

June 21, 2023

Tasha Mumbrue, Assistant Geologist Division of Environmental Remediation New York State Department of Environmental Conservation 6274 East Avon-Lima Rd, Avon, NY 14414

Re: Site Management Plan Supplement United Cleaners 2199 E. Henrietta Rd. Town of Henrietta Rochester, New York 14623

Dear Ms. Mumbrue:

Ravi Engineering & Land Surveying, P.C. (RE&LS) is pleased to provide this Supplement to update the existing Site Management Plan (SMP) for the subject Suburban Plaza property located at 2199 East Henrietta Road in the Town of Henrietta, New York (the "Site").

Background

Haley and Aldrich of New York prepared the August 2015 Site Management Plan (SMP) for the Site (Attachment 1); it was prepared for S-P Associates, L.P. (SP).

One of the annual requirements was collection of groundwater samples for laboratory analysis for analysis for volatile organic compounds (VOCs) by USEPA Method 8260.

Update

In a March 29, 2021 letter to SP, NYSDEC approved SP's request to discontinue groundwater monitoring at the Site, and required decommissioning of the monitoring wells. In a July 28, 2021 letter to NYSDEC, Haley & Aldrich of New York (H&A) stated that they retained Trec Environmental Inc. to decommission the wells on June 2 and 3, 2021 in accordance with the their approved NYSDEC work plan and also in accordance with NYSDEC Policy CP-43 (Attachment 2).

Tasha Mumbrue, Assistant Geologist June 21, 2023 Page 2 of 2

SMP Update

As the monitoring wells have been decommissioned (removed), annual groundwater sampling is no longer required.

Sincerely,

Petermant

Peter S. Morton, P.G., C.P.G. Project Manager

Attachment 1: Site Management PlanAttachment 2: H&A Decommissioning Documentation

APPENDIX 1

Site Management Plan

United Cleaners MONROE COUNTY, NEW YORK Site Management Plan

NYSDEC Site Number: 828152

Prepared for:

S-P Associates, L.P. 1265 Scottsville Road Rochester, New York 14624

Prepared by:

Haley & Aldrich of New York 200 Town Centre Drive, Suite 2 Rochester, New York 14623 585-359-9000

Revisions to Final Approved Site Management Plan:

Revision #	Submitted Date	Summary of Revision	DEC Approval Date
1	18 August 2015	Revised SMP submission in response to NYSDEC	
		letter "Draft Site Management Plan Review" (May	
		2014), Haley & Aldrich response letter "Response to	
		Comments on Site Management Plan" (December	
		2014), and NYSDEC verbal approval of response	
		letter (June 2015).	

AUGUST 2015

TABLE OF CONTENTS

TABLE OF CONTENTS	
LIST OF TABLES	VI
LIST OF FIGURES	VII
LIST OF APPENDICES	VIII
SITE MANAGEMENT PLAN	2
1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM	2
1.1 INTRODUCTION	2
1.1 INTRODUCTION	2 2
1.1 INTRODUCTION 1.1.1 General. 1.1.2 Purpose.	2 2
1.1 INTRODUCTION 1.1.1 General 1.1.2 Purpose 1.1.3 Revisions	2 2
 1.1 INTRODUCTION 1.1.1 General 1.1.2 Purpose 1.1.3 Revisions 1.2 SITE BACKGROUND 	2 2 3 4
 1.1 INTRODUCTION 1.1.1 General 1.1.2 Purpose 1.1.3 Revisions 1.2 SITE BACKGROUND 1.2.1 Site Location and Description 	2 2 3 4 4
 1.1 INTRODUCTION. 1.1.1 General. 1.1.2 Purpose. 1.1.3 Revisions . 1.2 SITE BACKGROUND 1.2.1 Site Location and Description. 1.2.2 Site History. 	2 2 3 4 4 4 5
1.1 INTRODUCTION 1.1.1 General 1.1.2 Purpose 1.1.3 Revisions 1.1.3 Revisions 1.2 SITE BACKGROUND 1.2.1 Site Location and Description 1.2.2 Site History 1.2.3 Geologic Conditions	2 2 3 4 4 4 4 5 5 5
 1.1 INTRODUCTION. 1.1.1 General. 1.1.2 Purpose. 1.1.3 Revisions . 1.2 SITE BACKGROUND 1.2.1 Site Location and Description. 1.2.2 Site History. 1.2.3 Geologic Conditions	2 2 3 4 4 4 5 5 5
1.1 INTRODUCTION. 1.1.1 General. 1.1.2 Purpose. 1.1.3 Revisions 1.1.3 Revisions 1.2 SITE BACKGROUND 1.2.1 Site Location and Description. 1.2.2 Site History. 1.2.3 Geologic Conditions. Topography. Geology.	2 2 3 4 4 4 4 5 5 5 5 6

1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS	7
1.3.1 Soil	7
1.3.2 Site-Related Groundwater	
1.3.3 Site-Related Soil Vapor Intrusion	9
Residences	9
Plaza	
1.4 SUMMARY OF REMEDIAL ACTIONS	
1.4.1 Removal of Contaminated Materials from the Site	
Initial Excavation	
Supplemental Excavation	
Excavation Backfill	
1.4.2 Sub-Slab Depressurization (SSD) System	
1.4.3 HVAC System Upgrades	
1.4.4 Remaining Contamination	
Soil	14
Groundwater	
Soil Vapor	
	10
2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN	
2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN	
2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN 2.1 INTRODUCTION	
2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN 2.1 INTRODUCTION 2.1.1 General 2.1.2 Purpose	
2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN	
2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN	
2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN 2.1 INTRODUCTION 2.1.1 General 2.1.2 Purpose 2.2 ENGINEERING CONTROLS	
 2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN 2.1 INTRODUCTION. 2.1.1 General	
2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN 2.1 INTRODUCTION. 2.1.1 General 2.1.2 Purpose 2.2 ENGINEERING CONTROLS. 2.2.1 Engineering Control Systems 2.2.2 Criteria for Completion of Remediation/Termination of Remedial	16
 2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN 2.1 INTRODUCTION. 2.1.1 General	
 2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN 2.1 INTRODUCTION. 2.1.1 General	16
 2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN 2.1 INTRODUCTION 2.1.1 General 2.1.2 Purpose 2.2 ENGINEERING CONTROLS 2.2.1 Engineering Control Systems 2.2.2 Criteria for Completion of Remediation/Termination of Remedial 2.3 INSTITUTIONAL CONTROLS 2.3.1 Excavation Work Plan 2.3.2 Soil Vapor Intrusion Evaluation 	16
2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN 2.1 INTRODUCTION. 2.1.1 General 2.1.2 Purpose 2.2 ENGINEERING CONTROLS. 2.2.1 Engineering Control Systems 2.2.2 Criteria for Completion of Remediation/Termination of Remedial 2.3 INSTITUTIONAL CONTROLS. 2.3.1 Excavation Work Plan 2.3.2 Soil Vapor Intrusion Evaluation	16
 2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN 2.1 INTRODUCTION 2.1.1 General 2.1.2 Purpose 2.2 ENGINEERING CONTROLS 2.2.1 Engineering Control Systems 2.2.2 Criteria for Completion of Remediation/Termination of Remedial 2.3 INSTITUTIONAL CONTROLS 2.3.1 Excavation Work Plan 2.3.2 Soil Vapor Intrusion Evaluation 2.4 INSPECTIONS AND NOTIFICATIONS 	16
 2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN 2.1 INTRODUCTION 2.1.1 General 2.1.2 Purpose 2.2 ENGINEERING CONTROLS 2.2.1 Engineering Control Systems 2.2.2 Criteria for Completion of Remediation/Termination of Remedial 2.3 INSTITUTIONAL CONTROLS 2.3.1 Excavation Work Plan 2.3.2 Soil Vapor Intrusion Evaluation 2.4 INSPECTIONS AND NOTIFICATIONS 2.4.1 Inspections 	16
 2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN 2.1 INTRODUCTION. 2.1.1 General 2.1.2 Purpose 2.2 ENGINEERING CONTROLS. 2.2.1 Engineering Control Systems 2.2.2 Criteria for Completion of Remediation/Termination of Remedial 2.3 INSTITUTIONAL CONTROLS. 2.3.1 Excavation Work Plan 2.3.2 Soil Vapor Intrusion Evaluation 2.4 INSPECTIONS AND NOTIFICATIONS. 2.4.1 Inspections 2.4.2 Notifications 	16

2.5 CONTINGENCY PLAN	. 24
2.5.1 Emergency Telephone Numbers	. 24
2.5.2 Map and Directions to Nearest Health Facility	. 25
2.5.3 Response Procedures	. 26
3.0 SITE MONITORING PLAN	. 27
3.1 INTRODUCTION	. 27
3.1.1 General	. 27
3.1.2 Purpose and Schedule	. 27
3.2 COVER SYSTEM MONITORING	. 28
3.3 MEDIA MONITORING PROGRAM	. 29
3.3.1 Groundwater Monitoring	. 29
3.3.1.1 Sampling Protocol	. 31
3.3.1.2 Monitoring Well Repairs, Replacement And Decommissioning	. 32
3.3.2 Indoor Air Monitoring	. 33
3.4 SITE-WIDE INSPECTION	. 33
3.5 MONITORING QUALITY ASSURANCE/QUALITY CONTROL	. 34
3.6 MONITORING REPORTING REQUIREMENTS	. 35
4.0 OPERATION AND MAINTENANCE PLAN	. 38
4.1 INTRODUCTION	. 38
4.2 ENGINEERING CONTROL SYSTEM OPERATION AND MAINTENANCE	. 38
4.2.1 Sub-Slab Depressurization (SSD) System Scope	. 38
4.2.2 System Start-Up and Testing	. 38
4.2.3 System Operation: Routine Operation Procedures	. 39
4.2.4 System Operation: Routine Equipment Maintenance	. 39
4.2.5 System Operation: Non-Routine Equipment Maintenance	. 40

4.3 ENGINEERING CONTROL SYSTEM PERFORMANCE MONITORING	41
4.3.1 Monitoring Schedule & Protocol 4.3.2 General Equipment Monitoring 4.3.3 System Monitoring Devices and Alarms	41 42 43
4.4 MAINTENANCE AND PERFORMANCE MONITORING REPORTING	
REQUIREMENTS	43
4.4.1 Routine Maintenance Reports	43
4.4.2 Non-Routine Maintenance Reports	44
5. INSPECTIONS, REPORTING AND CERTIFICATIONS	45
5.1 SITE INSPECTIONS	45
5.1.1 Inspection Frequency	45
5.1.2 Inspection Forms, Sampling Data, and Maintenance Reports	45
5.1.3 Evaluation of Records and Reporting	45
5.2 CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS	46
5.3 PERIODIC REVIEW REPORT	47
5.4 CORRECTIVE MEASURES PLAN	48
6. CERTIFICATIONS	49

LIST OF TABLES

- **Table 1:**Summary of Soil Quality Data
- **Table 2:**Summary of Groundwater Quality Data
- **Table 3:**Summary of Residential Sump Quality Data
- **Table 4:**Summary of Air Quality Data Residences
- **Table 5:**Summary of Air Quality Data Plaza Building
- **Table 6:**Emergency Contact Numbers (in text)
- **Table 7:**Contact Numbers (in text)
- **Table 8:**Monitoring/Inspection Schedule (in text)
- **Table 9:**Monitoring Well Network Summary (in text)
- Table 10:
 Groundwater Well Information
- **Table 11:** Schedule of Monitoring/Inspection Reports (in text)
- Table 12:
 Applicable Soil Cleanup Objectives
- **Table B1:** Types of Stockpiles and Management Options (in text)
- **Table B2:** Types of Backfill Sources Pre-Screening Requirements (in text)
- **Table B3:**Recommended Sampling Frequency for Imported Materials
Requiring Testing (in text)

LIST OF FIGURES

Figure 1:	Project Locus
Figure 2:	Site Plan with Ongoing Monitoring Locations
Figure 3:	Site Characterization Subsurface Investigation Location Plan
Figure 4:	Schematic Surface Exploration Profile (Section A-A')
Figure 5:	Schematic Surface Exploration Profile (Section B-B')
Figure 6:	Site Plan with 2009 Groundwater Sample Locations and Contours

- Figure 7:Site Utility Plan with Soil Management Area
- Figure 8: Sub Slab Depressurization System IRM Record Drawing
- Figure 9:Sub Slab Depressurization IRM Roof Plan Record Drawing
- Figure 10: Sub Slab Depressurization Typical Details

LIST OF APPENDICES

Appendix A: Environmental Easement & Metes and Bounds

Appendix B: Excavation Work Plan

- Appendix C: Sample Health and Safety Plan and Community Air Monitoring Plan
- Appendix D: Monitoring Well Boring and Construction Logs
- Appendix E: Field Forms
- Appendix F: Quality Assurance Project Plan
- Appendix G: Responsibilities of Owner and Remedial Party

SITE MANAGEMENT PLAN

1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM

1.1 INTRODUCTION

This document is required as an element of the remedial program at the property located at 2199 East Henrietta Road in Henrietta, New York known as United Cleaners (hereinafter referred to as the "Site") under the New York State (NYS) Inactive Hazardous Waste Disposal Site Remedial Program administered by New York State Department of Environmental Conservation (NYSDEC). The site was investigated and remediated in accordance with Order on Consent Index #B8-0786-08-06, Site # 828152, which was executed on June 20, 2013.

1.1.1 General

S-P Associates, L.P. entered into an Order on Consent with the NYSDEC to remediate an approximately 2.02-acre portion of a 13.27-acre property located in Henrietta, Monroe County, New York. This Order on Consent required the Remedial Party, S-P Associates, L.P., to investigate and remediate contaminated media at the site. Figures showing the site location and boundaries of this 2.02-acre site are provided in Figures 1, 2, and 3. The boundaries of the site are more fully described in the metes and bounds site description that is part of the Environmental Easement (Appendix A).

After completion of the remedial work described in the IRM Work Plan, some contamination was left in the subsurface at this site, which is hereafter referred to as "remaining contamination." This Site Management Plan (SMP) was prepared to manage remaining contamination at the site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. All reports associated with the site can be

viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State.

This SMP was prepared by Haley & Aldrich of New York, on behalf of S.P. Associates, L.P., in accordance with the requirements in NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, dated May 2010, and the guidelines provided by NYSDEC. This SMP addresses the means for implementing the Institutional Controls (ICs) and Engineering Controls (ECs) that are required by the Environmental Easement for the site.

1.1.2 Purpose

The site contains contamination left after completion of the remedial action. Engineering Controls have been incorporated into the site remedy to control exposure to remaining contamination during the use of the site to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Monroe County Clerk, will require compliance with this SMP and all ECs and ICs placed on the site. The ICs place restrictions on site use, and mandate operation, maintenance, monitoring and reporting measures for all ECs and ICs. This SMP specifies the methods necessary to ensure compliance with all ECs and ICs required by the Environmental Easement for contamination that remains at the site. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

This SMP provides a detailed description of all procedures required to manage remaining contamination at the site after completion of the Remedial Action, including: (1) implementation and management of all Engineering and Institutional Controls; (2) media monitoring; (3) operation and maintenance of sub-slab vapor mitigation systems; (4) performance of periodic inspections, certification of results, and submittal of Periodic Review Reports; and (5) defining criteria for termination of treatment system operations.

To address these needs, this SMP includes three plans: (1) an Engineering and Institutional Control Plan for implementation and management of EC/ICs; (2) a Monitoring Plan for implementation of Site Monitoring; (3) an Operation and Maintenance Plan for sub-slab vapor mitigation systems. This plan also includes a description of Periodic Review Reports for the periodic submittal of data, information, recommendations, and certifications to NYSDEC.

It is important to note that:

- This SMP details the site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the environmental easement, which is grounds for revocation of the Certificate of Completion (COC);
- Failure to comply with this SMP is also a violation of Environmental Conservation Law, 6NYCRR Part 375 and the Order on Consent Index #B8-0786-08-06, Site # 828152 for the site, and thereby subject to applicable penalties.

1.1.3 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. In accordance with the Environmental Easement for the site, the NYSDEC will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

1.2 SITE BACKGROUND

1.2.1 Site Location and Description

The site is located in the Town of Henrietta, County of Monroe, New York and is identified as tax Parcel ID number 162.18-2-1.111 On the Town of Henrietta Tax Map. The site is an approximately 2.02-acre area that is part of a larger 13.27-acre portion of land operated by the Suburban Plaza. The site is bounded by a storm water retention basin, additional plaza buildings, beyond which are private single family residences and commercial retail properties to the north, landscaped property, paved parking, and commercial properties to the south, a paved parking lot and East Henrietta Road, beyond which are private single family residences to the east, and pavement and a drainage swale, beyond which is a section of town land and residences to the west (see Figure 2). The boundaries of the site are more fully described in Appendix A – Environmental Easement and Metes and Bounds.

1.2.2 Site History

Historically, the site was undeveloped agricultural land until the late 1950s. Historical records indicate that the Suburban Plaza property was developed by 1959. United Cleaners, which leases a portion of the property, has been the only occupant of the Plaza known to have used tetrachloroethene (PCE) or dry cleaning solvent.

According to historical records, United Cleaners began operating at the Suburban Plaza property in the 1970s. According to United Cleaners personnel, prior to 1993, United Cleaners was a pick-up/drop-off location and did not use PCE. Reportedly, they began use of PCE in 1993 and continued use of the dry cleaning solvent until 2009, when at the request of S-P Associates; United Cleaners converted their operation to the use of petroleum distillates and/or "environmentally friendly solvents."

Between 1993 and 2009, United Cleaners reported that they used approximately 180 gallons of PCE per year. Waste PCE was stored onsite (inside United Cleaners) in small (less than 55-gallon) poly drums. The drums were staged on top of grates over secondary containment pending recycling or disposal. Currently, United Cleaners operates a dry cleaning plant and a pick-up/drop-off store. The dry cleaning solvent release identified at the site is a result of United Cleaner's past operations.

1.2.3 Geologic Conditions

Topographical, geological, and hydrogeological conditions are described below. Refer to Figures 4 and 5 for representative north-south and east-west cross-sections of the site and surrounding area. Figure 6 depicts groundwater flow direction.

Topography

The site topographic information is relative to feet above mean sea level (MSL) and varies from east to west as follows:

- The site has a topographic high at an elevation slightly above El. 575 along East Henrietta Road, which borders the eastern side of the Suburban Plaza property.
- The plaza parking lot slopes down slightly to the west to the Plaza Building in which United Cleaners in located. The Plaza Building lowest floor elevation is at approximately El. 574.

- To the west of the Plaza Building, the site slopes down to the west to a north-flowing drainage ditch (El. 566) along the western border of the Suburban Plaza property.
- West of the drainage ditch, the ground surface slopes up to the west and then down towards a residential neighborhood at approximately El. 562.

Stormwater runoff from the site is directed into the north-flowing drainage ditch. The drainage ditch discharges to a retention basin located proximate to the northeast corner of the Plaza property.

Geology

The site is underlain by approximately 6 to 10 feet of fill consisting of silt, sand, gravel and clay. The fill is underlain by a thin (1 to 2 feet thick) buried former topsoil layer of sandy silt with organic material (lacustrine/native layer). The buried topsoil is underlain by glacial till comprised of sandy silt, lean clay or lean sandy clay with varying amounts of gravel, sand, and occasional cobbles or boulders. A 2 to 5 foot thick layer of glacio-lacustrine sediments consisting of lean clay with minor amounts of sand and gravel is present 30 to 40 feet below the ground surface. The glacio-lacustrine sediment layer may be discontinuous; it was not encountered in one of the four deep test borings installed at the site to date. Where the glacio-lacustrine sediment layer was encountered, it was underlain by glacial till consisting of sand, silt and gravel.

The deepest exploration performed to-date at the site extended to 47 feet below ground surface (bgs). Bedrock was not encountered in the borings installed. The New York State geological survey's regional geologic map indicates that the uppermost bedrock unit underlying the area of the site is shale of the Upper Silurian Vernon Formation.

Hydrogeology

The shallow water table/saturated overburden at the site occurs approximately 5 to 10 feet below ground surface, within or just below the shallow lacustrine/native soil layer. Soil conditions and water levels observed at the four deeper wells (HA-1 through HA-4) installed at the site suggest that the shallow water table is not in good connection with the more regional groundwater in the deeper glacial till deposits. Groundwater levels observed in the four deeper wells were 17 to 33 feet below ground surface compared to 5 to 10 feet in the shallow screened wells. The belief that the shallow and deeper screen zones represent two different hydrogeologic units is supported by the difference in groundwater flow

directions between the shallow and deeper saturated zones (northwest vs. southeast); strong downward vertical gradients between the shallow and deeper screen zones suggest a lower permeable unit separates the two saturated intervals; and the shallow groundwater flow appears to be more significantly influenced by near surface topography, which decreases towards the west, while the deeper groundwater flow generally flows to the southeast in the direction of nearby creeks and water features (Figure 6).

1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS

A Site Characterization (SC) was performed to characterize the nature and extent of contamination at the site. The results of the SC are described in detail in the following report:

• Site Characterization Report, United Cleaners Facility, 2199 East Henrietta Road, Henrietta, New York, Site #HW828252, dated 30 November 2010. Prepared by Haley & Aldrich of New York.

The report above also includes summaries and references to investigation reports prepared prior to the site being entered in the NYSDEC program. Those reports include:

- Phase II Environmental Site Assessment, Suburban Plaza, Rochester, New York, dated 24 May 2006. Prepared by Stantec Consulting Services, Inc.
- Supplemental Phase II Environmental Site Assessment, Suburban Plaza United Cleaners, Rochester, New York, dated 30 June 2006. Prepared by Stantec Consulting Services, Inc.
- Preliminary Investigation Report and Supplemental Investigation Work Plan, United Cleaners, 2199 East Henrietta Road, Henrietta, New York, NYSDEC Spill ID 0652009, dated 7 March 2007. Prepared by Haley & Aldrich of New York.

Generally, the SC determined that contaminants of concern (COCs) at the site include tetrachloroethene (PCE), trichoroethene (TCE), cis-1,2-dichloroethene (cis-DCE), trans-1,2-dichloroethene (trans-DCE), vinyl chloride, chloroethane, chloroform, and acetone. Below is a summary of site conditions when the RI was performed in 2008-2010.

1.3.1 Soil

Significant soil characterization was conducted onsite (32 borings/monitoring wells and 26 soil samples plus an additional 9 samples collected as part of excavation

confirmation sampling). The results are summarized below and in Table 1. For comparison purposes, soil analytical results were compared to the NYCRR Part 375 Soil Cleanup Objectives (SCOs) for restricted commercial use and protection of groundwater. Soil boring locations are shown on Figure 3.

- One area of the site in the vicinity of B-17 and B-19 had elevated concentrations of COCs, though detected below commercial SCOs (Table I). That area was excavated as part of the IRM (see below).
- Based on the IRM excavation confirmation samples (see below), the remaining concentrations of COCs are below commercial SCOs and within one order of magnitude of the SCOs for protection of groundwater (Table I).
- There were no detections of COCs in off-site soil.

1.3.2 Site-Related Groundwater

Dry cleaner solvent-related compounds were detected in groundwater onsite beneath United Cleaners and offsite directly west of the Plaza Building at concentrations exceeding comparison criteria. Refer to Table 2 for a summary of the analytical data. Well locations are shown on Figures 2 and 3. Groundwater analytical results were compared to the NYS Ambient Water Quality Standards for class GA groundwater (TOGS). The results are summarized below.

- The highest total chlorinated VOC concentrations (greater than 100 mg/L) were detected in monitoring wells MW-18, former well MW-23, and MW-105 (Refer to Figure 3). The primary dry cleaning solvent release appears to have originated from the area near the drainage ditch and appears to be migrating to the west consistent with shallow groundwater flow direction.
- Chlorinated VOCs were not detected above laboratory detection limits in wells HA-106, HA-107, HA-208, or HA-209, and very low detections (near TOGS criteria) of cis-DCE were detected in MW-22. This indicates that groundwater impacts appear to be confined to a narrow corridor extending west from United Cleaners to just beyond the drainage ditch into the town property at well HA-105. The sampling results from MW-208 and MW-209 indicate that groundwater impacts do not extend into the residential neighborhood.
- Chlorinated VOC impacts to groundwater appear to be confined to the shallow aquifer. Deep wells HA-1, HA-2, and HA-3 have shown no detections of

CVOCs during all sampling events. Deep well HA-4 had one low detection of cis-DCE in 2007; however that compound was not detected during the two subsequent sampling events in 2008 and 2009.

- Of the detected chlorinated VOCs, the highest detected compound was cis-DCE, which is a breakdown product of source products PCE and TCE. This indicates a condition of degradation consistent with natural attenuation.
- Following the IRM excavation activities, the concentrations of chlorinated VOCs in the groundwater at MW-18 (located in the excavation area) dropped by one order of magnitude.

Sump water samples were collected in March 2009 and in September 2009. Cis-DCE was detected slightly above TOGS in the sump at 18 Prince Charles Circle during both events. Chlorinated solvents of concern were not detected above TOGS at 26 Prince Charles Circle (Table 3). Though low levels of cis-DCE were detected in the sump water at 18 Prince Charles Circle, recent indoor air sampling in 18 Prince Charles Circle indicated that the low-concentration of cis-DCE in the sump water are not impacting indoor air (see below).

1.3.3 Site-Related Soil Vapor Intrusion

The results of the vapor intrusion evaluations conducted in both the Plaza Building and within two residential properties are summarized below. Analytical results are summarized in Tables 4 and 5.

Residences

COCs were not detected in the indoor air in the residences during the March 2009 sampling event. Due to high groundwater levels, sub-slab vapor samples could not be collected during that event.

The January 2010 sampling event results indicated that PCE was detected in indoor air at 18 Prince Charles Circle (Figure 2) at an estimated concentration (below the laboratory detection limit) of $0.76 \,\mu g/m^3$, and TCE was detected in indoor air at $0.27 \,\mu g/m^3$ (Table 4). COCs were not detected in the sub-slab at 18 Prince Charles Circle. Given the lack of chlorinated compound detections in the sub-slab at 18 Prince Charles Circle, the detections of PCE and TCE in indoor air were likely due to indoor sources such as household chemicals rather than soil vapor intrusion. COCs were not detected in the indoor air, sub-slab, or outdoor air at 26 Prince Charles Circle (Figure 2).

Plaza

Prior to installation of the SSD system (discussed below), the results of sub-slab vapor and indoor air sampling indicated that chlorinated COCs (specifically PCE and TCE) were identified both in the sub-slab and indoor air of the Vacant Space (former Play-it-Again Sports), and the Family Dollar store (March 2009) (Table 5). Refer to Figure 3 for sampling locations. Detections of PCE and TCE in the sub-slab vapor and indoor air were compared to the decision matrix (Matrix 2) included in the 2006 NYSDOH Guidance for Evaluating Soil Vapor Intrusion in New York State (NYSDOH Guidance). For both the Vacant Space and Family Dollar, the concentrations of PCE detected resulted in a requirement for further monitoring and/or mitigation, which prompted the installation of the SSD system throughout the plaza. Following installation of the full plaza SSD system, the March 2010 indoor air sampling was conducted (additional sub-slab vapor testing was not applicable due to depressurization of the slab due to the SSD system).

- Results from the March 2010 indoor air sampling indicated significantly lower concentrations of contaminants of concern, as follows:
- Dry cleaner solvent related compounds were not detected in indoor air at the former Hollywood Video space (currently vacant).
- Low concentrations (less than $1 \mu g/m^3$) of TCE and cis-DCE were detected in the indoor air at Country Max.

Concentrations of PCE and TCE in these spaces have significantly decreased (by one order of magnitude) between March 2009 and March 2010. PCE and TCE were detected in indoor air at Family dollar and the Vacant Space between 1 and 6.78 μ g/m³.

The significant reduction in PCE and TCE concentrations since the March 2009 sampling round is likely a result of dissipation over time directly related to United Cleaners discontinuing their use of PCE and to the operation of the sub-slab depressurization (SSD) system. United Cleaners stopped using PCE in early March 2009. The first indoor air samples were collected in Family Dollar and the Vacant Space on 19 March 2009, which was only approximately two weeks after United Cleaners stopped using PCE, and before the installation of the SSD systems. In contrast, prior to the indoor air sampling on 18 March 2010, PCE had not been used for over one year and the SSD systems had been operating throughout the building for almost five months (since November 2009).

1.4 SUMMARY OF REMEDIAL ACTIONS

The site was remediated in accordance with the NYSDEC-approved Interim Remedial Measure (IRM) work plans:

- Revised Interim Remedial Measure (IRM) Work Plan, United Cleaners Facility, 2199 East Henrietta Road, Henrietta, New York, Site #HW828252, dated 19 February 2009. Prepared by Haley & Aldrich of New York.
- Revised Interim Remedial Measure (IRM) Work Plan Addendum, United Cleaners Facility, 2199 East Henrietta Road, Henrietta, New York, Site #HW828252, dated 30 June 2009. Prepared by Haley & Aldrich of New York.

The following is a summary of the Remedial Actions performed at the site:

- Excavation of approximately 75 cubic yards of dry cleaning solvent-impacted soil from a source area west of the United Cleaners tenant space. The final excavation measured approximately 14.5 feet by 20 feet in plan area and approximately 6.5 feet deep (Figure 7).
- Placement and maintenance of a soil cover system consisting of asphalt pavement to prevent human exposure to contaminated soil/fill remaining in the excavation area;
- 3. Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the site.
- 4. Installation of a sub-slab depressurization (SSD) system and adjustment of roof-top handlers in the plaza building (Figures 8 and 9).
- Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting;

Remedial activities were completed at the site in May 2010.

1.4.1 Removal of Contaminated Materials from the Site

COCs in soil at the site were compared to the SCOs for commercial use and the protection of groundwater as shown in Table 1. A figure showing areas where excavation was performed is shown in Figure 7. The excavation activities conducted as part of the IRM are described below.

Initial Excavation

On 10 June 2009, C.P. Ward, Inc. of Scottsville, New York excavated approximately 28.5 cubic yards of asphalt and soil from the area to the west of United Cleaners and east of the drainage swale (Figure 7). The purpose of the excavation was to remove soils in the area of soil borings B-17 and B-19, where elevated concentrations of chlorinated volatile organic compounds (VOCs) were detected.

Excavated soils were screened by a Haley & Aldrich using a Photoionization Detector (PID). In addition, Community Air Monitoring was conducted according to the Generic New York State Department of Health (NYSDOH) Community Air Monitoring Plan (CAMP).

The initially excavated area measured approximately 19 ft by 8 ft in plan area and ranged from 5 ft to 5.3 ft deep. Excavated soil was staged on and beneath poly-sheeting in a dedicated staging area, and the open excavation was barricaded to restrict access while awaiting the results of confirmatory chemical testing.

A total of five confirmation samples were collected from the excavation – one from each sidewall and one from the bottom. Soil sample locations were selected based on PID screening results. The samples were submitted to Paradigm Environmental Services (Paradigm) in Rochester, New York for analysis for VOCs via EPA method 8260.

The confirmation sample results indicated that several samples contained COCs in excess of the NYSDEC Protection of Groundwater SCOs.

Supplemental Excavation

On 12 June 2009, C.P. Ward continued excavation activities and removed an additional 46.5 cubic yards of soil from the excavation. Due to the close proximity of subsurface utilities, additional excavation was not deemed practical. The additional soil was staged on and beneath poly-sheeting in the dedicated staging area, and the excavation was barricaded to restrict access while awaiting the results of confirmatory analytical

testing. The final excavation measured approximately 14.5 ft by 20 ft in plan area and measured approximately 6.5 feet deep.

Community air monitoring and screening occurred during the supplemental excavation consistent with the initial excavation.

Four confirmation samples were collected from the supplemental excavation – one sample from each of the west, north, and east sidewalls and one from the bottom. Soil sample locations were selected based on PID screening results. The samples were submitted to Paradigm for analysis for volatile organic compounds (VOCs) via EPA method 8260. The results indicated that several samples contained COCs in excess of the Protection of Groundwater SCOs (Table 1).

Additional excavation was not practical due to the physical restrictions at the Site as noted above.

Excavation Backfill

Approximately 105 tons of bank run gravel from Valley Sand and Gravel was used to backfill the excavation. Community Air Monitoring was conducted in accordance with the NYSDOH CAMP during backfilling activities.

C.P. Ward installed asphalt over the former excavation to meet existing pavement grade following backfilling.

1.4.2 Sub-Slab Depressurization (SSD) System

Installation of the SSD systems occurred in multiple phases as described below. The design of the system is described in detail in the *Interim Remedial Measures (IRM) Report, United Cleaners Facility, Henrietta, New York, Site #HW828152*, dated 30 November 2010.

- <u>February 2009</u> This initial system installation occurred in the United Cleaners space and adjacent northern tenant space (Henrietta Spa) in accordance the February 2009 Revised IRM Work Plan.
- <u>April/May 2009</u> Additional system installation was conducted based on the results of confirmation indoor air testing (refer to Section 3.3 below). Additional communication testing was conducted and the SSD systems were expanded into vacant spaces that were formerly occupied by a Hollywood Video store (currently vacant), Tooley's Furniture (currently vacant), Vacant

Space (formerly Play-It-Again Sports), and the Redemption Center (formerly Liquor Store), as well as a space occupied by Country Max.

- July 2009 The SSD systems were installed in the Auto Zone tenant space.
- <u>November 2009</u> The SSD systems was installed in the Family Dollar space.

The SSD Systems consist of suction points and either Radonaway GP-501 series or GP-265 in-line fans. A manometer was placed on each of the suction pipe runs for post-installation monitoring. The manometers are easily visible, and will allow for system operation warning devices.

The vent and discharge piping for the systems are located on the roof, 10 feet away from building openings less than 2 feet below the exhaust point, and at least 10 feet from adjoining tenant buildings and HVAC intakes or supply registers.

Figure 8 shows the locations of fans and suction points in the Plaza Building; Figure 9 shows the roof plan; and Figure 10 is a detail drawing of a typical fan set-up.

1.4.3 HVAC System Upgrades

During April 2010, to enhance the rate of fresh-air exchange within the Plaza Building and remove potential sources of PCE within the building, S-P Associates adjusted roof-top air handlers to increase the amount of fresh outside air to 15 - 20%, changed air filters, and removed the old ceiling tiles in the vacant spaces, which could have absorbed PCE over time while United Cleaners was operating using PCE. In May 2010, similar upgrades were made to the Country Max space.

1.4.4 Remaining Contamination

The results of soil sampling, most recent groundwater sampling, and vapor sampling are shown on Tables 1 through 5. Sampling locations are shown of Figures 2 and 3. Following IRM activities, the following COC contamination remains at the site:

Soil

Dry cleaning related compounds are present in soils immediately west of the United Cleaners site in the IRM excavation area at levels below NYSDEC commercial SCOs, indicating that they can stay in-place with no engineering controls as long as the site continues to be used for commercial use. However, dry cleaning related compounds were detected above the NYSDEC protection of groundwater SCOs (within one order of magnitude) beneath pavement; therefore existing cover (pavement) should remain in place to preclude surface water infiltration into groundwater. The area for which pavement should remain in place and shown on Figure 7, is called the **Soil Management Area** (SMA).

Groundwater

Low levels (near NYSDEC TOGS criteria) of dry-cleaning related solvents are present in the shallow groundwater beneath and downgradient of the United Cleaners site. Overall, the nature of the local geology (i.e. dense glacial till) appears to be limiting the downward migration of dry cleaner solvent-related compounds. Groundwater impacts above TOGS criteria appear to be confined to a narrow corridor extending west from United Cleaners into the adjacent Town of Henrietta property at well HA-105. The sampling results from wells HA-208 and HA-209 suggest that groundwater impacts do not extend beyond these well locations further into the neighborhood.

Of the detected chlorinated VOCs in groundwater, the highest detected compound was cis-DCE, which is a natural biological breakdown product of TCE (PCE \rightarrow TCE \rightarrow cis-DCE \rightarrow vinyl chloride). The presence of cis-DCE is indicative of natural attenuation.

The Town of Henrietta property to the west of United Cleaners is undeveloped and is not used as a drinking water source.

Soil Vapor

The potential for vapor intrusion in the Plaza Building has been mitigated through the use of a sub-slab depressurization system.

Vapor impacts related to United Cleaners were not identified in nearby residential properties.

2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN

2.1 INTRODUCTION

2.1.1 General

Since remaining contaminated soil, groundwater, and soil vapor exists beneath the site, Engineering Controls and Institutional Controls (EC/ICs) are required to protect human health and the environment. This Engineering and Institutional Control Plan describes the procedures for the implementation and management of all EC/ICs at the site. The EC/IC Plan is one component of the SMP and is subject to revision by NYSDEC.

2.1.2 Purpose

This plan provides:

- A description of all EC/ICs on the site;
- The basic implementation and intended role of each EC/IC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the features to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of EC/ICs, such as the implementation of the Excavation Work Plan for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the site; and
- Any other provisions necessary to identify or establish methods for implementing the EC/ICs required by the site remedy, as determined by the NYSDEC.

2.2 ENGINEERING CONTROLS

2.2.1 Engineering Control Systems

2.2.1.1 Soil Cover over Soil Management Area (SMA)

Exposure to remaining contamination above the protection of groundwater SCOs in soil/fill in the SMA is prevented by a soil cover system placed over the site. This cover system is comprised of asphalt pavement. The Excavation Work Plan that appears in Appendix B outlines the procedures required to be implemented in the event the cover system in the SMA is breached, penetrated or temporarily removed, and any underlying remaining contamination is disturbed. The location of the SMA is shown on Figure 7. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in Section 4 of this SMP.

2.2.1.2 Sub-Slab Depressurization (SSD) System

The potential for vapor intrusion into the plaza building is mitigated via the use of a sub-slab depressurization system. The SSD Systems consist of suction points and either Radonaway GP-501 series or GP-265 in-line fans. A manometer was placed on each of the suction pipe runs for post-installation monitoring. The manometers are easily visible, and will allow for system operation warning devices.

The vent and discharge piping for the systems are located on the roof, 10 feet away from building openings less than 2 feet below the exhaust point, and at least 10 feet from adjoining tenant buildings and HVAC intakes or supply registers.

The locations of vents, fans, suction points and test points are shown on Figures 8 and 9.

Procedures for operating and maintaining the SSD systems are documented in the Operation and Maintenance Plan (Section 4 of this SMP). Procedures for monitoring the system are included in the Monitoring Plan (Section 3 of this SMP). The Monitoring Plan also addresses severe condition inspections in the event that a severe condition, which may affect controls at the site, occurs.

2.2.2 Criteria for Completion of Remediation/Termination of Remedial Systems

Generally, remedial processes are considered completed when effectiveness monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.6 of NYSDEC DER-10.

2.2.2.1 Composite Cover System

The composite cover system is a permanent control and the quality and integrity of this system will be inspected at defined, regular intervals in perpetuity.

See Section 3.2 for discussion of cover system monitoring.

2.2.2.2 Sub-Slab Depressurization System (SSD) System

The SSD System is designed to be operated continuously and the system will be monitored and inspected at defined, regular intervals in perpetuity.

The active SSD system will not be discontinued unless prior written approval is granted by the NYSDEC. In the event that monitoring data indicates that the SSD system, or individual fan systems, is no longer required, a proposal to discontinue the SSD system will be submitted by the responsible party to the NYSDEC and NYSDOH.

See Table 8 in Section 3.1.2 for Monitoring and Inspection Schedule and Section 4.3 for discussion of SSD system monitoring.

2.2.2.3 Groundwater Monitoring

Groundwater monitoring activities will continue, as determined by the NYSDEC, until residual groundwater concentrations are found to be consistently below NYSDEC standards or have become asymptotic at an acceptable level over an extended period. Monitoring will continue until permission to discontinue is granted in writing by the NYSDEC. If groundwater contaminant levels become asymptotic at a level that is not acceptable to the NYSDEC, additional source removal, treatment and/or control measures will be evaluated.

See Table 8 in Section 3.1.2 for Monitoring and Inspection Schedule and Section 3.3.1 for discussion of groundwater monitoring.

2.3 INSTITUTIONAL CONTROLS

A series of Institutional Controls is required by the Decision Document to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to commercial and industrial uses only. Adherence to these Institutional Controls on the site is required by the Environmental Easement and will be implemented under this Site Management Plan. These Institutional Controls are:

- Compliance with the Environmental Easement and this SMP by the Grantor and the Grantor's successors and assigns;
- The Controlled Property may be used for Commercial use as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial use as described in 6 NYCRR Part 375-1.8(g)(2)(iv);
- All Engineering Controls must be operated and maintained as specified in this SMP;
- All Engineering Controls on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Monroe County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in this SMP;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

- Operations, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;
- Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

Institutional Controls identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

The site has a series of Institutional Controls in the form of site restrictions. Adherence to these Institutional Controls is required by the Environmental Easement (Appendix A). Site restrictions that apply to the Controlled Property are:

- The property may only be used for commercial or industrial use provided that the long-term Engineering and Institutional Controls included in this SMP are employed.
- The property may not be used for a higher level of use, such as unrestricted, residential, or restricted-residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- The potential for vapor intrusion must be evaluated for any buildings developed at the site, and any potential impacts that are identified must be monitored or mitigated;
- Vegetable gardens and farming on the property are prohibited;
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually,

or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

2.3.1 Excavation Work Plan

The site has been remediated for commercial and industrial uses. Any future intrusive work that will penetrate the soil cover or cap in the SMA, or encounter or disturb the remaining contamination, including any modifications or repairs to the existing cover system in the SMA will be performed in compliance with the Excavation Work Plan (EWP) that is attached as Appendix B to this SMP. Any work conducted pursuant to the EWP must also be conducted in accordance with the procedures defined in a Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) prepared for the site. A sample HASP is attached as Appendix C to this SMP that is in current compliance with DER-10, and 29 CFR 1910, 29 CFR 1926, and all other applicable Federal, State and local regulations. Based on future changes to State and federal health and safety requirements, and specific methods employed by future contractors, the HASP and CAMP will be updated and re-submitted with the notification provided in Section B-1 of the EWP. Any intrusive construction work will be performed in compliance with the EWP, HASP and CAMP, and will be included in the periodic inspection and certification reports submitted under the Site Management Reporting Plan (See Section 5).

The site owner and associated parties preparing the remedial documents submitted to the State, and parties performing this work, are completely responsible for the safe performance of all intrusive work, the structural integrity of excavations, proper disposal of excavation de-water, control of runoff from open excavations into remaining contamination, and for structures that may be affected by excavations (such as building foundations and bridge footings). The site owner will ensure that site development activities will not interfere with, or otherwise impair or compromise, the engineering controls described in this SMP.

2.3.2 Soil Vapor Intrusion Evaluation

Prior to the construction of any enclosed structures located over areas that contain remaining contamination and the potential for soil vapor intrusion (SVI) has been identified, an SVI evaluation will be performed to determine whether any mitigation measures are necessary to eliminate potential exposure to vapors in the proposed structure. Alternatively, an SVI mitigation system may be installed as an element of the building foundation without first conducting an investigation. This mitigation system will include a vapor barrier and passive sub-slab depressurization system that is capable of being converted to an active system.

Prior to conducting an SVI investigation or installing a mitigation system, a work plan will be developed and submitted to the NYSDEC and NYSDOH for approval. This work plan will be developed in accordance with the most recent NYSDOH "Guidance for Evaluating Vapor Intrusion in the State of New York" (NYSDOH Guidance). Measures to be employed to mitigate potential vapor intrusion will be evaluated, selected, designed, installed, and maintained based on the SVI evaluation, the NYSDOH guidance, and construction details of the proposed structure.

Preliminary (unvalidated) SVI sampling data will be forwarded to the NYSDEC and NYSDOH for initial review and interpretation. Upon validation, the final data will be transmitted to the agencies, along with a recommendation for follow-up action, such as mitigation. If the property is owned by a third party, validated SVI data will be transmitted to the property owner within 30 days of validation. If any indoor air test results exceed NYSDOH guidelines, relevant NYSDOH fact sheets will be provided to all tenants and occupants of the property within 15 days of receipt of validated data.

SVI sampling results, evaluations, and follow-up actions will also be summarized in the next Periodic Review Report.

2.4 INSPECTIONS AND NOTIFICATIONS

2.4.1 Inspections

Inspections of all remedial components installed at the site will be conducted at the frequency specified in the SMP Monitoring Plan schedule. A comprehensive site-wide inspection will be conducted annually, regardless of the frequency of the Periodic Review Report. The inspections will determine and document the following:

- Whether Engineering Controls continue to perform as designed;
- If these controls continue to be protective of human health and the environment;

- Compliance with requirements of this SMP and the Environmental Easement;
- Achievement of remedial performance criteria;
- Sampling and analysis of appropriate media during monitoring events;
- If site records are complete and up to date; and
- Changes, or needed changes, to the remedial or monitoring system;

Inspections will be conducted in accordance with the procedures set forth in the Monitoring Plan of this SMP (Section 3). The reporting requirements are outlined in the Periodic Review Reporting section of this plan (Section 5).

If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs, an inspection of the site will be conducted within 5 days of the event to verify the effectiveness of the EC/ICs implemented at the site by a qualified environmental professional as determined by NYSDEC.

2.4.2 Notifications

Notifications will be submitted by the property owner to the NYSDEC as needed for the following reasons:

- 60-day advance notice of any proposed changes in site use that are required under the terms of the Order on Consent, 6NYCRR Part 375, and/or Environmental Conservation Law.
- 7-day advance notice of any proposed ground-intrusive activities in the SMA pursuant to the Excavation Work Plan.
- Notice within 48-hours of any damage or defect to the foundation, structures or engineering control that reduces or has the potential to reduce the effectiveness of an Engineering Control and likewise any action to be taken to mitigate the damage or defect.
- Verbal notice by noon of the following day of any emergency, such as a fire, flood, or earthquake that reduces or has the potential to reduce the effectiveness of Engineering Controls in place at the site, with written confirmation within 7 days that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.
- Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action shall be submitted to the NYSDEC within 45

days and shall describe and document actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser has been provided with a copy of the Order on Consent, and all approved work plans and reports, including this SMP
- Within 15 days after the transfer of all or part of the site, the new owner's name, contact representative, and contact information will be confirmed in writing.

2.5 CONTINGENCY PLAN

Emergencies may include injury to personnel, fire or explosion, environmental release, or serious weather conditions.

If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs, an inspection of the site will be conducted within 5 days of the event to verify the effectiveness of the EC/ICs implemented at the site by a qualified environmental professional as determined by NYSDEC.

2.5.1 Emergency Telephone Numbers

In the event of any environmentally related situation or unplanned occurrence requiring assistance the Owner or Owner's representative(s) should contact the appropriate party from the contact list below. For emergencies, appropriate emergency response personnel should be contacted. Prompt contact should also be made to S-P Associates. These emergency contact lists must be maintained in an easily accessible location at the site.

Medical, Fire, and Police:	911
One Call Center:	(800) 272-4480

Table 6: Emergency Contact Numbers

	(3 day notice required for utility markout)
Poison Control Center:	(800) 222-1222
Pollution Toxic Chemical Oil Spills:	(800) 424-8802
NYSDEC Spills Hotline	(800) 457-7362

Table 7: Contact Numbers

S-P Associates	(585) 783-3241
Haley & Aldrich of New York	(585) 359-9000
Matthew P. Gillette, P.E NYSDEC	(585) 226-5308
Mark S. Sergott NYSDOH	(518) 402-7860
Jeffery M. Kosmala, P.E. Monroe County DOH	(585) 753-5470

* Note: Contact numbers subject to change and should be updated as necessary

2.5.2 Map and Directions to Nearest Health Facility

Site Location:	Suburban Plaza 2199 East Henrietta Road Henrietta, New York
Nearest Hospital Name:	Extended Medical Care (Urgent Care)
Hospital Location:	2116 East Henrietta Road Henrietta, New York
Hospital Telephone:	(585) 486-4989

Directions to the Hospital:

- From Suburban Plaza Parking lot: Turn left onto New York 15A/East Henrietta Road.
- 2. Destination will be on the right approximately 0.2 miles.

Total Distance: 0.2 miles

Total Estimated Time: 4 Minutes

Map Showing Route from the site to the Hospital:

2.5.3 Response Procedures

As appropriate, the fire department and other emergency response group will be notified immediately by telephone of the emergency. The emergency telephone number list is found at the beginning of this Contingency Plan (Table 6). The list will also be posted prominently at the site and made readily available to all personnel at all times.
3.0 SITE MONITORING PLAN

3.1 INTRODUCTION

3.1.1 General

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the site, the soil cover system, and all affected site media identified below. Monitoring of other Engineering Controls is described in Chapter 4, Operation and Maintenance Plan. This Monitoring Plan may only be revised with the approval of NYSDEC.

3.1.2 Purpose and Schedule

This Monitoring Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, indoor air, soil vapor, soils);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance, particularly ambient groundwater standards and Part 375 SCOs for soil;
- Assessing achievement of the remedial performance criteria.
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment; and
- Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, this Monitoring Plan provides information on:

- Sampling locations, protocol, and frequency;
- Information on all designed monitoring systems (e.g., well logs);
- Analytical sampling program requirements;
- Reporting requirements;
- Quality Assurance/Quality Control (QA/QC) requirements;
- Inspection and maintenance requirements for monitoring wells;
- Monitoring well decommissioning procedures; and

• Annual inspection and periodic certification.

Periodic monitoring of the performance of the remedy and overall reduction in contamination on-site will be conducted per the table below. Trends in contaminant levels in groundwater in the affected areas, will be evaluated to determine if the remedy continues to be effective in achieving remedial goals. Monitoring programs are summarized in Table 8 and outlined in detail in Sections 3.2, 3.3, and 4.3 below.

Monitoring Program	Frequency*	Matrix	Analysis
Cover System	Yearly	N/A	Visual, only
SSD System	Monthly: Manometer readings on individual fan systems Yearly: General Equipment Inspection and sub-slab vacuum monitoring	Fan Eight (8) permanent vacuum test points	Visual manometer readings Visual
Groundwater	Semi-Annually (Year 1 & 2) Annually (Year 3 and on)	Groundwater	VOCs via EPA Method 8260

 Table 8: Monitoring/Inspection Schedule

* The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH

3.2 COVER SYSTEM MONITORING

Pavement is present over the SMA located to the west of the United Cleaners tenant space. The pavement must be maintained at all times, and must be replaced in-kind should it be breached as described in the Excavation Work Plan (Appendix B).

The cover will be inspected on an annual basis. If significant areas of distress are noted, they will be repaired to a condition required by this SMP. The cover will be repaired in-kind if it is damaged during any subsurface work (e.g. utilities). Monitoring of the cover will be reported in the Periodic Review Report.

3.3 MEDIA MONITORING PROGRAM

3.3.1 Groundwater Monitoring

Groundwater monitoring will be performed on a periodic basis to assess the performance of the remedy.

The network of monitoring wells has been installed to monitor both up-gradient and down-gradient groundwater conditions at the site. The network of on-site and off-site wells has been designed based on the following criteria:

- Representation of the downgradient area to evaluate offsite migration to the west.
- Representation of shallow and deep source area wells to evaluate natural degradation of dry cleaning-related compounds over time.
- The condition of the wells and accessibility for ongoing maintenance and monitoring (i.e. interior 1-inch monitoring wells are excluded from monitoring).

The monitoring well network is summarized in the Table 9 below. Baseline water quality data is shown on Table 2. Monitoring well locations are shown on Figure 2. Groundwater contours from 2009 are included in Figure 6.

Monitoring well construction logs are included in Appendix D. A summary of the monitoring well construction is included in Table 10.

The sampling frequency may be modified with the approval NYSDEC. The SMP will be modified to reflect changes in sampling plans approved by NYSDEC.

Deliverables for the groundwater monitoring program are specified in sections below.

29

Well ID	Location	Casing Diameter	Screen Depth	Baseline Conditions (2009)	Analytes to be Tested
HA-1	Upgradient	2 inch	37-47 ft.	VOCs non-detect	Water Level Only
HA-2	N. Boundary of Plume (deep)	2 inch	30-40 ft.	VOCs non-detect	Water Level Only
HA-3	S. Boundary of Plume (deep)	2 inch	30-40 ft.	VOCs non-detect	Water Level Only
MW-15R	W. of United Cleaners Space	2 inch	10.5-15.5 ft.	Cis-DCE, trans-DCE & Vinyl Chloride detected slightly above TOGS	VOCs
MW-22R	S. Boundary of Plume	2 inch	5.2-15.2 ft.	Cis-DCE detected slightly above TOGS	VOCs
MW-18R	Source Area (shallow)	2 inch	10-15 ft.	Cis-DCE and trans-DCE detected slightly above TOGs	VOCs
HA-4	Source Area (deep)	2 inch	30-40 ft.	VOCs non-detect	VOCs
HA-107	N. Boundary of Plume	2 inch	4.8-14.8 ft.	VOCs non-detect	VOCs
HA-105	Downgradient (offsite)	2 inch	6.6-16.6 ft.	Several COCs detected above TOGs	VOCs
HA-106	Downgradient (offsite)	2 inch	6.1-16.1 ft.	VOCs non-detect	VOCs
HA-208	Downgradient (offsite)	2 inch	10-20 ft.	VOCs non-detect	VOCs
HA-209	Downgradient (offsite)	2 inch	5-15 ft.	VOCs non-detect	VOCs

Table 9: Monitoring Well Network Summary

3.3.1.1 Sampling Protocol

All monitoring well sampling activities will be recorded in groundwater sampling forms presented in Appendix E. Other observations (e.g., well integrity, etc.) will be noted on the well sampling log. The well sampling log will serve as the inspection form for the groundwater monitoring well network. Sampling protocol is as follows:

First Event, Only:

- Prior to sampling, the wells shall be developed to remove fines and sediments if needed. Wells will be developed until the water is visually clear, ten well volumes have been removed, or the well is dry. After development, the wells will be allowed to sit for 1 week to equilibrate.
- 2. Following the equilibration period and prior to sampling, static water levels shall be measured from each well in the network and documented in the log (Appendix E).
- 3. Place a passive diffusion bag in each well to a depth of the midway point of the well screen.
- 4. The bags should remain in the wells for at least 2 weeks (but not to exceed 90 days) prior to collection or per length of time recommended by the laboratory.
- 5. After the specified length of time, retrieve the bags and fill the laboratory-supplied volatile organic analyte bottles with water in the bags.
- 6. The samples will be labeled as follows:

Well ID-Date (YYMMDD)-Time (24 hour) (*e.g. MW15R-071713-1310*)

- Samples will be cooled to 4°C or less and shipped/couriered to an ELAP Certified Laboratory for analysis of VOCs via EPA Method 8260B.
- 8. Dispose of the bags in onsite dumpsters.
- 9. Place a new passive diffusion bag in each well to a depth of the midway point of the well screen.

All Other Events:

- 1. Prior to sampling, static water levels shall be measured from each well in the network and documented in the log (Appendix E).
- 2. Retrieve the passive diffusion bag placed in the well a maximum of 90 days prior to the sampling event and fill the laboratory-supplied volatile organic analyte bottles with water in the bags.
- 3. The samples will be labeled as follows:

Well ID-Date (YYMMDD)-Time (24 hour) (e.g. MW15R-071713-1310)

- Samples will be cooled to 4°C or less and shipped/couriered to an ELAP Certified Laboratory for analysis of VOCs via EPA Method 8260B.
- 5. Dispose of the bags in onsite dumpsters.
- 6. Gauge the bottom of the well to evaluate if there has been significant sediment build up since the previous sampling event. If so, it may be necessary to redevelop the well (see procedure above) prior to placement of a new passive diffusion bag.
- 7. Place a new passive diffusion bag in each well to a depth of the midway point of the well screen.

3.3.1.2 Monitoring Well Repairs, Replacement And Decommissioning

The on-site and/or off-site monitoring wells will by physically agitated/surged if silt accumulation occurs in the monitoring wells to the point where 20% of the well screen is covered. Additionally, monitoring wells will be properly decommissioned and replaced (as per the Monitoring Plan). All development water will be properly handled in accordance with applicable regulations.

Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance. Monitoring wells will be visually inspected during each sampling event. Damaged or missing components (e.g. missing bolts, damaged well covers, poor surface seals, etc.) will be documented and the well will be repaired or replaced prior to the next sampling event. The NYSDEC will be notified prior to any repair or decommissioning of monitoring wells for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent periodic report. Well decommissioning without replacement will be done only with the prior approval of NYSDEC. Well abandonment will be performed in accordance with NYSDEC's "Groundwater Monitoring Well Decommissioning Procedures." Monitoring wells that are decommissioned because they have been rendered unusable will be reinstalled in the nearest available location, unless otherwise approved by the NYSDEC.

3.3.2 Indoor Air Monitoring

A single indoor air sampling event, consisting of one sample from the Family Dollar (same as previous location), one sample from Former Play-It-Again Sports (same as previous location), and an outdoor ambient air control sample, will be conducted during the 2015-2016 heating season.

These samples will be collected using 'certified-clean' 6.0-liter canisters equipped with *8-hour* flow controllers. The indoor-air samples will be collected from the same locations as the samples collected previously during March 2009. The indoor air samples will be collected at table or work-bench height. The outdoor ambient air sample will be collected at an upwind location to be determined in the field.

The SUMMA® canisters will be submitted to the laboratory for analysis via EPA Method TO-15. The sub-slab samples will be analyzed for the site COCs: PCE, TCE, cis-1,2-DCE, and VC only.

3.4 SITE-WIDE INSPECTION

Site-wide inspections will be performed on a regular schedule at a minimum of once a year. Site-wide inspections will also be performed after all severe weather conditions that may affect Engineering Controls or monitoring devices. During these inspections, an inspection form will be completed (Appendix E). The form will compile sufficient information to assess the following:

- Compliance with all ICs, including site usage;
- An evaluation of the condition and continued effectiveness of ECs;
- General site conditions at the time of the inspection;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection;
- Compliance with permits and schedules included in the Operation and Maintenance Plan; and
- Confirm that site records are up to date.

3.5 MONITORING QUALITY ASSURANCE/QUALITY CONTROL

All sampling and analyses will be performed in accordance with the requirements of the Quality Assurance Project Plan (QAPP) prepared for the site (Appendix F). Main Components of the QAPP include:

- QA/QC Objectives for Data Measurement;
- Sampling Program:
 - Sample containers will be properly washed, decontaminated, and appropriate preservative will be added (if applicable) prior to their use by the analytical laboratory. Containers with preservative will be tagged as such.
 - Sample holding times will be in accordance with the NYSDEC ASP requirements.
 - Field QC samples (e.g., trip blanks, coded field duplicates, and matrix spike/matrix spike duplicates) will not be collected unless requested by the NYSDEC, with the exception of a trip blank, which will be collected during each groundwater sampling event.
- Sample Tracking and Custody;
- Calibration Procedures:
 - All field analytical equipment will be calibrated immediately prior to each day's use. Calibration procedures will conform to manufacturer's standard instructions.

- The laboratory will follow all calibration procedures and schedules as specified in USEPA SW-846 and subsequent updates that apply to the instruments used for the analytical methods.
- Analytical Procedures;
- Preparation of a Data Usability Summary Report (DUSR), which will present the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain of custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method.
- Internal QC and Checks;
- QA Performance and System Audits;
- Preventative Maintenance Procedures and Schedules;
- Corrective Action Measures.

3.6 MONITORING REPORTING REQUIREMENTS

Forms and any other information generated during regular monitoring events and inspections will be kept on file on-site. All forms, and other relevant reporting formats used during the monitoring/inspection events, will be (1) subject to approval by NYSDEC and (2) submitted at the time of the Periodic Review Report, as specified in the Reporting Plan of this SMP.

All monitoring results will be reported to NYSDEC on a periodic basis in the Periodic Review Report. The report will include, at a minimum:

- Date of event;
- Personnel conducting sampling;
- Description of the activities performed;
- Type of samples collected (e.g. groundwater, etc);
- Copies of all field forms completed (e.g. well sampling logs, chain-of-custody documentation, etc.);
- Sampling results in comparison to appropriate standards/criteria;

- A figure illustrating sample type and sampling locations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDEC-identified format);
- Any observations, conclusions, or recommendations; and
- A determination as to whether groundwater conditions have changed since the last reporting event.

Data will be reported in hard copy or digital format as determined by NYSDEC. A summary of the monitoring program deliverables are summarized in Table 11 below.

Task	Reporting Frequency*
Cover System Monitoring	Annually
SSD System Monitoring	Annually
Groundwater Monitoring	Annually

Table 11: Schedule of Monitoring/Inspection Reports

* The frequency of events will be conducted as specified until otherwise approved by NYSDEC

4.0 OPERATION AND MAINTENANCE PLAN

4.1 INTRODUCTION

This Operation and Maintenance Plan describes the measures necessary to operate, monitor and maintain the mechanical components of the remedy selected for the site. This Operation and Maintenance Plan:

- Includes the steps necessary to allow individuals unfamiliar with the site to operate and maintain the Sub-slab depressurization (SSD) systems;
- Includes an operation and maintenance contingency plan; and,
- Will be updated periodically to reflect changes in site conditions or the manner in which the SSD system is operated and maintained.

Information on non-mechanical Engineering Controls (i.e. soil cover system) is provided in Section 3 - Monitoring Plan. A copy of this Operation and Maintenance Plan, along with the complete SMP, will be kept at the site. This Operation and Maintenance Plan is not to be used as a stand-alone document, but as a component document of the SMP.

4.2 ENGINEERING CONTROL SYSTEM OPERATION AND MAINTENANCE

4.2.1 Sub-Slab Depressurization (SSD) System Scope

A SSD system was installed in the plaza building to mitigate the potential for soil vapor intrusion and was approved by the NYSDEC. Refer to Section 2.2.1.2 for a description of the system. Monitoring of the system consists of monthly pressure checks, and annual sub-slab pressure readings.

4.2.2 System Start-Up and Testing

The SSD system is designed to work continuously and does not need to be turned on or shut down. The system has vacuum monitors (manometers) that can be inspected to evaluate performance and alarms to indicate system failure (see Section 3.8.2, above). In the event that a manometer indicates the system is ineffective or there is a system shutdown, a site owner representative will notify the appropriate environmental professional via telephone contact.

4.2.3 System Operation: Routine Operation Procedures

Other than routine monitoring (See Section 4.3), the SSD system operates continuously and does not require manual system operation. In the event of an electrical failure, the system is engineered to restart. In the event that the warning devices (manometers) indicate that the system is not working effectively or there is a system shutdown, a site owner representative will notify the appropriate environmental professional via telephone contact.

4.2.4 System Operation: Routine Equipment Maintenance

Routine maintenance shall commence following NYSDEC approval of this SMP. Monitoring shall occur annually.

During routine maintenance, the following activities (at a minimum) must be conducted:

- 1. A visual inspection of the complete system (i.e. fan, piping, labeling system, urethane seals, etc.);
- 2. A visual inspection of the manometers and readings;
- 3. Inspection of exhaust points to verify that air intakes have not been located nearby;
- 4. Audible inspection to verify a fan's operational performance

Preventative maintenance (i.e. replacing fans), repairs and/or adjustments shall be made to the system to ensure its continued effectiveness at mitigating potential exposures related to soil vapor intrusion. The need for preventative maintenance will depend upon the life expectancy and warranty for the specific part (fan life is generally between three and five years), as well as visual observations over time. The need for repairs and/or adjustments will depend upon the observation of system operation compared to that obtained when system operations were initiated.

In addition to the routine OM&M activities described here, the building's owner and tenants will be provided with the IRM Completion Report and this SMP that explains the system's operation, maintenance and monitoring. Therefore, at any time during the system's operation, the building's owner or tenants may check that the system is operating properly.

4.2.5 System Operation: Non-Routine Equipment Maintenance

Non-routine maintenance may be required during the long-term operation of a SSD system. Examples of such situations include the following:

- 1. The need to replaces a fan;
- 2. The building's owners or occupants report that the warning device (vacuum gauge) indicates the SSD system is not operating properly;
- 3. The SSD system becomes damaged; or
- 4. The building has undergone renovations that may reduce the effectiveness of the vapor management system.

Activities conducted during non-routine maintenance will vary depending upon the reason for the maintenance. In general, non-routine maintenance activities may include examining the building for structural or HVAC system changes, or other changes that may affect the performance of the vapor mitigation system (e.g. new combustion appliances or deterioration of the concrete slab). The non-routine maintenance may also include examining the operation of the warning device and the vent fan. Repairs or adjustments should be made to the system as appropriate. If necessary, the system should be redesigned. Refer to Table 7 for appropriate contact information for non-routine maintenance.

4.3 ENGINEERING CONTROL SYSTEM PERFORMANCE MONITORING

A SSD system was installed in the plaza building to mitigate the potential for soil vapor intrusion and was approved by the NYSDEC. Refer to Section 2.2.1.2 for a description of the system. Monitoring of the system consists of monthly pressure checks.

4.3.1 Monitoring Schedule & Protocol

There are ten manometers connected to the ten suction points (See Figure 8), which will be monitored monthly by site personnel or representatives of the responsible party. In the event that the manometers indicate that negative differential pressure is not present beneath the slab, non-routine maintenance may be required as described in Section 4.2.4. Operational maintenance issues will be reported and discussed in the Periodic Review Report.

Sub-slab vacuum monitoring shall be performed by measuring the differential pressure between the indoor air and sub-slab to ensure a lower pressure is being maintained in the sub-slab. As shown in Figure 8, eight (8) temporary vacuum test points will be converted to permanent test points. These test points shall be monitored via pressure testing (measuring the vacuum influence with a digital manometer at permanent monitoring point locations). Pressure testing will be conducted by an environmental professional and recorded on the General Equipment Inspection Form. The established design target is a minimum differential pressure of 0.004 inches of water at each vacuum test point.

In the event that any of the following criteria exist, the designated environmental professional will be notified so that maintenance can be performed and the SSD System will be restarted:

- Any equipment readings are not within their typical range,
- Any equipment is observed to be malfunctioning, or
- The system is not performing within specifications.

Operational maintenance issues will be reported and discussed in the Annual Report.

The need for repairs and/or adjustments will depend upon the observation of system operation compared to that obtained when system operations were initiated.

If significant changes are made to the system or when the system's performance is unacceptable, the system may need to be reevaluated.

In addition to the routine OM&M activities described here, the building's owner and tenants (who occupy space with active fan systems) will be provided with the Construction Completion Report and this SMP which explains the system's operation, maintenance, and monitoring.

Inspection frequency is subject to change with the approval of the NYSDEC. Unscheduled inspections and/or sampling may take place when a suspected failure of the SSD system has been reported or an emergency occurs that is deemed likely to affect the operation of the system. Monitoring deliverables for the SSD system are specified later in this Plan.

4.3.2 General Equipment Monitoring

A visual inspection of the complete system will be conducted during the annual monitoring event. SSD system components to be monitored include, but are not limited to, the following:

- Fans
- General system piping
- Manometer readings (Monitored Monthly)
- Sub-Slab Vacuum point readings (if needed)

In addition, and in accordance with Section 4.2.4, routine maintenance should be conducted in conjunction with system monitoring.

If equipment readings are not within their typical range, equipment is observed to be malfunctioning, or the system is not performing within specifications, the site owner or owner's environmental professional will be notified so that maintenance can be performed, and the SSD system will be restarted. The results of the general equipment monitoring shall be documented on the General Equipment Inspection form (Appendix E) and included in the Periodic Review Report.

4.3.3 System Monitoring Devices and Alarms

The SSD system has a warning device to indicate that the system is not operating properly. The warning device is in the form of a manometer. Each fan is equipped with its own manometer. In the event that the warning device indicates the system is not working effectively or there is a system shutdown, a site owner representative will notify the appropriate environmental professional via telephone contact. Additionally, applicable maintenance and repairs will be conducted and documented on the appropriate maintenance form (Appendix E), as specified in the Operation and Maintenance Plan, and the SSD system restarted. The SSD system is also engineered to restart after an electrical failure. Operational problems will be noted in the subsequent Periodic Review Report.

4.4 MAINTENANCE AND PERFORMANCE MONITORING REPORTING REQUIREMENTS

Maintenance reports and any other information generated during regular operations at the site will be kept on-file on-site. All reports, forms, and other relevant information generated will be available upon request to the NYSDEC and submitted as part of the Periodic Review Report, as specified in the Section 5 of this SMP.

4.4.1 Routine Maintenance Reports

Checklists or forms (see Appendix E) will be completed during each routine maintenance event. Checklists/forms will include, but not be limited to the following information:

- Date;
- Name, company, and position of person(s) conducting maintenance activities;
- Maintenance activities conducted;

- Any modifications to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet); and,
- Other documentation such as copies of invoices for maintenance work, receipts for replacement equipment, etc., (attached to the checklist/form).

4.4.2 Non-Routine Maintenance Reports

During each non-routine maintenance event, a form will be completed which will include, but not be limited to, the following information:

- Date;
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities;
- Presence of leaks;
- Date of leak repair;
- Other repairs or adjustments made to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet); and,
- Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

5. INSPECTIONS, REPORTING AND CERTIFICATIONS

5.1 SITE INSPECTIONS

5.1.1 Inspection Frequency

All inspections will be conducted at the frequency specified in the schedules provided in Section 3 Monitoring Plan and Section 4 Operation and Maintenance Plan of this SMP. At a minimum, a site-wide inspection will be conducted annually. Inspections of remedial components will also be conducted when a breakdown of any treatment system component has occurred or whenever a severe condition has taken place, such as an erosion or flooding event that may affect the ECs.

5.1.2 Inspection Forms, Sampling Data, and Maintenance Reports

All inspections and monitoring events will be recorded on the appropriate forms which are contained in Appendix E. These forms are subject to NYSDEC revision.

All applicable inspection forms and other records, including all media sampling data and system maintenance reports, generated for the site during the reporting period will be provided in electronic format in the Periodic Review Report.

5.1.3 Evaluation of Records and Reporting

The results of the inspection and site monitoring data will be evaluated as part of the EC/IC certification to confirm that the:

- EC/ICs are in place, are performing properly, and remain effective;
- The Monitoring Plan is being implemented;
- Operation and maintenance activities are being conducted properly; and, based on the above items,
- The site remedy continues to be protective of public health and the environment and is performing as designed in the IRM Work Plan and IRM Completion Report.

5.2 CERTIFICATION OF ENGINEERING AND INSTITUTIONAL CONTROLS

After the last inspection of the reporting period, a Professional Engineer will prepare the following certification:

For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program; and
- The information presented in this report is accurate and complete.
- No new information has come to my attention, including groundwater monitoring data from wells located at the site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid; and

- *Every five years the following certification will be added:* The assumptions made in the qualitative exposure assessment remain valid.
- I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, <u>(Name)</u>, of <u>(company)</u>, am certifying as <u>(owner or owner's representative)</u> for the site.

The signed certification will be included in the Periodic Review Report described below.

