </u>	
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (ms/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	INTAKE DEPTH (ft)		MENTS '	
16.55	7.90	175	8.53	091	7.05	 - '' - ' - '	761	79	17.70			
17:05	100	175	8. 41	0 704	7.84	1 C 231	104	-40	17.36			
17.08	7.90	175	3.33	6774	7.23	 	80	~40	17.3c			
17:71	7.90	175	9.65	0.1232	7 121	6.19	38	-44	17.50			
17:17	7.00	175	777	@ P14	7.321	6.00	26	-47	17.56			
17,21	7.40	175	7, 303	C2 P32	7.2	ं र	30°	-38	17.50			
17:36	7.40	175	9.92	0,1223	7 78		19	~52	17.50			
17:29	7.40	175	9.41	0.121	7.75		-; -; -	-3.3	7770			
	Sumple			, , , , ,		U. 343						
											490	
							1.4					
	/											
					ļ							
							· :		`			
EQUIPMEN TYPE O	IT DOCUMENT	ATION	TYPE OF TUBIN	G	TYF	PE OF PUMP I	MATERIAL		TYPE OF BI	ADDER MATER	ειΔι	
	RSCHALK BLAD	DER	SILASTIC	≅. ₃	Ē	POLYVINYL		1	TEFLON		34.35	
1 = .	ICO BLADDER			SITY POLYETHYLEN		STAINLESS				NA		
	OPUMP ,		OTHER_		<u> </u>	OTHER	NA					
ANALYTIC	AL PARAMETE	RS	,									
To Be Collected		-		THOD IMBER	PF	RESERVATION METHOD	N VOLUI REQUII	ME RED	SAMPLE COLLECTED			
T) VOC			826		t)	HCL / 4 DEG.	C 3 X 40 r	nL		LVOC		
□ □ □ □ □ □ □	SE MEE S F/PCB s 70し		CLF	601013	11	4 DEG. C	′′2 X1L	AG (1	7 PES	T-PCBS TO		
1	-INORGANICS /	-		HNO3 to pH <	<2 1-x-1-L	ossome A	TAL	ANORGANICS				
	er Sulfide			Naoit	300	w. 1 vo. 7	<u> </u>	· · · · · · · · · · · · · · · · · · ·				
PURGE OB PURGE WAT CONTAINER		(NO)	NUMBER OF GA	LLONS - 1.6		NOTES/LOG	CATION SKET	СН		Mw-201	12 Men	
Signatu	.re: <u>MuL</u>	Mugas.	/manh mo	igslow.			e	forming Sp	edyst.	/->><-		
J. S.	elei-											
		[AC	TEC	3/2000/	_	FIGURE 4-16 LOW FLOW GROUNDWATER DATA RECORD NYSDEC QUALITY ASSURANCE PROGRAM PLAN					FIGURE 4-16 ER DATA RECORD PROGRAM PLAN	
511 C	ongress Stre	eet, Portland	, Maine 0410	1			INT	المراج المادر	ALII AU	. JOINHOL		

LOW F	LOW-GR	QUNDWA	ATER SAM	IPLING REC	CORD				•				
PROJECT	Gleedy	2/Cars	naze	. NUMBER	BZ8128-MWZ0Z9124 SAMPLE TIME 1820								
EXPLORATI	ON ID:	MW-	202		SITE MYSPES DATE					DATE	1/22/09]	
TIME	START 07	-20 ENI	825	JOE	NUMBER	3613	208211	70		FILE TYPE	DEC]	
WATER LE	VEL / PUMP SI	ETTINGS		REMENT POINT					PROTE				
			TOF	OF WELL RISER OF PROTECTIVE O HER	ASING	PROTECTIVE CASING STICKUP (FROM GROUND) FT DIFFERENCE FT							
INITIAL DEF	PTH 7	`32	FT WELL D		,]	PID WELL 5							
FINAL DEF	ртн 7	.40	(TOR)	14,4	FT	, unosciti fuit							
TO WAT			FT SCREEN LENGTH		FT	PID WELL YES NO N/A MOUTH PPM INTEGRITY: CAP CASING							
DRAWDO VOLU (initial -				OF DRAWDOWN VO		PRESSURE TO PUMP	, marrow and	PSI		LOCKED COLLAR	<u> </u>	-	
TOTAL V	, , , , , , , , , , , , , , , , , , ,			,0092		REFILL			DISCHA	RGE	and the same of the control of the c		
PURG (purge r			GAL ration (minutes) x	0.00026 gal/milliliter)		TIMER SETTING		SECONDS	TIMER SETTIN	G	SECONDS		
PURGE DATA SPECIFIC PUMP													
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (ms/cm)	pH (units)	DISS, O2 (mg/L)	(ntu)	(mv)	DEPTH (ft)	COM	MENTS	\$	
0745	7.40	zoo	ط ال	1-08	6-6	1-15	3.90	-107	12			켸	
0755	7.40	Z00	10.0	1-04	6.60	20-1	244	-119	1				
Dico	7,40	200	10.8	1.03	68	20.1	1-92	120					
080≤	7.40	200	10.8	1.02	6.9	20.1	1,22	-123					
08.0	7-40	200	1020	1.03	7-0	۷۰.۱	0.94	124					
0015	7,40	200	10-9	1-03	7-1	20-1	0-27	-123	Ψ_				
1			11	1-03	7.1	101	0.9	-120					
N. A. A. A. A. A. A. A. A. A. A. A. A. A.			•		, , ,								
Ţ.										·			
	<u>ئ</u>		·										
-	13				,							\neg	
	1									·			
	1												
	1												
		1	<u></u>					<u></u>	<u> </u>			<u> </u>	
1	NT DOCUMENT OF PUMP	ATION	TYPE OF TUBIN	<u>G</u>	<u>TY</u>	PE OF PUMP				ADDER MATE	RÍAL		
☐ MA	ARSCHALK BLAD	DER .	SILASTIC			POLYVINY	L CHLORIDE		□ τ ρ felo	N.			
_ 	MCO BLADDER			ITY POLYETHYLENI] STAINLESS	STEEL		OTHER	₹	•		
	OPUMP		OTHER		1_	OTHER						_	
To Be Collected	AL PARAMETE	RS		THOD IMBER	F	PRESERVATION METHOD	ON VOLU REQUI		SAMPLE COLLECTED)			
	. –	Dup	826 CLF	0B		HCL / 4 DEC		mL	₩ 1800	С			
1 ===	ST / PCBs	.,	CLF	•		4 DEG. C	2 X 1 L	AG	PE	ST / PCBs			
TAI	L INORGANICS ner		CLF	•		HNO3 to pH	I<2 1x1L	P 		LINORGANICS).		
	BSERVATIONS					NOTES/LC	CATION SKET	СН					
PURGE WA	ATER	\bigcirc	NUMBER OF GA	LLONS (5		C	MR	í		1			
CONTAINE	RIZED YES	NO/	GENERATED		-	; 5(P2243		Fence.	r L			
Signat	ture:	and an extension of the state o		·		Po	irlen z	ש ליוני	O. 2	order-	ત્ર		
	1111	T.A	TI	_		Ambures	AND DESCRIPTION OF PARTY OF STATE OF	Road	***************************************	er es la re Zirae a commonomento.	FIGURE 4	1.46	
4	ען ו ען 1V.		1 Fix	4		*		LOW FI	ow GRO	DUNDWAT	ER DATA RECO	ORD	
511 (Congress Str	eet Portland	ا کے اور 1, Maine 0410	' j 1			NY	SDEC QU	ALITY AS	SSURANC	E PROGRAM PI	_AN	
1 oll	วบานูเซอร์ อิโโ	eer, cornand	i, iviailie 04 lU	T.	l l								

LOW F	LOW GR	OUNDWA	ATER SAI	IPLING RE	CORD	Ľ				< 1.1		
PROJECT	Gree Ly)/car	nase 6	SAMPLE 1.D	. NUMBER	2004	828128	-MW2	pi sa	MPLE TIME	840	
EXPLORATI	ON ID:	MW-3	20 JUNY	2021	SITE		YSDEC	ر الم		DATE 1/	21/09	
TIME	START O40	PD EN	0850	JOI	NUMBER	36	17087	109		FILE TYPE	IFC.	
WATER LE	VATER LEVEL / PUMP SETTINGS MEASUREMENT POINT TOP OF WELL RISER PROTECTIVE PROTECTIVE											
			<u></u> ⊤с	P OF PROTECTIVE (HER	CASING	CASING STI (FROM GRO	CKUP <	FT	CASING DIFFERI	/WELL .	FT	
INITIAL DEI TO:WA		A172	FT WELL (TOR)	DEPTH 30.	FT	PID AMBIENT AI	R	PPM	WELL DIAMET	FR 5	IN	
FINAL DEI TO WA		747	FT SCREE	N JALV		PID WELL			WELL	YES	, NO N/A	
DRAWDOWN VOLUME 0.056 GAL RATIO OF DRAWDOWN VOLUME PRESSURE 11 6 LOCKED 2												
(initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) TO TOTAL VOLUME PURGED TO PUMP TOTAL VOLUME PURGED TO PUMP O. 04 3 REFILL DISCHARGE												
TOTAL V	SED .		GAL			REFILL TIMER	10	SECONDS	DISCHA TIMER	7	SECONDS	
 		minute) x time du	iration (minutes) x	0.00026 gal/milliliter)		SETTING			SETTING	<i>.</i>	,	
PURGE DA	DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	pH	DISS. O2	TURBIDITY	REDOX	PUMP INTAKE	0012 55 50		
DADES	WATER (ft)	PATE (ml/m)	(deg. c)	(ms/cm)	(units)	(mg/L)	(ntu)	(mv)	DEPTH (ft)	COMMENTS	. جنــــــــــــــــــــــــــــــــــــ	
0010	37.49	200	10.4	1.416	6 14 3	40.1	4.20	-223	45		······································	
0215	37.47	200	10.2	1.94	0.72	LU-1	1.72	-291	Ì			
0920	27.47	200.	11-0	1-95	6.64	20-1	1.32	-304	. same			
0325	32.42	2001	1028	1.95	12.49	20-1	1.21	-310				
CV330	77.47	200	11.0	1.45	690	20-1	1,01	~311				
<u> </u>				17:5-	1000	/	2 7)	-310				
$\vdash \longleftarrow$			11	1.93	6.4	20.1	1.0	1010				
$\vdash +$					<u> </u>							
\vdash												
\	`					-				····································		
	/											
	1 ,											
	16											
	IT DOCUMENT. <u>F PUMP</u>	ATION	TYPE OF TUBIN	ıc	TV	PE OF PUMP	MATERIAL		TYPE OF BI	ADDER MATERIAL		
	RSCHALK BLAD	DER	SILASTIC	<u></u>			. CHLORIDE	1	4 TEFLOR			
	ICO BLADDER			SITY POLYETHYLEN	= <u></u>	STAINLESS			OTHER			
GE	OPUMP		OTHER_			OTHER						
ANALYTIC	AL PARAMETE	RS							····			
To Be Collected			<u>N</u>	ETHOD J <u>MBER</u>	F	RESERVATIO METHOD	REQUI	RED	SAMPLE COLLECTED			
Svo			826 CLI			HCL / 4 DEG 4 DEG. C	5. C 3 X 40 r 2 X 1 L		SVC			
· ==/	ST / PCBs		CLI		9	4 DEG. C	2X1L			T / PCBs INORGANICS	_	
Oth	. INORGANICS er <i>A</i> _ <i>N</i> _A	porter	serz V	anos		HNO3 to pH	chrull			ANA pirent	2~5- 1.	
PURGE OF	SERVATIONS	1				NOTES	CATION SKET	CH	<u> </u>	1 (200° 1)	2 117	
PURGE WA	TER	(NO)	NUMBER OF GA	ALLONS 3			مار ما	CMA Ling	MINIO	Thesky I'm	W.	
CONTAINE	RIZED YES	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	JUNEILA I ED			13	May [year (J.	-1-2023	202	
Signat	ure:					4	,	N. W.	13 M	×	X V	
			TEC	_		Sign			CIN	e Dave	FIGURE 4-16	
			15/	<u> </u>		10				UNDWATER D	ATA RECORD	
	Congress Stre	eet. Portland	, Maine 0410	[1		1/2	NYS	DEC QU	ALITY AS	SURANCE PRO	JGRAM PLAN	

LOW F	LOW-GR	QUNDWA	TER SAM	MPLING RE	CORD							
PROJECT	Specky	Mari	iv.	. NUMBER	R 220-20-MW-2038012 SAMPLE TIME 1435					43.5		
EXPLORATION	ON ID:	1 3 1 3 20	33 MW	SITE		WASIX	<u>C</u> .		D.	ATE]	120/09	
TIME	START 125	S ENI	~445	JOI	3 NUMBER	13	61208	2104		FILE 1	TYPE	JEC
WATER LEVEL / PUMP SETTINGS MEASUREMENT POINT												
			TO	P OF WELL RISER P OF PROTECTIVE	CASING	PROTECTIVE PROTECTIVE CASING / WELL						
INITIAL DEF		g.03		HER		(FROM GROUND) FT DIFFERENCE					FT FT	
TO WAT		L' -0)	FT WELL (TOR)	14 - S	FT	PID AMBIENT AII	R	PPM	WELL DIAMET	ER		. IN
FINAL DEF TO WAT		14,0	FT SCREE		FT	PID WELL YES NO MOUTH PPM INTEGRITY: CAP					NO N/A	
DRAWDO\ VOLUI (initial - f				O OF DRAWDOWN V		PRESSURE TO PUMP		PSI		CASI LOCK COLL	ŒD 🗾	
TOTAL V		<u> </u>	$\ddot{\neg}$	5.195		REFILL			DISCHA	RGE		
PURG (purge ra			GAL ration (minutes) >	c 0.00026 gal/milliliter	1	TIMER SETTING		SECONDS	TIMER SETTIN	G [SECONDS
PURGE DA	TA			SPECIFIC					PUMP			
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (ms/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	INTAKE DEPTH (ft)		COMMENTS	
1310	B2500	Purch		And the state of t			402	<u></u>				
1315	6.94	100	6.74	0.992	3.54	CO-1	21.0	87	12			
1320	9.02	100	641	0-999	8.46	20-1	46.3 52-4	7-7-9	<u> </u>			
1325	9.48	100	217	0-92	8-53	co.1	37.9	42				
13-10	9.82	100	7.20	0.92	8.51	60-1	31-91	20				
1345	9.89	100	7.10	0.91	8.49	40.1	25.5	-60				
1350	9.99	ivo	7.17	0.90	851	60.1	22-1	-24				
1355	10-06	100	796	28 0,90	8.51	40-1	20.4	-46				
iavo	10.17	100	7.83	0.41	8.48	Co.1	19.H	-63	 	-		
1405	10179	100	1.55	0.9	6.49	0-22	14-60	-77	 			
1510	10.39	100	7.48	0-90	6.43	0-20	131	-94				. 1
1415	10.37		7.44	0,999	6.48	0,19	12-1	-99	1	100	TUST	Kit:
1425	10.71	100.	2.12	0-999	9.50	9:19	12-2	-99	1	220	4 3	11
	. /	1 7 2			j			T. Control			1. 7	<u> </u>
			7.1	0.999	8.6	0.7	12,2	-100.				
	\sim			•								
	IT DOCUMENT <u>FPUMP</u>	ATION	TYPE OF TUBIN	NG ·	TY	PE OF PUMP	MATÉRIAL		TYPE OF B	LADDER	MATERIAL	
	RSCHALK BLAD	DER	SILASTIC	<u></u>			CHLORIDE		TEFLO	M.		
SIN	ICO BLADDER		HIGH DEN	SITY POLYETHYLEN	E [STAINLESS	STEEL			₹		
GE/GE	ОРИМР		OTHER_			OTHER						
ANALYTIC	AL PARAMETE	RS	M	ETHOD		PRESERVATIO	ON VOLU	IME	SAMPLE			
T-A/O			<u>N</u>	UMBER 30B	·	METHOD HCL / 4 DEG	REQUI	RED	COLLECTE	_		
svo	oc .		CL	P		4 DEG. C	2 X 1 L	AG	□sv		•	
l 	ST / PCBs _ INORGANICS		CL CL	P	}	4 DEG. C HNO3 to pH	2X1L <2 1×1L		TITA	L INORG	ANICS	10 00
	er Tuc, pH	N. Sulfiz	EN MNAP	wever (V)	Ļ		aviour			MNA	Paren	exers
PURGE OF	SERVATIONS	, , , , , , , , , , , , , , , , , , , ,				NOTES/LO	CATION SKET	СН				
PURGE WA		(NO)	NUMBER OF G	ALLONS , 2		.1 -				1) -	,	
OSKI7,IIILE	. 4		J			اد إل	ne her	S . C	12 - U	7.3	make	
Signat	ure:	or explore many power of the said production				}	MA	John C.			/ BA?	5 01126109
				~			(7			W V	1 " 1
		ĮĄC	T'È	100				_LOW FI	OW GRO	אטאטע	NATER D	FIGURE 4-16 ATA RECORD
		5A3 0	11266	,09		***************************************	NY					OGRAM PLAN
511 C	Congress Str	eet, Portland	, Maine 0410	01								•

LOW F	LOWGR	OUNDWA	TER SAN	IPLING RE	CORD		-			•	
PROJECT	42424	carrage		SAMPLE 1.0	D. NUMBER	828.2	8-MW-20	150121	ار sa	MPLE TIME (0)	
EXPLORATI	ON ID:	MW-	2015		SITE		MRDEC	/		DATE 1/21	0.7
TIME	START 09		1015		B NUMBER	36	12002	107		FILE TYPE	t
WATER LE	VEL / PUMP S	ETTINGS		REMENT POINT		PPOTEOTIVE			PROTE	STIVE	
			<u></u> то	P OF WELL RISER P OF PROTECTIVE HER	CASING	PROTECTIVE CASING STIC (FROM GRO	CKUP	ruserranis r	CASING	/WELL	FT
INITIAL DEF	PTH 1	٠,٥١	FT WELL D	БЕРТН		PID	U(U) [WELL		
FINAL DE			(TOR)	15.2	FT	AMBIENT All	R	PPM	DIAMET		<u>iN</u>
TO WAT		-24	FT SCREE		FT	PID WELL MOUTH		PPM	WELL INTEGR	mark.	NO N/A
DRAWDO VOLU	ME U			OF DRAWDOWN V		PRESSURE TO PUMP	- Auroran	PSI		LOCKED Z	= =
TOTAL V		ch) or x 0.65 (4-inc	10	0-204		REFILL		and a feet of the second	DISCHA		
PURC	GED \		GAL gration (minutes) x	0.00026 gal/milliliter		TIMER SETTING		SECONDS	TIMER SETTIN	SE	CONDS
(purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) SETTING PURGE DATA SPECIFIC PUMP											
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP.	CONDUCTANCE (ms/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	INTAKE DEPTH (ft)	COMMENTS	
0120	Begen	Purce									
0925	1.22	150	7-0	0.450	7-0	8.35	3-40	-250	12		
0930	722	150	5,1	0.745	7.1	6,20	4.85	-250 -274	1		
25.15	7-23	150	9,3	1250	69	8.15	16.2 19.5	-249			
0940	1.23	150	34	1224	10	6,20	5.62	-249	1		
092150	124	150	8,3	01,90	7-1	10-63	196	-221			
1955	7.24	150.	Prz	01073	7-1	11.34	1,47	-205			
1000	724	150	6.0	0-152-10	7-1	10.30	1.51	-200		, in the second	
1005	2-27	150	A-2	620	7-1	11.05	1-27	-196	V		
\		\ ' -	0	6 (75)	a i-	1 1	, ,	_207			-
\vdash			Rid	6.670	174		1.3	100		· · ·	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		· · · · · · · · · · · · · · · · · · ·		 	-		ļ <u> </u>			
—											
—	1					-				-	
		<u> </u>						<u> </u>	<u> </u>		
1	NT DOCUMEN	TATION	TYPE OF THE	10	т\	YPE OF PUMP	MATEŘIAI		TYPE OF B	LADDER-MATERIAL	
1 —	<u>OF PUMP</u> ARSCHALK BLAI	DDED	TYPE OF TUBIN	<u> 10</u>	Ë		CHLORIDE		TEF40		
I =	MCO BLADDER	DDEN		SITY POLYETHYLEN	₁ <u> </u>	STAINLESS			OTHER		
	EOPUMP		OTHER_		. , 🗔	OTHER_		・	**************************************		
	AL PARAMET	ERS				DD505D\4474		15.45	CAMPLE		
To Be Collected			<u>N</u>	ETHOD <u>UMBER</u>		PRESERVATION METHOD	<u>REQU</u>	IRED	SAMPLE COLLECTED	/ ~	
□ZÍVO □ sv			826 CL	60B P		HCL / 4 DEG 4 DEG. C	3 X 40 2 X 1 L		□ VO □ SV	oc '	
	ST / PCBs		CL CL			4 DEG. C HNO3 to pH	2 X 1 L <2 1 x 1 L			ST / PCBs L INORGANICS	
U Cut	L INORGANICS ner					- \$		<u> </u>			
PURGE O	BSERVATIONS	<u>.</u>	<u> </u>		I	NOTES/LO	CATION SKET	rch ;			7
PURGE WA	ATER	\sim	NUMBER OF G	allons lQ		(NEWS .	10 C (5 N	1		Ĵ
CONTAINE	RIZED YE	s (NO)	GENERATED			AAW-2	OCATION SKET	36	É		14
Signal	turo:	The state of the s	•			1		(II)			
Signal	Add do					North X	- A STATE OF THE PARTY OF THE P	<u>ا</u>	-		
	\mathbb{Z}/\mathbb{Z}	IAC	TEC			K. ()	200) K.	Will		IGURE 4-16
	1 7	DAS	01/16	Tog		,	OVC			OUNDWATER DAT SSURANCE PROG	
511 (Congress St	reet, Portland	i, Maine 0410	1 - <i>(</i> 01			- INT	ODEO WO	ALLI A	·	

LOW FLOW GROUNDWATER SAMPLING RECORD								
PROJECT FORMER SPEECHS SAMPLE I.D. NUMBE	ER \$28738MW 2058G() D SAMPLE TIME 1445							
EXPLORATION ID: NW Jo 5 8	SITE WIDE DATE 01/20/00							
TIME START 1330 END 1505 JOB NUMBE	ER 36.12682109 FILE TYPE DEC							
WATER LEVEL / PUMP SETTINGS MEASUREMENT POINT TOP OF WELL RISER PROTECTIVE PROTECTIVE								
TOP OF PROTECTIVE CASING OTHER	CASING STICKUP (FROM GROUND) 0 0 FT DIFFERENCE 0-35 FT							
INITIAL DEPTH TO WATER TO WATER FT WELL DEPTH TO WATER (TOR)	PID WELL IN DIAMETER IN							
FINAL DEPTH 7.22 FT SCREEN WAS AND	PID WELL YES NO N/A							
DRAWDOWN VOLUME 0.02 GAL RATIO OF DRAWDOWN VOLUME	PRESSURE CASING LOCKED							
(initial - final x 0.16 {2-inch} or x 0.65 {4-inch}) TOTAL VOL. 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TO PUMP PSI COLLAR							
PURGED GAL (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter)	TIMER SECONDS TIMER SECONDS SETTING							
PURGE DATA SPECIFIC DEPTH TO PURGE TEMP. CONDUCTANCE PH	PUMP DISS. 02 TURBIDITY REDOX INTAKE							
TIME WATER (ft) RATE (ml/m) (deg. c) (ms/cm) (unit								
1354 1mp in (2 1m - 2055) 1351 7.20 225 81 1965, 7.1	1 53 13,40							
1462 7.22 250 Y.S 0 884 7.	0 /e/1 16.8 -70							
1467 7.22 250 Y.7, 0 A43 7.0	2 0.6 2.8 30							
1412 722 250 YX 0.99 7.0	1.4. 1.1.							
1141 7.2.2 20 8.7 1.36 7.6								
$\frac{1471}{1471} \frac{7.11}{7.22} \frac{250}{200} \frac{8.3}{86} \frac{1.57}{14} \frac{7.0}{7.0}$	0 0.7 3.2 -100							
	0 1.4 2.8 -100							
1437 7.22 250 8,9 185 70								
1442 222 250 8,4 1.89 7.0) 1.6 2.1 -110 testing Kit,							
1445 Jan 4 10 my 63655	4. Ympl							
1501 Purp off								
8.9 1.89 7	0 1.6 21 -110							
EQUIPMENT DOCUMENTATION								
TYPE OF PUMP TYPE OF TUBING	TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL							
MARSCHALK BLADDER SIKASTIC	POLYVINYL CHLORIDE TEFLON							
MCO BLADDER HIGH DENSITY POLYETHYLENE	STAINLESS STEEL VOTHER WOL							
ANALYTICAL PARAMETERS	OTHER FORCE							
To Be Colleged METHOD NUMBER	PRESERVATION VOLUME SAMPLE METHOD REQUIRED <u>COLLECTED</u>							
VOC 8260B	HCL / 4 DEG. C 3 X 40 mL							
SVOC CLP PEST / PCBs CLP	4 DEG. C 2 X 1 L AG PEST / PCBs							
JALINORGANIS A DWWY CYSCLE	HNO3 to pH <2 Van ovis 11 LP ALINORGANICS DA roulser's							
PURGE OBSERVATIONS PURGE WATER NUMBER OF GALLONS 2 2 2	NOTES/LOCATION SKETCH							
CONTAINERIZED YES (NO) GENERATED ~7, 1	100 m 235							
Signatuse	Thurs of the state							
Aldie	LOW FLOW GROUNDWATER DATA RECORD NYSDEC QUALITY ASSURANCE PROGRAM PLAN							
MACTEC	FIGURE 4-16							
MACTEC halog	LOW FLOW GROUNDWATER DATA RECORD NYSDEC QUALITY ASSURANCE PROGRAM PLAN							
511 Congress Street, Portland, Maine 04101	10							

LOW FLOW GROUNDWA	TER SAMPLING RE	CORD	Cusc. (3)	efe a col		
PROJECT FOYMEN Specdis C	CANUS SAMPLE I.	D. NUMBER	28126mm21	1-1010Kg	SAMPLE TII	ME 0745
EXPLORATION ID: MW - 24	ب کار	SITE	" W SDE		. · D/	ATE (-19-09)
TIME START 6725 END		OB NUMBER	361201	,2119	FILET	TYPE DEC
WATER LEVEL / PUMP SETTINGS	MEASUREMENT POINT TOP OF WELL RISER	PRO?	ECTIVE		PROTECTIVE	
	TOP OF PROTECTIVE	CASING CASI	IG STICKUP I GROUND)	6 FT	CASING / WELL DIFFERENCE	0,3 FT
INITIAL DEPTH 7.18 F	WELL DEPTH 11.90	7 FT AMBI	ENT AIR	РРМ	WELL DIAMETER	<i>9</i> IN
FINAL DEPTH 7.4	SCREEN WWW.	M FT MOU	ELL	PPM	WELL	YES NO N/A
DRAWDOWN OLUME GA	AL RATIO OF DRAWDOWN V	OLUME PRES	SURE	PSI	CASII LOCK COLL	NG Z =
(initial - final x 0.16 {2-inch} or x 0.65 {4-inch}	TO TOTAL VOLUME PUI	REFII			DISCHARGE [
PURGED	AL	TIME	` L	SECONDS	TIMER SETTING	SECONDS
PURGE DATA	SPECIFIC TEMP. CONDUCTANCE	DH DIS	. 02 TURBIDITY	REDOX	PUMP INTAKE	
WATER (ft) RATE (ml/m)	TEMP. CONDUCTANCE (deg. c) (ms/cm)		n/L) (ntu)	(mv)	DEPTH (ft)	COMMENTS
1843 7.30 215	6.3 1.31	6.4/ 4	8 46.5	120	~/0'	
My 7.33 275	7.9 1.23	67 1	5 484	- 90		
0853, 7.37 275	8,7 1.26	1.7.1.	1 396	90		
0959 7.41 275	8.5 1.42	6.8 3	7 31.7	90		
19 79 275	86 149	6.9 6.	4 368	100	+	
1913 741 275	5.6 1.54	6.40.	2 30.7	80		
0918 7.41 275	8.7 1.67	7.8 0.	246	70		
10923 741 275	1.69	1.7616	1 3.9	160		
18938 7.41 278 1 19933 7.41 275	8.8 1.66	7.6 D		60		
1938 7.41 275	8.9 1.79	70 0	1 7 7 7	76		
0943 7.4 275	8.4 1.81	700 20	1 8-3	60		
	2068-	' .		-	ļ	
0949 Pup ett	8-9 1-80	70 60	V 8/3	60		
130	8 - 7 () -			1		
EQUIPMENT DOCUMENTATION						
	TYPE OF TUBING		PUMP MATERIAL	: [TYPE OF BLADDER	MATERIAL .
MARSCHALK BLADDER L'	SILASTIC HIGH DENSITY POLYETHYLEN		VINYL CHLORIDE NLESS STEEL	L [TEFLON OTHER 1	gre-
GEOPUMP	OTHER	отн	182MB			
ANALYTICAL PARAMETERS	METHOD	DDESE	RVATION VOL	.UME	SAMPI F	
To Be Colleged	METHOD NUMBER 8260B	ME:			SAMPLE COLLECTED VOC	
svoc	· CLP	4 DE 4 DE	G. C 2 X 1		SVOC	.
PEST / PCBs TAL INORGANICS	CLP CLP		3. C 2 X 1 3 to pH < 2 1 x 1		TAL INORGA	
Other					\(\lambda\)	,
PURGE OBSERVATIONS		NOT	ES/LOCATION SKE		Jan.	1.1
PURGE WATER CONTAINERIZED YES NO	NUMBER OF GALLONS 441	2	, ol	to well of	J 65 7	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
		_ \	my solo	9,469	Lot Linds	figure 4-16
Signature:	\Rightarrow		h.	\	` /	"La Constitution of the Co
MINTAC	TEC	Monto	1	••	/ *	FIGURE 4-16
IVIZ V	TEC	6		LOW FL	.OW GROUND	WATER DATA RECORD
511 Congress Street Portland	Maine 04101		Ty N	/SDEC QUA	ALITY ASSURA	ANCE PROGRAM PLAN

LOW FLOW GROUNDWATER SAMPL	ING RECORD	
PROJECT FORMEN Speedyl	SAMPLE I.D. NUMBER	828128MW206017RI SAMPLETIME 10935
EXPLORATION ID: MW - 206	SITE	NY SDEC DATE DI/25/69
TIME START OF 45 END 1120	JOB NUMBER	3612082109 FILETYPE DEC
	WELL RISER	PROTECTIVE PROTECTIVE
OTHER		CASING STICKUP (FROM GROUND) 0 0 1 CASING / WELL 0 35 FT
TO WATER 7.09 FT WELL DEPTH		PID WELL DIAMETER IN
FINAL DEPTH TO WATER FT SCREEN LENGTH		PID WELL WES NO N/A MOUTH PPM INTEGRITY: CAP
DRAWDOWN COLUME COLO GAL RATIO OF D		PRESSURE TO PUMP PSI COLLAR
TOTAL VOL.		REFILL DISCHARGE SECONDS TIMER SECONDS
PURGED GAL (purge rate (milliliters per minute) x time duration (minutes) x 0.000		TIMER SECONDS TIMER SECONDS SETTING SETTING
DEPTH TO PURGE TEMP. CO	SPECIFIC NDUCTANCE pH	PUMP DISS. 02 TURBIDITY REDOX INTAKE
TIME WATER (ft) RATE (ml/m) (deg. c)	(ms/cm) (units)	(mg/L) (ntu) (mv) DEPTH (ft) COMMENTS
	0.44 4.70	8/3 61.9, 30 -
(912 706 300 10.3	1.60 .68	10.3 23.4 -40
917 7.06 306 (1.1) 0922 7.06 300 11.8	0.44 7-1	10.7 2.3 -50
0927 7.06 300 11.9	0.99 7.1	11.1 87 -60
0932 7.06 300 11.5 (0.69 7.1	109 03 -60
0935 Simple the Pour 206		001287 117
100 ring to my 20		yraam, 1.4m
12 0	28: 7-1	10.9 013 -60 (00 8 90)
		yet s p .
EQUIPMENT DOCUMENTATION		
TYPE OF TUBING	TY	PE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL
MARSCHALK BLADDER ✓ SIMCO BLADDER ✓ HIGH DENSITY	POLYETHYLENE	POLYVINYL CHLORIDE TEELON STAINLESS STEEL TOTHER TOTHER
GEOPUMP OTHER		OTHER NOW!
ANALYTICAL PARAMETERS		PRESERVATION VOLUME SAMPLE
To Be Collected METHC NUMBE 8260B		METHOD REQUIRED COLLECTED HCL / 4 DEG. C 3 X 40 mL
SVOC CLP SPEST / PCBs CLP		4 DEG. C 2 X 1 L AG
TAL INGREANICS CLP	au/	HNO3 to pH <2 1 x 1 y Tak inorganics
	/V Q	, (1, 1) 2 voo(0.)
PURGE OBSERVATIONS PURGE WATER NUMBER OF GALLO	NS-2.7	NOTE OLO CATION SKETCH
CONTAINERIZED YES (NO)) GENERATED		
Signature:		my 20 62/2" Former cleaned X mi 311
38181		1 Special VI-Jus Ive 1
MACTEC	e.	LOW FLOW GROUNDWATER DATA RECOI
511 Congress Street Portland Maine 04101	9	A MISBLE GOALITI ACCEPTATOLITIES IN ILL.

LOW FLOW GROUNDWATER SAMPLING RECORD									
PROJECT FURWER Speedy	S	SAMPLE I.D.	NUMBER	878	1)8MV?	20759	122 (SA	MPLE TIME	50
EXPLORATION ID: MW/	75]	SITE	Λ	NSDEC			DATE SI	121/09
TIME START 1050 END	1200] јов	NUMBER	3	(1)0821	10		FILE TYPE) - EC
WATER LEVEL / PUMP SETTINGS		MENT POINT			_		PDOTE	OTIVE	
·		F WELL RISER F PROTECTIVE C/	ASING C	PROTECTIVE CASING STIC FROM GRO	CKUP /\	FT	PROTEC CASING DIFFERI	/WELL 1	5 FT
INITIAL DEPTH TO WATER 16.03	WELL DEP		,	PID AMBIENT AIF		PPM	WELL	2	in
FINAL DEPTH TO WATER (0,61	SCREEN LENGTH	WAR WA		PID WELL		PPM	WELL	YES.	ŅO N/A
DRAWDOWN VOLUME (initial - final x 0.16 {2-inch} or x 0.65 {4-inch	AL RATIO OF	DRAWDOWN VO	LUME F	PRESSURE		PSI		CASING LOCKED COLLAR	_ = =
TOTAL VOL.		0.2	F	REFILL			DISCHA		
PURGED	AL ation (minutes) x 0.0	0026 gal/milliliter)		TIMER SETTING		SECONDS	TIMER SETTING		SECONDS]
PURGE DATA	1	SPECIFIC	., r	DIDC C - 1	TI IDDIDAN, I	DEDOV	PUMP	,	
DEPTH TO PURGE TIME WATER (ft) RATE (ml/m)	TEMP. C	CONDUCTANCE (ms/cm)	pH (units)	DISS. O2 (mg/L)	TURBIDITY (ntu)	REDOX (mv)	DEPTH (ft)	COMMENTS	
1051 VW 12 (3)	- 2 }	0999	2.1	1.7	128	190	~12	puny or	
11/5 10.61 250		0 494	82	Zo.1	98.8	190	1		
1176 10.61 250		0.982	87	6.3	1557	180			
1125 1061 250	8-3	1.968	3,2	6.5	7.4	120			
1130 10.61 250	0.7	0.947	2/2	1.6	3.2	180			
1/35 10.61 250		0.947	8,2	3.4	7.8	150			
1140 (0.61 250		0.436	8,2	3.5	97	100	-		
	<u> </u>	075	- 30	3/2		7.5		Smile	time
1154 Dung ett		7.2							
	8.3	0,4)6	8.2	3-5	9,7	(20			
					- · - · · · · · · · · · · · · · · · · ·		!		
	(\)				•				
	0						 		
EQUIPMENT DOCUMENTATION									
TYPE OF PUMP	TYPE OF TUBING			E OF PUMP	MATERIAL CHLORIDE		TEFLO	ADDER MATERIAL	
MARSCHALK BLADDER SHIMCO BLADDER		Y POLYETHYLENE	=	STAINLESS			THEF	1 -	_
GEOPUMP	OTHER			OTHER 1					
ANALYTICAL PARAMETERS							044515		
To Be Collected	METI NUM	BER		METHOD	REQUI	RED	SAMPLE COLLECTED		
Svoc	8260B CLP			HCL / 4 DEG 4 DEG. C	2 X 1 L	AG	sv	oc	
PEST / PCBs TAL INORGANICS	CLP CLP			4 DEG. C HNO3 to pH	2 X 1 L l		==	ST / PCBs _ INORGANICS	
Other									
PURGE OBSERVATIONS			,	NOTES/LC	CATION SKET	CH.(1	1 × 1	m-2012	1
PURGE WATER CONTAINERIZED YES NO	NUMBER OF GALL GENERATED	\sim 3. δ		H.	.)	17.	/		1
CONTINUED TEO				ng cener	, ^{"93} ×;	X 4/			1 1/
Signature:		\rightarrow	15	& Icn	, "May x			•	1
Mala				\		H4-127	<u></u>		
MAC	TEC	Υ 4 ,	43	/]/	-/~				FIGURE 4-16
1/1	w 1/22	109	13	乱流	NYS	LOW FI SDEC QU	LOW GRO JALITY AS	OUNDWATER DA	OGRAM PLAN
511 Congress Street, Portland	, ,	• '		317	/	-			

LOW F	LOW GR	OUNDWA	TER SAM	MPLING RE	CORD						
PROJECT	Sper les	2 Cass	nace	SAMPLE I.D). NUMBER	8281	28-MW-	20950	1421 _{st}	AMPLE TIME 1)	25
EXPLORATI		MW-20	29 5		SITE		MDEC	<u> </u>		DATE) 2	21/09
TIME	START 103	5 ENI	D 1125	JOI	B NUMBER	36	300	2109] .	FILE TYPE	FC
WATER LE	VEL / PUMP SE	ETTINGS		REMENT POINT		PROTECTIV	F		PROTE	CTIVE	
			то	IP OF WELL RISER IP OF PROTECTIVE (THER	CASING	CASING STI	CKUP	FT	CASING	3/WELL	FT
INITIAL DEF TO WAT	PTH (0)-	56	FT WELL D		Z FT	PID AMBIENT All		PPM	WELL		IN
FINAL DEF		-23	FT SCREEN	N C a)	FT	PID WELL MOUTH		PPM	WELL INTEGR		NO N/A
DRAWDO VOLU (initial -				O OF DRAWDOWN VO		PRESSURE TO PUMP		PSI]	CASING LOCKED COLLAR	
TOTAL V		04		·10-3		REFILL		SECONDS	DISCHA TIMER		ECONDS
PURG (purge ra			GAL uration (minutes) x	0.00026 gal/milliliter)	1	TIMER SETTING		SECONDS	SETTIN		ECONDS]
PURGE DA	ATA DEPTH TO	PURGE	TEMP.	SPECIFIC CONDUCTANCE	l pH	1 DISS. 02 I	TURBIDITY 1	REDOX	PUMP INTAKE	ı	
TIME	WATER (ft)	RATE (ml/m)	(deg. c)	(ms/cm)	(units)	(mg/L)	(ntu)	(mv)	DEPTH (ft)	COMMENTS	
1090	10.94	Purce	2.60	0-573	7-0	11-00	16.7	-17	14		
1055	11-04	100	1.0	0.599	4-0	9.05	12-7	- 8	r		
1100	11-11	100	24	0.606	1-0	10.79	9.65	10			
1105	117	100	7.63	0-614	7-0	10-71	5-92	20	 		
1110	11.22	100	8-0	0.622	1-0	10,90	5-56	29 35	 	<u> </u>	
1115	11.23	100	8.2	0-636	1-0	11/12	3,39	39			
1120	11,27	100	8-6	0.690	1,0	10-5	<u> </u>	7.1			
			8	0.646	7.0	10,5	3.9	40			
					<u> </u>	·					
\vdash	4				<u> </u>				ļ		
	2				<u> </u>			·			
	$\left\langle \cdot \cdot \cdot \right\rangle$				 						
	\ <u> </u>		 		<u> </u>						
EQUIPMEN	NT DOCUMENT	ATION	<u></u>						•		
TYPE O	OF PUMP		TYPE OF TUBIN	<u>IG</u>	IX	PE OF PUMP				LADDER MATERIAL	
=	ARSCHALK BLAD	DER	SILASTIC		_	j polyvinyl Tatainless	CHLORIDE		TEFLO OTHER		
	MCO BLADDER EOPUMP	a **	OTHER	SITY POLYETHYLEN		JOTHER	SIEEL	ر		\ <u></u>	•
	AL PARAMETE	RS	<u> </u>								
To Be Collected				ETHOD UMBER	Р	RESERVATION METHOD	ON VOLUI REQUIF		SAMPLE COLLECTED	<u>.</u>	
☐SVO			826 CLF			HCL / 4 DEG 4 DEG. C	3 X 40 n 2 X 1 L /		□ Vo □ sv		
PES	ST / PCBs	,	CLF	P .		4 DEG. C	2 X 1 L	AG	☐ PE:	ST / PCBs	
Oth	L INORGANICS ner		CLF			HNO3 to pH	<2 1 x 1 L F			L INORGANICS	
	BSERVATIONS					NOTES/LO	CATION SKET	CH \		١	
PURGE WA	TER	$\langle \gamma \rangle$	NUMBER OF GA GENERATED	ALLONS 1. OH						House	
Signat	ure.		/						2695 J	_	
2.gridi	HAI					_		0		ENNING AZ	•
		IAC	TEC		, -	*		-	-) F	FIGURE 4-16
	$oldsymbol{arPsi}$	BAS	2112	6/2009			NYS			DUNDWATER DAT SSURANCE PROC	
511 0	v Congress Str	・() eet, Portland	I, Maine 0410)1							

LOW FI	LOW FLOW GROUNDWATER SAMPLING RECORD										
PROJECT											
EXPLORATIO	ON ID:	Mui-2	10		SITE		NADE			DATE /	1/2/07
TIME S	START 02	SO END	0915	JOB	NUMBER	36	126821	10		FILE TYPE	DE
WATER LEV	VEL / PUMP SE	TTINGS		EMENT POINT		PROTECTA	v=		PROTECT	rive	
				OF WELL RISER OF PROTECTIVE C	ASING	PROTECTIVE CASING STI	ICKUP	A FT	CASING /	WELL	FT
INITIAL DEP		,97.	FT WELL DE			PID	701.2)		WELL		2. IN
FINAL DEP			(TOR)	1 1 1	5 FT	AMBIENT A	IR	PPM	DIAMETE	R YES	
TO WAT		-96	FT SCREEN LENGTH	mkrows	FT	PID WELL MOUTH		PPM	WELL	TY: CAP <u>x'</u> CASING <u>X</u>	,
DRAWDOV VOLUM	ve l 6.0	1) or x 0.65 (4-inc		OF DRAWDOWN VO		PRESSURE TO PUMP	e series al relice of	PSI		LOCKED X COLLAR X	
TOTAL VO				-0033		REFILL			DISCHAR	RGE	acaonida
PURG	ED '	minute) x time du	GAL ration (minutes) x	0.00026 gal/milliliter)		TIMER SETTING		SECONDS	TIMER SETTING		SECONDS
PURGE DA	TA			SPECIFIC		d piec co	TURBIDITY	REDOX	PUMP INTAKE		
TIME	DEPTH TO WATER (ft)	PURGE RATE (ml/m)	TEMP. (deg. c)	CONDUCTANCE (ms/cm)	pH (units)	DISS. O2 (mg/L)	(ntu)	(mv)	DEPTH (ft)	COMMENT	S S
OBIS		Puras	0:0	0 661	7-23	Co.1	404	1	15		7
1820 c825	1004 000	150	8.22	0-96	801	60.1	320	-27	15		
0630	695	150	6.81	0-96	8,14	20-1	241	-46			
083S	U.95	150	12/101	0.96	0.13	LO-1	134	-56			
<u> </u>	1.95	150	8.70	0.95 0.94	8.34	LO-1	106	-69			
०८५५ ०८५५	696	150	9-12	0.74	P.38	(10)	7471	-70			
c)e(00	10 96	150.	9-52	0-94	6.38	20-1	75-2	-72			
0905	696	150.	9-53	0.94	8.40	601	70-1	1-7-4	V		<u> </u>
	<u> </u>	-	010	0.94	8:4	Loct	70-1	-70			
			7110					<u> </u>			
						-	<u> </u>				
\vdash	V				 	+					
	()										
					<u> </u>				<u> </u>		
1	DE B <u>OWB</u> NT DOÇ M MEN.	TATION	TYPE OF TUBIN	1G	I	YPE OF PUM	P MATERIAL		TYPE OF BL	ADDER MATERIAL	_
	ARSCHALK BLAI	DDER	SILASTIC	-			YL CHLORIDE		TEFEN)	N. record	
Sii	MCO BLADDER		<u> </u>	SITY POLYETHYLEN	NE [STAINLES	S STEEL	•	OTHER		
723	EOPUMP		OTHER_		<u> </u>	,OTHER			ages of the second		
ANALYTIC To Be Collecte	CAL PARAMET	ERS		ETHOD UMBER		PRESERVAT			SAMPLE COLLECTED		,
⊠ _{sv}	oc /oc			60B		HCL / 4 DI 4 DEG. C	EG.C 3 X 40 2 X 1 l		SVC	oc .	
☐ PE	EST / PCBs AL INORGANICS		CL CL			4 DEG. C HNO3 to p	2 X 1 L hH<2 1 x 1 L		===	ST / PCBs _ INORGANICS	
. =	her										<u> </u>
PURGE O	BSERVATION	S				NOTES/	OCATION SKE	тсн			j i
PURGE WA		s (NO)	NUMBER OF G GENERATED	1.95	·		\				/ /
	1	4						d			· /
Signa	iture:	,)				,	لــــــــــــــــــــــــــــــــــــ			ا لر	
4		, Л. Д. С	TE	~ ,			MW-210-	Ž			
4		171		5/09						DUNDWATE	
511	Congress St	・ お牛 reet. Portlan	d, Maine 041	01			NY	PDEC ()	JALITY AS	SSURANCE	: :
11 311	20		,								

LOW FLOW GROUNDWATER SAMPLING RECORD							
PROJECT TO WENT SAMPLE I.D. NUMBER THE 1215 SAMPLE TIME 1215							
EXPLORATION ID: MW 2	SITE NOTE DATE 01/20109						
TIME START 1125 END 125 JOB NUMB	BER 36082109 FILE TYPE DEC						
WATER LEVEL / PUMP SETTINGS MEASUREMENT POINT TOP OF WELL RISER	PROTECTIVE PROTECTIVE						
TOP OF PROTECTIVE CASING							
INITIAL DEPTH TO WATER 7 FT WELL DEPTH (TOR)	PID WELL T AMBIENT AIR PPM DIAMETER IN						
FINAL DEPTH TO WATER TO SCREEN SCREEN	PID WELL YES NO N/A						
DRAWDOWN VOLUME GAL RATIO OF DRAWDOWN VOLUME	CASING LOCKED						
(initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) TOTAL VOL. TOTAL VOLUME PURGED	TO PUMP PSI COLLAR PSI COLLAR PSI DISCHARGE						
TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter)	TIMER SECONDS TIMER SECONDS SETTING SETTING						
PURGE DATA SPECIFIC DEPTH TO PURGE TEMP. CONDUCTANCE p	PUMP H DISS. 02 TURBIDITY REDOX INTAKE						
TIME WATER (ft) RATE (ml/m) (deg. c) (ms/cm) (un							
1127 Pung ov (m mw/21)	1 65 138 -30 + Non Huck in Well						
1135 588 300 11.6 1.03 76	2 7.1 328 50						
1140 189 300 128 0.99 7.	2 10.0 254 -50						
145 7.90 306 13.1 6.99 7.	2 11.3 70.5 -50 2 11.1 15.3 -60						
1150 7.40 300 13.5 0.49 7.	1 100 2 1 60						
	2 10.7 1.6 60						
1205 7.90 300 14.1 1.00 7.	1 10.3 0.7 -70 DO-testing Rit:						
DIO 7.90 300 140 1.00 7	1.1 10.1 1.3 -70 2.4 ng/L						
Dis Sapletne (man -21)							
14 1-00 7	1 10.1 1.3 70						
2							
EQUIPMENT DOCUMENTATION							
TYPE OF PUMP TYPE OF TUBING	TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL						
MARSCHALK BLADDER SILASTIC	POLYVINYL CHLORIDE TEFLON STAINLESS STEEL OTHER OTHER						
SMCO BLADDER ✓ HIGH DENSITY POLYETHYLENE OTHER OTHER	OTHER WWL						
ANALYTICAL PARAMETERS	PRESERVATION VOLUME SAMPLE						
To Be Colleged METHOD NUMBER ▼VOC 8260B	METHOD REQUIRED COLLECTED HCL / 4 DEG. C 3 X 40 mL						
SVOC	4 DEG. C 2 X 1 L AG SVOC 4 DEG. C 2 X 1 L AG PEST / PCBs						
PEST PCBS TAK INORGANICS A PUMNIFERS CLP TOther MNA PUMNIFERS CLP VANNOV							
Cother MNH FURIAGE NAMEDY	HNO3 to pH <2 1×1LB ITAL INORGANICS NA Paveneter						
PURGE OBSERVATIONS	NOTES/LOCATION SKETCH						
PURGE WATER CONTAINERIZED YES (NO) SENERATED 3.5	15 And De						
	NOTES/LOCATION SKETCH NOTES/LOCATION SKETCH						
Signature.	To my de Korne de la Jameshira Dr.						
MINACTEC	FIGURE 4-16 LOW ELOW GROUNDWATER DATA RECORD						
MIACI EC	I OW FLOW GROUNDWATER DATA RECORD						
511 Congress Street, Portland, Maine 04101	NYSDEC QUALITY ASSURANCE PROGRAM PLAN						

PROJECT FORM SPECIAL SAMPLE I.D. NUMBER EXPLORATION ID: MW 7 2
WATER LEVEL / PUMP SETTINGS MEASUREMENT POINT TOP OF WELL RISER TOP OF PROTECTIVE CASING OTHER WELL DEPTH TO WATER FINAL DEPTH TO WELL PUMP PHD WELL PPM WELL YES NO N/A INTEGRITY: CAP CASING LOCKED COLLAR TO TOTAL VOLUME PURGED (purge rate (millilliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) SETTING FILE TYPE PROTECTIVE CASING / WELL CASING / WELL AMBIENT AIR PPM WELL YES NO N/A REFILL TIMER SECONDS SETTING SECONDS
WATER LEVEL / PUMP SETTINGS MEASOREMENT POINT TOP OF WELL RISER TOP OF PROTECTIVE CASING OTHER OTHER WELL DEPTH TO WATER FIT SCREEN LENGTH FIT DRAWDOWN VOLUME (initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) MEASOREMENT POINT TOP OF WELL RISER TOP OF WELL RISER TOP OF WELL RISER TOP OF WELL RISER TOP OF WELL RISER TOP OF WELL RISER TOP OF WELL RASING CASING FIT PROTECTIVE CASING FIT WELL DEPTH TO WATER PROTECTIVE CASING FIT WELL PPM DIAMETER IN WELL PPM DIAMETER O . 3 FT WELL DIAMETER CASING LOCKED CASING LOCKED TO PUMP PSI DISCHARGE TIMER SECONDS SETTING SETTING
TOP OF WELL RISER TOP OF WELL RISER TOP OF PROTECTIVE CASING STICKUP (FROM GROUND) INITIAL DEPTH TO WATER FIX FT WELL DEPTH (TOR) FT WELL DEPTH (TOR) FT SCREEN LOW FT PID AMBIENT AIR PPM WELL YES NO N/A INTEGRITY: CAP CASING WELL YES NO N/A INTEGRITY: CAP CASING CASING WELL YES NO N/A INTEGRITY: CAP CASING LOCKED LOCKED COLLAR TO TOTAL VOLUME PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) TOP OF WELL RISER CASING STICKUP (FROM GROUND) PPD WELL PPM WELL YES NO N/A INTEGRITY: CAP CASING LOCKED COLLAR TO PUMP PSI DISCHARGE TIMER SECONDS
INITIAL DEPTH TO WATER FT WELL DEPTH (TOR) FT WELL DEPTH (TOR) FT WELL DEPTH (TOR) FT WELL DEPTH (TOR) FT WELL DEPTH TO WATER FT SCREEN LENGTH VOLUME (initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) TOP OF PROTECTIVE CASING (CASING STICKUP (FROM GROUND) PID MELL PPM WELL PPM WELL PPM WELL PPM WELL PPM WELL PPM WELL PPM NOUTH PPM NOUTH PPM PRESSURE TO PUMP PSI DISCHARGE TIMER SECONDS SETTING
TO WATER 7.35 FT WELL DEPTH (TOR) PID AMBIENT AIR PPM DIAMETER 2 IN FINAL DEPTH TO WATER 7.5 FT SCREEN LENGTH FT MOUTH PPM WELL YES NO N/A DRAWDOWN VOLUME (initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) RATIO OF DRAWDOWN VOLUME (initial - final x 0.16 (2-inch) or x 0.65 (4-inch)) TO TOTAL VOLUME PURGED TO PUMP PSI COLLAR TO TOTAL VOLUME PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) TO WATER 7.5 FT WELL PPM DIAMETER 2 IN WELL YES NO N/A RATIO OF DRAWDOWN VOLUME TO TOTAL VOLUME PURGED TO PUMP PSI DISCHARGE TIMER SECONDS SETTING SETTING
FINAL DEPTH TO WATER TO WATER TO WATER FT SCREEN LENGTH MOUTH PPM INTEGRITY: CAP CASING LOCKED LOCKED LOCKED COLLAR TO TOTAL VOL. PURGED PURGED COLLAR TOTAL VOL. PURGED COLLAR TIMER SECONDS SETTING SETTING SETTING
DRAWDOWN VOLUME (initial - final x 0.16 {2-inch} or x 0.65 {4-inch}) TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) RATIO OF DRAWDOWN VOLUME TO TOTAL VOLUME TO TOTAL VOLUME PURGED TO PUMP PRESSURE TO PUMP PRESSURE TO PUMP PSI CASING LOCKED COLLAR TO PUMP PSI DISCHARGE TIMER SECONDS SETTING SECONDS
TOTAL VOL. PURGED (purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) REFILL TIMER SECONDS TIMER SETTING SETTING
(purge rate (milliliters per minute) x time duration (minutes) x 0.00026 gal/milliliter) SETTING SETTING
PURGE DATA SPECIFIC PUMP DISS. 02 TURBIDITY REDOX INTAKE PUMP DISS. 02 TURBIDITY REDOX INTAKE PUMP DISS. 02 TURBIDITY REDOX INTAKE DISS. 02 TURBIDITY REDOX INTAKE DISS. 03 TURBIDITY REDOX INTAKE DISS. 04 TURBIDITY REDOX INTAKE DISS. 05 TURBIDITY REDOX DISS. 06 DISS. 07 DISS. 08 D
TIME WATER (ft) RATE (ml/m) (deg. c) (ms/cm) (units) (mg/L) (ntu) (mv) DEPTH (ft) COMMENTS
745 702 250 (1-3 15) 7.5 12 115 230 , pump 871
750 792 20 99 146 7.7 201 102 210
755 7.92 250 10.3 1.46 7.9 (0.1 6.8 250
300 7.92 20 16.9 1.15 7.9 601 3.4 20 1
810 792 250 113 1.52 8.8 (0.1 1.7 180)
OSS, Sangle time (2 MW 21)
10838 DWG of t
11 1-52 9.0 (0) 1,7 180
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE OF PUMP MATERIAL TYPE OF BLADDER MATERIAL
MARSCHALK BLADDER SIJASTIC POLYVINYL CHLORIDE TEFLON
SIMICO BLADDER HIGH DENSITY POLYETHYLENE STAINLESS STEEL OTHER OTHER OTHER OTHER OTHER
ANALYTICAL PARAMETERS
To Be Collected METHOD PRESERVATION VOLUME SAMPLE NUMBER METHOD REQUIRED COLLECTED
CLP 4 DEG. C 2X1 LAG PEST / PCBs CLP HN03 to pH < 2 1 x 1 LP TAL-INORGANICS
Jother MNI Januelers varins vandes mas game jert
PURGE OBSERVATIONS NOTES/LOCATION SKETCH NOTES/LOCATION SKETCH
PURGE WATER CONTAINERIZED YES NO GENERATED NUMBER OF GALLONS ~2.1
Singstrue Singstrue Singstrue
59.40
MACTEC FIGURE 4-16 AND LOW FLOW GROUNDWATER DATA RECORD AND LOW FLO
FIGURE 4-16 ACTE FIGURE 4-16 FIGURE 4-16 FIGURE 4-16 NYSDEC QUALITY ASSURANCE PROGRAM PLAN FILL CONGRESS Street Portland Maine 04101

LOW FLOW GROUNDWAT	ER SAMPL	ING REC	CORD						
PROJECT NYSDEC		SAMPLE I.D.	NUMBER	8281	20 -MW	00300	ŞAM	PLE TIME	1450
EXPLORATION ID: MW-25		SITE		uge Chea			DATE	3/12/09	
TIME START 1300 END	1500	JOB	NUMBER	36	12082	110		FILE TYPE	
WATER LEVEL / PUMP SETTINGS	MEASUREME TOP OF		***	PROTECTIVE			DD0770-		
	TOP OF I	PROTECTIVE C	ASING	PROTECTIVE CASING STIC (FROM GROU	KUP) _{FT}	PROTECT CASING / DIFFEREN	WELL -1	CO.15 5
INITIAL DEPTH 6.74 FT	WELL DEPTH	711		PID			WELL	<u> </u>	FT
FINAL DEPTH TO WATER FT	(TOR)	UNK	FT	AMBIENT AIR		PPM	DIAMETER	· ·	YES NO N/A
DRAWDOWN CO. GAL] LENGTH L	RAWDOWN VO	FT .	MOUTH PRESSURE		PPM	INTEGRIT	Y: CAP CASING	<u> </u>
(initial - final x 0.16 {2-inch} or x 0.65 {4-inch})		VOLUME PURC		TO PUMP		PSI		COLLAR	
TOTAL VOL. PURGED A4.5 GAL	<u></u>	0 · [REFILL TIMER	``	SECONDS	DISCHARG		SECONDS
(purge rate (milliliters per minute) x time duration			-	SETTING			SETTING		
DEPTH TO PURGE TIME WATER (ft) RATE (ml/m)	TEMP. CON	SPECIFIC NDUCTANCE	pH	DISS. O2	TURBIDITY	REDOX	PUMP INTAKE		
130/5 5 -11 / 3	(deg. c)	(ms/cm)	(units)	(mg/L)	(ntu)	(mv)	DEPTH (ft)	COMME	NTS
1316 6.77 2175	5.4 3	1,00	7,5	4.1	18	-23	210,8		
		1,94	7.5	1.6	7,3	-3\(\varphi\)			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1.67	7.4	1.0	4.4	-30			
		237	7.4	0,5	212	ーしる ー7ス			
		1.03	7.4	201	1.0	-76		 -	<u> </u>
	513- 1	192	7.4	20,1	0.9	-80			
		84	7.4	6011	0.9	-82			
	52 1		7.4	20.1	0,9	-86			
	511 1	72	7.4	4011	100	37			
1405 0:78 2175 3	5.1 1	169	7.4	201	160	-3-4			
	570 1.	66	7.4	2011	6.1	-92			
	5.1 1.		7.4	40.	4,0	-37			
			7.4	20.1	3.3	-40			
		51	7.5	20.1	29	-95-			·
		49	7.5	<0.1	2.5	-97	1		·
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	460	191	20.1	2,2	-98	9		
EQUIPMENT DOCUMENTATION TYPE OF PUMP TYPE	PE OF TUBING		TYP	PE OF PUMP M	ATERIAL	•	TYPE OF BLADE	DER MATERIA	
	SILASTIC		$\overline{\Box}$	POLYVINYL (r	TEFLON	<u> </u>	<u> </u>
SIMCO BLADDER	HIGH DENSITY PO	OLYETHYLENE		STAINLESS S	TEEL	Ī	OTHER		
GEOPUMP	OTHER			OTHER		-			
ANALYTICAL PARAMETERS To Be Collected	METHOD								
VOC + DW	NUMBER			RESERVATION METHOD	REQUIR	ED C	SAMPLE COLLECTED		
svoc	8260B CLP			HCL / 4 DEG. 4 DEG. C	C 3 X 40 m		A VOC		
TAL INORGANICS	CLP CLP			4 DEG, C HNO3 to pH <	2 X 1 L A 2 X 1 L P	.G	PEST / F		,
Other								RGANICS	
PURGE OBSERVATIONS			,	NOTES/LOC	ATION SKETC	:н			
PURGE WATER NU	MBER OF GALLONS	\$ 4.5		1 _		Mori	roe A	re	
CONTAINERIZED YES (NO) GE	NERATED	 	— ;		* mm	5			-
Signature: Dur Punk	<i>.</i>			MURB	/ <u>*</u>				
ANN - 12	111		1	1		zal.	7 7 7 7		.]
MACI	LEC.			1	Carr	701 Y ~ (DIAGATE	FIGURE 4-16
V 348 03	3/18/2	4009		mund	. [LOAM LT	LITY ASSU	RANCE	DATA RECORD ROGRAM PLAN
511 Congress Street, Portland, M	aine 04101	· · · · · ·		×	\				

FIELD DATA RECORD			12	
PROJECT AMAGE (Clenners FIE	ELD SAMPLE ID 888000	018049 STUDY AR	EA/AOC
SITE ID Carrigg		SITE TYPE NXSD		DATE 3-12-09
	END 1300	JOB NUMBER 361268	MO F	TILE TYPE DEC
SAMPLE TIME 124		ATHER		
WATER LEVEL / WELL DATA		a/1111 Have 1		
MEASURED	HISTORICAL T	PROTECTIVE CASING STI		PROTECTIVE CASING / WELL
WELL DEPTH FT	(TOR) WELL DEPTH	FT (TOR) (FROM GROU		DIFFERENCE FT
DEPTH TO	SCREEN	WELL		WELL
WATERFT	(TOR) LENGTH	FT_ DIAMETER	IN	MATERIAL
HEIGHT OF WATER COLUMN	PURGE ** FT VOLUME	GAL/VOL TOTAL	WELL INTE	GRITY: YES NO N/A CAP
4710	PID	VOLUME	t	COLLAR
AMBIENT AIR	PPM WELL MOUTH	PPM PURGE	O GAL	
PURGE DATA	<u> </u>	<u> </u>		SAMPLE OBSERVATIONS:
TIME				COLORED
PURGE VOLUME (gallons) PURGE RATE (gal/min)				TURBID
WATER LEVEL (feet)				ODOR
TEMPERATURE (degreesC)				OTHER (see notes)
pH (units)				PURGE WATER
DISSOLVED OXYGEN (mg/L)				CONTAINERIZED ?
SPEC, COND. (ms/cm)				
TURBIDITY (ntu)				NO.OF DRUMS USED:
REDOX POTENTIAL (+/- mv)				COMBINED WITH:
EQUIPMENT DOCUMENTATIO	ON DECO	N FLUIDS USED	NUMBER OF FILTERS	S USED
PURGING SAMPLING	ERSIBLE PUMP	POLAND SPRING DISTILLED WATER	WATER LEVEL EQUI	
	STOP SALUBING	OTHER	OTHER	
ANALYTICAL PARAMETERS	SIQ JANUA	***		
	METHOD	PRESERVATION		PLE SAMPLE BOTTLE
ANALYTE	NUMBER	METHOD Alot / sic	REQUIRED COLLE	
Noc	8260	> Hel/4'c	(3)10 M	VOAL
V		•		
ļ				
	•			
ļ				
NOTES		4 - 1	11/216	Q1/-
GW grab	from ben	earthe the	ow lary.	345
	٠	ers could not	be collecte	ed
	- pranel		1	
SIGNATURE:				MACTEO
0.010				MACTEC,Inc

APPENDIX C

HYDRAULIC CONDUCTIVITY DATA

Table 3.2: Groundwater Hydraulic Data

Summary of Hydraulic Conductivity (Slug) Tests

January 2008

Well	Well	Hvorslev	Hvorslev	Bouwer-Rice	Bouwer-Rice		
Identification	Type	(cm/sec)	(cm/sec)	(cm/sec)	(cm/sec)	Geometric mean	K values
		FHT	RHT	FHT	RHT	(cm/sec)	(ft/day)
MW-206	OB/BR	0.008	0.011	0.005	0.008	0.008	21.4
MW-210	OB/BR	0.003	0.004	0.003	0.002	0.0027	7.7
MW-211	OB/BR	0.004	0.006	0.004	0.004	0.0044	12.6
MW-212	OB/BR		0.003		0.002	0.0020	5.5

Well Identification	V = Ki/n (ft/day) (n=0.05)	V (ft/year)	Geometric mean	
MW-206	3.4	1250	604	=V (ft/year)
MW-210	1.2	448		
MW-211	2.0	734		
MW-212	0.9	324		

Well	V = Ki/n			
Identification	(ft/day)		Geometric	
	(n=0.20)	V (ft/year)	mean	
MW-206	0.9	312	151	=V (ft/year)
MW-210	0.3	112		
MW-211	0.5	184		
MW-212	0.2	81		

Notes

FHT = Falling Head Slug Test

RHT = Rising Head Slug Test

cm/sec = centimeters per second

ft/day = feet per day

ft/year = feet per year

K = hydraulic conductivity

V = velocity (in either ft/day or ft/year)

i = hydraulic gradient (feet per foot); hydraulic gradient calculated at .008

n = porosity, assumed porosity of 0.05 for the bedrock wells, and 0.25 for the overburden wells.

Because well screens cross the overburden/bedrock interface, porosity of both 0.05 and 0.2 maybe present within the screened interval; therefore velocities using porosity values of both 0.05 and 0.2 are presented above.

Former Speedy's Cleaners Site, Brighton, NY Hydraulic Gradient Calculations

(Change in Head)

 $i = \overline{\text{(Shortest distance between observed or interpreted heads)}}$

Hydraulic Gradient (i) calculations from 3/2009 contour data.

