

engineering and constructing a better tomorrow

August 24, 2020

Division of Environmental Remediation

Remedial Bureau E, 12th Floor

New York State Department of

Environmental Conservation

625 Broadway

Albany, New York 12233-7016

Attention: Mr. Matthew Dunham, Project Manager

Subject: **Pre-design Investigation Report**

Former Elite Vogue Dry Cleaners Site; Site Number 828164

MACTEC Engineering and Geology, P.C. Project No. 3611191236

Dear Mr. Dunham:

MACTEC Engineering and Geology, P.C. (MACTEC), under contract to the New York State Department of Environmental Conservation (NYSDEC) is submitting this Pre-design Investigation Report summarizing the results of field investigations completed at the Former Elite Vogue Dry Cleaners site (Site) from October to December 2019. The Site is listed as Class 2 hazardous waste Site No. 828164 in the Registry of Hazardous Waste Sites in New York State. This Report has been prepared in accordance with the NYSDEC requirements in Work Assignment (WA) No. D007619-49.

OBJECTIVES

The objective of the field work was to refine the understanding of the soil and groundwater contamination and to perform remedial pilot tests to provide site specific information in support of the remedial design for the Site. The investigation tasks completed included field work to support

an In-situ Chemical Oxidation (ISCO) and a Soil Vapor Extraction (SVE) design, as well as an SVE pilot test. Field activities for the ISCO design included: direct push soil sampling coupled with rock coring to further define the limits of soil contamination, groundwater sampling to evaluate the limits of the groundwater plume and to characterize groundwater quality at and down gradient from the Site, and hydraulic conductivity tests. Field activities related to the SVE pilot test included installation of vapor extraction points, vacuum testing, and soil vapor and indoor air sampling.

BACKGROUND

The Site is located at 527-533 East Main Street, in the downtown area of the City of Rochester, Monroe County, New York (Figure 1). The Site was occupied by a dry cleaner from 1936 through 2003 (NYSDEC, 2019a). The dry cleaner historically reportedly used both Stoddard solvent and tetrachloroethene (PCE) as cleaning solvents.

The Site is comprised of approximately 0.126 acres which is currently entirely covered by a single-story multi-use commercial building. It is bordered to the north by East Main Street, to the east by a paved parking lot, to the west by a commercial building and to the south by Haags Alley and a new apartment complex south of Haags Alley. The Site is currently occupied by a multi-occupant structure and is zoned City Center District, which allows for residential and commercial use.

Groundwater flow is generally to the east. Groundwater was encountered at an average depth of approximately eight feet below ground surface (bgs). Soils consist of fill material, silty sand, with lesser amounts of gravel and clay. Bedrock was encountered at approximately 7 to 12 feet bgs (NYSDEC, 2019a).

The remedial investigation (RI) identified contaminants of concern: trichloroethene (TCE), PCE, 1,2,4-trimethylbenzene, cis-1,2-dichloroethene, and vinyl chloride. The media affected includes groundwater, soil, and soil vapor (NYSEC, 2019a). In addition, a petroleum light non-aqueous phase liquid (LNAPL) has historically been measured at monitoring well MW-12, located on the south side of the Site property.

An Interim Remedial Measure (IRM) was completed in 2013 to remove three underground storage tanks (USTs) within the building. Two of the tanks measured 3-ft by 6-ft each and were used to store Stoddard solvent and/or PCE; these were located adjacent to each other in the approximate location of soil vapor extraction point SVE-1, shown in Figure 2. These USTs were observed to be in poor condition with holes and significant corrosion; approximately 8-cubic yards of contaminated soil was removed with the USTS. A soil sample collected from the bottom of the tank grave contained a concentration of PCE of 1,400 mg/Kg (Shaw, 2014). Before this UST pit was backfilled a passive soil vapor extraction system was installed, consisting of a 5-ft long 0.010-inch screen set to 7.5 ft below grade connected to a solid pipe that extends to an extraction fan on the roof of the building.

The third UST contained fuel oil and was located in the southwestern corner of the building; this tank was observed to be in "acceptable" condition, with no obvious holes or penetrations (Shaw, 2014).

A Record of Decision (ROD) was issued in March 2019 that outlined the approved remedial approach for the Site (NYSDEC, 2019b). The approved remedy outlined in the ROD includes the following remedial actions:

- Installation of a soil vapor extraction system in conjunction with existing site cover (pavement and concrete) to control soil vapors
- In-situ chemical oxidation to treat groundwater
- Institutional Controls in the form of an environmental easement for the controlled property
- Site Management Plan.

A WA Issuance / Notice to Proceed for the remedial design (D007619-49) was issued on April 19, 2019. This report provides details of the pre-design investigation as part of the WA.

SCOPE OF WORK

The pre-design investigation (PDI) was conducted to collect data to support the remedial design. Sampling and monitoring locations are shown on Figures 2 and 3. The PDI included the following components:

ISCO Pre-Design Investigation

- Site survey to obtain a certified boundary survey.
- Utility locate for new borings.
- Direct push soil sampling combined with rock coring to further delineate the limits of soil and bedrock contamination.
- Soil sample collection to evaluate permanganate natural oxygen demand (PNOD).
- Rock chip sample collection to evaluate bedrock contamination.
- Installation of eight, 4-inch inside diameter (ID) injection wells across the soil bedrock interface (installed from two to five feet into bedrock) for the ISCO groundwater treatment.
- Installation of three, 2-inch ID downgradient monitoring wells across the soil bedrock interface to evaluate the downgradient groundwater plume and allow for future monitoring.
- Hydraulic conductivity testing on four of the new injection wells.
- Groundwater sampling to evaluate the current extent of volatile organic compound (VOC) contamination (baseline prior to groundwater remedy).

SVE Pilot Study

- Installation of two 4-inch ID vapor extraction/measuring points to the top of bedrock.
- Evaluation of radius of influence and flow rate using a one horsepower blower and existing wells/extraction points and temporary vacuum measurement points.
- Evaluation of vapor concentrations for potential treatment.

Indoor Air Sampling

• Collection of three 24-hour indoor air samples (TO-15 analysis) at the Site. This sampling was reported under separate cover (MACTEC, 2020).

FIELD OPERATIONS

Access and Clearance. The Site was accessed from Richmond Street and Haags Alley. The Exterior borings are located in paved parking areas that can be accessed from Richmond Street. The interior boring can be accessed from an overhead door that opens to Haags Alley. The NYSDEC secured access with owners of the Site and adjoining properties.

Dig-Safely New York (NY) was contacted by the drilling firm to mark underground utilities at the site. In addition, GPRS of Buffalo, NY was contracted to conduct a utility survey at the proposed boring locations.

Health and Safety. The fieldwork was conducted in Level D personal protection.

Decontamination. Disposable sampling equipment was used as much as practical to minimize decontamination time and water disposal. Non-disposable sampling equipment was decontaminated by:

- Washing the sample collection equipment with potable water and Alquinox, rinsing with potable water, rinsing with deionized water, and then allowing the equipment to air dry, or
- Steam cleaning the equipment and then allowing the equipment to air dry.

Investigation Derived Waste. Soils, decontamination fluids, and purge water generated during the investigation were containerized for disposal at an off-site licensed facility. Disposal was conducted by NRC; waste manifests are included in Attachment 1.

ISCO Pre-Design Investigation

Injection Well Soil Sampling and Installation. Soil sampling and Injection Well drilling and installation were completed using a combination of direct push drilling methods for the soil sampling and 6½-inch hollow stem auger (HSA) and tri-cone or rock coring for the well installation. Soil samples were collected to better delineate the limits of soil contamination and to provide data to evaluate permanganate natural oxygen demand. A total of 8 borings, 4 inside the building and 4 in the adjacent parking lot of 15 Richmond Street, were completed. The locations of the injection well borings are shown on Figure 2. A summary of the installation depths and other well data is presented in Table 1. Two soil samples (plus quality control) were collected from each boring for analysis of VOCs based on photo ionization detector (PID) readings and visual evidence of contamination. One soil sample was collected from IW-7 at seven feet for PNOD testing. Samples were also evaluated for geological classification.

In addition to the soil samples from the IW wells, one additional composite soil sample was collected from the drill cuttings from boring SVE-3 based on PID readings and olfactory observations of the drill cuttings (boring installation described under the SVE Pilot Test section of this report).

Once soil sampling was completed, the drill rig was changed over to advance Hollow Stem Augers or casing to bedrock. Rock coring or tri-cone methods were then be used to advance the borings up to five feet into bedrock. A total of four methanol extraction rock chip (MERC) samples were collected from fractures within the recovered bedrock core of four of the eight borings based on PID readings and visual observations of staining, weathering, sheens or other visual and olfactory evidence of contamination. Well screens were backfilled with #0 US Silica FilPro® filtration sand to approximately two feet above the screen. A bentonite seal was placed above the sand pack and the well was completed with a flush mount casing set in place with concrete. Soil boring and well installation diagrams are presented in Attachment 2.

Down-gradient Monitoring Well Installation. Three monitoring wells were installed down gradient to the east of the Site; two located in the parking lot of 15 Richmond Street, and one in the parking lot of 21 Richmond Street. The monitoring well locations are shown on Figure 2. The borings were advanced using hollow stem auger drilling methods and were then advanced up to five feet into bedrock. The monitoring wells were constructed with two-inch polyvinyl chloride (PVC) with a 10-foot well screen and screened across the overburden/bedrock interface. Well screens were backfilled with filter sand to approximately two feet above the screen and a bentonite seal was placed above the sand pack. The well was completed with a flush mount casing set in place with concrete.

Monitoring Well Development. The newly installed injection wells and monitoring wells were developed using a surge block and a submersible pump. Development consisted of surging and purging the wells dry three times or removing three well volumes to remove excessive amounts of fines and ensure hydraulic connection to groundwater. Well development logs are presented in Attachment 2.

Hydraulic Conductivity Testing. Hydraulic conductivity tests were conducted at four of the eight newly installed injection wells (IW-1 through IW-4) to evaluate aquifer parameters. Two rising head slug tests were performed in each well. Hydraulic conductivity test data were analyzed by the

methods of Hvorslev (1951) and Bouwer and Rice (1976). Table 2 presents a summary of the hydraulic conductivity testing results. Plots of the test data are presented in Attachment 3.

Water Injection Testing. The work plan had proposed conducting injection tests at three of the injection wells using potable water to evaluate the ability to inject liquid into the overburden/bedrock formation. The data collected from the test was to be used to estimate the flow rate that will be achievable for future injections of an in-situ chemical oxidant into the shallow groundwater formation. Based on the loss of drilling water into the formation during the installation of most of the injection wells and the ability to maintain close to a one gallon per minute pumping rate (with some drawdown) during well development, it was determined that the aquifer was sufficiently transmissive for the injections, and that an injection test was not necessary.

Site Survey. Patriot Design and Consulting, D.P.C., of Rochester, NY conducted a certified boundary survey of the Site, as well as a survey of the new injection and monitoring wells. The horizontal control was tied to New York State Plane West North American Datum of 1983 and the vertical control was tied to North Atlantic Vertical Datum of 1988. The survey is included in Attachment 4. Well data is also included in Table 1 and was used for evaluating groundwater elevations.

Synoptic Water Level Measurements. Prior to monitoring well sampling, a round of water levels was collected by measuring depth to water from the Site wells. LNAPL was measured in four monitoring wells; MW-3, MW-12, IW-8, and PZ-5. The locations of new and existing Site injection/monitoring wells are shown on Figure 2. Water level measurements are presented in Table 1.

Groundwater Sampling. Groundwater samples were collected from the 11 newly installed injection/monitoring wells and from eight existing monitoring wells. Existing monitoring well PZ-5 contained LNAPL. PZ-5 was purged dry and did not recover sufficiently to collect a groundwater sample. The monitoring wells were sampled using low-flow sampling procedures. The locations of the monitoring wells are shown on Figure 2. Groundwater sampling Field Data Records (FDRs) are presented in Attachment 2.

ISCO Pre-Design Investigation Results

The objective of the PDI was to refine the understanding of the soil and groundwater contamination and to perform remedial pilot tests to provide site specific information in support of the remedial design for the Site. Analytical results were evaluated by a chemist following the guidelines for completing a Data Usability Summary Report (DUSR) (NYSDEC, 2016). The data was determined to meet the data quality objectives of the PDI and any limitations identified in the DUSR are not considered significant nor do they effect the results of this report. The DUSR is included in Attachment 5. The following sections discuss the analytical results of the soil and groundwater samples collected during the investigations.

Analytical results for samples collected during the investigation were compared to the following Standards, Criteria, and Guidance Values:

Soil and bedrock samples (bedrock results for comparative purposes only)

NYCRR-Part 375 Soil Cleanup Objectives (Unrestricted, Residential, and Commercial Use). Groundwater samples:

NYSDEC "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" (NYSDEC, 1998 and NYS 2008).

Soil and Bedrock Results

Soil samples were collected from each of the eight Injection Well (IW) borings and bedrock samples were collected from four of the IW borings. One composite sample was also collected from boring SVE-3. Samples were submitted for off-site analysis for VOCs; however, soil samples from the first borings (IW-1 to IW-4) were not analyzed for the Spills Technology and Remediation Series (STARs) compounds. Analytical results of soil and bedrock samples are presented in Table 3.

The SCO criterion for commercial use was exceeded for 1,2,4-Trimethylbenzene at four of the five soil borings analyzed for STARs compounds. The SCO criteria for residential use were exceeded for two other compounds: 1,3,5-Trimethylbenzene exceeded at four of the five soil borings analyzed for STARs compounds; and Tetrachloroethene at one of the nine soil borings analyzed for VOCs (the SVE-3 composite sample). Several additional compounds exceeded the SCO criteria for unrestricted use, including cis-1,2-DCE. Although many of the soil samples were not analyzed for the STARs list of compounds, based on the ethylbenzene and total xylene result, the highest

concentrations of VOCs appear to be in the vicinity and just downgradient of the location of former Stoddard solvent/PCE UST.

Although VOCs were detected in the bedrock samples, concentrations were typically more than two orders of magnitude higher in overburden than in bedrock. Based on these results, bedrock does not appear to be a continuing source of contamination to groundwater.

The PNOD results indicated an average permanganate demand value of 6 grams per kilogram (g/kg). In general, sites with a soil demand of less than 20 g/kg are considered favorable for in situ chemical oxidation with permanganate. The PNOD results are included in Attachment 6.

Groundwater Results

Groundwater level measurements corroborated previous results, indicating that groundwater flow from the Site is to the east. Groundwater elevations are presented in Table 1 and groundwater contours and flow direction are presented on Figure 4. Hydraulic conductivity was calculated to range between 3.5 and 65 feet per day. The hydraulic gradient was estimated at 0.01 ft/ft, resulting in an estimated groundwater velocity of 129 to 2390 feet per year, with a geometric mean of 393 ft per year. Hydraulic conductivity data and calculations are included in Table 2.

Groundwater samples were collected from 19 monitoring wells. Analytical results of the groundwater samples are presented in Table 4. Field measurements for pH, temperature, specific conductivity, oxidation reduction potential, dissolved oxygen, and turbidity were collected during sampling and are summarized in Table 5.

Volatile organic compounds were detected above the class GA groundwater standards at every location except for well PZ-7 located approximately 240 feet downgradient. The highest concentrations were detected in samples from wells located immediately downgradient from the former tank area IW-6, IW-7, MW-3, and MW-20. The compounds detected most frequently in excess of the groundwater criteria included: 1,2,4-Trimethylbenzene, Methylene chloride, cis-1,2-Dichloroethene, n-Butylbenzene, and Propylbenzene. The highest concentrations of total chlorinated VOCs were detected in monitoring wells MW-3 and IW-7. The wells located approximately 80 feet (MW-13 and MW-22) and further downgradient showed relatively few petroleum related compounds

detected in excess of the class GA criteria and chlorinated compounds were either not detected, or detected at concentrations below SCGs. Total concentrations of the primary petroleum related compounds that were detected, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene and xylene are presented on Figure 6, along with interpreted isoconcentration lines. Total concentrations of the primary chlorinated compounds, PCE, TCE, cis-1,2-DCE, and vinyl chloride, are presented on Figure 6, along with interpreted isoconcentration lines. Figure 7 presents groundwater sample locations that exceeded standards for select chlorinated VOCs and other VOCs.

In addition to dissolved phase contamination, petroleum was identified as a LNAPL floating on the water table in several wells within and east of the central portion of the Site, as well as just south of the site, including in wells PZ-05, MW-03, MW-12 and IW-8. The LNAPL was measured at thicknesses ranging from 0.03 ft to 0.76 ft. The thickest LNAPL was measured in PZ-05 and MW-12; however, there did not appear to be one continuous layer of LNAPL, since IW-3 and IW-4, which are located between these two wells, did not contain any measurable LNAPL.

ISCO Pre-Design Investigation Conclusions and Recommendations

Based on the PDI, the primary soil contamination (both petroleum and chlorinated VOCs) appears to be centered in the vicinity of the former Stoddard USTs and SVE-3. The highest detections of VOCs in groundwater were also detected in this source area and just downgradient to the east. Although the thickest LNAPL was detected in monitoring well MW-12 on the southern edge of the Site, concentrations of petroleum related VOCs in groundwater were an order of magnitude less in MW-12 than they were just downgradient from the assumed source area.

Although soil concentrations indicate that soil contamination at IW-6 and IW-7 is present above and below the measured water table, concentrations in IW-8 indicate contamination primarily below the water table. Based on this information, a chemical oxidant injected into the water table, should be able to target a majority of the contamination that is resulting in groundwater contamination. The relatively low PNOD result and fairly high permeability also indicates that a chemical oxidant with a low viscosity could be injected into the groundwater aquifer and target the VOCs, versus being used up by the natural soil oxidant demand.

Although an injected chemical oxidant will follow the most permeable path and may flow above and below tighter soils that are on top of bedrock, it is anticipated that it will be able to significantly lower VOC concentrations in soil and groundwater.

For evaluating chemical oxidants, it is assumed that there are 3 ft of saturated soil and 4 ft of saturated bedrock (on average) to treat (3 ft of saturated soil is conservative, since there were approximately 2 ft of saturated soil measured in November 2019). The bedrock is assumed to have negligible oxidant demand, so the oxidant injected in bedrock should primarily be treating the contaminants of concern. It is also assumed that the radius of influence from the injection wells will be at least 10 feet, for an estimated total area of influence for the eight wells of 60 ft by 40 ft, or 2,400 square ft. The porosity of the bedrock and overburden could vary from 10 to 20 percent, which would give an available pore space of between 15,000 and 25,000 gallons.

SVE Pilot Study

As part of the PDI, an SVE pilot-study was performed in support of full-scale SVE system design and the preparation of remedial system specifications. The objective of the pilot study was to use an extraction blower, in conjunction with the existing SVE-1 well and newly installed wells and vapor points, to evaluate:

- radius of influence from each soil vapor extraction point;
- change in radius of influence as higher vacuum is applied to each wellhead;
- lateral vacuum influence in shallow soils less than 2-feet bgs using temporary monitoring points installed through the concrete slab;
- lateral vacuum influence at depths greater than 2-feet bgs using existing and newly installed Site injection and vacuum monitoring wells;
- potential air flow rate across the overburden;
- initial soil vapor concentrations and long-term soil vapor concentration; and
- water table response to SVE.

SVE Pilot Study, Site Preparation

Wells & Vacuum Monitoring Points

Prior to the start of soil vapor extraction pilot study field activities, two additional soil vapor extraction wells were installed (SVE-2 and SVE-3). The two additional SVE wells were installed to gauge vacuum radius of influence at depth and to provide alternative soil vapor extraction points. Wells were installed at the locations depicted on Figures 2 and 3. Soil vapor extraction well construction details are included in Table 1. The SVE wells were drilled to refusal on apparent bedrock (approximately nine to ten feet bgs) using HSA techniques. The wells were constructed with 4-inch PVC and a 5-foot by 0.02" slot screen, with #0 US Silica FilPro® filtration sand to approximately two feet above the well screen and an approximate one-foot hydrated bentonite seal. The wells were completed at the surface with a flush-mount casing concreted in place.

Eight additional injection wells were installed into bedrock for the purpose of future in-situ chemical oxidation injections. During the soil vapor extraction pilot study, four of these wells (IW-1 to IW-4) were also used to gauge deep vacuum influence.

Four additional injection wells, IW-5 to IW-8, were also installed, but were outside the building and not used for SVE pilot testing.

In addition to the three soil vapor extraction wells (SVE-1 to SVI-3) and four injection wells (IW-1 to IW-4), six shallow vapor monitoring points (VPs) were installed to assess SVE impact on shallow, sub-slab soils. The shallow VPs were composed of 3/4" diameter PVC with a 6-inch slotted screen at the bottom and caps with sealable vacuum monitoring ports at the top. The VPs were installed by drilling a 1" diameter hole through the building slab and into the sub-slab soils. Although they were initially scoped to be installed to a depth of 24" below the slab, caving of the sub-slab penetration prevented installation to this depth, and VPs were only installed to between 11 to 18-inches below the top of the slab (i.e., as deep as possible). Once the VPs were installed, the voids between the PVC pipe and slab penetrations were temporarily sealed with VOC-neutral putty. VP-1, -2, and -3 were

installed at distances of approximately 6 ft, 12 ft, and 18 ft southwest of SVE-1, respectively; VP-4 was installed approximately 6 ft northwest of SVE-1; VP-5 and -6 were installed at distances approximately 6 ft and 12 ft southwest of SVE-3, respectively. VP locations are shown on Figure 3.

During drilling activities, subsurface soil classifications were recorded on FDRs. For SVE to be effective, the subsurface soil must be porous enough for vapors to move through it; SVE is more effective in sands and gravels than clays and silts. During boring activities, subsurface soil in the area proposed for SVE ranged from silty fine sands to coarse sand and gravel, with fine to medium sand dominating. Course subgrade fill (old asphalt, gravel, etc.) was routinely observed just below the building slab and up to four feet deep. Based on preliminary analysis of subsurface soils within the vadose zone, SVE should be effective in the area of the former UST, although highly porous shallow soils may form a preferential pathway to the surface, reducing vacuum at depth.

Site subsurface soils range from silty sands to gravel fill, mostly fine to medium sands

Highest site chlorinated COC boiling point is PCE at 121 C, TCE, C12DCE, and VC are all lower.

SVE effectiveness by soil type and contaminant. Figure taken from USEPA "How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites (USEPA, 2017)."

Soil Vapor Extraction System

Prior to site mobilization, a portable soil vapor extraction system was designed and built by MACTEC engineers for use onsite. The soil vapor extraction system consisted of the following components:

- 55-gallon liquid-vapor separator (for containerization of condensed liquid from soil vapor);
- dilution air valve to control vacuum put on wellhead;
- particulate filter to prevent sub-slab particulates from entering the blower;
- one-horsepower SVE blower with a maximum flow rate of 98 cubic feet per minute (cfm) and a maximum pressure of 55 inches-H2O, equipped with an on-off toggle switch;
- vacuum gauges at blower inlet and wellhead;
- schedule 80 (SCH80) PVC pipe for permanent connection of SVE components and SCH40 PVC for temporary connections from well to SVE system and SVE system to effluent discharge stack.

SVE Pilot Study Test and Results

SVE-1

An IRM was completed in 2014 to remove three USTs within the building. Before the UST pit was backfilled, a passive soil vapor extraction system was installed, consisting of a perforated pipe below grade and a solid pipe above grade that extends to a vent on the roof of the building. After installation of the passive SVE system (SVE-1), the excavation area was backfilled with gravel and cobble, creating a large, highly porous cavity surrounding the SVE-1 screen. The surface of the excavation was finished with poured concrete to the level of the existing slab.

Prior to the start of vacuum testing on SVE-1, the existing SVE-1 stack was cut approximately 18-inches above the ground and the top portion was moved slightly to the side of the well. A 4-inch to 2-inch PVC adapter, a short section of 2-inch PVC pipe, and a 90-degree PVC elbow were installed below the SVE-1 stack to support the weight of the pipe and facilitate easy connection to the SVE system discharge piping.

Once the SVE-1 well and discharge stack were prepared, the SVE system influent piping was temporarily connected to the SVE-1 wellhead and the SVE system discharge was connected to the SVE-1 discharge stack. Temporary connections were made with Fernco couplings so the piping could be easily removed and reused in future phases of vacuum testing.

Prior to the start of a full-scale test on SVE-1, an abbreviated test was conducted to test the SVE system function. Upon startup of the SVE system and under very low vacuum, an air sample was collected from the SVE-1 wellhead (sample ID 828164-SVE01A). This sample represents the short-term sub-slab soil vapor concentration.

Once sample collection was complete, vacuum on the wellhead was increased incrementally to evaluate effects on locations VP-1, -2, and -3 and to choose a location for VP-4. During

this ramp up test, full vacuum was put on the SVE well (greater than 90 cfm extracted with a maximum blower rate of 98 cfm) and little to no vacuum influence was observed at nearby points. It was determined that the high porosity of the backfill surrounding SVE-1 was allowing a high volume of air to be extracted but with little vacuum observed.

Following the ramp up test, a full test was completed on SVE-1 with the system operating with full system vacuum on the wellhead for an extended period of time. During this test, VP-1 and VP-4 showed the highest influence, as they were closest to the extraction point and within the area of the former UST. Vacuum decreased with lateral distance from the extraction point. Minor but sufficient vacuum was observed at VP-3, 18 feet from SVE-1. Data collected during the SVE-1 vacuum test are presented in Table 6; vacuum readings greater than 0.004 water column inches (wci) are sufficient for sub-slab depressurization, and any positive vacuum reading indicates potential for successful SVE. As shown in Table 6, vacuum observed at VP-2 is approximately 10 times that of the vacuum observed at SVE-3, despite the two monitoring points being at comparable distances from SVE-1. This indicates that, although there is some vacuum influence at depth from SVE-1 to SVE-3, the greater vacuum influence is near the surface, moving vapors from just below the slab.

Following completion of the SVE-1 test, a "long term" soil vapor sample was collected (sample ID 828164-SVE01B) to represent the concentration of site COCs to be expected during regular SVE extraction.

During the SVE test, a smoke test was performed to troubleshoot the limited vacuum readings. The smoke test identified the joint between the original building slab and the new slab poured after the IRM was completed as a source of vacuum loss. The joint was sealed with concrete calking, and a slight increase in vacuum and radius of influence was measured. Since the entire building slab is covered in fractures, it is likely that there are more short-circuiting contributions; however, due to the extent of the cracking, and silt/dirt on the floor, further floor sealing was not practical. To optimize SVE, specifically in the shallow soils to

depressurize the sub-slab, the building slab would require significant repair, sealing or replacement.

SVE-3

After completion of the SVE-1 radius of influence test, a second was performed at SVE-3. The SVE system influent was connected to the SVE-3 wellhead and the system effluent was reconnected to the SVE-1 discharge stack. The cap/vapor monitoring point assembly from SVE-3 was moved to the SVE-1 wellhead so it could be used for radius of influence measurements. Two additional shallow VPs were installed at distances 6-ft (VP-5), and 12-ft (VP-6) southwest of SVE-3 to measure outward vacuum at the surface (12-18-inches below slab). Well caps sealing IW-1, IW-2, IW-3, and IW-4 were removed and replaced with rubber Fernco caps equipped with vacuum monitoring points to measure vacuum influence at depths greater than 2-feet.

Unlike the SVE-1 test, an abbreviated "pre-test" was not conducted on SVE-3 but a ramp up test was performed. Once the SVE system inlet and outlet were connected and all vapor monitoring points were sealed, testing began with the dilution valve fully open. Upon startup of the SVE system and under very low vacuum, an air sample was collected from the SVE-3 wellhead (sample ID 828164-SVE03A). This sample represents the short-term sub-slab soil gas vapor concentration.

Three ramp-ups were performed, closing the dilution valve 1/3 with each ramp up (dilution valve: fully open, 2/3 open, 1/3 open), and ending with the dilution valve fully closed and all vacuum on the wellhead. Data collected during the SVE-3 ramp up test are presented in Table 7.

As shown in Table 7, vacuum influence was not observed during the initial step (dilution valve fully open, less than 1 wei vacuum on wellhead, greater than 4 cfm total airflow from well). As vacuum on the wellhead was increased by closing the dilution valve, extracted airflow increased and vacuum observed in nearby monitoring points increased. Contrary to

results obtained during the test at SVE-1, vapor extraction from SVE-3 showed higher levels of influence in the deeper monitoring points, with notable vacuum in wells IW-2, -3, and -4 at just 6.5 wci on the wellhead. Only when the dilution valve was fully closed and full SVE system vacuum (~40 wci) was placed on the wellhead, was vacuum observed at all the shallow monitoring points; this also substantially increased deep vacuum influence.

After the ramp up test on SVE-3 was completed, the SVE system was left on at the final system setpoints and inflow measurements were conducted. The purpose of this phase of the test was to determine if opening IW well caps with the system running would show an increase in total system airflow. With the system running, the well caps from IW-2, -3, and -4 were removed one at a time, with all the VPs remaining sealed. When each cap was removed, a 2-inch PVC stack was installed on the well and air flow into the well was measured. During this test, recordable airflow was not observed into wells IW-2, -3, or -4, and increase in overall system airflow was not observed. Although airflow was not observed with instrumentation, a smoke test performed above each stack indicated that air was flowing downward into the ground. Lack of recordable airflow is likely due to the lower limit of the VelociCalc 9565 meter. Once all IW wells were tested for inflow, the system was shut down.

Following completion of the SVE-3 test, a "long term" soil vapor sample was collected (sample ID 828164-SVE03B) to represent the concentration of site COCs to be expected during regular SVE extraction.

The following day, a water table analysis test was performed on SVE-3, aimed to determine if vacuum put on the wellhead caused the water table to rise within the well. To complete the test, a hole was drilled in the 90-degree PVC elbow located between the SVE-3 wellhead and the liquid/vapor knockout tank. A water level probe was installed through the hole, and the hole was sealed around the water level probe using electrical tape. An initial depth to water was recorded from a pre-determine measurement point prior to the start of the blower. The SVE system was then started with the dilution valve closed (final settings of ramp up test, with approximately 40 wci vacuum at the wellhead) and depth to water measurements

were recorded every five to ten minutes; airflow from the well was not recorded as the water level tape prevented accurate measurements. Over the 90-minute test, the water level within SVE-3 rose 2.95-feet, where it plateaued. Results from the water table rise test are summarized in the figure below.

Provided the results of both the SVE-3 radius of influence test and water column rise test, it can be concluded that depressing the groundwater table would likely yield better than observed vacuum influence in nearby wells. The water table likely rose, although potentially not as high, during the ramp up test, and with the majority of the influence from SVE-3 extraction being in the deeper wells (Table 7), it is likely that depressing the groundwater table while extracting soil vapor would enhance SVE capture and increase the radius of influence from SVE-3.

Soil Vapor Results

Analytical results of the four soil vapor samples are collected from SVE-1 and SVE-3 during the pilot test are presented in Table 8. Initial soil vapor readings were in general an order of magnitude higher than those collected after the system had been running for a period of two to three hours, with the highest concentrations detected in SVE-3.

Although concentrations of PCE were as high as $450,000 \,\mu\text{g/m}^3$ in SVE-3, the results for PCE in the indoor air samples collected from the Site in November 2019 did not exceed the NYSDOH indoor air guideline value of 30 micrograms per cubic meter (MACTEC, 2020).

SVE Pilot Study Conclusions and Recommendations:

The Site represents a good candidate for an active soil vapor extraction system. The porous backfill around SVE-1 promotes air flow laterally via the most preferential pathway (i.e., most porous soils) found just below the slab, so high vacuum on SVE-1 would be unnecessary, unless attempting to depressurize a large area. Based on the pilot test, vapors could be extracted from SVE-1 using a vacuum of between 1- and 2-wci and a flow of 90 cfm. SVE-3, despite the rise in groundwater level observed during testing, showed good connection to deep IWs but very little vacuum influence at the surface VPs. Extraction with a high vacuum could be conducted at this well. Extraction from SVE-3 with the nearby IWs open to the atmosphere would likely pose the best-case scenario for pulling clean air from the IWs, across the contamination, and out through the SVE system, volatilizing and removing COCs. Based on the pilot test, it is recommended that both SVE-1 and SVE-3 be connected to the SVE system to influence both shallow and deeper soil. Based on the results of startup testing, SVE-2 could be added at a later date, if deemed needed.

Should sub-slab depressurization be deemed necessary, it would be more effective to install separate, shallow extraction points, to pull directly from below the slab. In addition, an increased vacuum and larger radius of influence would be achieved if the buildings concrete slab on grade was sealed or replaced.

If you have questions on the material provided herein, please contact Rick Egan or Chuck Staples, at 207-775-5401.

Sincerely,

MACTEC Engineering and Geology, P.C.

Charles Staples, PG

Technical Project Lead

Charles R Staples

Richard Egan, PE

Project Manager

Enclosures

Figure 1	Site Location
Figure 2	Well Locations
Figure 3	Site Features
Figure 4	Groundwater Contours – November 2019
Figure 5	Select Petroleum VOCs in Groundwater – November 2019
Figure 6	Select Chlorinated VOCs in Groundwater – November 2019
Figure 7	Groundwater Exceedances – November 2019
Table 1	Well Data
Table 2	Hydraulic Conductivity Data Summary
Table 3	Soil and Bedrock Analytical Results
Table 4	Groundwater Analytical Results
Table 5	Groundwater Field Parameters
Table 6	Soil Vapor Extraction Test for SVE-1
Table 7	Soil Vapor Extraction Test for SVE-3
Table 8	Soil Vapor Analytical Results
Attachment 1	Waste Manifests
Attachment 2	Field Data Records
Attachment 3	Hydraulic Conductivity Data Plots
Attachment 4	Site Survey
Attachment 5	Data Usability Summary Report
Attachment 6	PNOD Results

REFERENCES

- Bouwer, H., and R. C. Rice. "A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells." *Water Resources Research*, 12 (1976): 423-28.
- Hvorslev, M.J., 1951. Time Lag and Soil Permeability in Ground-Water Observations, Bull. No. 36, Waterways Exper. Sta. Corps of Engrs, U.S. Army, Vicksburg, Mississippi, pp. 1-50.
- MACTEC, 2020. November 2019 Soil Vapor Intrusion Sampling Results. Former Elite Vogue Dry Cleaners Site: 828164. Prepared for New York State Department of Environmental Conservation, Albany, New York. February 2020.
- MACTEC, 2011a. *Program Quality Assurance Program Plan*. Prepared for the New York State Department of Environmental Conservation, Albany, New York. June 2011.
- MACTEC, 2011b. *Program Health and Safety Plan*. Prepared for New York State Department of Environmental Conservation, Albany, New York. June 2011.
- New York State, 1999. New York Codes, Rules, and Regulations, Title 6, Part 700-705 Water Quality Regulations Surface Water and Groundwater Classifications and Standards. Amended August 1999.
- NYSDEC 2019a . WA Issuance/Notice to Proceed to MACTEC Engineering and Consulting. Dated April 19, 2019.
- NYSDEC, 2019b. Record of Decision. Former Elite Vogue Dry Cleaners State Superfund Project, Rochester, Monroe County, Site No. 828164. March 2019.
- NYSDEC) 2010. DER-10, Technical Guidance for Site Investigation and Remediation. May 3, 2010.
- New York State Department of Health (NYSDOH), 2015. Trichloroethene in Indoor and Outdoor Air, August 2015 Fact Sheet. August 2015.
- NYSDOH, 2017. Guidance for Evaluating Soil Vapor IntrusiNot referenced in report on in the State of New York. October 2006; updated May 2017.

Shaw Environment & Infrastructure Engineering of New York, P.C., 2014. Draft Underground Storage Tank Removal Report, Former Elite Vogue Dry Cleaners. February 2014.

FIGURES

TABLES

Table 1 - Well Data

Location ID	Overburden/ Bedrock	Northing	Easting	Ground Elevation	Casing Elevation	Riser Elevation	Well Screen (ft BGS)	Well Diameter	TOC to TOR (ft)	BOW to TOR (ft)	Bedrock (ft BGS)	Product Nov. 11 2019 (ft TOC)	Water Level Nov. 11 2019 (ft TOC)	Groundwate r Elevation
IW-1	Overburden/Bedrock	1152471.41	1411140.51	520.7	520.7	520.39	3.7 - 12.7	4" PVC	0.34	12.6	10.6	0	8.87	511.52
IW-2	Overburden/Bedrock	1152457.63	1411128.35	520.81	520.81	520.49	4.7 - 14.7	4" PVC	0.32	14.5	9.9	0	9.31	511.18
IW-3	Overburden/Bedrock	1152444.7	1411126.39	520.94	520.94	520.67	4.2 - 14.2	4" PVC	0.28	13.9	11.5	0	9.59	511.08
IW-4	Overburden/Bedrock	1152433.94	1411123.02	520.89	520.89	520.67	4.2 - 14.2	4" PVC	0.26	13.9	9.5	0	9.69	510.98
IW-5	Overburden/Bedrock	1152468.59	1411156.06	519.14	519.14	518.83	4.0 - 11.9	4" PVC	0.24	11.7	7	0	7.59	511.24
IW-6	Overburden/Bedrock	1152455.12	1411151.1	519.13	519.13	518.83	4.3 - 14.3	4" PVC	0.32	14.1	10	0	8.4	510.43
IW-7	Overburden/Bedrock	1152440.56	1411145.24	519.17	519.17	518.97	5.5 - 15.5	4" PVC	0.25	15.2	10.5	0	8.02	510.95
IW-8	Overburden/Bedrock	1152430.88	1411140.68	519.14	519.14	518.79	2.6 - 12.6	4" PVC	0.34	12.3	8.2	7.92 - 7.98	7.98	510.81
MW-20	Overburden/Bedrock	1152436.39	1411162.29	519.14	519.14	518.77	3.7 - 13.2	2" PVC	0.3	12.9	8.7	0	8.19	510.58
MW-21	Overburden/Bedrock	1152460.09	1411174.88	519.13	519.13	518.84	3.3 - 12.2	2" PVC	0.3	11.9	8.5	0	8.09	510.75
MW-22	Overburden/Bedrock	1152401.81	1411216.48	517.89	517.89	517.59	3.0 - 11.9	2" PVC	0.3	11.7	8.3	0	8.03	509.56
SVE-2	Overburden	1152458.99	1411135.7	520.88	520.88	520.22	3.7 - 8.7	4" PVC	0.67	8	8.7	0	NM	NM
SVE-3	Overburden	1152448.99	1411137.63	520.89	520.89	520.43	4.4 - 9.4	4" PVC	0.48	9.1	9.7	0	NM	NM
MW-1	Bedrock	1152346.7	1411414.6	516.46	516.46	516.10	11.8-21.6	4" open rock	0.36	21.1	10	0	8.4	507.7
MW-2	Bedrock	1152472.1	1411394.6	515.83	515.83	515.42	10.0-20.2	4" open rock	0.36	19.9	8	0	7.07	508.35
MW-3	Bedrock	1152445.4	1411147.0	519.23	519.23	518.57	10.5-20.3?	4" open rock	0.63	18.7	8.5	7.57 - 7.60	7.6	510.97
MW-12	Overburden/Bedrock*	1152414.6	1411116.3	519.20	519.20	518.83	?-12.05	2" PVC	0.37	11.8	Unknown	7.95 - 8.41	8.41	510.42
MW-13	Overburden/Bedrock	1152382.3	1411196.0	517.67	517.67	517.42	5.5-14.5	2" PVC	0.25	14.3	10.5	0	7.61	509.81
MW-14	Overburden/Bedrock	1152303.8	1410986.1	520.76	520.76	520.48	6-13.9	2" PVC	0.28	13.0	10.4	0	8.62	511.86
PZ-05	Overburden	1152449.3	1411131.7	521.11	521.11	520.86	? - 11.7	1" PVC	0.25	11.4	Unknown	9.57 - 10.33	10.33	510.53
PZ-06	Overburden	1152327.6	1411411.7	516.69	516.69	516.52	? - 10.1	1" PVC	0.17	10.0	10	0	7.6	508.92
PZ-07	Overburden	1152473.8	1411391.1	515.87	515.87	515.52	3.1? - 8.1	1" PVC	0.33	7.8	8	0	6.4	509.12

NOTES:

BGS = below ground surface

IW-1 to IW-8, MW-20 to MW-21 surveyed in February 2020 by Patriot Design and Consulting; Other well data from from Ecology and Environment Engineering and Geology, P.C. Remedial Investigation Report, Dated October 2018. Horizontal data tied to New York State Plane West North American Datum 1983; Vertical data tied to North Atlantic Vertical Datum of 1988

ft = feet; ft BGS = feet below ground surface; ft TOC = feet below top of casing

TOC = top of casing; TOR = Top of Riser; BOW = bottom of well

PVC = polyvinyl chloride

* Boring log not identified to confirm if well screen crosses into bedrock.

NM = not measured

Table 2: Hydraulic Conductivity Data Summary

Location ID	Test #	Bouwer-Rice (cm/sec)	Hvorslev (cm/sec)	Geometric mean (cm/sec)	Geometric mean (ft/day)	V = Ki/n (ft/day)	V (ft/year)
IW-1	IW-1 RHT1	0.0187	0.02978	0.023062128	65.37296168	6.54	2389
	IW-1 RHT2	0.0182	0.02791				
IW-2	IW-2 RHT1	0.00168	0.00249	0.00212	6.01517	0.60	220
	IW-2 RHT2	0.00177	0.00273				
IW-3	IW-3 RHT1	0.00290	0.00444	0.00340	9.62536	0.96	352
	IW-3 RHT2	0.00263	0.00392				
IW-4	IW-4 RHT1	0.00119	0.00185	0.00124	3.51862	0.35	129
	IW-4 RHT2	0.00087	0.00124				

Geometric Mean Overburden/Bedrock Interface Zone Velocity (V) =

393 ft/year

Notes:

cm/sec = centimeters per second

ft/day = feet per day

V = velocity

Ki/n = hydraulic conductivity times hydraulic gradient divided by porosity

Due to highly fractured nature of shallow bedrock, porosity of 10 % was used.

Hydraulic gradient (i) = change in head divided by the distance between measured heads.

Hydraulic Gradient (i) calculations from 11/19/19 contour data for the bedrock/overburden interface:

IW-1 to MW-02 IW-4 to MW-01

2.4 = difference in head

3.28 = difference in head

255 = distance between wells (feet)

308 = distance between wells (feet)

i =

0.0094

i = 0.0106

Geometric mean of hydraulic gradient (i) =

0.0100

Table 3: Soil and Bedrock Analytical Results

	Location IW-1		V-1	IW-1		IW-2		IW-2		IV	IW-2		IW-3		W-3				
	Sample Depth (ft bgs)		5		9		5		9		12		7		10				
			Sample Date		10/15/2019		10/15/2019		10/18/2019		10/18/2019		10/18/2019		10/21/2019		10/21/2019		
				Media	SC	OIL	SOIL		SOIL		SOIL		BED		SOIL		SOIL		
				Sample ID	8281641	IW01005	828164IW01009		828164IW02005		828164IW02009		828164IW02012		828164IW03007		828164IW03010		
	_			QC Code	F	FS	FS		FS		FS		FS		FS		FS		
Parameter	Casno	UNR	RES	COM	Result	Qualifier	Result Qualifier		Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
Volatile Organic Compour	nds (VOCs) (n	ng/kg)																	
1,1,2,2-Tetrachloroethane 79-34-5 NS		NS	NS	NS	0.086 U		1.1 U		0.047 U		2 U		0.2 U		0.4 U		1	l U	
1,2,4-Trimethylbenzene	95-63-6	3.6	47	190															
1,3,5-Trimethylbenzene	108-67-8	8.4	47	190															
4-iso-Propyltoluene	99-87-6	NS	NS	NS															
cis-1,2-Dichloroethene	156-59-2	0.25	59	500	2.9		1.	1 U	0.047	0.047 U		2.3		0.2 U		0.4 U		1 U	
Ethylbenzene	100-41-4	1	30	390	0.086	U	1.	1.9		U 2 U		0.2 U		0.4 U		1 U			
Isopropylbenzene	98-82-8	NS	NS	NS	0.086	U	4.	6	0.047	U	4		0.2 U		0.4 U		2.6		
Methyl cyclohexane	108-87-2	NS	NS	NS	0.086	U	0.6	5 J	0.047	7 U 2 U		U	0.2 U		0.4 U		1.2		
Methylene chloride	75-09-2	0.05	51	500	0.086	U	1.	1 U	0.047	0.047 U 2 U		U	0.2 U		0.4 U		0.35		
n-Butylbenzene	104-51-8	12	100	500															
Naphthalene	91-20-3	12	100	500															
Propylbenzene	103-65-1	3.9	100	500															
sec-Butylbenzene	135-98-8	11	100	500															
tert-Butylbenzene	98-06-6	5.9	100	500															
Tetrachloroethene	127-18-4	1.3	5.5	150	0.49		1.	1 U	0.16		2 U		0.2 U		0.4 U		1 U		
Toluene	108-88-3	70	100	500	0.086	U	1.	1.1 U		0.047 U		2 U		0.2 U		0.4 U		1 U	
trans-1,2-Dichloroethene	156-60-5	0.19	100	500	0.021	J	1.1 U		0.047 U		2 U		0.2 U		0.4 U		1 U		
Trichloroethene	79-01-6	0.47	10	200	0.2		1.1 U		0.014 J		2 U		0.2 U		0.4 U		1 U		
Xylene, o	95-47-6	0.26	100	500															
Xylenes (m&p)	179601-23-	0.26	100	500															
Xylenes, Total	1330-20-7	0.26	100	500	0.17	U	1.	<mark>2</mark> J	0.095	0.095 U		3.9 U		0.4 U		0.8 U		2.1 U	
Moisture (percent)	HLA0174	NS	NS	NS	26.7		11.	11.5		13						15.2		18.3	

Notes:

ft bgs = feet below ground surface

Only detected compounds shown: detections in bold

Blank results indicate parameter not analyzed

(first set of samples were not analyzed for additional STARS compounds).

Samples analyzed for: VOCs by USEPA Method 8260

mg/kg = milligrams per kilogram

Qualifier: U = not detected; J = estimated

QC Code: FS = field sample; FD = field duplicate

Regulatory criteria from NYCRR-Part 375 Soil Cleanup Objectives:

UNR = Unrestricted Use

RES = Residential Use

COM = Commercial Use

NS = no standard/criteria

^{* =} Sample from SVE-3 collected from IDW drum; sample depth not available (sample from SVE-3 not validated)

Table 3: Soil and Bedrock Analytical Results

				Location	IW	7-3	Γ	W-4	IV	V-4	IV	V-4	IV	V-5	IV	V-5	IV	W-6
			Sample D	epth (ft bgs)	14	4		7		9		13		6		6		6
				Sample Date	10/21/	/2019	10/2	2/2019	10/22	2/2019	10/22	2/2019	10/25	5/2019	10/25	5/2019	10/24	4/2019
				Media	BE	ED	S	OIL	SC	OIL	В	ED	SC	OIL	SC	OIL	S	OIL
				Sample ID	828164IV	W03014	828164	IW04007	828164	W04009	828164	IW04013	828164I	W05006	828164Γ	W05006D	828164	IW06006
	_			QC Code	FS	S		FS	I	FS	I	FS	F	⁷ S	F	^E D]	FS
Parameter	Casno	UNR	RES	COM	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Volatile Organic Compour	nds (VOCs) (m	ng/kg)																
1,1,2,2-Tetrachloroethane	79-34-5	NS	NS	NS	0.045	U	0.046	5 U	0.42	U	0.048	U	1.2	U	0.78	U	0.88	3 U
1,2,4-Trimethylbenzene	95-63-6	3.6	47	190	0.025	J					0.013	J	28		20		320	J
1,3,5-Trimethylbenzene	108-67-8	8.4	47	190	0.045	U					0.048	U	2.9		2.1		0.99	
4-iso-Propyltoluene	99-87-6	NS	NS	NS	0.045	U					0.048	U	4.1		3		24	1
cis-1,2-Dichloroethene	156-59-2	0.25	59	500	0.045	U	0.046	i U	0.42	U	0.048	U	1.2	U	0.78	U	0.88	U 8
Ethylbenzene	100-41-4	1	30	390	0.045	U	0.046	5 U	0.42	U	0.048	U	0.41	J	0.28	J	2	2
Isopropylbenzene	98-82-8	NS	NS	NS	0.018	J	0.046	i U	0.32	J	0.008	J	0.5	J	0.35	J	6.1	
Methyl cyclohexane	108-87-2	NS	NS	NS	0.045	U	0.046	i U	0.26	J	0.048	U	1.2	U	0.78	U	0.45	5 J
Methylene chloride	75-09-2	0.05	51	500	0.045	U	0.046	5 U	0.42	U	0.048	U	1.2	U	0.78	U	0.88	U S
n-Butylbenzene	104-51-8	12	100	500	0.065						0.037	J	4.8		3.3		21	
Naphthalene	91-20-3	12	100	500	0.03	J					0.04	J	2.8		1.7		3.5	5
Propylbenzene	103-65-1	3.9	100	500	0.031	J					0.016	J	1.9		1.2		17	7
sec-Butylbenzene	135-98-8	11	100	500	0.091						0.045	J	2.2		1.6		20	<mark>)</mark>
tert-Butylbenzene	98-06-6	5.9	100	500	0.045	U					0.048	U	1.2	U	0.78	U	3.6	5
Tetrachloroethene	127-18-4	1.3	5.5	150	0.045	U	0.091		0.42	U	0.048	U	1.2	U	0.78	U	0.88	U S
Toluene	108-88-3	70	100	500	0.045	U	0.046	5 U	0.42	U	0.048	U	1.2	U	0.78	U	0.88	U S
trans-1,2-Dichloroethene	156-60-5	0.19	100	500	0.045	U	0.046	5 U	0.42	U	0.048	U	1.2	U	0.78	U	0.88	3 U
Trichloroethene	79-01-6	0.47	10	200	0.045	U	0.046	5 U	0.42	U	0.048	U	1.2	U	0.78	U	0.88	3 U
Xylene, o	95-47-6	0.26	100	500	0.045	U					0.048	U	0.19	J	0.15	J	0.88	3 U
Xylenes (m&p)	179601-23-	0.26	100	500	0.09	U					0.097	U	2.4	U	0.46	J	3.1	[
Xylenes, Total	1330-20-7	0.26	100	500	0.09	U	0.092	U	0.83	U	0.097	U	2.4	U	0.61	J	3.1	<u> </u>
Moisture (percent)	HLA0174	NS	NS	NS			13.3	3	13.2				20.5	_	10.7		12.9)

ft bgs = feet below ground surface

Only detected compounds shown: detections in bold

Blank results indicate parameter not analyzed

(first set of samples were not analyzed for additional STARS compounds).

