

Semi-Annual Groundwater Monitoring Report December 2024 Town and Country Dry Cleaners Site (828149) Brighton, New York

Work Assignment No. D009806-34

Prepared for

New York State Department of Environmental Conservation
Division of Environmental Remediation
625 Broadway
Albany, New York 12233-7017

Prepared by

EA Engineering and Geology, P.C.
Washington Station
333 West Washington Street, Suite 300
Syracuse, New York 13202
315-431-4610

April 2025 Version: FINAL EA Project No. 16025-34-00-CP

TABLE OF CONTENTS

				<u>Page</u>
LIST	OF TAE	BLES		ii
LIST	OF FIG	URES .		iii
LIST	OF APP	ENDIC	CES	iv
LIST	OF ACF	RONYI	MS AND ABBREVIATIONS	v
1.	BACK	GROU	JND	1
	1.1	SITE	DESCRIPTION	1
	1.2	PROJ	ECT BACKGROUND	1
	1.3	OBJE	CTIVES	2
	1.4	REPO	ORT ORGANIZATION	2
2.	FIELD	INVE	ESTIGATION	5
	2.1		ITORING WELL ASSESSMENTS	
	2.2		UNDWATER GAUGING	
	2.3	GROU	UNDWATER SAMPLING	5
	2.4	LABO	ORATORY ANALYSIS	5
	2.5	DATA	A VERIFICATION	5
3.	GROU	NDW	ATER SAMPLING RESULTS	7
	3.1		ATILE ORGANIC COMPOUND RESULTS	
	3.2	TREN	ND EVALUATION	8
		3.2.1	PCE Concentration Trends	
		3.2.2		
		3.2.3	Cis-1,2-DCE Concentration Trends	10
4.	CONC	LUSIC	ONS AND RECOMMENDATIONS	12
5.	REFEI	RENCE	ES	14

Version: FINAL Page ii April 2025

EA Engineering and Geology, P.C.

LIST OF TABLES

Table 1.	Monitoring W	Vell Details and	Gauging Data

Table 2. Summary of Samples Collected (December 2024)

Table 3. Historical Bedrock VOC Analytical Results

Table 4. Historical Overburden VOC Analytical Results

Version: FINAL Page iii April 2025

LIST OF FIGURES

Figure 1.	General Site Location
Figure 2.	Site Layout
Figure 3.	December 2024 Overburden Groundwater Elevation Contour
Figure 4.	December 2024 Bedrock Groundwater Elevation Contour
Figure 5.	December 2024 VOC Analytical Results
Figure 6.	December 2024 PCE Concentrations in Overburden
Figure 7.	December 2024 PCE Concentrations in Bedrock
Figure 8.	December 2024 TCE Concentrations in Overburden
Figure 9.	December 2024 TCE Concentrations in Bedrock
Figure 10.	December 2024 Cis-1.2-DCE Concentrations in Overburden

LIST OF APPENDICES

Appendix A. Field Forms

Appendix B. Daily Inspection Reports

Appendix C. Data Verification Checklist

Appendix D. Trend Evaluation Graphs

LIST OF ACRONYMS AND ABBREVIATIONS

μg/L Microgram(s) per liter

AWQS Ambient Water Quality Standards

COC Contaminant of concern

DCE Dichloroethene

EA Engineering and Geology, P.C. EPA U.S. Environmental Protection Agency

IRM Interim Remedial Measure

MACTEC Engineering and Consulting, P.C.

No. Number

NYS New York State

NYSDEC New York State Department of Environmental Conservation

PCE Tetrachloroethene

SCO Soil cleanup objective

Site Town and Country Dry Cleaners Site

SMP Site Management Plan

TCE Trichloroethene

VOC Volatile organic compound

Version: FINAL Page vi April 2025

EA Engineering and Geology, P.C.

This page intentionally left blank

1. BACKGROUND

The New York State Department of Environmental Conservation (NYSDEC) tasked EA Engineering and Geology, P.C. (EA) under Work Assignment Number (No.) D009806-34 to perform site management activities, including annual groundwater sampling, at the Town and Country Dry Cleaners Site (NYSDEC Site No. 828149). This Groundwater Monitoring Report documents site management activities conducted in May 2024. Activities were completed in accordance with the applicable guidelines and requirements of NYSDEC.

The Site is located at 2308 and 2310 Monroe Avenue, in the town of Brighton, Monroe County, New York (**Figures 1 and 2**). The Site operated as a dry cleaning and laundry facility from 1969 to 2021. The primary dry cleaning solvent, tetrachloroethene (PCE), was used from 1969 to May 2011, when its use was reportedly discontinued. PCE was observed as high as 38,000 milligrams per kilogram from a soil sample collected just below the bottom of an unlined catch basin that was previously located to the rear (i.e., northeast) of the site building in 2013 (MACTEC Engineering and Consulting, P.C. [MACTEC] 2016a). The contaminants of concern (COCs) include PCE, trichloroethene (TCE), *cis*-1,2-dichloroethene (DCE), and vinyl chloride, which are associated with the historic use as a dry cleaning facility.

1.1 SITE DESCRIPTION

The Site is located at 2308 and 2310 Monroe Avenue in the town of Brighton, Monroe County. The 0.39-acre site is in a mixed commercial/residential area on the northeast side of the town. Most of the Site is occupied by the on-site building with a paved parking area on the north side. The on-site building is occupied by an inactive dry cleaning business. The Site is bound by Monroe Avenue to the south, commercial properties to the west and east, and a residential neighborhood to the north (NYSDEC 2020).

1.2 PROJECT BACKGROUND

During Fall 2015, an Interim Remedial Measure (IRM) (**Figure 2**) was conducted to remove the chlorinated volatile organic compound (VOC) impacted soil immediately below and surrounding the catch basin, and to replace the unlined catch basin with a new sealed, concrete-lined catch basin (MACTEC 2016b). The catch basin was located to the northeast of the on-site building. Prior to backfilling the excavation, the bottom and sides were sprayed with a chemical oxidant, sodium permanganate, prior to backfilling.

NYSDEC issued a Record of Decision in March 2017 (NYSDEC 2017a), and the selected remedy included:

- Excavation and off-site disposal of all on-site soils which exceed the New York State (NYS) soil cleanup objectives (SCOs) for commercial use.
- Excavation and off-site disposal of all off-site soil which exceed NYS SCOs for residential use.

• In situ enhanced biodegradation to treat PCE and its associated degradation products in groundwater in an area to be determined during the remedial design.

In 2017, a Pre-Design Investigation was completed to delineate the extent of soil PCE contamination exceeding residential SCOs for the off-site property and commercial SCOs on-site. The sample results were used during the remedial design to calculate volume estimates for excavation and off-site disposal. Groundwater sample results indicated contaminant concentrations and extent were consistent with previous investigations and display limited potential for reductive dechlorination of PCE (MACTEC 2018).

In 2019, groundwater samples were collected to assess groundwater concentrations post soil removal IRM (MACTEC 2019). Results indicated concentrations of PCE, TCE, *cis*-1,2-DCE, and vinyl chloride above Class GA NYS Ambient Water Quality Standards (AWQS) (NYSDEC 1993). Concentrations of PCE detected in groundwater in May 2019 were generally lower than historical values. The highest concentrations of PCE were observed adjacent to and downgradient of the IRM removal area at MW-1 (2,000 micrograms per liter [μ g/L]), MW-2 (63,000 μ g/L), MW-13 (2,400 μ g/L), and DP-14 (8,100 μ g/L). Two wells near the IRM removal area, MW-2B (20 μ g/L) and DP-16 (300 μ g/L), had concentrations of PCE slightly higher than historic values.

In 2021, NYSDEC performed a soil removal action to remove remaining on-site soil with COCs above commercial use SCOs and to remove off-site soil with COCs above residential SCOs. The soil remedial action removed the largest source of groundwater contamination. This soil removal action generally met the objectives, although some contamination exceeding SCOs for commercial use remain at depth on the north edge of the property where further excavation was not possible or practical because of excavation sloping requirements (MACTEC 2023).

Currently the site is managed under a draft Site Management Plan (SMP) with groundwater sampling conducted semi-annually for VOCs (EA 2024). The monitoring well network consists of 25 wells that are analyzed for VOCs and 4 of those wells are analyzed for geochemical parameters and dissolved gases to evaluate monitored natural attenuation of the VOC plume.

1.3 OBJECTIVES

Monitoring well inspections and groundwater sampling were conducted in December 2024 to characterize the current groundwater plume to evaluate the contaminant trends of VOCs that have impacted the site groundwater.

1.4 REPORT ORGANIZATION

A summary of the December 2024 inspection and groundwater sampling activities is provided in Section 2. Analytical results are presented in Section 3. Conclusion and recommendations are discussed in Section 4.

April 2025

The following are also provided as appendices:

- Appendix A—Field Forms
- Appendix B—Daily Inspection Report
- Appendix C—Data Verification Checklist
- Appendix D—Trend Evaluation Graphs

Version: FINAL Page 4 April 2025

EA Engineering and Geology, P.C.

This page intentionally left blank

2. FIELD INVESTIGATION

Field activities included monitoring well assessments/inspections, groundwater gauging, and sampling of the existing monitoring well network (**Table 1**). Field forms from the inspection and sample collection events are provided in **Appendix A**. Groundwater monitoring was conducted according to the SMP (EA 2024).

2.1 MONITORING WELL ASSESSMENTS

During the sampling event, EA located 19 of the 25 on-site and off-site wells, 3 of which could not be sampled. Monitoring wells MW-1, MW-02B, MW-08, DP-11, DP-14, and GEMW-1 were not found. Three monitoring wells (MW-10, DP-16, and MW-16B) were unable to be sampled for the following various reasons:

- MW-10 could not be sampled due to low water level.
- DP-16 and MW-16B appeared to be abandoned and sealed.

MW-17B was not initially able to be opened due to a frozen J-plug, but the field crew managed to open it before sampling. In addition, DP-17, DP-18, and MW-19B require additional screws/bolts, which will be replaced at the next sampling event. The Daily Inspection Reports are available in **Appendix B**.

2.2 GROUNDWATER GAUGING

A site-wide gauging event was performed prior to sampling. According to the December 2024 gauging data, groundwater in both the overburden and shallow bedrock at the Site flows in an east-southeast direction (**Figures 3 and 4**).

2.3 GROUNDWATER SAMPLING

VOC samples were collected from 16 of the 25 wells listed in the SMP. The samples collected are summarized in **Table 2**. The 16 wells included 10 on-site and 6 off-site wells sampled using a peristaltic pump and the low flow sampling procedures. GEMW-2 was purged dry, and samples were collected upon recharge. MW-10 was assumed dry due to low water level, and samples were not collected. The remaining wells in the network were sampled over the course of the day event. All VOC samples were submitted for U.S. Environmental Protection Agency (EPA) Method 8260D.

2.4 LABORATORY ANALYSIS

Samples were submitted to SGS North America Inc of Dayton, New Jersey. Laboratory analytical results are available upon request.

2.5 DATA VERIFICATION

EA has completed data verification on all laboratory analytical data to:

- Check that sample IDs in the laboratory report match the chain-of-custody.
- Ensure analytical methods and analyte lists are correct and verified against the chain-of-custody.
- Verify that sample receipt conditions are noted in laboratory report.
- Ensure that sample preservation was appropriate and verified by the laboratory.
- Confirm that holding times were met.
- Verify that detection and quantitation limits are appropriate for the project.
- Confirm that quality control samples met project requirements for frequency and field quality control. Check field duplicate relative percent differences.
- Verify the laboratory has provided the correct data deliverable (Cat A or Cat B) report and NYSDEC EQuIS Electronic Data Deliverable.

The Data Verification Checklist is provided in **Appendix C**.

3. GROUNDWATER SAMPLING RESULTS

Results for VOCs are discussed below and presented in **Tables 3 and 4**. Analytical results for the December 2024 sampling effort are presented on **Figure 5**.

3.1 VOLATILE ORGANIC COMPOUND RESULTS

The following sections detail the PCE, trichloroethene (TCE), and *cis*-1,2-dichloroethene (DCE) results in on-site and offsite monitoring wells. Vinyl chloride was not detected in any of the groundwater samples.

3.1.1 Volatile Organic Compound Results for On-site Monitoring Wells

PCE was detected in eight overburden wells and one bedrock well. Seven wells had concentrations exceeding NYS AWQS of 5 μ g/L. PCE in onsite bedrock well MW-13B was not detected above standards. Detected concentrations ranged from 68.2 μ g/L (GEMW-2) to 843 μ g/L (DP-15) in overburden wells. The four wells with the greatest concentrations of PCE were overburden wells:

- DP-10: 266 μg/L
- MW-3: 441 μg/L
- MW-13: 441 μg/L
- DP-15: 843 μg/L

The extent of PCE in groundwater is presented on **Figures 6 and 7**.

TCE concentrations were detected in eight overburden wells and one bedrock wells. Detected concentrations ranged from 0.84 J to 239 μ g/L in the overburden, and TCE was detected at 2.2 μ g/L in the bedrock well. Results from five overburden monitoring wells exceed AWQS of 5 μ g/L. The overburden wells containing TCE concentrations above AWQS include DP-10, DP-15, MW-03, MW-02, and MW-13. The extent of TCE in groundwater is presented on **Figures 8 and 9**.

Cis-1,2-DCE was detected in seven overburden wells and one bedrock wells. Concentrations ranged from 1.1 to 547 μ g/L in the overburden, and cis-1,2-DCE was detected at 8.2 μ g/L in the bedrock well. Results from five overburden and one bedrock monitoring wells exceed AWQS of 5 μ g/L. The overburden wells containing cis-1,2-DCE concentrations above AWQS include DP-10, DP-15, MW-02, MW-03, and MW-13; the bedrock wells that showed exceedances was MW-13B. The extent of cis-1,2-DCE in groundwater is presented on **Figure 10**.

Vinyl chloride was detected in two overburden wells and one bedrock well. Concentrations ranged from 0.67 J to 112 μ g/L in the overburden and 0.67 J μ g/L in the bedrock well. Results from one overburden well containing vinyl chloride exceed AWQS of 2 μ g/L. The overburden well that showed exceedance was MW-03.

3.1.2 Volatile Organic Compound Results in Off-site Monitoring Wells

PCE was detected off-site in two overburden wells and two bedrock wells. Both overburden wells and bedrock well MW-19B had concentrations exceeding NYS AWQS of 5 μ g/L. The extent of PCE in groundwater is presented on **Figures 6 and 7**.

TCE concentrations were detected offsite in one overburden wells and one bedrock well. Overburden well DP-19 (13.6 μ g/L) and bedrock well MW-19B (10.2 μ g/L) had concentrations exceeding NYS AWQS of 5 μ g/L. The extent of TCE in groundwater is presented on **Figures 8** and **9**.

Cis-1,2-DCE was detected offsite in one overburden wells and one bedrock wells. Overburden well DP-19 (15.9 μ g/L) and bedrock well MW-19B (22.2 μ g/L) had concentrations exceeding NYS AWQS of 5 μ g/L. The extent of cis-1,2-DCE in groundwater is presented on **Figure 10**.

The behavior of the plume appears to be stable, because the sentinel well concentrations for all COCs remain static during the last four sample events. The plume appears to be well bounded, except for the southern extent (i.e., south of DP-19 and MW-19B). A summary of sampling results for VOCs is presented on **Figure 5**. Historical analytical results for VOC concentrations are presented in **Tables 3 and 4**.

3.2 TREND EVALUATION

The Mann-Kendall test was used to statistically evaluate trends for PCE, TCE, and *cis*-1,2-DCE concentrations over time in 13 representative wells (DP-10, DP-15, DP-18, DP-19, DP-21, GEMW- 02, MW-01, MW-02, MW-03, MW-13, MW-13B, MW-19B, and MW-21B). The Mann-Kendall Test is a non-parametric test that can be used to define the stability of a solute plume (i.e., stable, diminishing, or expanding) based on concentration trends at individual wells. To evaluate plume stability, four or more independent sampling events are required.

The following steps comprise the Mann-Kendall Test:

- **Step 1—Well Data**: Contaminant concentrations are entered for each sampling event. Only those events for which numeric or non-detect values are available are included. In the event of a non-detect value, one-half the laboratory reporting limit was used for previous sampling events.
- **Step 2—Data Comparisons**: Compare data sequentially, comparing sample event 1 to sample events 2 through n, then sampling event 2 to sampling events 3 through n, etc. Each row is filled with a 1, 0, or -1 as follows:
 - Concentration of Event xi > Event 1: Enter +1
 - Concentration of Event xi = Event 1: Enter 0
 - Concentration of Event xi < Event 1: Enter -1.

Where: n = total number of sampling events $x_i = \text{value of given sample event, with } I = 2 \text{ to } n$

All rows are completed in the same manner until all sampling events are included.

- Step 3— Mann-Kendall Statistic: Each row is then summed (e.g., 0+0+-1+-1+0 = -2) and the sum is recorded in the far right-hand column. The right-hand column is then summed to get the total sum. This total value represents the Mann-Kendall Statistic "S" for the data from an individual well.
- *Step 4—Determine Probability p*: A probability table in EPA (1998) was used to determine the probability p.
- **Step 5—Hypothesis Testing**: The null hypothesis (no trend) was tested against the alternative hypotheses; H1 (upward trend) and H2 (downward trend). A 95 percent confidence interval was used for hypothesis testing.

A Mann-Kendall trend analysis was performed for overburden and bedrock monitoring wells with data from the seven most recent sampling events from July 2013 to December 2024. Contaminant concentrations were analyzed for representative wells screened in both aquifers. The following wells were selected because they have data available from the greatest number of sampling events:

- Overburden Wells: DP-10, DP-15, DP-18, DP-19, DP-21, GEMW-02, MW-01, MW-02, MW-03, and MW-13.
- Bedrock Wells: MW-13B, MW-19B, and MW-21B

Over the 11-year span, the trend analysis indicated that most wells are either stable or decreasing in concentrations of PCE, TCE, and *cis*-1,2-DCE. Overburden well DP-19 indicated an increasing trend for PCE, TCE, and *cis*-1,2-DCE. Bedrock well MW-13B indicated a slight increasing trend for TCE and an increasing trend for *cis*-1,2-DCE. Several wells showed no trend for any of the analytes. Results of the Mann-Kendall Analyses are presented in **Appendix D** and are summarized in the following sections. The Mann-Kendall Analysis utilized the historical data from **Tables 3** and 4.

3.2.1 PCE Concentration Trends

In the overburden aquifer, PCE concentrations are decreasing in DP-15, GEMW-02, MW-01, MW-02, MW-03, and MW-13; increasing in DP-19; and stable in DP-21. Other select wells (DP-10, DP-18,) do not show a concentration trend.

In the bedrock aquifer, PCE concentration trends are stable in MW-13B and MW-21B. No trend was identified in MW-19B.

3.2.2 TCE Concentration Trends

In the overburden aquifer, TCE concentrations are decreasing in DP-15, GEMW-02, MW-01, MW-02, MW-03, and MW-13; increasing in DP-19; and probably decreasing trend in DP-10. Monitoring well DP-18 did not show a concentration trend for TCE.

TCE concentration in the bedrock aquifer showed an increasing trend found in MW-13B, a probably increasing trend found in MW-19B, and no concentration trend in MW-21B.

3.2.3 Cis-1,2-DCE Concentration Trends

In the overburden aquifer, *cis*-1,2-DCE concentrations are decreasing in GEMW-02, MW-01, MW-02, and MW-03; probably decreasing in DP-15; increasing in DP-19; and stable in MW-13. Monitoring wells DP-10 and MW-18 did not show a concentration trend for *cis*-1,2-DCE.

Concentration trends for *cis*-1,2-DCE show an increasing trend in MW-13B, and slightly increasing trend in MW-19B. No trend was identified in MW-21B.

Version: FINAL Page 11 April 2025

EA Engineering and Geology, P.C.

This page intentionally left blank

4. CONCLUSIONS AND RECOMMENDATIONS

The extent of the CVOC plume appears stable and well bounded around the source area. The Mann-Kendall trend analysis for the last 11 years (2013 to 2024) indicates that most wells are either stable or slowly decreasing in concentrations of PCE, TCE, and *cis*-1,2-DCE. Monitoring well DP-19 has a slight increasing trend from 2013 to 2024 for PCE (19 to 54.8 μg/L), TCE (4.9 to 13.6 μg/L), and *cis*-1,2-DCE (6.7 to 15.9 μg/L). In addition, MW-13B has a slightly increasing trend for TCE and an increasing trend of *cis*-1,2-DCE, with concentrations of *cis*-1,2-DCE that exceed the Class GA AWQS in 2024.

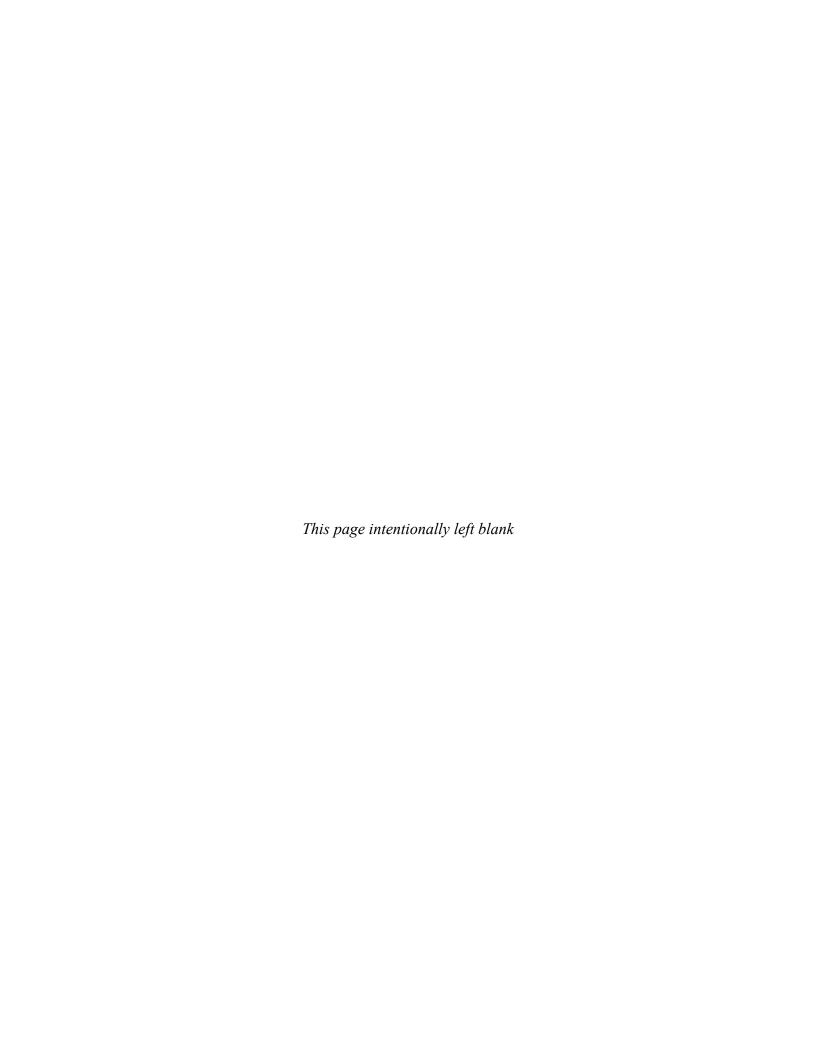
Although concentrations are above Class GA AWQS, the observed CVOCs are orders of magnitude below the concentrations observed before the IRM and soil excavation remedial actions.

It is recommended that the site monitoring program continue with bi-annual sampling in 2025, with the next event occurring in the second quarter of 2025. Annual sampling of monitoring wells with per- and polyfluoroalkyl substances concentrations exceeding Class GA Ambient Water Quality Guidance Values is recommended. Those wells include DP-10, DP-15, MW-1, MW-3, and MW-13.

Although PCE daughter products TCE and *cis*-1,2-DCE are persistent in groundwater, the elevated concentrations of PCE suggest a slow process of degradation. It is recommended to implement the selected remedy of in situ enhanced biodegradation from the Record of Decision (NYSDEC 2017b) that was not previously implemented during the remedial action (MACTEC 2023). These conditions would thus facilitate complete breakdown of chlorinated solvents.

Version: FINAL
Page 13
April 2025

This page intentionally left blank


5. REFERENCES

- EA Engineering and Geology, P.C. (EA). 2024. DRAFT Town and Country Dry Cleaners, Monroe County, Brighton, New York Site Management Plan, NYSDEC Site No. 828149. 27 February.
- MACTEC Engineering and Consulting, P.C. (MACTEC). 2016a. Final Remedial Investigation/Feasibility Study, Town and Country Dry Cleaners Site #828149. December.
- ———. 2016b. Final Soil Removal Interim Remedial Measure Construction Completion Report, Town and Country Dry Cleaners, Brighton, New York, Site No. 828149.
- ———. 2018. Pre-design Investigation Report, Town and Country Dry Cleaners Site; Site Number 828149. March.
- ———. 2019. 2019 Groundwater Sampling Report, Town and Country Dry Cleaners Site, Site No. 828149. August.
- ———. 2023. Final Engineering Report, Town and Country Dry Cleaners, Monroe County, New York, NYSDEC Site Number: 828149. May.
- New York State Department of Environmental Conservation (NYSDEC). 1993. Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. October 1993. Reissued June 1998.
- ———. 2017a. Record of Decision, Town and Country Cleaners Site, Town of Brighton, Monroe County, New York. March.
- ———. 2017b. Proposed Remedial Action Plan Town and Country Dry Cleaners State Superfund Project, Brighton, Monroe County, Site No. 828149. February.
- ———. 2020. Fact Sheet: Town and Country Dry Cleaners, Town of Brighton, New York. October.
- U.S. Environmental Protection Agency (EPA). 1998. *Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater. EPA/600/R-98/128. Office of Research and Development, Washington, D.C.* September.

Version: FINAL
Page 15
April 2025

This page intentionally left blank

EA Engineering and Geology, P.C.

