NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 I F: (585) 226-8139 www.dec.ny.gov

July 10, 2024

Richard Watt Ecology and Environment Engineering and Geology, P.C. 40 La Riviere Drive Suite 320 Buffalo, New York 14202

Re: Site Characterization Site Characterization Report Hawkeye Trade Center and Residences Site N°: 828220 Rochester (C), Monroe (C)

Dear Mr. Watt:

The New York State Department of Environmental Conservation (Department) and New York State Department of Health (NYSDOH) has completed a review of your Site Characterization Report (SCR) submitted on June 10, 2022, and revised on March 25, 2024, for the Hawkeye Trade Center and Residences Site (Site) located at 1405–1447 St. Paul Street, Rochester, New York 14621. Based on the information presented in the revised March 2024 SCR, the SCR is conditionally approved based on the clarifications and modifications presented below.

- Table 2: The Department understands that the soil cleanup objective (SCO) for Dibenzofuran is incorrect for the Commercial limit and the Protection of Groundwater limit. The correct SCO limit for Dibenzofuran is 350 parts per million (ppm) for Commercial use and 210 ppm for the Protection of Groundwater use. No soil samples exceeded the corrected SCO limits.
- 2) Table 2: The Department understands that the SCO for Cadmium is incorrect for the Protection of Groundwater limit. The correct SCO limit for Cadmium is 7.5 ppm for the Protection of Groundwater use. No soil samples exceeded the corrected SCO limit.

If you have any questions or concerns regarding this letter or need further assistance with the Site, please feel free to contact me at (585) 226-5349 or via email Joshua.Ramsey@dec.ny.gov.

Sincerely,

Artual J. Ramery

Joshua J. Ramsey Project Manager

ec: Starr O'Neil (MCHD) Justin Deming (NYSDOH) Harolyn Hood (NYSDOH) David Pratt (NYSDEC) Charlotte Theobald (NYSDEC) Site Characterization Report Hawkeye Trade Center and Residences Rochester, New York Site No. 828220

> May 2023 Revised March 2024

> > Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL REMEDIATION 625 Broadway, 12th Floor Albany, New York 12233-7013

Prepared by:

ECOLOGY AND ENVIRONMENT ENGINEERING AND GEOLOGY, P.C.

40 La Riviere Drive Blvd., Suite 320 Buffalo, New York 14202

©2024 Ecology and Environment Engineering and Geology, P.C.

able of Contents

Section

Page

1	Introduction1-1								
	1.1 Site Location and Description								
	1.2 Site History								
	1.3 Previous Investigations								
	1.3.1 2003 Phase I								
	1.3.2 2005 Phase II – Leader								
	1.3.3 2017 Phase II 1-5								
	1.4 Site Geology and Hydrogeology 1-6								
2	Site Characterization Activities2-1								
	2.1 Background Radiation Measurements								
	2.2 Soil Sampling Procedures and Analyses								
	2.3 Monitoring Well Installation								
	2.3.1 Monitoring Well Development								
	2.4 Groundwater Sampling Procedures and Analyses								
	2.5 Soil Vapor Sampling								
	2.6 Sewer Line Camera Survey								
	2.7 Decontamination Procedures								
	2.8 Quality Assurance/Quality Control								
3	Results								
-	3.1 Site Lithology								
	3.2 Sewer Line Survey Results								
	3.3 Analytical Results								
	3.3.1 Soil Results								
	3.3.2 Sediment Sample Results								
	3.3.3 Groundwater Results								
	3.3.4 Soil Vapor Results								
4	Discussion4-1								
	4.1 Summary								
	4.2 Recommendations								
5	References5-1								

Table of Contents (cont.)

Appendi	ix	Page
Α	Historical Documents	F-1
В	Soil Boring and Monitoring Well Logs	B-1
С	Groundwater Sampling Logs	C-1
D	Laboratory Reports	D-1
E	Data Usability Summary Reports	E-1

ist of Tables

Table

Page

1	Monitoring Well Data and Groundwater Elevations
2	Summary of Positive Analytical Results for Soil Samples
3	Thorium Results in Soil Samples
4	Summary of Positive Analytical Results for Groundwater Samples
5	Thorium Results in Groundwater Samples
6	Summary of Positive Analytical Results for Soil Gas Samples

ist of Figures

ist of Abbreviations and Acronyms

µg/kg	micrograms per kilogram
μg/L	micrograms per liter
$\mu g/m^3$	micrograms per cubic meter
AMSL	above mean sea level
ARAR	Applicable or Relevant and Appropriate Requirements
AST	aboveground storage tank
bgs	below ground surface
DCE	dichloroethene
DOE	United States Department of Energy
E & E	Ecology and Environment Engineering and Geology, P.C.
EPA	United States Environmental Protection Agency
LaBella	LaBella Associates, D.P.C.
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
MS/MSD	matrix spike/matrix spike duplicate
ng/L	nanograms per liter
NYSDEC	New York State Department of Environmental Conservation
РАН	polynuclear aromatic hydrocarbon
PCBs	polychlorinated biphenyls
pCi/g	picoCuries per gram
pCi/L	picoCuries per liter
PFAS	per- and polyfluoroalkyl substances
PFOS	perfluorooctanesulfonic acid
PID	photoionization detector
ppm	parts per million
PVC	polyvinyl chloride
RCRA	Resource Conservation and Recovery Act
RECs	recognized environmental conditions

List of Abbreviations and Acronyms (cont.)

SAP	Sampling and Analysis Plan
SCO	soil cleanup objective
SVOC	semivolatile organic compound
TAL	target analyte list
TCL	target compound list
TCE	trichloroethene
UST	underground storage tank
VISL	Vapor Intrusion Screening Level
VOC	volatile organic compound

1

Introduction

This Site Characterization report presents the results of activities conducted pursuant to Work Assignment D009807-19 by Ecology and Environment Engineering and Geology, P.C. (E & E) on behalf of the New York State Department of Environmental Conservation (NYSDEC), Division of Environmental Remediation, at the Hawkeye Trade Center and Residences (Site) to investigate potential impacts to environmental media. The scope of work, which was provided in the *Site Characterization Sampling and Analysis Plan* (SAP) (E & E 2021) was developed in response to the discovery of volatile organic compound (VOC) and metals-affected soil and groundwater at the Site during Phase II Site Assessments conducted by others in 2003 and 2017.

The primary elements of the site characterization work included:

- A camera inspection of accessible drains and piping leading to the former thorium settling pits and stormwater outfalls for potential leaks, breaks, or sediment source areas in the lines;
- Installation of soil borings and monitoring wells. Subsurface soil sampling was conducted to determine if contamination is present in soil;
- Sampling of new and existing monitoring wells to evaluate the extent of groundwater contamination at the site;
- Collection of a sediment sample from one manhole; and
- Collection of soil vapor samples near the north end of the property.

1.1 Site Location and Description

The Site is located at 1447 St. Paul Street in the city of Rochester, New York. The Site is comprised of eight buildings and two related parking lots located on 5 acres. Parking Lot No. 1 is in the southwest corner of the property west of Buildings 5 and 12A. Parking Lot No. 2 is in the northeastern quadrant of the property north of Building 11A (see Figure 1).

Other site features of note include four former thorium glass settling pits located in or near Buildings 5, 11, 12, and 12A, a former drywell of unknown purpose located west of Building 5 in Parking Lot No. 1, and the now-abandoned underground piping leading to these features. For the purposes of this report the former thorium settling pits have been numbered 1 through 4 (see Figure 1 and 1977 Underground Drainage Piping Map in Appendix A).

The Site is relatively flat and primarily developed by parking lots and buildings. Several small plant and grassy areas are located east of Building 6 and Parking Lot No. 2, and east and west of Building 5. The western edge of the property drops precipitously into the Genesee River gorge, along the edge of which lie several former stormwater outfalls and two of the four historical thorium settling pits.

1.2 Site History

Sanborn Fire Insurance Maps are provided in Appendix A. In 1892, a small part of the site was occupied by the Rochester Railway Company. By at least 1902, the site was occupied and operated by Kodak for the manufacture of glass lenses and optical equipment. Former buildings 1, 2, 3, 7, and 8 (demolished in 1999) occupied the location of Parking Lot No. 2 in the northern portion of the site and were operated by Rochester Photographic Products Company (also known as General Aristo Corporation in historical site documents). The southern portion of the site, in the area now occupied by Building 5, was historically occupied by a gasoline filling station and repair shops for the Rochester Transit Corporation and Rochester Railway Company.

Historical uses of the existing Site buildings are as follows:

- Building 4 Multi-floor. Powerhouse
- Building 5 Multi-floor. Offices, assembly (Floors 1 and 2), non-hazardous and hazardous waste storage (90-day; Floor 2), laboratory (Floor 7).
- Building 6 Multi-floor. Offices.
- Building 10 Multi-floor. Offices.
- Building 11 Multi-floor. Offices.
- Building 11A Single floor. Offices, paint booth, material storage and waste accumulation.
- Building 12 and 12A Multi-floor. Offices, clean room, maintenance/fabrication shops, photo processing.

1.3 Previous Investigations

1.3.1 2003 Phase I

In 2003, Leader Professional Services conducted a Phase I Environmental Site Assessment of the Hawkeye Trade Center and satellite parking lots (Leader 2003). The following recognized environmental conditions (RECs) were identified:

Building 4 USTs

Three former 20,000-gallon underground storage tanks (USTs) were located at Building 4 for storage of fuel oil. Contaminated soil and groundwater were discovered during their removal in 1989. Aside from removal of affected media within the excavation, no further remediation was required by NYSDEC.

Potential Thorium Residue

Thorium was used in the glass manufacturing process at the Hawkeye facility between the 1930's and 1980's, where thorium-contaminated dust and waste made its way into building cavities, some sewer drain pipes, air ducts, and portions of Genesee River gorge via outfalls from three of four onsite settling pits.

Thorium use required a license from the Nuclear Regulatory Commission, which was managed by the New York State Department of Labor. Upon completion of thorium use at the facility, Kodak terminated the license and cleaned up radioactivity to regulated levels in Buildings 5, 11A, 12, 12A and the courtyard between Buildings 4 and 12A, according to a 1993 Radiological Decommissioning Report.

Thorium Glass Settling Pits

Four former thorium glass settling pits were located at the site, west of Building 5 (thorium settling pit No. 1), adjacent the southwest corner of Building 12 (thorium settling pit No. 2), near the southwest corner of Building 12A (thorium settling pit No. 3), and inside the northwest corner of Building 11A (thorium settling pit No. 4); see Figure 1. These pits were designed to remove glass particulates and abrasive out of the wastewater stream. The pits were cleaned and backfilled either prior to or during the 1993 radiological decommissioning activities.

Thorium in Genesee River Gorge

Former thorium settling pits along the west side of building 12 and 12A were located immediately above the gorge, and in 1992 an investigation was initiated to determine if any thorium-containing glass residue had migrated offsite. Cleanup was conducted in 1993 after contamination related to a historical release of thorium was identified on the eastern side of the Genesee River gorge below the site.

Polychlorinated Biphenyl Contamination in Gorge

In 1991 a potential release of polychlorinated biphenyls (PCBs) and Resource Conservation and Recovery Act (RCRA) metals was identified in a stormwater discharge pipe west of Building 12 and in soil and rock along the Genesee River gorge slope. The discharge pipe was cleaned in 1991 or 1992 and the soil was sampled around several catch basins. No source of the PCBs was identified.

Drywell

A former drywell of unknown purpose and construction is located west of Building 5. The Phase I report indicated that the piping leading to the drywell was abandoned in place; however, no documentation of these activities could be found. At the time of the Phase I investigation soil and groundwater surrounding this location was of unknown environmental quality.

Photo Processing Wastewater Release

In 1976 or 1977 a tank truck released photographic processing wastewater at the loading dock on the north side of Building 12. The spill entered the stormwater system that discharged into the Genesee River gorge west of Building 4. No cleanup activities were conducted.

Former Rochester Transit Corporation

The former Rochester Transit Corporation historically operated a repair shop in the current locations of Buildings 5 and 12A. Likewise, a former gas station,

Esso was in the current location of Building 5. At the time of the Phase I investigation, the environmental impacts of these historical operations were not known, and soil and groundwater conditions below these buildings have not been characterized.

Rochester Photographic Products Company

The Rochester Photographic Products Company (also known as the General Aristo Company historically occupied the location of Parking Lot No. 2. Buildings 1, 2, 3, 7, 8, 9, and 13, which once occupied this site, were demolished in 1999.

Other Spills, Permits, and Tanks

- In 1990, a spill of No. 6 fuel occurred in Building. 4. Contaminated soil and GW were removed, and spill file was closed in 1990.
- In 1996, a diesel spill was released by a privately-owned vehicle. The file was closed the same day.
- In 2000 an asbestos release occurred during building demolition. The file was closed 5 days after reporting.
- Kodak maintained Chemical Bulk Storage registration for five 475-gallon sodium hydroxide aboveground storage tanks (ASTs) located in Building 12 and used for water treatment.
- Kodak maintained a Petroleum Bulk Storage registration for a 33,000-gallon AST situated within a below-grade lined concrete vault for No. 5 or No. 6 fuel oil storage adjacent to Building 4. Leak monitoring reportedly occurred during tank use.

1.3.2 2005 Phase II – Leader

In 2004 Leader conducted a Phase II investigation (report issued 2005) to evaluate the following RECs (as reported in LaBella Associate's 2017 Phase II Site Assessment report):

- Building 4 former USTs;
- Thorium settling pits;
- Drywell;
- Release of photo-processing wastewater north of Building 12;
- Downgradient of Building 12 photo processing operations; and
- Area used for manufacturing at General Aristo Co. (Former Buildings 1, 2, 3, 7, 9, and 13).

Ten soil borings and seven bedrock/overburden interface monitoring wells were installed during the investigation (see Figure 1). Soil samples were collected for analysis of VOCs (site wide), semivolatile organic compounds (SVOCs) (sitewide), target analyte list (TAL) metals (site wide), and thorium (west of Building 12A, east of Building 5, southwest of Building 5). Select locations north and west of Building 12 were analyzed for general soil chemistry (i.e., pH, cyanide, nitrate, sulfate). Groundwater samples were collected for the analysis of VOCs, SVOCs, metals (site wide), and thorium settling pits).

Findings of the 2004 Phase II included:

- Petroleum exceeded applicable NYSDEC groundwater quality standards in groundwater at the former UST area north of Building 4.
- Low-levels of trichloroethene (TCE) and 1,2-dichlorethene (DCE) were detected in site-wide soil and groundwater at the Site. Groundwater near Buildings 5, 11, and 12 exceeded applicable NYSDEC standards. The highest concentration of TCE detected in groundwater was 28 micrograms per liter (µg/L) in the sample collected from monitoring well IB12SW west of Building 12.
- Elevated nickel concentrations were detected in Parking Lot No. 2. Fill material was observed in several soil borings in Parking Lot No. 2.
- The ranges in thorium isotopes detected in soil and groundwater were determined not to be significant between upgradient and potential source areas.

1.3.3 2017 Phase II

In 2017 Labella Associates, P.C. conducted a Phase II investigation (LaBella 2017) focused on the following areas of the site:

- Further evaluation of the extent of petroleum impacted soil and groundwater north of Building 4.
- Evaluate potential presence of PCBs in soil and GW at the site west of Building 12 (i.e., 1991 PCB release identification).
- Further evaluate thorium in soil and groundwater.
- Further evaluate VOCs in soil and groundwater.
- Small building labeled "kerosene" storage on Sanborn map south of Building 10.
- Presence of cyanide in groundwater due to detection of cyanide in soil during the 2004 Leader Phase II.
- Further evaluate Parking Lot No. 2 urban fill.
- Evaluate the potential for soil vapor intrusion.

Thirteen soil borings (SB-10 through SB-18, and SB-28 through SB-31) were installed across the site, advanced from ground surface to bedrock (see Figure 1). Two of the borings (SB-12 and SB-28) were not sampled. From the remaining eleven borings, soil samples were collected for analysis of United States Environmental Protection Agency (EPA) Target Compound List (TCL) VOCs (five samples), TAL metals (six samples), PCBs (three samples), and thorium (two samples).

Five of the soil borings were converted to monitoring wells, but only two wells had sufficient water for sampling (i.e., MW-12 located west of Building 4 and

MW-07 in Lot No. 2). Additionally, the monitoring wells installed by Leader in 2004 were sampled.

The following affected site media were identified during the 2017 Phase II investigation:

- Trace concentrations of TCE were detected below the NYSDEC Unrestricted Use Soil Cleanup Objective (SCO) (6 NYCRR Part 375-6.8), in soil at concentrations ranging from 1.2 to 43.6 micrograms per kilogram (µg/kg) in SB-11 west of Building 12A, SB-14 and SB-18 in Parking Lot No. 2, and SB-29 between Buildings 5 and 10.
- Metals were detected above the Unrestricted Use SCOs in the urban soil underlying Parking Lot No. 2. Silver was detected slightly above the SCO in the sample collected from SB-18 at 0.4 to 1.7 feet below ground surface (bgs). Silver and mercury were detected above the Unrestricted Use SCOs in the sample collected from SB-15 at 5 to 6 feet bgs. Copper, nickel, and mercury were detected above the Unrestricted Use SCOs in the sample collected from SB-15 at 5 to 6 feet bgs. Copper, nickel, and mercury were detected above the Unrestricted Use SCOs in the sample collected from SB-15 at 5 to 6 feet bgs.
- A trace concentration of Aroclor-1242 was detected in the sample collected from SB-29, located between Buildings 5 and 10.
- Concentrations of thorium isotopes were detected in samples collected from SB-29 and SB-31 but at concentrations below selected evaluation criteria.
- Four wells (MW-5, MW-6, MW-13, and SB4NE) were dry.
- TCE was detected in four of the monitoring wells above the evaluation criteria (i.e., IB11AW, IL2NE, MW-07, and MW-12). TCE was not detected in the 2017 sample collected at IB12SW, where the previous sampling in 2004 had the highest concentration at the site.

1.4 Site Geology and Hydrogeology

Historical investigations (Leader 2003; LaBella 2017) indicate soil overburden at the site consists of silty sand and gravel with silt and clay at depth (possible till). The overburden in the northern portion of the Site includes urban fill to a depth of approximately 1 to 2 feet bgs comprised of wood, glass, and brick fragments (LaBella 2017). Historical soil borings indicate that the thickness of the overburden at the Site generally ranges from of 4 to 12 feet with the shallowest refusal depths in the northwest portion of site under Parking Lot 2. Greater refusal depths were encountered along the west side of site just above the Genesee River gorge, and two borings were advanced to greater than 20 feet bgs east of Buildings 5 and 6 along St. Paul Street (LaBella 2017). The upper bedrock is shale of Silurian age.

As identified during this site characterization, groundwater flow in the overburden at the site is to the northwest (see Figure 2). Groundwater contours were generated using Golden Software's Surfer application using a minimum curvature gridding algorithm and based on depth-to-water measurements obtained from monitoring wells installed as part of this site characterization and other appropriate existing wells. Depth to water measurements in overburden monitoring wells collected in October 2021 ranged from 1.47 feet bgs in MW-04, located in Parking Lot No. 5 south of the Site, to 12.08 feet bgs in MW-06, located in the northwest quadrant of the site west of Building 12 (see Figure 2 and Table 1). The field measurements correspond to groundwater elevations ranging from 441.58 feet above mean sea level (AMSL) in SB4NE located in the northwest corner of the site to 464.11 feet AMSL in MW-11, located southeast of the site in Parking Lot No. 11.

Several bedrock interface wells are also located at the site. These wells were installed during 2004 Phase II investigation. The depth to groundwater in the interface wells is generally deeper than in the overburden wells, ranging from 8.1 feet bgs in IB11AW, located adjacent Building 11, to 17.61 feet bgs in IB5NE, located on the eastern property line (see Figure 3 and Table 1). The water levels correspond to groundwater elevations ranging between 444.14 feet AMSL at IB12SW to 449.76 feet AMSL at IB59E. These elevations indicate a similar west-northwest groundwater flow direction at the bedrock interface as compared to the overburden well network, although the flow direction is slightly more westerly (see Figure 3).

Interface wells and overburden wells near each other indicate that a downward vertical gradient exists between the overburden and bedrock. Seven overburden monitoring wells are located within the areal distribution of interface wells at the site (i.e., MW-07, MW-12, MW-15, MW-18, MW-19, MW-22, and MW-23). The average groundwater elevation in these wells is approximately 1 foot higher than the average groundwater elevation in all interface wells (i.e., IL2NE, IB5NE, IB5SW, IB5SW2, IB6NE, IB11AW IB12SW).

Site Characterization Activities

Site characterization activities were primarily performed in October 2021 in accordance with the SAP (E & E 2021). In August 2022, based on comments on the draft Site Characterization report by the New York State Department of Health, the NYSDEC requested additional sampling of soil vapor to evaluate the vadose zone north of the facility. This follow-up sampling was completed on November 8, 2022. The primary scope of work included sampling and analysis of soil and groundwater for VOCs, SVOCs, PCBs, and metals, and soil vapor for VOCs. One soil sample and one groundwater sample were also analyzed for the emerging contaminants per- and polyfluoroalkyl substances (PFAS) and 1,4-dioxane. La-Bella provided drilling, monitoring well, and vapor point installation services as a subcontractor to E & E.

A New York State-licensed land surveyor (Popli Design Group) was subcontracted to perform site surveying activities. Following completion of monitoring well installation and sampling activities, the survey crew collected locations and elevations. In addition, they surveyed the locations of site buildings and other important site features to aid in preparation of a site base map. All locations were surveyed to a horizontal accuracy of 0.1 foot. Elevations were surveyed to a vertical accuracy of 0.01 foot.

New York Leak Detection provided a video survey of several sewer pipes suspected to lead to two of the four former thorium settling pits, and one of the former stormwater outfalls. No leaks or potential sources of subsurface contamination such as line breaks, nor contaminated sediment were identified (see further discussion in Section 3).

Laboratory analytical services for analysis of the soil and groundwater samples in 2021 were provided by Eurofins Environment Testing America under NYSDEC Callout ID 140402. Chemical testing was performed at Eurofins TestAmerica Buffalo (Amherst, NY) and thorium testing was performed at Eurofins TestAmerica St. Louis (St. Louis, MO).

Laboratory analytical services for analysis of the soil vapor samples were provided by Con-Test Analytical Laboratory (operated by Pace Analytical), located in East Longmeadow, MA, under NYSDEC Callout ID 144515.

2.1 Background Radiation Measurements

Background radiation readings were collected at the site at the beginning of each workday, and intermittently throughout the day using a Ludlum Model 2241-2RK

Digital Scaler-Ratemeter equipped with a Model 44-9 "pancake"-style alpha-betagamma detector. Background activity at the site ranged between approximately 20 to 80 counts per minute throughout the duration of site work.

2.2 Soil Sampling Procedures and Analyses

Between October 4 and 7, 2021, a total of 20 soil borings, designated SB01 through SB20, were installed using a track-mounted direct push (i.e., Geoprobe) drill rig at the outdoor locations, and a portable dolly-type Geoprobe rig for the indoor locations. Continuous macro-core sampling was conducted from ground surface to the refusal depth (presumed to be at the top of bedrock) at each location. All soil cores were logged in the field for soil type, color, and moisture content and screened for organic vapors with a photoionization detector (PID) and total gamma radiation using a digital ratemeter. Soil boring logs are provided in Appendix B.

One or two depth intervals were sampled at each soil boring location. A shallow soil sample was collected from a depth interval based on potential signs of contamination (PID/gamma readings), staining, or odors, and a second sample was collected from the 2-foot interval above the water table (or above bedrock if groundwater was not encountered). Boring SB12 was not sampled based on its proximity to a prior soil boring (i.e., SB-29 installed during the 2017 Phase II investigation) and only background readings on the PID and ratemeter were obtained.

Analytical parameters for soil sampling included:

- TCL VOCs by EPA SW-846 Method 8260C;
- SVOCs by EPA SW-846 Method 8270D;
- 1,4-Dioxane by EPA SW-846 Method 8270D-SIM;
- PCBs by EPA SW-846 Method 8082A;
- PFAS by EPA Method E537M;
- TAL metals by EPA SW-846 Methods 6010C/7470A; and
- Isotopic thorium by U.S. Department of Energy (DOE) Method A-01-R.

Figure 1 shows the soil boring locations, which are described below:

- SB01 located adjacent to the former dry well west of Building 5;
- SB02 adjacent to the former thorium settling pit No. 2 west of Building 12A;
- SB03, west of Building 12A;
- Three soil borings, designated SB04 through SB06, surrounding 2017 soil boring/monitoring well SB-16/MW-7 to further characterize metals-affected soil around this boring;
- Soil boring SB07 at the northern property boundary north of Lot No. 2 (near the northern property line);

- Soil boring SB08 east of Building 5 to characterize general background conditions at the site;
- Soil boring SB09 adjacent to thorium settling pit No. 1 located west of Building 5;
- SB10 and SB11 inside Building 5;
- SB12 in the courtyard south of Building 10;
- Three soil borings, designated SB13 through SB15, surrounding 2017 soil boring SB-18 where metals were detected above Unrestricted Use SCOs;
- SB16 located inside Building 12; and
- Three soil borings, designated SB18 through SB20, adjacent to 2004 well location SB4NE where petroleum exceeded NYSDEC groundwater quality standards in groundwater at the former UST area north of Building 4.

Deviations from the proposed scope in the SAP include:

- The borings proposed inside Building 4 could not be installed due to inaccessibility caused by a low-ceiling basement and the presence of power generating equipment;
- The proposed soil boring in Building 10 (SB12) was moved south into the courtyard north of Building 5 due to an unsafe working environment;
- The boring proposed inside Building 12A was shifted to the west and consolidated into one location (SB03) due to inaccessible office space; and
- The borings proposed around SB4NE were shifted to the north of the facility fence due to insufficient clearance and potential utility conflicts within the fenced area of the site.

2.3 Monitoring Well Installation

Eleven new monitoring wells, designated MW-14 through MW-24, were installed at a subset of the soil boring locations. Each well was constructed with a 5-footlong, 1-inch-diameter, polyvinyl chloride (PVC) screen. Screens were set on top of bedrock (i.e., the refusal depth of the soil borings) and completed with 1-inch PVC risers. A filter sand pack was emplaced in the annulus around each screened interval to a depth of 1 foot above the top of the screen. The remainder of the annulus was backfilled with granular bentonite and the well constructions were completed with 4-inch diameter polycarbonate traffic-rated flush-mount curbboxes. Well completion diagrams are shown the boring logs provided in Appendix B.

Figure 1 shows the monitoring well locations, which are described below:

- MW-14 and MW-15 were installed west of Building 12A, with MW-14 adjacent to thorium settling pit No. 2, in soil borings SB02 and SB03 respectively;
- MW-16 was installed in soil boring SB07 at the north end of parking lot No. 2 (near the north property boundary);

- MW-17 was installed in soil boring SB08 east of Building 5;
- MW-18 was installed in soil boring SB10 inside Building 5;
- MW-19 was installed in the courtyard north of Building 5 in soil boring SB12;
- MW-20 and MW-21 were installed in soil borings SB13 and SB15 near the northeast corner of Building 12;
- MW-22 was installed in soil boring SB16 inside Building 12;
- MW-23 was installed inside Building 11A in boring SB17; and
- MW-24 was installed in boring SB18 north of Building 4.

Deviations from the proposed scope in the SAP include:

- No monitoring well was installed in soil boring SB11 in the southern half of Building 5 due to shallow refusal depth and absence of groundwater;
- No monitoring well was installed in the soil boring adjacent to the former dry well as one already exists (IB5SW2);
- SB02/MW-14 served a dual purpose, both to replace the inaccessible boring location inside building 12A and to investigate thorium pit No. 2 which was located closer to Building 12A than historical maps indicated. Consequently, this monitoring well replaces two proposed locations;
- An additional monitoring well was installed in soil boring SB15, a location where no wells were originally proposed, based on high PID readings near the water table;
- A well was installed in background soil boring SB08 because historical monitoring well MW-13 could not be located; and
- No well was installed in Building 4 due to inaccessibility.

2.3.1 Monitoring Well Development

All new monitoring wells were developed no sooner than 24 hours after completion of well construction. The wells were developed using a bailer and/or peristaltic pump due to low yields. Development continued until water quality parameters (pH, temperature, conductivity, and turbidity) stabilized and turbidity was less than 50 nephelometric turbidity units, except in circumstances where the well went completely dry during multiple purge cycles.

2.4 Groundwater Sampling Procedures and Analyses

One round of static groundwater level measurements was collected from all new and existing monitoring wells at the site plus existing off-site wells MW-04 and MW-11 on October 25, 2021, prior to groundwater sampling (see Table 1). Groundwater levels were measured with an electronic water-level indicator graduated to 0.01 foot.

A total of 21 monitoring wells were sampled between October 25 and 29, 2021. Nine of the 11 new wells (MW-14 through MW-24) were successfully sampled.

MW-22 and MW-24 were dry and could not be sampled. Twelve historical monitoring wells (IB11AW, IB12SW, IB5NE, IB5SW, IB5SW2, IB6NE, IL2NE, SB4NE, MW-05, MW-06, MW-07, and MW-12) were also sampled. Monitoring well MW-13 could not be located.

Groundwater sampling was performed using EPA low-flow purging and sampling techniques with a bladder pump equipped with dedicated polyethylene bladders and tubing for 2-inch-diameter bedrock interface wells (IB11AW, IB12SW, IB5NE, IB5SW, IB5SW2, IB6NE, and IL2NE).

All 1-inch-diameter overburden monitoring wells were purged using a peristaltic pump due to low yields and the small diameter of the wells, except in the case of SB4NE, which is a 2-inch-diameter well, but had a low yield and purged dry. The overburden wells were sampled by purging three static well volumes or until the well went dry.

Upon stabilization of parameters or sufficient recharge, groundwater samples were collected and submitted to the laboratory for analysis of VOCs at all of the wells, and SVOCs, PCBs, and metals at all wells where sufficient volume was present (i.e., all except MW-05, MW-14, MW-15, MW-17, MW-18 and, in the case of PCBs and metals, SB4NE). Additionally, one sample for analysis of 1,4-dioxane and PFAS was collected from IB5SW2. Four of the wells (i.e., IB5SW, MW-06, MW-12, and MW-23) were sampled and analyzed for thorium isotopes. The samples were analyzed using the same analytical methods as the soil samples.

Groundwater sampling logs are provided in Appendix C.

Analytical parameters for groundwater sampling included:

- TCL VOCs by EPA SW-846 Method 8260C;
- SVOCs by EPA SW-846 Method 8270D;
- 1,4-Dioxane by EPA SW-846 Method 8270D-SIM;
- PCBs by EPA SW-846 Method 8082A;
- PFAS by EPA Method E537M;
- TAL metals by EPA SW-846 Methods 6010C/7470A; and
- Isotopic thorium by DOE Method A-01-R.

2.5 Soil Vapor Sampling

On November 8, 2022, E & E collected soil vapor samples to evaluate VOC vapors in the vadose zone north of the facility. Soil vapor probes SV-1 through SV-4 were installed using a direct push drill rig equipped with a blind-point rod that was driven to 5 feet bgs (see Figure 1). Upon reaching total depth, a stainless-steel vapor point screen connected to approximately 7 feet of low-density polyethylene tubing was lowered through the rods and threaded into the expendable point. The rods were then retracted, exposing the screen to the surrounding formation. A vapor well was constructed by backfilling the annulus around the

vapor screen to approximately 6 inches above the top of the screen with clean filter sand. An annular seal was constructed by emplacing granular bentonite from the top of the sand filter pack to the ground surface and hydrating with potable water.

To verify the integrity of the bentonite seals, E & E performed helium tracer gas tests at each sample location. Before each helium test, approximately two well volumes of air were purged from each vapor point to ensure that the soil vapor sample was representative of the vadose zone. After the well was purged an enclosure was placed over the sample probe. The tubing from the probe was passed through the enclosure and was connected to a hand-held helium detector. A foam gasket seal was employed around the edges of the enclosure and a charge of helium was delivered into the enclosure while the helium detector was running. The air within the vapor well was monitored for at least 5 minutes. No helium was detected in any of the soil vapor points during tracer gas testing.

Once the helium tracer gas test was completed, a constant-rate flow regulator and a 6-liter Summa canister were connected to the tubing for sample collection. The flow regulators were pre-set by the laboratory to collect the samples over a 1-hour period.

At the completion of the sampling activities, the soil vapor probes were removed and the borings were capped with material to match the surrounding grade. The samples were shipped via ground courier to the analytical laboratory for analysis of VOCs by EPA Method TO-15.

2.6 Sewer Line Camera Survey

On September 29, 2021, E & E investigated several manholes and attempted to trace storm sewer lines in the vicinity of former stormwater outfalls and the thorium settling pits. Where accessible, a camera was run into identified pipes to observe conditions and identify line breaks or sediment.

2.7 Decontamination Procedures

The following procedures were used for all non-dedicated equipment and tools including downhole equipment such as macro-core cutting shoes:

- Initially remove all foreign matter;
- Scrub with brushes in a laboratory-grade detergent solution;
- Rinse with potable water;
- Rinse with a 5-10% nitric acid solution (when sampling for metals); and
- Rinse with distilled water.

2.8 Quality Assurance/Quality Control

Quality assurance/quality control procedures were performed in accordance with E & E's 2020 *Master Quality Assurance Project Plan for New York State Department of Environmental Conservation Projects*, Contract No. D009807 (E & E 2020). Specific quality assurance/quality control activities included:

- Collection of field duplicates at a rate of 1 per 20 samples per matrix.
- Collection of additional volume for matrix spike/matrix spike duplicate (MS/MSD) analysis at a rate of 1 per 20 samples per matrix (except for soil vapor).
- Collection of at least one equipment rinsate blank daily from non-dedicated sampling equipment using laboratory-supplied analyte free water. One sample per matrix per day was collected for all analyses performed on that matrix. Additional rinsate blanks were collected for PFAS analysis.
- Documentation of all data and observations on field data sheets and/or in the field logbooks.
- Operation and calibration of all field instruments in accordance with operating instructions as supplied by the manufacturer.

Laboratory deliverables were reviewed in accordance with NYSDEC's general reporting requirements. The data were qualified following guidelines in EPA Region 2's data validation standard operating procedures and DOE laboratory procedures (see references in Section 5). The data review included an evaluation of the following:

- Sample preservation,
- Holding times,
- Reporting limits,
- Laboratory blanks,
- MS/MSD samples,
- Laboratory control samples,
- Field duplicates,
- Sample result verification, and
- Method-specific quality control samples.

Laboratory reports were provided as NYSDEC DER-10 Category B deliverables (see Appendix D).

Details of the data review are provided in the data usability summary reports provided in Appendix E. In general, there were several low-level detections of thorium, methylene chloride, and metals (mostly aluminum, copper, manganese, and zinc) that were rejected or qualified as not detected at an elevated detection limit due to detections in method and/or field blanks. Results for several metals and VOCs in soil were also qualified as estimated due to matrix interference. However, there were no significant impacts affecting the overall usability of the data (see Appendix E).

Results

3.1 Site Lithology

Site overburden consisted of a variety of silts, sandy silts, sand, and gravel, with generally poor cohesion. In the northern portion of the site, this unit is overlain by several feet of urban fill that includes sand, gravel, and brick fragments. These units are generally dry except in the bottom several feet of the boreholes. This entire sequence of unconsolidated sediments is underlain by a discontinuous layer of very dense or hard gravelly silt and silty gravel that is interpreted to be glacial till. The underlying bedrock, where recovered in soil cores, is weathered shale. The depth to bedrock ranges from 5 feet bgs at SB11 in Building 5 to a maximum of 15 feet bgs at SB08/MW-17 located in the southeast corner of the site (see Figure 1). Refusal depths in most of the soil borings ranged between 9 and 11 feet. Boring logs are provided in Appendix B.

Headspace screening of the soil cores for organic vapors was conducted in 2-foot increments using a PID. Organic vapor readings generally ranged within back-ground at the site (i.e., 0 to less than 5 parts per million [ppm]), except in the 8- to 10-foot interval at SB-14, where headspace analysis indicated organic vapors at a concentration of 40 ppm. It was for this reason that this soil boring was converted to a monitoring well.

Alpha-beta-gamma activity was logged along the length of each soil core using the ratemeter. Values were reported in the boring logs as a range observed during logging. The activity rates did not exceed background values at the site. In particular, there was no evidence of radioactivity above background in soil adjacent to the former thorium settling pits.

3.2 Sewer Line Survey Results

A combined stormwater and sanitary sewer manhole was identified along the fence at the southern property line along Avenue E near the southwest corner of Building 5 (see Figure 1). The location of this manhole was not surveyed, but its general location lies approximately 40 feet east of the electrical access manhole depicted on Figure 1. It was suspected that this manhole led back to thorium settling pit No. 1, but a camera could not be advanced due to the depth of the manhole (approximately 10 feet). No sediment was present in the manhole.

A sanitary sewer cleanout was identified adjacent to thorium settling pit No. 1. A camera was inserted into the line that was determined to run beneath, but was not connected to, the former pit. No breaks or sediment were observed in this line.

One sewer manhole was identified west of Building 12A. A clay-tile pipe running east-west perpendicular to the western building wall from beneath the building was observed with no sediment present. An attempt to trace this line using a camera to an outfall was not successful, though the line was inspected and found to be lined with intact PVC. The pipe connects to a north-south running PVC sewer line with no manhole access. Any lines that once led to outfalls above the Genesee River Gorge or to thorium settling pits Nos. 2 and 3 are no longer in service, are inaccessible, or are now served by the north-south running pipe that presumably ties into the Monroe County stormwater sewer system.

An attempt was made to access storm sewer lines in Building 11A, where former thorium settling pit No. 4 was located. No lines could be accessed, and the foot-print of the former pit could not be identified.

One sediment sample, designated EMH1-SED, was collected from an electrical manhole west of Building 12A (see Figure 1). This location was selected based on its position between thorium settling pit Nos. 2 and 3 and the fact that there was sediment available to sample.

3.3 Analytical Results

Tables 2 through 6 present the analytical results of soil, sediment, groundwater, and soil vapor sampling at the site. Contaminant concentrations in soil were compared to the Commercial and Protection of Groundwater SCOs from 6 NYCRR Part 375. The groundwater analytical results were compared to the NYSDEC Standards and Guidance values provided in the *Technical and Operational Guidance Series (TOGS) Memorandum #1.1.1: Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations*, 1998 (with updates), for class GA groundwater (NYSDEC 1988). PFAS and 1,4-dioxane in groundwater were compared to NYSDEC's updated guidance values provided in the most recent addendum to this document (*https://www.dec.ny.gov/chemical/122803.html*). Final laboratory reports are provided in Appendix D.

3.3.1 Soil Results

A total of 22 soil samples were collected from 18 soil borings (see Table 2). A total of 15 VOCs were detected in one or more samples, mostly at relatively low concentrations. None of the VOC concentrations exceeded the Commercial SCOs in any of the soil samples. The highest concentration of VOCs wase detected in the soil sample collected from the 3-to 5-foot interval in SB-15. TCE was detected at a concentration of 11 milligrams per kilogram (mg/kg) in this sample, which is below the Commercial SCO of 200 mg/kg but exceeds the Protection of Groundwater SCO of 0.47 mg/kg. This result may indicate the presence of contaminated source material in the area. SB-15 is located near the northeast corner of Building 12, where the highest concentration of VOCs in groundwater was also detected (see further discussion below).