Samples analyzed for: VOCs by USEPA Method 8260

mg/kg = milligrams per kilogram

Qualifier: U = not detected; J = estimated

QC Code: FS = field sample; FD = field duplicate

Regulatory criteria from NYCRR-Part 375 Soil Cleanup Objectives:

UNR = Unrestricted Use

RES = Residential Use

COM = Commercial Use

NS = no standard/criteria

^{* =} Sample from SVE-3 collected from IDW drum; sample depth not available (sample from SVE-3 not validated)

Table 3: Soil and Bedrock Analytical Results

				Location	IV	V-6	I	W-6	IV	V-7	IV	V-7	IV	V-8	IV	V-8	SV	/E-3*
			Sample D	epth (ft bgs)	9	9		12		5		9		5		8	NA ((Drum)
				Sample Date	10/24	1/2019	10/2	24/2019	10/28	3/2019	10/28	3/2019	10/23	3/2019	10/23	3/2019	10/2:	5/2019
				Media	SC	OIL	I	BED	SO	OIL	SO	OIL	SC	OIL	S	OIL	S	OIL
				Sample ID	828164I	W06009	828164	4IW06012	828164	IW07005	828164	IW07009	828164I	W08005	828164	IW08008	828164IW	VDRMSVE3
	_			QC Code	F	FS		FS	I	FS	I	FS	F	FS]	FS]	FS
Parameter	Casno	UNR	RES	COM	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Volatile Organic Compour	nds (VOCs) (n	ng/kg)																
1,1,2,2-Tetrachloroethane	79-34-5	NS	NS	NS	1	U	0.05	1 U	1.7	U	18		0.047	U	0.85	U	1.1	1 U
1,2,4-Trimethylbenzene	95-63-6	3.6	47	190	400	J	0.	6	660		540		0.99		400	J	580	<mark>0</mark> J
1,3,5-Trimethylbenzene	108-67-8	8.4	47	190	86		0.05	9	20	·	110	•	0.14		100	J	150	<mark>0</mark> J
4-iso-Propyltoluene	99-87-6	NS	NS	NS	26		0.02	6 J	49	1	40		0.09		36) 	46	6
cis-1,2-Dichloroethene	156-59-2	0.25	59	500	3.5		0.1	5	1.7	U	1.9	J	0.047	U	0.36	J	4. 4	4
Ethylbenzene	100-41-4	1	30	390	5.3		0.01	7 J	6	'	5.1		0.047	U	6.7	<u>'</u>	3	<mark>3</mark>
Isopropylbenzene	98-82-8	NS	NS	NS	10		0.04	6 J	17	·	13	ı	0.022	J	11	:	8.9	9
Methyl cyclohexane	108-87-2	NS	NS	NS	1.4		0.05	1 U	1.2	J	2	J	0.047	U	1.9	1	0.54	4 J
Methylene chloride	75-09-2	0.05	51	500	1	U	0.05	1 U	1.7	U	2.5	U	0.047	U	0.85	U	1.1	1 U
n-Butylbenzene	104-51-8	12	100	500	40		0.07	2	68		46	K	0.13		54		65	<mark>5</mark>
Naphthalene	91-20-3	12	100	500	3.5		0.04	3 J	7.2		8.7		0.027	J	9.3	1	7.3	3
Propylbenzene	103-65-1	3.9	100	500	31		0.1	1	57		45		0.071		37	7	29	<mark>9</mark>
sec-Butylbenzene	135-98-8	11	100	500	21		0.05	7	42		35		0.059		29)	33	<mark>3</mark>
tert-Butylbenzene	98-06-6	5.9	100	500	2.8		0.01	7 J	4.1		2.6	! 	0.047	U	3.3		2.4	4
Tetrachloroethene	127-18-4	1.3	5.5	150	1	U	0.05	1 U	1.7	U	2.5	U	0.047	U	0.85	U	45	<mark>5</mark>
Toluene	108-88-3	70	100	500	0.38	J	0.05	1 U	1.7	U	2.5	U	0.047	U	0.85	U	0.42	2 J
trans-1,2-Dichloroethene	156-60-5	0.19	100	500	1	U	0.05	1 U	1.7	U	2.5	U	0.047	U	0.85	U	1.1	1 U
Trichloroethene	79-01-6	0.47	10	200	1	U	0.05	1 U	1.7	U	2.5	U	0.047	U	0.85	U	1.4	<mark>4</mark>
Xylene, o	95-47-6	0.26	100	500	9.9		0.0	3 J	1.2		12		0.047	U	3.8		26	
Xylenes (m&p)	179601-23-	0.26	100	500	26		0.03	8 J	6.5		16		0.095	U	19	<u> </u>	33	3
Xylenes, Total	1330-20-7	0.26	100	500	36		0.06	8 J	7.7		28	·	0.095	U	23)	59	9
Moisture (percent)	HLA0174	NS	NS	NS	10.6				15.9		26.2		14.2		12.9)	14.2	2

ft bgs = feet below ground surface

Only detected compounds shown: detections in bold

Blank results indicate parameter not analyzed

(first set of samples were not analyzed for additional STARS compounds).

Samples analyzed for: VOCs by USEPA Method 8260

mg/kg = milligrams per kilogram

Qualifier: U = not detected; J = estimated

QC Code: FS = field sample; FD = field duplicate

Regulatory criteria from NYCRR-Part 375 Soil Cleanup Objectives:

UNR = Unrestricted Use

RES = Residential Use

COM = Commercial Use

NS = no standard/criteria

^{* =} Sample from SVE-3 collected from IDW drum; sample depth not available (sample from SVE-3 not validated)

Pre-Design Investgation Report - Elite Vogue NYSDEC – Site No. 828164 MACTEC Engineering and Geology, P.C., Project No. 3611191264

Tabel 4: Groundwater Analytical Results

		Location	IW-1	IW-2	IW-3	IW-4	IW-5	IW-6	IW-7	IW-8
	Sa	mple Date	11/12/2019	11/13/2019	11/13/2019	11/13/2019	11/13/2019	11/14/2019	11/14/2019	11/13/2019
	\$	Sample ID	828164-IW01011	828164-IW02011	828164-IW03011	828164-IW04011	828164-IW05009	828164-IW06011	828164-IW07013	828164-IW08010
		QC Code	FS							
Parameter	GA	GV	Result Qualifier							
Volatile Organic Compounds (V	/OCs)									
1,2,4-Trimethylbenzene	5	NS	1100	2500	690	33	26	2900	1800	3300
1,2-Dichloroethane	0.6	NS	20 U	50 U	20 U	<u>8</u> U	10 U	50 U	500 U	50 U
1,3,5-Trimethylbenzene	5	NS	20 U	190	36	8 U	10 U	350	500 U	450
4-iso-Propyltoluene	5	NS	21	48 J	7 J	8 U	10 U	<u>59</u>	500 U	75
Benzene	1	NS	20 U	50 U	20 U	<u>8</u> U	10 U	50 U	500 U	50 U
Chlorobenzene	5	NS	20 U	50 U	20 U	<u>8</u> U	10 U	50 U	500 U	50 U
cis-1,2-Dichloroethene	5	NS	66	700	1100	260	550	2500	13000	480
Cyclohexane	NS	NS	20 U	50 U	20 U	3.4 J	10 U	50 U	500 U	50 U
Ethylbenzene	5	NS	20 U	50 U	15 J	8 U	10 U	69	500 U	<u>95</u>
Isopropylbenzene	5	NS	20 U	86	48	24	10 U	82	500 U	84
Methyl cyclohexane	NS	NS	20 U	50 U	3.5 J	4.7 J	10 U	50 U	500 U	50 U
Methyl Tertbutyl Ether	NS	10	20 U	50 U	20 U	<u>8</u> U	10 U	50 U	500 U	50 U
Methylene chloride	5	NS	<u>95</u>	190	74	29	34	240	2100	190
n-Butylbenzene	5	NS	16 J	66	25	15	10 U	67	500 U	81
Naphthalene	NS	10	11 J	48 J	110	86	10 U	<u>60</u>	500 U	110
Propylbenzene	5	NS	20 U	160	79	38	10 U	170	500 U	190
sec-Butylbenzene	5	NS	20 U	67	37	23	10 U	61	500 U	64
tert-Butylbenzene	5	NS	20 U	50 U	20 U	8 U	10 U	50 U	500 U	50 U
Tetrachloroethene	5	NS	9.9 J	50 U	20 U	<u>8</u> U	4.2 J	50 U	500 U	50 U
Trichloroethene	5	NS	20 U	50 U	20 U	<u>8</u> U	16	50 U	500 U	50 U
Vinyl chloride	2	NS	20 U	50 U	43	12	10 U	130	500 U	51
Xylene, o	5	NS	20 U	53	20 U	8 U	10 U	180	500 U	150
Xylenes (m&p)	5	NS	40 U	110	41	16 U	20 U	280	1000 U	290
Xylenes, Total	5	NS	40 U	160	41	16 U	20 U	460	1000 U	440

Notes:

Only detected compounds shown.

Results in micrograms per liter

Samples analyzed for VOCs by EPA Method SW8260B

QC Code: FS = Field Sample, FD = Field Sample

Qualifiers: U = Not detected greater than the reporting limit

J = Estimated value

Bold = Compound detected in sample

GA/GV = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water

Quality Standards and Guidance Values and Groundwater Effluent

Limitations" (NYSDEC, 1998):

GA = New York State Class GA Groundwater Standards

GV = New York State Guidance Values

NS = No published standard for this compound

Highlighted results exceed criteria

Tabel 4: Groundwater Analytical Results

		Location	MW-01	MW-02	MW-03	MW-12	MW-13	MW-14	MW-20	MW-21
	Sa	mple Date	11/15/2019	11/15/2019	11/13/2019	11/14/2019	11/14/2019	11/15/2019	11/13/2019	11/14/2019
		Sample ID	828164-MW01018	828164-MW02013	828164-MW03015	828164-MW12011	828164-MW13011	828164-MW14011	828164-MW20010	828164-MW21009
		QC Code	FS							
Parameter	GA	GV	Result Qualifier							
Volatile Organic Compounds (V	OCs)									
1,2,4-Trimethylbenzene	5	NS	34 J+	1 U	2000	140	87	40	3500	3500
1,2-Dichloroethane	0.6	NS	1 U	0.28 J	500 U	5 U	4 U	1 U	100 U	100 U
1,3,5-Trimethylbenzene	5	NS	4.6	1 U	500 U	15	12	6.1	500	180
4-iso-Propyltoluene	5	NS	1.2	1 U	500 U	4.3 J	2.8 J	1.4	66 J	72 J
Benzene	1	NS	1 U	1 U	500 U	2.1 J	4 U	1 U	100 U	100 U
Chlorobenzene	5	NS	1 U	0.78 J	500 U	5 U	4 U	1 U	100 U	100 U
cis-1,2-Dichloroethene	5	NS	1 U	2	21000	38	3.2 J	1 U	4900	100 U
Cyclohexane	NS	NS	1 U	0.6 J	500 U	1.3 J	4.9	1 U	100 U	100 U
Ethylbenzene	5	NS	0.83 J	1 U	500 U	5 U	4 U	0.77 J	130	82 J
Isopropylbenzene	5	NS	2.7	1 U	500 U	16	46	1.2	83 J	100 U
Methyl cyclohexane	NS	NS	0.29 J	0.48 J	500 U	2.6 J	3.5 J	1 U	100 U	100 U
Methyl Tertbutyl Ether	NS	10	0.16 J	1 U	500 U	5 U	4 U	1 U	100 U	100 U
Methylene chloride	5	NS	1 U	1 U	2100	22	24	1 U	490	100 U
n-Butylbenzene	5	NS	3.3	1 U	500 U	12	18	1.9	100 U	67 J
Naphthalene	NS	10	2.9	1 U	500 U	17	5.8	2.7	59 J	46 J
Propylbenzene	5	NS	3	1 U	500 U	29	80	2.7	180	180
sec-Butylbenzene	5	NS	8.7	4.9	500 U	14	37	1.5	100 U	100 U
tert-Butylbenzene	5	NS	9.2	22	500 U	5 U	23	1 U	100 U	100 U
Tetrachloroethene	5	NS	1 U	1 U	500 U	5 U	4 U	1 U	100 U	100 U
Trichloroethene	5	NS	1 U	1 U	500 U	5 U	4 U	1 U	100 U	100 U
Vinyl chloride	2	NS	1 U	1 U	610	27	4 U	1 U	590	100 U
Xylene, o	5	NS	0.96 J	1 U	500 U	4 J	4 U	0.85 J	300	100 U
Xylenes (m&p)	5	NS	2.3	2 U	1000 U	8.6 J	6.1 J	2.4	540	200
Xylenes, Total	5	NS	3.3	2 U	1000 U	13	6.1 J	3.3	840	200

Only detected compounds shown.

Results in micrograms per liter

Samples analyzed for VOCs by EPA Method SW8260B

QC Code: FS = Field Sample, FD = Field Sample

Qualifiers: U = Not detected greater than the reporting limit

J = Estimated value

Bold = Compound detected in sample

GA/GV = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water

Quality Standards and Guidance Values and Groundwater Effluent

Limitations" (NYSDEC, 1998):

GA = New York State Class GA Groundwater Standards

GV = New York State Guidance Values

NS = No published standard for this compound

Highlighted results exceed criteria

MACTEC Engineering and Geology, P.C., Project No. 3611191264

Tabel 4: Groundwater Analytical Results

		1			ī		ı	
		Location		V-22		Z-6		Z-7
		mple Date		/2019		1/2019		5/2019
	,	Sample ID		/IW22010		PZ06008		PZ07007
		QC Code		S		FS		FS
Parameter	GA	GV	Result	Qualifier	Result	Qualifier	Result	Qualifier
Volatile Organic Compounds (V	1							
1,2,4-Trimethylbenzene	5	NS	46		1	U	2.4	- -
1,2-Dichloroethane	0.6	NS	1	U	1	U	1	U
1,3,5-Trimethylbenzene	5	NS	7.2		1	U	1	U
4-iso-Propyltoluene	5	NS	1.8	=	1	U	1	U
Benzene	1	NS	1	U	1	U	1	U
Chlorobenzene	5	NS	1	U	1	U	1	U
cis-1,2-Dichloroethene	5	NS	2.5	_	1	U	1	U
Cyclohexane	NS	NS	1	U	1	U	1	U
Ethylbenzene	5	NS	1.2	_	1	U	1	U
Isopropylbenzene	5	NS	16		13		1	U
Methyl cyclohexane	NS	NS	0.74	J	1	U	1	U
Methyl Tertbutyl Ether	NS	10	1	U	1	U	1	U
Methylene chloride	5	NS	1	U	1	U	1	U
n-Butylbenzene	5	NS	11		7.6		1	U
Naphthalene	NS	10	3.5		1	U	1	U
Propylbenzene	5	NS	20		14		1	U
sec-Butylbenzene	5	NS	28		35		1	U
tert-Butylbenzene	5	NS	18		18		1	U
Tetrachloroethene	5	NS	1	U	1	U	1	U
Trichloroethene	5	NS	1	U	1	U	1	U
Vinyl chloride	2	NS	1	U	1	U	1	U
Xylene, o	5	NS	1.4		1	U	1	U
Xylenes (m&p)	5	NS	3.3	_	2	U	2	U
Xylenes, Total	5	NS	4.7		2	U	2	U

Notes:

Only detected compounds shown.

Results in micrograms per liter

Samples analyzed for VOCs by EPA Method SW8260B

QC Code: FS = Field Sample, FD = Field Sample

Qualifiers: U = Not detected greater than the reporting limit

J = Estimated value

Bold = Compound detected in sample

GA/GV = Groundwater guidance or standard values from Technical and Operational Guidance Series (TOGS) 1.1.1, "Ambient Water

Quality Standards and Guidance Values and Groundwater Effluent

Limitations" (NYSDEC, 1998):

GA = New York State Class GA Groundwater Standards

GV = New York State Guidance Values

NS = No published standard for this compound

Highlighted results exceed criteria

Tab - 4 GW Analytical Results

Table 5: Groundwater Field Parameters

Location ID	TEMP (°C)	Specific Conductance (mS/cm)	pН	Dissolved Oxygen (mg/L)	Turbidity (NTU)	ORP (mV)	Date
IW-1	17	0.71	6.8	0.2	9.8	-21	11/12/2019
IW-2	17	1.06	6.6	0.1	8.2	-95	11/13/2019
IW-3	17	1.07	6.6	0.1	9.5	-93	11/13/2019
IW-4	17	0.95	6.6	0.1	11.5	-80	11/13/2019
IW-5	11	1.10	7	0.3	9.0	-38	11/13/2019
IW-6	12	1.58	7.1	0.1	3.0	-100	11/14/2019
IW-7	13	1.34	6.7	0.1	4.6	-90	11/14/2019
IW-8	13	1.54	6.6	0.2	4.9	-98	11/13/2019
MW-20	12	1.75	6.7	0.2	3.1	-97	11/13/2019
MW-21	14	1.99	7.1	0.1	2.9	-120	11/14/2019
MW-22	15	1.31	7	1.3	12.6	-90	11/14/2019
MW-1	14	0.96	7.2	3.2	41.9	-130	11/15/2019
MW-2	14	1.21	7.1	0.1	9	-120	11/15/2019
MW-3	10	1.41	6.7	0.3	36.6	-120	11/13/2019
MW-12	14	1.52	6.7	0.2	10.8	-110	11/14/2019
MW-13	14	1.34	7.1	0.1	11.1	-100	11/14/2019
MW-14	15	2.23	7.5	11.6	15.4	65	11/15/2019
PZ-05*	16	1.20	6.3	0.2		-29	11/13/2019
PZ-06	14	0.890	6.9	0.1	1.25	-120	11/14/2019
PZ-07	12	6.11	7.4	5.9	32	31	11/15/2019

PZ-05* Product in well, well purged dry, one set of parameters, no sample collected.

^oC = degrees celsius

mS/cm = millisiemins per centimeter mg/L = milligrams per liter

NTU = nefelometric turbidity units ORP = oxidation reduction potential

mV = milivolts

NYSDEC – Site No. 828164 MACTEC Engineering and Geology, P.C., Project No. 3611191264

Table 6: Soil Vapor Extraction Test SVE-1

m: 101 1			System Parar	neters (SVE-1)		SV	E-2	SV	E-3	VP-1	VP-2	VP-3	VP-4	
Time Elapsed (min)	Time (HH:MM)	Temperature (°F)	Vacuum ("H ₂ O)	Suction PID (ppm)	Air Flow (cfm)	Vacuum (''H ₂ O)	PID	Vacuum ("H ₂ O)	PID	Vacuum ("H ₂ O)	Vacuum ("H ₂ O)	Vacuum (''H ₂ O)	Vacuum ("H ₂ O)	Comments (ex: Note when sample collected for lab analysis)
0	9:30:00 AM	Start	ted SVE system, d	ilution valve fully close	ed	-	496	-	299	-	-	-	-	
5	9:35:00 AM	65.8	1.72	7.8	98.3	0.189	79	0.011	97	1.33	0.074	0.008	1.23	
20	9:50:00 AM	65.8	1.74	6.4	96.7	0.189	440	0.012	642	1.33	0.074	0.009	1.23	
35	10:05:00 AM	65.8	1.75	6.1	93.3	0.189	531	0.013	631	1.33	0.074	0.008	1.23	
50	10:20:00 AM	65.8	1.69	3.1	95.2	0.188	347	0.013	705	1.33	0.074	0.009	1.23	
65	10:35:00 AM	65.8	1.7	1.4	92.5	0.186	347	0.013	728	1.33	0.073	0.009	1.23	
80	10:50:00 AM	65.8	1.69	1.1	96.1	0.187	386	0.013	708	1.33	0.074	0.009	1.23	
TG & JL identify crac	ck in slab between new	concrete (poured w	hen UST was remo	oved) and original conc tested for infiltra		_	•		st). SVE-1 sits in	the center of the	e former UST are	a. Entire area sui	rounding SVE-1	
145	11:55:00 AM	65.8	1.72	10.1	91.9	0.189	457	0.012	654	1.35	0.079	0.009	1.25	Slight increase in vacuum and slight decrease in total airflow noted
175	12:25:00 PM	65.8	1.86	7	93.3	0.207	242	0.013	906	1.46	0.123	0.011	1.35	
200	12:50:00 PM	65.8	1.85	4.1	94.9	0.209	348	0.013	817	1.48	0.12	0.011	1 1 1	Minimal changes observed, test complete. Collected soil vapor sample 828164-SVE01B

March 2020

Field Observations on 11/20/2019:

All vapor points (VPs) installed to ~11-15" below top of slab

VP-1: Located 6' south of SVE-1 (within UST area), VP-2: Located 12' south of SVE-1, VP-3: Located 18' south of SVE-1, VP-4: Located 6' west of SVE-1 (within UST area)

When drilling VP points, fill below slab in the area of the former UST appeared to be large gravel/cobble, indicating high porosity and availability of air. SVE-1 sits in the center of this area, SVE-2 sits southwest of SVE-1 on the edge of the UST area, and SVE-3 sits southeast of SVE-1 outside the SVE are Initial/short term vacuum test was completed on 11/19 to determine availability of air and rough area of influence from SVE-1, as well as to collect preliminary soil vapor sample 828164-SVE01A

Based on prelimimary results, this test was conducted with the dilution valve fully closed (all air from well) due to minimal change in vacuum observed during 11/19 pre-test ramp up.

Maximum discharge from blower is 100 cfm. Max airflow was almost achieved, showing that there was little to no air resistance in the subsurface

Goal of Test: Determine maximum allowable airflow, pressure, and associated PID readings from the vadose zone min = minutes

°F = degrees fahrenheit

 $^{"}H_2O$ = pressure measure in inches of water column

ppm = parts per million

scfm = standard cubic feet per minute. Calculated based on differential pressure, piping size and temperature

Created By: THG 11/21/19 1 of 1 Checked By: CRS 2/20/20 Tab - 6 SVE-1 results-rep

 Table 7: Soil Vapor Extraction Test for SVE-3

Time	Time o	Sy	ystem Param	eters (SVE-3)		SVI	E-1	SVI	E-2	VP-1	VP-2	VP-3	VP-4	VP-5	VP-6	IW-1	IW-2	IW-3	IW-4	Comments
Elapsed (min)	Time (HH:MM)	Temperature (°F)	Vacuum (''H ₂ O)	Suction PID (ppm)	Air Flow (cfm)	Vacuum (''H ₂ O)	PID	Vacuum ("H ₂ O)	PID	Vacuum ("H ₂ O)	Vacuum ("H ₂ O)	Vacuum ("H ₂ O)	Vacuum ("H ₂ O)	Vacuum (''H ₂ O)	Vacuum ("H ₂ O)	Vacuum ("H ₂ O)	Vacuum (''H ₂ O)	Vacuum (''H ₂ O)	Vacuum ("H ₂ O)	Comments
0	4:00 PM	Started	d SVE system,	dilution valve ope	n	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Collect preliminary soil vapor sample 828164-SVE03A.
10	4:10 PM	~60	0.77	15	3.4	0.001	237	0.001	420	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	Reading of 0.001 is negligible, meter fluctuates +/1 0.002 wci in ambient air.
20	4:20 PM	~60	0.77	10.2	2.35	0.001	264	0.001	317	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
30	4:30 PM	Throttl	le Back Dilutio	n Valve (1/3 close	d)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
35	4:35 PM	~60	6.45	4.8	10.7	0.001	398	0.001	850	0	0.003	0.001	0.001	0.002	0	0.001	0.006	0.026	0.012	
45	4:45 PM	~60	6.49	4.1	11.1	0.001	380	0.002	860	0.001	0.003	0	0.001	0.002	0	0	0.007	0.025	0.017	
55	4:55 PM	Throttl	le Back Dilutio	n Valve (2/3 close	d)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
60	5:00 PM	~60	~5 kPa* (~20"H2O)	2	22.2	0.002	361	0.003	847	0.003	0.009	0.001	0.002	0.006	0.001	0.001	0.016	0.087	0.018	
75	5:15 PM	~60	~5 kPa* (~20"H2O)	6.7	23.1	0.002	335	0.003	874	0.002	0.009	0.001	0.001	0.005	0	0.001	0.016	0.057	0.023	
90	5:30 PM		Closed Dilu	tion Valve		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
100	5:40 PM	~60	~10 kPa* (~40"H2O)	NC**	44.2	0.007	294	0.007	892	0.007	0.024	0.003	0.006	0.021	0.003	0.007	0.064	0.263	0.062	
115	5:55 PM	~60	~10 kPa* (~40"H2O)	NC**	46.3	0.008	330	0.008	817	0.007	0.024	0.004	0.006	0.022	0.003	0.007	0.069	0.224	0.052	
127	6:07 PM		Test Co	mplete		-	-	-	-	-	-	-	-	-	-	-	-	-	-	Collect final soil vapor sample 828164-SVE03B.

Field Notes on 11/20/2019:

Notes:

Goal of Test: Determine maximum allowable airflow, pressure, and associated PID readings from the vadose zone

 $^{\circ}F$ = degrees fahrenheit

 $^{"}H_2O = pressure measure in inches of water column$

ppm = parts per million

scfm = standard cubic feet per minute. Calculated based on differential pressure, piping size and temperature.

Created By TNG 11/21/19 1 of 1 Tab - 7 SVE-3 Results-rep Checked By: CRS 2/20/20

^{*-} Indicates that vacuum reading was taken with physical gauge at wellhead (TSI 9565 handheld manometer function has max vacuum reading of 15" H2O).

^{**-}Indicates that PID reading was not taken as system vacuum overcame PID vacuum, could not pull PID reading.

Table 8: Soil Vapor Analytical Results

Location	SVE-01	SVE-01	SVE-03	SVE-03
Sample Date	11/19/2019	11/20/2019	11/20/2019	11/20/2019
Media	SV	SV	SV	SV
Sample ID	828164-SVE01A	828164-SVE01B	828164-SVE03A	828164-SVE03B
Qc Code	FS	FS	FS	FS
Parameter	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
Volatile Organic Compound	ls (VOCs) (µg/m³)			
1,1-Dichloroethene	55 U	23 U	77	35 U
1,2,4-Trimethylbenzene	140 U	56 U	170,000	4,900
1,3,5-Trimethylbenzene	140 U	56 U	54,000	1,600
2-Butanone	6,900	130 U	1,700	210 U
4-Methyl-2-pentanone	280 U	120 U	770 J	180 U
Benzene	89 U	36 U	100 U	56 U
Bromodichloromethane	190 U	77 U	220 U	120 U
Carbon tetrachloride	70 U	29 U	81 U	44 UJ
Chloroform	140 U	56 U	160 U	85 U
Chloromethane	140 U	59 U	170 U	90 U
cis-1,2-Dichloroethene	14,000	2,100	160,000	10,000
Cyclohexane	240 U	98 U	1,100	150 U
Dibromochloromethane	240 U	97 U	270 U	150 U
Dichlorodifluoromethane	140 U	56 U	160 U	87 U
Ethanol	1300 U	540 U	1500 U	820 U
Ethylbenzene	120 U	50 U	600	76 U
Hexane	250 U	100 U	330	150 U
Isooctane	320 U	130 U	380 U	200 U
Methylene chloride	480 U	200 U	560 U	300 U
Styrene	120 U	49 U	140 U	75 U
t-Butyl alcohol	340 U	140 U	390 U	210 U
Tetrachloroethene	17,000	4,200	450,000	16,000
Toluene	160 U	65 U	940	99 U
trans-1,2-Dichloroethene	110 U	45 U	1,300	140
Trichloroethene	4,500	710	17,000	1,600
Trichlorofluoromethane	160 U	64 U	180 U	98 U
Vinyl chloride	36 U	250	1,000	490
Xylene, o	120 U	50 U	25,000	880
Xylenes (m&p)	120 U	50 U	33,000	1,200

Samples analyzed for VOCs by USEPA Method TO-15; only detected compounds shown.

Detections in bold.

 $ug/m^3 = micrograms per cubic meter$

Qualifier: U = not detected; J = estimated

QC Code: FS = field sample; FD = field duplicate

Created By: KMS 2/28/20 Checked By: CRS 3/17/20

ATTACHMENT 1

WASTE MANIFESTS

~
2
0
ũ
Ğ
Ö
5
C
•
S
>
2

Name of the Control	<i>'</i>					N	I-0	5/6/	30	
WASTE MANUFED		lea	*** <u></u>				For	т Арргочес		. 2050-0039
Page		\uparrow	UNIFORM HAZARDOUS NGEPER ON UNDER 0 2 0 3 5 4 7	emency Respon	se Phone				37	GBF
Part	WWW.		625 Broadway, 12th Floor Albany NY 12233 Foot	533 Main St	reet			0 10	701	3. - 1
Septiment Sept	rcc.					M'S EPAU	Number (0 9	8 3 9	9
Septiment Sept	8		7. Transporter 2 Company Name	······································		U.S. EPA ID	Number			
MULLISTON VT 05495 Rol 2 880 - 200 200	3					U.S. EPA ID	Number			
MANOR PROTECTION Washington (Content of the Content of			WILLISTON VT 05495 802 860-1200			VTR	0 0 0	5 1	705	2
WANDOT? HAZER CONTROLOGY STATE CONTROL			1 4 1 4 1 4 1 1 1			4		13	. Waste Cod	es
MASSEZ. Hazardous weasher, liquid: nro.s. Dust			MA3077, Hazardous waste, solid, n.o.s.		Туре	Quantity		0039	F002	Т
14. Special Handing Instructions and Additional Information 1) Prof.		RATO	o, om (isasonorosanjisno, memerosanisne)	0 +8	DM	07500	P		 	
1. Special Harding Instructions and Additional Information 1/(SE.T.) ERG#H71-2)(L.E.T.) ERG#H71-1. 1. Special Harding Instructions and Additional Information 1/(SE.T.) ERG#H71-2)(L.E.T.) ERG#H71-1. 1. Special Harding Instructions and Additional Information 1/(SE.T.) ERG#H71-2)(L.E.T.) ERG#H71-1. 1. Special Harding Instructions and Additional Information 1/(SE.T.) ERG#H71-2)(L.E.T.) ERG#H71-1. 1. Special Harding Instructions and Additional Information 1/(SE.T.) ERG#H71-2)(L.E.T.) ERG#H71-1. 1. Special Harding Instructions and Additional Information 1/(SE.T.) ERG#H71-2)(L.E.T.) ERG#H71-1. 1. Special Harding Instructions and Additional Information 1/(SE.T.) ERG#H71-2)(L.E.T.) ERG#H71-1. 1. Special Harding Instructions and Additional Information 1/(SE.T.) ERG#H71-2)(L.E.T.) ERG#H71-1. 1. Special Harding Instructions and Additional Information 1/(SE.T.) ERG#H71-2)(L.E.T.) ERG#H71-2	l	- GENE	MA3082, Hazardous waste, liquid, n.o.s. 9, PGIII (Tetrachloroethylene, Trichloroethene)	14	DM	00550	G	D039	D040	F002
14. Spacial Handling Instructions and Additional Information 1) Prof. Ic. # \$265*1 (UT - 1219 - 35309) 15. GENERATOR'SIOFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully end accurately described above by the proper shipping name, and are classified, packaged, marked and beheldpleacated, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I em the Primary Export (Jordity Hat the workship with consignment of the stems of the actioned PRA-Activation (Plan and actional governmental regulations. If export shipment and I em the Primary Export for Consignment of Constant (Plan and Actional governmental regulations. If export shipment and I em the Primary Export (I am a stage quantity generator) or (b) (if am a small quantity generator) is true. International Shipments	74		3.	 			ļ. —			+
14. Spacial Handling Instructions and Additional Information 1) Prof. Ic. # \$265*1 (UT - 1219 - 35309) 15. GENERATOR'SIOFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully end accurately described above by the proper shipping name, and are classified, packaged, marked and beheldpleacated, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I em the Primary Export (Jordity Hat the workship with consignment of the stems of the actioned PRA-Activation (Plan and actional governmental regulations. If export shipment and I em the Primary Export for Consignment of Constant (Plan and Actional governmental regulations. If export shipment and I em the Primary Export (I am a stage quantity generator) or (b) (if am a small quantity generator) is true. International Shipments										
Exporter, I certify that the oxidents of this consignment conforms to the terms of the attached EPA Acknowledgment of Consent of Consent of the Consent of t	_		4.**							
Exporter, I certify that the oxidents of this consignment conforms to the terms of the attached EPA Acknowledgment of Consent of Consent of the Consent of t	AMA.		14 Special Mondling Instructions and Additional Information 1/(S.E.T.) ERG#171-21(L.E.T.) E	RG#171	<u> </u>			<u> </u>		
Exporter, I certify that the oxidents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent of Certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Generator's Offeror's PrintedTyped Name Value Val	v.nrc		1) Profile # 82607 (UT-1219-35209)							
Exporter, I certify that the oxidents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent of Certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Generator's Offeror's PrintedTyped Name Value Val	.c.c		2) Pofile # 82637 (VT-1219-35208)				NRC	JOB# 14	6662	-
Certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true. Generator's Officer's Printed/Typed Name	m 0m		marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable in	temational and na						
16. International Shipments Import to U.S. Export trought.S. Port of entry/exit: Transporter signature (for exports only):			I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator)	or (b) (if I am a sn	nall quantity ge	enerator) is true.		Mo	onth Dav	v Year
Transporter signature (for exports only): Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed Typed Name 17. Transporter 1 Printed Typed Name Signature Month Day Yee		Ţ	John Luthing Macke as agent for NYSDEL John	- Fitting	N as	a sent for	ר אץ			′ I
18. Discrepancy Indication Space Quantity Type Residue Partial Rejection Full Rejection		틸	☐ Import to U.S. ☐ Export from U.S.						19	
18. Discrepancy Indication Space		ZER ER	17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Signature		2/1	,		Mo	nth Dav	y Year
18. Discrepancy Indication Space Quantity Type Residue Partial Rejection Full Rejection		SPO	Branden Gissendanner 13	P	///			1/	2 2	21/9
18. Discrepancy Indication Space Quantity Type Residue Partial Rejection Residue Partial Rejection Full Rejection Full Rejection Full Rejection Full Rejection Full Rejection Full Rejection Residue Partial Rejection Full Rejection Full Rejection Full Rejection Residue Partial Rejection Full Rejecti		RA	Signature Signature	Le v				Mo	onth Day	/ Year
Manifest Reference Number: 18b. Alternate Facility (or Generator) 18b. Alternate Facility (or Generator) 18c. Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 1.	آ	1	18. Discrepancy				*			
18b. Alternate Facility (or Generator) Facility's Phone: 18c. Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 1.			Quantity Type	Residue		Partial Rej	jection		Full Re	jection
18c. Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 1.		<u>`</u>		Manifest Reference	e Number:	U.S. EPAID I	Number			
18c. Signature of Alternate Facility (or Generator) 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 1. 2. 3. 4. 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name Month Day Yes		텧	Facility's Phone:			ı				!
20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name Month Day Yei	- 1					<u>. L</u>		M	onth Da	y Year
20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name Month Day Yei	N.		19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and re	cycling systems)						
20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Printed/Typed Name	nrcc		H141 H141 3 1 1 1 1 1 1 1 1			4.				
	3.00			ept as noted in Ite	m 18a			Mir	nth Dav	y Year
Jell reaction has precious	L	$\downarrow floor$	Jeff Frederick A	11 2	rdu	Es!		1	116	20
EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete. DESIGNATED FACILITY TO DESTINATION STATE (IF REQUIRE	E	PA	A Form 8700-22 (Rev. 3-05) Previous editions are obsolete.	GNATED F	ACILITY	TO DESTIN	NOITAN	STATE	(IF REC	OUIRED)

ATTACHMENT 2

FIELD DATA RECORDS

66	N.Z	NEW Y		ET BISS	A CONTRACTOR	Project Name:	Boring I	D'
1		M	AC	T	FC	Elite Vogue Dry Cleaners		1W-1
		TAT	1 1			Project Location: Rochester, NY	Page No	
	_			nd Maine 04		Project No.: 3611191236.03 Client: NYSDEC		of: /
		Cloud		NoFSI	16-1	Refusal Depth: 10.6 Total Depth: 13.0 Soil Drilled: 10.6 Method: 15th Rolls		ole OD: 678/820B
		ctor: Not		V		Protection Level: D		: Macro Core
_	_			fride	^	Date Started: (0)1414 Date Completed: 10/16		1 D/OD: 4' x/2"
		Model:	CME	-LCE	55	Logged By: J. Rawel. He Checked By: C. Shople		
efe	rence	Elevatio	n:			Water Level: 8.6' 865 Time: 10 17 19 14	15	
	Samp	le Inform	nation	Mor	nitoring	CTOP OF Stub)		
S Depth (reet bgs)	Sample Number	Penetration/ Recovery (feet)	Analytical	Well	PID	Sample Description and Classification	USCS Group Symbol	Remarks
U.		11			11 = =	Concrete club =0-0.4		10/14/19
			12	-		Brown to light brown saul in	il.	
						a tree of grul. 0:4-1.8.	Fill Fill	
			1			Park brown Fill muteril with brich and tree poots, old month	2. F.11	
M	-1	1.0_	3.9			4-8' Brun to dark lo www		10/15/19 828164 IWOLU
		4.0	Yes		13,4	Fill material sandard gran with brich, as phalt, glash. Quite louse moist Poor recovery with macro supler.	iss, (VOCS STUDE Soul MeUH 25 gm soil.)
)		0,9	Yes		330.	Very dark brown to black loo. Fill with glass, puss as pluto, sur smul. Wet with strong Amel 1.	se land Fill	28164 IWO1 009 0840 VUCS, % Solid
			129'-	Christian	₩.	Refusal with anacrocone at Used Tricone to drill bedrow Repaired rig - repair lasted for = 0.3 Before it builted.	h	Rig brokedow Notebla 0255 Resure dully
						Screen \$12,9-3,4'B65 455h 40 FVC 0.01=5lot	Ended bor	ing due to
5						Bottom of baring = 13.0'BG.	5	

发现的原则内部	SOIL BORING LOG	Donies I	Di-	
MACTEC	Project Name: Elite Vogue Dry Cleaners	Boring I	D: 7W-2	
MACIEC	Project Location: Rochester, NY	Page No	. 1	
511 Congress Street, Portland Maine 04101	Project No.: 3611191236.03 Client: NYSDEC	0	f: /	
ring Location: World SVE-1	Refusal Depth: 9.9 Total Depth: 15.1	Bore Hole OD: 6-7"		
eather: Cloudy 450 (2	Soil Drilled: 9.9 Method: 1+519 41/4	Casing S	size: 6 1/82 TV	
bcontractor: Nothnagle	Protection Level: D		Mun Core	
iller: Throm Mangu Frida	Date Started: 10 18 19 Date Completed: 10 1819	Sampler	ID/OD: 4 x 2=	
	Logged By: J. Rewelly Checked By: C & hole 1/21/20			
	Water Level: 7.9 865 Time: 10/ 21/19 1/15			
Sample Information Monitoring				
Sample Number Penetration/ Recovery (feet) Analytical Sample Well Information PID	Sample Description and Classification	USCS Group Symbol	Remarks	
	0-0-2 Caparete 0.2-1.0 Dark brown Fill - Line to coarse surfact gral with conscept britist, as phalt. 1.0-4 Brown Fill meterial; fire to coarse surfaced grad with british glass, cubbles. some fines.	Ful		
M-14-848-11-11-11-11-11-11-11-11-11-11-11-11-11	Brown to dark brown friets median such with some coarse soul and and traces of silt, some cubbles.	EII	0830 IW02005 828164005 000 VUCS 46 Solids	
M-2 8-9.9 = 780	Orongesto of we brown fine to median sent with some sitt course send and great. Very moist, strong fuel-1, he vilot. (Poss. Stoddad solvent?)		0840 8164IM0200	
19 25	Brown to graylowing weatherd / wished with		To Solids	
\$ tes (= 20	inversed bomben up frontand ango with & medily intilling. his orbers		20ppm-) 828164IWU2013	
	Void/ Frutue 13-13.6	323	1.0 Crodl	
14.8 0.5	Roch browns Grey to brownsh gray 72 and more conjetent from \$ 13,8-15,05	1	0,5 Possible Med	
OTES:			ROD=14%	

V

MALACTEC	Project Name: Elite Vogue Dry Cleaners	Boring ID: IW - 3			
MIACIEC	Project Location: Rochester, NY	Page No. /			
511 Congress Street, Portland Maine 04101	Project No.: 3611191236.03 Client: NYSDEC	of: 1			
oring Location:	Refusal Depth: 11,5 Total Depth: 16,5	Bore Hole OD: 6 BR 8 0B			
Teather: 500y 50° Z	Soil Drilled: 11.5 Method: HSA/Core	Casing Size: 6/8 10 Stel			
ubcontractor: Nothnagle	Protection Level: D	Sampler: Macrocore			
riller. Thom Mangafrida	Date Started: 10 2119 Date Completed: 10 219	Sampler ID/OD: 4'x12			
ig Type/Model: EME-LC55	Logged By: J. Rew life Checked By C. Styples 1/21/25				
eference Elevation:	Water Level: 9.0'865 Time: /0/23/19 0840				
Sample Information Monitoring					
Sample Number Penetration/ Recovery (feet) Analytical Sample Well Information	Sample Description and Classification	USCS Group Symbol Remarks			
	10-0.2' Concrete state.				
1 0.0					
	o.2-4.0 Brown to light brown fing to coarse sent and grand with some coulder (Subgrade Fill with some silt.				
	ting to coarse similarly guil	115			
0.0	with some coulder (Subjude Fill) P(11			
	with some silt.	1			
3					
HUM AND					
m-1 4,2	4-6 Brown fire to median sand and silt with some crosses and and gravel.	111 0000			
2 3 7 - 7	and silt with some aspectand	611 0855			
4.0 = 380	and gravel.				
	a A le Mark the state				
	and gravel. 6-8 Dorh viewe brown silty fine to redun sent with traces of coarse soul. Moist with strong order.	828164 EWU3007			
Z 1 7 7 5 560	to well sent with trailes of	828164 EWU3007			
7 = 1 760	coase soul. Moist with string order.	SMEP			
		SMET PNUD			
2 2		06			
M-2 (==	10 6 15 b 11 Gs. +	0915			
4 100 1 1 = 1	Darkoline brown silty fine to medius and with trous of course scul	SP			
	medius and with this or coase				
0 3.5 Ver 7=7	our alabation	808164 IW03010			
1 1= 630					
4	silt fine to melins sent with	SP/GP VOCS Soliel			
Rock =	drug corresul and grant (nich by	Mro-cod)			
2 R-1 = 0.8	bey must to wet in so How Fire	Althopodor.			
3.0	R-1 11.5-13.5	82			
3 310 =					
1 1 1 1 1 1 1 1 2	Grands duligray dulumitie linestone &	PIN-1.2			
	Frie gundil.	P10			
Ver 100	a	Fortunal 1.0			
	6:74	MERL Suple			
5	with some Possils. From with to	and the			
0.1	with some Possils. From with to	828164201			
ome	weathy raid 72	55.46			
OTES:	Bottom of brong =16.5'BCS	8 Rap=344			
	, , , , , ,	SOIL BORING LOC			
111 10 101 411 110 C D. P.D.	40 soreen 0.01° slot = 4.2-14.2' B65.	De un Malel I			

2111 TA 1	11	ורחר	CO	Project Name: Elite Vogue Dry Cleaners	Boring I	IW-084		
	[A(للر	LU	Project Location: Rochester, NY	Page No			
511 Congress	Street, Portla	nd Maine 04	101	Project No.: 3611191236.03 Client: NYSDEC	-	f. l		
Boring Location:				Refusal Depth: 9.5 Total Depth: 14.3	Bore Hole OD: BR-6= UNS 8=			
Teather: Clau		6001	2	Soil Drilled: 9,5 Method: HSA/Core/Vila		Size: 6 Ya		
ubcontractor: No				Protection Level: D		McooCove		
riller: Thum				Date Started: 10 22 19 Date Completed: 10 22 19	Sampler	ID/OD:41x72		
ig Type/Model: eference Elevati		- 665	5	Water Level: 8.4'865 Time: 10123/19 1610				
Sample Infor		Mor	nitoring	water Level. 610 665 Time. 10175117 1010				
Depth (feet bgs) Sample Number Penetration/ Recovery (feet)	1	Well	PID	Sample Description and Classification	USCS Group Symbol	Remarks		
1				0-0.2 Concrete 0.2-40 Brown Finetomedin sound with a little course surf grand and silv (Subgude Fill)	EU			
m-1			1.2	Crown to light bown Fire to	- A			
17. Y.O	Yes	111111111111111111111111111111111111111	1.4	Brown to light bown fine to medium suit with a little coase suit and silt and trues of gunl. Busines durker brown very moist to west at tip of recovery,	8.	0840 18164 DW04007 VXs, %Solids		
m-21.0	Yes		270 75	Dork brown fine to weeking sand with silt and some coorsesul and ground, Bottom 0,5 becomes gray to dark gray, wet, Strongodor	645P 80	WY Solide		
2 2-1			0.8	Rebusulat 9.5 BCS Vertical Grock R-1 9.5-14.3 212-13 0.8 9.5-133 Brown to bowwish 0.4	1	Mechnical 202		
4.8			0.4	Livestore, some forsile	10000	828164 INVY O		
3			1.4	Brooking zone with some & modely intelling (PIN=1,4) 13.3-14.3 Gry Fine gruined lineston	300	51.7gm		
4		15/	0.1	13.3-14.3 Gry Fine gruined linestons & with some Rossils		8=		
5				Bottom of bouy 14.3' B65		Rap= 49% Fair to Pour		

1111		A			SOIL BORING Project Name: Elite Vogue		Boring 1	ID: IW-5	
2		A(EC	Project Location: Rochester, N				
51		Street, Portla			Project No.: 3611191236.03	Client: NYSDEC	Page No. /		
	Location:	Dueby I office	ind radius o		Refusal Depth: 7	Total Depth: /1.1	_	ole OD: OB 82 BR 62	
		45007	_		Soil Drilled: 7'	Method: HS.A. Try Come		Size: 61/81D	
ubcont	tractor: No	thnagle				Protection Level: D		MacroCore	
		Vanga			Date Started: 10/25/19	Date Completed: 10/25/19	Sample	1 D/OD : 4/x22	
		CMB-7	5 Tru	ich	Logged By: J. Rawelft	Checked By: C. Styler 1/21/20	1		
	ce Elevation				Water Level: 7.6 365	Time: 11/11/19 1357			
- 1	mple Infor	mation	Mor	nitoring	-		13.1		
Sample Number	Penetration/ Recovery (feet)	Analytical	Well	PID	Sample Descript	ion and Classification	USCS Group Symbol	Remarks	
2				0	0.1-0.8 Berkelovo eventued asphalt 0.8-40 Brichs and grand (Feb)	unto bound old out of. in the soul sand	Fill		
4 - N	1.6	4-7' Yes	(1)) (1) (1) (1)	34 95	Brich, wood and Frine to course su Britism 0.7 Verydark Grand and Fre to co neutral bestrant. Refusal at 7 mit	brum to clark gray to bre cose seems and 1, tely wer.	Fill Sh GP	0915 828164 I WUSUUG 828164 I WUSUUG VUCS, YUSOINDE	
8		*	Duff Harmon	/x\	Refusal motheryon Tricone drilling Soft over \$10-10	7.1'BES			
3					Drilled to 121' BGS				
6 OTES	<u>S:</u> U	Vell su	rsen 4	1° 10 S	ch 40 PVQ 0.01= s/00	+ 8 long (x 4-12/36)			

SOIL BORING LOG

A	CTI	70	A PERSONAL PROPERTY.		Darin	0	
Γ		-1(Project Name: Elite Vogue Dry Cle	eaners	Boring II	1W-6	
		ال	Project Location: Rochester, NY		Page No.		
	rtland Maine 041	01		ent: NYSDEC	of:		
Visile					Bore Hole OD: CR 62 013 82		
4000	voly,					ize: 61/8 ² (30	
thnagle	75.5					Macro Con	
	purida				Sampler	HD/OD:41 x 22	
	-75 Tr	ch-		ecked By: C Stopler 1/21/20			
on:	1 11	and the same	Water Level: 7,5'865 Time	ne: 10/25/19 1505			
mation	Moni	toring					
Analytical	Well Information	PID	Sample Description and		USCS Group Symbol	Remarks	
		0,5	0-0.1 35hrd asphelt. 0.1-0.9 Old crumbled 0.9-4 Brown frueto grand with silt bood	aspholo ocoursesulant oks (FIII).	Fill		
413 Yes	111111111111111111111111111111111111111	190 540 1010	Brown mother fire to me some sitt and a little co. Bride in toble at top Goods to light reducible brown multium sound and sitt mulant gunt. Very in Strong o dor.	when soul with own soul and good on to brown him to with a little course out to we at botton	F.11 SM/SP	0420 3281647W06026 VOCs, 9656Tils.	
W? X		1100	Light brown to olive & some to a little Pite to silt. Weig moist with se stypews to be very wend Top stweethed well 28.2'	one wet auras.	(GP)	eved bedock 0940 8287642W06006 2005, WSolids PIDJ	
TAX.	311111111111111111111111111111111111111	0.7	R1 10-15 Bru went	verticale Rubid & verticale Rubid & vertical Rubid Zonez & vend limistory & pt 1055/1/18ms		0,21 0,49/m 0,3 DWERC Chu 828164 EWOGOL	
141,3 -	14544	0	No ebented PIN realizes.	5		0 RQD= 52%	
121.	Ţ	3 - 44	0	Colomitic?, with frequences. No eleuted PND realings.	Colonitie?, with Frequest Possilifus O No eleuted PID readings.	Colomita?, with Treport Possilifums O No ebented PIN readings.	