Table 1, Page 1 of 1

Table 1. Monitoring Well Details and Gauging Data

	Table 1. Financing wen betans and Gauging Data											
				Ground	TOC	Historic	Screen		Groundwater	,		
Location	Targeted			Elevation	Elevation	Length	Length	DTW ¹	Elevation (ft	DTB ¹	DTB	Top of Screen
ID	Unit	Northing	Easting	(ft amsl)	(ft amsl)	(ft bgs)	(ft)	(ft btoc)	amsl)	(ft btoc)	(ft amsl)	(ft amsl)
DP-10	Overburden	1138737.73	1422305.44	477.84	477.53	9.8	6.0	3.72	473.81	9.24	468.29	474.10
DP-11	Overburden	1138734.19	1422359.91	478.37	478.05	12.8	8.0					473.70
DP-12	Overburden	1138700.85	1422352.85	477.42	477.09	20.8	10.0	10.73	466.36	19.75	457.34	466.70
DP-14	Overburden	1138717.51	1422261.09	477.14	476.82	NA	5.0					
DP-15	Overburden	1138744.94	1422284.51	477.25	476.98	10.1	5.0	3.11	473.87	9.35	467.63	476.98
DP-16	Overburden	1138766.08	1422168.18	479.06	478.77	10.4	5.0					473.8
DP-17	Overburden	1138699.91	1422092.66	479.89	479.50	16.9	10.0	6.80	472.70	16.16	463.34	473.1
DP-18	Overburden	1138578.39	1422161.46	478.82	478.29	10.9	6.0	6.25	472.04	10.27	468.02	474.0
DP-19	Overburden	1138532.70	1422378.17	475.49	475.15	13.3	10.0	4.54	470.61	12.95	462.20	472.3
DP-20	Overburden	1138477.85	1422664.27	474.21	473.80	15.1	10.0	11.24	462.56	14.65	459.15	469.2
DP-21	Overburden	1138650.76	1422923.25	468.55	468.15	10.8	8.0	7.23	460.92	10.37	457.78	465.9
GEMW-1	Overburden	1138768.73	1422148.96	479.70	479.57	15.0	10.0					
GEMW-2	Overburden	1138751.76	1422130.52	480.36	480.25	15.0	10.0	7.80	472.45	14.52	465.73	470.7
MW-1	Overburden	1138762.61	1422240.53	477.40	477.05	NA	5.0					
MW-2	Overburden	1138726.34	1422216.42	477.13	476.87	NA	5.0	4.33	472.54	22.5	454.37	459.4
MW-2B	Bedrock	1138727.39	1422222.76	477.06	476.71	23.0	5.0					458.0
MW-3	Overburden	1138741.96	1422179.86	478.37	478.00	NA	5.0	5.13	472.87	10.5	467.50	472.5
MW-8	Overburden	1138868.41	1422501.18	473.10	473.04	NA	5.0					
MW-10	Overburden	1138876.06	1422009.43	482.11	481.70	NA	5.0	7.31	474.39	9.44	472.26	
MW-13	Overburden	1138720.92	1422285.49	477.39	480.36	10.0	5.0	6.41	473.95	12.90	467.46	472.4
MW-13B	Bedrock	1138716.73	1422294.21	477.80	480.37	23.2	5.0	9.21	471.16	25	455.37	459.8
MW-16B	Bedrock	1138763.12	1422164.89	478.95	478.58	20.5	5.0					463.5
MW-17B	Bedrock	1138696.71	1422088.47	479.75	479.35	27.8	5.0	7.2	472.15	27.05	452.30	457.0
MW-19B	Bedrock	1138531.53	1422373.04	475.69	475.35	21.5	5.0	4.79	470.56	21.01	454.34	459.2
MW-21B	Bedrock	1138654.47	1422923.58	468.55	468.15	20.0	5.0	7.72	460.43	19.49	448.66	453.7
Notes:	•							-		-		

Notes:

1. DTW and DTB was measured on 23 December 2024.

-- = Well not measured during monitoring event

amsl = Above mean sea level

btoc = Below top of casing

DTB = Depth to bottom

DTW = Depth to water

ft = Foot (feet)

ID = Identification

NA = Not applicable

TOC = Top of casing

Horizontal Coordinates reference to the New York State Plane Coordinate System, West Zone (3103) based on NAD 83 (2011).

Vertical Datum is NAVD88. Survey conducted by Prudent Engineering, dated 8/12/2013.

Table 2. Summary Of Samples Collected (December 2024)

Well ID	Sample ID	Sample Date	Sample Time	MS/MSD	Location	
DP-10	828149-DP-10	12/23/2024	14:36	N	On-site	
DP-12	828149-DP-12	12/23/2024	14:22	N	On-site	
DP-15	828149-DP-15	12/23/2024	12:14	N	On-site	
DP-17	828149-DP-17	12/23/2024	12:38	N	On-site	
DP-18	828149-DP-18	12/23/2024	11:54	N	Off-site	
DP-19	828149-DP-19	12/23/2024	15:30	N	Off-site	
DP-20	828149-DP-20	12/23/2024	16:46	N	Off-site	
DP-21	828149-DP-21	12/23/2024	16:36	N	Off-site	
GEMW-2	828149-GEMW-2	12/23/2024	14:21	N	On-site	
MW-3	828149-MW-3	12/23/2024	13:49	N	On-site	
MW-2	828149-MW-2	12/23/2024	15:35	N	On-site	
MW-13	828149-MW-13	12/23/2024	13:16	Y	On-site	
MW-13B	828149-MW-13B	12/23/2024	14:02	N	On-site	
MW-17B	828149-MW-17B	12/23/2024	15:38	N	Off-site	
MW-19B	828149-MW-19B	12/23/2024	16:17	N	Off-site	
MW-21B	828149-MW-21B	12/23/2024	17:13	N	Off-site	
		QC Samples				
Well ID	Sample ID	Sample Date		QC	Гуре	
MW-3	828149-DUP-20241223	12/23/2024		Field D	uplicate	
NA	828149-TB-01-20241223	12/19/2024	Lab Filled	Trip Blank		

Notes:

ID = Identification

MS = Matrix spike

MSD = Matrix spike duplicate

NA= Not applicable/available

QC= Quality control

Table 3. Historical Bedrock VOC Analytical Results

		Location ID			MW-2B		
		Sample Name	828149-MW2B20	828149- MW2B20D	828149- MW02B020	828149- MW02B020	828149- MW02B020
	Pare	ent Sample ID		828149-MW2B20		1042404	
		Sample Date	7/24/2013	7/24/2013	4/26/2016	10/12/2017	5/7/2019
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result
Method SW8260							
Acetone	50	μg/L	< 10 U	< 10 UJ	< 5 U	< 5.0 U	< 5 U
Carbon Disulfide	60	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U
Chloroform	7	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U
Cis -1,2-Dichloroethylene	5	μg/L	3.4	3	3.9	4.9	7.4
Tetrachloroethylene (PCE)	5	μg/L	16	16	12	8.5	20
Trichloroethylene (TCE)	5	μg/L	3.2	3	3.5	3.5	6
Vinyl Chloride	2	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 μ g/L = Microgram(s) per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Table 3. Historical Bedrock VOC Analytical Results

		Location ID				MW	7-13B			
				828149-	828149-	828149-		828149-MW-13B-	828149-MW-13B-	828149-MW-13B-
	828149-MW13B20	MW013B023	MW013B023	MW013B023	828149-MW-13B	20231127	20240508	20241223		
Parent Sample ID										
		Sample Date	7/24/2013	4/28/2016	10/11/2017	5/7/2019	6/5/2023	11/27/2023	5/8/2024	12/23/2024
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result
Method SW8260										
Acetone	50	μg/L	< 10 U	< 5 U	< 5.0 U	< 5 U	< 50 U	< 3.1 U	< 3.1 U	< 3.1 U
Carbon Disulfide	60	μg/L	0.34 J	< 1 U	< 1.0 U	4.1	< 5 U	< 1.8 U	< 1.8 U	< 1.8 U
Chloroform	7	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.50 U	< 0.50 U	< 0.50 U
Cis -1,2-Dichloroethylene	5	μg/L	0.51 J	0.93 J	2	2	7	4.6	5	8.2
Tetrachloroethylene (PCE)	5	μg/L	0.65 J	3.6	3.3	1.6	1	3	0.71 J	1.5
Trichloroethylene (TCE)	5	μg/L	0.38 J	0.73 J	1.3	1.2	1.9	2.3	1.2	2.2
Vinyl Chloride	2	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.52 U	< 0.52 U	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 μ g/L = Microgram(s) per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Table 3. Historical Bedrock VOC Analytical Results

			MW	-16B		
	\$	828149-MW16B17	828149- MW016B023	828149- MW016B023	828149- MW16B023	
	Pare					
		Sample Date	7/22/2013	4/27/2016	10/10/2017	5/6/2019
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result
Method SW8260						
Acetone	50	μg/L	< 10 U	< 5 U	< 5.0 U	< 5 U
Carbon Disulfide	60	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U
Chloroform	7	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U
Cis -1,2-Dichloroethylene	5	μg/L	0.45 J	0.75 J	0.42 J	0.95 J
Tetrachloroethylene (PCE)	5	μg/L	0.43 J	0.63 J	0.39 J	0.95 J
Trichloroethylene (TCE)	5	μg/L	< 1 U	0.38 J	< 1.0 U	0.45 J
Vinyl Chloride	2	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 μ g/L = Microgram(s) per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Table 3. Historical Bedrock VOC Analytical Results

		Location ID				MW	/-17B			
				828149-	828149-	828149-		828149-MW-17B-	828149-MW-17B-	828149-MW-17B-
	828149-MW17B25	MW017B0180	MW017B018	MW017B0180	828149-MW-17B	20231127	20240507	20241223		
		nt Sample ID								
		Sample Date	7/23/2013	4/26/2016	10/11/2017	5/8/2019	6/5/2023	11/27/2023	5/7/2024	12/23/2024
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result
Method SW8260										
Acetone	50	μg/L	< 10 U	< 5 U	< 5.0 U	< 5 U	< 50 U	< 3.1 U	< 3.1 U	< 3.1 U
Carbon Disulfide	60	μg/L	< 1 U	< 1 U	< 1.0 U	4.5	< 5 U	< 1.8 U	< 1.8 U	< 1.8 U
Chloroform	7	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.50 U	< 0.50 U	< 0.50 U
Cis -1,2-Dichloroethylene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.51 U	< 0.51 U	< 0.51 U
Tetrachloroethylene (PCE)	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.56 U	< 0.56 U	< 0.56 U
Trichloroethylene (TCE)	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.53 U	< 0.53 U	< 0.53 U
Vinyl Chloride	2	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.52 U	< 0.52 U	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 μ g/L = Microgram(s) per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Table 3. Historical Bedrock VOC Analytical Results

		Location ID				MW	V-19B			
				828149-	828149-	828149-		828149-MW-19B-	828149-MW-19B-	828149-MW-19B-
	ample Name	828149-MW19B17	MW019B025	MW019B025	MW019B025	828149-MW-19B	20231128	20240507	20241223	
		nt Sample ID								
		Sample Date	7/23/2013	4/27/2016	10/11/2017	5/8/2019	6/6/2023	11/28/2023	5/7/2024	12/23/2024
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result
Method SW8260										
Acetone	50	μg/L	< 10 U	< 5 U	< 5.0 U	< 5 UJ	< 50 U	< 3.1 U	< 3.1 U	< 3.1 U
Carbon Disulfide	60	μg/L	< 1 U	< 1 UJ	< 1.0 U	< 1 UJ	< 5 U	< 1.8 U	< 1.8 U	< 1.8 U
Chloroform	7	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 UJ	0.63 J	< 0.50 U	< 0.50 U	< 0.50 U
Cis -1,2-Dichloroethylene	5	μg/L	7.7	9.8	12	9.4 J	< 1 U	19.3	16	22.2
Tetrachloroethylene (PCE)	5	μg/L	4.2	10	13	13 J	4.3	12.9	10.5	14.4
Trichloroethylene (TCE)	5	μg/L	4.4	6.2	8.4	6.9 J	< 1 U	9.4	7.5	10.2
Vinyl Chloride	2	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 2 U	0.82 J	< 0.52 U	0.67 J

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 μ g/L = Microgram(s) per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Table 3. Historical Bedrock VOC Analytical Results

	MW-21B									
				828149-	828149-	828149-		828149-MW-21B-	828149-MW-21B-	828149-MW-21B-
Sample Name			828149-MW21B17	MW021B019	MW021B019	MW021B019	828149-MW-21B	20231128	20240507	20241223
		nt Sample ID								
		Sample Date	7/23/2013	4/27/2016	10/11/2017	5/8/2019	6/6/2023	11/28/2023	5/7/2024	12/23/2024
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result
Method SW8260										
Acetone	50	μg/L	< 10 U	< 5 U	2.2 J	< 5 U	< 50 U	< 3.1 U	< 3.1 U	< 3.1 U
Carbon Disulfide	60	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 5 U	< 1.8 U	< 1.8 U	2.3
Chloroform	7	μg/L	0.74 J	1.5	3.4	< 1 U	< 2 U	2	< 0.50 U	1
Cis -1,2-Dichloroethylene	5	μg/L	< 1 U	< 1 U	< 1.0 U	0.38 J	12	< 0.51 U	< 0.51 U	< 0.51 U
Tetrachloroethylene (PCE)	5	μg/L	6	5.7	8.3	6	9.2	6.4	2.5	5.1
Trichloroethylene (TCE)	5	μg/L	0.62 J	0.5 J	0.73 J	0.59 J	7.7	< 0.53 U	< 0.53 U	< 0.53 U
Vinyl Chloride	2	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	0.71 J	< 0.52 U	< 0.52 U	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 μ g/L = Microgram(s) per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

NA = Not analyzed

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Table 4, Page 1 of 17

Table 4. Historical Overburden VOC Analytical Results

Location ID			DP-10								
Sample Name			828149- GW010019	828149-DP1007	828149-DP010008	828149-DP010008		828149-DP-10- 20231128	828149-DP-10- 20240507	828149-DP-10- 20241223	
Parent Sample ID Sample Date		5/22/2013	7/24/2013	4/26/2016	10/11/2017	5/8/2019	11/28/2023	5/7/2024	12/23/2024		
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result	
Method SW8260											
1,1,1-Trichloroethane (TCA)	5	μg/L	< 1 U	1.5 J	0.5 J	1.8 J	< 1 U	< 0.54 U	< 2.7 U	< 0.54 U	
1,1-Dichloroethane	5	μg/L	< 1 U	0.46 J	0.22 J	1.2 J	< 1 U	< 0.57 U	< 2.8 U	< 0.57 U	
1,1-Dichloroethene	5	μg/L	< 1 U	< 2 U	< 1 U	< 5.0 U	< 1 U	< 0.59 U	< 3.0 U	< 0.59 U	
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA	NA	< 40 UJ	< 200 U	< 40 U	< 0.050 U	< 0.20 U	NA	
Acetone	50	μg/L	4.1 J	< 20 U	1.4 J	9.4 J	< 5 U	< 3.1 U	< 15 U	< 3.1 U	
Benzene	1	μg/L	0.28 J	< 2 U	< 1 U	< 5.0 U	< 1 U	< 0.43 U	< 2.1 U	< 0.43 U	
Bromodichloromethane	50	μg/L	< 1 U	< 2 U	< 1 U	< 5.0 U	< 1 U	< 0.45 U	< 2.3 U	< 0.45 U	
Bromomethane	5	μg/L	< 2 UJ	< 4 U	< 1 U	< 5.0 U	< 1 U	< 1.6 U	< 8.2 U	< 1.6 U	
Carbon Disulfide	60	μg/L	< 1 U	< 2 U	< 1 U	< 5.0 U	< 1 U	< 1.8 U	< 9.0 U	< 1.8 U	
Chloroethane	5	μg/L	< 2 U	< 4 U	< 1 U	< 5.0 U	< 1 U	< 0.73 U	< 3.6 U	< 0.73 U	
Chloroform	7	μg/L	< 1 U	< 2 U	< 1 U	< 5.0 U	< 1 U	< 0.50 U	< 2.5 U	< 0.50 U	
Chloromethane (Methyl Chloride)	5	μg/L	< 2 U	< 4 U	< 1 U	< 5.0 U	< 1 U	< 0.76 U	< 3.8 U	< 0.76 U	
Cis -1,2-Dichloroethylene	5	μg/L	3.1	110	29	100	55	121	128	87.5	
Cyclohexane	NSL	μg/L	0.47 J	< 4 U	< 1 U	< 5.0 U	< 1 U	< 0.78 U	< 3.9 U	< 0.78 U	
Ethylbenzene	5	μg/L	< 1 U	< 2 U	< 1 U	< 5.0 U	< 1 U	< 0.60 U	< 3.0 U	< 0.60 U	
M,P-Xylene (Sum Of Isomers)	5	μg/L	0.63 J	< 4 U	< 2 U	< 10 U	< 2 U	< 0.78 U	< 3.9 U	< 0.78 U	
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 5 U	< 10 U	< 5 U	< 25 U	< 5 U	< 2.7 U	< 14 U	< 2.7 U	
Methylcyclohexane	NSL	μg/L	0.79 J	< 2 U	< 1 U	< 5.0 U	< 1 U	< 0.60 U	< 3.0 U	2.2 J	
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 1 U	< 2 U	< 1 U	< 5.0 U	< 1 U	< 0.59 U	< 3.0 U	< 0.59 U	
Tetrachloroethylene (PCE)	5	μg/L	0.41 J	1500	530	5300	120	302	887	266	
Toluene	5	μg/L	0.6 J	< 2 U	< 1 U	< 5.0 U	< 1 U	< 0.49 U	< 2.5 U	< 0.49 U	
Trans -1,2-Dichloroethene	5	μg/L	< 1 U	1.3 J	1	< 5.0 U	0.45 J	0.61 J	< 2.7 U	< 0.54 U	
Trichloroethylene (TCE)	5	μg/L	1	170	130	140	38	67.2	85.4	52.1	
Vinyl Chloride	2	μg/L	0.38 J	< 2 U	< 1 U	< 5.0 U	< 1 U	< 0.52 U	< 2.6 U	0.67 J	

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 μ g/L = Microgram(s) per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Table 4, Page 2 of 17

Table 4. Historical Overburden VOC Analytical Results

	DP-11	DP-12						
		Sample Name	828149-DP011012	828149-DP1217	828149-DP012015	828149-DP012015	828149-DP012015	828149-DP-12- 20241223
	Par	ent Sample ID Sample Date	5/8/2019	7/24/2013	4/26/2016	10/10/2017	5/8/2019	12/23/2024
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result
Method SW8260	N I SDEC A W QS	1 Clift	Result	Result	Kesuit	Result	Kesuit	Result
1,1,1-Trichloroethane (TCA)	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 0.59 U
1,4-Dioxane (P-Dioxane)	0.35	μg/L	< 40 U	NA	< 40 UJ	< 40 U	< 40 UJ	NA
Acetone	50	μg/L	< 5 U	< 10 U	5.2	< 5.0 U	< 5 UJ	< 3.1 U
Benzene	1	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 0.43 U
Bromodichloromethane	50	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 0.45 U
Bromomethane	5	μg/L	< 1 U	< 2 UJ	< 1 U	< 1.0 U	< 1 UJ	< 1.6 U
Carbon Disulfide	60	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 1.8 U
Chloroethane	5	μg/L	< 1 U	< 2 U	< 1 U	< 1.0 U	< 1 UJ	< 0.73 U
Chloroform	7	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 0.50 U
Chloromethane (Methyl Chloride)	5	μg/L	< 1 U	< 2 U	< 1 U	< 1.0 U	< 1 UJ	< 0.76 U
Cis -1,2-Dichloroethylene	5	μg/L	< 1 U	0.64 J	0.46 J	1.7	0.54 J	2.7
Cyclohexane	NSL	μg/L	< 1 U	< 2 U	< 1 U	< 1.0 U	< 1 UJ	< 0.78 U
Ethylbenzene	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 0.60 U
M,P-Xylene (Sum Of Isomers)	5	μg/L	< 2 U	< 2 U	< 2 U	< 2.0 U	< 2 UJ	< 0.78 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 5 U	< 5 U	< 5 U	< 5.0 U	< 5 UJ	< 2.7 U
Methylcyclohexane	NSL	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 0.60 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 0.59 U
Tetrachloroethylene (PCE)	5	μg/L	0.96 J	0.81 J	< 1 U	< 1.0 U	0.59 J	4.5
Toluene	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 0.49 U
Trans -1,2-Dichloroethene	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 0.53 U
Vinyl Chloride	2	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 0.52 U

Notes

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values

(TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than

the NYSDEC AWQS

Table 4, Page 3 of 17

Table 4. Historical Overburden VOC Analytical Results

		Location ID	DP-14						
		Sample Name	828149-DP1407	828149-DP014009	828149-DP014009	828149-DP014009			
	Pa	rent Sample ID							
		Sample Date	7/24/2013	4/26/2016	10/11/2017	5/7/2019			
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result			
Method SW8260									
1,1,1-Trichloroethane (TCA)	5	μg/L	< 50 U	< 50 U	< 50 U	< 50 U			
1,1-Dichloroethane	5	μg/L	< 50 U	< 50 U	< 50 U	< 50 U			
1,1-Dichloroethene	5	μg/L	< 50 U	< 50 U	< 50 U	< 50 U			
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA	< 2000 UJ	< 2000 U	< 2000 U			
Acetone	50	μg/L	< 500 U	< 250 U	< 250 U	< 250 U			
Benzene	1	μg/L	< 50 U	< 50 U	< 50 U	< 50 U			
Bromodichloromethane	50	μg/L	< 50 U	< 50 U	< 50 U	< 50 U			
Bromomethane	5	μg/L	< 100 UJ	< 50 U	< 50 U	< 50 U			
Carbon Disulfide	60	μg/L	< 50 U	< 50 U	< 50 U	< 50 U			
Chloroethane	5	μg/L	< 100 U	< 50 U	< 50 U	< 50 U			
Chloroform	7	μg/L	< 50 U	< 50 U	< 50 U	< 50 U			
Chloromethane (Methyl Chloride)	5	μg/L	< 100 U	< 50 U	< 50 U	< 50 U			
Cis -1,2-Dichloroethylene	5	μg/L	870	450	550	340			
Cyclohexane	NSL	μg/L	< 100 U	< 50 U	< 50 U	< 50 U			
Ethylbenzene	5	μg/L	< 50 U	< 50 U	< 50 U	< 50 U			
M,P-Xylene (Sum Of Isomers)	5	μg/L	< 100 U	< 100 U	< 100 U	< 100 U			
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 250 U	< 250 U	< 250 U	< 250 U			
Methylcyclohexane	NSL	μg/L	< 50 U	< 50 U	< 50 U	< 50 U			
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 50 U	< 50 U	< 50 U	< 50 U			
Tetrachloroethylene (PCE)	5	μg/L	13000	9400	12000	8100			
Toluene	5	μg/L	< 50 U	< 50 U	< 50 U	< 50 U			
Trans -1,2-Dichloroethene	5	μg/L	< 50 U	< 50 U	< 50 U	< 50 U			
Trichloroethylene (TCE)	5	μg/L	500	360	420	310			
Vinyl Chloride	2	μg/L	< 50 U	< 50 U	< 50 U	< 50 U			

Notes

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 μ g/L = Microgram(s) per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Table 4. Historical Overburden VOC Analytical Results

		Location ID				DP-	-15			
		Sample Name	828149-DP1507	828149-DP015009	828149-DP015009		828149-DP-15	828149-DP-15- 20231127	828149-DP-15- 20240507	828149-DP-15- 20241223
	Par	ent Sample ID Sample Date	7/24/2013	4/27/2016	10/11/2017	5/8/2019	6/6/2023	11/27/2023	5/7/2024	12/23/2024
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result
Method SW8260										
1,1,1-Trichloroethane (TCA)	5	μg/L	< 25 U	< 20 U	< 50 U	< 5 U	< 20 U	< 5.4 U	< 2.7 U	< 1.3 U
1,1-Dichloroethane	5	μg/L	< 25 U	< 20 U	< 50 U	< 5 U	< 20 U	< 5.7 U	< 2.8 U	< 1.4 U
1,1-Dichloroethene	5	μg/L	< 25 U	< 20 U	< 50 U	< 5 U	< 20 U	< 5.9 U	< 3.0 U	< 1.5 U
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA	< 800 UJ	< 2000 U	< 200 U	< 0.21 U	< 0.050 U	< 0.20 U	NA
Acetone	50	μg/L	< 250 U	< 100 U	< 250 U	< 25 U	< 1000 U	< 31 U	< 15 U	< 7.6 U
Benzene	1	μg/L	< 25 U	< 20 U	< 50 U	< 5 U	< 20 U	< 4.3 U	< 2.1 U	< 1.1 U
Bromodichloromethane	50	μg/L	< 25 U	< 20 U	< 50 U	< 5 U	< 10 U	< 4.5 U	< 2.3 U	< 1.1 U
Bromomethane	5	μg/L	< 50 UJ	< 20 U	< 50 U	< 5 U	< 40 U	< 16 U	< 8.2 U	< 4.1 U
Carbon Disulfide	60	μg/L	< 25 U	< 20 U	< 50 U	< 5 U	< 100 U	< 18 U	< 9.0 U	< 4.5 U
Chloroethane	5	μg/L	< 50 U	< 20 U	< 50 U	< 5 U	<40 U	< 7.3 U	< 3.6 U	< 1.8 U
Chloroform	7	μg/L	< 25 U	< 20 U	< 50 U	< 5 U	<40 U	< 5.0 U	< 2.5 U	< 1.3 U
Chloromethane (Methyl Chloride)	5	μg/L	< 50 U	< 20 U	< 50 U	< 5 U	<40 U	< 7.6 U	< 3.8 U	< 1.9 U
Cis -1,2-Dichloroethylene	5	μg/L	230	190	220	47	88	129	54.1	87.4
Cyclohexane	NSL	μg/L	< 50 U	< 20 U	< 50 U	< 5 U	NA	< 7.8 U	< 3.9 U	< 2.0 U
Ethylbenzene	5	μg/L	< 25 U	< 20 U	< 50 U	< 5 U	< 20 U	< 6.0 U	< 3.0 U	< 1.5 U
M,P-Xylene (Sum Of Isomers)	5	μg/L	< 50 U	< 40 U	< 100 U	< 10 U	< 40 U	< 7.8 U	< 3.9 U	< 2.0 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 130 U	< 100 U	< 250 U	< 25 U	63 J	< 27 U	< 14 U	< 6.8 U
Methylcyclohexane	NSL	μg/L	< 25 U	< 20 U	< 50 U	< 5 U	< 20 U	< 6.0 U	< 3.0 U	< 1.5 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 25 U	< 20 U	< 50 U	< 5 U	< 20 U	< 5.9 U	< 3.0 U	< 1.5 U
Tetrachloroethylene (PCE)	5	μg/L	8500	5900	6800	1300	1200	2300	658	843
Toluene	5	μg/L	< 25 U	< 20 U	< 50 U	< 5 U	< 20 U	< 4.9 U	< 2.5 U	< 1.2 U
Trans -1,2-Dichloroethene	5	μg/L	< 25 U	< 20 U	< 50 U	< 5 U	< 20 U	< 5.4 U	< 2.7 U	1.9 J
Trichloroethylene (TCE)	5	μg/L	410	210	210	59	36	103	37.9	49.1
Vinyl Chloride	2	μg/L	< 25 U	< 20 U	< 50 U	< 5 U	< 40 U	< 5.2 U	< 2.6 U	< 1.3 U