Interface Zone

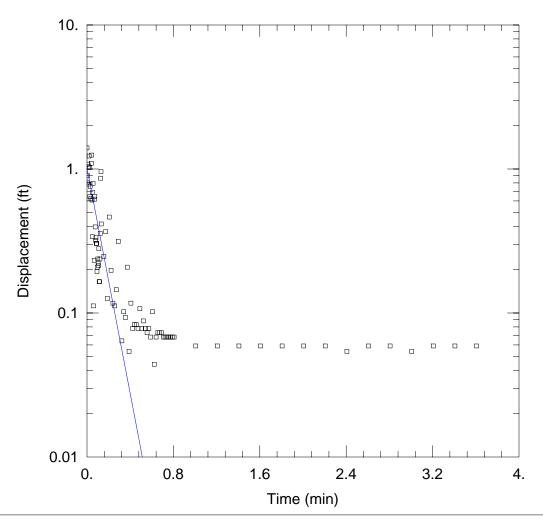
MW-206 to HA-119

5.2 = difference in head

550 = distance between locations (feet)

i = 0.009455

HA-104 to HA-122


5.4 = difference in head

750 = distance between wells (feet)

i = 0.0072

0.008327 = Arithmetic mean Interface Zone hydraulic gradient.
0.008 feet/foot

Created by: CRS 4/10/09 Checked by: RAL 4/15/09

MW-206 T8 FALLING HEAD TEST

Data Set: P:\...\MW-206 T8 FHT.aqt

Date: 04/15/09 Time: 16:18:22

PROJECT INFORMATION

Company: MACTEC E & C

Client: NYSDEC Project: 3612082109

Location: Former Speedy's Cleaners

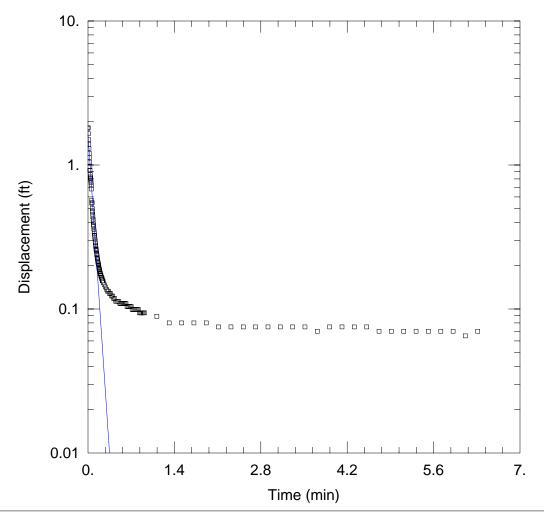
Test Date: 2/3/09

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-206)

Initial Displacement: 1.4 ft Static Water Column Height: 12.5 ft


Total Well Penetration Depth: 12.5 ft Screen Length: 10. ft

Casing Radius: 0.083 ft Wellbore Radius: 0.1666 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.004703 cm/sec y0 = 1.015 ft

MW-206 T9 RISING HEAD TEST

Data Set: P:\...\MW-206 T9 RHT.aqt

Date: 04/15/09 Time: 15:54:05

PROJECT INFORMATION

Company: MACTEC E & C

Client: NYSDEC Project: 3612082109

Location: Former Speedy's Cleaners

Test Date: 2/3/09

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-206)

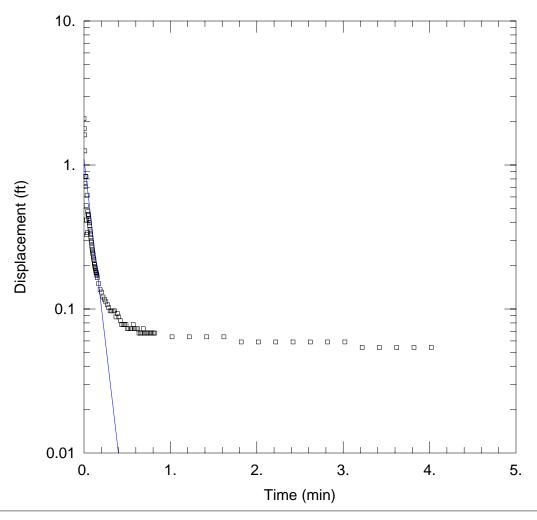
Initial Displacement: 1.8 ft

Total Well Penetration Depth: 12.5 ft

Casing Radius: 0.083 ft

Static Water Column Height: 12.5 ft

Screen Length: 10. ft


Wellbore Radius: 0.1666 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.007624 cm/sec y0 = 1.635 ft

MW-206 T10 FALLING HEAD TEST

Data Set: P:\...\MW-206 T10 FHT.aqt

Date: 04/15/09 Time: 16:23:17

PROJECT INFORMATION

Company: MACTEC E & C

Client: NYSDEC Project: 3612082109

Casing Radius: 0.083 ft

Location: Former Speedy's Cleaners

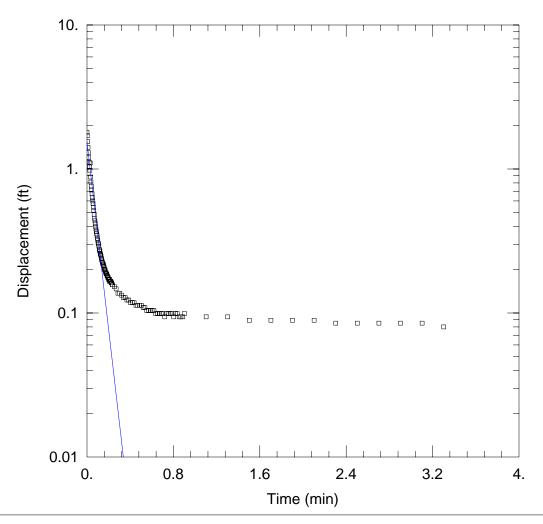
Test Date: 2/3/09

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-206)

Initial Displacement: 2.1 ft Static Water Column Height: 12.5 ft


Total Well Penetration Depth: 12.5 ft Screen Length: 10. ft

Wellbore Radius: 0.1666 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 0.008444 cm/sec y0 = 1.097 ft

MW-206 T11 RISING HEAD TEST

Data Set: P:\...\MW-206 T11 RHT.aqt

Date: 04/15/09 Time: 16:26:21

PROJECT INFORMATION

Company: MACTEC E & C

Client: NYSDEC Project: 3612082109

Location: Former Speedy's Cleaners

Test Date: 2/3/09

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

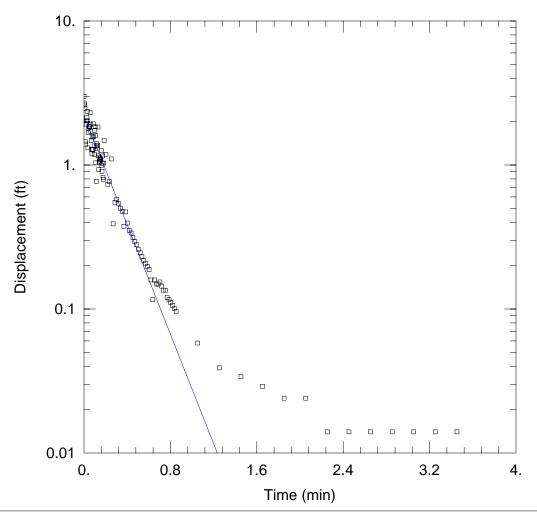
WELL DATA (MW-206)

Initial Displacement: 1.8 ft

Total Well Penetration Depth: 12.5 ft

Casing Radius: 0.083 ft

Static Water Column Height: 12.5 ft


Screen Length: 10. ft

Wellbore Radius: 0.1666 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 0.01073 cm/sec y0 = 1.543 ft

MW-210 TO FALLING HEAD TEST

Data Set: P:\...\MW-210 T0 FHT.aqt

Date: 04/15/09 Time: 16:30:44

PROJECT INFORMATION

Company: MACTEC E & C

Client: NYSDEC Project: 3612082109

Casing Radius: 0.083 ft

Location: Former Speedy's Cleaners

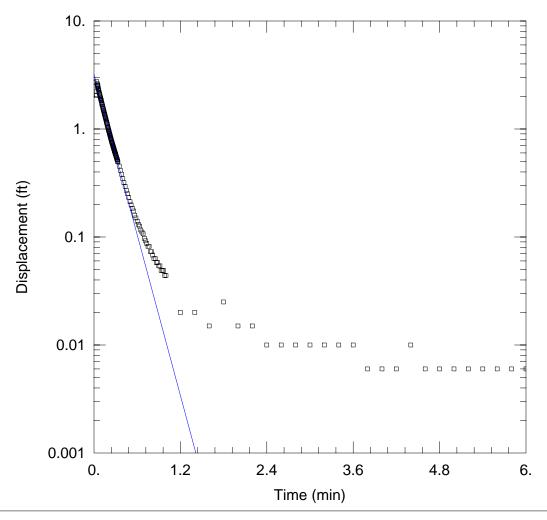
Test Date: 2/3/09

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-210)

Initial Displacement: 3. ft Static Water Column Height: 10.8 ft


Total Well Penetration Depth: 10.8 ft Screen Length: 10. ft

Wellbore Radius: 0.1666 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 0.003135 cm/sec y0 = 2.214 ft

MW-210 T1 RISING HEAD TEST

Data Set: P:\...\MW-210 T1 RHT.aqt

Date: 04/15/09 Time: 16:33:04

PROJECT INFORMATION

Company: MACTEC E & C

Client: NYSDEC Project: 3612082109

Casing Radius: 0.083 ft

Location: Former Speedy's Cleaners

Test Date: 2/2/09

AQUIFER DATA

Saturated Thickness: 50. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-210)

Initial Displacement: 2.7 ft Static Water Column Height: 10.8 ft


Total Well Penetration Depth: 10.8 ft Screen Length: 10. ft

Wellbore Radius: 0.1666 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 0.00409 cm/sec y0 = 3.214 ft

MW-210 T2 FALLING HEAD TEST

Data Set: P:\...\MW-210 T2 FHT.aqt

Date: 04/15/09 Time: 16:36:08

PROJECT INFORMATION

Company: MACTEC E & C

Client: NYSDEC Project: 3612082109

Location: Former Speedy's Cleaners

Test Date: 2/2/09

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-210)

Initial Displacement: 2.7 ft

Total Well Penetration Depth: 10.8 ft

Casing Radius: 0.083 ft

Static Water Column Height: 10.8 ft

Screen Length: 10. ft

Wellbore Radius: 0.1666 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.002774 cm/sec y0 = 2.49 ft

MW-210 T3 RISING HEAD TEST

Data Set: P:\...\MW-210 T3 RHT.aqt

Date: 04/15/09 Time: 16:38:32

PROJECT INFORMATION

Company: MACTEC E & C

Client: NYSDEC Project: 3612082109

Location: Former Speedy's Cleaners

Test Date: 2/2/09

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-210)

Initial Displacement: 3.2 ft

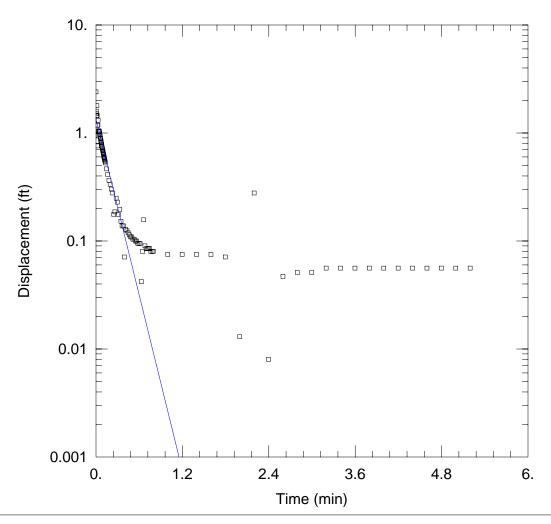
Total Well Penetration Depth: 10.8 ft

Casing Radius: 0.083 ft

Static Water Column Height: 10.8 ft

Screen Length: 10. ft

Wellbore Radius: 0.1666 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.001507 cm/sec

y0 = 2.84 ft

MW-211 T4 FALLING HEAD TEST

Data Set: P:\...\MW-211 T4 FHT.aqt

Date: 04/15/09 Time: 15:11:30

PROJECT INFORMATION

Company: MACTEC E & C

Client: NYSDEC Project: 3612082109

Casing Radius: 0.083 ft

Location: Former Speedy's Cleaners

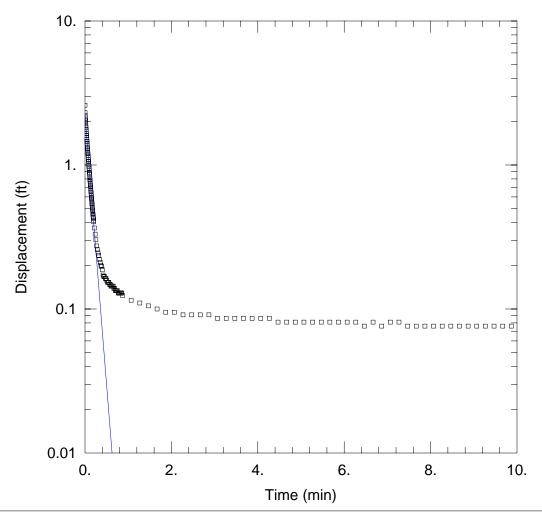
Test Date: 2/2/09

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-211)

Initial Displacement: 2.4 ft Static Water Column Height: 10.6 ft


Total Well Penetration Depth: 10.6 ft Screen Length: 10. ft

Wellbore Radius: 0.1666 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 0.004475 cm/sec y0 = 1.34 ft

MW-211 T5 RISING HEAD TEST

Data Set: P:\...\MW-211 T5 RHT.aqt

Date: 04/15/09 Time: 15:25:10

PROJECT INFORMATION

Company: MACTEC E & C

Client: NYSDEC Project: 3612082109

Casing Radius: 0.083 ft

Location: Former Speedy's Cleaners

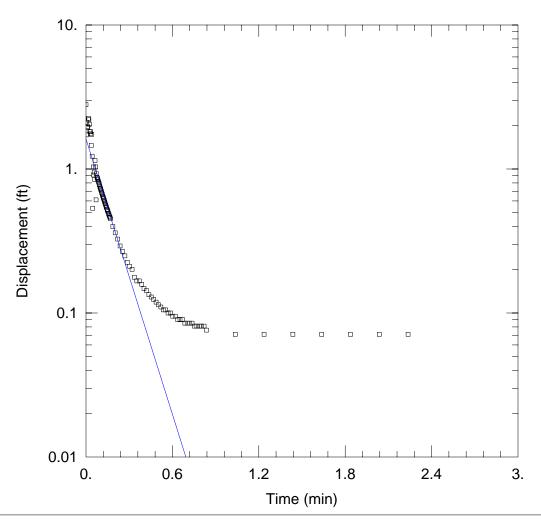
Test Date: 2/2/09

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-211)

Initial Displacement: 2.6 ft Static Water Column Height: 10.6 ft


Total Well Penetration Depth: 10.6 ft Screen Length: 10. ft

Wellbore Radius: 0.1666 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 0.006189 cm/sec y0 = 2.231 ft

MW-211 T6 FALLING HEAD TEST

Data Set: P:\...\MW-211 T6 FHT.aqt

Date: 04/15/09 Time: 15:32:20

PROJECT INFORMATION

Company: MACTEC E & C

Client: NYSDEC Project: 3612082109

Casing Radius: 0.083 ft

Location: Former Speedy's Cleaners

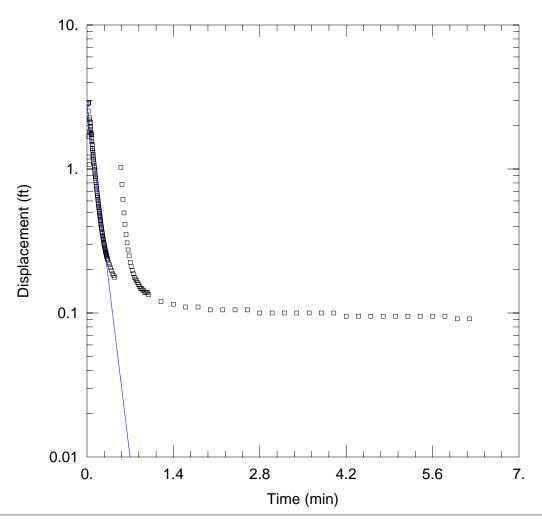
Test Date: 2/2/09

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-211)

Initial Displacement: 2.8 ft Static Water Column Height: 10.6 ft


Total Well Penetration Depth: 10.6 ft Screen Length: 10. ft

Wellbore Radius: 0.1666 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.003662 cm/sec y0 = 1.616 ft

MW-211 T7 RISING HEAD TEST

Data Set: P:\...\MW-211 T7 RHT.aqt

Date: 04/15/09 Time: 16:05:32

PROJECT INFORMATION

Company: MACTEC E & C

Client: NYSDEC Project: 3612082109

Location: Former Speedy's Cleaners

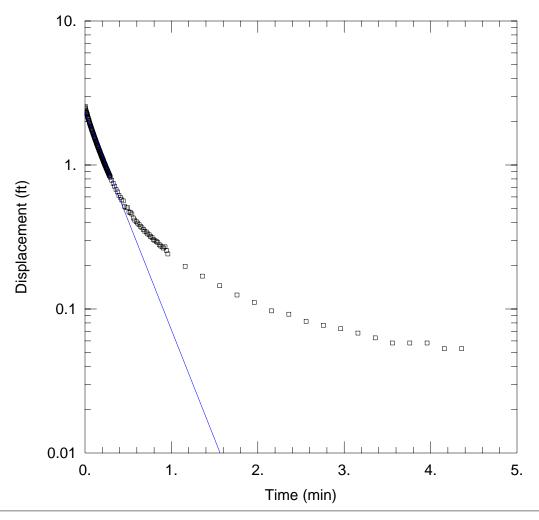
Test Date: 2/2/09

AQUIFER DATA

Saturated Thickness: 50. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-211)

Initial Displacement: 2.8 ft Static Water Column Height: 10.6 ft


Total Well Penetration Depth: 10.6 ft Screen Length: 10. ft

Casing Radius: 0.083 ft Wellbore Radius: 0.1666 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.003817 cm/sec y0 = 2.812 ft

MW-212 T12 RISING HEAD TEST

Data Set: P:\...\MW-212 T12 RHT.aqt

Date: 04/15/09 Time: 16:41:08

PROJECT INFORMATION

Company: MACTEC E & C

Client: NYSDEC Project: 3612082109

Location: Former Speedy's Cleaners

Test Date: 2/3/09

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-212)

Initial Displacement: 2.5 ft

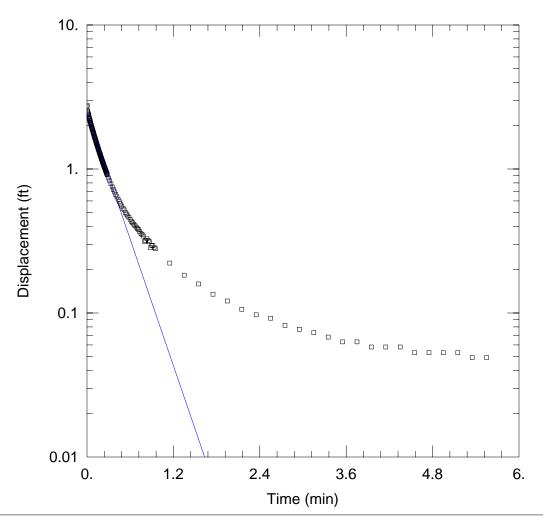
Total Well Penetration Depth: 7. ft

Casing Radius: 0.083 ft

Static Water Column Height: 7. ft

Screen Length: 10. ft

Wellbore Radius: 0.1666 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Hvorslev

K = 0.002502 cm/sec

y0 = 2.353 ft

MW-212 T13 RISING HEAD TEST

Data Set: P:\...\MW-212 T13 RHT.aqt

Date: 04/15/09 Time: 16:49:42

PROJECT INFORMATION

Company: MACTEC E & C

Client: NYSDEC Project: 3612082109

Location: Former Speedy's Cleaners

Test Date: 2/3/09

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-212)

Initial Displacement: 2.7 ft

Total Well Penetration Depth: 7. ft

Casing Radius: 0.083 ft

Static Water Column Height: 7. ft

Screen Length: 10. ft

Wellbore Radius: 0.1666 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.001529 cm/sec y0 = 2.451 ft

APPENDIX D

SURVEY DATA

CARRIAGE DRY CLEANERS SITE SAMPLE TABLE-2006

SAMPLE ID	NORTHING	EASTING	ELEVATION	DESC.
MW-104I	1139718.7	1420943.9	488.03	GROUND
			488.03	CASING
			487.71	RISER
MW-111I	1139745.2	1421085.6	489.56	GROUND
			489.56	CASING
			489.17	RISER
MW-2021	1139666.7	1421470.8	485.66	GROUND
			485.68	CASING
			485.28	RISER
MW-203S	1139893.9	1422253.7	478.80	GROUND
			478.85	CASING
			478.51	RISER
MW-204S	1139719.2	1422162.6	479.24	GROUND
			479.32	CASING
			478.86	RISER
MW-205S	1139544.9	1421827.3	482.38	GROUND
			482.42	CASING
			482.05	RISER
MW-206S	1139592.1	1421324.0	486.87	GROUND
			486.88	CASING
			486.55	RISER
MW-207S	1140589.8	1421869.2	479.65	GROUND
			479.68	CASING
			479.46	RISER
MW-208S	1140627.8	1421494.9	481.08	GROUND
			481.10	CASING
			480.65	RISER
MW-209S	1140416.0	1422105.6	479.80	GROUND
			479.88	CASING
			479.66	RISER
HA-107	1140286.8	1421331.2	482.97	GROUND
			482.90	CASING
			482.57	RISER
HA-110	1139948.9	1421022.0	489.70	GROUND
			489.66	CASING
			489.39	RISER
HA-111	1139737.8	1421091.0	488.29	GROUND
			488.25	CASING
			488.00	RISER
HA-113	1139971.0	1421175.0	487.98	GROUND
			487.87	CASING
			487.67	RISER
HA-114	1139782.3	1421447.2	485.29	GROUND
			485.33	CASING
			485.02	RISER
HA-118	1140130.1	1421994.5	480.40	GROUND
			480.33	CASING
			479.96	RISER
HA-119	1139788.0	1421862.9	482.26	GROUND

CARRIAGE DRY CLEANERS SITE SAMPLE TABLE-2006

SAMPLE ID	NORTHING	EASTING	ELEVATION	DESC.
			482.23	CASING
			481.97	RISER
HA-122	1139989.1	1421636.1	483.30	GROUND
			483.20	CASING
			482.90	RISER
HA-201	1139684.2	1421442.5	485.34	GROUND
			485.40	CASING
			485.14	RISER
DEC	1139841.3	1421313.0	487.59	GROUND
			487.65	CASING
			487.28	RISER
HA-101	1139916.5	1420945.1	490.52	GROUND
			490.76	RISER
HA-102	1139849.9	1421004.4	490.40	GROUND
			490.71	RISER
HA-104	1139746.1	1420942.4	488.35	GROUND
			488.35	CASING
			487.97	RISER
HA-105	1140027.5	1421315.2	486.42	RIM
HA-106	1140000.7	1421343.5	486.73	RIM
HA-108	1139632.2	1420898.4	487.20	GROUND
			487.20	CASING
			486.97	RISER
HA-109	1140199.7	1421379.2	485.56	GROUND
			485.56	CASING
			485.32	RISER
HA-112	1139464.0	1421323.2	486.67	GROUND
			486.67	CASING
			486.55	RISER
HA-115	1139964.4	1421591.0	484.42	GROUND
			484.42	CASING
			484.14	RISER
HA-116	1140267.9	1420895.5	488.59	GROUND
			488.59	CASING
			488.44	RISER
HA-117	1140445.7	1421771.6	480.39	GROUND
			480.39	CASING
			480.08	RISER
HA-120	1139907.4	1420719.6	491.53	GROUND
			491.53	CASING
			490.89	RISER
HA-121	1139741.6	1420626.0	488.69	GROUND
			488.69	CASING
	44405515		488.37	RISER
HA-123	1140304.6	1421613.1	484.89	GROUND
			484.89	CASING
	44005011	1121222	484.72	RISER
MW-1	1139691.4	1421036.2	488.66	GROUND
			490.06	RISER

CARRIAGE DRY CLEANERS SITE SAMPLE TABLE-2006

SAMPLE ID	NORTHING	EASTING	ELEVATION	DESC.
MW-2	1139652.7	1421020.8	488.33	GROUND
			489.53	RISER
MW-3	1139750.0	1421000.1	488.24	GROUND
			488.24	CASING
			488.10	RISER
MW-4	1139704.1	1420974.5	487.92	GROUND
			487.92	CASING
			487.74	RISER
MW-5	1139748.1	1421034.1	489.29	GROUND
			489.29	CASING
			489.17	RISER
MW-202	1139675.6	1421475.0	485.74	GROUND
			485.74	CASING
			484.77	RISER

Notes:

Data as presented by Popli Engineers and is dated 8/3/2006 HORIZONTAL DATUM: NAD 83/96 - NYSPCS WEST ZONE

VERTICAL DATUM: NAVD88

FORMER SPEEDY'S DRY CLEANERS SITE SAMPLE TABLE

SAMPLE ID	NORTHING	EASTING	ELEVATION	DESC.
	FLUSH M	OUNTED WELL L	OCATIONS	
MW-202	1139680.5	1421469.2	485.76	CASING
			484.81	RISER
MW-202i	1139671.5	1421465.7	485.68	CASING
			485.28	RISER
MW-206	1139587.9	1421325.2	486.83	CASING
NAVA (040	4420074.0	4.404.045.4	486.49	RISER
MW-210	1139671.2	1421245.4	487.03 486.70	CASING RISER
*MW-211	1139626.9	1421418.6	486.54	CASING
IVIVV ZII	1100020.0	1121110.0	486.25	RISER
MW-212	1139650.9	1421425.1	486.75	CASING
			486.40	RISER
	SC	IL BORE LOCAT	ION	
DP-5	1139662.5	1421387.5	487.8	GROUND
DP-6	1139678.4	1421400.3	487.7	GROUND
DP-7	1139660.3	1421446.0	486.1	GROUND
DP-8	1139695.3	1421411.1	487.5	GROUND
DP9	1139674.6	1421440.9	486.3	GROUND
DP-10	1139651.2	1421408.4	485.6	GROUND
DP-11	1139669.5	1421453.0	485.7	GROUND
DP-12	1139646.6	1421429.4	486.4	GROUND
DP-13	1139655.8	1421419.3	487.1	GROUND
DP=14	1139668.1	1421408.4	487.4	GROUND
DP-15	1139636.5	1421428.7	486.3	GROUND
DP-16	1139626.3	1421440.1	485.7	GROUND
*DP-17	1139626.9	1421418.6	486.5	GROUND
DP-18	1139611.6	1421404.7	486.6	GROUND
DP-19	1139614.3	1421348.5	487.6	GROUND
DP-20	1139614.7	1421409.0	486.5	GROUND
DP-21	1139614.9	1421425.1	485.2	GROUND
DP-22	1139618.5	1421427.5	485.8	GROUND

^{*} MW-211 & DP-17 ARE AT THE SAME LOCATION HORIZONTAL DATUM: NAD 83/96 - NYSPCS WEST ZONE VERTICAL DATUM: NAVD88 Survey Data from Popli Design Group - dated March 30, 2009.

CARRIAGE DRY CLEANERS SITE SAMPLE TABLE

SAMPLE ID	NORTHING	EASTING	ELEVATION	DESC.
	FLUSH M	OUNTED WELL L	OCATIONS	
MW-1	1139691.1	1421036.1	488.42	CASING
			490.06	RISER
MW-2	1139652.1	1421021.0	488.14	CASING
			489.53	RISER
MW-3	1139750.3	1421000.2	488.24	CASING
			488.10	RISER
MW-4	1139704.6	1420974.5	487.92	CASING
			487.74	RISER
MW-5	1139748.4	1421034.0	489.29	CASING
			489.17	RISER
*MW-6	1139652.7	1421066.6	488.66	CASING
			488.26	RISER
HA-102	1139849.9	1421004.4	490.40	CASING
			490.71	RISER
HA-104	1139746.1	1420942.4	488.35	CASING
			487.97	RISER
MW-104I	1139718.7	1420943.9	488.10	CASING
			487.73	RISER
HA-111	1139737.9	1421091.6	489.27	CASING
			489.12	RISER
MW-111I	1139745.0	1421085.2	489.56	CASING
			489.17	RISER
MW-OW1	1139733.5	1421086.6	489.53	CASING
			489.23	RISER
MW-EW1	1139726.2	1421079.6	489.46	CASING
			489.21	RISER

^{*} MW-6 & DP-10 ARE AT THE SAME LOCATION HORIZONTAL DATUM: NAD 83/96 - NYSPCS WEST ZONE

VERTICAL DATUM: NAVD88

Locations Surveyed by Popli Design Group, dated March 30, 2009

APPENDIX E

DATA USABILITY SUMMARY REPORTS

DATA USABILITY SUMMARY REPORT 2009 SOIL SAMPLING IN SUPPORT OF THE REMEDIAL DESIGN FORMER SPEEDY'S CLEANERS SITE BRIGHTON, NEW YORK

1.0 INTRODUCTION

Soil samples were collected on May 4 and 5, 2009 at the Former Speedy's Cleaners Site (Site) in Brighton, New York and submitted for analysis by Columbia Analytical Services located in Rochester, New York. Results were reported in Sample Delivery Group (SDG): R0902518. A listing of samples included in this Data Usability Summary Report is presented in Table 1. A summary of the analytical results is presented in Table 2. Samples were analyzed for:

• Volatile Organic Compounds (VOCs) by USEPA Method 8260B

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005) for SDG R0902518.

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2002) for SDG R0902518. Laboratory QC limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification.

Table 1

						Class	VOCs	Solids
ſ						Analysis		
L	•			t		Method	SW8260	E160.3
						Fraction	N	N
	SDG	Media	Location	Sample ID	Sample Date	Qc Code		
	R0902518	SOIL	DP-023	828128DP023010	5/4/2009	FS	- X	X
ſ	R0902518	SOIL	DP-024	828128DP024005	5/4/2009	FS	X	X
ſ	R0902518	SOIL	DP-025	828128DP025004	5/4/2009	FS	X	X
	R0902518	SOIL	DP-025	828128DP025009	5/4/2009	FS	X	. X
	R0902518	NA-S	Trip Blank	828128TB005002	5/4/2009	TB	X	

The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit

J = concentration is estimated

UJ = target analyte is not detected at the reported detection limit and is estimated

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

P:\Projects\nysdec1\projects\Former Speedy's Cleaners\3.0_Site_Data\3.4_Test_Results\DUSR\DUSR - Former Speedy's Cleaners SDG R0902518.doc Page 1 of 2

2.0 VOLATILE ORGANIC COMPOUNDS (VOCS)

Blanks

2-Butanone was detected in the method blank (150 µg/kg) and trip blank (130 µg/kg) associated with samples in SDG R0902518. Detections of 2-butanone that were less than the action level (1500 µg/kg) were qualified non-detect and elevated to the reporting limit (see table below).

field_sample_id	qc_code	param_name	final_result	final_qualifier	lab_result_text	lab_qualifier
828128DP023010	FS	2-Butanone	490	U	130	BJ
828128DP024005	FS	2-Butanone	710	U	150	ВЈ
828128DP025004	FS	2-Butanone	680	U	190	BJ
828128DP025009	FS	2-Butanone	480	U	73	BJ .

VOC - Initial and Continuing Calibration Standards

SDG R0902518

The continuing calibration analyzed on May 11, 2009 had a percent difference greater than the control limit of 20 for bromomethane (26), methyl acetate (-30), 2-butanone (-24), and 2hexanone (-22). There were no detections for these compounds and final results were qualified estimated (UJ) in the following associated samples: 828128DP023010, 828128DP024005, 828128DP025004, and 828128DP025009.

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2002. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; Draft DER-10; Division of Environmental Remediation; December 2002.

Data Validator: Tige Cunningham

Date: 6/3/09

Reviewed by Chris Ricardi, NRCC-EAC

1'hn ficard, Quality Assurance Officer

Date:

P:\Projects\nysdec1\projects\Former Speedy's Cleaners\3.0 Site Data\3.4 Test Results\DUSR\DUSR\-Former Speedy's Cleaners SDG R0902518.doc Page 2 of 2

DUSR Table 2 Results Summary SDG R0902518 Former Speedy's Cleaners

	· · · · · · · · · · · · · · · · · · ·			officer Speedy's Ci			
	Samp	le Delivery Group	R0902518	R0902518	R0902518	R0902518	R0902518
	Location		DP-023	DP-024	DP-025	DP-025	QC
		Sample Date	5/4/2009	5/4/2009	5/4/2009	5/4/2009	5/4/2009
		Sample ID	828128DP023010	828128DP02400		828128DP025009	828128TB005002
		Qc Code	FS	FS	FS FS	FS FS	TB III CO III
Analysis	Parameter	Units	Result Qualifier			Result Qualifier	Result Qualifie
SW8260	1,1,1-Trichloroethane	μg/kg	250 U	360 U	340 U	240 U	250 U 250 U
SW8260	1,1,2,2-Tetrachloroethane	μg/kg	250 U	360 U	340 U	240 U 240 U	250 U
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane	µg/kg	250 U	360 U	340 U		
SW8260	1,1,2-Trichloroethane	µg/kg	250 U	360 U	340 U	240 U 240 U	250 U 250 U
SW8260	1,1-Dichloroethane	µg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	1,1-Dichloroethene	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	1,2,4-Trichlorobenzene	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	1,2-Dibromo-3-chloropropane	µg/kg	250 U 250 U	360 U	340 U	240 U	250 U
SW8260	1,2-Dibromoethane	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	1,2-Dichlorobenzene	µg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	1,2-Dichloroethane	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	1,2-Dichloropropane	μg/kg μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	1,3-Dichlorobenzene	μg/kg μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260 SW8260	1,4-Dichlorobenzene	μg/kg . μg/kg	490 UJ	710 UJ	680 UJ	480 UJ	130 BJ
	2-Butanone	μg/kg	490 UJ	710 UJ	680 UJ	480 UJ	500 U
SW8260	2-Hexanone	μg/kg μg/kg	490 U	710 U	680 U	480 U	500 U
SW8260	4-Methyl-2-pentanone		490 UJ	710 UJ	680 UJ	480 UJ	500 U
SW8260	Acetic acid, methyl ester	µg/kg	990 U	1400 U	1400 U	970 U	1000 U
SW8260 SW8260	Acetone Benzene	µg/kg µg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Bromodichloromethane	ug/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Bromoform	µg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Bromomethane	µg/kg	250 UJ	360 UJ	340 ÚJ	240 UJ	250 U
SW8260	Carbon disulfide	ug/kg	490 U	710 U	680 U	480 U	500 U
SW8260	Carbon tetrachloride	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Chlorobenzene	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Chlorodibromomethane	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Chloroethane	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Chloroform	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Chloromethane	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Cis-1,2-Dichloroethene	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	cis-1,3-Dichloropropene	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Cyclohexane	μg/kg	490 U	710 U	680 U	480 U	500 U
SW8260	Dichlorodifluoromethane	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Ethyl benzene	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Isopropylbenzene	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Methyl cyclohexane	μg/kg	490 U_	710 U	680 U	480 U	500 U
SW8260	Methyl Tertbutyl Ether	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Methylene chloride	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Styrene	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Tetrachloroethene	μg/kg	470	1600	1900	3300	250 U
SW8260	Toluene	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	trans-1,2-Dichloroethene	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	trans-1,3-Dichloropropene	µg/kg	250 Ü	360 U	340 U	240 U	250 U
SW8260	Trichloroethene	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Trichlorofluoromethane	μg/kg	250 U	360 U	340 U	240 U	250 U
SW8260	Vinyl chloride	μg/kg	250 U	360 U	340 U	240 U	250 Ü
SW8260	Xylene, m/p	μg/kg	250 U	360 U	340 Ú	240 U	250 U
SW8260	Xylene, o	μg/kg	250 U	360 U	340 U	240 U	250 U
E160.3	Percent Solids	percent	91.3	83.8	82.1	92	L

Notes: µg/kg = microgram per kilogram
QC code: FS = field sample, TB = Trip Blank,

FD = Field Duplicate

Qualifier: U = not detected at a concentration above the reporting limit

J = estimated value

P:\Projects\nysdec1\projects\Former Speedy's Cleaners\3.0_Site_Data\3.4_Test_Results\Validation Files\ Speedy_R0902518_Table_2.xls

DATA USABILITY SUMMARY REPORT 2009 GEOPROBE SOIL AND GROUNDWATER SAMPLING IN SUPPORT OF THE REMEDIAL DESIGN FORMER SPEEDY'S CLEANERS SITE BRIGHTON, NEW YORK

1.0 Introduction

Soil and groundwater samples were collected at the Former Speedy's Cleaners Site (Site) in Brighton, New York from December 16, 2008 to December 18, 2008 and submitted for off-site laboratory analyses. Samples were analyzed by Columbia Analytical Services located in Rochester, New York. Results were reported in the following Sample Delivery Groups (SDGs): **R2847827 and R2847778**. A listing of samples and analyses included in this Data Usability Summary Report is presented in Table 1. A summary of the validated analytical results is presented in Table 2. Samples were analyzed using one or more of the following methods:

- Volatile Organic Compounds (VOCs) by USEPA Method 8260B
- Semivolatile Organic Compounds (SVOCs) by Method 8270C
- Pesticides by Method 8081A
- Polychlorinated Biphenyls (PCBs) by Method 8082
- Total Metals by Method 6010B
- Total Mercury by Method 7471
- Percent solids by Method 160.3M

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005) for SDGs **R2847827 and R2847778**.

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2002) for SDGs R2847827 and R2847778. Laboratory quality control (QC) limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification.

The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit

J = concentration is estimated

UJ = target analyte is not detected at the reported detection limit and is estimated

D = result is reported from a diluted analysis

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

2.0 Volatile Organic Compounds (VOCs)

VOC - Initial and Continuing Calibration Standards

SDG R R2847778

The continuing calibration percent difference for 1,1,2,2-tetrachloroethene (21.4) exceeds the QC limit of 20. The result for 1,1,2,2-tetrachloroethene in associated samples 828128DP012009 and 828128DP013006 were qualified estimated (UJ).

VOC - Blanks

SDG R2847827

An aqueous rinse blank was collected from the equipment (Geo-probe rods, bowl, and spoon) used to collect the soil samples. The following compounds were detected in the rinse blank (Sample ID: Speedy Rinseate): acetone (46 μ g/L), methylene chloride (0.70 μ g/L), 2-butanone (6.7 μ g/L). Action levels were established at ten times the reported detection for acetone (460 μ g/L), methylene chloride (7 μ g/L), and 2-butanone (67 μ g/L). The raw instrument result for soil samples were compared to the action limits. Results less than the action limit were qualified non detect (U). Results reported less than the detection limit were qualified non-detect (U) at the reporting limit. The following samples were qualified non-detect:

Field Sample ID	QC code	Analyte	Final Conc (ug/kg)	Final Qual	Lab Conc (ug/kg)	Lab Qual
828128DP001001	FS	Acetone	66	U	66	_
		Methylene				
828128DP001001	FS	chloride	5.3	U	0.95	J
828128DP001001	FS	2-Butanone	11	. U	2.1	J
828128DP001009	FS	Acetone	160	U	160	
828128DP001009	FS	2-Butanone	12	U	8.5	J .
828128DP003009	FS	Acetone	63	U	63	
		Methylene				
828128DP003009	FS	chloride	5.7	U	0.46	J
828128DP003009	FS	2-Butanone	11	U	1.2	J
828128DP003009DUP	FD	Acetone	27	U	27	

The analyte 1,2,4-trichlorobenzene (0.58 J μ g/L) was reported in the method blank. 1,2,4-Trichlorobenzene was not detected in associated samples and no qualification was required.

SDG R2847778

An aqueous rinse blank was collected from the equipment (Geo-probe rods, bowl, and spoon) used to collect the soil samples (as discussed above). The following compound results reported were qualified non-detect (U) at the reporting limit. The following samples were qualified non-detect:

		10.107-11	Final		Lab	
	QC		Conc	Final	Conc	Lab
Field Sample ID	code	Analyte	(ug/kg)	Qual	(ug/kg)	Qual
828128DP005008	FS	Acetone	24	U	14	JB
828128DP005008	FS	Methylene chloride	5.9	U	0.85	J
828128DP005012	FS	Acetone	22	U	5.6	JB
828128DP005012	FS	Methylene chloride	5.4	U	1.1	J
828128DP006008	FS	Acetone	24	IJ	17	JВ
828128DP006008	FS	Methylene chloride	. 6	IJ	1.5	J
828128DP007006	FS	Acetone	26	Ŭ	17	ЛВ
828128DP007006	FS	Methylene chloride	6.5	U	1.5	J
828128DP007006	FS	2-Butanone	13	U	1.3	J
828128DP007008	FS	Methylene chloride	5.7	U	1.6	J
828128DP008008	FS	Acetone	24	U	4.3	ЛВ
828128DP008008	FS	Methylene chloride	5.9	U	1.6	J
828128DP009010	FS	Acetone	51	U	51	
828128DP009010	FS	Methylene chloride	5.5	U	1.1	J
828128DP009010	FS	2-Butanone	11	U	2.2	J
828128DP010008	FS	Acetone	24	U	2.4	JB
828128DP010008	FS	Methylene chloride	5.9	U	1.5	J
828128DP011008	FS	Acetone	23	U	20	ЛВ
828128DP011008	FS	Methylene chloride	5.7	U	0.90	J
828128DP011008DUP	FD	Acetone	24	U	7.1	JВ
828128DP011008DUP	FD	Methylene chloride	6	U	1.7	J
828128DP012008	FS	Acetone	23	Ų	23	В
828128DP012008	FS	Methylene chloride	5.5	, N	0.77	J .
828128DP012009	FS	Acetone	30	U	30	
828128DP012009	FS	Methylene chloride	5.8	U	0.80	J
828128DP012009	FS	2-Butanone	12 ·	U	2.6	J
828128DP012009	FS	Acetone	10	Ü	3.7	J
828128DP014010	FS	Acetone	22	U	20	JВ
828128DP014010	FS	Methylene chloride	5.6	U	0.46	J

Acetone (2.4 μ g/kg) was reported in the method. An action limit was established at ten times the detection for acetone. Results for acetone were qualified previously under the rinseate blank.

The analyte 1,2,4-trichlorobenzene (0.65 J μ g/L) was reported in the method blank. 1,2,4-Trichlorobenzene was not detected in associated samples and no qualification was required.

VOC - Matrix Spike Matrix (MS) and Matrix Spike Duplicate (MSD) Analysis

SDG R2847827

Sample 828128DP004009 was submitted as a MS/MSD sample. The MSD percent recovery for acetone (160), and the MS/MSD percent recoveries for tetrachloroethene (144 and 148) exceed the QC limits. The results for acetone and tetrachloroethene in associated samples 828128DP004009 and 828128DP004009DUP were qualified estimated (J/UJ).

SDG R2847778

Sample 828128DP011008 was submitted as a MS/MSD sample. The MS percent recovery for 1,2-dichlorobenzene (67) and 1,3-dichlorobenzene (67), and the MS/MSD percent recoveries for 1,4-dichlorobenzene (65 and 32), and 1,2,4-trichlorobenzene (55 and 44) are less than the QC limits. The results for 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, and 1,2,4-trichlorobenzene in associated samples 828128DP011008 and 828128DP011008DUP were qualified estimated (UJ).

VOC-Sample Reporting

SDG R2847827

The laboratory quantitation of sample 828128DP017010 was determined to be incorrect. The quality assurance manager at the laboratory was contacted and asked to provide an example calculation. During review of the data package, the laboratory discovered a quantitation error associated with a different sample. The lab corrected the quantitations, reviewed all others, and submitted corrected form 1s.

The following sample was analyzed at dilutions due to elevated concentrations of target compounds above the instrument calibration range. Non-detects were reported with elevated reporting limits:

. *	QC	
Field Sample ID	code	Dilution Factor
828128DP017010	FS	100X and 4850X

2.1 Semivolatile Organic Compounds (SVOC)

SVOC - Initial and Continuing Calibration Standards

SDG R2847778

The percent relative standard deviation (RSD) for 2,4-dinitrophenol (18) exceeds the QC limit of 15. The results for 2,4-dinitrophenol were qualified estimated (UJ).

2.3 Pesticides

Pesticide - Percent Difference Between Columns

SDG R2847778

Pesticide concentrations were reported on two chromatographic columns. The Region II control limit of 25 for the percent difference between the two reported concentrations was used to evaluate sample results. The percent difference for alpha chlordane (28) exceeds the QC limit. The result for alpha chlordane in sample 828128DP005012 was qualified estimated (J).

2.4 Metals

Metals - Blank Contamination

SDG R2847778

Manganese ($2.6 \mu g/kg$) was reported in the preparation blank. An action level was established at five times the concentration level. Reported detections of manganese are greater than the action limit and results are reported without further qualification action.

Metals - Laboratory Control Samples

SDG R2847778

The percent recovery for antimony (143) and iron (125) exceed the QC limit. The result for antimony are non-detect and are reported without further qualification action. The results for iron were qualified estimated (J).

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2002. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; Draft DER-10; Division of Environmental Remediation; December 2002.

Data Validator: Wolfgang Calicchio

Date: 4/6/2009

Reviewed by Chris Ricardi, NRCC-EAC

Quality Assurance Officer

TABLE 1 - DUSR - FORMER SPEEDYS CLEANERS SITE

		QC				Sample	
SDG	Sample ID	Code	Media	Lab ID	Method	Date	Notes
R2847827	828128DP001001	FS	soil	1164137	SW8260, E160.3	12/17/2008	
R2847827	828128DP002009	FS	soil	1164138	SW8260, E160.3	12/18/2008	
R2847827	828128DP002009	FS	soil	1164138	SW8260, E160.3	12/18/2008	
R2847827	828128DP003009	FS	soil	1164139	SW8260, E160.3	12/18/2008	<u> </u>
R2847827	828128DP004009	FS	soil	1164140	SW8260, SW8270C, SW8081, SW8082, SW6010B, SW7471, E160.3	12/18/2008	
R2847827	828128DP004009DUP	FD	soil	1164141	SW8260, SW8270C, SW8081, SW8082, SW6010B, SW7471, E160.3	12/18/2008	Duplicate
R2847827	828128DP015008	FS	soil	1163666	SW8260, E160.3	12/16/2008	
R2847827	828128DP016008	FS	soil	1163667	SW8260, E160.3	12/16/2008	
R2847827	828128DP016009	FS	soil	1163668	SW8260, E160.3	12/16/2008	
R2847827	828128DP017010	FS	soil	1163669	SW8260, E160.3	12/16/2008	
R2847827	828128DP017010	FS	water	1163672	SW8260	12/16/2008	
R2847827	828128DP018009	FS	soil	1163670	SW8260, E160.3	12/16/2008	
R2847827	828128DP019011	FS	soil	1163671	SW8260, E160.3	12/16/2008	
R2847827	SPEEDY RINSEATE	EB	equipment blank	1164142	SW8260	12/18/2008	
R2847827	TRIP BLANK_2	TB	trip blank	1164158	SW8260	12/18/2008	
R2847778	828128DP005008	FS	soil	1163151	SW8260, E160.3	12/15/2008	
R2847778	828128DP005012	FS	soil	1163152	SW8260, SW8270, SW8081, SW8082, SW6010, SW7471, E160.3	12/15/2008	
R2847778	828128DP006008	FS	soil	1163153	SW8260, E160.3	12/15/2008	
R2847778	828128DP007006	FS	soil	1163155	SW8260, E160.3	12/15/2008	-
R2847778	828128DP007008	FS	soil	1163156	SW8260, SW8270, SW8081, SW8082,	12/15/2008	

	_				SW6010, SW7471, E160.3		
R2847778	828128DP008008	FS	soil	1163154	SW8260, E160.3	12/15/2008	
R2847778	828128DP009010	FS	soil	1163162	SW8260, E160.3	12/15/2008	
R2847778	828128DP010008	FS	soil	1163157	SW8260, E160.3	12/15/2008	
R2847778	828128DP011008	FS	soil	1163158	SW8260, E160.3	12/15/2008	
R2847778	828128DP011008DUP	FD	soil	1163159	SW8260, E160.3	12/15/2008	Duplicate
R2847778	828128DP012008	FS	soil	1163160	SW8260, E160.3	12/15/2008	
R2847778	828128DP012009	FS	soil	1163161	SW8260, E160.3	12/15/2008	
R2847778	828128DP012009	FS	water	1163168	SW8260	12/15/2008	
R2847778	828128DP013006	FS	soil	1163163	SW8260, E160.3	12/15/2008	
R2847778	828128DP013006	FS	soil	1163163	SW8260, E160.3	12/15/2008	
R2847778	828128DP014010	FS	soil	1163164	SW8260, E160.3	12/15/2008	
R2847778	TRIP BLANK 1	TB	trip blank	1163245	SW8260	12/15/2008	
R2847778	828128BKSS001001	FS	soil	1163165	SW6010, SW7471, E160.3	12/15/2008	
R2847778	828128BKSS002001	FS	soil	1163166	SW6010, SW7471, E160.3	12/15/2008	
R2847778	828128BKSS003001	FS	soil	1163167	SW6010, SW7471, E160.3	12/15/2008	

			D0047	770	D0047		D0047	770	D0047770	D0047	770	D0047	770	D0047770
	Sample Delive		R28477		R28477		R2847		R2847778	R2847	70	R28477		R2847778
		Location	BKSS-0		BKSS-0	002	BKSS-	000	DP-005	DP-00	75	DP-00		DP-007
		nple Date	12/15/2	008	12/15/2	800	12/15/2		12/15/2008	12/15/2		12/15/2		12/15/2008
				5001001	828128BKS	5002001	828128BKS	5003001	828128DP005008	828128DP	JU5012	828128DP0	300008	828128DP007006
		Qc Code	FS	0	FS	- II.E	FS	lo re	FS	FS	0	FS	_ IIC	FS
	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result Qualifier	Result	Qualifier		Qualifier	Result Qualifier
SW8260	1,1,1-Trichloroethane	ug/kg							5.9 U	5.4	U .	6		6.5 U
SW8260	1,1,2,2-Tetrachloroethane	ug/kg_							5.9 U	5.4		6		6.5 U
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg							5.9 U	5.4		6		6.5 U
SW8260	1,1,2-Trichloroethane	ug/kg							5.9 U	5.4	U	6		6.5 U
SW8260	1,1-Dichloroethane	ug/kg							5.9 U	5.4		· 6		6.5 U
SW8260	1,1-Dichloroethene	ug/kg							5.9 U	5.4		6		6.5 U
SW8260	1,2,4-Trichlorobenzene	ug/kg							5.9 U	5.4	<u></u>	6		6.5 U
SW8260	1,2-Dibromo-3-chloropropane	ug/kg							5.9 U	5.4		6		6.5 U
SW8260	1,2-Dibromoethane	ug/kg							5.9 U	5.4	U	. 6	<u></u>	6.5 U
SW8260	1,2-Dichlorobenzene	ug/kg							5.9 U	5.4		6		6.5 U
SW8260	1,2-Dichloroethane	ug/kg					·		5.9 U	5.4		. 6		6.5 U
SW8260	1,2-Dichloropropane	ug/kg							5.9 U	5.4	<u> </u>	6	<u>U</u>	6.5 U
SW8260	1,3-Dichlorobenzene	ug/kg							5.9 U	5.4		6		6.5 U
SW8260	1,4-Dichlorobenzene	ug/kg							5.9 U	5.4	<u> </u>	6	<u>u</u>	6.5 U
SW8260	2-Butanone	ug/kg							12 U	11		12	<u>U</u>	13 U
SW8260	2-Hexanone	ug/kg							12 U	11		12		13 U
SW8260	4-Methyl-2-pentanone	ug/kg							12 U	11		12	U	13 U
SW8260	Acetic acid, methyl ester	ug/kg	-				· .		12 U	11 22	U	12		13 U
SW8260	Acetone	ug/kg							24 U	5.4		24		26 U
SW8260	Benzene	_ug/kg						_	5.9 U 5.9 U	5.4	!	6	!	6.5 U 6.5 U
SW8260	Bromodichloromethane	ug/kg								5.4	0	6	!!	
SW8260	Bromoform	ug/kg			-:				5.9 U	5.4		6		6.5 U 6.5 U
SW8260	Bromomethane	ug/kg							5.9 U 12 U	0.39		12		13 U
SW8260	Carbon disulfide	ug/kg							5.9 U	5.4		6		6.5 U
SW8260	Carbon tetrachloride	ug/kg			-				5.9 U	5.4	<u>U</u>	6	<u>U</u>	6.5 U
SW8260	Chlorobenzene	ug/kg							5.9 U	5.4		6		6.5 U
SW8260	Chlorodibromomethane	ug/kg							12 U	11	11	12	 	13 U
SW8260	Chloroethane	ug/kg				·			5.9 U	5.4		6		6.5 U
SW8260 SW8260	Chloroform Chloromethane	ug/kg ug/kg							5.9 U	5.4		. 6	 	6.5 U
					- :				5.9 U	5.4	 	6		6.5 U
SW8260 SW8260	Cis-1,2-Dichloroethene cis-1,3-Dichloropropene	ug/kg ug/kg							5.9 U	5.4		6	 	6.5 U
SW8260 SW8260	Cyclohexane	ug/kg ug/kg							5.9 U	0.42		6		6.5 U
SW8260	Dichlorodifluoromethane	ug/kg ug/kg							5.9 U	5.4	11	6	 	6.5 U
SW8260	Ethyl benzene	ug/kg ug/kg							5.9 U	5.4		6		0.56 J
SW8260	Isopropylbenzene	ug/kg ug/kg							5.9 U	5.4		6	ĭ	6.5 U
SW8260	Methyl cyclohexane	ug/kg ug/kg							5.9 U	1.1		6		6.5 U
SW8260	Methyl Tertbutyl Ether	ug/kg ug/kg							5.9 U	5.4		6		6.5 U
SW8260	Methylene chloride	ug/kg							5.9 U	5.4	 	6		6.5 U
SW8260	o-Xylene	ug/kg ug/kg					-		5.9 U	0.82		6	ĭi 	6.5 U
SW8260	Styrene	ug/kg ug/kg							5.9 U	5.4		6	11	6.5 U
SW8260	Tetrachloroethene	ug/kg							5.9 U	1.6	Ĭ	12	`	9.2
SW8260	Toluene	ug/kg ug/kg							0.58 J	2.2		1		3.7 J
SW8260	trans-1,2-Dichloroethene	ug/kg ug/kg					· · · · · · · · · · · · · · · · · · ·		5.9 U	5.4	ĭ	6	-	6.5 U
SW8260	trans-1,3-Dichloropropene	ug/kg ug/kg							5.9 U	5.4	-	6	ĭ 	6.5 U
SW8260	Trichloroethene	ug/kg ug/kg					-		5.9 U	5.4		6		6.5 U
	Trichlorofluoromethane	ug/kg ug/kg							5.9 U	5.4	ĭ 	. 6	ŭ	6.5 U
3VV0Z0U	i nonoronacinane	ug/Kg	· [i	2.310	5.4	ــــــــــــــــــــــــــــــــــــــ	. 0	<u> </u>	

							GGHTON, IN				D0047776	T	770	D06:17	770
	Sample Delive		R28477		R28477		R2847		R2847778		R2847778	R2847		R2847	
		Location	BKSS-0		BKSS-0		BKSS-		DP-005		DP-005	DP-0		DP-0	
	San	nple Date	12/15/2	800	12/15/2	800	12/15/2		12/15/2008		12/15/2008	12/15/2		12/15/2	
	S			S001001	828128BKS	3002001			828128DP0050	800	828128DP005012	828128DF		828128DP	
		Qc Code	FS		FS		FS		FS		FS	FS		FS	
	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier		alifier	Result Qualifie		Qualifier		Qualifier
	Vinyl chloride	ug/kg							5.9 U		5.4 U		Ü	6.5	
	Xylene, m/p	ug/kg							5.9 U		3 J	_ 6	U	1.7	J
SW8270	1,2,4-Trichlorobenzene	ug/kg						ļ			380 U				
	1,2-Dichlorobenzene	ug/kg									380 U	.			
	1,3-Dichlorobenzene	ug/kg						<u> </u>			380 U		ļ		ļ
	1,4-Dichlorobenzene	ug/kg_									380 U	<u>'</u>	ļ		
SW8270	2,4,5-Trichlorophenol	ug/kg				-			!		380 U	<u> </u>	ļ		
SW8270	2,4,6-Trichlorophenol	ug/kg						ļ			380 U		ļ		
SW8270	2,4-Dichlorophenol	ug/kg					-				380 U				
SW8270	2,4-Dimethylphenol	ug/kg						_			380 U				
	2,4-Dinitrophenol	ug/kg						ļ			1900 UJ				ļl
	2,4-Dinitrotoluene	ug/kg		,			•				380 U		1		ļ
SW8270	2,6-Dinitrotoluene	ug/kg			.,						380 U	_	<u> </u>		<u> </u>
SW8270	2-Chloronaphthalene	ug/kg							·		380 U				
SW8270	2-Chlorophenol	ug/kg									380 U				
SW8270	2-Methylnaphthalene	ug/kg						, i			380 U				
	2-Methylphenol	ug/kg									380 U				
	2-Nitroaniline	ug/kg									1900 U				
	2-Nitrophenol	ug/kg							•		380 U				
SW8270	3 and 4 Methylphenol	ug/kg									380 U				
SW8270	3,3`-Dichlorobenzidine	ug/kg									380 U				
SW8270 -	3-Nitroaniline	ug/kg									1900 U				·
	4,6-Dinitro-2-methylphenol	ug/kg									1900 U				
	4-Bromophenyl phenyl ether	ug/kg							!	· .	380 U	•			
	4-Chloro-3-methylphenol	ug/kg									380 U				
	4-Chloroaniline	ug/kg				-					380 U				
	4-Chlorophenyl phenyl ether	ug/kg									380 U				
	4-Nitroaniline	ug/kg									1900 U				
	4-Nitrophenol	ug/kg									1900 U				<u> </u>
	Acenaphthene	ug/kg									380 U				
	Acenaphthylene	ug/kg									380 U				
SW8270	Anthracene	ug/kg									380 U	.			
SW8270	Benzo(a)anthracene	ug/kg								• •	380 U				
SW8270	Benzo(a)pyrene	ug/kg									380 U	1			
SW8270	Benzo(b)fluoranthene	ug/kg									380 U				
SW8270	Benzo(ghi)perylene	ug/kg				• •			1.		380 U				
SW8270	Benzo(k)fluoranthene	ug/kg		-							380 U				-
SW8270	Benzyl alcohol	ug/kg									380 U				
SW8270	Bis(2-Chloroethoxy)methane	ug/kg			· · · · · · · · · · · · · · · · · · ·			1			380 U				· ·
SW8270	Bis(2-Chloroethyl)ether	ug/kg									380 U				
SW8270	Bis(2-Chloroisopropyl)ether	ug/kg							`		380 U				
SW8270	Bis(2-Ethylhexyl)phthalate	ug/kg									380 U				
SW8270	Butylbenzylphthalate	ug/kg						<u> </u>			380 U				
SW8270	Carbazole	ug/kg					·				380 U				
SW8270	Chrysene	ug/kg				··					380 U				
SW8270	Di-n-butylphthalate	ug/kg				· · · · · · · · · · · · · · · · · · ·				-	380 U			-	
	Di-n-octylphthalate	ug/kg						1			380 U				
JVV0Z/U	DI-11-0G(y)PHthalate	ug/Ng			<u> </u>			1			200 0	<u> </u>	'	L	<u> </u>

	Sample	Delivery Group	R2847	778	R2847		R2847		R284	7778	R28477	78	R2847	778	R2847	7778
	Sample	Location	BKSS-		BKSS-		BKSS-	003	DP-(DP-00		DP-06		DP-0	
		Sample Date	12/15/2		12/15/2	008	12/15/2		12/15/	2008	12/15/2		12/15/2	8008	12/15/2	2008
		Sample ID	828128BKS	S001001	828128BKS	S002001			828128DI		828128DP0		828128DP		828128DF	
		Qc Code	FS		FS		FS		F		FS		· FS		. FS	[د
Analysis	Parameter	Units	Result	Qualifier		Qualifier	Result	Qualifier	Result	Qualifier		Qualifier	Result	Qualifier	Result	Qualifier
SW8270	Dibenz(a,h)anthracene	ug/kg									380	U				
SW8270	Dibenzofuran	ug/kg							!		380	U				
SW8270	Diethylphthalate	ug/kg							******		380	U				
SW8270	Dimethylphthalate	ug/kg							ii		380	U				
SW8270	Fluoranthene	ug/kg							}		380					
SW8270	Fluorene	ug/kg							i i		380					
SW8270	Hexachlorobenzene	ug/kg									380	U				
SW8270	Hexachlorobutadiene	ug/kg									380					
SW8270	Hexachlorocyclopentadiene	ug/kg									380	U				
SW8270	Hexachloroethane	ug/kg								`	380					
SW8270	Indeno(1,2,3-cd)pyrene	ug/kg									380					<u> </u>
SW8270	Isophorone	ug/kg								· ·	380			ļ		
SW8270	N-Nitrosodi-n-propylamine	ug/kg									380					
SW8270	N-Nitrosodimethylamine	ug/kg								_	380					
SW8270	N-Nitrosodiphenylamine	ug/kg						<u> </u>			380			· · ·	:	
SW8270	Naphthalene	ug/kg									380	U		<u> </u>		
SW8270	Nitrobenzene	ug/kg									380	U				
SW8270	Pentachlorophenol	ug/kg						<u> -</u>			1900					
SW8270	Phenanthrene	ug/kg									380					
SW8270	Phenol	ug/kg				<u> </u>					380			ļ		
SW8270	Pyrene	ug/kg									380	U				
SW8081	4,4`-DDD	ug/kg									3.8	U				_
SW8081	4,4`-DDE	ug/kg						<u> </u>			3.8	<u> </u>	-			-
SW8081	4,4`-DDT	ug/kg						<u> </u>			3.8					
SW8081	Aldrin	ug/kg								-	1.9 1.9	U				-
SW8081	Alpha-BHC	ug/kg						<u> </u>			5.8			 		
SW8081	Alpha-Chlordane	ug/kg		ļ <u>;</u>			<u>.</u>				1.9			-		
SW8081	Beta-BHC	ug/kg						<u> </u>			1.9	<u> </u>		 		
SW8081	Delta-BHC	ug/kg				<u> </u>		ļ <u>.</u>				U				
SW8081	Dieldrin	ug/kg									16 1.9	77	· · · · · · · · · · · · · · · · · · ·	-		
SW8081	Endosulfan I	ug/kg									3.8					
SW8081	Endosulfan II	ug/kg			ļ			ļ			3.8			 		
SW8081	Endosulfan sulfate	ug/kg						 		+	3.8	11		 		+
SW8081	Endrin	ug/kg			<u> </u>			·	1	+	3.8			 		
SW8081	Endrin aldehyde	ug/kg		-					-	 -	3.8					+
SW8081	Endrin ketone	ug/kg									1.9	11		 		
SW8081	Gamma-BHC/Lindane	ug/kg				<u> </u>		<u> </u>	1		4.8					1
SW8081	Gamma-Chlordane	. ug/kg	<u></u>		 	 					1.9			-		
SW8081	Heptachlor.	ug/kg				ļ			<u> </u>		1.9			-		
SW8081	Heptachlor epoxide	ug/kg		-		<u> </u>			+	+	1.9	-				+
SW8081	Methoxychlor	ug/kg				<u> </u>		-		 	38	ĭi 		<u> </u>		
SW8081	Toxaphene	ug/kg		 		 					38	 _ 				+
SW8082	Aroclor-1016	ug/kg	<u> </u>				<u> </u>			+	. 77			+		
SW8082	Aroclor-1221	ug/kg				 				 	38	U				-
SW8082	Aroclor-1232	ug/kg							1	+	38					+
SW8082	Aroclor-1242	ug/kg				 					38					+
SW8082	Aroclor-1248	ug/kg		<u> </u>	L	<u> </u>			L					1	<u> </u>	

						ы	adition, ivi			·						
	1	Sample Delivery Group	R28477	78	R2847	778	R2847	778	R2847	778	R2847		R28477		R284	
		Location		001	BKSS-	002	BKSS-	003	DP-0		DP-0		DP-00		DP-(
		Sample Date		800	12/15/2	008	12/15/2	8008	12/15/2	2008	12/15/2	800	12/15/2		12/15/	
		Sample ID	828128BKS	3001001	828128BKS	S002001	828128BKS	S003001	828128DP	005008	828128DP	005012	828128DP	006008	828128DI	
		Qc Code			FS		FS		FS		·FS		FS		FS	
Analysis	Parameter	Units		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
	Aroclor-1254	ug/kg			,							U				
	Aroclor-1260	ug/kg										U				
SW6010	Aluminum	mg/kg	10,300		12,700		10,900				9,750					
SW6010	Antimony	mg/kg	7.6		8.1	U	7.5	U			6.9				-	
SW6010	Arsenic	mg/kg	3		2.4		4.8			<u> </u>	3.5					
SW6010	Barium	mg/kg	59.9		70.1		64.5				43.1					
SW6010	Beryllium	mg/kg	0.63	U	0.68		0.63		*		0.57					
SW6010	Cadmium	mg/kg	0.63	U	0.68		0.63				. 0.57			L		
SW6010	Calcium	mg/kg	18,400		7,380		8,940				57,700					
SW6010	Chromium	mg/kg	22.4		17.8		16.6				13.5			<u> </u>		
SW6010	Cobalt	mg/kg	6.3		. 7		6.3				5.7					
SW6010	Copper	mg/kg	22.4		17.7		15.5				12.5					
SW6010	Iron	mg/kg	15,800		17,500		16,400		1		14,700					
SW6010	Lead	mg/kg	100		75.6		65.2				15.1			<u> </u>		
SW6010	Magnesium	mg/kg	10,800		4,490		6,000				30,900					
SW6010	Manganese	mg/kg	460		560		486				458			1		
SW6010	Nickel	mg/kg	11.6		13.9		12.3				11.7					
SW6010	Potassium	mg/kg	1,270		1,340		1,420				1,510			ļ		
SW6010	Selenium	mg/kg	1.5		2.1		2.1				1.2			ļ		
SW6010	Silver	mg/kg	1.3		1.4			3 U			1.1			<u> </u>		-
SW6010	Sodium	mg/kg	268		135		142				359			<u> </u>		
SW6010	Thallium	mg/kg	1.3	U		U		U	<u> </u>		1.1			-		_
SW6010	Vanadium	mg/kg	22.7		25.9		24.2			<u> </u>	19					-
SW6010	Zinc	mg/kg	122		107		200		ļ		. 80.9					
SW7471	Mercury	mg/kg	0.41		0.09		0.07		<u> </u>		0.04		: 047	,	84	6
E160.3	Percent Solids	PERCEN	77.9		73.3		78	3	84.6	<u> </u>	87.5)	84.7		84	ا0.
									į.							

