NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 | F: (585) 226-8139 www.dec.ny.gov

October 6, 2016

Mr. Mike McAlpin OBI, LLC 255 Hollenbeck Street Rochester, New York 14621

Dear Mr. McAlpin;

Re: OBI, LLC Site #828188

Supplemental RI Work Plan;

September 6, 2016

245-265 & 271 Hollenbeck Street and 50 Balfour Drive

City of Rochester, Monroe County

The New York State Departments of Environmental Conservation (NYSDEC) and Health (NYSDOH), collectively referred to as the Departments, have completed their review of the document entitled "Supplemental RI Work Plan" (the Work Plan) dated September 6, 2016 and prepared by Day Environmental, Inc for the OBI, LLC site in the City of Rochester, Monroe County. Based on the information and representations provided in the Work Plan, and in accordance with 6 NYCRR 375-1.6, the Departments have determined that the Work Plan substantially addresses the requirements of the Order-on-Consent. The Work Plan is hereby approved.

Thank you for your cooperation in this matter and please contact me at (585) 226-5357 if you have any questions.

Sincerely,

Frank Sowers, P.E.

Environmental Engineer 2

ec:

B. Schilling

J. Nealon

H. McLennan

W. Silkworth

J. Frazer

September 6, 2016

Frank Sowers, P.E. New York State Department of Environmental Conservation 6274 East Avon-Lima Road Avon, New York 14414-8519

RE: Supplemental RI Work Plan

OBI, LLC Site

245-265 & 271 Hollenbeck Street and 50 Balfour Drive, Rochester, New York

NYSDEC Site #828188 Site Index #B8-0815-13-10

Dear Mr. Sowers:

On behalf of OBI, LLC, Day Environmental, Inc. (DAY) is in the process of completing a Remedial Investigation / Feasibility Study (RI/FS) of the above referenced property (Site) as outlined in the RI/FS work plan dated August 13, 2015 and approved by the New York State Department of Environmental Conservation (NYSDEC) in a letter dated December 21, 2015 (Approval Letter). The Approval Letter included a requirement for preparation of a supplemental RI work plan to identify the monitoring wells and analytical testing proposed for a second round of groundwater sampling, provide a schedule for collection of the samples, and identify a schedule for submitting either the next supplemental RI work plan or the RI Report and Feasibility Study. This letter serves as the Supplemental RI work plan concerning the above-referenced project, as required by the Approval Letter.

The RI work completed to date included an initial round of groundwater sampling completed in May/June 2016. Specifically, 27 overburden and groundwater samples were collected and analyzed for Target Compound List (TCL) Volatile Organic Compounds (VOCs) and Tentatively Identified Compounds (TICs), TCL Semi-Volatile Organic Compounds (SVOCs) and TICs, Target Analyte List (TAL) Metals, Cyanide, Polychlorinated Biphenyls (PCBs) and Pesticides (Note: As approved by the NYSDEC project manager, the initial groundwater sample collected from MW-H was tested only for TCL VOCs and TICs due to lack of adequate groundwater volume). A Draft Site Plan (Figure 1) showing the locations of groundwater monitoring wells is included in Attachment A. The analytical laboratory test results detected chlorinated VOCs in the groundwater at the Site at concentrations exceeding NYSDEC TOGS 1.1.1 groundwater standards or guidance values. In addition, analytical laboratory test results detected some metals and one cyanide sample at concentrations exceeding TOGS 1.1.1 groundwater standards or guidance values. However, the majority of metals exceeding the TOGS 1.1.1 groundwater standards or guidance values appear attributable to naturally occurring conditions, and the remaining metals exceeding the TOGS 1.1.1 groundwater standards or guidance values are sporadic. Detected concentrations of SVOCs, PCBs, and pesticides were below the TOGS 1.1.1 groundwater standards or guidance values. Draft summary tables of the analytical results are provided in Attachment B.

Mr. Frank Sowers, P.E. September 6, 2016 Page 2

Based on the findings of the initial round of groundwater sampling, the supplemental RI second round of groundwater sampling will consist of the activities listed below.

Wells to be sampled: Each of the 20 overburden monitoring wells and the seven bedrock monitoring wells (refer to Table 1 and Site Plan)

Analytical Parameters:

TCL VOCs & TICs via United States Environmental Protection Agency (USEPA) Method 8260: Overburden monitoring wells MW-1, MW-3, MW-5, MW-6, MW-8, MW-9, MW-10, MW-12, MW-13, MW-16, MW-17, MW-18, MW-19, MW-B, MW-D, MW-G, MW-H, MW-M, MW-P, MW-Q and bedrock monitoring wells MW-1R, MW-3R, MW-7R, MW-10R, MW12-R, MW-13R, MW-19R.

TCL SVOC & TICs via USEPA Method 8270: Overburden monitoring wells MW-Q and MW-17.

TAL Metals via USEPA Method 6010 and 7470 and Cyanide via USEPA Method 9012: MW-Q.

Sampling Methods: Wells that are to be sampled for VOCs only will be sampled using passive diffusion bags (PDBs). PDBs will be filled with deionized water obtained from the analytical laboratory, deployed into the water column of the monitoring well, and retrieved a minimum of 14 days following deployment. To the extent possible, the center of the PDB will be located at a similar depth as the intake of the bladder pump established at each well during the low-flow sampling completed in May/June 2016. Wells that are to also be sampled for SVOCs and metals/cyanide will be collected using low-flow sampling techniques, as described in the Quality Assurance Project Plan (QAPP) of the RI work plan. Note: if an insufficient water column is present in a monitoring well to fully submerge the PDB, the NYSDEC Project Manager will be contacted to discuss possible alternate sampling methods.

Quality Assurance/Quality Control: Groundwater samples will be submitted to Spectrum Eurofins Analytical for laboratory testing. Results will be provided as NYSDEC Analytical Services Protocol (ASP) Category B data deliverables. As outlined in the RI Work plan, a Data Usability Report (DUSR) will be completed on the results, and validated results will be submitted to the NYSDEC in Equis Format.