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than

Table 4, Page 5 of 17

Table 4. Historical Overburden VOC Analytical Results

		Location ID		DP	-16	
		Sample Name	828149-DP1607	828149-DP016009	828149-DP016009	828149-DP016009
	Par	ent Sample ID				
		Sample Date	7/23/2013	4/27/2016	10/11/2017	5/8/2019
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result
Method SW8260						
1,1,1-Trichloroethane (TCA)	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 2 U
1,1-Dichloroethane	5	μg/L	0.35 J	< 1 U	0.35 J	0.44 J
1,1-Dichloroethene	5	μg/L	3.7	1.1	2.1	3.8
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA	< 40 UJ	< 40 U	< 80 U
Acetone	50	μg/L	< 10 U	< 5 U	1.8 J	< 10 U
Benzene	1	μg/L	< 1 U	< 1 U	< 1.0 U	< 2 U
Bromodichloromethane	50	μg/L	< 1 U	< 1 U	< 1.0 U	< 2 U
Bromomethane	5	μg/L	< 2 UJ	< 1 U	< 1.0 U	< 2 U
Carbon Disulfide	60	μg/L	< 1 U	< 1 U	< 1.0 U	< 2 U
Chloroethane	5	μg/L	< 2 U	< 1 U	0.59 J	< 2 U
Chloroform	7	μg/L	< 1 U	< 1 U	< 1.0 U	< 2 U
Chloromethane (Methyl Chloride)	5	μg/L	< 2 U	< 1 U	< 1.0 U	< 2 U
Cis -1,2-Dichloroethylene	5	μg/L	270	130	300	610
Cyclohexane	NSL	μg/L	< 2 U	< 1 U	< 1.0 U	< 2 U
Ethylbenzene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 2 U
M,P-Xylene (Sum Of Isomers)	5	μg/L	< 2 U	< 2 U	< 2.0 U	< 4 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 5 U	< 5 U	< 5.0 U	< 10 U
Methylcyclohexane	NSL	μg/L	< 1 U	< 1 U	< 1.0 U	< 2 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 2 U
Tetrachloroethylene (PCE)	5	μg/L	96	75	140	300
Toluene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 2 U
Trans -1,2-Dichloroethene	5	μg/L	2.1	3.6	1.8	4
Trichloroethylene (TCE)	5	μg/L	32	22	38	91
Vinyl Chloride	2	μg/L	120	23	36 J	32

Notes

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 μ g/L = Microgram(s) per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Table 4, Page 6 of 17

Table 4. Historical Overburden VOC Analytical Results

		Location ID DP-17 828149-DP-17- 828149-DP-17- 828										
		Sample Name	828149-DP1714	828149-DP017015	828149-DP017015		828149-DP-17	828149-DP-17- 20231127	828149-DP-17- 20240507	828149-DP-17- 20241223		
	Parc	ent Sample ID Sample Date	7/23/2013	4/26/2016	10/12/2017	5/8/2019	6/5/2023	11/27/2023	5/7/2024	12/23/2024		
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result		
Method SW8260												
1,1,1-Trichloroethane (TCA)	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.54 U	< 0.54 U	< 0.54 U		
1,1-Dichloroethane	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.57 U	< 0.57 U	< 0.57 U		
1,1-Dichloroethene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.59 U	< 0.59 U	< 0.59 U		
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA	< 40 UJ	< 0.40 U	< 40 U	< 0.2 U	< 0.050 U	NA	NA		
Acetone	50	μg/L	< 10 U	1.4 J	< 5.0 U	< 5 U	< 50 U	< 3.1 U	< 3.1 U	< 3.1 U		
Benzene	1	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.43 U	< 0.43 U	< 0.43 U		
Bromodichloromethane	50	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 0.5 U	< 0.45 U	< 0.45 U	< 0.45 U		
Bromomethane	5	μg/L	< 2 UJ	< 1 U	< 1.0 U	< 1 UJ	< 2 U	< 1.6 U	< 1.6 U	< 1.6 U		
Carbon Disulfide	60	μg/L	< 1 U	< 1 UJ	< 1.0 U	< 1 U	< 5 U	< 1.8 U	< 1.8 U	< 1.8 U		
Chloroethane	5	μg/L	< 2 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.73 U	< 0.73 U	< 0.73 U		
Chloroform	7	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.50 U	< 0.50 U	< 0.50 U		
Chloromethane (Methyl Chloride)	5	μg/L	< 2 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.76 U	< 0.76 U	< 0.76 U		
Cis -1,2-Dichloroethylene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.51 U	< 0.51 U	< 0.51 U		
Cyclohexane	NSL	μg/L	< 2 U	< 1 U	< 1.0 U	< 1 U	NA	< 0.78 U	< 0.78 U	< 0.78 U		
Ethylbenzene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.60 U	< 0.60 U	< 0.60 U		
M,P-Xylene (Sum Of Isomers)	5	μg/L	< 2 U	< 2 U	< 2.0 U	< 2 U	< 2 U	< 0.78 U	< 0.78 U	< 0.78 U		
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 5 U	< 5 U	< 5.0 U	< 5 U	< 20 U	< 2.7 U	< 2.7 U	< 2.7 U		
Methylcyclohexane	NSL	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.60 U	< 0.60 U	< 0.60 U		
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.59 U	< 0.59 U	< 0.59 U		
Tetrachloroethylene (PCE)	5	μg/L	0.48 J	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.56 U	< 0.56 U	< 0.56 U		
Toluene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.49 U	< 0.49 U	< 0.49 U		
Trans -1,2-Dichloroethene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.54 U	< 0.54 U	< 0.54 U		
Trichloroethylene (TCE)	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.53 U	< 0.53 U	< 0.53 U		
Vinyl Chloride	2	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.52 U	< 0.52 U	< 0.52 U		

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 μ g/L = Microgram(s) per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than

Table 4, Page 7 of 17

Table 4. Historical Overburden VOC Analytical Results

	Location ID DP-18 828149-DP-18- 828149-DP-18										
		Sample Name	828149-DP1807	828149-DP018009	828149-DP018009		828149-DP-18	828149-DP-18- 20231127	828149-DP-18- 20240507	828149-DP-18- 20241223	
	Parc	ent Sample ID Sample Date	7/23/2013	4/27/2016	10/11/2017	5/7/2019	6/6/2023	11/27/2023	5/7/2024	12/23/2024	
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result	
Method SW8260											
1,1,1-Trichloroethane (TCA)	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.54 U	< 0.54 U	< 0.54 U	
1,1-Dichloroethane	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.57 U	< 0.57 U	< 0.57 U	
1,1-Dichloroethene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.59 U	< 0.59 U	< 0.59 U	
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA	< 40 UJ	< 40 U	< 40 U	< 0.21 U	< 0.050 U	< 0.20 U	NA	
Acetone	50	μg/L	3.1 J	< 5 U	1.7 J	< 5 U	4.0 J	< 3.1 U	< 3.1 U	< 3.1 U	
Benzene	1	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.43 U	< 0.43 U	< 0.43 U	
Bromodichloromethane	50	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 0.5 U	< 0.45 U	< 0.45 U	< 0.45 U	
Bromomethane	5	μg/L	< 2 UJ	< 1 U	< 1.0 U	< 1 U	< 2 U	< 1.6 U	< 1.6 U	< 1.6 U	
Carbon Disulfide	60	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 5 U	< 1.8 U	< 1.8 U	< 1.8 U	
Chloroethane	5	μg/L	< 2 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.73 U	< 0.73 U	< 0.73 U	
Chloroform	7	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.50 U	< 0.50 U	< 0.50 U	
Chloromethane (Methyl Chloride)	5	μg/L	< 2 U	< 1 U	0.23 J	< 1 U	< 2 U	< 0.76 U	< 0.76 U	< 0.76 U	
Cis -1,2-Dichloroethylene	5	μg/L	0.78 J	1.5	< 1.0 U	< 1 U	0.58 J	1.2	0.76 J	1.1	
Cyclohexane	NSL	μg/L	< 2 U	< 1 U	< 1.0 U	< 1 U	NA	< 0.78 U	< 0.78 U	< 0.78 U	
Ethylbenzene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.60 U	< 0.60 U	< 0.60 U	
M,P-Xylene (Sum Of Isomers)	5	μg/L	< 2 U	< 2 U	< 2.0 U	< 2 U	< 2 U	< 0.78 U	< 0.78 U	< 0.78 U	
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	1.7 J	< 5 U	< 5.0 U	< 5 U	< 20 U	< 2.7 U	< 2.7 U	< 2.7 U	
Methylcyclohexane	NSL	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.60 U	< 0.60 U	< 0.60 U	
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.59 U	< 0.59 U	< 0.59 U	
Tetrachloroethylene (PCE)	5	μg/L	1.4	3.7	3.1	< 1 U	1.7	4	2.1	3	
Toluene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.49 U	< 0.49 U	< 0.49 U	
Trans -1,2-Dichloroethene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.54 U	< 0.54 U	< 0.54 U	
Trichloroethylene (TCE)	5	μg/L	0.79 J	1.5	< 1.0 U	< 1 U	0.90 J	1.8	1	1.5	
Vinyl Chloride	2	μg/L	< 1 U	0.6 J	< 1.0 U	< 1 U	< 2 U	< 0.52 U	< 0.52 U	< 0.52 U	

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than

Table 4. Historical Overburden VOC Analytical Results

		I cootion ID					DD 10				
		Location ID Sample Name	828149- GW019014	828149-DP1910	828149-DP019012	828149-DP019012	DP-19 828149-DP019012	828149-DP-19	828149-DP-19- 20231128	828149-DP-19- 20240507	828149-DP-19- 20241223
	Pa	rent Sample ID Sample Date	5/23/2013	7/24/2013	4/27/2016	10/11/2017	5/8/2019	6/6/2023	11/28/2023	5/7/2024	12/23/2024
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result
Method SW8260											
1,1,1-Trichloroethane (TCA)	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 1 U	< 0.54 U	< 0.54 U	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 1 U	< 0.57 U	< 0.57 U	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 1 U	< 0.59 U	< 0.59 U	< 0.59 U
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA	NA	< 40 UJ	< 40 U	< 40 UJ	< 0.21 U	< 0.050 U	NA	NA
Acetone	50	μg/L	< 10 U	< 10 UJ	< 5 U	< 5.0 U	< 5 UJ	< 50 U	< 3.1 U	< 3.1 U	< 3.1 U
Benzene	1	μg/L	0.2 J	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 1 U	< 0.43 U	< 0.43 U	< 0.43 U
Bromodichloromethane	50	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 0.5 U	< 0.45 U	< 0.45 U	< 0.45 U
Bromomethane	5	μg/L	< 2 UJ	< 2 UJ	< 1 U	< 1.0 U	< 1 UJ	< 2 U	< 1.6 U	< 1.6 U	< 1.6 U
Carbon Disulfide	60	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 5 U	< 1.8 U	< 1.8 U	< 1.8 U
Chloroethane	5	μg/L	< 2 U	< 2 U	< 1 U	< 1.0 U	< 1 UJ	< 2 U	< 0.73 U	< 0.73 U	< 0.73 U
Chloroform	7	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 2 U	< 0.50 U	< 0.50 U	< 0.50 U
Chloromethane (Methyl Chloride)	5	μg/L	< 2 U	< 2 U	< 1 U	< 1.0 U	< 1 UJ	< 2 U	< 0.76 U	< 0.76 U	< 0.76 U
Cis -1,2-Dichloroethylene	5	μg/L	6.5	6.7	7.3	12	7.8 J	9.4	15.8	12.3	15.9
Cyclohexane	NSL	μg/L	0.29 J	< 2 U	< 1 U	< 1.0 U	< 1 UJ	NA	< 0.78 U	< 0.78 U	< 0.78 U
Ethylbenzene	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 1 U	< 0.60 U	< 0.60 U	< 0.60 U
M,P-Xylene (Sum Of Isomers)	5	μg/L	0.34 J	< 2 U	< 2 U	< 2.0 U	< 2 UJ	< 2 U	< 0.78 U	< 0.78 U	< 0.78 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 5 U	< 5 UJ	< 5 U	< 5.0 U	< 5 UJ	< 20 U	< 2.7 U	< 2.7 U	< 2.7 U
Methylcyclohexane	NSL	μg/L	0.48 J	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 1 U	< 0.60 U	< 0.60 U	< 0.60 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 1 U	< 0.59 U	< 0.59 U	< 0.59 U
Tetrachloroethylene (PCE)	5	μg/L	17	19	16	28	19 J	41	52.9	41.8	54.8
Toluene	5	μg/L	0.44 J	< 1 U	< 1 U	< 1.0 U	< 1 UJ	< 1 U	< 0.49 U	< 0.49 U	< 0.49 U
Trans -1,2-Dichloroethene	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	0.21 J	< 1 U	< 0.54 U	< 0.54 U	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	4.4	4.9	4.9	8.5	5.5 J	10	13.8	10.6	13.6
Vinyl Chloride	2	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 UJ	0.29 J	< 0.52 U	< 0.52 U	< 0.52 U

Notes:

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values

(TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only. $\mu g/L = Microgram(s) \ per \ liter$

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than

Table 4. Historical Overburden VOC Analytical Results

		Location ID					DP-20				
		Sample Name	828149- GW020015	828149- GW020019	828149-DP2012	828149-DP020012	828149-DP020012	828149-DP020012	828149-DP-20	828149-DP-20- 20240507	828149-DP-20- 20241223
	Par	ent Sample ID Sample Date	5/23/2013	5/23/2013	7/23/2013	4/27/2016	10/11/2017	5/8/2019	6/6/2023	5/7/2024	12/23/2024
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result
Method SW8260		0 1110									
1,1,1-Trichloroethane (TCA)	5	μg/L	< 1 U	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.54 U	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 1 U	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.57 U	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 1 U	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.59 UJ	< 0.59 U
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA	NA	NA	< 40 UJ	< 40 U	< 40 U	< 0.21 U	< 0.20 U	NA
Acetone	50	μg/L	8.9 J	< 10 U	< 10 UJ	5.7	4.2 J	< 5 U	2.7 J	< 3.1 U	< 3.1 U
Benzene	1	μg/L	1.8	0.49 J	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.43 U	< 0.43 U
Bromodichloromethane	50	μg/L	< 1 U	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 0.5 U	< 0.45 U	< 0.45 U
Bromomethane	5	μg/L	< 2 UJ	< 2 UJ	< 2 UJ	< 1 U	< 1.0 U	< 1 U	< 2 U	< 1.6 U	< 1.6 U
Carbon Disulfide	60	μg/L	0.41 J	0.27 J	< 1 U	< 1 U	< 1.0 U	< 1 U	< 5 U	< 1.8 UJ	< 1.8 U
Chloroethane	5	μg/L	< 2 U	< 2 U	< 2 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.73 U	< 0.73 U
Chloroform	7	μg/L	< 1 U	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.50 U	< 0.50 U
Chloromethane (Methyl Chloride)	5	μg/L	< 2 U	< 2 U	< 2 U	< 1 U	< 1.0 U	0.28 J	< 2 U	< 0.76 U	< 0.76 U
Cis -1,2-Dichloroethylene	5	μg/L	< 1 U	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.51 U	< 0.51 U
Cyclohexane	NSL	μg/L	1.8 J	0.64 J	0.25 J	< 1 U	< 1.0 U	< 1 U	NA	< 0.78 U	< 0.78 U
Ethylbenzene	5	μg/L	0.28 J	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.60 U	< 0.60 U
M,P-Xylene (Sum Of Isomers)	5	μg/L	2.7	0.78 J	< 2 U	< 2 U	< 2.0 U	< 2 U	< 2 U	< 0.78 U	< 0.78 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	1.6 J	< 5 U	< 5 UJ	< 5 U	< 5.0 U	< 5 U	< 20 U	< 2.7 U	< 2.7 U
Methylcyclohexane	NSL	μg/L	2.8	1.1	0.48 J	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.60 U	< 0.60 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	0.78 J	0.27 J	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.59 U	< 0.59 U
Tetrachloroethylene (PCE)	5	μg/L	< 1 U	< 1 U	< 1 U	0.46 J	0.78 J	< 1 U	< 1 U	< 0.56 U	< 0.56 U
Toluene	5	μg/L	3.1	0.97 J	0.26 J	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.49 U	< 0.49 U
Trans -1,2-Dichloroethene	5	μg/L	< 1 U	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.54 UJ	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	< 1 U	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.53 U	< 0.53 U
Vinyl Chloride	2	μg/L	< 1 U	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.52 U	< 0.52 U

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values

(TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only. $\mu g/L = Microgram(s) \ per \ liter$

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than

Table 4. Historical Overburden VOC Analytical Results

		Location ID					DP-21				
		Sample Name	828149- GW021011	828149-DP2107	828149-DP021009	828149-DP021009	828149-DP021009	828149-DP-21	828149-DP-21- 20231128	828149-DP-21- 20240507	828149-DP-21- 20241223
	Pa	rent Sample ID Sample Date	5/23/2013	7/23/2013	4/27/2016	10/11/2017	5/8/2019	6/6/2023	11/28/2023	5/7/2024	12/23/2024
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result
Method SW8260											
1,1,1-Trichloroethane (TCA)	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.54 U	< 0.54 U	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.57 U	< 0.57 U	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.59 U	< 0.59 U	< 0.59 U
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA	NA	< 40 UJ	< 40 U	< 40 U	< 0.21 U	< 0.050 U	NA	NA
Acetone	50	μg/L	5.2 J	< 10 UJ	< 5 U	1.8 J	< 5 U	< 50 U	< 3.1 U	< 3.1 U	< 3.1 U
Benzene	1	μg/L	0.82 J	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.43 U	< 0.43 U	< 0.43 U
Bromodichloromethane	50	μg/L	< 1 U	1.2	< 1 U	< 1.0 U	< 1 U	< 0.5 U	< 0.45 U	< 0.45 U	< 0.45 U
Bromomethane	5	μg/L	< 2 UJ	< 2 UJ	< 1 U	< 1.0 U	< 1 U	< 2 U	< 1.6 U	< 1.6 U	< 1.6 U
Carbon Disulfide	60	μg/L	0.33 J	< 1 U	< 1 U	< 1.0 U	< 1 U	< 5 U	< 1.8 U	< 1.8 U	< 1.8 U
Chloroethane	5	μg/L	< 2 U	< 2 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.73 U	< 0.73 U	< 0.73 U
Chloroform	7	μg/L	4.2	15	0.55 J	8.3	0.3 J	2.7	8.2	< 0.50 U	1.6
Chloromethane (Methyl Chloride)	5	μg/L	< 2 U	< 2 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.76 U	< 0.76 U	< 0.76 U
Cis -1,2-Dichloroethylene	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.51 U	< 0.51 U	< 0.51 U
Cyclohexane	NSL	μg/L	1.6 J	< 2 U	< 1 U	< 1.0 U	< 1 U	NA	< 0.78 U	< 0.78 U	< 0.78 U
Ethylbenzene	5	μg/L	0.21 J	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.60 U	< 0.60 U	< 0.60 U
M,P-Xylene (Sum Of Isomers)	5	μg/L	2.4	< 2 U	< 2 U	< 2.0 U	< 2 U	< 2 U	< 0.78 U	< 0.78 U	< 0.78 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 5 U	< 5 UJ	< 5 U	< 5.0 U	< 5 U	< 20 U	< 2.7 U	< 2.7 U	< 2.7 U
Methylcyclohexane	NSL	μg/L	2.9	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.60 U	< 0.60 U	< 0.60 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	0.66 J	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.59 U	< 0.59 U	< 0.59 U
Tetrachloroethylene (PCE)	5	μg/L	1.9	2.1	3.8	5.4	1.8	1.6	2.4	1.6	2.1
Toluene	5	μg/L	2.2	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.49 U	< 0.49 U	< 0.49 U
Trans -1,2-Dichloroethene	5	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.54 U	< 0.54 U	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	< 1 U	< 1 U	< 1 U	0.33 J	< 1 U	< 1 U	< 0.53 U	< 0.53 U	< 0.53 U
Vinyl Chloride	2	μg/L	< 1 U	< 1 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.52 U	< 0.52 U	< 0.52 U

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 μ g/L = Microgram(s) per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

EA Engineering and Geology P.C.

Table 4. Historical Overburden VOC Analytical Results

		Location ID		GEM	IW-1	
			828149-	828149-	828149-	828149-
		Sample Name	GEMW001014	GEMW001014	GEMW001014	GEMW001014
		_				
	Par	ent Sample ID				
		Sample Date	7/24/2013	4/27/2016	10/11/2017	5/7/2019
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result
Method SW8260						
1,1,1-Trichloroethane (TCA)	5	μg/L	< 1 U	< 2 U	< 5.0 U	< 1 U
1,1-Dichloroethane	5	μg/L	0.38 J	< 2 U	< 5.0 U	< 1 U
1,1-Dichloroethene	5	μg/L	5	5.2	5.2	1.1
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA	< 80 UJ	< 200 U	< 40 U
Acetone	50	μg/L	< 10 U	4.6 J	< 25 U	< 5 U
Benzene	1	μg/L	< 1 U	< 2 U	< 5.0 U	< 1 U
Bromodichloromethane	50	μg/L	< 1 U	< 2 U	< 5.0 U	< 1 U
Bromomethane	5	μg/L	< 2 U	< 2 U	< 5.0 U	< 1 U
Carbon Disulfide	60	μg/L	< 1 U	< 2 U	< 5.0 U	< 1 U
Chloroethane	5	μg/L	< 2 U	< 2 U	< 5.0 U	< 1 U
Chloroform	7	μg/L	< 1 U	< 2 U	< 5.0 U	< 1 U
Chloromethane (Methyl Chloride)	5	μg/L	< 2 U	< 2 U	< 5.0 U	< 1 U
Cis -1,2-Dichloroethylene	5	μg/L	310	600	520	150
Cyclohexane	NSL	μg/L	< 2 U	< 2 U	< 5.0 U	< 1 U
Ethylbenzene	5	μg/L	< 1 U	< 2 U	< 5.0 U	< 1 U
M,P-Xylene (Sum Of Isomers)	5	μg/L	< 2 U	< 4 U	< 10 U	< 2 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 5 U	< 10 U	< 25 U	< 5 U
Methylcyclohexane	NSL	μg/L	< 1 U	< 2 U	< 5.0 U	< 1 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 1 U	< 2 U	< 5.0 U	< 1 U
Tetrachloroethylene (PCE)	5	μg/L	76	200	250	93
Toluene	5	μg/L	< 1 U	< 2 U	< 5.0 U	< 1 U
Trans -1,2-Dichloroethene	5	μg/L	2.4	5	3.5 J	1.2
Trichloroethylene (TCE)	5	μg/L	69	120	120	38
Vinyl Chloride	2	μg/L	69	32	15 J	7.3

Notes

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 μ g/L = Microgram(s) per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than the NYSDEC AWQS

Table 4. Historical Overburden VOC Analytical Results

		Location ID				GEN	MW-2			
		Sample Name	828149- GEMW002014	828149- GEMW002014	828149- GEMW002014	828149- GEMW002014	828149-GEMW-2	828149-GEMW-2- 20231128	828149-GEMW-2- 20240507	828149-GEMW-2- 20241223
	Pa	rent Sample ID								
		Sample Date	7/24/2013	4/26/2016	10/10/2017	5/8/2019	6/6/2023	11/28/2023	5/7/2024	12/23/2024
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result
Method SW8260										
1,1,1-Trichloroethane (TCA)	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.54 U	< 0.54 U	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.57 U	< 0.57 U	< 0.57 U
1,1-Dichloroethene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.59 U	< 0.59 U	< 0.59 U
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA	< 40 UJ	< 40 U	< 40 U	< 0.21 U	< 0.050 U	NA	NA
Acetone	50	μg/L	< 10 U	1.7 J	< 5.0 U	< 5 U	< 50 U	< 3.1 U	< 3.1 U	< 3.1 U
Benzene	1	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.43 U	< 0.43 U	< 0.43 U
Bromodichloromethane	50	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 0.5 U	< 0.45 U	< 0.45 U	< 0.45 U
Bromomethane	5	μg/L	< 2 U	< 1 U	0.31 J	< 1 U	< 2 U	< 1.6 U	< 1.6 U	< 1.6 U
Carbon Disulfide	60	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 5 U	< 1.8 U	< 1.8 U	< 1.8 U
Chloroethane	5	μg/L	< 2 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.73 U	< 0.73 U	< 0.73 U
Chloroform	7	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.50 U	< 0.50 U	< 0.50 U
Chloromethane (Methyl Chloride)	5	μg/L	< 2 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.76 U	< 0.76 U	< 0.76 U
Cis -1,2-Dichloroethylene	5	μg/L	14	4	3.3	0.94 J	0.27 J	< 0.51 U	< 0.51 U	< 0.51 U
Cyclohexane	NSL	μg/L	< 2 U	< 1 U	< 1.0 U	< 1 U	NA	< 0.78 U	< 0.78 U	< 0.78 U
Ethylbenzene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.60 U	< 0.60 U	< 0.60 U
M,P-Xylene (Sum Of Isomers)	5	μg/L	< 2 U	< 2 U	< 2.0 U	< 2 U	< 2 U	< 0.78 U	< 0.78 U	< 0.78 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 5 U	< 5 U	< 5.0 U	< 5 U	< 20 U	< 2.7 U	< 2.7 U	< 2.7 U
Methylcyclohexane	NSL	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.60 U	< 0.60 U	< 0.60 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.59 U	< 0.59 U	< 0.59 U
Tetrachloroethylene (PCE)	5	μg/L	230	130	150	81	67	71	66.8	68.2
Toluene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.49 U	< 0.49 U	< 0.49 U
Trans -1,2-Dichloroethene	5	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 1 U	< 0.54 U	< 0.54 U	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	5	2.2	3.3	0.93 J	1.1	1.3	0.82 J	0.84 J
Vinyl Chloride	2	μg/L	< 1 U	< 1 U	< 1.0 U	< 1 U	< 2 U	< 0.52 U	< 0.52 U	< 0.52 U