					IGHTON, NT	D0047770 I	R2847778	R2847778	R2847778
4	Sample Delive		R2847778	R2847778	R2847778	R2847778	DP-011	DP-011	DP-012
		Location	DP-007	DP-008	DP-009	DP-010 12/15/2008	12/15/2008	12/15/2008	12/15/2008
		nple Date	12/15/2008	12/15/2008	12/15/2008			828128DP011008DUP	828128DP012008
	S	ample ID	828128DP007008	828128DP008008	828128DP009010	828128DP010008	FS	FD	FS
ļ		Qc Code	FS	FS	FS FS	FS Constitution	Result Qualifier	Result Qualifier	Result Qualifier
Analysis	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	5.7 U	6 U	5.5 U
SW8260	1,1,1-Trichloroethane	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U 5.9 U	5.7 U	6 U	5.5 U
SW8260	1,1,2,2-Tetrachloroethane	ug/kg	5.7 U	5.9 U	5.5 U		5.7 U	6 U	5.5 U
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U 5.9 U	5.7 U	6 U	5.5 U
SW8260	1,1,2-Trichloroethane	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	1,1-Dichloroethane	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	1,1-Dichloroethene	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 UJ	6 UJ	5.5 U
SW8260	1,2,4-Trichlorobenzene	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	1,2-Dibromo-3-chloropropane	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	1,2-Dibromoethane	ug/kg	5.7 U	5.9 U	5.5 U		5.7 UJ	6 UJ	5.5 U
SW8260	1,2-Dichlorobenzene	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	1,2-Dichloroethane	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	1,2-Dichloropropane	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 UJ	6 UJ	5.5 U
SW8260	1,3-Dichlorobenzene	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U 5.9 U	5.7 UJ	6 UJ	5.5 U
SW8260	1,4-Dichlorobenzene	ug/kg	5.7 U	5.9 U	5.5 U		11 U	12 U	11 U
SW8260	2-Butanone	ug/kg	11 U	12 U	11 U	12 U	11 U	12 U	11 0
SW8260	2-Hexanone	ug/kg	11 U	12 U	11 U	12 U	11 U	12 U	11 U
SW8260	4-Methyl-2-pentanone	ug/kg	11 U	12 U	11 U	12 U	11 U	12 U	11 U
SW8260	Acetic acid, methyl ester	ug/kg	11 U	12 U	1.4 J	12 U	23 U	24 U	23 U
SW8260	Acetone	ug/kg	23 U	24 U	51 U	24 U	5.7 U	6 U	5.5 U
SW8260	Benzene	ug/kg	5.7 U	5.9 U	0.46 J	5.9 U	5.7 U	6 U	5.5 U
SW8260	Bromodichloromethane	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U 5.9 U	5.7 U	6 U	5.5 U
SW8260	Bromoform	ug/kg_	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	Bromomethane	ug/kg	5.7 U	5.9 U	5.5 U	12 U	11 U	12 U	11 U
SW8260	Carbon disulfide	ug/kg	11 U	12 U	11 U 5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	Carbon tetrachloride	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	Chlorobenzene	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	Chlorodibromomethane	ug/kg	5.7 U	5.9 U	3.5 U	12 U	11 U	12 U	11 U
SW8260	Chloroethane	ug/kg	11 U	12 U		5.9 U	5.7 U	6 U	5.5 U
SW8260	Chloroform	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	Chloromethane	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	Cis-1,2-Dichloroethene	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	cis-1,3-Dichloropropene	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	Cyclohexane	ug/kg	5.7 U	5.9 U	0.58 J	5.9 U	5.7 U	6 U	5.5 U
SW8260	Dichlorodifluoromethane	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	Ethyl benzene	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	Isopropylbenzene	ug/kg	5.7 U	5.9 U	5.5 U		5.7 U	6 U	5.5 U
SW8260	Methyl cyclohexane	ug/kg	5.7 U	5.9 U	1.1 J	0.64 J 5.9 U	5.7 U	6 U	5.5 U
SW8260	Methyl Tertbutyl Ether	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	Methylene chloride	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	o-Xylene	ug/kg	5.7 U	5.9 U	0.68 J	5.9 U	5.7 U	6 U	5.5 U
SW8260	Styrene	ug/kg	5.7 U	5.9 U	5.5 U	1.4 J	9.4	5.7 J	9.3
SW8260	Tetrachloroethene	ug/kg	2 J	25	46	1.4 J	0.56 J	6 U	0.56 J
SW8260	Toluene	ug/kg	0.52 J	1.8 J	1.8 J	5.9 U	5.7 U	6 U	5.5 U
SW8260	trans-1,2-Dichloroethene	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	trans-1,3-Dichloropropene	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	Trichloroethene	ug/kg	5.7 U	5.9 U	5.5 U	5.9 U	5.7 U	6 U	5.5 U
SW8260	Trichlorofluoromethane	ug/kg	5.7 U	5.9 U	5.5 U	, 5.9 ∪	5.7 [U	1 010	0.010

Page 5 of 16 prepared by BS reviewed by CSR 5/4/09

	•						IGHTON, NY									
	Sample Deliv	very Group	R2847	778	R28477		R2847			47778	R28477		R2847		R2847	
		Location	DP-00)7	DP-00	8	DP-00			-010	DP-01		DP-0		DP-0	
	Sa	ample Date	12/15/2	008	12/15/20	800	12/15/2	800		5/2008	12/15/2		12/15/2		12/15/2	
		Sample ID	828128DP	007008	828128DP0	80080	828128DP	009010	8281280	DP010008	828128DP	011008	828128DP01		828128DP	
		Qc Code	FS		FS		FS		F	÷S	FS		FD		FS	
Analysis	Parameter	Units		Qualifier		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier		Qualifier
	Vinyl chloride	ug/kg	5.7		5.9		5.5	U	5	5.9 U	5.7	U	6	U	5.5	i U
	Xylene, m/p	ug/kg	5.7		5.9		2.1		i	2 J	5.7	U	6	U	5.5	υ
SW8270	1,2,4-Trichlorobenzene	ug/kg	370													
SW8270	1,2-Dichlorobenzene	ug/kg	370													
	1,3-Dichlorobenzene	ug/kg ug/kg	370													
SW8270		ug/kg	370								•					
SW8270	1,4-Dichlorobenzene	ug/kg ug/kg	370							_						
SW8270	2,4,5-Trichlorophenol		370										****			
	2,4,6-Trichlorophenol	ug/kg	370	 												
	2,4-Dichlorophenol	ug/kg	370				-:									-
	2,4-Dimethylphenol	ug/kg						 								 -
	2,4-Dinitrophenol	ug/kg	1900							-				-		+
SW8270	2,4-Dinitrotoluene	ug/kg	370		-,			 								
SW8270	2,6-Dinitrotoluene	ug/kg	370					 						 -		
SW8270	2-Chloronaphthalene	ug/kg	370						<u> </u>					ļi		
SW8270	2-Chlorophenol	ug/kg	370									<u> </u>				
SW8270	2-Methylnaphthalene	ug/kg	370						i					ļ		 -1
SW8270	2-Methylphenol	ug/kg	370					ļ								
SW8270	2-Nitroaniline	ug/kg	1900													
SW8270	2-Nitrophenol	ug/kg	370											1		
SW8270	3 and 4 Methylphenol	ug/kg	370	U												
SW8270	3,3'-Dichlorobenzidine	ug/kg	370	U.								<u> </u>				
SW8270	3-Nitroaniline	ug/kg	1900	U					i							
	4,6-Dinitro-2-methylphenol	ug/kg	1900	U				l	. !							
SW8270	4-Bromophenyl phenyl ether	ug/kg	370	Ū											<u> </u>	
SW8270	4-Chloro-3-methylphenol	ug/kg	370						i				·			
SW8270	4-Chloroaniline	ug/kg	370						i							
SW8270	4-Chlorophenyl phenyl ether	ug/kg	370	U				· .								
SW8270	4-Nitroaniline	ug/kg	1900					1								
SW8270	4-Nitrophenol	ug/kg	1900		: : : : : : : : : : : : : : : : : : : :				1							
SW8270	Acenaphthene	ug/kg	370			-			Ī							
		ug/kg	370					<u> </u>	1		-					
SW8270	Acenaphthylene	ug/kg	370					† · · · · ·			· · · · · · · · · · · · · · · · · · ·			-		
SW8270	Anthracene	ug/kg ug/kg	370	iii —				·					<u> </u>			-
SW8270	Benzo(a)anthracene		370					 	-		:					
SW8270	Benzo(a)pyrene	ug/kg	370		ļ			 	 			-	<u> </u>			
SW8270	Benzo(b)fluoranthene	ug/kg				<u> </u>		 					<u> </u>			
SW8270	Benzo(ghi)perylene	ug/kg	370					-	 			 		+		
SW8270	Benzo(k)fluoranthene	ug/kg	370					1								 -
SW8270	Benzyl alcohol	ug/kg	370			·	•	1.						· -		
SW8270	Bis(2-Chloroethoxy)methane	ug/kg	370				·					_				
SW8270	Bis(2-Chloroethyl)ether	ug/kg	370									 		 		+
SW8270	Bis(2-Chloroisopropyl)ether	ug/kg	370						 			ļ	ļ	 		-
SW8270	Bis(2-Ethylhexyl)phthalate	ug/kg	370													 -
SW8270	Butylbenzylphthalate	ug/kg	370					<u> </u>	<u> </u>		ļ	 		 		4
SW8270	Carbazole	ug/kg	370											 		
SW8270	Chrysene	ug/kg	370		<u> </u>							_				_
SW8270	Di-n-butylphthalate	ug/kg	370					<u> </u>								<u> </u>
	Di-n-octylphthalate	ug/kg	370								<u> </u>		<u> </u>	1		
222.0	,	<u> </u>														

	·					IGHTON, NY									
	Sample Deli	ivery Group	R2847778	R28477		R2847		R2847		R2847		R2847		R2847	
		Location	DP-007	DP-00		DP-0		DP-0		DP-0		DP-01		DP-0	
	S	ample Date	12/15/2008	12/15/20		12/15/2		12/15/2	2008	12/15/2	8008	12/15/2	800	12/15/2	
		Sample ID	828128DP007008	828128DP0	008008	828128DP		828128DF		828128DP		828128DP01		828128DP	
		Qc Code	FS	FS		FS		FS		FS		FD		FS	
	Parameter	Units	Result Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
	Dibenz(a,h)anthracene	ug/kg	370 U			· · · · · · · · · · · · · · · · · · ·	<u> </u>	· ·	<u> </u>						
SW8270	Dibenzofuran	ug/kg	370 U						-		ļ				
SW8270	Diethylphthalate	ug/kg	370 U					<u> </u>		:					
SW8270	Dimethylphthalate	ug/kg	370 U			-	ļ				<u> </u>				
SW8270	Fluoranthene	ug/kg	370 U			·	ļ				<u> </u>	<u> </u>			
SW8270	Fluorene	ug/kg	370 U				 		ļ <u>.</u>		·				
SW8270	Hexachlorobenzene	ug/kg	370 U					:							
SW8270	Hexachlorobutadiene	ug/kg	370 U	•							 				
SW8270	Hexachlorocyclopentadiene	ug/kg	370 U				<u> </u>								
SW.8270	Hexachloroethane	ug/kg	370 U			·	ļ		-				 	**	
SW8270	Indeno(1,2,3-cd)pyrene	ug/kg	370 U					<u> </u>	 						
SW8270	Isophorone	ug/kg	370 U						1				 		+
SW8270	N-Nitrosodi-n-propylamine	ug/kg	370 U						ļ	-					
SW8270	N-Nitrosodimethylamine	ug/kg	370 U												
SW8270	N-Nitrosodiphenylamine	ug/kg	370 U				<u> </u>		· ·	 :					
SW8270	Naphthalene	ug/kg	370 U				<u> </u>		-						
SW8270	Nitrobenzene	ug/kg	370 U				ļ				-				
SW8270	Pentachlorophenol	ug/kg	1900 U 370 U				ļ		 						
SW8270	Phenanthrene	ug/kg	370 U			 			 		 				+
	Phenol	ug/kg	370 U				 		<u> </u>		<u> </u>		-		+
SW8270	Pyrene	ug/kg									 				
	4,4`-DDD	ug/kg	3.7 U								-				+
SW8081	4,4`-DDE	ug/kg	3.7 U												
	4,4`-DDT	ug/kg	3.7 U 1.9 U						<u> </u>	··	1				 1
SW8081	Aldrin	ug/kg	1.9 U												
SW8081	Alpha-BHC	ug/kg	1.9 U				-		ļ				-		
SW8081	Alpha-Chlordane	ug/kg	1.9 U										· · · · · ·		1
SW8081	Beta-BHC	ug/kg	1.9 U	· · · · ·											+
SW8081	Delta-BHC	ug/kg	3.7 U						-						1
SW8081	Dieldrin	ug/kg	1.9 U						 -	*********					1
SW8081 SW8081	Endosulfan I	ug/kg ug/kg	3.7 U		·			· i-							
SW8081	Endosulfan II Endosulfan sulfate	ug/kg	3.7 U						 		<u> </u>				
SW8081	Endosulian sullate	ug/kg ug/kg	3.7 U			:		i							
SW8081	Endrin aldehyde	ug/kg ug/kg	3.7 U					1			 		 		
	Endrin aldenyde Endrin ketone	ug/kg ug/kg	3.7 U						 		-				
SW8081 SW8081	Gamma-BHC/Lindane	ug/kg	1.9 U			<u></u>	 -				 				
			1.9 U		-		 				 				1
SW8081	Gamma-Chlordane	ug/kg ug/kg	1.9 U			· · · · · · · · · · · · · · · · · · ·	<u> </u>		-					**	
SW8081	Heptachlor appride		1.9 U				 	- 							
SW8081	Heptachlor epoxide	ug/kg ug/kg	1.9 U						+				<u> </u>		1
SW8081	Methoxychlor		37 U			-			 						
SW8081	Toxaphene	ug/kg	37 U				 		-						1
SW8082 SW8082	Aroclor-1016 Aroclor-1221	ug/kg ug/kg	76 U			·			 		1 :				
SW8082 SW8082	Aroclor-1232	ug/kg ug/kg	37 U	·	 .				· ·			-			
SW8082	Aroclor-1232	ug/kg	37 U	<u>_</u>				-	- 						
			37 U				1		 						
SW8082	Aroclor-1248	ug/kg	31 0				1	<u> </u>		L	<u> </u>				

							70047	~~~	00047	770 1	D2047	770	R2847	770	R2847	7779
	Sample Delive	ry Group	R2847		R2847		R2847		R2847		R2847				DP-0	
		Location	DP-00		DP-0		DP-0		DP-0		DP-01		DP-01			
	San	nple Date	12/15/2	008	12/15/2		12/15/2		12/15/2		12/15/2		12/15/2		12/15/	
	S	Sample ID	828128DP	007008	828128DP	800800	828128DF		828128DP		828128DP		828128DP01	1008DUP	828128DF	
		Qc Code	FS		FS		FS		FS		FS		FD		FS	
Analysis	Parameter	Units		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8082	Aroclor-1254	ug/kg	. 37							ļ						
SW8082	Aroclor-1260	ug/kg	37													
SW6010	Aluminum	mg/kg	5,160				·	ļ								-
SW6010	Antimony	mg/kg	6.7						·							
SW6010	Arsenic	mg/kg	1.1					·								
SW6010	Barium	mg/kg	23.7													
SW6010	Beryllium	mg/kg	0.55							ļ		ļ <u></u>				 -
SW6010	Cadmium	mg/kg	0.55											· .		
SW6010	Calcium	mg/kg	59,000					ļ				ļ	ļ	<u>'</u>		
SW6010	Chromium	mg/kg	7.5					ļ <u>.</u>				<u> </u>			* -	
SW6010	Cobalt	mg/kg	5.5					ļ			·					
SW6010	Copper	mg/kg	8.8					<u> </u>				<u> </u>				
SW6010	Iron	mg/kg	10,100			ļ						ļ				
SW6010	Lead	mg/kg	14.7													<u> </u>
SW6010	Magnesium	mg/kg	30,400							ļ						
SW6010	Manganese	mg/kg	377							ļ						
SW6010	Nickel	mg/kg	7.1					ļ								
SW6010	Potassium	mg/kg	955			<u> </u>		ļ				<u> </u>				<u> </u>
SW6010	Selenium	mg/kg	1.1													
SW6010	Silver	mg/kg	1.1						<u> </u>		<u> </u>					
SW6010	Sodium	mg/kg	177			ļ										
SW6010	Thallium	mg/kg	1.1											ļ		
SW6010	Vanadium	mg/kg	13				·		<u> </u>							
SW6010	Zinc	mg/kg	157								ļ	ļ. ·				 -
SW7471	Mercury	mg/kg	0.04						<u> </u>							-
E160.3		PERCENT	88.4		88.2		87.4	4	: 85	اَ	86.2	<u> </u>	84.3	<u> </u>	90.	ا ۱

						500,17007	50047007	D0047007	D2047027
ļ	Sample Delive		R2847778	R2847778	R2847778	R2847827	R2847827	R2847827	R2847827
		Location	DP-012	DP-013	DP-014	DP-001	DP-002	DP-003	DP-004
	San	nple Date	12/15/2008	12/15/2008	12/15/2008	12/17/2008	12/18/2008	12/18/2008	12/18/2008
	S	ample ID	828128DP012009	828128DP013006	828128DP014010	828128DP001001	828128DP002009	828128DP003009	828128DP004009
		Qc Code	FS	FS	FS	FS	FS	FS	FS FS
Analysis	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260	1,1,1-Trichloroethane	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	1,1,2,2-Tetrachloroethane	ug/kg	5.8 U	630 UJ	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	1,1,2-Trichloroethane	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	1,1-Dichloroethane	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	1,1-Dichloroethene	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	1,2,4-Trichlorobenzene	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	1,2-Dibromo-3-chloropropane	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	1,2-Dibromoethane	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U .
SW8260	1,2-Dishoriocettatio	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	1,2-Dichloroethane	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	1,2-Dichloropropane	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	1,3-Dichlorobenzene	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	1,4-Dichlorobenzene	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	2-Butanone	ug/kg ug/kg	12 U	1300 U	11 U	11 U	12 U	11 U	11 U
	l	ug/kg ug/kg	12 U	1300 U	11 U	11 U	12 U	11 U	11 U
SW8260	2-Hexanone	ug/kg ug/kg	12 U	1300 U	11 U	11 U	12 U	11 U	11 U
SW8260	4-Methyl-2-pentanone	ug/kg	12 U	1300 U	11 U	11 U	12 U	11 U	11 U
SW8260	Acetic acid, methyl ester	ug/kg	30 U	2500 U	22 U	66 U	160 U	63 U	33 U
SW8260	Acetone	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	0.41 J	5.7 U
SW8260	Benzene	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	Bromodichloromethane	ug/kg		630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	Bromoform	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	Bromomethane	ug/kg	5.8 U		11 U	11 U	12 U	11 U	11 U
SW8260	Carbon disulfide	ug/kg	12 U	1300 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	Carbon tetrachloride	ug/kg	5.8 U	630 U		5.3 U	6.1 U	5.7 U	5.7 U
SW8260	Chlorobenzene	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	Chlorodibromomethane	ug/kg	5.8 U	630 U	5.6 U	11 U	12 U	11 U	11 U
SW8260	Chloroethane	ug/kg	12 U	1300 U	11 U		6.1 U	5.7 U	5.7 U
SW8260	Chloroform	ug/kg	5.8 U	630 U	5.6 U	5.3 U 5.3 U	6.1 U	5.7 U	5.7 U
SW8260	Chloromethane	ug/kg	5.8 U	630 U	5.6 U	5.3 U		0.61 J	5.7 U
SW8260	Cis-1,2-Dichloroethene	ug/kg	5.8 U	630 U	5.6 U	1.4 J	19 6.1 U	5.7 U	5.7 U
SW8260	cis-1,3-Dichloropropene	ug/kg	5.8 U	630 U	5.6 U	5.3 U		5.7 U	5.7 U
SW8260	Cyclohexane	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	0.7 U	
SW8260	Dichlorodifluoromethane	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	Ethyl benzene	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	Isopropylbenzene	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	Methyl cyclohexane	ug/kg	0.85 J	630 U	5.6 U	5.3 U	6.1 U	1.4 J	0.57 J
SW8260	Methyl Tertbutyl Ether	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	Methylene chloride	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	o-Xylene	ug/kg	0.58 J	630 U	5.6 U	5.3 U	6.1 U	1 J	5.7 U
SW8260	Styrene	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	Tetrachloroethene	ug/kg	70	35000 D	9.6	18	1500 D	42	27 J
SW8260	Toluene	ug/kg	1.8 J	630 U	1.1 J	0.6 J	1.3 J	3.1 J	0.64 J
SW8260	trans-1,2-Dichloroethene	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	trans-1,3-Dichloropropene	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
SW8260	Trichloroethene	ug/kg	0.6 J	630 U	5.6 U	4.8 J	16	0.97 J	5.7 U
SW8260	Trichlorofluoromethane	ug/kg	5.8 U	630 U	5.6 U	5.3 U	6.1 U	5.7 U	5.7 U
JUNNULUU	1 THOMOTOMOGOTHOMATIC	. ~5'''B	-,0 0				 		

Page 9 of 16 prepared by BS reviewed by CSR 5/4/09

				т			DOG 47	770 T	500	7007	D0047	227	R28478	227	R28478	327
	Sample Delivery		R28477		R28477		R28477			7827	R28478		DP-00		DP-00	
		ocation	DP-01		DP-01		DP-01		DP-		DP-00 12/18/2		12/18/20		12/18/20	
		le Date	12/15/20		12/15/2		12/15/2			/2008					828128DP0	
		mple ID	828128DP0	12009	828128DP	013006	828128DP		8281280		828128DP	JUZUU9	828128DP0 FS	000009	828128DPC FS	104009
	Qı	c Code	FS		FS		FS			S	FS	Ovelifier	Result	Qualifier		Qualifier
Analysis	Parameter	Units		Qualifier		Qualifier		Qualifier	Result	Qualifier	Result	Qualifier	Kesuit 5.7	Qualifier	5.7	
SW8260		ug/kg	5.8		630		5.6	U	5	.3 U	6.1 1.7				5.7	
SW8260	Xylene, m/p	ug/kg	3	J	630	U	0.89	J	5	.3 U	1.7	J	3.4	J	360	
SW8270		ug/kg									· · · · · · · · · · · · · · · · · · ·				360	
SW8270		ug/kg							i						360	
SW8270		ug/kg													360	
SW8270		ug/kg													. 360	
		ug/kg													360	
SW8270		ug/kg	·				·		· ·						360	
SW8270	2,4-Dichlorophenol	ug/kg				ļ			!			-			360	
SW8270		ug/kg					·····	<u> </u>		· · · · ·		<u> </u>		<u></u>	1900	
SW8270		ug/kg					· · · · · · · · · · · · · · · · · · ·						·		360	
SW8270	2,4-Dinitrotoluene	ug/kg										 			360	
SW8270		ug/kg							ļ.				ļ		360	
SW8270		ug/kg						<u> </u>							360	
SW8270		ug/kg						ļ							360	
SW8270		ug/kg							<u> </u>		·	-			360	
SW8270	2-Methylphenol	ug/kg													1900	
SW8270	2-Nitroaniline	ug/kg			·										360	
SW8270	2-Nitrophenol	ug/kg						ļ	!						360	
SW8270		ug/kg							- 1						360	
SW8270		ug/kg								<u>. </u>		-		ļ	1900	
SW8270		ug/kg										J			1900	
SW8270	4,6-Dinitro-2-methylphenol	ug/kg						ļ							360	
SW8270	4-Bromophenyl phenyl ether	ug/kg	·								·				360	
SW8270	4-Chloro-3-methylphenol	ug/kg						ļ	"		· · · · · · · · · · · · · · · · · · ·	ļ			360	
SW8270		ug/kg						ļ				-			360	
SW8270		ug/kg						ļ				ļ		<u> </u>	1900	
SW8270	4-Nitroaniline	ug/kg									<u>-</u>			ļ	1900	
SW8270	4-Nitrophenol	ug/kg								_					360	
SW8270	Acenaphthene	ug/kg				ļ						ļ —	ļ		360	
SW8270		ug/kg			·	ļ			- 1	<u> </u>		 			360	
SW8270		ug/kg						 				·			360	
SW8270		ug/kg							ļ			-		 	360	
SW8270		ug/kg			`			<u> </u>					·		360	
SW8270	Benzo(b)fluoranthene	ug/kg				<u> </u>		-	<u> </u>						360	
SW8270	Benzo(ghi)perylene	ug/kg				<u> </u>									360	
SW8270	Benzo(k)fluoranthene	ug/kg										ļ		 	360	
SW8270		ug/kg				ļ			ļ					ļ <u>.</u>	360	
SW8270	Bis(2-Chloroethoxy)methane	ug/kg				L			ļ				<u> </u>		360	
SW8270	Bis(2-Chloroethyl)ether	ug/kg							,			ļ	.			
SW8270	Bis(2-Chloroisopropyl)ether	ug/kg							: i			ļ	<u> </u>	-	360	
SW8270	Bis(2-Ethylhexyl)phthalate	ug/kg						ļ		-		1	-	<u> </u>	360	
SW8270	Butylbenzylphthalate	ug/kg							<u> </u>					ļ	360	10
SW8270		ug/kg							<u> </u>				<u> </u>	ļ	360	
SW8270	Chrysene	ug/kg							<u> </u>				ļ	 	360	
SW8270	Di-n-butylphthalate	ug/kg							ļ <u> </u>		<u></u>		 	-	360	
SW8270		ug/kg		l			<u>L</u>	1	<u> </u>		L			<u> </u>	360	10

							DOOAT		D20476		R28478	227 1	R28478	227	R28478	27
	Sample	Delivery Group	R2847		R2847		R2847 DP-0		R28478 DP-00		DP-00		DP-00		DP-00	
		Location	DP-0		DP-0	13	12/15/2		12/17/2		12/18/2		12/18/2		12/18/20	
		Sample Date	12/15/2		12/15/2	8008	12/15/2	2008	828128DP	000	828128DP		828128DP		828128DP0	
		Sample ID	828128DP		828128DP		828128DF		828128DP0	301001	626126DP	002009	626126DF	203009	FS	104009
		Qc Code	FS		FS		FS			Qualifier		Ouglifion		Qualifier		Qualifier
	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier		Qualitier	Result	Qualifier	Resuit	Qualifier	360	
SW8270	Dibenz(a,h)anthracene	ug/kg				<u> </u>									360	
SW8270	Dibenzofuran	ug/kg													360	
SW8270	Diethylphthalate	ug/kg													360	
SW8270	Dimethylphthalate	ug/kg							1		· · · · · · · · · · · · · · · · · · ·	ļ			360	
SW8270	Fluoranthene	ug/kg					·	ļ <u> </u>							360	
SW8270	Fluorene	ug/kg		ļ								-			360	
SW8270	Hexachlorobenzene	ug/kg			<u></u>	 		 							360	
SW8270	Hexachlorobutadiene	ug/kg				-			i			<u> </u>			360	
SW8270	Hexachlorocyclopentadiene	ug/kg		ļ		ļ		ļ				-			360	
SW8270	Hexachloroethane	ug/kg		ļ		ļ .	·			<u> </u>					360	
SW8270	Indeno(1,2,3-cd)pyrene	ug/kg		<u> </u>											360	
SW8270	Isophorone	ug/kg				 		 				-			360	
SW8270	N-Nitrosodi-n-propylamine	ug/kg						<u> </u>				-			360	
SW8270	N-Nitrosodimethylamine	ug/kg		ļ											360	
SW8270	N-Nitrosodiphenylamine	ug/kg		ļ	<u> </u>							<u> </u>			360	
SW8270	Naphthalene	ug/kg		<u> </u>		<u> </u>		-	<u> </u>				-		360	
SW8270	Nitrobenzene	ug/kg		<u> </u>				- -	ļ				-		1900	
SW8270	Pentachlorophenol	~ gg		ļ		· ·		ļ							360	
SW8270	Phenanthrene	ug/kg							<u> </u>	-			·		360	
SW8270	Phenol	ug/kg		ļ		_		- 							360	
SW8270	Pyrene	ug/kg		<u> </u>				ļ <u>.</u>		 					3.6	
SW8081	4,4`-DDD	ug/kg		ļ								 			3.6	
SW8081	4,4`-DDE	ug/kg				_		 	i	-		 			3.6	Ü .
SW8081	4,4`-DDT	ug/kg		 				-	i			 			1.9	
SW8081	Aldrin	ug/kg				+			·			 			1.9	
SW8081	Alpha-BHC	ug/kg					-								1.9	
SW8081	Alpha-Chlordane	ug/kg				-		-		<u> </u>					1.9	
SW8081	Beta-BHC	ug/kg							-						1.9	
SW8081	Delta-BHC	ug/kg					******	-		-		 			3.6	11
SW8081	Dieldrin	ug/kg							ļ				*		1.9	
SW8081	Endosulfan I	ug/kg		ļ				ļ							3.6	
SW8081	Endosulfan II	ug/kg		 						 				 	3.6	
SW8081	Endosulfan sulfate	ug/kg		,				ļ							3.6	
SW8081	Endrin	ug/kg		'					ļ			 			3.6	
SW8081	Endrin aldehyde	ug/kg		-								 			3.6	
SW8081	Endrin ketone	ug/kg	·	1			-	1	·	ļ. —		 			1.9	
SW8081	Gamma-BHC/Lindane	ug/kg			ļ			-		 		 			1.9	
SW8081	Gamma-Chlordane	ug/kg		1						+		 		-	1.9	
SW8081	Heptachlor	ug/kg		-		- 		-				 		-	1.9	
SW8081	Heptachlor epoxide	ug/kg		_		ļ				 		 			19	
SW8081	Methoxychlor	ug/kg						 -	+						36	
SW8081	Toxaphene	ug/kg		-	ļ			 	-			-			36	
SW8082	Aroclor-1016	ug/kg		ļ. —			 :	 		 -				 	73	
SW8082	Aroclor-1221	ug/kg		-						 	 	-		 	36	
SW8082	Aroclor-1232	ug/kg		 		 				 	<u></u>	 		 	36	
SW8082	Aroclor-1242	ug/kg		ļ		-				 					36	
SW8082	Aroclor-1248	ug/kg			1	<u> </u>			<u> </u>	1	<u> </u>	<u> </u>			- 50	10

	BRIGHTON, NT															
	Sample Delivery	v Group	R2847778		R2847778		R2847778		R2847827		R2847827		R2847827		R28478	327
	Location		DP-012		DP-013		DP-014		DP-001		DP-002		DP-003		DP-004	
	Samp	ple Date	12/15/2008		12/15/2008		12/15/2008		12/17/2008		12/18/2008		12/18/2008		12/18/2008	
	Sa	mple ID	828128DP	012009	828128DP013006		828128DP014010		828128DP001001		828128DF		828128DP003009		828128DP	
	C	Qc Code	FS		FS		FS	3	FS		FS		FS		FS	
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result:	Qualifier	Result	Qualifier	Result	Qualifier		Qualifier
SW8082	Aroclor-1254	ug/kg													36	U
SW8082	Aroclor-1260	ug/kg													36	
SW6010	Aluminum	mg/kg													3,570	
SW6010	Antimony	mg/kg							1						6.5	
SW6010	Arsenic	mg/kg													7.2	
SW6010	Barium	mg/kg							ii						. 20.4	
SW6010		mg/kg													0.55	
SW6010		mg/kg													0.55	
SW6010		mg/kg													141,000	
SW6010	Chromium	mg/kg													6.5	
SW6010	Cobalt	mg/kg							i						5.5	
SW6010	Copper	mg/kg													6.8	
SW6010	Iron	mg/kg													9,890	
SW6010	Lead	mg/kg													16.4	
SW6010	Magnesium	mg/kg													72,000	
SW6010	Manganese	mg/kg												<u> </u>	479	
SW6010	Nickel	mg/kg										-			5.4	
SW6010		mg/kg	- · · · · · · · · · · · · · · · · · · ·												934	
SW6010	Selenium	mg/kg						-							1.1	
SW6010		mg/kg											(1.1	-l
SW6010		mg/kg								<u> </u>					292	
SW6010		mg/kg							1						1.1	
SW6010		mg/kg												ļ	9.4	
SW6010		mg/kg													40.7	
SW7471		mg/kg							1	<u> </u>					0.04	
E160.3	Percent Solids PI	ERCENT	85.5		83.4		89.2	2	87.3	1	82.	5	88.3		91.7	

	Sample Delivery Group R2847827												
Sample Date \$21682006 \$217682006 \$212682006 \$21	<u></u>			R2847827	R2847827					R2847827			
Sample to Dis21128/DP015000 R221128/DP015000 R221128/DP015000 R221128/DP015000 R221128/DP015000 R221128/DP015000 R221128/DP015000 R221128/DP015000 R221128/DP015000 R2211128/DP015000	L			DP-015									
Rankers	<u> </u>												
Analysis													
SW2800 1,1-1-Tick-librorobrane upkq 5.5 U 5.6 U 5.6 U 5.6 U 5.7 U 5.													
SW2600 1,12,27-letrach/corehane													
SW8260 1,2-Trichioro-1,2-Trifluorochane ug/Ng 5.5 U 5.6 U 5.6 U 5.7 U 5.7 U 5.7 U 5.7 U 5.8 U 5.							500 0			5.7 11			
SW2600 1,12-Trenhoroethane		1,1,2,2-Tetrachloroethane			5.0 U								
SW260 1,1-Dichloroethane													
SW2600 1,3-Cibiroreshane					5.0 U								
SW2826 1,2,4-Trichtorobenzene							580 1						
SW260 1,2-Dibrono-S-dilorgroppene				5.5 U	5.0 0								
SW8260 12-Dipromethane			ug/kg				580 []	27000 U		5.7 1			
SWB260 1-2-Dichiprochaneane													
SWB250 12-Dichloropenhame		·			5.0 0		580[1						
SW8250 1,2-Dichioropropane ug/kg 5,5 U 5,6 U 5,6 U 5,6 U 27000 U 600 U 5,7 U 5,8													
SW8260 1.5-Dichiorobenzene								27000 0					
SW8260 1.4-Dichlorobenzene			ug/kg										
SW8260 2-Butanone				5.5 U									
SW8260 2-Hexanone		·				11 11							
SW8260 A-Methyl-2-pentanone ug/kg 11 U 11 U 11 U 1200 U 54000 U 1200 U 11 U 11 U SW8260 A-cetic acid, methyl ester ug/kg 11 U 120 U 23 U 22 U 230 U 2400 U 23 U 23 U 23 U 23 U 23 U 2400 U 2400 U 23 U 23 U 2400 U 25 U													
SW8260 Acetic acid, methyl ester Ug/kg 11 U	SW8260								1200 U				
SW8260 Acetone									1200 U				
SW2260 Benzene Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.7 U 5.7 U 5.7 U 5.8 U 5.8 U 5.8 U 5.8 U 5.8 U 5.7 U 5.7 U 5.8 U	SW8260												
SW2260 Bromodichloromethane Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U 5.8 W2260 Bromoform Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U 5.8 W2260 Bromoform Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U 5.8 W2260 Carbon disulfide Ug/kg 11 U 11 U 11 U 1200 U 54000 U 1200 U 111 U 11 U 1200 U 54000 U 1200 U 111 U 11 U 11 U 1200 U 54000 U 1200 U 111 U SW2260 Chiorobenzene Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U 5.8 W2260 Chiorobenzene Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.0 U													
SW8260 Bromnoform					5.6 11			27000 U					
SW8260 Bromomethane								27000 U					
SW8260 Carbon disulfide				5.5 [1]									
SW8260 Carbon tetrachloride Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U 5.8 U 5.8 U 5.6 U 5.6 U 5.6 U 5.6 U 5.7 U 5.7 U 5.8 U 5.8 U 27000 U 600 U 5.7 U 5.7 U 5.8 U 5.6 U 5.6 U 5.6 U 5.6 U 5.7 U 5.7 U 5.8 U 27000 U 600 U 5.7 U 5.7 U 5.8 U 5.6 U 5.6 U 5.6 U 5.6 U 5.6 U 5.7 U 5.7 U 5.8 U 5.8 U 5.8 U 5.8 U 5.8 U 5.7 U 5.8 U													
SW8260 Chlorobenzene Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U 5.8 U 5.8 U 5.8 U 27000 U 600 U 5.7 U 5.8 U 5.8 U 5.8 U 5.8 U 27000 U 600 U 5.7 U 5.8				5511	5611			27000 U					
SW8260 Chlorodibrommethane Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.0 U 27000 U 600 U 5.7 U SW8260 Chloroethane Ug/kg 11 U 11 U 11 U 11 U 1200 U 54000 U 1200 U 11 U U U SW8260 Chloroform Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Chloromethane Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.6 U 5.6 U 5.7 U SW8260 Cis-1,2-Dichloroethene Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.6 U 5.0 U 5.7 U SW8260 Cis-1,2-Dichloropropene Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.0 U 27000 U 600 U 5.7 U SW8260 Cis-1,3-Dichloropropene Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.0 U 27000 U 600 U 5.7 U SW8260 Cyclohexane Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.0 U 27000 U 600 U 5.7 U SW8260 Ethyl benzene Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.0 U 27000 U 600 U 5.7 U SW8260 Isopropylbenzene Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.0 U 27000 U 600 U 5.7 U SW8260 Isopropylbenzene Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.0 U 27000 U 600 U 5.7 U SW8260 Isopropylbenzene Ug/kg 5.5 U 5.6 U 5.6 U 5.0 U 27000 U 600 U 5.7 U SW8260 Methyl cyclohexane Ug/kg 5.5 U 5.6 U 5.6 U 5.0 U 27000 U 600 U 5.7 U SW8260 Methyl rerbutyl Ether Ug/kg 5.5 U 5.6 U 5.6 U 5.0 U 5.0 U 5.0 U 5.7 U SW8260 Methyl rerbutyl Ether Ug/kg 5.5 U 5.6 U 5.6 U 5.0 U 5.0 U 5.0 U 5.7 U SW8260 Toluene Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.0 U 5.0 U 5.7					56U	5.6 U		27000 U					
SW8260 Chloroethane									600 U				
SW8260 Chloroform Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Chloromethane Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Cis-1,2-Dichloroethene Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Cis-1,3-Dichloropropene Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Cis-1,3-Dichloropropene Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Cyclohexane Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Cis-1,3-Dichloropropene Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Cis-1,3-Dichloropropene Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Cis-1,3-Dichloropropene Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Cis-1,3-Dichloropropene Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Methyl cyclohexane Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Methylene chloride Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 O-Xylene Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Styrene Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Tetrachloroethene Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Tetrachloroethene Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Tetrachloroethene Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Tetrachloroethene Ug/kg 5.5 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Tetrachloroethene Ug/kg 5.5 U 5.6 U	SW8260				11 U								
SW8260 Cis-1,2-Dichloroethene Ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.6 U 5.7 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.			ug/kg				580 U		600 U	5.7 U			
SW8260 Cis-1,2-Dichloroethene Ug/kg S.5 U S.6 U S.6 U S.6 U S.6 U S.7 U SW8260 Cis-1,3-Dichloropropene Ug/kg S.5 U S.6 U S.6 U S.6 U S.6 U S.7 U SW8260 Cyclohexane Ug/kg S.5 U S.6 U S.6 U S.6 U S.6 U S.7 U SW8260 Dichlorodifluoromethane Ug/kg S.5 U S.6 U S.6 U S.6 U S.7 U SW8260 Ethyl benzene Ug/kg S.5 U S.6 U S.6 U S.6 U S.7 U SW8260 Isopropylbenzene Ug/kg S.5 U S.6 U S.6 U S.6 U S.7 U SW8260 Isopropylbenzene Ug/kg S.5 U S.6 U S.6 U S.6 U S.7 U SW8260 Methyl cyclohexane Ug/kg S.5 U S.6 U S.6 U S.6 U S.7 U SW8260 Methyl cyclohexane Ug/kg S.5 U S.6 U S.6 U S.6 U S.7 U SW8260 Methylene chloride Ug/kg S.5 U S.6 U S.6 U S.6 U S.7 U SW8260 O-Xylene Ug/kg S.5 U S.6 U S.6 U S.6 U S.7 U SW8260 Styrene Ug/kg S.5 U S.6 U S.6 U S.6 U S.7 U SW8260 Toluene Ug/kg S.5 U S.6 U S.6 U S.6 U S.7 U SW8260 Toluene Ug/kg S.5 U S.6 U S.6 U S.6 U S.7 U SW8260 Toluene Ug/kg S.5 U S.6 U S.6 U S.6 U S.7 U SW8260 Toluene Ug/kg S.5 U S.6 U S.6 U S.6 U S.7 U SW8260 Toluene Ug/kg S.5 U S.6 U S.6 U S.7 U SW8260 Toluene Ug/kg S.5 U S.6 U S.6 U S.7 U SW8260 Toluene Ug/kg S.5 U S.6 U S.6 U S.7 U SW8260 Toluene Ug/kg S.5 U S.6 U S.6 U S.7 U SW8260 Toluene Ug/kg S.5 U S.6 U S.6 U S.7 U SW8260 Toluene Ug/kg S.5 U S.6 U S.6 U S.7 U SW8260 Toluene Ug/kg S.5 U S.6 U S.6 U S.7 U SW8260 Toluene Ug/kg S.5 U S.6 U S.6 U S.7 U SW8260 Toluene Ug/kg S.5 U S.6 U S.6 U S.7 U SW8260 Toluene Ug/kg S.5 U S.6 U S.7 U S.7 U SW8				5.5 U									
SW8260 cis-1,3-Dichloropropene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Cyclohexane ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Dichlorodifluoromethane ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Ethyl benzene ug/kg 5.5 U 5.6 U 5.6 U 27000 U 600 U 5.7 U SW8260 Isopropylbenzene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Methyl cytohexane ug/kg 5.5 U 5.6 U <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>5.6 U</td> <td>580 U</td> <td></td> <td>600 U</td> <td>0.49 J</td>	1					5.6 U	580 U		600 U	0.49 J			
SW8260 Cyclohexane ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 27000 U 600 U 5.7 U SW8260 Dichlorodifluoromethane ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Ethyl benzene ug/kg 5.5 U 5.6 U 5.6 U 27000 U 600 U 5.7 U SW8260 Isopropylbenzene ug/kg 5.5 U 5.6 U 5.6 U 27000 U 600 U 5.7 U SW8260 Methyl cyclohexane ug/kg 0.52 J 0.42 J 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Methyl cyclohexane ug/kg 5.5 U 5.6 U 5.6 U	SW8260				5.6 U	5.6 U	580 U	27000 U	600 U				
SW8260 Dichlorodifluoromethane ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Ethyl benzene ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.8 U 27000 U 600 U 5.7 U SW8260 Isopropylbenzene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Methyl cyclohexane ug/kg 0.52 J 0.42 J 5.6 U 580 U 27000 U 600 U 0.61 J SW8260 Methyl Tertbutyl Ether ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Methylene chloride ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 o-Xylene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Tertachloroethene ug/kg 5.5 U 5.6 U 5.6 U 580 U						5.6 U	580 U	27000 U					
SW8260 Ethyl benzene ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Isopropylbenzene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Methyl cyclohexane ug/kg 0.52 J 0.42 J 5.6 U 580 U 27000 U 600 U 0.61 J SW8260 Methyl Tertbutyl Ether ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Methylene chloride ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 O-Xylene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Styrene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Tetrachloroethene ug/kg 41 J 36 7.7 2800 83000 2800 U <td></td> <td></td> <td>ug/ka</td> <td></td> <td>5.6 U</td> <td></td> <td></td> <td>27000 U</td> <td></td> <td></td>			ug/ka		5.6 U			27000 U					
SW8260 Isopropylbenzene ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.6 U 5.6 U 5.6 U 5.7 U SW8260 Methyl cyclohexane ug/kg 0.52 J 0.42 J 5.6 U 580 U 27000 U 600 U 0.61 J SW8260 Methyl Tertbutyl Ether ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Methylene chloride ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 o-Xylene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Styrene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Tetrachloroethene ug/kg 41 J 36 7.7 2800 830000 2800 1.5 J SW8260 Trans-1,2-Dichloroethene ug/kg 5.5 U 5.6 U 5.6 U 580 U							580 U	27000 U	600 U	5.7 U			
SW8260 Methyl cyclohexane ug/kg 0.52 J 0.42 J 5.6 U 580 U 27000 U 600 U 0.61 J SW8260 Methyl Tertbutyl Ether ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Methylene chloride ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 o-Xylene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Styrene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Tetrachloroethene ug/kg 41 J 36 7.7 2800 830000 2800 1.5 J SW8260 Toluene ug/kg 0.82 J 1.4 J 0.41 J 580 U 27000 U 600 U 5.7 U SW8260 trans-1,2-Dichloroethene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U							580 U	27000 U					
SW8260 Methyl Tertbutyl Ether ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.6 U 5.6 U 5.6 U 5.7 U SW8260 Methylene chloride ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 5.0 U 27000 U 600 U 5.7 U SW8260 o-Xylene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Styrene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 Tetrachloroethene ug/kg 41 J 36 7.7 2800 830000 2800 1.5 J SW8260 Toluene ug/kg 0.82 J 1.4 J 0.41 J 580 U 27000 U 600 U 5.7 U SW8260 trans-1,2-Dichloroethene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 trans-1,3-Dichloropropene ug/kg 5.5 U 5.6 U 5.6 U							580 U	27000 U					
SW8260 Methylene chloride ug/kg 5.5 U 5.6 U <td></td> <td></td> <td></td> <td></td> <td>5.6 U</td> <td>5.6 U</td> <td>580 U</td> <td></td> <td>600 U</td> <td>5.7 U</td>					5.6 U	5.6 U	580 U		600 U	5.7 U			
SW8260 o-Xylene ug/kg 5.5 U 5.6 U 5.7 U 5.7 U SW8260 Tetrachloroethene ug/kg 41 J 36 7.7 2800 830000 2800 1.5 J SW8260 Toluene ug/kg 0.82 J 1.4 J 0.41 J 580 U 27000 U 600 U 1 J SW8260 trans-1,2-Dichloroethene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 trans-1,3-Dichloropropene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U					5.6 U	5.6 U				5.7 U			
SW8260 Styrene ug/kg 5.5 U 5.6 U 5.6 U 5.6 U 27000 U 600 U 5.7 U SW8260 Tetrachloroethene ug/kg 41 J 36 7.7 2800 830000 2800 1.5 J SW8260 Toluene ug/kg 0.82 J 1.4 J 0.41 J 580 U 27000 U 600 U 1 J SW8260 trans-1,2-Dichloroethene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 trans-1,3-Dichloropropene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U		· · · · · · · · · · · · · · · · · · ·					580 U			5.7 U			
SW8260 Tetrachloroethene ug/kg 41 J 36 7.7 2800 830000 2800 1.5 J SW8260 Toluene ug/kg 0.82 J 1.4 J 0.41 J 580 U 27000 U 600 U 1 J SW8260 trans-1,2-Dichloroethene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 trans-1,3-Dichloropropene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U	SW8260						580 U		600 U	5.7 U			
SW8260 Toluene ug/kg 0.82 J 1.4 J 0.41 J 580 U 27000 U 600 U 1 J SW8260 trans-1,2-Dichloroethene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 trans-1,3-Dichloropropene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U			ug/ka				2800	830000	2800				
SW8260 trans-1,2-Dichloroethene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U SW8260 trans-1,3-Dichloropropene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U			ua/ka				580 U	27000 U	600 U	1 J			
SW8260 trans-1,3-Dichloropropene ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U						5.6 U	580 U						
0.00 0.0						5.6 U	580 U	27000 U					
	SW8260	Trichloroethene	ug/kg	0.49 J	5.6 U	5.6 U	580 U		.600 U				
SW8260 Trichlorofluoromethane ug/kg 5.5 U 5.6 U 5.6 U 580 U 27000 U 600 U 5.7 U			ug/kg		5.6 U	5.6 U	580 U	27000 U	600 U	5.7 U			

Page 13 of 16 prepared by BS reviewed by CSR 5/4/09

	BRIGHTON, NY Sample Delivery Group R2847827 R28478												
	Sample Deliver	R2847827	R2847827		R2847827	R2847827	R2847827	R2847827					
		Location	DP-004	DP-015	DP-016		DP-016	DP-017	DP-018	DP-019			
	Sam	ple Date	12/18/2008	12/16/2008	12/16/2008		12/16/2008	12/16/2008	12/16/2008	12/16/2008			
	Si	ample ID 8	28128DP004009DUP	828128DP015008	828128DP016008		828128DP016009	828128DP017010	828128DP018009	828128DP019011			
		Qc Code	FD	FS	FS		FS	. FS	FS	FS			
Analysis	Parameter	Units	Result Qualifier	Result Qualifier	Result Qua	alifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier			
SW8260	Vinyl chloride	ug/kg	5.5 U	5.6 U	5.6 U		580 U	27000 U	600 U	5.7 U			
SW8260	Xylene, m/p	ug/kg	0.65 J	1.6 J	5.6 U		580 U	27000 U	600 U	1.4 J			
SW8270	1,2,4-Trichlorobenzene	ug/kg	370 U										
	1,2-Dichlorobenzene	ug/kg	370 U										
SW8270			370 U ·										
SW8270	1,3-Dichlorobenzene	ug/kg	370 U							-			
SW8270	1,4-Dichlorobenzene	_ug/kg	370 U										
SW8270	2,4,5-Trichlorophenol	ug/kg	370 U	·									
	2,4,6-Trichlorophenol	ug/kg	370 U										
	2,4-Dichlorophenol	ug/kg	370 U										
SW8270	2,4-Dimethylphenol	ug/kg											
SW8270	2,4-Dinitrophenol	ug/kg	1900 U										
SW8270	2,4-Dinitrotoluene	ug/kg	370 U										
SW8270	2,6-Dinitrotoluene	ug/kg	370 U					· · · · · · · · · · · · · · · · · · ·					
SW8270	2-Chloronaphthalene	ug/kg	370 U				j	· · · · · · · · · · · · · · · · · · ·					
SW8270	2-Chlorophenol	ug/kg	370 U										
SW8270	2-Methylnaphthalene	ug/kg	370 U						,				
SW8270	2-Methylphenol	ug/kg	370 U				•						
SW8270	2-Nitroaniline	ug/kg	1900 U										
SW8270	2-Nitrophenol	ug/kg	370 U										
SW8270	3 and 4 Methylphenol	ug/kg	370 U										
SW8270	3,3'-Dichlorobenzidine	ug/kg	370 U										
SW8270	3-Nitroaniline	ug/kg	1900 U						,				
SW8270	4,6-Dinitro-2-methylphenol	ug/kg	1900 U										
SW8270	4-Bromophenyl phenyl ether	ug/kg	370 U										
SW8270	4-Chloro-3-methylphenol	ug/kg	370 U										
SW8270	4-Chloroaniline	ug/kg	370 U										
SW8270	4-Chlorophenyl phenyl ether	ug/kg	370 U										
SW8270	4-Nitroaniline	ug/kg	1900 U										
		ug/kg	1900 U										
SW8270	4-Nitrophenol		370 U										
SW8270	Acenaphthene	ug/kg	370 U										
SW8270	Acenaphthylene	ug/kg	370 U										
SW8270	Anthracene	ug/kg	370 U				i						
SW8270	Benzo(a)anthracene	ug/kg	370 U										
SW8270	Benzo(a)pyrene	ug/kg		·									
SW8270	Benzo(b)fluoranthene	ug/kg	370 U					-		· · · · · · · · · · · · · · · · · · ·			
SW8270	Benzo(ghi)perylene	ug/kg	370 U										
SW8270	Benzo(k)fluoranthene	ug/kg	- 370 U										
SW8270	Benzyl alcohol	ug/kg	370 U										
SW8270	Bis(2-Chloroethoxy)methane	ug/kg	370 U							<u> </u>			
SW8270	Bis(2-Chloroethyl)ether	ug/kg	370 U										
SW8270	Bis(2-Chloroisopropyl)ether	ug/kg	370 U										
SW8270	Bis(2-Ethylhexyl)phthalate	ug/kg	370 U							-			
SW8270	Butylbenzylphthalate	ug/kg	370 U										
SW8270	Carbazole	ug/kg	370 U										
SW8270	Chrysene	ug/kg	370 U										
SW8270	Di-n-butylphthalate	ug/kg	370 U										
SW8270	Di-n-octylphthalate	ug/kg	370 U	-									
2170 AAC	Di-ti-octylphilialate	ugrng	0/0 0		<u> </u>				<u> </u>				

Sample Date Profit Profi			<u> </u>		500.15		500.47	T	50047	7007						
Sample Date 127182008 12		Sample Delivery Group R2847827									R2847827		R2847827			
Sample 10 2871280P015008 2881280P015008 2881280P015		Location DP-004														
Parameter		San	nple Date													
Analysis																
Silvaria Silvaria		•	Qc Code		FS	3										
SW8270 Dieards Diear	Analysis	Parameter	Units	Result Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
\$W\$270 Debensefuren Ug/kg 370 U			ug/kg													
\$\frac{870270}{800000000000000000000000000000000000	SW8270	Dibenzofuran	ug/kg	370 U						<u> </u>		·				
SW8270 Fluoranthene		Diethylphthalate	ug/kg	370 U					j							
SW8270 Floranthene	SW8270	Dimethylphthalate	ug/kg									ļ				
SW8270 Fluorene	SW8270		ug/kg									<u> </u>				
SW8270 Hoxachlorobutation Ug/kg 370 U		Fluorene	ug/kg					<u></u>				<u> </u>				
SW8270 Hoxachhorobutadiene Ug/kg 370 U		Hexachlorobenzene	ug/kg													
SW8270 Hexachirococytopentadione ug/kg 370 U	SW8270	Hexachlorobutadiene		370 U							,			<u> </u>		
SW8270 Hoxachloroethane			ug/kg													
SW8270 Indenot(1,2,3-ch)pyene Ug/kg 370 U	SW8270		ug/kg	370 U		<u> </u>			i	<u> </u>		· -				
SW8207 N-Nitrosodin-propylamine ug/kg 370 U	SW8270		ug/kg							ļ			f .			-
SW8270 N-Nitrosodinetypamine ug/kg 370 U	SW8270	Isophorone	ug/kg											ļ		
SW8270 N-Nitrosodinethylamine ug/kg 370 U	SW8270	N-Nitrosodi-n-propylamine	ug/kg													
SW8270 Symbalene Ug/kg 370 U	SW8270	N-Nitrosodimethylamine	ug/kg	370 U								ļ		ļ		<u> </u>
SW80270 Naphthalene Ug/kg 370 U	SW8270	N-Nitrosodiphenylamine	ug/kg													
SW8270 Pitchenzene Ug/kg 1900 U	SW8270	Naphthalene	ug/kg	370 U												_
SW8270 Pentachicophenol ug/kg 1900 U			ug/kg													
SW8270 Phenol Ug/kg 370 U				1900 U												
SW8270 Phenol ug/kg 370 U																
SW8270 Pyrene ug/kg 370 U	SW8270			370 U		1				<u> </u>						
SW8081 4.4'-DDD ug/kg 3.7 U				370 U												<u></u>
SW8081 4,4*-DDE				3.7 U						<u> </u>						<u> </u>
SW8081 Aldrin Ug/kg 1.9 U			ug/kg													
SW8081 Aldrin	SW8081	4.4`-DDT	ug/kg	3.7 U				•	<u> </u>					<u> </u>		
SW8081 Alpha-Chlordane ug/kg 1.9 U			ug/kg					·						<u> </u>		
SW8081 Alpha-Chlordane ug/kg 1.9 U				1.9 U			•									
SW8081 Beta-BHC ug/kg 1.9 U	SW8081															
SW8081 Delta-BHC	SW8081		ug/kg	1.9 U								ļ				
SW8081 Dieldrin ug/kg 3.7 U			ug/kg					·)							
SW8081 Endosulfan I ug/kg 1.9 U Image: contract of the contract of																
SW8081 Endosulfan II ug/kg 3.7 U IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				1.9 U								1				
SW8081 Endosulfan sulfate ug/kg 3.7 U Image: control of the contr			ug/kg	3.7 U												
SW8081 Endrin ug/kg 3.7 U Image: color of the color of th				3.7 U												
SW8081 Endrin aldehyde ug/kg 3.7 U SW8081 Endrin ketone ug/kg 3.7 U SW8081 Endrin ketone ug/kg 3.7 U SW8081 SW8081 Gamma-BHC/Lindane ug/kg 1.9 U SW8081 Heptachlor ug/kg 1.9 U SW8081 Heptachlor epoxide ug/kg 1.9 U SW8081 Heptachlor epoxide ug/kg 1.9 U SW8081 U SW8082 U <td< td=""><td></td><td></td><td></td><td>3.7 U</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				3.7 U												
SW8081 Endrin ketone ug/kg 3.7 U				3.7 U						ļ				ļ		
SW8081 Gamma-BHC/Lindane ug/kg 1.9 U				3.7 U								ļ				 -
SW8081 Gamma-Chlordane ug/kg 1.9 U Image: Chlor of the chlor of th		Gamma-BHC/Lindane	ug/kg							<u> </u>		-				 -
SW8081 Heptachlor ug/kg 1.9 U <td< td=""><td></td><td>Gamma-Chlordane</td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> -</td></td<>		Gamma-Chlordane					<u> </u>									 -
SW8081 Heptachlor epoxide ug/kg 1.9 U <td></td> <td></td> <td>ug/kg</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td>			ug/kg													
SW8081 Methoxychlor ug/kg 19 U Image: second control of the contr		Heptachlor epoxide	ug/kg						•		ļ	-		-		
SW8081 Toxaphene ug/kg 37 U Image: Control of the control of the		Methoxychlor				<u> </u>										
SW8082 Aroclor-1016 ug/kg 37 U IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	SW8081							<u> </u>				 	ļ	-		
SW8082 Aroclor-1221 ug/kg 75 U SW8082 Aroclor-1232 ug/kg 37 U SW8082 Aroclor-1242 ug/kg 37 U				37 U								ļ ·				 -
SW8082 Aroclor-1232 ug/kg 37 U			ug/kg							.		ļ				
SW8082 Aroclor-1242 ug/kg 37 U				37 U									·			
				37 U										ļ		 -
15VV0U0Z 1ATUCIOI=1Z40 UU/NU 3/10		Aroclor-1248	ug/kg	37 U							L		<u> </u>			

Page 15 of 16 prepared by BS reviewed by CSR 5/4/09

						=====		50017		50047007		R2847827		R2847827	
	Sample Deliv	Sample Delivery Group R2847827 Location DP-004			827	R2847827 DP-016		R2847827 DP-016		R2847827 DP-017					
		Location	DP-015		DP-018							DP-019			
		mple Date	12/18/2008	12/16/2008 828128DP015008		12/16/2008 828128DP016008		12/16/2008		12/16/2008		12/16/2008		12/16/2008	
		Sample ID 8	328128DP004009DUP					828128DP		828128DP017010		828128DP018009		828128DP019011	
		Qc Code	FD	·FS		FS		FS		FS		FS		FS	
Analysis	Parameter	Units	Result Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8082	Aroclor-1254	ug/kg	37 U		ļ								·		
SW8082	Aroclor-1260	ug/kg	37 U		ļ .			i	ļ						
SW6010	Aluminum	mg/kg	2,460 J				<u> </u>								 -
SW6010	Antimony	mg/kg	6.7 UJ		<u> </u>		ļ		1						<u> </u>
SW6010	Arsenic	mg/kg	10.1 J			•	ļ				<u> </u>				
SW6010	Barium	mg/kg	16												-
SW6010	Beryllium	mg/kg	0.56 U						ļ						<u> </u>
SW6010	Cadmium	mg/kg	0.56 U				<u> </u>	ļ ļ							<u> </u>
SW6010	Calcium	mg/kg	168,000												
SW6010	Chromium	mg/kg	5.5										ļ		
SW6010	Cobalt	mg/kg	5.6 U				<u></u>	i							
SW6010	Copper	mg/kg	7.3												
SW6010	Iron	mg/kg	9,730 J				ļ								
SW6010	Lead	mg/kg	17.1				<u> </u>		<u> </u>						
SW6010	Magnesium	mg/kg	90,000						ļ						
SW6010	Manganese	mg/kg	521		·								ļ		
SW6010	Nickel	mg/kg	4.5 U						ļ						
SW6010	Potassium	mg/kg_	731			,			· · · · · · · · · · · · · · · · · · ·						
SW6010	Selenium	mg/kg	1.1 U		,										
SW6010	Silver	mg/kg	1.1 U						ļ	•	ļ				
SW6010	Sodium	mg/kg	319											_ ·	
SW6010	Thallium	mg/kg	1.1 U		<u> </u>										
SW6010	Vanadium	mg/kg_	7.2							-			ļ		
SW6010	Zinc	mg/kg	30.4										ļ		
SW7471	Mercury	mg/kg	0.03 U								ļ		ļ		
E160.3	Percent Solids	PERCENT 89.2		86.2	2	89.9		88.9		90		88.3		87.9	

DATA USABILITY SUMMARY REPORT 2009 GROUNDWATER SAMPLING IN SUPPORT OF THE REMEDIAL DESIGN FORMER SPEEDY'S CLEANERS SITE BRIGHTON, NEW YORK

1.0 INTRODUCTION

Groundwater samples were collected at the Former Speedy's Cleaners Site (Site) in Brighton, New York in January and February 2009 and submitted for off-site laboratory analyses. Samples were analyzed by Columbia Analytical Services located in Rochester, New York. Results were reported in the following Sample Delivery Groups (SDGs): R0900311, R0900339, and R0900550. A listing of samples included in this Data Usability Summary Report is presented in Table 1. A summary of the analytical results is presented in Table 2. Samples were analyzed for one or more of the following methods:

- Volatile Organic Compounds (VOCs) by USEPA Method 8260B
- Semi Volatile Organic Compounds (SVOCs) by Method 8270C
- Pesticides by Method 8081
- Polychlorinated biphenyls (PCBs) by Method 8082
- Total Metals by USEPA Method 6010B
- Total Mercury by USEPA Method 7471
- Total, Carbonate, and Bicarbonate Alkalinity by Method SM 2320B
- Total Suspended Solids (TSS) by USEPA Method E160.2
- Total Phosphorous as P (TPO4) by USEPA Method E365.1
- Biochemical Oxygen Demand (BOD) by USEPA Method E405.1
- Chemical Oxygen Demand (COD) by USEPA Method E410.4
- Total Organic Carbon (TOC) by Method 415.1
- Sulfide by Method 376.1
- Chloride, nitrate, and nitrite by Method 300
- Methane, Ethane, and Ethene by Method RSK-175
- Carbon Dioxide by calculation method SM 4500
- pH by Method 150.1
- Hardness as CaCO3 by Method SM2340C
- Chlorine Demand by Method SM16 409A

Deliverables for the off-site laboratory analyses included a Category B deliverable as defined in the New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocols (NYSDEC, 2005) for SDGs R0900311, R0900550, and R0900339.

A project chemist review was completed based on NYSDEC Division of Environmental Remediation guidance for Data Usability Summary Reports (NYSDEC, 2002) for SDGs R0900311, R0900550, and R0900339. Laboratory QC limits were used during the data evaluation unless noted otherwise. The project chemist review included evaluations of sample collection, data package completeness, holding times, QC data (blanks, instrument calibrations, duplicates, surrogate recovery, and spike recovery), data transcription, electronic data reporting, calculations, and data qualification.

The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit

J = concentration is estimated

UJ = target analyte is not detected at the reported detection limit and is estimated

D = result is reported from a diluted analysis

B (metals) = concentration is between the MDL and reporting limit

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

2.0 VOLATILE ORGANIC COMPOUNDS (VOCS)

VOC - Initial and Continuing Calibration Standards

SDG R0900311

The continuing calibration analyzed on January 30, 2009 had a percent difference greater than the control limit of 20 for chloromethane (21). Chloromethane was qualified estimated (UJ) in the following samples: 828128-MW-2021045R1 and 828128-MW-206S010R1.

The continuing calibration analyzed on February 1, 2009 had a percent difference greater than the control limit of 20 for chloromethane (22), carbon tetrachloride (-20.2), and 1,2-dibromo-3-chloropropane (21.2). Chloromethane, carbon tetrachloride, and 1,2-dibromo-3-chloropropane were qualified estimated (UJ) in the following samples: 828128-MW-210015R1, 828128-MW-211015R1, and 828128-MW-212010R1.

SDG R0900550

The continuing calibration analyzed on February 14, 2009 had a percent difference greater than the control limit of 20 for 1,2-dibromoethane (29) and 1,2-dibromo-3-chloropropane (38). 1,2-Dibromoethane and 1,2-dibromo-3-chloropropane were qualified estimated (UJ) in the sample 828128-MW-201017R1.

VOC – Lab Control Spikes

SDG R0900550

The lab control spike associated with sample 828128-MW-201017R1 had a low recovery for 1,2-dibromoethane (69) below the lower control limit of 70. 1,2-Dibromoethane was qualified estimated (UJ) in sample 828128-MW-201017R1.

VOC – Sample Reporting

SDG R0900311

Sample 828128-MW-203S012R1 was re-analyzed at a dilution (2X) due to concentrations above the calibration range of the instrument in the initial un-diluted analysis. Sample results reported in the final data set are a combination of the two analytical runs.

The following samples were analyzed at a dilution due to elevated levels of target compounds:

Field Sample ID	Dilution Factor
828128-MW-210015R1	2.5
828128-MW-212010R1	50

SDG R0900339

The following samples were re-analyzed at a dilution due to concentrations of cis-1,2-dichloroethene above the calibration range of the instrument in the initial un-diluted analysis. Sample results reported in the final data set are a combination of the two analytical runs.

Field Sample ID	Dilution Factor
828128-HA-114012R1	5
828128-HA-119013R1	2
828128-HA-119013R1D	2

The following samples were analyzed at a dilution due to elevated levels of target compounds:

Field Sample ID	Dilution Factor
828128-DEC-WELL014R1	5
828128-HA-106014R1	2
828128-HA-115155R1	2
828128-MW-202012R1D	2.5
828128-MW-202012R1	2.5

The laboratory noted in the SDG case narrative that non target hydrocarbons co-eluted with the cyclohexane peak on several samples. The laboratory estimated this interference and subtracted the interference when possible. During validation, professional judgment was made to estimate positive detection of cyclohexane due to the possible impact from the co-eluting hydrocarbons. Cyclohexane was qualified estimated (J) in the following samples:

		Concentration	Final
Field Sample ID	Compound	$(\mu g/L)$	Qualifier
828128-DEC-WELL014R1	Cyclohexane	190	J
828128-HA-106014R1	Cyclohexane	150	J
828128-HA-114012R1	Cyclohexane	23	J
828128-HA-115155R1	Cyclohexane	150	J
828128-HA-122012R1	Cyclohexane	30	J

SDG R0900550

Sample 828128-MW-201017R1was re-analyzed at a dilution (2X) due to concentrations above the calibration range of the instrument in the initial un-diluted analysis. Sample results reported in the final data set are a combination of the two analytical runs.

3.0 SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCS)

SVOC - Initial and Continuing Calibration Standards

SDG R0900311

The initial calibration analyzed on January 29, 2009 had a percent relative standard deviation (%RSD) between the relative response factors (RRF) that was greater than the control limit of 15 for hexachlorocyclopentadiene (29) and 2,4-Dinitrophenol (18). Hexachlorocyclopentadiene and 2,4-dinitrophenol were qualified estimated (UJ) in the following samples: 828128-MW-206017R1 and 828128-MW-212010R1.

SDG R0900339

The initial calibration analyzed on February 2, 2009 had a percent relative standard deviation (%RSD) between the relative response factors (RRF) that was greater than the control limit of 15 for 2,4-Dinitrophenol (33). 2,4-Dinitrophenol was qualified estimated (UJ) in sample 828128-MW-202012R1.

SVOC – Laboratory Control Spikes

SDG R0900311

The laboratory control spike (LCS) and laboratory control spike duplicate (LCSD) extracted and analyzed with samples in SDG R0900311 had recoveries for hexachlorobutadiene (LSC and LCSD = 15%) and hexachloroethane (LSC and LCSD = 14%) above the laboratory limits of 13 and 11 percent, respectively. There were no detections for theses compounds in the following associated samples: 828128-MW-206017R1 and 828128-MW-212010R1. Even though the recoveries were above the laboratories lower control limit, professional judgment was used to qualify hexachlorobutadiene and hexachloroethane as estimated (UJ) at the reporting limit due to the low recoveries.

SDG R0900339

The laboratory control spike (LCS) and laboratory control spike duplicate (LCSD) extracted and analyzed with sample 828128-MW-202012R1 had recoveries for hexachlorobutadiene (LSC and LCSD = 15%) above the laboratory limit of 13. There was no detection for this compound in sample 828128-MW-202012R1. Even though the recoveries were above the laboratories lower control limit, professional judgment was used to qualify hexachlorobutadiene as estimated (UJ) at the reporting limit due to the low recoveries.

SVOC - Matrix Spike Matrix (MS) and Matrix Spike Duplicate (MSD) Analysis

SDG R0900311

Groundwater sample 828128-MW-206017R1 was submitted as a MS/MSD sample. 1,2-Dichlorobenzene (22) and 1,4-dichlorobenzene (21) had percent recoveries below the lower laboratory control limit of 23 percent. 1,2-Dichlorobenzene and 1,4-dichlorobenzene were not detected in the un-spike field sample (828128-MW-206017R1) and were qualified estimated (UJ) at the reporting limit.

4.0 METALS

Metals - Serial Dilution Analysis

SDG R0900311

A serial dilution analysis was performed by the lab on sample 828128-MW-206017R1. Aluminum and zinc were reported as non-detect in the original un-diluted analysis and reported as detections in the 5X serial dilution analysis (see table below).

Sample ID	Analyte	Un-diluted Concentration (µg/L)	Lab Qualifier	5x Dilution Concentration (μg/L)
828128-MW-206017R1	Aluminum	100	U	501
828128-MW-206017R1	Zinc	20	U	187

Aluminum and zinc were qualified as estimated in all groundwater samples reported in SDG R0900311.

The percent difference between the un-diluted and diluted concentration for iron (17.5) was above the control limit of 10. Iron was qualified estimated (J) in all groundwater samples in SDG R0900311.

Reference:

New York State Department of Environmental Conservation (NYSDEC), 2005. "Analytical Services Protocols"; July 2005.

New York State Department of Environmental Conservation (NYSDEC), 2002. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; Draft DER-10; Division of Environmental Remediation; December 2002.

