INTERIM RFI REPORT XEROX BUILDING 200 JOSEPH C. WILSON CENTER FOR TECHNOLOGY WEBSTER, NEW YORK

by

H&A of New York Rochester, New York

for

Xerox Corporation Webster, New York

File No. 70092-44 January 1994

H&A OF NEW YORK

Geotechnical Engineers & Environmental Consultants

21 January 1994 File No. 70092-44

Xerox Corporation Joseph C. Wilson Center for Technology 800 Phillips Road Building 304 - Environmental Webster, New York 14580

Attention: Mr. Scott M. Huber

Subject: Interim RFI Report

Building 200 Investigative Site

Webster, New York

Gentlemen:

This report presents findings to date from the Xerox Building 200 Investigative Site in Webster, New York. The report summarizes site investigative activities pursuant to the July 1992 RCRA Facility Investigation (RFI) Work Plan, as well as data from earlier investigations. The focus of the investigations was to define subsurface conditions and groundwater quality at the site.

Thank you for asking H&A to participate in this interesting project. Please contact us if you have any questions or require additional information.

Sincerely yours, H&A OF NEW YORK

James G. Talpay

James G. Talpey Senior Env. Geologist

Lawrence P. Smith, P.E.

Partner

JGT:LPS:cad lps:70092-44:rbld200

TABLE OF CONTENTS

		Page
	OF TABLES OF FIGURES	ii ii
I.	INTRODUCTION	1
II.	SITE INVESTIGATIONS	2
	2-01. Earlier Site Investigations2-02. RFI Work Plan Investigations	2 3
III.	HYDROGEOLOGIC CONDITIONS	5
	3-01. Site Geology 3-02. Site Hydrogeology	5 6
IV.	GROUNDWATER QUALITY	9
V.	SOIL CONDITIONS	11
	5-01. Soil Vapor Survey5-02. Soil Analytical Results	11 12
VI.	SUMMARY AND CONCLUSIONS	13
REF	FERENCES	14
APP APP APP	BLES URES PENDIX A - Test Boring Reports PENDIX B - Well Installation Reports PENDIX C - Hydraulic Conductivity Testing Results PENDIX D - Laboratory Analytical Data Reports	

LIST OF TABLES

Table No.	<u>Title</u>
I	Summary of Monitoring Well Locations and Elevations
II	Summary of Hydraulic Conductivity Test Results
III	Summary of Groundwater Analytical Results - June and September 1993 Sampling Events
IV	Appendix 33 List Groundwater Analysis Results
V	Summary of Soil Vapor Testing Results - SWMU 66, SWMU 81
VI	Summary of Soil Analytical Results

LIST OF FIGURES

Figure No.	<u>Title</u>
1	Project Locus
2	SWMU Location Plan
3	Well Location Plan
4	SWMU 66 Soil Vapor Survey Plan
5	SWMU 81 Soil Vapor Survey Plan
6	Top of Bedrock Contour Plan
7	Shallow Bedrock Zone Groundwater Contour Plan
8	Intermediate Bedrock Zone Groundwater Contour Plan
9	Deep Bedrock Groundwater Level Postings
10	Total VOCs Shallow Bedrock Zone
11	Total VOCs Intermediate Bedrock Zone
12	Total VOCs Deep Bedrock Zone
13	Shallow Bedrock Zone Contaminant Characterization Plan
14	Intermediate Bedrock Zone Contaminant Characterization Plan

I. INTRODUCTION

This Interim RCRA Facility Investigation (RFI) report summarizes the investigations that have been conducted on behalf of Xerox Corporation (Xerox) in conformance with Module III Corrective Action Requirements for Solid Waste Management Units, Xerox Part 373 Permit, Webster, New York dated 9 June 1992. The purpose of the Interim RFI is to summarize investigative activities previously conducted in the Building 200 area and associated with three former solid waste management units (SWMUs) which had been previously identified as requiring further action. The location of the Building 200 investigation site is shown on Figure 1 and the SWMUs are shown on Figure 2. The SWMUs evaluated during this investigation are as follows:

SWMU No.	<u>Description</u>
66	Former Drum Storage Area
81	Purported Solvent Burn Area
89	Solvent Degreaser Sump

Building 200 was constructed in 1970 on undeveloped land owned by Xerox and has been utilized for the assembly and manufacture of photocopiers since its construction. The operation associated with SWMU 89 was moved to Building 208 during the mid-1970's. The purported solvent burn area was identified during previously conducted employee interviews. Based on subsequent studies, it appears the purported area did not exist and the reporting of it resulted from confusion by the reporting party of areas associated with the closed hazardous waste landfill located to the north of Building 200.

Adjoining buildings 210 and 215 were constructed in 1971 and 1990, respectively. Building 210 is used for product shipping and receiving. Building 215 is an automated warehouse used for parts and materials storage. Figure 1, Project Locus indicates the sites' location near the north end of the Xerox Webster, New York facility.

This interim RFI report is intended to supplement previous investigations conducted at the Building 200 area which were summarized in a report entitled "Hydrogeologic Report, Building 200 Investigation" dated 31 January 1992 by H&A of New York. The work conducted since completion of the reference report was performed in accordance with the "RFI Work Plan Building 200 Investigation" dated 28 July 1992 by H&A of New York. The investigative activities in the Work Plan were intended to:

- Further identify the aerial and vertical extent of groundwater contamination associated with SWMU 89, and
- Identify the source(s) of groundwater contamination in the shallow bedrock zone adjacent to SWMU 66.
- Address the SWMU 81 issue.

II. SITE INVESTIGATIONS

2-01. EARLIER SITE INVESTIGATIONS

Environmental investigations near the Building 200 Investigative Site began in 1985 and were associated with the closure of an inactive solid waste landfill located approximately 1000 ft. north of the building. Some of the wells drilled during these unrelated investigations have been used to supply data for the Building 200 RFI.

Environmental investigations at the Building 200 site began in July 1989 and have continued through 1993. Xerox initiated investigative activities in order to define subsurface conditions at the purported solvent burn area thought to have been located near the south end of the building footprint. In July 1989, soil vapor sampling across the southern sector of the building resulted in no elevated levels of VOCs detected. This area was assigned SWMU 81, however little evidence of a VOC release in this area was found by the soil vapor survey. Depth to bedrock at the southeast end of the building is on the order of approximately one foot, which limited soil probe advancement at some locations. Results of the soil vapor survey were presented in a report titled "Building 200 Investigation, Soil Vapor Survey, Webster, New York" (H&A, September 1989).

The investigations were expanded to evaluate subsurface chemical conditions at former solvent use areas within the building, and to locate potential VOC releases to the subsurface, if present. Concentrations of VOCs were detected in shallow soil vapor samples collected near a former subgrade degreaser sump at building column PP-13. The primary VOC detected was tetrachloroethylene (PCE) with lower concentrations of trichloroethylene (TCE) and dichloroethylene (DCE). This area is now SWMU 89.

Soil vapor samples collected in the vicinity of a former drum storage area adjacent to the east wall of the building (SWMU 66) were found to contain parts-per-billion levels of PCE at two sample locations. Most sample locations in this area were non-detect.

In August 1989, shallow bedrock well SR200-1 was installed adjacent to the former degreaser sump. Groundwater samples from the well in 1989 were found to contain 347 mg/L (ppm) PCE, 3.27 mg/L TCE, 2.26 mg/L 1,1-dichloroethane (DCA), and 0.293 mg/L 1,1,1-trichloroethane (TCA).

During 1991, a blasted bedrock trench was installed northeast of Building 200 as shown on Figure 8. This trench is designed for migration control of groundwater containing dissolved volatile organic compounds (VOCs) derived primarily from the Salt Road site. Groundwater is pumped from this trench and routed to Xerox's groundwater treatment system located in Building 348. The 350 ft. long trench is blasted to a depth of 25 ft. below the top of bedrock and captures groundwater from the shallow and intermediate bedrock zones. Groundwater yield from the trench ranges between about 5 and 8 gpm.

Bedrock wells B19-SR, B19-DR, B26-SR, B26-IR, B29-SR, and B29-IR were installed during April 1991 to monitor groundwater quality downgradient of the building. In July to August 1991, bedrock wells SR200-2 through SR200-4 were installed inside the building near the location of the former degreaser sump (SWMU 89) to further define soil and groundwater conditions in that area, and well SR200-5 was installed at the former drum storage area (SWMU 66). (The letters SR, IR, and DR designate shallow bedrock, intermediate bedrock, and deep bedrock wells, respectively).

The well installations, and groundwater sampling results from the wells were reported in the Building 200 Investigation" (H&A, January 1992). This report also contained current sampling results from miscellaneous wells installed by others during the 1985 inactive solid waste landfill closure, and for wells 210-1 through 210-3 installed during a 1988 investigation of the Building 210 site (H&A, May 1988). The report included shallow bedrock zone and intermediate-bedrock zone groundwater contour plans indicating groundwater flow to the north-northeast in the shallow bedrock, and to the northwest-northeast in the intermediate bedrock. At some locations, groundwater elevations in the intermediate bedrock wells were found to be three to four feet above those found in shallow bedrock wells of the same well cluster. These findings indicated artesian (confined aquifer) conditions in the intermediate bedrock zone north of the building. Trenches blasted into the top of bedrock during construction of subgrade utility pipes appeared to be locally affecting groundwater drainage in the shallow bedrock zone northeast of the building.

A groundwater contaminant plume consisting of dissolved phase VOCs including predominantly PCE, TCE, and 1,1-DCA was identified at wells SR200-1, SR200-3, B19-SR and B19-IR. These well locations are shown on Figure 3 of this report. Contaminant characterization (stiff) diagrams indicated the apparent presence of a second, chemically distinct groundwater plume containing predominantly 1,2-DCE and vinyl chloride adjacent to the east margin of the Building 200 Investigation site as indicated by wells 210-1, 210-2 and 210-3. The water quality in these wells most likely represents the Salt Road Plume.

2-02. RFI WORK PLAN INVESTIGATIONS

notions start with previous designations

During the period 25 May to 22 June 1993, bedrock wells DR200-7 (R200-8 R200-9, and SR200-10 were installed (Figure 3) in accordance with the Building 200 RFI Work Plan (H&A, July 1992). The purpose of these wells was to further define groundwater conditions north and east of the building.

On 23 and 24 July 1993, wells VE200-1 and VE200-3 were installed inside the building during plant shutdown. These 4-in. diameter wells are screened in the overburden soils at, and downgradient of, the former degreaser sump (SWMU 89). The wells were installed for purposes of vacuum extraction Interim Remediation (IR) measures. Groundwater was not encountered during drilling of VE200-1 and VE200-3, indicating that vacuum extraction from the adjacent shallow bedrock wells has locally dewatered the overburden soils in the SWMU 89 vicinity. These two wells, and the adjacent 2-in. diameter shallow bedrock wells SR200-1 and SR200-2, are tied into a Xerox 2-Phase® extraction system currently operating at the site.

Also during the current RFI Work Plan investigations, detailed soil gas surveys were performed at the former drum storage area (SWMU 66) and at the southeast end of the building (SWMU 81), as shown on Figures 4 and 5, respectively. The work was intended to supplement previous investigations which were summarized in H&A, 1989.

Results of the current soil gas surveys are consistent with earlier results and found no additional evidence of VOC releases at either the purported solvent burn area (SWMU 81) or at the former drum storage area (SWMU 66). Results from the drum storage area (SWMU 66) consisted of non-detect readings at most sample locations, and some sample locations with low parts per billion levels of DCE, TCE, PCE and toluene. The low concentrations of the VOCs are not indicative of a contaminated soils source area at this SWMU. Results from the southeast corner of the building (SWMU 81) were predominantly non-detect, as before. Findings of the current soil gas surveys are further discussed in Section 5-01.

III. HYDROGEOLOGIC CONDITIONS

The hydrogeologic conditions revealed during the implementation of the July 1992 RFI Work Plan are consistent with conditions delineated during previous investigations as summarized in the January 1992 hydrogeologic report. The test borings and monitoring wells installed at the site are identified on Figure 3. Subsurface information obtained from the drilling and well installation programs is included on the test boring reports contained in Appendix A. A brief summary of site geology follows below.

3-01. SITE GEOLOGY

The Building 200 site is situated approximately 4,000 ft. north of the former shoreline of glacial Lake Iroquois, which is coincident with the approximate 425 ft. elevation contour along Route 104 in Webster. Lake Iroquois was a relatively long duration glacial lake phase and a predecessor to present day Lake Ontario.

Soils underlying the Building 200 area consist of locally derived compacted soil fill deposits, lacustrine sand, and glacial till overlying bedrock. The glacial till was deposited over the bedrock during glaciation. Wave action and shoreline processes resulted in the reworking of the upper portion of the till and deposition of lacustrine sands and silts in some areas. The lacustrine deposits are overlain by various types of fill associated with building construction activities.

The bedrock encountered in the Building 200 investigative site consists of the Grimsby Sandstone, which is a reddish brown medium to fine grained thin to thick bedded sandstone. As a result of glaciation, the upper portion of the bedrock is generally more intensively fractured than at depth. The number of horizontal partings generally decreases with depth, while the number of vertical joints encountered by core borings appears to be relatively constant with depth. The Queenston Shale underlies the Grimsby, and consists of an approximate 2000-ft. thick section of shale and siltstone of generally low permeability.

Surface streams in the site vicinity appear to follow preferred orientations, probably reflecting the orientations of joints in the underlying bedrock. Previous hydrogeologic studies in the Building 200 area, of the Salt Road Complex, at the former industrial landfill site to the north of Building 200, and on other locations on the Joseph C. Wilson Center for Technology have indicated preferential zones of groundwater flow in the bedrock associated with bedrock joint orientations. Where encountered at other sites, these zones of elevated permeability tend to act as preferred flow pathways for groundwater.

The overburden in the Building 200 area generally ranges in thickness from about 2 to 24 ft. The top of bedrock surface exhibits considerable topography as indicated on the bedrock contour plan which is included as Figure 6. The bedrock surface beneath Building 200 generally slopes to the northwest. Bedrock at the southeast end of the site is covered by only a thin veneer of soil about one to two feet thick. The top of bedrock northeast of Building 200 in the vicinity of Building 330 (Figure 6) is also shallow. It is covered by about one to two feet of apparent fill deposits, and was found to be highly weathered to a very dense soil consistency down to a depth of about nine feet.

3-02. SITE HYDROGEOLOGY

Previous hydrogeological characterizations at the site are summarized in the "Hydrogeologic Report, Building 200 Investigation" dated 31 January 1992 by H&A of New York. Groundwater in the Building 200 Investigative Area occurs in three distinct zones summarized as follows:

- <u>Shallow Bedrock Zone</u> This zone consists of the overburden and the upper ten feet of bedrock and is represented by the overburden and shallow rock wells.
- <u>Intermediate Bedrock Zone</u> This zone occurs approximately 15 to 25 feet below the top of bedrock and is represented by the intermediate bedrock wells installed at the site as shown on Figure 3. This zone includes wells designated by the prefixes R, IR and 210.
- <u>Deep Bedrock Zone</u> This zone occurs approximately 30 to 45 feet below the top of bedrock surface and is monitored by the DR Series wells.

The hydrogeologic units are distinguished primarily through hydraulic head differentials and zones of elevated permeability. Well Installation Reports for the on-site wells are contained in Appendix B. A summary of the monitoring well elevations according to their monitoring zone is included as Table I.

A shallow bedrock groundwater contour plan is included as Figure 7 and represents groundwater flow conditions in September 1993. Groundwater in the shallow bedrock zone appears to flow to the north and northeast from the Building 200 area. A trough appears to occur in the shallow bedrock zone as evidenced by the low water levels in wells B19SR and B27A as shown on Figure 7. This northeasterly trending trough is consistent with a predominant joint pattern which has been identified at other investigative sites on the Webster facility, as identified on Figure 10 of the Facility Reference Document.

A groundwater potentiometric surface for the intermediate bedrock zone is included as Figure 8. Groundwater in the northern portion of Building 200 flows northward and appears to be intercepted by the bedrock groundwater recovery trench installed north of Building 215 as shown on Figure 8. The recovery trench was completed by fracturing the bedrock using explosives and was installed as part of the Salt Road groundwater remediation system. The approximate zone of capture of the Recovery Well 15 trench is illustrated on Figure 8.

The elevation of the potentiometric surface in the intermediate bedrock zone appears to be above that of the shallow bedrock zone at several locations. Available data for the remainder of the Webster site indicates that the vertical gradient between the shallow bedrock zone and underlying intermediate zone is usually downward, rather than upward as appears to be the case at the north end of the Building 200 site. The upward gradient at this location most likely results from the substantial lowering of head in the shallow bedrock zone due to the impact of sustained pumping from the Recovery Well 15 trench and from pumping of the bedrock trench installed on the north edge of the former solid waste landfill (Figure 3). The trenches would be expected to be more effective at lowering water levels in the shallow-bedrock zone than in the underlying intermediate bedrock because of the generally higher permeability which exists in the upper portion of the bedrock. The pumping water level in Recovery Well 15 is set in an elevation of 369.3 feet, which

is several feet lower than the elevation of the water levels measured in the shallow bedrock zone near Building 200.

Based on available water level data, it appears that the groundwater flow in the shallow and intermediate bedrock zones to the north of Building 200 is effectively captured by the recovery well trench installed north of Building 215 as part of the Salt Road Corrective Measure.

Only two wells were constructed in the deep bedrock as part of the Building 200 investigation, and no potentiometric surface contour plan could be prepared. The water level elevations in the deep bedrock wells are shown on Figure 9. The vertical gradient at the deep well locations is downward from the overlying intermediate bedrock zone. Water levels in the two deep bedrock wells have wide differences in elevation, and both wells possess low hydraulic conductivity. These data suggest limited and uneven groundwater recharge across the deep bedrock zone.

Hydraulic conductivity testing was performed for the wells installed during the implementation of the July 1992 RFI Work Plan. Rising head permeability test results are included in Appendix C. The hydraulic conductivity results obtained from the recent and previously installed wells are summarized on Table II. The hydraulic conductivity values obtained from the recently installed wells are consistent with the range of permeabilities obtained from previous investigations in the Webster facility. The geometric mean hydraulic conductivities for each of the primary water bearing zones at the Building 200 Investigative Area are summarized as follows:

Water Bearing Zone	Geometric Mean Hydraulic Conductivity
•	(cm/sec)
Shallow Bedrock	2.6 x 10 ⁻⁵
Intermediate Bedrock	1.5 x 10 ⁻⁵
Deep Bedrock	2.2 x 10 ⁻⁶

The average velocity of groundwater in the bedrock zones can be estimated from Darcy's Law:

$$V = \frac{KI}{N_{\star}}$$

where V equals the groundwater velocity, K equals the hydraulic conductivity, I equals the hydraulic gradient and N_e equals the effective porosity.

The effective porosity of the Grimsby Sandstone has been estimated from natural gas exploratory drilling data as ranging between about 5 and 10 percent. Based on a measured groundwater gradient in the shallow rock of 0.017 ft/ft. along the northeastern portion of Building 200, the geometric mean of hydraulic conductivity and an effective porosity of 10 percent, the estimated average groundwater flow velocity is approximately 5 ft/yr. The hydraulic conductivities in the shallow rock range over four orders of magnitude, and groundwater velocities are substantially higher in higher permeability zones.

Based on an observed groundwater gradient of approximately 0.01 ft/ft. along the northern portion of Building 200, and a geometric mean hydraulic conductivity of 1.5 x 10⁻⁵ cm/sec., the average groundwater flow velocity in the intermediate bedrock zone is estimated at 2 ft/yr. The velocity of groundwater in the deep bedrock zone cannot be calculated because a groundwater gradient cannot be estimated from the two existing deep bedrock wells. As with the shallow rock, groundwater velocities will be higher in areas of elevated hydraulic conductivity.

In summary, groundwater in the shallow- and intermediate-bedrock zones along the northern portion of Building 200 appears to be effectively captured by the groundwater recovery trench installed north of Building 215 associated with the Salt Road Corrective Measure.

IV. GROUNDWATER QUALITY

Water quality samples were obtained from the Building 200 Investigative Area wells during June and September of 1993 in accordance with the July 1992 RFI Work Plan. Analytical data are summarized in Table III and are shown graphically on Figures 10 through 12. Elevated levels of VOCs of approximately 25 to 300 ppm were identified in the suspected SWMU 89 source area in wells SR200-1 and SR200-3, respectively during the September 1993 sampling event (Figure 10). These concentrations are slightly lower than the VOC concentrations detected during the 1989 sampling events in part due to the 2-Phase® extraction IR measures being applied at SWMU 89 wells. Approximately 31 ppm of VOCs were detected in well B19SR in the shallow rock zone to the northeast of SWMU 89. This well lies within the trough in the shallow bedrock groundwater system identified in Section II and shown on Figure 7. Elevated concentrations of VOCs at this location probably result from the migration of groundwater born VOCs along a preferred groundwater flow pathway. The primary VOC constituent detected at these locations was tetrachloroethylene as shown in Table III.

Groundwater quality in the intermediate bedrock is detailed on Figure 11 and summarized in Table III. The highest concentrations of VOCs in the intermediate bedrock zone were detected at well 210-3. VOCs detected at well 210-3 appear to have originated from the Salt Road Plume.

At well R200-8, installed near SWMU 66, the concentrations of VOCs in the intermediate zone were approximately twice the levels detected in the shallow zone at this location (well SR200-5). This location represents the only wells in the Building 200 Investigative Area in which 1,1-DCE and vinyl chloride were present. The primary compounds detected at this SWMU location were 1,2-DCE and 1,1-DCA. Vinyl chloride, 1,2-DCE and 1,1-DCA are consistent with the constituents originating from the Salt Road site as reflected in the VOC chemistry of the 210 Series wells. The 1,1-DCE detected in SR200-5 and R200-8 does not appear to originate from Salt Road or from the SWMU 89 source area based on available water quality data.

The relative absence of VOCs in soil vapor at the SWMU 66 location, coupled with the higher VOC concentrations in the intermediate-bedrock zone compared to the shallow-bedrock zone, suggests that the source of VOCs in groundwater at the SWMU 66 location does not result from activities at either SWMU 66, or from SWMU 89 which lies upgradient to the north. VOC chemistry of the shallow and intermediate wells at the SWMU 66 location may result from a mixture of Salt Road groundwater from the east with groundwater containing low levels of tetrachloroethylene and 1.1-DCE migrating from south of Building 200. Because the SWMU 66 area appears not to be the source of the VOCs detected in groundwater, additional characterization of the SWMU 66 area is not warranted, and the SWMU should not be further investigated.

Groundwater from the SWMU 66 area flows northward and is captured by the Recovery Well 15 trench. Source area remedial measures have been implemented in the Building 208 and 209 areas to the south of Building 200, and additional action relative to the 1,1-DCE noted in the SWMU 66 area is not warranted.

Groundwater quality in the deep bedrock zone is illustrated on Figure 12 and included in Table IV. The primary constituents detected in well B19-DR are consistent with those detected in the shallow and intermediate bedrock wells installed at that location. The downward vertical migration of these constituents would be consistent with the downward vertical gradient which existed prior to the installation of the recovery well trench north of Building 215 and with a zone of vertical permeability associated with regional joining which is reflected in the groundwater elevation contours discussed in Section II. Water quality at well DR200-7 appears to be significantly different from that identified at well B19-DR and was characterized by the presence of several compounds not commonly detected at the Webster facility. The trihalomethane, chloroform and bromodichloromethane suggest the water quality was influenced by the use of chlorinated public water during drilling and well installation. These compounds are typically detected in wells which have recently been completed in rock and where chlorinated water was used during drilling operations. In addition, the presence of ethylbenzene and benzene at well DR200-7 is not consistent with the water quality elsewhere on the Webster facility. Ethylbenzene and benzene also can be introduced during the drilling operation if traces of fuel constituents are present in the driller's water truck or supply hoses during the drilling operation. The only compounds attributable to the site operation which were detected in well DR200-7 were tetrachloroethylene and 1,1-dichloroethane. PERC was detected at 3.5 and 20 ppb in the June and September 1993 analyses, respectively, and 1.1-DCA was detected at 2.2 ppb during the September sampling round. The DCA concentration is slightly above the analytical detection limit, and is below the practical quantification limit.

In summary, water quality data obtained during implementation of the July 1992 RFI Work Plan indicate water quality in the northern portion of the Building 200 Investigative Area is consistent with the historical operations conducted at SWMU 89. The VOCs in groundwater are concentrated in the shallow bedrock zone along the northern portion of Building 200. Groundwater flow in this zone appears to be currently captured by 2-Phase® extraction from wells at the SWMU 89 source-area, and by the Recovery Well 15 trench associated with the Salt Road Corrective Measure. Water level and water quality data for the intermediate bedrock zone also indicate that the groundwater flow in the intermediate bedrock is captured by the Recovery Well 15 trench. Although the vertical groundwater gradients and water quality data from the SWMU 66 area indicate that the SWMU 66 activities were not the likely source of contaminants found at this location, groundwater from the SWMU 66 area also flows northward and appears to be captured by the groundwater recovery system associated with Recovery Well 15.

V. SOIL CONDITIONS

5-01. SOIL VAPOR SURVEY

Supplemental soil-vapor survey work was conducted at both the SWMU 66 and the SWMU 81 areas. A total of 25 soil-vapor samples were obtained in the SWMU 66 area and nine soil-vapor samples in the SWMU 81 area. The soil vapor sampling locations are shown in Figures 4 and 5, respectively. At the SWMU 66 area, soil-vapor samples were collected on 26 through 28 May 1993. Twenty-five points (VP-1 through VP-25) were sampled on a 25-ft. grid at the locations shown on Figure 4. At the SWMU 81 area, soil-vapor samples were collected 27 June 1993. Nine sample points (VP-26 through VP-34) were sampled on a 100-ft. grid at the locations shown on Figure 5. Three additional locations could not be sampled due to probe refusal.

No elevated levels of VOCs were detected in the samples obtained from either area. All sample concentrations were well below the action level of 1 ppm total VOCs outlined in the July 1992 RFI Work Plan. The soil vapor sample testing results are summarized in Table V.

The highest sample concentrations in the SWMU 66 area of (up to 0.189 ppm total VOCs) were detected at two sample points located along the route of a storm sewer utility pipe (Figure 3). Utility trenches in the vicinity of SWMU 66 have been blasted into the top of bedrock due to the shallow depth to bedrock. Permeability is higher in the blasted trenches which allows VOC vapors to migrate upward from the contaminated groundwater below SWMU 66 (as indicated by SR200-5). The relatively low soil-vapor VOC concentrations in the SWMU 66 area are not consistent with the elevated VOC concentrations normally found at soil contamination source areas.

All except two samples from the supplemental SWMU 81 area investigation were non-detect. The low levels detected in two samples (0.013 ppm total VOCs in VP-31 and 0.003 ppm in VP-34) are not indicative of soil contamination associated with source areas. In addition, soil-vapor probes could generally not be advanced beyond a 2-ft. depth because of the shallow bedrock below this portion of the building.

The objective of the additional soil-vapor sampling in the SWMU 66 area was to assess the potential presence of VOCs in the soil stemming from former solvent drum storage in this area. The objective of additional soil-vapor sampling in the SWMU 81 area was to fill in the gaps in the previously conducted soil-vapor survey.

Methods outlined in Attachment 7, Appendix B of the Xerox Facility Reference Document (H&A, June 1991) were followed in sampling and analysis of soil vapor. The specific steps followed to obtain soil-vapor samples were:

- Drive solid steel bar to 3 ft. depth or to refusal;
- Withdraw steel bar and insert perforated sampling tube;
- Seal the sampling tube at ground surface using hydrated bentonite;
- Purge 1 liter of soil vapor;
- Collect 1 liter of soil vapor sample into a tedlar airbag.

After collecting samples, the tedlar bags were marked with the soil vapor location, date, time, and the depth and returned to the H&A laboratory for analysis. All bags were analyzed at the H&A laboratory within 2 days of collection. Analysis of samples was performed on a Photovac 10s55 portable gas chromatograph equipped with a 10 meter CPSIL 5 wide-bore capillary column and a 10.6eV photoionization detector.

5-02. SOIL ANALYTICAL RESULTS

Laboratory analytical results of soil samples from test boring explorations conducted during this investigation are summarized in Table VI.

Soil samples from three test borings were analyzed by General Testing Corporation for volatile organic compounds by EPA Method 8010/8020. The Work Plan called for selecting one soil per borehole for laboratory analysis based on field screening results of the soil jar samples with a Foxboro Organic Vapor Analyzer (OVA). All soil samples were non-detect with the OVA (Appendix A). Samples for analysis were therefore selected by the field geologist based on visual evidence, sample volume, and sample depth. No soil samples were submitted from boreholes adjacent to existing wells if previous soil analytical data was available from those locations.

The highest VOC levels were found in sample S7 at boring B18-SR at a total concentration of 0.250 mg/kg (parts per million). The compounds detected consisted of methylene chloride, 1,1,1-TCA, TCE, and PCE. This soil sample was from a depth interval of 12.0 to 12.5 ft. near the top-of-bedrock. Soil sample S2 (2.4 to 3.9 ft. depth interval) from boring R200-9 was analyzed and found to contain low parts per billion levels of TCE and PERC at a total concentration of 0.018 mg/kg. A soil sample from boring DR200-7 (4.0 to 6.0 ft. depth interval) was non-detect for VOCs. The VOC concentrations detected in these soil samples appear to be consistent with the dissolved-phase VOCs present in site groundwater.

VI. SUMMARY AND CONCLUSIONS

Based on the investigations conducted to date, the aerial and vertical extent of contamination at the Building 200 investigative site have been adequately defined. In addition, groundwater flow in the shallow and intermediate bedrock zones in the northern portion of Building 200 appears to be effectively captured by Recovery Well 15 installed as part of the Salt Road Corrective Measure. Water quality data indicates that the majority of the VOC compounds detected in the northern portion of Building 200 are attributable to SWMU 89 operations. Vertical groundwater gradients and constituent chemistry data indicates that SWMU 66 was not likely the source of contamination to shallow and intermediate groundwater at that location. Given the northward groundwater flow from the SWMU 66 location and the apparent capture of groundwater flow by Recovery Well 15, additional characterization of the SWMU 66 area is not warranted.

Xerox has previously considered installing a pumping well in the B19 area because of elevated VOC concentrations. Due to the apparent hydraulic capture of groundwater from well cluster B19 to the Recovery Well 15 trench, groundwater pumping from wells B19-SR and/or B19-IR does not appear necessary at this time. As an alternative, Xerox should consider lowering the pumping level in RW15 by setting the high level switch in the well at a lower elevation. This would increase the capture zone relative to the B19 area. Water level data and water quality should be monitored for a period of several months to evaluate the effectiveness of RW15 in capturing contamination near the B19 cluster. Additional actions could be evaluated if a more aggressive capture of groundwater flow is determined to be necessary. These actions could include pumping from the cluster location or extending the RW15 trench westward.

REFERENCES

- 1. Miscellaneous Test Boring Logs of Recra Research, Inc. and O'Brien & Gere Engineers, Inc. dated 1983 through 1985.
- 2. Building 200 Investigation, Soil Vapor Survey, Webster, New York by H&A of New York, September 1989.
- 3. Facility Reference Document for the Xerox Corporation, Joseph C. Wilson Center for Technology, Webster, New York. Volumes I, II and III by H&A of New York, Revised June 1991.
- 4. Hydrogeologic Report, Building 200 Investigation, Xerox Corporation, Webster, New York by H&A of New York, 31 January 1992.
- 5. Module III Corrective Action Requirements for Solid Waste Management Units, Xerox Part 373 Permit, Webster, New York, 9 June 1992.
- 6. RFI Work Plan, Building 200 Investigation, Xerox Corporation, Webster, New York by H&A of New York, 28 July 1992.
- 7. General Testing Corporation Environmental Laboratory Reports, Re: Xerox Corporation Building 200, Quarterly Well Monitoring Data, 4th Quarter 1991 through 1993.

TABLE 1 XEROX CORPORATION BUILDING 200 RFI INVESTIGATION SUMMARY OF MONITORING WELL LOCATIONS AND ELEVATIONS

	COOR	DINATE			ELEVA	NOITA		
	LOCA	NOITA						GROUND-
WELL ID.			RISER	CASING	GROUND	MONITORING	TOP OF	WATER
	N	E	(INSIDE)	(OUTSIDE)		INTERVAL	BEDROCK	9/21 - 22/93
OVERBURDEN WELLS								
B18-A	NA	NA	380.28	NA	377.86	360.4-364.6	NP	374.21
B25-A	3119.00	1600.00	380.96	NA	377.98	351.5-357.5	NP	374.10
B26-A	3091.30	2014.30	381.00	381.31	378.66	364.5-371.8	NP	376.44
B27-A	3141.53	2536.67	386.76	NA	383.73	366.2-371.2	NP	369.39
B29-A	2670.85	1541.66	388.16	388.39	385.68	364.6-371.8	NP	378.05
VE200-1	2511.00	2102.00	392.10	NA	393.0	375.1-389.5	NP	NA
VE200-3	2565.00	2120.00	392.20	NA	393.0	373.9-388.5	NP	NA
SHALLOW BEDROCK W	ELLS							
SR200+1	2515.07	2102.96	392.79	392.98	392.98	366.0-378.5	374.7	NA
SR2(X)-2	2447.60	2111.50	392.68	393 05	393.05	369.3 - 382.3	375.4	379.48
SR200-3	2569.10	2120.70	392.44	392.99	392.99	368.7-381.9	374.2	NA
SR200-4	2579.90	2051.70	392.75	393.01	393.01	368.3-381.3	374.0	378.10
SR200-5	2173.40	2418.50	392.12	392.46	392.46	378.5-385.9	385.0	382.28
SR200-10	3068.62	2361.49	379.67	379.79	377.20	365.1 - 370.1	368.2	374.63
B18-SR	3278.32	2007.70	381.12	381.41	379.20	360.2-367.4	364.7	375.00
B19 - SR	2902.29	2287.33	381.78	381.42	379.50	361.5 - 369.0	369.7	370.15
B26-SR	3097.21	2010.08	380.82	380.98	379.00	360.0 - 368.0	364.5	374.52
B29-SR	2675.46	1538.79	388.18	388.34	385.48	357.5-365.5	361.7	376.83
B28-A	3322.17	2958.08	387.63	NA	384.36	372.4-377.4	377.1	NA
INTERMEDIATE BEDRO	OCK WELLS							
210-1	2273.80	2705.80	396.33	396.77	396.33	366.7-376.7	391.8	380.94
210-2	2807.40	2745.20	388.40	389.70	386.60	358.6-368.6	383.6	371.49
210-3	2758.90	3011.80	392.80	394.30	391.40	361.4-371.4	386.6	375.96
BI8-IR	NA	NA	379.11	NA	377.61	338.6-353.2	357.9	370.40
B19-IR	2901.69	2267.91	391.98	382.36	379.40	349.1-359.4	374.4	383.77
B25	3118.00	1590.00	381.77	NA	378.52	338.3-348.0	353.2	374.05
B26-IR	3092.76	2002.51	380,28	380.65	379.24	339.2-355.2	365.1	376.91
B29-IR	2676.85	1544.08	387.24	387.66	385.42	336.3-351.4	361.7	375.87
B27	3149.29	2536.13	385.42	NA	383.07	348.4-358.4	364.1	373.09
R88	3322.70	2963.80	388.10	NA	384.50	354.5 – 364.5	379.5	374.42
R200-8	2173.21	2476.99	395.35	395.46	392.80	362.5-373.1	387.5	381.80
R200-9	3068.59	2373.72	379.67	379.79	377.20	340.4-352.8	373.6	374.91
DEEP BEDROCK WELL								
B19-DR	2902.70	2281.61	381.21	381.40	379.46	319.5-333.5	374.0	368.28
DR200-7	2698.42	2199.03	385.97	386.12	383.60	326.5-336.5	371.6	334.70

NOTES

- L. ELEVATIONS ARE REFERENCED TO NATIONAL GEODETIC VERTICAL DATUM (NGVD), MEAN SEA LEVEL.
- 2. NORTHING AND FASTING COORDINATES ARE REFERENCED TO XEROX CORPORATION GRID SYSTEM.
- 3. GROUNDWATER ELEVATIONS LISTED ARE FROM THIRD QUARTER 1993 SAMPLING EVENT OF 21 22 SEPTEMBER 1993.
- 4. NA DATA NOT AVAILABLE.
- 5. NP = NOT PENETRATED.
- 6. REFER TO TEXT FOR ADDITIONAL INFORMATION.
- 7. WELL B19-A DECOMMISIONED JUNE 1993.

TABLE 2 XEROX CORPORATION BUILDING 200 RFI INVESTIGATION

SUMMARY OF HYDRAULIC CONDUCTIVITY TEST RESULTS

WELL ID.	Kh (cm/sec x 10-6)	REFERENCE	GEOMETRIC MEAN
			(cm/sec x 10-6)
OVERBURDEN WELLS			
B18-A	160	(3)	
B25-A	8.5	(3)	
B26-A	13	(1)	
B27-A	3700	(3)	
B29-A	8.2	(1)	55.7
SHALLOW BEDROCK WEI	LLS		33.7
\$R200-1	5.3	(1)	
SR200-2	0.8	(1)	
SR200-3	1.1	(1)	
SR200-4	4.5	(1)	
SR200-5	91,000	(1)	
SR200-10	2.7	(3)	
B18-SR	9.1	(3)	
B19-SR	2,500	(1)	
B26-SR	60	(1)	
B29-SR	22	(1)	
			26
INTERMEDIATE BEDROC	CK WELLS		
210-1	47	(2)	
210-2	18	(2)	
210-3	160	(2)	
B-18	1.8	(3)	
B19-IR	23	(3)	
B-25	100	(3)	
B26-IR	0.98	(1)	
B-27	13	(3)	
B29-IR	0.3	(1)	
R200-8	480	(3)	
R200-9	12	(3)	
			15
DEEP BEDROCK WELLS			
B19-DR	1.6	(1)	
DR200-7	3.0	(3)	
			2.2

NOTES:

- 1. Kh CALCULATED BY APPLYING HVORSLEV'S METHOD DESCRIBED IN LAMBE AND WHITMAN (1961) TO DATA FROM RISING HEAD TESTS PERFORMED BY H&A OF NEW YORK
- 2. REFERENCES:
 - $(1) \, H\&A \, \, \text{OF NEW YORK "HYDROGEOLOGIC REPORT, BUILDING 200 INVESTIGATION.}$
 - JOSEPH C. WILSON CENTER FOR TECHNOLOGY, WEBSTER, NEW YORK*, JANUARY 1992.
 - (2) H&A OF NEW YORK "HYDROGEOLOGIC REPORT, BUILDING 200 INVESTIGATION.
 - INTERMIDIATE BEDROCK AQUITER, JOSEPH C. WILSON CENTER FOR TECHNOLOGY, WEBSTER, NEW YORK*, JUNE 1990.
 - (3) THIS INVESTIGATION.
- 3. GEOMETRIC MEAN CALCULATED BY TAKING THE ANTILOG OF THE SUM OF NATURAL LOGARITHMS OF FACH HYDRAULIC CONDUCTIVITY TEST RESULT, AVERAGING THE LOGARITHMS, AND TAKING THE ANTILOG.
- 4. REFER TO TEXT FOR ADDITIONAL INFORMATION.

TABLE 3

XEROX CORPORATION
BUILDING 200 RFI INVESTIGATION
SUMMARY OF ANALYTICAL LABORATORY
GROUNDWATER ANALYSES
JUNE TO OCTOBER 1993 SAMPLING EVENTS

								74	PADAMETER						
BORING	D.A.TH!	VINV	METHYLENE	CHIORO-						BROMODI-		ETHYL-			TOTAL
SAMPLING	SAMPLED	CHLORIDE	CHLORIDE	FORM	1,1-DCE	1,1-DCA 1,2-DCB 1,1,1-TCA	12-DCB	1,1,1-TCA	10E	CIILORO-	PERC	BENZENB	BENZENE TOLUENE	TOLUBNE	vocs
LOCATION										METHANB					
OVERBURDEN WELLS	· s :					=									4
B18-A	09/21/93	1	1]	i 1	1	1	1	ŀ	1	1 1	1	 	£	13
B25-A	09/21/93	1	1 1	í	 	 		l E	1	 	i i	1	1	!	1
B26-A	66/91/90	 	I I	I I	I I	 	1	1	1	1	i I	1	1	 	! !
B26-A DUP.	06/16/93	1	1	l I		I 1	l I	1	l I		 	1	1	1	1
B26-A	09/21/93	1	1 1	1		1	1	1	1	1 1	1	I 1	1 1	1	1
B27-A	09/22/93	1	I I	1	 	1	27	ļ	1	1	I I	f I	1	I I	7.2
B29-A	66/91.90	 	;	1	!	1		!	i 1	I 	l I	1	1	1	
B29-A	09/21/93	1 1	 	1	ŀ	i I]]		1	1	1	 	1	1	I I
B29-A DUP.	00/21/03	!		 	 	1	1	1 1	:	i i	I I	1	1	l I	I 1
SHALLOW BEDROCK WILLS	WELLS														
B18-SR	06/28/93	1	1	8.4	1	1	!	1	i	!	3.3	6.4	1	1	16.6
B18-SR	09/21/93	!	i i	1	í		1	1	l I	1	1	1	i i	1	
B19-SR	66/91/90	1	1	i	 	190	130	ì	910	1	19000	1	1	1	20230
B19-SR	09/21/93	1	1		í	:	1	1	1500	1	29000	1	1	1	30500
B19-SR DUP	09/21/93		 	1	l l	1	1	 	1500	1	29000	1	I I	1	30500
B26-SR	56/91/90	!	l 1	1		31	5.4		26	i	88		1	 	147.4
B26-SR	09/21/93	!	1	l I	 	5.0	9.1	1	7.7	1	14	l 1	1	1	28.3
B29-SR	66/11/90	1	1	1	i	1.5	I I	1	į,		!	1	1	1	1.5
B29-SR	09/21/93	1	1	!	1	1	 	!	l l	t i		l l	1	1	}
SR200-1	06/11/93	1	1			1 1	i i	i	1	1	210000	1	i	1	210000
SR200-1	09/22/93	1	!	1]	1	!	;	l I	25000	1	1	l 1	25000
SR200-2	06/11/93	1	1	1.0	1]		i	1	1	1	1	1	1	1.0
SR200-2	09/22/93	l I	1 1	1	1	1	ł	1	ŀ	!	2.6		1	l l	5.6
SR200-3	66/11/90	!	ì	1]	1	1	1	1	44000	1	!	!	44000
SR200-3	09/22/93		1		Į Į	 	1	1	1	1	300000	1	1	1	300000
SR200-4	06/11/93		ļ	1	1	1	i i	1	1	<u> </u>	5.7	1	3.9	8:3	12.4
SR 200-4	09/22/93			1	l l		1	ŀ	1	1	89	1	†	1	88
SR200-5	06/16/93	1		 	1	£;	63	1	12	!	3.1	 	I I	i l	100.1
SR200-5	09/22/93	7.5	1	}	7.7	05.	110		10	1	1.7]	!	183.6
SR200-10	06/28/93	1	1	6.9	 		1	!	1	<u> </u>	1	1	1	13	19.9
SR200-10	09/22/93	1	-	1.9	1	l I			1 -		1	1	1	ł	3.0

TABLE 3 (CONT.)

Similar								- F	PARAMETER	~					
INCHING			-							Morround		D. D.			TOTAL
NUMBER/ SAMPLING	DATE SAMPLED	VINYL	METHYLENB	CHLORO-	1,1-DCE	1,1-DCA 1,2-DCE		1,1,1-TCA	TG.	CHLORO-	PBRC	BENZENB	BHNZENE	TOLUENR	VOCS
LOCATION										METHANB					
INTERMEDIATE BEDROCK WELLS	ROCK WELLS	اادن													
B-181R	09/21/93	1	1	1	1	! !	1	1	l l	1	1	1	!	1	!
B-19IR	06/28/93	!		!	1	2.5	3.4	l I	6.9	I I	80	1		1	92.8
B-19TR	09/22/93	1 1	 	i	I I	2.7	2.3	1	11	1	200	1 1	 	1	216.0
B-25	09/21/93	1	1	1	I I	89	77	I I	ŀ	<u> </u>	i l	1	1	i i	70.2
B26-1R	06/16/93	1	t i	1	1	0.9	i i	i I	1	1	1	! !		! !	0.9
B26-1R	66/17/60	!		1	 	1.8	 	1	1	1 ;	1	I I]] }	1.8
B-27	09/22/93	1	1	1	1	1]]		1	1	1	 	1	!	1
B29-1R	06/16/93	!	1	1	1	6.3	1	ŀ	!	1	ļ l	1		1	6.3
B29-1R	09/21/93		I		1	9.9	! !	1	ì	1	1	!	1	l 	9.9
R200-8	06/28/93	ļ	4.5		3.3	29	200	1	11	l 1	.1 80	ŀ	1	1	250.6
B200-8	09/22/93	11	1	ł 	5.0	F,	240		50	1	8.2	ŀ		1	338.2
R 200 = 9	06/28/93	1	I I	1	t s	1	1	1	í	!	1	1	1		1
B 200-9	16/22/60	1	I	 	 	1	1	1	!	1	1	1	1	1	I I
210=1	10/14/93	5.9	0.58 J	1	1.9	7.9	220		2.5	1		<u> </u>	1	1	238.2
	10/11/01	270	7		 	34	240		6.7	1	1	l i			850.7
21012	10/11/03	045	3.0.6	 	 	oc oc	2,800	175	2	1	270	1	1	! !	3,540
5-017	10/14/01 10/14/01	2				.	Ç			!	1	1	1	!	2.0
K - 88	V6/#1/01	!	 	1	 		ì				_				
DEEP BEDROCK WELLS	1.1.5														
B19-DR	06/16/93	!		l ì	1	2.3	2.9	1	53	!	53	 	1	1	110.2
B19-DR	09/21/93	1	 	l l	 	1.2	4.3	1	79] 	50	1	l 	l 	104.5
DR200-7	06/28/93	1		8.4	l l	i i	<u> </u>	l 		1.2	3.5	3.5	1 1	ŀ	16.6
DR200-7	09/22/93	1	9.1	3.5	1	c;	!	1	 	1	50	24	2.1	i	6.09
QA/QC					-										
EQUIP. BLANK	06/16/93	1		1:1	i i	 	!		I I	1	!	<u> </u>	1	 	1.1
EQUIP. BLANK	06/16/93	!	!	1.1	į į	!	l I		1	I I	!	1	 	 	1.1
EQUIP. BLANK	09/22/93	!	1	!	!	!	! !	ļ ļ	1	1	1	!	1	1	1 1
TRIP BLANK	06/16/93	ļ	1	1.0	ļ	t i	1	1	1	!		!]	1	1.0
TRIP BLANK	06/28/93	1	1	!	i	1	1	1	 	1	!	 	1	1	_ _ _ _
TRIP BLANK	09/21/93	1	!	1	†	1	i i	1	! !	!	1	1	1	1	
TRIP BLANK	09/22/93	1	1	1	i	- 1	1	1	1 1	1	; 1	1			
NYS GROUNDWATER STANDARDS	RSTANDARD	2.0	5.0	7.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	100
MOTTRE															

NOTES

- NEW MONITORING WELL INSTALLED IN ACCORDANCE WITH 28 JULY 1992 R200-8
 - 2. GROUNDWATER SAMPLES COLLECTED BY GENERAL TESTING CORPORATION PERSONNEL. BUILDING 200 RFI WORK PLAN.
 - 16-17 JUNE AND 21-22 SUPPEMBER 1993, AND HAA OFNEW YORK PERSONNEL 28 JUNE 1993. 3. LABORATORY ANALYSIS FOR VOLATILE ORGANIC COMPOUNDS (VOCS) PERFORMED
 - BY GENERAL TESTING CORPORATION (GTC) UTILIZING EPA METHOD 80108020.
 4. ANALYTICAL RESULTS PRESENTED IN MICROGRAMS PER LITER (UGL) OR
 - 5. *--* INDICATES *BELOW DETECTION LIMIT* (BDL). PARTS-PFR-BILLON (PPB).
 - 6. 1.1-DCE = 1.1-DICHLOROETHENE 7. 1.1-DCA = 1.1-DICHLOROETHANE

- REVISED 15 NOVEMBER 1991.
- 9. 1,1,1-TCA 1,1,1-TRICHLOROETHANE (METHYL CHLOROFORM). 8. 1,2-DCE - 1,2-DICHLOROETHENE
- 11. PERC TETRACHLOROETHENE 12. VOCS VOLATILE ORGANIC COMPOUNDS.
- 10. TCE TRICHLOROETHENE.

- 13. NA NOT ANALYZED FOR THIS PARAMETER.