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than

Table 4. Historical Overburden VOC Analytical Results

		Location ID					MW-1				
		Sample Name	828149- MW001010	828149- MW001010	828149- MW001010D 828149- MW001010	828149- MW001010	828149- MW001010D 828149- MW001010	828149- MW001010	828149- MW001010D 828149- MW001010	828149-MW-1- 20231127	828149-MW-1- 20240508
	1	Sample Date	7/24/2013	4/26/2016	4/26/2016	10/10/2017	10/10/2017	5/7/2019	5/7/2019	11/27/2023	5/8/2024
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result
Method SW8260											
1,1,1-Trichloroethane (TCA)	5	μg/L	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 U	< 20 U	< 5.4 U	< 2.7 U
1,1-Dichloroethane	5	μg/L	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 U	< 20 U	< 5.7 U	< 2.8 U
1,1-Dichloroethene	5	μg/L	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 U	< 20 U	< 5.9 U	< 3.0 U
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA	< 2000 UJ	< 2000 UJ	< 2000 U	< 2000 U	< 800 U	< 800 U	< 0.050 U	< 0.20 U
Acetone	50	μg/L	< 500 U	< 250 U	< 250 U	< 250 U	< 250 U	< 100 U	< 100 U	< 31 U	< 15 U
Benzene	1	μg/L	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 U	< 20 U	< 4.3 U	< 2.1 U
Bromodichloromethane	50	μg/L	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 U	< 20 U	< 4.5 U	< 2.3 U
Bromomethane	5	μg/L	< 100 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 UJ	< 20 UJ	< 16 U	< 8.2 U
Carbon Disulfide	60	μg/L	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 U	< 20 U	< 18 U	< 9.0 U
Chloroethane	5	μg/L	< 100 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 U	< 20 U	< 7.3 U	< 3.6 U
Chloroform	7	μg/L	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 U	< 20 U	< 5.0 U	< 2.5 U
Chloromethane (Methyl Chloride)	5	μg/L	< 100 U	< 50 U	< 50 U	13 J	< 50 U	< 20 U	< 20 U	< 7.6 U	< 3.8 U
Cis -1,2-Dichloroethylene	5	μg/L	660	320	330	340	310	34	38	27.6	31.2
Cyclohexane	NSL	μg/L	< 100 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 U	< 20 U	< 7.8 U	< 3.9 U
Ethylbenzene	5	μg/L	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 U	< 20 U	< 6.0 U	< 3.0 U
M,P-Xylene (Sum Of Isomers)	5	μg/L	< 100 U	< 100 U	< 100 U	< 100 U	< 100 U	< 40 U	< 40 U	< 7.8 U	< 3.9 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 250 U	< 250 U	< 250 U	< 250 U	< 250 U	< 100 U	< 100 U	< 27 U	< 14 U
Methylcyclohexane	NSL	μg/L	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 U	< 20 U	< 6.0 U	< 3.0 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 U	< 20 U	< 5.9 U	< 3.0 U
Tetrachloroethylene (PCE)	5	μg/L	11000	8400	8500	9700	9600	1900 J+	2000 J+	2570	907
Toluene	5	μg/L	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 U	< 20 U	< 4.9 U	< 2.5 U
Trans -1,2-Dichloroethene	5	μg/L	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 U	< 20 U	< 5.4 U	< 2.7 U
Trichloroethylene (TCE)	5	μg/L	260	180	190	260	240	34	35	21.1	11.5
Vinyl Chloride	2	μg/L	< 50 U	< 50 U	< 50 U	< 50 U	< 50 U	< 20 U	< 20 U	< 5.2 U	< 2.6 U

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 μ g/L = Microgram(s) per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than

Table 4. Historical Overburden VOC Analytical Results

		Location ID					M	W-2				
		Sample Name	828149- MW002010	828149- MW002010	828149- MW002010	828149- MW002010	828149-MW-2	828149-FD-01	828149-MW-2- 20231127	828149-FD-01- 20231127 828149-MW-2-	828149-MW-2- 20240507	828149-MW-2- 20241223
	Pa	rent Sample ID	7/24/2012	4/27/2016	10/11/2017	5/9/2010	(/5/2022	828149-MW-2	11/27/2022	20231127	5/7/2024	12/22/2024
	NYSDEC AWOS ¹	Sample Date	7/24/2013	4/27/2016	10/11/2017	5/8/2019	6/5/2023	6/5/2023	11/27/2023	11/27/2023	5/7/2024	12/23/2024
Analyte Method SW8260	NYSDEC AWQS	Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result	Result
	5	/T	< 250 H	< 500 II	< 500 II	< 500 II	< 1 U	< 1 U	< 0.54 II	< 0.54 U	< 0.54.11	< 0.54.11
1,1,1-Trichloroethane (TCA)	5	μg/L	< 250 U	< 500 U	< 500 U	< 500 U			< 0.54 U		< 0.54 U	< 0.54 U
1,1-Dichloroethane	5	μg/L	< 250 U	< 500 U	< 500 U	< 500 U	< 1 U < 1 U	< 1 U	< 0.57 U	< 0.57 U	< 0.57 U	< 0.57 U
1,1-Dichloroethene	3	μg/L	< 250 U	< 500 U	< 500 U	< 500 U	<u> </u>	< 1 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA 2500 HI	< 20000 UJ	< 20000 U	< 20000 U	< 0.2 U	< 0.21 U	< 0.050 U	< 0.050 U	NA	NA (2.1 H
Acetone	50	μg/L	< 2500 UJ	< 2500 U	< 2500 U	< 2500 U	< 50 U	< 50 U	< 3.1 U	< 3.1 U	< 3.1 U	< 3.1 U
Benzene	50	μg/L	< 250 U	< 500 U	< 500 U	< 500 U	< 1 U	< 1 U	< 0.43 U	< 0.43 U	< 0.43 U	< 0.43 U
Bromodichloromethane	50	μg/L	< 250 U	< 500 U	< 500 U	< 500 U	< 0.5 U	< 0.5 U	< 0.45 U	< 0.45 U	< 0.45 U	< 0.45 U
Bromomethane	5	μg/L	< 500 UJ	< 500 U	< 500 U	< 500 U	< 2 U	< 2 U	< 1.6 U	< 1.6 U	< 1.6 U	< 1.6 U
Carbon Disulfide	60	μg/L	< 250 U	< 500 U	< 500 U	< 500 U	< 5 U	< 5 U	< 1.8 U	< 1.8 U	< 1.8 U	< 1.8 U
Chloroethane	5	μg/L	< 500 U	< 500 U	< 500 U	< 500 U	< 2 U	< 2 U	< 0.73 U	< 0.73 U	< 0.73 U	< 0.73 U
Chloroform	/	μg/L	< 250 U	< 500 U	< 500 U	< 500 U	< 2 U	< 2 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
Chloromethane (Methyl Chloride)	5	μg/L	< 500 U	< 500 U	< 500 U	< 500 U	< 2 U	< 2 U	< 0.76 U	< 0.76 U	< 0.76 U	< 0.76 U
Cis -1,2-Dichloroethylene	5	μg/L	260	< 500 U	< 500 U	< 500 U	22	21	21.1	21.2	19	25.6
Cyclohexane	NSL	μg/L	< 500 U	< 500 U	< 500 U	< 500 U	NA	NA	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U
Ethylbenzene	5	μg/L	< 250 U	< 500 U	< 500 U	< 500 U	< 1 U	< 1 U	< 0.60 U	< 0.60 U	< 0.60 U	< 0.60 U
M,P-Xylene (Sum Of Isomers)	5	μg/L	< 500 U	< 1000 U	< 1000 U	< 1000 U	< 2 U	< 2 U	< 0.78 U	< 0.78 U	< 0.78 U	< 0.78 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 1300 UJ	< 2500 U	< 2500 U	< 2500 U	< 20 U	< 20 U	< 2.7 U	< 2.7 U	< 2.7 U	< 2.7 U
Methylcyclohexane	NSL	μg/L	< 250 U	< 500 U	< 500 U	< 500 U	< 1 U	< 1 U	< 0.60 U	< 0.60 U	< 0.60 U	< 0.60 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 250 U	< 500 U	< 500 U	< 500 U	< 1 U	< 1 U	< 0.59 U	< 0.59 U	< 0.59 U	< 0.59 U
Tetrachloroethylene (PCE)	5	μg/L	90000	85000	69000	63000	69	70	65.2	70.3	76.4	87.4
Toluene	5	μg/L	< 250 U	< 500 U	< 500 U	< 500 U	< 1 U	< 1 U	< 0.49 U	< 0.49 U	< 0.49 U	< 0.49 U
Trans -1,2-Dichloroethene	5	μg/L	< 250 U	< 500 U	< 500 U	< 500 U	0.31 J	0.36 J	< 0.54 U	< 0.54 U	< 0.54 U	< 0.54 U
Trichloroethylene (TCE)	5	μg/L	410	240 J	170 J	160 J	18	17	17.5	17.6	17.8	23.9
Vinyl Chloride	2	μg/L	< 250 U	< 500 U	< 500 U	< 500 U	< 2 U	< 2 U	< 0.52 U	< 0.52 U	< 0.52 U	< 0.52 U

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

(1005 1.1.1 and 0 101 CRR 1 art 705).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than

Table 4. Historical Overburden VOC Analytical Results

		Location ID					MW-3				
		Sample Name	828149- MW003010	828149- MW003010D 828149- MW003010	828149- MW003009	828149- MW003009D 828149- MW003009	828149- MW003009	828149- MW003009D 828149- MW003009	828149- MW003009	828149- MW003009D 828149- MW003009	828149-MW-3
		Sample Date	7/23/2013	7/23/2013	4/27/2016	4/27/2016	10/12/2017	10/12/2017	5/6/2019	5/6/2019	6/6/2023
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result
Method SW8260											
1,1,1-Trichloroethane (TCA)	5	μg/L	< 5 U	< 10 U	< 5 U	< 5 U	< 5.0 U	< 5.0 U	< 5 U	< 5 U	< 40 U
1,1-Dichloroethane	5	μg/L	< 5 U	< 10 U	< 5 U	< 5 U	< 5.0 U	< 5.0 U	< 5 U	< 5 U	< 40 U
1,1-Dichloroethene	5	μg/L	16	15	11	11	8.5	8.2	6.2	6.3	< 40 U
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA	NA	< 200 UJ	< 200 UJ	1.1	< 200 U	< 200 U	< 200 U	< 0.2 U
Acetone	50	μg/L	< 50 U	< 100 UJ	7 J	7.1 J	< 25 U	< 25 U	< 25 U	< 25 U	< 2000 U
Benzene	1	μg/L	< 5 U	< 10 U	< 5 U	< 5 U	< 5.0 U	< 5.0 U	< 5 U	< 5 U	< 40 U
Bromodichloromethane	50	μg/L	< 5 U	< 10 U	< 5 U	< 5 U	< 5.0 U	< 5.0 U	< 5 U	< 5 U	< 20 U
Bromomethane	5	μg/L	< 10 U	< 20 UJ	< 5 U	< 5 U	< 5.0 U	< 5.0 U	< 5 U	< 5 U	< 80 U
Carbon Disulfide	60	μg/L	< 5 U	< 10 U	< 5 U	< 5 U	< 5.0 U	< 5.0 U	< 5 U	< 5 U	< 200 U
Chloroethane	5	μg/L	< 10 U	< 20 U	< 5 U	< 5 U	< 5.0 U	< 5.0 U	< 5 U	< 5 U	< 80 U
Chloroform	7	μg/L	< 5 U	< 10 U	< 5 U	< 5 U	< 5.0 U	< 5.0 U	< 5 U	< 5 U	< 80 U
Chloromethane (Methyl Chloride)	5	μg/L	< 10 U	< 20 U	< 5 U	< 5 U	< 5.0 U	< 5.0 U	< 5 U	< 5 U	< 80 U
Cis -1,2-Dichloroethylene	5	μg/L	890	840	850	710	670	690	530	530	330
Cyclohexane	NSL	μg/L	< 10 U	< 20 U	< 5 U	< 5 U	< 5.0 U	< 5.0 U	< 5 U	< 5 U	NA
Ethylbenzene	5	μg/L	< 5 U	< 10 U	< 5 U	< 5 U	< 5.0 U	< 5.0 U	< 5 U	< 5 U	< 40 U
M,P-Xylene (Sum Of Isomers)	5	μg/L	< 10 U	< 20 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 80 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 25 U	16 J	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 25 U	< 800 U
Methylcyclohexane	NSL	μg/L	< 5 U	< 10 U	< 5 U	< 5 U	< 5.0 U	< 5.0 U	< 5 U	< 5 U	< 40 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 5 U	< 10 U	< 5 U	< 5 U	< 5.0 U	< 5.0 U	< 5 U	< 5 U	< 40 U
Tetrachloroethylene (PCE)	5	μg/L	2200	1800	790	790	650	670	390	380	2000
Toluene	5	μg/L	< 5 U	< 10 U	< 5 U	< 5 U	< 5.0 U	< 5.0 U	< 5 U	< 5 U	< 40 U
Trans -1,2-Dichloroethene	5	μg/L	7.1	6 J	12	12	5.1	5.3	3.6 J	3.6 J	< 40 U
Trichloroethylene (TCE)	5	μg/L	450	410	320	240	310	320	220	220	160
Vinyl Chloride	2	μg/L	260	260	200	160	200 J	200 J	190	190	< 80 U

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 μ g/L = Microgram(s) per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than

Table 4. Historical Overburden VOC Analytical Results

		Location ID			MW-3				MV	V-10	
		Sample Name ent Sample ID Sample Date	828149-MW-3- 20231127 11/27/2023	828149-MW-3- 20240508 5/8/2024	828149-DUP- 20240508 828149-MW-3- 20240508 5/8/2024	828149-MW-3- 20241223	828149-FD-01- 20241223 828149-MW-3- 20241223 12/23/2024	828149- MW010010	828149- MW010010 4/28/2016	828149- MW010010 10/11/2017	828149- MW010010
A I4 -	NYSDEC AWQS ¹	Unit									
Analyte Method SW8260	NYSDEC AWQS	Unit	Result	Result	Result	Result	Result	Result	Result	Result	Result
1,1,1-Trichloroethane (TCA)	5	μg/L	< 11 U	< 5.4 U	< 5.4 U	< 0.54 U	< 0.54 U	< 1 U	< 1 U	< 1.0 U	< 1 U
1,1-Dichloroethane	<u>5</u>	μg/L μg/L	< 11 U	< 5.7 U	< 5.7 U	< 0.57 U	< 0.57 U	< 1 U	< 1 U	< 1.0 U	< 1 U
1,1-Dichloroethene	5	μg/L μg/L	< 12 U	< 5.9 U	< 5.9 U	7.6	7.2	< 1 U	< 1 U	< 1.0 U	< 1 U
1,4-Dioxane (P-Dioxane)	0.35	μg/L μg/L	< 0.050 U	< 0.20 U	< 0.20 U	NA	NA	NA	< 40 UJ	< 40 U	< 40 U
Acetone	50	μg/L	< 61 U	< 31 U	< 31 U	< 3.1 U	< 3.1 U	< 10 U	1.6 J	1.4 J	< 5 U
Benzene	1	μg/L	< 8.5 U	< 4.3 U	< 4.3 U	< 0.43 U	< 0.43 U	< 1 U	< 1 U	< 1.0 U	< 1 U
Bromodichloromethane	50	μg/L	< 9.0 U	< 4.5 U	< 4.5 U	< 0.45 U	< 0.45 U	< 1 U	< 1 U	< 1.0 U	< 1 U
Bromomethane	5	μg/L	< 33 U	< 16 U	< 16 U	< 1.6 U	< 1.6 U	< 2 U	< 1 U	< 1.0 U	< 1 U
Carbon Disulfide	60	μg/L	< 36 U	< 18 U	< 18 U	< 1.8 U	< 1.8 U	< 1 U	< 1 U	< 1.0 U	< 1 U
Chloroethane	5	μg/L	< 15 U	< 7.3 U	< 7.3 U	< 0.73 U	< 0.73 U	< 2 U	< 1 U	< 1.0 U	< 1 U
Chloroform	7	μg/L	< 10 U	< 5.0 U	< 5.0 U	< 0.50 U	< 0.50 U	< 1 U	< 1 U	< 1.0 U	< 1 U
Chloromethane (Methyl Chloride)	5	μg/L	< 15 U	< 7.6 U	< 7.6 U	< 0.76 U	< 0.76 U	< 2 U	< 1 U	< 1.0 U	< 1 U
Cis -1,2-Dichloroethylene	5	μg/L	1210	182	188	547	529	< 1 U	< 1 U	4.5	< 1 U
Cyclohexane	NSL	μg/L	< 16 U	< 7.8 U	< 7.8 U	< 0.78 U	< 0.78 U	< 2 U	< 1 U	< 1.0 U	< 1 U
Ethylbenzene	5	μg/L	< 12 U	< 6.0 U	< 6.0 U	< 0.60 U	< 0.60 U	< 1 U	< 1 U	< 1.0 U	< 1 U
M,P-Xylene (Sum Of Isomers)	5	μg/L	< 16 U	< 7.8 U	< 7.8 U	< 0.78 U	< 0.78 U	< 2 U	< 2 U	< 2.0 U	< 2 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 55 U	< 27 U	< 27 U	< 2.7 U	< 2.7 U	< 5 U	< 5 U	< 5.0 U	< 5 U
Methylcyclohexane	NSL	μg/L	< 12 U	< 6.0 U	< 6.0 U	< 0.60 U	< 0.60 U	< 1 U	< 1 U	< 1.0 U	< 1 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 12 U	< 5.9 U	< 5.9 U	< 0.59 U	< 0.59 U	< 1 U	< 1 U	< 1.0 U	< 1 U
Tetrachloroethylene (PCE)	5	μg/L	3220	1730	1750	441	405	28	< 1 U	130	< 1 U
Toluene	5	μg/L	< 9.8 U	< 4.9 U	< 4.9 U	< 0.49 U	< 0.49 U	< 1 U	< 1 U	< 1.0 U	< 1 U
Trans -1,2-Dichloroethene	5	μg/L	< 11 U	< 5.4 U	< 5.4 U	4.5	4	< 1 U	< 1 U	< 1.0 U	< 1 U
Trichloroethylene (TCE)	5	μg/L	475	68.4	69.9	239	229	0.38 J	< 1 U	3	< 1 U
Vinyl Chloride	2	μg/L	52.9	< 5.2 U	< 5.2 U	112	114	< 1 U	< 1 U	< 1.0 U	< 1 U

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values

(TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only. $\mu g/L = Microgram(s) \ per \ liter$

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

J = Concentration is estimated.

J+ = Concentration is estimated, biased high.

NA = Not analyzed.

NSL = No screening level available.

NYSCRR = New York Codes, Rules and Regulations

NYSDEC = New York State Department of Environmental Conservation

TOGS = Technical and Operational Guidance Series

U = Analyte not detected.

VOC = Volatile organic compounds

Bold and Shaded values indicate that the analyte was detected greater than

Table 4. Historical Overburden VOC Analytical Results

		Location ID				MV	V-13			
		Sample Name	828149-MW1307	828149- MW013012	828149- MW013012	828149- MW013012	828149-MW-13	828149-MW-13- 20231127	828149-MW-13- 20240508	828149-MW-13- 20241223
	Pa	rent Sample ID Sample Date	7/24/2013	4/28/2016	10/12/2017	5/7/2019	6/5/2023	11/27/2023	5/8/2024	12/23/2024
Analyte	NYSDEC AWQS ¹	Unit	Result	Result	Result	Result	Result	Result	Result	Result
Method SW8260		•								
1,1,1-Trichloroethane (TCA)	5	μg/L	< 50 U	< 50 U	< 50 U	< 10 U	< 50 U	< 2.7 U	< 2.1 U	< 2.7 U
1,1-Dichloroethane	5	μg/L	< 50 U	< 50 U	< 50 U	< 10 U	< 50 U	< 2.8 U	< 2.3 U	< 2.8 U
1,1-Dichloroethene	5	μg/L	< 50 U	< 50 U	< 50 U	< 10 U	< 50 U	< 3.0 U	< 2.4 U	< 3.0 U
1,4-Dioxane (P-Dioxane)	0.35	μg/L	NA	< 2000 UJ	0.26 J	< 400 U	< 0.2 U	< 0.050 U	< 0.20 U	NA
Acetone	50	μg/L	< 500 U	< 250 U	< 250 U	< 50 U	< 2500 U	< 15 U	< 12 U	< 15 U
Benzene	1	μg/L	< 50 U	< 50 U	< 50 U	< 10 U	< 50 U	< 2.1 U	< 1.7 U	< 2.1 U
Bromodichloromethane	50	μg/L	< 50 U	< 50 U	< 50 U	< 10 U	< 25 U	< 2.3 U	< 1.8 U	< 2.3 U
Bromomethane	5	μg/L	< 100 UJ	< 50 U	< 50 U	< 10 U	< 100 U	< 8.2 U	< 6.6 U	< 8.2 U
Carbon Disulfide	60	μg/L	< 50 U	< 50 U	< 50 U	< 10 U	< 250 U	< 9.0 U	< 7.2 U	< 9.0 U
Chloroethane	5	μg/L	< 100 U	< 50 U	< 50 U	< 10 U	< 100 U	< 3.6 U	< 2.9 U	< 3.6 U
Chloroform	7	μg/L	< 50 U	< 50 U	< 50 U	< 10 U	< 100 U	< 2.5 U	< 2.0 U	< 2.5 U
Chloromethane (Methyl Chloride)	5	μg/L	< 100 U	< 50 U	< 50 U	< 10 U	< 100 U	< 3.8 U	< 3.0 U	< 3.8 U
Cis -1,2-Dichloroethylene	5	μg/L	680	590	770	160	170	195	163	170
Cyclohexane	NSL	μg/L	< 100 U	< 50 U	< 50 U	< 10 U	NA	< 3.9 U	< 3.1 U	< 3.9 U
Ethylbenzene	5	μg/L	< 50 U	< 50 U	< 50 U	< 10 U	< 50 U	< 3.0 U	< 2.4 U	< 3.0 U
M,P-Xylene (Sum Of Isomers)	5	μg/L	NA	< 100 U	< 100 U	< 20 U	< 100 U	< 3.9 U	< 3.1 U	< 3.9 U
Methyl Ethyl Ketone (2-Butanone)	50	μg/L	< 250 U	< 250 U	< 250 U	< 50 U	< 1000 U	< 14 U	< 11 U	< 14 U
Methylcyclohexane	NSL	μg/L	< 50 U	< 50 U	< 50 U	< 10 U	< 50 U	< 3.0 U	< 2.4 U	< 3.0 U
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	< 50 U	< 50 U	< 50 U	< 10 U	< 50 U	< 3.0 U	< 2.4 U	< 3.0 U
Tetrachloroethylene (PCE)	5	μg/L	14000	12000	4100	2300	3200	1130	1160	616
Toluene	5	μg/L	< 50 U	< 50 U	< 50 U	< 10 U	< 50 U	< 2.5 U	< 2.0 U	< 2.5 U
Trans -1,2-Dichloroethene	5	μg/L	< 50 U	< 50 U	< 50 U	< 10 U	< 50 U	< 2.7 U	< 2.1 U	< 2.7 U
Trichloroethylene (TCE)	5	μg/L	380	350	200	190	120	71.8	89.5	92.7
Vinyl Chloride	2	μg/L	< 50 U	< 50 U	< 50 U	< 10 U	< 100 U	< 2.6 U	< 2.1 U	< 2.6 U

1. Screening level is the NYSDEC Class GA AWQS and Guidance Values (TOGS 1.1.1 and 6 NYCRR Part 703).

This table shows detected analytes only.

 $\mu g/L = Microgram(s)$ per liter

AWQS = Ambient water quality standards

EPA = U.S. Environmental Protection Agency

ID = Identification

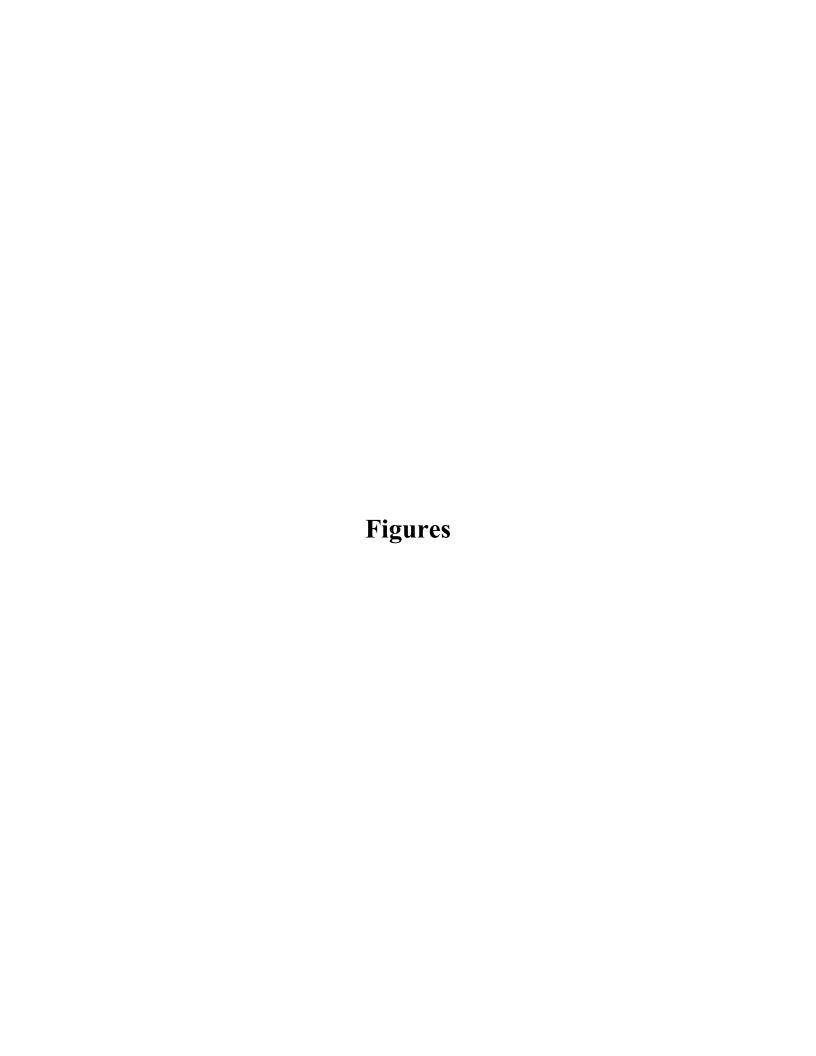
J = Concentration is estimated.