Data Validator: Tige Cunningham

Date: 4/7/09

Reviewed by Chris Ricardi, NRCC-EAC

Quality Assurance Officer

Date: 5/6/09

TABLE 1
DATA USABILITY SUMMARY REPORT
2009 GROUNDWATER SAMPLING
IN SUPPORT OF THE REMEDIAL DESIGN
FORMER SPEEDY'S CLEANERS SITE
BRIGHTON, NEW YORK

					Class	VOCs	SVOCs	Pesticides	PCBs	Metals	Metals	MNA	MNA	MNA
													Carbon	
					Parameter	NA	NA	NA	NA	NA	NA	Alkalinity	Dioxide	Chloride
				Analysi	s Method	SW8260	SW8270	SW8081	SW8082	SW6010	SW7470	A2320B_B	SM 4500	E300
					Fraction	Ν	N	N	N	Т	Т	N	N	N
SDG		Location		Sample Date										
R0900311	GW	HA-118	828128-HA-118012R1	1/20/2009	FS	Χ								
R0900311	GW	MW-202I	828128-MW-202I045R1	1/21/2009	FS	Χ				Χ	Х	Χ	Χ	Х
	GW	MW-203S	828128-MW-203S012R1	1/20/2009	FS	Χ				Χ	X	Х	Χ	Х
	GW	MW-205S	828128-MW-205S012R1	1/20/2009	FS	Χ				Χ	Χ	Х	Χ	Х
R0900311	GW	MW-206	828128-MW-206017R1	1/20/2009	FS	Х	Χ	X	Х	Х	Х	X	Χ	Х
R0900311	GW	MW-206S	828128-MW-206S010R1	1/20/2009	FS	Χ								
R0900311	GW	MW-210	828128-MW-210015R1	1/19/2009	FS	Х								
R0900311	GW	MW-211	828128-MW-211015R1	1/20/2009	FS	Χ						X	Χ	X
R0900311	GW	MW-212	828128-MW-212010R1	1/21/2009	FS	Х	Χ	X	Χ			Х	Х	Х
R0900311	BW	QC	TB-001	1/19/2009	TB	Χ								
R0900339	GW	DEC-WELL	828128-DEC-WELL014R1	1/21/2009	FS	Χ								
R0900339		HA-105	828128-HA-105012R1	1/21/2009	FS	Х								
R0900339	GW	HA-106	828128-HA-106014R1	1/21/2009	FS	Х								
R0900339	GW	HA-112	828128-HA-112015R1	1/21/2009	FS	Χ								
R0900339	GW	HA-114	828128-HA-114012R1	1/21/2009	FS	Х				Х	Х	Χ	Χ	Χ
R0900339	GW	HA-115	828128-HA-115155R1	1/21/2009	FS	Х								
R0900339	GW	HA-117	828128-HA-117014R1	1/21/2009	FS	Х								
R0900339	GW	HA-119	828128-HA-119013R1	1/21/2009	FS	Χ				Х	Х	Х	Χ	Х
R0900339	GW	HA-119	828128-HA-119013R1D	1/21/2009	FD	Χ				Х	Х	Х	Χ	Х
R0900339	GW	HA-122	828128-HA-122012R1	1/21/2009	FS	Х								
R0900339	GW	HA-123	828128-HA-123155R1	1/21/2009	FS	Х								
R0900339	GW	MW-202	828128-MW-202012R1	1/22/2009	FS	Х	Х	Χ	Х	Х	Х			
R0900339	GW	MW-202	828128-MW-202012R1D	1/22/2009	FD	Х	Х	Χ	Х	Х	Х			
R0900339	GW	MW-204S	828128-MW-204S012R1	1/21/2009	FS	Χ								
R0900339	GW	MW-207S	828128-MW-207S012R1	1/21/2009	FS	Χ								
R0900339	GW	MW-209S	828128-MW-209S014R1	1/21/2009	FS	Х								
R0900339	GW	MW-212	828128-MW-212010R1	1/21/2009	FS					Х	Х			
R0900339	BW	QC	TB-002	1/21/2009	TB	Χ								
R0900339	BW	QC	TB-003	1/22/2009	TB	Χ								
R0900550	GW	MW-201	828128-MW-201017R1	2/2/2009	FS	Χ		_		Х		Χ	Χ	Х

TABLE 1
DATA USABILITY SUMMARY REPORT
2009 GROUNDWATER SAMPLING
IN SUPPORT OF THE REMEDIAL DESIGN
FORMER SPEEDY'S CLEANERS SITE
BRIGHTON, NEW YORK

					Class	MNA	MNA	MNA	MNA	MNA	MNA	MNA
					Parameter)	Nitrate	Nitrite	рН	Sulfate	Sulfide	TOC
				Analysi	s Method		E300	E353.2		E300	E376.1	E415.1
				Fraction	N	N	N	N	N	N	N	
			Sample ID	Sample Date								
	GW	HA-118	828128-HA-118012R1	1/20/2009	FS							
	GW	MW-202I	828128-MW-202I045R1	1/21/2009	FS	X	X	Х	Х	Х	Х	Х
		MW-203S	828128-MW-203S012R1	1/20/2009	FS	Χ	Х	Х	Х	Х	Х	Х
	GW	MW-205S	828128-MW-205S012R1	1/20/2009	FS	Χ	Х	Х	Х	Х	Х	X
R0900311	GW	MW-206	828128-MW-206017R1	1/20/2009	FS	Х	Χ	Χ	Χ	Х	Х	Χ
			828128-MW-206S010R1	1/20/2009	FS							
		MW-210	828128-MW-210015R1	1/19/2009	FS							
		MW-211	828128-MW-211015R1	1/20/2009	FS	Χ	Χ	X	X	Х	Х	Х
R0900311	GW	MW-212	828128-MW-212010R1	1/21/2009	FS	Х	Χ	Х	X	Х	Х	Х
R0900311	BW	QC	TB-001	1/19/2009	TB							
R0900339	GW	DEC-WELL	828128-DEC-WELL014R1	1/21/2009	FS							
R0900339	GW	HA-105	828128-HA-105012R1	1/21/2009	FS							
R0900339	GW	HA-106	828128-HA-106014R1	1/21/2009	FS							
R0900339	GW	HA-112	828128-HA-112015R1	1/21/2009	FS							
R0900339	GW	HA-114	828128-HA-114012R1	1/21/2009	FS	Χ	Х	Х	Х	Х	Х	Χ
R0900339	GW	HA-115	828128-HA-115155R1	1/21/2009	FS							
R0900339	GW	HA-117	828128-HA-117014R1	1/21/2009	FS							
R0900339	GW	HA-119	828128-HA-119013R1	1/21/2009	FS	Χ	Х	Х	Х	Х	Х	Χ
R0900339	GW	HA-119	828128-HA-119013R1D	1/21/2009	FD	Χ	Х	Х	Х	Х	Х	Χ
R0900339	GW	HA-122	828128-HA-122012R1	1/21/2009	FS							
R0900339	GW	HA-123	828128-HA-123155R1	1/21/2009	FS							
R0900339	GW	MW-202	828128-MW-202012R1	1/22/2009	FS							
R0900339	GW	MW-202	828128-MW-202012R1D	1/22/2009	FD							
R0900339	GW	MW-204S	828128-MW-204S012R1	1/21/2009	FS							
R0900339	GW		828128-MW-207S012R1	1/21/2009	FS							
R0900339	GW	MW-209S	828128-MW-209S014R1	1/21/2009	FS							
R0900339		MW-212	828128-MW-212010R1	1/21/2009	FS							
R0900339		QC	TB-002	1/21/2009	TB							
R0900339		QC	TB-003	1/22/2009	TB							
R0900550		MW-201	828128-MW-201017R1	2/2/2009	FS	Χ	Х	Х	Х	Х	Х	Х

	Sample Delive		R0900311	R0900311	R0900311	R0900311	R0900311
	So	Location mple Date	HA-118 1/20/2009	MW-202I 1/21/2009	MW-203S 1/20/2009	MW-205S 1/20/2009	MW-206 1/20/2009
		Sample ID		828128-MW-202I045R1			
		Qc Code	FS	FS	FS	FS	FS
Analysis	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifie
SW8260	1,1,1-Trichloroethane	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260 SW8260	1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethan	ug/l ug/l	1 U 1 U	1 U	1 U 1 U	1 U 1 U	1 U 1 U
SW8260	1,1,2-Trichloroethane	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260	1,1-Dichloroethane	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260	1,1-Dichloroethene	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260	1,2,4-Trichlorobenzene	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260	1,2-Dibromo-3-chloropropane	ug/l	2 U	2 U	2 U	2 U	2 U
SW8260 SW8260	1,2-Dibromoethane 1,2-Dichlorobenzene	ug/l ug/l	1 U 1 U	1 U 1 U	1 U	1 U 1 U	1 U 1 U
SW8260	1,2-Dichloroethane	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260	1,2-Dichloropropane	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260	1,3-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260	1,4-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260 SW8260	2-Butanone 2-Hexanone	ug/l ug/l	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U
SW8260	4-Methyl-2-pentanone	ug/l	5 U	5 U	5 U	5 U	5 U
SW8260	Acetic acid, methyl ester	ug/l	10 U	10 U	10 U	10 U	10 U
SW8260	Acetone	ug/l	10 U	10 U	10 U	10 U	10 U
SW8260	Benzene	ug/l	1 U	1 U	1 U	1 U	0.95 J
SW8260	Bromodichloromethane	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260 SW8260	Bromoform Bromomethane	ug/l ug/l	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U	1 U 2 U
SW8260	Carbon disulfide	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260	Carbon tetrachloride	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260	Chlorobenzene	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260	Chlorodibromomethane	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260	Chloroethane	ug/l	2 U	2 U	2 U	2 U	2 U
SW8260 SW8260	Chloroform Chloromethane	ug/l ug/l	1 U 2 U	1 U 2 UJ	1 U 2 U	1 U 2 U	1 U 2 U
SW8260	Cis-1,2-Dichloroethene	ug/l	1.3	1 U	190 D	0.84 J	100
SW8260	cis-1,3-Dichloropropene	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260	Cyclohexane	ug/l	1 U	1 U	1 U	1 U	15
SW8260	Dichlorodifluoromethane	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260 SW8260	Ethyl benzene	ug/l	1 U 1 U	1 U	1 U 1 U	1 U 1 U	22 0.86 J
SW8260	Isopropylbenzene Methyl cyclohexane	ug/l ug/l	1 U	1 U	1 U	1 U	2.3
SW8260	Methyl Tertbutyl Ether	ug/l	4.6	6.4	66	1 U	1 U
SW8260	Methylene chloride	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260	o-Xylene	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260	Styrene	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260 SW8260	Tetrachloroethene Toluene	ug/l ug/l	0.8 J 1 U	1 U	1 U	1.1 1 U	18
SW8260	trans-1.2-Dichloroethene	ug/l	1 U	1 U	0.97 J	1 U	0.97 J
SW8260	trans-1,3-Dichloropropene	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260	Trichloroethene	ug/l	1 U	1 U	1 U	1 U	4.5
SW8260	Trichlorofluoromethane	ug/l	1 U	1 U	1 U	1 U	1 U
SW8260 SW8260	Vinyl chloride Xylene, m/p	ug/l	1 U 2 U	1 U 2 U	34	1 U 2 U	6.9 0.57 J
SW8260 SW8270	1,2,4-Trichlorobenzene	ug/l ug/l	2 0	2 0	2 0	2 U	9.4 U
SW8270	1,2-Dichlorobenzene	ug/l					9.4 UJ
SW8270	1,3-Dichlorobenzene	ug/l					9.4 U
SW8270	1,4-Dichlorobenzene	ug/l					9.4 UJ
SW8270 SW8270	2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ug/l					9.4 U 9.4 U
SW8270 SW8270	2,4,6-1 richlorophenol	ug/l ug/l					9.4 U
SW8270	2,4-Dimethylphenol	ug/l					9.4 U
SW8270	2,4-Dinitrophenol	ug/l					47 UJ
SW8270	2,4-Dinitrotoluene	ug/l					9.4 U
SW8270	2,6-Dinitrotoluene	ug/l					9.4 U
SW8270 SW8270	2-Chloronaphthalene 2-Chlorophenol	ug/l ug/l					9.4 U 9.4 U
SW8270	2-Methylnaphthalene	ug/l					9.4 U
SW8270	2-Methylphenol	ug/l					9.4 U
SW8270	2-Nitroaniline	ug/l					47 U
SW8270	2-Nitrophenol	ug/l					9.4 U
SW8270 SW8270	3,3`-Dichlorobenzidine 3-Nitroaniline	ug/l ug/l					9.4 U 47 U
SW8270 SW8270	4,6-Dinitro-2-methylphenol	ug/I ug/l					47 U
SW8270	4-Bromophenyl phenyl ether	ug/l					9.4 U
SW8270	4-Chloro-3-methylphenol	ug/l					9.4 U
SW8270	4-Chloroaniline	ug/l					9.4 U
SW8270	4-Chlorophenyl phenyl ether	ug/l					9.4 U
SW8270	4-Methylphenol 4-Nitroaniline	ug/l ug/l					9.4 U 47 U

	Sample De	livery Group	R09003		R09003		R09003		R09003		R09003	
		Location	HA-11 1/20/20		MW-20		MW-20		MW-20		MW-20 1/20/20	
		Sample Date Sample ID				1/21/2009 828128-MW-202I045R1		1/20/2009 828128-MW-203S012R1		1/20/2009 1828128-MW-205S012R		
		Qc Code	FS	10012101	FS	0210 10111	FS	000012111	FS	00001211	FS	2000171
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualif
SW8270	4-Nitrophenol	ug/l									47	
SW8270	Acenaphthene	ug/l									9.4	
SW8270 SW8270	Acenaphthylene Anthracene	ug/l									9.4 9.4	
SW8270 SW8270	Benzo(a)anthracene	ug/l ug/l									9.4	
SW8270	Benzo(a)pyrene	ug/l									9.4	
SW8270	Benzo(b)fluoranthene	ug/l									9.4	
SW8270	Benzo(ghi)perylene	ug/l									9.4	U
SW8270	Benzo(k)fluoranthene	ug/l									9.4	
SW8270	Benzyl alcohol	ug/l									9.4	
SW8270	Bis(2-Chloroethoxy)methane	ug/l									9.4	
SW8270 SW8270	Bis(2-Chloroethyl)ether Bis(2-Chloroisopropyl)ether	ug/l									9.4 9.4	
SW8270	Bis(2-Ethylhexyl)phthalate	ug/l ug/l									9.4	
SW8270	Butylbenzylphthalate	ug/l									9.4	
SW8270	Carbazole	ug/l									9.4	
SW8270	Chrysene	ug/l									9.4	
SW8270	Di-n-butylphthalate	ug/l									9.4	
SW8270	Di-n-octylphthalate	ug/l									9.4	
SW8270	Dibenz(a,h)anthracene	ug/l									9.4	
SW8270 SW8270	Dibenzofuran Diothylphthelate	ug/l		-				-		-	9.4 9.4	
SW8270 SW8270	Diethylphthalate Dimethylphthalate	ug/l ug/l		-		-		-		-	9.4	
SW8270	Fluoranthene	ug/l									9.4	-
SW8270	Fluorene	ug/l									9.4	
SW8270	Hexachlorobenzene	ug/l									9.4	
SW8270	Hexachlorobutadiene	ug/l									9.4	UJ
SW8270	Hexachlorocyclopentadiene	ug/l									9.4	
SW8270	Hexachloroethane	ug/l									9.4	
SW8270	Indeno(1,2,3-cd)pyrene	ug/l									9.4	
SW8270 SW8270	Isophorone N-Nitrosodi-n-propylamine	ug/l ug/l									9.4 9.4	
SW8270	N-Nitrosodimethylamine	ug/l									9.4	
SW8270	N-Nitrosodiphenylamine	ug/l									9.4	
SW8270	Naphthalene	ug/l									9.4	U
SW8270	Nitrobenzene	ug/l									9.4	
SW8270	Pentachlorophenol	ug/l									47	
SW8270	Phenanthrene	ug/l									9.4	
SW8270 SW8270	Phenol Pyrene	ug/l ug/l									9.4 9.4	
SW8270 SW8081	4,4`-DDD	ug/l									0.094	
SW8081	4,4`-DDE	ug/l									0.094	
SW8081	4,4`-DDT	ug/l									0.094	
SW8081	Aldrin	ug/l									0.047	U
SW8081	Alpha-BHC	ug/l									0.047	
SW8081	Alpha-Chlordane	ug/l									0.047	
SW8081	Beta-BHC	ug/l									0.047	
SW8081 SW8081	Delta-BHC Dieldrin	ug/l ug/l									0.047 0.094	
SW8081	Endosulfan I	ug/l									0.094	
SW8081	Endosulfan II	ug/l									0.094	
SW8081	Endosulfan sulfate	ug/l									0.094	
SW8081	Endrin	ug/l									0.094	
SW8081	Endrin aldehyde	ug/l									0.094	
SW8081	Endrin ketone	ug/l									0.094	
SW8081 SW8081	Gamma-BHC/Lindane Gamma-Chlordane	ug/l ug/l			 						0.047 0.047	
SW8081	Heptachlor	ug/l			 						0.047	
SW8081	Heptachlor epoxide	ug/l									0.047	
SW8081	Methoxychlor	ug/l									0.47	
SW8081	Toxaphene	ug/l									0.95	
CITTOOOS	Aroclor-1016	ug/l									0.95	
		ug/l									1.9	
SW8082	Aroclor-1221		1							-	0.95 0.95	
SW8082	Aroclor-1232	ug/l				Ī		ı	1	i		III.
SW8082 SW8082 SW8082	Aroclor-1232 Aroclor-1242	ug/l ug/l										
SW8082 SW8082 SW8082 SW8082	Aroclor-1232 Aroclor-1242 Aroclor-1248	ug/l ug/l ug/l									0.95	U
SW8082 SW8082 SW8082 SW8082 SW8082	Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254	ug/l ug/l ug/l ug/l									0.95 0.95	U U
SW8082 SW8082 SW8082 SW8082	Aroclor-1232 Aroclor-1242 Aroclor-1248	ug/l ug/l ug/l			100	UJ	311	J	100	UJ	0.95	U U U
SW8082 SW8082 SW8082 SW8082 SW8082 SW8082	Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	ug/l ug/l ug/l ug/l ug/l			100		311		100		0.95 0.95 0.95	U U U UJ
SW8082 SW8082 SW8082 SW8082 SW8082 SW8082 SW8082 SW8081 SW6010	Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aluminum Antimony Arsenic	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l			60 10	U U	60 10	U	60 10	U	0.95 0.95 0.95 100 60	U U U UJ U
SW8082 SW8082 SW8082 SW8082 SW8082 SW8082 SW8010 SW6010 SW6010	Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aluminum Antimony Arsenic Barium	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l			60 10 97.8	U U	60 10 64.8	U U	60 10 78.7	U U	0.95 0.95 0.95 100 60 10	U U U UJ U
\$W8082 \$W8082 \$W8082 \$W8082 \$W8082 \$W8082 \$W8082 \$W8082 \$W6010	Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260 Aluminum Antimony Arsenic	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l			60 10 97.8 5	U U	60 10 64.8 5	U	60 10 78.7 5	U	0.95 0.95 0.95 100 60 10 153	U U U UJ U

	Sample Deliv	very Group	R09003	311	R09003	311	R09003	11	R09003	11	R09003	11
	·	Location	HA-11	18	MW-20)2I	MW-20	3S	MW-20	5S	MW-20	06
	Sa	ample Date	1/20/20	09	1/21/20	09	1/20/20	09	1/20/20	09	1/20/20	09
		Sample ID	828128-HA-1	18012R1	828128-MW-2	02I045R1	828128-MW-2	03S012R1	828128-MW-20	05S012R1	828128-MW-2	206017R1
		Qc Code	FS		FS		FS		FS		FS	
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW6010	Chromium	ug/l			10	U	10	U	10	U	10	U
SW6010	Cobalt	ug/l			50	U	50	U	50	U	50	U
SW6010	Copper	ug/l			20	U	20	U	20	U	20	U
SW6010	Iron	ug/l			100	UJ	281	J	100	UJ	1300	J
SW6010	Lead	ug/l			5	U	5	U	5	U	5	U
SW6010	Magnesium	ug/l			48900		27200		44100		28800	
SW6010	Manganese	ug/l			29.9		29.9		10	U	105	
SW6010	Nickel	ug/l			40	U	40	U	40	U	40	U
SW6010	Potassium	ug/l			3250		2000	U	2000	U	2000	U
SW6010	Selenium	ug/l			10	U	10	U	10	U	10	U
SW6010	Silver	ug/l			10	U	10	U	10	U	10	U
SW6010	Sodium	ug/l			147000		46100		140000		30900	
SW6010	Thallium	ug/l			10	U	10	U	10	U	10	U
SW6010	Vanadium	ug/l			50	U	50	U	50	U	50	U
SW6010	Zinc	ug/l			20	UJ	20	UJ	245	J	20	UJ
SW7470	Mercury	ug/l			0.2	U	0.2	U	0.2	U	0.2	U
E300_C	Chloride	mg/l			254		73.8		283		43.7	
E300_S	Sulfate	mg/l			290		34.3		70		71.6	
A2320B_B	Alkalinity, Bicarbonate	mg/l			310		282		379		340	
A2320B_C	Carbonate Alkalinity, as CaCO3	mg/l			20	U	20	U	20	U	20	U
A2320B_T	Total Alkalinity, as CaCO3	mg/l			310		282		379		340	
E300_N	Nitrate as N	mg/l			0.5	U	0.56		1.53		0.5	U
E353.2	Nitrite as N	mg/l			0.01	U	0.01	U	0.01	U	0.01	U
E376.1	Sulfide	mg/l			1	U	1	U	1	U	1	U
E415.1	Total Organic Carbon	mg/l			2.1		1.4		1.9		2.1	
SM 4500-CO2 D	Carbon Dioxide	mg/l			340		270		385		333	
RSK 175	Ethane	ug/l			1	U	1	U	1	U	1	U
RSK 175	Ethene	ug/l			1	U	6.7		1	U	1	U
RSK 175	Methane	ug/l			47		9.2		4.5		2	U
E150.1	pH	ph units			7.02		7.38		7.17		7.31	

Notes:

 $ug/l = micorgram\ per\ liter$ mg/l = milligrams per liter

Qualifiers

U = not detected at the reporting limit

J = estimated concentration QC Code

FS = Field Sample, FD = Field Duplicate

TB = Trip Blank, EB = Equipment Rinse blank

	Sample Delive		R0900311	R0900311	R0900311	R0900311	R0900311
	So	Location mple Date	MW-206S 1/20/2009	MW-210 1/19/2009	MW-211 1/20/2009	MW-212 1/21/2009	QC 1/19/2009
					828128-MW-211015R1	0,00,000	TB-001
	**	Qc Code	FS	FS	FS	FS	TB
Analysis	Parameter	Units	Result Qualifier			Result Qualifier	Result Qualif
SW8260	1,1,1-Trichloroethane	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260	1,1,2,2-Tetrachloroethane	ug/l	1 U	2.5 U	1 U	50 U	1 U 1 U
SW8260 SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethan 1,1,2-Trichloroethane	ug/l ug/l	1 U 1 U	2.5 U 2.5 U	1 U	50 U 50 U	1 U
SW8260	1,1-Dichloroethane	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260	1,1-Dichloroethene	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260	1,2,4-Trichlorobenzene	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260	1,2-Dibromo-3-chloropropane	ug/l	2 U	5 UJ	2 UJ	100 UJ	2 U
SW8260	1,2-Dibromoethane	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260	1,2-Dichlorobenzene	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260	1,2-Dichloroethane	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260	1,2-Dichloropropane	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260	1,3-Dichlorobenzene	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260 SW8260	1,4-Dichlorobenzene	ug/l	1 U	2.5 U	1 U 5 U	50 U 250 U	1 U
SW8260	2-Butanone 2-Hexanone	ug/l ug/l	5 U 5 U	13 U 13 U	5 U	250 U	5 U 5 U
SW8260	4-Methyl-2-pentanone	ug/1 ug/l	5 U	13 U	5 U	250 U	5 U
SW8260	Acetic acid, methyl ester	ug/l	10 U	25 U	10 U	500 U	10 U
SW8260	Acetone	ug/l	10 U	25 U	10 U	500 U	10 U
SW8260	Benzene	ug/l	1 U	1.1 J	0.97 J	50 U	1 U
SW8260	Bromodichloromethane	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260	Bromoform	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260	Bromomethane	ug/l	2 U	5 U	2 U	100 U	2 U
SW8260	Carbon disulfide	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260	Carbon tetrachloride	ug/l	1 U	2.5 UJ	1 UJ	50 UJ	1 U
SW8260 SW8260	Chlorodibromomothono	ug/l	1 U 1 U	2.5 U 2.5 U	1 U 1 U	50 U 50 U	1 U 1 U
	Chlorodibromomethane	ug/l	2 U		2 U	100 U	2 U
SW8260 SW8260	Chloroethane Chloroform	ug/l ug/l	1 U	5 U 2.5 U	1 II	50 U	1 U
SW8260	Chloromethane	ug/l	2 UJ	5 UJ	2 UJ	100 UJ	2 U
SW8260	Cis-1,2-Dichloroethene	ug/l	59	380	170	130	1 U
SW8260	cis-1,3-Dichloropropene	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260	Cyclohexane	ug/l	4.8	19	8	50 U	1 U
SW8260	Dichlorodifluoromethane	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260	Ethyl benzene	ug/l	1.2	14	8.4	50 U	1 U
SW8260	Isopropylbenzene	ug/l	1 U	2.1 J	0.43 J	50 U	1 U
SW8260	Methyl cyclohexane	ug/l	1 U	7.9	1.4	50 U	1 U
SW8260	Methyl Tertbutyl Ether	ug/l	1 U	1.3 J	0.75 J	50 U	1 U
SW8260 SW8260	Methylene chloride	ug/l	1 U	2.5 U 2.5 U	1 U 1 U	50 U 50 U	1 U 1 U
SW8260	o-Xylene Styrene	ug/l ug/l	1 []	2.5 U	1 11	50 U	1 U
SW8260	Tetrachloroethene	ug/l	9.7	230	18	7600	1 U
SW8260	Toluene	ug/l	1 U	2.9	1 U	50 U	1 U
SW8260	trans-1,2-Dichloroethene	ug/l	1 U	3.1	1.1	50 U	1 U
SW8260	trans-1,3-Dichloropropene	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260	Trichloroethene	ug/l	3.1	81	13	170	1 U
SW8260	Trichlorofluoromethane	ug/l	1 U	2.5 U	1 U	50 U	1 U
SW8260	Vinyl chloride	ug/l	2.9	41	12	50 U	1 U
SW8260	Xylene, m/p	ug/l	2 U	0.8 J	0.36 J	100 U	2 U
SW8270 SW8270	1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	ug/l		 	 	9.4 U 9.4 U	
SW8270 SW8270	1,3-Dichlorobenzene	ug/l ug/l				9.4 U	
SW8270	1,4-Dichlorobenzene	ug/l				9.4 U	
SW8270	2,4,5-Trichlorophenol	ug/l				9.4 U	<u> </u>
SW8270	2,4,6-Trichlorophenol	ug/l				9.4 U	
SW8270	2,4-Dichlorophenol	ug/l				9.4 U	
SW8270	2,4-Dimethylphenol	ug/l				9.4 U	
SW8270	2,4-Dinitrophenol	ug/l				47 UJ	
SW8270	2,4-Dinitrotoluene	ug/l				9.4 U	
SW8270	2,6-Dinitrotoluene	ug/l				9.4 U	
SW8270	2-Chloronaphthalene	ug/l				9.4 U	
SW8270 SW8270	2-Chlorophenol 2-Methylnaphthalene	ug/l			 	9.4 U 9.4 U	
SW8270 SW8270	2-Methylphenol	ug/l ug/l				9.4 U	
SW8270	2-Nitroaniline	ug/l				9.4 U	
SW8270	2-Nitrophenol	ug/l				9.4 U	
SW8270	3,3`-Dichlorobenzidine	ug/l				9.4 U	
SW8270	3-Nitroaniline	ug/l				47 U	
SW8270	4,6-Dinitro-2-methylphenol	ug/l				47 U	
SW8270	4-Bromophenyl phenyl ether	ug/l				9.4 U	
SW8270	4-Chloro-3-methylphenol	ug/l				9.4 U	
SW8270	4-Chloroaniline	ug/l				9.4 U	
	4-Chlorophenyl phenyl ether	ug/l		1 1	1	9.4 U	
SW8270 SW8270	4-Methylphenol	ug/l		1		9.4 U	

	Sample De	livery Group			R09003		R09003		R09003		R0900	
		Location	MW-20 1/20/20		MW-2 1/19/20		MW-2 1/20/20		MW-2 1/21/20		QC 1/19/20	
		Sample Date Sample ID							828128-MW-2		TB-0	
		Qc Code	_		FS		FS		FS		TB	
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifie
SW8270	4-Nitrophenol	ug/l							47	U		
SW8270	Acenaphthene	ug/l							9.4	U		-
SW8270 SW8270	Acenaphthylene Anthracene	ug/l ug/l							9.4 9.4			+
SW8270	Benzo(a)anthracene	ug/l							9.4	U		1
SW8270	Benzo(a)pyrene	ug/l							9.4	U		1
SW8270	Benzo(b)fluoranthene	ug/l							9.4	U		
SW8270	Benzo(ghi)perylene	ug/l							9.4	U		
SW8270 SW8270	Benzo(k)fluoranthene	ug/l							9.4 9.4			+
SW8270 SW8270	Benzyl alcohol Bis(2-Chloroethoxy)methane	ug/l ug/l							9.4			+
SW8270	Bis(2-Chloroethyl)ether	ug/l							9.4			+
SW8270	Bis(2-Chloroisopropyl)ether	ug/l							9.4			†
SW8270	Bis(2-Ethylhexyl)phthalate	ug/l							9.4			
SW8270	Butylbenzylphthalate	ug/l							9.4			
SW8270	Carbazole	ug/l							9.4	U		4
SW8270 SW8270	Chrysene Di-n-butylphthalate	ug/l ug/l		-					9.4 9.4	U		+
SW8270 SW8270	Di-n-outylphthalate Di-n-octylphthalate	ug/1 ug/1							9.4	U		†
SW8270	Dibenz(a,h)anthracene	ug/l							9.4	U		†
SW8270	Dibenzofuran	ug/l							9.4	U		
SW8270	Diethylphthalate	ug/l							9.4	U	•	
SW8270	Dimethylphthalate	ug/l							9.4			
SW8270	Fluoranthene	ug/l							9.4			₩
SW8270 SW8270	Fluorene Hexachlorobenzene	ug/l ug/l		-					9.4 9.4			+
SW8270	Hexachlorobutadiene	ug/l							9.4			
SW8270	Hexachlorocyclopentadiene	ug/l										1
SW8270	Hexachloroethane	ug/l							9.4			†
SW8270	Indeno(1,2,3-cd)pyrene	ug/l							9.4	U		
SW8270	Isophorone	ug/l								U		
SW8270	N-Nitrosodi-n-propylamine	ug/l							9.4	U		-
SW8270 SW8270	N-Nitrosodimethylamine N-Nitrosodiphenylamine	ug/l							9.4 9.4	U		+
SW8270 SW8270	Naphthalene	ug/l ug/l							9.4	U		+
SW8270	Nitrobenzene	ug/l							9.4			+
SW8270	Pentachlorophenol	ug/l							47			1
SW8270	Phenanthrene	ug/l							9.4	U		
SW8270	Phenol	ug/l							9.4			
SW8270	Pyrene	ug/l							9.4			
SW8081 SW8081	4,4`-DDD 4,4`-DDE	ug/l							0.094 0.094			
SW8081	4,4 -DDE 4,4`-DDT	ug/l ug/l							0.094	II.		+
SW8081	Aldrin	ug/l							0.047	U		+
SW8081	Alpha-BHC	ug/l							0.047			1
SW8081	Alpha-Chlordane	ug/l							0.047	U		
SW8081	Beta-BHC	ug/l							0.047			
SW8081	Delta-BHC	ug/l							0.047			
SW8081 SW8081	Dieldrin Endoculfon I	ug/l							0.094 0.047			
SW8081 SW8081	Endosulfan I Endosulfan II	ug/l ug/l		1		1		1	0.047			+
SW8081	Endosulfan sulfate	ug/l							0.094			t
SW8081	Endrin	ug/l		1					0.094			†
SW8081	Endrin aldehyde	ug/l							0.094	U		
SW8081	Endrin ketone	ug/l							0.094			
SW8081	Gamma-BHC/Lindane	ug/l							0.047			
SW8081 SW8081	Gamma-Chlordane Heptachlor	ug/l ug/l		<u> </u>					0.047 0.047			+
SW8081	Heptachlor epoxide	ug/I ug/I		 					0.047			+
SW8081	Methoxychlor	ug/l							0.047			t
SW8081	Toxaphene	ug/l							0.95	U		t
SW8082	Aroclor-1016	ug/l							0.95			
SW8082	Aroclor-1221	ug/l							1.9			
SW8082	Aroclor-1232	ug/l							0.95			₩
SW8082 SW8082	Aroclor-1242 Aroclor-1248	ug/l ug/l		<u> </u>					0.95 0.95			+
SW8082	Aroclor-1248 Aroclor-1254	ug/I ug/I							0.95			†
SW8082	Aroclor-1260	ug/l							0.95			t
SW6010	Aluminum	ug/l		1								1
SW6010	Antimony	ug/l									•	
SW6010	Arsenic	ug/l										
SW6010	Barium	ug/l										
SW6010 SW6010	Beryllium Cadmium	ug/l		 								
SW6010 SW6010	Calcium	ug/l ug/l	ļ		1			-				₩

	Sample Deliv	very Group	R0900	311	R0900	311	R09003	11	R09003	311	R09003	311
		Location	MW-2	06S	MW-2	10	MW-2	11	MW-2	12	QC	
	Sa	ample Date	1/20/20	009	1/19/20	009	1/20/20	09	1/21/20	009	1/19/20	009
		Sample ID	828128-MW-2	206S010R1	828128-MW-	210015R1	828128-MW-2	211015R1	828128-MW-2	212010R1	TB-00	01
		Qc Code	FS		FS		FS		FS		TB	
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW6010	Chromium	ug/l										
SW6010	Cobalt	ug/l										
SW6010	Copper	ug/l										
SW6010	Iron	ug/l										
SW6010	Lead	ug/l										
SW6010	Magnesium	ug/l										
SW6010	Manganese	ug/l										
SW6010	Nickel	ug/l	_									
SW6010	Potassium	ug/l										
SW6010	Selenium	ug/l										
SW6010	Silver	ug/l										
SW6010	Sodium	ug/l										
SW6010	Thallium	ug/l										
SW6010	Vanadium	ug/l										
SW6010	Zinc	ug/l										
SW7470	Mercury	ug/l										
E300_C	Chloride	mg/l					70.1		254			
E300_S	Sulfate	mg/l					57.3		58.7			
A2320B_B	Alkalinity, Bicarbonate	mg/l					321		350			
A2320B_C	Carbonate Alkalinity, as CaCO3	mg/l					20	U	20	U		
A2320B_T	Total Alkalinity, as CaCO3	mg/l					321		350			
E300_N	Nitrate as N	mg/l					0.5	U	0.8			
E353.2	Nitrite as N	mg/l					0.01	U	0.01			
E376.1	Sulfide	mg/l					1	U	1	U	•	
E415.1	Total Organic Carbon	mg/l					2		1.4			
	Carbon Dioxide	mg/l					312		352			
RSK 175	Ethane	ug/l					1	U	1	U		
RSK 175	Ethene	ug/l	_				1	U	1	U		
RSK 175	Methane	ug/l					6		6.7			
E150.1	pН	ph units					7.34		7.2			

Notes:

 $ug/l = micorgram\ per\ liter$ mg/l = milligrams per liter

Qualifiers

U = not detected at the reporting limit

J = estimated concentration QC Code

FS = Field Sample, FD = Field Duplicate

TB = Trip Blank, EB = Equipment Rinse blank

	Sample Delive		R09003		R09003		R09003	39	R09003		R09003	339
		Location	DEC-W		HA-10		HA-10		HA-11		HA-1	
		mple Date	1/21/20		1/21/20		1/21/20		1/21/20		1/21/20	
		Oc Code	328128-DEC-W FS	ELL014R	828128-HA-1 FS	05012R1	828128-HA-1 FS	06014R1	828128-HA-1 FS	12015R1	828128-HA-1 FS	.14012R1
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier		Qualifier	Result	Qualifie
SW8260	1,1,1-Trichloroethane	ug/l	5	_		U		U	1			U
SW8260	1,1,2,2-Tetrachloroethane	ug/l	5			U		U	1	U	1	U
SW8260	1,1,2-Trichloro-1,2,2-Trifluoroethan	ug/l	5			U		U	1			U
SW8260	1,1,2-Trichloroethane	ug/l	5			U		U	1			U
SW8260 SW8260	1,1-Dichloroethane 1,1-Dichloroethene	ug/l ug/l	5			U U		U U	1		0.83	U
SW8260	1.2.4-Trichlorobenzene	ug/l	5			U		U	1	-		U
SW8260	1,2-Dibromo-3-chloropropane	ug/l	10			U		U	2			U
SW8260	1,2-Dibromoethane	ug/l	5			U		U	1			U
SW8260	1,2-Dichlorobenzene	ug/l	5	U	1	U	2	U	1	U	1	U
SW8260	1,2-Dichloroethane	ug/l	7.5			U		U	1			U
SW8260	1,2-Dichloropropane	ug/l	5			U		U	1			U
SW8260 SW8260	1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/l ug/l	5			U U		U U	1			U
SW8260	2-Butanone	ug/l	25			U	10		5	-		U
SW8260	2-Hexanone	ug/l	25			U	10		5			U
SW8260	4-Methyl-2-pentanone	ug/l		U		U	10		5			U
SW8260	Acetic acid, methyl ester	ug/l	50		10		20		10			U
SW8260	Acetone	ug/l	50	U	10	U	20	U	10			U
SW8260	Benzene	ug/l	210	**	6.5	**	18	**	1		2.1	
SW8260 SW8260	Bromodichloromethane Bromoform	ug/l	5			U U		U U	1			U
SW8260 SW8260	Bromonethane	ug/l ug/l	10			U		U	2	-		U
SW8260	Carbon disulfide	ug/l	5			U		U	1			U
SW8260	Carbon tetrachloride	ug/l	5			U		U	1			U
SW8260	Chlorobenzene	ug/l	5			U		U	1	U		U
SW8260	Chlorodibromomethane	ug/l	5			U		U	1			U
SW8260	Chloroethane	ug/l	10			U		U	2			U
SW8260 SW8260	Chloroform Chloromethane	ug/l	5 10			U U		U U	1 2			U
SW8260	Cis-1,2-Dichloroethene	ug/l ug/l		U		U		U	1		540	
SW8260	cis-1,3-Dichloropropene	ug/l		U	_	U		U	1			U
SW8260	Cyclohexane	ug/l	190	J		U	150		1		23	
SW8260	Dichlorodifluoromethane	ug/l		U	1	U		U	1	U		U
SW8260	Ethyl benzene	ug/l	590		17		320		1	U	27	
SW8260	Isopropylbenzene	ug/l	40		6		24		1		3.7	
SW8260	Methyl cyclohexane	ug/l	75	**	1.1	••	87	**	1		5.9	
SW8260 SW8260	Methyl Tertbutyl Ether Methylene chloride	ug/l ug/l	5			U U		U U	1			U
SW8260	o-Xylene	ug/l	570	U		U	140	U	1			U
SW8260	Styrene	ug/l	5	U		U		U	1		1	U
SW8260	Tetrachloroethene	ug/l		U	1	U		U	1	U	11	
SW8260	Toluene	ug/l	900			U	69		1		6.9	
SW8260	trans-1,2-Dichloroethene	ug/l	5			U		U	1	-	9.3	
SW8260	trans-1,3-Dichloropropene	ug/l	5			U		U	1			U
SW8260 SW8260	Trichloroethene Trichlorofluoromethene	ug/l	5			U		U U	1		6.8	U
SW8260 SW8260	Trichlorofluoromethane Vinyl chloride	ug/l ug/l	5			U		U	1		160	
SW8260	Xylene, m/p	ug/l	1400			U	500	9	2		1.7	
SW8270	1,2,4-Trichlorobenzene	ug/l	1.50				2.00		-		1.,	t –
SW8270	1,2-Dichlorobenzene	ug/l										
SW8270	1,3-Dichlorobenzene	ug/l		·						-		
SW8270	1,4-Dichlorobenzene	ug/l										<u> </u>
SW8270 SW8270	2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ug/l										
SW8270 SW8270	2,4-Dichlorophenol	ug/l ug/l										
SW8270 SW8270	2,4-Dichiorophenol	ug/l ug/l										
SW8270	2,4-Dinitrophenol	ug/l										
SW8270	2,4-Dinitrotoluene	ug/l										
SW8270	2,6-Dinitrotoluene	ug/l										
SW8270	2-Chloronaphthalene	ug/l										
SW8270 SW8270	2-Chlorophenol	ug/l										
SW8270 SW8270	2-Methylnaphthalene 2-Methylphenol	ug/l ug/l										
SW8270	2-Nitroaniline	ug/l										1
SW8270	2-Nitrophenol	ug/l										†
SW8270	3,3`-Dichlorobenzidine	ug/l										
SW8270	3-Nitroaniline	ug/l										
SW8270	4,6-Dinitro-2-methylphenol	ug/l										_
SW8270	4-Bromophenyl phenyl ether	ug/l										
SW8270 SW8270	4-Chloro-3-methylphenol 4-Chloroaniline	ug/l ug/l										
SW8270 SW8270	4-Chlorophenyl phenyl ether	ug/l ug/l										
SW8270	4-Methylphenol	ug/l										
SW8270	4-Nitroaniline	ug/l			 				1		1	

	Sample De	ivery Group	R0900		R09003		R09003		R09003		R09003	
		Location	DEC-W		HA-1		HA-10		HA-1		HA-1	
		Sample Date	1/21/2 328128-DEC-V		1/21/20		1/21/20		1/21/20 828128-HA-1		1/21/20 828128-HA-1	
		Oc Code	FS		626126-FA	03012K1	626126-FA-1	00014K1	FS	12013K1	FS	.14012K1
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifie
SW8270	4-Nitrophenol	ug/l										
SW8270	Acenaphthene	ug/l										<u> </u>
SW8270 SW8270	Acenaphthylene	ug/l										<u> </u>
SW8270	Anthracene Benzo(a)anthracene	ug/l ug/l										
SW8270	Benzo(a)pyrene	ug/l										<u> </u>
SW8270	Benzo(b)fluoranthene	ug/l										
SW8270	Benzo(ghi)perylene	ug/l										
SW8270	Benzo(k)fluoranthene	ug/l										<u> </u>
SW8270 SW8270	Benzyl alcohol Bis(2-Chloroethoxy)methane	ug/l ug/l								-		-
SW8270	Bis(2-Chloroethyl)ether	ug/l										
SW8270	Bis(2-Chloroisopropyl)ether	ug/l										
SW8270	Bis(2-Ethylhexyl)phthalate	ug/l										
SW8270	Butylbenzylphthalate	ug/l										
SW8270	Chrysona	ug/l								1		1
SW8270 SW8270	Chrysene Di-n-butylphthalate	ug/l ug/l								 		
SW8270	Di-n-octylphthalate	ug/l										
SW8270	Dibenz(a,h)anthracene	ug/l										
SW8270	Dibenzofuran	ug/l										
SW8270	Diethylphthalate	ug/l										<u> </u>
SW8270 SW8270	Dimethylphthalate Fluoranthene	ug/l				 		 		1		
SW8270 SW8270	Fluoranthene Fluorene	ug/l ug/l								 		
SW8270	Hexachlorobenzene	ug/l										†
SW8270	Hexachlorobutadiene	ug/l										
SW8270	Hexachlorocyclopentadiene	ug/l										
SW8270	Hexachloroethane	ug/l										
SW8270 SW8270	Indeno(1,2,3-cd)pyrene Isophorone	ug/l ug/l										-
SW8270	N-Nitrosodi-n-propylamine	ug/l										-
SW8270	N-Nitrosodimethylamine	ug/l										
SW8270	N-Nitrosodiphenylamine	ug/l										
SW8270	Naphthalene	ug/l										
SW8270	Nitrobenzene	ug/l										
SW8270 SW8270	Pentachlorophenol Phenanthrene	ug/l ug/l										
SW8270	Phenol	ug/l										1
SW8270	Pyrene	ug/l										
SW8081	4,4`-DDD	ug/l										
SW8081	4,4`-DDE	ug/l										
SW8081 SW8081	4,4`-DDT Aldrin	ug/l										
SW8081	Alpha-BHC	ug/l ug/l										
SW8081	Alpha-Chlordane	ug/l										
SW8081	Beta-BHC	ug/l										
SW8081	Delta-BHC	ug/l										
SW8081	Dieldrin	ug/l										<u> </u>
SW8081 SW8081	Endosulfan I Endosulfan II	ug/l ug/l								 		₩
SW8081	Endosulfan sulfate	ug/l ug/l								<u> </u>		
SW8081	Endrin	ug/l										<u> </u>
SW8081	Endrin aldehyde	ug/l										
SW8081	Endrin ketone	ug/l										1
SW8081 SW8081	Gamma-BHC/Lindane Gamma-Chlordane	ug/l								1		
SW8081 SW8081	Heptachlor	ug/l ug/l								1		
SW8081	Heptachlor epoxide	ug/l										
SW8081	Methoxychlor	ug/l										
SW8081	Toxaphene	ug/l										
SW8082	Aroclor-1016	ug/l										
SW8082 SW8082	Aroclor-1221 Aroclor-1232	ug/l ug/l								-		┼
SW8082 SW8082	Aroclor-1242	ug/l								<u> </u>		
SW8082	Aroclor-1248	ug/l										†
SW8082	Aroclor-1254	ug/l										
SW8082	Aroclor-1260	ug/l										
SW6010	Aluminum	ug/l									100	
SW6010 SW6010	Antimony Arsenic	ug/l ug/l								-		U
SW6010 SW6010	Arsenic Barium	ug/l ug/l								 	80.9	
SW6010	Beryllium	ug/l										U
SW6010	Cadmium	ug/l									5	U
SW6010	Calcium	ug/l					1				68800	

	Sample Deliv	very Group	R0900	339	R09003	339	R09003	339	R0900	339	R09003	339
		Location	DEC-W	/ELL	HA-1)5	HA-1	06	HA-1	12	HA-1	14
	Sa	ample Date	1/21/2	009	1/21/20	009	1/21/20	009	1/21/20	009	1/21/20	009
		Sample ID	328128-DEC-V	VELL014R1	828128-HA-1	05012R1	828128-HA-1	06014R1	828128-HA-	112015R1	828128-HA-1	14012R1
		Qc Code	FS		FS		FS		FS		FS	
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW6010	Chromium	ug/l									10	U
SW6010	Cobalt	ug/l									50	U
SW6010	Copper	ug/l									20	U
SW6010	Iron	ug/l									913	
SW6010	Lead	ug/l									5	U
SW6010	Magnesium	ug/l									19000	
SW6010	Manganese	ug/l									138	
SW6010	Nickel	ug/l									40	U
SW6010	Potassium	ug/l									2000	U
SW6010	Selenium	ug/l									10	U
SW6010	Silver	ug/l									10	U
SW6010	Sodium	ug/l									70100	
SW6010	Thallium	ug/l									10	U
SW6010	Vanadium	ug/l									50	U
SW6010	Zinc	ug/l									24.5	
SW7470	Mercury	ug/l									0.2	U
E300_C	Chloride	mg/l									131	
E300_S	Sulfate	mg/l									12.9	
A2320B_B	Alkalinity, Bicarbonate	mg/l									225	
A2320B_C	Carbonate Alkalinity, as CaCO3	mg/l									20	U
A2320B_T	Total Alkalinity, as CaCO3	mg/l									225	
E300_N	Nitrate as N	mg/l									0.5	U
E353.2	Nitrite as N	mg/l									0.01	U
E376.1	Sulfide	mg/l									1	U
E415.1	Total Organic Carbon	mg/l									2.8	
SM 4500-CO2 D	Carbon Dioxide	mg/l									220	
RSK 175	Ethane	ug/l									3.6	
RSK 175	Ethene	ug/l									12	
RSK 175	Methane	ug/l									33	
E150.1	pH	ph units									7.31	

Notes:

$$\label{eq:ugl} \begin{split} ug/l &= micorgram \; per \; liter \\ mg/l &= milligrams \; per \; liter \end{split}$$

Qualifiers

U = not detected at the reporting limit

J = estimated concentration

QC Code

FS = Field Sample, FD = Field Duplicate

TB = Trip Blank, EB = Equipment Rinse blank

	Sample Delive		R0900339	R0900339	R0900339	R0900339	R0900339
	C ₀	Location mple Date	HA-115 1/21/2009	HA-117 1/21/2009	HA-119 1/21/2009	HA-119 1/21/2009	HA-122 1/21/2009
		Sample ID		828128-HA-117014R1	828128-HA-119013R1		
		Qc Code	FS	FS	FS	FD	FS
Analysis	Parameter	Units	Result Qualifier				Result Qualifie
SW8260	1,1,1-Trichloroethane	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260 SW8260	1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethan	ug/l ug/l	2 U 2 U	1 U	1 U	1 U 1 U	1 U 1 U
SW8260	1,1,2-Trichloroethane	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260	1,1-Dichloroethane	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260	1,1-Dichloroethene	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260	1,2,4-Trichlorobenzene	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260	1,2-Dibromo-3-chloropropane	ug/l	4 U	2 U	2 U	2 U	2 U
SW8260	1,2-Dibromoethane	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260	1,2-Dichlorobenzene	ug/l	2 U 2 U	1 U	1 U	1 U	1 U 1 U
SW8260 SW8260	1,2-Dichloroethane 1,2-Dichloropropane	ug/l ug/l	2 U	1 U	1 U 1 U	1 U	1 U
SW8260	1,3-Dichlorobenzene	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260	1,4-Dichlorobenzene	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260	2-Butanone	ug/l	10 U	5 U	5 U	5 U	5 U
SW8260	2-Hexanone	ug/l	10 U	5 U	5 U	5 U	5 U
SW8260	4-Methyl-2-pentanone	ug/l	10 U	5 U	5 U	5 U	5 U
SW8260	Acetic acid, methyl ester	ug/l	20 U	10 U	10 U	10 U	10 U
SW8260 SW8260	Acetone	ug/l	20 U 16	10 U	10 U 0.74 J	10 U 0.78 J	10 U 30
SW8260	Benzene Bromodichloromethane	ug/l ug/l	2 U	1 U	0.74 J 1 U	0.78 J 1 U	1 U
SW8260	Bromoform	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260	Bromomethane	ug/l	4 U	2 U	2 U	2 U	2 U
SW8260	Carbon disulfide	ug/l	2 U	1 U	0.45 J	0.44 J	1 U
SW8260	Carbon tetrachloride	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260	Chlorobenzene	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260	Chlorodibromomethane	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260 SW8260	Chloroethane Chloroform	ug/l ug/l	4 U 2 U	2 U	2 U	2 U 1 U	2 U 1 U
SW8260	Chloromethane	ug/l	4 U	2 U	2 U	2 U	2 U
SW8260	Cis-1,2-Dichloroethene	ug/l	2 U	1 U	180 D	190 D	43
SW8260	cis-1,3-Dichloropropene	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260	Cyclohexane	ug/l	150 J	1 U	1 U	1 U	30 J
SW8260	Dichlorodifluoromethane	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260	Ethyl benzene	ug/l	360	1 U	0.29 J	0.27 J	66
SW8260	Isopropylbenzene	ug/l	36 75	1 U	1 U	1 U	6.6
SW8260 SW8260	Methyl cyclohexane Methyl Tertbutyl Ether	ug/l ug/l	2 U	3.7	2.4	2.4	14 1 U
SW8260	Methylene chloride	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260	o-Xylene	ug/l	220	1 U	1 U	1 U	35
SW8260	Styrene	ug/l	2 U	1 U	1 U	1 U	1 U
SW8260	Tetrachloroethene	ug/l	2 U	6.7	1 U	1 U	1 U
SW8260	Toluene	ug/l	74	1 U	0.56 J	0.59 J	10
SW8260	trans-1,2-Dichloroethene	ug/l	2 U	1 U	2	2.2	1.1
SW8260 SW8260	trans-1,3-Dichloropropene Trichloroethene	ug/l ug/l	2 U 2 U	1 U 1 U	0.95 J	1 U 0.96 J	1 U 1 U
SW8260	Trichlorofluoromethane	ug/1 ug/1	2 U	1 U	1 11	0.90 J	1 U
SW8260	Vinyl chloride	ug/l	2 U	1 U	56	55	69
SW8260	Xylene, m/p	ug/l	360	2 U	2 U	2 U	49
SW8270	1,2,4-Trichlorobenzene	ug/l					
SW8270	1,2-Dichlorobenzene	ug/l					
SW8270	1,3-Dichlorobenzene	ug/l					
SW8270	1,4-Dichlorobenzene	ug/l					
SW8270 SW8270	2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ug/l ug/l					
SW8270	2,4-Dichlorophenol	ug/l					
SW8270	2,4-Dimethylphenol	ug/l					
SW8270	2,4-Dinitrophenol	ug/l					
SW8270	2,4-Dinitrotoluene	ug/l					
SW8270	2,6-Dinitrotoluene	ug/l					
SW8270	2-Chloronaphthalene	ug/l					
SW8270 SW8270	2-Chlorophenol 2-Methylnaphthalene	ug/l					
SW8270 SW8270	2-Methylphenol	ug/l ug/l					
SW8270	2-Nitroaniline	ug/l					
SW8270	2-Nitrophenol	ug/l					
SW8270	3,3`-Dichlorobenzidine	ug/l					
SW8270	3-Nitroaniline	ug/l					
SW8270	4,6-Dinitro-2-methylphenol	ug/l					
SW8270	4-Bromophenyl phenyl ether	ug/l					
SW8270	4-Chloro-3-methylphenol	ug/l					
SW8270 SW8270	4-Chloroaniline 4-Chlorophenyl phenyl ether	ug/l ug/l	 		 		
SW8270 SW8270	4-Chlorophenyl phenyl ether 4-Methylphenol	ug/l ug/l					
SW8270	4-Nitroaniline	ug/l	 	 	 	 	

	Sample De	livery Group	R09003		R09003		R09003		R09003		R0900	
		Location	HA-1		HA-1		HA-11 1/21/20		HA-11 1/21/20		HA-1 1/21/20	
		Sample Date Sample ID	1/21/20 828128-HA-1		1/21/20 828128-HA-1				828128-HA-11			
		Qc Code	FS	10100111	FS	17011111	FS	1,015101	FD	70151112	FS	
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifie
SW8270	4-Nitrophenol	ug/l										
SW8270 SW8270	Acenaphthene Acenaphthylene	ug/l ug/l										┼──
SW8270	Anthracene	ug/l										+
SW8270	Benzo(a)anthracene	ug/l										
SW8270	Benzo(a)pyrene	ug/l										
SW8270 SW8270	Benzo(b)fluoranthene	ug/l										↓
SW8270 SW8270	Benzo(ghi)perylene Benzo(k)fluoranthene	ug/l ug/l										+
SW8270	Benzyl alcohol	ug/l										+
SW8270	Bis(2-Chloroethoxy)methane	ug/l										
SW8270	Bis(2-Chloroethyl)ether	ug/l										ļ
SW8270 SW8270	Bis(2-Chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate	ug/l ug/l										+
SW8270	Butylbenzylphthalate	ug/l										+
SW8270	Carbazole	ug/l										1
SW8270	Chrysene	ug/l										
SW8270	Di-n-butylphthalate	ug/l										
SW8270 SW8270	Di-n-octylphthalate Dibenz(a,h)anthracene	ug/l ug/l		-		-						+
SW8270	Dibenzofuran	ug/l										
SW8270	Diethylphthalate	ug/l										
SW8270	Dimethylphthalate	ug/l										
SW8270	Fluoranthene Fluorene	ug/l				1						₩
SW8270 SW8270	Hexachlorobenzene	ug/l ug/l				 						+
SW8270	Hexachlorobutadiene	ug/l				t						
SW8270	Hexachlorocyclopentadiene	ug/l										
SW8270	Hexachloroethane	ug/l										1
SW8270 SW8270	Indeno(1,2,3-cd)pyrene Isophorone	ug/l ug/l										+
SW8270	N-Nitrosodi-n-propylamine	ug/l										+
SW8270	N-Nitrosodimethylamine	ug/l										1
SW8270	N-Nitrosodiphenylamine	ug/l										
SW8270	Naphthalene	ug/l										
SW8270 SW8270	Nitrobenzene Pentachlorophenol	ug/l ug/l										+
SW8270	Phenanthrene	ug/l										+
SW8270	Phenol	ug/l										
SW8270	Pyrene	ug/l										ļ
SW8081 SW8081	4,4`-DDD 4,4`-DDE	ug/l ug/l										+
SW8081	4,4`-DDE 4,4`-DDT	ug/l										_
SW8081	Aldrin	ug/l										1
SW8081	Alpha-BHC	ug/l										
SW8081	Alpha-Chlordane	ug/l										_
SW8081 SW8081	Beta-BHC Delta-BHC	ug/l ug/l										+
SW8081	Dieldrin	ug/l		1		1						+
SW8081	Endosulfan I	ug/l										
SW8081	Endosulfan II	ug/l										
SW8081 SW8081	Endosulfan sulfate Endrin	ug/l		 		1						+
SW8081	Endrin aldehyde	ug/l ug/l		 		<u> </u>						+
SW8081	Endrin adenyde Endrin ketone	ug/l										
SW8081	Gamma-BHC/Lindane	ug/l										
SW8081	Gamma-Chlordane	ug/l						1				1
SW8081 SW8081	Heptachlor Heptachlor epoxide	ug/l ug/l				-						+
SW8081	Methoxychlor	ug/l		1		1						+
SW8081	Toxaphene	ug/l										
SW8082	Aroclor-1016	ug/l										
SW8082 SW8082	Aroclor-1221 Aroclor-1232	ug/l				-						
SW8082 SW8082	Aroclor-1232 Aroclor-1242	ug/l ug/l		 		1						+
SW8082	Aroclor-1248	ug/l				t						
SW8082	Aroclor-1254	ug/l										
SW8082	Aroclor-1260	ug/l										
SW6010 SW6010	Antimony	ug/l				-	100		100			
SW6010 SW6010	Antimony Arsenic	ug/l ug/l				1	10		10			+
SW6010	Barium	ug/l				t	111		111			+
SW6010	Beryllium	ug/l					5	U	5	U		
SW6010	Cadmium	ug/l		Ì	l	ĺ	5	U	5	U		Ī

	Sample Deliv	ery Group	R09003	339	R09003	339	R09003	39	R09003	39	R09003	339
		Location	HA-1	15	HA-1	17	HA-11	.9	HA-11	19	HA-1	22
	Sa	ample Date	1/21/20	009	1/21/20	009	1/21/20	09	1/21/20	09	1/21/20	009
		Sample ID	828128-HA-1	15155R1	828128-HA-1	17014R1	828128-HA-1	19013R1	828128-HA-11	9013R1D	828128-HA-	122012R1
		Qc Code	FS		FS		FS		FD		FS	
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW6010	Chromium	ug/l					10	U	10	U		
SW6010	Cobalt	ug/l					50	U	50	U		
SW6010	Copper	ug/l					20	U	20	U		
SW6010	Iron	ug/l					100	U	100	U		
SW6010	Lead	ug/l					5	U	5	U		
SW6010	Magnesium	ug/l					28400		28500			
SW6010	Manganese	ug/l					45.4		45.4			
SW6010	Nickel	ug/l					40	U	40	U		
SW6010	Potassium	ug/l					2000	U	2000	U		
SW6010	Selenium	ug/l					10	U	10	U		
SW6010	Silver	ug/l					10	U	10	U		
SW6010	Sodium	ug/l					37600		37100			
SW6010	Thallium	ug/l					10	U	10	U		
SW6010	Vanadium	ug/l					50	U	50	U		
SW6010	Zinc	ug/l					20	U	65.2			
SW7470	Mercury	ug/l					0.2	U	0.2	U		
E300_C	Chloride	mg/l					58.7		58			
E300_S	Sulfate	mg/l					63.2		62.7			
A2320B_B	Alkalinity, Bicarbonate	mg/l					309		310			
A2320B_C	Carbonate Alkalinity, as CaCO3	mg/l					20	U	20	U		
A2320B_T	Total Alkalinity, as CaCO3	mg/l					309		310			
E300_N	Nitrate as N	mg/l					0.5	U	0.5	U		
E353.2	Nitrite as N	mg/l					0.01	U	0.01			
E376.1	Sulfide	mg/l					1	U	1	U		
E415.1	Total Organic Carbon	mg/l					1.7		1.7			
SM 4500-CO2 D	Carbon Dioxide	mg/l					309		312			
RSK 175	Ethane	ug/l					1	U	1			
RSK 175	Ethene	ug/l					2.5		2.5			
RSK 175	Methane	ug/l					9.3		9.4			
E150.1	pH	ph units					7.22		7.2			

Notes:

 $ug/l = micorgram\ per\ liter$ mg/l = milligrams per liter

Qualifiers

U = not detected at the reporting limit

J = estimated concentration QC Code

FS = Field Sample, FD = Field Duplicate

TB = Trip Blank, EB = Equipment Rinse blank

	Sample Delive		R0900339	R0900339	R0900339	R0900339	R0900339
	Co	Location mple Date	HA-123 1/21/2009	MW-202 1/22/2009	MW-202 1/22/2009	MW-204S 1/21/2009	MW-207S 1/21/2009
		Sample ID			828128-MW-202012R1D		
		Qc Code	FS	FS	FD	FS	FS
Analysis	Parameter	Units	Result Qualifier	Result Qualifier		Result Qualifier	
SW8260	1,1,1-Trichloroethane	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260 SW8260	1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethan	ug/l	1 U 1 U	2.5 U 2.5 U	2.5 U 2.5 U	1 U 1 U	1 U 1 U
SW8260	1,1,2-Trichloroethane	ug/l ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	1,1-Dichloroethane	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	1,1-Dichloroethene	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	1,2,4-Trichlorobenzene	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	1,2-Dibromo-3-chloropropane	ug/l	2 U	5 U	5 U	2 U	2 U
SW8260	1,2-Dibromoethane	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260 SW8260	1,2-Dichlorobenzene 1,2-Dichloroethane	ug/l ug/l	1 U 1 U	2.5 U 2.5 U	2.5 U 2.5 U	1 U	1 U
SW8260	1,2-Dichloropropane	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	1,3-Dichlorobenzene	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	1,4-Dichlorobenzene	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	2-Butanone	ug/l	5 U	13 U	13 U	5 U	5 U
SW8260	2-Hexanone	ug/l	5 U	13 U	13 U	5 U	5 U
SW8260 SW8260	4-Methyl-2-pentanone	ug/l	5 U 10 U	13 U 25 U	13 U 25 U	5 U 10 U	5 U 10 U
SW8260 SW8260	Acetic acid, methyl ester Acetone	ug/l ug/l	10 U	25 U	25 U	10 U	10 U
SW8260	Benzene	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	Bromodichloromethane	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	Bromoform	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	Bromomethane	ug/l	2 U	5 U	5 U	2 U	2 U
SW8260	Carbon disulfide	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260 SW8260	Carbon tetrachloride Chlorobenzene	ug/l ug/l	1 U 1 U	2.5 U 2.5 U	2.5 U 2.5 U	1 U 1 U	1 U 1 U
SW8260	Chlorodibromomethane	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	Chloroethane	ug/l	2 U	5 U	5 U	2 U	2 U
SW8260	Chloroform	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	Chloromethane	ug/l	2 U	5 U	5 U	2 U	2 U
SW8260	Cis-1,2-Dichloroethene	ug/l	2	120	120	32	1 U
SW8260	cis-1,3-Dichloropropene	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260 SW8260	Cyclohexane Dichlorodifluoromethane	ug/l ug/l	1 U 1 U	2.5 U 2.5 U	2.5 U 2.5 U	1 U	1 U 1 U
SW8260	Ethyl benzene	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	Isopropylbenzene	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	Methyl cyclohexane	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	Methyl Tertbutyl Ether	ug/l	1 U	0.95 J	2.5 U	1 U	1 U
SW8260	Methylene chloride	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260 SW8260	o-Xylene Styrene	ug/l ug/l	1 U	2.5 U 2.5 U	2.5 U 2.5 U	1 U	1 U 1 U
SW8260	Tetrachloroethene	ug/l	15	420	410	31	11
SW8260	Toluene	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	trans-1,2-Dichloroethene	ug/l	1 U	2 J	2.2 J	1 U	1 U
SW8260	trans-1,3-Dichloropropene	ug/l	1 U	2.5 U	2.5 U	1 U	1 U
SW8260	Trichloroethene	ug/l	1.7	24	24	2	1 U
SW8260 SW8260	Trichlorofluoromethane Vinyl chloride	ug/l ug/l	1 U 1 U	2.5 U 13	2.5 U 13	1 U 1 U	1 U 1 U
SW8260	Xvlene, m/p	ug/I ug/I	2 U	5 U	5 U	2 U	2 U
SW8270	1,2,4-Trichlorobenzene	ug/l		9.4 U	9.7 U		<u> </u>
SW8270	1,2-Dichlorobenzene	ug/l		9.4 U	9.7 U		
SW8270	1,3-Dichlorobenzene	ug/l		9.4 U	9.7 U		
SW8270	1,4-Dichlorobenzene	ug/l		9.4 U	9.7 U		
SW8270 SW8270	2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ug/l ug/l		9.4 U 9.4 U	9.7 U 9.7 U		+
SW8270 SW8270	2,4-Dichlorophenol	ug/1 ug/l		9.4 U	9.7 U		
SW8270	2,4-Dimethylphenol	ug/l		9.4 U	9.7 U		† †
SW8270	2,4-Dinitrophenol	ug/l		47 UJ	49 UJ		
SW8270	2,4-Dinitrotoluene	ug/l		9.4 U	9.7 U		
SW8270	2,6-Dinitrotoluene	ug/l		9.4 U	9.7 U		
SW8270 SW8270	2-Chlorophonol	ug/l		9.4 U 9.4 U	9.7 U 9.7 U		
SW8270 SW8270	2-Chlorophenol 2-Methylnaphthalene	ug/l ug/l		9.4 U	9.7 U		+ + + -
SW8270	2-Methylphenol	ug/l		9.4 U	9.7 U		† †
SW8270	2-Nitroaniline	ug/l		47 U	49 U		
SW8270	2-Nitrophenol	ug/l		9.4 U	9.7 U		
SW8270	3,3`-Dichlorobenzidine	ug/l		9.4 U	9.7 U		
SW8270	3-Nitroaniline	ug/l		47 U	49 U	 	
SW8270 SW8270	4,6-Dinitro-2-methylphenol	ug/l		47 U 9.4 U	49 U 9.7 U		
SW8270 SW8270	4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	ug/l ug/l		9.4 U	9.7 U		
SW8270	4-Chloroaniline	ug/l		9.4 U	9.7 U		
SW8270	4-Chlorophenyl phenyl ether	ug/l		9.4 U	9.7 U		
SW8270	4-Methylphenol	ug/l		9.4 U	9.7 U		
SW8270	4-Nitroaniline	ug/l		47 U	49 U		