Bori			Street, Portla			Project No.: 3611191236.03 Client: NYSDEC Refusal Depth: 10.5 Total Depth: 15.5	Bore Ho	f: / le OD: 6"
			, 50			Soil Drilled: 10,5 Method: Ratex/15A/Rolls Bil		Size: 6/4/45A/68
Subo	ontra	ctor: No	thnagle			Protection Level: D		Macrolou
Drill	er: T	hom	Man	getric	a	Date Started: 10 28 19 Logged By: J Lobac Checked By: C	Sampler	ID/OD: 47 x 2
			CME FOUR			Logged By:] Lother Checked By:		
_		le Inform			nitoring	Trade Level. 013 (6)		
Oepth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	Analytical Sample	Well		Sample Description and Classification	USCS Group Symbol	Remarks
1			1.	Annie		0-3' Asphitt ,3-4' Derk brown Fill Whicks		
2				Jay.			Fill	
4			35		-			201009
5			56-	500	16.7	4-5 Derk brown send & s.It moists orbor 8: 6-8 light brown nedom send & silt, moist	5M 18164	-Iwo7-0
7					6.1			
9 9	_				54.6	8-105' light brown media 8. scrat wet 1-0-10 - w/gravel rock tragments		IW0700
1	lu.	5		3		10.5 - 15.5	GP	
13				25		Retry drilled 51/8		
15			156.					

	40	A STATE OF	17.78	Market Comment	SOIL BORING LOG	13,660		
2111	TAT	11	المال	EC	Project Name: Elite Vogue Dry Cleaners	Boring I	D: IW-08	
	IVI	TI		CU	Project Location: Rochester, NY	Page No		
511	Congress S	treet, Portla	nd Maine 04	101	Project No.: 3611191236,03 Client: NYSDEC	0	f. }	
Boring L	ocation: C	utside			Refusal Depth: 8.2 Total Depth: 13,5	Bore Hole OD: BR - 62 UB-8		
Veather	Partly	derly	55° Z		Soil Drilled: 8.2 Method: HSA/Tri Come		Size: 61/8	
	ractor: Not				Protection Level: D	Sampler	: Macro Cour	
Driller:	Thom 1	langul	rida		Date Started: 10 23 19 Date Completed: 10 23 19	Sampler	ID/OD: 22x4	
lig Typ	e/Model: (CME-7	5 truc	la	Logged By Ti Rowellle Checked By: C. Stapler 1/21/20			
Reference	ce Elevatio	n:			Water Level: 7.7' 865 Time: 10/25/19 0615			
San	nple Inforn	nation	Mor	nitoring				
Sample Number	Penetration/ Recovery (feet)	Analytical Sample	Well	PID	Sample Description and Classification	USCS Group Symbol	Remarks	
۱ ۲			WILLIAM.	0.0	0.05-019 Old asphilt and subsamile 0.05-019 Old asphilt and subsamile 0.044 Brides morter, plastic by scounte sul and grand, wood (File)	EII		
M-5	0/0	Yes	111111111111111111111111111111111111111	1.0	Top 0.3 Dut hours blight wood and m-c gut and gut with sitt White 0.3-1.3 Brown to light bown fine to medius sud with some silt cell ar (ittle consessed and gund. Moist Button 2.7 Vay duch bown to other brown to reduish bown me tiled fine to nexture sundand silt with a little course secul uniquel: Wet 9 trop odso.		1145 82816471658005 0065/9050163 1155 8281647168008 0065 40501635	
m 3	-2012	TK	(marringsviller)	1620 7.4	Grundo derhang silty fire to med send under voils Ryments, wet strong oder. Refresh at 8.2'665 1305 Start dulley with tricone Drop/soft zone 29-9.8'			
-	1		11(11	-				
4					Bottom of borny = 13,5' 365			
5							1	
11.								
OTES	110	115	0 - 0	-1.	A)(, , , , ,)			
.0120					2.6 to 12.5/206 (w/cop)		SOIL BORING LO	

	SOIL BORING LOG	MAR S A L L L
MINIACTEC	Project Name: Elite Vogue Dry Cleaners	Boring ID: SVE-2
MACIEC	Project Location: Rochester, NY	Page No.
511 Congress Street, Portland Maine 04101	Project No.; 3611191236.03 Client: NYSDEC	of:
Boring Location: Inside 6 West SVE-1	Refusal Depth: 8.7 Total Depth: 8.7	Bore Hole OD: 10=
Veather: Rain 50°F	Soil Drilled: 8.7 Method: HSA 61/4	Casing Size: 6/4 LO
Subcontractor: Nothnagle	Protection Level: D	Sampler: VA
Driller: Bryan Swarte Rig Type/Model: CM &- LC 55	Date Started: 10 17 19 Date Completed: 10/17/19 Logged By: T. Rawdiff Checked By: C. Stople 1/21/20	Sampler ID/OD: NA
Reference Elevation:	Water Level: NA Time:	
Sample Information Monitoring	Time.	
Depth (feet bgs) Sample Number Penetration/ Recovery (feet) Analytical Sample Well Information	Sample Description and Classification	Control of the contro
3 4 5 6 7 8	8-0.2 Concrete stab. 0.2-8.7 Brown to olive brown Silty Fine soul with median soul and traces of course soul and growl Fill (Backfill From temberemonal). Some traces of the building subgrade Fill with briches, sandandgung mother dobserved when pulling augers	FILL hosged cuttings only-no sumpling. PID on soil cutto up to 300ppm. SWY = 860ppm.
	Sorten = 5'x 4° IO x 0.02' slot. Backfilled with #0 Saml (US Silica Fillro Quartz Sul)	

	SOIL BORING LOG	
MALACTE	Project Name: Elite Vogue Dry Cleaners	Boring ID: SVE - 3
MACTE	Project Location: Rochester, NY	Page No. (
511 Congress Street, Portland Maine 04101	Project No.: 3611191236.03 Client: NYSDEC	of:
oring Location: Inside new SVE-1	Refusal Depth: 9.7' Total Depth: 9.7'	Bore Hole OD: 85
Veather: Rain, 50012, Gusty wills	Soil Drilled: 9.7' Method: 1+5 A	Casing Size: 644 LT
ubcontractor: Nothnagle	Protection Level: D	Sampler: NA
riller: Thom Mangafrida	Date Started: 10/17/19 Date Completed: 10/17/19	Sampler ID/OD: N/A
ig Type/Model: CME-55 LC	Logged By: J. Raweliff Checked By: C. Styler 1/21/20	
eference Elevation: /	Water Level: 7,4 Time: -	
Sample Information Monitori	ng 10/17/17	
Sample Number Penetration/ Recovery (feet) Analytical Sample Well Information	Sample Description and Classification	Cook Remarks
NA NA NA	0-0.4° Concrete over asphilt. 0.4-3' Brown fine to medium sand with sile and a little coase sand and grand	For hoggeddull
4.4'	3-9.7' Very dark brown to clark gray fine to medium sand with some sitt and trous of coarse sand and gravel. Some brich frymerks	Fric
9 9.4	Refusilwith augus at 9.7'B65 Screen = 4.4-9.4'B65	
NOTES:		

Boriu Wea Subc Drill Rig	Subcontractor: Nothnagle Driller: The Manage Grid c Rig Type/Model: ME 75 Reference Elevation: Ground Sample Information Monitoring				4	of: Bore Hole C Casing Size Sampler: N.	Bore Hole OD: 4 /4 Casing Size:41/04 5 (14) Sampler: NA Sampler ID/OD: NA		
Depth (feet bgs)	Sample Number	Penetration/ Recovery (feet)	Analytical	Well	PID	Sample Description and Classification	USCS Group Symbol	Remarks	
1 2 3 4 5 6 7 8			2.	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	35	Drilled Juny 4/4 Hollow stem owser rock out 8'8" Sec los from Iwa for lithology			
10 11 12 13 14 15				S serece	13_				

Soring Location: Open Le TW S Weather: Sany 60 F Subcontractor: Nothinagle Driller: The man Managemal Rig Type/Model: CM 67 5 Reference Elevation: Frank			Project Name: Elite Vogue Dry Cleaner Project Location: Rochester, NY Project No.: 3611191236 Client: NYSDEC Refusal Depth: \$5.5 Total Depth: \$3.5 Soil Drilled: \$6.5 Method: \$1.5 After Cone Protection Level: D Date Started: \$1.0 \$1.5 Date Completed: \$1.0 \$2.14 Logged By: \$1.5 After Checked By: \$1.44	Sampler:	41/4° to
Sample Information		Monitoring	Water Level: 7.95'865 Time: u/1/19 1330	dno	
Sample Number Penetration/ Recovery (feet)		NA	Sample Description and Classification	USCS Group Symbol	Remarks
2			Bertonile - SOND to 2.5'-13.5' See IW-5 for littleby Pock at 8.5' 9' screen Button of screen 12.5' 13.5 TD		

511 Congress Street, Portoring Location: 26 5 ceather: Cloudy ~ 5 debeontractor: Nothing filler: 7/20 Me.	post of Bidg	Project Name: Elite Vogue Dry Cleaner Project Location: Rochester, NY Project No.: 3611191236 Client: NYSDEC Refusal Depth: Service Total Depth: 13 25 Soil Drilled: 8.25' Method: 45/4/Core Protection Level: D Date Started: 12 32 19 Date Completed: 13 35 15 Logged By: J Lathage Checked By: Mandal 112220 Water Level: 8:3' 1565 Time: 11/11/19 15320	Boring ID: Page No. 1 of: 1 Bore Hole ID/OD: 41' Casing Size: 4 1 to Sampler: Macro Core Sampler ID/OD: 4' < 22 Remarks SOO
Sample	7. Parke	C-25 - crushed thre 125 - 4' fill w/ c. thbles Caren litely preventy conquish Cored to 13,25 W/HQ	FILL SNYSP SP

nt: NYSDEC	or, New York EC Engineering &	Convulling Technician: J LI	UTTINGER,		toring Well Static	Groundwater Leve	ly.		MACTEC
a 10 mm			Constructio	n Information	0 - 1,5,111	and an American Subara	el Information		
Monitoring Well	Coordinate	Coordinate	Total Depth (ft BGS)	Top of Riser (ft AMSL)	Time	Depth to Water (ft bTOC)	Depth to Bottom	Casing Stickup (ft AGS)	Comments
JW-I	UNK	UNK.	UNK	UNK	1234	8.87	12	NA.	H"DIA.
IW-2	LINK	UNK	UNK	UNK	1239	9.31	14.46	1	4" DIA
TW-3	UNK	UNK	UNK	UNK	1249	9.59	13.95		4" DIA
1W-1	UNK	LINK	UNK	UNK	1251		13.45		4" DIA
/W-5	UNK	UNK	UNK	UNK	1251	4.54	11.78		4° DIA
TW-6	DINK	UNK	UNK	UNK	1446	8.40	14.17		14" DIA
1W-7	UNK	UNK	DNK	UNK	1356	8.02	14.17		H"DIA
IW-8	UNK	LINK	UNK	UNK	1351	7 98	12.35		4"DA 4"DH, 7.92-7.98" PRUDUCT
MW-ZD	LINK	UNK	UNK	UNK	1449	8,19	12.90		2" DIA 2" DIA
MW-21	UNK	UNK	UNK	UNK	1450	8.09	11.93		2" Dig.
MW-22	UNK	UNK	LINK	UNK	1556	8.03	11,67		10200
MW-23	UNK	UNA	UNK	Utrk	_				-WASN'T INSTALLED
MW-I	1152346.7	1411414.6	21.6	516.1	1621	8.40	21.05		4"DIA JPLVE BROKEN
MW-2	1152472.1	1411394.6	20.2	515.42	- 1		10175-5-7		4" DIA WELL PLUGILDEKED NEED KEV
MW-3	1152445.4	1411147	20.3	518.57	1419	T.60	18.70		MASN'T INSTALLED 4"DIA JPLVA BRUKEN 4"DIA WELPHALDIKED NEED KEY 4"DIA JEST & GO PRODUCT 2"DIA", 195 B.41 PRODUCT, NO SCO COUDNOT WEATER
MW-12	1152414.6	1411116.3	12.05	519.83	1344	8.41	11.30		2" DIA , 795 - 8.41 PRUDULT NO SCO
MW-13	1152382.3	1411196	14.5	517.42	-				COULDNOT LUCATE
MW-14	1152303.8	1410986.1	13.9	520.48	1459	10.33	13,00		2"DIA. NO PLUG OR LID.
PZ-05	1152449.3	1411131.7	-12	520.86	1241	10.33	1142		1" DIA 9.57 - 10.33 PRUDULT
PZ-06	2152327.6	1411411.7	10	516.52	1624	7.60	4.95		2"DIA. NO PLUG OF LID. I"DIA 4.57 - W.33" PRUDULT
PZ-07	1152473.8	1411391.1		515.52	16460	(440)	7.89	ése-	I'DIA, LID BRIKEN NOSCREWS

Notes: BGS; below ground surface AGS; above ground surface AMSL: Above mean sea level bTGC; Below top of casing

			LOW	FLOW GRO	UNDWAT	TER SAMP	LING RECO	ORD		
	PROJECT NAME		Elite Vogue Dry Cleaner	,	1.00	ATION ID	/ DA	TE . /	-110	
	PROJECT NUME				STA	RTTIME	EN	D TIME	5/17	
	EANINE III		3611191236	PLE TIME	erri	NAMENUMBER			100	
	82816	4-10g	101018	1320		328164		l of	1	
WELL DIAN	HETER (INCHES)		2 2	6	8	OTHER				YES NO N/A
TUBING ID	(INCHES)	118	1/4 3/8	12	5.8	OTHER			CAP	ヹ ニ ニ
MEASUREM	MENT POINT (MP)	TOPO	FRISER (TOR)	TOP OF CASINO	(TOC)	OTHER			COLLAR	Z = =
(BMP)	DTW	8.3/ H	FINAL DTW (BMP)	9.96		OT. CASING CKUP (AGS)	0	FT	TOC/TOR DIFFERENCE	.3 FT
WELL DI (BMP)	ертн	1.051	SCREEN LENGTH	UNK	FT PHD	BIENT AIR		PPM	REFILL TIM SETTING	SEC SEC
WATER		2.74 FT	DRAWDOWN VOLUME	1,08 W X well diam. square	GAL MO	WELL	-	PPM	DISCHARGE TIMER SETT	
GAL/VOI (cohima X			TOTAL VOL. PURGED	7	GAL TOI	AWDOWN/ FAL PURGED	.5		PRESSURE TO PUMP	PSI
FIELD PAR		PROGRAM STA	BILIZATION CRITE					T BEDOV	BUAR	
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (*/- 3 degrees)	SP. CONDUCTANCE (mS/cm) (+/- 3%)	pH (units) (~/- 0.1 units)	DISS. O ₂ (mg/L) (+/-10%)	TURBIDITY (nto		PUMP INTAKE DEPTH (II)	COMMENTS
1220	BEGIN PUR	GING	1		1					r
1225	8.69	150	14.9	0.95	7.48	441	29.6	-1050	18	
1231	9.18	-	14.8	0.75	7,36	7.98	28.7	-12/.2	1	
1236	9,40	100	14.2	0.95	7,29	3,57	39.1	-126.1		
1241	9.53	-	14.1	0.95	7,26	2.32	42.0	-127,5		
1250	9,64		13.6	0,95	7.23	2.26	43.3	-1275		
1257	4.78	_	14.2	0.96	7.22	2.94	42.7	-1292		
1300	9,88	-	13.9	0.96	7,22	3.39	43.2	-124.2		
1315	9,96	-	14.0	0.96	7.21	3,20	41.9	-129.0		
						11 1 - 1.		-	-	
	FI	NAI STARII I	ZED FIELD PARA	MFTFRS (to anno	ronriate signi	ficant figuresis	FIL	120	TEMP : nearest de	spree (ex. 10,1 = 10) (ex. 3333 = 3330, 0,696 = 0,696)
		AAL STABILI	1		1		1	-130	pH nearest tresh (DO: nearest tensh	(n. 5.51 = 5.5) (cs. 1.51 = 1.5)
FOURMENT	DOCUMENTATIO	18	14	0.96	7.2	3,2	41.9	-129	ORP. 2.5F (44.1	nearest tenth (6.19 = 6.2, 10) = 100) 44, 191 = 190)
PERIS SUBM BLAD WATE OTHE OTHE	TERA ER		DECON FLUIDS USED LIQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	SILICON T TEFLON I TEFLON I HOPE TUE LOPE TUE OTHER OTHER	TUBING TUBING INED TUBING RING	PVC F GEOP	EL PUMP MATERIAL PUMP MATERIAL ROBE SCREEN DN BLADDER R IR		V WQ MI	METER 1+14CH
ANALYTIC	PARAMETER PARAME VOC.	TER	METHOD NUMBER 82600	FIELD FILTERED NO	PRESER'	HOD RE	QUIRED CO	AMPLE LLECTED	COLLECTED	SAMPLE BOTTLE ID NUMBERS
PURGE WA	EMETHOD YE		NUMBER OF GALLE GENERATED If yes, purpod approxima to sampling or Print Name: J. C. Date: 1/20	toly I standing volume promit for this sample loca	1	Eust Mary	611	Th	ul Str	MW-1 PZ-06 N
l l	MAC	TE	C	13413		DIN MOI NO	Ten Iswill	LOWFL	OW GROUN	DWATER SAMPLING RECOR

SAME & SA	ER (INCHES) [THES] [MW020 IN TOP OF FI 93 FT 66 FT 4 GAL A VI (141) PROGRAM STA PURGE RATE	2 4 14 3/8 FRISER (TOR) FINAL DTW (BMP) SCREEN LENGTH DRAWDOWN VOLUME (untial DTW- final DT TOTAL VOL. PURGED (mfl. per munute X total	10.2	8 STEE STEE STEE STEE STEE STEE STEE STE	NAME/NUMBER 20104 OTHER OTHER OTHER T. CASING KUP (AGS)	PAGE	1 OF TOP	CAP CASING LOCKED COLLAR CF BOAD 8	12 36
VELL DIAMETER UBING ID (INCE- IEASUREMENT INITIAL DTW (BMP) WELL DEPTH (BMP) WATER COLUMN CALCULATER GALVOL (column X wells FIELD PARAMI TIME 1-5 Minutes 1005 1100 1115 1120 1125	B28/04- ER (INCHES) [THES) [T POINT (MP) 7.07 H 19 12. ED 8 L HETERS WITH DTW (FT) 010-033 R Drawdown BEGIN PUR	FT FT GAL d X 11 (141) PROGRAM STA PURGE RATE	2 4 14 3/8 FRISER (TOR) FINAL DTW (BMP) SCREEN LENGTH DRAWDOWN VOLUME (untial DTW- final DT TOTAL VOL. PURGED (mfl. per munute X total	35 6 112 TOP OF CASING 7.18 10.2	8 STEE 8 5/8 STEE 8 (TOC) PRO STIC FT PID AME	NAME/NUMBER 28164 OTHER OTHER OTHER T. CASING KUP (AGS)	PAGE	TOP	CAP CASING LOCKED COLLAR OF IZOAD 8	YES NO NA LOF 3 SC PRESEN
ELL DIAMETER UBING ID (INCF EASUREMENT INITIAL DTW (BMP) WELL DEPTH (BMP) WATER COLUMN CALCULATER GALIVOL (column X well) FIELD PARAMI TIME -5 Mututes 1005 1100 1115 1120 1120	B28/04- ER (INCHES) [THES) [T POINT (MP) 7.07 H 19 12. ED 8 L HETERS WITH DTW (FT) 010-033 R Drawdown BEGIN PUR	FT FT GAL d X 11 (141) PROGRAM STA PURGE RATE	2 4 14 3/8 FRISER (TOR) FINAL DTW (BMP) SCREEN LENGTH DRAWDOWN VOLUME (untial DTW- final DT TOTAL VOL. PURGED (mfl. per munute X total	35 6 112 TOP OF CASING 7.18 10.2	5/8 STICE PRO STICE FT AME	OTHER O.17 OTHER O.17 OTHER T. CASING KUP (AGS)	7"	TOP	CAP CASING LOCKED COLLAR OF IZOAD 8	YES NO NA LOF 3 SC PRESEN
EASUREMENT INITIAL DTW (BMP) WELL DEPTH (BMP) WATER COLUMN CALCULATER GAL/YOL ICOLUMN X well FIELD PARAMI TIME 5 Munutes 1100 1105 1110 1115 1120	THES) T POINT (MP) T O THE 19 T O THE 1	93 FT 86 FT 4 GAL 4 X 11 (41) PROGRAM STA PURGE RATE	FINAL DTW (BMP) SCREEN LENGTH DRAWDOWN VOLUME (untial DTW- final DT TOTAL VOL. PURGED (mf. per manute X total	7.18 10.2	TOCS PRO STIC	OTHER O. 12 OTHER T. CASING TRUP (AGS)	0	-	CAP CASING LOCKED COLLAR OF IZOAD 8	YES NO NA LOF 3 SC PRESEN
WELL DEPTH (BMP) WELL DEPTH (BMP) WATER COLUMN CALCULATER GALAVOL (column X well) EDELD PARAMITIME S Munutes 1046 E 1055 100 105 110 115 120 125	T POINT (MP) 7.07 H 19 12 ED 8.L Idiameter square METERS WITH DTW (FT) 00-033 ft Drawdown BEGIN PUR	93 FT 86 FT 4 GAL 4 X 11 (41) PROGRAM STA PURGE RATE	FINAL DTW (BMP) SCREEN LENGTH DRAWDOWN VOLUME (untial DTW- final DT TOTAL VOL. PURGED (ml. per minute X total	7.18 10.2	FT PID FT AME	OTHERT. CASING CKUP (AGS)	0	-	LOCKED COLLAR OF ROAD B FOCTOR	Z PRESEN
INITIAL DTW (BMP) WELL DEPTH (BMP) WATER COLUMN CALCULATER GALVOL (column X well) IELD PARAMI TIME Minutes 1046 105 110 115 120 125	FED BL Id diameter square METERS WITH DTW (FT) 00-033 ft Drawdown BEGIN PUR	93 FT 86 FT 4 GAL 4 X 11 (41) PROGRAM STA PURGE RATE	FINAL DTW (BMP) SCREEN LENGTH DRAWDOWN VOLUME (untial DTW- final DT TOTAL VOL. PURGED (ml. per minute X total	7.18	FT PID AME	T. CASING CKUP (AGS)	0—	-	OF ROAD B	12 36
(BMP) WELL DEPTH (BMP) WATER COLUMN CALCULATER GAL/VOL (column X well) FIELD PARAMI TIME 5 Minutes 1046 105 110 115 120 125	H 19. 12. ED 8 L HETERS WITH DTW (FT) 0.0-0.33 R Drawdown BEGIN PURC	93 FT 66 FT 4 GAL d X 11 (141) PROGRAM STA PURGE RATE	(BMP) SCREEN LENGTH DRAWDOWN VOLUME (unital DTW- final DT TOTAL VOL. PURGED (mf. per munute X tota	0.07	FT STIC	KUP (AGS)	0-	-	TOC TOR	12 36
(BMP) WATER COLUMN CALCULATER GAL/VOL (column X well) IELD PARAMI TIME 9 Minutes 10055 100 105 110 115 120 125	12. Idiameter square METERS WITH DTW (FT) 0 0-0 33 ft Drawdown BEGIN PUR	GAL GAL d X 0 041) PROGRAM STA PURGE RATE	DRAWDOWN VOLUME (unital DTW- final DT TOTAL VOL. PURGED (mL per minute X total	0.07	FT AME	BIENT AIR				
COLUMN CALCULATER GAL/VOL (column X well) TIME 5 Munutes 1046 1055 100 115 110 115 120 125	ED 8.L Il diameter square HETERS WITH DTW (FT) 0.0-0.33 ft Drawdown BEGIN PURC	GAL d X 0 (41) PROGRAM STA PURGE RATE	VOLUME (initial DTW- final DT TOTAL VOL. PURGED (ml. per minute X total				P		REFILL TIME SETTING	SEC
GALVOL (column X well) FIELD PARAMI TIME 5 Minutes 046 E 0555 100 1105 1115 1120 125	diameter square METERS WITH DTW (FT) 0.0-0.33 ft Drawdown BEGIN PUR	PURGE RATE	PURGED (mL per minute X total			WELL	p		DISCHARGE TIMER SETTI	ING SEC
TIME 5 Minutes 9 1046 E 1005 1100 1115 1120 1125	DTW (FT) 0 0-0 33 ft Drawdown BEGIN PUR	PROGRAM STA PURGE RATE			GAL TOT	WDOWN/ AL PURGED	0.05		PRESSURE TO PUMP	PSI
046 E 055 1100 1105 1110 1115 1120 1125	00-033 ft Drawdown BEGIN PUR		DILICATION CRITE	RIA (AS LISTED IN T					_	
055 100 105 110 115 1120		(mL/min)	TEMP ("C) (+- 3 degrees)	SP CONDUCTANCE (mS/cm) (=1-3%)	pH (units) (*=: ()) units)	DISS O ₂ (mg/L) #/- 10%)	TURBIDITY (ntu) (*= +0% <10 ntu)	REDOX (mv) (±/-10 mv)	PUMP INTAKE DEPTH (B)	COMMENTS
055 100 105 110 115 120 125		GING								
1100 - 1105 1110 - 1115 1120 - 1125	7.07	100	13.7	1.23	7.14	0.44	11.9	-105.9	13	
110 110 115 1120	7.08	125	13.9	1.24	7.13	0.31	11.69	-111.6		
110	7.14	125	14.1	1.23	7.12	0.21	10.41	-115.0	1-	
1120	7.11	125	14.1	1.23	7.12	0.18	9.68	-117.4	7	
125	7.16	140	14.3	1-22	7.12	0.16	9.70	-119.8		DID NOT ADJUST PUMP
125	7.15	145	14.4	1.22	7.11	0.13	9.04	-121.6		DID NOT ADJUST PUMP
	-	145	14.5			0.13	8.58	-123.1		SPEED.
120	7.17		14.2	1.22	7.11	10/5/5/2	9.01	-124.0		
1135 CO	OUECT S	145	11/2	1,61	641	0.12	1.01	127.0		
130 0	ULLECT :	MINIPLE								
			-14	1.21	7.1	0.1	- (RAP)	-		
	FI	NAL STABILI	ZED FIELD PAR	AMETERS (to appr	ropriate sign	ificant figures[S	F[)		COND 5 SF mas	legree (ex. 10.1 = 1n) s (ex. 3333 = 3330; (1.00) + (1.00n)
			14	1.21	7.1	0.1	9.0KB	-120	pH nearest tenth DO nearest tenth TURB 3 5F may.	(ex. 3.51 = 3.5) . nearest tenth (6.19 = 6.2, (0) = 101)
QUIPMENT DO	OCUMENTATIO	ON	1 19	1.6	1-1	0.1	110100	120	ORP ISF 44 (≥ 41, 191 = 190)
PERISTAL SUBMERS BLADDER WATTER OTHER OTHER	RSIBLE ER	N N N N N N N N N N N N N N N N N N N	DECON FLUIDS USED LIQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	SILICON TEFLON TEFLON HOPE TUI LIDE TUI OTHER OTHER	TUBING TUBING LINED TUBING BING	PVC GEO	EEL PUMP MATERIAL PUMP MATERIAL PROBE SCREEN ON BLADDER ER ER		PID WQ M TURB	
ANALYTICAL	PARAMETE PARAM VOC	ETER	METHOD NUMBER 82160	FILTERED		THOD RI	EQUIRED CO	AMPLE LLECTED ES	COLLECTED	SAMPLE BOTTLE ID NUMBERS
PURGE OBSE PURGE WATE CONTAINERIA NO-PURGE M UTILIZED Sampler Signati	ER YI		to sampling or	LONS 1,5 mately 1 standing volume p mL for this sample loc	rior N	SKETCH NOTES RIGHMOND S	H28 Agreen teason to the control of	PARKING	CLEAR, ODO THERE WAS IN WELL, W	S DEDICATED TUBING PRESEN NAS DAMAGEDAR - PEGMOVED . BOTTOM 4 FLOFTUBING
Checked By	D. P.	ulff	Date 1112	-5/19		13	PEET MW-	02		HILL NEED TUBING FOR AMPLING EVENT

			LOW	FLOW GRO	UNDWAT	ER SAMPL	ING RECO	RD		
PROJ	ECT NAME		ine Vogue Dry Cleaners			ATION ID	DAT			
PROJ	IECT NUMBE		3611191236		STAR	W-3 ET TIME 250		1 13 20 1 430)19	
	PLEID		0.000	PLE TIME	SITE	NAME/NUMBER		E	Y	
62	0164-1	1W03019) 14	20	101	18624		OF	1	WELL INTEGRITY
WELL DIAMETER	R (INCHES)		2 🔀 4	6		OTHER			CAP	YES NO NA
TUBING ID (INCH	(ES)	-	3/8	1/2	5 N 🔀	OTHER O. I	7"		CASING LOCKED	Z = =
MEASUREMENT	POINT (MP)	TOPO	RISER (TOR)	TOP OF CASING	(TOC)	OTHER		iu.	COLLAR PLIF TOUNDE	7
(BMP)	7.3	3 _ гг	FINAL DTW (BMP)	7.47		T. CASING KUP (AGS)	0		TOC/TOR DIFFERENCE	3 631
(BMP)	18,	10 FT	SCREEN LENGTH	105-20,3	FT AMB	IENT AIR	-		REFILL TIME SETTING	SEC
WATER COLUMN	11.3	2. FT	DRAWDOWN VOLUME (mittal DTW- final DT		GAL MOU	WELL TH	_	PPM	DISCHARGE TIMER SETT	ING SEC
GALCULATED GAL/VOL (column X well o	1.4		TOTAL VOL. PURGED (mL per minute X tota		GAL TOT	WDOWN/ AL PURGED	0.038		PRESSURE TO PUMP	PSI
TIME I	TERS WITH DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (ml. mm)	TEMP (°C)	RIA (AS LISTED IN SP CONDUCTANCE (mS/cm) (+/- 3%)		DISS O ₂ (mg/L) (±/-10%)	TURBIDITY (ntu)		PUMP INTAKE DEPTH (A)	COMMENTS
-	EGIN PUR	GING	120	177-3.61				127-11/10/1	DEPIH (III)	
	45	100	10.6	1.42	6.57	1.07	¥199	-70.6	15	7
and the state of the state of	.45	100	10.6	1.42	6.51	0.53	611	-72.6	1	
	1.45	100	10.7	Q 1.41	6.50	0.44	91	-76.7		
	.45	100	10.7	1.41	6.52	0.43	70	-83.5		
	7.45	100	10.3	1.40	6.54	0.39	66.5	-91.0		`
	7.45	100	10.6	1.39	6.54	0.40	60.7	-95.4		9
	7,45	100	10.9	1.40	6.55	0.29	49.4	-101.2		
	7.47	100	11.0	1.41	6,58	0.28	44.0	-107.4		
	7-47	100	9.4	1.41	6.6	0.25	38.9	-111.7		
	7.47	100	10.6	1.40	6.59	0.31	37.0	-114.7		
	.47	100	10.3	1.41	6.63	0.27	37.8	-117-7		
1.70	7.47 FI	NAL STABIL	IZED FIELD PAR		G. GG	ficant figures IS	FI) 36,6	-116.5	TEMP nearest d	legroe (ex. 10 1 = 10) x (ex. 3331 = 3350, 0.006 = 0.000)
			1		1 . 1			1	pH nearest tenth DO nearest tenth	(ex. 5 ± 3 = ± 5) (ex. 3 ± 1 = 3 5)
EQUIPMENT DOG	UMENTATIO	N.	10	1.41	6, t	0.3	36.6	-120	ORP 2 SF (44.)	, nearest tenth (6 14 = 7/2, 101 = 101) = 44, 191 = 190)
PERISTAL SUBMERSI BLADDER WATTERA OTHER OTHER	IBLE	K K K	DECON FLUIDS USED LIQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	SILICON TEFLON TEFLON HDPE TI LDPE TU OTHER OTHER	TUBING TUBING LINED TUBING BING	PVC GEO	EEL PUMP MATERIA PUMP MATERIAL PROBE SCREEN ON BLADDER ER ER	AL	PID WQ M	
ANALYTICAL	PARAMETER	ETER	METHOD NUMBER 82400	FILTERE		THOD RI		SAMPLE	COLLECTED	SAMPLE BOTTLE ID NUMBERS
PURGE OBSEI PURGE WATEI CONTAINERIZ NO-PURGE ME UTILIZED Sampler Signalo	R YE ZED YE ZETHOD YE		to sampling or Print Name K	LONS 1.5 mately 1 standing volume mL for this sample in ATTE Am 2514	orior P	1.57-7.60 F URGE WATER D BEDROCK WE	TICROUNDON +. ESCRIPTION -MW-3			DETELTED FROM Y COLUR, ODOR, SLIGHTSH

	ROJECT NAME					ATION ID	ING RECO			
			lite Virgue Drs Cleaners		1 1 1	Mw-1	2	11/14/	19	
Pi	ROJECT NI MBE	R	3611191235		STA	11:40	END	12:	30	
5	82316	4-MW	1201 17	130		828164	PAG	E L DE	1	
LIL DIVIN	TER (INCHES)					OTHER				WELLINTEGRITY
BING ID (IN			1- 1-			OTHER			CAP CASING	VES 20 11
	NI POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASING		OTHER			LOCKED	7 = =
INITIAL DI		78	FINAL DTW			T. CASING	9		TOCTOR	
(BMP)	- 3	201	(BMP)	8,53		KUP (AGS)	9	FT	DIFFERENCE	.3 FT
WELL DEF (BMP)	HH II	80 FT	SCREEN LENGTH	UNK	FI AMI	HENT AIR	-	PPM	REFILL TIME SETTING	R SEC
WATER	4	.0Z FT	DRAWDOWN VOLUME	0.12	GAL MOI	WELL	-	PPM	DISCHARGE TIMER SETTI	NG SEC
CALCULAT	TED T		TOTAL VOL	W X well diam square	DRA	WDOWN	.06		PRESSURE	
GAL/VOL (column X w	A ell grameter square	6 GAL	PI RGED tink per minute X total	d minutes X 0 0002/s ga		AL PURGED	.00		TO PL MP	PSI
TIME	DTW (FT)	PURGE RATE	TEMP ('C)	SP CONDUCTANCE		DISS O (mg L)	TL'RBIDITY (mu)	REDOX	PUMP	
5 Minutes	Drawdown	(mL min)	(= - 3 degrees)	(mS cm) (= ~ 7%)	(+-0.1 anits)	(Fig. 1) and	((1) nm)		DEPTH (B)	COMMENTS
:40	BEGIN PUR	GING		- ,	1 - (1)					
	8.20	100	13.2	1.56	6.74	2.17	19.2	-10.2	11	
	8-28	150	14.0	1.55	666	-91	11.8	-111.0		
	2.45	1	14.1	1.46	6.67	.35	10.9	-111.9		
	3.1	-	14.1	1.46	6.69	116	11,11	-112.3		
209	3 45		14.(1.50	6.69	0.22	10,8	-110.4		
2:18	8.51		14.1	1.52	1.6	0.24	10.7	-108.9		
222	8.53		14.3	1.52	669	0.23	10,8	-110.1		
	FI	NAL STABILI	ZED FIELD PAR	AMETERS (to app	ropriate signi	ificant figures[S]	F))		TEMP nearest de COND 3 SF may	Ter 1811 = 133
			14	1,52	17	0.2	10.8	-110	pH neurest lenth (DO neurest tenth (TURB 1 SF max	ex 131 = 15) neared tenth, v 1 = 2 / 2 ((i) //
TIPMENT I	DOCUMENTATIO	DN .		1102	167	0:2	10,12	1,10	ORP 258 (41)	T. 43 TAN
PERIST	TALTIC ERSIBLE		LIQUINON DEIDNIZED WATER	SILICON TEFLON	TUBING		ERIALS EL PUMP MATERIA UMF MATERIAL	IT		TER
BLADO			POTABLE WATER NITRIC ACID		LINED TUBING	GEOP	ROBE SCREEN ON BLADDER		WO ME	TER YSI METER ITACH
WATTE	R		METHANOL	LOPE TO		OTHE	R.			GEODVERO
ANALYTIC	AL PARAMETER	is .	OTHER	OTHER		OTHE	9		FILTER	Rs VO TYPE
_/	PARAMI		METHOD NUMBER	FILTERED				LLECTED	COLLECTED	SAMPLE BOTTLE ID NUMBERS
-	VOCS		8266	oc No	_ H	cl i	while _	Yes	-NO	
H			-	_	_					
-					-					
H	-						2	chuin	w Sa	~
BUDGE CO	BSERVATIONS	2 02	ra carriera ha	0		SKETCHNOTES	1		TIN	
	ERIZED		MER OF GALL GENERATED	.oxs 2					111	
PURGE WA	METHOD YE		If yes purjed approximate an exampling or	mL for this sample to		1			1	
PLRGE WA						X			1	
PURGE WA CONTAINE NO-PURGE		f the	į	1. 14	1	d	1	1		
PURGE WA CONTAINE NO-PURGE	al.	futty	Pr = Name J	chn Lithe	M		Mula	1		
PURGE WA CONTAINE NO-PURGE UTILIZED	John	futton wolff	Pressume J	chn Lither 2/2020	4	HAAG	oury -1	2		

711 5

		2.2	LOW	FLOW GRO	UNDWA	TER SAMP	LING REC	ORD		
	PROJECT NAME		Elito Vogue Dry Cleane	rs.	LOC	CATIONID	7 0.4	TE 1	1.0	
	PROJECT NUME			13	STA	MW!		DTIME	1117	
			3611191236	IN V POAC	100	12:7	0	13:3	0	
	828164	-MW.	3011	13:30	5	328164	PA PA	1 OF	1	
WELL DIAM	IETER (INCHES)		12 -4	□ 6]8 [OTHER			CAP	YES NO N/A
UBING ID	(INCHES)	W1.8	1/4 3/8	1/2	5/8	OTHER			CASING	Z = =
MEASUREM	ENT POINT (MP)	TOP O	FRISER (TOR)	TOP OF CASING	G (TOC)	отнея			COLLAR	Z = =
(BMP)	DIW	7.61 FT	(BMP)	7.83		OT. CASING CKUP (AGS)	0	FT	TOC/TOR DIFFERENCE	,3 _{FT}
WELL DE (BMP)	EPTH /	7.3 FT	SCREEN LENGTH		FT AM	BIENT AIR	-	PPM	REFILL TIME SETTING	SEC SEC
WATER		,69 m	DRAWDOWN VOLUME	.04	GAL MO	WELL	_	PPM	DISCHARGE TIMER SETTI	NG SEC
CALCUL GALVOI (column X		, \ GAL	TOTAL VOL. PURGED	TW X well diam. square	GAL TO	AWDOWN/ TAL PURGED	.03		PRESSURF TO PUMP	PSU
	DTW (FT)			RIA (AS LISTED IN SP. CONDUCTANCE	1	1 2		REDOX	PUMP	
5 Minutes	0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	(mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units)	DISS. O ₁ (mg/L) (+/- 10%)	(=/- 10% < 10 ntu	(march	INTAKE DEPTH (fl)	COMMENTS
2:55	BEGIN PUR	GING								
301	7.81	125	138	1.31	6.89	0.32	16.2	-68.9	11	
306	7.83	150	13.7	132	6,93	0,42	13.1	-827		
3:11	7.83	-	13,9	1.33	6.97	0.18	13,3	-815		
3.16	7.84		13.5	1.34	7.60	0.12	12.1	-76.0		
3:24	7,84		13,8	1.34	204	0.10	11.6	- 98.7		
3: Z6	7.85		13.7	1.34	7.08	0,10	11.1	-98.5		
			-		-					
			-		-			-		
					-		-	-		
		-	-	_			-	-		
									TEMP : nearest deg	rec (cx. 10.1 = 10)
	FI	NAL STABILI		METERS (to app		ificant figures[SI	FI)	1	pH: nearest tenth (e DO: nearest tenth (e	ex. 3333 = 3330, 0.696 = 0.696) x. 5.53 = 5.51 x. 3.51 = 3.5)
	DOCUMENTATIO		14	1.34	7,1	0.1	16.1	-100	TURB: J SF mar, n ORP: 7 SF (44.1 = 4	careta tenth (6.19 = 6.2, 101 = 1(1))
PERIS	TYPE OF PUMP TALTIC GENSIBLE DER		DECON FLUIDS USED LIQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACTO HEXANG METHANOL OTHER	SILICON) TEFLON 1	TUBING TUBING DIED TUBING BING	PVC P GEOP	EL PUMP MATERIAL LMP MATERIAL ROBE SCREEN ON BLADDER R	ı		Geopump
H	PARAMETES PARAMI VDL	ETER	METHOD NUMBER 8260	FIELD FILTERED (AS)	MET	HOD RE		AMPLE LLECTED Ves	COLLECTED	SAMPLE BOTTLE ID NUMBERS
H					Ξ			Rid	limoi	List
H										
PURGE OF PURGE WAS CONTAINENO-PURGE UTILIZED	RIZED		NUMBER OF GALL GENERATED If yes, purged approxim to sampling or	ONS 1, 3	ior	KETCHNOTES				N
PURGE WA CONTAINE NO-PURGE	TER YE ERIZED YE METHOD YE		GENERATED If yes, purged approxim	alely I standing volume pr	ior	1	AHGS AL	10-12	- mn	1

			LOW	FLOW GRO			Carried and Carrie			
	PROJECT NAM	E	Elite Vogue Dry Cleaner	n	1.00	MILLY	DA		9	
	PROJECT NUM	BER	3611191236		STA	10:00		D TIME	00	
	SAMPLE ID	- MWIY		11.20		FAMENUMBER	PA	GE OF	1	
WELL DIAN	METER (INCHES		P2 - 4		18	OTHER				WELL INTEGRITY YES NO N/A
TUBING ID		THE I	71/4 3/8	D12 D	5/8	OTHER			CAP	- V -
	MENT POINT (MI	о поро	OF RISER (TOR)	TOP OF CASING	G(TOC)	OTHER			COLLAR	- Z =
INITIAL (BMP)	DIW	731 m	FINAL DTW (BMP)	899		OT, CASING CKUP (AGS)	0	FT	TOC/TOR DIFFERENCE	, l et
WELL DI	EPTH	13.0 FT	SCREEN	WAK	PID				REFILL TIME	ER _
(BMP) WATER		4,19 1	DRAWDOWN	,03	PiD	WELL.		PPM	DISCHARGE	
CALCUL			VOLUME. (initial DTW- final DT TOTAL VOL.	W X well diam. square	ed X 0.041)	WDOWN/		PPM	PRESSURE	ING SEC
GAL/VOI			PURGED	I minutes X 0.00026 g	GAL TOT	TAL PURGED	,015		TO PUMP	PSI
TIME	DTW (FT)	PURGE RATE	TEMP: (°C)	SP. CONDUCTANCE		DISS. O ₂ (mg/L)	TURBIDITY (otu)	REDOX	PUMP	
3-5 Minutes	0.0-0.33 ft Drawdown	(mL/min)	(+/-3 degrees)	(mS/cm) (+/- 3%)	(-/- 0.1 units)	(+/- 10%)	(+/- 10% <10 ntu)		DEPTH (R)	COMMENTS
le!it	BEGIN PU	RGING								
0:25	3.99	150	14.0	2.07	7.73	7.57	34.9	582		
212	8.94	×	14,9	1.93	7,62	13.31	3-1,2	628		
10,57	8.45		14.7	1.97	7.61	11.02	35.7	650	1	
10:45	8,97	-	15,1	2.00	759	11.07	25.4	66.7	4	
10:56	8.99	-	15,3	2.67	7.58	12,49	21.2	66.8		
11:01	859	-	15.2	2.11	759	12.81	17.8	657		
11:07	8.99	-	15.2	2.17	7.56	11.43	16.0	65.4		
11:13	\$ 79	-11	151	2.24	2.56	11.68	15.8	65,4		
11:17	899	-	15.2	2.23	7,52	11.61	15,4	649		
		-	-							
	F	INAL STABILI	ZED FIELD PARA	METERS (to app	ropriate signi	ficant figures[SI	FI)		TEMP nearest de COND. I SF max pH nearest tenth (gree (cs. 10.1 - 10) (cs. 3333 - 3330, 0.696 - 0.696)
			15	2.23	7,5	11.6	15.4	65	DO: nearest lenth	ex. 3.51 = 3.5) reaces tenth (6.19 = 6.2, 10) = 101)
	DOCUMENTATI TYPE OF PUMP.		DECON FLUIDS USED			MP/BLADDER MAT				EQUIPMENT USED
V PERIS	STALTIC IERSIBLE	19	LIQUINOX DEIONIZED WATER	SILICON TEFLON	TUBING	S. STE	EL PUMP MATERIA UMP MATERIAL	L	WL ME	
BLAD			POTABLE WATER NITRIC ACID		INED TUBING	GEOP	ROBE SCREEN ON BLADDER		WQ ME	TER
WATT			HEXANE METHANOL	LDPE TUE OTHER		OTHE	R		PUMP	
OTHE			DTHER	OTHER		OTHE			FILTER	
A.VILLI III	PARAM		METHOD NUMBER	FILTERED	PRESER		QUIRED CO	AMPLE	COLLECTED	SAMPLE BOTTLE ID NUMBERS
V	V06	15	8260,	L No	HO	11	12 mL	ies	NO	
H					-					
			_		_					-
-				_	_			_		
PURGE OR	SERVATIONS		-		T s	KETCH/NOTES	1			
	TER YE		NUMBER OF GALLO	INS 2		No prot	tective	cap	,	
PURGE WA	The second secon	S NO	If yes, purged approxima		ior	الطي	- L ba	plug		1. 5.1+
NO-PURGE	Page 1	V	to sampling or	mL for this sample loca	ition.	IN STAIT	1-1-11	2 1	0 5516	le sail
CONTAINE	14	13.1					APPLEAL	· · · · · · · · · · · · · · · · · · ·	7 V	
CONTAINE NO-PURGE UTILIZED	40	Lithon	Print Name: J	ihn lutti	7-17	KN 3	MC	L A	. Cr	W. Clarel
NO-PURGE	nature: Ah	Ethy !	1	cha lutti	7- 3	m pact	5.	Insid (N sid	ewalk	ale Salt of Charlo