A total of 19 SVOCs, all polynuclear aromatic hydrocarbons (PAHs) and phthalates, were detected in one or more soil samples collected at the site. Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and chrysene all exceeded the either the Commercial SCOs or the Protection of Groundwater SCOs in multiple samples. Additionally, dibenz(a,h)anthracene exceeded the Protection of Groundwater SCO in one sample collected from the 0-2 foot interval is SB-06.

Benzo(a)pyrene exceeded the Commercial SCO of 1.0 mg/kg in three samples collected from the 0- to 2-foot interval at SB04, SB06, and SB07, ranging in concentration from 1.1 mg/kg to 2.9 mg/kg (see Table 2). Dibenz(a,h)anthracene (0.62 mg/kg) also exceeded the Commercial SCO of 0.56 mg/kg in the 0- to 2-foot sample interval at SB06 with an estimated concentration of 0.62 mg/kg. These three samples were collected from within the urban fill beneath Parking Lot No. 2.

Benzo(a)anthracene exceeded the Protection of Groundwater SCO of 1.0 mg/kg in four samples collected from the 0- to 2-foot interval at SB04, SB06, and SB07 and the 2- to 4-foot interval at SB13, ranging in concentration from 1.2 μ g/kg to 3.4 mg/kg (see Table 2). Chrysene also exceeded the Protection of Groundwater SCO of 1.0 mg/kg in these four samples, ranging in concentration from 1.2 mg/kg to 3.7 mg/kg. Benzo(b)fluoranthene exceeded the Protection of Groundwater SCO of 1.7 mg/kg in three samples collected from the 0- to 2-foot interval at SB04, SB06, and SB07, ranging in concentration from 1.8 mg/kg to 4.4 mg/kg.

No PCBs were detected at concentrations exceeding the current Commercial or Protection of Groundwater SCOs in any of the samples. PCBs were present in only two samples (SB06 in the 0- to 2-foot interval and SB13 in the 2- to 4-foot interval) at a maximum concentration of 0.78 mg/kg.

Selenium and silver exceeded the Protection of Groundwater SCOs in one or more samples. The concentration of selenium (11.3 mg/kg) in the sample collected from the 5- to 7-foot interval in SB-03 exceeded the Protection of Groundwater SCO of 4 mg/kg. Silver exceeded the Protection of Groundwater SCO of 8.3 mg/kg in four soil samples as follows:

- 16.4 mg/kg in the sample the sample collected from the 0- to 2-foot interval in SB04;
- 21.5 mg/kg in the sample the sample collected from the 0- to 2-foot interval in SB06;
- 22.7 mg/kg in the sample collected from the 2- to 4-foot interval in SB13; and
- 8.6 mg/kg in the sample collected from the 3- to 5- foot interval in SB15.

Mercury was detected in most of the soil samples but all at concentrations below the Commercial and Protection of Groundwater SCOs. The maximum concentration of 1.2 mg/kg was detected in the sample collected at the 2- to 4-foot interval of SB-13, located northeast of Building 12. Although this concentration does not exceed the SCOs, it is worth noting that this is the same location where the maximum concentration of PCBs was detected.

No PFAS compounds were detected in the one analytical sample tested for these compounds at SB16.

Thorium sampling results indicate activities of thorium radioisotopes that range between approximately 0.1 and 0.8 picoCuries per gram (pCi/g) for Th-232, Th-

228, and Th-230 (see Table 3). These activity levels are within the same order of magnitude observed in the background sample collected from SB08, which is located upgradient of Building 5. These activity levels are also below the Soil Cleanup Criterion in Subpart B of 40 CFR Part 192.12 for radium-226 of 5 pCi/g for surface (i.e., top 6 inches of soil column) and 15 pCi/g for subsurface soil as discussed in an EPA memorandum entitled *Use of Soil Cleanup Criteria in 40 CRF Part 192 as Remediation Goals for CERCLA sites* (EPA 1998). Since thorium decays to radium-226, a gamma emitter, Part 192 regulations have been used as Applicable or Relevant and Appropriate Requirements (ARARs) at Superfund sites for thorium-contaminated soil.

3.3.2 Sediment Sample Results

One sediment sample, designated EMH1-SED, was collected from an electrical manhole west of Building 12A (see Figure 2). This location was selected based on its position between thorium settling pit Nos. 1 and 2 and the fact that there was sediment available to sample. The sample was analyzed for VOCs, PCBs, metals, and thorium with none of the results exceeding the current or proposed Commercial SCOs, background soil concentrations for thorium, nor the ARARs (see Tables 2 and 3). SCOs were used to screen this sample because the sediment was collected from a manhole and does not represent ecological sediment conditions.

3.3.3 Groundwater Results

A total of 21 new and existing monitoring wells were sampled for analysis of VOCs (see Table 4). Where volume was sufficient, samples were collected and analyzed for SVOCs, PCBs, and metals. In total, 16 wells were sampled for SVOCs, 15 wells were sampled for PCBs and metals, and one sample was collected for analysis of 1,4-dioxane and PFAS from well IB5SW2.

Ten VOCs were detected in one or more of the groundwater samples. Two compounds (TCE and cis-1,2-DCE) were detected at concentrations exceeding the Class GA groundwater standard of 5 μ g/L. There were TCE exceedances in seven wells at concentrations ranging from 5.7 μ g/L at IL2NE (located in the northeast corner of the property) to 130 μ g/L at MW-21 (located on the east side of Building 12); see Table 4.

Twenty metals were detected in at least one groundwater sample collected at the Site. Of these, 11 exceeded the Class GA standards or guidance values in one or more samples, including:

- Arsenic 27 to 120 μ g/L;
- **Beryllium** $-4.8 \,\mu$ g/L;
- Chromium, total 99 to 140 μ g/L;
- Copper -260 to $270 \mu g/L$;
- Iron -420 to $146,000 \,\mu g/L$;
- Lead 27 to 260 μ g/L;
- Magnesium 67,100 to $120,000 \,\mu g/L$;

- Manganese 400 to 3,300 μ g/L;
- Mercury -0.78 to $1.9 \,\mu$ g/L;
- Nickel -110 to 230 µg/L; and
- Sodium 25,100 to 967,000 µg/L

Four of these metals are RCRA metals (i.e., arsenic, chromium, lead, and mercury). The highest concentrations of RCRA metals exceedances and the most prevalent number of TAL metals exceedances are in samples collected from wells MW-07, MW-16, and MW-20, all three of which are located in the Parking Lot No. 2 in the northern portion of the site, where urban fill is present.

Only one SVOC, di-n-butyl-phthalate, was detected in groundwater at the site, at a trace concentration of $0.32 \,\mu$ g/L (estimated) in the sample collected from MW-23, located in Building 11A. No PCBs were detected in groundwater at the site.

1,4-Dioxane was not detected in the sample collected at IB5SW2, located near the southwest corner of Building 5. However, 10 PFAS compounds were detected in the groundwater sample collected at this location, including an exceedance for perfluorooctanesulfonic acid (PFOS) at a concentration of 4 nanograms per liter (ng/L). PFOS has a guidance value of 2.7 ng/L.

Trace activities of Th-232 and Th-228 were detected at two monitoring well locations (IB6NE and IB11AW); see Table 5. These activity levels ranged from 0.0909 to 0.315 picoCuries per liter (pCi/L). EPA's Maximum Contaminant Level for alpha particle activity in groundwater is 15 pCi/L. Thorium isotopes, where are alpha emitters, were all detected well below this level.

3.3.4 Soil Vapor Results

In total, 22 VOCs were detected in one or more of the four soil vapor samples (see Table 6). The highest concentrations of VOCs were detected in the samples collected at SV-02 and SV-03 (see Figure 1). The highest concentrations of individual compounds were benzene (1.0 to 56 micrograms per cubic meter $[\mu g/m^3]$), cyclohexane (1.8 to 59 $\mu g/m^3$), heptane (4.4 to 110 $\mu g/m^3$), hexane (110 to 180 $\mu g/m^3$), propene (44 $\mu g/m^3$ in the duplicate sample), toluene (5.4 to 59 $\mu g/m^3$), and TCE (55 to 790 $\mu g/m^3$).

Five of the 22 compounds detected were also present in both soil and groundwater at the site (i.e., chloroform, cyclohexane, PCE, toluene, and TCE) and six additional compounds detected in soil vapor were also detected in soil only at the site (i.e., acetone, benzene, carbon disulfide, ethylbenzene, and xylenes). Except for TCE, none of these compounds exceeded the Commercial SCOs or the more conservative Protection of Groundwater SCOs for VOCs in the soil samples collected at the site nor the MCLs in the groundwater samples collected at the site. Most of these compounds (aside from PCE and TCE) are either gasoline constituents or additives, or laboratory contaminants (e.g., acetone). There are no regulatory guidance or cleanup criteria for VOCs in shallow soil vapor in New York. Therefore, the soil vapor data were screened against EPA's Vapor Intrusion Screening Levels (VISLs) for a residential scenario with a target cancer risk of 1×10^{-6} and a target hazard quotient of 0.1 for non-cancer effects. Combined, these are the most conservative entry parameters for use with the VISL calculator. Three compounds exceeded the Target Sub-Slab and Nearsource Soil Vapor Concentrations:

- Benzene (56 µg/m3) exceeded the VISL of 12 µg/m3 in the sample from SV-03;
- 1,3-Butadiene exceeded the VISL of 3.12 µg/m3 in the samples collected from SV-03 and SV-04 (and its duplicate); and
- TCE exceeded the VISL of 6.95 μ g/m3 in the sample SV-02 (790 μ g/m3) and SV-03 (55 μ g/m3).

The VISLs are not automatic response action levels, nor are they cleanup criteria, but rather guidelines to determine if additional investigation or remediation activities are warranted. Additionally, the underlying models for the VISLs are generally applicable to buildings where the potential for vapor intrusion is a concern. As such, they are presented in Table 6 merely as a point of reference to indicate potential site contaminants of concern, which are benzene and TCE.

Discussion

4.1 Summary

Soil results from this investigation are comparable to previous investigations at the site. Exceedances of the Protection of Groundwater SCOs for three PAHs were detected in samples collected from the northern portion of the site beneath Parking Lot No. 2 where urban fill is present. Additionally, two PAHs exceeded the Commercial SCOs in the same area of the site. This location was sampled to help delineate an exceedance of silver above the residential SCO observed during the 2017 Phase II investigation at LaBella boring SB-18.

The groundwater results are also comparable to the historical results, specifically those collected during the 2004 and 2017 Phase II investigations. During the 2004 Phase II, low-level exceedances of the evaluation criteria for TCE and 1,2-DCE were detected across the site, with the highest concentration of TCE (28 μ g/L) detected in IB12SW adjacent to thorium settling pit No. 3, and the highest concentration of total (cis- and trans-) 1,2-DCE (23 μ g/L) was detected in IB5SW, adjacent to thorium settling pit No. 1. Other concentrations of TCE ranged from 7.7 to 16 μ g/L. In 2017, an expanded well network was sampled with similar results. During that sampling event, TCE exceedances ranged from 8.1 to 15.4 μ g/L in MW-07.

During this site characterization, the highest exceedances of TCE in site groundwater were 14, 64, and 130 μ g/L in existing well IB11AW and new wells MW-20 and MW-21, respectively, all located east of Building 12. These three well locations are in the vicinity of a former reservoir located in what is now the asphalt parking area between Buildings 11A and 12 that, according to historical site maps, measured approximately 50 feet in diameter and was abandoned in 1936 (see 1977 Underground Drainage Piping Map, Appendix A).

Historical metals results for groundwater indicate elevated levels of iron, sodium, magnesium, and manganese at the site above the Class GA groundwater standards and guidance criteria. The concentrations of these metals detected during the current investigation are likely indicative of the background chemistry of groundwater at the site (for iron, magnesium, and manganese) or representative of ubiquitous groundwater contamination due to road-salting in the case of sodium.

In contrast, the exceedances of RCRA metals in groundwater, specifically arsenic, total chromium, lead, and mercury may be site-related based on the observed presence of urban fill. However, it is believed that these exceedances are not representative of the dissolved phase. All wells where one or more of these metals

exceeded standards (MW-06, MW-07, MW-12, MW-16, MW-20) are 1-inch diameter wells with low yields that precluded low-flow sampling. Consequently, the groundwater samples had high turbidities. This high colloidal load in the samples likely biased the metals results high.

4.2 Recommendations

There were very few detections of contaminants in soil at concentrations exceeding Commercial SCOs or Protection of Groundwater SCOs. Additional delineation of SVOCs in soil in the northern portion of the site may be considered to effectively manage in-place those exceedances of the Commercial SCOs. The currently identified affected soils are located beneath an asphalt cover that, with suitable repairs and maintenance, could function as an engineered cover system.

TCE was detected at a concentration exceeding the Protection of Groundwater SCO in soil in the northern part of the site in Parking Lot No. 2. The highest concentration of TCE in groundwater was also detected at this same location, near the northeast side of Building 12. Groundwater is not used as a drinking water source in the city of Rochester; therefore, there are no human receptors using contaminated groundwater in the vicinity of the site.

TCE was also detected in two soil vapor samples along the northern property boundary of the site. However, TCE was not detected to the east in the residential neighborhood located along St. Paul Street, nor was it detected in the westernmost point along the northern property line. The presence of TCE in soil vapor is likely related to the concentrations of TCE detected in groundwater in Parking Lot 2. However, groundwater flow is primarily to the west, towards the Genesee River Gorge; therefore, TCE impacts are considered unlikely in the residential area east of the site or at the Rochester School for the Deaf north of the site.

Benzene was also detected at a potentially elevated concentration in one soil vapor sample in this same area of the site. However, benzene was not detected in any of the groundwater samples and was detected only at trace concentrations estimated below the reporting limit in soil samples across the site (i.e., no benzene "source" was encountered). The benzene detection in soil vapor, along with the trace detections of other gasoline constituents and additive compounds, is indicative of the general history of fueling and repair stations located in the area or may be related to the presence of urban fill.

Additional groundwater sampling for metals may be warranted to rule out the exceedances of RCRA metals in groundwater as artifacts of the sampling technique. However, given that all the wells where these exceedances occurred are lowyield, low-flow sampling may not be feasible, and consideration should be given to collection of field-filtered samples.

References

Ecology and Environment Engineering and Geology, P.C. (E & E). 2020. Master Quality Assurance Project Plan for New York State Department of Environmental Conservation Projects, Contract No. D009807. May 2020.

____. 2021. Site Characterization Sampling and Analysis Plan Hawkeye Trade Center and Residences NYSDEC Site No. 828220. September.

LaBella Associates, DPC. 2017. Phase II Environmental Site Assessment, Eastman Kodak Company, Hawkeye Facility, prepared for Eastman Kodak Company, Director of Environmental Remediation, October.

Leader Professional Services. 2003. *Phase I Environmental Site Assessment, Eastman Kodak Company Hawkeye Facility*, prepared for Elliot Stern, Esq., Eastman Kodak Company, December.

New York State Department of Environmental Conservation (NYSDEC). 1998. Division of Water Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (with updates). Albany, New York: Division of Water, with updates (https://www.dec.ny.gov/chemical/122803.html).

U.S. Department of Energy, Environmental Measurements Laboratory (EML). 1997. *HASL-300 Method Ga-01-R: Gamma Radioassay*, EML Procedures Manual, HASL-300, 28th Edition.

United States Environmental Protection Agency (EPA). 1998. Use of Soil Cleanup Criteria in 40 CRF Part 192 as Remediation Goals for CERCLA site. February 1998.

____. 2010. Validating Chlorinated Herbicides, GC, SW-846, Method 8151A, EPA Region 2, December.

_____. 2015a. Hazardous Waste Support Section, SOP No. HW-35A Revision 0, SOM02.2, Semivolatile Data Validation, EPA Region 2, June.

_____. 2015b. Hazardous Waste Support Section, SOP No. HW-37A Revision 0, SOM02.2, Polychlorinated Biphenyl (PCB) Aroclor Data Validation, EPA Region 2, June.

______. 2015c. Hazardous Waste Support Section, SOP No. HW-33A Revision 0, SOM02.2, Low/Medium Volatile Data Validation, EPA Region 2, July.

_____. 2016a. Hazardous Waste Support Section, SOP No. HW-3b Revision 1, ISM02.2, ICP-MS Data Validation, EPA Region 2, September.

_____. 2016b. Hazardous Waste Support Branch, SOP No. HW-3c Revision 1, ISM02.2, Mercury and Cyanide Data Validation, EPA Region 2, September.

_____. 2016c. Hazardous Waste Support Section, SOP No. HW-36A Revision 1, SOM02.2, Pesticide Data Validation, EPA Region 2, October.

_____. 2018. Data Review and Validation Guidelines for Perfluoroalkyl Substances (PFASs) Analyzed Using EPA Method 537, EPA 910-R-18-001, November.

Tables

Table 1 Monitoring Well Data and Groundwater ElevationsHawkeye Trade Center and Residences, Rochester, NY

			Well Diameter	Ground Surface Elevation	Top of Casing Elevation	Depth to Water	Measured Total Depth	Groundwater Elevation
Well ID	Northing	Easting	(inches)	(feet AMSL)	(feet AMSL)	(feet BTOC)	(feet BTOC)	(feet AMSL)
IB11AW	1161075.0	1403642.5	2.0	454.78	454.42	8.10	22.5	446.32
IB12SW	1160978.4	1403494.9	2.0	455.46	455.02	10.88	14.1	444.14
IB5NE	1160830.5	1403805.4	2.0	467.76	467.37	17.61	29.2	449.76
IB5SW	1160676.6	1403562.6	2.0	454.91	454.56	6.72	14.2	447.84
IB5SW2	1160591.4	1403520.8	2.0	457.13	456.79	7.94	18.8	448.85
IB6NE	1161017.5	1403826.7	2.0	464.82	464.43	16.02	22.8	448.41
IL2NE	1161184.9	1403854.2	2.0	461.93	461.55	13.43	22.9	448.12
MW-04	1160364.6	1403613.4	1.0	461.38	461.33	1.47	7.5	459.86
MW-05	1160618.5	1403423.5	1.0	455.00	454.93	8.42	9.7	446.51
MW-06	1161089.4	1403496.4	1.0	454.44	454.44	10.39	12.1	444.05
MW-07	1161139.3	1403743.9	1.0	455.20	455.11	6.36	9.0	448.75
MW-11	1160611.8	1404038.5	1.0	465.70	465.59	1.48	10.7	464.11
MW-12	1160826.3	1403591.9	1.0	454.90	454.65	4.91	8.4	449.74
MW-14	1160761.5	1403467.1	1.0	454.58	454.37	7.98	8.7	446.39
MW-15	1160851.1	1403495.9	1.0	455.44	455.27	8.53	9.4	446.74
MW-16	1161202.2	1403686.2	1.0	454.30	454.11	5.28	9.2	448.83
MW-17	1160715.4	1403794.5	1.0	467.14	466.96	9.63	14.0	457.33
MW-18	1160819.3	1403705.1	1.0	455.51	455.34	4.80	9.6	450.54
MW-19	1160916.7	1403625.1	1.0	454.86	454.64	4.20	8.1	450.44
MW-20	1161165.3	1403627.0	1.0	453.40	453.20	6.55	9.0	446.65
MW-21	1161126.3	1403605.5	1.0	454.39	454.15	8.61	9.9	445.54
MW-22	1161022.1	1403557.2	1.0	455.46	455.20	9.07	9.5	446.13
MW-23	1161055.5	1403705.3	1.0	455.36	455.17	6.05	9.7	449.12
MW-24	1161267.2	1403494.5	1.0	452.84	452.60	10.02	10.3	442.58
SB4NE	1161251.2	1403547.7	2.0	453.55	453.21	11.65	12.8	441.56

Key:

AMSL = above mean sea level

BTOC = below top of casing

Coordinates in New York State Plane West, Survey Feet

Table 2 Summary of Positive Analytical Results for Soil SamplesHawkeye Trade Center and Residences, Rochester, New York

		Location ID:	EMH1-SED	SB01	SB02	SB03	SB04	SB05	SB06	SB06	SB07	SB08	SB08	SB08	SB09	SB10
		Sample Name:	EMH1-SED	SB01-Z06-08	SB02-Z07-09	SB03-Z05-07	SB04-Z00-02	SB05-Z00-02	SB06-Z00-02	SB06-Z08-10	SB07-Z00-02	SB08-Z00-04	SB08-Z06-08	SB08-Z06-	SB09-Z05-06	SB10-Z01-03
														08 (DUP)		
		Depth:	0 - 0 ft	6 - 8 ft	7 - 9 ft	5 - 7 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	8 - 10 ft	0 - 2 ft	0 - 4 ft	6 - 8 ft	6 - 8 ft	5 - 6 ft	1 - 3 ft
		Date:	44477.5694	444/3.434/	44473.4965	44473.5417	444/3.60/6	44473.6354	44473.6563	44473.6632	44474.4208	444/4.4868	444/4.5	44474.5	44475.4549	44475.4979
	Commoroial	Protection of														
Analuta		Groundwater														
Volatile Organic Compounds by Mothod SW8260C (mg/kg)	300	3005		-												
Acetone	500	0.05	0.026 I	0.0041 U	0.0039.11	0.0085.1	0.010 T	0 0041 U	0.0057 I	0 014 T	0 0058 T	0.0039.11	0.0034 U	0.0035 U	0.0041 U	0 0044 U
Benzene	44	0.05	0.0002611	0.00024 U	0.00023 U	0.0003.3	0.00027 U	0.00024 U	0.00027 U	0.0014.5	0.00028 J	0.00023 U	0.0004 U	0.0002 U	0.00024 U	0.00026 U
Carbon Disulfide	N/A	N/A	0.0027 U	0.0024 U	0.0023 U	0.0022 U	0.0027 U	0.0024 U	0.0027 U	0.0033.1	0.0023 U	0.0023 U	0.002 U	0.0021 U	0.0025 U	0.0026 U
Chloroform	350	0.37	0.00033 U	0.00030 U	0.00029 U	0.00027 U	0.00068 J	0.00037 J	0.00036 J	0.00029 U	0.00078 J	0.00029 U	0.00025 U	0.00026 U	0.0003 U	0.00033 U
cis-1.2-Dichloroethene	500	0.25	0.00068 U	0.00062 U	0.00059 U	0.00055 U	0.00070 U	0.00062 U	0.0007 U	0.0014 J	0.00059 U	0.0006 U	0.00051 U	0.00053 U	0.00063 U	0.00068 U
Cyclohexane	N/A	N/A	0.00075 U	0.00068 U	0.00065 U	0.00061 U	0.00077 U	0.00068 U	0.00076 U	0.023	0.00076 J	0.00066 U	0.00056 U	0.00058 U	0.00069 U	0.00074 U
Ethylbenzene	390	1	0.00037 U	0.00034 U	0.00032 U	0.00030 U	0.0063	0.00034 U	0.0016 J	0.0038 J	0.00032 U	0.00032 U	0.00028 U	0.00029 U	0.00034 U	0.00036 U
Isopropylbenzene (Cumene)	N/A	N/A	0.00081 U	0.00073 U	0.00070 U	0.00065 U	0.00083 U	0.00073 U	0.00082 U	0.0011 J	0.00069 U	0.00071 U	0.00061 U	0.00062 U	0.00074 U	0.0008 U
Methyl Ethyl Ketone (2-Butanone)	500	0.12	0.0020 U	0.0018 U	0.0017 U	0.0016 U	0.0020 U	0.0018 U	0.002 U	0.0017 U	0.0017 U	0.0017 U	0.0015 U	0.0015 U	0.0018 U	0.0019 U
Methylcyclohexane	N/A	N/A	0.00081 U	0.00074 U	0.0007 U	0.00087 J	0.00083 U	0.00074 U	0.00083 U	0.066	0.0012 J	0.00071 U	0.00061 U	0.00063 U	0.00075 U	0.0008 U
Tetrachloroethene (PCE)	150	1.3	0.00072 U	0.00065 U	0.00062 U	0.00058 U	0.00074 U	0.00065 U	0.00073 U	0.00063 U	0.0019 J	0.00063 U	0.00054 U	0.00056 U	0.0011 J	0.00071 U
Toluene	500	0.7	0.00040 U	0.00037 U	0.00048 J	0.00044 J	0.097	0.0019 J	0.012	0.0055	0.00073 J	0.00035 U	0.0003 U	0.00031 U	0.00037 U	0.0004 U
trans-1,2-Dichloroethene	500	0.19	0.00055 U	0.00050 U	0.00048 U	0.00045 U	0.00057 U	0.0005 U	0.00056 U	0.00049 U	0.00048 U	0.00048 U	0.00041 U	0.00043 U	0.00051 U	0.00054 U
Trichloroethene (TCE)	200	0.47	0.0012 U	0.0011 U	0.0010 U	0.0011 J	0.013	0.0056	0.012	0.0018 J	0.023	0.0034 J	0.0017 J	0.0016 J	0.0011 U	0.0012 U
Xylenes	500	1.6	0.00090 U	0.00092 J	0.00078 U	0.00073 U	0.030	0.00082 U	0.009 J	0.037	0.00077 U	0.00079 U	0.00067 U	0.00069 U	0.00082 U	0.00089 U
Semivolatile Organic Compounds by Method SW8270D (mg/kg)															
1,4-Dioxane (p-Dioxane)	N/A	N/A	0.72 U													
2-Methylnaphthalene	N/A	N/A		0.041 U	0.041 U	0.042 U	0.37 U	0.39 U	0.38 U	0.04 U	0.37 U	0.039 U	0.037 U	0.037 U	0.041 U	0.038 U
Acenaphthylene	500	107		0.027 U	0.027 U	0.11 J	0.24 U	0.25 U	0.25 U	0.026 U	0.24 U	0.025 U	0.024 U	0.024 U	0.027 U	0.024 U
Anthracene	500	1000		0.051 U	0.051 U	0.46	0.46 U	0.48 U	0.88 J	0.049 U	0.46 U	0.049 U	0.046 U	0.046 U	0.051 U	0.047 U
Benzo(a)Anthracene	5.6	1		0.021 U	0.041 J	0.97	1.3 J	0.77 J	3.4	0.024 J	1.2 J	0.02 U	0.018 U	0.018 U	0.021 U	0.019 U
Benzo(a)Pyrene	1	22		0.03 U	0.037 J	0.65	1.1 J	0.66 J	2.9	0.029 U	1.1 J	0.029 U	0.027 U	0.027 U	0.03 U	0.028 U
Benzo(b)Fluoranthene	5.6	1.7		0.033 U	0.042 J	0.90	1.8 J	0.88 J	4.4	0.032 U	1.8 J	0.031 U	0.029 U	0.029 U	0.033 U	0.03 U
Benzo(g,h,i)Perylene	500	1000		0.022 U	0.023 J	0.30	0.90 J	0.52 J	2.3	0.021 U	0.98 J	0.021 U	0.02 U	0.02 U	0.022 U	0.02 U
Benzo(k)Fluoranthene	56	1.7		0.027 U	0.027 U	0.35	0.56 J	0.36 J	1.6 J	0.026 U	0.53 J	0.025 U	0.024 U	0.024 U	0.027 U	0.024 U
Bis(2-ethylhexyl)Phthalate	N/A	N/A		0.07 U	0.071 U	0.071 U	0.63 U	0.66 U	0.66 U	0.068 U	0.64 U	0.067 U	0.063 U	0.063 U	0.07 U	0.065 U
Carbazole	N/A	N/A		0.024 U	0.024 U	0.071 J	0.22 U	0.23 U	0.42 J	0.023 U	0.22 U	0.023 U	0.022 U	0.022 U	0.024 U	0.022 U
Chrysene	56	1		0.046 U	0.046 U	0.80	1.4 J	0.82 J	3.7	0.044 U	1.3 J	0.044 U	0.041 U	0.041 U	0.046 U	0.042 U
Dibenz(a,h)Anthracene	0.56	1000		0.036 U	0.037 U	0.11 J	0.33 U	0.34 U	0.62 J	0.035 U	0.33 U	0.035 U	0.033 U	0.033 U	0.036 U	0.033 U
Dibenzofuran	180	N/A		0.024 U	0.024 U	0.053 J	0.22 U	0.23 U	0.23 U	0.023 U	0.22 U	0.023 U	0.022 U	0.022 U	0.024 U	0.022 U
DI-n-Butyl Phthalate	N/A	N/A		0.035 U	0.035 U	0.036 U	0.32 0	0.33 U	0.33 U	0.056 J	0.32 0	0.034 U	0.031 U	0.032 U	0.035 U	0.032 U
Fluorantnene	500	1000		0.022 U	0.080 J	2.0	2.2 0.22 U	1.3 J	9.1	0.051 J	2.4	0.021 U	0.02 U	0.02 U	0.022 U	0.02 U
Fillotelle	500	360		0.024 U	0.024 U	U.U99 J	0.22 U	0.23 U	0.25 J	0.025 U	0.22 U	0.023 U	0.022 U	0.022 U	0.024 U	0.022 U
Dhananthrana	5.0	0.2		0.025 U	0.020 U	0.33	U./ð J 0.47 t	0.42 J	2.U 1 Q	0.025 U	U.05 J	0.024 U	0.023 U	0.025 U	0.020 U	0.023 U
	500	1000		0.03 0	0.009 J	1./	0.4/J 2/	U.JJ J 1 2 T	4.0 7 1	0.04/J 0.020 T	0.03 J 2 A	0.029 U	0.027 U	0.027 U	0.03 0	0.028 U
PCBs by Mothod SW2022A (ma/ka)	500	1000		0.024 U	0.002 J	1.3	2.4	1.3 J	/.1	0.039 J	2.0	0.025 0	0.022 U	0.022 U	0.024 0	0.022 U
PCB-1248 (Aroclor 1248)	1	3.2	0.048.11	0.045.11	0.048.11	0.049.11	0.043.11	0.047.11	0.052.11	0.030.11	0.049.11	0.052.11	0.044.11	0.040.11	0.057.11	0.042 U
$PCB_{1260} (Aroclor 1260)$	1	3.2	0.040 U	0.045.0	0.040 U	0.049.0	0.043.0	0.0470	0.052 U	0.037.0	0.049.0	0.032 0	0.044 0	0.040 0	0.037.0	0.10 U
	1	5.2	0.11 0	0.11 0	0.11 0	0.12 0	0.10 0	0.11 0	U.1/ J	0.074 0	0.12 U	0.15 0	0.11 U	0.077 0	0.14 0	0.10 0
Per- and Polyfluoroalkyl Substances by 537(Μ) (μg/kg)																
Table 2 Summary of Positive Analytical Results for Soil Samples

Hawkeye Trade Center and Residences, Rochester, New York

	Location II Sample Name	: EMH1-SED : EMH1-SED	SB01 SB01-Z06-08	SB02 SB02-Z07-09	SB03 SB03-Z05-07	SB04 SB04-Z00-02	SB05 SB05-Z00-02	SB06 SB06-Z00-02	SB06 SB06-Z08-10	SB07 SB07-Z00-02	SB08 SB08-Z00-04	SB08 SB08-Z06-08	SB08 SB08-Z06- 08 (DUP)	SB09 SB09-Z05-06	SB10 SB10-Z01-03
	Depth Date	n: 0 - 0 ft e: 44477.5694	6 - 8 ft 44473.4347	7 - 9 ft 44473.4965	5 - 7 ft 44473.5417	0 - 2 ft 44473.6076	0 - 2 ft 44473.6354	0 - 2 ft 44473.6563	8 - 10 ft 44473.6632	0 - 2 ft 44474.4208	0 - 4 ft 44474.4868	6 - 8 ft 44474.5	6 - 8 ft 44474.5	5 - 6 ft 44475.4549	1 - 3 ft 44475.4979
Comn Analyte SC	Protection o hercial Groundwate O ⁽¹⁾ SCOs ⁽¹⁾	f r													
Metals by Method SW6010C (mg/kg)															
Aluminum N	A N/A	9020 J+	7930	4500	5950	8890	6470	16800	7800	6520	6860 J+	6080	5010	10500	8120
Antimony N	A N/A	0.49 U	0.50 U	0.47 U	20.5 J	1.1 J	0.47 U	0.43 U	0.49 U	0.44 U	0.48 UJ	0.44 U	0.41 U	0.48 UJ	0.46 U
Arsenic 1	6 16	7.8	6.8	6.0	10.9	4.6	5.9	4.0	4.1	4.8	12.3 J-	2.4	2.7	7.4	4.5
Barium 4	00 820	72.9 J	24.5	16.2	27	146	50.2	274	68.4	46.5	38.8 J+	31.4	27.7	25.1 J+	43.7
Beryllium 55	90 47	0.4	0.44	0.38	0.42	0.49	0.39	1.1	0.41	0.38	0.3	0.29	0.24	0.49	0.38
Cadmium 9	.3 75	2.9	0.13 J	0.26	0.67	0.67	0.15 J	0.39	0.12 J	0.17 J	0.12 J	0.078 J	0.074 J	0.083 J	0.091 J
Calcium N	A N/A	86100	138000	242000	66500	127000	169000	164000	87400	128000	65400	36700	29300	116000	1540
Chromium, Total 15	00 N/A	23.5	10	5.2	23.9	12.5	7.9	21.7	9.4	15.2	8.9	8.8	7.2	10.4	9.1
Cobalt N	A N/A	24.1	5.2	3.6	9.7	4.5	4.2	6.1	4.6	3.5	9.6	5.2	5.2	5.1	4.7
Copper 2	70 1720	198 J	14.4	11.6	86.5	24.8	9.3	20.1	11.2	11.3	12	6.7	7.6	5.9	9.6
Iron N	A NA	56800	12100	8930	126000	11000	10100	20300	10100	11100	13300	12400	9960	11400	12600
Lead 10	00 450	79 J+	33.7	20.2	82.1	79.1	25.5	36	17.4	31.9	6.0	2.9	3.0	17.7	7.5
Magnesium N	A NA	21300	19100	8710	7310	24600	25500	24400	30000	44800	4300 J-	6210	6020	24200	1690
Manganese 10	2,000	733	396	375	923	366	366	327	355	275	609	366	357	395	306
Nickel 3	10 130	32.7	13.2	9.1	27	12	10.8	19.9	11.4	8.7	13.8	11.5	11.1	12.3	12
Potassium N	A N/A	1560 J+	3660	2380	2060	1460	3230	1920	2760	2170	1460 J+	1510	1020	5630 J+	1810
Selenium 15	00 4	0.49 U	0.50 U	0.47 U	11.3	0.45 U	0.58 U	1.8 U	0.49 U	0.44 U	1.2 U	0.44 U	0.41 U	0.48 U	0.46 U
Silver 15	00 8.3	0.34 J	0.33 J	0.24 U	0.25 U	16.4	3.5	21.5	0.38 J	2.2	0.24 U	0.22 U	0.21 U	0.24 U	0.23 U
Sodium N	A N/A	333	414	347	542	301	543	1040	541	319	384	415	405	157 J	110 J
Vanadium N	A N/A	18.7	10.8	6.0	22.5	18.2	10	42.3	12.1	13.9	15	15.8	11.7	12.3	16.9
Zinc 10	000 2480	189 J-	27.6	89.9	56.2	112	77.6	84.0	62.1	74.5	28.0	21.9	21.3	45.8 J-	37.4
Mercury by Method SW7471B (mg/kg)															
Mercury 2	.8 730	0.0080 J	0.0063 J	0.013 J	0.022	0.039	0.036	0.089	0.037	0.046	0.0051 U	0.0047 U	0.0097 J	0.0052 U	0.011 J

Key:

Qualifiers

J = Estimated value

- J+ = Estimated value, high biased
- J- = Estimated value, low biased

U = Not detected (method detection limit shown)

UJ = Not detected/estimated detection limit

Other

µg/kg = Micrograms per kilogram

mg/kg = Milligrams per kilogram

-- = Analyte not analyzed for

N/A = Not regulated/no available criteria

PoG = Protection of Groundwater

Bold values denote positive detections.

Exceeds Protection of Commercial SCO values. Exceeds Protection of Groundwater SCO values.

1. New York State Department of Environmental Conservation, 6 NYCRR Part 375 Environmental Remediation Programs, 2006, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives.