5.3 PERIODIC REVIEW REPORT

A Periodic Review Report will be submitted to the Department every year, beginning fifteen months after the No Further Action is issued. In the event that the site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the site described in Appendix A (Metes and Bounds). The report will be prepared in accordance with NYSDEC DER-10 and submitted within 30 days of the end of each certification period. Media sampling results will also incorporated into the Periodic Review Report. The report will include:

- Identification, assessment and certification of all ECs/ICs required by the remedy for the site;
- Results of the required annual site inspections and severe condition inspections, if applicable;
- All applicable inspection forms and other records generated for the site during the reporting period in electronic format;
- A summary of any discharge monitoring data and/or information generated during the reporting period with comments and conclusions;
- Data summary tables and graphical representations of contaminants of concern by media (groundwater, soil vapor), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends;

- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format;
- A site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the site-specific Decision Document;
 - The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications;
 - Any new conclusions or observations regarding site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;
 - Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and
 - The overall performance and effectiveness of the remedy.

The Periodic Review Report will be submitted, in electronic format, to the NYSDEC Regional Office in which the site is located, and in electronic format to the NYSDOH Bureau of Environmental Exposure Investigation.

5.4 CORRECTIVE MEASURES PLAN

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control, a corrective measures plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the corrective measures plan until it is approved by the NYSDEC.

6. CERTIFICATIONS

I, Mark N. Ramsdell, P.E., certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this Site Management Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Mark N. Ramsdell, P.E

SAMPLE DESIGNATION	NYSDEC	NYSDEC	B2-(4-8)	B3-(0-4)	B5-(0-4)	B6-(0-4)	B8-(4-8)	B10-(0-4)	B12-(0-4)	B13-(0-4)	B14-(4-8)
SAMPLE DEPTH (FT BGS)	6 NYCRR Part 375	6 NYCRR Part 375	4 - 8 ft	0 - 4 ft	0 - 4 ft	0 - 4 ft	4 - 8 ft	0 - 4 ft	0 - 4 ft	0 - 4 ft	4 - 8 ft
SAMPLING DATE	Commercial	Protection of	5/12/2006	5/12/2006	5/12/2006	5/12/2006	5/12/2006	5/12/2006	6/9/2006	6/9/2006	6/9/2006
SAMPLED BY		Groundwater	Stantec								
UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
VOCs by 8260B											
Acetone	500	0.05	0.0302 U	0.34 U	0.0487 U	0.037 U	0.0432 U	0.0418 U	0.255	0.103	0.134
cis-1,2-Dichloroethene	500	0.25	0.00603 U	0.0681 U	0.2	0.0074 U	0.00864 U	0.00837 U	0.0101 U	0.00879 U	0.0132
Tetrachloroethene	150	1.3	0.00603 U	0.221	0.00974 U	0.0074 U	0.0182	0.00837 U	0.0101 U	0.0587	0.00706 U
trans-1,2-Dichloroethene	500	0.19	0.00603 U	0.0681 U	0.0331	0.0074 U	0.00864 U	0.00837 U	0.0101 U	0.00879 U	0.00706 U
Trichloroethene	200	0.68	0.00603 U	0.0681 U	0.00974 U	0.0117	0.00864 U	0.00837 U	0.0101 U	0.0326	0.00706 U
Trichlorofluoromethane	NA	NA	0.00603 U	0.0681 U	0.00974 U	0.0074 U	0.00864 U	0.00837 U	0.0101 U	0.00879 U	0.00706 U
Vinyl Chloride	13	0.02	0.00603 U	0.0681 U	0.00974 U	0.0074 U	0.00864 U	0.00837 U	0.0101 U	0.00879 U	0.00706 U

SAMPLE DESIGNATION	NYSDEC	NYSDEC	B15-(4-8)	B17-(0-4)	B17-(6-7.2)	B19-(0-4)	B19-(6-8)	B21-(0-4)	B21-(7-8)
SAMPLE DEPTH (FT BGS)	6 NYCRR Part 375	6 NYCRR Part 375	4 - 8 ft	0 - 4 ft	6 - 7.2 ft	0 - 4 ft	6 - 8 ft	0 - 4 ft	7 - 8 ft
SAMPLING DATE	Commercial	Protection of	6/12/2006	6/12/2006	6/12/2006	6/12/2006	6/12/2006	6/21/2006	6/21/2006
SAMPLED BY		Groundwater	Stantec	Stantec	Stantec	Stantec	Stantec	Stantec	Stantec
UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
VOCs by 8260B									
Acetone	500	0.05	0.123	0.0856	0.0486 U	0.0443 U	0.0453 U	0.0353 U	0.0476 U
cis-1,2-Dichloroethene	500	0.25	0.0237	0.486	0.0382	0.457	0.00906 U	0.00706 U	0.00952 U
Tetrachloroethene	150	1.3	0.0113 U	2.21	0.00973 U	1.70	0.00906 U	0.00706 U	0.00952 U
trans-1,2-Dichloroethene	500	0.19	0.0182	0.00906 U	0.00973 U	0.0239	0.00906 U	0.00706 U	0.00952 U
Trichloroethene	200	0.68	0.0113 U	0.515	0.00973 U	0.529	0.00906 U	0.00706 U	0.00952 U
Trichlorofluoromethane	NA	NA	0.0113 U	0.00906 U	0.00973 U	0.00885 U	0.00906 U	0.00706 U	0.00952 U
Vinyl Chloride	13	0.02	0.0113 U	0.00906 U	0.00973 U	0.00885 U	0.00906 U	0.00706 U	0.00952 U

SAMPLE DESIGNATION	NYSDEC	NYSDEC	B22-(0-4)	B22-(7-8)	B23-(9-12)	B23-(15-16)	HA-2-S7	HA-3-S4	HA-4-S5	HA-105	HA-106	HA-107
SAMPLE DEPTH (FT BGS)	6 NYCRR Part 375	6 NYCRR Part 375	0 - 4 ft	7 - 8 ft	9 - 12 ft	15 - 16 ft	35-37 ft	20-22 ft	25-27 ft	8 - 11 ft	4 - 8 ft	7.5-8.3 ft
SAMPLING DATE	Commercial	Protection of	6/21/2006	6/21/2006	6/21/2006	6/21/2006	1/18/2007	1/19/2007	1/17/2007	12/2/2008	12/2/2008	12/1/2008
SAMPLED BY		Groundwater	Stantec	Stantec	Stantec	Stantec	H&A	H&A	H&A	H&A	H&A	H&A
UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
VOCs by 8260B												
Acetone	500	0.05	0.0495 U	0.042 U	0.0431 U	0.0352 U				0.028 U	0.028 U	0.15 U
cis-1,2-Dichloroethene	500	0.25	0.00989 U	0.0084 U	0.157	0.0552	0.00776 U	0.00819 U	0.00853 U	0.016 U	0.0028 U	0.003 U
Tetrachloroethene	150	1.3	0.00989 U	0.0084 U	0.237	0.00703 U	0.00776 U	0.00819 U	0.00853 U	0.007 U	0.0028 U	0.003 U
trans-1,2-Dichloroethene	500	0.19	0.00989 U	0.0084 U	0.00862 U	0.00703 U	0.00776 U	0.00819 U	0.00853 U	0.0042 U	0.0042 U	0.0046 U
Trichloroethene	200	0.68	0.00989 U	0.0084 U	0.0947	0.0232	0.00776 U	0.00819 U	0.00853 U	0.0028 U	0.0028 U	0.003 U
Trichlorofluoromethane	NA	NA	0.00989 U	0.0084 U	0.00862 U	0.00703 U	0.00776 U	0.00819 U	0.00853 U	0.014 U	0.014 U	0.015 U
Vinyl Chloride	13	0.02	0.00989 U	0.0084 U	0.00862 U	0.00703 U	0.00776 U	0.00819 U	0.00853 U	0.0056 U	0.0056 U	0.0061 U

(Table notes included on Page 4)

				Post Excavation Results								
SAMPLE DESIGNATION	NYSDEC	NYSDEC	North Wall - 1	East Wall - 1	South Wall - 2	West Wall -1	Bottom - 1	North Wall - 2	East Wall - 2	West Wall - 2	Bottom - 2	
SAMPLE DEPTH (FT BGS)	6 NYCRR Part 375	6 NYCRR Part 375	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	
SAMPLING DATE	Commercial	Protection of	6/10/2009	6/10/2009	6/10/2009	6/10/2009	6/10/2009	6/12/2009	6/12/2009	6/12/2009	6/12/2009	
SAMPLED BY		Groundwater	H&A	H&A	H&A	H&A	H&A	H&A	H&A	H&A	H&A	
UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	
VOCs by 8260B												
Acetone	500	0.05	0.0775	0.0483 U	0.0515 U	0.0453 U	0.0344 U	0.0467 U	0.0413 U	0.0543 U	0.581	
cis-1,2-Dichloroethene	500	0.25	0.685	0.264	0.0345	6.57 E	3.1 E	1	0.0356	0.268	3.04 E	
Tetrachloroethene	150	1.3	0.00958 U	0.0143	0.512	0.0512	0.00689 U	0.00934 U	0.835	0.0109 U	0.00902 U	
trans-1,2-Dichloroethene	500	0.19	0.175	0.199	0.0129	0.865	0.993 E	0.279	0.016	0.0109 U	0.376	
Trichloroethene	200	0.68	0.299	0.521	0.174	0.782	0.00689 U	0.00934 U	0.334	0.0109 U	0.00902 U	
Trichlorofluoromethane	NA	NA	9.58 U	9.65 U	10.3 U	9.05 U	6.89 U	9.34 U	8.26 U	10.9 U	9.02 U	
Vinyl Chloride	13	0.02	0.00958 U	0.00965 U	0.0103 U	0.0353	0.00689 U	0.0573	0.00826 U	0.0109 U	0.00902 U	

NOTES:

U: Not detected; Number indicated is laboratory detection limit

VOCs: Volatile Organic Compounds by EPA Method 8260B.

E: Value is estimated.

BGS: Below Ground Surface

1. Shaded cells indicate soil conditions pre-interim remedial measure excavation. Post excavation results are shown at the end of this table.

2. Soil analytical results compared to the New York State Department of Environmental Conservation, Division of Environmental

Remediation 6 NYCRR Part 375 Environmental Remediation Programs Restricted Soil Cleanup Objectives for Commercial Sites,

dated 14 December 2006.

3. Only detected compounds are shown.

SAMPLE DESIGNATION	NYSDEC	H	A-1		HA-2			HA-3	
WELL SCREEN DEPTH (FT BGS)	TOGS 1.1.1	37-	47 ft		30-40 ft			30-40 ft	
SAMPLING DATE		1/23/2007	9/2/2009	1/23/2007	12/18/2008	9/2/2009	1/23/2007	12/18/2008	9/2/2009
SAMPLED BY		Ha	&A		H&A			H&A	
UNITS	μg/kg	μg	/kg		μg/kg			μg/kg	
VOCs by 8260B									
Acetone	50	37.4		10 U	5 U		18.5	5 U	
Chloroethane	5	2 U	2 U	2 U	1 U	2 U	2 U	1 U	2 U
cis-1,2-Dichloroethene	5	2 U	2 U	2 U	0.5 U	2 U	2 U	0.5 U	2 U
Tetrachloroethene	5	2 U	2 U	2 U	0.5 U	2 U	2 U	0.5 U	2 U
trans-1,2-Dichloroethene	5	2 U	2 U	2 U	0.75 U	2 U	2 U	0.75 U	2 U
Trichloroethene	5	2 U	2 U	2 U	0.5 U	2 U	2 U	0.5 U	2 U
Vinyl Chloride	2	2 U	2 U	2 U	1 U	2 U	2 U	1 U	2 U

SAMPLE DESIGNATION	NYSDEC		HA-4		HA-	105	HA	HA-106		-107	HA-208
WELL SCREEN DEPTH (FT BGS)	TOGS 1.1.1		30-40 ft		6.6-1	6.6 ft	6.1-1	6.1 ft	4.8-1	4.8 ft	10-20 ft
SAMPLING DATE		1/23/2007	12/18/2008	9/2/2009	12/19/2008	9/3/2009	12/19/2008	9/3/2009	12/18/2008	9/2/2009	9/3/2009
SAMPLED BY			H&A		H&	λA	Hð	хA	Hð	хA	H&A
UNITS	μg/kg		μg/kg		μg/	′kg	μg	/kg	μg	/kg	µg/kg
VOCs by 8260B											
Acetone	50	43.2	5 U		25 U		5 U		5 U		
Chloroethane	5	2 U	1 U	2 U	5 U	6.98	1 U	2 U	1 U	2 U	2 U
cis-1,2-Dichloroethene	5	5.82	0.5 U	2 U	210	131	0.5 U	2 U	0.5 U	2 U	2 U
Tetrachloroethene	5	2 U	0.5 U	2 U	15	5.66	0.5 U	2 U	0.5 U	2 U	2 U
trans-1,2-Dichloroethene	5	2 U	0.75 U	2 U	27	26.3	0.75 U	2 U	0.75 U	2 U	2 U
Trichloroethene	5	2 U	0.5 U	2 U	9.2	6.23	0.5 U	2 U	0.5 U	2 U	2 U
Vinyl Chloride	2	2 U	1 U	2 U	11	11.8	1 U	2 U	1 U	2 U	2 U

SAMPLE DESIGNATION	NYSDEC	HA-209		MW-12		MW-14			MW-15	MW	′-15R
WELL SCREEN DEPTH (FT BGS)	TOGS 1.1.1	5-15 ft		9-14 ft			9-14 ft		11-16 ft	10.5-	15.5 ft
SAMPLING DATE		9/3/2009	6/12/2006	12/19/2008	9/2/2009	6/12/2008	12/18/2008	9/2/2009	6/13/2006	12/19/2008	9/2/2009
SAMPLED BY		H&A	Stantec	H&	хA	Stantec	H&	kА	Stantec	H	&A
UNITS	µg/kg	µg/kg		μg/kg			μg/kg		μg/kg	μg	/kg
VOCs by 8260B											
Acetone	50		10 U	5 U		10 U	5 U		10 U	5 U	
Chloroethane	5	2 U	2 U	1 U	2 U	2 U	1 U	2 U	2 U	1 U	2 U
cis-1,2-Dichloroethene	5	2 U	191	50	127	26.1	44	42	6.77	30	17.2
Tetrachloroethene	5	2 U	2 U	11	2 U	2.19	5.8	3.3	6.54	0.56	2 U
trans-1,2-Dichloroethene	5	2 U	10.4	25	14	2.06	4.1	7.97	2 U	4.8	7.1
Trichloroethene	5	2 U	2 U	0.53	2 U	2.48	1.8	8.07	2 U	0.5 U	2 U
Vinyl Chloride	2	2 U	2 U	14	10.6	2 U	1 U	2 U	2 U	1 U	2.44

(Table notes included on Page 4)

SAMPLE DESIGNATION	NYSDEC	MW-18	MW	-18R	MW-21	MW-22	MW-	22R	MW-23
WELL SCREEN DEPTH (FT BGS)	TOGS 1.1.1	8-13 ft	ft 10-15 ft		10.5-15.5 ft	10.5-15.5 ft	5.2-15.2 ft		8-13 ft
SAMPLING DATE		6/13/2006	12/18/2008	11/18/2009	6/22/2006	6/22/2006	12/18/2008	9/2/2009	6/22/2006
SAMPLED BY		Stantec	Ha	хA	Stantec	Stantec	H&	A	Stantec
UNITS	µg/kg	μg/kg	μg	/kg	µg/kg	μg/kg	$\mu g/$	kg	µg/kg
VOCs by 8260B									
Acetone	50	30.2	50 U		10 U	10 U	5 U		100 U
Chloroethane	5	2 U	10 U	2 UJ	2 U	2 U	1 U	2 U	20 U
cis-1,2-Dichloroethene	5	169	420	15.2 J	2 U	30.7	19	14.3	758
Tetrachloroethene	5	5.03	5 U	2 UJ	2 U	2 U	0.5 U	2 U	349
trans-1,2-Dichloroethene	5	3.56	88	18.4 J	2 U	2 U	1.2	2.59	20 U
Trichloroethene	5	28.6	5 U	2 UJ	2 U	2 U	0.5 U	2 U	426
Vinyl Chloride	2	2 U	63	1.999 UJ	2 U	2 U	1 U	2 U	28

NOTES:

--: Analyte Not Sampled

NA :Not applicable

U: Not detected; number indicated is laboratory detection limit

J: Value is estimated below laboratory detection limits

VOCs: Volatile Organic Compounds by EPA Method 8260B.

TOGS 1.1.1: New York State Department of Environmental Conservation Ambient Water Quality Standards and Guidance Values

1. Bold values indicate an exceedance of TOGS 1.1.1 Standards and Guidance Values.

2. Only detected compounds are shown.

TABLE 3 -SUMMARY OF RESIDENTIAL SUMP QUALITY DATA UNITED CLEANERS FACILITY HENRIETTA, NEW YORK NYSDEC SITE # HW828152

LOCATION		18 Prince Charles Circle		26 Prince Cl	harles Circle
SAMPLE DESIGNATION	NYSDEC	Sump-18		Sum	p-26
WELL SCREEN DEPTH (FT BGS)	TOGS 1.1.1	Ν	/A	N	/A
SAMPLING DATE		3/17/2009	3/17/2009 9/3/2009		9/2/2009
SAMPLED BY		H&A	H&A	H&A	H&A
MATRIX		Aqu	Aqueous		eous
UNITS	μg/kg	μg	/kg	μg	/kg
VOCs by 8260B					
Bromodichloromethane	50	0.5 U		4	
Chloroform	7	1.8		99	
cis-1,2-Dichloroethene	5	7.3	14.8	4	4.89

NOTES:

--: Not Analyzed

U: Not detected; number indicated is laboratory detection limit

VOCs: Volatile Organic Compounds by EPA Method 8260B.

TOGS 1.1.1: New York State Department of Environmental Conservation Ambient Water Quality Standards and Guidance Values

1. Bold values indicate an exceedance of TOGS 1.1.1 Standards and Guidance Values.

2. Only detected compounds are shown.

TABLE 4 -SUMMARY OF AIR QUALITY DATA - RESIDENCES UNITED CLEANERS FACILITY HENRIETTA, NEW YORK NYSDEC SITE # HW828152

LOCATION	18 Prince Charles Circle				26 Prince Charles Circle					
SAMPLE TYPE	Indo	or Air	Outdoor Air	Sub-Slab Vapor	Indo	or Air	Outdo	Sub-Slab Vapor		
SAMPLE ID	IA-18-031809	IA-18B-010610	AA-18-031809	SS-18A-010610	IA-26-032309	IA-26B-010510	AA-26-032309	AA-26B-010510	SS-26A-010510	
SAMPLING DATE	18-Mar-09	5-Jan-10	18-Mar-09	5-Jan-10	23-Mar-09	5-Jan-10	23-Mar-09	5-Jan-10	5-Jan-10	
VALIDATION DATE	17-Apr-09	19-Feb-10	17-Apr-09	19-Feb-10	17-Apr-09	19-Feb-10	17-Apr-09	19-Feb-10	19-Feb-10	
LAB SAMPLE ID	L0903676-01	C1001023-004A	L0903676-02	C1001023-005A	L0903676-03	C1001023-001A	L0903676-04	C1001023-003A	C1001023-002A	
UNITS	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	
VOCs by TO-15 and TO-15 SIM										
1,2,4-Trimethylbenzene	1.03	1.1	0.982 U	1.0	0.982 U	0.80	0.982 U	0.75 U	0.75 U	
1,3,5-Trimethybenzene	0.982 U	0.6	0.982 U	0.55	0.982 U	0.55 J	0.982 U	0.75 U	0.75 U	
2,2,4-Trimethylpentane	1.17	0.71 U	0.934 U	0.71 U	1.43	0.71 U	0.934 U	0.71 U	0.71 U	
2-Butanone (MEK)	3.6	2.9	4.51	8.1 J	2.54	1.7	4.5	0.54 J	3.3	
2-Hexanone (MBK)	0.819 U	1.2 U	1.34	1.2	0.819 U	1.2 U	2.42	1.2 U	1.2 U	
4-Methyl-2-pentanone (MIBK)	1.1	1.2 U	0.819 U	0.87 J	0.819 U	1.2 U	0.819 U	1.2 U	1.2 U	
Acetone	57.2	27	35.8	47	82.1 J	85	37.1	10	58	
Benzene	2.58	1.9	0.95	0.97	2.37	1.7	1.16	0.52	16	
Carbon disulfide	0.662 U	0.60	0.662 U	2.6	0.662 U	0.47 U	0.662 U	0.47 U	22	
Carbon tetrachloride	1.26 U	0.58	1.26 U	0.51	1.26 U	0.51	1.26 U	0.38	0.38	
Chloroform	1.9	0.74 U	0.976 U	0.74 U	11.3	0.55 J	0.976 U	0.74 U	1.3	
Chloromethane	1.32	0.97	1.32	0.23 J	1.58	0.31 U	1.19	0.59	0.31 U	
Cyclohexane	0.688 U	1.4	0.688 U	1.0	0.688 U	1.2	0.688 U	0.52 U	31	
Dichlorodifluoromethane (Freon 12)	2.42	1.9	2.5	1.9	2.5	2.0	2.56	1.9	1.9	
Ethanol	1120	NA	6.72	NA	1080	NA	15.1	NA	NA	
Ethyl Acetate	7.96	1.6 J	1.8 U	0.92 UJ	1.8 U	0.70 J	1.8 U	0.92 UJ	0.92 UJ	
Ethylbenzene	1.95	0.57 J	0.868 U	0.53 J	1.03	0.66 U	0.868 U	0.66 U	0.44 J	
Heptane	1.31	0.79	0.819 U	0.50 J	1.8	0.71	0.819 U	0.54 J	17	
Hexane	3.42	5.2	0.704 U	3.0	3.28	4.5	0.708	1.7	44	
Isopropanol	76.9	18	1.23 U	3.0	325	390	2.24	0.37 U	200	
Methylene chloride	1.74 U	6	1.74 U	4.6	1.74 U	4.2	1.74 U	2.9	1.8	
o-Xylene	1.91	0.66	0.868 U	0.82 J	1.13	0.49 J	0.868 U	0.66 U	0.66 U	
p/m-Xylene	5.68	1.7	1.74 U	1.7	3.23	1.4	1.74 U	1.3 U	1.2 J	
Propylene	0.344 U	0.26 UJ	4.19 J	0.26 UJ	0.344 U	0.26 UJ	4.24 J	0.26 UJ	0.26 UJ	
Tetrachloroethene	1.36 U	0.76 J	1.36 U	1.0 U	1.36 U	1.0 U	1.36 U	1.0 U	1.0 U	
Toluene	14	4.5	2.74	3.2	11.6	3.3	3	0.73	8.8	
Trichloroethene	1.07 U	0.27	1.07 U	0.22 U	1.07 U	0.22 U	1.07 U	0.22 U	0.22 U	
Trichlorofluoromethane (Freon 11)	1.4	1.0	1.31	0.97	3.74	3.1	1.33	0.91	2.2	
Vinyl chloride (SIM)	0.051 U	NA	0.056	NA	0.051 U	NA	0.051 U	NA	NA	

TABLE 4 -SUMMARY OF AIR QUALITY DATA - RESIDENCES UNITED CLEANERS FACILITY HENRIETTA, NEW YORK NYSDEC SITE # HW828152

NOTES:

Analyzed using EPA Method TO-15

 $\mu g/m^3$ = micrograms per cubic meter.

 U = the analyte was analyzed for but not detected above the reporting limit.

J = the analyte concentration is estimated due to detection bewteen the MDL and RL, initial calibration % relative standard deviation non-compliance, or co-elution with a non-target analyte.

UJ = the analyte was not detected above the reporting limit, however, the reporting limit is estimated due to initial calibration % relative standard deviation non-compliance.

NA = not analyzed

1. Only detected compounds are shown

2. Bolded compounds indicate Site compounds of concern.

TABLE 5 -SUMMARY OF AIR QUALITY DATA - PLAZA BUILDING UNITED CLEANERS FACILITY HENRIETTA, NEW YORK NYSDEC SITE # HW828152

										Former	Former Liquor
LOCATION	Outdoor Air		Former Play-It-Again-Sports		Family Dollar			Country Max	Hollywood Video	Store	
SAMPLE TYPE	Outdo	or Air	Sub-Slab Vapor	Indo	or Air	Sub-Slab Vapor	Indoo	or Air	Indoor Air	Indoor Air	Indoor Air
SAMPLE ID	AA-1-032009	AA-100318	SS-1-032009	IA-1-032009	IA-100318 VS	SS-2-032009	IA-2-032009	IA-100318 FD	IA-100318 CM	IA-100318 HV	IA-100318 LS
SAMPLING DATE	20-Mar-09	18-Mar-10	20-Mar-09	20-Mar-09	18-Mar-10	20-Mar-09	20-Mar-09	18-Mar-10	18-Mar-10	18-Mar-10	18-Mar-10
	17-Apr-09	1-Apr-10	17-Apr-09	17-Apr-09	1-Apr-10	17-Apr-09	17-Apr-09	1-Apr-10	1-Apr-10	1-Apr-10	1-Apr-10
LAB SAMPLE ID	L0903676-07	L1004082-01	L0903676-05	L0903676-06	L1004077-01	L0903676-09	L0903676-08	L1004079-01	L1004075-01	L1004076-01	L1004080-01
UNITS	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$
VOCs by TO-15 and TO-15 SIM	10	10		10				10			
1,2,4-Trimethylbenzene	0.982 U		5.76	4.81		6.73	2.85				
1,2-Dichlorobenzene	1.2 U		1.2 U	3.06		1.2 U	1.5				
1,2-Dichloroethane	0.809 UJ		0.809 UJ	0.89 J		0.809 UJ	4.37 J				
1,3,5-Trimethybenzene	0.982 U		3.24	1.52		5.93	1.08				
1,3-Butadiene	0.442 U		0.442 U	0.442 U		0.442 U	0.663				
1,4-Dichlorobenzene	1.2 U		1.2 U	1.2 U		1.2 U	21				
2,2,4-Trimethylpentane	0.934 U		0.934 U	0.934 U		0.934 U	0.934 U				
2-Butanone	0.589 U		7.08	2.5		6.9	5.83				
2-Hexanone	0.819 U		2.24	0.819 U		0.819 U	0.819 U				
4-Ethyltoluene	0.982 U		1.29	1.08		1.76	0.982 U				
Acetone	5.33		122 J	18.4 J		25.5 J	224 J				
Benzene	0.638 U		3.04	1.76		27.2	7.47				
Carbon disulfide	0.662 U		2.33	0.662 U		3.87	0.662 U				
Chloroform	0.976 U		0.976 U	0.976 U		4.33	2.73				
Chloromethane	1.15		0.413 U	2.06		0.413 U	1.59				
cis-1,2-Dichloroethene	0.792 U	0.792 U	0.792 U	0.792 U	0.792 U	0.792 U	0.792 U	0.792 U	0.998	0.792 U	0.792 U
Cyclohexane	0.688 U		15.8	0.688 U		8.62	1.03				
Dichlorodifluoromethane	2.6		3.28	3.36		3.79	3.21				
Ethanol	4.71 U		43.5	55.9		13.9	162				
Ethyl Acetate	1.8 U		1.8 U	1.8 U		1.8 U	22.3				
Ethylbenzene	0.868 U		3.6	0.868 U		12.9	1.78				
Isopropanol	1.23 U		9.11	14.1		4.33	17.3				
Methylene chloride	1.74 U		1.74 U	2.15		1.74 U	1.74 U				
4-Methyl-2-pentanone	0.819 U		0.819 U	1.15		0.819 U	2.33				
p/m-Xylene	1.74 U		17.5	1.74 U		59.4	3.34				
o-Xylene	0.868 U		7.2	0.868 U		21.6	1.43				
Heptane	0.819 U		38	0.819 U		24.5	0.942				
n-Hexane	0.704 U		22.4	1.06		18.1	5.11				
Propylene	0.344 U		0.344 U	0.344 U		1.42 J	0.344 U				
Styrene	0.851 U		0.851 U	0.851 U		0.851 U	1.74				
Tetrachloroethene	1.36 U	1.36 U	225	62.6	1.36 U	204	30	1.61	1.36 U	1.36 U	1.36 U
Tetrahydrofuran	0.589 U		6.99	0.884		2.38	0.678				
Toluene	0.753 U		14	1.88		59.3	29.9				
Trichloroethene	1.07 U	0.107 U	10.8	23.1	6.78	10.2	11.9	4.98	0.666	0.107 U	0.156
Trichloroethene (SIM)	0.107 U		NA	23.9		NA	12.3				
Trichlorofluoromethane	1.31		1.36	1.4		4.48	3.48				
Vinyl acetate	0.704 U		0.704 U	0.704 U		0.704 Ŭ	0.704 U				
Vinyl bromide	0.874 U		0.874 U	0.874 U		0.874 U	0.874 U				
Vinyl chloride	0.511 U		0.511 U	0.511 U		0.511 U	0.511 U				
Vinyl chloride (SIM)	0.051 U	0.255	NA	0.051 U	0.051 U	NA	0.051 U	0.051 U	0.051 U	0.051 U	0.051 U

TABLE 5 -SUMMARY OF AIR QUALITY DATA - PLAZA BUILDING UNITED CLEANERS FACILITY HENRIETTA, NEW YORK NYSDEC SITE # HW828152

(Table notes included on Page 2)

NOTES:

Analyzed using EPA Method TO-15

U = the analyte was analyzed for but not detected above the reporting limit.

J = the analyte concentration is estimated due to detection bewteen the MDL and RL, initial calibration % elative standard deviation non-compliance, or co-elution with a non-target analyte.

UJ = the analyte was not detected above the reporting limit, however, the reporting limit is estimated due to initial calibration % relative standard deviation non-compliance.

-- = results not reported by the laboratory

1. Only detected compounds are shown

2. Bolded compounds indicate Site compounds of concern.
Table 6 – Emergency Contact Information is located within Section2.5.1 in the text

Table 7 – Contact Numbers is located within Section 2.5.1 in the text

Table 8 – Monitoring/Inspection Schedule is located within Section3.1.2 in the text

Table 9 – Monitoring Well Network Summary is located withinSection 3.3.1 in the text

					Riser Elevation	Well
Well Name	Date Installed	Well Diameter	Depth (bgs)	Screen Interval	(NGVD 29)	Completion
HA-1	1/18/2007	2 in	48 ft	37-47 ft	572.57	Flush Mount
HA-2	1/18/2007	2 in	42 ft	30-40 ft	571.69	Stick-Up
HA-3	1/18/2007	2 in	42 ft	30-40 ft	573.83	Stick-Up
HA-4	1/17/2007	2 in	42 ft	30-40 ft	573.36	Stick-Up
HA-105	12/2/2008	2 in	16.6 ft	6.6-16.6 ft	564.87	Stick-Up
HA-106	12/2/2008	2 in	16.1 ft	6.1-16.1 ft	564.89	Stick-Up
HA-107	12/1/2008	2 in	15 ft	4.8-14.8 ft	573.06	Stick-Up
HA-208	8/11/2009	2 in	15 ft	5-15 ft	557.28	Flush Mount
HA-209	8/11/2009	2 in	20 ft	10-20 ft	564.25	Flush Mount
MW-12	6/9/2006	1 in	14 ft	9-14 ft	Not Surveyed	Flush Mount
MW-14	6/9/2006	1 in	14 ft	9-14 ft	Not Surveyed	Flush Mount
MW-15R	12/2/2008	2 in	15.5 ft	10.5-15.5 ft	572.24	Flush Mount
MW-18R	11/9/2009	2 in	15.1 ft	10.1-15.1 ft	571.27	Flush Mount
MW-21	Decommissioned in December 2008					
MW-22R	12/2/2008	2 in	15.2 ft	5.2-15.2 ft	571.07	Flush Mount
MW-23		D	ecommission	ed in December 20	08	

NOTES:

1. Wells MW-12, MW-14, MW-15R, and MW-18R were wells previously installed by Stantec as part of Phase II investigations.

They were overdrilled by Haley & Aldrich in 2006.

2. MW-18R was destroyed during IRM excavation activities. It was re-installed in 2009.

Table 11 – Schedule of Monitoring/Inspection Reports is locatedwithin Section 3.6 in the text

TABLE 12 -APPLICABLE SOIL CLEANUP OBJECTIVES UNITED CLEANERS FACILITY HENRIETTA, NEW YORK NYSDEC SITE # HW828152

	NYSDEC Soil Cleanup Objectives			
	(Restric	cted Use)	Eastern United States	
	(npm)	(ppm)	Background Levels	
	(ppm)	(ppm)		
Metals				
Arsenic	16 ²	16 ²	3-12	
Barium	820	400	15-600	
Bervllium	47	47	0-1.75	
Cadmium	7.5	7.4	0.1-1	
Chromium, hexavalent ¹	19	19	1 5-40	
Chromium, trivalent ¹		1500	1.5-40	
Copper	1720	270	1-50	
Total Cvanide ¹	40	270		
Lead	450	450	200-500	
Manganese	2000 2	2000 -2	50,5000	
Total Maroury	0.73	0.73	0.001.0.2	
Niekel	0.75	120	0.5.25	
	130	130	0.3-23	
Selenium	4	4	0.1-3.9	
Silver	8.3	8.3		
Zinc	2480	2480	9-50	
PCBs/Pestacides				
2 3 5-TP Acid (Silvex)	3.8	3.8		
4 4'-DDF	17	17		
4 4'-DDT	136	47		
4 4' DDD	14	14		
Aldrin	0.10	0.10		
Alulin alaba BHC	0.19	0.19		
hoto BUC	0.02	0.02		
Chlandena (Alaba)	0.09	0.09		
Chlordane (Alpha)	2.9	2.9		
delta-BHC	0.25	0.25		
Dibenzoturan	210	210		
Dieldrin	0.1	0.1		
Endosulfan I	102	102		
Endosulfan II	102	102		
Endosulfan sulfate	1000 -	200		
Endrin	0.06	0.06		
Heptachlor	0.38	0.38		
Lindane	0.1	0.1		
Polychlorinated Biphenyls	3.2	1		
Semi-Volatile Organic Compounds				
Acenaphthene	98	98		
Acenanthylene	107	107		
Anthracene	1000 3	500 3		
Anumacene Banz(a)anthragana	12	14		
Benzo(a) nurana	22	1 -		
Benzo(a)pyrene	1.7	1 7		
Benzo(b)riuorantnene	1.7	1./ 500 ³		
Benzo(g,n,1)perylene	1000	500		
Character	1.7	1.7		
Chrysene D'In (1) d	1	1		
Dibenz(a,n)anthracene	1000	0.56		
Fluoranthene	1000	500*		
Fluorene	386	386		
Indeno(1,2,3-cd)pyrene	8.2	5.6		
m-Cresol	0.33 °	0.33 °		
Naphthalene	12	12		
o-Cresol	0.33 °	0.33 °		
p-Cresol	0.33 °	0.33 °		
Pentachlorophenol	0.8 °	0.8 °		
Phenanthrene	1000 °	500 ³		
Phenol	0.33 °	0.33 °		
Pyrene	1000 5	500 °		

TABLE 12 -APPLICABLE SOIL CLEANUP OBJECTIVES UNITED CLEANERS FACILITY HENRIETTA, NEW YORK NYSDEC SITE # HW828152

	NYSDEC Soil Cl		
	(Restric	Eastern United States	
	Protection of Groundwater	Imported Fill Requirements	Background Levels
	(ppm)	(ppm)	
Volatile Organic Compounds			
1,1,1-Trichloroethane	0.68	0.68	
1,1-Dichloroethane	0.27	0.27	
1,1-Dichloroethene	0.33	0.33	
1,2-Dichlorobenzene	1.1	1.1	
1,2-Dichloroethane	0.02^{2}	0.02 2	
cis-1,2-Dichloroethene	0.25	0.25	
trans-1,2-Dichloroethene	0.19	0.19	
1,3-Dichlorobenzene	2.4	2.4	
1,4-Dichlorobenzene	1.8	1.8	
1,4-Dioxane	0.1 °	0.1 °	
Acetone	0.05	0.05	
Benzene	0.06	0.06	
Butylbenzene	12	12	
Carbon tetrachloride	0.76	0.76	
Chlorobenzene	1.1	1.1	
Chloroform	0.37	0.37	
Ethylbenzene	1	1	
Hexachlorobenzene	3.2	3.2	
Methyl ethyl ketone	0.12	0.12	
Methyl tert-butyl ether	0.93	0.93	
Methylene Chloride	0.05	0.05	
n-Propylbenzene	3.9	3.9	
sec-Butylbenzene	11	11	
tert-Butylbenzene	5.9	5.9	
Tetrachloroethane	1.3	1.3	
Toluene	0.7	0.7	
Trichloroethene	0.47	0.47	
1,2,4-Trimethylbenzene	3.6	3.6	
1,3,5-Trimethylbenzene	8.4	8.4	
Vinyl Chloride	0.02	0.02	
Xylene (mixed)	1.6	1.6	

NOTES & ABBREVIATIONS:

-- = No Standard or Value

**The soil cleanup objectives herein are from the 6 NYCRR Part 375-6.8(b) dated 14 December 2006. In the event that revisions to the SCOs are published that post-date this SMP, the most recent iteration of the SCOs will be used.

- 1. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of thie contaminant is below the SCO
- For consituants where the calculated SCO was lower than the rural soil background concentration determined by the Department and Department of Health rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.
- 3. The SCOs were capped at a maximum value of 500 ppm.
- 4. This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.
- 5. The SCOs for the protection of groundwater were capped at a maximum value of 1000 ppm.
- 6. For constituents were the calculated SCO was lower than the contract required quantitation limit (CRQL), the CRQL is used as the SCO value.

APPLICABILITY:

This table presents the NYSDEC approved applicable Soil Cleanup Objectives

The cleanup objectives should be used as follows:

- Onsite Soils to be Reused Onsite On Site: Must be below the Resticted for Protection of Groundwater Standards.
- 2. Imported Offsite Fill for Use Onsite: Must be below Imported Fill Requirements.

Refer to the Excavation Plan (Appendix B) for additional information.

33587-004/CAD/Figure 1 - Project Locus 1.PDF

LEGEND:

TAX MAP PROPERTY (APPROXIMATE)

SITE BOUNDARY

PLAZA BUILDING

2-INCH MONITORING WELL LOCATIONS

1-INCH MONITORING WELL LOCATIONS

ONGOING GROUNDWATER MONITORING LOCATIONS

RESIDENTIAL PROPERTY ADDRESS

RESIDENTIAL LOCATIONS WHERE INDOOR AIR, OUTDOOR AIR, SUB-SLAB VAPOR, AND SUMP SAMPLING WAS CONDUCTED

NOTES:

1. WELL LOCATIONS ARE PER SURVEYS DATED 2007 & 2009 BY PARRONE ENGINEERING AND FISHER ASSOCIATES, RESPECTIVELY.

HALEY& UNITED CLEANERS 2199 EAST HENRIETTA ROAD HENRIETTA, NEW YORK

SITE PLAN WITH ONGOING MONITORING LOCATIONS

SCALE: AS SHOWN OCTOBER 2013

FIGURE 2

(HA-1 MW-14 MW-12 GROUND SURFACE MW-15 575 18 PRINCE CHARLES CIRCLE ROPERTY BOUNDARY FROM 3+32 TO 4+41 570 FILL FILL FILL FILL ___. FILL 565.82 NATIVE LACUSTRINE / NATIVE HA-105 ١ _ . _ . _ NATIVE A' 🕳 FILL - -562.67 HA-208 BOE 560 FILL (HA-208 . BOE BOE BOE BOE BOE LACUSTRINE FILL 555 BOE BOE LACUSTRINE 550.59 **王** 9/2009 **王** 550 GLACIAL TILL GLACIAL TILL H **¥**545.66 9/2009 GLACIAL TILL 545 ¥543.02 9/2009 GLACIAL TILL BOE 540 535 _____ LACUSTRINE LACUSTRINE RESIDENTIAL PROPERTIES LACUSTRINE 530 ?______ GLACIAL TILL GLACIAL TILL GLACIAL TILL BOE 525 BOE 520 0+00 0+10 0+20 0+30 0+40 0+50 0+60 0+70 0+80 0+90 1+00 1+10 1+20 1+30 1+40 1+50 1+60 1+70 1+80 1+90 2+00 2+10 2+20 2+30 2+40 2+50 2+60 4+80 4+90 HA 2+70 2+80 2+90 3+00 4+70 HORIZ. 60 SECTION A-A' - VIEW LOOKING SOUTH VERT. 0 15 SCALE IN FEET HA-107 Z HA-3 g^{MW#22} B-19 B–16 LEGEND: NOTES: 1. SUBSURFACE EXPLORATIONS B-1 THROUGH B/MW-23 WERE PERFORMED BY STANTEC BETWEEN 12 MAY TEST BORING / MONITORING WELL HA-4 AND 21 JUNE 2006. 2. SUBSURFACE EXPLORATIONS HA-1 THROUGH HA-209 WERE PERFORMED BY HALEY & ALDRICH BETWEEN JANUARY 2007 AND AUGUST 2009. B-5 STATIC GROUND WATER LEVEL DATE SHOWN 3. THE SECTION PLAN VIEW WAS BASED ON THE BORING LOCATIONS FOR: 2199 EAST HENRIETTA ROAD "SUBURBAN PLAZA" PREPARED BY PARRONE ENGINEERING THE DESTINGTION 2103 EACH THE NATIONAL THE NATIONAL PROVIDED BY FISHER ASSOCIATES DATED OCTOBER 2009. MW#15 AZA BUILDING STRATIGRAPHIC CHANGES 4. SUBSURFACE PROFILES DEPICT THE GENERAL GEOLOGIC CONDITIONS AT THE SITE AND ARE BASED ON INTERPRETATION OF DATA PROVIDED IN THE BORING LOGS. ACTUAL SOIL CONDITIONS AND INTERFACES BETWEEN EXPLORATIONS MAY VARY SIGNIFICANTLY FROM THOSE INDICATED ON THE PROFILES. MW#12 PLAZA BUILDING MW#14 5. INTERPRETATION OF GEOLOGIC CONDITIONS BASED, IN PART, ON DATA PROVIDED BY OTHERS. • \$S-1 MONITORING INTERVAL (WELL SCREEN) UNITED CLEANERS HALEY& UNITED CLEANERS 2199 EAST HENRIETTA ROAD ALDRICH HENRIETTA, NEW YORK BOE (BOTTOM OF EXPLORATION) SCHEMATIC SURFACE EXPLORATION PROFILE A-HA-1 SECTION A-A' SECTION PLAN VIEW SCALE: AS SHOWN NOT TO SCALE OCTOBER 2013

5MG ŝ -24-EXPLORATION ACE 00 AN

HALEY& ALDRICH	UNITED CLEANERS 2199 EAST HENRIETTA ROAD HENRIETTA, NEW YORK	
	SCHEMATIC SURFACE EXPLORATION PRO SECTION B-B'	OFILE
	SCALE: AS SHOWN	FIGURE 5

LEGEND:	
TAX MAP PROPERTY (APPROXIMATE)	
SITE BOUNDARY	
2-INCH MONITORING WELL LOCATIONS	↔ HA-106
GROUNDWATER ELEVATION (NGVD 29)	562.67
1-INCH MONITORING WELL LOCATIONS	• ^{MW-14}
RESIDENTIAL PROPERTY ADDRESS	18
RESIDENTIAL LOCATIONS WHERE INDOOR AIR, OUTDOOR AIR, SUB-SLAB VAPOR, AND SUMP SAMPLING WAS CONDUCTED	
GROUNDWATER CONTOURS (SEPT. 2009) FOR SHALLOW WELLS	
GROUNDWATER CONTOURS (SEPT. 2009) FOR DEEP WELLS	 -545
NOTES:	
1. GROUNDWATER DEPTHS THE TOP OF THE WELL RISE COLLECTED ON 2-3 SEPTEM	ARE IN INCHES AND MEASURED FROM IR. GROUNDWATER DEPTHS WERE IBER 2009.
2. SURVEY DATA PROVIDED 2009.	BY FISHER ASSOCIATES, OCTOBER
3) ONLY EXISTING WELLS A ADDITIONAL DETAIL.	RE SHOWN. REFER TO FIGURE 3 FOR
4) WELLS MW-12 AND MW-1 GROUNDWATER CONTOUR UNKNOWN. WELL MW-18 W/ GROUNDWATER CONTOUR DURING THIS EVENT.	4 WERE NOT INCLUDED IN THE S AS THE RISER ELEVATIONS ARE AS NOT INCLUDED IN THE S AS NO MEASUREMENT WAS TAKEN
ω-	z
0	80 160
	SCALE IN FEET

ALDRICH 2199 EAST HENRIETTA ROAD HENRIETTA, NEW YORK

SITE PLAN WITH 2009 GROUNDWATER SAMPLE LOCATIONS AND CONTOURS

SCALE: AS SHOWN OCTOBER 2013

FIGURE 6

COCICOMMONIPROJECTS\33587_SUBURBAN PLAZA\006_2014 SSD ACTIVITIES\2014-10-30_33587-004-0006 SUB-SLAB DEPRESS_R1

APPENDIX A

ENVIRONMENTAL EASEMENT & METES & BOUNDS

ROCHESTER, NY

Return To:

BOX 108

FRONTIER CENTER LLC

PEOPLE OF THE STATE OF NEW YORK

\$1.00

Receipt # 1272740

Index DEEDS

Book 11565 Page 263

No. Pages : 10

Instrument EASEMENT AGREEMENT

Date : 07/22/2015

Time : 02:01:00PM

Control # 201507220702

TT # TT0000018196

Ref 1 #

Employee : AlanaM

COUNTY FEE TP584	\$ 5.00
COUNTY FEE NUMBER PAGES	\$ 45.00
RECORDING FEE	\$ 45.00
STATE FEE TRANSFER TAX	\$ 0.00

Total	\$	95.00			
State of New York				TRANSFER	AMT
MONROE COUNTY CLERK'S OFFICE			-		
WARNING - THIS SHEET CONSTIT	UTES	THE CLERKS	TRANSFER	AMT	
ENDORSEMENT, REQUIRED BY SEC	TION	317-a(5) &			
SECTION 319 OF THE REAL PROP	ERTY	LAW OF THE			
STATE OF NEW YORK. DO NOT DE	TACH	OR REMOVE.			

CHERYL DINOLFO

MONROE COUNTY CLERK

PI182-201507220702-10

County: Monroe Site No: 828152 Order on Consent Index : B8-0786-08-06

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this <u>30</u>⁴ day of <u>June</u>, 20<u>15</u>, between Owner(s) Frontier Center, LLC, having an office at 90 Air Park Drive, Suite 301 Town of Chili, County of Monroe, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and 162 use

162.18-2-1.001

NECOR SEO

4

WHEREAS, Grantor, is the owner of real property located at the address of 2199 East Henrietta Road in the Town of Henrietta, County of Monroe and State of New York, known and designated on the tax map of the County Clerk of Monroe as tax map parcel numbers: Section 162.18 Block 2 Lot 1.001, being the same as that property conveyed to Grantor by deed dated April 30, 2013 and recorded in the Monroe County Clerk's Office in Liber and Page 1242563. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 13.270 +/- acres, and is hereinafter more fully described in the Land Title Survey dated October 7, 2013 and last updated June 11, 2015 prepared by David N. Zacharias, and SPLS with BME Associates, which will be attached to the Site Management Plan. The Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for regrediation established for the Controlled Property until such time as this Environmental Easement is

extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Order on Consent Index Number: B8-0786-08-06, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement")

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.

A. (1) The Controlled Property may be used for:

Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

(2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);

(3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;

(4) The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Monroe County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;

(5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

(6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

(7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

Environmental Easement Page 2

(8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

(9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;

(10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

B. The Controlled Property shall not be used for Residential or Restricted Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i) and (ii), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.

E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation

Law.

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:

(1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).

(2) the institutional controls and/or engineering controls employed at such site:

(i) are in-place;

(ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and

(iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;

(3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;

(4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;

(5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

(6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and

(7) the information presented is accurate and complete.

3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against

the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.

6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:	Site Number: 828152 Office of General Counsel NYSDEC 625 Broadway Albany New York 12233-5500		
With a copy to:	Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, NY 12233		

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the

Environmental Easement Page 5

÷

recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

Remainder of Page Intentionally Left Blank

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

Frontier Center LLC:

Bv:

Print Name: Richard Chiavanza

Title: Manager Date: 6-15-15

Grantor's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF)

WENDY J. THOMAS Notary Public, State of New York No. 01TH6153579 Qualified in Monroe County Commission Expires January 04, 2019 Notary Public - State of New

Environmental Easement Page 7

County: Monroe Site No: 828152 Order on Consent Index : B8-0786-08-06

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Robert W. Schick, Director Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF ALBANY)

On the 30^{11} day of 14^{11} , in the year 2015, before me, the undersigned, personally appeared Robert W. Schick, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

Notary Public State of New York

David J. Chiusano Notary Public, State of New York No. 01CH5032146 Qualified in Schenectady County Commission Expires August 22, 20

SCHEDULE "A" PROPERTY DESCRIPTION

ALL THAT TRACT OR PARCEL OF LAND containing 13.270 acres more or less, being more particularly bounded and described as follows:

Beginning at the intersection of the southerly boundary line of lands now or formerly of ABC Supply Co. (T.A. No. 162.14-1-21.1) with the westerly right-of-way line of East Henrietta Road (NYS Route 15A) (66' Right-of-Way); thence

1. S 06°11'37" W, a distance of 839.97 feet to a point; thence

2. N 81°23'30" W, a distance of 57.60 feet to a point; thence

3. N 70°39'30" W, a distance of 73.30 feet to a point; thence

4. S 88°20'15" W, a distance of 234.14 feet to a point of curvature; thence

5. Southwesterly, along a tangent curve to the left, having a radius of 50.00 feet, a distance of 71.62 feet to a point; thence

6. S 06°15'48" W, a distance of 73.87 feet to a point of curvature; thence

7. Southwesterly, along a tangent curve to the right, having a radius of 80.00 feet, a distance of 62.83 feet to a point; thence

8. S 51°15'48" W, a distance of 25.98 feet to a point; thence

9. S 87°58'18" W, a distance of 263.89 feet to a point; thence

10. S 25°37'20" W, a distance of 0.01 feet to a point; thence

11. N 06°15'48" E, a distance of 736.59 feet to a point; thence

12. S 83°35'56" E, a distance of 68.38 feet to a point; thence

13. N 43°27'09" E, a distance of 297.35 feet to a point; thence

14. N 01°54'43" W, a distance of 49.29 feet to a point; thence

15. N 87°59'08" E, a distance of 467.66 feet to the Point of Beginning.

Environmental Easement Page 9

APPENDIX B

EXCAVATION WORK PLAN

APPENDIX B – EXCAVATION WORK PLAN

Applicability of this Plan

The excavation work plan applies to the following:

- Replacement of a cover system and testing of soils for excavations that will breach the cover system (asphalt pavement) in the Soil Management Area (SMA) shown on Figure 7.
- Management of groundwater encountered during excavations in all portions of the site.
- Management of visually impacted soils identified in all portions of the site.

B-1 NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the site owner or their representative will notify the Department. Currently, this notification will be made to:

Mr. Matthew P. Gillette, P.E Regional Hazardous Waste Remediation Engineer 6274 East Avon-Lima Road Avon, New York 14414

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent, plans for site re-grading, intrusive elements or utilities to be installed below the soil cover in the SMA, estimated volumes of contaminated soil to be excavated and any work that may impact an engineering control,
- A summary of environmental conditions anticipated in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work,
- A summary of the applicable components of this EWP,

- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120,
- A copy of the contractor's health and safety plan, in electronic format, if it differs from the HASP provided in Appendix C of this document,
- Identification of disposal facilities for potential waste streams,
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

B-2 SOIL SCREENING METHODS

Visual, olfactory and instrument-based soil screening (photoionization detector (PID)) will be performed by a qualified environmental professional during all remedial and development excavations into known or potentially contaminated material (remaining contamination). Soil screening will be performed regardless of when the invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the No Further Action letter.

Soils will be segregated based on previous environmental data and screening results into material that requires off-site disposal, material that requires testing, material that can be returned to the subsurface, and material that can be used as cover soil. Characteristics of the types of stockpiles are shown in the table below.

Stockpile Characteristics	Reuse onsite without further testing (Section B-7)	May be reused onsite pending analytical testing (Section B-7)	Dispose offsite per applicable regulations and landfill requirements (Section B-4 through B-6)
Material excavated from outside the limits of the SMA that is not visually impacted with free product, oily material, or solid waste.	\checkmark		
Material excavated from within the SMA with no evidence of contamination (visual, olfactory, PID).		\checkmark	
Material excavated from within the SMA with evidence of impact (staining, odor, elevated PID hits)		\checkmark	
Material excavated that is visually impacted by oily material ¹			\checkmark

 Table B1: Types of Stockpiles and Management Options

 If this material is encountered during excavations, additional testing and reporting requirements may be required depending on the quantity and nature of impacted material identified. Refer to Section B-12 below.

B-3 STOCKPILE METHODS

Stockpiles will be kept covered at all times with appropriately anchored tarps, or on and beneath poly-sheeting with minimum of 6-mil thickness. If stockpiles are located near drainage wastes, or are larger than can be contained by poly-sheeting, soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced. Soils may also be containerized in appropriate containers (drums, rolloffs, etc.) if quantities warrant such management. Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC.

B-4 MATERIALS EXCAVATION AND LOAD OUT

In the event that excavation and load out of materials is required the following will occur (also refer to Section B-5 below):

- A qualified environmental professional or person under their supervision will oversee all invasive work and the excavation and load-out of all excavated material.
- The owner of the property and its contractors are solely responsible for safe execution of all invasive and other work performed under this Plan.
- The presence of utilities and easements on the site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the site.

B-5 MATERIALS TRANSPORT OFF-SITE

In the event that materials are planned to be removed from the site, the following will occur:

- All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.
- Material transported by trucks exiting the site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.
- Loaded vehicles leaving the site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements).

- Locations where vehicles enter or exit the site shall be inspected daily for evidence of off-site soil tracking.
- The qualified environmental professional will be responsible for ensuring that all
 egress points for truck and equipment transport from the site are clean of dirt and
 other materials derived from the site during intrusive excavation activities.
 Cleaning of the adjacent streets will be performed as needed to maintain a clean
 condition with respect to site-derived materials.
- All trucks will be washed prior to leaving the site. A truck wash will be operated on-site. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the site until the activities performed under this section are complete. Truck wash waters will be collected and disposed of off-site in an appropriate manner.
- Truck transport routes will be identified that will: (a) limit transport through residential areas and past sensitive sites; (b) take into account use of city mapped truck routes; (c) minimize off-site queuing of trucks entering the facility; (d) limit total distance to major highways; (e) promote safety in access to highways; and (f) consider overall safety in transport.
- Trucks will be prohibited from stopping and idling in the neighborhood outside the project site.
- Egress points for truck and equipment transport from the site will be kept clean of dirt and other materials during site remediation and development.
- Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Off-site queuing will be prohibited.

B-6 MATERIALS DISPOSAL OFF-SITE

All soil/fill/solid waste excavated and removed from the site will be treated as contaminated and regulated material and will be transported and disposed in accordance with all local, State (including 6NYCRR Part 360) and Federal regulations. If disposal of soil/fill from this site is proposed for unregulated off-site disposal (i.e. clean soil removed
for development purposes), a formal request with an associated plan will be made to the NYSDEC. Unregulated off-site management of materials from this site will not occur without formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the pre-excavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, i.e. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling facility, etc. Actual disposal quantities and associated documentation will be reported to the NYSDEC in the Periodic Review Report. This documentation will include: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-site will be handled, at minimum, as a Municipal Solid Waste per 6NYCRR Part 360-1.2. Material that does not meet Track 1 unrestricted SCOs is prohibited from being taken to a New York State recycling facility (6NYCRR Part 360-16 Registration Facility) without a beneficial use determination issued by NYSDEC.

B-7 MATERIALS REUSE ON-SITE

B-7.1 Criteria for Onsite Reuse

As noted in Section B-3 above, the following soils may be reused onsite:

- Soil from outside the limits of the SMA (Figure 7) that is not visually impacted with free product, oily material, or solid waste may be reused onsite without further testing.
- Soil from within the limits of the SMA (Figure 7) with no evidence of contamination (visible, olfactory, PID) may be reused onsite pending testing results described below.
- Soil from within the limits of the SMA with some evidence of impact (staining, odor, elevated PID hits), but that is not visually impacted with oily material may be reused onsite pending testing results described below.

Any demolition material proposed for reuse on-site will be sampled for asbestos and the results will be reported to the NYSDEC for acceptance. Concrete crushing or processing on-site will not be performed without prior NYSDEC approval. Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the site will not be reused on-site.

B-7.2 Sampling for Reuse Protocol

Soils that require testing prior to reuse will be tested as described below. If the soil will be disposed offsite, the disposal facility may require different and/or additional analysis. Chemical criteria for on-site reuse of material have been approved by NYSDEC and are listed in Table 12. Note that the SCOs listed in Table V represent the NYSDEC cleanup criteria as of the date of this SMP. Should those criteria be revised in the future, the most recent available cleanup criteria should be used.

- 1. Sampling will be conducted by a qualified owner representative, consultant, or contractor.
- 2. Each sample will be collected using a decontaminated or new stainless steel, or plastic disposable device (hand trowel, shovel, scoop, hand augers, or other appropriate sampling equipment). To minimize the potential for cross-contamination, disposable sampling equipment will be used if possible. If sample equipment is reused, the equipment will be decontaminated prior to each use using the following procedure:
 - a. Potable water/non-phosphate detergent (i.e. Alconox) solution wash
 - b. Potable or distilled water rinse
 - c. Wipe or air dry
- 3. Sampling frequency and laboratory analysis will be based on planned reuse of the soil (offsite or onsite):
 - a. If the soil is being considered for reuse onsite, for similarly stockpiled/containerized soils, collect two (2) discrete samples per 1,000 cubic yards of material in laboratory provided samplers for

analysis for Volatile Organic Compounds (VOCs) via EPA Method 8260B.

- b. If the soil is being considered for reuse offsite, samples shall be collected at the frequency for the analytes shown in Table B-3 below.
- 4. Immediately upon collection, samples will be labeled and placed in coolers, chilled with ice to approximately 4°C. The sample labels will identify the soil stockpile or container group, sample type, time and date of collection, name of the sampler, and required analyses. Sealed sample coolers will be delivered with accompanying chain of custody documentation to an ELAP-certified laboratory for analysis of VOCs via EPA Method 8260B.
- 5. Based on the results of the sampling:
 - a. For onsite reuse, if VOC concentrations are below the protection of groundwater Soil Cleanup Objectives (Table 12), <u>the soil may be reused onsite</u>. If the soil is being considered for offsite reuse, the analytical results must comply with the requirements at the importing site.
 - b. If VOC concentrations are above the protection of groundwater SCOs, the soil must be disposed of offsite per applicable regulations and landfill requirements.

The qualified environmental professional will ensure that procedures defined for materials reuse in this SMP are followed and that unacceptable material does not remain on-site. Contaminated on-site material, including historic fill and contaminated soil, that is acceptable for re-use on-site will be placed below the demarcation layer or impervious surface, and will not be reused within a cover soil layer, within landscaping berms, or as backfill for subsurface utility lines.

B-8 FLUIDS MANAGEMENT

All liquids to be removed from the site, including excavation dewatering and groundwater monitoring well purge and development waters, will be handled, transported and disposed in accordance with applicable local, State, and Federal regulations.

Dewatering, purge and development fluids will not be recharged back to the land surface or subsurface of the site, but will be managed off-site.

Discharge of water generated during large-scale construction activities to surface waters (i.e. a local pond, stream or river) will be performed under a SPDES permit.

B-9 COVER SYSTEM RESTORATION

After the completion of soil removal and any other invasive activities the cover system in the SMA will be restored in a manner that complies with the Decision Document. A cover system is not required for other portions of the site. The demarcation layer, consisting of pavement will be replaced to provide a visual reference to the top of the 'Remaining Contamination Zone', the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this Site Management Plan. Other acceptable barriers include placement of a demarcation layer and at least 1 foot of imported clean cover material (free of industrial and/or other potential sources of chemical contamination).

If the type of cover system changes from that which exists prior to the excavation, this will constitute a modification of the cover element of the remedy and the upper surface of the 'Remaining Contamination. A figure showing the modified surface will be included in the subsequent Periodic Review Report and in any updates to the Site Management Plan.

B-10 BACKFILL FROM OFF-SITE SOURCES

All materials proposed for import onto the site will be approved by the qualified environmental professional and will be in compliance with provisions in this SMP prior to receipt at the site. Refer to the table below for appropriate backfill sources and pre-screening requirements.

Trucks entering the site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

Material and source	May be used onsite without further testing	May be used onsite pending analytical testing (Section B-10.1)	May not be used onsite
Commercially purchased bagged topsoil used for landscaping purposes.	\checkmark		
Gravel, rock, or stone (non-soil) consisting of virgin material from a permitted mine or quarry.	\checkmark		
Recycled concrete or brick from a DEC registered C&D processing facility ^{1,2} .	\checkmark		
Soil or sand imported from a virgin mine or pit.		\checkmark	
Material (including gravel, rock, stone, sand, soil, etc.) from sources other than a virgin mine or pit.		\checkmark	
Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites.			\checkmark
Material that meets the definition of solid waste.			\checkmark

Table B2: Types of Backfill Sources Pre-Screening Requirements

 Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this site, will not be imported onto the site without prior approval by NYSDEC. Solid waste will not be imported onto the site.

^{1.} Recycled material must conform to the requirements of Section 304 of the New York State Department of Transportation *Standard Specifications Construction and Materials Volume 1 (2002)*.

B-10.1 Sampling Protocols for Offsite Backfill Sources

All imported soils that require testing will meet the backfill and cover soil quality standards established in 6NYCRR 375-6.7(d). Based on an evaluation of the land use, protection of groundwater and protection of ecological resources criteria, the resulting soil quality standards are considered the lower of the protection of groundwater SCOs and commercial use SCOs and are listed in Table 12. The SCOs listed in Table 12 represent the most recent iteration NYSDEC soil criteria prepared as of the date of this SMP. Should those soil criteria be revised in the future, the most recent available cleanup criteria should be used.

For the sources listed above that require analytical testing, the testing shall consist of the following in accordance with the May 2010 DER-10:

Target Compound List VOCs (EPA Method 8276B) Target Compound List SVOCs (EPA Method 8270C) Target Analyte List Metals + Cyanide (EPA Method 6010/7471) PCBs & Pesticides (EPA Method 8081)

Testing shall be performed by an ELAP-certified laboratory. The frequency of sampling will depend on the source of the material as follows:

- <u>Soil or sand from a virgin mine or pit</u>: Two (2) discrete samples for VOCs and one (1) composite sample for SVOCs, inorganic compounds, PCBs, and pesticides from the initial 100 cubic yards of material, only.
- <u>Materials from other sources</u>: Sample at a frequency based on the amount of material per the table below or at a frequency agreed upon with the NYSDEC.

Soil Quantity (cubic yards)	VOCs (discrete samples)	SVOCs, Inorganics, PCBs & Pesticides (composite samples ¹)
0-50	1	1
50-100	2	1
100-200	3	1
200-300	4	1
300-400	4	2
400-500	4	2
500-800	6	2
800-1,000	7	2
>1,000	Add an additional 2 VOC an additional 1,000 cubic yards	d 1 composite for each or consult the NYSDEC.

Table B3: Recommended Sampling Frequency for Imported Materials and Materials Considered for Offsite Reuse Requiring Testing

1. 3-5 discrete samples from different locations in the fill being provided will comprise a composite sample for analysis.

B-11 STORMWATER POLLUTION PREVENTION

If construction or excavation is performed that exceeds the criteria for construction-related stormwater pollution prevention control, during the duration of construction and until cover is restored, barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC. All necessary repairs shall be made immediately.

Accumulated sediments will be removed as required to keep the barrier and hay bale check functional. All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials. Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters Silt fencing or hay bales will be installed around the entire perimeter of the construction area.

B-12 CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for full a full list of analytes (TAL metals; TCL volatiles and semi-volatiles, TCL pesticides and PCBs), unless the site history and previous sampling results provide a sufficient justification to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC for approval prior to sampling.

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the periodic reports prepared pursuant to Section 5 of the SMP.

B-13 COMMUNITY AIR MONITORING PLAN

The Contractor is required to perform air monitoring for its own activities, in conformance to the Contractor's HASP. In addition, the Contractor shall follow the community air monitoring procedures set forth in the NYSDOH Generic Community Air Monitoring Plan (CAMP), which is attached to this document as Appendix C. In addition to the monitoring stations required by the CAMP, a fixed monitoring station will also be located at the western site perimeter adjacent to the residential properties.

Exceedances of action levels listed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers.

B-14 ODOR CONTROL PLAN

This odor control plan is capable of controlling emissions of nuisance odors off-site. If nuisance odors are identified at the site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events. Implementation of all odor controls, including the halt of work, is the responsibility of the property owner's Remediation Engineer, and any measures that are implemented will be discussed in the Periodic Review Report.

Reasonable and customary means will be employed to prevent on- and off-site nuisances. These measures may include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous soils. If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for off-site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods.

If nuisance odors develop during intrusive work that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

B-15 DUST CONTROL PLAN

A dust suppression plan that addresses dust management during invasive on-site work will include, at a minimum, the items listed below:

- Dust suppression may be achieved though the use of a dedicated on-site water truck for road wetting or other suitable dust suppression techniques. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.

• On-site roads will be limited in total area to minimize the area required for water truck sprinkling.

B-16 OTHER NUISANCES

A plan will be developed and utilized by the contractor for all remedial work to ensure compliance with local noise control ordinances.

APPENDIX C

HEALTH & SAFETY PLAN AND COMMUNITY AIR MONITORING PLAN

HALEY & ALDRICH, INC. SITE-SPECIFIC HEALTH & SAFETY PLAN

For

United Cleaners Site Management Plan

Henrietta, New York

Project/File No. <u>33587-005</u>

Prepared by: Claire L. Mondello

Date: 09/24/2013

Revised by: Enter Revisor's Name

Date: Enter Date

APPROVALS: The following signatures constitute approval of this Health & Safety Plan

Many Boloch

Margaret B. Holt- Local H&S Coordinator

9/24/13

Date

Date printed: 10/24/2013 at 8:32 AM

Note: This HASP has been developed for Haley & Aldrich purposes only and is not for use by others.

TABLE OF CONTENTS

1.	PROJECT INFORMATION AND EMERGENCY RESOURCES	1
2.	SITE DESCRIPTION	4
3.	PROJECT TASK BREAKDOWN	6
4.	HAZARD ASSESSMENT	7
5.	PROTECTIVE MEASURES	18
6.	MONITORING PLAN AND EQUIPMENT	20
7.	DECONTAMINATION AND DISPOSAL METHODS	19
8.	CONTINGENCY PLANNING	22
9.	HEALTH & SAFETY PLAN ACKNOWEDGMENT FORM	24
10.	PRE-JOB SAFETY CHECKLIST	25
APP	ENDIX A - HASP AMENDMENT FORM	

APPENDIX B – ISSUANCE AND COMPLIANCE, SITE SAFETY OFFICER ROLES AND RESPONSIBILITIES, AND TRAINING REQUIREMENTS

1. PROJECT INFORMATION AND EMERGENCY RESOURCES

Project Name: United Cleaners Site Management Plan		H&A File No.: 33587-005
Location: 2199 East Henrietta Road, Henrietta, New York		
Client/Site Contact: Phone Number: Emergency Phone Number:	Mr. Ronald Cocquyt 585-783-3232	
H&A Project Manager: Phone Number: Emergency Phone Number:	Claire Mondello 585-321-4219 585-698-9052	
Local Health & Safety Coordinator: Emergency Phone Number:	Margaret Holt 585-321-4214 585-721-2426	
Nearest Hospital: Address: (see map on next page) Phone Number:	Strong Memorial Hosp 601 Elmwood Avenue Rochester, New York 585-275-2100	bital 14642
Nearest Occ. Health Clinic: http://www.talispoint.com/liberty/ext/ Address: (see map on next page) Phone Number	Strong Memorial Hosp 400 Red Creek DR. S Rochester, NY 14623 Phone 585-487-1000 Fax 585-487-1190	o. Occup HIth uite 220
Liberty Mutual Claim Policy	WC2-Z11-254100-032	
Other Local Emergency Response Number: Number:	911	
Other Ambulance, Fire, Police, or Environmental Emergency Resources:	911	

Work Scope:

This Site-Specific Health and Safety Plan addresses the health and safety practices and procedures that will be employed by all Haley & Aldrich employees participating in the site characterization of the Project Site. This plan is based on an assessment of the site-specific health and safety risks available to Haley & Aldrich and Haley & Aldrich's experience with other project sites. The scope of work for the Site Characterization includes:

<u>Task #1:</u> Conducting semi-annual/annual groundwater sampling of nine (9) onsite and offsite groundwater wells using conventional purge and bail methods.

<u>Task #2:</u> Oversight of excavations within the soil management area (SMA) and sampling of soil piles for reuse or disposal as directed by the client.

Task #3: Inspection of the sub-slab depressurization system suction and test points.

Date printed: 10/24/2013 at 8:32 AM

Note: This HASP has been developed for Haley & Aldrich purposes only and is not for use by others.

Subcontractor(s) to be involved in on-site activities:

Firm Name	Work Activity
N/A	N/A
N/A	N/A

Projected Start Date: TBD

Projected Completion Date: Not Applicable

Estimated Number of Days to Complete Field Work:

2-3 days for each groundwater sampling event.

325 ft

Site Specific Health & Safety Plan United Cleaners September 2013

Directions to the Nearest Hospital:

2199 E Henrietta Rd Rochester, NY 14623

1. Head east toward New York 15A/E Henrietta Rd

2. Turn left onto New York 15A/E Henrietta Rd 0.7 mi 3. Take the ramp onto I-390 N Ŷ 2.6 mi 4. Take exit 16 for New York 15A/E Henrietta Rd toward NY-15/W Henrietta Rd 0.2 mi 5. Continue toward E River Rd 0.1 mi 6. Keep right at the fork, follow signs for NY-15/W Henrietta Rd and merge onto E River Rd 0.9 mi 7. At the traffic circle, take the 1st exit onto Kendrick Rd 0.7 mi 8. Turn right onto Elmwood Ave Destination will be on the right 0.3 mi Strong Memorial Hospital 601 Elmwood Ave Rochester, NY 14642

2. SITE DESCRIPTION

Site Classification:

🗆 Industrial 🗖	Commercial	C Other	Specify
----------------	------------	---------	---------

General Description:

United Cleaners is located within the center of Suburban Plaza, comprising approximately 14.6 acres, located at 2199 East Henrietta Road, in Henrietta, NY. United Cleaners is bounded by a parking lot to the east, other commercial tenant space to the north and south, and a rear plaza driveway, a Town of Henrietta easement and then beyond which are residences to the west. The Suburban Plaza property is bounded on the east by East Henrietta Road beyond which are residences and vacant land, on the south by commercial retail properties, on the north by commercial retail properties, and on the west by a drainage swale beyond which are private residences.

Suburban Plaza consists of two main buildings containing retail stores and a restaurant outbuilding.