			LOW	FLOW GRO	UNDWAT	ER SAMPI	LING RECO	RD		
	PROJECT NAME	F	life Vogue Dry Cleaners			TION ID	DAT	E / /	-	
	PROJECT NUMBE		3611191236		STAR	W-20 1435	END	1/13/1 TIME	9	
	BARILE ID BARILE - N	14/20010		ETIME 535	SITE	NAME/NUMBER	PAG	E OF	1	
	020101-1	11420010	172	,55	23	0101		1 01	1	WELL INTEGRITY
WELL DIAM	HETER (INCHES)		2 4	<i>b</i>		OTHER	vt.	_	CAP	YES NO N/A
TUBING ID ((INCHES)	MINN [1/4 3/8	1/2	5/8	OTHER 0.17	-11		LOCKED	
MEASUREM	IENT POINT (MP)	M 10b OI	RISER (TOR)	TOP OF CASING	(TOC)	OTHER		TUF	COLLAR POFROAD P	
(BMP)	3539	7.97FT	FINAL DTW (BMP)	8.40	FT STICE	F. CASING KUP (AGS)	0		TO€/TOR DIFFERENC	
(BMP)	12.	90 FT	SCREEN LENGTH	CONLTRUCTION	FT AMB	IENT AIR		РРМ	REFILL TIM SETTING	SEC
WATER	4.0	93 _{FT}	DRAWDOWN VOLUME (unitial DTW- final DT		GAL MOU	VELL. TH	(C)	PPM	DISCHARGE TIMER SETT	
GAL/VOI (column X			PURGED (mL per minute X total		GAL TOTA	WDOWN/ AL PURGED	0.07		PRESSURE TO PUMP	PSI
FIELD PAR	DTW (FT)	PROGRAM STA	TEMP ("C)	SP CONDUCTANCE		DISS O ₂ (mg/L)	TURBIDITY (niu)	REDOX	PUMP	
3-5 Minutes	0.0-0.33 ft. Drawdown	(mL/min)	(**: 3 degrees)	(mS/cm) (+/- 3%)	(+/- () (units)	1+ [(P _b)	(*/- 10°u <10 mm)	(mv) (== (0 mv)	INTAKE DEPTH (ft)	COMMENTS
1447	BEGIN PURC	GING	,							
1500	\$8.32	140	12.8	1.46	6.72	0.34	14.5	-60.1	10	
1505	18.36	125	12.6	1.68	6.74	0.25	5.82	-81.1	1	TRY TO DECREASE DRAWDOW
1510	\$8.37	100	12.1	1.73	6.73	0.25	5.79	-85.1		11 11 11
1515	68.38	100	11.9	1.76	6.72	0.23	5.68	-89.0	111	
1520	18.39	100	12.2	1.76	6.71	0.19	3.49	-92.9		
1525	8.40	100	12.1	1.74	6.71	0.21	3.91	-94.2		
1530	8.40	100	12.1	1.75	6.71	0.20	3,05	-97.3	3	
15.5	COLLEG	TED SA	MPLE -					-	1	
1538	STUPPE		4							
	FI	NAL STABIL	ZED FIELD PAR	METERS (to app	oropriate signi	ficant figures[S	(F)	1	COND 3.SF m	degree (ex. fit f = fit) ax (ex. 3333 = 1130 () 606 = 0.606)
			12	1.75	6.7	0.2	3.05	-97	DO nearest tent TURB 3 SF ma	h (ex. 553 = 55) h (ex. 351 = 15) x, nearest lenth (6.19 + 6.2.30) = (0.1)
PERI	T DOCUMENTATIO TYPE OF PUMP LISTALTIC IMMERSIBLE	ON 🖂	DECON FLUIDS USED LIQUINOX	SILICON	TUBING/PU	MP/BLADDER MA	TERIALS EEL PUMP MATERIA		ORP 2 SF (44)	(= 44. 9) = 90) <u>EQUIPMENT USED</u> METER <u>M 200 - 7 û</u>
BLA	ADDER TTERA	_ =	DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL			GEO			X TUR	METER ISLULATRU FAULEC PROP B METER LAMOSTIC FACUSES P EAUSO45 GREPUNDS
OTH	ŒR		OTHER	OTHER		ОТН		_	FILT	
×	PARAMI PARAMI VOCS		NUMBER 8200	C NO		HOD R		AMPLE LLECTED YES	COLLECTE	SAMPLE BOTTLE ID NUMBERS
			=		- 0					
100000000000000000000000000000000000000	OBSERVATIONS		(444,		s	SKETCH/NOTES	,	7		
PURGE W CONTAIN NO-PURG UTILIZED	NERIZED E		NUMBER OF GALI GENERATED If yes, purged approxin to sampling or	ately 1 standing volume mL for this sample to		ON DE STATE OF THE	NW-20/5	50	PURGE	WATER COLDRLESS, PLESS.
Sampler S Checked E	00 0	The state of the s	Print Name K	ATIE AMI	Huse	INE	Politi			
511 Cong	MAC gress Street, Portlar	TE	C			PAS	ZKING ZEA	LOW F	LOW GRO	UNDWATER SAMPLING RECOI

914			LOW	FLOW GROU	JNDWAT	ER SAMPI	LING RECO	RD		
8	PROJECT NAME	F	ide Vogue Dry Cleaners		1	TION ID	DAT		0	
1	PROJECT NUMBE					TTIME		1/14/20 TIME	19	
			3611191236	LE TIME		17-		450		
	828164-	MW2100		25		8164	PAG	OF OF	1	
	ETER (INCHES)			6	18 D	OTHER			10	WELL INTEGRITY YES NO N/A
TUBING ID (I			11/4 3/8			OTHER 0.1	7"		CAP	¥
	ENT POINT (MP)	TOPOF	RISER (TOR)	TOP OF CASING		OTHER	-		LOCKED	ラニニ
INITIAL D	OTW 7	20	FINAL DTW	8.13		r. CASING	0-		OF ROADBI	
(BMP)	7.8	O FT	(BMP)			KUP (AGS)	0		DIFFERENCE	
(BMP)	рти	93 FT	SCREEN LENGTH	REFER TO WELL CONSTRUCTION LOG,	FF AMB	IENT AIR		PM	REFILL TIMI SETTING	SEC
WATER COLUMN	4.1	3 FT	DRAWDOWN VOLUME		GAL MOU	TH			DISCHARGE TIMER SETT	
CALCULA GAL/VOL	0.6		TOTAL VOL. PURGED		GAL TOT	WDOWN/ AL PURGED	0.037		PRESSURE TO PUMP	PSI
	well diameter square			l minutes X 0 00026 gal RIA (AS LISTED IN T						
TIME 3-5 Minutes	DTW (FT) 0.0-0.33.0	PURGE RATE	TEMP (°C)	SP. CONDUCTANCE (mS/cm)		DISS O ₂ (mg/L)	TURBIDITY (mia)	REDOX (mv)	PUMP INTAKE	COMMENTS
	BEGIN PUR	142.026	(*/= 3 degrees)	(= - 3°a).	(==0.1 unus)	.(== 1(1:6)	(S-10-9-19 ha)	(4+/10 my)	DEPTH (ft)	
1325	8.00	1/5	13.5	1.92	7.01	0.55	8.73	-73.2	9	
1330		100		Q 2.00	7.09	0.31	5.64	-88.8	1	+ PUMP SPEED TOTRY TO
1335	8.02	100	12.8	1.99		0.22	4.67	-95.7		REDUCE DRAWDOWN
1340	8.03	100		1.98	7.10	0.15	3.77	144 700		
1345	8.06		13.1	1.99	7.10	0.14	3.59	-100.8	1	
1350		100	13.1	1.99	7.10	0.12	3.89	-105.3		
1355	8.08	100		1.99			3.01	-115.9		MISSED 1400 READINGS
1400	8.11	Inn	13.4	1.99	7.10	0.14	3.50			
1405	8.11	100	13.4	2.00	7.10	0.14	3.02	-115.9		
1410	8.12	100	13.4	1,99	7.10	0.09	2.39	-118.9		
1420	8.13	100	13.5	1.99	7.09	0.09	2.91	-120.5		
1720			-	AMETERS (to app	1			14 2013	TEMP nearest (degree (ex. (iii f = 10) ex.(ex. 3333 = 3330, 0.696 = 0.696).
-		7.000 7.000000	T	1.99	T	1		160	pH neapest tenth DO nearest tenth	(ex. 553 = 55) (ex. 331 = 13) (marcet tenth (r.10 = 6.2, 10) = 10))
EQUIPMENT	DOCUMENTATION	ON	14	1.93	7.1	0.1	2.9	-120	ORP 2 SF (44.1	= 44, 191 = 190y
SUBN BLAI			DECON FLUIDS USED LIQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	SILICON TEFLON TEFLON TEFLON LOPE TU LOPE TU OTHER OTHER	TUBING TUBING LINED TUBING BING	PVC	TEEL PUMP MATERIAL PUMP MATERIAL PROBE SCREEN LON BLADDER TER TER	T.	PID WQ N TURE	
ANALYTI	CAL PARAMETE PARAM		METHOD					AMPLE	QC.	SAMPLE BOTTLE ID
X	VOC		8260 C		HCI			ES	COLLECTE	
IB			_					_		
100000000000000000000000000000000000000	DBSERVATIONS		Chita projecto	1000	2	SKETCH/NOTES	/DINS	/ NO	TES)	
PURGE W CONTAIN NO-PURG UTILIZED	SEMETHOD Y		NUMBER OF GAL GENERATED If yes, purged approva- to sampling or	nately 1 standing volume p mL for this sample to	enor N	JAS 4	FW-6 M	1-21/ PL	RGE WA EAR, COI	TER DESCRIPTION! LURLESS, SLIGHT ODOR.
Samplet St	ignature	244-	Print Name	ATIE AMA	20.14)	BULDING +	N-03	DING		
Checked B	Jeny Pa	all p	Date 11 2		1	DIW-8	10 mil			
	MA(ress Street, Portla	CŤE	C			PAR	KING	LOW F	LOW GRO	UNDWATER SAMPLING RECORI

Į C			1.0W	FLOW GRO	UNDWA	TER SAMP	LING RECO	ORD		
	PROJECT NAME		Elite Vogae Dry Cleaner	s		CATIONID		TE / /		
	PROJECT NUMB	ER	3611191236			MWZZ RTTIME	EN EN	D TIME	-	
	SAMPLE ID			PLE TIME	SIT	ENAME/NUMBER			: 20	
		1-MW		520		82816		/ OF	1	
ELL DIAM	METER (INCHES)		12 -4	5	18	OTHER			W	YES NO N/A
BING ID	(INCHES)	V 1/8	1/4 3/8		15/8	OTHER			CAP	Z
ASUREM	IENT POINT (MP)	Торо	FRISER (TOR)	TOP OF CASING	G (TOC)	OTHER.			COLLAR	7 -
INITIAL I	DTW 7	85 FT	FINAL DTW (BMP)	7,97	7 FT STI	OT, CASING CKUP (AGS)	0	FT	TOC/TOR DIFFERENCE	.3 п
WELL DE	ертн	1.67	SCREEN LENGTH	9	FT AM	BIENT AIR		PPM	REFILL TIMER SETTING	- SEC
WATER		3.82 FT	DRAWDOWN VOLUME	0.02		WELL UTR		PPM	DISCHARGE TIMER SETTING	
CALCUL				W X well diam. square	od X 0.041)	AWDOWN/			PRESSURE	31.0
GAL/VOL	well diameter square	63 GAL	PURGED (mL per minute X tota	2 , 3 minutes X 0.00026 gr	GAL TOT	TAL PURGED	.00	7	TO PUMP	PSI
-	DTW (FT)		BILIZATION CRITE	RIA (AS LISTED IN SP. CONDUCTANCE		Dice DI	THEODINGS	REDOX	PUMP	
TIME Minutes	0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (1/-3 degrees)	(mS/cm) (+/- 3%)	pH (units) (-/+ 0 (units)	DISS. O ₂ (mg/L) (+/-10%)	TURBIDITY (ntu (=/- 10% <10 ntu)		DEPTH (R)	COMMENTS
15	BEGIN PUR	GING								
122	7,91	150	14.2	1.27	7.08	0.86	13.4	- 58.8	10	
131	7.91	~	14,6	1,29	7,12	1.96	14.7	-73.5		
36	7.4/	-	14.6	1,27	7.14	1,63	14.2	77./		
42	7.94	-	14.8	1.28	1.14	0.99	14,6	-863		
147	7,95	-	14.7	1.29	7.10	0.84	12.7	-83.1		
53	7,95	-	14.7	1,29	7.07	1.14	11,8	-95.1		
01	7.41.	-	14.8	1.31	7.00	0.98	13.4	-87.3		
10.7	7.96	-	14.6	1.31	7.05	1,24	134	-87,4		
12	7.96	-	14.6	1, 31	7.01	1.29	13,0	-87.0		
-17	7.97	_	14.7	1.31	704	1.27	12.6	-87.8		
-										
-	FI	NAL STABILI	ZED FIELD PARA	METERS (to appr	ropriate signi	ficant figures[SI	FI)			3333 - 3330, 0.696 - 0.696)
			15	1.31	7.0	12	12.6	-90	pH: nearest tenth (ex. 5) DO: nearest tenth (ex. 5) TURB: I SF man, near	1.51 = 3.5) est lenth (6.19 = 6.2, 101 = 101)
IPMENT !	DOCUMENTATIO	N -		1.3/	1,0	1. 3	12,0	1-10	ORF, 2 SF (44.1 - 44,	
PERIS SUBM BLADI WATT OTHE OTHE	TERA R R		ECON FLUIDS USED LÍQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	SILICON T TEFLON I TEFLON I HOPE TUB OTHER	TUBING TUBING INED TUBING BING	PVC P GEOPI	EL PUMP MATERIAL UMP MATERIAL ROBE SCREEN ON BLADDER R K		WL METER PID WQ METER TURB MET PUMP OTHER FILTERS	YSE
NALYTIC	PARAME PARAME VOC-	TER	NUMBER 8260	FIELD FILTERED	PRESERY METI	HOD RE		AMPLE LLECTED	COLLECTED	SAMPLE BOTTLE ID NUMBERS
									Richan	ond Street
PURGE WA CONTAINE NO-PURGE UTILIZED	RIZED		NUMBER OF GALLO GENERATED If yes, purged approximat to sampling or		- /	E a4 Wa	in.	aur	3	Wmith
Sampler Sign	()	July	Print Name: 3	alanan	2		HAARS 1	Alicy		NW-IF
hecked By.	Jenyle	my	Date: 1	1 2000						
1 Congres	MAC ss Street, Portland	TE(C					LOW FL	OW GROUNDY	WATER SAMPLING RE

			LOW	FLOW GRO	UNDWA	FER SAMPI	ING RECO)RD			
	PROJECT NAME	I	Elite Vogue Dry Cleans	24	LOC	TW-	DA	11/12	119		
	PROJECT NUMB	ER	3611191236		STA	RT TIME		TIME	1.		
	SAMPLE ID		SAN	IPLE TIME	SIT	13:30 ENAMENUMBER	PAC	16:2º			
	82816	f-Ih	LOIDIL	16 10	8	828164		1 OF		week a second	
LL DIAN	METER (INCHES)		2 1	6]8 🗀	OTHER			CAP	YES NO WA	
BING ID	(INCHES)	V18 ,	1/4 3/8	1/2	5/8	OTHER			CASING LOCKED	7 = =	
ASUREM	TENT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASIN	G(TOC)	OTHER			COLLAR	V = =	
BMP)	S.	87 FT	FINAL DTW (BMP)	7.65		OT. CASING CKUP (AGS)	0	FT	TOC/TOR DIFFERENCE	034 1	
WELL DI	ЕРТН	2.0 FT	SCREEN LENGTH	g ree well	FT AM	BIENT AIR	O	PPM	REFILL TIME SETTING	R SEC	
OLUMN	3.	13 FT	DRAWDOWN VOLUME	O, Z	GAL MO	WELL	47	PPM	DISCHARGE TIMER SETTI	NG SEC	
GALCUL.		C'S GAL	TOTAL VOL.	4.7	DRA	AWDOWN/	0,04		PRESSURE TO PUMP	- PSI	
çolumn X	well diameter square		(ml. per minute X tot	al minutes X 0.00026 g	al/mL)			OKP			1
TIME	DTW (FT) 0.0-0.33 ft	PURGE RATE	TEMP. (°C)	SP. CONDUCTANCI (mS/cm)	pH (units)		TURBIDITY (ntn)	DEDOV	PUMP INTAKE	COMMENTS	1
Minutes	Drawdown	(mL/min)	(+/- 3 degrees)	(+/- 3%)	(+/- 0,1 units)	(+1-10%)	(-2-10% <10 ntu)	(+/- 10 mv)	DEPTH (ft)		1
43	BEGIN PUR			M 10	100	T. w.	2.1	-29.			-
100	7.39	150	15.6	0.68	6.87	0.48	316	-21.1	(1		1
13	7.39	150	17.0	0.70	6.82		90.6	32	11		
414	7.41	150	110	0-70	1 4	0.34	45.0	-300	,	TO VI	-
121	21/5	130	11.0	0,10	100	0.54	73,0	-28.7	11	Trees of	A.
121	7.20	150	11.0	2019	1.3	404	277	-27	11	Cracks &	Luk
35	731	150	1/ 0	0.7/	6.31	211	237	- 20,0	114	1 phones	5.1
00	7.13	150	11 9	0.70	6.52	0.25	100	-21.		The spable	1
To:	7.65	150	16.9	0.71	6.32	021	9.8	-21.3	14		
	1,10		1011	- 111	10,00	014	13.0	71.5			1
	- 781				3						1
	FI	NAL STABILLE	ZED FIELD PAR	AMETERS (to app	ropriate signi	ficant figures[SF	D		TEMP: nearest deg COND:: 3 5# max (pll: nearest tenth (c	rs. 3333 = 3330, 0,696 = 0.696)	
			17	10,0	6.8	0.2	9.8	-21	DO: somest tenth (a TURB: 3 SF max, n	s. 3.51 = 3.5) caresi tench (6.19 = 6.2, 101 = 101)	
	DOCUMENTATIO			0,11	7.477			~ 1	ORP 2 SF (44.1 ~ 4		
PERIS	TALTIC	V	ECON FLUIDS USED LIQUINOX	SILICON	TUBING		EL PUMP MATERIAL	0	WL MET	OUPMENT USED ER	
BLAD	ERSTBLE DER		DEIONIZED WATER POTABLE WATER NITRIC ACID		INED TUBING	GEORE	IMP MATERIAL OBE SCREEN N BLADDER		PID WQ MIE		
WATT			HEXANE	LDPE TU		OTHE			PUMP I	Fedgy mp	
OTHE	R		METHANOL DTHER	OTHER		OTHE			OTHER FILTERS	NO TYPE	
NALYTIC	PARAMETERS PARAME		метнор	FIELD	PRESER			AMPLE	QC:	SAMPLE BOTTLE ID	1
X	Voc		8 260 I	C NO	H C		OURED COL	es	COLLECTED	NUMBERS	1
-			-		-						
				_	_						
3					1						1
	SERVATIONS	1	ANAMON OR CAS	ш Ц ¬		KETCH/NOTES	Inside	D().			1
IRGE WA	RIZED		NUMBER OF GALL GENERATED	_1.1	0		Dogoc				1
O-PURGE TILIZED	METHOD YES	NO	If yes, purged approximate sampling or	ately 1 standing volume po mL for this sample loc		ا ا	Pol		Land		
	John	175	-12	San Latter	10	6	OIUI	sho	t wall		1
ampler Sign	nature:	Mary	Print Name:	1		1	0	14			
	OVarial	Wn	Date: 1/23	2/20		1					1
becked By.	- Common	14 11									4
ocked By	TAC	TE						LOW FL	OW GROUN	DWATER SAMPLING RECORD	

W	45.00	1-1-01	LOW	FLOW GRO	UNDWA	TER SAMP	LING RECO	ORD		
	PROJECT NAME	E	Elite Vogue Dry Cleane		Log	ATION ID	DA		1.0	
	PROJECT NUMB		3611191236			TW-Z		12:10	119	
	SAMPLE ID 82816	4 - IWC	2011 SAN	PLE TIME		82816-	B PA		1	
WELL DIAM	METER (INCHES)		12 V/4		18	OTHER				WELL INTEGRITY YES NO N/A
TUBING ID		V118	1/4 3/8	□1/2 □	5/8	OTHER			CAP	-
MEASUREN	MENT POINT (MP)	TOPO	F RISER (TOR)	TOP OF CASING	(TOC)	OTHER			LOCKED	Z =
(BMP)	DIW 9	.10 FT	FINAL DTW (BMP)	9.26		OT. CASING CKUP (AGS)	0	FT	TOC/TOR DIFFERENCE	0.32 FT
WELL DI (BMP)	ЕРТН 1	-1,46 pt	SCREEN LENGTH	See los	FT AM	BIENT AIR	0	PPM	REFILL TIME SETTING	SEC SEC
WATER		5.36 FT	DRAWDOWN VOLUME	O. \	GAL MO	WELL	330	РРМ	DISCHARGE TIMER SETTI	NG SEC
GAL/VOI (column X		5 GAL	TOTAL VOL. PURGED	1 45	GAL TOT	AWDOWN/	.06		PRESSURE TO PUMP	PSI
FIELD PAR	RAMETERS WITH	PROGRAM STA		RIA (AS LISTED IN	THE QAPP)		1	I BEDOY	I DINAD I	
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (+/- 3 degrees)	SP. CONDUCTANCE (mS/cm) (+/- 3%)	pH (units) (+/- 0.1 units)	DISS. O ₂ (mg/L) (+/- 10%)	TURBIDITY (ntu) (+/- 10% <10 ntu)		PUMP INTAKE DEPTH (II)	COMMENTS
11.00	BEGIN PUR						1			
11.14	9.20	150	15.8	1,04	6.58	-26	9.44	-83.9	11	
1124	9.22	160	16.6	1.05	6.59	,21	9.94	-961		
11:32	9.22		16.3	1.05	6.60	,10	4.85	-95.9		
11.41	9,25		16.7	1.06	6.61	10	10-1	-950		
11:46	9.26		16.9	1.06	6.60	-08	9.41	-94.6		
11:51	9.26		16,8	1.06	6.60	.07	8,23	-946		
								110		
			11	- 14	1	t				
			170	1.060	6.50					
	FI	NAL STABILE	ZED FIELD PARA	METERS (to appr	opriate signi	0 1	FD 8.2		TEMP.: nearest der COND::3 SF mus (pH: nearest tenth (e	(ex. 3331 - 3330, 0.696 - 0.690)
V.			17	1.06	6.6	:07	8.23	-95	DO nearest tenth (e	cs. 3.51 = 3.5) sparest tenth (6.19 = 6.2, 101 = 101)
PERIS SLBM BLAD OTHE OTHE	TERA ER		DECON FLIRDS USED LIQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	SILICON T TEFLON T TEFLON L HOPE TUB LIPPE TUB OTHER OTHER	TUBING UBING INED TUBING ING	GEOF	EEL PUMP MATERIAL PUMP MATERIAL PROBE SCREEN ON BLADDER SR ER		WL MET PID WO ME	TER YS F
	V O C	ETER	METHOD NUMBER 8260	FILTERED NO	PRESER MET (†	HOD RE	QUIRED CO	AMPLE LIECTED	COLLECTED	SAMPLE BOTTLE ID NUMBERS
PURGE OB PURGE WA CONTAINE NO-PURGE UTILIZED	RIZED		NUMBER OF GALLI GENERATED If yes, puryed approxima to sampling or	ONS 173	5 T	KETCHNOTES	SUEVI SVE	5v6-	3 (W-3)	Buildry tags
Sampler Sign Checked By,	NV D	will.	Print Name:	2/2020	Not		300	_	9 J-2	s Alley
//N	MAC	CTE	C	1	1		Over		OW GROUN	DWATER SAMPLING RECORD

			LOW	FLOW GRO	DUNDWA	TER SAMP	LING RECO	ORD		
	PROJECT NAME		Elite Vogue Dry Cleane	rs	LO	LW-3	DA	1 13	19	
1 10	PROJECT NUMB	ER	3611191236			RITIME 12:08	EN	13:2	-	
	828164	TUAR	SAM	IPLE TIME		E NAME/NUMBER		GE	1	
	048167	-1403	011	3:20		328164		OF		WELL INTEGRITY
100000	METER (INCHES)		2 4	6	8	OTHER			CAP	YES NO N/A
TUBING ID		1/8	1/43/8	TOP OF CASIN	5/8	OTHER		-	LOCKED LOCKED	<u></u>
INITIAL I	DENT POINT (MP)		FINAL DTW			OTHER		_	COLLAR	¥
(BMP)	_9	.38 FT	(BMP)	9.46		CRUP (AGS)		FT	DIFFERENCE	0.28 FT
(BMP)	EPTH 1	3,95 1	SCREEN LENGTH	Sec la	FT AM	BIENT AIR	6	PPM	REFILL TIME SETTING	SEC SEC
COLUMN	L	.57 FT	DRAWDOWN VOLUME	0.05	GAL MO	WELL. UTH	115	PPM	DISCHARGE TIMER SETT	
GALCUL.		3 GAL	TOTAL VOL. PURGED	W X well diam, squar	GAL TOT	WDOWN/ TAL PURGED	0.033	3	PRESSURE TO PUMP	PSI
			BILIZATION CRITE		THE QAPP)					
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP. (°C) (~/~ 3 degrees)	SP. CONDUCTANCE (m5/cm) (+/- 3%).	pH (units) (-/- 0.1 units)	DISS. O ₂ (mg/L) (+:- 10%)	TURBIDITY (nm) (-/- 10% <10 nm)	(mv) (+/- 10 mv)	PUMP INTAKE DEPTH (it)	COMMENTS
1240	BEGIN PUR	GING		(37-370)			1	((iv iv mv)	DEFIN(II)	
1247	9,45	150	16.3	1.05	6.62	0.22	10.4	-83.5	1/	
1252	9.45	165	16.7	1.08	6.61	10	11.1	-90.2		
12:57	9.45		16.7	1.07	6.61	.08	10.0	-90.2	L	
1304	9.46		16.6	1.07	6.60	.06	9.94	-921		
13:10	9.46		16.8	1.07	6.60	.05	4.51	-92.9	1.	
1318	9.46	1	16.8	1.07	6.61	.05	9.47	-92.5		
	FU	NAL STABILL	ED FIELD PARA	METERS (to app	ropriate signi	ficant figures[SI	FD 9.5		pli nearest worth (
			17	1.07	6.61	,05	9.47	-93	DO: nearest tenth (TURB: 1 SF mex, ORP: 2 SF (44.1 =	scarces tenth (6.19 = 6.2, 10 (+ 701)
	DOCUMENTATIO		ECON FLUIDS USED	r	TUBING/PU	MP/BLADDER MAT	ERIALS			EQUIPMENT USED
V PERIS	TALTIC ERSIBLE	J.	LIQUINOX DEIONIZED WATER	SILICON TEFLON	TUBING	S. STE	EL PUMP MATERIAL	t	WL ME	
BLADI		_ []	OTABLE WATER SITRIC ACID	NDPE TU		TEFLO	NOBE SCREEN ON BLADDER		V TURB	TER YSE METER ITVICH
OTHE	R		FEXANE METHANOL OTHER	OTHER	BING	OTHE	H.		PUMP OTHER FILTER	
	AL PARAMETER	5	метнор	FIELD	PRESER			AMPLE	QC	SAMPLE BOTTLE ID
1	VOE		NUMBER 8268	FILTERED	MET	IOD RE	QUIRED COL	LECTED	COLLECTED	NUMBERS
	000	3	8 -40 (_ 100	_ <u> </u>	CL -	1	es_	700	
H										
1					_					
										/\
PURGE WA		NO NO	NUMBER OF GALLO	NS 1.5	Si	KETCH/NOTES				
NO-PURGE UTILIZED	RIZED 💌		GENERATED If yes, purged approximate to sampling or			in-1	SNE-1	85V6	3 W-3	HAARS
- Camero	11) N _	1.1	1 11	_		506-7		0	\$
Sampler Sign	John of	MAI	Print Name.	1. LJITZ	A.			p		714 5
Checked By:	Jerry 120	wiff	Date: 1/3	2/2020		0.40	worldoo	Mid	at .	1/2
N	MAC	TE	\mathbb{C}			Over	WALL WOOD	LOW FL	OW GROUN	DWATER SAMPLING RECORD
511 Congres	s Street, Portland	Mame 04101								

	PROJECT NAME		LOW	FLOW GROU		TION ID	DAT		1	
		-	de Voyue Dry Cleaners		I	W-4		11/13/	19	
	PROJECT NUMBE	.R	Tri 1191236		STAR	13:30		14:3	S	
	828164	- Iwo	4011	f:20	8	28164	PAG	OF	-	
ELL DIAM	ETER (INCHES)	1	2 1		s 🗀	OTHER				NELL INTEGRITY
BING ID	INCHES)	V18 🗆	1.118		5.8	THER			CAP CASING LOCKED	Z =, =
EAST REM	ENT POINT (MP)	TOP-0F	RISER (10R)	TOP OF CASING	(TOC)	OTHER			COLLAR	マニニ
(BMP)	19.	4/11	FINAL DTW (BMP)	9.75	FT STICE	CASING KUP (AGS)	0	FT	TOC/TOR DIFFERENCE	0.28 H
(BMP)	1:		SCREEN LENGTH	See los	FT AMB	ENT AIR	0		REFILL TIME SETTING	SEC SEC
WATER COLI MN	L	.5 FT	DRAWDOWN VOLUME (unual DTW- final DT	0,18 W X well diam squared	GAL MOU		2.5		DISCHARGE TIMER SETTI	NG SEC
GAL/VOL	1	,95 GAL	TOTAL VOL. PURGED	1.64	GAL TOT	AL PURGED	0.11		PRESSURE TO PUMP	- PSI
141301301101111	well diameter square			Finances X 0 00026 gal						
TIME 5 Minutes	DTW (F1) (a) 1.0 33 ft Drawdown	PURGERATE (mL/mm)	TEMP ('C) (3 degrees)	SP CONDUCTANCE (mS cm) (* -3**i)	pH (units) (=-1) 1 units)	DISS O ₂ (mg L) (10°a)	TURBIDITY (ntu)	REDOX (ms) (= -10 ms)	PUMP INTAKE DEPTH (fit	COMMENTS
335	BEGIN PUR			0.07		10	- 2	///		
21/9	9.61	150	16.0	0.91	6.58	.19	7.35	-61.1	11	
3.57	9.69		11	0.94	6.57	.07	11.5	-79.5	1/	
4:07	9.72		16.5	0.94	6.55	,06	11.4	-80.1		
417	9.75		166	0.95	6.56	0.05	11.5	-79.5		
1.1.7				0713			111.5	11.5		4
									1	
					1				4 1	
									(1)	
	FI	NAL STABILIZ	ZED FIELD PARA	AMETERS (to app	ropriate signi	icant figures[SI	FII		TEMP marest de COND 7 St mas pH neatest tentil to	graenes, 16.1% lbs; ics, 1335 - 1370 from - 11.0 ft
			17	.95	6.6	.05	11.5	-80	DO nearest wath a	es 3 (1 4 3 5) respect touth to 14 5 (2 doing)
PERISTEN BLAD BLAD OTHER			ECON FLUIDS USED LIQUINON DEIONIZED WATER POTABLE WATER NITRIC ACID HEVANE METHANOE OTHER	SILICON TEPLON I TEPLON I TEPLON I HOPE TU LOPE TU LOPE TU LOPE TU LOTHER OTHER	FUBING ITBING INED ITBING BING BING	PVC P GEOP TEFLO OTHE OTHE	EL PUMP MATERIAL ROBE SCREEN ON BLADDER R R	L	WL ME PID WQ ME TURB	METER YST METER 11904 GOOFTY
1	VO.		METHOD NUMBER 8260			HOD RE		AMPLE	COLLEGIED	SAMPLE BOTTLE ID NUMBERS
PLRGE W CONT AIN NO-PURG UTILIZED	E METHOD YE	Z 🗆	MABBER OF GALL GENERATED If yes purped approxim to sampling or	.008 a 1.6 arely 1 standing vortine properties and for this sample occ the Lutter	nor	Ew	SVE-1	sves 11	w-s b	MAIN SOME SOLD IN THE STATE OF
Checked B	Jerry 1	Could !	Date 1/3	12020				OVE	RHEAT	0 0000
I Congr	MA(CTE	C Notine	note internal	LP Both	ishs ofc.) -	LOW F	LOW GROU	NOWATER SAMPLING REC

			LOW I	LOW GROU	NDWAT	ER SAMPI	LING RECO	RD		
P	PROJECT NAME	F	ite Vogue Dry Cleaners			ATION ID	DATI			
P	PROJECT NUMBE		3611191236		STAR	N-5 TTIME	END	1/13/19 TIME 725	1	-
	SAMPLE ID	- 10 -		E TIME	SITE	NAME/NUMBER				
	828164	-IW05	009 171	C	82	164		OF		WELL INTEGRITY
WELL DIAME	ETER (INCHES) [W D	6	_	OTHER			CAP	YES NO NA
TUBING ID (I	NCHES)	1/8	1/4 3/8	1/2	5.8	OTHER O. I	F"		CASING	
MEASUREME	ENT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASING	TOCI TO	OTHER		TOPOF	COLLAR	~ = =
(BMP)	6.0	07 FT	FINAL DTW (BMP)	6.51		r. Casing Kup (ags)	0	1 2 2 3	TOC/TOR DIFFERENCE	TOR ONLL
WELL DEI (BMP)	f1.	72 FT	SCREEN LENGTH	CONTRACTION	FT AMB	IENT AIR			REFILL TIN	SEC SEC
WATER COLUMN	5	45 FT	DRAWDOWN VOLUME (nutral DTW- final DTW		IAL MOU	VELL			DISCHARGI TIMER SET	
	well diameter square		TOTAL VOL. PURGED (ml. per minute X total	1,53 minutes X 0 000026 gal	GAL TOT	WDOWN/ AL PURGED	0.19		PRESSURE TO PUMP	PSI
TIME 3-5 Minutes	DTW (FT) 0 0-0 33 ñ Drawdown	PURGE RATE (mL/min)	TEMP (°C)	IA (AS LISTED IN T P. CONDUCTANCE (mS/cm) (±/+3%).	pH (units) (r=0 1 units)	DISS O ₂ (mg/L) (±/-10%)	TURBIDITY (ntu)	REDOX (mv) (+	PUMP INTAKE DEPTH (ft)	COMMENTS
1667	BEGIN PUR	GING		15-3-97				(Fire Lot Hay)	DEFINIO	
1615	6.41	160	13.2	1.08	7.07	0.32	16.7	-35.D	9	
1620	6.44	115	12.9	1.09	7.08	0.24	15.2	-38.7	1	DEAWDOWN TO W
1625	6.45	100	11.9	1.09	7.07	0.21	14.00	-39.2		11 11 11 11
1630	6.46	100	1).7	1.08	7.65	0.20	14.22	-39.1	11	
1635	6.47	ICL	117	1.08	7.04	0.22	14.88	-381		
1640	6.47	100	11.8	1.07	7.03	0.23	13.26	-38.3		
1645	6.48	100	11.7	1.08	7.03	0.26	10.08	-39.9		
1650	6.49	100	11.9	1.06	7.03	0.26	12.20	-399		
1655	6.50	100	11.8	1.09	7.02	0.27	9.38	-39.1		
1700	6.51	100	11.5	1.09	7.02	0,26	9.49	-38.3		
1705	6.51	100	11.4	1.10	7.02	0.26	9.01	-37.8	1	
	FI	NAL STABILI	ZED FIELD PARA	METERS (to appr	opriate signi	ficant figures	SFJ)		COND A SE n	t degree (ex. 10 (= 30) nax (ex. 3733 = 3730, 0.696 = 0.696) th (ex. 5.53 = 5.5)
			Ti	1.00	7.0	0.3	9.01	-38	TURB 3 SF no	th (ex. 3.3) = 3.5) av. nearest (enth.(h (0 = 6.2, 10) = 10))
	DOCUMENTATION TYPE OF PUMP STALTIC		DECON FLUIDS USED LIQUINOX	I SILICON	TUBING/PU	/MP/BLADDER MA			ORP 2 SF (44)	1=44 (9) = (90) EQUIPMENT USED METER M/200 = 10
SUBM BLAD WAT OTHE	MERSIBLE DDER TERA ER		DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL	TEFLON I TEFLON I HDPE TUI LDPE TUE OTHER	UBING INED TUBING BING	PVC GEO TEF OTH	PUMP MATERIAL PROBE SCREEN LON BLADDER IER IER	_	PID WQ TUR PUN OTT	METER LAMOTTE 2010 WE FACISFI BE METER YST PROPLYS FACISSO OF GROPLIMP FAC2045 IER
ANALYTIC	CAL PARAMETE	RS	OTHER	OTHER	7-51. 7-	OTH		L ST. ST. ST.		TERS NO TYPE
A	VOC		NUMBER 8260C	FILTERED FILTERED		CI R	7.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	AMPLE LLECTED ES	COLLECTI	
				=	Ξ					
PURGE OF	BSERVATIONS ATER Y	ES NO	NUMBER OF GALL	ons 1-75		SKETCH/NOTES	/ TW-5	N-PI	URGE WA	HER CLEIMP, COLUPLESS,
CONTAIN) NO-PURGI UTILIZED	E METHOD Y		GENERATED If yes, purged approximate to sampling or	ately 1 standing volume p mL for this sample loc	N	41 M	·	1W-21	DORLESS	
Sampler Sig	00'0	An Ala	Print Name &	ATIE AN	MURT	DIW-	7	39/10/10		
	MAC	CTE	C	-1.		1	PARIONG AREA	LOWF	LOW GRO	DUNDWATER SAMPLING RECOI

			LOW	FLOW GROU	INDWAT	ER SAMPI	ING RECO	RD		
F	PROJECT NAME		Elite Vogue Dry Cleaners		The second secon	TION ID	DAT	and the second second		
	PROJECT NUMBE				STAR	T TIME		1/14/201 TIME	9	
		*	3611191236		00	700 F		1131		
The state of the s	828164-3	LW06011	1000	05		8/64	PAG	/ OF	1	
WELL DIAM	ETER (INCHES)		12 🖂 1			OTHER				WELL INTEGRITY YES NO N/A
TUBING ID			114 🔲 18			OTHER O. 17	7"		CAP	-
	ENT POINT (MP)	IN TOP O	FRISER (TOR)	TOP OF CASING		OTHER			LOCKED	学 二二
INITIAL E	yrw [FINAL DTW			CASING			F ROADBO	0.3 st
(BMP)	8.2	& FT	(BMP)	8.71	FT STICE	KUP (AGS)	FLUSH-MOUN		DIFFERENCE	0-3 FT
(BMP)	14.10	O FT	SCREEN LENGTH	REFER TO WELL CONSTRUCTION		IENT AIR			REFILL TIME SETTING	SEC
WATER	5.8	32 FT	DRAWDOWN VOLUME (initial DTW- final DT)		GAL PID V				DISCHARGE TIMER SETT	ING SEC
GAL/VOL		The second second second	TOTAL VOL. PURGED (ml. per minute X (otal	1.37	GAL TOTA	WDOWN/ AL PURGED	0.20		PRESSURE TO PUMP	PSI
	RAMETERS WITH		BILIZATION CRITE	HA (AS LISTED IN T	ALL DESCRIPTION OF THE PROPERTY OF THE PROPERT			l penay l	DUMB	
TIME 3-5 Minutes	DTW (FT) 0 0-0 33 ft Drawdown	PURGE RATE (mL mm)	TEMP (°C) 1+ 3 degrees)	SP CONDUCTANCE (mS/cm) (==-3%)	pH (units) (=/- 0 1 umts)	DISS O ₂ (mg/L) 1 */- [\(\frac{1}{2}\)^{\(\text{in}\)}\)	TURBIDITY (atu)	(mv) (+-10 ms)	PUMP INTAKE DEPTH (ft)	COMMENTS
1000	BEGIN PUR	GING		1				1 1 10 msq.	PECH III	
1010	8,簡5	115	12.9	1.54	7.04	0.44	3.30	-92.0	il	
1015	8.54	115	12.8	1.54	7.06	0.33	3.40	-96.7	1	A PUMP SPEED TO TRY TO REDUCE DRAWDOWN
1020	8.56	100	12.7	1.55	7.06	0.28	3.17	-98.7		Cy
1025	8.57	100	12.4	1.55	7 05	0.21	3.87	-99.1	1	
1030									ETAVINA	ANOTHER READING
1035	8.59	100	12.1	1.54	7.04	0.17	3.38	-98.5	11	_
1040	8.45	125	13.1	1.57	7.05	0.14	3.33	-100.9	1	DID NOTADJUST PER SPE
1045	8.45	100	12.6	1.56	7.06	0.14	3.11	-101.1		CONTROLLER TOTRY TO
1050	8.66	100	12.1	1.57	7.06	0.12	3.24	-100.1		*DRAWDOWN
1055	8.69	100	12.4	1.57	7.05	0.11	2,95	-100.1		
1100	8.71	100	12.3	1.58	7.06	0.11	2.98	-100.4	1	
1100	-		IZED FIELD PARA					100.7	TEMP mearest d	legree (ex. 10.1 = 10) x (ex. 1333 = 3330 /fi folio = 0.6967
		- A COULT FOR		110 10 141 152	1		3.0	1-100	pH nearest tenth DO nearest tenth	(es. 5.53 = 5.5)
EQUIPMENT	DOCUMENTATIO	ON	12	1.58	7.1	0,1	2.10	-100.9	ORP 2 SF (44.1	44, 191 = 190)
PERI SUBI	ER	NAM	DECON FLUIDS USED LIQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE NETHANOL OTHER	SILICON- TEFLON I TEFLON I HOPE TUI OTHER OTHER	TUBING TUBING LINED TUBING BING	PVC GEO	EEL PUMP MATERIAL PUMP MATERIAL PROBE SCREEN LON BLADDER ER ER	ML.	PID WQ M	
ASALTI	PARAMETER PARAMETER VOC	ETER	METHOD NUMBER 82600	FIELD FILTERED	PRESER MET HC	HOD R		SAMPLE DLLECTED VES	OC COLLECTED	SAMPLE BOTTLE ID NUMBERS
PURGE W CONTAIN	SERIZED YES SERIZE		to sampling or	ately 1 standing volume pmil, for this sample los	oriot N	WETCH WAS	1-5 NW 5		PURGE W CONTAINS Purged	ATER COLORLESS, CLEAR, SODOR.
\$11 Course	MAC	CTE	C	3 (), /	1.0	PARKINGI	LOT .	LOWF	LOW GROU	UNDWATER SAMPLING RECO

10			LOW	FLOW GROU	JNDWAT	ER SAMPI	ING RECO	RD			
	PROJECT NAME	FI	ite Vogue Dry Cleaners			ATION ID	DATE				
	PROJECT NUMBE		361)191236		STAR	W-7 THME 38	END.	14/19 TIME 315		-	
}	SAMPLE ID			LE TIME	SITE	NAME/NUMBER			7	-	
1	828164	- IW070	13 1	255	82	28164		(OF	1	1	
WELL DIAM	ETER (INCHES)		2 🔀	6	8	OTHER			CAR		YES NO NA
TUBING ID (INCHES) [1/8) 4 3/8	1/2	5 × 🖂	OTHER O.	7"		CAP CASIN LOCKI	G	
MEASUREM	ENT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASING	(TOC)	OTHER		Tan (I	COLL	AR	Z = =
INITIAL E (BMP)	7.8		FINAL DTW (BMP)	7.96		F. CASING KUP (AGS)	FLUSH-MOLL	1	FOCTOR DIFFEREN		0.25 FT
WELL DE (BMP)	15.2	24 FT	SCREEN LENGTH	CONSTRUCTION		IENT AIR	p		REFILL TO	IMER	SEC
WATER COLUMN	7.4	10 H	DRAWDOWN VOLUME		GAL MOU	WELL TH	p		DISCHAR		SEC
CALCUL		5 GAL	(initial DTW- final DTV TOTAL VOL. PURGED	1 MI	DRA	WDOWN/ AL PURGED	0.08		PRESSURI		
(column X	well diameter square	d X 0 041.)	(mL per minuté X total	minutes X 0 181026 ga	l/mL)	ALTURGED			TO PUMP		PSI
TIME 3-5 Minutes	DTW (FT) 0.0-0.33 ft	PURGE RATE (mL min)	TEMP ("C) (*/~ 3 degrees)	SP CONDUCTANCE (mS/cm)	pH (units)	DISS O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	PUMP		COMMENTS
	BEGIN PUR	1,0000000	(+1+3 degrees)	(*1-3%)	(and)	177-1020	(= 10.0 = 10 ma)	(+= 10 ms)	DEPTH (ñ)	
1205	7.95		13,5	1.34	6.10	0.24	4.22	-70.7	13		
1220	7.95	100	13.7	1.34	6.75	0.15	4.28		1	+	
1225	7.95	100	13.2	1.34	672	0.13	4.36	74.7	-	+	
1230	7.96	100	13.7	1.33	6.71	0.12	4.3F	-78.4	1	+	
1235	7.97	100	13.5	1.34		0.12	W 5 4.58			-	
		100	13.2		6.71	10 40 4 5 1	4.39	-86.6		+	
1240	7.97	-	13.3	1.34	6.71	0.08	4.50	-88.6	-	+	
1245		100	13.2	1.34		0.09	4.55	-90.2	1	+	
1250	7.96	100		1.34	6.H	0.09	7.55	-40/2		2	
1259	STOPPE	SAMPLE								+	
12	0,0,70	0100111									
	FI	NAL STABILI	ZED FIELD PARA	METERS (to app	ropriate signi	ficant figures S	SF) 11 10		COND 15	may (ex.	(ex. 10.1 = 10) 1133 = 3330, 0 tota = 0 6961
			13	1-34	6.7	0.1	4.55	-90	pH names() DO neares() TURB 3 SF	max neuro	5(=3.5) st (enth $(0.19 \pm 0.2)(0) (=101)$
EQUIPMENT	DOCUMENTATIO	ON	10		6.1	0.1	4.55	- 10	ORP 2 SF	11.1 = 44.1	161 = 160)
SUB! BLAI			DECON FLUIDS USED LIQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	SILICON- TEPLON TEPLON HOPE TU LOPE TU OTHER	TUBING TUBING LINED TUBING BING	PVC GEO	TEEL PUMP MATERIAL PUMP MATERIAL PROBE SCREEN LON BLADDER ER ER		PI W TI PI	L METER D Q METER URB MET	IPMENT USED M200-TO SYST PEDPLUS OUTTEN FAMILIE THER LAMOTTE 2020 WE FAMILIE DIECH GREDPUMP FAC2LAS NO TYPE
ANALYTI	ICAL PARAMETEI PARAM		METHOD	FIELD				AMPLE	QC	ern.	SAMPLE BOTTLE ID
X	Voc	5	8260	NO NO	HU		414	ES	NO		NUMBERS
H						_			_	_	
PURGE O	DBSERVATIONS	_			1	SKETCH/NOTES	7	INOT	KI	_	
PURGE W CONTAIN	VATER YER VERIZED YER VERIZED YER	4 🗆	NUMBER OF GALL GENERATED If yes, purged approxim to sampling or	ONS 1.15 arely 1 standing volume p ml. for this sample loc		DIW-G	5 MWg	· PL	RGE W		DESCRIPTION: AR, ODOR
Sampler S	opnature V /		Print Name U	ат <i>и</i> Е Атта	3	\$ DIN-6	MW-24 31 30				
Checked E	00,1	Flo	Date 11 25		/	W-7	A Silv				
2007	TAC	KATT	0			1	Loca	LOWE	LOW CO	OUND	WATER SAMPLING DECC
	VIAC	-1E				PARKUNG	ARCH	EOWIE	LOW GR	A.PUIND	WATER SAMPLING RECO