Table 2 Summary of Positive Analytical Results for Soil SamplesHawkeye Trade Center and Residences, Rochester, New York

		Location ID:	SB11	SB13	SB14	SB15	SB15	SB16	SB18	SB19	SB19	SB20
		Sample Name:	SB11-Z01-03	SB13-Z02-04	SB14-Z02-04	SB15-Z03-05	SB15-Z08-10	SB16-Z07-09	SB18-Z03-05	SB19-Z03-05	SB19-Z08-10	SB20-Z03-05
		Depth:	1 - 3 ft	2 - 4 ft	2 - 4 ft	3 - 5 ft	8 - 10 ft	7 - 9 ft	3 - 5 ft	3 - 5 ft	8 - 10 ft	3 - 5 ft
		Date:	44475.5625	44476.3819	44476.4028	44476.4236	44476.4375	44476.4583	44476.5417	44476.559	44476.5625	44476.5833
		Protection of										
	Commercial	Groundwater										
Analyte	SCO W	SCOs (7										
Volatile Organic Compounds by Method SW8260C (mg/kg)	500	0.05	0.004.11	0.015 1	0.0042.11	0.004.11	0.0040 U	0.0040.11	0.014.7	0.014.7	0.015 1	0.022 1
Acetone	500	0.05	0.004 U	0.015 J	0.0042 U	0.004 U	0.0042 U	0.0048 U	0.014 J	0.014 J	0.015 J	0.022 J
Benzene	44 N/A	0.06	0.00023 U	0.00026 U	0.00025 U	0.00023 U	0.00024 U	0.00028 U	0.00022 U	0.00022 U	0.00019 J	0.00024 U
Carbon Disuinde	N/A	N/A	0.0024 U	0.00270	0.0025 U	0.0024 0	0.0025 U	0.0028 U	0.0023 U	0.0022 U	0.002 U	0.0024 U
Chloroform	350	0.37	0.00029 U	0.0020 J	0.00031 U	0.00053 J	0.00031 0	0.00035 U	0.00028 U	0.000270	0.00024 U	0.0003 U
Cuslekavara	500 N/A	0.25 N/A	0.00061 U	0.0012	0.00064 U	0.0037 J	0.0071	0.00073 U	0.00058 U	0.000570	0.0005 U	0.00062 U
Etherbargene	IN/A 200	IN/A	0.00067 U	0.00073 U	0.0007 U	0.00087 U	0.0007 U	0.0008 U	0.00065 U	0.00062 0	0.00083 J	0.0013 J
Linyidenzene (Cumono)	390 N/A		0.00033 U	0.000370	0.00035 U	0.00033 U	0.00034 U	0.00039 U	0.00051 U	0.00041 J	0.00053 J	0.00039 J
Mathyl Ethyl Katana (2 Dytanana)	IN/A	N/A	0.00072 U	0.00081 U	0.00076 U	0.00072 U	0.00073 U	0.00086 U	0.00068 U	0.000670	0.00039 U	0.00073 0
Methyl Ethyl Ketole (2-Butanone)	500 N/A	0.12	0.00170	0.002 U	0.0018 U	0.0018 U	0.0018 U	0.0021 U	0.0010 U	0.0016 U	0.0033 J	0.0048 J
Tetrachlaroothora (DCE)	IN/A	N/A	0.00072 U	0.00081 U	0.00076 U	0.00073 0	0.00073 U	0.00087U	0.00073 J	0.000670	0.0013 J	0.0039 J
Teluane	500	1.5	0.0004 U	0.0010 J	0.00094 J	0.0021	0.0010 J	0.00070 U	0.0000 U	0.0000 0	0.00033 U	0.00003 0
trans 1.2 Dichloroathana	500	0.7	0.00030 U	0.00075 J	0.00049J	0.00030 U	0.00058 U	0.00043 U	0.00034 U	0.00038 J	0.00041 J	0.00040 J
Trichloroothone (TCE)	200	0.13	0.000490	0.00055 J	0.00032.0	11	0.00051 0	0.00039.0	0.00040 U	0.00040 U	0.0004 U	0.0005 U
Yylenes	500	1.6	0.0008 U	0.000 U	0.00084 U	0.0008 U	0.040	0.0015 U	0.00039 U	0.00098 U	0.00080 U	0.0011 0
Somivalatile Organic Compounds by Mathad SW8270D (mg/kg	500	1.0	0.0008 0	0.0009 0	0.00084 0	0.0008 0	0.00083 0	0.00090 0	0.00070.0	0.00073-0	0.0017 J	0.0010 J
14 Diovane (n Diovane)	N/A	N/A						0.068.11				
2.Methylnanhthalene	N/A N/A	N/A N/A	0.039.U	0.19.U	0211	0.041 U	0.041 U	0.008 U	0 10 T	03611	0.37 U	0.36 U
A cenaphthylene	500	107	0.035 U	0.12 U	0.13 U	0.0410	0.041 U	0.042 U	0.17 5	0.30 0	0.24 U	0.30 0
Anthracene	500	100	0.025 U	0.12 U	0.15 U	0.020 0	0.027 U	0.027 U	0.12 U	0.25 U	0.24 U	0.25 U
Benzo(a) Anthracene	56	1000	0.048 U	1.2	0.24 0	0.05 0	0.031 U	0.032 U	0.09 U	0.18 U	0.40 U	0.14 U
Benzo(a)Pyrene	1	22	0.029 U	0.83 I	0.47 J	0.22	0.056 I	0.021 U	0.09 0	0.10 0	0.17 0	0.10 0
Benzo(b)Fluoranthene	56	1.7	0.029 U	13	0.41 J	0.23	0.050 J	0.034 U	0.303	0.35 J	0.37 J	0.40 J
Benzo(g h i)Pervlene	500	1000	0.021 U	0.69.1	0.18 J	0.22	0.052.1	0.022 U	0.095 U	0.19 U	0.28 J	0.37 J
Benzo(k)Fluoranthene	56	17	0.021 U	0.42.1	0.27 J	0.14.1	0.027 U	0.022 C	0.12 U	0.23 U	0.20 U	0.23 U
Bis(2-ethylhexyl)Phthalate	N/A	N/A	0.066 U	1.6	0.34 U	0.069 U	0.027 U	0.072 U	0.31 U	0.62 U	0.64 U	0.61 U
Carbazole	N/A	N/A	0.023 U	0.11 U	0.12 U	0.024 U	0.024 U	0.025 U	0.11 U	0.02 U	0.22 U	0.01 U
Chrysene	56	1	0.043 U	1.2	0.49 J	0.21	0.046 U	0.047 U	0.2 U	0.52 J	0.83 J	0.76 J
Dibenz(a,h)Anthracene	0.56	1000	0.034 U	0.26 J	0.17 U	0.081 J	0.037 U	0.037 U	0.16 U	0.32 U	0.33 U	0.32 U
Dibenzofuran	180	N/A	0.023 U	0.11 U	0.12 U	0.024 U	0.024 U	0.025 U	0.11 U	0.21 U	0.22 U	0.21 U
Di-n-Butyl Phthalate	N/A	N/A	0.033 U	0.16 U	0.17 U	0.035 U	0.035 U	0.036 U	0.15 U	0.31 U	0.32 U	0.31 U
Fluoranthene	500	1000	0.021 U	2.6	0.99	0.32	0.079 J	0.022 U	0.32 J	0.41 J	0.33 J	0.74 J
Fluorene	500	386	0.023 U	0.11 U	0.12 U	0.024 U	0.024 U	0.025 U	0.11 U	0.21 U	0.22 U	0.21 U
Indeno(1.2,3-c,d)Pyrene	5.6	8.2	0.024 U	0.55 J	0.21 J	0.21	0.044 J	0.026 U	0.16 J	0.22 U	0.23 U	0.22 U
Phenanthrene	500	1000	0.029 U	1.1	0.14 U	0.048 J	0.041 J	0.031 U	0.24 J	0.27 U	0.61 J	0.46 J
Pyrene	500	1000	0.023 U	2.1	0.8 J	0.32	0.083 J	0.025 U	0.53 J	0.60 J	0.76 J	0.79 J
PCBs by Method SW8082A (mg/kg)	1	1 1	1	1			1					
PCB-1248 (Aroclor 1248)	1	3.2	0.041 U	0.40	0.043 U	0.042 U	0.043 U	0.052 U	0.039 U			
PCB-1260 (Aroclor 1260)	1	3.2	0.098 U	0.38	0.10 U	0.10 U	0.10 U	0.12 U	0.094 U			
Por and Polyfluoroollad Substances by 527(M) (unlish)	1							None				
rer- and rolynuoroalkyl subsidiices by 557(M) (µg/kg)								Detected				

Table 2 Summary of Positive Analytical Results for Soil Samples

Hawkeye Trade Center and Residences, Rochester, New York

		Location ID: Sample Name:	SB11 SB11-Z01-03	SB13 SB13-Z02-04	SB14 SB14-Z02-04	SB15 SB15-Z03-05	SB15 SB15-Z08-10	SB16 SB16-Z07-09	SB18 SB18-Z03-05	SB19 SB19-Z03-05	SB19 SB19-Z08-10	SB20 SB20-Z03-05
		Depth: Date:	1 - 3 ft 44475.5625	2 - 4 ft 44476.3819	2 - 4 ft 44476.4028	3 - 5 ft 44476.4236	8 - 10 ft 44476.4375	7 - 9 ft 44476.4583	3 - 5 ft 44476.5417	3 - 5 ft 44476.559	8 - 10 ft 44476.5625	3 - 5 ft 44476.5833
Analyte	Commercial SCO ⁽¹⁾	Protection of Groundwater SCOs ⁽¹⁾										
Metals by Method SW6010C (mg/kg)												
Aluminum	N/A	N/A	8790	11900	11400	11200	11000	15100	10800			
Antimony	N/A	N/A	0.45 U	0.45 U	0.48 U	1.8 J	0.50 U	0.50 U	0.45 U			
Arsenic	16	16	6.2	6.8	3.7	9.8	10	9.9	4.6			
Barium	400	820	35.8	170	54.9	64.6	54	64.8	45.1			
Beryllium	590	47	0.47	0.6	0.48	0.59	0.55	0.68	0.41			
Cadmium	9.3	75	0.13 J	0.8	0.22 J	0.24 J	0.54	0.24 J	0.19 J			
Calcium	N/A	N/A	132000	116000	17500	79200	138000	38100	73800			
Chromium, Total	1500	N/A	9.6	16.7	11.8	12.6	13.1	16.2	13.5			
Cobalt	N/A	N/A	4.2	5.9	5.8	5.4	6.9	9.2	5.9			
Copper	270	1720	7.1	112	8.5	90.4	68.8	25.4	19.1			
Iron	N/A	NA	9300	16900	13100	13400	14000	20900	13000			
Lead	1000	450	20.4	68.5	48.1	75.5	31.8	22.9	18.9			
Magnesium	N/A	NA	17500	19600	4490	11400	16500	10200	31800			
Manganese	10000	2,000	333	395	369	354	420	1050	403			
Nickel	310	130	9.4	16	11.4	18.6	17.3	23.4	14.2			
Potassium	N/A	N/A	4850	2590	1790	4150	5720	4900	3580			
Selenium	1500	4	0.45 U	0.45 U	0.48 U	0.51 U	0.50 U	0.50 U	0.45 U			
Silver	1500	8.3	0.23 U	22.7	2.2	8.6	1.8	0.32 J	0.48 J			
Sodium	N/A	N/A	242	665	682	1250	938	208	230			
Vanadium	N/A	N/A	11.1	23.7	17.6	16.8	13.4	23.1	19.9			
Zinc	10000	2480	48.5	153	40.9	78.1	156	64.6	57.0			
Mercury by Method SW7471B (mg/kg)		• • •	•			•	•	•	•	•	•	•
Mercury	2.8	730	0.0048 U	1.2	0.041	0.14	0.071	0.0058 J	0.070			

Key:

Qualifiers

J = Estimated value

- J+ = Estimated value, high biased
- J- = Estimated value, low biased

U = Not detected (method detection limit shown)

UJ = Not detected/estimated detection limit

Other

µg/kg = Micrograms per kilogram

- mg/kg = Milligrams per kilogram
- -- = Analyte not analyzed for
- N/A = Not regulated/no available criteria
- PoG = Protection of Groundwater

Bold values denote positive detections.

Exceeds Protection of Commercial SCO values. Exceeds Protection of Groundwater SCO values.

1. New York State Department of Environmental Conservation, 6 NYCRR Part 375 Environmental Remediation Programs, 2006, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives.

3-05

Source: Ecology and Environment Engineering and Geology, P.C. 2022

Table 3 Thorium Results in Soil Samples

Hawkeye Trade Center and Residences, Rochester, New York

Location ID: Sample Name: Sample Date:		EMH1- EMH1- 10/8/2	·SED ·SED 2021			SB(SB01-Z 10/4/2	01 206-08 2021			SB0 SB02-Z 10/4/2	02 07-09 021	
Isotopic Thorium (Alpha Spectrometry) (pCi/g)	Activity	Uncert +/-	Qual	MDC	Activity	Uncert +/-	Qual	MDC	Activity	Uncert +/-	Qual	MDC
Thorium-232	0.302	0.105		0.0538	0.587	0.143		0.0466	0.57	0.15		0.0658
Thorium-228	0.175	0.0942		0.091	0.433	0.131		0.0887	0.745	0.182		0.107
Thorium-230	0.131	0.129	U	0.181	0.375	0.135		0.114	0.495	0.159		0.123

Location ID: Sample Name: Sample Date:		SB07 SB07-Z00-02 10/5/2021				SB(SB08-Z 10/5/2	08 200-04 2021			SB0 SB08-Z 10/5/2)8 06-08 021	
Analyte												
Isotopic Thorium (Alpha Spectrometry) (pCi/g)	Activity	Uncert +/-	Qual	MDC	Activity	Uncert +/-	Qual	MDC	Activity	Uncert +/-	Qual	MDC
Thorium-232	0.419	0.115		0.0479	0.646	0.16		0.0657	0.34	0.113		0.0642
Thorium-228	0.49	0.137	J+	0.1	0.54	0.153		0.0933	0.369	0.129		0.103
Thorium-230	0.347	0.128		0.111	0.459	0.155		0.124	0.386	0.143		0.122

Location ID: Sample Name: Sample Date:		SB0 -SB08-Z06 10/5/2	08 08 (DUP) 2021			SB(SB09-Z 10/6/2	09 05-06 2021			SB1 SB13-Z 10/7/2	3 02-04 021	
Analyte	A	T T ()	<u> </u>	MDG	A					T T ((<u> </u>	MDG
Isotopic Thorium (Alpha Spectrometry) (pCi/g)	Activity	Uncert +/-	Qual	MDC	Activity	Uncert +/-	Qual	MDC	Activity	Uncert +/-	Qual	MDC
Thorium-232	0.276	0.098		0.0571	0.496	0.149		0.0628	0.523	0.138		0.0525
Thorium-228	0.357	0.122		0.0938	0.765	0.196		0.107	0.417	0.138		0.12
Thorium-230	0.239	0.117		0.113	0.386	0.156		0.136	0.475	0.152		0.117

Location ID: Sample Name: Sample Date: Analyte		SB SB16-2 10/7/2	16 207-09 2021	
Isotopic Thorium (Alpha Spectrometry) (pCi/g)	Activity	Uncert +/-	Qual	MDC
Thorium-232	0.583	0.151		0.0676
Thorium-228	0.646	0.169		0.112
Thorium-230	0.305	0.132		0.119

Key:

J+= estimated, high biased

U = not detected (method detection limit shown)

MDC = minimum detectable concentration

pCi/g = picocuries/gram

Uncert = uncertainty

Qual = qualifier

DUP = field duplicate

Table 4 Summary of Positive Analytical Results for Groundwater SamplesHawkeye Trade Center and Residences, Rochester, New York

	Location ID:	IB11AW	IB12SW	IB5NE	IB5SW	IB5SW2	IB6NE	IL2NE	MW-05	MW-06	MW-07	MW-12	MW-14	MW-15	MW-16	MW-17
	Date:	10/28/21	10/28/21	10/29/21	10/27/21	10/25/21	10/26/21	10/28/21	10/27/21	10/27/21	10/27/21	10/28/21	10/27/21	10/27/21	10/27/21	10/29/21
	Screening															
Analyte	Criteria ⁽¹⁾															
Volatile Organic Compounds by Method 8260C (ug/L)																
1.1.2-Trichloro-1.2.2-Trifluoroethane	5	0.31 U	0.62 U	0.31 U	0.31 U	0.62 U	0.31 U	0.31 U	0.93 J	0.62 U	0.31 U					
Chloroform	7	0.34 U	0.68 U	0.34 U	0.34 U	1.3 J	0.34 U	0.34 U	0.5 J	0.93 J	0.34 U					
cis-1,2-Dichloroethene	5	5.1	0.81 U	1.6 U	0.81 U	0.81 U	1.6 U	0.81 U	0.81 U	0.81 U	1.6 U	0.81 U				
Cyclohexane	N/A	0.18 U	0.36 U	0.29 J	0.18 U	0.4 J	0.18 U	0.18 U	0.18 U	0.36 U	0.18 U					
Methylcyclohexane	N/A	0.16 U	0.32 U	0.37 J	0.16 U	0.68 J	0.16 U	0.16 U	0.16 U	0.32 U	0.16 U					
tert-Butyl Methyl Ether	10	3.9	0.16 U	0.16 U	0.16 U	0.16 U	7.3	0.32 U	0.16 U	0.16 U	0.32 U	0.16 U	0.16 U	0.16 U	0.32 U	0.16 U
Tetrachloroethene (PCE)	5	0.36 U	1.7 J	0.36 U	0.36 U	0.97 J	0.36 U	0.36 U	0.36 U	1.4 J	0.36 U					
Toluene	5	0.51 U	1.0 U	0.56 J	0.51 U	1.0 U	0.51 U	0.51 U	0.51 U	1.0 U	0.51 U					
Trichloroethene (TCE)	5	14	2.8	0.46 U	0.46 U	0.83 J	0.46 U	5.7	0.46 U	0.46 U	18	7.9	0.46 U	1.8	29	0.82 J
Vinyl Chloride	2	0.90 U	1.8 U	0.90 U	0.90 U	1.8 U	0.90 U	0.90 U	0.90 U	1.8 U	0.90 U					
Semivolatile Organic Compounds by Method SW8270D (µg/L)	LI	1		1	1			1								
Di-n-Butyl Phthalate	50	0.34 U	0.34 U	0.33 U	0.35 U	0.32 U	0.31 U	0.31 U		0.31 U	7.8 U	0.31 U			7.8 U	
1,4-Dioxane by Method SW8270D-SIM (µg/L)	0.35					0.11 U										
PCBs by Method SW8082A (µg/L)	0.09	All ND		All ND	All ND	All ND			All ND							
Fluorinated Alkyl Substances by 537(M) (ng/L)																
Perfluorobutanesulfonic acid (PFBS)	N/A					2.3										
Perfluorobutanoic Acid	N/A					12										
Perfluorodecanoic acid (PFDA)	N/A					0.76 J										
Perfluoroheptanoic acid (PFHpA)	N/A					2.4										
Perfluorohexanesulfonic acid (PFHxS)	N/A					2.9										
Perfluorohexanoic acid (PFHxA)	N/A					2.4										
Perfluorononanoic acid (PFNA)	N/A					0.76 J										
Perfluorooctanesulfonic acid (PFOS)	2.7					4.0										
Perfluorooctanoic acid (PFOA)	6.7					4.8										
Perfluoropentanoic Acid (PFPeA)	N/A					2.3										
Metals by Method SW6010C (µg/L)																
Aluminum	N/A	7900	170 U	60 U	820	410	2500	60 U		60 U	11200	6300			44200	
Arsenic	25	5.6 U	5.6 U	8.9 J	5.6 U	5.6 U	5.6 U	5.6 U		5.6 U	27	5.6 U			37	
Barium	1000	91	57	32	22	42	260	74		41	55	53			250	
Beryllium	3	0.41 J	0.30 U		0.30 U	0.45 J	0.30 U			1.6 J						
Cadmium	5	0.50 U		0.50 U	1.8 J	0.50 U			1.3 J							
Calcium	N/A	127000	30700	18700	44000	46900	262000	42900		31100	74700	59500			66200	
Chromium, Total	50	7.9	1.4 J	1.0 U	3.8 J	1.7 U	4.1	9.1		140	42	110			99	
Cobalt	N/A	4.7	0.63 U	0.89 J	0.63 U	0.63 U	72	0.63 U		0.63 U	6.9	3.2 J			24	
Copper	200	5.5 U	1.6 U	3.5	7.0 J	3.7 U	7.2 U	2.0 U		1.6 U	260	8.9 U			270	
Iron	300	4600	630	210	470	170	1700	130		160	13100	7100			49200	
Lead	25	6.1 J	3.0 U		3.0 U	27	7.4 J			140						
Magnesium	35000	33000	6800	5300	6300	9400	120000	14500		5700	14300	13000			15100	
Manganese	300	220	33	25	26	2.1 U	2000	6.2		7.3	400	280			810	
Nickel	100	9.0 J	1.6 J	1.5 J	2.6 J	1.3 U	72	3.6 J		1.3 U	110	8.3 J			79	
Potassium	N/A	10100	890	2100	11000	2900	11900	3800		4100	13200	5900			16000	
Silver	50	1.7 U		1.7 U	24	1.7 U			21							
Sodium	20000	377000	212000	667000	25100	279000	967000	715000		459000	167000	36700			297000	
Vanadium	N/A	9.6	1.5 U	3.7 J	6.8	1.5 U	2.8 J	1.5 U		1.5 U	49	9.1			79	
Zinc	2000	46	4.0 U	6.6 U	9.5 U	1.5 U	200	3.1 U		1.5 U	110	25			310	
Mercury by Method SW7470A (µg/L)		1	1	1	1			1	1	1		· · · · · · · · · · · · · · · · · · ·				
Mercury	0.7	0.043 U		0.043 U	0.90	0.043 U			0.78							

Table 4 Summary of Positive Analytical Results for Groundwater SamplesHawkeye Trade Center and Residences, Rochester, New York

	Location ID:	MW-18	MW-19	MW-20	MW-21	MW-23	SB4NE
	Date:	10/28/21	10/28/21	10/27/21	10/27/21	10/26/21	10/29/21
	Screening						
Analyte	Criteria ⁽¹⁾						
Volatile Organic Compounds by Method 8260C (ug/L)		l					
1,1,2-Trichloro-1,2,2-Trifluoroethane	5	0.31 U	0.31 U	1.2 U	1.2 U	0.31 U	0.62 U
Chloroform	7	0.34 U	0.34 U	1.4 U	1.4 U	0.34 U	0.68 U
cis-1,2-Dichloroethene	5	0.81 U	0.81 U	40	40	0.81 U	1.6 U
Cyclohexane	N/A	0.18 U	0.18 U	13	0.72 U	0.18 U	0.36 U
Methylcyclohexane	N/A	0.16 U	0.16 U	22	0.64 U	0.16 U	0.32 U
tert-Butyl Methyl Ether	10	0.16 U	0.16 U	0.64 U	0.64 U	0.16 U	0.32 U
Tetrachloroethene (PCE)	5	0.36 U	0.36 U	3.9 J	1.8 J	0.36 U	0.72 U
Toluene	5	0.51 U	0.51 U	2.0 U	2.0 U	0.51 U	1.0 U
Trichloroethene (TCE)	5	1.6	0.46 U	64	130	3.9	0.92 U
Vinyl Chloride	2	0.90 U	0.90 U	3.6 U	6.8	0.90 U	1.8 U
Semivolatile Organic Compounds by Method SW8270D (µq/L)	II	ļ					
Di-n-Butyl Phthalate	50		0.31 U	7.8 U	0.31 U	0.32 J	1.6 U
1.4-Dioxane by Method SW8270D-SIM (µq/L)	0.35						
PCBs by Method SW8082A (µg/L)	0.09		All ND	All ND	All ND	All ND	
Fluorinated Alkyl Substances by 537(M) (ng/L)	· · · · · · · · · · · · · · · · · · ·	1					
Perfluorobutanesulfonic acid (PFBS)	N/A						
Perfluorobutanoic Acid	N/A						
Perfluorodecanoic acid (PFDA)	N/A						
Perfluoroheptanoic acid (PFHpA)	N/A						
Perfluorohexanesulfonic acid (PFHxS)	N/A						
Perfluorohexanoic acid (PFHxA)	N/A						
Perfluorononanoic acid (PFNA)	N/A						
Perfluorooctanesulfonic acid (PFOS)	2.7						
Perfluorooctanoic acid (PFOA)	6.7						
Perfluoropentanoic Acid (PFPeA)	N/A						
Metals by Method SW6010C (µg/L)	· · · · · · · · · · · · · · · · · · ·	1					
Aluminum	N/A		140 J	96100	60 U	2600	
Arsenic	25		5.6 U	120	5.6 U	5.6 U	
Barium	1000		72	490	110	66	
Beryllium	3		0.30 U	4.8	0.30 U	0.30 U	
Cadmium	5		0.50 U	1.1 J	0.50 U	0.50 U	
Calcium	N/A		36100	596000	89400	55400	
Chromium, Total	50		1.5 J	110	4.0	4.1	
Cobalt	N/A		0.63 U	84	0.92 J	1.9 J	
Copper	200		9.1 U	180	9.8 J	25	
Iron	300		43 J	146000	420	4400	
Lead	25		6.4 J	260	3.0 U	5.2 J	
Magnesium	35000		2000	67100	19700	8400	
Manganese	300		6.1	3300	90	220	
Nickel	100		2.1 J	230	3.8 J	4.0 J	
Potassium	N/A		2800	47000	11300	5000	
Silver	50		1.7 U	8.5	1.7 U	1.7 U	
Sodium	20000		9600	772000	784000	6200	
Vanadium	N/A		2.3 J	150	1.5 U	4.3 J	
Zinc	2000		49	650	8.7 U	27	
Mercury by Method SW7470A (µg/L)							
Mercury	0.7		0.043 U	1.9	0.043 U	0.043 U	

Source: Ecology and Environment Engineering and Geology, P.C. 2021

Table 4 Summary of Positive Analytical Results for Groundwater SamplesHawkeye Trade Center and Residences, Rochester, New York

	Location ID: Date:
Analyte	Screening Criteria ⁽¹⁾
Key:	
Qualifiers	
J = Estimated value	
U = Not detected (method detection limit shown)	
ND = non-detect	
Notes	
G = Guidance value (no standard available)	
N/A = Not regulated/no available criteria	
Other	
ng/L = Nanograms per liter	
$\mu g/L = Micrograms$ per liter	
= Analyte not analyzed for	
Bold values denote positive detections.	
Exceeds groundwater standard or guidance value.	

1. New York State Department of Environmental Conservation, Technical and Operational Guidance Series Memorandum #1.1.1: *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations*, 1998 (with updates), Class GA Groundwater Standards and Guidance Values.

Source: Ecology and Environment Engineering and Geology, P.C. 2021

Table 5 Thorium Results in Groundwater Samples

Hawkeye Trade Center and Residences, Rochester, New York

Sample Name: Sample Date:		IB5S 10/27/2	SW 2021			IB5S 10/25/2	W2 2021			IB5SW2 10/25/2	- DUP 2021	
Isotopic Thorium (Alpha Spectrometry) (pCi/L)	Activity	Uncert +/-	Qual	MDC	Activity	Uncert +/-	Qual	MDC	Activity	Uncert +/-	Qual	MDC
Thorium-232	0.0605	0.0772	U	0.106	0.0656	0.0788	U	0.112	0.0118	0.0399	U	0.0845
Thorium-228	-0.0608	0.106	U	0.278	-0.0299	0.121	U	0.237	-0.0245	0.118	U	0.232
Thorium-230	0.0774	0.0901	U	0.124	0.0625	0.169	U	0.239	0.0803	0.174	U	0.24

Sample Name: Sample Date: Analyte		IB6M 10/26/2	NE 2021			IB 11 10/28/2	AW 2021			IB 123 10/28/2	SW 2021	
Isotopic Thorium (Alpha Spectrometry) (pCi/L)	Activity	Uncert +/-	Qual	MDC	Activity	Uncert +/-	Qual	MDC	Activity	Uncert +/-	Qual	MDC
Thorium-232	0.0909	0.0813		0.0793	0.141	0.143	U	0.176	-0.00603	0.0594	U	0.178
Thorium-228	0.304	0.183		0.211	0.315	0.235		0.296	0.127	0.158	U	0.256
Thorium-230	0.175	0.185	U	0.228	0.245	0.32	U	0.533	0.135	0.121	R	0.134

Sample Name: Sample Date: Analvte		MW- 10/27/2	06 2021		MW-12 10/28/2021				MW-23 10/26/2021			
Isotopic Thorium (Alpha Spectrometry) (pCi/L)	Activity	Uncert +/-	Qual	MDC	Activity	Uncert +/-	Qual	MDC	Activity	Uncert +/-	Qual	MDC
Thorium-232	0.0	0.0464	U	0.139	0.0545	0.113	U	0.222	0.0807	0.133	U	0.23
Thorium-228	0.13	0.13	U	0.19	0.149	0.199	U	0.331	-0.0157	0.188	U	0.382
Thorium-230	0.334	0.176	R	0.139	0.368	0.22	R	0.151	0.0993	0.24	U	0.348

Key:

U = not detected (method detection limit shown)

R = data unusable

MDC = minimum detectable concentration

pCi/l = picocuries/liter

Uncert = uncertainty

Qual = qualifier

Table 6 Summary of Positive Analytical Results for Soil Gas Samples

Hawkeye Trade Center and Residences	, Rochester, New York
-------------------------------------	-----------------------

	Location ID: Date:	SV-01 11/8/2022	SV-02 11/8/2022	SV-03 11/8/2022	SV-04 11/8/2022	SV-04-DUP 11/8/2022
	Screening Criteria ⁽¹⁾					
Volatile Organic Compounds by Method TC)-15 (µg/m³)					
Acetone	N/A	34	19 U	19 U	63	66
Benzene	12	5.5	1.0	56	6.0	6.0
1,3-Butadiene	3.12	0.44 U	0.44 U	3.3	4.8	4.7
Carbon Disulfide	2,430	6.2 U	16	8.3	8.5	8.7
Chloroethane	13,900	0.74	0.53 U	0.53 U	0.53 U	0.53 U
Chloroform	4.07	3.0	3.8	1.1	0.98 U	0.98 U
Chloromethane	313	2.0	0.83 U	0.83 U	0.83 U	0.83 U
Cyclohexane	20,900	0.69 U	1.8	59	3.0	4.5
Dichlorodifluoromethane (Freon 12)	348	2.2	2.2	2.0	2.0	2.1
Ethanol	N/A	16	15 U	15 U	15 U	15 U
Ethylbenzene	37.4	0.87 U	0.87 U	2.4	1.1	1.2
Heptane	1,390	70	4.4	110	5.2	5.5
Hexane	468	110	28 U	180	28 U	28 U
2-Hexanone (MBK)	104	0.82 U	0.82 U	0.82 U	0.82 U	1.2
4-Methyl-2-pentanone (MIBK)	10,400	0.82 U	0.82 U	0.82 U	2.0	2.4
Propene	10,400	14 U	14 U	14 U	43	44
Tetrachloroethene	139	1.4 U	2.1	3.4	1.4 U	1.4 U
Toluene	17,400	5.4	3.3	59	16	16
Trichloroethene	6.95	1.1 U	790	55	1.1 U	1.1 U
1,2,4-Trimethylbenzene	209	0.98 U	1.3	0.98 U	0.98 U	0.98 U
m&p-Xylene	348	1.7	2.7	11	3.4	3.4
o-Xylene	348	0.87	1.1	3.6	1.2	1.3

Key:

Notes:

Qualifiers

- U = not detected (method detection limit shown)
- Other

 $\mu g/m^3 = micrograms$ per cubic meter

"-DUP" denotes field duplicate sample

N/A = no available criteria

Bold values denote positive detections.

Exceeds Target Screening Level.

(1) USEPA Vapor Intrusion Screening Level for residential scenario; target sub-slab and nearsource soil gas concentration (target cancer risk = 10^{-6} and target hazard quotient = 0.1)

Figures

FIGURE 1 - EXISTING SITE PLAN AND SAMPLING LOCATIONS HAWKEYE TRADE CENTER AND RESIDENCES ROCHESTER, MONROE COUNTY, NEW YORK Y-\CAD\Hawkeye\Existing_Site_Map.dwg_1/18/2024_10:40:02_AM

FIGURE 2 - GROUNDWATER CONTOURS - INTERFACE WELLS HAWKEYE TRADE CENTER AND RESIDENCES ROCHESTER, MONROE COUNTY, NEW YORK CAD Hawkeye Existing Site Man dwg 1/18/2024 10:40:31 AM

FIGURE 3 – GROUNDWATER CONTOURS – OVERBURDEN WELLS HAWKEYE TRADE CENTER AND RESIDENCES ROCHESTER, MONROE COUNTY, NEW YORK

Population 225,000, Prevailing Winds, Kest. warter Autornalistic programs and a holy system and further service all for system for domestic programs and a holy system and further service all for the domestic programs and a holy system and further service all for the domestic programs and a holy system and further service all for the domestic programs and a holy system and further service all for the domestic programs and the service all formed and the system of the further system for some and services and the formed and the system and the further and stams an thread of sing miles. The first conduct line was comple-ated formed and services and the service and the further of the services and stams an thread of the miles of the pre-services and stams and there all the services and the services of the services and stams and there of the services and there all the services and the services and the services and the service and the services and the services and the services and the service and the services and the services and the services and the service and the services and the first services which has a stamp feasible of the services and the services through the conducts is the service and the services and the se

00

FIRE DEPARTMENT

Fully guidt except a company of 50 whitter protectives. 15 Equits companies, service trust company, where to be company, four hade companies, two apply companies, and the paractive company. By the companies, who be defined explained in the service of the By addem for engines, and of which if it reserves, is combination them By addem for engines, and of which if it reserves, is combination them By addem for engines, and of which if it reserves, is combination them By addem for engines, and of which if it reserves, is company addem for engines, for supply supply, one bounds mapon, have lower appends the control of successful to a solar for lower for appends these. Doe check and non-ensurements of the for the solar that and the solar for the solar and one section of the for the solar that and the solar that an istant chief, faur batallian chiefs, and 290 One chief and one was fully point men. 130 horses

Gennewell fire alarm system with 329 bases on storage battery system ee fire alaren wagons.

Grades are hight, having an average of about 2% per Berations are given above city dation, for minch the Pre Canal agicelists in taken as 280 fr. 317 miles 100 miles of givened Streets, chiefty stone block, atap brick Macallam ane gravel. Public lights electric.

TANDING

řΟ

47

159 mar UNICHER BUCKER

CLAY

ELECTRIC.

UNTO

ALC: N

5 NGerth

0 11r

2

4 2

Ċ

F

T BAT TING AT LANC

5

103

ŵ

7

3

0

_ INT. BITCH

-E.F.

2

ŚЛ

31

4

/0

k

*

145

26

BADE

LAND CO

WEAVER

PANDEE

ERHAAR

LANGHAM

BOSTON

DEJONCE

AV.

UILLIVAN PIA HOELTER

RAULER BELLINGVIL

MORMIS

ATHERIN LADER

ONCAN

OSCAN 1.80

mert TANAMIORE

RETUNN AVE A

CARL

HEAD

FULU	anener (
Lasseneration Notion concrete ar example black contraction The proof Construction The proof Construction The proof Construction The proof Construction The proof Construction The building with faster concert The proof Construction The building with faster concert The concert building The building The concert building The building The concert building The concert building <	attraction Figure 28 as p is to indicate thickness, and interface of the indicate thickness, and interface of the indicate thickness, and interface of the indicate the indicate and interface of the indicate of the indicate with with opening protected by with with opening protected by build with opening protected by and opening in first story and the opening in the indicate with with opening in the indicate with opening indicate of the indicate with opening indi

urecte łπ þ Þ

Þ Р C

B Soil Boring and Monitoring Well Logs

Project Nar	Project Name: Hawkeye						Clien	t: NYSDEC	Location: Rochester, NY Boring Log: SB01			
Drilled By:	/Matt Pe	epe					Drill	Start Date: 10/4/2021	Drill End Date: 10/4/2021	Drill Method:		
Logged By:	Erik S.	Reinert					Total Depth (ft): 9 Bore Diameter (in): Ground Surface (ft-metric)					
h (ft) ation (ft-msl)		Sample Interval	S	very (%)	(mqq)	(mqq)	ohic Log	Notes: All soil classificatio	ns based on visual descriptions made d	uring the installation of the	boring.	
Dept	Type	Lab	Blow	Reco	PID	FID	Grap	Physical Description				
								Ground Surface	· · ·			
			- -	100	$(0-2) \\ 0.0 \\ (2-4) \\ 0.0 \\ (4-6) \\ 0.0$	87 cpm	-	<i>SILT (ml)</i> Yellowish-brown silt, lit 7.5 feet.	tle clay; soft to medium stiff; dry, l	becoming moist betweer	7.2 and	
				100	(6-8) 0.0 (8-9) 0.0		, Ç ()	POORLY-GRADED G	RAVEL (an)			
+	$ \rangle$							Gray shale fragment.			/	
Ť.								GRAVELLY SILT (ml) Yellowish brown silt, so	me gravel: medium dense: drv.			
10								Bottom of boring at 9 fe	et Refusal		/	
+												
12 -												
+												
+												
16												
+												
18 -												
20												
WSP USA	Roulever	nd Quite	<u>.</u> 111								Page 1 of 1	

Project Name: Hawkeye			Client: NYSD	EC	Location: Rochester, NY Boring Log: SB02/MW-		14	
Drilled By: /Matt Pepe			Drill Start Dat	te: 10/4/2021	Drill End Date: 10/4/2021	Drill Method:		
Logged By: Erik S. Reinert			Total Depth (f	it): 9	ore Diameter (in): Ground Surface (ft-m		l):	
Coordinates (X/Y): /			Well Permit N	lumber:		:		
	Well Cons	structio	n		An			
Material Screen: Riser: Other:			Diameter (in)	Depth (ft)	Material Filter Pack: Seal: Other:		Depth (ft) to	
Depth (ft) Elevation (ft-msl) Type Lab Sample Interval Blows Recoverv (%)	PID (ppm)	FID (ppm)	Craphic Log	tes: All soil classification tallation of the boring. P round Surface	ns based on visual descriptions made du Physical Description	ring the	Well	
	5 0.0	40-60 cpm		SPHALT DORLY-GRADED GI ack gravel; loose; dry DNCRETE DORLY-GRADED GI ack gravel; loose; dry EAN CLAY WITH GH ellowish-brown clay, tr	RAVEL (gp) RAVEL (gp) RAVEL (cl) ace gravel; soft; wet			
	00 0.0	40-60 cpm	Ye W W Ye Bo	AVELLY SILT WIT AVELLY SILT WIT Slowish-brown silt, litt ATHERED BEDRO Slowish-brown silt; lar tom of boring at 9 fee	ace gravel; soft; wet H SAND (ml) the gravel and coarse-grained sand; h OCK minated; hard to very hard; dry. [we et. Refusal	aard; dry.		
WSP USA							Page 1 of 1	

Project Name: Hawkeye						Client: NYSDEC			Location: Rochester, NY Boring Log: SB03/MW-			15		
Drille	d By: /	Matt Po	epe					Drill Start Date: 10/4/2021			Drill End Date: 10/4/202	21	Drill Method:	
Logge	d By:]	Erik S.	Reiner	:				Total	Depth (f	t): 9.8	Bore Diameter (in):		Ground Surface (ft-ms	l):
Coord	linates	(X/Y):	/					Well	Permit N	umber:			Top-of-Casing (ft-msl)	:
					We	ell Cons	structio	on Annulus					nulus	
Material Screen: Riser: Other:								Diam	eter (in)	Depth (ft)	M Filter Pack: Seal: Other:	laterial		Depth (ft) to
Depth (ft)	Elevation (ft-msl)	Type	Lab Sample Interval	Blows	Recovery (%)	PID (ppm)	FID (ppm)	Graphic Log	No	tes: All soil classification tallation of the boring.	ns based on visual descripti hysical Description	ons made du	ring the	Well
-					50	(0-2) 0.2 (2-4) 0.0	40-60 cpm		Gi AS CC AS LEE Str SL Bla GH Lig Bo Bo	Tound Surface PHALT PNCRETE PHALT CAN CLAY WITH GI ong brown clay and si AG ack slag. RAVELLY SILT (ml) ght brown silt, little cla HALE thered bedrock; dens ttom of boring at 9.8 j	RAVEL (cl) lt, trace sub-rounded gra ay, some angular gravel. se; dry. <i>ceet. Refusal</i>	ivel; soft; m	oist.	
WSP U	SA													Page 1 of 1

