

December 3, 2021

Mr. Todd Caffoe NYSDEC Region 8 6274 East Avon-Lima Road Avon, New York 14414

Re: Supplemental Phase II Investigation Report Kaddis Manufacturing Corporation Rochester Site 293 Patriot Way Rochester, New York 14624

Dear Mr. Caffoe:

Benchmark Civil/Environmental Engineering and Geology, PLLC (Benchmark) has prepared this Supplemental Phase II Investigation Report on behalf of Kaddis Manufacturing Corporation (Kaddis) for the subject property located at 293 Patriot Way, Rochester, New York (Site) (see Figures 1 and 2).

BACKGROUND

The Site was subject to a Phase II investigation in support of environmental due diligence activities in late June of 2021. The Phase II investigation was conducted by Ramboll US Consulting, Inc. (Ramboll) and included:

- Advancement of five (5) direct-push borings, designated alphanumerically as A through E, with soil and groundwater samples collected at each location.
- Sampling of surface soils from a nearby stormwater culvert.
- Sampling of groundwater from two temporary wells remaining from a prior Phase II investigation conducted in 2012, and a well installed in concert with underground storage tank (UST) removal activities and associated spill cleanup (NYSDEC Spill #0706977) in 2007.
- A subslab vapor assessment within the existing manufacturing building.

The data identified chlorinated volatile organic compound (cVOC) impacts above Class GA Standards in groundwater, notably at well MW-C and to a lesser extent at MW-B. No cVOCs were present above NYSDEC Commercial Soil Cleanup Objectives (CSCOs) in the soil samples. Only one polyaromatic hydrocarbon was present above CSCOs in the stormwater culvert sample. Subslab air samples, although not paired with indoor air, indicated "no further action" relative to current NYSDOH vapor intrusion guidance.

Strong Advocates, Effective Solutions, Integrated Implementation

www.benchmarkturnkey.com

Based upon the findings of Ramboll's Phase II investigation it is suspected that residual cVOCs in groundwater are associated with the 5,000-gallon cutting oil UST referenced in Ramboll's report and removed by Benchmark in 2007 under Spill #0706977. Although conducted under the Petroleum Spills Program due to the release of cutting oils, the soils surrounding the tank and stone ballast within the tank were found, at that time, to also contain cVOCs in addition to petroleum. The NYSDEC was contacted and agreed to keep the cleanup within the Spills Program. The cVOC-impacted ballast and soils surrounding the UST were therefore removed and appropriately disposed offsite at permitted Treatment Storage and Disposal Facilities (TSDFs). The Department subsequently issued a No Further Action determination for the Spill.

To further confirm the suspected source of the impacts observed in wells MW-C and MW-B, Benchmark surveyed the temporary well locations and identified a localized gradient to the west, which follows a pronounced topographic drop-off in that direction extending from the western portion of the manufacturing building to the adjacent intersection of Patriot Way and Old Beahan Road.

The findings at well location MW-C warranted further investigation. Benchmark's approach, findings, and conclusions for the Supplemental Phase II investigation activities is presented below.

SUPPLEMENTAL PHASE II INVESTIGATION APPROACH

The supplemental investigation scope of work included the advancement of six (6) borings through unconsolidated overburden material to the top of bedrock, approximately 38 feet below ground surface (fbgs). Four of the six borings were advanced into the upper bedrock shale approximately 10 feet, to facilitate the installation of bedrock groundwater monitoring wells MW-1B, MW-4B, MW-5B, and MW-6B. The other two borings were completed in the unconsolidated overburden to facilitate the installation of shallow groundwater overburden wells MW-2 and MW-3. Figure 2 (attached) shows the approximate boring/well locations.

Subsurface Soil & Bedrock

In general, overburden soil samples were collected via continuous 4-foot macro-core sampling at each boring location for purposes of geologic description (ASTM D2488), visual and olfactory observations, and field screening for volatile organic compounds (VOCs) using a handheld photoionization detector (PID). Borings were advanced into the saturated overburden and/or to bedrock refusal utilizing a rear-mounted drill rig (and hollow stem augers). Bedrock core samples were then collected (ASTM D2113) approximately 10 feet into the bedrock at four locations for purposes of geologic description (ASTM D6032), visual and olfactory observations, and field screening for VOCs using a handheld PID via NQ core sampling. Borehole logs are presented in Attachment 1. Drill cuttings were containerized pending characterization.

Subsurface soils above (unsaturated zone) and below (saturated zone) the water table were field screened for the presence of volatile organics using a photoionization detector (PID) with a 10.6 eV lamp. Because groundwater samples were planned via monitoring well (see *Groundwater* Section below), only unsaturated soil samples were collected for laboratory analysis. Six unsaturated overburden soil samples were collected directly above the water table, one from each borehole depth interval, as no visual/olfactory or PID evidence of impact to the unsaturated soils were identified. Each soil sample was submitted for Target Compound List (TCL) VOC (Method 8260) analysis. Table 1 presents a summary of the soil analytical data. Attachment 2 includes the soil analytical data packages.

Groundwater

Two overburden (MW-2 and MW-3) and four bedrock (MW-1B, MW-4B, MW-5B, and MW-6B) monitoring wells were installed and developed in accordance with our proposed scope of work. Development water was containerized pending characterization. Well construction details are provided in Table 2 and well development field forms are presented in Attachment 3.

Groundwater samples from each well were collected via low-flow sampling techniques and analyzed for TCL VOCs (Method 8260). A round of static water levels were obtained from each on-Site monitoring well on November 11, 2021 to facilitate the preparation of Site-wide isopotential maps for overburden and bedrock units (see Figure 3 and 4, respectively). Static water levels are summarized in Table 2 and groundwater results are summarized on Table 3. Attachment 2 includes the groundwater analytical data packages.

INVESTIGATION FINDINGS

Investigation findings are summarized below by matrix: subsurface soil and groundwater.

Subsurface Soil

No field visual/olfactory observations of impact were identified in the unsaturated zone soil samples at any of the six borings. None of the PID measurements for each unsaturated soil sample were recorded above background concentration (i.e., 0.0 ppm) and each contained no VOC concentrations above Commercial Soil Cleanup Objectives (CSCOs) or PGWSCOs. PID evidence of impact was only identified in the saturated zone at borings MW-1B (PID = 8.5 at 10.0 to 14.0 fbgs) and MW-2 (PID = 42.0 at 14.0 to 16.0 fbgs). These impacts are presented in the *Groundwater* Section below.

<u>Groundwater</u>

Each on-site well was surveyed (July 29 and October 15, 2021) and static depth to groundwater levels were measured on November 17, 2021. Data from this event was used to prepare an isopotential map for shallow overburden groundwater (see Figure 3) and bedrock groundwater (see Figure 4). As indicated, the direction of on-site shallow overburden groundwater flow is generally radial toward the center of the Site with a smaller northwest component following a topographic drop-off to the northwest, with an estimated horizontal hydraulic gradient of 0.078

ft/ft. Bedrock groundwater flow however is east/northeast with an estimated horizontal hydraulic gradient of 0.023 ft/ft.

Analytical results from the October 14-15, 2021 sampling event for wells MW-1B, MW-2, MW-3, MW-4B, MW-5B, MW-6B as well as the June 2021 groundwater results (reported by Ramboll in their Phase II Report) for wells TMW-1A, TMW-2, MW-A thru MW-E, and the Tank Pit Well are presented in Table 4 and Figure 5. Class GA Ambient Water Quality Standards and Guidance Values (AWQSs/GVs) per NYSDEC T.O.G.S 1.1.1. are presented in Table 4 for comparison.

As indicated in Table 4 (and Figure 5), chlorinated VOCs (cVOCs) present in the shallow overburden groundwater, and to a lesser extent in the upper bedrock groundwater above T.O.G.S. limits are relegated to the western portion of the Site. The highest concentrations of cVOCs trichloroethene (TCE) and perchloroethene (PCE) as well as break-down daughter compounds cis-1,2-Dichloroethene (cis-1,2-DCE), trans-1,2-dichloroethene (trans-1,2-DCE), and vinyl chloride (VC), were detected in shallow overburden well MW-C. Due to an inward radial flow of shallow overburden groundwater, the cVOC-impacts appear limited in both horizontal and vertical extent from well MW-C. A two-dimensional isoconcentration map depicting the approximate radial cVOC impacts to groundwater is presented as Figure 6.

SUMMARY & CONCLUSIONS

Groundwater at the Site is impacted by cVOCs. The limited horizontal and vertical presence indicates that the contamination is localized in the western portion of the site and is primarily elevated in overburden groundwater. A remedial approach is recommended to address these impacts. Benchmark intends to submit a separate Remedial Action Work Plan to the Department on behalf of the property owner following issuance of the pending Consent Order.

Please contact us if you have any questions or require additional information.

Sincerely,

Benchmark Civil/Environmental Engineering & Geology, PLLC

Thomas H. Forbes, P.E.

President

Bryan C. Hann, P. G.

Senior Project Manager

ec: R Iannucci (Kaddis)

J MacAnn (Kaddis)

M. Tedeschi (Kaddis)

P. Sylvestri (Harter Secrest)

TABLES

TABLE 1

SUMMARY OF SOIL ANALYTICAL RESULTS

Supplemental Phase II Investigation Report Kaddis Manufacturing Corporation 293 Patriot Way Site Rochester, New York 14624

								Sample ID, Sam	ple Date, Lab ID		
Parameter ¹	CasNum	CSCO ²	PGWSCO ²	ISCO ²	Units	MW-1B (4-6.5') 09/30/2021 L2154540-01 Qual	MW-2 (4-5') 10/06/2021 L2154540-02 Qual	MW-3 (6-7') 10/06/2021 L2154540-03 Qual	MW-4B (4-7') 10/06/2021 L2154540-04 Qual	MW-5B (4-5.5') 10/06/2021 L2154540-05 Qual	MW-6B (5-8') 10/07/2021 L2156314-01 Qual
General Chemistry											
Solids, Total	NONE	NA	NA	NA	%	77.7	74.3	81.2	87.2	85.9	82.3
Field Measured PID											
PID Screening (maximum)	NONE	NA	NA	NA	ppm	0.0	0.0	0.0	0.0	0.0	0.0
Volatile Organics by GC/MS											
Acetone	67-64-1	500	0.05	1000	mg/kg	0.018	0.01 U	0.012 U	0.0093 U	0.01 U	0.012 U
Trichloroethene	79-01-6	200	0.47	400	mg/kg	0.00035 J	0.00072	0.00027 J	0.00035 J	0.00052 U	0.00059 U

Notes:

- 1. Only those organic compounds (VOCs or SVOCs) detected above the laboratory reporting limit for at least one sample location are presented in this table; all others were reported as non-detect (ND or U).
- 2. Part 375 Commercial (C), Protection of Groundwater SCO (PGW), and Industrial (I) Soil Cleanup Objective (SCO).

Qualifier Key

- J = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- U = The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- ND = Not Detected at the method detection limit (MDL) for the sample.

Color Code:

= concentration exceeds the shaded regulatory limit.

TABLE 2

MONITORING WELL CONSTRUCTION DETAILS AND WATER LEVELS

Kaddis Manufacturing Corporation 293 Patriot Way Site Rochester, New York

				Well	TOD	Consti	ruction Details (a	pprox.)	07/29	/2021	10/15	/2021	11/17	7/2021
Location ¹	Installation Date	Installed By	Well Diameter (inches)	Construction Material (screen/riser)	TOR Elevation ² (fmsl)	Bentonite Seal (fbgs)	Sand Pack Interval (fbgs)	Screened Interval (fbgs)	DTW (fbTOR)	GWE (fmsl)	DTW (fbTOR)	GWE (fmsl)	DTW (fbTOR)	GWE (fmsl)
Tank Pit	unknown	ВМ	1.0	PVC / PVC	na	na	na	1.72 - 11.72	na	na	na	na	5.50	na
TW-1A	08/14/12	ВМ	1.0	PVC / PVC	504.70	0.5 - 2.0	2.0 - 18.63	8.63 - 18.63	12.15	492.55	na	na	9.85	494.85
TW-02	08/14/12	BM	1.0	PVC / PVC	503.45	0.5 - 2.0	2.0 - 25.91	15.91 - 25.91	9.35	494.10	na	na	6.50	496.95
MW-A	06/22/21	Ramboll	1.0	PVC / PVC	504.50	na	na	6.05 - 16.05	9.89	494.61	na	na	6.56	497.94
MW-B	06/22/21	Ramboll	1.0	PVC / PVC	501.97	na	na	9.08 - 19.08	9.95	492.02	na	na	6.80	495.17
MW-C	06/22/21	Ramboll	1.0	PVC / PVC	500.30	na	na	6.03 - 16.03	7.05	493.25	na	na	4.35	495.95
MW-D	06/22/21	Ramboll	1.0	PVC / PVC	501.68	na	na	7.21 - 17.21	7.60	494.08	na	na	5.70	495.98
MW-E	06/22/21	Ramboll	1.0	PVC / PVC	499.85	na	na	7.57 - 17.57	5.70	494.15	na	na	3.15	496.70
MW-1B	09/30/21	ВМ	2.0	PVC / PVC	502.25	0.5 - 31.6	31.6 - 43.6	33.6 - 43.6	na	na	6.75	495.50	3.85	498.40
MW-2	10/01/21	BM	2.0	PVC / PVC	498.75	0.5 - 5.8	5.8 - 17.8	7.8 - 17.8	na	na	4.60	494.15	0.50	498.25
MW-3	10/01/21	ВМ	2.0	PVC / PVC	501.95	0.5 - 6.0	6.0 - 18.0	8.0 - 18.0	na	na	7.35	494.60	3.35	498.60
MW-4B	10/04/21	ВМ	2.0	PVC / PVC	502.07	0.5 - 36.0	36.0 - 48.0	38.0 - 48.0	na	na	7.75	494.32	5.10	496.97
MW-5B	10/05/21	BM	2.0	PVC / PVC	501.08	0.5 - 42.0	42.0 - 54.0	44.0 - 54.0	na	na	13.80	487.28	11.15	489.93
MW-6B	10/07/21	ВМ	2.0	PVC / PVC	499.55	0.5 - 30.0	30.0 - 42.0	32.0 - 42.0	na	na	7.80	491.75	4.30	495.25

Notes:

- 1. Monitoring wells MW-A through MW-E were installed by Ramboll US Consulting, Inc. during a previous investigation; all others were installed by Benchmark Civil/Environmental Engineering & Geology, PLLC.
- 2. Top of riser elevation based upon an assumed datum of 500.00 fmsl established by Benchmark on the southern property boundary monument metal pin.
- 3. Top of riser elevations surveyed by Benchmark personnel on July 29, 2021 and October 15, 2021.

Definitions:

BM = Benchmark Environmental Engineering & Science, PLLC

Ramboll = Ramboll US Consulting, Inc.

TOR = Top of riser.

fmsl = feet above mean sea level.

fbgs = feet below ground surface.

TABLE 3
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Supplemental Phase II Investigation Report Kaddis Manufacturing Corporation 293 Patriot Way Site Rochester, New York 14624

					Sample ID, Sample Date, Lab ID							
Parameter ¹	CasNum	NY-AWQS ²	Units	MW-1B 10/14/2021 L2156436-01	MW-2 10/14/2021 L2156436-02	MW-3 10/14/2021 L2156436-03	MW-4B 10/14/2021 L2156436-04	MW-5B 10/15/2021 L2156645-01	MW-6B 10/14/2021 L2156436-05			
				Qual	Qual	Qual	Qual	Qual	Qual			
Field Measurements				_								
TOR Elevation		-	fmsl	502.25	498.75	501.95	502.07	501.08	499.55			
Total Depth		-	fbTOR	43.60	18.10	18.00	48.00	54.10	42.00			
Static Depth to Water		-	fbTOR	6.75	3.15	7.35	7.75	13.30	7.80			
Groundwater Elevation		-	fmsl	495.50	495.60	494.60	494.32	487.78	491.75			
рН			units	7.49	7.26	7.32	7.48	7.05	7.66			
Temperature			deg. C	15.0	16.1	15.5	14.6	13.0	16.3			
Specific Conductance			uS	893	914	714	887	1784	803			
Turbidity			NTU	659	17.9	326	8.61	15.7	348			
Dissolved Oxygen			mg/L	0.63	6.45	3.81	1.26	0.64	0.75			
ORP			mV	59	143	44	49	-62	-61			
Appearance, Odor		6.5 - 8.5		turbid, none	clear, none	turbid, none	clear, none	clear, none	turbid, none			
Volatile Organics by GC/MS												
1,1-Dichloroethane	75-34-3	5	ug/l	2.5 U	25 U	2.5 U	1.6 J	2.5 U	2.5 U			
1,1-Dichloroethene	75-35-4	5	ug/l	0.5 U	5 U	0.18 J	1.7	0.5 U	0.5 U			
Acetone	67-64-1	50	ug/l	2.5 J	50 U	5 U	10 U	5 U	5 U			
cis-1,2-Dichloroethene	156-59-2	5	ug/l	68	570	83	110	2.5 U	2.5 U			
Tetrachloroethene	127-18-4	5	ug/l	0.5 U	14	3.9	1 U	0.5 U	0.5 U			
trans-1,2-Dichloroethene	156-60-5	5	ug/l	2.5 U	19 J	2.2 J	24	2.5 U	2.5 U			
Trichloroethene	79-01-6	5	ug/l	12	1700 D	100	210	0.2 J	0.85			
Vinyl chloride	75-01-4	2	ug/l	6.5	14	0.47 J	7.9	1 U	1 U			
Total cVOCs	na	na	ug/l	18.5	2,317	189.75	355.2	0.2	0.85			

Notes:

- 1. Only compounds detected with reporting limits that exceed the corresponding regulatory standard in at least one sample are included.
- 2. NYS Ambient Water Quality Class GA Groundwater Quality Standards/Guidance Values; NYSDEC June 1998 Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1

Qualifier Key:

- J = The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- U = The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.

Color Code:

= concentration exceeds the NYSDEC Class GA AWQS/GV.

TABLE 4

SUMMARY OF SITE-WIDE GROUNDWATER RESULTS

Supplemental Phase II Investigation Report **Kaddis Manufacturing Corporation** 293 Patriot Way Site Rochester, New York 14624

									Well	D, Sample Date	e, and Concenti	ration					
Class	Parameter ¹	AWQS/GVs ²	Units	TMW-1A	TMW-2	MW-A	MW-B	MW-C	MW-D	MW-E	MW-1B	MW-2	MW-3	MW-4B	MW-5B	MW-6B	Tank Pit Well
				(June 2021)	(October 2021)	(October 2021)	(October 2021)	(October 2021)	(October 2021)	(October 2021)	(June 2021)						
	2-Butanone	50*	ug/L	ND	ND	2.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4.5	Acetone	50*	ug/L	ND	ND	12	ND	ND	ND	ND	2.5 J	ND	ND	ND	ND	ND	ND
	Benzene	1	ug/L	ND	ND	0.37 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1 2	Bromomethane	5	ug/L	ND	ND	ND	ND	ND	0.72 J	ND	ND	ND	ND	ND	ND	ND	ND
1 6	Toluene	5	ug/L	ND	ND	0.65 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
_	m,p-Xylenes	5	ug/L	ND	ND	0.43 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	o-Xylene	5	ug/L	ND	ND	0.21 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1,1-DCA	5	ug/L	ND	ND	ND	ND	1.6 J	ND	ND	ND						
4.5	1,1-DCE	5	ug/L	ND	ND	ND	2.2 J	1.7	ND	ND	ND						
	cis-1,2-DCE	5	ug/L	2	ND	0.92 J	6.7	11,000	ND	ND	68	570	83	110	ND	ND	6.4
1 2	trans-1,2-DCE	5	ug/L	ND	ND	ND	0.56 J	480	ND	ND	ND	19 J	ND	24	ND	ND	ND
1 7	PCE	5	ug/L	ND	ND	0.55 J	2.8	620	ND	ND	ND	14	3.9	ND	ND	ND	ND
	TCE	5	ug/L	5	ND	3.1	41	16,000	1.9	ND	12	1,700 D	100	210	0.2 J	0.85	0.47 J
	VC	2	ug/L	ND	ND	ND	ND	430	ND	ND	6.5	14	0.47 J	7.9	ND	ND	1.7
	Total cVOCs		ug/L	7	ND	4.57	51.06	28,530	1.9	ND	86.5	2,317	189.57	355.2	0.2	0.85	8.57

Only compounds detected with reporting limits that exceed the corresponding regulatory standard in at least one sample are included.
 NYS Ambient Water Quality Class GA Groundwater Quality Standards/Guidance Values (*); NYSDEC June 1998 Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1

Abbreviations:

pVOC = petroleum-based volatile organic compound cVOC = chlorinated solvent-based volatile organic compound

= exceeds AWQS/GV

2558 HAMBURG TURNPIKE, SUITE 300, BUFFALO, NY 14218, (716) 856-0599

PROJECT NO.: B0127-021-001 DATE: NOVEMBER 2021

DRAFTED BY: BCH

SITE LOCATION & VICINITY MAP

SUPPLEMENTAL PHASE II INVESTIGATION

293 PATRIOT WAY SITE ROCHESTER, NEW YORK

PREPARED FOR

KADDIS MANUFACTURING CORPORATION

DISCLAIMER

C:\Users\CADD Station\One Drive - Orion Environmental Solutions, LLC\0 - Benchmark\0 - PROJECTS\Kaddis\293 Patriot Way, Rochesten\CAD\293patriotwaybaser

PROPERTY OF BENCHMARK CIVIL / ENVIRONMENTAL ENGINEERING & GEOLOGY, PLLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK CIVIL / ENVIRONMENTAL ENGINEERING & GEOLOGY, PLLC.