	Sample De	livery Group			R09003		R09003		R09003		R0900	
		Location			MW-2		MW-2		MW-20		MW-2	
		Sample Date	1/21/2009 828128-HA-12315	5D1 02012	1/22/20		1/22/20		1/21/20		1/21/20	
		Oc Code		JK1 02012	FS	202012K1	FD	02012 K 1L	FS	.043012K1	FS	
Analysis	Parameter	Units		lifier Re	sult	Qualifier	Result	Qualifier		Qualifier	Result	Qualifie
SW8270	4-Nitrophenol	ug/l			47		49					
SW8270	Acenaphthene	ug/l			9.4	U	9.7	U				
SW8270	Acenaphthylene	ug/l				U	9.7					
SW8270	Anthracene	ug/l			9.4	U	9.7					
SW8270	Benzo(a)anthracene	ug/l			9.4	U	9.7					
SW8270 SW8270	Benzo(a)pyrene	ug/l			9.4 9.4		9.7 9.7					
SW8270	Benzo(b)fluoranthene Benzo(ghi)perylene	ug/l			9.4	T T	9.7					
SW8270	Benzo(k)fluoranthene	ug/l ug/l			9.4	II	9.7					
SW8270	Benzyl alcohol	ug/l			9.4		9.7					
SW8270	Bis(2-Chloroethoxy)methane	ug/l					9.7					
SW8270	Bis(2-Chloroethyl)ether	ug/l			9.4	U	9.7	U				
SW8270	Bis(2-Chloroisopropyl)ether	ug/l			9.4	U	9.7	U				
SW8270	Bis(2-Ethylhexyl)phthalate	ug/l			9.4	U	9.7	U				
SW8270	Butylbenzylphthalate	ug/l			9.4		9.7					
SW8270	Carbazole	ug/l			9.4		9.7					
SW8270	Chrysene	ug/l			9.4	U	9.7					
SW8270	Di-n-butylphthalate	ug/l			9.4		9.7			-		-
SW8270	Di-n-octylphthalate	ug/l			9.4	U	9.7 9.7			-		-
SW8270 SW8270	Dibenz(a,h)anthracene Dibenzofuran	ug/l	 		9.4 9.4	-	9.7			 		1
SW8270 SW8270	Diethylphthalate	ug/l ug/l			9.4	U	9.7					1
SW8270	Diethylphthalate Dimethylphthalate	ug/I ug/I			9.4	U	9.7			 		+
SW8270	Fluoranthene	ug/l			9.4	-	9.7					1
SW8270	Fluorene	ug/l			9.4		9.7					1
SW8270	Hexachlorobenzene	ug/l			9.4		9.7					
SW8270	Hexachlorobutadiene	ug/l			9.4	UJ	9.7	U				
SW8270	Hexachlorocyclopentadiene	ug/l			9.4	U	9.7	U				
SW8270	Hexachloroethane	ug/l					9.7					
SW8270	Indeno(1,2,3-cd)pyrene	ug/l			9.4		9.7					
SW8270	Isophorone	ug/l					9.7					
SW8270	N-Nitrosodi-n-propylamine	ug/l				U	9.7					
SW8270	N-Nitrosodimethylamine	ug/l			9.4	U	9.7					1
SW8270	N-Nitrosodiphenylamine	ug/l			9.4 9.4	U	9.7					1
SW8270 SW8270	Naphthalene Nitrobenzene	ug/l ug/l	-		9.4		9.7 9.7					1
SW8270	Pentachlorophenol	ug/l			47		49					1
SW8270	Phenanthrene	ug/l			9.4		9.7					
SW8270	Phenol	ug/l			9.4		9.7					
SW8270	Pyrene	ug/l			9.4		9.7					
SW8081	4,4`-DDD	ug/l			0.094	U	0.098	U				
SW8081	4,4`-DDE	ug/l			0.094	U	0.098	U				
SW8081	4,4`-DDT	ug/l			0.094	U	0.098					
SW8081	Aldrin	ug/l				U	0.049					
SW8081	Alpha-BHC	ug/l			0.00.1		0.049					
SW8081	Alpha-Chlordane	ug/l			0.047	U	0.049					1
SW8081 SW8081	Beta-BHC Delta-BHC	ug/l	 	_	0.047	U	0.049			-		-
SW8081	Dieldrin	ug/l			0.047	~	0.049			1		1
SW8081	Endosulfan I	ug/l ug/l			0.094		0.098			 		1
SW8081	Endosulfan II	ug/l	 		0.047		0.049			<u> </u>		1
SW8081	Endosulfan sulfate	ug/l			0.094		0.098					1
SW8081	Endrin	ug/l			0.094		0.098					
SW8081	Endrin aldehyde	ug/l			0.094		0.098					
SW8081	Endrin ketone	ug/l			0.094		0.098					
SW8081	Gamma-BHC/Lindane	ug/l			0.047		0.049					
SW8081	Gamma-Chlordane	ug/l			0.047		0.049					
SW8081	Heptachlor	ug/l			0.047		0.049					1
SW8081	Heptachlor epoxide	ug/l			0.047		0.049			1		1
SW8081 SW8081	Methoxychlor Toxaphene	ug/l	-		0.47		0.49			-		+
SW8081 SW8082	Aroclor-1016	ug/l ug/l			0.95		0.99			 		1
SW8082	Aroclor-1221	ug/l			1.9			U		1		1
SW8082	Aroclor-1221 Aroclor-1232	ug/l			0.95		0.99					
SW8082	Aroclor-1242	ug/l			0.95		0.99					
SW8082	Aroclor-1248	ug/l			0.95		0.99					1
SW8082	Aroclor-1254	ug/l			0.95		0.99					İ
SW8082	Aroclor-1260	ug/l			0.95		0.99	U				
SW6010	Aluminum	ug/l			100		100					
SW6010	Antimony	ug/l			60			U				
SW6010	Arsenic	ug/l			10	U		U				
SW6010	Barium	ug/l			89.2		86.9					
	Beryllium	ug/l			5	U		U				1
SW6010 SW6010	Cadmium	ug/l		- 1		U		U				

	Sample Deliv	very Group	R09003	39	R09003	39	R09003	39	R0900	339	R0900	339
		Location	HA-12	23	MW-2	02	MW-20	02	MW-2	04S	MW-2	07S
	S	ample Date	1/21/20	109	1/22/20	09	1/22/20	09	1/21/2	009	1/21/20	009
		Sample ID	828128-HA-1	23155R1	828128-MW-2	202012R1	828128-MW-20)2012R1E	828128-MW-2	204S012R1	828128-MW-2	207S012R
		Qc Code	FS		FS		FD		FS		FS	
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW6010	Chromium	ug/l			10	U	10	U				Ī
SW6010	Cobalt	ug/l			50	U	50	U				
SW6010	Copper	ug/l			20	U	20	U				Ī
SW6010	Iron	ug/l			100	U	100	U				
SW6010	Lead	ug/l			5	U	5	U				Ī
SW6010	Magnesium	ug/l			27200		26600					
SW6010	Manganese	ug/l			64		62.4					Ī
SW6010	Nickel	ug/l			40	U	40	U				Ī
SW6010	Potassium	ug/l			2000	U	2000	U				
SW6010	Selenium	ug/l			10	U	10	U				
SW6010	Silver	ug/l			10	U	10	U				
SW6010	Sodium	ug/l			62200		57600					
SW6010	Thallium	ug/l			10	U	10	U				1
SW6010	Vanadium	ug/l			50	U	50	U				
SW6010	Zinc	ug/l			20	U	20	U				Ī
SW7470	Mercury	ug/l			0.2	U	0.2	U				
E300_C	Chloride	mg/l										Ī
E300_S	Sulfate	mg/l										
A2320B_B	Alkalinity, Bicarbonate	mg/l										Ī
A2320B_C	Carbonate Alkalinity, as CaCO3	mg/l										
A2320B_T	Total Alkalinity, as CaCO3	mg/l										Ī
E300_N	Nitrate as N	mg/l										
E353.2	Nitrite as N	mg/l										
E376.1	Sulfide	mg/l										Ī
E415.1	Total Organic Carbon	mg/l										
SM 4500-CO2 D	Carbon Dioxide	mg/l										
RSK 175	Ethane	ug/l										1
RSK 175	Ethene	ug/l										
RSK 175	Methane	ug/l										1
E150.1	рН	ph units										1

Notes:

 $ug/l = micorgram\ per\ liter$ mg/l = milligrams per liter

Qualifiers

U = not detected at the reporting limit

J = estimated concentration QC Code

FS = Field Sample, FD = Field Duplicate

TB = Trip Blank, EB = Equipment Rinse blank

	Sample Delive		R0900339	R0900339	R0900339	R0900339	R0900550
	Sa	Location mple Date	MW-209S 1/21/2009	MW-212 1/21/2009	QC 1/21/2009	QC 1/22/2009	MW-201 2/2/2009
			828128-MW-209S014R1		TB-002	TB-003	828128-MW-201017R1
		Qc Code	FS	FS	ТВ	TB	FS
Analysis	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifie
SW8260	1,1,1-Trichloroethane	ug/l	1 U		1 U	1 U	1 U
SW8260 SW8260	1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-Trifluoroethan	ug/l ug/l	1 U 1 U		1 U 1 U	1 U 1 U	1 U 1 U
SW8260	1,1,2-Trichloroethane	ug/l	1 U		1 U	1 U	1 U
SW8260	1,1-Dichloroethane	ug/l	1 U		1 U	1 U	1 U
SW8260	1,1-Dichloroethene	ug/l	1 U		1 U	1 U	1 U
SW8260	1,2,4-Trichlorobenzene	ug/l	1 U		1 U	1 U	1 U
SW8260	1,2-Dibromo-3-chloropropane	ug/l	2 U		2 U	2 U	2 UJ
SW8260 SW8260	1,2-Dibromoethane 1,2-Dichlorobenzene	ug/l ug/l	1 U 1 U		1 U	1 U 1 U	1 UJ 1 U
SW8260	1,2-Dichloroethane	ug/l	1 U		1 U	1 U	1 U
SW8260	1,2-Dichloropropane	ug/l	1 U		1 U	1 U	1 U
SW8260	1,3-Dichlorobenzene	ug/l	1 U		1 U	1 U	1 U
SW8260	1,4-Dichlorobenzene	ug/l	1 U		1 U	1 U	1 U
SW8260 SW8260	2-Butanone 2-Hexanone	ug/l ug/l	5 U 5 U		5 U 5 U	5 U 5 U	5 U 5 U
SW8260	4-Methyl-2-pentanone	ug/l	5 U		5 U	5 U	5 U
SW8260	Acetic acid, methyl ester	ug/l	10 U		10 U	10 U	10 U
SW8260	Acetone	ug/l	10 U		10 J	10 U	10 U
SW8260	Benzene	ug/l	1 U		1 U	1 U	0.63 J
SW8260	Bromodichloromethane	ug/l	1 U		1 U	1 U	1 U
SW8260 SW8260	Bromoform Bromomethane	ug/l ug/l	1 U 2 U		1 U 2 U	1 U 2 U	1 U 2 U
SW8260	Carbon disulfide	ug/l	1 U		1 U	1 U	1 U
SW8260	Carbon tetrachloride	ug/l	1 U		1 U	1 U	1 U
SW8260	Chlorobenzene	ug/l	1 U		1 U	1 U	1 U
SW8260	Chlorodibromomethane	ug/l	1 U		1 U	1 U	1 U
SW8260	Chloroethane	ug/l	2 U		2 U	2 U	2 U
SW8260 SW8260	Chloroform Chloromethane	ug/l ug/l	1 U 2 U		1 U 2 U	2 U	1 U 2 U
SW8260	Cis-1,2-Dichloroethene	ug/l	1 U		1 U	1 U	240 D
SW8260	cis-1,3-Dichloropropene	ug/l	1 U		1 U	1 U	1 U
SW8260	Cyclohexane	ug/l	1 U		1 U	1 U	3.6
SW8260	Dichlorodifluoromethane	ug/l	1 U		1 U	1 U	1 U
SW8260 SW8260	Ethyl benzene	ug/l	1 U 1 U		1 U 1 U	1 U 1 U	4.6 0.4 J
SW8260	Isopropylbenzene Methyl cyclohexane	ug/l ug/l	1 U		1 U	1 U	0.4 J
SW8260	Methyl Tertbutyl Ether	ug/l	1 U		1 U	1 U	1 U
SW8260	Methylene chloride	ug/l	1 U		1 U	1 U	1 U
SW8260	o-Xylene	ug/l	1 U		1 U	1 U	1 U
SW8260	Styrene	ug/l	1 U		1 U	1 U	1 U
SW8260 SW8260	Tetrachloroethene Toluene	ug/l ug/l	1 U 1 U		1 U	1 U 1 U	1 U 0.37 J
SW8260	trans-1,2-Dichloroethene	ug/l	1 U		1 U	1 U	3.7
SW8260	trans-1,3-Dichloropropene	ug/l	1 U		1 U	1 U	1 U
SW8260	Trichloroethene	ug/l	1 U		1 U	1 U	0.93 J
SW8260	Trichlorofluoromethane	ug/l	1 U		1 U	1 U	1 U
SW8260 SW8260	Vinyl chloride Xylene, m/p	ug/l	1 U 2 U		1 U 2 U	1 U 2 U	19 0.43 J
SW8260 SW8270	1,2,4-Trichlorobenzene	ug/l ug/l	2 0		2 U	2 0	0.43 J
SW8270	1,2-Dichlorobenzene	ug/l					
SW8270	1,3-Dichlorobenzene	ug/l					
SW8270	1,4-Dichlorobenzene	ug/l					
SW8270 SW8270	2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	ug/l ug/l					
SW8270 SW8270	2,4-Dichlorophenol	ug/I ug/I					
SW8270	2,4-Dimethylphenol	ug/l					
SW8270	2,4-Dinitrophenol	ug/l					
SW8270	2,4-Dinitrotoluene	ug/l					
SW8270	2,6-Dinitrotoluene	ug/l					
SW8270 SW8270	2-Chloronaphthalene 2-Chlorophenol	ug/l ug/l					
SW8270	2-Methylnaphthalene	ug/l					
SW8270	2-Methylphenol	ug/l					
SW8270	2-Nitroaniline	ug/l					
SW8270	2-Nitrophenol	ug/l					
SW8270 SW8270	3,3`-Dichlorobenzidine 3-Nitroaniline	ug/l ug/l					
SW8270 SW8270	4,6-Dinitro-2-methylphenol	ug/1 ug/l					
SW8270	4-Bromophenyl phenyl ether	ug/l					
SW8270	4-Chloro-3-methylphenol	ug/l					
SW8270	4-Chloroaniline	ug/l					
SW8270	4-Chlorophenyl phenyl ether	ug/l					
SW8270	4-Methylphenol	ug/l					

	Sample De	livery Group			R09003		R09003	339	R09003		R0900	
		Location	MW-20		MW-2		QC	200	QC		MW-2	
		Sample Date	1/21/20 828128-MW-2		1/21/20 828128-MW-2		1/21/20 TB-00		1/22/20 TB-00		2/2/20 828128-MW-	
		Qc Code	FS	0)5014101	FS	212010K1	TB-00)2	TB-00)3	FS	
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifie
SW8270	4-Nitrophenol	ug/l										
SW8270	Acenaphthene	ug/l										+
SW8270 SW8270	Acenaphthylene Anthracene	ug/l ug/l										+
SW8270	Benzo(a)anthracene	ug/l										+
SW8270	Benzo(a)pyrene	ug/l										1
SW8270	Benzo(b)fluoranthene	ug/l										
SW8270	Benzo(ghi)perylene	ug/l										-
SW8270 SW8270	Benzo(k)fluoranthene Benzyl alcohol	ug/l ug/l										+
SW8270	Bis(2-Chloroethoxy)methane	ug/l										+
SW8270	Bis(2-Chloroethyl)ether	ug/l										
SW8270	Bis(2-Chloroisopropyl)ether	ug/l										
SW8270	Bis(2-Ethylhexyl)phthalate	ug/l										+
SW8270 SW8270	Butylbenzylphthalate Carbazole	ug/l ug/l										+
SW8270	Chrysene	ug/l										_
SW8270	Di-n-butylphthalate	ug/l		<u> </u>								
SW8270	Di-n-octylphthalate	ug/l										
SW8270	Dibenz(a,h)anthracene	ug/l				ļ		ļ				_
SW8270 SW8270	Dibenzofuran Diethylphthalate	ug/l ug/l		 						1		+
SW8270 SW8270	Dimethylphthalate	ug/l										+
SW8270	Fluoranthene	ug/l										1
SW8270	Fluorene	ug/l										1
SW8270	Hexachlorobenzene	ug/l				<u> </u>		<u> </u>		1		
SW8270	Hexachlorobutadiene Hexachlorocyclopentadiene	ug/l				1		1		1		+
SW8270 SW8270	Hexachlorocyclopentadiene Hexachloroethane	ug/l ug/l										+
SW8270	Indeno(1,2,3-cd)pyrene	ug/l										†
SW8270	Isophorone	ug/l										
SW8270	N-Nitrosodi-n-propylamine	ug/l										
SW8270	N-Nitrosodimethylamine	ug/l										<u> </u>
SW8270 SW8270	N-Nitrosodiphenylamine Naphthalene	ug/l ug/l										+
SW8270	Nitrobenzene	ug/l										+
SW8270	Pentachlorophenol	ug/l										1
SW8270	Phenanthrene	ug/l										
SW8270	Phenol	ug/l										<u> </u>
SW8270 SW8081	Pyrene 4,4`-DDD	ug/l ug/l										+
SW8081	4,4`-DDE	ug/l										+
SW8081	4,4`-DDT	ug/l										
SW8081	Aldrin	ug/l										
SW8081	Alpha-BHC	ug/l										
SW8081 SW8081	Alpha-Chlordane Beta-BHC	ug/l ug/l										
SW8081	Delta-BHC	ug/l										+
SW8081	Dieldrin	ug/l										
SW8081	Endosulfan I	ug/l							_			$oxed{L}$
SW8081	Endosulfan II	ug/l				ļ		ļ				_
SW8081 SW8081	Endosulfan sulfate Endrin	ug/l				-		-		-		+
SW8081 SW8081	Endrin aldehyde	ug/l ug/l		 		 		 				+
SW8081	Endrin ketone	ug/l		1								1
SW8081	Gamma-BHC/Lindane	ug/l										
SW8081	Gamma-Chlordane	ug/l				<u> </u>		<u> </u>				<u> </u>
SW8081 SW8081	Heptachlor Heptachlor epoxide	ug/l ug/l				-		-		-		+
SW8081	Methoxychlor	ug/l										+
SW8081	Toxaphene	ug/l										†
SW8082	Aroclor-1016	ug/l					_					I
SW8082	Aroclor-1221	ug/l										
SW8082 SW8082	Aroclor-1232 Aroclor-1242	ug/l ug/l				-		-		-		+
SW8082 SW8082	Aroclor-1242 Aroclor-1248	ug/l ug/l		 								+
SW8082	Aroclor-1254	ug/l										†
SW8082	Aroclor-1260	ug/l										
SW6010	Aluminum	ug/l			129							
SW6010	Antimony	ug/l		-	60					-		4
SW6010 SW6010	Arsenic Barium	ug/l ug/l			109	U		-		 		+
SW6010	Beryllium Beryllium	ug/l				U				<u> </u>		†
SW6010	Cadmium	ug/l		1		U						1
SW6010	Calcium	ug/l	Ī		124000							1

	Sample Delivery Group Location		R09003	339	R09003	39	R09003	339	R0900	339	R09005	550
			MW-20)9S	MW-2	12	QC		QC	:	MW-2	.01
	S	ample Date	1/21/20	009	1/21/2009		1/21/2009		1/22/2009		2/2/2009	
		Sample ID	828128-MW-2	09S014R1	828128-MW-2	212010R1	TB-00)2	TB-003		828128-MW-201017	
		Qc Code	FS		FS		TB		TB		FS	
Analysis	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifie
SW6010	Chromium	ug/l			10	U						
SW6010	Cobalt	ug/l			50	U						
SW6010	Copper	ug/l			20	U						
SW6010	Iron	ug/l			155						1420	
SW6010	Lead	ug/l			5	U						
SW6010	Magnesium	ug/l			31900							
SW6010	Manganese	ug/l			45.4						82.5	
SW6010	Nickel	ug/l			40	U						
SW6010	Potassium	ug/l			2000	U						
SW6010	Selenium	ug/l			10	U						
SW6010	Silver	ug/l			10	U						
SW6010	Sodium	ug/l			124000							
SW6010	Thallium	ug/l			10	U						
SW6010	Vanadium	ug/l			50	U						
SW6010	Zinc	ug/l			49.2							
SW7470	Mercury	ug/l			0.2	U						
E300_C	Chloride	mg/l									86.5	
E300_S	Sulfate	mg/l									39.3	
A2320B_B	Alkalinity, Bicarbonate	mg/l									281	
A2320B_C	Carbonate Alkalinity, as CaCO3	mg/l									20	U
A2320B_T	Total Alkalinity, as CaCO3	mg/l									281	
E300_N	Nitrate as N	mg/l									0.5	U
E353.2	Nitrite as N	mg/l									0.01	U
E376.1	Sulfide	mg/l									1	U
E415.1	Total Organic Carbon	mg/l									2	
SM 4500-CO2 D	Carbon Dioxide	mg/l									264	
RSK 175	Ethane	ug/l									1.1	
RSK 175	Ethene	ug/l									2.6	
RSK 175	Methane	ug/l									17	
E150.1	pH	ph units									7.48	

Notes:

 $ug/l = micorgram\ per\ liter$ mg/l = milligrams per liter

Qualifiers

U = not detected at the reporting limit

J = estimated concentration QC Code

FS = Field Sample, FD = Field Duplicate

TB = Trip Blank, EB = Equipment Rinse blank

APPENDIX F

CALCULATIONS

Physical properties of PCE:

Contaminant	Vapor pressure (mm Hg)	Henry's Law constant (atm-m³/mol)	constant	Water solubility (mg/L)	Octanol- water partition coefficient (K _{ow})	$\begin{array}{c} \textbf{Organic} \\ \textbf{carbon} \\ \textbf{partition} \\ \textbf{coefficient} \\ \textbf{(K}_{oc}) \end{array}$
Tetrachloroethene (PCE)	1.78E+01	2.59E-02	1.6311	1.50E+02	398	364

Reference (USEPA, 1990)

The Csat equation, assuming saturated conditions is as follows:

C sat=
$$S/\rho_b$$
 (K $_d \rho_b + \theta_w$)

Parameter = Definition (units)

Csat = soil saturation concentration (mg/Kg)

S = solubility in water (mg/L-water)

 $\rho_b = dry \text{ soil bulk density (kg/L)} = assume 1.5$

Kd = soil-water partition coefficient (L/kg) = K oc x foc

Koc /organic carbon partition coefficient (L/Kg)

Foc = fraction organic carbon in soil (g/g) = 0.006 (0.6%)

 θ_w = water-filled soil porosity (Lwater /Lsoil) = 0.43

C sat = 150/1.5*([364*.006]*1.5 + 0.43)

C sat = 370.6 mg/Kg for PCE

Based on the solubility (150 mg/L), Henry's Constant (0.754-unitless) and organic carbon partition coefficient (364 mg/g) of PCE and using the Soil Saturation Limit (C_{sat}^{-1}) equation assuming saturated conditions, dense nonaqueous phase liquids (DNAPL) is possible if concentrations in soil exceed 370.6 mg/Kg.

Based on the maximum detection of PCE at the Former Speedy's Cleaners site of 830 mg/Kg exceeding 370.6 mg/Kg, PCE as a DNAPL is possible at the Site.

United States Environmental Protection Agency (USEPA), 1996. "Soil Screening Guidance: Users Guide". Office of Emergency and Remedial Response; EPA/540/R-96/018; April 1996.

 $^{^{1}}$ C_{sat} is the concentration in soil at which the solubility limits of the soil pore water, the vapor phase limits of the soil pore air, and the absorptive limits of the soil particles have been reached. C_{sat} is a theoretical threshold above which a free phase liquid hazardous substance may exist. The equation is described in the USEPA "Soil Screening Guidance" (USEPA, 1996).

APPENDIX G

NYSDEC LABORATORY FORM I'S

New York State Department of Environmental Conservation

Division of Environmental Remediation

Remedial Bureau A 625 Broadway, 11th Floor Albany, New York 12233-7015

Phone: (518) 402-9625 • Fax: (518) 402-9020 / (518) 402-9627

Website: www.dec.ny.gov

Division of Environmental Remediation Laboratory Analytical Report

The case narrative and analytical reports for the Former Speedy Dry Cleaners site are attached.

Case Narrative

Site Name: Former Speedy Dry Cleaners Date received: 07/17/09

For sample delivery group(s): 198-01

For 624/8260B Volatiles Analysis -

The calibration verification that these samples were initially run under had two target analytes - dichlorodifluoromethane and chloromethane - exceeding the the calibration criteria that is associated with this analytical method. However, since the initial calibration that the samples were quantitated against was valid, any reported values for these two analytes should be considered valid. Neither of these analytes that exceeded the calibration verification criteria were detected in any of these samples.

In general, all other QA/QC associated with these samples were within acceptable method criteria.

Note:

For sample 809-198-0013, the result for tetrachloroethene is qualified with a 'B' because of the presence of tetrachloroethene in the associated method blank at 3.0ug/L. Due to insufficient sample a re-analysis was not possible.

Samples 809-198-004, ...-009, ...-011, ...-012, and ...-014 were re-analyzed due to the carryover of tetrachloroethene from a previous sample. The re-analysis is the final report with the samples identified as such with an 'RE'.

For the dilution run for samples 809-198-0007 and 809-198-008 the result for tetrachloroethene is qualified with both a 'B' and an 'E' because of the presence of tetrachloroethene, at 2.0ug/L, in the method blank associated with these dilutions; and because the dilutions were still just outside of the calibration range, with insufficient sample to run a higher dilution level.

For the dilution run for sample 809-198-010, the result for tetrachloroethene is qualified with an 'E' because the dilution was still outside the instruments calibration range, with insufficient sample to run a second dilution.

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

Field Sample ID:

			MW-1
Site Name:	Former Speedy Cleaners	Contract:	

 Site Code:
 828128
 Case No.:
 SAS No.:
 SDG No.:
 198-01

 Matrix:
 (soil/water)
 WATER
 Lab Sample ID:
 809-198-001

 Sample wt/vol:
 5.0
 (g/ml)
 ML
 Lab File ID:
 09C1005.D

Level: (low/med) LOW Date Received: 7/17/2009
% Moisture: not dec. Date Analyzed: 7/20/2009

GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: _____ (uL) Soil Aliquot Volume: _____ (uL)

CONCENTRATION UNITS:

		OONOLITIOATIO)		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
75-71-8	Dichlorodifluoror	methane		10	U
75-87-3	Chloromethane			10	U
75-01-4	Vinyl Chloride			10	U
74-83-9	Bromomethane			10	U
75-00-3	Chloroethane			10	U
75-69-4	Trichloroflurome	thane		10	U
75-35-4	1,1-Dichloroethe	ene		10	U
75-15-0	Carbon Disulfide)		10	U
67-64-1	Acetone			15	U
75-09-2	Methylene Chlor	ride		10	U
540-59-0	trans 1,2-Dichlor			10	U
1634-04-4	Methyl-tert butyl			10	U
75-34-4	1,1-Dichloroetha			10	U
108-05-4	Vinyl Acetate			10	U
540-59-0	cis 1,2-Dichloroe	ethene		1	J
78-93-3	2-Butanone			10	U
67-66-3	Chloroform			10	U
71-55-6	1,1,1-Trichloroet	thane		10	U
56-23-5	Carbon Tetrachl			10	U
71-43-2	Benzene			10	Ū
107-06-2	1,2-Dichloroetha	ine		10	Ū
79-01-6	Trichloroethene			1	J
78-87-5	1,2-Dichloroprop	pane		10	U
75-27-4	Bromodichlorom			10	U
10061-01-5	cis-1,3-Dichlorop	propene		10	U
108-10-1	4-Methyl-2-penta			10	U
108-88-3	Toluene			10	U
10061-02-6	trans-1,3-Dichlo	ropropene		10	U
79-00-5	1,1,2-Trichloroet			10	U
127-18-4	Tetrachloroethei	ne		48	
591-78-6	2-Hexanone			10	U
124-48-1	Dibromochlorom	ethane		10	Ū
108-90-7	Chlorobenzene			10	U
100-41-4	Ethylbenzene			10	Ü
1330-20-7	m,p-Xylenes			10	Ü
1330-20-7	o-Xylene			10	Ü
100-42-5	Styrene			10	Ü
75-25-2	Bromoform			10	Ü
79-34-5	1,1,2,2,-Tetrach	loroethane		10	U

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

Field Sample ID:

	MW-1						
Site Name:	Former	Speedy Clea	aners	Contract:		10100-1	
Site Code:	828128	Cas	se No.:	SAS No.:	SI	OG No.: 198-01	
Matrix: (soil/v	vater)	WATER	-	Lab S	Sample ID:	809-198-001	
Sample wt/vol:		5.0	(g/ml) ML	Lab F	ile ID:	09C1005.D	
_evel: (low/n	ned)	LOW	_	Date	Received:	7/17/2009	
% Moisture: r	not dec.			Date A	Analyzed:	7/20/2009	
GC Column:	RTX-6	24 ID: <u>0.2</u>	25 (mm)	Dilutio	on Factor:	1.0	
Soil Extract V	/olume:		_ (uL)	Soil A	liquot Volur	me:	(uL

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
95-49-8	2-Chlorotoluene			10	U
106-43-4	4-Chlorotoluene	1		10	U
541-73-1	1,3-Dichloroben	1,3-Dichlorobenzene			U
106-46-7	1,4-Dichloroben	zene		10	U
95-50-1	1,2-Dichloroben	zene		10	U
120-82-1	1,2,4-Trichlorob	enzene		10	U
87-61-6	1,2,3-Trichlorob	enzene		10	U

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Field Sample ID:

								14/14	
Site Name:	Former	Speedy Clea	aners	Contrac	t:		I	MW-1	
Site Code:	828128	Cas	e No.:	SAS	No.:	_ SD	G No.:	198-01	
Matrix: (soil/v	vater)	WATER		I	_ab Sample	: ID: _8	309-198 ₋	-001	
Sample wt/vo	ol:	5.0	(g/ml) ML	I	_ab File ID:	(09C1005	5.D	_
Level: (low/n	ned)	LOW		I	Date Receiv	/ed:]	7/17/200	9	_
% Moisture: ı	not dec.			I	Date Analyz	zed:]	7/20/200	9	_
GC Column:	RTX-6	24 ID: <u>0.2</u>	5 (mm)	I	Dilution Fac	tor: _	1.0		_
Soil Extract \	/olume:		_ (uL)	;	Soil Aliquot	Volun	ne:		(uL)
Number TICs	s found:	0	_	CONCENTR (ug/L or ug/k					
CAS NO.		COMPOU	ND NAME		RT	ES1	Γ. CONC).	Q

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

Field Sample ID:

Site Name:	Former	Speedy Clea	aners		Contract:		IVI VV -O	
Site Code:	828128	Cas	se No.:		SAS No.:	SE	G No.: 198-0	1
Matrix: (soil/w	vater)	WATER	_		Lab	Sample ID:	809-198-002	
Sample wt/vo	ol:	5.0	(g/ml)	ML	Lab	File ID:	09C1006.D	_
Level: (low/n	ned)	LOW	_		Date	Received:	7/17/2009	_

GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0

% Moisture: not dec.

Soil Extract Volume: _____ (uL) Soil Aliquot Volume: _____ (uL)

CONCENTRATION UNITS:

Date Analyzed: 7/20/2009

		CONCENTRATIO	DIN CINITS.	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoron	nethane	10	U
75-87-3	Chloromethane		10	Ü
75-01-4	Vinyl Chloride		10	Ü
74-83-9	Bromomethane		10	Ü
75-00-3	Chloroethane		10	U
75-69-4	Trichlorofluromet	thane	10	U
75-35-4	1,1-Dichloroethe		10	U
75-15-0	Carbon Disulfide		10	U
67-64-1	Acetone		15	U
75-09-2	Methylene Chlori	ide	10	U
540-59-0	trans 1,2-Dichlor	oethene	10	U
1634-04-4	Methyl-tert butyl	ether	10	U
75-34-4	1,1-Dichloroetha	ne	10	U
108-05-4	Vinyl Acetate		10	U
540-59-0	cis 1,2-Dichloroe	thene	110	
78-93-3	2-Butanone		10	U
67-66-3	Chloroform		10	U
71-55-6	1,1,1-Trichloroet	hane	10	U
56-23-5	Carbon Tetrachlo	oride	10	U
71-43-2	Benzene		10	U
107-06-2	1,2-Dichloroetha	ne	10	U
79-01-6	Trichloroethene		47	
78-87-5	1,2-Dichloroprop	ane	10	U
75-27-4	Bromodichlorom	ethane	10	U
10061-01-5	cis-1,3-Dichlorop	ropene	10	U
108-10-1	4-Methyl-2-penta	none	10	U
108-88-3	Toluene		10	U
10061-02-6	trans-1,3-Dichlor	opropene	10	U
79-00-5	1,1,2-Trichloroet	hane	10	U
127-18-4	Tetrachloroether	ne	3300	E
591-78-6	2-Hexanone		10	U
124-48-1	Dibromochlorom	ethane	10	U
108-90-7	Chlorobenzene		10	U
100-41-4	Ethylbenzene		10	U
1330-20-7	m,p-Xylenes		10	U
1330-20-7	o-Xylene		10	U
100-42-5	Styrene		10	U
75-25-2	Bromoform		10	U
79-34-5	1,1,2,2,-Tetrachle	oroethane	10	U

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

Field Sample ID:

U

U

U

U

10

10

10

10

	_			.			MW-6	
Site Name:	Former S	Speedy Clea	aners	Contract	:	_		
Site Code:	828128	Cas	se No.:	SAS N	lo.: S	DG No.:	198-01	
Matrix: (soil/v	water)	WATER	-	L	ab Sample ID:	809-198	-002	
Sample wt/vo	ol:	5.0	(g/ml) ML	L	ab File ID:	09C1006	6.D	
Level: (low/n	ned)	LOW	_	D	ate Received:	7/17/200)9	
% Moisture: ı	not dec.			D	ate Analyzed:	7/20/200)9	
GC Column:	RTX-6	24 ID: <u>0.2</u>	25_ (mm)	D	ilution Factor:	1.0		
Soil Extract \	/olume:		_ (uL)	S	oil Aliquot Volu	me:		(uL)
				CONCENTRA	ATION UNITS:			
CAS NO) .	COMPO	DUND	(ug/L or ug/K	g) <u>UG/L</u>		Q	
95-49-	·8	2-Chlo	rotoluene			10	U	
106-43	3-4	4-Chlo	orotoluene			10	U	
541-73	3-1	1,3-Di	chlorobenze	ene		10	U	

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

106-46-7

95-50-1

120-82-1

87-61-6

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Field Sample ID:

							BANA/	_
Site Name:	Former	Speedy Cle	aners	Contrac	:t:		MW-	-6
Site Code:	828128	Cas	se No.:	SAS	No.:	SD	G No.: <u>198</u>	3-01
Matrix: (soil/w	vater)	WATER	=	1	Lab Sample	ID: 8	09-198-002	2
Sample wt/vc	ol:	5.0	(g/ml) ML	<u> </u>	Lab File ID:	<u>C</u>	9C1006.D	
Level: (low/n	ned)	LOW	_	I	Date Receiv	ed: <u>7</u>	7/17/2009	
% Moisture: r	not dec.			1	Date Analyz	ed: <u>7</u>	7/20/2009	
GC Column:	RTX-6	624 ID: <u>0.2</u>	25 (mm)	1	Dilution Fac	tor: 1	.0	
Soil Extract V	olume:		_ (uL)	;	Soil Aliquot	Volum	ie:	(uL)
Number TICs	s found:	0	_	CONCENTR (ug/L or ug/k			_	
CAS NO.		COMPOL	IND NAME		RT	EST	CONC.	Q

Field Sample ID: 1A

	·	OL/TILL O	110/1111	00 / (I (/ (L	1010 071171 011		MW-6	
Site Name:	Former	Speedy Clea	aners		Contract:		14144-0	
Site Code:	828128	Cas	e No.:		SAS No.:	SI	OG No.: 198-0	1
Matrix: (soil/v	vater)	WATER	-		Lab Sa	ample ID:	809-198-002DL	_
Sample wt/vo	ol:	5.0	(g/ml)	ML	_ Lab Fil	e ID:	09C1034.D	_
_evel: (low/n	ned)	LOW	-		Date R	eceived:	7/17/2009	_
% Moisture: ı	not dec.				Date A	nalyzed:	7/23/2009	_
GC Column:	RTX-6	24 ID: <u>0.2</u>	5 (m	ım)	Dilution	n Factor:	20.0	_
Soil Extract \	/olume:		(uL)		Soil Ali	quot Volui	me:	(uL

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 75-71-8 Dichlorodifluoromethane 200 U 75-87-3 Chloromethane 200 U 75-01-4 Vinyl Chloride 200 U 74-83-9 Bromomethane 200 U 75-00-3 Chloroethane 200 U 75-69-4 Trichlorofluromethane 200 U 75-15-0 Carbon Disulfide 200 U 67-64-1 Acetone 300 U 75-09-2 Methylene Chloride 200 U 540-59-0 trans 1,2-Dichloroethene 200 U 1634-04-4 Methyl-tert butyl ether 200 U 75-34-4 1,1-Dichloroethane 200 U 108-05-4 Vinyl Acetate 200 U 59-3-3 2-Butanone 200 U 67-66-3 Chloroform 200 U 71-43-2 Benzene 200 U 107			CONCENTRATIO	IN UNITS.			
75-87-3 Chloromethane 200 U 75-01-4 Vinyl Chloride 200 U 74-83-9 Bromomethane 200 U 75-00-3 Chloroethane 200 U 75-69-4 Trichlorofluromethane 200 U 75-35-4 1,1-Dichloroethene 200 U 67-64-1 Acetone 300 U 67-64-1 Acetone 300 U 540-59-0 Itans 1,2-Dichloroethene 200 U 40-59-0 trans 1,2-Dichloroethane 200 U 1634-04-4 Methyl-tert butyl ether 200 U 75-34-4 1,1-Dichloroethane 200 U 108-05-4 Vinyl Acetate 200 U 29-3-3 2-Butanone 200 U 47-66-3 Chloroform 200 U 71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroethane 200 U 75-27-4 Bromodich	CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q	
75-87-3 Chloromethane 200 U 75-01-4 Vinyl Chloride 200 U 74-83-9 Bromomethane 200 U 75-00-3 Chloroethane 200 U 75-69-4 Trichlorofluromethane 200 U 75-35-4 1,1-Dichloroethene 200 U 67-64-1 Acetone 300 U 67-64-1 Acetone 300 U 75-09-2 Methylene Chloride 200 U 540-59-0 trans 1,2-Dichloroethene 200 U 463-40-4-4 Methyl-tert butyl ether 200 U 75-34-4 1,1-Dichloroethane 200 U 108-05-4 Vinyl Acetate 200 U 40-59-0 cis 1,2-Dichloroethene 200 U 78-93-3 2-Butanone 200 U 67-66-3 Chloroform 200 U 71-43-2 Benzene 200 U 71-43-2 Benzene <td>75-71-8</td> <td>Dichlorodifluoro</td> <td>methane</td> <td></td> <td>200</td> <td>U</td>	75-71-8	Dichlorodifluoro	methane		200	U	
74-83-9 Bromomethane 200 U 75-00-3 Chloroethane 200 U 75-69-4 Trichlorofturomethane 200 U 75-35-4 1,1-Dichloroethene 200 U 75-15-0 Carbon Disulfide 200 U 67-64-1 Acetone 300 U 75-09-2 Methylene Chloride 200 U 540-59-0 trans 1,2-Dichloroethene 200 U 1634-04-4 Methyl-tert butyl ether 200 U 75-34-4 1,1-Dichloroethane 200 U 540-59-0 cis 1,2-Dichloroethene 200 U 78-93-3 2-Butanone 200 U 67-66-3 Chloroform 200 U 71-55-6 1,1,1-Trichloroethane 200 U 75-62-3 Carbon Tetrachloride 200 U 79-01-6 Trichloroethene 200 U 79-01-6 Trichloroethene 200 U 75-	75-87-3	Chloromethane				U	
74-83-9 Bromomethane 200 U 75-00-3 Chloroethane 200 U 75-69-4 Trichlorofturomethane 200 U 75-35-4 1,1-Dichloroethene 200 U 75-15-0 Carbon Disulfide 200 U 67-64-1 Acetone 300 U 75-09-2 Methylene Chloride 200 U 540-59-0 trans 1,2-Dichloroethene 200 U 1634-04-4 Methyl-tert butyl ether 200 U 75-34-4 1,1-Dichloroethane 200 U 78-93-3 2-Butanone 200 U 8-93-3 2-Butanone 200 U 67-66-3 Chloroform 200 U 71-55-6 1,1,1-Trichloroethane 200 U 71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroethane 200 U 79-01-6 Trichloroethene 200 U 75-27-4 B			Vinyl Chloride 200				
75-00-3 Chloroethane 200 U 75-69-4 Trichlorofluromethane 200 U 75-35-4 1,1-Dichloroethene 200 U 75-15-0 Carbon Disulfide 200 U 67-64-1 Acetone 300 U 75-09-2 Methylene Chloride 200 U 540-59-0 trans 1,2-Dichloroethene 200 U 1634-04-4 Methyl-tert butyl ether 200 U 75-34-4 1,1-Dichloroethane 200 U 108-05-4 Vinyl Acetate 200 U 540-59-0 cis 1,2-Dichloroethene 200 U 78-93-3 2-Butanone 200 U 76-66-3 Chloroform 200 U 71-55-6 1,1,1-Trichloroethane 200 U 56-23-5 Carbon Tetrachloride 200 U 71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroptothane 200 U 79-		-	Bromomethane 20				
75-35-4 1,1-Dichloroethene 200 U 75-15-0 Carbon Disulfide 200 U 67-64-1 Acetone 300 U 75-09-2 Methylene Chloride 200 U 540-59-0 trans 1,2-Dichloroethene 200 U 1634-04-4 Methyl-tert butyl ether 200 U 75-34-4 1,1-Dichloroethane 200 U 540-59-0 cis 1,2-Dichloroethene 200 U 540-59-0 cis 1,2-Dichloroethene 200 U 78-93-3 2-Butanone 200 U 67-66-3 Chloroform 200 U 71-55-6 1,1,1-Trichloroethane 200 U 75-23-5 Carbon Tetrachloride 200 U 71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroethane 200 U 79-01-6 Trichloroethene 200 U 75-27-4 Bromodichloromethane 200 U	75-00-3				200	U	
75-15-0 Carbon Disulfide 200 U 67-64-1 Acetone 300 U 75-09-2 Methylene Chloride 200 U 540-59-0 trans 1,2-Dichloroethene 200 U 1634-04-4 Methyl-tert butyl ether 200 U 75-34-4 1,1-Dichloroethane 200 U 108-05-4 Vinyl Acetate 200 U 540-59-0 cis 1,2-Dichloroethene 200 U 78-93-3 2-Butanone 200 U 67-66-3 Chloroform 200 U 71-55-6 1,1,1-Trichloroethane 200 U 56-23-5 Carbon Tetrachloride 200 U 107-06-2 1,2-Dichloropthane 200 U 79-01-6 Trichloroethene 200 U 78-87-5 1,2-Dichloroptopane 200 U 75-27-4 Bromodichloromethane 200 U 106-1-01-5 cis-1,3-Dichloroptopene 200 U	75-69-4	Trichloroflurome	ethane		200	U	
67-64-1 Acetone 300 U 75-09-2 Methylene Chloride 200 U 540-59-0 trans 1,2-Dichloroethene 200 U 1634-04-4 Methyl-tert butyl ether 200 U 75-34-4 1,1-Dichloroethane 200 U 108-05-4 Vinyl Acetate 200 U 540-59-0 cis 1,2-Dichloroethene 200 U 78-93-3 2-Butanone 200 U 67-66-3 Chloroform 200 U 71-55-6 1,1,1-Trichloroethane 200 U 56-23-5 Carbon Tetrachloride 200 U 71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroethane 200 U 79-01-6 Trichloroethene 200 U 78-87-5 1,2-Dichloropropane 200 U 75-27-4 Bromodichloromethane 200 U 108-10-1 4-Methyl-2-pentanone 200 U <	75-35-4	1,1-Dichloroethe	ene		200	U	
75-09-2 Methylene Chloride 200 U 540-59-0 trans 1,2-Dichloroethene 200 U 1634-04-4 Methyl-tert butyl ether 200 U 75-34-4 1,1-Dichloroethane 200 U 108-05-4 Vinyl Acetate 200 U 540-59-0 cis 1,2-Dichloroethene 200 U 78-93-3 2-Butanone 200 U 67-66-3 Chloroform 200 U 71-55-6 1,1,1-Trichloroethane 200 U 56-23-5 Carbon Tetrachloride 200 U 71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroethane 200 U 79-01-6 Trichloroethene 200 U 78-87-5 1,2-Dichloropropane 200 U 75-27-4 Bromodichloromethane 200 U 108-10-1 4-Methyl-2-pentanone 200 U 108-88-3 Toluene 200 U	75-15-0	Carbon Disulfide	9		200	U	
540-59-0 trans 1,2-Dichloroethene 200 U 1634-04-4 Methyl-tert butyl ether 200 U 75-34-4 1,1-Dichloroethane 200 U 108-05-4 Vinyl Acetate 200 U 540-59-0 cis 1,2-Dichloroethene 200 U 78-93-3 2-Butanone 200 U 67-66-3 Chloroform 200 U 71-55-6 1,1,1-Trichloroethane 200 U 56-23-5 Carbon Tetrachloride 200 U 71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroethane 200 U 79-01-6 Trichloroethene 200 U 78-87-5 1,2-Dichloropropane 200 U 75-27-4 Bromodichloromethane 200 U 108-10-1 4-Methyl-2-pentanone 200 U 108-88-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U <tr< td=""><td>67-64-1</td><td>Acetone</td><td></td><td></td><td>300</td><td>U</td></tr<>	67-64-1	Acetone			300	U	
1634-04-4 Methyl-tert butyl ether 200 U 75-34-4 1,1-Dichloroethane 200 U 108-05-4 Vinyl Acetate 200 U 540-59-0 cis 1,2-Dichloroethene 200 U 78-93-3 2-Butanone 200 U 67-66-3 Chloroform 200 U 71-55-6 1,1,1-Trichloroethane 200 U 56-23-5 Carbon Tetrachloride 200 U 71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroethane 200 U 79-01-6 Trichloroethene 200 U 78-87-5 1,2-Dichloropropane 200 U 75-27-4 Bromodichloromethane 200 U 10061-01-5 cis-1,3-Dichloropropene 200 U 108-88-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U <t< td=""><td>75-09-2</td><td>Methylene Chlo</td><td>ride</td><td></td><td>200</td><td>U</td></t<>	75-09-2	Methylene Chlo	ride		200	U	
75-34-4 1,1-Dichloroethane 200 U 108-05-4 Vinyl Acetate 200 U 540-59-0 cis 1,2-Dichloroethene 200 U 78-93-3 2-Butanone 200 U 67-66-3 Chloroform 200 U 71-55-6 1,1,1-Trichloroethane 200 U 56-23-5 Carbon Tetrachloride 200 U 71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroethane 200 U 79-01-6 Trichloroethene 200 U 78-87-5 1,2-Dichloropropane 200 U 75-27-4 Bromodichloromethane 200 U 1061-01-5 cis-1,3-Dichloropropene 200 U 108-88-3 Toluene 200 U 1061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D	540-59-0	trans 1,2-Dichlo	roethene		200	U	
108-05-4 Vinyl Acetate 200 U 540-59-0 cis 1,2-Dichloroethene 200 U 78-93-3 2-Butanone 200 U 67-66-3 Chloroform 200 U 71-55-6 1,1,1-Trichloroethane 200 U 56-23-5 Carbon Tetrachloride 200 U 71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroethane 200 U 79-01-6 Trichloroethene 200 U 78-87-5 1,2-Dichloropropane 200 U 75-27-4 Bromodichloromethane 200 U 1061-01-5 cis-1,3-Dichloropropene 200 U 108-10-1 4-Methyl-2-pentanone 200 U 108-88-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D	1634-04-4	Methyl-tert butyl	ether		200	U	
540-59-0 cis 1,2-Dichloroethene 200 U 78-93-3 2-Butanone 200 U 67-66-3 Chloroform 200 U 71-55-6 1,1,1-Trichloroethane 200 U 56-23-5 Carbon Tetrachloride 200 U 71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroethane 200 U 79-01-6 Trichloroethene 200 U 78-87-5 1,2-Dichloropropane 200 U 75-27-4 Bromodichloromethane 200 U 10061-01-5 cis-1,3-Dichloropropene 200 U 108-88-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 102-48-1 Dibromochloromethane 200 U	75-34-4	1,1-Dichloroetha	ane		200	U	
78-93-3 2-Butanone 200 U 67-66-3 Chloroform 200 U 71-55-6 1,1,1-Trichloroethane 200 U 56-23-5 Carbon Tetrachloride 200 U 71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroethane 200 U 79-01-6 Trichloroethene 200 U 78-87-5 1,2-Dichloropropane 200 U 75-27-4 Bromodichloromethane 200 U 10061-01-5 cis-1,3-Dichloropropene 200 U 108-80-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 108-90-7 Chlorobenzene 200 U 100-41-4 Ethylbenzene 200 U 1330-20	108-05-4	Vinyl Acetate			200	U	
67-66-3 Chloroform 200 U 71-55-6 1,1,1-Trichloroethane 200 U 56-23-5 Carbon Tetrachloride 200 U 71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroethane 200 U 79-01-6 Trichloroethene 200 U 78-87-5 1,2-Dichloropropane 200 U 75-27-4 Bromodichloromethane 200 U 10061-01-5 cis-1,3-Dichloropropene 200 U 108-10-1 4-Methyl-2-pentanone 200 U 108-88-3 Toluene 200 U 100-88-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 108-90-7 Chlorobenzene 200 U 1	540-59-0	cis 1,2-Dichloro	ethene		200	U	
71-55-6 1,1,1-Trichloroethane 200 U 56-23-5 Carbon Tetrachloride 200 U 71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroethane 200 U 79-01-6 Trichloroethene 200 U 78-87-5 1,2-Dichloropropane 200 U 75-27-4 Bromodichloromethane 200 U 10061-01-5 cis-1,3-Dichloropropene 200 U 108-10-1 4-Methyl-2-pentanone 200 U 108-88-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 108-90-7 Chlorobenzene 200 U 100-41-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U	78-93-3	2-Butanone			200	U	
56-23-5 Carbon Tetrachloride 200 U 71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroethane 200 U 79-01-6 Trichloroethene 200 U 78-87-5 1,2-Dichloropropane 200 U 75-27-4 Bromodichloromethane 200 U 1061-01-5 cis-1,3-Dichloropropene 200 U 108-10-1 4-Methyl-2-pentanone 200 U 108-88-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 108-90-7 Chlorobenzene 200 U 108-90-7 Chlorobenzene 200 U 1330-20-7 m,p-Xylenes 200 U 1330-20-7 o-Xylene 200 U 75-2	67-66-3	Chloroform			200	U	
71-43-2 Benzene 200 U 107-06-2 1,2-Dichloroethane 200 U 79-01-6 Trichloroethene 200 U 78-87-5 1,2-Dichloropropane 200 U 75-27-4 Bromodichloromethane 200 U 10061-01-5 cis-1,3-Dichloropropene 200 U 108-10-1 4-Methyl-2-pentanone 200 U 108-88-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 108-90-7 Chlorobenzene 200 U 109-40-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	71-55-6	1,1,1-Trichloroe	thane		200	U	
107-06-2 1,2-Dichloroethane 200 U 79-01-6 Trichloroethene 200 U 78-87-5 1,2-Dichloropropane 200 U 75-27-4 Bromodichloromethane 200 U 10061-01-5 cis-1,3-Dichloropropene 200 U 108-10-1 4-Methyl-2-pentanone 200 U 108-88-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 108-90-7 Chlorobenzene 200 U 100-41-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U 1330-20-7 0-Xylene 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	56-23-5	Carbon Tetrach	loride		200	U	
79-01-6 Trichloroethene 200 U 78-87-5 1,2-Dichloropropane 200 U 75-27-4 Bromodichloromethane 200 U 10061-01-5 cis-1,3-Dichloropropene 200 U 108-10-1 4-Methyl-2-pentanone 200 U 108-88-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 108-90-7 Chlorobenzene 200 U 100-41-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U 1330-20-7 o-Xylene 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	71-43-2	Benzene			200	U	
78-87-5 1,2-Dichloropropane 200 U 75-27-4 Bromodichloromethane 200 U 10061-01-5 cis-1,3-Dichloropropene 200 U 108-10-1 4-Methyl-2-pentanone 200 U 108-88-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 124-48-1 Dibromochloromethane 200 U 108-90-7 Chlorobenzene 200 U 100-41-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	107-06-2	1,2-Dichloroetha	ane		200	U	
75-27-4 Bromodichloromethane 200 U 10061-01-5 cis-1,3-Dichloropropene 200 U 108-10-1 4-Methyl-2-pentanone 200 U 108-88-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 124-48-1 Dibromochloromethane 200 U 108-90-7 Chlorobenzene 200 U 100-41-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	79-01-6	Trichloroethene			200	U	
10061-01-5 cis-1,3-Dichloropropene 200 U 108-10-1 4-Methyl-2-pentanone 200 U 108-88-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 124-48-1 Dibromochloromethane 200 U 108-90-7 Chlorobenzene 200 U 100-41-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U 1330-20-7 o-Xylene 200 U 75-25-2 Bromoform 200 U	78-87-5	1,2-Dichloropro	pane		200	U	
108-10-1 4-Methyl-2-pentanone 200 U 108-88-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 124-48-1 Dibromochloromethane 200 U 108-90-7 Chlorobenzene 200 U 100-41-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U 1330-20-7 o-Xylene 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	75-27-4	Bromodichloron	nethane		200		
108-88-3 Toluene 200 U 10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 124-48-1 Dibromochloromethane 200 U 108-90-7 Chlorobenzene 200 U 100-41-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U 1330-20-7 o-Xylene 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	10061-01-5	cis-1,3-Dichloro	propene		200	U	
10061-02-6 trans-1,3-Dichloropropene 200 U 79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 124-48-1 Dibromochloromethane 200 U 108-90-7 Chlorobenzene 200 U 100-41-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U 1330-20-7 o-Xylene 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	108-10-1	4-Methyl-2-pent	anone		200	U	
79-00-5 1,1,2-Trichloroethane 200 U 127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 124-48-1 Dibromochloromethane 200 U 108-90-7 Chlorobenzene 200 U 100-41-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U 1330-20-7 o-Xylene 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	108-88-3	Toluene			200	U	
127-18-4 Tetrachloroethene 29000 D 591-78-6 2-Hexanone 200 U 124-48-1 Dibromochloromethane 200 U 108-90-7 Chlorobenzene 200 U 100-41-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U 1330-20-7 o-Xylene 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	10061-02-6	trans-1,3-Dichlo	ropropene				
591-78-6 2-Hexanone 200 U 124-48-1 Dibromochloromethane 200 U 108-90-7 Chlorobenzene 200 U 100-41-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U 1330-20-7 o-Xylene 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	79-00-5	1,1,2-Trichloroe	thane		200	U	
124-48-1 Dibromochloromethane 200 U 108-90-7 Chlorobenzene 200 U 100-41-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U 1330-20-7 o-Xylene 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	127-18-4	Tetrachloroethe	ne		29000	D	
108-90-7 Chlorobenzene 200 U 100-41-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U 1330-20-7 o-Xylene 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	591-78-6	2-Hexanone			200	U	
100-41-4 Ethylbenzene 200 U 1330-20-7 m,p-Xylenes 200 U 1330-20-7 o-Xylene 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	124-48-1	Dibromochloron	nethane		200	U	
1330-20-7 m,p-Xylenes 200 U 1330-20-7 o-Xylene 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	108-90-7	Chlorobenzene			200	U	
1330-20-7 o-Xylene 200 U 100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	100-41-4	Ethylbenzene			200	U	
100-42-5 Styrene 200 U 75-25-2 Bromoform 200 U	1330-20-7	m,p-Xylenes			200	U	
75-25-2 Bromoform 200 U	1330-20-7	o-Xylene			200	U	
	100-42-5	Styrene			200	U	
79-34-5 1 1 2 2 -Tetrachloroethane 200 II	75-25-2	Bromoform			200	U	
7.5.5.6	79-34-5	1,1,2,2,-Tetrach	loroethane		200	U	

Field Sample ID:

	V	OLATILL O	INCAMICO	ANALIGIOD	ATA STILLT	MW-6	
Site Name:	Former S	Speedy Clea	aners	Contra	act:		
Site Code:	828128	Cas	e No.:	SAS	S No.: S	DG No.: <u>198-01</u>	
Matrix: (soil/v	vater)	WATER			Lab Sample ID:	809-198-002DL	
Sample wt/vo	ol:	5.0	(g/ml) MI	<u>L</u>	Lab File ID:	09C1034.D	
Level: (low/n	ned)	LOW			Date Received:	7/17/2009	
% Moisture: r	not dec.				Date Analyzed:	7/23/2009	
GC Column:	RTX-6	24 ID: <u>0.2</u>	5_ (mm)		Dilution Factor:	20.0	
Soil Extract V	olume:		_ (uL)		Soil Aliquot Volu	ıme:	(uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
95-49-8	2-Chlorotoluene	9		200	U
106-43-4	4-Chlorotoluene	9		200	U
541-73-1	1,3-Dichlorober	nzene		200	U
106-46-7	1,4-Dichlorober	nzene		200	U
95-50-1	1,2-Dichlorober	nzene		200	U
120-82-1	1,2,4-Trichlorob	enzene		200	U
87-61-6	1,2,3-Trichlorob	enzene		200	U

Field Sample ID:

Site Name:	Former	Speedy Clea	aners	Contract:		EW-1
Site Code:	828128		e No.:	SAS No	.: SI	DG No.: 198-01
Matrix: (soil/v	vater)	WATER		Lal	Sample ID:	809-198-003
Sample wt/vo	ol:	5.0	(g/ml) ML	Lal	o File ID:	09C1007.D
Level: (low/n	ned)	LOW		Da	te Received:	7/17/2009
% Moisture: r	not dec.			Da	te Analyzed:	7/20/2009
GC Column:	RTX-6	<u>24</u> ID: <u>0.2</u>	5 (mm)	Dile	ution Factor:	1.0

Soil Extract Volume: _____ (uL) Soil Aliquot Volume: _____ (uL)

		CONCENTRATIO	ON UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoro	methane	10	U
75-87-3	Chloromethane		10	U
75-01-4	Vinyl Chloride		77	
74-83-9	Bromomethane		10	U
75-00-3	Chloroethane		10	U
75-69-4	Trichloroflurome	ethane	10	U
75-35-4	1,1-Dichloroeth	ene	10	U
75-15-0	Carbon Disulfid	е	10	U
67-64-1	Acetone		15	U
75-09-2	Methylene Chlo	ride	10	U
540-59-0	trans 1,2-Dichlo	roethene	2	J
1634-04-4	Methyl-tert buty	l ether	10	U
75-34-4	1,1-Dichloroeth	ane	10	U
108-05-4	Vinyl Acetate		10	U
540-59-0	cis 1,2-Dichloro	ethene	640	Е
78-93-3	2-Butanone		10	U
67-66-3	Chloroform		10	U
71-55-6	1,1,1-Trichloroe	thane	10	U
56-23-5	Carbon Tetrach	loride	10	U
71-43-2	Benzene		10	U
107-06-2	1,2-Dichloroeth	ane	10	U
79-01-6	Trichloroethene	!	170	
78-87-5	1,2-Dichloropro	pane	10	U
75-27-4	Bromodichloron	nethane	10	U
10061-01-5	cis-1,3-Dichloro	propene	10	U
108-10-1	4-Methyl-2-pent	tanone	10	U
108-88-3	Toluene		1	J
10061-02-6	trans-1,3-Dichlo	ropropene	10	U
79-00-5	1,1,2-Trichloroe	thane	10	U
127-18-4	Tetrachloroethe	ene	990	Е
591-78-6	2-Hexanone		10	U
124-48-1	Dibromochloron	nethane	10	U
108-90-7	Chlorobenzene		10	U
100-41-4	Ethylbenzene		14	
1330-20-7	m,p-Xylenes		10	U
1330-20-7	o-Xylene		10	U
100-42-5	Styrene		10	U
75-25-2	Bromoform		10	U
79-34-5	1,1,2,2,-Tetrach	loroethane	10	U

Field Sample ID:

10

10

U

					_			EW-1	
Site Name:	Former	Speedy Cle	aners	Cont	ract:			L VV-1	
Site Code:	828128	Cas	se No.:	SA	AS No.:	SD	G No.:	198-01	
Matrix: (soil/\	water)	WATER			Lab Sa	mple ID: 8	309-198	-003	
Sample wt/vo	ol:	5.0	(g/ml) ML		Lab Fil	e ID:	09C100	7.D	
Level: (low/r	med)	LOW			Date R	eceived:	7/17/200)9	
% Moisture:	not dec.		_		Date A	nalyzed: 7	7/20/200)9	
GC Column:	RTX-6	24 ID: 0.2	 25 (mm)		Dilution	n Factor:	1.0		
Soil Extract \	√olume:		(uL)		Soil Ali	quot Volun	ne:		(uL)
				CONCEN	TRATION	N UNITS:			
CAS NO	O.	COMPO	DUND	(ug/L or u	g/Kg)	UG/L		Q	
95-49-	-8	2-Chlo	orotoluene				10	U	
106-43	3-4		orotoluene				10	U	
541-73			ichlorobenze	ne			10	Ü	
106-46			ichlorobenze				10	Ü	
95-50-			ichlorobenze				10	U	

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

120-82-1

87-61-6

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Field Sample ID:

Site Name:	Former	Speedy Cle	aners		Contract:		EW-1	
Site Code:	828128	Cas	se No.:		SAS No.:	SD	G No.: 198-01	
Matrix: (soil/v	vater)	WATER	_		Lab Sample	ID: 8	309-198-003	
Sample wt/vo	ol:	5.0	(g/ml)	ML	_ Lab File ID:	(9C1007.D	
Level: (low/n	ned)	LOW	_		Date Receiv	ed: 7	7/17/2009	
% Moisture: r	not dec.				Date Analyz	ed: <u>7</u>	7/20/2009	
GC Column:	RTX-6	24 ID: <u>0.2</u>	25_ (m	m)	Dilution Fac	tor: _	1.0	
Soil Extract V	/olume:		_ (uL)		Soil Aliquot	Volum	ne:	(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

Number TICs found: 10

CAS NO.	COMPOUND NAME	RT	EST. CONC.	Q
1. 109	Pentane	6.78	20	J
2. 107	Pentane, 2-methyl-	8.89	150	J
3. 96	Pentane, 3-methyl-	9.43	28	J
4. 96	Cyclopentane, methyl-	11.31	80	J
5. 110	Cyclohexane	12.71	57	J
6. 589	Hexane, 3-methyl-	12.89	18	J
7. 2453	Cyclopentane, 1,3-dimethyl-	13.40	8	JN
8. 103	Benzene, propyl-	23.85	10	J
9. 767	Indan, 1-methyl-	28.13	10	J
10. 2039	Benzene, 2-ethenyl-1,4-dimethyl-	29.90	11	JN

Field Sample ID:

Site Name:	Former	Speedy (leaners		Contract:		EVV-1	
One Hame.	1 Office	Орссау	Jicaricis		Oontract.			
Site Code:	828128		Case No.:		SAS No.:	SDO	G No.: 198-01	
Matrix: (soil/v	vater)	WATER	·		Lab Sample II	D: <u>8</u>	09-198-003DL	
Sample wt/vo	ol:	5.0	(g/ml)	ML	Lab File ID:	0	9C1036.D	
Level: (low/n	ned)	LOW			Date Receive	d: <u>7</u>	/17/2009	
% Moisture: r	not dec.				Date Analyze	d: <u>7</u>	/23/2009	
GC Column:	RTX-6	24 ID:	0.25 (m	m)	Dilution Facto	r: <u>5</u>	.0	
Soil Extract V	/olume:		(uL)		Soil Aliquot Vo	olum	e:	(uL)

		CONCENTRATIO	DIN CINITS.	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoron	nethane	50	U
75-87-3	Chloromethane		50	U
75-01-4	Vinyl Chloride		50	Ū
74-83-9	Bromomethane		50	U
75-00-3	Chloroethane		50	U
75-69-4	Trichlorofluromet	hane	50	U
75-35-4	1,1-Dichloroethe		50	U
75-15-0	Carbon Disulfide		50	U
67-64-1	Acetone		75	U
75-09-2	Methylene Chlori	de	50	U
540-59-0	trans 1,2-Dichlor	oethene	50	U
1634-04-4	Methyl-tert butyl	ether	50	U
75-34-4	1,1-Dichloroetha		50	U
108-05-4	Vinyl Acetate		50	U
540-59-0	cis 1,2-Dichloroe	thene	1200	D
78-93-3	2-Butanone		50	U
67-66-3	Chloroform		50	U
71-55-6	1,1,1-Trichloroeth	nane	50	U
56-23-5	Carbon Tetrachlo		50	U
71-43-2	Benzene		50	U
107-06-2	1,2-Dichloroetha	ne	50	U
79-01-6	Trichloroethene		50	U
78-87-5	1,2-Dichloroprop	ane	50	U
75-27-4	Bromodichlorome	ethane	50	U
10061-01-5	cis-1,3-Dichlorop	ropene	50	U
108-10-1	4-Methyl-2-penta	none	50	U
108-88-3	Toluene		50	U
10061-02-6	trans-1,3-Dichlor	opropene	50	U
79-00-5	1,1,2-Trichloroeth	nane	50	U
127-18-4	Tetrachloroethen	е	2100	D
591-78-6	2-Hexanone		50	U
124-48-1	Dibromochloromo	ethane	50	U
108-90-7	Chlorobenzene		50	U
100-41-4	Ethylbenzene		50	U
1330-20-7	m,p-Xylenes		50	U
1330-20-7	o-Xylene		50	U
100-42-5	Styrene		50	U
75-25-2	Bromoform		50	U
79-34-5	1,1,2,2,-Tetrachlo	oroethane	50	U

Field Sample ID:

							I EW-1	
Site Name:	Former	Speedy Cl	eaners		Contract:			
Site Code:	828128	Ca	ase No.:		SAS No.:	SI	OG No.: 198-01	
Matrix: (soil/v	vater)	WATER			Lab Sample	ID:	809-198-003DL	
Sample wt/vo	ol:	5.0	_ (g/ml)	ML	Lab File ID:		09C1036.D	
Level: (low/n	ned)	LOW			Date Receive	ed:	7/17/2009	
% Moisture: r	not dec.				Date Analyze	ed:	7/23/2009	
GC Column:	RTX-6	<u>24</u> ID: <u>0</u>	.25 (m	nm)	Dilution Fact	or:	5.0	
Soil Extract V	/olume:		(uL)		Soil Aliquot \	/oluı	me:	(uL
				CO1		re.		