Table 1: Sampling Plan for Supplemental RI Work Plan

Matrix	Sampling Location	Analytical Group	No. of Samples	Sampling Method
Overburden	MW-1, MW-3, MW-5,	VOCs	18	PDBs
Groundwater	MW-6, MW-8, MW-9,			
	MW-10, MW-12, MW-13,			
	MW-16, MW-18, MW-19,			
	MW-B, MW-D, MW-G,			
	MW-H, MW-M, MW-P			
	MW-17	VOCs, SVOCs	1	Low-Flow
	MW-Q	VOCs, SVOCs,	1 + 1 field	Low-Flow
		Metals, cyanide	duplicate + 1	
			MS/MSD + 1	
			rinsate blank	
Bedrock	MW-1R, MW-3R, MW-	VOCs	7 + 1 field	PDBs
Groundwater	7R, MW-10R, MW12-R,		duplicate + 1	
	MW-13R, MW-19R		MS/MSD + 1	
			rinsate blank	

Schedule: Measurement of static water levels and installation of PDBs is anticipated for the week of September 12, 2016. Collection of the PDB groundwater samples and low-flow groundwater samples is anticipated for the week of September 26, 2016. Analytical laboratory results are expected the week of October 10, 2016. Delivery of the RI/FS Report is anticipated by November 21, 2016.

Very truly,

Day Environmental, Inc.

Heather mcLer

Heather M. McLennan

Scientist

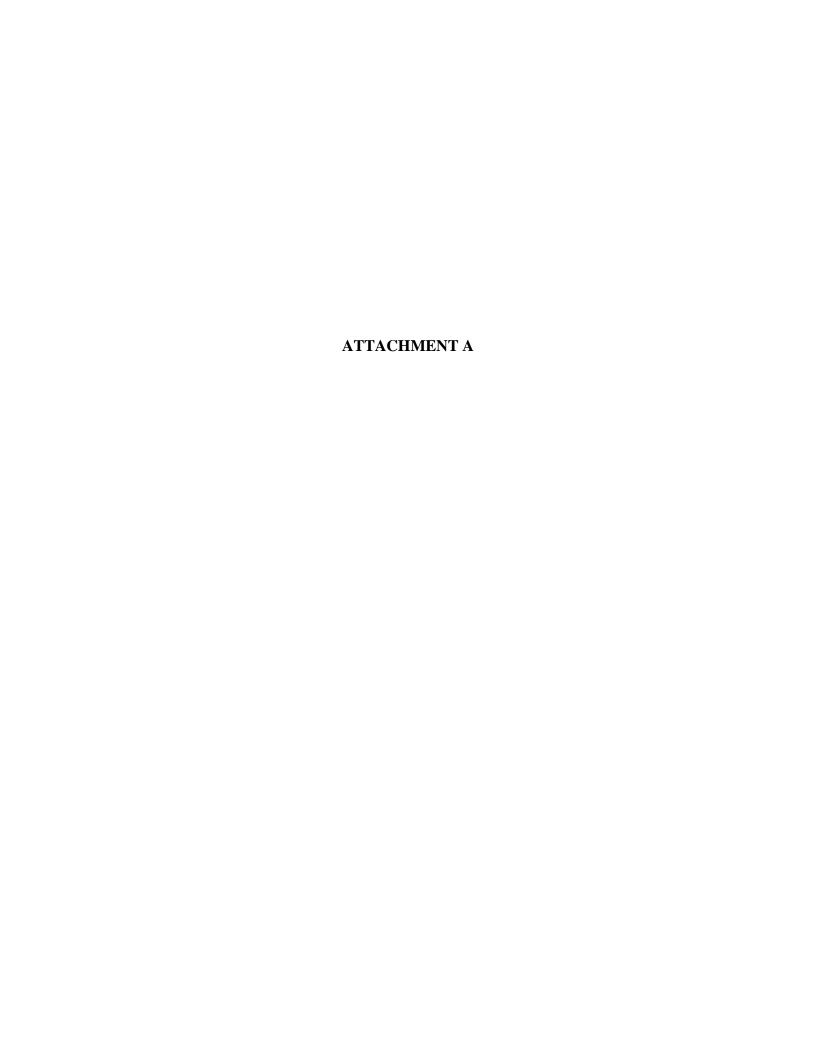
ec: Jacqueline E. Nealon (NYSDOH)

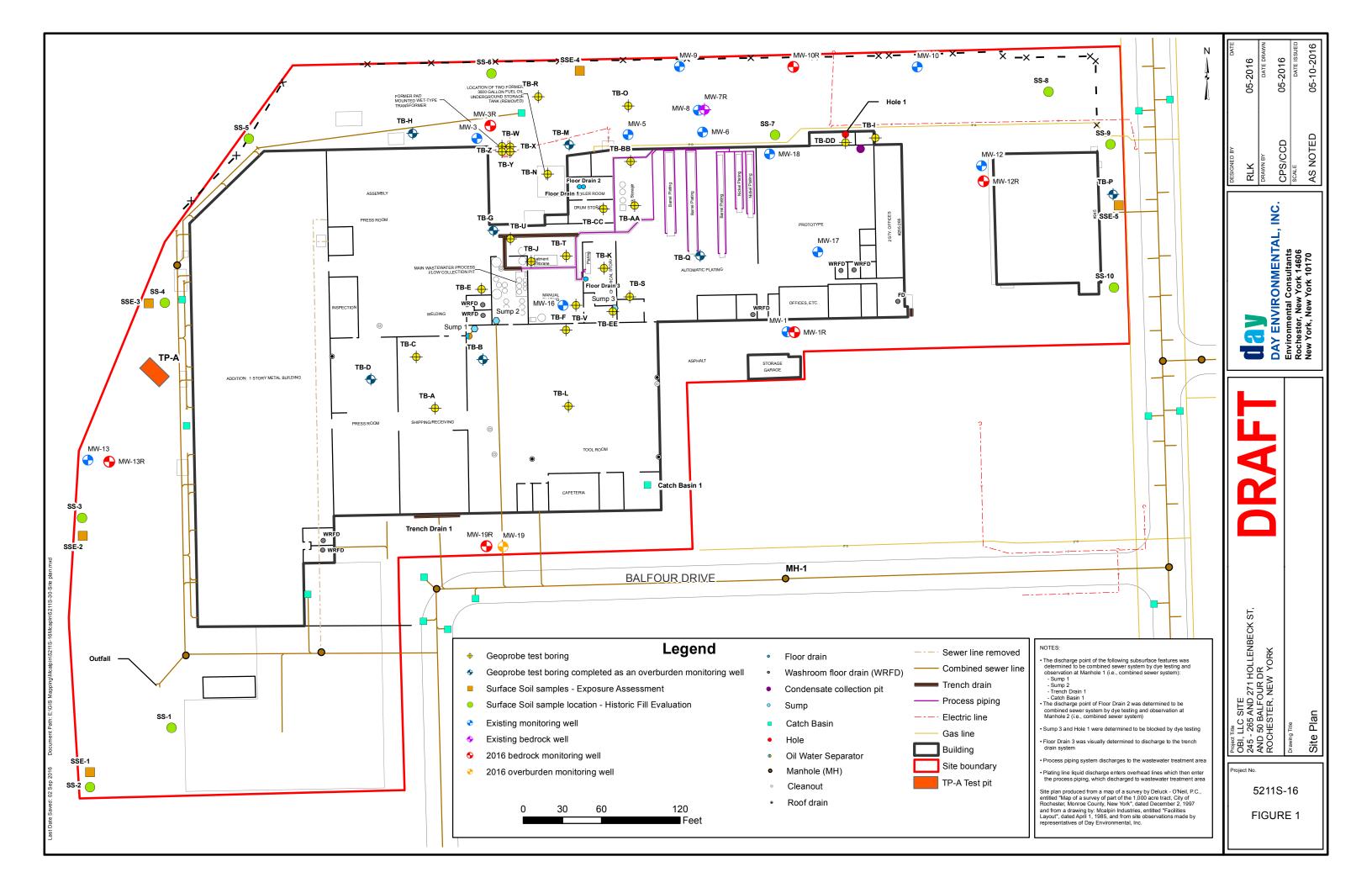
Justin Deming (NYSDOH)