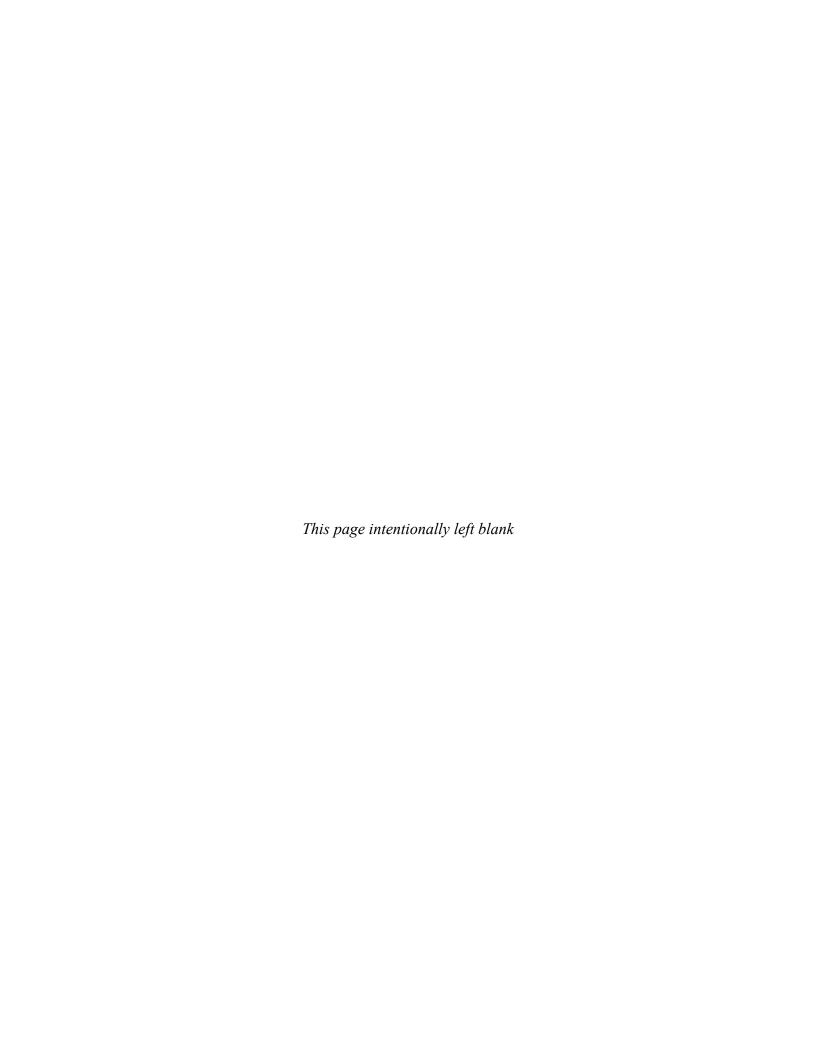
J+ = Concentration is estimated, biased high.

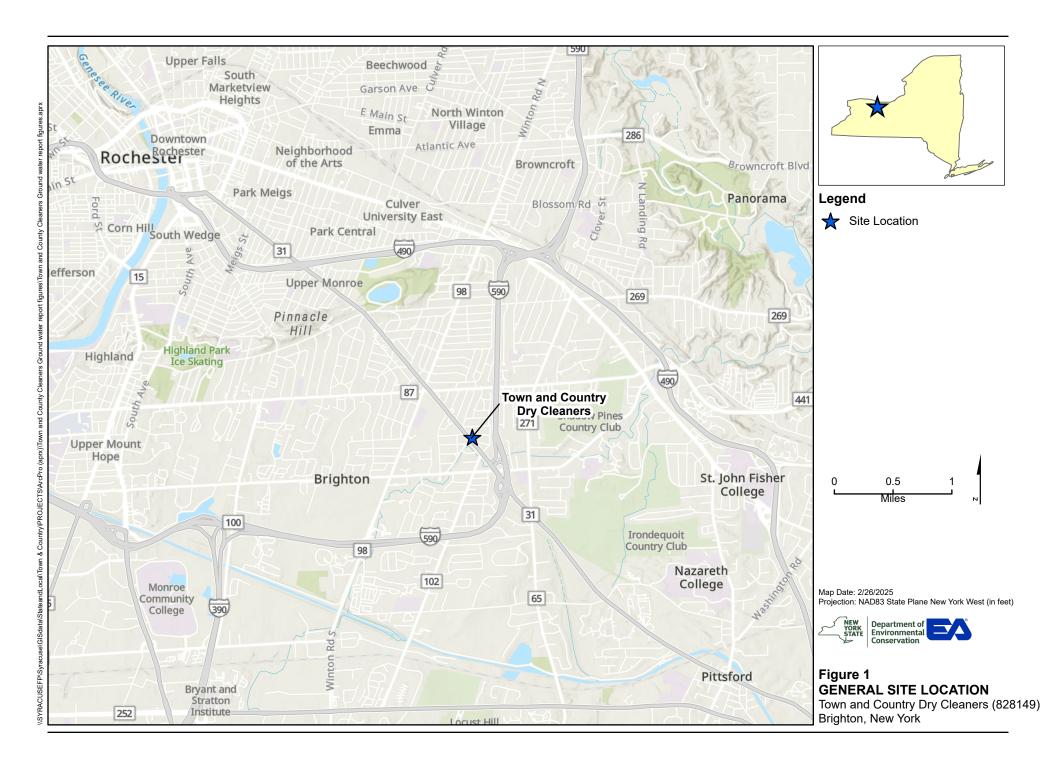
NA = Not analyzed.

NSL = No screening level available.

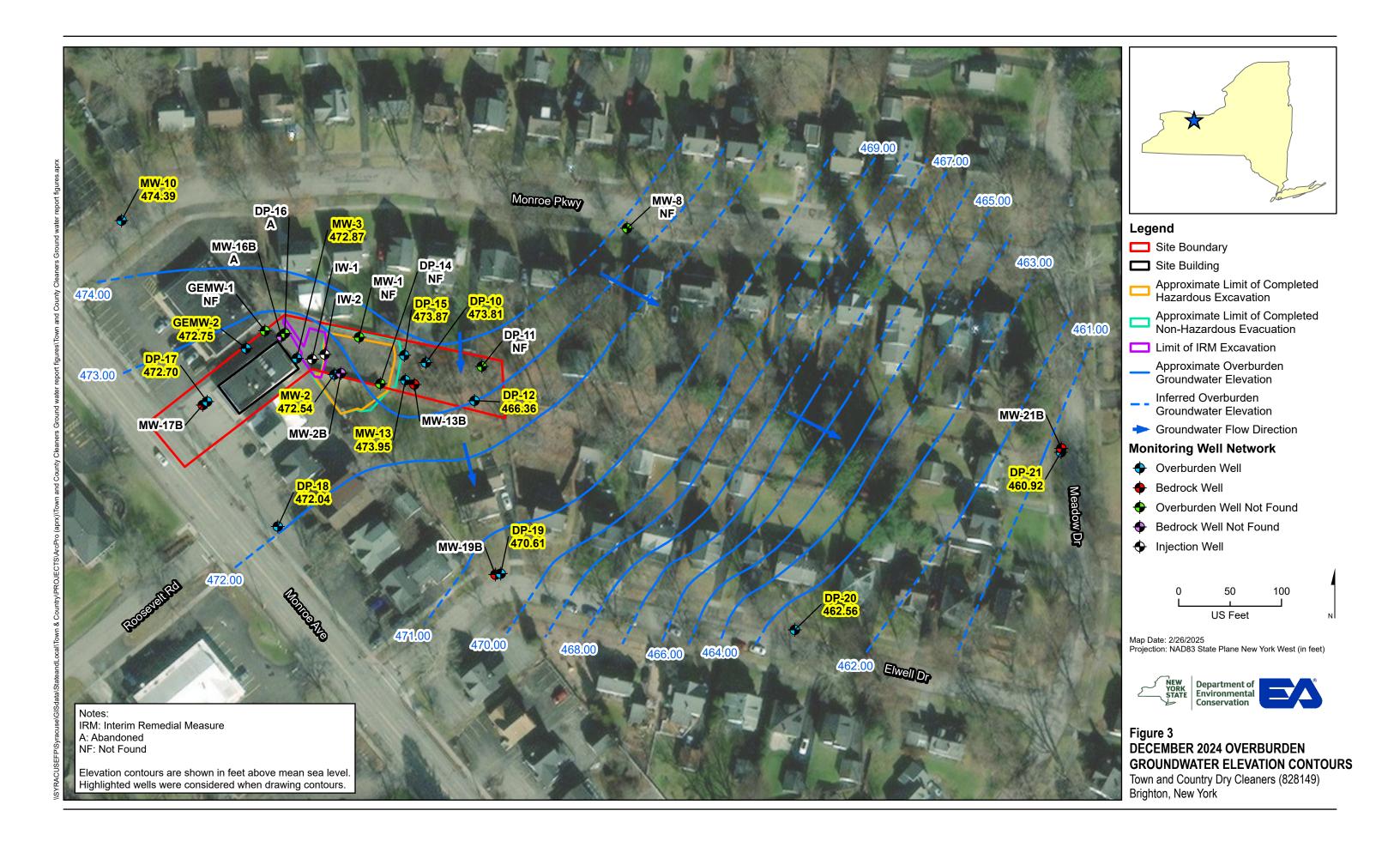
NYSCRR = New York Codes, Rules and Regulations

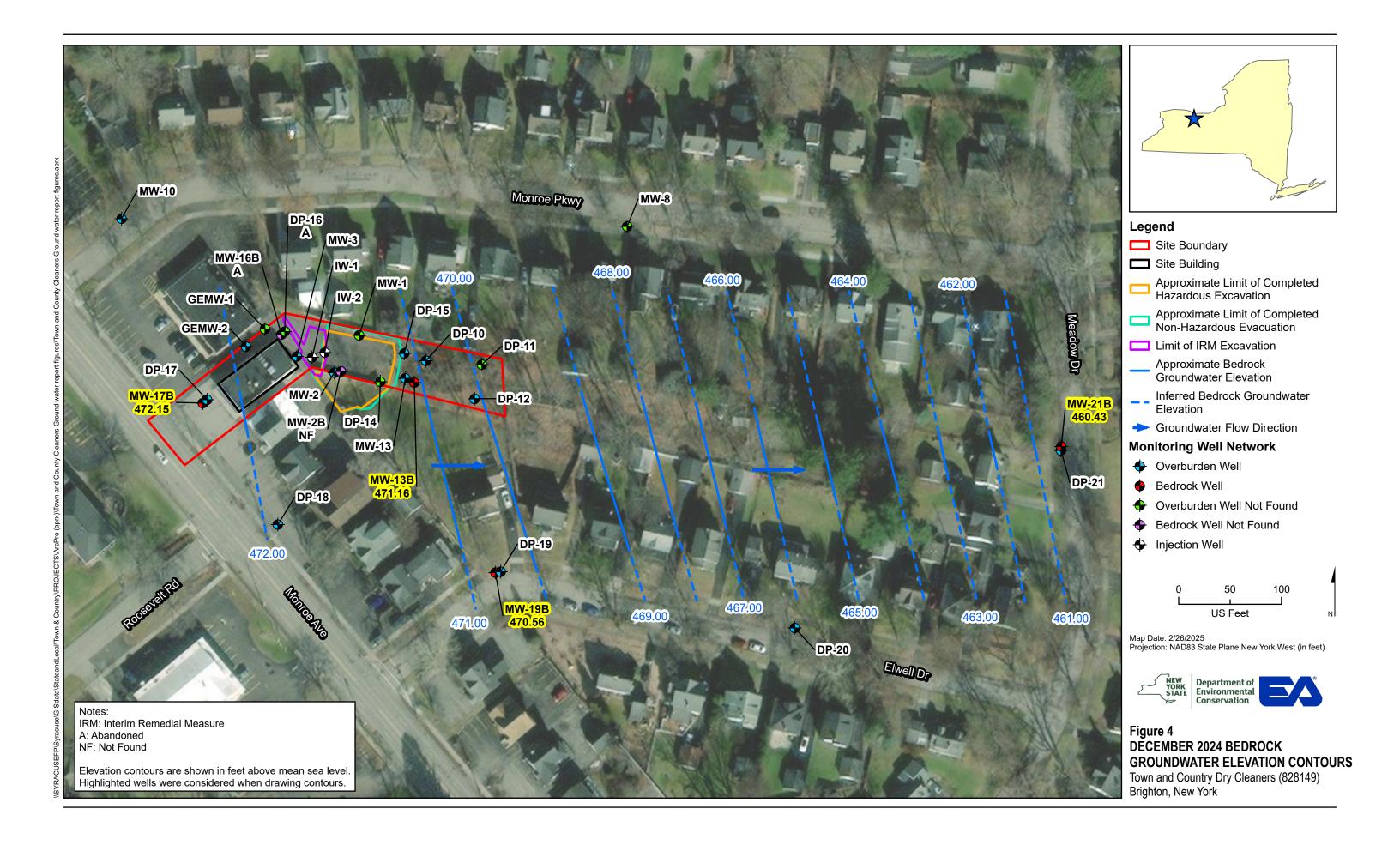

NYSDEC = New York State Department of Environmental Conservation

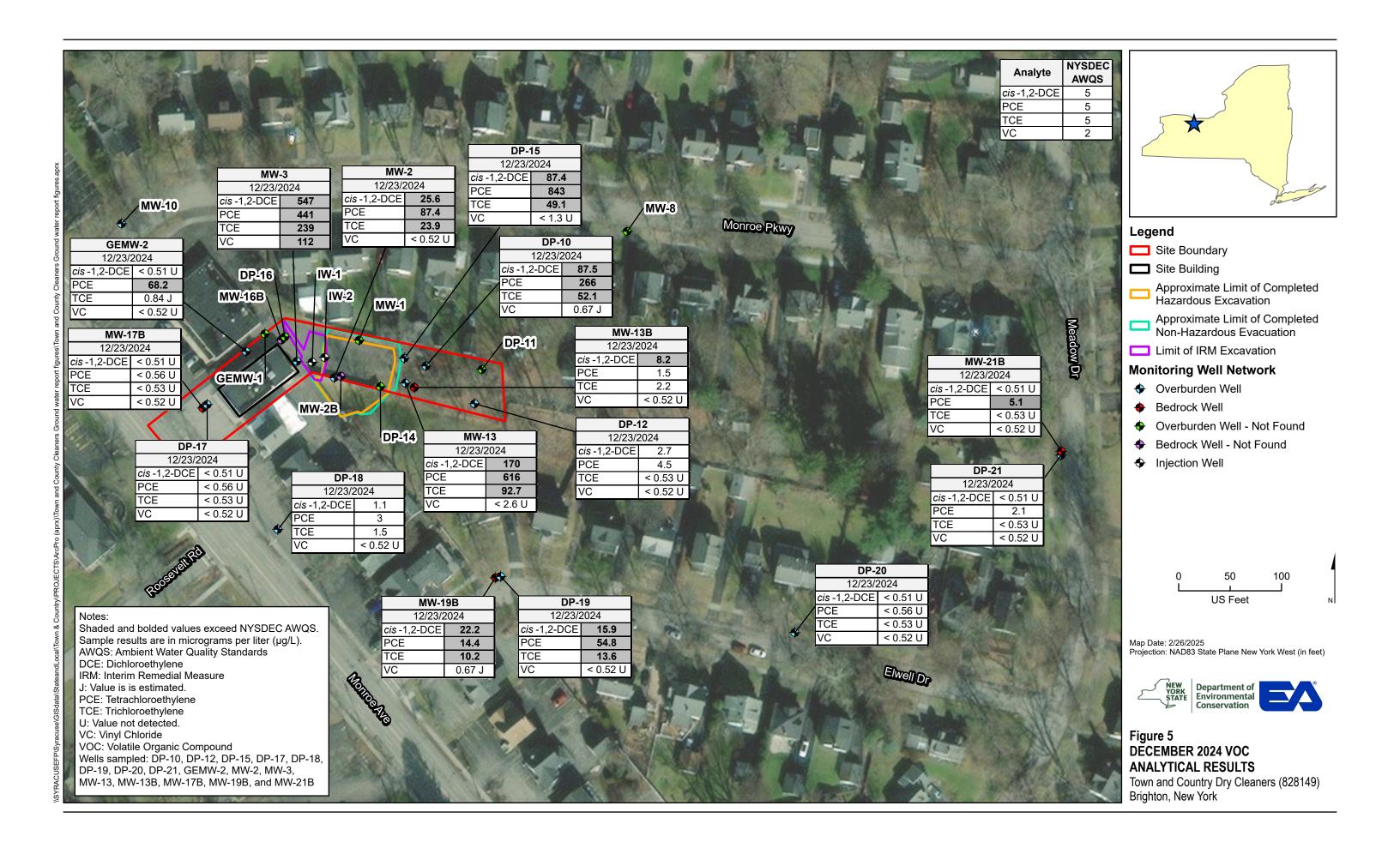

TOGS = Technical and Operational Guidance Series

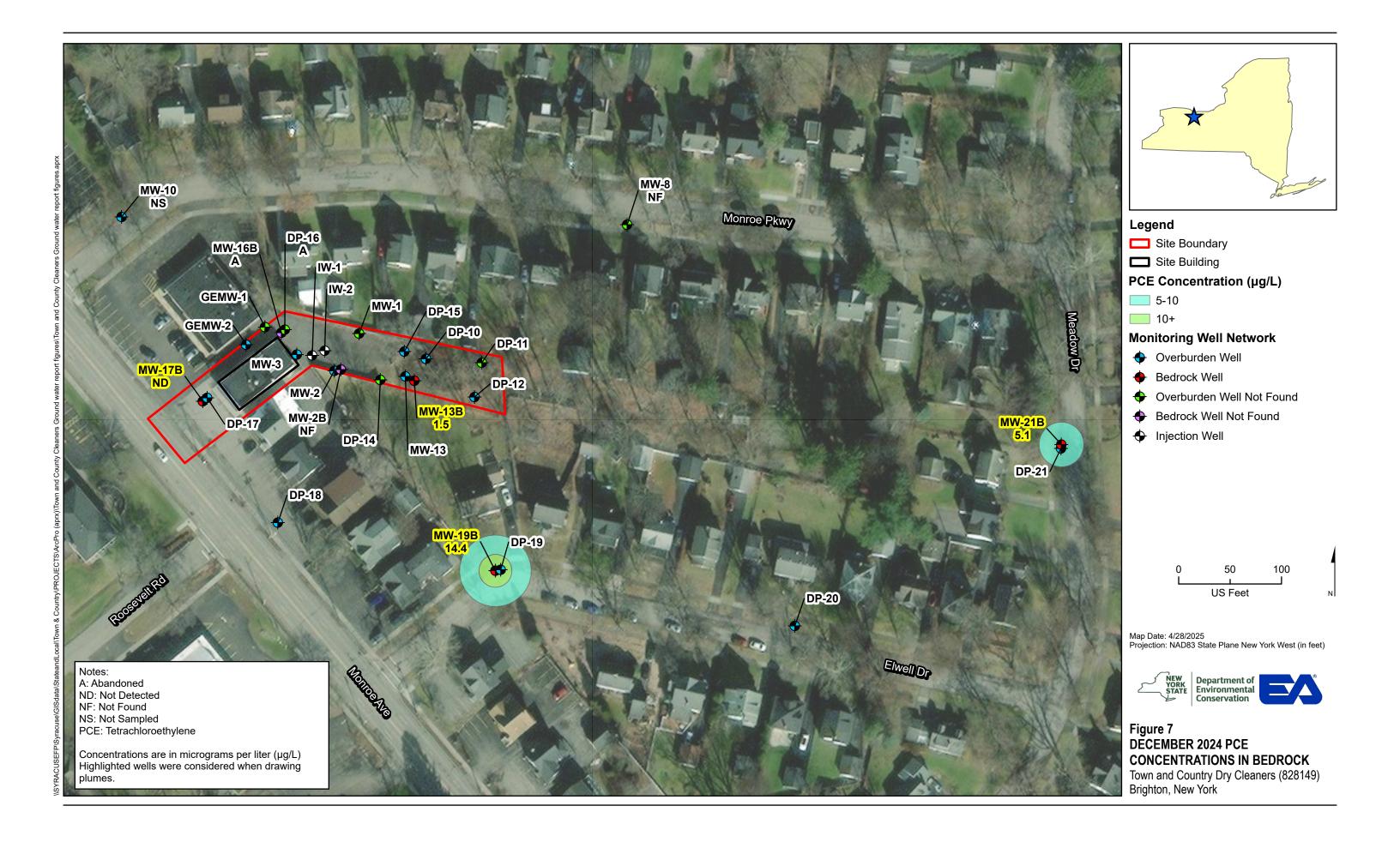

U = Analyte not detected.

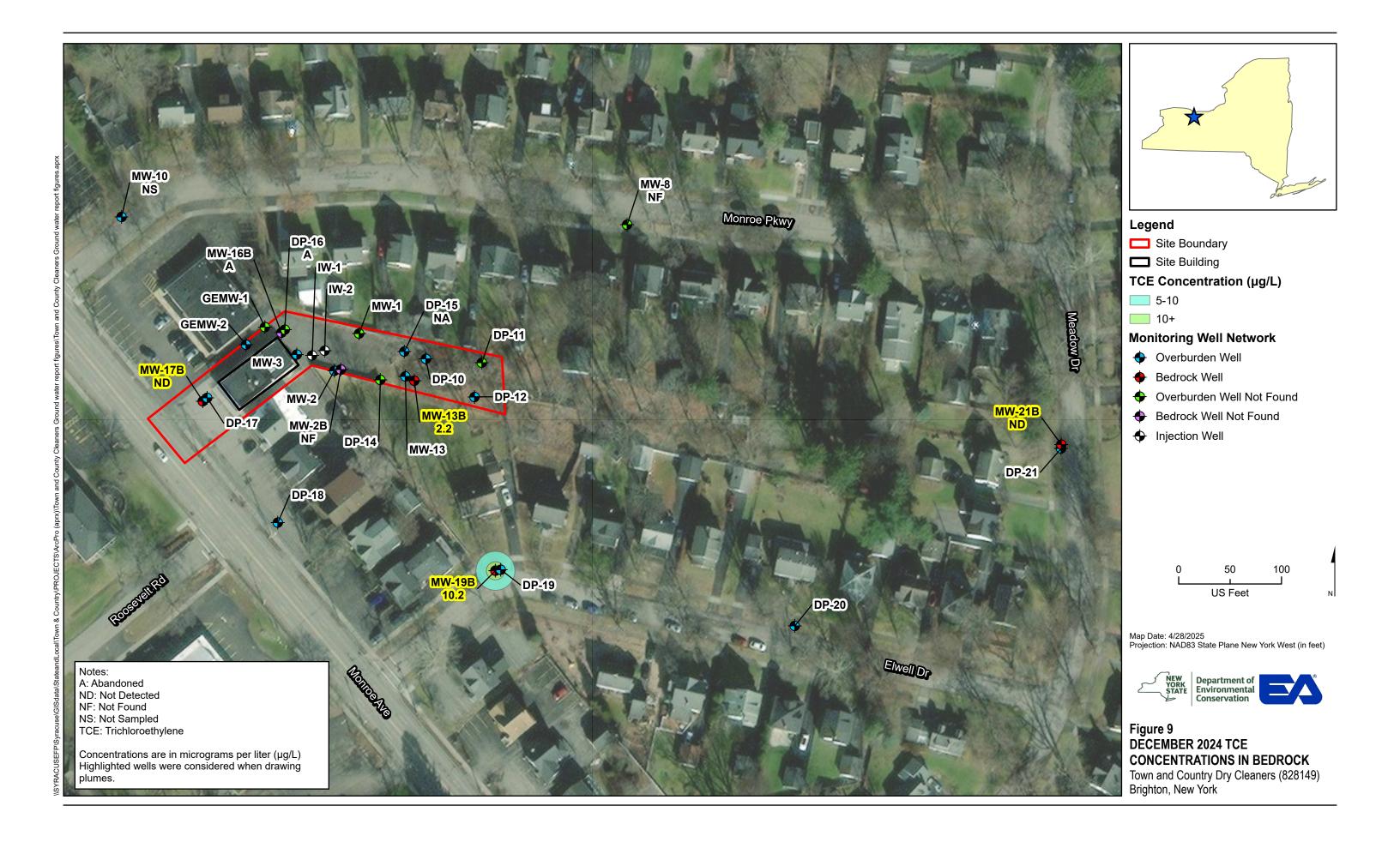
VOC = Volatile organic compounds

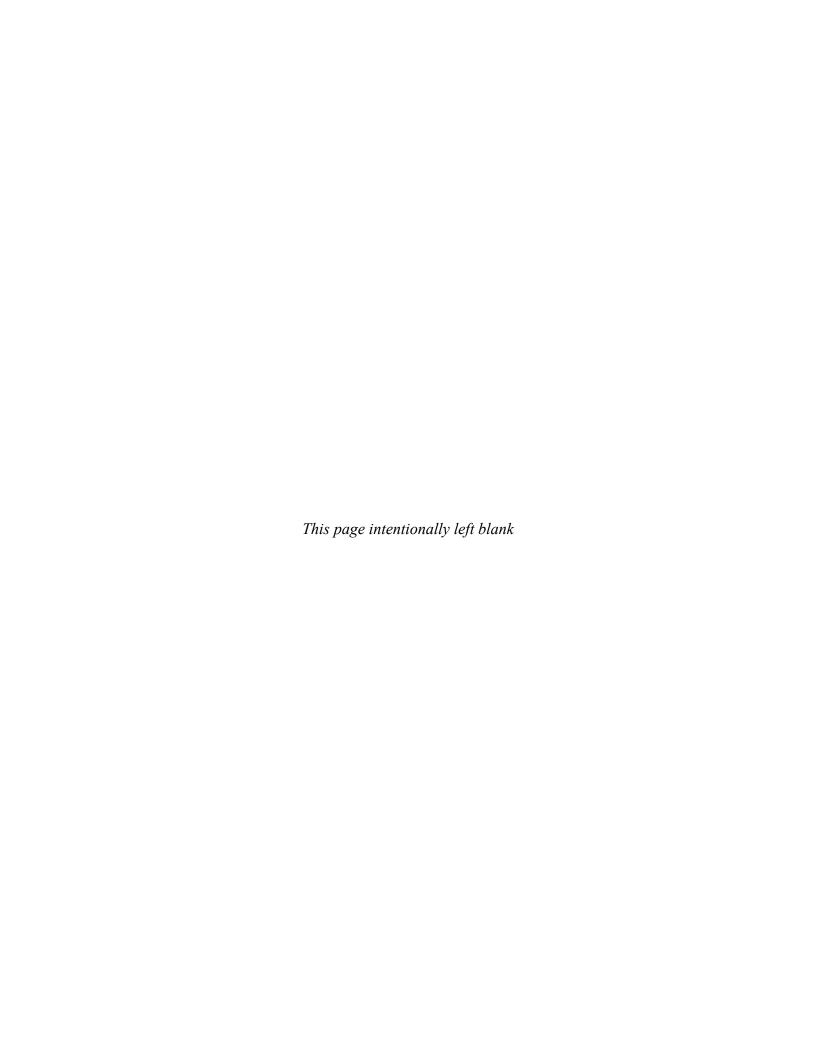

Bold and Shaded values indicate that the analyte was detected greater than











Appendix A

Field Forms

n & County (828149) 12/23/24	Town E	Contry (828149) 12/23/24 29
wx: 9 F, cloudy, 6 mph S		Wx: 30°F, cloudy, 6mph SE
Haedell, C. Zook, C. Derick (EA) onsite	1440	Could not locate MW-1
M. Gilkey (FA) onsite	1505	Start page @ MW-2
Calibrate PID and Horibas	150%	Start punge @ DP-19
Begin gauging onsite wells	1508	Start purge @ MW-17B
Begin gauging offsile wells	1530	Sample OP-19 for VOCS
Start purge & GEMW-2	\535	Sample MW-2 For VOCS
Start prac@ DP-15	1538	Sample Hor VOCS
Start purge @ DP-18	1553	Start purge @ MW-19B
GEMW-2 goes dry	1609	Stort proje@ DP-21
Sandle DP-18 for VOC's	1616	Stort ourge@ DP-20
Start owere @ DP-17	1617	Sample MW-19B for VOCS
Sample JDP-15 for VOC's	1636	Sample DP-21 for VOCS
Sample DP-17 for VOC's	1640	MW-10 could not be sampled due to low
Start purge @ MW-13		water level.
Sample Mus-13 for VOC'S W/ M8/MSD	1646	Sample DP-20 for VOCs and stat
Sat prige@ New-3	. 17	purge @ MW-28B
Stort purge @ MW-13B	1713	Sample MW-ZIB for VOCS
Sample Mw-3 for VOC'S W/ DUP	1730	Load equipment and samples
Start parge @ DP-12	1745	Seure drums
Sample MW-13B for VOC's	1800	Everyone offsite
Start purge @ DP-10		
Sumple GEMW-2 for VOC'S		Hedel
Sample DP-12 for VOC.5		
Sample DR-10 for VOC's	:	12.23.24
	:	Kite in the Rain.
Exercise to the second of the	V	er e