 14. REHER TO TEXT FOR PARAMETER DETECTION LIMITS AND ADDITIONAL INFORMATION.

 15. SPE FIGURE 2 FOR TEST BORING LOCATIONS.

 16. REHERENCE STANDARDS DERIVED FROM "WATER QUALITY REGULATIONS", PART 703 NYSDEC.

TABLE 4 XEROX CORPORATION BUILDING 200 RFI INVESTIGATION SUMMARY OF ANALYTICAL RESULTS

APPENDIX 33 LIST ANALYSIS

			NYSDEC
WELL ID.	SR-200-5	B-19DR	GROUNDWATER
SAMPLE DATE	28 JULY 1993	28 JULY 1993	STANDARD
PARAMETER			
ORGANICS			
1,1-DICHLOROETHANE	0.054	ND	0.005
1,1-DICHLOROETHENE	0.006	0.005	0.005
TRICHLOROETHENE	0.010	0.050	0.005
TETRACHLOROETHENE	ND	0.045	0.005
VINYL CHI.ORIDE	0.019	ND	0.002
BENZ(A)ANTHRACENE	0.0061	ND	0.000002*
BENZO(B)FLUORANTHENE	0.0083	ND	0.000002*
BENZO(A)PYRENE	0.0068	ND	ND
BIS(2-ETHYLHEXYL)PHTHALATE	0.011	ND	0.050
CHRYSENE	0.0083	ND	0.000002*
FLUORANTHENE	0.018	ND	0.050*
INORGANICS			!
ANTIMONY	0.239 N	ND	0.003*
ARSENIC	0.343	0.0261	0.025
BARIUM	0.677	0.190	1.0
CADMIUM	0.0283	ND	0.010
COBALT	0.311	ND	NA NA
COPPER	0.612	0.0491	0.200
CHROMIUM	22.5	0.271	0.050
LEAD	0.216 S	0.0208	0.025
MERCURY	0.00037	ND	0.0002
NICKEL	2.10	0.0845	NA
SELENIUM	0.0115 SN	ND	0.010
SILVER	0.018	ND	0.050
TIN	143	14.4	NA
VANADIUM	0.140	ND	NA
ZINC	2.36	0.0617	0.300
SULFIDE, TOTAL	1.12	1.32	0.050*

NOTES:

- SAMPLE COLLECTED AND ANALYZED BY GENERAL TESTING CORPORATION, ROCHESTER, NY, 28 JULY 1993.
- 2. CONCENTRATIONS PRESENTED IN UNITS OF MILLIGRAM PER LITER (MG/L) OR PARTS PER MILLION (PPM).
- 3. ND PARAMETER WAS ANALYZED FOR BUT NOT DETECTED.
- 4. NA REFERENCE NOT AVAILABLE.
- 5. S ANALYSIS PERFORMED BY THE 'METHOD OF STANDARD ADDITIONS'.
- 6. N MATRIX SPIKE RECOVERY NOT WITHIN LAB QC LIMITS.
- 7. - GUIDANCE VALUE ONLY.
- 8. NYSDEC GROUNDWATER STANDARD AS PRESENTED BY DIVISION OF WATER TECHNICAL AND OPERATIONAL GUIDANCE SERIES (TOGS) AMBIENT WATER QUALITY STANDARDS, REVISED 1991.

SOIL-VAPOR SAMPLING RESULTS IN PPM BUILDING 200 RFI INVESTIGATION XEROX CORPORATION SWMU 66 TABLE 5

								P.	PARAMETER	R		
SAMPLING	DATE	SAMPLE	VINYI.	METHYLENE	TRANS-		CIS-					TOTAL
LOCATION	SAMPLED	DEPTH	CHLORIDE	CHLORIDE	1,2-DCE	1,1-DCA	1,2-DCB	1,1,1-TCA	TCB	TOLUENE	PERC	VOCS
		(FT.)										
VP-1	05/26/93	3.0		1)	+	0.008	1	1	0.011	1	0.019
VP-2	05/26/93	3.0	 	į,	1	l 1	0.017	1	!	0.003	1	0.020
$\nabla \mathbf{P} - \mathbf{\hat{z}}$	05/26/93	3.0	1	1)	1	0.016	!	1	0.026	I I	0.042
VP-4	05/26/93	3.0	1	 	1	ļ	1	 	l l		I I	1
VP-5	05/26/93	3.0		1	1	i 1	1	 	I	1	1	1
VP-6	05/26/93	5.1	1	1]	1	į Į	 		0.006	1	900.0
$\nabla P - 7$	05/26/93	2.5]	1	1	i I	l l] 	1	1	1	1
VP-8	05/26/93	1.5	1	ļ	1	1	ł]]	1	1	1	1
VP - 9	05/26/93	3.0	1	1	1	1	1	1	!	1	1	!
VP-10	05/26/93	1.5	1	l	1	1	ŀ	1	 	1	i i	I I
VP-11	05/27/93	3.0		! !	1	i		1	1	1	 	1
VP-12	05/27/93	3.0	l I	1	1 1	I I	!	1	I I	1	I I	!
VP-13	05/27/93	3.0	 	1	1	 	I I	;	ļ	i i] 	1
VP-14	05/27/93	3.0	1	1	1	l I	I I	!	1	1	 	1
VP-15	05/27/93	3.0		1	1] 	1	1	1	1	I I	1
VP-16	08/27/93	2.5	1	1	1	1		1] 	!	!	1
VP-17	05/28/93	1.5	1	1	1	I	0.005	†]	1	1	0.003	0.008
VP-18	05/28/93	1.5	1	!	!	I I]]	I I	0.018	1	0.007	0.025
VP-19	05/27/93	3.0	1	I I	1	1	0.004	1	0.098	0.002	0.085	0.189
VP - 20	05/27/93	1.5	1		1	l I	0.005	t I	1	960.0	0.006	0.107
· VP-21	05/27/93	1.5	1	1		1	1	1	ł	1	1	!
VP-22	05/28/93	5.1	i	ļ	1	i	1	1	i I	l I	0.003	0.003
VP = 2.3	05/26/93	3.0	1	J I	!	!	I I	1	I I	!	0.004	0.004
VP = 24	05/28/93	25	1	1	1	l l	1	!	1	1	0.043	0.043
VP = 2.5	05/28/93	1.5	1	i I	1	1	1		1	1	1	1

NOTES

- 1 ANALYTICAL RESULTS PRESENTED IN MILLIGRAMS PER LITER (MG/L) OR PARTS PER MILLION (PPM) RELATIVE AQUEOUS STANDARDS HFADSPACE.
 - ESTIMATED METHOD DEFECTION LIMIT 0.002 PPM.

 3. TRANS-1,2-1)CE = TRANS-1,2-DICHLOROFITHENE
 4. 1,1-1)CA 1,1-DICHLOROFITHANE
 5. CIS-1,2-DCF = CIS-1,2-DICHLOROFITHENE
 5. CIS-1,2-DCF = CIS-1,2-DICHLOROFITHENE 2 "--" INDICATES NOT DETECTED.

9. PERC – TIFTRACHLOROETHENE 10. VOCS – VOLATILE ORGANIC COMPOUNDS. 11. REFER TO TEXT FOR PARAMETER DETECTION LIMITS AND ADDITIONAL INFORMATION.

7. 1,1,1-TCA = 1,1,1-TRICHLOROETHANE 8. TCE - TRICHLOROETHENE.

12. SEE FIGURE 2 FOR SAMPLE LOCATIONS.

SOIL-VAPOR SAMPLING RESULTS IN PPM BUILDING 200 RFI INVESTIGATION XEROX CORPORATION TABLE 5 (CONTD) SWMU 81

SAMPLING								PA	PARAMETER	٠.		ĵ.,
	DATE	SAMPLE	VINYI,	METHYLENE TRANS-	TRANS-		CIS-			. 5. 3		TOTAL.
LOCATION	SAMPLED	DEPTH	CHLORIDE	GHLORIDE 1,2-DCE 1,1-DCA 1,2-DCE 1,1,1-TCA	1,2-DCE	1,1-DCA	1,2-DCE	1,1,1-TCA	TCB	TOLUENB	PERC	VOCS
		(FT.)										
VP-26	06/27/93	1.2	!	ł	1	l I		1 1	l I	!	l i	1
VP-27 (06/27/93	1.4	l l	ļ 1	l 1	1	1	I I	!	!	1	1
VP-28	06/27/93	2.2	l l	1	I I	 	1	 	1	!	1	i I
VP-29	06/27/93	8.0	1	i i	1	1	 	1	1	I I	i I	1
	06/25/93	1.7	1	1	ļ	 !	1	I I	ŀ	0.002	1	0.002
	06/27/93	1.7	1	ļ	I I	0.000	1	 		0.007	 	0.013
	06/27/93	0.8		i	1] 	1	 	 	!	1	
VP-33	06/27/93	1.9		1	1	1	I I	1	1	!	1	1
VP-34	06/27/93	3.0	!	1	1 1	0.003	1	1	1	1		0.003

NOTES

- 1 ANALYTICAL RESULTS PRESENTED IN MILLIGRAMS PER LITER (MG/L) OR PARTS-PER-MILLION (PPM) RELATIVE AQUEOUS STANDARDS HEADSPACE.
 - 3. TRANS-1,2-DCE = TRANS-1,2-DICHLOROETHENE ESTIMATED METHOD DETECTION LIMIT 0.002 PPM. 2. '--' INDICATES NOT DETECTED.
 - 4. 1,1-1X'A 1,1-DICHLOROETHANE
- 5. CIS-1,2-IXCE = CIS-1,2-DICHLOROETHENE

- 7. 1,1,1-TCA = 1,1,1-TRICHLOROETHANE 8. TCE TRICHLOROETHENE.
- 9. PERC TITRACIILOROETHENE 10. VOCS VOLATILE ORGANIC COMPOUNDS.
- 11. REFER TO TEXT FOR PARAMETER DETECTION LIMITS AND ADDITIONAL INFORMATION.
 - 12. SEE FIGURE 2 FOR SAMPLE LOCATIONS.

TABLE 6 XEROX CORPORATION BUILDING 200 RFI INVESTIGATION SUMMARY OF SOIL ANALYTICAL RESULTS IN PPM

MG N S	DEPTH				INVAMENTA			
Z C		METHYLENE				BROMODI~		TOTAL
Z C	D (FT.)	CHLORIDE	CHLOROPORM 1,1,1-TCA	1,1,1-TCA	TCE	CIILORO-	PERC	VOCS
-						METHANE		
15-155K-5/	12.0-14.0	0.019	1	0.060	980.0	1	0.085	0.250
R200-9-S2 05/27/93	2.4-3.9	ł	1	I I	0.0086	!	0.010	0.0186
DR200-7-S3 06/14/93	4.0-6.0	1	! !	1	1	ł I	1	1
04/90								
DRILL WATER 05/26/93		ļ	0.022	1	 	0.0028	1	0.0248
TRIP BLANK 05/27/93		1	!	1 1	1	1	1	1
TRIP BLANK 06/14/93		-	1	1	1	1	I I	
NYS SOIL STANDARDS	1	0.093	0.110	7.000	0.064	0.0054	0.014	1

NOTES

- 1. ANALYTICAL RESULTS PRESENTED IN UNITS OF MILLIGRAMS PER KILOGRAM (MG/KG) EQUIVALENT TO PARTS—PER—MILLION (PPM).
- 2. SOIL SAMPLES COLLECTED BY H&A OF NEW YORK PERSONNEL.
- 3. LABORATORY ANALYSES FOR VOLATILE ORGANIC COMPOUNDS (VOCS) PERFORMED BY GENERAL TESTING CORPORATION (GTC) UTILIZING EPA METHOD 8010/8020.
- 4. '--' INDICATES 'BELOW DETECTION LIMIT' (BDL).
- 5. 1.1.1-TCA 1.1.1-TRICHLOROETHANE (METHYL CHLOROFORM).
- 6. TCE TRICHLOROETHENE.
- 7. PERC TETRACHLOROETHENE
- 8. VOCS VOLATILE ORGANIC COMPOUNDS.
- 9. NA NOT ANALYZED FOR THIS PARAMETER.
- 10. REPER TO TEXT FOR PARAMETER DETECTION LIMITS AND ADDITIONAL INFORMATION.
- 11. SEE FIGURE 2 FOR TEST BORING LOCATIONS.
- 12. REFFRENCE VALUES DERIVED FROM "DRAFT CLEAN"-UP POLICY AND GUIDELINES", NYSDEC, OCTOBER 1991.

FILE No. 70092-44

SCALE: 1" = 50'

FILENAME: VAPOR.DGN

FIGURE 5

NOTES:

- 1. CONTOURS BASED ON TOP OF ROCK/REFUSAL ELEVATION AT SUBSURFACE EXPLORATIONS. DATA FROM XEROX ENGINEERING DRAWNGS, CONSULTANT REPORTS, AND PRESENT STUDY.
- 2. CONTOURS GENERATED USING DESIGN PROFESSIONALS MANAGEMENT SYSTEMS' SURFACE DISPLAY SYSTEM WITH LINEAR INTERPOLATION.
- 3. REFER TO TEXT FOR ADDITIONAL INFORMATION.

O F N E W YORK

Geotechnical Engineers & Environmental Consultants

XEROX CORPORATION BUILDING 200 INVESTIGATION

TOP OF BEDROCK CONTOUR PLAN

SCALE: 1 IN. = 300 FT.

- GROUNDWATER ELEVATIONS BASED ON WATER LEVELS MEASURED BY GENERAL TESTING PERSONNEL ON 21-22 SEPTEMBER 1993.
- CONTOURS GENERATED USING DESIGN PROFESSIONALS MANAGEMENT SYSTEMS' SURFACE DISPLAY SYSTEM WITH LINEAR INTERPOLATION.
- 3. REFER TO TEXT FOR ADDITIONAL INFORMATION.

H&A OF NEW YORK

Geotechnical Engineers & Environmental Consultants

XEROX CORPORATION
BUILDING 200 INVESTIGATION

SHALLOW BEDROCK ZONE GROUNDWATER CONTOUR PLAN SEPTEMBER 1993

SCALE: 1 IN. = 300 FT.

- GROUNDWATER ELEVATIONS BASED ON WATER LEVELS MEASURED BY GENERAL TESTING PERSONNEL ON SEPTEMBER 1993.
- CONTOURS GENERATED USING DESIGN PROFESSIONALS MANAGEMENT SYSTEMS' SURFACE DISPLAY SYSTEM WITH LINEAR INTERPOLATION.
- 3. REFER TO TEXT FOR ADDITIONAL INFORMATION.

H&A OF NEW YORK

Geotechnical Engineers & Environmental Consultants

XEROX CORPORATION
BUILDING 200 INVESTIGATION

INTERMEDIATE BEDROCK ZONE GROUNDWATER CONTOUR PLAN SEPTEMBER 1993

SCALE: 1 IN. = 300 FT.

 GROUNDWATER ELEVATIONS BASED ON WATER LEVELS MEASURED BY GENERAL TESTING PERSONNEL ON 21-22 SEPTEMBER 1993.

2. REFER TO TEXT FOR ADDITIONAL INFORMATION.

Geotechnical Engineers & Environmental Consultants

XEROX CORPORATION
BUILDING 200 INVESTIGATION

DEEP BEDROCK ZONE GROUNDWATER ELEVATIONS

SCALE: 1 IN. = 300 FT.

- GROUNDWATER SAMPLING AND ANALYSIS PERFORMED BY GENERAL TESTING PERSONNEL ON 21-22 SEPTEMBER 1993.
- 2. SEE TABLE 5 AND APPENDIX D FOR ANALYTICAL DATA.
- ABBREVIATION: BDL - BELOW DETECTION LIMIT.
- REFER TO TEXT FOR ADDITIONAL INFORMATION.

H & A O F NEW YORK

Geotechnical Engineers & Environmental Consultants

XEROX CORPORATION
BUILDING 200 INVESTIGATION

TOTAL VOC'S SHALLOW BEDROCK ZONE SEPTEMBER 1993

SCALE: 1 IN. = 300 FT.

70092-44 Š. FIE

BDL - BELOW DETECTION LIMIT.

4. REFER TO TEXT FOR ADDITIONAL INFORMATION.

DECEMBER 1993

INTERMEDIATE BEDROCK ZONE

SEPTEMBER-OCTOBER 1993

SCALE: 1 IN. = 300 FT.

NOTES:

- GROUNDWATER SAMPLING AND ANALYSIS PERFORMED BY GENERAL TESTING PERSONNEL ON 21-22 SEPTEMBER 1993.
- 2. SEE TABLE 5 AND APPENDIX D FOR ANALYTICAL DATA.
- 3. ABBREVIATION: BDL -- BELOW DETECTION LIMIT.
- 4. REFER TO TEXT FOR ADDITIONAL INFORMATION.

H&AOFNEW YORK

Geotechnical Engineers & Environmental Consultants

XEROX CORPORATION
BUILDING 200 INVESTIGATION

TOTAL VOC'S DEEP BEDROCK ZONE SEPTEMBER 1993

SCALE: 1 IN. = 300 FT.

DECEMBER 1993

- 1. GROUNDWATER SAMPLING AND ANALYSIS PERFORMED BY GENERAL TESTING PERSONNEL ON 21-22 SEPTEMBER 1993. AND 210-1, 2, 3 ON 14 OCTOBER 1993.
- 2. SEE TABLE 5 AND APPENDIX D FOR ANALYTICAL DATA.
- 3. NO INDICATES NON-DETECT.
- REFER TO TEXT FOR ADDITIONAL INFORMATION.

Geotechnical Engineers & Environmental Consultants

XEROX CORPORATION BUILDING 200 INVESTIGATION

CONTAMINANT CHARACTERIZATION PLAN INTERMEDIATE AND DEEP BEDROCK ZONE SEPTEMBER-OCTOBER 1993

SCALE: 1 IN. = 300 FT.

DECEMBER 1993

- GROUNDWATER SAMPLING AND ANALYSIS PERFORMED BY GENERAL TESTING PERSONNEL ON 21-22 SEPTEMBER 1993.
- SEE TABLE 5 AND APPENDIX D FOR ANALYTICAL DATA.
- 3. NO INDICATES NON-DETECT.
- 4. REFER TO TEXT FOR ADDITIONAL INFORMATION.

H&A OF NEW YORK

Geotechnical Engineers & Environmental Consultants

XEROX CORPORATION
BUILDING 200 INVESTIGATION

CONTAMINANT CHARACTERIZATION PLAN SHALLOW BEDROCK ZONE SEPTEMBER 1993

SCALE: 1 IN. = 300 FT.

DECEMBER 1993

APPENDIX A

Test Boring Reports

Co	nsulting	YORK, ROCHES Geotechnica ts and Hydro	al Engineer	s,		TEST BORING REPORT		BORING NO.	DR200-7	
PROJECT: CLIENT: CONTRACT	Xer	ox Building ox Corporat n Drilling						FILE NO. SHEET NO. LOCATION:	70092-44 1 OF 3 2698.4 N 2199.0 E	
I	TEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROC	EDURES	ELEVATION: 383.6		
TYPE INSIDE D HAMMER W		(IN) (LB) (IN)	Steel 4.0 	SS 1-3/8 140 30	NX 2-1/8 	RIG TYPE: Acker AD-11 truc BIT TYPE: Auger, NX Core DRILL MUD: Water OTHER: Advanced augers to 12.0 ft., NX core t	refusal at	DATUM: START: FINISH: DRILLER: H&A REP:	NGVD 14 June 199 22 June 199 D. Miller D. Nostrant	
OEPTH (FT)	OVA READING (PPM)	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASSI	FICATION AN	D REMARKS		
_	ND	3 6	\$1	0.0	0.6	Medium dense brown sandy S grass and rootlets, damp.		fine gravel	, trace	
· -	ND ND	16 17 6 20	\$2	2.0		Medium dense red-brown SILT coarse to fine gravel, damp	, little coarse to fine sand,			
	ND	20 25 8 24	18"/24" \$3	4.0	3.4 5.1	interbedded fine sand and s	ce coarse to fine sand, occasion silt partings, damp.			
- - –	ND	34 20 11 18	22"/24" \$4	6.0		Very dense brown fine SAND,				
· -	ND	20 34 8 21	18"/24" \$5	8.0	8.0	Same, except dense, and with trace coarse to medium sand. -LACUSTRINE- Very dense red-brown SILT, some coarse to fine sand, with				
10 	ND	33 39 50/0.0	24"/24" S6 0"/0"	10.0		weathered sandstone fragmen -WEATH Split spoon refusal at 10.0 No recovery on sample S6.	ERED BEDROC			
- -					12.0	Advanced augers to 12.0 ft. Auger Refusal on		k at 12.0 f	t.	
 15						Notes:				
						Soil samples headspace using a Foxboro 128 GC water bath prior to scr	OVA. Sampl eening. Sa	es heated i ample S3 sub	n 40 degree mitted to	
 					<u> </u>	General Testing Corpora 2. See Core Boring Report.		J10/8020 ana	alysis.	
20 										
 —25										
— () —		WATER LEVEL	DATA		1	SAMPLE IDENTIFICATION		SUMMARY		
		5 ,	DEPI	TH (FT) TO	:		OVERBURDE	N (LIN FT):	12.0 ft.	
DATE	TIME	ELAPSED TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	U Undisturbed Sample				
	See Grou	induster Lev	l Monitoring Report		· · · · · · · · · · · · · · · · · · ·	SAMPLES:		6S, 8R		

H 8	& A OF NEW Y Consulting G Geologists	ORK, ROCHES eotechnical and Hydrog	Enginee	rs,			CORE BORING REPORT	BORING NO. DR200-7 FILE NO. 70092-44 SHEET NO. 2 OF 3
DEPTH	DRILLING RATE	CORE NO.	RECOVER	Y/RQD	WEATH- ERING	STRATA CHANGE	VISUAL CLASSIFICATION	I AND REMARKS
(FT)	(MIN./FT.)	DEPTH(FT)	IN.	%		(FT)	V100/L 02/100/11/04	
. <u>-</u>		į					Began Coring at	12.0 ft.
_	7	12.0					Hard, slightly weathered red-bro	
-	7						thin bedded SANDSTONE with occase and mottling.	sional gray-green banding
15	8							
15	8	R1	116	0.7	SL		-GRIMSBY SAND	OSTONE -
_	7	K I	<u>116</u> 114	97 95	31		- GRIMSDI SAND	731 UNE
	8							
_	6							
 -20	6							
.20	4						Moderately weathered shale inter	thed at 21.8 ft
-	3	22.0					moderatery weathered share meet	bed at 21.0 ft.
	7	22.0					Same, with occasional bioturbate 29.7 ft.	ed zones from 22.6 to
_	12	R2	<u>36</u> 36	100 100	SL		-GRIMSBY SAND	OSTONE -
- -25 —	19	25.0	20	100			UK THISBT SAIKE	o o o o o o o o o o o o o o o o o o o
-2) —	16	25.0]		Same.	
_	10	R3	<u>22</u> 21	<u>64</u> 61	SL		Saire.	
	27	27.8	21				-GRIMSBY SAND	OSTONE -
	12	27.8						7
 -30 <i>-</i> -	17	R4	36 18	<u>78</u> 39	SL	29.7	Hard, slightly weathered light s	gray-brown medium to fine
-30 -	15	31.6) "			grained, thin bedded SANDSTONE and medium to very thin siltston	with frequent bioturbation
	14	31.6 R5		07	SL		-GRIMSBY SAND Same, except short core run due	OSTONE-
	18	32.5	9 8	83 74	3.		barrel sampler.	to brookage in our
	3	32.5					Same.	
- 35 —	3	R6	5/.	08	SL		Jame.	
c-	3		<u>54</u> 54	98 98	3.		Shallow crossbedding from 35.7	to 37.1 ft.
	3	37.1						
	5	37.1						
•	3							
	3				:			
-40 -	2							
.	3	0.7	101	0/	61		Same, except brown-gray occasio	nal drav-sceen barding
	3	R7	101 47	84 39	SL		Same, except brown-gray occasio	
	4						-GKIMSBT SAN	D 3 UNE
-	4	1						
-45 -		1	<u> </u>			44.9		

н 8 С	A OF NEW Y Consulting G Geologists	ORK, ROCHES eotechnical and Hydrog	Enginee	rs,			CORE BORING REPORT	BORING NO. DR200-7 FILE NO. 70092-44 SHEET NO. 3 OF 3
EPTH	DRILLING	CORE NO.	RECOVER	Y/RQD	WEATH-	STRATA	WIGHT CLASSIFICATIO	N AND DEMARKS
FT)	RATE (MIN./FT.)	DEPTH(FT)	IN.	%	ERING	CHANGE (FT)	VISUAL CLASSIFICATIO	N AND REMARKS
	4	R7	101 47	<u>84</u> 39			Very hard, slightly weathered g gray-green coarse to fine grain	ray-brown mottled and
_	5	47.1	47	24		47.1	CONGLOMERATE with closely space -GRIMSBY SAN	d green gypsum seams.
_	5	47.1				47.1	Moderately hard, slightly weath	
_	5		!				grained thick to thin bedded SA gray-green mottling and banding	NDSTONE with frequent
50 —	5						-GRIMSBY SAN	
_	5	R8	112	93	SL		Gray-green gypsum partings at 4	7.1 and 56.7 ft.
_	6		112 103	9 <u>3</u> 86				
	6							
_	5							
55 -	5	_					Moderately weathered shaley int 56.0 ft.	erbed from 55.3 to
-	5	57.1					-GRIMSBY SAN	DSTONE-
-	 	37.1					Bottom of Boring	
-60 —							Notes: 1. Informed by driller of core 31.6 and 32.5 ft. 2. Noted approximately 50 gall drilling monitoring interval. 3. Foxboro OVA used to monitor drilling. All readings nor 4. See Deep Bedrock Monitoring.	ons water lost while al from 47.1 to 57.1 feet corganic vapors during n-detect.
-70 —								
- - 75 – - -								

Con	sulting	YORK, ROCHES Geotechnica ts and Hydro	l Engineer:	S,		TEST BORING REPORT		BORING NO.	R200-8
ROJECT: LIENT: ONTRACTO	Xer	ox Building ox Corporati n Drilling						FILE NO. SHEET NO. LOCATION:	70092-44 1 OF 2 2173.2 N 2477.0 E
11	EM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROCE		ELEVATION:	
TYPE INSIDE DIAMETER (IN) HAMMER WEIGHT (LB) HAMMER FALL (IN)		(LB)	Steel 8 		NX 2-1/8 	RIG TYPE: Acker AD.11 truck BIT TYPE: 7-1/8 in. air han DRILL MUD: but OTHER: Advance 8-1/4 in. au 5.3 ft. without split spoon	nmer ton bit ugers to	FINISH: 8 Jun DRILLER: D. Mi	4 June 1993 8 June 1993 D. Miller S. Phillips
ЕРТН	CASING BLOWS PER FT	SAMPLER BLOWS	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASSIF	ICATION AN		:D. Nostrant
-				·		Advanced augers without samp	oling.		
_ _5 _ _						Auger refusal on apparent top	o of bedroo	k at 5.3 ft	•
_						Notes:			
-10 —						1. See core boring report.			
- 15 									
. <u>-</u> -									
- -									
— 25 —							Ť		
		WATER LEVEL	DATA			SAMPLE IDENTIFICATION		SUMMARY	
DATE	TIME	ELAPSED TIME (HR)	DEP BOTTOM	TH (FT) TO): WATER	O Open End Rod T Thin Wall Tube		N (LIN FT): D (LIN FT):	
OF CASING OF HOLE				OF HOLE		U Undisturbed Sample S Split Spoon SAM			OS, 4R
	See Gro	undwater Lev	el Monitor	ing Report			BORING NO	1.	R200-8

	A OF NEW Y Consulting G Geologists		Enginee	rs,			CORE BORING REPORT BORING NO. R200-8 FILE NO. 70092-44 SHEET NO. 2 OF 2
DEPTH	DRILLING RATE	CORE NO.	RECOVER	T	WEATH- ERING	STRATA CHANGE	VISUAL CLASSIFICATION AND REMARKS
(FT) 	(MIN./FT.)	DEPTH(FT)	IN.	%		(FT)	
- - 5							Begin Coring at 5.3 ft.
-	4	5.3					Hard, slightly weathered red-brown medium to fine grained, medium to very thin bedded SANDSTONE with occasional gray-green mottling and bandings, bioturbate
-	3	R1	<u>55</u> 26	<u>77</u> 37	MOD		Close to very close shale and clay partings from 5.5 to 10.5 ft.
10 —	3	11.2				10.6	-GRIMSBY SANDSTONE- Very hard to hard, slightly weathered light gray-brown medium to fine grained, medium to thin bedded SANDSTONE
-	5	11.2 R2 14.5	<u>47</u> 32	<u>117</u> 68	SL		bioturbated throughout. -GRIMSBY SANDSTONE- Moderately weathered red-brown shaley partings from 13.
15 - -	7	14.8					to 14.7 ft.
-	3 2	R3	<u>51</u> 39	<u>77</u> 59	SL		Moderately weathered partly open discontinuous vertica fractures from 17.2 to 18.0 ft.
_ 20	3	20.3					-GRIMSBY SANDSTONE- Very close shaley partings from 20.2 to 20.3 ft.
	4	20.3				20.2	Hard, slightly weathered red-brown medium to fine grained, medium bedded SANDSTONE with occasional gray green mottling and banding.
	5	_					-GRIMSBY SANDSTONE-
25	4		12/	107	SL		Slickensides noted at 20.2 ft. Moderately close to close shaly partings from 20.2 to 22.2 ft.
•	5	R4	124 118	103 95	35		Same.
	4	_					-GRIMSBY SANDSTONE-
30 –	4	30.3					
	3						Notes: Notes:
- 35 –							 Noted core blocks at 11.2 and 14.8 ft. Foxboro OVA used to monitor organic vapors during drilling. All readings non-detect. Approximately 50 gallons of water lost while corin the monitoring interval from 20.3 to 30.3 ft.

Cor	sulting	YORK, ROCHES Geotechnica ts and Hydro	l Engineers			TEST BORING REPORT		BORING NO.	R200-9	
ROJECT: CLIENT: CONTRACTO	Xer	ox Building ox Corporati n Drilling						FILE NO. SHEET NO. LOCATION:		
I.	[EM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROCEE		ELEVATION:		
IAMMER W	YPE NSIDE DIAMETER (IN) AMMER WEIGHT (LB) AMMER FALL (IN)		Steel 4.0 	SS 1-3/8 140 30	NX 2-1/8 	RIG TYPE: Acker AD-11 truckr BIT TYPE: 7-1/8 in. air ham DRILL MUD: but OTHER:		START: FINISH: DRILLER: H&A REP:	27 May 1993 2 June 1993 D. Miller D. Nostrant	
EPTH (FT)	OVA READING (PPM)		SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASSIF	ICATION AND	D REMARKS		
. –	ND	15 20 14	S1	0.4	0.4 0.6	Dense medium brown fine SAN	D, trace s -FILL-	ilt, damp.		
	ND	16 19 35 39	17"/24" \$2 19"/18"	2.4	3.6	Very dense red-brown weather to fine sand, little silt, d -WEATH		•	s, some coars	
5	ND	100/.05	\$3 1"/1"	4.4		sandstone fragments, little -WEATHE	mottled SILT, some highly weath sand, trace clay, damp. RED BEDROCK-			
	ND	100/.1	S4	6.4-6.5		Same, except red-brown. S4-No Recovery, split spoon				
- -	ND	100/.4	\$5 5"/5"	8.0		Very dense slightly weathere -WEATHE Advanced augers to 9.5 ft.	d red SAND RED BEDROC		ments, dry.	
— 10 — -		:				Auger Refusal on	Hard Bedro	ock at 9.5 f	ft.	
				:		Notes:				
 15						1. Soil samples headspace s using a Foxboro 128 GC C water bath prior to scre non-detect. Sample S2 s Corporation for 8010/802	DVA. Sampleening. Al Submitted t	es heated : .l readings to General :	in 40 degree were	
- -				:		2. See Core Boring Report.				
20 -										
– - —25 –										
		WATER LEVEL	DATA			SAMPLE IDENTIFICATION		SUMMARY		
DATE	TIME	ELAPSED	DEP	TH (FT) TO):	O Open End Rod		N (LIN FT):		
		TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER T Thin Wall Tube ROCK CORED (LIN FT): U Undisturbed Sample		27.3 ft. 5s, (s4-NR),			
	See Groundwater Level Monitoring Report						BORING NO	·	R200-9	

	& A OF NEW Y Consulting G Geologists		Enginee	rs,			CORE BORING REPORT	BORING NO. R200-9 FILE NO. 70092-44 SHEET NO. 2 OF 3
EPTH	DRILLING	CORE NO.	RECOVER	Y/RQD	WEATH-	STRATA	VISUAL CLASSIFICATIO	N AND DEMADES
FT)	RATE (MIN./FT.)	DEPTH(FT)	IN.	%	ERING	(FT)	VISUAL CLASSIFICATIO	N AND KEMAKKS
-								
-						ļ	Began Core Boring	at 9.5 ft.
10 —	4	9.5			SL		Hard, slightty weathered red-br bedded SANDSTONE, with occasion	own fine grained thin al gray-green mottling.
-	4						-GRIMSBY SAN	
-	3	-				12.1	Hard, slightly weathered gray t	
-	3	R1	00	0/	SL		fine grained thin to very thin frequent bioturbation.	
_		"	99 91	<u>94</u> 86	36		-GRIMSBY SAN	DSTONE -
5 —	3			ŀ				
-	3							
-	2	-					<u>}</u>	
-	2	18.3			SL			
-	3	18.3				1	Same.	
20 —	3	1					-GRIMSBY SAN	DSTONE -
-	3	R2	7/	00	SL		Thin bedded red-brown shale int	erhode at 10 5 21 4 an
-	4	K2	74 67	99 90	31		22.3 ft.	erocus at 17.5, 21.4 an
-	4	-				:	Moderately weathered vertical f	racture from 21.6 to
_	3	24.5						
25 —	2	24.5						
-	2	1					Close to very close horizontal 27.8 ft.	joints from 26.2 to
	2	-					27.0 10.	
	3	-						
	5		110	02	SL		Non-distinct unconformities at	29.5 and 31.3 ft.
30 –	5	-	110 80	92 67				
	5	-						
	6	-{						
	8	-			SL			
	5	34.5				34.0	Hard slightly weathered light	gray and red-brown mott:
-35 -	4	34.5 R4	27	9,9	SL		very coarse to fine grained the occasional gypsum-filled joint	in bedded CONGLOMERATE v
	4	36.8	27 26	9 <u>8</u> 94		36.2	-GRIMSSY SAM	NDSTONE -
_		- 50.0			_		Hard, slightly weathered red-bedded SHALE with tight horize - OUEENSTONE	ontal to undulating join
-	-	-					Bottom of Boring	at 36.8 ft.
-40 -		4						

Į

H & A OF NEW YORK, ROCHESTER, NEW YORK Consulting Geotechnical Engineers, Geologists and Hydrogeologists

CORE BORING REPORT

BORING NO. R200-9 FILE NO. 70092-44 SHEET NO. 3 OF 3

	Geologists	and Hydrog	eologist	s				SHEET NO. 3 OF 3
EPTH	DRILLING RATE	CORE NO.	RECOVER	Y/RQD	WEATH- ERING	STRATA CHANGE	VISUAL CLASSIFICAT	TON AND REMARKS
FT)	(MIN./FT.)	DEPTH(FT)	IN.	%	LIVING	(FT)	TOOKE SENSON FOR	
							Notes:	
· -							Installed monitoring well borehole. See Intermedia Report for details.	. R200-9 in completed ate Bedrock Well Installatio
. <u>-</u>							2. No apparent loss of water interval.	while drilling monitoring
_							 Foxboro OVA used to monit vapors during drilling. 	or work area for organic All readings non-detect.
. <u>-</u>							4. Core run R4 advanced to the lithologic contact.	ocate Grimsby/Queenston
_								
. <u>-</u>								
	-							
	-							
_	-							
 	1							
	-							
	-							
- <i>-</i>								
	-							
- ·	1							
<u>-</u> .	-							
	- - 							
- -	_							
	-							

Cor	nsulting	YORK, ROCHES Geotechnica ts and Hydro	ıl Engineer:			TEST BORING REPORT		BORING NO.	SR200-10
PROJECT: CLIENT: CONTRACTO	Xer	ox Building ox Corporati n Drilling						FILE NO. SHEET NO. LOCATION:	70092-44 1 OF 2 3068.6 N 2361.5 E
I	TEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROCE		ELEVATION:	377.2
TYPE INSIDE D HAMMER WI HAMMER F	EIGHT	(IN) (LB) (IN)	Augers 8-1/4 			RIG TYPE: Acker AD-11 trucki BIT TYPE: 5-7/8 in. tricone DRILL MUD: OTHER: Advance 8-1/4 augers without sampling: advance 5-	roller bit to 9.0 ft 7/8 in.	DATUM: START: FINISH: DRILLER: H&A REP:	NGVD 3 June 1993 3 June 1993 D. Miller S. Phillips
CEPTH (FT)	OVA READING (PPM)	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	tricone roller bit to 14.0 f		D REMARKS	
_									
	ND								
_	טא								
					į				
- 5									
-	ND ND								
_						Advanced augers to 9.0 ft. w Auger refusal at 9.0 ft. on			ck.
_							C. B. alara da		
-10						Apparent Top o	t Redrock	at 9.0 ft.	
-									
-						Note:			
_						1. See Core Boring Report.			
- 15]								
- 17									
_									
_									
_									
-20									
· –	1								
25 —									
		WATER LEVEL	DATA	<u> </u>	1	SAMPLE IDENTIFICATION		SUMMARY	V
			ı	H (FT) TO	TO: OVERBURDEN (LIN		N (LIN FT):	9.0 ft.	
DATE	TIME	ELAPSED TIME (HR)	BOTTOM OF CASING	BOTTOM OF HOLE	WATER	O Open End Rod T Thin Wall Tube U Undisturbed Sample		5.0 ft.	
6/3/93	13:45	1.0		l .l Was Set	1.14	S Split Spoon	SAMPLES:		
		undwater Lev					BORING NO	•	SR200-10

H & A OF NEW YORK, ROCHESTER, NEW YORK Consulting Geotechnical Engineers, Geologists and Hydrogeologists							CORE BORING REPORT	BORING NO. SR200-10 FILE NO. 70092-44 SHEET NO. 2 OF 2
EPTH	DRILLING RATE (MIN./FT.)	CORE NO. DEPTH(FT)	RECOVER	Y/RQD %	WEATH- ERING	STRATA CHANGE (FT)	VISUAL CLASSIFICATIO	DN AND REMARKS
_								
- 								
		9.0					Apparent Top of Beding Advanced 5-7/8-in. tricone roll	
-10 -		7.0					core sampling.	er bit to 14.0 ft, withou
_								
-		14.0						
15 —							Bottom of Boring	at 14.0 ft.
-								
-							Notes:	
-							1. Installed Monitoring Well : borehole. See Shallow Bed Installation Report for de	rock Well
20 —							Foxboro OVA used to monito drilling. All readings not	r organic vapors during n-detect.
-							3. See R200-9 boring log for descriptions.	soil and bedrock
. <u>-</u>								
- -25 <i>-</i> -								
-		-						
-		_						
-								
30 —								
. <u>-</u>								
-		-						
-		-						
-35		-						
· -								
-40 —								

Со	nsulting	YORK, ROCHES Geotechnica ts and Hydro	l Engineer	s,		TEST BORING REPORT		BORING NO.	B-18SR
PROJECT: CLIENT: CONTRACT	Xer	ox Building ox Corporati n Drilling						FILE NO. SHEET NO. LOCATION:	70092-44 1 OF 2 3278.3 N 2007.7 E
I	TEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROCE		ELEVATION:	379.2
TYPE INSIDE D HAMMER W HAMMER F.	EIGHT	(IN) (LB) (IN)	Auger 4-1/4 	\$\$ 1-3/8 140 30		RIG TYPE: Acker AD-11 truck BIT TYPE: 5-7/8, 7-7/8 in. DRILL MUD: air OTHER: Advance 4-1/4 and 7-7 augers to 14.5 ft. with cont soil sampling.	downhole hammer 7/8 in.	DATUM: START: FINISH: DRILLER: H&A REP:	NGVD 25 May 1993 27 May 1993 A. Revold D. Nostrant
DEPTH (FT)	OVA READING (PPM)	1	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASSIF	ICATION AND) REMARKS	
	ND	1 4 5	\$1 15"/24"	0.0	1.2	Loose brown SILT, some fine damp.	sand, trace TOPSOIL-	grass and	rootlets,
	ND	10 10 23	\$2	2.0		Very dense red-brown fine SA medium sand, trace fine grav		ilt, little	coarse to
	NU	41 54	19"/24"	4.0		Same, except moist from 2.0	to 2.9 ft.		
5	ND	17 24 24	s3 23"/24"	6.0		Same, except medium brown, a	-FILL- and with app -FILL-	parent cobb	les.
	ND	33 47 48 82/.3	\$4 16"/16"	6.0 7.3	6.9	Very dense light brown silty	v fine SAND	. little co	arse to mediu
	ND	25	s5	8.0		sand, trace medium to fine ginterbedded sand partings, c	gravel with damp. ACUSTRINE-	occasional	weakly
—10 —	ND.	33 44 39 86	24"/24" S6 17"/17"	10.0	10.0	Same, except with little med Very dense light brown sand- gravel, little clay, damp.			
- 	ND	100/.4		10.4			ACIAL TILL-		
	ND	124/.5	\$7 6"/6"	12.0 12.5		Same.			
 15	ND	100/.4	\$8 5"/5"	14.0	1	Same.			
						Auger Ref	usal at 14.	5 ft.	
						Notes:			
						1. Drove split spoon sampl at 4.6 ft.	er through	cobble in s	ample No. S3
— 20 — —						2. Soil samples headspace using a Foxboro Century Sample jars heated in 4 screening. Sample S7 a to General Testing Corp	128 GC OVA O Degree C nd drilling	(N/D = Nor water bath water samp	n Detect). prior to ble submitted
						3. See Core Boring Report.			
25 								· · · · · · · · · · · · · · · · · · ·	
		WATER LEVEL				SAMPLE IDENTIFICATION	OVEBBLIDDE	SUMMARY (LIN FT):	1/4 5 f+
DATE	TIME	ELAPSED TIME (HR)	DEP BOTTOM OF CASING	BOTTOM OF HOLE	WATER	- O Open End Rod T Thin Wall Tube U Undisturbed Sample		(LIN FI):	14.3 11.
	See Groundwater Level Monitoring Report					S Split Spoon S			88

Н	& A OF NEW Y Consulting G Geologists	ORK, ROCHES eotechnical and Hydrog	Enginee	rs,			CORE BORING REPORT	BORING NO. B-18SR FILE NO. 70092-44 SHEET NO. 2 OF 2
EPTH	DRILLING	CORE NO.	RECOVER	Y/RQD	WEATH-	STRATA	WOULD CHARCISTICATIO	AND DEMARKS
(FT)	RATE (MIN./FT.)	DEPTH(FT)	IN.	%	ERING	CHANGE (FT)	VISUAL CLASSIFICATIO	N AND KEMAKKS
							Apparent Top of Bedro	ock at 14.5 ft.
		14.5					Advanced 7-7/8-in. air hammer c 20.0 ft. without core sampling.	drill bit from 14.5 to
		20.0						
- 20 - - - 25 - - - - 30 -							Notes: 1. Installed Monitoring Well Horehole. See Shallow Beddinstallation Report for de 2. OVA readings non-detect in 3. See B-18 core boring report	B-18SR in completed rock Well tails. work area breathing zone
35								

Cor	nsulting	YORK, ROCHES Geotechnica ts and Hydro	l Engineer	s,		TEST BORING REPORT		BORING NO. B-19IR
PROJECT: CLIENT: CONTRACTO	Xer	ox Building ox Corporati n Drilling						FILE NO. 70092-44 SHEET NO. 1 OF 2 LOCATION: 2901.7 N 2267.9 E
I	TEM	•	CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROCE		ELEVATION: 379.4
TYPE INSIDE D HAMMER W HAMMER F	EIGHT	(IN) (LB) (IN)	Steel 4.0 	SS 1-3/8 140 30	NX 2-1/8 	RIG TYPE: Acker AD-11 truck BIT TYPE: 7-1/8 in. air har DRILL MUD: bu OTHER: Advanced augers to 5.0 ft., NX core to	mmer tton bit refusal at	DATUM: NGVD START: 9 June 1993 FINISH: 10 June 199 DRILLER: D. Miller H&A REP: D. Nostrant
DEPTH (FT)	OVA READING (PPM)	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASSI	FICATION AN	D REMARKS
	ND	1 3	S1	0.0	0.9	Medium dense brown SILT, so rootlets, damp.	me fine san TOPSOIL-	d, with grass and
	ND ND	13 39 26 63 100/.5	19"/24" \$2 14"/18" \$3	2.0 2.0 3.5	4.0	Medium dense light brown fin trace fine gravel, damp. Same, except very dense. Advanced augers to 4.0 ft.	ne SAND, so	me coarse to medium sar
5	,,,,	1007.4		4.4	5.0	Very dense brown SILT, some trace clay, dampGL	coarse to ACIAL TILL-	
	·					Auger Refusal on Appar	ent Top of	Bedrock at 5.0 ft.
						Note:		
						Split-spoon refusal on obstructed split spoon		
10 						2. See Core Boring Report.		
—15 —								
 						i		
 20								
<u> </u>								
	<u></u>	WATER LEVEL	·			SAMPLE IDENTIFICATION	OVEDBIBOCI	SUMMARY N (LIN FT): 5.0 ft.
DATE	TIME	ELAPSED TIME (HR)	BOTTOM	BOTTOM	WATER	O Open End Rod T Thin Wall Tube	ROCK CORE	
	1		OF CASING	1	WALEK	U Undisturbed Sample		(2.11)

	A OF NEW Y Consulting G Geologists		Enginee	rs,			CORE BORING REPORT	BORING NO. B-191R FILE NO. 70092-44 SHEET NO. 2 OF 2
DEPTH	DRILLING	CORE NO.	1			STRATA	VICUAL CLASSIFICATIO	N AND DENADER
(FT)	RATE (MIN./FT.)	ļ —— 		%	ERING	CHANGE (FT)	VISUAL CLASSIFICATIO	N AND KEMAKKS
· -								
. 5							Began Coring at	5.0 ft.
_	5	5.0			SL-MOD		Hard, moderate to slightly weat fine grained medium bedded SAND	
	4						occasional light gray and green banding.	-gray mottling and
	4						-GRIMSBY SAND	STONE -
	4	R1	73	74	SL-MOD		Highly fractured from 6.0 to 10	.8 ft. and from 11.3 to
-10 —	4		<u>73</u> 55	74 56			11.7 ft.	
	3							
	4							
	3	13.2			SL-MOD		Soft, severely weathered siltst 12.6 ft.	one seam from 12.4 to
-	5	13.2			SL			
·15 —	6					15.1		
-	5	R2	<u>56</u> 54	106 96			Very hard to hard slightly weat medium to fine grained, medium	
	5	17.6			SL		SANDSTONEGRIMSBY SAND	STONE -
- -	17	17.6_					Bioturbated from 15.1 to 23.8 f	t.
		R3	<u>29</u> 28	100 97	SL			
-20 -		20.0			_		Slightly weathered vertical fra	
		20.0			SL		21.7 ft., 25.0 to 26.2 ft., and	1 20.5 10 20.6 11.
		1			25		-GRIMSBY SAND	STONE -
	-	-					- UKIMBDI SAND	SIGHE
		-						
-25 -		R4	<u>88</u> 69	<u>73</u> 58	SL			
		_	"		35		Highly fractured from 26.2 to 2	28.5 ft.
		_	·					
		30.0			SL		Hard slightly weathered light of to coarse grained, thin bedded -GR!MSBY STAN	CONGLOMERATE.
-30 -		30.0				 	Bottom of Baring	
·							Notes: 1. Installed Monitoring Well E borehole. See Intermediate Report for details. 2. Foxboro OVA used to monitor drilling. All readings not 3. No apparent loss of water interval. 4. Core-block at 17.6 ft.	3-19IR at completed e Bedrock Well Installation r for organic vapors durin n-detect.

H&A OF NEW YORK, ROCHESTER, NEW YORK Consulting Geotechnical Engineers, Geologists and Hydrogeologists						TEST BORING REPORT	BORING NO. VE200-1
ROJECT: LIENT: ONTRACT	XERO	DING 200 VE X CORPORAT: NAGLE DRILL		TALLATIONS	\$		FILE NO. 70092-47 SHEET NO. 1 CF 1 LOCATION: 4 ft. South of Well SR200-
I	TEM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROCEDURE	S ELEVATION: 393.00
YPE NSIDE D IAMMER W		IN) LB) IN)	Augers 10-1/4			RIG TYPE: Gus Peck GP-7500 BIT TYPE: Auger DRILL MUD: None used. OTHER: Advanced augers to 17.	DATUM: NGVD START: 23 July 199. FINISH: 23 July 199. DRILLER: K. Busch H&A REP: S. Phillips
(FT)	CASING BLOWS PER FT	SAMPLER BLOWS PER 6 IN	SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASSIFICAT	ION AND REMARKS
						-OPEN TR	ENCH-
_	1				2.0	-CONCRET	E SLAB-
	1					Advanced augers without sampling	; to 17.9 ft.
 10 							
					17.9		·
					17.9	Notes: 1. At borehole depth of approx	Top of Bedrock at 17.9 ft.
 					17.9	Notes:	dimately 5 ft. below concrete vel C personnel protection.
 					17.9	Notes: 1. At borehole depth of approx floor slab, upgraded to Lev Remained in Level C until s	kimately 5 ft. below concrete vel C personnel protection. screen, riser, and sandpack
 					17.9	Notes: 1. At borehole depth of approx floor slab, upgraded to Lev Remained in Level C until s installed. 2. Noted dry soil conditions of	timately 5 ft. below concrete vel C personnel protection. Screen, riser, and sandpack during auger advancement to have the well in completed borehole.
		WATER LEVE	EL DATA		17.9	Notes: 1. At borehole depth of approx floor slab, upgraded to Lev Remained in Level C until s installed. 2. Noted dry soil conditions of top of bedrock. 3. Installed Vacuum Extraction	timately 5 ft. below concrete vel C personnel protection. Screen, riser, and sandpack during auger advancement to have the well in completed borehole.
			DE	PTH (FT) T		Notes: 1. At borehole depth of approx floor slab, upgraded to Lev Remained in Level C until s installed. 2. Noted dry soil conditions of top of bedrock. 3. Installed Vacuum Extraction Sae Gverburden Vacuum Extra	cimately 5 ft. below concrete vel C personnel protection. Socreen, riser, and sandpack during auger advancement to have the well in completed borehole.
	TIME	WATER LEVE ELAPSED TIME (HR)	DE BOTTOM	PTH (FT) T SCTTCM G OF HOLE	O: WATER	Notes: 1. At borehole depth of approx floor slab, upgraded to Lev Remained in Level C until s installed. 2. Noted dry soil conditions of top of bedrock. 3. Installed Vacuum Extraction See Gverburden Vacuum Extraction See Gverburden Vacuum Extraction CVE O Open End Rod T Thin Wall Tube RCX U Undisturbed Sample	cimately 5 ft. below concrete vel C personnel protection. Screen, riser, and sandpack during auger advancement to have the well in completed borehole.