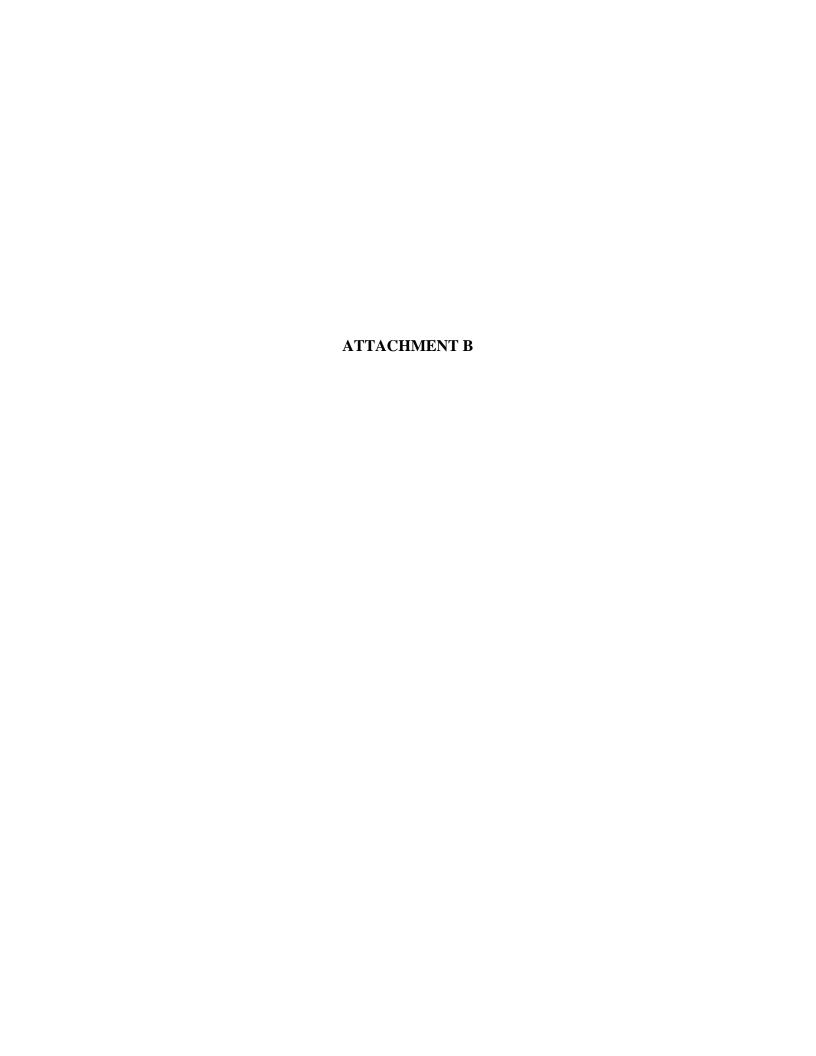
James Mahoney, Esq. (NYSDEC)

Mike McAlpin (OBI, LLC)

Raymond Kampff (DAY)


David Day (DAY)


Nate Simon (DAY)


Jeff Danzinger (DAY)

Attachment A: Draft Site Plan

Attachment B: Draft Analytical Summary Tables

DRAFT Table 15 Table 15 Concentration of Detected VOCs in Groundwater 245-265 Hollenbeck Street, 271 Hollenbeck Street, and 50 Balfour Drive Rochester, New York NYSDEC Site No.: 828188