Proje	Project Name: Hawkeye							Client	t: NYSDEC	Location: Rochester, NY Boring Log: SB04			
Drille	d By: /	Matt Pe	epe					Drill	Start Date: 10/4/2021	Drill End Date: 10/4/2021	Drill Method:		
Logge	d By:]	Erik S.	Reinert					Total	Depth (ft): 10	Bore Diameter (in):	Ground Surface (ft-m	sl):	
epth (ft)	levation (ft-msl)	ype	ab Sample Interval	lows	tecovery (%)	ID (ppm)	ID (ppm)	Notes: All soil classifications based on visual descriptions made during the installation of t					
D	H	L	Γ	В	~	- d	<u> </u>	6	Ground Surface	Physical Description		-	
2				- - -	60	(0-2) 2.1 (2-4) 0.0 (4-6) 0.0	40-60 cpm		Ground Surface ASPHALT SANDY SILT WITH G. Gray silt, sand and grave	RAVEL (ml) I, trace brick fragments and cind	ers. [Urban Soil]		
6 6 8					60	(6-8) 0.0 (8-10) 0.2	30-40 cpm		POORLY-GRADED S A Reddish-brown fine-grai feet.	IND (sp) ned sand; medium dense to loose	; moist, becoming wet at	6 to 8	
- - 10 -	_ _ _	/							SILT (ml) Gray silt, trace gravel; ha	ard; moist. [Till]			
									Bottom of boring at 10 f	èet. Refusal			
WSP U	SA											Page 1 of 1	

wsp

Drilled By: /Matt Pepe Drill Start Date: 10/4/2021 Drill End Date: 10/4/2021 Drill Method: Logged By: Erik S. Reinert Total Depth (ft): 10 Bore Diameter (in): Ground Surface (ft-msl):												
Logged By: Erik S. Reinert Total Depth (ft): 10 Bore Diameter (in): Ground Surface (ft-msl):												
Notes: All soil classifications based on visual descriptions made during the installation of the boring.												
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	oring.											
B B C C C B B B B B B B C C C C B B C C C B C C C C												
Ground Surface												
2 - 0.2 0.1 </td <td>ise;</td>	ise;											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
Bottom of boring at 10 feet. Refusal												

Proje	Project Name: Hawkeye							Clien	t: NYSDEC	Location: Rochester, NY					
Drille	d By: /	Matt P	epe					Drill	Start Date: 10/4/2021	Drill End Date: 10/4/2021	Drill Method:				
Logge	d By:	Erik S.	Reinert					Total	Depth (ft): 9.8	Bore Diameter (in):	Ground Surface (ft-ms	sl):			
oth (ft)	vation (ft-msl))e	Sample Interval	ws	:0very (%)	(mqq) ((mqq) (tphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the						
Dep	Ele	Tyr	Lat	Blo	Rec	DId	E	Gra		Physical Description					
									Ground Surface						
2 -	-			-	100	(0-2) 0.6 (2-4)	40-70		WELL-GRADED SAN Black and gray sand and	/ D WITH GRAVEL (sw) d gravel, trace brick fragments a	nd cinders; loose; dry.				
4	-			-		0.0 (4-6) 0.0	cpm		WELL-GRADED SAN Brown fine to medium-	/ D (sw) grained sand; loose moist, becor	ning wet between 5 and 7.8	feet.			
6	-			- -	100	(6-8) 0.0 (8-10) 0.1	40-60 cpm	2 - 0							
	- - -	\square		-					WELL-GRADED GRA Bluish-gray gravel and s	AVEL WITH SAND (gw) sand; very dense; dry.					
									Bottom of boring at 9.8	feet. Refusal					
WSP U	SA											Page 1 of 1			

Project Name: Hawkeye					Client: NYS	DEC	Location: Rochester, NY	·16	
Drilled By: /Matt Pepe					Drill Start D	ate: 10/5/2021	Drill End Date: 10/5/2021	Drill Method:	
Logged By: Erik S. Reiner	t				Total Depth	(ft): 9	Bore Diameter (in):	Ground Surface (ft-ms	sl):
Coordinates (X/Y): /					Well Permit	Number:		Top-of-Casing (ft-msl)	:
		We	ll Cons	structio	n		Ar		
Mate Screen: Riser: Other:	erial				Diameter (in) Depth (ft)	Material Filter Pack: Seal: Other:		Depth (ft) to
Depth (ft) Elevation (ft-msl) Type Lab Sample Interval	Blows	Recovery (%)	PID (ppm)	FID (ppm)	Graphic Log	iotes: All soil classificatio istallation of the boring.	ns based on visual descriptions made du	ring the	Well
						Ground Surface	· · ·		
	- - -	80	(0-2) 4.2 (2-4) 4.2 (4-6) 4.4	20-40 cpm		ISPHALT VELL-GRADED SAN Gray to reddish-brown s ragments and cinders; lo	D WITH GRAVEL (sw) and and gravel, trace to little silt, tra bose; dry.	ce brick	
$ \begin{array}{c} 4 \\ + \\ + \\ 6 \\ + \\ 8 \\ + \\ 10 \\ + \\ 10 \\ + \\ 12 \\ + \\ 14 \\ + \\ 16 \\ + \\ 18 \\ + \\ 20 \\ + \\ 20 \\ + \\ 20 \\ + \\ 20 \\ + \\ 1 \\ + \\ 20 \\ + \\ 20 \\ + \\ 20 \\ + \\ + \\ 20 \\ + \\ + \\ 20 \\ + \\ + \\ + \\ + \\ 20 \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ +$	-	40	(6-8) 2.4 (8-10) 4.0	45-80 cpm		COORLY-GRADED S. Leddish-brown fine-grait GRAVELLY SILT (ml) Vellowish-brown silt, so inders; hard, soft betwee eet. CILTY GRAVEL (gm) trong brown gravel, son BEDROCK Gray shale fragments; lo Bottom of boring at 9 fee	AND (sp) ined sand; loose; moist. me angular gravel, trace brick fragr een 7 and 8 feet; dry, becoming wet me silt; medium dense; wet. ose; dry. et. Refusal	nents and between 7 and 8	

Project Name: Hawkeye			Client: NYSDEC			Location: Rochester, NY	17			
Drilled By: /Matt Pepe				Drill	Start Dat	te: 10/5/2021	Drill End Date: 10/5/2021	Drill Method:		
Logged By: Erik S. Reinert				Total	Depth (f	`t): 15	Bore Diameter (in):	Ground Surface (ft-ms	l):	
Coordinates (X/Y): /				Well	Permit N	umber:		Top-of-Casing (ft-msl)):	
· · · · ·	We	ell Cons	tructio	n			An			
Material Screen: Riser: Other:				Diam	eter (in)	Depth (ft)	Material Filter Pack: Seal: Other:	Depth (ft) to		
pth (ft) evation (ft-msl) pe b Sample Interval ows	covery (%)	D (ppm)	D (ppm)	aphic Log	No inst	tes: All soil classification tallation of the boring.	ns based on visual descriptions made du	ring the	Well	
De De Ble	Re	Id	Ε	উ		Р	hysical Description			
	60	(0-2) 2.4 (2-4) 3.6	40-70 cpm		Gi CC and SII Sil	round Surface DNCRETE d gravel sub-base LT WITH SAND (ml, t, little sand and fine-g) grained gravel; dense; dry.	0.5		
	100	(4-6) 4.6 (6-8) 3.8 (8-10) 2.6	40-60 cpm		SII Ye SII Sat	LT (ml) Ilowish-brown silt, tra LTY SAND WITH G nd with gravel, little si LTY SAND (sm)	ace sand and gravel; loose; dry. RAVEL (sm) It; medium dense to dense; dry.			
	100	(10-12) 2.4 (12-14) 4.0 (14-15) 3.4	30-70 cpm		Fin PC Bro Bro gra	DORLY-GRADED SA own sand, little gravel, NDY SILT WITH G. own very-fine-grained ivel; hard; dry. [Till]	coarse-grained sand, little silt; medi <i>IND WITH GRAVEL (sp)</i> , trace silt; medium dense; wet. <i>RAVEL (ml)</i> sand and silt, some sub-angular to	um dense; dry.		
16					Bo	ttom of boring at 15 f	eet. Refusal		Page 1 of 1	

Projec	Project Name: Hawkeye							Client: NYSDEC Location: Rochester, NY Boring Log: SB09			Boring Log: SB09	
Drille	d By: /	Matt Pe	epe					Drill	Start Date: 10/6/2021	Drill End Date: 10/6/2021	Drill Method:	
Logge	d By: I	Erik S.	Reinert					Total Depth (ft): 7 Bore Diameter (in): Ground Surface (ft-ms)				
th (ft)	ation (ft-msl)	0	Sample Interval	/S	very (%)	(mqq)	(mqq)	phic Log	Notes: All soil classificatio	ns based on visual descriptions made du	ring the installation of the	boring.
Dept	Elev	Type	Lab	Blow	Reco	DID	FID	Graf		Physical Description		
								_	Ground Surface	,		
2	- - - - - - - - - -				100	(0-2) 2.7 (2-4) 2.2 (4-6) 2.5	35-60 C/m 25-60 C/m					
8												

Project Name: Hawkeye								Client: NYSDEC			Location: Rochester, NY	18		
Drille	d By: /	Matt Pe	epe					Drill Start Date: 10/6/2021			Drill End Date: 10/6/2021	Drill Method:		
Logge	ed By:	Erik S.	Reinert	t				Total	Depth (f	t): 10	Bore Diameter (in):	Ground Surface (ft-msl):		
Coord	dinates	(X/Y):	/					Well Permit Number: Top-of-Casing (ft-msl):					:	
					We	ell Cons	structio	n			А	nnulus		
Scree Riser Other	n: : ::		Mate	rial				Diam	eter (in)	Depth (ft)	Material Filter Pack: Seal: Other:		Depth (ft) to	
Depth (ft)	Elevation (ft-msl)	Type	Lab Sample Interval	Blows	Recovery (%)	PID (ppm)	FID (ppm)	Graphic Log	No ins	tes: All soil classification tallation of the boring. P	ns based on visual descriptions made d Physical Description	uring the	Well	
	_							n solar na s	G	round Surface			4	
-	-	Λ /		_				وَبِّ مَ	$\neg \alpha$	DNCRETE				
2 -	-			-	100	1.3	20-50 cps	<u>•/\°~</u>		OORLY-GRADED GI	RAVEL (gp)			
-	-	$/$ \setminus		_					PC Eir	ORLY-GRADED SA	IND (sp)			
4				- - -	100	(3-5) 1.9 (5-6) 2.3	40-70 cps		SIL Str fee	LTY SAND WITH G. ong brown sand, little t; moist, becoming we	RAVEL (sm) gravel, some silt; medium dense, b et at 4 feet.	becoming soft at 4		
	-			- - -	67	1.9	40-60 cps		<i>SL</i> Str silt	LTY GRAVEL WITH ong brown gravel (0.1 ;; loose; wet.	I SAND (gm) to 0.25-inch diameter), little fine-	grained sand, little		
	-	\mid		-	100		40-50 cps		SI.	LTY GRAVEL WITH own gravel up to 2-inc	I SAND (gm) thes in diameter, some silt, little cla	y, little fine to		
10 		Soulevan	rd, Suitr						Bro	own gravel up to 2-inc arse-grained sand; ver ttom of boring at 10 f	ches in diameter, some silt, little cla y dense; dry. [Till]	y, little fine to	Page 1 of 1	

Didla dep: Didl X and Date: Didl X and Date: Didl X and Date: Didl X and Date: Didl X and	Project Name: Hawkeye							Client: NYSDEC		Location: Rochester, NY Boring Log: SB11				
Logged By: Erik S. Roiset Total Depth (h): 5 Bore Diameter (in): Ground Surface (theost): 0 000000000000000000000000000000000000	Drille	d By: /	/Matt Pe	epe					Drill S	Start Date: 10/6/2021	Drill End Date: 10/6/2021	Drill Method:		
Votice: Nutre:	Logge	d By:	Erik S.	Reinert					Total Depth (ft): 5 Bore Diameter (in): Ground Surface (ft-m)					
(i) (i) <td></td>														
A E C Provided Description 2 - <td>epth (ft)</td> <td>evation (ft-msl)</td> <td>ype</td> <td>ab Sample Interval</td> <td>swo</td> <td>ecovery (%)</td> <td>D (ppm)</td> <td>D (ppm)</td> <td>raphic Log</td> <td>Notes: All soil classification</td> <td>ons based on visual descriptions mad</td> <td>e during the installation of the</td> <td>boring.</td>	epth (ft)	evation (ft-msl)	ype	ab Sample Interval	swo	ecovery (%)	D (ppm)	D (ppm)	raphic Log	Notes: All soil classification	ons based on visual descriptions mad	e during the installation of the	boring.	
2 100 002 (-2) 000 (-2) 000 (-2	Ď	Ξ	T	L	BI	ž	I	E	Ū	0 10 0	Physical Description			
2 100 (0.2) (0.4) (0.4) (0.4) (0.4) (0.4) 40.55 (0.0) (0.4) 900 (0.0) POORLY-GRAPED GRAVEL (gp) Black gravel; dose; dy. 3 100 4.8 50.70 (0.0) SHALE 4 100 4.8 50.70 (0.0) SHALE 6 100 4.8 50.70 (0.0) SHALE 6 100 4.8 50.70 (0.0) SHALE 8 100 4.8 50.70 (0.0) SHALE 9 100 4.8 50.70 (0.0) SHALE 10 100 4.8 50.70 (0.0) SHALE 10 10 10 SHALE 10 10 10 10 11 10 10 10 12 10 10 10 13 10 10 10 14 10 10 10 14 10 10 10 14 10 10 10 14 10 10 15 10 10 16 10 10 17 10 18 10 19 10 10 10		_							A 4 4 4	Ground Surface				
4 . 100 4.8 9,000 get SHALE 6 . . . GRAYELLY SILT (m) Sil and angular gravel; dense; dry. Shale in tip of sampler. . . 8 10 11 8 10 10 11 12 14 14 18 20 	2	- - - -				100	(0-2) 4.0 (2-3) 4.4	40-55 cps		CONCRETE POORLY-GRADED G Black gravel; loose; dry. SILT WITH GRAVEL Yellowish-brown silt, fe	<i>RAVEL (gp)</i> (<i>ml</i>) ew gravel, dense; dry.			
6 . SHALE 6 . GRAVELLY SUIT (ml) Silt and angular gravel; dense; dry. Shale in tip of sampler. . 8 . . 8 . 10 . 10 . 10 . 11 . 12 . 14 . 18 . 18 .	4 -	-	X		-	100	4.8	50-70 cps						
6 Sit and angular gravel; dense; dry. Shale in tip of sampler. 8 Bottom of boring at 5 feet. Refusal		-	\square		-				ШП	<u>SHALE</u>				
6 Image: Construction of boring at 5 feet. Refusal 8 Image: Construction of boring at 5 feet. Refusal 10 Image: Construction of boring at 5 feet. Refusal 11 Image: Construction of boring at 5 feet. Refusal 12 Image: Construction of boring at 5 feet. Refusal 14 Image: Construction of boring at 5 feet. Refusal 16 Image: Construction of boring at 5 feet. Refusal 18 Image: Construction of boring at 5 feet. Refusal 18 Image: Construction of boring at 5 feet. Refusal 18 Image: Construction of boring at 5 feet. Refusal 18 Image: Construction of boring at 5 feet. Refusal 19 Image: Construction of boring at 5 feet. Refusal 10 Image: Construction of boring at 5 feet. Refusal 11 Image: Construction of boring at 5 feet. Refusal 12 Image: Construction of boring at 5 feet. Refusal 14 Image: Construction of boring at 5 feet. Refusal 16 Image: Construction of boring at 5 feet. Refusal 17 Image: Construction of boring at 5 feet. Refusal 18 Image: Construction of boring at 5 feet. Refusal 19 Image: Construction of boring at 5 feet. Refusal 10 Image: Construction of boring at 5 feet. Refusal 114 Image: Construction of boring at 5 feet. Refusal	-	-								GRAVELLY SILT (ml) Silt and angular gravel;) dense; dry. Shale in tip of samp	ler.		
	6									Silt and angular gravel; Bottom of boring at 5 fe	dense; dry. Shale in tip of samp	ler.		

Project Name: Hawkeye						: NYSDI	EC	Location: Rochester, NY	19		
Drilled By: /Matt Pe	Drilled By: /Matt Pepe						te: 10/6/2021	Drill End Date: 10/6/2021	Drill Method:		
Logged By: Erik S.	Reinert				Total Depth (ft): 9 Bore Diameter (in): Ground Surf				Ground Surface (ft-ms	urface (ft-msl):	
Coordinates (X/Y):	/				Well Permit Number: Top-of-Casing (ft-msl)					:	
		We	ell Cons	structio	n			Ai	nulus		
Screen: Riser: Other:	Material				Diame	eter (in)	Depth (ft)	Material Filter Pack: Seal: Other:		Depth (ft) to	
Depth (ft) Elevation (ft-msl) Type	Lab Sample Interval Blows	Recovery (%)	PID (ppm)	FID (ppm)	Graphic Log	No inst	tes: All soil classification tallation of the boring. P round Surface	ns based on visual descriptions made du	iring the	Well	
		33	3.3	30-50 cps			DNCRETE DORLY-GRADED SA own fine-grained sand LTY SAND WITH G ack, tan, and brown gr	IND (sp) , little silt, trace gravel; loose; dry. RAVEL (sm) avelly sand, little silt, medium dens	e; dry. Gravel to		
		17	1.1	30-90 cps	-	<u>G</u> Oli bec	nch diameter and sub- RAVELLY ELASTIC ive to gray silt, some c coming dry at 8 feet; s	rounded. <i>SILT (mh)</i> lay, little sub-rounded gravel; mois tiff, becoming hard at 8 feet. [Till]	t to wet,		
		100	(6-8) 3.1 (8-9) 4.6	40-70 cps							
						Во	ttom of boring at 9 fee	et. Refusal			

Drike Row Amer Page Drike Row Town: Drike Row Town: Drike Row Town: Crowed Surface (the up): Lagged By: Edi 3. Reiner: Total Depth (th): 9 Bot Dameter (a): Crowed Surface (the up): Contribute: Well Construction: Well Construction: Total Depth (th): Total Depth (th): Topa-f-Cosing (the up): Servera: Non: Depth (th): Depth (th): Material Depth (th): Other: Servera:	Project Name: Hawkeye	Client: NYSDEC Location: Rochester, NY Boring Log: SB13/MW-				20	
Laged Pice NX 8. Lem Total Depth (ft) 9 Rev Dimension (ft and second point) (second	Drilled By: /Matt Pepe	Drill Start Dat	te: 10/7/2021	Drill End Date: 10/7/2021	Drill Method:		
Image: Set of the set	Logged By: Erik S. Reinert	Total Depth (f	it): 9	Bore Diameter (in):	Ground Surface (ft-ms	l):	
Veli Caustraction Annulas Serven: Diameter (in) Depth (h) Material Depth (h) Serven: Sinter Diameter (in) Depth (h) Filter Pack: Solar 0 Solar isota isota isota Outer: Veli	Coordinates (X/Y): /	Well Permit Number: Top-of-Casing (ft-msl)					
Material Server: Nor: Material Server: Disneter (in) Depth (ft) Filter Pack: Stat: Other: Material Depth (ft) 0 isometrial other: page 4 isometrial stat: page 4 isometrial stat: Depth (ft) 0 isometrial other: isometrial stat: page 4 isometrial stat: Nater: All soil classifications based on visual descriptions made during the installation of the horing. Weil 0 isometrial stat: isometrial stat: isometrial stat: Popth (ft) Filter Pack: Stat: Weil 0 isometrial stat: isometrial stat: isometrial stat: isometrial stat: Nater: All soil classifications based on visual descriptions Weil 0 isometrial stat: isometrial stat: isometrial stat: Physical Description Weil 0 isometrial stat: isometrial state: isometrial state: isometrial state: POORLY-CRADED SAND WTHI GRAVEL (sp) (may and brown stand gravel, little clay, few sand; soft; wet, becoming stiff and dry at 6 0 isometrial state: isometrial state: isometrial state: isometrial state: 0 isometrial state: isometrial state: isometrial state: isometrial state: 0 isometrial state: isometrial state: isometrial state: isometrial state: <	Well Constructi	on		An	nulus		
United Network Network <th< th=""><th>Material Screen: Riser: Other:</th><th>Diameter (in)</th><th>Depth (ft)</th><th>Material Filter Pack: Seal: Other:</th><th></th><th>Depth (ft) to</th></th<>	Material Screen: Riser: Other:	Diameter (in)	Depth (ft)	Material Filter Pack: Seal: Other:		Depth (ft) to	
Z Ground Surface Ground Surface 2 - <t< td=""><td>pth (ft) evation (ft-msl) pe b Sample Interval ows D (ppm) D (ppm) aphic Log</td><td>Notes: All the boring</td><td colspan="5">Notes: All soil classifications based on visual descriptions made during the installation of the boring.</td></t<>	pth (ft) evation (ft-msl) pe b Sample Interval ows D (ppm) D (ppm) aphic Log	Notes: All the boring	Notes: All soil classifications based on visual descriptions made during the installation of the boring.				
2 Ground Surface 2 - (b,2) - 15-20 - - ASPHALT 4 - - (b,2) - 15-20 - - GRAVELLY SILT (mt) Brown sind and gravel, trace brick fragments and einders; loose; dry. 6 - - (b,2) - - - - 8 - - (b,2) - - - - 8 - - (b,2) - - - - 10 - - - - - - 12 - - - - - - 14 - - - - - - 14 - - - - - - - 14 - - - - - - - - 14 - - - - - - - - - 14 - -	C H B B T		Phys	sical Description			
ASPHALT ASPHALT ASPHALT POORLY-GRADED SAND WITH GRAVEL (sp) Gray and brown sand, some gravel, trace brick fragments and einders; loose; dry,		Ground	Surface			4	
6 - - GRAVELLY SILT (ml) Brown silt and gravel, little clay, few sand; soft; wet, becoming stiff and dry at 6 feet. Shale fragment at 7 to 7.2 feet. 8 - - - - - - 10 - - 10 - - 10 - - 10 - - 11 - - 12 - - 14 - - 18 - - 18 - - 18 - -	2 - (0-2) - (0-2) - (2-4) - (2-4) - (2-4) - (2-4) - (2-4) - (3-2) - (4-6) - (3-2) - (4-6) - (3-2) - (4-7) -	ASPHAL POORL Gray and	<i>T</i> <i>Y-GRADED SAND W</i> brown sand, some gra	VITH GRAVEL (sp) avel, trace brick fragments and cinde	ers; loose; dry.		
10 Bottom of boring at 9 feet. Refusal 12 14 14 14 18 18 18 11	6	GRAVEI Brown si feet. Sha	LLY SILT (ml) It and gravel, little cla le fragment at 7 to 7.2	y, few sand; soft; wet, becoming stif 2 feet.	f and dry at 6		
10 Bottom of boring at 9 feet. Refusal 12 H 14 H 14 H 16 H 18 H 18 H 10 H 20 H		Shale frag	gments and silt; wet.				
		Bottom o	f boring at 9 feet. Refi	usal			
VSP USA Page 1 of 1	WSP USA					Page 1 of 1	

Project Name: Hawkeye								Client: NYSDEC		Location: Rochester, NY			
Drille	Drilled By: /Matt Pepe							Drill S	Start Date: 10/7/2021	Drill End Date: 10/7/2021	Drill Method:		
Logge	d By: I	Erik S.	Reinert					Total	Depth (ft): 9	Bore Diameter (in):	Ground Surface (ft-ms	sl):	
pth (ft)	evation (ft-msl)	pe	b Sample Interval	swc	covery (%)	D (ppm)	D (ppm)	aphic Log	Notes: All soil classificatio	ns based on visual descriptions mad	e during the installation of the	boring.	
De	Ele	Ty	La	Ble	Re	IId	E	G		Physical Description			
									Ground Surface				
2	-			- - -	50	1.8	25-55 cps		ASPHALT POORLY-GRADED GA Gray to brown gravel an	RAVEL WITH SILT AND SA d sand, few silt, trace brick frag	ND (gp-gm) ments and organics; loose;	dry.	
$ \begin{array}{c} 4 \\ 6 \\ $					100		20-80 cps		POORLY-GRADED SA Brown sand; medium de POORLY-GRADED SA Yellowish-brown fine-gr fine-grained gravel; loos SILT (ml) Yellowish-brown and gr POORLY-GRADED GA Gray gravel; loose; wet. Bottom of boring at 9 fea	AND (sp) mse; wet. AND WITH SILT AND GRAV. rained sand, little silt and clay, f e; wet. tle to some clay; stiff; moist, so ay silt; stiff to hard; dry. RAVEL (gp) et. Refusal	EL (sp-sm) ew coarse-grained sand and me mottling.		
WSP U	SA from D		al Cuita									Page 1 of 1	

Project Name: Hawkeye						Client: NYSDEC			Location: Rochester, NY Boring Log: SB15/MW-			-21			
Drille	d By: /	Matt Pe	epe					Drill Start Date: 10/7/2021			Drill End Date: 10/7/2021	Dril	Drill Method:		
Logge	d By:	Erik S.	Reinert	t				Total	Depth (f	it): 10.5	Bore Diameter (in):	Gro	und Surface	(ft-m	sl):
Coord	linates	(X/Y):	/					Well Permit Number: Top-of-Casing (ft-msl)):			
					We	ll Cons	structio	n				Annulus			
Material Screen: Riser: Other:								Diam	eter (in)	Depth (ft)	Material Filter Pack: Seal: Other:				Depth (ft) to
Depth (ft)	Elevation (ft-msl)	Type	Lab Sample Interval	Blows	Recovery (%)	PID (ppm)	FID (ppm)	Graphic Log	No ins	tes: All soil classificatio tallation of the boring.	ns based on visual descriptions made	during tl	ne		Well
									G	round Surface	· ·				
2 80 (0-2) 					30-55 cps		AS As PC Lis SII fee	EPHALT phalt and sub-base DORLY-GRADED SA ght brown sand and gr LT WITH SAND (ml, t, little clay, few sand t.	ND WITH GRAVEL (sp) avel, brick at 1.2 to 1.4 feet; loos and gravel; stiff; mottled; moist,	e; dry. becomin	ng dry at 5				
6	-			- - -	80	(4-6) 4.7 (6-8) 2.6 (8-10) 41 4.0	30-80 cps 40 cps	exist	SI Ye	LT (ml) llowish-brown silt, lit	le clay; stiff to hard; dry.				
12 - 									Bo	LTY GRAVEL (gm) rk grayish-brown grav ttom of boring at 10.5	re, some silt; loose; wet. feet. Refusal				
50 Lake	SA efront E	Boulevar	rd, Suite	e 111											Page 1 of 1

Proje	ct Nan	ne: Haw	vkeye				Client: NYSDEC Location: Rochester, NY Boring Log: SB16/MW-22									
Drille	d By: /	Matt Pe	epe					Drill Start Dat	te: 10/7/2021	Drill End Date: 10/7/2021	Drill Method:					
Logge	ed By:	Erik S.	Reinert	t				Total Depth (f	t): 9.5	Bore Diameter (in):	Ground Surface (ft-ms	sl):				
Coord	linates	(X/Y):	/					Well Permit N	umber:		Top-of-Casing (ft-msl)	:				
					We	ll Cons	tructi	on in the second s		An	nulus					
			Mate	rial				Diameter (in)	Depth (ft)	Material		Depth (ft)				
Scree Riser: Other	n: : ::									Filter Pack: Seal: Other:		to				
pth (ft)	evation (ft-msl)	pe	b Sample Interval	covery (%)	D (ppm)	D (ppm)	aphic Log	Notes: All the boring.	soil classifications base	d on visual descriptions made during the	installation of	Well				
De	Ele	Ty	La	Re	Id	FI	G		Phys	sical Description						
							P 5 8	Ground	Ground Surface							
-	_						وكرك		ETE			a a				
2 -	-			100	(0-2) 2.1(2-4) 1.7	40-80 cps		POORL Black gra	Y-GRADED GRAVE. wel and coarse-graine	<i>L WITH SAND (gp)</i> d sand; loose; dry						
-	-						-	SILT WI Yellowish soft, dry.	TH SAND (ml) n-brown silt and very	fine-grained sand, trace gravel to 0.2	25-inch diameter;					
4	-			100	(4-6) 4.7 (6-8) 3.0	25-70 cps										
	-			50	(6-8) 1.5 (8-9) 2.0	50-75 cps		GRAVEI Brown si	LLY SILT (ml) It, little clay, little sub-	-rounded gravel; soft; moist.	6.75					
-	_			100	1.9	35-60 cps		SILT (m Yellowisl structure:	() n-brown to gray silt; s shale in tip of sample	oft to stiff; dry, becoming moist at 9 er at 9.5 feet.) feet; laminated					
						cps		Bottom oj	f boring at 9.5 feet. R	efusal						
WSP U	SA efront F	Bouleva	rd Suite	e 111								Page 1 of 1				

50 Lakefront Boulevard, Suite 111 Waterfront Village Center Buffalo, NY 14202 +1 716 853-1322 wsp.com

Project Name: Hawkeye				Client: NYSDEC Location: Rochester, NY Boring Log: SB17/MW-23				-23		
Drilled By: /Matt Pepe					Drill S	Start Dat	te: 10/7/2021	Drill End Date: 10/7/2021	Drill Method:	
Logged By: Erik S. Reiner	t				Total	Depth (f	it): 9.8	Bore Diameter (in):	Ground Surface (ft-m	sl):
Coordinates (X/Y): /					Well I	Permit N	umber:		Top-of-Casing (ft-msl)	:
		We	ell Cons	structio	n			An	nulus	
Mate Screen: Riser: Other:	rial				Diamo	eter (in)	Depth (ft)	Material Filter Pack: Seal: Other:		Depth (ft) to
Depth (ft) Elevation (ft-msl) Type Lab Sample Interval	Blows	Recovery (%)	PID (ppm)	FID (ppm)	Graphic Log	No inst	tes: All soil classification tallation of the boring.	ns based on visual descriptions made du Physical Description	ring the	Well
		33 100 50 100	2.4 2.8 3.5 1.9	35-40 cps 50-85 cps 40-65 cps 40-60 cps		Gr PC Sub PC Br PC Br PC Br Cla Cla PC Str Str Bo	Tound Surface DNCRETE DORLY-GRADED GI p-base DORLY-GRADED GI pown and gray gravel w DORLY-GRADED SA llowish-brown fine to nse ; wet becoming me CAN CLAY WITH GI ay, some gravel. DORLY-GRADED SA ong brown and red fir LTY GRAVEL (gm) avel, some silt; dense; ttom of boring at 9.8 j	RAVEL (gp) RAVEL WITH SILT (gp-gm) vith silt; medium dense; dry. IND (sp) medium-grained sand, trace silt; m bist at 5 feet. RAVEL (cl) IND (sp) ne to medium-grained sand; dense; v wet. feet. Refusal	edium dense to6.75 wet.	
12										Page 1 of 1

50 Lakefront Boulevard, Suite 111 Waterfront Village Center Buffalo, NY 14202 +1 716 853-1322 wsp.com

Project Name: Hawkeye	Client: NYSDEC		Location: Rochester, NY Boring Log: SB18/MW-2		24			
Drilled By: /Matt Pepe		Drill Start Da	te: 10/7/2021	Drill End Date: 10/7/2021	Drill Method:			
Logged By: Erik S. Reinert		Total Depth (i	ft): 11.2	Bore Diameter (in):	Ground Surface (ft-ms	sl):		
Coordinates (X/Y): /		Well Permit N	Number:		Top-of-Casing (ft-msl)	:		
v	Well Construc	ion		An	nulus			
Material Screen: Riser: Other:		Diameter (in)	Depth (ft)	Material Filter Pack: Seal: Other:		Depth (ft) to		
bepth (ft) Jevation (ft-msl) ype ab Sample Interval Blows tecovery (%)	(mqq) (I) (I) (I) (I) (I) (I) (I) (I) (I) (I	Jraphic Log	Notes: All soil classifications based on visual descriptions made during the installation of the boring. Physical Description					
			r	nysical Description				
	$\begin{array}{c} (0-2)\\ 1.8\\ 0\\ (2-4)\\ 2.9\\ (4-6)\\ 3.1 \end{array} \qquad 30-5$		round Surface LTY GRAVEL (gm) ay gravel and silt, trac	e brick; medium dense; dry; faint pe	etroleum odor.			
	$\begin{array}{c} (6-8)\\ 3.1\\ (8-10)\\ 1.7 \end{array} 50-5\\ cps$		LT WITH GRAVEL	(m1)				
- 100	0 1.4 35-5 cps	0 Ye	ellowish-brown silt, so	me sub-angular to sub-rounded grav	rel to 0.5 inches			
		Ba	diameter, few fine to f y, becoming wet at 10 ottom of boring at 11.2	nedium-grained sand; stiff, becomir feet. [Till]	ig soft at 10 feet,	Page 1 of 1		
50 Lakefront Boulevard, Suite 111 Waterfront Village Center						. ugo i oi i		

Project Name: Hawkeye					Clien	t: NYSDEC	Location: Rochester, NY	Boring Log: SB19	
Drilled By: /Matt Pe	epe				Drill	Start Date: 10/7/2021	Drill End Date: 10/7/2021	Drill Method:	
Logged By: Erik S.	Reinert				Total	Depth (ft): 10.1	Bore Diameter (in):	Ground Surface (ft-ms	sl):
(ft) tion (ft-msl)	ample Interval	erv (%)	(mdd	(mdd	hic Log	Notes: All soil classificatio	ns based on visual descriptions made o	during the installation of the	boring.
Jeva Jeva	ab S	lows	D (I	D (I	rapl		Discourse in the second second		
				Ĩ	6	Ground Surface	Physical Description		
		- 10	$\begin{array}{c} (0-2)\\ 1.7\\ 0\\ (2-4)\\ 3.6\\ (4-6)\\ 4.6 \end{array}$	30-60 cps		Ground Surface WELL-GRADED GRA Gray sand and gravel, so petroleum odor.	<i>VEL WITH SILT AND SAND (§</i> ome silt; medium dense; dry, wet b	gw-gm) etween 7.5 and 8.5 feet;	faint
		- 50	0 10.8	25-40 cps		GRAVELLY SILT (ml) Dark gray silt, little grav	el ; hard; dry; faint petroleum odo	r.	
10						SHALE Bedrock Bottom of boring at 10.1	l feet. Refusal		Page 1 of 1

50 Lakefront Boulevard, Suite 11⁻ Waterfront Village Center Buffalo, NY 14202 +1 716 853-1322 wsp.com

Project Name: Hawkeye			Clier	nt: NYSDEC	Location: Rochester, NY	Boring Log: SB20						
Drille	d By: /	Matt Po	epe					Drill	Start Date: 10/7/2021	Drill End Date: 10/7/2021	Drill Method:	
Logge	d By: 1	Erik S.	Reinert					Tota	l Depth (ft): 10	Bore Diameter (in):	Ground Surface (ft-ms	l):
h (ft)	ation (ft-msl)		Sample Interval	S	very (%)	(mqq)	(mqq)	ohic Log	Notes: All soil classification	ons based on visual descriptions maa	le during the installation of the	boring.
Dept	Elev	Type	Lab	Blow	Reco	DID	FID	Graț		Physical Description		
		-							Ground Surface	• • • • •		
2				- - -	100	(0-2) 2.9 (2-4) 3.3 (4-6) 3.9	35-60 cps		GRAVELLY SILT (ml Gray silt and gravel; me petroleum odor; coal at) edium dense; dry, becoming wet bottom of core.	between 8 and 9 feet; faint	
6	-			- - -	40	2.0	30-50 cps					
$ \begin{array}{c} 10 \\ - \\ 12 \\ - \\ - \\ 14 \\ - \\ 16 \\ - \\ 18 \\ - \\ 20 \\ - \\ 20 \\ - \\ 20 \\ - \\ - \\ - \\ 20 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	-								Bottom of boring at 10	feet. Refusal		
WSP U	SA					•			•		,	Page 1 of 1

50 Lakefront Boulevard, Suite 111 Waterfront Village Center Buffalo, NY 14202 +1 716 853-1322 wsp.com

C Groundwater Sampling Logs

C ecology and engineering	l environment 3 and geology, p.c.							
~		WE	LL PURGE 8	SAMPLE	RECORD			
Site Name/Loc	ation: Hawkeye T	rade Center	and Residen	ces		Well ID:	IB.	SALE
E & E Projec	t No.: EE1705007	7.0019				Date:	10/24	121
	17 11						1.00	
Initial Depth to	Water: 17.61	feet TOIC				Start Time:	1055	
Total Well	Depth: 21/18	feet TOIC				End Time:	1115	
Depth to	Pump: <u>27</u>	reet TOIC			L)	Bailer	Rid	Pump
Initial Pump	Rate: 0.10 (Lpm gpm	1105		Р	ump Type:	12 10,000	Mer
adjus		_ at	1110)	-	Well	Diameter:	10	inches
adjus	ted to:	at			1x VVe	ell Volume:	7	gallons
Timo	Purge Volume	pH (su)	Temp.	ORP	Conductivity	DO (mg/l)	Turbidity	Water
1055	TNT	8.08	15.4	62.5	2 D12	8.38	(NTO)	17.25
1100	0.80	761	167	77.2	2 690	1.57	2.7	17.97
1105	1.60	7.66	17.2	74.9	2.773	1.09	1.3	18.16
1110	2.20	7.710	17.1	72.4	2.703	0.73	0	18.30
1115	2 700	7.82	16.7	697	2 653	0.53	2.0	18 60
112.0	300	7.75	16.7	68.4	2738	0.48	1.10	18.63
1125	3.40	7.69	16.8	64.5	2 8 2 2	0.47	1.5	18.79
1130	3.80	7.66	17.0	59.4	2.885	0.44	0.7	18.84
1135	4.20	7.67	17.1	52.0	2,930	0.43	1.3	18.86
1140	4.60	7.61	17.0	51.1	2.989	0.38	0.91	18.92
-1145 -	END.	DARA	METER	S STA	BLE, CO	LEC	T SAN	IPLE -
		- I - P-II						
Final Sa	ample Data:							
Sample ID:	TRSN	E		Duplicate?	Dupe	Samp ID:		
Sample Time:	1145			MS/MSD?	No.	of Bottles:	8	
Analyses	Methods:	Comments:						
VOCs		Commente.						
SVOCS	□ SW846							
PCBs	EPA/CWA							
D Pest.								
Metals/CN								
		Sampler(s):	m.	Harfor	, E. Rei	nert		