SITE PLAN (AERIAL)
SUPPLEMENTAL PHASE II INVESTIGATION

293 PATRIOT WAY ROCHESTER, NEW YORK

PREPARED FOR KADDIS MANUFACTURING CORPORATION

JOB NO.: B0127-021-001

SHALLOW GROUNDWATER ISOPOTENTIAL MAP NOVEMBER 17, 2021 SUPPLEMENTAL GROUNDWATER INVESTIGATION

293 PATRIOT WAY ROCHESTER, NEW YORK

PREPARED FOR KADDIS MANUFACTURING CORPORATION

JOB NO.: B0127-021-001

BEDROCK GROUNDWATER ISOPOTENTIAL MAP NOVEMBER 17, 2021 SUPPLEMENTAL GROUNDWATER INVESTIGATION

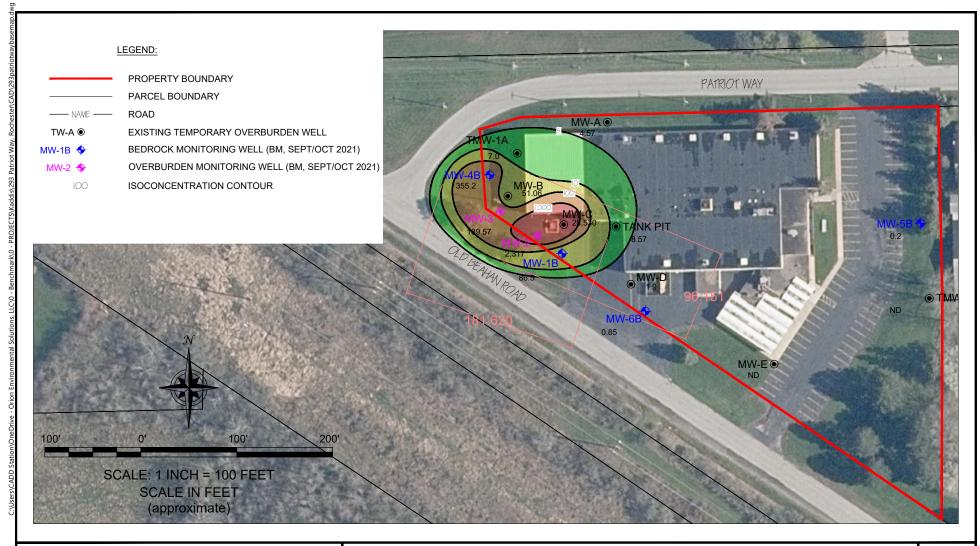
293 PATRIOT WAY ROCHESTER, NEW YORK

PREPARED FOR KADDIS MANUFACTURING CORPORATION

JOB NO.: B0127-021-001

B0127-021-00

.: 0 N


JOB

GROUNDWATER RESULTS SUPPLEMENTAL GROUNDWATER INVESTIGATION

293 PATRIOT WAY ROCHESTER, NEW YORK

CORPORATION PREPARED FOR MANUFACTURING KADDIS

2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0599

PROJECT NO.: B0127-021-001

DATE: NOVEMBER 2021

DRAFTED BY: BCH

ISOCONCENTRATION MAP - TOTAL cVOCS

SUPPLEMENTAL PHASE II INVESTIGATION

293 PATRIOT WAY SITE ROCHESTER, NEW YORK

PREPARED FOR

KADDIS MANUFACTURING CORPORATION

DISCLAIMER

PROPERTY OF BENCHMARK CIVIL / ENVIRONMENTAL ENGINEERING & GEOLOGY, PLLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK CIVIL / ENVIRONMENTAL ENGINEERING & GEOLOGY, PLLC.

ATTACHMENT 1

BOREHOLE LOGS

FIELD BOREHOLE LOG

PRO	JECT	:	Kaddis	s - Sup	plemer	ital Pha	se II Investigation	Log of Boring No.:	: MW-1B
BOR	ING L	OCAT	ION:		See F	igure 2		ELEVATION AND DATUM:	NA
DRIL	LING	CONT	RACT	OR:	Nothn	agle Dr	illing, Inc.	DATE STARTED: 09/30/21	FINISHED: 09/30/21
DRIL	LING	METH	OD:		CME I	_C 55 F	Rear-Mounted Rig	TOTAL DEPTH: 48.0 fbgs	SCREEN: 37.4 - 47.4 fbgs
DRIL	LING	EQUIF	PMENT	•	4.25-ir	nch Hol	low Stem Auger	DEPTH TO FIRST: COMI WATER: 6.5 fbgs 7.35 f	
SAM	PLING	3 METI	HOD:		2-inch	x 4-foo	t core barrel	LOGGED BY: BCH	
HAM	MER '	WEIGH	HT:		NA		DROP: NA	RESPONSIBLE PROFESSIONAL:	Bryan C. Hann, PG REG. NO. NY000270
		S	AMPLE	ES		(mc	SAMPLE DESCRIPTION (ASTM D2488)	
Depth (fbgs)	Field Sample No.	Lab Sample	Blows (per 6")	SPT N-Value	Recovery (ft)	Max. PID Scan (ppm)	USCS Classification: Color, Moisture Condition, Primar Trace, 5-10% Few, 15-25% Little, 30-45% Some), Stru- bedded, thickly bedded, laminated, fissured, blocky, k (Standard Penetration Test, SPT), Weathering/Fracturin	acture (varved, stratified, thinly bedded, ensed, massive), Consistency/Density	REMARKS
	iξ		Ш			Ë	SURFACE ELEVATION (FMSL): na		
0 - 1 - 2 - 3 - 4 - 4	S1	na	na	na	3.9	0.0	0.0 - 0.5 TOPSOIL 0.5 - 3.9 SANDY LEAN CLAY (CL) (CLAYEY T mostly low plasticity fines, little fine sand, trace of gravel, firm		Monitoring Well Detail
5 - 6 - 7 -	S 2	a 4.0 - 6.5 fbgs	na	na	4.0	0.0	As above, some fine sand to coarse sand, little f to wet (6.5 fbgs)	ine sub-rouinded gravel, moist	first water6.5 fbgs
9 -	S3	na	na	na	1.8	1.4	As above, wet		2" Sch. 40 PV
1 -	S4	na	na	na	3.1	8.5	As above, wet		Bentonite Chips
3 -	0.7	Tid	110	na .	0.1	0.0	12.0 - 14.0 CLAYEY SAND (SC) (CLAYEY TILL sand, some low plasticity fines, little non-plastic rounded gravel, dense, slow dilatency		Bent
5 -	S5	na	na	na	2.5	0.0	As above, wet		-
		MENT							
Vo	olume	of cem	ent/be		grout i	equired nstalled		gallons gallons	borehole depth = ft. borehole diameter = ft. borehole radius = ft.
	If y		olain re	solutio					
					1-001		Benchmark Civil/Environmenta	l Engineering & Geology, PL	LC MW-1B

FIELD BOREHOLE LOG

PR	OJECT	:	Kaddis	s - Supp	plemen	ital Phas	se II Investigation	on	Log of Boring No.	:	MW-1B	
ВС	RING L	.OCAT	ION:		See Fi	igure 2			ELEVATION AND DATUM:	NA		
DF	RILLING	CONT	RACT	OR:	Nothna	agle Dril	ling, Inc.		DATE STARTED: 09/30/21		FINISHED:	09/30/21
DF	RILLING	METH	OD:		CME L	-C 55 Re	ear-Mounted R	ig	TOTAL DEPTH: 48.0 fbgs		SCREEN: 37.	4 - 47.4 fbgs
DR	RILLING	EQUIF	PMENT	:	4.25-ir	nch Hollo	ow Stem Auger		DEPTH TO FIRST: COM WATER: 6.5 fbgs 7.35		CASING: NA	
SA	MPLING	G MET	HOD:		2-inch	x 4-foot	core barrel		LOGGED BY: BCH	3		
HA	MMER	WEIGI	HT:		NA			DROP: NA	RESPONSIBLE PROFESSIONAL:	Bryan	C. Hann, PG	REG. NO. NY000270
		S	AMPLE	S		mc)		SAMPLE DESCRIPTION	(ASTM D2488)			
Depth (fbgs)	Field Sample No.	Lab Sample	Blows (per 6")	SPT N-Value	Recovery (ft)	Max. PID Scan (ppm)	Trace, 5-10% bedded, thic (Standard Per	fication: Color, Moisture Condition, Primar 6 Few, 15-25% Little, 30-45% Some), Strn ckly bedded, laminated, fissured, blocky, leteration Test, SPT), Weathering/Fracturin	ucture (varved, stratified, thinly bedded ensed, massive), Consistency/Density	,	REMARK	S
	<u> </u>					_	SURFACE	E ELEVATION (FMSL): na			Monitoring V	Vell Detail
16	S5						(see page 1	1)			Workoning	Jeil Betail
17 - 18 -	X	X	X	X	X	X	Spoon refu Augered to	sal @ 16.5 fbgs 18.0 fbgs				
19 -	S6	na	na	na	2.0	0.0		ID (SM) (SANDY TILL): Dark grey, w s, trace coarse to fine sub-rounded g		- - -		
20 -	S7	na	na	na	1.6	0.0	As above, v	wet		- - - -		
23		X	X	\bigvee	\bigvee	X	Augered to	24.0 fbgs		- - - -	nite Chips 40 PVC riser	
242526	- S8	na	na	na	3.4	2.7		wet POORLY GRADED SAND (SP): Da lastic fines, dense, rapid dilatency	rk grey, wet, mostly fine sand,	- - -	Bentonite Chips 2" Sch. 40 PVC riser	
27 -	_											
28 -							SILTY SAN	ID (SM) (SANDY TILL): As above, w	et, very dense			
29	S9	na	na	na	1.7	0.0	SILTY SAN	ID w/ GRAVEL (SM) (SAND & GRA\	/EL TILL): Dark grey, wet, mostly			
30 -								3 ,	,	-		
31 -	S10	na	na	na	1.4	0.0	As above, v	wet, very hard		-		
32										1		
AB	ANDON	MENT	Γ:									
						equired: nstalled:		V = pr ² x 7.48 =	gallons gallons		rehole depth =	ft. ft.
	Has brid	dging o	f grout	occurre solution	ed?			yes no	ganono		rehole radius =	ft.
	Method oject N	of insta	allation					Benchmark Civil/Environmenta	I Engineering & Goology Pl	I C		MW-1B
- 171	oje ct i	٧U.	DU 12	-7-UZ	1-001			sencilinark Civil/Environmenta	n Engineering & Geology, PL	LU		MIVV-ID

FIELD BOREHOLE LOG

PROJE	CT:	Kaddi	s - Sup	plemen	ital Pha	se II Investigation	Log of Boring No.:	1	MW-1B	
BORING	G LOCA	ΓΙΟΝ:		See F	igure 2		ELEVATION AND DATUM:	NA		
DRILLIN	NG CON	TRACT	OR:	Nothna	agle Dri	lling, Inc.	DATE STARTED: 09/30/21		FINISHED:	09/30/21
DRILLIN	NG METI	HOD:		CME I	_C 55 R	lear-Mounted Rig	TOTAL DEPTH: 48.0 fbgs		SCREEN: 37.4	47.4 fbgs
DRILLIN	NG EQU	PMEN1	Γ:	4.25-ir	nch Holl	ow Stem Auger	DEPTH TO FIRST: COMI WATER: 6.5 fbgs 7.35 f		CASING: NA	
SAMPLI	ING ME	THOD:		2-inch	x 4-foo	t core barrel	LOGGED BY: BCH			
HAMME	ER WEIG	HT:		NA		DROP: NA	RESPONSIBLE PROFESSIONAL:	Bryar	C. Hann, PG	REG. NO. NY000270
		SAMPLE	ES		m)	SAMPLE DESCRIPTION (ASTM D2488)			
Depth (fbgs)	Lab Sample	Blows (per 6")	SPT N-Value	Recovery (ft)	Max. PID Scan (ppm)	<u>USCS Classification;</u> Color, Moisture Condition, Primar Trace, 5-10% Few, 15-25% Little, 30-45% Some), Stru- bedded, thickly bedded, laminated, fissured, blocky, le (Standard Penetration Test, SPT), Weathering/Fracturin	acture (varved, stratified, thinly bedded ensed, massive), Consistency/Density		REMARKS	
	-				_	SURFACE ELEVATION (FMSL): na			Monitoring Wo	II Dotoil
32 - S1	11	no	ne	1.0	0.0	As above, wet to moist, very hard		1	Monitoring We	J D€(dii
33	l1 na	na A	na	1.0	0.0	AS ADOVE, WELLO HIOISI, VELY HAIU			10	
34 -	\bigvee	\bigvee	X	X	X	Spoon refusal at 33.0 fbgs Augered to 35.0 fbgs		- - -	Bentonite Chips 40 PVC riser	
35 - S1	12 na	na	na	1.3	0.0	As above, moist, very hard		- - - -	Ber 2" Sch. 40	
38	\bigcirc	\bigvee	X	X	X	Auger refusal @ 38.0 fbgs (bedrock)				
39 - 40 - 41 - 42 -	na na	na	na	5.0	0.0	RUN #1: 38.0 - 43.0 fbgs Recovery: 5.0 ft / 5.0 ft = 100% RQD: 0.0 ft / 5.0 ft = 0%, Very Poor Lockport Dolomite Bedrock: Dark grey, highly fra fossiliferous, vuggy, very hard	actured (horizontal),		Filer Sand PVC screen	
43 - 44 - 45 - 3 # N0 46 - 2	na	na	na	5.0	0.0	RUN #2: 43.0 - 48.0 fbgs Recovery: 5.0 ft 5.0 ft = 100% RQD: 3.1 ft / 5.0 ft = 62%, Fair Lockport Dolomite as above		- - - -	F 2" Sch. 40 P	
46 - 6 47 - 48 -	-					EOB @ 48.0 fbgs Installed flush-mount monitoring well MW-1B to 2-inch Sch. 40 PVC with 10-foot machine slotted		- - -		
	ONMEN me of ce		ntonite	grout r	equired	: $V = pr^2 \times 7.48 =$	gallons	br	orehole depth =	ft.
Volur	me of ce	ment/be	ntonite	grout i			gallons	boreh	nole diameter = rehole radius =	ft.
	If yes, ex	plain re	solutio					D0	ionolo raulus =	Tt.
	od of ins		27-02°	1-001		Benchmark Civil/Environmenta	l Engineering & Geology, PL	.LC		MW-1B

Project No: B0127-021-001 Borehole Number: MW-2

Project: 293 Patriot Way A.K.A.:

Client: Kaddis Mfg Logged By: RLD

Site Location: Rochester, NY Checked By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0599

		SUBSURFACE PROFILE	5	SAM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (%)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
0.0	0.0	Ground Surface 0-0.5' Topsoil, loose, moist 0.5-4' Red/Brown Clay with some silt, low plasticity, dry	1		4		0.0		Flush Mount
5.0 —	-4.0 4.0	0-1'Red /Brown Clay as above 1-4' Sandy Clay Brown, with trace rounded gravel, wet, soft at 2-3' medium density at 3-4'	2		4		0.0	Soil Sample	Bentonite Seal
-	-8.0 8.0	Fine Brown Sand with some angular gravel, loose when disturbed,moist to wet.	3		4		0.0		2-inch PVC Casing
10.0	-10.0 10.0	10-12' Brown Sand as above 12-14' Grey Fine Sand with Silt and Clay TILL, medium to hard density, trace sub-rounded gravel, moist	4		3.5		3.5		Sand Pack 2-incl
15.0 —	-14.0 14.0	TILL as above PID reading 42 ppm @ 15 '	5		2.5		>25	0	2-inch PVC Screen
20.0	18.0	End of Borehole							<u> </u>

Drilled By: Nothnagle Drilling

Drill Rig Type: CME

Drill Method: HSA/ Rock Core

Comments:

Drill Date(s): October 1,2021

Hole Size:

Stick-up: Flush Mount

Datum:

Project No: B0127-021-001 Borehole Number: MW-3

Project: 293 Patriot Way A.K.A.:

Client: Kaddis Mfg Logged By: RLD

Site Location: Rochester, NY Checked By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0599

		SUBSURFACE PROFILE	S	AM	PLE					
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (%)	Symbol	0	PID VOCs ppm 12.5 25	Lab Sample	Well Completion Details or Remarks
0.0	0.0	Ground Surface 0-0.5' Topsoil, brown loose, dry 0.5-2' Brown silty clay, with trace fine sand, dry 2-4' Red brown sily clay, very dense, dry	1		4		0.0			Flush Mount
5.0 —	-4.0 4.0	0-3' Silty clay as above, dry 3-4' Fine brown sand with some clay, wet, trace angular gravel, medium density	2		4		0.0		Soil Sample	Bentonite Seal
-	-8.0 8.0 -10.0 10.0	as above with sub rounded gravel, coarse gravel pieces up to 1inch diameter, soft, wet	3		1		0.0			
10.0		10-13' wet fine sand with trace clay 13-14' grey sand with silt/clay TILL, trace angular gravel	4		3		0.0			Sand Pack 2-hr
15.0 —	14.0	TILL as above, slightly moist,	5		2		0.0			2-inch PVC Screen
20.0	-18.0 18.0	End of Borehole					0.0			

Drilled By: Nothnagle Drilling

Drill Rig Type: CME

Drill Method: HSA/ Rock Core

Comments:

Drill Date(s): October 1,2021

Hole Size:

Stick-up: Flush Mount

Datum:

Project No: B0127-021-001 Borehole Number: MW-4B

Project: 293 Patriot Way A.K.A.:

Client: Kaddis Mfg Logged By: RLD

Site Location: Rochester, NY Checked By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0599

		SUBSURFACE PROFILE		SAM	PLE					
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (%)	Symbol	0	PID VOCs ppm 12.5 29	Lab Sample	Well Completion Details or Remarks
0.0	0.0	Ground Surface					J			Flush Mount
-	0.0	0-0.5' Topsoil, brown loose, dry 0.5-3' Red brown silty clay moist, medium density, medium plasticity 3-4' Red sandy clay, trace silt, medium density loose when disturbed, slightly moist	1		4		0.0			
5.0	-4.0 4.0	Red sandy clay wet at 7', increasing sand at 8'	2		2.5		0.0		Soil Sampl collected	Water level Water level
-	-10.0 10.0	Red brown sandy clay, wet, loose when disturbed, trace angular gravel	3		1.5		0.0			2-inch PVC Casing
10.0 —	-14.0	0-1' red sandy clay as above wet 1-2.5' brown/grey fine sandy clay, moist with increasing subangular fine gravel	4		2.5		0.0			2-102
15.0 — —	-18.0	grey Sandy clay (TILL) w ith subangular gravel wet/saturated	5		2.5		0.0			
20.0	18.0	As above, moist	6		2		0.0			

Drilled By: Nothnagle Drilling

Drill Rig Type: CME

Drill Method: HSA/ Rock Core

Comments:

Drill Date(s): October 4,2021

Hole Size:

Stick-up: Flush Mount

Datum:

Project No: B0127-021-001 Borehole Number: MW-4B

Project: 293 Patriot Way A.K.A.:

Client: Kaddis Mfg Logged By: RLD

Site Location: Rochester, NY Checked By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0599

		CURCUREACE PROFILE	PLE	•					
		SUBSURFACE PROFILE	') 	rLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (%)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
-	24.0	0-1.5' as above-wet 1.5-2.5- grey clayey silt, moist, dense	7		2.5		0.0		
25.0 —	-24.0 24.0	grey fine sand with fine gravel	8		1.5		0.0		
	-28.0 28.0 -29.0 29.0	grey sandy clay, (TILL) very dense, wet as above	10		1	\parallel	0.0		
30.0	30.0 -31.0 31.0	as above Till , sandy clay, grey w/ angular fine gravel, very dense, wet	11		0.5		0.0		
35.0	-35.5 35.5		13		1.5		0.0		
-	-38.5 -38.5	As above with Top of rock at 38.5' Bedrock	14		3.5		0.0		ook
40.0		Dolomite, fractured and weathered from 38.5-40.5', thinly laminated, dark grey				11			Top Of Rock

Drilled By: Nothnagle Drilling

Drill Rig Type: CME

Drill Method: HSA/ Rock Core

Comments:

Drill Date(s): October 4,2021

Hole Size:

Stick-up: Flush Mount

Datum:

Project No: B0127-021-001 Borehole Number: MW-4B

Project: 293 Patriot Way A.K.A.:

Client: Kaddis Mfg Logged By: RLD

Site Location: Rochester, NY Checked By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0599

		SUBSURFACE PROFILE	S	SAM	PLE				
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (%)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
45.0									2-inch PVC Screen
50.0 —	-48.5 48.5	End of Borehole							
55.0 —									
60.0 —									

Drilled By: Nothnagle Drilling

Drill Rig Type: CME

Drill Method: HSA/ Rock Core

Comments:

Drill Date(s): October 4,2021

Hole Size:

Stick-up: Flush Mount

Datum:

Project No: B0127-021-001 Borehole Number: MW-5B

Project: 293 Patriot Way A.K.A.:

Client: Kaddis Mfg Logged By: RLD

Site Location: Rochester, NY Checked By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0599

		SUBSURFACE PROFILE	SAMPLE							
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (%)	Symbol	\	PID /OCs ppm 12.5 25	Lab Sample	Well Completion Details or Remarks
0.0	0.0	Ground Surface				П	J			Flush Moun
-		0-0.1' Topsoil, brown loose, dry 1-4' Red brown silty clay ,dry, medium density, medium plasticity	1		4		0.0			
†	-4.0 4.0	0-1.5' As above				Ħ				al al
5.0 —		1.5-4' brown sandy clay, wet, low plasticity,	2		4		0.0		Soil Sample collected	Bentonite Sea
+	-8.0 8.0	0-1' as above				╫				
-		1-2' Increasing clay with trace angular gravel, medium density	3		2		0.0			2-inch PVC Casing
10.0	-10.0 10.0	as above , moist/wet with fine angular gravel	4		3		0.0			ul i W ater level
15.0		0-1' brown medium sand lense, with some fine gravel, wet 1-4' brown sandy clay , wet, with trace fine gravel	5		4		0.0			
20.0	-18.0 18.0 -20.0 20.0	grey sandy clay with some silt, dense, wet	6		2		0.0			

Drilled By: Nothnagle Drilling

Drill Rig Type: CME

Drill Method: HSA/ Rock Core

Comments:

Drill Date(s): October 5,2021

Hole Size:

Stick-up: Flush Mount

Datum:

Project No: B0127-021-001 Borehole Number: MW-5B

Project: 293 Patriot Way A.K.A.:

Client: Kaddis Mfg Logged By: RLD

Site Location: Rochester, NY Checked By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0599

		SUBSURFACE PROFILE							
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (%)	Symbol	PID VOCs ppm 0 12.5 25 0.0 -	Lab Sample	Well Completion Details or Remarks
_		as above with coarse gravel piece at 24 '	7		2		0.0		
25.0 —	-24.0 24.0	fine brown sandy clay, wet, gravel cobbles at 26 '	8		2		0.0		
_	-28.0 28.0	grey sandy clay (TILL) with weathered rock fragments, wet	9		0.25		0.0		
30.0 —	-31.0 31.0	as above, very dense, with coarse gravel pieces	10		1		0.0		
_			11		2		0.0		
35.0 —			12		2		0.0		
40.0 —	-38.0 38.0	as above, very hard	13		2		0.0		

Drilled By: Nothnagle Drilling

Drill Rig Type: CME

Drill Method: HSA/ Rock Core

Comments:

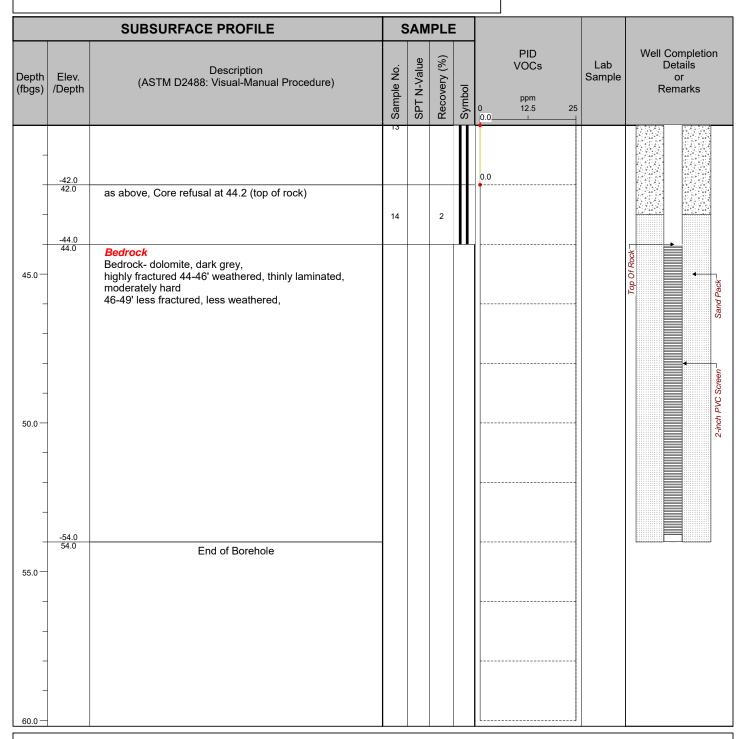
Drill Date(s): October 5,2021

Hole Size:

Stick-up: Flush Mount

Datum:

Project No: B0127-021-001 Borehole Number: MW-5B


Project: 293 Patriot Way A.K.A.:

Client: Kaddis Mfg Logged By: RLD

Site Location: Rochester, NY Checked By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0559

Drilled By: Nothnagle Drilling

Drill Rig Type: CME

Drill Method: HSA/ Rock Core

Comments:

Drill Date(s): October 5,2021

Hole Size:

Stick-up: Flush Mount

Datum:

Project No: B0127-021-001 Borehole Number: MW-6B

Project: 293 Patriot Way A.K.A.:

Client: Kaddis Mfg Logged By: RLD

Site Location: Rochester, NY Checked By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0599

		SUBSURFACE PROFILE	SAMPLE								
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (%)	Symbol	0	PID VOCs ppm 12.5 25	Lab Sample	Well Completion Details or Remarks	
0.0	0.0	Ground Surface					J			Flush Mount	
- - -	-4.0	0-0.75' Asphalt, crushed stone, dry 0.75-4' Red clay, dense, dry	1		4		0.0				
5.0	-4.0 4.0	0-2' as above 2-4' red/brown clay, some silt, moist, medium density, less moisture at 8'	2		4		0.0		Soil Sample	ul k Water level Bentonite Seal	
_	-10.0 10.0	Brown sandy clay, with coarse gravel pieces up 3/4" dia, wet, soft	3		2		0.0			2-inch PVC Casing	
10.0	-14.0 14.0	as above with trace fine gravel, wet.	4		2		0.0			2 -inc	
15.0 —		0-0.5' as above 0.5-3.5' grey sandy clay, soft, wet with trace fine angular gravel	5		3.5		0.0				
20.0	-18.0 18.0 -20.0 20.0	Grey sandy clay (TILL) w/ medium angular gravel, loose when disturbed	6		2		0.0				

Drilled By: Nothnagle Drilling

Drill Rig Type: CME

Drill Method: HSA/ Rock Core

Comments:

Drill Date(s): October 6-7,2021

Hole Size:

Stick-up: Flush Mount

Datum:

Project No: B0127-021-001 Borehole Number: MW-6B

Project: 293 Patriot Way A.K.A.:

Client: Kaddis Mfg Logged By: RLD

Site Location: Rochester, NY Checked By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0599

	SUBSURFACE PROFILE SAMPLE								
Depth fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (%)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
-	-24.0	Dense Till as above, wet,	7		3.75		0.0		
5.0 —	-24.0 24.0	Till as above, wet	8		1		0.0		
-	-28.0 28.0	Till as above, wet	9		1.5		0.0		
0.0 -	-30.0 30.0	Till as above, wet	10		1		0.0		
5.0 —	34.0	Till as above with fragments of weathered rock	11		1		0.0		
-0.0	-38.0 38.0 -39.5 39.5	As above with top of rock at 39.5 '			1.5		0.0		Rock

Drilled By: Nothnagle Drilling

Drill Rig Type: CME

Drill Method: HSA/ Rock Core

Comments:

Drill Date(s): October 6-7,2021

Hole Size: §
Stick-up: Flush Mount

Datum:

Project No: B0127-021-001 Borehole Number: MW-6B

Project: 293 Patriot Way A.K.A.:

Client: Kaddis Mfg Logged By: RLD

Site Location: Rochester, NY Checked By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0599

	SUBSURFACE PROFILE SAMPLE								
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (%)	Symbol	PID VOCs ppm 0 12.5 25	Lab Sample	Well Completion Details or Remarks
45.0 —		Dolomite, highly fractured, with some weathering, thinly laminated, dark grey, less fracturing from 44.5-49.5							2-inch PVC Screen
50.0 —	-49.5 49.5	End of Borehole							
55.0 — - - - - -									

Drilled By: Nothnagle Drilling

Drill Rig Type: CME

Drill Method: HSA/ Rock Core

Comments:

Drill Date(s): October 6-7,2021

Hole Size:

Stick-up: Flush Mount

Datum:

ATTACHMENT 2

ANALYTICAL DATA PACKAGES (SOIL & GROUNDWATER)

ANALYTICAL REPORT

Lab Number: L2154540

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Tom Forbes
Phone: (716) 856-0599

Project Name: 293 PATRIOT WAY

Project Number: Not Specified Report Date: 10/12/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

Lab Number: L2154540 **Report Date:** 10/12/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2154540-01	MW-1 4-6.5'	SOIL	ROCHESTER, NY	09/30/21 15:20	10/06/21
L2154540-02	MW-2 4-5'	SOIL	ROCHESTER, NY	10/06/21 10:04	10/06/21
L2154540-03	MW-3 6-7'	SOIL	ROCHESTER, NY	10/06/21 10:06	10/06/21
L2154540-04	MW-4BR 4-7'	SOIL	ROCHESTER, NY	10/06/21 10:07	10/06/21
L2154540-05	MW-5BR 4-5.5'	SOIL	ROCHESTER, NY	10/06/21 10:08	10/06/21
L2154540-06	BLIND DUP	SOIL	ROCHESTER, NY	10/06/21 10:09	10/06/21

Serial No:10122115:14

Project Name:293 PATRIOT WAYLab Number:L2154540Project Number:Not SpecifiedReport Date:10/12/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:10122115:14

Project Name:293 PATRIOT WAYLab Number:L2154540Project Number:Not SpecifiedReport Date:10/12/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 10/12/21

Jufani Morrissey-Tiffani Morrissey

ORGANICS

VOLATILES

09/30/21 15:20

Not Specified

10/06/21

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

L2154540

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 10/12/21

SAMPLE RESULTS

Lab ID: L2154540-01

Client ID: MW-1 4-6.5'

Sample Location: ROCHESTER, NY

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 10/12/21 08:54

Analyst: MV

78% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/kg	6.2	2.8	1
1,1-Dichloroethane	ND		ug/kg	1.2	0.18	1
Chloroform	ND		ug/kg	1.9	0.17	1
Carbon tetrachloride	ND		ug/kg	1.2	0.29	1
1,2-Dichloropropane	ND		ug/kg	1.2	0.16	1
Dibromochloromethane	ND		ug/kg	1.2	0.17	1
1,1,2-Trichloroethane	ND		ug/kg	1.2	0.33	1
Tetrachloroethene	ND		ug/kg	0.62	0.24	1
Chlorobenzene	ND		ug/kg	0.62	0.16	1
Trichlorofluoromethane	ND		ug/kg	5.0	0.87	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.32	1
1,1,1-Trichloroethane	ND		ug/kg	0.62	0.21	1
Bromodichloromethane	ND		ug/kg	0.62	0.14	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.34	1
cis-1,3-Dichloropropene	ND		ug/kg	0.62	0.20	1
Bromoform	ND		ug/kg	5.0	0.31	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.62	0.21	1
Benzene	ND		ug/kg	0.62	0.21	1
Toluene	ND		ug/kg	1.2	0.68	1
Ethylbenzene	ND		ug/kg	1.2	0.18	1
Chloromethane	ND		ug/kg	5.0	1.2	1
Bromomethane	ND		ug/kg	2.5	0.72	1
Vinyl chloride	ND		ug/kg	1.2	0.42	1
Chloroethane	ND		ug/kg	2.5	0.56	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.30	1
trans-1,2-Dichloroethene	ND		ug/kg	1.9	0.17	1
Trichloroethene	0.35	J	ug/kg	0.62	0.17	1
1,2-Dichlorobenzene	ND		ug/kg	2.5	0.18	1

Project Name: 293 PATRIOT WAY Lab Number: L2154540

Project Number: Report Date: Not Specified 10/12/21

SAMPLE RESULTS

Lab ID: L2154540-01 Date Collected: 09/30/21 15:20

Client ID: Date Received: 10/06/21 MW-1 4-6.5' Sample Location: ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	2.5	0.18	1
1,4-Dichlorobenzene	ND		ug/kg	2.5	0.21	1
Methyl tert butyl ether	ND		ug/kg	2.5	0.25	1
p/m-Xylene	ND		ug/kg	2.5	0.70	1
o-Xylene	ND		ug/kg	1.2	0.36	1
cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.22	1
Styrene	ND		ug/kg	1.2	0.24	1
Dichlorodifluoromethane	ND		ug/kg	12	1.1	1
Acetone	18		ug/kg	12	6.0	1
Carbon disulfide	ND		ug/kg	12	5.7	1
2-Butanone	ND		ug/kg	12	2.8	1
4-Methyl-2-pentanone	ND		ug/kg	12	1.6	1
2-Hexanone	ND		ug/kg	12	1.5	1
Bromochloromethane	ND		ug/kg	2.5	0.26	1
1,2-Dibromoethane	ND		ug/kg	1.2	0.35	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.7	1.2	1
Isopropylbenzene	ND		ug/kg	1.2	0.14	1
1,2,3-Trichlorobenzene	ND		ug/kg	2.5	0.40	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.5	0.34	1
Methyl Acetate	ND		ug/kg	5.0	1.2	1
Cyclohexane	ND		ug/kg	12	0.68	1
1,4-Dioxane	ND		ug/kg	100	44.	1
Freon-113	ND		ug/kg	5.0	0.86	1
Methyl cyclohexane	ND		ug/kg	5.0	0.75	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	95	70-130	

10/06/21 10:04

Not Specified

10/06/21

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

SAMPLE RESULTS

Lab Number: L2154540

Date Collected:

Date Received:

Field Prep:

Report Date: 10/12/21

Lab ID: L2154540-02

Client ID: MW-2 4-5'

Sample Location: ROCHESTER, NY

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 10/12/21 11:02

Analyst: MV

74% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Methylene chloride	ND		ug/kg	5.0	2.3	1	
1,1-Dichloroethane	ND		ug/kg	1.0	0.14	1	
Chloroform	ND		ug/kg	1.5	0.14	1	
Carbon tetrachloride	ND		ug/kg	1.0	0.23	1	
1,2-Dichloropropane	ND		ug/kg	1.0	0.12	1	
Dibromochloromethane	ND		ug/kg	1.0	0.14	1	
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.27	1	
Tetrachloroethene	ND		ug/kg	0.50	0.20	1	
Chlorobenzene	ND		ug/kg	0.50	0.13	1	
Trichlorofluoromethane	ND		ug/kg	4.0	0.70	1	
1,2-Dichloroethane	ND		ug/kg	1.0	0.26	1	
1,1,1-Trichloroethane	ND		ug/kg	0.50	0.17	1	
Bromodichloromethane	ND		ug/kg	0.50	0.11	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.27	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.50	0.16	1	
Bromoform	ND		ug/kg	4.0	0.25	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50	0.17	1	
Benzene	ND		ug/kg	0.50	0.17	1	
Toluene	ND		ug/kg	1.0	0.54	1	
Ethylbenzene	ND		ug/kg	1.0	0.14	1	
Chloromethane	ND		ug/kg	4.0	0.93	1	
Bromomethane	ND		ug/kg	2.0	0.58	1	
Vinyl chloride	ND		ug/kg	1.0	0.34	1	
Chloroethane	ND		ug/kg	2.0	0.45	1	
1,1-Dichloroethene	ND		ug/kg	1.0	0.24	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	1	
Trichloroethene	0.72		ug/kg	0.50	0.14	1	
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14	1	

Project Name: 293 PATRIOT WAY **Lab Number:** L2154540

Project Number: Not Specified Report Date: 10/12/21

SAMPLE RESULTS

Lab ID: L2154540-02 Date Collected: 10/06/21 10:04

Client ID: MW-2 4-5' Date Received: 10/06/21 Sample Location: ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Volatile Organics by GC/MS - Westborough La 1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND ND	ug/kg	2.0	0.15	
<u>, </u>	ND	ug/kg	2.0	0.15	
1,4-Dichlorobenzene				0	1
	ND	ug/kg	2.0	0.17	1
Methyl tert butyl ether		ug/kg	2.0	0.20	1
p/m-Xylene	ND	ug/kg	2.0	0.56	1
o-Xylene	ND	ug/kg	1.0	0.29	1
cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.18	1
Styrene	ND	ug/kg	1.0	0.20	1
Dichlorodifluoromethane	ND	ug/kg	10	0.92	1
Acetone	ND	ug/kg	10	4.8	1
Carbon disulfide	ND	ug/kg	10	4.6	1
2-Butanone	ND	ug/kg	10	2.2	1
4-Methyl-2-pentanone	ND	ug/kg	10	1.3	1
2-Hexanone	ND	ug/kg	10	1.2	1
Bromochloromethane	ND	ug/kg	2.0	0.20	1
1,2-Dibromoethane	ND	ug/kg	1.0	0.28	1
1,2-Dibromo-3-chloropropane	ND	ug/kg	3.0	1.0	1
Isopropylbenzene	ND	ug/kg	1.0	0.11	1
1,2,3-Trichlorobenzene	ND	ug/kg	2.0	0.32	1
1,2,4-Trichlorobenzene	ND	ug/kg	2.0	0.27	1
Methyl Acetate	ND	ug/kg	4.0	0.95	1
Cyclohexane	ND	ug/kg	10	0.54	1
1,4-Dioxane	ND	ug/kg	80	35.	1
Freon-113	ND	ug/kg	4.0	0.69	1
Methyl cyclohexane	ND	ug/kg	4.0	0.60	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	95	70-130	

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

SAMPLE RESULTS

Lab Number: L2154540

Report Date: 10/12/21

Lab ID: L2154540-03

Client ID: MW-3 6-7'

Sample Location: ROCHESTER, NY

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 10/12/21 09:19

Analyst: MV

81% Percent Solids:

Date Collected: 10/06/21 10:06

Date Received: 10/06/21

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/kg	5.8	2.7	1
1,1-Dichloroethane	ND		ug/kg	1.2	0.17	1
Chloroform	ND		ug/kg	1.7	0.16	1
Carbon tetrachloride	ND		ug/kg	1.2	0.27	1
1,2-Dichloropropane	ND		ug/kg	1.2	0.14	1
Dibromochloromethane	ND		ug/kg	1.2	0.16	1
1,1,2-Trichloroethane	ND		ug/kg	1.2	0.31	1
Tetrachloroethene	ND		ug/kg	0.58	0.23	1
Chlorobenzene	ND		ug/kg	0.58	0.15	1
Trichlorofluoromethane	ND		ug/kg	4.6	0.81	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.30	1
1,1,1-Trichloroethane	ND		ug/kg	0.58	0.19	1
Bromodichloromethane	ND		ug/kg	0.58	0.13	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.32	1
cis-1,3-Dichloropropene	ND		ug/kg	0.58	0.18	1
Bromoform	ND		ug/kg	4.6	0.29	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.58	0.19	1
Benzene	ND		ug/kg	0.58	0.19	1
Toluene	ND		ug/kg	1.2	0.63	1
Ethylbenzene	ND		ug/kg	1.2	0.16	1
Chloromethane	ND		ug/kg	4.6	1.1	1
Bromomethane	ND		ug/kg	2.3	0.68	1
Vinyl chloride	ND		ug/kg	1.2	0.39	1
Chloroethane	ND		ug/kg	2.3	0.53	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.28	1
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.16	1
Trichloroethene	0.27	J	ug/kg	0.58	0.16	1
1,2-Dichlorobenzene	ND		ug/kg	2.3	0.17	1

Project Name: 293 PATRIOT WAY **Lab Number:** L2154540

Project Number: Not Specified Report Date: 10/12/21

SAMPLE RESULTS

Lab ID: L2154540-03 Date Collected: 10/06/21 10:06

Client ID: MW-3 6-7' Date Received: 10/06/21 Sample Location: ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/kg	2.3	0.17	1
1,4-Dichlorobenzene	ND		ug/kg	2.3	0.20	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.23	1
p/m-Xylene	ND		ug/kg	2.3	0.65	1
o-Xylene	ND		ug/kg	1.2	0.34	1
cis-1,2-Dichloroethene	ND		ug/kg	1.2	0.20	1
Styrene	ND		ug/kg	1.2	0.23	1
Dichlorodifluoromethane	ND		ug/kg	12	1.1	1
Acetone	ND		ug/kg	12	5.6	1
Carbon disulfide	ND		ug/kg	12	5.3	1
2-Butanone	ND		ug/kg	12	2.6	1
4-Methyl-2-pentanone	ND		ug/kg	12	1.5	1
2-Hexanone	ND		ug/kg	12	1.4	1
Bromochloromethane	ND		ug/kg	2.3	0.24	1
1,2-Dibromoethane	ND		ug/kg	1.2	0.32	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.5	1.2	1
Isopropylbenzene	ND		ug/kg	1.2	0.13	1
1,2,3-Trichlorobenzene	ND		ug/kg	2.3	0.37	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.3	0.32	1
Methyl Acetate	ND		ug/kg	4.6	1.1	1
Cyclohexane	ND		ug/kg	12	0.63	1
1,4-Dioxane	ND		ug/kg	93	41.	1
Freon-113	ND		ug/kg	4.6	0.81	1
Methyl cyclohexane	ND		ug/kg	4.6	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	94	70-130	

10/06/21 10:07

Not Specified

10/06/21

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

SAMPLE RESULTS

Lab Number: L2154540

Date Collected:

Date Received:

Report Date: 10/12/21

Lab ID: L2154540-04

Client ID: MW-4BR 4-7' Sample Location:

Field Prep: ROCHESTER, NY

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 10/12/21 09:45

Analyst: MV

87% Percent Solids:

Volatile Organics by GC/MS - Westborougl	. I . I					
	n Lab					
Methylene chloride	ND		ug/kg	4.7	2.1	1
1,1-Dichloroethane	ND		ug/kg	0.93	0.14	1
Chloroform	ND		ug/kg	1.4	0.13	1
Carbon tetrachloride	ND		ug/kg	0.93	0.21	1
1,2-Dichloropropane	ND		ug/kg	0.93	0.12	1
Dibromochloromethane	ND		ug/kg	0.93	0.13	1
1,1,2-Trichloroethane	ND		ug/kg	0.93	0.25	1
Tetrachloroethene	ND		ug/kg	0.47	0.18	1
Chlorobenzene	ND		ug/kg	0.47	0.12	1
Trichlorofluoromethane	ND		ug/kg	3.7	0.65	1
1,2-Dichloroethane	ND		ug/kg	0.93	0.24	1
1,1,1-Trichloroethane	ND		ug/kg	0.47	0.16	1
Bromodichloromethane	ND		ug/kg	0.47	0.10	1
trans-1,3-Dichloropropene	ND		ug/kg	0.93	0.25	1
cis-1,3-Dichloropropene	ND		ug/kg	0.47	0.15	1
Bromoform	ND		ug/kg	3.7	0.23	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.47	0.15	1
Benzene	ND		ug/kg	0.47	0.15	1
Toluene	ND		ug/kg	0.93	0.51	1
Ethylbenzene	ND		ug/kg	0.93	0.13	1
Chloromethane	ND		ug/kg	3.7	0.87	1
Bromomethane	ND		ug/kg	1.9	0.54	1
Vinyl chloride	ND		ug/kg	0.93	0.31	1
Chloroethane	ND		ug/kg	1.9	0.42	1
1,1-Dichloroethene	ND		ug/kg	0.93	0.22	1
trans-1,2-Dichloroethene	ND		ug/kg	1.4	0.13	1
Trichloroethene	0.35	J	ug/kg	0.47	0.13	1
1,2-Dichlorobenzene	ND		ug/kg	1.9	0.13	1

Project Name: 293 PATRIOT WAY **Lab Number:** L2154540

Project Number: Not Specified Report Date: 10/12/21

SAMPLE RESULTS

Lab ID: L2154540-04 Date Collected: 10/06/21 10:07

Client ID: MW-4BR 4-7' Date Received: 10/06/21 Sample Location: ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/kg	1.9	0.14	1
1,4-Dichlorobenzene	ND		ug/kg	1.9	0.16	1
Methyl tert butyl ether	ND		ug/kg	1.9	0.19	1
p/m-Xylene	ND		ug/kg	1.9	0.52	1
o-Xylene	ND		ug/kg	0.93	0.27	1
cis-1,2-Dichloroethene	ND		ug/kg	0.93	0.16	1
Styrene	ND		ug/kg	0.93	0.18	1
Dichlorodifluoromethane	ND		ug/kg	9.3	0.85	1
Acetone	ND		ug/kg	9.3	4.5	1
Carbon disulfide	ND		ug/kg	9.3	4.2	1
2-Butanone	ND		ug/kg	9.3	2.1	1
4-Methyl-2-pentanone	ND		ug/kg	9.3	1.2	1
2-Hexanone	ND		ug/kg	9.3	1.1	1
Bromochloromethane	ND		ug/kg	1.9	0.19	1
1,2-Dibromoethane	ND		ug/kg	0.93	0.26	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	2.8	0.93	1
Isopropylbenzene	ND		ug/kg	0.93	0.10	1
1,2,3-Trichlorobenzene	ND		ug/kg	1.9	0.30	1
1,2,4-Trichlorobenzene	ND		ug/kg	1.9	0.25	1
Methyl Acetate	ND		ug/kg	3.7	0.88	1
Cyclohexane	ND		ug/kg	9.3	0.51	1
1,4-Dioxane	ND		ug/kg	74	33.	1
Freon-113	ND		ug/kg	3.7	0.65	1
Methyl cyclohexane	ND		ug/kg	3.7	0.56	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	95		70-130	

L2154540

Project Name: 293 PATRIOT WAY

L2154540-05

MW-5BR 4-5.5'

ROCHESTER, NY

Project Number: Not Specified

SAMPLE RESULTS

Report Date: 10/12/21

Lab Number:

Date Collected: 10/06/21 10:08

> Date Received: 10/06/21 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 10/12/21 10:11

Analyst: MV 86% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
Methylene chloride	ND		ug/kg	5.2	2.4	1
1,1-Dichloroethane	ND		ug/kg	1.0	0.15	1
Chloroform	ND		ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.0	0.24	1
1,2-Dichloropropane	ND		ug/kg	1.0	0.13	1
Dibromochloromethane	ND		ug/kg	1.0	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.28	1
Tetrachloroethene	ND		ug/kg	0.52	0.20	1
Chlorobenzene	ND		ug/kg	0.52	0.13	1
Trichlorofluoromethane	ND		ug/kg	4.2	0.73	1
1,2-Dichloroethane	ND		ug/kg	1.0	0.27	1
1,1,1-Trichloroethane	ND		ug/kg	0.52	0.18	1
Bromodichloromethane	ND		ug/kg	0.52	0.11	1
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.29	1
cis-1,3-Dichloropropene	ND		ug/kg	0.52	0.17	1
Bromoform	ND		ug/kg	4.2	0.26	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.52	0.17	1
Benzene	ND		ug/kg	0.52	0.17	1
Toluene	ND		ug/kg	1.0	0.57	1
Ethylbenzene	ND		ug/kg	1.0	0.15	1
Chloromethane	ND		ug/kg	4.2	0.98	1
Bromomethane	ND		ug/kg	2.1	0.61	1
Vinyl chloride	ND		ug/kg	1.0	0.35	1
Chloroethane	ND		ug/kg	2.1	0.47	1
1,1-Dichloroethene	ND		ug/kg	1.0	0.25	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.14	1
Trichloroethene	ND		ug/kg	0.52	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	2.1	0.15	1