Cons	sulting	ORK, ROCHES Geotechnica s and Hydro	l Engineer:	S,		TEST BORING REPORT		BORING NO.	VE200-3
ROJECT: LIENT: DNTRACTOR	XERC	DING 200 VE X CORPORATIONAGLE DRILL	CN	TALLATIONS		SHEET NG. 1 LOCATION: 4			70092-47 1 CF 1 4 ft. South Well SR200-3
ITE	EM		CASING	DRIVE SAMPLER	CORE BARREL	DRILLING EQUIPMENT & PROCEE		ELEVATION:	393.00
YPE NSIDE DIA AMMER WE AMMER FAI	IGHT ((IN) (LB) (IN)	Augers 10-1/4			RIG TYPE: Gus Peck GP-750C BIT TYPE: Auger DRILL MUD: None used. OTHER: Advance 10-1/4 in. a apparent top of bedrock at 19	augers to	DATUM: START: FINISH: DRILLER: H&A REP:	NGVD 24 July 1993 24 July 1993 S. Loranty D. Nostrant
<u> </u>	ÇASING BLOWS PER FT		SAMPLE NUMBER & RECOVERY	SAMPLE DEPTH (FT)	STRATA CHANGE (FT)	VISUAL CLASSIF	ICATION AND	REMARKS	
						-OPE	N TRENCH-		
-					2.0	-CONC			
					3.0	Advanced augers without samp	oling to 19	.1 ft.	
					19.1	Notes: 1. Noted driller add potable advancement of augers to the second	ble water to to top of b ction Well	o control d edrock. in camplete	ust d uring d borehole.
	-	UATED LEVE	I DATA			SAMPLE IDENTIFICATION	Ī	SUMMARY	
— 25 —	WATER LEVEL DATA			PIH (FI) T	0:	5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	OVERSURDE	N (LIN FT):	
— 25 —	-		DL			1 0 0 5 10.4	1		
DATE	TIME	ELAPSED TIME (HR)		BOTTOM IG OF HOLE	WATER	O Open End Rod I Thin Wall Tube U Undisturbed Sample S Split Spoon	ROCK CORE	D (LIN FI):	

APPENDIX B

Well Installation Reports

DEEP BEDROCK MONITORING WELL REPORT

PROJECT:

BUILDING 200 RFI WORK PLAN

LOCATION: CLIENT:

WEBSTER, NEW YORK XEROX CORPORATION

CONTRACTOR:

PENNSYLVANIA DRILLING

DRILLER:

D. Miller

RIG TYPE: Acker AK-11

INSTALLATION DATE: 14 June to 22 June 1993

FILE NO.:

70092-44

WELL NO.: LOCATION:

DR200-7 2698.42 N

2199.03 E

SHEET:

1 OF 1

INSPECTOR:

D. Nostrant

Method and Materials used to grout casings: Haliburton Single Plug method with cement/calcium chloride grout.

Remarks:

Well No. DR200-7

INTERMEDIATE BEDROCK MONITORING WELL REPORT

PROJECT:

BUILDING 200 RFI WORK PLAN

LOCATION:

WEBSTER, NEW YORK

CLIENT: CONTRACTOR: XEROX CORPORATION

DRILLER:

PENNSYLVANIA DRILLING

DRILLERI

D. Miller

RIG TYPE: Acker AK-11

INSTALLATION DATE: 4-8 June 1993

FILE NO.: 70092-44

WELL NO.: R200-8

LOCATION: 2173.21 N

2476.99 E

SHEET:

1 OF 1

INSPECTOR: D. Nostrant

Method and Materials used to grout casings: Haliburton Single Plug method with cement/calcium chloride grout.

Remarks:

Well No. R200-8

INTERMEDIATE BEDROCK MONITORING WELL REPORT

PROJECT:

BUILDING 200 RFI WORK PLAN

LOCATION: CLIENT:

WEBSTER, NEW YORK XEROX CORPORATION

CONTRACTOR:

PENNSYLVANIA DRILLING

DRILLER:

D. Miller RIG TYPE: Acker AD-11

INSTALLATION DATE: 27 May to 2 June 1993

FILE NO.: 70092-44 WELL NO.:

R200-9

LOCATION: 3068.59 N

2373.72 E

SHEET:

1 OF 1

INSPECTOR: D. Nostrant

Survi Datur	ey n <u>NGVD</u>			2.59 ft.
Grou Elev	nd ation: 377.2		Stickup above ground — surface of well casing.	2.47 ft.
s	-ASPHALT- 0.4 ft.	-CONCRETE	— Thickness of Surface Seal	1.0 ft.
U M M A	-FILL- 0.6 ft.	SURFACE SEAL-	Type of Surface Seal [indicated all seals showing depth, thickness and type]	Concrete
R In			Type of Protective Casing	Steel
Z o E t	-WEATHERED BEDROCK-		Inside Diameter of Protective Casing	6.0 in.
s t			—— Depth of Bottom of Protective Casing	2.3 ft.
0 0 I L s		-CEMENT GROUT-	Type of Well Casing Inside Diameter of Well Casing	Steel 4.0 in.
c C a			Type of Backfill Around Casing	Cement Grout
Ol Ne		1	——— Diameter of Borehole in Overburden	13 in. +/-
D I T I	9.5 ft.	 	Depth of Top of Bedrock	9.5 ft.
O N S	-GRIMSBY SANDSTONE-	1	Diameter of Borehole in Bedrock	7-7/8 in.
		24.4 ft.	—— Depth of Bottom of Casing	24.4 ft.
	36.2 ft.	-MONITORING INTERVAL- (Open NX Corehole)	———— Diameter of Open Rock Hole	3.0 in.
	-queenston shale- 36.8 ft.	36.8 ft.	Depth of Bottom of Open Rock Hole	<u>36.8 ft.</u>

Method and Materials used to grout casings: Haliburton Single Plug method with cement grout.

Remarks:

Well No. R200-9

SHALLOW BEDROCK MONITORING WELL REPORT

PROJECT:

XEROX BUILDING 200 RFI WORK PLAN

LOCATION:

WEBSTER, NEW YORK

CLIENT: CONTRACTOR: XEROX CORPORATION

DRILLER:

Remarks:

PENNSYLVANIA DRILLING

D. Miller

RIG TYPE: Acker AD-11

INSTALLATION DATE: 3 June 1993

FILE NO.: 70092-44

WELL NO.: SR200-10

LOCATION:

3068.62 N

2361.49 E

SHEET:

1 OF 1

Well No. 5R200-10

INSPECTOR: S. Phillips

OVERBURDEN VACUUM EXTRACTION WELL REPORT

PROJECT:

XEROX BUILDING 200 VES WELL INSTALLATION

LOCATION: CLIENT:

XEROX BUILDING 200 XEROX CORPORATION

CONTRACTOR:

NOTHNAGLE DRILLING

DRILLER:

S. Loranty

RIG TYPE: Gus Peck 750-C

INSTALLATION DATE: 23 July 1993

FILE NO.:

70092-47

WELL NO.: LOCATION:

VE200-1

4 ft. South

of Well SR200-1

SHEET:

1 OF 1

INSPECTOR:

D. Nostrant

Remarks: Installed shield points in sand pack at depths of 6 feet, 10 feet and 15 feet.

Well No. VE200-1

OVERBURDEN VACUUM EXTRACTION WELL REPORT

PROJECT:

XEROX BUILDING 200 VES WELL INSTALLATION

LOCATION:

XEROX BUILDING 200

CLIENT: CONTRACTOR: XEROX CORPORATION
NOTHNAGLE DRILLING

DRILLER:

NOTHINAGEE DRILLIN

INSTALLATION DATE: 24 July 1993

S. Loranty

i

RIG TYPE: Gus Peck 750-C

FILE NO.:

70092-47

WELL NO.: LOCATION: VE200-3 See Plan

SHEET:

1 OF 1

INSPECTOR:

D. Nostrant

Remarks: Installed shield points in sand pack at depths of 6 feet, 10 feet, and 13 feet. Shield point at 10 foot depth lost during well installation.

Well No. VE200-3

SHALLOW BEDROCK MONITORING WELL REPORT

PROJECT:

XEROX BUILDING 200 RFI WORK PLAN

LOCATION:

WEBSTER, NEW YORK
XEROX CORPORATION

CLIENT: CONTRACTOR:

DENDON CONFORMITON

CONTRACTOR

PENNSYLVANIA DRILLING

DRILLER:

Remarks:

A. Revold

RIG TYPE: Acker AD-11

INSTALLATION DATE: 25 May - 27 May 1993

FILE NO.:

70092-44

WELL NO.:

B-18SR 3278.32 N

LOCATION: 3278.

2007.70 E

SHEET:

1 OF 1

Well No. B-18SR

INSPECTOR: D. Nostrant

INTERMEDIATE BEDROCK MONITORING WELL REPORT

PROJECT:

BUILDING 200 RFI WORK PLAN

LOCATION: CLIENT:

WEBSTER, NEW YORK XEROX CORPORATION

CONTRACTOR:

PENNSYLVANIA DRILLING

DRILLER:

D. Miller RIG TYPE: Acker AK-11

INSTALLATION DATE: 9 June to 10 June 1993 FILE NO .:

70092-44

WELL NO .: LOCATION: B-191R 2901.69 N

2267.91 E

1 OF 1

SHEET:

INSPECTOR: D. Nostrant

Method and Materials used to grout casings: Haliburton Single Plug method with cement/calcium chloride grout.

Remarks:

Well No. B-19IR

GROUNDWATER LEVEL MONITORING REPORT

FILE NO. 70092-44

WELL NUMBE	R: DR200-7	TOP 0	F INNER CASING ELEVATION:	385.97	PAGE NO. 1 OF 1	
DATE	TIME	ELAPSED TIME	DEPTH OF WATER FROM INNER CASING	ELEVATION OF WATER	REMARKS	READ BY
6/24/93	10:00	2 Days	11.41	374.56	Depth immediately prior to development	DN
6/24/93	11:15	2 Days	58.70	327.27	Depth immediately following development	DN
6/28/93	14:20	6 Days	57.97	328.00		DN
6/29/93	12:30	7 Days	58.19	327.78		DN
7/13/93	13:54	21 Days	56.65	329.32		RF
9/22/93	10:20	90 Days	51.27	334.70	Groundwater sample collected for analysis.	GTC
11/12/93		140 Days	56.28	329.69		MGB
12/21/93	10:40	179 Days	54.32	331.65	Groundwater sample collected for analysis.	GTC
1 4- 16- 20						
	1					

GROUNDWATER LEVEL MONITORING REPORT

WELL NUMBER: R200-8

TOP OF INNER CASING ELEVATION: 395.35

FILE NO. 70092-44
PAGE NO. 1 OF 1

R: R200-8	TOP O	F INNER CASING ELEVATION:	395.35	PAGE NO. 1 OF 1	
TIME	ELAPSED TIME	DEPTH OF WATER FROM INNER CASING	ELEVATION OF WATER	REMARKS	READ BY
17:45	1 Day	13.15	382.20	Depths prior to development Depth to bottom 33.11	DN
09:35	3 Days	13.23	382.12	Depth prior to development Depth to bottom 33.11	DN
08:09	7 Days	13.32	382.03	Depth prior to development Depth to bottom 33.11	DN
08:15	16 Days	13.36	381.99	Depth immediately prior to development	DN
10:00	16 Days	20.20	375.15	Depth immediately following development	DN
14:50	20 Days	13.45	381.90		DN
13:00	21 Days	13.45	381.90		DN
13:37	21 Days	13:45	381.90		DN
13:51	35 Days	13.51	381.84		RF
10:50	104 Days	13.55	381.80	Groundwater sample collected for analysis	GTC
11:05	193 Days	13.35	382.00	Groundwater sample collected for analysis	GTC
	TIME 17:45 09:35 08:09 08:15 10:00 14:50 13:37 13:51 10:50	TIME TIME 17:45	TIME TIME FROM INNER CASING 17:45	TIME ELAPSED TIME DEPTH OF WATER FROM INNER CASING ELEVATION OF WATER 17:45 1 Day 13.15 382.20 09:35 3 Days 13.23 382.12 08:09 7 Days 13.32 382.03 08:15 16 Days 13.36 381.99 10:00 16 Days 20.20 375.15 14:50 20 Days 13.45 381.90 13:00 21 Days 13.45 381.90 13:37 21 Days 13:45 381.90 13:51 35 Days 13.51 381.84 10:50 104 Days 13.55 381.80	Time

GROUNDWATER LEVEL MONITORING REPORT

FILE NO. 70092-44 PAGE NO. 1 OF 1 WELL NUMBER: R200-9 TOP OF INNER CASING ELEVATION: 379.67 READ ELEVATION DEPTH OF WATER ELAPSED ВΥ OF WATER REMARKS TIME TIME FROM INNER CASING DATE DN 373.52 Before Development 16:10 6:15 6/08/93 6 Days DTB-38.96 DN 373.60 Before development 6/09/93 16:10 7 Days 6.07 DN 373.61 Before development 10:05 9 Days 6.06 6/11/93 DN 6.00 373.67 Before development 09:36 13 Days 6/15/93 DN 373.27 Depth immediately prior to 6.40 6/24/93 13:00 22 Days development Depth immediately following DΝ 14:00 38.78 340.89 6/24/93 22 Days development DN 373.59 15:45 6.08 6/28/93 26 Days DN 09:10 5.99 373.68 6/30/93 28 Days DN 373.63 6/30/93 16:20 28 Days 6.04 RF 373.95 7/13/93 14:26 41 Days 5.72 GTC 374.91 Groundwater sample collected for 4.76 9/22/93 9:00 109 Days analysis Groundwater sample collected for GTC 373.61 6.06 12/20/93 12:52 198 Days analysis

GROUNDWATER LEVEL MONITORING REPORT

FILE NO. 70092-44 PAGE NO. 1 OF 1

WELL NUMBER	R: SR200-10	TOP OF	F INNER CASING ELEVATION:	379.67	PAGE NO. 1 OF 1	
DATE	TIME	ELAPSED TIME	DEPTH OF WATER FROM INNER CASING	ELEVATION OF WATER	REMARKS	READ BY
6/08/93	08:29	5 Days	4.35	375.32	Depths prior to development Depth to bottom 14.41	DN
6/09/93		6 Days	4.27	375.40	Depths prior to development Depth to bottom 14.41	DN
6/11/93	10:08	8 Days	4.36	375.31	Depths prior to development Depth to bottom 14.41	DN
6/15/93	09:35	12 Days	4.35	375.32	Depths prior to development Depth to bottom 14.41	DN
6/24/93	13:20	21 Days	4.50	375.17	Depth immediately prior to development	DN
6/24/93	14:50	21 Days	13.79	365.88	Depth immediately following development	DN
6/28/93	16:10	25 Days	5.56	374.11		DN
6/30/93	09:45	27 Days	5.50	374.17		DN
7/13/93	14:24	40 Days	5.06	374.61		RF
9/22/93	08:50	109 Days	5.04	374.63	Groundwater sample collected for analysis	GTC
12/20/93	12:45	197 Days	4.62	375.05	Groundwater sample collected for analysis	GTC

GROUNDWATER LEVEL MONITORING REPORT

FILE NO. 70092-44 PAGE NO. 1 OF 1 WELL NUMBER: B-18SR TOP OF INNER CASING ELEVATION: 381.12 ELEVATION ELAPSED DEPTH OF WATER READ DATE TIME TIME FROM INNER CASING OF WATER REMARKS ВY 5/28/93 375.33 1 Day 5.79 DTW-before development DN Depth to bottom 19.04 6/02/93 375.33 5 Days 5.79 DTW-before development DN 6/02/93 ---363.74 DTW-immediately following DN 5 Days 17.38 development ~15 gallons removed 6/08/93 08:05 11 Days 5.57 375.55 DTB-19.06 DN 6/09/93 16:10 375.66 DN 5.46 12 Days 6/11/93 09:55 14 Days 5.71 375.41 D٨ 6/15/93 09:29 375.26 DN 18 Days 5.86 31 Days 6/28/93 15:20 6.01 375.11 DN6/29/93 14:25 375.11 DN 32 Days 6.01 6/29/93 16:30 32 Days 6.15 374.97 DN 7/13/93 14:09 46 Days 6.31 374.81 RF 9/21/93 10:45 GTC 114 Days 375.00 Groundwater sample collected for 6.12 analysis 11:03 374.96 Groundwater sample collected for 12/20/93 203 Days 6.16 GTC analysis

H&A OF NEW YORK CONSULTING GEOTECHNICAL ENGINEERS GEOLOGISTS AND HYDROGEOLOGISTS

GROUNDWATER LEVEL MONITORING REPORT

WELL NUMBER	R: B-19IR		TOP 0	OF INNER CASING ELEVATION:	391.98	FILE NO. 70092-44 PAGE NO. 1 OF 1	
DATE	TIME	ELAPS TIME		DEPTH OF WATER FROM INNER CASING	ELEVATION OF WATER	REMARKS	
6/11/93	09:59	1 Day	,	8.33	383.65	Depths prior to development Depth to bottom 33.00	DN
6/15/93	09:32	5 Day	/S	8.50	383.48	Depths prior to development Depth to bottom 33.00	DN
6/24/93	15:00	14 Da	ays	8.41	383.57	Same, immediately prior to development	DN
6/24/93	16:00	14 Da	ays	31.71	360.27	Depth immediately following development	DN
6/28/93	16:40	18 D	 -ays	8.70	383.28		RF
6/30/93	10:40	20 D	ays	8.56	383.42		DN
6/30/93	17:35	20 D	ays	8.60	383.38		DN
7/13/93	14:20	33 0	ays	8.41	383.57		RF
9/22/93	9:45	102	Days	8.21	383.77	Groundwater sample collected for analysis	GTC
12/20/93	13:40	190	Days	9.32	382.66	Groundwater sample collected for analysis	GTC
187	78		<u> </u>				

H&A OF NEW YORK CONSULTING GEOTECHNICAL ENGINEERS GEOLOGISTS AND HYDROGEOLOGISTS

GROUNDWATER LEVEL MONITORING REPORT

FILE NO. 70092-44

WELL NUMBER: B-19DR		TOP OF	P OF INNER CASING ELEVATION: 381.21 PAGE NO.		PAGE NO. 1 OF 1	NO. 1 OF 1		
DATE	TIME	ELAPSED TIME	DEPTH OF WATER FROM INNER CASING	ELEVATION OF WATER	REMARKS	READ BY		
12/03/91	12:43	6 yrs. 136 Days	12.32	368.89	Groundwater sample collected for analysis	GTC		
6/11/92	10:15	6 yrs. 324 Days	10.32	370.89	Groundwater sample collected for analysis	GTC		
9/29/92	11:25	7 yrs. 72 Days	10.00	371.21	Groundwater sample collected for analysis	GTC		
12/16/92	9:45	7 yrs. 149 days	8.27	372.94	Groundwater sample collected for analysis	GTC		
6/16/93	9:45	7 yrs. 334 Days	10.42	370.79		DN		
9/21/93	13:05	8 yrs. 64 Days	12.93	368.28		DN		
12/20/93	13:49	8 yrs. 153 Days	10.63	370.58	Groundwater sample collected for analysis	GTC		
4, 487								
-								

APPENDIX C

Hydraulic Conductivity Testing Results

WELL NAME:B-18

DATE OF TEST: 30-SEP-93

Rising Head Permeability Calculat	tion
Hyorsley Method	

Kh = [((d*d)In((2*m*L)/D))In(H1/H2)] / 8L(t2-t1)

Test Section Diameter (D), in ft.: Casing Diameter (d), in ft.: Test Length Section (L), in ft.: $m = (Kh/Kv)^{**}0.5:$	0.25 0.25 12.3 3.16
t1 in min.:	30
t2 in min.:	90
H1:	0.90
H2:	0.85
Kh (cm/sec) =	1.8E-06
Kh (ft/min) =	3.5E-06
Kh (ft/day) =	5.0E-03

Rising Head Test Field Data	Static Water
· ·	29.20

Depth	Elapsed	Head	Residual
Water	Time	Ratio	Head
(ft)	(min)		(ft)
29.68	0.0	1.00	0.48
29.65	0.25	0.94	0.45
29.65	0.5	0.94	0.45
29.64	0.75	0.92	0.44
29.64	1	0.92	0.44
29.64	2	0.92	0.44
29.64	3	0.92	0.44
29.63	4	0.90	0.43
29.63	5	0.90	0.43
29.63	10	0.90	0.43
29.63	30	0.90	0.43
29.62	60	0.88	0.42
29.61	90	0.85	0.41

NOTES

- 1. m is the square root of the ratio of horizontal to vertical permeability.
- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME: B-18A

DATE OF TEST:30-SEP-93

Rising Head Permeability Calculation Hvorslev Method	Rising H	ead Test F.	ield Data	Static Water 5.70
Kh = [((d*d)ln((2*m*L)/D))ln(H1/H2)] / 8L(t2-t1)	Denth	Flancod	Hoad	Posidual

		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.60	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.10	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	4.3	6.79	0.0	1.00	1.09
m = (Kh/Kv)**0.5:	1	6.63	0.25	0.85	0.93
		6.49	0.5	0.72	0.79
t1 in min.:	2	6.35	0.75	0.60	0.65
t2 in min.;	4	6.26	1	0.51	0.56
H1:	0.36	6.09	2	0.36	0.39
H2:	0.17	5.98	3	0.26	0.28
		5.89	4	0.17	0.19
$Kh\;(cm/sec)\;=\;$	1.6E-04	5.86	5	0.15	0.16
Kh (ft/min) =	3.1E-04	5.78	10	0.07	0.08
Kh (ft/day) =	4.5E-01				

NOTES

- 1. m is the square root of the ratio of horizontal to vertical permeability.
- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME: B-18SR

DATE OF TEST: 02-JUN-93

Rising Head Permeability Cal	Rising Head Test Field Data			Static Water	
Hvorslev Method	_			6.01	
Kh = [((d*d)ln((2*m*L)/D))ln(H1/H2)]	/ 8L(t2-t1)				
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.67	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.17	(ft)	(min)		(ft)
Test Length Section (L),in ft.:	7	6.82	0.0	1.00	0.81
m = (Kh/Kv)**0.5:	3.16	6.76	0.5	0.93	0.75
		6.72	1	0.88	0.71
t1 in min.:	60	6.68	2	0.83	0.67
t2 in min.:	120	6.65	3	0.79	0.64
H1:	0.28	6.62	4	0.75	0.61
H2:	0.17	6.60	5	0.73	0.59
		6.54	10	0.65	0.53
Kh (cm/sec) = 9	.1E-06	6.49	15	0.59	0.48
Kh (ft/min) = 1	.8E-05	6.44	20	0.53	0.43
Kh (ft/day) = 2	.6E-02	6.38	30	0.46	0.37
		6.30	45	0.36	0.29
NOTES		6.24	60	0.28	0.23
1. m is the square root of the ratio o	f horizontal	6.19	90	0.22	0.18
to vertical permeability.	6.15	120	0.17	0.14	

- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME: B-19IR

DATE OF TEST:24-JUN-93

Rising Head Permeability Calculation			Rising Head Test Field Data		
				8.56	
Kh = [((d*d)ln((2*m*L)/D))ln(H1/H2)] / 8L(t2-t1)					
	Depth	Elapsed	Head	Residual	
0.25	Water	Time	Ratio	Head	
0.33	(ft)	(min)		(ft)	
10.3	8.96	0.0	1.00	0.40	
3.16	8.94	0.25	0.95	0.38	
	8.94	0.5	0.95	0.38	
180	8.94	1	0.95	0.38	
335	8.93	2	0.92	0.37	
0.25	8.92	3	0.90	0.36	
0.10	8.92	4	0.90	0.36	
	8.92	5	0.90	0.36	
2.3E-05	8.90	10	0.85	0.34	
4.4E-05	8.86	20	0.75	0.30	
6.4E-02	8.84	30	0.70	0.28	
	8.80	45	0.60	0.24	
	8.78	60	0.55	0.22	
o of horizontal	8.66	180	0.25	0.10	
	8.60	335	0.10	0.04	
	0.25 0.33 10.3 3.16 180 335 0.25 0.10 2.3E-05 4.4E-05	Depth 0.25 Water 0.33 (ft) 10.3 8.96 3.16 8.94 180 8.94 335 8.93 0.25 8.92 0.10 8.92 2.3E-05 8.92 2.3E-05 8.90 4.4E-05 8.86 6.4E-02 8.84 8.80 8.78 o of horizontal 8.66	Depth Elapsed 0.25 Water Time 0.33 (ft) (min) 10.3 8.96 0.0 3.16 8.94 0.25 8.94 0.5 180 8.94 1 335 8.93 2 0.25 8.92 3 0.10 8.92 4 8.92 5 2.3E-05 8.90 10 4.4E-05 8.86 20 6.4E-02 8.84 30 8.80 45 8.78 60 o of horizontal	Depth Elapsed Head 0.25 Water Time Ratio 0.33 (ft) (min) 10.3 8.96 0.0 1.00 3.16 8.94 0.25 0.95 8.94 0.5 0.95 180 8.94 1 0.95 335 8.93 2 0.92 0.25 8.92 3 0.90 0.10 8.92 4 0.90 8.92 5 0.90 2.3E-05 8.90 10 0.85 4.4E-05 8.86 20 0.75 6.4E-02 8.84 30 0.70 8.80 45 0.60 8.78 60 0.55 o of horizontal 8.66 180 0.25	

- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME: B-25

DATE OF TEST: 30-JUN-93E

Rising Head Permeability Calculation

Hvorslev Method		J			6.93
$Kh = \{((d*d)ln((2*m*L)/D))ln(H1/H2)\}$)] / 8L(t2-t1)				
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.25	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.33	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	10.0	7.32	0.0	1.00	0.39
m = (Kh/Kv)**0.5:	3.16	7.32	0.25	1.00	0.39
		7.32	0.5	1.00	0.39
t1 in min.:	30	7.31	0.75	0.97	0.38
t2 in min.:	60	7.30	1	0.95	0.37
H1:	0.33	7.28	2	0.90	0.35
H2:	0.15	7.26	3	0.85	0.33

	Kh (ft/day) = 2.9E-01
N	DTES
1.	m is the square root of the ratio of horizonta
	to vertical permeability.
2	Test Section Diameter (D) is equal to the ho

Kh (cm/sec) =

Kh (ft/min) =

Depth	Elapsed	Head	Residual
Water	Time	Ratio	Head
(ft)	(min)		(ft)
7.32	0.0	1.00	0.39
7.32	0.25	1.00	0.39
7.32	0.5	1.00	0.39
7.31	0.75	0.97	0.38
7.30	1	0.95	0.37
7.28	2	0.90	0.35
7.26	3	0.85	0.33
7.24	4	0.79	0.31
7.23	5	0.77	0.30
7.17	10	0.62	0.24
7.12	15	0.49	0.19
7.10	20	0.44	0.17
7.06	30	0.33	0.13
7.02	45	0.23	0.09
6.99	60	0.15	0.06

Rising Head Test Field Data Static Water

2. Test Section Diameter (D) is equal to the borehole diameter.

1.0E-04

2.0E-04

3. Method taken from Hvorslev, 1951.

WELL NAME: B-25A

DATE OF TEST: 30-JUN-93

Rising Head Permeability Calculation Hvorslev Method Kh=[((d*d)ln((2*m*L)/D))ln(H1/H2)] / 8L(t2-t1)		Rising H	Static Water 5.39		
	72 \(- \cdot \)	Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.59	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.17	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	6.1	6.34	0.0	1.00	0.95
m = (Kh/Kv)**0.5:	1	6.33	0.25	0.99	0.94
		6.32	0.5	0.98	0.93
t1 in min.:	135	6.31	1	0.97	0.92
t2 in min.:	255	6.30	2	0.96	0.91
H1:	0.45	6.29	3	0 95	0.90
H2:	0.14	6.27	5	0.93	0.88
		6.24	10	0.89	0.85
Kh (cm/sec) =	8.5E-06	6.21	15	0.86	0.82
Kh (ft/min) =	1.7E-05	6.18	20	0.83	0.79
Kh (ft/day) =	2.4E-02	6.14	30	0.79	0.75
		6.09	45	0.74	0.70
NOTES		6.04	60	0.68	0.65
1. m is the square root of the rati	o of horizontal	5.82	135	0.45	0.43
to vertical permeability.		5.52	255	0.14	0.13

- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME: B-27

DATE OF TEST: 01-JUL-93

Rising Head Permeability (Hvorslev Method	Calculation	Rising H	ead Test F	ield Data	Static Water 13.16
Kh=[((d*d)ln((2*m*L)/D))ln(H1/F	12)] / 8L(t2-t1)				10.10
	.2/1/ 02(12 1/)	Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.33	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.25	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	10.2	13.60	0.0	1.00	0.44
m = (Kh/Kv)**0.5:	3.16	13.59	0.25	0.98	0.43
		13.58	0.5	0.95	0.42
t1 in min.:	30	13.58	0.75	0.95	0.42
t2 in min.:	60	13.58	1	0.95	0.42
H1:	0.77	13.57	2	0.93	0.41
H2:	0.64	13.56	3	0.91	0.40
		13.56	4	0.91	0.40
Kh (cm/sec) =	1.3E-05	13.56	5	0.91	0.40
Kh (ft/min) =	2.5E-05	13.54	10	0.86	0.38
Kh (ft/day) =	3.6E-02	13.53	15	0.84	0.37
		13.52	20	0.82	0.36
NOTES		13.50	30	0.77	0.34
1. m is the square root of the rati	o of horizontal	13.46	45	0.68	0.30
to vertical permeability.		13.44	60	0.64	0.28

- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

FALLING HEAD TEST SUMMARY

WELL NAME: B-27A

DATE OF TEST: 30-JUN-93

Falling Head Permeability (Hvorslev Method Kh=[((d*d)ln((2*m*L)/D))ln(H1/H		Fall	ing H	lead Test	Field Data	Static Water 17.24
	74. – (–) 7	D	epth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.59		ater	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.17	1	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	2.8	1:	5.51	0.0	1.00	-1.73
m = (Kh/Kv)**0.5:	1	19	5.70	0.017	0.89	-1.54
		19	5.92	0.033	0.76	-1.32
t1 in min.:	0.55	19	5.96	0.067	0.75	-1.29
t2 in min.:	1.067	10	6.10	0.1	0.66	-1.14
H1:	0.36	10	6.21	0.133	0.60	-1.03
H2:	0.10	10	6.34	0.2	0.52	-0.90
		10	6.43	0.283	0.47	-0.81
Kh (cm/sec) =	3.7E-03	10	6.48	0.35	0.44	-0.76
Kh (ft/min) =	7.2E-03	16	6.54	0.45	0.40	-0.70
Kh (ft/day) =	1.0E+01	10	6.62	0.55	0.36	-0.62
		10	6.75	0.633	0.28	-0.48
NOTES		16	6.94	0.817	0.17	-0.30
1. m is the square root of the rati	o of horizontal	1	7.05	1.067	0.10	-0.18
to vertical permeability.		1	7.08	1.15	0.09	-0.16

- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME: DR-200-7

DATE OF TEST: 24-JUN-93

Rising Head Permeability Calculation

Hvorslev Method

Kh = [((d*d)ln((2*m*L)/D))ln(H1/H2)] / 8L(t2-t1)

Test Section Diameter (D), in ft.:	0.25
Casing Diameter (d), in ft.:	0.25
Test Length Section (L),in ft.:	3.4
m = (Kh/Kv)**0.5:	3.16
t1 in min.:	90
t2 in min.:	240
H1:	0.95
H2:	0.87
Kh (cm/sec) =	3.0E-06
Kh (ft/min) =	5.9E-06
Kh (ft/day) =	8.6E-03

Rising Head Test Field Data Static Water 56.06

Depth	Elapsed	Head	Residual
Water	Time	Ratio	Head
(ft)	(min)		(ft)
56.45	0.0	1.00	0.39
56.45	1	1.00	0.39
56.45	2	1.00	0.39
56.45	5	1.00	0.39
56.45	10	1.00	0.39
56.44	55	0.97	0.38
56.43	90	0.95	0.37
56.41	180	0.90	0.35
56.40	240	0.87	0.34

NOTES

- 1. m is the square root of the ratio of horizontal to vertical permeability.
- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME: R200-8

DATE OF TEST: 24-JUN-93

Rising Head Permeability C	Rising H	Static Water			
Hvorslev Method					13.45
Kh = [((d*d)ln((2*m*L)/D))ln(H1/H)]	2)] / 8L(t2-t1)				
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.25	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.33	(ft)	(min)		(ft)
Test Length Section (L),in ft.:	10.6	13.89	0.0	1.00	0.44
m = (Kh/Kv)**0.5:	3.16	13.83	0.25	0.86	0.38
		13.79	0.5	0.77	0.34
t1 in min.:	5	13.77	0.75	0.73	0.32
t2 in min.:	15	13.76	1	0.70	0.31
H1:	0.34	13.71	2	0.59	0.26
H2:	0.09	13.66	3	0.48	0.21
		13.63	4	0.41	0.18
Kh (cm/sec) =	4.8E-04	13.60	5	0.34	0.15
Kh (ft/min) =	9.5E-04	13.52	10	0.16	0.07
Kh (ft/day) =	1.4E+00	13.49	15	0.09	0.04
		13.48	20	0.07	0.03
NOTES		13.46	30	0.02	0.01
1 in Alan	المغممة أمام				

- 1. m is the square root of the ratio of horizontal to vertical permeability.
- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME: R200-9

DATE OF TEST: 24-JUN-93

Rising Head Permeability C	Depth Elapsed Head Residence Head Residence Head Head	Static Water			
Hvorslev Method					5.99
Kh = [((d*d)ln((2*m*L)/D))ln(H1/H)]	[2)] / 8L(t2-t1)				
		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.25	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.33	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	12.4	6.23	0.0	1.00	0.24
m = (Kh/Kv)**0.5:	3.16	6.22	1	0.96	0.23
		6.22	2	0.96	0.23
t1 in min.:	270	6.22	3	0.96	0.23
t2 in min.:	420	6.22	4	0.96	0.23
H1:	0.37	6.22	5	0.96	0.23
H2:	0.21	6.22	10	0.96	0.23
		6.21	15	0.92	0.22
Kh (cm/sec) =	1.2E-05	6.20	20	0.87	0.21
Kh (ft/min) =	2.4E-05	6.19	30	0.83	0.20
Kh (ft/day) =	3.4E-02	6.18	45	0.79	0.19
, -,		6.17	60	0.75	0.18
NOTES		6.14	120	0.62	0.15
m is the square root of the rati	io of horizontal	6.08	270	0.37	0.09
to vertical permeability.		6.04	420	0.21	0.05

- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

WELL NAME SR-200-10

DATE OF TEST: 24-JUN-93

Rising Head Permeability C	Rising H	Static Water			
Hvorslev Method					5.50
Kh = [((d*d)ln((2*m*L)/D))ln(H1/H)]	(2)] / 8L(t2-t1)				
• • • • • • • • • • • • • • • • • • • •		Depth	Elapsed	Head	Residual
Test Section Diameter (D), in ft.:	0.5	Water	Time	Ratio	Head
Casing Diameter (d), in ft.:	0.17	(ft)	(min)		(ft)
Test Length Section (L), in ft.:	7.1	6.34	0.0	1.00	0.84
m = (Kh/Kv)**0.5:	3.16	6.33	0.25	0.99	0.83
, ,		6.32	0.5	0.98	0.82
t1 in min.:	120	6.31	1	0.96	0.81
t2 in min.:	39 5	6.30	2	0.95	0.80
H1:	0.76	6.30	4	0.95	0.80
H2:	0.40	6.30	5	0.95	0.80
		6.29	10	0.94	0.79
Kh (cm/sec) =	2.7E-06	6.28	15	0.93	0.78
Kh (ft/min) =	5.3E-06	6.26	30	0.90	0.76
Kh (ft/day) =	7.7E-03	6.24	45	0.88	0.74
,		6.22	60	0.86	0.72
NOTES		6.14	120	0.76	0.64
m is the square root of the rat	io of horizontal	6.01	240	0.61	0.51
to vertical permeability.		5.84	395	0.40	0.34

- 2. Test Section Diameter (D) is equal to the borehole diameter.
- 3. Method taken from Hvorslev, 1951.

APPENDIX D

Laboratory Analytical Data Reports

October 7, 1993

Mr. Dave Gianturco Radian Corporation 155 Corporate Woods Rochester, NY 14623

Re: Xerox Corp.-Bldg. 200 3rd Quarter Wells

R93/3637

Dear Mr. Gianturco:

Enclosed are the results of the analysis requested on the above referenced facility. Samples were taken by General Testing Corporation September 21 and 22, 1993. A total of 25 monitoring wells, 2 trip blanks, 1 equipment blank, 1 bailer blank and 2 field duplicates were collected. All data has been reviewed prior to report submission.

Please contact me if you have any questions, please contact me. Thank you for letting us provide this service.

Sincerely, GENERAL TESTING CORPORATION

Cindy Toomey

Customer Service Representative

Enc.

cc: Mr. Jeff Loney, H&A of New York

Effective 10/1/91

GTC LIST OF QUALIFIERS

(The basis of this proposal are the EPA-CLP Qualifiers)

- Indicates compound was analyzed for but was not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. For further explanation see case narrative / cover letter.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range and reanalysis could not be performed.
- A This flag indicates that a TIC is a suspected aldolcondensation product.
- N Spiked sample recovery not within control limits. (Flag the entire batch Inorganic analytes only)
- Duplicate analysis not within control limits.
 (Flag the entire batch Inorganic analysis only)
 - Also used to qualify Organics QC data outside limits. (Only used on the QC summary sheets)
- M Duplication injection precision not met (GFA only).
- S Reported value determined by Method of Standard Additions. (MSA)
- X As specified in the case narrative.

CASE NARRATIVE

COMPANY: XEROX CORPORATION

BLDG 200-QUARTERLY WELLS

3rd Quarter 1993

JOB #: R93/03637

VOLATILE ORGANICS

Xerox water samples were analyzed for priority pollutant volatile organics and xylene using EPA methods 8010/8020 from SW-846.

The initial calibration criteria of 20% RSD was met for all analytes.

The continuing calibration criteria of 15% D was met for all analytes in all daily calibration check standards.

All surrogate standard recoveries were within acceptance limits for all samples.

All matrix spike, matrix spike duplicate, reference check standard recoveries, and precision data were within QC acceptance limits.

The Equipment Blank R93/3637-030 was free of contamination.

Both Trip Blanks (R93/03637-031 and 032) were free of contamination.

All Laboratory Blanks were free of contamination.

All required analysis holding times were met.

Samples R93/03637-013, 014, 019 and 020 were analyzed at dilutions to bring target analytes within the calibration range of the method.

The Chloroethylvinyl ether results have been flagged with a "J" as being estimated due to very erratic results obtained from the GC purge and trap system. None has been detected in any of the samples.

No other analytical or QC problems were encountered.

GTC REPORT #: R93/03637

Sample Reference: Bldg. 200 Quarterly Wells

ANALYTICAL DATA

Presented in this section is analytical data for the parameters requested. The following references concerning units and analytical methodology apply to the data herein.

Units: Inorganics = mg/l Organics = ug/l

Analytical Methodology Obtained From:

- () Federal Register, 40 CFR Part 136, Guidelines Establishing
 Test Procedures for the analyses of Pollutants under the
 Clean Water Act, 10/26/84.
- (X) SW-846, Test Methods for Evaluating Solid Waste, 3rd Edition, 9/86.
- () Other:

LABORATORY REPORT

Job No: R93/03637 Date: 4 OCT., 1993

Client:

Sample(s) Reference

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580

Bldg. 200 Quarterly Wells

Collected

ND - Not Detectable

: 09/21-22/93

P.O. #: C6446868

ANALYSIS * BY GC METHOD 8010/8020 ANALYTICAL RESULTS - ug/l									
Sample:	-001	-002	-00 3	-004 B29-IR	-005 B25-A	-006 825	-007 B18-A	-008 B18-SR	
Location:	B29-SR	B29-A	B29-A	1 853-1K	1 B23-W	1	1	10.00	
Date Collected:	 09/21/93	1 09/21/93	DUPLICATE 09/21/93	l 09/21/93	1 09/21/93	109/21/93	 09/21/93	109/21/93	
Time Collected:	09:15	09:25	109:25	10:42	10:05	10:30	110:55	10:59	
	0,.,, :==========	07.23 :=======				 ==========	' :=========	:===========	
Date Analyzed:	09/23/93	09/23/93	09/23/93	09/23/93	09/23/93	09/23/93	09/23/93	09/23/93	
Dilution:	[1	[1	1	11	1	1	1	[1	
Chloromethane	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	
Bromomethane	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	
Vinyl Chloride	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U] 2.0 U	2.0 U	
Chloroethane	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	1 2.0 U	
Methylene Chloride	j 1.0 U	1.0 U	i 1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
Trichlorofluoromethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
1,1-Dichloroethe ne	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 ບ	
1,1-Dichloroethane	1.0 U	j1.0 υ	1.0 U	6.6	1.0 ປ	68	1.0 U	1.0 U	
1,2-Dichloroethene(Cis&Trans)	1.0 U	1.0 U	1.0 U	J1.0 U	1.0 U	1 2.2	1.0 U	1.0 U	
Chloroform	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
1,1,1-Trichloroethane	1.0 U	11.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
Carbon Tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
Bromodichloromethane	1.0 U	11.0 U	j 1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
1,2-Dichloropropane	1.0 U	1.0 U	[1.0 ປ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
1,3-Dichloropropene-Trans	2.0 ປ	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	
Trichloroethene	1.0 U	11.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
1,3-Dichloropropene (Cis)	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
Dibromochloromethane	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	
1,1,2-Trichloroethane	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	1 2.0 U	1 2.0 U	2.0 U	
2-Chloroethylvinyl Ether	2.0 UJ	2.0 UJ	2.0 UJ	[2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	
Bromoform	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	
1,1,2,2-Tetrachloroethane	2.0 U	[2.0 U	2.0 U	2.0 U	2.0 ປ	2.0 U	2.0 U	2.0 U	
Tetrachloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	
Chlorobenzene	2.0 U	2.0 U	2.0 U	[2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	
1,3-Dichlorobenzene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U] 2.0 U	2.0 U	
1,2-Dichlorobenzene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	
1,4-Dichlorobenzene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	
Benzen e	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	
Toluen e	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	13	2.0 U	
Ethylbenzene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	
Total Xylene (o,m,p)	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	
Total Volatiles	ND ND	ND	ND	6.6	ן אם	70.2	13	ND	

LABORATORY REPORT

Job No: R93/03637

Date: OCT. 4 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Bldg. 200 Quarterly Wells

Collected

: 09/21-22/93

P.O. #: C6446868

ANALYSIS * BY GC	METHOD	8010/80	20	ANAI	YTICAL	RESULTS	- %	
	-001	-002		-004	-005	-006	-007	800-
Location:	B29-SR	B29-A	B29-A	B29-1R	B25-A	B25	818-A	B18-SR
		1	DUPLICATE					1
	09/21/93	09/21/93	09/21/93	•	•	*	*	09/21/93
Time Collected:	09:15	09:25	09:25	10:42	10:05	10:30	10:55	110:59
			========	===== === :		========	======================================	
i							<u>!</u>	
	1	1		1	1			1
	 	1	i	1	1	1	}	
SURROGATE STANDARD RECOVERIES	i 1	1	İ	[]	i !	1] [
SURROUNTE STANDARD RECOVERTED	'. 	1	l I	1	l İ	I]	I I	1
% Recovery	1 1	1	l 	1	! 	 	I 	1
* **CCC121. /	t t	1	l 	! 	1 	! 	! 	
Bromochloromethane	72	98	 89	84	1 88	93	94	95
(Acceptance Limits: 60-138%)		İ	, .	İ	 	İ		<u>'</u>
	i	į		İ		İ	İ	
ļ	Ì	Ì		İ		ĺ	1	
1-Chloro-3-Fluorobenzene	87	86	62	91	97	75	106	116
(Acceptance Limits: 60-121%)		1		1		1	1	
			1	1			1	1
	1			1			1	
a,a,a-Trifluorotolu ene	71	75	60	177	87	81	97	108
(Acceptance Limits: 60-134%)		<u> </u>	<u> </u>	1	!			1
			<u> </u>]		1
	1	ļ	 	1		İ	1	1
	1	1	 -	1	 	1	 	1
	1	1	[]	1 1	[]	i I	 	1
	i I	1	i I	1	!]	 	1	
	1	1	! [! 	1 {	! 	!
	1	1	ı	1	•		l	•

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Mild F. Ross

Laboratory Director

LABORATORY REPORT

Job No: R93/03637 Date: 4 OCT., 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference

Bldg. 200 Quarterly Wells

Collected

ND - Not Detectable

: 09/21-22/93

P.O. #: C6446868

ANALYSIS * BY GC METHOD 8010/8020 ANALYTICAL RESULTS - ug/l										
Sample: Location:	-009 B18-IR	-010 B26-SR	-011 826-A	-012 B26-IR	-013 B19-SR	-014 B19-SR DUPLICATE	-015 B19-DR	-016 BAILER BLANK		
Date Collected:	 09/21/93	 09/21/93	I 09/21/93	 09/21/93	 09/21/93	09/21/93	09/21/93	09/21/93		
Time Collected:	11:20	11:40	11:50	11:58	13:22	13:22	14:00	13:40		
	============	' ::::::::::::::::::::::::::::::::::::			:=========	==========	=========	=======================================		
Date Analyzed:	09/23/93	09/23/93	09/23/93	09/23/93	09/25/93	09/27/93	09/23/93	09/23/93		
Dilution:	1	1	[1	1	[250	250	1	1		
Chloromethane	5.0 U	5.0 U	5.0 U	5.0 U	1300 U	1300 U	5.0 U	5.0 U		
Bromomethane	5.0 U	5.0 U	5.0 U	5.0 U	1300 U	1300 U	5.0 U	5.0 U		
Vinyl Chloride	2.0 U	2.0 U	2.0 U	2.0 U	500 U	500 U	2.0 U	2.0 U		
Chloroethane	2.0 U	2.0 U	2.0 U	2.0 U	500 U	500 U	2.0 U	2.0 U		
Methylene Chloride	1.0 U	1.0 U	1.0 U	1.0 U	ļ 250 U	250 U	1.0 U	1.0 U		
Trichlorofluoromethane	1.0 U	1.0 U	1.0 U	1.0 U	250 U	250 U	1.0 U	1 1.0 U		
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	250 U	250 U	1.0 U	1.0 U		
1,1-Dichloroethane	1.0 U	5.0	1.0 U	1.8	250 U	250 U	1.2	1.0 U		
1,2-Dichloroethene(Cis&Trans)	1.0 U	1.6	1.0 U	1.0 U	250 U	250 U	4.3	1.0 U		
Chloroform	1.0 U	1.0 U	1.0 υ	[1.0 U	250 U	250 U	1.0 U	1.0 U		
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	250 U	250 U	1.0 U	1.0 U		
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	ט 1.0	250 U	250 U	1.0 U	1.0 U		
Carbon Tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U	250 U	250 U	1.0 U	ן 1.0 ט		
Bromodichloromethane	1.0 U	1.0 U	1.0 U	1.0 U	250 U	250 U	1.0 U	1.0 U		
1,2-Dichloropropane	1.0 U	1.0 U	1.0 υ	[1.0 U	250 U	250 U	1.0 U	1.0 U		
1,3-Dichloropropene-Trans	2.0 U	2.0 U	2.0 U	2.0 U	500 U	500 U	2.0 U	2.0 U		
Trichloroethene	1.0 U	7.7	1.0 U	1.0 U	1500	1500	79	1.0 U		
1,3-Dichloropropene (Cis)	1.0 U	1.0 U	1.0 U	1.0 U	250 U	250 U	1.0 U	1.0 U		
Dibromochloromethane	2.0 U	2.0 U	2.0 U	12.0 U	500 U	500 U	2.0 U	2.0 U		
1,1,2-Trichloroethane	2.0 U	2.0 U	2.0 U	j2.0 U	500 U	500 U	2.0 U	2.0 U		
2-Chloroethylvinyl Ether	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	500 UJ	500 UJ	2.0 UJ	2.0 UJ		
Bromoform	2.0 U	2.0 U	2.0 U	2.0 U	500 ບ	500 U	2.0 U	2.0 U		
1,1,2,2-Tetrachloroethane	2.0 U	2.0 U	2.0 U	2.0 U	500 ບ	500 U	2.0 U	1 2.0 U		
Tetrachloroethene	1.0 U	14	1.0 U	1.0 U	29000	29000	20	1.0 U		
Chlorobenzene	2.0 U	2.0 U	2.0 U	2.0 U	500 U	500 U	2.0 U	1 2.0 U		
1,3-Dichlorobenzene	2.0 U	2.0 U	2.0 U	2.0 U	500 U	500 U	2.0 U	2.0 U		
1,2-Dichlorobenzene	2.0 U	2.0 U	2.0 U	2.0 U	500 U	500 U	2.0 U	2.0 U		
1,4-Dichlorobenzene	2.0 U	2.0 U	2.0 U	2.0 U	500 U	500 U	2.0 U	2.0 U		
Benzene	2.0 U	[2.0 U	2.0 U	[2.0 U) 500 U	500 U	2.0 U	2.0 U		
Toluene	2.0 U	2.0 U	2.0 U	2.0 U	500 U	[500 U	2.0 U	2.0 U		
Ethylbenzene	2.0 U	2.0 U	2.0 U	12.0 U	500 U	500 U	2.0 U	2.0 U		
Total Xylene (o,m,p)	2.0 U	2.0 U	2.0 U	2.0 U	500 U	500 U	2.0 U	1 2.0 U		
Total Volatiles	ND	28.3	ND	11.8	30500	30500	104.5	ND		

LABORATORY REPORT

Job No: R93/03637

Date: OCT. 4 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580

Sample(s) Reference:

Bldg. 200 Quarterly Wells

Collected

: 09/21-22/93

P.O. #: C6446868

Sample: -009 -010 -011 -012 -013 -014 -015 -016 Location: B18-IR B26-SR B26-A B26-IR B19-SR B19-SR B19-DR BAILE	₹
Date Collected: 09/21/93 09/2	
pure dottered.	/9 3 ======
	======
	======
SURROGATE STANDARD RECOVERIES	
% Recovery	
A Recovery	
Bromochloromethane 107 90 99 106 89 83 105 109	
(Acceptance Limits: 60-138%)	
(Acceptance Ethinics: 00 130A)	
1-Chloro-3-Fluorobenzene 108 103 86 95 100 105 101 91	
(Acceptance Limits: 60-121%)	
(Acceptance Chinics, 60-121%)	
a,a,a-Trifluorotoluene 100 97 91 88 103 98 101 87	
a,a,a-11111001010101010	
(Acceptance Limits: 60-134%)	