CONCENTRATION UNITS: (ua/L or ua/Ka) UG/L

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
95-49-8	2-Chlorotoluene	<u> </u>		50	U
106-43-4	4-Chlorotoluene)		50	U
541-73-1	1,3-Dichloroben	1,3-Dichlorobenzene			U
106-46-7	1,4-Dichloroben	zene		50	U
95-50-1	1,2-Dichloroben	zene		50	U
120-82-1	1,2,4-Trichlorob	enzene		50	U
87-61-6	1,2,3-Trichlorob	enzene		50	U

Field Sample ID:

MW-201

Site Name:	Former	Speedy Clea	aners		Contract:		
Site Code:	828128	Cas	e No.:		SAS No.: S	SDG No.: <u>198-01</u>	
Matrix: (soil/w	vater)	WATER			Lab Sample ID:	809-198-004RE	
Sample wt/vo	ol:	5.0	(g/ml)	ML	_ Lab File ID:	09C1027.D	
Level: (low/m	ned)	LOW			Date Received:	7/17/2009	
% Moisture: r	not dec.				Date Analyzed:	7/23/2009	
GC Column:	RTX-6	24 ID: <u>0.2</u>	5 (m	m)	Dilution Factor:	1.0	
Soil Extract V	olume:		(uL)		Soil Aliquot Vol	ume:	(uL)

		CONCENTRATIO	IN CINITS.		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
75-71-8	Dichlorodifluoror	methane		10	U
75-87-3	Chloromethane			10	Ū
75-01-4	Vinyl Chloride			7	J
74-83-9	Bromomethane			10	U
75-00-3	Chloroethane			10	Ū
75-69-4	Trichloroflurome	thane		10	Ū
75-35-4	1,1-Dichloroethe			10	U
75-15-0	Carbon Disulfide)		10	U
67-64-1	Acetone			15	U
75-09-2	Methylene Chlor	ride		10	U
540-59-0	trans 1,2-Dichlor	roethene		10	U
1634-04-4	Methyl-tert butyl	ether		10	U
75-34-4	1,1-Dichloroetha	ane		10	U
108-05-4	Vinyl Acetate			10	U
540-59-0	cis 1,2-Dichloroe	ethene		18	
78-93-3	2-Butanone			10	U
67-66-3	Chloroform				
71-55-6	1,1,1-Trichloroet	1,1,1-Trichloroethane			
56-23-5	Carbon Tetrachl	Carbon Tetrachloride			
71-43-2	Benzene			10	U
107-06-2	1,2-Dichloroetha	ne		10	U
79-01-6	Trichloroethene			10	U
78-87-5	1,2-Dichloroprop	oane		10	U
75-27-4	Bromodichlorom	ethane		10	U
10061-01-5	cis-1,3-Dichlorop	oropene		10	U
108-10-1	4-Methyl-2-penta	anone		10	U
108-88-3	Toluene			10	U
10061-02-6	trans-1,3-Dichlo	ropropene		10	U
79-00-5	1,1,2-Trichloroet	thane		10	U
127-18-4	Tetrachloroethe	ne		10	U
591-78-6	2-Hexanone			10	U
124-48-1	Dibromochlorom	nethane		10	U
108-90-7	Chlorobenzene			10	U
100-41-4	Ethylbenzene			10	U
1330-20-7	m,p-Xylenes			10	U
1330-20-7	o-Xylene			10	U
100-42-5	Styrene			10	U
75-25-2	Bromoform			10	U
79-34-5	1,1,2,2,-Tetrach	loroethane		10	U

Field Sample ID:

Site Name:	Former	Speedy Cle	eaners	Contr	act:	MW-201	
Site Code:	828128	Ca	se No.:	SA	S No.: S	SDG No.: <u>198-01</u>	
Matrix: (soil/	water)	WATER	_		Lab Sample ID:	809-198-004RE	
Sample wt/v	ol:	5.0	(g/ml) ML		Lab File ID:	09C1027.D	
Level: (low/i	med)	LOW	_		Date Received:	7/17/2009	
% Moisture:	not dec.				Date Analyzed:	7/23/2009	
GC Column:	RTX-6	624 ID: 0.	25 (mm)		Dilution Factor:	1.0	
Soil Extract	Volume:		(uL)		Soil Aliquot Vol	ume:	(uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	<u>UG/L</u>		Q
95-49-8	2-Chlorotoluene	9		10	U
106-43-4	4-Chlorotoluene	9		10	U
541-73-1	1,3-Dichlorober	nzene		10	U
106-46-7	1,4-Dichlorober	nzene		10	U
95-50-1	1,2-Dichlorober	nzene		10	U
120-82-1	1,2,4-Trichlorob	enzene		10	U
87-61-6	1,2,3-Trichlorob	enzene		10	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

							BANA/ O	04
Site Name:	Former	Speedy Clea	aners	Contrac	t:		MW-2	01
Site Code:	828128	Cas	e No.:	SASI	No.:	SD	OG No.: 198	-01
Matrix: (soil/v	vater)	WATER		L	_ab Sample	ID:	809-198-004	RE
Sample wt/vc	ol:	5.0	(g/ml) ML		_ab File ID:	_	09C1027.D	
Level: (low/n	ned)	LOW		Ι	Date Receiv	ed:	7/17/2009	
% Moisture: r	not dec.			Ι	Date Analyz	ed:	7/23/2009	
GC Column:	RTX-6	24 ID: <u>0.2</u>	5 (mm)	Γ	Dilution Fac	tor:	1.0	
Soil Extract V	/olume:		_ (uL)	\$	Soil Aliquot	Volun	ne:	(uL)
Number TICs	s found:	0		CONCENTR (ug/L or ug/K				
INUITIDEL LICS	s ioulia.		_		ı			1
CAS NO.		COMPOU	ND NAME		RT	ES	T. CONC.	Q

Field Sample ID:

			HA114
Site Name:	Former Speedy Cleaners	Contract:	

 Site Code:
 828128
 Case No.:
 SAS No.:
 SDG No.:
 198-01

 Matrix: (soil/water)
 WATER
 Lab Sample ID:
 809-198-005

 Sample wt/vol:
 5.0
 (g/ml) ML
 Lab File ID:
 09C1009.D

 Level: (low/med)
 LOW
 Date Received:
 7/17/2009

 % Moisture: not dec.
 Date Analyzed:
 7/20/2009

GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: _____ (uL) Soil Aliquot Volume: _____ (uL)

		CONCENTRATIO	JIN UINITS.		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
75-71-8	Dichlorodifluoro	methane		10	U
75-87-3	Chloromethane			10	Ü
75-01-4	Vinyl Chloride			22	-
74-83-9	Bromomethane			10	U
75-00-3	Chloroethane			10	U
75-69-4	Trichloroflurome	ethane		10	Ū
75-35-4	1,1-Dichloroeth			10	Ū
75-15-0	Carbon Disulfid	e		10	U
67-64-1	Acetone			15	Ū
75-09-2	Methylene Chlo	ride		10	Ū
540-59-0	trans 1,2-Dichlo			1	J
1634-04-4	Methyl-tert buty			10	Ü
75-34-4	1,1-Dichloroeth			10	Ū
108-05-4	Vinyl Acetate			10	Ū
540-59-0	cis 1,2-Dichloro	ethene		320	Ē
78-93-3	2-Butanone			10	U
67-66-3	Chloroform				
71-55-6	1,1,1-Trichloroe	thane		10	U
56-23-5	Carbon Tetrach			10	U
71-43-2	Benzene			10	U
107-06-2	1,2-Dichloroetha	ane		10	U
79-01-6	Trichloroethene)		7	J
78-87-5	1,2-Dichloropro	pane		10	U
75-27-4	Bromodichloron	nethane		10	U
10061-01-5	cis-1,3-Dichloro	propene		10	U
108-10-1	4-Methyl-2-pent	•		10	U
108-88-3	Toluene			10	U
10061-02-6	trans-1,3-Dichlo	propropene		10	U
79-00-5	1,1,2-Trichloroe	ethane		10	U
127-18-4	Tetrachloroethe	ene		16	
591-78-6	2-Hexanone			10	U
124-48-1	Dibromochloron	nethane		10	U
108-90-7	Chlorobenzene			10	U
100-41-4	Ethylbenzene			10	U
1330-20-7	m,p-Xylenes			10	U
1330-20-7	o-Xylene			10	U
100-42-5	Styrene			10	U
75-25-2	Bromoform			10	U
79-34-5	1,1,2,2,-Tetrach	nloroethane		10	U

Field Sample ID:

							HA114	
Site Name:	Former	Speedy Clea	aners		Contract:			
Site Code:	828128	Cas	e No.:		SAS No.:	SD	G No.: <u>198-01</u>	
Matrix: (soil/v	vater)	WATER			Lab Sample II	D: <u>8</u>	309-198-005	
Sample wt/vo	ol:	5.0	(g/ml)	ML	Lab File ID:	0	9C1009.D	
_evel: (low/n	ned)	LOW			Date Received	d: <u>7</u>	7/17/2009	
% Moisture: r	not dec.				Date Analyzed	d: <u>7</u>	7/20/2009	
GC Column:	RTX-6	24 ID: <u>0.2</u>	5 (m	m)	Dilution Facto	r: <u>1</u>	.0	
Soil Extract V	/olume:		_ (uL)		Soil Aliquot Vo	olum	ne:	(uL

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
95-49-8	2-Chlorotoluene			10	U
106-43-4	4-Chlorotoluene)	,	10	U
541-73-1	1,3-Dichloroben	zene	•	10	U
106-46-7	1,4-Dichloroben	zene	•	10	U
95-50-1	1,2-Dichloroben	zene	,	10	U
120-82-1	1,2,4-Trichlorob	enzene	,	10	U
87-61-6	1,2,3-Trichlorob	enzene	•	10	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Field Sample ID:	

Site Name:	Former	Speedy Cle	aners		Contrac	t:				
Site Code:	828128	Ca	se No.:		SAS	No.:	_ SI	DG No.: 1	98-01	1
Matrix: (soil/v	vater)	WATER	_		I	_ab Sample	ID:	809-198-0	005	
Sample wt/vo	ol:	5.0	(g/ml)	ML		_ab File ID:		09C1009.	D	_
Level: (low/n	ned)	LOW	_		I	Date Receiv	ed:	7/17/2009		_
% Moisture: ı	not dec.				I	Date Analyz	ed:	7/20/2009)	_
GC Column:	RTX-6	324 ID: <u>0.2</u>	25 (m	ım)	I	Dilution Fact	tor:	1.0		_
Soil Extract \	/olume:		_ (uL)		;	Soil Aliquot	Volu	me:		_ (uL)
Number TICs	s found:	0	_	_	ONCENTR ug/L or ug/k	ATION UNI				
CAS NO.		COMPOL	JND NAI	ME		RT	ES	T. CONC.		Q

Field Sample ID:

VOLATILE ORGANICS A	INALISIS DATA SHEET	HA114	
mar Spaady Claanara	Contract:		

Site Name: Former Speedy Cleaners Contract: 8281<u>28</u> Case No.: _____ SAS No.: SDG No.: 198-01 Site Code: Matrix: (soil/water) WATER Lab Sample ID: 809-198-005DL Sample wt/vol: 5.0 (g/ml) ML Lab File ID: 09C1040.D Level: (low/med) LOW Date Received: 7/17/2009 % Moisture: not dec. Date Analyzed: 7/24/2009 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 2.0 Soil Aliquot Volume: Soil Extract Volume: _____ (uL) (uL)

		CONCENTRATIO	IN UNITS.		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	_	Q
75-71-8	Dichlorodifluoro	methane		20	U
75-87-3	Chloromethane			20	U
75-01-4	Vinyl Chloride			20	U
74-83-9	Bromomethane			20	Ū
75-00-3	Chloroethane			20	Ū
75-69-4	Trichloroflurome	thane		20	U
75-35-4	1,1-Dichloroethe			20	U
75-15-0	Carbon Disulfide	9		20	U
67-64-1	Acetone			30	U
75-09-2	Methylene Chlor	ride		20	U
540-59-0	trans 1,2-Dichlo	roethene		20	U
1634-04-4	Methyl-tert butyl	ether		20	U
75-34-4	1,1-Dichloroetha	ane		20	U
108-05-4	Vinyl Acetate			20	U
540-59-0	cis 1,2-Dichloroe	ethene		510	D
78-93-3	2-Butanone			20	U
67-66-3	Chloroform			20	U
71-55-6	1,1,1-Trichloroe	thane		20	U
56-23-5	Carbon Tetrachl	oride		20	U
71-43-2	Benzene			20	U
107-06-2	1,2-Dichloroetha	ane		20	U
79-01-6	Trichloroethene			20	U
78-87-5	1,2-Dichloroprop	oane		20	U
75-27-4	Bromodichlorom	ethane		20	U
10061-01-5	cis-1,3-Dichloro	propene		20	U
108-10-1	4-Methyl-2-pent	anone		20	U
108-88-3	Toluene			20	U
10061-02-6	trans-1,3-Dichlo	ropropene		20	U
79-00-5	1,1,2-Trichloroe	thane		20	U
127-18-4	Tetrachloroethe	ne		20	U
591-78-6	2-Hexanone			20	U
124-48-1	Dibromochlorom	nethane		20	U
108-90-7	Chlorobenzene			20	U
100-41-4	Ethylbenzene			20	U
1330-20-7	m,p-Xylenes			20	U
1330-20-7	o-Xylene			20	U
100-42-5	Styrene			20	U
75-25-2	Bromoform			20	U
79-34-5	1,1,2,2,-Tetrach	loroethane		20	U

Field Sample ID:

Site Name:	Former	Speedy C	leaners		Contract:			
Site Code:	828128	C	ase No.:		SAS No.:	SI	DG No.: <u>198-01</u>	
Matrix: (soil/v	vater)	WATER			Lab Sample	ID:	809-198-005DL	
Sample wt/vo	ol:	5.0	(g/ml)	ML	_ Lab File ID:		09C1040.D	
Level: (low/n	ned)	LOW			Date Receiv	ed:	7/17/2009	
% Moisture: r	not dec.				Date Analyz	ed:	7/24/2009	
GC Column:	RTX-6	24 ID: <u>C</u>).25 (m	ım)	Dilution Fac	tor:	2.0	
Soil Extract V	/olume:		(uL)		Soil Aliquot	Volu	me:	(uL

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
95-49-8	2-Chlorotoluene	9		20	U
106-43-4	4-Chlorotoluene	Э		20	U
541-73-1	1,3-Dichlorober	nzene		20	U
106-46-7	1,4-Dichlorober	nzene		20	U
95-50-1	1,2-Dichlorober	nzene		20	U
120-82-1	1,2,4-Trichlorob	enzene		20	U
87-61-6	1,2,3-Trichlorob	enzene	·	20	U

Field Sample ID:

Site Name: Former Speedy Cleaners Contract:

Site Mame:	Former	Speedy Clea	aners		Contract:			
Site Code:	828128	Cas	e No.:		SAS No.:	SDG No.:	198-01	
Matrix: (soil/w	vater)	WATER			Lab Sample ID): <u>809-198</u>	-006	
Sample wt/vo	ol:	5.0	(g/ml)	ML	Lab File ID:	09C1010	0.D	
Level: (low/m	ned)	LOW			Date Received	l: <u>7/17/200</u>)9	
% Moisture: r	not dec.				Date Analyzed	l: <u>7/20/200</u>)9	
GC Column:	RTX-6	24 ID: <u>0.2</u>	5 (m	m)	Dilution Factor	1.0		
Soil Extract V	/olume:		(uL)		Soil Aliquot Vo	lume:		(uL)

	`	001102111101110)		
CAS NO.	COMPOUND (ug/L or ug/Kg)	UG/L		Q
75-71-8	Dichlorodifluorometh	nane		10	U
75-87-3	Chloromethane			10	U
75-01-4	Vinyl Chloride			10	U
74-83-9	Bromomethane			10	U
75-00-3	Chloroethane			10	U
75-69-4	Trichlorofluromethar	ne		10	U
75-35-4	1,1-Dichloroethene			10	U
75-15-0	Carbon Disulfide			10	U
67-64-1	Acetone			15	U
75-09-2	Methylene Chloride			10	U
540-59-0	trans 1,2-Dichloroetl	nene		10	U
1634-04-4	Methyl-tert butyl ethe	er		10	U
75-34-4	1,1-Dichloroethane			10	U
108-05-4	Vinyl Acetate			10	U
540-59-0	cis 1,2-Dichloroethe	ne		2	J
78-93-3	2-Butanone			10	U
67-66-3	Chloroform			10	U
71-55-6	1,1,1-Trichloroethan	е		10	U
56-23-5	Carbon Tetrachlorid	е		10	U
71-43-2	Benzene			27	
107-06-2	1,2-Dichloroethane			10	U
79-01-6	Trichloroethene			10	U
78-87-5	1,2-Dichloropropane)		10	U
75-27-4	Bromodichlorometha	ane		10	U
10061-01-5	cis-1,3-Dichloroprop	ene		10	U
108-10-1	4-Methyl-2-pentanor	ne		10	U
108-88-3	Toluene			110	
10061-02-6	trans-1,3-Dichloropr	opene		10	U
79-00-5	1,1,2-Trichloroethan	е		10	U
127-18-4	Tetrachloroethene			4	J
591-78-6	2-Hexanone			10	U
124-48-1	Dibromochlorometha	ane		10	U
108-90-7	Chlorobenzene			10	U
100-41-4	Ethylbenzene			6	J
1330-20-7	m,p-Xylenes			530	Е
1330-20-7	o-Xylene			240	Е
100-42-5	Styrene			7	J
75-25-2	Bromoform			10	U
79-34-5	1,1,2,2,-Tetrachloro	ethane		10	U

Field Sample ID:

DEC-Well Site Name: Former Speedy Cleaners _____ Contract: _____ SAS No.: ___ SDG No.: 198-01 828128 Case No.: _____ Site Code: Matrix: (soil/water) WATER Lab Sample ID: 809-198-006 Sample wt/vol: 5.0 (g/ml) ML Lab File ID: 09C1010.D Level: (low/med) LOW Date Received: 7/17/2009 % Moisture: not dec. Date Analyzed: 7/20/2009 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: Soil Extract Volume: ____ (uL) (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
95-49-8	2-Chlorotoluene	9		10	U
106-43-4	4-Chlorotoluene	9		10	U
541-73-1	1,3-Dichlorober	nzene		10	U
106-46-7	1,4-Dichlorober	nzene		10	U
95-50-1	1,2-Dichlorober	nzene		10	U
120-82-1	1,2,4-Trichlorob	enzene		10	U
87-61-6	1,2,3-Trichlorob	enzene		10	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Field Sample ID:

Site Name:	Former S	Speedy Cle	eaners		Contract:		ec-well	
Site Code:	828128	Ca	se No.:		SAS No.:	_ SDG No.:	198-01	
Matrix: (soil/v	vater)	WATER			Lab Sample ID:	809-19	8-006	
Sample wt/vo	ol:	5.0	(g/ml) <u>M</u>	1L	Lab File ID:	09C101	10.D	
Level: (low/n	ned)	LOW	_		Date Received:	7/17/20	09	
% Moisture: r	not dec.				Date Analyzed:	7/20/20	009	
GC Column:	RTX-62	24 ID: <u>0</u> .	25_ (mm)	Dilution Factor:	1.0		
Soil Extract V	/olume: _		(uL)		Soil Aliquot Vol	ume:		(uL

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

Number TICs found: 10

CAS NO.	COMPOUND NAME	RT	EST. CONC.	Q
1. 109	Pentane	6.79	200	J
2. 75	Butane, 2,2-dimethyl-	7.93	210	J
3. 107	Pentane, 2-methyl-	8.90	550	J
4. 96	Pentane, 3-methyl-	9.44	230	J
5. 96	Cyclopentane, methyl-	11.32	650	J
6. 110	Cyclohexane	12.72	410	J
7. 000620-14-4	Benzene, 1-ethyl-3-methyl-	24.07	220	JN
8. 611	Benzene, 1-ethyl-2-methyl-	24.79	250	J
9. 000108-67-8	Benzene, 1,3,5-trimethyl-	25.22	460	JN
10. 526	Benzene, 1,2,3-trimethyl-	26.26	170	J

Field Sample ID:

DEC-Well

Site Name: Former Speedy Cleaners _____ Contract: _____ SAS No.: SDG No.: 198-01 828128 Case No.: _____ Site Code: Matrix: (soil/water) WATER Lab Sample ID: 809-198-006DL 5.0 (g/ml) ML 09C1041.D Sample wt/vol: Lab File ID: Level: (low/med) LOW Date Received: 7/17/2009 % Moisture: not dec. Date Analyzed: 7/24/2009 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 2.0 Soil Aliquot Volume: Soil Extract Volume: ____ (uL) (uL)

CAS NO.	COMPOUND (ug/L or ug/	Kg) <u>UG/L</u>	Q
75-71-8	Dichlorodifluoromethane	20	U
75-87-3	Chloromethane	20	U
75-01-4	Vinyl Chloride	20	U
74-83-9	Bromomethane	20	U
75-00-3	Chloroethane	20	U
75-69-4	Trichlorofluromethane	20	С
75-35-4	1,1-Dichloroethene	20	С
75-15-0	Carbon Disulfide	20	С
67-64-1	Acetone	30	С
75-09-2	Methylene Chloride	20	С
540-59-0	trans 1,2-Dichloroethene	20	С
1634-04-4	Methyl-tert butyl ether	20	С
75-34-4	1,1-Dichloroethane	20	U
108-05-4	Vinyl Acetate	20	U
540-59-0	cis 1,2-Dichloroethene	20	U
78-93-3	2-Butanone	20	U
67-66-3	Chloroform	20	U
71-55-6	1,1,1-Trichloroethane	20	U
56-23-5	Carbon Tetrachloride	20	U
71-43-2	Benzene	20	U
107-06-2	1,2-Dichloroethane	20	U
79-01-6	Trichloroethene	20	U
78-87-5	1,2-Dichloropropane	20	U
75-27-4	Bromodichloromethane	20	U
10061-01-5	cis-1,3-Dichloropropene	20	U
108-10-1	4-Methyl-2-pentanone	20	U
108-88-3	Toluene	20	U
10061-02-6	trans-1,3-Dichloropropene	20	U
79-00-5	1,1,2-Trichloroethane	20	U
127-18-4	Tetrachloroethene	20	U
591-78-6	2-Hexanone	20	U
124-48-1	Dibromochloromethane	20	U
108-90-7	Chlorobenzene	20	U
100-41-4	Ethylbenzene	20	U
1330-20-7	m,p-Xylenes	640	D
1330-20-7	o-Xylene	400	D
100-42-5	Styrene	20	U
75-25-2	Bromoform	20	U
79-34-5	1,1,2,2,-Tetrachloroethane	20	U

Field Sample ID:

							DEC-Well	
Site Name:	Former S	Former Speedy Cleaners			Contract:			
Site Code:	828128	Cas	se No.:		SAS No.:	SD	OG No.: 198-01	
Matrix: (soil/	water)	WATER	-		Lab Sample	ID:	809-198-006DL	
Sample wt/v	ol:	5.0	(g/ml)	ML	_ Lab File ID:		09C1041.D	
Level: (low/	med)	LOW	-		Date Receive	ed:	7/17/2009	
% Moisture:	% Moisture: not dec.				Date Analyze	ed:	7/24/2009	
GC Column: <u>RTX-624</u> ID: <u>0.25</u> (mm)				m)	Dilution Fact	or:	2.0	
Soil Extract Volume: (uL)					Soil Aliquot Volume:			(uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
95-49-8	2-Chlorotoluene	9		20	U
106-43-4	4-Chlorotoluene	9		20	U
541-73-1	1,3-Dichlorober	nzene		20	U
106-46-7	1,4-Dichloroben	nzene		20	U
95-50-1	1,2-Dichlorober	nzene		20	U
120-82-1	1,2,4-Trichlorob	1,2,4-Trichlorobenzene			
87-61-6	1.2.3-Trichlorob	enzene		20	U

Field Sample ID:

Cita Nama:	Formor	Spaady Cl	oonoro		Contract:		X-1	
Site Name:	ronner	Speedy Cl	eariers		Contract.			
Site Code:	828128	Ca	ase No.:		SAS No.:	SDO	3 No.: <u>198-01</u>	
Matrix: (soil/v	water)	WATER			Lab Sample l	D: <u>8</u>	09-198-007	
Sample wt/vo	ol:	5.0	_ (g/ml)	ML	Lab File ID:	0	9C1011.D	
Level: (low/n	ned)	LOW			Date Receive	ed: <u>7</u>	/17/2009	
% Moisture: r	not dec.				Date Analyze	ed: <u>7</u>	/20/2009	
GC Column:	RTX-6	<u>24</u> ID: <u>0</u>	.25 (m	nm)	Dilution Factor	or: <u>1</u>	.0	
Soil Extract \	/olume:		(uL)		Soil Aliquot V	olum/	e:	(uL)

		CONCENTRATIO	IN CINITS.		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
75-71-8	Dichlorodifluoror	methane		10	U
75-87-3	Chloromethane			10	Ü
75-01-4	Vinyl Chloride			4	J
74-83-9	Bromomethane			10	Ü
75-00-3	Chloroethane			10	Ū
75-69-4	Trichloroflurome	thane		10	Ū
75-35-4	1,1-Dichloroethe			10	U
75-15-0	Carbon Disulfide)		10	U
67-64-1	Acetone			15	U
75-09-2	Methylene Chlor	ride		10	U
540-59-0	trans 1,2-Dichlor	roethene		10	U
1634-04-4	Methyl-tert butyl	ether		10	U
75-34-4	1,1-Dichloroetha	ine		10	U
108-05-4	Vinyl Acetate			10	U
540-59-0	cis 1,2-Dichloroe	ethene		65	
78-93-3	2-Butanone			10	U
67-66-3	Chloroform			10	U
71-55-6	1,1,1-Trichloroet	1,1,1-Trichloroethane			
56-23-5	Carbon Tetrachl	Carbon Tetrachloride			
71-43-2	Benzene			10	U
107-06-2	1,2-Dichloroetha	ine		10	U
79-01-6	Trichloroethene			12	
78-87-5	1,2-Dichloroprop	pane		10	U
75-27-4	Bromodichlorom	ethane		10	U
10061-01-5	cis-1,3-Dichlorop	oropene		10	U
108-10-1	4-Methyl-2-penta	anone		10	U
108-88-3	Toluene			10	U
10061-02-6	trans-1,3-Dichlor			10	U
79-00-5	1,1,2-Trichloroet			10	U
127-18-4	Tetrachloroether	ne		520	Ε
591-78-6	2-Hexanone			10	U
124-48-1	Dibromochlorom	ethane		10	U
108-90-7	Chlorobenzene			10	U
100-41-4	Ethylbenzene			10	U
1330-20-7	m,p-Xylenes			10	U
1330-20-7	o-Xylene			10	U
100-42-5	Styrene			10	U
75-25-2	Bromoform			10	U
79-34-5	1,1,2,2,-Tetrachl	loroethane		10	U

Field Sample ID:

10

10

10

10

U

U

U

U

								X-1	
Site Name: _	Former Sp	eedy Clea	aners	Contr	act:				
Site Code: 8	828128	_ Cas	e No.:	SA	S No.:	SD	G No.:	198-01	
Matrix: (soil/wa	ater) <u>V</u>	VATER			Lab Sar	mple ID:	809-198	-007	
Sample wt/vol:	: <u>5</u>	.0	(g/ml) ML		Lab File	ID:	09C101	1.D	
Level: (low/me	ed) <u>L</u>	OW			Date Re	eceived:	7/17/200	9	
% Moisture: no	ot dec.				Date Ar	alyzed:	7/20/200	9	
GC Column:	RTX-624	ID: 0.2	5 (mm)		Dilution	Factor:	1.0		
Soil Extract Vo	olume:		_ (uL)		Soil Alic	juot Volun	ne:		(uL)
				CONCENT	TRATION	UNITS:			
CAS NO.		COMPO	UND	(ug/L or ug	_J /Kg)	UG/L		Q	
95-49-8	<u> </u>	2-Chlo	rotoluene				10	U	
106-43-			rotoluene				10	U	
541-73-	1	1.3-Dio	chlorobenze	ne			10	Ū	

1,4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

106-46-7

95-50-1

120-82-1

87-61-6

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

X-1 Site Name: Former Speedy Cleaners Contract: 09C1011.D (uL)

Field Sample ID:

SAS No.: SDG No.: 198-01 Site Code: 828128 Case No.: Matrix: (soil/water) WATER Lab Sample ID: 809-198-007 5.0 (g/ml) <u>ML</u> Sample wt/vol: Lab File ID: Level: (low/med) LOW Date Received: 7/17/2009 % Moisture: not dec. Date Analyzed: 7/20/2009 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: Soil Extract Volume: (uL) **CONCENTRATION UNITS:** (ug/L or ug/Kg) UG/L Number TICs found: 0 CAS NO. **COMPOUND NAME** RT EST. CONC. Q

Field Sample ID:

)1
L
(uL

		OONOLIVIIO	or or or or		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	_	Q
75-71-8	Dichlorodifluoromet	hane		20	U
75-87-3	Chloromethane			20	U
75-01-4	Vinyl Chloride			20	U
74-83-9	Bromomethane			20	U
75-00-3	Chloroethane			20	U
75-69-4	Trichloroflurometha	ne		20	U
75-35-4	1,1-Dichloroethene			20	U
75-15-0	Carbon Disulfide			20	U
67-64-1	Acetone			30	U
75-09-2	Methylene Chloride			20	U
540-59-0	trans 1,2-Dichloroet	hene		20	U
1634-04-4	Methyl-tert butyl eth	er		20	U
75-34-4	1,1-Dichloroethane			20	U
108-05-4	Vinyl Acetate			20	U
540-59-0	cis 1,2-Dichloroethe	ene		20	U
78-93-3	2-Butanone			20	U
67-66-3	Chloroform			20	U
71-55-6	1,1,1-Trichloroethar	ne		20	U
56-23-5	Carbon Tetrachlorid	le		20	U
71-43-2	Benzene			20	U
107-06-2	1,2-Dichloroethane			20	U
79-01-6	Trichloroethene			20	U
78-87-5	1,2-Dichloropropane	Э		20	U
75-27-4	Bromodichlorometh	ane		20	U
10061-01-5	cis-1,3-Dichloroprop	pene		20	U
108-10-1	4-Methyl-2-pentano	ne		20	U
108-88-3	Toluene			20	U
10061-02-6	trans-1,3-Dichloropi	ropene		20	U
79-00-5	1,1,2-Trichloroethar	ne		20	U
127-18-4	Tetrachloroethene		1	000	EBD
591-78-6	2-Hexanone			20	U
124-48-1	Dibromochlorometh	ane		20	U
108-90-7	Chlorobenzene			20	U
100-41-4	Ethylbenzene			20	U
1330-20-7	m,p-Xylenes			20	U
1330-20-7	o-Xylene			20	U
100-42-5	Styrene			20	U
75-25-2	Bromoform			20	U
79-34-5	1,1,2,2,-Tetrachloro	ethane		20	U

Field Sample ID:

20

20

20

U

U

U

								X-1	
Site Name:	Former S	Speedy Cle	aners		Contract:		_	<i>^</i> '	
Site Code:	828128	Cas	se No.:		SAS No.:	S	DG No.:	198-01	
Matrix: (soil/v	water)	WATER	_		Lab S	ample ID:	809-198	-007DL	
Sample wt/vo	ol:	5.0	(g/ml) <u>I</u>	ML	Lab F	ile ID:	09C104	2.D	
Level: (low/r	med)	LOW	_		Date I	Received:	7/17/200)9	
% Moisture:	not dec.				Date /	Analyzed:	7/24/200)9	
GC Column:	RTX-6	24 ID: <u>0.2</u>	.5 (mn	n)	Dilutio	n Factor:	2.0		
Soil Extract \	/olume: _		_ (uL)		Soil A	liquot Volu	me:		(uL)
				(CONCENTRATIO	N UNITS:			
CAS NO	Э.	COMPO	DUND	(ug/L or ug/Kg)	UG/L		Q	
95-49-	-8	2-Chlo	orotoluen	<u> </u>			20	U	
106-43	3-4	4-Chlo	rotoluen	е			20	U	
541-73	3-1	1,3-Di	chlorobei	nzene	9		20	U	
106-46	6-7		chlorober				20	U	

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

95-50-1

120-82-1

87-61-6

Field Sample ID:

MW-202

Site Name:	Former	Speedy Clea	aners		Contract:	11111-202	
Site Code:	828128		e No.:		SAS No.:	SDG No.: 198-01	
Matrix: (soil/v	vater)	WATER	-		Lab Sample ID	: 809-198-008	
Sample wt/vo	ol:	5.0	(g/ml)	ML	Lab File ID:	09C1012.D	
Level: (low/n	ned)	LOW	-		Date Received	: 7/17/2009	
% Moisture: r	not dec.				Date Analyzed	: 7/20/2009	
GC Column:	RTX-6	24 ID: <u>0.2</u>	5 (m	ım)	Dilution Factor	: 1.0	
Soil Extract V	/olume:		_ (uL)		Soil Aliquot Vo	lume:	(uL

		CONCLINITOTIC	or Civilo.		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
75-71-8	Dichlorodifluorom	ethane		10	U
75-87-3	Chloromethane			10	U
75-01-4	Vinyl Chloride			4	J
74-83-9	Bromomethane			10	U
75-00-3	Chloroethane			10	U
75-69-4	Trichlorofluromet	hane		10	U
75-35-4	1,1-Dichloroether	ne		10	U
75-15-0	Carbon Disulfide			10	U
67-64-1	Acetone			15	U
75-09-2	Methylene Chloric	de		10	U
540-59-0	trans 1,2-Dichloro	ethene		10	U
1634-04-4	Methyl-tert butyl	ether		10	U
75-34-4	1,1-Dichloroethar	ne		10	U
108-05-4	Vinyl Acetate			10	U
540-59-0	cis 1,2-Dichloroet	hene		68	
78-93-3	2-Butanone			10	U
67-66-3	Chloroform			10	U
71-55-6	1,1,1-Trichloroeth	ane		10	U
56-23-5	Carbon Tetrachlo	ride		10	U
71-43-2	Benzene			10	U
107-06-2	1,2-Dichloroethar	ne		10	U
79-01-6	Trichloroethene			12	
78-87-5	1,2-Dichloropropa	ane		10	U
75-27-4	Bromodichlorome	ethane		10	U
10061-01-5	cis-1,3-Dichloropi	ropene		10	U
108-10-1	4-Methyl-2-penta	none		10	U
108-88-3	Toluene			10	U
10061-02-6	trans-1,3-Dichloro	opropene		10	U
79-00-5	1,1,2-Trichloroeth	nane		10	U
127-18-4	Tetrachloroethen	е		580	Е
591-78-6	2-Hexanone			10	U
124-48-1	Dibromochlorome	ethane		10	U
108-90-7	Chlorobenzene			10	U
100-41-4	Ethylbenzene			10	U
1330-20-7	m,p-Xylenes			10	U
1330-20-7	o-Xylene			10	U
100-42-5	Styrene			10	U
75-25-2	Bromoform			10	U
79-34-5	1,1,2,2,-Tetrachlo	roethane		10	U

Field Sample ID:

	MW-202	,						
Site Name:	Former	Speedy Cle	aners		Contract:		10100-202	•
Site Code:	828128	Ca	se No.:		SAS No.:	SI	DG No.: 198-0	1
Matrix: (soil/v	vater)	WATER	_		Lab	Sample ID:	809-198-008	
Sample wt/vo	ol:	5.0	(g/ml)	ML	Lab	File ID:	09C1012.D	_
Level: (low/n	ned)	LOW	_		Date	e Received:	7/17/2009	_
% Moisture: r	not dec.				Date	e Analyzed:	7/20/2009	_
GC Column:	RTX-6	24 ID: 0.:	25 (m	ım)	Dilut	tion Factor:	1.0	_
Soil Extract V	/olume:		(uL)		Soil	Aliquot Volu	me:	(uL

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
95-49-8	2-Chlorotoluene	9		10	U
106-43-4	4-Chlorotoluene			10	U
541-73-1	1,3-Dichlorober	nzene		10	U
106-46-7	1,4-Dichlorober	nzene		10	U
95-50-1	1,2-Dichlorober	nzene		10	U
120-82-1	1,2,4-Trichlorob	1,2,4-Trichlorobenzene			
87-61-6	1,2,3-Trichlorob	enzene		10	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Field Sample ID:

							NA.	N-202	
Site Name:	Former	Speedy Clea	aners	Contrac	:t:		IVIV	/V-ZUZ	
Site Code:	828128	Cas	e No.:	SAS	No.:	SD	G No.:	198-01	
Matrix: (soil/v	vater)	WATER		I	Lab Sample	ID: E	809-198-	800	
Sample wt/vo	ol:	5.0	(g/ml) ML	I	Lab File ID:	(09C1012	.D	
Level: (low/n	ned)	LOW		I	Date Receiv	/ed:	7/17/2009	9	
% Moisture: r	not dec.			I	Date Analyz	zed:	7/20/2009	9	
GC Column:	RTX-6	24 ID: <u>0.2</u>	5 (mm)	I	Dilution Fac	tor:	1.0		
Soil Extract V	olume:		_ (uL)	;	Soil Aliquot	Volun	ne:		(uL)
Number TICs	s found:	0		CONCENTR (ug/L or ug/k					
Trainboi 1100	, lourid.		_		T	1			
CAS NO.		COMPOU	ND NAME		RT	ES	T. CONC.	<u> </u>	Q

Field Sample ID:

mar Speedy Cleaners Contract:

Site Name: Former Speedy Cleaners _____ Contract: _____ SAS No.: ___ SDG No.: 198-01 828128 Case No.: _____ Site Code: Matrix: (soil/water) WATER Lab Sample ID: 809-198-008DL Sample wt/vol: 5.0 (g/ml) ML Lab File ID: 09C1043.D Level: (low/med) LOW Date Received: 7/17/2009 % Moisture: not dec. Date Analyzed: 7/24/2009 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 2.0

Soil Extract Volume: _____ (uL) Soil Aliquot Volume: ____ (uL)

		CONCENTRATIO	JIN UINITS.	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoro	methane	20	U
75-87-3	Chloromethane		20	U
75-01-4	Vinyl Chloride		20	U
74-83-9	Bromomethane		20	Ü
75-00-3	Chloroethane		20	Ü
75-69-4	Trichloroflurome	ethane	20	U
75-35-4	1,1-Dichloroeth		20	Ū
75-15-0	Carbon Disulfid		20	Ū
67-64-1	Acetone		30	Ū
75-09-2	Methylene Chlo	ride	20	U
540-59-0	trans 1,2-Dichlo		20	Ū
1634-04-4	Methyl-tert buty		20	U
75-34-4	1,1-Dichloroeth		20	U
108-05-4	Vinyl Acetate		20	Ū
540-59-0	cis 1,2-Dichloro	ethene	20	U
78-93-3	2-Butanone		20	Ū
67-66-3	Chloroform		20	U
71-55-6	1,1,1-Trichloroe	thane	20	U
56-23-5	Carbon Tetrach		20	U
71-43-2	Benzene		20	U
107-06-2	1,2-Dichloroeth	ane	20	U
79-01-6	Trichloroethene)	20	U
78-87-5	1,2-Dichloropro	pane	20	U
75-27-4	Bromodichloron	nethane	20	U
10061-01-5	cis-1,3-Dichloro	propene	20	U
108-10-1	4-Methyl-2-pent	tanone	20	U
108-88-3	Toluene		20	U
10061-02-6	trans-1,3-Dichlo	propropene	20	U
79-00-5	1,1,2-Trichloroe	ethane	20	U
127-18-4	Tetrachloroethe	ene	1100	EBD
591-78-6	2-Hexanone		20	U
124-48-1	Dibromochloron	nethane	20	U
108-90-7	Chlorobenzene		20	U
100-41-4	Ethylbenzene		20	U
1330-20-7	m,p-Xylenes		20	U
1330-20-7	o-Xylene		20	U
100-42-5	Styrene		20	U
75-25-2	Bromoform		20	U
79-34-5	1,1,2,2,-Tetrach	loroethane	20	U

Field Sample ID:

Site Name:	Former	Speedy Cl	eaners	Contract:		MW-202	
Site Code:	828128	Ca	ase No.:	SAS No	o.: S	DG No.: 198-01	
Matrix: (soil/	water)	WATER	_	La	b Sample ID:	809-198-008DL	
Sample wt/v	ol:	5.0	(g/ml) ML	La	ıb File ID:	09C1043.D	
Level: (low/i	med)	LOW	_	Da	ate Received:	7/17/2009	
% Moisture:	not dec.			Da	ate Analyzed:	7/24/2009	
GC Column:	RTX-6	<u>624</u> ID: <u>0</u>	.25 (mm)	Di	lution Factor:	2.0	
Soil Extract	Volume:		(uL)	Sc	oil Aliquot Volu	ıme:	(uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
95-49-8	2-Chlorotoluene)		20	U
106-43-4	4-Chlorotoluene	9		20	U
541-73-1	1,3-Dichlorober	nzene		20	U
106-46-7	1,4-Dichlorober	nzene		20	U
95-50-1	1,2-Dichlorober	nzene		20	U
120-82-1	1,2,4-Trichlorob	enzene		20	U
87-61-6	1,2,3-Trichlorob	enzene		20	U

Field Sample ID:

Site Name: Former Speedy Cleaners Contract:

Site mame:	Former	Speedy C	ieaners		Contract:	_	
Site Code:	828128	C	ase No.:		SAS No.: S	DG No.: <u>198-01</u>	
Matrix: (soil/v	vater)	WATER			Lab Sample ID:	809-198-009RE	
Sample wt/vo	ol:	5.0	(g/ml) <u>M</u>	1L	Lab File ID:	09C1028.D	
Level: (low/n	ned)	LOW			Date Received:	7/17/2009	
% Moisture: r	not dec.				Date Analyzed:	7/23/2009	
GC Column:	RTX-6	24 ID: ().25 (mm))	Dilution Factor:	1.0	
Soil Extract V	/olume:		(uL)		Soil Aliquot Volu	ıme:	(uL)

		CONCENTRATIO	IN CINITS.		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
75-71-8	Dichlorodifluoro	methane		10	U
75-87-3	Chloromethane			10	U
75-01-4	Vinyl Chloride			10	U
74-83-9	Bromomethane			10	U
75-00-3	Chloroethane			10	U
75-69-4	Trichloroflurome	thane		10	U
75-35-4	1,1-Dichloroethe			10	U
75-15-0	Carbon Disulfide	9		10	U
67-64-1	Acetone			15	U
75-09-2	Methylene Chlo	ride		10	U
540-59-0	trans 1,2-Dichlo	roethene		10	U
1634-04-4	Methyl-tert butyl	ether		10	U
75-34-4	1,1-Dichloroetha	ane		10	U
108-05-4	Vinyl Acetate			10	U
540-59-0	cis 1,2-Dichloro	ethene		32	
78-93-3	2-Butanone			10	U
67-66-3	Chloroform			10	U
71-55-6	1,1,1-Trichloroe	thane		10	U
56-23-5	Carbon Tetrach	oride		10	U
71-43-2	Benzene			10	U
107-06-2	1,2-Dichloroetha	ane		10	U
79-01-6	Trichloroethene			2	J
78-87-5	1,2-Dichloroprop	oane		10	U
75-27-4	Bromodichlorom	ethane		10	U
10061-01-5	cis-1,3-Dichloro	propene		10	U
108-10-1	4-Methyl-2-pent	anone		10	U
108-88-3	Toluene			10	U
10061-02-6	trans-1,3-Dichlo	ropropene		10	U
79-00-5	1,1,2-Trichloroe	thane		10	U
127-18-4	Tetrachloroethe	ne		3	J
591-78-6	2-Hexanone			10	U
124-48-1	Dibromochloron	nethane		10	U
108-90-7	Chlorobenzene			10	U
100-41-4	Ethylbenzene			10	U
1330-20-7	m,p-Xylenes			10	U
1330-20-7	o-Xylene			10	U
100-42-5	Styrene			10	U
75-25-2	Bromoform			10	U
79-34-5	1,1,2,2,-Tetrach	loroethane		10	U

Field Sample ID:

Site Name:	Former 9	Speedy Cle	anore	Contract:	MW-211	
Site Mairie.	1 Officer o	speedy Cie	zailei S	_ Contract.		
Site Code:	828128	Ca	se No.:	SAS No.:	SDG No.: <u>198-01</u>	
Matrix: (soil/	water)	WATER		Lab Sample ID	: 809-198-009RE	
Sample wt/v	ol:	5.0	(g/ml) ML	Lab File ID:	09C1028.D	
Level: (low/	med)	LOW	<u> </u>	Date Received	7/17/2009	
% Moisture:	not dec.			Date Analyzed	7/23/2009	
GC Column:	RTX-6	24 ID: <u>0.</u>	25 (mm)	Dilution Factor:	1.0	
Soil Extract	Volume:		(uL)	Soil Aliquot Vol	ume:	(uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
95-49-8	2-Chlorotoluene			10	U
106-43-4	4-Chlorotoluene	1		10	U
541-73-1	1,3-Dichloroben	zene		10	U
106-46-7	1,4-Dichloroben	zene		10	U
95-50-1	1,2-Dichloroben	zene		10	U
120-82-1	1,2,4-Trichlorob	enzene		10	U
87-61-6	1,2,3-Trichlorob	enzene		10	U

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Field Sample ID:

Site Name:	Former	Speedy Clea	aners	Contrac	et:		MW-21	11
Site Code:	828128	Cas	e No.:	SAS	No.:	SD	G No.: 198-	01
Matrix: (soil/v	vater)	WATER		I	Lab Sample	ID: 8	309-198-009F	RE
Sample wt/vo	ol:	5.0	(g/ml) ML	I	Lab File ID:	0	9C1028.D	
Level: (low/n	ned)	LOW		I	Date Receiv	ed: <u>7</u>	7/17/2009	
% Moisture: r	not dec.			I	Date Analyz	ed: <u>7</u>	7/23/2009	
GC Column:	RTX-6	<u>0.2</u> ID: <u>0.2</u>	5 (mm)	I	Dilution Fac	tor: <u>1</u>	.0	
Soil Extract V	/olume:		_ (uL)	;	Soil Aliquot	Volum	ie:	(uL)
				CONCENTR				
Number TICs	found:	0	_	(ug/L or ug/K	(g) <u>UG</u> /	<u>L</u>		
CAS NO.		COMPOU	ND NAME		RT	EST	CONC.	Q

Field Sample ID:

MW-212

Site Name: Former Speedy Cleaners _____ Contract: ____ SAS No.: ___ SDG No.: 198-01 828128 Case No.: _____ Site Code: Matrix: (soil/water) WATER Lab Sample ID: 809-198-010 Sample wt/vol: 5.0 (g/ml) ML Lab File ID: 09C1014.D Level: (low/med) LOW Date Received: 7/17/2009 % Moisture: not dec. Date Analyzed: 7/20/2009 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: Soil Extract Volume: ____ (uL) (uL)

CAS NO.	COMPOUND (ug/L or	ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoromethane		10	U
75-87-3	Chloromethane		10	U
75-01-4	Vinyl Chloride		2	J
74-83-9	Bromomethane		10	U
75-00-3	Chloroethane		10	U
75-69-4	Trichlorofluromethane		10	U
75-35-4	1,1-Dichloroethene		10	U
75-15-0	Carbon Disulfide		10	U
67-64-1	Acetone		15	U
75-09-2	Methylene Chloride		10	U
540-59-0	trans 1,2-Dichloroethene		10	U
1634-04-4	Methyl-tert butyl ether		10	U
75-34-4	1,1-Dichloroethane		10	U
108-05-4	Vinyl Acetate		10	U
540-59-0	cis 1,2-Dichloroethene		110	
78-93-3	2-Butanone		10	U
67-66-3	Chloroform		10	U
71-55-6	1,1,1-Trichloroethane		10	U
56-23-5	Carbon Tetrachloride		10	U
71-43-2	Benzene		10	U
107-06-2	1,2-Dichloroethane		10	U
79-01-6	Trichloroethene		180	
78-87-5	1,2-Dichloropropane		10	U
75-27-4	Bromodichloromethane		10	U
10061-01-5	cis-1,3-Dichloropropene		10	U
108-10-1	4-Methyl-2-pentanone		10	U
108-88-3	Toluene		10	U
10061-02-6	trans-1,3-Dichloropropene		10	U
79-00-5	1,1,2-Trichloroethane		10	U
127-18-4	Tetrachloroethene		2500	Е
591-78-6	2-Hexanone		10	U
124-48-1	Dibromochloromethane		10	U
108-90-7	Chlorobenzene		10	U
100-41-4	Ethylbenzene		10	U
1330-20-7	m,p-Xylenes		10	U
1330-20-7	o-Xylene		10	U
100-42-5	Styrene		10	U
75-25-2	Bromoform		10	U
79-34-5	1,1,2,2,-Tetrachloroethane		10	U

Field Sample ID:

MW-212 Site Name: Former Speedy Cleaners _____ Contract: ____ SAS No.: ___ SDG No.: 198-01 828128 Case No.: _____ Site Code: Matrix: (soil/water) WATER Lab Sample ID: 809-198-010 Sample wt/vol: 5.0 (g/ml) ML Lab File ID: 09C1014.D Level: (low/med) LOW Date Received: 7/17/2009 % Moisture: not dec. Date Analyzed: 7/20/2009 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: Soil Extract Volume: ____ (uL) (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
95-49-8	2-Chlorotoluene)		10	U
106-43-4	4-Chlorotoluene)		10	U
541-73-1	1,3-Dichlorober	nzene		10	U
106-46-7	1,4-Dichlorober	nzene		10	U
95-50-1	1,2-Dichlorober	nzene		10	U
120-82-1	1,2,4-Trichlorob	enzene		10	U
87-61-6	1.2.3-Trichlorob	enzene		10	U

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

ole ID

Site Name:	Former	Speedy Cle	aners	Contrac	:t:		MW-21	12
Site Code:	828128 Case No.:			SAS	No.:	OG No.: 198-	01	
Matrix: (soil/v	vater)	WATER	_	I	Lab Sample	ID:	809-198-010	
Sample wt/vo	ol:	5.0	(g/ml) ML	I	Lab File ID:		09C1014.D	
Level: (low/n	ned)	LOW	_	I	Date Receiv	/ed:	7/17/2009	
% Moisture: ı	not dec.			I	Date Analyz	ed:	7/20/2009	
GC Column:	RTX-6	24 ID: 0.2	25 (mm)	I	Dilution Fac	tor:	1.0	
Soil Extract Volume: (uL)			Soil Aliquot Volume:				(uL)	
Number TICs found: 0				CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L				
CAS NO.		COMPOU	ND NAME		RT	ES	T. CONC.	Q

Field Sample ID:

MW-212

Site Name: Former Speedy Cleaners _____ Contract: ____ SAS No.: ___ SDG No.: 198-01 828128 Case No.: _____ Site Code: Matrix: (soil/water) WATER Lab Sample ID: 809-198-010DL Sample wt/vol: 5.0 (g/ml) ML Lab File ID: 09C1035.D Level: (low/med) LOW Date Received: 7/17/2009 % Moisture: not dec. Date Analyzed: 7/23/2009 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 10.0 Soil Aliquot Volume: Soil Extract Volume: ____ (uL) (uL)

		CONCENTRATIO	ON UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L	Q
75-71-8	Dichlorodifluoro	methane	100	U
75-87-3	Chloromethane		100	U
75-01-4	Vinyl Chloride		100	U
74-83-9	Bromomethane		100	U
75-00-3	Chloroethane		100	U
75-69-4	Trichloroflurome	ethane	100	U
75-35-4	1,1-Dichloroethe	ene	100	U
75-15-0	Carbon Disulfid	е	100	U
67-64-1	Acetone		150	U
75-09-2	Methylene Chlo	ride	100	U
540-59-0	trans 1,2-Dichlo	roethene	100	U
1634-04-4	Methyl-tert buty	l ether	100	U
75-34-4	1,1-Dichloroetha	ane	100	U
108-05-4	Vinyl Acetate		100	U
540-59-0	cis 1,2-Dichloro	ethene	100	U
78-93-3	2-Butanone		100	U
67-66-3	Chloroform		100	U
71-55-6	1,1,1-Trichloroe	thane	100	U
56-23-5	Carbon Tetrach	loride	100	U
71-43-2	Benzene		100	U
107-06-2	1,2-Dichloroetha	ane	100	U
79-01-6	Trichloroethene	!	100	U
78-87-5	1,2-Dichloropro	pane	100	U
75-27-4	Bromodichloron		100	U
10061-01-5	cis-1,3-Dichloro	propene	100	U
108-10-1	4-Methyl-2-pent	anone	100	U
108-88-3	Toluene		100	U
10061-02-6	trans-1,3-Dichlo	propropene	100	U
79-00-5	1,1,2-Trichloroe		100	U
127-18-4	Tetrachloroethe	ne	22000	ED
591-78-6	2-Hexanone		100	U
124-48-1	Dibromochloron	nethane	100	U
108-90-7	Chlorobenzene		100	U
100-41-4	Ethylbenzene		100	U
1330-20-7	m,p-Xylenes		100	Ü
1330-20-7	o-Xylene		100	Ü
100-42-5	Styrene		100	Ü
75-25-2	Bromoform		100	Ü
79-34-5	1,1,2,2,-Tetrach	loroethane	100	Ü

Field Sample ID:

MW-212 Site Name: Former Speedy Cleaners _____ Contract: _____ SAS No.: SDG No.: 198-01 828128 Case No.: _____ Site Code: Matrix: (soil/water) WATER Lab Sample ID: 809-198-010DL Sample wt/vol: 5.0 (g/ml) ML Lab File ID: 09C1035.D Level: (low/med) LOW Date Received: 7/17/2009 % Moisture: not dec. Date Analyzed: 7/23/2009 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 10.0 Soil Aliquot Volume: Soil Extract Volume: ____ (uL) (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
95-49-8	2-Chlorotoluene			100	U
106-43-4	4-Chlorotoluene			100	U
541-73-1	1,3-Dichloroben	zene		100	U
106-46-7	1,4-Dichloroben	1,4-Dichlorobenzene			U
95-50-1	1,2-Dichloroben	1,2-Dichlorobenzene			U
120-82-1	1,2,4-Trichlorob	enzene		100	U
87-61-6	1.2.3-Trichlorobe	enzene		100	U

Field Sample ID:

Site Name: Former Speedy Cleaners Contract:

•		Op 33.3				
Site Code:	828128		se No.:	SAS No.: S	SDG No.: 198-01	
Matrix: (soil/v	vater)	WATER	_	Lab Sample ID:	809-198-011RE	
Sample wt/vo	ol:	5.0	(g/ml) ML	Lab File ID:	09C1029.D	
Level: (low/n	ned)	LOW	_	Date Received:	7/17/2009	
% Moisture: r	not dec.			Date Analyzed:	7/23/2009	
GC Column:	RTX-6	24 ID: <u>0</u> .	25 (mm)	Dilution Factor:	1.0	
Soil Extract V	olume:		(uL)	Soil Aliquot Vol	ume:	(uL)

		CONCENTRATIO	IN CINITS.		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
75-71-8	Dichlorodifluoror	methane		10	U
75-87-3	Chloromethane			10	U
75-01-4	Vinyl Chloride			3	J
74-83-9	Bromomethane			10	U
75-00-3	Chloroethane			10	U
75-69-4	Trichloroflurome	thane		10	U
75-35-4	1,1-Dichloroethe			10	U
75-15-0	Carbon Disulfide)		10	U
67-64-1	Acetone			15	U
75-09-2	Methylene Chlor	ide		10	U
540-59-0	trans 1,2-Dichlor			10	U
1634-04-4	Methyl-tert butyl			10	U
75-34-4	1,1-Dichloroetha			10	U
108-05-4	Vinyl Acetate			10	U
540-59-0	cis 1,2-Dichloroe	ethene		12	
78-93-3	2-Butanone			10	U
67-66-3	Chloroform			10	U
71-55-6	1,1,1-Trichloroet	hane		10	U
56-23-5	Carbon Tetrachl	oride		10	U
71-43-2	Benzene			10	U
107-06-2	1,2-Dichloroetha	ine		10	U
79-01-6	Trichloroethene			1	J
78-87-5	1,2-Dichloroprop	ane		10	U
75-27-4	Bromodichlorom	ethane		10	U
10061-01-5	cis-1,3-Dichloro	oropene		10	U
108-10-1	4-Methyl-2-penta	anone		10	U
108-88-3	Toluene			10	U
10061-02-6	trans-1,3-Dichlo	ropropene		10	U
79-00-5	1,1,2-Trichloroet	hane		10	U
127-18-4	Tetrachloroether	ne		4	J
591-78-6	2-Hexanone			10	U
124-48-1	Dibromochlorom	ethane		10	U
108-90-7	Chlorobenzene			10	U
100-41-4	Ethylbenzene			10	U
1330-20-7	m,p-Xylenes			10	U
1330-20-7	o-Xylene			10	U
100-42-5	Styrene			10	U
75-25-2	Bromoform			10	U
79-34-5	1,1,2,2,-Tetrach	loroethane		10	U

Soil Extract Volume: ____ (uL)

Field Sample ID:

(uL)

MW-206 Site Name: Former Speedy Cleaners _____ Contract: ____ SAS No.: ___ SDG No.: 198-01 828128 Case No.: _____ Site Code: Matrix: (soil/water) WATER Lab Sample ID: 809-198-011RE Sample wt/vol: 5.0 (g/ml) ML Lab File ID: 09C1029.D Level: (low/med) LOW Date Received: 7/17/2009 % Moisture: not dec. Date Analyzed: 7/23/2009 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0

CONCENTRATION UNITS:

Soil Aliquot Volume:

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
95-49-8	2-Chlorotoluene)		10	U
106-43-4	4-Chlorotoluene	9		10	U
541-73-1	1,3-Dichlorober	nzene		10	U
106-46-7	1,4-Dichlorober	1,4-Dichlorobenzene			U
95-50-1	1,2-Dichlorober	1,2-Dichlorobenzene			U
120-82-1	1,2,4-Trichlorob	enzene		10	U
87-61-6	1,2,3-Trichlorob	enzene		10	U

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Field Sample ID:

Site Name:	Former	Speedy Clea	Contrac	t:		MW-20	06	
Site Code:	828128	Cas	No.: SAS N		No.:	SD	G No.: 198-	01
Matrix: (soil/w	ater)	WATER		L	ab Sample	ID: 8	809-198-011	RE
Sample wt/vo	l:	5.0	(g/ml) ML		ab File ID:	0	9C1029.D	
Level: (low/med) LC		LOW		Γ	Date Receiv	ed: <u>7</u>	7/17/2009	
% Moisture: n	ot dec.			Γ	Date Analyz	ed: <u>7</u>	7/23/2009	
GC Column: <u>RTX-624</u> ID: <u>0.2</u>			5 (mm)	m) Dilution Factor: 1.0			.0	
Soil Extract Volume: (uL)		_ (uL)	Soil Aliquot Volume:			(uL)		
Number TICs	found:	3	_	CONCENTR (ug/L or ug/K				
CAS NO.		COMPOU	ND NAME		RT	EST	CONC.	Q
1. 78		Butane, 2-r	nethyl-		6.29		5	J
2. 109		Pentane			6.78		7	J

11.32

Cyclopentane, methyl-

3. 96

1A Field Sample ID:

Site Name:	Name: Former Speedy Cleane		Contract:	WW-2065
Site Code:	828128	Case No.:	SAS No.:	SDG No.: 198-01
Matrix: (soil/	water) WA	TER	Lab Samp	le ID: 809-198-012RE

Sample wt/vol: 5.0 (g/ml) ML Lab File ID: 09C1030.D

Level: (low/med) LOW Date Received: 7/17/2009
% Moisture: not dec. Date Analyzed: 7/23/2009

GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0

Soil Extract Volume: _____ (uL) Soil Aliquot Volume: _____ (uL)

		CONCENTRATIO	IN CINITS.		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
75-71-8	Dichlorodifluoro	methane		10	U
75-87-3	Chloromethane			10	U
75-01-4	Vinyl Chloride			10	U
74-83-9	Bromomethane			10	U
75-00-3	Chloroethane			10	U
75-69-4	Trichloroflurome	thane		10	U
75-35-4	1,1-Dichloroethe			10	U
75-15-0	Carbon Disulfide	9		10	U
67-64-1	Acetone			15	U
75-09-2	Methylene Chlor	ride		10	U
540-59-0	trans 1,2-Dichlo	roethene		10	U
1634-04-4	Methyl-tert butyl	ether		10	U
75-34-4	1,1-Dichloroetha	ane		10	U
108-05-4	Vinyl Acetate			10	U
540-59-0	cis 1,2-Dichloroe	ethene		9	J
78-93-3	2-Butanone			10	U
67-66-3	Chloroform			10	U
71-55-6	1,1,1-Trichloroe	thane		10	U
56-23-5	Carbon Tetrachl	oride		10	U
71-43-2	Benzene			10	U
107-06-2	1,2-Dichloroetha	ane		10	U
79-01-6	Trichloroethene			10	U
78-87-5	1,2-Dichloroprop	oane		10	U
75-27-4	Bromodichlorom	ethane		10	U
10061-01-5	cis-1,3-Dichloro	propene		10	U
108-10-1	4-Methyl-2-pent	anone		10	U
108-88-3	Toluene			10	U
10061-02-6	trans-1,3-Dichlo	ropropene		10	U
79-00-5	1,1,2-Trichloroe	thane		10	U
127-18-4	Tetrachloroethe	ne		2	J
591-78-6	2-Hexanone			10	U
124-48-1	Dibromochlorom	nethane		10	U
108-90-7	Chlorobenzene			10	U
100-41-4	Ethylbenzene			10	U
1330-20-7	m,p-Xylenes			10	U
1330-20-7	o-Xylene			10	U
100-42-5	Styrene			10	U
75-25-2	Bromoform			10	U
79-34-5	1,1,2,2,-Tetrach	loroethane		10	U

Field Sample ID:

10

								ı M	W-206S	
Site Name:	Former \$	Speedy Cle	aners		Contrac	ct:				
Site Code:	828128	Ca	se No.:		SAS	No.:	§	SDG No.:	198-01	
Matrix: (soil/v	water)	WATER	_			Lab S	Sample ID:	809-198	3-012RE	
Sample wt/vo	ol:	5.0	(g/ml)	ML		Lab F	File ID:	09C103	0.D	
Level: (low/r	ned)	LOW	_			Date	Received:	7/17/200	09	
% Moisture:	not dec.					Date	Analyzed:	7/23/200	09	
GC Column:	RTX-6	24 ID: <u>0.2</u>	25 (mr	n)		Diluti	on Factor:	1.0		
Soil Extract \	/olume:		(uL)			Soil A	Aliquot Volu	ume:		(uL)
				CC	NCENTR	RATIC	ON UNITS:			
CAS NO).	COMP	DUND	(ug	g/L or ug/k	(g)	UG/L		Q	
95-49-	.8	2-Chl	orotoluen	е				10	U	
106-43	3-4	4-Chl	orotoluen	е				10	U	
541-73	3-1	1,3-D	ichlorobe	nzene				10	U	
106-46	6-7	1,4-D	ichlorobe	nzene				10	U	
95-50-	1	1,2-D	ichlorobe	nzene				10	U	
120-82	2-1	1,2,4-	Trichloro	benzen	е			10	U	

1,2,3-Trichlorobenzene

87-61-6

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Site Name:	Former	Speedy Clea	aners	Contrac	t:		MW-2	:06S	
Site Code:	828128		e No.:	SAS	No.:	SD	G No.: 198	3-01	
Matrix: (soil/v	vater)	WATER		l	_ab Sample	ID: 8	309-198-012	2RE	
Sample wt/vo	ol:	5.0	(g/ml) ML		_ab File ID:	(09C1030.D		
Level: (low/n	ned)	LOW		[Date Receiv	ed: 7	7/17/2009		
% Moisture: r	not dec.			I	Date Analyz	ed: 7	7/23/2009		
% Moisture: not dec. GC Column: RTX-624 ID: 0.25 (mm			5 (mm)	I	Dilution Factor: 1.0				
Soil Extract V	/olume:		_ (uL)	Soil Aliquot Volume:					(uL)
Niversham TIO	. f a	0		CONCENTR (ug/L or ug/K					
Number TICs	i Touna:	0	_						
CAS NO.		COMPOU	ND NAME		RT	ES1	Γ. CONC.	C	Ç

Field Sample ID:

MW-210

Site Name:	Former	Speedy Clea	y Cleaners Contract:				
Site Code:	828128	Cas	se No.:		SAS No.:	SDG No.: 198-01	
Matrix: (soil/w	vater)	WATER	-		Lab Sample I	D: <u>809-198-013</u>	
Sample wt/vo	ol:	5.0	(g/ml)	ML	Lab File ID:	09C1020.D	
Level: (low/m	ned)	LOW	-		Date Receive	d: <u>7/17/2009</u>	
% Moisture: r	not dec.				Date Analyze	d: <u>7/21/2009</u>	
GC Column:	RTX-6	24 ID: <u>0.2</u>	25 (m	ım)	Dilution Facto	or: 1.0	
Soil Extract V	olume:		_ (uL)		Soil Aliquot V	olume:	(uL

	`	SOM SERVING WINE)		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
75-71-8	Dichlorodifluorometl	nane		10	U
75-87-3	Chloromethane			10	U
75-01-4	Vinyl Chloride			10	U
74-83-9	Bromomethane			10	U
75-00-3	Chloroethane			10	U
75-69-4	Trichloroflurometha	ne		10	U
75-35-4	1,1-Dichloroethene			10	U
75-15-0	Carbon Disulfide			10	U
67-64-1	Acetone			15	U
75-09-2	Methylene Chloride			10	U
540-59-0	trans 1,2-Dichloroet	hene		10	U
1634-04-4	Methyl-tert butyl eth	er		10	U
75-34-4	1,1-Dichloroethane			10	U
108-05-4	Vinyl Acetate			10	U
540-59-0	cis 1,2-Dichloroethe	ne		48	
78-93-3	2-Butanone			10	U
67-66-3	Chloroform			10	U
71-55-6	1,1,1-Trichloroethan	ie		10	U
56-23-5	Carbon Tetrachlorid	е		10	U
71-43-2	Benzene			10	U
107-06-2	1,2-Dichloroethane			10	U
79-01-6	Trichloroethene			18	
78-87-5	1,2-Dichloropropane)		10	U
75-27-4	Bromodichlorometh	ane		10	U
10061-01-5	cis-1,3-Dichloroprop	ene		10	U
108-10-1	4-Methyl-2-pentano	ne		10	U
108-88-3	Toluene			10	U
10061-02-6	trans-1,3-Dichloropr	opene		10	U
79-00-5	1,1,2-Trichloroethan	ie		10	U
127-18-4	Tetrachloroethene			64	В
591-78-6	2-Hexanone			10	U
124-48-1	Dibromochlorometh	ane		10	U
108-90-7	Chlorobenzene			10	U
100-41-4	Ethylbenzene			10	U
1330-20-7	m,p-Xylenes			10	U
1330-20-7	o-Xylene			10	U
100-42-5	Styrene			10	U
75-25-2	Bromoform			10	U
79-34-5	1,1,2,2,-Tetrachloro	ethane		10	U

Field Sample ID:

MW-210 Site Name: Former Speedy Cleaners _____ Contract: ____ SAS No.: ___ SDG No.: 198-01 828128 Case No.: _____ Site Code: Matrix: (soil/water) WATER Lab Sample ID: 809-198-013 Sample wt/vol: 5.0 (g/ml) ML Lab File ID: 09C1020.D Level: (low/med) LOW Date Received: 7/17/2009 % Moisture: not dec. Date Analyzed: 7/21/2009 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: Soil Extract Volume: ____ (uL) (uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
95-49-8	2-Chlorotoluene	9		10	U
106-43-4	4-Chlorotoluene	9		10	U
541-73-1	1,3-Dichlorober	nzene		10	U
106-46-7	1,4-Dichlorober	nzene		10	U
95-50-1	1,2-Dichlorober	nzene		10	U
120-82-1	1,2,4-Trichlorob	enzene		10	U
87-61-6	1,2,3-Trichlorob	enzene		10	U

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Field Sample ID:

							BANA/ O	40
Site Name:	Former	Speedy Cle	aners	Contrac	:t:		MW-2	10
Site Code:	828128	Cas	se No.:	SAS	No.:	_ SD0	G No.: 198	-01
Matrix: (soil/water) WATER			I	Lab Sample	ID: 8	09-198-013		
Sample wt/vo	ol:	5.0	(g/ml) ML	I	Lab File ID:	0	9C1020.D	
Level: (low/m	ned)	LOW	_	I	Date Receiv	ed: 7	/17/2009	
% Moisture: r	not dec.			I	Date Analyz	ed: 7	/21/2009	
GC Column:	RTX-6	624 ID: 0.2	25_ (mm)	Ī	Dilution Fac	tor: 1	.0	
Soil Extract V	olume:		_ (uL)	;	Soil Aliquot	Volum	e:	(uL)
				CONCENTR	ATION UNI	TS:		
Number TICs	found:	0	_	(ug/L or ug/K	(g) <u>UG</u> /	Ľ.		
CAS NO.		COMPOU	ND NAME		RT	EST	. CONC.	Q

1A

Field Sample ID:

			Trip Blank
Site Name:	Former Speedy Cleaners	Contract:	

Matrix: (soil/water) WATER Lab Sample ID: 809-198-014RE Sample wt/vol: Lab File ID: 09C1031.D 5.0 (g/ml) ML Level: (low/med) LOW Date Received: 7/17/2009 % Moisture: not dec. Date Analyzed: 7/23/2009 GC Column: RTX-624 ID: 0.25 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: Soil Extract Volume: _____ (uL) (uL)

		CONCENTRATIO	ON UNITS:		
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
75-71-8	Dichlorodifluoro	methane		10	U
75-87-3	Chloromethane			10	U
75-01-4	Vinyl Chloride			10	U
74-83-9	Bromomethane			10	U
75-00-3	Chloroethane			10	U
75-69-4	Trichloroflurome	ethane		10	U
75-35-4	1,1-Dichloroeth	ene		10	U
75-15-0	Carbon Disulfid	e		10	U
67-64-1	Acetone			15	U
75-09-2	Methylene Chlo	ride		10	U
540-59-0	trans 1,2-Dichlo	roethene		10	U
1634-04-4	Methyl-tert buty	l ether		10	U
75-34-4	1,1-Dichloroeth	ane		10	U
108-05-4	Vinyl Acetate			10	U
540-59-0	cis 1,2-Dichloro	ethene		10	U
78-93-3	2-Butanone			10	U
67-66-3	Chloroform			10	U
71-55-6	1,1,1-Trichloroe	thane		10	U
56-23-5	Carbon Tetrach	loride		10	U
71-43-2	Benzene			10	U
107-06-2	1,2-Dichloroeth	ane		10	U
79-01-6	Trichloroethene)		10	U
78-87-5	1,2-Dichloropro	pane		10	U
75-27-4	Bromodichloron	nethane		10	U
10061-01-5	cis-1,3-Dichloro			10	U
108-10-1	4-Methyl-2-pen	tanone		10	U
108-88-3	Toluene			10	U
10061-02-6	trans-1,3-Dichlo	propropene		10	U
79-00-5	1,1,2-Trichloroe			10	U
127-18-4	Tetrachloroethe	ene		10	U
591-78-6	2-Hexanone			10	U
124-48-1	Dibromochloror	nethane		10	U
108-90-7	Chlorobenzene			10	U
100-41-4	Ethylbenzene			10	U
1330-20-7	m,p-Xylenes			10	U
1330-20-7	o-Xylene			10	U
100-42-5	Styrene			10	U
75-25-2	Bromoform			10	U
79-34-5	1,1,2,2,-Tetrach	loroethane		10	U

