Construction Completion Report Sub-Slab Depressurization System Install Former Erwin Dry Cleaners Site (828154)

Date: July 19, 2022

To: Matt Dunham (NYSDEC)

From: Heather Budzich and Matt Crance (Parsons)

Background

This memorandum was prepared to document the installation of a sub-slab depressurization system (SSDS) at an off-site property to the Former Erwin Dry Cleaners site (Site). The work was performed on January 25 and 26, with troubleshooting on February 9, and March 7, 2022. The work was authorized under NYSDEC Contract D009811, work assignment (WA)-15. The Site is located at 1445 West Ridge Road, Greece, New York. The Site location and Site plan are included on Figures 1 and 2, respectively. The SSDS was installed in a private residence located southwest of and downgradient of the Site and is identified as "Property 3."

In general, soil vapor is a potential exposure pathway to site contamination associated with the Former Erwin Dry Cleaners Site. Results from Parsons 2018 soil vapor investigation detected perchloroethylene (PCE) and trichloroethylene (TCE) in sub-slab and indoor air samples. Comparison of these results to the May 2017 New York State Department of Health (NYSDOH) guidance matrices recommended mitigation of Property 3 to minimize current or potential exposures associated with soil vapor intrusion. Downgradient soil vapor and indoor air impacts are likely the result of transport of chlorinated solvents in groundwater and migration of contaminants into the vadose zone from the Site. Groundwater flow at the Site is to the southwest. The analytical data from the 2018 sampling efforts are included on Figure 3.

Field Observations

The mitigation system installed at Property 3 was designed to prevent the further intrusion of vapors from subsurface contamination associated with volatile organic compounds (VOCs). Parsons completed a site visit with the homeowners on December 6, 2021 to determine the optimum location for the SSDS. During the visit, Parsons noted the following details about the basement and utilities entering the house:

- No sump pump
- Storm drain at foot of basement stairs is plugged
- Electric line enters house directly above circuit breaker panel
- Circuit breaker panel is located along west wall of basement, toward back of house
- Gas line enters house near foot of basement stairs
- Limited utility access to the upper roof

The general sequence of events and safety considerations for installing the SSDS and associated piping are included below. A photo log documenting the SSDS install is included as **Attachment A**, and the Department of Environmental Remediation (DER) Mitigation System Installation Record form is included as **Attachment B**. Scanned copies of field safety paperwork are included in **Attachment C**.

Safety Considerations:

- On January 19, 2022, Parsons completed a one call notification with Dig Safely New York prior to initiating coring at Property 3.
- A 5-gas meter was used to monitor the breathing zone of workers prior to and during all intrusive field activities.
- The Parsons field team reviewed all applicable Activity Hazard Analyses (AHAs) prior to commencing work.
- Parsons field team donned face masks while working inside the house to mitigate the potential for exposure to COVID-19.
- Prior to coring, the basement window was opened, and a battery operated fan was turned on to facilitate venting of the workspace.

Coring through Sub-Slab and Hanging Pipe:

- Coring through the concrete basement slab took place near the center of the basement, inside a closet door (see photo log in Attachment A). The core diameter was 3.5 inches. Non-potable water was used to mitigate silica dust generation during coring. A wet vac was used to remove water from the basement floor at the same rate it was generated to avoid pooling. A concrete quick set mix was placed around the PVC piping extending through the cored subslab to create a seal.
- PVC piping was placed to extend from the basement floor up to the basement ceiling at the
 location of the cored sub-slab, then extended across the ceiling to the basement window
 located along the south side of the house. The piping along the ceiling was placed at a
 slightly slanted angle to allow for water drainage through the piping. SSDS piping was 3
 inches in diameter to fit the size of the core through the sub-slab.
- Low VOC glue and primer were used to assemble indoor PVC piping lengths. All Weather PVC glue was used to assemble outdoor PVC piping lengths due to the low temperatures encountered.
- Piping was affixed to ceiling joists/wall studs using wood screws and pipe hangers.
- Track mats were used to facilitate access of an all-terrain scissor lift equipped with outriggers
 to the backyard while minimizing damage to the property. The scissor lift was used by a
 Parsons trained and competent operator to affix the SSDS piping from the basement window
 and along the house exterior to three feet above the second story roof line. The Parsons field
 team reviewed the Parsons Working at Heights Rescue Plan prior to commencing work. An
 appropriate safety harness was worn at all times the scissor lift was in operation.
- A stud finder and thermal camera were used to locate studs on exterior walls of house to
 ensure piping was secure and to avoid the potential for unintentional drilling through a utility
 in the wall cavity.
- SSDS piping was installed to exit the basement window and extend along the exterior walls of
 the house to three feet above the second story roof line. Piping was affixed to the house along
 exterior siding and along the first floor roof overhang. The factory-produced rain cap ordered

DELIVERING A BETTER WORLD

- for SSDS installation had not yet arrived at the time of installation, so one was constructed using PVC piping and PVC vent screen caps.
- Screws were only used in exterior siding and soffits, and were not used to affix to the roof to secure piping. Hangers were used to secure the piping at each roof line.

Electrical Work:

- A RadonAway C Series GP501c radon mitigation blower with the serial number 221290 was
 procured and installed on the exterior of the house. The blower was also hooked up to the
 circuit breaker panel inside the house.
- The Town of Greece does not have any permit requirements for who completes electrical work but rather only requires that a building inspector comes to the property to review the work upon completion. The electrical inspection was performed on January 26, 2022 by John Scott of the New York Electrical Inspection Agency, Inc. following SSDS installation, and the inspection certificate is included as Attachment D.
- Electrical conduit was run from the home circuit breaker box to the blower, primarily across the basement ceiling through predrilled holes in joists
- All electric to the house was shut off prior to making the connection. Prior to shutting off the
 power, Parsons notified the property owner to transfer from their powered oxygen supply to a
 mobile oxygen supply. The duration of the power outage was less than 3 minutes.

System Operation/Maintenance:

- A communication test was performed following installation by drilling three test holes through
 the sub-slab at various distances from the SSDS core and measuring the vacuum beneath the
 sub-slab using an EHDIS digital manometer. A sketch showing testing locations and a table of
 manometer readings are included in **Attachment B.**
- The SSDS includes a pressure testing device (u-tube with red dye) so that the homeowner can check that the system is functioning properly. Service instructions were added to the SSDS along with a name and number to call to discuss any issues (Attachment E). Following initial installation, the responsibility for monitoring the system and paying electrical costs was transferred to the homeowner.
- Following reports from the homeowner that pressure in the system was sometimes dropping to zero overnight, Parsons staff returned to the property on February 9, 2022. The initial reading on the system's u-tube at this time was 0.5" H₂O. At the homeowner's request, Parsons added a manual condensate drain to the SSDS piping just inside of the basement window. The homeowner requested that the condensate drain would drain into a 5-gallon bucket near the window instead of a sink or other location. Once the condensate drain was added, the SSDS vacuum extraction increased to 1.5-1.7" H₂O. Parsons staff left the factory-produced rain cap with the homeowner so that the homeowner could install the cap if desired at a later date.
- System continued to experience tripping. On March 7, 2022 the GCFI outdoor electrical outlet
 was changed to a GCFI/ switch combo. The outlet remains protected by the GFCI while the
 blower is now routed through the switch and not protected by the GFCI. Both are still controlled
 by the same circuit breaker.
- Post-system-installation sampling was performed March 10-11, 2022. A NYSDOH Indoor Air Quality Questionnaire and Building Inventory was completed prior to sample collection. A copy

of this form along with the sample collection field forms are included in **Attachment F.** Samples were collected from the indoor air breathing zones of the basement, the first floor kitchen, and the first floor (downstairs) bedroom, as well as the ambient air outside the house. Sampling results for detected compounds are included on Figure 3. Concentrations of PCE and TCE detected from indoor air samples during the March 2022 sampling event were lower than concentrations detected during the March 2018 sampling event, while the concentration of cis-1,2-DCE increased slightly. Additionally, vinyl chloride was detected in the March 2022 samples but was non-detect in the March 2018 samples. The March 2022 detection may be due to a lower detection limit used by the lab (0.086 μ g/m³) compared to March 2018 (0.51 μ g/m³). The Data Usability Summary Report (DUSR) is included in **Attachment G** and the lab report in **Attachment H**.

Next Steps

On April 26, 2022, Parsons transmitted a copy of the NYSDOH Indoor Air Quality Questionnaire and Building Inventory along with the sample collection field forms, the analytical results, the DUSR, and the lab report to NYSDOH for their review and use. Any future sampling events at this property will be at the direction of NYSDOH and/or NYSDEC.

FIGURES

FIGURE 1

Department of Environmental

FORMER ERWIN DRY CLEANERS SITE 1445 WEST RIDGE ROAD GREECE, NEW YORK

SITE LOCATION MAP

PARSONS

301 PLAINFIELD ROAD, SUITE 350, SYRACUSE, NY 13212 * 315-451-9560

400 200 0 400 800 SCALE: 1"=400'

FILE NAME: P:\NYSDEC PROGRAM\450499 - WA #31 - FORMER ERWIN CLEANERS\10.0 TECHNICAL CATEGORIES\CAD\2021 SCOPE OF WORK\450499-2021-002.DWG PLOT DATE: 10/13/2021 2:23 PM PLOTTED BY: RUSSO, JILL

0.93

0.266

0.785

0.225

0.903

0.276

ND

ND

NOTES:

- 1. UNITS REPORTED IN ug/m³
- 2. ND NON-DETECT
- SHADED CELL WARRANTS MITIGATION ACCORDING TO THE NEW YORK STATE DEPARTMENT OF HEALTH (NYSDOH) SOIL VAPOR/INDOOR AIR MATRICES (MAY 2017).

FIGURE 3

Environmental Conservation

FORMER ERWIN DRY CLEANERS 1445 WEST RIDGE ROAD GREECE, NEW YORK

VAPOR INTRUSION RESULTS PROPERTY 3

PARSONS

301 PLAINFIELD ROAD, SUITE 350, SYRACUSE, NY 13212 * 315-451-9560

richloroethylene (TCE)

Vinvl Chloride

mg/m3

mg/m3

1.6

ND

54

ND

ATTACHMENT A PHOTOGRAPHIC LOG

Site: Former Erwin Dry Cleaners Site, Sub-Slab Depressurization System Install

Site Name: Former Erwin Dry Cleaners **Location:** 1445 West Ridge Road, Greece, NY

Date: January 24, 2022

Description: Radon mitigation blower used in SSDS.

Site Name: Former Erwin Dry Cleaners **Location:** 1445 West Ridge Road, Greece, NY

Date: January 26, 2022, 11:43 AM

Description: Installed piping at coring location.

Site: Former Erwin Dry Cleaners Site, Sub-Slab Depressurization System Install

Site Name: Former Erwin Dry Cleaners **Location:** 1445 West Ridge Road, Greece, NY

Date: January 26, 2022, 11:43 AM

Description: U-tube and service instructions on installed SSDS.

Site: Former Erwin Dry Cleaners Site, Sub-Slab Depressurization System Install

Site Name: Former Erwin Dry Cleaners **Location:** 1445 West Ridge Road, Greece, NY

Date: January 26, 2022, 11:44 AM **Description:** Label on installed SSDS.

Site: Former Erwin Dry Cleaners Site, Sub-Slab Depressurization System Install

Site Name: Former Erwin Dry Cleaners **Location:** 1445 West Ridge Road, Greece, NY

Date: January 26, 2022, 11:44 AM

Description: Piping with u-bends in installed SSDS, near basement ceiling.

Site Name: Former Erwin Dry Cleaners **Location:** 1445 West Ridge Road, Greece, NY

Date: January 26, 2022, 11:44 AM

Description: SSDS piping exiting basement through window.

Site: Former Erwin Dry Cleaners Site, Sub-Slab Depressurization System Install

Site Name: Former Erwin Dry Cleaners Location: 1445 West Ridge Road, Greece, NY

Date: January 26, 2022, 11:44 AM

Description: SSDS piping extending across basement ceiling.

Site: Former Erwin Dry Cleaners Site, Sub-Slab Depressurization System Install

Site Name: Former Erwin Dry Cleaners **Location:** 1445 West Ridge Road, Greece, NY

Date: January 26, 2022, 11:44 AM

Description: Radon blower circuit attached near basement ceiling.

Site Name: Former Erwin Dry Cleaners Location: 1445 West Ridge Road, Greece, NY

Date: January 26, 2022, 11:44 AM

Description: SSDS wiring in basement ceiling.

Site: Former Erwin Dry Cleaners Site, Sub-Slab Depressurization System Install

Site Name: Former Erwin Dry Cleaners **Location:** 1445 West Ridge Road, Greece, NY

Date: January 26, 2022, 11:45 AM

Description: SSDS wiring entering basement fuse box.

Site Name: Former Erwin Dry Cleaners **Location:** 1445 West Ridge Road, Greece, NY

Date: January 26, 2022, 2:07 PM

Description: Electrical inspection certificate for SSDS install.

Site: Former Erwin Dry Cleaners Site, Sub-Slab Depressurization System Install

Site Name: Former Erwin Dry Cleaners Location: 1445 West Ridge Road, Greece, NY

Date: January 26, 2022, 3:13 PM

Description: Completed outdoor portion of SSDS.

Site: Former Erwin Dry Cleaners Site, Sub-Slab Depressurization System Install

Site Name: Former Erwin Dry Cleaners **Location:** 1445 West Ridge Road, Greece, NY

Date: January 26, 2022, 3:13 PM

Description: SSDS piping exiting basement window to radon mitigation blower.

Site: Former Erwin Dry Cleaners Site, Sub-Slab Depressurization System Install

Site Name: Former Erwin Cleaners

Location: 1445 West Ridge Road, Greece, NY

Date: January 26, 2022, 3:14 PM

Description: SSDS piping affixed to siding and roof.

Site: Former Erwin Dry Cleaners Site, Sub-Slab Depressurization System Install

Site Name: Former Erwin Dry Cleaners **Location:** 1445 West Ridge Road, Greece, NY

Date: January 26, 2022 3:14 PM

Description: SSDS piping affixed to siding and roof, terminating in constructed rain cap.

Site: Former Erwin Dry Cleaners Site, Sub-Slab Depressurization System Install

Site Name: Former Erwin Dry Cleaners Location: 1445 West Ridge Road, Greece, NY

Date: January 26, 2022, 3:44 PM

Description: Performing communication test with digital manometer.

ATTACHMENT B MITIGATION SYSTEM INSTALLATION RECORD

Mitigation System Installation Record

Structure was sampled previously **System Information** Site No: 828154 System ID: Vapor Intrusion System Site Name: NYSDEC Fmr. Erwin Cleaners Owner Name: Philip Baily X Owner Occupied System Address: 23 Corona Road Telephone: 585-719-5043 City: Rochester, NY 14615 Alt. Telephone: Zip: **Contractor Information** Installer Name: Matthew Crance Company: Parsons Telephone: 315-246-8156 Building Type: |Single Family Residence **Building Conditions** Excellent Slab Integrity: Poor Average Good Slab Penetrations: Sump Floor drain Perimeter drain Other Describe: old carpet adhesive throughout. Observed Water: Dry O Damp Sump only Standing Describe: **System Installation** Jan 25, 2022 Installation Type: |Sub-Slab Depressurization (Active) Date Installed: 3 to 5 in. Slab Thickess (inches): Subslab Material: Subslab Moisture: Sand Dry Number of Suction Points: Number of Fans Installed: 1 ▼ Fan #1 Operating Fan #2 Operating Fan #3 Operating GP501c Fan Model No(s): Fan Serial No(s): 221290 2" H2O Final U-Tube Levels: Additional Mitigation Elements (check all that apply): ☐ Sealed cracks ☐ New floor □ Drainjer X Rain cap Other Comments:

- 1) homeowner advised to remove dirt from windows to prevent water from coming in.
- 2) custom made rain cap installed, owner may replace with factory rain cap.
- 3) inside slope is flatlined. Need to monitor. If needed can lower into inside door.