Site Name/Location: Hawkeye Trade Center and Residence E & E Project No.: EE1705007.0019 Initial Depth to Water: 12.07 feet TOIC Total Well Depth: 22.85 feet TOIC Depth to Pump: 18.0 feet TOIC Initial Pump Rate: 0.08 (Lpm) gpm adjusted to: at	опр (mV) (µ 62.Ч 84.1 92.7 75.7 94.1	S Pu Well 1x We Sonductivity IS/cm (mS/cm) S62 5 3.765 93.778	Well ID: Date: Date: End Time: Bailer Joiameter: Il Volume: DO (mg/L) G.4(6 5./4 4.92	JL2 102 153 16 16 18 0ED 2 1.77 1.77 Turbidity (NTU) 105 139 94	NE 8 200 20 Pump B/adde gallons X Water Level (fee 12.07 12.00
E & E Project No.: EE1705007.0019 Initial Depth to Water: 12.02 feet TOIC Total Well Depth: 22.85 feet TOIC Depth to Pump: 18.0 feet TOIC Initial Pump Rate: 0.08 (Lpm) gpm adjusted to:	ORP (mV) (H 62.4 84.1 92.7 75.7 94.6	S Pu Well 1x We Conductivity Is/cm(mS/cm) 3.765 93.778	Date: Start Time: End Time: Bailer Jump Type: Diameter: Il Volume: DO (mg/L) G.46 S.14 4.92	10 2 15: 16 16 18 0 E D 2 1.77 Turbidity (NTU) 105 139 94	8 Zen 30 20 Pump B/adde inches gallons X Water Level (fee 12.07 12.00
Initial Depth to Water: 12.02 feet TOIC Total Well Depth: 22.85 feet TOIC Depth to Pump: 18.0 feet TOIC Initial Pump Rate: 0.08 (Lpm) gpm adjusted to: at adjusted to: at <u>adjusted to:</u> at <u>Time (gallons/liters) (s.u.)</u> (\odot \circ F) 1530 INT. 7.87 IY.4 1535 0.40 7.57 I4.7 1540 0.80 7.51 14.8 1545 1.20 7.46 I4.9 1556 1.60 7.39 I5.0	ОRР ((mV) (н 62.Ч : 84.1 92.7 (т 95.7 94.1	S Pu Well 1x We Conductivity Is/cm(mS/cm) 3.765 9.3.765 3.778	Start Time: End Time: Bailer Jmp Type: Diameter: II Volume: DO (mg/L) G.46 S.14 4.92	15: 16 18 0 E D 2 1.77 Turbidity (NTU) 105 139 94	30 20 Pump B/adde inches gallons X Water Level (fee 12.07 12.00
Total Well Depth: 22.85 feet TOIC Depth to Pump: 18.0 feet TOIC Initial Pump Rate: 0.08 Lpm gpm adjusted to:	ОRР ((mV) (н 62.Ч 2 84.1 92.7 (95.7 94.1	Pu Well 1x We Conductivity is/cm(mS/cm) 3.62 3.765 923 9.778	End Time: Bailer Jameter: Il Volume: DO (mg/L) 6.46 5.14 4.92	16 18 0ED 2 1.77 Turbidity (NTU) 105 139 94	Pump B/adde inches gallons X Water Level (fee 12.04 12.00
Depth to Pump: 18.0 feet TOIC Initial Pump Rate: 0.08 Lpm gpm adjusted to: at adjusted to: at Time (gallons/liters) (s.u.) $CO \circ F$ 1530 INT. 1535 0.400 7.57 14.7 1540 0.800 7.51 14.8 1545 1.20 7.46 14.9 1550 1.60 7.39 15.0	ORP (mV) (H 62.4 84.1 92.7 75.7 94.6	Pu Well 1x We Conductivity IS/cm(mS/cm) 3.62 5 3.765 9 3.778	Bailer Jimp Type: Diameter: II Volume: DO (mg/L) 6.46 5.74 4.92	DX DED 2 1.77 Turbidity (NTU) 105 139 94	Pump B/adde inches gallons X Water Level (fee 12.04 12.00
Initial Pump Rate: 0.08 Lpm gpm adjusted to: at adjusted to: at Purge Volume pH Temp. (gallons/liters) (s.u.) (C) °F) 1530 INT. 7.87 IY.4 1535 0.40 7.57 I4.7 1540 0.80 7.51 14.8 1545 1.20 7.46 I4.9 1556 1.60 7.39 IS.0	ОRР ((mV) (µ 62.Ч 5 84.1 92.7 (95.7 94.1	Pu Well 1x We Conductivity IS/cm (mS/cm) 3.62 5 3.765 3.778	Ump Type: Diameter: Il Volume: DO (mg/L) G.4(6 5./4 4.92	©ED 2 1.77 Turbidity (NTU) 105 139 94	Bladde inches gallons X Water Level (fee 12.04 12.00
adjusted to: at adjusted to: at Time (gallons/liters) (s.u.) ($^{\circ}$ C) $^{\circ}$ F) 1530 INT. 7.87 IY.4 1535 0.40 7.57 I4.7 1540 0.80 7.51 I4.8 1545 1.20 7.46 I4.9 1556 1.60 7.39 I5.0	ORP (14) (mV) (4) 62.4 2 84.1 . 92.7 (7) 95.7 94.1	Well 1x We conductivity is/cm(ms/cm) 3.62 3.765 923 0.778	Diameter: II Volume: DO (mg/L) 6.46 5.14 4.92	2 1.77 Turbidity (NTU) 105 139 94	inches gallons X Water Level (fee 12.04 12.00
adjusted to: at Time Purge Volume (gallons/liters) pH Temp. (\odot °F) 1530 INT. 7.87 14.4 1535 0.40 7.57 14.7 1540 0.80 7.51 14.8 1545 1.20 7.46 14.9 1556 1.60 7.39 15.0	ORP (14) (mV) (4) 62.4 2 84.1 2 92.7 (14) 92.7 (14) 95.7	1x We Conductivity IS/cm(mS/cm) 3.625 3.765 3.765 3.778	II Volume: DO (mg/L) 6.46 5.14 4.92	1.77 Turbidity (NTU) 105 139 94	gallons X Water Level (fee 12.04 12.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ORP ((mV) (µ 62.4 5 84.1 5 92.7 6 75.7 94.6	Conductivity us/cm(ms/cm) 3.625 3.765 9230 3.778	DO (mg/L) 6.46 5.14 4.92	Turbidity (NTU) 105 139 94	Water Level (fee 12.04 12.00
Time(gallons/liters)(s.u.)($^{\circ}CI^{\circ}F$)1530INT.7.8714.415350.407.5714.715400.807.5114.815451.207.4614.915501.607.3915.0	(mV) (µ 62.4 84.1 92.7 75.7 94.6	3.778	(mg/L) 6.46 5.14 4.92	(NTU) 105 139 94	Level (fee 12.04 12.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	84.1 92.7 95.7 94.1	3.765 9.3.765 9.3.765 3.778	5.14	13.9 94	12.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	92.7 (c) 95.7 94.6	3.778	4.92	94	10.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	95.7 94.1	3.778	7.16	11	17 47
1550 1.60 7.39 15.0	94.10	3.770 1	479	119	12.02
	7 / 1	2 791	470	21	12.02
	97 8	2 299	7.72	51	12.00
100 240 326 101	92 1	2 7 9 7	1.67	18.0	12.02
1600 2.70 7.20 13.1	13.1	2 292	4.40	70.0	12.0
1003 2.80 7.20 11.1	92.2	2 295	4.67	5.4	12.00
1610 3.60 7.12 19.0	987	2.713	461	2.1	12.0
FEND CHRAMETERS STARTIT	ZEN C	S. FTE	SAMP	IFQ	1620-
END, PREAMETERS STREETERS	220,0	OLOPET	37170100	FC	10/20
	5.85 ⁷				
Final Sample Data:					
Sample ID: ILZNE	Duplicate?] Dupe	Samp ID:		
Sample Time: 1620	MS/MSD?	No. d	of Bottles:	8	*
Analyses: Methods: Comments:					
XSVOCs □ SW846					
PCBs					

		WE	L PURGE	SAMPLE	RECORD				
Site Name/Loc	ation: Hawkeye T	ade Center	and Residen	ces		Well ID:	IB	IJAW	
E & E Projec	t No.: EE1705007	.0019				Date:	10/2	8/202/8	
Initial Depth to)	Nator: 7.43	foot TOIC				Start Time:	1	120	
Total Well I	Depth: 27.49	feet TOIC				End Time:	12	52	-
Depth to I	Pump: 18.5	feet TOIC				Bailer		7Pump	-
Initial Pump	Rate: 0.05	Com apm			P	ump Type:	ØEL	> Blag	der
adjust	ted to: 0.09	at	1135		Well	Diameter:	2	inches	
adjust	ted to: 0.120	> at	1155	•	1x We	Il Volume:	2.46	gallons × 3 :	= 7.38
	Purge Volume	рН	Jemp.	ORP	Conductivity	DO	Turbidity	Water	7
Time	(gallons/liters)	(s.u.)	(°C)/ °F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet)	
1230	7.35	6.66	14,6	7.7	2.511	0.23	152	7.86	
1235	7.95	6.66	14.6	5.3	2.517	0.21	131	7.86	
1240	8.55	6.66	14,7	4.7	2.523	0.18	107	7.86	
1245	9.15	6.64	14.5	6.0	2.525	0.17	114	7.86	
1250	9.75	6.62	14.5	7.2	2.526	0.16	112	7.86	
FEND	PARA	METE	RS S	TABL	IZED, (OLLEC	TSAN	NPLE @	255
								14	× .
		0.00							
		-					200		
			-						
Final Sa	Imple Data:								
Sample ID:	IB11	AW		Duplicate?	Dupe Dupe	Samp ID:			
Sample Time:	125	5		MS/MSD?	No.	of Bottles:	C)	
Analyses:	Methods:	Comments:							
Procs									
KSVOCS	□ SW846							_	
YO PCBs	EPA/CWA								
Pest.	·								
K Metals/CN			mL	FOR					
	ŝ	sampler(s):	11).1	4 100					
DIM									
			^						

Page 2 of 2

		WEL	L PURGE 8	SAMPLE	RECORD				
Site Name/Loc	ation: Hawkeye Tr	ade Center a	and Residen	ces		Well ID:	IB1	1AW	
E & E Projec	t No.: EE1705007	.0019				Date:	10/28	5/2021	
it i Dentit i A	<u>-</u> 43	(112	^	
nitial Depth to	Water: 1.13	feet TOIC			5	Start Time:	10	55	
Total Well I	Depth: 22.71	feet TOIC			_	End Time:	VC	82	
Depth to I	Pump: 18.5	feet TOIC				Bailer	X	Pump	
Initial Pump	Rate: 0.05	(Lpm) gpm	HOF		P	ump Type:	QED	ISLADE	
adjus	ted to: 0.09	at .	1135	-	Well	Diameter:	2	inches	
adjus	ted to: 0.120	at .	1155		1x We	ell Volume:	2.46	gallons X 3	= 7
	Purge Volume	рН	Temp.	ORP	Conductivity	DO	Turbidity	Water	
Time	(gallons/liters)	(s.u.)	(°C) °F)	(mV)	(µS/cm(mS/cm)	(mg/L)	(NTU)	Level (feet)	
1120	INT.	8.83	11.3	1.0	0.735	7.37	71000	7.52	
1125	0.25	6.72	12.9	-82.6	2.325	0.56	71000	7.56	
1130	0.50	6.79	13.0	-80.9	2.377	0.54	71000	7.59	
1135	0.75	6.76	13.3	-70.5	2.462	0.55	71000	7.59	
1140	1.20	6.77	14.3	-65.4	2.426	0.42	71000	7.75	
1145	1.65	6.81	14.3	-64.5	2.421	0.40	71000	7.73	
1150	2.10	6.69	14.2	-20.0	2.368	0.50	71000	7.83	
1155	2,55	6.72	14.3	-24.0	2.378	0.44	741	7.80	
1200	3.15	6.74	14.3	-25.0	2.427	0.30	472	7.76	
1200	3.75	6.74	14.3	-24.4	2.429	0.29	335	28.5	
1205	4.35	6.59	14.5	12.5	2.419	0.93	636	7.87	
1210	4,95	6.67	14.6	-2.2	2.433	0.34	563	7.86	
1215	5.55	6.71	14.5	-9.8	2.478	0.25	325	7.87	
12.20	6.05	6.70	14.6	-8.4	2.497	0.22	192	7.86	
12.2.5	10.75	6.60	14.7	21.0	2.492	0.53	222	7.86	
Final Sa	ample Data:								
1 mai oc	T-D 11	0.04			_				
Sample ID:		LAW		Duplicate?	Dupe	Samp ID:	0		
Sample Time:	1255			MS/MSD?	LI No.	of Bottles:			
Analyses:	Methods:	Comments:							
VOCs				2					
SVOCs	□ SW846								
PCBs	□ EPA/CWA								
🗆 Pest.	□								
Metals/CN									
Metals/CN		Sampler(s):	m.H	anfard					

Page 1 of 2

		WEI	LL PURGE	SAMPLE	RECORD				
Site Name/Loc	ation: Hawkeye T	rade Center	and Residen	ces		Well ID:	IB/	ZSW	
E & E Projec	t No.: EE1705007	.0019				Date:	10/2	7/2021	
	9.71						101	c	-
Initial Depth to V	Water:	feet TOIC			S	Start Time:	121	2	
Total Well [Depth: 14.07	feet TOIC			_	End Time:		-	
Depth to F	Pump: 12.0	feet TOIC				Bailer		Pump	
Initial Pump	Rate: 0.07	_Lpm / gpm			P	ump Type:	QEL)Bladd	er
adjust	ted to: 0.05	at	1225	-	Well	Diameter:	2	inches	
adjust	ted to: 0 . 1 80	at	1245		1x We	ell Volume:	0.71	gallons × 3	= 2.
	Purge Volume	рН	Temp.	ORP	Conductivity	DO	Turbidity	Water	
Time	(gallons liters)) (s.u.)	(°C)/ °F)	(mV)	(µS/cm nS/cm)	(mg/L)	(NTU)	Level (feet)	
1215	INT	8.77	16,1	-71.6	1.568	3.92	41	9.89	
1220	0.350	8.22	15.4	- +2.3	1.517	4.21	89	10.01	
1225	0.700	7.40	15.3	-78.8	1.404	4.46	133	10.12	
1230	0.95	7.39	15.2	-74.3	1.361	4.63	130	10.20	
1235	1.20	7.35	15.0	-54.7	1.217	5.44	114	10.25	
1240	1.45	7.34	14.9	-50.3	1.196	5.50	117	10.31	
1245	1.70	7.30	14.9	-43.8	1.187	5.60	118	10.44	
1250	2.60	7.29	17.3	-84.2	1.454	4.44	15.5	10.59	
1255	3.50	7.31	17.4	-94.3	1.477	3.07	3.5	10.92	
1300	4.40	7.32	17.3	-113.6	1.526	1.73	4.5	11.00	
1305	5.30	7.35	16.9	-114.4	1.523	3.44	6.6	11.21	
- DRY	will prov	ple 10	ter -						
,	CONT SUIV	100 10					_		
Einal Sc	ample Data:								
Final Se	ample Data.								
Sample ID:	IBIZS	VV	2	Duplicate?	Dupe	Samp ID:		~	
Sample Time:	10/28/202	1 0940	0	MS/MSD?	□ No.	of Bottles:		7	
Analyses:	Methods:	Comments:							
Xvocs									
X SVOCs	□ SW846								
PCBs	EPA/CWA								
D Pest.	□								
Metals/CN									
Dioxin		Sampler(s):	m. +	tenford					
& Thenur	\sim		E1						

C1

		WEI	L PURGE	& SAMPLE	RECORD			
te Name/Loca	tion: Hawkeye Tr	ade Center	and Resider	nces		Well ID:	FBE	5SW
E & E Project	No.: EE1705007	.0019				Date:	10/:	27/2021
ial Depth to W	/ater: 4.52	feet TOIC			5	Start Time:	093	5
Total Well D	epth: 14.15	feet TOIC				End Time:	103	30
Depth to P	ump: 10.00	feet TOIC				Bailer	X	Pump
Initial Pump	Rate: 0.09	(pm) apm			P	ump Type:	QED	Blodde
adjuste	ed to: 0.08	at	0950		Well	Diameter:	2	inches
adjuste	ed to:	at		_	1x We	ell Volume:	1.57	gallons x3
	Purge Volume	pH	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.)	(°C) °F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet)
735	INT.	9.28	14.5	110.1	0.470	9.41	111 -	4.52
0940	0.450	7.71	15.6	188,7	0.463	8.57	74	4.57
0945	0.900	7.79	15.7	186.3	0.364	8.60	88	4.64
1950	me# 1.35	7.89	15.7	183.9	0.298	8.62	53	4.68
0955	1.75	7.93	15.5	183.4	0.290	8.64	39	4.71
1000	2.15	7.96	15.6	183.4	0.293	8.63	28	4.78
1005	2.55	7.93	15.3	183.6	0.301	8.66	23	4.80
1010	2,95	7.92	15.5	183.5	0.364	8.64	21	4.83
1015	3.35	7.92	15.6	182.8	0.307	8.64	16.8	4.90
1020	3.75	7.92	15.6	182.1	0.310	8.65	13.6	4.92
1025	4.15	7.92	15.6	180.7	0.315	8.65	11.1	5.00
-END	PARAMI	ETERS	STAG	SILI7	EDISA	MPLE	@ 103	0
		21 21 0						
Final Sa	mple Data:	_						
ample ID:	IB5 SV	\vee		Duplicate?	Dupe Dupe	Samp ID:		
ample Time:	1030			MS/MSD?	□ No.	of Bottles:	2	7
nalyses:	Methods:	Comments:						
(VOCs	CLP							
SVOCs	□ SW846							
PCBs	EPA/CWA							
] Pest.	□							
Metals/CN								
Diavin		Sampler(s)	MH					

ecology and engineering	i environment 5 and geology, p.c.							
		WE	LL PURGE 8	SAMPLE	RECORD			
Site Name/Loo	cation: Hawkeye T	rade Center	and Residen	ces		Well ID:	Mic	-18
E & E Projec	t No.: EE1705007	7.0019				Date:	10/29	8/21
Initial Depth to	Water: 4.80	feet TOIC		1	S	Start Time:	1000)
Total Well	Depth: 9.65	feet TOIC				End Time:	1005	
Depth to	Pump: 9.15	feet TOIC				Bailer	T	Pump
Initial Pump	Rate:	Lpm / gpm			P	ump Type:	peris	taltic
adjus	ted to:	at			Well	Diameter:	1	inches
adjus	ted to:	at			1x We	ell Volume:	0.2	gallons
	Purge Volume	рН	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.)	(°C / °F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet)
1000	Init	5:72	13:5	242	6960		Clear	
TOOL	03	6.76	17,5	216	5417		Olevay	
1000	0.4	T.07	12,7	208	4824		cloudy	1
1005 W	ell porge	d di	74 (0)	OIL	callong	5. CL	ill r	etury
Te	Sample	at	ala	TEC	time.			
								_
Final Sa	ample Data:							
0 1 10	Mahal	2		Duritizate		0 10		
Sample ID:	17.75	0		Duplicate?		Samp ID:	~3	
Sample Time.	-232		3/00	1013/10130 /		/ Dotties.	1	
Analyses:	Methods:	Comments:	Vels	only	due te	low	volli	ne.
M VOCs								
Pest.			,,				8	
□ Metals/CN								
Dioxin		Sampler(s):	Es	R				

C ecology and engineering	f environment and geology, p.c	é.						
. 894		WE	LL PURGE &	SAMPLE	RECORD			
Site Name/Loc	cation: <u>Hawkeye</u> 1	Trade Center	and Resider	ices		Well ID:	Min	1-19
E & E Projec	ct No.: <u>EE170500</u>	7.0019				Date:	10/2	8/21
Initial Depth to	Water: 4,20	feet TOIC			5	Start Time:	120	5
Total Well	Depth: 8,09	feet TOIC				End Time:	1214	
Depth to	Pump: 8:09	feet TOIC				Bailer	Ŀ	Pump
Initial Pump	Rate:	_ _ Lpm / gpm			P	ump Type:	peri	
adjus	ted to:	at		_	Well	Diameter:	l	inches
adjus	ted to:	at			1x We	ll Volume:	0.15	gallons
	Purge Volume	pH	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time 17.65	(gallons/liters)	(s.u.)	(°C/°F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet)
1787	RI	877	1100	226	241.4	4	Clear.	
1201	E) 7	03.69	11.7	- 36	7.39.1		lect	
17.11	0.3	9.54	11:3	725	7444		alac	
1712	0.5	8.42	11.8	229	7404		Cicar	
1217	Find	219-		- /	612:1		CICGO	
1611	E dia pu	ge.						
					-			
Final Sa	ample Data:				_			
Sample ID:	MW -10	1		Duplicate?		Samp ID:		
Sample Time:	1220		•	MS/MSD?	No.	of Bottles:	Ŕ	
Analyses	Methods:	Comments:	•					
NVOCs		o o minoritori						
SVOCs	□ SW846							
PCBs	□ EPA/CWA							
🗆 Pest.	□		_					
Metals/CN-								
🗆 Dioxin		Sampler(s):	ESR	•				

E & E Projec	t No.: EE1705007	7.0019			ă.	Date:	10/2	8/21
Initial Depth to	Nater: 4.91	feet TOIC			_	Ptort Times	1174	~~~
Total Well	Depth: 8,41						112	r.k
Depth to	Pump: 8,41				_			<u> </u>
Initial Pump	Bater					Baller	(P)	Pump
initial Fump		_Lpm / gpm			P	ump Type:	peris	ta/+00
adjus	ted to:	- at		-	Well	Diameter:	014	inches
				-	1x We	ll Volume:	0.17	gallons
Time	Purge Volume	pH (cu)		ORP	Conductivity	DO	Turbidity	Water
1175	(ganons/inters)	7 01	16 9	(mv)	(µS/cm/mS/cm)	(mg/L)	(NTU)	Level (fee
1126	0.1	Q 21	13 0	7.47	36.0 2		incaur	
1128	02	8 76	13.3	721	SPI CI		cloudy	
1130	0,-	075	12 5	271	364 11		Clear	0
1137	0.4	12-14	11.0	270	70117		Clear	
1133	0.5	0-2-1	14.0	2.50	Drai		Clear	
1124 1	-1	0:20	17,0	201	268:1		clear	
1107 1	that pirc	C-						
			_					
			_					
Final Sa	mple Data:							
Sample ID:	MWATZ			Duplicato?		Daman ID.		
Sample Time:	1145			MS/MSD2		f Bottles	G	
						- Dottico.	/	
Maiyses:		Comments:	51. 1 ()		1 - 6			_
I SVOCS		. <u> </u>	Ing htl	Ytu	chid			·
E PCBs	□ EPA/CW/A							-
Pest.					·····-			
Metals/CN								
	-	ampler(s):	FSI	0		5.		
has .		Simploi (3)						
Thorica								

Site Name/Location: Hawkeye Trade Center and Residences Well ID: $MW-C7$ E & E Project No.: EE1705007.0019 Date: $IC/Z7/Z$ itial Depth to Water: 6.36 feet TOIC Start Time: $I456$ // Total Well Depth: 8.99 feet TOIC End Time: $I5C5$ Depth to Pump: 9.79 feet TOIC End Time: $I5C5$ Depth to Pump: 9.79 feet TOIC End Time: $I5C5$ Juited to: at Well Diameter: inches adjusted to: at Well Diameter: Ic/L gallons Time (gallons/liters) (s.u.) (°C / °F) (mV) Loon4uctivity DO I456 C.2 I0:15 I5:4 I 2% 7.32.2 $Clearing$ $I456$ I456 C.2 I0:15 I5:4 I 2% 7.32.2 $Clearing$ $I456$ I456 C.3 I8:6 I8:7 I8:7 $Clearing$ $I456$ $Clearing$ $I6/cr I6/cr I6/cr I6/cr I6/cr I6/cr I6/cr I6/cr I6/cr I6/cr I6/cr$		WE	LL PURGE	& SAMPLE	RECORD			
E & E Project No.: EE1705007.0019 Date: $IC/Z \neq /Z$ itial Depth to Water: 6.36 feet TOIC Start Time: $I45C5$ // Total Well Depth: 6.79 feet TOIC End Time: $I5C5$ Depth to Pump: $g.9.9$ feet TOIC End Time: $I5C5$ Depth to Pump: $g.9.9$ feet TOIC End Time: $I5C5$ adjusted to: at Well Diameter: inches adjusted to: at Well Diameter: $inches$ $IH52$ I f f $Vell Volume:$ $C.I$ $IH52$ I f f $Vell Volume:$ $C.I$ $gallons$ $IH55$ C f f f I $Vell Volume:$ $C.I$ $gallons$ $IH56$ C f f f f f f f $IH56$ C f	te Name/Location: Haw	keye Trade Center	r and Reside	nces		Well ID:	MIL	1-07
itial Depth to Water: 6.36 feet TOIC Start Time: 1456 /4 Total Well Depth: 8.79 feet TOIC Depth to Pump: 9.79 feet TOIC Depth to Pump: 9.79 feet TOIC Initial Pump Rate:	E & E Project No.: EE1	705007.0019				Date:	10/2	7/21
Itial Depth to Water: $6 \cdot 56$ feet TOIC Start Time: $145 \cdot 6 \cdot 16$ Total Well Depth: $6 \cdot 19$ feet TOIC End Time: $15 \cdot 05$ Depth to Pump: $6 \cdot 94$ feet TOIC End Time: $15 \cdot 05$ Depth to Pump: $6 \cdot 94$ feet TOIC End Time: $15 \cdot 05$ adjusted to:		3.6			-			11-
Total Well Depth: 6 / 19 / feet TOIC End Time: $\int S CS$ Depth to Pump: $G.99$ / feet TOIC \Box Bailer E' Pump Initial Pump Rate: Lpm / gpm Pump Type: $\mathcal{P}U'_{1} \not= \mathcal{P}U'_{2} \not= \mathcal{P}U'_{1} \not= \mathcal{P}U'_{2} \not= \mathcal{P}U'_$	ial Depth to Water:	<u>56</u> feet TOIC			S	Start Time	- 145	G 1452
Depth to Pump: $\underline{G.9.49}$ feet TOIC Bailer Bailer \underline{B} Pump Initial Pump Rate:	Total Well Depth: 6	<u>44</u> feet TOIC				End Time		
Initial Pump Rate: Lpm / gpm Pump Type: <i>felt i pump</i> adjusted to: at Well Diameter: inches adjusted to: at 1x Well Volume: <i>C</i> .1 gallons Time (gallons/liters) (s.u.) (°C / °F) (mV) (usicm ms/c.1) (mg/L) (NTU) Level 1452 <i>F</i> .n./t 19.14 <i>i</i> .2.4 <i>i</i> .6.8 <i>i</i> .30.3 <i>muddy muddy</i> 1454 <i>O</i> .1 <i>f</i> .0.02 <i>i</i> .5.3 <i>i</i> .38 <i>i</i> .13.5 <i>c</i> .6666774 <i>muddy</i> 1456 0.2 <i>f</i> .0.02 <i>i</i> .5.4 <i>i</i> .2.5 <i>F</i> .7.32.2 <i>c</i> .6666774 <i>muddy</i> 1458 0.3 <i>i</i> .6.67 <i>i</i> .5.7 <i>i</i> .2.8 <i>F</i> .447.5 <i>c</i> .60/dy <i>muddy</i> 1505 <i>c</i> .6.6(ect <i>s</i>	Depth to Pump: <u>9.</u>	feet TOIC				Bailer		Pump
adjusted to: at well Diameter: inches adjusted to: at 1x Well Volume: \mathcal{C}_1 gallons Time (gallons/liters) (s.u.) (°C / °F) (my) (us/cm ms/c, ·) (mg/L) (Wtu) 1452 \mathcal{F}_n /f \mathcal{I}_1 /f \mathcal{I}_2 /f \mathcal{I}_3 /g $$	Initial Pump Rate:	Lpm / gpm	I		Pu	ump Type:	paring	pump
adjusted to: at 1x Well Volume: \mathcal{O}_{i} gallons Time (gallons/liters) (s.u.) (°C / °F) (mV) (us/or ms/or ms/	adjusted to:	at		_	Well	Diameter		inches
Purge Volume (gallons/liters)pH (s.u.)Temp. (°C / °F)ORP (mV)Coneductivity (µSicm mSic))DO (mg/L)Turbidity (NTU)Wat Level1452 $F = nit$ $9, 14$ 12.4 16.8 130.3 $$ $noddy$ $$ 1454 0_{c1} 10.02 15.3 13.8 717.5 $$ $clearing$ $$ 1456 0.2 10.15 15.4 12.8 732.2 $$ $clearing$ $$ 1458 0.3 10.02 15.4 12.8 747.5 $$ $clearing$ $$ 1458 0.3 16.09 15.0 12.8 747.5 $$ $clearing$ $$ 1505 $collect$ $5cmple$ $$ $$ $$ $$ $$ 1505 $collect$ $5cmple$ $$ $$ $$ $$ $$ 1505 $collect$ $5cmple$ $$ $$ $$ $$ 1505 $collect$ $5cmple$ $$ $$ $$ $$ 1505 $collect$ $5cmple$ $$ $$ $$ $$ 1505 $collect$ 15.0 12.8 744.5 $$ $clearing$ 16 $$ $$ $$ $$ $$ $$ 17 $$ $$ $$ $$ $$ $$ 18 $$ $$ $$ $$ $$ $$ 19 $$ $$ $$ $$ $$ $$ <t< td=""><td>adjusted to:</td><td> at</td><td></td><td>-</td><td>1x We</td><td>Il Volume:</td><td>0.1</td><td>gallons</td></t<>	adjusted to:	at		-	1x We	Il Volume:	0.1	gallons
Time (galions/iters) (s.u.) (*C / *F) (mV) (us/csr/ms/cc.*) (mg/L) (NTU) Level 1452 $\overline{x}_{$	Purge Vo	plume pH	Temp.	ORP	Conductivity	DO	Turbidity	Water
ITSE Janif IT IE IBS IBOS Moday I454 0.1 $f0.02$ $IS.3$ $I38$ $7I3.5$ $=$ $elewing$ $=$ I456 0.2 $I0.15$ $IS.4$ $I28$ 732.2 $=$ $elewing$ $=$ I458 0.3 $I0.06$ $IS.0$ $I28$ 744.5 $=$ $elewing$ $=$ I505 $collect$ $Sample$ $I28$ 744.5 $=$ $elewing$ $=$ I505 $collect$ $Sample$ $I28$ 744.5 $=$ $elewing$ $=$ I505 $collect$ $Sample$ $I0.04$ $I5.0$ $I28$ 744.5 $=$ $elewing$ $=$ I505 $collect$ $Sample$ $I0.04$	Ille (gallons/	(s.u.)	(°C / °F)	(mV)	(µS/cm/mS/c.)	(mg/L)	(NTU)	Level (feet
1131 0.1 10.02 17.0 153 417.0 -1260743 1456 0.2 10.15 15.4 128 732.2 -1260743 1458 0.3 10.06 15.0 128 741.5 -1260744 1505 $0.16c7$ 15.0 128 744.5 -1260744 -1260744 1505 $0.16c7$ 5.0 12.8 744.5 -1260744 -1260744 1505 $0.16c7$ 5.0 12.8 744.5 -1260744 -1260744 1505 $0.16c7$ 15.0 12.8 744.5 -1260744 -1260744 Final Sample Data: 10.66 15.0 12.8 744.5 -1260744 -1260744 Sample ID: $MW-07$ Duplicate? Dupe Samp ID: $N0.0$ of Bottles: X 14 Sample Time: 1505 Ms/MSD? $N0.0$ of Bottles: X 14	1454 Ai	80.02	16 2	100	130 <u>5</u>		Muday	
Image: Image	1456 0.7	10.15	15 4	178	7377-		Clearing	
Isos	1468 0.3	10.09	15.0	100	744.C		Cleaning 1	
Final Sample Data: $10 \cdot cq$ $15 \cdot c$ $12 \cdot g$ $744 \cdot 5$ $ cbudy$ ample ID: $MW - o7$ Duplicate? Dupe Samp ID: $Ms/MSD?$ Ms $No. of Bottles:$ 314 malyses: Methods: Comments: VOC MS/MSD Cm/Ms Ms/MsD	1505 Callet	- C al.	100	160	7 1102		Cloudy	
Final Sample Data: 10.09 15.0 12.8 744.5 $ cbudy$ Final Sample Data: 10.09 15.0 12.8 744.5 $ cbudy$ Sample ID: $MW-07$ Duplicate? Duple Samp ID: MS/MSD? $Mo. of Bottles:$ 14 nalyses: Methods; Comments; VCC $M5/M5D$ Cm/M		_sumple_						
Final Sample Data: $10 \cdot c9$ $15 \cdot c$ $12 \cdot 8$ $744 \cdot 5$ $-6wdy$ Final Sample Data: $10 \cdot c9$ $15 \cdot c$ $12 \cdot 8$ $744 \cdot 5$ $-6wdy$ Final Sample Data: $10 \cdot c9$ $15 \cdot c$ $12 \cdot 8$ $744 \cdot 5$ $-6wdy$ Final Sample Data: $10 \cdot c9$ $15 \cdot c$ $12 \cdot 8$ $744 \cdot 5$ $-6wdy$ Final Sample Data: $10 \cdot c9$ $15 \cdot c$ $12 \cdot 8$ $744 \cdot 5$ $-6wdy$ Final Sample Data: $10 \cdot c9$ $15 \cdot c$ $12 \cdot 8$ $744 \cdot 5$ $-6wdy$ Final Sample Data: $10 \cdot c9$ $15 \cdot c$ $12 \cdot 8$ $744 \cdot 5$ $-6wdy$ Final Sample Time: $15 \cdot c$ $15 \cdot c$ $10 \cdot c9$ $10 \cdot c9$ $10 \cdot c9$ Mapple Time: $15 \cdot c$ $15 \cdot c$ MS/MSD ? $Mo. of Bottles$: $14 \cdot c9$ Mapple Time: $15 \cdot c$ $Comments$: VCC MS/MSD $C \cdot c9$ V_{10}			· · · · · · · · · · · · · · · · · · ·					
Final Sample Data: 10.09 15.0 12.8 744.5 $ -$								
Final Sample Data: 10.09 15.0 12.8 744.5 $-cbudy$ ample ID: $MW-07$ Duplicate? Dupe Samp ID: ample Time: 1505 MS/MSD? No. of Bottles: $8/14$								
Final Sample Data: 10.69 15.0 12.8 744.5 $ cbudy$ Final Sample Data: 10.69 15.0 12.8 744.5 $ cbudy$ Final Sample Data: 10.69 15.0 12.8 744.5 $ cbudy$ Final Sample Data: 10.69 15.0 12.8 744.5 $ cbudy$ Final Sample Data: 10.69 15.0 12.8 744.5 $ cbudy$ $-$ Final Sample Data: 10.69 15.0 12.8 744.5 $ cbudy$ $-$ Final Sample ID: MS/MSD? Duplicate? Dupe Samp ID: $No. of Bottles:$ X 14 malyses: Methods: Comments: $VOC = MS / MSD = Cal Y$ $Cal Y$				Z				
Final Sample Data: 10.09 15.0 12.8 744.5 $ cbudy$ ample ID: $MW-07$ Dupticate? Dupe Samp ID: ample Time: 1505 MS/MSD? No. of Bottles: 3124					2			
Final Sample Data: 10.09 15.0 12.8 744.5 $ -$							- 23	
Final Sample Data: 10.09 15.0 12.8 744.5 $ cbudy$ ample ID: $Mw-07$ Duplicate? Dupe Samp ID: ample Time: 1505 MS/MSD? No. of Bottles: 314 malyses: Methods: Comments: VOC MS/MSD $Cody$								_
Final Sample Data: 10.09 15.0 12.8 744.5 $ cloudy$ $-$ sample ID: $MW-07$ Duplicate? Dupe Samp ID: $ -$								
Final Sample Data: 10.09 15.0 12.8 744.5 $ cloudy$ ample ID: $MW-07$ Duplicate?Duplicate?Dupe Samp ID:ample Time: 1505 MS/MSD? M No. of Bottles: $8/14$ nalyses:Methods:Comments: VOC MS/MSD $Caly$								
iample ID: $Mw-07$ Duplicate? Dupe Samp ID: iample Time: 1505 MS/MSD? No. of Bottles: $32/4$ inalyses: Methods: Comments: VOC MS/MSD $Calva$	Final Sample Data:	10.09	15.0	17 8	744.5		-h.l.	
Mample ID: Mw-07 Duplicate? Dupe Samp ID: iample Time: 1505 MS/MSD? No. of Bottles: \$17 nalyses: Methods: Comments: VCC MS/MSD Conference							Croudy	
malyses: Methods: Comments: VCC MS/MSD? MS/MSD? Confections:	mple ID: <u>MW-0</u>	7		Duplicate?	Dupe :	Samp ID:	100	
nalyses: Methods: Comments: VOC MS/MSD Caly	mple lime: <u>150</u>	<u> </u>		MS/MSD?	Mo. c	f Bottles:	8	14
	alyses: <u>Methods:</u>	Comments:	Vac	_MS/	MSD 0	nly		
	VOCs CLP	· · · · · · · · · · · · · · · · · · ·		/				
	0.400							
	SVOCs SW846							
ПРезі. Ц	SVOCs 🗆 SW846 PCBs 🗆 EPA/CW	Α						

2	.4
. 0	4
04	6

		WE	LL PURGE	& SAMPLE	RECORD			
Site Name/Lo	cation: <u>Hawkeye</u>	Trade Center	and Resider	nces		Well ID:	MW-	-22
E & E Proje	ct No.: <u>EE17050</u>	07.0019	u			Date:	10/27	121
Initial Depth to	Water: 9,07	feet TOIC				Start Time	143	ey
Total Well	Depth: 9,46	feet TOIC				End Time	14.71	
Depth to	Pump:	feet TOIC				Doilor		7 Duman
Initial Pum	Bate:					Daller		Pump
adius	ted to:	cpin / gpin			P	ump Type:		
adjua		ai		-	Wel	I Diameter:		inches
aujus				-	1x We	ell Volume:	0.016	gallons
Time	Purge Volum	e pH	Temp.	ORP	Conductivity	DO	Turbidity	Water
Eilad	(gallons/liters	6) (s.u.)		(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (fee
- Course	Te pui	ye 30	Tticle	IT W	e14-e-	Te	celle	CT
LUE	e chaing	VVIII	not s	ample	this	biell	-	
	·					_		
				<u> </u>				
								_
		_						
Final Sa	mple Data:							
Sample ID:			30					
Sample Time:						Samp ID:		
oumpic mile.				1013/10130?		of Bottles:		
Analyses:	Methods:	Comments:		_				
						_		
	□ SW846	_						
	⊔ EPA/CWA				(4			
I Pest								

		WE	LL PURGE &	& SAMPLE	RECORD			
Site Name/Loc	ation: Hawkeye T	rade Center	and Resider	ices		Well ID:	Mar.	-20
E & E Projec	t No.: EE1705007	.0019				Date:	10/23	7/21
itial Depth to \	Water: 6.55	feet TOIC			ş	Start Time:	135	5
Total Well I	Depth: <u>8,99</u>	feet TOIC				End Time:		
Depth to I	Pump: <u> <i>8,99</i> </u>	feet TOIC				Bailer		Pump
Initial Pump	Rate:	Lpm / gpm			P	ump Type:		
adjust	ted to:	at		-	Well	Diameter:		inches
adjust	red to:	at			1x We	II Volume:	O I	gallons
Time	Purge Volume (gallons/liters)	рН (s.u.)	Temp. (°C / °F)	ORP (mV)	Conductivity (µS/cm mS/cm)	DO (mg/L)	Turbidity (NTU)	Water Level (fee
1355	Init	9.26	13.7	172	3443		Brown	
1357	0:1	9.22	15.0	167	4463	Barrow	Muddy	-
1359	0.2	Well	purged	dry			/	
		¥						
							_	
				а u				
				_				
							di.	
	_							
_								
						-		
Final Sa	mple Data:							_
ample ID:	MW-20		I	Duplicate?	Dupe :	Samp ID:		
ample Time: _	1405		1	MS/MSD?	No. o	f Bottles:		
nalyses:	Methods: C	Comments:	San	ole i	's turbid	_		
yocs							_	
SVOCs	□ SW846							
PCBs	EPA/CWA							
Pest.								
Metals								

Well Purge Form.xls

2.5

Ceology and engineering	od environment og and gewingt, p.e							
· · · · · · · · · · · · · · · · · · ·		WE	LL PURGE	& SAMPLE	RECORD			
Site Name/Lo	ocation: Hawkeye 1	rade Center	and Reside	nces		Well ID:	Mw-	16
E & E Proje	ect No.: <u>EE170500</u>	7.0019				Date:	10/27	121
Initial Depth to	Water: 5.28	feet TOIC				Oto at Time a	475	·
Total Wel	Depth: 9,15	feet TOIC				End Time	130	7
Depth to	Pump: 9,15	feet TOIC				Bailer	<u> </u>	Pump
Initial Pum	p Rate:	_Lpm / gpm			Р	ump Type	Perist	altic
adju	sted to:	at		-	Well	Diameter	t	inches
adju	sted to:	at		10	1x We	ell Volume:	.16	gallons
Time	Purge Volume	pH	Temp.	ORP	Conductivity	DO	Turbidity	Water
1250	(gallons/liters)	(s.u.) B.69	(°C/°F) /2.6	(mV)	(µS/cm mS/cm) 2864	(mg/L)	(NTU)	Level (feet)
1252	0,1	8.87	14.5	160	72 91	-	hain	
1254	0:2	8.64	14.7	165	2110		brown	
1256	0.3	8.38	15.9	170	20,93	-	deavin	
1258	0.4	853	6.3	175	1804	-	chanjas	
1200	0.5	8.63	16.1	171	1749		cloudy	
1302	0.6	8.73	16.7	167	1673	-	cloudy	
1504	0.7	5.75	16.5	168	1660		cloudy	
1306	0:4	8,18	16:5	164	1641		cloudy	
1307	End pure	9 C						
						_		
Final S	ample Data:							
Sample ID:	ich MW-	-16		Duplicate?				
Sample Time:	1330			MS/MSD?		Samp ID: of Bottles:	8	
Analyses:	Methods: (Comments:	Sump	21e is	visibly	+0r	bid	
SVOCs	□ SW846							
PCBs	EPA/CWA							
D Pest.	□							
⊯ Metals/CN	-							
	S	Sampler(s):						

ecology an	id envi	ronn	ient	
engineerin	ig and	geolo	ygy,	p.c.