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #251.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

LABORATORY REPORT

Job No: R93/03637 Date: 4 OCT., 1993

Client:

Sample(s) Reference

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580

Bldg. 200 Quarterly Wells

Collected

ND - Not Detectable

: 09/21-22/93

P.O. #: C6446868

ANALYSIS * BY GC	METHOD	8010/8	020 Al	NALYTICA	L RESUL	rs – ug/	1	
Sample:	-017	j -018	-019	-020	-021	-022	-023	-024
Location:	ISR-200-2	SR-200-3	SR-200-4	SR-200-1	SR-200-10	R-200-9	B19-IR	DR-200-7
Location.	1				i	İ	1	1
Date Collected:	09/22/93	09/22/93	09/22/93	09/22/93	09/22/93	09/22/93	09/22/93	09/22/93
Time Collected:	04:55	05:05	05:20	05:30	09:25	09:40	10:10	10:40
	=======================================		, :==========			:========	=======================================	==========
Date Analyzed:	09/23/93	09/25/93	09/25/93	09/25/93	09/23/93	09/24/93	09/24/93	09/24/93
Dilution:	j1	1000	20	100	1	[1	1	1
Chloromethane	5.0 U	5000 U	100 U	500 U	5.0 U	5.0 U	5.0 U	5.0 U
Bromomethane	5.0 U	5000 U	100 U	500 U	5.0 U	5.0 U	5.0 U	5.0 U
Vinyl Chloride	2.0 U	2000 U	40 U	200 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroethane	2.0 U	2000 U	40 U	200 U	2.0 U	2.0 U	2.0 U	2.0 U
Methylene Chloride	1.0 U	1000 U	20 U	100 U	1.1	1.0 U	1.0 U	9.1
Trichlorofluoromethane	1.0 U	1000 U	20 U	100 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	1.0 U	1000 U	20 U	100 U	1.0 ບ	1.0 U	1.0 U	1.0 υ
1,1-Dichloroethane	1.0 U	1000 U	20 U	100 U	1.0 U	1.0 U	2.7	2.2
1,2-Dichloroethene(Cis&Trans) 1.0 U	1000 U	20 U	100 U	1.0 U	1.0 U	2.3	1.0 U
Chloroform	1.0 U	1000 U	20 U	100 U	1.9	1.0 U	1.0 U	3.5
1,2-Dichloroethane	1.0 U	1000 U	20 U	100 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	1.0 U	1000 U	20 U	100 U	1.0 U	1.0 U	1.0 U	1 1.0 U
Carbon Tetrachloride	1.0 U	1000 U	20 U	100 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	1.0 U	1000 U	20 U	100 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1.0 U	1000 U	1 20 U	100 U	1.0 υ	1.0 U	1.0 U	1.0 U
1,3-Dichloropropene-Trans	2.0 U	2000 U	40 U	200 U	2.0 U	2.0 U	2.0 U	2.0 U
Trichloroethene	1.0 U	1000 U	20 U	100 U	1.0 U	1.0 U	11	1.0 U 1.0 U
1,3-Dichloropropene (Cis)	1.0 U	1000 U	20 U	100 U	1.0 U	1.0 U	1.0 U	•
Dibromochloromethane	2.0 U	2000 U	40 U	200 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1,2-Trichloroethane	2.0 U	2000 U	40 U	200 U	2.0 U	2.0 U	2.0 U	2.0 U 2.0 UJ
2-Chloroethylvinyl Ether	2.0 UJ	5000 n1	40 UJ	[200 UJ	2.0 UJ	2.0 UJ	2.0 UJ	1 2.0 UJ
Bromoform	2.0 U	2000 U	40 U	200 U	2.0 U	2.0 U	2.0 U 2.0 U	2.0 U
1,1,2,2-Tetrachloroethane	2.0 U	2000 U	40 U	200 U	2.0 U	2.0 U	2.0 0	2.00
Tetrachloroeth ene	2.6	300000	89	25000	1.0 U	1.0 U	•	20 2.0 U
Chlorobenzene	2.0 U	2000 U	40 U	200 U	2.0 U	2.0 U	2.0 U	2.0 U
1,3-Dichlorobenzene	2.0 U	2000 U	40 U	200 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichlorobenzene	2.0 U	2000 U	40 U	200 U	2.0 U	2.0 U	1 2.0 U	2.0 0
1,4-Dichlorobenzene	2.0 U	2000 U	40 U	200 U	2.0 U	2.0 U	2.0 U	2.0 0
Benzen e	2.0 U	2000 U	40 U	200 U	2.0 U	2.0 U	\ 2.0 U	,
Toluene	2.0 U	2000 U	40 U	200 U] 2.0 U] 2.0 U	2.0 U	2.0 U 24
Ethylbenzene	2.0 U	2000 U	40 U	200 U	2.0 U	2.0 U	2.0 U	1 2.0 U
Total Xylene (o,m,p)	2.0 U	2000 U	40 U	200 U	2.0 U	2.0 U	2.0 U	60.9
Total Volatiles	2.6	300000	89	25000	3.0	ND	216.0	1 60.9

LABORATORY REPORT

Job No: R93/03637

Date: OCT. 4 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Bldg. 200 Quarterly Wells

Collected

: 09/21-22/93

P.O. #: C6446868

ANALYSIS * BY GC	METHOD	8010/802	20	ANALYTICAL RESULTS - %				
	-017	-018		-020	-021	-022	•	-024
•	SR-200-2	SR-200-3	SR-200-4	SR-200-1	SR-200-10	R-200-9	B19-1R	DR-200-7
		1						
Date Collected:	09/22/93	09/22/93	09/22/93	09/22/93			•	09/22/93
Time Collected:	04:55	05:05	05:20	05:30	09:25	09:40	10:10	10:40
=======================================			:=======	=========		:========		
				İ			1	
		1		1			 -	
ì	1				!	1	! !	1
	!			1	1] [
						 -	 	l I
SURROGATE STANDARD RECOVERIES	•	!			 	! i	í I	1
			 		 1	1	l 1	1
% Recovery		1	 -]	} 1) 	; 	,
	1 114	 99	I 112	1 92	1 112	l 101	1 87	105
Bromochloromethane (Acceptance Limits: 60-138%)	1	1 77	1 112	1	1		i I	i
(Acceptance Limits: 60°156%)	1	1	1 1	1	, 	İ	İ	1
	1	1	1	İ	i	i	Ì	1
1-Chloro-3-Fluorobenzene	1 97	1 107	107	74	96	95	80	83
(Acceptance Limits: 60-121%)	1	1	1	1	i	İ		1
(Acceptance Ethnites so 1210)	, 	i	i	i	I			1
	i	i	Ì	İ	1	-	1	1
a,a,a-Trifluorotoluene	97	121	102	92	91	95	106	119
(Acceptance Limits: 60-134%)	i		İ	1	1		1	1
,		ĺ	1	1	1			
		1			1	1		
		1	İ		1	1		!
	1	1			1	1	1	
	1	1	1	1	1		!	
İ	1		1	1	1	1	1	1
1	1	1	1	1	1	1	1	1

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Mihal & Com

LABORATORY REPORT

Job No: R93/03637 Date: 4 OCT., 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference

Bldg. 200 Quarterly Wells

Collected

ND - Not Detectable

: 09/21-22/93

P.O. #: C6446868

ANALYSIS * BY GC								
Sample:	-025	-026	-027	-028	-029	-030	-031	-032
'	R-200-8	SR-200-5	B27	827-A	B19-A	EQUIPMENT	TRIP BLANK	TRIP BLANK
2002	1 =			İ	İ	BLANK	1	
Date Collected:	09/22/93	09/22/93	09/22/93	09/22/93	09/22/93	09/22/93	09/21/93	09/22/93
Time Collected:	11:15	11:25	11:50	11:45	NO SAMPLE	12:00	07:40	03:30
::::::::::::::::::::::::::::::::::::::		100000000000000000000000000000000000000	' =============	:=======::	.=============	===========	=========	:========
Date Analyzed:	09/24/93	09/24/93	09/24/93	09/28/93	i	09/25/93	09/28/93	109/25/93
Dilution:	5	j1	j1	10	1	[1	[1	1
Chloromethane	25 U	5.0 U	5.0 U	50 U	1	5.0 U	5.0 U	5.0 U
Bromomethane	25 U	5.0 U	5.0 U	50 U	1	5.0 U	5.0 U	5.0 U
Vinyl Chloride	111	7.5	2.0 U	[20 U		2.0 U	2.0 U	2.0 U
Chloroethane	10 U	2.0 U	2.0 U	20 U		2.0 U	2.0 U	2.0 U
Methylene Chloride	5.0 U	1.0 U	1.0 U	10 U	-	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	5.0 U	1.0 U	1.0 U	10 U		1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	5.0	14.4	1.0 U	10 U	1	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	54	50	1.0 ປ	10 U		1.0 U	1.0 U	1.0 U
1,2-Dichloroethene(Cis&Trans)) 240	110	1.0 U	27	1	1.0 U	1.0 U	1.0 U
Chloroform	5.0 U	j1.0 U	1.0 U	10 U		1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	5.0 U	1.0 U	1.0 U	10 U	1	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	5.0 U	່ 1.0 ປ	1.0 U	10 U		1.0 U	1.0 U	1.0 U
Carbon Tetrachloride	5.0 U	1.0 U	i i 1.0 U	10 U	1	1.0 U	1.0 U	1.0 U
Bromodichloromethane	5.0 U	1.0 U	i 1.0 U	10 U	1	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	5.0 U	i1.0 U	1.0 U	10 U		1.0 υ	1.0 U	1.0 U
1,3-Dichloropropene-Trans	10 U	2.0 U	j 2.0 υ	20 U		2.0 U	2.0 U	2.0 U
Trichloroethene	20	10	i 1.0 U	10 U	1	1.0 U	1.0 U	1.0 U
1,3-Dichloropropene (Cis)	5.0 U	1.0 υ	j 1.0 U	10 U	1	1.0 U	1.0 U	1.0 U
Dibromochloromethane	10 U	[2.0 U	2.0 U	20 U	1	2.0 U	2.0 U	2.0 U
1,1,2-Trichloroethane	10 U	2.0 U	2.0 U	20 U		2.0 U	2.0 U	2.0 U
2-Chloroethylvinyl Ether	10 UJ	2.0 UJ	2.0 UJ	50 N1		2.0 UJ	2.0 UJ	2.0 UJ
Bromoform	10 U	2.0 U	2.0 U	20 U		2.0 U	2.0 U	2.0 U
1,1,2,2-Tetrachloroethane	10 U	2.0 U	2.0 U	20 U		1 2.0 U	2.0 U	2.0 U
Tetrachloroethene	8.2	1.7	່ 1.0 ບ	į 10 U	Ì	1.0 U	1.0 U	1.0 U
Chlorobenzene	10 U	2.0 U	2.0 U	20 U	-	2.0 U	1 2.0 U	2.0 U
1,3-Dichlorobenzene	10 U	12.0 U	2.0 U	20 U) 2.0 U	2.0 U	1 2.0 U
1,2-Dichlorobenzene	10 ປ	2.0 U	2.0 U	20 U		2.0 U	2.0 U	2.0 U
1,4-Dichlorobenzene	10 U	2.0 U	2.0 U	20 U	1	2.0 U	1 2.0 0	2.0 U
Benzene	10 U	2.0 U	2.0 U	20 U		2.0 U	2.0 U	2.0 U
Toluene	10 U	2.0 U	j 2.0 U	20 U	1	2.0 U	2.0 ∪	1 2.0 U
Ethylbenzene	10 U	2.0 U	2.0 U	20 U		2.0 U	2.0 U	2.0 U
Total Xylene (o,m,p)	10 υ	2.0 U	່ 2.0 ປ	20 U		2.0 U	2.0 U] 2.0 U
Total Volatiles	338.2	183.6	ND	27		ND	ND] ND

LABORATORY REPORT

Job No: R93/03637

Date: OCT. 4 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Bldg. 200 Quarterly Wells

Collected

: 09/21-22/93

P.O. #: C6446868

ANALYSIS * BY GC	METHOD	8010/802	20	ANAI	YTICAL	RESULTS	- %	
		-026		-028	-029	-030	-031	-032
Location:	R-200-8	SR-200-5	B27	B27-A	B19-A	EQUIPMENT	TRIP BLANK	TRIP BLANK
		i i				BLANK		
Date Collected:	09/22/93	09/22/93	09/22/93	09/22/93	09/22/93	09/22/93	09/21/93	09/22/93
Time Collected:	11:15	11:25	11:50	11:45	NO SAMPLE	12:00	07:40	03:30
	=========	=========	=========	============				=========
1	İ							
	1			1		1		
	1	1 1				!		
1	1							
							1	1
SURROGATE STANDARD RECOVERIES					<u> </u>		1	
	!			!		1	 	
% Recovery	!]	i •	1	1	
			. 05	I 184	1	l ! 98	l 85	I I 104
Bromochloromethane	84	95	85	0 4] [1	U)	1
(Acceptance Limits: 60-138%)		1	 	1	 	! [! 	;
	} !	1]. 	1	1	1	, 	i
1-Chloro-3-Fluorobenzene	l 93	1 98	I I 60	1 64	i I	1 74	1 65	68
(Acceptance Limits: 60-121%)	1	1	 	1	! !		İ	i
(Acceptance Finites: 60 121A)	1	1	! {	 	! 	1	İ	i
	1	1	i İ	İ	, 		į	
a,a,a-Trifluorotoluene	1 98	1 103	, 79	1 83	ļ	83	64	85
(Acceptance Limits: 60-134%)	1	i	1	i	İ			
	ĺ	i	i İ	İ		1		1
	i	İ	1	İ		1	1	1
	1	1	1	1	†	1	i	1
1	1	1	!	1	1	1	1	1
	1			1	}	1		
1	1		ļ	1	1		1	1
		1	1	1	1		1	1
1								

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Laboratory Director

LABORATORY QUALITY CONTROL

Presented in this section is Quality Control Associated with the analytical data of this report.

Quality Control Explanations:

- RUN QUALITY CONTROL Selected QC data from the analytical (1) run in which your sample(s) were involved.
- JOB SPECIFIC QUALITY CONTROL QC data specific to your set (2) of samples.
- DUPLICATES Replicate analyses of a given sample used to (3) monitor precision. Relative Percent Difference is calculated as the difference divided by the average x 100.
- (4) MATRIX SPIKES Addition of a known amount of analyte to a sample. Recovery is calculated by subtracting original value attributable to the sample from the combined value. The difference is then divided by the amount added to calculate % recovery. Poor recoveries may indicate analytical interference due to the matrix of the sample. Any other samples of this matrix may also have been affected, high or low as indicated by the % recovery.
- LABORATORY CONTAMINANTS Laboratory De-ionized water used to (5) monitor for contamination during analysis.
- BLANK SPIKES Same as item #4 but analyte is added to laboratory (6) de-ionized water. This indicates the accuracy of analysis.
- REFERNCE CHECK SAMPLES Samples from an outside source having (7) a known concentration of analyte. Used as a measure of analytical accuracy.

When possible, all components of the above listed QC protocol are performed during an analytical run. The resulting data is compared to historical records when evaluating the quality of analytical runs. The data provided in your report has passed our Quality Assurance review.

Quality Control Notes:

LABORATORY REPORT

Job No: R93/03637 Date: 4 OCT., 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference

Bldg. 200 Quarterly Wells

Collected

: 09/21-22/93

P.O. #: C6446868

					1 077	1	1
•	-033	-034	-035	-036	-037		ļ
Location:	LAB METH	LAB METH	LAB METH	LAB METH	LAB METH		1
	BLANK	BLANK	BLANK	BLANK	BLANK	!	!
Date Collected:						ļ	
Time Collected:						 	 ====================================
======================================	 09/23/93	09/23/93	09/24/93	09/27/93	09/28/93		
•	1	1	jı .	11	[1]	1	
Chloromethane	5.0 U	5.0 U	1 5.0 U	5.0 U	5.0 U	1	
Bromomethane	5.0 U	,]5.0 U	j 5.0 U	[5.0 U	5.0 U	1	1
Vinyl Chloride	2.0 U	[2.0 U	2.0 U	2.0 U	2.0 U	1	
Chloroethane	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	 	1
Methylene Chloride	1.0 U	11.0 U	1.0 U	 1.0 U	j 1.0 U		
Trichlorofluoromethane	1.0 U	1.0 U	1.0 U	11.0 U	1.0 U	ĺ	1
1,1-Dichloroethene	1.0 U	1.0 U	1.0 U	1.0 U	j 1.0 U		1
1,1-Dichloroethane	1.0 U	1.0 U	1.0 υ	1.0 υ	1.0 U		1
1,2-Dichloroethene(Cis&Trans)	•	1.0 U	1.0 U	1.0 U	1.0 U		ļ
Chloroform	1.0 U	11.0 U	1.0 U	1.0 U	1.0 U		
1,2-Dichloroethane	1.0 U	11.0 U	1.0 U	1.0 U	j 1.0 U		1
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	i i	
Carbon Tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U	່ 1.0 ບ	i i	1
Bromodichloromethane	1.0 U	1.0 U	1.0 U	[1.0 U	່ 1.0 ບ	i i	İ
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	i i	i
	1.0 U	2.0 U	2.0 U	2.0 U	2.0 U	i i	i
1,3-Dichloropropene-Trans	2.0 U]1.0 U	1.0 U	1.0 U	1 1.0 U	i i	i
Trichloroethene	•	[1.0 U	1 1.0 U	1.0 U	1.0 U		i
1,3-Dichloropropene (Cis)	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U	, , , , , , , , , , , , , , , , , , ,	
Dibromochloromethane	2.0 U	•	•	2.0 U	2.0 U	, , ,	i
1,1,2-Trichloroethane	2.0 U	2.0 U	2.0 U 2.0 UJ	2.0 UJ	2.0 UJ	i 1	1
2-Chloroethylvinyl Ether	2.0 UJ	{2.0 UJ	•	2.0 U	2.0 U	, 1 	
Bromoform	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	, ! []	
1,1,2,2-Tetrachloroethane	2.0 U	2.0 U	2.0 U	•	2.0 U	1 1	;
Tetrachloroethene	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 1	1
Chlorobenzene	2.0 U	2.0 U	2.0 U	2.0 U	•	1 1	
1,3-Dichlorobenzene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U]	1
1,2-Dichlorobenzene	2.0 U	2.0 U	2.0 U	[2.0 U	2.0 U	1	
1,4-Dichtorobenzene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	1 1	
Benzene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	1 1	! !
Toluene	2.0 U	[2.0 U	2.0 U	2.0 U	2.0 U	1	1
Ethylbenzene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	1	j 1
Total Xylene (o,m,p)	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U		
Total Volatiles	ND	ND	ND	ND	ND		1

LABORATORY REPORT

Job No: R93/03637

Date: OCT. 4 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Bldg. 200 Quarterly Wells

Collected

: 09/21-22/93

P.O. #: C6446868

ANALYSIS * BY GC	METHOD	8010/802	20	ANAI	YTICAL	RESULTS	- %	
Sample:	-033	-034	-035	•	-037	!		
	•		LAS METH	•	LAB METH	 	<u> </u>	
Date Collected:	•			•	BLANK 	 		
Time Collected:	1		••	1	 		, 	
	' ====================================		========	===========	=== = =======			:========
	1			1		1		!
				!	!			
	!					l i] !	
		† †		1	! 	1	 	
SURROGATE STANDARD RECOVERIES] :[· •	1	4 }	1	, 	
SURPLIES TANDARD RESULTATES	1	· 		i				
% Recovery	j	i i		į	ĺ			1
			1	1	1	1	<u> </u>	
Bromochloromethane	97	106	104	98	111		1]
(Acceptance Limits: 60-138%)	1			ļ 1	1		1 1	
	1	! !		i I	1	1	1	1
1-Chloro-3-Fluorobenzene	1 92	97	 92	90	96	İ		
(Acceptance Limits: 60-121%)	1	İ		į	Ì	1	1	1
•	1	1	!	1			1	1
					1			
a,a,a-Trifluorotoluene	73	92	105	91	86	1	 	1
(Acceptance Limits: 60-134%)	1	1] [1	1 1	1	 	<u> </u>
	1	1) 	1				İ
	<u> </u>	i		i	i	İ	I	
	İ	j	Ī	İ	1		1	!
	1	1	1	1	1		!	
	ļ	!	!				1	
	1		i	1	i	1	1	I

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Minney of the

Laboratory Director

3A .	- WATE	R VOLATII	LE MATRIX	SPIKE/M	MIKIN	SLIVE	DOFFICALL	I(LCO	VERT	
Lab	Name:	General	Testing C	Corp.	Cont	ract: _	-			
Lab	Code:		Case N	lo.:		SAS No	.:		SDG No.:	

Matrix Spike - EPA Sample No.: R93/03637 -001

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENT.	%	LIMITS
	(ug/l)	(ug/l)	(ug/l)	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	21.6	0	21.2	98	28-167
	21.4	0	20.4	95	35-146
	21.8	0	15.4	70	39-150
	22.4	0	16.4	73	46-148
	22.4	0	19.6	87	38-150

COMPOUND	SPIKE ADDED (ug/l)	MSD CONCENT. (ug/1)	MSD % REC #	% RPD # ======	QC 1 RPD ======	LIMITS REC. =====
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	21.6	20.4	94	4	30	28-167
	21.4	18.9	88	7	30	35-146
	21.8	14.2	65	8	30	39-150
	22.4	14.9	67	9	30	46-148
	22.4	18.1	81	8	30	38-150

- # Columns to be used to flag recovery and RPD values with an asterik
- * Values outside of QC limits

RPD:	0	out	of	5		outside	limits	
Spike	Recove	ry:_	_0	out	of	10	outside	limits

COMMENTS:

page 1 of 1

3A - WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY
Lab Name: General Testing Corp. Contract:
Lab Code: Case No.: SAS No.: SDG No.:
Matrix Spike - EPA Sample No.: R93/03637 -011

COMPOUND	SPIKE ADDED (ug/l)	SAMPLE CONCENTRATION (ug/l)	MS CONCENT. (ug/l)	MS % REC #	QC LIMITS REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	21.6	0	27.2	126	28-167
	21.4	0	25.3	118	35-146
	21.8	0	22.7	104	39-150
	22.4	0	23.6	106	46-148
	22.4	0	23.7	106	38-150

COMPOUND	SPIKE ADDED (ug/l)	MSD CONCENT. (ug/1)	MSD % REC # ======	% RPD # ======	QC 1 RPD	LIMITS REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	21.6	24.4	113	11	30	28-167
	21.4	22.3	104	13	30	35-146
	21.8	20.0	92	13	30	39-150
	22.4	20.9	93	13	30	46-148
	22.4	23.9	107	1	30	38-150

- # Columns to be used to flag recovery and RPD values with an asterik
- * Values outside of QC limits

RPD:_	0	out	of .	5		outside	limits	
Spike	Recove	ry:	_0	_ out	of	10	outside	limits
COMME	NTS:							

3A -	WATER	VOLATILE	MATRIX	SPIKE/MATRIX	SPIKE	DUPLICATE	RECOVERY
------	-------	----------	--------	--------------	-------	-----------	----------

Lab Name: General Testing Corp. Contract: ______

Lab Code: ____ Case No.: ___ SAS No.: ___ SDG No.: ____

Matrix Spike - EPA Sample No.: R93/03637 -026

COMPOUND	SPIKE	SAMPLE	MS	MS	QC	
	ADDED	CONCENTRATION	CONCENT.	%	LIMITS	
	(ug/l)	(ug/l)	(ug/1)	REC #	REC.	
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	54.0 53.5 54.5 56.0 56.0	4.37 10.4 0 0	58.8 62.6 64.7 62.6 56.8	101 98 119 112 101	28-167 35-146 39-150 46-148 38-150	

COMPOUND	SPIKE ADDED (ug/l)	MSD CONCENT. (ug/l)	MSD % REC #	% RPD # ======	QC 1 RPD ======	LIMITS REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	54.0	58.4	100	1	30	28-167
	53.5	56.6	86	10	30	35-146
	54.5	60.8	112	6	30	39-150
	56.0	59.3	106	5	30	46-148
	56.0	52.7	94	7	30	38-150

- # Columns to be used to flag recovery and RPD values with an asterik
- * Values outside of QC limits

RPD: 0 out of 5 outside limits
Spike Recovery: 0 out of 10 outside limits

COMMENTS

page 1 of 1

A Full Service Environmental Laboratory LABORATORY REPORT

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Job No: R93/03637

Date: 4 OCT., 1993

		REFER	RENCE CHECK	 	
EPA METHOD 8010/8020	 	TRUE VALUE	% RECOVERY		ACCEPTANCE LIMITS (%)
Date Analyzed: 09/23/93	 				•••
Chloromethane		20	66		D - 193
Bromomethane	ii	20	106	11	D - 144
Vinyl Chloride	İİ	20	Į 82	H	28 - 163
Chloroethane	11	20	83	11	46 - 137
Methylene Chloride		20	86		25 - 162
Trichlorofluoromethane	ii	20	73	11	21 - 156
1,1-Dichloroethene	ΪΪ	20	88	П	28 - 167
1,1-Dichloroethane	ii	20	84	11	47 - 132
Total 1,2-Dichloroethene	ii	20	87		38 - 155
Chloroform	ii	20	88		49 - 133
1,2-Dichloroethane	ii	20	99	11	51 - 147
1,1,1-Trichloroethane	ii	20	93	11	41 - 138
Carbon Tetrachloride	11	20	89	11	43 - 143
Bromodichloromethane	ii	20	92	11	42 - 172
1,2-Dichloropropane	ii	20	94	11	44 - 156
1,3-Dichloropropene-Trans	Ϊ	20	+	- 11	22 - 178
Trichloroethene	ii	20	90	П	35 - 146
1,3-Dichloropropene(Cis)	ii	20	95	11	22 - 178
Dibromochloromethane	ii	20	98	11	24 - 191
1,1,2-Trichloroethane	ii	20	+	П	39 - 136
2-Chloroethylvinyl Ether	ii	NA	į NA	П	14 - 186
Bromoform	ii	20	87	Ш	13 - 159
1,1,2,2-Tetrachloroethane	ii	20	i +	11	8 - 184
Tetrachloroethene	ii	20	93	11	26 - 162
Chlorobenzene	ii	20	78	11	38 - 150
1,3-Dichlorobenzene	ii	20	62	11	7 - 187
1,2-Dichlorobenzene	Ϊ	20	+	П	D - 208
1,4-Dichlorobenzene	ii	20	58	11	42 - 143
Benzen e	İ	20	63	П	39 - 1 50
Toluene	ii	20	63	11	46 - 148
Ethylbenzene	П	20	60		32 - 160

A Full Service Environmental Laboratory LABORATORY REPORT

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Job No: R93/03637

Date: 7 OCT., 1993

;	11	DEFEREN	מב השבתי	11	
	 	REFEREN	CE CHECK	 	
EPA METHOD 8010/8020	11	TRUE	x		ACCEPTANCE
	ii	VALUE	RECOVERY	[]	LIMITS (%)
Date Analyzed: 09/23/93		 			
Chloromethane		20	169	II	D - 193
Bromomethane	11 4	40	114	11	D - 144
Vinyl Chloride	11 6	20	95	11	28 - 163
Chloroethane	11 1	NA	NA	11	46 - 137
Methylene Chloride	Π	20	132	11	25 - 162
Trichlorofluoromethane	11 3	20	96	11	21 - 156
1,1-Dichloroethene	11 :	20	111	11	28 - 167
1,1-Dichloroethane	11	20	114	11	47 - 132
cis-1,2-Dichloroethene	11	20	122	11	27 - 165
1,1-Dichloroethane		20	114	11	47 - 132
Chloroform	ii :	20	128	Н	49 - 133
1,2-Dichloroethane	11	20	118	11	51 - 147
1,1,1-Trichloroethane	11	20	115	П	41 - 138
Carbon Tetrachloride	11	20	117	11	43 - 143
Bromodichloromethane	ii	20	116	11	42 - 172
1,2-Dichloropropane	ii	20	118	11	44 - 156
1,3-Dichloropropene-Tran		20	128	11	22 - 178
Trichloroethene		20	118	11	35 - 146
1,3-Dichloropropene(Cis)		20	121	11	22 - 178
Dibromochloromethane		20	136	ÍÌ	24 - 191
1,1,2-Trichloroethane	• •	20	126	ΪΪ	39 - 136
2-Chloroethylvinyl Ether		NA	I NA	11	14 - 186
Bromoform		20	! 128	ii	13 - 159
1,1,2,2-Tetrachloroethane		20	136	ii	8 - 184
Tetrachloroethene	ii	20	, 1 118	ii	26 - 162
Chlorobenzene	11	20	112	ii	38 - 150
1,3-Dichlorobenzene	11	20	130	ii	7 - 187
1,2-Dichlorobenzene	11	20	118	ii	D - 208
1,4-Dichlorobenzene	11	20	118	ii	42 - 143
Benzene	11	20	100	ii	39 - 150
Toluene	11	20	105	11	46 - 148
	1 1 1 1	20	106	ii	32 - 160
Ethylbenzene Total Xylene (o,m,p)		62	1 88	ii	45 - 148

A Full Service Environmental Laboratory LABORATORY REPORT

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Job No: R93/03637

Date: 4 OCT., 1993

		REFE	RENCE CHECK	11 11	
					•••••
EPA METHOD 8010/8020	11	TRUE	%	П	ACCEPTANCE LIMITS (%)
	 	VALUE	RECOVERY	 	LIMI13 (%)
Date Analyzed: 09/24/93					
Chloromethane	11 11	20	 72	11	D - 193
Bromomethane	ii	20	110	11	D - 144
Vinyl Chloride	11	20	79	11	28 - 163
Chloroethane	ii	20	92	11	46 - 137
Methylene Chloride	ii	20	91	11	25 - 162
Trichlorofluoromethane	ii	20	76	11	21 - 156
1,1-Dichloroethene	ii	20	93	11	28 - 167
1,1-Dichloroethane	ii	20	91	11	47 - 132
Total 1,2-Dichloroethene	ii	20	95	11	38 - 155
Chloroform	ii	20	94	11	49 - 133
1,2-Dichloroethane	ii	20	107	11	51 - 147
1,1,1-Trichloroethane	ii	20	102	11	41 - 138
Carbon Tetrachloride	ii	20	98	11	43 - 143
Bromodichloromethane	ii	20	100	11	42 - 172
1,2-Dichloropropane	ii	20	100	ii	44 - 156
1,3-Dichloropropene-Trans	ij	20	+	II	22 - 178
Trichloroethene	ii	20	104	11	35 - 146
1,3-Dichloropropene(Cis)	ii	20	110	ΪÌ	22 - 178
Dibromochloromethane	ii	20	106	11	24 - 191
1,1,2-Trichloroethane	ii	20	, +	ii	39 - 136
2-Chloroethylvinyl Ether	ii	NA	i NA	ii	14 - 186
Bromoform	ii	20	91	ii	13 - 159
1,1,2,2-Tetrachloroethane	ii	20	+	ii	8 - 184
Tetrachloroethene	ii	20	1 108	ii	26 - 162
Chlorobenzene		20	97	ii	38 - 150
1,3-Dichlorobenzene	11	20	105	ii	7 - 187
1,2-Dichtorobenzene	11	20	+	ii	D - 208
1,4-Dichlorobenzene	11	20	95	ii	42 - 143
Benzene	11	20	80	ii	39 - 150
Toluene	11	20	89	11	46 - 148
	11	20	97	ii	32 - 160
Ethylbenzene Total Xylene (o,m,p)	11	60	78		45 - 148

NA - Not Added

+Coelution

FIELD DOCUMENTATION

Presented in this section is all support documentation requested.

Do	ocu	ıme	ntation Provided:
(X)	Chain of Custody Forms
()	Analytical Request Forms
()	Shipping Receipts
()	Laboratory Receipt Log
,		١	Other:

	GENERAL TEST						2/2
710 Exchange Rochester. N		ty Place sack. NJ 07601	435 Lawrence Amherst, NY			ob. No. <u>R93/3</u> Project No. <u>/</u>	<u> </u>
Collection	tion & Shipping Infor Site Keroy Websi	200 well	2				
Collector_	Street	MACKIN		State $oldsymbol{\mathcal{B}}$	nan/ Signature	Machi	
Bottles Sh	Print repared by ripped to Client via_ Shipped via	GTC	Rec'd by Seal/Ship	ping # \mathcal{B}	Signature		
,	nguished by: Nam Mach GTC	2	Received by 1. Sign for 2. Sign for 3. Sign for			14:	36
Sample(s) Rece	eived in Laboratory b Sample Location		Analyte or Group(s) Required low for additional)	Sample Pr		1 93 @ / 4 Bottle Set(s)	30
Lab# /+ OC R93 3637	Date/Time β29-SR 9/21/93/09	. 1 80	ow for additional) 010/8020 d paramete		N	(see below)	1
2 2+3 -002	B29-A	, 25 W		X	X	1,4	
3 -204	B29-IR	2 .42 W		X	K	1,4	
4 5 - 205	B25-A	05 W		X		1,4	
5 6	B25 9121193 10	,30 W		X	X	1,4	
Jse Bottle No. for	indicating type bottle	s used in each bottle	set and fill in box	with # of bottle	s used for e	each type.	
Bottle No. Bottle Type	1 2 40 ml Pint Vial Glass	3 4 Qt. 4 oz. Glass Plastic	5 6 8 oz. 16 oz. Plastic Plastic		Gal. St	9 10 teril. PI.	11
# of each	2	/			·		
Additional Analyte	S						
Shaded area for Source Codes:	or Lab use only; botto : Monitoring Well (W) : River or Stream (R)	m copy for client; m , Soil (S), Treatmen , Pond (P), Industria	t Plant (T), Drinkin	g Water (D), Lo	eachate (L), (X),	Hazardous Was	ite (H) (Y)

	710 Exchange Rochester, N		5 Trinity P	ace		435 l	_awrence	e Bell	Drive	GT	C Job. N	0/293	1363
	Sample Originat	ion & Shinnir	na Informatio	'n			ersi, in r	1422	1-7077		ent Proje	CLINO/	
		Site	CLETY /		100						· · · · · · · · · · · · · · · · · · ·		
	Address _	Street	- July	<u>بدو</u>	<u>ــــــــــــــــــــــــــــــــــــ</u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		St	ate		?	∡ ip	
	Collector_	SRI	ANN	IAC	Kin	<u> </u>					Men	Me	<u>rek</u>
	Pottles Br	Print		<u> </u>	-1		Doo'd by		Q	Sign: M	ature		
	Bottles Sh	epared by lipped to Clier Shipped via	nt via	_ <u>;</u> _	/		Rec'd by Seal/Ship	ping #	. ز ٪	9.1.1			
	Cumpico (Seal/Ship	ping #		-			
_5	Sample(s) Relin	quished by:	As .	<u> </u>			eceived by	/ :	***			Date/	
1	. Sign 5	nan-	-/1\ae			1.	Sign for					912	7/73
2	2. Sign	510				2.	Sign					1	/
	for 3. Sign						for Sign						:
	for					<u>J</u> .	for		4				:
5	Sample(s) Rece	ived in Labor	atory by			J 85/	Lig	ael	12°C	9	121.93	@/4:	<u>30</u>
	Client I.D. #	Sample	Location		Analysta	Analyte (or Required dditional)	Sa	ample Pre	p	Bott	e Set(s)	
	Lab#	Date/	Time	*	(see be	elow for a	dditional)	Y	N Y	N	(see	e below)	
1	7	B18		W	80	01980	20	X		X		4	
	-007	9/2/19.	3 1055		Fiel	D PAI	eA.			\			
2	8	B 18 -						X		X			
	-208	9/21/93	3 1059	W									
3	9	B18-		10/				X		M			
	-009	9/2/19.	3 1/20	1 7									
4	10	B26	-ZR	0/4/9	3			X		X			
	-010	9/21/93	3 1140	10							_		
5	11+QC	B26	-A 31/50	W				X		X			y jes
	-011	912119	3 1150								9		
Use	Bottle No. for in	ndicating type	bottles used	l in ea	ch bottle	e set and	fill in box	with #	of bottles	used	for each ty	/pe.	
	Bottle No.	1	2 3		4	5	6	:		8	9	10	11
E	Bottle Type		int ! Qt. ass i Glas		4 oz. Plastic	8 oz. Plastic	16 oz. Plastic			al. Pl.	Steril. Pl.		
	# of each	2	doo dia		1	1 143113							
Add	itional Analytes												
									<u> </u>				
	Shaded area for Source Codes:	Monitoring W	ell (W), Soil	(S), Tı	reatmen	t Plant (T), Drinking	Wate	r (D), Lea				
		River or Stream	am (H), Pond	1 (P), l	industria	ai Dischar	ge (I),			(X)	1		(Y).

	710 Exchange Rochester, N	e Street	85 Trir	nity Plac		435 L	awrence	e Bell Dri 14221-70	TODY R	C Job. Nent Proje	10./293	3/363
	Sample Originat	ion & Sh	innina Info	rmation			r	14221-70	باات <i>۱۱</i> ر			
	Collection Address	Site	Keroy	20	0 W	el-l-1						
	_	S	treet		A CKI	Γ		State		······································	/ _I Zip	1
	Collector_		JAへ rint	M	4 CK 11	<u>U</u>			Sign	nav ature	-1/Va	ch
	Bottles Pr			6	TC		Rec'd by		3 GY	n_		
	Bottles Sh Samples S			,			Seal/Ship Seal/Ship		J			
ļ	Sample(s) B eli n	. ,		<u></u>	•		eceived by	, <u> </u>	· · · · · · · · · · · · · · · · · · ·		Date	//Time
	1. Sign	an	Mar	Bu			Sign				9/2	1193
	2. Sign		1 —			2.	for Sign					: 30
	for 3. Sign					3	for Sign		····			:
	for						for	. ^				:
:	Sample(s) Rece	ived in La	aboratory b	у			DS 70	ladu	<u>х</u>	7/21 9	3 @14	<u>-30</u>
	Client I.D. #	Sam	ple Location	on	► Analyte	Analyte of	or Beguired	Sampl	e Prep Filtered Y N	Bott	le Set(s)	
	Lab#		ate/Time	•	(see b	pelow for a	dditional)	YN	YN	(see	e below)	
1	12	B2	6-I	R	1 8	3010/8	070	1/	11	1	4	7
•	-012	9/21	193 11	58 1	Riel	ld pa	ia		X	')	7	
	13+14	BI	9-51	2	,	1					1	3.3 3.3
2	-013		193 /3		W	1		X	X			
	-014	ļ	7-DA		1						1	33.46
3	13						~ ~	X		į		
	7015		193 14							: : :		·3
	16	Bail	er Bl	ank.				M	11			
4		9/21	er Bl 193 1	240 /	X				X	+		373.
	-016	1 0	01	,	`					<u> </u>		3030 3030 3000
5	31	Try	Blar	Ka	V			M	V			
5	-031	921	193 0	740	\wedge						/	
lea	Bottle No. for ir	dicating t	vne hottle	e used in	each hottl	le set and	fill in hov s	with # of bo	ttles used	for each to	una	
						· · · · · · · · · · · · · · · · · · ·						
	Bottle No. Bottle Type	1 40 mi	2 Pint	3 Qt.	4 4 oz.	5 8 oz.	6 16 oz.	7 Qt.	8 Gal.	9 Steril.	10	11
		Vial	Glass	Glass	Plastic	Plastic	Plastic	Pl.	Pl.	Pl.		1
	# of each	2				<u> </u>			!	! 		<u> </u>
Add	itional Analytes							· · · · · · · · · · · · · · · · · · ·				
										<u>. </u>		
	Shaded area for Source Codes:		•				•			(\ Haza	rdoue Was	ste (H)
•									Leadinate X			(Y).

		GENER.	AL TESTIN	IG CO	RPORA	NOITA	/ CHAIN-	OF-CUST	TODY RI	ECORD	j	
	10 Exchange lochester, N		•				Lawrence nerst, NY		re GT 77 Clie	C Job. N ent Proje	lo <i>/293/30</i> ct No	<u> 137</u>
S	ample Originat Collection	ion & Ship Site	pping Informa	ition	dej	70	0 <u>()</u>	ells				
	Collector_	Str	RIAN	MA	City CK1	N		State	181	un/	Mack	
	Rottles Pr	Pri epared by			. T C		Rec'd by		Sign <i>乃</i> 介介	ature	t	
	Bottles Sh	lipped to C	Client via a				Need by_ _ Seal/Ship _ Seal/Ship	ping #		(
	ample(s) Relin	duished by	V: 1\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				Received by	<i>(</i> :			Date//	
	. Sign 1/2 for	man G	TC	Vin-			1. Sign for				9123	00
2	. Sign		4.				2. Sign				/	1
3	for . Sign						for 3. Sign				:	
	for						for				:	
S	ample(s) Rece	ived in La	boratory by _				11 Bric	<u>. </u>		7/22/0		<u> </u>
	Client I.D. #	 	ole Location	4	Analyte	Analyte	e or s) Required additional)	Sample	Prep Filtered		le Set(s)	
	Lab#	Da	ate/Time	^				YN	YN	(see	e below)	
1	17	 	200-2	Α.	80	010/2	8020 para.	X	X		4	
	-017	7/22	93 045	5 10		leen	<i>posice</i> :				1	1.5.
2	18	SR 3	200-3					X	X			
_	£93/3637 -018	9127	43 050	5 N								
3	19	SR 3	200-4 193 052	 				X	X			
	K93/3637 -019	9122	193 OSS	10 VV		!						
4	20		200-1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				X				
	1693/3637 -020	9122	193 05=	30								
_	21	5R	200-1	0/1/					X		,	
5	2 (R43/3437 -021	9122	193 092	5 10		V				4		m
Use	Bottle No. for it	ndicating ty	ype bottles us	sed in ea	ich bottle	e set an	d fill in box	with # of bo	ttles used	for each t	ype.	
E	Bottle No.	1	2	3	4	5	6	7	8	9	10	11
_	ottle Type	40 ml Vial i		Ot. lass	4 oz. Plastic	8 oz. Plastic		Qt. Pl.	Gal. Pl.	Steril. Pl.		
1	# of each	2										
Addi	tional Analytes											
				-		<u> </u>						
	haded area for fource Codes:	Monitoring	Well (W), S	oil (S), T	reatmen	it Plant (T), Drinking	Water (D)	, Leachate	(L), Haza	rdous Wast	te (H),
		Hiver or S	tream (R), Po	ond (P),	Industria	al Discha	arge (I),	 	(X),		(Y).

		GENERAL TES	STING CORPOR	RATION / C	CHAIN-OI	F-CUSTO			
	Rochester, ÑY	/ 14608 Hacke	nity Place ensack, NJ 0760	1 Amhe	rst. NY 14	Bell Drive 221-7077		Job. No <u>パ</u> の Project No.	
``	Sample Originat Collection Address	ion & Shipping Info Site <u>Volca</u> Lized	ormation 1 Bldg 7 Oster A	200 w	ells				
	Collector_	Street	ZIAN MYA	HCKIN		State	n Ziai	-Ma	chi
	Bottles Sh	Print epared by_ iipped to Client via_ Shipped via	GTC V		Rec'd by Seal/Shippin Seal/Shippin	ig #	Signatur	re (
	Sample(s) Relin 1. Sign for	quistred by:	Machi	1.	ceived by: Sign for				ate//Time 177,93 3:00
	2. Sign for 3. Sign for			3.	Sign for Sign for				<u> </u>
		ived in Laboratory	by		A	2764	C41.	13 43 @	13.6.5
	Client I.D. #	Sample Locat Date/Time	ion 🖈 Analyt (see	Analyte of Group(s) below for ad	r Required Pr Iditional)	Sample Preserved Fi	ep Itered N	Bottle Set(s	
1	27 K93/3637 -022	R 200	-9 11 8	010/80 Lield p	520 /		X	1,4	
2	23 R93/3637 -023	B19-I 9122193 1	·				V		
3	24 R93/3637 -024	DR 200	7-7 340 W)		X		-
4	25 R43/3637 -025	R 200-	-8 115 W		1		V		2
5	26 R93/3637 -026	5R-200 9122193 1	-5 W)		X		
Use	Bottle No. for ir	ndicating type bottle	es used in each bot	tle set and fi	ill in box wit	h # of bottles	s used for	each type.	
	Bottle No. Bottle Type	1 2 40 ml Pint Vial Glass	3 4 Qt. 4 oz. Glass Plastic	5 8 oz. Plastic	6 16 oz. Plastic	7 Qt. (8 Gal. S	9 10 Steril. Pl.	11
	# of each	2						:	:
Add	itional Analytes								
	Source Codes:	Monitoring Well (W	om copy for client; (/), Soil (S), Treatme	ent Plant (T),	Drinking W	ater (D), Le			

		GENERAL TE	STING CORPO	RATION / (CHAIN-OF	-CUSTO	Y RECO	RD	1
	710 Exchange Rochester, NY		rinity Place kensack, NJ 076		awrence Berst, NY 142			b. No. <u>/293</u> roject No/	
,		ion & Shipping In Site <u>Ken</u>	23 11 H	200 NY	well				
	Collector_	Street 3RIP	N MACK	<u> </u>		State 2	s Mai	Mach	7
		Print epared by ipped to Client via Shipped via		S	Rec'd by leal/Shipping leal/Shipping		Signature		
	Sample(s) Rolin 1. Sign for 2. Sign for 3. Sign for	quished by: 1naM GTC	ach	1. 2. 3.	ceived by: Sign for Sign for Sign for Sign for				2/Time 72/93 3:00 /
	Client I.D. #	Sample Loca		Analyte o yte Group(s) be below for ad	Required Pre	Sample Preserved Fi		Bottle Set(s)	::::
1	Lab# 27 \$\chi^{93/3637}\$	Date/Tim B 27 9/22/93	e (see	<u> 3010/8</u>	ditional) Y 20 X avai,	NY	X	(see below)	
2	-027 28 R43/3637 -028	B27-4	7				X	1,4	
3	29 R93/3637 -029	B19-1	- W \	JOSAI	MPLE JELL	DEC	OMIM	15510 /	ED
4	30 R93/3639 -030	Egup Blo SWL Ind 9/22/93	reator X	80198 Juld ga	020 X	7	X	1,4) (2) (4) (4) (4)
5	32 R93/3637 -032	Trip Bla 912293	230 X	8010/8	OZO X	,	X		
Use	Bottle No. for in	ndicating type bott	les used in each bo	ottle set and fi	II in box with	# of bottles	used for ea	ach type.	
	Bottle No. Bottle Type	1 2 40 ml Pint Vial Glass	3 4 Qt. 4 oz Glass Plasti		6 16 oz. Plastic		8 9 Gal. Ste Pl. P	ril.	11
Add	# of each				,			!	
	Shaded area for	Lab use only; bo	ttom copy for client	; maximum of	5 samples p	er page.			

Source Codes: Monitoring Well (W), Soil (S), Treatment Plant (T), Drinking Water (D), Leachate (L), Hazardous Waste (H), River or Stream (R), Pond (P), Industrial Discharge (I), GTC DI (X), (Y).

Site Location	Xerox -	200	Job Number/	293/3637	
Well I.D.				1+QC	
PURGE INFORMATION Well Depth (ft)	30			Fug: Pump	
Static Water Level (ft)— Depth of Water Column (gal/ft)x Well Constant (gal/ft)x Volume standing in well Start of Purge: Date 9 /	/1. /8. 3.0	35 .99 .16 		I <u>BG</u> Zone <u>BG</u>	2
Purge Observations Clear		111110 <u> </u>			
Total Volume Purged 3.0	-			ngs Purged /V - dry	
Sample Date: 9/21/93 Sample Appearance: Cle Recharge Time /2 min	Time: <u>0</u>		Sample Depth:	19.23	f
FIELD MEASUREMENTS			Re	eplicates	
Meter Number	Parameter	Unit Stnd.	1	2	
Beckman	рН	stnd	8.07	8.07	
Bechman Cole Rumer Beshman	Spec. Cond.	umhos/cm	500	510	
Beshman	Temp	°Celsius	12.7	12.7	
				S.C. 1413 set 140	0
Meter Calibration: Date/Time	9 121 1	<u> </u>	09:00	7,00 set 7,01 - 10.00 set 10.03	
Weather 48 Hour History P. Sun	my 60%	both de	rys	4.00 reads 4.05	
FIELD OBSERVATIONS: Weath Surface seal cra	er P. Sunne iched, o	thewise i	ght win	do condition	
I certify that sampling procedures Sampler (Print) BNAN Date: 9 / 2-1 / 93	MACKIN	<u> </u>	EPA, state and con	rporate protocols.	