Field Sample ID:

VOLATILE ORGANICS ANALTSIS DATA STILLET								Trip Blank	
Site Name:	Former	Speedy Cle	eaners		Contra	ct:		Прышк	•
Site Code:	828128	Ca	se No.:		SAS	No.:		OG No.: 198-01	
Matrix: (soil/v	water)	WATER	_			Lab Sample	ID:	809-198-014RE	
Sample wt/vo	ol:	5.0	(g/ml)	ML	_	Lab File ID:	_	09C1031.D	
Level: (low/r	med)	LOW	_			Date Receiv	/ed:	7/17/2009	
% Moisture: ı	not dec.					Date Analyz	zed:	7/23/2009	
GC Column:	RTX-6	624 ID: <u>0.</u>	25 (m	m)		Dilution Fac	tor:	1.0	
Soil Extract \	/olume:		(uL)			Soil Aliquot	Volun	ne:	(uL)

CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/L		Q
95-49-8	2-Chlorotoluene)	1	0	U
106-43-4	4-Chlorotoluene)	1	0	U
541-73-1	1,3-Dichloroben	zene	1	0	U
106-46-7	1,4-Dichloroben	zene	1	0	U
95-50-1	1,2-Dichloroben	zene	1	0	U
120-82-1	1,2,4-Trichlorob	enzene	1	0	U
87-61-6	1,2,3-Trichlorob	enzene	1	0	U

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Field Sample ID:

		. =	,		00.100			
Site Name:	Former	Speedy Clea	aners	Contrac	t:		Trip Bla	ınk
Site Code:	828128	Cas	e No.:	SASI	No.:	SDO	3 No.: 198-	01
Matrix: (soil/w	soil/water) WATER		L	_ab Sample	ID: 8	09-198-014F	RE	
Sample wt/vo	ol:	5.0	(g/ml) ML		_ab File ID:	0	9C1031.D	
Level: (low/m	ned)	LOW		[Date Receiv	ed: 7	/17/2009	
% Moisture: r	not dec.			[Date Analyz	ed: <u>7</u>	/23/2009	
GC Column:	RTX-6	<u>0.2</u> ID: <u>0.2</u>	5 (mm)	[Dilution Fac	tor: 1	.0	
Soil Extract V	olume:		_ (uL)	5	Soil Aliquot	Volum	e:	(uL)
				CONCENTR				
Number TICs	found:	0	_	(ug/L or ug/K	(g) <u>UG/</u>	L	_	
CAS NO.		COMPOU	ND NAME		RT	EST	. CONC.	Q

APPENDIX H

NATURAL ATTENUATION SCREENING PROTOCOL FORMS

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20
Strong evidence for anaerobic biodegradation* of chlorinated organics	>20

MW-203S

Score:

ess nave no regulatory	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End of Table		
Concentration in Most Contam. Zone	* reductive dechlorination	Yes	No	Points Awarded	
<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	0	•	0	
> 5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0	
<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2	
>1 mg/L	Fe(III)-reducing conditions	0	•	0	
Ğ	pathway	0	•	0	
		0	•	0	
>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	0	•	0	
<50 millivolts (mV)	Reductive pathway possible	•	0	1	
<-100mV	Reductive pathway likely	•	0	2	
5 < pH < 9	Optimal range for reductive pathway	•	0	0	
>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0	
>20°C	At T >20°C biochemical process is accelerated	0	•	0	
>2x background	Ultimate oxidative daughter product	0	•	0	
>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0	
>2x background	Daughter product of organic chlorine	0	•	0	
>1 nM	Reductive pathway possible, VC may accumulate	0	0		
>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds: carbon and energy source	0	0		
>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0	
	Material released	•	0	0	
	Daughter product of PCE a/	0	•	0	
	Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{a/} : 1.1-DCE can be a chem, reaction product of TCA	•	0	2	
	Daughter product of DCE ^{a/}	•	0	2	
	Material released	0	0		
	u i				
>0.01 mg/L	Daughter product of VC/ethene			0	
>0.1 mg/L	Daughter product of VC/ethene			0	
	Daughter product of Carbon Tetrachloride				
	Daughter product of Chloroform				
	Concentration in Most Contam. Zone <0.5 mg/L >5mg/L <1 mg/L >1 mg/L >20 mg/L >1 mg/L >0.5 mg/L <50 millivolts (mV) <-100mV 5 < pH < 9 >20 mg/L >2x background >2x background >1 nM >0.1 mg/L >0.1 mg/L >0.1 mg/L >0.1 mg/L	Concentration in Most Contam. Zone	Strong evidence for anaerobic biodegradation* of chlorinated organics >20	Strong evidence for sinser-lobe biologinalisation* of thiorinated organics 220 Scroll to Entitle Concentration in Most Contain. Zone Interpretation Yes No	

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product

⁽i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation Score
Inadequate evidence for anaerobic biodegradation* of chlorinated organics 0 to 5

Limited evidence for anaerobic biodegradation* of chlorinated organics 6 to 14

Adequate evidence for anaerobic biodegradation* of chlorinated organics 15 to 20

MW-205S

Score:

,	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to En	d of Table
Concentration in Most Contam. Zone	* reductive dechlorination	Yes	No	Points Awarded
<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	0	•	0
> 5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
<1 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
	Fe(III)-reducing conditions	0	•	0
	pathway	0	•	0
>1 mg/L	Reductive pathway possible	0	•	0
>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	0	•	0
<50 millivolts (mV)	Reductive pathway possible	•	0	1
<-100mV	Reductive pathway likely	•	0	2
5 < pH < 9	Optimal range for reductive pathway	•	0	0
>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
>20°C	At T >20°C biochemical process is accelerated	0	•	0
>2x background	Ultimate oxidative daughter product	0	•	0
>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
>2x background	Daughter product of organic chlorine	•	0	2
>1 nM	Reductive pathway possible, VC may accumulate	0	0	
	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	
>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
	Material released	•	0	0
	Daughter product of PCE a/	0	•	0
	Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{a/} ; 1,1-DCE can be a chem. reaction product of TCA	•	0	2
	Daughter product of DCE ^{a/}	•	0	2
	Material released	0	0	
				0
>0.1 mg/L				0
	Daughter product of Carbon Tetrachloride			
	Daughter product of Chloroform			
	Nost Contam. Zone <0.5 mg/L > 5mg/L <1 mg/L >1 mg/L <20 mg/L >1 mg/L >0.5 mg/L <50 millivolts (mV) <-100mV 5 < pH < 9 >20 mg/L >20 °C >2x background >2x background >1 nM >0.1 mg/L >0.1 mg/L >0.1 mg/L >0.1 mg/L >0.1 mg/L >0.5 mg/L >0.1 mg/L >0.1 mg/L >0.1 mg/L >0.1 mg/L >0.5 mg/L >0.5 mg/L >0.1 mg/L >0.1 mg/L >0.1 mg/L >0.1 mg/L >0.1 mg/L >0.5 mg/L >0.5 mg/L >0.1 m	Concentration in Most Contam. Zone Concentration Interpretation	Concentration in Interpretation Yes	Concentration in Most Contain. Zone Interpretation Yes No

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product

⁽i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20
	. 20

Score: 8

MW-206

The results of this scoring proce	ess have no regulatory	Adequate evidence for anaerobic biodegradation of chilomitated organics	10 to 20		
significance.	soo navo no rogulatory	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	d of Table
Analysis	Concentration in Most Contam. Zone	* reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	0	•	0
	> 5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	•	0	3
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
Sulfide*	>1 mg/L	Reductive pathway possible	0	•	0
Methane*	>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	0	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	•	0	1
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	0
pH*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride*	>2x background	Daughter product of organic chlorine	0	•	0
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	•	0	0
TCE*		Daughter product of PCE a/	0	•	0
DCE*		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{a/} ; 1,1-DCE can be a chem. reaction product of TCA	•	0	2
VC*		Daughter product of DCE ^{a/}	0	•	0
1,1,1- Trichloroethane*		Material released	0	0	
DCA		Daughter product of TCA under reducing conditions			
Carbon Tetrachloride		Material released			
Chloroethane*		Daughter product of DCA or VC under reducing conditions			
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene			0
	>0.1 mg/L	Daughter product of VC/ethene			0
Chloroform		Daughter product of Carbon Tetrachloride			
Dichloromethane		Daughter product of Chloroform			
* required analysis					ļ

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product

⁽i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20
Strong evidence for anaerobic biodegradation* of chlorinated organics	>20

MW-211

Score:

oll to End of Table

9

	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to End	d of Table
Concentration in Most Contam. Zone	* reductive dechlorination Interpretation	Yes	No	Points Awarded
<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	0	•	0
> 5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
>1 mg/L	Fe(III)-reducing conditions	0	•	0
	pathway	0	•	0
>1 mg/L	Reductive pathway possible	0	•	0
>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	0	•	0
	Reductive pathway possible	•	0	1
	Reductive pathway likely	0	•	0
5 < pH < 9	Optimal range for reductive pathway	•	0	0
>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
>20°C	At T >20°C biochemical process is accelerated	0	•	0
>2x background	Ultimate oxidative daughter product	0	•	0
>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
>2x background	Daughter product of organic chlorine	0	•	0
>1 nM	Reductive pathway possible, VC may accumulate	0	0	
>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	
>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
	Material released	•	0	0
	Daughter product of PCE a/	•	0	2
	Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{a/} ; 1,1-DCE can be a chem. reaction product of TCA	•	0	2
	Daughter product of DCE ^{a/}	•	0	2
	Material released	0	0	
	Daughter product of TCA under reducing conditions			
	Material released			
	Daughter product of DCA or VC under reducing conditions			
>0.01 mg/L	Daughter product of VC/ethene			0
>0.1 mg/L	Daughter product of VC/ethene			0
	Daughter product of Carbon Tetrachloride			
	Daughter product of Chloroform			
	Nost Contam. Zone <0.5 mg/L > 5mg/L <1 mg/L >1 mg/L <20 mg/L >1 mg/L >0.5 mg/L <50 millivolts (mV) <-100mV 5 < pH < 9 >20 mg/L >20°C >2x background >2x background >1 nM >0.1 mg/L >	Concentration in Most Contam. Zone	Concentration in Interpretation Yes	Concentration in Most Contain. Zone

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product

⁽i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20
Strong evidence for anaerobic biodegradation* of chlorinated organics	>20

MW-212

Score: 11

roll to End of Table

* reductive dechlorination Concentration in **Points** Analysis Most Contam. Zone No Interpretation Yes Awarded Oxygen* <0.5 mg/L Tolerated, suppresses the reductive pathway at higher \bigcirc 3 • > 5mg/L Not tolerated; however, VC may be oxidized aerobically 0 \bigcirc (Nitrate* <1 mg/L At higher concentrations may compete with reductive 2 0 • Iron II* >1 mg/L Reductive pathway possible; VC may be oxidized under n \bigcirc O Fe(III)-reducing conditions Sulfate* <20 mg/L At higher concentrations may compete with reductive 0 0 \odot pathway Sulfide* >1 mg/L Reductive pathway possible 0 0 (Methane* >0.5 mg/L Ultimate reductive daughter product, VC Accumulates 0 0 • Oxidation <50 millivolts (mV) Reductive pathway possible 0 \bigcirc O Reduction Potential* (ORP) <-100mV Reductive pathway likely O 0 (*Ha 5 < pH < 9Optimal range for reductive pathway 0 • 0 Carbon and energy source; drives dechlorination; can be TOC >20 mg/L 0 \bigcirc natural or anthropogenic Temperature* >20°C At T >20°C biochemical process is accelerated 0 0 • Carbon Dioxide Ultimate oxidative daughter product 0 >2x background 0 • Alkalinity >2x background Results from interaction of carbon dioxide with aquifer 0 0 • Chloride* >2x background Daughter product of organic chlorine 2 (\bigcirc >1 nM Reductive pathway possible, VC may accumulate Hydrogen \bigcirc 0 Volatile Fatty Acids >0.1 mg/L Intermediates resulting from biodegradation of aromatic 0 0 compounds; carbon and energy source BTEX* >0.1 mg/L Carbon and energy source; drives dechlorination 0 \odot \bigcirc PCE* Material released 0 • 0 TCE* Daughter product of PCE a 2 0 (DCE* Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter • 0 2 product of TCE^{a/}; 1,1-DCE can be a chem. reaction product of TCA VC* Daughter product of DCE^{a/} 0 \bigcirc • 1,1,1-Material released 0 0 Trichloroethane* DCA Daughter product of TCA under reducing conditions Carbon Material released Tetrachloride Chloroethane³ Daughter product of DCA or VC under reducing conditions Ethene/Ethane >0.01 mg/L Daughter product of VC/ethene 0 Daughter product of VC/ethene >0.1 mg/L 0 Chloroform Daughter product of Carbon Tetrachloride Dichloromethane Daughter product of Chloroform

^{*} required analysis.

a/Points awarded only if it can be shown that the compound is a daughter product

⁽i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20
	00

Score: 14

HA-114

The results of this scoring proce	ess have no regulatory	Adequate evidence for anaerobic biodegradation of chilomitated organics	13 to 20		
significance.	osci navo no regulatory	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to En	d of Table
Analysis	Concentration in Most Contam. Zone	* reductive dechlorination	Yes	No	Points Awarded
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	0	•	0
	> 5mg/L	Not tolerated; however, VC may be oxidized aerobically	•	0	-3
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	0	•	0
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
Sulfide*	>1 mg/L	Reductive pathway possible	0	•	0
Methane*	>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	0	•	0
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	•	0	1
Potential* (ORP)	<-100mV	Reductive pathway likely	•	0	2
рН*	5 < pH < 9	Optimal range for reductive pathway	•	0	0
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
Chloride*	>2x background	Daughter product of organic chlorine	•	0	2
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0	
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
PCE*		Material released	•	0	0
TCE*		Daughter product of PCE a/	•	0	2
DCE*		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{a/} ; 1,1-DCE can be a chem. reaction product of TCA	•	0	2
VC*		Daughter product of DCE ^{a/}	•	0	2
1,1,1- Trichloroethane*		Material released	0	0	
DCA		Daughter product of TCA under reducing conditions		\longrightarrow	
Carbon Tetrachloride		Material released			
Chloroethane*		Daughter product of DCA or VC under reducing conditions			
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene			2
	>0.1 mg/L	Daughter product of VC/ethene			0
Chloroform		Daughter product of Carbon Tetrachloride			
Dichloromethane		Daughter product of Chloroform			
* required analysis					

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product

⁽i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory similifycapce.

Interpretation	Score
Inadequate evidence for anaerobic biodegradation [⋆] of chlorinated organics	0 to 5
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20
	00

HA-119

Score:

14

				d of Table
Concentration in Most Contam. Zone	* reductive dechlorination	Yes	No	Points Awarded
<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	•	0	3
> 5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	0	
<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	0	•	0
<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
>1 mg/L	Reductive pathway possible	0	•	0
>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	0	•	0
<50 millivolts (mV)	Reductive pathway possible	•	0	1
<-100mV	Reductive pathway likely	•	0	2
5 < pH < 9	Optimal range for reductive pathway	•	0	0
>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
>20°C	At T >20°C biochemical process is accelerated	0	•	0
>2x background	Ultimate oxidative daughter product	0	•	0
>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
>2x background	Daughter product of organic chlorine	0	•	0
>1 nM	Reductive pathway possible, VC may accumulate	0	0	
>0.1 mg/L	Intermediates resulting from biodegradation of aromatic	0	0	
>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
	Material released	•	0	0
	Daughter product of PCE a/	•	0	2
	Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{a/} ; 1,1-DCE can be a chem. reaction product of TCA	•	0	2
	Daughter product of DCE ^{a/}	•	0	2
	Material released	0	0	
	Daughter product of DCA or VC under reducing conditions			
>0.01 mg/L	Daughter product of VC/ethene			0
>0.1 mg/L	Daughter product of VC/ethene			0
	Daughter product of Carbon Tetrachloride			
	Daughter product of Chloroform			
	Most Contam. Zone <0.5 mg/L > 5mg/L <1 mg/L >1 mg/L <20 mg/L >1 mg/L >0.5 mg/L <50 millivolts (mV) <-100mV 5 < pH < 9 >20 mg/L >20 °C >2x background >2x background >1 nM >0.1 mg/L >0.1 mg/L >0.1 mg/L >0.1 mg/L >0.1 mg/L >0.1 mg/L >0.1 mg/L >0.01 mg/L	Co.5 mg/L Tolerated, suppresses the reductive pathway at higher concentrations	Most Contam. Zone	Most Contam. Zone

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998).
The results of this scoring process have no regulatory

Interpretation	Score
Inadequate evidence for anaerobic biodegradation* of chlorinated organics	0 to 5
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20
Strong evidence for anaerohic biodegradation* of chlorinated organics	>20

MW-201 Score:

9

The results of this scoring process have no regulatory significance.		Strong evidence for anaerobic biodegradation* of chlorinated organics	>20 Scroll to Er		d of Table	
Analysis	Concentration in Most Contam. Zone	* reductive dechlorination Interpretation	Yes	No	Points Awarded	
Oxygen*	<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	0	•	0	
	> 5mg/L	Not tolerated; however, VC may be oxidized aerobically	•	0	-3	
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2	
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions	•	0	3	
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0	
Sulfide*	>1 mg/L	Reductive pathway possible	0	•	0	
Methane*	>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	0	•	0	
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	•	0	1	
Potential* (ORP)	<-100mV	Reductive pathway likely	0	•	0	
pH*	5 < pH < 9	Optimal range for reductive pathway	•	0	0	
TOC	>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0	
Temperature*	>20°C	At T >20°C biochemical process is accelerated	0	•	0	
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	0	•	0	
Alkalinity	>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0	
Chloride*	>2x background	Daughter product of organic chlorine	0	•	0	
Hydrogen	>1 nM	Reductive pathway possible, VC may accumulate	0	0		
Volatile Fatty Acids	>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0		
BTEX*	>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0	
PCE*		Material released	•	0	0	
TCE*		Daughter product of PCE a/	•	0	2	
DCE*		Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{al} ; 1,1-DCE can be a chem. reaction product of TCA	•	0	2	
VC*		Daughter product of DCE ^{a/}	•	0	2	
1,1,1- Trichloroethane*		Material released	0	0		
DCA		Daughter product of TCA under reducing conditions				
Carbon Tetrachloride		Material released				
Chloroethane*		Daughter product of DCA or VC under reducing conditions				
Ethene/Ethane	>0.01 mg/L	Daughter product of VC/ethene			0	
	>0.1 mg/L	Daughter product of VC/ethene			0	
Chloroform		Daughter product of Carbon Tetrachloride				
Dichloromethane		Daughter product of Chloroform				
* required analysis			•	•	•	

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

The following is taken from the USEPA protocol (USEPA, 1998). The results of this scoring process have no regulatory significance.

Interpretation	Score
Inadequate evidence for anaerobic biodegradation [⋆] of chlorinated organics	0 to 5
Limited evidence for anaerobic biodegradation* of chlorinated organics	6 to 14
Adequate evidence for anaerobic biodegradation* of chlorinated organics	15 to 20
Strong avidence for anaerabic hisdegradation* of ablarinated organics	>20

MW-201I 10

Score:

ess nave no regulatory	Strong evidence for anaerobic biodegradation* of chlorinated organics	>20	Scroll to En	d of Table
Concentration in Most Contam. Zone	* reductive dechlorination	Yes	No	Points Awarded
<0.5 mg/L	Tolerated, suppresses the reductive pathway at higher concentrations	•	0	3
> 5mg/L	Not tolerated; however, VC may be oxidized aerobically	0	•	0
<1 mg/L	At higher concentrations may compete with reductive pathway	•	0	2
>1 mg/L	Fe(III)-reducing conditions	0	•	0
<20 mg/L	At higher concentrations may compete with reductive pathway	0	•	0
	Reductive pathway possible	0	•	0
>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	0	•	0
<50 millivolts (mV)	Reductive pathway possible	•	0	1
<-100mV	Reductive pathway likely	•	0	2
5 < pH < 9	Optimal range for reductive pathway	•	0	0
>20 mg/L	Carbon and energy source; drives dechlorination; can be natural or anthropogenic	0	•	0
>20°C	At T >20°C biochemical process is accelerated	0	•	0
>2x background	Ultimate oxidative daughter product	0	•	0
>2x background	Results from interaction of carbon dioxide with aquifer minerals	0	•	0
>2x background	Daughter product of organic chlorine	•	0	2
>1 nM	Reductive pathway possible, VC may accumulate	0	0	
>0.1 mg/L	Intermediates resulting from biodegradation of aromatic compounds; carbon and energy source	0	0	
>0.1 mg/L	Carbon and energy source; drives dechlorination	0	•	0
	Material released	•	0	0
	Daughter product of PCE a/	0	•	0
	Daughter product of TCE. If cis is greater than 80% of total DCE it is likely a daughter product of TCE ^{a/} ; 1,1-DCE can be a chem. reaction product of TCA	0	•	0
	Daughter product of DCE ^{a/}	0	•	0
	Material released	0	0	
	g ,			
>0.01 mg/L	Daughter product of VC/ethene			0
>0.1 mg/L	Daughter product of VC/ethene			0
	Daughter product of Carbon Tetrachloride			
	Daughter product of Chloroform			
	Nost Contam. Zone <0.5 mg/L > 5mg/L <1 mg/L >1 mg/L <20 mg/L >1 mg/L >0.5 mg/L <50 millivolts (mV) <-100mV 5 < pH < 9 >20 mg/L >20 °C >2x background >2x background >1 nM >0.1 mg/L	Concentration in Most Contam. Zone - 0.5 mg/L - Tolerated, suppresses the reductive pathway at higher concentrations - 5 mg/L - Not tolerated; however, VC may be oxidized aerobically - At higher concentrations may compete with reductive pathway - 1 mg/L - Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions - 20 mg/L - At higher concentrations may compete with reductive pathway - 1 mg/L - Reductive pathway possible; VC may be oxidized under Fe(III)-reducing conditions and compatible of the pathway - 1 mg/L - Reductive pathway possible 10 mg/L	Concentration in Most Contam. Zone	Concentration in Most Contam. Zone

^{*} required analysis.

a/ Points awarded only if it can be shown that the compound is a daughter product

⁽i.e., not a constituent of the source NAPL).

APPENDIX I

COST BACKUP

Alternative 2 - No Further Action with Site Management

Prepared By/Date: JDW 1/6/2010 Checked By/Date: KLS 01/12/2010

Checked By/Dat	e: KLS 01/12/2010		_	1	1		ı			1		
ask	Description	Quantity	Unit of Measure		erial Unit Cost	La	abor Unit Cost		uipment nit Cost	Ext	tended Cost	Comments/ Assumptions
CAPITAL COS	1	Quantity	Cint of Measure		Cost		Cost	0.	nt Cost	LA	chaca Cost	Comments/ Assumptions
nstitutional Co												
	2037 Overnight Delivery, 8 oz Letter	4	EA	\$	14.43	\$	-	\$	_	\$	57.72	RSMeans 2004 ECHOS
	0102 Project Manager		HR	\$	-	\$	51.77		-	\$		RACER 2007
	0105 Project Engineer		HR	\$	_	\$	50.20		-	\$		RACER 2007
33220	0106 Staff Engineer	40	HR	\$	_	\$	43.93	\$	-	\$	1,757.20	RACER 2007
	0110 QA/QC Officer	16	HR	\$	-	\$	42.34	\$	-	\$	677.44	RACER 2007
33220	0114 Word Processing/Clerical	40	HR	\$	-	\$	22.35	\$	-	\$	894.00	RACER 2007
33220	0115 Draftsman/CADD	40	HR	\$	-	\$	29.22	\$	-	\$	1,168.80	RACER 2007
33220	0120 Computer Data Entry	40	HR	\$	-	\$	20.08	\$	-	\$		RACER 2007
33220	0505 Attorney, Senior Associate, Real	4	HR	\$	-	\$	175.00	\$	-	\$	700.00	RACER 2007
	Estate											
33220	0509 Paralegal, Real Estate	4	HR	\$	-	\$	100.00	\$	-	\$	400.00	RACER 2007
33240	0101 Other Direct Costs	1	LS	\$	751.16	\$	-	\$	-	\$	751.16	RACER 2007
99041	205 Portable GPS Set with Mapping,	1	MO	\$	689.22	\$	-	\$	-	\$	689.22	RACER 2007
	5 cm Accuracy											RACER 2007
99130	0602 Local Fees	1	LS	\$	200.00	\$	-	\$	-	\$	200.00	RACER 2007
	Т	ask Subtotal								\$	9,931.06	
•	E ANNUAL AND DEDUCADE COSTS											
	E ANNUAL AND PERIODIC COSTS											
	ional Control Inspections and Reporting	,	HR	ď		ø	90.00	ď	25.00	¢	460.00	RACER 2006
MACTEC	*			\$ \$	-	\$ \$				\$ \$		RACER 2006 RACER 2006
MACTEC	Report Task Subtotal		LS	3	-	Þ	1,000.00	Э	-	\$ \$	1,000.00	RACER 2000
	Task Subtotal									Þ	1,400.00	
ong-Term Mo	onitoring for Natural Attenuation (per sampl	ing event - 8	wells)									
Groundwater	Monitoring											
33010102	Van Rental	3	DAY	\$	44.61	\$	-	\$	-	\$	133.83	
33220112	Field Technician	30	HR	\$	11.01	\$	40.57	\$	-	\$	1,547.63	1 person 3 days (includes per diem)
33231189	DOT steel drums, 55 gal., open, 17C	1	EA	\$	97.66					\$	97.66	
33021509	Monitor well sampling equipment, rental, water quality testing parameter device rental	1	WK	\$	264.04	\$	-	\$	-	\$	264.04	
33020401	Disposable Materials per Sample	8	EA	\$	9.74	\$	-	\$	-	\$	77.93	
33020402	Decontamination Materials per	8	S EA	\$	8.22	\$	-	\$	-	\$	65.78	
33232407	· •	8	EA	\$	11.15	\$	-	\$	-	\$	89.22	
33021618	, ,	9	EA	\$	245.42	\$	-	\$	-	\$	2,208.79	Includes additional 10% for QC
	(624, 8260B)											
	Т	ask Subtotal								\$	4,484.87	

NYSDEC – Site No. 828128

MACTEC Engineering and Consulting, P.C., Project No. 3612082109

Alternative 2 - No Further Action with Site Management

Prepared By/Date: JDW 1/6/2010 Checked By/Date: KLS 01/12/2010

Task	Description	Quantity	Unit of Measure	Material Unit Cost	L	abor Unit Cost	Equipment Unit Cost	Extended Cost	Comments/ Assumptions
Annual Reporting 95010102	Annual Report	1 nsk Subtotal	LS	\$ -	\$	4,000.00	\$ -	\$ 4,000.00 \$ 4,000.00	Including bioremediation evaluation

PRESENT VALUE OF ANNUAL AND PERIODIC COSTS FOR ALTERNATIVE 2 (No Further Action with Site Management)

		Number of Annual	Annual Discount	Number of 2-Year	2-Year Discount	Number of 4-Year	4-Year Discount	Total Non- Discounted	Present Value
Year	Cost*	Periods	Rate	Periods	Rate	Periods	Rate	Cost	Cost
Capital (Year 0)	\$ 19,000	1	0	NA	NA	NA	NA	\$ 19,000.00	\$ 19,000.00
Quarterly Monitoring (Years 1-2)	\$ 23,000	2	0.05	NA	NA	NA	NA	\$ 46,000.00	\$ 42,766.44
Semi-Annual Monitoring (Years 3-4)	\$ 12,000	2	0.05	1	0.1025	NA	NA	\$ 24,000.00	\$ 20,238.48
Annual Monitoring (Years 5-30)	\$ 6,000	26	0.05	NA	NA	1	0.215506	\$ 156,000.00	\$ 70,959.00
Annual Institutional Control Inspections and Reporting (Years 1-30)	\$ 2,000	30	0.05	NA	NA	NA	NA	\$ 60,000.00	\$ 30,744.90
Annual Long Term Monitoring Reporting (Years 1-30)	\$ 5,000	30	0.05	NA	NA	NA	NA	\$ 150,000.00	\$ 76,862.26
Totals								\$ 455,000.00	\$ 260,571.08

^{*}Annual and periodic costs include 10% for technical support and 15% contingency for unforeseen project complexities, including insurance, taxes, and licensing costs. Capital costs include 15% contingency, as well as project management, remedial design, and construction management costs per DER-10 guidance. Discount rate of 5% (for 30-years) percent based on NYSDEC PRAP Outline / Instructions.

Prepared By/Date: JDW 1/6/2010
Checked By/Date: KLS 01/12/2010

		Unit of	Ma	teiral Unit				luipment			
ask	Description	Quantity Measure		Cost	Labo	or Unit Cost	U	nit Cost	Ext	tended Cost	Comments/ Assumptions
CAPITAI	COSTS										
re-Desig	n Investigation										
Subsu	rface Soil, Soil Vapor and GW Sampling (five loca	tions, 2 soil, 1 water, 1 vapo	r at each	location + 2	in build	ding)					
	33220112 Field Technician	50 HR	\$	11.01		40.57	\$	-	\$	2,579.38	2 days soil/GW sampling, 1 day vapor, 2 days survey
	33010102 Van Rental	5 DAY	\$	44.61	\$	-	\$	-	\$	223.04	
	33010101 Mobilize/DeMobilize Drilling Rig	1 LS	\$	-	\$	1,574.76	\$	1,124.22	\$	2,698.98	
	& Crew										
	33231101 Hollow stem auger, 8" diameter Borehole, Depth <= 100'	75 LF	\$	-	\$	12.11	\$	22.69	\$	2,610.11	5 borings to 15'
	33231178 Move Rig/Equipment Around Site	5 EA	\$	68.11	\$	226.37	\$	161.60	\$	2,280.41	
	33231813 Portland Cement Grout	75 LF	\$	11.34	•		•		\$	850.33	
	33170808 Decontaminate Rig, Augers,	75 LF 1 DAY	\$	20.45			\$ \$	-	\$	634.98	
	Screen (Rental Equipment)					014.55		-			
	33020605 Screw augers, hand auger rental	2 DAY	\$	74.25		-	\$	-	\$	148.50	
	33021618 Volatile Organic Analysis (EPA 624) (624, 8260B)	16 EA	\$	170.30	\$	-	\$	-	\$	2,724.76	15 plus 1 QAQC
	Lab Quote TO-15 VOC analysis for Vapor	8 EA	\$	235.00	\$	-	\$	-	\$	1,880.00	7 plus 1 for QAQC
	33231189 DOT steel drums, 55 gal., open,	3 EA	\$	93.90	\$	-	\$	-	\$	281.70	
	20836142 Load soil into 55 gal drums	3 EA	\$	-	\$	34.00	\$	-	\$	102.00	
	33190303 Transport/Dispose (non-haz)	3 EA	\$	296.51	\$	-	\$	-	\$	889.52	
Survey	ying										
	33029903 Ground penetrating radar	1 DAY	\$	1,538.68	\$	-	\$	-	\$	1,538.68	
	99041201 Surveying - 2-man Crew	2 DAY	\$	-	\$	1,164.79	\$	279.35	\$	2,888.28	
	Task Subtotal	1				,			\$	22,330.68	
E / Air	Sparge Pilot Test									,	
Wells											2 SVE wells to 8 feet, 2 AS well to 20, 2 monitoring pts to 10 f
***************************************	33220112 Field Technician	70 HR	\$	11.01	\$	40.57	\$		\$	3,611.14	
	33010102 Van Rental	7 DAY	\$	44.61		-0.57	\$		\$	312.26	5 days
	33010102 Vali Relitar 33010101 Mobilize/DeMobilize Drilling Rig	1 LS	\$		\$	1,574.76		1,124.22	\$	2,698.98	
	& Crew					1,574.70		ŕ			
	33020303 Organic Vapor Analyzer Rental, per Day	5 DAY	\$	140.36	\$	-	\$	-	\$	701.82	
	33021618 Volatile Organic Analysis (EPA 624) (624, 8260B)	4 EA	\$	245.42	\$	-	\$	-	\$	981.68	one water one soil at AS wells
	Lab Quote TO-15 VOC analysis for Vapor	4 EA	\$	235.00	\$	-	\$	-	\$	940.00	1 at each SVE well & monitoring well
	33231101 Hollow Stem Auger, 8" Dia Borehole, Depth <=100 ft	90 LF	\$	-	\$	7.43	\$	35.45	\$	3,859.34	Č
	33231178 Move Rig/Equipment Around Site	6 EA	\$	68.11	\$	226.37	\$	161.60	\$	2,736.49	
	33170808 Decontaminate Rig, Augers,	5 DAY	\$	20.45	\$	614.53	\$	-	\$	3,174.90	
	Screen (Rental Equipment) 33230102 4" PVC, Schedule 40, Well	40 LF	\$	3.06	\$	3.93	\$	11.77	\$	750.28	4" for SVE & Air Sparge
	Casing 33230202 4" PVC, Schedule 40, Well	20 LF	\$	6.87	\$	5.26	\$	15.78	\$	558.31	
	Screen										
	33230302 4" PVC, Well Plug	4 EA	\$	26.63	\$	5.65	\$	17.26	\$	198.14	
	33231402 4" Screen, Filter Pack	20 LF	\$	5.98	\$	3.93	\$	11.78	\$	433.80	
	33231812 4" Well, Portland Cement Grout	40 LF	\$	1.89	\$	-	\$	-	\$	75.58	
	33232102 4" Well, Bentonite Seal	4 EA	\$	24.62	\$	22.11	\$	66.23	\$	451.84	
	33230101 2" PVC, Schedule 40, Well	10 LF	\$	1.33		2.72		7.73	\$	117.90	2" for monitoring pts
	Casing										
	33230201 2" PVC, Schedule 40. Well	20 LF	\$	3.10	\$	3.50	\$	9.97	\$	331.32	
	33230201 2" PVC, Schedule 40, Well Screen	20 LF	\$	3.10	\$	3.50	\$	9.97	\$	331.32	

Checked By/Date	: KLS 01/12/2010	Uni	t of	Mateiral U	nit I		F	quipment	1		
Task	Description	Quantity Mea		Cost		Labor Unit Cost		Jnit Cost	E	xtended Cost	Comments/ Assumptions
	01 2" Screen, Filter Pack	20 LF					\$	6.57		247.16	Comments, Assumptions
	311 2" Well, Portland Cement Grout	10 LF			.30		\$	-	\$	12.98	
	01 2" Well, Bentonite Seal	2 EA			0.33			26.08		91.12	
	205 Well Vault for equipment	4 EA			.69					17,674.62	
	203 8'X7.5" Manhole Cover	2 EA		-,	.73			144.90	\$	486.87	
	89 DOT steel drums, 55 gal., open,	5 EA			.73		\$	144.90	\$	469.51	
	42 Load soil into 55 gal drums	5 EA		\$ 2.		\$ 34.00	\$	-	\$	170.01	
	203 Transport/Dispose (non-haz)	5 EA		Ψ	5.51		\$	-	э \$	1,482.54	
		J EA		\$ 290		J -	Ф	-	Ф	1,462.34	
	onents/Equipment 30 4" PVC, Schedule 80,	50 LF		\$ 2	.89	\$ 6.13	\$		\$	450.96	Piping above ground for pilot test
332004		30 LF		Φ .	09	\$ 0.15	Ф	-	Ф	430.90	riping above ground for phot test
222604	Connection Piping	10 I E		¢ ,	05	¢ 10.24	Φ		ø	122.00	
332604	60 4" PVC, Schedule 80, Manifold	10 LF		\$.05	\$ 10.34	Э	-	\$	133.90	
222701	Piping	2.54		¢ 2	0.5	¢.	ф		¢.	65.56	
	26 4" PVC, Schedule 80, Tee	3 EA			.85		\$	-	\$	65.56	
332/01	36 4" PVC, Schedule 80, 90	3 EA		\$ 15	.60	\$ -	\$	-	\$	46.81	
	Degree, Elbow										
	41 4" PVC, Sch 80, Ball Valve	3 EA			3.39	•	\$	-	\$	925.17	
	09 Pressure Gauges	3 EA			.38		\$	-	\$	455.56	
331323	33 5 HP, 90 SCFM Vapor Extraction	2 MO		\$	-	\$ -	\$	1,478.07	\$	2,956.15	Rent 2 units (one for SVE and one for AS)
	Blower (Rental) - 2 units										
331319	08 Carbon Adsorption - 250CFM,	1 EA		\$ 2,753	.28	\$ 278.00	\$	-	\$	3,031.28	Will need 2nd one for full scale
	400 lbs										
	09 Pressure Gauges	2 EA			.38			-	\$	303.71	
	43 Knockout Drum	1 EA		\$		\$ -	\$	93.90		93.90	Need 2nd one for full scale
331320	01 Carbon Adsorption (Liquids) - 5 gpm	1 EA		\$ 573	.84	\$ 80.50	\$	-	\$	654.34	Need 2nd one for full scale
	DOT disposable drum										
Assum	ned Miscellaneous parts	1 EA		\$ 5,790	.37	\$ -	\$	-	\$	5,796.37	
	Task Subtotal								\$	57,526.64	
FULL SCALE											
	tilities (assume up to two months for drilling	, trenching, syste									
	01 Temporary Office 20' x 8'	2.00	MO			\$ -	\$	-	\$		RSMeans 2004 ECHOS
	01 Temporary Storage Trailer 16' x 8'	2.00	MO).72		\$				RSMeans 2004 ECHOS
	01 Portable Toilets	2.00	MO		2.65		\$		\$		RSMeans 2004 ECHOS
01510.050.00	40 Temporary Power Service, overhead feed,	2.00	EA	\$ 743	5.00	\$ 335.00	\$	-	\$	2,160.00	RSMeans Site Work & Landscape Cost Data 2006
	3 use, 200 amp										
	40 Telephone utility fee	2.00	MO		0.00		\$		Ψ		RSMeans Site Work & Landscape Cost Data 2006
MACT	EC Electrical utility fee	2.00	MO	\$ 200	0.00	\$ -	\$	-	\$	400.00	
01520.550.01	00 Field office expenses, office equipment	2.00	MO	\$ 14:	00.5	\$ -	\$	-	\$	290.00	RSMeans Site Work & Landscape Cost Data 2006
	rental, average										
01560.250.02	00 Rented chain link, 6' high, to 1,000'	1000	LF	\$	3.03	\$ 1.10	\$	-	\$	4,130.00	RSMeans Site Work & Landscape Cost Data 2006
02220.350.07	25 Dumpster, weekly rental, 1 dump/week	8 WK		\$ 420	0.00	\$ -	\$	-	\$	3,360.00	RSMeans Site Work & Landscape Cost Data 2006
	, 20 cy capacity (8 tons)										
Decontaminat	ion Facility										
332904	01 25 gpm, 1-1/2" discharge, cast iron sump p	1	EA	\$	- :	\$ -	\$	2,317.00	\$	2,317.00	
	'04 50' Flexible, Product Discharge Hose	1	EA	\$	- :	\$ -	\$	175.00	\$	175.00	
02060.150.0	030 3/4" crushed stone borrow, spread w/	56	CY	\$ 2	.50	\$ 1.43	\$	3.12	\$	1,780.56	
	200 HP dozer, no compaction, 2 mi rt haul										
02315.310.5	510 Compaction, General, riding vibrating	56	ECY	\$	- :	\$ 0.16	\$	0.16	\$	17.78	
	roller, 12" lifts, 4 passes										
33085	44 60-mil Polymeric Liner, Very Low Density	167	SF	\$.97	\$ -			\$	328.33	
	34 16 oz/sy nonwoven geotextile	167	SY			\$ -			\$	398.33	
	14 1,800 psi pressure washer, 6HP,	1	EA	\$		\$ -	\$	1,635.00		1,635.00	
551700	4.8 gpm	•		7		7	Ψ	-,055.00	Ψ	1,000.00	
190406	505 2,000 gal steel sump, aboveground w/	1	EA	\$ 2.23	.00	\$ 853.69	\$	123.26	\$	3,209.95	
1,0400	supports and fittings	•		. 2,23		. 000.07	4	- 20.20	~	2,207.75	
1	supports and fittings										

				nit of	M	ateiral Unit		**		quipment		
sk		Description	Quantity N			Cost		oor Unit Cost		nit Cost	Extended Cost	F
	33170823	Operation of pressure washer, including	8	HR	\$	-	\$	-	\$	41.69	\$ 333.52	2
	22410101	water, soap, electricity, and labor	,	Ε.	•		Ф		¢.	421.15	¢ 421.1	_
		Pump and motor maintenance/repair	1	EA	\$	-	\$	-	\$	431.15	\$ 431.1:	
Erosi		liment Control Measures	500 T	г	•	0.70	Ф	1.41	ф		¢ 1.055.04	DGM 2004 EGHOG 1 1
	18050206	6 Filter Barrier, Silt Fences, Vinyl, 3' High	500 L	F	\$	0.70	\$	1.41	\$	-	\$ 1,055.00	RSMeans 2004 ECHOS, around work area
7 17	F	with 7.5' Posts										
•		on and Air Sparging Wells										
SVE		ells (10 additional SVE Wells, 8 additional				ing points)	Φ.	1.574.76	Φ	1 124 22	A 2 500 0	N 1 1 W 1 C OW
	33010101	Mobilize/DeMobilize Drilling Rig	1 L	S	\$	-	\$	1,574.76	\$	1,124.22	\$ 2,698.98	
	22220112	& Crew	100 7	m		11.01	Φ.	10.55	•		A 5 100 5	extraction
		Prield Technician	120 F		\$	11.01		40.57		-	\$ 6,190.52	
		Van Rental	120 E		\$	44.61		-	\$	-	\$ 5,353.00	
	33020303	Organic Vapor Analyzer Rental,	7 L	OAY	\$	140.36	\$	-	\$	-	\$ 982.53	
	22021513	per Day			•	215 15	Φ.		d.		A 1.72	7
	33021618	3 Volatile Organic Analysis (EPA 624)	17 E	A	\$	245.42	\$	-	\$	-	\$ 4,172.10	one water one soil at AS wells (+1 QAQC)
		(624, 8260B)					4		4			A CANTON II
	-	e TO-15 VOC analysis for Vapor	10 E		\$	235.00		-	\$	-	\$ 2,350.00	
	33170808	B Decontaminate Rig, Augers,	7 E	OAY	\$	-	\$	125.90	\$	-	\$ 881.28	5
	222211=2	Screen (Rental Equipment)			Φ.		Φ.	22 - 27	Φ	161.60		
	33231178	3 Move Rig/Equipment Around	14 E	A	\$	68.11	\$	226.37	\$	161.60	\$ 6,385.14	†
	22221121	Site	260 *				Φ.	7	Φ	25.45		NTT
	33231101	Hollow Stem Auger, 8" Dia	390 L	r	\$	-	\$	7.43	\$	35.45	\$ 16,723.80	SVE wells to 8 ft, AS wells to 20 ft, Monitoring pts to 15 ft
		Borehole, Depth <=100 ft		_						44 =0		
	33230102	2 4" PVC, Schedule 40, Well	170 L	F	\$	3.06	\$	3.93	\$	11.78	\$ 3,190.6	7 4" for SVE and AS
		Casing		_								
	33230202	2 4" PVC, Schedule 40, Well	90 L	F	\$	6.87	\$	5.26	\$	15.78	\$ 2,512.33	3
		Screen										
		2 4" PVC, Well Plug	18 E		\$	26.63		5.65		17.26		
		2 4" Screen, Filter Pack	90 L		\$	5.98		3.93		11.78		
		2 4" Well, Portland Cement Grout	170 L		\$	1.89		-	\$		\$ 321.2	
		2 4" Well, Bentonite Seal	18 E		\$	25.20		22.11		66.23	, , , , , , , , , , , , , , , , , , , ,	
	33230101	2" PVC, Schedule 40, Well	40 L	F	\$	1.33	\$	2.72	\$	7.73	\$ 471.59	9 2" for monitoring pts
		Casing										
	33230201	2" PVC, Schedule 40, Well	80 L	F	\$	3.10	\$	3.50	\$	9.97	\$ 1,325.23	3
		Screen										
		2" PVC, Well Plug	8 E		\$	6.52		4.07		11.59		
		2" Screen, Filter Pack	80 L		\$	3.48		2.31	\$	6.57		
		2" Well, Portland Cement Grout	40 L		\$	1.30		-	\$	-	\$ 51.94	
		2" Well, Bentonite Seal	8 E	A	\$	10.33	\$	9.15		26.08		
	33232203	8 8'X7.5" Manhole Cover	8 E	A	\$	47.73	\$	50.81		144.90		
	33232205	Well Vault for equipment	18 E	A	\$	1,094.69	\$	967.16	\$	2,356.80	\$ 79,535.78	3
	33231189	DOT steel drums, 55 gal., open,	30 E	A	\$	93.90	\$	-	\$	-	\$ 2,817.0	4
		Load soil into 55 gal drums	30 E	A	\$	-	\$	34.00	\$	-	\$ 1,020.03	5
	33190303	Transport/Dispose (non-haz)	30 E	A	\$	296.51	\$	-	\$	-	\$ 8,895.23	3
Freat		em Componants System Compone	ents/Equipmen	t							•	
		& CONVEYANCE PIPING										Piping from wells to treatment system,
		Field Technician	100 H	IR	\$	11.01	\$	40.57	\$	-	\$ 5,158.7	
		. Van Rental	10 Г	AY	\$	44.61		-	\$	-	\$ 446.09	
		Remove Pavement	975 S		\$	-	\$	2.89		1.38		Assume paved throughout (325'), trench 3' wide
		Trenching, backfill &	144 C		\$	_	\$	4.42		1.18		325 feet long, 4 feet deep, 3 feet wide
		Compaction			-		-	2	-	0		φ,
	18010102	Gravel, Delivered, Dumped & graded	40 C	Υ	\$	24.47	\$	2.06	\$	1.88	\$ 1.136.59	Around pipes (~1 feet)
		Asphalt Base Course	20 0		\$	37.54		0.71		1.48		
		Asphalt Wearing Course	20 T		\$	35.91		16.53		16.51		
		4", sch80 PVC	325 L		\$	2.81		6.46				Piping from wells to GWTS, then to catch basin

RI/FS Report – Former Speedy's Cleaners NYSDEC – Site No. 828128

MACTEC Engineering and Consulting, P.C., Project No. 3612082109

ask Description 33260460 4" PVC, Schedule 80, Manifold Piping 33270126 4" PVC, Schedule 80, Tee 33270136 4" PVC, Schedule 80, 90 Degree, Elbow 3327041 4" PVC, Sch 80, Ball Valve	Quantity Measure 20 LF 14 EA 14 EA	\$	Cost 3.05	Labor Unit	t Cost		uipment nit Cost	Ex	tended Cost	Comments/ Assumptions
33260460 4" PVC, Schedule 80, Manifold Piping 33270126 4" PVC, Schedule 80, Tee 33270136 4" PVC, Schedule 80, 90 Degree, Elbow	14 EA		3.05							
Piping 33270126 4" PVC, Schedule 80, Tee 33270136 4" PVC, Schedule 80, 90 Degree, Elbow	14 EA			\$	10.34	\$	_	\$	267.79	,
33270126 4" PVC, Schedule 80, Tee 33270136 4" PVC, Schedule 80, 90 Degree, Elbow				Ψ .	10.0.	Ψ		Ψ	2011.19	
33270136 4" PVC, Schedule 80, 90 Degree, Elbow	14 EA	\$	21.85	\$	-	\$	-	\$	305.93	
Degree, Elbow		\$	15.60	\$	-	\$	-	\$	218.45	
	14 EA	\$	308.39	\$	-	\$	-	\$	4,317.46	
33310209 Pressure Gauges	14 EA	\$	75.38	\$	76.48	\$	-	\$	2,125.95	
Vendor Excess Soil Transport and Disposal	72 Ton	\$	115.88	\$	-	\$	-	\$	8,343.36	
Assume <60ppm VOCs										
System Components/Equipment										
33220112 Field Technician	100 HR	\$	11.01	\$ 4	40.57	\$	-	\$	5,158.77	Assume 2 Weeks to assemble & test
33010102 Van Rental	10 DAY	\$	44.61	\$	-	\$	-	\$	446.09	
18020322 8" Structural Slab on Grade	170 SF	\$	4.52	\$	5.04	\$	0.15	\$	1,651.50	Slab for under treatment building
33132377 Equipment enclosure,8'x15'	1 EA	\$	3,044.44	\$	-	\$		\$	3,044.44	, and the second
Portable building/shed; lined,										
insulated, skid mounted with										
exhaust fan										
33132361 1000 SCFM Vapor Recovery System	1 EA	\$	28,290.92	\$	-	\$	-	\$	28,290.92	
33139003 15HP, 163SCFM Blower (buy)	1 EA	\$	-	\$	-	\$:	5,593.50	\$	5,593.50	For air sparge
33021502 Thermostat & Humidity Control	1 EA	\$	109.77	\$ 13	35.57	\$	-	\$	245.34	
Devices										
33131908 Carbon Adsorption (Air)- 250CFM,	1 EA	\$	2,753.28	\$ 27	78.00	\$	-	\$	3,031.28	In addition to unit purchased for pilot
400 lbs										•
33132343 Knockout Drum	1 EA	\$	-	\$	-	\$	93.90	\$	93.90	In addition to unit purchased for pilot
33132001 Carbon Adsorption (Liquids) - 5 gpm	1 EA	\$	573.84	\$ 8	80.50	\$	-	\$	654.34	In addition to unit purchased for pilot
DOT disposable drum										
Assumed Miscellaneous parts,	1 LS	\$	5,000.00	\$ 5,00	00.00			\$	10,000.00	
connections, plumbing										
Task Subtotal								\$	268,108.02	
LTERNATIVE ANNUAL AND PERIODIC COSTS										
peration and Maintenance										
Weekly Site Visits										
33220106 Staff Engineer	104 HR	\$	_	\$	62.11	•		\$	6,459.85	report preparation
33220106 Staff Engineer 33220112 Field Technician	624 HR	\$ \$	11.01		40.57			\$	32,190.72	neport preparation
33010102 Van Rental	52 DAY	\$	44.61			э \$	-	\$	2,319.66	
Soil Vapor Extraction	32 DA1	Ф	44.01	Ψ	-	φ	-	φ	2,319.00	
99020110 Annual Maintenance Materials and Labor	1 LS	\$	289.82	¢ 20	89.82	\$	289.82	¢	869.46	
Lab Quote TO-15 VOC analysis for Vapor	24 EA	\$ \$	289.82			\$ \$	289.82	\$		Influent & Effluent each month, no QAQC
33420101 Electrical Charge	15000 KWH	\$	0.16			\$	-	\$		Treatment Train Misc/SVE
33132001 Carbon Adsorption (Liquids) - 5 gpm	2 EA	\$	573.84		80.50		-	\$		Replace liquid GAC drums 1/year
DOT disposable drum	∠ EA	Ф	373.04	φ (00.50	φ	-	φ	1,308.08	Replace fiquid GAC druins 1/year
33131942 Air & process gas purification, carbon	800 LB	\$	1.28	\$	_	\$		\$	1 020 16	Replacement Vapor GAC, assume 1/year

RI/FS Report – Former Speedy's Cleaners NYSDEC – Site No. 828128

MACTEC Engineering and Consulting, P.C., Project No. 3612082109

			Unit of	Ma	teiral Unit			E	quipment			
Task		Description	Quantity Measure		Cost	Lab	or Unit Cost	τ	U nit Cost	E	xtended Cost	Comments/ Assumptions
		adsorption, vapor phase activated carbon,										
		coal based, 4 mm pellet, for solvent										
		recovery, 1-5 tons										
		Removal, Transport, Regeneration of	800 LB	\$	0.78	\$	-	\$	-	\$	621.37	
		Spent Carbon, < 2K lb										
	r Sampling	ma 14 110 m										
	Lab Quote	TO-15 VOC analysis for Vapor	52 EA	\$	235.00	\$	-	\$	-	\$	12,220.00	Quarterly sampling each SVE well (12 + 1 QAQC per quarter)
		Task Subtotal								\$	65,084.37	
ANNUA	L AND PER	RIODIC COSTS										
Long-Te	rm Monitor	ring (per sampling event - assume 8 well	s)									
Grour	ndwater Mon											
	33010102	Van Rental	3 DAY	\$	44.61		-	\$	-	\$	133.83	
	33220112	Field Technician	30 HR	\$	11.01	\$	40.57	\$	-	\$	1,547.63	person 1 week(includes per diem)
		Well Development Equipment Rental (weekly)	1 WK	\$	264.04	\$	-	\$	-	\$	264.04	
		DOT steel drums, 55 gal., open, 17C	3 EA	\$	97.66					\$	292.97	
		Monitor well sampling equipment, rental, water quality testing parameter device rental	1 WK	\$	264.04	\$	-	\$	-	\$	264.04	assumes 4 well per day
	33020401	Disposable Materials per Sample	12 EA	\$	9.74	\$	-	\$	-	\$	116.90	12 sampling locations (all existing on-site wells)
	33020402	Decontamination Materials per Sample	12 EA	\$	8.22	\$	-	\$	-	\$	98.67	
	33232407	PVC bailers, disposable polyethylene, 1.50" OD x 36"	12 EA	\$	11.15	\$	-	\$	-	\$	133.83	
	33021618	Volatile Organic Analysis (EPA 624) (624, 8260B)	13 EA	\$	245.42	\$	-	\$	-	\$	3,190.47	12 + 1 for QAQC
			ask Subtotal							\$	6,042.37	
Annual l	Reporting									· ·	,	
		Annual Report	1 LS	\$	-	\$	12,000.00	\$	-	\$	12,000.00	Including bioremediation evaluation
		7	ask Subtotal							\$	12,000.00	
Periodic	Costs											
		System Repair	1 LS	\$	-	\$	53,621.60	\$	-	\$		Assume 20% of original costs for upgrades at year 7.
		7	Task Subtotal							\$	53,621.60	

PRESENT VALUE OF ANNUAL AND PERIODIC COSTS FOR ALTERNATIVE 3 (Soil Vapor Extraction and Air Sparging)

		Number of Annual	Annual Discount	Number of 2-Year	2-Year Discount	Number of 4-Year	4-Year Discount	Number of 7-Year	7-Year Discount	Total Non- Discounted	Present Value
Year	Cost*	Periods	Rate	Periods	Rate	Periods	Rate	Periods	Rate	Cost	Cost
Capital (Year 0)	\$ 559,000	1	0	NA	NA	NA	NA	NA	NA	\$ 559,000.00	\$ 559,000.00
Annual OM&M (Years 1-10)	\$ 82,000	10	0.05	NA	NA	NA	NA	NA	NA	\$ 820,000.00	\$ 633,182.26
Quarterly Monitoring (Years 1-2)	\$ 31,000	2	0.05	NA	NA	NA	NA	NA	NA	\$ 62,000.00	\$ 57,641.72
Semi-Annual Monitoring (Years 3-4)	\$ 16,000	2	0.05	1	0.1025	NA	NA	NA	NA	\$ 32,000.00	\$ 26,984.64
Annual Monitoring (Years 5-30)	\$ 8,000	26	0.05	NA	NA	1	0.21550625	NA	NA	\$ 208,000.00	\$ 94,612.00
Annual Long Term Monitoring Reporting (Years 1-30)	\$ 15,000	30	0.05	NA	NA	NA	NA	NA	NA	\$ 450,000.00	\$ 230,586.77
Periodic Costs - System Upgrades (Year 7)	\$ 54,000	1	0.05					1	0.407100423	\$ 54,000.00	\$ 38,376.79
Totals										\$ 2,185,000.00	\$ 1,640,384.19

^{*}Annual and periodic costs include 10% for technical support and 15% contingency for unforeseen project complexities, including insurance, taxes, and licensing costs.

Prepared By/Date: JDW 1/7/2010
Checked By/Date: KLS 01/12/2010

Capital costs include 20% contingency, as well as project management, remedial design, and construction management costs per DER-10 guidance.

Discount rate of 5% (for 30-years) percent based on NYSDEC PRAP Outline / Instructions.

Alternative 4 - In-Situ Enhanced Biodegradation

Modified By/Date: JDW 1/7/2010 Checked By/Date: KLS 01/12/2010

Checked By/Date:	KLS 01/12/2010											
	- · · ·	0 ***	Unit of	N	Iaterial Unit	ļ, ,	h II2: C		quipment	г.		
Task	Description	Quantity	Measure		Cost	La	bor Unit Cost	ι	Init Cost	Exte	ended Cost	Comments/ Assumptions
CAPITAL COSTS												
Pre-Design Investig	ation											Called a illanda and the transfer of the Lordina for VOC
C	15 6 C - 11 1 C 1 4											Collect soil and groundwater from two locations for VOC testing as well as bench scale testing for dehalococcoides.
	ling of Soil and Groundwater Field Technician	20	HR	ď		\$	40.57	ď		\$	911.40	- C
	Van Rental		DAY	\$ \$	44.61		40.37	\$	-	\$ \$	811.49 89.22	2 day
	Organic Vapor Analyzer Rental,		DAY	\$	134.33		-	\$	-	\$ \$	268.67	
33020303	per Day	2	DAI	Ф	134.33	Ф	-	Ф	-	φ	200.07	
Pacent Ouote	Mobilize Geoprobe Rig & Crew	1	LS	\$		\$	1,000.00	¢		\$	1,000.00	
	Day Rate for Geoprobe Rig & Crew		Day	\$	_	\$	1,600.00			\$	3,200.00	
-	Volatile Organic Analysis (EPA 624)		EA	\$	245.42		-	\$	_	\$	981.68	two soil and two water samples
33021010	(624, 8260B)	7	LIT	Ψ	243.42	Ψ		Ψ		Ψ	701.00	two son and two water samples
1		sk Subtotal								\$	6,351.06	
Bench Scale Testing											.,	
	Bench scale test	1	LS	\$	2,000.00	\$	-	\$	_	\$	2,000.00	
ĺ		sk Subtotal		-	,	,		,		\$	2,000.00	Dehalococcoides Test - SiREM.
Full Scale										•		
	ities (assume up to two weeks)											
	Temporary Office 20' x 8'	0.50	MO	\$	206.42	\$	_	\$	_	\$	103.21	
	Temporary Storage Trailer 16' x 8'	0.50	MO	\$	80.72		_	\$	_	\$	40.36	
	Portable Toilets	0.50	MO	\$	82.65	\$	_	\$	_	\$	41.33	
01510.050.0040	Temporary Power Service, overhead feed,	0.50	EA	\$	745.00	\$	335.00	\$	_	\$	540.00	
	3 use, 200 amp											
01520.550.0140	Telephone utility fee	0.50	MO	\$	210.00	\$	-	\$	-	\$	105.00	
MACTEC	Electrical utility fee	0.50	MO	\$	200.00	\$	-	\$	-	\$	100.00	
01520.550.0100	Field office expenses, office equipment	0.50	MO	\$	145.00	\$	-	\$	-	\$	72.50	
	rental, average											
02220.350.0725	Dumpster, weekly rental, 1 dump/week	2	WK	\$	420.00	\$	-	\$	-	\$	840.00	
	, 20 cy capacity (8 tons)											
												10 injection points, assume 2/day (5 days). 2 monitoring wel
	e Injection Points (10), 2 monitoring wells											& development, 2 days. Baseline Sampling 1 day.
	Field Technician		HR	\$	-	\$	40.57		-	\$	3,245.97	includes per diem
	Van Rental		DAY	\$	44.61		-	\$	-	\$	356.87	
33020303	Organic Vapor Analyzer Rental,	8	DAY	\$	134.33	\$	-	\$	-	\$	1,074.66	
l	per Day											
Geoprobe Inject		1	1.0	¢.		d.	1 000 00	d		d	1 000 00	
-	Mobilize Geoprobe Rig & Crew		LS	\$ \$	-	\$ \$	1,000.00 1,600.00		-	\$	1,000.00	
-	Day Rate for Geoprobe Rig & Crew		Day DAY	\$	-	\$	1,600.00		-	\$ \$	8,000.00 629.49	
331/0808	Decontaminate Rig, Augers, Screen (Rental Equipment)	3	DAI	Ф	-	Ф	123.90	Ф	-	Ф	029.49	
HRC/3dme Backup		4620	LBS	\$	0.56	\$	_	\$		\$	2 605 68	Including 20% for tax & shipping
HRC/3dme Backup			LBS	\$	3.36		-	\$	-	\$ \$		Including 20% for tax & shipping Including 20% for tax & shipping
Monitoring Wel		103	LDS	Ψ	3.30	Ψ	_	Ψ	-	Ψ	332.00	merading 2070 for tax & simpping
	Mobilize/Demobilize Drilling Rig	1	LS	\$	_	\$	3 309 73	\$	1,124.22	\$	4 433 95	Assume level D
55510101	& Crew	1		Ψ		Ψ	3,307.13	Ψ	.,127.22	Ψ	1,133.73	Tablanto 10 to 10
33231178	Move Rig/Equipment Around	2	EA	\$	67.24	\$	116.85	\$	161.60	\$	691.39	
2223170	Site	_	-	-		-		-		T		
33231504	Surface Pad, Concrete, 2' x 2' x	2	EA	\$	46.13	\$	85.32	\$	2.04	\$	266.98	
33231301		_		Ψ	.0.15	~	00.02	+		-	_00.70	ı

Alternative 4 - In-Situ Enhanced Biodegradation

Modified By/Date: JDW 1/7/2010
Checked By/Date: KLS 01/12/2010

Checked By/Date:	KLS 01/12/2010										
			Unit of		ial Unit				quipment		
	Description	Quantity	Measure	C	ost	Labo	or Unit Cost	U	nit Cost	Extended Co	ost Comments/ Assumptions
·	4"										
	Decontaminate Rig, Augers,	2	DAY	\$	-	\$	125.90	\$	-	\$ 251	.79
	Screen (Rental Equipment)										
	Hollow Stem Auger, 8" Dia	30	LF	\$	-	\$	7.43	\$	35.45	\$ 1,286	.45 2 wells to 15 feet
	Borehole, Depth <=100 ft										
33230101	2" PVC, Schedule 40, Well	10	LF	\$	1.39	\$	2.71	\$	8.28	\$ 123	.76
	Casing										
33230201	2" PVC, Schedule 40, Well	20	LF	\$	3.22	\$	3.50	\$	10.68	\$ 347	.94 10 ft screens
:	Screen										
33230301	2" PVC, Well Plug	2	EA	\$	6.78	\$	4.07	\$	12.40	\$ 46	.50
33231401	2" Screen, Filter Pack	20	LF	\$	3.62	\$	2.31	\$	7.04	\$ 259	.21
33231811	2" Well, Portland Cement Grout	10	LF	\$	1.35	\$	-	\$	-	\$ 13	.50
33232101	2" Well, Bentonite Seal	2	EA	\$	10.74	\$	9.15	\$	27.92	\$ 95	.61
33231189	DOT steel drums, 55 gal., open,	2	EA	\$	93.90	\$	-	\$	-	\$ 187	.80
	Load soil into 55 gal drums	2	EA	\$	-	\$	34.00	\$	-	\$ 68	.00
33190303 7	Transport/Dispose (non-haz)	2	EA	\$	296.51	\$	_	\$	-	\$ 593	.02
Monitoring Well	Development (2) & sampling										Sample 2 new wells
33231186	Well Development Equipment	1	WK	\$	264.04	\$	_	\$	-	\$ 264	.04
	Rental (weekly)										
	DOT steel drums, 55 gal., open,	3	EA	\$	93.90					\$ 281	.70 1.5 drum each new well for development
	Transport/Dispose (non-haz)		EA	\$	296.51	\$	_	\$	_	\$ 889	-
	Monitor well sampling		WK	\$	264.04		_	\$	_	\$ 264	
	equipment, rental, water quality	_		-		-		-			
	testing parameter device rental										
	Disposable Materials per	2	EA	\$	9.74	\$	_	\$	_	\$ 19	.48
	Sample	-		Ψ	,,,,	Ψ		Ψ		Ψ	
	Decontamination Materials per	2	EA	\$	8.22	\$	_	\$	_	\$ 16	.44
	Sample	_	Li i	Ψ	0.22	Ψ		Ψ		Ψ 10	
	PVC bailers, disposable	2	EA	\$	11.15	\$	_	\$	_	\$ 22	.30
	polyethylene, 1.50" OD x 36"	2	Lit	Ψ	11.13	Ψ		Ψ		Ψ 22	.50
	Volatile Organic Analysis (EPA 624)	2	EA	\$	245.42	\$	_	\$	_	\$ 490	84
	(624, 8260B)	2	Lit	Ψ	273.72	Ψ		Ψ		Ψ +70	.07
ssume Re-injection											
sume Re-injection	s at 0-months										
Tomporory 3dmo	Injection Points (10), 2 monitoring wel	lle & davalanm	ent								10 injection points, assume 2/day (5 days).
	Field Technician	-	HR	\$	_	\$	40.57	\$	_	\$ 2,028	
33010102			DAY	\$	44.61		+0.57	\$	-	\$ 2,028	1
	Van Kentai Organic Vapor Analyzer Rental,		DAY	\$ \$	134.33		-	\$	-	\$ 223 \$ 671	
	per Day	3	DAI	Φ	134.33	Ф	-	Φ	-	φ 0/1	.00
Geoprobe Injectio	ons Mobilize Geoprobe Rig & Crew	1	LS	\$		\$	1,000.00	¢	_	\$ 1,000	00
	Day Rate for Geoprobe Rig & Crew		Day	\$ \$	-	\$	1,600.00		-	\$ 16,000	
-			•	\$ \$	-	\$					
	Decontaminate Rig, Augers,	10	DAY	Э	-	Þ	125.90	Э	-	\$ 1,258	91
	Screen (Rental Equipment)	4620	I DC	¢	0.50	¢		ď		¢ 2.005	69 IIDC/2 drag Doolars W/200/, for chinning/t
	3dme Material		LBS	\$	0.56		-	\$	-		HRC/3dme Backup W/20% for shipping/tax
	HRC Material		LBS	\$	3.36	\$	-	\$	-	\$ 352 \$ 52,320	.80 HRC/3dme Backup W/20% for shipping/tax
	`I	Task Subtotal									

Alternative 4 - In-Situ Enhanced Biodegradation

Modified By/Date: JDW 1/7/2010 Checked By/Date: KLS 01/12/2010

ĺ			Unit of	Ma	terial Unit			E	quipment			
Task	Description	Quantity	Measure		Cost	Lal	bor Unit Cost		Unit Cost	Ext	tended Cost	Comments/ Assumptions
ANNUAL AND PI	ERIODIC COSTS											
Long-Term Monit	oring (per sampling event - assume 12 well	s)										
Groundwater M	Ionitoring											Includes additional 20% for QC
3301010	2 Van Rental	4	DAY	\$	44.61	\$	-	\$	-	\$	178.44	
3322011	2 Field Technician	40	HR	\$	11.01	\$	40.57	\$	-	\$	2,063.51	1 person 4 days (includes per diem)
3323118	9 DOT steel drums, 55 gal., open, 17C	2	EA	\$	97.66					\$	195.31	
3302150	9 Monitor well sampling equipment, rental, water quality testing parameter device rental	1	WK	\$	264.04	\$	-	\$	-	\$	264.04	assumes 4 well per day
3302040	1 Disposable Materials per Sample	12	EA	\$	9.74	\$	-	\$	-	\$	116.90	
3302040	2 Decontamination Materials per Sample	12	EA	\$	8.22	\$	-	\$	-	\$	98.67	
3323240	7 PVC bailers, disposable polyethylene, 1.50" OD x 36"	12	EA	\$	11.15	\$	-	\$	-	\$	133.83	
3302161	8 Volatile Organic Analysis (EPA 624) (624, 8260B)	13	EA	\$	245.42	\$	-	\$	-	\$	3,190.47	12 plus 1 for QAQC
	Ta	sk Subtotal								\$	6,241.16	
Annual Reporting	_				•		•		·		•	
9501010	2 Annual Report Ta	1 sk Subtotal	LS	\$	-	\$	12,000.00	\$	-	\$ \$	12,000.00 12,000.00	Including bioremediation evaluation

PRESENT VALUE OF ANNUAL AND PERIODIC COSTS FOR ALTERNATIVE 4 (In-Site Enhanced Biodegradation)

		Number of Annual	Annual Discount	Number of 2-Year	2-Year Discount	Number of 4-Year	4-Year Discount	Total Non- Discounted	Present Value
Year	Cost*	Periods	Rate	Periods	Rate	Periods	Rate	Cost	Cost
Capital (Year 0)	\$ 105,000	1	0	NA	NA	NA	NA	\$ 105,000.00	\$ 105,000.0
Quarterly Monitoring (Years 1-2)	\$ 32,000	2	0.05	NA	NA	NA	NA	\$ 64,000.00	\$ 59,501.1
Semi-Annual Monitoring (Years 3-4)	\$ 16,000	2	0.05	1	0.1025	NA	NA	\$ 32,000.00	\$ 26,984.6
Annual Monitoring (Years 5-30)	\$ 8,000	26	0.05	NA	NA	1	0.21550625	\$ 208,000.00	\$ 94,612.0
Annual Long Term Monitoring Reporting (Years 1-30)	\$ 15,000	30	0.05	NA	NA	NA	NA	\$ 450,000.00	\$ 230,586.7
Totals								\$ 859,000.00	\$ 516,684.5

^{*}Annual and periodic costs include 10% for technical support and 15% contingency for unforeseen project complexities, including insurance, taxes, and licensing costs.