ę

10 	14 C	WEL	L PURGE 8	SAMPLE	RECORD			
ite Name/Loca	ition: Eastman Bu	siness Park	HOWA	reise		Well ID:	MW	-05
E & E Project	No.: -10C5007.00	03-		0		Date:	10/2	25/2021
	8 47					tert Times	12	25
tial Depth to W	/ater: 0.72	feet TOIC					13	20
Total Well D	epth: 7.05	feet TOIC				End Time:	10	50
Depth to P	ump: 9.00	feet TOIC				Bailer	X4	Pump
Initial Pump	Rate:	Lpm / gpm			Pu	imp Type:	Perist	GIAC
adjuste	ed to:	at			Well	Diameter:	1	inches
adjuste	ed to:	at		_	1x We	Il Volume:	0.05	gallons X 3
	Purge Volume	pH	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.)	((°C) °F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet)
1325	0.150	8.00	16.5	115.3	1.404	6.03	71000	
1328	0.320	8.16	17.7	110.4	1.193	5.54	782	i i i i i i i i i i i i i i i i i i i
1330	DRY -							
				-	-	-		
				-		_		
						_		
	2							
						10		
_	_			1				
	_							
Final Sa	mole Data:							
T mar ou	imple butui			Dualizato		Same ID:		
Sample ID:				MS/MSD?		of Bottles:		
Sample Time.								
Analyses:	Methods:	Comments:	_					
LI Pest.	ш				1			
Motole			and the second second					

		WE	LL PURGE	& SAMPLE	RECORD			
Site Name/Loo	cation: Hawkeye T	rade Center	and Resider	nces		Well ID:	MW-	21
E & E Projec	ct No.: EE1705007	7.0019				Date:	10/27	121
Initial Depth to	Water: 8.61	feet TOIC				Start Time:	1135	
Total Well	Depth: 9,92	feet TOIC				End Time:		
Depth to	Pump:	feet TOIC				Bailer		Pump
Initial Pump	Rate:	– Lpm / gpm			P		Poriot	alter
adjus	ted to:	at			W.all	Diametor:	1	inchos
adjus	ted to:	at			1x We	ell Volume:	0.05	gallons
	Purge Volume	pН	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.)	(°C / °F)	(mV)	(µS/cm/mS/cm)	(mg/L)	(NTU)	Level (feet)
11.57	Lait	7.95	11,8	174	5278		Clear	
1137	0.25	+.87	12.6	103	5010		41	
11.39	0.5	7.82	12.3	56	4899	-	11	-
1141	0.75	7.72	12.8	-28	4729		7	
1143	to Well	pused	dry.	will	allow ro	che -	C 2	
	cellect s	ample.	/			0		
1225	Cellect Sa	mple.	MW-2	1				
		And the Contraction of Contraction of the Contracti						
	· · · · · · · · · · · · · · · · · · ·			Rec	-			
					A DOC TO THE OWNER OF THE OWNER			
						Concession of Co		
Final Sa	mple Data:							
Sample ID:	MW-21	- -		Duplicate?	Dune	Samo ID:		
Sample Time:	1225			MS/MSD?		of Bottles	B	
Analyza	Mathada		L +	a . (1 1	4.0		
Analyses:		Comments:	Teint	petro	olevin / 1	LOC	cdo-	-
IT SVOCS								
PCBs								
Pest								
Metals/CN								
	-	Sampler(s):	Fil	Ra	"and			
		ampier(s)	Loip	1 vei	141			

1,3 4,04 .92

Site Name/Loc. E & E Project nitial Depth to V Total Well E Depth to F Initial Pump	ation: <u>Hawkeye Tr</u> t No.: <u>EE1705007</u> Vater: <u>10,39</u> Depth: <u>12,08</u> Pump: <u>12,08</u>	rade Center 2.0019 feet TOIC	and Resider	nces		Well ID:	Miv-	06
E & E Projec nitial Depth to V Total Well E Depth to F Initial Pump	t No.: <u>EE1705007</u> Vater: <u>10,39</u> Depth: <u>12,08</u> Pump: <u>12,08</u>	feet TOIC						
nitial Depth to V Total Well E Depth to F Initial Pump	Vater: 10,39 Depth: 12.08 Pump: 12:08	feet TOIC				Date:	10/27	121
Total Well E Depth to F Initial Pump	Depth: 12.08 Pump: 12.08	feet TOIC			s	Start Time:	1015	
Depth to F Initial Pump	Pump: 12.08	10011010				End Time:	1047	-
Initial Pump		feet TOIC				Bailer	<u> </u>	Pump
	Rate:	Lpm / gpm			P	ump Type:	Periss	altic
adjust	ed to:	at		-	Well	Diameter:	1	inches
adjust	ed to:	at		-	1x We	II Volume:	0.07	gallons
	Purge Volume	pН	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.)	(°C / °F)	(mV)	(µS/cm_mS/cm)	(mg/L)	(NTU)	Level (fee
1015	1 617	4.68	12.2	-64	1212		muddy	
1019	0.25	7.05	14.5	29	1729		CEar	
1021	0.5	7.64	14, 4	50	1897	-	clear	
1023	C.45	7.64	14.2	68	1944	·	clear	
1040	6991	7.86	13.5	113	2090		Clear	1
10 42	2.25gal	7,7%	13.4	128	2059	-	Clear	
1044	2:5	+,74	14.0	135	2091	1	clar	
1046	2:+5	7.71	13.9	137	2091	-	clea.	
1047	End pur	ige 4	Celle	c7 9	c. ple			
				-				
			·					
Final Sa	mple Data:							
Sample ID:	MW-06			Duplicate?	Dupe Dupe	Samp ID:		
ample Time: _	1047			MS/MSD?	□ No. 0	of Bottles:	9	
halvses:	Methods:	Comments:						
I VOCS	CLP							
SVOCs	□ SW846							
PCBs	EPA/CWA							
] Pest.	□		der an					
Metals/CN	_							
] Dioxin	S	Sampler(s):	ESR					

R ecolegy 9 engineerii	al cavito messo ng and geology, p.e.							
		WE		& SAMPLE	RECORD			
Site Name/Lo	ocation: Hawkeye T	rade Center	and Resider	nces		Well ID:	MW-	14
E & E Proje	ect No.: <u>EE1705007</u>	7.0019				Date:	10/2:	7/71
Initial Depth to	Water: 7.98	fact TOIO					-10;6	
Total Wel	Depth: $9,70$					Start Time:	093	· ()
Depth to	Pump: 8,7	feet TOIC				End Time:		
Initial Pum	ip Rate:	Lpm / gpm			P		Paris	Pump taltic
adju	sted to:	at			Well	Diameter	1	inches
adju	sted to:	at		-	1x We	Il Volume:	0.03	galions
	Purge Volume	рН	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.)	(°C / °F)	(mV)	(US/cm/mS/cm)	(mg/L)	(NTU)	Level (feet)
0120	1. 11	6.6	11.8	233	946.2			
0151	well pu	Ged	dry (× 1				
							_	
				l				
						_		
Final Sa	ample Data:							
Sample ID:	M61-14							
Sample Time:	1540				Dupe S	Samp ID: _		
A malve say			. (vio/iviou :		Bottles:	ŀ	
Analyses:	Methods: (comments:	VIC	s enly	r olce	te	1000	
	—		ping	ηεi	relline			
	EPA/CWA							
🗆 Pest.								
□ Metals/CN								
🗆 Dioxin	S	ampler(s):	E.	Reine	-+ , M.	Fler	ford	

Becology a	nd environment De and ecolopy n.c							
	6 6			0.000			_	
Site Name/Le	antines that a	VVE	LL PURGE 8	SAMPLE	RECORD			
Site Name/Lo	Cation: Hawkeye I	rade Center	and Resider	ices		Well ID:	MW-	15
E & E Proje	ect No.: <u>EE170500</u>	7.0019				Date:	10/2	7/21
Initial Depth to	Water: <u>8.53</u>	feet TOIC				Start Time:	095	9
Total Well	Depth: 9.38	_feet TOIC				End Time:	1000	9
Depth to	Pump: <u>9-38</u>	feet TOIC				Bailer	I	Pump
Initial Pum	p Rate:	_Lpm / gpm			P	ump Type:	perist	zltic
adjus	sted to:	at			Wel	Diameter:	' 1	inches
adjus	sted to:	at			1x We	ell Volume:	0,03	gallons
	Purge Volume	рН	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.)	(°C / °F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet)
0959	Lait	8,15	11.8	214	1351	-	Manager and	
1000	Well puro	ed d.	A E	100	- 140	EIS)		
			/	J				
	-							
			-				_	
							_	
Final Sa	ample Data:							
Sample ID:	MW-15			Duplicate?	Dupe	Samp ID:		
Sample Time:	1530		ſ	MS/MSD?	No.	of Bottles:	З	
Analyses:	Methods:	Comments.	Vor	Ca	de an	Le di	ip to	
VOCS			lon	7000	Le La	in and	<u> </u>	
□ SVOCs	□ SW846			Por.	je vel	- ne		
□ PCBs	EPA/CWA							
□ Pest.								
□ Metals/CN								
	-		ECA	Mri				_
		ampler(s):	- A	IM		_		

		WE	LL PURGE 8	SAMPLE	RECORD			
Site Name/Loca	ation: <u>Hawkeye</u> T	rade Center	and Residen	ices		Well ID:	Mu-	-23
E & E Project	t No.: <u>EE1705007</u>	.0019				Date:	10 26/	21
Initial Depth to V	Vater: 5.68	feet TOIC			S	Start Time:	135	7
Total Well D	Depth: 9,66	- feet TOIC				End Time:		
Depth to F	Pump: 9	- feet TOIC				Bailer		Pump
Initial Pump	Rate: 0,150	- Lpm / gpm			Pu	ump Type:	Derist	faltic
adjust	ed to: 0.180	at	1417		Well	Diameter:	- P	inches
adjust	ed to:	at		-	1x We	II Volume:	0.16	gallons O. 5ga
	Purge Volume	рН	Temp.	ORP	Conductivity	DO	Turbidity	Water
Time	(gallons/liters)	(s.u.)	(°C) °F)	(mV)	(µS/cm(mS/cm)	(mg/L)	(NTU)	Level (feet)
1357	INT.	8.87	16.0	140.0	0.533	6.85	71000	5.97
1302	0.450	8.88	10.1	155.1	0.000	8.00	322	6.01
140+	1.50	8.57	16.4	161.5	0.528	5.92	234	6.03
1412	2.25	8.53	16.3	185.5	0.327	5.71	95	6.03
1417	3.00	8.50	16.3	168,8	0.328	5.69	113	6.04
1422	3.90	8.98	16.3	171.8	0.325	5.65	93	6.05
1427	4.80	8.45	10.3	174.8	0.323	5.65	45.8	6.06
1432	5.70	8:45	16.3	176.5	0.325	5.54	35.14	6.07
1437	6.60	8.46	16.2	178.3	0.322	5.51	42.3	6.07
-FND	PARAME	TERS	STA	BLE,	COLLECT	SAM	PLEC	1440-
							_	
				5				
			×					
Final Sa	mple Data:							
Somela ID:	Mu	12		Duplicate		Come ID.		
Sample Time:	1447	-)		MS/MSD2		of Bottles:	Q	
Sample Time.	1110			WO/WOD?	Lef INO.	or boulles.	7	
Analyses:	Methods:	Comments:						
X VOCs								
K SVOCs		10						
		1910 - C		72				
Motolo/CN	└┘							
		Complete (a)	M. 11	maria	C. Priner	٢		
	m	sampler(s):	11111	1	Cupana			

		WE	LL PURGE	& SAMPLE	RECORD				
Site Name/Loc	cation: <u>Hawkeye</u> T	rade Center	and Resider	nces		Well ID:	TB5	ALE ITS	GNIF
E & E Projec	t No.: EE1705007	7.0019				Date	10/26	121 (2	n
Initial Depth to V	15.88 C	feet TOIC				Start Time	1015		
Total Well	Depth: 22,80	feet TOIC				End Time:	1125		-
Depth to	Pump: 20	feet TOIC				Bailer	N/	Pump	_
Initial Pump	Rate: 0.070	- Lpm / gpm				ump Type:	DED	Bladele	-
adjus	ted to: 0.20	at	1039		Well	Diameter:	Z	inches	-
adjus	ted to:	at			1x We	ell Volume:	0.78	gallons 2.3	=3.0
	Purge Volume	рН	Temp.	ORP	Conductivity	DO	Turbidity	Water	1
Time	(gallons/liters)	(s.u.)	(°C / °F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet)	
1019	Init	6.67	12.3	283.4	4.397	9.09	281	15,9	
1024	0.350	7.47	12.8	251.9	4.789	5.88	315	15.94]
1029	0.7	7.74	12.8	2383	4,949	5.41	247	15.95	
1034	1.05	7.78	13.1	234-9	4.975	5.25	148	15.98	
10.39	1.40	7.79	13,2	233.9	5.010	5.17	144	15.99	
1044	2.40	7.78	14.4	233.5	5.145	4.96	165	16.17	1
10 49	3.40	7.80	14.3	234.2	5.398	4.73	222	16.20	1
1054	4.40	7.74	14.3	236.8	6.316	3.99	265	16.20	1.0
1059	5.40	7.70	14.4	237.4	6.998	3,29	174	16.19	1
1104	6.40	7.58	14.1	248.7	7.161	3.28	172	16.15	
1109	7.40	7.59	14.3	244.8	7.236	2.60	162	16.13	
1114	8.40	7.62	14.1	241.4	7.236	2.37	171	16.13	
1119	9,40	7.62	14.2	239.9	7.209	2.25	161	16.14	1
1124	16.40	7.62	14.1	238.4	7.163	2.11	155	16.13	
-END,	well pora	meters	stabi	lized,	collect	samp	LC.	1125 -	
Final Sa	Imple Data:		(The second seco						
Sample ID:	IB5	NE.I	BENE	Duplicate?		Samp ID:			
Sample Time:	112	5 (ELA	MS/MSD?	No. o	of Bottles:	2	7	
Analyses:	Methods:	Comments:	Calle	d 54	our Har	turan	n en		
X VOCs	□ CLP		10/20	1/21	to co.	rect	Sam	ale T	D
X SVOCs	□ SW846	-1-		/					
PCBs				×					
Pest.	□								
Metals/CN								_	
Dioxin	S	Sampler(s):	M.H	onford	E. Reine	rt			
\$ monium)				

 \overline{u}

C ecology at engineers	ud envirosment ng and geology, p.c							
<u></u>		WE		& SAMPLE	RECORD			
Site Name/Lo	ocation: <u>Hawkeye</u>	Frade Cente	r and Resider	nces	RECORD	WellID	Mu	17
E & E Proje	ect No.: _EE170500	7.0019				Date:	10/20	9/71
Initial Depth to	Wator 9.63	(Duto.	NOLL	1 -
Total Wel	Denth: 13-95	_ feet TOIC				Start Time	100	2
Depth to	Pump: 13-9.5	feet TOIC				End Time		
Initial Pum	p Rate:	_ Lpm / apm				Baller	Д	Pump
adju	sted to:	at			P Wei	Ump Type:	1	in the second
adju	sted to:	at		-	1x We	ell Volume:	0.16	gallons
T :	Purge Volume	рН	Temp.	ORP	Conductivity	DO	Turbidity	Water
1me 1r:48	(gallons/liters)	(s.u.)	(°C / °F)	(mV)	(µS/cm mS/cm)	(mg/L)	(NTU)	Level (feet)
1049	1-1-1	7.03	15.2	178	6755		olean	
1050	6.2	7.77	15.8	100	1507		Olean	
1051	Well Du	and	101	0 20	21 11		CIEG.V-	
Y	* charge	C. S.	d y	Meet	Teans	5 >.	at it is a second secon	allow
-	time.		L.C.C.	1.001	200-7011	e- in	F. G	are
L			-			05		
								_
Final Sa	ample Data:							
Sample ID:	MW-1	7	[Duplicate?	Dupe :	Samp ID:		
Sample Time:	1150		۲ ا	MS/MSD?	No. o	f Bottles:	3	_
Analyses:	Methods:	Comments:						
	CLP -							
							·	
□ Pest								
□ Metals/CN								
Dioxin	- S	ampler(s):	ESR	MH				
			7					

C ecology as	ad environment og and geology, p.c								
• vod"		WE	LL PURGE	& SAMPLE	RECORD				
Site Name/Lo	ocation: <u>Hawkeye</u> T	Trade Center	and Reside	nces		Well ID:	SIRHAM	-	
E & E Proje	ect No.: <u>EE170500</u>	7.0019				Date:	10/28/	21	
Initial Depth to	Water 11.65	feet TOIC					1540		
Total Wel	Depth: 12.80					Start Time		·	
Depth to	Pump: 12,80	feet TOIC				End lime	·		
Initial Pum	ip Rate:	Lpm / apm						Pump	
adju	sted to:	at			Woll	Diamotor	101.3M	inches	
adju	sted to:	at		-			40.7	Inches	
	Purge Volume		Temp		Conductivity			ganons	
Time	(gallons/liters)	(s.u.)	(°C / °F)	(mV)	(uS/cm mS/cm)	(mg/L)	(NTII)	Water	
1545	Init	7.28	9.6	252	X3754	(<u>g</u> ,_)	brown		
1547	0,1	7.38	M.2	238	3863	~	clear		
1548	0.2	7.39	14.3	212	3779	e	clear	a	
1549	0,3	7.45	14.2	173	3763	•	clear		
1550	0.4	7.50	14.1	131	3742	-	clear		
1551	0.5	7.52	13.9	101	3771	diam.	clar		
1552	0,6	7.60	13,9	84	3763	-	char		
1553	0.7	7.54	13.2	42	3744	e,	clear		
1554	Well purge	d d.	- (Q)	~0	Fall	mil	1 alla		
	recharge	** 4	ample		9		<u> </u>		
			r						
Final Sa	ample Data:								
Sample ID:	SBANF			Duplicate					
Sample Time:	10/29/21	17.45		MS/MSD2		Samp ID:	. ~		
Apolycocc	Matheda	1010		Aco		/ Doules:	<u>``</u>		
Maiyses:		comments: _	1-15	e ttion	Cent Vo	cme	te		
SVOCs	П SW846		Drid	ple	Tar M	Etals	and		
			PLISS	· >01.	ple is	6151	bly_		
Pest.			OU	517-			· · · · · · · · · · · · · · · · · · ·		
□ Metals/CN									
Dioxin		ampler(s)	ESR	MH					

ecology and environment engineering and geology, p.c.

Site Name	/Location: Fastman	MLIA WE	LL PURGE	& SAMPL	ERECORD			
E&EPr	olect No : 1005007	and mere	* Haul	leije		Well ID	:JE	355W2
				~		Date	:	25/21
Initial Depth	to Water: 7.94	feet TOIC				Start Time	121	= ^
Total W	ell Depth: 18.7	feet TOIC						50
Depth	to Pump: <u>14.0</u>	feet TOIC	.070	int	<u>п</u>		: <u>/47</u>	2
Initial Pu	mp Rate: 0.07	Lpm/ gpm					Rich	Pump
ad	justed to:	at			F M/o		<u></u>	wer- WE
adj	usted to:	at	1.4		1v W	all Malumeter	1 71	inches
4	Purge Volume	Hq	Temp	OPP	Conductiv		1.76	gallons x 3
Time	(gallons/liters)	(s.u.)	(°C / °F)	(mV)	(uS/cm mS/cm)	DO	Turbidity	Water
1350	0.00	7.13	14.9	141.0	1.341	(mg/L) 8 40	(NTU) 90 42	Level (feet)
1355	0.35	7.06	15.2	139.5	1.418	701	10.75	7.72
1400	0.70	7.07	15.4	139.1	1.417	10.29	201	8 17
1405	1.05	7.07	15.4	139.7	1.415	6.88	129	0.17
1410	1.40	7.06	15.4	140.2	1.410	6.95	140	0.27
1415	1.75	7.09	15.5	138.5	1.379	2.15	N/ 2	8.42
1420	2.10	7.05	15.5	139.5	1.401	7.61	27 1	8.61
425	2.45	7.05	15.6	136.9	1.404	7.15	490	8.73
1430	2.80	7.05	15.6	134.7	1.404	7 19	226	8.72
1435	3.15	7.06	156	132.3	1.407	7.1	27 02	9.04
1440	3.50	7.06	15.6	130.8	1.409	771	24.12	9.29
1775	3.85	7.07	15.7	124.0	1.415	7.18	12 00	7.34
- Parar	netes sta	ible, a	colle	+ SG	mile (a	14	50	7.62
		1						
Final S	ample Data:							
ample ID:	IB55W2						En !	
ample Time:	1450			AS/MEDA	Dupe S	amp ID: 1	BSST	BSSWZ(1
alyses:	Methods:		IV	13/14/3D? [No. of	Bottles:		
NOCO		omments:						
SVOC-								
(SVUUS	⊔ SVV846 –						1	
(PCBs	EPA/CWA							
l Pest.	0							
Metals/CN						_		
Dioxin	s	ampler(s):	m. Ha	nfart	E. Poin	oct		_
thonu	n				- neste	<u> </u>		
RDCD a								

D Laboratory Reports

Laboratory reports are provided separately.

D-1

E Data Usability Summary Reports

E-1

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidelines:

- NYSDEC Division of Environmental Remediation Guidance for Data Deliverables and the Development of Data Usability Summary Reports (in DER-10, May 2010)
- EPA Region 2 Data Validation SOPs

Specific criteria for QC limits were obtained from the master QAPP. Compliance with the project QA program is indicated in the checklist and tables below. Any major or minor concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Sampling Company	Sample Delivery Group	Task Code
	480-190423-1	
Eurofins TestAmerica; Buffalo Eurofins TestAmerica; St Louis	480-190471-1	Site Characterization
	480-190565-1	
	480-190620-1	EE1705007.0019.01
	480-190721-1	

Table 1: Sample List

						ID
Work Order	Matrix	Sample ID	Lab ID	Sample Date	Lab QC	Corrections
480-190423-1	SO	SB03-Z05-07	480-190423-1	10/04/21 13:00		
480-190423-1	SO	SB02-Z07-09	480-190423-2	10/04/21 11:55		
480-190423-1	SO	SB01-Z06-08	480-190423-3	10/04/21 10:26		
480-190423-1	SO	SB06-Z08-10	480-190423-4	10/04/21 15:55		
480-190423-1	SO	SB06-Z00-02	480-190423-5	10/04/21 15:45		
480-190423-1	SO	SB05-Z00-02	480-190423-6	10/04/21 15:15		
480-190423-1	SO	SB04-Z00-02	480-190423-7	10/04/21 14:35		
480-190471-1	SO	SB07-Z00-02	480-190471-1	10/05/21 10:06		
480-190471-1	SO	SB08-Z00-04	480-190471-2	10/05/21 11:41		
480-190471-1	SO	SB08-Z06-08	480-190471-3	10/05/21 12:00		
480-190471-1	SO	SB08-Z06-08(DUP)	480-190471-4	10/05/21 12:00	Field Duplicate	
480-190471-1	Water	RB-100521	480-190471-5	10/05/21 13:00	Rinsate blank	
480-190471-1	Water	TB-100521	480-190471-6	10/05/21 00:00	Trip blank	
480-190565-1	SO	SB09-Z05-06	480-190565-1	10/06/21 10:55		
480-190565-1	SO	SB10-Z01-03	480-190565-2	10/06/21 11:57		
480-190565-1	Water	RB-100621	480-190565-3	10/06/21 13:00	Rinsate blank	
480-190565-1	Water	TB-100621	480-190565-4	10/06/21 00:00	Trip blank	
480-190565-1	SO	SB11-Z01-3	480-190565-5	10/06/21 13:30		
480-190620-1	SO	SB13-Z02-04	480-190620-1	10/07/2021 09:10		
480-190620-1	SO	SB14-Z02-04	480-190620-2	10/07/2021 09:40		
480-190620-1	SO	SB15-Z03-05	480-190620-3	10/07/2021 10:10		
480-190620-1	SO	SB15-Z08-10	480-190620-4	10/07/2021 10:30		
480-190620-1	SO	SB16-Z07-09	480-190620-5	10/07/2021 11:00		

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Work Order	Matrix	Sample ID	Lab ID	Sample Date	Lab QC	ID Corrections
480-190620-1	SO	SB18-Z03-05	480-190620-6	10/07/2021 13:00		
480-190620-1	SO	SB19-Z03-05	480-190620-7	10/07/2021 13:25		
480-190620-1	SO	SB19-Z08-10	480-190620-8	10/07/2021 13:30		
480-190620-1	SO	SB20-Z03-05	480-190620-9	10/07/2021 14:00		
480-190620-1	Water	RB-100721	480-190620-10	10/07/2021 12:00	Rinsate blank	
480-190721-1	SO	EMH1-SED	480-190721-1	10/08/21 13:40		
480-190721-1	Water	TB100821	480-190721-2	10/08/21 00:00	Trip blank	

Table 1A: Sample Test Summary

SDG	Matrix	Test Method	Method Name	# of Samples	Sample Type
480-190423-1 480-190471-1 480-190565-1 480-190620-1	SO	SW6010C	Metals (ICP)	44 19	N
480-190721-1	SE	SW6010C	Metals (ICP)	1	N
480-190471-1	SO	SW6010C	Metals (ICP)	1	FD
480-190471-1 480-190565-1 480-190620-1	AQ	SW6010C	Metals (ICP)	3	FB
480-190741-1 480-190565-1 480-190620-1 480-190423-1	SO	SW7471B	Mercury (CVAA)	20 19	Ν
480-190721-1	SE	SW7471B	Mercury (CVAA)	1	N
480-190741-1	SO	SW7471B	Mercury (CVAA)	1	FD
480-190471-1 480-190565-1 480-190620-1	AQ	7470A	Mercury (CVAA)	17 3	FB
480-190423-1 480-190471-1 480-190565-1 480-190620-1	SO	SW8082A	Polychlorinated Biphenyls (PCBs) by GC	45 19	N
480-190721-1	SE	SW8082A	Polychlorinated Biphenyls (PCBs) by GC	1	N
480-190471-1	SO	SW8082A	Polychlorinated Biphenyls (PCBs) by GC	1	FD
480-190565-1 480-190620-1	AQ	SW8082A	PCBs	3	FB
480-190423-1 480-190471-1 480-190565-1 480-190620-1	SO	SW8260C	Volatile Organic Compounds by GC/MS	63 24	N
480-190721-1	SE	SW8260C	Volatile Organic Compounds by GC/MS	1	N
480-190471-1 480-190565-1 480-190620-1	AQ	SW8260C	VOCs	3	FB

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

SDG	Matrix	Test Method	Method Name	# of Samples	Sample Type
480-190471-1 480-190721-1 480-190565-1	AQ	SW8260C	VOCs	3	ТВ
480-190423-1 480-190471-1 480-190565-1 480-190620-1	SO	SW8270D	Semivolatile Organic Compounds (GC/MS)	49 24	N
480-190721-1	SE	SW8270D	Semivolatile Organic Compounds (GC/MS)	1	N
480-190471-1	SO	SW8270D	Semivolatile Organic Compounds (GC/MS)	1	FD
480-190471-1 480-190565-1 480-190620-1	AQ	SW8270D	SVOCs	3	FB
480-190620-1	AQ	SW8270D SIM	SVOCs	1	RB
480-190620-1	SO	E537M	Perfluorinated Compounds	4 1	N
480-190620-1	AQ	E537M	Perfluorinated Compounds	1	RB
480-190423-1 480-190471-1 480-190565-1 480-190620-1	SO	DOE A-01-R	Isotopic Thorium (Alpha Spectrometry)	24 8	N
480-190721-1	SE	DOE A-01-R	Isotopic Thorium (Alpha Spectrometry)	1	N
480-190471-1	SO	DOE A-01-R	Isotopic Thorium (Alpha Spectrometry)	1	FD
480-190471-1	AQ	DOE A-01-R	Isotopic Thorium (Alpha Spectrometry)	1	FB

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

General Sample Information		
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes	
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	See bullets below for 480-190423-1	
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ set of samples per day?	Yes.	
Case narrative present and complete?	Yes.	
Any holding time violations?	No.	

 Lab SDG 480-190423-1 Temperature of the cooler at receipt was 6.1°C, however samples were properly preserved, and evidence of cooling was noted, and cooler temperature is acceptable.

- In SDG 480-190423-1, several samples were preserved via freezing on 10/05/2021 11:00.
- In SDG 480-190471-1, several samples were preserved via freezing on 10/06/2021 10:00.
- In SDG 480-190565-1, several samples were preserved via freezing on 10/07/2021 11:00.
- In SDG 480-190565-1, several samples were preserved via freezing on 10/08/2021 10:30.
- In SDG 480-191598-1, samples MW-20, MW-07, MW-05, and MW-05 DUP were collected in VOA vials with proper preservative; however, the pH of the samples was > 2 upon laboratory verification. The samples were analyzed within the recommended holding time of 7 days for unpreserved samples.

The following tables are presented at the end of this DUSR and provide summaries of results outside QC criteria:

- Method Blanks Results (Table 2)
- MS/MSD and RPDs Outside Limits (Table 3)
- Surrogates Outside Limits (Table 4)
- LCS and CCV Outside Limits (Table 5)
- Serial Dilutions Outside Limits (Table 6)
- Reanalysis Results (Table 7)
- Field Duplicate Results (Table 8)

Go to Tables List

Volatile/Semivolatile Organic Compounds by GC/MS – Method 8260C/8270D		
Description	Notes and Qualifiers	
Any compounds present in method, trip, or, field	For method blanks see table 2. No compounds	
blanks (see Table 2)?	present in trip or field blanks.	
For samples, if results are < 5 times the blank or <		
10 times the blank for common laboratory		
contaminants, then "U" flag data. Qualification		
also applies to TICs.		
Are surrogates for method blanks and LCS within	Yes.	
limits (see Table 4)?		
Are surrogates for samples and MS/MSD within	No.	

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
•	Michael Shadle

Volatile/Semivolatile Organic Compounds by GC/MS – Method 8260C/8270D	
Description	Notes and Qualifiers
limits (see Table 4)? If not, were all samples reanalyzed for VOCs? Matrix effects should be established.	
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes.
Is MS/MSD within QC criteria (see Table 3)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	No.
Is LCS within QC criteria (see Table 5a)? If out, and the recovery is high with no positive values, then no data qualification is required.	No.
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Yes.
Is initial calibration for target compounds <20 %RSD or curve fit (see Table 5b)?	Not applicable.
Is %D in the continuing calibration for target compounds less than method specifications (see Table 5b)?	190423: Methylene chloride %D
Were any samples reanalyzed or diluted (see Table 7)? For any sample reanalysis or dilutions, is only one reportable result flagged?	Yes.
For TICs are there any system related compounds that should not be reported?	No
Do field duplicate results show good precision for all compounds (see Table 8)?	Yes.

Pesticides and PCBs by GC – Method 8081B/8082A		
Description	Notes and Qualifiers	
Are any compounds present in method and field	Yes.	
blanks as noted on Table 2?		
For samples, if results are < 5 times the blank	Results <5x qualified U	
then "U" flag data.		
Are surrogates for method blanks and LCS within	Yes.	
limits (see Table 4)?		
Are surrogates for samples and MS/MSD within	No.	
limits (see Table 4)? Matrix effects should be		
established.		
Is laboratory QC frequency one blank and LCS	Yes.	
with each batch and one MS/MSD per 20		
samples?		
Are MS/MSD within QC criteria (see Table 3)? If	No.	
out and LCS is compliant, then J flag positive data		
in original sample due to matrix.		
Is LCS within QC criteria (see Table 5a)? If out,		
and the recovery high with no positive values,		
then no data qualification is required.		
Is initial calibration for target compounds <15	Not applicable.	
%RSD or curve fit? Is initial calibration verification		
<25%D (see Table 5b)?		
Is continuing calibration for target compounds <	Not applicable.	
Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences	
--------------------------------	---	
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and	
	Michael Shadle	

Pesticides and PCBs by GC – Method 8081B/8082A					
Description	Notes and Qualifiers				
20%D (see Table 5b)?					
Were any samples re-analyzed or diluted (see Table 7)? For any sample re-analysis and dilutions is only one reportable result by flagged?	Yes.				
Spot check retention time windows and second column confirmations as complete.	No issues identified.				
Do field duplicate results show good precision for all compounds (see Table 8)?	Not applicable.				

Metals & Mercury by ICP/AES – Method 6010C/7471B				
Description	Notes and Qualifiers			
Are any compounds present in method and field	Yes.			
blanks as noted on Table 2?				
For samples, if results are < 5 times the blank				
then "U" flag data.				
Is laboratory QC frequency one blank and LCS	Yes.			
with each batch and one set of MS/MSD per 20				
samples?				
Are MS/MSD within QC criteria (see Table 3)?	No.			
QC limits are not applicable to sample results				
greater than 4 times spike amount. All N flagged				
data for MS are flagged J as estimated.				
Were elements recovered ≤30%? If so, "R" flag	Yes.			
associated NDs.				
Is LCS within QC criteria (see Table 5a)? If out,	Yes.			
and the recovery high with no positive values,				
then no data qualification is required.				
Is there one serial dilution per 20 samples? Flag	NO.			
all data reported with an "E" as "J".				
Spot check ICS recoveries 80-120%. Contact lab	Not applicable.			
Spot check ICV 90-110% (ICVL 70-130%). For	Not applicable.			
Mercury ICV 85-115%. Contact lab if				
	Net environmente			
Spot check CCV 90-110% (CCVL 70-130%). For	Not applicable.			
Mercury CCV 85-115%. Contact lab If				
	No			
were any samples re-analyzed or diluted (see	INO.			
dilutions is only one reportable result by flagged				
De field duplicate results about good presision for	Vaa			
oll compounds (acc Table 2)2	Tes.			
aii compounds (see Table 8)?				

Perfluorinated Compounds – Method E537-LL				
Description	Notes and Qualifiers			
Any compounds present in method, trip, or field	Yes.			
blanks (see Table 2)?				
For samples, if results are < 5 times the blank				
contaminants, then "U" flag data.				

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Perfluorinated Compounds – Method E537-LL					
Description	Notes and Qualifiers				
Are surrogates for method blanks and LCS within limits?	Yes.				
Are surrogates for samples and MS/MSD within limits? (See Table 3).	Yes.				
Are surrogates for Isotope Dilution within limits? (See Table 3b).	Yes.				
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes.				
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	Yes.				
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Yes.				
Do internal standards areas and retention time meet criteria?	Yes.				
Is initial calibration for compounds by isotope dilution <35 %RSD or curve fit; and compounds quantitated by isotope dilution analytes (IDA) <50% RSD?	Not applicable				
to 60-140% for all natives quantitated by isotope dilution or 50-150% for natives quantitated by IDA.					
Is continuing calibration for compounds by isotope dilution equal to or within 60-140% for all natives quantitated by isotope dilution or 50-150% for natives quantitated by IDA.	Not applicable				
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	No.				
Do field duplicate results show good precision for all compounds (see Table 7)?	Yes.				

Isotopic Thorium by Alpha Spectrometry				
Description	Notes and Qualifiers			
Are any compounds present in method and field	No.			
blanks as noted on Table 2? Method blank results				
should be less than $\frac{1}{2}$ PQL, <mdc, and="" less="" td="" than<=""><td></td></mdc,>				
the uncertainty.				
For samples, if results are < 5 times the blank	N/A			
contaminants, then "U" flag data.				
LCS within QC criteria 70-130% recovery (see Table	Yes.			
5)? Reject data with recovery <50% or greater than				
150%.				
Are MS/MSD within QC criteria (70-130% recovery,	N/A: MS/MSD not required for alpha			
RPD ± 35)? See Table 4	spectroscopy			
Is matrix duplicate within QC criteria (RPD \pm 35,	Yes.			
NAD < 1.96) ? MD must be performed on site				
samples to use results for qualification. If out, apply				
the Normalized Absolute Difference <1.96 test in				
USACE Guidance.				

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Isotopic Thorium by Alpha Spectrometry				
Description	Notes and Qualifiers			
Do field duplicate results show good precision for all compounds?	Yes.			
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	No.			
Were background and continuing calibration checks (pulsers) performed daily?	Yes.			
Were instrument checks marked as failed and if so, were checks performed more than twice to bring into compliance?	No.			
Spot check the raw data, were any anomalies found in spectra?	No.			
Were tracer yields within limits? If recoveries were outside laboratory derived limits, but within default limits of 20-150%, flag associated results as estimated (J) after corrective actions, otherwise R. If recoveries are <20%: flag as rejected (R) and >150% rejected (R).	No.			
If recoveries were outside control limits, were adequate quantities of tracers used and were calculations correct?	N/A: All recoveries were within limits.			
Were the relationships between results, uncertainties, and MDCs in compliance?	Yes.			