Project Name: 293 PATRIOT WAY **Lab Number:** L2154540

Project Number: Not Specified Report Date: 10/12/21

SAMPLE RESULTS

Lab ID: L2154540-05 Date Collected: 10/06/21 10:08

Client ID: MW-5BR 4-5.5' Date Received: 10/06/21 Sample Location: ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
1,3-Dichlorobenzene	ND		ug/kg	2.1	0.16	1
1,4-Dichlorobenzene	ND		ug/kg	2.1	0.18	1
Methyl tert butyl ether	ND		ug/kg	2.1	0.21	1
p/m-Xylene	ND		ug/kg	2.1	0.59	1
o-Xylene	ND		ug/kg	1.0	0.30	1
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18	1
Styrene	ND		ug/kg	1.0	0.20	1
Dichlorodifluoromethane	ND		ug/kg	10	0.96	1
Acetone	ND		ug/kg	10	5.0	1
Carbon disulfide	ND		ug/kg	10	4.8	1
2-Butanone	ND		ug/kg	10	2.3	1
4-Methyl-2-pentanone	ND		ug/kg	10	1.3	1
2-Hexanone	ND		ug/kg	10	1.2	1
Bromochloromethane	ND		ug/kg	2.1	0.22	1
1,2-Dibromoethane	ND		ug/kg	1.0	0.29	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.2	1.0	1
Isopropylbenzene	ND		ug/kg	1.0	0.11	1
1,2,3-Trichlorobenzene	ND		ug/kg	2.1	0.34	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.1	0.28	1
Methyl Acetate	ND		ug/kg	4.2	1.0	1
Cyclohexane	ND		ug/kg	10	0.57	1
1,4-Dioxane	ND		ug/kg	84	37.	1
Freon-113	ND		ug/kg	4.2	0.73	1
Methyl cyclohexane	ND		ug/kg	4.2	0.63	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	94	70-130	

L2154540

10/12/21

Project Name: 293 PATRIOT WAY

Project Number:

Not Specified

L2154540-06

ROCHESTER, NY

BLIND DUP

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 10/06/21 10:09

Date Received: 10/06/21 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 10/12/21 10:36

Analyst: MV 75% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/kg	6.2	2.9	1
1,1-Dichloroethane	ND		ug/kg	1.2	0.18	1
Chloroform	ND		ug/kg	1.9	0.18	1
Carbon tetrachloride	ND		ug/kg	1.2	0.29	1
1,2-Dichloropropane	ND		ug/kg	1.2	0.16	1
Dibromochloromethane	ND		ug/kg	1.2	0.18	1
1,1,2-Trichloroethane	ND		ug/kg	1.2	0.33	1
Tetrachloroethene	ND		ug/kg	0.62	0.24	1
Chlorobenzene	ND		ug/kg	0.62	0.16	1
Trichlorofluoromethane	ND		ug/kg	5.0	0.87	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.32	1
1,1,1-Trichloroethane	ND		ug/kg	0.62	0.21	1
Bromodichloromethane	ND		ug/kg	0.62	0.14	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.34	1
cis-1,3-Dichloropropene	ND		ug/kg	0.62	0.20	1
Bromoform	ND		ug/kg	5.0	0.31	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.62	0.21	1
Benzene	ND		ug/kg	0.62	0.21	1
Toluene	ND		ug/kg	1.2	0.68	1
Ethylbenzene	ND		ug/kg	1.2	0.18	1
Chloromethane	ND		ug/kg	5.0	1.2	1
Bromomethane	ND		ug/kg	2.5	0.73	1
Vinyl chloride	ND		ug/kg	1.2	0.42	1
Chloroethane	ND		ug/kg	2.5	0.56	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.30	1
trans-1,2-Dichloroethene	ND		ug/kg	1.9	0.17	1
Trichloroethene	0.30	J	ug/kg	0.62	0.17	1
1,2-Dichlorobenzene	ND		ug/kg	2.5	0.18	1

MDL

Dilution Factor

Project Name: 293 PATRIOT WAY Lab Number: L2154540

Project Number: Not Specified Report Date: 10/12/21

SAMPLE RESULTS

Lab ID: L2154540-06 Date Collected: 10/06/21 10:09

Client ID: BLIND DUP Date Received: 10/06/21 Sample Location: ROCHESTER, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

i arameter	resuit	Q ualifici	,,,,,,			Diracion racion
Volatile Organics by GC/MS - Westb	orough Lab					
1,3-Dichlorobenzene	ND	uį	g/kg	2.5	0.18	1
1,4-Dichlorobenzene	ND	u	g/kg	2.5	0.21	1
Methyl tert butyl ether	ND	u	g/kg	2.5	0.25	1
p/m-Xylene	ND	u	g/kg	2.5	0.70	1
o-Xylene	ND	u	g/kg	1.2	0.36	1
cis-1,2-Dichloroethene	ND	u	g/kg	1.2	0.22	1
Styrene	ND	uį	g/kg	1.2	0.24	1
Dichlorodifluoromethane	ND	uį	g/kg	12	1.1	1
Acetone	ND	uį	g/kg	12	6.0	1
Carbon disulfide	ND	uį	g/kg	12	5.7	1
2-Butanone	ND	uį	g/kg	12	2.8	1
4-Methyl-2-pentanone	ND	uį	g/kg	12	1.6	1
2-Hexanone	ND	uį	g/kg	12	1.5	1
Bromochloromethane	ND	uį	g/kg	2.5	0.26	1
1,2-Dibromoethane	ND	uį	g/kg	1.2	0.35	1
1,2-Dibromo-3-chloropropane	ND	uį	g/kg	3.8	1.2	1
Isopropylbenzene	ND	uį	g/kg	1.2	0.14	1
1,2,3-Trichlorobenzene	ND	uį	g/kg	2.5	0.40	1
1,2,4-Trichlorobenzene	ND	uį	g/kg	2.5	0.34	1
Methyl Acetate	ND	uį	g/kg	5.0	1.2	1
Cyclohexane	ND	uį	g/kg	12	0.68	1
1,4-Dioxane	ND	u	g/kg	100	44.	1
Freon-113	ND	u	g/kg	5.0	0.87	1
Methyl cyclohexane	ND	uį	g/kg	5.0	0.75	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	96		70-130	

Project Name: 293 PATRIOT WAY **Lab Number:** L2154540

Project Number: Not Specified Report Date: 10/12/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/12/21 07:12

Analyst: MV

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS -	· Westborough Lab	for sample(s):	01-06 Batch:	WG1557612-5
Methylene chloride	ND	ug/kç	g 5.0	2.3
1,1-Dichloroethane	ND	ug/kç	g 1.0	0.14
Chloroform	ND	ug/kç	g 1.5	0.14
Carbon tetrachloride	ND	ug/kç	g 1.0	0.23
1,2-Dichloropropane	ND	ug/kç	g 1.0	0.12
Dibromochloromethane	ND	ug/kç	g 1.0	0.14
1,1,2-Trichloroethane	ND	ug/kç	g 1.0	0.27
Tetrachloroethene	ND	ug/kç	g 0.50	0.20
Chlorobenzene	ND	ug/kç	g 0.50	0.13
Trichlorofluoromethane	ND	ug/kç	g 4.0	0.70
1,2-Dichloroethane	ND	ug/kç	g 1.0	0.26
1,1,1-Trichloroethane	ND	ug/kç	g 0.50	0.17
Bromodichloromethane	ND	ug/kç	g 0.50	0.11
trans-1,3-Dichloropropene	ND	ug/kç	g 1.0	0.27
cis-1,3-Dichloropropene	ND	ug/k	g 0.50	0.16
Bromoform	ND	ug/k	g 4.0	0.25
1,1,2,2-Tetrachloroethane	ND	ug/kç	g 0.50	0.17
Benzene	ND	ug/kç	g 0.50	0.17
Toluene	ND	ug/kç	g 1.0	0.54
Ethylbenzene	ND	ug/kç	g 1.0	0.14
Chloromethane	ND	ug/kç	g 4.0	0.93
Bromomethane	ND	ug/k	g 2.0	0.58
Vinyl chloride	ND	ug/k	g 1.0	0.34
Chloroethane	ND	ug/k	g 2.0	0.45
1,1-Dichloroethene	ND	ug/k	g 1.0	0.24
trans-1,2-Dichloroethene	ND	ug/k	g 1.5	0.14
Trichloroethene	ND	ug/k	g 0.50	0.14
1,2-Dichlorobenzene	ND	ug/ko	g 2.0	0.14
1,3-Dichlorobenzene	ND	ug/k	g 2.0	0.15

Project Name: 293 PATRIOT WAY Lab Number: L2154540

Project Number: Not Specified Report Date: 10/12/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/12/21 07:12

Analyst: MV

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab	for sample(s): 01-06	Batch:	WG1557612-5
1,4-Dichlorobenzene	ND	ug/kg	2.0	0.17
Methyl tert butyl ether	ND	ug/kg	2.0	0.20
p/m-Xylene	ND	ug/kg	2.0	0.56
o-Xylene	ND	ug/kg	1.0	0.29
cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.18
Styrene	ND	ug/kg	1.0	0.20
Dichlorodifluoromethane	ND	ug/kg	10	0.92
Acetone	ND	ug/kg	10	4.8
Carbon disulfide	ND	ug/kg	10	4.6
2-Butanone	ND	ug/kg	10	2.2
4-Methyl-2-pentanone	ND	ug/kg	10	1.3
2-Hexanone	ND	ug/kg	10	1.2
Bromochloromethane	ND	ug/kg	2.0	0.20
1,2-Dibromoethane	ND	ug/kg	1.0	0.28
1,2-Dibromo-3-chloropropane	ND	ug/kg	3.0	1.0
Isopropylbenzene	ND	ug/kg	1.0	0.11
1,2,3-Trichlorobenzene	ND	ug/kg	2.0	0.32
1,2,4-Trichlorobenzene	ND	ug/kg	2.0	0.27
Methyl Acetate	ND	ug/kg	4.0	0.95
Cyclohexane	ND	ug/kg	10	0.54
1,4-Dioxane	ND	ug/kg	80	35.
Freon-113	ND	ug/kg	4.0	0.69
Methyl cyclohexane	ND	ug/kg	4.0	0.60

Project Name: 293 PATRIOT WAY **Lab Number:** L2154540

Project Number: Not Specified Report Date: 10/12/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/12/21 07:12

Analyst: MV

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-06 Batch: WG1557612-5

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	96	70-130
Dibromofluoromethane	93	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

Lab Number: L2154540

Report Date: 10/12/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-06 Batch:	WG1557612-3	WG1557612-4			
Methylene chloride	90		87		70-130	3	30	
1,1-Dichloroethane	110		108		70-130	2	30	
Chloroform	90		87		70-130	3	30	
Carbon tetrachloride	93		89		70-130	4	30	
1,2-Dichloropropane	114		112		70-130	2	30	
Dibromochloromethane	109		103		70-130	6	30	
1,1,2-Trichloroethane	102		97		70-130	5	30	
Tetrachloroethene	103		98		70-130	5	30	
Chlorobenzene	100		96		70-130	4	30	
Trichlorofluoromethane	78		74		70-139	5	30	
1,2-Dichloroethane	102		100		70-130	2	30	
1,1,1-Trichloroethane	93		90		70-130	3	30	
Bromodichloromethane	95		92		70-130	3	30	
trans-1,3-Dichloropropene	104		100		70-130	4	30	
cis-1,3-Dichloropropene	104		101		70-130	3	30	
Bromoform	112		107		70-130	5	30	
1,1,2,2-Tetrachloroethane	104		99		70-130	5	30	
Benzene	96		93		70-130	3	30	
Toluene	99		94		70-130	5	30	
Ethylbenzene	99		95		70-130	4	30	
Chloromethane	106		102		52-130	4	30	
Bromomethane	69		66		57-147	4	30	
Vinyl chloride	88		86		67-130	2	30	

Lab Control Sample Analysis Batch Quality Control

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

Lab Number: L2154540

Report Date: 10/12/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Wes	stborough Lab Associated	sample(s):	01-06 Batch: V	WG1557612-3	WG1557612-4			
Chloroethane	81		79		50-151	3		30
1,1-Dichloroethene	93		89		65-135	4		30
trans-1,2-Dichloroethene	96		94		70-130	2		30
Trichloroethene	94		91		70-130	3		30
1,2-Dichlorobenzene	110		106		70-130	4		30
1,3-Dichlorobenzene	111		106		70-130	5		30
1,4-Dichlorobenzene	107		104		70-130	3		30
Methyl tert butyl ether	87		84		66-130	4		30
p/m-Xylene	102		98		70-130	4		30
o-Xylene	101		98		70-130	3		30
cis-1,2-Dichloroethene	96		93		70-130	3		30
Styrene	102		98		70-130	4		30
Dichlorodifluoromethane	60		56		30-146	7		30
Acetone	118		112		54-140	5		30
Carbon disulfide	76		74		59-130	3		30
2-Butanone	99		91		70-130	8		30
4-Methyl-2-pentanone	127		120		70-130	6		30
2-Hexanone	119		108		70-130	10		30
Bromochloromethane	101		96		70-130	5		30
1,2-Dibromoethane	97		94		70-130	3		30
1,2-Dibromo-3-chloropropane	96		90		68-130	6		30
Isopropylbenzene	105		102		70-130	3		30
1,2,3-Trichlorobenzene	110		108		70-130	2		30

Lab Control Sample Analysis Batch Quality Control

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

Lab Number:

L2154540

Report Date:

10/12/21

Parameter	LCS %Recovery	Qual	LCSD %Recover		%Recovery Limits	RPD	Qual	RPD Limits	
	•		•	,		IN D	Quai	Liiiito	
Volatile Organics by GC/MS - Westborough L	ad Associated	sample(s):	01-06 Batch:	WG1557612-3	WG1557612-4				
1,2,4-Trichlorobenzene	117		115		70-130	2		30	
Methyl Acetate	111		107		51-146	4		30	
Cyclohexane	110		107		59-142	3		30	
1,4-Dioxane	104		99		65-136	5		30	
Freon-113	90		88		50-139	2		30	
Methyl cyclohexane	87		85		70-130	2		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	100	99	70-130
Toluene-d8	100	99	70-130
4-Bromofluorobenzene	98	98	70-130
Dibromofluoromethane	96	97	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

Lab Number:

L2154540

Report Date:

10/12/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-2 4-5'	- Westborough	Lab Assoc	ciated sample	(s): 01-06 QC	Batch ID	: WG15576	312-6 WG155	7612-7	QC Sample	e: L2154	1540-02	Client ID:
Methylene chloride	ND	116	58	50	Q	60	62	Q	70-130	2		30
1,1-Dichloroethane	ND	116	79	68	Q	82	86		70-130	4		30
Chloroform	ND	116	61	53	Q	64	67	Q	70-130	4		30
Carbon tetrachloride	ND	116	75	65	Q	80	84		70-130	6		30
1,2-Dichloropropane	ND	116	74	64	Q	76	80		70-130	3		30
Dibromochloromethane	ND	116	62	53	Q	65	68	Q	70-130	5		30
1,1,2-Trichloroethane	ND	116	58	50	Q	60	63	Q	70-130	4		30
Tetrachloroethene	ND	116	71	61	Q	76	80		70-130	7		30
Chlorobenzene	ND	116	60	52	Q	63	66	Q	70-130	5		30
Trichlorofluoromethane	ND	116	66	57	Q	70	73		70-139	6		30
1,2-Dichloroethane	ND	116	62	54	Q	64	66	Q	70-130	2		30
1,1,1-Trichloroethane	ND	116	72	62	Q	76	79		70-130	5		30
Bromodichloromethane	ND	116	58	50	Q	61	64	Q	70-130	5		30
trans-1,3-Dichloropropene	ND	116	59	51	Q	62	64	Q	70-130	4		30
cis-1,3-Dichloropropene	ND	116	63	54	Q	65	68	Q	70-130	3		30
Bromoform	ND	116	61	53	Q	65	68	Q	70-130	6		30
1,1,2,2-Tetrachloroethane	ND	116	55	47	Q	58	60	Q	70-130	5		30
Benzene	ND	116	66	57	Q	69	72		70-130	4		30
Toluene	ND	116	65	56	Q	69	72		70-130	6		30
Ethylbenzene	ND	116	63	54	Q	67	70		70-130	7		30
Chloromethane	ND	116	82	71		86	90		52-130	5		30
Bromomethane	ND	116	45	39	Q	47	50	Q	57-147	4		30
Vinyl chloride	ND	116	73	63	Q	76	80		67-130	4		30

Matrix Spike Analysis Batch Quality Control

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

Lab Number:

L2154540

Report Date:

10/12/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-2 4-5'	- Westborough	Lab Assoc	ciated sample(s): 01-06 Q	C Batch ID	: WG15576	312-6 WG155	7612-7	QC Sample	e: L215⁴	4540-02	Client ID:
Chloroethane	ND	116	56	48	Q	59	62		50-151	5		30
1,1-Dichloroethene	ND	116	75	65		80	83		65-135	6		30
trans-1,2-Dichloroethene	ND	116	71	61	Q	74	78		70-130	4		30
Trichloroethene	0.72	116	69	59	Q	72	74		70-130	4		30
1,2-Dichlorobenzene	ND	116	55	48	Q	58	61	Q	70-130	5		30
1,3-Dichlorobenzene	ND	116	57	50	Q	60	63	Q	70-130	5		30
1,4-Dichlorobenzene	ND	116	55	47	Q	57	60	Q	70-130	5		30
Methyl tert butyl ether	ND	116	49	43	Q	51	53	Q	66-130	3		30
o/m-Xylene	ND	231	130	55	Q	140	71		70-130	5		30
o-Xylene	ND	231	120	53	Q	130	68	Q	70-130	6		30
cis-1,2-Dichloroethene	ND	116	65	57	Q	67	70		70-130	3		30
Styrene	ND	231	120	51	Q	120	64	Q	70-130	5		30
Dichlorodifluoromethane	ND	116	51	44		55	58		30-146	7		30
Acetone	ND	116	71	62		73	76		54-140	3		30
Carbon disulfide	ND	116	61	52	Q	64	67		59-130	5		30
2-Butanone	ND	116	55	48	Q	60	63	Q	70-130	8		30
4-Methyl-2-pentanone	ND	116	68	59	Q	71	75		70-130	5		30
2-Hexanone	ND	116	61	53	Q	65	68	Q	70-130	6		30
Bromochloromethane	ND	116	61	53	Q	61	64	Q	70-130	0		30
1,2-Dibromoethane	ND	116	55	47	Q	57	59	Q	70-130	3		30
1,2-Dibromo-3-chloropropane	ND	116	49	43	Q	52	55	Q	68-130	6		30
sopropylbenzene	ND	116	66	57	Q	72	75		70-130	8		30
1,2,3-Trichlorobenzene	ND	116	44	38	Q	46	48	Q	70-130	2		30

Matrix Spike Analysis Batch Quality Control

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

Lab Number:

L2154540

Report Date: 10/12/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-2 4-5'	- Westborough L	_ab Assoc	ciated sample(s	s): 01-06 Q	C Batch ID	: WG15576	612-6 WG1557	7612-7	QC Sample	: L215	4540-02	Client ID:
1,2,4-Trichlorobenzene	ND	116	48	41	Q	49	52	Q	70-130	4		30
Methyl Acetate	ND	116	92	79		98	103		51-146	7		30
Cyclohexane	ND	116	95	82		100	105		59-142	5		30
1,4-Dioxane	ND	5780	6600	114		6200	129		65-136	7		30
Freon-113	ND	116	79	68		85	89		50-139	7		30
Methyl cyclohexane	ND	116	71	61	Q	75	78		70-130	6		30

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	105	102	70-130
4-Bromofluorobenzene	98	97	70-130
Dibromofluoromethane	99	98	70-130
Toluene-d8	98	99	70-130

INORGANICS & MISCELLANEOUS

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

Lab Number:

L2154540

Report Date: 10/12/21

SAMPLE RESULTS

Lab ID: L2154540-01

Client ID: MW-1 4-6.5' Sample Location: ROCHESTER, NY

Date Collected:

09/30/21 15:20

Date Received: Field Prep:

10/06/21 Not Specified

Sample Depth:

Matrix:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab)								
Solids, Total	77.7		%	0.100	NA	1	-	10/09/21 12:46	121,2540G	RI

Project Name: 293 PATRIOT WAY

L2154540 Report Date: **Project Number:** Not Specified

10/12/21

Lab Number:

SAMPLE RESULTS

Lab ID: Date Collected: L2154540-02 10/06/21 10:04

Client ID: MW-2 4-5' Date Received: 10/06/21 Not Specified Sample Location: ROCHESTER, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	74.3		%	0.100	NA	1	-	10/09/21 12:46	121,2540G	RI

Project Name: 293 PATRIOT WAY

L2154540 Report Date: **Project Number:** Not Specified

10/12/21

Lab Number:

SAMPLE RESULTS

Lab ID: Date Collected: L2154540-03 10/06/21 10:06

Client ID: MW-3 6-7' Date Received: 10/06/21 Not Specified Sample Location: ROCHESTER, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	81.2		%	0.100	NA	1	-	10/09/21 12:46	121,2540G	RI

Project Name: 293 PATRIOT WAY

L2154540 Report Date: **Project Number:** Not Specified

10/12/21

Lab Number:

SAMPLE RESULTS

Lab ID: Date Collected: L2154540-04 10/06/21 10:07

Client ID: MW-4BR 4-7' Date Received: 10/06/21 Not Specified Sample Location: ROCHESTER, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	87.2		%	0.100	NA	1	-	10/09/21 12:46	121,2540G	RI

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

Lab Number:

L2154540

Report Date: 10/12/21

SAMPLE RESULTS

Lab ID: L2154540-05

Client ID: MW-5BR 4-5.5' Sample Location: ROCHESTER, NY

Date Collected:

10/06/21 10:08

Date Received:

10/06/21

Field Prep:

Not Specified

Sample Depth:

Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab								
Solids, Total	85.9	%	0.100	NA	1	-	10/09/21 12:46	121,2540G	RI

Lab Number:

Project Name: 293 PATRIOT WAY

L2154540 Report Date: **Project Number:** 10/12/21 Not Specified

SAMPLE RESULTS

Lab ID: Date Collected: L2154540-06 10/06/21 10:09

Client ID: **BLIND DUP** Date Received: 10/06/21 Not Specified Sample Location: ROCHESTER, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	75.1		%	0.100	NA	1	-	10/09/21 12:46	121,2540G	RI

Lab Duplicate Analysis

Batch Quality Control

Lab Number: L2154540

10/12/21 Project Number: Not Specified Report Date:

Parameter	Native Sam	ple D	Suplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-06	QC Batch ID:	WG1556592-1	QC Sample:	L2154540-02	Client ID:	MW-2 4-5'
Solids, Total	74.3		74.4	%	0		20