Site Location	Xerox -	200	Job Number <u></u>	93/3637	
Well I.D.					
PURGE INFORMATION			Purge Method	ag Pamp	
Well Depth (ft)	2.	2.78		,	
Static Water Level (ft)—			LINU I MARAGO DAGAGO		
Depth of Water Column (gal/ft)x	12.	67	HNU Meter Readir Well Head_		
Well Constant (gal/ft)x		.16		one BG	
Volume standing in well					
Start of Purge: Date 9 /			: <u>04</u> End	Purge <u>09</u> :_	05
Purge Observations C ec	\ +				
Total Volume Purged 2.0	_gallons		# of Volume Casing	gs Purged <u>IV - d</u>	r y
CAMPI INC INCODMATION	Commis M	- Alband - 7 (* .	6. 1. 1		,
Sample Date: 7 / 21 / 73					
Sample Date: 7/21/73	2 - 1111e. <u>U</u>	<u> </u>	Sample Depth	10.70	
Recharge Time 20 N	_	Poto	M		
necharge fille 2070	necharge	nate			
FIELD MEASUREMENTS			Rep	licates	
Meter Number	Parameter	Unit Stnd.	1	2	
Beckman Colo Parasa	рН	stnd	8,53	8,57	
Cole Paymer	Spec. Cond.	umhos/cm	530	520	
Bechman	Temp	°Celsius	13.6	13.6	
Crew Members BT, BM	RU.CC				
Meter Calibration: Date/Time	-	93 (09:00		
Weather 48 Hour History P.					
	O		•		
FIELD OBSERVATIONS: Wea	ather <i>P. Sun</i>	ny 63°F	light 4	unds.	
FIELD OBSERVATIONS: West Surface seal c	racked, a	therivis	e in go	od condi	tion
			<i>U</i>		
I certify that sampling procedure		1	e EPA, state and corp	orate protocols.	
Sampler (Print) BRIAN)	MACKI	V	··		
Date: 9 / 21 / 95	3 Signature &	San M	achin		

Site Location	Xerox-	200	Job Number R	13/3637	
Well I.D.	B29-	I R	Lab Number		
PURGE INFORMATION Well Depth (ft)	<i>\$</i> 0	24	Purge Method F	bailer	
Static Water Level (ft)—					
Depth of Water Column (gal/ft)x			HNU Meter Readin Well Head_	~ _	
Well Constant (gal/ft)x				one_BG	
Volume standing in well			2 3		
Start of Purge: Date 9 / :			05 End	Purge 09:25	-
Purge Observations Rus					
Total Volume Purged 9 g			# of Volume Casing	gs Purged <u>1,5 tode</u>	4
SAMPLING INFORMATION Sample Date: 7/21/93 Sample Appearance: Turb Recharge Time 17min	Time: 0	9:42 t brown		43.20	ft
FIELD MEASUREMENTS			Rep	licates	
Meter Number	Parameter	Unit Stnd.	1	2	
Bechman	рН	stnd	8.99	9.00	
Cole Painer	Spec. Cond.	umhos/cm	1050	1040	
Bechman	Temp	°Celsius	12,3	12.3	
Crew Members BT, CC, B Meter Calibration: Date/Time Weather 48 Hour History Pr Cle	9 1 21 1		9:00 days		
FIELD OBSERVATIONS: Weather	er				
Sinface seal or	ached, o	thouse i	n good c	ondition	
I certify that sampling procedures v		k.	EPA, state and corp	orate protocols.	
Sampler (Print) BRIAN)	• •				
Date: 9 / 2/ / 93	Signature	Fran Ma	chin		

Site Location	Xerox-2	00	Job Number <u>R9</u>	3/3637	
Well I.D.	B25-A		Lab Number	5	
PURGE INFORMATION	<i>19</i> 4		Purge Method F	ugi Pump	
Well Depth (ft)					
Static Water Level (ft)—			HNU Meter Reading		
Depth of Water Column (gal/ft)x_			Well Head		
Well Constant (gal/ft)x			Breathing Zo	ne	
Volume standing in well	<u>ر ک</u>	gallons		n 19 4	<u>ر</u>
Start of Purge: Date 9 / Purge Observations Ta			<u>45</u> End	Purge)
Total Volume Purged 4		www.	# of Volume Casing	s Purged 1,2 400	try
Total Folding Falged 1		.,		. J <u> </u>	0
SAMPLING INFORMATION	Sample Me	ethod $2''$ τe	eflow bailer		
Sample Date: 9 / 21 / 93			Sample Depth:	26,35	fi
Sample Appearance: Turb	ed, rust.	brown ten	it		
Recharge Time 17mi	,	Rate 5			
FIELD MEASUREMENTS	D	11-i 01-d		cates	
Meter Number	Parameter	Unit Stnd.	1	2	
Beckman	рН	stnd	9.37	9.38	
Cole Parmi c	Spec. Cond.	umhos/cm	370	370	
Sechman	Temp	°Celsius	15.5	15.5	
Crew Members BJM CC	RTRIN				
Meter Calibration: Date/Time	_		19.00		
Weather 48 Hour History P. C					
	•		•		
FIELD OBSERVATIONS: Wea	ther P. Clor	rdy 65°	Flight	NEwinds	
FIELD OBSERVATIONS: Wea	led, lock	edard ha	sagood	seal	
I certify that sampling procedure	\	1	EPA, state and corpo	orate protocols.	
Sampler (Print) BRIAN	MACKIN	<u> </u>			
Date: 9 / 21 / 93	S Signature	nan Ma	ich		

Site Location	Xerox-	200	Job Number <u>R</u> 9	3/3637
Well I.D.	B-25		Lab Number	6
PURGE INFORMATION			Purge MethodF_	ugi Pump/Bailer
Well Depth (ft)				
Static Water Level (ft)—			HNU Meter Readin	g
Depth of Water Column (gal/ft)x			Well Head_	_
Well Constant (gal/ft)x	. 6	<u> </u>	Breathing Zo	one_ <u>B6</u>
Volume standing in well			_	س و: ۵.
Start of Purge: Date 9 /			_50 End	Purge 10:15
Purge Observations Turbi	a, brown	tent		
Total Volume Purged 30	gallons		# of Volume Casing	gs Purged 1.3 to dry
SAMPLING INFORMATION	Sample Me	ethod Z" te	flow bail	e.r
Sample Date: 9 / 21/ 93	Time: /	0:30	Sample Depth:	29,89
Sample Appearance: Turb				
Recharge Time /5 min	•			
			_	
FIELD MEASUREMENTS				licates 2
Meter Number	Parameter	Unit Stnd.	1	
Beckman	рН	stnd	8.17	8.19
Cole Parmer	Spec. Cond.	umhos/cm	1150	1170
Beckman	Temp	°Celsius	14.1	14.1
Crew Members <u></u> 尺 5 4 , <i>BT</i> ,	BJM, CC			
Meter Calibration: Date/Time		93 (9 : 00	
Weather 48 Hour History P. S				
FIELD OBSERVATIONS: Weat	her P. Sun	my 65°F	light !	VE winds
Well is labell	ed, locke	dand ho	15 a 5000	1 seal
	, 			
I certify that sampling procedures		e with all apllicable	EPA, state and corp	porate protocols.
Sampler (Print) BRIAN	MACKIN			
Date: 9 / 21 / 93	Signature	Bran M	Jackin	

Site Location	Xerox-2	<u>0</u> 3	Job Number <u></u> <i>尺93)</i>	3637	
Well I.D.	B18-A		Lab Number		
PURGE INFORMATION			Purge Method Fu	g; Pump	
Well Depth (ft)		.80			
Static Water Level (ft)—	6	.07	HNU Meter Reading		
Depth of Water Column (gal/ft)x	10	0.73	Well Head	36	
Well Constant (gal/ft)x		04_	Breathing Zone	e_ <i>BG</i>	
Volume standing in well	O.	<u>43 g</u> allons			
Start of Purge: Date 9	21 / 93	Time 0	HO End Pu	urge <u>/0 42</u>	
Purge Observations Tu	bid , black	h fent			
Total Volume Purged /	_gallons		# of Volume Casings	Purged 2 todry	
SAMPLING INFORMATION	Samnla M	lethod Tallar	Bailer		
Sample Date: 7 / 21 / 7	3 Time: /	0 55	Sample Depth:	8.58	ft
Sample Appearance: Twu	Ind black	1 t			
Recharge Time			M		
Treenarge Time					
FIELD MEASUREMENTS			Replica	ates	
Meter Number	Parameter	Unit Stnd.	1	2	
Beekman	рН	stnd	8.32	8.31	
Cole Painer	Spec. Cond.	umhos/cm	2100	2090	
Rechman	Temp	°Celsius	19.0	19.0	
AT AL	1 CC DA				
Crew Members RT, BJ		97	19:00		
Meter Calibration: Date/Time			dans		
Weather 48 Hour History P.)				
FIELD OBSERVATIONS: We	ather P. Clou	dy, 65°F			
Well labelled	and locked	1, but no u	isable seal		
I certify that sampling procedur	es were in accordance	ce with all apllicable	EPA, state and corpor	ate protocols.	
Sampler (Print) BRIAN	MACKIN				
	Signature	Bran Mo	sh:		

Site Location	Xerox-	200	Job Number <u>R</u> 9	3/3637	
Well I.D.	B-18-9	SR	Lab Number		
PURGE INFORMATION			Purge Method Fo	us: Pump	
Well Depth (ft)	/ 7.	45			
Static Water Level (ft)—	6.	12	HNU Meter Reading	3	
Depth of Water Column (gal/ft)x	13.	33	Well Head	BG	
Well Constant (gal/ft)x		16	Breathing Zo	ne_BG_	
Volume standing in well	2.	13_gallons			_
Start of Purge: Date 9/	21193	Time:	45 End F	Purge 10:48	<u> </u>
Purge Observations Rust	tan fint				
Total Volume Purged 6.5	•		# of Volume Casings	s Purged 3	
SAMPLING INFORMATION	Sample M	ethod $2'' + 6$	eflon bailer		
Sample Date: 7 / 21 / 73	· Time: I	0:59	Sample Depth:	12.01	ft
Sample Appearance:					
Recharge Time // min	Recharge	Rate F			
FIELD MEASUREMENTS			Repli	cates	
Meter Number	Parameter	Unit Stnd.	1	2	
Beckman	рН	stnd	7.87	7.86	
Cole Paymen	Spec. Cond.	umhos/cm	1400	1400	
Bechman	Temp	°Celsius	16.8	16.8	
Complement Office CC	OTI OT				
Crew Members SJM CC Meter Calibration: Date/Time		93 (9:00		
Weather 48 Hour History P. C.	60°	F Art 1 a		-	
	•		•		
FIELD OBSERVATIONS: We	ather <i>P. Cloud</i>	ly, 65°F	light 1	18 winds	· · · · · · · · · · · · · · · · · · ·
Well labelled	landlocke	d with qu	oodseal	7.	
	·				
I certify that sampling procedur	es were in accordanc	ce with all apllicable	EPA, state and corpo	orate protocols.	
Sampler (Print) BRIAN					·
		2.	$M \cap$		
Date: 9 / 21 / 9.	Signature	Duan	11 pcker		

Site Location	Xerox- Z	200	Job Number <u></u> R9.	3/ 3637	
	518-IR		Lab Number	9	
PURGE INFORMATION			Purge Method <u>Fu</u>	gi Punp	
Well Depth (ft)	40	. 42			
Static Water Level (ft)—	8.	71	HNU Meter Reading		
Depth of Water Column (gal/ft)x_	31.	71	Well Head	_	
Well Constant (gal/ft)x		65	Breathing Zor	ne <u>B_G</u>	
Volume standing in well	20.	61 gallons			~
Start of Purge: Date 9 /	21193	Time /0 :	55 End F	Purge//_: <i>O</i>	<u>8</u>
Purge Observations Turbo	id fan of	nt			
Total Volume Purged 2/	_gallons		# of Volume Casings	Purged / 40 (dry
SAMPLING INFORMATION	Sample M	ethod Z' re	flon beiler		
Sample Date: 9 / 21 / 9 3	Time: /	/ 20	Sample Depth:	40.21	ft
Sample Appearance: Tm	bid brown	n tint			
Recharge Time 12 m					
<u> </u>					
FIELD MEASUREMENTS	_		Replic	_	
Meter Number	Parameter	Unit Stnd.	1	2	
Beckman	рН	stnd	9.10	9,13	
Cole Parmer	Spec. Cond.	umhos/cm	940	940	
Beckman	Temp	°Celsius	14.6	14.6	
Crew Members BT RJU	CC BJM				
,	91211	93	09:00		
Weather 48 Hour History	Sunny 60	of both	days		
	0.64	1 1 -0-		. 1	
FIELD OBSERVATIONS: Wes	ather P. Cloud	Ly 65 7, 2	slight NE	wind	
vell labelled a	na locked	w. +h 500a	sear		
I certify that sampling procedure	es were in accordance	e with all apllicable	EPA, state and corpo	rate protocols.	
Sampler (Print) BRIAN	MACKIN	1			
	•	0.0	n/ / .		
Date: 9 / 21 / 9	<u>ろ</u> Signature	Wan 1	Vachen		

Site Location	Xerox-Z	00	Job Number <u>R</u> 3	3/363/	
Well I.D.	B 26-SR		Lab Number	1 1 1	
PURGE INFORMATION			Purge Method Fu	gi Pump	
Well Depth (ft)	2.0	0.20		5	
Static Water Level (ft)—		.30	HNU Meter Reading	-	
Depth of Water Column (gal/ft)x_			Well Head	_	
Well Constant (gal/ft)x				one BG	
Volume standing in well					
Start of Purge: Date 9 /	21 / 93	Time //_:	20 End	Purge!:	22
Purge Observations Tube					
Total Volume Purged 2.2			# of Volume Casing	s Purged / to	dry
<u> </u>		- <i>(</i> '			0
SAMPLING INFORMATION		ethod 2" te			
Sample Date: 9 / 21 / 73			Sample Depth:	7.12	
Sample Appearance: Tmb	d, tan te	nt	1		
Recharge Time 18 min	<u> </u>	Rate/	7		
FIELD MEACUDEMENTS			Rani	icates	
FIELD MEASUREMENTS Meter Number	Parameter	Unit Stnd.	1	2	
3.1	pН	stnd	7.88	7,9/	
Cole Parmer	Spec. Cond.	umhos/cm	1800	1790	
Cole laimer			.0.	.6. 2	
Berman	Temp	°Celsius	19,0	19,0 5TD 1413 set 1	
DIN CC	074 07		5, C.	1413 set /	410
Crew Members BJM, CC, A	234,131	93	11: 20 pt	7.00 set 7	2.01
Meter Calibration: Date/Time	- / / / /			10,00 set 10 400 set 4	05 05
Weather 48 Hour History	Junny Col) F soin	aays	700320 7	
FIELD OBSERVATIONS: Wear	her P. Clon	dy 65°F	light 1	Ewinds	
Well labelled or	of locked w	ith a acc	nd seal		
7,000	70 (72 (72 (72 (72 (72 (72 (72 (72 (72 (72				
I certify that sampling procedures	s were in accordance	ce with all apllicable	EPA, state and corp	orate protocols.	
Sampler (Print) BRIAN	MACKIN				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	. 1 0 .		
Date: 9/21/93	Signature	Dran	Nack-		

Site Location	Xerox - Zo	09	Job Number 129	
Well I.D.	B26-A		Lab Number	11 + QC
PURGE INFORMATION			Purge Method Fu	igi Pump
Well Depth (ft)	16.	72		,
Static Water Level (ft)—			LINE LAAster Dooding	
Depth of Water Column (gal/ft)x			HNU Meter Reading Well Head	_
Well Constant (gal/ft)x			Breathing Zor	_
Volume standing in well	1.9	5gallons		
Start of Purge: Date 7 /	21 / 93	Time	: 25 End F	Purge 11: 28
Purge Observations Tul		•		
Total Volume Purged 2	1		# of Volume Casings	Purged 1 to day
		T.10		0
SAMPLING INFORMATION	Sample Me	ethod 1990	on bailer	<u> </u>
Sample Date: 9/21/93		<u> </u>	Sample Depth:	1, 6 1
Sample Appearance:		4.4		
Recharge Time 22 m		Rate /		
FIELD MEASUREMENTS			Repli	cates
Meter Number	Parameter	Unit Stnd.	1	2
Bechman	рН	stnd	7.73	7,75
Cole Paimer	Spec. Cond.	umhos/cm	2200	2210
Bechman	Temp	°Celsius	18,7	18.7
Crew Members BJM, BT,	RJU,CC			
Meter Calibration: Date/Time	912119	<u> </u>	11: 20	
Weather 48 Hour History P. Ş	unny loc	F bot	L days	
	~		•	15
FIELD OBSERVATIONS: Weat	her / Clore	dy 600 F	- sign /	or writes
Well Jabelled	and locked	d, but no	V, 54018 50	201
				A
I certify that sampling procedures	`		EPA, state and corpo	prate protocols.
Sampler (Print) 3N/A	NMAG	KIN	1	
Date: 9 / 21 / 9	3 Signature_	Buar	Mack	

Site Location	Xerox-2	.0	Job Number	293/3637	
Well I.D.	B26-I1	3	Lab Number	12	
PURGE INFORMATION			Purge Method <u>F</u>	ug: Pump/SS.	bailer
Well Depth (ft)	40	. 20		·	
Static Water Level (ft)—			HNU Meter Read	ling	
Depth of Water Column (gal/ft)x_			Well Head	BG	
Well Constant (gal/ft)x		.16	Breathing	Zone_BG_	
Volume standing in well	<u> </u>				
Start of Purge: Date 9/	21/92	Time	30 Er	nd Purge // : 2	15
Purge Observations Clean	<u> </u>				
Total Volume Purged 6	_gallons		# of Volume Casi	ngs Purged 1 to d	1
SAMPLING INFORMATION	Sample M	ethod Tella	- Bailer	·	
Sample Date: 9 / 21 / 93	Time:	1 58	Sample Depth:_	36.27	ft
Sample Appearance: Trub					
Recharge Time 13 n	n Recharge	Rate	1		
FIELD MEASUREMENTS Meter Number	Parameter	Unit Stnd.	1 1	eplicates 2	
Meter Number			9,11	9,1/	
Beckman	pН	stnd	7,77	1, 7,	
Cole Painer	Spec. Cond.	umhos/cm	1230	1250	
Beckman	Temp	°Celsius	14.2	14.2	
Crew Members BJM, CC	RINBT				
Meter Calibration: Date/Time	9/2//		11:20		
Weather 48 Hour History P.	Summy (OF box	the day	1	
,	00 1				
FIELD OBSERVATIONS: Wes	ather Cloud,	J. 65%	light 1	It winas	
Well labelled	and locked	, but no	visable s	261	
I certify that sampling procedure			EPA, state and co	orporate protocols.	
Sampler (Print) BRIAA) MAUKIA	J			
Date: 9/2//	Signature	Bran	Macke		

Site Location Volox Blog 200 wells	Job Number R93/3637
Site Location Lerox Blog 200 wells Well I.D. B 19-5R	Job Number <u> </u>
PURGE INFORMATION	Purge Method Fugi Pump
Well Depth (ft) 20,20	
Static Water Level (ft)—	HNU Meter Reading
Depth of Water Column (gal/ft)x 8.57	Well Head 3 G
Well Constant (gal/ft)x	Breathing Zone
Volume standing in wellgallons	
Start of Purge: Date $\frac{9}{21}$ $\frac{21}{93}$ Time $\frac{12}{2}$	$\frac{45}{45}$ End Purge $\frac{12}{52}$
Purge Observations Turbed brown	
Total Volume Purged 4.5 gallons	# of Volume Casings Purged
SAMPLING INFORMATION Sample Method Tell	on Bailer
Sample Date: 9/21/93 Time: 13: 22	Sample Depth:ft
Sample Appearance: Turbid tan	_
Recharge Time 30 minutes Recharge Rate	
FIELD MEASUREMENTS	#13 Replicates #14
Meter Number Parameter Unit Stnd.	1 2
Bechman pH stnd	7.89
Cole Parmer Spec. Cond. umhos/cm	1540 1550 1560 1550
0 1)	17.1 17.1
Bloman Temp °Celsius	j7, 17,
Crew Members BJM, CC, RJ4, BT	
Meter Calibration: Date/Time 9 / 21 / 93	13:00 7,00set 7.01
Weather 48 Hour History P. Clondy 60°F bot	Ldays
FIELD OBSERVATIONS: Weather Plondy, 60°F	NEwinds 5-10
Well in good condition	
I certify that sampling procedures were in accordance with all apllicable	e EPA, state and corporate protocols.
Sampler (Print) BRIAN MACKIN	
Date: 9 / 21 / 93 Signature Bran	Machi

Site Location &	LOU 20	o well	٧	_Job Number <i>K</i>	93/3637
Well I.D.	B	-19 D	アス	_Lab Number	/5
PURGE INFORMATION	N	, ,	. 7.	Purge Method_F	igi Pump/55 baile
Well Depth (ft)			2. <u>30</u>		
Static Water Level (ft)—		· · · · · · · · · · · · · · · · · · ·	.93	HNU Meter Readir	ng
Depth of Water Column	(gal/ft)x	<u>47.</u>	37	Well Head_	BG-
Well Constant (gal/ft)x_		0,1	$\omega_{}$	Breathing Z	one_136
Volume standing in well		7.6	gallons		- ,
Start of Purge: Date_	9/-	21/93	Time13	: 05 End	Purge /3:45
Purge Observations			<u>t</u>		
Total Volume Purged		llons		# of Volume Casin	gs Purged 1.3 todry
SAMPLING INFORMAT	TION .	Sample M	Method Teff	an bailer	<u> </u>
Sample Date: 9/2	1 / 93	Time:	14.00	Sample Depth:	54.8/ ft
Sample Appearance:	· · · · · · · · · · · · · · · · · · ·	Ruci-	TA 77)	1610	
Recharge Time					
necharge fille	, 0 F	110011419			
FIELD MEASUREMEN	TS			Rep	olicates
Meter N	umber	Parameter	Unit Stnd.	1	2
Bechn	an	рН	stnd	8,52	8.50
Cole Pa	imez	Spec. Cond.	umhos/cm	4820	4850
Bechn	rar	Temp	°Celsius	13,5	13.6
Crew Members <i>BT</i> _	MBT.C	C,RJh			
Meter Calibration: Da	te/Time 9	1/12/1	93	13:00	-
	$\rho \subset$	/	OF bot	the days	
77041101 1011041 1 11011	770-	J			5-10 mph
FIELD OBSERVATION	NS: Weathe	er Cloud	4,60°F	NE wind	5-10 mph
Surface	seal	reedo	repair		
I certify that sampling p	procedures w	vere in accordar	nce with all apllicabl	e EPA, state and cor	porate protocols.
Sampler (Print)	ZIAN	MACKIN			
Date: 9 / 21		Signature_	\circ	Mackin	

		0000		1797	3/3637	
Site Location	Keiox 21 Bailer 1	20 le		Job Number <u>1293</u>		
Well I.D.	Darler 1	blank		Lab Number	10	
PURGE INFORI	MATION			Purge Method		
Well Depth (ft)		·			,	
Static Water Lev	el (ft)			HNU Meter Reading		
Depth of Water C	Column (gal/ft)x	/		Well Head		
Well Constant (g	jal/ft)x			Breathing Zer	/ ne	
Volume standing	j in well		gallons			
Start of Purge:	Date/	/	Time:	End P	'urge::	
	ons					
Total Volume Pu	ırgedg	jallons		# of Volume Casings	Purged	
			C 1	2 -		
SAMPLING INF		Sample Me	ethod Graf			
	9/21/93		<u> </u>	Sample Depth:		^{ft}
	ance: <u>Cle</u>					
Recharge Time		Recharge	Rate			
FIELD MEASUF	REMENTS			Replic	cates	
	Meter Number	Parameter	Unit Stnd.	1	2	
F	Becoman	рН	stnd	8.91	8,90	
	of Premia	Spec. Cond.	umhos/cm	10	10	
	R. A.	Temp	°Celsius	21,2	717	
	Herman	remp	Ceisius	4116	21,0	
Crew Members	RT RIN	RTU CC				
Meter Calibration	BT, BJM	9,21,	93 1	3:00		
	ur History P.	Stama.	60°F 1	Poth da	us	
		9				
FIELD OBSERV	VATIONS: Weath	ner Cloudi	1 60°F,	light NE	winds	.
<u> </u>	22 //	/ /		7	- 21.	4.00
Darker darker	blank	Japin 1	by pou	ring D	Rottelse	7
	/ /				rate protocols	·
	BHAN	MACKIA	1	EPA, state and corpo	rato protocolo.	
Sampier (Print)	DIMAIN		\bigcirc			
Date: 9	27	Signature/	··			

Site Location XENO Well I.D.	x BLDG J	00	Job Number	R93/3637
Well I.D.	512 200.	- ナ	Lab Number	1/7
PURGE INFORMATION Well Depth (ft)				TAINLESS STEEL BAILER
Static Water Level (ft)— Depth of Water Column (gal/ft)x_ Well Constant (gal/ft)x		13	HNU Meter Readin Well Head_ Breathing Z	_
Volume standing in well Start of Purge: Date 9 / Purge Observations Russ	J2 193 T TINT A	<u>76 g</u> allons Time4 : 116HLY7	35 End	i Purge 4:45
Total Volume Purged 3	gallons		# of Volume Casin	gs Purged 3 7° C
Sample Date: 9 122 193 Sample Appearance: Must	TINT	MODERATI	Sample Depth:	18.84
FIELD MEASUREMENTS				olicates 2
Meter Number	Parameter pH	Unit Stnd.	731	7.33
BECKMAN D	•		0	
Core Brimer Beckman	Temp	°Celsius	21.5	21.6
Crew Members <u>CC</u> <u>B7</u> Meter Calibration: Date/Time _ Weather 48 Hour History <u>60</u>	9 122 1 OF CLEAM			
FIELD OBSERVATIONS: Wes	SEALED	P. CLOUDY	- WELL AND IN	INSIDE FOOD CONDIT
I certify that sampling procedure Sampler (Print)		ce with all apllicable	EPA, state and cor	porate protocols.
Date: 9 1 22 1 93		Chlich		

Site Location	XEROX	BLDG :	-	Job Number	P93/3637	
Well I.D.	5	R 200-	.3	_Lab Number	18	
PURGE INFORMA				Purge Method	<u></u>	
Well Depth (ft)						
Static Water Level	(ft)—			HNU Meter Read	ing X	
Depth of Water Co	lumn (gal/ft)x			Well Head		
Well Constant (gal/	'ft)x			Breathing/	Zone	
Volume standing in	well	\bigwedge	gallons	,		
Start of Purge: D	ate/		Time	:En	d Purge:	
Purge Observation	s		<u> </u>			
Total Volume Purg	ed <u> </u>	allons		# of Volume Casin	ngs Purged	
SAMPLING INFOR	RMATION	Sample M	ethod TEX	ZON BAI	-EA	
				Sample Depth:		f
Sample Appearance	e. Rust	TINT ,	MODERA	Try TURB	1)	
Recharge Time						
necharge fille						
FIELD MEASURE	MENTS			Re	plicates	
Me	ter Number	Parameter	Unit Stnd.	1	2	
Ba	CKMAN	рН	stnd	7.92		
Cou	ERAMER KMAN	Spec. Cond.	umhos/cm	960	940	
BEC	KMAN	Temp	°Celsius	20.1	20.1	
Crew Members	CC, BT			•		
Motor Calibration	n: Date/Time	9,22,	93	4:50 CLEAR		
Weether 49 Hour	History 6501	CLEAR	- 60°/	E CLEAR	_	
FIELD OBSERVA	TIONS: Weath	er WELL	INSIDE	55°F C	LEAR LY RUNNING	
WELL C	ONNECTE	D 70 VI	ESQ AND	CURRENT	LY RUNNING	
						
I certify that samp	oling progedures	were in accopplane	ce with all apllicabl	le EPA, state and co	rporate protocols.	
Sampler (Print)	Chou's	Condes		A		
	22,93		alla			
Date: 7 /	170	Signature	my			

Site Location XENOX BLDG. 300 Well I.D. SR 300-4	Job Number 1293/3637
Well ID SR 200-4	Lab Number
PURGE INFORMATION Well Depth (ft) 23. 21	Purge Method TETLON BAILER
Static Water Level (ft)— 14.65	HNU Meter Reading
Depth of Water Column (gal/ft)x 8.56	
Well Constant (gal/ft)x	Well Head
Volume standing in well /, 5 / gallo	ns —
Start of Purge: Date 7 1 22 1 93 Time Purge Observations RUST TINT, MOD	5:12 End Purge 5:17
Purge Observations RUST TINT, MOD	ERATELY TURBID
Total Volume Purged 2.7 gallons	# of Volume Casings Purged 2 78 DRY
SAMPLING INFORMATION Sample Method	EFLON BAILER
Sample Date: $9/29/93$ Time: $5:20$	Sample Depth:ft.
Sample Appearance: (LIGHT RUST TINT	
Sample Appearance: SLIGHT RUST TINT Recharge Time 3 MINS Recharge Rate /	M
FIELD MEASUREMENTS	Replicates 2
Meter Number Parameter Unit St	
BECKMAN PH STOO	
Cole Parmer Spec. Cond. umhos BECKM AND Temp °Cels	
BECKMAN Temp °Cels	us 18.5 18.6
Crew Members CC, BT	
Meter Calibration: Date/Time 9 1 22 1 93 Weather 48 Hour History 60°F CLEAR 6	4:30
Weather 48 Hour History 60°F CLEAR 6	50F CLEAR
FIELD OBSERVATIONS: Weather 55°F CLEAR WELL CONNECTED TO VES BO	- WELL INSTUE
WELL CONNECTED TO VES BO	T NOT CURRENTLY ICUNING
WELL PURGED PRIOR TO SA.	MPLINE
I certify that sampling procedures were in accordance with all ap	llicable EPA, state and corporate protocols.
Sampler (Print) Chris Condes	
Date: 9 1 22 1 93 Signature Clll	d

Site Location XETLOX	BLDG 200	<i></i> .	Job Number	93/3637	
Well I.D.	R 200-1		Lab Number	20	
PURGE INFORMATION	,		Purge Method		
Well Depth (ft)			\times	<i>/</i>	
Static Water Level (ft)—			HNU Meter Reading	3	
Depth of Water Column (gal/tt)x_			Well Head Breaming Zo	ne	
Well Constant (gal/ft)x Volume standing in well		gallons	21007.m.ig 20		
Start of Purge: Date /			/ End !	Purge::	
Purge Observations			,		
Total Volume Purged	gallons		# of Volume Casing	s Purged	
Total Volume Furgeu	\		-		
SAMPLING INFORMATION			N BAILER		
Sample Date: 9/22/93	Time:	5 30	Sample Depth:		ft
Sample Appearance: \(\mathcal{L} \tau \)	IST TINT	MODER	ATELY TI	1/281D	
Recharge Time	Recharge	Rate			
TITLD MEAGUREMENTS			Rani	icates	
FIELD MEASUREMENTS Meter Number	Parameter	Unit Stnd.	1	2	
BECHMAN	рН	stnd	8.28	8.23	
	Spec. Cond.	umhos/cm	920		
COLE PARMER BECKMAN	Temp	°Celsius	20.8	20.8	
CC R	_				
Meter Calibration: Date/Time	9,22,19	7.7	4 : 50		
Meter Campration. Date/Time_	F CLEAR	65°F	CLEAR		
Weather 46 Hour History 60		/ <u>V · / </u>			
FIELD OBSERVATIONS: Wes	ather 55°F	CLEAR, 1	WELL INS.	i u E	
WELL CONNECT	ED TO VE	J AND	CURRENTL	Y ZUNNING	
I certify that sampling procedure	es were in accordance	ce with all apllicable	EPA, state and corp	orate protocols.	
Sampler (Print)	s Condes		<i>1</i>		
Date: 9 1 22 1 9	3 Signature_	Chllu	· · · · · · · · · · · · · · · · · · ·		

Site Location	Xerox		Job Number <i>R93/3637</i>		
Well I.D.		- 10	Lab Number	21	
PURGE INFORMATION			Purge Method <u>Fu</u>	•	
Well Depth (ft)	14.	50		•	
Static Water Level (ft)—			HNU Meter Readin	a	
Depth of Water Column (gal/ft)x_			Well Head_		
Well Constant (gal/ft)x		16	Breathing Zo	one_BG	
Volume standing in well	<i>1</i> . S	gallons			
Start of Purge: Date 7 /	22193	Time 08	_50 End	Purge <i>O</i> & :_	55
Purge Observations Tu		<u>~</u>			
Total Volume Purged 4,5	gallons		# of Volume Casing	gs Purged 3	
Sample Date: 9/22/93 Sample Appearance: Twb	Time: 0	9 25		9.11	ft.
Recharge Time	Recharge	Rate			
FIELD MEASUREMENTS Meter Number	Parameter	Unit Stnd.		licates 2	
Bechman	pH	stnd	7.39	7.41	
Cole Parmer	Spec. Cond.	umhos/cm	1540	1520	
Beck	Temp	°Celsius	20.2	20.2	
Jourgnan				S.C. 1413	set 1410
Crew Members BJM, BT	CC, RJU				
Meter Calibration: Date/Time Weather 48 Hour History	9/22/		99:00 Ldays	7.00 set 10.00 set 4.00 reac	1,003
FIELD OBSERVATIONS: Wea	ther Sunny	with a g	ood seal		
				porato protocolo	
I certify that sampling procedure		e with all apllicable	EPA, state and corp	orate protocols.	
Sampler (Print) BRIAN		0	. / '		
Date: 9,22,93	Signature	Duan 1	Jack		

Site Location	Xerox		_Job Number $_$ $\mathrel{\mathcal{R}}$	93/3637	
Well I.D.	R-200-	7	_Lab Number	22	
PURGE INFORMATION			Purge Method Fo	ig: Pump/SS.	baile
Well Depth (ft)	39	.35		3 '/	
Static Water Level (ft)—	-		LINDAA A. Dandin	_	
Depth of Water Column (gal/ft)x			HNU Meter Readin Well Head_		
Well Constant (gal/ft)x			Breathing Zo	~ -	
Volume standing in well					
Start of Purge: Date			: 00 End	Purge 09: 6	25_
Purge Observations Time	bed brown	strong	odor		
Total Volume Purged 23		, ,	# of Volume Casing	s Purged <u>/ to d</u>	M
		21			0
SAMPLING INFORMATION			eflor baile		
Sample Date: 9 / 22 / 73		1 • 1		31,21	ft
Sample Appearance: Tud					
Recharge Time 15 m	Recharge	Rate			
FIELD MEASUREMENTS			Renl	icates	
Meter Number	Parameter	Unit Stnd.	1	2	
Bechman	рН	stnd	9,35	9,38	
ColePainer	Spec. Cond.	umhos/cm	2730	2740	
Beclman	Temp	°Celsius	14.8	,	
Crew Members <u>BJM</u> , RJ	U. RT CC				
Meter Calibration: Date/Time		93	09:00		
Weather 48 Hour History P.	Clouds 1	OF Rot	days		
FIELD OBSERVATIONS: Wea	other Sunny	, 65°F, J	light wind	12	
Well labelled	land lock	ed with a	good sea	(
					<u> </u>
I certify that sampling procedure	s were in accordanc	e with all apllicable	EPA, state and corpo	orate protocols.	
Sampler (Print) BRIAN	MACKIN	······································			
9 77 03	!	ROLALIM	OCKINI		
Date: 9/22/93	Signature	DKIAN /	バレヘバン		

1.7	_		4.0	0	0-17177
Site Location	Prox Bl	dg. 2001	wells	Job Number/	93/3637
Well I.D.	B19-7	[Ř		Lab Number	23
	T 1011			Purge Method_F	TAZZ PUM. O
PURGE INFORMA		33.00		rutge Method1_	rage turap
Well Depth (ft)					
Static Water Level (I	it)—	311 75	3	HNU Meter Readin	
Depth of Water Colu	ımn (gal/ft)x	29.1	<u> </u>	Well Head_	<u> </u>
Well Constant (gal/fi	t)x	0.65		Breathing Z	one_BG
Volume standing in	well	16	gallons		
Start of Purge: Da	te <u>9</u> /	22193	Time 09:	<u>45</u> End	Purge 09:55
Purge Observations	- Tubi	d, tan			1 / /
Total Volume Purge	ed <u> 16 </u>	gallons		# of Volume Casing	gs Purged / today
			T 10	0:0	•
SAMPLING INFOR		Sample Me	ethod lefton	Bailer	737 "
Sample Date: 9		Time:	0: 10	Sample Depth:	QJ, Q
Sample Appearance Recharge Time	e: Tubi	d brown,	odor		
Recharge Time	15 min	Recharge	Rate		
FIELD MEASUREN	MENTS			Rep	licates
	er Number	Parameter	Unit Stnd.	1	2
Bec	Iruan	рН	stnd	8.86	8,89
Cole	Parmer	Spec. Cond.	umhos/cm	1640	1650
Bec	Server	Temp	°Celsius	15,4	15.4
				·	
Crew Members $\underline{\mathcal{P}}$	JM, CC, 1	ZJU, BT			
Meter Calibration:	•	_		09:00	
Weather 48 Hour H	listory <u>P,C</u>	loudy,	60°F bo	the days	
			, -5-	0 1 + .	,
FIELD OBSERVAT	FIONS: Weath	ner Sunny	-, 65°F,	light wi	rds.
Well in	- good	condition			
I certify that sampli	ing procedures	were in accordance	e with all apllicable	EPA, state and com	porate protocols.
Sampler (Print)	BRIAN	MACKIN			
2	1- 0:	,	R . 1	1. 0.	
Date://	20_75	Signature <i></i>	Juan /	pen	

Site Location Xerox 200 wells	Job Number <u>R93/3637</u>			
Well I.D. DR 200 - 7	Lab Number 24			
PURGE INFORMATION Well Depth (ft) 59.35	Purge Method <u>SS bailer</u>			
Static Water Level (ft)—	HNU Meter Reading Well Head			
Start of Purge: Date 9 / 22 / 93 Time /	0: 70 End Purge 10:30			
Purge Observations Turbed Brown Total Volume Purged 3.5 gallons	# of Volume Casings Purged / to dry			
SAMPLING INFORMATION Sample Date: 9/22/93 Time: 10: 40 Sample Depth: 57,50 f				
Sample Appearance: Turbid sust fan Recharge Time				
FIELD MEASUREMENTS Meter Number Parameter Unit Stnd	Replicates . 1 2			
Beckman pH stnd	12.45 12.47			
Cole Parmer Spec. Cond. umhos/cr	9100 9100			
Beckman Temp °Celsius	15.6 15.6			
Crew Members BT, RJU, CC, BJM				
Meter Calibration: Date/Time 9 172193 — Weather 48 Hour History P. Cloudy, 60°F 1	07:00			
FIELD OBSERVATIONS: Weather Sunny, 65°F Well in good condition	, lightwinds			
I certify that sampling procedures were in accordance with all apllic	able EPA, state and corporate protocols.			
Sampler (Print) BRIAN MACKIN	,			
Date: 9 / 22/93 Signature Brus	Macki			

Site Location Leroy Bldg 20	D wells	Job Number	293/3637	
			25	
PURGE INFORMATION MAIL Developers		Purge MethodF	rigi	
Well Depth (ft) 33.00 Static Water Level (ft)— 13.55 Depth of Water Column (gal/ft)x 19.45 Well Constant (gal/ft)x 0.65 Volume standing in well 12.66 Start of Purge: Date 9/22/93 Purge Observations Turbed brown	HNU Meter Reading Well Head <u>BG</u> Breathing Zone BG End Purge //:05			
Total Volume Purged 29 gallons	~	# of Volume Casings	s Purged 2.25%	duy
Sample Date: 9/22/93 Time:	15	on bailen- Sample Depth:	28.42	f1
FIELD MEASUREMENTS		Repli		
Meter Number Parameter	Unit Stnd.	1	2	
Beckman pH	stnd	7.85	7.81	
Cole Parner Spec. Cond.	umhos/cm	3100	3100	
Becoman Temp	°Celsius	17.0	17.0	
Crew Members BJM BT, CC, RJM Meter Calibration: Date/Time 9/22/9 Weather 48 Hour History P. Cloudy lo FIELD OBSERVATIONS: Weather Sunny	73	29:00 Ldays ht winds		
I certify that sampling procedures were in accordance	e with all apllicable	EPA, state and corpo	rate protocols.	
Sampler (Print) BRIAN MACKIN Date: 9/22/93 Signature	Bria	Machi		

Site Location Yero Y	Bldg 2001	velles.	Job Number <u>R</u> 9	3/3637	
Well I.D. SR	Bldg 2001 -200-5		_ab Number	126	
PURGE INFORMATION Well Depth (ft)	13.24		Purge MethodF	ugi Pump)
Static Water Level (ft)— Depth of Water Column (gal/ft)x Well Constant (gal/ft)x Volume standing in well	9,84 3,41 0,16		HNU Meter Reading Well Head Breathing Zo	BG	
Start of Purge: Date/ Purge Observations/	22193		10 End	Purge//:	12_
Total Volume Purged 1,7	_gallons		# of Volume Casing	s Purged	
Sample Date: 9/72/97 Sample Appearance: 5 Recharge Time 13 m	3 Time: light fan	dent_	n Bailer Sample Depth:	10.21	ft.
FIELD MEASUREMENTS			Repl	icates	
Meter Number	Parameter	Unit Stnd.	1	2	٦
Bechman	рН	stnd	7,70	7.74	
Cole Parmer	Spec. Cond.	umhos/cm	3000	3100	
Bechman	Temp	°Celsius	19,8	19,8 s.c. 141351	dset 141
Crew Members BJM, R	Su, cc, BT			10.00 set	10.01
Meter Calibration: Date/Time	9/22/	73	11:00	7.00 set 7. 4.00 read	
Weather 48 Hour History P.	Cloudy, C	,0°F both	days		
FIELD OBSERVATIONS: We Will in good a	ather Sunny		•	<u> </u>	
l certify that sampling procedur	es were in accordance	ce with all apllicable	EPA, state and corp	orate protocols.	
Sampler (Print) BRIAN					
Date: 9 / 22 / 9	3 Signature_	Bran M	achi		

Site Location Klury 200	Wells		Job Number RC	13/3637
Well I.D. <u>B27</u>			Lab Number	′ ~ ¬
PURGE INFORMATION	36.90		Purge Method_Fu	_
Well Depth (ft)	12.3			
Static Water Level (ft)—	01/	<u>ر</u> ا	HNU Meter Reading	•
Depth of Water Column (gal/ft)x	,		Well Head	
Well Constant (gal/ft)x			Breathing Zor	ne_000
Volume standing in well	1616	<u>) </u>		
Start of Purge: Date 9/27	_		35_ End F	Purge // : 4 2
Purge Observations Turb	ed far	<u> </u>		
Total Volume Purged 16 gallo	ons		# of Volume Casings	Purged 1 today
Sample Date: 9/22/93			Sample Depth:	30.17 f
Recharge Time 8 m; n.			1	
Hecharge Time 0 m, m	Recharge	Hale 370 V		
FIELD MEASUREMENTS			Repli	cates
Meter Number	Parameter	Unit Stnd.	1	2
Beckman	рН	stnd	9.15	9.14
Cole Paimer	Spec. Cond.	umhos/cm	1650	
Beckman	Temp	°Celsius	17.8	17.8
Crew Members BJM, BT, CC	P.TU			
Meter Calibration: Date/Time		93 //	: 00	
Wester Calibration. Date: Time) m. d.	100°F 10	H days	1
weather 48 Hour History / . Ce	onay	60 i NO	in aug	• /
Weather 48 Hour History P. C. FIELD OBSERVATIONS: Weather	Sunne	1 65°F	light w	radz
	4	,	/	
certify that sampling procedures we	re in accordanc	e with all apllicable	EPA, state and corpo	prate protocols.
Sampler (Print) BRIAN)	MACKL	$\sqrt{}$		
Date: 9,22,93			ackin	

GENERAL TESTING CORPORATION GROUNDWATER MONITORING FIELD FORM

Site Location Kerox 2	00 well	4-	Job Number R	93/3637	
Well I.D. B27-	A		Lab Number	/	
PURGE INFORMATION Well Depth (ft)	20.	(_e 2	Purge Method	Fugi Pump	
Static Water Level (ft)—	37 25 6	HNU Meter Reading Well Head <u>BC</u> Breathing Zone <u>BC</u>			
Start of Purge: Date 9/	22/93		<u> 40</u> End	Purge	⁴ Z
Total Volume Purged . 5	gallons		# of Volume Casing	gs Purged / / / a	1,-7
Sample Date: 9/22/93 Sample Appearance: Fust Recharge Time 3 min	Time:	- turbid	Sample Depth:	19.36	f1
FIELD MEASUREMENTS	_			licates	
Meter Number	Parameter	Unit Stnd.	7.22	7. 20	
Ol O	pH Spec Cond	stnd umhos/cm	1900	1900	
Cole Painer Bechman	Spec. Cond. Temp	°Celsius	19.7	19.7	
Crew Members PJW, CC Meter Calibration: Date/Time Weather 48 Hour History FIELD OBSERVATIONS: Weath Well labellea	9 122 19 Cloudy,	60°F bot	•	Cracked	
I certify that sampling procedures					
Sampler (Print) $\frac{BRIAN}{}$ Date: 9 / 7 7 / 93	MACKIN				
Date: 9/72/93	Signature /	Suan Mac	ken-		

GENERAL TESTING CORPORATION GROUNDWATER MONITORING FIELD FORM

Site Location Verox Bldg 200 well Well I.D. B 19 A	4 Job Number R93/3637
Well I.D. B 19 A	Lab Number 029
PURGE INFORMATION	Purge Method
Well Depth (ft)	
Static Water Level (ft)—	MILL Mades Deciding
Depth of Water Column (gal/ft)x	MNU Meter Reading Well Head
Well Constant (gal/ft)x	Breathing Zone
Volume standing in wellgallons	
	:
Purge Observations	
Total Volume Purgedgallons	# of Volume Casings Purged
/	
	SAMPLE - WELL
Sample Date:/ Time::	Sample Depth: DECOMMISJONED
Sample Appearance:	
Recharge Time Recharge Rate	
FIELD MEASUREMENTS	Replicates
Meter Number Parameter Unit Stad.	•
pH stnd	
Spec. Cond. umhos/cm	
Temp	
Crew Members	
Meter Calibration: Date/Time / /	·
Weather 48 Hour History	
FIELD OBSERVATIONS: Weather	
I certify that sampling procedures were in accordance with all apllica	able EPA, state and corporate protocols.
Sampler (Print) BRIAN MACKIN	1 1
Date: 9 / 22 / 93 Signature	Wackin

GENERAL TESTING CORPORATION GROUNDWATER MONITORING FIELD FORM

Site Location	104	200 w	ells	Job Number R	13/3637	
Well I.D. Egup	Blank	on SWL		Lab Number	/	
PURGE INFORMATIO	N			Purge Method		
Well Depth (ft)			<u> </u>			
Static Water Level (ft)-	_			HNU Meter Reading	/	
Depth of Water Column	(gal/ft)x		4 (8 (1)	Well Head		
Well Constant (gal/ft)x_				Breathing Zor	ne	
Volume standing in well			gallons	/		
Start of Purge: Date_	/	/'	Time:	End F	ourge:	
Purge Observations						
Total Volume Purged_		yallons		# of Volume Casings	Purged	
			G. O.			
SAMPLING INFORMA			ethod (Nab			
Sample Date: 9/ 2			2: 00	Sample Depth:		
Sample Appearance: _						
Recharge Time		Recharge	Rate			
FIELD MEASUREMEN	ITS			Replic	cates	
Meter N		Parameter	Unit Stnd.	1	2	
Bech	man	рН	stnd	8,79	8,79	
Colet	arme	Spec. Cond.	umhos/cm	10	10	
Beck	Ivan	Temp	°Celsius	20,5	20,5	
Craw Mambara RT	CC OT	11 2.74				
Crew Members <u>BT</u> Meter Calibration: Da	,	•	93	11 . 00		
				the Days	1	
Weather 48 Hour Histo	ory	conay	We I pe	The stage	. 1	
FIELD OBSERVATION	NS: Weatl	ner Sunny	65°F	light w.	inds	
Tal	ren.	hy pou	ing 67	TC DI O	ver SWL	
andi	rato	and	unto de	bottler		
I certify that sampling procedures were in accordance with all apllicable EPA, state and corporate protocols.						
		MACKI		•		
• • • • • • • • • • • • • • • • • • • •				1, 1.	•	
Date: 9/77	7,193	Signature	Binn	Made		

JULY 21 1993

RECEIVED

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 JUL 26 1993

Re: Bldg. 200 - Investigation 70092-44

Dear Mr. Scott Huber

Enclosed are the results of the analysis requested. All data has been reviewed prior to report submission. Should you have any questions please contact me at 454-3760.

Thank you for letting us provide this service.

Sincerely,

GENERAL TESTING CORPORATION

Sue Lochner

Suche Chine

Customer Service Representative

Enc.

cc: Mr. Denis Conley
H & A of New York

Effective 18/1/91

GTC LIST OF QUALIFIERS

(The basis of this proposal are the EPA-CLP Qualifiers)

- U Indicates compound was analyzed for but was not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. For further explanation see case narrative / cover letter.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range and reanalysis could not be performed.
- A This flag indicates that a TIC is a suspected aldolcondensation product.
- N Spiked sample recovery not within control limits. (Flag the entire batch Inorganic analytes only)
- * Duplicate analysis not within control limits.
 (Flag the entire batch Inorganic analysis only)
 - Also used to qualify Organics QC data outside limits.
 (Only used on the QC summary sheets)
- M Duplication injection precision not met (GFA only).
- S Reported value determined by Method of Standard Additions. (MSA)
- x As specified in the case narrative.

CASE NARRATIVE

COMPANY: XEROX CORPORATION

Bldg. 200

Investigation

JOB #: R93/02470

VOLATILE ORGANICS

Xerox water samples were analyzed for priority pollutant volatiles and Xylene by methods 8010/8020 from SW-846.

The initial calibration criteria of 20% RSD was met for all analytes.

The continuing calibration criteria of 15% D was met for all analytes in all daily calibration check standards.

All surrogate standard recoveries were within acceptance limits for all samples.

All matrix spike, matrix spike duplicate, reference check standard recoveries, and % RPD data were within QC acceptance limits.

The Trip Blank (R93/02470-008) was free of contamination.

All Laboratory Blanks were free from contamination.

All required analysis holding times were met.

The Chloroethylvinylether results have been flagged with a "J" as being estimated due to very erratic results obtained from the GC purge and trap system. None has been detected in any of the samples.

No other analytical or QC problems were encountered.

ANALYTICAL DATA

Presented in this section is analytical data for the parameters requested. The following references concerning units and analytical methodology apply to the data herein.