	PROJECT NAME	Eli	ite Vogue Dry Cleaners		Loc	ATION ID	DAT	e lista		
	PROJECT NUMBE	R	3611491236			RT TIME		1240		
	SAMPLE ID	-, 140		LE TIME	SITE	NAME/NUMBER	PAG	E		
I	828164-	TMORDIO	12	.05	182	8164		OF	1	WELL INTEGRITY
NELL DIAM	ETER (INCHES)	12 17/1	2 🖂	6	8	OTHER			CAP	YES NO NA
TUBING ID (INCHES)	Z 41"	1/4 3/8	1/2	5/8	OTHER			LOCKED	7, = =
IEASUREM	ENT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASING	(TOC)	OTHER			ADBOX	Z = =
(BMP)	7.80		FINAL DTW (BMP)	8.06		T. CASING CKUP (AGS)	N/A		TOCTOR DIFFERENCE	0.38 FT
WELL DE (BMP)	12.3	Annual Control	SCREEN LENGTH	see well con	Structions FT AME	BIENT AIR			REFILL TIME SETTING	SEC
WATER	4.5	55 FT	DRAWDOWN VOLUME	0.17	GAL MOI	WELL			DISCHARGE TIMER SETT	ING SEC
CALCULA	ATED 0 0	n	TOTAL VOL.	W X well diam squared		WDOWN/	0.148.1	20	PRESSURE	
GAL/VOL (column X	vell diameter square		PURGED (ml. per minute X total	1 000 minutes X 0 00026 ga		AL PURGED	20.100.1	39	TO PUMP	PSI
	DTW (FT)			RIA (AS LISTED IN T SP CONDUCTANCE				REDOX	PUMP	
TIME 3-5 Minutes	0.0-0.33 ft Drawdown	PURGE RATE (mL/min)	TEMP (°C) (=-3 degrees)	(mS/cm) (+/+ 3%)	pH (units) (±f-1) 1 units)	DISS O ₂ (mg/L) (+ - 10%)	TURBIDITY (ntu) (+/- 10% = 10 ntu)	(my) (== 10 my)	INTAKE DEPTH (ft)	COMMENTS
125	BEGIN PUR	GING								
135	8.09	150	14-1	1.52	6.54	0.47	5.76	-890	10	
1140	8.05	125	12,9	1.54	6.59	0.30	5.58	-93.4		Reaucod Howrate to try to
1145	8.05	125	12.7	1.54	6.57	0.22	5.46	-94.2		5
1150	8.05	125	12.4	1,54	6.57	0.19	5.55	-95.5		
1155	8.06	125	12.9	1.54	6.57	0.19	4.91	-96.8		
1200	8.06	125	13.0	1.54	6.57	0.19	4.90	-98.1		
1205		ED SANY		1.01	4.57	0.17	1.12	10,1	1	
1208		DPUMP								
1200	STOPPE	DISCIME						1		
	FI	NAL STABILE	ZED FIELD PAR	METERS (to app	ropriate sign	ificant figures[S	F[)		COND 3 SF ma	legree (ex. 10.1 = 10) x (ex. 1333 = 3530, 0) (0% = (1,0%))
		1230-12-10-1	13	1.54	6.6	T		-	DO nearest tenth	
QUIPMENT	I DOCUMENTATIO	ON	15	1.51	6.6	0.2	4,90	-98	ORP 2 SF (41.1	
PERI SUBN BLAI OTHI OTHI			DECON FLUIDS USED LIQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	SILICON TEFLON TEFLON HOPE TU LOPE TU OTHER OTHER	TUBING TUBING LINED TUBING BING	PVC GEO	EEL PUMP MATERIAL PUMP MATERIAL PROBE SCREEN ON BLADDER ER ER	VL	PID WQ M	
X	PARAMI	ETER	METHOD NUMBER 8260	C FILTERED) ME	THOD R		AMPLE PLECTED YES	COLLECTE	SAMPLE BOTTLE ID NUMBERS
PURGE W	SE METHOD YE		NUMBER OF GALI GENERATED If yes, purged approxim to sampling or	LONS 1 25 mately I standing volume p mL for this sample to	5_ 1	SKETCHNOTES FURGE WATER		ON: FAIN	T YELLOW	COLOR, SLIGHT SHEEN,
	1			CATIE AMA	Inini	9/ A	-MW-3			
Sampler S	ignature KA	m	Print Name	CATIL FINIA	11014	W/ 4				

P	PROJECT NAME	E)	ile Vogue Dry Eleaner-		LOC	ATION ID	DATI		1.	
P	PROJECT NUMBE		3/110/1236			PZ-S	END		119	
S	SAMPLE ID	NA	SAMP	LE TIME	SITE	14:40 NAME/NUMBER	PAGI)	
L		1014		NA		828164		30		WELL INTEGRITY
	ETER (INCHES)	Z, _	3 4	0	8	OTHER			CAP	YES NO NA
TI BING ID (I			14 38	12	5 N	OTHER		-	LOCKED	= =
INITIAL D	ENT POINT (MP)	-0-	RISER (TOR)	TOP OF CASING		I. CASING	-	_	TOCTOR	
(BMP)	9		(BMP)	Du		KUP (AGS)	0	FI	DIFFERENCE	UNIC FT
WELL DEP (BMP)	нт Ц	42FT	SCREEN LENGTH	UNIC	FT AMI	BIENTAIR	0	PM	REFILL TIME SETTING	SEC SEC
WATER	2	.18 FT	DRAWDOWN VOLUME		GAL MO	WELL	75 1	PPM	DISCHARGE TIMER SETTI	ING SEC
CALCULA	TED Car	9	(mital DTW- (ina) DT TOTAL VOL.	-	DRA	WDOWN/	_		PRESSURE	- 601
	s ell diameter square	sd X ((041)	PURGED (ml. per minute X total	menutes X o morze ga	[ml]	AL PURGED			TO PUMP	PSI
TIME	DTW (FT)	PURGE RATE	TEMP ("C)	SP CONDUCTANCE		DISS O (mg L) TU	RBIDITY (ntu)	REDOX	PLMP	COMMENTS
I-5 Minutes	Drawdown	(mil. mm)	1 % 3 degrees)	(m5 cm) 13*a)	(+ '-)) (units)	(10°) ($-11 ^{\alpha} q \leq (1) \text{ m(a)}$	(mv) (~~10 mv)	DEPTHIN	COMMENTS
14:40	BEGIN PUR				10	17		20	2	1.0
14:45	_	100	15.5	1.20	6.3	.17		32.	11	Well pumped Dry
						-				
				10						
	FI	NAL STABILE	ED FIELD PARA	METERS (to app	ropriate sign	ificant figures[SF])			COND 38 may	(2000) at 10 1 = 100 (2000) at 11 = 11 (0 = 1 + 1) (0 = 1) (2000) at 1 = 1 = 10 (0 = 1) (0 = 1)
			_	-	-		-	-	DO neuros tenth	(ex. 3.5) = 4.5) nearest tenda to 19 n o 2. (49 n o 1)
PERIST SUBME BLADE WATE OTHER OTHER	TERA R	RS	ECON FLUIDS USED LIQUINON DEIONIZED WATER POTABLE WATER MITHCACID BENANE METHANOL OTHER METHOD NUMBER	SILICON- TEFLON TEFLON TEFLON TEFLON TOTHER OTHER OTHER	TUBING TUBING LINED TUBING BING PRESER		PAMP MATERIAL P MATERIAL E SCREEN LADDER ME S	AMPLE	WL MO ME WO ME	SAMPLE BOTTLE ID
PLRGE OB PURGE WA CONTAINE NO-PURGE LTILIZED Sampler Sign Checked By	METHOD YE		Print Name	ately I manding volume p mi. for this sample loc	94	Pump off Not S coll	15:25 16:00 anple	2,) [2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	11.38 11.1 - any	w/o.04 product volume uses be oil)
) FIL Congre	MA(CTE	C					LOW F	LOW GROU	NDWATER SAMPLING RECOR

P	PROJECT NAME	E	lite Vogue Dry Cleaners	FLOW GROU	LOC	ATION ID	DA		NA	T	
P	PROJECT NUMBE	ER	3611191236		STAI	RT TIME 500	EN	17-15	1)		
	SAMPLE ID	2000		LE TIME	SITE	NAME/NUMBER				-	
	828164-	PZ0600	06 /	635	8	28164		/ OF	1		PLI INTERNITY
ELL DIAME	ETER (INCHES)		2+	В	и 🗀	OTHER			CAP	W	YES NO NA
BING ID (I	NCHES)	P 18] 1/4 3/8	1/2	5/8	OTHER O. I	7"		CASIN		7 = =
EASUREME	ENT POINT (MP)	TOPO	RISER (TOR)	TOP OF CASING	(TOC)	DTHER		TOPE	COLL	AR	Z
INITIAL D (BMP)	TW 7,13	3 FT	FINAL DTW (BMP)	7.42		T. CASING CKUP (AGS)	FLUSH-MOUN		TOC/TOR DIFFEREN		?
WELL DEI (BMP)	9, 8¢	5 гт	SCREEN LENGTH	REFER TOWE	PID AME	BIENT AIR		PPM	REFILL T SETTING		SEC
WATER	2.5	72 FT	DRAWDOWN VOLUME	0.012		WELL		PPM	DISCHAR TIMER SE		G SEC
CALCULA GAL/VOL		100,000	TOTAL VOL. PURGED	V X well diam squared	GAL TOT	WDOWN/ AL PURGED	0.008		PRESSUR TO PUMP		PSI
	AMETERS WITH		BILIZATION CRITE	RIA (AS LISTED IN T							
TIME -5 Minutes	DTW (FT) 0 0-0 33 ft Drawdown	PURGE RATE (mL/min)	TEMP (°C) (*/* 3 degrees)	SP CONDUCTANCE (mS/em) (==-3%)	pH (units) (+/= 0.1 imits)	DISS O ₂ (mg/L) (+/- 10%)	TURBIDITY (nu (+>+ 10% + 10 nu		INTAK DEPTH (E	COMMENTS
530	BEGIN PUR	GING									
535	7.25	90	13.7	0.89	6.88	0.42	14.27	-63.4	8.5		
540	7.29	100	13.1	0.68	6.87	0.28	5.33	-76.2			
1545	7.32	100	13.4	0.87	6.85	0.23	4.36	-81.9			
1550	7.35	100	13.7	0.67	6.87	0.22	3.11	-88.8			
1555	7.38	100	14.1	0.87	6.88	0.20	2,25	-95.3			
1600	7.40	100	14.0	0.88	6.89	0.18	2.27	-99.9			
1605	7.41	100	14.1	0.88	6.89	0.14	1.83	-104.1			
1610	7.42	100	14.2	0.88	6.89	0.14	2.26	-101.0			
1615	7.42	100	14.0	0.88	6.88	0.12	1.70	-109.0			
1620	7.45	125100	14.3	0.88	6.88	0.14	2.02	-111.4			CHIROLDIAL.
1625	7.43	100	13.9	0.89	6.88	0.15	1.88	-113.4	1	/	
1630	7.42 FI	INAL STABIL	ZED FIELD PARA	METERS (to app	ropriate sign	ificant figures[S	(F) 1.25	-116.2	pH nearest	f max/estenth (ex.	
			14	0.89	6.9	0.1	1.25	-120	DO nearest TURB 3 SF ORP 2 SF (may no	arest tenth (6 10 = 0 Z 101 = 101)
PERIS	TERA ER	0N	DECON FLUIDS USED LIQUINOX DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	SILJCONTEFLONT TEFLONT TEFLONT HIDPE TUIL LIDPE TUIL OTHER OTHER	TUBING TUBING LINED TUBING BING	PVC GEO	EEL PUMP MATER PUMP MATERIAL PROBE SCREEN ON BLADDER ER ER	IAL	N W	VL METI ID VQ MET URB M	OUPMENT USED ER M200 - 10 ER VSI PROPLUS FAC 1859, ETER LAMOTTE 2020 VE FAC 13 NO TYPE
ANALYTIC	PARAMETE PARAM _VOCS		METHOD NUMBER 82600	FILTERED		THOD R	OLUME EQUIRED CO	SAMPLE OLLECTED YES	COLLEC		SAMPLE BOTTLE ID NUMBERS
PURGE WA CONTAINI NO-PURGE UTILIZED Sampler Sign	EMETHOD Y		to sampling or	milely 1 standing volume pmil for this sample loc	nor N	SKETCH VOTES	1	Bowen G caese	AF.	LEATEURGE	OVERED IN SNOW, SHOW D LOCATE: EWATER DESCRIPTION ! R, COLORLESS, ODOR
Checked By	MAC ess Street, Portla	TE	С	3117	104	HAGGS ALLEY	/	LOW F	LOW GF	ROUN	DWATER SAMPLING RECO

			LUW	FLOW GROU	UNDWAL	DR SAMP	LING RECU	KD		
	PROJECT NAME	E	lite Vogue Dry Cleaners		1	ATION ID	DATE		nia l	
P	PROJECT NUMBE	R	3611191236		STAR	Z-07	END	1/15/2	019	
15	SAMPLE ID		34 VEC50	LE TIME		945 NAME/NUMBER		250		
	828164-	-PZ0700		130		28164		/ OF	1	
LL DIAME	ETER (INCHES)		2 4		18	OTHER				WELL INTEGRITY YES NO N/A
HNG ID (I	NCHES)	1/8	1/A 5/M	1/2] 5/N	OTHER O-1	7"		CAP	= = WEILLIP
SUREME	ENT POINT (MP)	TOP OF	RISER (TOR)	TOP OF CASING	(TOC)	OTHER			COLLAR	= Z = SCREWS
NITIAL D	TW La	67 FT	FINAL DTW	DRY		T. CASING	0	-	FROADB FOCTOR	0.00
BMP) VELL DEI	erru -		(BMP) SCREEN			KUP (AGS)		_	DIFFERENCE REFILL TIME	
BMP)	7.7	75 FT	LENGTH	CONSTRUCTION	AMB	HENT AIR	- Р		SETTING	SEC
OLUMN	1:0	28 FT	DRAWDOWN VOLUME	-	GAL MOU	WELL	p		DISCHARGE TIMER SETTI	NG SEC
ALCULA		//	(initial DTW- final DT) TOTAL VOL.	W X well diam, square	DRA	WDOWN/			PRESSURE	
AL/VOL	well diameter square	O. I.L.	PURGED (ml. per minute X total			AL PURGED			TO PUMP	PSI
ELD PAR	DTW (FT)	PROGRAM STA	BILIZATION CRITER	RIA (AS LISTED IN T SP CONDUCTANCE		DISS O. (mg/L)	TURBIDITY (ntu)	REDOX	PUMP	
Minutes	0.0=0.33 ft Drawdown	(mL/min)	TEMP ("C) (== 3 degrees)	(mS/cm) (++3%)	(==0.1 units)	(=- 10%)	(+/-10% <10 mu)	(ms) (==10 ms)	INTAKE DEPTH (ft)	COMMENTS
00	BEGIN PUR	GING								
05	DRY	UNIKNOWN	11.2	6.32	7.00	9.87	UNKNOWN	188.0	7-7.	TS INTO WELL TO PUMPOUTAL
15	WATER RE	CHARGED	BY 0.2' IN	BMINUTE	S. WILL P	URGE DRY	AGAIN IN I	DHINUT	ES.	MATERIAL ATBOTTOM IS A GRAY SILT. WILLMONITOR RECHY
25	7.22	PURGED D	RY. WILLAL	LOW TO RECI	IARGE AN	DWILLSA	MPLE AFTER	ITISFU	LLY PECH	IRGED, TOTAL PURGEDSINCES
		-		142					52	
20	6.67 7	WATERL	EVELHASE	ETURNED	TO INTH	LDEPTH	- WILLCOLLE	CT SAN	PLE	HEF WAR I'- U. ELECTION AND COLUMN CO
30	COLLECTE	SAMPLE							7	THEN ILEARED UP
APING		DIS CUP POST-SAI	18 Jac 11.8	6.04	7.21	6.42	12.33	77.5	KKOT	
	11	H W N	12.6	6.24	7.31	5.69	32.5	69.2		
	H H	11 11 11	12,3	6.11	7.37	5.85	32.00	30.9	-	
					9				TEMP nearest d	Species 10 I = 10;
	FI	NAL STABILI	ZED FIELD PARA	METERS (to app	ropriate signi	ificant figures[S	SFI)		pH nearest tenth DO nearest tenth	(cv. 3331 = 3330 () ((0) = 1) ((0)) (cv. 5 57 = 5 5)
										nearest tenth (8/19 = 6.2, 101 = 101)
IPMENT	DOCUMENTATION OF THE OF THE OF		DECON FLUIDS USED		TUBING/PI	UMP/BLADDER MA	TERIALS			EQUIPMENT USED
	TYPE OF PUMP				TUBING		PERSONAL PROPERTY.	L .		M200-70
PERIS	STALTIC MERSIBLE	\times	LIQUINOX DEIONIZED WATER	TEFLON			FUMP MATERIAL		PID	ETED IC DODDING CACLES
PERIS SUBM BLAD	STALTIC MERSIBLE DDER	\times	DEIONIZED WATER POTABLE WATER NITRIC ACID	TEFLON TEFLON HDPE TU	LINED TUBING	GEC	PUMP MATERIAL PROBE SCREEN LON BLADDER		WQ M TURB	METER LAMOTTE 2012 LE FACISIE.
PERIS SUBM BLAD WATT	STALTIC MERSIBLE DDER TERA ER	\times	DEFONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL	TEFLON TEFLON HDPE TU LDPE TU OTHER	LINED TUBING	GEC TEF OTH	PUMP MATERIAL PROBE SCREEN LON BLADDER GER GER		WQ M TURB PUMP OTHE	METER LAMOTTE 2012 WE FAULTS ! GEOPDIMP FACE 45
PERIS SUBM BLAD WATT OTHE	STALTIC MERSIBLE DDER TERA ER	NXX	DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER	TEFLON TEFLON HDPE TU LDPE TU OTHER	LINED TUBING UBING UBING	GEO TEF OTH OTH	PUMP MATERIAL PROBE SCREEN LON BLADDER IER IER	AMM E	WQ M TURB PUMP OTHE FILTE	METER LANDTTE 2010 WE FAULEY GEOPDIMP FAULLY RS NO TYPE
PERIS SUBM BLAD WATT OTHE	STALTIC MERSIBLE DDER TERA ER ER CAL PARAMETEI PARAM	RS	DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER METHOD NUMBER	TEFLON TEFLON HDPE TU LDPE TU OTHER OTHER	LINED TUBING JBING JBING PRESER D MET	GEO TEF OTH	PUMP MATERIAL PROBE SCREEN LON BLADDER EER EER VOLUME S LEQUIRED COL	AMPLE LLECTED	WQ M TURB PUMP OTHE FILTE	METER LANDTE 2070 FACE FACE FACE FACE FACE FACE FACE FACE
PERIS SUBM BLAD WATT OTHE	STALTIC MERSIBLE DDER TERA ER CAL PARAMETEI	RS	DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER METHOD	TEFLON TEFLON HOPE TU LOPE TU OTHER OTHER	LINED TUBING JBING JBING PRESER	GEO TEF OTH	PUMP MATERIAL PPROBE SCREEN LON BLADDER BER BER BER VOLUME S. BEQUIRED COLUMN VILLED V		WQ M TURB PUMP OTHE FILTE	METER LANDITE 2070 FACE FACE FACE FACE FACE FACE FACE FACE
PERIS SUBM BLAD WATT OTHE	STALTIC MERSIBLE DDER TERA ER ER CAL PARAMETEI PARAM	RS	DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER METHOD NUMBER	TEFLON TEFLON HDPE TU LDPE TU OTHER OTHER	LINED TUBING JBING JBING PRESER D MET	GEO TEF OTH	PUMP MATERIAL PROBE SCREEN LON BLADDER EER EER VOLUME S LEQUIRED COL	LECTED	WQ M TURB PUMP OTHE FILTE	METER LANDITE 2070 FACE FACE FACE FACE FACE FACE FACE FACE
PERIS SUBM BLAD WATT OTHE	STALTIC MERSIBLE DDER TERA ER ER CAL PARAMETEI PARAM	RS	DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER METHOD NUMBER	TEFLON TEFLON HDPE TU LDPE TU OTHER OTHER	LINED TUBING JBING JBING PRESER D MET	GEO TEF OTH	PUMP MATERIAL PPROBE SCREEN LON BLADDER BER BER BER VOLUME S. BEQUIRED COLUMN VILLED V	LECTED	WQ M TURB PUMP OTHE FILTE	METER LANDITE 2070 FACE FACE FACE FACE FACE FACE FACE FACE
PERIS SUBM BLAD WATT	STALTIC MERSIBLE DDER TERA ER ER CAL PARAMETEI PARAM	RS	DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER METHOD NUMBER	TEFLON TEFLON HDPE TU LDPE TU OTHER OTHER	LINED TUBING JBING JBING PRESER D MET	GEO TEF OTH	PUMP MATERIAL PPROBE SCREEN LON BLADDER BER BER BER VOLUME S. BEQUIRED COLUMN VIEW NAME OF THE SERVICE OF THE S	LECTED	WQ M TURB PUMP OTHE FILTE	METER LANDITE 2070 FACE FACE FACE FACE FACE FACE FACE FACE
PERIS SUBM BLAD WATT	STALTIC MERSIBLE DDER TERA ER ER CAL PARAMETEI PARAM	RS	DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER METHOD NUMBER	TEFLON TEFLON HDPE TU LDPE TU OTHER OTHER	LINED TUBING JBING BING PRESER HCI	GEC TEF TOTO OTHER TOT	PUMP MATERIAL PROBE SCREEN LON BLADDER BER BER BER BER BER BER BER BER BER B	LECTED	WQ M TURB PUMP OTHE FILTE	METER LANDITE 2070 FACE FACE FACE FACE FACE FACE FACE FACE
PERIS SUBM BLADT OTHE OTHE OTHE OTHE OTHE OTHE OTHER O	STALTIC GERSIBLE DODER TERA ER CAL PARAMETER PARAM VOCS	RS JETER	DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER METHOD NUMBER ECOC	TEFLON TEFLON TEFLON TEFLON TEFLON TEFLON TEFLON THER THERE THERE NO	LINED TUBING JBING PRESER HC1	GEO TEF OTH	PUMP MATERIAL PROBE SCREEN LON BLADDER BER BER BER BER BER BER BER BER BER B	LECTED ES	WO M TURB PUMP OTHER EULTE OCC COLLECTED NO.	METER LAMOTTE 2020 FACTS
PERIS SUBM BLAD OTHE OTHER NALVTIO	STALTIC APERSIBLE JODER TERA ER ER PARAMETER PARAM VOCS BSERVATIONS ATER YI FRIZED	RS DETER	DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER METHOD NUMBER POLICIO NUMBER OF GALL GENERATED	TEFLON TEFLON TEFLON TEFLON TEFLON TEFLON TEFLON TEFLON THER THERE THERE NO ONS 0.25	PRESER HCI	GEC TEF TOTO OTHER TOT	PUMP MATERIAL PPROBE SCREEN LON BLADDER BER BER BER BER BER BER BER BER BER B	LES N.	WO M TURB PUMP OTHER EULTE OCC COLLECTED NO.	METER LAMOTTE 2020 FACTS
PERIS SUBM BLAD OTHE OTHE OTHE OTHE OTHE OTHE OTHE OTHE	BSERVATIONS ATER YIERIZED E METHOD YIERA	RS DETER	DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER METHOD NUMBER POLICIO NUMBER OF GALL GENERATED	TEFLON TEFLON TEFLON TEFLON TEFLON TEFLON TEFLON THER THERE THERE NO	PRESER PRESER HC1	SKETCH NOTES	PUMP MATERIAL PPROBE SCREEN LON BLADDER IER IER IER IER IER IER IER IER IER I	LING N.	WO M TURB PUMP OTHE FILTE OCCULECTED NO.	METER LANDITE 2020 FACILITY GEOPOINP FACILITY RS NO TYPE SAMPLE BOTTLE ID NUMBERS ORU AFTER 3 MINUTES OF TA LOW RATE. ER DESCRIPTION : PALE
PERIS SUBM BLAD OTHE OTHE OTHE OTHE OTHE OTHE OTHE OTHE	BSERVATIONS ATER YIERIZED E METHOD YIERA	RS JETER S S S NO S S NO	DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER METHOD NUMBER POLICIO NUMBER OF GALL GENERATED If yes, purged approximi to sampling or	TEFLON HOPE TU LOPE TU OTHER OTHER FIGLD FILTERED NO ONS 0.25	PRESER HC1	RVATION THOO R	PUMP MATERIAL PPROBE SCREEN LON BLADDER IER IER IER IER IER IER IER IER IER I	LIECTED IES	WOM TURB PLANT OTHE EULIE OCCULECTED NO.	METER LANDTTE 207D AF FACT SMI GEOPDIAP FACTORYS RS NO TYPE SAMPLE BOTTLE ID NUMBERS ORY AFTER 3 MINUTES OF A LOW RATE ER DESCRIPTION ; PALE OR, INITIALLY CLEAR THEN URBID ASWITER LEVEL
PERIS SUBM BLAD OTHE OTHE OTHE OTHE OTHE OTHE OTHE OTHE	BSERVATIONS ATER YIERIZED E METHOD YIERIZED E METHOD YIERIZED	RS JETER S S S NO S S NO	DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER METHOD NUMBER POLICIO NUMBER OF GALL GENERATED If yes, purged approximi to sampling or	TEFLON TEPLON TEPLON TEPLON TOTHER OTHER FIGURE FIGURE NO ONS O.25	PRESER HC1	RVATION THOO R	PUMP MATERIAL PPROBE SCREEN LON BLADDER IER IER IER IER IER IER IER IER IER I	LIECTED IES	WOM TURB PLANT OTHE EULIE OCCULECTED NO.	METER LANDITE 2020 FACILITY GEOPOINP FACILITY RS NO TYPE SAMPLE BOTTLE ID NUMBERS ORU AFTER 3 MINUTES OF TA LOW RATE. ER DESCRIPTION : PALE
PERIS SUBM BLAD OTHE OTHER O	BSERVATIONS ATER ERIZED BSERVATIONS ATER ERIZED EMETHOD YI GRAIN VOCS	RS JETER S S S NO S S NO	DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER METHOD NUMBER POLICIO NUMBER OF GALL GENERATED If yes, purged approximi to sampling or	TEFLON HOPE TU LOPE TU LOPE TU OTHER OTHER FIELD FILTEREE NO ONS O.25 auely I standing volume p mL for this simple to	PRESER HC1	GEC TEF TOTO OTHER TOT	PUMP MATERIAL PPROBE SCREEN LON BLADDER IER IER IER IER IER IER IER IER IER I	LIECTED IES	WOM TURB PLANT OTHE EULIE OCCULECTED NO.	METER LANDTTE 207D AF FACT SMI GEOPDIAP FACTORYS RS NO TYPE SAMPLE BOTTLE ID NUMBERS ORY AFTER 3 MINUTES OF A LOW RATE ER DESCRIPTION ; PALE OR, INITIALLY CLEAR THEN URBID ASWITER LEVEL
PERIS SUBM BLAD OTHE OTHER OTH	BSERVATIONS ATER ERIZED BSERVATIONS ATER ERIZED EMETHOD YI GRAIN VOCS	RS JETER S S S NO S S NO	DEIONIZED WATER POTABLE WATER NITRIC ACID HEXANE METHANOL OTHER METHOD NUMBER PILLOC NUMBER OF GALL GENERATED If yes, purged approxim to sampling or	TEFLON HOPE TU LOPE TU LOPE TU OTHER OTHER FIELD FILTEREE NO ONS O.25 auely I standing volume p mL for this simple to	PRESER HC1	RVATION THOO R	PUMP MATERIAL PPROBE SCREEN LON BLADDER IER IER IER IER IER IER IER IER IER I	UNIG N.	WOM TURB PLANT OTHER PLANT OTHER PLANT OF COLLECTED IN CO	METER LANDTTE 207D AF FACT SMI GEOPDIAP FACTORYS RS NO TYPE SAMPLE BOTTLE ID NUMBERS ORY AFTER 3 MINUTES OF A LOW RATE ER DESCRIPTION ; PALE OR, INITIALLY CLEAR THEN URBID ASWITER LEVEL

10.21			- Lawrence Comment	WE.	LL DEVI	ELOPMENT	RECORD	1029			ME TO THE
		ACT.		3611191	23611			START	IU 141	J-1	PAGE OF START DATE OF 10 17/19
51	I Congress S	treet, Portland Maine	04101	WELL INSTALLATIO		VELL DEVELOR	1	END TIN	140	15	10 17 19
WELL	DIAMETER	(INCHES)	1-IN.	2-IN.	X 4-IN.	6-IN	8-IN.		HER		Λ .
CASINO	G DIAMETE	ER (INCHES)	4-IN.	6-IN.	8-IN.	10-IN.	12-IN.	✓ om	HERAU CL	Sim we	organ deing
MEASU	TREMENT P	POINT (MP)	TOP OF	RISER (TOR)	ТО	P OF CASING (TOO	2)	ОТІ	HER _		
DEPTH	L WELL (BMP)	12.6	FINAL V	1 1 1	. 6 FT	SCREEN LENGTH	9/4	→'B _{FT}	2.00	OT, CASING CKUP (AGS)	O FT
(BMP)	L DTW	8.26	FT REMOV	_	- FT	SCREENED INTERVAL (вмр) 12.4	TO 3.4		C/TOR FERENCE	0.34 FT
COLUM (initial w	MN	itial depth to water)	DTW AF		, 3 _{ft}	PUMPING DEPTH (BM)	12	. 6 FT	PID	BIENT AIR	13 PPM
GAL/VO	OL OL	29	FINAL F	(BMP) 8,	77 FT	APPROXIMA RECHARGE	003	FT/MIN	30.7	WELL	460 PPM
TOTAL PURGE (mL per	VOL.	15	GAL TIME (e	RECOVERY (apsed)	MIN	FLUIDS LOS DURING DR	J WA) GAL	DE	O OF WELL VELOPMENT MPLE TAKEN	
TIME	DTW (ft BMP)	PURGE RATE (mL/min)	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	VOLUME PURGED (gal)	TOTAL GALLONS	COMMENTS
419	8,26	Sowo	- pury				71000			0	Surged with surge
425	9.42	0,6	-	_	-	_	760	-	5	5	Olococ Lot Swill
1432	9.42	0.7	-	1	-		150)	5	10	
437	10,35	1.0	-	-	_	_	130	_	5	15	
	1	Project v	wohpla		- 3 u	ellush	nes.			1 =	
518	8.97	0		1 8							
SUI BAI GRI	DICATED SI RGE BLOCK ILER 2° UNDFOS 2° HER	UBMERSIBLE	PID M. WQ METE	EVEL METER ALL 2000 R TER HACH 210:	o Q	Well wa Sedimen Total wa Turbidity 10% cha	ter clear to the unaide t thickness remaining ter removed = a mini / 5NTUs? nge in field paramete ELOPMENT CRIT	d eye? in well <1.0% o mum of 5x calcu rs? ERIA MET?		mes plus 5x dri	Y N
ADDITIONA PURGE WAT CONTAINER NOTES Well Develope Checked By:	TER RIZED	lle N	GENERA	Print Name: Charle	5 cliff- rstoples	1	SVE	su6.1	- 3 - N	SDEC QUAL	FIGURE 4 WELL DEVELOPMENT RECOR JITY ASSURANCE PROGRAM PLA

	377	A CONTRACTOR		WE	LL DEVI	ELOPMENT	RECORD	3	Time in dis	TO THE PARTY	
		ACT		PROJECT NAME ELTEVO PROJECT NUMBER 36 11 21 WELL INSTALLATIO	Ju Dr.	y Chewers	PMENT DATE	START	W-2 11ME 615		START DATE i 0/2-1/19 END DATE U J Z-1/14
WELI	DIAMETER	(INCHES)	I-IN.	2-IN.	X 4-IN.	6-IN.	8-IN.	Поп	HER		totalica.
CASI	NG DIAMETE	R (INCHES)	4-IN.	6-IN/M2	8-IN. 0	B 10-IN.	12-IN.	✓ oπ	HER M	drill a	wie removed dring
MEAS	SUREMENT P	OINT (MP)	TOP OF	RISER (TOR)		P OF CASING (TOO		оп	HER	ull ins	ining removed diny
12 3000	AL WELL H (BMP)	14.45	FINAL DEPTH	114	\$ FT	SCREEN LENGTH	10) ' FT	L. Y.	OT, CASING	U. 32 Belvistals
INITI (BMP	AL DTW	7.61	SEDIMI FT REMOV	ED	FT	SCREENED INTERVAL	вмр) 4.4	TO 14.4	100	C/TOR FFERENCE	0.32 FT
WATI	JMN	6,94	DTW AI	OP. (BMP)	#5 FT	The second second second	14.5	FT	PIE AM) IBIENT AIR	0.2 PPM
CALC GALA	CULATED	ial depth to water) 4.7 ter squared X 0.041)	GAL DEPTH	RECOVERY (BMP)	FT CR	APPROXIMA	_	FT/MIN		OWELL	240 PPM
TOTA PURG	L VOL. ED er minute X tota	20	GAL TIME (e	RECOVERY —	MIN	FLUIDS LOS DURING DR	NA.	GAL	DE	D OF WELL VELOPMENT MPLE TAKEN	Y N
TIME	DTW (ft BMP)	PURGE RATE	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	VOLUME PURGED (gal)	TOTAL GALLONS	COMMENTS
1625	7.61	1.75	Sturt	mye.							
1633	10,57	1.25	- '	- 0	ļ	-	71000	1	5	5	
1637	11.74	1.25	7	-	1	-	71000	_	5	10	
1642	11.38	6.1	_		_	Le	71000	-	5	15	
1647	11.39	1.0	-	_		ir au	470	-	5	20	
1655	9.01	_	_	-	-	-	_	-	-	-	
1700	8,41	_	_	_	_		-	(_	
D S S S S S S S S S S S S S S S S S S S	EDICATED SU URGE BLOCK AILER 2" RUNDFOS 2" THER WWA	BMERSIBLE 4"	PID WQ METE TURB. ME OTHER OTHER	R TER HALL HO	२ ८८	Well wa Sedimen Total wa Turbidity 10% cha	VELOPMENT CRI ter clear to the unaided thickness remaining ter removed = a minir y < SNTUs? nige in field parameter	d eye? in well <1.0% o mum of 5x calcu ns? ERIA MET?	ulated well volu		ting fluids lost2
NOTES Well Develo			GENERA		eliffe	iw	5VE 1 051	1W-3		v-4	FIGURE 4.9 WELL DEVELOPMENT RECORD TY ASSURANCE PROGRAM PLAN

WELL DEVELOPMENT RECORD											
		ACT		PROJECT NAME ELL FLUG PROJECT NUMBER 361119 WELL INSTALLATIO	1236.	WELL DEVELOP	MENT DATE	START T	W - 3 140		START DATE START DATE
WELI	DIAMETER	(INCHES)	1-IN.	2-IN.	X 4-IN.	6-IN.	8-IN.	ОТН	ER		
CASI	NG DIAMETE	R (INCHES)	4-IN.	6-IN.	8-IN.	[10-IN.	12-IN.	ОТН	ER Alle	will aux	sing very verd diring
MEAS	SUREMENT P	OINT (MP)	TOP OF	RISER (TOR)		OF CASING (TOC)	ОТН		ll insh	letter
	AL WELL H (BMP)	13.9	FT DEPTH	12	9 FT	SCREEN LENGTH	10.	FT		OT. CASING CKUP (AGS)	O FT
INITIAL DTW (BMP) SEDIMENT (Final well depth) SEDIMENT (Final well depth)							вмр) [13.9]	то 3,9		C/TOR FERENCE	0.28 FT
COLU	MN	5,13	DTW AF	TER	7 5 ft	PUMPING DEPTH (BMI	13.9	8 FT	PID	BIENT AIR	O PPM
CALC	ULATED	25		RECOVERY 4.4	/ FI	APPROXIMA RECHARGE	7	FT/MIN	100	WELL	320 PPM
(column X well diameter squared X 0.041) TOTAL VOL. PURGED A GAL TIME (elapsed) TIME (elapsed)											
TIME	DTW (ft BMP)	PURGE RATE (mL/min)	TEMP. (°C)	SP_CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	VOLUME PURGED (gal)	TOTAL GALLONS	COMMENTS
10901	8.77	1.250	9								
0905	11.15	1,25	-	-	1	-	>1000		5	5	
0909	12.03	1.25	~				21000	~	5	10	
0913	13,25	1.25	1	^	-	-	71000	-	5	15	
0916	13.75	1.6	,	-	-	-	350	-	5	20	
0919	13.75	1.6		-	-	-	270	-	3	23	
0925	9.75	-	4	-	-	-	-	-	-	-	
0430	9.51	-	2	-	-	-	~	-		-	
0932	9.42		1	Ų	-	<u> </u>	-	-	~	_	
EQUIPMENT DOCUMENTATION DEDICATED SUBMERSIBLE WATER LEVEL METER SURGE BLOCK SURGE BLOCK BAILER Wo METER TURB. METER TACH 1.000 20 00 00 00 00 00 00 00 00 00 00 00											
	per Signature:	Market	J	Print Name	cliffe		1w-2	14-			FIGURE 4.9 SVEIJA DEVELOPMENT RECORD ITT ASSERTANCE PROGRAM PLAN

WELL DEVELOPMENT RECORD											
MAC 511 Congress Street, Portla		PROJECT NAME ELVE V PROJECT NUMBER 36119 WELL INSTALLATIO	236 NDATE			START T	IME O	/	PAGE OF START DATE 10 23/19 END DATE 13/19		
WELL DIAMETER (INCHES)]-IN.	2-IN.	X 4-IN.	6-IN.	8-IN.	ОТЕ	IER				
CASING DIAMETER (INCHI		RISER (TOR)	Z 8-IN B	10-IN,	12-IN.	отн	ae	sing real	iqueled after		
			1100		,						
DEPTH (BMP) /3	9 FT DEPTH	173	9 FT	SCREEN LENGTH	10	FT		OT. CASING CKUP (AGS)	O FT		
(BMP)	1 II KEMO	-	O FT	SCREENED INTERVAL (вме) 3.4	то/3.9		C/TOR FERENCE	0.26 FT		
WATER COLUMN 5.56 FT DEVELOP. (BMP) 13.75 FT DEPTH (BMP) 13.9 FT AMBIENT AIR 151 PPM											
(initial well depth - initial depth to water) CALCULATED GALVOL GALV											
(column X well diameter squared TOTAL VOL. PURGED (ml. per minute X total minutes X	75 GAL TIME (e	RECOVERY (G MIN	MIN	FLUIDS LOS DURING DR	NA.		DE	O OF WELL VELOPMENT MPLE TAKEN	, N N		
TIME DTW PURGE (ft BMP) (mL/s		SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	VOLUME PURGED (gal)	TOTAL GALLONS	COMMENTS		
1624 8.34 /2.	74 -	-	_	~		-	-				
1629 12.34 12.	39 1.0 60	M -	-		71000	-	5	5	1 1 1 10		
1636 13.87 0.	7 GPM	-	-	-	510	-	5	10	Mining ching to		
	some my	e -	-	-		-			allow redery		
1 117 8 1 1 4	toma veil	lotwell	•	_	180	-	5	15			
1.56 1375 SU	.8 5 grl/	min = 0	861	own -	38	-	5	20			
1654 13.81	very my	4 -	-	1	-	-	3/4	2017			
1705 10.87	- ' - '	-	-	-	_	-	-	-	4		
1710 9.44 -		-	() -	-		-	-	-			
1715 9.18 -			-	_	_	-	_	-			
		1									
EQUIPMENT DOCUMENTATION DEDICATED SUBMERSIBLE WATER LEVEL METER SURGE BLOCK PID Manifest 2000											
ADDITIONAL OBSERVATIONS PURGE WATER CONTAINERIZED NOTES Well Developer Signature:	ADDITIONAL OBSERVATIONS PURGE WATER CONTAINERIZED N NUMBER OF GALLONS 20.75 SKETCH SKETCH THOUGS										

4	MA	ACT	EC	PROJECT NAME 21, Pe U		1	ver3	START 7	TIME	6	PAGE OF START DATE
5	511 Congress St	reet, Portland Maine	04101	361119 WELL INSTALLATION 10 24	1236. ON DATE 119	WELL DEVELOR	PMENT DATE	END TIM	505 1655		10/25/19 END DATE 10/25/19
WELI	DIAMETER	(INCHES)	I-IN.	2-IN,	X 4-IN.	6-IN.	8-IN.	оп	HER		
CASI	NG DIAMETE	R (INCHES)	4-IN.	6-IN.	8-IN.	10-IN.	12-IN.	Отг	HER AL	drille	using removed atok
MEAS	SUREMENT P	OINT (MP)	TOP OF	RISER (TOR)		P OF CASING (TOO	c)	on	HER	II instr	dans.
	AL WELL H (BMP)	14.05	FI DEPTH (10	.05 FT	SCREEN LENGTH	10	FT	1	OT, CASING	O FT
INITL (BMP)	AL DTW	7.18	SEDIME FT REMOV		FT	SCREENED INTERVAL	(вмр) 4	то/Ц′	9.3	C/TOR FFERENCE	0.32 FT
WATE COLU	MN	6.9	DTW AF	TER 9	43 _{FT}	PUMPING DEPTH (BM	P) 14	. U5 FT	PII AM	BIENT AIR	O PPM
GAL/	CULATED	47	GAL DEPTH	ECOVERY BMP)	FT	APPROXIMA RECHARGE	0.6	5 FT/MIN		O WELL OUTH	990 PPM
TOTA	L VOL.	20 minutes X 0.00026	GAL TIME (el	apsed)	MIN	FLUIDS LOS DURING DR	/ NA	O GAL	DE	D OF WELL VELOPMENT MPLE TAKEN	
TIME	DTW (ft BMP)	PURGE RATE (mL/min)	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	VOLUME PURGED (gal)	TOTAL GALLONS	COMMENTS
กร	7.18	-	Strans	puze						1 = 1	Sorgedwell For
521	1265		_	_	=	_	>1000	-	5	5	
732	14.0		_	-	_	_	700	_	5	10	(nevertaling)
555	14.0		-	-	_	-	190	_	5	15	11 11
14	14.0	1	-	_	_	_	18	_	5	20	
,20	11.65	-	Recover	_	_	_		~	-	-	1556-1609 3,56
31	9.43	_	~	_	_	_	_	_	-	_	
40	8.65	_									
48	8.37	-									
QUIPME	NT DOCUME	NTATION				WELL DE	VELOPMENT CR	ITERIA			
B G G	EDICATED SU URGE BLOCK AILER 2" RUNDFOS 2" THÉR	BMERSIBLE	PID M WO METER	VELMETER LINE 2005 TER LYPICH		Sedimer Total wa Turbidit 10% cha	ther clear to the unaide at thickness remaining atter removed = a min y < 5NTUs? ange in field paramete ELOPMENT CRIT	g in well <1.0% of intum of 5x calcutants?			2
		ATIONS N	NUMBER GENERA	OF GALLONS	20	SKETCH	4	Aura?			1-3/
OTES	0	00%	Ta	0	(M.	165	1W8 3	+ 1	1W-5	76	- Felma

			"""	WE	LL DEVI	LOPMENT	RECORD				
2111	NA	ACT	EC	PROJECT NAME	NYSD	EC- Elite Vogue D	ry Cleaner	1.0CAT	W-7		PAGE / OF (
7900	IVI	TUL	EC	PROJECT NUMBER		361]191236		START	11:59	-	START DATE
	11 Congress St	reet, Portland Maine	04101	WELL INSTALLATIO	N DATE	WELL DEVELOP		END TIN)	END DATE.
5.55				10/28/19							101117
WELI	DIAMETER	(INCHES)	(-IN		X 4-IN	6-IN	8-IN	on		/	(3.00 W)
	NG DIAMETE		TOP O	FRISER (TOR)	8-IN	P OF CASING (TOC)	12-IN.	X on	HER S	moved o	6 BR Measing
INITI	AL WELL		FINAL	WELL T		SCREEN	1. 7	[1.4.]	PR	OT. CASING	
DEPT	Н (ВМР)	15.35	FT DEPTH	(BMP) [15.	35 FT	LENGTH	10"	9.5)	ST	ICKUP (AGS)	O. FT
(BMP	AL DTW	7.66		-	FT	SCREENED INTERVAL (E	ме) 5,35	TO 1535		C/TOR FFERENCE	0.25 FT
COLU	MN	7,69	FT DEVEL	FTER OP. (BMP)	/ FT	PUMPING DEPTH (BMP	15	7.3 FT	AN	BIENT AIR	O PPM
CALC GAL	ULATED VOL	c 31	GAL DEPTH	(BMP)	- FT	APPROXIMA RECHARGE I		FT/MIN	1	O WELL OUTH	375 PPM
PURG (mL pe	L VOL. ED er minute X tota	311	GAL TIME (RECOVERY (clapsed)	MIN	FLUIDS LOST DURING DRI	197	GAL	DE	D OF WELL VELOPMENT MPLE TAKEN	
FIELD PA	RAMETERS	PURGE RATE		SP. CONDUCTANCE					VOLUME	TOTAL	
TIME	(ft BMP)	(mL/min)	TEMP. (°C)	(mS/em)	pH (units)	DISS O ₂ (mg/L)	TURBIDITY (ntu	REDOX (mv)	PURGED (gal)	GALLONS	COMMENTS
1154	7.06	>	-	-	_	-	+x++(>1000)		-	
1 50	13.45		_	-	-	_	307	-	4.6	24	
					-				- 1		
					-					-	
		14.1									
			-					-			
EQUIPME	NT DOCUME	NTATION				WELL DEV	ELOPMENT CI	RITERIA			
	EDICATED SI	UBMERSIBLE	WATERI	EVEL METER		Well water	r clear to the unas	ded eve?			YN
p S	URGE BLOCK AILER		PID WO MET			Sediment	thickness remainir er removed = a mi	ig in well <1.0%			Ilm first land
	2"		TURB M			Turbidity	< 5NTUs?		mated west vo	nanes pais 2x or	lung nuns ker
	RUNDFOS	4*	OTHER			10% chan	ge in field parame	ters [†]	Y	N	[+]
-	THER have Du	JUANO .	OTHER			WAS DEVE	LOPMENT CRI	TERIA MET?			
	AL OBSERV		NUMBE	R OF GALLONS 47	/	SKETCH		IX III	W		10 - 1
CONTAINE		Ď Ö	GENER		17		Develop	cal wa	=11 (1217 6	and en was
NOTES	1.11 1).	whose to	worksto	moriteria	to		-				
crewle	hydru	lic com	ection.	mcriteria: ttinger	71.7						
JA	awelil	fe her	John hu	Hinger							WELL DEVELOPMENT RECORD
Well Develo Checked By	per Signature	0 11	0-	Print Name:	40.						
	Jour	youth		1133/3	020						
	W	U V									

	Ke j	15. 1.3	WD	LL DEVI	ELOPMENT	RECORD		da la colo	ASTR CA	
	ACT		PROJECT NAME ELITOVO PROJECT NUMBER 36 LL (4) WELL INSTALLATIO /0/23//	236 i	y Chemes U 3 WELL DEVELOR 10/2-5	MENT DATE	START	W-8 1-30		START DATE /U/25/19 END DATE I U/25/19
WELL DIAMETE	R (INCHES)	1-IN.	2-IN.	X 4-IN.	6-IN.	8-IN.	ОТН	HER		
CASING DIAME	TER (INCHES)	4-IN.	16-IN.	X 8-INB	10-IN.	12-IN.	OTT	HER ALL	lallcas	sing removed duny
MEASUREMENT	POINT (MP)	TOP OF	RISER (TOR)		P OF CASING (TOO	2)	ОТ	well HER	inshill	ation
INITIAL WELL DEPTH (BMP)	12.3	FINAL DEPTH	1 ()	.3 FT	SCREEN LENGTH	10	FT		OT. CASING CKUP (AGS)	O FT
INITIAL DTW (BMP)	7.39	FT REMOV		FT	SCREENED INTERVAL (вмр) 2.3	TO/2.3		C/TOR FERENCE	0.34 FT
WATER COLUMN (initial well depth -	H. G	DTW A			PUMPING DEPTH (BM)	/2	.3 _{FT}	PID	BIENT AIR	O
CALCULATED GAL/VOL	2 3	GAL DEPTH	RECOVERY 7.8 (BMP)	5 FT	APPROXIMA RECHARGE	04	FT/MIN		WELL	1100 PPM
TOTAL VOL. PURGED	15	GAL TIME (elapsed)	MIN	FLUIDS LOS DURING DR	بالملك المالك	GAL	DE	O OF WELL VELOPMENT MPLE TAKE	
FIELD PARAMETER	3		ar ac					VOLUME		
TIME DTW (ft BMP)	PURGE RATE	TEMP. (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	PURGED (gal)	GALLONS	COMMENTS
0839 7.39	-							_		D. I As Aber
0844 12.15		_	-		-	>1000		5)	mil ky
754 12.20	0.63	-	_	_		46	-	5	10	10 11
1906 [2.15	11 11 11 11 11 11	-	~	-	-	18	-	5	15	
0415 8.87	Recove	5 -	_	,		_	_	-	_	
1905 8.00	D=	-	_	-		-	-	-	-	
0941 7.85		-	-		-	=		-	-	
EQUIPMENT DOCUM	IENTATION				WELL DE	VELOPMENT CR	ITERIA			
DEDICATED SURGE BLOW BAILER GRUNDFOS 2" OTHER ADDITIONAL OBSER PURGE WATER CONTAINERIZED	III	PID W WQ METH TURB. MI OTHER OTHER	R OF GALLONS		Sedimer Total wi Turbidit 10% cha	ter clear to the unaids at thickness remaining their removed = a min y < 5NTUs? unge in field parameter ELOPMENT CRIS	g in well <1.0% of imum of 5x calculaters?			P. Char