Summary of Potential Impacts on Data Usability Concerns

- Samples SB03-Z05-07, SB02-Z07-09, SB01-Z06-08, SB06-Z08-10, SB06-Z00-02, SB05-Z00-02, SB04-Z00-02 "U" qualified as non-detect for methylene chloride due to method blank detection.
- Sample SB16-Z07-09 "U" qualified as non-detect for PFOS due to method blank detection.
- Samples SB06-Z00-02, SB05-Z00-02, and SB08-Z00-04 "U" qualified as non-detect for selenium due to method blank detection.
- Sample EMH1-SED "J" qualified as estimated for acetone, barium, and copper due to MS and/or MSD % recovery.
- Samples SB08-Z00-04, SB09-Z05-06 and EMH1-SED "J+" qualified as estimated, high biased for aluminum due to MS/MSD % recovery.
- Sample SB08-Z00-04 "J-" qualified as estimated, low biased for calcium, magnesium, manganese, and arsenic due to MS/MSD % recovery.
- Samples SB08-Z00-04 and SB09-Z05-06 "UJ" qualified as estimated, non-detect for antimony due to MS/MSD % recovery.
- Samples SB08-Z00-04 and SB09-Z05-06 "J+" qualified as estimated, high biased for barium and potassium due to MS and/or MSD % recovery.
- Sample SB09-Z05-06 "J" qualified as estimated for calcium due to MS/MSD % recovery.
- Sample EMH1-SED "J+" qualified as estimated, high biased for lead and potassium due to MS and/or MSD % recovery.
- Sample SB09-Z05-06 "J+" qualified as estimated, high biased for magnesium and manganese due to MS/MSD % recovery.
- Samples SB09-Z05-06 and EMH1-SED "J-" qualified as estimated, low biased for zinc due to MS/MSD % recovery.
- Sample SB13-Z02-04 was "R" qualified as rejected for 2,4,6-tribromophenol due to surrogate % recovery.

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

• Sample SB-07-Z00-02 was J+ qualified as estimated, high biased for thorium-229 due to trace recovery exceedance.

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Table 2 – List of Positive Results for Blank Samples

Mothod	Sample ID	Sample	Analuto	Pocult	Qualifier	Unite	МП	POL
wethod		туре	Allalyte	Result	Quaimer	Units	IVIDL	FQL
SW8260C	599148/2A	SO	Methylene Chloride	3.44	J	ug/kg	2.3	5.0
SW6010C	RB-100521 (480-190471-5)	Water	Barium	0.0014	J	mg/L	0.00070	0.0020
SW6010C	RB-100521 (480-190471-5)	Water	Calcium	0.26	J	mg/L	0.10	0.50
SW6010C	RB-100521 (480-190471-5)	Water	Copper	0.0050	J	mg/L	0.0016	0.010
SW6010C	RB-100521 (480-190471-5)	Water	Iron	0.083		mg/L	0.019	0.050
SW6010C	RB-100521 (480-190471-5)	Water	Magnesium	0.083	J	mg/L	0.043	0.20
SW6010C	RB-100521 (480-190471-5)	Water	Manganese	0.0085	J	mg/L	0.00040	0.0030
SW6010C	RB-100521 (480-190471-5)	Water	Zinc	0.0036	J	mg/L	0.010	0.0015
SW6010C	RB-100621 (480-190565	Water	Aluminum	0.69		mg/L	0.060	0.20
SW6010C	RB-100621 (480-190565	Water	Barium	0.0046		mg/L	0.00070	0.0020
SW6010C	RB-100621 (480-190565	Water	Calcium	2.1		mg/L	0.10	0.50
SW6010C	RB-100621 (480-190565	Water	Chromium, total	0.0020	J	mg/L	0.0010	0.0040
SW6010C	RB-100621 (480-190565	Water	Copper	0.0019	J	mg/L	0.0016	0.010
SW6010C	RB-100621 (480-190565	Water	Iron	0.72	Т	mg/L	0.019	0.050
SW6010C	RB-100621 (480-190565	Water	Magnesium	0.49		mg/L	0.043	0.20
SW6010C	RB-100621 (480-190565	Water	Manganese	0.036		mg/L	0.00040	0.0030
SW6010C	RB-100621 (480-190565	Water	Nickel	0.0013	J	mg/L	0.0013	0.010

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Method	Sample ID	Sample Type	Analyte	Result	Qualifier	Units	MDL	PQL
SW6010C	RB-100621 (480-190565	Water	Potassium	0.23	J	mg/L	0.10	0.50
SW6010C	RB-100621 (480-190565	Water	Zinc	0.0044	J	mg/L	0.0015	0.010
SW8260C	RB-100621 (480-190565	Water	Methylene chloride	2.4		mg/L	0.44	1.0
SW8260C	RB-100721 (480-190620-10)	Water	Methylene Chloride	4.9		ug/L	0.44	1.0
E537M	RB-100721 (480-190620-10)	Water	Perfluorooctanesulfonic acid (PFOS)	0.35	JΒ	ng/L	0.28	1.9
E537M	RB-100721 (480-190620-10)	Water	Perfluorodecanesulfonic acid (PFDS)	0.49	J	ng/L	0.29	1.9
SW6010C	RB-100721 (480-190620-10)	Water	Chromium	0.0019	J	mg/L	0.0010	0.0040
SW6010C	RB-100721 (480-190620-10)	Water	Iron	0.067		mg/L	0.019	0.050
SW6010C	RB-100721 (480-190620-10)	Water	Manganese	0.0011	J	mg/L	0.00040	0.0030
SW8260C	RB-102521 (480- 191411-3)	Water	Acetone	3.2	J	ug/L	3.0	10
SW8260C	RB-102521 (480- 191411-3)	Water	Methylene Chloride	3.7		ug/L	0.44	1.0
SW6010C	RB-102521 (480- 191411-3)	Water	Manganese	0.0010	JВ	mg/L	0.00040	0.0030
SW6010C	RB-102521 (480- 191411-3)	Water	Zinc	0.0019	В	mg/L	0.0015	0.010
SW8260C	RB102621 (480- 191462-3)	Water	Methylene Chloride	8.2		ug/L	0.44	1.0
SW8260C	RB102621(480- 191462-3)	Water	Barium	0.0070		mg/L	0.00070	0.0020
SW8260C	RB102621(480- 191462-3)	Water	Calcium	0.32	J	mg/L	0.10	0.50
SW8260C	RB102621(480- 191462-3)	Water	Copper	0.32		mg/L	0.0016	0.010
SW8260C	RB102621(480- 191462-3)	Water	Iron	0.020	J	mg/L	0.019	0.050

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Method	Sample ID	Sample Type	Analyte	Result	Qualifier	Units	MDL	PQL
SW8260C	RB102621(480- 191462-3)	Water	Lead	0.0051	J	mg/L	0.0030	0.010
SW8260C	RB102621(480- 191462-3)	Water	Manganese	0.0016	JВ	mg/L	0.00040	0.0030
SW8260C	RB102621(480- 191462-3)	Water	Sodium	0.73	J	mg/L	0.32	1.0
SW8260C	RB102621(480- 191462-3)	Water	Zinc	0.010	В	mg/L	0.0015	0.010
SW6010C	RB102721 (480- 191596-7)	Water	Aluminum	0.11	JΒ	mg/L	0.060	0.20
SW6010C	RB102721 (480- 191596-7)	Water	Manganese	0.0014	J	mg/L	0.00040	0.0030
SW6010C	RB102721 (480- 191596-7)	Water	Zinc	0.0023	JΒ	mg/L	0.0015	0.010
SW8260C	RB102921 (480- 191671-4)	Water	Methylene Chloride	6.1		ug/L	0.44	1.0
SW6010C	RB102921 (480- 191671-4)	Water	Manganese	0.00094	J	mg/L	0.00040	0.0030
SW6010C	RB102921 (480- 191671-4)	Water	Zinc	0.0057	JΒ	mg/L	0.0015	0.010
SW6010C	MB 480-599308/1- A	SO	Calcium	3.62	J	mg/kg	3.3	49.9
SW6010C	MB 480-599308/1- A	SO	Selenium	0.448	J	mg/kg	0.40	4.0
SW6010C	MB 480-599625/1- A	SO	Arsenic	0.0121	J	mg/kg	0.0056	0.015
SW6010C	MB 480-600000/1- A	SO	Aluminum	5.41	J	mg/kg	4.5	10.3
SW6010C	MB 480-600000/1- A	SO	Calcium	3.99	J	mg/kg	3.4	51.6
SW6010C	MB 480-600000/1- A	SO	Manganese	0.0423	J	mg/kg	0.033	0.21
SW6010C	MB 480-600000/1- A	SO	Zinc	0.831	J	mg/kg	0.66	2.1
E537M	MB 200-172453/1- A	SO	Perfuorooctanesulfonic acid (PFOS)	0.0357	J	ug/kg	0.016	0.20

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Method	Sample ID	Sample Type	Analyte	Result	Qualifier	Units	MDL	PQL
E537M	MB 200-172453/1- A	SO	N- methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	0.0602	J	ug/kg	0.037	2.0
E537M	MB 200-172453/1- A	SO	N- ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	0.0603	J	ug/kg	0.046	2.0
E537M	MB 200-172453/1- A	SO	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	0.0168	J	ug/kg	0.016	2.0
E537M	MB 200-172570/1- A	Water	Perfluorooctanesulfonic acid (PFOS)	0.298	J	ug/kg	0.29	2.0
SW6010C	MB 480-599733/1- A	Water	Potassium	0.129	J	mg/L	0.10	0.50
SW6010C	MB 480-599998/1- A	SO	Aluminum	5.07	J	mg/kg	4.5	10.2
SW6010C	MB 480-599998/1- A	SO	Calcium	4.93	J	mg/kg	3.4	50.9
SW6010C	MB 480-599998/1- A	SO	Manganese	0.0397	J	mg/kg	0.033	0.2

Table 2a – List of Samples Qualified for Method Blank Contamination

				Blank	Sample	Lab			Sample
Method	Method Blank	Matrix	Analyte	Result	Result	Qual.	PQL	Affected Samples	Flag
SW6010C	MB 480-602690/1-A	Water	Aluminum	0.116	96.1	^+B	0.20	MW-20 (480-191598-1)	
SW6010C	MB 480-602690/1-A	Water	Aluminum	0.116	44.2	^+B	0.20	MW-16 (480-191598-2)	
SW6010C	MB 480-602690/1-A	Water	Aluminum	0.116	0.22		0.20	MW-21 (480-191598-3)	
SW6010C	MB 480-602690/1-A	Water	Aluminum	0.116	0.31		0.20	MW-06 (480-191598-4)	
SW6010C	MB 480-602690/1-A	Water	Aluminum	0.116	0.82		0.20	IB5SW (480-191598-5)	
SW6010C	MB 480-602690/1-A	Water	Aluminum	0.116	11.2	^+B	0.20	MW-07 (480-191598-6)	
SW8260C	MB 480-599148/2A	SO	Methylene Chloride	3.44	9.2	В	5.0	SB03-Z05-07 (480-190423-1)	U
SW8260C	MB 480-599148/2A	SO	Methylene Chloride	3.44	9.2	В	5.0	SB02-Z07-09 (480-190423-2)	U
SW8260C	MB 480-599148/2A	SO	Methylene Chloride	3.44	5.3	В	5.0	SB01-Z06-08 (480-190423-3)	U
SW8260C	MB 480-599148/2A	SO	Methylene Chloride	3.44	8.4	В	5.0	SB06-Z08-10 (480-190423-4)	U
SW8260C	MB 480-599148/2A	SO	Methylene Chloride	3.44	6.5	В	5.0	SB06-Z00-02 (480-190423-5)	U
SW6010C	MB 480-599308/1A	SO	Selenium	0.448	1.8	JВ	4.3	SB06-Z00-02 (480-190423-5)	U
SW8260C	MB 480-599148/2A	SO	Methylene Chloride	3.44	7.2	В	4.9	SB05-Z00-02 (480-190423-6)	U
SW6010C	MB 480-599308/1A	SO	Selenium	0.448	0.58	JB	4.7	SB05-Z00-02 (480-190423-6)	U

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Method	Method Blank	Matrix	Analyte	Blank Result	Sample Result	Lab Qual.	PQL	Affected Samples	Sample Flag
SW8260C	MB 480-599148/2A	SO	Methylene Chloride	3.44	8.5	В	5.5	SB04-Z00-02 (480-190423-7)	U
SW6010C	MB 480-599308/1-A	SO	Selenium	0.448	1.2	JΒ	4.8	SB08-Z00-04 (480-190471-2)	U
E537M	MB 200-172453/1-A	SO	Perfluorooctane Sulfonic Acid	0.0357	0.053	BJ		SB16-Z07-09 (480-190620-)	U

 Table 2b – List of Samples Qualified for Field Blank Contamination

 None.

Table 3 – List of MS/MSD Recoveries outside Control Limits

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	MS	MSD	Low Limit	High Limi t	Sample Qualifier
SW8260C	480-190471-2 MS/MSD (SB08-Z00-04)	SO	1,1,2,2-Tetrachloroethane	ND	41.7/45.4	72	81	80	120	
SW8260C	480-190471-2 MS/MSD (SB08-Z00-04)	SO	2-Butanone (MEK)	ND	208/277	68	71	70	134	
SW8260C	480-190471-2 MS/MSD (SB08-Z00-04)	SO	4-Methyl-2-pentanone (MIBK)	ND	208/277	64	66	65	133	
SW6010C	480-190471-2 MS/MSD (SB08-Z00-04)	SO	Aluminum	6860	2260/245 0	255	315	75	125	J+
SW6010C	480-190471-2 MS/MSD (SB08-Z00-04)	SO	Antimony	ND	45.1/49.0	66	63	75	125	UJ
SW6010C	480-190471-2 MS/MSD (SB08-Z00-04)	SO	Arsenic	12.3	45.1/49.0	71	71	75	125	J-
SW6010C	480-190471-2 MS/MSD (SB08-Z00-04)	SO	Barium	38.8	45.1/49.0	120	140	75	125	J+
SW6010C	480-190471-2 MS/MSD (SB08-Z00-04)	SO	Calcium	65400	2250/245 0	-2162	-1996	75	125	
SW6010C	480-190471-2 MS/MSD (SB08-Z00-04)	SO	Iron	13300	2250/245 0	61	102	75	125	
SW6010C	480-190471-2 MS/MSD (SB08-Z00-04)	SO	Magnesium	4300	2250/245 0	52	64	75	125	J-
SW6010C	480-190471-2 MS/MSD (SB08-Z00-04)	SO	Manganese	609	45.1/49.0	-519	-275	75	125	
SW6010C	480-190471-2 MS/MSD (SB08-Z00-04)	SO	Potassium	1460	2260/245 0	173	193	75	125	J+

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	MS	MSD	Low	High Limi t	Sample Qualifier
SW6010C	480-190565-1 MS/MSD (SB09-Z05-06)	SO	Antimony	ND	49.2/50.6	64	65	75	125	UJ
SW6010C	480-190565-1 MS/MSD (SB09-Z05-06)	SO	Barium	25.1	49.2/50.6	165	155	75	125	J+
SW6010C	480-190565-1 MS/MSD (SB09-Z05-06)	SO	Potassium	5630	2460/253 0	300	273	75	125	J+
SW6010C	480-190565-1 MS/MSD (SB09-Z05-06)	SO	Zinc	45.8	49.2/50.6	31	60	75	125	J-
SW6010C	480-190565-1 MS/MSD (SB09-Z05-06)	SO	Aluminum	10500	2460/253 0	605	552	75	125	
SW6010C	480-190565-1 MS/MSD (SB09-Z05-06)	SO	Iron	11400	2460/253 0	126	118	75	125	
SW6010C	480-190565-1 MS/MSD (SB09-Z05-06)	SO	Magnesium	24200	2460/253 0	263	274	75	125	
SW6010C	480-190565-1 MS/MSD (SB09-Z05-06)	SO	Manganese	395	49.2/50.6	127	140	75	125	
SW6010C	480-190565-1 MS/MSD (SB09-Z05-06)	SO	Calcium	116000	2460/253 0	794	791	75	125	
SW8270D	480-190620-4 MS/MSD (SB15-Z08-10)	SO	Diethyl phthalate	ND	2040/205 0	121	109	66	120	
A-01-R	EMH1-SED MS	SO	Thorium-230	ND	3.99/3.98	118	110	82	114	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	1,1,1-Trichloroethane	ND	49.6/79.7	68	71	77	121	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	1,1,2,2-Tetrachloroethane	ND	49.6/79.7	69	67	80	120	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	1,1,2-Trichloroethane	ND	49.6/79.7	70	72	78	122	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	1,1,2-Trichloro-1,2,2- trifluoroethane	ND	49.6/79.7	48	45	60	140	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	1,1-Dichloroethane	ND	49.6/79.7	71	72	73	126	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	1,2,4-Trichlorobenzene	ND	49.6/79.7	19	24	64	120	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	1,2-Dibromo-3- Chloropropane	ND	49.6/79.7	53	54	63	124	

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	MS	MSD	Low Limit	High Limi t	Sample Qualifier
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	1,2-Dichlorobenzene	ND	49.6/79.7	45	49	75	120	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	1,2-Dichloroethane	ND	49.6/79.7	64	65	77	120	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	1,2-Dichloropropane	ND	49.6/79.7	66	68	75	124	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	1,3-Dichlorobenzene	ND	49.6/79.7	44	46	74	120	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	1,4-Dichlorobenzene	ND	49.6/79.7	46	49	73	120	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	2-Butanone (MEK)	ND	248/399	52	52	70	134	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	4-Methyl-2-pentanone (MIBK)	ND	248/399	64	64	65	133	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Acetone	26	248/399	45	46	61	137	J
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Benzene	ND	49.6/79.7	68	70	79	127	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Bromoform	ND	49.6/79.7	58	62	68	126	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Carbon tetrachloride	ND	49.6/79.7	65	72	75	135	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Chlorobenzene	ND	49.6/79.7	63	66	76	124	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Dibromochloromethane	ND	49.6/79.7	68	70	76	125	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Chloroform	ND	49.6/79.7	70	72	80	120	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	cis-1,2-Dichloroethene	ND	49.6/79.7	71	73	80	120	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	cis-1,3-Dichloropropene	ND	49.6/79.7	65	69	80	120	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Cyclohexane	ND	49.6/79.7	35	39	65	120	

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	MS	MSD	Low Limit	High Limi t	Sample Qualifier
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Ethylbenzene	ND	49.6/79.7	55	60	80	120	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	1,2-Dibromoethane	ND	49.6/79.7	67	68	78	120	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Isopropylbenzene	ND	49.6/79.7	47	50	72	120	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Methylcyclohexane	ND	49.6/79.7	23	24	60	140	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Styrene	ND	49.6/79.7	60	64	80	120	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Tetrachloroethene	ND	49.6/79.7	49	53	74	122	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Toluene	ND	49.6/79.7	69	72	74	128	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	trans-1,2-Dichloroethene	ND	49.6/79.7	71	72	78	126	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Trans-1,3-Dichloropropene	ND	49.6/79.7	72	73	73	123	
SW8260C	480-190721-1 MS/MSD (EMH1-SED)	SO	Trichloroethene	ND	49.6/79.7	62	65	77	129	
SW6010C	480-190721-1 MS/MSD (EMH1-SED)	SO	Aluminum	9020	2750/266 0	143	182	75	125	J+
SW6010C	480-190721-1 MS/MSD (EMH1-SED)	SO	Barium	72.9	54.9/53.2	88	403	75	125	J
SW6010C	480-190721-1 MS/MSD (EMH1-SED)	SO	Calcium	86100	2750/266 0	8	1024	75	125	
SW6010C	480-190721-1 MS/MSD (EMH1-SED)	SO	Copper	198	54.9/53.2	81	-21	75	125	J
SW6010C	480-190721-1 MS/MSD (EMH1-SED)	SO	Iron	56800	2750/266 0	783	-368	75	125	
SW6010C	480-190721-1 MS/MSD (EMH1-SED)	SO	Lead	79.0	54.9/53.2	113	126	75	125	J+
SW6010C	480-190721-1 MS/MSD (EMH1-SED)	SO	Manganese	733	54.9/53.2	424	1511	75	125	

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	MS	MSD	Low Limit	High Limi t	Sample Qualifier
SW6010C	480-190721-1 MS/MSD (EMH1-SED)	SO	Potassium	1560	2750/266 0	127	154	75	125	J+
SW6010C	480-190721-1 MS/MSD (EMH1-SED)	SO	Zinc	189	54.9/53.2	-86	-56	75	125	J-

Table 3a – List of RPDs outside Control Limits

Method	Sample ID	Analyte	RPD	RPD Limit	Sample Qualifier
SW8260C	EMH1-SED MS/MSD (480-190721-1)	1,1,1-Trichloroethane	51	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	1,1,2,2-Tetrachloroethane	44	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	1,1,2-Trichloroethane	49	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	1,1,2-Trichloro-1,2,2-trifluoroethane	41	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	1,1-Dichloroethane	48	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	1,1-Dichloroethene	48	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	1,2,4-Trichlorobenzene	68	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	1,2-Dibromo-3-Chloropropane	48	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	1,2-Dichlorobenzene	54	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	1,2-Dichloroethane	49	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	1,2-Dichloropropane	49	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	1,3-Dichlorobenzene	52	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	1,4-Dichlorobenzene	52	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	2-Butanone (MEK)	46	30	

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Method	Sample ID	Analyte	RPD	RPD Limit	Sample Qualifier
SW8260C	EMH1-SED MS/MSD (480-190721-1)	2-Hexanone	48	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	4-Methyl-2-pentanone (MIBK)	46	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Acetone	42	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Benzene	49	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Bromodichloromethane	49	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Bromoform	54	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Bromomethane	45	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Carbon disulfide	49	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Carbon tetrachloride	56	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Chlorobenzene	50	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Dibromochloromethane	50	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Chloroethane	46	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Chloroform	50	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Chloromethane	47	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	cis-1,2-Dichloroethene	49	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	cis-1,3-Dichloropropene	52	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Cyclohexane	56	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Dichlorodifluoromethane	48	30	

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Method	Sample ID	Analyte	RPD	RPD Limit	Sample Qualifier
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Ethylbenzene	54	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	1,2-Dibromoethane	49	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Isopropylbenzene	51	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Methyl acetate	48	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Methyl tert-butyl ether	47	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Methylcyclohexane	53	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Methylene Chloride	49	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Styrene	53	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Tetrachloroethene	54	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Toluene	50	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	trans-1,2-Dichloroethene	48	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Trans-1,3-Dichloropropene	48	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Trichloroethene	51	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Trichlorofluoromethane	51	30	
SW8260C	EMH1-SED MS/MSD (480-190721-1)	Vinyl chloride	46	30	
SW6010C	EMH1-SED MS/MSD (480-190721-1)	Barium	81	20	
SW6010C	EMH1-SED MS/MSD (480-190721-1)	Calcium	27	20	
SW6010C	EMH1-SED MS/MSD (480-190721-1)	Copper	26	20	

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Method	Sample ID	Analyte	RPD	RPD Limit	Sample Qualifier
SW6010C	EMH1-SED MS/MSD (480-190721-1)	Iron	50	20	
SW6010C	EMH1-SED MS/MSD (480-190721-1)	Manganese	46	20	

Table 3b – List of Samples with Isotope Dilution Recovery outside Control Limits None.

Table 4 – List of Samples with Surrogates outside Control Limits

		Sample			Low	High		Sample
Method	Sample ID	Туре	Analyte	Rec. %	Limit	Limit	Dil. Fac.	Qualifier
SW8270D	SB06-Z00-02 (480-190423-5)	SO	2,4,6-Tribromophenol	51	54	120	10	
SW8270D	SB04-Z00-02 (480-190423-7)	SO	2,4,6-Tribromophenol	39	54	120	10	
SW8270D	SB06-Z08-10 (480-190423-4)	SO	2,4,6-Tribromophenol	30	54	120	1	
SW2082A	SB09-Z05-06 (480-190565-1)	SO	DCB Decachlorobiphenyl	176	65	174	1	
SW2082A	SB10-Z01-03 (480-190565-2)	SO	DCB Decachlorobiphenyl	183	65	174	1	
SW8270D	480-190620-4 MS	SO	2,4,6-Tribromophenol	126	54	120	1	
SW8270D	SB13-Z02-04 (480- 190620-1)	SO	2,4,6-Tribromophenol	0	54	120	5	R
SW8270D	SB15-Z03-05 (480- 190620-3)	SO	2,4,6-Tribromophenol	29	54	120	1	
SW8270D	SB15-Z03-05 (480- 190620-3)	SO	2-Fluorophenol	33	52	120	1	

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Table 5a – List of LCS and Recoveries outside Control Limits

			LCS			
Method	Sample ID	Analyte	Rec.	Low Limit	High Limit	Sample Qualifier
SW8270D	LCS 480-599109/2A	Pentachlorophenol	138	51	120	
SW8270D	LCS 480-599295/2A	Pentachlorophenol	174	29	136	
SW8270D	LCSD 480-599295/3-A	Pentachlorophenol	170	29	136	
SW8270D	LCS 480-599300/2-A	Pentachlorophenol	137	51	120	
SW8270D	LCS 480-599491/2-A	Pentachlorophenol	134	41	120	
SW8260C	LCS 480-600086/1-A	Dibromochloromethane	121	64	120	
SW8270D	LCS 480-599668/2-A	2,4-Dinitrotoluene	123	63	120	
SW8270D	LCS 480-599668/2-A	4,6-Dinitro-2-methylphenol	128	49	122	
SW8270D	LCS 480-599668/2-A	4-Nitroaniline	126	56	120	
SW8270D	LCS 480-599668/2-A	Pentachlorophenol	147	51	120	

Table 5b – List of CCV Recoveries outside Control Limits

					%D	%D	Sample
Method	Calibration ID	Matrix	Analyte	Associated Samples	Result	Limit	Flag
				SB01-Z06-08-20211004			
				SB02-Z07-09-20211004			
				SB03-Z05-07-20211004			
SW8260D	CCVIS 480-599155/3	SO	Methylene chloride	SB04-Z00-02-20211004	23.8	20	
				SB05-Z00-02-20211004			
				SB06-Z00-02-20211004			
				SB06-Z08-10-20211004			

Table 6 – List of Serial Dilution outside Control Limits None.

Table 7 – Samples that were Re-analyzed

			Sample	
Sample ID	Lab ID	Method	Туре	Action
SB15-Z03-05	480-190620-3	SW8260C	SO	Sample was diluted to bring concentration of target analytes within calibration range and re-analyzed.

Table 8 – Summary of Field Duplicate Results

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Method	Analyte	Unit	Matrix	PQI	SB08-Z06-08- 20211005	SB08-Z06-08 (DUP)- 20211005	RPD	RPD Rating	Sample Qual
A-01-R	Thorium	pci/q	SO	1	0.34	0.276	20.8%	Good	None
A-01-R	Thorium-228	pci/g	SO	1	0.369	0.357	3.3%	Good	None
A-01-R	Thorium-230	pci/g	SO	1	0.386	0.239	47.0%	Good	None
SW6010C	Aluminum	mg/kg	SO	11	6080	5010	19.3%	Good	None
SW6010C	Arsenic	mg/kg	SO	2.2	2.4	2.7	11.8%	Good	None
SW6010C	Barium	mg/kg	SO	0.55	31.4	27.7	12.5%	Good	None
SW6010C	Beryllium	mg/kg	SO	0.22	0.29	0.24	18.9%	Good	None
SW6010C	Cadmium	mg/kg	SO	0.22	0.078	0.074	5.3%	Good	None
SW6010C	Calcium	mg/kg	SO	54.8	36700	29300	22.4%	Good	None
SW6010C	Chromium, Total	mg/kg	SO	0.55	8.8	7.2	20.0%	Good	None
SW6010C	Cobalt	mg/kg	SO	0.55	5.2	5.2	0.0%	Good	None
SW6010C	Copper	mg/kg	SO	1.1	6.7	7.6	12.6%	Good	None
SW6010C	Iron	mg/kg	SO	11	12400	9960	21.8%	Good	None
SW6010C	Lead	mg/kg	SO	1.1	2.9	3	3.4%	Good	None
SW6010C	Magnesium	mg/kg	SO	21.9	6210	6020	3.1%	Good	None
SW6010C	Manganese	mg/kg	SO	0.22	366	357	2.5%	Good	None
SW6010C	Nickel	mg/kg	SO	5.5	11.5	11.1	3.5%	Good	None
SW6010C	Potassium	mg/kg	SO	32.9	1510	1020	38.7%	Good	None
SW6010C	Sodium	mg/kg	SO	153	415	405	2.4%	Good	None
SW6010C	Vanadium	mg/kg	SO	0.55	15.8	11.7	29.8%	Good	None
SW6010C	Zinc	mg/kg	SO	2.2	21.9	21.3	2.8%	Good	None
SW8260C	Trichloroethylene (TCE)	ug/kg	SO	4	1.7	1.6	6.1%	Good	None
SW7471B	Mercury	mg/kg	SO	0.019	ND	0.0097	NC		None < 2x PQL

Table 9 – List of Samples with Tracer Recovery outside Control Limits

		Sample		Rec.	Low	High	Dil.	Sample
Method	Sample ID	Туре	Analyte	%	Limit	Limit	Fac.	Qualifier
A-01-R	SB07-Z00-02	SO	Thorium-229	115	30	110	1	J+

Acronym List and Table Key: COC = chain of custody

y: Tunde Komuves-Sandor and

Acronym List and Table Key:

DUSR	=	data usability summary report
FD	=	Field duplicate
LCS	=	laboratory control sample
LR	=	Laboratory replicate
MB	=	method blank
MS	=	matrix spike
MSS	=	matrix spike soluble
MSD	=	matrix spike duplicate
Ν	=	Normal sample
ND	=	not detected
NYSDEC	=	New York State Department of Environmental Conservation
PDS	=	Post-digestion spike
PQL	=	practical quantitation limit
QA	=	quality assurance
QAPP	=	quality assurance project plan
QC	=	quality control
RB	=	Rinsate blank
RPD	=	relative percent difference
SDG	=	sample delivery group

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidelines:

- NYSDEC Division of Environmental Remediation Guidance for Data Deliverables and the Development of Data Usability Summary Reports (in DER-10, May 2010)
- EPA Region 2 Data Validation SOPs

Specific criteria for QC limits were obtained from the master QAPP. Compliance with the project QA program is indicated in the checklist and tables below. Any major or minor concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Sampling Company	Sample Delivery Group	Task Code
	480-191411-1	
Eurofins TestAmerica; Buffalo	480-191462-1	Site Characterization
Eurofins TestAmerica; St	480-191596-1	
Louis	480-191598-1	EE1705007.0019.01
	480-191671-1	

Table 1: Sample List

						ID
Work Order	Matrix	Sample ID	Lab ID	Sample Date	Lab QC	Corrections
480-191411-1	Water	IB5SW2	480-191411-1	10/25/21 14:50		
480-191411-1	Water	IB5SW2-DUP	480-191411-2	10/25/21 14:50	Field Dup	
480-191411-1	Water	RB-102S21	480-191411-3	10/25/21 16:15	Rinsate blank	RB-102521
480-191411-1	Water	TB-102521	480-191411-4	10/25/21 00:00	Trip blank	
480-191462-1	Water	IB6NE	480-191462-1	10/26/21 11:25		
480-191462-1	Water	MW-23	480-191462-2	10/26/21 14:40		
480-191462-1	Water	RB102621	480-191462-3	10/26/21 14:45	Rinsate blank	
480-191462-1	Water	TRIP BLANK 102621	480-191462-4	10/26/21 00:00	Trip blank	
480-191596-1	Water	MW-18	480-191596-1	10/28/21 12:35		
480-191596-1	Water	MW-19	480-191596-2	10/28/21 12:20		
480-191596-1	Water	MW-12	480-191596-3	10/28/21 11:45		
480-191596-1	Water	RB 102821	480-191596-4	10/28/21 14:50	Rinsate blank	
480-191596-1	Water	IB 11AW	480-191596-5	10/28/21 12:55		
480-191596-1	Water	IB 12SW	480-191596-6	10/28/21 09:40		
480-191596-1	Water	RB 102721	480-191596-7	10/28/21 10:35	Rinsate blank	
480-191596-1	Water	IL2NE	480-191596-8	10/28/21 16:20		
480-191596-1	Water	TRIP BLANK 102821	480-191596-9	10/28/21 00:00	Trip blank	
480-191598-1	Water	MW-20	480-191598-1	10/27/21 14:05		
480-191598-1	Water	MW-16	480-191598-2	10/27/21 13:30		
480-191598-1	Water	MW-21	480-191598-3	10/27/21 12:25		
480-191598-1	Water	MW-06	480-191598-4	10/27/21 10:47		
480-191598-1	Water	IB5SW	480-191598-5	10/27/21 10:30		
480-191598-1	Water	MW-07	480-191598-6	10/27/21 15:05		

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Work Order	Matrix	Sample ID	Lab ID	Sample Date	Lab QC	ID Corrections
480-191598-1	Water	MW-15	480-191598-7	10/27/21 15:30		
480-191598-1	Water	MW-14	480-191598-8	10/27/21 15:40		
480-191598-1	Water	MW-05	480-191598-9	10/27/21 15:50		
480-191598-1	Water	MW-05 (DUP)	480-191598-10	10/27/21 15:50	Field duplicate	
480-191598-1	Water	TRIP BLANK 102721	480-191598-11	10/27/21 00:00	Trip blank	
480-191671-1	Water	IB5NE	480-191671-1	10/29/21 11:45		
480-191671-1	Water	SB4NE	480-191671-2	10/29/21 12:45		
480-191671-1	Water	MW-17	480-191671-3	10/29/21 11:50		
480-191671-1	Water	RB 102921	480-191671-4	10/29/21 12:10	Rinsate blank	
480-191671-1	Water	TB 102921	480-191671-5	10/29/21 00:00	Trip blank	

Table 1A: Sample Test Summary

SDG	Matrix	Test Method	Method Name	# of Samples	Sample Type
480-191411-1 480-191462-1 480-191596-1 480-191598-1 480-191671-1	SW	SW6010C	Metals (ICP)	15	Ν
480-191411-1	SW	SW6010C	Metals (ICP)	1	FD
480-191411-1 480-191462-1 480-191596-1 480-191671-1	AQ	SW6010C	Metals (ICP)	5	FB
480-191411-1	SW	SW7470A	Mercury (CVAA)	1	FD
480-191411-1 480-191462-1 480-191596-1 480-191598-1	SW	7470A	Mercury (CVAA)	15	N
480-191411-1 480-191462-1 480-191596-1 480-191598-1	WQ	SW7470A	Mercury (CVAA)	5	FB
480-191411-1 480-191462-1 480-191596-1 480-191598-1 480-191671-1	SW	SW8082A	Polychlorinated Biphenyls (PCBs) by GC	15	Ν
480-191411-1	SW	SW8082A	Polychlorinated Biphenyls (PCBs) by GC	1	FD
480-191411-1 480-191462-1 480-191596-1 480-191671-1	AQ	SW8082A	PCBs	5	FB

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

SDG	Matrix	Test Method	Method Name	# of Samples	Sample Type
480-191411- 1480-191462-1 480-191596- 1480-191598- 1480-191671-1	SW	SW8260C	Volatile Organic Compounds by GC/MS	21	N
480-191598-1	WQ	SW8260C	VOCs	1	MS/MSD
480-191411-1 480-191598-1	SW	SW8260C	Volatile Organic Compounds by GC/MS	2	FD
480-191411-1 480-191462-1 480-191462-1 480-191671-1	AQ	SW8260C	VOCs	5	FB
480-191411-1 480-191462-1 480-191462-1 480-191598-1 480-191671-1	AQ	SW8260C	VOCs	5	ТВ
480-191411-1 480-191462-1 480-191596-1 480-191598-1 480-191671-1	SW	SW8270D	Semivolatile Organic Compounds (GC/MS)	16	N
480-191411-1	SW	SW8270D	Semivolatile Organic Compounds (GC/MS)	1	FD
480-191411-1 480-191462-1 480-191596-1 480-191671-1	AQ	SW8270D	SVOCs	5	FB
480-191411-1	SO	SW8270DSIM	Semivolatile Organic Compounds (GC/MS SIM/Isotope Dilution)	3	N
480-190620-1	AQ	SW8270D SIM	SVOCs	1	RB
480-191411-1	SW	E537M	Perfluorinated Compounds	1	N
480-191411-1	AQ	E537M	Perfluorinated Compounds	1	RB
480-191411-1 480-191462-1 480-191596-1 480-191598-1	SW	DOE A-01-R	Isotopic Thorium (Alpha Spectrometry)	8	Ν
480-191411-1 480-191462-1	SW	DOE A-01-R	Isotopic Thorium (Alpha Spectrometry)	1	FD
480-191411-1 480-191462-1 480-191596-1	AQ	DOE A-01-R	Isotopic Thorium (Alpha Spectrometry)	4	FB

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	See bullet below for 480-191411-1, 480-191462-1, 480-191596-1 and 480-191598-1
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	See bullets below for 480-190423-1
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ set of samples per day?	Yes.
Case narrative present and complete?	Yes.
Any holding time violations?	No.

- Lab SDG 480-191411-1 sample RB-102521 was logged in by laboratory as RB-102S21
- Lab SDG 480-191462-1, 480-191596-1 and 480-191598-1 Received Trip Blanks but they were not listed on COC.
- In SDG 480-191598-1, samples MW-20, MW-07, MW-05, and MW-05 DUP were collected in VOA vials with proper preservative; however, the pH of the samples was > 2 upon laboratory verification. The samples were analyzed within the recommended holding time of 7 days for unpreserved samples.

The following tables are presented at the end of this DUSR and provide summaries of results outside QC criteria:

- Method Blanks Results (Table 2)
- MS/MSD and RPDs Outside Limits (Table 3)
- Surrogates Outside Limits (Table 4)
- LCS and CCV Outside Limits (Table 5)
- Serial Dilutions Outside Limits (Table 6)
- Reanalysis Results (Table 7)
- Field Duplicate Results (Table 8)

Go to Tables List

Volatile/Semivolatile Organic Compounds by GC/MS – Method 8260C/8270D				
Description	Notes and Qualifiers			
Any compounds present in method, trip, or, field	For method blanks see table 2. No compounds			
blanks (see Table 2)?	present in trip or field blanks.			
For samples, if results are < 5 times the blank or <	Yes.			
10 times the blank for common laboratory				
contaminants, then "U" flag data. Qualification				
also applies to TICs.				
Are surrogates for method blanks and LCS within	Yes.			
limits (see Table 4)?				
Are surrogates for samples and MS/MSD within	No.			
limits (see Table 4)? If not, were all samples				
reanalyzed for VOCs? Matrix effects should be				
established.				
Is Laboratory QC frequency at least one blank and	Yes.			
LCS with each batch and one set of MS/MSD per				
20 samples?				
Is MS/MSD within QC criteria (see Table 3)? If	No.			
out and LCS is compliant, then "J" flag positive				

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Volatile/Semivolatile Organic Compounds by GC/MS – Method 8260C/8270D			
Description	Notes and Qualifiers		
data in original sample due to matrix.			
Is LCS within QC criteria (see Table 5a)? If out,	No.		
and the recovery is high with no positive values,			
then no data qualification is required.			
Do internal standards areas and retention time	Yes.		
meet criteria? If not was sample re-analyzed to			
establish matrix (see Table 6)?			
Is initial calibration for target compounds <20	Yes		
%RSD or curve fit (see Table 5b)?			
Is %D in the continuing calibration for target	No.		
compounds less than method specifications (see			
Table 5b)?			
Were any samples reanalyzed or diluted (see	Yes.		
Table 7)? For any sample reanalysis or dilutions,			
is only one reportable result flagged?			
For TICs are there any system related compounds	No.		
that should not be reported?			
Do field duplicate results show good precision for	Yes.		
all compounds (see Table 8)?			