Units: Organics = ug/l

Analytical Methodology Obtained From:

-) Federal Register, 40 CFR Part 136, Guidelines Establishing Test Procedures for the analyses of Pollutants under the Clean Water Act, 10/26/84.
- (X) SW-846, Test Methods for Evaluating Solid Waste, 3rd Edition, 9/86.
-) Other: (

LABORATORY REPORT

Job No: R93/02470 Date: 21 JULY, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference

Bldg. 200 - Investigation

70092-44

Received

ND - Not Detectable

: 06/29/93

P.O. #: C6446819

ANALYSIS * BY GC	METHOD	8010/80	020 AN	ALYTICA	L RESULT	rs - ug/	′1	
Sample:	-001	-002	-003	1 -004	-005	-006	-007	-008
Location:	R200-8	SR200-10	FD-DR200-7	DR200-7	B18SR	R200-9	B191R	TRIP BLANK
2004170111				i	i	İ	ì	ĺ
Date Collected:	06/28/93	06/28/93	06/28/93	06/28/93	06/28/93	06/28/93	06/28/93	06/28/93
Time Collected:	15:20	14:50	14:20	15:45	16:10	14:25	16:40	NA
=======================================	' :== :== ======	= === ======			=========		:=========	=======================================
Date Analyzed:	06/30/93	06/30/93	06/30/93	07/01/93	07/01/93	07/02/93	07/02/93	[07/02/93
Dilution:	1	1	1	1	[1	[1	1	∤1
Chloromethane	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 ປ
Bromomethane	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Vinyl Chloride	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroethane	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Methylene Chloride	4.5	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	[1.0 U
Trichlorofluoromethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1-Dichloroethene	3.3	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 υ
1,1-Dichloroethane	29	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.5	1.0 υ
1,2-Dichloroethene(Cis&Trans)	200	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	3.4	1.0 U
Chloroform	1.0 U	6.9	8.4	8.4	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon Tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	1.0 U	1.0 U	1.2	1.0 U	1.0 ບ	1.0 U	1.0 U	1.0 υ
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U] 1.0 U
1,3-Dichloropropene-Trans	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Trichlaroethene	11	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	6.9	1.0 U
1,3-Dichloropropene (Cis)	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	2.0 U	2.0 U	2.0 U	2.0 U	1 2.0 U	2.0 U	2.0 U	2.0 U
1,1,2-Trichloroethane	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
2-Chloroethylvinyl Ether	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ
Bromoform	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1,2,2-Tetrachloroethane	2.0 U	2.0 U	2.0 U	12.0 U	2.0 U	2.0 U	1 2.0 U	2.0 U
. Tetrachloroethene	2.8	1.0 U	3.5	3.3	1.0 U	1.0 U	80	1.0 U
Chlorobenzene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,3-Dichlorobenzene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichlorobenzene	2.0 U	[2.0 U	1 2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 t
1,4-Dichlorobenzene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	[2.0 U	2.0 U
Benzene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Toluene	2.0 U	13	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Ethylbenzene	2.0 U	2.0 U	3.5	4.9	2.0 U	2.0 U	1 2.0 U	2.0 U
Total Xyl e ne (o,m,p)	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
. Total Volatiles	250.6	19.9	16.6	116.6	ND	ND	92.8	ND

LABORATORY REPORT

Job No: R93/02470

Date: JULY 21 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Bldg. 200 - Investigation

70092-44

Received

: 06/29/93

P.O. #: C6446819

ANALYSIS * BY GC	METHOD	8010/802	20	ANAI	YTICAL	RESULTS	- %	
Sample:	-001	-002	-003	-004	-005	-006	-007	-008
Location:	R200-8	SR200-10	FD-DR200-7	DR200-7	B18SR	R200-9	B191R	TRIP BLANK
]		
Date Collected:	06/28/93	06/28/93		•		•	•	06/28/93
Time Collected:	15:20	14:50	14:20	15:45	16:10	14:25	16:40	NA .
***************************************			:=======:		:= :::::: :::::::::::::::::::::::::::::			
								 -
				1			 -	<u> </u>
		1		<u> </u> 	<u> </u> 	 	 	
		1	 	l 1	 	 	I 	
SURROGATE STANDARD RECOVERIES	1	 	 	! !	! 	1 [! 	
JORNOGATE STRADARD REGOVERIES	1			1	1	' 		
% Recovery		! 		, 	' 			
,	i			[
Bromochloromethane	74	87	88	83	90	76	64	60
(Acceptance Limits: 60-138%)		1					1	}
	1	1			l			
							ļ _	
1-Chloro-3-Fluorobenzene	84	92	87	83	84	73	75	70
(Acceptance Limits: 60-140%)	Į.]		!	 	1	
	İ	1	 	1	 	 	j I	l 1
a,a,a-Trifluorotoluene	l l 88	I I 81	i 89	l 1 87	1 84	1 89	 87	! 81
(Acceptance Limits: 60-134%)	1	1	U) 	, 0, !	1	U	1	1
Checeptaine Limits, ov 1944)		}	! !			i	İ	
	1		1	, 1		i	Ì	
	i	i	İ		Ì	İ	1	
	Ī	İ	1		1	1	!	[
		1	1	1	1			1
	1	1		1	1	I	ļ	Ì
		1	[1	1		1

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Median Branchis

LABORATORY REPORT

Job No: R93/02470

Date: 21 JULY, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference

Bldg. 200 - Investigation

70092-44

Received

ND - Not Detectable

: 06/29/93

P.O. #: C6446819

ANALYSIS * BY GC	METHOD	8010/80	20 ANAI	LYTICAL	RESULTS	- ug/l	L	
Sample:	-009	-010	1	1	i	1	١	ı
Location:	LAB METH	LAB METH	1		1		l	
	BLANK	BLANK	1			1	I	
Date Collected:			1	1			!	
Time Collected:	1		1	1	1	1	1	ı
:======================================	=======================================	:======================================			:========:	:=====================================		:========
•	06/30/93	07/01/93	ļ .	1	l I	 	!	I
Dilution:	1	[1	1	1	!	l t		!
Chloromethane	5.0 U	5.0 U		1	ļ		1	1
Bromomethane	•	5.0 U		I.	Į.	j	1	} I
Vinyl Chloride	•	2.0 U			!	į	İ	i 1
Chloroethane	•	2.0 U	1		ŀ	I		1
Methylene Chloride	•	1.0 U	1		l .	I		! •
Trichlorofluoromethane	1.0 U	1.0 U	I I		Ļ	ŀ	:	!
1,1-Dichloroethene	1.0 U	1.0 U	1 !		Į.	1		!
1,1-Dichloroethane	1.0 U	1.0 U	1		Į.	1		!
1,2-Dichloroethene(Cis&Trans)	1.0 U	1.0 U		1	Į.		ı	1
Chloroform	1.0 U	1.0 U	1	ļ	Į.	1		!
1,2-Dichloroethane	1.0 U	1.0 U		!	1			!
1,1,1-Trichloroethane	1.0 U	1.0 U	1	ļ	!	1	l	
Carbon Tetrachloride	1.0 U	1.0 U	1	!	ļ		l :	
Bromodichloromethane	1.0 U	1.0 U		1	ļ	ļ	(-	!
1,2-Dichloropropane	1.0 ບ	1.0 U	1	ļ	ļ	1	 =	1
1,3-Dichloropropene-Trans	2.0 U	2.0 U	1	ļ	!	ļ	 -	<u>}</u>
Trichloroethene	1.0 U	1.0 U		1	!	ļ		
1,3-Dichloropropene (Cis)	1.0 U	1.0 U	1	1	ļ	ļ	ŀ	
Dibromochloromethane	2.0 U	2.0 U	1	1	ļ	ļ	ļ	!
1,1,2-Trichloroethane	2.0 U	2.0 U	1	!	ţ			!
2-Chloroethylvinyl Ether	2.0 UJ	[2.0 UJ	1		ı İ		l	!
Bromoform	2.0 U	[2.0 U		ļ	i I		<u> </u> -	
1,1,2,2-Tetrachloroethane	2.0 U	2.0 U	1		ļ .			
Tetrachloroethene	1.0 U	1.0 U		!	l .]	
Chlorobenzene	1 2.0 U	[2.0 U	1	ļ				1
1,3-Dichlorobenzene	2.0 U	2.0 U	1	Į				
1,2-Dichlorobenzene	2.0 U	[2.0 U	1	1	<u> </u>		}	
1,4-Dichtorobenzene	2.0 U	2.0 U	1	ļ			1	
Benzene	2.0 U	[2.0 U	1	•	1		1	1
Toluene	2.0 U	2.0 U	1					
Ethylbenzene	2.0 U	2.0 U	1		1		1	
Total Xylene (o,m,p)	2.0 U	2.0 U	1	!	1			
Total Volatiles	ND	ND	1		i 1			

LABORATORY REPORT

Job No: R93/02470

Date: JULY 21 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Bldg. 200 - Investigation

70092-44

Received

: 06/29/93

P.O. #: C6446819

ANALYSIS * BY GC	METHOD	8010/80	20	ANAI	YTICAL	RESULTS	- %	
Sample:	-009	-010	1					
Location:	LAB METH	LAB METH						
	BLANK	BLANK				1		
Date Collected:								
Time Collected:			1					}
=======================================	========	=========	=========				:===xxxxxxx;	
	1		<u> </u>	!		<u> </u>		
	<u> </u>			<u> </u>		1		
		1			i ı	 		
	!	1	 	 	} 1] [] 	
SURROGATE STANDARD RECOVERIES	1	 	[[!] [
SURROUNTE STANDARD RECOVERTES	1	1	1 1	 	I 	! 	 	
% Recovery	1	1	1) 	! 	! }) 	
1	! 	1	• {	[! 		' 	
Bromochloromethane	, 76	66	1		İ	i İ		· [
(Acceptance Limits: 60-138%)	i	i	İ	İ		i İ	i İ	
· ·	İ	İ	i		1	1		
	1	1	1	1	1	1		
1-Chloro-3-Fluorobenzene	97	95	1	[1	1	1	1
(Acceptance Limits: 60-140%)	[1		1		1	1	l
l		1			İ	1	1	
	1	1	1	1				
a,a,a-Trifluorotoluene	90	93		1				
(Acceptance Limits: 60-134%)	1	<u> </u>		1			!	
	!	1]	!	1	
	1				1	1	[
	1	1] 1		1	1	 	1
	1	1		1	1	1	1	
	 	1	1	1	1	1	! 	
	1	1	 	1	1	l I	! [
	ı	I	ı	ı	ı	ı	ı	ı

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Marked K. C.

Laboratory Director

GTC REPORT #: R93/02470

Sample Reference: Bldg. 200 - Investigation 70092-44

FIELD DOCUMENTATION

Presented	in	this	section	is	all	support	documentation	requested.
-----------	----	------	---------	----	-----	---------	---------------	------------

Do	oci	ımeı	ntation Provided:
(Χ)	Chain of Custody Forms
()	Analytical Request Forms
()	Shipping Receipts
()	Laboratory Receipt Log
,		١	Other:

10110-

						_
H & A OF NE	NEW YORK	ANALYSIS REQUEST FORM	FORM	Page	0N / 10	284
Rochester, New York 14604 (716) 232-7386	York 14604	CHAIN-OF-CUSTODY RECORD	RECORD	Delivery Date:	6/28	·)
Project Name: Bldg 200 PFI	I WORK Ply Laboratory:	ay: General Testing Coporation	COCA hier	Project Manager:	398r: J. Loney	
H & A FIIO NO. 70082 - 44		710 Excha		Final Report Due Date:		
H & A REP. D. NOSH-AND	Post	bester NY		Turnaround Time:	lime: 570 days	
WORK ORDER No.	Cilent Rep.:	Rep.:				
Sample Information	ç	Analysis	Requested		Preservative	6
					NY (2.0	0H > 10 PH 7.0
& A Sample 10. Laboratory Sample 10.	Sample Sample Sample Time Depth Matrix	X XI enes TO'S IN BUHL		The state of the s	H 204	4 ~
DP200-7 (129)3	1420	7 & 3.3.8		7	7	
€Q-DR2∞-7 C./2 6	1425 52-57	S. S.		71	7	
3	77-77	U (1 1 1 1 1 1 1 1 1 1	7	7,	
5. R700-9	W 75-8 745/	11 P. 20.20.		1	11	
1/2/1	1610 9-141	2 8000-9		7	N	
8-19IR	Ŗ	2 B19IR		2	7	
8. Try Blank WIERRS	× 1	- 7.0	2	7	7	
10.						
12.						
4.						
15.						
Sompler Comments/Site Observations			Sample Conditions		Broken Containers	
			Custody Seal:	Intaat:	List Type / Sample No.	
			Any Broken Containers?	اد		
			Preservation	36		
			No. Of Samples: (N)	(0) 2/	(5) (5)	(1)
A Comment of the Comm	Complete Declared By:	Name of the state	Illist all pH modeur ements a	utelde ariteria in t	illet all pH moceurements outside oriteria in the Comments Section by H & A No.	/ Cant. / pres. 1
	Signature:		Comments:	A 105 04	401 and 108 DACH Such J.	
Company Name: La D of A)	Company Name:	7/ 347		/	01 B118 5 V2	
Date: 628/9511ms: 1/5	00te: 6/2t		B. W. Reserve SAMPles	SAMA	50)	
Samples Relinguished By:	Samples Recieved By:					
Signature:	Slandture:		· · · · ·			
Company Name:	Company Names					
Dater Time:	Date:	Time:		150 N SO CHILL	1,71 . 71	
Samples Relinguished By:	Samples Recleved By:	wed By:	, , ,			_
Signature:	Signature:		マラン・コード・コード	(1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		
ny Name:	Company Name:			·	•	
DOTA:	10019:					:

70092-44

A Full Service Environmental Laboratory

RECEIVED

June 30, 1993

JUL 0€ 1993

H & A OF NEW YORK

Mr. Dave Gianturco
Radian Corporation
155 Corporate Woods
Rochester, New York

ew York 14623

Re: Bldg. 200 Wells - 2nd Quarter 1993

Dear Mr. Gianturco:

Enclosed are analytical results from the above referenced site sampled by General Testing Corporation on June 16 and June 17, 1993. A total of thirteen wells, one field duplicate, two equipment blanks and one trip blank was sampled. Well B19-A produced no sample due to a well constriction.

All samples were analyzed for the PPL volatile organics and xylene using EPA method 8010/8020. This analytical data has been reviewed prior to report submission. Please review this data package and call should any questions arise.

Sincerely, GENERAL TESTING CORP.

Sy locar

Sue Lochner

Customer Service Representative

Enc. SL:db

cc: Jeff Loney, H&A of New York

CASE NARRATIVE

COMPANY: XEROX CORPORATION

BLDG 200-QUARTERLY WELLS

2nd Quarter 1993

JOB #:

R93/02277

VOLATILE ORGANICS

Xerox water samples were analyzed for priority pollutant volatile organics and xylene using EPA methods 8010/8020 from SW-846.

The initial calibration criteria of 20% RSD was met for all analytes.

The continuing calibration criteria of 15% D was met for all analytes in all daily calibration check standards.

All surrogate standard recoveries were within acceptance limits for all samples.

All matrix spike, matrix spike duplicate, reference check standard recoveries, and precision data were within QC acceptance limits.

Both Equipment Blanks (R93/02277-033 and 035) contained 1.1 ug/l of Chloroform. However, no data was affected.

The Trip Blank (R93/02277-017) contained 1.0 ug/l of Chloroform. Again no sample data was affected.

All Laboratory Blanks were free of contamination except the Lab Blank from 06/22/93 contained 2.5 ug/l of Methylene Chloride. The Methylene Chloride detected in samples R93/02277-009, 010, and 015 was flagged with a "B" accordingly.

All required analysis holding times were met.

Samples R93/02277-001, 014, and 016 were analyzed at dilutions to bring target analytes within the calibration range of the method.

The Chloroethylvinylether results have been flagged with a "J" as being estimated due to very erratic results obtained from the GC purge and trap system. None has been detected in any of the samples.

No other analytical or QC problems were encountered.

Effective 10/1/91

GTC LIST OF QUALIFIERS

(The basis of this proposal are the EPA-CLP Qualifiers)

- U Indicates compound was analyzed for but was not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. For further explanation see case narrative / cover letter.
- 8 This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range and reanalysis could not be performed.
- A This flag indicates that a TIC is a suspected aldolcondensation product.
- N Spiked sample recovery not within control limits. (Flag the entire batch - Inorganic analytes only)
- * Duplicate analysis not within control limits.

 (Flag the entire batch Inorganic analysis only)
 - Also used to qualify Organics QC data outside limits. (Only used on the QC summary sheets)

AND IN THE PROPERTY OF THE PRO

- M Duplication injection precision not met (GFA only).
- S Reported value determined by Method of Standard Additions. (MSA)
- X As specified in the case narrative.

GTC REPORT #: R93/02277

Sample Reference: Bldg. 200 Quarterly

Monitoring

ANALYTICAL DATA

Presented in this section is analytical data for the parameters requested. The following references concerning units and analytical methodology apply to the data herein.

Units: Organics = ug/l

Analytical Methodology Obtained From:

- () Federal Register, 40 CFR Part 136, Guidelines Establishing

 Test Procedures for the analyses of Pollutants under the

 Clean Water Act, 10/26/84.
- (X) SW-846, Test Methods for Evaluating Solid Waste, 3rd Edition, 9/86.
- () Other:

LABORATORY REPORT

Job No: R93/02277 Date: 29 JUNE, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580

Sample(s) Reference

Bldg. 200 Quarterly Monitoring

Collected

: 06/16-17/93

P.O. #: C6446868

Sample: Location:	-001 B19-SR	-002 B19-DR	-003 B26-A	-004 B26-A	-005 826-SR	-006 B26-1R	-007 B29-A	-008 B29-SR
Date Collected:	 06/16/93	 06/16/93	 06/16/9 3	DUPLICATE 06/16/93	1047*4707	10/41/407	10/44/407	
	110:05	10:10	10:55	10:55	06/16/93 [11:00	06/16/93 11:05	06/16/93 12:45	06/16/93 12:50
=======================================	=========		' :=========	, :========	=========		=======================================	
Date Analyzed:	06/23/93	06/23/93	06/18/93	06/18/93	06/19/93	06/21/93	06/21/93	106/21/93
Dilution:	100	1	[1	1	[1	[1	11	11
Chloromethane	500 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Bromomethane	500 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 ป
Vinyl Chloride	200 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Chloroethane	200 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U] 2.0 U	2.0 U
Methylene Chloride	100 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	100 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	i 1.0 U	1.0 U
1,1-Dichloroethene	100 U	1.0 U	1.0 U	1.0 U	1.0 U	່ 1.0 ບ	1.0 U	1.0 U
1,1-Dichloroethane	190	2.3	1.0 U	1.0 U	31	6.0	1.0 U	1.5
1,2-Dichloroethene(Cis&Trans)	130	2.9	1.0 U	1.0 U	5.4	1.0 U	1 1.0 U	1 1.0 U
Chloroform	100 U	1.0 U	1.0 U	[1.0 U	1.0 U	1.0 U	1.0 U	1.0 0
1,2-Dichloroethane	100 U	1.0 U	1.0 U	1.0 U	1.0 U	i 1.0 U	1.0 U	1.0 0
1,1,1-Trichloroethane	100 U	1.0 U	1.0 U	1.0 U	! 1.0 U	i i 1.0 u	1.0 U	1.0 ນ
Carbon Tetrachloride	100 U]1.0 U	1.0 U	[1.0 U	1.0 U	i 1.0 U	1.0 U	1.0 ປ
Bromodichloromethane	100 U	1.0 U	1.0 U	[1.0 U	1.0 U	i 1.0 u	1.0 U	1.0 U
1,2-Dichloropropane	100 U	1.0 U	1.0 U	1.0 U	1.0 U	i 1.0 U	1.0 U	1.0 U
1,3-Dichloropropene-Trans	200 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	1 2.0 U	1 2.0 U
Trichloroethene	910	52	1.0 υ	1.0 U	. 26	1.0 U	1.0 U	1.0 0
1,3-Dichloropropene (Cis)	100 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	200 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1,2-Trichloroethane	200 U	2.0 U] 2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
2-Chloroethylvinyl Ether	200 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	1 2.0 UJ
Bromoform	200 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,1,2,2-Tetrachloroethane	200 U	2.0 U	2.0 U	2.0 U	2.0 U	1 2.0 U	1 2.0 U	1 2.0 U
Tetrachloroethene	19000	53	1.0 U	j1.0 U	85	1 1.0 U	1 1.0 U	1 1.0 U
Chlorobenzene	200 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,3-Dichlorobenzene	200 U]2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,2-Dichlorobenzene	200 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
1,4-Dichtorobenzene	200 U	2.0 U	2.0 U	2.0 U	2.0 U	1 2.0 U	2.0 U	2.0 0
Benzene	200 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Toluene	200 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.3 U
Ethylbenzene	200 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 ປ	2.0 U	2.0 U
Total Xylene (o,m,p)	200 U	2.0 U	2.0 U	 2.0 U	2.0 U] 2.0 U	2.0 U	2.0 U
Total Volatiles	20230	110.2	ND	ND	147.4	6.0	ND ND	1 1.5

LABORATORY REPORT

Job No: R93/02277

Date: JUNE 29 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Bldg. 200 Quarterly

Monitoring

Collected

: 06/16-17/93

P.O. #: C6446868

METHOD	8010/802	20	ANAI	YTICAL	RESULTS	- %	
-001	-002		-004		•	-007	-008
B19-SR	B19-DR		•	B26-SR	B26-1R	B29-A	B29-SR
106/16/03	106/16/03		•] NA /14 /03	 06/16/93
•			•		•	•	112:50
	=========	=======================================		=========	:	=======================================	=======================================
1	1		1				
1	1						
				•	1		
 			 	 	 	 	
1			1	! [! 	1 	
				, 			
1	1		!	1	1	1	
]							
68	68	84	80 	6 5 	70 	80 	70
I I			 	l 	l I	I 	
İ			, 	, 	1		
79	72	80	77	80	83	85	73
!	!			!			!
1			<u> </u>	 		1	•
1 1 92	1 1 83	 8 9	l I 87	l 1 85	l i 87	 89	1 86
/-		3,	. J.				
	i		İ	1		i İ	j
			1			1	1
1]	<u> </u>	1	!	1
				[1		
1	1	<u> </u>	1	j I	† 1	[[[[
1	 		 	1	1	1 	1
	-001 B19-SR 06/16/93 10:05 	-001	-001	-001	-001	-001	-001

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

A. Car

Laboratory Director

LABORATORY REPORT

Job No: R93/02277 Date: 29 JUNE, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580

Sample(s) Reference

Bldg. 200 Quarterly

Monitoring

Collected

ND - Not Detectable

: 06/16-17/93

P.O. #: C6446868

ANALYSIS * BY GC	METHOD	8010/80	020 AN	NALYTICA	L RESUL	rs - ug/	1	
Sample: Location:	-009 B29-IR	-010 EQUIPMENT	-011 SR-200-5	-012 EQUIPMENT	-013 SR-200-2	-014 SR-200-1	-015 SR-200-4	-016 SR-200-3
Date Collected:	 06/16/9 3	BLANK 06/16/93	06/16/93	BLANK 06/16/93	 06/17/93	[06/17/93	106/17/93	 06/17/93
		113:45	13:35	13:55	104:50	105:02	105:10	115:20
	•	•	==========	=======================================	04.50 ===========		'	=======================================
Date Analyzed:	06/22/93	06/22/93	06/21/93	06/22/93	06/22/93	06/24/93	06/22/93	06/24/93
Dilution:	1	1	1	1	1	1000	[1	250
Chloromethane	5.0 U	[5.0 U	5.0 U	5.0 U	5.0 ປ	5000 U	5.0 U	1300 U
Bromomethane	5.0 U	5.0 U	5.0 U	5.0 υ	5.0 U	5000 U	5.0 U	1300 U
Vinyl Chloride	2.0 U	2.0 U	2.0 U	[2.0 U	2.0 U	2000 U] 2.0 U	500 U
Chloroethane	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2000 U	2.0 U	500 U
Methylene Chloride	1.2 B	11.0 B	1.0 U	1.0 U	1.0 U	1000 U	1.5 B	250 U
Trichlorofluoromethane	1.0 U	1.0 U	1.0 U	j1.0 U	i 1.0 U	1000 U	1.0 U	250 U
1,1-Dichloroethene	1.0 U	1.0 U	1.0 υ	11.0 U	1.0 U	1000 U	1.0 U	250 U
1,1-Dichloroethane	6.3	11.0 U	22	[1.0 U	1.0 U	1000 U	1.0 U] 250 ມ
1,2-Dichloroethene(Cis&Trans)	1.0 U	11.0 U	63	i 1.0 U	1.0 U	1000 U	1.0 U	250 U
Chloroform	1.0 U	11.1	1.0 U	11.1	i 1.0	1000 U	1.0 U	250 U
1,2-Dichloroethane	່ 1.0 ບ	1.0 U	1.0 U	11.0 U	1.0 U	i 1000 U	1.0 U	1 250 U
1,1,1-Trichloroethane	່ 1.0 ປ	່ 1.0 ປ	1.0 U	1.0 U	i 1.0 U	່ 1000 ປ	1.0 U	1 250 U
Carbon Tetrachloride	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	່ 1000 ປ	1.0 U	250 u
Bromodichloromethane	່ 1.0 ບ	1.0 U	1.0 U	1.0 U	1.0 U	1600 U	1.0 U	250 U
1,2-Dichloropropane	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1 1000 U	1.0 U	250 U
1,3-Dichloropropene-Trans	2.0 U	[2.0 U	2.0 U	2.0 U	2.0 U	2000 U	2.0 U	500 U
Trichloroethene	1.0 U	1.0 U	1 12	1.0 U	1.0 U	1000 U	, 1.0 U	250 U
1,3-Dichloropropene (Cis)	! 1.0 U	1.0 U	i 1.0 U	11.0 U	1.0 U	1 1000 U	1.0 U	250 U
Dibromochloromethane	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2000 U	2.0 U	500 U
1,1,2-Trichloroethane	1 2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2000 U	2.0 U	500 U
2-Chloroethylvinyl Ether	1 2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	1 2000 UJ	2.0 UJ	500 til
Bromoform	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2000 U	1 2.0 U	500 U
1,1,2,2-Tetrachloroethane	2.0 U	2.0 U	2.0 U	2.0 U	1 2.0 U	2000 U	1 2.0 U	500 U
Tetrachloroethene	1.0 U	[1.0 U	3.1	11.0 U	1 1.0 U	210000	5.7	44000
Chlorobenzene	2.0 U]2.0 U	2.0 U	2.0 U	2.0 U	2000 U] 2.0 U	500 U
1,3-Dichlorobenzene	2.0 U]2.0 U	1 2.0 U	2.0 U	2.0 U	2000 U	2.0 U	500 U
1,2-Dichlorobenzene	2.0 U	[2.0 U	2.0 U	2.0 U	2.0 U	2000 U	2.0 U	500 U
1,4-Dichlorobenzene	2.0 U	[2.0 U	2.0 U	2.0 U	2.0 U	2000 U	2.0 U	500 U
Benzene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2000 U	3.9	500 U
Toluene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2000 U	2.8	₁ 500 U
Ethylbenzene	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2000 U	2.0 U	500 U
Total Xylene (o,m,p)	2.0 U	12.0 U	2.0 U	2.0 U	2.0 U	2000 U	2.0 U	500 U
Total Volatiles	6.3	11.1	100.1	11.1	1.0	210000	1 12.4	44000

LABORATORY REPORT

Job No: R93/02277

Date: JUNE 29 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Bldg. 200 Quarterly

Monitoring

Collected

: 06/16-17/93

P.O. #: C6446868

ANALYSIS * BY GC	METHOD	8010/802	20	ANAI	YTICAL	RESULTS	- %	
Sample:	-009	-010	-011	-012	-013	-014	-015	-016
Location:	B29-IR	EQUIPMENT	SR-200-5	EQUIPMENT	SR-200-2	SR-200-1	SR-200-4	SR-200-3
		BLANK		BLANK				
Date Collected:	06/16/93	06/16/93	06/16/93	06/16/93	06/17/93	06/17/93	06/17/93	06/17/93
Time Collected:	12:55	13:45	13:35	13:55	04:50	05:02	05:10	15:20
***************************************	==========	===========	: === =====				=======================================	
								l
						1	<u> </u>	
	<u> </u>	!					 -	
1		,						
CURROCATE CTANDARD RECOVERIES	!	1		1	ļ	1	 -	
SURROGATE STANDARD RECOVERIES	j 1	1		 	1]
% Recovery	<u> </u>	1		i 1	} 1	 	l i	
A Recovery	l !	i		 	 	i I	! 	! !
Bromochloromethane	1 74	1 85	72	l I 84	I I 87	I I 88	i 1 69	 81
(Acceptance Limits: 60-138%)	1	1 03	')	,	0,	1
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,) 	1		! 	! 	, 	! 	1
	<u>'</u>	i		' 	' 	' 		
1-Chloro-3-Fluorobenzene	89	77	90	77	75	89	75	80
(Acceptance Limits: 60-140%)	Ì	į						
	ĺ	1		1	1		1	
						!		
a,a,a-Trifluorotoluene	93	93	93	89	91	99	79	j 91
(Acceptance Limits: 60-134%)	1						1	1
	1			1	1	1	1	l j
	1					1	1	
1								
	1	<u> </u>		[!	[1	!
1	į.	!		[!	<u> </u>		[
	İ	•		!	1	1		1
	l	I	l	1	ł	1	I	ı

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Laboratory Director

LABORATORY REPORT

Job No: R93/02277 Date: 29 JUNE, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference

Bldg. 200 Quarterly

Monitoring

Collected

ND - Not Detectable

: 06/16-17/93

P.O. #: C6446868

		-		****			
ANALYSIS * BY GC	METHOD	8010/8020	ANALYTICAL	RESULTS	- ug/l		
Sample:	-017	1 1		1	1	1	
Location:	TRIP BLANK		1	1		1	
]	ļ	}	!	
	06/16/93			1			
Time Collected:	07:15		l l	1			
	104 (37 (07		1 1	1	:======== 	=======================================	
1	06/23/93			1	 	i 1	
Dilution:	1	!	i i	1	!		
Chloromethane	5.0 U	1		l	1		
Bromomethane	5.0 U			1			
Vinyl Chloride	2.0 U		į	ļ	!	1	
Chloroethane	2.0 U	! !		1		1	
Methylene Chloride	1.0 U				!		
Trichlorofluoromethane	1.0 U	1		1	1	1	
1,1-Dichloroethene	1.0 U	1 !	1	ļ	ļ		
1,1-Dichloroethane	1.0 U	1		ļ		i	
1,2-Dichloroethene(Cis&Trans)		}		ļ	1	j	
Chloroform	1.0	<u> </u>		!		ļ	
1,2-Dichloroethane	1.0 U	ļ ļ	1	ļ	1	!	
1,1,1-Trichloroethane	1.0 U	1		!	!	1	
Carbon Tetrachloride	1.0 U	1					
8romodichloromethane	1.0 U	1		ļ	ļ		
1,2-Dichloropropane	1.0 U	1	İ				
1,3-Dichloropropene-Trans	2.0 U	1	ļ	ļ			
Trichloroethene	1.0 U						
1,3-Dichloropropene (Cis)	1.0 U	1		!			
Dibromochloromethane	2.0 U]			
1,1,2-Trichloroethane	2.0 U	1	1				
2-Chloroethylvinyl Ether	2.0 UJ	1	1		1		
Bromoform	2.0 U	1					
1,1,2,2-Tetrachloroethane	2.0 U	1	1	1	ļ		
Tetrachloroethene	1.0 U	1		1	1		
Chlorobenzene	2.0 U	1	1	! !			
1,3-Dichlorobenzene	2.0 U	1	1	1 1	1		ļ
1,2-Dichlorobenzene	2.0 U			1 1			1
1,4-Dichlorobenzene	2.0 U			i i			
Benzen e	2.0 U			1			1
Toluene	2.0 U			1	1		
Ethylbenzene	2.0 U	1	1	1	1		
Total Xylene (o,m,p)	2.0 U			1	1		1
Total Volatiles	1.0	1	1	1 1	1		1
				**********	.eoennaecacc		

LABORATORY REPORT

Job No: R93/02277 Date: JUNE 29 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580

Sample(s) Reference:

Bldg. 200 Quarterly

Monitoring

Collected

: 06/16-17/93

P.O. #: C6446868

ANALYSIS * BY GC		8010/80	20	ANAI	YTICAL	RESULTS	- %	
Sample:	-017	1			İ	1	ł	
Location:	TRIP BLANK	1				1		
		1]		l
	06/16/93	1		!]		
	07:15							
	=========	=======================================	=======================================			==========	=======================================	
						i		1
	1	1	İ			! !	l .	
	1	1]	
						1		
	ŀ							
SURROGATE STANDARD RECOVERIES						ļ l		
••••		1						
% Recovery								
	1					1		
Bromochloromethane	76	1						
(Acceptance Limits: 60-138%)	1							
	1	1						
	1	1						
1-Chloro-3-Fluorobenzene	75	1]					
(Acceptance Limits: 60-140%)	1	1						
	1	}						
	1			ĺ				
a,a,a-Trifluorotoluene	82	1		ĺ				
(Acceptance Limits: 60-134%)	1	1				I		
	1	1				i İ i		
	1	1			· 			
	1						· 	
	1			· 				ŀ
	1	!		' 				
		1						
	1							
		•	,	'	•			'

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Laboratory Director

GTC REPORT #: R93/02277

Sample Reference: Bldg. 200 Quarterly

Monitoring

LABORATORY QUALITY CONTROL

Presented in this section is Quality Control Associated with the analytical data of this report.

Quality Control Explanations:

- (1) RUN QUALITY CONTROL Selected QC data from the analytical run in which your sample(s) were involved.
- (2) JOB SPECIFIC QUALITY CONTROL QC data specific to your set of samples.
- (3) DUPLICATES Replicate analyses of a given sample used to monitor precision. Relative Percent Difference is calculated as the difference divided by the average x 100.
- (4) MATRIX SPIKES Addition of a known amount of analyte to a sample. Recovery is calculated by subtracting original value attributable to the sample from the combined value. The difference is then divided by the amount added to calculate % recovery. Poor recoveries may indicate analytical interference due to the matrix of the sample. Any other samples of this matrix may also have been affected, high or low as indicated by the % recovery.
- (5) LABORATORY CONTAMINANTS Laboratory De-ionized water used to monitor for contamination during analysis.
- (6) BLANK SPIKES Same as item #4 but analyte is added to laboratory de-ionized water. This indicates the accuracy of analysis.
- (7) REFERNCE CHECK SAMPLES Samples from an outside source having a known concentration of analyte. Used as a measure of analytical accuracy.

When possible, all components of the above listed QC protocol are performed during an analytical run. The resulting data is compared to historical records when evaluating the quality of analytical runs. The data provided in your report has passed our Quality Assurance review.

Quality Control Notes:

LABORATORY REPORT

Job No: R93/02277 Date: 29 JUNE, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference

Bldg. 200 Quarterly Monitoring

Collected

ND - Not Detectable

: 06/16-17/93

P.O. #: C6446868

METHOD	8010/8	020 A	ALYTICA:	L RESULTS -	- ug/l	
1 -018	1 -019	-020	-021	1 1	1	l
•	•	•	•	i	i	i
BLANK	BLANK	•	•	i i	i	İ
	i	ļ	j	i i	i	
		j		1	Ì	
		**********	*********			
06/18/93	•	06/22/93	•	1	1	ļ
11	•	1	,		ļ.	ļ
•	•		•		1	ļ
•	•	•	•	1		ļ
1		•			l	ļ
2.0 U	•	2.0 U	2.0 U			
1.0 U	•	•	•			
1.0 U	1.0 U	1.0 U	1.0 U			
1.0 U	1.0 U	1.0 U	1.0 U			
1.0 U]1.0 U	1.0 U	1.0 U	1	-	
1.0 U	1.0 U	1.0 U	1.0 U		i	1
1.0 U	1.0 U	1.0 U	[1.0 U		1	
1.0 U	1.0 U	1.0 U	1.0 U	1	1	
1.0 U	1.0 U	1.0 ບ	1.0 U	1	1	1
1.0 U	1.0 U	1.0 U	1.0 U	1	1	
1.0 U	1.0 U	1.0 U	1.0 U	1	ł	İ
1.0 U	1.0 U	1.0 U	1.0 U		1	
2.0 U	2.0 U	2.0 U	2.0 U	1	I	
1.0 U	1.0 U	1.0 ປ	[1.0 U	1	1	
1.0 U	1.0 U	1.0 U	1.0 U	1	1	
2.0 U	2.0 U	2.0 U	2.0 U	1		1
2.0 U	2.0 U	2.0 U	2.0 U	1		I
2.0 UJ	2.0 UJ	2.0 UJ	2.0 UJ	1	1	I
2.0 U	2.0 U	2.0 U	2.0 U	i i	1	1
2.0 U	2.0 U	2.0 U	2.0 U		1	
1.0 U	1.0 U	j 1.0 U	1.0 U	i i	İ	[
2.0 U	2.0 ປ	2.0 ປ	2.0 U	İ	Ì	l
2.0 U	2.0 U	2.0 U	2.0 U	İ	Ī	1
2.0 U	2.0 U	2.0 U	2.0 U	İ	j	
2.0 U	2.0 U	2.0 U	2.0 U	İ	j	
2.0 U	2.0 U	2.0 U]2.0 U	İ	į	I
	•	2.0 U	,	i i	ĺ	
2.0 U	•		•	i i	ĺ	
2.0 U	•	•	•		i	i
i ND	ND	2.5	ND	1 1	1	, İ
	-018	-018	-018	-018	-018	-018

LABORATORY REPORT

Job No: R93/02277

Date: JUNE 29 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Bldg. 200 Quarterly

Monitoring

Collected

: 06/16-17/93

P.O. #: C6446868

ETHOD 8	3010/802	:0	ANAI	YTICAL	RESULTS	- %	
-018	-019	-020	-021				
AB METH	LAB METH	LAB METH	LAB METH				
LANK	BLANK	BLANK	BLANK		ı i		
-			!				
-	••						
========	========					========	
1	1	!	!				
1	1	1			! 1		
1	1	1					
	1						
!	!						
ļ	1						ŀ
ļ	ļ	ļ					
100	1	00	·				
ou 1	80	88	. 10	<u>'</u>			
- 1	1	\ 			 		
J I	!	1	 		 		
97 I	95	08 1	g7		 		
01	ا ده	70	ا ده ا		 		
 	 				l 1		1
1)	!	
90	91 !	92 I	93	 	: 		
1	1	·- [! 	 		
1	! 			!	<u> </u>		
' 	! 		! 		i		
1	' 	1		<u> </u>			
ļ	ļ						
j	j				İ		
j	j			İ			
	-018 AB METH LANK -	-018 -019 AB METH LAB METH LANK BLANK - -	AB METH LAB METH LAB METH LANK BLANK - -	-018 -019 -020 -021 AB METH LAB METH	-018 -019 -020 -021 AB METH LAB METH	-018	-018

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Laboratory Director

3A - WATER VOLATILE MAT	TRIX SPIKE/I	MATRIX SPIKE DU	JPLICATE REC	OVERY	
Lab Name: General Testi	ing Corp.	Contract:			
Lab Code: Ca	ase No.:	_ SAS No.:		SDG No.:	_
Matrix Spike - EPA Samp	ole No. : R	93/02277 -001			
	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENT.	્રે	LIMITS
COMPOUND	(ug/l)	(ug/l)	(ug/l)	REC #	REC.
1,1-Dichloroethene	4950	0	3960	80	28-167
Trichloroethene	4850	908	5260	90	35-146
Benzene	5100	0	4250	83	39-150
Toluene	5250	0	4440	85	46-148
Chlorobenzene	5600	0	4900	88	38-150

COMPOUND	SPIKE ADDED (ug/l)	MSD CONCENT. (ug/l)	MSD % REC #	% RPD #	QC : RPD	LIMITS REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	4950 4850 5100 5250 5600	3430 4210 3970 4060 4740	69 68 78 77 85	14 22 7 9	30 30 30 30 30 30	28-167 35-146 39-150 46-148 38-150

- # Columns to be used to flag recovery and RPD values with an asterik
- * Values outside of QC limits

						outside		
Spike	Recove	ery:_	0	out	of	10	outside	limits
COMMEN	ITC •							
COMMEN								

BA - WATER VOLATILE MATR	IX SPIKE/MATRIX	SPIKE	DUPLICATE	RECOVERY
--------------------------	-----------------	-------	-----------	----------

Lab Name: General Testing Corp. Contract: ______

Lab Code: ____ Case No.: ____ SAS No.: ____ SDG No.:

Matrix Spike - EPA Sample No.: R93/02277 -011

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENT.	%	LIMITS
	(ug/l)	(ug/l)	(ug/l)	REC #	REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	19.8	0	19.4	98	28-167
	19.4	12.4	29.7	89	35-146
	20.4	0	17.4	86	39-150
	21.0	0	18.7	89	46-148
	22.4	0	20.9	93	38-150

COMPOUND	SPIKE ADDED (ug/l)	MSD CONCENT. (ug/l)	MSD % REC #	% RPD #	QC :	LIMITS REC.
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	19.8	19.0	96	2	30	28-167
	19.4	31.9	101	7	30	35-146
	20.4	17.8	87	2	30	39-150
	21.0	18.8	90	1	30	46-148
	22.4	21.6	96	3	30	38-150

- # Columns to be used to flag recovery and RPD values with an asterik
- * Values outside of QC limits

RPD: 0 out of 5 outside limits
Spike Recovery: 0 out of 10 outside limits

COMMENTS:

page 1 of 1

A Full Service Environmental Laboratory LABORATORY REPORT

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Job No: R93/02277

Date: 29 JUNE, 1993

	11			- 11	
	ii	REFER	ENCE CHECK	ii	
EPA METHOD 8010/8020	- 	TRUE	, x	 	ACCEPTANCE
		VALUE	RECOVERY	11	LIMITS (%)
Date Analyzed: 06/21/93	- 			11	
	H		Ì	ii	
Chloromethane	ii	20	125	ii	D - 193
Bromomethane	ii	20	90	ii	D - 144
Vinyl Chloride	11	20	96	ii	28 - 163
Chloroethane	ii	20	104	ii	46 - 137
Methylene Chloride	ii	20	100	ij	25 - 162
Trichtorofluoromethane	ii	20	72	ii	21 - 156
1,1-Dichloroethene	ii	20	94	ii	28 - 167
1,1-Dichloroethane	ii	20	80	ii	47 - 132
Total 1,2-Dichloroethene	ii	20	96	ii	38 - 155
Chloroform	ii	20	96	ii	49 - 133
1,2-Dichloroethane	ii	20	100	ii	51 - 147
1,1,1-Trichloroethane	11	20	103	ii	41 - 138
Carbon Tetrachloride	ii	20	100	ii	43 - 143
Bromodichloromethane	ii	20	87	ii	42 - 172
1,2-Dichloropropane	ii	20	105	ii	44 - 156
1,3-Dichloropropene-Trans	ii	20	NA NA	11	22 - 178
Trichloroethene	ii	20	104	ii	35 - 146
1,3-Dichloropropene(Cis)	ii	20	101	ii	22 - 178
Dibromochloromethane	ii	20	124	ii	24 - 191
1,1,2-Trichloroethane	ii	20	l NA	ii	39 - 136
2-Chloroethylvinyl Ether	ii	20	i NA	ii	14 - 186
Bromoform	ii	20	72	ii	13 - 159
1,1,2,2-Tetrachloroethane	ii	20	I NA	ii	8 - 184
Tetrachloroethene	ii	40	111	ii	26 - 162
Chlorobenzene	ii	40	101	ii	38 - 150
1,3-Dichlorobenzene	ii	40	97	ii	7 - 187
1,2-Dichlorobenzene	ij	40	83		D - 208
1,4-Dichlorobenzene	11	40	95	ii	42 - 143
Benzene	11	20	87	11	39 - 150
Toluene	ii	20	92	H	46 - 148
Ethylbenzene	ii	20	91		32 - 160
Total Xylene (o,m,p)	ii	20	91	H	45 - 148

A Full Service Environmental Laboratory LABORATORY REPORT

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Job No: R93/02277

Date: 29 JUNE, 1993

	!!			11	
	 -	REFER	ENCE CHECK	 	
EPA METHOD 8010/8020		TRUE	%	11	ACCEPTANCE
	11	VALUE	RECOVERY	П	LIMITS (%)
Data Applyands 06/3//07	· ·	• • • • • • • • • • • • • • • • • • • •	-		
Date Analyzed: 06/24/93	11		1	11	
Chloromethane	11	20	1 108	11	D - 193
Bromomethane	11	20	74	11	D - 144
Vinyl Chloride		20	76	11	28 - 163
Chloroethane	11 11	20	82	11	46 - 137
Methylene Chloride	11 11	20	78	 	25 - 162
Trichlorofluoromethane	11	20	66	[1	21 - 156
1.1-Dichloroethene	11	20	77	11	28 - 167
1,1-Dichloroethane		20	70	11	47 - 132
Total 1,2-Dichloroethene	11	20) 81	11	38 - 155
Chloroform	11	20	1 80	11	49 - 133
1,2-Dichloroethane	11	20	1 92	11	51 - 147
1,1,1-Trichloroethane	11	20	1 86	11	41 - 138
Carbon Tetrachloride	11	20	l 86	11	43 - 143
Bromodichloromethane	11	20	78	11	42 - 172
1,2-Dichloropropane		20	1 88	11	44 - 156
1,3-Dichloropropene-Trans	ii	20	l NA	11	22 - 178
Trichloroethene	ii	20	1 84	11	35 - 146
1,3-Dichloropropene(Cis)	ii	20	1 80	11	22 - 178
Dibromochloromethane	11	20	108	11	24 - 191
1,1,2-Trichloroethane		20	l NA	11	39 - 136
2-Chloroethylvinyl Ether	ii	20	l NA		14 - 186
Bromoform	ii	20	1 74	11	13 - 159
1,1,2,2-Tetrachloroethane		20	l NA	11	8 - 184
Tetrachloroethene	11	40	93	11	26 - 162
Chlorobenzene	11	40	1 86	11	38 - 150
1,3-Dichlorobenzene		40	88		7 - 187
1,2-Dichlorobenzene		40	82		D - 208
1,4-Dichlorobenzene	11	40	82	}	42 - 143
Benzene	H	20	80	H	39 - 150
Toluene	ii	20	83	ii	46 - 148
Ethylbenzene	ii	20	82	ii	32 - 160
Total Xylene (o,m,p)	ii	20	83	ii	45 - 148

GTC REPORT #: R93/02277

Sample Reference: Bldg. 200 Quarterly

Monitoring

FIELD DOCUMENTATION

Presented in this section is all support documentation requested.