Land uses on the properties surrounding the Site generally include commercial properties and private single-family residential properties.

Background and Historic Site Usage:

The Site was reportedly undeveloped agricultural land until the late 1950s. Historical records indicate that the Suburban Plaza property was developed by 1959. United Cleaners has been the only occupant of the Plaza Building known to have used PCE or dry cleaning solvent.

According to historical records, United Cleaners began operating at the Suburban Plaza property in the 1970s. According to United Cleaners personnel, prior to 1993 United Cleaners was a pick-up/drop-off location and did not use PCE. Reportedly, they began use of PCE in 1993 and continued use of the dry cleaning solvent until 2009, when at the request of S-P Associates; United Cleaners converted their operation to the use of petroleum distillates and/or "environmentally friendly solvents."

Between 1993 and 2009, United Cleaners reported that they used approximately 180 gallons of PCE per year. Waste PCE was stored onsite (inside United Cleaners) in small (less than 55-gallon) poly drums. The drums were staged on top of grates over secondary containment pending recycling or disposal.

United Cleaners operates a dry cleaning plant and a pick-up/drop-off store. The dry cleaning solvent release identified at the Site is a result of United Cleaner's past operations

Project Scope:

Date printed: 10/24/2013 at 8:32 AM

The project scope consists of periodic groundwater sampling, inspection of the sub-slab depressurization system, and excavation oversight as documented in the Site Management Plan.

Overview of Hazards:

Hazards include:

- Chemical hazards from groundwater sampling activities
- Potential inclement weather
- Hazards from heavy equipment if excavation is conducted
- Potential underground utilities if excavation is conducted
- Overhead utilities if tall equipment is used
- Variable terrain

Site Status: Indicate current activity status and describe operations at the site.

Active

🗆 Inactive

C Other

Partially active

The facility currently operates as a retail plaza that includes parking.

Site Plan:

Is a site plan or sketch available?	V Y	🗆 N
-------------------------------------	-----	-----

Work Areas:

List/identify each specific work area(s) on the job site and indicate its location(s) on the site plan:

- 1. <u>Groundwater Monitoring</u> Exterior wells shown on the attached site plan
- 2. <u>Excavations</u> If excavations requiring oversight were to occur, they would be located to the west (behind) the United Cleaners space as shown on the attached site plan.
- 3. <u>SSD System Monitoring</u> Monitoring points are located throughout the interior of the plaza building in which United Cleaners is present.

PROJECT TASK BREAKDOWN

List and describe each distinct work task below.

3.

Task No.	Detailed Task Description	Employee(s)	Work Date(s) or Duration
1	Groundwater Monitoring	TBD	2-3 days
2	Excavation Oversight	TBD	TBD
3	SSD System Monitoring	TBD	1 day
4			

4. HAZARD ASSESSMENT

Material Safety Data Sheets (MSDS) of hazardous materials used during the execution of work shall be available on site. MSDSs are required for chemicals used to prepare samples, calibration gases, etc.

Chemical Hazards:

Does chemical analysis data indicate that the site is contaminated? V

Indicate the potential physical state of the hazardous materials at the site.

Gas/Vapor

Indicate the anticipated or actual class of compounds at the site.

□ Asbestos	Inorganics
□ BTEX	Pesticides
Chlorinated Solvents	Petroleum products
Heavy Metals	Cother Specify

Impacted Environments:

Indicate media in which contamination is expected.

✓ Air	Ground	lwater
Soil	C Sedime	ent
Surface water	C Other	Specify

Estimated concentrations:

Indicate medium of major chemicals expected to be encountered by onsite personnel.

			Anticipated
Work Activity	Media	Chemical	Concentration
Groundwater Monitoring	GW		GW: ND – 500 ug/L
	А	Chionnated VOCS	A: ND – 250 ug/m ³
Excavation Oversight	SO		SO: ND – 5 mg/kg
	GW	Chlorinated VOCs	GW: ND – 500 ug/L
	А		A: ND – 250 ug/m ³
Inspect SSD System	N/A	N/A	N/A
· ·			

(Media key: A = Air; GW = Groundwater; SW = Surface Water; SO = Soil; SE = Sediment)

Chemicals of Concern:

Trichloroethylene (TCE) is a colorless, nonflammable, non-corrosive liquid has a "sweet" odor characteristic of some chlorinated hydrocarbons.

The compound is incompatible with strong caustics, it reacts with aluminum when acidic, and it is incompatible with active metals - barium, lithium, sodium, magnesium, and titanium. Decomposition of TCE, due to contact with hot metal or ultraviolet radiation, forms products including chlorine gas, hydrogen chloride, and phosgene. Dichloroacetylene may be formed from the reaction of alkali with TCE.

The Cal-OSHA PEL for TCE is 25 PPM as an 8-hour TWA; an acceptable ceiling concentration of 300 PPM; and a STEL of 200 PPM. The OSHA PEL for TCE is 100 ppm as an 8-hour TWA; an acceptable ceiling concentration of 200 ppm; and an acceptable maximum peak ceiling of 300 ppm for no more than 5 minutes in any 2-hour period. The standard routes of entry in the body are through inhalation, percutaneous absorption, ingestion, skin and eye contact. The points of attack are the respiratory system, heart, liver, kidneys, central nervous system and skin.

Exposure to TCE vapor may cause irritation of the eyes, nose, and throat. The liquid, if splashed in the eyes, may cause burning irritation and damage. Repeated or prolonged shin contact with the liquid may cause dermatitis. Acute exposure to TCE depresses the central nervous system exhibiting such symptoms as headache, dizziness, vertigo, tremors, nausea and vomiting, irregular heart beat, sleepiness, fatigue, blurred vision, and intoxication similar to that of alcohol. Unconsciousness and death have been reported. Alcohol may make the symptoms of TCE overexposure worse. If alcohol has been consumed, the overexposed worker may become flushed. TCE addiction and peripheral neuropathy have been reported.

Tetrachloethylene (PCE)

Tetrachloroethylene (PCE) is a colorless, nonflammable liquid with a mild, chloroform-like odor.

PCE is incompatible with strong oxidizers and metals such as lithium, beryllium and barium, caustic soda, sodium hydroxide, and potash. Decomposition of PCE, due to fire, forms products including hydrogen chloride, and phosgene.

The OSHA PEL for PCE is 100 ppm as an 8-hour TWA; an acceptable ceiling concentration of 200 ppm; and an acceptable maximum peak ceiling of 300 ppm for no more than 5 minutes in any 3-hour period. The standard routes of entry in the body are through inhalation, percutaneous absorption, ingestion, skin and eye contact. The points of attack are the respiratory system, heart, liver, kidneys, central nervous system, eyes, and skin.

Symptoms that may occur as a result of exposure to PCE include irritation to the eyes, skin, nose, and throat; respiratory system distress; nausea; flushed face and neck; incoordination; headache; drowsiness; skin erythema; and liver damage.

1,1 and 1,2-Dichloroethylene (1,1-DCE; 1,2-DCE)

1,1 and 1,2-Dichloroethylene (1,1-DCE; 1,2-DCE) is a colorless, class IB flammable liquid with a slightly acrid, chloroform-like odor.

1,1 and 1,2-DCE is incompatible with strong oxidizers, strong alkalis, potassium hydroxide, and metals such as copper, and contains inhibitors to prevent polymerization.

The OSHA PEL for 1,2-DCE is 200 ppm as an 8-hour TWA. There is no OSHA PEL for 1,1-DCE. The 8-hour TWA for 1,1-DCE is 1.0 ppm. The standard routes of entry in the body are through inhalation, ingestion, skin and eye contact. The points of attack are the respiratory system, central nervous system, and eyes.

Symptoms that may occur as a result of exposure to 1,1 and 1,2-DCE include irritation to the eyes; respiratory system distress; central nervous system depression.

Vinyl Chloride (VC)

Vinyl Chloride (VC) is a colorless, liquid or flammable gas with a pleasant odor at high concentrations.

VC is incompatible with oxidizers, peroxides, and metals such as copper, aluminum, iron and steel. VC polymerizes in air, sunlight, or heat unless it is stabilized by inhibitors such as phenol. It attacks iron and steel in the presence of moisture.

The OSHA PEL for VC is 1 ppm as am 8-hour TWA, and an acceptable ceiling of 5 ppm in a 15 minute period. The standard routes of entry in the body are through inhalation, skin and eye contact. The points of attack are the respiratory system, central nervous system, liver, blood, and lymphatic system.

Symptoms that may occur as a result of exposure to VC include weakness and exhaustion; abdominal pain; gastrointestinal bleeding; enlarged liver; and pallor or cyanosis of the extremities. Liquid VC can cause frostbite. VC can also cause liver cancer.

TABLE 1 OCCUPATIONAL EXPOSURE LIMITS (CONCENTRATIONS IN AIR)

(CIRCLE CONTAMINANTS OF CONCERN, WRITE ADDITIONAL CONTAMINANTS AND EXPOSURE ON LAST PAGE)

CHEMICAL	ROUTES OF EXPOSURE	IDLH	Ceiling	STEL	PEL	TLV	REL	PID (IP eV)	FID	ODOR THRES- HOLD	IRRITATION THRESHOLD	ODOR DESCRIPTION
					VAPORS 8	GASES						
Acetone	R, I, C	2500	-	750 [ACGIH]	1000	500	250	9.69	60	13	-	fragrent, mint-like
Ammonia	R, I, C	300	-	35 [NOSH, ACGIH]	50	25	25	10.18**	-	0.5-2	10	Pungent suffocatin
Benzene	R,A,I,C	Ca [500]		1 _[NIOSH] ; 2.5 _{(ACGIH]}	1	0.5	0.1	9.24	150	4.68	-	Solvent, aromatic
Carbon tetrachloride (Tetrachloromethane)	R,A,I,C	Ca [200]	25 [instantaneous] 200 [5 min peak in any 4	2 _[NIOSH, 60-min] ; 10 _[ACGIH]	2	5	Ca	11.47**	10	50		Sweet, pungent, ether-like
Chlorobenzene	R,I,C	1000	-	-	75	10	-	9.07	200	0.68	-	Almond-like
Chloroform	R,I,C	Ca [500]	50 [OSHA]	2 [NIOSH, 60-min]	-	10	-	11.42**	65	50	-	Sweet, pleasant
o-Dichlorobenzene	R,A,I,C	200	50 [NIOSH, OSHA]	50 [ACGIH]	-	25	-	9.06	50	0.3	E 20-30	Pleasant, aromatic
p-Dichlorobenzene	R,A,I,C	Ca [150]		-	75	10	Са	8.98	-	0.18	E 80-160	Distinct, aromatic mothball-like
Dichlorodifluoromethane (Freon 12)	R,C	15000	-	-	1000	1000	1000	11.75**	15	-	-	Ether-like when a very high concs.
1,1-Dichloroethane	R,I,C	3000	-	-	100	100	100	11.06**	80	200	-	Distinct, chloroforr
1,2-Dichloroethane (Ethylene dichloride)	R,I,A,C	Ca [50]	100 _[OSHA]	2 ppm _[NIOSH] ; 200 ppm _{[OSHA, 5-min max peak}	50	10	1	11.05**	80	88	-	Chloroform-like
1,1-Dichloroethylene (1,1- DCE Vinvlidene chloride)	R,A,I,C	Ca [ND]	-	-	-	5	Са	10.00**	40	190	-	Chloroform-like
1,2-Dichloroethylene	R,I,C	1000	-	-	200	200	200	9.65	50	0.85	-	Bitter, chloroform
Ethanol	R,I,C	3300	-	-	1000	1000	1000	10.47**	25	10	-	Weak, ether-like,
Ethylbenzene	R,I,C	800		125 [NIOSH; ACGIH]	100	100	100	8.76	100	2.3	E 200	Aromatic
Ethylene Glycol	R,I,C	ND	50 _[OSHA] ; 100 mg/m ³				-	-	-	-	-	Odorless
Formaldehyde	I,C	Ca [20]	0.1 [NIOSH, 15-min]	2	0.75	-	Ca [0.016]	10.88**	-	0.83	-	Pungent, suffocating
Gasoline	R,I,A,C	Ca [ND]	-	500 [OSHA; ACGIH]	300	300	-	-	-	-	E 0.5	Petroleum-like
n-Hexane	R,I,C	1100	-	-	500	50	50	10.18	70	130	E.T 1400-1500	Gasoline-like
Hydrogen Cyanide	R,A,I,C	50	4.7 [ACGIH; Skin]	4.7 [NIOSH - skin]	10 [skin]		-	-	-	0.58	-	Bitter almond
Hydrogen peroxide	R,I,C	75	-	-	1	1	1	10.54**	-	-	-	Sharp
Methanol Methyd Ethyd Ketene	R,I,A,C	6000	-	250 [NIOSH; ACGIH; skin]	200	200 [skin]	200	10.84**	12	1000	-	Pungent
Peroxide	R,I,C	ND	0.2 [NIOSH; ACGIH] 0.7 [OSHA]	-	-	-	-	-	-	-	-	Characteristic odo
TCA)	R,I,C	700	350 [NIOSH, 15-min]	450 [ACGIH]	350	350	Ca	11.00**	105	20-100	-	Chloroform-like
Methylene Chloride (Dichloromethane, Methylene dichloride)	R,I,A,C	Ca [2300]	-	125	25	50	Ca	11.32**	100	25-50	E 5000	Chloroform-like
Methyl Mercaptan	R,C	150	10 [OSHA] 0.5 [NIOSH 15-min]	-	-	0.5	-	9.44	-	-	-	Garlic, rotten cabbage
MIBK (Hexone)	R,I,C	500	•	75 [NIOSH; ACGIH]	100	50	50	9.30	•	•	-	Pleasant
Naptha (coal tar)	R,I,C	1000	-	-	100	400	100	-	-	-	-	Aromatic
Naphthalene	R,A,I,C	250		15 [NIOSH; ACGIH]	10	10	10	8.12	-	0.3	E 15	Mothball-like
Octane	R,I,C	1000	385 [NIOSH, 15-min]	-	500	300	75	9.82	80	48		Gasoline-like
Pentachlorophenol	R,A,I,C	2.5 mg/m ³	•	-	0.5 mg/m ³ [skin]	0.5 mg/m ³ _[skin]	0.5 mg/m ³ [skin]	-	-	-	-	benzene-like
Phenol	R,A,I,C	250	15.6 [NIOSH, 15-min	-	5 [skin]	5 [skin]	5 [skin]	8.50	-	0.04	E.N.T. 68	Sweet, acrid
Propane	R,C	2100		-	1000	1000	1000	11.07**	80	1600		Odorless (commonly smells foul due to additive for odor detection)
Stoddard Solvent (Mineral Sprits)	R,CI,I	20000 mg/m ³	1800 mg/m ³	-	500	100	350 mg/m ³	-		1	E 400	Kerosene-like
Styrene	R,I,A,C	700	200 _[OSHA]	100 [NIOSH]; 600 [OSHA, 5-min max peak in any 3 hours]; 40 [aCGH4]	100	20	50	8.40	85	0.047	E 200-400	Sweet, floral
1,1,2,2-Tetrachloroethane	R,I,A,C	Ca [100]		-	5 _[skin]	1 _[skin]	1 [skin]	11.10**	100	1.5	-	Pungent, chloroform-like
Petrachloroethylene (Perchloroethylene, Perc, PCE)	R,I,A,C	Ca [150]	200 _[OSHA]	300 [OSHA, 5-min max peak in any 3-hours]; 100 [ACGIH]	100	25	Са	9.32	70	4.68	N.T513-690	Chloroform-like
Toluene	R,A,I,C	500	300 _[OSHA]	150 _[NIOSH] ; 500 _{[OSHA, 10-min max peak}	200	50	100	8.82	110	2.14	E300-400	Sweet, pungent, benzene-like
Trichloroethylene (TCE)	R,I,A,C	Ca [1000]	200 [OSHA]	300 [OSHA, 5-min max peak in amy 2-bourse]: 100 (ACCULA	100	50	Са	9.45	70	21.4	-	Chloroform-like
1,2,3-Trimethylbenzene	R,I,C	ND	-	-	-	-	25	8.48	-	-	-	Distinctive, aromatic
1,2,4-Trimethylbenzene	R,I,C	ND		-	-	-	25	8.27	-	-	-	Distinctive,
1,3,5-Trimethylbenzene	R,I,C	ND	. I	-	-	-	25	8.39	-	-	-	Distinctive,
Turpentine	R,A,I,C	800	<u> </u>	-	100	20	100	-	-	200	E.N 200	Pine-like
Vinyl Chloride	R,C	Ca [ND]	5 [OSHA, 15-min]	-	1	1	Ca	9.99	-	3000	-	Pleasant odor at
Xvlenes	R,A,I,C	900		150 INIOSH ACCIM	100	100	100	8.56 (m- and o-)	111/116	1.1	E.N.T. 200	Aromatic

TABLE 1 OCCUPATIONAL EXPOSURE LIMITS (CONCENTRATIONS IN AIR)

(CIRCLE CONTAMINANTS OF CONCERN, WRITE ADDITIONAL CONTAMINANTS AND EXPOSURE ON LAST PAGE)

CHEMICAL	ROUTES OF EXPOSURE	IDLH	Ceiling	STEL	PEL	TLV	REL	PID (IP eV)	FID	ODOR THRES- HOLD	IRRITATION THRESHOLD	ODOR DESCRIPTION
DUSTS, MISTS, FUMES, AND MISCELLANEOUS COMPOUNDS												
Asbestos	R	Ca (ND)		-	0.1 fiber/cc	0.1 fiber/cc	0.1 fiber/cc	-	-		-	-
PCBs-42% Chlorine	R,A,I,C	Ca [5 mg/m ³]	-	-	1 mg/m ³ [skin]	1 mg/m ³ [skin]	0.001 mg/m ³	-	-	-	-	Mild, hydrocarbon
PCBs-54% Chlorine	R,A,I,C	Ca [5 mg/m ³]	-	-	0.5 mg/m ³ [skin]	0.5 mg/m ³ [skin]	0.001 mg/m ³	-	-	-	-	Mild, hydrocarbon
Aluminum - metal dust	R,C	ND	-	-	15 mg/m ³ (total); 5 mg/m ³ (respirable)	10 mg/m ³	10 mg/m ³ _(total) ; 5 mg/m ³	-	-	-	-	-
Aluminum - soluble salts	R,I,C	ND	-	-	2 mg/m ³	2 mg/m ³	2 mg/m ³	-	-	-	-	-
Arsenic- inorganic	R,A,I,C	Ca [5 mg/m ³]	0.002 mg/m ³	-	0.01 mg/m ³	0.01 mg/m ³	Ca	-	-	-	-	-
Barium:soluble compounds	R,I,C	50 mg/m ³	-	-	0.5 mg/m ³	0.5 mg/m ³	0.5 mg/m ³	-	-	-	-	-
Beryllium	R,C	Ca [4 mg/m³]	[OSHA]; 0.025 mg/m ³ [OSHA, 30-min max peak]; 0.0005 mg/m ³	0.01 mg/m ³ _[ACGIH]	0.002 mg/m ³	0.002 mg/m ³	Ca	-	-	-	-	-
Cadmium dusts	R,I	Ca [9 mg/m ³]	-	-	0.005 mg/m ³	0.01 mg/m ³	Ca	-	-	-	-	-
Chromates (Cr(VI) Compounds) & Chromic Acid	R,I,C	Ca [15 mg/m ³]	0.1 mg/m ³ _[OSHA]	-	0.001 mg/m ³	0.05 mg/m ³ [water soluble]; 0.01 mg/m ³	Са	-	-	-	-	-
Chromium (III) Compounds	R,I,C	25 mg/m ³	-	-	0.5 mg/m ³	0.5 mg/m ³	0.5 mg/m ³	-	-	-	-	-
Chromium Metal	R,I,C	250 mg/m ³	-	-	1 mg/m ³	0.5 mg/m ³	0.5 mg/m ³	-	•		-	-
Copper - dust & mist	R,I,C	100 mg/m ³	-	-	1 mg/m ³	1 mg/m ³	1 mg/m ³	-	•	-	-	-
Lead	R,I,C	100 mg/m ³	-	-	0.050 mg/m ³	0.05 mg/m ³	0.050 mg/m ³	-	•		-	-
Manganese (compounds	R,I	500 mg/m ³	5 mg/m ³ [OSHA]	3 mg/m ³ [NIOSH]	-	0.2 mg/m ³	1 mg/m ³	-			-	-
Mercury & Inorganic Mercury Compounds	R,I,A,C	10 mg/m ³	0.1 mg/m ³ [NOSH, Skin]; 0.1 mg/m ³ roows	-	-	0.025 mg/m ³	0.05 mg/m ³ [skin]	-	-	-	-	-
Organo-Mercury Compounds	R,A,I,C	2 mg/m ³	0.04 mg/m ³	0.03 mg/m ³ [NIOSH]	0.01 mg/m ³	0.01 mg/m ³ [alkyl]; 0.1 mg/m ³ [alkyl];	0.01 mg/m ³	-	-	-	-	-
Nickel (metal and compounds)	R,I,C	Ca [10 mg/m³]	-	-	1 mg/m ³	1.5 mg/m ³ [soluble inorganic compounds]; 1 mg/m ³ [insoluble	0.015 mg/m ³	-	-	-	-	-
Particulate (Not otherwise regulated)	R, C	ND	-	-	15 mg/m ³ _(total) ; 5 mg/m ³ _(respirable)	10 mg/m ³ _(inhalable) ; 3 mg/m ³ _(respirable)				-	-	-
Portland cement	R,I,C	5000 mg/m ³	-	-	50 mppcf	10 mg/m ³	10 mg/m ³ (total); 5 mg/m ³	-	•	-	-	-
Selenium compounds	R,I,C	1 mg/m ³	-	-	0.2 mg/m ³	0.2 mg/m ³	0.2 mg/m ³	-	•		-	-
Silica, crystalline	R, C	Ca [25 mg/m ³ (cristobalie, tridymite) ; 50 mg/m ³ _(quartz, tripoli)]	-	-	Dependent on silicon dioxide content of silica (see Appendix C of the NIOSH Pocket Guide to	Dependent on minerology [see ACGIH 2005 TLVs and BEIs Handbook]	0.05 mg/m ³	-	-	-	-	-
Silver (metal and soluble compounds)	R,I,C	10 mg/m ³	-	-	0.01 mg/m ³	0.1 mg/m ³	0.01 mg/m ³	-	-	-	-	-
Thallium, soluble	R,A,I,C	15 mg/m ³	-	-	0.1 mg/m ³ [skin]	0.1 mg/m ³ [skin]	0.1 mg/m ³ [skin]	-	-		-	-
Tin (metal)	R,C	100 mg/m ³	-	-	2 mg/m ³	2	2 mg/m ³	-	-	-	-	-
Tin (organic compounds)	R,A,I,C	25 mg/m ³	-	-	0.1 mg/m ³	0.1 mg/m ³ [skin]	0.1 mg/m ³ [skin]	-	-	-	-	-
Zinc oxide dust & fume	R	500 mg/m ³	15 mg/m ³ [NIOSH, dust]	10 mg/m ³ _[NIOSH; ACGIH; fume]	15 mg/m ^{3 (total dust)} ; 5 mg/m ³ _{[respirable} _{dust]} ; 5 mg/m ³ _[fume]	2 mg/m ³ [respirable]	5 mg/m ^{3 (total dust)} 5 mg/m ³ _[fume]	-	-		-	-

NOTES & ABBREVIATIONS:

All units in parts per million (ppm) unless otherwise noted.

I = Ingestion

- A = Skin Absorption
- C = Skin Contact

-: Not available

- ND: Not detectable.
- Ca = Carcinogen

** = Use 11.7 eV lamp

IP: Ionization potential

eV: Electrovolts

IDLH: Immediately dangerous to life and health

Ceiling: Highest allowable instantaneous C = Skin and/or Eye Contact

STEL: Short-term exposure limit. Exposure period is 15 minutes unless otherwise indicated

PEL: OSHA Permissible Exposure Limit (legally-enforceable)

REL: NIOSH Recommended Exposure Limit

REL. NIOSH Recommended Exposure

PID: Photoionization Detector

OSHA: United States Occupational Safety and Health Administration

NIOSH: National Institute of Occupational Safety and Health

TLV: ACGIH Threshold Limit Value

ACGIH: American Conference of Governmental Industrial Hygienists

R = Respiratory (Inhalation)

September 2013

Physical Hazards:

Indicate all hazards that may be present for each task. If any of these potential hazards are checked, it is the project manager's responsibility to determine how to eliminate/minimize the hazard to protect onsite personnel.

Copy and paste a checkmark "✓"into appropriate boxes.

Physical Hazard Checklist									
	Task 1	Task 2	Task 3	Task 4					
Potential Job Hazarda	GW	Excavation	SSD						
Folential Job Hazarus	Sampling	Monitoring	System						
			Inspection						
Confined space entry*									
Underground utilities		✓							
Overhead utilities		✓							
Electrical hazards									
Excavations greater than 4' depth		✓							
Open excavation fall hazards		✓							
Heavy equipment	✓	✓							
Drilling hazards									
Noise (above 85 dBA)		✓							
Traffic concerns	✓	✓							
Extreme weather conditions	✓	✓							
Rough terrain for drilling equipment									
Buried drums									
Heavy lifting (more than 50 lbs)									
High risk fire hazard									
Poisonous insects or plants									
Water hazards									
Use of a boat									
Lockout/Tagout requirements									
Other: Specify									

*CONFINED SPACE ENTRY REQUIRES SPECIAL PROCEDURES, PERMITS AND TRAINING AND MUST BE APPROVED BY THE CORPORATE HEALTH & SAFETY MANAGER.

Potential Activity Hazards and Hazard Controls:

Copy and paste a checkmark "~" adjacent to potential activity hazards and relevant hazard controls.

POTENTIAL ACTIVITY HAZARDS

Abrasions and Cuts 🗸 Access Asphyxiation Bacteria **Biological Hazards Bloodborne Pathogens** Cave Ins Chemical/Thermal Burns Chemicals ✓ Cold Stress 🗸 Compressed Gases **Confined Spaces** Congestion Defective Equipment Dermatitis 🗸 Dropping Materials/Tools to Lower Levels Drowning or Flowing Water Electrical Shock **Energized Equipment** Equipment Misuse 🗸 Ergonomics Excavations 🗸 Explosions Fatigue Fire Flammability Flying debris ✓ Foreign Body in Eye 🗸 Frostbite/Cold ✓

> Air Monitoring ✓ Appropriate Clothing/Monitoring Of Weather 🗸 Appropriate Labels/Signage Barricades/Fencing/Silt Fencing Buddy System - Attendant Chock Blocks ✓ **Confined Space Procedures** Decontamination Procedures ✓ **Derived Waste Management Plan** Drinking Water/Fluids ✓ Dust Abatement Measures ✓ **Emergency Action Plan** Procedures Equipment Inspection Equipment Manuals/Training ✓ Exclusion/Work Zones **Exhaust Ventilation** Eye Protection 🖌

Fueling and Fuel Storage 🗸 Fugitive Dust 🗸 Fumes 🗸 Generated Wastes 🗸 Guards removed Hazardous Materials 🗸 Heat Stress (cramps, exhaustion, stroke) 🗸 Heavy Equipment Operation ✓ Heavy Equipment/Stability ✓ Heavy Lifting ✓ High crime area (violence) High Winds Hoists, Rigging, Slings, Cables Housekeeping – Improper ✓ Illumination – Poor ✓ Impact 🗸 Inability to Maintain Communication Inclement Weather ✓ Inclines Insects/Reptiles Mold Moving Equipment, Conveyors or Vehicles 🗸 Muddy Site Conditions New Personnel Noise 🗸 Odor ✓ Overhead Utilities 🖌 **Overhead Work**

HAZARD CONTROLS

Fall Protection Fire Extinguisher ✓ Flotation Devices/Lifelines Gloves ✓ Ground Fault Interrupter Grounded Hydraulic Attachments Grounded Equipment/Tanks Hand Signal Communication Hard Hat 🗸 Hazardous/Flammable Material Storage Hearing Protection ✓ High Visibility Safety Vest 🗸 Hoses, Access to Water Hotwork Procedures Isolation of Energy Sources(Lockout/Tagout) Machine/Equipment Guards

Overloaded Equipment Oxygen deficiency Pinch Points ✓ Poisonous Plants 🗸 Pressure Pressurized Lines ✓ Radiation **Repetitive Motion** Rigging - Improper ✓ Sharp Objects ✓ Silicosis 🗸 Slips, Trips, and Falls ✓ Sprains and Strains ✓ Steam Sunburn 🗸 Surface Water Run-off Toxicity ✓ Traffic 🗸 Underground Utilities 🗸 Uneven Terrain 🗸 **Unsafe Atmosphere** Vibration Visibility - Poor Visitors Known/Unknown 🗸 VOC Emissions 🗸 Weight 🗸 Work at Depth Work at Heights Work over Water Working on Ice

> Manual Lifting Equipment Police Detail Proper Lifting Techniques 🗸 Proper Tool for Job 🗸 Proper Work Position/Tools 🗸 Protective Equipment ✓ Radio Communication Respirator, (Specify Type) Safety Harness /Lanyard/Scaffold Security Escort Sloping, Shoring, Trench Box **Spill Prevention Measures** Spill Kits Stormwater Control Traffic Controls ✓ Procedures/Methods Vehicle Inspection Visitor Orientation Escort Window Cleaning/Defrost

Safety Meetings

All H&A personnel visiting the site will be given an orientation safety meeting and are required to read and sign this HASP. Daily safety meetings will be conducted onsite and documented on a Health & Safety Tailgate Meeting Form.

Utility Locators and Underground Hazards

Prior to drilling or excavating, Haley & Aldrich staff members will ensure that permission has been gained from the property owner to access the property. Contact site facilities personnel to assist with location of underground utilities. Before marking any proposed exploration location, it is critical that all readily available information on underground utilities and structures be obtained. The estimated location of utility installations, such as gas, electric, fuel, steam, sewer, telephone, fiber optic, water, drainage or any other underground installation that may be expected to be encountered during drilling work, will be identified with the appropriate authority. Appropriate authorities include client representatives, utility companies, nonprofit organizations (e.g., "Dig-Safe), and others.

Heavy Equipment

Staff Members must be especially careful and alert when working with contractors who use heavy equipment, since equipment failure or breakage can lead to accidents and worker injury. Cranes and equipment for drilling, pile driving, test pitting and coring is of special concern. Should these devices fail during operation the likelihood of worker injury is high. Equipment of this nature should be visually inspected and checked for proper working order prior to the commencement of field work. Those that operate heavy equipment must meet all of the requirements to operate heavy equipment. Haley & Aldrich, Inc. staff members that supervise projects or are associated with such high risk projects that involve digging should use due diligence when working with a construction firm. Maintain visual contact with operators at all times and keep out of the strike zone whenever possible. Always approach heavy equipment with an awareness of the swing radius and traffic routes of each piece of equipment and never go beneath a hoisted load. High-visibility safety vests must be worn onsite at all times. Avoid fumes created by heavy equipment exhaust.

Noise Reduction

Site activities in proximity to heavy equipment often expose workers to excessive noise. It is anticipated that situations may arise when noise levels may exceed the OSHA Action Level of 85 dBA in an 8-hour time-weighted average (TWA). An example of this possibility is working in close proximity to the subcontractor during drilling activities onsite. If excessive noise levels occur, efforts will be made to control this by issuance of earplugs to all personnel and by implementing a system of hand signals understood by all.

Work Site Access & Controls (Standard Precautions)

The work area is restricted to authorized personnel. Clearly define the work area before beginning activities for the day. Caution tape and safety cones must be provided as necessary

Note: This HASP is developed for Haley & Aldrich purposes only and not for use by others.

for vehicular traffic concerns and to protect passers-by. Proper housekeeping is essential to avoid creating hazards to pedestrian and vehicular traffic. Excavations in progress will not be left unattended at any time. Running equipment will not be left unattended at any time. Test borings and test pits will be backfilled upon completion and the area restored. Drilling equipment will be secured above test borings during work stoppages and at the end of the workday.

Site Security

TBD if excavations are required.

Weather Related Hazards

H&A employees and their subcontractors should be aware of potential health effects and/or physical hazards of working during inclement weather. Refer to OP1003-Cold Stress and OP1015-Heat Stress for discussion on weather hazards.

Cold Stress

Persons working outdoors in low temperatures, especially at or below freezing are subject to cold stress. Exposure to extreme cold for a short time may cause severe injury to the surface of the body, or result in profound generalized cooling, causing death. Areas of the body that have high surface area-to-volume ratio, such as fingers, toes, and ears, are the most susceptible.

Two factors influence the development of a cold injury: ambient temperature and the speed of the wind. Wind chill is used to describe the chilling effect of moving air in combination with low temperature. For instance, 10° F with a wind of 15 miles per hour (mph) is equivalent in chilling effect to still air at -18° F.

As a general rule, the greatest incremental increase in wind chill occurs when a wind of 5 mph increases to 10 mph. In addition, water conducts heat 240 times faster than air. Thus when chemical-protective equipment is removed the body cools suddenly if the clothing underneath is perspiration soaked. Warm, dry clothing must be available and donned as soon as possible when these conditions are present.

Heat Stress

Heat stress on hazardous waste sites or construction sites usually is a result of protective clothing decreasing natural body ventilation, although it may occur at any time work is being performed at elevated ambient temperatures. Because heat stress is one of the most common and potentially serious illnesses associated with hazardous waste site work, regular monitoring and other preventative measures are vital.

Site workers must learn to recognize and treat the various forms of heat stress.

The best approach is preventative heat stress management. In general:

- Workers should drink 16 ounces of water before beginning work, such as in the morning or after lunch. The water should be maintained at 50 to 60°F. Workers should drink 1 to 2 4-ounce cups of water every 30-60 minutes. A cool area for rest breaks should be designated, preferably air-conditioned. The use of alcohol during non-working hours and the intake of caffeine during working hours can lead to an increase in susceptibility to heat stress. Monitor for signs of heat stress.
- Workers should acclimate to site work conditions by slowly increasing workloads, i.e., do
 not begin site work activities with extremely demanding activities. This acclimation process
 may require up to two weeks for completion.
- Cooling devices should be used to aid natural body ventilation. These devices, however, add weight, and their use should be balanced against worker efficiency. An example of a cooling aid is long cotton underwear, which acts as a wick to help absorb moisture and protect the skin from direct contact with heat-absorbing protective clothing.
- Installed mobile showers and/or hose-down facilities should be used to reduce body temperature and cool protective clothing in serious heat stress situations.
- In hot weather, field activities should be conducted in the early morning or evening.
- Adequate shelter should be available to protect personnel from heat, as well as cold, rain, snow, etc., which can decrease physical efficiency and increase the probability of both heat and cold stress. Set up a command post in the shade or erect temporary shade at the workstation if practical.
- In hot weather, rotate shifts of workers with potential heat stress exposure.
- Good hygienic standards must be maintained by frequent changes of clothing and showering. Clothing should be permitted to dry during rest periods. Persons who develop skin problems should immediately consult medical personnel.

Effects of Heat Stress

If the body's physiological process fail to maintain a normal body temperature because of excessive heat, a number of physical reactions can occur ranging from mild (such as fatigue, irritability, anxiety, and decreased concentration, dexterity, or movement) to fatal.

Heat-related problems are:

<u>HEAT STROKE</u>: An acute and dangerous reaction to heat exposure caused by failure of heat regulating mechanisms of the body; the individual's temperature control system that causes sweating stops working correctly. Body temperature rises so high that brain damage and death will result if the person is not cooled quickly.

Symptoms: Red, hot, dry skin, although person may have been sweating earlier; nausea; dizziness; confusion; extremely high body temperature; rapid respiratory and pulse rate; unconsciousness or coma.

Treatment: Cool the victim quickly and obtain immediate medical assistance. If the body temperature is not brought down fast, permanent brain damage or death may result. Soak the victim in cool but not cold water, sponge the body with rubbing alcohol or cool water, or pour water on the body to reduce the temperature to a safe level (102oF). Observe the victim and obtain medical help. Do not give coffee, tea or alcoholic beverages.

<u>HEAT EXHAUSTION:</u> A state of definite weakness or exhaustion caused by the loss of fluids from the body. This condition is much less dangerous than heat stroke, but it nonetheless must be treated.

Symptoms: Pale, clammy, moist skin, profuse perspiration and extreme weakness. Body temperature is normal, pulse is weak and rapid, and breathing is shallow. The person may have a headache, may vomit, and may be dizzy.

<u>Treatment</u>: Remove the person to a cool place, loosen clothing, and place in a head-low position. Provide bed rest. Consult physician, especially in severe cases. The normal thirst mechanism is not sensitive enough to ensure body fluid replacement. Have patient drink 1 to 2 cups water immediately and every 20 minutes thereafter until symptoms subside. Total water consumption should be 1 to 2 gallons per day.

<u>HEAT CRAMPS</u>: Caused by perspiration that is not balanced by adequate fluid intake. Heat cramps are often the first sign of a condition that can lead to heat stroke.

Symptoms: Acute painful spasms of voluntary muscles (e.g., abdomen and extremities).

Treatment: Remove the victim to a cool area and loosen clothing. Have the patient drink 1 to 2 cups water immediately, and every 20 minutes thereafter until symptoms subside. Total water consumption should be 1 to gallons per day.

<u>HEAT RASH</u>: Caused by continuous exposure to heat and humid air and aggravated by chaffing clothes. Decreases ability to tolerate heat.

Symptoms: Mild red rash, especially in areas of the body on contract with protective gear.

Treatment: Decrease amount of time in protective gear, and provide powder to help absorb moisture and decrease chaffing.

5. **PROTECTIVE MEASURES**

Personal Protective Equipment Requirements:

Copy and paste a checkmark "✓"into appropriate boxes.

	Task 1	Task 2	Task 3	Task 4
Required PPE	GW Monitoring	Excavation Monitoring	SSD System Inspection	Enter task
Hard hat		✓		
Safety glasses w/side shields	✓	✓		
Steel-toe footwear		~		
Hearing protection (plugs, muffs)		~		
Tyvek ™ coveralls				
PE-coated Tyvek [™] coveralls				
Boots, chemical resistant		✓		
Boot covers, disposable				
Leather work gloves		✓		
Inner gloves - <u>Nitrile</u>	✓	✓		
Outer gloves - Enter material here				
Tape all wrist/ankle interfaces				
Half-face respirator*				
Full-face respirator*				
Organic vapor cartridges				
Acid gas cartridges				
Other cartridges: Enter type here				
P-100 (HEPA) filters				
Face shield				
Personal Flotation Device (PFD)				
High-Visibility Safety Vest	\checkmark	\checkmark		
Other:				
Level of protection required [C or D]:	D	D	D	

* In the event of respirator use, H&A staff must be medically qualified, fit tested and clean shaven with no facial hair that will interfere with the seal.

The required PPE checked in any box above must be on site during the task being performed. Work shall not commence unless the required PPE is present.

Site Safety Equipment Requirements:

Check all items that are required to be on site.

Site Safety Equipment							
Fire Extinguisher	First Aid Kit	Flashlight					
☐ Air horn/signaling device	Cellular Phone	Duct tape					
Ladder	Barricade tape	Drum dolly					
Two-way radio	Safety cones	Harness/Lanyard					
Cother Specify							

The required equipment checked in any box above must be on site during the task being performed. Work shall not commence unless the equipment is present.

6. MONITORING PLAN	AND EQUIPMENT					
Is air/exposure monitoring required at this work site for	or personal protection? 🛛 🗹 Y 🗔 N					
Is perimeter monitoring required for community protection? \blacksquare Y \Box N						
Monitoring/Screening Equipment Requirements:						
Check all items that are required to be on site.	Check all items that are required to be on site.					
Required Monitoring/Screening Equipment						
Photo-Ionization Detector (PID) 10.2eV	🗖 Combustible Gas Indicator (CGI) (LEL)					
Photo-Ionization Detector (PID) 11.7eV	☐ Multiple Gas Detector LEL/O2/H2S/CO					
Photovac Micro Tip (PID) 10.6eV	Dust Monitors (RAMs)					
Organic Vapor Monitor (FID)	Colorimetric tubes					
Photovac Gas Chromatagraph (GC)	C Other					

The required equipment checked in any box above must be on site. Work shall not commence unless the equipment is present.

Standard Action Levels and Required Responses:

Exposure Guidelines for common contaminants are listed in Table 1 - Occupational Exposure Limits in the Chemical Hazards section above.

Requirements for PPE upgrades based on monitoring are in Table 2 - Monitoring Methods, Action Levels and Protective Measures following the Specific Monitoring Requirements section below.

Action levels for readings obtained with a multiple gas detector are listed below.

Instrument	Normal	Operating levels	Action levels – required responses
Oxygen Meter	20.9%	Between 19.5-	Below 19.5 %: leave area, requires supplied air
		23.5%	Above 23.5%: leave area, fire hazard
CGI	0%	Less than 10%	Greater than 10%: fire/explosion hazard; cease
			work
Hydrogen	0%	Less than 10	Greater than 15 ppm (or 10 ppm for
Sulfide		ppm.	8 hrs) requires supplied air respirator
Carbon	0%	Less than 25 ppm	Greater than 200 ppm for 1 hour (or
Monoxide			25 ppm for 8 hrs) requires supplied air respirator

Standard Air Monitoring Plan (Volatiles):

- Prior to the beginning of work obtain background readings with the PID away from the site.
- Monitor the breathing zone when site soil is exposed (e.g., while drilling or excavating is occurring, etc.) with the PID.
- Monitoring should be conducted most frequently (e.g., every 15-30 minutes) when drilling or excavation first begins in a particular area and when soil is removed from the hole. After this, and if no exceedances of exposure limits are noted (see below), monitoring may be conducted less frequently (e.g., every 60 minutes).
- H&A general exposure limits will be used when a mixture of potentially volatile chemicals are suspected to be present in soil at the site.

In summary, if a reading of 10 ppm above background is detected with the PID for 5 minutes or longer, back away for a few minutes. Screen the air again after any vapors/gases have been given a chance to dissipate. If 10 ppm above background is still noted, evacuate the area and call the LHSC and PM for further guidance.

- Record monitoring data and PPE upgrades in field book or on Record of Field Monitoring form and maintain with project files.
- Air monitoring for exposure should be based on the frequency established under the Standard Air Monitoring Plan or under the Specific Monitoring Requirements. Record time, location and results of monitoring and actions taken based upon the readings.

Standard Dust Control Measures and Monitoring Plan:

Dust Control Measures:

It is anticipated that exposure to airborne dust can be mitigated during work operations as necessary to control dust emissions by means of limiting the area of exposed soils and through the use of water sprays. If dust emissions cannot be controlled by these standard measures, additional measures may be employed such as the use of a tackifier (if approved) to stabilize soil exposures or by covering exposed soil and stockpiles with tarpaulins, plastic sheeting or geotextile fabric. Otherwise cease work immediately and contact the Project Manager or the Corporate Health & Safety Manager for assistance. It is not permissible for dust emissions to escape from the site at any time and perimeter dust monitoring may be required to insure public safety.

Dust Monitoring:

Respirable Aerosol Monitors (RAM) can be used to monitor total dust levels in work zones and/or at the site perimeter. These instruments do not give specific readings of contaminant concentration (e.g. metals, asbestos, etc.). Depending upon the contaminants present, it may be mandatory for all workers to upgrade to level C protection using a half-face air-purifying respirator with HEPA (P-100) filters if dust levels cannot be adequately controlled during any of the on-site tasks. The H&A Site Safety Officer (SSO) will determine PPE upgrades based upon visual determination as necessary and the OSHA PEL for each known or suspected contaminant. The OSHA PEL/STEL for Respirable Nuisance Dust is 5 mg/m³ (8 hour TWA).

Action levels for fugitive dust at the site perimeter are based upon the daily PM₁₀ dust standard of 0.15 mg/m³ in the National Ambient Air Quality Standard for Inhalable Dust (NAAQS).

Personal dust monitoring using an industrial hygiene pump and a filter cassette may be conducted on each day of operations. In such cases samples are collected from workers with the greatest potential dust exposure and analyzed by an accredited laboratory for specific contaminants.

Specific Monitoring Requirements:

Monitoring requirements and frequency is indicated by task and location below.

Task Number:	1,2	Frequency	Continuous during invasive and/or
			sampling activities

VOC monitoring using a PID will occur continuously during sampling and excavation activities to monitoring the breathing zone.

Task Number: 2 Frequency	Community Air Monitoring (CAM) per the NYSDOH CAM Plan will be conducted during all excavation activities.
------------------------------	---

Community Air Monitoring per the NYSDOH Community Air Monitoring Plan (CAMP) must be completed during all subsurface activities. CAM monitoring includes both perimeter VOC and particulate monitoring. The CAMP is attached to the Site Management Plan.

TABLE 2 Last Revised September 2002

MONITORING METHOD, ACTION LEVELS AND PROTECTIVE MEASURES

INSTRUMENT	HAZARD	ACTION LEVEL	ACTION RESPONSE		
Respirable Dust Monitor	Total Particulates	> 5 mg/m ³	Upgrade to Level C Protection		
OVA, HNU ⁽²⁾ , Photovac					
Microtip	Total Organic Vapors	Background	Level D Protection		
		10 ppm > background or lowest OSHA permissible exposure limit, whichever is lower, or as modified for this task. Sustained for >5 minutes in the breathing zone.	Upgrade to Level C - site evacuation may be necessary for specific compounds		
		50 ppm over background, unless lower values required due to respirator protection factors	Cease work; upgrade to Level B ⁽³⁾ may be required		
Explosimeter ⁽⁴⁾ (LEL)	Flammable/Explosive Atmosphere	<10% Scale Reading	Proceed with work		
		10-15% Scale Reading	Monitor with extreme caution		
		>15% Scale Reading	Evacuate site		
0xygen Meter ⁽⁵⁾	Oxygen-Deficient	19.5% - 23.5% 0 ₂	Normal - Continue work		
	Atmosphere	< 19.5% 0 ₂	Evacuate site; oxygen deficient		
		> 23.5% 0 ₂	Evacuate site; fire hazard		
Radiation Meter ⁽⁶⁾	Ionizing Radiation	0.1 Millirem/Hour	If > 0.1, radiation sources may be present ^{(7)}		
		> 1 Millirem/Hour	Evacuate site; radiation hazard		
Drager Tubes	Vapors/Gases	Species Dependent > 1 ppm vinyl chloride > 1 ppm benzene > 1 ppm 1,1-DCE	Consult Table 1 or other resources for concentration toxicity/detection data. Upgrade to Level C if concentration of compounds exceed thresholds shown at left; May need to cease work if other levels exceeded - site specific		
Gas Chromatograph (GC)	Organic Vapors	3 ppm total OV > background or > lowest specific OSHA permissible exposure limit, whichever is lower	On-site monitoring or tedlar bag sample collection for off-site/laboratory analysis		

Notes:

1. Monitor breathing zone.

2. Can also be used to monitor some inorganic species.

3. Positive pressure demand self contained breathing apparatus

4. Lower explosive limit (LEL) scale is 0-100%. LEL for most gasses is 15%.

5. Normal atmospheric oxygen concentration at sea level is 20%

6. Background gamma radiation is ~0.01-0.02 millirems/hour.

7. Contact H&A Health and Safety staff immediately.

Calibration and Use of Equipment:

Calibrate all monitoring equipment in accordance with manufacturers requirements, H&A calibration (OP) standards and site specific requirements (e.g., at the beginning and end of each work day). Calibration of equipment shall be documented in the field notes or Daily Field Report (DFR). Documentation should include:

- Date/time
- Zero reading before calibration
- Concentration of calibration gas
- Reading obtained with calibration gas before adjusting span\
- Final reading obtained with calibration gas after adjusting span

7. DECONTAMINATION AND DISPOSAL METHODS

Personal Hygiene Safeguards:

The following minimum personal hygiene safeguards shall be adhered to:

- No smoking or tobacco products on any Hazwoper project.
- No eating or drinking in the exclusion zone.
- It is required that personnel present on site wash hands before eating, smoking, taking medication, chewing gum/tobacco, using the restroom, or applying cosmetics and before leaving the site for the day.
- It is recommended that personnel present on site shower or bathe at home at the end of each day of working on the site.

Standard Personal Decontamination Procedures:

Outer gloves and boots should be decontaminated periodically as necessary and at the end of the day. Brush off solids with a hard brush and clean with soap and water or other appropriate cleaner whenever possible. Remove inner gloves carefully by turning them inside out during removal. Wash hands and forearms frequently. It is good practice to wear work-designated clothing while on-site which can be removed as soon as possible. Non-disposable overalls and outer work clothing should be bagged onsite prior to laundering. If gross contamination is encountered on-site contact the Project Manager and LHSC to discuss proper decontamination procedures. The steps required for decontamination will depend upon the degree and type of contamination but will generally follow the sequence below.

- 1. Remove and wipe clean hard hat
- 2. Rinse boots and gloves of gross contamination
- 3. Scrub boots and gloves clean
- 4. Rinse boots and gloves
- 5. Remove outer boots
- 6. Remove outer gloves
- 7. Remove Tyvek coverall
- 8. Remove respirator, wipe clean and store
- 9. Remove inner gloves

Location of Decontamination Station:

N/A

Disposal of PPE:

PPE that is not grossly contaminated can be bagged and disposed in regular trash receptacles. PPE that is grossly contaminated must be bagged (sealed) and field personnel should communicate with the Project Manager to determine proper disposal.

Tools & Equipment Decontamination:

All decontamination should be conducted at the site and not at the office or lab.

Check all equipment and materials needed for decontamination of tools and other equipment.

□ Acetone Distilled water Poly sheeting Alconox soap Drums for water □ Steam cleaner Brushes □ Hexane Tap water Disposal bags Methanol □ Washtubs C Other ☑ Paper towels 5 gallon pails

Standard Equipment Decontamination Procedures:

Air monitoring instrumentation and delicate instruments that are difficult to decontaminate or sensitive to water should be protected from contamination during use through the use of plastic sheeting. To the extent possible, efforts should be taken to limit the degree of contamination to hand tools and sampling equipment during use. Proper PPE must be worn while performing decontamination, including the wearing of chemical safety goggles and gloves. Storage or transport of decontamination solvents in squirt bottles is not permitted as they may discharge their contents upon ambient temperature change or leak if overturned. Standard equipment decontamination procedures are as follows. Any additional requirements are listed under Specific Equipment Decontamination Procedures below.

Pretreatment of heavily contaminated equipment may be conducted as necessary:

- 1. Remove gross contamination using a brush or wiping with a paper towel
- 2. Soak in a solution of Alconox and water (if possible)
- 3. Wipe off excess contamination with a paper towel
- 4. Clean with hexane or acetone and allow to dry

Standard decontamination procedure:

- 1. Wash using a solution of Alconox and water
- 2. Rinse with potable water
- 3. Rinse with methanol
- 4. Rinse with distilled water

Specific Equipment Decontamination Procedures:

- 1. Wash using a solution of Alconox and water
- 2. Rinse with potable water
- 3. Rinse with distilled water

Standard Disposal Methods for Contaminated Materials:

Excess sample solids, decontamination materials, rags, brushes, poly sheeting, etc. that are determined to be free of contamination through field screening can usually be disposed into client-approved, on-site trash receptacles. Uncontaminated wash water may be discarded onto the ground surface away from surface water bodies in areas where infiltration can occur. Contaminated materials must be segregated into liquids or solids and drummed separately for off site disposal. Any additional requirements are listed under Specific Disposal Methods for Contaminated Materials below.

Disposal Methods for Contaminated Soils:

Contaminated soil cuttings and spoils must be drummed for disposal off-site unless otherwise specifically directed. Soil cuttings and spoils determined to be free of contamination through field screening can usually be returned to the boreholes or excavations from which they came. Any additional requirements are listed under Specific Disposal Methods for Contaminated Soils below.

Contaminated Soil Sent to Geotechnical Lab:

Assignments that include geotechnical lab testing on contaminated samples must be accompanied with written data that will provide information on the type and extent of contamination. Project Managers must communicate any anticipated or known chemical hazards to the lab when assigning geotechnical tests. Preferably, a copy of this HASP should be forwarded to the laboratory for their review. If the contamination is not known, the PM must contact the laboratory and discuss the source of the sample to help identify any potential hazards that may be associated with the sample.

8. CONTINGENCY PLANNING

How H&A responds to an emergency depends on whether we are at an active facility or another other location. Many active facilities have very stringent requirements for the mitigation of emergencies. Therefore, the PM is responsible for identifying any specific requirements from the client contact.

As a rule of thumb, the following are H&A's basic responses to handling Emergencies. Typically, H&A does not mitigate emergencies. When Clients request or require specific functions such as First Aid/CPR trained personnel on site, we typically conform. Before any Project Manager or LHSC agrees to something more stringent, many issues should be considered such as training, safety, feasibility of an adequate response, insurance requirements, and much more.

Fire:

- <u>Major Fires</u> Major fires will be mitigated by the local fire departments or by client's onsite fire/emergency response departments.
- Incipient Stage Fires -Incipient stage fires will be extinguished by on-site personnel using fire extinguishers. Only those who have received annual training may use an extinguisher.

Medical:

All H&A employee injuries and illnesses will be reported to the PM and to HP at <u>hpinjuryreporting@haleyaldrich.com</u> and documented using the Incident Reporting Form. This form is available on HANK.

- First Aid First aid will be addressed using the on-site first aid kit. H&A employees are not required or expected to administer first aid/CPR to any H&A, Contractor, or Civilian personnel at any time and it is H&A's position that those who do are doing it on their behalf and not as a function of their job.
- Trauma Based upon the nature of the injury, the injured party may be transported to the nearest hospital or emergency clinic by on-site personnel or by ambulance. First response to a trauma incident is to call 911 or facility security. H&A staff members are expected to assist in ancillary roles only such as directing ambulances to the scene. It is the discretion of the staff member on site whether an ambulance should be procured in remote locations where ambulance services will not be effective.

Hazardous Materials Spill:

- Small incidental spills (e.g. pint of motor oil) caused by H&A employees and/or by the contractor will be mitigated by the H&A staff member and/or the contractor.
- Large spills (e.g. large leak from heavy equipment fuel tank). The contractor is responsible for cleanup. In the event that it posses a serious human or environmental threat, the local Fire Department and/or client emergency response department will be contacted. Once emergency has been mitigated typically clean up will be provided by a vendor.

Rescue:

H&A employees will not enter any confined spaces for rescue purposes.

Weather Related Emergencies:

H&A employees and their subcontractors should be aware of potential health effects and/or physical hazards of working during inclement weather. If applicable, safeguards against the effects and hazards of heat stress, cold stress, frostbite, thunderstorms, and lightning, etc., should be included with the section pertaining to physical hazards in this HASP.

Evacuation Alarms:

Evacuation alarms and/or emergency information will be communicated among personnel on site through verbal communication.

Emergency Services:

Emergency services will be summoned via on-site or cellular phone.

Emergency Evacuation Plan:

The site evacuation plan is as follows:

- 1. Establish a designated meeting area to conduct a head count in the event of an emergency evacuation.
- 2. If the work area is not near an emergency exit, exit via the closest route and meet at the designated meeting area.
- 3. Notify emergency response personnel (fire, police and ambulance) of the number of missing or unaccounted for employees and their suspected location.
- 4. Administer first aid will in the meeting area as necessary.

Under no circumstances should any personnel re-enter the site area without the approval of the corporate H&S manager, the H&S coordinator, and the fire department official in charge.

9. HEALTH & SAFETY PLAN ACKNOWEDGMENT FORM

Note: Only H&A employees sign this page.

I hereby acknowledge receipt and briefing on this Health & Safety Plan prior to the start of onsite work and declare that I understand and agree to follow the provisions and procedures set forth herein while working on this site.

PRINTED NAME	SIGNATURE	DATE

10. PRE-JOB SAFETY CHECKLIST

The following checklist is designed to help Project Managers verify that all Health & Safety requirements are satisfied for projects involving site work and to aid in the preparation of the site-specific HASP.

Please initial and date the appropriate box once each requirement has been satisfied prior to commencement of site work.

#	Project H&S Requirements	Approval by PM or LHSC (initial each box or place NA)	Date Approved
1	Project site history has been researched and summarized, current site conditions have been determined and documentation of previous investigations, risk analyses and chemical data has been assembled and summarized.		
2	Project work scope has been outlined and potential chemical and physical hazards associated with work tasks have been identified.		
3	Task Safety Analysis has been performed and attached to the HASP.		
4	H&A personnel to be involved with the project have been identified and are current with medical surveillance, OSHA 40 hour and 8 hour refresher training. Hazwoper site supervisor requirements are satisfied.		
5	Additional training requirements have been met: e.g. nuclear density gauge, DOT, Confined Space Entry, Competent Person Training for Excavation, OSHA 10 hour certification, Railway Safety Training, etc.		
6	H&A personnel that may be required to wear a respirator are medically qualified and have current certification of fit testing.		
7	Client's additional H&S requirements have been met: e.g. facility safety orientations, safety documentation, meetings, special PPE requirements		
8	H&A subcontractors have met H&A's minimum requirements including: current OSHA 40 hour training, medical surveillance, written HASP, insurance, MSDSs.		
9	MSDSs are on site and available for chemicals on site.		
10	Safety equipment is available: e.g. flashlight, telephone, ladders, traffic cones, barricade tape, fire extinguisher, first aid kit, PPE, respiratory protection, air and dust monitoring instrumentation (calibrated), personal flotation device (PFD), 90' life line with ring, decontamination equipment, etc.		
11	HASP and supporting documentation is complete and signed by all members.		

APPENDIX A HASP Amendment Form

This Appendix is to be used whenever there is an immediate change in the project scope that would require an amendment to the HASP. For project scope changes associated with "add-on" tasks, the changes must be made in the body of the HASP. Before changes can be made, a review of the potential hazards must be initiated by the H&A Project Manager.

Amendment No.	
Site Name:	
Work Assignment No.:	
Date:	
Type of Amendment:	
Reason for Amendment:	
Alternate Safeguard Procedures:	
Required Changes in PPE:	

Project Manager Signature:	Date:		
, , , , , , , , , , , , , , , , , , , ,			

Local Health and Safety Coordinator: _____ Date: _____

This original form must remain on site with the original HASP. If additional HASPs are in the field, it is the Project Manager's responsibility to forward a signed copy of this amendment to those who have copies.

Date printed: 10/24/2013 at 8:32 AM

APPENDIX B Issuance and Compliance Site Safety Officer Role and Responsibilities Training Requirements

This Health & Safety Plan (HASP) has been prepared in accordance with the requirements of Title 29 the Code of Federal Regulations (CFR) Section 1910.120/1926.65 to provide guidance for the protection of onsite personnel from physical harm and chemical exposure while working at the subject site.

The specific requirements of this HASP include precautions for hazards that exist during this project and may be revised as new information is received or as site conditions change.

- This HASP must be signed by all Haley & Aldrich (H&A) staff members who will work on the project, including H&A visitors. By signing the Health and Safety Plan Acknowledgement Form personnel are acknowledging that they are aware of the specific hazards of the site and agree to follow the provisions and procedures required to safeguard themselves and others from those hazards.
- This HASP or a current signed copy must be retained at the site at all times when H&A staff members are present.
- Deviations from this HASP are not permitted without prior approval from the above signed. Unauthorized deviations may constitute a violation of H&A company procedures/policies and may result in disciplinary action.
- Revisions to this HASP must be outlined within the contents of the HASP. If immediate or minor changes are necessary, the LHSC and H&A Project Manager may use Appendix A (HASP Amendment Form), located in the back of this HASP. Any revision to the HASP requires personnel to be informed of the changes and that they understand the requirements of the change.
- This HASP is not for H&A Subcontractor use. Each subcontractor engaged is responsible for all matters relating to the health and safety of their personnel and the safe operation of their equipment. This HASP will be made available as a reference so that subcontractors are informed of the potential hazards associated with the site to the extent we are aware. Subcontractors must develop their own HASP which must be, at a minimum, at least as protective as this HASP.
- This Site Specific HASP provides only site-specific descriptions and work procedures. General safety and health compliance programs in support of this HASP (e.g., injury reporting, medical surveillance, personal protective equipment (PPE) selection, etc. are described in detail in the H&A Corporate Health and Safety Program Manual and within Standard Operating Procedures (OPs). Both the manual and OPs can be located on the Company Intranet. When appropriate, users of this HASP should always refer to these resources and incorporate to the extent possible. The manual and OPs are available to clients and regulators per request.

Site Safety Officer:

The site safety officer (SSO) is defined as the individual responsible to the employer with the authority and knowledge necessary to implement the HASP and verify compliance with applicable health and safety requirements.

The H&A Project Manager may designate any person as the site safety officer (SSO) and determines the order of authority on site. Usually the highest ranking person on site is the SSO. A site safety officer must be on site at all times. When none of the designated SSOs are present on site, the senior person for H&A on site will default to the SSO. This project has identified the following hierarchy for SSO.

- 1. _____
- 2. _____

Site Safety Officer Roles and Responsibilities:

The SSO is responsible for field implementation of this HASP and enforcement of safety rules and regulations. SSO functions include:

- Act as H&A's liaison for health and safety issues with client, staff, subcontractors, and agencies.
- Verify that utility clearance has been performed by H&A subcontractors.
- Oversee day-to-day implementation of the HASP by H&A employees on site.
- Interact with subcontractor project personnel on health and safety matters.
- Verify use of required PPE as outlined in the HASP.
- Inspect and maintain H&A safety equipment, including calibration of air monitoring instrumentation used by H&A.
- Perform changes to HASP and document in Appendix A of the HASP as needed and notify appropriate persons of changes.
- Investigate and report on-site accidents and incidents involving H&A and its subcontractors.
- Verify that site personnel are familiar with site safety requirements (e.g., the hospital route and emergency contact numbers).
- Report accidents, injuries, and near misses to the H&A PM and Local Health and Safety Coordinator (LHSC) as needed.

The SSO will conduct initial site safety orientations with site personnel (including subcontractors) and conduct toolbox and safety meetings thereafter with H&A employees and H&A subcontractors at regular intervals and in accordance with H&A policy and contractual obligations. The SSO will track the attendance of site personnel at H&A orientations, toolbox

talks, and safety meetings. Subcontractors will document training and provide training rosters to the H&A SSO.

The SSO will report accidents such as injury, overexposure, or property damage to the Local Health and Safety Coordinator, to the Project Manager, and to the safety managers of other onsite consultants and contractors. The SSO will consult with the safety managers of other on-site consultants and subcontractors on specific health and safety issues arising over the course of the project, as needed.

Health and Safety Training Requirements:

Personnel will not be permitted to supervise or participate in field activities until they have been trained to a level required by their job function and responsibility. H&A staff members, contractors, subcontractors, and consultants who have the potential to be exposed to contaminated materials or physical hazards must complete the training described in the following sections.

The H&A Project Manager/LHSC will be responsible for maintaining and providing to the client/site manager documentation of H&A staff members' compliance with required training as requested. Records shall be maintained per OSHA requirements.

40-Hour Health and Safety Training

The 40-Hour Health and Safety Training course provides instruction on the nature of hazardous waste work, protective measures, proper use of personal protective equipment, recognition of signs and symptoms which might indicate exposure to hazardous substances, and decontamination procedures. It is required for all personnel working on-site, such as equipment operators, general laborers, and supervisors, who may be potentially exposed to hazardous substances, health hazards, or safety hazards consistent with 29 CFR 1910.120.

8-hour Annual Refresher Training

Personnel who complete the 40-hour health and safety training are subsequently required to attend an annual 8-hour refresher course to remain current in their training. When required, site personnel must be able to show proof of completion (i.e., certification) at an 8-hr refresher training course within the past 12 months.

8-Hour Supervisor Training

On-site managers and supervisors directly responsible for, or who supervise staff members engaged in hazardous waste operations, should have eight additional hours of Supervisor training in accordance with 29 CFR 1910.120. Supervisor Training includes, but is not limited to, accident reporting/investigation, regulatory compliance, work practice observations, auditing, and emergency response procedures.

Additional Training for Specific Projects

H&A personnel will ensure their personnel have received additional training on specific instrumentation, equipment, confined space entry, construction hazards, etc., as necessary to perform their duties. This specialized training will be provided to personnel before engaging in the specific work activities including:

- Client specific training or orientation
- Competent person excavations
- Confined space entry (entrant, supervisor, and attendant)
- Heavy equipment including aerial lifts and forklifts
- First aid/ CPR
- Diving certification
- Use of fall protection
- Commercial drivers license
- Use of nuclear density gauges
- Asbestos awareness

LEGEND:

TAX MAP PROPERTY (APPROXIMATE)

SITE BOUNDARY

PLAZA BUILDING

2-INCH MONITORING WELL LOCATIONS

1-INCH MONITORING WELL LOCATIONS

ONGOING GROUNDWATER MONITORING LOCATIONS

RESIDENTIAL PROPERTY ADDRESS

RESIDENTIAL LOCATIONS WHERE INDOOR AIR, OUTDOOR AIR, SUB-SLAB VAPOR, AND SUMP SAMPLING WAS CONDUCTED

NOTES:

1. WELL LOCATIONS ARE PER SURVEYS DATED 2007 & 2009 BY PARRONE ENGINEERING AND FISHER ASSOCIATES, RESPECTIVELY.

HALEY& UNITED CLEANERS 2199 EAST HENRIETTA ROAD HENRIETTA, NEW YORK

SITE PLAN WITH ONGOING MONITORING LOCATIONS

SCALE: AS SHOWN AUGUST 2013

FIGURE 2

New York State Department of Health Generic Community Air Monitoring Plan

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical-specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for volatile organic compounds (VOCs) and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate NYSDEC/NYSDOH staff.

Continuous monitoring will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells. **Periodic monitoring** for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a **continuous** basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.

All 15-minute readings must be recorded and be available for State (DEC and DOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored **continuously** at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

All readings must be recorded and be available for State (DEC and DOH) personnel to review.

June 20, 2000

P:\Bureau\Common\CommunityAirMonitoringPlan (CAMP)\GCAMPR1.DOC

APPENDIX D

MONITORING WELL BORING AND CONSTRUCTION LOGS

Test Boring No.: B-1

Page 1 of 2

Project:	Suburban Plaza	Drill Contractor:	Marcor	Start Date:	5/12/2006
Project #:	190500318	Driller:	Jeff	Completion Date:	5/12/2006
Client:	Wilmorite	Elevation:		Drilling Method:	Direct Push
Location:	See Figure	Weather:	60 deg, clear	Supervisor:	D. Gnage

	SAMPLE				Soil Information		
0	PID	Rec.	No.	Depth	Remarks		
	0.6/0.0	1.5	1	0-4	asphalt and base	0.6	
					Red brown SILT, some fine Sand, little clay, trace fine Gravel, moist (Native)		
	0.0/0.0	25	~	10			
_	0.9/0.0	2.5	۷	4-0			
						6.0	
					Brown fine SAND, some Silt, trace fine Gravel, moist to wet	6.5	
					Dark brown SILT, some to little fine Sand, trace organics, moist to dry		
						8.0	
	1.0/0.0	1.5	3	8-10	Is.a.a., increase in Sand, moist to wet		
						ļ	
10						10.0	
<u> </u>	07/00	14	Λ	10-12	Brown fine SAND come Silt trace fine Crovel wet	10.0	
f	0.170.0	4. 		10-12			
ŀ		· · · · ·					
					End of Boring		
ļ							
15							
						1	
Í							
						l	
						1	
						l	
						ļ	
20							
Alata						and the second se	

<u>Notes:</u> 1. PID Model Mini-Rae 2000 with a 10.6eV lamp.

