Haley & Aldrich of New York 200 Town Centre Dr. Suite 2 Rochester, NY 14623-4264

Tel: 585.359.9000 Fax: 585.359.4650 Haley Aldrich.com

19 September 2008 File No. 32077-063

Xerox Corporation 800 Phillips Road Building 205-99F Webster, New York 14580

Attention:

Mr. Eliott Duffney

Subject:

Supplemental Northern Property Site Investigation

Joseph C. Wilson Center for Technology

Webster, New York

Mr. Duffney:

Haley & Aldrich of New York (Haley & Aldrich) is pleased to provide this Supplemental Site Investigation Report to Xerox for activities associated with the assessment of the northern parcel property of the Webster, New York campus. As you are aware, the site investigation was performed in accordance with the NYSDEC and NYSDOH approved work plan, dated 20 November 2007, and comments provided by NYSDEC and NYSDOH in a letter dated 3 December 2007. The focus of this supplemental assessment was to provide additional requested data to determine potential future disposition requirements for the property.

We recognize that Xerox is exploring conceptual development plans for this property and that matters related to site environmental conditions are an important component to the advancement of the project.

Please do not hesitate to contact us should you have any questions regarding this report.

Sincerely yours,

HALEY & ALDRICH OF NEW YORK

Janice R. De Jesus

Staff Engineer

Michael G. Nickelsen

Senior Scientist/Project Manager

Vincent B. Dick Vice President REPORT ON SUPPLEMENTAL NORTHERN PROPERTY SITE INVESTIGATION XEROX CORPORATION 800 PHILLPS ROAD WEBSTER, NEW YORK

by

Haley & Aldrich of New York Rochester, New York

for

Xerox Corporation Webster, New York

File No. 32077-063 19 September 2008

TAB	LE OF	CONTENTS	
LIST	Γ OF TA	ABLES	ii
LIST	COF FIG	GURES	ii
1.	INTI	RODUCTION	1
	1.1	Background	1
	1.2	Supplemental Investigation Project Goals and Objectives	2
2.	SUPI	PLEMENTAL SITE ASSESSMENT PROGRAM RESULTS	3
	2.1	Soil Vapor Sampling	3
	2.2	Groundwater Sampling	3
3.	CON	CLUSIONS	5
REF	ERENC	ES	6

TABLES

FIGURES

APPENDIX A - Laboratory Analytical Data APPENDIX B - Soil Gas SUMMA Canister Sampling Forms

LIST OF TABLES

Table No. Title

1 Summary of Soil Vapor Analytical Data

2 Summary of Groundwater Analytical Data

3 Summary of Historical Groundwater Analytical Data

LIST OF FIGURES

Figure No. Title

1 Subsurface Exploration Plan

1. INTRODUCTION

1.1 Background

An initial northern parcel assessment program was performed during July 2007 per a work plan approved by NYSDEC and NYSDOH. Limited additional sampling results, site background information, including a general site description, topography of the northern parcel property, regional geology and hydrogeology were included in the Northern Property Site Investigation Report, dated 25 January 2008. This work was completed to support Xerox in its assessment of the various sale and or development options for the northern parcel.

Due to the contiguous nature of the northern parcel property to the otherwise-developed Webster manufacturing Facility, the site is administratively regulated under the Xerox 6NYCRR Part 373 Permit. As such, NYSDEC has identified to Xerox that a permit modification will be required to remove the northern parcel from the existing 373 permit at the time the subject property is sold or redeveloped.

The focus of the initial assessment was to determine if adverse environmental impacts to soil, soil vapor, and groundwater were present at the northern parcel property. Results from the initial assessment provided the following information:

- There do not appear to be any impacts to soil attributable to historical Xerox operations. Much of the undeveloped property has been used for agricultural purposes and had low levels of pesticides (below NYSDEC action levels) detected in the surface soils.
- Split samples from two groundwater monitoring wells (RW-3 and B-24A) in the current site Samping and Analytical Plan (SAP) were collected and shared with NYSDEC as part of the initial assessment. The groundwater sample collected from RW-3, located on property that would remain under Xerox ownership but near to the proposed disposition area, contained a single detection of 1,2-dichloroethane at 5.3 ppb. This result is consistent with the other routine detections seen at RW-3 over the past several years of SAP sampling. There were no detections of VOCs, SVOCs, Pesticides, PCBs, or Total Cyanide in the other monitoring well, B-24A.
- Soil vapor samples were collected at 17 different locations as part of this original assessment. While all the soil vapor analytical results were below the NYSDOH guidance criteria, three soil vapor locations (SV-3, SV-8, And SV-14) exhibited low concentrations of Xerox fingerprint compounds (cis-1,2-dichoroethene (c-1,2-DCE), trichloroethene (TCE), & tetrachorothene (PCE)) near the fringes of the proposed property for disposition and/or development.
- Through several programs, and with NYSDEC oversight, Xerox has installed and is operating a site-wide closure strategy for the developed portion of its Webster Facility. This closure strategy consists of several measures to assure that the potential for future migration of contaminant residuals that remain from remediation on the main manufacturing campus will be contained on the Xerox Webster property. Enhanced migration control pumping is conducted at several locations to prevent undesired migration of these residuals from the currently impacted areas of the developed property. A SAP approved by NYSDEC is used to monitor site groundwater conditions under the Part 373 permit on a routine basis. A series of "trigger" and "line of compliance" wells are used to monitor site groundwater

conditions on a routine basis. The configuration and monitoring of these wells allow for corrective actions to be taken, if necessary, well before any adverse impacts are realized beyond the current areas of residual presence.

In summary, results of the July 2007 assessment confirmed that soil and groundwater of the northern parcel have not been impacted by Xerox operations. While all soil vapor results were below NYSDOH guidance, minor detections of Xerox fingerprint compounds were identified in a few soil vapor samples located on property that Xerox had designated to be retained. NYSDEC and NYSDOH requested that supplemental soil vapor sampling be conducted along the proposed property disposition boundaries in the areas of the fingerprint detections to demonstrate that there were no adverse impacts to the northern parcel targeted for disposition. A supplemental work plan (dated 20 November 2007 and approved 3 December 2007) was developed in response to NYSDEC and NYSDOH comments on the Northern Property Site Investigation Report, dated 25 January 2008, for work performed during the July 2007 assessment. The supplemental investigation sampling was initiated in May 2008 and completed in September 2008.

1.2 Supplemental Investigation Project Goals and Objectives

This site assessment was performed in accordance with the NYSDEC and NYSDOH approved supplemental work plan, dated 20 November 2007, and comments provided by NYSDEC and NYSDOH in a letter dated 3 December 2007. The focus of this assessment was to provide additional requested data to determine potential future disposition requirements for the property.

The primary objectives of this supplemental investigation were as follows:

- Install and sample additional soil vapor points in areas around the original SV-3, SV-8 and SV-14 soil vapor sample locations, which are located near the proposed disposition property boundary. This was intended to laterally assess the low level detections initially identified at these locations.
- Install and sample temporary groundwater monitoring wells in the immediate vicinity of soil vapor points SV-3, SV-8 and SV-14, where there were detections of TCE.

 Analyze the groundwater samples for VOCs using USEPA Method 8260.
- Sample two wells (OB-97 and OB-97 REC-1) associated with OB-97, a solid waste management unit (SWMU) that has been classified as requiring no further action by NYSDEC. These wells are along the approximate property disposition boundary line and have not been sampled since the fourth quarter of 2004. Other monitoring wells located within and adjacent to the northern parcel are sampled almost on an annual basis. Historical data for those wells has been provided to the agencies in the past and was summarized and provided again to NYSDEC and NYSDOH in the approved supplemental work plan dated 20 November 2007 and in Table 3 of this report. Recent data showed non-detectable concentrations of VOCs.
- Collect additional groundwater and soil vapor data requested by NYSDEC and NYSDOH in order to obtain written regulatory concurrence to remove the northern boundary parcel from Xerox's existing Part 373 Permit after the sale of the property. This will facilitate the sale of the subject property and establish permanent property boundaries for the northern parcel.

2. SUPPLEMENTAL SITE ASSESSMENT PROGRAM RESULTS

2.1 Soil Vapor Sampling

The protocols and procedures for soil vapor sampling and analysis activities were in accordance with Xerox's Northern Property Assessment Work Plan, dated 12 July 2007 and were developed based on information provided in the NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in New York State", October 2006. A total of 10 soil vapor samples and one background ambient air sample were collected during 21 May 2008, 2 July 2008 and 11 September 2008 and analyzed for VOCs using USEPA Method TO-15.

Dedicated soil vapor points were installed using an AMS Samplers, Inc. gas vapor probe kit. The probes were installed to an average depth of 5 feet below ground surface and sampled with 1-L Summa Canisters in accordance with the standard operating guideline outlined in the July 2007 work plan. A helium tracer test was performed at each location to verify that ambient air was not entering the soil vapor point during sampling. In the instance a soil vapor point could not be sampled, an additional "step-out" point was installed and sampled. The location of soil vapor points from this assessment and the July 2007 assessment are shown in Figure 1.

The results of this soil vapor sampling are summarized in Table 1 and Figure 1. TCE was detected in SV-23 at a concentration of 2.2 μ g/m3 and in SV-31 at 0.6 μ g/m3. PCE was also detected in three soil vapor samples (SV-20, SV-30 and SV-31) at low concentrations (0.64 μ g/m3 or less) and in SV-23 at 15 μ g/m3.

The ambient air sample was collected from the western side of the property northwest of Keesler's Mountain and in the vicinity of SV-3 to establish background levels for the sampling program. The sample showed low level detections of acetone, benzene, 2-butanone (MEK), carbon tetrachloride, chloroform, chloromethane, toluene, 1,1,1-trichloroethane, trichlorofluoromethane, 1,1,2-trichloro-1,2,2-trifluormethane, o-xylene and m+ p-xylene. No detectable concentrations of Xerox groundwater fingerprint constituents were identified in the background ambient air sample or any associated laboratory method blank.

The collection of soil vapor samples at some of the proposed supplemental sampling locations was hindered by the presence of a shallow groundwater table. A wetlands delineation has been performed for the entire northern parcel and many of the proposed sampling locations were at or near the wetlands delineation boundaries.

2.2 Groundwater Sampling

Three temporary monitoring wells were installed in the immediate vicinity of the three original soil vapor samples (SVE-3, SV-8 and SV-14) that had previously shown detections of TCE. A total of five groundwater samples were collected – three from the temporary wells and one each from existing wells OB-97 and OB-97 REC-1 using standard sampling techniques for the Webster site. Samples were analyzed for VOCs by USEPA Method 8260 in accordance with the work plan.

Results are summarized in Table 2. Samples from the three temporary monitoring wells had no detections of VOCs. Results from wells OB-97 and OB-97 REC-1 were consistent with historical groundwater data. C-1,2-DCE was detected in OB-97 at a concentration of 26 μ g/L and in OB-97 REC-1 at 100 μ g/L. Vinyl chloride was detected in OB-97 at 53 μ g/L and in

OB-97 REC-1 at 5 μ g/L. These two wells are associated with a SWMU that has been classified as requiring no further action by NYSDEC.

Historically, Xerox has conducted routine groundwater monitoring in wells adjacent to and in the area of the northern parcel property. Table 3 summarizes historical groundwater analytical results for wells in the northern portion of the Xerox Webster site and was presented to the NYSDEC and NYSDOH in the work plan for this supplemental assessment. There have been no detections of VOCs in the subject property. In addition, the results of the initial northern property assessment indicated that there have never been any SWMUs (past, present or suspected solid or hazardous waste treatment, storage or management areas) associated with the subject property.

With respect to the main portion of the Xerox manufacturing campus, measures are in place to control future potential migration of impacted groundwater from the developed portion of the campus, preventing migration onto the northern parcel. Groundwater migration is controlled by the use of individual groundwater recovery wells and blasted-bedrock groundwater recovery trenches that have been strategically installed in investigative sites. The site-wide SAP includes trigger and line of compliance that demarcate an area of division between the main portion of the manufacturing campus, where remediation areas are managed, and the northern parcel located down gradient. These wells, which have established action values under the SAP, separate and provide ongoing monitoring to ensure clean zones between the managed remediation areas and the unaffected subject property located down gradient.

3. CONCLUSIONS

Haley & Aldrich's supplemental assessment activities included sampling and analysis of ambient air, soil vapor, and groundwater in accordance with NYSDEC and NYSDOH approved work plans. Based on the work performed, Haley & Aldrich has developed the following conclusions with respect to the environmental conditions on the northern parcel property:

- Additional soil vapor and groundwater samples collected around SV-3, SV-8 and SV-14, the original locations of low level TCE detections, indicate that these locations do not indicate the presence of a large adversely impacted area within the northern parcel property.
- 34 Groundwater detections in wells OB-97 and OB-97 REC-1, wells associated with the SWMU classified as requiring no further action by NYSDEC, are consistent with historical data. In addition, there have never been nor are there currently any SWMU associated with the subject property.
- Xerox has effectively managed groundwater migration from the developed portion of the manufacturing campus to the northern parcel located down gradient. Historical data from monitoring wells located within the subject property indicated no detections of VOCs. As part of the Part 373 permit, an approved site-wide Sampling and Analytical Plan (SAP) is used to monitor and manage groundwater conditions. The trigger and line of compliance wells included in the SAP separate and provide an ongoing monitoring zone between the managed remediation areas and the unaffected subject property.

In summary, results from the initial investigation (July 2007) and this supplemental investigation (May through September 2008) indicate no impediments to the planned disposition of the subject property. We understand that removal of the property from coverage under the Xerox Part 373 Permit will be pursued at the time of the property transaction and further understand that the regulatory-approved groundwater migration and monitoring program upgradient of the subject parcel will continue.

REFERENCES

- 1. Facility Reference Document, Xerox Corporation, Webster, New York. Updated July 2000.
- 2. Part 375 Soil Cleanup Objectives

G:\Projects\32077\063_North_Property\Supplemental Investigation Report\2008-0919-HANY-SuppNorth40Report-F.doc

Table 1 Summary of Soil Vapor Analytical Data Northern Property Xerox Corporation - Webster, NY

LOCATION	1	Xerox N-40										
		Breathing	Breathing									
DEPTH (ft bgs)		Zone	Zone	5.9	6.1	5.6	7.2	7.4	5.8	5.5	5.6	5.6
DATE		7/26/2007	7/26/2007	7/26/2007	7/26/2007	7/26/2007	7/27/2007	7/26/2007	7/27/2007	7/27/2007	7/27/2007	
SAMPLE TYPE	NYSDOH	AIR	AIR	SOIL GAS								
SAMPLE NAME	NFA	AS-1	AS-2	SV-1	SV-2	SV-3	SV-4	SV-5	SV-6	SV-7	SV-8	SV-9
C) WII EE IV WIE	IVI A	A0 1	AG I	011	012	0.0	017	0.0		0,,	0.0	0.0
VOCs (ug/m3)												
ACETONE		14	18	55	23	94	13	68	17	22	21	NS
BENZENE		1.1	0.81	3.7	2.6	13	1.9	5.2	1.6 U	4.6	23	NS
BROMODICHLOROMETHANE		0.23 U	0.22 U	0.70 U	0.66 U	0.71 U	0.66 U	2.0 U	0.68 U	0.71 U	0.68 U	NS
BROMOFORM		1.8 U	1.7 U	5.4 U	5.1 U	5.5 U	5.1 U	15 U	5.2 U	5.5 U	5.3 U	NS
BROMOMETHANE		0.66 U	0.64 U	2.0 U	1.9 U	2.0 U	1.9 U	5.8 U	2.0 U	2.1 U	2.0 U	NS
2-BUTANONE (MEK)		1.4	2.7	6.5	4.1	14	2.9 U	8.8 U	3.0 U	3.1 U	3.0 U	NS
CARBON DISULFIDE		0.53 U	0.51 U	80	50	120	8.7	4.6 U	3.3	59	33	NS
CARBON TETRACHLORIDE	50	0.68	0.75	0.66 U	0.62 U	0.66 U	0.62 U	1.9 U	0.64 U	0.67 U	0.64 U	NS
CHLOROETHANE		0.89 U	0.87 U	2.6 U	2.6 U	2.8 U	2.6 U	7.9 U	2.7 U	2.8 U	2.7 U	NS
CHLOROFORM		0.83 U	0.81 U	2.6 U	2.4 U	2.6 U	2.4 U	7.3 U	2.5 U	2.6 U	2.5 U	NS
CHLOROMETHANE		0.70 U	0.68 U	2.2 U	2.0 U	2.2 U	2.0 U	6.2 U	2.1 U	2.2 U	2.1 U	NS
DIBROMOCHLOROMETHANE		0.29 U	0.28 U	0.90 U	0.84 U	0.90 U	0.84 U	2.5 U	0.86 U	0.9 U	0.87 U	NS
1,2-DIBROMOETHANE		0.26 U	0.25 U	0.81 U	0.76 U	0.81 U	0.76 U	2.3 U	0.78 U	0.81 U	0.78 U	NS
1,3-DICHLOROBENZENE		2.0 U	2.0 U	6.3 U	6.0 U	6.3 U	6.0 U	18 U	6.1 U	6.4 U	6.1 U	NS
1,4-DICHLOROBENZENE		2.0 U	2.0 U	6.3 U	6.0 U	6.3 U	6.0 U	18 U	6.1 U	6.4 U	6.1 U	NS
1,2-DICHLOROBENZENE		2.0 U	2.0 U	6.3 U	6.0 U	6.3 U	6.0 U	18 U	6.1 U	6.4 U	6.1 U	NS
1,1-DICHLOROETHANE		0.69 U	0.67 U	2.1 U	2.0 U	2.1 U	2.0 U	6.0 U	2.0 U	2.1 U	47	NS
1,2-DICHLOROETHANE		0.69 U	0.67 U	2.1 U	2.0 U	2.1 U	2.0 U	6.0 U	2.0 U	2.1 U	2.1 U	NS
1,1-DICHLOROETHENE		0.67 U	0.65 U	2.1 U	2.0 U	2.1 U	2.0 U	5.9 U	2.0 U	2.1 U	2.0 U	NS
TRANS-1,2-DICHLOROETHENE		0.67 U	0.65 U	2.1 U	2.0 U	2.1 U	2.0 U	5.9 U	2.0 U	2.1 U	2.0 U	NS
CIS-1,2-DICHLOROETHENE		0.67 U	0.65 U	2.1 U	2.0 U	2.1 U	2.0 U	5.9 U	2.0 U	2.1 U	64	NS
1,2-DICHLOROPROPANE		0.78 U	0.76 U	2.4 U	2.3 U	2.4 U	2.3 U	6.9 U	2.3 U	2.4 U	2.3 U	NS
CIS-1,3-DICHLOROPROPENE		1.5 U	1.5 U	4.8 U	4.5 U	4.8 U	4.5 U	14.0 U	4.6 U	4.8 U	4.6 U	NS
TRANS-1,3-DICHLOROPROPENE		0.77 U	0.75 U	2.4 U	2.2 U	2.4 U	2.2 U	6.8 U	2.3 U	2.4 U	2.3 U	NS
ETHYLBENZENE		1.5 U	1.4 U	4.6 U	4.3 U	7.3	4.3 U	13 U	4.4 U	2.6 U	40	NS
2-HEXANONE		0.69 U	0.68 U	2.2 U	2.0 U	2.2 U	2.0 U	6.1 U	2.1 U	2.2 U	2.1 U	NS
METHYLENE CHLORIDE		0.59 U	0.57 U	1.8 U	1.7 U	1.8 U	1.7 U	5.2 U	1.8 U	1.8 U	1.8 U	NS
4-METHYL-2-PENTANONE		1.4 U	1.4 U	4.3 U	4.1 U	4.3 U	4.1 U	12 U	4.1 U	4.3 U	4.2 U	NS
STYRENE		1.4 U	1.4 U	4.5 U	4.2 U	4.5 U	4.2 U	13 U	4.3 U	4.5 U	4.3 U	NS
1,1,2,2-TETRACHLOROETHANE		0.23 U	0.23 U	0.72 U	0.68 U	0.72 U	0.68 U	2.0 U	0.69 U	0.73 U	0.70 U	NS
TETRACHLOROETHENE (PCE)	100	0.23 U	0.22 U	0.71 U	0.67 U	2.0	1.2	2.0 U	0.69 U	0.72 U	0.94	NS
TOLUENE		3.0	1.0	10	6.9	37	5.4	9.7	3.6	17	130	NS
1,1,1-TRICHLOROETHANE		0.92 U	0.90 U	2.9 U	2.7 U	2.9 U	2.7 U	8.1 U	2.8 U	2.9 U	2.8 U	NS
1,1,2-TRICHLOROETHANE		0.92 U	0.90 U	2.9 U	2.7 U	2.9 U	2.7 U	8.1 U	2.8 U	2.9 U	2.8 U	NS
TRICHLOROETHENE (TCE)	50	0.18 U	0.18 U	0.56 U	0.53 U	1.0	0.53 U	1.6 U	0.54 U	0.6 U	36.0	NS
TRICHLOROFLUOROMETHANE		1.8	1.9	3.0 U	2.8 U	3.0 U	2.8 U	8.4 U	2.8 U	3.0 U	2.9 U	NS
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE		12	9.5	1.1	0.76 U	1.1	0.76 U	2.3 U	0.78 U	0.81 U	1.1	NS
VINYL ACETATE		2.7 R	2.6 R	8.4 R	7.9 R	8.4 R	7.9 R	24 R	8.1 R	8.5 R	8.1 R	NS
VINYL CHLORIDE		0.87 U	0.84 U	2.7 U	2.5 U	2.7 U	2.5 U	7.6 U	2.6 U	2.7 U	2.6 U	NS
O-XYLENE		1.5 U	1.4 U	4.6 U	4.3 U	20	4.3 U	29	4.4 U	6.3	46	NS
M+P-XYLENE		2.9 U	2.9 U	9.1 U	8.6 U	20	8.6 U	67	8.8 U	21	150	NS

Notes:

NYSDOH NFA' = New York State Department of Health No Further Action Criteria.

'U' = non-detect at the reported detection limit.

'J' = estimated concentration.

'R' = rejected result.

'B' = method blank contamination.

'NS' = not sampled.

Blue shading indicates samples analyzed as part of the Supplemental Northern Property Assessment (May through September 2008).