Communication Testing

Test Method: Micromanometer Meter Type/Manufacturer: EHDIS Manometer

Location	Reading/Result	Dist. From Suction Point (ft)	Passed?
1	0.45	5	X
2	0.22	10	X
3	0.16	15	X

System Sketch

(indicate notable features, location of extraction points, and communication test holes)

ATTACHMENT C HEALTH AND SAFETY PAPERWORK

PARSONS

Fall Protection Equipment Inspection Form

Description of Item	Gandin Series Hoverss	Gandina Internal Sheets Land no
Serial Number	NA	NA A SHITE DAY NO A
Model	Part 37007	Part 117.06
Manufacture Date	12/2021	17/7/21
Manufacture Date	12/2024	12/2/21

Inspection Date	Deficiencles	Collective regretor	Maintenance Performed
Approved By:	IN		New
Inspection Date	Deficiencies	Corrective Artion	Maintenance Performed
Approved By:			New
Inspection Date	Deficiencies	Corrective Action	Maintenance Performed
Approved By:			
Inspection Date	Deficiencies	Corrective Action	Maintenance Performed
Approved By:			

Work at Heights Fall Rescue Plan

Note: Fall Rescue Plans that meet or exceed the requirements of this form may be used in place of this form.

Company Name: Parsons

1	Pre-	nlan	Che	ckl	ict.
١.	rie-	pian	Cite	CN	151.

a. Please check the rescue service/team/personnel that will be used to perform rescue in the event of a fall:

☐ On-site

○ Off-site (listing "911" only is not an acceptable means of rescue)

Contact Name and phone number if using off-site rescue:

- Medical Emergency Facility Name: Unity Hospital of Rochester: 585-723-7000 OR 911
- Clinic: Pulse Occupational Medicine of Rochester: 585-360-1788
- Fire: Greece Ridge Fire Department: 585-227-2121 OR 911
- Police: Greece Police Department: 585-865-9200 OR 911
- b. Please check method that will be used to perform a rescue in the event of a fall:
 - ☐ Self-Rescue (safety standby is still required as workers wearing harness systems shall never work alone)

 - ☑ Ladder (ensure ladder is a practical option based on height of work / height of rescue / height of ladder)
 - Other (please describe): combination of lowering the MEWP and A-frame ladder
- c. Is the equipment ready and within reach for timely rescue? Yes

(if "No," use Stop Work Authority)

d. Has the equipment been inspected prior to use?

Yes $\sqrt{}$ (if "No," use Stop Work Authority)

- e. Are designated rescue personnel trained and competent in the use of the equipment? Yes ____ (if "No," use Stop Work Authority)
- f. Write a short description of rescue plan:

The secondary employee will use a combination of A-Frame ladder and lowering of the scissor lift during the rescue to give the operator a platform to "right" themselves and/or lower the individual to ground level. An immediate assessment will need to be made by the secondary employee to ensure that if lowering the lift is the preferable option, that the operator is not in the line of fire when the lift is in motion.

II. Job Task:

- a. Please check to verify the following applicable items are followed:
 - Anchor (tie-off) point above head or used per manufacturer specifications
 - Anchor (tie-off) point is rated to withhold 5,000 lbs.
 - Total fall distance has been calculated. Select either Lanyard or SRL table (fill in blank items and add all numbers together):

ij	Lanyard + Shock Absorber				
L	Lanyard Length	6 Ft			
L	Shock Absorber Deployment	2 Ft			
L	D-Ring Movement	1 Ft			
	Body Height	5'/0'Ft			
Ŀ	Safety Distance	2 Ft			
1	Total Fall Distance =	16 Ft			

Self-Retracting Lifeline (SF	RL)
Free Fall Distance	Ft
Decelerator Deployment	Ft
D-Ring Movement	1 Ft
Body Height	Ft
Safety Distance	2 Ft
Total Fall Distance =	Ft

- b. Total Ground Clearance = 20 Ft
- c. Ground clearance is <u>greater</u> than total fall distance? Yes V (If "No," use Stop Work Authority)

CEMC-2017

III. Acceptance (all signatures shall be signed after current worksite conditions are verified)

Safety Standby (Required):

PARSONS

Corporate Procedure Safety **Aerial Lifts**

Rev. 2

Effective Date: 4/5/2019

Approved: Beck, Gregory

Page 11 of 11

Exhibit 8.2: Aerial Platform Certification Form

PARSONS Aerial Platform Certification Form
Manufacturer: Cenie Model of self-propelled aerial platform: 65-2669RT
I, Jake M , certify that I have read, understand and will comply with the operator's manual for the fore mentioned self-propelled aerial platform and understand the operating instructions limitations, control placards, warning and caution placards, and load limits of the unit.
Print: Josh Soly Signature: SM Date: 26 SAN 2072
the superintendent of the above employee, verify that he/she has demonstrated the ability to operate this particular self-propelled aerial platform in a safe manner and that he/she is authorized to operate this self-propelled aerial platform.
Print: Mathew Crance Signature: MS Signature:

Rev. A2 Effective 5/31/2013

Page 1 of 1

Project: N SUEC ECON Competent Person Name: 10	in Cleane,
	sh Joly
Date: Matthe	1/25/22
Question	Response (+) (-)
When is fall protection required?	When work or travel at an elevation of 6 ft or higher above the surrounding work level. At the edge of excavations greater than 6 ft in depth where excavations are not readily seen because of plant growth or other visual barrier, or that require employees to enter and be on the vertical wall of the excavation, on the protective system or on any other structure in the excavation On accessways or work platforms over water, machinery, or dangerous operations
When is a fall protection plan required? How often does the fall protection plan need to be updated? Who is responsible for initiating and	On runways from which they may fall 4 ft (1.2 m) or more A fall protection plan is required when ever employees are exposed to a fall hazard. The plan must be updated when systems or controls or conditions change. The competent person is responsible for the
maintaining the fall protection Plan? Where is the plan kept?	The plan must be on site and available to employees using fall protection equipment or where the hazard exists.
What is a primary fall protection system? What are the general requirements	 A permanently installed feature of a building or equipment that provides a waling/working surfaces free from floor openings and equipped with standard guardrail systems. A top rail (2 x 4 in.) lumber or equivalent 42 in. above the ground
or a guardrail system?	 A midrail at approximately 21 in. above ground. No more than 8 ft spacing between upright supports Must be able to support 200 lb of lateral force without major deflection
hat is a secondary fall protection stem?	Systems that are temporary and are used as a backup to primary systems or in the absence of primary systems
nat are the minimum requirements attachment points?	 Capable of supporting 5,000 lb impact loading – OR – When used with systems that allow a fall of 2 ft or less, 3,000 lb impact loading.

Rev. 0 Effective 2/18/2016

Page 1 of 3

110jecti 1717	Town Clara	
Competent Person Name:	The state of the s	
Evaluator Name: Ma TM	06/21	
Date: 1 / 7	3/20	(+) (-)
Question	Response	(+) (-)
What are the minimum requirements for attachment points for lifeline systems?	5,000 lb per employee.	
When do personnel working from	 When they are ≥ 6 ft AND: 	片 님
ladders require the use of fall	Outside of the confines of the ladder	片 님
protection?	Work requires force that could cause loss of balance	
······································	• Three	
What is the minimum number of cable clamps for lifeline systems?	- 111166	
What is the torque requirement for a	45 ft-lb; 65 ft-lb respectively	
%-in. clamp? A ½-in. clamp? What is the maximum span between	• 50 ft	TO O
anchorage points? When do lifelines require inspection?	Before use	
Wilell do mennes require inspection.	Weekly (logged)	
Give 5 examples of what the	Bird caging	一份片
competent person is inspecting a	Broken wires	
lifeline for during the daily/weekly	Cord protrusion	
inspection.	Ends are taped, excess is rolled up and out of the	
	 Gaps or excessive clearance between stands 	
	Gaps or excessive clearance between stands	
	Heat damage, torch burns, and electric are	
	strikes	
	Kinks	
and the state of t	Platting Itanaian of lifeling	
	Sag and tension of lifeline	
	Softeners are in place	
	Worn or abraded wires	- Har F
ho and how often are harnesses to	Employee/daily and at least each quarter by t	
inspected?	competent person.	MI
hat is the maximum free-fall	• 6 ft	6
tance allowed?	Buckles	
at are the key components	생물이 가득 것 같아 내려가 되었다면 그리고 하는데 하는데 그는 그는 그는 그는 것이 되었다.	
uired to be inspected on a	D-ring snaps D-ring snaps	
ness?	Rivets and grommets are tightly embedded	1 14
	Thimbles or wear pads	1 7
	Webbing materials	1 1
hree of the six fall protection	Catch platform	17
ULES OF THE 21V ION P. 2.2.	Fall arrest	The state of the s

PARSONS

Fall Protection - Competent Person Assessment Checklist

MACHE		
Project: VY SULL	Erwin Cleaners	
Competent Person Name: 705	1 July	× 11 , , ,
Evaluator Name: Mcthur		
Date: 1/2		
	• Fall restraint	
	Guardrails	片 님
	Safety Monitor	
	Warning line	
Question	Response	(+)
	the standard visual to	
What are the requirements for	Before use by inspecting the hook and swivel to	
inspection of self-retracting life lines?	see if the device has "seen "a fall load.	
	Checking the braking mechanism.	
	And annually if required by the manufacture as	
<u> </u>	noted on the equipment tag	1
When using self-retracting life lines,	Position of the retractable overhead to the work	
what are the primary and secondary	performed minimizing the hazard of swinging into a hazardous situation separate from the	
hazards that must be considered?		
	direct fall All hardware must have a rating and a safety	
What are the acceptable device(s) to	factor of at least five times the load.	
attach self-retracting lifelines to	Examples: Shackles with clevis pins, positive lock	
anchor points? What is the minimum	"Reamer"	
safety factor for this hardware?	Total fall is at least 11 ft: 6 ft for the lanyard and	
What is the minimum fall distance in	5 ft to the D-ring.	7.
feet for an employee who falls wearing a harness with a 6-ft soft		
wearing a namess with a ore series	, and the	M
shock lanyard? What is the single limiting physical	Weight. Most harnesses are only rated for 325 lb	
factor for employees using fall	or less. The same with retractable.	
cyctoms?	the line and the	N D
When using horizontal life lines, what	The number of employees using the line and the	
two critical factors must be	stretch or total fall distance.	
considered?	Means and methods to rescue an employee who	
When designing a fall protection plan,		
other than the controls, what is the	falls.	
most important component of the		
plan?	No more than 15 minutes.	
What is the maximum time an	No more than 15 minutes.	,
employee can hang in a harness		
without suffering life-threatening		11
injuries?	Call 911: the employee may need medical	
Whom must you call when a fall	Call 911: the employee may need the treatment as a result of hanging in his harness.	or
occurs and self-rescue is not	treatment as a result of fluinging	. The Mark
employed?	from injuries from the fall.	
employeu.	# 1/25/22 25 Jan 2	7
	1=712	022
	M	Page 3 of 3

Rev. 0 Effective 2/18/2016

ATTACHMENT D ELECTRICAL INSPECTION CERTIFICATE

Electrical Certificate

New York Electrical Inspection Agency, Inc.

2767 Dewey Avenue Rochester, New York 14616 Office: (585) 436-4460 Fax: (585) 349-3834 www.NYEIA.com

Inspection Date: 01/26/2022

Application Number #: 22SN-0093 Certificate#: 49640A

Premises of: Philip Bailey
Address Inspected: 23 Corona
Type of Property: Residential
Inspection of: Remodel

Municipality: Greece, Town Of County: Monroe County

Permit Number:

Inspected By: Scott_John Neu

Installed By: Parsons

Code Reference: NFPA 70-2017

Equipment: (1) Components GFCI Receptacles

Note: Vapor Mitigation System

The equipment listed above has been visually inspected and was found to be in accordance with the standards and rules set forth by the New York Electrical Inspection Agency, Inc. , the National Electrical Code (NEC), the applicable Municipality, and the applicable utility company on the date listed above and does not apply to the manufacture or use of the wiring or any components.

No warranty is expressed or implied as to the efficiency, maintenance, repair, or wearing qualities and the New York Electrical Inspection Agency, Inc. shall not be liable for any damages resulting from any deficiency or error in the specifications or plans, including reconstruction, repairs, or any property damage, personal injury or death.

This certificate shall be valid for one (1) year from the date listed above and shall be null and void if any alterations or changes have been made to the electrical installation. This certificate is nontransferable. New York Electrical Inspection Agency, Inc. shall have the opportunity of making inspections upon request, and if its rules are violated, the New York Electrical Inspection Agency, Inc. shall have the right to invalidate this certificate.

Fritz Gunther
Chief Electrical Inspector

SCAN TO VALIDATE

ATTACHMENT E SSDS LABEL AND SERVICE INSTRUCTIONS

WHERE CAN I GET MORE INFORMATION ABOUT MITIGATION SYSTEMS?

Because vapor mitigation systems and radon mitigation systems are similar, the "Consumer's Guide to Radon Reduction" is a good place to obtain more detailed information about the topic. (See U. S. EPA Office of Air and Radiation, Office of Radiation and Indoor Air (6609J) 402-K-03-002, revised February 2003, or visit their website: http://www.epa.gov/iaq/radon/pubs/consguid.html#installtable).

To report problems with your system*:

New York State Department of Environmental Conservation (DEC) Statewide Inspection & Maintenance Program 1-(888)-459-8667 derweb@gw.dec.state.ny.us

*Contact the DEC if you sell or intend to sell the property

For health-related questions:

New York State Department of Health (NYSDOH) Bureau of Environmental Exposure Assessment 1- (800) 458-1158 ext. 27850 BEEI@health.state.ny.us

SYSTEM INFORMATION

When contacting the DEC, please provide the following information about your system:

Street Address/Zip Code:	
D . I . II I	
Date Installed:	_
Installed By:	_
System ID:	

VAPOR INTRUSION MITIGATION SYSTEM OWNER'S MANUAL

Your home's *Vapor Intrusion Mitigation System* was installed by the New York State Department of Environmental Conservation (DEC). The system is designed to mitigate potential human exposures to volatile organic compounds (VOCs) detected in the air beneath the building foundation (called subslab vapor).

It is important that you notify the DEC if you believe your system is not working properly. The DEC will make repairs to the system as needed, but we rely on you to keep us informed about its operation. You should expect to receive annual letters from the DEC reminding you to check your mitigation system for any problems. If you have any questions about the system or if you suspect that it is not working properly, contact the DEC at the following toll-free number:

1-(888)-459-8667

HOW DO MITIGATION SYSTEMS WORK?

Your mitigation system includes one or more small fans and suction pipes that are used to maintain a zone of negative pressure (a vacuum) below the house. The pipes capture soil vapors and redirect them to a point above the roof. The diagram to the right illustrates these concepts based on a "typical" mitigation system.

In order for the mitigation system to be effective, it should run continuously.

HOW WILL I KNOW IF MY MITIGATION SYSTEM IS WORKING PROPERLY?

At the time of installation, pressure and flow tests were performed to confirm that the mitigation system was working properly. The system includes a liquid gauge or "U-tube manometer" installed inside your house along the vertical section of pipe which is used to monitor the system vacuum. Every so often (at least twice a year), check to make sure the manometer levels indicate that a vacuum is being applied. The levels should be unequal, as shown in the diagram to the right. If they are equal, it means that the system may not be operating properly and you should contact the DEC.

Some systems also include a warning device (a light or alarm) that lets the owner know that the system is not operating properly. In the event that the system stops working properly, contact the DEC at:

1-(888)-459-8667

WHAT HAPPENS IF MY SYSTEM SHUTS DOWN DURING A POWER OUTAGE?

Your system should restart when power is restored. If not, locate your electrical panel and check to make sure that the circuit breaker for your system is not tripped. Reset the circuit breaker if necessary. If the system won't restart after resetting the circuit breaker, contact the DEC and describe the problem you are having. Although it is recommended that your system operate continuously, the system can remain off for brief periods (power outage, vacations, etc).

CAN I REMODEL MY HOME AFTER A SYSTEM HAS BEEN INSTALLED?

Yes, you can remodel, but if you plan to change the foundation or add onto the building, you should notify the DEC. We will work with you to make any necessary modifications to the mitigation system.

HOW MUCH NOISE SHOULD THE EXHAUST FAN MAKE?