Test Boring No.: _____B-2_

Page 1 of 2

Project:	Suburban Plaza	Drill Contractor:	Marcor	Start Date:	5/12/2006
Project #:	190500318	Driller:	Jeff	Completion Date:	5/12/2006
Client:	Wilmorite	Elevation:		Drilling Method:	Direct Push
Location:	See Figure	Weather:	60 deg, clear	Supervisor:	D. Gnage

	SAMPLE				Soll Information		
0	PID	Rec.	No.	Depth	Remarks		
	0.6/1.0	2.1	1	0-4	asphalt and base	0.6	
					Brown fine SAND and Silt, trace fine Gravel, moist to wet	0.0	
						1.5	
	L				Red brown fine SAND, some Silt, trace fine Gravel, dry to moist (Native)		
				[
	1.0/0.0	2.5	2	4-8	s.a.a. more Silt		
5							
				4		6.5	
					Dark brown SILT, some to little fine SAND, trace organics, dry to moist		
	0.0/0.0	0.1					
	0.0/0.0	2.4	3	8-12			
10				ļ		9.5	
					Brown fine SAND, some Silt, trace fine Gravel, wet		
			· · · · ·				
ŀ							
ŀ							
						12.0	
ŀ					End of Boring		
ŀ			[ļ			
ŀ							
15							
F		†					
ł							
F							
F							
F							
Ļ		†-					
F							
20							
Marine Marine				l		1	

Notes:

Test Boring No.: <u>B-3</u>

Page 1 of 2

Project:	Suburban Plaza	Drill Contractor:	Marcor	Start Date:	5/12/2006
Project #:	190500318	Driller:	Jeff	Completion Date:	5/12/2006
Client:	Wilmorite	Elevation:		Drilling Method:	Direct Push
Location:	See Figure	Weather:	60 deg, clear	Supervisor:	D. Gnage

		SAM	PLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	50.7/0.0	2.3	1	0-4	ashpalt and base	0.6
					Brown to dark brown SILT, some fine Sand, moist	
]		
]		
]		3.0
					Red brown SILT and fine Sand, trace fine Gravel, moist to wet (Native)	
			ļ	1		.
			<u> </u>	ļ		
	2.0/0.0	2.6	2	4-8		
5			[1		
			ļ			
			 	1		
			<u> </u>		Brown fine SAND, some Silt, moist to wet	ļ
						6.7
					Dark brown SILT, some to little fine Sand, trace organics, dry to moist	
	0.7/0.0	0.0	<u> </u>	0.10		
	0.770.0	2.6	3	8-12		
10						
					Provin fine SAND, come Sill little to trace fine One of the	10.2
					brown line SAND, some Sill, little to trace fine Gravel, moist	
						[
						40.0
ł					End of Boring	12.0
					End of boining	
ľ					· ·	
f						
ľ		-				
15						
T						
Г	1			1		
Γ			1	ŀ		
Γ	1			ľ		
Τ				1		
Ľ						
20						

Test Boring No.: <u>B-4</u>

Page 1 of 2

Project:	Suburban Plaza	Drill Contractor:	Marcor	Start Date:	5/12/2006
Project #:	190500318	Driller:	Jeff	Completion Date:	5/12/2006
Client:	Wilmorite	Elevation:		Drilling Method:	Direct Push
Location:	See Figure	Weather:	60 deg, clear	Supervisor:	D. Gnage

	SAMPLE				Soil Information		
0	PID	Rec.	No.	Depth	Remarks		
	2.6/0.0	1.7	1	0-4	ashpait and base	0.6	
		1]	Brown to red brown fine SAND and Silt, trace fine Gravel, moist to wet		
			1	1		[
		1	1	1			
			1	1			
				1			
						ł	
					. ,		
	1.0/0.0	2.7	2	4-8	s a a (Native)		
5				Ĭ		. [
<u> </u>							
					Dark brown SILT, come to little fine Sand, trace exception, day to which	0.3	
					bank brown Sich, some to little line Sanu, liace organics, dry to moist		
							
	07/00	22	2	0 1 0		1	
	0.170.0	4.4	3	0-12			
10							
					Denver for a CANID and a Cille for a Cille	10.3	
					Brown line SAND, some Silt, trace line Gravel and clay, wet		
						12.0	
<u> </u>					End of Boring		
					<i>,</i>		
				1			
ļ				-			
ļ							
ļ							
Ļ							
]				
L		Ī					
	.						
Ľ							
Γ		T					
20							

Notes:

Test Boring No.: 8-5

Page 1 of 2

Project:	Suburban Plaza	Drill Contractor:	Marcor	Start Date:	5/12/2006
Project #:	190500318	Driller:	Jeff	Completion Date:	5/12/2006
Client:	Wilmorite	_Elevation:		Drilling Method:	Direct Push
Location:	See Figure	Weather:	60 deg, clear	Supervisor:	D. Gnage

	SAMPLE				Soil Information			
0	PID	Rec.	No.	Depth	Remarks			
	10.5/0.0	2.3	1	0-4	ashpalt and base	0.7		
]	Brown, red brown SILT, some fine Sand, trace fine Gravel, dry			
			1]				
]				
						3.0		
					Brown fine SAND, some Silt, trace fine Gravel, moist to wet (Native)			
	1.8/0.0	2.3	2	4-8				
5				}				
						5.7		
					Dark brown SILT, some to little fine Sand, trace organics			
						7.7		
	0.000				Brown fine SAND, some Silt, trace fine Gravel, wet			
	0.7/0.0	1.7	3	8-10	Red brown Silty CLAY, little to trace fine Sand, trace fine to coarse Gravel,			
					moist			
40								
		· · · · · · · · · · · · · · · · · · ·				10.0		
					End of Boring			
ł						1		
ł								
ł		 						
ŀ					•			
ł								
ľ				1				
15								
		†		ļ				
ľ								
F								
ľ								
ļ –								
†	- Í	t						
ļ ,	i-							
F								
20						1		

Notes:

Test Boring No.: _____B-6

Page 1 of 2

Project:	Suburban Plaza	Drill Contractor:	Marcor	Start Date:	5/12/2006
Project #:	190500318	Driller:	Jeff	Completion Date:	5/12/2006
Client:	Wilmorite	Elevation:		Drilling Method:	Direct Push
Location:	See Figure	Weather:	60 deg, clear	Supervisor:	D. Gnage

	L	SAMPLE			Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	7.4/0.0	1.9	1	0-4	asphalt and base	0.7
	L				Brown SILT and fine Sand, some to little fine Gravel, moist	
]		
		L	L			
				1		
	L		[
	1.0/0.0					
_	1.8/0.0	2.4	2	4-8	moist to wet	
5				[
			· ·			6.3
					Red brown SILT, some fine Sand, trace fine Gravel, dry	
			····			7.0
					Dark brown SILT, little fine Sand, trace organics, dry to moist	
	1 2/0 0	10	2	9.40	Ded have all OLAN / 199 A. A.	8.2
	1.2/0.0	1.0	<u> </u>	0-10	Red brown, silty CLAY, little to trace fine Sand, trace fine Gravel, moist	
10						
					End of Davies	10.0
ŀ					End of boring	
ł						
ľ						
ľ						
ľ	T				,	
Γ	T	1				
15						
Τ						
				[
L						
L						
		Ī	-			
L						l
L						1
				ĺ		l
20						

Notes:

Test Boring No.: B-7

Page 1 of 2

Project:	Suburban Plaza	Drill Contractor:	Marcor	Start Date:	5/12/2006
Project #:	190500318	Driller:	Jeff	Completion Date:	5/12/2006
Client:	Wilmorite	Elevation:		Drilling Method:	Direct Push
Location:	See Figure	Weather:	60 deg, clear	Supervisor:	D. Gnage

0 PID Rec. No. Depth asphalt and base Remarks 3.600.0 2.6 1 0-4 asphalt and base 0.8 - - - - 0.8 0.8 - - - - 0.8 - - - - 0.8 - - - - 0.8 - - - - 0.8 - - - - 2.5 - - - - 2.5 - - - - 2.5 - - - - 2.5 - - - - - - - - - - 2.5 - - - - - - - 2.5 - - - - - - - - - - -			SAM	PLE		Soil Information	
3.6/0.0 2.6 1 0-4 asphalt and base 0.8 Brown, red brown SILT, some fine Sand, little Gravel, dry 2.5 2.5 2.5 2.9/1.0 1 2 4-8 2.5 0.9/0.0 3 8-11 8 7.0 0.9/0.0 3 8-11 8 8 10 3 8-11 9.0 10 3 8-11 9.0 10 3 8-11 9.0 10 3 8-11 9.0 10 3 8-11 9.0 10 3 8-11 9.0 10 5 1.0 9.0 11.0 5 1.0 9.0 115 1.0 1.0 1.0 115 1.0 1.0 1.0 115 1.0 1.0 1.0 115 1.0 1.0 1.0	0	PID	Rec.	No.	Depth	Remarks	
Brown, red brown SiLT, some fine Sand, little Gravel, dry 2.9/1.0		3.6/0.0	2.6	1	0-4	asphalt and base	0.8
2.9/1.0 1 2 4.8 2.9 5 1 1 2 4.8 7.0 0.9/0.0 3 8-11 8-0 8.0 8.0 10]	Brown, red brown SILT, some fine Sand, little Gravel, dry	
2.9/1.0 1 2 4-8 2.5 2.9/1.0 1 2 4-8 7.0 0.9/0.0 3 8-11 8-11 8-11 9.0 10 10 10 10 10 11.0 11.0 15 16 16 11.0 11.0 11.0 11.0] .		e
2.5 2.9/1.0 1 2 4-8 5]		
2.9/1.0 1 2 4-8 5 4-8 4-8 0.9/0.0 3 8-11 Brown fine SAND, some Silt, trace fine Gravel, wet 9.0 10 10 11 10 12 11.0 13 14 14 15 15 16 16 17	Managara]		2.5
2.9/1.0 1 2 4-8 5 - - - 7.0 0.9/0.0 3 8-11 8.0 9.0 10 - - 9.0 10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>Dark brown SILT, little fine Sand, trace organics, moist</td><td></td></t<>						Dark brown SILT, little fine Sand, trace organics, moist	
5 4.8 0.9/0.0 3 8-11 Red brown, silty CLAY, little to trace fine Gravel, wet 10 10 10 11 11 12 13 14 15 16 17				<u> </u>		· · ·	
2.39/1.0 1 2 4-8 - - - - 7.0 - - - - 7.0 0.9/0.0 3 8-11 8-11 9.0 10 - - - 9.0 10 - - - - 9.0 10 -							
5 7.0 0.9/0.0 3 0.9/0.0 3 8-11 8-11 10 8 10 10 10 10 10 10 10 10 10 10 10 10 11.0 11.0 11.0 11.0 11.1 11.0 11.1 11.0	_	2.9/1.0	1	2	4-8		
0.9/0.0 3 8-11 8.0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11.0 11.0 11.0 11.0 11.0 115 10 10 10 10 10 115 10 10 10 10 10 10 10 10 10 10 10 10 10 10 115 10 10 10 10 10 <t< td=""><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	5						
0.9/0.0 3 8-11 7.0 0.9/0.0 3 8-11 9.0 10 10 10 10 10 10 10 10 10 10 10 10 11.0 1							
0.9/0.0 3 8-11 7.0 10 3 8-11 9.0 10 - - 9.0 10 - - 9.0 10 - - 9.0 10 - - 9.0 10 - - 9.0 10 - - 9.0 10 - - 9.0 10 - - 9.0 10 - - 9.0 10 - - 9.0 10 - - 11.0 11.0 - - 11.0 115 - - - - - - - - 115 - - - - - - - - - - - - - - - - - 116 - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
0.9/0.0 3 8-11 9.0 10							
0.9/0.0 3 8-11 Brown fine SAND, some Silt, trace fine Gravel, wet 9.0 10							
Brown fine SAND, some Silt, trace fine Gravel, wet 9.0 10							7.0
0.9/0.0 3 8-11 9.0 10						Brown fine SAND, some Silt, trace fine Gravel, wet	
9.0 Red brown, silty CLAY, little to trace fine Sand, trace fine Gravel, moist 11.0 End of Boring 20		0.9/0.0		3	8-11		
10							9.0
10	4.0					Red brown, silty CLAY, little to trace fine Sand, trace fine Gravel, moist	
11.0 End of Boring	10						
11.0 End of Boring							(
End of Boring							11.0
						End of Boring	
	ŀ						
	ŀ						
	ŀ						
	ŀ						
	15						
	ŀ						
	ŀ	<u> </u>		{			
	⊦						
	F						
	ŀ	·		{	[
20	F						
20	⊢						
	20ľ						

Notes:

Test Boring No.: B-8

Page 1 of 2

Project:	Suburban Plaza	Drill Contractor:	Marcor	Start Date:	5/12/2006
Project #:	190500318	Driller:	Jeff	Completion Date:	5/12/2006
Client:	Wilmorite	Elevation:		Drilling Method:	Direct Push
Location:	See Figure	Weather:	60 deg, clear	Supervisor:	D. Gnage

	<u> </u>	SAMPLE Soil Information				
0	PID	Rec.	No.	Depth	Remarks	
	4.8/0.0	1.8	1	0-4	asphalt and base	0.8
				1	Brown SILT and fine Sand, trace fine Gravel, moist to wet	
		Ι	[1		
			[1		
_			1	1		
	ļ	1		1		
			1	1		
				1		
	3.2/0.0	1.5	2	4-8		
5		[
						6 F
					Brown fine SAND some Silt trace fine Gravel moist to wet	0.0
					Biowrithing Or WD, Some Ont, trace line Graver, moist to wet	
					Dark brown SILT some to little fine Sand maint	
	0.5/0.0	26	3	8-12	bein brown oiz r, some to intre inte Sanu, moist	
	0.07010			0,2		
						Í
10						
`					Brown/rod brown oilby CLAX little fine Cond to a fine of the	10.0
					browned brown, sity CLAT, little line Sand, trace line Gravel, moist	
					· ·	
ŀ						12.0
				ļ	End of Boring	
ŀ						
ŀ				ł		
⊦						
10						
-15						
ŀ						
-	<u> </u>					
Ļ						
-						
Ļ	. <u> </u>					
Ļ						
	[
20[ļ					

Notes:

Ł

2250 Brighton Henrietta Town I Rochester, NY 14623 (585) 475-1440

Test Boring No.: B-9

Page 1 of 2

Project:	Suburban Plaza	Drill Contractor:	Marcor	Start Date:	5/12/2006
Project #:	190500318	Driller:	Jeff	Completion Date:	5/12/2006
Client:	Wilmorite	Elevation:		Drilling Method:	Direct Push
Location:	See Figure	Weather:	60 deg, clear	Supervisor:	D. Gnage

		SAM	PLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	1.0/0.0	2.4	1	0-4	asphalt and base	0.5
]	Brown/red brown, fine SAND and some Silt, little fine Gravel	<u> </u>
]		
]		
						2.4
					Brown fine SAND and Silt, trace fine Gravel, moist to wet	
						3.7
		L			Dark brown SILT, little fine Sand, trace organics, moist	
	1.2/0.0	2.2	2	4-8		
5						
						[
						7.6
	0.0/0.0				Red brown, silty CLAY, little fine Sand, trace fine Gravel, moist	
	0.6/0.0	2.7	3	8-12		
				[
10						-
- 10				ł		
				1		
		{				12.0
					End of Boring	
ł		· · · · · · · · · · · · · · · · · · ·		·		
ł				[
ŀ	·					
15						1
f	····					
ŀ						
ŀ						
ŀ						
			Ì			
ŀ						1
F						- [
F						1
20				1		
						1

Notes:

Test Boring No.: B-10

Page 1 of 2

Project:	Suburban Plaza	Drill Contractor:	Marcor	Start Date:	5/12/2006
Project #:	190500318	Driller:	Jeff	Completion Date:	5/12/2006
Client:	Wilmorite	Elevation:		Drilling Method:	Direct Push
Location:	See Figure	_Weather:	60 deg, clear	Supervisor:	D. Gnage

		SAM	PLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	2.0/0.0	2.6	1	0-4	asphalt	0.9
					Red brown, fine to medium Sand and Gravel, trace to little Silt, dry	
]		17
				1	Brown/red brown SILT, some fine Sand, trace to little fine Gravel moist	
		[[
	1	I		1		[
	-			1		
				1		
	1.0/0.0	2.8	2	4-8		
5						
						أسم
					Brown fine SAND, come Silt little to trees fine Ormal and it is	6.7
					brown line SAND, some Sill, illie to trace fine Gravel, moist to wet	
×						
	0.8/0.0	22		0 1 2		
	0.0/0.0	<u> </u>	3	0-12		1
			······			-
10						
						1
				ļ		11.0
					Red brown, silty CLAY, little to trace fine Sand, trace fine Gravel, moist	
						12.0
]		End of Boring	
ļ						
ļ						
ļ						
ļ						
15			j	1		
L]			
L		. 1				
Ĺ						
[Г					
[Ī					
	ĺ	j]		
ľ	1					
F		†-				
F						
20						
-	l					

Notes:

Test Boring No.: B-11

Page 1 of 2

Project:	Suburban Plaza	Drill Contractor:	Marcor	Start Date:	5/12/2006
Project #:	190500318	Driller:	Jeff	Completion Date:	5/12/2006
Client:	Wilmorite	Elevation:		Drilling Method:	Direct Push
Location:	See Figure	Weather:	60 deg, clear	Supervisor:	D. Gnage
			•	-	

	<u> </u>	SAM	PLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	2.4/0.0	2.5	1	0-4	asphalt and base	
			L]		1.5
		[<u> </u>		Brown/red brown, fine SAND and Silt, trace fine Gravel, moist to wet	
	<u> </u>	ļ				
		[[[
						4.0
	1.1/0.0	3	2	4-8	Brown SILT, little fine Sand, trace Gravel, dry to moist	
-				1	·	
5						
				1		ŀ
						6.5
					Brown, fine SAND, some Silt, trace fine Gravel, moist to wet	
						(
	0.2/0.0			0.40		
	0.3/0.0	2.0	3	8-12		
10						
ł						
ŀ					Pod brown pility CLAV, little to trace fine Served trace for One is a single	11.0
ŀ					Red blown, siny CLAT, indie to trace line Sand, trace line Gravel, moist	
ŀ					End of Paring	12.0
			{		Lind of Borning	
ł						
ŀ						
ŀ						
15						
		f				
ľ		t i i i i i i i i i i i i i i i i i i i				
۲						
ſ		-				
F						
F						
F		t-				
F						
20						
	and the second	ອກຈາກສະຫາການນ້ຳກະ				1

Notes:

Test Boring No.: B-12

Project:	Suburban Plaza	Drill Contractor:	TREC	Start Date:	6/9/2006
Project #:	190500318	Driller:	P. Wiley	Completion Date:	6/9/2006
Client:	Wilmorite	Elevation:	100.00	Drilling Method:	Direct Push
Location:	See Figure	Weather:	overcast/rain	Supervisor:	D. Gnage

	SAMPLE			Soil Information			
0	PID	Rec.	No.	Depth	Remarks		
	0.0/0.0	2.5	1	0-4	Concrete	0.5	
					Brown to Lt. Brown SILT, some to little fine Sand, trace Fine to course Gravel	0.0	
					moist		
				1			
	h			1			
				1			
				1			
				1			
	0.0/0.0	2.7	2	4-8	same as above, moist		
5							
				1			
				ł]	
				1	Brown Silby CLAY little to trace fine Sand maint (Nativa)	6.8	
				1	District only observer, need to trace the Sand, moist (Native)		
·····				1	Dark Brown CLAY little Silt trace ergenice maint	1.75	
	0.0/0.0	3.0	3	8-12	Bark Brown, OEAT, inte Sik, trace organics, molst		
				0.2			
					Brown SILT comp fine Sand trace fine Orecul and Ob	9.0	
10					brown, Siler, some fine Sand, trace fine Gravel and Clay, moist to wet		
	-						
						[
	0.0/0.0	20	4	12-14	Pod Brown Silt and fine SAND trace fine One of	12.0	
	0.0/0.0	2.0		12-14	Red brown Sill and line SAND, trace the Gravel, moist to wet (TILL)		
						14.0	
15							
					End of Boring/ Refusal		
ŀ				[
ł						1	
ŀ							
4						l	
ļ				[
						ļ	
20							
Note	¢.					No. of Concession, Name	

Test Boring No.: B-13

Project:	Suburban Plaza	Drill Contractor:	TREC	Start Date:	6/9/2006
Project #:	190500318	Driller:	P. Wiley	Completion Date:	6/9/2006
Client:	Wilmorite	Elevation:	100.00	Drilling Method:	Direct Push
Location:	See Figure	Weather:	overcast/rain	Supervisor:	D. Gnage

	SAMPLE		· · · · · · · · · · · · · · · · · · ·	Soil Information			
	PID	Rec.	No.	Depth	Remarks		
	4.8/0.0	2.3	1	0-4	Concrete	0.5	
					Brown to Red Brown SILT and fine Sand, trace fine Gravel and Clay, moist		
]			
]			
]			
]			
]			
	0.0/0.0	3.0	2	4-8	same as above, moist to wet		
5							
						5 5	
					Red Brown to Brown, SILT, some fine Sand, trace F. Gravel, doute moist	<u> </u>	
		-			(till-like, native)		
						7 0	
					Dark Brown CLAY little Silt trace organics, moist		
					End of Baring/ Borobala callance at 2.51		
ĺ					End of boring/ borehole collapse at 5.5	1	
						1	
10							
						1	
ŀ							
		ł					
				-			
ł				ļ			
ŀ							
						İ	
-151							
Ļ							
H						l	
Ļ							
Ļ							
Ĺ]	[
]			Ì	
Γ							
20	1						
Alaska							

Notes:

Test Boring No.: B-14

Project:	Suburban Plaza	Drill Contractor:	TREC	Start Date:	6/9/2006
Project #:	190500318	Driller:	P. Wiley	Completion Date:	6/9/2006
Client:	Wilmorite	Elevation:	100.00	Drilling Method:	Direct Push
Location:	See Figure	Weather:	overcast/rain	Supervisor:	D. Gnage

	SAMPLE			Soil Information			
0	PID	Rec.	No.	Depth	Remarks		
	0.0/0.0	1.0	1	0-4	Concrete	0.5	
					Red Brown SILT and fine Sand, trace fine Gravel and Clay, moist to wet		
1							
				1			
			[1			
				1			
			[1			
				1			
	0.7/0.0	2.2	2	4-8	same as above, moist, increase in clav		
5				1			
				1			
				1			
				1		6.0	
				1	Dark Brown CLAY some Silt trace organics moint	0.9	
				1	Bark Brown, OEAT, Some Sik, trace organics, moist		
	0.0/0.0	23	3	8-12			
	0.0/0.0			012			
ļ							
10					Brown to Pod Brown Silt and fine SAND little fire One of the	9.7	
					moist to wort (TILL)		
-							
	0.0/0.0	~		10.11			
	0.0/0.0		4	12-14	same as above, wet		
ŀ							
}							
ŀ					- 	14.0	
						1	
-151					End of Boring		
Ļ							
Ļ							
Ļ						ļ	
						1	
						ļ	
Γ							
Г						[
20		ſ					
Notes	3:			<u>_</u>			

Test Boring No.: B-15

Page 1 of 1

Project:	Suburban Plaza	Drill Contractor:	TREC	Start Date:	6/12/2006
Project #:	190500318	Driller:	P. Wiley	Completion Date:	6/12/2006
Client:	Wilmorite	Elevation:	99.18	Drilling Method:	Direct Push
Location:	See Figure	Weather:	p. cloudy +/-65	Supervisor:	D. Gnage

	SAMPLE				Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	0.7/0.0	2.3	1	0-4	asphalt and base	0.5
					Brown to Orange Brown, fine SAND, some Silt, little fine Gravel, trace glass,	
					moist (fill)	12
					same as above, dark brown, no glass	
-				1		
				-		3.3
					Brwon, SILT and fine SAND, little fine Gravel, wet	
			~		***************************************	3.8
	1.3/0.0	2.1	2	4-8	same as above, dry	
<u> </u>						
				4		
				4	Darle Drawe Official NC I. C. O. Stational Stationary	6.0
				4	Dark Brown Silty CLAY, trace tine Sand and organics (Native)	6.3
				1	Brown SIL1 and tine SAND, trace fine Gravel, moist	7
				-	Red Brown GLAY, some Silt, little fine Sand, trace fine Gravel, moist (TILL)	
	0.0/0.0	20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 1 2		
	0.070.0	- 2.0		0-12		
				1		
10						
						11.0
		·			same as above increase in Sand wet	
	0.0/0.0	1.6	4	12-16		
15						
						16.0
			•		End of Boring	
					5	
[
[[
[]				
ĺ						
20						
Noto	e ·					

Test Boring No.: B-16

Page 1 of 1

Project:	Suburban Plaza	Drill Contractor:	TREC	Start Date:	6/12/2006
Project #:	190500318	Driller:	P. Wiley	Completion Date:	6/12/2006
Client:	Wilmorite	Elevation:	98.36	Drilling Method:	Direct Push
Location:	See Figure	Weather:	p. cloudy +/-65	Supervisor:	D. Gnage

	SAMPLE				Soil Information			
0	PID	Rec.	No.	Depth	Remarks			
	48.9/0.0	3.0	1	0-4	asphalt and base	0.6		
]	Brown, fine to medium SAND, some Silt, little fine Gravel, dry			
						1.5		
					Brown to dark brown, SILT, some fine SAND, little to trace fine Gravel, moist			
				ļ				
						3.7		
					Brown SILT and fine SAND, trace fine Gravel, moist to wet			
4-7	31.8/0.0	2.5	2	4-8				
5								
:								
						1		
7 0	0.0/0.0					7.0		
/-8	0.0/0.0				Dark Brown Silty CLAY, trace fine Sand and organics (Native)			
	0.0/0.0							
	0.0/0.0	3.0	3	8-12				
						9.0		
10					Red Brown Silty CLAY, trace fine Sand and Gravel, moist (TILL)			
						1		
						l		
	0.0/0.0		4	40.45				
	0.0/0.0			12-15				
15								
						15.0		
ł								
ł				ļ	End of Poving			
ŀ								
ŀ)		
ŀ								
ł						ŀ		
ŀ		·						
201								
20								

Notes:

2250 Brighton Henrietta Town L Rochester, NY 14623 (585) 475-1440

Test Boring No.: B-17

Page 1 of 1

Project:	Suburban Plaza	Drill Contractor:	TREC	Start Date:	6/12/2006
Project #:	190500318	Driller:	P. Wiley	Completion Date:	6/12/2006
Client:	Wilmorite	Elevation:	98.10	Drilling Method:	Direct Push
Location:	See Figure	Weather:	p. cloudy +/-65	Supervisor:	D. Gnage

	SAMPLE			***	Soil Information			
0	PID	Rec.	No.	Depth	Remarks			
	303/0.0	1.6	1	0-4	asphalt and base	0.6		
]	Brown, fine to medium SAND, some Silt, little fine Gravel, dry	1.0		
i]	Brown to dark brown, SILT and fine SAND, little to trace fine Gravel moist			
]				
				Ĩ				
				1				
				1				
				1				
4-6	103/0.0	3.0	2	4-8				
5				1				

				1		6.0		
6-7.2	1.4/0.0			1	Dark Brown Silty CLAY, trace fine Sand and organics, moist (Native)			
				1		72		
7-8	0.0/0.0				Red Brown Silty CLAY, trace fine Sand and Gravel moist (TILL)	1.6		
						8.0		
					End of Borino/ Borehole collapse at 2 1'	0.0		
	İ							
10								
	1							
ľ								
ſ	f							
ſ								
		1						
ļ								
ľ								
ľ								
15								
ŀ	1							
Ì	1	†						
ſ	ŧ					[
ŀ				[
†								
ŀ	·			ļ				
-								
┝			{					
201								
2.0								

Notes:

Test Boring No.: B-18

Page 1 of 1

Project:	Suburban Plaza	Drill Contractor:	TREC	Start Date:	6/12/2006
Project #:	190500318	Driller:	P. Wiley	Completion Date:	6/12/2006
Client:	Wilmorite	Elevation:	98.16	Drilling Method:	Direct Push
Location:	See Figure	Weather:	p. cloudy +/-65	Supervisor:	D. Gnage

	SAMPLE				Soil Information		
0	PID	Rec.	No.	Depth	Remarks		
	41.8/0.0	2.5	1	0-4	asphalt and base	0.6	
]	Brown, fine to medium SAND, some Silt, little fine Gravel, dry	13	
]	Brown to dark brown, SILT and fine SAND, little to trace fine Gravel moist		
				1			
				1		ĺ	
				1			
				1			
			1				
4-6.5	18.1/0.0	2.5	2	4-8	same as above		
5			1				
			1				
			<u> </u>				
			<u> </u>				
6.5-7.5	0.0/0.0				Dark Brown Silty CLAV troop fine Send and energing and their send	6.5	
	0.0.0.0				Dank brown Siny CLAT, trace the Sand and organics, moist (Native)		
7 5-8	0.0/0.0				Red Brown Silty CLAV trace fine Send and One the State Har	7.5	
	0.0/0.0	1.8	3	8 1 1	The brown Siny CLAT, trace the Sand and Gravel, moist (TILL)		
	0.0/0.0	1.0	<u> </u>	0-11		1	
10							
ľ				44.40			
			4	11-13	no sampling		
-						13.0	
ļ					End of Boring		
ŀ							
						ļ	
15				1			
ļ							
Ļ							
L							
						ļ	
						1	
						[
Γ							
ſ							
F				1		1	
20							
<u></u>	1	l					

Notes:

Test Boring No.: B-19

Page 1 of 1

Project:	Suburban Plaza	Drill Contractor:	TREC	Start Date:	6/12/2006
Project #:	190500318	Driller:	P. Wiley	Completion Date:	6/12/2006
Client:	Wilmorite	Elevation:	98.05	Drilling Method:	Direct Push
Location:	See Figure	Weather:	p. cloudy +/-65	Supervisor:	D. Gnage

	SAMPLE				Soil Information							
0	0 PID Rec. No.		Depth	Remarks								
	162/0.0	2.2	1	0-4	asphait and base	0.6						
					Brown, fine to medium SAND, some Silt, little fine Gravel, dry	0.0						
					Brown, SILT and fine SAND, little to trace fine Gravel, moist to wet	2.6						
4-6	45.2/0.0	3.25	2	4-8		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
6-8	0.0/0.0				Dark Brown Silty CLAY, trace fine Sand and organics, moist (Native)	5.9						
				1		7 0						
					Red Brown Silty CLAY, trace fine Sand and Gravel, moist (TILL)	8.0						
					End of Boring/ Borehole collapse at 0.95'							
10												
-												
15												
ļ												
ŀ												
20												
Motoo												

Notes:

Test Boring No.: B-20

Page 1 of 1

Project:	Suburban Plaza	Drill Contractor:	TREC	Start Date:	6/12/2006
Project #:	190500318	Driller:	P. Wiley	Completion Date:	6/12/2006
Client:	Wilmorite	Elevation:	98.15	Drilling Method:	Direct Push
Location:	See Figure	Weather:	p. cloudy +/-65	Supervisor:	D. Gnage

		SAM	IPLE		Soil Information								
0	PID	PID Rec. No. Dep			Remarks								
	0.0/0.0	2.5	1	0-4	asphalt and base	0.5							
				1	Brown, fine to medium SAND, some Silt, little fine Gravel, moist to wet	0.0							
4na ao amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' amin' am				-	Brown SILT and fine SAND little fine Gravel moist	2.5							
4-6 	0.0/0.0	2.5	2	4-8									
6-8	0.0/0.0				Dark Brown Silty CLAY, trace fine Sand and organics, moist (Native)	6.0							
					enty e = et, acce the cara and organico, molet (Hanve)	7.5							
					Red Brown Silty CLAY, trace fine Sand and Gravel, moist (TILL)	8.0							
					End of Boring/ Borehole collapse at 2.65'								
10													
			-										
[
[
ſ	1]											
	l	Í											
Ī		1											
ľ	ľ												
ľ		1											
15		1											
1													
f		F											
ľ													
F													
f													
ŀ													
ŀ													
ŀ													
201]									
201	la la la la la la la la la la la la la l	1]									

Notes:

Test Boring No.: B-21

Page 1 of 1

Project:	Suburban Plaza	Drill Contractor:	TREC	Start Date:	6/21/2006
Project #:	190500318	Driller:	P. Wiley	Completion Date:	6/21/2006
Client:	Wilmorite	Elevation:		Drilling Method:	Direct Push
Location:	See Figure	Weather:	clear +/-70	Supervisor:	D. Gnage

	L	SAN	IPLE		Soil Information										
0	PID Rec. No. Dep			Depth	Pepth Remarks										
	0.0/0.0	2.7	1	0-4	Asphalt and base										
						0.8									
					Brown to Red Brown SILT and fine SAND, trace fine Gravel and Clay, dry	0.0									
			<u> </u>												
		7144	ļ												
47	0.0/0.0	2.0			at 3.5' moist										
5	0.0/0.0	<u> </u>	2	4-8	same as above, brown										
<u> </u>															
7-8	0.0/0.0				Dark Brown Clay, some Silt troop find Soud and energine in (1)	7.0									
					bank brown elay, some Sin, trace line Sand and organics, moist (Native)										
8-10.5	0.0/0.0	3.3	3	8-12											
				- /	Red Brown Sitty CLAY, trace fine Sand and Gravel, moist (TILL)	8.5									
					The second end of a real of a real of a real of a real of a real of a real of a real of a real of a real of a r	l									
10															
10.5-12	0.0/0.0					10.5									
					same as above, increase in Sand, little to some , moist to wet										
	0.0/0.0	3.5	4	12-16	same as above, moist										
ľ															
ŀ															
15															
Ļ					at 15.7 day										
F					End of Device	16.0									
ŀ					chu di Boring										
F															
				[
F															
ľ															
20						ļ									
Notes															

Test Boring No.: B-22

Page 1 of 1

Project:	Suburban Plaza	Drill Contractor:	TREC	Start Date:	6/21/2006
Project #:	190500318	Driller:	P. Wiley	Completion Date:	6/21/2006
Client:	Wilmorite	Elevation:		Drilling Method:	Direct Push
Location:	See Figure	_Weather:	clear +/-70	Supervisor:	D. Gnage

		SAN	APLE		Soil Information								
0	PID	Rec.	No.	Depth	Remarks								
	0.0/0.0	3.0	1	0-4	Asphalt and base								
			1	1									
			1	1	Brown to Dark Brown SILT and fine SAND, trace to little fine Crewel	<u> </u>							
	 		1	-	Itrace Clay moist								
			 	-	adde oldy, moist								
	1		<u>† </u>	-									
	<u> </u>	······	<u> </u>	-									
				-									
17		26		1 10									
5	0.0/0.0	2.0		4-0	isame as above, moist to wet								
<u> </u>	<u> </u>			4									
				4									
			<u> </u>	4									
				1									
				4		7.0							
7-8	0.0/0.0			4	Dark Brown Clay, some Silt, trace fine Sand and organics, moist (Native)								
	0.1/0.0	3.0	3	8-12		8 5							
]	Red Brown Sitly CLAY, trace fine Sand and Gravel, moist to dry (TILL)								
]	· · · · · · · · · · · · · · · · · · ·	1							
10]									
				1									
				1									
	0.0/0.0	3.5	4	12-16	same as above slight increase in Sand content, moist	1							
					same de deere, engra merede in eand content, moist								
1				1									
	t	J		1									
15						1							
ŀ						16.0							
•					End of Boring								
}						1							
,	·····												
ļ						[
Ļ				1		Í							
Ĺ													
20													
Matan.													

Notes:

Test Boring No.: B-23

Page 1 of 1

Project:	Suburban Plaza	Drill Contractor:	TREC	Start Date:	6/21/2006
Project #:	190500318	Driller:	P. Wiley	Completion Date:	6/21/2006
Client:	Wilmorite	Elevation:	······	Drilling Method:	Direct Push
Location:	See Figure	Weather:	clear +/-70	Supervisor:	D. Gnage

		SAN	IPLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
0-1	0.0/0.0	4.0	1	0-4	Dark Brown, Silty CLAY, trace fine Sand and organics, moist to dry	
			[1		1.0
1-4	0.0/0.0	1]	Red Brown Sitly CLAY, trace fine Sand and Gravel, moist (TILL)	
					· · · · · · · · · · · · · · · · · · ·	
]		
			L		· ·	
	0.0/0.0	~ ~ ~				[
4-b	0.2/0.0	2.9	2	4-8	slight increase in sand content, little Sand, moist	
<u> </u>						1
6.9	1 1/0 0					6.0
0-0	1.1/0.0			4	same as above, trace fine Sand	
				1		
8-9	2 0/0 0	40	્ર	8.12	same as shown moist to write	
ŰŰ	2.0/0.0			0-12	at 8.5 1/2" sand seem wet	
9-12	3.0/0.0				same as above mojet	9.0
10						
ľ						
ľ						
ſ						
		4.0?	4	12-16	same as above, sample stuck in macro-core	
Ĺ						
Ļ						
15			****			
15-16	0.4/0.0					
						16.0
Ļ				1	End of Boring	
-						
Ļ				1		
	<u> </u>					
20 F						
<u>20</u>		L.				

Notes:

	HA AL	TEST BORING REPORT											Boring No. HA-1											
	Proj Clie Con	ject nt ^N itracto	Subur Vilmori r Notl	ban Pla te, Inc. hnagle	aza H Drillir	Henrie ng, Inc	tta, N :.	ew York							File No. 33587-001 Sheet No. 1 of 2 Start January 18, 2007 Finish January 18, 2007									
				Ca	asing	San	npler	Barrel		Drilling Equipmen	t and F	Proced	dures		Driller K. Busch									
ſ	Туре	Э		F	ISA		s	-	Rig I	Make & Model: BK-8	31				H&A Rep. T. Bown									
	Insic	de Dia	meter (i	in.) 4	1/4	1	3/8	-	Bit T	ype: Cutting Head					EI	eva	atio	n	5	73.	1			
	Ham	nmer V	Veiaht ((lb.)	_	1	40	-	Drill	Mud: None						atur oca	n tior	5	N See	NGVD29 See Plan				
	Ham	nmer F	all (in.)		-	3	30	-	Hois	it/Hammer: Autom	atic Ha	ammer												
ŀ			e î		E	£	0								Gra	avel		San	d		Field Tes			
23, 10	(ft.)		le N S. (in	le (ft.)	iagra	Dep	Symt	1	/isual-	Manual Identification) and [Descri	ption		arse	0	arse	dium	a	SS	c	less	ť	ţ
	Depth	SPT ¹	Samp & Rec	Samp Depth	Well D	Elev./ (ft.)	USCS	(Densit structure, o	y/consi odor, m	istency, color, GROUP noisture, optional descri	NAME ptions,	, max. geolog	particle size ² , gic interpretati	on)	% Coa	% Fine	% Co	% Me	% Fine	% Fine	Dilatan	Toughr	Plastici	Streng
b i	0 -					572.8		<u>م</u>	-AS	SPHALT/PAVEMENT-														_
						0.4		Note: Aug commenci	er from ng sub	0.0 ft. to 5.0 ft. BGS b psurface sampling.	efore	/												
																								1
																								I
																								1
	- 5 -	1 2	S1 10/24	5.0 7.0			CL	Medium se odor, mois	oft, bro st.	wn, lean CLAY with sa	nd (CL)), no	PID = 2.1	ppm					25	75	S	М	М	
		4 5																						1
		5 4	S2 11/24	7.0 9.0			CL	Stiff, brow moist.	n, lean	CLAY with sand (CL),	no odo	r,							25	75	S	М	М	
		5 4								-LACUSTRINE-														
	10 -					563.1																		
	10	6 5	S3 17/24	10.0 12.0		10.0 562.6	ML CL	Stiff, brow Stiff, brow	n, SILT n, sanc	「with sand (ML), no od dy lean CLAY with grav	or, wet. el (CL)	, mps	PID = 0.0	ppm		15		5	20 15	80 65	R S	L M	N M	
		8 8				10.5		0.75 in., n	o odor,	dry.														1
																								1
																								1
	15 -	0	64	15.0				Vonveitt	rad br-	wo gravelly less CLA	V with -	and		000	2F	10	F		F	55	c	M	M	1
		о 17 13	7/24	17.0				(CL), mps	1.0 in.,	, no odor, dry.		ailu	FID = 3.3	νμη	20				5	55	3	171	141	1
		9								-GLACIAL TILL-														1
																								1
																								I
	20 -					553.1																		
			Water Level Data Sample Identification Well Diagram										~	!		Sur	<u>nm</u> ;	ary	<u> </u>	0.7				
	Da	ate	Time	Time (hr.) ^B	ottom Casing	Botto of Hc	water	T	Open End Rod Thin Wall Tube		Scr Filte	een er Sand	Ro	erb ck (urd Cor	en ed	(IIN (lin	. π. . ft.) 4)	8.0- -			
	01/1	8/07	1115	-		42	44	40.7	U	Undisturbed Sample	<u><u> </u></u>	Cut Gro	tings out	Sai	mp	les								
	01/1	6/07	1150	0.55	'	42	44	39.3	G	Spiit Spoon Geoprobe		Cor Ber	ncrete ntonite Seal	Во	rir	ng	No) .		Н	A-	1		
	Fie	eld Tes	ts:	•	Dilata	ancy: hness:	R-F	Rapid, S-S ow, M-Me	low, N dium	I-None Plas H-High Drv	sticity: Strenc	N-Nor hth: N-	nplastic, L-L	ow, N w, M	1-M -Me	ediu ediu	um, m.	Н- Н-Р	Hig Hiał	h n, V	′-Ve	ry H	liah	
	¹ SP	T = Sa	npler blo No f	ws per 6 te: So	<u>3 in.</u>	² Ma	ximum ation	particle size	e (mm) visual	is determined by direct	observa f the l	ation wi	thin the limitat	ions o d bv l	f sa Hal	impl ev	ers & /	ize \ldr	(in n	nillin , Ind	neter c.	s).		

H/ AL	TEST BORING REPORT										r in No et l	g N). No.	lo. 335 2	Н 587- 2 о	A-1 -001 f 2	 <u>2</u>		
		No.)	(î	ram	pth	lodn	Visual-Manual Identification and Descri	ntion	Gra	ave		Sar	d		F	ield ഗ	Tes	t
pth (ft	Ē	nple l čec. (i	mple pth (ff	l Diagr	v./Dei	S Syn	(Density/consistency. color. GROUP NAME, max.	particle size ² .	Coarse	ine	Coarse	Aediur	-ine	-ines	tancy	ghnes	ticity	ngth
Dep	SP	& Sar & R	Sar Dej	Well	(ft.)	nsc	structure, odor, moisture, optional descriptions, geolog	ic interpretation)	%	8 ₽	%	۷ %	% F	4 %	Dilat	Tou	Plas	Stre
- 20 -	2 4	S5 16/24	20.0 22.0		20.0	ML	Stiff, gray-brown, sandy SILT with gravel (ML), mps 0.75 in., no odor, moist.	PID = 2.2 ppm		15	5		15	65				
	7 8																	
2																		
					548 1													
- 25 -	3 3	S6 12/24	25.0 27.0		25.0	CL	Stiff, gray-brown, lean CLAY with gravel (CL), no odor, moist.	PID = 0.0 ppm		15	-		10	75	S	M	М	
	10 10						-GLACIAL TILL-											
-																		
-																		
- 30 -	11	S7 12/24	30.0			CL	Hard, red-gray, sandy lean CLAY with gravel (CL),	PID = 0.6 ppm	20		5		15	60 20	S	М	М	
-	9 10		02.0				Large piece of coarse material at ~30.5 ft. BGS, moist to wet above.						80	20				
; 																		
-																		
-																		
- 35 -	2	S8	35.0			CL	Very stiff, gray-brown, sandy lean CLAY with gravel	PID = 0.0 ppm	15	5			25	60	s	М	М	
_	12 10	13/24	37.0															
;																		
-					534.6	L				<u> </u>	-							
-					38.5													
- 40 -	2	S9	40.0			CL	Medium stiff, gray-brown, lean CLAY (CL), mps 0.50	PID = 0.0 ppm		5				95	s	М	М	
	3 3 2	24/24	42.0				In., no odor, wet. -LACUSTRINE-											
-	2	S10	42.0			CL	Medium stiff, gray-brown, sandy lean CLAY with	PID = 1.0 ppm		15		5	10	70	s	М	М	
_	2 3 7	24/24	44.0				gravel (CL), mps 0.50 in., no odor, wet.											
	8	S11	44.0		529.1 44.0	SM	Medium dense, gray-brown, silty SAND with gravel	PID = 2.1 ppm	_	20	5	50	5	20				
- 45 -	5 8 8	8/24	46.0				(SNI), mps 0.75 in., no odor, wet. -GLACIAL TILL-											
	6	S12	46.0			SM	Medium dense, gray-brown, silty SAND with gravel	PID = 0.0 ppm		5		10	70	15				
-	9 4 2	16/24	48.0				(SM), mps 0.50 in., no odor, wet.											
-	3				525.1 48.0		Bottom of boring at 48.0 ft.											
							See Observation Well Report.											
¹ SPT	= Sam	bler blow	s per 6 ir	1. ² Ma	ximum p	barticle	e size (mm) is determined by direct observation within the lin	mitations of sampler		Bo	rin	a١			H	A-1		
NO1		il identif	ication	hased	d on vis	ual-m	anual methods of the USCS as practiced by Haley & A	Idrich Inc	1 '	-0		Я,						

	H/ AI	ALEY &	& H					TEST	BOF	RING REPOI	RT				Bo	orii	ng	Nc) .	I	HA	-2	
	Pro Clie Cor	ject ent \ htracto	Subur Wilmori r Not	ban Pla te, Inc. hnagle	aza H Drillir	lenrie ng, Inc	tta, N	lew York						Fi Sł St	le N nee art	lo. t N	3: o. ^ Ja	358 1 of	37-0 f 2 ary)01 18,	200)7	
				Ca	asing	Sam	npler	Barrel		Drilling Equipment	and Proce	dures		Fi Di	nisł ille	n r	Ja	inua S	ary Llo	18, oran	200 tv)7	
ľ	Тур	е		F	ISA		S	-	Rig N	lake & Model: CME	-85			на	&A	Re	p.	D). N	ostr	ant		
	Insid	de Dia	meter (in.) 4	1/4	1:	3/8	-	Bit Ty	/pe: Cutting Head				EI	eva	atio	'n	5	72.	0	-		
	Han	nmer V	Veiaht ((lb.)	-	1	40	_	Drill N	Mud: None					atur oca	m tior	<u>ן</u>	N See		n an	J		
	Han	nmer F	all (in.)		-	3	0	-	Hoist/	/Hammer: Winch A	Automatic H	ammer											
ł	-		ю́ с.		E	÷								Gra	avel		San	d		F	ield	Tes	t
29, 10	(ft.)		ie N	le (ft.)	iagra	Dep	Symt	V	'isual-N	Aanual Identification	and Descr	iption		Irse		arse	dium		Se	cy	less	ty	£
Nov	Depth	SPT	Samp & Rec	Samp Depth	Well D	Elev./ (ft.)	uscs	(Density structure, c	y/consis dor, mo	stency, color, GROUP bisture, optional descri	NAME, max. ptions, geolo	particle size ² , gic interpretat	ion)	% Coa	% Fine	% Co	% Me	% Fine	% Fin	Dilatan	Toughi	Plastici	Streng
1TB.GPJ	- 0 -				-		_	Advanced	augers	to 5.0 ft. without samp	ling.						Ħ				-	H	
LECTRONIC DATA SUBMITTAL/BORING AND WELL INSTALLATION LOGS/33587-0	- - - - - - - - - - - - - - - - - - -	1 1 3 4	S1 6/24	5.0 7.0		562.0	ML	Soft, brow damp, trac	n-black, æ organ	SILT (ML), mps 3mm, nics. -LACUSTRINE-	, no door,	PID = 0.5	ppm		15	F		10	90	R	L	L	L .
3587_SUBURBAN PLAZA\004 - REPORTING\E	- - - 15 -	3 6 7 9	S2 20/24	10.0 12.0		10.0	ML	7mm, no d	ry for S	3.	WL), mps	PID = 4.3	ppm		15	5	5	15	00	K		L	L
TC3A.GDT %ROC\COMMON/PROJECTS/3	- - - 20	15 17 18	0/24	17.0		ta				mple Identification		iagram						anu					
USCS	~		va	Elans	ed	Dep	th (ft.) to:				ser Pipe	<u></u>	orh	urd.	<u>our</u>	(lin	ft) /	10 0			
GLB	Da	ate	lime	Time (hr.) B	ottom Casing	Botto of He	water	Т	Thin Wall Tube	Sci	reen ter Sand	Ro	ck (Cor	en	(lin	. n. . ft.	, 4)	+U.U -			
SLIB4.(- sonig			U	Undisturbed Sample	<u>ি ৭</u> Cu	ttings	Sar	mp	les		, 1		<i>,</i>				
D USC									S G	Split Spoon Geoprobe	Gr Gr Co	out ncrete ntonite Seal	Во	rir	ng	No	э.		F	IA-	2		
B3APIC	Fie	eld Tes	ts:	I	Dilata	ancy:	R-F	Rapid, S-SI	ow, N-	None Plas	sticity: N-No	nplastic, L-L	ow, M	I-M	ediu	um,	, H-	Hig	jh			lie!	
SCS_T	¹ SP	PT = Sai	mpler blo	ws per (<u>i oug</u> l <u>6 in.</u>	² Ma	L-L ximur	<u>_ow, IVI-IMe</u> n particle size	aium, I e (mm) is	s determined by direct of	Strength: N	vithin the limita	w, M- tions of	f sa	mpl	m, er s	H-H	⊣ıgł (in r	nillin	v-Ve nete	ry⊢ rs).	iigh	
۶L			No	te: So	il ide	ntifica	ition	based on v	visual-	manual methods of	f the USCS	as practice	d by H	lal	ey	& A	۱dr	ich	, In	c.			

HALEY ALDRIC	& 		-			TEST BORING REPORT		E F १	Bor ile She	ring No et I	g N No.	lo. 335 2	н 587- 2 о	A-2 -001 f 2			
(ft.)	e No. (in.)	e (ft.)	gram	epth	/mbol	Visual-Manual Identification and Descri	ption	Gra	avel	se	San Ę	d		F	ield ss	Tes	<u>t</u>
Depth SPT ¹	Sample & Rec.	Sample Depth	Well Dia	Elev./D (ft.)	USCS S	(Density/consistency, color, GROUP NAME, max. structure, odor, moisture, optional descriptions, geolog	particle size ² , jic interpretation)	% Coars	% Fine	% Coar	% Medi	% Fine	% Fines	Dilatanc	Toughne	Plasticity	Strength
-20 - 14 16 17 17	S4 4/24	20.0 22.0			ML	Suspected cobble/boulder, sample 90% broken rock pieces.	PID = N/A ppm										
- 25 9 11 12 14	S5 0/24	25.0 27.0				No recovery for S5.	PID = N/A ppm										
- 30 8 9 15 8	S6 23/24	30.0 32.0		542.0 30.0	SM	Medium dense, brown, silty SAND with gravel (SM), mps 25mm, no odor, damp to moist. -GLACIAL TILL-	PID = 7.1 ppm	10	10	10	15	15	40	R		 L	
- 35 - 10	S7	35.0	-	537.0 35.0	CL	Very stiff, red-brown, lean CLAY (CL), mps 1mm,	PID = 15.9 ppm				5	5	90	S	м	H	Н
9 7 8	24/24	37.0		535.5 36.5		stratified with occasional fine sand and silt laminae, no odor, damp. 											
					ML	Very stiff, red-brown, SILT with sand (ML), mps 15mm, no odor, moist to wet.			10	5	10	20	55	R	L	L	L
9 9 8 8	S8 2/24	38.0 40.0		532.0	SM	Medium dense, red-brown, silty SAND with gravel (SM), mps 15mm, no odor, wet. -GLACIAL TILL-	PID = 4.2 ppm	5	10	10	20	35	20	R	N	Ν	N
40				40.0		Bottom of boring at 40.0 ft. Note: 1. PVC Monitoring Well installed in completed boring. See Observation Well Installation Report for details. 2. NA-not available due to poor/no recovery.											
¹ SPT = San Size NOTE: Si	npler blow	s per 6 ir ication I	n. ² Ma	a	aximum p ed on vis	aximum particle	aximum particle size (mm) is determined by direct observation within the lived on visual-manual methods of the USCS as practiced by Haley & A	aximum particle size (mm) is determined by direct observation within the limitations of sampler ed on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	aximum particle size (mm) is determined by direct observation within the limitations of sampler ed on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	aximum particle size (mm) is determined by direct observation within the limitations of sampler ed on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	aximum particle size (mm) is determined by direct observation within the limitations of sampler ed on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	aximum particle size (mm) is determined by direct observation within the limitations of sampler ed on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	aximum particle size (mm) is determined by direct observation within the limitations of sampler ed on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	aximum particle size (mm) is determined by direct observation within the limitations of sampler ed on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	aximum particle size (mm) is determined by direct observation within the limitations of sampler ed on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	aximum particle size (mm) is determined by direct observation within the limitations of sampler ed on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	aximum particle size (mm) is determined by direct observation within the limitations of sampler ed on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

	ALEY DRIC	&± H					TEST	BORING REPORT Boring No.	HA-3
Pro Clie Cor	ject ent ntracto	Subui Wilmori r Not	rban P te, Inc hnagle	laza :. e Drill	Henrie ing, Inc	tta, N	lew York	File No. 33587-001 Sheet No. 1 of 2 Start January 19	, 2007
			С	asing	g San	npler	Barrel	Drilling Equipment and Procedures	2007 h
Тур	е			HSA	-	S	-	Rig Make & Model: CME-75 H&A Rep. D. Nost	rant
Insi	de Dia	meter (in.)	4 1/4	1	3/8	-	Bit Type: Cutting Head Elevation 571.0	20
Han	nmer \	Veight	(lb.)	-	1	40	-	Casing: HSA Location See Plan	9
Han	nmer I	all (in.)		-	3	80	-	Hoist/Hammer: Winch Automatic Hammer	
h (ft.)	_	ole No. c. (in.)	ple h (ft.)	Diagram	/Depth	Symbol	N	/isual-Manual Identification and Description	Field Test
Dept	SPT	Samp & Re	Samp Deptl	Well D	Elev./ (ft.)	uscs	(Densit structure, c	ty/consistency, color, GROUP NAME, max. particle size ² , bdor, moisture, optional descriptions, geologic interpretation)	Tough Plastic
- 0 -							Advanced	augers to 5.0 ft. without sampling.	
- - - 5 - - -	1 3 2 3	S1 18/24	5.0 7.0	_		CL	Medium si (CL), mps	tiff, dark brown, lean CLAY with sand 3mm, no odor, damp to moist, little silt. -LACUSTRINE-	L L 1
- - 10 - -	4 4 6 5	S2 15/24	10.0 12.0		561.0 10.0	SM	Loose, bro 3mm, no c	Down, silty SAND with gravel (SM), mps PID = 1.0 ppm 5 10 10 15 40 20 R odor, damp. -GLACIAL TILL-	
- - 15 - - -	12 14 16 28	S3 8/24	15.0 17.0			SM	Dense, rea mps 25mn	d-brown, silty SAND with gravel (SM), n, no odor, damp to moist.	L L I
- 20 -					551.0				
		Wa	ter Le	vel D	ata	th /**) to:	Sample Identification Well Diagram Summary	
D	ate	Time	Elap: Time	sed_ (hr.)	Dep Bottom	Botto) TO: DM Water	O Open End Rod Circle Screen Overburden (lin. ft.) 42.0)
<u> </u>				<u>```</u> o	f Casing	of Ho		_ । ।nin Wall Lube ।::::-: Filter Sand Rock Cored (lin. ft.) - U Undisturbed Sample जिसें Cuttings Samples	
								S Split Spoon Grout Concrete Boring No.	.3
Fie	eld Tes	ts:		Dila	tancy:	R-F	Rapid, S-S	G Geoprobe Bentonite Seal Geometry Fraction low, N-None Plasticity: N-Nonplastic, L-Low, M-Medium, H-High	.J
1SF	PT = Sa	mpler ble	ows per	Tou 6 in.	ghnéss: ² Ma	<u>L-L</u> ximum	ow, M-Me	edium, H-High Dry Strength: N-None, L-Low, M-Medium, H-High, V-Vo e (mm) is determined by direct observation within the limitations of sampler size (in millimeter	<u>əry High</u> ərs).
		No	te: S	oil id	entifica	ation	based on	visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	

- LdS 0.4 9 19/24 10 S4 9 19/24 13 14 6 S5 7 20/24 10 12 5 \$6	(iu) (iu)	Well Diagram	CL ORCS Symbol	Visual-Manual Identification and Descrip (Density/consistency, color, GROUP NAME, max. p structure, odor, moisture, optional descriptions, geolog Very stiff, red-brown, sandy lean CLAY with gravel (CL), mps 15mm, no odor, damp, some silt.	otion particle size ² , ic interpretation) PID = 3.5 ppm	5 % Coarse	avel euil % Line 15	0 % Coarse	Sar Wedium 10	0 <u>8</u> Eine	G % Fines	ω Dilatancy	Z Toughness a		⊠ Strength
10 S4 9 19/24 13 14 6 S5 7 20/24 10 12	20.0 22.0 <th>20.</th> <th>) CL</th> <th>Very stiff, red-brown, sandy lean CLAY with gravel (CL), mps 15mm, no odor, damp, some silt.</th> <th>PID = 3.5 ppm</th> <th>5</th> <th>15</th> <th>10</th> <th>10</th> <th>10</th> <th>50</th> <th>S</th> <th>М</th> <th>М</th> <th>М</th>	20.) CL	Very stiff, red-brown, sandy lean CLAY with gravel (CL), mps 15mm, no odor, damp, some silt.	PID = 3.5 ppm	5	15	10	10	10	50	S	М	М	М
6 S5 7 20/24 10 12	5 25.0 /24 27.0		CL												
5 96				Very stiff, red-brown, sandy lean CLAY with gravel (CL), mps 15mm, no odor, moist. -GLACIAL TILL-	PID = 1.2 ppm	5	10	5	10	10	60	S	м	М	М
6 10/24 8 9	36 30.0 /24 32.0	28.	CL	Stiff, red-brown, lean CLAY with sand and gravel (CL), mps 20mm, no odor, damp to moist. -LACUSTRINE-	PID = 0.4 ppm	5	10	5	5	5	70	S	М	М	М
6 S7 8 18/24 9 9	57 35.0 /24 37.0		CL	Stiff, red-brown, lean CLAY with sand (CL), mps 10mm, no odor, damp to moist. -LACUSTRINE-	PID = 0.5 ppm	5	5	5	5	10	70	S	М	М	М
6 S8 8 17/24 3 4	68 40.0 /24 42.0	529.	CL	Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet.	PID = 0.2 ppm		5	5	5	15	70	S	М	М	М
6 S8 40.0 8 17/24 42.0 3 4 529.0 4 529.0 42.0 42.0 7 = Sampler blows per 6 in. ² Maximum po		Bottom of boring at 42.0 ft. Note: 1. PVC Monitoring Well installed incompleted boring. See Observation Well Installation Report for details.													
		ampler blows per 6 in	5 58 40.0 3 17/24 42.0 529.0 42.0 42.0 ampler blows per 6 in. ² Maximum	3 17/24 42.0 4 529.0 42.0	33 17/24 42.0 17/24 42.0 529.0 529.0 42.0 Bottom of boring at 42.0 ft. Note: 1. PVC Monitoring Well installed incompleted boring. See Observation Well Installation Report for details.	3 S8 40.0 FID = 0.2 ppm 17/24 42.0 529.0 Bottom of boring at 42.0 ft. Note: 1. PVC Monitoring Well installed incompleted boring. See Observation Well Installation Report for details. Details. Image: Complete and the second	3 17/24 42.0 1 17/24 42.0 529.0 529.0 42.0 42.0 529.0 Bottom of boring at 42.0 ft. Note: 1. PVC Monitoring Well installed incompleted boring. See Observation Well Installation Report for details. ampler blows per 6 in. ² Maximum particle size (mm) is determined by direct observation within the limitations of sampler	3 S8 40.0 FID = 0.2 ppm 5 17/24 42.0 529.0 Source Source<	3 S8 40.0 17/24 42.0 17/24 10	3 S8 40.0 Feb - prown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. PID = 0.2 ppm 5 5 5 4 17/24 42.0 42.0 Bottom of boring at 42.0 ft. Note: Note: 1 PID = 0.2 ppm 5 5 5 4 1 PID = 0.2 ppm 42.0 Bottom of boring at 42.0 ft. Note: 1 PID = 0.2 ppm 5 5 5 1 PVC Monitoring Well installed incompleted boring. See Observation Well Installation Report for details. 1	3 S8 40.0 17/24 42.0 Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. PID = 0.2 ppm 5 5 5 15 4 17/24 42.0 Bottom of boring at 42.0 ft. Note: Note: Note: 1. PVC Monitoring Well installed incompleted boring. See Observation Well Installation Report for details. 1 <t< td=""><td>3 S8 40.0 17/24 42.0 Stiff, feet-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. PID = 0.2 ppm 5</td><td>3 S8 40.0 17/24 42.0 Stiff, red-brown, sandy lean CLAY (CL), mps smin, no odor, moist to wet. PID = 0.2 ppm 5 5 5 15 70 5 3 17/24 42.0 Setting, red-brown, sandy lean CLAY (CL), mps smin, no odor, moist to wet. PID = 0.2 ppm 5 5 15 70 5 42.0 42.0 Bottom of boring at 42.0 ft. Note: Note: Note: 1 PID = 0.2 ppm 1</td><td>3 S8 40.0 Image: classifier and prediction of boring at 42.0 ft. Note: PID = 0.2 ppm 5 5 5 15 70 S M 4 Image: classifier and prediction of boring at 42.0 ft. Note: 1. PVC Monitoring Well installed incompleted boring. See Observation Well Installation Report for details. Image: classifier and prediction of boring at 42.0 ft. Note: Image: classifier and prediction of boring. See Observation Well Installation Report for details. Image: classifier and prediction of boring. See Observation Well Installation Report for details. Image: classifier and prediction of boring. See Observation Well Installation Report for details. Image: classifier and prediction of boring. See Observation Well Installation Report for details. Image: classifier and prediction of boring. See Observation Well Installation Report for details. Image: classifier and prediction of boring. Image: classifier and prediction</td><td>3 S8 40.0 Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. PID = 0.2 ppm 5 5 5 15 70 5 M M 3 17/24 42.0 42.0 Bottom of boring at 42.0 ft. Note: 1. PVC Monitoring Well installed incompleted boring. See Observation Well Installation Report for details. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Imampler blows per 6 in. ²Maximum particle size</td></t<>	3 S8 40.0 17/24 42.0 Stiff, feet-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. PID = 0.2 ppm 5	3 S8 40.0 17/24 42.0 Stiff, red-brown, sandy lean CLAY (CL), mps smin, no odor, moist to wet. PID = 0.2 ppm 5 5 5 15 70 5 3 17/24 42.0 Setting, red-brown, sandy lean CLAY (CL), mps smin, no odor, moist to wet. PID = 0.2 ppm 5 5 15 70 5 42.0 42.0 Bottom of boring at 42.0 ft. Note: Note: Note: 1 PID = 0.2 ppm 1	3 S8 40.0 Image: classifier and prediction of boring at 42.0 ft. Note: PID = 0.2 ppm 5 5 5 15 70 S M 4 Image: classifier and prediction of boring at 42.0 ft. Note: 1. PVC Monitoring Well installed incompleted boring. See Observation Well Installation Report for details. Image: classifier and prediction of boring at 42.0 ft. Note: Image: classifier and prediction of boring. See Observation Well Installation Report for details. Image: classifier and prediction of boring. See Observation Well Installation Report for details. Image: classifier and prediction of boring. See Observation Well Installation Report for details. Image: classifier and prediction of boring. See Observation Well Installation Report for details. Image: classifier and prediction of boring. See Observation Well Installation Report for details. Image: classifier and prediction of boring. Image: classifier and prediction	3 S8 40.0 Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. PID = 0.2 ppm 5 5 5 15 70 5 M M 3 17/24 42.0 42.0 Bottom of boring at 42.0 ft. Note: 1. PVC Monitoring Well installed incompleted boring. See Observation Well Installation Report for details. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Image: CL Stiff, red-brown, sandy lean CLAY (CL), mps 3mm, no odor, moist to wet. Imampler blows per 6 in. ² Maximum particle size

	H/ AL	LEY a	& H					TEST	BOF	RING REPC	RT					Bo	oriı	ng	No).	I	HA	-4	
	Proj Clie Con	ject nt ^N itracto	Subur Wilmori r Notl	ban Pla te, Inc. hnagle	aza ⊦ Drillir	Henrie	tta, N	lew York							Fi SI SI	le N nee art	No. et N	3 0. ⁻ Ja	358 1 oi anu	37-0 f 2 ary)01 17,	200)7	
				Ca	asing	San	npler	Barrel		Drilling Equipme	nt and P	roced	lures		Fi Di	nisi rille	h •r	Ja	anu S	ary 5. Lo	oran	200 tv		
ľ	Туре	e		F	ISA		s	-	Rig N	Make & Model: CM	E-85 Tru	uck Mo	ount		н	&A	Re	p.	D). N	ostr	ant		
	Insic	de Dia	meter (in.) 4	1/4	1:	3/8	-	Bit Ty	ype: Cutting Head	ł				E		atio	n	5	70.	8 /D2/	h		
	Ham	nmer V	Veight ((lb.)	-	1.	40	-	Drill I Casii	Mud: None						oca	tior	<u>ו</u>	See	Pla	an	9		
	Ham	nmer F	all (in.)		-	3	30	-	Hoist	t/Hammer: Winch	Automa	tic Ha	Immer											
za, 10	(ft.)		le No. : (in.)	le (ft.)	agram	Depth	Symbol	ļ v	/isual-l	Manual Identificatio	n and D	escri	ption		Gra ge	ave	Irse -	San	d	S	۲ ک	ield ssa	Tes ≳	t
	Depth	SPT¹	Samp & Rec	Samp Depth	Well Di	Elev./I (ft.)	nscs ((Densit structure, c	y/consis odor, mo	stency, color, GROUF oisture, optional desc	۲ NAME, riptions, و	max. j geolog	particle siz ic interpre	ze ² , etation)	% Coa	% Fine	% Coa	% Mec	% Fine	% Fine	Dilatan	Toughr	Plasticit	Strengt
j-	- 0 -							Advanced	augers	s to 5.0 ft. without sam	pling.													
	- - - 5 - - - - 10 - -	4 4 7 7 7 8 9 10 11	S1 15/24 S2 21/24	5.0 7.0 10.0 12.0			ML	Stiff, brown odor, dam Very stiff, mps 10mn Damp at 1	n, SILT p, trace brown-{ n, no oc 1.0 ft.	with sand (ML), mps clay. -LACUSTRINE- gray, mottled, SILT w	8mm, no	, ML),	PID = PID =	1.5 ppm 4.6 ppm		5	5	5	10	80	R	L	L	L
יייים וויינימעוממוסי	-					557.3 13.5																		
	- 15 -	5 9 11 18	\$3 24/24	15.0 17.0			ML	Very stiff, mps 10mn sample, tra	brown, n, no oc ace clay	SILT with sand and g dor, damp, moist pock y. -GLACIAL TILL-	ravel (ML tets in	_),	PID =	3.2 ppm	5	10	5	5	10	65	R	М	М	L
	-																							
2.462	- 20 -			tor Lav		550.8	<u> </u>		<u> </u>	mplo Idontification	1.07		aram				 <u> </u> <u> </u> <u> </u> <u> </u>		0.5					
5767	- -			Elaps	ed La	Dep	oth (ft.	.) to:				Rise	agram er Pipe		erh	urc	<u>oui</u> Ien	nm (lin	ary ft		12 0			
	Da	ate	IIme	Time (hr.) ^B of (ottom Casing	Botto of Ho	om Water	_ Т _ U	Thin Wall Tube Undisturbed Sample		Scre Filte Cutt	een er Sand tings	Ro	ock mp	Co les	red	(lin	. ft.)	-			
2000									S	Split Spoon		Gro Con	out ncrete	Вс	rin	ng	No) .		F	IA-	4		
	Fie	eld Tes	ts:		Dilata	ancy:	R-F	Rapid, S-SI	low, N	-None Pla	asticity: 1	Ben N-Nor	ntonite Sea	l L-Low, N	Л-М	edi	um	, н·	-Hig	• Jh	*	-		
	¹ SP	T = Sa	mpler blo	ws per 6	<u>Tougl</u> 3 in.	hness: ² Ma	<u>L-L</u> ximum	ow, M-Me	<u>dium,</u> e (mm) i visual	H-High Dr is determined by direct	/ Strengt t observat	th: N- tion wit	None, Le	Low, M hitations c	-Me of sa	ediu Imp	im, lers & /	H-l size	Higľ (in r	n, ∖ nillin In-	/-Ve nete	ry ⊢ rs).	ligh	

A	ALEY &	& H					TEST BORING REPORT		E F S	Sor ile She	ring No et l	g N No.	lo. 335 2	H 587- 2 0	I A-4 -001 of 2	2		
Depth (ft.)	SPT ¹	Sample No. & Rec. (in.)	Sample Depth (ft.)	Well Diagram	Elev./Depth (ft.)	USCS Symbol	Visual-Manual Identification and Descri (Density/consistency, color, GROUP NAME, max. structure, odor, moisture, optional descriptions, geolog	ption particle size ² , jic interpretation)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness a	Plasticity sal	Strength T
- 20 - - - - -	8 12 12 16	S4 8/24	20.0 22.0		20.0	CL	Very stiff, brown, lean CLAY with sand (CL), mps 1mm, no odor, damp.	PID = 10.5 ppm				5	10	85	S	M	M	L
- 25 -	6 8 10 12	S5 24/24	25.0 27.0			CL	Very stiff, red-brown, lean CLAY with sand and gravel (CL), mps 15mm, no odor, samp. -GLACIAL TILL-	PID = 15 ppm		15	5	5	10	65	S	М	М	M
- 30 -	5 5 7 7	S6 20/24	30.0 32.0		537.3	CL	Stiff, red-brown, lean sandy CLAY with gravel (CL), mps 20mm, no door, damp to moist.	PID = 0.4 ppm	10	10	5	10	15	50	S	М	М	M
- 35 -	1 2 3 4	S7 24/24	35.0 37.0		33.5	CL	Medium stiff, red-brown, lean CLAY (CL), mps 25mm, no odor, damp to moist. -LACUSTRINE-	PID = 1.7 ppm	5				10	85	S	Μ	Н	H
- 40 -	9 10 13 13	S8 10/24	40.0 42.0		530.8 40.0 528.8 42.0	SM	Medium dense, brown, silty SAND with gravel (SM), mps 15mm, no odor, wet. -GLACIAL TILL- Bottom of boring at 42.0 ft. Note: 1. PVC Monitoring Well installed incompleted boring. See Observation Well Installation Report for details.	PID = 1.5 ppm	5	10	15	15	35	20	R	Ν	N	N
¹ SPT SIZE	= Samp TE: Soi	oler blow	s per 6 in ication b	n. ² Ma: Dased	ximum p d on vis	article ual-m	e size (mm) is determined by direct observation within the line anual methods of the USCS as practiced by Haley & A	mitations of sampler	E	Зо	rin	g١	۱o.		H	A-4		

Project Client Contractor Suburban Plaza Nothnagle Drilling, Inc. File No. 33587-001 Sheet No. 1 of 1 Start December 2, Driller Sampler Barrel Drilling Equipment and Procedures Finish December 2, Driller Type HSA Macro None Rig Make & Model: Geoprobe 6610DT Track Mount H&A Rep. D. Nosti Hammer Weight (lb.) - - - Drilli Mud: - - - Drilli Mud: - - - Drilli Mud: - - - - - - - Drill Mud: - -	2, 2008 2, 2008 Izer rant 29
Type HSA Macro None Rig Make & Model: Geoprobe 6610DT Track Mount Finish December 2, J. Swiet. Hammer Weight (lb.) - - - Drilling Equipment and Procedures HAR Rep. D. Nost Hammer Weight (lb.) - - - Drill Mud: - - Drill Mud: - - - Drill Mud: - - - Drill Mud: - - - Drill Mud: - - - Drill Mud: - - - Drill Mud: - - - - Drill Mud: - - - - - - Drill Mud: - - - - - - - - Drill Mud: - -	Field Test
Type HSA Macro None Rig Make & Model: Geoprobe 6610DT Track Mount H&A Rep. D. Nostr Inside Diameter (in.) 4 1/2 2.0 - Drill Mud: - Drill Mud: - Elevation Hammer Weight (lb.) - - - Casing: HSA Host/Hammer: - - Casing: HSA Hammer Fall (in.) - - - - Visual-Manual Identification and Description Gravel Sand Sand - Location See Plan Tope -	Field Test Sector for the sector of the sec
Inside Diameter (in.) Harder 4 1/2 2.0 Bit Type: - Drill Mud: - Casing: HSA Elevation Datum NGVD2: Location Harmer Fall (in.) - - - Hoist/Harmer: - - - Drill Mud: - - Location See Plan Image: See Plan - - - Hoist/Harmer: - - - - Drill Mud: - - Location See Plan Image: See Plan - - - Hoist/Harmer: - - - - Drill Mud: - - Location See Plan Image: See Plan - - - - Hoist/Harmer: - - - - Drill Mud: - - Location See Plan - Location See Plan -	Field Test Alignment L L L L
Mammer Weight (lb.) - - Drill Mud: - Datum NGVD2: Hammer Fall (in.) - - - Casing: HSA Location See Plan Image: Second Secon	Field Test Ssauufono L L L L L L L
Casing: HSA Hammer Fall (in.) - - Casing: HSA - Hoist/Hammer: - - Gravel Sand F - - Visual-Manual Identification and Description Gravel Sand F - - - Visual-Manual Identification and Description Gravel Sand F - - - - O -	Field Test Anonal Contraction L L L L
Image: Construction of the construction of	Field Test ssauuhonot L L L L L L L
i i	T Toughness T Strendth
Image Image <th< td=""><td>T T T Plastic</td></th<>	T T T Plastic
0 G1 0.0 ML Brown SILT with sand (ML), mps=15mm, no odor, damp. 5 5 5 10 75 R - - G2 4.0 ML Brown Sandy SILT with gravel (ML), mps=20mm, no odor, damp. 5 15 5 5 10 60 R - - G2 4.0 ML Brown sandy SILT with gravel (ML), mps=20mm, no odor, damp, trace clay. - - - 5 15 5 10 60 R - - G3 8.0 8.2 SM Brown silty SAND with gravel (SM), mps=25mm, no odor, damp to moist. - - 5 10 5 10 50 20 - - <t< td=""><td>L L L</td></t<>	L L L
40/40 4.0	L L L
	L L L
G2 4.0 48/48 8.0 48/48 8.0 -5 - -6 - -5 - -5 - -5 - -5 - -5 - -5 - -5 - -5 - -5 - -5 - -5 - -5 - -5 - -5 - -5 - -5 - -5 - -6 - -6 - -6 - -6 - -6 - -7 - -7 - -7 - -7 - -7 - -7 - -7 - -7 - -7 - -7 - -7 <td>L L L</td>	L L L
- 5 - 48/48 8.0 -LACUSTRINE- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	
- -	
G3 36/36 8.0 11.0 8.2 SM Brown silty SAND with gravel (SM), mps=25mm, no odor, damp to moist. -LACUSTRINE- 5 10 5 10 50 20	
G3 8.0 36/36 11.0 -10 -	1 1 1
-10LACUSTRINE-	+
G4 11.0 SM Similar to above, except moist from 12.5 ft. to 13.5 ft. 36/36 14.0 SM Similar to above, except moist from 12.5 ft. to 13.5 ft.	
13.6 CL Brown-gray lean CLAY with sand (CL), mps=3mm, r 5 10.85 S	
34/36 17.0 14.0 SM 16 oddor, damp. 15 34/36 17.0 14.0 14.0 Brown silty SAND with gavel (SM), mps=15mm, no 14.0	
	┨╖┝╖┤᠇
Brown gray lean CLAY with sand (CL), mps=8mm,	
-GLACIAL TILL-	
value Level Data Sample identification Well Diagram Summary Data Time Elapsed Depth (ft.) to: 0 Open End Rod IIII Riser Pipe Overburden (lin, ft.) 17	
Time (hr.) Bottom Bottom Vater T Thin Wall Tube Filter Sand Rock Cored (lin. ft.)	
NOT MEASURED U Undisturbed Sample Cuttings Samples G5	
S Split Spoon G Geoprobe Concrete Boring No. HA-1	05
Field Tests: Dilatancy: R-Rapid, S-Slow, N-None Plasticity: N-Nonplastic, L-Low, M-Medium, H-High	
SPT = Sampler blows per 6 in. Maximum particle size (imm) is determined by direct observation within the limitations of sampler size (in millimeter	Spy Lline

pero in. Maximum	<u>i particle size (m</u>	<u>im) is determined by</u>	anect observation within	the limitations of san	<u>npier size (in millimeters)</u>	
Soil identification	based on visu	ual-manual meth	nods of the USCS as	practiced by Hale	y & Aldrich, Inc.	