Do	oci	ıme	ntation Provided:
(Χ)	Chain of Custody Forms
()	Analytical Request Forms
()	Shipping Receipts
()	Laboratory Receipt Log
(Х)	Other: Field Forms

710 Exchanç Rochester, N	ge Street	85 Trinity F Hackensa	Place		435 Lawi	rence E	Bell Dri	ve (GTC		1. 123/2 t No	<u>2</u> 7
Sample Origin	ation & Shi on Site	pping Informati	on .		X BLE							
Collecto	St	Das ()RB1	City			State	1	Si	L(i	Zip Lizz	
Bottles S	Pr Prepared by Shipped to C Shipped v	Client via	G		Seal	id by /Shippir /Shippir	ng#	- · - · · · · · · · · · · · · · · · · ·	ignatu			
Sample(s) Rel	inquished b	Y: BA	L	٠ سال چوپ	1. Sig						Date Tir	ne (1)
for 2. Sign for 3. Sign for		Crit			for 2. Sig for 3. Sig	n n					Bee	3 1
Sample(s) Rec	ceived in La	boratory by			for				6	17 93	@c 7 00	
Client I.D. #		ple Location ate/Time	*	Analyte C	Analyte or Group(s) Recow for addition	uired P	Samp reserved Y N	le Prep Filtere	ed		Set(s) below)	:
1 43/2277	B19 6/16/93	7-5R 10:05	į		13620			<u> </u>		1 (x	2)	
2 2	Bz	19-IJR	lu'							1		
~000	6/16/9	10:10									· · · · <u>· · · · · · · · · · · · · · · </u>	
3-+4	B-	16 -A 3 10 55	lu'					}		1,)		<u></u>
, 5	Be	26-5R	10						;	-		
. 6	82	6-IR	lu	~	17							
-006	6/16/9	3 11:05			Ψ	•	V	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\mathcal{V}		
Ise Bottle No. for	-											
Bottle No. Bottle Type # of each	40 mi Vial	Pint Qi Glass Gla	ss F	4 oz. Plastic	8 oz. 16 Plastic Pl	6 oz. astic	Ot. Pl	Gai. Pl.		9 Ster _P'		
dditional Analyte										· · · · ·		
Shaded area for	or Lab use	only; bottom co	py for c	client; max	kimum of 5 s	amples	per pag	е.				
Source Codes	,	g Well (W), Soil tream (R), Por				_						

710 Exchanç Rochester, N			/ Place ack, No	J 07601		Lawrenc erst, NY) Job. No nt Project	. <u>R93/5</u> No
Sample Origina	ation & Shi n Site		ation								
Collector	St Pr	reet Cr	3 (City JLBH	~		S	tate	Signal	AC L	Zip
Bottles S	repared by hipped to C Shipped vi	Client via	G			Seal/Ship	ping #	‡			
Sample(s) Reli . Sign	nquished b	Y: A	/ :	.2	R	eceived b	у:				Date Time
for Sign		Cie -				_for					1500
for Sign for						Sign for Sign for					<i>j</i>
Sampleis) Rec	erved in La:	coratory by _				7		-	6	17 93	@67:00
Client I.D. # Lab #	+	oie Location ate Time	*	Analyte C (see beld	(nalyte o Group(s) ow for a	or Required dditional)	S Prese	ample Pre erved Fil N Y	ep tered N	Bottle (see b	
R93/2-277	6/16/03	9-17	L	B.	101c	130,20	Y		<i>\\</i>		
007			1					<u> </u> 	<i> </i>		
-008		9-57. 3 DETO									·
9	7	- IR	W								
		BUSS									
10	BUTT	MCENT K-SHUDE JD	4F X			-					
-016	6/16/93	13:45	-								:
11+ac	SRS	bo-5	W								
1/+ac	6/16/93	1335			17				1		1
Bottle No. for i	ndicating ty	pe bottles us	sed in ea	ch bottle s	et and f	ill in box v	vith #	of bottles	used for	each type	
											10
ottle No.	40 mi Vial	Pnt (Gjass i Gl	Dt. a <u>ss</u> F	4 oz. Plastic F	8 cz. Plastic	16 oz. Plastic	Q P	t. G	al.	Stern Pl.	-
of each	:}	 									
ional Analytes											
naded area for											

GENERAL TESTING CORPORATION / CHAIN-OF-CUSTODY RECORD

710 Exchan Rochester, N	-	,			iwrence l		e GT0 77 Clie	C Job. No nt Project	<u>193/227</u> No.
	on Site	oping Informatio	on XI	OX E	ZJX	200			
Collecto	St	Bas 1	DLB/A			State	£	xpli	Zip Lan
Bottles S	Prepared by Shipped to C s Shipped vi	Client via	C35-	S	ec'd by <u>(</u> eal/Shippir eal/Shippir	ng #	Signa	ture	
Sample(s) Rel	linquished b		-		eived by:				Date Time C
1. Sign for		Frh(i.	La	1. 9	Sign				6/6/30
2. Sign					or Sign				700
for 3. Sign for				3. S	or Sign				
Sampleisi Rei	ceived in Lai	ocratory by			or		<u>6</u>	1793	@ 0 7 00
Client I.D. # Lab #	Da	ole Location ate:Time	★ Analyte (see be	Analyte or Group(s) Felow for add	lequired P	Sample reserved Y N	Prep Filtered Y N	Bottle (see b	
12	E-CHON PX 19N PSH	LETL	X^{1} Sch	-606/-	· /	1	Λ',	1	
R93/2/277	6/16/93	13:55	i i	'	`	1		1	1
13	SR à	200-2	W						
-013	6.17	93:450							!
3 14	'	200-1	· ;						
7014	6.17	93:502							
15		200-4					1		
-015	5 6 117	93:51							
5 /6	SR	200-3 193:5 ²⁰							
-016	. 6 117	193:5		7	١	/		<u></u>	
se Bottle No. for	indicating ty	pe bottles used	in each bottle	e set and fill	in box wit	h # of bot	ties used fo	or each type	3 .
Bottle No.	1	2 3	4	5		7	8	9	10
Bottle Type	40 ml Vial	Pint Ot. Glass Glass	4 oz. s Plastic	8 oz. Plastic	16 oz. Plastic	Ot. Pl.	Gai. Pi.	Steril Pl.	
# of each	2								<u> </u>
dditional Analyte	'S								
		nly; bottom copy Well (W), Soil (L) Hazardo	nus Waste (H)
	River or St	ream (R), Pond	(P). Industrial	l Discharge	(I),	- G(O),	(X),		

	ige Street 85 Trinity NY 14608 Hackensa	Place	435 Lawrenc Amherst, NY	e Bell Driv	ve GTC	C Job. No. <u>129 3</u> nt Project No.	
Sample Origin Collecti Address	nation & Shipping Information Site <u>XErrox</u> s	BLIC 20	7 <i>O</i>				
Collecto	or <u>Rok</u> ORG Print Prepared by	4AV City		State	70	Vila Zip	
Conecic	Print	1,7-			Signat		
Bottles	Prepared by Shipped to Client via s Shipped via	7	Recid by Seal/Ship Seal/Ship	ping #			v.
	linguished by:		Received b	y:		Date	Time
1. Sign /	List Unkner		1. Sign for			6 /	1793
2. Sign			2. Sign				1210
i for 3. Sign			for 3. Sign				
for			for			!	
Sampleis, Re	ceived in Lacoratory by	-			<u>(e</u>	1793 @07	دی
Client I.D. #	Sample Location	★ Analyte C	Analyte or	Sample	Prep	Bottle Set(s)	
Lab #	Date/Time	(see belo	Analyte or Group(s) Required ow for additional)	Y N	Y N	(see below)	
17	BiANK-	X 500	18020	X	X		
193/2277 -017	6 16 93 : 715				:		
							:
2	<i>i</i> :						
	:	:					
3							
4	,	-	····				
	:						
5	1 , , :		. <u> </u>				
	, , ,		·				
Jse Bottle No. for	indicating type bottles use	d in each bottle s	et and fill in box w	vith # of bot	tles used for	r each type.	
Bottle No.	. 2 3	4	5 6	7	8	9 10	
Bottle Type	2 3 40 ml Print Ot Vial Glass Gla	t 4 oz. ss Plastic I	8 oz. 16 oz. Plastic Plastic	Ot.	Gal.	Steril.	
# of each				• · · · · · · · · · · · · · · · · · · ·			
dditional Analyte							
Chod '						194 State Front Control Control	
	or Lab use only; bottom co)	k = 74 F:
Jource Codes.	Monitoring Well (W), Soil River or Stream (R), Pon	(3), Treatment F	riant (T), Drinking	vvater (D),	Leachate (L), Hazardous Wasi	e (H).

Site Location	Xero	X BLACE	200	Job Number	R93/2277
Well I.D.	B_	-195R		Lab Number	
PURGE INFORMAT	ION	_		Purge Method <u>F</u>	COI PUMP
Well Depth (ft)		2010). <u>(</u> ,		
Static Water Level (ft))	11.0	20)	HNU Meter Read	ina
Depth of Water Colur	nn (gal/ft)x_	8,5	8	Well Head	. ~
Well Constant (gal/ft):	x	0.10	<u>0</u>		Zone BG-
Volume standing in w					
					d Purge <u>69:4</u> 2.
Purge Observations_		UST - I	AN TIN		
Total Volume Purged	1.5	gallons		# of Volume Casir	ngs Purged / USC DCY
SAMPLING INFORM	ATION	Sample M	ethod TEFFI	IN RAILS	\
Sample Date: <u>روا</u>		Time:	0:05	Sample Depth:	11,62
Sample Appearance:			<u> </u>		
Recharge Time	_		Rate M		
<u> </u>		<u>.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			
FIELD MEASUREME				Rep	olicates
Meter	Number	Parameter	Unit Stnd.	1	2
BEN	MAN	рН	stnd	7.81	7.83
Cole	PARMER	Spec. Cond.	umhos/cm	1620	16-20
BEN	1 Km	Spec. Cond.	°Celsius	15.1	15.2
Crew Members	- (TT-)	7-			
Motor Calibration: D	ato/Time	10/1/2/3	7 ?	10.00	PH 701, 10.03, 4. Cowis = 1410
Weather 48 Hour Hist	ate/fille	011011		21 X X X	Cowis = 1410
FIELD OBSERVATION	NS: Weath	ie <u>r 500,000</u>	170°F	10-15 1	APH LUINDS
Weze	LOCKE	si Anuis i	N GEORG	(C. S) 1770,-	
		•			
∿ that sampling	procedures	were in accordanc	e with all apllicable	EPA, state and corp	orate protocols.
'Print)			Sas Un	BAC	
	$a \rightarrow$		_	Mean	
//	2115	_ Signature	Danc	Inkon	

Site Location XEICX BX 2	$\frac{200}{100}$ Job Number $\frac{293}{237}$
Well I.D. <u>13 - 19 D.R.</u>	Lab Number
PURGE INFORMATION Well Depth (ft) 60.28	Purge Method FOGI POMP STAINS
Static Water Level (ft)— 10.42 Depth of Water Column (gal/ft)x 49.86 Well Constant (gal/ft)x 0.16	HNU Meter Reading Well Head B6 Breathing Zone 656
Volume standing in well 8.0 gs Start of Purge: Date 6/6/93 Time Purge Observations C-LC-P4L TC) L (C-	09:45 End Purge 09:55
Total Volume Purged 13 gallons	# of Volume Casings Purged _ / , ちゃ
Sample Date: 6/6/3 Time: / C : // Sample Appearance: 10H7 Post - 17 Recharge Time Sample Recharge Rate Recharge Rate Recharge Rate Recharge Rate Sample Method/ Appearance:	W TINT
FIELD MEASUREMENTS	Replicates
	Stnd. 1 2
1	1000000000000000000000000000000000000
COLE PHYLLEN Spec. Cond. umho BELKINAN Temp °Ce	Isius 14.8, 14.7
Crew Members PTU BT Meter Calibration: Date/Time 6/16/93 Weather 48 Hour History 5000-600-600-600-600-600-600-600-600-600	10:00 LOCASY RAIN SHOWS
	00F 10-15 MPH WINDS
I certify that sampling procedures were in accordance with all a	
Sampler (Print)	
Date: 6 / 16 / 93 Signature Ba	Lle

Site Location XCT		200	Job Number <u>293</u>	Q277
Well I.D.	B \$26-A		Lab Number	3+1
PURGE INFORMATION Well Depth (ft)	3 6/01 16.7.		Purge Method <u></u>	DGI POMO
Static Water Level (ft)— Depth of Water Column (gal/ft)x Well Constant (gal/ft)x Volume standing in well	4.79	?	HNU Meter Readir Well Head A Breathing Z	Ba
Start of Purge: Date/ Purge Observations	16 193	Time /O	<u>30</u> End	Purge /O : 32
Total Volume Purged 2.0	gallons		# of Volume Casing	gs Purged (Voc. Div
Sample Date: 6/16/9. Sample Appearance: Recharge Time 23 i	Time:	ethod TET- 10:55 -17.27 Rate 5		
FIELD MEASUREMENTS Meter Number	Parameter	Unit Stnd.	Rep 1	licates 2
Ex= KNIAD	рН	stnd	7.91	7,92
COLPANS	Spec. Cond.	umhos/cm	2700	2740
Proximor	Temp	°Celsius	14.5	14.5
Crew Members	137			
Meter Calibration: Date/Time	6/16/19	3 /	0:00	
Meter Calibration: Date/Time Weather 48 Hour History	238 Inul	· P. CLOUS	s. PAN SI	to res
FIELD OBSERVATIONS: Wea	ther <u> ວັບນ</u> ຸນ	1 70° =	10-15 MARIA	
I certify that sampling procedure:	/)		EPA, state and corp	orate protocols.
Sampler (Print)	<u> Dos</u>	ORBAN		
Date: 6 / 16 / 9) Signature	RASI	. 0	

Site Location	X = 700	1 Papa	200	Job Number	R93/2277
Well I.D.			R	Lab Number	193 227) 5
PURGE INFORM	MATION			Purge Method F_{ℓ}	DOI ROMP
Well Depth (ft)		2010	20		
		5,8		1.10.0	
Depth of Water Co	olumn (gal/ft)x_	14,4		HNU Meter Readi Well Head_	<u> </u>
		011			Zone_126
Volume standing i	in well	213	gallons	-	
Start of Purge: [Date/_	16 193	Time /O	: <u>33</u> End	1 Purge 10 35
Purge Observation	ns	THU TIM	T		
Total Volume Purg	ged <u>5</u>	gallons		# of Volume Casin	gs Purged 2 UCL DIKY
SAMPLING INFO	RMATION	Sample M	lethod /=T=	OH BAIL	0
	011/0193	Time:	// · OA	Sample Depth:	115 31
		2UST-74			7 ()1 . 7]
		11N Recharge			
			Tiate	L	
FIELD MEASURE	EMENTS			Rep	olicates
Me	eter Number	Parameter	Unit Stnd.	1	2
Bus	ZKRIAN	рН	stnd	7.79	7.78
Con	ce power	Spec. Cond.	umhos/cm	2200	2200
Pre	KMAN	Temp	°Celsius	13.8	139
Crew Members	P.T.	R7-			
		6/16/	92 /	<u>'</u> つ・ひこ	
Weather 48 Hour	History Sy	mana 0		Charact P	HIN Stewary
Troduior ro riodi	7 monory	10104		CLUST A	THE STORY
FIELD OBSERVA	ATIONS: Weat	her SUNN	70°F	10-15 MPH	WINDS
					17XV
certify that samp	ling procedures	were in accordance	e with all anllicable	EPA, state and corp	orata protocols
Sampler (Print)		Bos	()16.20 /	El A, state and corp	5.210 protection.
Date: 6 /	16,43	Signature	Ball	Jal-	

Site Location XE7	20X BLDG	- 200	_Job Number	29.77
Well I.D.	_		Lab Number	The state of the s
PURGE INFORMATION	15		Purge Method F	DEA POMP STAIN
Well Depth (ft)	4012	<u>C</u>		STEEK Extilen
Static Water Level (ft)—	<u>()()</u>		HNU Meter Readir	na.
Depth of Water Column (gal/f	t)x34_,/	8	Well Head_	- A
Well Constant (gal/ft)x	0.16		Breathing Z	
Volume standing in well				
Start of Purge: Date	1 16 193	Time /	: <u>36 </u>	Purge /C: 45
Purge Observations	RUSTI- É	MOUSE		
Total Volume Purged	7gallons		# of Volume Casing	gs Purged / A D/Cv
SAMPLING INFORMATION	Sample M	ethod Ti=	ON BAIL	(3)
Sample Date: 6 / 16 / 4				
Sample Appearance.	1.00	_		
Recharge Time 20				
FIELD MEASUREMENTS			Ren	licates
Meter Number	Parameter	Unit Stnd.	1	2
Beckmen	pH ر	stnd	8.85	8.83
COLE PHANE	Spec. Cond.	umhos/cm	1490	1500
Petkum	Temp	°Celsius	14.5	14.5
Crew Members PSC	7. BT			
Meter Calibration: Date/Time	6 61 161	93 1	0:00	
Weather 48 Hour History	ONNY Ex	0= 1P.	CLOUDY PA	TN SHOWER
FIELD OBSERVATIONS: V	leather SUWWY	70°F	DIE MAH	hour
Witze Lexie	(es) Auto 11	J Gers	COND (7700	,
I certify that sampling procedu	ures were in accordance	e with all apllicable	EPA, state and corp	orate protocols.
Sampler (Print)	6	OB UKBA		'
•		0	<i>t</i> ~	
Date: 6 / /6/9	Signature	- Exh	Lla	

Site Location X2	OX BLD	G DCC	_Job Number	293/2277
Well I.D. B29	- A		_Lab Number	7
PURGE INFORMATION			Purge Method	Econ Pump
Well Depth (ft)	22.7	28		
Static Water Level (ft)—			LIND 4	
Depth of Water Column (gal/ft)x	١ ١		HNU Meter Readi Well Head_	
Well Constant (gal/ft)x	_	<i>t</i>		one Pa
Volume standing in well	22	gallons	Ţ.	
Start of Purge: Date//			: /5 End	1 Purge 17 : 17
Purge Observations	-t-17n-"	77/107		
Total Volume Purged 2.5 ga	allons		# of Volume Casin	gs Purged / / D/Ly
SAMPLING INFORMATION	Sample M	lethod IEFC	ON BAIL	4-71
Sample Date: 6/16/93				17,73 ft
Sample Appearance:	C-1. 1.7	91 2		
Recharge Time 27 mi	Recharge	Rate 5		
FIELD MEASUREMENTS			Por	olicates
Meter Number	Parameter	Unit Stnd.	1	2
DEKMAN	рН	stnd	8.69	8,72
COLE PHONE	Spec. Cond.	umhos/cm	500	505
COLE PHINE	Temp	°Celsius	12.8	12.9
	Q			
Meter Calibration: Date/Time	(3)			7.01,10,04,4,00
Meter Calibration: Date/Time	<u>e 10 1</u>	$\frac{75}{2}$	$\mathcal{Z}: \mathcal{D}$	CO-0=1410
weather 48 Hour History 3000	NY EC	1- P. Cis	CUDY RAIN	J SHERLYSS
FIELD OBSERVATIONS: Weather	SUNION AND IN	70°F	10-15 MI	UH WIND,
I certify that sampling procedures w	ere in accordanc	e with all apllicable	EPA, state and corp	orate protocols.
Sampler (Print)		John"	,	
Date: 6/1/0/93	Signature	Rall.	· 6_	

Site Location	FICH B	LPG Jan	Job Number	293/2277
Well I.D. Bo	29-5R		Lab Number	
PURGE INFORMATION			Purge Method F	DOL PORIH
Well Depth (ft)	30,0	7.9		
Static Water Level (ft)—	10.6	26	HNU Meter Readir	ng
Depth of Water Column (gal/ft)x_	1915	6	Well Head	
Well Constant (gal/ft)x	0.16	2		one_BG
Volume standing in well	3:1	gallons		
Start of Purge: Date/_	161 23	Time $\frac{1}{c}$: <u>20</u> End	Purge 12 23
Purge Observations	TAN	77~1		
Total Volume Purged 5	gallons		# of Volume Casing	gs Purged 1, 3 DZ
Sample Date: <u>(2//6/9/3</u>	Time:	2:50	Sample Depth:	<u> 23.78</u>
Sample Appearance:				
Recharge Time 27	Recharge	Rate	<u>ک</u>	
FIELD MEASUREMENTS			Ren	licates
Meter Number	Parameter	Unit Stnd.	1	2
TXXXIII	рН	stnd	7.92	7.90
Core parmen Beckman	Spec. Cond.	umhos/cm	590	580
BECKMINN	Temp	°Celsius	12.3	12.9
Crew Members FTC, 6	37			
Meter Calibration: Date/Time	61161	93 1	a :30	
Meter Calibration: Date/Time	1004 80	OF PICL	OUSH RAIN	Sitton ring
FIELD OBSERVATIONS: Weat	her Dinney	709 10 1 0 cm 0	-15 MPH	Luns
I certify that sampling procedures	were in accordance	()	EPA, state and corpo	orate protocols.
Sampler (Print)		3 CABAN		
Date: 6, 16, 93	Signature	Rak()	ê.	

Site Location	XENOX BUD	of Dev	Job Number	28/2377
Well I.D.	B29I	R	Lab Number	\sim \sim
PURGE INFORMATI			Purge Method Fo	KA POMP SHINE
	50.2		52/	CEE _ txt/lex
			HNU Meter Read	na
Depth of Water Colum	in (gal/ft)x		Well Head	<i>i</i> o
Well Constant (gal/ft)x	0.16		Breathing 2	Zone
Volume standing in we		gallons		
Start of Purge: Date	6/16/93	Time /	: <u>35</u> End	d Purge 12 : 46
Purge Observations_		~ TINT		
Total Volume Purged_	gallons		# of Volume Casin	gs Purged 15 Dizi
SAMPLING INFORMA	ATION Sample M	lethod /c=F2	KON BAIL	• .L - JL
Sample Date:/_	6 93 Time:			
Sample Appearance:	P-UST -1	310WN		•
	15 min Recharge			
FIELD MEASUREMEI		11 % 00 1	Rep	licates
Meter N	Number Parameter	Unit Stnd.	11	2
The There	Vr.ma pH	stnd	9.00	9,00
Corne	Spec. Cond.	umhos/cm	1100	1120
	Temp	°Celsius	13.8	13.7
Crew Members	RIVIBI			
	ite/Time <u>6 16 19</u>	3.	12:30	
	Dry SUNNY SE			(lex x25
		,		
FIELD OBSERVATION	NS: Weather <u>このいい</u>	100/=	10-15 MP1	4 WILLE
COEZE L	CULED FROM	_ N) Co	(CU)	Miles.
certify that sampling r	procedures were in accordanc	e with all applicable	EDA state and corn	orata protocola
Sampler (Print)			Li A, state and corp	orace protocols.
_	(1		
Date: (0 / /6	$\frac{2\sqrt{2S}}{\sqrt{S}}$ Signature	Mall V.	-la	

Site Location XCNOX BLDG DCC Job Number 293/2277
Well I.D. EDUIPHENT BLANK - SAMPLE CLIP Lab Number 10
PURGE INFORMATION Purge Method
Well Depth (ft)
Static Water Level (ft)—HNU Meter Reading
Depth of Water Column (gal/ft)x Well Head
Well Constant (gal/ft)x Breathing Zone
Volume standing in wellgallons
Start of Purge: Date/ Time : End Purge :
Purge Observations
Total Volume Purged gallons # of Volume Casings Purged
SAMPLING INFORMATION Sample Method - GILAB SAMPLE CLIP
Sample Date: 6/16/93 Time: 13:45 Sample Depth:
Sample Appearance: CLEAR-
Recharge Time Recharge Rate
FIELD MEASUREMENTS Replicates
Meter Number Parameter Unit Stnd. 1 2
BECKLIAN PH stnd 6,91 6,95
Confidence Spec. Cond. umhos/cm /2.5 /2.0
Conflamma Spec. Cond. umhos/cm 12.5 12.0 Percury Temp Celsius 18, 4 18.5
Crew Members RJU, BT
Meter Calibration: Date/Time 6 / 16 / 23 / 12: 30
Weather 48 Hour History
FIELD OBSERVATIONS: Weather $50.6 \times 7.59 =$
FIELD OBSERVATIONS: Weather SUNDY 759= SHMIPE THILETY BY POWERE DIF FROM Class OLIAN SANGE CLIP, INTO GRAP SHANGE VIOLE
Or in Space Child to the Court of the court
TO COLOR OF THE CO
I certify that sampling procedures were in accordance with all apllicable EPA, state and corporate protocols.
Sampler (Print) CP03 () CRAN
Date: (2/16/93 Signature Part (2)
bate

Site Location X	GROY BU	00 DOD	Job Number	1293/2277
Well I.D.	5R-200	-5	Lab Number	11+00
PURGE INFORMATION			Purge Method β	FUCY RUMP
Well Depth (ft)	13.2	5	<u></u>	
	9.7			
	gal/ft)x3_iS		HNU Meter Readii Well Head	-(<i>D</i>)
	0,1			one_BC
	.56		J	
Start of Purge: Date	6/16/93	Time13	: 25 End	1 Purge 13 : 28
	RIST-1			
Total Volume Purged	1. Q gallons		# of Volume Casin	gs Purged
SAMPLING INFORMATION	ON Sample &	1ethod 7(=)	Fron BA	<i>u</i> -3
,	21 93 Time: 1			9,77
	RUST-P		Затріе Беріп	
<u> </u>	MIN Recharge		=	
Tiodharge Time	recharge	Thate		
FIELD MEASUREMENTS	>		Rep	licates
Meter Num	nber Parameter	Unit Stnd.	1	2
BELLY	pH	stnd	7.50	7.53
Car for		umhos/cm	1560	1556
Buckey	Temp	°Celsius	18.6	1
Crew Members	+ 2 0-			
Meter Calibration: Date($\frac{1}{1} \frac{1}$	93	1) 30	
Weather 49 Hour History	Time <u>(e) 16 1</u> Sunny 800,	$\frac{13}{5}$	12:30 20	
Weather 40 Hour history_	JOHNY EUG	- 1012	LOUDY EAT	D SHOWEN
FIELD OBSERVATIONS:	Weather SUNN	JY 75 OF	2	
WATER	IN ANNUCL	25		
-				
Logitify that sampling prod	anduras ware in accordance	a with all as list to		
Sampler (Print)	cedures were in accordanc		EPA, state and corp	orate protocois.
Date: 6 //6 /	93 Signature	Ball	200	

Site Location XCDXX BLDC 200	Job Number 293/2077
Site Location XENCX BLOC 200 Well I.D. EQUIPMENT BLANK	Lab Number /2
PURGE INFORMATION	Purge Method
Well Depth (ft)	
Static Water Level (ft)—	HNILL Mactor Designs
Depth of Water Column (gal/ft)x	HNU Meter Reading Well Head
Well Constant (gal/ft)x	Breathing Zone
Volume standing in well gallons	<u> </u>
Start of Purge: Date / / Time	:End Purge:
Purge Observations	
Total Volume Purgedgallons	# of Volume Casings Purged
SAMPLING INFORMATION Sample Method ()	- Tani Bar
Sample Date: 6/16/57 Time: 13:55	Sample Depth:
Sample Appearance: CLEAR	
Recharge Time Recharge Rate	
FIELD MEASUREMENTS	Replicates
Meter Number Parameter Unit Stnd.	1 2
Present pH stnd	6195 6-97
Spec. Cond. umhos/cm	12.0 12.8
Spec. Cond. umhos/cm FETKING Temp °Celsius	18.4 19.5
Crew Members PJU B7	
Meter Calibration: Date/Time 6/6/93	· · · · · · · · · · · · · · · · · · ·
Weather 48 Hour History	
FIELD OBSERVATIONS: Weather SONN'S 7502	10-15 MPH WIMPS
SAMIRE TAKEN BY I	DORING DI FROM
FIELD OBSERVATIONS: Weather SONNY 7502 SPIMING TAKEN BY T CHILDRY (NTO A METERIAL CATH SAMPLE VIAZ	- KARICA THEN INTE
I certify that sampling procedures were in accordance with all apllicable	
Sampler (Print)	%
Date: 6/16/93 Signature Pal (2	Oes.

Site Location X EROX BLDG 200 Job Number R 93/2377 Well I.D. 5/2 200-2 Lab Number 1/3	
	h-d-la-
PURGE INFORMATION Purge Method SS BAILER	
Well Depth (ft) 32.20	
Static Water Level (ft)— 13, 17	
Depth of Water Column (gal/ft)x 9.08 HNU Meter Reading Well Head 36	
Well Constant (gal/ft)x	
Volume standing in well	
Start of Purge: Date $6 / 17 / 93$ Time $4 : 39$ End Purge $4 : 46$	
Purge Observations RUST TINT, HIGHLY TURBID	
Total Volume Purged 3 gallons # of Volume Casings Purged 2 70 07	7
SAMPLING INFORMATION Sample Method TEFLOW BAILER	
Sample Date: 6 / 17 , 93 Time: 4 : 50 Sample Depth: 7.56	
Sample Appearance: RUST TINT, HIGHLY TURPID	Π
Recharge Time 4 MINS Recharge Rate MEDIUM	
Recharge Hate ///CD/DIVI	
FIELD MEASUREMENTS Replicates	
Meter Number Parameter Unit Stnd. 1 2	
BECKMAN PH STA 7.44	
BECKMAN PH stnd 7.48 7.44 Coie Panmer Spec. Cond. umhos/cm 970 970	
BEGEMAN Temp °Celsius 21.6 21.6	
Crew Members CC, 37	
Meter Calibration: Date/Time $6/17/93$ 4.45 $pH=7.03, 10.04, 4$	12
Meter Calibration: Date/Time 6 1 17 193 4:45 PH=7.03, 10.04, 4 Weather 48 Hour History 80°F, LIGHT RAIN SUNNY 75°F P. CLOUDY	1410
Treather to flour floting of the Little of t	
FIELD OBSERVATIONS: Weather WELL INSIDE	
WELL COVERED LOCKED AND IN GOOD CONDITION	
I certify that sampling procedures were in accordance with all apllicable EPA, state and corporate protocols.	
Sampler (Print) Chris Condes	
Date: 6 1 17 1 93 Signature Clfld	

Site Location XER			Job Number	R93/2277
Well I.D.	R 200-1	Yaha	Lab Number	
PURGE INFORMATION			Purge Method	
Well Depth (ft)				
Static Water Level (ft)—				
Depth of Water Column (gal/ft)x		HNU Meter Reading	g)-12.5 <i>PP</i> M	
Well Constant (gal/ft)x			Breathing Zo	
Volume standing in well		gallons	J	
Start of Purge: Date		Time	:End	Purge :
Purge Observations				
Total Volume Purged	gallons		# of Volume Casing	s Purged
SAMPLING INFORMATION	Sample M	Method TEFL	ON BAILER	
Sample Date: 6 / 17 / 93			Sample Depth:	f
Sample Appearance: Rus				,
Recharge Time	•			
FIELD MEASUREMENTS			Repli	cates
Meter Number	Parameter	Unit Stnd.	1	2
BECKMAN	рН	stnd	7.94	7.95
COLE PARMER	Spec. Cond.	umhos/cm	1170	1150
BECAMAN	Temp	°Celsius	19.9	19.9
Crew Members <u>CC</u> , B7	_			
Meter Calibration: Date/Time		93	4:45	377
Weather 48 Hour History 80°	°F LICUT	1 4 1 1 () 1	1 700	E 2 (1042)/
Weather 46 Hour history 00	1, 4144,	CAIN, SUN.	N9 / 13 /	r, r. CLOUDY
FIELD OBSERVATIONS: Wea	ther WELL	INSIDE		
WELL CONNECTED	0 70 VES.	WELL	IN GOUD C	CNDITION
I certify that sampling procedure	s were in accordance	ce with all apllicable	e EPA, state and corpo	rate protocols.
Sampler (Print) Chris			·	
Date: 6 , 17 , 9 =		MARIA		
Date: 6 / / / / / / -	Signature (egill_		

Site Location	XEROX	BLDG. 2	00	Job Number R	93/2277	
Site Location	SR	200-4		_Job Number <i> </i> Z	15	
PURGE INFORMAT Well Depth (ft) Static Water Level (ft Depth of Water Colum	.)			Purge Method	g BG	
Well Constant (gal/ft)	<u></u>			Breathing Zo	ne_BC_	
Volume standing in v	vell	_/	gallons	·		
Start of Purge: Date	e/_		Time	:End	Purge::	
Purge Observations_	/			· · · · · · · · · · · · · · · · · · ·		
Total Volume Purged	<u> </u>	allons		# of Volume Casing	s Purged	
SAMPLING INFORM	1ATION	Sample N	Method TEFC	ON BAILER		
			_	Sample Depth:		f
Sample Appearance:						
Recharge Time		Recharge	e Rate			
FIELD MEASUREME Meter	ENTS Number	Parameter	Unit Stnd.	Repli 1	cates 2	
Beck	man	рН	stnd	7.46	749	
Cocé	PARMER	pH Spec. Cond. Temp	umhos/cm	930	910	
Bey.	man	Temp	°Celsius	21.4	21.4	
Crew Members	C, BT	-				
Meter Calibration: D	ate/Time	<u>e 17</u> 1	93	H : 45 NY / 754		
Weather 48 Hour His	tory 80°F	LIGHT.	RAIN, SUN	NY / 75%	SUNNY	
FIELD OBSERVATION				/		
WELL CONN				GOOD CO	VDITICN	
				·		
I certify that sampling Sampler (Print)	procedures v	vere in accordance	e with all apllicable	EPA, state and corpo	rate protocols.	
Date: 6 1 1			Phla	_		

Site Location YERU,	x BLOG	200	_Job Number/	293/2277	
Site Location XERU. Well I.D.	SR 200 -	3	_Lab Number		
PURGE INFORMATION			Purge Method		
Well Depth (ft)					
Static Water Level (ft)—		/	HNU Meter Readit	ng.	
Depth of Water Column (gal/ft)x_				BG-2.0	
Well Constant (gal/ft)x			Breathing Z		
Volume standing in well		gallons			
Start of Purge: Date		Time	: End	Purge:	
Purge Observations					
Total Volume Purged	gallons		# of Volume Casin	gs Purged	
SAMPLING INFORMATION	Sample N	Method TEXU	ON BAILER		
SAMPLING INFORMATION Sample Date: 6 17 193	Time:	5:20	Sample Depth:		
Sample Appearance: 121157	- TINT, N	10DERATEZ	Y TURBID		
Recharge Time			•		
FIELD MEASUREMENTS			•	olicates	
Meter Number	Parameter	Unit Stnd.	11	2	
BECKMAN	рН	stnd	7.84	7.84	
Coce Pannia	Spec. Cond.	umhos/cm	1030	1070	
Beckman	Temp	°Celsius	20.1	200	
Crew Members <u>CC</u> , 87					
Meter Calibration: Date/Time	6/17/	93	4.45		
Weather 48 Hour History 80°	F LIGHT	RAIN SU	INNY /	75% P. SUNNY	,
77.5dinsi 16 716di 7116tori)					
FIELD OBSERVATIONS: Weat					
WELL CONNECT	ED 70 VE	ES WELL	IN GOOD	CONDITION	
					- -
I certify that sampling procedures		ce with all apllicable	EPA, state and corp	orate protocols.	
Sampler (Print)	s Cordes				
Date: 6 /17 / 93	Signaturo	Clld-	_		

JUNE 24 1993

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, New York 14580

Re: Xerox - Bldg. 200 Borings

70092-44

Dear Mr. Scott Huber

Enclosed are the results of the analysis requested. All data has been reviewed prior to report submission. Should you have any questions please contact me at 454-3760.

Thank you for letting us provide this service.

Sincerely,

GENERAL TESTING CORPORATION

Sue Lochner

Customer Service Representative

Enc.

cc: Mr. Denis Conley - H&A of New York

GTC LIST OF QUALIFIERS

(The basis of this proposal are the EPA-CLP Qualifiers)

- U Indicates compound was analyzed for but was not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. For further explanation see case narrative / cover letter.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range and reanalysis could not be performed.
- A This flag indicates that a TIC is a suspected aldolcondensation product.
- N Spiked sample recovery not within control limits. (Flag the entire batch - Inorganic analytes only)
- * Duplicate analysis not within control limits.

 (Flag the entire batch Inorganic analysis only)
 - Also used to qualify Organics QC data outside limits. (Only used on the QC summary sheets)
- M Duplication injection precision not met (GFA only).
- S Reported value determined by Method of Standard Additions. (MSA)
- X As specified in the case narrative.

Sample Reference: Xerox - Bldg. 200 Borings 70092-44

ANALYTICAL DATA

Presented in this section is analytical data for the parameters requested. The following references concerning units and analytical methodology apply to the data herein.

Units: Inorganics = %
Organics = Soils - ug/kg Dry Wt.
Waters - ug/l

Analytical Methodology Obtained From:

- () Federal Register, 40 CFR Part 136, Guidelines Establishing
 Test Procedures for the analyses of Pollutants under the
 Clean Water Act, 10/26/84.
- (X) SW-846, Test Methods for Evaluating Solid Waste, 3rd Edition, 9/86.
- () Other:

LABORATORY REPORT

Job No: R93/02035

Date: JUNE 9 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Xerox - Bldg 200 Soil
Borings - 70092-44
CORRECTED COPY

Received

: 05/27/93

P.O. #:

	ANALYTICAL UNITS - %								
Sample:	-001	1				!		1	
Location:	B-18SR-S7]							
	1				1	1			
Date Collected:	05/25/93				!				
Time Collected:	14:00							[
	=======================================	=========	=========		=======================================	===========	==========	===========	
				1					
Date Analyzed:	05/27/93	!		1	1	1	 -		
Solids, %	90.4	1							
	1		1	!			[
	1		1			1	 	1	
				1			1	1	
	i .			1		ļ.,	<u> </u>	1	
1	1	1		1	1	1	1	1	
	Į	1		1	i	1	<u> </u>	i :	
	1	1		1	1	1	i	!	
İ	1	1	1	1	1	1	 	1	
1	I I	1	i I	1	[]	1	 	1	
	I I	1	1	1	[1	 	1	
1	1	1	l	I	Į.		I	l .	

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Laboratory Director

LABORATORY REPORT

Job No: R93/02035 Date: 9 JUNE, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference

Xerox - Bldg 200 Soil Borings - 70092-44 ***CORRECTED COPY***

Received

: 05/27/93

P.O. #:

					<u> </u>
ANALYSIS * BY GC	METHOD	8010/802	0 ANALYTICAL	RESULTS - ug/	kg Dry Wt.
Sample:		-001	1	1	1 1
Location:		8-18SR-S7		i]
Local Fort.			1 1	1]
Date Collected:		05/25/93]	Į Į	
Time Collected:	l PQL	14:00		<u> </u>	, , }
	;	::::::::::::::::::::::::::::::::::::::	 	, 	
Date Analyzed:	11	06/03/93	1 1	1	1
		5	iii	i	·
		 28 U	i	i	
1		 28 U		i	i
	• •		i	i	i
		[11 U [į į	j	i i
		1 19	į i	j	i i
] 5.5 U	iiii	İ	İ
1		5.5 U		j	İ
4		5.5 U	i		
1,2-Dichloroethene(Cis&Trans)		5.5 U	ii	i	i i
		5.5 U	į į	Ì	
1,2-Dichloroethane	1.0	5.5 U			
		60	İ		
Carbon Tetrachloride	1.0	5.5 U	i i		1
		5.5 U	ĺ		
1,2-Dichloropropane	1.0	5.5 U	ĺ		
1,3-Dichloropropene-Trans	2.0	11 U	i		1
Trichloroethene	1.0	86	ĺ	1	
1,3-Dichloropropene (Cis)	1.0	5.5 U	1		
Dibromochloromethane	2.0	11 U	1		
1,1,2-Trichloroethane	2.0	11 U	1	1	1
2-Chloroethylvinyl Ether	2.0	11 U		1	1
Bromoform	11 2.0	11 U	1		1
1,1,2,2-Tetrachloroethane] 2.0	11 U			1
Tetrachloroethene	1.0	85			1
Chlorobenzene	2.0	11 U	1	1	
1,3-Dichlorobenzene	2.0	11 U		1	
1,2-Dichlorobenzene	2.0	11 U			
1,4-Dichlorobenzene	[] 2.0	11 U		İ	
Benzene	2.0	11 U			1
Toluene	2.0	11 U			1
Ethylbenzene	2.0	11 U		İ	1
Total Xylene (o,m,p)	2.0	11 U			
Total Volatiles		250			1

LABORATORY REPORT

Job No: R93/02035

Date: JUNE 9 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Xerox - Bldg 200 Soil
Borings - 70092-44
CORRECTED COPY

Received

: 05/27/93

P.O. #:

ANALYSIS * BY GC	METHOD	8010/80	20	אאא	νπται	RESULTS	- %	
Sample:	METHOD	-001	<u>.</u> 0	 NIVAL	ITTCAL	KESCHIS	- o	1
Location:		B-18SR-S7	, 				' 	
		[1	1		1		
Date Collected:	•	05/25/93]	<u> </u>	
Time Collected:	LIMITS	14:00	 	 	<u> </u>	 	 	
	 		1	!	- 		 	
	1		1		! 	[' 	·
	1		1					
	1	1	I			1	<u> </u>	<u> </u>
		1						
SURROGATE STANDARD RECOVERIES	1] 	1	 	<u> </u> 	 	 	i i
% Recovery	1	 		 	! 	1	! 	;]
,	i		İ	•	· 	I		
Bromochloromethane	66-128%	69		1		I	1	
			1					
	1	1	1	<u> </u>	{ 1	 	!	[[
1-Chloro-3-Fluorobenzene	50-141%	 77	! 	1	1	1 {]	i
				1	1			
		1		ĺ	ļ	1	1	1
	1	1	1	1	1	!	!	1
a,a,a-Trifluorotoluene	55-131%	91		1			1	j 1
	 	1	 	1	 	1	1	
	 	1	1	1	1		1	1
	İ	i		Ì	İ			
	Ì				1	1	1	1

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Markey Committee of the

Laboratory Director

LABORATORY REPORT

Job No: R93/02035 Date: 9 JUNE, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580

Sample(s) Reference

Xerox - Bldg 200 Soil Borings - 70092-44 ***CORRECTED COPY***

Received

: 05/27/93

P.O. #:

			03/21/			F.O. #.		
ANALYSIS * BY GC	ME	THOD	8010/80	20 A	NALYTICAL	RESULTS -	ug/l	
Sample:			-002	-003	1	1	I	t
Location:			DRILLWATER	•	1		1	!
			1	BLANK	i	1	i	
Date Collected:	1		05/26/93	05/25/93				;
Time Collected:	İ	PQL	15:10	NA		i	ì	i
***************************************	=====:		' :==========	, ==========		' ====================================	' :====================================	, ===========
Date Analyzed:	11		05/27/93	05/27/93	1	1		1
Dilution:	\parallel		1]1	1 1		ĺ	
Chloromethane	11	5.0	5.0 U	5.0 U	1	1	ĺ	İ
Bromomethane	\Box	5.0	5.0 U	5.0 U			I	İ
Vinyl Chloride	11	2.0	2.0 U	2.0 U	1	1	1	
Chloroethane	11	2.0	2.0 U	2.0 U	1	l		
Methylene Chloride	11	1.0	1.2 B	1.5 B	1	1	1	
Trichlorofluoromethane		1.0	1.0 U	1.0 U	1		1	1
1,1-Dichloroethene		1.0	1.0 U	1.0 U		1	ĺ	l
1,1-Dichloroethane	11	1.0	1.0 U	1.0 U		1	I	1
1,2-Dichloroethene(Cis&Trans)	1.0	1.0 U	1.0 U	i i	İ	į	1
Chloroform	11	1.0	22	1.0 U			ĺ	
1,2-Dichloroethane	\Box	1.0	1.0 U	1.0 U			1	1
1,1,1-Trichloroethane	11	1.0	1.0 U	1.0 U	1	1	1	
Carbon Tetrachloride	Π	1.0	1.0 U	1.0 U	1	1	1	1
Bromodichtoromethane	Π	1.0	2.8	1.0 U	1	1		j
1,2-Dichloropropane	11	1.0	1.0 U	1.0 U	1	!		
1,3-Dichloropropene-Trans	Π	2.0	2.0 U	2.0 U	1			1
Trichloroethene	11	1.0	ט 1.0 ט	1.0 U			1	1
1,3-Dichloropropene (Cis)	П	1.0	1.0 U	1.0 U	1		1	1
Dibromochloromethane	П	2.0	2.0 U	2.0 U			1	1
1,1,2-Trichloroethane	\parallel	2.0	2.0 U	2.0 U	1		1	1
2-Chloroethylvinyl Ether	П	2.0	2.0 U	2.0 U	1		1	1
Bromoform	П	2.0	2.0 U	[2.0 U	1		1	1
1,1,2,2-Tetrachloroethane	11	2.0	2.0 U	2.0 U	1		1	1
Tetrachloroethene	[1	1.0	1.0 U	1.0 U			1	1
Chlorobenzene	11	2.0	2.0 U	2.0 U		1	1	1
1,3-Dichlorobenzene	11	2.0	2.0 U	2.0 U		1	1	
1,2-Dichlorobenzene		2.0	2.0 U	2.0 U		}	1	
1,4-Dichlorobenzene		2.0	2.0 U	2.0 U		1	1	
Benzene	11	2.0	2.0 U	2.0 U	1	1	1	
Toluene	11	2.0	2.0 U	2.0 U	†	!		
Ethylbenzene	\Box	2.0]] 2.0 U	[2.0 U	1	<u> </u>		
Total Xylene (o,m,p)		2.0	2.0 U	2.0 U	1	1		
Total Volatiles	11		24.8	ND	1	1	İ	
								******* ***

LABORATORY REPORT

Job No: R93/02035

Date: JUNE 9 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Xerox - Bldg 200 Soil
Borings - 70092-44
CORRECTED COPY

Received

: 05/27/93

P.O. #:

ANALYSIS * BY GC	METHOD	8010/80	20	ANAI	LYTICAL	RESULTS	- %	
Sample: Location:		-002 DRILLWATER	-003 TRIP] 	 -] I '	
			BLANK		! 	! 		ĺ
Date Collected: Time Collected:	•	•	05/25/93 NA	1	 	 	 	l I
	=======================================	:========	=======================================		! =========	 ============	, ============	
			1	1	 1	<u> </u>	[1	
	 	 	 	1	!]	1 1	 	
	1		1		1			
SURROGATE STANDARD RECOVERIES	i 1		1		! 	1	!]	
		İ	į			1		
% Recovery			1		 	 	 	
Bromochloromethane	60-138%	70	91		İ	İ	<u>.</u>	!
	 	1		 	<u> </u> 	!	! 	<u> </u>
		i	İ	1	<u>.</u>	İ	ļ	<u> </u>
1-Chloro-3-Fluorobenzene	60-134% 	106	106 	 	<u>[</u>	1	1	1
		1		İ	İ	Ì	!	<u>.</u>
a,a,a-Trifluorotoluene	 60-134%	 100	1 99	1	1		 	1
4,2 ,2					i	i	į	
	1	1	1	!	1		1	1
}	1				i		i	i
1	1	1] I		
			!	1	1			
	I	1	ŀ	1	1	1	l	1

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

mad & Person

Laboratory Director

LABORATORY REPORT

Job No: R93/02072

Date: JUNE 9 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Xerox - Bldg. 200 Soil
Borings #70092-44
CORRECTED COPY

Received : 05/29/93 P.O. #: C6446819

	ANALYTICAL UNITS - %							
Sample:	-001	Ī	l			I	İ]
Location:	R200-9-S2]	1	!		1	
		1		1				
Date Collected:	05/27/93	1		1	1	1		1
Time Collected:	14:45			1	1	1	1	
		======================================			======================================			
	1 04 404 403	1			1	!	!	
Date Analyzed:	06/01/93					1	,	
	1 02 5			!	1	1	1]
Solids, %	92.5		1		1	1		
	1	1	1	1	}	1	ļ I	1
	1	1	1	1	1	 	 	1
	l L	1	1	1	1 1	! !	 	} 1
	1	 	i 	1	I I	}	l İ] [
	1	1	1	1	i I	; }	 	'
	1	 	! !	1	! 	1	! 	<u>'</u>
	, I	1	1	1	i I	! 	1	
	İ		, 			' 	1	
	İ	i		1	1	1		<u>'</u>
	i	i			1	i I		
	•	,	•	1	•	•		•

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Marine S. Comment

Laboratory Director

LABORATORY REPORT

Job No: R93/02072 Date: 9 JUNE, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference

Xerox - Bldg. 200 Soil Borings #70092-44 ***CORRECTED COPY***

Received

: 05/29/93

P.O. #: C6446819

		. 03/23/33			0110015	
ANALYSIS * BY GC	METH	OD 8010/8020	ANALYTICAL	RESULTS -	ug/kg Dry	Wt.
Sample:		-001	1	I	ı	1
Location:		R200-9-S2	iii	i	i	
		i	i i	İ	i	
Date Collected:	1	05/27/93			ĺ	
Time Collected:	j PQ1	. 14:45	1	1	1	1
=======================================	=======	: =======		======================================		=======================================
Date Analyzed:	11	06/04/93	1 1		1	1
Dilution:	11	5	1	1	1	1
Chloromethane	5.0) 27 U	1	1	1	1
Bromomethane	5.0	27 U	1	!	1	1
Vinyl Chloride]] 2.0) 11 U	1	1	ŀ	i
Chloroethane	2.0) 11 U	1			1
Methylene Chloride	1.0) 5.4 U	1	1	1	1
Trichlorofluoromethane	1.0) 5.4 U	1		1	1
1,1-Dichloroethene	1.0) 5.4 U	1	!		1
1,1-Dichloroethane	1.0) 5.4 U	1			1
1,2-Dichloroethene(Cis&Trans)	1.0) 5.4 U	1 1	1		
Chloroform	1.0) 5.4 U	1	1		1
1,2-Dichloroethane	1.0) 5.4 U	1	1		1
1,1,1-Trichloroethane	1.0) 5.4 U	1	Ī	I	
Carbon Tetrachloride	1.0) [[5.4 U	i i	İ	ĺ	
Bromodichloromethane	1.0) 5.4 U	į	Ì	1	Ì
1,2-Dichloropropane	1.0) 5.4 U	i	İ		i
]] 2.0) 11 U	i	Ì	İ	Í
Trichloroethene	1.0	0 8.6		Ì		ĺ
	1.0) 5.4 U	i		Ì	İ
Dibromochloromethane	1 2.0) 11 U	i	i	i	İ
1,1,2-Trichloroethane]] 2.0) 11 U	i i	i	i	i
2-Chloroethylvinyl Ether]] 2.0	• • •	i i	i	i	i
Bromoform	1 2.0		i i	i	i	i
1,1,2,2-Tetrachloroethane]] 2.0) 11 U	i	i	i	i
Tetrachloroethene	jj 1.0	, ,	į į	İ	i	i
Chlorobenzene	11 2.1	, ,	i		İ	i
1,3-Dichlorobenzene	2.1		i i	i	i	i
1,2-Dichlorobenzene	2.0		i	1	i	i
1,4-Dichlorobenzene	2.0	, ,	[[;	i	İ
Benzene	1 2.0		i I		1	1
Toluene	2.				İ	i
Ethylbenzene	1 2.				İ	i
Total Xylene (o,m,p)	[] 2.	• •		Ì	i	·
Total Volatiles	11	18.6	,	İ	i	i
	• • • • • • • • • • • • • • • • • • • •					

LABORATORY REPORT

Job No: R93/02072

Date: JUNE 9 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Xerox - Bldg. 200 Soil
Borings #70092-44
CORRECTED COPY

Received : 05/29/93 P.O. #: C6446819

ANALYSIS * BY GC Sample:	METHOD	8010/80	2 0 I	ANAI	LYTICAL	RESULTS	- %	
Location:		R200-9-S2	 	 				
Date Collected: Time Collected:	LIMITS	 05/27/93 14:45	! 					
; ====================================	======================================	======================================	========= 	 		========= 	======================================	
	[-	 			 	<u> </u>	<u> </u>
	1	 	 				<u> </u>	
SURROGATE STANDARD RECOVERIES	1 	 	!	 	 	 	 	l
% Recovery] [1	 	[i 1]
Bromochloromethane	66-128%	77	 	· 	, 	 	 	
	1	! !	1	1	 	! 	 	,
1-Chloro-3-Fluorobenzene	50-141%	1 77	1	<u> </u>	 			1
	! !] 	 		! 	<u> </u>		<u> </u>
a,a,a-Trifluorotoluene	 55-131%	 89	1	 	 	 	 	!
	[1] [
		1	[1	 	1	 	
			1	1	1	1		

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Mild F. Compo

LABORATORY REPORT

Job No: R93/02072 Date: 9 JUNE, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580