The fan motor should make about as much noise as a refrigerator fan. Because the fan motor is located outside of the house, many people will not notice it is operating unless they stand nearby. If you notice a loud noise coming from your fan, call the DEC.

WILL THE STATE REIMBURSE ME FOR THE COST TO OPERATE MY MITIGATION SYSTEM?

The DEC does not reimburse homeowners for electricity costs.

WILL THE STATE INSPECT AND MAINTAIN MY MITIGATION SYSTEM?

The DEC is responsible for maintaining your mitigation system so that it continues to function properly, but we rely on you to let us know if the system stops working as expected. Periodically, you should check to make sure the levels in the U-tube manometer are unequal. You should also confirm that the fan is running by listening for the hum of the motor or feeling the exhaust pipe for vibrations.

If the system needs repairs, such as fixing a section of pipe or replacing the fan, access to the fan or to system components located inside your home or business may be required. The DEC will arrange to have the work done at a time that is convenient to you.

ATTENTION

Soil vapor mitigation system in operation. Do not alter or disconnect. This monitor measures differential pressure or vacuum provided by the system.

This is a component of the soil vapor mitigation system.

If <u>all</u> gauges are at zero, or, if for any other reason you believe that the system is not working properly, call:

New York State Department of Environmental Conservation Toll-Free at:

1-888-459-8667

for service or inspection.

	Date
Date of Installation	
Date of Maintenance/Inspection	
Date of Maintenance/Inspection	
Date of Maintenance/Inspection	

ATTENTION

Soil vapor mitigation system in operation. Do not alter or disconnect. This monitor measures differential pressure or vacuum provided by the system.

This is a component of the soil vapor mitigation system. If <u>all</u> gauges are at zero, or, if for any other reason you believe that the system is not working properly, call:

New York State Department of Environmental Conservation Toll-Free at:

1-888-459-8667

for service or inspection.

	Date
Date of Installation	
Date of Maintenance/Inspection	
Date of Maintenance/Inspection	
Date of Maintenance/Inspection	

ATTACHMENT F FIELD SAMPLING FORMS

Attachment F.1 NYSDOH Indoor Air Quality Questionnaire and Building Inventory Form

Attachment F.2 Field Sampling Forms

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name _ Zlm Miles	akih	Date/Time Pre	pared 3/10/22 19:3
Preparer's Affiliation Powsars		Phone No. 6	97-345-2147
Purpose of Investigation VI			
1. OCCUPANT:			
Interviewed: Y N			
Last Name: Bailey	First Name:	Philip	
Address: 23 Carana 1			
County: Monroe			
Home Phone:	Office Phone:		
Number of Occupants/persons at this	location A	ge of Occupants	62-67
2. OWNER OR LANDLORD: (Che	eck if same as occupa	nt <u></u> <u> </u>	
Interviewed: Y/N			
Last Name:	First Name:		
Address:			
County:			
Home Phone:	Office Phone:		
3. BUILDING CHARACTERISTIC	CS		
Type of Building: (Circle appropriat	te response)		
Residential Scho	501	cial/Multi-use	_

If the property is residential, t	ype? (Circle appropria	ite response)
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	
If multiple units, how many?	$\sqrt{11}$	
If the property is commercial,	type? N/A	
Business Type(s)		
Does it include residences (i.e., multi-use)? Y/N	If yes, how many?
Other characteristics:		
Number of floors 3	Build	ing age ~ 1 920'5
Is the building insulated? Y	How a	ing age ~ 1 9 2 5 air tight? Tight / Average Not Tight
4. AIRFLOW		
Use air current tubes or tracer	smoke to evaluate ai	rflow patterns and qualitatively describe:
Airflow between floors		
Airflow near source		
Outdoor air infiltration NA		
Infiltration into air ducts		

BASEMENT AND CONST	RUCTION CHA	RACTERIST	ICS (Circle all the	hat apply)
a. Above grade construction	wood fran	ne concrete	stone	brick
b. Basement type:	full	crawlspa	ce slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	d covered	covered	twoq hiw
e. Concrete floor:	unsealed	sealed	ealed w	in pant
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed w	ith port
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	un finis h) ed partially	finished
j. Sump present?	YN	_		
·	Y / N / not applic	able N/P	1	
HEATING, VENTING and				
ype of heating system(s) used	in this building	circle all tha	t apply – note p	rimary)
Hot air circulation Space Heaters Electric baseboard	Heat pun Stream r Wood ste	adiation	Hot water baseb Radiant floor Outdoor wood b	
The primary type of fuel used	is:			
Natural Gas Electric Wood	Fuel Oil		17	
	Propane Coal		Kerosene Solar	
Domestic hot water tank fuele	Propane Coal	lup lm		
Domestic hot water tank fuele Boiler/furnace located in:	Propane Coal	Outdoors		Other

Are there air distribution ducts present?

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan

casionally Seldom Almost Never
oom, bedroom, laundry, workshop, storage)
QUALITY
Y Q
Y/N/NA
Y/N/NA Please specify
Please specifyY When?
_
Y Where?
(Y) N Where & Type? Computer mpor
YN How frequently?
Y N When & Type?
Y (N) When & Type?

j. Has painting/staining been done in the last 6 months?	Y (N) Where & When?
k. Is there new carpet, drapes or other textiles?	Y N Where & When?
l. Have air fresheners been used recently?	Y N When & Type?
	Y/N If yes, where vented?
n. Is there a bathroom exhaust fan?	If yes, where vented?
o. Is there a clothes dryer?	Y (N) If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y / When & Type?
Are there odors in the building? If yes, please describe:	Y (N)
Do any of the building occupants use solvents at work? e.g., chemical manufacturing or laboratory, auto mechanic or autopoiler mechanic, pesticide application, cosmetologist	Y (N) ato body shop, painting, fuel oil delivery,
If yes, what types of solvents are used?	
If yes, are their clothes washed at work?	Y/N
Oo any of the building occupants regularly use or work at a response) Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	dry-cleaning service? (Circle appropriate No Unknown
Is there a radon mitigation system for the building/structure Is the system active or passive? Active/Passive SSDS system in Stalled 01/202	
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Driver	·
Sewage Disposal: Public Sewer Septic Tank Leach	Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residentia	•
a. Provide reasons why relocation is recommended:	
b. Residents choose to: remain in home relocate to frie	
c. Responsibility for costs associated with reimbursemen	nt explained? Y / N
d Relocation nackage provided and explained to reside	nts? Y/N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling

* 7623R-031032- IA- IF-1

* 7623R_ 031022- 14-1F-2

1st floor south - dirty room indoor cir 1st floor-sough - Gidram mooray

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: Hory will who have 3000

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
bylast	Prophere street, Special greats Special Linds determined	Igal	Weel		Ð	У
11	detergents chemicale		Usd		0	Y
1)	antifrence	lgal	Wed		0	Y
Buscont	10/10hes/vaxes		Wed		0	Y
Busenest	paint cans		Uscel		0	<i>></i>
Bakeres	drain opener		likd		0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
baknent	gragare	4005			\triangleright	y
)/	Cleanes/sodvents				<u> </u>	Ý
11	Breach, RainX		Wed		0	Y
KrAchen	general Louishold		used			\rangle
hundro	bleary leterons		lefed			ý
phroon	general cometry		Used	·	0	7
Brosent	Butare Consetti.		enhum	Polywethane form	Q	Ÿ
Bosent	Car spray wax Haz		ben		0	Y
Bosent	Scatchgurd-Moza	^	(Je)		Q	Υ
Bevent	Carb+ Choke decor		(FR N	Xylene, Methy Acutale, Acetare, COa, Ethyl benzue	0	Y
Burent	Rustdeum Parutcan		New		Q	Y
Barent	starting fluid #	llaz	naj	Hyptore, ethyl ether, controlled, con patroling	, 0	Y
Dovemot	WO-4c	we	whown	ी पर गर्	<i>"</i>	Y

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

13. PRODUCT INVENTORY FO	$\mathbf{R}\mathbf{N}$	()	F	₹.	. `	R		П	т	١	Ŧ.	71	٦	N	I	Г	ריז	И	ıT	n	1	•	₽	P	3	1
--------------------------	------------------------	----	---	----	-----	---	--	---	---	---	----	----	---	---	---	---	-----	---	----	---	---	---	---	---	---	---

Make & Model of field instrument used:	***************************************
--	---

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
Besont	Epoxy	1602	unhoun		[*] O	Y
	Silican spray lubra	t	usid		0	7
1	Admsive renew	1202	usij		0	Y
	Sewort	2402	પ્રભ		0	γ
	Switter Cleaner		(ren	ethand, fragrances	Q	γ
	ę.					

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Indoor Air (Canister) Sample Collection Field Form

Project # 452326 O Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	Consultant Parsons Collector X 3 M
End Date/Time Canister ID $3/11/22$ $11/7$ End End	Vacuum gauge "zero" ("Hg) t Pressure ("Hg) Pressure ("Hg) pressure > "zero"? pling duration (intended) -slab vapor sample ID
Tubing type used LDPE Length of tubing Volume purged cc @min	cm Tubing volumecc 1 to 3 volumes purged @ < 200cc/min?
Scientifica end ina coordinate conditions	Wind direction Wind speed (mph) Wind speed (mph) Who past 24 W, from N on auror 390F, Who 6-10 mm SE, Ansswe 2914 m
Indoor air temp (°F) Building Survey and Chemical Inventory Form Completed? Indoor relationship in the property of the prope	ative humidity (%) 38% Photograph IDs
Floor Plan showing sample location, HVAC equipment, indoor air sources, pr Refer to indoor un quality que	eferential pathways
Comments: Rykhen lample . 38" off 500 pre-scripting PLD reading in diving post-scripting reading = 8	rom = 0 pp6; (3/10/22) pp6 (3/11/22)

Indoor Air (Canister) Sample Collection Field Form

Project Name		9200	<u> </u>		consultant	Parsons		
, roject Harrie	NYSDEC F	ormer Erwi	n Dry Cleaner	s c	Collector	KB J	n	
Sample ID Start Date/Time End Date/Time Canister ID Flow controller II Associated ambi	3/10 3/1 2/12 0 031	0/3.2 1/22 28	1022 - IA 1120 1120 -031022-AA	V Start P End Pr End pr Sampl	ressure ("Hg essure ("Hg) essure > "ze ing duration (ro"? (intended) <u>2</u>	yes 80 -17. 	<u>00</u> 65
Tutting type use	d LDPE		Length of tubing		cm Tu	bing volume		сс
Volume purged		cc @		min 1	to 3 volume	s purged @ < 20	00cc/min? _	
Weather Conditi Air temperature Barometric press	(°F) <u>36</u> sure <u>3</u> 0.18	<u>。</u> ト	Rainfall	- • •	<u> </u>	nd direction nd speed (mph)	Sty to	meh ph
School air temp	dinchi	on had condition	uy yorkal us 399	F, wind	6-10 mpt	700)	ressure	29,
Building Survey	` '		Completed? _	Υ	,	Photogr	aph IDs	
	———							
	wing sample loc		quipment, indoor	air sources, prefe		vays		
	wing sample loc					vays		

Ambient Air (Canister) Sample Collection Field Form

	Project # 452326 (0)	Consultant Parsons
	Project Name NYSDEC Former Erwin Dry Cleaners	Collector KB JM
	Sample ID 7623R-031022 - AA Start Date/Time 3/10/22 1/45 End Date/Time 02/55 1/22 Canister ID 08/3 Flow controller ID 02/55	Vacuum gauge "zero" ("Hg) Start Pressure ("Hg) End Pressure ("Hg) End pressure > "zero"? Sampling duration (intended)
NA	Tubing type usedcc @n	min 1 to 3 volumes purged @ < 200cc/min?
	Barometric pressure 20.18 ^t Relative humidity Substantial changes in weather conditions during sampling or over the	all post 24 hr. Wind 6-10 nph SE, pressur 29.77 ig HVAC inlet, outdoor air sources, wind direction
	Comments: 38" Nove grand Cond and one Pt I ready s	196 (post-samples, 3/10/22)

Indoor Air (Canister) Sample Collection Field Form

Project # Project Name	NYSDEC Former Erwin Dry Clean	Consultant ers Collector	KB JM
Sample ID Start Date/Time End Date/Time Canister ID Flow controller II Associated ambi	7623R031022-II 3/10/22 1130 3/11/22 1118 2956 0 02053 ent air sample ID 7623R _031022-A	Vacuum gaugeStart Pressure ("Hg)End Pressure ("Hg)End pressure > "zerSampling duration (i	$ \begin{array}{r} $
Tubing type user	LDPE Length of tubin		oing volumecc purged @ <200cc/min2
Air temperature Barometric press Substantial char	ges in weather conditions during sampling o	ity 64% Wir	and direction Start JM Mand speed (mph) Why frank on w Note SE, pressure
Indoor air temp Building Survey	°F) 73 °C and Chemical Inventory Form Completed?	Indoor relative humidity ('	%) 38% Photograph IDs
Re F	ving sample location, HVAC equipment, indo	or air sources, preferential pathw	ays NUIVE
Comments:	bedroom 182 floor o	38 indes all go	and 1.5 feel fro
PID rei	M. trom 2 mm	pp6 (pn-somp	1m, 3(10(22)

ATTACHMENT G DATA USABILITY SUMMARY REPORT

Note: This Data Usability Summary Report includes data for other properties sampled between January and March 2022 in support of the Former Erwin Dry Cleaners Site, not just data from Property 3.

DATA USABILITY SUMMARY REPORT

SOIL VAPOR SAMPLING FORMER ERWIN CLEANERS SITE

SITE NUMBER 828154 WORK ASSIGNMENT # D009811-15

Prepared For:

Department of Environmental Conservation

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, NY 12233-7012

Prepared By:

301 Plainfield Road, Suite 350 Syracuse, New York 13212

APRIL 2022

TABLE OF CONTENTS

SECTION 1 DATA USABILITY SUMMARY	1 -1
1.1 Laboratory Data Packages	1-1
1.2 Sampling and Chain-of-Custody	1-1
1.3 Laboratory Analytical Methods	1-1
1.3.1 Volatile Organic Analysis	1-2
SECTION 2 DATA VALIDATION REPORT	2-1
2.1 Soil Vapor Samples	2-1
2.1.1 Volatiles	2-1

LIST OF ATTACHMENTS

ATTACHMENT A - VALIDATED LABORATORY DATA

SECTION 1 DATA USABILITY SUMMARY

Soil vapor samples were collected from the Former Erwin Cleaners site on January 25, 2022 through January 28, 2022 and March 11, 2022. Analytical results from these samples were validated and reviewed by Parsons for usability with respect to the following requirements:

- Project Work Plan,
- USEPA analytical methodologies, and
- USEPA Region II Standard Operating Procedures (SOPs) for organic data review.

The analytical laboratory for this project was Alpha Analytical. This laboratory is certified to perform project analyses through the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP).

1.1 Laboratory Data Packages

The laboratory data package turnaround time, defined as the time from sample receipt by the laboratory to receipt of the analytical data packages by Parsons, was 13-38 days for the project samples. The data packages received from the laboratory were paginated, complete, and overall were of good quality. Comments on specific quality control (QC) and other requirements are discussed in detail in the attached data validation report which is summarized in Section 2.

1.2 Sampling and Chain-of-Custody

The samples were collected, shipped under a chain-of-custody (COC) record, and received at the laboratory within one day of sampling. All samples were received intact and in good condition at the laboratory.

1.3 Laboratory Analytical Methods

The air samples that were collected from the site were analyzed for volatile organic compounds (VOCs). Summaries of issues concerning this laboratory analysis are presented in Subsection 1.3.1. The data qualifications resulting from the data validation review and statements on the laboratory analytical precision, accuracy, representativeness, completeness, comparability, and sensitivity (PARCCS) are discussed in Section 2. The laboratory data were reviewed and may be qualified with the following validation flags:

- "U" not detected at the value given,
- "UJ" estimated and not detected at the value given,
- "J" estimated at the value given,
- "J+" estimated biased high at the value given.
- "J-" estimated biased low at the value given,
- "N" presumptive evidence at the value given, and
- "R" unusable value.

The validated laboratory data were tabulated and are presented in Attachment A.