Project Name:

293 PATRIOT WAY

Serial_No:10122115:14 **Lab Number:** L2154540

293 PATRIOT WAY

Report Date: 10/12/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Project Name:

Custody Seal Cooler

Α Absent

Project Number: Not Specified

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	ler pH	рН		Pres	Seal	Date/Time	Analysis(*)
L2154540-01A	Vial Large Septa unpreserved (4oz)	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14),TS(7)
L2154540-01X	Vial MeOH preserved split	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2154540-01Y	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)
L2154540-01Z	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)
L2154540-02A	Vial Large Septa unpreserved (4oz)	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14),TS(7)
L2154540-02A1	Vial Large Septa unpreserved (4oz)	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14),TS(7)
L2154540-02A2	Vial Large Septa unpreserved (4oz)	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14),TS(7)
L2154540-02X	Vial MeOH preserved split	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2154540-02Y	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)
L2154540-02Y1	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)
L2154540-02Y2	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)
L2154540-02Z	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)
L2154540-02Z1	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)
L2154540-02Z2	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)
L2154540-03A	Vial Large Septa unpreserved (4oz)	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14),TS(7)
L2154540-03X	Vial MeOH preserved split	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2154540-03Y	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)
L2154540-03Z	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)
L2154540-04A	Vial Large Septa unpreserved (4oz)	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14),TS(7)
L2154540-04X	Vial MeOH preserved split	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2154540-04Y	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)
L2154540-04Z	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)
L2154540-05A	Vial Large Septa unpreserved (4oz)	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14),TS(7)

Lab Number: L2154540

Report Date: 10/12/21

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	•	Seal	Date/Time	Analysis(*)	
L2154540-05X	Vial MeOH preserved split	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2154540-05Y	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)
L2154540-05Z	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)
L2154540-06A	Vial Large Septa unpreserved (4oz)	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14),TS(7)
L2154540-06X	Vial MeOH preserved split	Α	NA		2.4	Υ	Absent		NYTCL-8260-R2(14)
L2154540-06Y	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)
L2154540-06Z	Vial Water preserved split	Α	NA		2.4	Υ	Absent	11-OCT-21 20:53	NYTCL-8260-R2(14)

Project Name: Lab Number: 293 PATRIOT WAY L2154540

Report Date: Project Number: Not Specified 10/12/21

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a

specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

MS

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:293 PATRIOT WAYLab Number:L2154540Project Number:Not SpecifiedReport Date:10/12/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:293 PATRIOT WAYLab Number:L2154540Project Number:Not SpecifiedReport Date:10/12/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:10122115:14

Project Name:293 PATRIOT WAYLab Number:L2154540Project Number:Not SpecifiedReport Date:10/12/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10122115:14

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	ay	05	Pag /	ge of /		Date R		10	17	121	ALPHA JOB# 221545	40
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	WAR PER	457230	ALL PERM	The same	Deliv	erables	200	Name of	SE P	ALL PROPERTY.	Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: 293	PATroit	WAY				ASP-A	8		ASP-	-B	Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 20	chesta	NY				EQuIS	(1 File		EQui	S (4 File)	PO#	
Client Information		Project#						Other					100000	
Client: Bechmik	EN Enga Spice	(Use Project name as Pro	oject #)				Regu	ılatory R	equire	ment		DAY DE	Disposal Site Information	
Address: スタング	Hamburs Turnpule	Project Manager:	on full	Je5				NY TOO	s		NY P	art 375	Please identify below location o	of
BUTTALO NO	1 14218	ALPHAQuote #:						AWQ St	andards		NY C	P-51	applicable disposal facilities.	
Phone: 7/6-856	0599	Turn-Around Time		Tes 31	1 1 6V	- 516		NY Res	ricted U	se 🗌	Other		Disposal Facility:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Fax:		Standard	1	Due Date:			1 🗆	NY Unre	stricted	Use			☐ NJ ☐ NY	
Email:		Rush (only if pre approved)		# of Days:				NYC Se	wer Dis	charge			Other:	
These samples have be	een previously analyze	ed by Alpha					ANA	LYSIS					Sample Filtration	T
Please specify Metals	9,1.	Delive ABIES					, X260						Done Lab to do Preservation Lab to do (Please Specify below)	t a l B o t
ALPHA Lab ID	Sa	mala ID	Colle	ection	Sample	Sampler's	13							t
(Lab Use Only)	Sai	mple ID	Date	Time	Matrix	Initials	2						Sample Specific Comments	e
54540 01	mw-1	4-6.5	9/40/21	1520	Soil	But	V					1 1		T
202	muz	11-5	10/6/21	1004	1	RLO	V							T
703	mu -	5 6-5	10/6/21	/00b		RLO	1							
704	mu	4Ra 41-7	10/6/21	1000		nun	V							
705	non	SBR 4-5,5	10/6/21	1007	- 1	RLO	V							\top
26	BLIN	0 0 0	10/8/21	1004		RLO	V							
702	ms	mw.2 4-5	10/6/21	1007		nun	V							\top
-02	min	mw-2 4-5	10/6/20	1000		110	V		111					
		•			-1									
					N									T
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification No Mansfield: Certification No			Co	ontainer Type Preservative	A						Please print clearly, legib and completely. Samples not be logged in and turnaround time clock wil	s can
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished E	7	Date/	Time 1315	R Cuny		ved By:	AL	10/1	3/2	/Time /3:/9	start until any ambiguities resolved. BY EXECUTIN THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALPH	IG T ES

ANALYTICAL REPORT

Lab Number: L2156314

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Tom Forbes
Phone: (716) 856-0599

Project Name: 293 PATRIOT WAY

Project Number: Not Specified Report Date: 10/21/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

Lab Number:

L2156314

Report Date:

10/21/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
I 2156314-01	MW-688 5-8'	SOIL	ROCHESTER NY	10/07/21 15:00	10/14/21

Project Name:293 PATRIOT WAYLab Number:L2156314Project Number:Not SpecifiedReport Date:10/21/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:293 PATRIOT WAYLab Number:L2156314Project Number:Not SpecifiedReport Date:10/21/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 10/21/21

Custen Walker Cristin Walker

ORGANICS

VOLATILES

10/07/21 15:00

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

SAMPLE RESULTS

Lab Number: L2156314

Report Date: 10/21/21

Lab ID: L2156314-01

Client ID: MW-6BR 5-8' Sample Location: ROCHESTER, NY Date Received: 10/14/21 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Soil

Analytical Method: 1,8260C

Analytical Date: 10/19/21 22:54

JC Analyst: 82% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/kg	5.9	2.7	1
1,1-Dichloroethane	ND		ug/kg	1.2	0.17	1
Chloroform	ND		ug/kg	1.8	0.16	1
Carbon tetrachloride	ND		ug/kg	1.2	0.27	1
1,2-Dichloropropane	ND		ug/kg	1.2	0.15	1
Dibromochloromethane	ND		ug/kg	1.2	0.16	1
1,1,2-Trichloroethane	ND		ug/kg	1.2	0.32	1
Tetrachloroethene	ND		ug/kg	0.59	0.23	1
Chlorobenzene	ND		ug/kg	0.59	0.15	1
Trichlorofluoromethane	ND		ug/kg	4.7	0.82	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.30	1
1,1,1-Trichloroethane	ND		ug/kg	0.59	0.20	1
Bromodichloromethane	ND		ug/kg	0.59	0.13	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.32	1
cis-1,3-Dichloropropene	ND		ug/kg	0.59	0.19	1
Bromoform	ND		ug/kg	4.7	0.29	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.59	0.20	1
Benzene	ND		ug/kg	0.59	0.20	1
Toluene	ND		ug/kg	1.2	0.64	1
Ethylbenzene	ND		ug/kg	1.2	0.17	1
Chloromethane	ND		ug/kg	4.7	1.1	1
Bromomethane	ND		ug/kg	2.4	0.69	1
Vinyl chloride	ND		ug/kg	1.2	0.40	1
Chloroethane	ND		ug/kg	2.4	0.54	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.28	1
trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.16	1
Trichloroethene	ND		ug/kg	0.59	0.16	1
1,2-Dichlorobenzene	ND		ug/kg	2.4	0.17	1

MDL

Dilution Factor

Project Name: 293 PATRIOT WAY Lab Number: L2156314

Project Number: Not Specified Report Date: 10/21/21

SAMPLE RESULTS

Lab ID: Date Collected: 10/07/21 15:00

Client ID: MW-6BR 5-8' Date Received: 10/14/21 Sample Location: ROCHESTER, NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

i alaliletei	resuit	Qualifici Offics			Dilation Lactor	
Volatile Organics by GC/MS - Westb	orough Lab					
1,3-Dichlorobenzene	ND	ug/kg	2.4	0.18	1	
1,4-Dichlorobenzene	ND	ug/kg	2.4	0.20	1	
Methyl tert butyl ether	ND	ug/kg	2.4	0.24	1	
p/m-Xylene	ND	ug/kg	2.4	0.66	1	
o-Xylene	ND	ug/kg	1.2	0.34	1	
cis-1,2-Dichloroethene	ND	ug/kg	1.2	0.21	1	
Styrene	ND	ug/kg	1.2	0.23	1	
Dichlorodifluoromethane	ND	ug/kg	12	1.1	1	
Acetone	ND	ug/kg	12	5.7	1	
Carbon disulfide	ND	ug/kg	12	5.4	1	
2-Butanone	ND	ug/kg	12	2.6	1	
4-Methyl-2-pentanone	ND	ug/kg	12	1.5	1	
2-Hexanone	ND	ug/kg	12	1.4	1	
Bromochloromethane	ND	ug/kg	2.4	0.24	1	
1,2-Dibromoethane	ND	ug/kg	1.2	0.33	1	
1,2-Dibromo-3-chloropropane	ND	ug/kg	3.6	1.2	1	
Isopropylbenzene	ND	ug/kg	1.2	0.13	1	
1,2,3-Trichlorobenzene	ND	ug/kg	2.4	0.38	1	
1,2,4-Trichlorobenzene	ND	ug/kg	2.4	0.32	1	
Methyl Acetate	ND	ug/kg	4.7	1.1	1	
Cyclohexane	ND	ug/kg	12	0.64	1	
1,4-Dioxane	ND	ug/kg	95	42.	1	
Freon-113	ND	ug/kg	4.7	0.82	1	
Methyl cyclohexane	ND	ug/kg	4.7	0.71	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	102	70-130	

Project Name: 293 PATRIOT WAY Lab Number: L2156314

Project Number: Not Specified Report Date: 10/21/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/19/21 22:28

Analyst: AJK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab f	or sample(s): 01	Batch:	WG1560865-5
Methylene chloride	ND	ug/kg	5.0	2.3
1,1-Dichloroethane	ND	ug/kg	1.0	0.14
Chloroform	ND	ug/kg	1.5	0.14
Carbon tetrachloride	ND	ug/kg	1.0	0.23
1,2-Dichloropropane	ND	ug/kg	1.0	0.12
Dibromochloromethane	ND	ug/kg	1.0	0.14
1,1,2-Trichloroethane	ND	ug/kg	1.0	0.27
Tetrachloroethene	ND	ug/kg	0.50	0.20
Chlorobenzene	ND	ug/kg	0.50	0.13
Trichlorofluoromethane	ND	ug/kg	4.0	0.70
1,2-Dichloroethane	ND	ug/kg	1.0	0.26
1,1,1-Trichloroethane	ND	ug/kg	0.50	0.17
Bromodichloromethane	ND	ug/kg	0.50	0.11
trans-1,3-Dichloropropene	ND	ug/kg	1.0	0.27
cis-1,3-Dichloropropene	ND	ug/kg	0.50	0.16
Bromoform	ND	ug/kg	4.0	0.25
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.50	0.17
Benzene	ND	ug/kg	0.50	0.17
Toluene	ND	ug/kg	1.0	0.54
Ethylbenzene	ND	ug/kg	1.0	0.14
Chloromethane	ND	ug/kg	4.0	0.93
Bromomethane	ND	ug/kg	2.0	0.58
Vinyl chloride	ND	ug/kg	1.0	0.34
Chloroethane	ND	ug/kg	2.0	0.45
1,1-Dichloroethene	ND	ug/kg	1.0	0.24
trans-1,2-Dichloroethene	ND	ug/kg	1.5	0.14
Trichloroethene	ND	ug/kg	0.50	0.14
1,2-Dichlorobenzene	ND	ug/kg	2.0	0.14
1,3-Dichlorobenzene	ND	ug/kg	2.0	0.15

Project Name: 293 PATRIOT WAY Lab Number: L2156314

Project Number: Not Specified Report Date: 10/21/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/19/21 22:28

Analyst: AJK

colatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1560865-5 1,4-Dichlorobenzene ND ug/kg 2.0 0.17 Methyl tert butyl ether ND ug/kg 2.0 0.20 p/m-Xylene ND ug/kg 1.0 0.29 c-Xylene ND ug/kg 1.0 0.29 c-Xylene ND ug/kg 1.0 0.29 styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromo-3-chloropropane ND ug/kg 1.0 0.11 <tr< th=""><th>arameter</th><th>Result</th><th>Qualifier Units</th><th>RL</th><th>MDL</th></tr<>	arameter	Result	Qualifier Units	RL	MDL
Methyl tert butyl ether ND ug/kg 2.0 0.20 p/m-Xylene ND ug/kg 2.0 0.56 o-Xylene ND ug/kg 1.0 0.29 cis-1,2-Dichloroethene ND ug/kg 1.0 0.20 Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 2.0 0.32 1,2,3-Trichlorobenzene ND ug/kg 2.0	olatile Organics by GC/MS - W	Vestborough Lab	for sample(s): 01	Batch:	WG1560865-5
p/m-Xylene ND ug/kg 2.0 0.56 o-Xylene ND ug/kg 1.0 0.29 cis-1,2-Dichloroethene ND ug/kg 1.0 0.18 Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 3.0 1.0 1sopropylbenzene ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 2.0 0.32 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.27	1,4-Dichlorobenzene	ND	ug/kg	2.0	0.17
o-Xylene ND ug/kg 1.0 0.29 cis-1,2-Dichloroethene ND ug/kg 1.0 0.18 Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 2.0 0.32 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0	Methyl tert butyl ether	ND	ug/kg	2.0	0.20
cis-1,2-Dichloroethene ND ug/kg 1.0 0.18 Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 2.0 0.32 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 4.0	p/m-Xylene	ND	ug/kg	2.0	0.56
Styrene ND ug/kg 1.0 0.20 Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 80	o-Xylene	ND	ug/kg	1.0	0.29
Dichlorodifluoromethane ND ug/kg 10 0.92 Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0	cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.18
Acetone ND ug/kg 10 4.8 Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	Styrene	ND	ug/kg	1.0	0.20
Carbon disulfide ND ug/kg 10 4.6 2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35 Freon-113 ND ug/kg 4.0 0.69	Dichlorodifluoromethane	ND	ug/kg	10	0.92
2-Butanone ND ug/kg 10 2.2 4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.57 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	Acetone	ND	ug/kg	10	4.8
4-Methyl-2-pentanone ND ug/kg 10 1.3 2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	Carbon disulfide	ND	ug/kg	10	4.6
2-Hexanone ND ug/kg 10 1.2 Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	2-Butanone	ND	ug/kg	10	2.2
Bromochloromethane ND ug/kg 2.0 0.20 1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	4-Methyl-2-pentanone	ND	ug/kg	10	1.3
1,2-Dibromoethane ND ug/kg 1.0 0.28 1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	2-Hexanone	ND	ug/kg	10	1.2
1,2-Dibromo-3-chloropropane ND ug/kg 3.0 1.0 Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	Bromochloromethane	ND	ug/kg	2.0	0.20
Isopropylbenzene ND ug/kg 1.0 0.11 1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	1,2-Dibromoethane	ND	ug/kg	1.0	0.28
1,2,3-Trichlorobenzene ND ug/kg 2.0 0.32 1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	1,2-Dibromo-3-chloropropane	ND	ug/kg	3.0	1.0
1,2,4-Trichlorobenzene ND ug/kg 2.0 0.27 Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	Isopropylbenzene	ND	ug/kg	1.0	0.11
Methyl Acetate ND ug/kg 4.0 0.95 Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	1,2,3-Trichlorobenzene	ND	ug/kg	2.0	0.32
Cyclohexane ND ug/kg 10 0.54 1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	1,2,4-Trichlorobenzene	ND	ug/kg	2.0	0.27
1,4-Dioxane ND ug/kg 80 35. Freon-113 ND ug/kg 4.0 0.69	Methyl Acetate	ND	ug/kg	4.0	0.95
Freon-113 ND ug/kg 4.0 0.69	Cyclohexane	ND	ug/kg	10	0.54
30.5	1,4-Dioxane	ND	ug/kg	80	35.
Methyl cyclohexane ND ug/kg 4.0 0.60	Freon-113	ND	ug/kg	4.0	0.69
	Methyl cyclohexane	ND	ug/kg	4.0	0.60

Project Name: 293 PATRIOT WAY Lab Number: L2156314

Project Number: Not Specified Report Date: 10/21/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/19/21 22:28

Analyst: AJK

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1560865-5

		Acceptance			
Surrogate	%Recovery Q	ualifier Criteria			
1,2-Dichloroethane-d4	96	70-130			
Toluene-d8	100	70-130			
4-Bromofluorobenzene	99	70-130			
Dibromofluoromethane	100	70-130			

Lab Control Sample Analysis Batch Quality Control

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

Lab Number: L2156314

Report Date: 10/21/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westbo	orough Lab Associated	sample(s): 0	1 Batch: WG	1560865-3	WG1560865-4		
Methylene chloride	86		97		70-130	12	30
1,1-Dichloroethane	87		102		70-130	16	30
Chloroform	90		104		70-130	14	30
Carbon tetrachloride	87		106		70-130	20	30
1,2-Dichloropropane	90		102		70-130	13	30
Dibromochloromethane	89		95		70-130	7	30
1,1,2-Trichloroethane	94		100		70-130	6	30
Tetrachloroethene	91		108		70-130	17	30
Chlorobenzene	92		103		70-130	11	30
Trichlorofluoromethane	82		102		70-139	22	30
1,2-Dichloroethane	89		98		70-130	10	30
1,1,1-Trichloroethane	89		106		70-130	17	30
Bromodichloromethane	93		105		70-130	12	30
trans-1,3-Dichloropropene	87		95		70-130	9	30
cis-1,3-Dichloropropene	87		98		70-130	12	30
Bromoform	89		95		70-130	7	30
1,1,2,2-Tetrachloroethane	92		98		70-130	6	30
Benzene	88		104		70-130	17	30
Toluene	89		104		70-130	16	30
Ethylbenzene	92		106		70-130	14	30
Chloromethane	73		90		52-130	21	30
Bromomethane	76		87		57-147	13	30
Vinyl chloride	77		94		67-130	20	30

Lab Control Sample Analysis Batch Quality Control

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

Lab Number: L2156314

Report Date: 10/21/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG	1560865-3	WG1560865-4			
Chloroethane	80		96		50-151	18	30	
1,1-Dichloroethene	85		105		65-135	21	30	
trans-1,2-Dichloroethene	87		105		70-130	19	30	
Trichloroethene	91		107		70-130	16	30	
1,2-Dichlorobenzene	93		104		70-130	11	30	
1,3-Dichlorobenzene	92		104		70-130	12	30	
1,4-Dichlorobenzene	91		101		70-130	10	30	
Methyl tert butyl ether	96		103		66-130	7	30	
p/m-Xylene	95		110		70-130	15	30	
o-Xylene	96		110		70-130	14	30	
cis-1,2-Dichloroethene	89		103		70-130	15	30	
Styrene	100		113		70-130	12	30	
Dichlorodifluoromethane	78		96		30-146	21	30	
Acetone	90		96		54-140	6	30	
Carbon disulfide	79		98		59-130	21	30	
2-Butanone	82		86		70-130	5	30	
4-Methyl-2-pentanone	80		84		70-130	5	30	
2-Hexanone	79		80		70-130	1	30	
Bromochloromethane	91		100		70-130	9	30	
1,2-Dibromoethane	88		95		70-130	8	30	
1,2-Dibromo-3-chloropropane	82		86		68-130	5	30	
Isopropylbenzene	96		111		70-130	14	30	
1,2,3-Trichlorobenzene	96		104		70-130	8	30	

Lab Control Sample Analysis Batch Quality Control

Project Name: 293 PATRIOT WAY

Project Number: Not Specified

Lab Number:

L2156314

10/21/21

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPI Qual Limi	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 01	Batch: WC	G1560865-3	WG1560865-4			
1,2,4-Trichlorobenzene	95		104		70-130	9	30	
Methyl Acetate	82		86		51-146	5	30	
Cyclohexane	86		104		59-142	19	30	
1,4-Dioxane	78		79		65-136	1	30	
Freon-113	88		106		50-139	19	30	
Methyl cyclohexane	90		108		70-130	18	30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	94	95	70-130
Toluene-d8	102	101	70-130
4-Bromofluorobenzene	103	102	70-130
Dibromofluoromethane	97	98	70-130

INORGANICS & MISCELLANEOUS

Project Name: 293 PATRIOT WAY Lab Number: L2156314

Project Number: Not Specified Report Date: 10/21/21

SAMPLE RESULTS

 Lab ID:
 L2156314-01
 Date Collected:
 10/07/21 15:00

 Client ID:
 MW-6BR 5-8'
 Date Received:
 10/14/21

Sample Location: ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	· Westborough Lab									
Solids, Total	82.3		%	0.100	NA	1	-	10/16/21 13:18	121,2540G	RI

L2156314

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name:** 293 PATRIOT WAY

10/21/21 Project Number: Not Specified Report Date:

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01 QC Batch ID:	WG1559468-1	QC Sample: L21	56700-01	Client ID: DUF	P Sample
Solids, Total	65.3	66.8	%	2		20

Lab Number: L2156314

Report Date: 10/21/21

Project Name: 293 PATRIOT WAY

Project Number: Not Specified Repo

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

C	Container Info	rmation		Initial	Final	Temp			Frozen	
C	Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2	2156314-01A	Vial Large Septa unpreserved (4oz)	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14),TS(7)
L2	2156314-01X	Vial MeOH preserved split	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)
L2	2156314-01Y	Vial Water preserved split	Α	NA		2.8	Υ	Absent	19-OCT-21 05:52	NYTCL-8260-R2(14)
L2	2156314-01Z	Vial Water preserved split	Α	NA		2.8	Υ	Absent	19-OCT-21 05:52	NYTCL-8260-R2(14)

Project Name: Lab Number: 293 PATRIOT WAY L2156314

Project Number: Report Date: Not Specified 10/21/21

GLOSSARY

Acronyms

EDL

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

> Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:293 PATRIOT WAYLab Number:L2156314Project Number:Not SpecifiedReport Date:10/21/21

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${f E}$ Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:293 PATRIOT WAYLab Number:L2156314Project Number:Not SpecifiedReport Date:10/21/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:293 PATRIOT WAYLab Number:L2156314Project Number:Not SpecifiedReport Date:10/21/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дерна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	05	Page / o			Date Re in Lab		10	115	121		ALPHA JOB# 62/56314	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	erables	A Paris				ı	Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 20	13 PATO	iot W/	M			ASP-A			ASP-	В		Same as Client Info	
FAX. 308-030-0133	179X. 300-022-3200	Project Location: 100	uneskn.	NY				EQuIS (File)		EQui	S (4 File	e) F	PO#	
Client Information		Project #		1				Other							
Client: BluchnA	IK ENV Eng QUI	(Use Project name as F	Project #)				Regu	latory Re	quirem	ent				Disposal Site Information	
Address: 2558	HAMPUTA TURNO		Ton F	olbes				NY TOGS			NY Pa	art 375		Please identify below location or	f
BUFFALO MY		ALPHAQuote #:				HE IS		AWQ Star	dards		NY C	P-51	ě	applicable disposal facilities.	
Phone: 7/6- 85	6-0599	Turn-Around Time						NY Restric	ted Use		Other		1	Disposal Facility:	11.000
Fax:		Standar	d 🛮	Due Date:				NY Unres	ricted U	se			[NJ NA	
Email:		Rush (only if pre approve	d) 🔲	# of Days:				NYC Sew	er Disch	arge			[Other:	
These samples have l	been previously analyza	ed by Alpha					ANA	LYSIS				7-11-01		Sample Filtration	
Please specify Metal	c requirements/comm						8260							☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	E
ALPHA Lab ID	Sa	imple ID	Colle	ection	Sample	Sampler's	VOC						L		
(Lab Use Only)		impio ib	Date	Time	Matrix	Initials	5							Sample Specific Comments	6
56314 01	mw-6BA	5-8'	10/7/21	1500	SOIL	RLP	V								
		4													
					1500						_				\perp
														10 - 1	
			10-												
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification Mansfield: Certification				ntainer Type Preservative	A							Please print clearly, legib and completely. Samples not be logged in and turnaround time clock will start until any ambiguities	s ca Il no
= NaOH = MaOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH D = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinguished	Ву:	Date/ / 0//4/2 10/14/6	083	5	2/	ved By:	14	-	114	Time	100	resolved. BY EXECUTIN THIS COC, THE CLIENT HAS READ AND AGREE TO BE BOUND BY ALPH TERMS & CONDITIONS	IG F ES HA'
Form No: 01-25 HC (rev. 3	0-Sept-2013)					/ /	_	/)					(See reverse side.)	<i>1</i> 27

ANALYTICAL REPORT

Lab Number: L2156436

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Tom Forbes
Phone: (716) 856-0599

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

Report Date: 10/18/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

Lab Number: L2156436 **Report Date:** 10/18/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2156436-01	MW-1B	WATER	ROCHESTER NY	10/14/21 11:00	10/14/21
L2156436-02	MW-2	WATER	ROCHESTER NY	10/14/21 10:00	10/14/21
L2156436-03	MW-3	WATER	ROCHESTER NY	10/14/21 13:05	10/14/21
L2156436-04	MW-4 BR	WATER	ROCHESTER NY	10/14/21 14:20	10/14/21
L2156436-05	MW-6B	WATER	ROCHESTER NY	10/14/21 15:00	10/14/21
L2156436-06	BD	WATER	ROCHESTER NY	10/14/21 14:30	10/14/21

Project Name:293 PATRIOT WAYLab Number:L2156436Project Number:B0127-021-001Report Date:10/18/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:293 PATRIOT WAYLab Number:L2156436Project Number:B0127-021-001Report Date:10/18/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2156436-04: The sample identified as "MW-4B" on the chain of custody was identified as "MW-4BR" on the container label. At the client's request, the sample is reported as "MW-4 BR".