Site Name:

Town and Country

Team:

HB, MG, CZ, CD

Well ID	Installed Depth (ft)	Screen Interval (ft)	Measuring Point Elev (ft)	Date and Time	DTW (ft MRP)	Measured Well Depth (ft)	PID (ppm)	Product	Comments
DP-010	9.25	3.70-9.70	477.53	12/23/2024 9:23 AM	3.72	9.24	0		
DP-012	20.50	10.70-20.70	477.09	12/23/2024 9:50 AM	10.73	19.75	0		
DP-015	9.41	5.00-10.00	476.98	12/23/2024 10:00 AM	3.11	9.35	0.3		
DP-017	16.25	6.80-16.80	479.50	12/23/2024 9:02 AM	6.8	16.16	0		
DP-018	10.29	4.80-10.80	478.29	12/23/2024 10:00 AM	6.25	10.27	0		
DP-019	12.86	3.20-13.20	475.15	12/23/2024 10:00 AM	4.54	12.95	0		
DP-020	14.67	5.00-15.00	473.80	12/23/2024 10:00 AM	11.24	14.65	0		
DP-021	10.34	2.70-10.70	468.15	12/23/2024 10:27 AM	7.33	10.37	0		
GEMW-2	14.59	5.00-15.00	480.25	12/23/2024 9:07 AM	7.8	14.52	0		
MW-10	8.55	4.60-9.60	481.70	12/23/2024 10:00 AM	7.31	9.44	0		
MW-13	12.93	5.00-10.00	480.36	12/23/2024 9:39 AM	6.41	12.9	14.5		
MW-13B	21.57	18.00-23.00	480.37	12/23/2024 9:35 AM	9.21	25	0.5		
MW-17B	27.33	22.80-27.80	479.35	12/23/2024 10:00 AM	7.2	27.05	0		WLM meter approximate due to complications with WLM
MW-19B	21.08	16.50-21.50	475.35	12/23/2024 10:00 AM	4.79	21.01	0.6		
MW-2	22.55	5.70-10.70	476.87	12/23/2024 9:19 AM	4.33	22.5	1.6		
MW-21B	19.49	15.00-20.00	468.15	12/23/2024 10:23 AM	7.72	19.49	0		
MW-3	7.62	5.40-10.40	478.00	12/23/2024 10:00 AM	5.13	10.5	0.9		

Well ID:	EA Personnel:	Client:
DP-010	M. Gilkey	NYSDEC
Location:	Well Condition:	Weather:
DP-010		Weather = Overcast clouds, Temperature (F) = 27.4, Humidity = 68, Wind Direction = 200, Wind Speed = 5.8, Rain (1hr) = 1
Sounding Method:	Gauge Date:	Measurement Ref:
Solonist WLM 101	12/23/2024	477.53
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
0.00	10:00 AM	1
D D 1 10/02/0001	- In	14.10

Purge Date:	12/23/2024	Purge Time:	14:18
Purge Method:	Geotech peristaltic pump	Field Technician:	M. Gilkey

Well Volume							
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:					
19.75	0	9.02					
B. Depth to Water (ft):	E. Well Volume (gal) (C*D):	Pump Type:					
10.73	0	Geotech peristaltic pump / 210304					
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Intake Depth:					
9.02	0	15					

	Water Quality Parameters								
Time (hrs)	Temp (°C)	pH (pH units)	ORP (mV)	Conductiviity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
14:18	10.81	6.81	-39.00	1.17	626.00	0.95	0.00	0.3	0
14:21	10.03	6.78	-31.00	1.17	800.00	0.69	0.00	0.3	0.9
14:24	9.74	6.77	-18.00	1.17	800.00	0.36	0.00	0.3	0.9
14:27	10.19	6.77	-18.00	1.21	800.00	0.14	0.00	0.3	0.9
14:30	10.34	6.76	-8.00	1.2	49.70	0	0.00	0.3	0.9
14:33	10.33	6.75	-4.00	1.2	48.10	0	0.00	0.3	0.9
14:36	10.34	6.74	1.00	1.19	48.00	0	0.00	0.3	0.9

Total Quantity of Water Removed (L):	5.4	Sampling Time:	02:36 PM
Samplers:	M. Gilkey	Split Sample With:	
Sampling Date:	12/23/2024	Sample Type:	N

COMMENTS AND OBSERVATIONS:

PID: 0.0 ppm

Well ID:	EA Personnel:		Client:
DP-012	M. Gilkey		NYSDEC
Location:	Well Condition:		Weather:
DP-012			Weather = overcast clouds, Temperature (F) = 27.4, Humidity = 68, Wind Direction = 200, Wind Speed = 5.8, Rain (1hr) = 1
Sounding Method:	Gauge Date:		Measurement Ref:
Solonst WLM 101	12/23/2024		477.09
Stick Up/Down (ft):	Gauge Time:		Well Diameter (in):
0.00	10:00 AM		1
Purge Date: 12/23/2024		Purge Time:	14:18

Purge Date:	12/23/2024	Purge Time:	14:18
Purge Method:	Geotech Perristaltic Pump	Field Technician:	M. Gilkey

Well Volume							
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:					
19.75	0	9.02					
B. Depth to Water (ft):	E. Well Volume (gal) (C*D):	Pump Type:					
10.73	0	Geotech Perristaltic Pump / 210304					
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Intake Depth:					
9.02	0	15					

	Water Quality Parameters								
Time (hrs)	Temp (°C)	pH (pH units)	ORP (mV)	Conductiviity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
14:18	10.18	6.81	-39.00	1.17	626.00	0.95	0.00	0.3	0
14:21	10.03	6.78	-31.00	1.17	800.00	0.69	0.00	0.3	0.9
14:24	9.74	6.77	-18.00	1.17	800.00	0.36	0.00	0.3	0.9
14:27	10.19	6.77	-18.00	1.21	800.00	0.14	0.00	0.3	0.9
14:30	10.34	6.76	-8.00	1.2	49.70	0	0.00	0.3	0.9
14:33	10.33	6.75	-4.00	1.2	48.10	0	0.00	0.3	0.9
14:36	10.34	6.74	1.00	1.19	48.00	0	0.00	0.3	0.9

Total Quantity of Water Removed (L):		Sampling Time:	02:36 PM
Samplers:	M. Gilkey	Split Sample With:	
Sampling Date:	12/23/2024	Sample Type:	N

COMMENTS AND OBSERVATIONS:

Pid: 0.0 ppm

Well ID:	EA Personnel:	Client:
DP-015	C Zook	NYSDEC
Location:	Well Condition:	Weather:
DP-015		Weather = Partly cloudy , Temperature (F) = 25, Humidity = 68, Wind Direction = 193, Wind Speed = 8, Rain (1hr) = 1
Sounding Method:	Gauge Date:	Measurement Ref:
Solonst WLM 101	12/23/2024	476.98
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
0.00	10:00 AM	1

Purge Date:	12/23/2024	Purge Time:	11:15
Purge Method:	Geotech Perristaltic Pump	Field Technician:	C Zook

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:				
9.35	0	6.24				
B. Depth to Water (ft):	E. Well Volume (gal) (C*D):	Pump Type:				
3.11	0	Geotech Perristaltic Pump /210304				
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Intake Depth:				
6.24	0	7				

	Water Quality Parameters									
Time (hrs)	Temp (°C)	pH (pH units)	ORP (mV)	Conductiviity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)	
11:15	4.27	6.16	185.00	1.1	1000.00	2.87	3.11	0.3	0	
11:18	7.44	6.34	155.00	1.03	1000.00	1.61	3.11	0.3	0.9	
11:21	8.85	6.36	152.00	1.01	1000.00	0.88	3.11	0.3	0.9	
11:24	9.92	6.34	149.00	1.01	506.00	0.38	3.11	0.3	0.9	
11:27	10.04	6.33	148.00	1.01	344.00	0.07	3.11	0.3	0.9	
11:30	10.17	6.32	147.00	1.02	249.00	0.04	3.11	0.3	0.9	
11:33	10.14	6.33	145.00	1.02	215.00	0.03	3.11	0.3	0.9	
11:36	10.19	6.34	145.00	1.02	194.00	0.07	3.11	0.3	0.9	
11:39	10.25	6.34	146.00	1.02	196.00	0.13	3.11	0.3	0.9	
11:42	10.28	6.35	146.00	1.02	250.00	0.2	3.11	0.3	0.9	
11:45	10.41	6.37	145.00	1.03	275.00	1.75	3.11	0.3	0.9	
11:48	10.24	6.41	145.00	1.03	200.00	2	3.11	0.3	0.9	
11:51	10.42	6.40	145.00	1.02	250.00	2.3	3.11	0.3	0.9	
11:56	10.18	6.56	98.00	1.01	800.00	1.36	3.11	0.3	1.5	
11:59	10.24	6.54	99.00	1.01	727.00	1.3	3.11	0.3	0.9	
12:02	10.37	6.51	105.00	1.02	415.00	0.57	3.11	0.3	0.9	
12:05	10.48	6.52	111.00	1.03	254.00	0	3.11	0.3	0.9	
12:08	10.55	6.53	115.00	1.03	331.00	0	3.11	0.3	0.9	
12:11	10.60	6.53	117.00	1.03	305.00	0	3.11	0.3	0.9	
12:14	10.65	6.55	121.00	1.04	299.00	0.05	3.11	0.3	0.9	
Total Quantity o	f Water Rem	oved (L):		Sai	mpling Time:		12:1	4 PM		
Samplers:			C Zo	ok Sp	lit Sample Wi	th:		<u> </u>		

Total Quantity of water Removed (L):		Sampling Time:	12:14 PM
Samplers:	C Zook	Split Sample With:	
Sampling Date:	12/23/2024	Sample Type:	N
·			

COMMENTS AND OBSERVATIONS:

Pid: 0.3 ppm

Well ID:	EA Personnel:	Client:
DP-017	C. Derrick	NYSDEC
Location:	Well Condition:	Weather:
DP-017	No odor, cloudy	Weather = overcast clouds, Temperature (F) = 23, Humidity = 75, Wind Direction = 190, Wind Speed = 5.8, Rain (1hr) = 1
Sounding Method:	Gauge Date:	Measurement Ref:
Heron dipper t	12/23/2024	479.50
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
0.00	09:02 AM	1

Purge Date:	12/23/2024	Purge Time:	12:08
Purge Method:	Peristaltic	Field Technician:	C. Derrick

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:				
16.16	0	9.36				
B. Depth to Water (ft):	E. Well Volume (gal) (C*D):	Pump Type:				
6.8	0	Peristaltic (3155)				
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Intake Depth:				
9.36	0	11				

	Water Quality Parameters									
Time (hrs)	Temp (°C)	pH (pH units)	ORP (mV)	Conductiviity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)	
12:08	12.38	5.87	174.00	3.15	1000.00	0.14	0.00	0.25	0	
12:11	12.34	5.88	170.00	3.14	808.00	0.38	0.00	0.25	0.75	
12:14	12.72	5.88	163.00	3.12	893.00	0	0.00	0.25	0.75	
12:17	13.00	5.90	156.00	3.14	956.00	0	0.00	0.25	0.75	
12:20	13.23	5.92	152.00	3.16	984.00	0	0.00	0.25	0.75	
12:23	13.18	5.94	142.00	3.21	660.00	0	0.00	0.25	0.75	
12:26	13.35	5.94	135.00	3.22	492.00	0	0.00	0.25	0.75	
12:29	13.31	5.95	120.00	3.24	403.00	0	0.00	0.25	0.75	
12:32	13.47	5.96	116.00	3.27	320.00	0	0.00	0.25	0.75	
12:35	13.52	5.96	112.00	3.28	310.00	0	0.00	0.25	0.75	
12:38	13.65	5.97	108.00	3.31	305.00	0	0.00	0.25	0.75	

Total Quantity of Water Removed (L):	7.5	Sampling Tim	ne: 12:38 PM
Samplers:	C. Derric	ck Split Sample V	With: None
Sampling Date:	12/23/202	Sample Type:	. N

COMMENTS AND OBSERVATIONS:

Well ID:	EA Personnel:	Client:
DP-018	M. Gilkey	NYSDEC
Location:	Well Condition:	Weather:
DP-018		Weather = Cloudy, Temperature (F) = 37, Humidity = , Wind Direction = , Wind Speed = , Rain (1hr) = 1
Sounding Method:	Gauge Date:	Measurement Ref:
Soloist WLM 101	12/23/2024	478.29
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
0.00	11:24 AM	1

Purge Date:	12/23/2024	Purge Time:	11:30
Purge Method:	Geotech Peristatlic Pump	Field Technician:	M. Gilkey

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
10.27	0	4.02			
B. Depth to Water (ft):	E. Well Volume (gal) (C*D):	Pump Type:			
6.25	0	Geotech Peristatlic Pump / 210304			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Intake Depth:			
4.02	0	8			

Water Quality Parameters									
Time (hrs)	Temp (°C)	pH (pH units)	ORP (mV)	Conductiviity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
11:30	12.40	6.64	205.00	3.08	1000.00	3.04	0.00	0.25	0
11:33	12.17	6.88	168.00	3.56	1000.00	3.15	0.00	0.25	0.75
11:36	12.98	6.85	147.00	4.29	1000.00	3.31	0.00	0.25	0.75
11:39	12.97	6.88	133.00	4.45	1000.00	3.49	0.00	0.25	0.75
11:42	13.02	6.88	126.00	4.6	1000.00	3.31	0.00	0.25	0.75
11:45	13.05	6.84	117.00	4.79	1000.00	2.55	0.00	0.25	0.75
11:48	13.34	6.82	107.00	4.82	1000.00	2.45	0.00	0.25	0.75
11:51	13.37	6.82	103.00	4.77	1000.00	2.7	0.00	0.25	0.75
11:54	13.35	6.82	101.00	4.79	1000.00	2.7	0.00	0.25	0.75

Total Quantity of water Removed (L):		Sampling Time:	11:54 AM
Samplers:	M. Gilkey	Split Sample With:	
Sampling Date:	12/23/2024	Sample Type:	N

COMMENTS AND OBSERVATIONS:

Well ID:	EA Personnel:	Client:
DP-019	M. Gilkey	NYSDEC
Location:	Well Condition:	Weather:
DP-019		Weather = light snow, Temperature (F) = 27.5, Humidity = 70, Wind Direction = 113, Wind Speed = 6, Rain (1hr) = 1
Sounding Method:	Gauge Date:	Measurement Ref:
Soloist WLM	12/23/2024	475.15
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
0.00	10:00 AM	1

Purge Date:	12/23/2024	Purge Time:	15:06
Purge Method:	Geotech Peristatlic Pump	Field Technician:	M. Gilkey

Well Volume						
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:				
12.95	0	8.41				
B. Depth to Water (ft):	E. Well Volume (gal) (C*D):	Pump Type:				
4.54	0	Geotech Peristatlic Pump / 210304				
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Intake Depth:				
8.41	0	9				

	Water Quality Parameters									
Time (hrs)	Temp (°C)	pH (pH units)	ORP (mV)	Conductiviity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)	
15:06	11.78	7.05	44.00	1.5	453.00	0.73	0.00	0.25	0	
15:09	12.21	7.02	45.00	1.51	341.00	0.2	0.00	0.25	0.75	
15:12	12.87	6.98	45.00	1.51	152.00	0	0.00	0.25	0.75	
15:15	13.06	6.97	45.00	1.53	102.00	0	0.00	0.25	0.75	
15:18	13.32	6.97	45.00	1.53	74.00	0	0.00	0.25	0.75	
15:21	13.36	6.97	45.00	1.53	49.70	0	0.00	0.25	0.75	
15:24	13.44	6.98	45.00	1.54	48.10	0	0.00	0.25	0.75	
15:27	13.38	6.98	46.00	1.54	47.50	0	0.00	0.25	0.75	
15:30	13.37	6.99	46.00	1.53	46.30	0	0.00	0.25	0.75	

Total Quantity of Water Removed (L):		Sampling Time:	03:30 PM
Samplers:	M. Gilkey	Split Sample With:	
Sampling Date:	12/23/2024	Sample Type:	N

Well ID:	EA Personnel:	Client:
DP-020	C Zook	NYSDEC
Location:	Well Condition:	Weather:
DP-020		Weather = Cloudy , Temperature (F) = 26, Humidity = 60, Wind Direction = 193, Wind Speed = 7, Rain (1hr) = 1
Sounding Method:	Gauge Date:	Measurement Ref:
Solonst WLM	12/23/2024	473.80
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
0.00	10:00 AM	1

Purge Date:	12/23/2024	Purge Time:	16:16
Purge Method:	Geotech Perristaltic Pump	Field Technician:	C Zook

Well Volume						
A. Well Depth (ft): D. Well Volume (ft): Depth/Height of Top of PVC:						
14.65	0	3.41				
B. Depth to Water (ft):	E. Well Volume (gal) (C*D):	Pump Type:				
11.24	0	Geotech Perristaltic Pump				
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Intake Depth:				
3.41	0	13				

	Water Quality Parameters									
Time (hrs)	Temp (°C)	pH (pH units)	ORP (mV)	Conductiviity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)	
16:16	8.40	6.87	43.00	1.88	404.00	1.38	0.00	0.3	0	
16:19	8.49	6.86	24.00	1.88	198.00	1.27	0.00	0.3	0.9	
16:22	8.57	6.86	17.00	1.87	128.00	0.72	0.00	0.3	0.9	
16:25	8.79	6.86	14.00	1.86	109.00	0.26	0.00	0.3	0.9	
16:28	9.07	6.87	15.00	1.86	47.90	0.14	0.00	0.3	0.9	
16:31	9.13	6.87	15.00	1.86	36.90	0	0.00	0.3	0.9	
16:34	9.27	6.88	14.00	1.85	29.10	0	0.00	0.3	0.9	
16:37	9.22	6.88	14.00	1.86	18.50	0	0.00	0.3	0.9	
16:40	9.18	6.89	14.00	1.86	12.50	0	0.00	0.3	0.9	
16:43	9.17	6.89	14.00	1.87	11.60	0	0.00	0.3	0.9	
16:46	9.30	6.90	15.00	1.86	11.00	14	0.00	0.3	0.9	

Total Quantity of water Removed (L):		Sampling Time:	04:40 PM
Samplers:	C Zook	Split Sample With:	
Sampling Date:	12/23/2024	Sample Type:	N

COMMENTS AND OBSERVATIONS:

Pid: 0.0 ppm

Well Purging and Sampling Form

Site Nar	ne:	Town and Co	ountry	,	V	/ell Location I	D: <u>DP-02</u>	1	Alias: DP-02	1	Page:	1 /	1
Project	Location	: DP-021			s	ampling Staff	npling Staff: C. Derrick			2/23/2024	4		
Project	No:	Town and Co	ountry	/	v	leather:			ow, Temperati ind Speed = 3,			= 72, Wi	nd
						Well Con	structio	on Data					
Well Dia	meter:	2" PVC	;	Co	nstructed	Well Depth (ft):		Ground Surface	Elevation (ft	amsl): 46	8.15	
Screen I	nterval (ft	bTOC): 2.7-10.	.7	т	C Elevat	on (ft asml):			Measured Dept	h of Well (ft b	TOC): 10	.37	
				·		Equipme	nt Infor	mation					
Sampling Method: Peristaltic PID Type/ID: Mini Rae 3000 (39968) Water Level Indicator Type/ID: Heron dipper t													
Pump Ty	/pe ID:	Peristaltic (315	5)	Turbidity	Meter Typ	e/ID:		Water Quali	ty Meter Type/II	D: Horib	a (24305)		
						Field Me	easurer	nents					
Initial De	epth to Wa	ater (ft bTOC): 7	.33		Pur	ge Start Time:		16:09	Initial	Purge Rate:	0.25		
Final De	pth to Wa	ater (ft bTOC): 0	.00		Pur	ge End Time:		16:36	Total	Drawdown:	0.00		
Pump In	take Dep	th (ft bTOC): 8	.5		Tot	al Volume Rem	noved (mL):	6.75	Total	Pump Time:	27		
Well/Pac	d Conditio	n:			•				•		'		
					ŀ	Purge Info	ormatio	n					
Time	Temp (°C)	Conductivity (mS/cm)	DO (mg/	I nH	ORP (mV)	Turbidity (NTU)	Depth to Water (bTOC)	Purge Rate (mL/min)					
16:09	9.34	0.99	4.32	2 6.63	43.00	891.00	0.00	0.25	N	o WL due to 1	I in well		
16:12	9.22	0.984	3.72	2 6.56	68.00	1000.00	0.00	0.25					
16:15	10.32	0.94	3.32	2 6.51	82.00	1000.00	0.00	0.25					
16:18	10.57	0.931	2.76	6.49	90.00	678.00	0.00	0.25					
16:21	10.83	0.911	2.2	7 6.48	95.00	309.00	0.00	0.25					
16:24	10.82	0.899	2.13	6.47	97.00	226.00	0.00	0.25					
16:27	10.93	0.884	1.99	9 6.46	103.0	120.00	0.00	0.25					
16:30	10.91	0.875	1.92	2 6.45	106.0	110.00	0.00	0.25					
16:33	10.99	0.868	1.87	7 6.45	108.0	108.00	0.00	0.25					
16:36	11.11	0.865	1.8	6.44	110.0	102.00	0.00	0.25					
						Sample	e Collec	ction					
Sample	Date:	12/23/2024					Sample Co	omments (Ap	pearance/Odor)	: No odor	, cloudy		
Sample	Time:	04:36:00 PM					Analyses:			Vocs			
Sample	ID:	DP-021											
Include Duplic	cate and MSM	SD Sample IDs											
Sampler	: (C. Derrick					Signature:		7 / Λ				

Reviewed By: Date:

Well ID:	EA Personnel:	Client:
GEMW-2	C. Derrick	NYSDEC
Location:	Well Condition:	Weather:
GEMW-2	Dry at purge @1146, sample upon recharge @1421	Weather = overcast clouds, Temperature (F) = 20.8, Humidity = 78, Wind Direction = 190, Wind Speed = 5.8, Rain (1hr) = 1
Sounding Method:	Gauge Date:	Measurement Ref:
Heron dipper t	12/23/2024	480.25
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
0.00	09:07 AM	1

Purge Date:	12/23/2024	Purge Time:	11:12
Purge Method:	Peristaltic	Field Technician:	C. Derrick

Well Volume							
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:					
14.52	0	6.72					
B. Depth to Water (ft):	E. Well Volume (gal) (C*D):	Pump Type:					
7.8	0	Peristaltic (3155)					
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Intake Depth:					
6.72	0	11					