1.3.1 Volatile Organic Analysis

The project samples were analyzed for VOCs using the USEPA TO-15 and TO-15 SIM analytical method. Certain reported results for these samples were qualified as estimated based upon field duplicate precision. The reported VOC analytical results were 100% complete (i.e., usable) for the project data presented by the laboratory. PARCCS requirements were met.

SECTION 2 DATA VALIDATION REPORT

2.1 Soil Vapor Samples

Data review has been completed for data packages containing soil vapor samples collected from the site. Analytical results from these samples were contained within sample delivery groups (SDGs) L2204146, L2204944, L2205001, and L2212903. All of these samples were shipped under a COC record and received intact by the analytical laboratory. The validated laboratory data are presented in Attachment A.

Data validation was performed for all samples in accordance with the most current editions of the USEPA Region II SOPs for organic data review. This data validation and usability report is presented by analysis type.

2.1.1 Volatiles

The following items were reviewed for compliancy in the volatile analysis:

- Custody documentation
- Holding times
- Surrogate recoveries
- Laboratory control sample (LCS) recoveries
- Laboratory method blank contamination
- Summa canister cleaning certification
- GC/MS instrument performance
- Initial and continuing calibrations
- Internal standard area counts and retention times
- Sample result verification and identification
- Field duplicate precision
- Quantitation limits
- Data completeness

These items were considered compliant and acceptable in accordance with the validation protocols with the exception of field duplicate precision as discussed below.

Field Duplicate Precision

All field duplicate precision results were considered acceptable with the exception of the results for isopropanol (0,707 ppbv and nondetect), tert-butyl alcohol (nondetect and 0.982 ppbv), methylene chloride (nondetect and 1.68 ppbv), and 1,2,4-trimethylbenzene (0.376 ppbv and nondetect) in sample 7653R-012722-SS and its field duplicate 7653R-012722-SS-D. Therefore, the results for these compounds were considered estimated with the positive results qualified "J" and the nondetected results qualified "UJ" for the affected parent sample and field duplicate.

Usability

All volatile soil vapor sample results were considered usable following data validation.

Summary

The quality assurance objectives for measurement data included considerations for precision, accuracy, representativeness, completeness, comparability, and sensitivity. The volatile soil vapor data presented by the laboratory were 100% complete (i.e., usable). The validated volatile laboratory data are tabulated and presented in Attachment A.

It was noted that the Summa canister vacuum pressure upon laboratory receipt for sample 7623R-031022-IA-BS was 17.65 in. Hg (>15 in.Hg). Therefore, this sample was analyzed at a dilution by the laboratory since there was not enough volume for the analysis.

ATTACHMENT A - VALIDATED LABORATORY DATA

		L	ocation ID:	7622	R-1F	7622	R-AA	7622R-	-BS	7622R	-SS	7623R	-1F-1	7623R-1F	:-2
ĺ			Sample ID:	7622R-012	422-IA-1F	7622R-01	12422-AA	7622R-0124	22-IA-BS	7622R-012	2422-SS	7623R-0310	22-IA-1F-1	7623R-031022-	-IA-1F-2
			Matrix:	Α			.0	AI		AS		A		AI	
		Star	ting Depth:			1									
			ding Depth:												
			Sample ID:	L2204:	146-02	L2204	146-04	L220414	6-01	L220414	46-03	L22129	03-02	L2212903-	-03
			ample Date:	1/24/		_	/2022	1/24/20		1/24/2		3/10/		3/10/202	
			Type Code:	-/- /			N TOTAL	1/2./2. N	-	1/2 ./2 N	.022	5,10,		N	
		Sample	UNITS		•		•							.,	
Analytical Method	CAS No.	COMPOUND	:												
TO15	71-55-6	1.1.1-Trichloroethane (TCA)	ug/m3							1.09 L	1	1			
TO15	79-34-5	1,1,2,2-Tetrachloroethane	ug/m3	1.37	П	1.37	П	1.37 U		1.37 L		1.37	1	1.37 U	
TO15	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	1.53		1.53		1.53 U	-	1.53 L		1.53		1.53 U	
TO15	79-00-5	1.1.2-Trichloroethane	ug/m3	1.09		1.09		1.09 U		1.09 (,	1.09		1.09 U	
TO15	75-34-3	1,1-Dichloroethane	ug/m3	0.809		0.809		0.809 U	-	0.809 L) I	0.809		0.809 U	
TO15	75-35-4	1.1-Dichloroethene	ug/m3	0.003	0	0.003	U	0.009 0	-	0.793 L		0.003	0	0.009 0	
TO15	120-82-1	1,2.4-Trichlorobenzene	ug/m3	1.48		1.48		1.48 U		1.48 L		1.48		1.48 U	
		7,7	. 5,	0.983		0.983		0.983 U	-	3.45	,	0.983		0.983 U	
TO15	95-63-6	1,2,4-Trimethylbenzene	ug/m3	1.54	-	1.54	-	0.983 U 1.54 U	+	3.45 1.54 L		1.54	-	0.983 U 1.54 U	
TO15	106-93-4 95-50-1	1,2-Dibromoethane (Ethylene Dibromide) 1,2-Dichlorobenzene	ug/m3 ug/m3	1.54		1.54		1.54 U	+	1.54 L		1.54		1.54 U 1.2 U	
TO15	107-06-2	,		0.809		0.809	_	0.809 U	-	0.809 L		0.809		0.809 U	
	78-87-5	1,2-Dichloroethane	ug/m3	0.809		0.809		0.809 U 0.924 U		0.809 (0.809		0.809 U 0.924 U	
TO15		1,2-Dichloropropane	ug/m3				_		1						
TO15	76-14-2	1,2-Dichlorotetrafluoroethane	ug/m3	1.4		1.4		1.4 U		1.4 L		1.4		1.4 U	
TO15	108-67-8	1,3,5-Trimethylbenzene (Mesitylene)	ug/m3	0.983		0.983		0.983 U		0.983 L		0.983		0.983 U	
TO15	106-99-0	1,3-Butadiene	ug/m3	0.442		0.442		0.442 U		0.442 L		0.442		0.442 U	
TO15	541-73-1	1,3-Dichlorobenzene	ug/m3	1.2		1.2		1.2 U		1.2 L		1.2		1.2 U	
TO15	106-46-7	1,4-Dichlorobenzene	ug/m3	1.2	-	1.2	-	1.2 U		1.2 L		1.2	_	1.2 U	
TO15	123-91-1	1,4-Dioxane (P-Dioxane)	ug/m3	0.721		0.721		0.721 U		0.721 L	J	0.721		0.721 U	
TO15	540-84-1	2,2,4-Trimethylpentane	ug/m3	0.934		0.934	-	0.934 U		1.62		0.934	-	0.934 U	
TO15	591-78-6	2-Hexanone	ug/m3	0.82		0.82		0.82 U		0.82 L		0.82		0.82 U	
TO15	622-96-8	4-Ethyltoluene	ug/m3	0.983	U	0.983	U	0.983 U		0.983 L	J	0.983	J	0.983 U	
TO15	67-64-1	Acetone	ug/m3	32.8		9.86		22.2		22.4		69.4		51.1	
TO15	107-05-1	Allyl Chloride (3-Chloropropene)	ug/m3	0.626		0.626	U	0.626 U		0.626 L	J	0.626	U	0.626 U	
TO15	71-43-2	Benzene	ug/m3	0.639		0.639		0.639 U		1.01		0.664		0.716	
TO15	100-44-7	Benzyl Chloride	ug/m3	1.04		1.04		1.04 U		1.04 L	J	1.04		1.04 U	
TO15	75-27-4	Bromodichloromethane	ug/m3	1.34		1.34		1.34 U		1.34 L		1.34		1.34 U	
TO15	75-25-2	Bromoform	ug/m3	2.07	-	2.07	-	2.07 U		2.07 L		2.07	_	2.07 U	
TO15	74-83-9	Bromomethane	ug/m3	0.777		0.777		0.777 U		0.777 L		0.777		0.777 U	
TO15	75-15-0	Carbon Disulfide	ug/m3	0.623	U	0.623	U	0.623 U		0.623 L		0.623	U	0.623 U	
TO15	56-23-5	Carbon Tetrachloride	ug/m3							1.26 L					
TO15	108-90-7	Chlorobenzene	ug/m3	0.921		0.921	_	0.921 U		0.921 L		0.921		0.921 U	
TO15	75-00-3	Chloroethane	ug/m3	0.528	U	0.528		0.528 U		0.528 L	J	0.528		0.528 U	
TO15	67-66-3	Chloroform	ug/m3	0.977		0.977	U	0.977 U		0.977 L	J	0.977	U	0.977 U	
TO15	74-87-3	Chloromethane	ug/m3	1.23		1.37		1.1		0.793		1.61		1.79	
TO15	156-59-2	Cis-1,2-Dichloroethylene	ug/m3							1.01					
TO15	10061-01-5	Cis-1,3-Dichloropropene	ug/m3	0.908		0.908		0.908 U		0.908 L	J	0.908		0.908 U	
TO15	110-82-7	Cyclohexane	ug/m3	0.688		0.688		0.688 U		0.812		0.688		0.688 U	
TO15	124-48-1	Dibromochloromethane	ug/m3	1.7	U	1.7	U	1.7 U		1.7 L	J	1.7	U	1.7 U	
TO15	75-71-8	Dichlorodifluoromethane	ug/m3	2.75		2.58		2.73		2.48		3.16	, i	3.31	
TO15	64-17-5	Ethanol	ug/m3	283		9.42	_	140		198		82.2	, in the second second	85	
TO15	141-78-6	Ethyl Acetate	ug/m3	3.58		4.18		2.81		2.17		2.64		1.95	
TO15	100-41-4	Ethylbenzene	ug/m3	0.869		0.869		0.869 U		1.82		0.869		0.869 U	
TO15	87-68-3	Hexachlorobutadiene	ug/m3	2.13	U	2.13	U	2.13 U		2.13 L	J	2.13	U	2.13 U	
TO15	67-63-0	Isopropanol	ug/m3	6.59		1.23	U	4.3		5.6		6		5.36	
TO15	179601-23-1	m,p-Xylene	ug/m3	1.95		1.74	U	1.74 U		6.52		1.74	U	1.74 U	
TO15	78-93-3	Methyl Ethyl Ketone (2-Butanone)	ug/m3	1.53		1.47	U	1.84	İ	1.97		1.97		1.78	
TO15	108-10-1	Methyl Isobutyl Ketone (4-Methyl-2-Pentano	ne) ua/m3	2.05	U	2.05	U	2.05 U		2.05 L	J	2.05	U	2.05 U	

			Location ID:	7622R-1F	7622R-AA	7622R-BS	7622R-SS	7623R-1F-1	7623R-1F-2
			Sample ID:	7622R-012422-IA-1F	7622R-012422-AA	7622R-012422-IA-BS	7622R-012422-SS	7623R-031022-IA-1F-1	7623R-031022-IA-1F-2
			Matrix:	AI	AO	AI	AS	AI	AI
			Starting Depth:						
			Ending Depth:						
			Lab Sample ID:	L2204146-02	L2204146-04	L2204146-01	L2204146-03	L2212903-02	L2212903-03
			Sample Date:	1/24/2022	1/24/2022	1/24/2022	1/24/2022	3/10/2022	3/10/2022
			Sample Type Code:	N	N	N	N	N	N
			UNITS						
Analytical Method	CAS No.	COMPOUND	:						
		Methylene Chloride	ug/m3	1.74 U	1.74 U	1.74 U	1.79	1.74 U	1.74 U
TO15	142-82-5	N-Heptane	ug/m3	1.39	0.82 U	0.943	1.73	1.35	1.2
TO15	110-54-3	N-Hexane	ug/m3	0.705 U	0.705 U	0.705 U	1.49	0.705 U	0.705 U
TO15	95-47-6	O-Xylene (1,2-Dimethylbenzene)	ug/m3	0.869 U	0.869 U	0.869 U	2.93	0.869 U	0.869 U
TO15	100-42-5	Styrene	ug/m3	0.852 U	0.852 U	0.852 U	0.852 U	0.852 U	0.852 U
TO15	75-65-0	Tert-Butyl Alcohol	ug/m3	1.52 U	1.52 U	1.52 U	1.52 U	1.52 U	1.52 U
TO15	1634-04-4	Tert-Butyl Methyl Ether	ug/m3	0.721 U	0.721 U	0.721 U	0.721 U	0.721 U	0.721 U
TO15	127-18-4	Tetrachloroethylene (PCE)	ug/m3				3.82		
TO15	109-99-9	Tetrahydrofuran	ug/m3	1.47 U	1.47 U	1.47 U	1.47 U	1.96	1.47 U
TO15	108-88-3	Toluene	ug/m3	1.14	0.754 U	0.938	6.37	2.73	2.59
TO15	156-60-5	Trans-1,2-Dichloroethene	ug/m3	0.793 U	0.793 U	0.793 U	0.793 U	0.793 U	0.793 U
TO15	10061-02-6	Trans-1,3-Dichloropropene	ug/m3	0.908 U	0.908 U	0.908 U	0.908 U	0.908 U	0.908 U
TO15	79-01-6	Trichloroethylene (TCE)	ug/m3				1.07 U		
TO15	75-69-4	Trichlorofluoromethane	ug/m3	1.24	1.25	1.26	1.23	4.67	6.07
TO15	593-60-2	Vinyl Bromide	ug/m3	0.874 U	0.874 U	0.874 U	0.874 U	0.874 U	0.874 U
TO15	75-01-4	Vinyl Chloride	ug/m3				0.511 U		
TO15 SIM	71-55-6	1,1,1-Trichloroethane (TCA)	ug/m3	0.109 U	0.109 U	0.109 U		0.262	0.295
TO15 SIM	75-35-4	1,1-Dichloroethene	ug/m3	0.079 U	0.079 U	0.079 U		0.079 U	0.079 U
TO15 SIM	56-23-5	Carbon Tetrachloride	ug/m3	0.478	0.503	0.503		0.547	0.585
	156-59-2	Cis-1,2-Dichloroethylene	ug/m3	0.912	0.079 U	1.38		1.84	2.09
TO15 SIM	127-18-4	Tetrachloroethylene (PCE)	ug/m3	1.63	0.136 U	2.29		4.71	5.17
TO15 SIM	79-01-6	Trichloroethylene (TCE)	ug/m3	0.349	0.107 U	0.441		0.785	0.903
TO15 SIM	75-01-4	Vinyl Chloride	ug/m3	0.133	0.051 U	0.174		0.225	0.276