Table 1 Summary of Soil Vapor Analytical Data Northern Property Xerox Corporation - Webster, NY

LOCATION		Xerox N-40	Xerox N-40	Xerox N-40	Xerox N-40	Xerox N-40	Xerox N-40	Xerox N-40	Xerox N-40	Xerox N-40	Xerox N-40	Xerox N-40
DEDTH (# h ms)		4.4	4.3	4.4	5.7	5.5	5.5	5.7	5.8	Breathing	4.0	6.5
DEPTH (ft bgs)		4.4	4.5	4.4	5.7	5.5	5.5	3.7	3.6	Zone	4.0	0.5
DATE		7/27/2007	7/27/2007	7/27/2007	7/26/2007	7/26/2007		7/27/2007	7/26/2007	7/2/2008	7/2/2008	5/21/2008
SAMPLE TYPE	NYSDOH	SOIL GAS	SOIL GAS	SOIL GAS	SOIL GAS	SOIL GAS	SOIL GAS	SOIL GAS	SOIL GAS	AIR	SOIL GAS	SOIL GAS
SAMPLE NAME	NFA	SV-10	SV-11	SV-12	SV-13	SV-14	SV-15	SV-16	SV-17	AA-070208	SV-18	SV-19
VOCs (ug/m3)												
ACETONE		42	19	24	21	35	NS	13	68	8.2 B	12 B	7.6
BENZENE		4.2	4.4	29	8.2	2.4	NS	1.6 U	20	0.29 J	0.29 J	0.82 U
BROMODICHLOROMETHANE		0.65 U	0.68 U	0.67 U	0.68 U	0.73 U	NS	0.65 U	0.69 U	0.22 U	0.65 U	0.34 U
BROMOFORM		5.0 U	5.3 U	5.2 U	5.2 U	5.6 U	NS	5.0 U	5.3 U	1.7 U	5.0 U	2.7 U
BROMOMETHANE		1.9 U	2.0 U	1.9 U	2.0 U	2.1 U	NS	1.9 U	2.0 U	0.64 U	1.9 U	1.0 U
2-BUTANONE (MEK)		6.7	3.0 U	3.0 U	3.0 U	5.2	NS	2.9 U	7.7	1.6	3.9	2.4
CARBON DISULFIDE		40	7.4	35	12	9.6	NS	18	67	0.51 U	0.31 J	0.8 U
CARBON TETRACHLORIDE	50	0.61 U	0.64 U	0.63 U	0.64 U	0.69 U	NS	0.61 U	0.64 U	0.77	0.61 U	0.73
CHLOROETHANE		2.6 U	2.7 U	2.6 U	2.7 U	2.9 U	NS	2.6 U	2.7 U	0.87 U	2.6 U	1.4 U
CHLOROFORM		2.4 U	2.5 U	22	2.5 U	2.7 U	NS	2.4 U	2.5 U	0.10 J	2.4 U	1.3 U
CHLOROMETHANE		2.0 U	2.1 U	2.1 U	2.1 U	2.3 U	NS	2.0 U	2.1 U	1.2	2.0 U	1.8
DIBROMOCHLOROMETHANE		0.83 U	0.87 U	0.85 U	0.86 U	0.93 U	NS	0.83 U	0.87 U	0.28 U	0.82 U	0.44 U
1,2-DIBROMOETHANE		0.75 U	0.78 U	0.77 U	0.78 U	0.84 U	NS	0.75 U	0.79 U	0.25 U	0.74 U	0.40 U
1,3-DICHLOROBENZENE		5.9 U	6.1 U	6.0 U	6.1 U	6.6 U	NS	5.8 U	6.2 U	2.0 U	5.8 U	3.1 U
1,4-DICHLOROBENZENE		5.9 U	6.1 U	6.0 U	6.1 U	6.6 U	NS	5.8 U	6.2 U	2.0 U	5.8 U	3.1 U
1,2-DICHLOROBENZENE		5.9 U	6.41 U	6.0 U	6.1 U	6.6 U	NS	5.8 U	6.2 U	2.0 U	5.8 U	3.1 U
1,1-DICHLOROETHANE		2.0 U	2.1 U	2.0 U	2.0 U	2.2 U	NS	2.0 U	2.1 U	0.67 U	2.0 U	1.0 U
1,2-DICHLOROETHANE		2.0 U	2.1 U	2.0 U	2.0 U	2.2 U	NS	2.0 U	2.1 U	0.67 U	2.0 U	1.0 U
1,1-DICHLOROETHENE		1.9 U	2.0 U	2.0 U	2.0 U	2.2 U	NS	1.9 U	2.0 U	0.65 U	1.9 U	1.0 U
TRANS-1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE		1.9 U 1.9 U	2.0 U 2.0 U	2.0 U 2.0 U	2.0 U 2.0 U	2.2 U 7.5	NS NS	1.9 U 1.9 U	2.0 U 2.0 U	0.65 U 0.65 U	1.9 U 1.9 U	1.0 U 1.0 U
							_					
1,2-DICHLOROPROPANE CIS-1.3-DICHLOROPROPENE		2.3 U 4.4 U	2.4 U 4.6 U	2.3 U 4.6 U	2.3 U 4.6 U	2.5 U 5.0 U	NS NS	2.2 U 4.4 U	2.4 U 4.7 U	0.76 U 1.5 U	2.2 U 4.4 U	1.2 U 2.3 U
TRANS-1,3-DICHLOROPROPENE		4.4 U 2.2 U	4.6 U 2.3 U	4.6 U 2.3 U	4.6 U 2.3 U	2.5 U	NS NS	4.4 U 2.2 U	4.7 U 2.3 U	0.75 U	2.2 U	2.3 U 1.2 U
ETHYLBENZENE		4.2 U	2.3 U 4.4 U	∠.3 U 49	2.3 U	2.5 U 4.9	NS NS	4.2 U	2.3 U	0.75 U	4.2 U	2.2 U
2-HEXANONE		2.0 U	2.1 U	2.1 U	2.1 U	2.2 U	NS	2.0 U	2.1 U	0.68 U	2.0 U	1.1 U
METHYLENE CHLORIDE		1.7 U	1.8 U	1.7 U	1.8 U	1.9 U	NS	1.7 U	1.8 U	0.35 U	0.37 J	0.89 U
4-METHYL-2-PENTANONE		4.0 U	4.2 U	4.1 U	4.1 U	4.5 U	NS	4.0 U	4.2 U	1.4 U	4.0 U	2.1 U
STYRENE		4.0 U	4.3 U	4.3 U	4.3 U	4.6 U	NS	4.1 U	4.4 U	1.4 U	4.1 U	2.1 U
1.1.2.2-TETRACHLOROETHANE		0.67 U	0.70 U	0.69 U	0.69 U	0.75 U	NS	0.67 U	0.70 U	0.23 U	0.66 U	0.35 U
TETRACHLOROETHENE (PCE)	100	0.66 U	0.69 U	0.68 U	0.69 U	2.0	NS	0.66 U	1.3	0.22 U	0.66 U	0.35 U
TOLUENE	'''	9.7	13	240	65	34	NS	2.5	110	0.78	0.76 J	0.97 U
1,1,1-TRICHLOROETHANE		2.7 U	2.8 U	2.7 U	2.8 U	3.0 U	NS	2.7 U	2.8 U	0.094 J	0.30 J	1.4 U
1.1.2-TRICHLOROETHANE		2.7 U	2.8 U	2.7 U	2.8 U	3.0 U	NS	2.7 U	2.8 U	0.90 U	2.6 U	1.4 U
TRICHLOROETHENE (TCE)	50	0.52 U	0.55 U	0.54 U	0.54 U	5.9	NS	0.52 U	0.55 U	0.18 U	0.52 U	0.28 U
TRICHLOROFLUOROMETHANE		2.7 U	2.9 U	2.8 U	2.8 U	3.1 U	NS	2.7 U	2.9 U	1.5	2.0 J	1.4 U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE		3.4	6.8	3.8	0.78 U	1.1	NS	1.0	1.1	0.69	1.1	0.72
VINYL ACETATE		7.8 R	8.2 R	8.0 R	8.1 R	8.7 R	NS	7.8 R	8.2 R	2.9 U	8.5 U	4.5 U
VINYL CHLORIDE		2.5 U	2.6 U	2.6 U	2.6 U	2.8 U	NS	2.5 U	2.6 U	0.42 U	1.2 U	0.66 U
O-XYLENE		4.2 U	7.2	70	20	6.7	NS	4.2 U	36	0.073 J	4.2 U	2.2 U
M+P-XYLENE		9.2	12	180	61	19	NS	8.4 U	110	0.23 J	0.34 J	4.5 U

Notes:

NYSDOH NFA' = New York State Department of Health No Further Action Criteria.

'U' = non-detect at the reported detection limit.

'J' = estimated concentration.

'R' = rejected result.

'B' = method blank contamination.

'NS' = not sampled.

Blue shading indicates samples analyzed as part of the Supplemental Northern Property Assessment (May through September 2008).

Table 1 **Summary of Soil Vapor Analytical Data** Northern Property Xerox Corporation - Webster, NY

LOCATION		Xerox N-40												
DEPTH (ft bgs)		6.3	7.5	8.0	5.4	5.3	5.4	5.3	5.0	5.2	5.1	4.0	5.3	5.1
DATE		7/2/2008			7/2/2008				5/21/2008	7/2/2008	7/2/2008	7/2/2008	9/11/2008	9/11/2008
SAMPLE TYPE N	NYSDOH	SOIL GAS												
SAMPLE NAME	NFA	SV-20	SV-21	SV-22	SV-23	SV-24	SV-25	SV-26	SV-27	SV-29	SV-30	SV-31	SV-32	SV-33
VOCs (ug/m3)														
ACETONE		35	NS	NS	34 B	NS	NS	NS	6.2	78	22 B	44	28	14
BENZENE		0.88 J	NS	NS	0.47 J	NS	NS	NS	0.84 U	12	8.0	20	16	17
BROMODICHLOROMETHANE		0.67 U	NS	NS	2.0 U	NS	NS	NS	0.35 U	3.4 U	0.68 U	0.68 U	0.67 U	0.71 U
BROMOFORM		5.1 U	NS	NS	15 U	NS	NS	NS	2.7 U	26 U	5.2 U	5.3 U	5.2 U	5.5 U
BROMOMETHANE		1.9 U	NS	NS	5.7 U	NS	NS	NS	1.0 U	9.8 U	2.0 U	2.0 U	1.9 U	2.1 U
2-BUTANONE (MEK)		7.8	NS	NS	8.6 U	NS	NS	NS	1.6	29	3.9	13	6	3.9
CARBON DISULFIDE		4.5	NS	NS	2.3 J	NS	NS	NS	0.82 U	12	21	24	48	44
CARBON TETRACHLORIDE	50	0.30 J	NS	NS	1.8 U	NS	NS	NS	0.74	3.2 U	0.64 U	0.64 U	0.63 U	0.67 U
CHLOROETHANE		0.73 J	NS	NS	7.7 U	NS	NS	NS	1.4 U	13 U	2.7 U	2.7 U	2.6 U	2.8 U
CHLOROFORM		0.65 J	NS	NS	0.93 J	NS	NS	NS	1.3 U	12 U	1.1 J	2.5 U	2.4 U	2.6 U
CHLOROMETHANE		2.1	NS	NS	6.0 U	NS	NS	NS	1.2	10 U	2.1 U	2.1 U	2.1 U	2.2 U
DIBROMOCHLOROMETHANE		0.85 U	NS	NS	2.5 U	NS	NS	NS	0.45 U	4.3 U	0.86 U	0.87 U	0.85 U	0.9 U
1.2-DIBROMOETHANE		0.76 U	NS	NS	2.2 U	NS	NS	NS	0.40 U	3.9 U	0.78 U	0.78 U	0.77 U	0.81 U
1.3-DICHLOROBENZENE		6.0 U	NS	NS	18 U	NS	NS	NS	3.2 U	30 U	6.1 U	6.1 U	6.0 U	6.4 U
1,4-DICHLOROBENZENE		1.2 J	NS	NS	18 U	NS	NS	NS	3.2 U	30 U	6.1 U	6.1 U	6.0 U	6.4 U
1,2-DICHLOROBENZENE		6.0 U	NS	NS	18 U	NS	NS	NS	3.2 U	30 U	6.1 U	6.1 U	6.0 U	6.4 U
1.1-DICHLOROETHANE		2.0 U	NS	NS	5.9 U	NS	NS	NS	1.1 U	10 U	2.0 U	2.1 U	2.0 U	2.1 U
1,2-DICHLOROETHANE		2.0 U	NS	NS	5.9 U	NS	NS	NS	1.1 U	10 U	0.29 J	0.71 J	2.0 U	2.1 U
1.1-DICHLOROETHENE		2.0 U	NS	NS	5.8 U	NS	NS	NS	1.0 U	10 U	2.0 U	2.0 U	2.0 U	2.1 U
TRANS-1,2-DICHLOROETHENE		2.0 U	NS	NS	5.8 U	NS	NS	NS	1.0 U	10 U	2.0 U	2.0 U	2.0 U	2.1 U
CIS-1.2-DICHLOROETHENE		2.0 U	NS	NS	5.8 U	NS	NS	NS	1.0 U	10 U	2.0 U	1.4 J	2.0 U	2.1 U
1.2-DICHLOROPROPANE		2.3 U	NS	NS	6.8 U	NS	NS	NS	1.2 U	12 U	2.3 U	2.4 U	2.3 U	2.4 U
CIS-1.3-DICHLOROPROPENE		4.5 U	NS	NS	13 U	NS	NS	NS	2.4 U	23 U	4.6 U	4.6 U	4.5 U	4.8 U
TRANS-1,3-DICHLOROPROPENE		2.3 U	NS	NS	6.6 U	NS	NS	NS	1.2 U	11 U	2.3 U	2.3 U	2.3 U	2.4 U
ETHYLBENZENE		0.26 J	NS	NS	13 U	NS	NS	NS	2.3 U	2.4 J	2.6 J	5.4	4.3 U	4.6 U
2-HEXANONE		2.0 U	NS	NS	6.0 U	NS	NS	NS	1.1 U	10 U	2.1 U	2.1 U	2.0 U	2.2 U
METHYLENE CHLORIDE		0.35 J	NS	NS	5.1 U	NS	NS	NS	0.91 U	8.7 U	0.46 J	1.8 U	1.7 U	1.8 U
4-METHYL-2-PENTANONE		4.1 U	NS	NS	12 U	NS	NS	NS	2.2 U	15 J	4.1 U	4.2 U	6.6	4.3 U
STYRENE		4.2 U	NS	NS	12 U	NS	NS	NS	2.2 U	21 U	0.43 J	1.1 J	4.3 U	4.5 U
1.1.2.2-TETRACHLOROETHANE		0.68 U	NS	NS	2.0 U	NS	NS	NS	0.36 U	3.5 U	0.69 U	0.70 U	0.69 U	0.73 U
TETRACHLOROETHENE (PCE)	100	0.46 J	NS	NS	15	NS	NS	NS	0.36 U	3.4 U	0.35 J	0.64 J	0.68 U	0.72 U
TOLUENE		1.9	NS	NS	1.1 J	NS	NS	NS	0.99 U	16	12	20	25	30
1,1,1-TRICHLOROETHANE		2.7 U	NS	NS	8.0 U	NS	NS	NS	1.4 U	14 U	2.8 U	0.62 J	2.7 U	2.9 U
1,1,2-TRICHLOROETHANE		2.7 U	NS	NS	8.0 U	NS	NS	NS	1.4 U	14.0 U	2.8 U	2.8 U	2.7 U	2.9 U
TRICHLOROETHENE (TCE)	50	0.53 U	NS	NS	2.2	NS	NS	NS	0.28 U	2.7 U	0.54 U	0.60	0.54 U	0.57 U
TRICHLOROFLUOROMETHANE		1.9 J	NS	NS	1.3 J	NS	NS	NS	1.5 U	14 U	1.8 J	1.6 J	2.8 U	3.0 U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE		0.85	NS	NS	2.2 U	NS	NS	NS	0.71	3.9 U	1.2	0.90	0.77 U	0.81 U
VINYL ACETATE		8.7 U	NS	NS	26 U	NS	NS	NS	4.6 U	44 U	8.9 U	9.0 U	8.8 U	9.3 U
VINYL CHLORIDE		1.3 U	NS	NS	3.7 U	NS	NS	NS	0.67 U	6.4 U	1.3 U	1.3 U	1.3 U	1.40 U
O-XYLENE		0.23 U	NS	NS	13 U	NS	NS	NS	2.3 U	1.1 J	1.4 J	2.3 J	5.5	7.9
M+P-XYLENE		1.4 U	NS	NS	25 U	NS	NS	NS	4.6 U	5.9 J	6.6 J	7.5 J	21	28

Notes: NYSDOH NFA' = New York State Department of Health No Further Action Criteria.

'U' = non-detect at the reported detection limit.

'J' = estimated concentration.

'R' = rejected result.
'B' = method blank contamination.

'NS' = not sampled.

Blue shading indicates samples analyzed as part of the Supplemental Northern Property Assessment (May through September 2008).

Table 2 **Summary of Groundwater Analytical Data** Northern Property Supplemental Investigation Xerox Corporation - Webster, NY

DATE		9/8/2008	9/8/2008	9/8/2008	9/8/2008	9/8/2008
SAMPLE TYPE		AQ	AQ	AQ	AQ	AQ
DEPTH TO WATER (ft bgs)		21.6	17.0	12.4	7.2	11.0
DEPTH TO BOTTOM OF WELL (ft bgs)		28.7	25.9	15.2	11.8	15.2
SAMPLE NAME	NYS GA	OB-97	OB-97 REC-1	SV-3	SV-8	SV-14
		0_ 01				
VOCs (ug/L)						
BENZENE	1*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
BROMODICHLOROMETHANE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
BROMOFORM	50**	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
BROMOMETHANE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
CARBON TETRACHLORIDE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
CHLOROBENZENE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
CHLOROETHANE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
2-CHLOROETHYLVINYL ETHER	NA	10 U	10 U	10 U	10 U	10 U
CHLOROFORM	7*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
CHLOROMETHANE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
DIBROMOCHLOROMETHANE	50**	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,3-DICHLOROBENZENE	3*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-DICHLOROBENZENE	3*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,4-DICHLOROBENZENE	3*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1-DICHLOROETHANE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-DICHLOROETHANE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1-DICHLOROETHENE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
TRANS-1,2-DICHLOROETHENE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
CIS-1,2-DICHLOROETHENE	5*	26	100	5.0 U	5.0 U	5.0 U
1,2-DICHLOROPROPANE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
CIS-1,3-DICHLOROPROPENE	0.4*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
TRANS-1,3-DICHLOROPROPENE	0.4*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
ETHYLBENZENE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
METHYLENE CHLORIDE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2,2-TETRACHLOROETHANE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
TETRACHLOROETHENE (PCE)	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
TOLUENE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,1-TRICHLOROETHANE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2-TRICHLOROETHANE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
TRICHLOROETHENE (TCE)	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
VINYL CHLORIDE	2*	53	5	5.0 U	5.0 U	5.0 U
O-XYLENE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
M+P-XYLENE	5*	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U

Notes:
*NYS GA = standard value for groundwater considered a source of drinking water.

NA = not applicable

'U' = sample was non-detect at the reported detection limit.

AQ = water

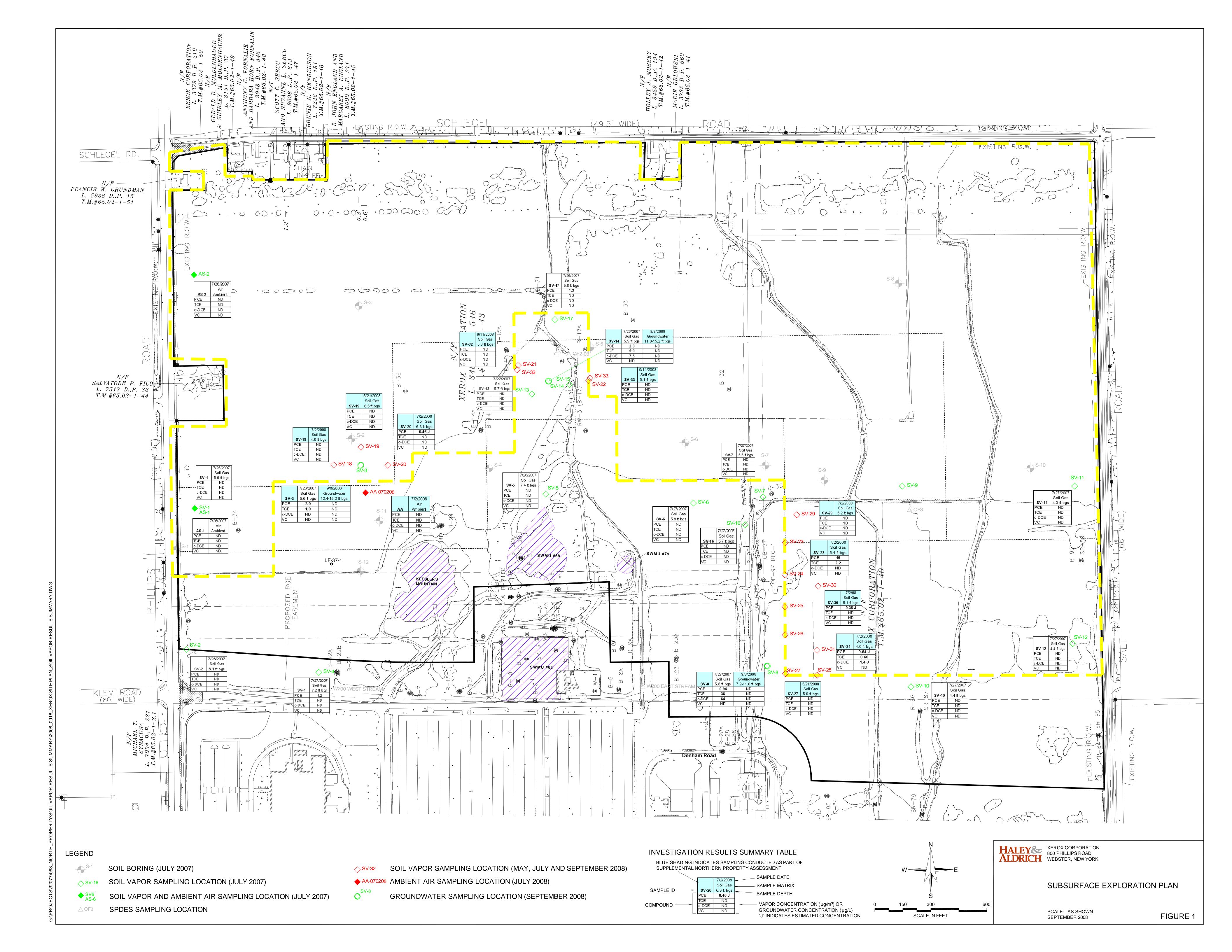

^{**}NYS GA = guidance value for groundwater considered a source of drinking water.

Table 3 Summary of Historical Groundwater Analytical Data Inactive Landfill and Salt Road Investigative Areas - Northern Wells Xerox Corporation - Webster, NY

Landfill	O1-'97	O2-'97	703-'97	O4-'97	O1-'9	RO2-'98	3.	.'98 O4.'98	8 O 1	1-'99 02-'9	9 ()3	3-'99 ∩4-'	99 ()	1-'00 O	2-'00 O3	-'00 O4	-'00 C	1-'01	O2-'01	O3-'01	04-'01	O1-'0	2 02-'02	O3-'02	04-'02	O1-'03	02-'03	3 (03-103	O4-'03	01-'04	02-'04	103-'04	04-'04	O1-'05	02-'05	Q3-'05 Q4-'0	05 01-'(06 (02-	06 O3-'	06 (04-1	06 O1.	'07 O2.	.'07 O	3-'07 O/	-'07
RW-3	5	Q= >1	7	Q. 77	6	, Q2 ,0	25) 4	V Q	4 11	7 Q0	8	V	1 00 Q.	1		2.	1 01	7	Q5 01	5	QI 0	2	9	Q: 02	Q1 00	4	7	9	9	6	5	9	7	9	7 7	2	1	9	5	7	7 9		8	
B-14			,		0				+	7 11		- 0	+		-		_										7		ND	<u> </u>	0					, , ND					——	+		-	-
B-14A	.		1						+				+																ND	ł		1				TVD			+		-	NI	D	+	\dashv
B-15									+		+		1																ND	i e						ND						NI		-	-1
B-15A									+		+		1																TUD	i e						ND								-	-1
B-16									+		+		1																ND	i e						ND						NI	D	-	-1
B-17A	ND		1		ND		N	D					1																ND	ND	ND	ND	ND	ND	ND		_	NI) NE	NE) NI			ND	$\overline{}$
B-20	ND				ND			D ND					1														ND	ND	ND	ND			ND			ND ND		NI						ND	\neg
B-20A	ND				ND		N		_	ND ND		ND	,		ND	N	D		ND		ND		ND		ND		ND		ND	1	2			ND				NI) NI			ND	\neg
B-20B									T																		ND	ND	ND	ND			ND					NI						ND	_
B-23																																													_
B-23A																																													-
B-24	ND		ND		ND		N	D																					ND								ND)							-
B-24A	ND		ND		ND		N	D ND	1	ND ND		ND	,]	ND		5		4		4		ND						ND								ND	,							
B-24B																																					ND)						-	
B-28																											2					2				2	1					2	2	-	
B-28A																											ND					ND				ND	ND)				NI	D		_
B-30																													ND							ND						NI	D		_
B-31																													ND							ND						NI	D		
B-32																													ND							ND						NI	D		
B-33																													ND													NI	D		
B-34																													ND							ND						NI	D		
B-35																													ND							ND	1					NI	D		
B-36																													ND							ND						NI	D		
LF-B-37I																													ND			ND	6	ND	ND	ND ND	ND	NI) NE	NE)	NI	D N	ND	
Salt Road	Q1-'97	Q2-'97	7 Q3-'97	Q4-'97	Q1-'98	8 Q2-'98	Q3 -	-'98 Q4-'98	8 Q1	1-'99 Q2-'99	9 Q3	3-'99 Q4-'9	99 Q	1-'00 Q	2-'00 Q3	-'00 Q4	-'00 Q	1-'01	Q2-'01	Q3-'01	Q4-'01	Q1-'0	02 Q2-'02	Q3-'02	Q4-'02	Q1-'03	Q2-'03	3 Q3-'03	Q4-'03	Q1-'04	Q2-'04	Q3-'04	Q4-'04	Q1-'05	Q2-'05	Q3-'05 Q4-'0)5 Q1-'(06 Q2-'	06 Q3-')6 Q4-'	06 Q1-	'07 Q2-	-'07 Q3	5-'07 Q4	-'07
R-64	ND	ND	ND	ND	ND	ND	N	D ND	1	ND ND	N	ND ND)]		ND N		D	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND			ND	ND			ND	ND	ND)		NE)	NI	D N	ND	
SR-65	1	ND		ND	ND	ND	N	D ND		ND ND		ND			ND N			ND	ND	ND		ND		ND	ND	ND		ND			ND	ND			ND	1	ND)		NE)	NI		ND	
R-86	ND	ND	ND	ND	ND	ND	N	D ND	1	ND ND	N	ND ND)	ND :	ND N	ID N	D	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND			ND	ND			ND	ND				NE)	NI		ND	
SR-87																											ND	ND			ND	ND			ND	ND	ND)		NE)			ND	
R-88	2	1	1	2	2	1	1	1 2		2 ND		1 2		3	2		2	1	2	2	2	ND	2	2	2	2						2			ND	2	1					NI	D		
SR-89				ND				ND				ND					D				ND				ND																				
R-90				ND				ND				ND	_				D				ND				ND																			$\perp \perp$	
OB-97	Q1-'97	Q2-'97	Q3-'97	Q4-'97	Q1-'98	8 Q2-'98	Q3-	-'98 Q4-'98	8 Q1	1-'99 Q2-'99	9 Q3	3-'99 Q4-'9	99 Q	1-'00 Q	2-'00 Q3	-'00 Q4	-'00 Q	1-'01	Q2-'01	Q3-'01	Q4-'01	Q1-'0	02 Q2-'02	Q3-'02	Q4-'02	Q1-'03	Q2-'03	3 Q3-'03	Q4-'03	Q1-'04	Q2-'04	Q3-'04	Q4-'04	Q1-'05	Q2-'05	Q3-'05 Q4-'0)5 Q1-'(06 Q2-'	06 Q3-')6 Q4-'	06 Q1-	'07 Q2-	-'07 Q3	5-'07 Q4	-'07
OB-97	476	604		494	288	456	26		3	344 303																			73	54	67	38	38												
REC-1	673		335	62	179	456	26	53 150		24 119								119	7	203	46	119	7	203	46	61	2	152	109	200	135	118	134												
OW-J240																																													
OW-320N								D ND																		ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND)		NE)	NI	D N	ND	
OW-R365	ND	ND	ND	ND	ND	ND	N	D ND	1	ND ND																																			
								•	_	•	_	•		•	•																					•		_		-	_		•		_

Notes: Results are for total VOCs in groundwater.