		1										0										
												Sample ID Date										
	TOGS											Sample Time										
Compound	1.1.1	063-MW-8	065-MW-13	066-MW-19	069-MW-12	071-MW-10	074-MW-H	075-	MW-3 076-MW-N	1 077-MW-5	078-N		082-MW-6	084	MW-1 087-MV	/-Q 088-MW-D	08	9-MW-16	090-MW-18	8 092-MW-B	095-MW-17	102-MW-9
		5/23/2016	5/24/2016	5/24/2016	5/25/2016	5/25/2016	5/26/2016		/2016 5/26/2016		5/26/				7/2016 5/31/20			31/2016	5/31/2016		6/1/2016	6/13/2016
		16:25	13:00	16:00	12:10	14:40	10:55		:00 13:00	14:15	16:		9:50		3:00 11:3			15:00	11:20	10:55	12:45	11:00
Acetone	50	ND	ND	ND	ND	ND	77.7 D X	ND	ND	ND	ND	ND	ND	ND	4.7	J ND	ND		ND	14.8	5.8 J	ND
Benzene	1	ND	ND	ND	0.3 J	ND	1.2 JD X	ND	0.2 J	ND ND	ND	ND ND	ND	ND	0.8		ND		ND	ND ND	0.3 J	ND
Bromodichloromethane	NS	ND	ND	ND	ND .	ND	ND VI	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND		ND	ND ND	ND V	ND
2-Butanone (MEK)	50	ND	ND	ND	ND	ND	15.7 JD	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND		ND	ND ND	ND	ND
n-Butylbenzene	5	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	3	ND	ND		ND	ND ND	0.5 J	ND
sec-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	4.3	ND	ND		ND	ND	0.5 J	ND
tert-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	1	ND	ND		ND	ND	0.6 J	ND
Carbon disulfide	60	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	0.4			JD	ND	ND ND	0.3 J	ND
Chlorobenzene	5	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND.		ND	ND ND	ND V	ND
Chloroethane	5	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	3.3	ND	ND ND	ND	ND		ND	ND ND	ND	ND
Chloroform	7	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND.		ND	ND ND	ND ND	ND
Chloromethane	NS	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND.		ND	ND ND	ND ND	ND ND
2-Chlorotoluene	5	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND.		ND	ND ND	ND	ND
Dibromochloromethane	50	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND.		ND ND	ND ND	ND ND	ND ND
1,4-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	5			ND ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	0.3		ND		ND	ND ND	ND	ND
1.1-Dichloroethene	5	ND	ND	ND	ND	ND	ND ND	ND	0.4 J		ND	ND ND	ND	ND	ND ND	ND ND	ND		ND	ND ND	ND	ND
cis-1,2-Dichloroethene	5	2500 D X		13.3 X	27.8 D	X 1.1	350 D X	31	D X 43.4	X 40500 D X		D X 3	79.4 D X		D X 70	X 45.1	X 186					0.7 J
trans-1.2-Dichloroethene	5	16.5 JD X		0.4 J	1.2	ND ND	ND I	1.1	1.2	ND ND	2.2		ND I	0.7	J 1.5	1.2		D X		0.7 J	0.5 J	ND V
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2		ND		ND	ND ND	ND	ND
2-Hexanone (MBK)	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
Isopropylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	3.1	ND	ND		ND	ND	ND	ND
4-Isopropyltoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	0.7	J ND	ND		ND	ND	0.5 J	ND
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.6	0.6 J	ND		ND	ND	3.4	ND
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	2.9	ND ND	ND		ND	ND	0.4 J	ND
Tetrachloroethene	5	ND	ND	3.4	1	ND	ND	3.6	JD 1.4	ND	5.9	D X 18.5	X ND	6.4	D X ND	1.3	ND		ND	7.4 X	. ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6	J ND	ND		ND	ND	ND	ND
Trichloroethene	5	ND	18.8 X	20 X	18.6 D	X ND	7.4 D X	83.4	D X 82	X 255 JD X	116	D X 8.8	X 1.9	83.4	D X 4.1	86 D	X 286	D X	10 JD	X 85.6 X	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6	J 0.6 J	ND		ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4	J 0.5 J	ND		ND	ND	ND	ND
Vinyl chloride	2	1900 D X	ND	ND	105 D	X 4.5	X 4.2 JD X	1.6	21.8	X 2220 D X	ND	ND	135 D X	ND	13.7	X ND	23.4	D X	1100 D	X ND	48.3 X	45.3 X
m,p-Xylene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5	ND	ND		ND	ND	ND	ND
o-Xylene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5	ND	ND		ND	ND	ND	ND
Tetrahydrofuran	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.3	JD	ND	ND	ND	ND
Tert-Butanol / butyl alcohol	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
Total Xylenes	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.9	J ND	ND		ND	ND	ND	ND
Methyl acetate	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
Methylcyclohexane	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.4	ND	ND		ND	ND	ND	ND
Ethanol	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	69.1 J	ND	ND
Total VOCs	NS	4416.5	26.3	37.1	153.9	5.6	456.2	12	0.7 150.4	42975	16:	1.9 30.3	219.6	1	16 125.	136.8		517.7	1489	210.8	64.9	46
TICs																						1
Total TICs	NS	0	0	0	0	0	0		0 0	0	(0	0		0 118.	0		0	0	0	70	ND
Total VOCs and TICs	NS	4416.5	26.3	37.1	153.9	5.6	456.2	12	0.7 150.4	42975	16:	1.9 30.3	219.6	1	.16 243.	136.8		517.7	1489	210.8	134.9	46

Notes
Concentration in µg/L or parts per billion (ppb)
TOGS 1.1.1 = Groundwater Standard or Guidance Value referenced in NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.
NS = No Standard Available
NA = Not Applicable
SVOCs = Semi-Volatile Organic Compounds
X = Exceeds Groundwater Standard of Guidance Value
J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration
D = Data reported from a dilution
ND = Not detected above method detection limit

Day Environmental, Inc. OBI.5211S-16

DRAFT Table 16

Summary of Detected VOCs in Bedrock Groundwater Samples 245-265 Hollenbeck Street, 271 Hollenbeck Street, and 50 Balfour Drive