				WEI	LL DEVE	LOPMENT	RECORD					
111	MA	ACT	EC	PROJECT NAME	NYSD	EC- Elite Vogue	Dry Cleaner	LOCATIO	W-21	0	PAGE OF	
	TATT	101	LC	PROJECT NUMBER		3611191236		STARTT	0.0		START PATE	
	SII Congress St	zeet, Portland Maine	04101	(0) 29/19	N DATE	WELL DEVELOR	VELL DEVELOPMENT DATE END TIME				ALL 19	
WELL	L DIAMETER	(INCHES)	[1-IN	2-IN	* R	b-IN						
	NG DIAMETE		4-IN	RISER (TOR)	8-IN	10-IN P OF CASING (TOO	drill cusing removed during					
		ONI (MP)								T. CASING	allation	
	H (BMP)	129	FI DEPTH	1/2	SCREEN	145		FT STICKUP (AGS		О н		
(BMP	AL DTW	8,21	FT REMOV	_	FT	SCREENED INTERVAL (вмр) 3.4	тор. 9		TOR FERENCE	0.30 FT	
COLU	UMN	4,69	DTW AF		- FT	PUMPING DEPTH (BMI	/2	9 FT	PID	BIENT AIR	O PPM	
CALC GAL	VOL	.77	GAL DEPTH	RECOVERY (BMP)	FT	APPROXIMA RECHARGE		FT/MIN		WELL	214 PPM	
TOTA	L VOL.	H, 5	GAL TIME (e	RECOVERY	MIN	FLUIDS LOS DURING DR	L NA	UNIZ GAL	DE	O OF WELL ELOPMENT IPLE TAKEN		
	RAMETERS	PURGE RATE		SP. CONDUCTANCE			1-	-	VOLUME	TOTAL		
TIME	(ft BMP)	(mL/mm)	TEMP, (°C)	(mS/em)	pH (units)	DISS O ₂ (mg/L)	TURBIDITY (nto)		PURGED (gal)	GALLONS	COMMENTS	
1300	8,4						++++(>1000)		14 -		
132	Dryn						152			4,5		
_		-										
								-				
											/. <u></u>	
		1		,								
	7-11											
EQUIPME	NT DOCUME	NTATION				WELL DE	VELOPMENT CRI	TERIA			V N	
	BAILER WQ METER Total water removed = a minimum of 5x calculated well volumes plus 5x drilling fluids lost? TURB METER Turbidity < 5NTUs? Turbidity < 5NTUs? 10% change in field parameters? Y N											
PURGE W.	ATER	Y N	NUMBEI GENERA	ROF GALLONS TED	1.5	* Wel	1 went	- dity	Cont	Trued	che per	
				laucritein		bed but	h at 4	111-20 de se	- M	W 21	llow of the	
Jerr	yRaw			hu Hinger		16	ceser u	illate	cevelo	Pin 0	WELL DEVELOPMENT RECORD	
Well Develo	oper Signature	0 001	11	Print Name Date: // 27/16								
	Jemy	1 auch	1	1/25/11								

				PROJECT NAME		A DOLLARISM		LOCATION	DN ID		PAGE
211	MA	ACT	EC	PROJECT NUMBER	NYSD	EC- Elite Vogue		START T	WZ		START DATE
		reet. Pordand Mame		WELL INSTALLATIO	N DATE	3611191236 WELL DEVELOP		1	3:30		IN I I I I I
	Tr Congress of	TOTAL TOTAL CONTROL OF THE PARTY		VHU 10/31/1	1	11]1(500		1/1/19
WELL	DIAMETER	(INCHES)	1-IN	2-IN	X 4-IN	6-IN	8-IN	OTH	_		
CASE	NG DIAMETE	R (INCHES)	4-IN	6-IN	8-IN	10-IN	12-IN	Т отн	IER 6	OB 4	BR All drill asing
MEAS	SUREMENT F	POINT (MP)	TOP OF	RISER (TOR)	10	P OF CASING (TOO	9	on	IER 1	us tall	ation
	AL WELL B (BMP)	11.95	FT DEPTH	111	15 FT	SCREEN LENGTH	VW	¥ FI		OT, CASING ICKUP (AGS)	O n
INITI (BMP	AL DTW	7.65	SEDIM REMOV	_	FT	SCREENED INTERVAL (вмр) 2.9	PINOT		C/TOR FFERENCE	0.30 FT
COL	MN	4.3	DTW A		- FI	PUMPING DEPTH (BM)	1	.9 _{FT}	PH AN	D IBIENT AIR	& PPM
	ULATED	(ial depth to water)	FINAL DEPTH	RECOVERY (BMP)	FI	APPROXIM/ RECHARGE	_	FT/MIN		O WELL OUTH	75.3 PPM
TOTA	L VOL.	ter squared X 0.041)	GAL TIME (RECOVERY Hapsed)	MIN	FLUIDS LOS DURING DR	T NA	ijνj [∠] GΛL	DE	D OF WELL VELOPMENT	
	RAMETERS	Timinico N 0.00020	garmey.	-						T	
TIME	DTW (ft BMP)	PURGE RATE (mL/min)	TEMP (°C)	SP. CONDUCTANCE (mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (ntu)	REDOX (mv)	VOLUME PURGED (gal)	TOTAL GALLONS	COMMENTS
13 3	7.65		_	-)	-	++++((00015	-	-	
13:10	D1-1	-	_		_	_	432		5	5	
	1										
							-				
									-		
				-	-					-	
									-		
										-	
EQUIPME	NT DOCUME	NTATION				WELL DE	VELOPMENT CE	EFFERIA			(
	URGE BLOCK AILER 2" RUNDFOS 2" THER	4-	WATER L PID WO METI TURB M OTHER OTHER			Sedimen Total wa Turbidit 10% cha	ter clear to the unaid i thickness remaining ter removed = a min < 5NTUs? nge in field paramet ELOPMENT CRI	g in well <1.0% o nimum of 5x calcu			
	hale Au					SKETCH					
PURGE WA	ATER	Ď ř	NUMBE GENER	R OF GALLONS ATED	4.5 95	1 Des	cloper	well a	+ s	ane +	me cs
NOTES L	Jell Dev	elysed to a	york plan	critem to re	0	MW	20 0.5	well i	went	017.1	(allowed to
Jern	Rangel	ifte for I	ohnhy Hi	user		1500	ie u	nie i	ESE	1,00	
Well Develo	per Signature	and		Print Name							WELL DEVELOPMENT RECORD
Checked By	Allen	MI		Date 1/22/20	20						
	~	10									

100		OFF		PROJECT NAME		EC- Elite Vogue		LOCAT		7	PAGE
-11	MA	ACT.	EC	PROJECT NUMBER	N I SID	3611191236		START	TIME	-	START DATE
	511 Congress St	reet, Portland Maine	04101	WELL INSTALLATION	ON DATE	WELL DEVELO	PMENT DATE	END TO	ME 1	, 00	END DATE
			_	10/30/19		n n	19		5-1-1	6	14/11/
WELL	L DIAMETER	(INCHES)	I-IN	2-IN.	M4-IN	6-IN	8-IN	ОТ	HER	Jen Bale	1/20 4000
CASI	NG DIAMETE	R (INCHES)	4-IN	6-IN	8-IN	10-IN	12-IN	V OT	HER 4	1015	A(60B) 42BR
MEAS	SUREMENT P	POINT (MP)	TOP OF	RISER (TOR)	ТО	P OF CASING (TO	(7)	ОТ	HER W	ell inst	allatur -
	AL WELL H (BMP)	4.70	FI DEPTH	1 //	7 г	SCREEN LENGTH		9' 1	9.50	OT. CASING ICKUP (AGS)	О гт
INITI (BMP	ALDTW	7.50	SEDIME FT REMOV	_	FT	SCREENED INTERVAL	BMP 3	то/19	1 07	C/TOR FFERENCE	0.30 FT
		122		depth - untial well depth)					PIL		
COLI (mnial	UMN	4.2	FT DEVEL	OP. (BMP)	FT	DEPTH (BM	P) //	.9 FT	AN	IBIENT AIR	O PPM
GAL		O, EQ	GAL DEPTH	(BMP)	FI FI	RECHARGE	2.60	FT/MIN		OWELL	47 PPM
TOTA	AL VOL.	01	GAL TIME (e	RECOVERY lapsed)	MIN	FLUIDS LOS DURING DR		GAL	DE	D OF WELL VELOPMENT MPLE TAKEN	tend tend
	DTW	PURGE RATE		SP. CONDUCTANCE		Market St			VOLUME	TOTAL	
TIME	(ft BMP)	(mL/min)	TEMP (°C)	(mS/cm)	pH (units)	DISS. O ₂ (mg/L)	TURBIDITY (at	a) REDOX (mv)	PURGED (gal)	GALLONS	COMMENTS
1500	7.00	_	_		_		++++	_	-	-	
1545	8.32		-			_	14:7			-	
1600	8.41	_	-	_	-	_	15.2		214	9.5	
		1								-	
								+			
								-			
						-					
	INT DOCUME DEDICATED SI		WATERL	EVEL METER			VELOPMENT C				YN
V 5	URGE BLOCK		PID WO METE			Sedimer	it thickness remain iter removed = a m	ing in well <1 0%			V
	2" RUNDFOS		TURB ME OTHER			Turbidit	y < 5NTUs? unge in field param				
	2" THER	4*	OTHER OTHER				ELOPMENT CR		Y		1
ADDITION	VAL OBSERV			0.00.00		SKETCH		10	-	placel	
CONTAINI		Ď Ö	NUMBER GENERA	R OF GALLONS TED	9.5	Us	ed Gr	14000	Comp	Prom;	bel in series belt produced
NOTES	Jell dene	legel to	workplu	u contervasi	· remoi	C.S 4	the sin	ile uni	+ +0.1	ies, w	The state
solids	()	1 11 1	1	11	_						
Well Develo	y Kun	reliving of		Print Name	1						WELL DEVELOPMENT RECORD
Checked By	Jerry (wild -		Date 1/20/19							

WELL/P	PIEZOMETER CONST FLUSHMOU	LOCATION ID: ZW-/				
Project Name: Project Location: Project Number; Subcontractor:	Elite Vogue Dry Cleaners Rochester, NY 3611191236 Nothnagle	Task Number 0.03 Drilling Method: 115/	Y Tricon	Checked By: C. Staples	Date Completed: 10/16/19 Checked Date: 1/21/20	
Development Meth Bucking Posts/Ball Notes:	od: Sexesbook + Pump ards: NA	Development Date:	0/17/19		Point Information pe: Top Of Riser	
Item	Depth BMP (ft) El	levation (ft)		De	scription	
Surface Casing Ele Ground Surface Ele Riser Pipe (Top) 8 Top of Well Seal Top of Sand Pack Top of Screen		15 1	Slo	Surface Seal Type: Lock Identification Lock Identification Stiekup Casing Diameter: Backfill/Grout Type: Riser Pipe Type: Riser Pipe ID: Borehole Diameter: Type of Seal:	Sch 40 pvc 4= 6°BR 8°OB Restautete Ship	
Base of Screen End Cap Drilled Depth		,52xxx		Screen Type: Screen ID: Screen Slot Size: Screen Length: Filter/Sand Pack Type: Sump: Fallback/Backfill:	Sch40 PVC 4° 0.01° 9' \$50 Sand \$50 Sand	
Bottom of Explorat Bedrock Surface	(NOT TO SCALE	

WELL/	PIEZOMETER CON FLUSHM	SUCCESSION OF THE PROPERTY OF	CRAM	LOCATION ID:	J-2
Project Name:	Elite Vogue Dry Cleaners			Date Started: 10/18/19	Date Completed: 10/18/19
Project Location:	Rochester, NY			Logged By: J. Rawa	liffe
Project Number:	3611191236		03	Checked By: C. Staples	Checked Date: 1/21/20
Subcontractor:	Nothnagle	Drilling Method: 14	SU+ Core, Trico	W. Manustan	Deint Information
Bucking Posts/Ba			10/21/19	Measuring	Point Information
Notes: how	ted inside Elite Voga	Buldwig		Measuring Point (MP) Ty	pe: Top Of Riser
-				MP Elevation (ft):	
Item	Depth BMP (ft)	Elevation (ft)		Des	scription
Surface Casing El	evation		Ste	ope Away	
Ground Surface E	levation	744		Surface Seal Type:	Cement
Riser Pipe (Top)	0,32 B65			Lock Identification	Commen
				Flohmand Stickup Casing Diameter:	8"
	6W = 7.9' BGS 18		-	Backfill/Grout Type:	MA
		Ā	-	Riser Pipe Type:	Sch40 PVC
				Riser Pipe ID:	42
Top of Well Seal	1.0 365			Borehole Diameter:	8º08 6º8R
Top of Sand Pack	3.0'B65	1888	-	Type of Seal:	Bentonitechips
Top of Screen	4.7'865			Screen Type:	Schiyopic
				Screen ID:	42
	96/200			Screen Slot Size:	0.01=
	9.4865	X/X^ /X		Screen Length:	10' (Actual groungs')
Base of Screen	14,7/365			Filter/Sand Pack Type:	#00 US Silica Filtro Quartz send
End Cap	14.81365			Sump:	
Drilled Depth	15,11,865			Fallback/Backfill:	0.2'
Bottom of Explora	tion 15.1'B65				
Bedrock Surface	9.9 1365				NOT TO SCALE

FIGURE 4.8 WELL/PIEZOMETER CONSTRUCTION DIAGRAM - FLUSHMOUNT NYSDEC QUALITY ASSURANCE PROJECT PLAN

WELL/I	PIEZOMETER CON FLUSHM	STRUCTION DIAG	RAM	LOCATION ID: IW - 3				
Project Name:	Elite Vogue Dry Cleaners			Date Started: 10 0119	Date Completed: 10/24/19			
Project Location:	Rochester, NY			Logged By: J. Rau	icliffe			
Project Number:	3611191236	Task Number 0.0		Checked By: C. Styles	Checked Date: 1/21/20			
Subcontractor:	Nothnagle	Drilling Method: 115	4, Tricare, C					
Development Meth Bucking Posts/Bal Notes:	nod: Surgeblode, pung lards: NA	Development Date:	10/23/19	Measuring Measuring Point (MP) Ty	Point Information pe: Top Of Riser			
			==	MP Elevation (ft):				
Item	Depth BMP (ft)	Elevation (ft)		De	scription			
Surface Casing Ele	evation		SIC	ope Away				
Ground Surface El		TILL	William .	_				
				Surface Seal Type:	Concrete			
Riser Pipe (Top)	0.28'365			Lock Identification	M			
		[1"]	THE STATE OF THE S	Flush Mount Stickup Casing Diameter:	9"			
				Stickup Casing Diameter:	_0			
6	w= 9.0'BGS 1do	3h4 0840	+	Backfill/Grout Type:	NA			
			-	Riser Pipe Type:	Sch40NC			
				Riser Pipe ID:	42			
Top of Well Seal	2.0065		-	Borehole Diameter:	8"0B 6"BR			
Top of Sand Pack	4.0-365		-	Type of Seal:	Bentonite chip			
Top of Screen	4.1'865			Screen Type:	Sel40 PVC			
				Screen ID:	4=			
				Screen Slot Size:	0.012			
				Screen Length:	10' (actuals) ots 95')			
	11.5'BBS /	2///						
		,		Filter/Sand Pack	400 USSilica Filho			
Base of Screen	14.1'365			Туре:	Quartz sand			
End Cap	14.2'365			Sump:	73 (7377 6)			
Drilled Depth	16.5'865		— —	Fallback/Backfill:	14.2-16.5'			
Bottom of Explora	tion 16.5 865		5					
Bedrock Surface	11.5'865				NOT TO SCALE			

FIGURE 4.8 WELL/PIEZOMETER CONSTRUCTION DIAGRAM - FLUSHMOUNT NYSDEC QUALITY ASSURANCE PROJECT PLAN

WELL/I	PIEZOMETER CONST FLUSHMO	RUCTION DIAGRAM UNT	LOCATION ID:	J-4
Project Name:	Elite Vogue Dry Cleaners	outyre	Date Started: 10/20/19	Date Completed: 10/22/19
Project Location:	Rochester, NY		Logged By: J. Raw	diffe
Project Number:	3611191236	Task Number 0.03	Checked By: C. Stoples	Checked Date: 1/21/20
Subcontractor:	Nothnagle	Drilling Method: [4514, Core,]	r. Cone	D.1.4 T. 6
Bucking Posts/Bal	nod: SurgeBlock, whale per	Development Date: 10 23/1	Measuring	Point Information
Notes:	177.7		Measuring Point (MP) Ty	pe: Top Of Riser
			MP Elevation (ft):	
Item	Depth BMP (ft) E	levation (ft)	De	scription
Surface Casing Ele	evation		Slope Away	
Ground Surface E		744		2
Diagonia (Tran)	0.28'365		Surface Seal Type:	Conorele
Riser Pipe (Top)	0.48 1565		Lock Identification	MA
			Flush Mount Stickup Casing Diameter:	80
		+	Backfill/Grout Type:	M
61	J= 8.6B65 102319	1610	Riser Pipe Type:	Self 40 PVC
			Riser Pipe ID:	42
Top of Well Seal	1.3'665		Borehole Diameter:	8=03 62BR Bentonite chip
Top of Sand Pack	4.0'865		Type of Seal:	Bentonite chip
Top of Sand Fack	1.0 15 0 5			
Top of Screen	4.2'865		Screen Type:	Sch40 PVC
			Screen ID:	42
	Actor		Screen Slot Size:	0.012
	4.5 665		Screen Length:	10' (Actualslos 9,5')
			Filter/Sand Pack	MOUSEL EID
Base of Screen	14.2065		Type:	Quarta Send
End Cap	14.2'B65		Sump:	
Drilled Depth	14.3'665		Fallback/Backfill:	0.1 (14.2-14.3 BCS)
Bottom of Explora	tion 14,3'BLS			
Bedrock Surface	9.5'365	V		NOT TO SCALE
-1022 (I. 2) HOUSE				- South

FIGURE 4.8 WELL/PIEZOMETER CONSTRUCTION DIAGRAM - FLUSHMOUNT

NYSDEC QUALITY ASSURANCE PROJECT PLAN

Project Name: Elike Vogue Dey Cleamers Project Name: Rochestry, NY Project Name: Rochestry, NY Project Name: Rochestry, NY Roche	WELL/PI	EZOMETER CO FLUSHN	NSTRUCTION DIAGR. IOUNT	AM	LOCATION ID:	W-5
Project Number: Roberter, NY Project Number: 3611191296 Task Number: 0.03 Solt-orienteric North Manage Drilling Method: (ASABAR) Development Method: (NAC Bucking Posts Ballands: NA Note: Locat will exhibit the TICE. Tick of other friday rolystic Take Lather the set find will exhibit the TICE. Tick of other friday rolystic Take Lather the set find will exhibit the TICE. Tick of other friday rolystic Take Casing Elevation Ground Surface Elevatio Ground Surface Elevatio Ground Surface Elevatio Top of Well Seal 1.0 B.5 Top of Sand Pack 3.0 B.5 Top of Screen 4.0 B.6 Top of Screen 4.0 B.6 Top of Screen 11.9 Base of Screen 11.9 Base of Screen 11.9 Base of Screen 11.9 Base of Screen 11.9 Bottom of Exploration 12.1 B.6 Bottom of Exploration 13.1 B.6 Bot	Project Name: I	Elite Vogue Dry Cleaners			Date Started: (3/25/19	Date Completed: 10/2-5/19
Project Number: 361119216 Task Number: 0.33 Checked By: C. Stryck. Checked Date: 1/21/10 Notangate Development Member: Wife Development Member: Wife Development Date: UNIV. Bucking Posts Ballards: NA Note: Last will installed by TIGE. Tick of facts trade, 10 yets for The Last will installed by TIGE. Tick of facts trade, 10 yets for The Last will installed by TIGE. Tick of facts trade, 10 yets for The Last will be TIGE. Tick of facts trade, 10 yets for The Last will be TIGE. Tick of facts trade, 10 yets for The Last will be TIGE. Tick of facts trade, 10 yets for The Last will be TIGE. Tick of facts trade, 10 yets for The Last will be TIGE. Tick of facts trade, 10 yets for The Last will be TIGE. Tick of facts trade, 10 yets for The Last will be TIGE. Reserving Casing Diameter: Surface Seal Type: Riser Pipe (Top) Description Surface Elevation Ground Surface Elevation Ground Surface Elevation Ground Surface Elevation Ground Surface Elevation Fisher Pipe (Top) Description Surface Seal Type: Surface Seal Type: Surface Seal Type: Surface Seal Type: Selve to the Last will be TIGE. Tick of facts trade, 10 yets for Tight of Seal will be Tight of Seal will	Project Location: I	Rochester, NY				
Surface Casing Elevation Ground Surface Elevation Ground Surface Elevation Ground Surface Elevation Ground Surface Sail Type: Top of Well Seal Top of Sand Pack Top of Sareen 4.0 865 Top of Screen 4.0 865 Top of Screen 11.9 Base o	Project Number: 3	3611191236	Task Number 0.03		Checked By: C. Stople	Checked Date: 1/21/20
Bocking Posts/Ballards: NA Notes: Last will install by Tirk. Tirk offsite friday 10 19742 Than hability of the BMP (ft) Elevation (ft) Bern Depth BMP (ft) Elevation (ft) Surface Casing Elevation Ground Surface Elevatio Riser Pipe (Top) O.44' B65 Top of Well Seal 1.0' B65 Top of Sand Pack Top of Sand Pack Top of Screen 4.0' B65 Top of Screen 1.19' Base of Screen 11.9' Ba	Subcontractor:	Nothnagle				
Note: has well with list by Ties. The different tribe, 101-11/19 Than habitings to get his well incomment and divelopt. Note: Description Surface Casing Elevation Ground Surface Elevation Riser Pipe (Top) Day' Bos Top of Well Seal 1.0 Bbs Top of Sand Pack 3.0 Bbs Top of Sand Pack 3.0 Bbs Top of Sorreen 4.0 Bbs Top of Sorreen 4.0 Bbs Top of Sorreen 11.9 Base of Screen 11.9 Filter/Sand Pack Type: Sch 40 PVC Screen ID: 42	Development Method	1: UNIC	Development Date: UM	UK	Measuring	Point Information
Riser Pipe (Top) Description Slope Away Surface Casing Elevation Ground Surface Elevatio Surface Elevatio Surface Elevatio Surface Elevatio Riser Pipe (Top) D.44' B65 Lock Identification Purk and with Sticking Casing Diameter: Sch 40 PVC Riser Pipe ID: 4" Sch 40 PVC Riser Pipe ID: 4" Borchole Diameter: G'BR 8" OB Borchole Diameter: G'BR 8" OB Type of Seal: Rentantite clup Screen Type: Sch 40 PVC Screen ID: 4" Screen ID: 4" Screen ID: 4" Screen ID: 4" Screen ID: 5" Screen ID				- 50.	N. Marketta	
Riser Pipe (Top) Description Slope Away Surface Casing Elevation Ground Surface Elevatio Surface Elevatio Surface Elevatio Surface Elevatio Riser Pipe (Top) D.44' B65 Lock Identification Purk and with Sticking Casing Diameter: Sch 40 PVC Riser Pipe ID: 4" Sch 40 PVC Riser Pipe ID: 4" Borchole Diameter: G'BR 8" OB Borchole Diameter: G'BR 8" OB Type of Seal: Rentantite clup Screen Type: Sch 40 PVC Screen ID: 4" Screen ID: 4" Screen ID: 4" Screen ID: 4" Screen ID: 5" Screen ID	Notes: hast we	linstalled by J143	- TICK offsile Friday	ulrstig		rpe: Top Of Riser
Surface Casing Elevation Ground Surface Elevatio Riser Pipe (Top) O 24' 665 Lock Identification Prof. Casing Diameter. Backfill Grount Type: Riser Pipe Type: Riser Pipe ID: Fisher Pipe ID	Ida hu	trye to get had	well musumeds and	develope.	MP Elevation (ft):	
Ground Surface Elevatio Riser Pipe (Top) O 124 665 Riser Pipe (Top) O 124 665 Lock Identification Portan words Steichery Casing Diameter: Backfill/Grout Type: Riser Pipe Type: Riser Pipe Type: Riser Pipe ID: Office Top of Well Seal Top of Sand Pack Top of Screen 4.0 865 Top of Screen 4.0 865 Top of Screen ID: Screen ID: Screen ID: Screen Stot Size: Screen Stot Size: Screen Length: Base of Screen 11.9 End Cap 12.1 865 Drilled Depth 12.1 865 Drilled Depth 12.1 865 Bottom of Exploration 10.1 865 Fallback/Backfill: O 1.1	Item	Depth BMP (ft)	Elevation (ft)		De	escription
Riser Pipe (Top) O.24 B65 Riser Pipe (Top) O.24 B65 Lock Identification Plack was street and place to the street and place	Surface Casing Eleva	tion		Slo	pe Away	
Riser Pipe (Top) O 344 Bis 5 Lock Identification Production Sticking Casing Diameter: Backfill/Grout Type: Riser Pipe Type: Riser Pipe Type: Riser Pipe ID: Filter Pipe ID: Top of Sand Pack Type of Seal: Screen Type: Sch 40 PVC Riser Pipe ID: Filter/Sand Pack Type of Seal: Screen Type: Sch 40 PVC Screen ID: Screen ID: Screen ID: Screen ID: Screen ID: Screen Length: Base of Screen 11.9 End Cap 12.0' Bis 5 Drilled Depth 12.1' Bis 5 Bottom of Exploration 12.1' Bis 5 Fallback/Backfill: O 1' Puch word Sch 40 PVC Riser Pipe ID: Sch 40 PVC Screen ID: Screen ID: Screen ID: Screen Length: Filter/Sand Pack Type: Sump: Fallback/Backfill: O 1' Fallback/	Ground Surface Elev	1.0.0.0.0.0.0.0.0	7/11/2		Surface Seal Type:	Concrete
Top of Well Seal Top of Well Seal Top of Screen	Riser Pipe (Top)	0,24 865				wa
Backfill/Grout Type: Riser Pipe Type: Riser Pipe Type: Riser Pipe Type: Riser Pipe ID: 4* Borchole Diameter: 6*68, 8*06 Type of Seal: Type of Seal: Screen Type: Sch 40 PVC Riser Pipe ID: 4* Borchole Diameter: 6*68, 8*06 Type of Seal: Screen Type: Screen Type: Screen ID: Screen ID: Screen ID: Screen ID: Screen Slot Size: Screen Length: Base of Screen 11.4* Filter/Sand Pack Type: Screen Length: Sump: Fallback/Backfill: O.1* Bottom of Exploration 10.1* 665				1	Plushmount	80
Riser Pipe Type: Riser Pipe ID: 4 2 Borehole Diameter: Continue of Series Inc. Top of Sand Pack Top of Screen 4.0 865 Top of Screen 7.1 865 Screen Type: Screen ID: Scr					Stickup Casing Diameter:	_0 -
Top of Well Seal 1.0 6.5 Top of Sand Pack 7.1 6.65 Top of Screen 7.1 6.5 Gedrade Base of Screen 11.9 End Cap Drilled Depth 12.1 6.5 Riser Pipe ID: 8 Featwarte claip Screen Type: Screen Type: Screen Type: Screen Slot Size: Screen Length: Filter/Sand Pack Type: Sump: Fallback/Backfill: O.1 Bottom of Exploration 10.1 6.5 Fallback/Backfill: O.1				4	Backfill/Grout Type:	NA
Top of Well Seal 1.0 665 Top of Sand Pack 3.0 665 Top of Sand Pack 3.0 665 Top of Screen 4.0 665 Top of Screen 4.0 665 Top of Screen 4.0 665 Top of Screen 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0				-	Riser Pipe Type:	Sch 40 PVC
Top of Screen 4.0 865 Screen Type: Sch 40 AVC 42 7.1 B65 Screen ID: 42 Screen Slot Size: Screen Length: 8 Filter/Sand Pack Type: 400 Us Silican Filtro Qvartz Suml Base of Screen 1.0 565 Drilled Depth 12.1 865 Bottom of Exploration 10.1 665					Riser Pipe ID:	42
Top of Screen 4.0 865 Screen Type: Sch 40 AVC 42 7.1 B65 Screen ID: 42 Screen Slot Size: Screen Length: 8 Filter/Sand Pack Type: 400 Us Silican Filtro Qvartz Suml Base of Screen 1.0 565 Drilled Depth 12.1 865 Bottom of Exploration 10.1 665	Top of Well Seal	1.0 365		4-	Borehole Diameter:	6ºBR, 8º0B
Top of Screen 4.0 865 Screen Type: Sch 40 PVC	Top of Sand Pack	3.0-865	10		Type of Seal:	Bentonite chip
Screen Type: Screen Type: Sch 40 pv C						
Base of Screen Base of Screen 11.9 End Cap Drilled Depth 12.1' 865 Bottom of Exploration 10.1' 865 Screen ID: Screen	Top of Screen	4.0 865			Screen Type:	Sch 40 PVC
Base of Screen 11.9 Filter/Sand Pack Type: #00 Us Silican Filtro Qvartz Suml Bottom of Exploration 12.1 865 Screen Length: 8 Filter/Sand Pack Type: #00 Us Silican Filtro Qvartz Suml Fallback/Backfill: 0.1			V 6.07 TUR		Screen ID:	
Base of Screen 11.9 Filter/Sand Pack Type: #00 Us Silican Filtro Qvartz Suml Bottom of Exploration 12.1 865 Screen Length: 8 Filter/Sand Pack Type: #00 Us Silican Filtro Qvartz Suml Fallback/Backfill: 0.1		7.1 365			Screen Slot Size:	0.01=
Base of Screen 11.9 Type: #00 Us Silicau Filfro Qvartz Suml End Cap 12.0' 865 Drilled Depth 12.1' 865 Bottom of Exploration 12.1' 865		(Bedroll			Screen Length:	8'
End Cap 12.0' B65 Sump: Drilled Depth 12.1' B65 Fallback/Backfill: 0.1' Bottom of Exploration 12.1' B65					Filter/Sand Pack	HOO US GIVE CIA
Drilled Depth 12.1' 865 Bottom of Exploration 12.1' 865 Fallback/Backfill: 0.1'	Base of Screen	11.9-			type.	avartz Sund
Bottom of Exploration 12-1 865	End Cap	12.0'365		-	Sump:	
	Drilled Depth	12.1' 865		-	Fallback/Backfill:	0.1
Bedrock Surface 7,1'B65 NOT TO SCALE	Bottom of Exploratio	121 BUS				
	Bedrock Surface	7.1'865				NOT TO SCALE

Designat Masses	FLUSHN	IOUNT	Date St. 1		Data Completed: 1 1 1
Project Name: Project Location:	Elite Vogue Dry Cleaners Rochester, NY		Logged By:		Date Completed: 10/24/19
Project Number:	3611191236	Task Number 0.03		C.Styper	
Subcontractor:	Nothnagle	Drilling Method:			112.750
Development Meth Bucking Posts/Bal Notes:	nod: Surgelstuck, whole lards: NA		0/25/14	Measuring Point (MP) Typ	Point Information Top Of Riser
			MP Elevat		
Item	Depth BMP (ft)	Elevation (ft)		Des	cription
Surface Casing Ele	evation		Slope Away		
Ground Surface El		7/11/	Surface Sea	ıl Type:	Concrete
Riser Pipe (Top)	0.32 865		Lock Identi	fication	NA
			Aushmou Stiekup Ca:	at sing Diameter:	80
			♦ Backfill/Gr	out Type:	NA
(OW = 7.5 865 10	125/14 150=	Riser Pipe	Гуре:	Sch 40 PVE
			Riser Pipe	D:	42
Top of Well Seal	1.0'365		Borehole D	iameter:	8=
Top of Sand Pack	3.51865	IBBBB	Type of Sea	ale	Bentonite chips
Top of Screen	4.3'865				C D HO DO
			Screen Typ	e:	Sch 40 PVL
8.2'865	Wentherl	3	Screen ID:	6'	42
10'865 C	Wentherl Bredvach ompetrut Bedwah	<u> </u>	Screen Len		0.01= 10'(Actuals of 9.5'
Base of Screen	14.3'865		Filter/Sand Type:	Pack #	00 USSilica F. 1 Pro
					Cours som
End Cap	14.4' 865		Sump:		A Commence
Drilled Depth	15.01665		Fallback/Ba	ekfill:	0.6 (14.4-15 1865)
Bottom of Explora	tion 15.0'BGS				
Bedrock Surface		V			NOT TO SCALE
weatherd r	1 courteus	nel			

NYSDEC QUALITY ASSURANCE PROJECT PLAN

511 Congress Street, Portland Maine 04101

WELL/P	IEZOMETER CON FLUSHM	STRUCTION DIAGRA	M LOC	ATION ID:	W-7
Project Name: Project Location:	Elite Vogue Dry Cleaners Rochester, NY	T 121 1 002	Logge	70.141	Date Completed: 10/28/19
Project Number: Subcontractor:	3611191236 Nothnagle	Task Number 0.03 Drilling Method: 1+5/2	/TriCone	ed By:	Checked Date: 1 72 16
	d: Surgeblah, whole,		1119	Measuring	Point Information
	un creited from) sample PDR.	Soilbonighy and		ring Point (MP) Ty levation (ft):	rpe: Top Of Riser
Item	Depth BMP (ft)	Elevation (ft)		De	escription
Surface Casing Elev	vation		_ Slope Away	у	
Ground Surface Ele		7/1/2	Surfac	e Seal Type:	Concrete
Riser Pipe (Top)	0.25 065			dentification	NA
			Sticku	p Casing Diameter:	82
			Backfi	ll/Grout Type:	NA
			Riser I	Pipe Type:	Sdi 40 PVC
			Riser I	Pipe ID:	42
Top of Well Seal	1.0'865		← Boreho	ole Diameter:	8 0B 6 BR
Top of Sand Pack	3,5'865		← Type o	of Seal:	BentoniteChip
Top of Screen	5.5'865			5	Sch40 PVC
			Screen Screen		42
	1.0	e'a, (Slot Size:	0.01=
	70	.5'865 TXY	Screen	Length:	10 (Actuals (#81.5')
Base of Screen	15.2° B65		Filter/S	Sand Pack	#00 US Silica Fillro Quarte Sund
End Cap	15.5' B65		Sump.		3.4.2.2.2
Drilled Depth	15.5' B65		Fallbac	ck/Backfill:	_
Bottom of Explorati	on 15.5' B65				
Bedrock Surface	10.5'065				NOT TO SCALE

FIGURE 4.8 WELL/PIEZOMETER CONSTRUCTION DIAGRAM - FLUSHMOUNT NYSDEC QUALITY ASSURANCE PROJECT PLAN

WELL/P	PIEZOMETER CON FLUSHM	STRUCTION DIAG	RAM	LOCATION ID: [W - 8	
Project Name: Project Location: Project Number: Subcontractor:	Elite Vogue Dry Cleaners Rochester, NY 3611191236 Nothnagle	Task Number 0.0.		Date Started: 10/03/19 Logged By: J. Rawc Checked By: C. Strees	
Development Meth Bucking Posts/Ball Notes:	od: Svrzebloch, whale pards: NA		णे <u>श्वा</u>		Point Information Top Of Riser
Item Surface Casing Ele	Depth BMP (ft)	Elevation (ft)	Slo	De D	escription
Ground Surface Ele Riser Pipe (Top)	0.341865			Surface Seal Type: Lock Identification Flankmownt Stickup Casing Diameter:	Concrete NA
64	1 = 7. 7'BGS 10l26	14 0815	+	Backfill/Grout Type: Riser Pipe Type: Riser Pipe ID:	50040 PVC 4=
Top of Well Seal	1.0'365			Borehole Diameter:	8208 62BR Bentonite chip
Top of Sand Pack	22'865		-	Type of Seal:	Bentonitechip
Top of Screen	2.6'365			Screen Type: Screen ID:	Sch40PVC 4=
	8.2865	-1×17		Screen Slot Size:	0.012 10' (terrul stors 9.5')
Base of Screen	12.5'865			Filter/Sand Pack Type:	400 USSilica Fil Pro Quartz sand
End Cap	12.6'865			Sump:	
Drilled Depth	13.5'865	9123533	-	Fallback/Backfill:	0.9' (12.6-13.5'665)
Bottom of Explorat	8.2'865				NOT TO SCALE

FIGURE 4.8 M - FLUSHMOUNT

WELL/PIEZOMETER CONSTRUCTION DIAGRAM - FLUSHMOUNT NYSDEC QUALITY ASSURANCE PROJECT PLAN

WELL/I	PIEZOMETER CON FLUSHA	NSTRUCTION DIAGRA IOUNT	M	LOCATION ID:	1W-20
Project Name:	Elite Vogue Dry Cleaners			Date Started: 10/29/10	Date Completed: 10/29/19
Project Location:	Rochester, NY			Logged By: John L	uttinger
Project Number:	3611191236	Task Number 0.03		Checked By: 92	Checked Date: 1/2-3/19
Subcontractor:	Nothnagle	Drilling Method:		_	
Development Meth Bucking Posts/Ball	nod: Surgeoloch, while lards: NA	Development Date: 11	1/19	Measuring	Point Information
Notes: Well &	higam created for is supling FOR	n Soil borny log and		Measuring Point (MP) Ty MP Elevation (ft):	ype: Top Of Riser
Item	Depth BMP (ft)	Elevation (ft)		D	escription
Surface Casing Ele	evation		Sle	ope Away	
Ground Surface El				Surface Seal Type:	Convert Concrete
Riser Pipe (Top)	0.30' B65			Lock Identification	NA
			1	Stickup Casing Diameter.	84
			+	Backfill/Grout Type:	NA
			+	Riser Pipe Type:	Sch 40PVC
				Riser Pipe ID:	22
Top of Well Seal	1'865		—	Borehole Diameter:	6º08 4ºBR
Top of Sand Pack	2.5'865		-	Type of Seal:	Bentonite Chip
Top of Screen	3.7 B65			Screen Type:	Sch 40 PVC
				Screen ID:	72
				Screen Slot Size:	0.01=
	BR 28.7	B65/200		Screen Length:	9.5
Base of Screen	13.8 365		4-	Filter/Sand Pack Type;	#00 US Silica Fillio Quartz Sund
End Cap	13,2'065			Sump:	
Drilled Depth	13.2'065		-	Fallback/Backfill:	0.1
Bottom of Explorat					
Bedrock Surface	8.7 865				NOT TO SCALE

WELL/PIE	ZOMETER CON FLUSHM	STRUCTION DIAGR	AM	LOCATION ID:	W-21
Project Location: Ro	the Vogue Dry Cleaners Chester, NY 1191236	Task Number 0.03		Date Started: 10/31/19 Logged By: John Mc Checked By:	Date Completed: 10/3/1/9 wHinger Checked Date: 1/22/20
Subcontractor: No	thnagle	Drilling Method: 1+5	A/TriCo	ne	1
Bucking Posts/Ballards	NA NA	Development Date:		Measuring	Point Information
Notes: Well Diag	gram created for and LEGWS	roun development log coupling FOR, (TR)	, soil	Measuring Point (MP) Ty MP Elevation (ft):	pe: Top Of Riser
Item	Depth BMP (ft)	Elevation (ft)		De	scription
Surface Casing Elevation	on Fligh Mary		SI	ope Away	
Ground Surface Elevati		TILL	Villa	-	
			24	Surface Seal Type:	Concrede
Riser Pipe (Top)	0 130' B65			Lock Identification	NA
			1	Stickup Casing Diameter:	82
			4	Backfill/Grout Type:	NA
			-	Riser Pipe Type:	Sch 40 PVC
				Riser Pipe ID;	22
Top of Well Seal	1.0° BGS		4	Borehole Diameter:	6=08 4=BR
Top of Sand Pack	2.5' 865			Type of Seal:	Bentonite chip
Top of Screen	3.3'665				614004
				Screen Type:	Sch40PVC
				Screen ID:	22
	R. Dani	ha85065 E		Screen Slot Size:	0.013
	0670.80	hal 8.5 BG5		Screen Length:	9'
				Filter/Sand Pack Type:	100 US S. 15 F.D.
Base of Screen	12.7 865			турс.	Quarta Sand
End Cap	123'865			Sump:	
Drilled Depth	13,5'BGS			Fallback/Backfill:	Sandpula to 13,5'BGS
Bottom of Exploration	13.5'BLS		-1		
Bedrock Surface	8.5'BGS	-			NOT TO SCALE
Alan -					

WELL/I	PIEZOMETER CON FLUSHN	STRUCTION DIAGRAM IOUNT		LOCATION ID:	W-22
Project Name:	Elite Vogue Dry Cleaners			Date Started: 10/30/19	Date Completed: /0/30/19
Project Location:	Rochester, NY			Logged By: John hu	
Project Number:	3611191236	Task Number 0,03		Checked By: 9R	Checked Date: 1/32/20
Subcontractor:	Nothnagle	Drilling Method: 145/	2 Core		
Development Meth Bucking Posts/Bal	nod: SurzeBloch, whale		19_	Measuring	Point Information
Notes: Welldie	uguun creptul fion W FDA scupling FDA	u soil boring log and	=	Measuring Point (MP) Ty MP Elevation (ft):	pe: Jup Of Riser
Item	Depth BMP (ft)	Elevation (ft)		De	scription
Surface Casing Ele	evation OBGS		Slo	ope Away	
Ground Surface El				Surface Seal Type:	Concrete
Riser Pipe (Top)	0,30'865			Lock Identification	Concrete
		1		Stickup Casing Diameter:	82
			4	Backfill/Grout Type:	NA
			+	Riser Pipe Type:	Sch 40 PVC
				Riser Pipe ID:	22
Top of Well Seal	1.0'B65		4-	Borehole Diameter:	620B/42BR
Top of Sand Pack	2.5'B65		←	Type of Seal:	Bentonite Chip
Top of Screen	3.0865			Screen Type:	Sch 40 pvc
				Screen ID:	22
	8	dres =		Screen Slot Size:	0.012
	010	5045		Screen Length:	9'
Base of Screen	11.9 BLS			Filter/Sand Pack Type. £	400 VS Silica Fillro Quertz Saul
End Cap	12.0' B65			Sump:	
Drilled Depth	13,3'865		-	Fallback/Backfill:	_/, 2'
Bottom of Explora					
Bedrock Surface	_825				NOT TO SCALE

ATTACHMENT 3 EXISTING SSDS DATA

<u>IW-1 RHT1</u>

Data Set:

Date: 10/31/19

Time: 15:00:07

PROJECT INFORMATION

Company: MACTEC Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue

Test Well: <u>IW-1</u>

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-1)

Initial Displacement: 2.78 ft

Total Well Penetration Depth: 3.54 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 3.54 ft

Screen Length: 3.54 ft Well Radius: 0.1667 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 0.01867 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.89 ft

IW-1 RHT1

Data Set:

Date: <u>10/31/19</u>

Time: 15:00:51

PROJECT INFORMATION

Company: MACTEC Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue

Test Well: IW-1

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-1)

Initial Displacement: 2.78 ft

Total Well Penetration Depth: 3.54 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 3.54 ft

Screen Length: 3.54 ft Well Radius: 0.1667 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 0.02978 cm/sec

Solution Method: Hvorslev

y0 = 1.786 ft

IW-1 RHT2

Data Set:

Date: 10/31/19

Time: 15:17:42

PROJECT INFORMATION

Company: MACTEC

Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue Test Well: IW-1

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-1)

Initial Displacement: 2.01 ft

Total Well Penetration Depth: 3.54 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 3.54 ft

Screen Length: 3.54 ft Well Radius: 0.1667 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: <u>Unconfined</u>

K = 0.0182 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.756 ft

IW-1 RHT2

Data Set:

Date: 10/31/19

Time: 15:17:15

PROJECT INFORMATION

Company: MACTEC

Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue Test Well: IW-1

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-1)

Initial Displacement: 2.01 ft

Total Well Penetration Depth: 3.54 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 3.54 ft

Screen Length: 3.54 ft Well Radius: 0.1667 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 0.02791 cm/sec

Solution Method: Hvorslev

y0 = 1.646 ft

Data Set: P:\...\IW-2 RHT1.aqt

Date: 10/31/19

Time: 15:27:32

PROJECT INFORMATION

Company: MACTEC Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue

Test Well: IW-2

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-2)

Initial Displacement: 1.925 ft

Total Well Penetration Depth: 6.35 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 6.35 ft

Screen Length: 6.35 ft Well Radius: 0.1667 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 0.001684 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.486 ft

Data Set: P:\...\IW-2 RHT1.aqt

Date: 10/31/19

Time: 15:27:52

PROJECT INFORMATION

Company: MACTEC Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue Test Well: IW-2

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-2)

Initial Displacement: 1.925 ft

Total Well Penetration Depth: 6.35 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 6.35 ft

Screen Length: 6.35 ft Well Radius: 0.1667 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 0.00249 cm/sec

Solution Method: Hvorslev

y0 = 1.425 ft

Data Set: P:\...\IW-2 RHT2.aqt

Date: 10/31/19

Time: 15:32:45

PROJECT INFORMATION

Company: MACTEC Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue

Test Well: IW-2

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-2)

Initial Displacement: 3.05 ft

Total Well Penetration Depth: 6.35 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 6.35 ft

Screen Length: <u>6.35</u> ft Well Radius: <u>0.1667</u> ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 0.00177 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.622 ft

Data Set: P:\...\IW-2 RHT2.aqt

Date: <u>10/31/19</u> Time: <u>15:32:12</u>

PROJECT INFORMATION

Company: MACTEC Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue Test Well: IW-2

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-2)

Initial Displacement: 3.05 ft

Total Well Penetration Depth: 6.35 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 6.35 ft

Screen Length: 6.35 ft Well Radius: 0.1667 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 0.002732 cm/sec

Solution Method: Hvorslev

y0 = 1.604 ft

Data Set: P:\...\IW-3 RHT1.aqt

Date: 10/31/19

Time: 15:38:35

PROJECT INFORMATION

Company: MACTEC Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue

Test Well: IW-3

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-3)

Initial Displacement: 3.215 ft

Total Well Penetration Depth: 4.82 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 4.82 ft

Screen Length: 4.82 ft Well Radius: 0.1667 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 0.002903 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.822 ft

Data Set: P:\...\IW-3 RHT1.aqt

Date: 10/31/19

Time: 15:38:15

PROJECT INFORMATION

Company: MACTEC Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue Test Well: IW-3

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-3)

Initial Displacement: 3.215 ft

Total Well Penetration Depth: 4.82 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 4.82 ft

Screen Length: 4.82 ft Well Radius: 0.1667 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 0.004437 cm/sec

Solution Method: Hvorslev

y0 = 1.765 ft

Data Set: P:\...\IW-3 RHT2.aqt

Date: 10/31/19

Time: 15:43:01

PROJECT INFORMATION

Company: MACTEC Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue Test Well: IW-3

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-3)

Initial Displacement: 2.871 ft

Total Well Penetration Depth: 4.82 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 4.82 ft

Screen Length: 4.82 ft Well Radius: 0.1667 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 0.002633 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.582 ft

Data Set: P:\...\IW-3 RHT2.aqt

Date: 10/31/19 Time: 15:43:28

PROJECT INFORMATION

Company: MACTEC Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue

Test Well: IW-3

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft An

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-3)

Initial Displacement: 2.871 ft

Total Well Penetration Depth: 4.82 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 4.82 ft

Screen Length: 4.82 ft Well Radius: 0.1667 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 0.00392 cm/sec

Solution Method: Hvorslev

y0 = 1.472 ft

Data Set: P:\...\IW-4 RHT1.aqt

Date: 10/31/19

Time: 15:54:46

PROJECT INFORMATION

Company: MACTEC

Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue Test Well: IW-4

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-4)

Initial Displacement: 1.788 ft

Total Well Penetration Depth: 4.87 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 4.87 ft

Screen Length: 4.87 ft Well Radius: 0.1667 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 0.001189 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.722 ft

Data Set: P:\...\IW-4 RHT1.aqt

Date: 10/31/19

Time: 15:54:23

PROJECT INFORMATION

Company: MACTEC

Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue Test Well: IW-4

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-4)

Initial Displacement: 1.788 ft

Total Well Penetration Depth: 4.87 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 4.87 ft

Screen Length: 4.87 ft Well Radius: 0.1667 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 0.001846 cm/sec

Solution Method: Hvorslev

y0 = 1.675 ft

Data Set: P:\...\IW-4 RHT2.aqt

Date: 10/31/19

Time: 15:57:33

PROJECT INFORMATION

Company: MACTEC

Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue Test Well: IW-4

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-4)

Initial Displacement: 2.17 ft

Total Well Penetration Depth: 4.87 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 4.87 ft

Screen Length: 4.87 ft Well Radius: 0.1667 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 0.0008744 cm/sec

Solution Method: Bouwer-Rice

y0 = 1.5 ft

Data Set: P:\...\IW-4 RHT2.aqt

Date: 10/31/19 Time: 15:57:54

PROJECT INFORMATION

Company: MACTEC Client: NYSDEC

Project: 3611191236.03 Location: Elite Vogue Test Well: IW-4

Test Date: October 2019

AQUIFER DATA

Saturated Thickness: 25. ft

Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (IW-4)

Initial Displacement: 2.17 ft

Total Well Penetration Depth: 4.87 ft

Casing Radius: 0.1667 ft

Static Water Column Height: 4.87 ft

Screen Length: 4.87 ft Well Radius: 0.1667 ft Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: Unconfined

K = 0.001237 cm/sec

Solution Method: Hvorslev

y0 = 1.371 ft

ATTACHMENT 4 SITE SURVEY

ATTACHMENT 5

DATA USABILITY SUMMARY REPORT

DATA USABILITY SUMMARY REPORT OCTOBER and NOVEMBER 2019 SAMPLING FORMER ELITE VOGUE DRY CLEANERS SITE ROCHESTER, NEW YORK

1.0 INTRODUCTION

Soil, water, indoor air, and soil vapor samples were collected at the Former Elite Vogue Dry Cleaners Site in October and November of 2019 and submitted to Test America Laboratories (TAL) located in Amherst, New York, for analysis. Indoor air samples are reported in separate Data Usability Summary Reports (DUSRs). Samples included in this review were analyzed by one or more of the following United States Environmental Protection Agency (USEPA) methods:

- Volatile Organic Compounds (VOCs) by Method 8260C
- VOCs by Method TO-15

Sample results were reported in the following SDGs:

- 480-161370-1
- 480-161714-1
- 480-161814-1
- 480-161815-1
- 140-17471-1
- 480-162794-1

A DUSR review was completed based on the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation guidance (NYSDEC, 2010). Sample event information included in this DUSR is presented in the following Tables:

- Table 1 Summary of Samples and Analytical Methods
- Table 2 Summary of Analytical Results
- Table 3 Summary of Qualification Actions

A summary of table notes applicable to Tables 1, 2, and 3 is presented just before Table 1.