Units are ug/L.

APPENDIX A

Laboratory Analytical Data – Soil Vapor and Groundwater Columbia Analytical Services, Inc.

A FULL SERVICE ENVIRONMENTAL LABORATORY

June 9, 2008

Mr. Steve Schalabba
Haley & Aldrich of New York
200 Town Centre Drive
Suite 2
Rochester, NY 14623-4264

PROJECT: XEROX N-40 PROPERTY #32077-063

Submission #:R2844056

Dear Mr. Schalabba:

Enclosed are the analytical results of the analyses requested. The analytical data was provided to you on 06/09/08 per a Facsimile transmittal. All data has been reviewed prior to report submission.

Should you have any questions please contact me at (585) 288-5380.

Thank you for letting us provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Karen Bunker Project Manager

Enc.

1 Mustard ST. Suite 250 Rochester, NY 14609 (585) 288-5380

THIS IS AN ANALYTICAL TEST REPORT FOR:

Client : Haley & Aldrich of New York

Project Reference: XEROX N-40 PROPERTY #32077-063

Lab Submission # : R2844056

Project Manager : Karen Bunker

Reported : 06/09/08

Report Contains a total of ______ pages

The results reported herein relate only to the samples received by the laboratory. This report may not be reproduced except in full, without the approval of Columbia Analytical Services.

This package has been reviewed by Columbia Analytical Services' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal.

CASE NARRATIVE

This report contains analytical results for the following samples: Submission #: R2844056

<u>Lab ID</u>	Client	ID
1103061	SV-27	
1103062	SV-19	

All samples were received in good condition unless otherwise noted on the cooler receipt and preservation check form located at the end of this report.

All samples were preserved in accordance with approved analytical methods.

All samples have been analyzed by the approved methods cited on the analytical results pages.

All holding times and associated QC were within limits.

No analytical or QC problems were encountered.

All sampling activities performed by CAS personnel have been in accordance with "CAS Field Procedures and Measurements Manual" or by client specifications.

ORGANIC QUALIFIERS

- U Indicates compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds, or when the data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit and greater than the MDL. This flag is also used for DoD instead of "P" as indicated below.
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search.
- P This flag is used for a pesticide/Aroclor target analyte when there is a greater than 40% (25% for CLP) difference for detected concentrations between the two GC columns. The concentration is reported on the Form I and flagged with a "P" ("J" for DoD).
- Q for DoD only indicates a pesticide/Aroclor target is not confirmed. This flag is used when there is ≥ 100% difference for the detected concentrations between the two GC columns.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor. If a sample or extract is re-analyzed at a higher dilution factor, as in the "E" flag above, the "DL" suffix is appended to the sample number on the Form I for the diluted sample, and ALL concentration values reported on that Form I are flagged with the "D" flag.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- X As specified in Case Narrative.
- This flag identifies compounds associated with a quality control parameter which exceeds laboratory limits.

CAS/Rochester Lab ID # for State Certifications

NELAP Accredited
Delaware Accredited
Connecticut ID # PH0556
Florida ID # E87674
Illinois ID #200047
Maine ID #NY0032
Massachusetts ID # M-NY032
Navy Facilities Engineering Service Center Approved

Nebraska Accredited New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

H:\FORMS\QUALIF_O.DOC

VOLATILE ORGANICS

METHOD TO-15

Reported: 06/09/08

Haley & Aldrich of New York

Project Reference: XEROX N-40 PROPERTY #32077-063

Client Sample ID : SV-27

 Date Sampled:
 05/21/08
 12:50 Order #: 1103061
 Sample Matrix: AIR

 Date Received:
 05/22/08
 Submission #: R2844056
 Analytical Run 162150

DATE ANALYZED : 05/29/08

ANALYTICAL DILUTION: 1.00
CAN DILUTION: 2.39 Pi= -4.5 Pf= 30.8

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBV
ACETONE	1.3	6.2	0.55	2.6
BENZENE	0.35	0.84 U	0.11	0.26 U
BROMODICHLOROMETHANE	0.15	0.35 U	0.022	0.053 U
BROMOFORM	1.1	2.7 U	0.11	0.26 U
BROMOMETHANE	0.43	1.0 U	0.11	0.26 U
2-BUTANONE (MEK)	0.65	1.6	0.22	
METHYL-TERT-BUTYL ETHER	0.79	1.9 U	0.22	0.53 U
CARBON DISULFIDE	0.34	0.82 U	0.11	0.26 U
CARBON TETRACHLORIDE	0.14	0.74	0.022	
CHLOROBENZENE	0.51	1.2 U	0.11	0.26 U
CHLOROETHANE	0.58	1.4 U	0.22	
CHLOROFORM	0.54	1.3 U	0.11	0.26 U
CHLOROMETHANE	0.45	1.2	0.22	0.56
DIBROMOCHLOROMETHANE	0.19	0.45 U	0.022	0.053 U
1,2-DIBROMOETHANE	0.17	0.40 U	0.022	0.053 U
1.3-DICHLOROBENZENE	1.3	3.2 U	0.22	
1,4-DICHLOROBENZENE	1.3	3.2 U	0.22	0.53 U
1,2-DICHLOROBENZENE	1.3	3.2 U	0.22	
1,1-DICHLOROETHANE	0.45	1.1 U	0.11	
1,2-DICHLOROETHANE	0.45	1.1 U	0.11	
1,1-DICHLOROETHENE	0.44	1,0 U	0.11	
TRANS-1,2-DICHLOROETHENE	0.44	1.0 U	0.11	
	0.44	1.0 U	0.11	
CIS-1,2-DICHLOROETHENE	0.51	1.2 U	0.11	
1,2-DICHLOROPROPANE	1.00	2.4 U	0.22	0.53 Ü
CIS-1,3-DICHLOROPROPENE	0.50	1.2 U	0.11	
TRANS-1,3-DICHLOROPROPENE	0.95	2.3 U	0.22	0.53 U
ETHYLBENZENE	0.45	1.1 U	0.11	
2-HEXANONE	0.45	0.91 U	0.11	
METHYLENE CHLORIDE	0.90	2.2 U	0.22	
4-METHYL-2-PENTANONE	0.94	2.2 U	0.22	0.53 U
STYRENE		0.36 U	0.022	0.053 U
1,1,2,2-TETRACHLOROETHANE	0.15	0.36 U	0.022	
TETRACHLOROETHENE	0.15			0.26 U
TOLUENE	0.41	0.99 U	0.11	
1,1,1-TRICHLOROETHANE	0.60	1.4 U	0.11	0.26 U
1,1,2-TRICHLOROETHANE	0.60	1.4 U	0.11	0.26 U
TRICHLOROETHENE	0.12	0.28 U	0.022	0.053 U
TRICHLOROFLUOROMETHANE	0.62	1.5 U	0.11	0.26 U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA	0.17	0.71	0.022	0.092
VINYL ACETATE	1.9	4.6 U	0.55	1.3 U
VINYL CHLORIDE	0.28	0.67 U	0.11	0.26 U
				<u> </u>

VOLATILE ORGANICS

METHOD TO-15

Reported: 06/09/08

Haley & Aldrich of New York

Project Reference: XEROX N-40 PROPERTY #32077-063

Client Sample ID : SV-27

 Date Sampled:
 05/21/08
 12:50 Order #: 1103061
 Sample Matrix: AIR

 Date Received:
 05/22/08
 Submission #: R2844056
 Analytical Run 162150

DATE ANALYZED : 05/29/08

ANALYTICAL DILUTION: 1.00
CAN DILUTION: 2.39 Pi= -4.5 Pf= 30.8

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBV	
O-XYLENE M+P-XYLENE	0.95 1.9	2.3 U 4.6 U	0.22 0.44	0.53 U 1.1 U	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	95	ajo		

VOLATILE ORGANICS

METHOD TO-15

Reported: 06/09/08

Haley & Aldrich of New York

Project Reference: XEROX N-40 PROPERTY #32077-063

Client Sample ID : SV-19

Date Sampled: 05/21/08 15:20 Order #: 1103062 Sample Matrix: AIR Date Received: 05/22/08 Submission #: R2844056 Analytical Run 162150

DATE ANALYZED : 05/29/08

ANALYTICAL DILUTION: 1.00
CAN DILUTION: 2.34 Pi= -4.0 Pf= 30.7

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv
ACETONE	1.3	7.6	0.55	3.2
BENZENE	0.35	0.82 U	0.11	0.26 U
BROMODICHLOROMETHANE	0.15	0.34 U	0.022	0.051 U
BROMOFORM	1.1	2.7 U	0.11	0.26 U
BROMOMETHANE	0.43	1.00 U	0.11	0.26 U
2-BUTANONE (MEK)	0.65	2.4	0.22	0.80
METHYL-TERT-BUTYL ETHER	0.79	1.9 U	0.22	0.51 U
CARBON DISULFIDE	0.34	0.80 U	0.11	0.26 U
CARBON TETRACHLORIDE	0.14	0.73	0.022	0.12
CHLOROBENZENE	0.51	1.2 U	0.11	0,26 U
CHLOROETHANE	0.58	1.4 U	0.22	0.51 U
CHLOROFORM	0.54	1.3 U	0.11	0.26 U
CHLOROMETHANE	0.45	1.8	0.22	0.88
DIBROMOCHLOROMETHANE	0.19	0.44 U	0.022	0.051 U
1,2-DIBROMOETHANE	0.17	0.40 U	0.022	0.051 U
1,3-DICHLOROBENZENE	1.3	3.1 U	0.22	0.51 U
• •	1.3	3.1 U	0.22	0.51 U
1,4-DICHLOROBENZENE	1.3	3.1 U	0.22	0.51 U
1,2-DICHLOROBENZENE	0.45	1.0 U	0.11	0.26 U
1,1-DICHLOROETHANE	0.45	1.0 U	0.11	0.26 U
1,2-DICHLOROETHANE	0.44	1.0 U	0.11	0.26 U
1,1-DICHLOROETHENE	0.44	1.0 U	0.11	0.26 U
TRANS-1,2-DICHLOROETHENE		1.0 U	0.11	0.26 U
CIS-1,2-DICHLOROETHENE	0.44	1.0 U	0.11	0.26 U
1,2-DICHLOROPROPANE	0.51		0.22	0.51 U
CIS-1,3-DICHLOROPROPENE	1.00	2.3 U	0.22	0.26 U
TRANS-1,3-DICHLOROPROPENE	0.50	1.2 U		0.51 U
ETHYLBENZENE	0.95	2.2 U	0.22	
2-HEXANONE	0.45	1.1 U	0.11	0.26 U
METHYLENE CHLORIDE	0.38	0.89 Ü	0.11	0.26 U
4-METHYL-2-PENTANONE	0.90	2.1 U	0.22	0.51 U
STYRENE	0.94	2.2 U	0.22	0.51 U
1,1,2,2-TETRACHLOROETHANE	0.15	0.35 U	0.022	0.051 U
TETRACHLOROETHENE	0.15	0.35 U	0.022	
TOLUENE	0.41	0.97 Ū	0.11	0.26 U
1,1,1-TRICHLOROETHANE	0.60	1.4 U	0.11	0.26 U
1,1,2-TRICHLOROETHANE	0.60	1.4 U	0.11	0.26 U
TRICHLOROETHENE	0.12	0.28 U	0.022	0.051 U
TRICHLOROFLUOROMETHANE	0.62	1.4 U	0.11	0.26 U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA	0.17	0.72	0.022	0.094
VINYL ACETATE	1.9	4.5 U	0.55	1.3 U
VINYL CHLORIDE	0.28	0.66 U	0.11	0.26 U
• • • • • • • • • • • • • • • • • • •				TATATAC

VOLATILE ORGANICS

METHOD TO-15

Reported: 06/09/08

Haley & Aldrich of New York

Project Reference: XEROX N-40 PROPERTY #32077-063

Client Sample ID : SV-19

Date Sampled: 05/21/08 15:20 Order #: 1103062 Sample Matrix: AIR Date Received: 05/22/08 Submission #: R2844056 Analytical Run 162150

DATE ANALYZED : 05/29/08

ANALYTICAL DILUTION: 1.00
CAN DILUTION : 2.34 Pi= -4.0 Pf= 30.7

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
O-XYLENE M+P-XYLENE	0.95 1.9	2.2 U 4.5 U	0.22 0.44	0.51 U 1.0 U	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	95	<u> </u>		

LCS RECOVERY FOR SECOND SOURCE STANDARD

Compounds Flagged outside of 70-130% recovery

		•		inj volume	250		
LCS 1.0	DF	100.00		nominal volume	1000		
	Stock	popular i nevi an popular reside.			Target	LCS	Recovery
SS Stock 0-515-41A conc.====>	ppm	ppb	MW	cas#	ppbv	ppbv	%
Internal standard		2.5				2.5	
propylene	1.05	10.50	42.08	115-07-1	2.63	0	0.0 #
dichlorodifluoromethane	1.01	10.10	120.91	75-71-8	2.53	2.81	111.3
freon-114	1.01	10.10	170.92	76-14-2	2.53	2.66	105.3
chloromethane	1.00	10.00	50.49	74-87-3	2.50	2.49 2.4	99.6 96.0
vinyl chloride 1,3-butadiene	1.00 1.07	10.00 10.70	62.5 54.09	75-01-4 106-99-0	2.50 2.68	2.59	96.8
bromomethane	1.00	10.70	94.9	74-83-9	2.50	2.19	87.6
chloroethane	1.00	10.00	64.5	75-00-3	2.50	1.99	79.6
trichlorofluoromethane	1.01	10.10	137.37	75-69-4	2.53	2.22	87.9
ethanol	1.08	10.80	46.07	64-17-5	2.70	0	0.0 #
freon-113	1.06	10.60	187.38	76-13-1	2.65	2.83	106.8
1,1-dichloroethene	1.08	10.80	96.94	75-35-4	2.70	2.85	105.6
acetone	1.05	10.50	58.08	67-64-1	2.63	2.76	105.1
isopropanol	1.15	11.50	60.1	67-63-0	2.88	0	0.0 #
carbon disulfide methylene chloride	1.04 1.07	10.40 10.70	76.14 84.93	75-15-0 75-09-2	2.60 2.68	2.89 2.89	111.2 108.0
trans-1,2-dichloroethene	1.07	10.70	96.94	156-60-5	2.60	2.79	100.0
methyl tert butyl ether	1.05	10.50	88.15	1634-04-4	2.63	2.74	107.3
hexane	1.06	10.60	86.18	110-54-3	2.65	2.72	102.6
1,1-dichloroethane	1.04	10.40	98.96	107-06-2	2.60	2.8	107.7
vinyl acetate	1.06	10.60	86.09	108-05-4	2.65	2.75	103.8
2-butanone	1.07	10.70	72.11	78-93-3	2.68	2.78	103.9
cis-1,2-dichloroethene	1.07	10.70	96.94	156-59-2	2.68	2.95	110.3
ethyl acetate	1.06	10.60	88.11	141-78-6	2.65	2.85	107.5
chloroform	1.06	10.60	119.38	67-66-3	2.65	2.81	106.0
tetrahydrofuran	1.06	10.60 2.50	72.11	109-99-9	2.65	2.78 2.5	104.9 #
Internal standard 1,1,1-trichloroethane	1.04	10.40	133.4	71-55-6	2.60	3.21	123.5
cyclohexane	1.05	10.50	84.16	110-82-7	2.63	2.94	112.0
carbon tetrachloride	1.05	10.50	153.82	56-23-5	2.63	3.36	128.0
1,2-dichloroethane	1.05	10.50	98.96	107-06-2	2.63	3.28	125.0
benzene	1.06	10.60	78,11	71-43-2	2.65	3.09	116.6
heptane	1.05	10.50	100.2	142-82-5	2.63	2.91	110.9
trichloroethylene	1.04	10.40	131.39	79-01-6	2.60	2.95	113.5
1,2-dichloropropane	1.04	10.40	112.99	78-87-5	2.60	2.9	111.5
1,4-dioxane bromodichloromethane	1.04 1.04	10.40 10.40	88.11 163.83	123-91-1 75-27-4	2.60 2.60	0 3.23	0.0 # 124.2
cis-1,3-dichloro-1-propene	1.04	10.40	103.63	10061-01-5	2.63	2.85	108.6
4-methyl-2-pentanone	1.06	10.60	100.16	108-10-1	2.65	2.96	111.7
toluene	1.06	10.60	92.14	108-88-3	2.65	3.18	120.0
trans-1,3-dichloro-1-propene	1.15	11.50	110.97	10061-02-6	2.88	2.75	95.7
1,1,2-trichloroethane	1.03	10.30	133.4	79-00-5	2.58	2.99	116.1
tetrachloroethene	1.03	10.30	165.83	127-18-4	2.58	3.15	122.3
2-hexanone	1.06	10.60	100.16	591-78-6	2.65	3.1	117.0
dibromochloromethane	1.04	10.40	208.28	124-48-1	2.60	3.23	124.2
1,2-dibromoethane	1.04	10.40	187.86	106-93-4	2.60	3.2 2.5	123.1 #
Internal standard chlorobenzene	1.05	2.50 10.50	112.56	108-90-7	2.63	3.13	119.2
ethylbenzene	1.05	10.50	106.17	100-41-4	2.63	3.14	119.6
M+P xylene	2.08	20.80	106.17	1330-20-7	5.20	6.3	121.2
O xylene	1.04	10.40	106.17	95-47-6	2.60	3.07	118.1
styrene	1.05	10.50	104.15	100-42-5	2.63	3.08	117.3
bromoform	1.04	10.40	252.73	75-25-2	2.60	3.3	126.9
Surrogate standard		2.50				2.62	#
1,1,2,2-tetrachloroethane	1.04	10.40	167.85	79-34-5	2.60	2.93	112.7
4-ethyltoluene	1.08	10.80	120.19	622-96-8	2.70	3.18	117.8
1,3,5-trimethylbenzene	1.05	10.50	120.19	108-67-8	2.63	3.11	118.5
1,2,4-trimethylbenzene	1.03	10.30	120.19	95-63-6 541-73-1	2.58	3.03 3.09	117.7 118.8
1,3-dichlorobenzene	1.04 1.04	10.40 10.40	147 147	541-73-1 106-46-7	2.60 2.60	3.09	118.8
1,4-dichlorobenzene benzyl chloride	1.04	10.40	126.59	100-44-7	2.60	3.09	0.0 #
1,2-dichlorobenzene	1.04	10.40	147	95-50-1	2.53	3.02	119.6
1,2,4-trichlorobenzene	1.01	10.10	181.45	120-82-1	2.53	0	0.0 #
hexachlorobutadiene	1.00	10.00	260.76	87-68-3	2.50	0	0.0 #

3

VOLATILE ORGANICS

METHOD TO-15

Order #: 1106765

Reported: 06/09/08

Sample Matrix: AIR

Analytical Run 162150

Project Reference:

Date Sampled:

Client Sample ID : METHOD BLANK

Date Received: Submission #:

DATE ANALYZED : 05/29/08 ANALYTICAL DILUTION: 1.00

CAN DILUTTON : 1.00 Pi= 0 Pf= 0

ANALYTE UG/M3 UG/M3 PPBV PPBV ACETONE 1.3 1.3 U 0.55 0.55 U BENZENE 0.35 0.35 U 0.11 0.11 U BROMODICHLOROMETHANE 0.15 0.15 U 0.022 0.022 U BROMOFORM 1.1 1.1 U 0.11 0.11 U BROMOMETHANE 0.43 0.43 U 0.11 0.11 U 2-BUTANONE (MEK) 0.65 0.65 U 0.22 0.22 U METHYL-TERT-BUTYL ETHER 0.79 0.79 U 0.22 0.22 U CARBON DISULFIDE 0.34 0.34 U 0.11 0.11 U CARBON TETRACHLORIDE 0.14 0.14 U 0.022 0.022 U	
ANALYTE UG/M3 UG/M3 PPBV PPBV ACETONE 1.3 1.3 U 0.55 0.55 U BENZENE 0.35 0.35 U 0.11 0.11 U BROMODICHLOROMETHANE 0.15 0.15 U 0.022 0.022 U BROMOFORM 1.1 1.1 U 0.11 U.11 U BROMOMETHANE 0.43 0.43 U 0.11 0.11 U 2-BUTANONE (MEK) 0.65 0.65 U 0.22 U METHYL-TERT-BUTYL ETHER 0.79 0.79 U 0.22 0.22 U CARBON DISULFIDE 0.34 0.34 U 0.11 0.11 U	
ACETONE 1.3 1.3 U 0.55 0.55 U BENZENE 0.35 0.35 U 0.11 0.11 U BROMODICHLOROMETHANE 0.15 0.15 U 0.022 0.022 U BROMOFORM 1.1 1.1 U 0.11 0.11 U BROMOMETHANE 0.43 0.43 U 0.11 0.11 U 2-BUTANONE (MEK) 0.65 0.65 U 0.22 U METHYL-TERT-BUTYL ETHER 0.79 0.79 U 0.22 0.22 U CARBON DISULFIDE 0.34 0.34 U 0.11 0.11 U	
BENZENE 0.35 0.35 0.11 0.11 0 0.11 0 0.11 0 0.11 0 0.11 0 0 0.22 0	· · · · · · · · · · · · · · · · · · ·
BENZENE 0.35 0.35 0.11 0.11 0 0.11 0 0.11 0 0.11 0 0.11 0 0 0.22 0	
BROMODICHLOROMETHANE 0.15 0.15 U 0.022 0.022 U BROMOFORM 1.1 1.1 U 0.11 U 0.11 U BROMOMETHANE 0.43 U 0.43 U 0.11 U 0.11 U 2-BUTANONE (MEK) 0.65 U 0.65 U 0.22 U 0.22 U METHYL-TERT-BUTYL ETHER 0.79 U 0.79 U 0.22 U 0.22 U CARBON DISULFIDE 0.34 U 0.34 U 0.11 U 0.11 U	
BROMOFORM 1.1 1.1 U 0.11 U 0.11 U BROMOMETHANE 0.43 U 0.43 U 0.11 U 0.11 U 2-BUTANONE (MEK) 0.65 U 0.65 U 0.22 U 0.22 U METHYL-TERT-BUTYL ETHER 0.79 U 0.79 U 0.22 U 0.22 U CARBON DISULFIDE 0.34 U 0.34 U 0.11 U 0.11 U	
BROMOMETHANE 0.43 0.43 0.11 0.11 0.11 0 0.11 0 0.22 0.22 0 0.22 0 0.22 0 0.22 0 0.22 0 0.22 0 0.22 0 0.22 0 0.22 0 0.22 0 0.22 0 0 0.22 0 0.22 0 0.22 0 0 0.11 0 0.11 0 0.11 0 0 0.11 0	
2-BUTANONE (MEK) 0.65 0.65 U 0.22 U METHYL-TERT-BUTYL ETHER 0.79 0.79 U 0.22 U CARBON DISULFIDE 0.34 0.34 U 0.11 U	
METHYL-TERT-BUTYL ETHER 0.79 0.79 U 0.22 U CARBON DISULFIDE 0.34 0.34 U 0.11 U	
CARBON DISULFIDE 0.34 0.34 U 0.11 U	
CHEON DIOVERSE	
CHLOROBENZENE 0.51 0.51 U 0.11 U	
CHLOROETHANE 0.58 0.58 U 0.22 U	
CHLOROFORM 0.54 0.54 U 0.11 U	
CHLOROMETHANE 0.45 0.45 U 0.22 U	
DIBROMOCHLOROMETHANE 0.19 0.19 U 0.022 0.022 U	
1,2-DIBROMOETHANE 0.17 0.17 U 0.022 U	
1,3-DICHLOROBENZENE 1.3 1.3 U 0.22 U	
1,4-DICHLOROBENZENE 1.3 1.3 U 0.22 U	
1,2-DICHLOROBENZENE 1.3 1.3 U 0.22 U	
1,1-DICHLOROETHANE 0.45 0.45 U 0.11 U	
1,2-DICHLOROETHANE 0.45 0.45 U 0.11 0.11 U	
1,1-DICHLOROETHENE 0.44 0.44 U 0.11 0.11 U	
TRANS-1,2-DICHLOROETHENE 0.44 0.44 U 0.11 0.11 U	
CIS-1,2-DICHLOROETHENE 0.44 0.44 U 0.11 0.11 U	
1,2-DICHLOROPROPANE 0.51 0.51 U 0.11 U	
CIS-1,3-DICHLOROPROPENE 1.00 1.00 U 0.22 0.22 U	
TRANS-1,3-DICHLOROPROPENE 0.50 0.50 U 0.11 0.11 U	
ETHYLBENZENE 0.95 0.95 U 0.22 U	
2-HEXANONE 0.45 0.45 U 0.11 U	
METHYLENE CHLORIDE 0.38 0.38 U 0.11 0.11 U	
4-METHYL-2-PENTANONE 0.90 0.90 U 0.22 0.22 U	
STYRENE 0.94 0.94 U 0.22 0.22 U	
1,1,2,2-TETRACHLOROETHANE 0.15 0.15 U 0.022 0.022 U	
TETRACHLOROETHENE 0.15 0.15 U 0.022 0.022 U	
TOLUENE 0.41 0.41 U 0.11 0.11 U	
1,1,1-TRICHLOROETHANE 0.60 0.60 U 0.11 0.11 U	
1,1,2-TRICHLOROETHANE 0.60 0.60 U 0.11 0.11 U	
TRICHLOROETHENE 0.12 0.12 U 0.022 U	
TRICHLOROFLUOROMETHANE 0.62 0.62 U 0.11 U	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA 0.17 0.17 U 0.022 0.022 U	
VINYL ACETATE 1.9 1.9 U 0.55 0.55 U	
VINYL CHLORIDE 0.28 0.28 U 0.11 0.11 U	
O-XYLENE 0.95 0.95 U 0.22 U	
<u> </u>	