			Location ID:	7623			R-BS	7653R-1F			7653F		7653R-SS
ĺ			Sample ID:	7623R-03		7623R-031		7653R-012722-		722-AA	7653R-012		7653R-012722-SS
			Matrix:	A	0	P	AI.	AI	AO		Al	[AS
			rting Depth:										
			ding Depth:										
			Sample ID:	L22129		L2212		L2204944-0		-	L22049		L2204944-03
		S	ample Date:	3/10/	2022	3/10/	/2022	1/27/2022	1/27/20	022	1/27/2	2022	1/27/2022
		Sample	Type Code:	N	l .	l	V	N	N		N		N
			UNITS										
Analytical Method	CAS No.	COMPOUND	:										
TO15	71-55-6	1,1,1-Trichloroethane (TCA)	ug/m3										1.09 U
TO15	79-34-5	1,1,2,2-Tetrachloroethane	ug/m3	1.37	U	2.31	U	1.37 U	1.37 U		1.37	J	1.37 U
TO15	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	1.53	U	2.58	U	1.53 U	1.53 U		1.53	J	1.53 U
TO15	79-00-5	1,1,2-Trichloroethane	ug/m3	1.09	U	1.83	U	1.09 U	1.09 U		1.09	J	1.09 U
TO15	75-34-3	1,1-Dichloroethane	ug/m3	0.809	U	1.36	U	0.809 U	0.809 U		0.809	J	0.809 U
TO15	75-35-4	1,1-Dichloroethene	ug/m3										0.793 U
TO15	120-82-1	1,2,4-Trichlorobenzene	ug/m3	1.48	U	2.49	U	1.48 U	1.48 U		1.48	J	1.48 U
TO15	95-63-6	1,2,4-Trimethylbenzene	ug/m3	0.983		1.65	_	3.85	0.983 U		5.01	İ	1.85 J
TO15	106-93-4	1,2-Dibromoethane (Ethylene Dibromide)	ug/m3	1.54	-	2.58		1.54 U	1.54 U		1.54	ا	1.54 U
TO15	95-50-1	1,2-Dichlorobenzene	ug/m3	1.2		2.02		1.2 U	1.2 U	j	1.2		1.2 U
TO15	107-06-2	1,2-Dichloroethane	ug/m3	0.809		1.36	_	0.809 U	0.809 U		0.809		0.809 U
TO15	78-87-5	1,2-Dichloropropane	ug/m3	0.924		1.55		0.924 U	0.924 U		0.924		0.924 U
TO15	76-14-2	1,2-Dichlorotetrafluoroethane	ug/m3	1.4		2.35	_	1.4 U	1.4 U	İ	1.4		1.4 U
TO15	108-67-8	1,3,5-Trimethylbenzene (Mesitylene)	ug/m3	0.983		1.65		0.983 U	0.983 U		1.15		0.983 U
TO15	106-99-0	1,3-Butadiene	ug/m3	0.442		0.743		0.442 U	0.442 U		0.442 (0.442 U
TO15	541-73-1	1,3-Dichlorobenzene	ug/m3	1.2		2.02	_	1.2 U	1,2 U		1.2		1.2 U
TO15	106-46-7	1,4-Dichlorobenzene	ug/m3	1.2		2.02		1.2 U	1.2 U		1.2		1.2 U
TO15	123-91-1	1,4-Dioxane (P-Dioxane)	ug/m3	0.721		1.21	-	0.721 U	0.721 U		0.721		0.721 U
TO15	540-84-1	2.2.4-Trimethylpentane	ug/m3	0.721		1.57		1.4	0.934 U		1.73	,	1.54
TO15	591-78-6	2-Hexanone	ug/m3	0.934		1.38		0.82 U	0.934 U		0.82		1.35
TO15	622-96-8	4-Ethyltoluene	ug/m3	0.983		1.65		0.983 U	0.983 U		1.02	,	0.983 U
TO15	67-64-1	Acetone	ug/m3	7.53	U	59.4	U	26.4	3.59		2.38		93.6
TO15	107-05-1	Allyl Chloride (3-Chloropropene)	ug/m3	0.626		1.05		0.626 U	0.626 U		0.626		0.626 U
TO15	71-43-2	Benzene	ug/m3	0.626	U	1.03		3.48	0.626 U		4.34	J	3.45
TO15	100-44-7	Benzyl Chloride	ug/m3	1.04		1.07		1.04 U	1.04 U		1.04		1.04 U
						2.25							
TO15	75-27-4	Bromodichloromethane	ug/m3	1.34 2.07				1.34 U 2.07 U	1.34 U 2.07 U		1.34 U		1.34 U 2.07 U
TO15	75-25-2	Bromoform	ug/m3			3.47	_						
TO15	74-83-9	Bromomethane	ug/m3	0.777		1.3		0.777 U	0.777 U		0.777		0.777 U
TO15	75-15-0	Carbon Disulfide	ug/m3	0.623	U	1.05	U	0.623 U	0.623 U		0.623	J	0.819
TO15	56-23-5	Carbon Tetrachloride	ug/m3	0.054		4		0.024	0.004		0.001		1.26 U
TO15	108-90-7	Chlorobenzene	ug/m3	0.921		1.55		0.921 U	0.921 U		0.921		0.921 U
TO15	75-00-3	Chloroethane	ug/m3	0.528		0.887		0.528 U	0.528 U		0.528		0.528 U
TO15	67-66-3	Chloroform	ug/m3	0.977	U	1.64	U	1.31	0.977 U		0.977	J	0.977 U
TO15	74-87-3	Chloromethane	ug/m3	1.34		1.6		1.19	1.18		1.06		1.11
TO15	156-59-2	Cis-1,2-Dichloroethylene	ug/m3										1.26
TO15	10061-01-5	Cis-1,3-Dichloropropene	ug/m3	0.908		1.53	_	0.908 U	0.908 U		0.908	J	0.908 U
TO15	110-82-7	Cyclohexane	ug/m3	0.688		1.16		1.78	0.688 U		2.08		1.88
TO15	124-48-1	Dibromochloromethane	ug/m3	1.7	U	2.86		1.7 U	1.7 U		1.7	J	1.7 U
TO15	75-71-8	Dichlorodifluoromethane	ug/m3	2.62		4		2.8	2.36		2.87		2.83
TO15	64-17-5	Ethanol	ug/m3	10.5		66.9		165	9.42 U		104		33.2
TO15	141-78-6	Ethyl Acetate	ug/m3	1.8		4.5		1.8 U	1.8 U		1.8	J	1.8 U
TO15	100-41-4	Ethylbenzene	ug/m3	0.869		1.46		3.66	0.869 U		4.6		1.62
TO15	87-68-3	Hexachlorobutadiene	ug/m3	2.13	U	3.58	U	2.13 U	2.13 U		2.13 l	J	2.13 U
TO15	67-63-0	Isopropanol	ug/m3	1.27		8.6		6.69	1.23 U		3.61		1.74 J
TO15	179601-23-1	m,p-Xylene	ug/m3	1.74	U	5		13.5	1.74 U		17.1		5.08
TO15	78-93-3	Methyl Ethyl Ketone (2-Butanone)	ug/m3	1.47	U	3.54		1.47 U	1.47 U		1.47	J	11.3
TO15	108-10-1	Methyl Isobutyl Ketone (4-Methyl-2-Pentano	ne) ug/m3	2.05	U	3.44	U	2.05 U	2.05 U		2.05	J	4.51

			Location ID:	7623R-AA	7623R-BS	7653R-1F	7653R-AA	7653R-BS	7653R-SS
			Sample ID:	7623R-031022-AA	7623R-031022-IA-BS	7653R-012722-IA-1F	7653R-012722-AA	7653R-012722-IA-BS	7653R-012722-SS
			Matrix:	AO	AI	AI	AO	AI	AS
			Starting Depth:						
			Ending Depth:						
			Lab Sample ID:	L2212903-04	L2212903-01	L2204944-02	L2204944-04	L2204944-01	L2204944-03
			Sample Date:	3/10/2022	3/10/2022	1/27/2022	1/27/2022	1/27/2022	1/27/2022
			Sample Type Code:	N	N	N	N	N	N
			UNITS						
Analytical Method	CAS No.	COMPOUND	:						
		Methylene Chloride	ug/m3	1.74 U	2.91 U	1.74 U	1.74 U	1.74 U	1.74 UJ
		N-Heptane	ug/m3	0.82 U	1.59	8.24	0.82 U	4.88	4.43
TO15	110-54-3	N-Hexane	ug/m3	0.705 U	1.18 U	4.62	0.705 U	5.92	5.64
TO15	95-47-6	O-Xylene (1,2-Dimethylbenzene)	ug/m3	0.869 U	1.46 U	4.56	0.869 U	5.78	1.74
	100-42-5	Styrene	ug/m3	0.852 U	1.43 U	0.852 U	0.852 U	0.852 U	0.852 U
TO15	75-65-0	Tert-Butyl Alcohol	ug/m3	1.52 U	2.54 U	1.52 U	1.52 U	1.52 U	1.52 UJ
TO15	1634-04-4	Tert-Butyl Methyl Ether	ug/m3	0.721 U	1.21 U	0.721 U	0.721 U	0.721 U	0.721 U
TO15	127-18-4	Tetrachloroethylene (PCE)	ug/m3						1.36 U
	109-99-9	Tetrahydrofuran	ug/m3	1.47 U	4.25	1.47 U	1.47 U	1.47 U	1.47 U
TO15	108-88-3	Toluene	ug/m3	1.13	6.07	22.2	0.754 U	27.8	14.9
TO15	156-60-5	Trans-1,2-Dichloroethene	ug/m3	0.793 U	1.33 U	0.793 U	0.793 U	0.793 U	0.793 U
TO15	10061-02-6	Trans-1,3-Dichloropropene	ug/m3	0.908 U	1.53 U	0.908 U	0.908 U	0.908 U	0.908 U
TO15	79-01-6	Trichloroethylene (TCE)	ug/m3						1.07 U
TO15	75-69-4	Trichlorofluoromethane	ug/m3	1.28	3.31	1.3	1.19	1.2	1.26
TO15	593-60-2	Vinyl Bromide	ug/m3	0.874 U	1.47 U	0.874 U	0.874 U	0.874 U	0.874 U
TO15	75-01-4	Vinyl Chloride	ug/m3						0.511 U
TO15 SIM	71-55-6	1,1,1-Trichloroethane (TCA)	ug/m3	0.109 U	0.348	0.109 U	0.109 U	0.109 U	
TO15 SIM	75-35-4	1,1-Dichloroethene	ug/m3	0.079 U	0.133 U	0.079 U	0.079 U	0.079 U	
	56-23-5	Carbon Tetrachloride	ug/m3	0.522	0.538	0.535	0.447	0.465	
TO15 SIM		Cis-1,2-Dichloroethylene	ug/m3	0.079 U	2.14	1.22	0.079 U	1.76	
TO15 SIM	127-18-4	Tetrachloroethylene (PCE)	ug/m3	0.142	5.4	1.53	0.136 U	2.12	
TO15 SIM	79-01-6	Trichloroethylene (TCE)	ug/m3	0.107 U	0.93	0.339	0.107 U	0.5	
TO15 SIM	75-01-4	Vinyl Chloride	ug/m3	0.051 U	0.266	0.161	0.051 U	0.22	

Duplicate of

				Duplic									
				7653R-0		1				1			
			cation ID:	7653			9S-1F	9039S-		9039S-B	-	90399	
		Si	ample ID:	7653R-01			2622-IA-1F	9039S-012		9039S-012622	2-IA-BS	9039S-01	
			Matrix:	А	S	Į.	ΑI	AO		AI		AS	5
		Startii	ng Depth:										
		Endi	ng Depth:										
		Lab S	ample ID:	L2204	944-05	L2205	001-02	L220500	1-04	L2205001	-01	L22050	01-03
			ple Date:	1/27/	2022	1/24	/2022	1/24/2	022	1/24/202	22	1/24/2	2022
		Sample Ty			D		N	1,2.,2 N		1,2 i,25i		-,, - N	
		Sumple 1	UNITS				.,					.,	
Analytical Method	CAS No.	COMPOUND											
TO15	71-55-6	1.1.1-Trichloroethane (TCA)	ua/m3	1.09	11			1				1.09 (1
TO15	79-34-5	1,1,2,2-Tetrachloroethane	ug/m3	1.37		1.37	11	1.37 U	ı	1.37 U		1.37 (
TO15	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	1.53		1.53		1.53 U		1.53 U		1.53 (
TO15	79-00-5	1,1,2-Trichloroethane	ug/m3	1.09		1.09		1.09 U		1.09 U		1.09 (
TO15	75-34-3	1,1-Dichloroethane	ug/m3	0.809		0.809	U	0.809 U		0.809 U		0.809	
TO15	75-35-4	1,1-Dichloroethene	ug/m3	0.793			ł	4 (-1)		4.5		0.793 (
TO15	120-82-1	1,2,4-Trichlorobenzene	ug/m3	1.48		1.48		1.48 U		1.48 U		1.48	
	95-63-6	1,2,4-Trimethylbenzene	ug/m3	0.983		0.983		0.983 U		0.983 U		0.983 เ	
TO15	106-93-4	1,2-Dibromoethane (Ethylene Dibromide)	ug/m3	1.54		1.54		1.54 U		1.54 U		1.54 l	
	95-50-1	1,2-Dichlorobenzene	ug/m3	1.2		1.2		1.2 U		1.2 U		1.2 l	
TO15	107-06-2	1,2-Dichloroethane	ug/m3	0.809		0.809		0.809 U		0.809 U		0.809 เ	
TO15	78-87-5	1,2-Dichloropropane	ug/m3	0.924	U	0.924	U	0.924 U		0.924 U		0.924 เ	
TO15	76-14-2	1,2-Dichlorotetrafluoroethane	ug/m3	1.4	U	1.4	U	1.4 U		1.4 U		1.4 l	U
TO15	108-67-8	1,3,5-Trimethylbenzene (Mesitylene)	ug/m3	0.983	U	0.983	U	0.983 U		0.983 U		0.983 (U
TO15	106-99-0	1,3-Butadiene	ug/m3	0.442	U	5.02		0.442 U		0.442 U		0.442 l	U
TO15	541-73-1	1,3-Dichlorobenzene	ug/m3	1.2	U	1.2	U	1.2 U		1.2 U		1.2 \	U
TO15	106-46-7	1,4-Dichlorobenzene	ug/m3	1.2		1.2	U	1.2 U		1.2 U		1.2 \	J
TO15	123-91-1	1,4-Dioxane (P-Dioxane)	ug/m3	0.721		0.721		0.721 U		0.721 U		0.721 (
TO15	540-84-1	2,2,4-Trimethylpentane	ug/m3	1.1		0.934		0.934 U		0.934 U		0.934 (
TO15	591-78-6	2-Hexanone	ug/m3	1.58		0.82		0.82 U		0.82 U		0.82 (
TO15	622-96-8	4-Ethyltoluene	ug/m3	0.983	П	0.983		0.983 U		0.983 U		0.983 (
TO15	67-64-1	Acetone	ug/m3	65.6	0	28	0	13.2	<u> </u>	9.29		22.6	<u> </u>
TO15	107-05-1	Allyl Chloride (3-Chloropropene)	ug/m3	0.626	11	0.626	11	0.626 U	ı	0.626 U		0.626 (
TO15	71-43-2	, , , , , , , , , , , , , , , , , , , ,	ug/m3	2.58	U	10.4		0.738		1.9		1.24	U
TO15	71 -43-2 100-44-7	Benzene Benzyl Chloride		2.58 1.04	11	1.04		0.738 1.04 U	1	1.9 1.04 U		1.24 1.04 l	
			ug/m3										
TO15	75-27-4	Bromodichloromethane	ug/m3	1.34		1.34		1.34 U		1.34 U		1.34 (
TO15	75-25-2	Bromoform	ug/m3	2.07		2.07		2.07 U		2.07 U		2.07 (
TO15	74-83-9	Bromomethane	ug/m3	0.777		0.777		0.777 U		0.777 U		0.777 l	
TO15	75-15-0	Carbon Disulfide	ug/m3	0.623		0.623	U	0.623 U		0.623 U		0.623 l	
TO15	56-23-5	Carbon Tetrachloride	ug/m3	1.26								1.26 l	
TO15	108-90-7	Chlorobenzene	ug/m3	0.921		0.921		0.921 U		0.921 U		0.921 l	
TO15	75-00-3	Chloroethane	ug/m3	0.528		0.528		0.528 U		0.528 U		0.528 l	
	67-66-3	Chloroform	ug/m3	0.977	U	0.977		0.977 U		0.977 U		0.977 เ	U
TO15	74-87-3	Chloromethane	ug/m3	1.09		1.44		1.15		1.14		1.15	
TO15	156-59-2	Cis-1,2-Dichloroethylene	ug/m3	0.924								0.793 เ	U
TO15	10061-01-5	Cis-1,3-Dichloropropene	ug/m3	0.908	U	0.908	U	0.908 U		0.908 U		0.908 เ	U
TO15	110-82-7	Cyclohexane	ug/m3	1.34		0.688	U	0.688 U		0.688 U		0.688 l	U
TO15	124-48-1	Dibromochloromethane	ug/m3	1.7	U	1.7		1.7 U		1.7 U		1.7 l	
TO15	75-71-8	Dichlorodifluoromethane	ug/m3	2.54		2.34		2.31		2,22		2.31	
TO15	64-17-5	Ethanol	ug/m3	24.9		10900		26.4		708		546	
TO15	141-78-6	Ethyl Acetate	ug/m3	1.8	U	6.13		2.05		2,26		1.8 (IJ
TO15	100-41-4	Ethylbenzene	ug/m3	1.21	-	0.869		0.869 U		0.869 U		0.869 (
TO15	87-68-3	Hexachlorobutadiene	ug/m3	2.13	П	2.13		2.13 U		2.13 U		2.13 (
TO15	67-63-0	Isopropanol	ug/m3	1.23		1.51	<u> </u>	1.37	1	1.36		9.09	<u> </u>
TO15			ug/m3 ug/m3	3.88	UJ	1.74	lu	1.37 1.74 U		1.36 1.74 U		9.09 1.74 l	1
TO15	78-93-3	<i>n</i> ,		3.88		1.74	U	1.74 U		1.74 U		1.74 t	
		Methyl Ethyl Ketone (2-Butanone)	ug/m3				 						
TO15	108-10-1	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone	:) ug/m3	3.31		2.05	U	2.05 U		2.05 U		2.05 l	U