			V	Vater Quality Pa	arameters				
Time (hrs)	Temp (°C)	pH (pH units)	ORP (mV)	Conductiviity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
11:12	8.39	5.00	228.00	0.897	834.00	3.63	0.00	0.25	0
11:15	10.05	5.30	197.00	0.874	798.00	2.53	0.00	0.25	0.75
11:18	10.75	5.42	188.00	0.858	942.00	2.74	0.00	0.25	0.75
11:21	11.00	5.49	184.00	0.857	793.00	2.77	0.00	0.25	0.75
11:24	11.86	5.58	180.00	0.841	539.00	2.76	0.00	0.25	0.75
11:27	12.04	5.62	178.00	0.832	406.00	2.73	0.00	0.25	0.75
11:30	12.03	5.72	176.00	0.832	317.00	3.06	0.00	0.25	0.75
11:33	12.07	5.74	175.00	0.842	312.00	2.68	0.00	0.25	0.75
11:36	12.43	5.79	173.00	0.852	299.00	2.33	0.00	0.25	0.75
11:39	12.38	5.83	173.00	0.854	250.00	2.35	0.00	0.25	0.75
11:42	12.70	5.86	174.00	0.851	241.00	2.78	0.00	0.25	0.75
11:45	13.19	5.89	175.00	0.838	264.00	3.32	0.00	0.25	0.75

Total Quantity of Water Removed (L):	8.25	Sampling Time:	02:21 PM
Samplers:	C. Derrick	Split Sample With:	None
Sampling Date:	12/23/2024	Sample Type:	N

			_
Well ID:	EA Personnel:		Client:
MW-2	C Zook		NYSDEC
Location:	Well Condition:		Weather:
MW-2			Weather = Cloudy , Temperature (F) = 26.6, Humidity = 69, Wind Direction = 193, Wind Speed = 8, Rain (1hr) = 1
Sounding Method:	Gauge Date:		Measurement Ref:
Soloist WLM 101	12/23/2024		476.87
Stick Up/Down (ft):	Gauge Time:		Well Diameter (in):
0.00	10:00 AM		2
D		Danies Times	15.05
Purge Date: 12/23/2024		Purge Time:	15:05
Purge Method: Geotech Perristaltic	Pump	Field Technician:	C Zook

Well Volume							
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:					
22.5	2.96	18.15					
B. Depth to Water (ft):	E. Well Volume (gal) (C*D):	Pump Type:					
4.35	53.724	Geotech Perristlatic Pump					
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Intake Depth:					
18.15	8.88	8					

			V	Vater Quality Pa	arameters				
Time (hrs)	Temp (°C)	pH (pH units)	ORP (mV)	Conductiviity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
15:05	11.11	7.13	125.00	1.2	7.12	1.13	4.35	0.3	0
15:08	12.15	7.11	118.00	1.2	31.70	0.98	4.35	0.3	0.9
15:11	12.13	7.05	77.00	1.19	32.70	0.59	4.35	0.3	0.9
15:14	11.69	7.03	60.00	1.19	25.20	0.47	4.35	0.3	0.9
15:17	11.66	7.03	57.00	1.19	22.30	0.46	4.35	0.3	0.9
15:20	11.72	7.02	47.00	1.18	15.80	0.22	4.35	0.3	0.9
15:23	11.89	7.01	40.00	1.17	11.60	0.17	4.35	0.3	0.9
15:26	11.90	7.01	38.00	1.17	10.10	0.17	4.35	0.3	0.9
15:29	12.16	7.00	36.00	1.18	11.20	0.16	4.35	0.3	0.9
15:32	12.16	7.01	34.00	1.18	9.20	0.17	4.35	0.3	0.9
15:35	12.24	7.01	33.00	1.17	9.30	0.18	4.36	0.3	0.9

Total Quantity of Water Removed (L):9Sampling Time:03:35 PMSamplers:C ZookSplit Sample With:Sampling Date:12/23/2024Sample Type:N

COMMENTS AND OBSERVATIONS:

Pid: 1.6 ppm

FD

GROUNDWATER SAMPLING PURGE FORM

Well ID:		EA Personnel:			Client	Client:				
MW-3			C. Zook				NYSDEC			
Location:			Well Con	dition:		Weather				
MW-3						Weather :	= , Temperatu ection = , Wi			
Sounding Metho	d:		Gauge Da	ite:		Measure	ment Ref:			
Soloist WLM 101			12/23/2024	4		478.00				
Stick Up/Down (ft):		Gauge Ti	me:		Well Dia	meter (in):			
0.00			11:47 AM			4				
Purge Date:	12/23/2024				Purge Time:	13:22				
Purge Method:	Geotech Perist	atlic Pump			Field Technici	an: C. Zook				
				Well Vol	ume					
A. Well Depth (ft	t):		D. Well V	olume (ft):		Depth/H	eight of Top	of PVC:		
10.5			3.51			5.37				
B. Depth to Wate	er (ft):		E. Well Volume (gal) (C*D):			Pump Ty	Pump Type:			
5.13			18.8487			Geotech 1	Geotech Peristatlic Pump / 210304			
C. Liquid Depth	(ft) (A-B):		F. Three Well Volumes (gal) (E3):			1 -	Pump Intake Depth:			
5.37			10.53			8	8			
			V	Vater Quality I	Parameters					
Time (hrs)	Temp (°C)	pH (pH units)	ORP (mV)	Conductiviity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)	
13:22	11.11	7.52	135.00	1.13	1000.00	1.03	5.13	0.25	0	
13:25	11.16	7.42	127.00	1.24	1000.00	0.26	5.13	0.25	0.75	
13:28	11.50	7.38	81.00	1.26	1000.00	0.11	5.13	0.25	0.75	
13:31	11.71	7.33	-4.00	1.27	1000.00	0	5.13	0.25	0.75	
13:34	11.70	7.29	-24.00	1.3	1000.00	0	5.13	0.25	0.75	
13:37	11.71	7.27	-38.00	1.32	1000.00	0	5.13	0.25	0.75	
13:40	11.67	7.26	-46.00	1.33	1000.00	0	5.13	0.25	0.75	
13:43	11.65	7.25	-49.00	1.34	1000.00	0	5.13	0.25	0.75	
13:46	11.71	7.24	-53.00	1.35	1000.00	0	5.13	0.25	0.75	
13:49	11.72	7.23	-54.00	1.35	1000.00	0	5.13	0.25	0.75	
Total Quantity of	f Water Rem	oved (L):			ampling Time:		01:4	9 PM		
Samplers:			C. Zo	ook S	plit Sample Wi	th:				

Sample Type:

12/23/2024

COMMENTS AND OBSERVATIONS:

Sampling Date:

Well ID:	EA Personnel:	Client:
MW-13	M. Gilkey	NYSDEC
Location:	Well Condition:	Weather:
MW-13		Weather = broken clouds, Temperature (F) = 26.1, Humidity = 69, Wind Direction = 190, Wind Speed = 8, Rain (1hr) = 1
Sounding Method:	Gauge Date:	Measurement Ref:
Soloist WLM 101	12/23/2024	480.36
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
0.00	10:00 AM	2

Purge Date:	12/23/2024	Purge Time:	12:52
Purge Method:	Geotech Perristaltic Pump	Field Technician:	M. Gilkey

Well Volume							
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:					
12.9	1.06	6.49					
B. Depth to Water (ft):	E. Well Volume (gal) (C*D):	Pump Type:					
6.41	6.8794	Geotech Perristaltic Pump / 210304					
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Intake Depth:					
6.49	3.18	7					

	Water Quality Parameters								
Time (hrs)	Temp (°C)	pH (pH units)	ORP (mV)	Conductiviity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
12:52	9.99	7.19	119.00	1.28	181.00	3.98	6.42	0.3	0
12:55	9.94	7.02	119.00	1.29	118.00	1.39	6.42	0.3	0.9
12:58	10.07	6.97	118.00	1.34	103.00	1.49	6.42	0.3	0.9
13:01	10.08	6.95	118.00	1.37	82.10	1.37	6.42	0.3	0.9
13:04	10.00	6.94	116.00	1.39	67.00	0.58	6.42	0.3	0.9
13:07	10.04	6.93	114.00	1.39	53.60	0.32	6.42	0.3	0.9
13:10	10.11	6.93	113.00	1.39	49.80	0.31	6.42	0.3	0.9
13:13	10.17	6.93	112.00	1.38	47.50	0.31	6.42	0.3	0.9
13:16	10.16	6.93	112.00	1.38	45.90	0.3	6.42	0.3	0.9

Total Quantity of Water Removed (L):		Sampling Time:	01:16 PM
Samplers:	M. Gilkey	Split Sample With:	MS/MSD
Sampling Date:	12/23/2024	Sample Type:	MS/MSD

COMMENTS AND OBSERVATIONS:

Pid: 14.5

Well ID:	EA Personnel:	Client:
MW-13B	M. Gilkey	NYSDEC
Location:	Well Condition:	Weather:
MW-13B		Weather = overcast clouds, Temperature (F) = 26.9, Humidity = 69, Wind Direction = 90, Wind Speed = 2, Rain (1hr) = 1
Sounding Method:	Gauge Date:	Measurement Ref:
Soloist WLM 101	12/23/2024	480.37
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
0.00	10:00 AM	2

Purge Date:	12/23/2024	Purge Time:	13:32
Purge Method:	Geotech Perristaltic Pump	Field Technician:	M. Gilkey

Well Volume						
A. Well Depth (ft): D. Well Volume (ft): Depth/Height of Top of PVC:						
25	2.57	15.79				
B. Depth to Water (ft):	E. Well Volume (gal) (C*D):	Pump Type:				
9.21	40.5803	Geotech Perristaltic Pump / 210304				
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Intake Depth:				
15.79	7.71	15				

	Water Quality Parameters								
Time (hrs)	Temp (°C)	pH (pH units)	ORP (mV)	Conductiviity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
13:32	11.62	7.27	49.00	1.08	119.00	1.78	11.66	0.3	0
13:35	11.39	7.19	20.00	1.09	77.60	1.33	11.66	0.3	0.9
13:38	11.59	7.13	-5.00	1.08	60.20	0.5	11.66	0.3	0.9
13:41	11.54	7.12	-19.00	1.08	47.00	0.32	11.66	0.3	0.9
13:44	11.54	7.12	-32.00	1.08	44.00	0.23	11.66	0.3	0.9
13:47	11.63	7.11	-49.00	1.07	39.50	0.2	11.66	0.3	0.9
13:50	11.69	7.11	-65.00	1.06	38.10	0.09	11.66	0.3	0.9
13:53	11.50	7.11	-81.00	1.05	36.00	0	11.66	0.3	0.9
13:56	11.67	7.11	-87.00	1.04	35.90	0	11.66	0.3	0.9
13:59	11.65	7.11	-95.00	1.05	35.75	0	11.66	0.3	0.9
14:02	11.65	7.12	-99.00	1.05	35.12	0	11.62	0.3	0.9
14:05	11.65	7.11	-100.00	1.05	34.90	0	11.62	0.3	0.9

Total Quantity of Water Removed (L):		Sampling Time:	02:05 PM
Samplers:	M. Gilkey	Split Sample With:	
Sampling Date:	12/23/2024	Sample Type:	N

COMMENTS AND OBSERVATIONS:

Pid: 0.5 ppm

Well ID:	EA Personnel:	Client:
MW-17B	C. Derrick	NYSDEC
Location:	Well Condition:	Weather:
MW-17B	No odor, cloudy	Weather = light snow, Temperature (F) = 27.3, Humidity = 71, Wind Direction = 90, Wind Speed = 3, Rain (1hr) = 1
Sounding Method:	Gauge Date:	Measurement Ref:
Heron dipper t	12/23/2024	479.35
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
0.00	02:44 PM	2

Purge Date:	12/23/2024	Purge Time:	15:08
Purge Method:	Peristaltic	Field Technician:	C. Derrick

Well Volume						
A. Well Depth (ft): Depth/Height of Top of PVC						
27.05	3.24	19.85				
B. Depth to Water (ft):	E. Well Volume (gal) (C*D):	Pump Type:				
7.2	64.314	Peristaltic (3155)				
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Intake Depth:				
19.85	9.72	24				

	Water Quality Parameters								
Time (hrs)	Temp (°C)	pH (pH units)	ORP (mV)	Conductiviity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
15:08	8.56	6.37	138.00	3.79	601.00	3.96	0.00	0.25	0
15:11	8.82	6.43	133.00	3.27	429.00	0.76	0.00	0.25	0.75
15:14	10.37	6.41	130.00	3.26	365.00	0.52	0.00	0.25	0.75
15:17	10.64	6.40	127.00	3.25	318.00	0.37	0.00	0.25	0.75
15:20	10.70	6.40	127.00	3.24	304.00	0.38	0.00	0.25	0.75
15:23	10.82	6.38	54.00	2.96	267.00	0.19	0.00	0.25	0.75
15:26	10.85	6.37	-20.00	2.77	213.00	0.1	0.00	0.25	0.75
15:29	10.80	6.36	-42.00	2.57	192.00	0	0.00	0.25	0.75
15:32	10.83	6.36	-52.00	2.34	173.00	0	0.00	0.25	0.75
15:35	10.80	6.36	-54.00	2.28	178.00	0	0.00	0.25	0.75
15:38	10.80	6.35	-61.00	2.22	180.00	0	0.00	0.25	0.75

Total Quantity of Water Removed (L):	7.5	Sampling Time:	03:38 PM
Samplers:	C. Derrick	Split Sample Witl	None None
Sampling Date:	12/23/2024		N

Well ID:	EA Personnel:	Client:
MW-19B	M. Gilkey	NYSDEC
Location:	Well Condition:	Weather:
MW-19B		Weather = light snow, Temperature (F) = 27.3, Humidity = 72, Wind Direction = 158, Wind Speed = 2, Rain (1hr) = 1
Sounding Method:	Gauge Date:	Measurement Ref:
Soloist WLM 101	12/23/2024	475.35
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
0.00	12:00 AM	2

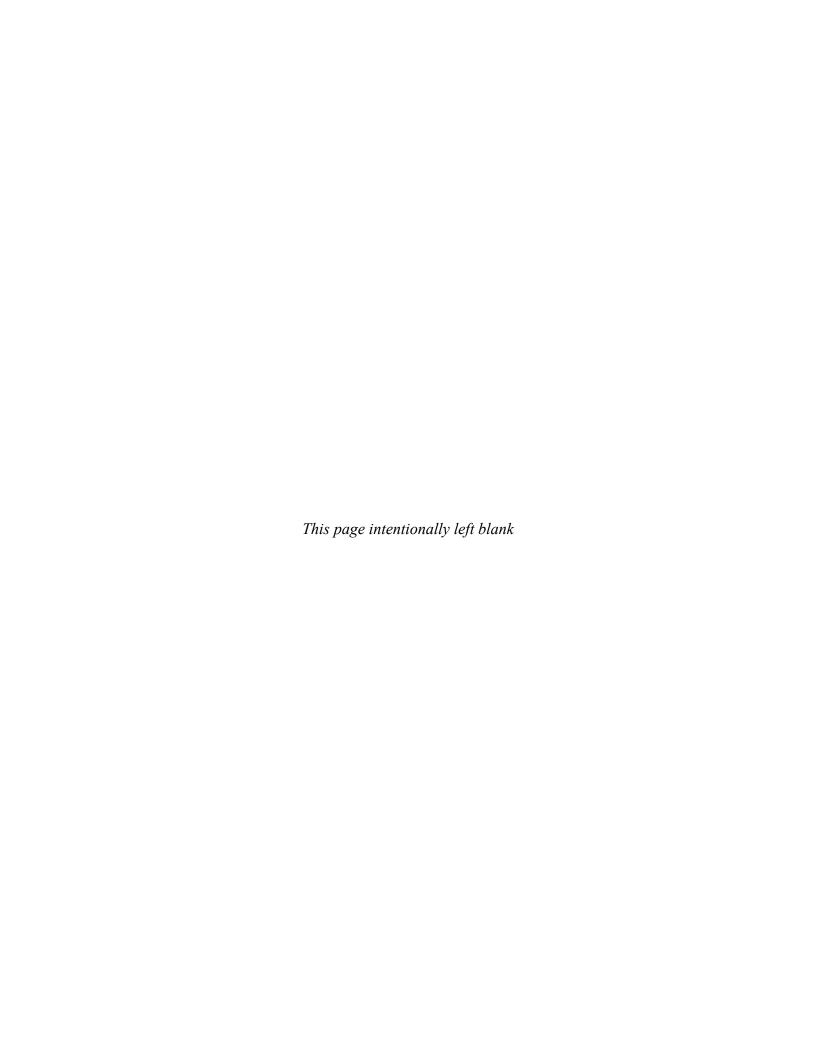
Purge Date:	12/23/2024	Purge Time:	15:53
Purge Method:	Geotech Peristatlic Pump	Field Technician:	M. Gilkey

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
21.01	2.64	16.22			
B. Depth to Water (ft):	E. Well Volume (gal) (C*D):	Pump Type:			
4.79	42.8208	Geotech Peristatlic Pump / 210304			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Intake Depth:			
16.22	7.92	15			

	Water Quality Parameters								
Time (hrs)	Temp (°C)	pH (pH units)	ORP (mV)	Conductiviity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
15:53	12.30	7.30	53.00	1.32	55.50	5.7	0.00	0.25	0
15:56	12.85	7.05	37.00	1.31	34.60	0.5	0.00	0.25	0.75
15:59	13.19	6.99	7.00	1.32	26.80	0	0.00	0.25	0.75
16:02	13.16	6.98	-12.00	1.34	22.60	0	0.00	0.25	0.75
16:05	13.31	6.98	-26.00	1.36	16.80	0	0.00	0.25	0.75
16:08	13.37	6.97	-32.00	1.37	13.80	0	0.00	0.25	0.75
16:11	13.44	6.97	-35.00	1.4	13.00	0	0.00	0.25	0.75
16:14	13.43	6.97	-38.00	1.41	13.30	0	0.00	0.25	0.75
16:17	13.45	6.97	-41.00	1.44	13.50	0	0.00	0.25	0.75

Total Quantity of Water Removed (L):		Sampling Time:	04:1 / PM
Samplers:	M. Gilkey	Split Sample With:	
Sampling Date:	12/23/2024	Sample Type:	N

Well ID:	EA Personnel:	Client:
MW-21B	C. Derrick	NYSDEC
Location:	Well Condition:	Weather:
MW-21B	No odor, clear	Weather = overcast clouds, Temperature (F) = 28.1, Humidity = 70, Wind Direction = 113, Wind Speed = 2, Rain (1hr) = 1
Sounding Method:	Gauge Date:	Measurement Ref:
Heron dipper t	12/23/2024	468.15
Stick Up/Down (ft):	Gauge Time:	Well Diameter (in):
0.00	10:23 AM	2


Purge Date:	12/23/2024	Purge Time:	16:46
Purge Method:	Peristaltic	Field Technician:	C. Derrick

Well Volume					
A. Well Depth (ft):	D. Well Volume (ft):	Depth/Height of Top of PVC:			
19.49	1.92	11.77			
B. Depth to Water (ft):	E. Well Volume (gal) (C*D):	Pump Type:			
7.72	22.5984	Peristaltic (3155)			
C. Liquid Depth (ft) (A-B):	F. Three Well Volumes (gal) (E3):	Pump Intake Depth:			
11.77	5.76	14			

	Water Quality Parameters								
Time (hrs)	Temp (°C)	pH (pH units)	ORP (mV)	Conductiviity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
16:46	11.20	6.45	-58.00	1.02	68.90	0.43	7.80	0.25	0
16:49	11.53	6.43	-48.00	0.996	51.20	0.16	7.81	0.25	0.75
16:52	11.67	6.42	-34.00	0.985	49.50	0	7.82	0.25	0.75
16:55	11.99	6.41	-24.00	0.984	47.20	0	7.82	0.25	0.75
16:58	12.10	6.40	-16.00	0.978	45.50	0	7.83	0.25	0.75
17:01	12.24	6.39	-4.00	0.977	45.70	0	7.83	0.25	0.75
17:04	12.35	6.39	-7.00	0.969	44.20	0	7.84	0.25	0.75
17:07	12.36	6.38	-20.00	0.974	36.70	0	7.84	0.25	0.75
17:10	12.37	6.38	-26.00	0.982	36.00	0	7.83	0.25	0.75
17:13	12.39	6.38	-29.00	0.985	35.60	0	7.83	0.25	0.75

Total Quantity of Water Removed (L):	6.75	Sampling Time:	05:13 PM
Samplers:	C. Derrick	Split Sample With:	None
Sampling Date:	12/23/2024	Sample Type:	N

Appendix B Daily Inspection Reports

(Town & Country), Site No. 828149

NYSDEC

Division of Environmental Remediation

Department of Environmental Conservation Contract No. D009806

Page 1 of 7

Date: 12/23/2024

DEC PM - J.Stefansky

Engineer PM – A. Etringer

Engineer Insp. - H. Bedell

Weather Conditions

Site Location: 2310 Monroe Ave, Brighton 14618

Weather Conditions							
General Description	Partly Cloudy	AM	Partly Cloudy	PM			
Temperature	9F	AM	1 30F				
Wind	S 6 mph	AM SE 6 mph		PM			
		-					

Health & Safety

If any box below is checked "Yes", provide explanation under "Health & Safety Comments".

Were there any changes to the Health & Safety Plan?	*Yes	No X	NA
Were there any exceedances of the perimeter air monitoring reported on this date?	*Yes	No	NA X
Were there any nuisance issues reported/observed on this date?	*Yes	No X	NA

Health & Safety Comments

Cautious of extremely cold temperatures and ensuring we take frequent breaks to warm up.

Summary of Work Performed	Arrived at site:	0815	Departed Site:	1800
---------------------------	------------------	------	----------------	------

(0815) H. Bedell, C. Zook, M. Gilkey, C. Derrick (EA) onsite.

(0830) Hold safety tailgate meeting. Calibrate Horibas and PIDs.

(0900) Begin gauging onsite wells

(1000) Begin gauging offsite wells

(1112) Start purge GEMW-2

(1115) Start purge DP-15

(1130) Start purge DP-18

(1146) GEMW-2 goes dry

(1154) Sample 828149-DP-18-20241223 for VOCs

(1208) Start purge DP-17

(1214) Sample 828149-DP-15-20241223 for VOCs

(1238) Sample 828149-DP-17-20241223 for VOCs

(1252) Start purge MW-13

(1316) Sample 828149-MW-13-20241223 for VOCs w/ MS/MSD

(1322) Start purge MW-3

(1332) Start purge MW-13B

(1349) Sample 828149-MW-3-20241223 for VOCs w/ Duplicate

(1352) Start purge DP-12

(1402) Sample 828149-MW-13B-20241223 for VOCs

(1418) Start purge DP-10

(1421) Sample 828149-GEMW-2-20241223 for VOCs

(1422) Sample 828149-DP-12-20241223 for VOCs

(1436) Sample 828149-DP-10-20241223 for VOCs

(1440) Unable to locate MW-1

(1505) Start purge MW-2

(1506) Start purge DP-19

(1508) Start purge MW-17B

(1530) Sample 828149-DP-19-20241223 for VOCs

(1535) Sample 828149-MW-2-20241223 for VOCs

(1538) Sample 828149-MW-17B-20241223 for VOCs

(1553) Start purge MW-19B

(1609) Start purge DP-21

(1616) Start purge DP-20

(1617) Sample 828149-MW-19B-20241223 for VOCs

(1636) Sample 828149-DP-21-20241223 for VOCs

(1640) MW-10 could not be sampled due to low water level.

(1646) Sample 828149-DP-20-20241223 for VOCs. Start purge MW-21B.

(1713) Sample 828149-MW-21B-20241223 for VOCs

(1730) Load and pack up equipment and samples

(1745) Secure IDW drums

(1800) EA offsite

(Town & Country), Site No. 828149

Well ID	Purge Start Time	Sample Time	QA/QC	DRY?
MW-3	1322	1349	Duplicate	No
MW-13	1252	1316	MS/MSD	No
MW-13B	1332	1402	No	No
MW-2	1505	1535	No	No
GEMW-2	1112	1421	No	Yes
DP-10	1418	1436	No	No
DP-12	1352	1422	No	No
DP-15	1115	1214	No	No
DP-17	1208	1238	No	No
DP-18	1130	1154	No	No
DP-19	1506	1530	No	No
DP-20	1616	1646	No	No
DP-21	1609	1636	No	No
MW-17B	1508	1538	No	No
MW-19B	1553	1617	No	No
MW-21B	1646	1713	No	No

Page 2 of 7

Date: 12/23/2024

If any box below is checked "Yes", provide explanation under "Material Tracking Comments".