VOLATILE ORGANICS

METHOD TO-15

Reported: 06/09/08

Project Reference:

Client Sample ID : METHOD BLANK

Date Sampled : Date Received:	Order Submission	#: 1106765 : #:	Sample Ma Analytica	trix: AIR 1 Run 162150)
DATE ANALYZED : ANALYTICAL DILUTION:	05/29/08 1.00				
CAN DILUTION :	1.00	Pi= 0	Pf= 0		
ANALYTE		MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBV
M+P-XYLENE		1.9	1.9 U	0.44	0.44 U
SURROGATE RECOVERIES	QC	LIMITS			
BROMOFLUOROBENZENE	(70	- 130 %)	95	ફ	

Project Numer Supplementation Project Numer Project Numer Supplementation Project Numer Project	Analysis Method and/or Analytes Analysis Method and/or Analytes Analysis Method and/or Analytes Specific Instruction Comments Specific Instruction Do Not Analyte Project Requirements (MRLs, O)	Turnaround Time in Business Days From Receipt, please circle 3 2 Day 4 Day 5 Day 6 Date: 3 2 Day 4 Day 5 Day 4 Day 5 Day 4 Day 5 Date: 3 2 Day 4 Day 5 Day 4 Day 5 Date: 3 2 Day 4 Day 5 Day 4 Day 5 Date: 4 Day 4 Day 5 Day 4 Day 5 Date: 5 Date: 5 Date: 6 Date: 6 Date: 7 Date: 7 Date: 7 Date: 7 Date: 7 Date: 7 Date: 8 Date:
Project Name Xerox N-40 Proper Manaysis Method and/or Analysis Method and/or Analy	Project Name XEOX N-40 Property Karen Bunker Analysis Method and for Analysis Method Sampler (Print & Sign) Ethan G. Lee K. A. L. L. Canister ID Frow Controller Sample ISLOGES F318.27 4.5" Had ISLOGES F318.27 4.5" HA	Xerox Nu-40 Property Earner Bunkthod and/or Analysis Method and and/or Analysis Method
Proper Number S2C77-663 Sampler (Print & Sign) Properties Sampler (Print & Sign) Sampler (Print & Sign) S4	Project Number 32077-663 P.O. # Billing Information Direct bill to Kerox Sampler (Print & Sign) Ettan 6, Lee (24 d. d. d. t. t. d. d. t. t. d.	## \$2077-653 ### ### #############################
Direct bill to Kerox Sample information Sampl	P.O. # / Billing information Direct bill to Kerox Sampler (Print & Sign) Ethan 6, Lee	Flow Controller Sample S
Sample (Pint & Sign) Sample (Pint & Sign)	Sampler (Print & Sign) Ethan G, Lee Canister ID Ethan G, Lee Ethan G, Lee Ethan G, Lee Canister ID Ethan G, Lee	1 2290) 1 43690) 1 5136-24 4.5" Had 1 7328351 4.5" Had 1 7309947 2.8.5 1 7309947 2.8.5 1 7309947 2.8.5 1 7309947 2.8.5 1 7309947 2.8.5 1 7309947 2.8.5 1 7309947 2.8.5 1 7309947 2.8.5 1 73009
Sampler (Print & Sign.) Ethan G, Lee (27 2) Lee Canister 1D Flow Controller Final Vacuum ISLOOGS 7324351 4.5" Ha ISLOOGS 7336910 28.0 ISLOOGS 7336914 28.0	Sampler (Print & Sign) Ethan G. (ee Canister ID Flow Controller Final Vacuum ISLOOKSY 737672/ ISLOOKSY 737671 ISLOOKSY 7	6. Lee (27 L Le. 5) 6. Lee (27 L Le. 5) 7 PSL351 4.5" Ha 7 PSL351 4.5" Ha 7 PSL352 4.5" Ha 7 PSL352 24.5 7 PSL352 24.5 7 PSL37 24.5 7 P
Supplier D Flow Controller Sample D D D D D D D D D	Sample Flow Controller Sample	Flow Controller Sample Page P
SLOOGS9 732435 4.5" Ha SLOOGS7 7316910 280 Do Not Anala SLOOGS7 7316910 280 Do Not Anala SLOOGS7 7316910 28.0 Do Not Anala SLOOGS 74316910 28.0 Do Not Anala SLOOGS 7431691 28.0 Do Not Anala SLOOGS 7431691 28.0 Do Not Anala SLOOGS 7431691 28.0 Do Not Anala	15200659 732351 45 44 X 15200659 733524 45 1500659 7315910 220 15200657 7316910 220 15200657 7316910 220 15200651 7322139 28.5 15200661 7322139 29.5 15200661 7322139 29.5 15200661 732014 22.0 15200661 732014 22.0 15200661 732014 22.0 15200661 732014 22.0 15200661 732014 22.0 15200661 732014 22.0 15200661 732014 22.0 15200661 732014 22.0 15200661 732014 22.0 15200661 732014 22.0 15200661 732014 22.0 15200661 732014 22.0 15200661 732014 22.0 15200661 732014 22.0 15200661 732014 22.0 15200667 7316910 22.0 15200657 7316910 22.0 1520067 7316910 22.0 1520067 7316910 22.0 1520067 7316910 22.0 1	7 7529357 45" Hay 7 73156710 290 7 7309947 28.5 7 73120139 29.5 7 73120139 29.5 7 7312014 28.0 7 7312014 28.0 7 7312014 28.0 7 7312014 28.0 7 7312014 28.0 7 7312014 28.0 7 7312014 28.0 7 7312014 28.0 7 7312014 28.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
152.0658 7313c29 4.5" Hz 152.0657 73156910 220 152.0655 730947 28.0 152.0666 7310044 28.0 152.0666 7310044 28.0 152.0666 7310044 28.0 152.0666 7310044 28.0 152.0666 7310044 28.0	15Looks 7313c24 4.5" H4 15Looks 7316910 290 15Looks 7316910 290 15Looks 7310947 28.5 15Looks 7310044 28.0 15Looks 7310044 28.0 15Looks 7310044 28.0 15Looks 7310044 28.0	7315624 4.5" He 7316910 280 7316910 28.0 7316944 28.0 7316044 28.0 7316044 28.0 Figure 12.0 7316044 28.0 Figure 12.0 Figure 12.0 Figure 12.0 Figure 12.0 Figure 12.0 Figure 13.0 Figure 13
15LOGGCZ 7316910 220 Do Not Analy 15LOGGCZ 7309947 28.5 15LOGGCZ 7302947 28.5 15LOGGCZ 73102947 28.0 15LOGGCZ 73102947 28.0 15LOGGCZ 73102947 28.0 15LOGGCZ 73102947 28.0 15LOGGCZ 73102947 28.0 15LOGGCZ 73102947 28.0 15LOGGCZ 73102947 28.0	15LOOGC 7 7316910 280 15LOOGG 1 7322139 28.5 15LOOGG 7310044 28.0 15LOOGG 731004 28.0 15LOOGG 73	7316910 290 7309947 28.5 73100947 28.0 73100
15LOGEG 73.09947 28.5 15LOGEG 73.00947 28.5 15LOGEG 73.00947 28.0	15LOBGE 7309947 28.5 15LOBGE 7310094 28.0 15LOBGE 7	7309947 28.5 7322189 29.5 7310044 28.0 7310044 28.0 Paralle Para
28.5 29.5 28.0 28.0 28.0 5.00 Aot 410(1)	15LOOGE 7322139 29.5 15LOOGE 7322139 29.5 15LOOGE 7310044 28.0 15LOOGE 7310044 28.0 15LOOGE 730044 28.0 15LOOGE 73004 28	7322139 29.5 7322139 29.5 7322139 29.5 Pacanyor 28.0 2
28.5 28.0 5.00 bot 4nd	15 Lob 66 7322139 29.5 15 Lob 60 7310044 28.0 eliseable EDD required Yes No EDD Units M9/13 4 pply	#322139 29.5 P3 P3 P3 P3 P3 P3 P3 P3
3	15 Lote 60 7310044 280 EDD required Yes No EDD Units M9/m3 4 ppl	EDD required (Yes) No EDD Units. My 1/4 Time: Received by: (Signature) Regened by: (Signature) Regened by: (Signature) Regened by: (Signature) Date: Time:
	Riverable EDD required Yes No EDD Units M9/11/24 pb/	EDD required Yes No EDD Units. May with the Control of the Control
	EDD required Yes No Type: Exce / PDF EDD Units M3/M3+ Apply	EDD required Yes No EDD Units. Mg/m³+ppeV Type: Exce Yes No EDD Units. Mg/m³+ppeV Type: Exce Yes No EDD Units. Mg/m³+ppeV Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time:
	EDD required Yes No EDD Units M3/M3+ppb/	EDD required (Yes) No Type: Exce (PDr Type: Ex
	EDD required (Yes) No FDD Units M3/113-110-110-110-110-110-110-110-110-110-	EDD required Yes. No Type: Excel Y0F Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time:
	EDD required (Yes) No FDD Units M3/113-110-110-110-110-110-110-110-110-110-	EDD required Yes. No Type: Excelled Yes. No Type: Excelled Yes. No Type: Excelled Yes. No Type: Excelled Yes. No Time: Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature)
	EDD required Yes? No EDD Units M9/113+1926V	Received by: (Signature) Date: Time:
	EDD required Yes No EDD Units My 1/2 1/2 / 1/2 1/2 / 1/2 1/2 / 1/2 1/2 1	EDD required (1952) No Type: Excelled (1952) No Type: Excelled (1952) No Type: Excelled (1952) No Time: Repleyed by: (Signature) Repleyed by: (Signature) Repleyed by: (Signature)
Time: Received by: (Signature)		
Date: Date:	Time: Resterred by: (Signature)	Received by: (Signature)

Cooler Receipt And Preservation Check Form

Ť						•	M		<i>l</i>	
Project/Cl	lient	len	<u> 76</u>		Sub	mission Num	ber <u>[</u>	<u> 28440</u>	<u>,54</u>	***
Cooler re	ceived on_		\ <u>DE</u>	s_ by: <u>lanc</u> (COURI	ER: CAS	UPS	FEDEX	VELOCI?	TY CLIENT
2. W 3. D 4. D 5. W	Vere custod vid all bottl vid any VC Vere Ice or Vhere did t	ly pa es ar A vi Ice p he bo	pers rive als h pack ottles	n outside of coole properly filled ou in good condition ave significant* a as present? coriginate? er(s) upon receipt:	it (ink, s (unbrol iir bubbl	ken)?		YES YES YES YES YES CAS/RO	NO NO NO NO NO C) CLIE	
Is	the tempe	ratur	e wi	thin 0° - 6° C?:	Ye	s Yes		Yes	Yes	Yes
I	f No, Expl	ain I	3elov	W	No	P PNO	> (No	No	No
Г	ate/Time	Гетр	erat	ures Taken:			1	<u> 410 </u>		
				1 / IR GUN#2 /	K GL	JN#3 Read	ding Fro	m: Temp	Blank /	Sample Bottle
Cooler B 1. V 2. I 3. V	Breakdown Were all bo Did all bott Were corre	: Da ttle la le lab ct cor s: C	ate :_ abels bels a ntain Casse	5/23/06 complete (i.e. and tags agree with the ers used for the testes / Tubes Intace	alysis, phalysis, phalysis	oreservation, dy papers? cated?		YES YES Tedlar	NO NO NO Bags In	flated N/A
pH	Reagent	,,,,,,	NO	Lot Received	Exp	Sample ID	Vol. Added	Lot Added	i Final	Yes = All samples OK
≥12	NaOH	YES	NU							
≤2	HNO ₃									No = Samples
≤2	H ₂ SO ₄				<u> </u>					were
Residual Chlorine	For TCN and			If present, contact add ascorbic acid	PM to					preserved at lab as listed
(-)	Phenol Na ₂ S ₂ O ₃	-	-			*Not to be to	sted befo	ore analysis	– pH	PM OK to
	Zn Aceta	-	-			tested and re	corded by workshe	y VOAs or (eet	Jenunem	Adjust:
	HCl	*	*				↑ 11 Ollow			
Bottle lot Other Cor	numbers:	- Verification	<u>54</u>	-00 VS			A-24-7-F			

PC Secondary Review: <u>Vo 6</u>908

H:\SMODOCS\Cooler Receipt 2.doc

1 Mustard St., Suite 250 Rochester, NY 14609 Date: <u>July 23, 2008</u> Number of pages:_____

To:

Mr. Eliott Duffney
Xerox Corporation
800 Phillips Road
Bldq. 0205-99F
Webster, NY 14580

Phone: 585/422-5825

Fax: 585/422-8217

CC: Steve Schalabba, Haley & Aldrich

From:

<u>Karen Bunker</u>

Phone: (585) 288-5380

Fax: (585) 288-8475

RUSH REPORT

Submission #: R2844825

Project Reference: NORTH 40 AIRS 7/08

IMPORTANT NOTICE:

The documents accompanying this transmission may contain information which is legally privilaged and/or confidential. The information is intended only for the use of the individual or entity named above. If you are not the intended recipient, or the person responsible for delivering it to the intended recipient, you are hereby notified that any disclosure, copying, distributing, or use of any information contained in this transmission is strictly PROHIBITED. If you have received this transmission in error, please immediately notify us by telephone and mail the original transmission to us. Thank you for your cooperation and assistance.

VOLATILE ORGANICS

METHOD TO-15

Reported: 07/23/08

Xerox Corporation

Project Reference: NORTH 40 AIRS 7/08

Client Sample ID : AA-070208

 Date Sampled:
 07/02/08
 12:00
 Order #: 1114760
 Sample Matrix: AIR

 Date Received:
 07/03/08
 Submission #: R2844825
 Analytical Run 164430

DATE ANALYZED : 07/18/08

ANALYTICAL DILUTION: 1.00
CAN DILUTION: 1.50 Pi= -5.1 Pf= 7.4

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
ACETONE	1.3	8.2 B	0.55	3.4 B	
BENZENE	0.35	0.29 J	0.11	0.091 J	
BROMODICHLOROMETHANE	0.15	0.22 U	0.022	0.033 U	
BROMOFORM	1.1	1.7 U	0.11	0.17 U	
BROMOMETHANE	0.43	0.64 U	0.11	0.17 U	
2-BUTANONE (MEK)	0.65	1.6	0.22	0.53	
METHYL-TERT-BUTYL ETHER	0.79	1.2 U	0.22	0.33 U	
CARBON DISULFIDE	0.34	0.51 U	0.11	0.17 U	
CARBON TETRACHLORIDE	0.14	0.77	0.022	0.12	
CHLOROBENZENE	0.51	0.76 U	0.11	0.17 U	
CHLOROETHANE	0.58	0.87 U	0.22	0.33 U	
CHLOROFORM	0.54	0.10 J	0.11	0.021 J	
CHLOROMETHANE	0.45	1.2	0.22	0.58	
DIBROMOCHLOROMETHANE	0.19	0.28 U	0.022	0.033 U	
1.2-DIBROMOETHANE	0.17	0.25 U	0.022	0.033 U	
1,3-DICHLOROBENZENE	1.3	2.0 U	0.22	0.33 U	
1,4-DICHLOROBENZENE	1.3	2.0 U	0.22	0.33 U	
1,2-DICHLOROBENZENE	1.3	2.0 U	0.22	0.33 U	
1,1-DICHLOROETHANE	0.45	0.67 U	0.11	0.17 Ü	
1,2-DICHLOROETHANE	0.45	0.67 U	0.11	0.17 U	
1,1-DICHLOROETHENE	0.44	0.65 U	0.11	0.17 U	
TRANS-1,2-DICHLOROETHENE	0.44	0.65 U	0.11	0.17 U	
CIS-1,2-DICHLOROETHENE	0.44	0.65 U	0.11	0.17 U	
1,2-DICHLOROPROPANE	0.51	0.76 U	0.11	0.17 U	
CIS-1,3-DICHLOROPROPENE	1.00	1.5 U	0.22	0.33 U	
,	0.50	0.75 U	0.11	0.17 U	
TRANS-1,3-DICHLOROPROPENE	0.50	0.75 U 0.079 J	0.22	0.17 U	
ETHYLBENZENE	0.45	0.68 U	0.11	0.17 U	
2-HEXANONE	0.43	0.86 U	0.11	0.10 J	
METHYLENE CHLORIDE	0.30	1.4 U	0.11	0.10 U	
4-METHYL-2-PENTANONE	0.94	1.4 U	0.22	0.33 U	
STYRENE	0.34	0.23 U	0.022	0.33 U	
1,1,2,2-TETRACHLOROETHANE		0.23 U	0.022	0.033 U	
TETRACHLOROETHENE	0.15 0.41	0.22 0	0.022	0.033 0	
TOLUENE					
1,1,1-TRICHLOROETHANE	0.60	0.094 J	0.11	0.017 J	
1,1,2-TRICHLOROETHANE	0.60	0.90 U	0.11	0.17 U	
TRICHLOROETHENE	0.12	0.18 U	0.022	0.033 U	
TRICHLOROFLUOROMETHANE	0.62	1.5	0.11	0.27	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA	0.17	0.69	0.022	0.091	
VINYL ACETATE	1.9	2.9 U	0.55	0.83 U	
VINYL CHLORIDE	0.28	0.42 U	0.11	0.17 U	

VOLATILE ORGANICS

METHOD TO-15

Reported: 07/23/08

Xerox Corporation

Project Reference: NORTH 40 AIRS 7/08

Client Sample ID : AA-070208

Date Sampled: 07/02/08 12:00 Order #: 1114760 Sample Matrix: AIR

Date Received: 07/03/08 Submission #: R2844825 Analytical Run 164430

DATE ANALYZED : 07/18/08

ANALYTICAL DILUTION: 1.00 CAN DILUTION: 1.50 Pi= -5.1 Pf= 7.4

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
O-XYLENE	0.95	0.073 J	0.22	0.017 J	
M+P-XYLENE	1.9	0.23 J	0.44	0.053 J	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	100	8		

VOLATILE ORGANICS

METHOD TO-15

Reported: 07/23/08

Xerox Corporation

Project Reference: NORTH 40 AIRS 7/08

Client Sample ID : SV-18

Date Sampled: 07/02/08 10:25 Order #: 1114761 Sample Matrix: AIR Date Received: 07/03/08 Submission #: R2844825 Analytical Run 164430

DATE ANALYZED : 07/18/08

ANALYTICAL DILUTION: 2.00
CAN DILUTION: 2.20 Pi= -3.0 Pf= 29.2

	MRL	prem m	MDT	DECHT	
ANALYTE	UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
ACETONE	1.3	12 B	0.55	5.2 B	
BENZENE	0.35	0.29 J	0.11	0.091 J	
BROMODICHLOROMETHANE	0.15	0.65 U	0.022	0.097 U	
BROMOFORM	1.1	5.0 U	0.11	0.48 U	
BROMOMETHANE	0.43	1.9 U	0.11	0.48 U	
2-BUTANONE (MEK)	0.65	3.9	0.22	1.3	
METHYL-TERT-BUTYL ETHER	0.79	3.5 U	0.22	0.97 U	
CARBON DISULFIDE	0.34	0.31 J	0.11	0.100 J	
CARBON TETRACHLORIDE	0.14	0.61 U	0.022	0.097 U	
CHLOROBENZENE	0.51	2.2 U	0.11	0.48 U	
CHLOROETHANE	0.58	2.6 U	0.22		
CHLOROFORM	0.54	2.4 U	0.11	0.48 U	
CHLOROMETHANE	0.45	2.0 U	0.22	0.97 U	
DIBROMOCHLOROMETHANE	0.19	0.82 U	0.022	0.097 U	
1,2-DIBROMOETHANE	0.17	0.74 U	0.022	0.097 U	
1,3-DICHLOROBENZENE	1.3	5.8 U	0.22	0.97 U	
1,4-DICHLOROBENZENE	1.3	5.8 U	0.22	0.97 U	
1,2-DICHLOROBENZENE	1.3	5.8 U	0.22		
1,1-DICHLOROETHANE	0.45	2.0 U	0.11	0.48 U	
1,2-DICHLOROETHANE	0.45	2.0 U	0.11	0.48 U	
1,1-DICHLOROETHENE	0.44	1.9 U	0.11	0.48 U	
TRANS-1,2-DICHLOROETHENE	0.44	1.9 U	0.11	0.48 U	
CIS-1,2-DICHLOROETHENE	0.44	1.9 U	0.11	0.48 U	
1,2-DICHLOROPROPANE	0.51	2.2 U	0.11	0.48 U	
CIS-1,3-DICHLOROPROPENE	1.00	4.4 U	0.22	0.97 U	
TRANS-1,3-DICHLOROPROPENE	0.50	2.2 U	0.11	0.48 U	
ETHYLBENZENE	0.95	4.2 U	0.22	0.97 U	
2-HEXANONE	0.45	2.0 U	0.11	0.48 U	
METHYLENE CHLORIDE	0.38	0.37 J	0.11	0.11 J	
4-METHYL-2-PENTANONE	0.90	4.0 U	0.22	0.97 U	
STYRENE	0.94	4.1 U	0.22	0.97 U	
1,1,2,2-TETRACHLOROETHANE	0.15	0.66 U	0.022	0.097 U	
TETRACHLOROETHENE	0.15	0.66 U	0.022	0.097 U	
TOLUENE	0.41	0.76 J	0.11	0.20 J	
1,1,1-TRICHLOROETHANE	0.60	0.30 J	0.11	0.054 J	
1,1,2-TRICHLOROETHANE	0.60	2.6 U	0.11	0.48 U	
TRICHLOROETHENE	0.12	0.52 U	0.022	0.097 U	
TRICHLOROFLUOROMETHANE	0.62	2.0 J	0.11	0.36 J	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA	0.17	1.1	0.022	0.14	
VINYL ACETATE	1.9	8.5 U	0.55	2.4 U	
VINYL CHLORIDE	0.28	1.2 U	0.11	0.48 U	
				0.20 0	