Laboratory deliverables included:

 Category B deliverables as defined in the NYSDEC Analytical Services Protocols (NYSDEC, 2005).

The DUSR review included the following evaluations. A table of the project control limits is presented in Attachment A. Applicable laboratory quality control (QC) summary forms are included in Attachment B to document QC outliers associated with qualification actions.

- Lab Report Narrative Review
- Data Package Completeness and COC Records (Table 1 verification)
- Sample Preservation and Holding Times
- Instrument Calibration (report narrative/lab-qualifier evaluation)
- QC Blanks

- Laboratory Control Samples (LCS)
- Matrix Spike/Matrix Spike Duplicates (MS/MSD)
- Surrogate Spikes (if applicable)
- Field Duplicates
- Target Analyte Identification and Quantitation
- Raw Data (chromatograms), Calculation Checks and Transcription Verifications
- Reporting Limits
- Electronic Data Qualification and Verification

Data qualification actions are applied when necessary based on general procedures in USEPA validation guidelines (USEPA, 2014; USEPA, 2016) and the judgment of the project chemist. The following laboratory or data review qualifiers are used in the final data presentation:

U = target analyte is not detected above the reported detection limit or was qualified not detected

J = concentration is estimated

J+ = concentration is estimated, biased high

UJ = target analyte is not detected above the reported detection limit and is estimated

Results are interpreted to be usable as reported by the laboratory or as qualified in the following sections.

2.0 POTENTIAL DATA LIMITATIONS

Based on the DUSR review the data meet the data quality objectives; however, the following potential limitations were identified:

VOCs by 8260C

- 480-161370-1 Low concentration detection of methylene chloride in sample 828164IW04007 was qualified not detected (U) based on contamination in the associated trip blank (828164-TB1). The qualified results are summarized in Table 3 with reason code BL2.
- **480-161714-1** 1,2,4-Trimethylbenzene and/or 1,3,5-Trimethylbenzene in samples 828164IW06009, 828164IW08008, and 828164IW06006 were detected above the linear range of the calibration and results were qualified "E" by the lab. For final reporting, results were qualified estimated (J). The qualified results are summarized in Table 3 with reason code E.
- 480-162794-1 MS/MSD analyses were performed using sample 828164-MW01018. High percent recovery was reported for 1,2,4-trimethylbenzene. The detection of 1,2,4-trimethylbenzene in sample 828164-MW01018 was qualified estimated, high bias (J+). The qualified result is summarized in Table 3 with reason code MSH.

VOCs by TO-15

• 140-17471-1 – As noted in the case narrative, the continuing calibration associated with sample 828164-SVE03A is outside the acceptance limits for carbon tetrachloride. The reporting limit for carbon tetrachloride in sample

828164-SVE03A was qualified estimated (UJ). The qualified result is summarized in Table 3 with reason code CCV%D.

• 140-17471-1 – Sample 828164-SVE03A was qualified estimated (J) for 4-methyl-2-pentanone due to chromatographic interference, as reported by the laboratory. The qualified result is summarized in Table 3 with reason code CI.

3.0 ADDITIONAL QC EXCEEDANCES AND OBSERVATIONS

A subset of samples was analyzed at dilution due to sample matrix and/or target compound concentrations. Reporting limits for non-detects are elevated as indicated in Table 2.

A subset of target analytes for VOCs for the samples analyzed in SDG 480-161370-1 were not analyzed due to miscommunication with the laboratory.

The trip blank in SDG 480-162794-1 was assigned a sample collection date by the lab on the sample login that did not reflect the date on the chain of custody. Final report includes sample date as written on the COC.

There were no additional observations or quality control exceedances not specifically addressed above (Section 2.0) or included in Table 3. Unless presented in Table 3, sample results are usable as reported by the laboratory.

Reference:

NYSDEC, 2005. "Analytical Services Protocols"; June 2005.

NYSDEC, 2010. "Technical Guidance for Site Investigation and Remediation-Appendix 2B"; DER-10; Division of Environmental Remediation; May 2010.

USEPA, 2014. "Validating Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry SW-846 Method 8260B & 8260C"; SOP NO. HW-24; Revision 4; Hazardous Waste Support Section; September 2014.

USEPA, 2016. "Analysis of Volatile Organic Compounds in Air Contained in Canisters by Method TO-15"; SOP NO. HW-31; Revision 6; Hazardous Waste Support Section; September 2016.

Data Validator: Madison Dinsmore

January 14, 2020

Reviewed by: Julie Ricardi

January 17, 2020

Standard Table Notes:

ng/L – nanograms per liter

Sample Type (QC Code) Qualification Reason Codes

FS – field sample BL1 – method blank qualifier

FD – field duplicate BL2 – field or trip blank qualifier

TB – trip blank CCV – continuing calibration verification recovery outside limits

EB – equipment blank CCV%D – continuing calibration verification percent difference exceeds goal

FB – field blank CCVRRF – continuing calibration relative response factor low

CI – chromatographic interference present

Matrix DCPD – dual column percent difference exceeds limit

GW – ground water E – result exceeds calibration range

BW – blank water FD – field duplicate precision goal exceeded

TW – tap water FP – false positive interference

SV – soil vapor HT – holding time for prep or analysis exceeded

SED - sediment HTG – holding time for prep or analysis grossly exceeded

ICV – initial calibration verification recovery outside limit

<u>Units</u> ICVRRF – initial calibration verification relative response factor low

mg/L – milligrams per liter ICVRSD – initial calibration verification % relative standard deviation exceeds

goal

μg/L – micrograms per liter

ISL – internal standard response less than limit

mg/kg – milligrams per kilogram

LCSH – laboratory control sample recovery high

µg/kg – micrograms per kilogram

LCSL – laboratory control sample recovery low μg/m³ – micrograms per cubic meter

LCSRPD – laboratory control sample/duplicate relative % difference precision

goal exceeded

Qualifiers LD – lab duplicate precision goal exceeded

U – not detected above quantitation limit MSH – matrix spike and/or MS duplicate recovery high

J – estimated quantity

MSL – matrix spike and/or MS duplicate recovery low

J+ - estimated quantity, biased high MSRPD – matrix spike/duplicate relative % difference precision goal exceeded

J- - estimated quantity, biased low N – analyte identification is not certain

R – data unusable PEM – performance evaluation mixture exceeds limit

PM – sample percent moisture exceeds EPA guideline

<u>Fraction</u> SD – serial dilution result exceeds percent difference limit

T – total SP – sample preservation/collection does not meet method requirement

D – dissolved SSH – surrogate recovery high

N – normal SSL – surrogate recovery low

TD – dissolved concentration exceeds total

MOCHESTER, NEW TORK										
				М	ethod Class	VOCs	VOCs	Moisture		
				Analy	sis Method	SW8260C	TO15	D2216		
					Fraction	N	N	N		
Lab SDG	Location	Field Sample ID	Sample Date	Media	Qc Code	Param_Count	Param_Count	Param_Count		
480-161370-1	IW-1	828164IW01005	10/15/2019	SOIL	FS	51		2		
480-161370-1	IW-1	828164IW01009	10/15/2019	SOIL	FS	51		2		
480-161370-1	IW-2	828164IW02005	10/18/2019	SOIL	FS	51		2		
480-161370-1	IW-2	828164IW02009	10/18/2019	SOIL	FS	51		2		
480-161370-1	IW-2	828164IW02012	10/18/2019	BED	FS	51				
480-161370-1	IW-3	828164IW03007	10/21/2019	SOIL	FS	51		2		
480-161370-1	IW-3	828164IW03010	10/21/2019	SOIL	FS	51		2		
480-161370-1	IW-4	828164IW04007	10/22/2019	SOIL	FS	51		2		
480-161370-1	IW-4	828164IW04009	10/22/2019	SOIL	FS	51		2		
480-161370-1	QC	828164-TB1	10/15/2019	BS	TB	51				
480-161714-1	IW-3	828164IW03014	10/21/2019	BED	FS	61				
480-161714-1	IW-4	828164IW04013	10/22/2019	BED	FS	61				
480-161714-1	IW-5	828164IW05006	10/25/2019	SOIL	FS	61		2		
480-161714-1	IW-5	828164IW05006D	10/25/2019	SOIL	FD	61		2		
480-161714-1	IW-6	828164IW06006	10/24/2019	SOIL	FS	61		2		
480-161714-1	IW-6	828164IW06009	10/24/2019	SOIL	FS	61		2		
480-161714-1	IW-8	828164IW08005	10/23/2019	SOIL	FS	61		2		
480-161714-1	IW-8	828164IW08008	10/23/2019	SOIL	FS	61		2		
480-161714-1	QC	828164-TB2	10/21/2019	BS	TB	61				
480-161814-1	IW-7	828164IW07005	10/28/2019	SOIL	FS	61		2		
480-161814-1	IW-7	828164IW07009	10/28/2019	SOIL	FS	61		2		
480-161815-1	IW-6	828164IW06012	10/24/2019	BED	FS	61				
480-162794-1	IW-1	828164-IW01011	11/12/2019	GW	FS	58				
480-162794-1	IW-2	828164-IW02011	11/13/2019	GW	FS	58				
480-162794-1	IW-3	828164-IW03011	11/13/2019	GW	FS	58				
480-162794-1	IW-4	828164-IW04011	11/13/2019	GW	FS	58				
480-162794-1	IW-5	828164-IW05009	11/13/2019	GW	FS	58				
480-162794-1	IW-6	828164-IW06011	11/14/2019	GW	FS	58				

				М	ethod Class	VOCs	VOCs	Moisture
				Analy	sis Method	SW8260C	TO15	D2216
					Fraction	N	N	N
Lab SDG	Location	Field Sample ID	Sample Date	Media	Qc Code	Param_Count	Param_Count	Param_Count
480-162794-1	IW-7	828164-IW07013	11/14/2019	GW	FS	58		
480-162794-1	IW-8	828164-IW08010	11/13/2019	GW	FS	58		
480-162794-1	MW-01	828164-MW01018	11/15/2019	GW	FS	58		
480-162794-1	MW-02	828164-MW02013	11/15/2019	GW	FS	58		
480-162794-1	MW-03	828164-MW03015	11/13/2019	GW	FS	58		
480-162794-1	MW-12	828164-MW12011	11/14/2019	GW	FS	58		
480-162794-1	MW-13	828164-MW13011	11/14/2019	GW	FS	58		
480-162794-1	MW-14	828164-MW14011	11/15/2019	GW	FS	58		
480-162794-1	MW-20	828164-MW20010	11/13/2019	GW	FS	58		
480-162794-1	MW-21	828164-MW21009	11/14/2019	GW	FS	58		
480-162794-1	MW-22	828164-MW22010	11/14/2019	GW	FS	58		
480-162794-1	PZ-6	828164-PZ06008	11/14/2019	GW	FS	58		
480-162794-1	PZ-7	828164-PZ07007	11/15/2019	GW	FS	58		
480-162794-1	QC	TRIP BLANK	11/15/2019	BW	TB	58		
140-17471-1	SVE-01	828164-SVE01A	11/19/2019	SV	FS		52	
140-17471-1	SVE-01	828164-SVE01B	11/20/2019	SV	FS		52	
140-17471-1	SVE-03	828164-SVE03A	11/20/2019	SV	FS		52	
140-17471-1	SVE-03	828164-SVE03B	11/20/2019	SV	FS		52	

ROCHESTER, NEW YORK									
		Location	IW-1	IW-2	IW-3	IW-4			
		Lab SDG	480-162794-1	480-162794-1	480-162794-1	480-162794-1			
		Sample Date	11/12/2019	11/13/2019	11/13/2019	11/13/2019			
		Sample ID	828164-IW01011	828164-IW02011	828164-IW03011	828164-IW04011			
		Qc Code	FS	FS	FS	FS			
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier			
SW8260C	1,1,1-Trichloroethane	ug/l	20 U	50 U	20 U	8 U			
SW8260C	1,1,2,2-Tetrachloroethane	ug/l	20 U	50 U	20 U	8 U			
SW8260C	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	20 U	50 U	20 U	8 U			
SW8260C	1,1,2-Trichloroethane	ug/l	20 U	50 U	20 U	8 U			
SW8260C	1,1-Dichloroethane	ug/l	20 U	50 U	20 U	8 U			
SW8260C	1,1-Dichloroethene	ug/l	20 U	50 U	20 U	8 U			
SW8260C	1,2,4-Trichlorobenzene	ug/l	20 U	50 U	20 U	8 U			
SW8260C	1,2,4-Trimethylbenzene	ug/l	1100	2500	690	33			
SW8260C	1,2-Dibromo-3-chloropropane	ug/l	20 U	50 U	20 U	8 U			
SW8260C	1,2-Dibromoethane	ug/l	20 U	50 U	20 U	8 U			
SW8260C	1,2-Dichlorobenzene	ug/l	20 U	50 U					
SW8260C	1,2-Dichloroethane	ug/l	20 U	20 U 50 U 20 U		8 U			
SW8260C	1,2-Dichloropropane	ug/l	20 U	50 U	20 U	8 U			
SW8260C	1,3,5-Trimethylbenzene	ug/l	20 U	190	36	8 U			
SW8260C	1,3-Dichlorobenzene	ug/l	20 U	50 U	20 U	8 U			
SW8260C	1,4-Dichlorobenzene	ug/l	20 U	50 U	20 U	8 U			
SW8260C	2-Butanone	ug/l	200 U	500 U	200 U	80 U			
SW8260C	2-Hexanone	ug/l	100 U	250 U	100 U	40 U			
SW8260C	4-iso-Propyltoluene	ug/l	21	48 J	7 J	8 U			
SW8260C	4-Methyl-2-pentanone	ug/l	100 U	250 U	100 U	40 U			
SW8260C	Acetic acid, methyl ester	ug/l	50 U	130 U	50 U	20 U			
SW8260C	Acetone	ug/l	200 U	500 U	200 U	80 U 8 U			
SW8260C	Benzene	ug/l	20 U	50 U	50 U 20 U				
SW8260C	Bromodichloromethane	ug/l	20 U	50 U	20 U	8 U			
SW8260C	Bromoform	ug/l	20 U	50 U 20 U		8 U			
SW8260C	Bromomethane	ug/l	20 U	50 U					

	ROCHESTER, NEW YORK											
		Location	IW-1	IW-1 IW-2			IV	V-3	١٧	V-4		
		Lab SDG	480-1627	94-1	480-16	52794-1	480-16	52794-1	480-16	62794-1		
		Sample Date	11/12/2	019	11/13	3/2019	11/13	3/2019	11/13	3/2019		
		Sample ID	828164-IW01011		828164-IW02011		828164-IW03011		828164	-IW04011		
		Qc Code	FS		FS		FS		1	FS		
Method	Parameter	Units	Result (Result Qualifier		Qualifier	Result	Qualifier	Result	Qualifier		
SW8260C	Carbon disulfide	ug/l	20 U		50	U	20	U	8	U		
SW8260C	Carbon tetrachloride	ug/l	20 U		50	U	20	U	8	U		
SW8260C	Chlorobenzene	ug/l	20 U		50	U	20	U	8	U		
SW8260C	Chloroethane	ug/l	20 U		50	U	20	U	8	U		
SW8260C	Chloroform	ug/l	20 U		50	U	20	U	8	U		
SW8260C	Chloromethane	ug/l	20 U		50	U	20	U	8	U		
SW8260C	cis-1,2-Dichloroethene	ug/l	66		700		1100		260			
SW8260C	cis-1,3-Dichloropropene	ug/l	20 U		50	U	20 U		8	U		
SW8260C	Cyclohexane	ug/l	20 U		50 U		20 U		3.4	J		
SW8260C	Dibromochloromethane	ug/l	20 U		50	U			8	U		
SW8260C	Dichlorodifluoromethane	ug/l	20 U		50	50 U 20 U		8	U			
SW8260C	Ethylbenzene	ug/l	20 U		50			50 U 15 J		J	8	U
SW8260C	Isopropylbenzene	ug/l	20 U		86		86 48		24			
SW8260C	Methyl cyclohexane	ug/l	20 U		50	50 U 3.5 J		J	4.7	' J		
SW8260C	Methyl Tertbutyl Ether	ug/l	20 U		50	U	20	U	8	U		
SW8260C	Methylene chloride	ug/l	95		190		74		29			
SW8260C	n-Butylbenzene	ug/l	16 J		66		25		15			
SW8260C	Naphthalene	ug/l	11 J		48	J	110		86	;		
1	Propylbenzene	ug/l	20 U		160		79		38			
1	sec-Butylbenzene	ug/l	20 U		67	67 37			23			
SW8260C	Styrene	ug/l	20 U		50	U	20	U	8	U		
SW8260C	tert-Butylbenzene	ug/l	20 U		50	U	20	U	8	U		
SW8260C	Tetrachloroethene	ug/l	9.9 J		50	50 U 20 U		U	8	U		
SW8260C	Toluene	ug/l	20 U		50 U		50 U 20 U		U	8	U	
SW8260C	trans-1,2-Dichloroethene	ug/l	20 U		50 U		50 U 20 U		8	U		
SW8260C	trans-1,3-Dichloropropene	ug/l	20 U		50	U	20	U	8	U		

		Location	IW-1		IV	V-2	IW-3		IW	/-4
		Lab SDG	480-162794-1		480-162794-1		480-162794-1		480-162794-1	
		Sample Date	11/12	2/2019	11/13	3/2019	11/13	3/2019	11/13	/2019
		Sample ID	828164-	IW01011	828164-	·IW02011	828164-	-IW03011	828164-	IW04011
		Qc Code	FS		I	FS	FS		FS	
Method	Parameter	Units	Result Qualifier		Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260C	Trichloroethene	ug/l	20	U	50	U	20	20 U		U
SW8260C	Trichlorofluoromethane	ug/l	20	U	50 U		20 U		8	U
SW8260C	Vinyl chloride	ug/l	20	U	50	50 U		43		
SW8260C	Xylene, o	ug/l	20 U		53		20 U		8	U
SW8260C	Xylenes (m&p)	ug/l	40 U		110		110 41		16	U
SW8260C	Xylenes, Total	ug/l	40	U	160		41		16	U

ROCHESTER, NEW YORK									
		Location	IW-5	IW-6	IW-7	IW-8			
		Lab SDG	480-162794-1	480-162794-1	480-162794-1	480-162794-1			
		Sample Date	11/13/2019	11/14/2019	11/14/2019	11/13/2019			
		Sample ID	828164-IW05009	828164-IW06011	828164-IW07013	828164-IW08010			
		Qc Code	FS	FS	FS	FS			
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier			
SW8260C	1,1,1-Trichloroethane	ug/l	10 U	50 U	500 U	50 U			
SW8260C	1,1,2,2-Tetrachloroethane	ug/l	10 U	50 U	500 U	50 U			
SW8260C	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	10 U	50 U	500 U	50 U			
SW8260C	1,1,2-Trichloroethane	ug/l	10 U	50 U	500 U	50 U			
SW8260C	1,1-Dichloroethane	ug/l	10 U	50 U	500 U	50 U			
SW8260C	1,1-Dichloroethene	ug/l	10 U	50 U	500 U	50 U			
SW8260C	1,2,4-Trichlorobenzene	ug/l	10 U	50 U	500 U	50 U			
SW8260C	1,2,4-Trimethylbenzene	ug/l	26	2900	1800	3300			
SW8260C	1,2-Dibromo-3-chloropropane	ug/l	10 U	50 U	500 U	50 U			
SW8260C	1,2-Dibromoethane	ug/l	10 U	50 U	500 U	50 U			
SW8260C	1,2-Dichlorobenzene	ug/l	10 U	50 U	500 U	50 U			
SW8260C	1,2-Dichloroethane	ug/l	10 U	50 U	500 U	50 U			
SW8260C	1,2-Dichloropropane	ug/l	10 U	50 U	50 U 500 U				
SW8260C	1,3,5-Trimethylbenzene	ug/l	10 U	350	500 U	450			
SW8260C	1,3-Dichlorobenzene	ug/l	10 U	50 U	500 U	50 U			
SW8260C	1,4-Dichlorobenzene	ug/l	10 U	50 U	500 U	50 U			
SW8260C	2-Butanone	ug/l	100 U	500 U	5000 U	500 U			
SW8260C	2-Hexanone	ug/l	50 U	250 U	2500 U	250 U			
SW8260C	4-iso-Propyltoluene	ug/l	10 U	59	500 U	75			
SW8260C	4-Methyl-2-pentanone	ug/l	50 U	250 U	250 U 2500 U				
SW8260C	Acetic acid, methyl ester	ug/l	25 U	130 U	1300 U	130 U			
SW8260C	Acetone	ug/l	100 U	500 U	5000 U	500 U			
SW8260C	Benzene	ug/l	10 U	50 U	500 U	50 U			
SW8260C	Bromodichloromethane	ug/l	10 U	50 U	500 U	50 U			
SW8260C	Bromoform	ug/l	10 U	50 U	50 U 500 U				
SW8260C	Bromomethane	ug/l	10 U	50 U	500 U	50 U			

	ROCHESTER, NEW YORK										
		Location	IW	IW-5 IW-6			IV	V-7	IV	V-8	
		Lab SDG	480-16	2794-1	480-16	52794-1	480-16	52794-1	480-16	52794-1	
		Sample Date	11/13	/2019	11/14	1/2019	11/14	1/2019	11/13	3/2019	
		Sample ID	828164-IW05009		828164-IW06011		828164-IW07013		828164-IW08010		
		Qc Code	F	S	F	S	FS		FS		
Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
SW8260C	Carbon disulfide	ug/l	10	U	50	U	500	U	50	U	
SW8260C	Carbon tetrachloride	ug/l	10	U	50	U	500	U	50	U	
SW8260C	Chlorobenzene	ug/l	10	U	50	U	500	U	50	U	
SW8260C	Chloroethane	ug/l	10	U	50	U	500	U	50	U	
SW8260C	Chloroform	ug/l	10	U	50	U	500	U	50	U	
SW8260C	Chloromethane	ug/l	10	U	50	U	500	U	50	U	
SW8260C	cis-1,2-Dichloroethene	ug/l	550		2500		13000)	480		
SW8260C	cis-1,3-Dichloropropene	ug/l	10	U	50	U	500	U	50	U	
SW8260C	Cyclohexane	ug/l	10	U	50	50 U		500 U		U	
SW8260C	Dibromochloromethane	ug/l	10	U	50	50 U 500 U		50	U		
SW8260C	Dichlorodifluoromethane	ug/l	10	U	50	50 U 500 U		50	U		
SW8260C	Ethylbenzene	ug/l	10	U	69				95		
SW8260C	Isopropylbenzene	ug/l	10	U	82		82 500 U		84		
SW8260C	Methyl cyclohexane	ug/l	10	U	50	U	500	U	50	U	
SW8260C	Methyl Tertbutyl Ether	ug/l	10	U	50	U	500	U	50	U	
SW8260C	Methylene chloride	ug/l	34		240		2100)	190		
SW8260C	n-Butylbenzene	ug/l	10	U	67		500	U	81		
SW8260C	Naphthalene	ug/l	10	U	60		500	U	110		
SW8260C	Propylbenzene	ug/l	10	U	170		500	U	190		
	sec-Butylbenzene	ug/l	10	U	61		500	U	64		
SW8260C	Styrene	ug/l	10		50	U	500	U		U	
SW8260C	tert-Butylbenzene	ug/l	10 U		50	U	500	U	50	U	
SW8260C	Tetrachloroethene	ug/l	4.2 J		50	50 U 500 U		U	50	U	
SW8260C	Toluene	ug/l	10	U	50 U		50 U 500 U		50	U	
SW8260C	trans-1,2-Dichloroethene	ug/l	10	U	50 U		50 U 500 U		50	U	
SW8260C	trans-1,3-Dichloropropene	ug/l	10	U	50	U	500	U	50	U	

		Location	IV	V-5	IV	V-6	IV	V-7	IW	/- 8
		Lab SDG	480-162794-1		480-16	480-162794-1		480-162794-1		52794-1
		Sample Date	11/13	3/2019	11/14	1/2019	11/14	1/2019	11/13	3/2019
		Sample ID	828164-	IW05009	828164-	IW06011	828164-	-IW07013	828164-	IW08010
		Qc Code			F	-S	FS		FS	
Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260C	Trichloroethene	ug/l	16		50	U	500 U		50	U
SW8260C	Trichlorofluoromethane	ug/l	10	U	50 U		500 U		50	U
SW8260C	Vinyl chloride	ug/l	10	U	130	130		500 U		
SW8260C	Xylene, o	ug/l	10 U		180	180		500 U		
SW8260C	Xylenes (m&p)	ug/l	20 U		280		280 1000 U		290	
SW8260C	Xylenes, Total	ug/l	20	U	460	460		1000 U		

ROCHESTER, NEW YORK										
		Location	MW-01	MW-02	MW-03	MW-12				
		Lab SDG	480-162794-1	480-162794-1	480-162794-1	480-162794-1				
		Sample Date	11/15/2019	11/15/2019	11/13/2019	11/14/2019				
		Sample ID	828164-MW01018	828164-MW02013	828164-MW03015	828164-MW12011				
		Qc Code	FS	FS	FS	FS				
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier				
SW8260C	1,1,1-Trichloroethane	ug/l	1 U	1 U	500 U	5 U				
SW8260C	1,1,2,2-Tetrachloroethane	ug/l	1 U	1 U	500 U	5 U				
SW8260C	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	1 U	1 U	500 U	5 U				
SW8260C	1,1,2-Trichloroethane	ug/l	1 U	1 U	500 U	5 U				
SW8260C	1,1-Dichloroethane	ug/l	1 U	1 U	500 U	5 U				
SW8260C	1,1-Dichloroethene	ug/l	1 U	1 U	500 U	5 U				
SW8260C	1,2,4-Trichlorobenzene	ug/l	1 U	1 U	500 U	5 U				
SW8260C	1,2,4-Trimethylbenzene	ug/l	34 J+	1 U	2000	140				
SW8260C	1,2-Dibromo-3-chloropropane	ug/l	1 U	1 U	500 U	5 U				
SW8260C	1,2-Dibromoethane	ug/l	1 U	1 U	500 U	5 U				
SW8260C	1,2-Dichlorobenzene	ug/l	1 U	1 U						
SW8260C	1,2-Dichloroethane	ug/l	1 U	0.28 J	500 U	5 U				
SW8260C	1,2-Dichloropropane	ug/l	1 U	1 U	500 U	5 U				
SW8260C	1,3,5-Trimethylbenzene	ug/l	4.6	1 U	500 U	15				
SW8260C	1,3-Dichlorobenzene	ug/l	1 U	1 U	500 U	5 U				
SW8260C	1,4-Dichlorobenzene	ug/l	1 U	1 U	500 U	5 U				
SW8260C	2-Butanone	ug/l	10 U	10 U	5000 U	50 U				
SW8260C	2-Hexanone	ug/l	5 U	5 U	2500 U	25 U				
SW8260C	4-iso-Propyltoluene	ug/l	1.2	1 U	500 U	4.3 J				
SW8260C	4-Methyl-2-pentanone	ug/l	5 U	5 U	2500 U	25 U				
SW8260C	Acetic acid, methyl ester	ug/l	2.5 U	2.5 U	1300 U	13 U				
SW8260C	Acetone	ug/l	10 U	10 U	5000 U	50 U				
SW8260C	Benzene	ug/l	1 U	1 U	1 U 500 U					
SW8260C	Bromodichloromethane	ug/l	1 U			5 U				
SW8260C	Bromoform	ug/l	1 U	1 U 500 U		5 U				
SW8260C	Bromomethane	ug/l	1 U	1 U	500 U	5 U				

ROCHESTER, NEW YORK									
		Location	MW-01	MW-02	MW-03	MW-12			
		Lab SDG	480-162794-1	480-162794-1	480-162794-1	480-162794-1			
		Sample Date	11/15/2019	11/15/2019	11/13/2019	11/14/2019			
		Sample ID	828164-MW01018	828164-MW02013	828164-MW03015	828164-MW12011			
		Qc Code	FS	FS	FS	FS			
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier			
SW8260C	Carbon disulfide	ug/l	1 U	1 U	500 U	5 U			
SW8260C	Carbon tetrachloride	ug/l	1 U	1 U	500 U	5 U			
SW8260C	Chlorobenzene	ug/l	1 U	0.78 J	500 U	5 U			
SW8260C	Chloroethane	ug/l	1 U	1 U	500 U	5 U			
SW8260C	Chloroform	ug/l	1 U	1 U	500 U	5 U			
SW8260C	Chloromethane	ug/l	1 U	1 U	500 U	5 U			
SW8260C	cis-1,2-Dichloroethene	ug/l	1 U	2	21000	38			
SW8260C	cis-1,3-Dichloropropene	ug/l	1 U	1 U	500 U	5 U			
SW8260C	Cyclohexane	ug/l	1 U	0.6 J	500 U	1.3 J			
SW8260C	Dibromochloromethane	ug/l	1 U	1 U	500 U	5 U			
SW8260C	Dichlorodifluoromethane	ug/l	1 U	1 U	500 U	5 U			
SW8260C	Ethylbenzene	ug/l	0.83 J	1 U	500 U	5 U			
SW8260C	Isopropylbenzene	ug/l	2.7	1 U	1 U 500 U				
SW8260C	Methyl cyclohexane	ug/l	0.29 J	0.48 J	500 U	2.6 J			
SW8260C	Methyl Tertbutyl Ether	ug/l	0.16 J	1 U	500 U	5 U			
SW8260C	Methylene chloride	ug/l	1 U	1 U	2100	22			
SW8260C	n-Butylbenzene	ug/l	3.3	1 U	500 U	12			
	Naphthalene	ug/l	2.9	1 U	500 U	17			
SW8260C	Propylbenzene	ug/l	3	1 U	500 U	29			
SW8260C	sec-Butylbenzene	ug/l	8.7	4.9	500 U	14			
SW8260C	Styrene	ug/l	1 U	1 U	500 U	5 U			
SW8260C	tert-Butylbenzene	ug/l	9.2	22	500 U	5 U			
SW8260C	Tetrachloroethene	ug/l	1 U	1 U	500 U	5 U			
SW8260C	Toluene	ug/l	1 U	1 U 500 U		5 U			
SW8260C	trans-1,2-Dichloroethene	ug/l	1 U	1 U 500 U		5 U			
SW8260C	trans-1,3-Dichloropropene	ug/l	1 U	1 U	500 U	5 U			

	HOURIESTER, NEW YORK											
		Location	MW-01		MW-02		MW-03		MV	V-12		
		Lab SDG	480-162794-1		480-162794-1		480-162794-1		480-162794-1			
		Sample Date	11/15	5/2019	11/15	5/2019	11/13	3/2019	11/14	1/2019		
		Sample ID	828164-1	MW01018	828164-1	MW02013	828164-1	MW03015	828164-1	MW12011		
		Qc Code	FS		F	- S	FS		FS			
Method	Parameter	Units	Result Qualifier		Result	Qualifier	Result	Qualifier	Result	Qualifier		
SW8260C	Trichloroethene	ug/l	1	U	1	O	500	500 U		U		
SW8260C	Trichlorofluoromethane	ug/l	1	U	1 U		500 U		5	U		
SW8260C	Vinyl chloride	ug/l	1	U	1	U	610		27			
SW8260C	Xylene, o	ug/l	0.96 J		1	1 U		1 U 500 U		U	4	J
SW8260C	Xylenes (m&p)	ug/l	2.3		2 U		2 U 1000 U		8.6	J		
SW8260C	Xylenes, Total	ug/l	3.3		2	2 U		2 U 1000 U		13		

ROCHESTER, NEW YORK									
		Location	MW-13	MW-14	MW-20	MW-21			
		Lab SDG	480-162794-1	480-162794-1	480-162794-1	480-162794-1			
		Sample Date	11/14/2019	11/15/2019	11/13/2019	11/14/2019			
		Sample ID	828164-MW13011	828164-MW14011	828164-MW20010	828164-MW21009			
		Qc Code	FS	FS	FS	FS			
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier			
SW8260C	1,1,1-Trichloroethane	ug/l	4 U	1 U	100 U	100 U			
SW8260C	1,1,2,2-Tetrachloroethane	ug/l	4 U	1 U	100 U	100 U			
SW8260C	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	4 U	1 U	100 U	100 U			
SW8260C	1,1,2-Trichloroethane	ug/l	4 U	1 U	100 U	100 U			
SW8260C	1,1-Dichloroethane	ug/l	4 U	1 U	100 U	100 U			
SW8260C	1,1-Dichloroethene	ug/l	4 U	1 U	100 U	100 U			
SW8260C	1,2,4-Trichlorobenzene	ug/l	4 U	1 U	100 U	100 U			
SW8260C	1,2,4-Trimethylbenzene	ug/l	87	40	3500	3500			
SW8260C	1,2-Dibromo-3-chloropropane	ug/l	4 U	1 U	100 U	100 U			
SW8260C	1,2-Dibromoethane	ug/l	4 U	1 U	100 U	100 U			
SW8260C	1,2-Dichlorobenzene	ug/l	4 U	1 U	100 U	100 U			
SW8260C	1,2-Dichloroethane	ug/l	4 U	1 U	100 U	100 U			
SW8260C	1,2-Dichloropropane	ug/l	4 U	1 U	1 U 100 U				
SW8260C	1,3,5-Trimethylbenzene	ug/l	12	6.1	500	180			
SW8260C	1,3-Dichlorobenzene	ug/l	4 U	1 U	100 U	100 U			
SW8260C	1,4-Dichlorobenzene	ug/l	4 U	1 U	100 U	100 U			
SW8260C	2-Butanone	ug/l	40 U	10 U	1000 U	1000 U			
SW8260C	2-Hexanone	ug/l	20 U	5 U	500 U	500 U			
SW8260C	4-iso-Propyltoluene	ug/l	2.8 J	1.4	66 J	72 J			
SW8260C	4-Methyl-2-pentanone	ug/l	20 U	5 U	500 U	500 U			
SW8260C	Acetic acid, methyl ester	ug/l	10 U	2.5 U	250 U	250 U			
SW8260C	Acetone	ug/l	40 U	10 U	1000 U	1000 U			
SW8260C	Benzene	ug/l	4 U	1 U	100 U	100 U			
SW8260C	Bromodichloromethane	ug/l	4 U	1 U	100 U	100 U			
SW8260C	Bromoform	ug/l	4 U	1 U 100 U		100 U			
SW8260C	Bromomethane	ug/l	4 U	1 U	100 U	100 U			

KUCHESTER, NEW YURK										
		Location	MW-13 MV			MW-14 MW-20			MW-21	
		Lab SDG	480-162794-1		480-162794-1		480-162794-1		480-162794-1	
		Sample Date	11/14/2019		11/15/2019		11/13/2019		11/14/2019	
		Sample ID	828164-MW13011		828164-1	828164-MW14011		MW20010	828164-	MW21009
		Qc Code	FS		1	FS	ſ	FS	!	FS
Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260C	Carbon disulfide	ug/l	4 U		1 U		100 U		100 U	
SW8260C	Carbon tetrachloride	ug/l	4	U	1 U		100 U		100 U	
SW8260C	Chlorobenzene	ug/l	4	U	1 U		100 U		100	U
SW8260C	Chloroethane	ug/l	4	U	1	1 U		100 U		U
SW8260C	Chloroform	ug/l	4	U	1	U	100	U	100	U
SW8260C	Chloromethane	ug/l	4	U	1	. U	100	U	100 U	
SW8260C	cis-1,2-Dichloroethene	ug/l	3.2	J	1	U	4900		100 U	
SW8260C	cis-1,3-Dichloropropene	ug/l	4	U	1 U		100 U		100 U	
SW8260C	Cyclohexane	ug/l	4.9		1 U		100 U		100 U	
SW8260C	Dibromochloromethane	ug/l	4 U		1 U		100 U		100 U	
SW8260C	Dichlorodifluoromethane	ug/l	4 U		1 U		100 U		100 U	
SW8260C	Ethylbenzene	ug/l	4	U	0.77	0.77 J)	82 J	
SW8260C	Isopropylbenzene	ug/l	46		1.2		83 J		100 U	
SW8260C	Methyl cyclohexane	ug/l	3.5	J	1 U		100 U		100	U
SW8260C	Methyl Tertbutyl Ether	ug/l	4	U	1 U		100 U		100 U	
SW8260C	Methylene chloride	ug/l	24		1 U		490		100 U	
SW8260C	n-Butylbenzene	ug/l	18		1.9		1.9 100 U		67	J
SW8260C	Naphthalene	ug/l	5.8		2.7		59 J		46 J	
SW8260C	Propylbenzene	ug/l	80		2.7		180		180	
SW8260C	sec-Butylbenzene	ug/l	37		1.5		100 U		100	U
SW8260C	Styrene	ug/l	4 U		1 U		U 100 U		100	
	tert-Butylbenzene	ug/l	23		1 U		1 U 100 U		100	
SW8260C	Tetrachloroethene	ug/l	4 U		1 U		1 U 100 U		100 U	
SW8260C	Toluene	ug/l	4	U	1 U		1 U 100 U		100 U	
SW8260C	trans-1,2-Dichloroethene	ug/l	4 U		1 U		1 U 100 U		100	U
SW8260C	trans-1,3-Dichloropropene	ug/l	4	U	1 U		100 U		100 U	

		Location	MW-13		MW-14		MW-20		MW-21	
		Lab SDG	480-162794-1		480-162794-1		480-162794-1		480-162794-1	
		Sample Date	11/14/2019		11/15/2019		11/13/2019		11/14/2019	
		Sample ID	828164-MW13011		828164-MW14011		828164-MW20010		828164-MW21009	
		Qc Code	FS		FS		FS		FS	
Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260C	Trichloroethene	ug/l	4 U		1 U		100 U		100 U	
SW8260C	Trichlorofluoromethane	ug/l	4 U		1 U		100 U		100 U	
SW8260C	Vinyl chloride	ug/l	4 U		1 U		590		100 U	
SW8260C	Xylene, o	ug/l	4 U		0.85 J		300		100 U	
SW8260C	Xylenes (m&p)	ug/l	6.1 J		2.4		2.4 540		200	
SW8260C	Xylenes, Total	ug/l	6.1 J		3.3		840		200	

ROCHESTER, NEW YORK										
		Location	MW-22	PZ-6	PZ-7	QC				
		Lab SDG	480-162794-1	480-162794-1	480-162794-1	480-162794-1				
		Sample Date	11/14/2019	11/14/2019	11/15/2019	11/15/2019				
		Sample ID	828164-MW22010	828164-PZ06008	828164-PZ07007	TRIP BLANK				
		Qc Code	FS	FS	FS	ТВ				
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier				
SW8260C	1,1,1-Trichloroethane	ug/l	1 U	1 U	1 U	1 U				
SW8260C	1,1,2,2-Tetrachloroethane	ug/l	1 U	1 U	1 U	1 U				
SW8260C	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/l	1 U	1 U	1 U	1 U				
SW8260C	1,1,2-Trichloroethane	ug/l	1 U	1 U	1 U	1 U				
SW8260C	1,1-Dichloroethane	ug/l	1 U	1 U	1 U	1 U				
SW8260C	1,1-Dichloroethene	ug/l	1 U	1 U	1 U	1 U				
SW8260C	1,2,4-Trichlorobenzene	ug/l	1 U	1 U	1 U	1 U				
SW8260C	1,2,4-Trimethylbenzene	ug/l	46	1 U	2.4	1 U				
SW8260C	1,2-Dibromo-3-chloropropane	ug/l	1 U	1 U	1 U	1 U				
SW8260C	1,2-Dibromoethane	ug/l	1 U	1 U	1 U	1 U				
SW8260C	1,2-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U				
SW8260C	1,2-Dichloroethane	ug/l	1 U	1 U	1 U	1 U				
SW8260C	1,2-Dichloropropane	ug/l	1 U	1 U	1 U	1 U				
SW8260C	1,3,5-Trimethylbenzene	ug/l	7.2	1 U	1 U	1 U				
SW8260C	1,3-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U				
SW8260C	1,4-Dichlorobenzene	ug/l	1 U	1 U	1 U	1 U				
SW8260C	2-Butanone	ug/l	10 U	10 U	10 U	10 U				
SW8260C	2-Hexanone	ug/l	5 U	5 U	5 U	5 U				
SW8260C	4-iso-Propyltoluene	ug/l	1.8	1 U	1 U	1 U				
SW8260C	4-Methyl-2-pentanone	ug/l	5 U	5 U	5 U	5 U				
SW8260C	Acetic acid, methyl ester	ug/l	2.5 U	2.5 U	2.5 U	2.5 U				
SW8260C	Acetone	ug/l	10 U	10 U	10 U	10 U				
SW8260C	Benzene	ug/l	1 U	1 U	1 U	1 U				
SW8260C	Bromodichloromethane	ug/l	1 U	1 U	1 U 1 U					
SW8260C	Bromoform	ug/l	1 U	1 U	1 U 1 U					
SW8260C	Bromomethane	ug/l	1 U	1 U	1 U	1 U				

ROCHESTER, NEW YORK									
		Location	MW-22	PZ-6	PZ-7	QC			
		Lab SDG	480-162794-1	480-162794-1	480-162794-1	480-162794-1			
		Sample Date	11/14/2019	11/14/2019	11/15/2019	11/15/2019			
		Sample ID	828164-MW22010	828164-PZ06008	828164-PZ07007	TRIP BLANK			
		Qc Code	FS	FS	FS	ТВ			
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier			
SW8260C	Carbon disulfide	ug/l	1 U	1 U	1 U	1 U			
SW8260C	Carbon tetrachloride	ug/l	1 U	1 U	1 U	1 U			
SW8260C	Chlorobenzene	ug/l	1 U	1 U	1 U	1 U			
SW8260C	Chloroethane	ug/l	1 U	1 U	1 U	1 U			
SW8260C	Chloroform	ug/l	1 U	1 U	1 U	1 U			
SW8260C	Chloromethane	ug/l	1 U	1 U	1 U	1 U			
SW8260C	cis-1,2-Dichloroethene	ug/l	2.5	1 U	1 U	1 U			
SW8260C	cis-1,3-Dichloropropene	ug/l	1 U	1 U	1 U	1 U			
SW8260C	Cyclohexane	ug/l	1 U	1 U	1 U	1 U			
SW8260C	Dibromochloromethane	ug/l	1 U	1 U	1 U	1 U			
SW8260C	Dichlorodifluoromethane	ug/l	1 U	1 U	1 U	1 U			
SW8260C	Ethylbenzene	ug/l	1.2	1 U	1 U	1 U			
SW8260C	Isopropylbenzene	ug/l	16	13	1 U	1 U			
SW8260C	Methyl cyclohexane	ug/l	0.74 J	1 U	1 U	1 U			
SW8260C	Methyl Tertbutyl Ether	ug/l	1 U	1 U	1 U	1 U			
SW8260C	Methylene chloride	ug/l	1 U	1 U	1 U	1 U			
SW8260C	n-Butylbenzene	ug/l	11	7.6	1 U	1 U			
SW8260C	Naphthalene	ug/l	3.5	1 U	1 U	1 U			
SW8260C	Propylbenzene	ug/l	20	14	1 U	1 U			
SW8260C	sec-Butylbenzene	ug/l	28	35	1 U	1 U			
SW8260C	Styrene	ug/l	1 U	1 U	1 U	1 U			
SW8260C	tert-Butylbenzene	ug/l	18	18	1 U	1 U			
	Tetrachloroethene	ug/l	1 U	1 U	1 U 1 U				
SW8260C	Toluene	ug/l	1 U	1 U	1 U	1 U			
SW8260C	trans-1,2-Dichloroethene	ug/l	1 U	1 U	1 U	1 U			
SW8260C	trans-1,3-Dichloropropene	ug/l	1 U	1 U	1 U	1 U			

Noonestelly New York										
		Location	MW-22		PZ-6		PZ-7		QC	
		Lab SDG	480-162794-1		480-162794-1		480-162794-1		480-162794-1	
		Sample Date	11/14/2019		11/14/2019		11/15/2019		11/15	5/2019
		Sample ID	828164-MW22010		828164-PZ06008		828164-PZ07007		TRIP BLANK	
		Qc Code	FS		FS		FS		ТВ	
Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260C	Trichloroethene	ug/l	1 U		1 U		1 U		1 U	
SW8260C	Trichlorofluoromethane	ug/l	1 U		1 U		1 U		1 U	
SW8260C	Vinyl chloride	ug/l	1 U		1 U		1 U		1 U	
SW8260C	Xylene, o	ug/l	1.4		1 U		1 U		1	U
SW8260C	Xylenes (m&p)	ug/l	3.3		2 U		2 U		2	U
SW8260C	Xylenes, Total	ug/l	4.7		2 U		2 U		2	U