HA AL	ALEY &	& H					TEST	BOI	RING REP	ORT					Bc	ori	ng	N	D .	Н	A -'	106	;
Proj Clie Con	ject nt \ ntracto	Subur Wilmori r Notl	ban Pl te, Inc. hnagle	aza ł Drilliı	Henrie ng, Inc	tta, N ;.	lew York							Fi Sł St	le N nee art	NO. et N	3 0. De	335 1 o ece	87-0 f 1 mbo	001 er 2	, 20	08	
			Ca	asing	San	npler	Barrel		Drilling Equipm	nent and	Proce	dures		Fi Di	nisl rille	h •r	De	ece J	mbe I. S\	er∠ wiet	, 20 zer	08	
Туре	е		ŀ	ISA	Ма	acro	None	Rig M	Make & Model: B	8K-80 Tru	ick Mou	unt		на	&A	Re	p.	[). N	lost	rant		
Insic	de Dia	meter (in.) 4	1/2	2	2.0	-	Bit T	ype: - Mud: -					El Da	eva atu	atic m	n	1	٩G	/D2	9		
Ham	nmer V	Veight ((lb.)	-		-	-	Casi	ng: HSA					Lo	oca	tior	ר ו	See	e Pla	an			
Ham	nmer H	all (in.)		-		-	-	Hoist	t/Hammer:					Gra	ave		Sar	nd	<u> </u>	F	ield	Tes	t
(ft.)		le No . (in.)	(ff.)	agran	Depth	Symbo	١	/isual-l	Manual Identifica	tion and	Descri	iption		lse		rse	E.		s S	<u>.</u> ج	ess	2	
Depth	SPT¹	Sampl & Rec	Sampl Depth	Well Dia	Elev./E (ft.)	USCS S	(Densit structure, o	:y/consi: odor, m	stency, color, GRO oisture, optional de	UP NAME scriptions	∃, max. , geolog	particle size ² , gic interpretati	on)	% Coai	% Fine	% Coa	% Med	% Fine	% Fine	Dilatano	Toughn	Plasticit	Strengt
- 0 -		G1 48/48	0.0			ML	Brown SIL	T with s	sand and gravel (M	IL), mps=2	20mm,			5	10	5	5	10	60	R	L	L	L
-			4.0				10 0001, 0	ump.	-FILL-														
-																							
-					3.0	MI	Brown car		T with gravel (ML)	mps-20n		_											
					5.0		odor, dam	ip.		11105-2011	ini, no												
		G2 48/48	4.0 8.0						-LACUSTRINE-														
- 5 -																							
-						L									L _	<u> </u> _		L.		L_		L_	
-					6.5	SM	Brown silt odor, dam	y SANE ıp.	D with gravel (SM),	mps=20m	im, no			5	10	15	20	25	25	R	L	L	L
		00	0.0			SM	Similar oo	chovo	avaant maiat ta 0.5	- ft domo	from												
		36/36	0.0 11.0			Sivi	9.5 ft. to 1	above, 1.0 ft.		o n. uamp	nom												
									LACUSTRINE-														
- 10 -																							
-		G4	11.0			SM	Brown silt	y SANE) with gravel (SM),	mps=25m	ım, no			5	10	10	15	25	35	R	L	L	L
-		36/36	14.0				odor, dam	p to mo	-GLACIAL TILL-														
-																							
		-					.																
45		G5 36/36	14.0 17.0			SM	Similar as	above.															
						SM	Brown silt	y SANE) with gravel (SM), ⊨	mps=25m	ım, no			5	10	10	15	45	15	R	L	L	L
F							oaor, mois	st to we	-GLACIAL TILL-														
$\left \right $					17.0		Bottom of	explora	ation at 17.0 ft.			-			\vdash	\vdash	\vdash		\vdash	-			
		Wa	ter Lev	el Da	ita	41. (1)	\ t	Sa	ample Identification	on N	Well Di	iagram		_		Su	mm	ary					
Da	ate	Time	Elaps Time (ed hr.) <i>F</i>	Dep Bottom	Botto) to: ^{pm} Water		Open End Rod			een	Ove	erb	urd	len	(lin	n. ft.	.)	17			
12/0	02/08	1400	2.0	<u>of</u>	Casing	of Ho	0.8	- ' U	Undisturbed Sam	ple	i Filt ⊡ Cut	er Sand ttings	Sar	npl	uoi les	ed	(III)	ι. π	.)	-			
								S	Split Spoon		Gro	out ncrete	Во	rir	ng	N	b .		н	A-1	06		
Fie	eld Tes	ts:		Dilata	ancy:	R-F	Rapid, S-S	low, N	-None	Plasticity:	Bei N-No	ntonite Seal nplastic, L-L	ow, M	I-M	edi	um	, н	-Hię	jh			R - 1	
¹ SP	T = Sa	mpler blo	ws per	1 oug 6 in.	nness: ² Ma	<u>L-l</u> ximun	<u>ow, M-Me</u>	<u>aium,</u> e (mm)	is determined by dir	ect observ	gtn: N vation w	-INONE, L-LO	w, M- ions o	<u>f sa</u>	mp	im, ler s	H- size	HIG (in	<u>n, \</u> millir	v-Ve mete	ery⊦ rs).	ligh	

	H/ AL	LEY a DRIC	& H					TEST	BORING REPO	RT		B	ori	ng	N	0.	Н	A -′	107	,
	Proj Clie Cor	ject nt ^v itracto	Subur Vilmori r Notl	ban Plate, Inc. hnagle	aza ⊦ Drillir	Henrie ng, Inc	tta, N :.	lew York			F S S	ile he tar	No. et N t	lo. D	335 1 c ece	87-(f 1 mb	001 er 1	, 20	08	
ſ				Ca	asing	San	npler	Barrel	Drilling Equipment	and Procedures	F	inis rille	sh Ər	D	ece ł	mbe K. B	er 1. uscl	, 200 h	08	
ŀ	Туре	Э		F	ISA	Ма	acro	None	Rig Make & Model: BK-8	0 Truck Mount	Н	&A	Re	эp.		D. N	losti	ant		
	Insid	de Dia	meter (in.) 4	1/2	2	.0	-	Bit Type: -		E	lev	atio	on	,		/ ר ס	0		
	Harr	nmer V	Veight ((lb.)	-		-	-	Casina: HSA		L	002	atio	n	See	e Pl	an	5		
	Harr	nmer F	all (in.)		-		-	-	Hoist/Hammer:											
9	t.)		No. in.)	t.)	ram	pth	nbol	V	/isual-Manual Identification	and Description	Gi	ave	el a	Sar	nd		F	ield ທ	Tes	;t
Vov 29,	oth (f	Ē	nple lec. (nple oth (f	Diag	/./De	S Syı	(Densit	v/consistency_color_GROUP	NAME max particle size ²	Carse	e u	Coars	lediu	ine	ines	ancy	ghnes	ticity	Jgth
2	Dep	Ъ	Sar & R	Sar Der	Well	(ft.)	nsc	structure, c	odor, moisture, optional descrip	ptions, geologic interpretation	ר) ארי אין דער אין דער דער אין דע	2 %	~ ~	2 %	8 8	% ⊢	Dilat	Touç	Plas	Strei
3587-001TB.GF	- 0 -		G1 42/48	0.0 4.0			ML	Light brow damp.	n sandy SILT (ML), mps=3mn -FILL-	n, no odor,				5	30	65	R	L	L	L
ATION LOGS/3																				
ASTALL						3.2	ML	Dark brow damp, trac	n sandy SILT (ML), mps=2mm ce organics.	n, no odor,				15	25	60	R	L	L	L
VELLIN			G2 46/48	4.0 8.0			ML	Brown sar	-LACUSTRINE- ndv SILT (ML), mps=20mm, no	o odor.	5		5	10	20	60	R	L	L	L
S AND \	- 5 -							damp, trac	ce gravel.											
SORING		-LACUSTRINE-																		
N SUBM																				
C DAT [#]			G3 48/48	8.0 12.0		8.4	SM	Light brow	n silty SAND with gravel (SM)	·	5	10	10	10	40	25	R			
TRON								mps=8mm	n, no odor, moist. -LACUSTRINE-											
G/ELEC	- 10 -																			
ORTIN																				
4 - REP				10.0	-															
AZA/00			G4 48/48	12.0 16.0																
3AN PL						13.5	MI	Brown sar	ndy SILT with gravel (ML) mps	s=20mm_no	5	10) 10	10	15	50	R	м	1	
								odor, dam												-
13587_5	- 15 -								-OLAVIAL HEL											
ECTS						16.0		Bottom of	exploration at 16.0 ft		_		_	_	-			$\mid \mid \mid$		<u> </u>
NPROU						10.0		Notoo: OL	exploration Wall installed in an	mplotod										
OMMO								borehole.												
ROC/C								See Obse	rvation vveil Installation Repor	t for details.										
DT M																				ĺ
TC3A.G				tor Law		to			Sample Identification	Woll Diagram			 c	 	 					<u> </u>
INSCS	Г.	ato	Time	Elaps	ed	Dep	th (ft.) to:	O Open End Rod	Riser Pipe	Overl	our	<u>ou</u> der	rnn i (lir	<u>iary</u> n. ft)	16			
4.GLB	Di	ລເບ	inne	Time (hr.) ^{Bo} of C	ottom Casing	Botto of Ho	om Water	T Thin Wall Tube	☐ Screen Filter Sand	Rock	Сс	orec	l (lir	n. ft	, .)	-			
SCSLIB				NOT		SURE	D		U Undisturbed Sample	ि <u>ः</u> े Cuttings Grout —	Samp	les	6		G	i4				
а Х									G Geoprobe	Concrete Bentonite Seal	Bori	ng	N	0.		H	4-1	07		
TB3AF	Fie	eld Tes	ts:		Dilata Tougl	ancy: hnęss:	R-F	Rapid, S-Sl ∟ow, M-Me	low, N-None Plas dium, H-High Dry	sticity: N-Nonplastic, L-Lov Strength: N-None, L-Low	v, M-N M-M	led edi	ium um,	, Н Н-	l-Hig Hig	gh h, ۱	/-Ve	ry ⊦	ligh	
nscs	'SP	T = Sa	mpler blo No t	te: So	6 in. il ide i	Ma ntifica	<u>ximum</u> ation	n particle size based on	e (mm) is determined by direct on the second s	observation within the limitation f the USCS as practiced	ns of s by Ha	amp ley	bler & 1	size Ald	(in rich	millir <mark>1, In</mark>	nete c.	<u>rs).</u>		

HALEY ALDRIC	& .H					TEST	BORING REPORT Boring No. H	A-208
Project Client Contracto	United	d Clean hnagle	ers 2 Drillir	2199 E ng	East H	Henrietta R	Road, Rochester, New York File No. 33587-002 Sheet No. 1 of 1 Start August 11, 2	2009
		Ca	sina	Sam	npler	Barrel	Drilling Equipment and Procedures	.009 hitzor
Type		н	ISA	Ma		_	Rig Make & Model: Geoprobe 6610 DT H&A Rep. B. Zinni	ILZEI
Inside Dia	meter (in)	1671	2			Bit Type: Elevation (est.)	
Hommor J	Moight ((ID) 2	+.ə	2	.0	-	Drill Mud: None Datum NGVD29)
Hammer	Fall (in)	(10.)	-		-	-	Casing:	
			c		-		Gravel Sand F	ield Test
(ft.)	j. N	e (ft.)	agrar	eptl	ymbe	V	/isual-Manual Identification and Description	ess
Depth SPT ¹	Sample & Rec.	Sample Depth	Well Dia	Elev./D (ft.)	uscs s	(Density structure, o	ty/consistency, color, GROUP NAME, max. particle size ² , bodor, moisture, optional descriptions, geologic interpretation)	Toughne Plasticity Strandth
- 0	G1	0.0			MI	Gravel at s	surface=> ~ 2 in. f PID = 0.0 ppm 5 10 25 60	
-	36	2.0		0.2		Brown san no odor, di	Indy SILT (ML), mps=0.25 in., no structure, Iry -FILL-	
5 -	G2 30	4.0 7.0	.0 ft PID = 0.0 ppm 5 10 20 35 10 orly-graded SAND with silt and gravel PID = 0.0 ppm 5 10 20 35 10 mps=0.75 in., no structure, no odor, wet PID = 0.0 ppm 5 10 10 15 50 ody SILT with gravel (ML), mps=1.5 in., no PID = 0.0 ppm 5 10 10 15 50	— — — — — — — — —				
-			no odor, wet					
							-LACUSTRINE-	
	G3 24	7.0 9.0		7.8	SM	Brown silty	y SAND with gravel (SM), mps=1.75 in., PID = 0.0 ppm 5 10 10 15 40 20	
	G4	9.0				no structur		
- 10 -	36	12.0					-LACUSTRINE-	
-	G5	12.0		11.5	CL	Red-browr in., no stru	n lean CLAY with sand (CL), mps=0.75 PID = 0.0 ppm 5 10 10 75 ucture, no odor, moist	
-	24	15.0					-GLACIAL TILL-	
- 15				15.0		Bottom of	exploration at 15.0 ft	
	Wa	ter Leve	el Da	ta	· · · ·		Sample Identification Well Diagram Summary	
Date	Time	Elapse	ed	Dep	th (ft.) to:	O Open End Rod Riser Pipe Overburden (lin. ft.) 15	
		Time (I	nr.) ^B	Casing	of Ho	Water	T Thin Wall Tube	
		NOT	MEA	ASURE	D		U Undisturbed Sample Cuttings Samples G5 S Split Spoon Gocorete Boring No. HA-20)8
Field Tes	sts:	I	Dilata	ancy:	R-F	Rapid, S-SI	low, N-None Plasticity: N-Nonplastic, L-Low, M-Medium, H-High	
¹ SPT = Sa	mpler blo	ows per 6	<u>ioug</u> Sin.	² Ma	<u>L-L</u> ximum	<u>ow, IVI-IVIE</u> particle size	e (mm) is determined by direct observation within the limitations of sampler size (in millimeter	<u>y nign</u> s).

H A	ALEY LDRIC	&± 1H					TEST	BORING REPORT Boring No.). HA-209
Pro Cli	oject ent	United	d Clear	ners 2	2199 E	ast H	Henrietta R	oad, Rochester, New York Sheet No. 1 of	37-002 i 1
Co	ntracto	or Not	hnagle	Drilli	ng			Start Augu	ust 11, 2009
			Ca	asing	Sam	npler	Barrel	Drilling Equipment and Procedures Driller J.	. Schweitzer
Тур	be		F	ISA	Ma	acro	-	Rig Make & Model: Geoprobe 6610 DT H&A Rep. B	. Zinni
Ins	ide Dia	meter (in.)	4.5	2	.0	-	Bit Type: Elevation	(est.)
Ha	mmer \	Neight ((lb.)	-		-	-	Drill Mud: None Datum N Casing: Location See	Plan
Ha	mmer I	all (in.)		-		-	-	Hoist/Hammer: Automatic Hammer	
(ft.)		e No. (in.)	(H:)	gram	epth	/mbol	\ \	isual-Manual Identification and Description	
Depth	SPT¹	Sample & Rec.	Sample Depth	Well Dia	Elev./D (ft.)	USCS S	(Densit structure, c	//consistency, color, GROUP NAME, max. particle size ² , dor, moisture, optional descriptions, geologic interpretation)	% Fines Dilatancy Toughne Plasticity Strength
- 0		G1	0.0				Dark brow	n ORGANIC SOIL	
		48	4.0		0.8	CL	Dark brow structure,	n sandy lean CLAY (CL), mps 0.75 in., no no odor, dry PID = 0.0 ppm 5 5 5 10 10	65 M M L
-						CL	Dark brow	n lean CLAY with sand (CL), mps 1.20 in., PID = 0.0 ppm 5 5 5 5 5	75 M M L
-		G2	4.0		4 5		no structu	e, no odor, moist	
- 5	-	30	7.0		4.5	мн	Dark brow structure,	n sandy elastic SILT (MH), mps 1.5 in., no PID = 0.0 ppm 5 5 5 10 10 10 no odor, dry	65 M M M
-		G3 24	7.0 9.0						
- 10		G4 24	9.0 11.0		9.5	CL	Dark brow	n lean CLAY with sand (CL), mps 0.5 in., PID = 0.0 ppm 5 10 10	75 - M L-M M
						CL	Dark brow	n sandy lean CLAY (CL), mps 1.5 in., no PID = 0.0 ppm 5 5 5 5 10 10	65 M M L
-		G5 24	11.0 13.0				structure,	no odor, dry	
		G6 20	13.0 15.0	-					
- 15		G7 22	15.0 17.0	-	14.5	SM SM	Dark brow structure, Dark brow structure,	n silty SAND (SM), mps=1.25 in., no no odor, wet n silty SAND (SM), mps=1.5 in., no no odor, wet No odor, wet No odor, wet No odor, wet	35 L L L 25 L L L 25 L M L
-		G8 18	17.0 20.0	n silty SAND (SM), mps=1.5 in., no no odor, wet					
²⁰				1	20.0		Bottom of	exploration at 20.0 ft	
	<u> </u>	Wa	ter Lev	<u>el</u> Da	ta	1	I	Sample Identification Well Diagram Summarv	
	Date	Time	Elaps Time (ed hr.) ^B	Dep lottom	th (ft. Botto) to:	O Open End Rod T Thin Wall Tube T T T Thin Wall Tube T T T Thin Wall Tube T T T T T T T T T T T T T T T T T T T) 20
			NOT	г ме		D	มย	U Undisturbed Sample	8
								S Split Spoon Grout Concrete Boring No.	HA-209
F	ield Tes	its:		Dilata	ancy:	R-F	Rapid, S-S	Geoprope Bentonite Seal Geoprope ow, N-None Plasticity: N-Nonplastic, L-Low, M-Medium, H-Hig	h
1 <u>S</u>	PT = Sa	mpler blo	ws per te: So	Toug 6 in. 6 in.	hness: ² Ma ntifica	<u>L-L</u> ximum	<u>ow, M-Me</u> particle size based on	dium, H-High Dry Strength: N-None, L-Low, M-Medium, H-High (mm) is determined by direct observation within the limitations of sampler size (in n visual-manual methods of the USCS as practiced by Haley & Aldrich	<u>ı, V-Very High</u> nillimeters). . Inc.

STORECT Instruction of the pointhe pointhe point of the point of the point of the point of the	HALEY &		OBS	ERVATION WI	ELT.		Well No.
INSTALLATION REPORT IR.1 PROBECT Status and Prior.communal Consultance Services PRANTLAND, PRANCE 1000 Status and Prance 2005 Submatrix Status and Prance 2005 Figure 2005 Figure 2005 Transmo CURYN Milmenic, Inc. Dilla 1000 Figure 2005 Transmo DRILLAR K. Rock Variance 2005 Figure 2005 Transmo DRILLAR K. Rock SEE PLAN Converting the second status and st	ALDRICH						HA-1 Boring No.
PROMECT Site Investigation and Environmental Consulting Services PRA FILE NO. 33587 (101) COCATION Software Pinze, 2192 Bear Hermetan, New York FEDURE TME. Turnum CLIENT Withorshine, Ibac. Division Pinze, 2192 Bear Hermetan, New York FEDURE TME. Turnum CONTRACTOR Nonhangle Durling, Inc. Division Pinze, 2192 Bear Hermetan, New York Division Pinze, 2192 Bear Hermetan, New York Division Pinze, 2192 Bear Hermetan, New York CONTRACTOR Nonhangle Durling, Inc. Division Pinze, 2192 Bear Hermetan, New York Division Pinze, 2192 Bear Hermetan, New York Division Pinze, 2192 Bear Hermetan, New York Recurrent BL 572 m Location SEE PLAN Division Pinze, 2192 Bear Hermetan, New York SOIL/ROCK MOREHOL K. Gaurd Pinze, 2192 Bear Hermetan, New York Division Pinze, 2192 Bear Hermetan, New York Division Pinze, 2192 Bear Hermetan, New York SOIL/ROCK MOREHOL K. Monare Lock Key #2342 Binacker Division Pinze, 2192 Bear Hermetan, New York Division Pinze, 2192 Bear Hermetan, New York SOIL/ROCK MOREHOL K. Guard Pinze, 2192 Bear Hermetan, New York Division Pinze, 2192 Bear Hermetan, New York Division Pinze, 2192 Bear Hermetan, New York		11	NSTA	ALLATION REP	PORT		HA-1
LOCATION Surface Place Lengen 2199 East Hearing, New York PROJECT MGE. L Turauro CONTRACTOR Nothange Delling, Inc. T. Boon T. Boon CONTRACTOR Nothange Delling, Inc. DATE INSTALLED 0/1.807 ORTENSTALLED ST2 1 Location SEE PLAN DATE INSTALLED 0/1.807 Removing ST2 1 Location SEE PLAN DATE INSTALLED 0/1.807 SOULBOCK BOORENDCK BOORENDCK General Pare 0.0 0.0 0.0 SOULBOCK BOORENDCK BOORENDCK Mater Lock Key #2342 0.0 <th>PROJECT</th> <th>Site Investigation and E</th> <th>nvironmenta</th> <th>l Consulting Services</th> <th>H&A FILE</th> <th>NO. 33587-</th> <th>.001</th>	PROJECT	Site Investigation and E	nvironmenta	l Consulting Services	H&A FILE	NO. 33587-	.001
CHENT Willowin, hc	LOCATION	Surban Plaza, 2199 East	Henrietta, N	New York	PROJECT	MGR. L. Turt	urro
CONTRACTOR Notinge Deline, Inc. DATE INSTALLED 0/17.007 BILLER K. Bish WATER LEVEL 7.741 Ground EL S72 ft Location SEE FLAN Courd Pipe EL Datum NGVD29 Image: Control of the courd of the	CLIENT	Wilmorite, Inc.			FIELD RE	P. <u>T. Bow</u>	vn
DBRLER K Bash WATER LEVEL 27.41 Ground EL 572 f. Location SEE PLAN Carret Carret SOLLROCK BOREHOLE Concrete Carret Carret Carret CONDITION BACKFIL	CONTRACTOR	Nothnagle Drilling, Inc.			DATE INS	TALLED 01/18/0)7
Ground El. 572 n NCVD29 Countrol El Datum NCVD29 CONCRETE Location SEE PLAN CONCRETE Location SEE PLAN CONCRETE Location SEE PLAN CONCRETE SUD.ACCK BOREHOLE CONCRETE SCOR.CONCRETE Location SEE PLAN CONCRETE SCOR.CONCRETE Location SEE PLAN CONCRETE SCOR.CONCRETE SCOR.CONCRETE SCOR.CONCRETE I.5 Location SEE PLAN CONCRETE I.5 Location SEE PLAN CONCRETE I.5 Location SEE PLAN SEE PLAN CONCRETE I.5 Location SEE PLAN SEE PLAN SEE PLAN CONCRETE I.5 Location SEE PLAN SEE PLAN SEE PLAN CONCRETE I.5 Location SEE PLAN SEE PLAN	DRILLER	K. Bush			WATER L	EVEL 27.41	
BL Datum NCVD29 L Modeway Box SOIL/ROCK BOREHOLE Type of protective lock Master Lock Key #2342 CONDITIONS BACKFILL	Ground El.	572 ft	Location	SEE PLAN		Guard Pij	ре
SOLVACK BORFHOLE Type of protective lock Master Lock Key #2342 CONDITIONS BACKFIL 0 0.0 n ASPILAT 0 0 0.0 n 0.4 CONCRETE Height of top of riser pipe above ground surface 0.0 n 1.5 1.5 Type of protective casing: Roduny Box 0.0 n 10.5 BENTONTE/ GROUT MINTURE 1.6 n n n 0.4 CONCRETE 1.5 Depth of bottom of guard roadway box 1.0 n 10.5 BENTONTE/ GROUT MINTURE Li Depth of bottom of guard roadway box 1.0 n 0LACIAL Li Li Depth of bottom of guard roadway box 1.0 n n 0LACIAL Li Li Depth of bottom of guard roadway box 1.0 n n 0LACIAL Li Li Depth of bottom of guard roadway box 1.0 n n 0LACIAL Li Li Depth of bottom of guard roadway box 1.0 n n 0LACIAL 20.4 BENTONTE <td>El. Datum</td> <td>NGVD29</td> <td><u> </u></td> <td></td> <td></td> <td>Contraction Roadway</td> <td>Box</td>	El. Datum	NGVD29	<u> </u>			Contraction Roadway	Box
LACUSTRINE DACKFILL 0 0.0 ft ASPHALT 0 above ground surface 0.0 ft 0.4 CONCERTE 0 above ground surface 0.0 ft LACUSTRINE 1.5 Type of protective easing: Roadway box 0.0 ft 10.5 NENTONTEF CONCENTE 1.0 ft 1.08 ft 0.6 NENTONTEF GROUT MIXTURE 1.1 1.08 ft Inside Diameter 8.0 in GLACIAL III. 29.4 III. III. Type of riser pipe 20.4 4.9 1.5 27.9 1.5 1.5 27.9 1.5 1.5 1.5 1.0 ft III. IIII. IIII. IIII. IIII. IIII. IIII. IIII. IIII. III	SOIL/ROCK	BOREHOLE		Type of protective lock		Master Lo	ck Key #2342
ASPHALT 0 0.0 ft 0.4 CONCRETE	CONDITIONS	BACKFILL					
0.4 CONCRETE above ground surface LACUSTRINE 1.5 Type of protective casing: Roudway Box 105 BENTONTE/ GROUT MINTURE 1.68 n 105 BENTONTE/ GROUT MINTURE 1.0 n 110 Depth of bottom of guard roadway box 1.0 n 105 BENTONTE/ GROUT MINTURE 1.1 True of Seals Ton of Seal (ft) Thickness (ft) GLACIAL L1 Grout 1.5 27.9	ASPHALT	0	_	Height of top of guard	roadway box		0.0 ft
LACUSTRINE 1.5 Type of protective casing: Roadway Box 10.5 BENTONITE/ GROUT MDXTURE 1.0 ft II.5 BENTONITE/ GROUT MDXTURE 1.0 ft GIACIAL 1.1 Concrete 0 1.5 GIACIAL 1.1 Concrete 0 1.5 BENTONITE/ GROUT MDXTURE 1.1 Concrete 0 1.5 GIACIAL 1.1 1.1 Concrete 0 1.5 27.9 BENTONITE/ 29.4 BENTONITE BENTONITE BENTONITE 34.3 1.5.7 SEAL 1.1 Type of riser pipe: Sch. 40 PVC inside diameter of riser pipe 2.0 in 34.3 1.3.7 BENTONITE Sch. 40 PVC 1.6 2.0 in 34.3 1.2 Diameter of backfill around riser Bentonite Grout, Bentonite 2.0 in 38.5 1.4 1.2 Diameter of size of openings 0.0101 in 38.4 4 1.2 Diameter of size of openings 0.0101 in 44.0 <td>0.4</td> <td>CONCRETE</td> <td></td> <td>above ground surface</td> <td></td> <td></td> <td></td>	0.4	CONCRETE		above ground surface			
LACUSTRINE I.5 Height of top of riser pipe -0.55 ft 1.5 I.5 Type of protective casing: Roadway Box 1.08 ft 1.0.5 BENTONTE/ GROUT MINTURE I.1 Inside Diameter 8.0 in GLACIAL I.1 Concrete 0 1.5 Concrete 0 1.5 GLACIAL I.1 Concrete 0 1.5 29.4 4.9 4.9 BENTONITE SEAL I.1 Inside Diameter Sch. 40 PVC Inside Diameter Sch. 40 PVC inside Diameter 9.0 in 34.3 I.1 Diameter of borehole 9.0 in Type of riser pipe Sch. 40 PVC in 38.5 I.ACUSTRINE 400 Outanter of borehole 9.0 in Type of screen Sch. 40 PVC 38.5 I.ACUSTRINE 400 I.2 Diameter of borehole 9.0 in JACUSTRINE 400 I.2 Diameter of screen Sch. 40 PVC in AND I.2 Diameter of screen Sch. 40 PVC in in <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td>							
LACUSTRINE above ground surface 1.5 1.5 1.5 1.5 10.5 BENTONITE/ GROUT MIXTURE 1.6 0.5 BENTONITE/ GROUT MIXTURE 1.0 0.6 Concrete 0 0.7 Depth of bottom of guard roadway box 1.0 0.6 Concrete 0 0.7 Concrete 0 0.6 Concrete 0 0.6 1.5 27.9 BENTONITE 1.1 Concrete 0 0.6 Concrete 0 1.5 0.6 Concrete 0 1.5 0.7 BENTONITE Sch. 40 PVC Inside dimeter of riser pipe 1.6 Type of backfill around riser Benonite Grout, Bentonite 2.0 3.4.3 Type of screen 37.0 ft 1.4 Diameter of size of openings 0.010 in 0.0 Type of screen 2.0 in 3.8.5 A00 1.2 Depth of bottom of well screen 40.0 0.0 Tupe of screen 2.0				Height of top of riser pi	ipe		-0.55 ft
I.5 Roadway Box 10.5 I.ength I.I. GLACIAL I.1 I.1 I.1 I.I. II.I. II.I. II.I. II.I. II.I. III.	LACUSTRINE			above ground surface	•		
I.5 I.5 Readway Box I0.5 Inside Diameter Inside Diameter <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						
10.5 10.6 10.6 10.6 ft 10.5 BENTONITE/ GROUT MIXTURE Length 1.08 ft 0 GLACIAL 1.1 Type of Scals Top of Scal (ft) Thickness (ft) 0 1.5 Concrete 0 1.5 0 1.5 27.9 Remonite Scal 20.4 4.9 11 29.4 BENTONITE Sch. 40 PVC Inside diameter of riser pipe: Sch. 40 PVC SAL 1.4 Type of riser pipe: Sch. 40 PVC Inside diameter of borehole 9.0 in 34.3 1.2 Diameter of borehole 9.0 in Diameter of screen Screen gauge or size of openings 0.010 in 38.5 1.2 Depth of bottom of well screen 47.0 ft 44.0 1.3 1.3 Depth of bottom of Silt trap 47.11 ft GLACIAL 1.3 1.3		1.5		Type of protective casi	na•	Road	way Rox
10.5 BENTONITE/ GROUT MISTURE Inside Diameter 8.0 in 0.5 BENTONITE/ GROUT MISTURE Depth of bottom of guard roadway box 1.0 ft 0 1.5 Concrete 0 1.5 0 1.5 Type of riser pipe 34.3 13.7 11 11 11 Diameter of borehole 9.0 in 38.5 1.40 12 Diameter of screen Stoted Sch. 40 PVC 15 12 12 Depth of bottom of well screen 37.0 ft 138.5 12 Depth of bottom of well screen 30.0				Length	1g.		1 08 ft
10.5 BENTONTIF/ GROUT MIXTURE Inside Datafeter 0.0 inside Datafeter GLACIAL, TILL L1 Type of Scals Top of Scals Top of Scals 0 1.5 GLACIAL, TILL 29.4 BENTONITE/ BENTONITE 29.4 4.9 34.3 3.7.7 SEAL 1.1 Type of riser pipe: Sch. 40 PVC Sch. 40 PVC Inside diameter of triser pipe 2 in 38.5 34.3 Type of screen 37.0 ft Depth to top of well screen 37.0 ft 44.0 GLACIAL 12 Depth of bottom of well screen 9.0 in 32.0 in 44.0 GLACIAL 12 Depth of bottom of well screen 47.0 ft 44.0 GLACIAL 13 Type of screen 47.0 ft 44.0 GLACIAL 13 Depth of bottom of well screen 47.0 ft 44.0 GLACIAL 13 Depth of bottom of stilt trap 47.0 ft 44.0 GLACIAL 13 Depth of bottom of stilt trap 47.0 ft 48 48 Depth	10.5	\neg		Inside Diameter			<u> </u>
BENIONIE/ Operation Depth of bottom of guard roadway box 1.0 ft GROUT MIXTURE I Image: construction of constructio	10.5	DENTONITE/					0.0 III
GROUT MIXTURE Image: constraint of guard roadway box I.0 It GLACIAL I.1 Image: constraint of guard roadway box Image: constraint of guard roadway box <t< td=""><td></td><td>BENTONITE/</td><td></td><td></td><td>• • • • • • • •</td><td></td><td>10 84</td></t<>		BENTONITE/			• • • • • • • •		10 84
GLACIAL Li Type of Seals Top of Seal (ft) Thickness (ft) GLACIAL Li Li Concrete 0 1.5 TILL 29.4 Bentonite Seal 29.4 4.9 BENTONITE SEAL Type of riser pipe 2 in SEAL Type of riser pipe 2 in 34.3 13.7 38.5 Exclosited Seal 9.0 in Type of backfill around riser Bentonite Grout, Bentonite 38.5 LACUSTRINE #00 Diameter of borehole 9.0 in QUARTZ 12 Depth of bottom of well screen Slotted Sch. 40 PVC 2.0 in SAND 12 Depth of bottom of well screen 9.0 in 44.0 GLACIAL 12 Depth of bottom of well screen 47.0 ft 44.0 GLACIAL 13 13 In In How Sand 48.0 ft 44.0 GLACIAL In In Depth of bottom of well screen 47.0 ft 48 48 48 ft Length of screen (L2) Wethor scleab <t< td=""><td></td><td>GROUT MIXTUR</td><td>2</td><td>Depth of bottom of gua</td><td>rd roadway bo</td><td>X</td><td><u> </u></td></t<>		GROUT MIXTUR	2	Depth of bottom of gua	rd roadway bo	X	<u> </u>
GLACIAL Type of Seals Top of Seals Top of Seals Thickness (ft) GLACIAL 11 Concrete 0 1.5 THL 29.4 Bentonite Seal 29.4 4.9 BENTONITE SEAL Type of riser pipe Sch. 40 PVC SEAL Inside diameter of riser pipe 2 in Type of backfill around riser Bentonite Grout, Bentonite 9.0 38.5 Diameter of borehole 9.0 in 38.5 W00 Depth to top of well screen Slotted Sch. 40 PVC SAND I Depth to top of well screen Slotted Sch. 40 PVC Streen gauge or size of openings 0.010 in GLACIAL TIL Type of backfill around screen 400 Sand 44.0 GLACIAL TIL Type of screen Slotted Sch. 40 PVC SAND I Depth of bottom of well screen 47.0 ft 44.0 GLACIAL TIL TIL Til Bottom of Silt trap 47.0 ft 44.0 GLACIAL TIL Til Til Bottom of Silt trap 48.0 48.0							
GLACIAL L1 $\frac{Concrete}{Grout}$ 0 1.5 TILL 29.4 $\frac{Grout}{HOS and Pack}$ 34.3 13.7 BENTONITE SEAL Type of riser pipe: Sch. 40 PVC in 34.3 Type of backfill around riser Bentonite Grout, Bentonite 9.0 in 38.5 Jaka Jaka Jaka Jaka Jaka Jaka QUARTZ L2 Depth to top of screen Slotted Sch. 40 PVC Jaka Jaka 44.0 QUARTZ L2 Depth to top of well screen 37.0 ft 44.0 GLACIAL TILL Type of backfill around screen 40.0 Jaka 44.0 GLACIAL TIL Type of screen Slotted Sch. 40 PVC Jaka 44.0 GLACIAL Till Diameter of screen 2.0 in 44.0 GLACIAL Till Depth of bottom of well screen 47.0 ft 44.0 GLACIAL Till Till Depth of bottom of silt trap 47.11 ft 44.0 GLACIAL Till Till Till Till				Ty	pe of Seals	Top of Seal (ft)	<u>Thickness (ft)</u>
GLACIAL Image: constraint of the second sector of the second second sector of the second second sector of the					Concrete	0	1.5
GLACIAL I.1 I.5 27.9 TILL 29.4 4.9 34.3 13.7 BENTONITE SEAL Type of riser pipe: Sch. 40 PVC in 34.3 0 Diameter of riser pipe: Sch. 40 PVC in 38.5 ILACUSTRINE #00 Diameter of borehole 9.0 in QUARTZ SAND I.2 Depth to top of well screen Slotted Sch. 40 PVC in A4.0 GLACIAL Type of screen Slotted Sch. 40 PVC in in Bentonite Grout, Bentonite 9.0 in in in in 44.0 GLACIAL Type of screen Slotted Sch. 40 PVC in in Wunders refer to depth from ground suffice in feety In Bottom of Silt trap 47.0 ft 44.0 GLACIAL In Bottom of Silt trap 47.11 ft 48 48 48 ft In In Poepth of bottom of borehole 48.0 ft (Numbers refer to depth from ground suffice in feety In In In Poepth of silt trap In<				Ceme	nt-Bentonite		
TILL Bentonite Scal 29.4 4.9 29.4 34.3 13.7 BENTONITE SEAL Type of riser pipe: Sch. 40 PVC 34.3 13.7 Sch. 40 PVC in 34.3 13.7 Diameter of riser pipe: Sch. 40 PVC 38.5 34.3 13.7 Sch. 40 PVC 11 Diameter of borehole 9.0 in 0 Depth to top of well screen 37.0 ft 0 VPC Screen gauge or size of openings 0.010 in 0 QUARTZ 12 Diameter of screen 2.0 in 38.5 #00 12 Diameter of screen 2.0 in GLACUSTRINE #00 Depth of bottom of well screen 47.0 ft 44.0 GLACIAL 12 Depth of bottom of well screen 47.0 ft 48 48 - - Depth of bottom of borehole 48.0 ft (Numbers refer to depth from ground surface in feet) (Not to Scale) - Pay length - (Numbers refer to depth from ground surface	GLACIAL		L1		Grout	1.5	27.9
29.4 29.4 #00 Sand Pack 34.3 13.7 BENTONITE SEAL Inside diameter of riser pipe: Sch. 40 PVC in 34.3 34.3 Inside diameter of riser pipe: 2 in 34.3 Inside diameter of borehole 9.0 in 38.5 Inside diameter of borehole 9.0 in Inside diameter of screen 37.0 ft Inside diameter of screen Screen gauge or size of openings 0.010 Inside diameter of screen 2.0 in Inside diameter of screen 2.0 in Inside diameter of screen 9.0 in Inside diameter of screen 9.0 in Inside diameter of screen 9.0 0.010 in Inside diameter of screen 9.0 0.010 in Insinget	TILL			Ben	tonite Seal	29.4	4.9
BENTONITE BENTONITE Type of riser pipe: Sch. 40 PVC SEAL Inside diameter of riser pipe 2 in 34.3 Diameter of borehole 9.0 in 38.5 Diameter of borehole 9.0 in 38.5 HOO Depth to top of well screen 37.0 ft QUARTZ L2 Diameter of screen Slotted Sch. 40 PVC SAND Inside diameter of screen 2.0 in 44.0 GLACIAL Type of backfill around screen #00 Sand 44.0 GLACIAL I.3 Depth of bottom of well screen 47.0 ft 44.0 GLACIAL I.3 Depth of bottom of silt trap 47.11 ft 48 48 Mode Mode 48.0 ft (Numbers refer to depth from ground surface in feet) (Net to Scale) (Net to Scale) (Numbers refer to depth from ground surface in feet) (Net to Scale) Pay length (OMMENTS: U Length of silt trap (L3) Pay length		29.4		#00	Sand Pack	34.3	13.7
SEAL Inside diameter of riser pipe 2 in 34.3 Type of backfill around riser Bentonite Grout, Bentonite 34.3 Diameter of borehole 9.0 in 38.5 Depth to top of well screen 37.0 ft 38.5 URARTZ Screen gauge or size of openings 0.010 in QUARTZ 12 Depth of screen 2.0 in 44.0 GLACIAL Type of backfill around screen #00 Sand 44.0 GLACIAL TILL Depth of bottom of well screen 47.0 ft 48 48 Depth of bottom of borehole 48.0 ft (Numbers refer to depth from ground surface in fee) (Not to Scale) (Not to Scale) (OMMENTS: Empth of screen (L2) Hength of silt trap (L3) Pay length		BENTONITE		Type of riser pipe:		Sch.	40 PVC
Type of backfill around riser Bentonite Grout, Bentonite 34.3 Image: the second secon		SEAL		Inside diameter of r	iser pipe		2 in
34.3 Image: constraint in term of borehole 9.0 in 38.5 Bottom of well screen 37.0 ft 38.5 Bottom of screen Slotted Sch. 40 PVC QUARTZ Screen gauge or size of openings 0.010 in QUARTZ Diameter of screen 2.0 in 44.0 GLACIAL Type of backfill around screen #00 Sand 44.0 GLACIAL TILL Depth of bottom of well screen 47.0 ft 48 48 Mode Mode Mode 48.0 ft Commerce refer to depth from ground surface in feet) (Not to Scale) (Not to Scale) Not to Scale) Pay length Commerce refer to depth from ground surface in feet) Energth of silt trap ft Riser Pay Length (L1) Hength of silt trap (L3) Pay length Commerce refer to depth from ground surface in feet) Energth of silt trap (L3) Pay length Pay length				Type of backfill aro	und riser	Bentonite G	trout Bentonite
34.3 Image: state of the sector of the				- J.F	unu 1		Tout, Dentonite
38.5 #00 Image: Constraint of softward o		34.3	-1	Diameter of horehole			9.0 in
38.5 #00 Image: constraint of the stress of the stre		JJ					<u> </u>
38.5 2.0 it 38.5 LACUSTRINE #00 Screen gauge or size of openings 0.010 in QUARTZ L2 Diameter of screen 2.0 in SAND I Type of backfill around screen #00 Sand 44.0 GLACIAL I I Bottom of Silt trap 47.0 ft 48 48 I I Depth of bottom of borehole 48.0 ft (Numbers refer to depth from ground surface in feet) (Not to Scale) (Not to Scale) Pay length COMMENTS:			+	Don'th to top of well on			27.0 \$4
38.5 HOO Screen gauge or size of openings 0.010 in QUARTZ L2 Diameter of screen 2.0 in SAND L2 Diameter of screen 2.0 in 44.0 GLACIAL TILL Depth of bottom of well screen #00 Sand 44.0 GLACIAL Depth of bottom of Silt trap 47.0 ft 48 48 Depth of bottom of borehole 48.0 ft (Numbers refer to depth from ground surface in feet) (Not to Scale) (Not to Scale) Ength of screen (L2) Pay length COMMENTS:				Deptn to top of wen scr	een		<u> </u>
38.5 #00 QUARTZ L2 Screen gauge or size of openings 0.010 in QUARTZ L2 Diameter of screen 2.0 in SAND L2 Depth of backfill around screen #00 Sand 44.0 GLACIAL TILL Depth of bottom of well screen 47.0 ft 48 48 H0 H0 H0 H0 Mumbers refer to depth from ground surface in feet) Image: Comment to the screen (L2) Comments: Image: Comment to the screen (L2) Image: Comment to the screen to the screen (L2) Image: Comment to the screen to the screen to the screen to the screen (L2) Image: Comment to the screen to the screen to the screen to the screen to the screen to the screen to the screen to the screen to the screen to the screen to the screen to the screen to the screen to the screen to the screen to the screen to the screen to the screen to the scre							
38.5 Slotted Sch. 40 PVC LACUSTRINE #00 Screen gauge or size of openings 0.010 in QUARTZ L2 Diameter of screen 2.0 in SAND L2 Diameter of screen 2.0 in 44.0 GLACIAL Type of backfill around screen #00 Sand 44.0 GLACIAL L3 Depth of bottom of well screen 47.0 ft 48 48 48 ft Depth of bottom of bottom of borehole 48.0 ft (Numbers refer to depth from ground surface in feet) (Not to Scale) (Not to Scale) Pay length COMMENTS: Comme		_				C1 ++ 1 C	
LACUSTRINE #00 I I Screen gauge or size of openings 0.010 in QUARTZ L2 Diameter of screen 2.0 in SAND I.2 I.2 Image: transmitted screen #00 Sand 44.0 GLACIAL Image: transmitted screen #00 Sand TILL Image: transmitted screen 47.0 ft 48 48 Image: transmitted screen 47.11 ft (Numbers refer to depth from ground surface in feet) Image: transmitted screen 48.0 ft (Numbers refer to depth from ground surface in feet) Image: transmitted screen Image: transmitted screen 48.0 ft COMMENTS: Image: transmitted screen ft Pay length Pay length	38.5			Type of screen		Slotted S	ch. 40 PVC
QUARTZ L2 Diameter of screen 2.0 in SAND Type of backfill around screen #00 Sand #00 Sand 44.0 GLACIAL Depth of bottom of well screen 47.0 ft TILL III IIII IIIII IIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	LACUSTRINE	#00		Screen gauge or size	e of openings		<u>0.010</u> in
SAND Image: Sand mark the second		QUARTZ	L2	Diameter of screen			<u>2.0</u> in
44.0 $GLACIAL$ $TILL$ 48 48 48 $(Numbers refer to depth from ground surface in feet)$ 1.3		SAND		↓ Type of backfill around	l screen	#00) Sand
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	44.0			Depth of bottom of wel	l screen		<u>47.0</u> ft
TILL L3 Bottom of Silt trap 47.11 ft 48 48 Image: Comparison of the second se	GLACIAL						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TILL		L3	Bottom of Silt trap			47 <u>.11</u> ft
48 48 48 1 (Not to Scale) (Numbers refer to depth from ground surface in feet) (Not to Scale) (Not to Scale) \underline{ft} + \underline{ft} + \underline{ft} Riser Pay Length (L1) Length of screen (L2) Length of silt trap (L3) Pay length COMMENTS:		10		Depth of bottom of bor	ehole		48.0 ft
(Numbers refer to depth from ground surface in feet) (Not to Scale)	48	48	<u> </u>				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Numbers refer to de	epth from ground surface in feet)			(Not to Scale)		
Riser Pay Length (L1) Length of screen (L2) Length of silt trap (L3) Pay length COMMENTS:		<u>ft</u> +		ft+	ft =	=	ft
COMMENTS:	Riser	Pay Length (L1)	Length	n of screen (L2) Length of silt	trap (L3)	Pay len	gth
	COMMENTS:						

HALEY &		OBS	ERVA	TION W	ELL		Well No. HA-2
ALDRICH					ידתרתי		Boring No.
	<u> </u>	ND I A	ALLA.	TION KE	POKI		HA-2
PROJECT	Site Investigation and E	nvironmenta	l Consulting Se	rvices	H&A FILE	NO. <u>33587</u> -	001
LOCATION	Surban Plaza, 2199 East	Henrietta, N	New York		PROJECT	MGR. L. Turt	urro
CLIENT	Wilmorite, Inc.				FIELD RE	P. <u>D. Nos</u>	trant
CONTRACTOR	Nothnagle Drilling, Inc.				DATE INS	TALLED 01/18/0 EVEL 32.00)7
	5. Lorany				WAIERE.		(1/23/07)
Ground El. El. Datum	<u>572</u> п NGVD29	Location	SEE PLAIN			☐ Guard Fij ✓ Roadway	pe Box
SOIL/ROCK	BOREHOLE		Г	-Type of protective lo	ck	Bolt	ed Steel
CONDITIONS	BACKFILL						
0	0	Γ.		-Height of top of guar	rd roadway box		0.0 ft
	CONCRETE	[above ground surface	e		
LACUSTRINE	1.0			[–] Height of top of riser above ground surface	· pipe e		<u>0.25</u> ft
				T f	•	Elizahmount	Des James Der
				- Type of protective ca	ising:	Flushmount	Roadway Box
	_			Length			<u>1.0</u> π
10.0				Inside Diameter			<u>8.0</u> m
	CEMENT- BENTONITE GROUT			– Depth of bottom of g	uard roadway bo)X	<u> 1.0 </u> ft
	GROOT			т	Tune of Seals	Top of Seal (ft)	Thickness (ft)
	23			-	Concrete		1.0
	23				Concrete	0.0	1.0
GLACIAL		L1		Cer	ment-Bentonite Grout	1.0	22.0
TILL				B	Bentonite Seal	23.0	5.0
				#	00 Sand Pack	28.0	12.0
	BENTONITE			- Type of riser pipe:		F	PVC
	SEAL			Inside diameter o	of riser pipe		2.0 in
				Type of backfill a	round riser	See I	Diagram
				- Diameter of borehole	e		8.0 in. ± in
				Depth to top of well s	screen		<u> </u>
35.0	28.0			- Type of screen		Slott	ted PVC
LACUSTRINE	#00			Screen gauge or s	size of openings		0.010 in
L#10001141	OUARTZ	1.2		Diameter of scree	n an		2.0 in
	SAND			- Type of backfill arou	II ind coreen	No. 00 (wartz Sand
	0/11/2			Type of Dacking arou	llu sereen		
36.5	\neg			-Depth of bottom of w	vell screen		40.0 ft
GLACIAL				•			
TILL		L3		– Bottom of Silt trap			40.0 ft
				- Denth of bottom of b	orehole		42.0 ft
42	42 —		iai	Departor Contraction	oremote		
(Numbers refer to de	epth from ground surface in feet)				(Not to Scale)		
	<u>ft</u> +			<u>ft</u> +	ft_=	=	ft
Riser	Pay Length (L1)	Length	n of screen (L2)	Length of s	silt trap (L3)	Pay len	gth
COMMENTS:						-	

HALEY &		OBS	ERVA	TION	WELL		Well No.
ALDRICH	т					F	Boring No.
		NSTA	ALLA'	<u>FION F</u>	KEPORT		HA-3
PROJECT	Site Investigation and E	nvironmenta	ll Consulting Ser	rvices	H&A FILE	NO. <u>33587-0</u>	001
LOCATION	Surban Plaza, 2199 East	Henrietta, N	New York		PROJECT	MGR. L. Turtu	irro
CLIENT CONTRACTOR	Wilmorite, Inc.				FIELD REI	P. <u>D. Nost</u>	rant
DRILLER	S. Loranty				WATER LI	EVEL $\frac{01/18/0}{25.54}$	(1/23/07)
Ground El.	571 ft	Location	SEE PLAN			Guard Pin	e
El. Datum	NGVD29					Roadway	Box
SOIL/ROCK	BOREHOLE			-Type of protect	ve lock	Hinged St	eel/Padlock
CONDITIONS	BACKFILL						
0	0 CONCRETE		_↓	Height of top of above ground s	guard roadway box ırface		ft
LACUSTRINE	2.2			-Height of top of above ground s	riser pipe ırface		<u>2.45</u> ft
			◄──	- Type of protecti	ve casing:	Galvani	zed Steel
				Length			<u>5.0</u> ft
10.0	CEMENT-			Inside Diam	eter		4.0 in. x 4.0 in. in
	BENTONITE GROUT			- Depth of botton	n of guard roadway bo	x	2.20 ft
					Type of Seals	Top of Seal (ft)	Thickness (ft)
					Concrete	0.0	2.2
					Cement-Bentonite		
GLACIAL		L1			Grout	2.2	20.8
TILL					Bentonite Seal	23.0	5.0
				T e • •	#00 Sand Pack	28.0	14.0
	22.0			- Type of riser pi	pe:	P	20
	23.0			Type of back	eter of riser pipe	See L	<u>2.0</u> In
	BENTONITE			Type of back	um around riser	See L	hagrain
	SEAL			- Diameter of bor	rehole		8.0 in. ± in
				- Depth to top of	well screen		<u> </u>
28.5	28.0	-	4	- Type of screen		Slotte	ed PVC
LACUSTRINE	#00			Screen gaug	e or size of openings		0.010 in
	QUARTZ	L2		Diameter of	screen		<u> </u>
	SAND			- Type of backfill	around screen	No. 00 Q	uartz Sand
		L3		-Depth of botton - Bottom of Silt ti	n of well screen rap		40.0 ft
42 -	10			- Depth of botton	n of borehole		42.0 ft
42	42 —				a		
(Numbers refer to de	epth from ground surface in feet)			<u>6</u>	(Not to Scale)		6
Riser	+ Pay Length (L1) +	Length	n of screen (L2)	It + Lengt	$\frac{\text{tt}}{\text{h of silt trap (L3)}} =$	Pay lens	tt
COMMENTS:					/		

HALEY & ALDRICH		OBS	ERVA	TION WI	ELL		Well No. HA-4
	I	NSTA	ALLA	TION REF	PORT		Boring No.
PROJECT	Site Investigation and E	nvironmenta	al Consulting Serv	vices	H&A FILE	NO. 33587-	001
LOCATION	Surban Plaza, 2199 East	Henrietta, N	New York		PROJECT	MGR. <u>L. Turt</u>	urro
CLIENT	Wilmorite, Inc.				FIELD REP	2. <u>D. Nos</u>	trant
DRILLER	S. Loranty			_	WATER LE	$\frac{01/17}{24.55}$	(1/23/07)
Ground El.	571 ft	Location	SEE PLAN			Guard Pi	De .
El. Datum	NGVD29	Location				Roadway	Box
SOIL/ROCK	BOREHOLE			Type of protective lock		Hinged S	teel/Padlock
CONDITIONS	BACKFILL						
0	0			Height of top of guard	roadway box		3.0 ft
	CONCRETE			above ground surface			
	2.0			Height of top of riser pi	ipe		2.7 ft
LACUSTRINE				above ground surface			
				Type of protective casir	ng:	Galvar	ized Steel
				Length			<u>5.0</u> ft
13.5				Inside Diameter			4.0 in. x 4.0 in. in
	CEMENT-						
	BENTONITE		╎╎┡╌─	Depth of bottom of gua	rd roadway boy	ĸ	<u>2.0</u> ft
	GROUT						
				<u>Tyr</u>	pe of Seals	Top of Seal (ft)	Thickness (ft)
					Concrete	0.0	2.0
				Ceme	ent-Bentonite		
GLACIAL		L1			Grout	2.0	21.0
TILL				Ben	tonite Seal	23.0	5.0
				#00	Sand Pack	28.0	14.0
				Type of riser pipe:		I	PVC
	23.0			Inside diameter of r	iser pipe	~ .	<u>2.0</u> in
				Type of backfill aro	und riser	See	Diagram
	BENTONITE						
	SEAL			Diameter of borehole			$8.0 \text{ in.} \pm \text{in}$
							20.0
				Depth to top of well scr	een		<u> </u>
22.5	28			Type of coreen		Slott	ad DVC
LACUSTRINE	#00			Screen gauge or size	of openings		0.010 in
LACOSTRINE	OUARTZ	12		Diameter of screen	t of openings		<u> </u>
	SAND	Ĩ		Type of backfill around	l screen	No. 00 (Quartz Sand
	britte			Type of buchlin around	i ber een	110.00 (
40.0				Depth of bottom of wel	l screen		40.0 ft
GLACIAL				1			
TILL		L3		Bottom of Silt trap			40.0 ft
				Depth of bottom of bor	ehole		42.0 ft
42	42	· ·					· `
(Numbers refer to de	epth from ground surface in feet)				(Not to Scale)		
	ft +			<u>ft</u> +	$\frac{\text{ft}}{\text{ft}} =$		ft
Kiser	r Pay Length (L1)	Length	n of screen (L2)	Length of silt	t trap (L3)	Pay len	gtn

HALEY &		OBS	ERVATION WE	ELL	Well No. HA-105
ALDRICH	тъ				Boring No.
	11	NSTA	LLATION REP	ORT	HA-105
PROJECT	Site Investigation and Er	nvironmental	Consulting Services	H&A FILE NO. 3358	37-001
LOCATION	Surban Plaza, 2199 East	Henrietta, N	ew York	PROJECT MGR. L. T	urturro
CLIENT	Wilmorite, Inc.			FIELD REP. D. N	ostrant
CONTRACTOR	Nothnagle Drilling, Inc.			DATE INSTALLED 12/0	2/08
DRILLER	K. Busch			WATER LEVEL 1.88	
Ground El. El. Datum	563 ft NGVD29	Location	SEE PLAN	Guard ☐ □ Roadwa	Pipe ay Box
SOIL/ROCK	BOREHOLE		Type of protective lock	Hingeo	I Steel/Padlock
CONDITIONS	BACKFILL				
0	0 CONCRETE		Height of top of guard p above ground surface	ipe	<u> 1.6 </u> ft
			Height of top of riser pi above ground surface	pe	<u> 1.25 </u> ft
FILL	1.0				
			Type of protective casin	g: Galv	vanized Steel
			Length		<u>5.0</u> ft
			Inside Diameter		4.0 in. x 4.0 in. in
	HYDRATED BENTONITE CHIPS		Depth of bottom of guar	rd roadway box	<u>3.75</u> ft
4.0			Тур	e of Seals	
				oncrete 0.0	1.0
		↓	Bent	onite Seal 1.0	4.6
	5.6	L1	#00 5	Sand Pack 5.6	11.0
			Type of riser pipe:		PVC
			Inside diameter of ri	ser pipe	2.0 in
			Type of backfill arou	ind riser Se	e Diagram
LACUSTRINE	OON		← Diameter of borehole		8.0 in. ± in
	QUARTZ SAND		Depth to top of well scre	een	<u>6.6</u> ft
			Type of screen	SI	otted PVC
			Screen gauge or size	of openings	0.010 in
14.0		L2	Diameter of screen	• •	2.0 in
			← Type of backfill around	screen OON	Quartz Sand
					-
GLACIAL					
TILL			Depth of bottom of well	screen	<u> 16.6 </u> ft
		L3	Bottom of Silt trap		16.6 ft
16.6	166		Depth of bottom of bore	hole	16.6 ft
10.0	10.0				
(Numbers refer to de	epth from ground surface in feet)		(Not to Scale)	
Diam	ft +	I anoth	$\frac{\text{ft}}{\text{of screen (I 2)}} + \frac{1}{1 \text{ on ath of silt}}$	ft =	ft
COMMENTS.	r ay Leligui (L1)	Length	or sorten (L2) Length of shit	uap (LS) Pay	cngul

HALEY &		OBS	ERVATION WE	LL	Well No. HA-106
ALDRICH	Т			ידתר	Boring No.
	L L	NDIA	LLATION REPO	JKI	HA-106
PROJECT	Site Investigation and E	nvironmenta	Consulting Services	H&A FILE NO. <u>335</u>	87-001
LOCATION	Surban Plaza, 2199 East	Henrietta, N	lew York	PROJECT MGR. L. 1	Furturro
CLIENT	Wilmorite, Inc.		· · · · · · · · · · · · · · · ·	FIELD KEP. D. 1	Nostrant
DRILLER	K Busch			$\frac{12}{19}$	15
Cround El	563 <i>A</i> G	Location	SEE DI AN		Ding
El. Datum	NGVD29	Location	SEETLAN	Guard	vay Box
SOIL/ROCK	BOREHOLE		Type of protective lock	Hinge	ed Steel/Padlock
CONDITIONS	BACKFILL				
0	0		Height of top of guard pipe	e	<u>1.8</u> ft
	CONCRETE		above ground surface		
		_			
FILL			Height of top of riser pipe		<u>1.45</u> ft
			above ground surface		
	1.0				
			Type of protective casing:	Gal	lvanized Steel
			Length		5.0 ft
			Inside Diameter		4.0 in. x 4.0 in. in
	HYDRATED				
3.0	BENTONITE		Depth of bottom of guard r	roadway box	3.25 ft
	CHIPS				
			Туре о	f Seals	
			Conc	crete 0.0	1.0
			Bentoni	ite Seal 1.0	4.1
LACUSTRINE	5.1	L1			
			#00 San	nd Pack 5.1	11.0
			Type of riser pipe:		PVC
			Inside diameter of riser	· pipe	<u>2.0</u> in
			Type of backfill around	l riser S	ee Diagram
			Diameter of borehole		8.0 in. ± in
	OON	+			
	QUARTZ		Depth to top of well screen		<u>6.1</u> ft
11.0	SAND				
			Type of screen	S	lotted PVC
GLACIAL			Screen gauge or size of	openings	<u>0.010</u> in
TILL		L2	Diameter of screen		<u> </u>
			Type of backfill around scr	reen OO	N Quartz Sand
			— Depth of bottom of well scr	reen	<u>16.1</u> ft
		L3	Bottom of Silt trap		<u>16.1</u> ft
16.1	16.1		Depth of bottom of boreho	le	<u>16.1</u> ft
(Numhers refer to de	epth from ground surface in feet)		(Not	to Scale)	
			ft 1	ft -	£4
Riser	Pay Length (L1) +	Length	of screen (L2) Length of silt tran	$\frac{\pi}{p(L3)} = \frac{1}{Pay}$	length
COMMENTS:					
_					

HALEY &		OBS	ERVATION WE	ELL	Well No. HA_107
ALDRICH	т				Boring No.
	11	NSTA	LLATION REP	OKT	HA-107
PROJECT	Site Investigation and E	nvironmental	Consulting Services	H&A FILE NO. 335	87-001
LOCATION	Surban Plaza, 2199 East	Henrietta, N	ew York	PROJECT MGR. L. T	urturro
CLIENT	Wilmorite, Inc.		<u> </u>	FIELD REP. D. N	Jostrant
CONTRACTOR	Nothnagle Drilling, Inc.			DATE INSTALLED 12/0	01/08
DRILLER	K. Busch			WATER LEVEL 7.4	8
Ground El.	570 ft	Location	SEE PLAN	Guard	Pipe an Ban
	NGVD29	<u> </u>			
SOIL/ROCK	BOREHOLE		Type of protective lock	St	eel/Padlock
CONDITIONS	BACKFILL				2 0 1
0	0	l r	Height of top of guard p	lipe	<u>3.0</u> ft
	CONCRETE		above ground surface		
			Height of top of riser pi	ре	<u>2.8</u> ft
			above ground surrace		
FILL	1.8				
			Type of protective casin	g: Gal	vanized Steel
			Length		<u>5.0</u> ft
			Inside Diameter		4.0 in. x 4.0 in. in
	HYDRATED				
	BENTONITE		Depth of bottom of guar	d roadway box	<u>2.0</u> ft
	PELLETS				
			Typ	e of Seals Top of Seal (f	t) Thickness (ft)
			<u></u>	oncrete 0.0	1.8
3.2			Bent	onite Seal 1.8	2.0
	3.8	L1			
			#00.5	Sand Pack 3.8	11.2
			Type of riser pipe:		PVC
			Inside diameter of ri	ser pipe	<u>2.0</u> in
			Type of backfill arou	ind riser Se	ee Diagram
			← Diameter of borehole		8.0 in. ± in
	SILICA		Depth to top of well scre	een	<u>5.0</u> ft
LACUSTRINE	SAND				
			Type of screen	S	otted PVC
			Screen gauge or size	of openings	<u>0.010</u> in
		L2	Diameter of screen		<u> </u>
			Type of backfill around	screen S	ilica Sand
13.5					
GLACIAL			Depth of bottom of well	screen	<u>15.0</u> ft
TILL					
		L3	Bottom of Silt trap		15.0 ft
15 -	15		Depth of bottom of bore	hole	15.0 ft
Olimitan for a	anth from around surface in the si		~	Not to Scolo)	
(Numbers refer to de	epun trom ground surface in feet)	I	(INOL 10 SCALE)	-
Ricor	Pay Length (L1) +	Length	$\frac{\text{ft}}{\text{of screen (I.2)}} + \frac{1}{\text{Length of silt}}$	$\frac{\text{tt}}{\text{tran}(L3)} = \frac{P_{av}}{P_{av}}$	ft
COMMENTS:	ny Longui (L1)	Langui	er sereen (EZ) Eengin of sint	1 dy	

HALEY & ALDRICH		OBSEI	RVA	TION WE	LL		Well No. MW-15R Boying No.
	II	NSTAL	LA]	FION REP	ORT		MW-15W
PROJECT	Site Investigation and E	nvironmental Cons	sulting Ser	vices	H&A FILE N	IO. 33587-	001
LOCATION	Surban Plaza, 2199 East	i Henrietta, New Y	'ork		PROJECT M	IGR. L. Turt	urro
CLIENT	Wilmorite, Inc.				FIELD REP.	D. Nos	trant
CONTRACTOR	Nothnagle Drilling, Inc.				DATE INSTA	ALLED 12/02/0)8
	K. Busch	L			WAIEKLEN	VEL <u>0.07</u>	
Ground El. El. Datum	573 tt NGVD29	Location <u>SE</u>	E PLAN			Guard Pij	pe Box
SOIL/ROCK	BOREHOLE			Type of protective lock	-	Bolted S	teel/Padlock
CONDITIONS	BACKFILL						
SOIL/ ROCK	CONCRETE			Height of top of guard pi above ground surface	ipe		<u>0.0</u> ft
CONDITIONS NOT DESCRIBED	1.0			Depth of top of riser pipe below ground surface	e		<u>0.60</u> f t
(REPLACEMENT	c		│ ┣───	• Type of protective casing	2:	Road	wav Box
WELL)				Length	· _		1.0 ft
				Inside Diameter			8.0 in
	HYDRATED BENTONITE		│	Depth of bottom of guard	d roadway box		1.0 ft
	CHIPS			Type	e of Seals	Top of Seal (ft)	Thickness (ft)
				Co	oncrete	0.0	1.0
	0.5			Bento	onite Seal	1.0	8.5
	7.5			#00 S	and Pack	9.5	6.0
			•	Type of riser pipe:	-	I	PVC
				Inside diameter of ris	er pipe		2.0 in
				Type of backfill arou	nd riser	See I	Diagram
	OON			Diameter of borehole			8.0 in. ± in
	QUARTZ SAND			Depth to top of well scree	en		<u>10.5</u> ft
				• Type of screen		Slott	ed PVC
				Screen gauge or size (of openings	Dion	0.010 in
				Diameter of screen	n obenne?		2.0 in
			 	Type of backfill around s	screen	OON Q	uartz Sand
				Depth of bottom of well s	screen		<u>15.5</u> ft
		L3	┝╴┼	Bottom of Silt trap			<u>15.5</u> ft
15.5	15.5			Depth of bottom of boreh	hole		<u>15.5</u> ft
(Numbers refer to de	enth from ground surface in feet)			()	Jot to Scale)		
(rumors rere to a	ft _	l		£	ft -		ft
Riser	Pay Length (L1)	Length of sc	reen (L2)	tt + Length of silt tr	rap (L3)	Pay len	gth
COMMENTS:		-		-	· · ·		

HALEY & ALDRICH		OBS	ERVATION WELL		Well No. MW-18R
	I	NSTA	LLATION REPORT		Boring No. MW-18W
PROJECT	 Suburban Plaza Ongoin	g Site Chara	terization H&A FILE	E NO. 33587-0	02
LOCATION	Henrietta, NY		PROJECT	MGR. G. White	2
CLIENT	Wilmorite, Inc.		FIELD RE	P. D. Nost	rant
CONTRACTOR	Nothnagle Drilling		DATE INS	TALLED 11/9/20	09
DRILLER	J. Schweitzer	8	WATER L	EVEL <u>6.4</u>	
Ground El El. Datum	572 ft NGVD29	Location	At previusly completed excavation area	Guard Pipe	e Sox
SOIL/ROCK	BOREHOLE		Type of protective cover/lock	Bolted Ste	el/Padlock
CONDITIONS	BACKFILL				
ROCK/SOIL			Height/Depth of top of guard pipe/roa	dway box	0.0 ft
CONDITIONS	CONCRETE		above/below ground surface		
NOT OBSERVED	0 1.0	_ 			
(REPLACEMENT	ſ		Height/Depth of top of riser pipe above/below ground surface		<u>0.4</u> ft
W LLL)	HYDRATED		Type of protective casing:	Flushmour	ot Roadbox
	BENTONITE		Length		1.0 ft
	BLATIONIT		Inside Diameter		<u> </u>
					0.000
			Depth of bottom of guard pipe/roadwa	ay box	<u> 1.0 </u> ft
			Type of Seals	Top <u>of Seal (ft)</u>	Thick <u>ness (ft)</u>
			Concrete	0.0	1.0
			Bentonite Seal	1.0	7.0
		LI	#00 Sand Pack	8.0	7.1
			Type of riser pipe:	PV	/C
	8.0		Inside diameter of riser pipe		2.0 in
			Type of backfill around riser	See D	agram
	MORIE NO. 00N		➡ Diameter of borehole		8.0 + - in
	OUARTZ SAND				
	x		Depth to top of well screen		10.1 ft
			•	Slotter	1 PVC
			Screen gauge or size of openings		<u> </u>
		L2	Diameter of screen		2.0 in
			← Type of backfill around screen	Morie No. 001	N Quartz Sand
			Depth of bottom of well screen		15.1 ft
		L3	Bottom of Silt trap		<u>15.1</u> ft
	15.1		Depth of bottom of borehole		<u>15.1</u> ft
(Botto	m of Exploration)				
(Numbers refer to de	epth from ground surface in feet)		(Not to Scale)		-
Riser	$\frac{\text{ft}}{\text{r Pay I enoth (I 1)}} +$	Length	$\frac{\text{ft}}{\text{of screen (I 2)}} + \frac{\text{ft}}{\text{Length of silt trap (I 3)}} =$	=Pay leng	ft
	ray Lengui (L1)	Lengu	Discreen (L2) Lengui di sint dap (L3)	r ay leng	ui

HALEY &		ORS	FRVATION WI	T T	Well No.
ALDRICH		ODO			MW-22R
	יד 🖢	ISTA	LLATION REF	PORT	Boring No.
PROIECT	Site Investigation and E	nvironmental	Consulting Services	H&A FILE NO. 3?	IVI VV - 44 VV 2587-001
LOCATION	Surban Plaza, 2199 East	Henrietta, N	ew York	PROJECT MGR. L.	Turturro
CLIENT	Wilmorite, Inc.	<u> </u>		FIELD REP. D	. Nostrant
CONTRACTOR	Nothnagle Drilling, Inc.			DATE INSTALLED 12	2/02/08
DRILLER	K. Busch			WATER LEVEL 8.	43
Ground El.	571.5 ft	Location	SEE PLAN	Guar	d Pipe
El. Datum	NGVD29				way Box
SOIL/ROCK	BOREHOLE		Type of protective lock	Bolt	ed Steel/Padlock
CONDITIONS	BACKFILL				
ROCK/SOIL		_ _	Height of top of guard	pipe	<u> </u>
CONDITIONS	CONCRETE		above ground surface		
NOT OBSERVED)				
			Depth of top of riser pi	ре	0.5 ft
(REPLACEMENT	ſ		below ground surface		
WELL)	1.0				
			Type of protective casin	ng:]	Roadway Box
			Length		1.0 ft
			Inside Diameter		8.0 in
	HYDRATED				
	BENTONITE		Depth of bottom of gua	ard roadway box	1.0 ft
	CHIPS			,	
			Tyj	pe of Seals <u>Top of Seal</u>	(ft) Thickness (ft)
				Concrete 0.0	1.0
			Ben	itonite Seal 1.0	3.2
	4.2	L1			
			#00	Sand Pack 4.2	11.0
			Type of riser nine:		DVC
			I ype of fisch pipe.		
			Tupe of healtfill are	iser pipe	<u>2.0</u> III
					See Diagram
			Diameter of borehole		80 in + in
	OON				0.0 III. ±
	OUARTZ		Denth to top of well scr	100 n	52 ft
	SAND		Deptil to top of wen ber	cen	<u> </u>
	57115				
			Type of screen		Slotted PVC
			Screen gauge or size	e of openings	0.010 in
		L2	Diameter of screen	, or opening.	2.0 in
			Type of backfill around	d sereen ()(N Quartz Sand
			Type or succession of the second		Al Quarte Suite
			Depth of bottom of well	l coreen	15.2 ft
				I Stitten	
		L3	Bottom of Silt tran		15.2 ft
			Double of bottom of bor		<u> </u>
15.2	15.2	'	Dehm or porton or por	enoie	<u> </u>
(Numbers refer to de	epth from ground surface in feet)			(Not to Scale)	
	ft +		<u>ft</u> +	<u>ft</u> =	ft
Riser	r Pay Length (L1)	Length	of screen (L2) Length of silt	trap (L3) Pa	y length
COMMENTS:					

HALEY &		OBS	ERVATION WELL		Well No. HA-208
ALDRICH		NSTA	LLATION REPORT	Г	Boring No.
PROJECT	United Cleaners			L ILE NO 33587-	HA-208
LOCATION	Rocehster, New York		PROJE	CT MGR. L. Turt	urro
CLIENT	SP Associates, LP		FIELD	REP. B. Zinr	ui
CONTRACTOR	Nothnagle Drilling, Inc.		DATE I	NSTALLED 08/11/0)9
DRILLER	J. Sweitzer		WATE	R LEVEL	
Ground El.	558 ft	Location	SEE PLAN	Guard Pip	e
El. Datum	NGVD29	Ļ		Roadway	Box
SOIL/ROCK	BOREHOLE		Type of protective lock	Pa	dlock
CONDITIONS	S BACKFILL				
0.0			Height of top of guard pipe		<u>0.0</u> ft
GRAVEL	CONCRETE		depth of top of riser below ground	surface	
0.2					
			Depth of top of riser pipe		0.3 ft
			below ground surface		
	1.0				
FILL			Type of protective casing:	Road	way Box
			Length		<u>1.0</u> ft
			Inside Diameter		<u>8.0</u> in
	BENTONITE		Depth of bottom of guard roadway	box	ft
	CHIPS				
			Type of Seals	Top of Seal (ft)	Thickness (ft)
			Concrete	0.0	1.0
			Bentonite Seal	1.0	3.0
	4.0	L1			
4.5			Quartz Sand	4.0	11.0
			Type of riser pipe:	P	VC
			Inside diameter of riser pipe		<u>2.0</u> in
			Type of backfill around riser	Quartz Sa	nd/Bentonite
LACUSTRINE					
			Diameter of borehole		<u>8.0</u> in
	QUARTZ		Depth to top of well screen		<u>5.0</u> ft
	SAND				
			← Type of screen	P	PVC
			Screen gauge or size of opening	5	0.010 in
		L2	Diameter of screen		<u>2.0</u> in
				Quar	tz Sand
11.5					
GLACIAL			Depth of bottom of well screen		<u>15.0</u> ft
TILL		$\frac{1}{12}$			
			Bottom of Silt trap		<u>15.0</u> ft
15	15		Depth of bottom of borehole		<u>15.0</u> ft
(Numbers refer to a	depth from ground surface in feet)		(Not to Scale)		
	ft +	·	ft + ft	t =	ft
Rise	er Pay Length (L1)	Length	of screen (L2) Length of silt trap (L3)	Pay len	gth
COMMENTS:					

HALEY & ALDRICH		OBSE	RVATION WE	LL	Well No. HA-209
	I I	NSTAL	LATION REPO	ORT	Boring No. HA_200
PROJECT	United Cleaners			H&A FILE NO. 33587	-002
LOCATION	Rocehster, New York			PROJECT MGR. L. Tur	turro
CLIENT	SP Associates, LP			FIELD REP. B. Zin	ni
CONTRACTOR	Nothnagle Drilling, Inc.			DATE INSTALLED 08/11/	/09
DRILLER	J. Sweitzer			WATER LEVEL	
Ground El.	560.5 ft	Location SE	EE PLAN	Guard Pi	ре
El. Datum	NGVD29			Roadway	Box
SOIL/ROCK	BOREHOLE	Г	Type of protective lock	Р	adlock
CONDITIONS	BACKFILL				
	CONCRETE	│ ┌┤	Height of top of guard pipe depth of top of riser below	e ground surface	<u> 0.0 ft</u>
	1		Depth of top of riser pipe below ground surface		<u>0.3</u> ft
			Type of protective casing:	Roa	iway Box
			Length		10 ft
			Inside Diameter		<u> </u>
			Inside Diameter		<u> </u>
	BENTONITE		Depth of bottom of guard r	roadway box	<u> 1.0 </u> ft
	crim b		Type o	f Seals Top of Seal (ft)	Thickness (ft)
			Con	crete 0.0	1.0
			Benton	ite Seal 1.0	3.0
	9.0		Quartz	z Sand 9.0	11.0
			Type of riser pipe:		PVC
			Inside diameter of riser	pipe	2.0 in
			Type of backfill around	riser Ouartz S	and/Bentonite
			-540 - 540		
			← Diameter of borehole		<u>8.0</u> in
	QUARTZ SAND		Depth to top of well screen		<u> 10.0 </u> ft
			Tupo of course-		DVC
			Server agent to the server	oponings	0.010
			Screen gauge or size of	opennigs	<u> </u>
			Tune of bookfill excured on		2.0 III
			Type of backfin around sci		
			Depth of bottom of well scr	reen	ft
		L3	Bottom of Silt trap		<u>20.0</u> ft
20	20		Depth of bottom of boreho	le	<u>20.0</u> ft
20	20				
(Numbers refer to d	depth from ground surface in feet)		(Not	to Scale)	
Disco	r Pay Length (L1) +	Length of or	reen (I 2) I enoth of silt tra	$\frac{\text{ft}}{\text{p}(I,3)} = \frac{1}{\text{Part loc}}$	ft
COMMENTS.	i i ay Longui (L1)	Length of SC	Lengui or silt tra	ray le	15 ¹¹

APPENDIX E

FIELD FORMS

Static Water Levels

Location (Site/Facility Name): Location (Address): Client:	
Date: Performed By: Job Number:	

Well ID	Riser Elevation (NGVD 29)	Water Level (from Top of Riser)
HA-1	572.57	
HA-2	571.69	
HA-3	573.83	
HA-4	573.36	
MW-15R	572.24	
MW-22R	571.07	
MW-18R	571.27	
HA-105	564.87	
HA-106	564.89	
HA-107	573.06	[]
HA-208	557.28	[
HA-209	564.25	

Visual Inspection of System:

Recommendation Actions:

Description of Past Year Activities:

01

Page

PROJECT

LOCATION

~ * *

CLIENT

H&A FILE NO. PROJECT MGR. FIELD REP DATE

CON	UNTRACIOR DATE						
			GROUNDWATER	SAMPLING INFO	RMATION		
Well N	lo.						
Water	Depth (ft)						
Time							
Produc	rt						
Depth	Of Well (ft)						
Inside	Diameter (in)						
Standi	ng Water Depth (ft) ⁽¹⁾						
Volum	e Of Water In Well (gal)						
Purgin	g Device						
Volum	e of Bailer/Pump Capacity						
Cleani	ng Procedure						
Bails F	Removed/ Volume Removed						
Time I	Purging Started						
Time I	Purging Stopped						
Sampl	ing Device						
Cleani	ng Procedure						
	VOCs						
KEN							
ES TA							
MPLI							
1E SA							
AIT							
	Color						
	Odor						
ERS	рн						
NET	Conductivity						
PAR∕	Turbidity						
	Dissolved Oxygen						
	Temp, ⁰ C						
	Salinity						
Remar 1. Stan	ks: (ie: field filtrations, perso ding Water Depth = Depth o	ons communicated with f Well - Water Depth	at site, etc.)				