VOLATILE ORGANICS

METHOD TO-15

Reported: 07/23/08

Xerox Corporation

Project Reference: NORTH 40 AIRS 7/08

Client Sample ID : SV-18

Date Sampled: 07/02/08 10:25 Order #: 1114761 Sample Matrix: AIR

Date Received: 07/03/08 Submission #: R2844825 Analytical Run 164430

DATE ANALYZED : 07/18/08

ANALYTICAL DILUTION: 2.00
CAN DILUTION: 2.20 Pi= -3.0 Pf= 29.2

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
O-XYLENE M+P-XYLENE	0.95 1.9	4.2 U 0.34 J	0.22 0.44	0.97 U 0.077 J	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	100	96		

VOLATILE ORGANICS

METHOD TO-15

Reported: 07/23/08

Xerox Corporation

Project Reference: NORTH 40 AIRS 7/08

Client Sample ID : SV-20

Date Sampled: 07/02/08 10:31 Order #: 1114762 Sample Matrix: AIR

Date Received: 07/03/08 Submission #: R2844825 Analytical Run 164430

DATE ANALYZED : 07/18/08

ANALYTICAL DILUTION: 2.00

CAN DILUTION : 2.26 Pi= -3.4 Pf= 30.1

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
ACETONE	1.3	35	0.55	15	
BENZENE	0.35	0.88 J	0.11	0.28 J	
BROMODICHLOROMETHANE	0.15	0.67 U	0.022	0.099 U	
BROMOFORM	1.1	5.1 U	0.11	0.50 U	
BROMOMETHANE	0.43	1.9 U	0.11	0.50 U	
2-BUTANONE (MEK)	0.65	7.8	0.22	2.7	
METHYL-TERT-BUTYL ETHER	0.79	3.6 U	0.22	0.99 U	
CARBON DISULFIDE	0.34	4.5	0.11	1.5	
CARBON TETRACHLORIDE	0.14	0.30 J	0.022	0.048 J	
CHLOROBENZENE	0.51	2.3 U	0.11	0.50 U	
CHLOROETHANE	0.58	0.73 J	0.22	0.28 J	
CHLOROFORM	0.54	0.65 J	0.11	0.13 J	
CHLOROMETHANE	0.45	2.1	0.22	1.0	
DIBROMOCHLOROMETHANE	0.19	0.85 U	0.022	0.099 U	
1,2-DIBROMOETHANE	0.17	0.76 U	0.022	0.099 U	
1,3-DICHLOROBENZENE	1.3	6.0 U	0.22	0.99 Ū	
1,4-DICHLOROBENZENE	1.3	1.2 J	0.22	0.19 J	
1,2-DICHLOROBENZENE	1.3	6.0 U	0.22	0.99 U	
1,1-DICHLOROETHANE	0.45	2.0 U	0.11	0.50 U	
1,2-DICHLOROETHANE	0.45	2.0 U	0.11	0.50 U	
1,1-DICHLOROETHENE	0.44	2.0 U	0.11	0.50 U	
TRANS-1,2-DICHLOROETHENE	0.44	2.0 U	0.11	0.50 U	
CIS-1,2-DICHLOROETHENE	0.44	2.0 U	0.11	0.50 U	
1,2-DICHLOROPROPANE	0.51	2.3 U	0.11	0.50 U	
CIS-1,3-DICHLOROPROPENE	1.00	4.5 U	0.22	0.99 Ŭ	
TRANS-1,3-DICHLOROPROPENE	0.50	2.3 U	0.11	0.50 U	
ETHYLBENZENE	0.95	0.26 J	0.22	0.061 J	
2-HEXANONE	0.45	2.0 U	0.11	0.50 U	
METHYLENE CHLORIDE	0.38	0.35 J	0.11	0.10 J	
4-METHYL-2-PENTANONE	0.90	4.1 U	0.22	0.99 ប	
STYRENE	0.94	4.2 U	0.22	0.99 Ŭ	
1,1,2,2-TETRACHLOROETHANE	0.15	0.68 U	0.022	0.099 U	
TETRACHLOROETHENE	0.15	0.46 J	0.022	0.068 J	
TOLUENE	0.41	1.9	0.11	0.50	
1,1,1-TRICHLOROETHANE	0.60	2.7 U	0.11	0.50 U	
1,1,2-TRICHLOROETHANE	0.60	2.7 U	0.11	0.50 U	
TRICHLOROETHENE	0.12	0.53 U	0.022	0.099 U	
TRICHLOROFLUOROMETHANE	0.62	1.9 J	0.11	0.33 J	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA	0.17	0.85	0.022	0.11	
VINYL ACETATE	1.9	8.7 U	0,55	2.5 U	
VINYL CHLORIDE	0.28	1.3 U	0.11	0.50 U	

VOLATILE ORGANICS

METHOD TO-15

Reported: 07/23/08

Xerox Corporation

Project Reference: NORTH 40 AIRS 7/08

Client Sample ID : SV-20

Date Sampled: 07/02/08 10:31 Order #: 1114762 Sample Matrix: AIR Date Received: 07/03/08 Submission #: R2844825 Analytical Run 164430

DATE ANALYZED : 07/18/08

ANALYTICAL DILUTION: 2.00
CAN DILUTION: 2.26 Pi= -3.4 Pf= 30.1

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
O-XYLENE M+P-XYLENE	0.95 1.9	0.23 J 1.4 J	0.22 0.44	0.052 J 0.32 J	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	103	o l o		

VOLATILE ORGANICS

METHOD TO-15

Reported: 07/23/08

Xerox Corporation

Project Reference: NORTH 40 AIRS 7/08

Client Sample ID : SV-29

Date Sampled: 07/02/08 15:05 Order #: 1114763 Sample Matrix: AIR

Date Received: 07/03/08 Submission #: R2844825 Analytical Run 164431

DATE ANALYZED : 07/21/08

ANALYTICAL DILUTION: 10.00

CAN DILUTION : 2.29 Pi= -3.6 Pf= 30.3

ANTA T VACUE	MRL	RESULT	MRL	RESULT	
ANALYTE	UG/M3	UG/M3	PPBv	PPBv	
ACETONE	1.3	78	0.55	33	
BENZENE	0.35	12	0.11	3.7	
BROMODICHLOROMETHANE	0.15	3.4 U	0.022	0.50 U	
BROMOFORM	1.1	26 U	0.11	2.5 U	
BROMOMETHANE	0.43	9.8 U	0.11	2.5 U	
2-BUTANONE (MEK)	0.65	29	0.22	9.8	
METHYL-TERT-BUTYL ETHER	0.79	18 U	0.22	5.0 U	
CARBON DISULFIDE	0.34	12	0.11	3.8	
CARBON TETRACHLORIDE	0.14	3.2 U	0.022	0.50 U	
CHLOROBENZENE	0.51	12 U	0.11	2.5 U	
CHLOROETHANE	0.58	13 U	0.22	5.0 U	
CHLOROFORM	0.54	12 U	0.11	2.5 U	
CHLOROMETHANE	0.45	10 U	0.22	5.0 U	
DIBROMOCHLOROMETHANE	0.19	4.3 U	0.022	0.50 U	
1,2-DIBROMOETHANE	0.17	3.9 U	0.022	0.50 U	
1,3-DICHLOROBENZENE	1.3	30 U	0.22	5.0 U	
1,4-DICHLOROBENZENE	1.3	30 U	0.22	5.0 U	
1,2-DICHLOROBENZENE	1.3	30 U	0.22	5.0 U	
1,1-DICHLOROETHANE	0.45	10 U	0.11	2.5 U	
1,2-DICHLOROETHANE	0.45	10 U	0.11	2.5 U	
1,1-DICHLOROETHENE	0.44	10 U	0.11	2.5 U	
TRANS-1,2-DICHLOROETHENE	0.44	10 U	0.11	2.5 U	
CIS-1,2-DICHLOROETHENE	0.44	10 U	0.11	2.5 U	
1,2-DICHLOROPROPANE	0.51	12 U	0.11	2.5 U	
CIS-1,3-DICHLOROPROPENE	1.00	23 U	0.22	5.0 Ŭ	
TRANS-1,3-DICHLOROPROPENE	0.50	11 U	0.11	2.5 U	
ETHYLBENZENE	0.95	2.4 J	0.22	0.55 J	
2-HEXANONE	0.45	10 U	0.11	2.5 U	
METHYLENE CHLORIDE	0.38	8.7 U	0.11	2.5 U	
4-METHYL-2-PENTANONE	0.90	15 J	0.22	3.6 J	
STYRENE	0.94	21 U	0.22	5.0 U	
1,1,2,2-TETRACHLOROETHANE	0.15	3.5 U	0.022	0.50 U	
TETRACHLOROETHENE	0.15	3.4 U	0.022	0.50 U	
TOLUENE	0.41	16	0.11	4.3	
1,1,1-TRICHLOROETHANE	0.60	14 U	0.11	2,5 U	
1,1,2-TRICHLOROETHANE	0.60	14 U	0.11	2.5 U	
TRICHLOROETHENE	0.12	2.7 U	0.022	0.50 U	
TRICHLOROFLUOROMETHANE	0.62	14 U	0.11	2.5 U	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA	0.17	3.9 U	0.022	0.50 U	
VINYL ACETATE	1.9	44 U	0.55	13 U	
VINYL CHLORIDE	0.28	6.4 U	0.11	2.5 U	

VOLATILE ORGANICS

METHOD TO-15

Reported: 07/23/08

Xerox Corporation

Project Reference: NORTH 40 AIRS 7/08

Client Sample ID : SV-29

Date Sampled: 07/02/08 15:05 Order #: 1114763 Sample Matrix: AIR

Date Received: 07/03/08 Submission #: R2844825 Analytical Run 164431

DATE ANALYZED : 07/21/08 ANALYTICAL DILUTION: 10.00

CAN DILUTION : 2.29 Pi= -3.6 Pf= 30.3

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBV	
O-XYLENE M+P-XYLENE	0.95 1.9	1.1 J 5.9 J	0.22 0.44	0.24 J 1.4 J	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	100	양		

VOLATILE ORGANICS

METHOD TO-15

Reported: 07/23/08

Xerox Corporation

Project Reference: NORTH 40 AIRS 7/08

Client Sample ID : SV-23

Date Sampled: 07/02/08 15:12 Order #: 1114768 Sample Matrix: AIR

Date Received: 07/03/08 Submission #: R2844825 Analytical Run 164437

DATE ANALYZED : 07/23/08

ANALYTICAL DILUTION: 5.54

CAN DILUTION : 2.40 Pi= -4.6 Pf= 30.9

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv
ACETONE	1.3	34 B	0.55	14 B
BENZENE		0.47 J		0.15 J
BROMODICHLOROMETHANE	0.15	2.0 U		0.29 U
BROMOFORM	1.1	15 U		1.5 U
BROMOMETHANE	0.43	5.7 U	0.11	1.5 U
2-BUTANONE (MEK)	0.65	8.6 U		
METHYL-TERT-BUTYL ETHER	0.79	11 U		
CARBON DISULFIDE	0.34			
CARBON TETRACHLORIDE	0.14	1.8 U		0.29 U
CHLOROBENZENE	0.51	6.7 U		
CHLOROETHANE	0.58	7.7 U		
CHLOROFORM	0.54		0.11	
CHLOROMETHANE	0.45	6.0 U		
DIBROMOCHLOROMETHANE	0.19	2.5 U		
1,2-DIBROMOETHANE	0.17	2.2 U	0.022	
1,3-DICHLOROBENZENE	1.3	18 U		2.9 U
1,4-DICHLOROBENZENE	1.3	18 U	0.22	
1,2-DICHLOROBENZENE	1.3	18 U	0.22	2.9 U
1,1-DICHLOROETHANE	0.45	5.9 U	0.11	1.5 U
1,2-DICHLOROETHANE	0.45	5.9 U	0.11	1.5 U
1,1-DICHLOROETHENE	0.44	5.8 U	0.11	1.5 U
TRANS-1,2-DICHLOROETHENE	0.44	5.8 U	0.11	1.5 U
CIS-1,2-DICHLOROETHENE	0.44	5.8 U	0.11	1.5 U
1,2-DICHLOROPROPANE	0.51	6.8 U	0.11	1.5 U
CIS-1,3-DICHLOROPROPENE	1.00	13 U	0.22	2.9 U
TRANS-1,3-DICHLOROPROPENE	0.50	6.6 U	0.11	1.5 U
ETHYLBENZENE	0.95	13 U	0.22	2.9 U
2-HEXANONE	0.45	6.0 U	0.11	1.5 U
METHYLENE CHLORIDE	0.38	5.1 U	0.11	1.5 U
4-METHYL-2-PENTANONE	0.90	12 U	0.22	2.9 U
STYRENE	0.94	12 U	0.22	2.9 U
1,1,2,2-TETRACHLOROETHANE	0.15	2.0 U	0.022	0.29 U
TETRACHLOROETHENE	0.15	15	0.022	2.1
TOLUENE	0.41	1.1 J	0.11	0.30 J
1,1,1-TRICHLOROETHANE	0.60	8.0 U	0.11	1.5 U
1,1,2-TRICHLOROETHANE	0.60	8.0 U	0.11	1.5 U
TRICHLOROETHENE	0.00	2.2	0.022	0.40
TRICHLOROFLUOROMETHANE	0.12	2.2 1.3 J	0.022	0.40 0.24 J
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA	0.62	2.2 U	0.022	0.24 U
VINYL ACETATE	1.9	2.2 U 26 U		
			0.55	7.3 U
VINYL CHLORIDE	0.28	3.7 U	0.11	1.5 U

VOLATILE ORGANICS

METHOD TO-15

Reported: 07/23/08

Xerox Corporation

Project Reference: NORTH 40 AIRS 7/08

Client Sample ID : SV-23

Date Sampled: 07/02/08 15:12 Order #: 1114768 Sample Matrix: AIR

Date Received: 07/03/08 Submission #: R2844825 Analytical Run 164437

DATE ANALYZED : 07/23/08

ANALYTICAL DILUTION: 5.54

CAN DILUTION : 2.40 Pi= -4.6 Pf= 30.9

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
O-XYLENE	0.95	13 U	0.22	2.9 U	
M+P-XYLENE	1.9	25 U	0.44	5.9 U	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	99	oło		

VOLATILE ORGANICS

METHOD TO-15

Reported: 07/23/08

Xerox Corporation

Project Reference: NORTH 40 AIRS 7/08

Client Sample ID : SV-30

Date Sampled: 07/02/08 15:30 Order #: 1114769 Sample Matrix: AIR

Date Received: 07/03/08 Submission #: R2844825 Analytical Run 164430

DATE ANALYZED : 07/18/08

ANALYTICAL DILUTION: 2.00

CAN DILUTION : 2.30 Pi= -3.6 Pf= 30.6

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
ACETONE	1.3	22 B	0.55	9.2 B	
BENZENE	0.35	8.0	0.11	2.5	
BROMODICHLOROMETHANE	0.15	0.68 U	0.022	0.10 U	
BROMOFORM	1.1	5.2 U	0.11	0.51 U	
BROMOMETHANE	0.43	2.0 U	0.11	0.51 U	
2-BUTANONE (MEK)	0.65	3.9	0.22	1.3	
METHYL-TERT-BUTYL ETHER	0.79	3.6 U	0.22	1.0 U	
CARBON DISULFIDE	0.34	21	0.11	6.8	
CARBON TETRACHLORIDE	0.14	0.64 U	0.022		
CHLOROBENZENE	0.51	2.3 U	0.11		
CHLOROETHANE	0.58	2.7 U	0.22	1.0 U	
CHLOROFORM	0.54	1.1 J	0.11		
CHLOROMETHANE	0.45	2.1 U	0.22	1.0 U	
DIBROMOCHLOROMETHANE	0.19	0.86 U	0.022		
1,2-DIBROMOETHANE	0.17	0.78 U	0.022		
1,3-DICHLOROBENZENE	1.3	6.1 U	0.22	1.0 U	
1,4-DICHLOROBENZENE	1.3	6.1 U	0.22	1.0 U	
1,2-DICHLOROBENZENE	1.3	6.1 U	0.22	1.0 U	
1,1-DICHLOROETHANE	0.45	2.0 U	0.11	0.51 U	
1,2-DICHLOROETHANE	0.45	0.29 J	0.11	0.073 J	
1,2-DICHLOROETHENE	0.43	2.0 U	0.11	0.51 U	
TRANS-1,2-DICHLOROETHENE	0.44	2.0 U	0.11		
CIS-1,2-DICHLOROETHENE	0.44	2.0 U	0.11		
1,2-DICHLOROPROPANE	0.44	2.0 U	0.11		
•			0.11	0.51 U	
CIS-1,3-DICHLOROPROPENE	1.00	4.6 U		1.0 U	
TRANS-1,3-DICHLOROPROPENE	0.50	2.3 U	0.11		
ETHYLBENZENE	0.95	2.6 J	0.22	0.59 J	
2-HEXANONE	0.45	2.1 U	0.11	0.51 U	
METHYLENE CHLORIDE	0.38	0.46 J	0.11		
4-METHYL-2-PENTANONE	0.90	4.1 U	0.22	1.0 U	
STYRENE	0.94	0.43 J	0.22		
1,1,2,2-TETRACHLOROETHANE	0.15	0.69 U	0.022	0.10 U	
FETRACHLOROETHENE	0.15	0.35 J	0.022	0.052 J	
FOLUENE	0.41	12	0.11	3.1	
l,1,1-TRICHLOROETHANE	0.60	2.8 U	0.11	0.51 U	
L,1,2-TRICHLOROETHANE	0.60	2.8 U	0.11	0.51 U	
TRICHLOROETHENE	0.12	0.54 U	0.022	0.10 U	
FRICHLOROFLUOROMETHANE	0.62	1.8 J	0.11	0.32 J	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA	0.17	1.2	0.022	0.16	
VINYL ACETATE	1.9	8.9 U	0.55	2.5 U	
VINYL CHLORIDE	0.28	1.3 U	0.11	0.51 U	

VOLATILE ORGANICS

METHOD TO-15

Reported: 07/23/08

Xerox Corporation

Project Reference: NORTH 40 AIRS 7/08

Client Sample ID : SV-30

Date Sampled: 07/02/08 15:30 Order #: 1114769 Sample Matrix: AIR

Date Received: 07/03/08 Submission #: R2844825 Analytical Run 164430

DATE ANALYZED : 07/18/08

ANALYTICAL DILUTION: 2.00

CAN DILUTION : 2.30 Pi= -3.6 Pf= 30.6

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
O-XYLENE M+P-XYLENE	0.95 1.9	1.4 J 6.6 J	0.22 0.44	0.32 J 1.5 J	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	107	o o		

VOLATILE ORGANICS

METHOD TO-15

Reported: 07/23/08

Xerox Corporation

Project Reference: NORTH 40 AIRS 7/08

Client Sample ID : SV-31

 Date Sampled:
 07/02/08
 15:50 Order #: 1114770
 Sample Matrix: AIR

 Date Received:
 07/03/08
 Submission #: R2844825
 Analytical Run 164430

DATE ANALYZED : 07/18/08

ANALYTICAL DILUTION: 2.00

CAN DILUTION : 2.32 Pi= -3.7 Pf= 30.9

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
		· · · · · · · · · · · · · · · · · · ·			
ACETONE	1.3	44	0.55	19	
BENZENE	0.35	20	0.11	6.2	
BROMODICHLOROMETHANE	0.15	0.68 U	0.022	0.10 U	
BROMOFORM	1.1	5.3 U	0.11	0.51 U	
BROMOMETHANE	0.43	2.0 U	0.11	0.51 U	
2-BUTANONE (MEK)	0.65	13	0.22	4.5	
METHYL-TERT-BUTYL ETHER	0.79	3.7 U	0.22	1.0 U	
CARBON DISULFIDE	0.34	24	0.11	7.7	
CARBON TETRACHLORIDE	0.14	0.64 U	0.022	0.10 U	
CHLOROBENZENE	0.51	2.3 U	0.11	0.51 U	
CHLOROETHANE	0.58	2.7 U	0.22	1.0 U	
CHLOROFORM	0.54	2.5 U	0.11	0.51 U	
CHLOROMETHANE	0.45	2.1 U	0.22	1.0 U	
DIBROMOCHLOROMETHANE	0.19	0.87 U	0.022	0.10 U	
1,2-DIBROMOETHANE	0.17	0.78 U	0.022	0.10 U	
1,3-DICHLOROBENZENE	1.3	6.1 U	0.22	1.0 U	
1,4-DICHLOROBENZENE	1.3	6.1 U	0.22	1.0 U	
1,2-DICHLOROBENZENE	1.3	6.1 U	0.22	1.0 U	
1,1-DICHLOROETHANE	0.45	2.1 U	0.11	0.51 U	
1,2-DICHLOROETHANE	0.45	0.71 J	0.11	0.18 J	
1,1-DICHLOROETHENE	0.44	2.0 U	0.11	0.51 U	
TRANS-1,2-DICHLOROETHENE	0.44	2.0 U	0.11	0.51 U	
CIS-1,2-DICHLOROETHENE	0.44	1.4 J	0.11	0.36 J	
1,2-DICHLOROPROPANE	0.51	2.4 U	0.11	0.51 U	
CIS-1,3-DICHLOROPROPENE	1.00	4.6 U	0.22	1.0 U	
TRANS-1,3-DICHLOROPROPENE	0.50	2.3 U	0.11	0.51 U	
ETHYLBENZENE	0.95	5.4	0.22	1.2	
2-HEXANONE	0.45	2.1 U	0.11	0.51 U	
METHYLENE CHLORIDE	0.38	1.8 U	0.11	0.51 U	
4-METHYL-2-PENTANONE	0.90	4.2 U	0.22	1.0 U	
STYRENE	0.94	1.1 J	0.22	0.26 J	
1,1,2,2-TETRACHLOROETHANE	0.15	0.70 U	0.022	0.10 U	
TETRACHLOROETHENE	0.15	0.64 J	0.022	0.095 J	
TOLUENE	0.41	20	0.11	5.4	
1,1,1-TRICHLOROETHANE	0.60	0.62 J	0.11	0.11 J	
1,1,2-TRICHLOROETHANE	0.60	2.8 U	0.11	0.51 U	
TRICHLOROETHENE	0.12	0.60	0.022	0.11	
TRICHLOROFLUOROMETHANE	0.62	1.6 J	0.11	0.28 J	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA	0.17	0.90	0.022	0.12	
VINYL ACETATE	1.9	9.0 U	0.55	2.6 U	
VINYL CHLORIDE	0.28	1.3 U	0.11	0.51 U	

VOLATILE ORGANICS

METHOD TO-15

Reported: 07/23/08

Xerox Corporation

Project Reference: NORTH 40 AIRS 7/08

Client Sample ID : SV-31

Date Sampled : 07/02/08 15:50 Order #: 1114770 Sample Matrix: AIR Date Received: 07/03/08 Submission #: R2844825 Analytical Run 164430

DATE ANALYZED : 07/18/08

ANALYTICAL DILUTION: 2.00
CAN DILUTION: 2.32 Pi= -3.7 Pf= 30.9

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBV	
O-XYLENE M+P-XYLENE	0.95 1.9	2.3 J 7.5 J	0.22 0.44	0.52 J 1.7 J	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	107	ે		

1 Mustard St., Suite 250 Rochester, NY 14609 Date: September 10, 2008

Number of pages:

To:

Mr. Eliott Duffney
Xerox Corporation
800 Phillips Road
Bldq. 0205-99F

Webster, NY 14580

Phone: <u>585/422-5825</u>

Fax: 585/422-8217

CC: Ms. Janice DeJesus

From:

Karen Bunker

Phone: (585) 288-5380

Fax: (585) 288-8475

RUSH REPORT

Submission #: R2845690

Project Reference: NORTH 40 PROPERTY -5 WELLS

IMPORTANT NOTICE:

The documents accompanying this transmission may contain information which is legally privilaged and/or confidential. The information is intended only for the use of the individual or entity named above. If you are not the intended recipient, or the person responsible for delivering it to the intended recipient, you are hereby notified that any disclosure, copying, distributing, or use of any information contained in this transmission is strictly PROHIBITED. If you have received this transmission in error, please immediately notify us by telephone and mail the original transmission to us. Thank you for your cooperation and assistance.