Volatile Organics

L2156436-05 and WG1559228-6/-7: The pH of the sample was greater than two; however, the sample was analyzed within the method required holding time.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 10/18/21

ORGANICS

VOLATILES

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

SAMPLE RESULTS

Lab Number: L2156436

Report Date: 10/18/21

Lab ID: L2156436-01 Date Collected: 10/14/21 11:00

Client ID: Date Received: 10/14/21 MW-1B Sample Location: Field Prep: ROCHESTER NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/15/21 12:41

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	6.5		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	12		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

MDL

Dilution Factor

Project Name: 293 PATRIOT WAY **Lab Number:** L2156436

Project Number: B0127-021-001 **Report Date:** 10/18/21

SAMPLE RESULTS

Lab ID: L2156436-01 Date Collected: 10/14/21 11:00

Client ID: MW-1B Date Received: 10/14/21 Sample Location: ROCHESTER NY Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

i alaliletei	resuit	Qualifici	Onito			Dilation Lactor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	68		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	2.5	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	103	70-130	

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

SAMPLE RESULTS

Lab Number: L2156436

Damant Datas

Report Date:

10/18/21

Lab ID: L2156436-02 D2

Client ID:

100-100-02

Date Collected: Date Received:

10/14/21 10:00

Sample Location:

MW-2

ROCHESTER NY Field Prep:

10/14/21 Not Specified

Sample Depth:

Matrix: Analytical Method:

Water 1,8260C

Analytical Date:

10/16/21 17:42

Analyst:

PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	gh Lab						
Trichloroethene	1700		ug/l	25	8.8	50	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	103		70-130
Toluene-d8	99		70-130
4-Bromofluorobenzene	100		70-130
Dibromofluoromethane	101		70-130

10/14/21 10:00

Not Specified

10/14/21

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

7127-021-001

Lab Number: L2156436

Report Date: 10/18/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2156436-02 D

Client ID: MW-2

Sample Location: ROCHESTER NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 10/15/21 13:43

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	14		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	ND		ug/l	5.0	1.6	10
Toluene	ND		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	14		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	19	J	ug/l	25	7.0	10
Trichloroethene	2100	Е	ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10

Project Name: 293 PATRIOT WAY **Lab Number:** L2156436

Project Number: B0127-021-001 **Report Date:** 10/18/21

SAMPLE RESULTS

Lab ID: L2156436-02 D Date Collected: 10/14/21 10:00

Client ID: MW-2 Date Received: 10/14/21 Sample Location: ROCHESTER NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	ND		ug/l	25	7.0	10
o-Xylene	ND		ug/l	25	7.0	10
cis-1,2-Dichloroethene	570		ug/l	25	7.0	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	ND		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	ND		ug/l	50	19.	10
4-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
Bromochloromethane	ND		ug/l	25	7.0	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
Methyl Acetate	ND		ug/l	20	2.3	10
Cyclohexane	ND		ug/l	100	2.7	10
1,4-Dioxane	ND		ug/l	2500	610	10
Freon-113	ND		ug/l	25	7.0	10
Methyl cyclohexane	ND		ug/l	100	4.0	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	104	70-130	

10/14/21 13:05

Not Specified

10/14/21

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

SAMPLE RESULTS

Lab Number: L2156436

Report Date: 10/18/21

Date Collected:

Date Received:

Field Prep:

Lab ID: L2156436-03

Client ID: MW-3

Sample Location: ROCHESTER NY

Sample Depth:								
Matrix:	Water							
Analytical Method:	1,8260C							
Analytical Date:	10/15/21 13:02							
Analyst:	PD							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by	y GC/MS - Westboroug	gh Lab						
		ND			0.5	0.70		
Methylene chloride		NII)		ua/l	2.5	0.70	1	

Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	3.9		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	0.47	J	ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	0.18	J	ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	2.2	J	ug/l	2.5	0.70	1	
Trichloroethene	100		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: 293 PATRIOT WAY **Lab Number:** L2156436

Project Number: B0127-021-001 **Report Date:** 10/18/21

SAMPLE RESULTS

Lab ID: L2156436-03 Date Collected: 10/14/21 13:05

Client ID: MW-3 Date Received: 10/14/21 Sample Location: ROCHESTER NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	83		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	101	70-130	

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

SAMPLE RESULTS

Lab Number: L2156436

Report Date: 10/18/21

Lab ID: L2156436-04 D

Client ID: MW-4 BR

Sample Location: **ROCHESTER NY**

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/15/21 14:03

Analyst: PD

Date Collected:	10/14/21 14:20
Data Data data	40/44/04

Date Received: 10/14/21 Field Prep: Not Specified

1,1-Dichloroethane 1,6 J ug/l 5.0 1.4 2 Chloroform ND ug/l 5.0 1.4 2 Carbon tetrachloride ND ug/l 1.0 0.27 2 1,2-Dichloropropane ND ug/l 1.0 0.27 2 Dibromochloromethane ND ug/l 1.0 0.27 2 1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 Tetrachloroethane ND ug/l 5.0 1.4 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichloroethane ND ug/l 5.0 1.4 2 Trichloroethane ND ug/l 1.0 0.26 2 I.,1-Trichloroethane ND ug/l 1.0 0.38 2 Bromodichloromethane ND ug/l 1.0 0.33 2 Bromodichloromethane ND ug/l 1.0 0.33 <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RL</th> <th>MDL</th> <th>Dilution Factor</th>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane 1,6 J ug/l 5,0 1,4 2 Chloroform ND ug/l 5,0 1,4 2 Carbon tetrachloride ND ug/l 1,0 0,27 2 1,2-Dichloropropane ND ug/l 1,0 0,27 2 Dibromochloromethane ND ug/l 1,0 0,30 2 1,1,2-Trichloroethane ND ug/l 1,0 0,36 2 Tetrachloroethane ND ug/l 1,0 0,36 2 Chlorobenzene ND ug/l 5,0 1,4 2 Trichlorofluoromethane ND ug/l 5,0 1,4 2 Trichloroethane ND ug/l 1,0 0,26 2 Trichloroethane ND ug/l 1,0 0,26 2 Trichloroethane ND ug/l 1,0 0,38 2 Bromodichloromethane ND ug/l 1,0 0,33	Volatile Organics by GC/MS - Westb	orough Lab					
Chloroform ND ug/l 5.0 1.4 2 Carbon tetrachloride ND ug/l 1.0 0.27 2 1,2-Dichloropropane ND ug/l 2.0 0.27 2 Dibromochloromethane ND ug/l 1.0 0.30 2 1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 Tetrachloroethane ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 Trichloroethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.26 2 Bromodichloromethane ND ug/l 1.0 0.38 2 Bromodichloromethane ND ug/l 1.0 0.33 2 Bromodichloropropene ND ug/l 1.0 0.33	Methylene chloride	ND		ug/l	5.0	1.4	2
Carbon tetrachloride ND ug/l 1.0 0.27 2 1,2-Dichloropropane ND ug/l 2.0 0.27 2 Dibromochloromethane ND ug/l 1.0 0.30 2 1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 Tetrachloroethane ND ug/l 5.0 1.4 2 Chlorobenzene ND ug/l 5.0 1.4 2 Chloroberthane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 1.0 0.26 2 Bromodichloromethane ND ug/l 1.0 0.38 2 Bromodichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 4.0 1.3 2 Bromoform ND ug/l 4.0 1.3 <th< td=""><td>1,1-Dichloroethane</td><td>1.6</td><td>J</td><td>ug/l</td><td>5.0</td><td>1.4</td><td>2</td></th<>	1,1-Dichloroethane	1.6	J	ug/l	5.0	1.4	2
1,2-Dichloropropane ND Ug/l 2.0 0.27 2 2 2 2 2 2 2 2 2	Chloroform	ND		ug/l	5.0	1.4	2
Dibromochloromethane ND ug/l 1.0 0.30 2 1,1,2-Trichloroethane ND ug/l 3.0 1.0 2 2 2 2 2 2 2 2 2	Carbon tetrachloride	ND		ug/l	1.0	0.27	2
1,1,2-Trichloroethane ND ug/l 1,0 0,36 2	1,2-Dichloropropane	ND		ug/l	2.0	0.27	2
Tetrachloroethene ND ug/l 1.0 0.36 2 Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 Trichloroethane ND ug/l 5.0 1.4 2 Trichloroethane ND ug/l 5.0 1.4 2 Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.26 2 Trichloroethane ND ug/l 1.0 0.38 2 Trichloropropene ND ug/l 1.0 0.33 2 Cis-1,3-Dichloropropene ND ug/l 1.0 0.33 2 Cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 1.0 0.33 2 Trichloroethane ND ug/l 1.0 0.33 2 Trichloroethane ND ug/l 1.0 0.33 2 Toluene ND ug/l 1.0 0.32 2 Toluene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Trichloroethane ND ug/l 5.0 1.4 2 Trichloroethene 1.7 ug/l 1.0 0.34 2 Trichloroethene 1.7 ug/l 1.0 0.34 2 Trichloroethene 1.7 ug/l 1.0 0.35 2	Dibromochloromethane	ND		ug/l	1.0	0.30	2
Chlorobenzene ND ug/l 5.0 1.4 2 Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.33 2 Bromoform ND ug/l 4.0 1.3 2 Bromoform ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.33 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 <t< td=""><td>1,1,2-Trichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>3.0</td><td>1.0</td><td>2</td></t<>	1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2
Trichlorofluoromethane ND ug/l 5.0 1.4 2 1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 1.0 0.33 2 Bromoform ND ug/l 1.0 0.33 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Trichloroethene 1.7 ug/l 5.0 1.4 2	Tetrachloroethene	ND		ug/l	1.0	0.36	2
1,2-Dichloroethane ND ug/l 1.0 0.26 2 1,1,1-Trichloroethane ND ug/l 5.0 1.4 2 Bromodichloromethane ND ug/l 1.0 0.38 2 trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 1.0 0.29 2 Bromoform ND ug/l 1.0 0.33 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Enzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Tichloroethane ND ug/l 5.0 1.4 2	Chlorobenzene	ND		ug/l	5.0	1.4	2
1,1,1-Trichloroethane ND	Trichlorofluoromethane	ND		ug/l	5.0	1.4	2
ND	1,2-Dichloroethane	ND		ug/l	1.0	0.26	2
trans-1,3-Dichloropropene ND ug/l 1.0 0.33 2 cis-1,3-Dichloropropene ND ug/l 1.0 0.29 2 Bromoform ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 Benzene ND ug/l 1.0 0.32 2 Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Chlorotethane 1.7 ug/l 1.0 0.34 2 Chlorotethane 1.7 ug/l 1.0 0.34 2 Chlorotethane 1.7 ug/l 1.0 0.35 2	1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2
ND	Bromodichloromethane	ND		ug/l	1.0	0.38	2
ND ug/l 4.0 1.3 2 1,1,2,2-Tetrachloroethane ND ug/l 1.0 0.33 2 2 2 2 2 2 2 2 2	trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2
1,1,2,2-Tetrachloroethane	cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2
ND	Bromoform	ND		ug/l	4.0	1.3	2
Toluene ND ug/l 5.0 1.4 2 Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 7.9 ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 Chloroethane ND ug/l 5.0 1.4 2 Tichloroethene 1.7 ug/l 1.0 0.34 2 Trichloroethene 24 ug/l 5.0 1.4 2 Trichloroethene 24 ug/l 5.0 1.4 2 Trichloroethene 24 ug/l 5.0 1.4 2	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2
Ethylbenzene ND ug/l 5.0 1.4 2 Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 7.9 ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 1.7 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene 24 ug/l 5.0 1.4 2 Trichloroethene 210 ug/l 1.0 0.35 2	Benzene	ND		ug/l	1.0	0.32	2
Chloromethane ND ug/l 5.0 1.4 2 Bromomethane ND ug/l 5.0 1.4 2 Vinyl chloride 7.9 ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 1.7 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene 24 ug/l 5.0 1.4 2 Trichloroethene 210 ug/l 1.0 0.35 2	Toluene	ND		ug/l	5.0	1.4	2
ND ug/l 5.0 1.4 2	Ethylbenzene	ND		ug/l	5.0	1.4	2
Vinyl chloride 7.9 ug/l 2.0 0.14 2 Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 1.7 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene 24 ug/l 5.0 1.4 2 Trichloroethene 210 ug/l 1.0 0.35 2	Chloromethane	ND		ug/l	5.0	1.4	2
Chloroethane ND ug/l 5.0 1.4 2 1,1-Dichloroethene 1.7 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene 24 ug/l 5.0 1.4 2 Trichloroethene 210 ug/l 1.0 0.35 2	Bromomethane	ND		ug/l	5.0	1.4	2
1,1-Dichloroethene 1.7 ug/l 1.0 0.34 2 trans-1,2-Dichloroethene 24 ug/l 5.0 1.4 2 Trichloroethene 210 ug/l 1.0 0.35 2	Vinyl chloride	7.9		ug/l	2.0	0.14	2
trans-1,2-Dichloroethene 24 ug/l 5.0 1.4 2 Trichloroethene 210 ug/l 1.0 0.35 2	Chloroethane	ND		ug/l	5.0	1.4	2
Trichloroethene 210 ug/l 1.0 0.35 2	1,1-Dichloroethene	1.7		ug/l	1.0	0.34	2
Ţ	trans-1,2-Dichloroethene	24		ug/l	5.0	1.4	2
1,2-Dichlorobenzene ND ug/l 5.0 1.4 2	Trichloroethene	210		ug/l	1.0	0.35	2
	1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2

Project Name: 293 PATRIOT WAY Lab Number: L2156436

Project Number: B0127-021-001 **Report Date:** 10/18/21

SAMPLE RESULTS

Lab ID: L2156436-04 D Date Collected: 10/14/21 14:20

Client ID: MW-4 BR Date Received: 10/14/21
Sample Location: ROCHESTER NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2
p/m-Xylene	ND		ug/l	5.0	1.4	2
o-Xylene	ND		ug/l	5.0	1.4	2
cis-1,2-Dichloroethene	110		ug/l	5.0	1.4	2
Styrene	ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane	ND		ug/l	10	2.0	2
Acetone	ND		ug/l	10	2.9	2
Carbon disulfide	ND		ug/l	10	2.0	2
2-Butanone	ND		ug/l	10	3.9	2
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2
2-Hexanone	ND		ug/l	10	2.0	2
Bromochloromethane	ND		ug/l	5.0	1.4	2
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl Acetate	ND		ug/l	4.0	0.47	2
Cyclohexane	ND		ug/l	20	0.54	2
1,4-Dioxane	ND		ug/l	500	120	2
Freon-113	ND		ug/l	5.0	1.4	2
Methyl cyclohexane	ND		ug/l	20	0.79	2

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	105	70-130	

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

SAMPLE RESULTS

Lab Number: L2156436

Report Date: 10/18/21

Lab ID: Date Collected: 10/14/21 15:00 L2156436-05

Client ID: Date Received: 10/14/21 MW-6B Sample Location: Field Prep: **ROCHESTER NY** Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/15/21 13:22

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.85		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2156436

Project Name: Lab Number: 293 PATRIOT WAY

Project Number: Report Date: B0127-021-001 10/18/21

SAMPLE RESULTS

Lab ID: Date Collected: 10/14/21 15:00 L2156436-05

Client ID: Date Received: MW-6B 10/14/21 Sample Location: **ROCHESTER NY** Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	106	70-130	

L2156436

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

SAMPLE RESULTS

Report Date: 10/18/21

Lab Number:

Lab ID: L2156436-06 D

Client ID: BD

Sample Location: ROCHESTER NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 10/15/21 14:24

Analyst: PD

Date Collected:	10/14/21 14:30
Date Received:	10/14/21

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	orough Lab						
Methylene chloride	ND		ug/l	5.0	1.4	2	
1,1-Dichloroethane	1.6	J	ug/l	5.0	1.4	2	
Chloroform	ND		ug/l	5.0	1.4	2	
Carbon tetrachloride	ND		ug/l	1.0	0.27	2	
1,2-Dichloropropane	ND		ug/l	2.0	0.27	2	
Dibromochloromethane	ND		ug/l	1.0	0.30	2	
1,1,2-Trichloroethane	ND		ug/l	3.0	1.0	2	
Tetrachloroethene	ND		ug/l	1.0	0.36	2	
Chlorobenzene	ND		ug/l	5.0	1.4	2	
Trichlorofluoromethane	ND		ug/l	5.0	1.4	2	
1,2-Dichloroethane	ND		ug/l	1.0	0.26	2	
1,1,1-Trichloroethane	ND		ug/l	5.0	1.4	2	
Bromodichloromethane	ND		ug/l	1.0	0.38	2	
trans-1,3-Dichloropropene	ND		ug/l	1.0	0.33	2	
cis-1,3-Dichloropropene	ND		ug/l	1.0	0.29	2	
Bromoform	ND		ug/l	4.0	1.3	2	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0.33	2	
Benzene	ND		ug/l	1.0	0.32	2	
Toluene	ND		ug/l	5.0	1.4	2	
Ethylbenzene	ND		ug/l	5.0	1.4	2	
Chloromethane	ND		ug/l	5.0	1.4	2	
Bromomethane	ND		ug/l	5.0	1.4	2	
Vinyl chloride	8.3		ug/l	2.0	0.14	2	
Chloroethane	ND		ug/l	5.0	1.4	2	
1,1-Dichloroethene	1.7		ug/l	1.0	0.34	2	
trans-1,2-Dichloroethene	24		ug/l	5.0	1.4	2	
Trichloroethene	210		ug/l	1.0	0.35	2	
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2	

Project Name: 293 PATRIOT WAY Lab Number: L2156436

Project Number: B0127-021-001 **Report Date:** 10/18/21

SAMPLE RESULTS

Lab ID: L2156436-06 D Date Collected: 10/14/21 14:30

Client ID: BD Date Received: 10/14/21 Sample Location: ROCHESTER NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	1.4	2
p/m-Xylene	ND		ug/l	5.0	1.4	2
o-Xylene	ND		ug/l	5.0	1.4	2
cis-1,2-Dichloroethene	110		ug/l	5.0	1.4	2
Styrene	ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane	ND		ug/l	10	2.0	2
Acetone	ND		ug/l	10	2.9	2
Carbon disulfide	ND		ug/l	10	2.0	2
2-Butanone	ND		ug/l	10	3.9	2
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2
2-Hexanone	ND		ug/l	10	2.0	2
Bromochloromethane	ND		ug/l	5.0	1.4	2
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl Acetate	ND		ug/l	4.0	0.47	2
Cyclohexane	ND		ug/l	20	0.54	2
1,4-Dioxane	ND		ug/l	500	120	2
Freon-113	ND		ug/l	5.0	1.4	2
Methyl cyclohexane	ND		ug/l	20	0.79	2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	103		70-130	

Project Name:293 PATRIOT WAYLab Number:L2156436

Project Number: B0127-021-001 **Report Date:** 10/18/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/15/21 08:37

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-06 Batch:	WG1559228-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: 293 PATRIOT WAY **Lab Number:** L2156436

Project Number: B0127-021-001 **Report Date:** 10/18/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/15/21 08:37

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - W	estborough Lab	for sample(s): 01-06	Batch:	WG1559228-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: 293 PATRIOT WAY **Lab Number**: L2156436

Project Number: B0127-021-001 **Report Date:** 10/18/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/15/21 08:37

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-06 Batch: WG1559228-5

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	100		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	105		70-130	

Project Name: 293 PATRIOT WAY **Lab Number:** L2156436

Project Number: B0127-021-001 **Report Date:** 10/18/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/16/21 11:34

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	02 Batch:	WG1559811-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name:293 PATRIOT WAYLab Number:L2156436

Project Number: B0127-021-001 **Report Date:** 10/18/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/16/21 11:34

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s): 02	Batch:	WG1559811-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: 293 PATRIOT WAY **Lab Number:** L2156436

Project Number: B0127-021-001 **Report Date:** 10/18/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/16/21 11:34