Rochester, New York

						Rochester, Ne												
						NYSDEC Site No	. 828188	S	amp	ole ID								
									Da	ite								
Compound	TOGS							Saı	mple	e Time								
Compound	1.1.1	062-N	/W-7R	064-N	1W-13R	067-MW-19R	068-M	W-12R		070-MW-10	R	072-N	/W-3F	₹	073-DUP5	083-N	/IW-1F	₹
		5/23	/2016	5/24	/2016	5/24/2016	5/25	/2016		5/25/2016		5/26	/2016		5/26/2016	5/27	/2016	
		16	5:26	12	2:30	16:40	12	:00		13:30		8:	:55		8:55	12	2:55	
Acetone	50	ND		ND		ND	ND			ND		ND			ND	ND		
Benzene	1	ND		ND		ND	ND			ND		ND			ND	ND		
Bromodichloromethane	NS	ND		ND		ND	ND			ND		ND			ND	ND		
2-Butanone (MEK)	50	ND		ND		ND	ND			ND		ND			ND	ND		
n-Butylbenzene	5	ND		ND		ND	ND			ND		ND			ND	ND		
sec-Butylbenzene	5	ND		ND		ND	ND			ND		ND			ND	ND		+
tert-Butylbenzene	5	ND		ND		ND	ND			ND		ND			ND	ND		+
Carbon disulfide	60	ND		ND		ND	ND			ND		ND			ND	ND		\vdash
Chlorobenzene	5	ND		ND		ND	ND			ND		ND			ND	ND		\vdash
Chloroethane	5	ND		ND	+	ND ND	ND			ND		ND	1		ND ND	ND	1	+-
Chloroform	7	ND		ND ND	+ +	ND ND	ND			ND		ND	1		ND ND	ND	1	+-
Chloromethane	NS	ND		ND	+ +	ND ND	ND			ND		ND	1		ND ND	ND	1	+-
2-Chlorotoluene	5	ND		ND		ND	ND			ND		ND			ND ND	ND		+-
Dibromochloromethane	50	ND		ND		ND	ND			ND		ND			ND	ND		\vdash
1,4-Dichlorobenzene	3	ND		ND		ND	ND			ND		ND			ND ND	ND		+-
1.1-Dichloroethane	5	ND		ND		ND	ND			ND		ND			ND ND	ND		+-
1,1-Dichloroethene	0.07	2	JD X	ND		ND	ND			ND		ND			ND	ND		\vdash
cis-1,2-Dichloroethene	5	290	D X	2		0.4 J	ND			74.8 D	Х	38.2	D	Х	36.5 D X	8.7		Х
trans-1,2-Dichloroethene	5	ND		ND		ND V	ND			1.8 JD		ND			1.7 JD	ND		$\stackrel{\sim}{\vdash}$
Ethylbenzene	5	ND		ND		ND	ND			ND 0D		ND			ND 0D	ND		+-
2-Hexanone (MBK)	50	ND		ND		ND	ND			ND		ND			ND	ND		\vdash
Isopropylbenzene	5	ND		ND		ND	ND			ND		ND			ND	ND		\vdash
4-Isopropyltoluene	5	ND		ND		ND	ND			ND		ND			ND	ND		\vdash
Naphthalene	10	ND		ND		ND	ND			ND		ND			ND	ND		\vdash
n-Propylbenzene	5	ND		ND		ND	ND			ND		ND			ND	ND		+
Tetrachloroethene	5	ND		0.7	J	2.7	ND			ND		5	D		3.8 JD	0.7	J	\vdash
Toluene	5	ND		0.4	J	0.4 J	ND			ND		ND			ND 05	ND		\vdash
Trichloroethene	5	156	D X	1.2	-	1.3	ND			3.6 JD		119	D	Х	115 D X	10.9		Х
1,2,4-Trimethylbenzene	5	ND		ND		ND ND	ND			ND 0D		ND			ND X	ND		 ^
1,3,5-Trimethylbenzene	5	ND		ND		ND	ND			ND		ND			ND	ND		\vdash
Vinyl chloride	2	60.4	D X	ND		ND	ND			96.6 D	Х	ND			ND	ND		\vdash
m,p-Xylene	5	ND	-	0.3	J	0.4 J	ND			ND D		ND			ND	ND		+
o-Xylene	5	ND		ND		ND V	ND			ND		ND			ND	ND		\vdash
Tetrahydrofuran	NS	ND		ND		ND	ND			ND		ND			ND	ND		+-
Tert-Butanol / butyl alcohol	NS	ND		ND		ND	ND			ND		ND			ND	ND		<u> </u>
Total Xylenes	NS	ND		0.3	J	0.4 J	ND			ND		ND			ND	ND		t
Methyl acetate	NS	ND		ND	+ + +	ND V	ND			ND		ND			ND ND	ND		
Methylcyclohexane	NS	ND		ND	+ +	ND ND	ND			ND		ND	1		ND ND	ND	1	
Ethanol	NS	ND		ND		ND ND	ND			ND		ND			ND ND	ND		+
Total VOCs	NS		08.4		1.9	5.6		0	-	176.8	1		2.2	I	157		0.3	<u> —</u>
TICs	143	30	70.7	4	т. Ј	3.0				170.8		10			13/		J.J	
Total TICs	NS		0		0	0		0	T	0			0		0		0	
Total VOCs and TICs	NS NS		08.4		1.9	5.6		0		176.8			2.2		157		0.3	
TOTAL VOUS AND TIUS	IND	50	0.4	4	+.9	٥.٥		U		1/0.8		16	ız.Z		13/	<u> </u>	J.3	

Notes

Concentration in µg/L or parts per billion (ppb)

TOGS 1.1.1 = Groundwater Standard or Guidance Value referenced in NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

NS = No Standard Available

NA = Not Applicable

SVOCs = Semi-Volatile Organic Compounds

X = Exceeds Groundwater Standard of Guidance Value

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

D = Data reported from a dilution

Table 17

Summary of Detected SVOCs in Overburden Groundwater Samples 245-265 Hollenbeck Street, 271 Hollenbeck Street, and 50 Balfour Drive Rochester, New York

NYSDEC Site No.: 828188

						Sam	nple ID				
						Samp	ole Date				
Campanad	TOGS					Samp	ole Time				
Compound	1.1.1	063-MW-8	065-MW-13	066-MW-19	069-MW-12	071-MW-10	075-MW-3	076-MW-M	077-MW-5	078-MW-G	081-MW-P
		5/23/2016	5/24/2016	5/24/2016	5/25/2016	5/25/2016	5/26/2016	5/26/2016	5/26/2016	5/26/2016	5/27/2016
		16:25	13:00	16:00	12:10	14:40	11:00	13:00	14:15	16:05	11:30
Acenaphthene	5.3	ND									
4-Chloro-3-methylphenol	NS	ND									
Dibenzofuran	NS	ND									
Fluorene	50	ND									
3 & 4-Methylphenol	NS	ND									
Phenanthrene	50	ND									
1-Methylnaphthalene	NS	ND									
Total SVOCs	NS	0	0	0	0	0	0	0	0	0	0
TICS	-							<u> </u>		•	
Total TICs	NS	0	0	0	0	0	0	0	12	0	0
Total SVOCs & TICs	NS	0	0	0	0	0	0	0	12	0	0