VOLATILE ORGANICS

METHOD 8260B PPL+XYLENES

Reported: 09/10/08

Xerox Corporation

Project Reference: NORTH 40 PROPERTY -5 WELLS Client Sample ID: OB-97

Date Sampled: 09/08/08 11:30 Date Received: 09/08/08 Subm	Order #: 1131573 ission #: R2845690	Sample Matrix: Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 09/09/08 ANALYTICAL DILUTION: 1	8 .00		
ANALITICAL DILICITON.	.00		
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 Ü	UG/L
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L
CHLOROBENZENE	5.0	5.0 U	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L
2-CHLOROETHYLVINYL ETHER	10	10 U	UG/L
CHLOROFORM	5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
1,3-DICHLOROBENZENE	5.0	5.0 U	UG/L
1,2-DICHLOROBENZENE	5.0	5.0 U	UG/L
1,4-DICHLOROBENZENE	5.0	5.0 U	UG/L
1,1-DICHLOROETHANE	5.0	5.0 U	UG/L
1,2-DICHLOROETHANE	5.0	5.0 U	UG/L
1,1-DICHLOROETHENE	5.0		UG/L
TRANS-1,2-DICHLOROETHENE	5.0		UG/L
CIS-1,2-DICHLOROETHENE	5.0		UG/L
1,2-DICHLOROPROPANE	5.0		UG/L
CIS-1,3-DICHLOROPROPENE	5.0		UG/L
TRANS-1,3-DICHLOROPROPENE	5.0		UG/L
ETHYLBENZENE	5.0		UG/L
METHYLENE CHLORIDE	5.0		UG/L
1,1,2,2-TETRACHLOROETHANE	5.0		UG/L
TETRACHLOROETHENE	5.0		UG/L
TOLUENE	5.0		UG/L
1,1,1-TRICHLOROETHANE	5.0		UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0		UG/L
TRICHLOROFLUOROMETHANE	5.0		UG/L
VINYL CHLORIDE	5.0		UG/L
O-XYLENE	5.0		UG/L
M+P-XYLENE	5.0	5.0 U 79.0	UG/L
SURROGATE RECOVERIES	QC LIMITS		
4-BROMOFLUOROBENZENE	(80 - 123 %)	102	alo
TOLUENE-D8	(88 - 124 %)	98	ojo
DIBROMOFLUOROMETHANE	(89 - 115 %)	99	ક

VOLATILE ORGANICS

METHOD 8260B PPL+XYLENES

Reported: 09/10/08

Xerox Corporation

Project Reference: NORTH 40 PROPERTY -5 WELLS

Client Sample ID : OB-97 REC-1

Date Sampled: 09/08/08 11:55 Order #: 1131574 Sample Matrix: WATER Date Received: 09/08/08 Submission #: R2845690 Analytical Run 166867

ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 09/09/08			
ANALYTICAL DILUTION: 1.00			
BENZENE	5.0	5.0 U	UG/L
BROMODICHLOROMETHANE	5.0	5.0 U	UG/L
BROMOFORM	5.0	5.0 U	UG/L
BROMOMETHANE	5.0	5.0 Ŭ	UG/L
CARBON TETRACHLORIDE	5.0	5.0 U	UG/L
CHLOROBENZENE	5.0	5.0 Ŭ	UG/L
CHLOROETHANE	5.0	5.0 U	UG/L
2-CHLOROETHYLVINYL ETHER	10	10 U	UG/L
CHLOROFORM	5.0	5.0 U	UG/L
CHLOROMETHANE	5.0	5.0 U	UG/L
DIBROMOCHLOROMETHANE	5.0	5.0 U	UG/L
1,3-DICHLOROBENZENE	5.0	5.0 U	UG/L
1,2-DICHLOROBENZENE	5.0	5.0 U	UG/L
1,4-DICHLOROBENZENE	5.0	5.0 U	UG/L
1,1-DICHLOROETHANE	5.0	5.0 U	UG'/L
1,2-DICHLOROETHANE	5.0	5.0 U	UG'/L
1,1-DICHLOROETHENE	5.0	5.0 U	UG/L
TRANS-1,2-DICHLOROETHENE	5.0	5.0 U	UG ['] /L
CIS-1,2-DICHLOROETHENE	5.0	100	UG ['] /L
1,2-DICHLOROPROPANE	5.0	5.0 U	UG/L
CIS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
TRANS-1,3-DICHLOROPROPENE	5.0	5.0 U	UG/L
ETHYLBENZENE	5.0	5.0 U	UG/L
METHYLENE CHLORIDE	5.0	5.0 U	UG ['] /L
1,1,2,2-TETRACHLOROETHANE	5.0	5.0 U	UG/L
TETRACHLOROETHENE	5.0	5.0 U	UG/L
TOLUENE	5.0	5.0 U	UG/L
1,1,1-TRICHLOROETHANE	5.0	5.0 U	UG/L
1,1,2-TRICHLOROETHANE	5.0	5.0 U	UG/L
TRICHLOROETHENE	5.0	5.0 U	UG/L
TRICHLOROFLUOROMETHANE	5.0	5.0 U	UG/L
VINYL CHLORIDE	5.0	5.0	UG/L
O-XYLENE	5.0	5.0 U	UG/L
M+P-XYLENE	5.0	5.0 U	UG/L
A A A A A A A A A A A A A A A A A A A	2,1	105	J J / _
SURROGATE RECOVERIES QC	LIMITS		
4-BROMOFLUOROBENZENE (80		100	%
	- 124 %)	99	90
DIBROMOFLUOROMETHANE (89	- 124 %) - 115 %)	100	00
DIDITOROF HOOKOPHITIMINE (69	/ ٥ ل سلاسلا	T 0 0	° 0

VOLATILE ORGANICS

METHOD 8260B PPL+XYLENES

Reported: 09/10/08

Xerox Corporation

Project Reference: NORTH 40 PROPERTY -5 WELLS Client Sample ID: SV-3

Date Sampled: 09/08/08 12:25 Ordo Date Received: 09/08/08 Submission	er #: 1131575 on #: R2845690	Sample Matrix: V Analytical Run	
ANALYTE	PQL	RESULT	UNITS
DATE ANALYZED : 09/09/08 ANALYTICAL DILUTION: 1.00			
BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE 2-CHLOROETHYLVINYL ETHER CHLOROMETHANE DIBROMOCHLOROMETHANE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE TOLUENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROETHENE TRICHLOROFLUOROMETHANE VINYL CHLORIDE O-XYLENE M+P-XYLENE	0 0	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES Q	C LIMITS		
4-BROMOFLUOROBENZENE (8 TOLUENE-D8 (8 DIBROMOFLUOROMETHANE (8		104 98 99	olo olo olo

VOLATILE ORGANICS

METHOD 8260B PPL+XYLENES

Reported: 09/10/08

Xerox Corporation

Project Reference: NORTH 40 PROPERTY -5 WELLS Client Sample ID: SV-14

Date Sampled: 09/08/08 12:50 Order Date Received: 09/08/08 Submission	r #:	1131576 R2845690	Sample Matrix: Analytical Run	
ANALYTE		PQL	RESULT	UNITS
DATE ANALYZED : 09/09/08 ANALYTICAL DILUTION: 1.00				
BENZENE BROMODICHLOROMETHANE BROMOFORM BROMOMETHANE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE 2-CHLOROETHYLVINYL ETHER CHLOROFORM CHLOROMETHANE DIBROMOCHLOROMETHANE 1,3-DICHLOROBENZENE 1,2-DICHLOROBENZENE 1,4-DICHLOROBENZENE 1,1-DICHLOROETHANE 1,1-DICHLOROETHANE 1,1-DICHLOROETHENE TRANS-1,2-DICHLOROETHENE CIS-1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYLBENZENE METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TICHLOROFLUOROMETHANE TRICHLOROFLUOROMETHANE TRICHLOROFLUOROMETHANE VINYL CHLORIDE O-XYLENE M+P-XYLENE		00000000000000000000000000000000000000	0 0	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L
SURROGATE RECOVERIES QC	LIN	MITS	ND	
4-BROMOFLUOROBENZENE (80 TOLUENE-D8 (88 DIBROMOFLUOROMETHANE (89	-	123 %) 124 %) 115 %)	100 98 102	ato ato ato

VOLATILE ORGANICS

METHOD 8260B PPL+XYLENES

Reported: 09/10/08

Xerox Corporation

Project Reference: NORTH 40 PROPERTY -5 WELLS Client Sample ID: SV-8

DATE ANALYZED	Date Sampled: 09/08/08 11:00 Orde Date Received: 09/08/08 Submission	r #: 1131578 n #: R2845690	Sample Matrix: Analytical Run	
BENZENE	ANALYTE	PQL	RESULT	UNITS
BENZENE BROMODICHLOROMETHANE BROMOFORM 5.0 5.0 U UG/L BROMOFORM 5.0 5.0 U UG/L BROMORTHANE 5.0 5.0 U UG/L BROMORTHANE 5.0 5.0 U UG/L CARBON TETRACHLORIDE 5.0 5.0 U UG/L CHLOROBENZENE 5.0 5.0 U UG/L CHLOROBENZENE 5.0 5.0 U UG/L CHLOROBENTYLVINYL ETHER 10 10 U UG/L CHLOROMETHANE 5.0 5.0 U UG/L CHLOROBENZENE 5.0 5.0 U UG/L CHLOROBENZENE 5.0 5.0 U UG/L 1,2-DICHLOROBENZENE 5.0 5.0 U UG/L 1,2-DICHLOROBENZENE 5.0 5.0 U UG/L 1,1-DICHLOROBENZENE 5.0 5.0 U UG/L 1,2-DICHLOROBENZENE 5.0 5.0 U UG/L 1,2-DICHLOROPROPENE 5.0 5.0 U UG/L CIS-1,3-DICHLOROPROPENE 5.0 5.0 U UG/L ETHYLBENZENE 5.0 5.0 U UG/L ETHYLBENZENE 5.0 5.0 U UG/L TETRAS-1,3-DICHLOROPROPENE 5.0 5.0 U UG/L TETRAS-1,3-DICHLOROPROPENE 5.0 5.0 U UG/L TETRAS-1,3-DICHLOROPROPENE 5.0 5.0 U UG/L TETRACHLOROPROPENE 5.0 5.0 U UG/L TETRACHOPROPENE 5.0 5.0 U UG/L TETRACHOPROPENE				
BROMODICHLOROMETHANE	ANALITICAL DIDOTTON: 1.00			
BROMOFORM	BENZENE	5.0	5.0 U	UG/L
BROMOMETHANE		5.0	5.0 Ŭ	•
CARBON TETRACHLORIDE	BROMOFORM			•
CHLOROBENZENE 5.0 5.0 U UG/L CHLOROETHANE 5.0 5.0 U UG/L CHLOROETHANE 10 10 U UG/L C-CHLOROETHANE 10 10 U UG/L C-CHLOROETHANE 10 10 U UG/L CHLOROFORM 5.0 5.0 U UG/L CHLOROMETHANE 5.0 5.0 U UG/L DIBROMOCHLOROMETHANE 5.0 5.0 U UG/L 1,3-DICHLOROBENZENE 5.0 5.0 U UG/L 1,2-DICHLOROBENZENE 5.0 5.0 U UG/L 1,4-DICHLOROBENZENE 5.0 5.0 U UG/L 1,1-DICHLOROETHANE 5.0 5.0 U UG/L 1,1-DICHLOROETHANE 5.0 5.0 U UG/L 1,1-DICHLOROETHANE 5.0 5.0 U UG/L 1,1-DICHLOROETHENE 5.0 5.0 U UG/L 1,1-DICHLOROETHENE 5.0 5.0 U UG/L 1,2-DICHLOROETHENE 5.0 5.0 U UG/L 1,2-DICHLOROETHENE 5.0 5.0 U UG/L CIS-1,2-DICHLOROETHENE 5.0 5.0 U UG/L CIS-1,3-DICHLOROPROPENE 5.0 5.0 U UG/L CIS-1,3-DICHLOROPROPENE 5.0 5.0 U UG/L ETHYLENE CHLORIDE 5.0 5.0 U UG/L ETHYLENE CHLORIDE 5.0 5.0 U UG/L TETRACHLOROETHENE 5.0 5.0 U UG/L TCISTRACHLOROETHENE 5.0 5.0 U UG/L TCISTRICHLOROETHENE 5.0 5.0 U UG/L TCITCHLOROETHENE 5.0 5.0 U UG/L TCITCHLOROETHENE 5.0 5.0 U UG/L TCICHLOROETHENE 5.0 5.0 U UG/L TCICHLOROETHENE 5.0 5.0 U UG/L TRICKLOROETHENE	BROMOMETHANE			,
CHLOROETHANE 2-CHLOROETHYLVINYL ETHER 10 10 U UG/L 2-CHLOROFRM 5.0 5.0 U UG/L CHLOROFRM 5.0 5.0 U UG/L CHLOROMETHANE 5.0 5.0 U UG/L CHLOROMETHANE 5.0 5.0 U UG/L DIBROMOCHLOROMETHANE 5.0 5.0 U UG/L 1,3-DICHLOROBENZENE 5.0 5.0 U UG/L 1,2-DICHLOROBENZENE 5.0 5.0 U UG/L 1,1-DICHLOROBENZENE 5.0 5.0 U UG/L 1,1-DICHLOROETHANE 5.0 5.0 U UG/L 1,1-DICHLOROETHANE 5.0 5.0 U UG/L 1,1-DICHLOROETHENE 5.0 5.0 U UG/L 1,1-DICHLOROETHENE 5.0 5.0 U UG/L 1,2-DICHLOROETHENE 5.0 5.0 U UG/L 1,2-DICHLOROETHENE 5.0 5.0 U UG/L 1,2-DICHLOROFROPENE 5.0 5.0 U UG/L 1,1-2-TETRACHLOROETHANE 5.0 5.0 U UG/L ETHYLENE CHLORIDE 5.0 5.0 U UG/L TETRACHLOROETHENE 5.0 5.0 U UG/L TETRACHLOROETHENE 5.0 5.0 U UG/L TETRACHLOROETHENE 5.0 5.0 U UG/L TETRACHLOROETHANE 5.0 5.0 U UG/L TETRICHLOROETHANE 5.0 5.0 U UG/L TETR				•
2-CHLOROETHYLVINYL ETHER				
CHLOROFORM 5.0 5.0 U UG/L CHLOROMETHANE 5.0 5.0 U UG/L DIBROMOCHLOROMETHANE 5.0 5.0 U UG/L 1,3-DICHLOROBENZENE 5.0 5.0 U UG/L 1,2-DICHLOROBENZENE 5.0 5.0 U UG/L 1,4-DICHLOROBENZENE 5.0 5.0 U UG/L 1,1-DICHLOROETHANE 5.0 5.0 U UG/L 1,1-DICHLOROETHANE 5.0 5.0 U UG/L 1,1-DICHLOROETHENE 5.0 5.0 U UG/L 1,1-DICHLOROETHENE 5.0 5.0 U UG/L 1,1-DICHLOROETHENE 5.0 5.0 U UG/L 1,2-DICHLOROETHENE 5.0 5.0 U UG/L 1,2-DICHLOROFOPANE 5.0 5.0 U UG/L 1,2-DICHLOROFOPANE 5.0 5.0 U UG/L 1,2-DICHLOROFOPANE 5.0 5.0 U UG/L 1,2-DICHLOROPROPENE 5.0 5.0 U UG/L 1,2-DICHLOROPROPENE 5.0 5.0 U UG/L 1,1-3-DICHLOROFOPENE 5.0 5.0 U UG/L TRANS-1,3-DICHLOROPROPENE 5.0 5.0 U UG/L TRANS-1,3-DICHLOROFOPENE 5.0 U UG/L T				•
CHLOROMETHANE				•
DIBROMOCHLOROMETHANE				
1,3-DICHLOROBENZENE 5.0 5.0 U UG/L 1,2-DICHLOROBENZENE 5.0 5.0 U UG/L 1,4-DICHLOROBENZENE 5.0 5.0 U UG/L 1,1-DICHLOROETHANE 5.0 5.0 U UG/L 1,1-DICHLOROETHANE 5.0 5.0 U UG/L 1,1-DICHLOROETHENE 5.0 5.0 U UG/L 1,1-DICHLOROETHENE 5.0 5.0 U UG/L 1,1-DICHLOROETHENE 5.0 5.0 U UG/L 1,2-DICHLOROETHENE 5.0 5.0 U UG/L 1,2-DICHLOROETHENE 5.0 5.0 U UG/L 1,2-DICHLOROPROPANE 5.0 5.0 U UG/L 1,2-DICHLOROPROPANE 5.0 5.0 U UG/L 1,2-DICHLOROPROPANE 5.0 5.0 U UG/L 1,3-DICHLOROPROPENE 5.0 5.0 U UG/L ETHYLBENZENE 5.0 5.0 U UG/L ETHYLBENZENE 5.0 5.0 U UG/L ETHYLENE CHLORIDE 5.0 5.0 U UG/L TETRACHLOROETHANE 5.0 5.0 U UG/L TETRACHLOROETHENE 5.0 5.0 U UG/L 1,1,2,2-TETRACHLOROETHANE 5.0 5.0 U UG/L 1,1,1-TRICHLOROETHANE 5.0 5.0 U UG/L 1,1,2-TRICHLOROETHANE 5.0 5.0 U UG/L TRICHLOROFLUOROMETHANE 5.0 5.0 U UG/L T				•
1,2-DICHLOROBENZENE				•
1,4-DICHLOROBENZENE 5.0 5.0 U UG/L 1,1-DICHLOROETHANE 5.0 5.0 U UG/L 1,2-DICHLOROETHANE 5.0 5.0 U UG/L 1,1-DICHLOROETHANE 5.0 5.0 U UG/L 1,1-DICHLOROETHENE 5.0 5.0 U UG/L TRANS-1,2-DICHLOROETHENE 5.0 5.0 U UG/L 1,2-DICHLOROETHENE 5.0 5.0 U UG/L 1,2-DICHLOROPROPANE 5.0 5.0 U UG/L 1,2-DICHLOROPROPENE 5.0 5.0 U UG/L TRANS-1,3-DICHLOROPROPENE 5.0 5.0 U UG/L TRANS-1,3-DICHLOROPROPENE 5.0 5.0 U UG/L ETHYLBENZENE 5.0 5.0 U UG/L ETHYLBENZENE 5.0 5.0 U UG/L TETRACHLOROETHANE 5.0 5.0 U UG/L TETRACHLOROETHANE 5.0 5.0 U UG/L TOLUENE 5.0 5.0 U UG/L TOLUENE 5.0 5.0 U UG/L 1,1,1-TRICHLOROETHANE 5.0 5.0 U UG/L 1,1,2-TRICHLOROETHANE 5.0 5.0 U UG/L 1,1,2-TRICHLOROETHANE 5.0 5.0 U UG/L TRICHLOROFTHORE 5.0 5.0 U UG/L	,			
1,1-DICHLOROETHANE	·			
1,2-DICHLOROETHANE	•			
1,1-DICHLOROETHENE	· ·			
TRANS-1,2-DICHLOROETHENE				•
CTS-1,2-DICHLOROETHENE				
1,2-DICHLOROPROPANE	·			
CIS-1,3-DICHLOROPROPENE 5.0 5.0 U UG/L TRANS-1,3-DICHLOROPROPENE 5.0 5.0 U UG/L ETHYLBENZENE 5.0 5.0 U UG/L METHYLENE CHLORIDE 5.0 5.0 U UG/L 1,1,2,2-TETRACHLOROETHANE 5.0 5.0 U UG/L TETRACHLOROETHENE 5.0 5.0 U UG/L TOLUENE 5.0 5.0 U UG/L 1,1,1-TRICHLOROETHANE 5.0 5.0 U UG/L 1,1,2-TRICHLOROETHANE 5.0 5.0 U UG/L 1,1,2-TRICHLOROETHANE 5.0 5.0 U UG/L TRICHLOROFTHENE 5.0 5.0 U UG/L TRICHLOROFLUOROMETHANE 5.0 5.0 U UG/L TRICHLOROFLUOROMETHANE 5.0 5.0 U UG/L TRICHLOROFLUOROMETHANE 5.0 5.0 U UG/L O-XYLENE 5.0 5.0 U UG/L M+P-XYLENE 5.0 5.0 U UG/L M+P-XYLENE 5.0 5.0 U UG/L A-BROMOFLUOROBENZENE (80 - 123 %) 101 % TOLUENE-D8 (88 - 124 %) 99 %	· ·			
TRANS-1,3-DICHLOROPROPENE 5.0 5.0 U UG/L ETHYLBENZENE 5.0 5.0 U UG/L METHYLENE CHLORIDE 5.0 5.0 U UG/L 1,1,2,2-TETRACHLOROETHANE 5.0 5.0 U UG/L TETRACHLOROETHENE 5.0 5.0 U UG/L TOLUENE 5.0 5.0 U UG/L 1,1,1-TRICHLOROETHANE 5.0 5.0 U UG/L 1,1,2-TRICHLOROETHANE 5.0 5.0 U UG/L TRICHLOROETHENE 5.0 5.0 U UG/L TRICHLOROETHENE 5.0 5.0 U UG/L TRICHLOROFLUOROMETHANE 5.0 5.0 U UG/L VINYL CHLORIDE 5.0 5.0 U UG/L VINYL CHLORIDE 5.0 5.0 U UG/L VINYL CHLORIDE 5.0 5.0 U UG/L WHP-XYLENE 5.0 5.0 U UG/L M+P-XYLENE 5.0 5.0 U UG/L M+P-XYLENE 5.0 5.0 U UG/L ND SURROGATE RECOVERIES QC LIMITS 4-BROMOFLUOROBENZENE (80 - 123 %) 101 % TOLUENE-D8 (88 - 124 %) 99 %	· · · · · · · · · · · · · · · · · · ·			
### STHYLBENZENE	·			
METHYLENE CHLORIDE 5.0 5.0 U UG/L 1,1,2,2-TETRACHLOROETHANE 5.0 5.0 U UG/L TETRACHLOROETHENE 5.0 5.0 U UG/L TOLUENE 5.0 5.0 U UG/L 1,1,1-TRICHLOROETHANE 5.0 5.0 U UG/L 1,1,2-TRICHLOROETHANE 5.0 5.0 U UG/L TRICHLOROETHENE 5.0 5.0 U UG/L TRICHLOROFLUOROMETHANE 5.0 5.0 U UG/L VINYL CHLORIDE 5.0 5.0 U UG/L O-XYLENE 5.0 5.0 U UG/L M+P-XYLENE 5.0 5.0 U UG/L SURROGATE RECOVERIES QC LIMITS 4-BROMOFLUOROBENZENE (80 - 123 %) 101 % TOLUENE-D8 (88 - 124 %) 99				
1,1,2,2-TETRACHLOROETHANE 5.0 5.0 UG/L TETRACHLOROETHENE 5.0 5.0 UG/L TOLUENE 5.0 5.0 UG/L 1,1,1-TRICHLOROETHANE 5.0 5.0 UG/L 1,1,2-TRICHLOROETHANE 5.0 5.0 UG/L 1,1,2-TRICHLOROETHANE 5.0 TRICHLOROETHENE 5.0 TRICHLOROFLUOROMETHANE 5.0 UG/L TRICHLOROFLUOROMETHANE 5.0 UG/L TRICHLOROFLUOROMETHANE 5.0 UG/L TRICHLOROFLUOROMETHANE 5.0 UG/L VINYL CHLORIDE 5.0 5.0 UG/L VINYL CHLORIDE 5.0 5.0 UG/L VINYL CHLORIDE 5.0 UG/L VINYL CHLORIDE 5.0 UG/L VINYL CHLORIDE 5.0 UG/L VINYL CHLORIDE 6.0 UG/L				· ·
TETRACHLOROETHENE TOLUENE 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE TRICHLOROFLUOROMETHANE 5.0 5.0 5.0 U UG/L 1,1,2-TRICHLOROETHANE 5.0 5.0 U UG/L TRICHLOROFLUOROMETHANE 5.0 5.0 U UG/L TRICHLOROFLUOROMETHANE 5.0 5.0 U UG/L VINYL CHLORIDE 6.0 5.0 U UG/L VINYL CHLORIDE 6.0 101 8 TOLUENE-D8 (80 - 123 %) 101 8 TOLUENE-D8				
TOLUENE				
1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 5.0 5.0 UG/L 1,1,2-TRICHLOROETHANE 5.0 TRICHLOROETHENE 5.0 TRICHLOROFLUOROMETHANE 5.0 UG/L TRICHLOROFLUOROMETHANE 5.0 UG/L VINYL CHLORIDE 5.0 5.0 UG/L VINYL CHLORIDE 5.0 UG/L O-XYLENE 5.0 UG/L M+P-XYLENE 5.0 UG/L ND SURROGATE RECOVERIES QC LIMITS 4-BROMOFLUOROBENZENE (80 - 123 %) TOLUENE-D8 (88 - 124 %) 99 %				
1,1,2-TRICHLOROETHANE TRICHLOROETHENE 5.0 5.0 U UG/L UG/L TRICHLOROFLUOROMETHANE 5.0 TRICHLOROFLUOROMETHANE 5.0 5.0 U UG/L UG/L VINYL CHLORIDE 5.0 5.0 U UG/L O-XYLENE 5.0 5.0 U UG/L M+P-XYLENE 5.0 5.0 U UG/L ND SURROGATE RECOVERIES QC LIMITS 4-BROMOFLUOROBENZENE (80 - 123 %) TOLUENE-D8 (88 - 124 %) 99 %				
TRICHLOROFLUOROMETHANE VINYL CHLORIDE O-XYLENE M+P-XYLENE SURROGATE RECOVERIES 4-BROMOFLUOROBENZENE (80 - 123 %) (88 - 124 %) 5.0 5.0 U UG/L UG/L ND UG/L ND VINYL O-XYLENE 5.0 5.0 U UG/L ND VIG/L VIG/L ND VIG		5.0	5.0 U	UG/L
VINYL CHLORIDE 5.0 5.0 U UG/L O-XYLENE 5.0 5.0 U UG/L M+P-XYLENE 5.0 5.0 U UG/L SURROGATE RECOVERIES QC LIMITS 4-BROMOFLUOROBENZENE (80 - 123 %) 101 % TOLUENE-D8 (88 - 124 %) 99 %	• •	5.0	5.0 U	UG/L
O-XYLENE 5.0 5.0 U UG/L M+P-XYLENE 5.0 5.0 U UG/L ND SURROGATE RECOVERIES QC LIMITS 4-BROMOFLUOROBENZENE (80 - 123 %) 101 % TOLUENE-D8 (88 - 124 %) 99 %	TRICHLOROFLUOROMETHANE	5.0	5.0 U	UG/L
M+P-XYLENE 5.0 5.0 U UG/L ND SURROGATE RECOVERIES QC LIMITS 4-BROMOFLUOROBENZENE (80 - 123 %) 101 % TOLUENE-D8 (88 - 124 %) 99 %	VINYL CHLORIDE	5.0	5.0 U	UG/L
SURROGATE RECOVERIES QC LIMITS 4-BROMOFLUOROBENZENE (80 - 123 %) 101 % TOLUENE-D8 (88 - 124 %) 99 %	O-XYLENE	5.0	5.0 U	UG/L
4-BROMOFLUOROBENZENE (80 - 123 %) 101 % TOLUENE-D8 (88 - 124 %) 99 %	M+P-XYLENE	5.0		UG/L
TOLUENE-D8 (88 - 124 %) 99 %	SURROGATE RECOVERIES QC	C LIMITS		
TOLUENE-D8 (88 - 124 %) 99 %	4-BROMOFLIJOROBENZENE (80) - 123 %)	101	<u>ૄ</u>
	•	•		
	· · · · · ·			