Monthly Monitoring Form for SSD System

Site/Facility Name:	United Cleaners
Address:	2199 East Henrietta Road
	Rochester, NY
Client:	S-P Associates, L.P.

Date			
Time			
Name			
Company			
Position			

Fan System	Typical Range (in. w.c.)	Manometer (in.w.c.)	Manometer (in.w.c.)	Manometer (in.w.c.)	Manometer (in.w.c.)	Manometer (in.w.c.)	Manometer (in.w.c.)
F-1	2.6 - 4.2						
F-2	0.1 - 1.7						
F-3	1.0 - 2.6						
F-4	3.0 - 4.6						
F-5	1.9 - 3.5						
F-6	0.7 - 2.3						
F-7	0.1 - 1.7						
F-8	0.2 - 1.8						
F-9	0.9 - 2.5						
F-10	0.3 - 1.9						

* Each month, provide the completed Monthly Monitoring Form to Haley & Aldrich via email (see below).

* Notify the appropriate environmental professional if manometer reading is outside of typical range.

Contact: Haley & Aldrich

Ben Drayn (BDrayn@haleyaldrich.com) Mark Ramsdell (MRamsdell@haleyaldrich.com) Phone: (585) 359-9000

Site Inspection Form			Reporting	Reporting Period:			
Location (Site/Facility Name): Location (Address): Client:			Reason fo	r Inspection:	 Annual Inspection Severe Weather Condition Other (Describe) 		
Date: Performed By: Job Number:							
1. Site Use & Ownership							
a. Current Site Use & Owner							
b. Has site use or owner chang If "yes", describe:	ed since prev	ious inspection?	□ YES				
If "yes", was notificatio	n made to the	NYSDEC?	□ YES				
c. Have permits been issued fo <i>If "yes", describe:</i>	or the property	v since previous inspection?	□ YES				
2. Engineering Controls (Co a. Are engineering controls (co i. Pavement Area	over System ver) in place a	nd functioning as designed? □ needs repair describe :	□ YES	□ NO			
ii. Building Slab	□ intact	needs repair describe:					
b. Have excavations occurred If "yes", describe:	that breached	I the cover system?	☐ YES	□ NO			
If "yes", was SMP follo	wed (attach d	ocumentation to PRR)?	□ YES				
3. Institutional Controls							
a. Is the site in compliance with	the environm	ental easement?	□ YES				
b. Is the site being used for cor	nmercial/indu	□ YES					
c. Has groundwater been used	for any purpo	se?	□ YES				
d. Is work at the site being conducted in accordance with the SMP?			□ YES				

Site Inspection Form				Reporting Period:		
4. Monitoring (indicate if/when monitoring w	as conducte	d during th	e reporting	period)		
a. Groundwater monitoring	□ YES			Dates:		
b. Sub-slab vapor/Indoor air monitoring	□ YES			Dates:		
5. Soil Export, Import, Re-Use During Repor	ting Period					
a. Was soil imported to or excavated and re-used of	on the site?		□ YES			
If "yes", describe:						
If "yes", was SMP followed (attach docume	entation to PRR)?	□ YES			
b. Was soil excavated and disposed?			□ YES			
If "ves", describe:						
If "yes", was SMP followed (attach docume	entation to PRR)?	□ YES			
6. List of Tenants						
a. Are tenants the same since last inspection?				lf	No, new tenant:	
Former Hollywood Video (currently vacant)			□ YES			
Former Tooley's Furniture (currently vacant)			□ YES			
AutoZone			□ YES			
Family Dollar			□ YES			
Chef King			□ YES			
United Cleaners			□ YES			
Henrietta Spa			□ YES			
Vacant Space			□ YES			
Country Max			□ YES			
Redemption Center			□ YES			
Other						
Other Notes and Information:						
General Equipment Inspection Form for SSD System

Site/Facility Name:	United Cleaners
Address:	2199 East Henrietta Road
	Rochester, NY
Client:	S-P Associates, L.P.

Date		
Time		
Name		
Company	Instrument	
Position	Serial No.	

Test Point Location	Vacuum (in.w.c.)	Visual Inspection	Fan System	Manometer (in.w.c.)	Visual Inspection	Inspection of Exhaust Point	Audible Inspection of Fan
AZ-TP-3			F-1				
AZ-TP-7			F-2				
FD-TP-2			F-3				
TP-18			F-4				
VS-TP-8			F-5				
CM-TP-1			F-6				
CM-TP-8			F-7				
LS-TP-3			F-8				
			F-9				
			F-10				

* NR-Not recorded

* AR-Analog manometer reading Visual Inspection of Complete System (fans, piping, labels, urethane seals, etc.):

Recommended Actions (Identification and repair of leaks):

Description of Activities Since Last Inspection:

Identification and Repair of Significant Floor Cracks:

Identification and Backdraft Analysis for Natural Draft Combustion Appliances:

Routine Maintenance Form for SSD System

Site/Facility Name:	United Cleaners
Address:	2199 East Henrietta Road
	Rochester, NY
Client:	S-P Associates, L.P.

Date	
Time	
Name	
Company	
Position	

Date of Repair	Maintenance Activities Conducted	Modifications to System

Additional Notes/Photos:

Visual Inspection of Complete System (fans, piping, labels, urethane seals, etc.) after repair:

Non-Routine Maintenance Form for SSD System

Site/Facility Name: Address:

Client:

United Cleaners 2199 East Henrietta Road Rochester, NY S-P Associates, L.P.

Date	
Time	
Name	
Company	
Position	

Date of Repair	Description of Repair	Other Repairs/Adjustments

Additional Notes:

Visual Inspection of Complete System (fans, piping, labels, urethane seals, etc.) after repair:

APPENDIX F

QUALITY ASSURANCE PROJECT PLAN

QUALITY ASSURANCE PROJECT PLAN UNITED CLEANERS 2199 EAST HENRIETTA ROAD HENRIETTA, NEW YORK NYSDEC SITE ID: 828152

by

Haley & Aldrich of New York Rochester, New York

for

S-P Associates, L.P. Rochester, New York

File No. 33587-005 October 2013

EXECUTIVE SUMMARY

This Quality Assurance Project Plan (QAPP) presents the organization, objectives, planned activities, and specific quality assurance / quality control (QA/QC) procedures associated with the site monitoring at the United Cleaners facility in Henrietta, New York ("the Site") in accordance with the New York State Department of Environmental Conservation (NYSDEC). Protocols for sample collection, sample handling and storage, chain-of-custody procedures, and laboratory and field analyses are described here in or specifically referenced to related investigation documents.

This QAPP addresses the QA/QC elements prescribed in the NYSDEC 6 NYCRR Part 375 Environmental Remediation Programs, 14 December 2006; and NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, 3 May 2010. The QA/QC procedures described in this QAPP have been developed to be consistent with current NYSDEC technical and administrative guidance memoranda in general.

TABLE OF CONTENTS

1	PRO	JECT DESCRIPTION	1-1
	1.1	Project Objectives and Decision Statement	1-1
	1.2	Site Description	1-1
	1.3	Site History	1-1
	1.4	Target Parameter List and Intended Data Use	1-2
	1.5	Sampling Locations	1-2
	1.6	Project Schedule	1-2
2	PRO	JECT ORGANIZATION AND RESPONSIBILITIES	2-1
	2.1	Management Responsibilities	2-1
	2.2	Quality Assurance Responsibilities	2-2
	2.3	Laboratory Responsibilities	2-2
	2.4	Field Responsibilities	2-3
3	QUA	LITY ASSURANCE OBJECTIVES FOR MEASUREMENT DATA	3-1
	3.1	Precision	3-1
	3.2	Accuracy	3-1
	3.3	Representativeness	3-2
	3.4	Completeness	3-3
	3.5	Comparability	3-4
	3.6	Decision Rules	3-4
	3.7	Level of Quality Control Effort	3-5
4	SAM	PLING PROCEDURES	4-1
	4.1	Sample Containers	4-1
	4.2	Sample Labeling	4-1
	4.3	Field QC Sample Collection	4-1
5	CUS	TODY PROCEDURES	5-1
	5.1	Field Custody Procedures	5-1
	5.2	Laboratory Chain-of-Custody Procedures	5-3
	5.3	Storage of Samples	5-4
	5.4	Final Project Files Custody Procedures	5-4
6	CAL	IBRATION PROCEDURES AND FREQUENCY	6-1
	6.1	Field Instrument Calibration Procedures	6-1
	6.2	Laboratory Instrument Calibration Procedures	6-1

		Quality Assurance F	Project Plan
		United Cleaners Site Manag	ement Plan
		Oc	ctober 2013
			Page iii
7	ANA	LYTICAL PROCEDURES	7-1
	7.1	Field Analytical Procedures	7-1
	7.2	Laboratory Analytical Procedures	7-1
8	INTE	RNAL QUALITY CONTROL CHECKS	8-1
	8.1	Field Quality Control	8-1
	8.2	Laboratory Procedures	8-1
9	DAT	A REDUCTION, VALIDATION AND REPORTING	9-1
	9.1	Data Reduction	9-1
	9.2	Data Validation	9-1
	9.3	Data Reporting	9-4
10	PERI	FORMANCE AND SYSTEM AUDITS	10-1
	10.1	Field Performance and System Audits	10-1
	10.2	Laboratory Performance and System Audits	10-1
11	PREV	VENTIVE MAINTENANCE	11-1
	11.1	Field Instrument Preventive Maintenance	11-1
	11.2	Laboratory Instrument Preventive Maintenance	11-1
12	SPEC	CIFIC ROUTINE PROCEDURES USED TO ASSESS DATA PRECISION, URACY AND COMPLETENESS	12-1
	nee		12 1
	12.1	Field Measurements	12-1 12-1
	12.2		12-1
13	COR	RECTIVE ACTION	13-1
	13.1	Field Corrective Action	13-1
	13.2	Laboratory Corrective Action	13-1
	13.3	Corrective Action During Data Validation and Data Assessment	13-1
14	QUA	LITY ASSURANCE (QA) REPORTS	14-1
15	REFI	ERENCES	15-1

TABLES

APPENDIX A – Summary of Field and Laboratory Parameters APPENDIX B – Applicable QAPP Worksheets

Quality Assurance Project Plan United Cleaners Site Management Plan October 2013 Page iv

LIST OF TABLES

Table 1

<u>Title</u> Sample Container, Preservation Methods, Shipping, and Packaging Requirements

1 PROJECT DESCRIPTION

This Quality Assurance Project Plan (QAPP) has been prepared on behalf of S-P Associates, L.P. (S-P Associates). The QAPP is a component of the NYSDEC Site Management Plan (SMP) that also includes an Excavation Management Plan (EMP) and Health & Safety Plan (HASP).

1.1 **Project Objectives and Decision Statement**

The primary objectives for data collection activities include:

- Collect and evaluate data necessary to monitor the nature and extent of groundwater impacts, and;
- Characterize environmental media for reuse or disposal as necessary during site management activities.

Associated specific objectives for field and laboratory data collection are discussed in Section 1.4 of this plan.

1.1.1 Project Status/Phase

The project status and management approach are presented in the SMP. Section 1summarizes the Site background. Section 2 describes the applicable engineering and institutional controls (IE/ECs). Section 3 describes the site monitoring plan. Section 4 describes operations and maintenance of site systems.

1.1.2 QAPP Preparation Guidelines

This QAPP has been prepared in accordance with the United States Environmental Protection Agency, (1999). <u>EPA Requirements for Quality Assurance Project Plans for Environmental Data Operations</u>. EPA QA/R-5 Interim Final, November 1999.

1.2 Site Description

The general Site description is provided in Section 1 of the SMP and is incorporated herein by reference.

Site LocationSMP Figure 1Site PlanSMP Figure 2

1.3 Site History

The Site history is provided in Section 1 of the RI Work Plan and incorporated herein by reference.

Site History SMP Sections 1.2, 1.3, and 1.4

1.4 Target Parameter List and Intended Data Use

1.4.1 Target Parameter List

The investigative program includes the sampling and analysis of environmental media for the presence of organic and inorganic constituents based on the historical use of the Site. The field and laboratory parameters are presented in Table 1 with the associated laboratory reporting and method detection limits determined by the project laboratory in accordance with the provisions of the Federal Register, Volume 49, Number 209, October 26, 1984 pp. 198-199.

1.4.1.1 Laboratory Parameters

The laboratory parameters include target compound list (TCL) for volatile organic compounds (VOC) in soil and groundwater using EPA Method 8260B. In addition, some soil samples will be analyzed for TCL semi-volatile organic compounds (SVOCs) by EPA Method 8270C, target analyte list (TAL) metals by EPA Methods 6010/7471, and polychlorinated biphenyls (PCBs) by EPA Methods 8081 and pesticides by EPA Method 8082 as needed for disposal, reuse, or import to the site.

Concurrent with sample collection, several field parameters will be determined. For soils and solid matrices, field parameters will include visual observations, odor identification, and VOC screening using handheld monitoring equipment.

1.5 **Sampling Locations**

The SMP provides a summary and rationale for the location of groundwater samples. It is possible that sampling locations may change depending on the encountered field conditions. Soil sample locations will be as needed for import or disposal. The person responsible for making such decisions will be the Project Manager whose responsibilities are described in Section 2.0 of this QAPP.

1.6 **Project Schedule**

Site management activities are intended to be ongoing. The schedule of project monitoring presented in the SMP Table 8.

2 PROJECT ORGANIZATION AND RESPONSIBILITIES

This section defines the roles and responsibilities of the individuals who will perform the RIWP activities. The Site Manager will have the primary responsibility for implementation of the RIWP. The selected analytical laboratory will perform the analyses of environmental samples collected at the Site.

2.1 Management Responsibilities

A description of the project organization is presented in the RIWP. Management responsibilities of key personnel include:

Mr. Ronald Cocquyt - United Cleaners Project Manager

The United Cleaners Project Manager is responsible for implementing the project, and has the authority to commit the resources necessary to meet project objectives and requirements. The Project Manager will ensure that technical, financial, and scheduling objectives are achieved successfully. He/she will provide the primary point of contact and represent the project team at regulatory agency meetings and public hearings. The United Cleaners Project Manager will establish project policy and procedures to address the specific needs of the project and will also respond to issues related to community outreach.

Project Director/Project Engineer

The Project Director/Engineer will provide final review and approval of significant submittals to NYSDEC and may participate in technical meetings. The Project Director/Engineer will ensure that overall technical quality is maintained. He/she will be actively involved in the direction of the project and has overall responsibility for the project.

Consultant Project Manager

The Project Manager is responsible for managing the implementation of the SMP and coordinating the collection of data. The Project Manager is responsible for technical quality control and project oversight. The Project Manager responsibilities include the following:

- Acquire and apply technical and corporate resources as needed to ensure performance within budget and schedule restraints;
- Review work performed to ensure quality, responsiveness, and timeliness;
- Be responsible for the preparation and quality of interim and final reports;
- Communicate with the United Cleaners Project Manager concerning the progress of the project;
- Assure corrective actions are taken for deficiencies cited during audits of RIWP activities; and
- Overall Site health and safety.

2.2 **Quality Assurance Responsibilities**

The Quality Assurance (QA) team will consist of a Quality Assurance Officer, the Consultant Project Manager and qualified staff with the responsibilities described as follows:

Quality Assurance (QA) Officer

The QA Officer reports directly to the Project Manager and will be responsible for ensuring that QA/QC procedures are followed. The QA Officer will be responsible for overseeing the review of field and laboratory data. Additional responsibilities include the following:

- Assure the application and effectiveness of the QAPP by the analytical laboratory and the project staff; Conduct internal QA/QC of the investigation activities;
- Provide input to the Project Director, and Project Manager as to corrective actions that may be required as a result of the above-mentioned evaluations;
- Prepare and review data validation and audit reports;
- Approval of the QAPP.

The QA Officer will be assisted by the data validation staff in the evaluation and validation of field and laboratory generated data.

Data Validation Staff

The data validation staff will be independent of the laboratory and familiar with the analytical procedures performed. The validation will include a review of each validation criterion as prescribed by the guidelines presented in Section 12.2 of this document and be presented in a formal written report for submittal to the QA Officer.

NYSDEC Quality Assurance Officer

The NYSDEC Quality Assurance Officer may review this QAPP, conduct external performance and system audits of the project laboratory; and review and evaluate field and analytical laboratory procedures.

2.3 Laboratory Responsibilities

Laboratory services in support of the RIWP include the following personnel:

Laboratory Project Manager

The Laboratory Project Manager will report directly to the QA Officer and Project Manager, and will be responsible for ensuring all resources of the laboratory are available on an as-required basis. The Laboratory Project Manager will also be responsible for the approval of the final analytical reports.

Laboratory Operations Manager

The Laboratory Operations Manager will report to the Laboratory Project Manager and will be responsible for coordinating laboratory analysis, supervising in-house chain-of-custody reports, scheduling sample analyses, overseeing data review and overseeing preparation of analytical reports.

Laboratory QA Officer

The Laboratory QA Officer will have sole responsibility for review and validation of the analytical laboratory data. The Laboratory QA Officer will provide Case Narrative descriptions of any data quality issues encountered during the analyses conducted by the laboratory. The QA Officer will also define appropriate QA procedures, overview QA/QC documentation.

Laboratory Sample Custodian

The Laboratory Sample Custodian will report to the Laboratory Operations Manager and will be responsible for the following:

- Receive and inspect the incoming sample containers;
- Record the condition of the incoming sample containers;
- Sign appropriate documents;
- Verify chain-of-custody and its correctness;
- Notify the Project Manager and Operations Manager of sample receipt and inspection;
- Assign a unique identification number and customer number, and enter each into the sample receiving log;
- Initiate transfer of samples to lab sections; and
- Control and monitor access/storage of samples and extracts.

Laboratory Technical Personnel

The laboratory technical staff will have the primary responsibility in the performance of sample analysis and the execution of the QA procedures developed to determine the data quality. These activities will include the proper preparation and analysis of the project samples in accordance with the contract laboratory's Quality Assurance Manual and associated Standard Operating Procedures.

2.4 **Field Responsibilities**

Field Coordinator

The Field Coordinator is responsible for the overall operation of the field team and reports directly to the Project Director and Project Manager. The Field Coordinator works with the Site Health & Safety Officer (HSO) to conduct operations in compliance with the project Health & Safety Plan (HASP). The Field Coordinator will facilitate communication and coordinate efforts between the Project Manager and the field team members.

Other responsibilities include the following:

- Develop and implement field-related work plans, ensuring schedule compliance, and adhering to management-developed project requirements;
- Coordinate and manage field staff, including sampling;
- Perform field system audits;
- Oversee quality control for technical data provided by the field staff;
- Prepare and approve text and graphics required for field team efforts;
- Coordinate and oversee technical efforts of subcontractors assisting the field team;
- Identify problems in the field; resolve difficulties in consultation with the Project Director, QAO, and Project Manager; implement and document corrective action procedures and,
- Participate in preparation of the final reports.

Field Team Personnel

Field Team Personnel will be responsible for the following:

- Perform field activities in compliance with the QAPP.
- Immediately report any accidents and/or unsafe conditions to the Project Manager and take reasonable precautions to prevent injury.

3 QUALITY ASSURANCE OBJECTIVES FOR MEASUREMENT DATA

The SMP and associated QAPP are designed to produce data of the quality necessary to achieve the project objectives and meet or exceed the minimum standard requirements for the field and laboratory analytical methods. The overall project data quality objective (DQO) is to develop and implement procedures for field sampling, handling, chain-of-custody, laboratory analysis, and reporting that achieve the project objectives. The following section is a general discussion of the criteria that will be used to measure and achieve the project DQO.

3.1 **Precision**

3.1.1 Definition

Precision will be determined by collecting and analyzing field duplicate samples and by creating and analyzing laboratory duplicates from one or more of the field samples. Precision is defined as a quantitative measure of the degree to which two or more measurements are in agreement. Precision will be stated in terms of relative percent difference (RPD). The analytical results from the field duplicate samples will provide data on sampling precision. The results from duplicate samples created by the laboratory will provide data on analytical precision.

3.1.2 Field Precision Sample Objectives

Field precision will be assessed through collection and measurement of field duplicate samples at a rate of 1 duplicate per 20 samples.

3.1.3 Laboratory Precision Sample Objectives

Laboratory precision will be assessed through the analysis of laboratory control samples (LCS/LCSD) samples. The analytical data will be presented in summary table format. The DQO criteria for laboratory LCS/LCSD analyses are provided in Table 1.

3.2 Accuracy

3.2.1 Definition

Accuracy relates to the bias in a measurement system. Bias is the difference between the observed and the "true" value. Sources of error are the sampling process, field contamination, preservation techniques, sample handling, sample matrix interference, sample preparation and analytical procedure limitations.

3.2.2 Field Accuracy Objectives

Sampling bias will be assessed by evaluating the results of equipment rinse and trip blanks. Equipment rinse and trip blanks will be collected as appropriate for each sampling effort.

Equipment rinse blanks will be collected by passing ASTM Type II water over and/or through the respective sampling equipment utilized during each sampling effort. One equipment rinse blank will be collected for each type of sampling equipment used for the sampling effort.

Equipment rinse blanks will be analyzed for each target parameter for the respective sampling effort for which environmental media have been collected. (Note: If dedicated or disposable sampling equipment is used, equipment rinse samples may not be collected as part of that field effort.)

Trip blank samples will be prepared by the laboratory and provided with each cooler that includes volatile organic compound (VOC) containers. Trip blank samples will be analyzed for each VOC for which environmental media have been collected for analysis.

3.2.3 Laboratory Accuracy Sample Objectives

Analytical bias will be assessed through the use of known laboratory control samples (LCS) and site specific matrix spike (MS) sample analyses. LCS analyses will be performed with each analytical batch of project samples to determine the accuracy of the analytical system.

One (1) set of MS/MSD analyses will be performed with each batch of twenty (20) project samples to assess the accuracy of identification and quantification of analytes within the site-specific sample matrices. Additional sample volume will be collected at sample locations selected for MS/MSD analyses so that method detection limits (MDLs) and laboratory reporting limits (RLs) can be met.

The accuracy of organic parameter analyses is also monitored through the analysis of system monitoring or surrogate compounds. Surrogate compounds are added to each sample, standard, blank, and QC samples prior to the sample preparation and analysis. Surrogate compound percent recoveries provide information on the effect of the sample matrix on the accuracy of the analyses. The results of the LCS and MS/MSD analyses and surrogate compounds will be presented in a summary table reporting format and evaluated versus the laboratory specific acceptance criteria presented in Table 1.

3.3 **Representativeness**

3.3.1 Definition

Representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of a population, a parameter variation at a sampling point or an environmental condition. Representativeness is a qualitative parameter that is dependent upon the design of the sampling program. The representativeness criterion is satisfied by proper selection of sampling locations and quantity of samples collected.

3.3.2 Measures to Ensure Representativeness of Field Data

Representativeness will be addressed by prescribing sampling techniques and the rationale used to select sampling locations.

For this project, sampling will generally be biased unless otherwise noted in the SMP; that is, sampling associated with the soil and groundwater will be based on site knowledge and/or the observed presence/absence of site specific contaminants. Specific sampling technique descriptions, which allow consistency, repetitiveness and thus representativeness, are provided in the SMP.

3.3.3 Measures to Ensure Representativeness of Laboratory Data

Representativeness in the laboratory is ensured by using proper analytical procedures and analyzing duplicate samples. By definition, duplicate samples are collected and analyzed to be representative of a given point in space and time. Thus, sample duplicates provide both precision and representativeness information.

3.4 **Completeness**

3.4.1 Definition

Completeness is a measure of the amount of valid (usable) data obtained from a measuring system compared to the total amount of the data obtained or anticipated. The completeness goal for all data uses is that a sufficient amount of valid data be generated so that determinations can be made related to the intended data use with a high degree of confidence.

3.4.2 Field Completeness Objectives

Completeness is a measure of the amount of valid measurements obtained from all measurements taken in this project versus the number proposed in the SMP. Field completeness objective for this project will be greater than (>) 90 percent (%).

3.4.3 Laboratory Completeness Objectives

Laboratory data completeness objective is a measure of the amount of valid data obtained from all laboratory measurements. The evaluation of the data completeness will be performed at the conclusion of each sampling and analysis effort. Corrective actions such as revised sample handling procedures will be implemented if problems are noted.

The completeness of the data generated will be determined by comparing the amount of valid data, based on independent validation, with the total data set. The completeness goal will be >90%.

3.5 **Comparability**

3.5.1 Definition

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared to another.

3.5.2 Measures to Ensure Comparability of Field Data

Sample data should be comparable to other measurement data for similar samples and sample conditions. This goal is achieved through using standard operating procedures to collect, preserve, store and analyze representative samples, and the reporting of analytical results. The field SOP for the various activities to be conducted during this investigation will provide guidelines to generate reproducible results.

3.5.3 Measures to Ensure Comparability of Laboratory Data

Comparability of laboratory data will be measured from the analysis of Standard Reference Materials (SRM) obtained from either EPA Cooperative Research and Development Agreement (CRADA) suppliers or the National Institute of Standards and Technology (NIST). The reported analytical data will also be presented in standard units of mass of contaminant within a known volume of environmental media.

The units for various sample matrices are described as follows:

- Solid Matrices milligrams (mg) contaminant per kilogram (kg) of media (Dry Weight).
- Aqueous Matrices micrograms (ug) contaminant per liter (L) of media for organic analyses, and milligrams per liter for inorganic analyses.
- Gaseous Matrices micrograms (ug) contaminant per cubic meter (M³) of media

3.6 **Decision Rules**

3.6.1 Definition

The decision rule is a statement that prescribes a course of action or non-action to be taken, based on assumptions to test its logical and empirical consequences.

3.6.2 Decision Rule Objective

The rationale for sample locations, sample number and analytical parameters is provided in the SMP. The decision rule for the sampling and analysis data collected is as follows:

- 1. Samples will be collected at discrete locations to provide a comprehensive assessment of impacted media.
- 2. Sample data will be compared to action levels (e.g., Soil Cleanup Objectives (SCO) to determine the appropriate action as defined in the SMP.

3.7 Level of Quality Control Effort

Equipment rinse, trip and method blank samples; field and laboratory duplicate samples; and laboratory control and matrix spike samples will be prepared and analyzed to determine the analytical data quality.

Equipment rinse blanks will be prepared by field personnel and submitted for analysis of target parameters. Equipment rinse blank samples will be analyzed to check for contamination of equipment introduced during sampling at the Site. One (1) equipment rinse blank will be collected per sampling event.

Trip blanks are used to assess the potential for contamination during sample storage and shipment. The trip blank will consist of ASTM Type II water that has been provided with the sample containers to be used for sampling VOC. Trip blanks will be preserved and handled in the same manner as the project samples. One (1) trip blank will be included along with each shipment cooler containing project samples to be analyzed for VOCs.

Method blank samples will be prepared by the laboratory and analyzed concurrently with all project samples to assess potential contamination introduced during the analytical process.

Field duplicate samples are analyzed to determine sampling and analytical reproducibility. One (1) field duplicate will be collected for every 20 or fewer investigative samples collected for laboratory analysis.

Matrix spikes will provide information to assess the precision and accuracy of the analysis of the target parameters within the environmental media collected. One (1) matrix spike/matrix spike duplicate (MS/MSD) will be collected for every 20 or fewer investigative samples per sample matrix (i.e. soil or groundwater).

(Note: Soil MS/MSD samples require triple sample volume for VOC only. Aqueous MS/MSD samples require triple the normal sample volume for VOC analysis and double the volume for the remaining parameters.)

4 SAMPLING PROCEDURES

Samples of soil and groundwater will be obtained during the SMP program. The SMP describes each of the sampling tasks and project objectives.

The SMP and EMP provide the standard operating procedures (SOP) for sampling of each environmental media including soil stockpiles and groundwater.

4.1 **Sample Containers**

Sample containers for each sampling task will be provided by the project laboratory. The containers will be cleaned by the manufacturer to meet or exceed the analyte specifications established in the U.S. EPA, "Specifications and Guidance for Obtaining Contaminant-Free Sample Containers", April 1992, OSWER Directive #9240.0-0.5A. Certificates of analysis for each lot of sample containers used during the RIWP will be maintained by the laboratory and will be available upon request.

The appropriate sample containers, preservation method, maximum holding times, and shipping information for each target parameter and sampling task are provided in Table 2.

4.2 Sample Labeling

Each sample will be labeled with a unique sample number that will facilitate tracking and crossreferencing of sample information. Equipment rinse blank and field duplicate samples also will be numbered with a unique sample number to prevent analytical bias of field QC samples.

4.3 Field QC Sample Collection

4.3.1 Equipment Rinse Blank Sample Collection

Equipment rinse blank samples will be collected when non-dedicated sampling equipment is used to collect samples. Equipment rinse blanks consist of distilled water that has been routed through decontaminated sampling equipment and collected into the appropriate containers. The containers will be filled in order of decreasing analyte volatility (i.e., VOC first, SVOC second and followed by the containers for the remaining analyses).

4.3.2 Field Duplicate Sample Collection

4.3.2.1 Water Samples

Field duplicate samples will be collected using the following procedure:

- 1. The first sample container is filled to the proper level and sealed. The procedure is repeated for the second sample container.
- 2. The samples are properly labeled as specified in Section 4.2.

- 3. Steps 1 through 4 are repeated for the bottles for each analysis. The samples are collected in order of decreasing analyte volatility as detailed in Section 4.3.1.
- 4. Chain-of-custody documents are executed.
- 5. The samples will be packaged as specified in Table 2.

4.3.2.2 Soil Samples

Soil field duplicates will be collected as specified in the following:

- 1. The split-spoon sampler or trowel will be retrieved from the sampling point.
- 2. Soil for VOC analysis will be removed from the sampling device.
- 3. Soil for non-VOC analysis will be removed from the sampling device and placed in a stainless steel mixing bowl. The soil will be thoroughly homogenized using stainless steel utensils and the sample containers will be filled in order of decreasing analyte volatility as described in Section 4.3.1.

5 CUSTODY PROCEDURES

Custody is one of several factors necessary for the admissibility of environmental data as evidence in a court of law. Custody procedures help to satisfy the two major requirements for admissibility: relevance and authenticity. Sample custody is addressed in three parts: field sample collection, laboratory analysis and final project files.

Custody of a sample begins when it is collected by or transferred to an individual and ends when that individual relinquishes or disposes of the sample. A sample or project file is under custody if:

- 1. the item is in actual possession of a person;
- 2. the item is in the view of the person after being in actual possession of the person;
- 3. the item was in actual possession and subsequently stored to prevent tampering; or
- 4. the item is in a designated and identified secure area.

5.1 Field Custody Procedures

Field personnel will keep written records of field activities on applicable preprinted field forms or in a bound field notebook to record data collecting activities. These records will be written legibly in ink and will contain pertinent field data and observations. Entry errors or changes will be crossed out with a single line, dated and initialed by the person making the correction. Field forms and notebooks will be periodically reviewed by the Field Coordinator.

The beginning of each entry in the logbook or preprinted field form will contain the following information:

- Date
- Start time
- Weather
- Names of field personnel (including subcontractors)
- Level of personal protection used at the Site
- Names of all visitors and the purpose of their visit.

For each measurement and sample collected, the following information will be recorded:

- Detailed description of sample location,
- Equipment used to collect sample or make measurement and the date equipment was calibrated,
- Time sample was collected,
- Description of the sample conditions,
- Depth sample was collected (if applicable),
- Volume and number of containers filled with the sample; and,
- Sampler's identification.

5.1.1 Field Procedures

Data quality can be affected by sample collection activities. If the integrity of collected samples is questionable, the data, regardless of its analytical quality, will also be questionable.

The following procedure describes the process to maintain the integrity of the samples:

- Upon collection samples are placed in the proper containers. In general, samples collected for organic analysis will be placed in pre-cleaned glass containers and samples collected for inorganic analysis will be placed in pre-cleaned plastic (polyethylene) bottles.
- Samples will be assigned a unique sample number and will be affixed to a sample label.
- Samples will be properly and appropriately preserved by field personnel in order to minimize loss of the constituent(s) of interest due to physical, chemical or biological mechanisms.
- Appropriate volumes will be collected to ensure that the appropriate reporting limits can be successfully achieved and that the required QC sample analyses can be performed.

5.1.2 Transfer of Custody and Shipment Procedures

- A chain-of-custody (COC) record will be completed at the time of sample collection and will accompany each shipment of project samples to the laboratory. The field personnel collecting the samples will be responsible for the custody of the samples until the samples are relinquished to the laboratory. Sample transfer will require the individuals relinquishing and receiving the samples to sign, date and note the time of sample transfer on the COC record.
- Samples will be shipped or delivered in a timely fashion to the laboratory so that holding-times and/or analysis times as prescribed by the methodology can be met.
- Samples will be transported in containers (coolers) which will maintain the refrigeration temperature for those parameters for which refrigeration is required in the prescribed preservation protocols.
- Samples will be placed in an upright position and limited to one layer of samples per cooler. Additional bubble wrap or packaging material will be added to fill the cooler. Shipping containers will be secured with strapping tape and custody tape for shipment to the laboratory.
- If samples are split with the NYSDEC representatives, a separate chain-of-custody will be prepared and marked to indicate with whom the samples are shared. The person

relinquishing the samples will require the representative's signature acknowledging sample receipt.

- If samples are sent by a commercial carrier, a bill of lading will be used. A copy of the bill of lading will be retained as part of the permanent record. Commercial carriers will not sign the custody record as long as the custody record is sealed inside the sample cooler and the custody tape remains intact.
- Samples will be shipped to the laboratory courier or transported by courier to the laboratory the day of collection.

5.2 Laboratory Chain-of-Custody Procedures

A sample custodian will be designated by the laboratory and will have the responsibility to receive all incoming samples. Once received, the custodian will document if the sample is received in good condition (i.e., unbroken, cooled, etc.) and that the associated paperwork, such as chain-of-custody forms have been completed.

The custodian will sign the COC and document if sufficient sample volume has been received to complete the analytical program. The sample custodian will then place the samples into secure, limited access storage (refrigerated storage, if required). The sample custodian will assign a unique number to each incoming sample for use in the laboratory. The unique number will then be entered into the sample-receiving log with the verified time and date of receipt also noted.

Consistent with the analyses requested on the chain-of-custody form, analyses by the laboratory's analysts will begin in accordance with the appropriate methodologies. Samples will be removed from secure storage with internal chain-of-custody sign-out procedures followed.

5.3 Storage of Samples

Empty sample bottles will be returned to secure and limited access storage after the available volume has been consumed by the analysis. Upon completion of the entire analytical work effort, samples will be disposed of by the sample custodian. The length of time that samples are held will be at least thirty (30) days after reports have been submitted. Disposal of remaining samples will be completed in compliance with all Federal, State and local requirements.

5.4 Final Project Files Custody Procedures

The final project files will be the central repository for all documents with information relevant to sampling and analysis activities as described in this QAPP. The Project Manager will be the custodian of the project file. The project files including all relevant records, reports, logs, field notebooks, pictures, subcontractor reports and data reviews will be maintained in a secured, limited access area and under custody of the Project Director or his designee.

The final project file will include the following:

- Project plans and drawings
- Field data records
- Sample identification documents and soil boring/monitoring well logs
- All chain-of-custody documentation
- Correspondence
- References, literature
- Laboratory data deliverables
- Data validation and assessment reports
- Progress reports, QA reports
- Final report

The laboratory will be responsible for maintaining analytical logbooks, laboratory data and sample chain of custody documents. Raw laboratory data files and copies of hard copy reports will be inventoried and maintained by the laboratory for a period of six (6) years at which time the laboratory will contact the Project Manager regarding the disposition of the project related files.

6 CALIBRATION PROCEDURES AND FREQUENCY

6.1 Field Instrument Calibration Procedures

Several field instruments will be used for both on-site screening of samples and for health and safety monitoring, as described in the Health and Safety Plan (HASP). On-site air monitoring for health and safety purposes may be accomplished using several different organic vapor detection devices, such as a Photo-ionization Detector (PID), Combustible Gas Indicator (CGI), and/or Draeger tubes.

Field instruments will be calibrated in accordance with the instrument manufacturer's requirements and checked during field activities to verify performance.

6.2 Laboratory Instrument Calibration Procedures

Reference materials of known purity and quality will be utilized for the analysis of environmental samples. The laboratory will carefully monitor the preparation and use of reference materials including solutions, standards and reagents through well-documented procedures.

All solid chemicals and acids/bases used by the laboratory will be rated as "reagent grade" or better. All gases will be "high" purity or better. All Standard Reference Materials (SRMs) or Performance Evaluation (PE) materials will be obtained from approved vendors of the National Institute of Standards and Technology (formerly National Bureau of Standards), the U.S. EPA Environmental Monitoring Support Laboratories (EMSL), or reliable Cooperative Research and Development Agreement (CRADA) certified commercial sources.

7 ANALYTICAL PROCEDURES

Analytical procedures to be utilized for analysis of environmental samples will be based on referenced U.S. EPA promulgated analytical protocols.

7.1 Field Analytical Procedures

Field analytical procedures include qualitative measurement of Volatile Organic Compounds (VOC) during the collection of soil samples.

7.2 Laboratory Analytical Procedures

Laboratory analyses will be based on the U.S. EPA methodology requirements promulgated in:

■ "Test Methods for Evaluating Solid Waste," SW-846 EPA, Office of Solid Waste, and promulgated updates, 1986.

The laboratory reporting limits (RLs) and associated method detection limits (MDLs) for the target analytes and compounds for the environmental media to be analyzed are presented in Table 1.

7.2.1 List of Project Target Compounds and Laboratory Detection Limits

A complete list of project target compounds and project reporting limits for each analyte is listed in Table 1. MDLs have been experimentally determined by the project laboratory using the method provided in 40 CFR, Part 136 Appendix B.

7.2.2. List of Method Specific Quality Control (QC) Criteria

The laboratory method specific procedures will include a section that presents the minimum QC requirements for the project analyses. Section 8.0 references the frequency of the associated QC samples for each sampling effort and matrix.

Quality Assurance Project Plan United Cleaners Site Management Plan October 2013 Page 8-1

8 INTERNAL QUALITY CONTROL CHECKS

This section presents the internal quality control checks that will be employed for field and laboratory measurements.

8.1 Field Quality Control

8.1.1 Equipment Rinse Blanks

Internal quality control checks will include analysis of equipment blanks to validate successful equipment cleaning activities. Whenever possible, dedicated equipment will be employed to reduce the possibility of cross-contamination of samples.

The frequency of equipment rinse sample preparation will be for each type of sampling equipment on which decontamination procedures have been performed as part of each sampling event.

8.1.2 Trip Blanks

Trip blanks samples will be prepared by the project laboratory using ASTM Type II or equivalent water placed within pre-cleaned 40 milliliter (ml) VOC vials equipped with teflon septa. Trip blanks will accompany each sample delivery group (SDG) of environmental samples collected for analysis of VOCs.

Trip blank samples will be placed in each cooler that stores and transports project samples that are to be analyzed for VOCs.

8.2 Laboratory Procedures

Procedures which contribute to maintenance of overall laboratory quality assurance and control include appropriately cleaned sample containers, proper sample identification and logging, applicable sample preservation, storage and analysis within prescribed holding times, and use of controlled materials.

8.2.1 Field Duplicate Samples

The precision or reproducibility of the data generated will be monitored through the use of field duplicate samples. Field duplicate analysis will be performed at a frequency of 1 in 20 project samples.

Quality Assurance Project Plan United Cleaners Site Management Plan October 2013 Page 8-2

Precision will be measured in terms of the absolute value of the relative percent difference (RPD) as expressed by the following equation:

$$RPD = \frac{\left| \begin{array}{c} \frac{R1 - R2}{(R1 - R2)} \right|}{2} X100\%$$

Acceptance criteria for duplicate analyses performed on solid matrices will be 50 % and aqueous matrices will be 30%. RPD values outside these limits will require an evaluation of the sampling and/or analysis procedures by the project QA Officer and/or laboratory QA Director. Corrective actions may include re-analysis of additional sample aliquots and/or qualification of the data for use.

8.2.2 Matrix Spike Samples

Ten percent of each project sample matrix for each analytical method performed will be spiked with known concentrations of the specific target compounds/analytes.

The amount of the compound recovered from the sample compared to the amount added will be expressed as a percent recovery. The percent recovery of an analyte is an indication of the accuracy of an analysis within the site-specific sample matrix. Percent recovery will be calculated for MS/MSD using the following equation.

$$\% Recovery = \frac{Spiked Sample - Background}{Known Value of Spike} \times 100\%$$

If the quality control value falls outside the control limits (UCL or LCL) due to sample matrix effects, the results will be reported with appropriate data qualifiers. To determine the effect non-compliant MS recoveries have on the reported results, the recovery data will be evaluated as part of the validation process.

8.2.3 Laboratory Control Sample (LCS) Analyses

The laboratory will perform LCS analyses prepared from Standard Reference Materials (SRMs). The SRMs will be supplied from an independent manufacturer and traceable to NIST materials with known concentrations of each target analyte to be determined by the analytical methods performed. In cases where an independently supplied SRM is not available, the LCS may be prepared by the laboratory from a reagent lot other than that used for instrument calibration.

The laboratory will evaluate LCS analyses in terms of percent recovery using the most recent laboratory generated control limits.

LCS recoveries that do not meet acceptance criteria will be deemed invalid. Analysis of project samples will cease until an acceptable LCS analysis has been performed. If sample analysis is performed in association with an out-of-control LCS sample analysis, the data will be deemed invalid.

Corrective actions will be initiated by the QA Officer and/or laboratory QA officer to investigate the problem. After the problem has been identified and corrected, the solution will be noted in the instrument run logbook and re-analysis of project samples will be performed, if possible.

The analytical anomaly will be noted in the sample delivery group (SDG) Case Narrative and reviewed by the data validator. The data validator will confirm that appropriate corrective actions were implemented and recommend the applicable use of the affected data.

8.2.4 Surrogate Compound/Internal Standard Recoveries

For VOCs, surrogates will be added to each sample prior to analysis to establish purge and trap efficiency. Quantitation will be accomplished via internal standardization techniques.

The recovery of surrogate compounds and internal standards will be monitored by laboratory personnel to assess possible site-specific matrix effects on instrument performance.

For semi-volatile organics analyses, surrogates will be added to the raw sample to assess extraction efficiency. Internal standards will be added to all sample extracts and instrument calibration standard immediately before analysis for quantitation via internal standardization techniques.

Surrogate compound/internal standard recoveries that do not fall within accepted QC limits for the analytical methodology performed will have the analytical results flagged with data qualifiers as appropriate by the laboratory and will not noted in the laboratory report Case Narrative.

To ascertain the effect non-compliant surrogate compound/internal standard recoveries may have on the reported results, the recovery data will be evaluated as part of the validation process. The data validator will provide recommendations for corrective actions including but not limited to additional data qualification.

8.2.5 Calibration Verification Standards

As presented in Section 7.0 of this plan, calibration verification (CV) standards will be utilized to confirm instrument calibrations and performance throughout the analytical process. CV standards will be prepared as prescribed by the respective analytical protocols. Continuing calibration will be verified by compliance with method-specific criteria prior to additional analysis of project samples. Non-compliant analysis of CV standards will require immediate corrective action by the project laboratory QA officer and/or designated personnel. Corrective

action may include re-analysis of each affected project sample, a detailed description of the problem, the corrective action undertaken, the person who performed the action, and the resolution of the problem.

8.2.6 Laboratory Method Blank Analyses

Method blank sample analysis will be performed as part of each analytical batch for each methodology performed. If target compounds are detected in the method blank samples, the reported results will be flagged by the laboratory in accordance with standard operating procedures. The data validator will provide recommendations for corrective actions including but not limited to additional data qualification.

9 DATA REDUCTION, VALIDATION AND REPORTING

All data generated through field activities or by the laboratory operation shall be reduced and validated prior to reporting in accordance with the following procedures:

9.1 **Data Reduction**

9.1.1 Field Data Reduction Procedures

Field data reduction procedures will be minimal in scope compared to those implemented in the laboratory setting. The pH, conductivity, temperature, turbidity and VOC readings collected in the field will be generated from direct read instruments. The data will be written into field logbooks immediately after measurements are taken. If errors are made, data will be legibly crossed out, initialed and dated by the field member, and corrected in a space adjacent to the original entry.

9.1.2 Laboratory Data Reduction Procedures

Laboratory data reduction procedures are provided by the appropriate chapter of USEPA, Test Methods for Evaluating Solid Waste", SW-846, Third Edition. All calculations will be checked at the conclusion of each day. Errors will be noted; corrections made with the original notations crossed out legibly. Analytical results for soil samples shall be calculated and reported on a dry weight basis.

Quality control data (e.g., laboratory duplicates, surrogates, matrix spikes, and matrix spike duplicates) will be compared to the method acceptance criteria. Data considered to be acceptable will be entered into the laboratory information management system (LIMS).

Data summaries will be sent to the Laboratory QA Officer for review. Unacceptable data shall be appropriately qualified in the project report. Case narratives will be prepared which will include information concerning data that fell outside acceptance limits and any other anomalous conditions encountered during sample analysis.

9.2 Data Validation

Data validation procedures shall be performed for both field and laboratory operations as described below:

9.2.1 Procedures Used to Evaluate Field Data

Procedures to evaluate field data for this project will include review of field logbooks and checking for transcription errors to project specific documents. This task will be the responsibility of the Field QAO/Project Coordinator.

9.2.2 Procedures to Validate Laboratory Data

Validation of the analytical data will be performed by the QA Officer or designee using the following documents as guidance for the review process:

"U.S.EPA Contract Laboratory Program (CLP) National Functional Guidelines for Organic Data Review", EPA-540/R-99/008, October 1999 and the "U.S. EPA Contract Laboratory Program (CLP) National Functional Guidelines for Inorganic Data Review ", EPA-540/R-02-008, July 2002.

The specific data qualifiers used will be as presented and defined in the CLP National Functional Guidelines. Validation will be performed by qualified personnel at the direction of the QA Officer. Data review and validation will consist of two tiers of assessment that incorporates an approach similar to "Innovative Approaches to Data Validation", U.S.EPA Region III, June 1995.

Tier I data validation will be performed on 100% of the laboratory quality control summary data deliverables. The following will be evaluated:

Organic Analysis

- i) technical holding times;
- ii) GC/MS instrument performance check;
- iii) method, trip and equipment rinsate blanks;
- iv) system monitoring compounds (surrogate spikes);
- v) MS/MSD results;
- vi) laboratory control samples; and
- vii) field duplicate samples.

Inorganic Analysis

- i) technical holding times;
- ii) blanks;
- iii) laboratory control samples;
- iv) MS/MSD results; and
- v) field duplicates.

Tier II validation will only be completed at which time United Cleaners applies for delisting and an expanded package of the final round of groundwater data is obtained. The following will be evaluated during tier II validation:

Organic Analyses

- i) technical holding times;
- ii) GC/MS instrument performance check;
- iii) initial and continuing calibration;
- iv) blanks;
- v) system monitoring compounds (surrogate spikes);
- vi) MS/MSD results;
- vii) laboratory control samples;
- viii) internal standard performance;
- ix) system performance;
- x) target compound identification (GC/MS analyses); and
- xi) field duplicates

Inorganic Analyses

- i) technical holding times;
- ii) initial and continuing calibration;
- iii) blanks;
- iv) interference check samples;
- v) laboratory control samples;
- vi) matrix duplicate sample analysis;
- vii) matrix spike sample analysis;
- viii) ICP interference check sample;
- ix) ICP serial dilution;
- x) ICP/MS internal standard performance;
- xi) sample result verification; and

xii) field duplicates.

The completeness of each data package will be evaluated by the Data Validator. Completeness checks will be administered on all data to determine whether deliverables specified in the QAPP are present. The validator will determine whether all required items are present and request copies of missing deliverables.

9.3 Data Reporting

Data reporting procedures shall be carried out for field and laboratory operations as indicated below:

9.3.1 Field Data Reporting

Field data reporting shall be conducted principally through the transmission of report sheets containing tabulated results of all measurements made in the field and documentation of all field calibration activities.

9.3.2 Laboratory Data Reporting

The laboratory data reporting package will be sufficient to perform a data validation in accordance with protocols described above. The final laboratory data report format for interim groundwater sampling shall consist of NYSDEC Analytical Services Protocol (ASP) Category A deliverables. If at which point United Cleaners applies for site delisting or if the discontinuation of groundwater sampling is to be requested, the final laboratory data report format for the final round of groundwater sampling shall consist of NYSDEC ASP Category B deliverables.
Quality Assurance Project Plan United Cleaners Site Management Plan October 2013 Page 10-1

10 PERFORMANCE AND SYSTEM AUDITS

A performance audit is an independent quantitative comparison with data routinely obtained in the field or the laboratory. Performance audits include two separate, independent parts: internal and external audits.

10.1 Field Performance and System Audits

10.1.1 Internal Field Audit Responsibilities

Internal audits of field activities will be initiated at the discretion of the Project Manager and will include the review of sampling and field measurements. The audits will verify that all procedures are being followed. Internal field audits will be conducted once during each phase of the sampling and at the conclusion of the project. The audits will include examination of the following:

- Field sampling records, screening results, instrument operating records
- Sample collection
- Handling and packaging in compliance with procedures
- Maintenance of QA procedures
- Chain-of-custody reports

10.1.2 External Field Audit Responsibilities

External audits may be conducted by the Project Coordinator at any time during the field operations. These audits may or may not be announced and are at the discretion of the NYSDEC. The external field audits can include (but are not limited to) the following:

- Sampling equipment decontamination procedures
- Sample bottle preparation procedures
- Sampling procedures
- Examination of health and safety plans
- Procedures for verification of field duplicates
- Field screening practices

10.2 Laboratory Performance and System Audits

10.2.1 Internal Laboratory Audit Responsibilities

The laboratory system audits are typically conducted by the laboratory QA Officer or designee on an annual basis. The system audit will include an examination of laboratory documentation including: sample receiving logs, sample storage, chain-of-custody procedures, sample preparation and analysis and instrument operating records. At the conclusion of internal system audits, reports will be provided to the laboratory's operating divisions for appropriate comment and remedial/corrective action where necessary. Records of audits and corrective actions will be maintained by the Laboratory QA Officer.

10.2.2 External Laboratory Audit Responsibilities

External audits will be conducted as required, by the NYSDOH or designee. External audits may include any of the following:

- Review of laboratory analytical procedures
- Laboratory on-site visits
- Submission of performance evaluation samples for analysis

Failure of any of the above audit procedures can lead to laboratory disqualification, and another suitable laboratory will have to be chosen. An on-site review can consist of:

- Sample receipt procedures
- Custody, sample security and log-in procedures
- Review of instrument calibration logs
- Review of QA procedures
- Review of log books
- Review of analytical SOPs
- Personnel interviews

A review of a data package from samples recently analyzed by the laboratory can include (but not be limited to) the following:

- Comparison of resulting data to the SOP or method
- Verification of initial and continuing calibrations within control limits
- Verification of surrogate recoveries and instrument timing results
- Review of extended quantitation reports for comparisons of library spectra to instrument spectra, where applicable
- Assurance that samples are run within holding times.

11 PREVENTIVE MAINTENANCE

11.1 Field Instrument Preventive Maintenance

The field equipment preventive maintenance program is designed to ensure the effective completion of the sampling effort and to minimize equipment down time. Program implementation is concentrated in three areas:

- Maintenance responsibilities.
- Maintenance schedules.
- Inventory of critical spare parts and equipment.

The maintenance responsibilities for field equipment will be assigned to the task leaders in charge of specific field operations. Field personnel will be responsible for daily field checks and calibrations and for reporting any problems with the equipment. The maintenance schedule will follow the manufacturer's recommendations. In addition, the field personnel will be responsible for determining that critical spare parts are included with the field equipment. An adequate inventory of spare parts will be maintained. The inventory will primarily contain parts that are subject to frequent failure, have limited useful lifetimes and/or cannot be obtained in a timely manner.

11.2 Laboratory Instrument Preventive Maintenance

Analytical instruments at the laboratory will undergo routine and/or preventive maintenance. The extent of the preventive maintenance will be a function of the complexity of the equipment.

Generally, annual preventive maintenance service will involve cleaning, adjusting, inspecting and testing procedures designed to deduce instrument failure and/or extend useful instrument life. Between visits, routine operator maintenance and cleaning will be performed according to manufacturer's specifications by laboratory personnel.

Maintenance records will be placed on file at the laboratory and can be made available upon request.

12 SPECIFIC ROUTINE PROCEDURES USED TO ASSESS DATA PRECISION, ACCURACY, AND COMPLETENESS

12.1 Field Measurements

Field generated information will be reviewed for validity. The review will be performed by the Field QA Officer and typically include evaluation of bound logbooks/forms, data entry and calculation checks. Field data will be assessed by the QA Officer who will review the field results for compliance with the established QC criteria that are specified in Section 3.0 of this QAPP. The accuracy of pH and specific conductance will be assessed using daily instrument calibration, calibration check, and blank data. Accuracy will be measured by determining the percent recovery of calibration check standards as defined in Section 12.2.2. Precision of the pH and specific conductance measurements will be assessed on the basis of the reproducibility of duplicate readings of a field sample and will be measured by determining the relative percent difference of the readings as defined in Section 12.2.1.

Field data completeness will be calculated using the following equation:

% Completeness = $\frac{\text{Valid (usable) Data Obtained}}{\text{Total Data Planned}} \times 100$

12.2 Laboratory Data

Surrogate, internal standard and matrix spike recoveries will be used to evaluate data quality. The laboratory quality assurance/quality control program will include the following elements:

- Precision, in terms of relative percent difference (RPD), will be determined by duplicate sample analysis with each batch of project samples. RPD is defined as the absolute difference of duplicate measurements divided by the mean of these analyses normalized to percentage.
- Accuracy, in terms of percent recovery (recovery of known constituent additions) will be determined by the analysis of matrix spike (MS) samples. The frequency of MS analyses will be one (1) project sample MS/MSD per twenty (20) project samples.
- One method blank will be prepared and analyzed with each batch of project samples. The total number of method blank sample analyses will be determined by the laboratory analytical batch size.
- Standard Reference Materials (SRMs) will be used for each analysis. Sources of SRM's include the U.S. EPA, commercially available material from CRADA certified vendors and/or laboratory produced solutions. SRMs, when available and appropriate, will be processed and analyzed on a frequency of one per set of samples.

• Completeness is the evaluation of the amount of valid data generated versus the total set of data produced from a particular sampling and analysis event. Valid data is determined by independent confirmation of compliance with method-specific and project-specific data quality objectives. The calculation of data set completeness will be performed by the following equation.

 $\frac{Number of Valid Sample Results}{Total Number of Samples Planned} X 100 = \% Complete$

13 CORRECTIVE ACTION

13.1 Field Corrective Action

Project personnel will be responsible for ensuring the quality of the sampling procedures and environmental data and as such, will be responsible for initiating corrective action when appropriate. Any Field Team member may initiate corrective action procedures by reporting in writing the nature of the suspected problem to the Project Coordinator, Project Manager or Project QA Officer. Corrective action is intended to address unacceptable procedures or deficient quality control performance.

The corrective action procedures will be as follows:

- Identify/define the problem.
- Assign responsibility for investigating the problem.
- Investigate/determine the cause of the problem.
- Determine an appropriate corrective action to eliminate the problem.
- Implement the corrective action.
- Evaluate the effectiveness of the corrective action.
- Verify that the corrective action has eliminated the problem.
- Prepare a written record detailing the problem, corrective action utilized and solution of the problem.
- Submit the Corrective Action Record (CAR) to the Project Manager.

The Project Manager will begin corrective action by relating the problem to appropriate personnel.

13.2 Laboratory Corrective Action

The following paragraphs define the corrective action decision process relative to possible noncompliant events encountered during laboratory analysis of the project samples. Corrective actions will be initiated by the laboratory QA personnel and will be implemented by laboratory staff chemists under the oversight of the laboratory QA personnel. As with field corrective actions, the laboratory QA personnel will document the problem, the corrective action undertaken and the resolution of the problem. The corrective actions will be performed prior to release of the data from the laboratory.

13.3 Corrective Action During Data Validation and Data Assessment

The QA Officer may identify the need for corrective action during either the data validation or data assessment processes. Potential types of corrective action may include re-sampling by the field team or re-analysis of samples by the laboratory (if possible). These actions are dependent upon the ability to mobilize the field team, whether the data to be collected is necessary to meet the required quality assurance objectives (e.g., the holding time for samples is not exceeded). When the QA Officer identifies a corrective action situation, United Cleaners Project Manager will be responsible for approving the implementation of corrective action, including re-sampling, during data assessment. All corrective actions will be documented by the Project Manager.

Quality Assurance Project Plan United Cleaners Site Management Plan October 2013 Page 14-1

14 QUALITY ASSURANCE (QA) REPORTS

Critically important to the successful implementation of the QA Plan is a reporting system that provides the means by which the program can be reviewed, problems identified and programmatic changes made to improve the plan.

QA reports to management include:

- Audit reports, internal and external audits with responses
- Performance evaluation sample results; internal and external sources
- Daily QA/QC exception reports/corrective actions

QA/QC corrective action reports will be prepared by the QA Officer when appropriate and presented to the project and/or laboratory management personnel so that performance criteria can be monitored for all analyses from each analytical department. The updated trend/QA charts prepared by the laboratory QA personnel will be distributed and reviewed by various levels of the laboratory management.

15 REFERENCES

United States Environmental Protection Agency, (1999). <u>EPA Requirements for Quality Assurance</u> <u>Project Plans for Environmental Data Operations</u>. EPA QA/R-5 Interim Final, November 1999.

United States Environmental Protection Agency (1991). <u>Preparation Aids for the Development of</u> <u>Category I Quality Assurance Project Plans.</u> U.S. EPA/600/8-91/003, Risk Reduction Engineering Laboratory, Office of Research and Development, Cincinnati, Ohio, February 1991.

United States Environmental Protection Agency, (1993). <u>Data Quality Objectives Process for</u> <u>Superfund Interim Final Guidance</u>. U.S. EPA/540/R-93-071, Office of Solid Waste and Emergency Response (OSWER), September 1993.

United States Environmental Protection Agency, (1992). Specifications and Guidance for Contaminant-Free Sample Containers. OSWER Directive 9240.0-05A, April 1992.

United States Environmental Protection Agency. <u>U.S. EPA Contract Laboratory Program National</u> Functional Guidelines for Organic Data Review. U.S. EPA 540/R-99-012.

United States Environmental Protection Agency. <u>U.S. EPA Contract Laboratory Program National</u> Functional Guidelines for Organic Data Review. U.S. EPA 540/R-94-013.

United States Environmental Protection Agency. <u>Test Methods for Evaluating Solid Waste</u>, Office of Solid Waste, U.S. EPA, SW-846, November 1986, with updates.

New York State Department of Environmental Conservation, NYSDEC Analytical Services Protocol (ASP), Bureau of Environmental Investigation, 1991 with updates.

New York State Department of Environmental Conservation, NYSDEC, Division of Environmental Remediation, Technical Guidance for Site Investigation and Remediation, DER-10, May 2010.

Quality Assurance Project Plan

TITLE: Quality Assurance Project Plan, United Cleaners Site Management Plan

Prepared By/Date:

Haley & Aldrich of New York, October 2013

Approved By/Date:

Dens M. C.

QA Officer

Claire L. Mondello

Haley & Aldrich Project Manager

Laboratory Project Manager (if requested)

Date of Issue: October 2013

10/24/2013

10/24/2013

Date

Date

Date

APPENDIX A

Summary of Field and Laboratory Parameters

*The parameters included in this appendix were provided by Alpha Analytical Services as an example. Field and laboratory parameters should meet or exceed these values.