Sample(s) Reference

Xerox - Bldg. 200 Soil Borings #70092-44 ***CORRECTED COPY***

Received : 05/29/93 P.O. #: C6446819

				1.0. η. 0044	
ANALYSIS * BY GC	METHO	8010/8020	ANALYTICAL	RESULTS - ug/	1
Sample:		-002	1 !	i I	1
Location:		TRIP BLANK	iii	, i	i i
	-	_i i	ii	i	;
Date Collected:		05/27/93		j	ĺ
Time Collected:	PQL	NA	1	1	İ
=======================================	**=======	=======================================			=======================================
Date Analyzed:	11	06/03/93			1
Dilution:		1		1	
Chloromethane	5.0	5.0 U		1	
Bromomethane	5.0	5.0 U			
Vinyl Chloride	2.0	2.0 U		1	
Chloroethane	2.0	2.0 U	1	1 1	
Methylene Chloride	1.0	1.0 U]	1 1	
Trichlorofluoromethane	1.0	1.0 U			
1,1-Dichloroethene	1.0	1.0 U		1	1
1,1-Dichloroethane	1.0	1.0 U			
1,2-Dichloroethene(Cis&Trans)	1.0	1.0 U		1 1	
Chloroform	1.0	1.0 U		1 1	
1,2-Dichloroethane	1.0	1.0 U		ĺ	į
1,1,1-Trichloroethane	1.0	1.0 U	1	į į	i
Carbon Tetrachloride	1.0	1.0 U	i	ì	i
Bromodichloromethane	1.0	1.0 U	iii	i	İ
1,2-Dichloropropane	1.0	1.0 U	ii	i	i
1,3-Dichloropropene-Trans	2.0	2.0 U	i		i
Trichloroethene	[[1.0	1.0 U	i	i	Ì
1,3-Dichloropropene (Cis)	1.0]] 1.0 U		i i	,
Dibromochloromethane	2.0	2.0 U	i	, , , , , , , , , , , , , , , , , , ,	! !
1,1,2-Trichloroethane]] 2.0] 2.0 U		! !	1
2-Chloroethylvinyl Ether	2.0	2.0 U		i i) †
Bromoform	2.0	2.0 U		i i	1
1,1,2,2-Tetrachloroethane	2.0	2.0 U	i i	1 I	
Tetrachloroethene	1.0	1.0 U	, l	1 1	i İ
Chlorobenzene	2.0	2.0 U	I I		ļ i
1,3-Dichlorobenzene	11 2.0	2.0 U	I I		!
1,2-Dichlorobenzene	1 2.0	2.0 U	I I		
1,4-Dichlorobenzene	1 2.0	1 2.0 U	I 1	į	
Benzene	11 2.0	2.0 U	I		ļ
Toluene	1 2.0		1	!	
Ethylbenzene	1 2.0	2.0 U		<u> </u>	
Total Xylene (o,m,p)	, ,	2.0 U		ļ .	
Total Volatiles	2.0	2.0 U		<u> </u>	!
rotat votatites	11	ND	1		ł
		•	• • • • • • • • • • • • • • • • • • • •		

LABORATORY REPORT

Job No: R93/02072

Date: JUNE 9 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Xerox - Bldg. 200 Soil
Borings #70092-44
CORRECTED COPY

Received : 05/29/93 P.O. #: C6446819

ANALYSIS * BY GC	METHOD	8010/80	20	ANAI	YTICAL	RESULTS	- %	
		-002	 					
Location:		TRIP BLANK]		J :
		105 107 107		'				!
Date Collected: Time Collected:	•	05/27/93 NA	1			 	ļ I	1
======================================	•	NA 	 ==========	 ====================================	 	! ==========	 ============	 =========
	1		ŧ		1	1	1	1
		Ì		· 		İ		
	1		1					
					1	1	1	 -
SURROGATE STANDARD RECOVERIES	 	1		1	 	,	} I	<u> </u>
SURRUGATE STANDARD RECOVERTES	1	! 	! !	} 	 	} 	 	
% Recovery	, 	i i	1	! 	! 	i		<u>'</u>
·	İ	İ	I					i
Bromochloromethane	60-138%	76	1		1	I		1
	1	!	<u> </u>	<u> </u>	ļ			!
	}	1	1	1			1	<u> </u>
1-Chloro-3-Fluorobenzene	 60-134%	l l 85	Į į	\ 1	 	 	} I	!
T CITOTO S TEACH OSCILLENE	1 00 134%	65	1	 	 	1	I 	†
	i	i	1		1	†		,
	İ	1				İ		ĺ
a,a,a-Trifluorotoluene	60-134%	99		1	1	l		1
					<u>}</u>			i
	1	1	1] 	 	 	1
	1	1	 	! 	! 	! }	! !	1
		İ		İ	ļ			, I
	Ì	İ	İ			Ì		1
	1		1	I	1		l	1
	1		1	1	1		1	

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Laboratory Director

LABORATORY REPORT

Job No: R93/02308

Date: JUNE 24 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, New York 14580 Sample(s) Reference:

Xerox - Bldg. 200 Borings

70092-44

Received

: 06/15/93

P.O. #: C6446819

ANALYTICAL UNITS - %							
Sample:	-001	1	1	1	1	ı	1
Location:	DR200-7-S3	1				1	
					1	1	
Date Collected:	06/14/93			1	1	l	
Time Collected:	12:43		1		1		
		=======================================	=========				
			1		ŀ		ļ
			1	ļ	ļ		
Solids, %	84.4		1	1	ļ		
					ļ		
		1	l		l	1	
	1		1	l	ļ		
			l	l	!	!	l
		1	I		1	1	
4			l		l l		ļ
		İ	ļ	1	l		
			ļ	!		!	!
			!	ļ			ļ
			!	ļ			!
		1]		1	
	!	1		ļ	ļ		ļ
	1			ļ		1	1

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145
NJ ID# in Rochester: 73331
NJ ID# in Hackensack: 02317
NY ID# in Hackensack: 10801

Michael & Remove

LABORATORY REPORT

Job No: R93/02308 Date: 24 JUNE, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, New York 14580

Sample(s) Reference

Xerox - Bldg. 200 Borings

70092-44

Received

: 06/15/93

P.O. #: C6446819

		. 00/15/55		<u> </u>		
ANALYSIS * BY GC	METHOD	8010/8020	ANALYTICAL	L RESULTS	- ug/kg Dry	Wt.
Sample:		-001	I	l I		ŀ
Location:		DR200-7-S3	İ	i i	į	i
		_i i	İ	i i	i	i
Date Collected:	1	06/14/93	i	i i	i	i
Time Collected:	PQL	112:43	ĺ	1	1	Ì
******	=========	: :::::::::::::				=======================================
Date Analyzed:		06/16/93	1	! !	1	1
Dilution:	11	1 5	1			
Chloromethane	5.0	30 U		1	1	1
Bromomethane	5.0	30 U		1	1	
Vinyl Chloride	2.0	12 U	1	+ 1		1
Chloroethane	2.0	12 U		1	1	
Methylene Chloride	1.0	5.9 U		1	!	1
Trichlorofluoromethane	1.0	5.9 U	1	1	1	1
1,1-Dichloroethene	1.0	5.9 U	1	!		!
1,1-Dichloroethane	1.0	5.9 U		1		l
1,2-Dichloroethene(Cis&Trans)	1.0	5.9 U		1		1
Chloroform	1.0	5.9 U		1	!	1
1,2-Dichloroethane	1.0	5.9 U			1	1
1,1,1-Trichloroethane	1.0	5.9 U				1
Carbon Tetrachloride	1.0	5.9 U	1	1	1	
Bromodichloromethane	1.0	5.9 U	1	1	1	1
1,2-Dichloropropane	1.0	5.9 U	1	1	1	1
1,3-Dichloropropene-Trans	2.0	12 U		1	1	1
Trichloroethene	1.0	5.9 U	ĺ	1	1	1
1,3-Dichloropropene (Cis)	1.0	5.9 U	1	1	1	
Dibromochloromethane	2.0	12 U	1	1	1	1
1,1,2-Trichloroethane	2.0	12 U		1	1	!
2-Chloroethylvinyl Ether	2.0	12 UJ				1
Bromoform	1 2.0	12 U	ĺ	İ		1
1,1,2,2-Tetrachloroethame	2.0	12 U	ĺ			
	1.0	5.9 U	İ	i i	İ	1
Chlorobenzene	2.0	12 U	İ			1
1,3-Dichlorobenzene	2.0	12 U	Ì			1
1,2-Dichlorobenzene	2.0	12 U	İ	i i	Ì	
1,4-Dichlorobenzene	2.0	12 U	i	1	İ	
Benzene	1 2.0	12 U	į	i i		
Toluene	2.0	12 U	İ	1		1
Ethylbenzene	2.0	12 U	į	i		
Total Xylene (o,m,p)	2.0	12 U	i		Ì	
Total Volatiles	II	ND	İ	i	ĺ	
Total votatites		NU				••••••••••

LABORATORY REPORT

Job No: R93/02308

Date: JUNE 24 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, New York Sample(s) Reference:

Xerox - Bldg. 200 Borings

70092-44

Received

: 06/15/93

14580

P.O. #: C6446819

ANALYSIS * BY GC Sample:	METHOD	8010/80 -001	20 I	ANAI	LYTICAL	RESULTS	- %	1
Location:		DR200-7-s3 	† 	 		 	! 	;
Date Collected: Time Collected:		06/14/93 12:43	 	 	' 	! [!
	======================================	- ====================================	========== 	, ====================================	, ====================================	' ========== 	=========== 	' ========== {
	 	 	 	t I		 	 	[
SURROGATE STANDARD RECOVERIES	[[l 	 	 	 	[[
% Recovery	 	 	 	 	 	 	 	
Bromochloromethane	66-128% 	69 	 	 	 	 	 	
	[[<u> </u> 	<u> </u> 	 	 	 	 	
1-Chloro-3-Fluorobenzene	50-141% 	69 	 	 	1 1	 	 	
	1	 	<u> </u>	 	!	<u> </u>	 	
a,a,a-Trifluorotoluene	55-131% 	90 	1	1 1	 	1 1	 	
	 	 -		1	 	 	 	!
		 	<u> </u>	 	 	i 	 	

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Middle K. Renze

LABORATORY REPORT

Job No: R93/02308 Date: 24 JUNE, 1993

Client:

Sample(s) Reference

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, New York 14580

Xerox - Bldg. 200 Borings

70092-44

Received

: 06/15/93

ANALYSIS * BY GC	METHOD	8010/8020	ANALYTICAL	RESULTS - ug/	1
Sample:		-002	1 1		1
Location:		TRIP BLANK			1
		_]]	!	
Date Collected:		06/14/93			
Time Collected:	PQL	NA			
Date Analyzed:		06/19/93			
Dilution:		1	i		i i
Chloromethane		5.0 U	ĺ		i i
Bromomethane		5.0 U	İ		i i
Vinyl Chloride		2.0 U	İ	İ	i i
Chloroethane		2.0 U	j	İ	· '
Methylene Chloride	• •	1.0 U	j	İ	
Trichlorofluoromethane	1.0	1.0 U	İ	İ	i i
1,1-Dichloroethene		1.0 U	ĺ	Ì	·
1,1-Dichloroethane	1.0	[[1.0 U]	İ		İ
1,2-Dichloroethene(Cis&Trans) 1.0	1.0 U	Í		i i
Chloroform	1.0	1.0 U	ĺ		İ
1,2-Dichloroethane	1.0	1.0 U			İ
1,1,1-Trichloroethane	1.0	1.0 U	ĺ		İ
Carbon Tetrachloride	1.0	1.0 U	1		
Bromodichloromethane	1.0	1.0 U			İ
1,2-Dichloropropane	1.0	1.0 U	į		
1,3-Dichloropropene-Trans	2.0	2.0 U	ĺ		
Trichloroethene	1.0	1.0 U	į		
1,3-Dichloropropene (Cis)	1.0	1.0 U	Ì	İ	
Dibromochloromethane	2.0	2.0 U	Í		
1,1,2-Trichloroethane]] 2.0	2.0 U	Ì	1	
2-Chloroethylvinyl Ether]] 2.0	2.0 UJ		1	į
Bromoform	2.0	2.0 U	1	1	•
1,1,2,2-Tetrachloroethane	1 2.0	2.0 U	1		
Tetrachloroethene	1.0	1.0 U	1	1	1
Chlorobenzene	2.0	2.0 U			1
1,3-Dichlorobenzene	2.0	2.0 U			1
1,2-Dichlorobenzene	2.0	2.0 U		1	
1,4-Dichlorobenzene	2.0	2.0 U		[
Benzene	11 2.0	2.0 U		1	1
Toluene	2.0	2.0 U	1		
Ethylbenzene	2.0	2.0 U	1		
Total Xylene (o,m,p)	2.0	2.0 U	1		1
Total Volatiles	11	ND	1	1	1

LABORATORY REPORT

Job No: R93/02308

Date: JUNE 24 1993

Client:

Received

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, New York 14580 Sample(s) Reference:

Xerox - Bldg. 200 Borings

70092-44

Nobbooly New

: 06/15/93

P.O. #: C6446819

ANALYSIS * BY GC			20	ANAI	LYTICAL	RESULTS	- %	
Sample: Location:		-002 TRIP BLANK] 1					·
Location.		IIKIP BLANK] 		l I	 	
Date Collected:		06/14/93	1	 		!]]	
Time Collected:	LIMITS	•						
======================================	=========	=========	==== ==== :	========		*********	============	
]	!		<u> </u>		[
:	1	[1					
	([[] }	
	1	i	1	 	1	! 	!]	
SURROGATE STANDARD RECOVERIES		I	· 	· 			· 	
•••••		1	l				l	
% Recovery	!	1	<u> </u>	<u> </u>		<u> </u>		
, Bromochloromethane	 60-138%	 78	į 1					
Bi discritor disetilarie	60°136% 	10 	 	 		 	[1	
	, 		1	!]		! [l .	
		i İ				· 	· 	
1-Chloro-3-Fluorobenzene	60-134%	71	1	1		1]	
]							
					1			,
a,a,a-Trifluorotoluene	 60-134%	 86	1	 	<u> </u>	[<u> </u> 	
2,2, 2 *** *** *** *** **** **** **** **		,	1	 	! 	1	! }	
		i I			İ	, 	' 	
		i	1	1	1	İ	1	
]	!	!	<u> </u>	<u> </u>	!	!	
	 			 	1			
	! }	! !	 	 	 	 	 	
	! 	! 	1 	! {	! 	1 	! !	!
	I	I	I	1	ļ	i	1	1

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Sample Reference: Xerox - Bldg. 200 Borings

70092-44

LABORATORY QUALITY CONTROL

Presented in this section is Quality Control Associated with the analytical data of this report.

Quality Control Explanations:

- (1) RUN QUALITY CONTROL Selected QC data from the analytical run in which your sample(s) were involved.
- (2) JOB SPECIFIC QUALITY CONTROL QC data specific to your set of samples.
- (3) DUPLICATES Replicate analyses of a given sample used to monitor precision. Relative Percent Difference is calculated as the difference divided by the average x 100.
- (4) MATRIX SPIKES Addition of a known amount of analyte to a sample. Recovery is calculated by subtracting original value attributable to the sample from the combined value. The difference is then divided by the amount added to calculate % recovery. Poor recoveries may indicate analytical interference due to the matrix of the sample. Any other samples of this matrix may also have been affected, high or low as indicated by the % recovery.
- (5) LABORATORY CONTAMINANTS Laboratory De-ionized water used to monitor for contamination during analysis.
- (6) BLANK SPIKES Same as item #4 but analyte is added to laboratory de-ionized water. This indicates the accuracy of analysis.
- (7) REFERNCE CHECK SAMPLES Samples from an outside source having a known concentration of analyte. Used as a measure of analytical accuracy.

When possible, all components of the above listed QC protocol are performed during an analytical run. The resulting data is compared to historical records when evaluating the quality of analytical runs. The data provided in your report has passed our Quality Assurance review.

Quality Control Notes:

LABORATORY REPORT

Job No: R93/02035 Date: 9 JUNE, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580

Sample(s) Reference

Xerox - Bldg 200 Soil Borings - 70092-44 ***CORRECTED COPY***

Received

: 05/27/93

P.O. #:

ANALYSIS * BY GO	C ME	THOI	8010/	8020	ANALYT	ICAL RES	SULTS -	ug/l	
Sample:			-004	i	1	1	1	i	1
Location:			LAB MET	н ј	İ	į	i	i	i
			BLANK	1	Ì	İ	i	i	i
Date Collected:				1	1			1	
Time Collected:	1	PQL		1	1		1	1	
	=====	=====	========	========	=======================================	==========		========	
Date Analyzed:	Ш		05/27/9	3	1	1	1	1	
Dilution:	H		1		1	İ	1	1	1
Chloromethane		5.0	5.0 U	•	1	1	1	1	1
Bromomethane		5.0	5.0 U	•	1	1	l.	1	1
Vinyl Chloride		2.0	2.0 U	•	1	İ	1		1
Chloroethane		2.0	2.0 U	1	1	1]	1
Methylene Chloride	Ш	1.0	1 2.0]	İ			1	1
Trichlorofluoromethane	11	1.0	1.0 U	1	1	l	1		1
1,1-Dichloroethene	11	1.0	1.0 U	1	!	I	Į.	1	1
1,1-Dichloroethane	11	1.0	1.0 U	l	ļ	I	1	!	I
1,2-Dichloroethene(Cis&Tran	s)	1.0	1.0 U		1	l	İ		1
Chloroform	11	1.0	1.0 U	•			1		1
1,2-Dichloroethane	11	1.0	1.0 U		ļ	1	1		I
1,1,1-Trichloroethane	11	1.0	1.0 U	1			1		I
Carbon Tetrachloride	11	1.0	1.0 U			I	1		I
Bromodichloromethane	11	1.0	1.0 U		1	1	1		I
1,2-Dichloropropane	11	1.0	1.0 U				1		1
1,3-Dichloropropene-Trans	11	2.0	2.0 U			1	1		
Trichloroethene		1.0	1.0 U		1	I	1	1	
1,3-Dichloropropene (Cis)		1.0	1.0 U		1	I	I	[1
Dibromochloromethane	11	2.0	2.0 U		i	I	1	1	
1,1,2-Trichloroethane	11	2.0	2.0 U	1	-	I	1		İ
2-Chloroethylvinyl Ether	11	2.0	2.0 U	1	1	I	1		ĺ
Bromoform	11	2.0	2.0 U	1	1			ł	1
1,1,2,2-Tetrachloroethane	11	2.0	2.0 U	1	1		1	ŀ	Ì
Tetrachloroethene	11	1.0	1.0 U			I	1	1	ĺ
Chlorobenzene		2.0	2.0 U		ł		ĺ	ĺ	
1,3-Dichlorobenzene	\Box	2.0	2.0 U			ļ	1		Ì
1,2-Dichlorobenzene	11	2.0	2.0 U	1		i			
1,4-Dichlorobenzene	11	2.0	2.0 U	1	ĺ	j	İ		Ì
Benzene	\Box	2.0	2.0 U	1	į	!	Ì	i	i
Toluene	11	2.0	2.0 U		į	ļ	i	į	İ
Ethylbenzene	11	2.0	2.0 U		i		i	i	i
Total Xylene (o,m,p)	11	2.0	2.0 U	•		i	i	Ì	ļ
Total Volatiles	11] 2.0	i	i	i	i	i	i

LABORATORY REPORT

Job No: R93/02035

Date: JUNE 9 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Xerox - Bldg 200 Soil
Borings - 70092-44
CORRECTED COPY

Received

: 05/27/93

P.O. #:

ANALYSIS * BY GC	METHOD	8010/80	20	ANAI	YTICAL	RESULTS	- %	
Sample: Location:		-004 LAB METH	<u> </u>		<u> </u> 	[
Date Collected:	 I	BLANK	 			<u> </u>		
Time Collected:	LIMITS			1				
***************************************	:======= 	======================================	======================================	:======= 	:======= 	_======================================	:======= 	======================================
	l 				! 			1
		!	[<u> </u>	1	1		
	l [1	[]	 	1
SURROGATE STANDARD RECOVERIES		ĺ	1		<u> </u>	1		!
% Recovery	<u> </u>	1	1	[{	<u> </u> 	!	 	
	!	1	1	1	! 	İ	, 	1
Bromochloromethane	60-138%	84	1	ļ	İ			1
	I 	1	1	<u> </u>	 	1	 	1
	İ	i	İ	1		1	!	
1-Chloro-3-Fluorobenzene	60-134% 	103 I	1	j I	 	 	i I	1
	1						•	1
a,a,a-Trifluorotoluene	 60-134%	 99		1	1		1	
a,a,a-Trifituorototuene	00-134%	79	1	! [1	i	1	1
	ĺ		1		1	1	ļ	1
	 		1	<u> </u> 	[[1	 	} }
	1		1	İ	1	i	İ	i
	!		1	1	1	1	1	1
	1		1	1	1	1]]	1

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

LABORATORY REPORT

Job No: R93/02035 Date: 9 JUNE, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580

Sample(s) Reference

Xerox - Bldg 200 Soil Borings - 70092-44 ***CORRECTED COPY***

Received

: 05/27/93

P.O. #:

ANALYSIS * BY GC	METHOD	8010/802	0 ANALYTICAL	RESULTS - ug/	kg Wet Wt.
Sample:		-005	[1	1	!
Location:		JLAB METH		i I	
		BLANK		i	!
Date Collected:	1		i	j	1
Time Collected:	PQL	1	i	j	i i
******	========		=======================================	====================================	
	11	06/03/93		1	1 1
Dilution:	11	[5		1	
Chloromethane	5.0	25 U		1	1
Bromomethane	5.0	25 U			
Vinyl Chloride	2.0	10 U		1	1
	2.0	10 U	1	1	1
Methylene Chloride	1.0	5.0 U		1	
	1.0	5.0 U		1	1
1,1-Dichloroethene	1.0	5.0 U		1	1
1,1-Dichloroethane	1.0	5.0 U		1	1
1,2-Dichloroethene(Cis&Trans)	1.0	5.0 บ		1	1
Chloroform	1.0	5.0 U			1
1,2-Dichloroethane	1.0	5.0 U			1
1,1,1-Trichloroethane	1.0	5.0 U		ĺ	1
Carbon Tetrachloride	1.0	5.0 U		j	
Bromodichloromethane	1.0	5.0 U		Ï	
1,2-Dichloropropane	1.0	5.0 U		ĺ	İ
1,3-Dichloropropene-Trans	2.0	10 U		Ï	i i
	1.0	[5.0 U		j	İ
		5.0 U		j	i i
]] 2.0	10 U	i	į	ĺ
	• •	10 U	į	j	i i
]] 2.0	10 U	j	j	i
	2.0	10 U	ii	j	i i
1,1,2,2-Tetrachloroethane]] 2.0	10 U	i i	j	i i
Tetrachloroethene	1.0] 5.0 U		i	
Chlorobenzene	 2.0	10 U		ļ	· ,
1,3-Dichlorobenzene	2.0	10 υ	i	, 	, , , , , , , , , , , , , , , , , , ,
1,2-Dichlorobenzene	2.0	10 U	, ,	j	, , , , , , , , , , , , , , , , , , ,
1,4-Dichlorobenzene	2.0	10 0		1	
Benzene	2.0	10 0		1	1
Toluene	2.0	10 U		1	, ,
Ethylbenzene] 2.0	10 0	'	1	, , , , , , , , , , , , , , , , , , ,
Total Xylene (o,m,p)] 2.0	[10 U]		1	,) []
		ND		!	1
		11 ""			1

LABORATORY REPORT

Job No: R93/02035 Date: JUNE 9 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580

Sample(s) Reference:

Xerox - Bldg 200 Soil Borings - 70092-44 ***CORRECTED COPY***

Received

: 05/27/93

P.O. #:

ANALYSIS * BY GC			20	ANAI	YTICAL	RESULTS	- %	
Sample:		-005	1	1		! !	!	
Location:		LAB METH	1			ļ		
1	•	BLANK				!		
Date Collected:	1			;		<u> </u>		,
Time Collected:	LIMITS		1		·	 		<u> </u>
		·	1		:=====================================	::::::::::::::::::::::::::::::::::::::	. 	:
ŀ	 	1	 	 		[[
	1	1	 	 	l 	!	l 	' !
İ	1	1	1	I I) 	i !	 	¦
Ī	1	1	1	1	! [1	! 	1
SURROGATE STANDARD RECOVERIES	1	ł	1	,	, 	[· 	i
		; 				İ	' 	i i
% Recovery	İ	Ì	İ]	Ì		
1		ĺ		Ì		1	1	1
Bromochloromethane	66-128%	76		1				1
1	1	!					İ	1
	1	1	1	1		I		
	1		1		1		1	
1-Chloro-3-fluorobenzene	50-141%	87		Į.	1		!	<u> </u> -
	!		<u> </u>					<u> </u>
1								1
. Voidlusseeluss	 FE 1719			1	j	1	į t	1
a,a,a-Trifluorotoluene	55-131%	96	1	1	 	1	ļ 1	1
1		1	1	l I	1	1	 	
1	1	1	l t	 	1	1	1	1
i	1	 	1	l L	1	1	1	1
	1]	1	! !	1	1	1	1
	ļ	ı	1	1	I .	1	i	1

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

LABORATORY REPORT

Job No: R93/02072 Date: 9 JUNE, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580

Sample(s) Reference

Xerox - Bldg. 200 Soil Borings #70092-44 ***CORRECTED COPY***

Received

: 05/29/93

ANALYSIS * BY GC	METHOD	8010/80	20 ANAL	YTICAL RES	ULTS - u	g/l	
Sample:		-003	1 1	1	1	1	ı
Location:		LAB METH	i i	i	i	i	i
		BLANK	i i	i	i	i	<u>.</u>
Date Collected:	1		İ	i	i	i	
Time Collected:	PQL	·-	i i	i	i	İ	İ
Date Analyzed:	:======== 	:======== 06/02/93			:=====================================		======================================
Dilution:	ii .	111	i i	i	i	i	i
Chloromethane	5.0	5.0 U	i	i	i		1
Bromomethane	5.0]] 5.0 U	i	i	İ	i	1
Vinyl Chloride	11 2.0]] 2.0 U	i i	i	i	!	
Chloroethane	2.0]] 2.0 U	i i	i	i	i	i
Methylene Chloride	• •	1.0 U	i	i	i		, I
Trichlorofluoromethane	1.0	1.0 0		i	i	i	i I
1,1-Dichloroethene	1.0] 1.0 ປ	i	i	i		!
1,1-Dichloroethane	1.0	1.0 u	i i	i	i	İ	i I
1,2-Dichloroethene(Cis&Trans)	1.0	1.0 U	i	i	i	İ	!
Chloroform	1.0	1.0 U	i i	i	i	i	[
1,2-Dichloroethane	1.0] 1.0 U	i	i	i	i	I
1,1,1-Trichloroethane	1.0	1.0 U		i	i	i	İ
Carbon Tetrachloride	11 1.0	1.0 U	i i	i	i	i	İ
Bromodichloromethane]] 1.0] 1.0 U	i i	i	i	i	i İ
1,2-Dichloropropane]] 1.0	1.0 U	i i	į	i	i	İ
1,3-Dichloropropene-Trans	2.0	2.0 U	i	i	i	i	1
Trichloroethene	[] 1.0	1.0 U	i i	i	i	i	i
1,3-Dichloropropene (Cis)	[] 1.0	1.0 U	i i	i	i	i	I
Dibromochloromethane]] 2.0	2.0 U	i i	i	i	i	i
1,1,2-Trichloroethane	[] 2.0	2.0 U	i i	i	i	i	i İ
2-Chloroethylvinyl Ether	2.0	[] 2.0 U	i i	i	i	i	i İ
Bromoform	2.0	2.0 U	i i	i	i	i	i İ
1,1,2,2-Tetrachloroethane	2.0	[] 2.0 U	i i	i	i	i	Į
Tetrachloroethene	1.0	1.0 U	i i	i	İ	i	İ
Chlorobenzene	2.0	2.0 U	i i	ļ	i	i	
1,3-Dichlorobenzene	2.0	2.0 U	i i	į	i	i	i
1,2-Dichlorobenzene	2.0	2.0 U	i i	,	ĺ		Ì
1,4-Dichlorobenzene	1 2.0	2.0 U		Í	i	i	
Benzene	1 2.0	2.0 U	i		İ	i	1
Toluene	2.0	2.0 U		ĺ	i	ĺ	1
Ethylbenzene	2.0]] 2.0 U		j	i	i	Ì
Total Xylene (o,m,p)	1 2.0	2.0 U		i	i	i	,
Total Volatiles	ii	ND		1	i	i	1

LABORATORY REPORT

Job No: R93/02072

Date: JUNE 9 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Xerox - Bldg. 200 Soil
Borings #70092-44
CORRECTED COPY

Received : 05/29/93 P.O. #: C6446819

							^	1
ANALYSIS * BY GC			20	ANAL	YTICAL	RESULTS	− %	
Sample:		-003		I				
Location:		LAB METH	Į] ·	1	
- Date Collected:		BLANK 	1	- 1		 	1	
Time Collected:		 	1	!		 	l	
time cottected.	riwiia		1	1		 =============	 	==========
,		I 1			· 	l (. 	
	I]	, 	! 		1	 	
• 	1	! , 	1 	!		' .]	 	
·		' . 	,			' 		
1		· !	Ì			· 		
SURROGATE STANDARD RECOVERIES	, 		ĺ	j			I	
	[İ		1				
% Recovery	1	1 1		١				
'	1		1					
Bromochloromethane	60-138%	67	1	ļ		1		
		1						
		1				<u> </u>		
	1 10 1718						[
1-Chloro-3-Fluorobenzene	60-134%	80		, !	1	<u> </u>		İ
	1	1	<u> </u>		1	,]	
] [. I	 	} I	l I	 	
a,a,a-Trifluorotoluene	i i 60-134%	102			<u> </u> 	 	 	
a,a,a ii ii taan ototacke	00 134%	1 102	 		 	1) 	ı
	 	1	 		ι 	1	 	
	1	1	 	·	! 		 	
	Ì	1	' 		I	İ	' 	
	Ì		' 			İ	1	
	Ì						[
		į ·	!]			
	l	1	1				i	

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Mild & Person

LABORATORY REPORT

Job No: R93/02072 Date: 9 JUNE, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580

Sample(s) Reference

Xerox - Bldg. 200 Soil
Borings #70092-44 ***CORRECTED COPY***

Received

: 05/29/93

ANALYSIS * BY GC	ME	THOD) 8	3010/80	20	ANALY'	TICAL	RESULT	S - ug	/kg Wet	Wt.
Sample:			1	-004	ı	ı	1	!	1	ı	I
Location:			i.	AB METH	i	i	i I			1	1
				BLANK	i	i				i İ	1
Date Collected:	Ī		_;		i	İ				İ	
Time Collected:	i	PQL	į.		i	i	i I				1
=======================================	=====	:=====:	==:		' =======	, ====================================	, =======		:========	' :=========	' =======
Date Analyzed:	ij		0	06/03/93	1	1	1				1
Dilution:	ii		ii:		İ	i	į			İ	·
Chloromethane	11	5.0	ii	25 U	Ì	i		,		İ	i
Bromomethane	11	5.0	11	25 U	ĺ	Ì	į			i	i
Vinyl Chloride	11	2.0	Ш	10 U	Ì	i	i			i	i
Chloroethane	ii	2.0	ij		İ	i	I	·		i	İ
Methylene Chloride	Ĥ	1.0	İİ	5.0 U	i	Ì	i I			i	i
Trichlorofluoromethane	H	1.0	ij	5.0 U	i	Ì	i	· 			
1,1-Dichloroethene	H	1.0	ΪÌ	5.0 U	Ì	ì				i	i
1,1-Dichloroethane	11	1.0	ΪÌ	5.0 U	Ì	i				i	i
1,2-Dichloroethene(Cis&Trans	ΣÌ	1.0	ΪÌ	5.0 U	Ì	ì	i			i	i
Chloroform	Ħ	1.0	ΪÌ	5.0 U	Ì	i	·			i	i
1,2-Dichloroethane	H	1.0	ii	5.0 U	İ	ì	į			İ	i
1,1,1-Trichloroethane	11	1.0	ii	5.0 U	Ì	i				i	i
Carbon Tetrachloride	11	1.0	Ш	5.0 U	i	ì	i			İ	i
Bromodichloromethane	П	1.0	II		i	i	i			İ	i
1,2-Dichloropropane		1.0	H		i	i	Ĭ			İ	i
1,3-Dichloropropene-Trans	П	2.0	ii	10 U	i	i	ĺ			Ì	i
Trichloroethene	П	1.0	II	5.0 U	i	i	Ì			Ì	i
1,3-Dichloropropene (Cis)	ii	1.0	ii	5.0 U	i	i	ĺ			i	i
Dibromochloromethane	П	2.0	П	10 U	i	ì	Ì			İ	i
1,1,2-Trichloroethane	11	2.0	П	10 U	i	ì	ĺ			i	i
2-Chloroethylvinyl Ether	П	2.0	11	10 U	i	Ì				i	i
Bromoform	П	2.0	ΪÌ	10 U	i	ì				i	i
1,1,2,2-Tetrachloroethane	II	2.0	11	10 U	İ	i	Ì			İ	i
Tetrachloroethene	İİ	1.0	11	5.0 U	i	i	i			i	i
Chlorobenzene	ii.	2.0	H	10 U	i		,		· 	İ	
1,3-Dichlorobenzene	ii	2.0	ii	10 U	i		1			i	İ
1,2-Dichlorobenzene	11	2.0		10 U	i					i	,
1,4-Dichlorobenzene		2.0	11	10 U	i					i	
Benzene	11	2.0	11	10 U	i	1	1			i	,
Toluene	ii	2.0	11	10 U	i	,			· 	i	i
Ethylbenzene		2.0		10 U	i	ì	i	· : !		i	
Total Xylene (o,m,p)		2.0	11	10 U	i	İ		, 	· 	İ	i
Total Volatiles			11	ND	i	i	·	· 		i	i

LABORATORY REPORT

Job No: R93/02072

Date: JUNE 9 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, NY 14580 Sample(s) Reference:

Xerox - Bldg. 200 Soil
Borings #70092-44
CORRECTED COPY

Received : 05/29/93 P.O. #: C6446819

ANALYSIS * BY GC	METHOD	8010/80:	20	ANAL	YTICAL	RESULTS	- %	
Sample:		-004		1			1	
Location:		LAB METH		I		i 1		
_		BLANK	1				!	
Date Collected:				1		1		
Time Collected:	LIMITS			!		1	I	
=======================================		========		=========	=========		=========	========
						! !		
		ļ		1			ļ	
		l	 			[[ţ	
		1]	l	
SURROGATE STANDARD RECOVERIES] [
]	i	
% Recovery								
Bromochloromethane	66-128%	76						
		1				†		
	l	l	1 i	[[
1-Chloro-3-Fluorobenzene	50-141%	87]		
						1		
		1	ļ I			1		
	ļ	1			 	1		
a,a,a-Trifluorotoluene	55-131%	96	!			1	[
	1	1				1	!	1
	l	1		İ		1	!	1
	1					1		
		1				1		
	1	1	[1		1

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Mild K. Perry

LABORATORY REPORT

Job No: R93/02308 Date: 24 JUNE, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road

Webster, New York 14580

Sample(s) Reference

Xerox - Bldg. 200 Borings

70092-44

Received

: 06/15/93

				010/8					ug/kg W	
Sample:			•	-003	1	1	I	1	1	1
Location:			L	AB METH	1		1	1	1	1
			_ BI	LANK		ļ	ļ	ļ	!	
Date Collected:				-		!	1	!	1	ļ
Time Collected:	 	PQL		- 	 					
Date Analyzed:	11		06	6/15/93		 				
Dilution:	11		5		i	ĺ	i	İ	İ	į
Chloromethane		5.0	П	25 U	ĺ	ĺ	j	İ	į	İ
8romomethane	11	5.0	П	25 U	ĺ	ĺ	i	Ì	İ	į
Vinyl Chloride		2.0	İİ	10 U	Ì	j	İ	j	İ	İ
Chloroethane	П	2.0	ii.	10 U	ĺ	i	İ	j	į	İ
Methylene Chloride		1.0	II	5.0 U	i	į	İ	j	İ	İ
Trichlorofluoromethane	ii	1.0	ii		i	į	i	į	İ	j
1,1-Dichloroethene	ii	1.0	ii		i	į	į	į	ĺ	j
1,1-Dichloroethane	11	1.0		5.0 U	İ	İ		j	Ì	1
1,2-Dichloroethene(Cis&Trans		1.0		5.0 U	i	İ	i	j	i	Ì
Chloroform	ii	1.0	ii		Ì	i	İ	j	İ	Ì
1,2-Dichloroethane	ii	1.0	ii	5.0 U	i	İ	i	j	į	Ì
1,1,1-Trichloroethane	II	1.0	İÌ	5.0 U		İ	İ	i	Ì	1
Carbon Tetrachloride	ii	1.0	П	5.0 U	İ	i		İ	į	İ
Bromodichloromethane	ii	1.0	ii	_	İ	i	İ	į	į	İ
1,2-Dichloropropane	ii	1.0	Ш	5.0 U	Ì	i	İ	İ	İ	
1,3-Dichloropropene-Trans	11	2.0		10 U	İ	į	İ	ĺ	İ	İ
Trichloroethene	11	1.0	ii		i	į	į	İ	ĺ	1
1,3-Dichloropropene (Cis)	ii	1.0	ii		į	i	i	İ	i	i
Dibromochloromethane	11	2.0	ii	1 0 U	i	i	i	j	i	Ì
1,1,2-Trichloroethane	ii	2.0	ii		i	i	i	İ	İ	i
2-Chloroethylvinyl Ether	ii	2.0	ii		i	i	i	İ	i	İ
Bromoform	ii	2.0	ii	10 U	ĺ	i	i	i	Ì	i
1,1,2,2-Tetrachloroethane	ii	2.0	ii	10 U	i	i	İ	İ	i	į
Tetrachloroethene	ii	1.0	ii	5.0 U	ì	,	i	i	i	j
Chlorobenzene		2.0	ii	10 U	İ	i	į	Ì	į	ĺ
1,3-Dichlorobenzene	11	2.0	ii	10 U	i	i	,	i	i	i
1,2-Dichlorobenzene	ii	2.0	ii	10 U	i		ĺ	1	1	i
1,4-Dichlorobenzene	ii	2.0	ii	10 υ	İ		i	i	i	i
Benzene	ii	2.0	ii	10 U	İ		i		i	i
Toluene		2.0	11	10 U	İ		j	i	i	
Ethylbenzene		2.0		10 U	i	1	1		i	i
Total Xylene (o,m,p)		2.0		10 U	i		1	l	i	i
Total Volatiles	ii	-	11	ND	i	1	<u> </u>	;	i	i

LABORATORY REPORT

Job No: R93/02308

Date: JUNE 24 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road

Webster, New York 14580

Sample(s) Reference:

Xerox - Bldg. 200 Borings

70092-44

Received : 06/15/93 P.O. #: C6446819

ANALYSIS * BY GC	METHOD		20	ANAI	LYTICAL	RESULTS	- %	
Sample: Location:		-003 LAB METH	1	<u> </u>	 	1 [
		BLANK	j	İ	1	İ		
Date Collected:						1	 	
Time Collected:	LIMITS	 :========	} ====================================	=======================================	 ==========	 ===========	 :===========	
	 			1	I	l		
	i	1		[1	!	!
		1	1			1]
	!	 	1	1	1	1 	! [
SURROGATE STANDARD RECOVERIES				<u>'</u>	İ	i		
	İ	1	1	1	!	1	!	
% Recovery		1]	1	} I	1
Bromochloromethane	1 66-128%	l 75	1	1	! }	1	! }	
B) Glibert Col Glib Clibric				İ	i	Ï	I	
	Ì	Ì			!	<u> </u>	[
		1.07				1	1	1
1-Chloro-3-Fluorobenzene	50-141%	93	1	1	 	 	[
						İ	į	İ
	1				!	!	!	!
a,a,a-Trifluorotoluene	55-131%	90		1	1	1	1	
	1	1	1	1	1	1	1	<u>'</u>
	i	i	Ì	i	İ	İ	1	1
	1	Ţ	1	1	1]	
	1	1			1	İ	1	l

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Mill to Person

LABORATORY REPORT

Job No: R93/02308 Date: 24 JUNE, 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, New York 14580 Sample(s) Reference

Xerox - Bldg. 200 Borings

70092-44

Received

: 06/15/93

P.O. # + C6446819

Received		: 06/15/93	P.O. #: C6446819
ANALYSIS * BY GO	METHO	DD 8010/8020	ANALYTICAL RESULTS - ug/l
Sample:		-004	
Location:		LAB METH	
		BLANK	
Date Collected:			
Time Collected:	PQL	j	
=======================================	========	' ====================================	'
Date Analyzed:	П	06/18/93	1 1 1 1
Dilution:	11	111	
Chloromethane	5.0	5.0 U	
Bromomethane	[] 5.0	5.0 U	
Vinyl Chloride	2.0	2.0 U	
Chloroethane	2.0	2.0 U	
Methylene Chloride	1.0	jj 1.0 u j	
Trichlorofluoromethane	1.0	1.0 U	
1,1-Dichloroethene	1.0	1.0 U	
1,1-Dichloroethane	1.0	1.0 U	
1,2-Dichloroethene(Cis&Trans		1.0 U	
Chloroform	1.0] 1.0 U	
1,2-Dichloroethane]] 1.0	1.0 U	
1,1,1-Trichloroethane	1.0	1.0 U	
Carbon Tetrachloride	1.0	1.0 U	
Bromodichloromethane	11 1.0	1.0 U	
1,2-Dichloropropane	1.0	1.0 U	
1,3-Dichloropropene-Trans	1 2.0	2.0 U	
Trichloroethene	1.0	1.0 U	
1,3-Dichloropropene (Cis)]] 1.0	1.0 U	
Dibromochloromethane	2.0	1.0 U	
1,1,2-Trichloroethane	2.0	2.0 U	
2-Chloroethylvinyl Ether	2.0	2.0 UJ	
Bromoform]] 2.0		
1,1,2,2-Tetrachloroethane	2.0		
Tetrachloroethene		2.0 U	
Chlorobenzene		1.0 U	
1,3-Dichlorobenzene	2.0	2.0 U	
1,2-Dichlorobenzene	2.0	2.0 U	
1,4-Dichtorobenzene	2.0	2.0 U	
Benzene	2.0	2.0 U	
Toluene	2.0	2.0 U	
	1 2.0	2.0 U	
Ethylbenzene	2.0	2.0 U	
Total Xylene (o,m,p)	2.0	2.0 U	
Total Volatiles	П	ND	
	• • • • • • • • •		

LABORATORY REPORT

Job No: R93/02308

Date: JUNE 24 1993

Client:

Mr. Scott Huber Xerox Corporation 800 Phillips Road Webster, New York Sample(s) Reference:

Xerox - Bldg. 200 Borings

70092-44

Received

: 06/15/93

14580

P.O. #: C6446819

ANALYSIS * BY GC	METHOD	8010/80	20	ANAI	YTICAL	RESULTS	- %	•
Sample: Location:	-004 LAB METH BLANK	 	 		 	 		
- Date Collected:			i İ	 		! 		
Time Collected:	LIMITS			; 		i İ i	ĺ	
=======================================	======================================	========= 	======================================	::::::::::::::::::::::::::::::::::::::	:======== :	========= !	:======:: 	
	 	! 	1 	 		i . 		
	İ	İ	i I	İ		i İ		
			!	1				
SURROGATE STANDARD RECOVERIES	<u> </u>	 	1	 	 	 		
	i 	, 	1	 		<u> </u>		
% Recovery	<u> </u>	1	1	[
Bromochloromethane	 60-138%	 80	 	[[<u> </u> 	 		
by silverited silverite			i			, ; [
		1	1			1	1	1
1-Chloro-3-Fluorobenzene	 60-134%	 87	1	1				
1°CIICOI O°3°FCGOI ODENZENE	00-134%	01	1	!	l 	1]	 	!
	j	İ	İ	1		İ	<u>'</u>	İ
* ***		1]	<u> </u>	!		
a,a,a-Trifluorotoluene	60-134% 	90		 	[1	 	
	' 			! 	i 	1	' 	!
]	I	1	1	1	1	l	
	 			1	<u> </u>	1	 	
	 	 	1	 	 	I 	 	!
	İ		Ì	İ]]	1	•
	i	1	1	!			ļ	

Unless otherwise noted, analytical methodology has been obtained from references as cited in 40 CFR, parts #136 & #261.

NY ID# in Rochester: 10145 NJ ID# in Rochester: 73331 NJ ID# in Hackensack: 02317 NY ID# in Hackensack: 10801

Sample Reference: Xerox - Bldg. 200 Borings 70092-44

FIELD DOCUMENTATION

Presented	in	this	section	is	all	support	documentation	requested.
-----------	----	------	---------	----	-----	---------	---------------	------------

Do	οcι	ımeı	ntation Provided:
(Х)	Chain of Custody Forms
()	Analytical Request Forms
()	Shipping Receipts
()	Laboratory Receipt Log
()	Other:

	GENERA	AL TES	TING (CORP	ORA ⁻	ΓΙΟΝ /	CHAIN	I-OF-CU	STODY F	RECORD	
710 Exchange			•			435 L	awrenc	ce Beil D			<u>.R1312035</u>
Rochester, N'		Hacke		NJ 07	601	Amhe	erst. NY	/ 14221-		lient Project	-
Sample Originat) ·		177		7 /0 = =		70092-4	4
Address	Site 1/E, 300 Ph;	KOX L	d	1100 2	00	(Bor.	ing B	1/852		ts 80	
	Str	eét	,	Ci	iy			State		7	Zip
Collector_	DAVIO		NOST	V 112 7		····-			Sig	nature	Tues
Bottles Pr Bottles Sh Samples !	epared by hipped to C Shipped via	Gener lient via a_H&	AlTe- HIA Del	Pick	Co,	e p	Recid by Seal/Shi Seal/Shi	pping #			
Sample(s) Relin	iquished by	D /		/		Re	eceived	by:			Date//Time
1. Sign		Ester	-6			1.	Sign	70	n- 14	astirys	52193
2. Sign						2.	for Sign		6-1C		07:30
for 3. Sian							for				:
o. Sign						3.	Sign for				;
Sample(s) Rece	eived in Lab	coratory b	7	7	2		Has	ling	0	527 93	@0730
Client I.D. #	:	le Locatio	on	★ :An	alvte (Analyte c	r Require	Sam Preserve Y N	ple Prep ed Filtered	7.1	Set(s)
Lab#	Da Da	ate Time	<u> </u>	(s	eé bel	ow for ac	dditional -) Y N	YN	(see t	pelow)
NY	13-18	5R-	57	5 7		d XYL		X		(1) bottl.	e, No. 10
2035-0012	5 25	93 1400)								
HEA OF	B-18	SR-S	7	5	D١	NPS	5	X		(1) bottle	e, No.10
	5 25	921400) : 	!							
HEADENY		1 Wat		W 8	010/ PL	802C)— TUE	Χ		(2) bottle	No. 1
002	5 26	9315:1	0								
H A of NY	Trip	Blank	< '	W 2	9101 PL	8020 \$ xY4	O- LENE	- X		(2) both	le No. 1
003	1 /	:									İ
	/ /	· :									
Bottle No. for in	ndicating ty	pe bottle:	s used in	n each	bottle	set and t	fill in bo	with # of	bottles use	d for each typ	e.
Bottle No.	1	2	3	<u>-</u>		5	6	7		g	10
Bottle Type	40 mi	Pint Glass	Qt.	4 0		8 oz.	16 oz	. Qt.	Gal.	Sterii. 4	07_
# of each	Viai 4	Glass	Glass	Plas	SUC .	Plastic	Plastic	C Pl.	PI.	PI 6	2

Shaded area for Lab use only; bottom copy for client; maximum of 5 samples per page.

Source Codes: Monitoring Well (W), Soil (S), Treatment Plant (T), Drinking Water (D), Leachate (L), Hazardous Waste (H), River or Stream (R), Pond (P), Industrial Discharge (I), _____(X), _____(Y).

K43/2012

248		0 DH									/ Cant. / pres.)			-		-		
of No. No. 572 152 35	Oue Date:	Preservative					Broken Containers	List Type / Sample No.		(2)	S Section by H & A No.							
Page o Dellvery Date:	Project Manager: Final Report Due Turnaround Ilme:		7				æ	Intaot:	1 10		autside ariteria in the C							
FORM	droj d	Requested					Sample Conditions	Cooler Temp.:	Any Braken Containers	No. Of Samples: (N)	(List all pH madeurements	Comments:						
IS REQUEST FORM AND F-CUSTODY RECORD	Change String	Analysis									7 54,04 5	CAN CORP				3		
ANAL YS CHAIN-O	Seace Seace	1008/ 1008/	7 7								4 2 2	John John	93 Time: 16.3		1900	4 BY: B. MOLLICE	2 / Jan -	1 1
YORK 30+ 14604	Laborat Address Cilent	10 Sample Sample Depth Matrix	24-39								Somples Replayed By:	Stanature: 7	Date: 5728/93 Ti	Signature:	Company None:	Samples Regleved By:	Standture: Company Name:	Date: 5/29/23
OF NEW h water Str r. New York	200 RFT h 322 - 54	Ormation	Sales				lans				3 De August	The state of the s	30					
H & A 189 Nort Rocheste (716) 23	No.	Sample Information H & A Sample ID. Laboratory Sample S	200-9-52 201 RIP OUR COOL				Sompler Comments/Site Observations				Sampled and Ret-Haculahed By:	To do His			100	Samples Relinquished By:		1 mg :
W W	Project Name: H & A File No H & A REP. (H & A SOR	1. R200 2. 7 R1/2 3. 4.	9.69.	12. 11. 13.	14.	Sompler Com				Somo bellond	Signature:	Date: 5/28	Signature:	Date:	Samples Rel	Company Name:	0 ate s

DH 7.0 (List all pH measurements cutside criteria in the Comments Section by H. & A. No. / Cont. / pres.) 4 (1 (1 283 NaOH/ZA (2) PH > 10 Preservative H, S04 SYZD days List Type / Sample No No 15/83 Broken containers pH < 2.0 ΞΩ ΞΩ Final Report Due Date: Delivery Date: 6 Project Manager: HN03 Turnaround Time: of ğ V 1 ວ Intact: Any Braken Containers 7 orpocation. Sample Conditions No. Of Samples: Analysis Requested Custody Seal: Cooler Temp.: Preservation CHAIN-OF-CUSTODY RECORD Comments: ANALYSIS REQUEST FORM Laboratory: General Testing Address: 710 Exchange Samples Regieved By: 17 506/184 F OWPS (8020) (8020) (4020) Lochester (Jenera) 11110: Cilent Rep.: Somples Recieved By: Samples Recieved By: & A Sample 10. Laboratory Sample Sample Sample Sample Matrix Stanature: Company Name: Company Name: Date: 0/15 Company Name: Signature: NB Standture: Date: Date: 4-6 H & A OF NEW YORK 189 North Water Street Rochester. New York 14604 (716) 232-7386 Project Name: Building 200 RFI Work Plan W1483 1243 Sample Information Sampler Comments/Site Observations 4-3a . 5. Sampled and Religioushed By: Samples Relinquished By: Samples Relinquished By: 1 1 1 1 1 1 1 <u>=</u> 2. Tap Blook .DR100-7-53 H & A FILE NO. WORK DRDER NO. H & A REP. Company Name: Company Name: Company Name: Signature: Signature: Standture Dateia Date: 12. 3. ė