A FULL SERVICE ENVIRONMENTAL LABORATORY

September 17, 2008

Mr. Eliott Duffney Xerox Corporation 800 Phillips Road Bldg. 0205-99F Webster, NY 14580

PROJECT: XEROX NORTH 40 PROPERTY AIRS

Submission #:R2845799

Dear Mr. Duffney:

Enclosed are the analytical results of the analyses requested. The analytical data was provided to you on 09/15/08 per a Facsimile transmittal. All data has been reviewed prior to report submission.

Should you have any questions please contact me at (585) 288-5380.

Thank you for letting us provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Karen Bunker Project Manager

Enc.

cc: Ms. Janice DeJesus

1 Mustard ST. Suite 250 Rochester, NY 14609 (585) 288-5380

THIS IS AN ANALYTICAL TEST REPORT FOR:

Client : Xerox Corporation

Project Reference: XEROX NORTH 40 PROPERTY AIRS

Lab Submission # : R2845799

Contact Person : Karen Bunker
Phone Number : (585) 288-5380

Reported : 09/17/08

The results reported herein relate only to the samples received by the laboratory. This report may not be reproduced except in full, without the approval of Columbia Analytical Services.

This package has been reviewed by Columbia Analytical Services' QA Department/Laboratory Director to comply with NELAC standards prior to report submittal.

CASE NARRATIVE

This report contains analytical results for the following samples: Submission #: R2845799

<u>Lab ID</u>	<u>Client ID</u>
1133429	SV-32
1133430	SV-33

All samples were received in good condition unless otherwise noted on the cooler receipt and preservation check form located at the end of this report.

All samples were preserved in accordance with approved analytical methods.

All samples have been analyzed by the approved methods cited on the analytical results pages.

All holding times and associated QC were within limits.

No analytical or QC problems were encountered.

All sampling activities performed by CAS personnel have been in accordance with "CAS Field Procedures and Measurements Manual" or by client specifications.

ORGANIC QUALIFIERS

- U Indicates compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds, or when the data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit and greater than the MDL. This flag is also used for DoD instead of "P" as indicated below.
- N Indicates presumptive evidence of a compound. This flag is only used for tentatively identified compounds, where the identification is based on a mass spectral library search.
- P This flag is used for a pesticide/Aroclor target analyte when there is a greater than 40% (25% for CLP) difference for detected concentrations between the two GC columns. The concentration is reported on the Form I and flagged with a "P" ("J" for DoD).
- Q for DoD only indicates a pesticide/Aroclor target is not confirmed. This flag is used when there is ≥ 100% difference for the detected concentrations between the two GC columns.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor. If a sample or extract is re-analyzed at a higher dilution factor, as in the "E" flag above, the "DL" suffix is appended to the sample number on the Form I for the diluted sample, and ALL concentration values reported on that Form I are flagged with the "D" flag.
- A This flag indicates that a TIC is a suspected aldol-condensation product.
- X As specified in Case Narrative.
- * This flag identifies compounds associated with a quality control parameter which exceeds laboratory limits.

CAS/Rochester Lab ID # for State Certifications

NELAP Accredited
Delaware Accredited
Connecticut ID # PH0556
Florida ID # E87674
Illinois ID #200047
Maine ID #NY0032
Massachusetts ID # M-NY032
Navy Facilities Engineering Service Center Approved

Nebraska Accredited New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

VOLATILE ORGANICS

METHOD TO-15

Reported: 09/17/08

Xerox Corporation

Project Reference: XEROX NORTH 40 PROPERTY AIRS

Client Sample ID : SV-32

Date Sampled: 09/11/08 11:13 Order #: 1133429 Sample Matrix: AIR Date Received: 09/11/08 Submission #: R2845799 Analytical Run 167049

DATE ANALYZED : 09/11/08

ANALYTICAL DILUTION: 2.00
CAN DILUTION: 2.27 Pi= -3.6 Pf= 29.7 CAN DILUTION :

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBV	
ACETONE	1.3	28	0.55	12	
BENZENE	0.35	16	0.11	5.1	
BROMODICHLOROMETHANE	0.15	0.67 U	0.022	0.100 U	
BROMOFORM	1.1	5.2 U	0.11	0.50 U	
BROMOMETHANE	0.43	1.9 U	0.11	0.50 U	
2-BUTANONE (MEK)	0.65	6.0	0.22	2.0	
METHYL-TERT-BUTYL ETHER	0.79	3.6 U	0.22	1.00 U	
CARBON DISULFIDE	0.34	48	0.11	15	
CARBON TETRACHLORIDE	0.14	0.63 U	0.022	0.100 U	
CHLOROBENZENE	0.51	2.3 U	0.11	0.50 U	
CHLOROETHANE	0.58	2.6 U	0.22	1.00 U	
CHLOROFORM	0.54	2.4 U	0.11	0.50 U	
CHLOROMETHANE	0.45	2.1 U	0.22	1.00 U	
DIBROMOCHLOROMETHANE	0.19	0.85 U	0.022	0.100 U	
1,2-DIBROMOETHANE	0.17	0.77 U	0.022	0.100 U	
1,3-DICHLOROBENZENE	1.3	6.0 U	0.22	1.00 U	
1,4-DICHLOROBENZENE	1.3	6.0 U	0.22	1.00 U	
1,2-DICHLOROBENZENE	1.3	6.0 U	0.22	1.00 U	
1,1-DICHLOROETHANE	0.45	2.0 U	0.11	0.50 U	
1,2-DICHLOROETHANE	0.45	2.0 U	0.11	0.50 U	
1,1-DICHLOROETHENE	0.44	2.0 U	0.11	0.50 U	
TRANS-1,2-DICHLOROETHENE	0.44	2.0 U	0.11	0.50 U	
CIS-1,2-DICHLOROETHENE	0.44	2.0 U	0.11	0.50 U	
1,2-DICHLOROPROPANE	0.51	2.3 U	0.11	0.50 U	
CIS-1,3-DICHLOROPROPENE	1.00	4.5 U	0.22	1.00 U	
TRANS-1,3-DICHLOROPROPENE	0.50	2.3 U	0.11	0.50 U	
	0.95	4.3 U	0.22	1.00 U	
ETHYLBENZENE	0.45	2.0 U	0.11	0.50 U	
2-HEXANONE METHYLENE CHLORIDE	0.38	1.7 U	0.11	0.50 U	
4-METHYL-2-PENTANONE	0.90	6.6	0.22	1.6	
	0.94	4.3 U	0.22	1.00 U	
STYRENE 1,1,2,2-TETRACHLOROETHANE	0.15	0.69 Ū	0.022	0.100 U	
	0.15	0.68 U	0.022	0.100 U	
TETRACHLOROETHENE	0.41	25	0.11	6.6	
TOLUENE	0.60	2.7 U	0.11	0.50 U	
1,1,1-TRICHLOROETHANE	0.60	2.7 U	0.11	0.50 U	
1,1,2-TRICHLOROETHANE	0.12	0.54 U	0.022	0.100 U	
TRICHLOROETHENE	0.12	2.8 U	0.11	0.50 U	
TRICHLOROFLUOROMETHANE	0.82	0.77 U	0.022	0.100 U	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA	1.9	8.8 U	0.55	2.5 U	
VINYL ACETATE	0.28	1.3 U	0.11	0.50 U	
VINYL CHLORIDE	0.20	1,00	<i></i>		

VOLATILE ORGANICS

METHOD TO-15

Reported: 09/17/08

Xerox Corporation

Project Reference: XEROX NORTH 40 PROPERTY AIRS

Client Sample ID : SV-32

Date Sampled: 09/11/08 11:13 Order #: 1133429 Sample Matrix: AIR

Date Received: 09/11/08 Submission #: R2845799 Analytical Run 167049

DATE ANALYZED : 09/11/08

ANALYTICAL DILUTION: 2.00

CAN DILUTION : 2.27 Pi= -3.6 Pf= 29.7

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
O-XYLENE	0.95	5.5	0.22	1.3	
M+P-XYLENE	1.9	21	0.44	4.7	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	103	%		

VOLATILE ORGANICS

METHOD TO-15

Reported: 09/17/08

Xerox Corporation

Project Reference: XEROX NORTH 40 PROPERTY AIRS

Client Sample ID : SV-33

 Date Sampled:
 09/11/08
 10:47 Order #: 1133430
 Sample Matrix: AIR

 Date Received:
 09/11/08
 Submission #: R2845799
 Analytical Run 167049

DATE ANALYZED : 09/11/08

ANALYTICAL DILUTION: 2.00
CAN DILUTION : 2.41 Pi= -5.1 Pf= 29.8

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv
ACETONE	1.3	14	0.55	6.0
BENZENE	0.35	17	0.11	5.2
BROMODICHLOROMETHANE	0.15	0.71 U	0.022	0.11 U
BROMOFORM	1.1	5.5 U	0.11	0.53 U
BROMOMETHANE	0.43	2.1 U	0.11	0.53 Ü
2-BUTANONE (MEK)	0.65	3.9	0.22	1.3
METHYL-TERT-BUTYL ETHER	0.79	3.8 U	0.22	1.1 U
CARBON DISULFIDE	0.34	44	0.11	14
CARBON TETRACHLORIDE	0.14	0.67 U	0.022	0.11 U
CHLOROBENZENE	0.51	2.4 U	0.11	0.53 U
CHLOROETHANE	0.58	2.8 U	0.22	1.1 U
CHLOROFORM	0.54	2.6 U	0.11	0.53 U
CHLOROFORM CHLOROMETHANE	0.45	2.2 U	0.22	1.1 U
DIBROMOCHLOROMETHANE	0.19	0.90 U	0.022	0.11 U
1,2-DIBROMOETHANE	0.17	0.81 U	0.022	0.11 U
1,2-DIBROMOBINAND 1,3-DICHLOROBENZENE	1.3	6.4 U	0.22	1.1 U
1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE	1.3	6.4 U	0.22	1.1 U
1,4-DICHLOROBENZENE 1,2-DICHLOROBENZENE	1.3	6.4 U	0.22	1.1 U
	0.45	2.1 U	0.11	0.53 U
1,1-DICHLOROETHANE	0.45	2.1 U	0.11	0.53 U
1,2-DICHLOROETHANE	0.44	2.1 U	0.11	0.53 U
1,1-DICHLOROETHENE	0.44	2.1 U	0.11	0.53 U
TRANS-1,2-DICHLOROETHENE	0.44	2.1 U	0.11	0.53 U
CIS-1,2-DICHLOROETHENE	0.51	2.4 U	0.11	0.53 U
1, 2-DICHLOROPROPANE	1.00	4.8 U	0.22	1.1 U
CIS-1,3-DICHLOROPROPENE	0.50	2.4 U	0.11	0.53 Ŭ
TRANS-1,3-DICHLOROPROPENE	0.50	4.6 U	0.22	1.1 U
ETHYLBENZENE	0.45	2.2 U	0.11	0.53 U
2-HEXANONE	0.45	1.8 U	0.11	0.53 U
METHYLENE CHLORIDE	0.30	4.3 U	0.22	1.1 U
4-METHYL-2-PENTANONE	0.90	4.5 U	0.22	1.1 U
STYRENE	0.15	0.73 U	0.022	0.11 U
1,1,2,2-TETRACHLOROETHANE	0.15	0.73 U	0.022	
TETRACHLOROETHENE	0.15	30	0.11	8.1
TOLUENE	0.60	2.9 U	0.11	0.53 U
1,1,1-TRICHLOROETHANE	0.60	2.9 U	0.11	0.53 U
1,1,2-TRICHLOROETHANE		2.9 U 0.57 U	0.022	0.11 U
TRICHLOROETHENE	0.12	0.57 U 3.0 U	0.11	0.53 U
TRICHLOROFLUOROMETHANE	0.62		0.022	0.11 U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA	0.17	0.81 U	0.55	2.7 U
VINYL ACETATE	1.9	9.3 U	0.11	0.53 U
VINYL CHLORIDE	0.28	1.4 U	ئىد.∪	0.55

VOLATILE ORGANICS

METHOD TO-15

Reported: 09/17/08

Xerox Corporation

Project Reference: XEROX NORTH 40 PROPERTY AIRS

Client Sample ID : SV-33

Date Sampled: 09/11/08 10:47 Order #: 1133430 Sample Matrix: AIR Date Received: 09/11/08 Submission #: R2845799 Analytical Run 167049

DATE ANALYZED : 09/11/08

ANALYTICAL DILUTION: 2.00
CAN DILUTION : 2.41 Pi= -5.1 Pf= 29.8

ANALYTE	MRL UG/M3	RESULT UG/M3	MRL PPBv	RESULT PPBv	
O-XYLENE M+P-XYLENE	0.95 1.9	7.9 28	0.22 0.44	1.8 6.4	
SURROGATE RECOVERIES	QC LIMITS				
BROMOFLUOROBENZENE	(70 - 130 %)	102	ok		

LCS RECOVERY FOR SECOND SOURCE STANDARD

Compounds Flagged outside of 70-130% recovery

19/11

inj volume 250 1000 DF 100.00 nominal volume LCS 1.0 Target LCS Recovery Stock MW cas# ppbv ppby SS Stock 0-515-41A conc.====> ppm ppb 2.5 2.5 Internal standard 0.0 # 2.63 1.05 10.50 42.08 115-07-1 0 propylene 2.53 2.72 107.7 75-71-8 10.10 120.91 1.01 dichlorodifluoromethane 2.68 106.1 76-14-2 2.53 170.92 1.01 10.10 freon-114 74-87-3 2.50 2.61 104.4 50.49 10.00 1.00 chloromethane 107.6 75-01-4 2.50 2 69 1.00 10.00 62.5 vinyl chloride 106-99-0 2.68 3.03 113.3 1.07 10.70 54.09 1,3-butadiene 2.50 2.65 106.0 94.9 74-83-9 1.00 10.00 bromomethane 2.50 2.72 108.8 1.00 10.00 64.5 75-00-3 chloroethane 2.53 2.7 106.9 75-69-4 1.01 10.10 137.37 trichlorofluoromethane 46.07 64-17-5 2.70 2.83 104.8 10.80 1.08 ethanol 2.76 104.2 187.38 76-13-1 2.65 1.06 10.60 freon-113 2.70 3.18 117.8 75-35-4 1.08 10.80 96.94 1,1-dichloroethene 2.84 108.2 58.08 67-64-1 2.63 1.05 10.50 acetone 0.0 # 67-63-0 2.88 0 1.15 11.50 60.1isopropanol 2.91 111.9 75-15-0 2.60 76.14 1.04 10.40 carbon disulfide 2.76 103.2 75-09-2 2.68 1.07 10.70 84 93 methylene chloride 156-60-5 2.60 3.04 116.9 10.40 96.94 1.04 trans-1.2-dichloroethene 2.64 100.6 88.15 1634-04-4 2.63 1.05 10.50 methyl tert butyl ether 118.5 110-54-3 2.65 3.14 86.18 1.06 10.60 hexane 107-06-2 2,60 2.86 110.0 10.40 98.96 1.04 1,1-dichloroethane 2.33 87.9 108-05-4 2.65 1.06 10.60 86.09 vinyl acetate 78-93-3 2.68 2.69 100.6 1.07 10.70 72.11 2-butanone 10.70 96.94 156-59-2 2.68 2.61 97.6 1.07 cis-1,2-dichloroethene 3.13 118.1 2.65 88.11 141-78-6 1.06 10.60 ethyl acetate 100.8 67-66-3 2.65 2.67 1.06 10.60 119.38 chloroform 109-99-9 2.65 0 0.0 # 72.11 1.06 10.60 tetrahydrofuran 2.5 2.50 Internal standard 112.7 2.60 2.93 71-55-6 1.04 10.40 133.4 1,1.1-trichloroethane 2.63 3.29 125.3 110-82-7 84.16 1.05 10.50 cyclohexane 56-23-5 2.63 2.83 107.8 1.05 10.50 153.82 carbon tetrachloride 3.13 119.2 2.63 1.05 10.50 98.96 107-06-2 1,2-dichloroethane 3.16 119.2 71-43-2 2.65 78.11 1.06 10.60 benzene 0.0 # 10.50 100.2 142-82-5 2.63 n 1.05 heptane 2.60 2.94 113.1 79-01-6 10.40 131.39 1.04 trichloroethylene 78-87-5 2.60 3.08 118.5 112.99 1.04 10.40 1,2-dichloropropane 0.0 # 123-91-1 2.60 n 1.04 10.40 88.11 1 4-dioxane 2.60 2.96 113.8 163.83 75-27-4 1.04 10.40 bromodichloromethane 110.97 10061-01-5 2.63 2.5 95.2 1.05 10.50 cis-1,3-dichloro-1-propene 2.65 2.83 106.8 100.16 108-10-1 4-methyl-2-pentanone 1.06 10.60 106.4 2.65 2.82 108-88-3 1.06 10.60 92.14 toluene 109.9 2.88 3.16 10061-02-6 1.15 11.50 110.97 trans-1,3-dichloro-1-propene 79-00-5 2.58 2.81 109.1 133.4 1.03 10.30 1,1,2-trichloroethane 127-18-4 2.58 2.87 111.5 1.03 10.30 165.83 tetrachloroethene 2.75 103.8 2.65 591-78-6 1.06 10.60 100.16 2-hexanone 124-48-1 2.60 2.92 112.3 10.40 208.28 1.04 dibromochloromethane 114.2 1.04 10.40 187.86 106-93-4 2.60 2.97 1.2-dibromoethane 2.5 2.50 Internal standard 2.93 111.6 108-90-7 2.63 112.56 1.05 10.50 chlorobenzene 100-41-4 2.63 3.39 129.1 106.17 1.05 10.50 ethylbenzene 6.72 129.2 5.20 2.08 20.80 106.17 1330-20-7 M+P xylene 126.5 2.60 3.29 95-47-6 1.04 10.40 106.17 O xylene 2.63 3.23 123.0 100-42-5 104.15 1.05 10.50 styrene 75-25-2 2.60 3.02 116.2 1.04 10.40 252.73 bromoform 2.54 2.50 Surrogate standard 2.54 97.7 79-34-5 2.60 1.04 167.85 10.40 1,1,2,2-tetrachloroethane 0.0 # O 1.08 10.80 120.19 622-96-8 2.70 4-ethyltoluene 0 0.0 # 108-67-8 2.63 10.50 120.19 1.05 1,3,5-trimethylbenzene 95-63-6 2.58 0 0.0 # 1.03 10.30 120.19 1,2,4-trimethylbenzene 2.60 2.57 98.8 10.40 147 541-73-1 1.04 1,3-dichlorobenzene 2.53 97.3 106-46-7 2.60 1.04 10.40 147 1.4-dichlorobenzene 100-44-7 2.60 0 0.0 # 10.40 126.59 1.04 benzyl chloride 2.42 95.8 95-50-1 2.53 1.01 10.10 147 1,2-dichlorobenzene 0.0 # 120-82-1 2.53 0 181.45 1.01 10.10 1,2,4-trichlorobenzene 0.0 # O 87-68-3 2.50 1.00 10.00 260.76 hexachlorobutadiene

VOLATILE ORGANICS

METHOD TO-15

Reported: 09/17/08

Project Reference:

VINYL CHLORIDE

O-XYLENE

Client Sample ID : METHOD BLANK

Order #: 1134361 Sample Matrix: AIR Date Sampled: Analytical Run 167049 Submission #: Date Received: DATE ANALYZED : 09/11/08 1.00 ANALYTICAL DILUTION: Pf = 01.00 Pi = 0CAN DILUTION : RESULT MRL RESULT MRL PPBv PPBv UG/M3 UG/M3 ANALYTE 0.55 U 1.3 U 0.55 1.3 ACETONE 0.11 U 0.35 U 0.11 0.35 BENZENE 0,022 0.022 U 0.15 U 0.15 BROMODICHLOROMETHANE 0.11 U 0.11 1.1 1.1 U BROMOFORM 0.11 0.11 U 0.43 0.43 U BROMOMETHANE 0.65 U 0.22 0.22 U 0.65 2-BUTANONE (MEK) 0.22 0.22 U 0.79 U 0.79 METHYL-TERT-BUTYL ETHER 0.11 0.11 U 0.34 0.34 U CARBON DISULFIDE 0.022 ປັ 0.022 0.14 U 0.14 CARBON TETRACHLORIDE 0.11 0.11 U 0.51 0.51 U CHLOROBENZENE 0.22 U 0.22 0.58 0.58 U CHLOROETHANE 0.11 0.11 U 0.54 U 0.54 CHLOROFORM 0.22 U 0.22 0.45 U 0.45 CHLOROMETHANE 0.19 U 0.022 0.022 U 0.19 DIBROMOCHLOROMETHANE 0.022 U 0.022 0.17 0.17 U 1,2-DIBROMOETHANE 0.22 U 1.3 U 0.22 1.3 1,3-DICHLOROBENZENE 0.22 0.22 U 1.3 U 1.3 1,4-DICHLOROBENZENE 0.22 U 1.3 U 0.22 1.3 1,2-DICHLOROBENZENE 0.11 U 0.45 U 0.11 0.45 1,1-DICHLOROETHANE 0.11 0.11 U 0.45 0.45 U 1.2-DICHLOROETHANE 0.44 U 0.11 0.11 U 0.44 1,1-DICHLOROETHENE 0.11 0.11 U 0.44 U 0.44 TRANS-1, 2-DICHLOROETHENE 0.11 0.11 U 0.44 U 0.44 CIS-1, 2-DICHLOROETHENE 0.11 U 0.11 0.51 0.51 U 1,2-DICHLOROPROPANE 0.22 0.22 U 1.00 U 1.00 CIS-1,3-DICHLOROPROPENE 0.11 U 0.50 U 0.11 0.50 TRANS-1, 3-DICHLOROPROPENE 0.22 0.22 U 0.95 U 0.95 ETHYLBENZENE 0.11 U 0.45 U 0.11 0,45 2-HEXANONE 0.38 U 0.11 0.11 U 0.38 METHYLENE CHLORIDE 0.22 U 0.22 0.90 0.90 U 4-METHYL-2-PENTANONE 0.22 U 0.94 U 0.22 0.94 STYRENE 0.022 0.022 U 0.15 U 1,1,2,2-TETRACHLOROETHANE 0.15 0.15 U 0.022 0.022 U 0,15 TETRACHLOROETHENE 0.11 U 0.11 0.41 U 0.41 TOTJIENE 0.11 U 0.11 0.60 0,60 U 1,1,1-TRICHLOROETHANE 0.11 U 0.60 0.60 U 0.11 1,1,2-TRICHLOROETHANE 0.12 U 0.022 0.022 U 0.12 TRICHLOROETHENE 0.11 U 0.62 U 0.11 0.62 TRICHLOROFLUOROMETHANE 0.022 0.022 U 0.17 U 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHA 0.17 0.55 U 0.55 1.9 U 1.9 VINYL ACETATE 0.28 U 0.11 U 0.11