Duplicate of 7653R-012722-SS

				7653R-012722-SS							
			Location ID:	7653R-SS	9039	S-1F	9039S-AA		9039S-BS	9039	9S-SS
			Sample ID:	7653R-012722-SS-D	9039S-012	2622-IA-1F	9039S-012622	2-AA 9039	S-012622-IA-BS	9039S-0	12722-SS
			Matrix:	AS	A	AI .	AO		ΑI	A	\S
			Starting Depth:								
			Ending Depth:								
			Lab Sample ID:	L2204944-05	L22050	001-02	L2205001-0)4 L	.2205001-01	L22050	001-03
			Sample Date:	1/27/2022	1/24/	2022	1/24/2022	!	1/24/2022	1/24/	/2022
			Sample Type Code:	FD	N	N	N		N	1	N
			UNITS								
Analytical Method	CAS No.	COMPOUND	:								
	75-09-2	Methylene Chloride	ug/m3	5.84 J	1.74		1.74 U		1.74 U	1.74	
TO15	142-82-5	N-Heptane	ug/m3	3.19	0.82	U	0.82 U		0.82 U	0.82	
TO15	110-54-3	N-Hexane	ug/m3	4.05	0.73		0.705 U).705 U	0.705	-
	95-47-6	O-Xylene (1,2-Dimethylbenzene)	ug/m3	1.26	0.869		0.869 U).869 U	0.869	
TO15	100-42-5	Styrene	ug/m3	0.852 U	0.852		0.852 U).852 U	0.852	
TO15	75-65-0	Tert-Butyl Alcohol	ug/m3	2.98 J	1.52		1.52 U		1.52 U	1.52	
TO15	1634-04-4	Tert-Butyl Methyl Ether	ug/m3	0.721 U	0.721	U	0.721 U	().721 U	0.721	
TO15	127-18-4	Tetrachloroethylene (PCE)	ug/m3	1.55						1.36	
TO15	109-99-9	Tetrahydrofuran	ug/m3	1.47 U	1.47	U	1.47 U		1.47 U	1.47	
TO15	108-88-3	Toluene	ug/m3	10.9	1.79		0.893		1.06	0.754	
TO15	156-60-5	Trans-1,2-Dichloroethene	ug/m3	0.793 U	0.793	U	0.793 U	().793 U	0.793	
TO15	10061-02-6	Trans-1,3-Dichloropropene	ug/m3	0.908 U	0.908	U	0.908 U	().908 U	0.908	
TO15	79-01-6	Trichloroethylene (TCE)	ug/m3	1.07 U						1.07	
	75-69-4	Trichlorofluoromethane	ug/m3	1.14	1.17		1.23		1.14	1.17	
	593-60-2	Vinyl Bromide	ug/m3	0.874 U	0.874	U	0.874 U	().874 U	0.874	U
	75-01-4	Vinyl Chloride	ug/m3	0.511 U						0.511	U
	71-55-6	1,1,1-Trichloroethane (TCA)	ug/m3		0.109		0.109 U		0.109 U		
	75-35-4	1,1-Dichloroethene	ug/m3		0.079	U	0.079 U		0.079 U		
	56-23-5	Carbon Tetrachloride	ug/m3		0.44		0.44).415		
TO15 SIM	156-59-2	Cis-1,2-Dichloroethylene	ug/m3		0.079		0.079 U).079 U		
TO15 SIM	127-18-4	Tetrachloroethylene (PCE)	ug/m3		0.136		0.136 U		0.149		
	79-01-6	Trichloroethylene (TCE)	ug/m3		0.107		0.107 U		0.107 U		
TO15 SIM	75-01-4	Vinyl Chloride	ug/m3		0.051	U	0.051 U	(0.051 U		

ATTACHMENT H LAB REPORT – MARCH 2022 ANALYTICAL RESULTS

ANALYTICAL REPORT

Lab Number: L2212903

Client: Parsons Engineering of New York, Inc.

301 Plainfield Road

Suite 350

Syracuse, NY 13212

ATTN: Heather Budzich Phone: (315) 546-6239

Project Name: NYSDEC FORMER ERWIN DRYCLEANER

Project Number: 452326.02

Report Date: 03/24/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: NYSDEC FORMER ERWIN DRYCLEANER

Project Number: 452326.02

Lab Number:

L2212903

Report Date:

03/24/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2212903-01	7623R-031022-IA-BS	AIR	1445 WEST RIDGE ROAD; GREECE, NY MONROE COUNTY	03/11/22 11:20	03/11/22
L2212903-02	7623R-031022-IA-1F-1	AIR	1445 WEST RIDGE ROAD; GREECE, NY MONROE COUNTY	03/11/22 11:17	03/11/22
L2212903-03	7623R-031022-IA-1F-2	AIR	1445 WEST RIDGE ROAD; GREECE, NY MONROE COUNTY	03/11/22 11:18	03/11/22
L2212903-04	7623R-031022-AA	AIR	1445 WEST RIDGE ROAD; GREECE, NY MONROE COUNTY	03/11/22 11:22	03/11/22

Project Name: NYSDEC FORMER ERWIN DRYCLEANER Lab Number: L2212903

Project Number: 452326.02 **Report Date:** 03/24/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:03242219:19

Project Name: NYSDEC FORMER ERWIN DRYCLEANER Lab Number: L2212903

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on March 10, 2022. The canister certification results are provided as an addendum.

L2212903-01D: The canister vacuum measured on receipt at the laboratory was > 15 in. Hg. Prior to sample analysis, the canisters were pressurized with UHP Nitrogen in order to facilitate the transfer of sample to the Gas Chromatograph. The addition of Nitrogen resulted in a dilution of the samples. The reporting limits have been elevated accordingly.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/24/22

Christopher J. Anderson

AIR

Project Number: 452326.02 **Report Date:** 03/24/22

SAMPLE RESULTS

Lab ID: L2212903-01 D Date Collected: 03/11/22 11:20

Client ID: 7623R-031022-IA-BS Date Received: 03/11/22

Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY Field Prep: Not Specified MONROE COUNTY

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 03/23/22 19:57

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.809	0.336		4.00	1.66			1.678
Chloromethane	0.775	0.336		1.60	0.694			1.678
Freon-114	ND	0.336		ND	2.35			1.678
1,3-Butadiene	ND	0.336		ND	0.743			1.678
Bromomethane	ND	0.336		ND	1.30			1.678
Chloroethane	ND	0.336		ND	0.887			1.678
Ethanol	35.5	8.39		66.9	15.8			1.678
Vinyl bromide	ND	0.336		ND	1.47			1.678
Acetone	25.0	1.68		59.4	3.99			1.678
Trichlorofluoromethane	0.589	0.336		3.31	1.89			1.678
Isopropanol	3.50	0.839		8.60	2.06			1.678
Tertiary butyl Alcohol	ND	0.839		ND	2.54			1.678
Methylene chloride	ND	0.839		ND	2.91			1.678
3-Chloropropene	ND	0.336		ND	1.05			1.678
Carbon disulfide	ND	0.336		ND	1.05			1.678
Freon-113	ND	0.336		ND	2.58			1.678
trans-1,2-Dichloroethene	ND	0.336		ND	1.33			1.678
1,1-Dichloroethane	ND	0.336		ND	1.36			1.678
Methyl tert butyl ether	ND	0.336		ND	1.21			1.678
2-Butanone	1.20	0.839		3.54	2.47			1.678
Ethyl Acetate	1.25	0.839		4.50	3.02			1.678
Chloroform	ND	0.336		ND	1.64			1.678
Tetrahydrofuran	1.44	0.839		4.25	2.47			1.678

Project Number: 452326.02 **Report Date:** 03/24/22

SAMPLE RESULTS

Lab ID: L2212903-01 D Date Collected: 03/11/22 11:20

Client ID: 7623R-031022-IA-BS Date Received: 03/11/22 Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY Field Prep: Not Specified

MONROE COUNTY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2-Dichloroethane	ND	0.336		ND	1.36			1.678
n-Hexane	ND	0.336		ND	1.18			1.678
Benzene	ND	0.336		ND	1.07			1.678
Cyclohexane	ND	0.336		ND	1.16			1.678
1,2-Dichloropropane	ND	0.336		ND	1.55			1.678
Bromodichloromethane	ND	0.336		ND	2.25			1.678
1,4-Dioxane	ND	0.336		ND	1.21			1.678
2,2,4-Trimethylpentane	ND	0.336		ND	1.57			1.678
Heptane	0.388	0.336		1.59	1.38			1.678
cis-1,3-Dichloropropene	ND	0.336		ND	1.53			1.678
4-Methyl-2-pentanone	ND	0.839		ND	3.44			1.678
trans-1,3-Dichloropropene	ND	0.336		ND	1.53			1.678
1,1,2-Trichloroethane	ND	0.336		ND	1.83			1.678
Toluene	1.61	0.336		6.07	1.27			1.678
2-Hexanone	ND	0.336		ND	1.38			1.678
Dibromochloromethane	ND	0.336		ND	2.86			1.678
1,2-Dibromoethane	ND	0.336		ND	2.58			1.678
Chlorobenzene	ND	0.336		ND	1.55			1.678
Ethylbenzene	ND	0.336		ND	1.46			1.678
p/m-Xylene	1.15	0.671		5.00	2.91			1.678
Bromoform	ND	0.336		ND	3.47			1.678
Styrene	ND	0.336		ND	1.43			1.678
1,1,2,2-Tetrachloroethane	ND	0.336		ND	2.31			1.678
o-Xylene	ND	0.336		ND	1.46			1.678
4-Ethyltoluene	ND	0.336		ND	1.65			1.678
1,3,5-Trimethylbenzene	ND	0.336		ND	1.65			1.678

Not Specified

1.678

03/11/22

Date Collected:

Date Received:

Field Prep:

Project Name: Lab Number: NYSDEC FORMER ERWIN DRYCLEANER L2212903

Project Number: Report Date: 452326.02 03/24/22

SAMPLE RESULTS

Lab ID: L2212903-01 D

Client ID: 7623R-031022-IA-BS

Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY

MONROE COUNTY

Hexachlorobutadiene

Sample Depth:								
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results RL		MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.336		ND	1.65			1.678
Benzyl chloride	ND	0.336		ND	1.74			1.678
1,3-Dichlorobenzene	ND	0.336		ND	2.02			1.678
1,4-Dichlorobenzene	ND	0.336		ND	2.02			1.678
1,2-Dichlorobenzene	ND	0.336		ND	2.02			1.678
1,2,4-Trichlorobenzene	ND	0.336		ND	2.49			1.678

--

ND

3.58

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	74		60-140
Bromochloromethane	76		60-140
chlorobenzene-d5	78		60-140

0.336

ND

Project Number: 452326.02 **Report Date:** 03/24/22

SAMPLE RESULTS

Lab ID: L2212903-01 D Date Collected: 03/11/22 11:20

Client ID: 7623R-031022-IA-BS Date Received: 03/11/22

Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY Field Prep: Not Specified MONROE COUNTY

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/23/22 19:57

	<u> </u>	ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	0.104	0.034		0.266	0.086			1.678
1,1-Dichloroethene	ND	0.034		ND	0.133			1.678
cis-1,2-Dichloroethene	0.540	0.034		2.14	0.133			1.678
1,1,1-Trichloroethane	0.064	0.034		0.348	0.183			1.678
Carbon tetrachloride	0.086	0.034		0.538	0.211			1.678
Trichloroethene	0.173	0.034		0.930	0.181			1.678
Tetrachloroethene	0.797	0.034		5.40	0.228			1.678

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	73		60-140
bromochloromethane	75		60-140
chlorobenzene-d5	78		60-140

Not Specified

03/11/22

Date Collected:

Date Received:

Field Prep:

Project Name: NYSDEC FORMER ERWIN DRYCLEANER Lab Number: L2212903

Project Number: 452326.02 **Report Date:** 03/24/22

SAMPLE RESULTS

Lab ID: L2212903-02

Client ID: 7623R-031022-IA-1F-1

Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY

MONROE COUNTY

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/23/22 22:12

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
Dichlorodifluoromethane	0.639	0.200		3.16	0.989			1
Chloromethane	0.778	0.200		1.61	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	43.6	5.00		82.2	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	29.2	1.00		69.4	2.38			1
Trichlorofluoromethane	0.831	0.200		4.67	1.12			1
Isopropanol	2.44	0.500		6.00	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.668	0.500		1.97	1.47			1
Ethyl Acetate	0.733	0.500		2.64	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	0.665	0.500		1.96	1.47			1

Not Specified

03/11/22

Date Collected:

Date Received:

Field Prep:

Project Name: NYSDEC FORMER ERWIN DRYCLEANER Lab Number: L2212903

Project Number: 452326.02 **Report Date:** 03/24/22

SAMPLE RESULTS

Lab ID: L2212903-02

Client ID: 7623R-031022-IA-1F-1

Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY

MONROE COUNTY

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
d Lab							
ND	0.200		ND	0.809			1
ND	0.200		ND	0.705			1
0.208	0.200		0.664	0.639			1
ND	0.200		ND	0.688			1
ND	0.200		ND	0.924			1
ND	0.200		ND	1.34			1
ND	0.200		ND	0.721			1
ND	0.200		ND	0.934			1
0.330	0.200		1.35	0.820			1
ND	0.200		ND	0.908			1
ND	0.500		ND	2.05			1
ND	0.200		ND	0.908			1
ND	0.200		ND	1.09			1
0.724	0.200		2.73	0.754			1
ND	0.200		ND	0.820			1
ND	0.200		ND	1.70			1
ND	0.200		ND	1.54			1
ND	0.200		ND	0.921			1
ND	0.200		ND	0.869			1
ND	0.400		ND	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
ND	0.200		ND	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	Results RL d Lab ND 0.200 ND 0.200 0.200 ND 0.200 ND 0.200	Results RL MDL ALab ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 <t< td=""><td>Results RL MDL Results Id Lab ND 0.200 ND ND 0.200 ND 0.208 0.200 ND ND 0.200 </td><td>Results RL MDL Results RL d Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 0.208 0.200 ND 0.664 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.200 ND 0.908 ND 0.200 ND 1.09</td><td>Results RL MDL Results RL MDL Id Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 0.208 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND 0.9</td><td>Results RL MDL Results RL MDL Qualifier d Lab ND 0.200 ND 0.809 <</td></t<>	Results RL MDL Results Id Lab ND 0.200 ND ND 0.200 ND 0.208 0.200 ND ND 0.200	Results RL MDL Results RL d Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 0.208 0.200 ND 0.664 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.908 ND 0.200 ND 0.908 ND 0.200 ND 1.09	Results RL MDL Results RL MDL Id Lab ND 0.200 ND 0.809 ND 0.200 ND 0.705 0.208 0.200 ND 0.639 ND 0.200 ND 0.688 ND 0.200 ND 0.924 ND 0.200 ND 0.934 ND 0.200 ND 0.934 ND 0.200 ND 0.9	Results RL MDL Results RL MDL Qualifier d Lab ND 0.200 ND 0.809 <

Not Specified

1

1

03/11/22

Date Collected:

Date Received:

Field Prep:

Project Name: Lab Number: NYSDEC FORMER ERWIN DRYCLEANER L2212903

Project Number: Report Date: 452326.02 03/24/22

SAMPLE RESULTS

Lab ID: L2212903-02

Client ID: 7623R-031022-IA-1F-1

Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY

MONROE COUNTY

1,2,4-Trichlorobenzene

Hexachlorobutadiene

Sample Depth:								
	ppbV			ug/m3				Dilution
Parameter	Results	Results RL		Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1

--

--

ND

ND

1.48

2.13

--

--

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	73		60-140
Bromochloromethane	76		60-140
chlorobenzene-d5	78		60-140