						Sam	ple ID				
						Samp	ole Date				
Commound	TOGS					Samp	ole Time				
Compound	1.1.1	082-MW-6	084-MW-1	086-DUP6	087-MW-Q	088-MW-D	089-MW-16	090-MW-18	092-MW-B	095-MW-17	102-MW-9
		5/27/2016	5/27/2016	5/31/2016	5/31/2016	5/31/2016	5/31/2016	5/31/2016	6/1/2016	6/1/2016	6/13/2016
		9:50	13:00	11:20	11:30	14:40	15:00	11:20	10:55	12:45	11:00
Acenaphthene	5.3	ND	ND	1.28 J	ND						
4-Chloro-3-methylphenol	NS	ND	ND	ND	4.87 J	ND	ND	ND	ND	ND	ND
Dibenzofuran	NS	ND	ND	ND	1.75 J	ND	ND	ND	ND	ND	
Fluorene	50	ND	ND	ND	3 J	ND	ND	ND	ND	2.01 J	ND
3 & 4-Methylphenol	NS	ND	ND	ND	67.5	ND	ND	ND	ND	ND	ND
Phenanthrene	50	ND	ND	ND	3.43 J	ND	ND	ND	ND	2.32 J	ND
1-Methylnaphthalene	NS	ND	ND	ND	14.9	ND	ND	ND	ND	7.85	
Total SVOCs	NS	0	0	0	95.45	0	0	0	0	17.12	0
TICS	_										_
Total TICs	NS	0	0	0	151	0	0	0	0	144	
Total SVOCs & TICs	NS	0	0	0	246.45	0	0	0	0	161.12	

<u>Notes</u>

Concentration in µg/L or parts per billion (ppb)

TOGS 1.1.1 = Groundwater Standard or Guidance Value referenced in NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000. NS = No Standard Available

SVOCs = Semi-Volatile Organic Compounds

X = Exceeds Groundwater Standard of Guidance Value

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

Table 18

Summary of Detected SVOCs in Bedrock Groundwater Samples 245-265 Hollenbeck Street, 271 Hollenbeck Street, and 50 Balfour Drive

Rochester, New York

NYSDEC Site No. 828188

				1113DEC SILE					
					Sam	ple ID			
					Samp	le Date			
Commonad	TOGS				Samp	le Time			
Compound	1.1.1	062-MW-7R	064-MW-13R	067-MW-19R	068-MW-12R	070-MW-10R	072-MW-3R	073-DUP5	083-MW-1R
		5/23/2016	5/24/2016	5/24/2016	5/25/2016	5/25/2016	5/26/2016	5/26/2016	5/27/2016
		16:26	12:30	16:40	12:00	13:30	8:55	8:55	12:55
Acenaphthene	5.3	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	NS	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	NS	ND	ND	ND	ND	ND	ND	ND	ND
3 & 4-Methylphenol	NS	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	NS	ND	ND	ND	ND	ND	ND	ND	ND
Total SVOCs	NS	0	0	0	0	0	0	0	0
TICS									
Total TICs	NS	0	0	0	0	0	0	0	0
Total SVOCs & TICs	NS	0	0	0	0	0	0	0	0

<u>Notes</u>

Concentration in µg/L or parts per billion (ppb)

TOGS 1.1.1 = Groundwater Standard or Guidance Value referenced in NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

NS = No Standard Available

SVOCs = Semi-Volatile Organic Compounds

X = Exceeds Groundwater Standard of Guidance Value

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

DRAFT Table 19

Summary of Detected Metals and Cyanide in Overburden Groundwater Samples 245-265 Hollenbeck Street, 271 Hollenbeck Street, and 50 Balfour Drive Rochester, New York

NYSDEC Site No.: 828188

														San	ple ID														\neg
														Samp	le Date														
Element	TOGS													Samp	le Time														
Element	1.1.1	06	3-MW-8		06	5-MW-13		06	6-MW-19	06	9-MW-12	07	1-MW-10		075	-MW-3		076	6-MW-M		07	77-MW-5		078	B-MW-G		081	1-MW-P	
			23/2016		5/	24/2016		5/	24/2016	5	/25/2016	5/	25/2016		5/26	6/2016		5/2	26/2016		5/	26/2016		5/2	6/2016		5/2	27/2016	
			16:25			13:00			16:00		12:10		14:40		1	1:00			13:00			14:15			16:05		1	11:30	
Aluminum	NS	0.0192	J		ND			ND		ND		ND			ND			0.05			0.0298	J		ND			ND		
Antimony	0.003	ND			ND			ND		ND		ND			ND			ND			ND			ND			ND		
Arsenic	0.025	0.0033	J		ND			ND		ND		0.0129			ND			ND			ND			ND			ND		
Barium	1	0.454			0.0417			0.15		0.412		0.194			0.138			0.188			0.198			0.113			0.0695		
Beryllium	0.003	ND			ND			ND		ND		ND			ND			ND			ND			ND			ND		
Cadmium	0.005	0.0002	J		0.0009	J		ND		ND		ND			ND			ND			ND			ND			ND		
Calcium	NS	124			123			149		208		180			146			132			136			148			166		
Chromium	0.05	0.0068			ND			ND		0.0373		0.0317			ND			0.0047	J		0.0028	J		0.0068	J		0.0019	J	
Cobalt	NS	0.0014	J		0.0008	J		0.0013	J	0.0334		0.011			0.0034	J		0.0031	J		0.0043	J		0.0024	J		ND		
Copper	0.2	0.0024	J		0.0018	J		0.0032	J	0.0072	J	0.0059	J		ND			ND			ND			ND			ND		
Iron	0.3	1.67	R06	Х	0.0328	R06, J		0.0114	R06, J	0.749	X	14.3		Χ	0.158			1.18		Х	1.41		Х	0.0644			0.0225	J	
Lead	0.025	ND			ND			ND		ND		ND			ND			ND			ND			ND			ND		
Magnesium	35	21.8			42.5		Х	44.3	>	60.1	X	48.8		Χ	45		Χ	34.6			14.9			48.9		Х	57.5		Х
Manganese	0.3	0.123			0.0785			0.119		1.47	X	0.61		Χ	0.0957			0.216			0.287			0.0474			0.0185		
Mercury	0.0007	ND			ND			ND		ND		ND			ND			ND			ND			ND			ND		
Nickel	0.1	0.0102			0.0022	J		0.0048	J	0.0811		0.0305			0.0279			0.0345			0.0221			0.0427			0.0044	J	
Potassium	NS	85.3			2.73			5.33		92.4		9.96			7.37			9.86			34.3			7.02			7.68		
Selenium	0.01	ND			ND			0.0038	J	ND		ND			ND			ND			ND			ND			ND		
Silver	0.05	ND			ND			ND		ND		ND			ND			ND			ND			ND			ND		
Sodium	20	108		X	32.3		Х	454	GS1, D	332	X	110		Х	193		Х	177		Х	113		Х	220		Х	228		Х
Thallium	0.0005	ND			ND			ND		ND		ND			ND			ND			ND			ND			ND		
Vanadium	NS	0.0009	J		ND			ND		ND		ND			ND			0.0024	J		ND			ND			ND		
Zinc	2	0.107			0.0084			0.0035	J	0.0275		ND	R06		0.0495	R06		0.0122	R06, J		0.0742	R06		0.0985	R06		ND		
Cyanide (total)	0.2	ND			ND			ND		ND		ND			ND			0.0074			ND			ND			ND		