0.28

0.95

0.95 U

0.22 U

0.22

VOLATILE ORGANICS

METHOD TO-15

Reported: 09/17/08

Project Reference:

BROMOFLUOROBENZENE

Client Sample ID : METHOD BLANK

Sample Matrix: AIR Order #: 1134361 Date Sampled : Analytical Run 167049 Submission #: Date Received: DATE ANALYZED : 09/11/08 ANALYTICAL DILUTION: 1.00 Pi = 0 Pf = 01.00 CAN DILUTION : RESULT MRL RESULT MRL PPBvPPBv UG/M3 UG/M3 ANALYTE 1.9 1.9 U 0.44 U M+P-XYLENE SURROGATE RECOVERIES QC LIMITS

(70 - 130 %)

88

Air - Chain of Custody Record & Analytical Service Request

Page

1 Mustard Street, Suite 250

Rochester, New York 14609-6925 Phone (585) 288-5380

CAS Project No. Requested Turnaround Time in Business Days From Receipt, please circle (LDay 2 Day 3 Day 4 Day 5 Day 10 Day-Standard (COSh) Fax (585) 288-8475

					CAS Contact:				AND THE PROPERTY OF THE PROPER
Cumpany varies Address (Reporting Inform	iation)	Project Name	Op That		Tage Z	ren Burker)		
too ca served rock one	んと	3 3	- 12 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Analys	is Method	and/or Ana	vtes	
Rochester, NY (4623		Froject Number 320 FT	590-4	7	(
Tania, Pates		P.O. # / Billir	P.O. # / Billing Information		T-				
585-321-4211 585-4	585-486-8211				0				Comments
Email Address for Result Reporting	r.Com	Sampler (Print & Sign)	& Sign) G. 126	R. 43-20					Specific Instructions
Client Sample ID (D Number	Date Time Collected Collected		Flow Controller ID	Sample Final Vacuum	7 <i>0</i> /\			· · · · · ·	
113340g	9/11/08/1113	1338	78888	5,0 "th	\ <u>\</u>				A THE PERSON AND A STREET OF THE PERSON AND ASSESSMENT OF THE PERSON ASSESSMENT OF THE PERSON AND ASSESSMENT OF THE PERSON ASSESSMENT OF THE PERSON AND ASSESSMENT OF THE PERSON ASSESSME
SV-55 132430	than 80/11/1	126子		子の、9	\nearrow				The state of the s
									And the second s
									A STATE OF THE PERSON NAMED IN COLUMN NAMED IN
	·								

	\$								A STATE OF THE STA
									A STATE OF THE STA
									And the state of t
Donort Tion I made all controls									
-	Tier III (CLP Forms Only)			EDD required	d Yes No	8		Project Require	Project Requirements (MRLs, QAPP)
	'iona Aducanoi'			l ype:	200	EDD Units			
Keilquished by (Signature)	10 Date (108		Received by: (Signature)			Date:	Time:		
Reliquished by: (Signature)	Date:	Time:	Received by: (\$ignature)	attire)		Date:	Time:		
Reliquished by: (Signature)	Date:	Time:	Received by: (Signature)	ature)		Date:	Time:	TO CO	
Programmos contractions and the second secon									

Cooler Receipt And Preservation Check Form

Project/	Client	a ley	+1	ldn'ch	Subn	nission Numl	oer <u> Rac</u>	- 45799	•	
Cooler	received on_	HHC	1	_ by: <u> </u>	OURIE	R: CAS	UPS :	FEDEX VI	ELOCIT	YCLIENT
1. 2. 3. 4. 5. 6. 7.	Were custod Did all bottle Did any VO. Were Ice or Where did th	y pap es arr A via Ice p ne bo	ive in the interior of the int	n outside of cooler properly filled out in good condition ave significant* ai is present? originate? r(s) upon receipt:	(ink, si (unbrok	en)?	(YES I) CLIE	N/A NT
	Is the tempe	ratur	e wit	hin 0° - 6° C?:	Yes	Yes	•	Yes	Yes	Yes
	If No, Explanate/Time	ain B	elow	v .	9 <u>11-1</u> 2	No 62 1	:56	No	No	No
				1 / IR GUN#2 (IR GUI	N#3 Read	ling Fro	m: Temp B	lank /	Sample Bottle
Coole: 1. 2. 3. 4.	r Breakdown: Were all bo Did all bott Were correc Air Sample	Da ttle la le lab et cor s: C	fe:_abels els a ntaine Casse	complete (i.e. and tags agree with ers used for the tettes / Tubes Intact	alysis, por custod sts indicated to Care	y papers?	etc.)?	MES	NO NO NO Bags Inf	lated N/A
pH	Reagent			Lot Received	Exp	Sample ID	Vol. Added .	Lot Added	Final pH	Yes = All samples OK
≥12	NaOH	YES	NO				710000,			samples OK
≤2	HNO ₃									No =
<u>-</u> ≤2	H ₂ SO ₄								-	Samples were
Residu Chlori (-)	ŧ			If present, contact add ascorbic acid	PM to					preserved at lab as listed
13	Na ₂ S ₂ O ₃	-	+			*Not to be te	ested before	ore analysis – p y VOAs or Ge)H nChem	PM OK to
	Zn Aceta	-	-			on a separate			nynem	Adjust:
	HCl	*	*							

PC Secondary Review: 18 9/1/06

*significant air bubbles are greater than 5-6 mm

APPENDIX B

Soil Gas SUMMA Canister Sampling Forms

	200+ acre pan Xerox Corpor Data: AA-070208 NA Geoprobe in	Slambar We	GPS Coordi	nates: Time: Other: itions:		_Lat.	_ L Implant Type	: 1	permanent	-	32077-063 Steve Schalabba MGN/DMN temporary	
Sampling Data:												_
• 0	7/2/2008			Time:	0800	1	Helium Trace 7	Гest Ре	rformed:	Yes / No NA	- ambient air sample	
		ml/min				_	/olume Extract				volumes:	
	Z801				1973 / 7309						ce:	
Weather Condition Other pertinent obs		ımma Cannist	er used for sa	ample collection	on							_
	<u> </u>			<u>,</u>								_
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)		Comments				
AA-070208	0800	29.0										
AA-070208			0830	27.0								
AA-070208			0900	23.0								
AA-070208					1200	4.5						

PROJECT	Northern Prop	erty Assessme	nt						H&A FILE NO.	32077-063
LOCATION	200+ acre par	cel north of Ca	racus Drive be	etween Phillip	s and Salt Road	ds			PROJECT MGR.	Steve Schalabba
CLIENT	Xerox Corpor	ation - Eliott I	Ouffney						FIELD REP	EGL/MGNMGN/DMN
Implant Installation	Data:									
Well ID:	SV-18	(GPS Coordi	nates:	4789642	Lat.	18 303827 Long.			
Date:		_	,	Time:			Implant Type:	permanent	semi-permanent	temporary
Install. Method:	Geoprobe	Slamba	r	Other: AMS	GVP Kit					
Implant Depth:	48 in	We	ather Condi	itions:						
Other pertinent obse	ervations:									
Sampling Data:										
Date:	7/2/2008	-		Time:		_	Helium Trace Test	Performed:	Yes / No Pass	3
Purge Rate:	200	ml/min	Purge '	Time:	20	sec V	Volume Extracted:			volumes: 3.0
Canister ID:	ISL00661	Flo	ow Controlle	er ID:14	46811 / 7322	2139	Sample Time:	2	hr Purge Device	ee: SKC Pump
Weather Condition	s: Sunny 80 F									
Other pertinent obse	ervations: 1L Su	mma Cannist	er used for sa	mple collecti	on					
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)			Comments	
SV-18	0817	30.0								
SV-18			0858	21.5						
SV-18					1025	3.0				

PROJECT	Northern Prop	erty Assessme	nt						H&A FILE NO.	32077-043	
LOCATION	200+ acre pare	cel north of Ca	racus Drive be	etween Phillip	s and Salt Road	ls			PROJECT MGR.	Steve Schalabba	
CLIENT	Xerox Corpor	ation - Eliott I	Ouffney						FIELD REP	EGL/MGNMGN/DMN	
Implant Installation	Data:										
Well ID:	SV-20	(GPS Coordi	nates:	4789637	Lat.	18 303915 Long.				
Date:		•		Time:			Implant Type:	permanent	semi-permanent	temporary	
Install. Method:	Geoprobe	Slamba	r	Other: AMS	GVP Kit						
Implant Depth:	75 in	We	ather Condi	itions:							
Other pertinent obse	ervations:										
Sampling Data:											
Date:	7/2/2008			Time:			Helium Trace Test	Performed:	Yes / No Pass	sed	
Purge Rate:	200	ml/min	Purge '	Time:	32	sec V	Volume Extracted:	107	ml # of implant	volumes: 3.1	
Canister ID:	ISL00656	Flo	ow Controll	er ID: 1 4	16807 / 7321	819	Sample Time:	2	hr Purge Device	ee: SKC Pump	
Weather Condition	s: Sunny 80 F										
Other pertinent obse	ervations: 1L Su	mma Cannist	er used for sa	mple collection	on						
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)			Comments		
SV-20	0827	29.5									
SV-20			0857	24.0							
SV-20					1031	3.0					

PROJECT	Northern Prop	erty Assessme	nt						H&A FILE NO.	32077-043		
LOCATION	200+ acre par	cel north of Ca	racus Drive be	etween Phillip	s and Salt Road	ls			PROJECT MGR.	Steve Schalabba		
CLIENT	Xerox Corpor	ration - Eliott [Duffney				FIELD REP EGL/MGNMGN/DMN					
Implant Installation	n Data:											
Well ID:	SV-21	(GPS Coordi	nates:	4789792	Lat.	8 304135 Long.					
Date:		-		Time:			Implant Type:	permanent	semi-permanent	temporary		
Install. Method:	Geoprobe	Slamba						AMS GVP	Kit			
Implant Depth:	90 in	We										
Other pertinent obs	servations:											
Sampling Data:												
Date:	7/2/2008	_		Time:	0850	I	Helium Trace Test	Performed:	Yes / No Pass	8		
Purge Rate:	200	ml/min	Purge	Time:	37	sec V	olume Extracted:	123	ml # of implant	volumes: 3.0		
Canister ID:	ISL00664	Flo	w Controll	er ID: 1 4	12250 / 7309	947	Sample Time:	2	hr Purge Device	ee: SKC Pump		
Weather Conditio	ns: Sunny 80 F											
Other pertinent obs	servations: 1L Su	mma Cannist	er used for sa	mple collection	on							
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)	Comments					
SV-21	0850	29.5					No change in sur	nma cannis	ter vacuum reading.			
SV-21			0915	29.5			Point presumabl	y below wat	er level.			
SV-21			0940	29.5			Requested no an	alysis from	laboratory			
SV-21					1015	29.8						

PROJECT	Northern Prop	erty Assessme	nt					H&A FILE NO.	32077-043		
LOCATION	200+ acre par	cel north of Ca	racus Drive be	etween Phillij	os and Salt Roac	ls		PROJECT MGR.	Steve Schalabba		
CLIENT	Xerox Corpor	ation - Eliott I	Duffney					FIELD REP	EGL/MGNMGN/DMN		
Implant Installation	Data:										
Well ID:	SV-22	(GPS Coordi	nates:	4789762	Lat.	18 304249 Long.				
Date:				Time:		_	Implant Type: permaner	semi-permanent	temporary		
Install. Method:	Geoprobe	Slamba	r	Other: AMS	S GVP Kit						
Implant Depth:	96 in	We	ather Cond	itions:							
Other pertinent obs	ervations:										
Sampling Data:											
Date:	7/2/2008			Time:	1215	I	Helium Trace Test Performe	d: Yes / No Pas	s		
Purge Rate:	200	ml/min	Purge	Time:	39	sec V	Volume Extracted: 130	ml # of implant	volumes: 3.0		
Canister ID:	ISL00665	Flo	ow Controll	er ID:1	42254 / 7310	0044	Sample Time: 2	hr Purge Devi	ce: SKC Pump		
Weather Condition	ns: Sunny 80 F										
Other pertinent obs	ervations: 1L Su	mma Cannist	er used for sa	mple collect	ion						
		Τ									
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)	Comments				
SV-22	1232	29.0					No change in summa can	nister vacuum reading.			
SV-22			1410	29.0			Point presumably below				
SV-22					1425	29.0	Requested no analysis fro				

PROJECT	Northern Prop	erty Assessme	nt						H&A FILE NO.	32077-043	
LOCATION	200+ acre par	cel north of Ca	racus Drive be	etween Phillip	s and Salt Road	ds			PROJECT MGR.	Steve Schalabba	
CLIENT	Xerox Corpor	ation - Eliott I	Ouffney						FIELD REP	EGL/MGNMGN/DMN	
Implant Installation	Data:										
Well ID:	SV-23	(GPS Coordi	nates:	4789483	Lat.	18 304558 Long.				
Date:				Time:		_	Implant Type:	permanent	semi-permanent	temporary	
Install. Method:	Geoprobe	Slamba	r	Other: AMS	GVP Kit						
Implant Depth:	65 in	We	ather Condi	itions:							
Other pertinent obs	ervations:										
Sampling Data:											
Date:	7/2/2008			Time:	1300		Helium Trace Test	Performed:	Yes / No Pass	sed	
Purge Rate:	200	ml/min	Purge '	Time:	26	sec V	Volume Extracted:	87	ml # of implant	volumes: 3.0	
Canister ID:	ISL00655	Flo	ow Controll	er ID:1	47725 / 7329	351	Sample Time:	2	hr Purge Device	ce: SKC Pump	
Weather Condition	ns: Sunny 80 F										
Other pertinent obs	ervations: 1L Su	mma Cannist	er used for sa	mple collecti	on						
					Ī						
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)	Comments				
SV-23	1310	29.0									
SV-23			1446	9.0							
SV-23					1512	4.0					
									·		

PROJECT	Northern Pro	operty Assessme	ent						H&A FILE NO.	32077-063	
LOCATION	200+ acre pa	arcel north of Ca	aracus Drive be	tween Phillip	s and Salt Roa	ds			PROJECT MGR.	Steve Schalabba	
CLIENT	Xerox Corpo	oration - Eliott I	Duffney						FIELD REP	MGN/DMN	
Implant Installation	Data:										
Well ID:	SV-29	_	GPS Coordi	nates:		Lat.	Long.				
Date:	7/1/2008	_					Implant Type:	permanent	semi-permanent	temporary	
Install. Method:	Geoprobe	Slamba	ır	Other: AMS	GVP Kit						
Implant Depth:	62 ir	n We	eather Condi	tions: Sunn	y 80 F						
Other pertinent obse	rvations:										
Sampling Data:											
Date:	7/2/2008	_	,	Гіте:	1215	_ I	Helium Trace Test	Performed:	Yes / No Pas	sed	
Purge Rate:	200	ml/min	Purge 7	Гіте:	25	sec V	Volume Extracted:	83.33333333	_	volumes: 3.0	
Canister ID:	ISL00662	Flo	ow Controlle	er ID:1	42255 / 7309	9966	Sample Time:	2	hr Purge Devi	ce: SKC Pump	
Weather Conditions	s: Sunny 80 F										
Other pertinent obse	ervations: 1L S	umma Cannist	er used for sa	mple collecti	on						
			1		1						
Sample Location	Start Time	Initial Vacuum	Interim Time	Interim Vacuum	Final Time (24hrs)	Final Vacuum			Comments		
	(24hrs)	(inHg)	(24hrs)	(inHg)	(241178)	(inHg)					
SV-29	1255	29.0									
SV-29			1428	11.0							
SV-29					1505	3.5					
					1						

PROJECT	Northern Pr	operty Assessme	ent						H&A FILE NO.	32077-063	
LOCATION	200+ acre p	arcel north of Ca	aracus Drive be	tween Phillip	s and Salt Roa	ds			PROJECT MGR.	Steve Schalabba	
CLIENT	Xerox Corp	oration - Eliott l	Duffney						FIELD REP	MGN/DMN	
Implant Installation	Data:										
Well ID:	SV-30		GPS Coordii	nates:		Lat.	Long.				
Date:	7/1/2008		7	Гіте:		=	Implant Type:	permanent	semi-permanent	temporary	
Install. Method:	Geoprobe	Slamba	ur	Other: AMS	GVP Kit						
Implant Depth:	61 i	n We	eather Condi	tions: Sunn	y 80 F						
Other pertinent obse	ervations:										
Sampling Data:											
Date:	7/2/2008	_	7	Гіте:		_ 1	Helium Trace Test	Performed:	Yes / No Pas	sed	
Purge Rate:	200	ml/min	Purge 7	Гіте:	25	sec V	Volume Extracted:	83.33333333	_ml # of implant	volumes: 3.0	
Canister ID:	ISL00657	Fl	ow Controlle	er ID:	1347 0 / 73 13	3583	Sample Time:	2	hr Purge Device	ce: SKC Pump	<u> </u>
Weather Conditions	s: Sunny 80 F										
Other pertinent obse	ervations: 1L S	Summa Cannist	ter used for sa	mple collecti	on						
	T				1	T	1				
Sample Location	Start Time	Initial Vacuum	Interim Time	Interim Vacuum	Final Time	Final Vacuum			Comments		
	(24hrs)	(inHg)	(24hrs)	(inHg)	(24hrs)	(inHg)					
SV-30	1324	29.5									
SV-30			1442	14.0							
SV-30					1530	4.0					

CLIENT Note PROJECT MGR Steve Schalabba
Implant Installation Data: Well ID: SV-31 GPS Coordinates: Lat. Long. Date: 7/1/2008 Time: Implant Type: permanent semi-permanent temporary Install. Method: Geoprobe Slambar Other: AMS GVP Kit Implant Depth: 48 in Weather Conditions: Sunny 80 F Other pertinent observations: Attempted 20+ installation locations; continuous refusal between 24" - 36". At last attempt refusal obtained at 48"; set point.
Well ID: SV-31 GPS Coordinates: Lat. Long. Date: 7/1/2008 Time: Implant Type: permanent semi-permanent temporary Install. Method: Geoprobe Slambar Other: AMS GVP Kit Implant Depth: 48 in Weather Conditions: Sunny 80 F Other pertinent observations: Attempted 20+ installation locations; continuous refusal between 24" - 36". At last attempt refusal obtained at 48"; set point.
Well ID: SV-31 GPS Coordinates: Lat. Long. Date: 7/1/2008 Time: Implant Type: permanent semi-permanent temporary Install. Method: Geoprobe Slambar Other: AMS GVP Kit Implant Depth: 48 in Weather Conditions: Sunny 80 F Other pertinent observations: Attempted 20+ installation locations; continuous refusal between 24" - 36". At last attempt refusal obtained at 48"; set point.
Date: 7/1/2008 Time: Implant Type: permanent semi-permanent temporary Install. Method: Geoprobe Slambar Other: AMS GVP Kit Implant Depth: 48 in Weather Conditions: Sunny 80 F Other pertinent observations: Attempted 20+ installation locations; continuous refusal between 24" - 36". At last attempt refusal obtained at 48"; set point.
Install. Method: Geoprobe Slambar Other: AMS GVP Kit Implant Depth: 48 in Weather Conditions: Sunny 80 F Other pertinent observations: Attempted 20+ installation locations; continuous refusal between 24" - 36". At last attempt refusal obtained at 48"; set point.
Implant Depth: 48 in Weather Conditions: Sunny 80 F Other pertinent observations: Attempted 20+ installation locations; continuous refusal between 24" - 36". At last attempt refusal obtained at 48"; set point.
Other pertinent observations: Attempted 20+ installation locations; continuous refusal between 24" - 36". At last attempt refusal obtained at 48"; set point.
Sampling Data:
Date: 7/2/2008 Time: 1325 Helium Trace Test Performed: Yes / No Passed
Purge Rate: 200ml/min Purge Time: 20 sec Volume Extracted: 66.6666667 _ ml # of implant volumes: 3.0
Canister ID: ISL00666 Flow Controller ID: 144886 / 7316910 Sample Time: 2 hr Purge Device: SKC Pump
Weather Conditions: Sunny 80 F
Other pertinent observations: 1L Summa Cannister used for sample collection
Initial Interim Interim Final
Sample Location Start Time (24hrs) Vacuum Time Vacuum Final Time (24hrs) Vacuum Comments
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
CV 21 1240 200
SV-31 1340 29.0 1427 10.0
SV-31 1437 19.0 SV-31 1550 4.0
SV-31 1550 4.0

PROJECT	Northern Proj	perty Assessme	nt						H&A FILE NO.	32077-043
LOCATION	200+ acre par	cel north of Ca	racus Drive be	etween Phillips	and Salt Road	ds			PROJECT MGR.	Michael Nickelsen
CLIENT	Xerox Corpor	ation - Eliott I	Ouffney						FIELD REP	EGL/TGB
Implant Installation D	ata:									
Well ID:	SV-32		GPS Coordi	nates:	4789767	Lat.	18 304129 Long.			
Date:	9/10/2008	-		Time:	920	=	Implant Type:	permanent	semi-permanent	temporary
Install. Method:	Geoprobe	Slamba	r	Other:				AMS GVP K	it .	
Implant Depth:										
Other pertinent observ	ations: Could	not use ham	ner drill - had	d to use the sla	am bar for ins	stallation				
Sampling Data:										
Date:	9/11/2008	-		Time:	0914	_	Helium Trace Test	Performed:	Yes / No <u>pass</u>	
Purge Rate:	200	ml/min		Time:		-	Volume Extracted:			volumes: 3.0
Canister ID:		Flo	ow Controll	er ID:	7313583		Sample Time:	2	hr Purge Device	ce: GilAir pump
Weather Conditions:	sunny, 60's									
Other pertinent observ	vations: 1L Su	mma Cannist	er used for sa	mple collectio	n					
		ı	I	ı	ı		1			
Sample Location	Start Time (24hrs)	Initial Vacuum	Interim Time	Interim Vacuum	Final Time	Final Vacuum			Comments	
	(241178)	(inHg)	(24hrs)	(inHg)	(24hrs)	(inHg)				
SV-32	0914	-29.5	1015	-17.5	1113	-5.0				

-	200+ acre par Xerox Corpor	perty Assessme cel north of Ca ation - Eliott E	puffney GPS Coordi				18 304257 Long. Implant Type:	permanent	H&A FILE NO. PROJECT MGR. FIELD REP	32077-043 Michael Nickelsen EGL/TGB
	Geoprobe 61 in	Slamba We	r ather Condi	Other: AMS tions: sunny.						
Other pertinent observa	tions: Could	not use hamm	ner drill - had	l to use the sla	am bar for ins	tallation				
Purge Rate: Canister ID: Weather Conditions: s	-	•	Purge 7		7310044	=	Helium Trace Test /olume Extracted: Sample Time:	83.3333333	Yes / No pass ml # of implant hr Purge Device	volumes: 3.0
Other pertinent observa	tions: 1L Su	mma Cannisto	er used for sa	mple collectio	on					
Sample Location	Start Time (24hrs)	Initial Vacuum (inHg)	Interim Time (24hrs)	Interim Vacuum (inHg)	Final Time (24hrs)	Final Vacuum (inHg)			Comments	
SV-33	848	-29.5	925	-22.0	1047	-5.0				