0.200

0.200

ND

ND

Project Number: 452326.02 **Report Date:** 03/24/22

SAMPLE RESULTS

Lab ID: Date Collected: 03/11/22 11:17

Client ID: 7623R-031022-IA-1F-1 Date Received: 03/11/22 Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY Field Prep: Not Specified

MONROE COUNTY

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/23/22 22:12

	<u> </u>	ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	И - Mansfield Lab							
Vinyl chloride	0.088	0.020		0.225	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.465	0.020		1.84	0.079			1
1,1,1-Trichloroethane	0.048	0.020		0.262	0.109			1
Carbon tetrachloride	0.087	0.020		0.547	0.126			1
Trichloroethene	0.146	0.020		0.785	0.107			1
Tetrachloroethene	0.695	0.020		4.71	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	73		60-140
bromochloromethane	75		60-140
chlorobenzene-d5	78		60-140

Not Specified

03/11/22

Date Collected:

Date Received:

Field Prep:

Project Name: NYSDEC FORMER ERWIN DRYCLEANER Lab Number: L2212903

Project Number: 452326.02 **Report Date:** 03/24/22

SAMPLE RESULTS

Lab ID: L2212903-03

Client ID: 7623R-031022-IA-1F-2

Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY

MONROE COUNTY

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/23/22 22:59

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.670	0.200		3.31	0.989			1
Chloromethane	0.869	0.200		1.79	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	45.1	5.00		85.0	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	21.5	1.00		51.1	2.38			1
Trichlorofluoromethane	1.08	0.200		6.07	1.12			1
Isopropanol	2.18	0.500		5.36	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.602	0.500		1.78	1.47			1
Ethyl Acetate	0.542	0.500		1.95	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Not Specified

03/11/22

Date Collected:

Date Received:

Field Prep:

Project Name: NYSDEC FORMER ERWIN DRYCLEANER Lab Number: L2212903

Project Number: 452326.02 **Report Date:** 03/24/22

SAMPLE RESULTS

Lab ID: L2212903-03

Client ID: 7623R-031022-IA-1F-2

Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY

MONROE COUNTY

оапіріє Беріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.224	0.200		0.716	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	0.292	0.200		1.20	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.687	0.200		2.59	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: 452326.02 **Report Date:** 03/24/22

SAMPLE RESULTS

Lab ID: L2212903-03

Client ID: 7623R-031022-IA-1F-2

Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY

MONROE COUNTY

Sample Depth:

Date Collected: 03/11/22 11:18
Date Received: 03/11/22
Field Prep: Not Specified

ppbV		ug/m3				Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
₋ab							
ND	0.200		ND	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	ND ND ND ND ND ND ND ND ND ND	ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200	Results RL MDL Lab ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200	Results RL MDL Results Lab ND 0.200 ND ND 0.200 ND	Results RL MDL Results RL Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Qualifier Lab ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48 ND 0.200 ND 1.48

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	70		60-140
Bromochloromethane	73		60-140
chlorobenzene-d5	73		60-140

Project Number: 452326.02 **Report Date:** 03/24/22

SAMPLE RESULTS

Lab ID: L2212903-03 Date Collected: 03/11/22 11:18

Client ID: 7623R-031022-IA-1F-2 Date Received: 03/11/22

Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY Field Prep: Not Specified MONROE COUNTY

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/23/22 22:59

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	0.108	0.020		0.276	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.527	0.020		2.09	0.079			1
1,1,1-Trichloroethane	0.054	0.020		0.295	0.109			1
Carbon tetrachloride	0.093	0.020		0.585	0.126			1
Trichloroethene	0.168	0.020		0.903	0.107			1
Tetrachloroethene	0.763	0.020		5.17	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	69		60-140
bromochloromethane	72		60-140
chlorobenzene-d5	74		60-140

Project Number: 452326.02 **Report Date:** 03/24/22

SAMPLE RESULTS

Lab ID: Date Collected: 03/11/22 11:22

Client ID: 7623R-031022-AA Date Received: 03/11/22

Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY Field Prep: Not Specified MONROE COUNTY

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 03/23/22 20:39

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.529	0.200		2.62	0.989			1
Chloromethane	0.649	0.200		1.34	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	5.56	5.00		10.5	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	3.17	1.00		7.53	2.38			1
Trichlorofluoromethane	0.227	0.200		1.28	1.12			1
Isopropanol	0.515	0.500		1.27	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: 452326.02 **Report Date:** 03/24/22

SAMPLE RESULTS

Lab ID: L2212903-04 Date Collected: 03/11/22 11:22

Client ID: 7623R-031022-AA Date Received: 03/11/22
Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY Field Prep: Not Specified

MONROE COUNTY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.222	0.200		0.709	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.299	0.200		1.13	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Date Collected:

Project Name: NYSDEC FORMER ERWIN DRYCLEANER Lab Number: L2212903

Project Number: 452326.02 **Report Date:** 03/24/22

SAMPLE RESULTS

Lab ID: L2212903-04 Client ID: 7623R-031022-AA

Client ID: 7623R-031022-AA Date Received: 03/11/22 Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY Field Prep. Not Spec

le Location: 1445 WEST RIDGE ROAD; GREECE, NY Field Prep: Not Specified MONROE COUNTY

MONROE COUNTY

		ppbV		ug/m3				Dilution Factor
Parameter	Results	RL	MDL Results RL MDL	Qualifier				
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	76		60-140
Bromochloromethane	80		60-140
chlorobenzene-d5	79		60-140

Project Number: 452326.02 **Report Date:** 03/24/22

SAMPLE RESULTS

Lab ID: Date Collected: 03/11/22 11:22

Client ID: 7623R-031022-AA Date Received: 03/11/22

Sample Location: 1445 WEST RIDGE ROAD; GREECE, NY Field Prep: Not Specified MONROE COUNTY

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/23/22 20:39

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SII	M - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.083	0.020		0.522	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.021	0.020		0.142	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	76		60-140
bromochloromethane	78		60-140
chlorobenzene-d5	79		60-140

Project Name: NYSDEC FORMER ERWIN DRYCLEANER Lab Number: L2212903

Project Number: 452326.02 **Report Date:** 03/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/23/22 15:38

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	ole(s): 01-	-04 Batch:	: WG16190)44-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: NYSDEC FORMER ERWIN DRYCLEANER Lab Number: L2212903

Project Number: 452326.02 **Report Date:** 03/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/23/22 15:38

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	ld Lab for samp	ole(s): 01	-04 Batch	: WG16190)44-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: NYSDEC FORMER ERWIN DRYCLEANER Lab Number: L2212903

Project Number: 452326.02 **Report Date:** 03/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/23/22 15:38

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab for samp	ole(s): 01-	·04 Batcl	n: WG16190)44-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: NYSDEC FORMER ERWIN DRYCLEANER Lab Number: L2212903

Project Number: 452326.02 **Report Date:** 03/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 03/23/22 15:38

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab f	or sample	e(s): 01-0	4 Batch: W	G161904	17-4		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Lab Control Sample Analysis Batch Quality Control

Project Name: NYSDEC FORMER ERWIN DRYCLEANER

Project Number: 452326.02

Lab Number: L2212903

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air - Mansfield Lab A	associated sample(s):	01-04	Batch: WG161904	14-3					
Dichlorodifluoromethane	96		-		70-130	-			
Chloromethane	105		-		70-130	-			
Freon-114	98		-		70-130	-			
Vinyl chloride	85		-		70-130	-			
1,3-Butadiene	100		-		70-130	-			
Bromomethane	86		-		70-130	-			
Chloroethane	86		-		70-130	-			
Ethanol	90		-		40-160	-			
Vinyl bromide	96		-		70-130	-			
Acetone	106		-		40-160	-			
Trichlorofluoromethane	94		-		70-130	-			
Isopropanol	103		-		40-160	-			
1,1-Dichloroethene	85		-		70-130	-			
Tertiary butyl Alcohol	85		-		70-130	-			
Methylene chloride	108		-		70-130	-			
3-Chloropropene	93		-		70-130	-			
Carbon disulfide	102		-		70-130	-			
Freon-113	102		-		70-130	-			
trans-1,2-Dichloroethene	77		-		70-130	-			
1,1-Dichloroethane	80		-		70-130	-			
Methyl tert butyl ether	96		-		70-130	-			
2-Butanone	100		-		70-130	-			
cis-1,2-Dichloroethene	79		-		70-130	-			

Lab Control Sample Analysis Batch Quality Control

Project Name: NYSDEC FORMER ERWIN DRYCLEANER

Project Number: 452326.02

Lab Number: L2212903

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab A	Associated sample(s):	01-04	Batch: WG161904	4-3				
Ethyl Acetate	77		-		70-130	-		
Chloroform	86		-		70-130	-		
Tetrahydrofuran	95		-		70-130	-		
1,2-Dichloroethane	81		-		70-130	-		
n-Hexane	86		-		70-130	-		
1,1,1-Trichloroethane	98		-		70-130	-		
Benzene	94		-		70-130	-		
Carbon tetrachloride	102		-		70-130	-		
Cyclohexane	87		-		70-130	-		
1,2-Dichloropropane	93		-		70-130	-		
Bromodichloromethane	99		-		70-130	-		
1,4-Dioxane	92		-		70-130	-		
Trichloroethene	94		-		70-130	-		
2,2,4-Trimethylpentane	89		-		70-130	-		
Heptane	116		-		70-130	-		
cis-1,3-Dichloropropene	115		-		70-130	-		
4-Methyl-2-pentanone	122		-		70-130	-		
trans-1,3-Dichloropropene	100		-		70-130	-		
1,1,2-Trichloroethane	101		-		70-130	-		
Toluene	91		-		70-130	-		
2-Hexanone	125		-		70-130	-		
Dibromochloromethane	108		-		70-130	-		
1,2-Dibromoethane	111		-		70-130	-		
.,= =					70 100			

Lab Control Sample Analysis Batch Quality Control

Project Name: NYSDEC FORMER ERWIN DRYCLEANER

Project Number: 452326.02

Lab Number: L2212903

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-04	Batch: WG161904	4-3				
Tetrachloroethene	102		-		70-130	-		
Chlorobenzene	105		-		70-130	-		
Ethylbenzene	97		-		70-130	-		
p/m-Xylene	99		-		70-130	-		
Bromoform	113		-		70-130	-		
Styrene	109		-		70-130	-		
1,1,2,2-Tetrachloroethane	107		-		70-130	-		
o-Xylene	103		-		70-130	-		
4-Ethyltoluene	107		-		70-130	-		
1,3,5-Trimethylbenzene	108		-		70-130	-		
1,2,4-Trimethylbenzene	113		-		70-130	-		
Benzyl chloride	101		-		70-130	-		
1,3-Dichlorobenzene	111		-		70-130	-		
1,4-Dichlorobenzene	113		-		70-130	-		
1,2-Dichlorobenzene	111		-		70-130	-		
1,2,4-Trichlorobenzene	118		-		70-130	-		
Hexachlorobutadiene	110		-		70-130	-		

L2212903

Lab Control Sample Analysis Batch Quality Control

Project Name: NYSDEC FORMER ERWIN DRYCLEANER

Quality Control Lab Number:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	b Associated sa	ımple(s):	01-04 Batch: WG	31619047-3	3				
Vinyl chloride	87		-		70-130	-		25	
1,1-Dichloroethene	85		-		70-130	-		25	
cis-1,2-Dichloroethene	80		-		70-130	-		25	
1,1,1-Trichloroethane	98		-		70-130	-		25	
Carbon tetrachloride	98		-		70-130	-		25	
Trichloroethene	96		-		70-130	-		25	
Tetrachloroethene	106		-		70-130	-		25	

Lab Duplicate Analysis Batch Quality Control

Project Name: NYSDEC FORMER ERWIN DRYCLEANER

452326.02

Project Number:

Quality Control Lab Number: L2212903

Report Date: 03/24/22

arameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-04	QC Batch ID: WG1619044-5	QC Sample:	L2212903-	04 Client ID:	7623R-031022-
Dichlorodifluoromethane	0.529	0.553	ppbV	4		25
Chloromethane	0.649	0.680	ppbV	5		25
Freon-114	ND	ND	ppbV	NC		25
1,3-Butadiene	ND	ND	ppbV	NC		25
Bromomethane	ND	ND	ppbV	NC		25
Chloroethane	ND	ND	ppbV	NC		25
Ethanol	5.56	5.59	ppbV	1		25
Vinyl bromide	ND	ND	ppbV	NC		25
Acetone	3.17	3.01	ppbV	5		25
Trichlorofluoromethane	0.227	0.234	ppbV	3		25
Isopropanol	0.515	0.527	ppbV	2		25
Tertiary butyl Alcohol	ND	ND	ppbV	NC		25
Methylene chloride	ND	ND	ppbV	NC		25
3-Chloropropene	ND	ND	ppbV	NC		25
Carbon disulfide	ND	ND	ppbV	NC		25
Freon-113	ND	ND	ppbV	NC		25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25
1,1-Dichloroethane	ND	ND	ppbV	NC		25
Methyl tert butyl ether	ND	ND	ppbV	NC		25
2-Butanone	ND	ND	ppbV	NC		25
Ethyl Acetate	ND	ND	ppbV	NC		25

Lab Duplicate Analysis Batch Quality Control

Project Name: NYSDEC FORMER ERWIN DRYCLEANER

Lab Number:

L2212903

Project Number: 452326.02

arameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
platile Organics in Air - Mansfield Lab	Associated sample(s): 01-04	QC Batch ID: WG1619044-5	QC Sample:	L2212903-04	Client ID:	7623R-031022-
Chloroform	ND	ND	ppbV	NC		25
Tetrahydrofuran	ND	ND	ppbV	NC		25
1,2-Dichloroethane	ND	ND	ppbV	NC		25
n-Hexane	ND	ND	ppbV	NC		25
Benzene	0.222	0.228	ppbV	3		25
Cyclohexane	ND	ND	ppbV	NC		25
1,2-Dichloropropane	ND	ND	ppbV	NC		25
Bromodichloromethane	ND	ND	ppbV	NC		25
1,4-Dioxane	ND	ND	ppbV	NC		25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC		25
Heptane	ND	ND	ppbV	NC		25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC		25
4-Methyl-2-pentanone	ND	ND	ppbV	NC		25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC		25
1,1,2-Trichloroethane	ND	ND	ppbV	NC		25
Toluene	0.299	0.297	ppbV	1		25
2-Hexanone	ND	ND	ppbV	NC		25
Dibromochloromethane	ND	ND	ppbV	NC		25
1,2-Dibromoethane	ND	ND	ppbV	NC		25
Chlorobenzene	ND	ND	ppbV	NC		25
Ethylbenzene	ND	ND	ppbV	NC		25

L2212903

Lab Duplicate Analysis Batch Quality Control

Project Name: NYSDEC FORMER ERWIN DRYCLEANER

452326.02

Project Number:

uality Control Lab Number:

						RPD
arameter	Native Sample	Duplicate Sample	Units	RPD	Qual	Limits
platile Organics in Air - Mansfield Lab	Associated sample(s): 01-04	QC Batch ID: WG1619044-5	QC Sample:	L2212903-0	04 Client ID:	7623R-031022-
p/m-Xylene	ND	ND	ppbV	NC		25
Bromoform	ND	ND	ppbV	NC		25
Styrene	ND	ND	ppbV	NC		25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC		25
o-Xylene	ND	ND	ppbV	NC		25
4-Ethyltoluene	ND	ND	ppbV	NC		25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC		25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC		25
Benzyl chloride	ND	ND	ppbV	NC		25
1,3-Dichlorobenzene	ND	ND	ppbV	NC		25
1,4-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC		25
Hexachlorobutadiene	ND	ND	ppbV	NC		25

Lab Duplicate Analysis
Batch Quality Control

Project Name: NYSDEC FORMER ERWIN DRYCLEANER

L2212903

Project Number: 452326.02 Report Date: 03/24/22

Lab Number:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01-04	QC Batch ID: WG16	619047-5	QC Sample: L2	212903-04 Client ID	: 7623R-
Vinyl chloride	ND	ND	ppbV	NC	25	
1,1-Dichloroethene	ND	ND	ppbV	NC	25	
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25	
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25	
Carbon tetrachloride	0.083	0.083	ppbV	0	25	
Trichloroethene	ND	ND	ppbV	NC	25	
Tetrachloroethene	0.021	0.020	ppbV	5	25	