Discount rate of 5% (for 30-years) percent based on NYSDEC PRAP Outline / Instructions.

Capital costs include 25% contingency, as well as project management, remedial design, and construction management costs per DER-10 guidance.

 ${\bf Alternative~5~-~On-Site~Excavation~and~In-Situ~Enhanced~Biodegradation}$

			Unit of	Ma	aterial Unit	L	abor Unit		Equipment		
Task	Description	Quantity	Measure		Cost		Cost		Unit Cost	Extended Cost	Comments/ Assumptions
CAPITAL COSTS	1					<u> </u>		1			**************************************
Pre-Design Investigation	ı										
Geoprobe Samplin	ng of Soil and Groundwater										Collect soil and groundwater from two locations for bench scale
33220112	2 Field Technician	50	HR	\$	-	\$	40.57	\$	-	\$ 2,028.73	testing for dehalococcoides. Perform injection test. Also 6
33010102	2 Van Rental	5	DAY	\$	44.61	\$	-	\$	-	\$ 223.04	geoprobes in the vicinity of MW-212 to delineate excavation.
33020303	3 Organic Vapor Analyzer Rental,	5	DAY	\$	134.33	\$	-	\$	-	\$ 671.66	5
	per Day										
	e Mobilize Geoprobe Rig & Crew		LS	\$	-	\$	1,000.00		-	\$ 1,000.00	
	e Day Rate for Geoprobe Rig & Crew		Day	\$	-	\$	1,600.00		-	\$ 8,000.00	
33021618	8 Volatile Organic Analysis (EPA 624)	30	EA	\$	245.42	\$	-	\$	-	\$ 7,362.63	two soil and two water samples for benchscale. 12 soil around
	(624, 8260B)										MW-212, 12 soil samples around DP-13. + 2 dupe.
33021705	5 Targeted TCLP (metals, VOCs, SVOCs)		EA	\$	661.18	\$	-	\$	-		One sample per each excavation area disposal characterization.
	Ta	sk Subtota	ıl							\$ 20,608.43	
Bench Scale Testing											
	Bench scale test		LS	\$	2,000.00	\$	-	\$	-	\$ 2,000.00	
	Ta	sk Subtota	ıl							\$ 2,000.00	Dehalococcoides Test - SiREM.
Full Scale											
	es and Controls (assume up to one month fo										
	1 Temporary Storage Trailer 16' x 8'	1.00	MO	\$	80.72		-	\$	-	\$ 80.72	
	Portable Toilets	1.00	MO	\$	82.65		-	\$	-	\$ 82.65	
	Rented chain link, 6' high, to 1,000'	500	LF	\$	3.03		1.10		-	\$ 2,065.00	
02220.350.0725	5 Dumpster, weekly rental, 1 dump/week	4	WK	\$	420.00	\$	-	\$	-	\$ 1,680.00)
G. 1 7 G	, 20 cy capacity (8 tons)										
	ontainment Areas (soil for re-use, Dry)	2000	ar.	ф	0.24	Ф		Φ		Φ 400.00	
	Tarpaulins, 8.5 mils, black	2000	SF	\$	0.24	\$	-	\$	-	\$ 480.00)
	ation Facility		E.4	Φ.		Φ		Φ.	2 217 00	Φ 2.217.00	
	1 25 gpm, 1-1/2" discharge, cast iron sump pum		EA	\$	-	\$	-	\$	2,317.00		
	4 50' Flexible, Product Discharge Hose	1	EA	\$	27.50	\$	1.42	\$	175.00		
02060.150.03	3(3/4" crushed stone borrow, spread w/	56	CY	\$	27.50	3	1.43	3	3.12	\$ 1,780.56	
02215 210 51	200 HP dozer, no compaction, 2 mi rt haul	5.0	ECV	¢		d.	0.16	¢	0.16	¢ 17.70	
02313.310.51	1(Compaction, General, riding vibrating	56	ECY	\$	-	\$	0.16	Ф	0.16	\$ 17.78	
2200544	roller, 12" lifts, 4 passes 4 60-mil Polymeric Liner, Very Low Density P	147	SF	\$	1.97	Φ.				\$ 328.33	
	4 16 oz/sy nonwoven geotextile	167 167	SF SY	\$ \$	2.39		-			\$ 328.33	
		10/	EA	\$ \$	2.39	\$ \$	-	\$	1,635.00		
331/0814	4 1,800 psi pressure washer, 6HP,	1	EA	Э	-	Э	-	Э	1,033.00	a 1,035.00	
10040605	4.8 gpm 5 2,000 gal steel sump, aboveground w/	1	EA	\$	2.233.00	•	853.69	\$	123.26	\$ 3,209.95	
19040003	supports and fittings	1	EA	Ф	2,233.00	Ф	633.09	Э	123.26	a 5,209.93	
I	supports and fittings										

Alternative 5 - On-Site Excavation and In-Situ Enhanced Biodegradation

				Unit of	Ma	terial Unit	L	abor Unit	F	Equipment			
Task		Description	Quantity	Measure		Cost		Cost		Unit Cost	Ex	xtended Cost	Comments/ Assumptions
	33170823	Operation of pressure washer, including	10	HR	\$	-	\$	-	\$	41.69	\$	416.90	•
		water, soap, electricity, and labor											
	33410101	Pump and motor maintenance/repair	1	EA	\$	-	\$	-	\$	431.15	\$	431.15	
		Sediment Control Measures											
	18050206	Filter Barrier, Silt Fences, Vinyl, 3' High	500	LF	\$	0.70	\$	1.41	\$	-	\$	1,055.00	RSMeans 2004 ECHOS, around work area
		with 7.5' Posts											
		Groundwater Extraction System											
	33109660	Storage Tanks, steel, above	1	EA	\$	5,193.03	\$	886.30	\$	-	\$	6,079.33	
		ground, single wall, 5,000 gallon,											
		incl. cradles, coating & fittings,											
		excl. foundation, pumps or											
		piping											
	33230521	4" Submersible Pump, 0.3-7	4	EA	\$	2,303.29	\$	-	\$	-	\$	9,213.17	
		GPM, Head <=140', 1/3 hp, w/											
		controls											
	Temporary I	Discharge Monitoring											
	MACTEC	Aqueous Sampling, Metals	6	EA	\$	130.00					\$	780.00	24-hr turn around expedited at additional 100% of cost
	33021618	Volatile Organic Analysis (EPA 624)	6	EA	\$	245.42					\$	1,472.52	24-hr turn around expedited at additional 100% of cost
			ıb-Task Su	btotal							\$	33,698.38	
Exc	cavation, Trans	poration and Disposal											
	Source Area	Excavation (10' X 10' X 12') - Times 2											Assume use of trench boxes to excavate in vicinity of DP-13 and
		Field Technician		HR	\$	-	\$	40.57		-	\$		DP-17; direct load for disposal; stage upper 3 feet for re-use.
		Van Rental	10	DAY	\$	44.61		-	\$	-	\$		Backfill with crushed stone, re-usable material and finish with
	33020303	Organic Vapor Analyzer Rental,	10	DAY	\$	134.33	\$	-	\$	-	\$	1,343.33	asphalt. Will require dewatering. Assume 2 weeks.
		per Day											
		Mobilize Excavation Equipment Rig & Crew		LS	\$	-	\$	5,000.00		-	\$	5,000.00	
		Use Trench Box	6	DAY	\$	-	\$	-	\$	202.87	\$	1,217.24	
	17030277	Excavate and load, 2CY Excavator,											
		medium material. Soil for disposal.	90	CY	\$	-	\$	0.94	\$	1.72	\$	238.93	
	17030277	Excavate and stage, 2CY Excavator,											Soil for re-use. Assume top 3 feet
		medium material. Soil for re-use	30	CY	\$	-	\$	0.94	\$	1.72	\$	79.64	
	Backfill												
		6" SS Well Screen (5 ft sections)	10		\$	281.39		-	\$	-	\$,	Install Well in both excavation areas for bioremediation.
		6" SS Well Casing (5 ft sections)	20		\$	287.99		-	\$	-	\$	5,759.74	
		6" Well, Bentonite Seal		EA	\$	36.58		104.32		41.29		364.38	
		Well Vault for equipment		EA	\$	1,094.69		967.16		2,356.80		8,837.31	
		Gravel, Delivered, Dumped & graded		CY	\$	24.47		2.06		1.88		,	Crushed stone backfill
	02315.120.32	Backfill, Structural, dozer or FE Loader,	30	CY	\$	-	\$	0.66	\$	0.76	\$	42.60	Re-usable fill
		from existing stockpile, no compaction,											
	02315.310.70	Compaction, Walk behind, vibrating plate	30	ECY	\$	-	\$	1.10	\$	0.13	\$	36.90	Compact re-usable fill

Alternative 5 - On-Site Excavation and In-Situ Enhanced Biodegradation

				Unit of	Mat	erial Unit	I	Labor Unit		Equipment			
Task		Description	Quantity	Measure		Cost		Cost		Unit Cost	Ex	tended Cost	Comments/ Assumptions
		18" wide, 6" lifts, 2 passes											
	1801010	5 Asphalt Base Course	10	CY	\$	37.54	\$	0.71	\$	1.48	\$	397.28	Assume 6 inch throughout
	1801031	2 Asphalt Wearing Course	10	TON	\$	35.91	\$	16.53	\$	16.51	\$	689.54	
S	oil Transportati	on and Disposal											
	Vendor	Transportation and Disposal, VOCs											
		assume up to 180 ppm	135	Tons		210	\$	-	\$	_	\$	28,350.00	Model City Quote provided for another NYSDEC project.
		1 11	Sub-Task Su	btotal							\$	62,231.58	
Ir	n-Situ Enhanced	Biodegradation										ĺ	
l	Add & Mix	Amendments Into Bottom of Open Exca	avation										Assume one day
i	3322011	2 Field Technician	20	HR	\$	-	\$	40.57	\$	_	\$	811.49	includes per diem
1		Equipment	2	LS	\$	-	\$	2,500.00	\$	_	\$		Assumed day rate to add/mix reagent into water.
i		HRC Material	420	lb	\$	9.54	\$	-	\$	_	\$		HRC & 3dme Backup.Includes 20% tax & shipping
i		HRC Primer	180	1b	\$	3.36	\$	_	\$	_	\$		HRC & 3dme Backup.Includes 20% tax & shipping
I													10 injection points, assume 2/day (5 days). 4 monitoring wells &
	Temporary	3dme Injection Points (10), 4 monitoring	g wells & devel	opment									development, 4 days. Baseline Sampling 1 day.
		2 Field Technician	0	HR	\$	_	\$	40.57	\$	_	\$	4,057.46	includes per diem
l		2 Van Rental		DAY	\$	44.61		-	\$	_	\$	446.09	anotados por diom
		3 Organic Vapor Analyzer Rental,		DAY	\$	134.33		_	\$	_	\$	1,343.33	
	3302030	per Day	10	Dill	Ψ	131.33	Ψ		Ψ		Ψ	1,5 15.55	
	Recent Quot	te Mobilize Geoprobe Rig & Crew	1	LS	\$	_	\$	1,000.00	\$	_	\$	1,000.00	
		te Day Rate for Geoprobe Rig & Crew		Day	\$	_	\$	1,600.00		_	\$	8,000.00	
		8 Decontaminate Rig, Augers,		DAY	\$	_	\$	125.90		_	\$	629.49	
	3317000	Screen (Rental Equipment)	5	Dill	Ψ		Ψ	123.50	Ψ		Ψ	027.47	
		3Dme Material	4620	LBS	\$	0.56	\$	_	\$	_	\$	2 605 68	HRC/3dme BackupIncluding 20% for tax & shipping
		HRC Primer		LBS	\$	3.36			\$		\$		HRC/3dme BackupIncluding 20% for tax & shipping
		TIRC Times	103	LDS	Ψ	3.30	Ψ	_	Ψ	_	Ψ	332.00	
													10 injection points, assume 2/day (5 days).
		injections at 6-months											Plus gravity feed into well within former excavation
		3dme Injection Points (10)											
	3322011	2 Field Technician	50	HR	\$	-	\$	40.57		-	\$		includes per diem
		2 Van Rental	5	DAY	\$	44.61	\$	-	\$	-	\$	223.04	
	3302030	3 Organic Vapor Analyzer Rental,	5	DAY	\$	134.33	\$	-	\$	-	\$	671.66	
		per Day											
		te Mobilize Geoprobe Rig & Crew	1	LS	\$	-	\$	1,000.00	\$	-	\$	1,000.00	
		te Day Rate for Geoprobe Rig & Crew	5	Day	\$	-	\$	1,600.00	\$	-	\$	8,000.00	
	3317080	8 Decontaminate Rig, Augers,	5	DAY	\$	-	\$	125.90	\$	-	\$	629.49	
		Screen (Rental Equipment)											
		3Dme Material	4620	LBS	\$	0.56	\$	-	\$	-	\$	2,605.68	HRC/3dme BackupIncluding 20% for tax & shipping
		HRC Primer	105	LBS	\$	3.36	\$	-	\$	-	\$		HRC/3dme BackupIncluding 20% for tax & shipping
1	Add Amend	lment to 6" wells											

Alternative 5 - On-Site Excavation and In-Situ Enhanced Biodegradation

	Unit of	M	aterial Unit	I	Labor Unit	Equipment			
Task Description	Quantity Measure		Cost		Cost	Unit Cost	E	xtended Cost	Comments/ Assumptions
HRC Material	420 lb	\$	9.54	\$	-	\$ -	\$		HRC/3dme BackupIncluding 20% for tax & shipping
HRC Primer	180 lb	\$	3.36		-	\$ -	\$		HRC/3dme BackupIncluding 20% for tax & shipping
	Sub-Task Subtotal						\$	48,980.94	
Monitoring Well Installation								-	
33010101 Mobilize/Demobilize Drilling Rig	1 LS	\$	-	\$	3,309.73	\$ 1,124.22	\$	4,433.95	4 monitoring wells to 15 ft, two to monitor geoprobe injections,
& Crew									two downgradient of excavation
33231178 Move Rig/Equipment Around	4 EA	\$	67.24	\$	116.85	\$ 161.60	\$	1,382.79	
Site									
33231504 Surface Pad, Concrete, 2' x 2' x	4 EA	\$	46.13	\$	85.32	\$ 2.04	\$	533.96	
4"									
33170808 Decontaminate Rig, Augers,	4 DAY	\$	-	\$	125.90	\$ -	\$	503.59	
Screen (Rental Equipment)									
33231101 Hollow Stem Auger, 8" Dia	60 LF	\$	-	\$	7.43	\$ 35.45	\$	2,572.89	
Borehole, Depth <= 100 ft									
33230101 2" PVC, Schedule 40, Well	20 LF	\$	1.39	\$	2.71	\$ 8.28	\$	247.53	5 ft riser
Casing									
33230201 2" PVC, Schedule 40, Well	40 LF	\$	3.22	\$	3.50	\$ 10.68	\$	695.88	10 ft screens
Screen									
33230301 2" PVC, Well Plug	4 EA	\$	6.78		4.07	12.40		93.00	
33231401 2" Screen, Filter Pack	40 LF	\$	3.62		2.31	7.04		518.43	
33231811 2" Well, Portland Cement Grout	20 LF	\$	1.35	\$	-	\$ -	\$	27.01	
33232101 2" Well, Bentonite Seal	4 EA	\$	10.74		9.15	\$ 27.92		191.22	
33231189 DOT steel drums, 55 gal., open,	4 EA	\$	93.90	\$	-	\$ -	\$	375.60	
20836142 Load soil into 55 gal drums	4 EA	\$	-	\$	34.00	-	\$	136.01	
33190303 Transport/Dispose (non-haz)	4 EA	\$	296.51	\$	-	\$ -	\$	1,186.03	
Monitoring Well Development (4) & sampling									Sample 4 new wells
33231186 Well Development Equipment	1 WK	\$	264.04	\$	-	\$ -	\$	264.04	
Rental (weekly)									
33231189 DOT steel drums, 55 gal., open,	6 EA	\$	93.90				\$		1.5 drum each new well for development
33190303 Transport/Dispose (non-haz)	6 EA	\$	296.51		-	\$ -	\$	1,779.05	
33021509 Monitor well sampling	1 WK	\$	264.04	\$	-	\$ -	\$	264.04	assumes 4 well per day
equipment, rental, water quality									
testing parameter device rental									
33020401 Disposable Materials per	4 EA	\$	9.74	\$	-	\$ -	\$	38.97	20 sampling locations (all existing on-site wells)
Sample									
33020402 Decontamination Materials per	4 EA	\$	8.22	\$	-	\$ -	\$	32.89	
Sample									
33232407 PVC bailers, disposable	4 EA	\$	11.15	\$	-	\$ -	\$	44.61	
polyethylene, 1.50" OD x 36"									
33021618 Volatile Organic Analysis (EPA 624)	5 EA	\$	245.42	\$	-	\$ -	\$	1,227.11	1 extra for QAQC

Alternative 5 - On-Site Excavation and In-Situ Enhanced Biodegradation

			Unit of	Material Ur	it	Labor Unit	Equipment			
Task	Description	Quantity	Measure	Cost		Cost	Unit Cost	I	Extended Cost	Comments/ Assumptions
	(624, 8260B)									
		Sub-Task Su	btotal					\$	17,111.97	
		Full Scale S	ubtotal					\$	162,022.87	
ANNUAL A	ND PERIODIC COSTS									
Long-Term 1	Monitoring (per sampling event - assume 12 wells)									
Groun	dwater Monitoring									Includes additional 20% for QC
	33010102 Van Rental	4	DAY	\$ 44.6	1 \$	-	\$	\$	178.44	
	33220112 Field Technician	40	HR	\$ 11.0	1 \$	40.57	\$ -	\$	2,063.51	1 person 4 days (includes per diem)
	33231189 DOT steel drums, 55 gal., open,	2	EA	\$ 97.6	6			\$	195.31	
	17C 33021509 Monitor well sampling equipment, rental, water quality	1	WK	\$ 264.0	4 \$	-	\$ -	\$	264.04	assumes 4 well per day
	testing parameter device rental 33020401 Disposable Materials per Sample	14	EA	\$ 9.7	4 \$	-	\$ -	\$	136.38	20 sampling locations (all existing on-site wells) plus 20% QA\QC
	33020402 Decontamination Materials per Sample	14	EA	\$ 8.2	2 \$	-	\$ -	\$	115.11	F
	33232407 PVC bailers, disposable polyethylene, 1.50" OD x 36"	14	EA	\$ 11.1	5 \$	-	\$ -	\$	156.13	
	33021618 Volatile Organic Analysis (EPA 624) (624, 8260B)	16	EA	\$ 245.4	2 \$	-	\$ -	\$	3,926.74	Includes additional 20% for QC
		Task Subtota	al					\$	7,035.66	
Annual Repo	orting								·	
	95010102 Annual Report	1 Task Subtota	LS al	\$ -	\$	12,000.00	\$ -	\$ \$	12,000.00 12,000.00	Including bioremediation evaluation

PRESENT VALUE OF ANNUAL AND PERIODIC COSTS FOR ALTERNATIVE 5 (On-Site Excavation and In-Situ Enhanced Biodegradation)

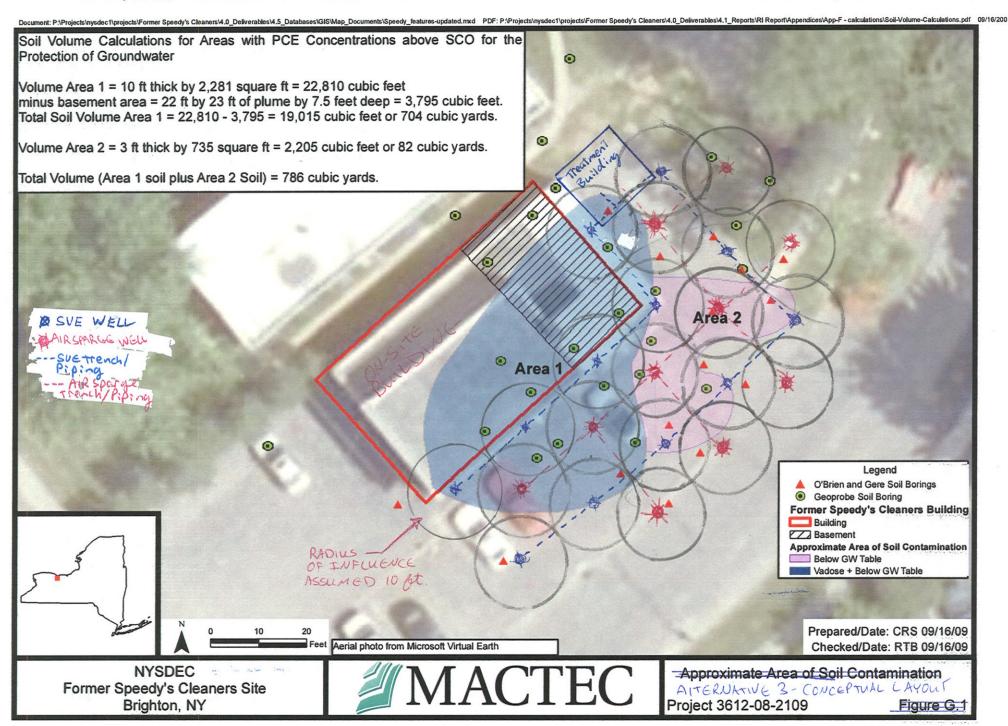
		Number	Annual	Number	2-Year	Number	4-Year	Total Non-	Present
		of Annual	Discount	of 2-Year	Discount	of 4-Year	Discount	Discounted	Value
Year	Cost*	Periods	Rate	Periods	Rate	Periods	Rate	Cost	Cost
Capital (Year 0)	\$ 311,000	1	0	NA	NA	NA	NA	\$ 311,000.00	\$ 311,000.00
Quarterly Monitoring (Years 1-2)	\$ 36,000	2	0.05	NA	NA	NA	NA	\$ 72,000.00	\$ 66,938.78
Semi-Annual Monitoring (Years 3-4)	\$ 18,000	2	0.05	1	0.1025	NA	NA	\$ 36,000.00	\$ 30,357.72
Annual Monitoring (Years 5-30)	\$ 9,000	26	0.05	NA	NA	1	0.215506	\$ 234,000.00	\$ 106,438.50
Annual Performance Reporting (Years 1-30)	\$ 15,000	30	0.05	NA	NA	NA	NA	\$ 450,000.00	\$ 230,586.77
Totals								\$ 1,103,000.00	\$ 745,321.77

^{*}Annual and periodic costs include 10% for technical support and 15% contingency for unforeseen project complexities, including insurance, taxes, and licensing costs. Capital costs include 25% contingency, as well as project management, remedial design, and construction management costs per DER-10 guidance. Discount rate of 5% (for 30-years) percent based on NYSDEC PRAP Outline / Instructions.

Alternative 6 – Source Area Excavation, On-Site and Off-Site In-Situ Enhanced Biodegradation, and Soil Vapor Extraction

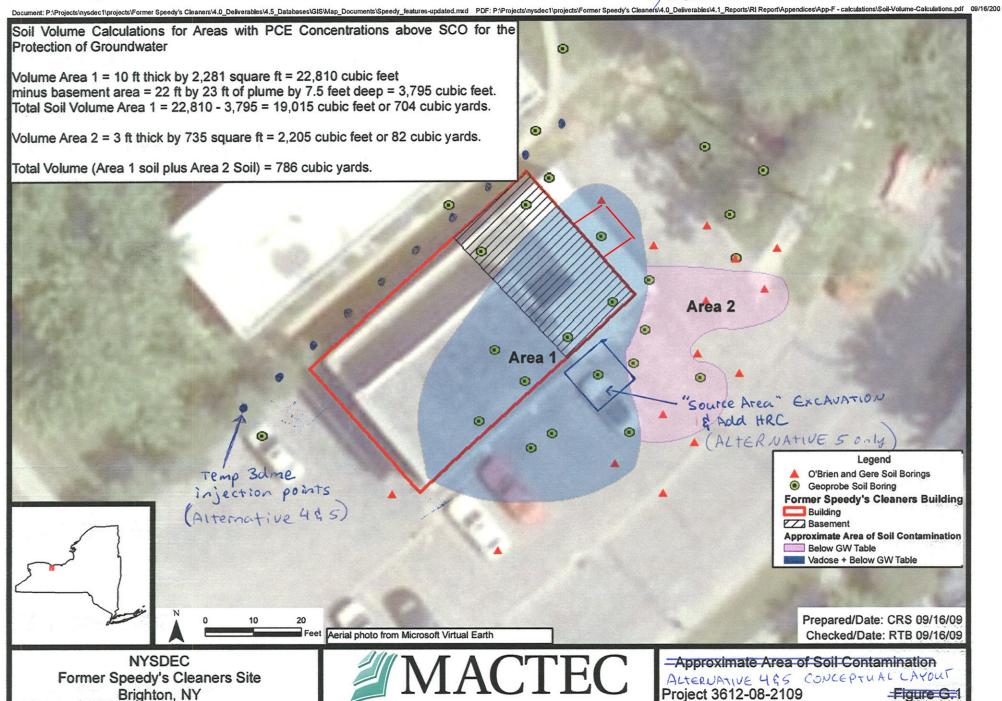
Prepared By/Date: JDW 2/3/10 Checked By/Date: RTB 2/4/10

Task Description	F	Extended Cost
CAPITAL COSTS		
Pre-Design Investigation		
Investigations Similar to Alternative 5 (related to Excavation & Enhanced Bio)	\$	20,608.43
Investigations Similar to Alternative 3 (related to SVE)	\$	22,330.68
Additional Investigations for Downgradient	\$	10,000.00
Task Subtotal	\$	52,939.12
Bench Scale Testing		
Bench scale test (similar to Alternative 5, additional 3 tests for Downgradient)	\$	8,000.00
Task Subtotal	\$	8,000.00
Pilot Test		
Similar to Alternative 3 (does not require Air Sparge, but larger area, assume the same)	\$	57,526.64
Task Subtotal	\$	57,526.64
Full Scale		
Temporary Utilities and Controls (Use double costs for Alternative 3 for additional time under building)	\$	22,999.16
Decontamination Facility (use cost from Alternative 5)	\$	10,376.48
Stockpile Area & Erosion Controls (use costs from Alternative 5)	\$	480.00
Temporary Groundwater Extraction & Monitoring System (use cost from Alternative 5, only 1/2 the monitoring since less duration		
because only one excavation)	\$	17,545.01
Excavation, Transportation and Disposal (from Alternative 5)	\$	62,231.58
Enhanced Bioremediation Injections On-site (from Alternative 5, except only one excavation)	\$	41,463.59
Additional On-site wells to monitor injections (from Alternative 5)	\$	17,111.97
Enhanced Bioremediation Injections Downgradient (Assume 10 times cost of Alternative 5 based on 10 times the area)	\$	414,635.94
Additional downgradient wells to monitor injections (Assume 10 times cost of Alternative 5 based on 10 times the area)	\$	171,119.68
Install SVE Wells (from Alternative 3, does not require Air Sparge wells, but needs more SVE inside the building)	\$	154,244.14
Install trenching and conveyance piping (use costs from Alternative 3+25% since under building)	\$	40,590.75
Install treatment system including building and components (assume same as Alternative 3)	\$	58,210.08
Task Subtotal	\$	1,011,008.38
Long Term Monitoring		
Groundwater sampling events (assume 2 times higher than Alternative 5 for additional wells)	\$	14,071.32
Task Subtotal (per event)	\$	14,071.32
Annual Costs		
Annual O&M of SVE System (use costs from Alternative 3 - operate for 15 years)	\$	65,084.37
Annual Reporting (same as both Alternative 3 & 5)	\$	12,000.00
Task Subtotal	\$	77,084.37
Periodic Costs		
Capital Replacement (Assume year 7 - 20% of original SVE costs)	\$	50,608.99
Task Subtotal	\$	50,608.99


PRESENT VALUE OF ANNUAL AND PERIODIC COSTS FOR ALTERNATIVE 6 (Source Area Excavation, On-Site and Off-Site In-Situ Enhanced Biodegradation, and Soil Vapor Extraction)

		Number of Annual	Annual Discount	Number of 2-Year	2-Year Discount	Number of 4-Year	4-Year Discount	Number of 7-Year	7-Year Discount	Total Non- Discounted	Present Value
Year	Cost*	Periods	Rate	Periods	Rate	Periods	Rate	Periods	Rate	Cost	Cost
Capital (Year 0)	\$ 1,783,000	1	0	NA	NA	NA	NA	NA	NA	\$ 1,783,000.00	\$ 1,783,000.00
Annual OM&M (Years 1-10)	\$ 82,000	10	0.05	NA	NA	NA	NA	NA	NA	\$ 820,000.00	\$ 633,182.26
Quarterly Monitoring (Years 1-2)	\$ 71,000	2	0.05	NA	NA	NA	NA	NA	NA	\$ 142,000.00	\$ 132,018.14
Semi-Annual Monitoring (Years 3-4)	\$ 36,000	2	0.05	1	0.1025	NA	NA	NA	NA	\$ 72,000.00	\$ 60,715.44
Annual Monitoring (Years 5-30)	\$ 18,000	26	0.05	NA	NA	1	0.215506	NA	NA	\$ 468,000.00	\$ 212,877.01
Annual Performance Reporting (Years 1-30)	\$ 15,000	30	0.05	NA	NA	NA	NA	NA	NA	\$ 450,000.00	\$ 230,586.77
Periodic Costs - System Upgrades (Year 7)	\$ 51,000	1	0.05					1	0.4071004	\$ 51,000.00	\$ 36,244.75
Totals										\$ 3,735,000.00	\$ 3,052,379.62

^{*}Annual and periodic costs include 10% for technical support and 15% contingency for unforeseen project complexities, including insurance, taxes, and licensing costs. Capital costs include 25% contingency, as well as project management, remedial design, and construction management costs per DER-10 guidance. Discount rate of 5% (for 30-years) percent based on NYSDEC PRAP Outline / Instructions.


Prepared By/Date: JDW 2/3/10 Checked By/Date: RTB 2/4/10

SVE/AIR SPARGE ALTERNATIVE - CONCEPTUAL LAYOUT

BIO Augmentation Option & Source Area Excavation

> 10 Injection Points: Total of 9240 lbs 3 DMed 210 lbs HRC Primer Excavation: 10×10 → 210 lbc HCR + 90 lbs Primer.

ACHIEVE WIDE-AREA, RAPID AND SUSTAINED REDUCTIVE DECHLORINATION WITH CONTINUOUS DISTRIBUTION AND STAGED HYDROGEN RELEASE

PRODUCT FEATURES

 Three Stage Electron Donor Release – Immediate, Mid-Range and Long- Term Hydrogen Production Provides free lactic acid, controlled release lactic acid and long release fatty acids for effective hydrogen production for periods of of up to 3 to 5 years.

Low-Cost

3-D Microemulsion is 25¢ to 42¢ per pound as applied.

- Maximum and Continuous Distribution via Micellar Transport Unlike oil products, 3DMe forms micelles which are mobile in groundwater and significantly enhance electron donor distribution after injection.
- Wide-Area/High Volume Microemulsion Application High volume application increases contact with contaminants and reduces number of injection points required for treatment – minimizes overall project cost.

Photo 1. 3DMe[™] prior to injection

PRODUCT COMPOSITION

3-D Microemulsion (3DMe)™ formerly known as HRC Advanced™ has a molecular structure specifically designed to maximize the cost-effective anaerobic treatment of contaminants in subsurface soils and groundwater. This structure (patent pending) is composed of free lactic acid, controlled-release lactic acid (polylactate) and certain fatty acid components which are esterified to a carbon backbone molecule of glycerin..

3DMe produces a sequential, staged release of its electron donor components. The immediately available, free lactic acid, is fermented rapidly while the controlled release lactic acid is metabolized at a more controlled rate. The fatty acids are converted to hydrogen over a mid to long-range timeline giving 3DMe an exceptionally long electron donor release profile (Figure 1). This staged fermentation provides an immediate, mid-range and very long-term, controlled-release supply of hydrogen (electron donor) to fuel the reductive dechlorination process.

Typical 3DMe single application longevity is rated to between 3 and 5 years. With 5 years occurring under optimal conditions, e.g. low permeability, low consumption environments.

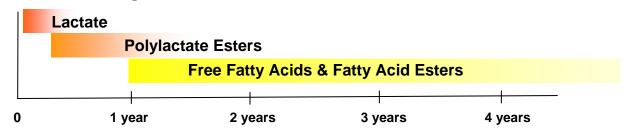


Figure 1. 3-D Microemulsion™ Release Profile

APPLICATION AND DISTRIBUTION

3DMe applications can be configured in several different ways including: **grids**, **barriers and excavations**. The material itself can be applied to the subsurface through the use of **direct-push injection**, **hollow-stem auger**, **existing wells** or **re-injection wells**.

3DMe is typically applied in high-volumes as an emulsified, micellar suspension (microemulsion). The microemulsion is easily pumped into the subsurface and is produced on-site by mixing specified volumes of water and delivered 3DMe concentrate. Detailed preparation and installation instructions are available at www.regenesis.com.

3DMe is usually applied throughout the entire vertical thickness of the determined treatment area. Once injected, the emulsified material moves out into the subsurface pore spaces via micellar transport, eventually coating most all available surfaces. Over time the released soluble components of 3D Microemulsion are distributed within the aquifer via the physical process of advection and the concentration driven forces of diffusion.

More on Micelles

Micelles (Figure 2.) are groups (spheres) of molecules with the hydrophilic group facing out to the water and the "tails" or lipophilic moiety facing in. They are formed during the 3-D Microemulsion emulsification process and provide the added benefit of increased distribution via migration to areas of lower concentration.

Figure 2: Micelle Representation

MORE ON APPLICATIONS

3DMe is typically applied in large volumes and is easily injected using widely available, non-specialized remediation equipment.

3-D Microemulsion is delivered in 55 gallon drums, 300 gallon totes, tankers or buckets.

The microemulsion is easily prepared onsite and applied in high volumes for adequate subsurface distribution.

The material can is easily applied through existing wells or direct push-points.

PERFORMANCE

Case Study #1

A site in Massachusetts showed high levels of PCE and its daughter products TCE and cis-DCE which had been consistently present for more than two years. 3DMe was applied in a grid configuration around monitoring well #16. In Figure 3, the contaminant concentration results indicate a rapid decrease in the parent product PCE and evidence of reductive dechlorination as demonstrated by the relative increases in daughter products TCE and cis-DCE.

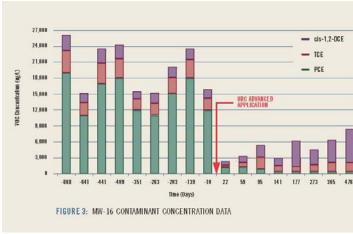


Figure 3. MW-16 Contaminant Concentration Data

Case Study #2

A site in Florida was characterized with PCE Contamination Approaching 225 ug/L. 1080 pounds of HRC Advanced was applied in a grid configuration through 16 direct-push points, with about 5 feet between each point and at a rate of approximately 5 lbs. per vertical foot. Monitoring in well 103 at 75 days post-3DMe injection indicated that PCE was reduced by 67% then leveled off for about 75 days then dropped another 22% for a total of 89% reduction over a 275 day period. TOC levels remain elevated at 17-19 mg/L after 275 days and daughter products remain at low levels (Figure 4).

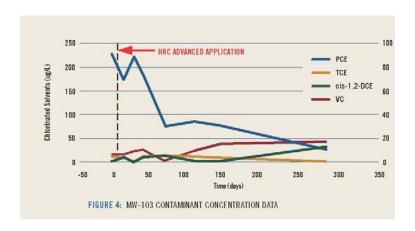


Figure 4. MW-103 Contaminant Concentration Data

For more information on 3-D Microemulsion, contact you local representative or call 949-366-8000. You can also visit our website at www.regenesis.com.

Advanced Technologies for Groundwater Resources

3-D Microemulsion (3DMe)™ INSTALLATION INSTRUCTIONS

High-Volume, Wide-Area, Microemulsion Application

Introduction

3-D Microemulsion (3DMe)TM formerly known as HRC Advanced[®] should <u>ONLY</u> be applied as a high-volume, microemulsion. In this form it offers greater physical distribution of the 3DMe material across a larger potential radius from a single injection point. The production of a 3DMe emulsion involves the on-site, volumetric mixing of 10 parts water with 1 part delivered 3DMe concentrate to form the injection-ready 3DMe microemulsion. This microemulsion suspension can then be injected directly or further diluted to a predetermined ratio of 3DMe to water. The following instructions provide details in the production and installation of 3DMe.

Material Overview Handling and Safety

3DMe concentrate is shipped and delivered in 4.25-gallon buckets. Each bucket has a gross weight of approximately 32 pounds. Each bucket contains 30 pounds of 3DMe concentrate (net weight) and a nominal volume of 3.7 gallons. At room temperature, 3DMe concentrate is a liquid material with a viscosity of approximately 500 centipoise, roughly the equivalent of pancake syrup. The viscosity of 3DMe is not temperature sensitive above 50 °F (10 °C). However, below 50 °F the viscosity may increase significantly. If the user plans to apply the product in cold weather, consideration should be given to heating the material to above 60 °F so that it can be easily handled. 3DMe concentrate should be stored in a warm, dry place that is protected from direct sunlight. It is common for stored 3DMe concentrate to settle somewhat in the bucket, a quick pre-mix stir by a hand held drill with a paint or "jiffy mixer" attachment will rapidly re-homogenize the material. 3DMe concentrate is non-toxic, however field personnel should take precautions while handling and applying the material. Field personnel should use appropriate personal protection equipment (PPE) including eye protection. Gloves should be used as appropriate based on the exposure duration and field conditions. A Material Safety Data Sheet is provided with each shipment. Personnel who operate field equipment during the installation process should have appropriate training, supervision, and experience and should review the MSDS prior to site operations.

Microemulsion Production 3DMe to Water Ratio

3DMe concentrate should be mixed with water on a volume to volume (v/v) basis to produce a microemulsion starting at 10 parts water: 1 part 3DMe. Although microemulsions can be easily produced using greater water volumes than 10 parts, e.g. 20 to 50 parts water to 1 part 3DMe, the initial microemulsion should never be produced below a ratio of less than 10 parts water: 1 part 3DMe v/v. WARNING: Do not attempt to produce a microemulsion at less than 10 parts water to 1 part 3DMe ratio v/v. This will produce an undesirable and unstable solution.

The field production of 3DMe microemulsion is a very simple procedure; however, it is critical that the user follow the mixing directions outlined below.

IMPORTANT - NEVER ATTEMPT TO ADD WATER TO THE 3DME CONCENTRATE AS THIS WILL PRODUCE AN UNDESIRABLE AND UNSTABLE EMULSION. ALWAYS ADD 3DME CONCENTRATE TO A LARGE VOLUME OF WATER.

As indicated previously the 10:1 ratio of water to 3DMe v/v is the minimum water ratio that can be used, a greater ratio (more dilute solution) can easily be achieved and is governed by: A) the volume of 3DMe required to treat the estimated contaminant mass, B) the pore volume in which the material is applied, C) the time available for installation (gallons/pump rate), and C) the estimated volume of 3DMe microemulsion that the target zone will accept over the time period allocated for installation.

Conceptually, although a higher volume of water to volume of 3DMe will produce a larger volume of the suspension, it will lower the concentration of 3DMe per gallon of solution. Thus, the benefit of using a high water/3DMe v/v ratio in order to affect a greater pore volume of the subsurface aquifer is offset by the dilution of the 3DMe per unit volume of suspension as well as by the limitations of the subsurface hydraulic conductivity and effective porosity (capacity of the aquifer to accept the volume of 3DMe microemulsion).

It is important that the user plan in advance the v/v 3DMe/water ratio to be employed at a project site. The resulting volume of solution will dictate the site water requirements and the time required for injection, etc. If upon injection of greater than 10:1 3DMe microemulsion, the subsurface does not readily accept the volume of solution as designed, the user can adjust downward the v/v water to 3DMe ratio until a more concentrated suspension is produced (this solution should never drop below the required 10 parts water:1 part 3DMe v/v production ratio). For more information on designing a 3DMe/water ratios to meet specific site conditions, please contact Regenesis Technical Services.

Direct-Push Application Requirements

One of the best methods to deliver the 3DMe microemulsion into the subsurface is to pressure inject the solution through direct-push rods using hydraulic equipment, or to pressure inject/gravity feed the microemulsion into the dedicated injection wells. The use of low-cost push points or temporary injection points allows the applier to more cost effectively distribute

the 3DMe material across shallow sites by employing multiple points per site. In the case of treating deep aquifer sites, the use of the microemulsion applied via dedicated injection wells is likely to be the most cost-effective remediation approach. Please note that this set of instructions is specific to direct-push equipment. Please contact Regenesis Technical Services to assist you with dedicated injection well applications.

In general, Regenesis strongly recommends application of the 3DMe microemulsion using an injection pump with a minimum delivery rate of three gallons per minute (gpm) and a pressure rating of between 150 to 200 pounds per square inch (psi). Note: the <u>injection pump</u> requirements are different than the requirements of the mixing pump (see Mixing to Generate 3DMe Microemulsion). High pressure, positive displacement pumps and progressive cavity pumps are appropriate for injecting 3DMe. For low permeability lithologies (clay, silt) higher pressure pumps (800-1600 psi) may be necessary, while for more permeable lithologies (gravel, sand) a lower pressure pump may be adequate. Examples of appropriate pumps are: Rupe Models 6-2200, 9-1500 and 9-1600 (positive displacement), Geoprobe[®] GS-2000 (positive displacement) and DP-800 (progressive cavity), Yamada (air diaphragm), Moyno (progressive cavity), and Wilden (air diaphragm). Delivery rate is a critical factor in managing installation time and costs. Generally, higher delivery rates (>6 gpm) are more cost effective for these types of applications but pump selection should be on a site specific basis and account for the volume of 3DMe solution and specific aquifer conditions present at the site.

The installation of the 3DMe microemulsion should span the entire vertical contaminated saturated thickness. If the vertical extent of the application is confined to a limited interval, then the microemulsion should be placed across a vertical zone extending a minimum of one-foot above and one-foot below the screened interval of monitoring wells that are being used to evaluate the performance of the project.

Producing the 3DMe Microemulsion

The application of 3DMe requires the creation of a microemulsion. Technically the optimal suspension is a 3DMe-in-water suspension containing microemulsions. Before beginning the mixing procedure the user should have in mind the desired water to 3DMe ratio v/v desired.

It is critical that the microemulsion be produced using a high-shear apparatus such as a high speed centrifugal pump. The shearing provided by the vanes in these types of pumps is sufficient to form and maintain a homogeneous milky emulsion. This pump will be a different pump than that used to inject the 3DMe microemulsion into the subsurface. If the user is uncertain as to requirements for the pump or the applicability of a certain pump, please contact Regenesis Technical Services. Regenesis typically suggests using a water trailer/pump apparatus commonly found at equipment rental facilities. Regenesis recommends using a Magnum Products LLC model MWT500 or equivalent water trailer (fitted with centrifugal recirculation pump). This "trash pump" or transfer pump is an ideal high shear pump and the water tank (400 gallons) serves as an excellent mixing tank.

To ensure that proper microemulsion suspension is generated Regenesis suggests a two-step process that simply requires mixing at least 10 parts water to 1 part 3DMe concentrate using water at a temperature $\geq 60^{\circ}F$.

Step 1) Regenesis recommends that the 3DMe concentrate in each bucket be rehomogenized using a drill equipped with a paint or "jiffy" mixer attachment as minor settling may have occurred during shipment.

Step 2) to calculate the volume of water necessary to produce a 10:1 v/v microemulsion, each bucket of 3DMe concentrate containing 3.7 gallons of material should be mixed with 37 gallons of water.

Example: 6 buckets x 3.7 gallons 3DMe concentrate/bucket yields a total of 22.2 gallons of 3DMe concentrate. Thus, a 10:1 v/v solution will require 222 gallons of water (22.2 gallons 3DMe concentrate x 10 gallons water yields 222 gallons of water). A nominal total volume microemulsion would result from the summation of the 3DMe concentrate volume (22.2 gallons) and the water volume (222 gallons). This yields a total fluids delivery volume of approximately 244 gallons.

The previously calculated water volume (222 gallons) should be transferred into an appropriately sized mixing tank. The water should be circulated by the high shear centrifugal pump and each of the six 3DMe buckets slowly poured into the tank. Each bucket of 3DMe concentrate should be poured at a slow rate (approx. 1 minute per bucket) and the contents of the tank continually recirculated using the high hear centrifugal pump. A period of 1-2 minutes should be allowed between addition of each subsequent bucket of 3DMe concentrate to allow the centrifugal pump to continue to shear and mix the water/3DMe concentrate. Upon addition of the entire volume of 3DMe concentrate the pump should remain on to allow the solution mixture to recirculate. The recirculation of the 3DMe microemulsion should continue until the material is injected to maintain microemulsion consistency.

Application of Microemulsion Using Direct-Push Methods

- 1) Prior to the installation of the microemulsion, any surface or overhead impediments should be identified as well as the location of all underground structures. Underground structures include but are not limited to: utility lines, tanks, distribution piping, sewers, drains, and landscape irrigation systems.
- 2) The planned installation locations should be adjusted to account for all impediments and obstacles.
- 3) Pre-mark the installation locations, noting any points that may have different vertical application requirements or total depth.
- 4) Set up the direct-push unit over each specific point and follow the manufacturer's standard operating procedures (SOP). Care should be taken to assure that probe holes remain vertical.

- 5) For most applications, Regenesis suggests using drive rods with an O.D. of at least 1.25-inches and an I.D. of at least 0.625-inches I.D (Geoprobe or equivalent). However, the lithologic conditions at some sites may warrant the use of larger 2.125-inch O.D./1.5-inch I.D. drive rods.
- 6) The most typical type of sub-assembly currently being used is designed for 1.25-inch direct-push rods and is manufactured by Geoprobe. Other brands of drive rods can also be used but require the fabrication of a sub-assembly that allows for a connection between the pump and drive rod.
- 7) For mixing large volumes of the microemulsion, Regenesis recommends using a Magnum Products LLC model MWT500 water trailer (fitted with centrifugal recirculation pump) or equivalent unit. However, single large volume poly tanks are adequate. We suggest filling the tank with an appropriate quantity (e.g. from the example above 222 gallons) of water before start of mixing operations. The tank should be configured so that both a hose and a fire hydrant or larger water tank can be connected to it simultaneously and filled with water quickly and easily. This will dramatically reduce the time needed to fill the tank with mixing water.
- 8) Regenesis highly recommends preparing the microemulsion before pushing any drive rods into the subsurface. NOTE: it is best if the micro-emulsion is produced a single day application volumes.
- 9) After the microemulsion mixing/shearing step has been completed as described above, the microemulsion is ready to be applied. Check to see if a hose has already been attached to the inlet side of the centrifugal pump. If this has not been done, do so now.
- 10) If a non-water trailer tank is being used for mixing the microemulsion a stand alone centrifugal pump and hose system should be used for the shearing and mixing operations.
- 11) Advance drive rods through the ground surface, as necessary, following SOP.
- 12) Push the drive rod assembly with an expendable tip to the desired maximum depth. Regenesis suggests pre-counting the number of drive rods needed to reach depth prior to starting injection activities to avoid any miscalculations.
- 13) After the drive rods have been pushed to the desired depth, the rod assembly should be withdrawn three to six inches. The expendable tip can be dropped from the drive rods, following SOP.
- 14) If an injection tool is used instead of a direct-push rod with an expendable tip, the application of material can take place without any preliminary withdrawal of the rods.
- 15) In some cases, introduction of a large column of air may be problematic. This is particularly the case in deep injections (>50 ft) with large diameter rods (>1.5-inch O.D.). To prevent the injection of air into the aquifer during the application, fill the drive rods with 3DMe emulsion

- after they have been pushed to the desired depth and before the disposable tip has been dropped or before the injection tip is operational.
- 16) Transfer the appropriate quantity of the microemulsion from the water trailer to the working/application pump hopper or associated holding tank.
- 17) A volume check should be performed prior to the injection of the microemulsion. Determining the volume discharged per unit time/stroke using a graduated bucket and stopwatch or stroke counter.
- 18) Start the pump and use the graduated bucket to determine how many gallons of microemulsion are delivered each minute or stroke per unit volume.
- 19) Connect the 1.25-inch O.D., 1-inch I.D. delivery hose to the pump outlet and the appropriate sub-assembly. Circulate the microemulsion through the hose and the sub-assembly to displace any air present in the system.
- 20) Connect the sub-assembly to the drive rod. After confirming that all of the connections are secure, pump the microemulsion through the delivery system to displace any water or other fluids in the rods.
- 21) The pump engine RPM and hydraulic settings should remain constant throughout the day to maintain a constant discharge rate.
- 22) The material is now ready to be installed in the subsurface. Use the pumps discharge rate as calculated in step 18 to determine the withdrawal rate of the drive rods needed for the application.
- 23) Slowly withdraw the drive rods using Geoprobe Rod Grip or Pull Plate Assembly (Part AT1222-For 1.25-inch drive rods). While slowly withdrawing single lengths of drive rod (three or four feet), pump the pre-determined volume of microemulsion into the aquifer across the desired treatment interval.
- 24) Remove one or two sections of the drive rod at a time. The drive rod may contain some residual material so Regenesis suggests placing it in a clean, empty bucket and allowing the material to drain. Eventually, the material recovered in the bucket should be returned to the pump hopper for reuse.
- 25) Observe any indications of aquifer refusal such as "surfacing" around the injection rods or previously installed injection points. If aquifer acceptance appears to be low, allow enough time for the aquifer to equilibrate prior to removing the drive rod.
- 26) Repeat steps 19 through 25 until treatment of the entire contaminated vertical zone has been achieved.
- 27) Install an appropriate seal, such as bentonite, above the microemulsion injection zone. The seal should span across the entire vadose zone. Depending on soil conditions and local

regulations, a bentonite seal using chips or pellets can be used. If the injection hole remains open more than three or four feet below the ground surface sand can be used to fill the hole and provide a base for the bentonite seal. The installation of an appropriate seal assures that the microemulsion remains properly placed and prevents contaminant migration from the surface. If the microemulsion continues to "surface" up the direct-push borehole, an oversized disposable drive tip or wood plug/stake can be used to temporarily plug the hole until the aquifer equilibrates and the material stops surfacing.

- 28) Remove and clean the drive rods as necessary.
- 29) Finish the borehole at the surface as appropriate (concrete or asphalt cap, if necessary).
- 30) Periodically compare the pre- and post-injection discharge rates of the microemulsion in the pump hopper or holding tank using any pre-marked volume levels. If volume level indicators are not on the pumps hopper or holding tank use a pre-marked dipstick or alternatively temporary mark the hopper or holding tank with known quantities/volumes of water using a carpenter's grease pencil (Kiel crayon).
- 31) Move to the next probe point, repeating steps 11 through 29.

Helpful Hints

1) Application in Cold Weather Settings

As discussed in the Material Overview, Handling, and Safety section, cold weather tends to increase the viscosity of 3DMe as well as decrease the ease of microemulsion formation. To optimize an application in cold weather settings Regenesis recommends maintaining the 3DMe concentrate and the associated water at a temperature $\geq 60^{\circ}$ F (16° C). The following procedures can be used to facilitate the production and installation of a 10:1 v/v 3DMe microemulsion.

- Raise and maintain the temperature of the 3DMe to at least 60°F (16°C) prior to mixing with water. A hot water bath can be used to heat up the 3DMe concentrate buckets. A Rubbermaid fiberglass Farm Trough Stock Tank (Model 4242-00-GRAY) has been used for this process. This trough can hold up to 16 buckets of 3DMe concentrate.
- Hot water (approximately 130-170°F or 54-77°C) should be added to the tank after the buckets of 3DMe have been placed inside. The hot water should be delivered from a heated pressure washer (Hotsy® Model No. 444 or equivalent) or steam cleaner unit.
- It is equally critical that a moderate water temperature (>60°F or 16°C) be used in the production of the microemulsion. If on-site water supply is below 60°F use a hot water or steam cleaner to generate a small volume (e.g. 5-10% of total water volume) of hot water (130–170°F/54-77°C). This small volume of hot water should be added to remaining cold water volume to raise the total volume temperature to >60°F. When the 3DMe concentrate and water each reach a minimum temperature of 60°F or 16°C the two materials are ready for mixing.

- Upon achieving a minimum temperature of 60°F or 16°C (approximately 10-20 minutes). When the 3DMe and the associated water volumes have reached a minimum temperature of 60°F or 16°C (approximately 10-20 minutes) they are ready for mixing.
- In exceptionally harsh winter temperature settings use of a separate insulated pump containment structure and insulated delivery hoses may be necessary.
- Use a pump with a heater unit.
- Periodically check the temperature of the material in the hopper.
- Re-circulate the 3DMe microemulsion through the pump and hose to maintain temperature adequate temperatures.
- Care should be taken to avoid the re-circulation of material volumes that exceed the volume of the pump hopper or holding tank.

Table 1: Equipment Volume and 3DMe Microemulsion Weight per Unit Length of Hose (Feet)

Equipment	` Volume	Product Weight
1-inch OD; 0.625-inch ID hose (10 feet)	0.2 gallon	1.6 lbs.
1.25-inch OD; 0.625-inch ID drive rod (3 feet):	0.05 gallon	0.4 lbs.
1.25-inch OD; 0.625-inch ID drive rod (4 feet):	0.06 gallon	0.5 lbs.

2) Pump Cleaning

For best results, use a heated pressure washer to clean equipment and rods periodically throughout the day. Internal pump mechanisms and hoses can be easily cleaned by re-circulating a solution of hot water and a biodegradable cleaner such as Simple Green through the pump and delivery hose. Further cleaning and decontamination (if necessary due to subsurface conditions) should be performed according to the equipment supplier's standard procedures and local regulatory requirements.

NOTE:

Before using the Rupe Pump, check the following:

- Fuel level prior to engaging in pumping activities (it would be best to start with a full tank)
- Remote control/pump stroke counter LCD display [if no display is present, the electronic counter will need to be replaced (Grainger Stock No. 2A540)]

Monitor pump strokes by observing the proximity switches (these are located on the top of the piston).

3) Bedrock Applications

When contaminants are present in competent bedrock aquifers, the use of direct-push technology as a delivery method is not possible. Regenesis is in the process of developing methods for

applying 3DMe via boreholes drilled using conventional rotary techniques. To develop the best installation strategy for a particular bedrock site, it is critical that our customers call the Technical Services department at Regenesis early in the design process.

The microemulsion can be applied into a bedrock aquifer in cased and uncased boreholes. The microemulsion can be delivered by simply filling the borehole without pressure or by using a single or straddle packer system to inject the material under pressure. Selection of the appropriate delivery method is predicated on site-specific conditions. The following issues should be considered in developing a delivery strategy:

- Is the aquifer's hydraulic conductivity controlled by fractures?
- Backfilling may be the better delivery method in massive, unfractured bedrock. This is particularly true in an aquifer setting with high permeability and little fracturing (such as that found in massive sandstone).
- Down-hole packer systems may be more advantageous in fractured bedrock aquifers.
 - In this case the fracture type, trends, and interconnections should be evaluated and identified.
- Are the injection wells and monitoring wells connected by the same fractures?
- Determine if it is likely that the injection zone is connected to the proposed monitoring points.
- If pressure injection via straddle packers is desired, consideration should be given to the well construction. Specific issues to be considered are:
 - Diameter of the uncased borehole (*will casing diameter allow a packer system to be used under high pressures*?).
 - Diameter of the casing (*same as above*).
 - Strength of the casing (can it withstand the delivery pressures?).
 - Length of screened interval (screened intervals greater than 10 feet will require a straddle packer system).

For further assistance or questions please contact Regenesis Technical Services at 949-366-8000.

3DMe Grid Treatment Summary Page - Consultant Output

Regenesis Technical Support: USA (949) 366-8000 <u>www.regenesis.com</u>

Site Name: Speedy's Cleaners
Location: Brighton NY
Consultant: Mactec

Aquifer Characteristics Soil Type

Soil Type
Total Porosity
Effective Porosity
Hydraulic Conductivity
Hydraulic Gradient
Seepage Velocity
Pore Volume
Pore Volume

	_
silty sand	
0.4	
0.2	
10.3	ft/day
0.008	ft/ft
150.5	ft/yr ft ³
8,000	ft ³
59,844	gals

Design Assumptions

Area of Application Thickness of Application Dissolved Contaminant Mass Adsorbed Contaminant Mass Mass of Competing Electron Acceptors

4,000	ft ²
5	ft
4.00	lbs
19.57	lbs
44.95	lbs

3DMe Grid Treatment Summary Page - Consultant Output

Regenesis Technical Support: USA (949) 366-8000 www.regenesis.com

Site Name: Speedy's Cleaners Location: Brighton NY Consultant: Mactec

Direct Push Injection Application

3DMe-Related

Concentrate Mass 840 lbs Concentrate Volume 101 gals

Base 10:1 Emulsion Formulation

3DMe Concentrate Volume 101 gals Water Volume 1,007 **Emulsion Total Volume** 1,108 Effective Pore Space Displaced 3.7%

Recommended Emulsion Formulation

Additional Water Volume Total Water Volume (base+recommended) Total Mass of Recommended Emulsion Total Volume of Recommended Emulsion

I	89	gals
I	1,096	gals
ĺ	9,986	lbs
ſ	1,197	gals

gals

gals

Application-Related

Number of Direct Push Injection Points Mass of 3DMe 10:1 Base Emulsion per Point Volume of 3DMe 10:1 Base Emulsion per Point Mass of 3DMe 10:1 Base Emulsion per Lineal Foot Volume of Recommended Emulsion per Point Volume of Recommended Emulsion per Foot **Estimated Application Rate** Estimated Application Time per Point

Purchasing-Related Information

Number of Buckets of 3DMe Concentrate **Estimated Number of Pallets** Total Required Volume of Water Mass of 10:1 Base Emulsion Unit Price (\$/lb) of 10:1 Base Emulsion Material Cost at 10:1 Base Emulsion (total) Sales Tax

Shipping Estimate

	points
924	lbs/point
111	gals/point
184.8	lbs/ft
120	gals/point
24	gals/ft
5	gpm
1	min/point

28		buckets
20		
11		pallets
1,096		gals
9,240		lbs
\$	0.47	
\$	4,343	
\$	-	
\$	_	Call Red

Call Regenesis For Quote

3DMe Grid Treatment Summary Page - Consultant Output

Regenesis Technical Support: USA (949) 366-8000 <u>www.regenesis.com</u>

Site Name: Speedy's Cleaners Location: Brighton NY Consultant: Mactec

Fixed Well Application

3D	М	Δ-	P۵	lat	had
JU	w	e-	ĸe	ıaı	LEU

Concentrate Mass840lbsConcentrate Volume101gals

Base 10:1 Emulsion Formulation

 3DMe Concentrate Volume
 101
 gals

 Water Volume
 1,007
 gals

 Emulsion Total Volume
 1,108
 gals

 Effective Pore Space Displaced
 3.7%
 %

Recommended Emulsion Formulation

Additional Water Volume
Total Water Volume (base+recommended)
Total Mass of Recommended Emulsion
Total Volume of Recommended Emulsion

89 gals 1,096 gals 9,986 lbs 1,197 gals

10

924

111

184.8

120

24

10

wells

lbs/ft

gals/ft

gpm

lbs/well

gals/well

gals/well

min/well

Application-Related

Number of Wells
Mass of 3DMe 10:1 Base Emulsion per Well
Volume of 3DMe 10:1 Base Emulsion per Well
Mass of 3DMe 10:1 Base Emulsion per Lineal Foot
Volume of Recommended Emulsion per Well
Volume of Recommended Emulsion per Foot
Estimated Application Rate
Estimated Application Time per Well

Purchasing-Related Information

Number of Buckets of 3DMe Concentrate Estimated Number of Pallets Total Required Volume of Water Mass of 10:1 Base Emulsion Unit Price (\$/lb) of 10:1 Base Emulsion Material Cost at 10:1 Base Emulsion (total) Sales Tax Shipping Estimate

28		buckets
1		pallets
1,096		gals
9,240		lbs
\$	0.47	
\$	4,343	
\$ 	-	
\$	-	Call Reg

- Call Regenesis For Quote

3DMe Grid Treatment Summary Page - Contractor Output

Regenesis Technical Support: USA (949) 366-8000 <u>www.regenesis.com</u>

Site Name: Speedy's Cleaners Location: Brighton NY Consultant: Mactec

Direct Push Application

Aguifer-Related In	formation
--------------------	-----------

 Soil Type
 silty sand

 Area of Application
 4,000
 ft²

 Application Dimensions
 Length
 40
 ft

 Width
 100
 ft

 Thickness
 5
 ft

3DMe-Related Information

3DMe Concentrate Mass 840 lbs Number of Buckets of 3DMe Concentrate 28 buckets pallets **Estimated Number of Pallets** Base 10:1 Emulsion Water Requirement 1,007 gals gals Additional Water Needed to Make Recom. Emulsion 89 Total Volume of Water Required 1,096 gals

Application-Related Information

Spacing Within Rows 10 Spacing Between Rows 40 ft Number of Direct Push Injection Points 10 points Volume of 3DMe As Applied, Emulsion per Point 120 gals/point Volume of 3DMe As Applied, Emulsion per Foot gals/ft Estimated Application Rate 5 gals/minute Estimated Application Time Per Point mins/point

Purchasing-Related Information

Number of Buckets of 3DMe Concentrate Estimated Number of Pallets Total Required Volume of Water Mass of 10:1 Base Emulsion Unit Price (\$/lb) of 10:1 Base Emulsion Sales Tax Shipping Estimate

28		buckets
1		pallets
1,096		gals
9,240		lbs
\$	0.47	
\$	-	
\$ •	-	Call Regenesis For Quote

3DMe Grid Treatment Summary Page - Contractor Output

Regenesis Technical Support: USA (949) 366-8000 <u>www.regenesis.com</u>

Site Name: Speedy's Cleaners Location: Brighton NY Consultant: Mactec

Fixed Well Application

Aquifer	-Related	Information	

 Soil Type
 silty sand

 Area of Application
 4,000
 ft²

 Application Dimensions
 40
 ft

 Length
 40
 ft

 Width
 100
 ft

 Thickness
 5
 ft

3DMe-Related Information

3DMe Concentrate Mass 840 lbs Number of Buckets of 3DMe Concentrate 28 buckets pallets **Estimated Number of Pallets** Base 10:1 Emulsion Water Requirement 1,007 gals gals Additional Water Needed to Make Recom. Emulsion 89 Total Volume of Water Required 1,096 gals

Application-Related Information

Spacing Within Rows 10 Spacing Between Rows 40 ft Number of Injection Wells 10 points Volume of 3DMe As Applied, Emulsion per Well 120 gals/point Volume of 3DMe As Applied, Emulsion per Foot gals/ft Estimated Application Rate 10 gals/minute Estimated Application Time Per Point mins/point

Purchasing-Related Information

Number of Buckets of 3DMe Concentrate Estimated Number of Pallets Total Required Volume of Water Mass of 10:1 Base Emulsion Unit Price (\$/lb) of 10:1 Base Emulsion Sales Tax Shipping Estimate

28		buckets
1		pallets
1,096		gals
9,240		lbs
\$	0.47	
\$	-	
\$	-	Call Regenesis For Quote

5,985 gallons

110 lb/cf

0.0

Stoich. (wt/wt)

HRC Design Software for Excavation Applications

Regenesis Technical Support: USA (949) 366-8000, www.regenesis.com

Site Name: Former Speedy's Cleaner - Source Excavation

Location: Birghton, NY Consultant: MACTEC

Site Conceptual Model/Extent of Plume Requiring Remediation

Planned Excavation: Width of planned excavation 10 ft Length of planned excavation 10 100 sq. ft. Thickness of saturated zone to be excavated 100 cu. ft. GW Plume: Width of plume area containing contaminant 20 Length of plume area containing contaminant 20 400 sq. ft. Thickness of contaminated saturated zone 2,000 cu. ft. Total porosity 0.4

Dissolved Phase Electron Donor Demand

Treatment Zone Pore Volume

contam/H₂ Conc. (mg/L) Mass (lb) Tetrachloroethene (PCE) DNAPL?-Consider inc. add. dem. factor 13.00 0.6 20.7 Trichloroethene (TCE) 0.17 0.0 21.9 cis-1,2-dichloroethene (DCE) 0.13 0.0 24.2 Vinyl Chloride (VC) 0.00 0.0 31.2 Carbon tetrachloride 0.00 0.0 19.2 Chloroform 0.00 0.0 19.9 1,1,1-Trichloroethane (TCA) 0.0 22.2 24.7 1,1-Dichlorochloroethane (DCA) 0.00 0.0 **Hexavalent Chromium** 0.00 0.0 17.3 User added, also add stoichiometric demand 0.0 0.000.0 User added, also add stoichiometric demand 0.0

Sorbed Phase Electron Donor Demand

Soil bulk density Fraction of organic carbon: foc

(Values are estimated using Soil Conc=foc*Koc*Cgw) Koc Contaminant Stoich. (wt/wt) (Adjust Koc as nec. to provide realistic estimates) Conc. (mg/kg) Mass (lb) contam/H2 (L/kg) Tetrachloroethene (PCE) 371 24.12 Trichloroethene (TCE) 122 0.10 0.0 21.9 cis-1,2-dichloroethene (DCE) 80 0.05 0.0 24.2 Vinyl Chloride (VC) 2.5 0.00 0.0 31.2 Carbon tetrachloride 0.00 0.0 19.2 Chloroform 0.00 0.0 19.9 1,1,1-Trichloroethane (TCA) 304 0.00 0.0 22.2 1,1-Dichlorochloroethane (DCA) 33 0.00 0.0 24.7 User added, also add stoichiometric demand 0.00 0.0 0.0

0

Competing Electron Acceptors:

User added, also add stoichiometric demand

Oxygen Nitrate

Est. Mn reduction demand (potential amt of Mn2+ formed) Est. Fe reduction demand (potential amt of Fe2+ formed)

Estimated sulfate reduction demand

Electron	Stoich. (wt/wt)	
Conc (mg/L)	Mass (lb)	elec acceptor/H ₂
5.00	0.2	8.0
5.00	0.2	12.4
5.00	0.2	27.5
25.00	1.2	55.9
50.00	2.5	12.0

0.0

800 ft³

Contaminant

1.76 a/cm³

0.00

0.005 range: 0.0001 to 0.01

Microbial Demand Factor Additional Demand Factor

Total Regenesis Material Cost

Project Summary			
Approx HRC Dose (lb)			188
Total Number of 30 lb Buckets			7
Total Amt of HRC (lb)			210
Volume of HRC (gal)			19
% of excav. backfill pore space (assume 30% backfill porosity)		ity)	8.6%
HRC Cost		\$	7.95
Total Material Cost		\$	1,670
Shipping and Tax Estimates in US I	Dollars		
Sales tax	rate: 5%	\$	83
Total Matl. Cost		\$	1,753
Shipping of HRC (call for amount)		\$	_

List Price Adjust

1,753

3 Recommend 1-4x

3 Recommend 1-4x

Total Project Cost	\$ 1,753
Other	\$ -
Other	\$ -
Other	\$ -
Other	\$ -
Other	\$ -
Groundwater monitoring	\$ -
Laboratory costs	\$ -
Construction management	\$ -
Excavation contractors	\$ -
Permitting and reporting	\$ -
Design	\$ -