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Pesticides and PCBs by GC – Method 8081B/8082A				
Description Notes and Qualifiers				
Are any compounds present in method and field blanks as noted on Table 2?	Yes.			
For samples, if results are < 5 times the blank then "U" flag data.	Results <5x qualified U			
Are surrogates for method blanks and LCS within limits (see Table 4)?	Yes.			
Are surrogates for samples and MS/MSD within limits (see Table 4)? Matrix effects should be established.	No.			
Is laboratory QC frequency one blank and LCS with each batch and one MS/MSD per 20 samples?	Yes.			
Are MS/MSD within QC criteria (see Table 3)? If out and LCS is compliant, then J flag positive data in original sample due to matrix.	No.			
Is LCS within QC criteria (see Table 5a)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes.			
Is initial calibration for target compounds <15 %RSD or curve fit? Is initial calibration verification <25%D (see Table 5b)?	Not applicable.			
Is continuing calibration for target compounds < 20%D (see Table 5b)?	Not applicable.			
Were any samples re-analyzed or diluted (see Table 7)? For any sample re-analysis and dilutions is only one reportable result by flagged?	Yes.			
Spot check retention time windows and second column confirmations as complete.	No issues identified.			
Do field duplicate results show good precision for all compounds (see Table 8)?	Not applicable.			

Metals & Mercury by ICP/AES – Method 6010C/7471B					
Description	Notes and Qualifiers				
Are any compounds present in method and field blanks as noted on Table 2?	Yes.				
For samples, if results are < 5 times the blank then "U" flag data.	Yes.				
Is laboratory QC frequency one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes.				
Are MS/MSD within QC criteria (see Table 3)? QC limits are not applicable to sample results greater than 4 times spike amount. All N flagged data for MS are flagged J as estimated.	No.				
Were elements recovered ≤30%? If so, "R" flag associated NDs.	Yes.				
Is LCS within QC criteria (see Table 5a)? If out, and the recovery high with no positive values, then no data qualification is required.	Yes.				
Is there one serial dilution per 20 samples? Flag all data reported with an "E" as "J".	No.				

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Metals & Mercury by ICP/AES – Method 6010C/7471B					
Description	Notes and Qualifiers				
Spot check ICS recoveries 80-120%. Contact lab	Not applicable.				
if unacceptable. (See table 5b).					
Spot check ICV 90-110% (ICVL 70-130%). For	Not applicable.				
Mercury ICV 85-115%. Contact lab if					
unacceptable. (See table 5b).					
Spot check CCV 90-110% (CCVL 70-130%). For	Not applicable.				
Mercury CCV 85-115%. Contact lab if					
unacceptable. (See table 5b).					
Were any samples re-analyzed or diluted (see	No.				
Table 7)? For any sample re-analysis and					
dilutions is only one reportable result by flagged?					
Do field duplicate results show good precision for	Yes.				
all compounds (see Table 8)?					

Perfluorinated Compounds – Method E537-LL				
Description	Notes and Qualifiers			
Any compounds present in method, trip, or field blanks (see Table 2)?	Yes.			
For samples, if results are < 5 times the blank contaminants, then "U" flag data.				
Are surrogates for method blanks and LCS within limits?	Yes.			
Are surrogates for samples and MS/MSD within limits? (See Table 3).	Yes.			
Are surrogates for Isotope Dilution within limits? (See Table 3b).	Yes.			
Is Laboratory QC frequency at least one blank and LCS with each batch and one set of MS/MSD per 20 samples?	Yes.			
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	Yes.			
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Yes.			
Do internal standards areas and retention time meet criteria?	Yes.			
Is initial calibration for compounds by isotope dilution <35 %RSD or curve fit; and compounds quantitated by isotope dilution analytes (IDA) <50% RSD? Is the initial calibration verification within or equal to 60-140% for all natives quantitated by isotope dilution or 50-150% for natives quantitated by IDA.	Not applicable			
Is continuing calibration for compounds by isotope dilution equal to or within 60-140% for all natives quantitated by isotope dilution or 50-150% for natives quantitated by IDA.	Not applicable			
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	No.			

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Perfluorinated Compounds – Method E537-LL				
Description	Notes and Qualifiers			
Do field duplicate results show good precision for	Not applicable			
all compounds (see Table 7)?				

Isotopic Thorium by Alpha Spectrometry					
Description	Notes and Qualifiers				
Are any compounds present in method and field	Yes.				
blanks as noted on Table 2? Method blank results					
should be less than ½ PQL, <mdc, and="" less="" td="" than<=""><td></td></mdc,>					
the uncertainty.					
For samples, if results are < 5 times the blank	Results <5x qualified U				
contaminants, then "U" flag data.					
LCS within QC criteria 70-130% recovery (see Table	Yes.				
5)? Reject data with recovery <50% or greater than					
Are MS/MSD within QC criteria (70-130% recovery,	N/A: MS/MSD not required for alpha				
$(RPD \pm 35)?$ See Table 4	spectroscopy				
Is matrix duplicate within QC criteria (RPD \pm 35,	res.				
(NAD < 1.96)? MD must be performed on site					
the Normalized Absolute Difference <1.96 test in					
USACE Guidance					
Do field duplicate results show good precision for all	Ves				
compounds?	100.				
Were any samples reanalyzed or diluted (see Table	No.				
6)? For any sample reanalysis or dilutions, is only					
one reportable result flagged?					
Were background and continuing calibration checks	Yes.				
(pulsers) performed daily?					
Were instrument checks marked as failed and if so	No.				
were checks performed more than twice to bring into					
compliance?					
Spot check the raw data, were any anomalies found	No.				
in spectra?					
Were tracer yields within limits? If recoveries were	Yes.				
outside laboratory derived limits, but within default					
Imits of 20-150%, flag associated results as					
estimated (J) after corrective actions; otherwise R.					
11 recoveries are <20%. hay as rejected (R) and					
If recoveries were outside control limits were	N/A: All recoveries were within limits				
adequate quantities of tracers used and were					
calculations correct?					
Were the relationships between results,	Yes.				
uncertainties, and MDCs in compliance?					

Summary of Potential Impacts on Data Usability

Concerns

- Samples IB 12SW, MW-12, and MW-06 "R" qualified as rejected for thorium-230 due to method blank detection.
- Samples MW-19, RB 102821, IB 12SW, RB 102721, IL2NE, MW-06-20211027, MW-21-

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

20211027, IB5NE, and RB 102921 "U" qualified as non-detect for aluminum due to method blank detection.

- Samples IB5SW2 and IB5SW2-DUP "U" qualified as non-detect for chromium due to method blank detection.
- Samples IB5SW2, IB5SW2-DUP, MW-12, MW-19, IB 11AW, IL2NE, and IB5NE "U" qualified as non-detect for copper due to method blank detection.
- Samples IB5SW2, IB5SW2-DUP, RB-102S21, and RB102621 "U" qualified as non-detect for manganese due to method blank detection.
- Samples IB5SW2, IB5SW2-DUP, RB-102S21, RB102621, IB 12SW, RB 102721, IL2NE, MW-21, IB5SW, IB5NE, RB 102921, and RB 102921 "U" qualified as non-detect for zinc due to method blank detection.
- Samples IB5SW2 and IB5SW2-DUP "U" qualified as non-detect for manganese due to field blank detection.
- Samples IB6NE and MW-23 "U" qualified as non-detect for copper due to field blank detection.
- Sample MW-23 "U" qualified as non-detect for lead and zinc due to field blank detection.
- Samples IB 12SW, IL2NE, and MW-19 "U" qualified as non-detect for aluminum due to field blank detection.
- Sample IB6NE "R" qualified as rejected for atrazine due to MSD % recovery.
- Sample IB6NE "J-" qualified as estimated, low biased for calcium due to MS/MSD % recovery.

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Table 2 – List of Positive Results for Blank Samples

Method	Sample ID	Sample Type	Analyte	Result	Qualifier	Units	MDL	PQL
SW8260C	RB-102521 (480-191411-3)	Water	Acetone	3.2	J	ug/L	3.0	10
SW8260C	RB-102521 (480-191411-3)	Water	Methylene Chloride	3.7		ug/L	0.44	1.0
SW6010C	RB-102521 (480-191411-3)	Water	Manganese	0.0010	JΒ	mg/L	0.00040	0.0030
SW6010C	RB-102521 (480-191411-3)	Water	Zinc	0.0019	В	mg/L	0.0015	0.010
SW8260C	RB102621 (480-191462-3)	Water	Methylene Chloride	8.2		ug/L	0.44	1.0
SW8260C	RB102621 (480-191462-3)	Water	Barium	0.0070		mg/L	0.00070	0.0020
SW8260C	RB102621 (480-191462-3)	Water	Calcium	0.32	J	mg/L	0.10	0.50
SW8260C	RB102621 (480-191462-3)	Water	Copper	0.32		mg/L	0.0016	0.010
SW8260C	RB102621 (480-191462-3)	Water	Iron	0.020	J	mg/L	0.019	0.050
SW8260C	RB102621 (480-191462-3)	Water	Lead	0.0051	J	mg/L	0.0030	0.010
SW8260C	RB102621 (480-191462-3)	Water	Manganese	0.0016	JΒ	mg/L	0.00040	0.0030
SW8260C	RB102621 (480-191462-3)	Water	Sodium	0.73	J	mg/L	0.32	1.0
SW8260C	RB102621 (480-191462-3)	Water	Zinc	0.010	В	mg/L	0.0015	0.010
SW6010C	RB102721 (480-191596-7)	Water	Aluminum	0.11	JΒ	mg/L	0.060	0.20
SW6010C	RB102721 (480-191596-7)	Water	Manganese	0.0014	J	mg/L	0.00040	0.0030
SW6010C	RB102721 (480-191596-7)	Water	Zinc	0.0023	JB	mg/L	0.0015	0.010
SW8260C	RB102921 (480-191671-4)	Water	Methylene Chloride	6.1		ug/L	0.44	1.0

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

		Sample						
Method	Sample ID	Туре	Analyte	Result	Qualifier	Units	MDL	PQL
SW6010C	RB102921 (480-191671-4)	Water	Manganese	0.00094	J	mg/L	0.00040	0.0030
SW6010C	RB102921 (480-191671-4)	Water	Zinc	0.0057	JΒ	mg/L	0.0015	0.010
SW6010C	MB 480-599308/1-A	SO	Calcium	3.62	J	mg/kg	3.3	49.9
SW6010C	MB 480-599308/1-A	SO	Selenium	0.448	J	mg/kg	0.40	4.0
SW6010C	MB 480-599625/1-A	SO	Arsenic	0.0121	J	mg/kg	0.0056	0.015
SW6010C	MB 480-600000/1-A	SO	Aluminum	5.41	J	mg/kg	4.5	10.3
SW6010C	MB 480-600000/1-A	SO	Calcium	3.99	J	mg/kg	3.4	51.6
SW6010C	MB 480-600000/1-A	SO	Manganese	0.0423	J	mg/kg	0.033	0.21
SW6010C	MB 480-600000/1-A	SO	Zinc	0.831	J	mg/kg	0.66	2.1
E537M	MB 200-172453/1-A	SO	Perfuorooctanesulfonic acid (PFOS)	0.0357	J	ug/kg	0.016	0.20
E537M	MB 200-172453/1-A	SO	N- methylperfluorooctanesulfonamidoace tic acid (NMeFOSAA)	0.0602	J	ug/kg	0.037	2.0
E537M	MB 200-172453/1-A	SO	N- ethylperfluorooctanesulfonamidoaceti c acid (NEtFOSAA)	0.0603	J	ug/kg	0.046	2.0
E537M	MB 200-172453/1-A	SO	1H,1H,2H,2H-perfluorodecanesulfonic acid (8:2)	0.0168	J	ug/kg	0.016	2.0
E537M	MB 200-172570/1-A	Water	Perfluorooctanesulfonic acid (PFOS)	0.298	J	ug/kg	0.29	2.0
SW6010C	MB 480-599733/1-A	Water	Potassium	0.129	J	mg/L	0.10	0.50
SW6010C	MB 480-599998/1-A	SO	Aluminum	5.07	J	mg/kg	4.5	10.2
SW6010C	MB 480-599998/1-A	SO	Calcium	4.93	J	mg/kg	3.4	50.9
SW6010C	MB 480-599998/1-A	SO	Manganese	0.0397	J	mg/kg	0.033	0.2
SW6010C	MB 480-602179/1-A	Water	Aluminum	0.0771	J	mg/L	0.060	0.20
SW6010C	MB 480-602179/1-A	Water	Cadmium	0.000650	J	mg/L	0.00050	0.002
SW6010C	MB 480-602179/1-A	Water	Chromium	0.0011	J	mg/L	0.0010	0.0040
SW6010C	MB 480-602179/1-A	Water	Copper	0.00645	J	mg/L	0.0016	0.01
SW6010C	MB 480-602179/1-A	Water	Manganese	0.00172	J	mg/L	0.00040	0.0030
SW6010C	MB 480-602179/1-A	Water	Nickel	0.00328	J	mg/L	0.0013	0.01
SW6010C	MB 480-602179/1-A	Water	Zinc	0.00519	J	mg/L	0.0015	0.01
SW6010C	MB 480-602365/1-A	Water	Aluminum	0.111	J	mg/L	0.060	0.20
SW6010C	MB 480-602365/1-A	Water	Manganese	0.00115	J	mg/L	0.00040	0.0030
SW6010C	MB 480-602365/1-A	Water	Potassium	0.267	J	mg/L	0.10	0.50

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

		Sample						
Method	Sample ID	Туре	Analyte	Result	Qualifier	Units	MDL	PQL
SW6010C	MB 480-602365/1-A	Water	Zinc	0.00253	J	mg/L	0.0015	0.010
SW8270D	MB 480-602779/1-A	Water	Di-n-butyl phthalate	0.347	J	ug/L	0.31	5.0
A-01-R	MB 160-534804/1-A	Water	Thorium-230	0.4792 ± 0.184		pCi/L		1.0
SW6010C	MB 480-602997/1-A	Water	Aluminum	0.170	J	mg/L	0.060	0.20
SW6010C	MB 480-602997/1-A	Water	Copper	0.00255	J	mg/L	0.0016	0.01
SW6010C	MB 480-602997/1-A	Water	Zinc	0.00235	J	mg/L	0.0015	0.010
SW6010C	MB 480-602690/1-A	Water	Aluminum	0.116	J	mg/L	0.060	0.20
SW6010C	MB 480-602690/1-A	Water	Zinc	0.0223	J	mg/L	0.0015	0.010
SW6010C	MB 480-603675/1-A	Water	Zinc	0.00235	J	mg/L	0.0015	0.010
SW6010C	MB 480-602997/1-A	Water	Aluminum	0.170	J	mg/L	0.060	0.20
SW6010C	MB 480-602997/1-A	Water	Copper	0.00255	J	mg/L	0.0016	0.010

Table 2a – List of Samples Qualified for Method Blank Contamination

	•			Blank	Sample	Lab			Sample
Method	Method Blank	Matrix	Analyte	Result	Result	Qual.	PQL	Affected Samples	Flag
SW6010C	MB 480-602179/1-A	Water	Chromium	0.0011	0.0017	JΒ	0.0040	IB5SW2 (480-191411-1)	U
SW6010C	MB 480-602179/1-A	Water	Copper	0.00645	0.0037	JΒ	0.010	IB5SW2 (480-191411-1)	U
SW6010C	MB 480-602179/1-A	Water	Manganese	0.00172	0.0021	JΒ	0.0030	IB5SW2 (480-191411-1)	U
SW6010C	MB 480-602179/1-A	Water	Zinc	0.00519	0.016	В	0.010	IB5SW2 (480-191411-1)	U
SW6010C	MB 480-602179/1-A	Water	Chromium	0.0011	0.0016	JΒ	0.0040	IB5SW2-DUP (480-191411-2)	U
SW6010C	MB 480-602179/1-A	Water	Copper	0.00645	0.0045	JΒ	0.010	IB5SW2-DUP (480-191411-2)	U
SW6010C	MB 480-602179/1-A	Water	Manganese	0.00172	0.0023	JΒ	0.0030	IB5SW2-DUP (480-191411-2)	U
SW6010C	MB 480-602179/1-A	Water	Zinc	0.00519	0.017	В	0.010	IB5SW2-DUP (480-191411-2)	U
SW6010C	MB 480-602179/1-A	Water	Manganese	0.00172	0.0010	JΒ	0.0030	RB-102S21 (480-191411-3)	U
SW6010C	MB 480-602179/1-A	Water	Zinc	0.00519	0.0019	В	0.010	RB-102S21 (480-191411-3)	U
SW6010C	MB 480-602365/1-A	Water	Manganese	0.00115	0.0016	JΒ	0.0030	RB102621 (480-191462-3)	U
SW6010C	MB 480-602365/1-A	Water	Zinc	0.00253	0.010	В	0.010	RB102621 (480-191462-3)	U
A_01_P	MB 160-534104/1-A	Water	Thorium	0.4792 ±	0135 ±		1	IB 12SW (48-101506-6)	D
A-01-IX	NID 100-334104/1-A	Walei	monum	0.184	0.121		1	IB 123W (40-191390-0)	
A-01-R	MB 160-53/10//1-A	Water	Thorium	0.4792 ±	0.368 ±		1	MW-12 (180-191596-3)	P
A-01-IX	NID 100-334104/1-A	Walei	monum	0.184	0.220		1	10100-12 (480-191390-3)	
SW6010C	MB 480-602997/1-A	Water	Copper	0.00255	0.0089	JΒ	0.010	MW-12 (480-191596-3)	U
SW6010C	MB 480-602997/1-A	Water	Aluminum	0.170	0.14	JΒ	0.20	MW-19 (480-191596-2)	U
SW6010C	MB 480-602997/1-A	Water	Copper	0.00255	0.0091	JΒ	0.010	MW-19 (480-191596-2)	U

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

				Blank	Sample	Lab			Sample
Method	Method Blank	Matrix	Analyte	Result	Result	Qual.	PQL	Affected Samples	Flag
SW6010C	MB 480-602997/1-A	Water	Aluminum	0.170	0.13	JВ	0.20	RB 102821 (480-191596-4)	U
SW6010C	MB 480-602997/1-A	Water	Copper	0.00255	0.0055	JВ	0.010	IB 11AW (480-191596-5)	U
SW6010C	MB 480-602997/1-A	Water	Aluminum	0.170	0.17	JΒ	0.20	IB 12SW (480-191596-6)	U
SW6010C	MB 480-602997/1-A	Water	Zinc	0.00235	0.0040	JΒ	0.010	IB 12SW (480-191596-6)	U
SW6010C	MB 480-602997/1-A	Water	Aluminum	0.170	0.11	JΒ	0.20	RB 102721 (480-191596-7)	U
SW6010C	MB 480-602997/1-A	Water	Zinc	0.00235	0.00235	JΒ	0.010	RB 102721 (480-191596-7)	U
SW6010C	MB 480-602997/1-A	Water	Aluminum	0.170	0.36	JΒ	0.20	IL2NE (480-191596-8)	U
SW6010C	MB 480-602997/1-A	Water	Copper	0.00255	0.0020	JΒ	0.010	IL2NE (480-191596-8)	U
SW6010C	MB 480-602997/1-A	Water	Zinc	0.00235	0.0031	JΒ	0.010	IL2NE (480-191596-8)	U
A 01 P	MP 160 524104/1 A	\M/otor	Thorium	0.4792 ±	0.334 ±		1	M/M/ 06 (480 101508 2)	Р
A-01-K	WID 100-554104/1-A	Walei	monum	0.184	0.176			10100-00 (480-191598-2)	n.
SW6010C	MB 480-603675/1-A	Water	Zinc	0.00235	0.0087	JΒ	0.010	MW-21 (480-191598-3)	U
SW6010C	MB 480-603675/1-A	Water	Zinc	0.00235	0.0095	JΒ	0.010	IB5SW (480-191598-5)	U
SW6010C	MB 480-603675/1-A	Water	Zinc	0.00235	0.0066	JΒ	0.010	IB5NE (480-191671-1)	U
SW6010C	MB 480-603675/1-A	Water	Zinc	0.00235	0.0057	JΒ	0.010	RB 102921 (480-191671-4)	U
SW6010C	MB 480-602690/1-A	Water	Aluminum	0.116	0.31		0.2	MW-06-20211027	U
SW6010C	MB 480-602690/1-A	Water	Aluminum	0.116	0.22		0.2	MW-21-20211027	U
SW6010C	MB 480-602997/1-A	Water	Aluminum	0.170	0.35	В	0.20	IB5NE (480-191671-1)	U
SW6010C	MB 480-602997/1-A	Water	Aluminum	0.170	0.090	JB	0.20	RB 102921 (480-191671-4)	U
SW6010C	MB 480-602997/1-A	Water	Copper	0.00255	0.0035	JΒ	0.010	IB5NE (480-191671-1)	U
SW6010C	MB 480-603675/1-A	Water	Zinc	0.00235	0.0057	JΒ	0.010	RB 102921 (480-191671-4)	U

Table 2b – List of Samples Qualified for Field Blank Contamination

				Blank	Sample	Lab			Sample
Method	Field Blank	Matrix	Analyte	Result	Result	Qual.	PQL	Affected Samples	Flag
SW6010C	RB-102S21- 20211025	Water	Manganese	0.0010	0.0023	BJ	0.0300	IB5SW2- DUP	U
SW6010C	RB-102S21- 20211025	Water	Manganese	0.0010	0.0021	BJ	0.0300	IB5SW2	U
SW6010C	RB102621- 20211026	Water	Copper	0.033	0.0072	J	0.010	IB6NE (480-191462-1)	U
SW6010C	RB102721	Water	Aluminum	0.11	0.17	BJ	0.20	IB 12SW (480-191596-2)	U
SW6010C	RB 102821	Water	Aluminum	0.13	0.36	В	0.20	IL2NE (480-191596-3)	Ū

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Table 3 – List of MS/MSD Recoveries outside Control Limits

Method	Sample ID	Sample	Analyta	Orig.	Spike	MS	MSD	Low	High Limi ≁	Sample
Methou	480-101462-1 MS/MSD	туре	Allalyte	Result	Amount	IVIS	IVI3D	LIIIII	Ľ	Quaimer
SW8260C	(IB6NE)	Water	1,1,1-Trichloroethane	ND	25.0/25.0	137	138	73	126	
SW8260C	480-191462-1 MS/MSD (IB6NE)	Water	1,2-Dichloroethane	ND	25.0/25.0	140	136	75	120	
SW8260C	480-191462-1 MS/MSD (IB6NE)	Water	2-Butanone (MEK)	ND	125/125	143	133	57	140	
SW8260C	480-191462-1 MS/MSD (IB6NE)	Water	2-Hexanone	ND	125/125	129	128	65	127	
SW8260C	480-191462-1 MS/MSD (IB6NE)	Water	Bromodichloromethane	ND	25.0/25.0	138	134	80	122	
SW8260C	480-191462-1 MS/MSD (IB6NE)	Water	Carbon tetrachloride	ND	25.0/25.0	141	143	72	134	
SW8260C	480-191462-1 MS/MSD (IB6NE)	Water	Chlorobenzene	ND	25.0/25.0	123	123	80	120	
SW8260C	480-191462-1 MS/MSD (IB6NE)	Water	Dibromochloromethane	ND	25.0/25.0	125	128	75	125	
SW8260C	480-191462-1 MS/MSD (IB6NE)	Water	Chloroform	ND	25.0/25.0	128	132	73	127	
SW8260C	480-191462-1 MS/MSD (IB6NE)	Water	Chloromethane	ND	25.0/25.0	132	133	68	124	
SW8260C	480-191462-1 MS/MSD (IB6NE)	Water	Dichlorodifluoromethane	ND	25.0/25.0	161	158	59	135	
SW8260C	480-191462-1 MS/MSD (IB6NE)	Water	Tetrachloroethene	ND	25.0/25.0	130	129	74	122	
SW8260C	480-191462-1 MS/MSD (IB6NE)	Water	Trichloroethene	ND	25.0/25.0	133	130	74	123	
SW8260C	480-191462-1 MS/MSD (IB6NE)	Water	Trichlorofluoromethane	ND	25.0/25.0	163	166	62	150	
SW8270D	480-191462-1 MS/MSD (IB6NE)	Water	Atrazine	ND	64.0/64.0	113	0	50	150	R
SW6010C	480-191462-1 MS/MSD (IB6NE)	Water	Calcium	262	10.0/10.0	57	57	75	125	
SW6010C	480-191462-1 MS/MSD (IB6NE)	Water	Magnesium	120	10.0/10.0	70	90	75	125	

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Method	Sample ID	Sample Type	Analyte	Orig. Result	Spike Amount	MS	MSD	Low Limit	High Limi t	Sample Qualifier
SW6010C	480-191462-1 MS/MSD (IB6NE)	Water	Manganese	2.0	0.200/	-73	75	75	125	
SW6010C	480-191462-1 MS/MSD (IB6NE)	Water	Sodium	967	10.0/10.0	120	222	75	125	

Table 3a – List of RPDs outside Control Limits

Method	Sample ID	Analyte	RPD	RPD Limit	Sample Qualifier
SW8260C	IB6NE MS/MSD (480-191462-1)	Bromomethane	18	15	
SW8260C	IB6NE MS/MSD (480-191462-1)	Chloroethane	32	15	
SW8270D	IB6NE MS/MSD (480-191462-1)	Benzo[a]pyrene	22	15	
SW8270D	IB6NE MS/MSD (480-191462-1)	Benzo[g,h,i]perylene	21	15	
SW8270D	IB6NE MS/MSD (480-191462-1)	Dibenz(a,h)anthracene	19	15	
SW8270D	IB6NE MS/MSD (480-191462-1)	Indeno[1,2,3-cd]pyrene	19	15	
SW8270D	LCSD 480-602984/3-4	Phenanthrene	22	15	
SW6010C	480-190565-1 (SB09-Z05-06)	Zinc	22	20	
SW8270D	SB15-Z08-10 MSD (480-190620-4)	2,4,5-Trichlorophenol	19	18	
SW6010C	SB08-Z00-04 MSD (480-190471-2)	Manganese	23	20	

Table 3b – List of Samples with Isotope Dilution Recovery outside Control Limits None.

Method	Sample ID	Sample Type	Analyte	Rec. %	Low Limit	High Limit	Dil. Fac.	Sample Qualifier
SW8270D	IB5SW2-DUP (480-191411-2)	Water	2,4,6-Tribromophenol	131	41	120	1	
SW8270D	MW-23 (480-191462-2)	Water	2-Fluorophenol	131	48	120	1	

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

Table 5a – List of LCS and Recoveries outside Control Limits

			LCS			
Method	Sample ID	Analyte	Rec.	Low Limit	High Limit	Sample Qualifier
SW8260C	LCS 480-602639/6	2-Butanone (MEK)	181	57	140	
SW8260C	LCS 480-603557/5	1,2-Dichloroethane	123	75	123	
SW8260C	LCS 480-603557/5	Bromodichloromethane	123	80	122	
SW8260C	LCS 480-603557/5	Dibromochloromethane	149	59	135	
SW8260C	LCS 480-603006/7	Difluorodichloromethane	137	59	135	
SW8270D	LCS 480-602984/2-A	4-Nitroaniline	124	65	120	
SW8270D	LCSD 480-602984/3-A	2,4-Dinitrotoluene	122	49	120	
SW8270D	LCSD 480-602984/3-A	Atrazine	134	71	130	

Table 5b – List of CCV Recoveries outside Control Limits None.

 Table 6 – List of Serial Dilution outside Control Limits

 None.

Table 7 – Samples that were Re-analyzed

None.

Table 8 – Summary of Field Duplicate Results

Method	Analyte	Unit	Matrix	PQL	IB5SW2- 20211025	IB5SW2- DUP- 20211025	RPD	RPD Rating	Sample Qual
SW6010C	Aluminum	mg/l	WG	0.2	0.41	0.47	13.6%	Good	None
SW6010C	Barium	mg/l	WG	0.002	0.042	0.042	0.0%	Good	None
SW6010C	Calcium	mg/l	WG	0.5	46.9	45.8	2.4%	Good	None
SW6010C	Chromium, Total	mg/l	WG	0.004	0.0017	0.0016	6.1%	Good	None
SW6010C	Copper	mg/l	WG	0.01	0.0037	0.0045	19.5%	Good	None
SW6010C	Iron	mg/l	WG	0.05	0.17	0.18	5.7%	Good	None
SW6010C	Magnesium	mg/l	WG	0.2	9.4	9.2	2.2%	Good	None
SW6010C	Manganese	mg/l	WG	0.003	0.0021	0.0023	9.1%	Good	None
SW6010C	Potassium	mg/l	WG	0.5	2.9	2.9	0.0%	Good	None
SW6010C	Sodium	mg/l	WG	1	279	272	2.5%	Good	None

Data Usability Summary Report	Project: Hawkeye Trade Ctr & Residences
Date Completed: March 24, 2022	Completed by: Tunde Komuves-Sandor and
	Michael Shadle

SW6010C	Zinc	mg/l	WG	0.01	0.016	0.017	6.1%	Good	None
SW8260C	Trichloroethylene (TCE)	ug/l	WG	1	0.83	0.83	0.0%	Good	None

Method	Analyte	Unit	Matrix	PQL	MW-05-20211027	MW-05 (DUP)-20211027	RPD	RPD Rating	Sample Qual
SW8260C	Cyclohexane	ug/l	WG	1	ND	0.29	NC		None <2x PQL
SW8260C	Methylcyclohexane	ug/l	WG	1	ND	0.37	NC		None <2x PQL
SW8260C	Toluene	ug/l	WG	1	ND	0.56	NC		None <2x PQL

Table 9 – List of Samples with Tracer Recovery outside Control LimitsNone.
Hawkeye Trade Ctr & Residences
ted by: Tunde Komuves-Sandor and Shadle
t

Acronym List and Table Key:

coc	=	chain of custody
DUSR	=	data usability summary report
FD	=	Field duplicate
LCS	=	laboratory control sample
LR	=	Laboratory replicate
MB	=	method blank
MS	=	matrix spike
MSS	=	matrix spike soluble
MSD	=	matrix spike duplicate
Ν	=	Normal sample
ND	=	not detected
NYSDEC	=	New York State Department of Environmental Conservation
PDS	=	Post-digestion spike
PQL	=	practical quantitation limit
QA	=	quality assurance
QAPP	=	quality assurance project plan
QC	=	quality control
RB	=	Rinsate blank
RPD	=	relative percent difference
SDG	=	sample delivery group

Data Usability Summary Report	Project: Hawkeye Trade Center
Date Completed: February 17, 2023	Completed by: Devon Richards; Eridania Marte

The analytical data provided by the laboratory were reviewed for precision, accuracy, and completeness based on applicable sections of the following guidelines.

- NYSDEC Division of Environmental Remediation Guidance for Data Deliverables and the Development of Data Usability Summary Reports (in DER-10, May 2010)
- Determination of Volatile Organic Compounds [VOCs] in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry [GC/MS] (EPA Method TO-15, 1999).
- EPA Region 2 Data Validation SOP HW-31 Revision 6.

Specific criteria for QC limits were obtained from the master QAPP. Compliance with the project QA program is indicated in the checklist and tables below. Any concerns affecting data usability are listed below. The checklist and tables also indicate whether data qualification is required and/or the type of qualifier assigned.

Reference:

Project ID	Lab Work Order	Laboratory Report
EE1705007.019	22K2103	Con-test, A Pace Analytical Laboratory

Work Order	Matrix	Sample ID	Lab ID	Sample Date	Lab QC	ID Corrections
22K2103	GS	SV-01-110822	22K2103-05	2022/11/08 14:13:00		
22K2103	GS	SV-02-110822	22K2103-04	2022/11/08 14:03:00		
22K2103	GS	SV-03-110822	22K2103-03	2022/11/08 13:42:00		
22K2103	GS	SV-04-110822	22K2103-01	2022/11/08 12:52:00		
22K2103	GS	SV-99-110822	22K2103-02	2022/11/08 12:52:00	FD	

Work Orders	Matrix	Test Method	Method Name	Number of Samples	Sample Type
22K2103	GS	EPA TO-15	VOCs In Ambient Air By GC/MS	4	N
22K2103	GS	EPA TO-15	VOCs In Ambient Air By GC/MS	1	FD

Data Usability Summary Report	Project: Hawkeye Trade Center
Date Completed: February 17, 2023	Completed by: Devon Richards; Eridania Marte

General Sample Information	
Do Samples and Analyses on COC check against Lab Sample Tracking Form?	Yes.
Did coolers arrive at lab between 2 and 6°C and in good condition as indicated on COC and Cooler Receipt Form?	Yes. Thermal preservation is not required for air canisters.
Frequency of Field QC Samples Correct? Field Duplicate - 1/20 samples Trip Blank - Every cooler with VOCs waters only Equipment Blank - 1/ set of samples per day?	Yes. Trip blank not required. Field Duplicate 1 per 5 Samples MS/MSD not applicable to Method TO-15. No equipment blank required – The individual canisters were cleaned and checked prior to use. The data was recorded in the laboratory reports.
Case narrative present and complete?	Yes.
Any holding time violations (See table below)?	No.

The following tables are presented at the end of this DUSR and provide summaries of results outside QC criteria:

- Method Blanks Results (Table 2)
- Surrogates Outside Limits (Table 3)
- MS/MSD Outside Limits (Table 4)
- LCS Outside Limits (Table 5)
- Reanalysis Results (Table 6)
- Field Duplicate Results (Table 7)

Go to Tables List

Data Usability Summary Report	Project: Hawkeye Trade Center
Date Completed: February 17, 2023	Completed by: Devon Richards; Eridania Marte

Volatile Organic Compounds by Method TO-15					
Description	Notes and Qualifiers				
Any compounds present in method, trip, or, field blanks (see Table 2)?	No.				
For samples, if results are < 5 times the blank or < 10 times the blank for common laboratory contaminants, then "U" flag data. Qualification also applies to TICs.	Not applicable.				
Are surrogates for method blanks and LCS within limits?	Yes.				
Are surrogates for samples within limits? (See Table 3). If not, were all samples reanalyzed for VOCs? Matrix effects should be established.	Yes.				
Is Laboratory QC frequency at least one blank and LCS with each batch?	Yes.				
Is MS/MSD within QC criteria (see Table 4)? If out and LCS is compliant, then "J" flag positive data in original sample due to matrix.	A MS/MSD is not applicable to the TO-15 method; however, all surrogate recoveries were acceptable indicating no matrix interferences.				
Is LCS within QC criteria (see Table 5)? If out, and the recovery is high with no positive values, then no data qualification is required.	Yes.				
Do internal standards areas and retention time meet criteria? If not was sample re-analyzed to establish matrix (see Table 6)?	Yes.				
Is initial calibration for target compounds <30 %RSD or curve fit?	Level II report provided; therefore, unable to determine.				
Is the initial calibration verification for target compounds between laboratory limits or 70-130%?	Level II report provided; therefore, unable to determine.				
Is continuing calibration for target compounds <30 %D?	Yes.				
Were any samples reanalyzed or diluted (see Table 6)? For any sample reanalysis or dilutions, is only one reportable result flagged?	No.				
For TICs are there any system related compounds that should not be reported?	No TICs reported.				
Do field duplicate results show good precision for all compounds except TICs (see Table 7)?	Analyte 2-Hexanone was detected in the field duplicate sample and not the parent sample and the RPD value was not able to be calculated. Sample results were <2x the PQL and were not qualified as a result.				

Summary of Findings

None.

Data Usability Summary Report	Project: Hawkeye Trade Center
Date Completed: February 17, 2023	Completed by: Devon Richards; Eridania Marte

Table 2 - List of Positive Results for Blank SamplesNone.

 Table 2A – List of Samples Qualified for Method Blank Contamination

 None.

 Table 2B - List of Samples Qualified for Field Blank Contamination

 None.

 Table 3 - List of Samples with Surrogates outside Control Limits

 None.

 Table 4 – List of MS/MSD Recoveries and RPDs outside Control Limits

 None.

 Table 5 - List of LCS/CCV Recoveries outside Control Limits

 None.

Table 6 –Samples that were ReanalyzedNone.

Table 7 – Summary of Field Duplicate Results

					SV-04-	SV-99-		RPD	
Method	Analyte	Unit	Matrix	PQL	110822	110822	RPD	Rating	Sample Qual
TO15	1,3-Butadiene	ppbv	SG	0.2	2.2	2.1	4.7%	Good	None
TO15	2-Hexanone	ppbv	SG	0.2	ND	0.30	NC	-	None < 2x PQL
TO15	Acetone	ppbv	SG	8	26	28	7.4%	Good	None
TO15	Benzene	ppbv	SG	0.2	1.9	1.9	0.0%	Good	None
TO15	Carbon Disulfide	ppbv	SG	2	2.7	2.8	3.6%	Good	None
TO15	Cyclohexane	ppbv	SG	0.2	0.86	1.3	40.7%	Good	None
TO15	Dichlorodifluoromethane	ppbv	SG	0.2	0.40	0.42	4.9%	Good	None
TO15	Ethylbenzene	ppbv	SG	0.2	0.26	0.27	3.8%	Good	None
TO15	m,p-Xylene	ppbv	SG	0.4	0.78	0.79	1.3%	Good	None
TO15	Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	ppbv	SG	0.2	0.50	0.58	14.8%	Good	None
TO15	N-Heptane	ppbv	SG	0.2	1.3	1.3	0.0%	Good	None
TO15	O-Xylene (1,2-Dimethylbenzene)	ppbv	SG	0.2	0.27	0.29	7.1%	Good	None
TO15	Propylene	ppbv	SG	8	25	25	0.0%	Good	None

Data Usability Summary Report	Project: Hawkeye Trade Center
Date Completed: February 17, 2023	Completed by: Devon Richards; Eridania Marte

Method	Analyte	Unit	Matrix	PQL	SV-04- 110822	SV-99- 110822	RPD	RPD Rating	Sample Qual
TO15	Toluene	ppbv	SG	0.2	4.2	4.2	0.0%	Good	None

Acronym List and Table Key:

SG	=	soil gas
CCV	=	continuing calibration verification
COC	=	chain of custody
%D	=	percent difference
DUSR	=	data usability summary report
GC/MS	=	gas chromatography / mass spectrometry
LCS	=	laboratory control sample
MB	=	method blank
MS	=	matrix spike
MSD	=	matrix spike duplicate
NYSDEC	=	New York State Department of Environmental Conservation
PQL	=	practical quantitation limit
QA	=	quality assurance
QAPP	=	quality assurance project plan
QC	=	quality control
RPD	=	relative percent difference
SDG	=	sample delivery group
TIC	=	tentatively identified compound
VOC	=	volatile organic compound