			ROCHESTER, NEW T	JKK .		
		Location	QC	QC	IW-1	IW-1
		Lab SDG	480-161370-1	480-161714-1	480-161370-1	480-161370-1
		Sample Date	10/15/2019	10/21/2019	10/15/2019	10/15/2019
		Sample ID	828164-TB1	828164IW-TB2	828164IW01005	828164IW01009
		Qc Code	ТВ	ТВ	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260C	1,1,1-Trichloroethane	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	1,1,2,2-Tetrachloroethane	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	1,1,2-Trichloro-1,2,2-Trifluoroethane	e ug/kg	50 U	50 U	86 U	1100 U
SW8260C	1,1,2-Trichloroethane	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	1,1-Dichloroethane	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	1,1-Dichloroethene	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	1,2,3-Trichlorobenzene	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	1,2,4-Trichlorobenzene	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	1,2,4-Trimethylbenzene	ug/kg		50 U		
SW8260C	1,2-Dibromo-3-chloropropane	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	1,2-Dibromoethane	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	1,2-Dichlorobenzene	ug/kg	50 U	50 U 86 U		1100 U
SW8260C	1,2-Dichloroethane	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	1,2-Dichloropropane	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	1,3,5-Trimethylbenzene	ug/kg		50 U		
SW8260C	1,3-Dichlorobenzene	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	1,4-Dichlorobenzene	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	1,4-Dioxane	ug/kg	950 U	950 U	1600 U	21000 U
SW8260C	2-Butanone	ug/kg	250 U	250 U	430 U	5400 U
SW8260C	2-Hexanone	ug/kg	250 U	250 U	430 U	5400 U
SW8260C	4-iso-Propyltoluene	ug/kg		50 U		
SW8260C	4-Methyl-2-pentanone	ug/kg	250 U	250 U	430 U	5400 U
SW8260C	Acetic acid, methyl ester	ug/kg	250 U	250 U	430 U	5400 U
SW8260C	Acetone	ug/kg	250 U	250 U 430 U		5400 U
SW8260C	Benzene	ug/kg	50 U	50 U	50 U 86 U	
SW8260C	Bromochloromethane	ug/kg	50 U	50 U	86 U	1100 U

			ROCHESTER, NEW Y	OKK		
		Location	QC	QC	IW-1	IW-1
		Lab SDG	480-161370-1	480-161714-1	480-161370-1	480-161370-1
		Sample Date	10/15/2019	10/21/2019	10/15/2019	10/15/2019
		Sample ID	828164-TB1	828164IW-TB2	828164IW01005	828164IW01009
		Qc Code	ТВ	ТВ	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260C	Bromodichloromethane	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	Bromoform	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	Bromomethane	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	Carbon disulfide	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	Carbon tetrachloride	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	Chlorobenzene	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	Chloroethane	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	Chloroform	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	Chloromethane	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	cis-1,2-Dichloroethene	ug/kg	50 U	50 U	2900	1100 U
SW8260C	cis-1,3-Dichloropropene	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	Cyclohexane	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	Dibromochloromethane	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	Dichlorodifluoromethane	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	Ethylbenzene	ug/kg	50 U	50 U	86 U	1900
SW8260C	Isopropylbenzene	ug/kg	50 U	50 U	86 U	4600
SW8260C	Methyl cyclohexane	ug/kg	50 U	50 U	86 U	650 J
SW8260C	Methyl Tertbutyl Ether	ug/kg	50 U	50 U	86 U	1100 U
SW8260C	Methylene chloride	ug/kg	16 J	18 J	86 U	1100 U
SW8260C	n-Butylbenzene	ug/kg		50 U		
SW8260C	Naphthalene	ug/kg		50 U		
	Propylbenzene	ug/kg		50 U		
	sec-Butylbenzene	ug/kg		50 U		
SW8260C	Styrene	ug/kg	50 U	50 U 86 U		1100 U
SW8260C	tert-Butylbenzene	ug/kg		50 U		
SW8260C	Tetrachloroethene	ug/kg	50 U	50 U	490	1100 U

		Location	Q	QC 480-161370-1 10/15/2019 828164-TB1		QC .	IV	V-1	١١	V-1
		Lab SDG	480-16	1370-1	480-16	51714-1	480-161370-1		480-161370-1	
		Sample Date	10/15	· · ·		10/21/2019		5/2019	10/15/2019	
		Sample ID	82816			828164IW-TB2		IW01005	828164IW01009	
		Qc Code	ТВ		ТВ		FS		FS	
Method	Parameter	Units			Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260C	Toluene	ug/kg	50	U	50	50 U		U	1100 U	
SW8260C	trans-1,2-Dichloroethene	ug/kg	50	U	50 U		21 J		1100 U	
SW8260C	trans-1,3-Dichloropropene	ug/kg	50	U	50 U		J 86 U		1100) U
SW8260C	Trichloroethene	ug/kg	50	U	50 U		50 U 200		1100) U
SW8260C	Trichlorofluoromethane	ug/kg	50	U	50	U	86 U		1100 U	
SW8260C	Vinyl chloride	ug/kg	50	U	50	U	86	U	1100	U
SW8260C	Xylene, o	ug/kg			50	U				
SW8260C	Xylenes (m&p)	ug/kg			100	U				
SW8260C	Xylenes, Total	ug/kg	100	U	100	U	170	U	1200) J
Moisture	Percent Moisture	Percent				26.7			11.5	
Moisture	Percent Solids	Percent					73.3		88.5	5

ROCHESTER, NEW YORK							
		Location	IW-2	IW-2	IW-2	IW-3	
		Lab SDG	480-161370-1	480-161370-1	480-161370-1	480-161370-1	
		Sample Date	10/18/2019	10/18/2019	10/18/2019	10/21/2019	
		Sample ID	828164IW02005	828164IW02009	828164IW02012	828164IW03007	
		Qc Code	FS	FS	FS	FS	
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260C	1,1,1-Trichloroethane	ug/kg	47 U	2000 U	200 U	400 U	
SW8260C	1,1,2,2-Tetrachloroethane	ug/kg	47 U	2000 U	200 U	400 U	
SW8260C	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	47 U	2000 U	200 U	400 U	
SW8260C	1,1,2-Trichloroethane	ug/kg	47 U	2000 U	200 U	400 U	
SW8260C	1,1-Dichloroethane	ug/kg	47 U	2000 U	200 U	400 U	
SW8260C	1,1-Dichloroethene	ug/kg	47 U	2000 U	200 U	400 U	
SW8260C	1,2,3-Trichlorobenzene	ug/kg	47 U	2000 U	200 U	400 U	
SW8260C	1,2,4-Trichlorobenzene	ug/kg	47 U	2000 U	200 U	400 U	
SW8260C	1,2,4-Trimethylbenzene	ug/kg					
SW8260C	1,2-Dibromo-3-chloropropane	ug/kg	47 U	2000 U	200 U	400 U	
SW8260C	1,2-Dibromoethane	ug/kg	47 U	2000 U	200 U	400 U	
SW8260C	1,2-Dichlorobenzene	ug/kg	47 U	2000 U	2000 U 200 U		
SW8260C	1,2-Dichloroethane	ug/kg	47 U	2000 U	200 U	400 U	
SW8260C	1,2-Dichloropropane	ug/kg	47 U	2000 U	200 U	400 U	
SW8260C	1,3,5-Trimethylbenzene	ug/kg					
SW8260C	1,3-Dichlorobenzene	ug/kg	47 U	2000 U	200 U	400 U	
SW8260C	1,4-Dichlorobenzene	ug/kg	47 U	2000 U	200 U	400 U	
SW8260C	1,4-Dioxane	ug/kg	900 U	37000 U	3800 U	7600 U	
SW8260C	2-Butanone	ug/kg	240 U	9800 U	1000 U	2000 U	
SW8260C	2-Hexanone	ug/kg	240 U	9800 U	1000 U	2000 U	
SW8260C	4-iso-Propyltoluene	ug/kg					
SW8260C	4-Methyl-2-pentanone	ug/kg	240 U	9800 U	1000 U	2000 U	
SW8260C	Acetic acid, methyl ester	ug/kg	240 U	9800 U	1000 U	2000 U	
SW8260C	Acetone	ug/kg	240 U	9800 U	1000 U	2000 U	
SW8260C	Benzene	ug/kg	47 U	2000 U	200 U	400 U	
SW8260C	Bromochloromethane	ug/kg	47 U	2000 U	200 U	400 U	

			ROCHESTER, NEW 1	ONK		
		Location	IW-2	IW-2	IW-2	IW-3
		Lab SDG	480-161370-1	480-161370-1	480-161370-1	480-161370-1
		Sample Date	10/18/2019	10/18/2019	10/18/2019	10/21/2019
		Sample ID	828164IW02005	828164IW02009	828164IW02012	828164IW03007
		Qc Code	FS	FS	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260C	Bromodichloromethane	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	Bromoform	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	Bromomethane	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	Carbon disulfide	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	Carbon tetrachloride	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	Chlorobenzene	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	Chloroethane	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	Chloroform	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	Chloromethane	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	cis-1,2-Dichloroethene	ug/kg	47 U	2300	200 U	400 U
SW8260C	cis-1,3-Dichloropropene	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	Cyclohexane	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	Dibromochloromethane	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	Dichlorodifluoromethane	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	Ethylbenzene	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	Isopropylbenzene	ug/kg	47 U	4000	200 U	400 U
SW8260C	Methyl cyclohexane	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	Methyl Tertbutyl Ether	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	Methylene chloride	ug/kg	47 U	2000 U	200 U	400 U
SW8260C	n-Butylbenzene	ug/kg				
SW8260C	Naphthalene	ug/kg				
SW8260C	Propylbenzene	ug/kg				
SW8260C	sec-Butylbenzene	ug/kg				
SW8260C	Styrene	ug/kg	47 U	2000 U 200 U		400 U
SW8260C	tert-Butylbenzene	ug/kg				
SW8260C	Tetrachloroethene	ug/kg	160	2000 U	200 U	400 U

		Location	IW	<i>I</i> -2	IV	V-2	IV	V-2	١٧	N-3		
		Lab SDG	480-161370-1		480-161370-1		480-161370-1		480-161370-1			
		Sample Date	10/18/2019		10/18	8/2019	10/18/2019		10/21/2019			
		Sample ID	828164IW02005		828164	IW02009	828164	IW02012	828164	IW03007		
		Qc Code	F	S	FS		FS			FS		
Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier		
SW8260C	Toluene	ug/kg	47	U	2000	U (200 U		400 U			
SW8260C	trans-1,2-Dichloroethene	ug/kg	47	U	2000 U		200 U		400 U			
SW8260C	trans-1,3-Dichloropropene	ug/kg	47	U	2000 U		2000 U 200 U		400) U		
SW8260C	Trichloroethene	ug/kg	14	J	2000 U		2000 U 200 U		400) U		
SW8260C	Trichlorofluoromethane	ug/kg	47	U	2000	2000 U		2000 U 200 U		U	400	U
SW8260C	Vinyl chloride	ug/kg	47	U	2000	U	200	U	400	U		
SW8260C	Xylene, o	ug/kg										
SW8260C	Xylenes (m&p)	ug/kg										
SW8260C	Xylenes, Total	ug/kg	95	U	3900	3900 U 400 U		U	800	U		
Moisture	Percent Moisture	Percent	13		37.4	37.4		15.2	<u>)</u>			
Moisture	Percent Solids	Percent	87		62.6	5			84.8	}		

		Location IW-3 IW-3 IW-4 IW-4						
		Location	IW-4	IW-4				
		Lab SDG	480-161370-1	480-161714-1	480-161370-1	480-161370-1		
		Sample Date	10/21/2019	10/21/2019	10/22/2019	10/22/2019		
		Sample ID	828164IW03010	828164IW03014	828164IW04007	828164IW04009		
		Qc Code	FS	FS	FS	FS		
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier		
SW8260C	1,1,1-Trichloroethane	ug/kg	1000 U	45 U	46 U	420 U		
SW8260C	1,1,2,2-Tetrachloroethane	ug/kg	1000 U	45 U	46 U	420 U		
SW8260C	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	1000 U	45 U	46 U	420 U		
SW8260C	1,1,2-Trichloroethane	ug/kg	1000 U	45 U	46 U	420 U		
SW8260C	1,1-Dichloroethane	ug/kg	1000 U	45 U	46 U	420 U		
SW8260C	1,1-Dichloroethene	ug/kg	1000 U	45 U	46 U	420 U		
SW8260C	1,2,3-Trichlorobenzene	ug/kg	1000 U	45 U	46 U	420 U		
SW8260C	1,2,4-Trichlorobenzene	ug/kg	1000 U	45 U	46 U	420 U		
SW8260C	1,2,4-Trimethylbenzene	ug/kg		25 J				
SW8260C	1,2-Dibromo-3-chloropropane	ug/kg	1000 U	45 U	46 U	420 U		
SW8260C	1,2-Dibromoethane	ug/kg	1000 U	45 U	46 U	420 U		
SW8260C	1,2-Dichlorobenzene	ug/kg	1000 U	45 U 46 U		420 U		
SW8260C	1,2-Dichloroethane	ug/kg	1000 U	45 U	46 U	420 U		
SW8260C	1,2-Dichloropropane	ug/kg	1000 U	45 U	46 U	420 U		
SW8260C	1,3,5-Trimethylbenzene	ug/kg		45 U				
SW8260C	1,3-Dichlorobenzene	ug/kg	1000 U	45 U	46 U	420 U		
SW8260C	1,4-Dichlorobenzene	ug/kg	1000 U	45 U	46 U	420 U		
SW8260C	1,4-Dioxane	ug/kg	20000 U	860 U	870 U	7900 U		
SW8260C	2-Butanone	ug/kg	5100 U	230 U	230 U	2100 U		
SW8260C	2-Hexanone	ug/kg	5100 U	230 U	230 U	2100 U		
SW8260C	4-iso-Propyltoluene	ug/kg		45 U				
SW8260C	4-Methyl-2-pentanone	ug/kg	5100 U	230 U	230 U	2100 U		
SW8260C	Acetic acid, methyl ester	ug/kg	5100 U	230 U	230 U	2100 U		
SW8260C	Acetone	ug/kg	5100 U	230 U	230 U	2100 U		
SW8260C	Benzene	ug/kg	1000 U	45 U	46 U	420 U		
SW8260C	Bromochloromethane	ug/kg	1000 U	45 U	46 U	420 U		

			ROCHESTER, NEW YO	JKK		
		Location	IW-3	IW-3	IW-4	IW-4
		Lab SDG	480-161370-1	480-161714-1	480-161370-1	480-161370-1
		Sample Date	10/21/2019	10/21/2019	10/22/2019	10/22/2019
		Sample ID	828164IW03010	828164IW03014	828164IW04007	828164IW04009
		Qc Code	FS	FS	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260C	Bromodichloromethane	ug/kg	1000 U	45 U	46 U	420 U
SW8260C	Bromoform	ug/kg	1000 U	45 U	46 U	420 U
SW8260C	Bromomethane	ug/kg	1000 U	45 U	46 U	420 U
SW8260C	Carbon disulfide	ug/kg	1000 U	45 U	46 U	420 U
SW8260C	Carbon tetrachloride	ug/kg	1000 U	45 U	46 U	420 U
SW8260C	Chlorobenzene	ug/kg	1000 U	45 U	46 U	420 U
SW8260C	Chloroethane	ug/kg	1000 U	45 U	46 U	420 U
SW8260C	Chloroform	ug/kg	1000 U	45 U	46 U	420 U
SW8260C	Chloromethane	ug/kg	1000 U	45 U	46 U	420 U
SW8260C	cis-1,2-Dichloroethene	ug/kg	1000 U	45 U	46 U	420 U
SW8260C	cis-1,3-Dichloropropene	ug/kg	1000 U	45 U	46 U	420 U
SW8260C	Cyclohexane	ug/kg	1000 U	45 U		
SW8260C	Dibromochloromethane	ug/kg	1000 U	45 U	46 U	420 U
SW8260C	Dichlorodifluoromethane	ug/kg	1000 U	45 U	46 U	420 U
SW8260C	Ethylbenzene	ug/kg	1000 U	45 U	46 U	420 U
SW8260C	Isopropylbenzene	ug/kg	2600	18 J	46 U	320 J
SW8260C	Methyl cyclohexane	ug/kg	1200	45 U	46 U	260 J
SW8260C	Methyl Tertbutyl Ether	ug/kg	1000 U	45 U	46 U	420 U
SW8260C	Methylene chloride	ug/kg	350	45 U	46 U	420 U
SW8260C	n-Butylbenzene	ug/kg		65		
SW8260C	Naphthalene	ug/kg		30 J		
SW8260C	Propylbenzene	ug/kg		31 J		
SW8260C	sec-Butylbenzene	ug/kg		91		
SW8260C	Styrene	ug/kg	1000 U	45 U 46 U		420 U
SW8260C	tert-Butylbenzene	ug/kg		45 U		
SW8260C	Tetrachloroethene	ug/kg	1000 U	45 U	91	420 U

		Location	IW-3 480-161370-1 10/21/2019 828164IW03010 FS		IV	V-3	IV	V-4	١٧	V-4
		Lab SDG	480-16	1370-1	480-16	480-161714-1		480-161370-1		61370-1
		Sample Date	10/21			10/21/2019		2/2019	10/22/2019	
		Sample ID			828164IW03014		828164IW04007		828164	IW04009
		Qc Code	FS		FS		FS			FS
Method	Parameter	Units	Result			Qualifier	Result	Qualifier	Result	Qualifier
SW8260C	Toluene	ug/kg	1000	U	45	U	46	U	420 U	
SW8260C	trans-1,2-Dichloroethene	ug/kg	1000	U	45	45 U		46 U		υ
SW8260C	trans-1,3-Dichloropropene	ug/kg	1000	U	45 U		46 U		420 U	
SW8260C	Trichloroethene	ug/kg	1000	U	45 U		45 U 46 U		420	υ
SW8260C	Trichlorofluoromethane	ug/kg	1000	U	45	U 46 U		U	420) U
SW8260C	Vinyl chloride	ug/kg	1000	U	45	U	46	U	420) U
SW8260C	Xylene, o	ug/kg			45	U				
SW8260C	Xylenes (m&p)	ug/kg			90	U				
SW8260C	Xylenes, Total	ug/kg	2100	U	90	U	91	U	830) U
Moisture	Percent Moisture	Percent	18.3			13.3		13.2		
Moisture	Percent Solids	Percent	81.7			86.7		86.8	3	

ROCHESTER, NEW YORK							
		Location	IW-4	IW-5	IW-5	IW-6	
		Lab SDG	480-161714-1	480-161714-1	480-161714-1	480-161714-1	
		Sample Date	10/22/2019	10/25/2019	10/25/2019	10/24/2019	
		Sample ID	828164IW04013	828164IW05006	828164IW05006D	828164IW06006	
		Qc Code	FS	FS	FD	FS	
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260C	1,1,1-Trichloroethane	ug/kg	48 U	1200 U	780 U	880 U	
SW8260C	1,1,2,2-Tetrachloroethane	ug/kg	48 U	1200 U	780 U	880 U	
SW8260C	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	48 U	1200 U	780 U	880 U	
SW8260C	1,1,2-Trichloroethane	ug/kg	48 U	1200 U	780 U	880 U	
SW8260C	1,1-Dichloroethane	ug/kg	48 U	1200 U	780 U	880 U	
SW8260C	1,1-Dichloroethene	ug/kg	48 U	1200 U	780 U	880 U	
SW8260C	1,2,3-Trichlorobenzene	ug/kg	48 U	1200 U	780 U	880 U	
SW8260C	1,2,4-Trichlorobenzene	ug/kg	48 U	1200 U	780 U	880 U	
SW8260C	1,2,4-Trimethylbenzene	ug/kg	13 J	28000	20000	320000 J	
SW8260C	1,2-Dibromo-3-chloropropane	ug/kg	48 U	1200 U	780 U	880 U	
SW8260C	1,2-Dibromoethane	ug/kg	48 U	1200 U	780 U	880 U 880 U	
SW8260C	1,2-Dichlorobenzene	ug/kg	48 U	1200 U			
SW8260C	1,2-Dichloroethane	ug/kg	48 U	1200 U	780 U	880 U	
SW8260C	1,2-Dichloropropane	ug/kg	48 U	1200 U	780 U	880 U	
SW8260C	1,3,5-Trimethylbenzene	ug/kg	48 U	2900	2100	990	
SW8260C	1,3-Dichlorobenzene	ug/kg	48 U	1200 U	780 U	880 U	
SW8260C	1,4-Dichlorobenzene	ug/kg	48 U	1200 U	780 U	880 U	
1	1,4-Dioxane	ug/kg	920 U	23000 U	15000 U	17000 U	
	2-Butanone	ug/kg	240 U	5900 U	3900 U	4400 U	
	2-Hexanone	ug/kg	240 U	5900 U	3900 U	4400 U	
SW8260C	4-iso-Propyltoluene	ug/kg	48 U	4100	3000	24000	
SW8260C	4-Methyl-2-pentanone	ug/kg	240 U	5900 U	3900 U	4400 U	
	Acetic acid, methyl ester	ug/kg	240 U	5900 U	3900 U	4400 U	
SW8260C	Acetone	ug/kg	240 U	5900 U 3900 U		4400 U	
SW8260C		ug/kg	48 U	1200 U 780 U		880 U	
SW8260C	Bromochloromethane	ug/kg	48 U	1200 U	780 U	880 U	

			ROCHESTER, NEW YORK						
		Location	IW-4	IW-5	IW-5	IW-6			
		Lab SDG	480-161714-1	480-161714-1	480-161714-1	480-161714-1			
		Sample Date	10/22/2019	10/25/2019	10/25/2019	10/24/2019			
		Sample ID	828164IW04013	828164IW05006	828164IW05006D	828164IW06006			
		Qc Code	FS	FS	FD	FS			
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier			
SW8260C	Bromodichloromethane	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	Bromoform	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	Bromomethane	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	Carbon disulfide	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	Carbon tetrachloride	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	Chlorobenzene	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	Chloroethane	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	Chloroform	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	Chloromethane	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	cis-1,2-Dichloroethene	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	cis-1,3-Dichloropropene	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	Cyclohexane	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	Dibromochloromethane	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	Dichlorodifluoromethane	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	Ethylbenzene	ug/kg	48 U	410 J	280 J	2000			
SW8260C	Isopropylbenzene	ug/kg	8 J	500 J	350 J	6100			
SW8260C	Methyl cyclohexane	ug/kg	48 U	1200 U	780 U	450 J			
SW8260C	Methyl Tertbutyl Ether	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	Methylene chloride	ug/kg	48 U	1200 U	780 U	880 U			
SW8260C	n-Butylbenzene	ug/kg	37 J	4800	3300	21000			
SW8260C	Naphthalene	ug/kg	40 J	2800	1700	3500			
SW8260C	Propylbenzene	ug/kg	16 J	1900	1200	17000			
SW8260C	sec-Butylbenzene	ug/kg	45 J	2200	1600	20000			
SW8260C	Styrene	ug/kg	48 U	1200 U	1200 U 780 U				
SW8260C	tert-Butylbenzene	ug/kg	48 U	1200 U	1200 U 780 U				
SW8260C	Tetrachloroethene	ug/kg	48 U	1200 U	780 U	880 U			

		Location	IW	/-4	IV	V-5	IW	V-5	١٧	V-6
		Lab SDG	480-16	480-161714-1		480-161714-1		480-161714-1		61714-1
		Sample Date	10/22/2019		10/25/2019		10/25/2019		10/24/2019	
		Sample ID	828164IW04013		828164IW05006		8281641	W05006D	828164	IW06006
		Qc Code	F	FS		FS		:D		FS
Method	Parameter	Units	Result			Qualifier	Result	Qualifier	Result	Qualifier
SW8260C	Toluene	ug/kg	48	U	1200	U	780	U	880 U	
SW8260C	trans-1,2-Dichloroethene	ug/kg	48	U	1200 U		780 U		880 U	
SW8260C	trans-1,3-Dichloropropene	ug/kg	48	U	1200 U		780 U		880 U	
SW8260C	Trichloroethene	ug/kg	48	U	1200 U		780 U		880 U	
SW8260C	Trichlorofluoromethane	ug/kg	48	U	1200	1200 U		U	880	U
SW8260C	Vinyl chloride	ug/kg	48	U	1200	U	780 U		880	U
SW8260C	Xylene, o	ug/kg	48	U	190	190 J 150 J		J	880	U
SW8260C	Xylenes (m&p)	ug/kg	97	U	2400	2400 U 460 J		3100)	
SW8260C	Xylenes, Total	ug/kg	97	U	2400	2400 U 610 J		3100)	
Moisture	Percent Moisture	Percent			20.5	20.5 10.7		12.9)	
Moisture	Percent Solids	Percent			79.5	;	89.3		87.1	

	ROCHESTER, NEW YORK					
		Location	IW-6	IW-6	IW-7	IW-7
		Lab SDG	480-161714-1	480-161815-1	480-161814-1	480-161814-1
		Sample Date	10/24/2019	10/24/2019	10/28/2019	10/28/2019
		Sample ID	828164IW06009	828164IW06012	828164IW07005	828164IW07009
		Qc Code	FS	FS	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SW8260C	1,1,1-Trichloroethane	ug/kg	1000 U	51 U	1700 U	2500 U
SW8260C	1,1,2,2-Tetrachloroethane	ug/kg	1000 U	51 U	1700 U	18000
SW8260C	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	1000 U	51 U	1700 U	2500 U
SW8260C	1,1,2-Trichloroethane	ug/kg	1000 U	51 U	1700 U	2500 U
SW8260C	1,1-Dichloroethane	ug/kg	1000 U	51 U	1700 U	2500 U
SW8260C	1,1-Dichloroethene	ug/kg	1000 U	51 U	1700 U	2500 U
SW8260C	1,2,3-Trichlorobenzene	ug/kg	1000 U	51 U	1700 U	2500 U
SW8260C	1,2,4-Trichlorobenzene	ug/kg	1000 U	51 U	1700 U	2500 U
SW8260C	1,2,4-Trimethylbenzene	ug/kg	400000 J	600	660000	540000
SW8260C	1,2-Dibromo-3-chloropropane	ug/kg	1000 U	51 U	1700 U	2500 U
SW8260C	1,2-Dibromoethane	ug/kg	1000 U	51 U	1700 U	2500 U
SW8260C	1,2-Dichlorobenzene	ug/kg	1000 U	51 U	51 U 1700 U	
SW8260C	1,2-Dichloroethane	ug/kg	1000 U	51 U	1700 U	2500 U
SW8260C	1,2-Dichloropropane	ug/kg	1000 U	51 U	1700 U	2500 U
SW8260C	1,3,5-Trimethylbenzene	ug/kg	86000	59	20000	110000
SW8260C	1,3-Dichlorobenzene	ug/kg	1000 U	51 U	1700 U	2500 U
SW8260C	1,4-Dichlorobenzene	ug/kg	1000 U	51 U	1700 U	2500 U
SW8260C	1,4-Dioxane	ug/kg	19000 U	970 U	32000 U	48000 U
SW8260C	2-Butanone	ug/kg	5000 U	250 U	8400 U	13000 U
SW8260C	2-Hexanone	ug/kg	5000 U	250 U	8400 U	13000 U
SW8260C	4-iso-Propyltoluene	ug/kg	26000	26 J	49000	40000
SW8260C	4-Methyl-2-pentanone	ug/kg	5000 U	250 U	8400 U	13000 U
SW8260C	Acetic acid, methyl ester	ug/kg	5000 U	250 U	8400 U	13000 U
SW8260C	Acetone	ug/kg	5000 U	250 U	8400 U	13000 U
SW8260C	Benzene	ug/kg	1000 U	51 U	1700 U	2500 U
SW8260C	Bromochloromethane	ug/kg	1000 U	51 U		

		ROCHESTER, NEW YORK					
		Location	IW-6	IW-6	IW-7	IW-7	
		Lab SDG	480-161714-1	480-161815-1	480-161814-1	480-161814-1	
		Sample Date	10/24/2019	10/24/2019	10/28/2019	10/28/2019	
		Sample ID	828164IW06009	828164IW06012	828164IW07005	828164IW07009	
		Qc Code	FS	FS	FS	FS	
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
SW8260C	Bromodichloromethane	ug/kg	1000 U	51 U	1700 U	2500 U	
SW8260C	Bromoform	ug/kg	1000 U	51 U	1700 U	2500 U	
SW8260C	Bromomethane	ug/kg	1000 U	51 U	1700 U	2500 U	
SW8260C	Carbon disulfide	ug/kg	1000 U	51 U	1700 U	2500 U	
SW8260C	Carbon tetrachloride	ug/kg	1000 U	51 U	1700 U	2500 U	
SW8260C	Chlorobenzene	ug/kg	1000 U	51 U	1700 U	2500 U	
SW8260C	Chloroethane	ug/kg	1000 U	51 U	1700 U	2500 U	
SW8260C	Chloroform	ug/kg	1000 U	51 U	1700 U	2500 U	
SW8260C	Chloromethane	ug/kg	1000 U	51 U	1700 U	2500 U	
SW8260C	cis-1,2-Dichloroethene	ug/kg	3500	150	1700 U	1900 J	
SW8260C	cis-1,3-Dichloropropene	ug/kg	1000 U	51 U	1700 U	2500 U	
SW8260C	Cyclohexane	ug/kg	1000 U	51 U	1700 U	2500 U	
SW8260C	Dibromochloromethane	ug/kg	1000 U	51 U	1700 U	2500 U	
SW8260C	Dichlorodifluoromethane	ug/kg	1000 U	51 U	1700 U	2500 U	
SW8260C	Ethylbenzene	ug/kg	5300	17 J	6000	5100	
SW8260C	Isopropylbenzene	ug/kg	10000	46 J	17000	13000	
SW8260C	Methyl cyclohexane	ug/kg	1400	51 U	1200 J	2000 J	
SW8260C	Methyl Tertbutyl Ether	ug/kg	1000 U	51 U	1700 U	2500 U	
SW8260C	Methylene chloride	ug/kg	1000 U	51 U	1700 U	2500 U	
SW8260C	n-Butylbenzene	ug/kg	40000	72	68000	46000	
SW8260C	Naphthalene	ug/kg	3500	43 J	7200	8700	
	Propylbenzene	ug/kg	31000	110	57000	45000	
SW8260C	sec-Butylbenzene	ug/kg	21000	57	42000	35000	
SW8260C	Styrene	ug/kg	1000 U	51 U 1700 U		2500 U	
SW8260C	tert-Butylbenzene	ug/kg	2800	17 J	4100	2600	
SW8260C	Tetrachloroethene	ug/kg	1000 U	51 U	1700 U	2500 U	

		Location	IW	/-6	IV	V-6	IW-7		IW-7	
		Lab SDG	480-16	480-161714-1		51815-1	480-161814-1		480-161814-1	
		Sample Date	10/24	/2019	10/24	1/2019	10/28	3/2019	10/28/2019	
		Sample ID	8281641	W06009	828164	IW06012	828164	IW07005	828164	IW07009
		Qc Code	F	S	FS		FS			FS
Method	Parameter	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SW8260C	Toluene	ug/kg	380	J	51	U	1700	U	2500	U
SW8260C	trans-1,2-Dichloroethene	ug/kg	1000	U	51 U		1700 U		2500 U	
SW8260C	trans-1,3-Dichloropropene	ug/kg	1000	U	51 U		1700 U		2500	U
SW8260C	Trichloroethene	ug/kg	1000	U	51 U		51 U 1700 U		2500	U
SW8260C	Trichlorofluoromethane	ug/kg	1000	U	51	U	1700	U	2500	U
SW8260C	Vinyl chloride	ug/kg	1000	U	51	U	1700	U	2500	U
SW8260C	Xylene, o	ug/kg	9900		30	J	1200	J	12000)
SW8260C	Xylenes (m&p)	ug/kg	26000		26000 38 J		6500		16000)
SW8260C	Xylenes, Total	ug/kg	36000		68	J	7700		28000)
Moisture	Percent Moisture	Percent	10.6				15.9		26.2	-
Moisture	Percent Solids	Percent	89.4				84.1		73.8	3

TABLE 2 - SUMMARY OF ANALYTICAL RESULTS
OCTOBER and NOVEMBER 2019 SAMPLING
FORMER ELITE VOGUE DRY CLEANERS SITE
ROCHESTER, NEW YORK

			ROCHESTER, NEW Y	URK
		Location	IW-8	IW-8
		Lab SDG	480-161714-1	480-161714-1
		Sample Date	10/23/2019	10/23/2019
		Sample ID	828164IW08005	828164IW08008
		Qc Code	FS	FS
Method	Parameter	Units	Result Qualifier	Result Qualifier
SW8260C	1,1,1-Trichloroethane	ug/kg	47 U	850 U
SW8260C	1,1,2,2-Tetrachloroethane	ug/kg	47 U	850 U
SW8260C	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/kg	47 U	850 U
SW8260C	1,1,2-Trichloroethane	ug/kg	47 U	850 U
SW8260C	1,1-Dichloroethane	ug/kg	47 U	850 U
SW8260C	1,1-Dichloroethene	ug/kg	47 U	850 U
SW8260C	1,2,3-Trichlorobenzene	ug/kg	47 U	850 U
SW8260C	1,2,4-Trichlorobenzene	ug/kg	47 U	850 U
SW8260C	1,2,4-Trimethylbenzene	ug/kg	990	400000 J
SW8260C	1,2-Dibromo-3-chloropropane	ug/kg	47 U	850 U
SW8260C	1,2-Dibromoethane	ug/kg	47 U	850 U
SW8260C	1,2-Dichlorobenzene	ug/kg	47 U	850 U
SW8260C	1,2-Dichloroethane	ug/kg	47 U	850 U
SW8260C	1,2-Dichloropropane	ug/kg	47 U	850 U
SW8260C	1,3,5-Trimethylbenzene	ug/kg	140	100000 J
SW8260C	1,3-Dichlorobenzene	ug/kg	47 U	850 U
SW8260C	1,4-Dichlorobenzene	ug/kg	47 U	850 U
SW8260C	1,4-Dioxane	ug/kg	900 U	16000 U
SW8260C	2-Butanone	ug/kg	240 U	4300 U
SW8260C	2-Hexanone	ug/kg	240 U	4300 U
SW8260C	4-iso-Propyltoluene	ug/kg	90	36000
SW8260C	4-Methyl-2-pentanone	ug/kg	240 U	4300 U
	Acetic acid, methyl ester	ug/kg	240 U	4300 U
SW8260C		ug/kg	240 U	4300 U
SW8260C	Benzene	ug/kg	47 U	850 U
SW8260C	Bromochloromethane	ug/kg	47 U	850 U

TABLE 2 - SUMMARY OF ANALYTICAL RESULTS
OCTOBER and NOVEMBER 2019 SAMPLING
FORMER ELITE VOGUE DRY CLEANERS SITE
ROCHESTER, NEW YORK

			ROCHESTER, NEW YO	JKK	
		Location	IW-8	IW-8	
		Lab SDG	480-161714-1	480-161714-1	
		Sample Date	10/23/2019	10/23/2019	
		Sample ID	828164IW08005	828164IW08008	
		Qc Code	FS	FS	
Method	Parameter	Units	Result Qualifier	Result Qualifier	
SW8260C	Bromodichloromethane	ug/kg	47 U	850 U	
SW8260C	Bromoform	ug/kg	47 U	850 U	
SW8260C	Bromomethane	ug/kg	47 U	850 U	
SW8260C	Carbon disulfide	ug/kg	47 U	850 U	
SW8260C	Carbon tetrachloride	ug/kg	47 U	850 U	
SW8260C	Chlorobenzene	ug/kg	47 U	850 U	
SW8260C	Chloroethane	ug/kg	47 U	850 U	
SW8260C	Chloroform	ug/kg	47 U	850 U	
SW8260C	Chloromethane	ug/kg	47 U	850 U	
SW8260C	cis-1,2-Dichloroethene	ug/kg	47 U	360 J	
SW8260C	cis-1,3-Dichloropropene	ug/kg	47 U	850 U	
SW8260C	Cyclohexane	ug/kg	47 U	850 U	
SW8260C	Dibromochloromethane	ug/kg	47 U	850 U	
SW8260C	Dichlorodifluoromethane	ug/kg	47 U	850 U	
SW8260C	Ethylbenzene	ug/kg	47 U	6700	
SW8260C	Isopropylbenzene	ug/kg	22 J	11000	
SW8260C	Methyl cyclohexane	ug/kg	47 U	1900	
SW8260C	Methyl Tertbutyl Ether	ug/kg	47 U	850 U	
SW8260C	Methylene chloride	ug/kg	47 U	850 U	
SW8260C	n-Butylbenzene	ug/kg	130	54000	
SW8260C	Naphthalene	ug/kg	27 J	9300	
SW8260C	Propylbenzene	ug/kg	71	37000	
SW8260C	•	ug/kg	59	29000	
SW8260C	Styrene	ug/kg	47 U	850 U	
SW8260C	tert-Butylbenzene	ug/kg	47 U	3300	
SW8260C	Tetrachloroethene	ug/kg	47 U	850 U	

TABLE 2 - SUMMARY OF ANALYTICAL RESULTS
OCTOBER and NOVEMBER 2019 SAMPLING
FORMER ELITE VOGUE DRY CLEANERS SITE
ROCHESTER, NEW YORK

			110011201	i Liv, 14 L VV 10	J	
		Location	IW	/-8	IW-8	
		Lab SDG	480-16	1714-1	480-161714-1	
		Sample Date	10/23	/2019	10/23/2019	
		Sample ID	8281641	W08005	828164	1W08008
		Qc Code	F	S	ſ	- S
Method	Parameter	Units	Result	Qualifier	Result	Qualifier
SW8260C	Toluene	ug/kg	47	U	850	U
SW8260C	trans-1,2-Dichloroethene	ug/kg	47	47 U		U
SW8260C	trans-1,3-Dichloropropene	ug/kg	47	47 U 850 U		U
SW8260C	Trichloroethene	ug/kg	47	U	850	U
SW8260C	Trichlorofluoromethane	ug/kg	47	U	850	U
SW8260C	Vinyl chloride	ug/kg	47	U	850	U
SW8260C	Xylene, o	ug/kg	47	U	3800)
SW8260C	Xylenes (m&p)	ug/kg	95	U	19000	
SW8260C	Xylenes, Total	ug/kg	95	U	23000	
Moisture	Percent Moisture	Percent	14.2		12.9	
Moisture	Percent Solids	Percent	85.8		87.1	

			ROCHESTER, NEW Y	ORK			
		Location	SVE-01	SVE-01	SVE-03	SVE-03	
		Lab SDG	140-17471-1	140-17471-1	140-17471-1	140-17471-1	
	Sa	mple Date	11/19/2019	11/20/2019	11/20/2019	11/20/2019	
		Sample ID	828164-SVE01A	828164-SVE01B	828164-SVE03A	828164-SVE03B	
		Qc Code	FS	FS	FS	FS	
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
TO15	1,1,1-Trichloroethane	ug/m3	150 U	62 U	180 U	95 U	
TO15	1,1,2,2-Tetrachloroethane	ug/m3	190 U	78 U	220 U	120 U	
TO15	1,1,2-Trichloro-1,2,2-Trifluoroethane	ug/m3	210 U	88 U	250 U	130 U	
TO15	1,1,2-Trichloroethane	ug/m3	150 U	62 U	180 U	95 U	
TO15	1,1-Dichloroethane	ug/m3	110 U	46 U	130 U	71 U	
TO15	1,1-Dichloroethene	ug/m3	55 U	23 U	77	35 U	
TO15	1,2,4-Trichlorobenzene	ug/m3	210 U	85 U	240 U	130 U	
TO15	1,2,4-Trimethylbenzene	ug/m3	140 U	56 U	170000	4900	
TO15	1,2-Dibromoethane	ug/m3	210 U	88 U	250 U	130 U	
TO15	1,2-Dichloro-1,1,2,2-tetrafluoroethane	ug/m3	190 U	80 U	220 U	120 U	
TO15	1,2-Dichlorobenzene	ug/m3	170 U	69 U	190 U	110 U	
TO15	1,2-Dichloroethane	ug/m3	110 U	46 U	130 U	71 U	
TO15	1,2-Dichloropropane	ug/m3	130 U	53 U	150 U	81 U	
TO15	1,3,5-Trimethylbenzene	ug/m3	140 U	56 U	54000	1600	
TO15	1,3-Dichlorobenzene	ug/m3	170 U	69 U	190 U	110 U	
TO15	1,4-Dichlorobenzene	ug/m3	170 U	69 U	190 U	110 U	
TO15	1,4-Dioxane	ug/m3	250 U	100 U	290 U	160 U	
TO15	2-Butanone	ug/m3	6900	130 U	1700	210 U	
TO15	4-Methyl-2-pentanone	ug/m3	280 U	120 U	770 J	180 U	
TO15	Benzene	ug/m3	89 U	36 U	100 U	56 U	
TO15	Benzyl chloride	ug/m3	290 U	120 U	330 U	180 U	
TO15	Bromodichloromethane	ug/m3	190 U	77 U	220 U	120 U	
TO15	Bromoform	ug/m3	290 U	120 U	330 U	180 U	
TO15	Bromomethane	ug/m3	110 U	44 U	120 U	68 U	
TO15	Carbon tetrachloride	ug/m3	70 U	29 U	81 U	44 UJ	
TO15	Chlorobenzene	ug/m3	130 U	53 U	150 U	81 U	

	ROCHESTER, NEW YORK						
		Location	SVE-01	SVE-01	SVE-03	SVE-03	
		Lab SDG	140-17471-1	140-17471-1	140-17471-1	140-17471-1	
		Sample Date	11/19/2019	11/20/2019	11/20/2019	11/20/2019	
		Sample ID	828164-SVE01A	828164-SVE01B	828164-SVE03A	828164-SVE03B	
		Qc Code	FS	FS	FS	FS	
Method	Parameter	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	
TO15	Chloroethane	ug/m3	73 U	30 U	85 U	46 U	
TO15	Chloroform	ug/m3	140 U	56 U	160 U	85 U	
TO15	Chloromethane	ug/m3	140 U	59 U	170 U	90 U	
TO15	cis-1,2-Dichloroethene	ug/m3	14000	2100	160000	10000	
TO15	cis-1,3-Dichloropropene	ug/m3	130 U	52 U	150 U	79 U	
TO15	Cyclohexane	ug/m3	240 U	98 U	1100	150 U	
TO15	Dibromochloromethane	ug/m3	240 U	97 U	270 U	150 U	
TO15	Dichlorodifluoromethane	ug/m3	140 U	56 U	160 U	87 U	
TO15	Ethanol	ug/m3	1300 U	540 U	1500 U	820 U	
TO15	Ethylbenzene	ug/m3	120 U	50 U	600	76 U	
TO15	Hexachlorobutadiene	ug/m3	300 U	120 U	340 U	190 U	
TO15	Hexane	ug/m3	250 U	100 U	330	150 U	
TO15	Isooctane	ug/m3	320 U	130 U	380 U	200 U	
TO15	Methyl Tertbutyl Ether	ug/m3	200 U	82 U	230 U	130 U	
TO15	Methylene chloride	ug/m3	480 U	200 U	560 U	300 U	
TO15	Styrene	ug/m3	120 U	49 U	140 U	75 U	
TO15	t-Butyl alcohol	ug/m3	340 U	140 U	390 U	210 U	
TO15	Tetrachloroethene	ug/m3	17000	4200	450000	16000	
TO15	Toluene	ug/m3	160 U	65 U	940	99 U	
TO15	trans-1,2-Dichloroethene	ug/m3	110 U	45 U	1300	140	
TO15	trans-1,3-Dichloropropene	ug/m3	130 U	52 U	150 U	79 U	
TO15	Trichloroethene	ug/m3	4500	710	17000	1600	
TO15	Trichlorofluoromethane	ug/m3	160 U	64 U	180 U	98 U	
TO15	Vinyl chloride	ug/m3	36 U	250	250 1000		
TO15	Xylene, o	ug/m3	120 U	50 U	25000	880	
TO15	Xylenes (m&p)	ug/m3	120 U	50 U	l l		

Lab SDG	Mothod	Location	Lab Sample ID	Field Sample ID	Parameter	Lab	Lab	Final	Final	Val Reason	Units	Lab ID
Lab 3DG	Method	Location	Lab Sample 1D	rielu Sallipie ID	Parameter	Result	Qualifier	Result	Qualifier	Code	Ullits	Labib
480-162794-1	SW8260C	MW-01	480-162794-18	828164-MW01018	1,2,4-Trimethylbenzene	34	F1	34	J+	MSH	ug/l	TALBFLO
480-161370-1	SW8260C	IW-4	480-161370-8	828164IW04007	Methylene chloride	9.1	J	46	U	BL2	ug/kg	TALBFLO
480-161714-1	SW8260C	IW-6	480-161714-5	828164IW06006	1,2,4-Trimethylbenzene	320000	E	320000	J	E	ug/kg	TALBFLO
480-161714-1	SW8260C	IW-6	480-161714-6	828164IW06009	1,2,4-Trimethylbenzene	400000	E	400000	J	E	ug/kg	TALBFLO
480-161714-1	SW8260C	IW-8	480-161714-2	828164IW08008	1,3,5-Trimethylbenzene	100000	E	100000	J	E	ug/kg	TALBFLO
480-161714-1	SW8260C	IW-8	480-161714-2	828164IW08008	1,2,4-Trimethylbenzene	400000	E	400000	J	E	ug/kg	TALBFLO
140-17471-1	TO15	SVE-03	140-17471-3	828164-SVE03A	4-Methyl-2-pentanone	770	CI	770	J	Cl	ug/m3	TA-KNX
140-17471-1	TO15	SVE-03	140-17471-4	828164-SVE03B	Carbon tetrachloride	44	U *	44	UJ	CCV%D	ug/m3	TA-KNX

Created By: KMS 1/14/20 Checked By: MAD 1/14/20

Page 1 of 1

ATTACHMENT 6

PNOD RESULTS

Carus Remediation Technologies

Remediation Report

28th October 2019

Customer: Wood E&I

511 Congress Street Portland, ME 024101

Attention: Chuck Staples

Charles.staples@woodplc.com

From: T. Lizer Cc: T. Colgan

TECH # 19-201

Subject: RemOx® S ISCO Reagent Permanganate Natural Oxidant Demand

Summary

The overall average RemOx® S ISCO reagent permanganate natural oxidant demand (PNOD) at 48 hours for the soil sample was determined to be 6.0 g/kg. The average demand ranged from 5.3 g/kg to 7.3 g/kg. These values are calculated on a weight as potassium permanganate (KMnO₄) per dry weight of soil.

Background

Soil samples were received from Wood E&I from the Elite Vogue Dry Cleaners project located in Rochester, NY. The sample was analyzed for permanganate natural oxidant demand. The measurement of the permanganate natural oxidant demand is used to estimate the concentration of permanganate that will be consumed by the natural reducing agents during a given time period of 48 hours.

Experimental

The sample was analyzed for permanganate natural oxidant demand following ASTM D7262-10 Test Method A. A brief summary is as follows:

To determine the PNOD, the soil was baked at 105°C for 24 hours then allowed to cool to room temperature. The soil was then blended and passed through a U.S. 10 sieve (2 mm). Reactors were loaded with 50 grams of soil and 100 mL of 20 g/L KMnO₄ for an initial dose of 40 g/kg KMnO₄ on a dry soil weight basis at a 1:2 soil to aqueous reagent ratio. Each soil dose was performed in triplicate. The reaction vessels were inverted once to mix the reagents. Residual permanganate (MnO₄⁻) was determined at 48 hours. The demands were calculated on a dry weight basis.

Results

The permanganate demand is the amount of permanganate consumed in a given amount of time. It should be noted that in a soil or groundwater sample, the oxidation of any compound by permanganate is dependent on the initial dose of permanganate and the reaction time available. As the permanganate dose is increased, the reaction rate and oxidant consumption may also increase. Some compounds that are not typically oxidized by permanganate under low doses can become

reactive with permanganate at higher concentrations. The 48-hour PNOD results can be seen in Table 1 (on a dry soil basis).

Table 1: 48-Hour PNOD *

Soil Sample Identification	Average and Standard Deviation (g/kg)		Replicate 1 (g/kg)	Replicate 2 (g/kg)	Replicate 3 (g/kg)
828164IW03007	6.0	± 1.09	5.3	5.4	7.3
Overall Average	6.	0			

^{*}Demands were calculated on a weight KMnO₄/dry soil weight basis from an initial dose of 40.0 g/kg KMnO₄ initial dose at a 1:2 soil to aqueous solution ratio.

Conclusions

For this application the amount of permanganate needed will be dependent on the reaction time allowed. On average, the soil sample had a 48-hour permanganate demand value of 6.0 g/kg. The average demands ranged from 5.3 g/kg to 7.3 g/kg. Generally, remediation sites with a soil demand of less than 20.0 g/kg at the time of interest are favorable for *in situ* chemical oxidation with permanganate (see Table 2 for additional information).

Table 2: Correlation of Permanganate Natural Oxidant Demand Results*

PNOD (g/kg)	Rank	Comment
z10 Low		ISCO with MnO ₄ is recommended. Soil
<10	Low	contribution to MnO ₄ demand is low.
		ISCO with MnO ₄ is recommended. Soil
10-20	Moderate	contribution to MnO ₄ demand is moderate.
		Economics should be considered.
> 20 High		ISCO with MnO ₄ is technically feasible. Other
>20	High	technologies may provide lower cost alternatives.

^{*}Dry Weight Basis