NYSDEC FORMER ERWIN DRYCLEANER L2212903

Project Number: 452326.02 Report Date: 03/24/22

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leal Check				Flow Out mL/min	Flow In mL/min	% RPD
L2212903-01	7623R-031022-IA-BS	0317	Flow 5	03/10/22	380522		-	-	-	Pass	3.0	1.5	67
L2212903-01	7623R-031022-IA-BS	2128	6.0L Can	03/10/22	380522	L2211878-03	Pass	-29.0	-17.6	-	-	-	-
L2212903-02	7623R-031022-IA-1F-1	01369	Flow 5	03/10/22	380522		-	-	-	Pass	3.0	2.8	7
L2212903-02	7623R-031022-IA-1F-1	2253	6.0L Can	03/10/22	380522	L2211878-05	Pass	-29.3	-11.2	-	-	-	-
L2212903-03	7623R-031022-IA-1F-2	02053	Flow 5	03/10/22	380522		-	-	-	Pass	3.0	2.2	31
L2212903-03	7623R-031022-IA-1F-2	2956	6.0L Can	03/10/22	380522	L2211878-01	Pass	-29.1	-14.0	-	-	-	-
L2212903-04	7623R-031022-AA	02155	FLOW 5	03/10/22	380522		-	-	-	Pass	3.0	1.2	86
L2212903-04	7623R-031022-AA	2813	6.0L Can	03/10/22	380522	L2211871-04	Pass	-28.9	-3.9	-	-	-	-

Project Name:

L2211871

Lab Number:

Project Name: INDIV. CANISTER CERTIFICATION

Project Number: CANISTER QC INDIV Report Date: 03/24/22

Air Canister Certification Results

Lab ID: Date Collected: 03/07/22 08:00

Client ID: CAN 2813 Date Received: 03/07/22 Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 03/08/22 17:43

Analyst: TS

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2211871

Lab Number:

Project Name: INDIV. CANISTER CERTIFICATION

Project Number: CANISTER QC INDIV Report Date: 03/24/22

Air Canister Certification Results

Lab ID: L2211871-04 Client ID: CAN 2813

Sample Location:

Date Collected: 03/07/22 08:00

Date Received: 03/07/22 Field Prep: Not Specified

Sample Depth.	Value							
Parameter	ppbV Results RL		MDL	ug/m3 Results RL		MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansfield Lab	Tiodailo		IIIDE					
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, Total	ND	0.200		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	0.200		ND	0.793			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2211871

Lab Number:

Project Name: INDIV. CANISTER CERTIFICATION

Project Number: CANISTER QC INDIV Report Date: 03/24/22

Air Canister Certification Results

Lab ID: L2211871-04 Client ID: CAN 2813

Sample Location:

Date Collected: 03/07/22 08:00

Date Received: 03/07/22 Field Prep: Not Specified

Запіріе Беріп.		ppbV		ug/m3		Diller Com		
Parameter	Results	RL MDL		Results RL MDI			Qualifier	Dilution Factor
Volatile Organics in Air - Mansfield Lab								
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2211871

Lab Number:

Project Name: INDIV. CANISTER CERTIFICATION

Project Number: CANISTER QC INDIV Report Date: 03/24/22

Air Canister Certification Results

Lab ID: L2211871-04 Client ID: CAN 2813

Sample Location:

Date Collected: 03/07/22 08:00

Date Received: 03/07/22 Field Prep: Not Specified

Затріе Беріп.		ppbV		ug/m3		Dilution Factor		
Parameter	Results RL		MDL	Results	RL MD		Qualifier	
Volatile Organics in Air - Mansfield La	b							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

03/07/22 08:00

Project Name: INDIV. CANISTER CERTIFICATION Lab Number: L2211871

Project Number: CANISTER QC INDIV Report Date: 03/24/22

Air Canister Certification Results

Lab ID: L2211871-04 Date Collected:

Client ID: CAN 2813 Date Received: 03/07/22

Sample Location: Field Prep: Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Dilution Results Qualifier Units RDL Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	101		60-140

L2211871

Lab Number:

Project Name: INDIV. CANISTER CERTIFICATION

Project Number: CANISTER QC INDIV Report Date: 03/24/22

Air Canister Certification Results

Lab ID: L2211871-04 Date Collected: 03/07/22 08:00

Client ID: CAN 2813 Date Received: 03/07/22 Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/08/22 17:43

Analyst: TS

		ppbV			ug/m3		Dilution	
Parameter	Results	RL MDL		Results RL		MDL	Qualifier	Factor
Volatile Organics in Air by SIM	l - Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

Project Name: INDIV. CANISTER CERTIFICATION

Project Number: CANISTER QC INDIV Report Date: 03/24/22

Air Canister Certification Results

Lab ID: L2211871-04 Client ID: CAN 2813

Sample Location:

Date Collected: 03

03/07/22 08:00

Date Received: Field Prep:

Lab Number:

03/07/22 Not Specified

L2211871

сатрю верит.		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1

Project Name: INDIV. CANISTER CERTIFICATION Lab Number: L2211871

Project Number: CANISTER QC INDIV Report Date: 03/24/22

Air Canister Certification Results

Lab ID: L2211871-04 Date Collected: 03/07/22 08:00 Client ID: CAN 2813 Date Received: 03/07/22

Client ID: CAN 2813 Date Received: 03/07/22 Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	/lansfield Lab							
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	98		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	103		60-140

L2211878

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/24/22

Air Canister Certification Results

Lab ID: L2211878-01

Date Collected: 03/07/22 18:00 Client ID: **CAN 2956 SHELF 40** Date Received: 03/08/22

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 03/08/22 22:12

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2211878

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-01

Date Collected: 03/07/22 18:00 Client ID: CAN 2956 SHELF 40 Date Received: 03/08/22

Sample Location: Field Prep: Not Specified

Затріє Беріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2211878

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-01

Date Collected: 03/07/22 18:00 Client ID: **CAN 2956 SHELF 40** Date Received: 03/08/22

Sample Location: Field Prep: Not Specified

Затріє Беріп.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2211878

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-01

Date Collected: 03/07/22 18:00 Client ID: **CAN 2956 SHELF 40** Date Received: 03/08/22

Sample Location: Field Prep: Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
1-Chlorotoluene	ND	0.200		ND	1.04			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
,3-Dichlorobenzene	ND	0.200		ND	1.20			1
,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Jndecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
laphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2211878

Project Number: CANISTER QC BAT Report Date: 03/24/22

Air Canister Certification Results

Lab ID: L2211878-01

Client ID: CAN 2956 SHELF 40

Sample Location:

Date Collected:

03/07/22 18:00

Date Received:

03/08/22

Field Prep:

Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Dilution
Results Qualifier Units RDL Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	95		60-140

L2211878

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/24/22

Air Canister Certification Results

Lab ID: L2211878-01

Date Collected: 03/07/22 18:00 Client ID: **CAN 2956 SHELF 40** Date Received: 03/08/22

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 03/08/22 22:12

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2211878

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-01

Date Collected: 03/07/22 18:00 Client ID: CAN 2956 SHELF 40 Date Received: 03/08/22

Sample Location:

Field Prep: Not Specified

, ,		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.100		ND	0.518			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

L2211878

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-01

Date Collected: 03/07/22 18:00 Client ID: CAN 2956 SHELF 40 Date Received: 03/08/22

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	insfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	96		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	96		60-140

L2211878

03/07/22 18:00

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/24/22

Air Canister Certification Results

Lab ID: L2211878-03

Date Collected: Client ID: **CAN 2128 SHELF 42**

Sample Location:

Date Received: 03/08/22 Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 03/08/22 23:29

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2211878

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-03

Date Collected: 03/07/22 18:00 Client ID: CAN 2128 SHELF 42 Date Received: 03/08/22

Sample Location: Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
/inyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
ylenes, total	ND	0.600		ND	0.869			1
is-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
etrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
,1,1-Trichloroethane	ND	0.200		ND	1.09			1
,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2211878

Not Specified

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-03

Date Collected: 03/07/22 18:00 Client ID: **CAN 2128 SHELF 42** Date Received: 03/08/22

Sample Location: Field Prep:

Затріє Беріп.	PpbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2211878

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-03

Date Collected: 03/07/22 18:00 Client ID: **CAN 2128 SHELF 42** Date Received: 03/08/22

Sample Location: Field Prep: Not Specified

Запріє Беріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2211878

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-03

Date Collected: 03/07/22 18:00 Client ID: **CAN 2128 SHELF 42** Date Received: 03/08/22

Sample Location: Field Prep: Not Specified

Sample Depth:

ppbV ug/m3 Dilution **Factor** RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	95		60-140

L2211878

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/24/22

Air Canister Certification Results

Lab ID: L2211878-03

Date Collected: 03/07/22 18:00 Client ID: **CAN 2128 SHELF 42** Date Received: 03/08/22

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 03/08/22 23:29

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2211878

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-03

Date Collected: 03/07/22 18:00 Client ID: CAN 2128 SHELF 42 Date Received: 03/08/22

Sample Location:

Field Prep: Not Specified

	ppbV				ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.100		ND	0.518			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

03/07/22 18:00

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2211878

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-03

Date Collected: Client ID: CAN 2128 SHELF 42 Date Received:

03/08/22 Sample Location: Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	95		60-140

L2211878

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 03/24/22

Air Canister Certification Results

Lab ID: L2211878-05

Date Collected: 03/08/22 09:00 Client ID: CAN 2253 SHELF 44 Date Received: 03/08/22

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 03/09/22 00:47

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2211878

Not Specified

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-05

Date Collected: 03/08/22 09:00 Client ID: CAN 2253 SHELF 44 Date Received: 03/08/22

Sample Location: Field Prep:

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2211878

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-05

Date Collected: 03/08/22 09:00 Client ID: CAN 2253 SHELF 44 Date Received: 03/08/22

Sample Location: Field Prep: Not Specified

Затріє Беріп.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2211878

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-05

Date Collected: 03/08/22 09:00 Client ID: CAN 2253 SHELF 44 Date Received: 03/08/22

Sample Location: Field Prep: Not Specified

Запріє Беріп.	Vdqq				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2211878

Project Number: CANISTER QC BAT Report Date: 03/24/22

Air Canister Certification Results

Lab ID: L2211878-05

Client ID: CAN 2253 SHELF 44

Sample Location:

Date Collected:

03/08/22 09:00

Date Received:

03/08/22

Field Prep:

Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Dilution
Results Qualifier Units RDL Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	95		60-140

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Lab Number: L2211878

Report Date: 03/24/22

Air Canister Certification Results

Lab ID: L2211878-05

Client ID: CAN 2253 SHELF 44

Sample Location:

Date Received: 03/08/22 Field Prep: Not Specified

03/08/22 09:00

Date Collected:

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 03/09/22 00:47

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2211878

Not Specified

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-05

Date Collected: 03/08/22 09:00 Client ID: CAN 2253 SHELF 44 Date Received: 03/08/22

Sample Location: Field Prep:

, ,		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.100		ND	0.518			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2211878

Project Number: CANISTER QC BAT **Report Date:** 03/24/22

Air Canister Certification Results

Lab ID: L2211878-05

Date Collected: Client ID: CAN 2253 SHELF 44

Sample Location:

Date Received: 03/08/22 Field Prep: Not Specified

03/08/22 09:00

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	97		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	96		60-140

Project Name: NYSDEC FORMER ERWIN DRYCLEANER L2212903

Project Number: 452326.02 **Report Date:** 03/24/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

NA Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2212903-01A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
L2212903-02A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2212903-03A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
L2212903-04A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)

Project Name: Lab Number: NYSDEC FORMER ERWIN DRYCLEANER L2212903 **Report Date: Project Number:** 452326.02 03/24/22

GLOSSARY

Acronyms

EDL

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

> - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

> Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: NYSDEC FORMER ERWIN DRYCLEANER Lab Number: L2212903

Project Number: 452326.02 Report Date: 03/24/22

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name: NYSDEC FORMER ERWIN DRYCLEANER Lab Number: L2212903

Project Number: 452326.02 Report Date: 03/24/22

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name: NYSDEC FORMER ERWIN DRYCLEANER Lab Number: L2212903

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Alpha Analytical								-3	Sliala)		L	25	erial	No:032422	19:19
	Pho Fax	one: 508-822-9300 ::		СНА	IN OF CUS	TODY RECO	ind Time		_	Rev 2_011220 320 Forbes Mansfield, ANALYSIS	Blvd MA 020	48 ED			Page	of
ompany Name:	PARSONS			7-Day L. Due Date:	1	10-Day	V			1 1			Hg	-		
ddress:	301 PLAINFIE	ELD RD; SYRACUSE, NY 132	12	but bute,	Rush-A	pproval Re	nuined	_		111			1	-		npletely, sign, date and
hone:				1-Day		3-Day	quii eu			111					retain the yellow	copy for your records
roject Name:	NYSDEC FOR	MER ERWIN DRY CLEANER'S	RIFS	2-Day	ă	4-Day	H			111						
te Number:	828154			10000000	1000	153.7539				111				I CONTI		
oject Location:	1445 West Ri	idge Road; Greece, NY Mor	roe County		D.	ata Deliver	7			111			54000	Lab		
oject Number:	452326.02			Format:	PDF V	EXCEL	V			111		1 1	3	20		
roject Manager:	HEATHER BU	DZICH		Other:	SAMPLE REG	CEIPT, LZ, L4	NYSDEC EQUIS	EDO		111		=	=	Receipt		
pha Analytical Quote Name/N	lumber			CLP Like Data P	kg Required	l:		V	1	111		Les.	res	P. F		
voice Recipient:				Email To:			parsons.co			$ \ \ $		Initial Pressure	Final Pressure	Pressure		
mpled By: Pasary.	- Knach	Books 1 Jan	Mikachik	Сору То:	Heather	.Budzich	@parsons. rg@parsor	om						ė		
Lab Use		Client Use	Collec	tion Data	Duration	Flo	w Rate	Matrix	Volume							
		Sample ID / Description	Beginning Date/Time	Ending Date/Time	Minutes Sampled	п	²/min	Code	m3	10-12					Summa Can ID	Flow Controller ID
	7623R-03 16		3/0/22	1120	1,424	4,21>	(ID-6	Al	0.006	x		3 0,0	-17.65		2128	0317
		2_22-IA-1F-1	3/10/22	3/1V22	1,440	4.17	×10-6	Al	0.006	x		30,27	-11.16		2263	01369
_		2_22-IA-1F-2	3/10/22	3711/35	1,428	4.20	×10-6	Al	0.006	x		30.cs	-13.80		2956	0936
	7623R-01	_22-1A-1F-2D			-			Al		×					23000	
	7623R-03	Q 22-AA	3/10/22	3/1/22 1183	1,417	4.23	×10-6	AA	0,006	х		2975	-500		2813	02155
											+	_				
nments: Property 3											\top					
							ring codes to Conc h; M - Mediu	Code colu	mn above:			in the			Matrix Codes: SG = SOIL GAS	
inquished by: (signature)	19th Brocks	Date/Time: 3/1/22	Detection MA	n Limit Requirem	ents		Special Rec								AI = INDOOR AI	R
eyed by: (signature).	DAI	Date/Time: 3/11/22 /2:00					MCP Cer	MA MC	P Required rm Required					- 1	AA = AMBIENT AS = SUB SLAB D = DUP	
Cunninghan		Date/Time: 3/11/22/2:00	ст				RCP Cer	CT RC	P Required rm Required						BL = BLANK O = Other	<u>-</u> :
rived by: (signature)	11110	Date/Time:							Other							
guished by: (signature)		3/12/22 0010	Other:								-	NELAC	and All	IA-LAP.	LLC Accredited	
yly Wasc		3/2/22 2:00	Project Entity	Government		Municipalit	у		MWRA	☐ WRTA	Other	_				PCB ONLY Soxhle
A A	INL	12/22 ore	. 🖁	Federal City		21 J Brownfield			School MBTA			WHA-LA				Non Soxhle
N	NUSAS	1220500						tood								
Page 73 of 73	il 8/10	60:200sla														