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02 Batch: WG1559811-5

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	106		70-130	

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

Lab Number: L2156436

Report Date: 10/18/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS -	Westborough Lab Associated	sample(s):	01-06 Batch: \	WG1559228-3	WG1559228-4			
Methylene chloride	100		100		70-130	0		20
1,1-Dichloroethane	100		100		70-130	0		20
Chloroform	100		100		70-130	0		20
Carbon tetrachloride	89		92		63-132	3		20
1,2-Dichloropropane	100		100		70-130	0		20
Dibromochloromethane	80		85		63-130	6		20
1,1,2-Trichloroethane	97		98		70-130	1		20
Tetrachloroethene	110		110		70-130	0		20
Chlorobenzene	100		100		75-130	0		20
Trichlorofluoromethane	100		100		62-150	0		20
1,2-Dichloroethane	98		100		70-130	2		20
1,1,1-Trichloroethane	100		110		67-130	10		20
Bromodichloromethane	90		95		67-130	5		20
trans-1,3-Dichloropropene	78		86		70-130	10		20
cis-1,3-Dichloropropene	85		90		70-130	6		20
Bromoform	71		81		54-136	13		20
1,1,2,2-Tetrachloroethane	94		99		67-130	5		20
Benzene	100		100		70-130	0		20
Toluene	100		100		70-130	0		20
Ethylbenzene	110		110		70-130	0		20
Chloromethane	110		100		64-130	10		20
Bromomethane	110		110		39-139	0		20
Vinyl chloride	97		95		55-140	2		20

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

Lab Number: L2156436

Report Date: 10/18/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - V	Westborough Lab Associated	sample(s):	01-06 Batch:	WG1559228-3	WG1559228-4			
Chloroethane	110		100		55-138	10		20
1,1-Dichloroethene	100		110		61-145	10		20
trans-1,2-Dichloroethene	110		100		70-130	10		20
Trichloroethene	100		100		70-130	0		20
1,2-Dichlorobenzene	100		100		70-130	0		20
1,3-Dichlorobenzene	100		100		70-130	0		20
1,4-Dichlorobenzene	100		100		70-130	0		20
Methyl tert butyl ether	96		98		63-130	2		20
p/m-Xylene	110		110		70-130	0		20
o-Xylene	110		105		70-130	5		20
cis-1,2-Dichloroethene	110		100		70-130	10		20
Styrene	110		110		70-130	0		20
Dichlorodifluoromethane	86		82		36-147	5		20
Acetone	90		98		58-148	9		20
Carbon disulfide	98		99		51-130	1		20
2-Butanone	95		94		63-138	1		20
4-Methyl-2-pentanone	83		82		59-130	1		20
2-Hexanone	82		88		57-130	7		20
Bromochloromethane	100		100		70-130	0		20
1,2-Dibromoethane	98		100		70-130	2		20
1,2-Dibromo-3-chloropropane	79		84		41-144	6		20
Isopropylbenzene	110		110		70-130	0		20
1,2,3-Trichlorobenzene	88		90		70-130	2		20

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

Lab Number:

L2156436

Report Date:

	LCS		LCSD		%Recovery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-06 Batch:	WG1559228-3	WG1559228-4			
1,2,4-Trichlorobenzene	98		96		70-130	2	20	
Methyl Acetate	84		86		70-130	2	20	
Cyclohexane	110		110		70-130	0	20	
1,4-Dioxane	122		110		56-162	10	20	
Freon-113	110		110		70-130	0	20	
Methyl cyclohexane	110		100		70-130	10	20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	102	101	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	100	100	70-130
Dibromofluoromethane	98	101	70-130

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

Lab Number: L2156436

Report Date: 10/18/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (02 Batch: WG1	559811-3 W	/G1559811-4			
Methylene chloride	100		100		70-130	0	20	
1,1-Dichloroethane	100		100		70-130	0	20	
Chloroform	100		110		70-130	10	20	
Carbon tetrachloride	87		93		63-132	7	20	
1,2-Dichloropropane	100		110		70-130	10	20	
Dibromochloromethane	88		96		63-130	9	20	
1,1,2-Trichloroethane	110		110		70-130	0	20	
Tetrachloroethene	100		110		70-130	10	20	
Chlorobenzene	100		110		75-130	10	20	
Trichlorofluoromethane	97		98		62-150	1	20	
1,2-Dichloroethane	110		110		70-130	0	20	
1,1,1-Trichloroethane	100		110		67-130	10	20	
Bromodichloromethane	94		100		67-130	6	20	
trans-1,3-Dichloropropene	86		94		70-130	9	20	
cis-1,3-Dichloropropene	89		96		70-130	8	20	
Bromoform	81		92		54-136	13	20	
1,1,2,2-Tetrachloroethane	100		110		67-130	10	20	
Benzene	100		100		70-130	0	20	
Toluene	97		100		70-130	3	20	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	99		98		64-130	1	20	
Bromomethane	94		93		39-139	1	20	
Vinyl chloride	89		91		55-140	2	20	

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

Lab Number: L2156436

Report Date: 10/18/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s): 0	2 Batch: WG	1559811-3	WG1559811-4			
Chloroethane	91		95		55-138	4	20	
1,1-Dichloroethene	98		99		61-145	1	20	
trans-1,2-Dichloroethene	98		100		70-130	2	20	
Trichloroethene	100		110		70-130	10	20	
1,2-Dichlorobenzene	100		110		70-130	10	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	100		100		70-130	0	20	
Methyl tert butyl ether	110		110		63-130	0	20	
p/m-Xylene	105		110		70-130	5	20	
o-Xylene	105		110		70-130	5	20	
cis-1,2-Dichloroethene	100		100		70-130	0	20	
Styrene	110		115		70-130	4	20	
Dichlorodifluoromethane	79		81		36-147	3	20	
Acetone	110		120		58-148	9	20	
Carbon disulfide	91		95		51-130	4	20	
2-Butanone	120		120		63-138	0	20	
4-Methyl-2-pentanone	110		120		59-130	9	20	
2-Hexanone	110		120		57-130	9	20	
Bromochloromethane	100		110		70-130	10	20	
1,2-Dibromoethane	110		110		70-130	0	20	
1,2-Dibromo-3-chloropropane	86		100		41-144	15	20	
Isopropylbenzene	100		100		70-130	0	20	
1,2,3-Trichlorobenzene	90		100		70-130	11	20	

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

Lab Number:

L2156436

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 02	Batch: W	/G1559811-3	WG1559811-4				
1,2,4-Trichlorobenzene	94		100		70-130	6		20	
Methyl Acetate	100		100		70-130	0		20	
Cyclohexane	100		100		70-130	0		20	
1,4-Dioxane	146		148		56-162	1		20	
Freon-113	100		100		70-130	0		20	
Methyl cyclohexane	99		100		70-130	1		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	104	110	70-130
Toluene-d8	100	101	70-130
4-Bromofluorobenzene	101	99	70-130
Dibromofluoromethane	99	102	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

Lab Number:

L2156436

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-6B	- Westborough	Lab Associ	ciated sample(s): 01-06 Q	C Batch ID:	WG15592	228-6 WG1559	9228-7	QC Sample	e: L2156	6436-05	Client ID:
Methylene chloride	ND	10	10	100		11	110		70-130	10		20
1,1-Dichloroethane	ND	10	11	110		11	110		70-130	0		20
Chloroform	ND	10	11	110		12	120		70-130	9		20
Carbon tetrachloride	ND	10	10	100		10	100		63-132	0		20
1,2-Dichloropropane	ND	10	11	110		11	110		70-130	0		20
Dibromochloromethane	ND	10	11	110		12	120		63-130	9		20
1,1,2-Trichloroethane	ND	10	12	120		12	120		70-130	0		20
Tetrachloroethene	ND	10	11	110		10	100		70-130	10		20
Chlorobenzene	ND	10	11	110		11	110		75-130	0		20
Trichlorofluoromethane	ND	10	10	100		9.7	97		62-150	3		20
1,2-Dichloroethane	ND	10	11	110		12	120		70-130	9		20
1,1,1-Trichloroethane	ND	10	11	110		11	110		67-130	0		20
Bromodichloromethane	ND	10	11	110		12	120		67-130	9		20
trans-1,3-Dichloropropene	ND	10	10	100		10	100		70-130	0		20
cis-1,3-Dichloropropene	ND	10	10	100		10	100		70-130	0		20
Bromoform	ND	10	11	110		12	120		54-136	9		20
1,1,2,2-Tetrachloroethane	ND	10	13	130		13	130		67-130	0		20
Benzene	ND	10	11	110		11	110		70-130	0		20
Toluene	ND	10	10	100		10	100		70-130	0		20
Ethylbenzene	ND	10	10	100		10	100		70-130	0		20
Chloromethane	ND	10	12	120		12	120		64-130	0		20
Bromomethane	ND	10	6.6	66		7.5	75		39-139	13		20
Vinyl chloride	ND	10	9.7	97		9.7	97		55-140	0		20

Matrix Spike Analysis Batch Quality Control

Project Name: 293 PATRIOT WAY **Project Number:** B0127-021-001

Lab Number:

L2156436

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recove	ry	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS MW-6B	- Westborough L	ab Asso	ciated sample(s): 01-06	QC	Batch ID:	WG15592	228-6 WG155	9228-7	QC Sample	: L2156	6436-05	Client ID:
Chloroethane	ND	10	14	140		Q	11	110		55-138	24	Q	20
1,1-Dichloroethene	ND	10	10	100			10	100		61-145	0		20
trans-1,2-Dichloroethene	ND	10	10	100			10	100		70-130	0		20
Trichloroethene	0.85	10	11	102			11	102		70-130	0		20
1,2-Dichlorobenzene	ND	10	10	100			11	110		70-130	10		20
1,3-Dichlorobenzene	ND	10	10	100			10	100		70-130	0		20
1,4-Dichlorobenzene	ND	10	11	110			10	100		70-130	10		20
Methyl tert butyl ether	ND	10	12	120			12	120		63-130	0		20
o/m-Xylene	ND	20	22	110			21	105		70-130	5		20
o-Xylene	ND	20	21	105			22	110		70-130	5		20
cis-1,2-Dichloroethene	ND	10	11	110			11	110		70-130	0		20
Styrene	ND	20	23	115			23	115		70-130	0		20
Dichlorodifluoromethane	ND	10	8.3	83			7.7	77		36-147	8		20
Acetone	ND	10	13	130			13	130		58-148	0		20
Carbon disulfide	ND	10	10	100			10	100		51-130	0		20
2-Butanone	ND	10	14	140		Q	15	150	Q	63-138	7		20
4-Methyl-2-pentanone	ND	10	12	120			13	130		59-130	8		20
2-Hexanone	ND	10	14	140		Q	14	140	Q	57-130	0		20
Bromochloromethane	ND	10	11	110			12	120		70-130	9		20
1,2-Dibromoethane	ND	10	12	120			13	130		70-130	8		20
1,2-Dibromo-3-chloropropane	ND	10	13	130			14	140		41-144	7		20
Isopropylbenzene	ND	10	10	100			10	100		70-130	0		20
1,2,3-Trichlorobenzene	ND	10	10	100			10	100		70-130	0		20

Matrix Spike Analysis Batch Quality Control

Project Name: 293 PATRIOT WAY Project Number:

B0127-021-001

Lab Number:

L2156436

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - MW-6B	· Westborough I	_ab Assoc	iated sample(s	s): 01-06 C	C Batch ID:	WG15592	228-6 WG1559	9228-7	QC Sample	: L215	6436-05	Client ID:
1,2,4-Trichlorobenzene	ND	10	9.9	99		10	100		70-130	1		20
Methyl Acetate	ND	10	11	110		12	120		70-130	9		20
Cyclohexane	ND	10	10	100		9.4J	94		70-130	6		20
1,4-Dioxane	ND	500	790	158		860	172	Q	56-162	8		20
Freon-113	ND	10	10	100		9.1	91		70-130	9		20
Methyl cyclohexane	ND	10	10	100		8.7J	87		70-130	14		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	115	108	70-130
4-Bromofluorobenzene	99	100	70-130
Dibromofluoromethane	103	103	70-130
Toluene-d8	98	99	70-130

Serial_No:10182110:45 *Lab Number:* L2156436

Project Name: 293 PATRIOT WAY

YES

Report Date: 10/18/21

Project Number: B0127-021-001

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2156436-01A	Vial HCI preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-01B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-01C	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-02A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-02B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-02C	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-03A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-03B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-03C	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-04A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-04B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-04C	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-05A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-05A1	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-05A2	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-05B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-05B1	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-05B2	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-05C	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-05C1	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-05C2	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-06A	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)
L2156436-06B	Vial HCl preserved	Α	NA		5.1	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2156436

Report Date: 10/18/21

Container Information Initial Final Temp Frozen pН Date/Time Cooler pH deg C Pres Seal Container ID Container Type Analysis(*) Vial HCI preserved L2156436-06C NA 5.1 Absent NYTCL-8260-R2(14)

Project Name:

Project Number: B0127-021-001

293 PATRIOT WAY

Project Name: Lab Number: 293 PATRIOT WAY L2156436 **Project Number:** B0127-021-001 **Report Date:** 10/18/21

GLOSSARY

Acronyms

LCSD

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:293 PATRIOT WAYLab Number:L2156436Project Number:B0127-021-001Report Date:10/18/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:293 PATRIOT WAYLab Number:L2156436Project Number:B0127-021-001Report Date:10/18/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:293 PATRIOT WAYLab Number:L2156436Project Number:B0127-021-001Report Date:10/18/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19 Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co Project Information Project Name: 293 Project Location: Rock	oper Ave, Suite 1	Wah	Page i of		Delive	rables ASP-A	ALC: NO.	× ×	ASP-B	File)	ALPHA Job # UHS Lot 30 Billing Information Same as Client Inf	
Client Information		Project # B0/27-	021-001	7				Other	(11110)	Ш.	-4010 (,	10,00	
Client: Benchmark	EES	(Use Project name as Pr					Regul	atory F	Requireme	nt	779	10 816	Disposal Site Information	on
Address: 2508 The Buffall N	Ham Burg	Project Manager: 75/	r Forses,	/consuct	Fox		NY TOGS NY Part 375 AWQ Standards NY CP-51					Please identify below locat applicable disposal facilitie	200	
Phone: 7/6-7/3-	-213)	Turn-Around Time		Salarate		ROLL	NY Restricted Use Other						Disposal Facility:	***************************************
Fax: Email: TFORBLS ()			Standard Due Date: Rush (only if pre approved) # of Days: 2 424 5					NY Unrestricted Use NYC Sewer Discharge					NJ NY	Ċ
These samples have be	een previously analyze	ed by Alpha					ANALYSIS						Sample Filtration	T
COA B, Please specify Metals	MISPEC E	UNDERSONAL CONTRACTOR OF THE PROPERTY OF THE P					Voc's						□ Done □ Lab to do Preservation □ Lab to do (Please Specify below	o t a l B o t
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Coll	ection Time	Sample Matrix	Sampler's Initials	12						Sample Specific Commer	nts t
56436-01	MW-11	В	10/14/21	11:00	AQ	NAS	X	\dashv	-	\vdash	\neg	_	l dampie opecino dominio	3
02	MW-Z		1011111	10:00	1	1	X							3
03	MW-3			13:05			X	\neg		\vdash		\top		3
04	MW-41	3		14:20			X							3
05	MW-6B		. /	15:00		11	X						MSIMSD	9
de	BD		V	14:30		1	×	4		\Box		-		3
			447											\top
Preservative Code:	Container Code	MANUSCO NA PARAGONIA DE		94				_			_			
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N	The state of the s			tainer Type	UB				+		Please print clearly, I and completely. Sam not be logged in and turnaround time cloc	ples can
F = MeOH	C = Cube	 Relinquished I 	By:	Date/	Time		Receive	ed By			Date/Tin	ne	start until any ambigu resolved. BY EXECU	
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH	O = Other E = Encore D = BOD Bottle	SE CURE STOR	BGE AAL				Received By: STORAGE PLAL WISHEM RAL			,		15:40	THIS COC, THE CLI HAS READ AND AG	ENT REES
O = Other		RCummerkon	LAAL	10/14/21		11/1/	9/1/	inn	1/	7.0	5/211		TERMS & CONDITIO	
Form No: 01-25 HC (rev. 30	-Sept-2013)	0				1 /1	1		7)	7	, 1-0	(0)	(See reverse side.)	

ANALYTICAL REPORT

Lab Number: L2156645

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Tom Forbes
Phone: (716) 856-0599

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

Report Date: 10/18/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

Lab Number: L2156645 **Report Date:** 10/18/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2156645-01	MW-5BR	WATER	ROCHESTER, NY	10/15/21 09:40	10/15/21
L2156645-02	EQUIPTMENT BLANK	WATER	ROCHESTER, NY	10/15/21 09:00	10/15/21
L2156645-03	TRIP BLANK	WATER	ROCHESTER, NY	10/15/21 00:00	10/15/21

Serial No:10182118:55

Project Name:293 PATRIOT WAYLab Number:L2156645Project Number:B0127-021-001Report Date:10/18/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:293 PATRIOT WAYLab Number:L2156645Project Number:B0127-021-001Report Date:10/18/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 10/18/21

Jufani Morrissey-Tiffani Morrissey

ORGANICS

VOLATILES

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

SAMPLE RESULTS

Lab Number: L2156645

Report Date: 10/18/21

Lab ID: L2156645-01 Date Collected: 10/15/21 09:40

Client ID: Date Received: 10/15/21 MW-5BR Sample Location: Field Prep: ROCHESTER, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/16/21 10:19

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.20	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 293 PATRIOT WAY **Lab Number:** L2156645

Project Number: B0127-021-001 **Report Date:** 10/18/21

SAMPLE RESULTS

Lab ID: L2156645-01 Date Collected: 10/15/21 09:40

Client ID: MW-5BR Date Received: 10/15/21 Sample Location: ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	101	70-130	

10/15/21 09:00

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

Lab Number: L2156645

Report Date: 10/18/21

SAMPLE RESULTS

Lab ID: L2156645-02

Client ID: **EQUIPTMENT BLANK** Sample Location: ROCHESTER, NY

Date Received: 10/15/21 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/16/21 10:42

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	1.0	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	0.26	J	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 293 PATRIOT WAY **Lab Number:** L2156645

Project Number: B0127-021-001 **Report Date:** 10/18/21

SAMPLE RESULTS

Lab ID: L2156645-02 Date Collected: 10/15/21 09:00

Client ID: EQUIPTMENT BLANK Date Received: 10/15/21 Sample Location: ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.7	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	101	70-130	

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

L2156645

Lab Number:

Report Date: 10/18/21

SAMPLE RESULTS

Lab ID: L2156645-03 Date Collected: 10/15/21 00:00

Client ID: Date Received: 10/15/21 TRIP BLANK Sample Location: Field Prep: ROCHESTER, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 10/16/21 11:06

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 293 PATRIOT WAY L2156645

Project Number: Report Date: B0127-021-001 10/18/21

SAMPLE RESULTS

Lab ID: Date Collected: 10/15/21 00:00 L2156645-03

Client ID: Date Received: 10/15/21 TRIP BLANK Sample Location: ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.1	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	103	70-130	

Project Name: 293 PATRIOT WAY **Lab Number:** L2156645

Project Number: B0127-021-001 **Report Date:** 10/18/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/16/21 09:55

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03 Batch:	WG1559690-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: 293 PATRIOT WAY **Lab Number:** L2156645

Project Number: B0127-021-001 **Report Date:** 10/18/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/16/21 09:55

Analyst: LAC

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab f	or sample(s): 01-03	Batch:	WG1559690-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: 293 PATRIOT WAY **Lab Number:** L2156645

Project Number: B0127-021-001 **Report Date:** 10/18/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/16/21 09:55

Analyst: LAC

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-03 Batch: WG1559690-5

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	94		70-130	
4-Bromofluorobenzene	97		70-130	
Dibromofluoromethane	100		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

Lab Number: L2156645

Report Date: 10/18/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - W	estborough Lab Associated	sample(s):	01-03 Batch: \	NG1559690-3	WG1559690-4			
Methylene chloride	94		96		70-130	2		20
1,1-Dichloroethane	100		110		70-130	10		20
Chloroform	98		100		70-130	2		20
Carbon tetrachloride	94		98		63-132	4		20
1,2-Dichloropropane	100		100		70-130	0		20
Dibromochloromethane	94		95		63-130	1		20
1,1,2-Trichloroethane	98		99		70-130	1		20
Tetrachloroethene	100		100		70-130	0		20
Chlorobenzene	99		100		75-130	1		20
Trichlorofluoromethane	100		110		62-150	10		20
1,2-Dichloroethane	110		110		70-130	0		20
1,1,1-Trichloroethane	98		100		67-130	2		20
Bromodichloromethane	92		95		67-130	3		20
trans-1,3-Dichloropropene	97		98		70-130	1		20
cis-1,3-Dichloropropene	95		96		70-130	1		20
Bromoform	87		88		54-136	1		20
1,1,2,2-Tetrachloroethane	100		100		67-130	0		20
Benzene	99		100		70-130	1		20
Toluene	99		100		70-130	1		20
Ethylbenzene	99		100		70-130	1		20
Chloromethane	96		100		64-130	4		20
Bromomethane	100		100		39-139	0		20
Vinyl chloride	97		100		55-140	3		20

Lab Control Sample Analysis Batch Quality Control

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

Lab Number: L2156645

Report Date: 10/18/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Wo	estborough Lab Associated	sample(s):	01-03 Batch:	WG1559690-3	WG1559690-4			
Chloroethane	110		120		55-138	9		20
1,1-Dichloroethene	100		110		61-145	10		20
trans-1,2-Dichloroethene	96		99		70-130	3		20
Trichloroethene	97		100		70-130	3		20
1,2-Dichlorobenzene	100		100		70-130	0		20
1,3-Dichlorobenzene	100		100		70-130	0		20
1,4-Dichlorobenzene	100		100		70-130	0		20
Methyl tert butyl ether	100		110		63-130	10		20
p/m-Xylene	100		100		70-130	0		20
o-Xylene	100		100		70-130	0		20
cis-1,2-Dichloroethene	95		98		70-130	3		20
Styrene	100		100		70-130	0		20
Dichlorodifluoromethane	80		83		36-147	4		20
Acetone	120		140		58-148	15		20
Carbon disulfide	99		100		51-130	1		20
2-Butanone	120		120		63-138	0		20
4-Methyl-2-pentanone	110		100		59-130	10		20
2-Hexanone	120		120		57-130	0		20
Bromochloromethane	100		100		70-130	0		20
1,2-Dibromoethane	100		100		70-130	0		20
1,2-Dibromo-3-chloropropane	99		100		41-144	1		20
Isopropylbenzene	99		100		70-130	1		20
1,2,3-Trichlorobenzene	100		110		70-130	10		20

Lab Control Sample Analysis Batch Quality Control

Project Name: 293 PATRIOT WAY

Project Number: B0127-021-001

Lab Number:

L2156645

Report Date:

10/18/21

_	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	' Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG1559690-3	WG1559690-4			
1,2,4-Trichlorobenzene	100		100		70-130	0		20
Methyl Acetate	110		110		70-130	0		20
Cyclohexane	110		110		70-130	0		20
1,4-Dioxane	166	Q	156		56-162	6		20
Freon-113	110		110		70-130	0		20
Methyl cyclohexane	99		100		70-130	1		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	109	111	70-130
Toluene-d8	99	97	70-130
4-Bromofluorobenzene	98	97	70-130
Dibromofluoromethane	99	99	70-130