Pesticides in soil EPA 8081A							
	MDL * RL LCS/MS MS/MSD						
Analytes	ug/Kg	ug/Kg	% Rec	% RPD			
4,4'-DDD	2.854	8	25-150%	< 50%			
4,4'-DDE	1.851	8	35-140%	< 50%			
4,4'-DDT	6.418	15	30-155%	< 50%			
Aldrin	2.816	8	25-140%	< 50%			
Alpha-BHC	0.946	3.33	60-130%	< 50%			
Beta-BHC	3.032	8	65-125%	< 50%			
Chlordane	26.503	65	N/A	< 50%			
cis-Chlordane	2.787	10	65-125%	< 50%			
Delta-BHC	1.565	8	45-135%	< 50%			
Dieldrin	2.501	5	30-130%	< 50%			
Endosulfan I	1.889	8	50-110%	< 50%			
Endosulfan II	2.675	8	30-130%	< 50%			
Endosulfan sulfate	1.523	3.33	55-135%	< 50%			
Endrin	1.368	3.33	55-135%	< 50%			
Endrin Aldehyde	3.485	10	40-150%	< 50%			
Endrin ketone	2.060	8	75-125%	< 50%			
Heptachlor	1.795	4	30-145%	< 50%			
Heptachlor epoxide	4.493	15	30-130%	< 50%			
Lindane	1.489	3.33	60-125%	< 50%			
Methoxychlor	4.681	15	55-150%	< 50%			
Toxaphene	42.126	150	N/A	< 50%			
trans-Chlordane	2.638	10	60-125%	< 50%			
Non-Standard Compounds							
Alachlor	3.416	10	40-140%	< 50%			
Hexachlorobenzene	2.004	8	25-140%	< 50%			

Surrogate(s)	% Recovery
2,4,5,6-Tetrachloro-m-xylene	30-150%
Decachlorobiphenyl	30-150%

* Pest 10 & 11 2009 Microwave, Pest 10 SOX 2007, Pest 11 SOX 2007 - highest MDL

Pesticides in Liquid EPA 8081A						
MDL* RL LCS/MS MS/MSD						
Analytes	ug/L	ug/L	% Rec	% RPD		
4,4'-DDD	0.00464	0.04	30-135%	< 50%		
4,4'-DDE	0.00381	0.04	70-125%	< 50%		
4,4'-DDT	0.00432	0.04	45-140%	< 50%		
Aldrin	0.00216	0.02	45-140%	< 50%		
Alpha-BHC	0.00439	0.02	60-125%	< 50%		
Beta-BHC	0.00560	0.02	60-125%	< 50%		
Chlordane	0.04626	0.2	N/A	< 50%		
cis-Chlordane	0.00666	0.02	65-120%	< 50%		
Delta-BHC	0.00467	0.02	55-135%	< 50%		
Dieldrin	0.00429	0.04	65-125%	< 50%		
Endosulfan I	0.00345	0.02	15-135%	< 50%		
Endosulfan II	0.00519	0.04	35-140%	< 50%		
Endosulfan sulfate	0.00481	0.04	60-135%	< 50%		
Endrin	0.00429	0.04	60-135%	< 50%		
Endrin Aldehyde	0.00810	0.04	35-145%	< 50%		
Endrin ketone	0.00477	0.04	65-135%	< 50%		
Heptachlor	0.00310	0.02	50-140%	< 50%		
Heptachlor epoxide	0.00415	0.02	65-130%	< 50%		
Lindane	0.00434	0.02	60-125%	< 50%		
Methoxychlor	0.00684	0.2	55-145%	< 50%		
Toxaphene	0.06299	0.2	N/A	< 50%		
trans-Chlordane	0.00627	0.02	65-125%	< 50%		
Non-Standard Compounds						
Alachlor	0.00514	0.1	40-140%	< 50%		
Hexachlorobenzene	0.00639	0.02	40-140%	< 50%		

Surrogate(s)	% Recovery
2,4,5,6-Tetrachloro-m-xylene	30-150%
Decachlorobiphenyl	30-150%

* Pest 10 2007 & Pest 11 2007 - highest MDL

PCBs in soil EPA 8082				
	MDL* RL			
Analytes	ug/Kg	ug/Kg	% Rec	% RPD
Aroclor 1016	6.577	33.3	40-140%	< 50%
Aroclor 1221	10.045	33.3		< 50%
Aroclor 1232	7.074	33.3		< 50%
Aroclor 1242	6.32	33.3		< 50%
Aroclor 1248	4.029	33.3		< 50%
Aroclor 1254	5.25	33.3		< 50%
Aroclor 1260	5.78	33.3	40-140%	< 50%
Aroclor 1262	2.463	33.3		< 50%
Aroclor 1268	4.831	33.3		< 50%

Surrogate(s)	% Recovery
2,4,5,6-Tetrachloro-m-xylene	30-150%
Decachlorobiphenyl	30-150%

* Pest 2 2009 , Pest 7 2008, Pest 9 2008, Pest 12 2009, Pest 13 2012 SOX & Microwave - Highest MDL

PCBs in Liquid EPA 8082					
MDL* RL LCS/MS MS/M					
Analytes	ug/L	ug/L	% Rec	% RPD	
Aroclor 1016	0.066	0.25	40-140%	< 30%	
Aroclor 1221	0.058	0.25		< 30%	
Aroclor 1232	0.037	0.25		< 30%	
Aroclor 1242	0.072	0.25		< 30%	
Aroclor 1248	0.067	0.25		< 30%	
Aroclor 1254	0.041	0.25		< 30%	
Aroclor 1260	0.038	0.25	40-140%	< 30%	
Aroclor 1262	0.035	0.25		< 30%	
Aroclor 1268	0.029	0.25		< 30%	

Surrogate(s)	% Recovery
2,4,5,6-Tetrachloro-m-xylene	30-150%
Decachlorobiphenyl	30-150%

* Pest 7 2008, Pest 9 2008 - highest MDL

Pesticides in Liquid EPA 608						
MDL* RL LCS/MS MS/MSE						
Analytes	ug/L	ug/L	% Rec	% RPD		
4,4'-DDD	0.00498	0.04	30-150%	< 30%		
4,4'-DDE	0.00350	0.02	30-150%	< 30%		
4,4'-DDT	0.00524	0.02	30-150%	< 30%		
Aldrin	0.00345	0.02	30-150%	< 30%		
Alpha-BHC	0.00380	0.02	30-150%	< 30%		
Beta-BHC	0.00598	0.02	30-150%	< 30%		
Chlordane	0.04170	0.2	30-150%	< 30%		
cis-Chlordane	0.00414	0.02	30-150%	< 30%		
Delta-bhc	0.00272	0.02	30-150%	< 30%		
Dieldrin	0.00295	0.04	30-150%	< 30%		
Endosulfan I	0.00607	0.02	30-150%	< 30%		
Endosulfan II	0.00400	0.04	30-150%	< 30%		
Endosulfan sulfate	0.00524	0.04	30-150%	< 30%		
Endrin	0.00434	0.02	30-150%	< 30%		
Endrin Aldehyde	0.00257	0.04	30-150%	< 30%		
Endrin ketone	0.00496	0.04	30-150%	< 30%		
Heptachlor	0.00396	0.02	30-150%	< 30%		
Heptachlor epoxide	0.00619	0.02	30-150%	< 30%		
Lindane	0.00295	0.02	30-150%	< 30%		
Methoxychlor	0.00583	0.2	30-150%	< 30%		
Toxaphene	0.12560	0.2	30-150%	< 30%		
trans-Chlordane	0.00801	0.02	30-150%	< 30%		

Surrogate(s)	% Recovery
2,4,5,6-Tetrachloro-m-xylene	30-150%
Decachlorobiphenyl	30-150%

* Pest 9 2008, Pest 10 2008 - highest MDL

PCBs in Liquid EPA 608					
	MDL *	RL	LCS/MS	MS/MSD	
Analytes	ug/L	ug/L	% Rec	% RPD	
Aroclor 1016	0.0918	0.5	40-126%	< 30%	
Aroclor 1221	0.0549	0.5		< 30%	
Aroclor 1232	0.0690	0.5		< 30%	
Aroclor 1242	0.0550	0.5		< 30%	
Aroclor 1248	0.0863	0.5		< 30%	
Aroclor 1254	0.0639	0.5		< 30%	
Aroclor 1260	0.0322	0.5	40-127%	< 30%	

Surrogate(s)	% Recovery
2,4,5,6-Tetrachloro-m-xylene	30-150%
Decachlorobiphenyl	30-150%

* Pest 9 2008, Pest 10 2008 - highest MDL

Herbicides in Soil EPA 8151A						
	MDL *	RL	LCS/MS	MS/MSD		
Analytes	ug/Kg	ug/Kg	% Rec	% RPD		
2,4,5-TP (Silvex)	9.20	167	30-150%	< 30%		
2,4,5-T	10.41	167	30-150%	< 30%		
2,4-D	20.25	167	30-150%	< 30%		
2,4-DB	11.66	167	30-150%	< 30%		
Dalapon	10.36	33.3	30-150%	< 30%		
Dicamba	9.72	33.3	30-150%	< 30%		
Dichloroprop	10.71	33.3	30-150%	< 30%		
Dinoseb	11.66	33.3	30-150%	< 30%		
MCPP	956.60	3300	30-150%	< 30%		
MCPA	1042.28	3300	30-150%	< 30%		

Herbicides in Liquid EPA 8151A						
MDL* RL LCS/MS MS/MS						
Analytes	ug/L	ug/L	% Rec	% RPD		
2,4,5-TP (Silvex)	0.391	2	30-150%	< 25%		
2,4,5-T	0.488	2	30-150%	< 25%		
2,4-D	0.544	10	30-150%	< 25%		
2,4-DB	1.016	10	30-150%	< 25%		
Dalapon	0.454	20	30-150%	< 25%		
Dicamba	0.304	1	30-150%	< 25%		
Dichloroprop	0.465	10	30-150%	< 25%		
Dinoseb	0.552	5	30-150%	< 25%		
MCPA	28.486	500	30-150%	< 25%		
MCPP	30.881	500	30-150%	< 25%		

Surrogate(s)	% Recovery
DCAA	30-150%

* Pest 8 2007 Highest MDL

% Recovery

30-150%

Surrogate(s)

DCAA

* Pest 8 2007, Pest 12 2009 - Highest MDL

VOCs in Soil - Low EPA 8260B				
	MDL *	RL	LCS/MS	MS/MSD
Analytes	ug/Kg	ug/Kg	% Rec	% RPD
1,1,1,2-Tetrachloroethane	0.318	1	83-119	< 30%
1,1,1-Trichloroethane	0.111	1	78-121	< 30%
1,1,2,2-Tetrachloroethane	0.171	1	70-123	< 30%
1,1,2-Trichloroethane	0.125	1.5	73-114	< 30%
1,1-Dichloroethane	0.178	1.5	79-113	< 30%
1,1-Dichloroethene	0.206	1	65-135	< 30%
1,1-Dichloropropene	0.456	5	75-119	< 30%
1,2,3-Trichlorobenzene	0.168	4	71-123	< 30%
1,2,3-Trichloropropane	0.163	4	68-118	< 30%
1,2,4,5-tetramethylbenzene	0.130	4	70-130	< 30%
1,2,4-Trichlorobenzene	0.120	4	79-129	< 30%
1,2,4-Trimethylbenzene	0.573	4	82-123	< 30%
1,2-Dibromo-3-chloropropane	0.790	4	68-118	< 30%
1,2-Dibromoethane	0.178	4	84-112	< 30%
1,2-Dichlorobenzene	0.183	4	85-115	< 30%
1,2-Dichloroethane	0.146	1	75-119	< 30%
1,2-Dichloropropane	0.228	3.5	74-114	< 30%
1,3,5-trichlorobenzene	0.230	4		< 30%
1,3,5-Trimethylbenzene	0.143	4	79-123	< 30%
1,3-Dichlorobenzene	0.183	4	85-116	< 30%
1,3-Dichloropropane	0.173	4	69-117	< 30%
1,4-Dichloro-2-butane	0.783	10	70-130	< 30%
1,4-Dichlorobenzene	0.242	4	85-116	< 30%
1,4-Dioxane	17.413	100	65-136	< 30%
2,2-Dichloropropene	0.226	5	80-125	< 30%
2-Butanone	0.355	10	76-120	< 30%
2-Chloroethylvinyl ether	0.176	20		< 30%
2-Chlorotoluene	0.160	4	74-119	< 30%
2-Hexanone	0.151	10	73-126	< 30%
4-Chlorotoluene	0.133	4	75-122	< 30%
4-ethyltoluene	0.117	4	70-130	< 30%
4-methyl-2-pentanone	0.244	10	74-130	< 30%
Acetone	3.103	10	54-140	< 30%
Acrylonitrile	0.238	4	70-130	< 30%
Benzene	0.118	1	75-125	< 30%
Bromobenzene	0.208	5	85-115	< 30%
Bromochloromethane	0.197	4	80-122	< 30%

VOCs in Soil - High EPA 8260B					
	MDL *	RL	LCS/MS	MS/MSD	
Analytes	ug/Kg	ug/Kg	% Rec	% RPD	
1,1,1,2-Tetrachloroethane	15.91	50	75-119	< 30%	
1,1,1-Trichloroethane	5.54	50	84-112	< 30%	
1,1,2,2-Tetrachloroethane	8.53	50	74-114	< 30%	
1,1,2-Trichloroethane	15.21	75	85-115	< 30%	
1,1-Dichloroethane	8.88	75	83-119	< 30%	
1,1-Dichloroethene	10.29	50	70-123	< 30%	
1,1-Dichloropropene	22.78	250	68-118	< 30%	
1,2,3-Trichlorobenzene	8.40	200	69-117	< 30%	
1,2,3-Trichloropropane	11.24	200		< 30%	
1,2,4,5-tetramethylbenzene	6.51	200	79-123	< 30%	
1,2,4-Trichlorobenzene	39.49	200	85-116	< 30%	
1,2,4-Trimethylbenzene	28.65	200	70-130	< 30%	
1,2-Dibromo-3-chloropropane	39.49	200	71-123	< 30%	
1,2-Dibromoethane	8.89	200	68-118	< 30%	
1,2-Dichlorobenzene	9.16	200	79-129	< 30%	
1,2-Dichloroethane	7.31	50	82-123	< 30%	
1,2-Dichloropropane	11.42	175	85-116	< 30%	
1,3,5-trichlorobenzene	11.48	200	80-125	< 30%	
1,3,5-Trimethylbenzene	7.17	200	75-122	< 30%	
1,3-Dichlorobenzene	9.16	200	76-120	< 30%	
1,3-Dichloropropane	8.65	200	74-119	< 30%	
1,4-Dichlorobenzene	12.09	200	74-130	< 30%	
1,4-Dichlorobutane	39.17	500		< 30%	
1,4-Dioxane	721.13	5000		< 30%	
2,2-Dichloropropane	11.28	250	73-126	< 30%	
2-Butanone	17.76	500	70-130	< 30%	
2-Chloroethylvinyl ether	30.80	1000	73-111	< 30%	
2-Chlorotoluene	7.99	200	65-136	< 30%	
2-Hexanone	9.41	500		< 30%	
4-Chlorotoluene	7.69	200	70-130	< 30%	
4-ethyltoluene	5.85	200		< 30%	
4-Methyl-2-pentanone	12.22	500		< 30%	
Acetone	155.17	500	54-140	< 30%	
Acrylonitrile	11.89	200	70-130	< 30%	
Benzene	5.90	50	75-125	< 30%	
Bromobenzene	10.42	250	85-115	< 30%	
Bromochloromethane	9.85	200	80-122	< 30%	

VOCs in Soil - Low EPA 8260B				
	MDL *	RL	LCS/MS	MS/MSD
Analytes	ug/Kg	ug/Kg	% Rec	% RPD
Bromodichloromethane	0.229	1	80-115	< 30%
Bromoform	0.415	4	75-124	< 30%
Bromomethane	0.206	2	57-147	< 30%
Carbon disulfide	1.101	4	59-112	< 30%
Carbon tetrachloride	0.210	1	75-123	< 30%
Chlorobenzene	0.348	1	75-125	< 30%
Chlorodibromomethane	0.308	1	79-116	< 30%
Chloroethane	0.316	2	50-151	< 30%
Chloroform	0.370	1.5	78-114	< 30%
Chloromethane	0.168	4	52-120	< 30%
cis-1,2-Dichloroethene	0.149	1	85-117	< 30%
cis-1,3-Dichloropropene	0.127	1	77-110	< 30%
cyclohexane	0.123	20		< 30%
Dibromomethane	0.164	4	81-116	< 30%
Dichlorodifluoromethane	0.218	10	30-146	< 30%
Diisopropyl ether	0.140	4	66-118	< 30%
Ethyl Acetate	0.819	20		< 30%
Ethyl benzene	0.147	1	81-121	< 30%
ethyl ether	0.266	5	67-129	< 30%
Ethyl-methacrylate	0.168	10	70-130	< 30%
Ethyl-tert-butyl ether	0.423	4	73-111	< 30%
Freon-113	0.273	4		< 30%
Hexachlorobutadiene	0.422	4	67-126	< 30%
Isopropylbenzene	0.168	1	79-123	< 30%
Methyl acetate	0.466	4		< 30%
methyl cyclohexane	0.699	4		< 30%
Methylene chloride	2.000	5	71-115	< 30%
Methyl-tert-butyl ether	0.104	2	66-113	< 30%
Naphthalene	0.138	4	73-114	< 30%
n-Butylbenzene	0.198	1	72-128	< 30%
n-Propylbenzene	0.126	1	73-125	< 30%
o-Xylene	0.271	2	82-125	< 30%
p/m-Xylene	0.323	2	83-120	< 30%
p-diethylbenzene	0.160	4	70-130	< 30%
p-Isopropyltoluene	0.125	1	84-126	< 30%
sec-Butylbenzene	0.206	1	73-123	< 30%
Styrene	0.309	2	85-121	< 30%

VOCs in Soil - High EPA 8260B				
	MDL *	RL	LCS/MS	MS/MSD
Analytes	ug/Kg	ug/Kg	% Rec	% RPD
Bromodichloromethane	11.45	50	80-115	< 30%
Bromoform	20.74	200	75-124	< 30%
Bromomethane	16.90	100	57-147	< 30%
Carbon disulfide	55.06	200	59-112	< 30%
Carbon tetrachloride	10.51	50	75-123	< 30%
Chlorobenzene	17.38	50	75-125	< 30%
Chlorodibromomethane	15.39	50	79-116	< 30%
Chloroethane	15.80	100	50-151	< 30%
Chloroform	18.51	75	78-114	< 30%
Chloromethane	39.16	200	52-120	< 30%
cis-1,2-Dichloroethene	7.47	50	85-117	< 30%
cis-1,3-Dichloropropene	6.36	50	77-110	< 30%
Cyclohexane	31.26	1000	81-116	< 30%
Dibromomethane	8.18	200	30-146	< 30%
Dichlorodifluoromethane	10.91	500	81-121	< 30%
Diisopropyl ether	6.98	200		< 30%
Ethyl Acetate	40.97	1000	67-129	
Ethyl benzene	7.37	50	70-130	< 30%
Ethyl ether	13.28	250	67-126	< 30%
Ethyl methacrylate	8.38	500	79-123	< 30%
Ethyl-Tert-Butyl-Ether	21.16	200		< 30%
Freon-113	13.66	200	70-130	< 30%
Hexachlorobutadiene	21.12	200	71-115	< 30%
Isopropylbenzene	8.38	50	66-113	< 30%
Methyl Acetate	23.30	200	73-114	< 30%
methyl cyclohexane	34.97	200	72-128	< 30%
Methylene chloride	100.00	250	73-125	< 30%
Methyl-tert-butyl ether	5.21	100	82-125	< 30%
Naphthalene	38.48	200	83-120	< 30%
n-Butylbenzene	9.88	50	84-126	< 30%
n-Propylbenzene	6.29	50	73-123	< 30%
o-Xylene	13.54	100	85-121	< 30%
p/m-Xylene	16.13	100	78-119	< 30%
p-Diethylbenzene	7.99	200	82-122	< 30%
p-Isopropyltoluene	9.56	50	66-111	< 30%
sec-Butylbenzene	10.29	50	75-125	< 30%
Styrene	15.47	100	78-113	< 30%

VOCs in Soil - Low EPA 8260B					
	MDL *	RL	LCS/MS	MS/MSD	
Analytes	ug/Kg	ug/Kg	% Rec	% RPD	
Tert-Butyl Alcohol	0.907	20		< 30%	
tert-Butylbenzene	0.561	4	78-119	< 30%	
Tertiary-amyl methyl ether	0.576	4	76-117	< 30%	
Tetrachloroethene	0.140	1	82-122	< 30%	
Tetrahydrofuran	0.375	4	66-111	< 30%	
Toluene	0.112	1.5	75-125	< 30%	
trans-1,2-Dichloroethene	0.212	1.5	78-113	< 30%	
trans-1,3-Dichloropropene	0.121	1	77-119	< 30%	
trans-1,4-Dichloro-2-butene	0.448	5	70-130	< 30%	
Trichloroethene	0.152	1	75-125	< 30%	
Trichlorofluoromethane	0.121	4	73-139	< 30%	
Vinyl Acetate	0.480	10	70-130	< 30%	
Vinyl chloride	0.082	2	67-121	< 30%	

Surrogate(s)	% Recovery
dibromofluoromethane	70-130%
1,2-dichloroethane-d4	70-130%
toluene-d8	70-130%
4-bromofluorobenzene	70-130%

* Curly 2005, Charlie 2010. VOA100 2011, VOA 104 2011 - Highest MDL

VOCs in Soil - High EPA 8260B					
	MDL *	RL	LCS/MS	MS/MSD	
Analytes	ug/Kg	ug/Kg	% Rec	% RPD	
Tert-Butyl Alcohol	45.37	1000		< 30%	
tert-Butylbenzene	28.04	200	77-119	< 30%	
Tertiary-Amyl Methyl Ether	28.80	200	76-117	< 30%	
Tetrachloroethene	7.01	50	70-130	< 30%	
Tetrahydrofuran	18.75	200	75-125	< 30%	
Toluene	5.60	75	73-139	< 30%	
trans-1,2-Dichloroethene	10.58	75	70-130	< 30%	
trans-1,3-Dichloropropene	6.04	50	67-121	< 30%	
trans-1,4-Dichloro-2-butene	19.58	250	79-113	< 30%	
Trichloroethene	7.61	50	65-135	< 30%	
Trichlorofluoromethane	6.07	200	75-119	< 30%	
Vinyl acetate	23.98	500	78-121	< 30%	
Vinyl chloride	7.06	100	73-114	< 30%	

Surrogate(s)	% Recovery
dibromofluoromethane	70-130%
1,2-dichloroethane-d4	70-130%
toluene-d8	70-130%
4-bromofluorobenzene	70-130%

* Curly 2005, Charlie 2010. VOA100 2011, VOA 104 2011 - Highest MDL

VOCs in Liquid EPA 8260B					
	MDL *	RL	LCS/MS	MS/MSD	
Analytes	ug/L	ug/L	% Rec	% RPD	
1,1,1,2-Tetrachloroethane	0.165	0.5	64-125	< 20%	
1,1,1-Trichloroethane	0.158	0.5	67-123	< 20%	
1,1,2,2-Tetrachloroethane	0.192	0.5	67-124	< 20%	
1,1,2-Trichloroethane	0.261	0.75	70-125	< 20%	
1,1-Dichloroethane	0.181	0.75	73-119	< 20%	
1,1-Dichloroethene	0.216	0.5	61-145	< 20%	
1,1-Dichloropropene	0.256	2.5	72-118	< 20%	
1,2,3-Trichlorobenzene	0.234	2.5	75-125	< 20%	
1,2,3-Trichloropropane	0.428	5	64-127	< 20%	
1,2,4,5-Tetramethylbenzene	0.542	2		< 20%	
1,2,4-Trichlorobenzene	0.220	2.5	75-125	< 20%	
1,2,4-Trimethylbenzene	0.191	2.5	75-121	< 20%	
1,2-Dibromo-3-chloropropane	0.650	2.5	41-144	< 20%	
1,2-Dibromoethane	0.202	2	70-119	< 20%	
1,2-Dichlorobenzene	0.184	2.5	75-125	< 20%	
1,2-Dichloroethane	0.160	0.5	71-125	< 20%	
1,2-Dichloropropane	0.296	1.75	70-120	< 20%	
1,3,5-trichlorobenzene	0.109	2		< 20%	
1,3,5-Trimethylbenzene	0.211	2.5	64-121	< 20%	
1,3-Dichlorobenzene	0.186	2.5	75-125	< 20%	
1,3-Dichloropropane	0.212	2.5	71-122	< 20%	
1,4-Dichloro-2-butane	0.464	5		< 20%	
1,4-Dichlorobenzene	0.215	2.5	75-125	< 20%	
1,4-Dioxane	75.706	250	56-162	< 20%	
2,2-Dichloropropane	0.204	2.5	63-133	< 20%	
2-Butanone	1.939	5	63-138	< 20%	
2-Chloroethylvinyl ether	0.402	10	75-125	< 20%	
2-Chlorotoluene	0.182	2.5	75-125	< 20%	
2-Hexanone	0.578	5	57-128	< 20%	
4,-Methy-2-pentanone	0.824	5	59-126	< 20%	
4-Chlorotoluene	0.185	2.5	75-125	< 20%	
4-Ethyltoluene	0.340	2		< 20%	
Acetone	1.561	5	58-148	< 20%	
Acrylonitrile	0.430	5	70-102	< 20%	
Benzene	0.194	0.5	76-127	< 20%	
Bromobenzene	0.184	2.5	75-125	< 20%	
Bromochloromethane	0.329	2.5	74-123	< 20%	

VOCs in Liquid EPA 8260B				
	MDL *	RL	LCS/MS	MS/MSD
Analytes	ug/L	ug/L	% Rec	% RPD
Bromodichloromethane	0.192	0.5	67-121	< 20%
Bromoform	0.277	2	54-136	< 20%
Bromomethane	0.256	1	39-139	< 20%
Carbon disulfide	0.299	5	51-121	< 20%
Carbon tetrachloride	0.165	0.5	63-132	< 20%
Chlorobenzene	0.192	0.5	75-130	< 20%
Chlorodibromomethane	0.189	0.5	63-119	< 20%
Chloroethane	0.233	1	55-138	< 20%
Chloroform	0.198	0.75	75-125	< 20%
Chloromethane	0.281	2.5	64-130	< 20%
cis-1,2-Dichloroethene	0.187	0.5	75-125	< 20%
cis-1,3-Dichloropropene	0.144	0.5	75-125	< 20%
Cyclohexane	0.271	10		< 20%
Dibromomethane	0.363	5	76-126	< 20%
Dichlorodifluoromethane	0.300	5	36-147	< 20%
Diisopropyl Ether	0.165	2	75-125	< 20%
Ethyl acetate	0.716	10	75-125	< 20%
Ethyl benzene	0.171	0.5	79-118	< 20%
Ethyl ether	0.265	2.5	59-134	< 20%
Ethyl-methacrylate	0.606	5		< 20%
Ethyl-Tert-Butyl-Ether	0.382	2	75-125	< 20%
Freon -113	0.234	10	70-130	< 20%
Halothane	0.149	2	70-130	< 20%
Hexachlorobutadiene	0.230	0.5	63-123	< 20%
Isopropylbenzene	0.187	0.5	73-122	< 20%
Methyl Acetate	0.201	10		< 20%
Methyl cyclohexane	0.396	10		< 20%
Methylene chloride	0.289	5	74-121	< 20%
Methyl-tert-butyl ether	0.539	1	63-112	< 20%
Naphthalene	0.216	2.5	75-125	< 20%
n-Butylbenzene	0.196	0.5	53-136	< 20%
n-Propylbenzene	0.173	0.5	69-127	< 20%
o-Xylene	0.330	1	75-125	< 20%
p/m-Xylene	0.348	1	75-125	< 20%
p-Diethylbenzene	0.392	2		< 20%
p-Isopropyltoluene	0.188	0.5	73-127	< 20%
sec-Butylbenzene	0.181	0.5	70-124	< 20%

VOCs in Liquid EPA 8260B				
	MDL *	RL	LCS/MS	MS/MSD
Analytes	ug/L	ug/L	% Rec	% RPD
Styrene	0.366	1	70-122	< 20%
Tert butyl Alcohol	0.402	10	80-129	< 20%
tert-Butylbenzene	0.215	2.5	70-122	< 20%
Tertiary-Amyl Methyl Ether	0.184	2	66-124	< 20%
Tetrachloroethene	0.181	0.5	70-130	< 20%
Tetrahydrofuran	1.299	5	58-123	< 20%
Toluene	0.227	0.75	76-125	< 20%
trans-1,2-Dichloroethene	0.202	0.75	75-125	< 20%
trans-1,3-Dichloropropene	0.164	0.5	75-125	< 20%
trans-1,4-Dichloro-2-butene	0.173	2.5	70-118	< 20%
Trichloroethene	0.175	0.5	71-120	< 20%
Trichlorofluoromethane	0.280	2.5	62-150	< 20%
Vinyl acetate	0.304	5	83-124	< 20%
Vinyl chloride	0.268	1	55-140	< 20%

Surrogate(s)	% Recovery
dibromofluoromethane	70-130%
1,2-dichloroethane-d4	70-130%
toluene-d8	70-130%
4-bromofluorobenzene	70-130%

)7, Quimby Con1/2 -2007, Jack Con1/2- 2008, Gonzo 2009, VOA101 2011 - H

SVOCs in Soil - EPA 8270				
	MDL *	RL	LCS/MS	MS/MSD
Analytes	ug/Kg	ug/Kg	% Rec	% RPD
1,2,4,5-Tetrachlorobenzene	26.675	167	40-117%	< 50%
1,2,4-Trichlorobenzene	30.785	167	38-107%	< 50%
1,2-Dichlorobenzene	27.116	167	40-140%	< 50%
1,3-Dichlorobenzene	30.215	167	40-140%	< 50%
1,4-Dichlorobenzene	34.472	167	28-104%	< 50%
1-chloro-2-nitrobenzene	53.670	167		< 50%
1-Methylnaphthalene	34.217	167		< 50%
2,3,4,6-Tetrachlorophenol	41.946	167		< 50%
2,4,5-Trichlorophenol	54.135	167	30-130%	< 50%
2,4,6-Trichlorophenol	31.489	100	30-130%	< 50%
2,4-Dichlorophenol	29.371	150	30-130%	< 50%
2,4-Dimethylphenol	49.877	167	30-130%	< 50%
2,4-Dinitrophenol	228.543	800	4-130%	< 50%
2,4-Dinitrotoluene	26.784	167	28-89%	< 50%
2,6-Dinitrotoluene	37.981	167	40-140%	< 50%
2-Chloroaniline	29.878	167		< 50%
2-Chloronaphthalene	28.888	167	40-140%	< 50%
2-Chlorophenol	37.444	167	25-102%	< 50%
2-Methylnaphthalene	29.332	200	40-140%	< 50%
2-Methylphenol	40.939	167	30-130%	< 50%
2-Nitroaniline	47.003	167	47-134%	< 50%
2-Nitrophenol	29.064	360	30-130%	< 50%
3,3'-Dichlorobenzidine	36.082	167	40-140%	< 50%
3,3'-Dimethylbenzidine	103.735	330	15-115%	< 50%
3-Chloroaniline	50.654	250		< 50%
3-Methylphenol/4-Methylphenol	42.574	233	30-130%	< 50%
3-Nitroaniline	46.110	167	26-129%	< 50%
4,6-Dinitro-o-cresol	61.225	433	10-130%	< 50%
4-Bromophenyl phenyl ether	38.428	167	40-140%	< 50%
4-Chloroaniline	44.207	167	40-140%	< 50%
4-Chlorophenyl phenyl ether	32.996	167	40-140%	< 50%
4-Nitroaniline	44.944	333	41-125%	< 50%
4-Nitrophenol	54.158	233	11-114%	< 50%
Acenaphthene	34.490	133	31-137%	< 50%
Acenaphthylene	31.238	133	40-140%	< 50%

SVOCs in Liquid EPA 8270				
	MDL *	RL	LCS/MS	MS/MSD
Analytes	ug/L	ug/L	% Rec	% RPD
1,2,4,5-Tetrachlorobenzene	0.652	10	2-134%	< 30%
1,2,4-Trichlorobenzene	0.669	5	39-98%	< 30%
1,2-Dichlorobenzene	0.547	2	40-140%	< 30%
1,3-Dichlorobenzene	0.550	2	40-140%	< 30%
1,4-Dichlorobenzene	0.551	2	36-97%	< 30%
1-chloro-2-nitrobenzene	0.634	5		< 30%
1-Methylnaphthalene	0.636	2		< 30%
2,3,4,6-Tetrachlorophenol	0.654	5		< 30%
2,4,5-Trichlorophenol	0.447	5	30-130%	< 30%
2,4,6-Trichlorophenol	0.448	5	30-130%	< 30%
2,4-Dichlorophenol	0.429	5	30-130%	< 30%
2,4-Dimethylphenol	1.243	5	30-130%	< 30%
2,4-Dinitrophenol	1.408	20	20-130%	< 30%
2,4-Dinitrotoluene	0.446	5	24-96%	< 30%
2,6-Dinitrotoluene	0.459	5	40-140%	< 30%
2-Chloroaniline	0.349	5		< 30%
2-Chloronaphthalene	0.474	2	40-140%	< 30%
2-Chlorophenol	0.340	2	27-123%	< 30%
2-Methylnaphthalene	0.548	2	40-140%	< 30%
2-Methylphenol	0.528	5	30-130%	< 30%
2-Nitroaniline	0.398	5	52-143%	< 30%
2-Nitrophenol	0.475	10	30-130%	< 30%
3,3'-Dichlorobenzidine	0.852	5	40-140%	< 30%
3-Chloroaniline	1.119	10		< 30%
3-Methylphenol/4-Methylphen	0.471	5	30-130%	< 30%
3-Nitroaniline	0.590	5	25-145%	< 30%
4,6-Dinitro-o-cresol	0.587	10	20-164%	< 30%
4-Bromophenyl phenyl ether	0.674	2	40-140%	< 30%
4-Chloroaniline	0.829	5	40-140%	< 30%
4-Chlorophenyl phenyl ether	0.611	2	40-140%	< 30%
4-Nitroaniline	0.551	5	51-143%	< 30%
4-Nitrophenol	1.224	10	10-80%	< 30%
Acenaphthene	0.547	2	37-111%	< 30%
Acenaphthylene	0.503	2	45-123%	< 30%
Acetophenone	0.552	5	39-129%	< 30%

SVOCs in Soil - EPA 8270				
	MDL *	RL	LCS/MS	MS/MSD
Analytes	ug/Kg	ug/Kg	% Rec	% RPD
Acetophenone	37.894	167	14-144%	< 50%
Aniline	34.039	200	40-140%	< 50%
Anthracene	27.776	100	40-140%	< 50%
a-Terpineol	41.094	167		< 50%
Atrazine	27.121	133		< 50%
Azobenzene	33.369	167		< 50%
Benzaldehyde	43.827	220		< 50%
Benzidine	95.442	567		< 50%
Benzo(a)anthracene	30.452	100	40-140%	< 50%
Benzo(a)pyrene	28.618	133	40-140%	< 50%
Benzo(b)fluoranthene	29.970	100	40-140%	< 50%
Benzo(ghi)perylene	33.842	133	40-140%	< 50%
Benzo(k)fluoranthene	31.868	100	40-140%	< 50%
Benzoic acid	145.546	540		< 50%
Benzyl alcohol	38.665	167	40-140%	< 50%
Biphenyl	27.338	380		< 50%
Bis(2-chloroethoxy)methane	33.111	180	40-117%	< 50%
Bis(2-chloroethyl)ether	26.237	150	40-140%	< 50%
Bis(2-chloroisopropyl)ether	36.058	200	40-140%	< 50%
Bis(2-ethylhexyl)phthalate	39.445	167	40-140%	< 50%
Butyl benzyl phthalate	32.642	167	40-140%	< 50%
Caprolactam	46.218	167		< 50%
Carbazole	30.943	167	54-128%	< 50%
Chrysene	32.791	100	40-140%	< 50%
Dibenzo(a,h)anthracene	31.286	100	40-140%	< 50%
Dibenzofuran	29.473	167	40-140%	< 50%
Dichloran	42.675	180		< 50%
Diethyl phthalate	27.814	167	40-140%	< 50%
Dimethyl phthalate	26.863	167	40-140%	< 50%
Di-n-butylphthalate	32.243	167	40-140%	< 50%
Di-n-octylphthalate	37.623	167	40-140%	< 50%
Diphenamid	30.883	167		< 50%
Fluoranthene	28.309	100	40-140%	< 50%
Fluorene	32.401	167	40-140%	< 50%
Hexachlorobenzene	28.923	100	40-140%	< 50%

SVOCs in Liquid EPA 8270				
	MDL *	RL	LCS/MS	MS/MSD
Analytes	ug/L	ug/L	% Rec	% RPD
Aniline	0.465	2	40-140%	< 30%
Anthracene	0.473	2	40-140%	< 30%
a-Terpineol	0.460	5		< 30%
Atrazine	2.248	10		< 30%
Azobenzene	0.576	2	40-140%	< 30%
Benzaldehyde	0.596	5		< 30%
Benzo(a)anthracene	0.822	2	40-140%	< 30%
Benzo(a)pyrene	0.484	2	40-140%	< 30%
Benzo(b)fluoranthene	0.483	2	40-140%	< 30%
Benzo(ghi)perylene	0.531	2	40-140%	< 30%
Benzo(k)fluoranthene	0.486	2	40-140%	< 30%
Benzoic acid	1.010	50		< 30%
Benzyl alcohol	0.473	2		< 30%
Biphenyl	0.502	2		< 30%
Bis(2-chloroethoxy)methane	0.399	5	40-140%	< 30%
Bis(2-chloroethyl)ether	0.387	2	40-140%	< 30%
Bis(2-chloroisopropyl)ether	0.504	2	40-140%	< 30%
Bis(2-ethylhexyl)phthalate	1.400	3	40-140%	< 30%
Butyl benzyl phthalate	0.459	5	40-140%	< 30%
Caprolactam	0.389	10		< 30%
Carbazole	0.529	2	55-144%	< 30%
Chrysene	0.562	2	40-140%	< 30%
Dibenzo(a,h)anthracene	0.484	2	40-140%	< 30%
Dibenzofuran	0.473	2	40-140%	< 30%
Dichloran	0.700	5		< 30%
Diethyl phthalate	0.451	5	40-140%	< 30%
Dimethyl phthalate	0.449	5	40-140%	< 30%
Di-n-butylphthalate	0.543	5	40-140%	< 30%
Di-n-octylphthalate	0.533	5	40-140%	< 30%
Diphenamid	0.577	5		< 30%
Fluoranthene	0.510	2	40-140%	< 30%
Fluorene	0.490	2	40-140%	< 30%
Hexachlorobenzene	0.646	2	40-140%	< 30%
Hexachlorobutadiene	0.810	2	40-140%	< 30%
Hexachlorocyclopentadiene	2.060	20	40-140%	< 30%

SVOCs in Soil - EPA 8270				
	MDL *	RL	LCS/MS	MS/MSD
Analytes	ug/Kg	ug/Kg	% Rec	% RPD
Hexachlorobutadiene	36.213	167	40-140%	< 50%
Hexachlorocyclopentadiene	107.246	478	40-140%	< 50%
Hexachloroethane	30.375	133	40-140%	< 50%
Indeno(1,2,3-cd)pyrene	37.047	133	40-140%	< 50%
Isophorone	35.539	150	40-140%	< 50%
m-Toluidine	29.069	300		< 50%
Naphthalene	36.149	167	40-140%	< 50%
Nitrobenzene	35.214	133	40-140%	< 50%
NDPA/DPA	39.719	150		< 50%
n-Nitrosodimethylamine	26.621	333		< 50%
n-Nitrosodi-n-propylamine	35.898	167	32-121%	< 50%
p-Chloro-m-cresol	40.262	167	26-103%	< 50%
Pentachloronitrobenzene	44.458	150	42-153%	< 50%
Pentachlorophenol	35.691	133	17-109%	< 50%
Phenanthrene	27.307	100	40-140%	< 50%
Phenol	40.882	167	26-90%	< 50%
Pyrene	30.097	100	35-142%	< 50%
Pyridine	37.303	667	10-93%	< 50%

SVOCs in Liquid EPA 8270				
	MDL *	RL	LCS/MS	MS/MSD
Analytes	ug/L	ug/L	% Rec	% RPD
Hexachloroethane	0.665	2	40-140%	< 30%
Indeno(1,2,3-cd)pyrene	0.477	2	40-140%	< 30%
Isophorone	0.349	5	40-140%	< 30%
m-Toluidine	0.588	10		< 30%
Naphthalene	0.725	2	40-140%	< 30%
Nitrobenzene	0.701	2	40-140%	< 30%
NDPA/DPA	0.505	2	40-140%	< 30%
n-Nitrosodimethylamine	0.554	2		< 30%
n-Nitrosodi-n-propylamine	0.392	5	29-132%	< 30%
p-Chloro-m-cresol	0.500	2	23-97%	< 30%
Pentachlorophenol	1.215	10	9-103%	< 30%
Phenanthrene	0.488	2	40-140%	< 30%
Phenol	0.265	5	12-110%	< 30%
Pyrene	0.438	2	26-127%	< 30%
Pyridine	0.649	5	10-66%	< 30%

Surrogate(s)	% Recovery
2,4,6-Tribromophenol	0-136%
2-Fluorobiphenyl	30-120%
2-Fluorophenol	25-120%
4-Terphenyl-d14	18-120%
Nitrobenzene-d5	23-120%
Phenol-d6	10-120%

* Buffy '12, GCMS5 '12, GCMS7 '12, Juliet '12, SV103 '12 - Highest MDL 30-gram Extraction

Surrogate(s)	% Recovery
2,4,6-Tribromophenol	10-120%
2-Fluorobiphenyl	15-120%
2-Fluorophenol	21-120%
4-Terphenyl-d14	33-120%
Nitrobenzene-d5	23-120%
Phenol-d6	10-120%

* GCMS5 '11, Buffy '11, Juliet '11, GCMS7 '11 - Highest MDL 2-Liter Extraction

SVOCs in Soil - EPA 8270SIM				
	MDL *	RL	LCS/MS	MS/MSD
Analytes	ug/Kg	ug/Kg	% Rec	% RPD
1-Methylnaphthalene	0.911	6.67	40-140%	< 50%
2-Chloronaphthalene	1.762	6.67	40-140%	< 50%
2-Methylnaphthalene	0.794	6.67	40-140%	< 50%
Acenaphthene	0.895	6.67	40-140%	< 50%
Acenaphthylene	0.801	6.67	40-140%	< 50%
Anthracene	0.901	6.67	40-140%	< 50%
Benzo (a) anthracene	1.041	6.67	40-140%	< 50%
Benzo (a) pyrene	1.542	6.67	40-140%	< 50%
Benzo (b) fluoranthene	1.587	6.67	40-140%	< 50%
Benzo (ghi) perylene	1.874	6.67	40-140%	< 50%
Benzo (k) fluoranthene	1.612	6.67	40-140%	< 50%
Chrysene	1.111	6.67	40-140%	< 50%
Dibenzo (a,h) anthracene	1.856	6.67	40-140%	< 50%
Fluoranthene	0.961	6.67	40-140%	< 50%
Fluorene	0.754	6.67	40-140%	< 50%
Hexachlorobenzene **	0.880	6.67	40-140%	< 50%
Hexachlorobutadiene	0.820	6.67	34-107%	< 50%
Hexachloroethane	0.877	6.67	29-106%	< 50%
Indeno (1,2,3-cd) pyrene	1.876	6.67	40-140%	< 50%
Naphthalene	0.909	6.67	40-140%	< 50%
Pentachlorophenol **	4.844	26.67	17-109%	< 50%
Phenanthrene	0.829	6.67	40-140%	< 50%
Pyrene	0.793	6.67	35-142%	< 50%

Surrogate(s)	% Recovery
2,4,6-Tribromophenol	0-136%
2-Fluorobiphenyl	30-120%
2-Fluorophenol	25-120%
4-Terphenyl-d14	18-120%
Nitrobenzene-d5	23-120%
Phenol-d6	10-120%

* Dakota '11, Mork '11, Mindy '12 MW Mork '12, Dakota '12 SOX - Highest MDL 30 gram Extraction

SVOCs in Liquid EPA 8270SIM						
	MDL *	RL	LCS/MS	MS/MSD		
Analytes	ug/L	ug/L	% Rec	% RPD		
1-Methylnaphthalene	0.0560	0.2	40-140%	< 40%		
2-Chloronaphthalene	0.0660	0.2	40-140%	< 40%		
2-Methylnaphthalene	0.0600	0.2	40-140%	< 40%		
Acenaphthene	0.0640	0.2	37-111%	< 40%		
Acenaphthylene	0.0500	0.2	40-140%	< 40%		
Anthracene	0.0630	0.2	40-140%	< 40%		
Benzo (a) anthracene	0.0570	0.2	40-140%	< 40%		
Benzo (a) pyrene	0.0690	0.2	40-140%	< 40%		
Benzo (b) fluoranthene	0.0710	0.2	40-140%	< 40%		
Benzo (ghi) perylene	0.0700	0.2	40-140%	< 40%		
Benzo (k) fluoranthene	0.0680	0.2	40-140%	< 40%		
Chrysene	0.0490	0.2	40-140%	< 40%		
Dibenzo (a,h) anthracene	0.0730	0.2	40-140%	< 40%		
Fluoranthene	0.0430	0.2	40-140%	< 40%		
Fluorene	0.0570	0.2	40-140%	< 40%		
Hexachlorobenzene **	0.0139	0.8	40-140%	< 40%		
Hexachlorobutadiene	0.0710	0.2	40-140%	< 40%		
Hexachloroethane	0.0650	0.2	40-140%	< 40%		
Indeno (1,2,3-cd) pyrene	0.0790	0.2	40-140%	< 40%		
Naphthalene	0.0640	0.2	40-140%	< 40%		
Pentachlorophenol **	0.1875	0.8	9-103%	< 40%		
Phenanthrene	0.0640	0.2	40-140%	< 40%		
Pyrene	0.0570	0.2	26-127%	< 40%		

Surrogate(s)	% Recovery
2,4,6-Tribromophenol	10-120%
2-Fluorobiphenyl	15-120%
2-Fluorophenol	21-120%
4-Terphenyl-d14	33-120%
Nitrobenzene-d5	23-120%
Phenol-d6	10-120%

* Mork'08, Mindy '08, Dakota '08 - highest MDL

** Mork '10, Mindy '10, Dakota '10 - Highest MDL

Trace Metals Liquid -EPA 6010B						
	MDL *	RL	LCS	MS/MSD		
Element	mg/L	mg/L	% Rec	%Rec/RPD		
Aluminum	0.022277	0.1	80-120%	75-125%/ <20%		
Antimony	0.009563	0.05	80-120%	75-125%/ <20%		
Arsenic	0.003423	0.005	80-120%	75-125%/ <20%		
Barium	0.002734	0.01	80-120%	75-125%/ <20%		
Beryllium	0.00035	0.005	80-120%	75-125%/ <20%		
Boron	0.008154	0.03	80-120%	75-125%/ <20%		
Cadmium	0.000635	0.005	80-120%	75-125%/ <20%		
Calcium	0.0217	0.1	80-120%	75-125%/ <20%		
Chromium	0.00203	0.01	80-120%	75-125%/ <20%		
Cobalt	0.004856	0.02	80-120%	75-125%/ <20%		
Copper	0.004642	0.01	80-120%	75-125%/ <20%		
Iron	0.0173	0.05	80-120%	75-125%/ <20%		
Lead	0.002802	0.01	80-120%	75-125%/ <20%		
Magnesium	0.044941	0.1	80-120%	75-125%/ <20%		
Manganese	0.002445	0.01	80-120%	75-125%/ <20%		
Molybdenum	0.011358	0.05	80-120%	75-125%/ <20%		
Nickel	0.003945	0.025	80-120%	75-125%/ <20%		
Potassium	0.798578	2.5	80-120%	75-125%/ <20%		
Selenium	0.003277	0.01	80-120%	75-125%/ <20%		
Silicon	0.139321	0.5	80-120%	75-125%/ <20%		
Silver	0.002008	0.007	80-120%	75-125%/ <20%		
Sodium	0.7952	2	80-120%	75-125%/ <20%		
Strontium	0.001915	0.01	80-120%	75-125%/ <20%		
Thallium	0.006234	0.02	80-120%	75-125%/ <20%		
Tin	0.010996	0.05	80-120%	75-125%/ <20%		
Titanium	0.001891	0.01	80-120%	75-125%/ <20%		
Vanadium	0.002229	0.01	80-120%	75-125%/ <20%		
Zinc	0.005409	0.05	80-120%	75-125%/ <20%		

Trace Metals Soil - EPA 6010B						
	MDL	RL	LCS/MS	MSD		
Element	mg/Kg	mg/Kg	% Rec	RPD		
Aluminum	0.891088	4	75-125%	< 35%		
Antimony	0.382505	2	75-125%	< 35%		
Arsenic	0.136903	0.4	75-125%	< 35%		
Barium	0.109346	0.4	75-125%	< 35%		
Beryllium	0.014004	0.2	75-125%	< 35%		
Boron	0.326175	1.2	75-125%	< 35%		
Cadmium	0.025396	0.4	75-125%	< 35%		
Calcium	0.868	4	75-125%	< 35%		
Chromium	0.081206	0.4	75-125%	< 35%		
Cobalt	0.194223	0.8	75-125%	< 35%		
Copper	0.185684	0.4	75-125%	< 35%		
Iron	0.692	2	75-125%	< 35%		
Lead	0.112074	2	75-125%	< 35%		
Magnesium	1.797658	4	75-125%	< 35%		
Manganese	0.097792	0.4	75-125%	< 35%		
Molybdenum	0.454302	2	75-125%	< 35%		
Nickel	0.157813	1	75-125%	< 35%		
Potassium	31.94312	100	75-125%	< 35%		
Selenium	0.13108	0.8	75-125%	< 35%		
Silicon	N/A	N/A	N/A	N/A		
Silver	0.080313	0.4	75-125%	< 35%		
Sodium	31.808	80	75-125%	< 35%		
Strontium	0.07662	2	75-125%	< 35%		
Thallium	0.249359	0.8	75-125%	< 35%		
Tin	0.439823	4	75-125%	< 35%		
Titanium	0.075652	0.4	75-125%	< 35%		
Vanadium	0.089178	0.4	75-125%	< 35%		
Zinc	0.216342	2	75-125%	< 35%		

* Trace 3 '09 & Trace 4 '09, Trace 5 '12 - highest MDL

Г	race Metal	s Liquid - I	EPA 6020	
	MS/MSD			
Element	ug/L	ug/L	% Rec	%Rec/RPD
Aluminum	1.945737	10	80-120%	< 20%
Antimony	0.11186	0.5	80-120%	< 20%
Arsenic	0.161049	0.5	80-120%	< 20%
Barium	0.078126	0.5	80-120%	< 20%
Beryllium	0.124308	0.5	80-120%	< 20%
Cadmium	0.049833	0.2	80-120%	< 20%
Calcium	32.07137	100	80-120%	< 20%
Chromium	0.150481	1	80-120%	< 20%
Cobalt	0.023759	0.2	80-120%	< 20%
Copper	0.108009	1	80-120%	< 20%
Iron	12.49011	50	80-120%	< 20%
Lead	0.166202	1	80-120%	< 20%
Magnesium	23.38641	70	80-120%	< 20%
Manganese	0.136177	0.5	80-120%	< 20%
Molybdenum	0.166736	0.5	80-120%	< 20%
Nickel	0.079984	0.5	80-120%	< 20%
Potassium	27.03	100	80-120%	< 20%
Selenium	0.271706	5	80-120%	< 20%
Silver	0.077899	0.25	80-120%	< 20%
Sodium	14.71076	100	80-120%	< 20%
Thallium	0.028279	0.2	80-120%	< 20%
Tin **	0.06086	0.5	80-120%	< 20%
Vanadium	0.136343	5	80-120%	< 20%
Zinc	1.189299	10	80-120%	< 20%

Trace Metals Soil - EPA 6020							
	MDL	RL	LCS/MS	MSD			
Element	mg/Kg	mg/Kg	% Rec	RPD			
Aluminum	0.084585	10	75-125%	< 20%			
Antimony	0.001459	0.05	75-125%	< 20%			
Arsenic	0.006863	0.05	75-125%	< 20%			
Barium	0.00133	0.3	75-125%	< 20%			
Beryllium	0.006215	0.03	75-125%	< 20%			
Cadmium	0.002492	0.02	75-125%	< 20%			
Calcium	1.707592	50	75-125%	< 20%			
Chromium	0.00654	0.2	75-125%	< 20%			
Cobalt	0.000929	0.05	75-125%	< 20%			
Copper	0.00302	0.2	75-125%	< 20%			
Iron	0.602445	20	75-125%	< 20%			
Lead	0.003817	0.06	75-125%	< 20%			
Magnesium	0.041379	10	75-125%	< 20%			
Manganese	0.006241	0.2	75-125%	< 20%			
Molybdenum	0.003472	0.05	75-125%	< 20%			
Nickel	0.003785	0.1	75-125%	< 20%			
Potassium	0.566647	10	75-125%	< 20%			
Selenium	0.012551	0.2	75-125%	< 20%			
Silver	0.00205	0.05	75-125%	< 20%			
Sodium	0.630053	15	75-125%	< 20%			
Thallium	0.000577	0.02	75-125%	< 20%			
Tin	0.002434	0.02	75-125%	< 20%			
Vanadium	0.005657	0.1	75-125%	< 20%			
Zinc	0.059465	1	75-125%	< 20%			

* ICPMS '11, ICPMSX '11 - Highest MDL ** ICPMSX '12

	Mercury Liquid - EPA 245.1 & 7470A					
	MDL *	RL	LCS	MS/MSD		
Element	mg/L	mg/L	% Rec	%Rec/RPD		
			80-120% - 7470A			
Mercury	0.0000631	0.0002	85-115% - 245.1	70-130%/ <20%		

* FIMS3 '11 & FIMS4 '11 - MDL

Mercury Soil - EPA 7471A							
	MDL RL LCS/MS MS/MSD						
Element	mg/Kg	mg/Kg	% Rec	%Rec/RPD			
Mercury	0.017642	0.08	80-120%	70-130% / < 20%			

* FIMS3 '10 & FIMS4 '10 - Highest MDL

Wet Chemistry Parameters -Soil-							
	Accuracy MS/DUP						
Parameter	Method	MDL	RL	(units)	LCS/MS	RPD	MDL Instrument and Date
Cyanide-total	EPA 9010B	0.234	1	mg/Kg	80-120% / 65-135%	< 40%	Lachat Nick 2012
Cyanide-total	SM 4500CN-CE	0.234	1	mg/Kg	90-110% / 90-110%	< 35%	Lachat Nick 2012

APPENDIX B

Applicable QAPP Worksheets

*The worksheets included in this appendix were provided by Alpha Analytical Services as an example.

QAPP Worksheet #12: Measurement Performance Criteria

(UFP-QAPP Manual Section 2.6.2)

(EPA 2106-G-05 Section 2.2.6)

Laboratory: Alpha Analytical, Westborough, MA Matrix: Soils and Waters

Analytical Group or Method: 8260

Data Quality Indicator (DQI)	QC sample or measurement performance activity	Measurement Performance Criteria	
Analytical Precision	Laboratory Control Sample Duplicates	PPD < 20%	
(laboratory)	Laboratory control sample Duplicates		
Analytical Precision	Matrix Spike Duplicates	PDD < 20%	
(laboratory)	(at client's request)		
Analytical Accuracy/Bias	Laboratory Control Samples	Generally 70, 120% R - analyte specific	
(laboratory)	Laboratory Control Samples	Generally, 70-13070K – analyte specific	
Analytical Accuracy/Bias	Matrix Spike/ Matrix Spike Duplicates	Generally 40-140%R - analyte specific	
(matrix interference)	(at client's request)	Generally, 40-140/M – analyte specific	
Accuracy/Extraction efficiency	Surrogates	70-130%R	
Overall accuracy/bias (contamination)	Method blank	No target compounds ≥ RL	
Sensitivity	LOD verification (spiked at 1-4xDL)	Detected	
Completeness	See Worksheet #34	See Worksheet #34	

Laboratory: Alpha Analytical, Westborough, MA Matrix: Soils and Waters Analytical Group or Method: 8270

Data Quality Indicator (DQI)	QC sample or measurement performance activity	Measurement Performance Criteria
Analytical Precision	Laboratory Control Sample Duplicator	
(laboratory)	Laboratory Control Sample Duplicates	
Analytical Precision	Matrix Spike Duplicates	RDD < 50%
(laboratory)	(at client's request)	
Analytical Accuracy/Bias	Laboratory Control Samples	Generally, 40-140%R for Base Neutrals; 30-130%R for Acids,
(laboratory)	Laboratory Control Samples	analyte specific
Analytical Accuracy/Bias	Matrix Spike/ Matrix Spike Duplicates	Generally, 40-140%R for Base Neutrals; 30-130%R for Acids,
(matrix interference)	(at client's request)	analyte specific
Accuracy/Extraction	Surrogates	Generally 30-130%B analyte specific
efficiency	Surregates	
Overall accuracy/bias	Method blank	No target compounds $> RI$
(contamination)		
Sensitivity	LOD verification (spiked at 1-4xDL)	Detected
Completeness	See Worksheet #34	See Worksheet #34

Laboratory: Alpha Analytical, Westborough, MA Matrix: Soils and Waters Analytical Group or Method: Herbicides

Data Quality Indicator (DQI)	QC sample or measurement performance activity	Measurement Performance Criteria	
Analytical Precision	Laboratory Control Sample Duplicator	RPD ≤ 25%	
(laboratory)	Laboratory Control Sample Dupicates		
Analytical Precision	Matrix Spike Duplicates	RPD ≤ 30%	
(laboratory)	(at client's request)		
Analytical Accuracy/Bias	Laboratory Control Samples	30-150%R	
(laboratory)	Laboratory Control Samples		
Analytical Accuracy/Bias	Matrix Spike/ Matrix Spike Duplicates	20 1E0%P	
(matrix interference)	(at client's request)	30-130///	
Accuracy/Extraction	Surrogates	30-150%R	
efficiency	Surregates		
Overall accuracy/bias	Method blank	No target compounds ≥ RL	
(contamination)			
Sensitivity	LOD verification (spiked at 1-4xDL)	Detected	
Completeness	See Worksheet #34	See Worksheet #34	

Laboratory: Alpha Analytical, Westborough, MA Matrix: Soils and Waters Analytical Group or Method: Pesticides

Data Quality Indicator (DQI)	QC sample or measurement performance activity	Measurement Performance Criteria		
Quarall Pracision	Field Duplicates	RPD ≤ 30%		
Overall Precision	(at client's request)			
Analytical Precision	Matrix Spike Duplicates	RPD ≤ 30%		
(laboratory)	(at client's request)			
Analytical Accuracy/Bias	Laboratory Control Samples	20.1E0%/D		
(laboratory)	Laboratory Control Samples	1001100M		
Analytical Accuracy/Bias	Matrix Spike/ Matrix Spike Duplicates	20 1E0% P		
(matrix interference)	(at client's request)	30-130%R		
Accuracy/Extraction	Surrogates	30-150%R		
Overall accuracy/bias (contamination)	Method blank	No target compounds ≥ RL		
Sensitivity	LOD verification (spiked at 1-4xDL)	Detected		
Completeness	See Worksheet #34	See Worksheet #34		

Laboratory: Alpha Analytical, Westborough, MA Matrix: Soils and Waters Analytical Group or Method: PCBs

Data Quality Indicator (DQI)	QC sample or measurement performance activity	Measurement Performance Criteria	
Analytical Precision	Laboratory Control Sample Duplicator	RPD ≤ 30%	
(laboratory)	Laboratory Control Sample Dupicates		
Analytical Precision	Matrix Spike Duplicates	RPD ≤ 30%	
(laboratory)	(at client's request)		
Analytical Accuracy/Bias	Laboratory Control Samples	40-140%R	
(laboratory)	Laboratory Control Samples		
Analytical Accuracy/Bias	Matrix Spike/ Matrix Spike Duplicates	40.1409/D	
(matrix interference)	(at client's request)	40-140%K	
Accuracy/Extraction	Surrogates	30-150%R	
efficiency	Surrogates		
Overall accuracy/bias	Method blank	No target compounds ≥ RL	
(contamination)			
Sensitivity	LOD verification (spiked at 1-4xDL)	Detected	
Completeness	See Worksheet #34	See Worksheet #34	

Laboratory: Alpha Analytical, Westborough, MA Matrix: Soils and Waters Analytical Group or Method: Petro

Data Quality Indicator (DQI)	QC sample or measurement performance activity	Measurement Performance Criteria	
Analytical Precision	Laboratory Control Sample Duplicator	RPD ≤ 30%	
(laboratory)	Laboratory Control Sample Dupicates		
Analytical Precision	Matrix Spike Duplicates	RPD ≤ 30%	
(laboratory)	(at client's request)		
Analytical Accuracy/Bias	Laboratory Control Samples	40-140%R	
(laboratory)	Laboratory Control Samples		
Analytical Accuracy/Bias	Matrix Spike/ Matrix Spike Duplicates	40.140%/P	
(matrix interference)	(at client's request)	40-140 / M	
Accuracy/Extraction	Surrogates	30-130%R	
efficiency	Surregues		
Overall accuracy/bias	Method blank	No target compounds ≥ RL	
(contamination)			
Sensitivity	LOD verification (spiked at 1-4xDL)	Detected	
Completeness	See Worksheet #34	See Worksheet #34	

Title: Revision Number: Revision Date: Page **1** of **2**

QAPP Worksheet #23: Analytical SOP's (UFP-QAPP Manual Section 3.2.1) (EPA 2106-G-05 Section 2.3.4)

Laboratory: Alpha Analytical, Westborough, MA

SOP #	Title, Date, and URL (if available)	Definitive or Screening Data	Matrix/Analytical Group	SOP Option or Equipment Type	[‡] Modified for Project? Y/N
2108	Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Definitive	Waters, Soils	GC/MS	
2111	Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)	Definitive	Waters, Soils	GC/MS	
2116	Determination of Organochlorine Pesticides by Gas Chromatography/Electron Capture Detection (GC/ECD)	Definitive	Waters, Soils	GC/ECD	
2129	Determination of Polychlorinated Biphenyls (PCBs) as Aroclors by Gas Chromatography/Electron Capture Detection (GC/ECD)	Definitive	Waters, Soils	GC/ECD	
2128	Chlorinated Herbicides by GC Using Methylation Derivatization	Definitive	Waters, Soils	GC/ECD	
2125	Non-halogenated Organics by Gas Chromatography – Total Petroleum Hydrocarbons	Definitive	Waters, Soils	GC/FID	
1942	Extraction of Water Samples by Separatory Funnel	Definitive	Waters/Organic Preparatory	GC/MS GC/FID GC/ECD	
1959	Extraction of Soil Samples by Microwave	Definitive	Soils/Organic Preparatory	GC/MS GC/FID GC/ECD	
Title: Revision Number: Revision Date: Page **2** of **2**

SOP #	Title, Date, and URL (if available)	Definitive or Screening Data	Matrix/Analytical Group	SOP Option or Equipment Type	[‡] Modified for Project? Y/N
1964	Preparation of Samples for Chlorinated Herbicides Analysis by GC	Definitive	Waters and Soils/Organic Preparatory	GC/ECD	
1955	Sulfur Cleanup	Definitive	Waters and Soils/Organic Preparatory	GC/ECD	
1962	Florisil Cleanup Procedure	Definitive	Waters and Soils/Organic Preparatory	GC/ECD	
1960	Sulfuric Acid Cleanup Procedure	Definitive	Waters and Soils/Organic Preparatory	GC/ECD	
1954	Soxhlet Extraction	Definitive	Soils/Organic Preparatory	GC/MS GC/FID GC/ECD	

[‡] A brief summary of project-specific SOP modifications must be provided on this worksheet or referenced.

Title: Revision Number: Revision Date: Page **1** of **4**

QAPP Worksheet #24: Analytical Instrument Calibration (UFP-QAPP Manual Section 3.2.2) (EPA 2106-G-05 Section 2.3.6)

Laboratory: Alpha Analytical, Westborough, MA

Instrument	Calibration Procedure	Calibration Range	Frequency	Acceptance Criteria	Corrective Action (CA)	Title/position responsible for Corrective Action	SOP Ref
VOA (GC/MS)	4-Bromofluoro benzene (BFB) tune		Prior to each ICAL; At the beginning of analytical sequence; Every 12hrs	Perform in full SCAN mode; See SOP for BFB acceptance criteria;	Perform instrument/injection port maintenance as necessary; Retune instrument		
	Initial Calibration (ICAL)	Water: 5-1000ng Solid: 5-1000ng	Initial instrument setup; After non-routine instrument service; CCV/ICV criteria are not met	Minimum of 5 standards; Low standard must be ≤ RL; %RSD ≤ 20 except for 10% of compounds may be > 20% but ≤ 30% RSD; r ≥ 0.99 (linear regression); r ² ≥ 0.99 (non-linear regression)	Review integrations and calculations; Perform and document remedial action as required; Repeat calibration	Analyst	2108
	Initial Calibration Verification (ICV)		Immediately after each ICAL	%D ≤ 30; exclusions apply – see SOP; Prepared using standard source different than used for initial calibration	Re-analyze ICV if analytical error is suspected; Recalibrate as needed		
	Continuing Calibration Verification (CCV)		At the beginning of every analytical sequence; Every 12 hours	%D ≤ 20 except for 20% of compounds may be > 20 but ≤ 30%D; Area counts of internal standards must be within 50–200% of the mid-level initial calibration standard	Review integrations and calculations; Re-analyze samples as needed		

Title: Revision Number: Revision Date: Page **2** of **4**

Laboratory: Alpha Analytical,	, Westborough, MA
-------------------------------	-------------------

Instrument	Calibration Procedure	Calibration Range	Frequency	Acceptance Criteria	Corrective Action (CA)	Title/position responsible for Corrective Action	SOP Ref
SVOC (GC/MS)	Decafluorotriphenyl- phosphine (DFTPP) tune		Prior to each ICAL; At the beginning of analytical sequence; Every 12 hours	Perform in full SCAN mode; See SOP for DFTPP criteria	Perform instrument/injection port maintenance as necessary; Retune instrument	Analyst	
	Initial Calibration (ICAL)	Water: 1-200ng Solid: 1-200ng	Initial instrument setup; After non-routine instrument service; CCV/ICV criteria are not met	Minimum of 5 standards; Low standard must be ≤ RL; %RSD ≤ 20%; r ≥ 0.99 (linear regression) or r ² ≥ 0.99 (non-linear regression); If linear regression is used, recalculated concentration of the lowest calibration point is within 30% of the true value, All RFs must meet the minimum RFs listed in SOP	Review integrations and calculations; Perform and document remedial action as required; Repeat calibration		
	Initial Calibration Verification (ICV)		Immediately after each ICAL	%D ≤ 30%; Sporadic marginal failure accepted; Prepared using standard source different than used for initial calibration	Re-analyze ICV if analytical error is suspected; Recalibrate as needed		2111
		Continuing Calibration Verification (CCV)	B	At the beginning of every analytical sequence; Every 12 hours	%D ≤ 20 except for 20% of compounds may be > 20 but must be reported as estimated if present; All RFs must meet the minimum RFs listed in SOP; Area counts of internal standards must be within 50–200% of the mid-level initial calibration standard; The retention times of the internal standards must be within +0.05 RRT of the previous daily standard.	Review integrations and calculations; Evaluate samples bracketed by failing CCV for obvious matrix interference; Re-analyze samples as needed;	

Instrument	Calibration Procedure	Calibration Range	Frequency	Acceptance Criteria	Corrective Action (CA)	Title/position responsible for Corrective Action	SOP Ref	
PCB, Pesticides, Herbicides (GC/ECD)	Initial Calibration (ICAL)	Method specific	Initial instrument setup; After non-routine instrument service; CCV/ICV criteria are not met	$\begin{array}{l} \mbox{Minimum of 5 standards;} \\ \mbox{Low standard must be \leq RL;} \\ \mbox{$\% RSD \leq 20 or} \\ \mbox{r \geq 0.99 (linear regression),} \\ \mbox{If linear regression is used, recalculated} \\ \mbox{concentration of the lowest calibration} \\ \mbox{point is within 30% of the true value} \end{array}$	Review integrations and calculations; Perform and document remedial action as required; Repeat calibration			
	Initial Calibration Verification (ICV)	PCBs 0.1-10 ug/mL Pesticides 0.0005-0.2 ug/mL Herbicides 0.05–2.0 ug/mL	PCBs 0.1-10 ug/mL Pesticides 0.0005-0.2 ug/mL	Immediately after each ICAL	PCBs and Herbicides %D ≤ 15; Pesticides %D ≤ 20; Prepared using standard source different than used for initial calibration	Re-analyze ICV if analytical error is suspected; Recalibrate as needed	Analyst	2129 2116 2128
	Continuing Calibration Verification (CCV)		PCBs and Pesticides %D ≤ 20; Herbicides %D ≤ 15;Review integrat calculatioAt the beginning and end of every analytical sequence; Every 12 hoursArea counts of internal standards must be within 50–200% of the mid-level initial calibration standard.Review integrat calculatioThe retention times of the internal standards must be within +0.05 RRT of the previous daily standard.Fereinal the previous daily standard.Review integrat calculatio	Review integrations and calculations; Evaluate samples bracketed by failing CCV for obvious matrix interference; Re-analyze samples as needed				

Laboratory: Alpha Analytical, Westborough, MA

Instrument	Calibration Procedure	Calibration Range	Frequency	Acceptance Criteria	Corrective Action (CA)	Title/position responsible for Corrective Action	SOP Ref
Petro (GC/FID)	Initial Calibration (ICAL)	Individual Alkanes 3-500 ug/mL Range: 42-7000 ug/mL	Initial instrument setup; After non-routine instrument service; CCV/ICV criteria are not met	Minimum of 5 standards; Low standard must be ≤ RL; %RSD ≤ 20% or r ≥ 0.99 (linear regression)	Review integrations and calculations; Perform and document remedial action as required; Repeat calibration		
	Initial Calibration Verification (ICV)		Immediately after each ICAL	%D ≤ 305; Prepared using standard source different than used for initial calibration	Re-analyze ICV if analytical error is suspected; Recalibrate as needed	Analyst	2125
	Continuing Calibration Verification (CCV)			At the beginning of every analytical sequence; Every 12 hours	%D ≤ 20%	Review integrations and calculations; Evaluate samples bracketed by failing CCV for obvious matrix interference; Re-analyze samples as needed	

Laboratory: Alpha Analytical, Westborough, MA

QAPP Worksheet #25: Analytical Instrument and Equipment Maintenance, Testing, and Inspection (UFP-QAPP Manual Section 3.2.3) (EPA 2106-G-05 Section 2.3.6)

Instrument / Equipment	Maintenance Activity	Testing Activity	Inspection Activity	Frequency	Acceptance Criteria	Corrective Action	Title/position responsible for corrective action	Reference
GC/MS	Inlet Maintenance: Septa, Injection port liner, clip column	Passing Tune/CCAL; overall chromatogram	Instrument performance and sensitivity	Frequency is dependent on degree of contamination and standard recovery	See SOP	See SOP	Analyst or Section Supervisor	See specific analysis SOP
GC/MS	Column	Passing Tune/ICAL/ ICV; overall chromatogram	Instrument performance and sensitivity	Frequency is dependent on degree of contamination and standard recovery	See SOP	See SOP	Analyst or Section Supervisor	See specific analysis SOP
GC/MS	Source cleaning : Filaments, insulators	Tuning	Instrument performance and sensitivity	Frequency is dependent on degree of contamination and standard recovery	See SOP	See SOP	Analyst or Section Supervisor	See specific analysis SOP
GC/MS	Pump	Complete MS pump down.	Air and water check	Frequency is dependent on vacuum within instrument	See SOP	See SOP	Analyst or Section Supervisor	See specific analysis SOP

Title: Revision Number: Revision Date: Page **2** of **2**

Instrument / Equipment	Maintenance Activity	Testing Activity	Inspection Activity	Frequency	Acceptance Criteria	Corrective Action	Title/position responsible for corrective action	Reference
GC/ECD/FID	Inlet Maintenance: Septa, Injection port liner, clip column	Passing CCAL; overall chromatogram	Instrument performance and sensitivity	Frequency is dependent on degree of contamination and standard recovery	See SOP	See SOP	Analyst or Section Supervisor	See specific analysis SOP
GC/ECD/FID	Column	Passing CCAL; overall chromatogram	Instrument performance and sensitivity	Frequency is dependent on degree of contamination and standard recovery	See SOP	See SOP	Analyst or Section Supervisor	See specific analysis SOP

Title: Revision Number: Revision Date: Page **1** of **12**

QAPP Worksheet #28: Analytical Quality Control and Corrective Action (UFP-QAPP Manual Section 3.4 and Tables 4, 5, and 6) (EPA 2106-G-05 Section 2.3.5)

Laboratory: Alpha Analytical, Westborough, MA Matrix: Soils/Waters Analytical Group: VOA Analytical Method/SOP: 8260/SOP#2108

QC Sample	Number/Frequency	Method/SOP Acceptance Criteria	Corrective Action	Title/position of person responsible for corrective action	Project-Specific MPC
Method	One per preparatory	No analyte at or	Identify source and	Analyst /	
Blank	batch of up to 20	above the reporting	attempt to eliminate.	Laboratory	
	samples	limit.	Reanalyze blank and	Quality Assurance	
			affected samples (if	Officer	
			sufficient sample		
			remains).		
			Qualify data as needed.		
			Report data if sample		
			results >5x blank or		
			sample results ND. If		
			contamination is		
			widespread or		
			reoccurring, analyses must		
			be stopped and the source		
			of contamination must be		
			eliminated or reduced		
			before analyses can		
			continue.		