															San	nple ID												
															Samı	ole Date												
Element	TOGS														Samp	ole Time												
Liement	1.1.1	08	2-MW-6		084	4-MW-1		08	6-DUP6		80	7-MW-Q		80	88-MW-D	08	89-MW-16		0:	90-MW-18		092	-MW-B	09	5-MW-17	10	2-MW-9	
			27/2016			27/2016			31/2016		5/	31/2016			/31/2016	5,	/31/2016			5/31/2016		6/1	/2016	(6/1/2016		13/2016	
			9:50		1	13:00			11:20			11:30			14:40		15:00			11:20		<u>. </u>	0:55		12:45		11:00	
Aluminum	NS	ND			ND			ND			0.149			ND		ND			ND			ND		ND		ND		
Antimony	0.003	0.0037	J	Х	ND			0.0017	J		0.0012	J		ND		0.002	J		ND			ND		ND		ND		
Arsenic	0.025	0.03		Х	ND			0.006			0.0046			0.0017	J	0.0029	J		0.0069			ND		0.0122		0.0284		X
Barium	1	0.0765			0.11			0.273			0.0289			0.0566		0.116			0.257			0.105		1.03	X	0.345		
Beryllium	0.003	ND			ND			0.0003	J		ND			ND		ND			ND			0.0004	J	ND		ND		
Cadmium	0.005	ND			ND			0.0003	J		ND			ND		0.0004	J		ND			0.0003	J	0.0008	J	ND		
Calcium	NS	336			159			203			5.46			159		150			198			144		283	GS1, D	145		
Chromium	0.05	0.0026	J		0.0023	J		0.0018	J		0.0459			0.003	J	0.0012	J		0.0016	J		0.0014	J	0.0044	J	ND		
Cobalt	NS	0.003	J		0.001	J		0.0007	J		0.005			0.001	J	0.0063			0.0006	J		0.0016	J	0.0023	J	ND		
Copper	0.2	0.0194			ND			0.0034	J		0.0046	J		0.0017	J	0.0014	J		0.0036	J		0.0027	J	0.002	J	ND		
ron	0.3	0.104			0.0217	J		1.79		Х	0.656		Х	0.194		0.0499			1.68		Х	0.0108	J	8.44	X	8.18		X
ead	0.025	ND			ND			ND			0.0033	J		ND		ND			ND			ND		ND		ND		
/lagnesium	35	56.2		Х	54.1		Х	36.2	R06	Х	5.94			56.8	3S1, R06, [X	52	3S1, R06	[X	34.9	R06		42.9		89.4	GS1, D X	39.5		X
Manganese	0.3	0.642		Х	0.0218			0.319		Х	0.0092	R06		0.0532		0.155			0.318		Х	0.0154		0.105		0.225		
Mercury	0.0007	ND			ND			ND			ND			ND		ND			ND			ND		ND		ND		
Nickel	0.1	0.147		Х	0.0076	J		0.05		Х	0.0369			0.0042	J	0.228		Х	0.0491			0.0056		0.0752		ND		
Potassium	NS	343			7.81			121			14.2			13.1		24.6			118			6.12		160		5.28		
Selenium	0.01	ND			ND			ND			0.0044	J		ND		ND			ND			0.0038	J	ND		ND		
Silver	0.05	ND			ND			ND			ND			ND		ND			ND			ND		ND		ND		
Sodium	20	193		X	277		Х	114		Х	740	GS1, D	Х	241	GS1, D X	282	GS1, D	Х	108		X	207	>	560	GS1, D X	145		X
Thallium	0.0005	ND			ND			ND			ND			ND		ND			ND			ND		ND		ND		
/anadium	NS	0.0025	J		ND			0.0008	J		0.0362			0.0009	J	0.0009	J		ND			0.0008	J	0.0034	J	ND		
Zinc	2	1.49			0.0132			0.433		Х	0.0077			0.0059		0.0827			0.422			0.0045	J	0.0033	J	ND		
Cyanide (total)	0.2	ND			ND			ND			0.738	GS1, D	Χ	ND		ND			ND			ND		0.00985		ND		

Notes

Concentration in mg/L or parts per million (ppm)

TOGS 1.1.1 = Groundwater Standard or Guidance Value referenced in NYSDEC Technical and Operational Operational Guidance Series (TOGS) 1.1.1 dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

NS = No Standard Available

- X = Exceeds Groundwater Standard of Guidance Value
- J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

D = Data reported from a dilution

R06 = Method Reporting Limit raised to correlate to batch QC reporting limits

GS1 = Sample dilution required for high concentration of target analytes to be within the instrument calibration range

ND = Not detected above method detection limit

Day Environmental, Inc. 5211S-16 (OBI)

Table 20

Summary of Detected Metals and Cyanide in Bedrock Groundwater Samples 245-265 Hollenbeck Street, 271 Hollenbeck Street, and 50 Balfour Drive Rochester, New York