Lab Number: L2156645

Report Date: 10/18/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

293 PATRIOT WAY

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: B0127-021-001

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2156645-01A	Vial HCl preserved	Α	NA		5.4	Υ	Absent		NYTCL-8260-R2(14)
L2156645-01B	Vial HCl preserved	Α	NA		5.4	Υ	Absent		NYTCL-8260-R2(14)
L2156645-01C	Vial HCl preserved	Α	NA		5.4	Υ	Absent		NYTCL-8260-R2(14)
L2156645-02A	Vial HCl preserved	Α	NA		5.4	Υ	Absent		NYTCL-8260-R2(14)
L2156645-02B	Vial HCl preserved	Α	NA		5.4	Υ	Absent		NYTCL-8260-R2(14)
L2156645-03A	Vial HCl preserved	Α	NA		5.4	Υ	Absent		NYTCL-8260-R2(14)
L2156645-03B	Vial HCl preserved	Α	NA		5.4	Υ	Absent		NYTCL-8260-R2(14)

Project Name: Lab Number: 293 PATRIOT WAY L2156645 **Project Number:** B0127-021-001 **Report Date:** 10/18/21

GLOSSARY

Acronyms

EDL

LCSD

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a

specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

> Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:293 PATRIOT WAYLab Number:L2156645Project Number:B0127-021-001Report Date:10/18/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:293 PATRIOT WAYLab Number:L2156645Project Number:B0127-021-001Report Date:10/18/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: 293 PATRIOT WAY Lab Number: L2156645

Project Number: B0127-021-001 Report Date: 10/18/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ID No.:17873

Revision 19

Alpha Analytical, Inc. Facility: Company-wide

Published Date: 4/2/2021 1:14:23 PM Department: Quality Assurance Title: Certificate/Approval Program Summary Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker N Tonawanda, NY 14150: 275 Co Project Information Project Name: 2 9 Project Location: NO	Nay oper Ave, Suite	10+ W49	Page / o	- 7	Deliver	ate Rec' in Lab / ables ASP-A EQuIS (1 F	100	X	ASP-E		ALPHA Job # L215 Celet# Billing Information Same as Client Info	5
Client Information	CONTRACTOR OF THE		-121-					Other		-	= 6,740.5			
Client: Benchman	EES	(Use Project name as P					Regula	tory Requ	ireme	nt	7030	MI 65	Disposal Site Information	
BUFFALO NY 1	1213	Project Manager: To A ALPHAQuote #:	MFVW	/ Carre	(Fox		1 =	IY TOGS WQ Standa	ards		NY Par NY CP		Please identify below location applicable disposal facilities.	of
Phone: 7/2-7/2 Fax: Email: 7 For 645 ()		Turn-Around Time Standard Rush (only if pre approved		Due Date # of Days	2 844	5		IY Restricte IY Unrestric IYC Sewer	ted Us	е	Other		Disposal Facility: NJ NY Other:	
These samples have b							ANAL	rsis					Sample Filtration	T
Ca+ B, Please specify Metals	NYSDEL	percent of the					1000;						□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	t a l B o t
ALPHA Lab ID (Lab Use Only)	Sa	ample ID		lection	Sample Matrix	Sampler's Initials	12							L.
THE RESIDENCE OF THE PARTY OF T	MW.C	00	10/15/21	Time			17	_	\vdash	\vdash	-4	_	Sample Specific Comments	e
56645-01	MW-S	Mux Blank	10/15/20	9:00	AR	NAS	X	_	\vdash	\vdash	-	_		3
03	TF 10 4		1	10:00	1	1	2	\rightarrow		\vdash	-	-		2
	11.1/ -2	1000		10.00	-	-	-	_		\vdash	-	-		2
		-			1					\vdash		-		+
										\vdash				+
W-Salar Barrier										\Box				+
										\Box				\top
	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification N Mansfield: Certification N			_	tainer Type	U	-					Please print clearly, legit and completely. Sample not be logged in and	s can
E = NaOH	B = Bacteria Cup				,	reservative	9						turnaround time clock wi start until any ambiguitie	
The service of the se	C = Cube O = Other	Relinquished	Ву:	7	/Time		Receive				Date/	Time	resolved. BY EXECUTIN	IG
H = Na ₂ S ₂ O ₃	E = Encore	4		1011512		-5	0	To A	14L	10/15/21 1520			THIS COC, THE CLIENT HAS READ AND AGREE	
K/E = Zn Ac/NaOH O = Other	E = Zn Ac/NaOH D = BOD Bottle			10/15/21	1520	All.	MILLERY			10/16/21 01:00			TO BE BOUND BY ALP TERMS & CONDITIONS	HA'S
Form No: 01-25 HC (rev. 30)-Sept-2013)							L	/				(See reverse side.)	

ATTACHMENT 3

FIELD FORMS WELL DEVELOPMENT & GROUNDWATER SAMPLING

Project Name: Kaddis Date: 10/14/2021

Location: 293 Patriot Way Project No.: Field Team: NAS/ TM

Well No).	MW-1B	Diameter (ir	nches): 2		Sample Date	e / Time:				
Product Dep	oth (fbTOR):		Water Colur	mn (ft):	35.8	DTW when	sampled:				
DTW (static) (fbTOR):	6.6	One Well Volume (gal): 5.8			Purpose:	Purpose: 🗸 Development 🔲 Sample 🔲 Purge & Sample				
Total Depth	(fbTOR):	42.4	Total Volum	e Purged (gal):	55	Purge Metho	od: Bailer				
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor		
9:30	Initial	0	7.03	16.9	586.7	73	N/A	150	Turbid, no odor		
10:00	Sep-70	6	7.1	16.5	563.5	OR	N/A	24	Turbid, no odor		
10:15	8.8	12	7.71	15.6	834.6	OR	N/A	-39	Turbid, no odor		
10:30	8.9	18	7.61	14.6	900	OR	N/A	-49	Turbid, no odor		
10:45	7.5	24	7.62	15.4	910	OR	N/A	-21	Turbid, no odor		
11:15	8.2	30	7.6	15.5	906	OR	N/A	-22	Turbid, no odor		
11:30	8.7	36	7.73	16.9	909	OR	N/A	6	Turbid, no odor		
12:15	9.1	42	7.58	16.6	909	OR	N/A	-27	Turbid, no odor		
13:00	10.8	48	7.65	15.7	910	OR	N/A	-5	Turbid, no odor		
13:30	10.8	54	7.77	15.8	1010	OR	N/A	-8	Turbid, no odor		
14:00	10.2	55	7.66	15.3	1005	OR	N/A	-42	Turbid, no odor		
Sample I	nformation:					-					
	S2										

Well No).	MW-2	Diameter (in	nches): 2		Sample Date	e / Time:		
Product Dep	oth (fbTOR):		Water Colur	nn (ft):	14.95	DTW when	sampled:		
DTW (statio) (fbTOR):	3.15	One Well Vo	olume (gal):	2.8	Purpose: Development Sample Purge & Sampl			
Total Depth	(fbTOR):	18.1	Total Volume Purged (gal): 14			Purge Metho	od: Bailer		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
11:30	Initial	0	7.62	17.4	878	OR	N/A	75	Turbid, no odors
11:45	8.35	2.8	7.35	15.9	891	OR	N/A	83	Turbid, no odors
12:00	9.25	5.6	7.38	15.7	917	OR	N/A	85	Turbid, no odors
12:15	10.65	8	7.44	15.9	920	OR	N/A	50	Turbid, no odors
12:30	11.5	10.8	7.37	15.9	919	OR	N/A	85	Turbid, no odors
12:45	15.3	13.5	7.44	15.2	930	OR	N/A	89	Turbid, no odors
	DRY	14							
									·
Sample I	nformation:			1		T.		1	

REMARKS:	Volume (Calculation	F	>
	Diam.	Vol. (g/ft)		
	1"	0.041		
	2"	0.163		
	4"	0.653		
Note: All water level measurements are in feet, distance from top of riser.	6"	1.469		

Parameter	Criteria
рН	± 0.1 unit
SC	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

Stabilization Criteria

Project Name: Kaddis Date: 10/14/2021 293 Patriot Way Location: Project No.: Field Team: NAS/ TM

Well No).	MW-3	Diameter (in	iches): 2		Sample Date	e / Time:		
Product Dep	oth (fbTOR):		Water Colur	nn (ft):	11.1	DTW when	sampled:		
DTW (static) (fbTOR):	7.25	One Well Volume (gal): 1.8			Purpose:			
Total Depth	(fbTOR):	18.35	Total Volume Purged (gal): 18			Purge Metho	od: Bailer		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
13:00	o Initial	0	7.78	15.3	946	OR	N/A	139	Turbid, No odor
13:15	9.6	1.8	7.55	15.4	765	OR	N/A	53	Turbid, No odor
13:30	9.25	3.6	7.48	15.4	729	OR	N/A	48	Turbid, No odor
13:45	8.45	5.4	7.52	15	739	OR	N/A	46	Turbid, No odor
14:00	10.95	7.2	7.55	14.9	734	OR	N/A	68	Turbid, No odor
14:15	11.9	9	7.46	14.8	718	OR	N/A	31	Turbid, No odor
14:30	11.5	10.8	7.58	15	813	OR	N/A	37	Turbid, No odor
14:45	12.4	13.2	7.5	14.5	737	OR	N/A	46	Turbid, No odor
15:00	13.5	15	7.5	14.7	815	OR	N/A	31	Turbid, No odor
15:15	14.2	18	7.48	14.8	798	OR	N/A	38	Turbid, No odor
Sample I	nformation:								

Well No).	MW-4B	Diameter (in	ches): 2		Sample Date	e / Time:		
Product Dep	oth (fbTOR):		Water Colur	nn (ft):	40.2	DTW when	sampled:		
DTW (static) (fbTOR):	7.25	One Well Vo	olume (gal):	6.55	Purpose:	Purge & Sample		
Total Depth	(fbTOR):	47.45	Total Volume Purged (gal): 55			Purge Metho	od: Bailer		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
9:49	Initial	0	7.61	14.8	8.97	OR	0.63	-2	Turbid, no odor
11:00	7.5	6.55	7.87	24.1	4.61	OR	1.51	18	Turbid, no odor
12:13	7.5	13.1	7.69	18.4	4.3	OR	1.16	17	Turbid, no odor
14:00	7.6	19.65	7.63	17.8	3.29	OR	1.81	22	Turbid, no odor
14:40	7.65	26.2	7.81	19.3	2.8	OR	1.76	46	Turbid, no odor
15:07	7.7	32.75	8.11	14.1	892.7	OR	2.17	11	Turbid, no odor
15:40	7.85	39.3	7.74	14.3	897	OR	3.17	24	Turbid, no odor
16:14	7.85	45.85	7.67	13.6	900	OR	1.6	4	Turbid, no odor
16:47	7.9	52.4	7.66	13.2	890	OR	1.95	5	Turbid, no odor
17:00	7.9	55	7.65	13.5	899	OR	1.97	7	Turbid, no odor
Sample I	nformation:								

REMARKS:	Volume (Calc
	Diam.	Vo
	1"	(
	2"	(
	4"	(
Note: All water level measurements are in feet, distance from top of riser.	6"	,

Volume Calculation						
Diam. Vol. (g/ft)						
1"	0.041					
2"	0.163					
4"	0.653					
6"	1.469					

Stabilization Criteria						
Parameter	Criteria					
рН	± 0.1 unit					
SC	± 3%					
Turbidity	± 10%					
DO	± 0.3 mg/L					
ORP	± 10 mV					

PREPARED BY:

Project Name: Kaddis Date: 10/14/2021, 10/15/2021

Location: 293 Patriot Way Project No.: Field Team: NAS/ TM

Well No).	MW-5B	Diameter (ir	Diameter (inches): 2			Sample Date / Time:				
Product Dep	oth (fbTOR):		Water Colu	mn (ft):	40.8	DTW when sampled:					
DTW (static) (fbTOR):	13.3	One Well V	olume (gal):	6.6	Purpose:	✓ Development	Sample	Purge & Sample		
Total Depth	(fbTOR):	54.1	Total Volum	e Purged (gal):	55	Purge Metho	od: Bailer				
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor		
11:00	Initial	0	7.25	14.1	1566	OR	N/A	-25	Turbid, no odors		
11:15	13.3	6	7.35	14.8	1414	OR	N/A	42	Turbid, no odors		
11:30	14	12	7.48	13.5	1550	OR	N/A	24	Turbid, no odors		
11:45	14.5	18	7.27	14.5	1504	OR	N/A	0	Turbid, no odors		
12:00	15.5	24	7.38	14	1778	OR	N/A	-23	Turbid, no odors		
12:15	15.9	30	7.3	15	1694	OR	N/A	26	Turbid, no odors		
12:30	17.8	36	7.36	14	1776	OR	N/A	8	Turbid, no odors		
12:45	18.4	42	7.34	14	1725	OR	N/A	12	Turbid, no odors		
13:00	18.2	48	7.33	13.5	1776	OR	N/A	16	Turbid, no odors		
13:15	18.2	55	7.25	14.5	1675	OR	N/A	9	Turbid, no odors		
Sample I	nformation:										

Well No).	MW-6B	Diameter (in	iches): 2		Sample Date / Time:				
Product Dep	oth (fbTOR):		Water Colur	Water Column (ft): 35.6 DTW when sampled:						
DTW (static) (fbTOR):	7.1	One Well Vo	olume (gal):	5.8	Purpose:	/ Development	Sample	Purge & Sample	
Total Depth	(fbTOR):	42.7	Total Volum	e Purged (gal):	55	Purge Metho	od: Bailer			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
15:00	o Initial	0	10.4	15.6	876	OR	N/A	-183	Turbid, no odors	
15:15	9.6	6	9.16	15.3	772	OR	N/A	-69	Turbid, no odors	
15:30	9.7	12	8.56	15.3	780	OR	N/A	-69	Turbid, no odors	
15:45	10	18	8.23	15.1	807	OR	N/A	-50	Turbid, no odors	
16:00	9.2	24	8.13	15.2	816	OR	N/A	-1	Turbid, no odors	
16:15	9.5	30	8.15	15.6	817	OR	N/A	-2	Turbid, no odors	
16:30	9.2	36	7.98	14.8	787	OR	N/A	12	Turbid, no odors	
16:45	9.2	40	7.91	14.5	822	OR	N/A	6	Turbid, no odors	
17:00	9.2	46	7.92	14.7	807	OR	N/A	26	Turbid, no odors	
17:15	9.2	52	7.98	15.5	812	OR	N/A	6	Turbid, no odors	
17:30	10.2	55	7.95	15	811	OR	N/A	12	Turbid, no odors	
Sample I	nformation:									
	S2									

REMARKS:
Note: All water level measurements are in feet, distance from top of riser.

Volume Calculation						
Diam. Vol. (g/f						
1"	0.041					
2"	0.163					
4"	0.653					
6"	1.469					

Stabilization Criteria						
Parameter	Criteria					
pН	± 0.1 unit					
SC	± 3%					
Turbidity	± 10%					
DO	± 0.3 mg/L					
ORP	± 10 mV					

PREPARED BY:

Project Na	ame: Kaddis		Date:	10/14/2021
Location:	293 Patriot Wav	Project No.:	Field Team: N	IAS/ TM

Well No).	MW-1B	Diameter (inches): 2			Sample Date	e / Time:	10/14/2021	11:35		
Product Dep	oth (fbTOR):		Water Colur	Water Column (ft): 36.85			DTW when sampled:				
DTW (static) (fbTOR):	6.75	One Well Vo	olume (gal):	6	Purpose:	Development	Sample	✓ Purge & Sample		
Total Depth	(fbTOR):	43.6	Total Volum	e Purged (gal):	18	Purge Metho	od: Low Flow				
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity DO ORP (NTU) (mg/L) (mV)		Appearance & Odor			
10:45	Initial	0	7.63	16.3	879	85.5	1.48	19	Turbid, no odor		
11:00	7.75	6	7.5	15.1	895	OR	0.69	45	Turbid, no odor		
11:20	8.8	12	7.5	17.3	982	412 0.53		50	Turbid, no odor		
11:35	8.85	18	7.5	15.9	889	692	0.44	53	Turbid, no odor		
Sample I	nformation:										
11:36	8.85	18	7.49	15	893	659	0.63	59	Turbid No odor		
	S2								_		

Well No).	MW-2	Diameter (inches): 2			Sample Date	e / Time:	10/14/20	21 10:15
Product Dep	oth (fbTOR):		Water Column (ft): 13.2			DTW when sampled:			
DTW (static) (fbTOR):	4.6	One Well Vo	olume (gal):	2.15	Purpose:	Development	Sample	✓ Purge & Sample
Total Depth	(fbTOR):	17.8	Total Volum	e Purged (gal):	6	Purge Metho	od: Low Flow		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
9:30	Initial	0	7.25	18.8	1057	100	6.87	194	Clear, no odors
9:35	8.3	2	7.34	16.8	918	55.7	6.72	171	Clear, no odors
9:40	8.6	4	7.28	16.9	920	17.3	6.59	153	Clear, no odors
10:00	8.7	6	7.31	16.2	914	33.3	6.55	147	Clear, no odors
Sample I	nformation:						<u> </u>		
10:15	8.9	6	7.26	16.1	914	17.9	6.45	143	Clear, no odors

			Stabilizat	ion Criteria
Volume (Calculation	ſ	Parameter	Criteria
Diam.	Vol. (g/ft)		pН	± 0.1 unit
1"	0.041	ĺ	SC	± 3%
2"	0.163	ĺ	Turbidity	± 10%
4"	0.653	ĺ	DO	± 0.3 mg/L
6"	1.469		ORP	± 10 mV
	Diam. 1" 2" 4"	1" 0.041 2" 0.163 4" 0.653	Diam. Vol. (g/ft) 1" 0.041 2" 0.163 4" 0.653	Volume Calculation Parameter Diam. Vol. (g/ft) pH 1" 0.041 SC 2" 0.163 Turbidity 4" 0.653 DO

Project Name: Kaddis Date: 10/14/2021

Location: 293 Patriot Way Project No.: Field Team: NAS/ TM

Well No. MW-3			Diameter (inches): 2			Sample Date	e / Time:	10/14/2021	13:00	
Product Dep	oth (fbTOR):		Water Column (ft): 10.65			DTW when sampled:				
DTW (static) (fbTOR):	7.35	One Well Vo	olume (gal):	1.74	Purpose:	Development	✓ Purge & Sample		
Total Depth	(fbTOR):	18	Total Volume Purged (gal): 5.2			Purge Metho	od: Low Flow			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
12:20	o Initial	0	7.45	17	157	OR	4.09	20	Turbid, No odor	
12:30	7.2	1.74	7.33	16.2	708	OR	4.78	58	Turbid, No odor	
12:38	7.4	3.4	7.35	15.7	712	98.3	4.43	42	Clear, no odor	
13:00	7.9	5.2	7.34	15.7	722	623	3.88	29	Clear, no odor	
Sample I	nformation:									
13:05	7.9	5,22	7.32	15.5	714	326	3.81	44	Turbid, no odor	

Well No. MV		MW-4B	Diameter (inches): 2			Sample Date	e / Time:	10/14/20	21 14:20
Product Depth (fbTOR):		Water Column (ft): 40.25			DTW when sampled:				
DTW (static	DTW (static) (fbTOR): 7.75		One Well Volume (gal): 6.56		Purpose: Development		Sample	✓ Purge & Sample	
Total Depth	(fbTOR):	48	Total Volum	e Purged (gal):	19.6	Purge Metho	od: Low Flow		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
13:45	Initial	0	7.58	14.7	854	32.9	3.21	42	Clear, no odor
14:00	7.75	6.56	7,51	14.1	888	13.3	0.9	44	Clear, no odor
14:12	7.95	13.12	7,54	14.4	888	8.98	0.75	43	Clear, no odor
14:21	8.2	19.68	7.48	14.9	877	7.69	0.69	49	Clear, no odor
Sample I	nformation:								
14:24	7.95	19.68	7.48	14.6	887	8.61	1.26	49	Clear, no odor

			Stabilization Criteria		
REMARKS:	Volume (Calculation	Parameter	Criteria	
	Diam.	Vol. (g/ft)	рН	± 0.1 unit	
	1"	0.041	SC	± 3%	
	2"	0.163	Turbidity	± 10%	
	4"	0.653	DO	± 0.3 mg/L	
Note: All water level measurements are in feet, distance from top of riser.	6"	1.469	ORP	± 10 mV	

Project Name: Kaddis Date: 10/14/2021, 10/15/2021

Location: 293 Patriot Way Project No.: Field Team: NAS/ TM

Well No. MW-5B			Diameter (in	ches): 2		Sample Date	e / Time:	9:40		
Product Depth (fbTOR):			Water Column (ft): 40.2			DTW when sampled:				
DTW (static) (fbTOR):	13.8	One Well Volume (gal): 6.6			Purpose: Development Sample ✓ Purgo			✓ Purge & Sample	
Total Depth	(fbTOR):	54	Total Volum	e Purged (gal):	19.5	Purge Metho	od: Low Flow			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
9:20	Initial	0	6.84	15	1326	95.6	4.37	10	Clear, no odors	
9:25	17.4	6.5	7.01	13.2	1742	270	0.78	4	Clear, no odors	
9:30	17.9	13	7.04	13.2	1776	132	0.62	-26	Clear, no odors	
9:35	15.8	19.5	7.08	12.8	1786	32.5	0.82	-37	Clear, no odors	
Sample Information: 9:40 15.8 19.5			7.05	13	1784	15.7	0.64	-62	Clear, no odors	

Well No. MW-		MW-6B	Diameter (inches): 2			Sample Date	e / Time:	10/14/20	10/14/2021 15:05:00 AM	
Product Depth (fbTOR):			Water Column (ft): 34.2			DTW when sampled:				
DTW (static	DTW (static) (fbTOR): 7.8			One Well Volume (gal): 5.57			Development	Sample	✓ Purge & Sample	
Total Depth	(fbTOR):	42	Total Volum	e Purged (gal):	17	Purge Metho	Purge Method: Low Flow			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	Appearance & Odor		
14:40	o Initial	0	8.3	20.5	702	96.9	3.16	126	Clear, no odor	
14:47	10	6	7.75	16.6	811	472	0.82	-75	Clear, no odor	
14:56	10.85	12	7.67	17.5	809	318	1.26	-62	Clear, no odor	
15:05	10.85	17	7.66	19.1	806	318	0.66	-54	Clear, no odor	
	4									
	5									
	6									
	7									
	8									
	9									
	10									
Sample I	nformation:						<u> </u>	I.		
15:07	10.85	17	7.66	16.3	803	348	0.75	-61	Clear, no odor	
	S2									

			Stabilizat	Stabilization Criteria		
REMARKS:	Volume (Calculation	Parameter	Criteria		
	Diam.	Vol. (g/ft)	pН	± 0.1 unit		
	1"	0.041	SC	± 3%		
	2"	0.163	Turbidity	± 10%		
	4"	0.653	DO	± 0.3 mg/L		
Note: All water level measurements are in feet, distance from top of riser.	6"	1.469	ORP	± 10 mV		