Title: Revision Number: Revision Date: Page **2** of **12**

QC Sample	Number/Frequency	Method/SOP Acceptance Criteria	Corrective Action	Title/position of person responsible for corrective action	Project-Specific MPC
LCS/LCSD	One each per preparatory batch of up to 20 samples.	Generally, 70-130% Recovery; 20% RPD – analyte specific	Correct problem; reanalyze LCS/LCSD and all samples in associated batch for failed analytes. If problem persists, contact Project Manager.	Analyst / Laboratory Quality Assurance Officer	
MS/MSD	One each per preparatory batch of up to 20 samples. Per Client's Request	Generally, 70-130% Recovery; 20% RPD – analyte specific	Report if associated with passing LCS/LCSD. Discuss in narrative.	Laboratory Analyst/Section Supervisor	

Title: Revision Number: Revision Date: Page **3** of **12**

Matrix: Soils/Waters Analytical Group: SVOC Analytical Method/SOP: 8270/SOP#2111

QC Sample	Number/Frequency	Method/SOP Acceptance Criteria	Corrective Action	Title/position of person responsible for corrective action	Project-Specific MPC
Method Blank	One per preparatory batch of up to 20 samples	No analyte at or above the reporting limit.	Identify source and attempt to eliminate. Re-extract and/or reanalyze blank and affected samples (if sufficient sample remains). Qualify data as needed. Report data if sample results >5x blank or sample results ND. If contamination is widespread or reoccurring, analyses must be stopped and the source of contamination must be eliminated or reduced before analyses can continue.	Analyst / Laboratory Quality Assurance Officer	

Title: Revision Number: Revision Date: Page **4** of **12**

QC Sample	Number/Frequency	Method/SOP Acceptance Criteria	Corrective Action	Title/position of person responsible for corrective action	Project-Specific MPC
LCS/LCSD	One each per preparatory batch of up to 20 samples	Generally, 40-140% Recovery, 50% RPD – analyte specific	Correct problem, reprep and reanalyze LCS/LCSD and all samples in associated batch for failed analytes. If problem persists, contact Project Manager.	Analyst / Laboratory Quality Assurance Officer	
MS/MSD	One each per preparatory batch of up to 20 samples. Per Client's Request	Generally, 40-140% Recovery, 50% RPD – analyte specific	Report if associated with passing LCS/LCSD. Discuss in narrative.	Laboratory Analyst/Section Supervisor	

Title: Revision Number: Revision Date: Page **5** of **12**

Matrix: Soils/Waters Analytical Group: Pesticides Analytical Method/SOP: 8081 /SOP#2116

QC Sample	Number/Frequency	Method/SOP Acceptance Criteria	Corrective Action	Title/position of person responsible for corrective action	Project-Specific MPC
Method Blank	One per preparatory batch of up to 20 samples	No analyte at or above the reporting limit.	Identify source and attempt to eliminate. Re-extract and/or reanalyze blank and affected samples (if sufficient sample remains). Qualify data as needed. Report data if sample results >5x blank or sample results ND. If contamination is widespread or reoccurring, analyses must be stopped and the source of contamination must be eliminated or reduced before analyses can continue.	Analyst / Laboratory Quality Assurance Officer	

Title: Revision Number: Revision Date: Page **6** of **12**

QC Sample	Number/Frequency	Method/SOP Acceptance Criteria	Corrective Action	Title/position of person responsible for corrective action	Project-Specific MPC
LCS/LCSD	One each per preparatory batch of up to 20 samples	40-140% Recovery. 30% RPD.	Correct problem, reprep and reanalyze LCS/LCSD and all samples in associated batch for failed analytes. If problem persists, contact Project Manager.	Analyst / Laboratory Quality Assurance Officer	
MS/MSD	One each per preparatory batch of up to 20 samples. Per Client's Request	40-140% Recovery, 30% RPD	Report if associated with passing LCS/LCSD. Discuss in narrative.	Laboratory Analyst/Section Supervisor	

Title: Revision Number: Revision Date: Page **7** of **12**

Matrix: Soils/Waters Analytical Group: PCBs Analytical Method/SOP: 8082 /SOP#2129

QC Sample	Number/Frequency	Method/SOP Acceptance Criteria	Corrective Action	Title/position of person responsible for corrective action	Project-Specific MPC
Method Blank	One per preparatory batch of up to 20 samples	No analyte at or above the reporting limit.	Identify source and attempt to eliminate. Re-extract and/or reanalyze blank and affected samples (if sufficient sample remains). Qualify data as needed. Report data if sample results >5x blank or sample results ND. If contamination is widespread or reoccurring, analyses must be stopped and the source of contamination must be eliminated or reduced before analyses can continue.	Analyst / Laboratory Quality Assurance Officer	

Title: Revision Number: Revision Date: Page **8** of **12**

QC Sample	Number/Frequency	Method/SOP Acceptance Criteria	Corrective Action	Title/position of person responsible for corrective action	Project-Specific MPC
LCS/LCSD	One per preparatory batch of up to 20 samples	QC acceptance criteria 40-140% Recovery, Aqueous RPD 30%, Soil RPD 50%	Correct problem, reprep and reanalyze LCS/LCSD and all samples in associated batch for failed analytes. If problem persists, contact Project Manager.	Analyst / Laboratory Quality Assurance Officer	
MS/MSD	One each per preparatory batch of up to 20 samples. Per Client's Request	40-140% Recovery, Aqueous RPD 30%, Soil RPD 50%	Report if associated with passing LCS/LCSD. Discuss in narrative.	Laboratory Analyst/Section Supervisor	

Title: Revision Number: Revision Date: Page **9** of **12**

Matrix: Soils/Waters Analytical Group: Herbicides Analytical Method/SOP: 8151 /SOP#2128

QC Sample	Number/Frequency	Method/SOP Acceptance Criteria	Corrective Action	Title/position of person responsible for corrective action	Project-Specific MPC
Method Blank	One per preparatory batch of up to 20 samples	No analyte at or above the reporting limit.	Identify source and attempt to eliminate. Re-extract and/or reanalyze blank and affected samples (if sufficient sample remains). Qualify data as needed. Report data if sample results >5x blank or sample results ND. If contamination is widespread or reoccurring, analyses must be stopped and the source of contamination must be eliminated or reduced before analyses can continue.	Analyst / Laboratory Quality Assurance Officer	

Title: Revision Number: Revision Date: Page **10** of **12**

QC Sample	Number/Frequency	Method/SOP Acceptance Criteria	Corrective Action	Title/position of person responsible for corrective action	Project-Specific MPC
LCS/LCSD	One each per preparatory batch of up to 20 samples	QC acceptance criteria 40-140% Recovery, 25% RPD	Correct problem, reprep and reanalyze LCS/LCSD and all samples in associated batch for failed analytes. If problem persists, contact Project Manager.	Analyst / Laboratory Quality Assurance Officer	
MS/MSD	One each per preparatory batch of up to 20 samples. Per Client's Request	QC acceptance criteria 40-140% Recovery. 30% RPD	Report if associated with passing LCS/LCSD. Discuss in narrative.	Laboratory Analyst/Section Supervisor	

Title: Revision Number: Revision Date: Page **11** of **12**

Matrix: Soils/Waters Analytical Group: TPH Analytical Method/SOP: 8015 /SOP#2125

QC Sample	Number/Frequency	Method/SOP Acceptance Criteria	Corrective Action	Title/position of person responsible for corrective action	Project-Specific MPC
Method Blank	One per preparatory batch of up to 20 samples	No analyte at or above the reporting limit.	Identify source and attempt to eliminate. Re-extract and/or reanalyze blank and affected samples (if sufficient sample remains). Qualify data as needed. Report data if sample results >5x blank or sample results ND. If contamination is widespread or reoccurring, analyses must be stopped and the source of contamination must be eliminated or reduced before analyses can continue.	Analyst / Laboratory Quality Assurance Officer	

Title: Revision Number: Revision Date: Page **12** of **12**

QC Sample	Number/Frequency	Method/SOP Acceptance Criteria	Corrective Action	Title/position of person responsible for corrective action	Project-Specific MPC
LCS/LCSD	One each per preparatory batch of up to 20 samples	QC acceptance criteria 40-140% Recovery. 40% RPD.	Correct problem, reprep and reanalyze LCS/LCSD and all samples in associated batch for failed analytes. If problem persists, contact Project Manager.	Analyst / Laboratory Quality Assurance Officer	
MS/MSD	One each per preparatory batch of up to 20 samples. Per Client's Request	QC acceptance criteria 60-140% Recovery. 40% RPD.	Report if associated with passing LCS/LCSD. Discuss in narrative.	Laboratory Analyst/Section Supervisor	

QAPP Worksheet #24: Analytical Instrument Calibration (UFP-QAPP Manual Section 3.2.2) (EPA 2106-G-05 Section 2.3.6)

Laboratory: Alpha Analytical, Westborough, MA

Instrument	Calibration Procedure	Calibration Range	Frequency	Acceptance Criteria	Corrective Action (CA)	Title/position responsible for Corrective Action	SOP Reference
ICP-MS	Tune verification; External; multipoint	Varies by element	Daily or as required	CC > 0.998; ICV 95-105%; CCV 90-110%; ICB/CCB < ±RL	Clean, inspect, adjust/recalibrate	ICP-MS Analyst, Dept. Manager	2156 rev.3
ICP	Response verification; External; multi- point	Varies by element	Daily or as required	CC > 0.995; ICV 90-110%; CRI 70-130%; CCV 90-110%; ICB/CCB < ±RL	Clean, inspect, adjust/recalibrate	ICP Analyst, Dept. Manager	2144 rev 2
CVAA	External; multi- point	0.2-10 ppb	Per digestion batch	CC > 0.995; ICV 90-110%; CCV 90-110%; ICB/CCB < ±RL	Clean, inspect, adjust/recalibrate	CVAA Analyst, Dept. Manager	2145 rev. 2 2146 rev. 3

QAPP Worksheet #19 & 30: Sample Containers, Preservation, and Hold Times (UFP-QAPP Manual Section 3.1.2.2) (EPA 2106-G-05 Section 2.3.2)

Laboratory: Alpha Analytical, Westborough, MA

List any required accreditations/certifications:

Back-up Laboratory:

Sample Delivery Method:

Analyte/ Analyte Group	Matrix	Method/ SOP	Container(s) (number, size & type per sample)	Preservation	Preparation Holding Time	Analytical Holding Time	Data Package Turnaround
Trace Metals by ICP	Soil	EPA 6010C / 2144	Amber 250ml unpreserved	4 ± 2°C	N/A	180 days	
Trace Metals by ICP	Liquid	EPA 6010C / 2144	Plastic 500ml	HNO3 preserved	N/A	180 days	
Trace Metals by ICP	Liquid	EPA 200.7 / 2149	Plastic 500ml	HNO3 preserved	N/A	180 days	
Trace Metals by ICPMS	Liquid	EPA 6020A / 2156	Plastic 500ml	4 ± 2°C 1:1 Nitric acid to a pH of <2	N/A	180 days	
Trace Metals by ICPMS	Liquid	EPA 200.8 / 2159	Plastic 500ml	4 ± 2°C 1:1 Nitric acid to a pH of <2	N/A	180 days	

Title: Revision Number: Revision Date: Page **2** of **11**

Analyte/ Analyte Group	Matrix	Method/ SOP	Container(s) (number, size & type per sample)	Preservation	Preparation Holding Time	Analytical Holding Time	Data Package Turnaround
Trace Metals by ICPMS	Soil	EPA 6020A / 2156	Amber 250ml unpreserved	4 ± 2°C	N/A	180 days	
Mercury	Liquid	EPA 7470A / 2145	Plastic 500ml	HNO3 to a pH of <2.	N/A	28 days	
Mercury	Liquid	EPA 245.1 / 2153	Plastic 500ml	HNO3 to a pH of <2.	N/A	28 days	
Mercury	Soil	EPA 7471B / 2146	Amber 250ml unpreserved	4 ± 2°C	N/A	28 days	
Volatile Organic Compounds	Liquid	EPA 8260C / 2108	2, 40-ml VOA vials w/ PTFE- faced silicone septum	4 ± 2°C 1:1 HCL to a pH of <2.	14 days	14 days	
Volatile Organic Compounds	Liquid	EPA 624 / 2022	2, 40-ml VOA vials	4 ± 2°C	N/A	Unpreserved – 7 days 1:1 HCL - 14 days Acrolein – 3days	
Volatile Organic Compounds	Soil	EPA 8260C / 2108	2, 40-ml VOA vials	4 ± 2°C	14 days	14 days	
Purgeable Organic Compounds	Liquid	EPA 524.2 / 2107	2, 40-ml VOA vials, Ascorbic Acid/HCl preserved	1:1 HCL to a pH of <2.	Preserved - 14 days Unpreserved – 24 hours	14 days	
Volatile Petroleum Hydrocarbons	Liquid	MA VPH / 2120	2, 40-ml VOA vials, HCl preserved	1:1 HCL to a pH of <2.	N/A	14 days	

Title: Revision Number: Revision Date: Page **3** of **11**

Analyte/ Analyte Group	Matrix	Method/ SOP	Container(s) (number, size & type per sample)	Preservation	Preparation Holding Time	Analytical Holding Time	Data Package Turnaround
Volatile Petroleum Hydrocarbons	Soil	MA VPH / 2120	2, 40-ml VOA vials	4 ± 2°C	N/A	28 days	
Gasoline Range Organics	Liquid	EPA 8015C(M) / 2126	2, 40-ml VOA vials, HCl preserved	1:1 HCL to a pH of <2. 4 ± 2°C	14 days	14 days	
Gasoline Range Organics	Soil	EPA 8015C(M) / 2126	1, 40-mL VOA vial, MeOH preserved	Methanol 4 ± 2°C	14 days	14 days	
Semivolatile Organics	Liquid	EPA 8270D / 2111	2, 1-liter amber glass jars	4 ± 2°C	7 days	40 days	
Semivolatile Organics	Liquid	EPA 625 / 2110	2, 1-liter amber glass jars	4 ± 2°C	7 days	40 days	
Semivolatile Organics by SIM	Liquid	EPA 8270D- SIM / 2109	2, 1-liter amber glass jars	4 ± 2°C	7 days	40 days	
Semivolatile Organics	Soil	EPA 8270D / 2111	1, 250mL amber glass jar	4 ± 2°C	14 days	40 days	
Semivolatile Organics by SIM	Soil	EPA 8270D- SIM / 2109	1, 250mL amber glass jar	4 ± 2°C	14 days	40 days	
EBD/DBCP	Liquid	EPA 504.1 / 2113	2, 40mL vials	3-5mg of sodium thiosulfate crystals 4 ± 2°C	14 days	24 hours	
Pesticides	Liquid	EPA 8081B / 2116	2, 1-liter amber glass jars	4 ± 2°C	7 days	40 days	

Title: Revision Number: Revision Date: Page **4** of **11**

Analyte/ Analyte Group	Matrix	Method/ SOP	Container(s) (number, size & type per sample)	Preservation	Preparation Holding Time	Analytical Holding Time	Data Package Turnaround
Pesticides	Soil	EPA 8081B / 2116	1, 250mL amber glass jar	4 ± 2°C	14 days	40 days	
РСВ	Liquid	EPA 8082A / 2129	2, 1-liter amber glass jars	4 ± 2°C	7 days	40 days	
РСВ	Soil	EPA 8082A / 2129	1, 250mL amber glass jar	4 ± 2°C	14 days	40 days	
Pesticide & PCB	Liquid	EPA 608 / 2122	2, 1-liter amber glass jars	4 ± 2°C	7 days	40 days	
Herbicides	Liquid	EPA 8151A / 2128	2, 1-liter amber glass jars	4 ± 2°C	7 days	40 days	
Herbicides	Soil	EPA 8151A / 2128	1, 250mL amber glass jar	4 ± 2°C	14 days	40 days	
PCB – Oil	Oil	EPA 600/4- 81-045 / 2123	Glass jar	4 ± 2°C	14 days	40 days	
Extractable Petroleum Hydrocarbons	Liquid	MA EPH / 2119	2, 1-liter amber glass jars	1:1 HCL to a pH of <2. 4 ± 2°C	14 days	40 days	
Extractable Petroleum Hydrocarbons	Soil	MA EPH / 2119	1, 250mL amber glass jar	4 ± 2°C	14 days	40 days	
NJ Extractable Petroleum Hydrocarbons	Liquid	NJ EPH / 2131	2, 1-liter amber glass jars	1:1 HCL to a pH of <2. 4 ± 2°C	14 days	40 days	
NJ Extractable Petroleum Hydrocarbons	Soil	NJ EPH / 2131	1, 250mL amber glass jar	4 ± 2°C	14 days	40 days	

Title: Revision Number: Revision Date: Page **5** of **11**

Analyte/ Analyte Group	Matrix	Method/ SOP	Container(s) (number, size & type per sample)	Preservation	Preparation Holding Time	Analytical Holding Time	Data Package Turnaround
TPH Diesel Range Organics	Liquid	EPA 8015C(M) / 2125	2, 1-liter amber glass jars	4 ± 2°C	7 days	40 days	
TPH Diesel Range Organics	Soil	EPA 8015C(M) / 2125	1, 250mL amber glass jar	4 ± 2°C	14 days	40 days	
CT – Extractable Total Petroleum Hydrocarbons	Liquid	CT-ETPH / 2127	2, 1-liter amber glass jars	4 ± 2°C	7 days	40 days	
CT – Extractable Total Petroleum Hydrocarbons	Soil	CT-ETPH / 2127	1, 250mL amber glass jar	4 ± 2°C	14 days	40 days	
Explosives	Liquid	EPA 8330A / 2250	2, 1-liter amber glass jars	4 ± 2°C	7 days	40 days	
Explosives	Soil	EPA 8330A / 2250	1, 250mL amber glass jar	4 ± 2°C	14 days	40 days	
Perchlorate	Liquid	EPA 332.0 & 6860 / 2251	1, 120mL plastic or amber glass	4 ± 2°C	28 days	28 days	
Perchlorate	Soil	EPA 6860 / 2251	1, 250mL amber glass jar	4 ± 2°C	28 days	28 days	
рН	Liquid	EPA 9040B & SM 4500H-B/ 2202	1, 250mL plastic or amber glass	4 ± 2°C	N/A	ASAP, within 24 hours	
рН	Soil	EPA 9045D & 9040C / 2202	1, 4oz glass jar	4 ± 2°C	N/A	ASAP, within 24 hours	

Title: Revision Number: Revision Date: Page **6** of **11**

Analyte/ Analyte Group	Matrix	Method/ SOP	Container(s) (number, size & type per sample)	Preservation	Preparation Holding Time	Analytical Holding Time	Data Package Turnaround
Hexavalent Chromium	Liquid	SM 3500Cr- D / 2204	1, 500mL Plastic	4 ± 2°C	N/A	24 hours	
Hexavalent Chromium	Soil	SM 3500Cr- D & EPA 7196A / 2204	1, 500mL Plastic	4 ± 2°C	30 days	7 days	
Biochemical Oxygen Demand	Liquid	SM 5210B / 2205	1, 1-liter Plastic	4 ± 2°C	N/A	48 hours	
Chemical Oxygen Demand	Liquid	SM 5220D, EPA 410.4 / 2208	1, 250mL Plastic	1:1 H₂SO₄ to a pH of <2. 4 ± 2°C	N/A	28 days	
Nitrogen, Ammonia	Liquid	SM4500NH3 -BH, EPA 350.1 / 2206	1, plastic 500ml	H2SO4 preserved 4 ± 2°C	N/A	28 days	
Nitrogen, Ammonia	Soil	SM4500NH3 -BH, / 2206	1, 250mL amber glass jar	4 ± 2°C	N/A	28 days	
Nitrogen, Total Kjeldahl	Liquid	SM 4500Norg-C, EPA 351.1 / 2207	1, plastic 500ml	H2SO4 preserved 4 ± 2°C	N/A	28 days	
Nitrogen, Total Kjeldahl	Soil	SM 4500Norg-C, / 2207	1, 250mL amber glass jar	4 ± 2°C	N/A	28 days	
Oil & Grease	Liquid	EPA 1664A / 2209	2, 1-liter amber glass jars	1:1 HCL to a pH of <2. 4 ± 2°C	N/A	28 days	

Title: Revision Number: Revision Date: Page **7** of **11**

Analyte/ Analyte Group	Matrix	Method/ SOP	Container(s) (number, size & type per sample)	Preservation	Preparation Holding Time	Analytical Holding Time	Data Package Turnaround
Total Petroleum Hydrocarbons	Liquid	EPA 1664A / 2209	2, 1-liter amber glass jars	1:1 HCL to a pH of <2. 4 ± 2°C	N/A	28 days	
Total Cyanide	Liquid	SM 4500CN- CE / 2210	1, Plastic 250ml NaOH preserved	50% sodium hydroxide pH > 12 4 ± 2°C	14 days	14 days	
Total Cyanide	Soil	EPA 9010C, 9012B, 9014(M) / 2210	1, 250mL amber glass jar	4 ± 2°C	14 days	14 days	
Phenol, Total	Liquid	EPA 510AC, EPA 420.1 / 2211	1, 1-liter amber glass jars	H2SO4 preserved, pH<4 4 ± 2°C	N/A	28 days	
Phenol, Total	Soil	EPA 9065 / 2211	1, 250mL amber glass jar	4 ± 2°C	28 days	24 hours	
Sulfate	Liquid	EPA 426C, 375.4, SM 4500SO4-E / 2212	1, Plastic 500ml	4 ± 2°C	N/A	28 days	
Sulfate	Soil	EPA 9038 / 2212	1, 250mL amber glass jar	4 ± 2°C	N/A	28 days	
Alkalinity	Liquid	SM 2320B / 2213	1, Plastic 500ml	4 ± 2°C	N/A	14 days	
Acidity	Liquid	SM 2310B / 2232	1, Plastic 250ml	4 ± 2°C	N/A	14 days	

Title: Revision Number: Revision Date: Page **8** of **11**

Analyte/ Analyte Group	Matrix	Method/ SOP	Container(s) (number, size & type per sample)	Preservation	Preparation Holding Time	Analytical Holding Time	Data Package Turnaround
Inorganic Anions by IC	Liquid	EPA 300.0 / 2214	1, Plastic 500ml	4 ± 2°C	N/A	NO3 – 48 hours Br, Cl, F, SO4 - 28 days	
Total Organic Carbon	Liquid	SM 5310C / 2215	2, Vial H2SO4 preserved	1:1 H₂SO₄ pH <2, 4 ± 2°C	N/A	28 days	
Chloride	Liquid	SM 4500Cl- E, EPA 9251 / 2216	1, Plastic 250ml	4 ± 2°C	N/A	28 days	
Nitrate, Nitrite & Nitrate/Nitrite	Liquid	EPA 353.2, 354.1, SM4500NO3 -F, 4500NO2-B / 2217	1, Plastic 250ml	Individual: unpreserved Combined: 1:1 H ₂ SO ₄ 4 ± 2°C	N/A	Individual: 48 hours Combined: 28 days	
Total Solids Dried Total Volatile Solids	Liquid	SM 2540B / 2218	1, Plastic 500ml	4 ± 2°C	N/A	7 days	
Total Dissolved Solids Total Volatile Dissolved Solids	Liquid	SM 2540C / 2219	1, Plastic 500ml	4 ± 2°C	N/A	7 days	
Total Suspended Solids Total Volatile Suspended Solids	Liquid	SM 2540D / 2220	1, Plastic 1- Liter	4 ± 2°C	N/A	7 days	

Title: Revision Number: Revision Date: Page **9** of **11**

Analyte/ Analyte Group	Matrix	Method/ SOP	Container(s) (number, size & type per sample)	Preservation	Preparation Holding Time	Analytical Holding Time	Data Package Turnaround
Percent Solids	Soil	SM 2540G / 2229	1, Plastic 2oz	4 ± 2°C	N/A	7 days	
Fixed & Volatile Solids	Soil	SM 2540G / 2241	1, 250mL amber glass jar	4 ± 2°C	N/A	7 days	
Solids, Settable	Liquid	SM 2540F / 2240	1, Plastic 1- Liter	4 ± 2°C	N/A	48 hours	
Total Sulfide	Liquid	EPA 376.2, SM 4500S2- AD / 2221	2, Plastic 250ml	2N zinc Acetate and 6N NaOH	N/A	7 days	
Total Sulfide	Soil	EPA 9030B / 2221	1, 250mL amber glass jar	2N zinc Acetate and 6N NaOH	N/A	7 days	
MBAS	Liquid	SM 5540C / 2222	1, Plastic 1- Liter	4 ± 2°C	N/A	48 hours	
Fluoride	Liquid	SM 4500F- BC / 2223	1, Plastic 500ml	4 ± 2°C	28 days	48 hours	
Turbidity	Liquid	SM 2130B, EPA 180.1 / 2224	1, Plastic 500ml	4 ± 2°C	N/A	48 hours	
Orthophosphate	Liquid	SM 4500P-E / 2225	1, Plastic 250ml	4 ± 2°C	N/A	48 hours	
Phosphorous	Liquid	SM 4500P- E, 4500P-B / 2226	1, Plastic 500ml	H2SO4, pH < 2 4 ± 2°C	N/A	28 days	
Flashpoint	Soil	EPA 1010 / 2227	1, 250mL amber glass jar	4 ± 2°C	N/A	N/A	

Title: Revision Number: Revision Date: Page **10** of **11**

Analyte/ Analyte Group	Matrix	Method/ SOP	Container(s) (number, size & type per sample)	Preservation	Preparation Holding Time	Analytical Holding Time	Data Package Turnaround
Ignitability	Soil	EPA 1030 / 2238	1, 250mL amber glass jar	N/A	N/A	14 days	
Reactive Sulfide & Cyanide	Liquid	SW-846 Ch. 7 / 2228	1, 500mL amber glass jar	4 ± 2°C	N/A	7 days	
Reactive Sulfide & Cyanide	Soil	SW-846 Ch. 7 / 2228	1, 250mL amber glass jar	4 ± 2°C	N/A	14 days	
Specific Conductance	Liquid	SM 2510B, EPA 120.1, 9050 / 2230	1, Plastic 250ml	4 ± 2°C	N/A	28 days	
Color	Liquid	STM 2120B / 2231	1, 500mL amber glass jar	4 ± 2°C	N/A	24 Hours	
Formaldehyde	Liquid	EPA 8315A / 2233	1, 1-liter amber glass jars	4 ± 2°C	3 days	3 days	
Sulfite	Liquid	SM 4500SO32B, EPA 377.1 / 2234	1, Plastic 250ml	4 ± 2°C	N/A	24 hours	
Ferrous Iron	Liquid	SM 3500-Fe D / 2235	1, Plastic 250ml	4 ± 2°C	N/A	24 hours	
Chlorine (Residual)	Liquid	SM 4500-CI D, EPA 330.1 / 2236	1, Plastic 500ml	N/A	N/A	24 hours	
Oxidation – Reduction Potential	Liquid	ASTMD1498 (M) / 2237	1, Plastic 500ml	N/A	N/A	24 hours	
Oxidation – Reduction Potential	Soil	ASTM D1498 (M) / 2237	1, 250mL amber glass jar	N/A	N/A	28 days	

Title: Revision Number: Revision Date: Page **11** of **11**

Analyte/ Analyte Group	Matrix	Method/ SOP	Container(s) (number, size & type per sample)	Preservation	Preparation Holding Time	Analytical Holding Time	Data Package Turnaround
Physiologically Available Cyanide	Liquid	EPA 9014(M) / 2239	1, Plastic 250ml NaOH preserved	50% sodium hydroxide pH > 12 4 ± 2°C	14 days	14 days	
Physiologically Available Cyanide	Soil	EPA 9014(M) / 2239	1, 250mL amber glass jar	4 ± 2°C	14 days	14 days	
Tannin & Lignin	Liquid	SM 5550B / 2242	1, Plastic 500ml	4 ± 2°C	N/A	N/A	
Nitrite (Manual)	Liquid	SM 4500NO2-B / 2243		4 ± 2°C	N/A	48 hours	
Paint Filter	Soil	EPA 9050B / 2244	1, 250mL amber glass jar	4 ± 2°C	N/A	N/A	
Odor	Liquid	SM 2150B / 2245	1, 1-liter amber glass jars	4 ± 2°C	N/A	24 hours	
Dissolved Oxygen	Liquid	SM 4500O- C, EPA 360.2 / 2249	1, 300mL BOD bottle	Manganeous Sulfate, Alkali- Iodide-Azide, store in dark at temperature of water source	N/A	8 hours	
Free Cyanide	Soil	EPA 9016	1, 250mL amber glass jar	4 ± 2°C, in the dark	14 days	24 hours	

Title: Revision Number: Revision Date: Page 1 of 2

QAPP Worksheet #23: Analytical SOP's (UFP-QAPP Manual Section 3.2.1) (EPA 2106-G-05 Section 2.3.4)

Laboratory: Alpha Analytical, Westborough, MA

SOP #	Title, Date, and URL (if available)	Definitive or Screening Data	Matrix/Analytical Group	SOP Option or Equipment Type	[‡] Modified for Project? Y/N
2144 rev.2	Inductively coupled plasma-atomic emission spectrometry (ICP-AES), 2/2007, rev. 3 6010C	Definitive	Aqueous, Solids, Sludges, and Groundwater	Argon ICP	N
2156 rev.3	Inductively coupled mass spectrometry, 2/2007,rev.1 6020A	Definitive	Aqueous, Solids, Sludges, and Groundwater	ICP-MS	N
2146 rev.3	Mercury in Solid and Semi Solid Wastes, (Semi-Automated Cold- Vapor) 2/2007, rev. 2 7471B	Definitive	Solids, Sludges and Wastes	CVAA	N
2145 rev.2	Mercury In Liquid Waste (Semi- Automated Cold-Vapor Technique) 09/1994, Rev. 1 7470a	Definitive	Mobility-procedure extracts, aqueous wastes, and ground waters	CVAA	N
2136 rev.3	Acid Digestion of Sediments, Sludges, and Soils Using Block Digestion, 12/1996, rev 2, 3050B	Definitive	sediments, sludges, and soil samples	Hot Block digestion	N

SOP #	Title, Date, and URL (if available)	Definitive or Screening Data	Matrix/Analytical Group	SOP Option or Equipment Type	[‡] Modified for Project? Y/N
2134 rev. 2	Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by ICP Spectroscopy, 7/1992, rev 1 3005A	Definitive	Surface and Groundwater Samples	Hot Block digestion	N
2132 rev.2	Microwave Assisted Acid Digestion of Aqueous Samples and Extracts, 12/1997, 3015A	Definitive	Aqueous, and Extraction Leachates	Microwave Digestion	N

‡ A brief summary of project-specific SOP modifications must be provided on this worksheet or referenced.

QAPP Worksheet #25: Analytical Instrument and Equipment Maintenance, Testing, and Inspection (UFP-QAPP Manual Section 3.2.3) (EPA 2106-G-05 Section 2.3.6)

Laboratory: Alpha Analytical, Westborough, MA

Instrument / Equipment	Maintenance Activity	Testing Activity	Inspection Activity	Frequency	Acceptance Criteria	Corrective Action	Title/position responsible for corrective action	Reference
ICP-MS	Introduction system cleaning. Torch and Cones cleaning. Rough pump oil change	Nebulizer backpressure monitoring. Vacuum reading.	Software monitored. Oil reservoir.	Continuous	<2.4 PSI Neb. <2.1X104 vacuum	Clean and restore Change oil, evacuate ballast	ICP-MS Analyst	1558 QM 2156 rev.3 ICP
ICP	Introduction system cleaning. Torch Clean Flow adjustment. Cell conditioning	Nebulization monitoring	Visual	Daily	Flow consistent and unobstructed	Dismantle, clean	ICP Analyst	1558 QM 2144 rev. 2
CVAA	Sensitivity Test	Adjust and rerun	Flow rate acceptance	Adjust and rerun	Flow rate acceptance	Adjust, line replacement	Analyst	1558 QM 2145 rev.2 2146 rev.3

Title: Revision Number: Revision Date: Page 2 of 2

Instrument / Equipment	Maintenance Activity	Testing Activity	Inspection Activity	Frequency	Acceptance Criteria	Corrective Action	Title/position responsible for corrective action	Reference
CVAA	Sample delivery tubing	Inspect for wear	Visual	Daily inspection Weekly replacement	Uptake acceptance	Replacement	Analyst	1558 QM 2145 rev.2 2146 rev.3
CVAA		Lamp output		Semi-annual	Low standard sensitivity	Replacement of lamp	Analyst	1558 QM 2145 rev.2 2146 rev.3
CVAA	Autosampler control arms	Freely moving, sample position acquired		Daily	Working condition	Lubricate with silicon	Analyst	1558 QM 2145 rev.2 2146 rev.3

QAPP Worksheet #26 & 27: Sample Handling, Custody, and Disposal (UFP-QAPP Manual Section 3.3) (EPA 2106-G-05 Section 2.3.3)

Sampling Organization: Project Specific

Laboratory: Alpha Analytical, Westborough, MA

Method of sample delivery (shipper/carrier): UPS, Fed-EX or laboratory courier

Number of days from reporting until sample disposal: Project Specific

Activity	Organization and title or position of person responsible for the activity	SOP reference
Sample labeling	Client-assigned field staff	N/A
Chain-of-custody form completion	Client-assigned field staff	N/A
Packaging	Client-assigned field staff	N/A
Shipping coordination	Client-assigned field staff	N/A
Sample receipt, inspection, & log-in	Laboratory Log-In/Custody Staff	1559
Sample custody and storage	Laboratory Log-In/Custody Staff	1559, 1560
Sample disposal	Laboratory Log-In/Custody Staff	1559, 1560
APPENDIX G

RESPONSIBILITIES OF OWNER AND REMEDIAL PARTY

Responsibilities of the Owner and Remedial Party

The responsibilities for implementing the Site Management Plan ("SMP") for the United Cleaners site (the "site"), number 828152, are divided between the site owner(s) and a Remedial Party, as defined below. The owner(s) is/are currently listed as:

Frontier Center, LLC (the "owner") 90 Air Park Drive, Suite 301 Rochester, New York 14624 Contact: Richard J. Chiarenza

Solely for the purposes of this document and based upon the facts related to a particular site and the remedial program being carried out, the term Remedial Party ("RP") refers to any of the following: certificate of completion holder, volunteer, applicant, responsible party, and, in the event the New York State Department of Environmental Conservation ("NYSDEC") is carrying out remediation or site management, the NYSDEC and/or an agent acting on its behalf. The RP is:

S-P Associates, L.P. (the "responsible party") 1265 Scottsville Road Rochester, New York 14624 Contact: Ron Cocquyt

Nothing on this page shall supersede the provisions of an Environmental Easement, Consent Order, Consent Decree, agreement, or other legally binding document that affects rights and obligations relating to the site.

Site Owner's Responsibilities:

- 1) The owner shall follow the provisions of the SMP as they relate to future construction and excavation at the site.
- 2) In accordance with a periodic time frame determined by the NYSDEC, the owner shall periodically certify, in writing, that all Institutional Controls set forth in a(n) Environmental Easement remain in place and continue to be complied with. The owner shall provide a written certification to the RP, upon the RP's request, in order to allow the RP to include the certification in the site's Periodic Review Report (PRR) certification to the NYSDEC.
- 3) In the event the site is delisted, the owner remains bound by the Environmental Easement and shall submit, upon request by the NYSDEC, a written certification that the Environmental Easement is still in place and has been complied with.
- 4) The owner shall grant access to the site to the RP and the NYSDEC and its agents for the purposes of performing activities required under the SMP and assuring compliance with the SMP.
- 5) The owner is responsible for assuring the security of the remedial components located on its property to the best of its ability. In the event that damage to the remedial components or

vandalism is evident, the owner shall notify the site's RP and NYSDEC in accordance with the timeframes indicated in Section 2.4.2-Notifications.

- 6) In the event some action or inaction by the owner adversely impacts the site, the owner must notify the site's RP and the NYSDEC in accordance with the time frame indicated in Section 2.4.2- Notifications and (ii) coordinate the performance of necessary corrective actions with the RP.
- 7) The owner must notify the RP and the NYSDEC of any change in ownership of the site property (identifying the tax map numbers in any correspondence) and provide contact information for the new owner of the site property. 6 NYCRR Part contains notification requirements applicable to any construction or activity changes and changes in ownership. Among the notification requirements is the following: Sixty days prior written notification must be made to the NYSDEC. Notification is to be submitted to the NYSDEC Division of Environmental Remediation's Site Control Section. Notification requirements for a change in use are detailed in Section 2.4 of the SMP. A 60-Day Advance Notification Form and Instructions are found at <u>http://www.dec.ny.gov/chemical/76250.html</u>.
- 8) The owner will ensure that the sub-slab depressurization system is running on behalf of the RP and will notify the RP if any system components are not property functioning. The RP remains ultimately responsible for maintaining the engineering controls.
- 9) Until such time as the NYSDEC deems the vapor mitigation system unnecessary, the owner shall operate the system, pay for the utilities for the system's operation, and report any maintenance issues to the RP and the NYSDEC.
- 10) In accordance with the tenant notification law, within 15 days of receipt, the owner must supply a copy of any vapor intrusion data, that is produced with respect to structures and that exceeds NYSDOH or OSHA guidelines on the site, whether produced by the NYSDEC, RP, or owner, to the tenants on the property. The owner must otherwise comply with the tenant and occupant notification provisions of Environmental Conservation Law Article 27, Title 24.

Remedial Party Responsibilities

- 1) The RP must follow the SMP provisions regarding any construction and/or excavation it undertakes at the site.
- 2) The RP shall report to the NYSDEC all activities required for remediation, operation, maintenance, monitoring, and reporting. Such reporting includes, but is not limited to, periodic review reports and certifications, electronic data deliverables, corrective action work plans and reports, and updated SMPs.
- 3) Before accessing the site property to undertake a specific activity, the RP shall provide the owner advance notification that shall include an explanation of the work expected to be completed. The RP shall provide to (i) the owner, upon the owner's request, (ii) the NYSDEC, and (iii) other entities, if required by the SMP, a copy of any data generated during the site visit and/or any final report produced.
- 4) If the NYSDEC determines that an update of the SMP is necessary, the RP shall update the SMP and obtain final approval from the NYSDEC. Within 5 business days after NYSDEC approval, the RP shall submit a copy of the approved SMP to the owner(s).

- 5) The RP shall notify the NYSDEC and the owner of any changes in RP ownership and/or control and of any changes in the party/entity responsible for the operation, maintenance, and monitoring of and reporting with respect to any remedial system (Engineering Controls). The RP shall provide contact information for the new party/entity. Such activity constitutes a Change of Use pursuant to 375-1.11(d) and requires 60-days prior notice to the NYSDEC. A 60-Day Advance Notification Form and Instructions are found at http://www.dec.ny.gov/chemical/76250.html.
- 6) The RP shall notify the NYSDEC of any damage to or modification of the systems as required under Section 2.4.2- Notifications of the SMP.
- 7) The RP is responsible for the proper maintenance of any installed vapor intrusion mitigation systems associated with the site, as required in Section 4 (Operation and Maintenance) of the SMP.
- 8) Prior to a change in use that impacts the remedial system or requirements and/or responsibilities for implementing the SMP, the RP shall submit to the NYSDEC for approval an amended SMP.
- 9) Any change in use, change in ownership, change in site classification (*e.g.*, delisting), reduction or expansion of remediation, and other significant changes related to the site may result in a change in responsibilities and, therefore, necessitate an update to the SMP and/or updated legal documents. The RP shall contact the Department to discuss the need to update such documents.

Change in RP ownership and/or control and/or site ownership does not affect the RP's obligations with respect to the site unless a legally binding document executed by the NYSDEC releases the RP of its obligations.

Future site owners and RPs and their successors and assigns are required to carry out the activities set forth above.

APPENDIX 2

H&A Decommissioning Documentation

HALEY & ALDRICH OF NEW YORK 200 Town Centre Drive Suite 2 Rochester, NY 14623 585.359.9000

28 July 2021 File No. 127833-001

New York State Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road East Avon, New York 14414

Attention: Ms. Danielle Miles

Subject: Well Decommissioning Summary Report United Cleaners Site 2199 East Henrietta Road, Henrietta, New York Site Number: 828152

Dear Ms. Miles:

On behalf of S-P Associates, L.P. (SP), Haley & Aldrich of New York (Haley & Aldrich) is submitting this well decommissioning summary report in connection with the United Cleaners site located in Henrietta, New York. In a letter dated 29 March 2021, New York State Department of Conservation (NYSDEC) approved SP's request to discontinue groundwater monitoring at the site and required decommissioning of the remaining groundwater monitoring wells. Haley & Aldrich submitted a well decommissioning work plan on 22 April 2021, which was conditionally approved by NYSDEC via letter dated 17 May 2021. Well decommissioning was performed on 2 and 3 June 2021, in accordance with the approved work plan and NYSDEC Policy CP-43: Groundwater Monitoring Well Decommissioning Policy.

Well Decommissioning Procedures

Trec Environmental Inc. (Trec) located in Spencerport, New York was contracted to perform the well decommissioning work. See Figure 1 for the locations of the nine (9) monitoring wells that were decommissioned and Appendix A for the well decommissioning logs.

Five of the nine groundwater monitoring wells were located onsite, currently owned by Frontier Center LLC (Frontier), and four were located adjacent to the site on Town of Henrietta property. Notifications were made to Frontier and the Town of Henrietta for access to the wells prior to initiating well decommissioning activities. The wells were decommissioned as described below.

 Trec utilized a mini-excavator to pull the well casing while pumping a cement grout mixture into the borehole using tremie pipes and a mechanical pump. Two of the well casings were fully removed using this method. Six of the well casings were unable to be fully removed and were cut off at five feet below grade and grouted in place in accordance with the decommissioning procedures. At one well, MW-15R, the casing was cut at five feet below grade but was unable to be removed at that point. The casing was then cut at four feet below grade, removed and the remaining subgrade casing was grouted in place.

- The cement/bentonite grout mixture consisted of approximately one pound of bentonite per 25-pounds of Portland cement.
- Concrete surface seals and protective casings were mechanically broken up and removed.

Three of the monitoring wells, MW-15, MW-18 and HA-4, were located in the Soil Management Area (SMA) as shown on Figure 1. Vapor monitoring with a photoionization device (PID) was implemented within the work zone during well decommissioning activities to screen for elevated volatile organic compound vapors. Volatile organic vapors were not detected using the PID.

Site Restoration and Waste Disposal

BACKFILLING AND SITE RESTORATION

The uppermost portion of the boreholes were filled with bagged topsoil (per the approved Site Management Plan). The ground surface of each borehole was restored in kind to the area surrounding the borehole with either topsoil or asphalt cold patch.

WASTE DISPOSAL

No soils were generated during well decommissioning activities. The PVC riser pipe, protective casing, concrete, and road box materials removed during decommissioning were brought to Trec's shop for placement in the dumpster and disposal as non-hazardous, general construction and demolition waste by Casella at an approved waste disposal facility.

Should you have any questions regarding this letter, please do not hesitate to contact us.

Sincerely yours, HALEY & ALDRICH OF NEW YORK

Janice D. Szucs, P.E. (NY) Senior Project Manager

Attachments: Figure 1 – Site Plan Appendix A – Well Decommissioning Logs

(sh Whit

Glenn M. White Associate

G:\Projects\33587_Suburban Plaza\Well Decommissioing Summary Report\2021-0728_HA Well Decommissioning Summary Report-F.docx

FIGURE

.

APPENDIX A

Well Decommissioning Logs

			<u> </u>				Well No.
ALERIC		WELL I	DECO	MMISSIO	NING	REPORT	HA-105
PROJECT	Well Decc	ommissioning			· · · · · · · · · · · · · · · · · · ·	H&A FILE NO.	127833-009
LOCATION	Henrietta,	NY			PROJECT MGR.	J. Szucs	
CLIENT	United Cle	eaners				FIELD REP.	R. Lydell
CONTRACTOR	Tree Envi	ronmental				REMOVAL DATE	6/2/2021
		Well Designatio	π	HA-105			
		Well Diameter		2in			
		Decommissionin	ng Technique	Pull casing and grout in	place		
		Depth to Groun	dwater	2,70			
		Total Depth of	Well	18.50			
			Cement	Additive	Water	Total Volume	
			(Lbs Bags*)	(Lbs Gals.)	(Gals.)	(Gals.)	
		Туре	I/II Portland	Bentonite granular			
		Manufacturer	Quikrete	Benseal		terine Antonia (antonia) antonia Antonia (antonia) antonia	
		Quantity	25 lbs.	1 lbs.	4	6	
*1 Bag = 94 Lbs.			•	1	1	L	
				Ground Surface			
001000000	P	t	· · · · · · · · · · · · · · · · · · ·	a la sel se d'an anno 1950 a 1950 a		T	
COMMENTS: 1	rec removes t	ne wen suckup, surf	ace completion a	nd bush adjacent to well up	anzing a mini exe	avator. Tree attempts to	o puu
	ove riser and b	teaks at inteads. The	base. Tree bart	Elle and restores around surfa	ce unizing a dov	a note cutter and grouts	
<u> </u>	unizing a grou	repump and tremmie	nose. Tree back	times and restores ground s	uriace with topso	11,	
1 -			·		· · · · · · · · · · · · · · · · · · ·		
- 1						· · · · ·	

** CLDR: WELL DECOMMISSIONING REPORT DA106 ** ONDECT Well Decommissioning Has FILE NO. IZ7833-002 DECATION Well Decommissioning FILE NO. IZ7833-002 DIAGO (TOR) Hearistin, NY FILE NO. IZ7833-002 DIAGO (TOR) Tree Environmental FILE NO. IZ7833-002 DIAGO (TOR) Tree Environmental FILE NO. IZ7833-002 Well Designation Environmental FILE NO. IZ7833-002 Depth to Groundwater 2:51 Total Depth of Well IZ171 Total Depth of Well IZ:01 Total Depth of Well IZ171 Total Depth of Well IZ:01 IZ:01 IZ:01 IZ:01 Depth to Groundwater 2:51 IZ:01 IZ:01 IZ:01 Total Depth of Well IZ:01 IZ:01 IZ:01 IZ:01 Manufacturer Quartity 25 lbs. Ibs. 4 5 1 Bag = 94 Lbs. IS:0 IS:0 IS:0 IS:0 IZ:01 VOMENTS: Tree removes the well slickep utilizing a mini execturer. Tree pulik per /iser and greents in tandem utilizing a grout pump and rem	**ZEBRICH WELL DECOMMISSIONING REPORT PROJECT Well Decommissioning III &A FILE NO. Henricta NY FROJECT NOR R. Jackell UCATION Tree Environmental FROJECT NOR R. Jackell ONTRACTOR Tree Environmental PROJECT NOR R. Jackell Well Designation 14.06	HALEV								Well No.
ROUECT Well Decompositioning It As FILE NO. 127833-009 OCATION Henrichtn, NY PRODOCT MCR. I. Struct CLENT United Cleaners FIELD REP. R. Lydell CONTRACTON Tere Environmental Photodo 210 Decommissioning Technique Pattodo 211 Decommissioning Technique Pattodo 2151 Tetal Depth of Well 17.61 Total Volume (Eds Bager) (Gals.) (Gals.) Total Depth of Well 17.61 1631.) Type UII Porthond Bentonic granular 21.51 Manufacturer Quifercte Benseal 21.51 Table of Outful Cleaners Ground Surface 21.51 10.51 I Bug = 94 Lbs. Ground Surface 51.5 (gals.) 10.51 St bgs St bgs 15.0 gals.) 10.51 10.51 Well Description The removes the well stickup utilizing a mini exervator. Tree pulls pre-riser and grouts in tandem utilizing a grout pump and tremmis lows. Tree buckfills and restores ground arface with topool. 10.51	PROJECT Well Decommissioning Hearietta, NY PROJECT MGR. I. Szass PROJECT MGR. I. SZASS PROJECT MGR. I. SZASS P	' ÄĽDRI	СН	WELL I	DECO	MMISSIO.	NING R	REPORT		HA-106
JUEATION Hemrietta, NY PROJECT MGR. J. Saues JUEATION Tree Eavironmental REMOVAL DATE ONTRACTOR Tree Eavironmental REMOVAL DATE Well Designation HA-106	LOCATION Henricta, NY PROJECT NGG, J. Stores FIELD REP. RELARCE. S. Locell CONTRACTOR Tree Environmental Plantic Planting Plant	PROJECT	Well	Decommissioning]	H&A FILE NO.	12783	3-009
LLLAY Utiled (clearers FILD KEP, K. 1/2021 CONTRACTOR Tree Environmental REMOVAL DATE 6/2/2021 Well Designation HA-106 100 6/2/2021 Decommissioning Technique Pall cosing	COMMENTS: Tree removes the well stickup utilizing a mini excavator. Tree pulk pee riser and grouts in tandem utilizing a grout pump and tremmine hose. Tree backfills and restores ground surface with topsol.	LOCATION	Henri	etta, NY]	PROJECT MGR.	J. Szu	CS
Well Designation HA-106 Well Designation Participant Decommissioning Technique Participant Depth of Granudwater 2.51 Total Depth of Well 17.61 Type ITI Portland Betonite granular Grats.) Quansity 25 lbs. I Bag = 94 Lbs. Ground Surface Sit bgs 5 lt bgs Sit bgs Sit bgs <t< td=""><td>COMMENTS: Tree removes the well stickup utilizing a mini excurvator. Tree pulk pue riser and grouts in tandem utilizing a grout pump and tremmine hose. Tree backfills and restores ground surface with topsoil.</td><td>CLIENI CONTRACTO</td><td>R Tree l</td><td>d Cleaners</td><td></td><td></td><td></td><td>FIELD REP. REMOVAL DATE</td><td>$\frac{K.Ly}{6/2/2}$</td><td></td></t<>	COMMENTS: Tree removes the well stickup utilizing a mini excurvator. Tree pulk pue riser and grouts in tandem utilizing a grout pump and tremmine hose. Tree backfills and restores ground surface with topsoil.	CLIENI CONTRACTO	R Tree l	d Cleaners				FIELD REP. REMOVAL DATE	$\frac{K.Ly}{6/2/2}$	
Well Displanter 2m Decommissioning Technique Pall cosing Depth of Groundwater 2.51 Total Depth of Well 1761 Except of Well 1763 Generat Additive Ubs Baget) Ubs Cabe.) Galab Galab Manufacturer Quikrete Bag = 94 Lbs. Ground Surface Concent Surface	Well Disgnation 14.106 Well Dismeter 2in Decommissioning Technique Pall casing Depth to Groundwater 2.51 Total Depth of Well 71.201 Image: State of Well 71.201 Image: State of Well 17.201 Image: State of Well 17.201 Image: State of Well 17.201 Image: State of Well 11.201 Image: State of Well Image: State of Well Image: State of Well Image: State of Well	contratero	<u></u>			· · · · · · · · · · · · · · · · · · ·				~ 1
Weil Dameter in	COMMENTS: The removes the well stickup utilizing a mini excavator. The pulk peen iser and grouts in tandem utilizing a grout pump and the mini ender of the contact of the			Well Designatio	n	HA-106				
Devolution of Weil 2.51 Total Depth to Groundwater 2.51 Total Depth to Ground Surface (Gals.) Type UI Portland Bentonic granular (Gals.) Quantity 25 lbs. 1 Bag = 94 Lbs. 4 Ground Surface 5 ft bgs S ft bgs 5 ft bgs S ft bgs 5 ft bgs Tree removes the well stickup utilizing a mini exeavator. Tree pulls pve riser and grouts in tandem utilizing a grout pump and tremmic hose. Tree backfilts and restores ground arrhee with tepsol.	COMMENTS: Tree removes the well stickup utilizing a mini excavator. Tree pulls pve riser and grouts in tandem utilizing a grout pump and tremmie hose. Tree backfills and restores ground surface			Well Diameter	a Taskulaua	2m				
Total Depth of Well 17.61 Total Depth of Well 17.61 Image: Stress of the second sec	COMMENTS: Tree removes the well stickup utilizing a mini excavator. Tree pulls pve riser and grouts in tandem utilizing a grout pump and tremmine hose. Tree backfills and restores ground surface with topsoil.			Depth to Groun	ig rechnique	2 51				
Cement (Lbs.: Brage*) Additive (Lbs.: Gals.) Total Volume (Gals.) Type I/II Portland Bentonic granular Image: Gals.) Manufacturer Quiltrete Beaseal Image: Gals.) Quantity 25 lbs. 1 lbs. 4 6	Comment (Lbs Bags*) Additive (Lbs Gats.) Total Volume (Gats.) Type I/11 Portland Beatonite granular Image: Second S			Total Depth of V	Well	17.61				
'OMMENTS: Tree removes the well stickup utilizing a mini excavator. Tree pulls pve riser and grouts in tandem utilizing a grout pump and restores ground surface with topsoil.	COMMENTS: Tree removes the well stickup utilizing a mini exeavator. Tree pulls pee riser and grouts in tandem utilizing a grout pump and tremmine hose. Tree backfills and restores ground surface with topsol.				Cement	Additive	Water	Total Volume		
Type UII Portland Beatonite granular Image State Manufacturer Quantity 25 lbs. 1 lbs. 4 6 1 Bag = 94 Lbs. Ground Surface State State State State Oround Surface Oround Surface State Oround Surface State Cround Surface State Oround Surface State Oround Surface Constant Surface State Constant Surface State Constant Surface State State State State State Constant State State State State State State State State	Type //11 Portland Bentonite granular Image: Second				(Lbs Bags*)	(Lbs Gals.)	(Gats.)	(Gals.)		
Manufacturer Quikrete Bensenl Source 11 Bag = 94 Lbs. 4 6 12 Bag = 94 Lbs.	Manufacturer Quikrete Benseal Image: Constraint of the second seco			Туре	I/II Portland	Bentonite granular		ne Konsertuitier in Konsertuitieri		
Quantity 25 lbs. 1 lbs. 4 6 11 Bag = 94 Lbs.	Quantity 25 lbs. 1 lbs. 4 6 *1 Bag = 94 Lbs.			Manufacturer	Quikrete	Benseal				
11 Bag = 94 Lbs. Siketch: Ground Surface S ft bgs S ft bgs Understand S ft bgs S ft bgs <td>*I Bag = 94 Lbs. Sketch: Ground Surface S ft bgs S ft bgs COMMENTS: Tree removes the well stickup utilizing a mini excavator. Tree pulls pve riser and grouts in tandem utilizing a grout pump and tremmie hose. Tree backfills and restores ground surface with topsoil.</td> <td></td> <td></td> <td>Quantity</td> <td>25 lbs.</td> <td>I lbs.</td> <td>4</td> <td>6</td> <td></td> <td></td>	*I Bag = 94 Lbs. Sketch: Ground Surface S ft bgs S ft bgs COMMENTS: Tree removes the well stickup utilizing a mini excavator. Tree pulls pve riser and grouts in tandem utilizing a grout pump and tremmie hose. Tree backfills and restores ground surface with topsoil.			Quantity	25 lbs.	I lbs.	4	6		
Convertises Ground Surface S ft bgs 5 ft bgs S ft bgs Second Surface Source Second Surface Second Surface Second Surface Second	COMMENTS: Tree removes the well stickup utilizing a mini excavator. Tree pulls pve riser and grouts in tandem utilizing a grout pump and tremmie hose. Tree backfills and restores ground surface with topsoil.	*1 Bag = 94 Lbs			1					
COMMENTS: Tree removes the well stickup utilizing a mini excavator. Tree pulls pvc riser and grouts in tandem utilizing a grout pump and tremmic hose. Tree backfills and restores ground surface with topsoil.	COMMENTS: Tree removes the well stickup utilizing a mini excavator. Tree pulls pvc riser and grouts in tandem utilizing a grout pump and tremmie hose. Tree backfills and restores ground surface with topsoil.									
		COMMENTS:	Trec remo	wes the well stickup utiliz ose. Trec backfills and r	zing a mini excav estores ground su	ator. Trec pulls pvc riser a	and grouts in tanden	n utilizing a grout pun	p and	
			<u></u>	·······		· · · · · · · · · · · · · · · · · · ·				

" <u>K</u> Ebric							Well No.
		VELL I	DECO	MMISSIO.	NING R	EPORT	HA-107
ROJECT	Well Decor	127833-009					
OCATION	Henrietta, N	<u>1Y</u>		Pl	ROJECT MGR.	J. Szucs	
ONTRACTOR	Trec Enviro	nmental			P	IELD KEP. EMOVAL DATE	6/2/2021
		Wall Designatio	10	HA 107			·····
		Well Dismeter	111	2in			
		Decommissioning Technique		Pull casing and grout in	n place		
		Depth to Groun	ndwater	8,53			
		Total Depth of	Well	17.80			
			Cement	Additive	Water	Total Volume	
			(Lbs Bags*)	(Lbs Gals.)	(Gais.)	(Gals.)	
		Туре	I/II Portland	Bentonite granular			
		Manufacturer	Quikrete	Benseal			
		Quantity	25 lbs.	l lbs.	4	6	
$1 \operatorname{Bag} = 94 \operatorname{Lbs}$						I I	
OMMENTE. T	rec removes th	e well stickup and	surface completion	on utilizing a mini excavate arface utilizing a down hole	or. Trec attempts to performed to the second seco	oull pvc riser and breat ilizing a grout pump	aks at and
	nreads. Trec cu emmie hose.	Free backfills and r	estores ground su	rface with topsoil.			

	TX		DECO	MMISSIO	NINC D	FDODT		Well No.
CH	V			VIIVII5510				HA-208
Wel Han	II Decom	missioning V		· · · · · · · · · · · · · · · · · · ·		I&A FILE NO.	127 T S	53-009 1105
Uni	ted Clear	iers			F	IELD REP.	R. L	vdell
Tree	c Enviror	imental		· · · · · · · · · · · · · · · · · · ·	R	EMOVAL DATE	6/3/	2021
		Well Designatio	n	HA-208				
		Well Diameter		2in				
		Decommissionin	ng Technique	Pull casing and grout in	a place			
		Depth to Groun	ıdwater	2,65				
		Total Depth of Well		14.47				
		Cement		Additive	Water	Total Volume		
			(Lbs Bags*)	(Lbs Gals.)	(Gals.)	(Gals.)		
		Туре	I/II Portland	Bentonite granular				
		Manufacturer	Quikrete	Benseal				
		Quantity	25 lbs.	1 lbs.	4	6		
Trec ren at thread tremmie	noves the ds. Trec c e hose. T	well flushmount : suts the pvc riser f rec backfills and i	and surface comp 5 ft below ground restores ground su	letion utilizing a mini exce surface utilizing a down h ırface with topsoil.	ivator. Trec attempts ole cutter and grouts	s to pull pvc riser and utilizing a grout pum	breaks p and	
Trec at thr trem	rei ead	removes the eads. Tree c mie hose. T	removes the well flushmount eads. Trec cuts the pvc riser : mie hose. Trec backfills and	removes the well flushmount and surface comp eads. Trec cuts the pvc riser 5 ft below ground mie hose. Trec backfills and restores ground su	removes the well flushmount and surface completion utilizing a mini exca eads. Trec cuts the pvc riser 5 ft below ground surface utilizing a down h mie hose. Trec backfills and restores ground surface with topsoil.	removes the well flushmount and surface completion utilizing a mini excavator. Trec attempts eads. Trec cuts the pvc riser 5 ft below ground surface utilizing a down hole cutter and grouts mie hose. Trec backfills and restores ground surface with topsoil.	removes the well flushmount and surface completion utilizing a mini excavator. Trec attempts to pull pvc riser and eads. Trec cuts the pvc riser 5 ft below ground surface utilizing a down hole cutter and grouts utilizing a grout pum mie hose. Trec backfills and restores ground surface with topsoil.	removes the well flushmount and surface completion utilizing a mini excavator. Trec attempts to pull pvc riser and breaks eads. Trec cuts the pvc riser 5 ft below ground surface utilizing a down hole cutter and grouts utilizing a grout pump and mie hose. Trec backfills and restores ground surface with topsoil.

							Well No.
"ALBRIC	H V	VELL I	DECON	MMISSIO	NING R	EPORT	HA-209
PROJECT	Well Decom	nmissioning			H	&A FILE NO.	127833-009
LOCATION	Henrietta, N	Y			P]	ROJECT MGR.	J. Szucs
CLIENT	United Clear	ners			FI	ELD REP. Emoval date	R. Lydell
					•••		
		Well Designatio	n	HA-209			
		Weil Diameter	a Tashniana	2in			
		Depth to Group	ig reeniique dwater	2.06			
		Total Depth of	Well	19.55			
			Cement	Additive	Water	Total Volume	
			(Lbs Bags*)	(Lbs Gals.)	(Gals.)	(Gals.)	
		Туре	I/II Portland	Bentonite granular			
		Manufacturer	Quikrete	Benseal			
		Quantity	25 lbs.	l lbs.	4	6	
*1 Bag = 94 Lbs.		.1		1	1	1	
				5 fi bgs			
COMMENTS: <u>Tr</u> uti	rec removes the ilizing a grout p	e well flushmount	and surface comp those. Trec back	letion utilizing a mini exce fills and restores ground so	wator. Tree pulls poor	e riser and grouts in t	landem
COMMENTS: <u>Tr</u> uti	rec removes the	e well flushmount	and surface comp	letion utilizing a mini exca	wator. Tree pulls pro urface with topsoil.	e riser and grouts in t	landem

HALEY.					· · · · · · · · · · · · · · · · · · ·		Well Ne
aldric	ж V	VELL I	DECO	MMISSIO	NING R	REPORT	НА-3
PROJECT	Well Decon	nmissioning				II&A FILE NO.	127833-009
LOCATION	Henrietta, N	ΙY				PROJECT MGR.	J. Szucs
CLIENT	United Clea	iners				FIELD REP.	R. Lydell
LUNIKACIOK				······		REMOVAL DATE	0/2/2021
		Well Designatio	n	<u>HA-3</u>			
		Weil Diameter	a Taabulana	2in			
		Denth to Group	dwater	25 34	i piace		
		Total Depth of	Well	42.74			
			Cement	Additive	Water	Total Volume	
			(Lbs Bags*)	(Lbs Gals.)	(Gals.)	(Gals.)	
		Туре	I/II Portland	Bentonite granular			
		Manufacturer	Quikrete	Benseal			
		Quantity	50 lbs.	2 lbs.	8	12	
1 Bag = 94 Lbs.]			· · · ·
				unofficiary data in the standard data			
COMMENTS: <u>Ti</u> ati 	rec removes the threads. Trec ind tremmic ho	e well stickup and cuts the pvc riser f se. Trec backfills	surface completio S ft below ground and restores ground	n utilizing a mini excavato surface utilizing a down h id surface with topsoil.	or. Trec attempts to ole cutter and grout	pull pvc riser and brea s utilizing a grout pum	aks
COMMENTS: <u>11</u> 	rec removes the t threads. Trec ind tremmie ho	e well stickup and cuts the pvc riser : se. Trec backfills a	surface completio 5 ft below ground and restores groun	n utilizing a mini excavato surface utilizing a down h id surface with topsoil.	or. Tree attempts to ole cutter and grout	pull pvc riser and brea s utilizing a grout pum	aks

								Well No.
ЮН	W	ELL I	DECO	MMISSIO	NING R	EPORT		HA-4
We	ll Decomm	issioning			Н	&A FILE NO.	12783	3-009
Hen	nrietta, NY				Pi	ROJECT MGR.	J. Szu	cs
Uni DR Tree	ted Cleane	rs	FI	IELD REP. Emoval date	$\frac{R.Ly}{6/2/20}$			
<u> </u>	e Environn							
	V	Vell Designatio	n	<u>HA-4</u>				
	V D	Vell Diameter	Tbt	2in				
	L n	apth to Group	ig rechnique	Puil casing and grout in		<u></u>		
	л Т	Fotal Denth of V	Well	42.85				
	Γ	toun Depin of	Comont	Additiva	Watan	Total Valuma		
			(Lbs Bags*)	(Lbs Gals.)	(Gats.)	(Gals.)		
	Т	Гуре	1/II Portland	Bentonite granular		Gailst		
	N	danufacturer	Quikrete	Benseal				
	Q	Quantity	50 lbs.	2 lbs.	8	12		
S.	<u> </u>							
Trec ren threads. tremmie	moves the w . Trec cuts t e hose. Trec	rell stickup and : the pvc riser 5 ft backfills and re	surface completion below ground su estores ground su	on utilizing a mini excavato Irface utilizing a down holo Irface with topsoil.	or. Trec attempts to p e cutter and grouts uti	ull pvc riser and brea lizing a grout pump a	iks at ind	
Trec ren threads. tremmie	m e l	oves the w Trec cuts t nose. Trec	oves the well stickup and a Trec cuts the pvc riser 5 fl nose. Trec backfills and r	oves the well stickup and surface completic Trec cuts the pvc riser 5 ft below ground su nose. Trec backfills and restores ground su	oves the well stickup and surface completion utilizing a mini excavate Trec cuts the pvc riser 5 ft below ground surface utilizing a down hole nose. Trec backfills and restores ground surface with topsoil.	oves the well stickup and surface completion utilizing a mini excavator. Trec attempts to p Trec cuts the pvc riser 5 ft below ground surface utilizing a down hole cutter and grouts uti nose. Trec backfills and restores ground surface with topsoil.	oves the well stickup and surface completion utilizing a mini excavator. Tree attempts to pull pvc riser and brea Tree cuts the pvc riser 5 ft below ground surface utilizing a down hole cutter and grouts utilizing a grout pump a nose. Tree backfills and restores ground surface with topsoil.	oves the well stickup and surface completion utilizing a mini excavator. Tree attempts to pull pye riser and breaks at Tree cuts the pye riser 5 ft below ground surface utilizing a down hole cutter and grouts utilizing a grout pump and nose. Tree backfills and restores ground surface with topsoil.

								Well No.
HALEX.	СН	WELL I	DECON	MMISSIO	NING]	REPORT		HA-15R
PROJECT	Well I	Decommissioning				H&A FILE NO.	1278	33-009
LOCATION	Henrie	etta, NY	Y					
CLIENT	R Tree F	1 Cleaners				FIELD REP. Removal date	$\frac{K.L}{6/3/2}$	021
contributero	<u></u>					REALOTAL DATE		
		Well Designation	n	HA-15R				
		Well Diameter	a Technique	2m				
		Depth to Crown	g Teennique dwotor		piace	<i></i> ,		
		Total Depth of V	Vell	14.96				
			Cament	A diditiva	Wator	Total Voluma		
			(Lhs Bags*)	(Lbs Gals.)	(Gals.)	(Gals.)		
		Туре	I/II Portland	Bentonite granular		Country		
		Manufacturer	Quikrete	Benseal				
		Quantity	25 lbs.	1 lbs.	4	6		
*1 Bag = 94 Lbs	i.					I I		
				Ground Surface				
COMMENTS:	Trec remo	ves the well flushmount a	and surface comp	letion utilizing a mini exca	vator. Trec atten	npts to pull pvc riser and	breaks	
	at threads.	Tree cuts the pvc riser 5	A below ground	surface utilizing a down h	ole cutter but can	not be removed. Trec r	e-cuts	
	the pvc ris	er 4 ft below ground surf	ace, removes and	grouts utilizing a grout pu	imp and tremmie	hose. Tree backfills and		
	restores gr	ound surface with topsoil						
				,				

MALEX	СН	WELL I	DECON	MMISSIO	NING F	REPORT		Well No. MW-18R
PROJECT	Well Decr	mmissioning				H&A FILE NO	1279	33-009
LOCATION	Henrietta,	NY		······		PROJECT MGR.	J. Sz	ucs
CLIENT	United Cl	eaners				FIELD REP.	R. L	ydell
CONTRACTOR	Trec Envi	ronmental		· · · · · · · · · · · · · · · · · · ·		REMOVAL DATE	6/3/2	021
		Well Designatio	חו	MW-18R				
		Well Diameter		2in				
		Decommissionin	ng Technique	Pull casing and grout in	place			
		Depth to Groun	dwater	6,61				
		Total Depth of	Well	14.74				
			Cement	Additive	Water	Total Volume		
			(Lbs Bags*)	(Lbs Gals.)	(Gals.)	(Gals.)		
		Туре	I/II Portland	Bentonite granular				
		Manufacturer	Quikrete	Benseal				
		Quantity	25 lbs.	1 lbs.	4	6		
*1 Bag = 94 Lbs.			<u>I</u>					
				5 ft bgs				
1								
COMMENTS:	Frec removes t at threads. Tre remmie hose.	he well flushmount a c cuts the pvc riser 5 Trec backfills with	and surface comp 5 ft below ground topsoil and restore	letion utilizing a mini exca surface utilizing a down h es ground surface with asp	ivator. Trec attemp ole cutter and grout halt patch.	ts to pull pvc riser and s utilizing a grout pun	l breaks np and	
COMMENTS: 1	Frec removes t at threads. Tre remmie hose.	he well flushmount a c cuts the pvc riser 5 Trec backfills with	and surface comp 5 ft below ground topsoil and restore	letion utilizing a mini exca surface utilizing a down h es ground surface with asp	ivator. Trec attemp ole cutter and grout halt patch.	ts to pull pyc riser and s utilizing a grout pun	l breaks	