NYSDEC Site No. 828188

											NYSDEC SIL	140. 02010												
												5	Sample	e ID										
												Sa	ample	Date										
Element	TOGS											Sa	mple	Time										
Element	1.1.1	062	2-MW-7R		064	-MW-13R		067	'-MW-19R		068	8-MW-12R		070	-MW-10R		072	2-MW-3R		073	B-DUP5		083-MV	V-1R
		5/	23/2016		5/	24/2016		5/	24/2016		5/	25/2016		5/	25/2016		5/:	26/2016		5/2	6/2016		5/27/2	016
			16:26			12:30			16:40			12:00			13:30			8:55			8:55		12:5	5
Aluminum	NS	0.0916			0.199			ND			0.05			0.133			0.0828			0.0883			ND	
Antimony	0.003	ND			ND			ND			ND			0.0031	J	Х	ND			ND			ND	
Arsenic	0.025	ND			ND			0.0033	J		ND			0.0045	J		ND			ND			ND	
Barium	1	0.068			0.016			0.0818			0.074			0.194			0.133			0.144			0.0466	
Beryllium	0.003	ND			ND			ND			ND			ND			ND			ND			ND	
Cadmium	0.005	0.0003	J		0.0012	J		ND			ND			ND			ND			ND			ND	
Calcium	NS	175			140			240			88.8			150			146			147			175	
Chromium	0.05	0.001	J		0.0007	J		0.0008	J		0.0017	J		0.002	J		0.0016	J		0.0019	J		ND	
Cobalt	NS	0.001	J		0.0005	J		0.0003	J		ND			ND			0.0023	J		0.0025	J		ND	
Copper	0.2	0.0026	J		0.0028	J		0.0022	J		ND			0.0029	J		ND			ND			ND	
Iron	0.3	3.98	R06	Х	26.8	R06	Χ	2.27	R06	Х	6.09		Χ	5.15		Х	2.82		Χ	6.38		Х	14.6	X
Lead	0.025	ND			ND			ND			ND			ND			ND			ND			ND	
Magnesium	35	64.8	GS1, D	Х	56.2	GS1, D	Χ	83.2	GS1, D	Х	39.2		Χ	55.4		Х	48.5		Х	48.5		Х	72.2	X
Manganese	0.3	0.086			0.132			0.0398			0.0544			0.0587			0.0546			0.0557			0.0727	
Nickel	0.1	0.0212			0.0098			0.006			ND			0.0053	J		0.0367			0.037			0.0051	J
Potassium	NS	13.5			22.6			33.1			21.9			8.16			7.32			7.51			20	
Selenium	0.01	ND			ND			ND			ND			ND			ND			ND			ND	
Sodium	20	167		X	310	GS1, D	Χ	550	GS1, D	Χ	365		Χ	172		Χ	209		Х	222		Х	196	X
Vanadium	NS	0.0008	J		0.0016	J		ND			ND			0.0017	J		0.0016	J		ND			ND	
Zinc	2	0.0747			0.02			0.0025	J		ND	R06		0.006	R06, J		0.0747	R06		0.0872	R06		ND	
Cyanide (total)	0.2	ND			ND			ND			ND			ND			ND			ND			ND	

Notes

Concentration in mg/L or parts per million (ppm)

TOGS 1.1.1 = Groundwater Standard or Guidance Value referenced in NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 dated June 1998 as amended by the NYSDEC's supplemental table dated April 2000.

NS = No Standard Available

X = Exceeds Groundwater Standard of Guidance Value

J = Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

D = Data reported from a dilution

R06 = Method Reporting Limit raised to correlate to batch QC reporting limits

GS1 = Sample dilution required for high concentration of target analytes to be within the instrument calibration range

DRAFT Table 21

Summary of PCBs and Pesticides in Overburden Groundwater Samples 245-265 Hollenbeck Street, 271 Hollenbeck Street, and 50 Balfour Drive Rochester, New York NYSDEC Site No. 828188

										Sar	nple ID						
Compound	TOGS									Sam	ole Date						
Compound	1.1.1	063-	W-8	065-N	/IW-13	066-N	IW-19	069-1	MW-12	071-MW-10	075-MW-3	076-MW-N	/	077-MW-5	078-MW-G	 081-M	W-P
		5/23	2016	5/24	/2016	5/24/	2016	5/25	/2016	5/25/2016	5/26/2016	5/26/2016	;	5/26/2016	5/26/2016	5/27/2	2016
Total PCBs	NS	ND		ND		ND		ND		ND	ND	ND		ND	ND	ND	
Total Pesticides	NA	ND		ND		ND		ND		ND	ND	ND		ND	ND	ND	

						Sam	ole ID										
Compound	TOGS					Sampl	e Date										
Compound	1.1.1	082-MW-6	W-6 084-MW-1 086-DUP6 087-MW-Q 088-MW-D 089-MW-16 090-MW-18 092-MW-B 095-MW-17 102-MW-9														
		5/27/2016	5/27/2016	5/31/2016	5/31/2016	5/31/2016	5/31/2016	5/31/2016	6/1/2016	6/1/2016	6/13/2016						
Total PCBs	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Total Pesticides	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						

Notes:

PCBs = Polychlorinated Biphenyls

NS = No Standard

ND = Not Detected

NA = Not Applicable

Day Environmental, Inc. 5211S-16

Table 22

Summary of PCBs and Pesticides in Bedrock Groundwater Samples 245-265 Hollenbeck Street, 271 Hollenbeck Street, and 50 Balfour Drive Rochester, New York NYSDEC Site No. 828188

										Samp	le ID								
Compound	TOGS								S	ampl	e Date								
Compound	1.1.1	062-N	MW-7R 064-MW-13R 067-MW-19R 068-MW-12R 070-MW-10R 072-MW-3R 073-DUP5 083-MW-1R															W-1R	
		5/23	/2016	5/24	2016	5/2	24/2016	5/25/	2016		5/25/2016		5/26/	2016	5/26	/2016		5/27/	2016
Total PCBs	NS	ND		ND		ND		ND			ND		ND		ND			ND	
Total Pesticides	NA	ND		ND		ND		ND			ND		ND		ND			ND	

Notes:

PCBs = Polychlorinated Biphenyls

NS = No Standard

ND = Not Detected

NA = Not Applicable

Day Environmental, Inc. 5211S-16