Were there any vehicles which did not display proper D.O.T numbers and placards?	*Yes	No	NA X
Were there any vehicles which were not tarped?	* Yes	No	NA X
Were there any vehicles which were not decontaminated prior to exiting the work site?	* Yes	No	NA X

Personnel and Equipment

Individual	Company	Trade	Total Hours
Hannah Bedell	EA	Engineer	9.75
Moriah Gilkey	EA	Engineer	9.75
Clara Zook	EA	Intern	9,75
Cassie Derrick	EA	Geologist	9.75
_		_	

Equipment Description	Contractor/Vendor	Quantity	Used
Horiba	Pine Environmental	4	Υ
Honeywell MiniRAE 3000+	Pine Environmental	3	Υ
Peristaltic Pumps	Pine Environmental	4	Υ
Solonist Water Level Meters	Pine Environmental	4	Υ
55-Gallon Steel Drum	Pine Environmental	1	Υ
Hand Tools	EA	NA	Υ
Ford Expedition	EA	1	Υ
Ford F-150 Truck	EA	2	Υ
	·		·

Material Description	Imported/ Delivered to Site	Exported off Site	Waste Profile (If Applicable)	Source or Disposal Facility (If Applicable)	Daily Loads	Daily Weight (tons)*
·				·		

Equipment/Material Tracking Comments:

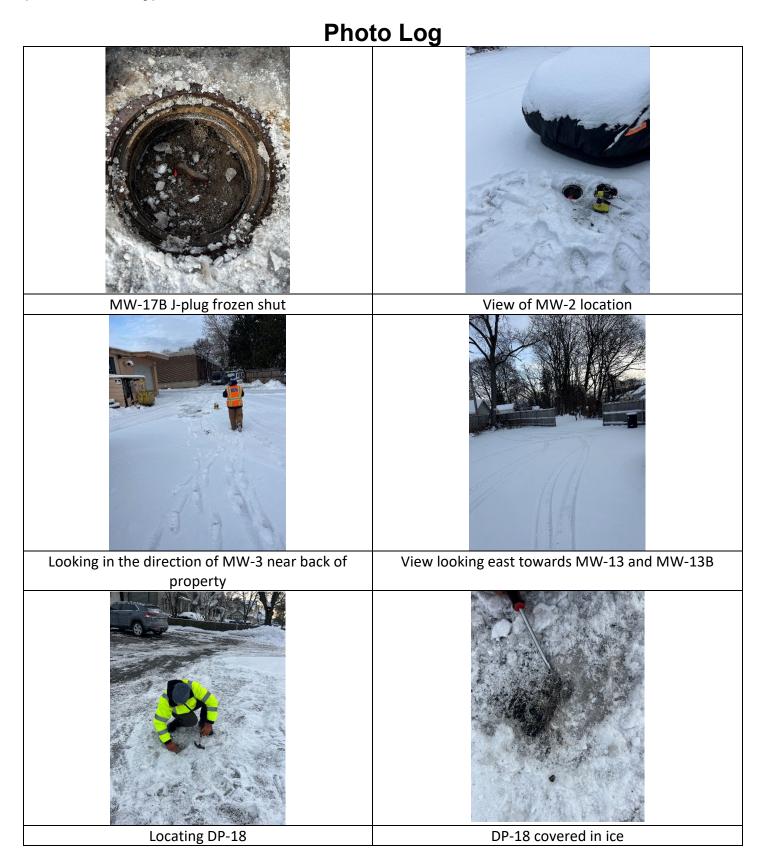
Visitors to Site

Name	Representing	Entered Exclusion/CRZ Zone	
None		Yes	No
		Yes	No

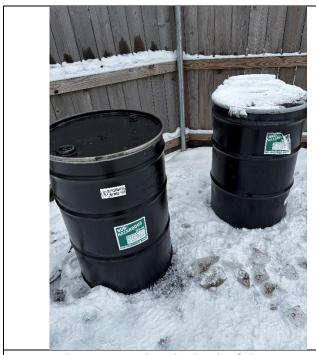
Site Representatives

Name	Representing
Hannah Bedell	EA
Moriah Gilkey	EA

(Town & Country), Site No. 828149


Project Schedule Comments	
Sample coolers were organized, packed, and shipped via FedEx following the Ch 12/26.	nristmas holiday on Thursday
Issues Pending	
None.	
Interaction with Public, Property Owners, Media, etc.	
Property owner approached us stating he thought a well on the property had been damage manager's email to contact with his concerns.	ed. We gave him our project
Site Inspector(s): Hannah Bedell	Date: 12/23/2024

Page **3** of **7**


Date: 12/23/2024

Videos of discreet operations have been provided to the DEC Project Manager to facilitate understanding of the ongoing work? Yes \square No \square N/A X

Page 4 of 7
Date: 12/23/2024

Page **5** of **7** (Town & Country), Site No. 828149 Date: 12/23/2024

IDW drums staged in the back of the property

Groundwater purge setup on DP-20

DAILY INSPECTION REPORT (Town & Country), Site No. 828149

REMEDIAL ACTIVITIES AT PROPERTIES

Page 6 of 7
Date: 12/23/2024

1.	Does anyone at this location have any symptoms of a respiratory infection (e.g., cough, sore throat, fever, or shortness of breath)?	Yes □	No ⊠
2.	Have anyone at this location been tested and confirmed to have COVID-19?	Yes □	No ⊠
3.	Were personal protective gloves, masks, and eye protection being used?	Yes □	No ⊠
4.	Does the Department and its contractors have your permission to enter the property at this time?	Yes ⊠	No □
5.	If Yes to 1 or 2, follow the latest NYSDOH COVID-19 guidance: https://coronavirus.health.ny.gov/home	Yes □	No □
Comm	ents:		
N/A			

ON-SITE WASTE STORAGE

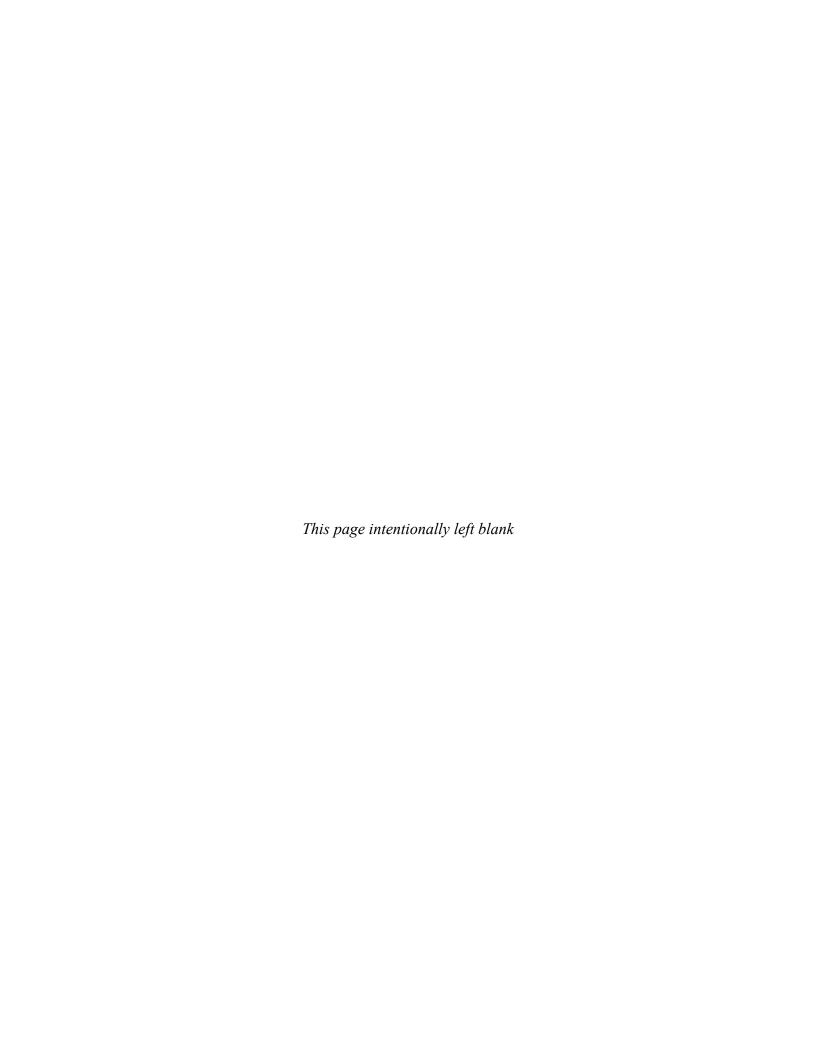
Drums, roll offs and piles are staged in secure areas?	Yes ⊠	No □	N/A□
Liners and berms have been installed if necessary to prevent cross contamination of clean areas?	Yes □	No □	N/A⊠
Containers are in good condition or properly overpacked?	Yes □	No □	N/A⊠
Waste materials are scheduled to be properly characterized and disposed of prior to demobilization?	Yes □	No □	N/A⊠
Complying with RCRA 90 day storage limitation for hazardous waste?	Yes □	No □	N/A⊠
Piles are securely covered when not in use?	Yes □	No □	N/A⊠
Containers are closed when not in use?	Yes □	No □	N/A⊠
Staging areas should be inspected periodically and any issues addressed immediately?	Yes □	No □	N/A⊠
Signage and labeling comply with RCRA requirements for all staging areas and containers?	Yes □	No □	N/A⊠
If any issues noted, has Contractor been notified?	Yes □	No □	N/A⊠
Comments: NA			

NUISANCE CHECKLIST

Were there any community complaints related to work on this date?	Yes □	No ⊠	N/A□
Were there any odors detected on this date?	Yes □	No ⊠	N/A□
Was noise outside specification and/or above background on this date?	Yes □	No ⊠	N/A□
Were vibration readings outside specification and/or above background on this date?	Yes □	No □	N/A⊠
Any visible dust observed beyond the work perimeter on this date?	Yes □	No □	N/A⊠
Any visible contrast (turbidity) beyond engineering controls observed on this date?	Yes □	No □	N/A⊠
Was turbidity checked at the outfall(s)?	AM □	РМ□	N/A⊠
Were any property owners NOT provided advance notice for work performed on this property on this date?	Yes □	No □	N/A⊠

(Town & Country), Site No. 828149

Was the temporary fabric structure closed at the end of the day?	Yes □	No □	N/A⊠
Has Contractor failed to protect all foundations and structures adjacent to and adjoining the site which are affected by the excavations or other operations connected with performance of the Work?	Yes □	No □	N/A⊠
If yes, has Contractor been notified?	Yes □	No □	N/A⊠
Comments: N/A			

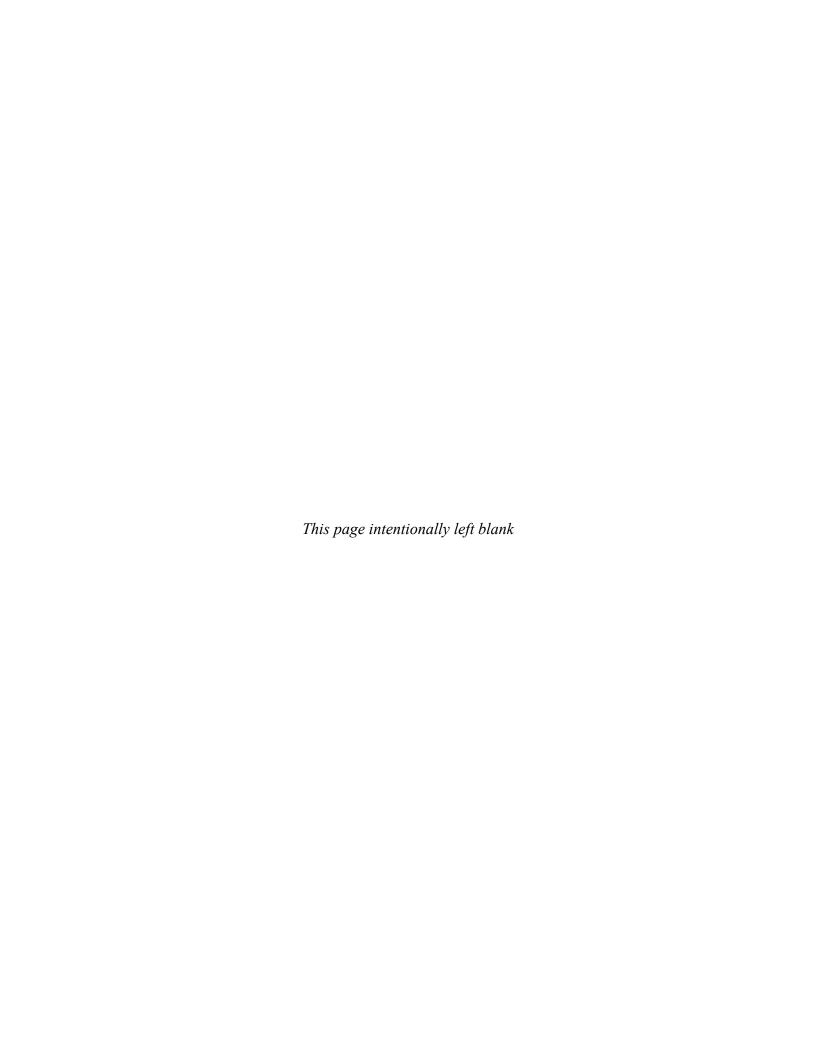

Page **7** of **7 Date: 12/23/2024**

RESILIENCE/GREEN REMEDIATION CHECKLIST

Is site power procured from renewable energy sources (e.g., solar, wind, geothermal, biomass and biogas)?	Yes □	No □	N/A⊠
Is the Contractor employing 2007 or newer or retrofitted (BART*) diesel on-road trucks and non-road equipment?	Yes □	No □	N/A⊠
Is vehicle idling adequately reduced per 6NYCRR Part 217-3?	Yes □	No □	N/A⊠
Have equipment operators been trained in the idling requirements of 6NYCRR Part 217-3?	Yes □	No □	N/A⊠
Is BART-equipped equipment properly maintained and working?	Yes □	No □	N/A⊠
Is work being sequenced to avoid double handling?	Yes □	No □	N/A⊠
Is there an onsite recycling program for CONTRACTOR-generated wastes and is it complied with?	Yes □	No □	N/A⊠
Are office trailer heating and cooling systems maintained at efficient set points, have programable thermostats been installed?	Yes □	No □	N/A⊠
Are products and materials used in performance of the work appropriately certified (e.g., LEED, Energy Star, Sustainable Forestry Initiative®, etc.)?	Yes □	No □	N/A⊠
Are resiliency features included in the design, or completed remedy properly installed and/or maintained (flood control, storm water controls, erosion measures, etc.)?	Yes □	No □	N/A⊠
Are green remediation elements included in the design, or completed remedy properly installed and/or maintained (e.g., porous pavement, geothermal, variable speed drives, native plantings, natural stream bank restoration, etc.)?	Yes □	No □	N/A⊠
Has Contractor been notified of any deficiencies?	Yes □	No □	N/A⊠
Are remote/call in job meetings being held in lieu of meeting in person where possible?	Yes □	No □	N/A⊠
Comments: N/A			

^{*} BART – Best Available Retrofit Technology

Appendix C Data Verification Checklist



BASIC DATA VERIFICATION AND USABILITY CHECKLIST

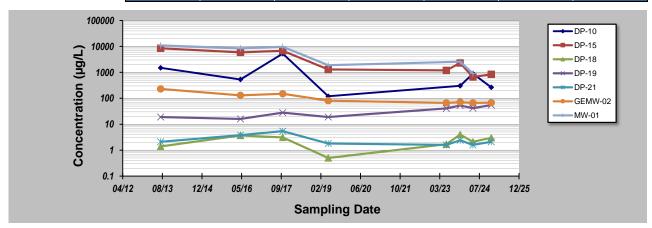
Verification Step	Yes/No	Notes/Deficiencies
Field Verification	•	
Were all planned samples collected?		MW-1 and MW-8 were not located. MW-10 could not be sampled due to low water level.
Were there variances that modified collection of planned samples (e.g. moved sample locations, insufficient sample volume)?	No	
Were field forms and field logbooks completed correctly?	Yes	
Were all field Standard Operating Procedures followed?	Yes	
Are any field data unreasonable (e.g., pH > 14, or negative dissolved oxygen or turbidity)?	No	
Chain-of-Custody and Laboratory Login Inform	nation	
Were chain-of-custodies prepared according to Standard Operating Procedures, and signed and dated for each transfer?	Yes	
Were samples preserved appropriately (<6 degrees Celsius, chemical preservative as necessary, containers, headspace, etc.)?	Yes	
Were samples logged in properly by the laboratory? Was the condition of samples at receipt documented?	Yes	
Laboratory Checks		
Does the analytical data report contain the proper information (e.g., sample identifications, sample date, reporting units, etc.)?	Yes	
Were samples analyzed and data reported according to the chain-of-custody?	Yes	
Were holding times achieved?	Yes	
Were there any blank (field or method) detections that affected the usability of data for project samples?	No	
Were any other laboratory quality control issues (e.g., laboratory spike or surrogate recoveries) that affect the usability of data noted in the case narrative?	No	
Are data in the electronic data deliverables consistent with those reported in the analytical data reports, based on a spot-check (recommended minimum 10 percent)?	Yes	
Additional Checks		
Calculate relative percent differences for field duplicates and associated		Cis-1,2 DCE = 3.34
original sample results to verify acceptable values (50 and 30 percent for solid		PCE = 8.50
and liquid samples, respectively).		TCE= 4.27
	(<30)	VC = 1.76
Assess data completeness (planned analyses versus usable analyses).	84%	Goal: 100%
Check reporting/detection limits against sensitivity requirements.	Yes	
Are the data reasonable? Are there any unexpected anomalies relative to historical data?	Yes	There are no unexpected anomalies

As necessary, add additional page(s) documenting any data usability issues.

Appendix D Trend Evaluation Graphs

Evaluation Date: January-25

Facility Name: Town and Country Cleaners Site

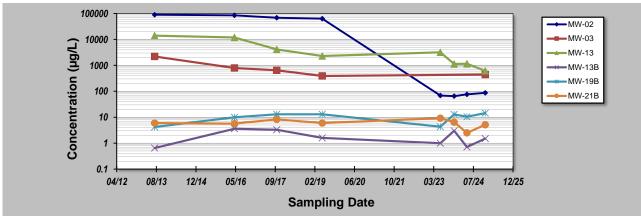

Conducted By: EA Engineering and Geology, P.C.

Job ID: 1602534.0020
PCE

Constituent: PCE

Concentration Units: µg/L

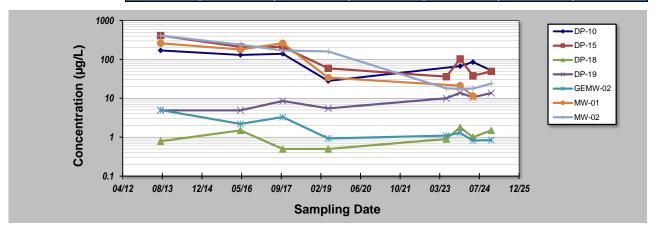
Sam	Sampling Point ID: DP-10 DP-15 DP-18 DP-19 DP-21 GEMW-02						MW-01				
Sampling Event	Sampling Date		PCE CONCENTRATION (µg/L)								
1	24-Jul-13	1500	8500	1.4	19	2.1	230	11000			
2	26-Apr-16	530	5900	3.7	16	3.8	130	8400			
3	11-Oct-17	5300	6800	3.1	28	5.4	150	9700			
4	8-May-19	120	1300	0.5	19	1.8	81	1900			
5	6-Jun-23		1200	1.7	41	1.6	67				
6	27-Nov-23	302	2300	4.0	52.9	2.4	71	2570			
7	7-May-24	887	658	2.1	41.8	1.6	66.8	907			
8	23-Dec-24	266	843.0	3.0	54.8	2.1	68.2				
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
Coefficie	nt of Variation:	1.44	0.91	0.50	0.46	0.51	0.54	0.77			
Mann-Kenda	all Statistic (S):	-7	-20	4	21	-8	-20	-11			
Conf	idence Factor:	80.9%	99.3%	64.0%	99.6%	80.1%	99.3%	97.2%			
Conce	ntration Trend:	No Trend	Decreasing	No Trend	Increasing	Stable	Decreasing	Decreasing			


Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Evaluation Date: January-25
Facility Name: Town and Country Cleaners Site
Conducted By: EA Engineering and Geology, P.C.

Job ID: 1602534.0020
Constituent: PCE
Concentration Units: µg/L


Sampling Point ID: MW-02 MW-03 MW-13 MW-13B MW-19B MW-21B											
Sampling Event	Sampling Date		PCE CONCENTRATION (µg/L)								
1	24-Jul-13	90000	2200	14000	0.65	4.2	6				
2	26-Apr-16	85000	790	12000	3.6	10	5.7				
3	11-Oct-17	69000	650	4100	3.3	13	8.3				
4	8-May-19	63000	390	2300	1.6	13	6				
5	6-Jun-23	69		3200	1	4.3	9.2				
6	27-Nov-23	65.2		1130	3	12.9	6.4				
7	7-May-24	76.4		1160.0	0.71	10.5	2.5				
8	23-Dec-24	87.4	441.0	616.0	1.5	14.4	5.1				
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
Coefficier	nt of Variation:	1.09	0.84	1.08	0.63	0.39	0.33				
Mann-Kenda	all Statistic (S):	-18	-8	-24	-6	11	-5				
Conf	idence Factor:	98.4%	95.8%	99.9%	72.6%	88.7%	68.3%				
Concer	Concentration Trend:		g Decreasing Decreasing Stable No Trend Stable								

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

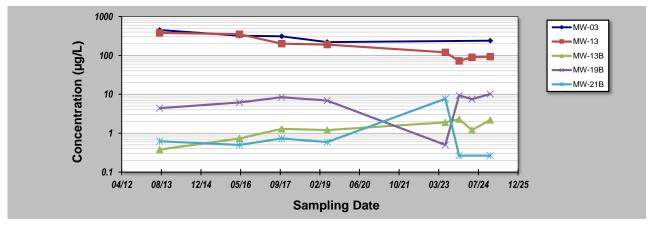
Sam	pling Point ID:	DP-10	DP-15	DP-18	DP-19	GEMW-02	MW-01	MW-02			
Sampling Event	Sampling Date		TCE CONCENTRATION (µg/L)								
1	24-Jul-13	170	410	0.79	4.9	5	260	410			
2	26-Apr-16	130	210	1.5	4.9	2.2	180	240			
3	11-Oct-17	140	210	0.5	8.5	3.3	260	170			
4	8-May-19	28	59	0.5	5.5	0.93	34	160			
5	6-Jun-23		36	0.9	10.0	1.1		18			
6	27-Nov-23	67.2	103	1.8	13.8	1.3	21	18			
7	7-May-24	85.4	37.9	1.0	10.6	0.82	11.5	17.8			
8	23-Dec-24	52.1	49.1	1.5	13.6	0.8		23.9			
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
Coefficier	nt of Variation:	0.54	0.94	0.46	0.41	0.78	0.94	1.08			
Mann-Kenda	II Statistic (S):	-11	-17	10	21	-18	-12	-20			
	idence Factor:	93.2%	97.7%	86.2%	99.6%	98.4%	98.2%	99.3%			
Concer	ntration Trend:	nd: Prob. Decreasing Decreasing No Trend Increasing Decreasing Decreasing Decreasing					Decreasing				

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Evaluation Date: January-25

Facility Name: Town and Country Cleaners Site


Conducted By: EA Engineering and Geology, P.C.

Job ID: 1602534.0020

TCE

Concentration Units: µg/L

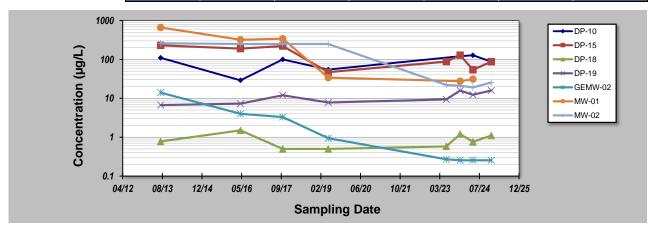
Sam	pling Point ID:	MW-03	MW-13	MW-13B	MW-19B	MW-21B					
Sampling Event	Sampling Date		TCE CONCENTRATION (μg/L)								
1	24-Jul-13	450	380	0.38	4.4	0.62					
2	26-Apr-16	320	350	0.73	6.2	0.5					
3	11-Oct-17	310	200	1.3	8.4	0.73					
4	8-May-19	220	190	1.2	6.9	0.59					
5	6-Jun-23		120	1.9	0.5	7.7					
6	27-Nov-23		71.8	2.3	9.4	0.3					
7	7-May-24		89.5	1.2	7.5						
8	23-Dec-24	239.0	92.7	2.2	10.2	0.3					
9											
10											
11											
12											
13											
14											
15											
16											
17											
18											
19											
20											
Coefficier	nt of Variation:	0.29	0.64	0.49	0.46	1.79					
Mann-Kenda	II Statistic (S):	-8	-22	17	14	-6					
Conf	idence Factor:	95.8%	99.8%	97.7%	94.6%	76.4%					
Concentration Trend: Decreasing Decreasing Increasing Prob. Increasing No Trend											

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

Evaluation Date: January-25

Facility Name: Town and Country Cleaners Site


Conducted By: EA Engineering and Geology, P.C.

Job ID: 1602534.0020

cis-1,2-DCE

Concentration Units: µg/L

Sampling Point ID: DP-10 DP-15 DP-18 DP-19 GEMW-02 MW-01						MW-02				
Sampling Event	Sampling Date	CIS-1,2-DCE CONCENTRATION (μg/L)								
1	24-Jul-13	110	230	0.78	6.7	14	660	260		
2	26-Apr-16	29	190	1.5	7.3	4	320	250		
3	11-Oct-17	100	220	0.5	12	3.3	340	250		
4	8-May-19	55	47	0.5	7.8	0.94	34	250		
5	6-Jun-23		88	0.58	9.4	0.27		22		
6	27-Nov-23	121	129	1.2	15.8	0.26	27.6	21.1		
7	7-May-24	128.0	54.1	0.76	12.3	0.26	31.2	19.0		
8	23-Dec-24	87.5	87.4	1.1	15.9	0.26		25.6		
9										
10										
11										
12										
13										
14										
15										
16										
17										
18										
19										
20										
Coefficier	nt of Variation:	0.40	0.56	0.42	0.34	1.62	1.08	0.90		
Mann-Kenda	II Statistic (S):	5	-14	3	22	-25	-11	-19		
Conf	idence Factor:	71.9%	94.6%	59.4%	99.8%	100.0%	97.2%	98.9%		
Concer	Concentration Trend: No Trend Prob. Decreasing No Trend Increasing Decreasing Decreasing					Decreasing				

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: January-25 Job ID: 1602534.0020 Facility Name: Town and Country Cleaners Site Constituent: cis-1,2-DCE Conducted By: EA Engineering and Geology, P.C. Concentration Units: µg/L MW-13B MW-19B Sampling Point ID: MW-03 MW-13 MW-21B CIS-1,2-DCE CONCENTRATION (µg/L) 24-Jul-13 0.51 890 680 26-Apr-16 850 590 0.93 98 3 11-Oct-17 670 770 2 12 0.5 8-May-19 5 6-Jun-23 170 0.5 12.0 6 27-Nov-23 195 4.6 19.3 0.3 7-May-24 163.0 5.0 16.0 8 23-Dec-24 547.0 170.0 8.2 22.2 0.3 10 11 12 13 14 15 16 17 18 19 20 Coefficient of Variation: 0.24 0.74 Mann-Kendall Statistic (S) Confidence Factor 94.6% 84.5% **Concentration Trend:** Stable No Trend Decreasing Increasing Prob. Increasing 1000 MW-03 -MW-13 Concentration (µg/L) 100 -MW-13B MW-19B MW-21B 10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 10/21 03/23 07/24 12/25 **Sampling Date**

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.